

conference

proceedings

Proceedings of the 28th U
SEN

IX Security Sym
posium

Santa Clara, CA

, USA
August 14–16, 2019

Sponsored by

ISBN 978-1-939133-06-9

28th USENIX
Security Symposium

Santa Clara, CA, USA
August 14–16, 2019

USENIX Supporters

USENIX Patrons
Bloomberg • Facebook • Google

Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle

Two Sigma • VMware

USENIX Partners
Cisco Meraki • ProPrivacy

Restore Privacy • Teradactyl • TheBestVPN.com

Open Access Publishing Partner
PeerJ

© 2019 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s employer. Permission
is granted for the noncommercial reproduction of the complete work for educational or research purposes. Permission is granted to
print, primarily for one person’s exclusive use, a single copy of these Proceedings. USENIX acknowledges all trademarks herein.

ISBN 978-1-939133-06-9

USENIX Security ’19 Sponsors
Platinum Sponsor

Diamond Sponsor

Silver Sponsors

Bronze Sponsors

Gold Sponsor

Industry Partners and Media Sponsors

ACM Queue
Electronic Frontier Foundation

FreeBSD Foundation
No Starch Press

USENIX Association

August 14–16, 2019
Santa Clara, CA, USA

Proceedings of the
28th USENIX Security Symposium

Conference Organizers

Program Co-Chairs
Nadia Heninger, University of Pennsylvania
Patrick Traynor, University of Florida

Program Committee
Yasemin Acar, Leibniz University Hannover
Sadia Afroz, University of California, Berkeley/

International Computer Science Institute
Devdatta Akhawe, Dropbox
Johanna Amann, International Computer Science Institute
Adam Aviv, United States Naval Academy
Michael Bailey, University of Illinois at Urbana–Champaign
Adam Bates, University of Illinois at Urbana–Champaign
Vincent Bindschaedler, University of Florida
Joseph Bonneau, New York University
Nikita Borisov, University of Illinois at Urbana–Champaign
Sven Bugiel, CISPA Helmholtz Center i.G.
Kevin Butler, University of Florida
Joe Calandrino, Federal Trade Commission
Stefano Calzavara, Università Ca’ Foscari Venezia
Yinzhi Cao, Johns Hopkins University
Srdjan Capkun, ETH Zurich
Lorenzo Cavallaro, King’s College London
Stephen Checkoway, Oberlin College
Bill Cheswick, AT&T Labs—Research
Marshini Chetty, Princeton University
Mihai Christodorescu, VISA Research
Erinn Clark, First Look Media
George Danezis, University College London
Nathan Dautenhahn, Rice University
Roger Dingledine, The Tor Project
Adam Doupe, Arizona State University
Thomas Dullien, Google
Zakir Durumeric, Stanford University
Manuel Egele, Boston University
William Enck, North Carolina State University
Roya Ensafi, University of Michigan
David Evans, University of Virginia
Sascha Fahl, Leibniz University Hannover
Giulia Fanti, Carnegie Mellon University
Nick Feamster, Princeton University
Adrienne Porter Felt, Google
Earlence Fernandes, University of Washington
David Freeman, Facebook
Daniel Genkin, University of Michigan
Neil Gong, Iowa State University
Matthew Green, Johns Hopkins Information Security

Institute
Rachel Greenstadt, Drexel University

Daniel Gruss, Graz University of Technology
Joseph Lorenzo Hall, Center for Democracy & Technology
Xiali (Sharon) Hei, University of Louisiana at Lafayette
Thorsten Holz, Ruhr-University Bochum
Trent Jaeger, The Pennsylvania State University
Rob Jansen, U.S. Naval Research Laboratory
Mobin Javed, Lahore University of Management Sciences
Chris Kanich, University of Illinois at Chicago
Vasileios Kemerlis, Brown University
Yongdae Kim, Korea Advanced Institute of Science and

Technology (KAIST)
Lea Kissner, Humu
Yoshi Kohno, University of Washington
Farinaz Koushanfar, University of California, San Diego
Katharina Krombholz, CISPA Helmholtz Center i.G.
Ben Laurie, Google
Tancrède Lepoint, Google
Martina Lindorfer, Technische Universität Wien
Allison Mankin, Salesforce
Ivan Martinovic, Oxford University
Stephen McCamant, University of Minnesota
Jon McCune, Google
Patrick McDaniel, The Pennsylvania State University
Sarah Meiklejohn, University College London
Jelena Mirkovic, USC/Information Sciences Institute
Prateek Mittal, Princeton University
Veelasha Moonsamy, Utrecht University
Adwait Nadkarni, College of William & Mary
Yossi Oren, Ben-Gurion University of the Negev
Nicolas Papernot, The Pennsylvania State University
Kenny Paterson, Royal Holloway
Mathias Payer, École Polytechnique Fédérale de Lausanne

(EPFL)
Giancarlo Pellegrino, Stanford University
Christina Pöpper, New York University Abu Dhabi
Brad Reaves, North Carolina State University
Elissa Redmiles, University of Maryland
Konrad Rieck, Technische Universität Braunschweig
Tom Ristenpart, Cornell Tech
Tom Ritter, Mozilla
Franziska Roesner, University of Washington
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
Prateek Saxena, National University of Singapore
Nolen Scaife, University of Florida
Wendy Seltzer, W3C/Massachusetts Institute of Technology
Micah Sherr, Georgetown University
Deian Stefan, University of California, San Diego
Ben Stock, CISPA Helmholtz Center i.G.
Gianluca Stringhini, Boston University

External Reviewers
Hadi Abdullah
Bander Alsulami
Cornelius Aschermann
Teodora Baluta
Gabrielle Beck
Logan Blue
Nicole Borrelli
Sam Bretheim
Marcus Brinkmann
Claudio Canella
Benton Case
Berkay Celik
Alishah Chator
Rahul Chatterjee
Qingrong Chen
Joseph Choi
David Clayton
Shaanan Cohney
Edwin Dauber
Giulio De Pasquale
Sergi Delgado Segura
Henri Maxime Demoulin
Brian Desnoyers
Karim Eldefrawy
Evan Evtimov
Dennis Felsch

Joel Frank
Vanessa Frost
Ankit Gangwal
Peng Gao
Washington Garcia
Jordy Gennissen
Lukas Giner
Steve Gomez
Martin Grothe
Muhammad Haris

Mughees
Marcella Hastings
Grant Hernandez
Grant Ho
Stefan Hoffmann
Liz Izhikevich
Sakshi Jain
Tyler Kaczmarek
George Kappos
Gabrielle Kaptchuk
Katarina Kohls
Aashish Kolluri
Georg Koppen
Ben Kreuter
Deepak Kumar
Daniele Lain

Sebastian Lauer
Kevin Liao
Moritz Lipp
Alwin Maier
Patrick McCorry
Robert Merget
Muhammad Shujaat Mirza
Rafael Misoczki
Vladislav Mladenov
Ivica Nikolic
Liang Niu
Aleatha Parker-Wood
Paul Pearce
Feargus Pendlebury
Mike Perry
Fabio Pierazzi
Ania Piotrowska
Erwin Quiring
Sanjeev Reddy
Paul Rösler
David Rupprecht
M. Sadegh Riazi
Theodor Schnitzler
Ser gej Schu mi lo
Roei Schuster
Michael Schwarz

Will Scott
Karn Seth
Hovav Shacham
Rich Shay
Shiqi Shen
Tom Shrimpton
Camelia Simoiu
Douglas Stebila
Mohammad Taha Khan
Kejsi Take
Dennis Tatang
Aaron Tomb
Mathy Vanhoef
Luis Vargas
Liang Wang
Alexander Warnicke
Christian Wressnegger
Karl Wüst
Xiaojun Xu
Nian Xue
Haaroon Yousaf
Pinghai Yuan
Yupeng Zhang
Maximilian Zinkus

Dave ‘Jing’ Tian, University of Florida
Luke Valenta, University of Pennsylvania
Ingrid Verbauwhede, Katholieke Universiteit Leuven
David Wagner, University of California, Berkeley
Byron Williams, University of Florida
Eric Wustrow, University of Colorado Boulder
Wenyuan Xu, Zhejiang University
Yuval Yarom, University of Adelaide and Data61
Tuba Yavuz, University of Florida
Daniel Zappala, Brigham Young University
Mary Ellen Zurko, MIT Lincoln Laboratory

Invited Talks Chair
Devdatta Akhawe, Dropbox

Invited Talks Committee
Alex Gantman, Qualcomm
Giancarlo Pellegrino, Stanford University
Elissa Redmiles, University of Maryland

Lightning Talks Chair
Christina Garman, Purdue University

Poster Session Chair
Brad Reaves, North Carolina State University

Test of Time Awards Committee
Matt Blaze, University of Pennsylvania
Dan Boneh, Stanford University
Kevin Fu, University of Michigan
Fabian Monrose, The University of North Carolina at

Chapel Hill

Steering Committee
Matt Blaze, University of Pennsylvania
Dan Boneh, Stanford University
William Enck, North Carolina State University
Kevin Fu, University of Michigan
Casey Henderson, USENIX Association
Thorsten Holz, Ruhr-Universität Bochum
Jaeyeon Jung, Samsung Electronics
Engin Kirda, Northeastern University
Tadayoshi Kohno, University of Washington
Adrienne Porter Felt, Google
Thomas Ristenpart, Cornell Tech
David Wagner, University of California, Berkeley

Message from the
28th USENIX Security Symposium

Program Co-Chairs

Welcome to the USENIX Security Symposium in Santa Clara, CA! We hope you enjoy the outstanding technical program
and invited talks. Now in its 28th year, the symposium brings together researchers and practitioners from across the field.
We encourage you to engage with the community through our events, hallway track, and questions for speakers.

This was an exciting year for the USENIX Security Symposium as we transitioned to a new paper reviewing model with
multiple submission deadlines. We want to use this opportunity to detail the model we instituted this year, as well as the
process we used to develop it.

The USENIX board asked us in June of 2018 if we would be willing to move to multiple submission deadlines for the 2019
Symposium, and tasked us with developing a plan to do so. We studied the processes and choices made by conferences that
had previously transitioned to multiple submission deadlines, including the IEEE Symposium on Security and Privacy, the
Privacy-Enhancing Technologies Symposium, the ACM International Conference on Mobile Computing and Networking,
and the Conference on Cryptographic Hardware and Embedded Systems, and consulted with former and current chairs of
these conferences. We then developed a preliminary plan that we presented to the USENIX Security Steering Committee for
feedback. After incorporating their suggested changes and receiving approval, we presented the plan to the USENIX Security
community at USENIX Security 2018 in August 2018 in a community meeting to gather feedback before publishing the of-
ficial Call for Papers.

We made the following choices in designing the new submission model:

• There would be four evenly-spaced submission deadlines throughout the year. We felt that this was a “sweet spot” that
would allow for the two-and-a-half-month review cycle that the community was used to, while still giving authors
multiple opportunities to submit their work when they felt it was ready. Since 2019 was a transitional year, we had two
submission deadlines. The first deadline in the fall was November 15, 2018, and the second deadline in the winter was
February 15, 2019.

• Like other conferences that have transitioned to multiple deadlines, we instituted a paper revision and resubmission pro-
cess, which we describe in more detail below.

• To try to make the reviewing and revision process as constructive as possible, we introduced “journal-style” review-
ing outcomes. That is, instead of rating papers “Accept”, “Weak Accept”, “Weak Reject”, or similar, we specified that
reviewers could give outcomes of “Accept”, “Minor Revision”, “Major Revision”, “Reject and Resubmit”, and “Reject”.

“Accept” has the same meaning as before. “Minor Revision” replaces “Accept with Shepherding”. Papers with this outcome
were assigned a shepherd who articulated a specific list of textual changes, such as adding additional citations or clarifying
details of experiments, that the authors were requested to make, with the specific guidance that papers in this category were
not accepted until the changes were made to the reviewers’ satisfaction.

“Major Revision” was the most significant change to the process. Papers receiving this outcome were returned to the authors
with a list of specific changes requested by the reviewers. These included performing additional experiments, adding ad-
ditional case studies or analyses, or requests for rewriting that were considered beyond the scope of what a shepherd could
reasonably guide. Authors of “Major Revision” papers were invited to resubmit to either of the next two submission deadlines,
with the promise that we would attempt to assign the same set of reviewers to review the resubmission, and that the resubmis-
sion would be evaluated according to the reviews and the specific changes requested by the reviewers. Papers receiving this
outcome were considered to still be under submission for the next two deadlines, and we asked authors to explicitly withdraw
their papers from consideration if they wished to submit the same work to another conference.

Finally, papers that were rejected could receive two possible outcomes. A “Reject and Resubmit” outcome was intended
to signal to the authors that the reviewers thought the work could likely be revised to be accepted, but that the scope of the
changes reviewers felt was required for acceptance was beyond what the reviewers could articulate in a specific list of “Major
Revision” requests, or would likely take longer than the four months that authors would have to revise their work for a “Major
Revision”. Papers receiving this outcome could not submit to either of the next two submission deadlines. Papers receiving a
“Reject” outcome were not allowed to resubmit for a full year after the submission date.

• There would be two in-person program committee meetings a year. While program committee meetings are expen-
sive and time-consuming, we received feedback from many community members that they serve an important role for
calibration and discussion. In the 2019 transitional year, we held only one in-person meeting associated with the winter
submission deadline.

• As in previous years, for each submission deadline, we used a double-blind review process with two rounds of reviews.

We expected the total number of submissions to increase this year, in line with the experience of other conferences that have
transitioned to multiple submission deadlines. Accordingly, we gathered the largest program committee ever, with 100 mem-
bers and two chairs. We endeavored to assemble a diverse program committee in terms of area of expertise, seniority level,
geography, gender, race, and institution type. Members of the resulting program committee were 19% from industry, govern-
ment, or nonprofit, 25% female, and 27% based outside the US. The 2018 USENIX Security chairs invited members of the
community to volunteer themselves and others to serve on the 2019 program committee using a web form; we found this to
be an incredibly valuable resource when assembling our program committee.

A major goal of our changes to the reviewing system was to focus on returning helpful, constructive reviews to authors,
and to provide as much guidance as possible in moving submitted papers towards publication. Following last year, we also
assembled a Review Task Force (RTF) of five experienced program committee members to help ensure review quality and
encourage positive discussion. RTF members provided feedback on reviews, helped manage online discussion, and acted as
proxies for program committee members not in attendance in the in-person program committee meeting, in exchange for a
reduced reviewing workload. We found significant value in the RTF, and expanded their roles this year, particularly in facili-
tating online discussion and helping reviewers calibrate the new review outcomes across papers.

We received 260 submissions in the fall November 15, 2018 deadline. We administratively rejected four papers for violating
the call for papers, and two papers were withdrawn, leaving 254 submissions to be considered in Fall Round 1. Each paper
was assigned two reviews in the first round. Following three weeks of review and a week of online discussion, 93 papers were
early rejected on December 14. Of these, 41 were Rejected and 45 received a Reject and Resubmit outcome. A paper was
rejected if it received only scores of Reject or Reject and Resubmit, and neither reviewer saw value in additional reviews. The
outcome was agreed upon by the reviewers. Authors of rejected papers were not given the opportunity to appeal. We believed
that this early rejection step was critical, because it meant that the authors could immediately begin making changes to their
submission and have it evaluated by other reviewers at another venue. The authors of the remaining 161 papers were given
the opportunity to respond to the reviews and specific questions from the reviewers. Each fall Round 2 paper received two
or more additional reviews. After three more weeks of reviewing and 1.5 weeks of online discussion, we notified authors of
the Round 2 decisions on January 18, 2019. Of these papers, 11 were Rejected, 77 received a Reject and Resubmit Outcome,
48 received a Major Revision outcome, 20 received a Minor Revision outcome, and 5 were Accepted. All 20 Minor Revision
papers from the fall submission deadline were accepted by February 18, 2019.

We received 481 submissions in the winter February 15, 2019 deadline. 38 of these were resubmissions of papers that re-
ceived a Major Revision decision from the fall deadline. Additionally, the authors of two Major Revision papers explicitly
wrote to withdraw their paper from the USENIX Security review process. We administratively rejected 20 papers for violat-
ing the call for papers, and four were withdrawn by the authors, leaving 457 papers to be considered in the winter Round 1.
We assigned the same reviewers as in the previous round to the resubmitted Major Revision papers, except in cases where
additional conflicts of interest arose or were discovered between the two deadlines, and assigned two reviewers to all other
papers. 211 papers were early rejected on March 21, 2019: 122 Rejected and 89 Reject and Resubmit. We also asked the
reviewers on Major Revision resubmissions to make decisions in Round 1: six papers were Accepted, 24 papers received a
Minor Revision, one paper received a Reject and Resubmit, and seven papers were Rejected. We chose to disallow multiple
Major Revision decisions in order to make sure that paper outcomes were decided in a reasonable time frame for authors.
This left 216 papers in Round 2.

The in-person PC meeting was held on April 29 and 30 at the University of Florida in Gainesville, Florida. We invited all
program committee members to attend the meeting but made attendance optional; 49 program committee members attended.
We were able to discuss 91 papers during the meeting, and all other decisions were made in online discussion. Among the pa-
pers in Round 2, 11 papers were Accepted, 48 received Minor Revisions, 33 received Major Revisions, 108 received a Reject
and Resubmit outcome, and 16 were Rejected. Further, one Minor Revision paper was ultimately rejected by the reviewers;
all the others were accepted by the camera-ready deadline of June 1.

In total, we accepted 113 of the 697 distinct, non-withdrawn submissions that we received this year, for a 16% acceptance rate
overall. The acceptance rate for the resubmitted Major Revision papers was 76%. Both the number of papers accepted and the
number of papers submitted are new records for the symposium, which was exceptionally competitive this year. We congratu-
late the authors on their excellent work and achievements!

It was an honor to be part of the large community effort that brings together the USENIX Security Symposium. The demands
placed on the program committee this year were exceptionally high, both in terms of reviewing load and in calibrating a new
reviewing system. Each member submitted about 22 reviews, for a total of 822 reviews in the fall and 1450 reviews in winter,
or 2272 reviews total, and more than 8600 comments were left in the discussions. It is our sincere hope that the new process
not only assisted in creating the strongest possible program, but also that it helped to improve the quality of reviews and men-
torship provided to the community.

We would especially like to thank our Review Task Force: Kevin Butler, Srdjan Capkun, Rachel Greenstadt, Jon McCune,
and Franzi Roesner. Yoshi Kohno was our steering committee liaison and was a great help. Michael Bailey also provided
valuable feedback from the board. We also thank the many external reviewers who provided additional expertise. We would
like to thank the invited talks committee (Devdatta Akhawe, Alex Gantmann, Giancarlo Pellegrino, Elissa Redmiles), the
Test of Time award committee (Matt Blaze, Dan Boneh, Kevin Fu, Fabian Monrose), the poster session chair Brad Reaves,
and the lightning talks chair Christina Garman. We are extremely grateful to the staff at USENIX who run everything behind
the scenes, particularly Casey Henderson, Jasmine Murcia, and Michele Nelson. Finally, we thank all of the authors of the
703 submitted papers for participating in the 28th USENIX Security Symposium.

Nadia Heninger, University of California San Diego
Patrick Traynor, University of Florida
USENIX Security ’19 Program Co-Chairs

USENIX Security ’19:
28th USENIX Security Symposium

August 14–16, 2019
Santa Clara, CA, USA

Wireless Security
A Study of the Feasibility of Co-located App Attacks against BLE and a Large-Scale Analysis of the Current
Application-Layer Security Landscape . 1
Pallavi Sivakumaran and Jorge Blasco, Royal Holloway University of London

The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links . 19
Jiahao Cao, Qi Li, and Renjie Xie, Tsinghua University; Kun Sun, George Mason University; Guofei Gu, Texas A&M
University; Mingwei Xu and Yuan Yang, Tsinghua University

A Billion Open Interfaces for Eve and Mallory: MitM, DoS, and Tracking Attacks on iOS and macOS Through
Apple Wireless Direct Link . 37
Milan Stute, Technische Universität Darmstadt; Sashank Narain, Northeastern University; Alex Mariotto, Alexander
Heinrich, and David Kreitschmann, Technische Universität Darmstadt; Guevara Noubir, Northeastern University;
Matthias Hollick, Technische Universität Darmstadt

Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE . 55
Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil Kim, Song Min Kim, and Yongdae Kim, KAIST

UWB-ED: Distance Enlargement Attack Detection in Ultra-Wideband . 73
Mridula Singh, Patrick Leu, AbdelRahman Abdou, and Srdjan Capkun, ETH Zurich

Protecting Users Everywhere
Computer Security and Privacy in the Interactions Between Victim Service Providers and Human Trafficking
Survivors . 89
Christine Chen, University of Washington; Nicola Dell, Cornell Tech; Franziska Roesner, University of Washington

Clinical Computer Security for Victims of Intimate Partner Violence . 105
Sam Havron, Diana Freed, and Rahul Chatterjee, Cornell Tech; Damon McCoy, New York University; Nicola Dell and
Thomas Ristenpart, Cornell Tech

Evaluating the Contextual Integrity of Privacy Regulation: Parents’ IoT Toy Privacy Norms Versus COPPA 123
Noah Apthorpe, Sarah Varghese, and Nick Feamster, Princeton University

Secure Multi-User Content Sharing for Augmented Reality Applications . 141
Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner, University of Washington

Understanding and Improving Security and Privacy in Multi-User Smart Homes: A Design Exploration and
In-Home User Study . 159
Eric Zeng and Franziska Roesner, University of Washington

Hardware Security
PAC it up: Towards Pointer Integrity using ARM Pointer Authentication . 177
Hans Liljestrand, Aalto University, Huawei Technologies Oy; Thomas Nyman, Aalto University; Kui Wang, Huawei
Technologies Oy, Tampere University of Technology; Carlos Chinea Perez, Huawei Technologies Oy; Jan-Erik Ekberg,
Huawei Technologies Oy, Aalto University; N. Asokan, Aalto University

Origin-sensitive Control Flow Integrity . 195
Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie Yang, Florida State University

(continued on next page)

HardFails: Insights into Software-Exploitable Hardware Bugs . 213
Ghada Dessouky and David Gens, Technische Universität Darmstadt; Patrick Haney and Garrett Persyn, Texas A&M
University; Arun Kanuparthi, Hareesh Khattri, and Jason M. Fung, Intel Corporation; Ahmad-Reza Sadeghi, Technische
Universität Darmstadt; Jeyavijayan Rajendran, Texas A&M University

uXOM: Efficient eXecute-Only Memory on ARM Cortex-M . 231
Donghyun Kwon, Jangseop Shin, and Giyeol Kim, Seoul National University; Byoungyoung Lee, Seoul National
University, Purdue University; Yeongpil Cho, Soongsil University; Yunheung Paek, Seoul National University

A Systematic Evaluation of Transient Execution Attacks and Defenses . 249
Claudio Canella, Graz University of Technology; Jo Van Bulck, imec-DistriNet, KU Leuven; Michael Schwarz, Moritz
Lipp, Benjamin von Berg, and Philipp Ortner, Graz University of Technology; Frank Piessens, imec-DistriNet, KU
Leuven; Dmitry Evtyushkin, College of William and Mary; Daniel Gruss, Graz University of Technology

Machine Learning Applications
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks . 267
Nicholas Carlini, Google Brain; Chang Liu, University of California, Berkeley; Úlfar Erlingsson, Google Brain; Jernej
Kos, National University of Singapore; Dawn Song, University of California, Berkeley

Improving Robustness of ML Classifiers against Realizable Evasion Attacks Using Conserved Features 285
Liang Tong, Washington University in St. Louis; Bo Li, UIUC; Chen Hajaj, Ariel University; Chaowei Xiao, University of
Michigan; Ning Zhang and Yevgeniy Vorobeychik, Washington University in St. Louis

ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation . 303
Ethan M. Rudd, Felipe N. Ducau, Cody Wild, Konstantin Berlin, and Richard Harang, Sophos

Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks 321
Ambra Demontis, Marco Melis, and Maura Pintor, University of Cagliari, Italy; Matthew Jagielski, Northeastern
University; Battista Biggio, University of Cagliari, Italy, and Pluribus One; Alina Oprea and Cristina Nita-Rotaru,
Northeastern University; Fabio Roli, University of Cagliari, Italy, and Pluribus One

Stack Overflow Considered Helpful! Deep Learning Security Nudges Towards Stronger Cryptography 339
Felix Fischer, Technical University of Munich; Huang Xiao, Bosch Center for Artificial Intelligence; Ching-Yu Kao,
Fraunhofer AISEC; Yannick Stachelscheid, Benjamin Johnson, and Danial Razar, Technical University of Munich; Paul
Fawkesley and Nat Buckley, Projects by IF; Konstantin Böttinger, Fraunhofer AISEC; Paul Muntean and Jens Grossklags,
Technical University of Munich

Planes, Cars, and Robots
Wireless Attacks on Aircraft Instrument Landing Systems . 357
Harshad Sathaye, Domien Schepers, Aanjhan Ranganathan, and Guevara Noubir, Northeastern University

Please Pay Inside: Evaluating Bluetooth-based Detection of Gas Pump Skimmers . 373
Nishant Bhaskar and Maxwell Bland, University of California San Diego; Kirill Levchenko, University of Illinois at
Urbana-Champaign; Aaron Schulman, University of California San Diego

CANvas: Fast and Inexpensive Automotive Network Mapping . 389
Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar, Carnegie Mellon University

Losing the Car Keys: Wireless PHY-Layer Insecurity in EV Charging . 407
Richard Baker and Ivan Martinovic, University of Oxford

RVFuzzer: Finding Input Validation Bugs in Robotic Vehicles through Control-Guided Testing 425
Taegyu Kim, Purdue University; Chung Hwan Kim and Junghwan Rhee, NEC Laboratories America; Fan Fei, Zhan Tu,
Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu, Purdue University

(continued on next page)

Machine Learning, Adversarial and Otherwise
Seeing is Not Believing: Camouflage Attacks on Image Scaling Algorithms . 443
Qixue Xiao, Department of Computer Science and Technology, Tsinghua University and 360 Security Research Labs;
Yufei Chen, School of Electronic and Information Engineering, Xi’an Jiaotong University and 360 Security Research
Labs; Chao Shen, School of Electronic and Information Engineering, Xi’an Jiaotong University; Yu Chen, Department of
Computer Science and Technology, Tsinghua University and Peng Cheng Laboratory; Kang Li, Department of Computer
Science, University of Georgia

CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learning . 461
Yisroel Mirsky and Tom Mahler, Ben-Gurion University; Ilan Shelef, Soroka University Medical Center; Yuval Elovici,
Ben-Gurion University

Misleading Authorship Attribution of Source Code using Adversarial Learning . 479
Erwin Quiring, Alwin Maier, and Konrad Rieck, TU Braunschweig

Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware
Fault Attacks . 497
Sanghyun Hong, University of Maryland College Park; Pietro Frigo, Vrije Universiteit Amsterdam; Yiğitcan Kaya,
University of Maryland College Park; Cristiano Giuffrida, Vrije Universiteit Amsterdam; Tudor Dumitraș, University of
Maryland College Park

CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel 515
Lejla Batina, Radboud University, The Netherlands; Shivam Bhasin and Dirmanto Jap, Nanyang Technological
University, Singapore; Stjepan Picek, Delft University of Technology, The Netherlands

Mobile Security 1
simTPM: User-centric TPM for Mobile Devices . 533
Dhiman Chakraborty, CISPA Helmholtz Center for Information Security, Saarland University; Lucjan Hanzlik, CISPA
Helmholtz Center for Information Security, Stanford University; Sven Bugiel, CISPA Helmholtz Center for Information
Security

The Betrayal At Cloud City: An Empirical Analysis Of Cloud-Based Mobile Backends . 551
Omar Alrawi, Georgia Institute of Technology; Chaoshun Zuo, Ohio State University; Ruian Duan and Ranjita Pai
Kasturi, Georgia Institute of Technology; Zhiqiang Lin, Ohio State University; Brendan Saltaformaggio, Georgia Institute
of Technology

EnTrusT: Regulating Sensor Access by Cooperating Programs via Delegation Graphs . 567
Giuseppe Petracca, Pennsylvania State University, US; Yuqiong Sun, Symantec Research Labs, US; Ahmad-Atamli
Reineh, Alan Turing Institute, UK; Patrick McDaniel, Pennsylvania State University, US; Jens Grossklags, Technical
University of Munich, DE; Trent Jaeger, Pennsylvania State University, US

PolicyLint: Investigating Internal Privacy Policy Contradictions on Google Play . 585
Benjamin Andow and Samin Yaseer Mahmud, North Carolina State University; Wenyu Wang, University of Illinois at
Urbana-Champaign; Justin Whitaker, William Enck, and Bradley Reaves, North Carolina State University; Kapil Singh,
IBM T.J. Watson Research Center; Tao Xie, University of Illinois at Urbana-Champaign

50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the Android Permissions System 603
Joel Reardon, University of Calgary / AppCensus Inc.; Álvaro Feal, IMDEA Networks Institute / Universidad Carlos
III Madrid; Primal Wijesekera, U.C. Berkeley / ICSI; Amit Elazari Bar On, U.C. Berkeley; Narseo Vallina-Rodriguez,
IMDEA Networks Institute / ICSI / AppCensus Inc.; Serge Egelman, U.C. Berkeley / ICSI / AppCensus Inc.

Side Channels
spoilEr: Speculative Load Hazards Boost Rowhammer and Cache Attacks . 621
Saad Islam and Ahmad Moghimi, Worcester Polytechnic Institute; Ida Bruhns and Moritz Krebbel, University of
Luebeck; Berk Gulmezoglu, Worcester Polytechnic Institute; Thomas Eisenbarth, Worcester Polytechnic Institute and
University of Luebeck; Berk Sunar, Worcester Polytechnic Institute

Robust Website Fingerprinting Through the Cache Occupancy Channel . 639
Anatoly Shusterman, Ben-Gurion University of the Negev; Lachlan Kang, University of Adelaide; Yarden Haskal and
Yosef Meltser, Ben-Gurion University of the Negev; Prateek Mittal, Princeton University; Yossi Oren, Ben-Gurion
University of the Negev; Yuval Yarom, University of Adelaide and Data61

Identifying Cache-Based Side Channels through Secret-Augmented Abstract Interpretation 657
Shuai Wang, HKUST; Yuyan Bao and Xiao Liu, Penn State University; Pei Wang, Baidu X-Lab; Danfeng Zhang and
Dinghao Wu, Penn State University

scaTTErcachE: Thwarting Cache Attacks via Cache Set Randomization . 675
Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel Gruss, and Stefan Mangard, Graz
University of Technology

Pythia: Remote Oracles for the Masses . 693
Shin-Yeh Tsai, Purdue University; Mathias Payer, EPFL; Yiying Zhang, Purdue University

Mobile Security 2
HideMyApp: Hiding the Presence of Sensitive Apps on Android . 711
Anh Pham, ABB Corporate Research; Italo Dacosta, EPFL; Eleonora Losiouk, University of Padova; John Stephan,
EPFL; Kévin Huguenin, University of Lausanne; Jean-Pierre Hubaux, EPFL

TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time 729
Feargus Pendlebury, Fabio Pierazzi, and Roberto Jordaney, King’s College London & Royal Holloway, University of
London; Johannes Kinder, Bundeswehr University Munich; Lorenzo Cavallaro, King’s College London

Devils in the Guidance: Predicting Logic Vulnerabilities in Payment Syndication Services through Automated
Documentation Analysis . 747
Yi Chen, Institute of Information Engineering, CAS; Luyi Xing, Yue Qin, Xiaojing Liao, and XiaoFeng Wang, Indiana
University Bloomington; Kai Chen and Wei Zou, Institute of Information Engineering, CAS

Understanding iOS-based Crowdturfing Through Hidden UI Analysis . 765
Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing Liao, and XiaoFeng Wang, Indiana University; Tongxin Li,
Peking University; Xianghang Mi, Indiana University

Crypto Means Cryptocurrencies
BiTE: Bitcoin Lightweight Client Privacy using Trusted Execution . 783
Sinisa Matetic, Karl Wüst, Moritz Schneider, and Kari Kostiainen, ETH Zurich; Ghassan Karame, NEC Labs; Srdjan
Capkun, ETH Zurich

FasTKiTTEn: Practical Smart Contracts on Bitcoin . 801
Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková, Patrick Jauernig, Sebastian Faust, and
Ahmad-Reza Sadeghi, Technische Universität Darmstadt, Germany

StrongChain: Transparent and Collaborative Proof-of-Work Consensus . 819
Pawel Szalachowski, Daniël Reijsbergen, and Ivan Homoliak, Singapore University of Technology and Design (SUTD);
Siwei Sun, Institute of Information Engineering and DCS Center, Chinese Academy of Sciences

Tracing Transactions Across Cryptocurrency Ledgers . 837
Haaroon Yousaf, George Kappos, and Sarah Meiklejohn, University College London

Intelligence and Vulnerabilities
Reading the Tea leaves: A Comparative Analysis of Threat Intelligence . 851
Vector Guo Li, University of California, San Diego; Matthew Dunn, Northeastern University; Paul Pearce, Georgia Tech;
Damon McCoy, New York University; Geoffrey M. Voelker and Stefan Savage, University of California, San Diego; Kirill
Levchenko, University of Illinois Urbana-Champaign

Towards the Detection of Inconsistencies in Public Security Vulnerability Reports . 869
Ying Dong, University of Chinese Academy of Sciences and The Pennsylvania State University; Wenbo Guo, Yueqi Chen,
and Xinyu Xing, The Pennsylvania State University and JD Security Research Center; Yuqing Zhang, University of
Chinese Academy of Sciences; Gang Wang, Virginia Tech

Understanding and Securing Device Vulnerabilities through Automated Bug Report Analysis 887
Xuan Feng, Beijing Key Laboratory of IOT Information Security Technology, Institute of Information Engineering, CAS,
China; School of Cyber Security, University of Chinese Academy of Sciences, China; Xiaojing Liao and XiaoFeng Wang,
Department of Computer Science, Indiana University Bloomington, USA; Haining Wang, Department of Electrical
and Computer Engineering, University of Delaware, USA; Qiang Li, School of Computer and Information Technology,
Beijing Jiaotong University, China; Kai Yang, Hongsong Zhu, and Limin Sun, Beijing Key Laboratory of IOT
Information Security Technology, Institute of Information Engineering, CAS, China; School of Cyber Security, University
of Chinese Academy of Sciences, China

aTTacK2vEc: Leveraging Temporal Word Embeddings to Understand the Evolution of Cyberattacks 905
Yun Shen, Symantec Research Labs; Gianluca Stringhini, Boston University

Web Attacks
Leaky Images: Targeted Privacy Attacks in the Web . 923
Cristian-Alexandru Staicu and Michael Pradel, TU Darmstadt

All Your Clicks Belong to Me: Investigating Click Interception on the Web . 941
Mingxue Zhang and Wei Meng, Chinese University of Hong Kong; Sangho Lee, Microsoft Research; Byoungyoung Lee,
Seoul National University and Purdue University; Xinyu Xing, Pennsylvania State University

What Are You Searching For? A Remote Keylogging Attack on Search Engine Autocomplete 959
John V. Monaco, Naval Postgraduate School

Iframes/Popups Are Dangerous in Mobile WebView: Studying and Mitigating Differential Context Vulnerabilities . . 977
GuangLiang Yang, Jeff Huang, and Guofei Gu, Texas A&M University

Small World with High Risks: A Study of Security Threats in the npm Ecosystem . 995
Markus Zimmermann and Cristian-Alexandru Staicu, TU Darmstadt; Cam Tenny, r2c; Michael Pradel, TU Darmstadt

Crypto Means Cryptographic Attacks
“Johnny, you are fired!” – Spoofing OpenPGP and S/MIME Signatures in Emails . 1011
Jens Müller and Marcus Brinkmann, Ruhr University Bochum; Damian Poddebniak, Münster University of Applied
Sciences; Hanno Böck, unaffiliated; Sebastian Schinzel, Münster University of Applied Sciences; Juraj Somorovsky and
Jörg Schwenk, Ruhr University Bochum

Scalable Scanning and Automatic Classification of TLS Padding Oracle Vulnerabilities . 1029
Robert Merget and Juraj Somorovsky, Ruhr University Bochum; Nimrod Aviram, Tel Aviv University; Craig Young,
Tripwire VERT; Janis Fliegenschmidt and Jörg Schwenk, Ruhr University Bochum; Yuval Shavitt, Tel Aviv University

The KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR 1047
Daniele Antonioli, SUTD; Nils Ole Tippenhauer, CISPA; Kasper B. Rasmussen, University of Oxford

From IP ID to Device ID and KASLR Bypass . 1063
Amit Klein and Benny Pinkas, Bar Ilan University

When the Signal is in the Noise: Exploiting Diffix’s Sticky Noise . 1081
Andrea Gadotti and Florimond Houssiau, Imperial College London; Luc Rocher, Imperial College London and Université
catholique de Louvain; Benjamin Livshits and Yves-Alexandre de Montjoye, Imperial College London

IoT Security
Firm-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via Augmented Process Emulation 1099
Yaowen Zheng, Beijing Key Laboratory of IOT Information Security Technology, Institute of Information Engineering,
CAS, China; School of Cyber Security, University of Chinese Academy of Sciences, China; Ali Davanian, Heng Yin,
and Chengyu Song, University of California, Riverside; Hongsong Zhu and Limin Sun, Beijing Key Laboratory of IOT
Information Security Technology, Institute of Information Engineering, CAS, China; School of Cyber Security, University
of Chinese Academy of Sciences, China

(continued on next page)

Not Everything is Dark and Gloomy: Power Grid Protections Against IoT Demand Attacks 1115
Bing Huang, The University of Texas at Austin; Alvaro A. Cardenas, University of California, Santa Cruz; Ross Baldick,
The University of Texas at Austin

Discovering and Understanding the Security Hazards in the Interactions between IoT Devices, Mobile Apps, and
Clouds on Smart Home Platforms . 1133
Wei Zhou, National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences;
Yan Jia, Yao Yao, and Lipeng Zhu, School of Cyber Engineering, Xidian University; National Computer Network
Intrusion Protection Center, University of Chinese Academy of Sciences; Le Guan, Department of Computer Science,
University of Georgia; Yuhang Mao, School of Cyber Engineering, Xidian University; National Computer Network
Intrusion Protection Center, University of Chinese Academy of Sciences; Peng Liu, College of Information Sciences and
Technology, Pennsylvania State University; Yuqing Zhang, National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences; School of Cyber Engineering, Xidian University; State Key Laboratory of
Information Security, Institute of Information Engineering, Chinese Academy of Sciences

Looking from the Mirror: Evaluating IoT Device Security through Mobile Companion Apps 1151
Xueqiang Wang, Indiana University Bloomington; Yuqiong Sun and Susanta Nanda, Symantec Research Labs; XiaoFeng
Wang, Indiana University Bloomington

All Things Considered: An Analysis of IoT Devices on Home Networks . 1169
Deepak Kumar, University of Illinois at Urbana-Champaign; Kelly Shen and Benton Case, Stanford University; Deepali
Garg, Galina Alperovich, Dmitry Kuznetsov, and Rajarshi Gupta, Avast Software s.r.o.; Zakir Durumeric, Stanford
University

OS Security
KEplEr: Facilitating Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities 1187
Wei Wu, Institute of Information Engineering, Chinese Academy of Sciences; Pennsylvania State University; School of
Cybersecurity, University of Chinese Academy of Sciences; Yueqi Chen and Xinyu Xing, Pennsylvania State University;
Wei Zou, Institute of Information Engineering, Chinese Academy of Sciences; School of Cybersecurity, University of
Chinese Academy of Sciences

PeX: A Permission Check Analysis Framework for Linux Kernel . 1205
Tong Zhang, Virginia Tech; Wenbo Shen, Zhejiang University; Dongyoon Lee, Stony Brook University; Changhee Jung,
Purdue University; Ahmed M. Azab and Ruowen Wang, Samsung Research America

ERIM: Secure, Efficient In-process Isolation with Protection Keys (MPK) . 1221
Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter Druschel, and Deepak Garg, Max
Planck Institute for Software Systems, Saarland Informatics Campus

SafeHidden: An Efficient and Secure Information Hiding Technique Using Re-randomization 1239
Zhe Wang and Chenggang Wu, State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, University of Chinese Academy of Sciences; Yinqian Zhang, The Ohio State University;
Bowen Tang, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of
Sciences, University of Chinese Academy of Sciences; Pen-Chung Yew, University of Minnesota at Twin-Cities; Mengyao
Xie, Yuanming Lai, and Yan Kang, State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, University of Chinese Academy of Sciences; Yueqiang Cheng, Baidu USA; Zhiping Shi,
The Capital Normal University

Exploiting Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization . 1257
Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin, The Ohio State University; Yan Solihin, University of Central Florida

Phishing and Scams
Detecting and Characterizing Lateral Phishing at Scale . 1273
Grant Ho, UC Berkeley and Barracuda Networks; Asaf Cidon, Barracuda Networks and Columbia University; Lior
Gavish and Marco Schweighauser, Barracuda Networks; Vern Paxson, UC Berkeley and ICSI; Stefan Savage and
Geoffrey M. Voelker, UC San Diego; David Wagner, UC Berkeley

High Precision Detection of Business Email Compromise . 1291
Asaf Cidon, Barracuda Networks and Columbia University; Lior Gavish, Itay Bleier, Nadia Korshun, Marco
Schweighauser, and Alexey Tsitkin, Barracuda Networks

Cognitive Triaging of Phishing Attacks . 1309
Amber van der Heijden and Luca Allodi, Eindhoven University of Technology

Users Really Do Answer Telephone Scams . 1327
Huahong Tu, University of Maryland; Adam Doupé, Arizona State University; Ziming Zhao, Rochester Institute of
Technology; Gail-Joon Ahn, Arizona State University and Samsung Research

Platforms in Everything: Analyzing Ground-Truth Data on the Anatomy and Economics of Bullet-Proof Hosting . . 1341
Arman Noroozian, TU Delft; Jan Koenders and Eelco van Veldhuizen, Dutch National High-Tech Crime Unit; Carlos H.
Ganan, TU Delft; Sumayah Alrwais, King Saud University and International Computer Science Institute; Damon McCoy,
New York University; Michel van Eeten, TU Delft

Distributed System Security + Verifying Hardware
Protecting Cloud Virtual Machines from Hypervisor and Host Operating System Exploits . 1357
Shih-Wei Li, John S. Koh, and Jason Nieh, Columbia University

WAVE: A Decentralized Authorization Framework with Transitive Delegation . 1375
Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb, Hyung-Sin Kim, David E. Culler, and
Raluca Ada Popa, University of California, Berkeley

in-toto: Providing farm-to-table guarantees for bits and bytes . 1393
Santiago Torres-Arias, New York University; Hammad Afzali, New Jersey Institute of Technology; Trishank Karthik
Kuppusamy, Datadog; Reza Curtmola, New Jersey Institute of Technology; Justin Cappos, New York University

iodinE: Verifying Constant-Time Execution of Hardware . 1411
Klaus v. Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala, University of California, San Diego

VRASED: A Verified Hardware/Software Co-Design for Remote Attestation . 1429
Ivan De Oliveira Nunes, University of California, Irvine; Karim Eldefrawy, SRI International; Norrathep Rattanavipanon,
University of California, Irvine; Michael Steiner, Intel; Gene Tsudik, University of California, Irvine

Crypto Means Cryptography
Mobile Private Contact Discovery at Scale . 1447
Daniel Kales and Christian Rechberger, Graz University of Technology; Thomas Schneider, Matthias Senker, and
Christian Weinert, TU Darmstadt

EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formats . 1465
Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, and Nikhil Swamy, Microsoft Research; Tej Chajed,
MIT; Nadim Kobeissi, Inria Paris; Jonathan Protzenko, Microsoft Research

 . 1483Blind Bernoulli Trials: A Noninteractive Protocol For Hidden-Weight Coin Flips .
Emma Connor and Max Schuchard, University of Tennessee

Xonn: XNOR-based Oblivious Deep Neural Network Inference . 1501
M. Sadegh Riazi and Mohammad Samragh, UC San Diego; Hao Chen, Kim Laine, and Kristin Lauter, Microsoft
Research; Farinaz Koushanfar, UC San Diego

JEDI: Many-to-Many End-to-End Encryption and Key Delegation for IoT . 1519
Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler, University of California, Berkeley

Passwords
Birthday, Name and Bifacial-security: Understanding Passwords of Chinese Web Users . 1537
Ding Wang and Ping Wang, Peking University; Debiao He, Wuhan University; Yuan Tian, University of Virginia

Protecting accounts from credential stuffing with password breach alerting . 1555
Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Borbala Benko,
Tadek Pietraszek, and Sarvar Patel, Google; Dan Boneh, Stanford; Elie Bursztein, Google

(continued on next page)

Probability Model Transforming Encoders Against Encoding Attacks . 1573
Haibo Cheng, Zhixiong Zheng, Wenting Li, and Ping Wang, Peking University; Chao-Hsien Chu, Pennsylvania State
University

Cryptocurrency Scams
The Art of The Scam: Demystifying Honeypots in Ethereum Smart Contracts . 1591
Christof Ferreira Torres, Mathis Steichen, and Radu State, University of Luxembourg

The Anatomy of a Cryptocurrency Pump-and-Dump Scheme . 1609
Jiahua Xu, École polytechnique fédérale de Lausanne (EPFL); Benjamin Livshits, Imperial College London

Inadvertently Making Cyber Criminals Rich: A Comprehensive Study of Cryptojacking Campaigns at
Internet Scale . 1627
Hugo L.J. Bijmans, Tim M. Booij, and Christian Doerr, Delft University of Technology

Web Defenses
Rendered Private: Making GLSL Execution Uniform to Prevent WebGL-based Browser Fingerprinting 1645
Shujiang Wu, Song Li, and Yinzhi Cao, Johns Hopkins University; Ningfei Wang, Lehigh University

Site Isolation: Process Separation for Web Sites within the Browser . 1661
Charles Reis, Alexander Moshchuk, and Nasko Oskov, Google

Everyone is Different: Client-side Diversification for Defending Against Extension Fingerprinting 1679
Erik Trickel, Arizona State University; Oleksii Starov, Stony Brook University; Alexandros Kapravelos, North Carolina
State University; Nick Nikiforakis, Stony Brook University; Adam Doupé, Arizona State University

Less is More: Quantifying the Security Benefits of Debloating Web Applications . 1697
Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis, Stony Brook University

The Web’s Identity Crisis: Understanding the Effectiveness of Website Identity Indicators . 1715
Christopher Thompson, Martin Shelton, Emily Stark, Maximilian Walker, Emily Schechter, and Adrienne Porter Felt,
Google

Software Security
razor: A Framework for Post-deployment Software Debloating . 1733
Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and Wenke Lee, Georgia Institute of
Technology

Back to the Whiteboard: a Principled Approach for the Assessment and Design of Memory Forensic Techniques . . 1751
Fabio Pagani and Davide Balzarotti, EURECOM

Detecting Missing-Check Bugs via Semantic- and Context-Aware Criticalness and Constraints Inferences 1769
Kangjie Lu, Aditya Pakki, and Qiushi Wu, University of Minnesota

DEEPVSA: Facilitating Value-set Analysis with Deep Learning for Postmortem Program Analysis 1787
Wenbo Guo, Dongliang Mu, and Xinyu Xing, The Pennsylvania State University; Min Du and Dawn Song, University of
California, Berkeley

conFIRM: Evaluating Compatibility and Relevance of Control-flow Integrity Protections for Modern Software . 1805
Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, and Kevin W. Hamlen, University of Texas at Dallas; Zhiqiang Lin,
Ohio State University

Privacy
Point Break: A Study of Bandwidth Denial-of-Service Attacks against Tor . 1823
Rob Jansen, U.S. Naval Research Laboratory; Tavish Vaidya and Micah Sherr, Georgetown University

No Right to Remain Silent: Isolating Malicious Mixes . 1841
Hemi Leibowitz, Bar-Ilan University, IL; Ania M. Piotrowska and George Danezis, University College London, UK;
Amir Herzberg, University of Connecticut, US

On (The Lack Of) Location Privacy in Crowdsourcing Applications . 1859
Spyros Boukoros, TU-Darmstadt; Mathias Humbert, Swiss Data Science Center (ETH Zurich, EPFL); Stefan
Katzenbeisser, TU-Darmstadt, University of Passau; Carmela Troncoso, EPFL

Utility-Optimized Local Differential Privacy Mechanisms for Distribution Estimation . 1877
Takao Murakami and Yusuke Kawamoto, AIST

Evaluating Differentially Private Machine Learning in Practice . 1895
Bargav Jayaraman and David Evans, University of Virginia

Fuzzing
FuzziFicaTion: Anti-Fuzzing Techniques . 1913
Jinho Jung, Hong Hu, David Solodukhin, and Daniel Pagan, Georgia Institute of Technology; Kyu Hyung Lee, University
of Georgia; Taesoo Kim, Georgia Institute of Technology

anTiFuzz: Impeding Fuzzing Audits of Binary Executables . 1931
Emre Güler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz, Ruhr-Universität Bochum

MOpT: Optimized Mutation Scheduling for Fuzzers . 1949
Chenyang Lyu, Zhejiang University; Shouling Ji, Zhejiang University & Alibaba-Zhejiang University Joint Research
Institute of Frontier Technologies; Chao Zhang, BNRist & INSC, Tsinghua University; Yuwei Li, Zhejiang University;
Wei-Han Lee, IBM Research; Yu Song, Zhejiang University; Raheem Beyah, Georgia Institute of Technology

EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers . 1967
Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, and Chijin Zhou, Tsinghua University; Xun Jiao,
Villanova University; Zhuo Su, Tsinghua University

GrimoirE: Synthesizing Structure while Fuzzing . 1985
Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schumilo, Simon Wörner, and Thorsten Holz,
Ruhr-Universität Bochum

A Study of the Feasibility of Co-located App Attacks against BLE and a
Large-Scale Analysis of the Current Application-Layer Security Landscape

Pallavi Sivakumaran
Information Security Group

Royal Holloway University of London
Email: pallavi.sivakumaran.2012@rhul.ac.uk

Jorge Blasco
Information Security Group

Royal Holloway University of London
Email: jorge.blascoalis@rhul.ac.uk

Abstract
Bluetooth Low Energy (BLE) is a fast-growing wireless tech-
nology with a large number of potential use cases, particularly
in the IoT domain. Increasingly, these use cases require the
storage of sensitive user data or critical device controls on
the BLE device, as well as the access of this data by an aug-
mentative mobile application. Uncontrolled access to such
data could violate user privacy, cause a device to malfunction,
or even endanger lives. The BLE standard provides security
mechanisms such as pairing and bonding to protect sensitive
data such that only authenticated devices can access it. In this
paper we show how unauthorized co-located Android appli-
cations can access pairing-protected BLE data, without the
user’s knowledge. We discuss mitigation strategies in terms of
the various stakeholders involved in this ecosystem, and argue
that at present, the only possible option for securing BLE data
is for BLE developers to implement remedial measures in the
form of application-layer security between the BLE device
and the Android application. We introduce BLECryptracer,
a tool for identifying the presence of such application-layer
security, and present the results of a large-scale static anal-
ysis over 18,900+ BLE-enabled Android applications. Our
findings indicate that over 45% of these applications do not
implement measures to protect BLE data, and that cryptog-
raphy is sometimes applied incorrectly in those that do. This
implies that a potentially large number of corresponding BLE
peripheral devices are vulnerable to unauthorized data access.

1 Introduction

Bluetooth is a well-known technology standard for wireless
data transfer, currently deployed in billions of devices world-
wide [37]. A more recent addition to the Bluetooth standard
is Bluetooth Low Energy (BLE), which differs from Classic
Bluetooth in that it incorporates a simplified version of the
Bluetooth stack and targets low-energy, low-cost devices.

Its focus on resource-constrained devices has made BLE
highly suited for IoT applications [18], including personal

health/fitness monitoring [22], asset tracking [8], vehicular
management [13], and home automation [27]. Most of these
use cases augment the functionality of the BLE device with
a mobile application. This application may need to read or
write sensitive or critical data on the BLE device (for example,
glucose measurement values stored by a continuous glucose
meter, or a field that controls a door’s locking mechanism
in a smart home security system). To ensure privacy and
security/safety, measures should be taken to protect such data
from being accessed by unauthorized entities.

The Bluetooth specification provides means for restricting
access to BLE data via pairing and bonding, which are mech-
anisms for establishing an authenticated transport between
two communicating devices. However, when multiple appli-
cations reside on a single host, as is the case with mobile
devices, there is potential for a malicious application to abuse
a trusted relationship between the host and the device that
was initiated by an authorized application [31].

In this work, we show how a malicious application could
take advantage of the BLE communication model on Android
to read and write pairing-protected data on a BLE device
without the user’s knowledge. We also show that these unau-
thorized applications may be able to do so while requesting
minimal permissions, thereby making them appear less inva-
sive than even an authorized application.

We discuss various strategies, in terms of the different stake-
holders involved, that can be used to secure BLE data against
such unauthorized access. We argue that in the current land-
scape, it is up to the BLE device/application developers to im-
plement application-layer security to protect the data on their
devices. We perform a large-scale static analysis of 18,929
BLE-enabled Android applications (filtered down from an
original dataset of over 4.6 million applications) to determine
how many of them currently employ such protection mecha-
nisms. While the results vary for BLE reads vs. writes, overall
they show that more than 45% of the tested applications do
not provide cryptography-based application-layer security for
BLE data. This number rises to about 70% for those applica-
tions that are categorized under “Medical”. This information,

USENIX Association 28th USENIX Security Symposium 1

CENTRAL PERIPHERAL

GATT Client GATT Server

Read Request

Read Response

Figure 1: GATT communications between a mobile phone
and a BLE-enabled glucometer.

when combined with the download counts for each applica-
tion, allows us to estimate a lower bound for the number of
BLE devices that may be vulnerable to unauthorized data
access.

The rest of this paper is structured as follows: Section 2
provides an overview of key BLE concepts, particularly with
regard to data access mechanisms and restrictions. We demon-
strate unauthorized BLE data access in Section 3. This section
also discusses stakeholders and possible mitigation strategies.
Section 4 details our marketplace application analysis and
examines the results. Related work is described in Section 5,
and Section 6 provides our concluding remarks.

2 Background

Two devices that communicate using BLE will operate in
an asymmetric configuration, with the more powerful device,
referred to as the central, taking on most of the resource-
intensive work. The resource-constrained device is termed the
peripheral and performs tasks that are designed to consume
fewer resources.

2.1 Data Access on BLE Devices
BLE, unlike Classic Bluetooth, can only handle discrete data
known as attributes. Attributes are stored and accessed ac-
cording to rules specified by the Attribute Protocol (ATT)
and the Generic Attribute Profile (GATT), both of which are
defined in the Bluetooth standard. There are different types of
attributes, of which characteristics are the most relevant for
our analysis, as they hold the actual data of interest. Related
characteristics are grouped into services, which are exposed
to connected devices [11].

When one BLE-enabled device wants to access attributes
on another BLE device, the device that initiates the exchange
takes on the role of GATT client and the other acts as the
GATT server. In this paper, we focus on the scenario where
the BLE peripheral (e.g., a glucose meter), acts as the server,
and a mobile phone acts as the client, as shown in Figure 1.

2.2 BLE Attribute Permissions

Every attribute has associated with it three permissions that
control how it may be accessed: (1) Access permissions define
whether an attribute can be read and/or written. (2) Authen-
tication permissions indicate the level of authentication and
encryption that needs to be applied to the transport between
the two devices before the attribute can be accessed. (3) Autho-
rization permissions specify whether end-user authorization
is required for access.

When a GATT client sends a read or write request for an
attribute to a GATT server, the server will check the request
against the permissions for that attribute, to determine whether
the requested access mechanism is allowed and whether the
client is authenticated and/or authorized, if required. An at-
tribute is only readable or writable if its access permissions
specify it to be so. In the case of authentication permissions,
if the attribute requires an authenticated or encrypted link
before it can be accessed (referred to as a “pairing-protecte”
attribute in this paper), and if such a link is not present when
the access request is made, then the server responds with
an Insufficient Authentication/Encryption message.
At this point, the client can initiate the pairing process to
authenticate and encrypt the transport. If this process com-
pletes successfully, the server will fulfill subsequent requests
made by the client. This procedure for handling authentica-
tion requirements is well-defined in the Bluetooth specifi-
cation. Authorization requirements, on the other hand, are
implementation-specific and largely left up to developers.

Once two devices complete the pairing process, they typi-
cally go through an additional bonding process, during which
long-term keys are established. This prevents the need for go-
ing through the pairing process again if they disconnect and
subsequently reconnect, provided they retain the long-term
keys. Upon re-connection, the link encryption process will be
initiated using the stored keys. Keys normally remain on the
devices unless the devices are reset or manually unpaired by
the user.

3 BLE Co-located Application Attacks

In this section, we show how any application on an Android
device can access pairing-protected attributes from a BLE
peripheral, even when the pairing process was initiated by
a different application. We then explore various mitigation
strategies that are available to different stakeholders in the
BLE ecosystem.

These attacks were also explored by Naveed et al. in 2014,
for Classic Bluetooth [31]. We show that the problem remains
on newer versions of Android, and also that the situation is
worse for BLE, as one of our attacks enables fewer restrictions
for access and requires fewer permissions of the malicious
application than even of the official application.

2 28th USENIX Security Symposium USENIX Association

3.1 Attack Mechanisms
We describe two attacks: the first shows that pairing-protected
data can be accessed by unauthorized applications, while the
second refines the attack and reduces the number of permis-
sions required by the unauthorized application. We use two
Android applications to describe the attacks: One application
that is expected to be able to connect to the BLE device and
access its data (“OfficialApp”), and a different application
that should not be able to access pairing-protected data from
the device (“AttackApp”). We conducted our experiments on
an Alcatel Pixi 4 mobile phone, running Android 6.0, and
on a Google Pixel XL, running Android 8.1.0. Version 6.0
was the most widely-deployed release [2], while 8.1.0 was
the latest stable release, as of 01 Aug 2018.

3.1.1 Attack 1: System-wide Pairing Credentials

This attack demonstrates that the BLE credentials that are
stored on an Android device are implicitly available to all
applications on the device, rather than just the application that
originally triggered the pairing.

When the OfficialApp connects to the BLE device and
attempts to access a pairing-protected characteristic, the re-
sulting exchange will trigger the Android OS into initiating
the pairing and bonding process (as depicted in the upper
block in Figure 2). The resultant keys are associated with
the link between the Android and BLE devices, rather than
between the BLE device and the OfficialApp (which actually
triggered the pairing). Therefore, once bonding completes,
when the AttackApp scans and connects to the BLE device,
the Android OS completes the connection process and au-
tomatically initiates link encryption with the keys that were
generated during the previous bonding process (lower block
in Figure 2). This enables the AttackApp to have the same
level of access to the pairing-protected data on the device as
the OfficialApp, but without the need for initiating pairing.

A key point to note here is that, not only is the unauthorized
AttackApp able to access potentially sensitive information
from the BLE device, but also the user is likely to be unaware
of the fact that this data access is taking place, as there is no
indication during link re-encryption and subsequent attribute
access.

3.1.2 Attack 2: Reuse of Connection

Our second attack exploits the fact that, on Android, a BLE
peripheral can be used concurrently by multiple applica-
tions [32]. In this attack, the AttackApp does not scan for BLE
devices. It instead searches for connected BLE devices us-
ing the BluetoothManager.getConnectedDevices() API
call, with BluetoothProfile.GATT as the argument. If the
OfficialApp happens to be in communication with the BLE
device at the same time, this call will return a list with a ref-
erence to the connected BLE device. The AttackApp is then

Apps Android OS BLE

startLeScan()

Scan
<device list>

connect()
Create Connection

Connection Complete
onConnect

readCharacteristic() Read Request: <protectedChar>

Error: Insufficient Authentication

Pairing, Link Encryption, Bonding

Read Request: <protectedChar>

Read Response: <value>
onRead

getValue()

<value>

close()
Disconnect

OfficialApp

startLeScan()

Scan
<device list>

connect()
Create Connection

Connection Complete

Link Encryption

readCharacteristic() Read Request: <protectedChar>

Read Response: <value>
onRead

getValue()

<value>

AttackApp

Figure 2: Attack 1 - Illustrative message exchange depicting
access of pairing-protected data by unauthorized application.
Note: Dashed lines indicate encrypted traffic.

able to directly connect to the GATT server and read and write
to the characteristics on it (including those that are pairing-
protected), without the need for creating a new connection to

USENIX Association 28th USENIX Security Symposium 3

the peripheral. This again is done surreptitiously, without the
user being aware of the data access. An illustrative message
flow where the AttackApp writes to a protected characteris-
tic on the BLE device (which the OfficialApp subsequently
reads) has been depicted in Figure 3.

An interesting observation from this attack is a subtle but
relevant impact it has on user awareness, due to the different
permissions that need to be requested by the two applications.
Since both applications access data from a GATT server, they
both require BLUETOOTH permissions. In this attack scenario,
because the OfficialApp scans for the BLE device before it
connects to it, it also needs to request the BLUETOOTH_ADMIN
permission. Both BLUETOOTH and BLUETOOTH_ADMIN are
“normal” permissions that are granted automatically by the
Android operating system after installation, without any need
for user interaction. However, due to restrictions imposed
from Android version 6.0 onward, the OfficialApp also needs
to request LOCATION permissions to invoke the BLE scanner
without a filter (i.e., to scan for all nearby devices instead of
a particular device). These permissions are classed as “dan-
gerous” and will prompt the system to display a confirmation
dialog box the first time they are required. Because the Attack-
App merely has to query the Android OS for a list of already
connected devices, it does not require these additional permis-
sions. This makes the AttackApp appear to be less invasive
in the eyes of a user, since it does not request any permission
that involves user privacy. This could play a part in determin-
ing the volume of downloads for a malicious application. For
example, a malicious application that masquerades as a gam-
ing application, and which does not request any dangerous
permissions, may be more likely to be downloaded by end
users as opposed to one that requests location permissions.

3.2 Discussion

In this section we discuss the impact of our findings, com-
pare them with the Classic Bluetooth case, and mention some
attack limitations.

3.2.1 Implications of Attack

In both of our experiments, the AttackApp was able to read
and write pairing-protected data from the BLE device. The
simplest form of attack would then be for a malicious applica-
tion to perform unauthorized reads of personal user data (as
an example) and relay this to a remote server.

We verified the practicability of this attack by testing a
BLE-enabled fitness tracker that implemented the Bluetooth
Heart Rate Service. According to the service specification,
characteristics within this service are only supposed to be
protected by pairing [9]. However, we observed that the pair-
ing employed by the device appeared to be a non-standard
implementation, and also that access to the Heart Rate Mea-
surement characteristic was “locked” and had to be “unlocked”

Apps Android OS BLE

startLeScan()

Scan
<device list>

connect()
Create Connection

Connection Complete
onConnect

readCharacteristic() Read Request: <protectedChar>

Error: Insufficient Authentication

Pairing, Link Encryption, Bonding

Read Request: <protectedChar>

Read Response: <value>
onRead

getValue()

<value>

getConnectedDevices()

<device list>

connectGatt()

onConnect

writeCharacteristic()
Write Request:

<protectedChar, value2>

Write Response: success
onWrite

AttackApp

readCharacteristic() Read Request: <protectedChar>

Read Response: <value2>
onRead

getValue()

<value2>

OfficialApp

Figure 3: Attack 2 - Illustrative message exchange depicting
the access of pairing-protected data by reusing an existing
connection. Note: Dashed lines indicate encrypted traffic.

by first writing to certain other characteristics on the tracker.
Despite this, we found that by deploying our second attack,
our AttackApp was able to obtain Heart Rate Measurement
readings without the need for performing any “unlocking”.

4 28th USENIX Security Symposium USENIX Association

This is because the AttackApp connects to the GATT server
by reusing an existing connection that was initiated by the
official application. The unlocking procedure would therefore
already have been performed for that connection by the offi-
cial application. This result shows that artificially restricting
access to data using non-cryptographic means will not be
effective. We notified the device developer of this issue on 01
Nov 2018, but have not yet received a response.

It should be noted that the above attack could be used by a
malicious application to target other sensitive health informa-
tion such as ECG, glucose or blood pressure measurements
from vulnerable BLE devices, to build up a profile on a user’s
health. Further, Smart Home devices and BLE-enabled ve-
hicles may hold information on a user’s habits and lifestyle
(e.g., time at home, alcohol consumption, driving speed), and
could be exploited. It may also be possible for a malicious ap-
plication to overwrite values on the BLE device, such that the
written data either causes unexpected behavior on the device,
or is read back by the legitimate application, thereby giving
the user an incorrect view of the data on the peripheral. For ex-
ample, it may be possible to update the peripheral’s firmware
via GATT writes. If this mechanism is not suitably protected,
then a malicious application could potentially install mali-
cious firmware onto the BLE device, as we demonstrate in
Section 4.6.

3.2.2 Comparison with Classic Bluetooth

In their experiments with Classic Bluetooth, Naveed et al.
found that an unauthorized Android application would not
be able to obtain data from a Classic Bluetooth device if
the authorized application had already established a socket
connection with the device, as only one application can be
in communication with the device at one time. Therefore, a
malicious application would either require some side-channel
information in order to determine the correct moment for data
access, or would need to interfere with the existing connec-
tion, thereby potentially alerting the user [31]. This limits the
attack window for the malicious application. Our experiments
show that this is not the case with BLE communication chan-
nels. With BLE, there are no socket connections and if the
official application has established a connection with the BLE
device, then this connection can be utilized by any application
that is running on the Android device. That is, a malicious ap-
plication does not have to wait for the authorized application
to disconnect before it can access data.

3.2.3 Attack Limitations

The main limitation for the AttackApp in the case of
the first attack is that it requires the BLUETOOTH and
BLUETOOTH_ADMIN permissions in its manifest, and also
needs to explicitly request LOCATION permissions at first run-
time in order to be able to invoke the BLE scanner. This

enables the AttackApp to connect to the BLE device regard-
less of whether or not another application is also connected,
but increases the risk of raising a user’s suspicions.

In the second attack scenario, the obvious limitation for the
AttackApp that requests only the BLUETOOTH permission is
that the application will only be able to access data from the
BLE peripheral when the peripheral is already in a connection
with (another application on) the Android device. That is, data
access will have to be opportunistic. This can be achieved,
for example, by periodically polling for a list of connected
devices.

3.3 Stakeholders, Mitigation Strategies and
Awareness

In this section, we discuss potential mitigating strategies that
different stakeholders within the BLE ecosystem could im-
plement in order to prevent the attacks detailed in Section 3.1.
We consider the Bluetooth Special Interest Group (SIG), An-
droid (i.e., Google), and BLE device/application developers
as stakeholders.

3.3.1 Bluetooth SIG

The Bluetooth SIG is the group that is responsible for defining
and maintaining the Bluetooth standard, which provides de-
tails on pairing, bonding and BLE attribute permissions. The
SIG also defines various BLE services, including some that
handle user health information, e.g., the Heart Rate Service
and the Continuous Glucose Monitoring Service. The Blue-
tooth specifications for these services require only pairing
as a protection mechanism for the characteristics that hold
health-related measurements [9, 10]. This protection is in-
tended to avoid man-in-the-middle attacks and eavesdropping.
However, as shown in Section 3.1, pairing will not prevent
unauthorized Android applications from accessing the sensi-
tive data held in these characteristics.

This issue could be avoided by modifying the Bluetooth
specification and introducing specific security measures for
protecting data at higher layers. However, this would require
changes to all devices within the ecosystem, which may not be
feasible due to the sheer volume of devices and applications
currently available, and which could lead to fragmentation and
reduced interoperability. Despite this, we believe that devel-
opers accessing Bluetooth documentation should at least be
made aware of the risks involved, and have therefore notified
the SIG via their Support Request Form (17 Dec 2018). We
were informed (19 Dec 2018) that the case had been assigned
to the appropriate team for assessment.

3.3.2 Android

Allowing all applications on an Android device to share BLE
communication channels and long-term keys may well be by

USENIX Association 28th USENIX Security Symposium 5

design, particularly since the BLE standard does not provide
explicit mechanisms for selectively allowing or denying ac-
cess to data based on the source application. This model may
work in some situations, for example on a platform where all
applications originate from the same trusted source. However,
the Android ecosystem is such that, many of the applica-
tions on a device are from different and potentially untrusted
sources. In this scenario, providing all applications with ac-
cess to a common BLE transport opens up possibilities for
attack, as we have demonstrated.

One option to eliminate the problem is to modify how
Android handles BLE communication channels. The modifi-
cation would require some form of association between BLE
credentials and the application that triggers the pairing/bond-
ing process. Each data access request would then be checked
against the permissions associated with the requesting ap-
plication. This approach is favoured by Naveed et al., who
propose a re-architected Android framework which will create
a bonding policy when an application triggers pairing with a
Bluetooth device [31]. This strategy has the advantage that
Bluetooth devices will be protected by default from unautho-
rized access to their data. Further, assuming a suitably strong
pairing mechanism is used, a minimum level of security will
also be guaranteed. However, not only will the operating sys-
tem(s) need to be modified, but also a mechanism will be
required for ensuring that all users’ mobile devices are up-
dated. Otherwise, it is fairly likely that this measure will result
in a fragmented ecosystem, with some devices running the
modified operating system with protection mechanisms, and
others running older versions of the OS with no protection.

Regardless of whether or not the above measure is imple-
mented, we believe that developers should be made aware of
the possibility of unauthorized applications accessing their
BLE device data. At present, Android does not mention the
issue in its Developer Guide [3]. In fact, to the best of the
authors’ knowledge, there is only a single document, from
a BLE chipset manufacturer, which explicitly references the
fact that multiple Android applications can simultaneously
use a connection to a BLE device [32]. Apart from this, the
risks of “system-wide pairing” have been mentioned in a
specification issued by the Fast ID Online (FIDO) Alliance,
without specific reference to mobile platforms [20].

We submitted an issue to the Android Security Team on
02 Nov 2018, focusing on the need of clear documentation
so that developers are aware of the need for implementing
additional protection measures if they are handling sensitive
BLE data. The issue was reviewed by the security team and
rated as Moderate severity (16 May 2019), based on Android’s
severity assessment matrix [5].

3.3.3 BLE Device/Application Developers

Despite the BLE stack containing an application layer, it could
be argued that BLE is commonly viewed as a lower-layer tech-

nology for providing wireless communication capabilities, on
top of which higher-layer technologies operate [12, 38]. This
would result in the responsibility of securing user data being
transferred from the Bluetooth SIG or Android to the BLE
application/device developers. At any rate, this is the only
mechanism available at present for protecting data against
access by co-located applications.

That is, rather than relying solely on the pairing provided
by the underlying operating system, developers can imple-
ment end-to-end security from their Android application to
the BLE peripheral firmware. It may be possible to achieve
such behavior via BLE authorization permissions, because
even though their purpose is to specify a requirement for
end user authorization, the behavior of BLE devices when
encountering authorization requirements is implementation-
specific. Most modern BLE chipsets implement authorization
capabilities by intercepting read/write requests to the pro-
tected characteristics, and allowing for developer-specified
validation.

One advantage of this method is that it gives the developer
complete control over the strength of protection that is applied
to BLE device data, as well as over the timings of security
updates. However, leaving the implementation of security to
the developer runs the risk of cryptography being applied
improperly, thereby leaving the data vulnerable [17]. For
existing developments, retrofitting application-layer security
would mean that both an update for the Android application
and a firmware update for the BLE device would be required,
and there is a risk that the BLE firmware update procedure
itself may not be secure [6].

Due to the lack of clear guidelines regarding attribute secu-
rity in both the Android Developer Guide and the Bluetooth
specification, it is also possible that developers implement no
security at all, due to an assumption that protection will be
handled by pairing. In the next section, we test this assertion
of a lack of developer awareness by exploring the current state
of application-layer security deployments via a large-scale
analysis of BLE-enabled Android applications.

4 Marketplace Application Analysis

As evidenced by our experiments, it is fairly straightforward
for any Android application to connect to a BLE device and
read or write pairing-protected data. As discussed in Sec-
tion 3.3, the only strategy available at present is for developers
to implement application-layer security, typically in the form
of cryptographic protection, between the Android application
and the BLE peripheral.

In this section, we identify the proportion of applications
that do not implement such security mechanisms, to demon-
strate a possible lack of awareness surrounding the issue, and
to be able to estimate the number of devices that are poten-
tially vulnerable to the types of attack shown in Section 3.1.

6 28th USENIX Security Symposium USENIX Association

Table 1: APKs and Downloads per Google Play Category
Category APKs [packages] Downloads(mn)

Health & Fitness 3012 [1263] 344.95
Lifestyle 1501 [1006] 52.60
Business 1489 [950] 39.62
Tools 1428 [891] 6308.62
Sports 1268 [685] 17.74
Travel & Local 948 [545] 31.83
Productivity 526 [305] 43.05
Entertainment 446 [284] 128.41
Music & Audio 406 [239] 51.48
Education 313 [225] 3.35
Shopping 383 [190] 144.87
Maps & Navigation 348 [181] 33.21
Medical 407 [177] 5.68
Communication 395 [146] 755.89
Finance 259 [126] 96.38
Auto & Vehicles 236 [119] 4.13
Food & Drink 146 [87] 6.23
Photography 114 [80] 45.78
Social 203 [77] 663.43
Other 746 [516] 258.41

a We make the assumption that all versions of an application
fall under the same category.
b Some APKs within the dataset are no longer available on
Google Play and hence, have no corresponding category.
These have not been included.

To identify the presence of application-layer security, there
are two possible targets for analysis: BLE peripheral firmware
or Android applications. At present, there is no public reposi-
tory of BLE firmware, which means that the firmware would
need to be obtained from the peripherals themselves. This
would necessitate the purchase of a large number of de-
vices and would not be financially viable. Further, reverse-
engineering and analyzing BLE firmware is not straightfor-
ward, as the firmware image is usually a .hex file, which can
typically only be converted to binary or assembly. Android
APKs, on the other hand, are easier to obtain, and a number
of decompilers exist that allow for conversion of APKs to a
human-readable format.

We therefore target Android applications for our analysis
and perform the following: (1) obtain a substantial dataset of
BLE-enabled Android APKs, (2) determine the BLE method
calls and the cryptography libraries of interest, and (3) define
a mechanism to determine whether BLE reads and writes
make use of cryptographically processed data. We then apply
this mechanism to our dataset and analyze the results.

4.1 APK Dataset
We obtained our dataset from the AndroZoo project [1]. This
is an online repository that has been made available for re-
search purposes and which contains APKs from several differ-
ent application marketplaces. We focus on only those APKs
that were retrieved from the official Google Play store, which
nevertheless resulted in a sizeable dataset of over 4.6 million
APKs. This dataset includes multiple versions for each ap-
plication, as well as applications that are no longer available
on the marketplace. We performed our analysis over the en-
tire dataset, rather than focusing on only those APKs that
are currently available on Google Play. This was in part be-
cause older versions of an application may still be residing
on users’ devices, and in part to be able to identify trends in
application-layer security deployments over time.

As we are only interested in those applications that per-
form BLE attribute access, and because such access always
requires communicating with the GATT server on the BLE
peripheral, the APKs were filtered by the BLUETOOTH permis-
sion declaration and by calls to the connectGatt method,
which is called prior to performing any data reads or writes.
18,929 APKs, comprising 11,067 unique packages1, from the
original set of 4,600,000+ APKs satisfy this criteria, and these
formed our final dataset.

Application Categories

Applications are categorized in Google Play according to their
primary function, such as “Productivity” or “Entertainment”,
and it may be possible to gauge the sensitivity of the BLE data
handled by an application based on the category it falls under.
For example, “Health and Fitness” applications are probably
more likely to hold personal user data than “Entertainment”
applications.

The number of APKs per category has been listed in Table 1
for our dataset. Approximately 23% of the APKs (18% of
unique applications) fall under the categories of “Health and
Fitness” and “Medical”, with a cumulative download count
of over 350 million. Note that the disproportionately high
volume of downloads for the category “Tools” is due to the
Google and Google Play applications, which include BLE
capabilities and are installed on most Android devices.

4.2 Identification of BLE Methods and
Crypto-Libraries

We perform our analysis against specific BLE methods
and crypto-libraries. When considering BLE methods, we
focus on those methods that involve data writes and

1An Android application may have many versions, each of which will be
a separate APK file (with a unique SHA256 hash), but all of which will have
the same package name. We use the terms “unique applications” or “unique
packages” to denote the set of APKs that contain only the latest version of
each application.

USENIX Association 28th USENIX Security Symposium 7

Table 2: BLE Data Access Methods
Access Method Signaturea #APKs % of Total Methodsb

Read

byte[] getValue () 17896 61.58%
Integer getIntValue (int, int) 8051 27.70%
String getStringValue (int) 2313 7.96%
Float getFloatValue (int, int) 800 2.75%

Write

boolean setValue (byte[]) 16198 70.49%
boolean setValue (int, int, int) 5542 24.11%
boolean setValue (String) 627 2.73%
boolean setValue (int, int, int, int) 611 2.66%

a All methods are from the class android.bluetooth.BluetoothGattCharacteristic.
b “% of Total Methods” refers to the percentage of occurrences of a particular method for a particular data
access type (i.e., read or write), with respect to all methods that enable the same type of data access.

reads. Such methods have been listed in Table 2, and
function as the starting point for our analysis. For data
writes, the BluetoothGattCharacteristic class within the
android.bluetooth package has setValue methods that
set the locally-stored value of a characteristic. This is then
written out to the BLE peripheral. For data reads, the same
class has getValue methods, which return data that is read
from the BLE device. In a few APKs that we analyzed,
BLE data access methods were also called from within other,
vendor-specific libraries. However, we do not include these
in our analysis as they are now obsolete.

For cryptography, Android builds on the Java Cryptography
Architecture [33] and provides a number of APIs, contained
within the java.security and javax.crypto packages, for
integrating security into applications. While it is possible
for developers to implement their own algorithms, Android
recommends against this [4]. We therefore consider only calls
to these two packages as an indication of application-layer
security.

4.3 BLECryptracer
Identification of cryptographically-processed BLE data is in
essence a taint-analysis problem. For instance, a call to an
encryption method will taint the output variable that may later
be written to a BLE device. For the purpose of this paper,
when analyzing data that is read from a BLE peripheral, we
consider the getValue variants in Table 2 as sources and the
cryptography API calls as sinks. For data that is written to
the BLE device, we consider the cryptography API calls as
sources and the setValue methods as sinks.

There are a number of tools available for performing taint-
analysis, such as Flowdroid [7] and Amandroid [40]. However,
running a subset of our dataset of APKs through Amandroid
(selected because of advantages over Flowdroid and other
taint-analysis tools [34]), we found that analysis of a single
APK sometimes utilized over 10GB of RAM and took several

hours to complete. We also found through manual analysis
that many instances of cryptographically-processed data were
not identified by Amandroid, especially when the BLE func-
tions were called from third-party libraries. We therefore
developed a custom Python analysis tool called BLECryp-
tracer, to analyze all calls to BLE setValue and getValue
methods within an APK.

BLECryptracer is developed on top of Androguard [16], an
open-source reverse-engineering tool that decompiles an An-
droid APK and enables analysis of its components. Our tool
traces values to/from BLE data access functions and deter-
mines whether the data has been cryptographically processed.
To achieve this, it employs a technique for tracing register
values which is sometimes referred to as “slicing” and which
has been utilized in several static code analyses [17, 24, 35].
It also traces fields, as well as messages passed via Intents2

and certain threading functions, e.g., AsyncTask. It returns
TRUE at the first instance of cryptography that it encounters
and FALSE if it is unable to identify any application-layer
security with BLE data.

Our tool analyzes BLE reads and writes separately, as the
direction of tracing is different in the two cases. It performs
three main types of tracing, in the following order:

1. Direct trace - Attempt to identify link between BLE and
cryptography functions via direct register value transfers
and as immediate results of method invocations.

2. Associated entity trace - If the direct trace does not iden-
tify a link between source and sink, analyze abstract/in-
stance methods and other registers used in previously
analyzed function calls.

3. “Lenient” trace - If the above methods fail to return a
positive result, perform a search through all previously
encountered methods (which would have originated from
the BLE data access method), to determine if cryptogra-
phy is used anywhere within them.

2By matching the Extra identifier within the calling method.

8 28th USENIX Security Symposium USENIX Association

Table 3: Accuracy Statistics
Access Tool Confidence App Seta Detectedb TP FP TN FN Precision Recall F-measure

Read

Amandroid N/A 92 49 44 5 10 33 90% 57% 70%

BLECryptracer
High 92 62 58 4 11 19 94% 75% 83%
Medium 30 11 7 4 7 12 64% 37% 47%
Low 19 12 8 4 3 4 67% 67% 67%

Write

Amandroid N/A 92 56 49 7 8 28 88% 64% 74%

BLECryptracer
High 92 50 46 4 11 31 92% 60% 72%
Medium 42 22 19 3 8 12 86% 61% 72%
Low 20 10 5 5 3 7 50% 42% 45%

a Number of APKs tested. Note that, for confidence levels Medium and Low, we don’t consider the APKs detected at higher
confidence levels.
b The number of APKs that were identified as having cryptographically protected BLE data.

The first trace method will produce results that are most
likely to actually have cryptographically-processed BLE data,
as the coarse-grained analysis performed in the subsequent
methods adds increasing amounts of uncertainty. For this
reason, BLECryptracer assigns “confidence levels” of High,
Medium and Low to its output, which correspond to the three
trace methods above, to indicate how certain it is of the result.
We evaluate these confidence levels against a modified version
of the DroidBench benchmarking suite in Section 4.4.1. Note
that BLECryptracer only looks for application-layer security
in benign applications, and these confidence levels apply only
when deliberate manipulations (i.e., malicious obfuscation
techniques) are not employed to hide the data flow between
source and sink.

Appendix A describes the tracing mechanism in greater
detail, and also outlines how BLECryptracer combats the
effects of obfuscation in benign applications.

4.4 Evaluation
We evaluated BLECryptracer, in terms of both accuracy and
execution times. For comparison purposes, we have included
test results from Amandroid as well.

4.4.1 Accuracy Measures

At present, there is no dataset of real-world APKs with known
use of cryptographically-processed BLE data, i.e., ground
truth. Therefore, in order to test our tool against different
data transfer mechanisms, we re-factored the DroidBench
benchmarking suite [21] for the BLE case.

Each DroidBench test application was cloned twice and
modified so the data flow between the sources and sinks would
be from getValue to a cryptography method invocation, and
from the cryptography method invocation to setValue, to
emulate cryptographically-processed reads and writes, respec-
tively. Some DroidBench test cases were excluded as they

were found to be irrelevant due to differences in the objectives
of DroidBench and our test set, e.g., applications that employ
emulator detection or which leak contextual information in
exceptions. Further, applications where BLE data is written
to or read from files, or which contain data leaks in inactive
code segments were not included (as our aim is to determine
whether or not BLE data is cryptographically-processed). In
total, we created 184 APKs: 92 for reads and 92 for writes.

We executed BLECryptracer against our benchmarking test
set, analyzed the results and obtained performance metrics in
terms of the three different confidence levels. The statistics
differ based on the type of access that is analyzed (i.e., reads
vs. writes) due to differences in the tracing mechanisms. The
same test set was also used against Amandroid for comparison.
Table 3 presents the performance metrics for both tools.

In the case of BLECryptracer results, the metrics are with
respect to the total analyzed APKs at each confidence level.
That is, because lower confidence levels analyze only those
APKs that do not get detected at higher levels, accurate met-
rics can only be derived by considering the set of APKs that
were actually analyzed at each level. For example, when con-
sidering the analysis of BLE reads, while the entire dataset
of 92 APKs is relevant for confidence level High, only the 30
APKs that do not result in a TRUE outcome at level High will
be analyzed for confidence level Medium. This also means
that, when obtaining performance metrics for confidence level
High, all TRUE results obtained at levels Medium and Low
are taken to be FALSE.

The DroidBench test set, and hence our benchmarking suite,
is an imbalanced dataset, containing far more samples with
leaks (77) than without (15). For this reason, metrics such as
accuracy are not suitable for analyzing the performance of
our tool when executed against this test set, as they are more
susceptible to skew [23,26]. For our analysis, we compare the
combined True Positive Rate (TPR) and False Positive Rate
(FPR), and the combined precision-recall instead, in-line with

USENIX Association 28th USENIX Security Symposium 9

taint-analysis evaluations [36].
Table 3 presents the precision and recall (i.e., TPR) for

both BLECryptracer and Amandroid. We further derive FPRs
for both tools. With BLECryptracer, when analyzing reads,
False Positive Rates steadily increase as the confidence level
reduces, as expected, with values of 27% for confidence level
High, 36% for Medium and 57% for Low. When analyzing
writes, the values are 27%, 27% and 63%, respectively. Re-
gardless of the data access mechanism being tested, BLE-
Cryptracer (considering only the results at High confidence,
for a fairer comparison) performs better than Amandroid in
terms of FPR, with 27% vs. 33% for reads and 27% vs. 47%
for writes. Precision values are also better in the case of BLE-
Cryptracer for both reads and writes. In terms of the True
Positive Rate, BLECryptracer performs better than Aman-
droid for reads at 75% vs. 57%, and slightly worse for writes
at 60% vs. 64%. These results show that, overall, BLECryp-
tracer performs better than Amandroid for analyzing the use
of cryptography with BLE data.

It should be noted that three of the four False Positives
obtained by BLECryptracer at the High confidence level were
due to the order in which variables are assigned values (i.e.,
lifecycle events), which is not tested for by BLECryptracer.
Other data transfer mechanisms not tested for are Looper
and Messenger functions, which generate False Negatives.
The remaining False Positive was due to the presence of
method aliasing and was also identified as a False Positive
by Amandroid. In addition, the unexpectedly low TPR (i.e.,
recall) at level Medium for reads is due to the relatively few
cases analyzed at that level when compared to High.

4.4.2 Execution Times

We also compared BLECryptracer and Amandroid in terms of
speed of execution. For this, we ran the two tools against a ran-
dom subset of 2,000 APKs and compared time-to-completion
in both cases. We imposed a maximum run-time of 30 minutes
per APK for both tools, and only compared execution times
for those cases where Amandroid did not time out (approxi-
mately 40% of the tested APKs timed out when analyzed by
Amandroid. In comparison, fewer than 2% of APKs timed
out when analyzed by BLECryptracer).

Figure 4 plots the time taken to analyze BLE writes using
BLECryptracer vs. Amandroid. The figure shows that analysis
times with BLECryptracer were, for the most part, around 3-4
minutes per application. We observed no obvious correlation
between the size of the application’s dex file and the execu-
tion time, for either tool. APKs that took longer to process
with BLECryptracer were predominantly of confidence level
“Medium”, which indicates that the longer analysis times may
simply have been because of having to first go through the
most stringent analysis (at the highest confidence level). For
Amandroid, the execution times vary to a greater extent than
with BLECryptracer, due to the difference in the mechanisms

0 500 1,000 1,500

0

500

1,000

1,500

Amandroid Execution Time (s)

B
LE

C
ry

pt
ra

ce
r

Ex
ec

ut
io

n
T

im
e

(s
)

Figure 4: Comparison of time taken to execute BLECryptracer
vs. Amandroid, when analyzing BLE writes.

employed for performing the analysis.

4.5 Results from Large-Scale APK Analysis

We executed BLECryptracer against our dataset of 18,929
APKs. 192 APKs timed out when analyzing reads and 220
APKs timed out when analyzing writes, when a maximum
runtime of 30 minutes was imposed. These APKs were re-
tested with an increased runtime of 60 minutes. However,
even with the longer analysis time, 44 and 76 APKs timed out
for reads and writes, respectively, and had to be excluded from
further analysis. In addition, approximately 90 APKs could
not be processed via Androguard’s AnalyzeAPK method and
were excluded.

Due to the differences in performance metrics obtained
for the three confidence levels during testing (as mentioned
in Section 4.4), we focus on only those results that either
identify cryptography at confidence level High or those where
no cryptography was identified at all.

4.5.1 Presence of App-Layer Security with BLE Data

Our results show that approximately 95% of BLE-enabled
APKs call the javax.crypto and java.security cryptog-
raphy libraries somewhere within their code. While this is a
large proportion of APKs, the results also indicate that a much
smaller percentage of APKs use cryptographically processed
data with BLE reads and writes (approximately 25% for both,
identified with High confidence). In fact, about 46% of APKs
that perform BLE reads and 54% of those that perform BLE
writes (corresponding to 2,379 million and 2,075 million cu-
mulative installations, respectively) do not implement security
for the BLE data. Interestingly, of the 16,131 APKs that called

10 28th USENIX Security Symposium USENIX Association

0 % 20 % 40 % 60 % 80 % 100 %

Writes

Reads

8,838

8,511

333

100

3,130

5,328

4,080

4,526

High Medium Low None

Figure 5: Analysis results depicting the presence of
cryptographically-processed data with BLE writes and reads,
with breakdown according to Confidence Level.

both BLE read and write functions, about 36% (i.e., more than
5,700 APKs), with a cumulative download count of 1,005 mil-
lion, do not implement application-layer security for either
type of data access. Figure 5 summarizes the proportion of
APKs that were identified as containing cryptographically
protected BLE data at the three different confidence levels.

4.5.2 Libraries vs. App-Specific Implementations

We found that many BLE-enabled APKs actually use third-
party libraries for incorporating BLE functionality. To get
an idea of exactly how many APKs relied on libraries, we
analyze all methods within an APK that called BLE data
access functions. To do this in an automated way, we compare
the method class name with the application package name. If
the first two components (e.g., com.packagename) of each
match, then we take it to be a method implemented within
the application. If the components do not match, we take it
to be a library method. If the package name uses country-
code second-level domains (e.g., uk.ac.packagename), then
we compare the third components as well.

Of the APKs that called the setValue method, 63%
used BLE functionality solely through libraries, 32% used
application-specific methods only, while 4% used both. Fewer
than 1% of the APKs could not be analyzed due to very short
method names. Within the APKs that used both application-
specific methods and libraries, around 34% used an external
library to provide Device Firmware Update (DFU) capabili-
ties, thereby enabling the BLE peripheral to be updated via the
mobile application. Of the APKs that utilized only application-
specific methods to incorporate BLE functionality, 67% did
not implement application-layer security with the BLE data.
This proportion was lower at 48% for applications that relied
on libraries.

In the case of the APKs that called getValue variants,

37% used only application-specific methods, 58% used only
libraries, and 5% used both. As with the setValue case, a
higher proportion of APKs that used only app-specific BLE
implementations were found to not use cryptography (60%),
when compared with those that used only libraries (39%).

Table 4 presents the ten most commonly-encountered
BLE libraries, their functionality, the number of APKs that
use them, and the presence of cryptographically-processed
BLE data within the library itself. The table shows that
the most prevalent third-party packages are libraries that
enable communication with BLE beacons. In fact, a single
such library (Estimote) made up more than 90% of all in-
stances of cryptographically-processed BLE writes and 85%
of cryptographically-processed BLE reads (identified with
High confidence). An analysis of this library suggested that
cryptography is being used to authenticate requests when
modifying settings on the beacon.

Apart from beacon libraries, we identified five libraries
that function as wrappers for the Android BLE API. For
example, Polidea wraps the API so that it adheres to the
reactive programming paradigm. The libraries Randdusing,
Megster and Evothings enable the use of BLE via JavaScript
in Cordova-based applications. Similarly, Chromium enables
websites to access BLE devices via JavaScript calls. None
of these libraries handle cryptographically-processed BLE
data. It is expected that developers using these libraries will
implement their own application-layer security (using either
JavaScript or reactive Java as appropriate).

Of the two remaining libraries, Flic, which uses
cryptographically-processed data, is a library offered by a
BLE device manufacturer. This library allows third-party
developers to integrate their services into the Flic ecosystem,
to allow them to automate certain tasks.

Finally, Nordicsemi is a library provided by a BLE chipset
manufacturer to enable DFU over the BLE interface. With the
newest version of the DFU mechanism, the BLE peripheral
verifies that the firmware has been properly signed. Devices
using the legacy DFU mechanism will not verify the firmware.
However, the mobile application (and by extension, the li-
brary) does not need to handle cryptographically-processed
data in either case.

4.5.3 Cryptographic Correctness

BLECryptracer identified 3,228 unique packages with crypto-
graphically protected BLE data (with either reads or writes),
with High confidence. However, the presence of crypto-
libraries does not in itself indicate a secure system. We there-
fore further analyzed this subset of APKs to identify whether
cryptography had been used correctly in them. The tool Cog-
niCrypt [29] was utilized for this purpose. Although this tool
does not formally verify the cryptographic protocol between
the application and the BLE peripheral, it identifies various
misuses of the Java crypto/security libraries.

USENIX Association 28th USENIX Security Symposium 11

Table 4: Top Ten Third-Party BLE Libraries
Library Function #APKs[unique] Crypto
Estimote Beacon 3980[2804] Yes
Nordicsemia DFU 1238[847] No
Kontakt Beacon 1108[690] No
Chromium Web BLE 402[269] No
Randdusing Cordova Plugin 268[188] No
Megster Cordova Plugin 317[187] No
Flic BLE Accessory 173[164] Yes
Polidea BLE Wrapper 138[114] No
Evothings Cordova Plugin 142[84] No
Jaalee Beacon 102[79] No

a Significant overlap present between Estimote and Nordic due
to repackaging of the Nordic SDK into Estimote.

Among the 3,228 unique packages, we found that there
was significant overlap between APKs in terms of the BLE
libraries or functions3 used. Removing such duplicates re-
sulted in a set of 194 APKs. Of these, 68 were identified by
CogniCrypt as having issues. However, because CogniCrypt
identifies cryptography misuse within the entire APK, the re-
sults were filtered for BLE-specific functions. 24 APKs were
found to have issues within or associated with the methods
that cryptographically processed BLE data (as identified by
BLECryptracer) and often, a single APK exhibited multiple
issues. Table 5 shows the different types of misuse encoun-
tered and the number of unique packages that were identified
as having such misuse. Note that because this analysis was
performed over unique packages, the number of APKs that
misuse crypto-libraries will be higher.

We manually analyzed the 24 APKs that were flagged by
CogniCrypt as having BLE-relevant issues, and examined
the identified instances of bad cipher modes and hardcoded
keys/Initialization Vectors (IVs). With regard to insecure
block cipher modes, we found that explicit use of ECB was
prevalent (9 out of 10 cases), but there was also one case
where Cipher.getInstance("AES") was used without the
mode being specified, which may default to ECB depending
on the cryptographic provider. When analyzing keys, we ob-
served that several applications directly contained hardcoded
keys as byte arrays or strings. Three applications retrieved
keys from JSON files. In two cases, keys were generated from
the ANDROID_ID, which is a system setting that is readable by
all applications. We also observed one instance where a key
was obtained from a server via HTTP (not HTTPS).

3There are instances where two applications may have unique package
names, but which actually incorporate much the same functionality. This is
often the case when the same developer produces branded variants of an appli-
cation for different clients in a single industry. For example, two applications
could have unique package names com.myapp.app1 and com.myapp.app2,
but their functionality may be derived from a common codebase com.myapp.

Table 5: Number of Packages with Cryptographic Misuse
Misuse Typea #Unique Packages
ECB (or other bad mode) 10
Non-random key 6
Non-random IV 10
Bad IV used with Cipher 7
Bad key used with Cipher 11
Incomplete operation (dead code) 4

a Description of misuse based on [17, 30].

This analysis shows that several real-world applications
contain basic mistakes in their use of crypto-libraries and
handling of sensitive data, which means that the BLE data
will not be secure despite the use of cryptography.

4.5.4 Trends over Time

Figure 6 shows the trend of application-layer security over
time for applications that incorporate calls to BLE reads or
writes. The graph depicts the percentage of applications that
do not have cryptographic protection for either type of access.
The overall downward trend suggests that there has been some
improvement in application-layer security between the years
2014 and 2017 (we refrain from making observations about
APKs from 2013 as they were very few in number, and about
APKs from 2018 as the dataset is not yet fully populated for
this year). However, it should be noted that, even in 2017,
which had the smallest percentage of APKs without cryptog-
raphy, these APKs corresponded to 128 million downloads,
which is a significant number.

4.5.5 Application-Layer Security by Category

The percentage of applications that use cryptographically
processed data from each major application category has been
graphed in Figure 7. While it would be reasonable to expect
that most “Medical” applications would implement some level
of application-layer security, the results show that fewer than
30% of applications under this category actually have such
protection mechanisms. However, it is possible that the reason
for this is that the devices implement the standard Bluetooth
SIG adopted profiles, which do not mandate any security
apart from pairing, as mentioned in Section 3.3. In fact, of the
APKs categorized under “Medical” and with no cryptographic
protection for either reads or writes, we found that three of
the top ten (in terms of installations) contained identifiers for
the standard Bluetooth Glucose Service.

Perhaps surprisingly, APKs that are categorized under
“Business”, “Shopping” and “Travel & Local” appear to be
the most likely to incorporate application-layer security, with
around 50% of all such applications being identified as having

12 28th USENIX Security Symposium USENIX Association

2013 2014 2015 2016 2017 2018

40

60

80

100

Year

%
A

PK
s

w
ith

no
C

ry
pt

og
ra

ph
y

Figure 6: Application-layer security trends over time. Notes:
Graph depicts APKs that perform BLE reads or writes, and
have no cryptographic protection for either. APKs with dates
that are invalid [39] or older than 2012 (when native BLE
support was introduced for Android) have not been included.

cryptographically processed BLE data with High confidence.
However, in over 85% of such occurrences, this was found to
be due to the Estimote beacon library.

4.5.6 Impact Analysis

While 18,929 BLE-enabled applications may seem like a rel-
atively small number of applications when compared with
the initial dataset of 4.6 million+, a single application may
correspond to multiple BLE devices, sometimes even millions
of devices as is the case with fitness trackers [25]. For exam-
ple, even if we consider the slightly restrictive case of unique
applications that do not use cryptography with either reads or
writes, the cumulative install count is still in excess of 1,005
million. This shows that the attack surface is much larger than
may be indicated by the number of APKs.

It is of course a possibility that the data that is read from
a BLE peripheral has no impact on user security or privacy
(e.g., device battery levels). Understanding the data within
APKs would require a more complex static analysis and is
left as future work.

4.6 Case Study: Firmware Update over BLE
When analyzing our results, we found that one of the APKs
that was identified as not having application-layer security
was designed for use with a fitness tracker from our test device
set. The tracker is a low-cost model that, based on the install
count on Google Play (1,000,000+), appears to be widely
used. An analysis of the APK suggested that the device used
the Nordic BLE chipset, which could be put into the Legacy

H
ea

lth
&

Fi
tn

es
s

L
if

es
ty

le
B

us
in

es
s

To
ol

s
Sp

or
ts

Tr
av

el
&

L
oc

al
Pr

od
uc

tiv
ity

E
nt

er
ta

in
m

en
t

M
us

ic
&

A
ud

io
E

du
ca

tio
n

Sh
op

pi
ng

M
ap

s
&

N
av

ig
at

io
n

M
ed

ic
al

C
om

m
un

ic
at

io
n

Fi
na

nc
e

A
ut

o
&

V
eh

ic
le

s
Fo

od
&

D
ri

nk
Ph

ot
og

ra
ph

y
So

ci
al

O
th

er

0

20

40

60

80

100

Category
%

A
PK

s
w

ith
C

ry
pt

og
ra

ph
ic

al
ly

Pr
oc

es
se

d
D

at
a

High
Medium
Low

Figure 7: Presence of application-layer security in differ-
ent categories of applications, averaged over BLE reads and
writes, and broken down by confidence level. Only unique
packages have been taken into consideration. APKs that do
not currently have a presence on Google Play have been ex-
cluded, as their category cannot be identified.

DFU mode, which does not require the firmware to be signed.
To exploit this, we developed an APK that, in accordance with
the attacks described in Section 3.1, connects to the device,
sends commands to place it in DFU mode, and then writes a
new modified firmware to the device without user intervention.
The updated firmware in this case was a simple, innocuous
modification of the original firmware. However, given that
the device can be configured to receive notifications from
other applications, a malicious firmware could be developed
in such a way that, for example, all notifications (including
second-factor authentication SMS messages or end-to-end
encrypted messages) are routed to the malicious application
that installed the firmware.

This attack was possible because the BLE peripheral did
not verify the firmware (e.g., via digital signatures) nor the
source application (via application-layer security). We have
informed the application developer of the issue (02 Nov 2018),
but have received no response as of the date of submission of
this manuscript (18 May 2019).

While our attack was crafted for a specific device, it does
demonstrate that attacks against these types of devices are rel-
atively easy. An attacker could easily embed several firmware
images within a single mobile application, to target a range
of vulnerable devices.

USENIX Association 28th USENIX Security Symposium 13

4.7 Limitations
In this section, we outline some limitations, either in our script
or due to the inherent nature of our experiments, that may have
impacted our results.

4.7.1 Unhandled Data Transfer Mechanisms

As mentioned in Section 4.4, BLECryptracer does not analyze
data that is written out to file (including shared preferences),
or communicated out to a different application, because it is
not straightforward (and many times, not possible) to deter-
mine how data will be handled once it has been transferred out
of the application under analysis. It is also possible that an ap-
plication obtains the data to be written to a BLE device from,
or forwards the data read from a BLE device to, another entity,
such as a remote server. That is, the Android application could
merely act as a “shuttle” for the data, which means that an
analysis of the APK would not show evidence of usage of
cryptography libraries. However, the transfer of data to/from
a remote server does not in itself indicate cryptographically-
processed data, as plain-text values can also be transmitted in
the same manner. We therefore do not analyze instances of
data transfers to external entities.

BLECryptracer also does not handle data transfers between
a source and sink when only one of them is processed within
an Looper function or when the data is transmitted via mes-
sages. However, when we logged instances of where such
functions were called during a trace, we found that of the
APKs that utilized such data transfer mechanisms, a large
percentage were identified as having cryptographic protection
via other data flows. In fact, of the 8,834 APKs where cryp-
tography was not identified with BLE writes, only 501 APKs
interacted with Looper or Messenger, and an even smaller
percentage of APKs were affected for BLE reads.

4.7.2 Conditional Statements with Backtracing

When backtracing a register, BLECryptracer stops when it
encounters a constant value assignment. However, it is pos-
sible that this value assignment occurs within one branch of
a conditional jump, which means that another possible value
could be contained within another branch further up the in-
struction list. To identify this, the script would have to first
trace forward within the instruction list, identify all possible
conditional jumps, and then trace back from the register of
interest for all branches. This would need to be performed
for every method that is analyzed and could result in a much
longer processing time per APK file, as well as potentially
unnecessary overheads.

5 Related Work

User privacy has received particular attention in the BLE re-
search community because several widely-used BLE devices,

such as fitness trackers and continuous glucose monitors, are
intended to always be on the user’s person, thereby potentially
leaking information about the user’s whereabouts at all times.
Some of the research has focused on the threats to privacy
based on user location tracking [15,19], while others explored
the possibility of obtaining personal user data from fitness
applications or devices [14, 28].

While our research is concerned with data access and user
privacy, we focus more on the impact on privacy and security
due to how the BLE standard has been implemented in mobile
device architectures, as well as how it is applied by applica-
tion developers in general, rather than due to individual BLE
firmware design.

The work that is most closely related to ours is the re-
search by Naveed, et al., which explored the implications of
shared communication channels on Android devices [31]. In
their paper, the authors discussed the issue of Classic Blue-
tooth and NFC channels being shared by multiple applications
on the same device. They then demonstrated unauthorized
data access attacks against (Classic) Bluetooth-enabled med-
ical devices. The authors also performed an analysis of 68
Bluetooth-enabled applications that handled private user data,
and concluded that the majority of them offered no protection
against this attack. Finally, they proposed an operating-system
level control for mitigating the attack.

Our work specifically targets pairing-protected character-
istics on BLE devices, because BLE appears to slowly be
replacing Classic Bluetooth in the personal health and home
security domains. We demonstrate that the BLE data format
and access mechanisms enable even easier attacks than in the
case of Classic Bluetooth. Further, we identify the impact that
the new Android permissions model (introduced in Android
v6) has had on the user experience and on malicious appli-
cations’ capabilities. We also perform a much larger-scale
analysis over 18,900+ Android applications, to determine how
prevalent application-layer security is among BLE-enabled
applications.

6 Conclusions

In this paper, we analyze the risks posed to data on Bluetooth
Low Energy devices from co-located Android applications.
We show the conditions under which an unauthorized An-
droid application would be able to access potentially sensi-
tive, pairing-protected data from a BLE peripheral, once a
co-located authorized application has paired and bonded with
a BLE peripheral, without the user being aware of the access.
We also show that, in some cases, an unauthorized application
may be able to access such protected data with fewer permis-
sions required of it than would be required of an authorized
application. We then discuss mitigation strategies in terms of
the different stakeholders in the BLE ecosystem.

We present BLECryptracer, an analysis tool for determin-
ing the presence of application-layer security with BLE data.

14 28th USENIX Security Symposium USENIX Association

We evaluate it against the taint-analysis tool Amandroid, and
present the results from executing BLECryptracer against
18,929 BLE-enabled Android APKs. Our results suggest that
over 45% of all applications, and about 70% of “Medical” ap-
plications, do not implement cryptography-based application-
layer security for BLE data. We also found, among the ap-
plications that do use cryptographically processed BLE data,
several instances of cryptography misuse, such as the use of
insecure cipher modes and hard-coded key values. We believe
that, if this situation does not change, then as more and more
sensitive use cases are proposed for BLE, the amount of pri-
vate or critical data that may be vulnerable to unauthorized
access can only increase. We hope that our work increases
awareness of this issue and prompts changes by application
developers and operating system vendors, to lead to improved
protection for BLE data.

7 Availability

The code for our BLECryptracer tool is available at

https://github.com/projectbtle/BLECryptracer

This repository also contains the SHA256 hashes of the APKs
in our dataset, and the source/sink files used for the Aman-
droid analysis. In addition, it contains source code for the
benchmarking applications, as well as a comprehensive break-
down of the results per DroidBench category.

8 Acknowledgements

This research has been partially sponsored by the Engineering
and Physical Sciences Research Council (EPSRC) and the
UK government as part of the Centre for Doctoral Training
in Cyber Security at Royal Holloway, University of London
(EP/P009301/1).

References

[1] ALLIX, K., BISSYANDÉ, T. F., KLEIN, J., AND
LE TRAON, Y. Androzoo: Collecting millions of An-
droid apps for the research community. In Proceedings
of the 13th International Conference on Mining Soft-
ware Repositories (2016), ACM, pp. 468–471.

[2] ANDROID. Distribution dashboard. [Online]. Avail-
able: https://developer.android.com/about/
dashboards/. [Accessed: 06 Aug 2018].

[3] ANDROID. Bluetooth Low Energy overview, Apr 2018.
[Online]. Available: https://developer.android.
com/guide/topics/connectivity/bluetooth-le.
[Accessed: 18 July 2018].

[4] ANDROID. Security tips, June 2018. [Online]. Avail-
able: https://developer.android.com/training/
articles/security-tips. [Accessed: 18 July 2018].

[5] ANDROID. Security updates and resources, 2018.
[Online]. Available: https://source.android.
com/security/overview/updates-resources#
severity. [Accessed: 18 May 2019].

[6] ARM LTD. Firmware Over the Air, 2016. [On-
line]. Available: https://docs.mbed.com/docs/
ble-intros/en/master/Advanced/FOTA/. [Ac-
cessed: 21 July 2018].

[7] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E.,
BARTEL, A., KLEIN, J., LE TRAON, Y., OCTEAU, D.,
AND MCDANIEL, P. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis
for Android apps. Acm Sigplan Notices 49, 6 (2014),
259–269.

[8] BISIO, I., SCIARRONE, A., AND ZAPPATORE, S. A new
asset tracking architecture integrating RFID, Bluetooth
Low Energy tags and ad hoc smartphone applications.
Pervasive and Mobile Computing 31 (2016), 79–93.

[9] BLUETOOTH SPECIAL INTEREST GROUP. Heart Rate
Profile: Bluetooth profile specification v1.0, 07 2011.

[10] BLUETOOTH SPECIAL INTEREST GROUP. Continuous
Glucose Monitoring Profile: Bluetooth profile specifica-
tion v1.0.1, 12 2015.

[11] BLUETOOTH SPECIAL INTEREST GROUP. Bluetooth
core specification v5.0, 12 2016.

[12] BLUETOOTH SPECIAL INTEREST GROUP. Bluetooth
mesh networking / an introduction for developers, 2017.

[13] BRONZI, W., FRANK, R., CASTIGNANI, G., AND EN-
GEL, T. Bluetooth Low Energy performance and robust-
ness analysis for inter-vehicular communications. Ad
Hoc Netw. 37, P1 (Feb 2016), 76–86.

[14] CYR, B., HORN, W., MIAO, D., AND SPECTER, M.
Security analysis of wearable fitness devices (Fitbit).
Massachusetts Institute of Technology (2014).

[15] DAS, A. K., PATHAK, P. H., CHUAH, C.-N., AND MO-
HAPATRA, P. Uncovering privacy leakage in BLE net-
work traffic of wearable fitness trackers. In Proceedings
of the 17th International Workshop on Mobile Comput-
ing Systems and Applications (2016), ACM, pp. 99–104.

[16] DESNOS, A., ET AL. Androguard: Reverse engineer-
ing, malware and goodware analysis of Android appli-
cations ... and more (ninja !). https://github.com/
androguard/androguard.

USENIX Association 28th USENIX Security Symposium 15

https://github.com/projectbtle/BLECryptracer
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/training/articles/security-tips
https://developer.android.com/training/articles/security-tips
https://source.android.com/security/overview/updates-resources#severity
https://source.android.com/security/overview/updates-resources#severity
https://source.android.com/security/overview/updates-resources#severity
https://docs.mbed.com/docs/ble-intros/en/master/Advanced/FOTA/
https://docs.mbed.com/docs/ble-intros/en/master/Advanced/FOTA/
https://github.com/androguard/androguard
https://github.com/androguard/androguard

[17] EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND
KRUEGEL, C. An empirical study of cryptographic mis-
use in Android applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security (2013), ACM, pp. 73–84.

[18] ELKHODR, M., SHAHRESTANI, S., AND CHEUNG,
H. Emerging wireless technologies in the Internet of
Things: A comparative study. International Journal of
Wireless & Mobile Networks (IJWMN) 8, 5 (Oct 2016),
67–82.

[19] FAWAZ, K., KIM, K.-H., AND SHIN, K. G. Protect-
ing privacy of BLE device users. In USENIX Security
Symposium (2016), pp. 1205–1221.

[20] FIDO ALLIANCE. FIDO Bluetooth Specification
v1.0, 2017. https://fidoalliance.org/specs/
fido-u2f-bt-protocol-id-20150514.pdf.

[21] FRITZ, C., ARZT, S., AND RASTHOFER, S. Droid-
bench: A micro-benchmark suite to assess the stability
of taint-analysis tools for Android. https://github.
com/secure-software-engineering/DroidBench.

[22] GOMEZ, C., OLLER, J., AND PARADELLS, J. Overview
and evaluation of Bluetooth Low Energy: An emerging
low-power wireless technology. Sensors (Basel, Switzer-
land) 12, 9 (2012), 11734–11753.

[23] GUO, X., YIN, Y., DONG, C., YANG, G., AND ZHOU,
G. On the class imbalance problem. In Natural Compu-
tation, 2008. ICNC’08. Fourth International Conference
on (2008), vol. 4, IEEE, pp. 192–201.

[24] HOFFMANN, J., USSATH, M., HOLZ, T., AND SPRE-
ITZENBARTH, M. Slicing Droids: Program slicing
for smali code. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing (2013), ACM,
pp. 1844–1851.

[25] IDC. Worldwide wearables market grows 7.3% in Q3
2017 as smart wearables rise and basic wearables de-
cline, says IDC. [Online]. Available: https://github.
com/secure-software-engineering/DroidBench
[Accessed 16-Feb-2017].

[26] JENI, L. A., COHN, J. F., AND DE LA TORRE, F. Fac-
ing imbalanced data–recommendations for the use of
performance metrics. In Affective Computing and In-
telligent Interaction (ACII), 2013 Humaine Association
Conference on (2013), IEEE, pp. 245–251.

[27] KARANI, R., DHOTE, S., KHANDURI, N., SRINI-
VASAN, A., SAWANT, R., GORE, G., AND JOSHI, J.
Implementation and design issues for using Bluetooth
Low Energy in passive keyless entry systems. In In-
dia Conference (INDICON), 2016 IEEE Annual (2016),
IEEE, pp. 1–6.

[28] KOROLOVA, A., AND SHARMA, V. Cross-app tracking
via nearby Bluetooth Low Energy devices. In Privacy-
Con 2017 (2017), Federal Trade Commission.

[29] KRÜGER, S., NADI, S., REIF, M., ALI, K., MEZINI,
M., BODDEN, E., GÖPFERT, F., GÜNTHER, F., WEIN-
ERT, C., DEMMLER, D., ET AL. CogniCrypt: support-
ing developers in using cryptography. In Proceedings
of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (2017), IEEE Press,
pp. 931–936.

[30] KRÜGER, S., SPÄTH, J., ET AL. CogniCrypt_SAST:
CrySL-to-static analysis compiler. https://github.
com/CROSSINGTUD/CryptoAnalysis/.

[31] NAVEED, M., ZHOU, X., DEMETRIOU, S., WANG, X.,
AND GUNTER, C. A. Inside job: Understanding and
mitigating the threat of external device mis-binding on
Android. In 21st Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2014, San Diego, Cali-
fornia, USA, February 23-26, 2014 (2014).

[32] NORDIC SEMICONDUCTOR. BLE on An-
droid v1.0.1. [Online]. Available: https:
//devzone.nordicsemi.com/attachment/
bdd561ff56924e10ea78057b91c5c642. [Accessed:
05 Feb 2018].

[33] ORACLE. Java Cryptography Architecture (JCA)
Reference Guide. [Online]. Available: https:
//docs.oracle.com/javase/8/docs/technotes/
guides/security/crypto/CryptoSpec.html.
[Accessed: 18 July 2018].

[34] PAUCK, F., BODDEN, E., AND WEHRHEIM, H. Do
Android taint analysis tools keep their promises? In
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering
(New York, NY, USA, 2018), ESEC/FSE 2018, ACM,
pp. 331–341.

[35] POEPLAU, S., FRATANTONIO, Y., BIANCHI, A.,
KRUEGEL, C., AND VIGNA, G. Execute this! Ana-
lyzing Unsafe and malicious dynamic code loading
in Android applications. In NDSS (2014), vol. 14,
pp. 23–26.

[36] QIU, L., WANG, Y., AND RUBIN, J. Analyzing the an-
alyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe.
In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (2018),
ACM, pp. 176–186.

16 28th USENIX Security Symposium USENIX Association

https://fidoalliance.org/specs/fido-u2f-bt-protocol-id-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-bt-protocol-id-20150514.pdf
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/CROSSINGTUD/CryptoAnalysis/
https://github.com/CROSSINGTUD/CryptoAnalysis/
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

[37] RYAN, M. Bluetooth: With low energy comes low se-
curity. In 7th USENIX Workshop on Offensive Tech-
nologies, WOOT ’13, Washington, D.C., USA, August
13, 2013 (2013).

[38] SILVA, B. N., KHAN, M., AND HAN, K. Internet of
Things: A comprehensive review of enabling technolo-
gies, architecture, and challenges. IETE Technical Re-
view 35, 2 (2018), 205–220.

[39] UNIVERSITÉ DU LUXEMBOURG. Lists of APKs. [On-
line]. Available: https://androzoo.uni.lu/lists.
[Accessed: 12 Nov 2018].

[40] WEI, F., ROY, S., OU, X., ET AL. Amandroid: A precise
and general inter-component data flow analysis frame-
work for security vetting of Android apps. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (2014), ACM, pp. 1329–
1341.

Appendix A: BLECryptracer Logic

We describe here the basic tracing mechanism employed
by BLECryptracer in order to identify the presence of
application-layer security for BLE data.

Backtracing BLE writes

BLE writes use one of the setValue methods in Table 2
to first set the value that is to be written, before calling the
method for performing the actual write. BLECryptracer iden-
tifies all calls to these methods, and then traces the origins of
the data held in the registers that are passed as input to the
methods.

Considering the smali4 code in Figure 8 as an example,
setValue is invoked at Line 13 and is passed two registers as
input. As setValue is an instance method, the first input, lo-
cal register v3, holds the BluetoothGattCharacteristic
object that the method is invoked on. The second input, pa-
rameter register p2, holds the data that is to be written to
the BLE device, and is the second argument that is passed
to the method a (Line 1). BLECryptracer identifies p2 as the
register that holds the data of interest, and traces backward
to determine if this data is the result of some cryptographic
processing. To achieve this, the method(s) within the APK
that invoke method a are identified, and the second input to
each such method is traced. If the BLE data had come from a
local register, rather than a parameter register, BLECryptracer
would trace back within method a’s instructions, to deter-
mine the origin of the data. This backtracing is performed
until either a crypto-library is referenced, or a const-<> or

4Android applications are typically written in Java and converted into
Dalvik bytecode. The smali format can be considered an “intermediate” step
between the high-level Java source and the bytecode.

1 .method private
a(Landroid/bluetooth/BluetoothGatt;[B...)V

2 .locals 10
3

4 .prologue
5 const/4 v9, 0x2
6 const/4 v8, 0x3
7 const/4 v7, 0x1
8 ...
9 invoke-virtual {v0, v3},

Landroid/bluetooth/BluetoothGattService;->
getCharacteristic(Ljava/util/UUID;)
Landroid/bluetooth/BluetoothGattCharacteristic;

10

11 move-result-object v3
12 ...
13 invoke-virtual {v3, p2},

Landroid/bluetooth/BluetoothGattCharacteristic;
->setValue([B)Z

14 invoke-virtual {v1, v3},
Landroid/bluetooth/BluetoothGatt;
->writeCharacteristic(Landroid/bluetooth/
BluetoothGattCharacteristic;)Z

Figure 8: Sample smali code for BLE attribute write.

new-array declaration is encountered (which would indicate
that no cryptography is used). Note that calls to any method
within the crypto-libraries mentioned in Section 4.2 are ac-
cepted as evidence of the use of cryptography with BLE data.
The tool stops processing an APK at the first instance where
such a method call is identified.

During execution, the BLECryptracer maintains a list of
registers (set within the context of a method) to be traced,
for each setValue method call within the application code.
This initially contains a single entry, which is the input to
the setValue method. A new register is added to the list if it
appears to have tainted the value of any of the registers already
in the list. This could be due to simple operations such as
aget, aput or move-<> (apart from move-result variants),
or it could be as a result of a comparison, arithmetic or logic
operation (in which case, the register holding the operand
on which the operation is performed is added to the trace
list). Similarly, if a register obtains a value from an instance
field (via sget or iget), then all instances where that field is
assigned a value are analyzed. However, the script does not
analyze the order in which the field is assigned values, as this
would require activity life-cycle awareness.

Where a register is assigned a value that is output from a
method invocation via move-result, if the method is not an
external method, then the instructions within that method are
analysed, beginning with the return value and tracing back-
wards. In some instances, the actual source of a register’s
value is obfuscated due to the use of intermediate formatting
functions. In an attempt to overcome this, BLECryptracer
traces the inputs to called methods as well. Further, if a regis-
ter is used as input to a method, then all other registers that are

USENIX Association 28th USENIX Security Symposium 17

https://androzoo.uni.lu/lists

1 .method public onCharacteristicread(Landroid/bluetooth/
BluetoothGatt;Landroid/bluetooth/
BluetoothGattCharacteristic;I)V

2 ...
3 invoke-virtual {p2}, Landroid/bluetooth/

BluetoothGattCharacteristic;->getValue()[B
4 move-result-object v0
5 new-instance v2, Ljava/lang/StringBuilder;
6 invoke-direct {v2},

Ljava/lang/StringBuilder;-><init>()V
7 const-string v3, "read value: "
8 invoke-virtual {v2, v3},

Ljava/lang/StringBuilder;->append(Ljava/lang/
String;)Ljava/lang/StringBuilder;

9 move-result-object v2
10 invoke-static {v0},

Ljava/util/Arrays;->toString([B)Ljava/lang/ String;
11 move-result-object v3
12 invoke-virtual {v2, v3},

Ljava/lang/StringBuilder;->append(Ljava/lang/
String;)Ljava/lang/StringBuilder;

13 move-result-object v2
14 ...

Figure 9: Sample smali code for BLE attribute read.

inputs to the method are also added to the trace list. While this
captures some indirect value assignments, it runs the risk of
false positives. For this reason, we have included the concept
of Confidence Levels for the code output.

If, for an APK, the input to the setValue method can be
backtraced to cryptography directly, via only register value
transfers and as immediate results of method invocations, then
a confidence level of “High” is assigned to the result. If a reg-
ister cannot be traced back directly to a cryptographic output,
but if an indirect trace identifies the use of a cryptography
library, then a confidence level of “Medium” is assigned. Fi-
nally, in the event that no cryptography use is identified at
High or Medium confidence levels, the script performs a less
stringent search through all the instructions of the methods
that it previously analyzed. This risks including instances
of cryptography use with functions unrelated to BLE and is
therefore assigned a “Low” confidence level.

Forward-tracing BLE reads

With BLE reads, a getValue variant is invoked and the output,
i.e., the value that is read, is moved to a register. To trace this
value, BLECryptracer identifies all calls to getValue variants,
then traces the output registers and all registers they taint
until either a crypto-library is referenced or the register value
changes. Such value changes can occur due to new-array,
new-instance and const declarations, as well as by being

assigned the output of various operations (such as method
invocations or arithmetic/logic operations).

With forward-tracing, the register holding the BLE data is
considered to taint another if, for example, the source register
is used in a method invocation, or comparison/arithmetic/logic
operation, whose result is assigned to the destination register.
The destination register is then added to the trace list. When
a register is used as input to a method, then along with the
output of that method, the use of the register within the method
is also analyzed.

This method of analysis tends to result in a “tree” of traces.
As an example, considering the smali code in Figure 9, the
byte array output from the BLE read is stored in register
v0 (Line 4). This taints register v3 via a format conversion
function (Lines 10 and 11), which in turn taints v2 via a
java.lang.StringBuilder function (Lines 12 and 13). At
this point, all three registers are tainted and will be traced
until their values change.

The forward-tracing mode also assigns one of three
confidence levels to its output. “High” is assigned when
cryptographically-processed data is identified via the tracing
mechanism above; “Medium” is when the use of cryptogra-
phy is identified by tracing classes that implement interfaces.
“Low” is assigned when a less stringent search through all
encountered methods results in identification of a reference
to a cryptography library (similar to the backtracing case).

Handling obfuscation

APKs sometimes employ obfuscation techniques to protect
against reverse-engineering, and the question then arises as
to whether these techniques may impact the results of our
analysis. We therefore briefly discuss different obfuscation
techniques and why they do not impact our tool.

One of the most common techniques is identifier renam-
ing, where identifiers within the code are replaced with short,
meaningless names. However, because Androguard operates
on smali (rather than Java) code, BLECryptracer is able to
overcome the challenges posed by this technique. String en-
cryption is another obfuscation mechanism, but it again does
not affect the output of our tool as BLECryptracer does not
search for hard-coded strings. Further, our tool was verified
successfully against three out of four benchmarking applica-
tions that utilized reflection. The most complex obfuscation
techniques are packing and runtime-based obfuscation, but
these are typically employed by malware. Because we are
looking for vulnerable (not malicious) applications, we do not
consider these techniques. Therefore, in general, we believe
our analysis to be unaffected by most benign obfuscation
mechanisms.

18 28th USENIX Security Symposium USENIX Association

The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links

Jiahao Cao1,2, Qi Li2,3, Renjie Xie1,2, Kun Sun4, Guofei Gu5,

Mingwei Xu1,2, and Yuan Yang1,2

1Department of Computer Science and Technology, Tsinghua University
2Beijing National Research Center for Information Science and Technology, Tsinghua University

3Institute for Network Sciences and Cyberspace, Tsinghua University
4Department of Information Sciences and Technology, George Mason University

5SUCCESS LAB, Texas A&M University

Abstract

Software-Defined Networking (SDN) enables network inno-

vations with a centralized controller controlling the whole

network through the control channel. Because the control

channel delivers all network control traffic, its security and

reliability are of great importance. For the first time in the

literature, we propose the CrossPath attack that disrupts the

SDN control channel by exploiting the shared links in paths

of control traffic and data traffic. In this attack, crafted data

traffic can implicitly disrupt the forwarding of control traffic

in the shared links. As the data traffic does not enter the con-

trol channel, the attack is stealthy and cannot be easily per-

ceived by the controller. In order to identify the target paths

containing the shared links to attack, we develop a novel

technique called adversarial path reconnaissance. Both the-

oretic analysis and experimental results demonstrate its fea-

sibility and efficiency of identifying the target paths. We

systematically study the impacts of the attack on various net-

work applications in a real SDN testbed. Experiments show

the attack significantly degrades the performance of exist-

ing network applications and causes serious network anoma-

lies, e.g., routing blackhole, flow table resetting, and even

network-wide DoS.

1 Introduction

Software-Defined Networking (SDN) becomes increasingly

popular and is being widely deployed in data centers [32],

cloud networks [13], and wide area networks [11]. In SDN,

the control plane and data plane are decoupled. A logically

centralized controller communicates with SDN switches to

exchange control messages, e.g., routing decisions, via the

control channel built upon a southbound protocol, e.g.,

OpenFlow [47]. SDN enables diversified packet processing

and drives network innovation. A large number of network

services and applications [26, 40, 33] benefit from it.

Unfortunately, the SDN control channel between the con-

trol plane and data plane is not well protected and can be

exploited though the confidentiality and integrity of the com-

munication over the channel are protected by the TLS/SSL

protocol. We find that the control channel is under the risk

of the Denial-of-Service (DoS) attack. In particular, a small

portion of traffic may tear down the communication over

the control channel. Existing studies focus on many secu-

rity aspects of SDN, including malicious or buggy applica-

tions [63, 48], attacks on crashing controllers [60, 49, 65], at-

tacks on disrupting switches [22, 51], and information leak-

age in SDN [25, 56, 19, 45] , but the security of the SDN

control channel is still an open problem.

In this paper, we propose a novel attack named CrossPath
Attack, which disrupts the SDN control channel by exploit-

ing the shared links between paths of control traffic and data

traffic. Our attack is stealthy and cannot be easily perceived

by the controller since it does not directly send a large vol-

ume of control traffic to the controller. Instead, it generates

well-crafted data traffic in the shared links to implicitly in-

terfere with the delivery of the control traffic while the data

traffic does not reach the controller. Thereby, real-time con-

trol messages delivered between the SDN controller and the

switches are significantly delayed or dropped. In particular,

since the controller performs centralized control over all net-

work switches via the control channel, an attacker can easily

break down all network functionalities enabled by various

SDN applications running on the controller. The root cause

of the vulnerability is the side effect incurred by shared links

between paths of control traffic and data traffic in SDN. Such

link sharing is a common practice in SDN with in-band con-

trol [21, 65], which can greatly reduce the cost of building

a dedicated control network and simplify network mainte-

nance, especially for large networks. However, it also opens

the door for an attacker to disrupt the control channel by

sending malicious data traffic to the shared links.

It is challenging to construct the attack in real networks.

Unlike traditional IP networks where almost all links deliver

both control traffic (e.g., OSPF or BGP updates [1, 2]) and

data traffic at the same time, only a few number of links for-

ward control traffic in SDN. For instance, an SDN network

USENIX Association 28th USENIX Security Symposium 19

with m switches can have O(m2) links. However, there may

be m links forming a spanning tree connecting m switches

with a controller to deliver the control traffic. Thus, an at-

tacker needs to find a target path that contains the shared

links between control and data traffic to send the attack traf-

fic. However, it is difficult to know since the network topol-

ogy and the routing information are invisible to end users.

Moreover, none of the information can be inferred by scan-

ning tools used in traditional IP networks due to different for-

warding actions in SDN. For example, Traceroute [17] can-

not work well because SDN switches usually do not decrease

the time-to-live (TTL) values in packet headers.

To address the above challenge, we present a probing tech-

nique called adversarial path reconnaissance to find a tar-

get path of data traffic that contains the shared links. The

key observation is that the delays of control messages on the

SDN control channel will become higher if a short-term burst

of data traffic passes through the shared links. Meanwhile,

such delays that indicate the path of the current data traf-

fic has shared links with control traffic can be measured by

a host. The reason one host can measure the delays is that

the first packet of a new flow will be sent to the controller

to query forwarding actions, which incurs extra delays of

control messages other than that of the following packets di-

rectly processed in the data plane. Thus, by crafting timing

packets to measure the latency variation of the control mes-

sages with/without injecting a short-term burst of data traffic,

a path containing the shared links can be correctly identified.

By conducting the above reconnaissances on each possible

path, a target path can finally be found.

We note the probing technique may fail to identify a tar-

get path in rare cases. We study the conditions of successful

probing, and our experiments with 261 real network topolo-

gies [4] demonstrate that these conditions can be easily met

in practice. Moreover, we analyze the expected number of

paths that need to be explored for an attacker to find a tar-

get path. Both theoretical analysis and experimental results

show the high efficiency of our probing technique. For ex-

ample, it only needs to explore less than 50 paths on average

if there are 1,000 paths and only 2% of them contains shared

links. Experimental results in a real SDN testbed show our

reconnaissances can achieve more than 90% accuracy.

In order to ensure the stealthiness of the attack, we lever-

age the low-rate TCP-targeted DoS [41] to generate data traf-

fic consisting of periodic pulses in the shared links, instead

of directly flooding shared links to disrupt the network. The

low-rate TCP targeted DoS incurs repeated TCP retransmis-

sion timeout for TCP connections of the control channel.

Compared with direct link flooding on the shared links, it

significantly reduces the volume of attack traffic. Note the

TCP-targeted DoS cannot effectively disrupt SDN networks

without the knowledge of shared links obtained by our prob-

ing technique. Moreover, our attack is significantly different

from the packet-in flooding attacks [55, 60] that trigger a

huge volume of control traffic with bogus packets to saturate

the SDN control channel. Instead, it leverages low-rate data
traffic to disrupt the control channel and can thus succeed

even in the presence of state-of-the-art SDN defenses, such

as FloodGuard [60], FloodDefender [52], and SPHINX [27].

We systematically study the impacts of the attack on dif-

ferent SDN applications that achieve diversified network

functionalities. We find that almost all SDN applications can

be affected by our attack since our attack targets at disrupt-

ing the core services in SDN controllers that support these

applications. In order to understand the impacts, we conduct

experiments with four typical applications that have been

widely deployed in SDN controllers, i.e., ARP Proxy [5],

Learning Switch [6], Reactive Routing [9], and Load Bal-

ancer [7]. The results show (1) the performance of ARP

Proxy can be significantly degraded, such as 10 times in-

crease in the response delays and 95% reduction in the num-

ber of the ARP replies; (2) Learning Switch cannot success-

fully install forwarding decisions in the data plane and thus

the throughput of the data plane is reduced to 0 Mbps; (3)

Reactive Routing cannot update routing information in time

and obtain incorrect topology information, which incurs var-

ious routing anomalies, e.g., routing loop, routing blackhole,

routing path eviction, and flow table resetting; and (4) Load

Balancer generates wrong decisions, resulting in link over-

loading.

In summary, our paper makes the following contributions:

• We present the CrossPath attack to significantly disrupt

the SDN control channel by exploiting the shared links

between paths of control traffic and data traffic.

• We develop a probing technique called adversarial path

reconnaissance that can find a target path containing the

shared links with a high accuracy.

• We prove the conditions of successful probing, analyze

the expected number of explored paths to find a target

path, and validate our analysis with experiments.

• We perform a systematical study and conduct exten-

sive experiments on four typical SDN applications to

demonstrate the impacts of the attack on various SDN

network functionalities.

The rest of the paper is organized as follows. Section 2

provides background information about SDN and threat

model. Section 3 presents the CrossPath attack along with

an effective probing technique. Section 4 evaluates the fea-

sibility and effectiveness of the attack both in large-scale

simulations and real SDN testbeds. Section 5 further stud-

ies the impacts of the attack on different SDN applications

by detailed analysis and extensive experiments. Section 6

discusses defense mechanisms that can be immediately de-

ployed in practice to mitigate the attack. Section 7 reviews

related work. Section 8 concludes the paper.

20 28th USENIX Security Symposium USENIX Association

2 Background and Threat Model

2.1 Background

In this section, we briefly review the SDN architecture and

a typical protocol of SDN, i.e., the OpenFlow protocol [47].

SDN enables network innovations by decoupling the control

and data planes and provide programmability as well as flex-

ibility. The control plane is logically centralized and can be

deployed on commodity servers. The SDN architecture can

be divided into three layers. The control layer and the appli-

cation layer constitute the control plane, which runs as a net-

work operating system, a.k.a. a controller. Various network

applications can be deployed in the application layer to en-

able diversified network functions, such as routing, network

monitoring, anomaly detection, and load balancing. The data

plane layer, which consists of “dumb” SDN switches, per-

forms low-level packet processing and forwarding based on

the decisions generated by the control layer.

The dominant communication protocol between the con-

trol and data planes is OpenFlow, which has been stan-

dardized by the Open Networking Foundation (ONF) [14].

OpenFlow allows a controller to dynamically specify SDN

switches’ forwarding behaviors by installing flow rules.

Each flow rule contains match fields to match against in-

coming packets, a set of instructions that describe how to

process the matched packets, and counters that count the

number and the total bytes of matched packets. OpenFlow

also defines how to handle packets in a switch. When a

switch receives a packet, it processes the packet based on

the rule that matches the packet with the highest priority. If

no rules match the packet, the switch sends the packet to the

SDN controller through the control channel with a packet in
message. Applications running on the controller analyze the

packet and make decisions. Once the decisions are made,

the packet will be sent back to the switch with a packet out
message. The corresponding flow rules will be installed into

all switches forwarding the packet with flow mod messages.

Such a packet processing procedure is called reactive rule

installation, which has been widely used in OpenFlow net-

works [60, 52]. Moreover, to reduce the cost of building a

dedicated control network and operating networks, in partic-

ular in large-scale networks [21, 65], OpenFlow allows the

control and data traffic to share some links in the network,

which is called in-band control.

2.2 Threat Model

In this paper, we consider an SDN network deployed with

the OpenFlow protocol. The network uses a reactive ap-

proach to install flow rules, which is widely adopted in prac-

tice [60, 52], over an in-band control channel [21, 65]. We

assume that an attacker has or compromises at least one host

attached in the network, which can be easily achieved, e.g.,

by renting a virtual machine in an SDN-based cloud network.

The goal of the attacker is to craft data traffic to disrupt the

SDN control channel that delivers control traffic.

An attacker does not need to have prior knowledge on

the network and any privileges of network operation. The

CrossPath attack does not require the attacker to compro-

mise the controllers, applications, and switches, or to con-

struct man-in-the-middle attacks on the control channel to

manipulate the control messages. The control channel can be

protected with TLS/SSL. Furthermore, we assume that con-

trollers, switches, and applications are well protected. For

example, the network applies strict access control policies to

prevent communication between controllers and attackers.

3 The CrossPath Attack

In this section, we present the CrossPath attack on disrupting

the SDN control channel. Particularly, we develop a probing

technique called adversarial path reconnaissance to accu-

rately find a target path containing shared links.

3.1 Overview
The CrossPath attack aims to disrupt the SDN control chan-

nel by exploiting the shared links between paths of control

traffic and data traffic. An attacker interferes with the trans-

mission of control traffic by generating data traffic pass-

ing through the shared links. Thereby, the real-time con-

trol messages delivered in the control channel are delayed or

dropped. As the SDN controller performs centralized control

over all switches via the control channel, an attacker can al-

most break down all network functionalities enabled by SDN

by constructing the attack. To achieve this, an attacker needs

to use a host attached in the network to generate probing traf-

fic so as to identify which path of data traffic (i.e., a target

path) shares links with paths of control traffic. Then, the at-

tacker can send attack traffic to the target path to disrupt the

control channel. In order to decrease the attack rate, the at-

tack utilizes the low-rate TCP-targeted DoS (LDoS) [41] to

generate periodic on-off “square-wave” traffic, which leads

to repeated TCP retransmission timeout for the TCP connec-

tions of the control channel.

Now let us use a simple example to illustrate the attack.

For the ease of explanation, we use data path to denote the

path where the data traffic is delivered and control path to de-

note the path where the control traffic is delivered. As shown

in Figure 1, the network has five switches {s1, s2, s3, s4, s5}.
Host h1 and h3 communicate with each other via the data

path h1 → s2 → s3 → s4 → h3, while the control path be-

tween s2 and the controller is s2 → s3 → s5 → c. We can ob-

serve that the link between s2 and s3 is shared by the control

and data path. Assume host h1 compromised by an attacker

sends crafted LDoS traffic to h3. Since the link and corre-

sponding queues of switch ports are also used by the control

USENIX Association 28th USENIX Security Symposium 21

user

Data Path

Control Path

shared link

affected
switches

attacker

Link

s1

c SDN Controller

user

h1 h2

h3
s2

s3

s4

s5

Figure 1: An example of disrupting the SDN control channel.

paths of s2 and s1, the control messages delivered between

the switches and the SDN controller can be significantly de-

layed or dropped, resulting in abnormal network behaviors.

In order to successfully launch the attack, an attacker

should correctly choose a target path that contains shared

links. However, it is challenging to find target paths in SDN.

Different from traditional IP networks that almost each link

delivers data and control traffic at the same time, there are

only a few number of links delivering control traffic in SDN.

For instance, given an SDN network with m switches, there

may be m2/2 links. m links may be used to deliver control

traffic so that the connectivity between the controller and all

SDN switches can be ensured. Thus, only a limited number

of data paths include the links shared with control paths. To

identify such data paths, the attacker needs to know the net-

work topology and routing information. Nevertheless, they

are stored in the SDN controller and are invisible to the at-

tacker. Moreover, existing scanning tools cannot be used in

SDN to infer the network topology and routing information

because SDN has different forwarding behaviors compared

to traditional IP networks. For example, Traceroute [17] can-

not infer the routing path of the packets, as SDN usually does

not decrease the time-to-live (TTL) values in packet headers.

3.2 Adversarial Path Reconnaissance
To address the challenges above, we develop a probing tech-

nique called adversarial path reconnaissance to find target

data paths that have links shared with control paths. The

technique inspired by the key observation that the delay of

a control path is higher if a short-term burst of the data traf-

fic passes through the shared links. Thus, an attacker can

use a host in SDN to identify the key data paths by gener-

ating data traffic and measuring the delay variations of the

control paths. To achieve the goal, our adversarial path re-

connaissance consists of two phases: measuring the delays

of control paths and identifying a target data path.

Measuring Delays of Control Paths. In SDN, packets that

cannot be matched in a switch will experience long forward-

ing paths and high delays, since they will be forwarded to the

controller to request flow rules. We can analyze the delays

of these packets to calculate the delays of control paths that

share links with data paths. Assume there are two hosts hi
and h j, and the data path between them is a sequence of con-

secutive links Pi, j
d =< lhi→s1

, ls1→s2
, ... , lsω→h j >. Figure 2a

shows the forwarding path and delay for a packet that is sent

from hi to h j. The packet cannot be matched by flow rules in

s1. We can know the end-to-end delay for the packet is:

di, j = dhi
prop +

ω+1

∑
k=1

dk
trans +

ω

∑
k=1

(dk
queue +dk

proc)+δi, j, (1)

where dhi
prop is the propagation delay at host hi, dk

trans is the

transmission delay at the kth link, dk
queue is the queuing delay

at the kth switch, and dk
proc is the processing delay at the kth

switch. δi, j is the delay of the control path, which is caused

by querying controllers for rule installation. The delay pat-

tern of such packet is shown in Figure 2a. However, if we

send the same packet after the rule installation, the path and

delay will become shorter, as shown in Figure 2b. The end-

to-end delay can be expressed as follows:

d′i, j = dhi
prop +

ω+1

∑
k=1

dk
trans +

ω

∑
k=1

(d̂k
queue +dk

proc). (2)

Here, we change dk
queue to d̂k

queue because the queuing delay

depends on the current network traffic and is time-varying.

Based on equation (1) and (2), the delay of the control path

is:

δi, j = di, j−d′i, j +
ω

∑
k=1

(d̂k
queue−dk

queue) (3)

However, if we send two packets with a short time inter-

val, e.g., sending the same packet immediately once we re-

ceive a response to the last packet, the queuing delay dk
queue

and d̂k
queue can be approximately equal. Thus, we have

δi, j ≈ di, j−d′i, j. Similarly, we have δ j,i ≈ d j,i−d′j,i. We use

δ to denote the sum of δi, j and δ j,i. We have the following

equation:

δ ≈ (di, j +d j,i)− (d′i, j +d′j,i). (4)

Note that, di, j + d j,i is the round-trip-time (RTT) of the

packet that is not matched by rules, and d′i, j +d′j,i is the RTT

of the same packet matched by rules. Thus, we can infer

the delay of control paths between two hosts by subtracting

RTTs of these two crafted packets.

Identifying a Target Data Path. An attacker needs to send

two packet streams for each possible data path in order to

find a target data path crossing with some control paths, i.e.,

a data path containing shared links. The first packet stream

is a timing stream, which aims to measure the delay δ shown

in equation (4). The timing stream must trigger responses

from the destination host in the current data path. Fortu-

nately, many types of packets meet the requirement, such as

ICMP packets, TCP SYN packets, and HTTP request pack-

ets. Moreover, each timing stream must contain a pair of

22 28th USENIX Security Symposium USENIX Association

...

hi s1 c s1 s2 sω hj

The latency caused by
querying the controller

(a) A packet matches no rules in s1.

...

hi s1 s2 sω hj

(b) A packet matches

rules in all switches.

Figure 2: Different forwarding paths and delays for packets

sent from hi to h j. c denotes the controller and si denotes the

ith switch in the packet path.

packets. The first packet must trigger new rule installation

and the second packet must match the newly installed rules.

This can be achieved by waiting a long enough time before

sending the first timing packet to the destination, and then

immediately sending another same packet after receiving a

response from the first packet. The first packet can guaran-

tee new rule installation, since old rules will be expired due

to timeouts as we mentioned in Section 2. According to the

previous study [44], the timeouts are usually configured as

small values in order to save space of flow table and waiting

for 30 seconds is enough for most cases.

The second packet stream is a testing stream. It contains

a short-term burst of packets sent to the destination host in

the current data path. These packets in the stream can be

typically UDP packets. TCP packets can also be chosen if

we send them with raw sockets [15] to eliminate the auto-

matic rate control in TCP. The testing stream can be used

to test whether the current data path crosses with some con-

trol paths or not in collaboration with the testing stream. An

attacker can first measure the delay δ by the timing stream

without transmitting the testing stream to the destination. Af-

ter waiting enough time to ensure that old flow rules expire,

an attacker can measure the delay again (denoted by δ ′) with

the testing stream being transmitted at the same time. By

comparing these two delays, an attacker can obtain:

(i) If δ ′ is significantly higher than δ , the short-term burst

of packets affects the delays of some control paths.

Thus, the data path currently being explored crosses

with some control paths.

(ii) If δ ′ is similar to δ , no available evidence indicates that

the data path crosses with some control paths.

Thus, we are able to find a target path by testing each path if

it exists.

3.3 Improved Reconnaissance
In order to efficiently and accurately find a target data path,

we apply two methods to improve our reconnaissance.

1st

Timeout Period Time

2nd

Timeout Period

...

kth

Timeout Period

(a) Serial Reconnaissance.

Time

1st ~ kth

...

Timeout Period

1st ~ kth

... Reduce to Two Timeout Periods

(b) Parallel Reconnaissance.

Figure 3: Two different reconnaissances of finding a target

data path. Each arrow denotes a timing packet and the height

of it denotes the RTT of a timing packet. A dashed arrow

denotes testing packets are sent at the same time. The red

arrows denote a target path is found when conducting a re-

connaissance on the kth data path.

Improving Accuracy with T-test. Although our reconnais-

sance allows an attacker to know whether a data path crosses

with control paths by sending only four packets, it may

achieve low accuracy in practice. Various network noises

can affect the reconnaissance. For example, a burst of be-

nign traffic can also cause high latencies of control paths,

which makes a non-target data path misidentified as a tar-

get data path. We find that t-test [20] can be a straightfor-

ward approach to eliminate the influences of network noise

as much as possible. T-test is a statistical method that com-

pares whether two groups of samples with random noises be-

long to the same distribution. It produces a p value to denote

the likelihood that the two groups of samples belong to the

same distribution. Typically, if p is less than a predetermined

value, i.e., the significance level α [20], the two groups are

considered significantly different. Thus, we can collect two

groups of latencies with or without a testing stream for a

data path, and apply t-test to determine whether a data path

crosses with control paths according to the p value.

Improving Efficiency with Parallelization. Basically, an

attacker can try to test each data path one-by-one, which is

shown in Figure 3a. However, it is time-consuming. An

attacker has to wait for at least a timeout value before con-

ducting next round of testing, as obtaining the latencies of

control paths with testing stream requires that the old rules

have been removed. Suppose that a network has 100 data

paths and the timeouts in flow rules are configured to 10s.

Moreover, we assume 10 repeated reconnaissances are con-

ducted for each path in order to apply t-test. We can cal-

culate that finding a target path needs approximate 10,000s

at the worst case, which is unbearable in practice. Fortu-

nately, different flow rules matching specific packets make

up different data paths in SDN, which means the installation

and expiration of rules in two different paths are indepen-

dent. Thus, the reconnaissance can be parallelized to reduce

USENIX Association 28th USENIX Security Symposium 23

the time. As shown in Figure 3b, an attacker can choose k
pending paths. The latencies of their crossed control paths

can be measured in turn by sending two timing packets for

each data path. After waiting for only one timeout value, an

attacker can measure the latencies again in turn while trans-

mitting corresponding testing streams, since the old rules of

each data path will expire in turn. The parallel reconnais-

sance allows an attacker to explore k data paths within two

timeout values, which significantly improves efficiency. The

maximal k depends on the maximal timeout values of flow

rules and the maximal RTT of timing packets. In order to

find a target data path as fast as possible, k should be subject

to the inequation: 2 · k ·RT Tmax < timeoutmax. It ensures that

an attacker can check whether there is a target path among k

data paths within two timeout periods. If the maximal RTT

of the timing packets is 20 ms in the target SDN, the parallel

reconnaissance can dramatically reduce the time used by the

previous example from 10,000s to less than 100s.

Based on the above designs, the algorithm of improved

adversarial path reconnaissance can be easily implemented.

Due to space constraints, for further details, we refer the

reader to see the pseudo-code in Appendix A.

3.4 Theoretical Analysis
To understand the feasibility and efficiency of the adversarial

path reconnaissance in SDN, we perform theoretical analysis

to answer the following two questions:

• If there exists target data paths crossing with control

paths in the network, which conditions the network

must meet so that our reconnaissance can identify a tar-

get data path?

• How many data paths should be explored in order to

find a target data path?

Firstly, we use an example to illustrate the network condi-

tions that must meet for identifying a target data path be-

fore presenting the theory results. Figure 4 shows the tar-

get network where an attacker conducts reconnaissances.

Each switch connects the controller through the shortest

control paths. Switch s2 and s3 both have two differ-

ent shortest control paths that can be chosen. We first

consider the case where s2 connects the controller via <
ls2→s5

, ls5→s6
, ls6→c > and s3 connects the controller via <

ls3→s2
, ls2→s1

, ls1→s6
, ls6→c >. Obviously, the data path from

h1 to h2 crosses with the control path of s3. However, an at-

tacker cannot identify it. Measuring the delay of the crossed

control paths is infeasible, since an adversary cannot trigger

rule installation into s3. If we consider another case where s2

connects the controller via < ls2→s1
, ls1→s6

, ls6→c > and s3

connects the controller via < ls3→s2
, ls2→s5

, ls5→s6
, ls6→c >,

the target data path from h1 to h2 crossing with the control

path of s2 can be identified. The main difference between

Data Path

Control Path

Link s1 s2 s3

s6
c

attacker user

SDN
Controller

h1 h2

s5 s4

Figure 4: The target network where an attacker conducts re-

connaissances.

the two cases is whether the target data path crosses with a

control path of a switch belonging to the data path.

We consider a set of all the hosts in the target network

H = {h1, h2, ..., hn}, a set of compromised hosts H̃ =
{h̃1, h̃2, ..., h̃q}, and a set of all the switches in the net-

work S = {s1, s2, ..., sm}. Let pi, j
d be the data path from

host i to host j, let pi
c be the control path of switch i, and let

Si, j = {s1, s2, ..., sr} be the set of switches belonging to the

data path from host i to host j. Here, H̃ ⊂H and Si, j ⊂ S. pi, j
d

and pi
c both is a set that contains a sequence of consecutive

links. In fact, we have the following theorem:

Theorem 1. If and only if the target SDN network meets
the condition: ∃(pi

c ∩ p j,k
d �= /0), where i ∈ S j,k, j ∈ H̃, k ∈

H and j �= k, then there exists a target data path which can
be identified by the adversarial path reconnaissance.

Proof. We prove the theorem in two steps. We first prove

the sufficient condition, i.e., if the target network meets the

conditions in Theorem 1, then a target data path can be iden-

tified by the adversarial path reconnaissance. According to

the conditions, we can know that a data path p j,k
d from a com-

promised host h̃ j to another host hk crosses with a control

path pi
c. The crossed control paths belong to the switches

S j,k along the data path. An attacker can conduct the adver-

sarial path reconnaissance on the data path. Basically, four

timing packets will be sent to the data path. The first timing

packet will trigger rule installation into all switches along

the data path. Only after all switches finished installing rules

according to the messages of the controller, the packet can

reach the destination and a response packet will be sent to

the compromised host. Thus, the RTT of the timing packet

contains total latencies of control paths of all switches in S j,k.

The second timing packet will be sent after rule installation.

The total latencies of control paths can be obtained by sub-

tracting the RTTs of these two timing packets. After waiting

at least a timeout value, another two timing packets can be

sent to the data path with testing stream. The total laten-

cies of control paths can be obtained again in a similar way;

however, crossed control path pi
c will be affected by the test

stream. The reconnaissance will notice that the total laten-

cies will be significantly higher than the previous latencies.

24 28th USENIX Security Symposium USENIX Association

Thus, a target data path p j,k
d is identified.

We next prove the necessary condition, i.e., if a target data

path can be identified by the adversarial path reconnaissance,

then the target network meets the conditions in Theorem 1.

We assume that a target data path p j,k
d is identified. Since p j,k

d
is a target data path, it at least crosses with a control path pi

c.

Obviously, the reconnaissance can only be launched by the

compromised hosts. Thus, j ∈ H̃, k ∈ H, and j �= k. We

only need to prove that the crossed control path belongs to a

switch along with the data path p j,k
d , i.e., i ∈ S j,k. Let us con-

sider the opposing case i /∈ S j,k. Note that the timing packets

in our reconnaissance trigger rule installation into switches

S j,k along the data path. Thus, only the latencies of con-

trol paths belonging to the switches in S j,k can be measured.

When i /∈ S j,k, the delay variation of pi
c cannot be noticed by

our reconnaissance. Thus, there must be i ∈ S j,k if a target

data path can be identified.

Theorem 1 indicates that our reconnaissance can find a tar-

get data path only if the network meets the conditions. For-

tunately, it only requires at least one data path which crosses

with a control path of switches that are in the data path. Such

conditions can be easily met in practice. We will show that

our reconnaissance can find a target data path with various

real network topologies for most cases in Section 4.1.

In order to estimate the average number of explored data

paths for finding a target data path, we introduce a parameter

γ denoting the total number of target data paths which can

be identified in a network. In addition to the notations we

used in Theorem 1, let ρ be the total number of data paths

between a compromised host in H̃ and a host in H, and let X
be a random variable denoting the number of explored data

paths for finding a target data path. Obviously, if we find a

target data path at the kth exploration, then we have already

failed to find a target data path for k− 1 times. Thus, the

probability of finding a target data path at the kth exploration

for the first time is:

P(X = k) =
γ

ρ− (k−1)

k−2

∏
j=0

ρ− γ− j
ρ− j

, (5)

where 1≤ k ≤ ρ− γ +1. Here, we define ∏y
j=x a = 1, when

x > y. The average number of explored data paths can be

calculated as:

E(X) =
ρ−γ+1

∑
k=1

k ·P(X = k)

=
ρ−γ+1

∑
k=1

kγ
ρ− (k−1)

k−2

∏
j=0

ρ− γ− j
ρ− j

.

(6)

If we consider the case where there is only one compromised

host in the network and each of the data paths between two

hosts is different, then ρ = n−1. n is the number of hosts in

the network. Equation (6) can be simplified as:

E(X) =
n−γ

∑
k=1

kγ
n− k

k−2

∏
j=0

(1− γ
n−1− j

). (7)

Equation (7) indicates the average number of explored

data paths E(X) totally depends on n and γ . We will show

that E(x) gets small values with proper parameters and the

theoretical values are consistent with our experimental val-

ues in Section 4.1. In reality, our reconnaissance can quickly

find a target data path by exploring several data paths (see

Figure 6 in Section 4.1).

4 Attack Evaluation

In this section, we perform large-scale simulations to demon-

strate that the CrossPath attack can be launched with various

network topologies. Moreover, we conduct experiments to

evaluate the feasibility and effectiveness of the attack in a

real SDN testbed.

4.1 Large-Scale Simulation Experiments
Simulation Setup. We perform simulations with 261 real

network topologies [4] around the world. As these network

topologies do not contain hosts and routing information, we

generate 100 hosts 1 in each topology and apply Dijkstra’s al-

gorithm [28] to generate the shortest data path between two

hosts. Note that shortest path forwarding is commonly used

in the intra-domain routing system. We add another host in

each network topology as the SDN controller. The controller

can connect switches via shortest paths (SP) to minimize de-

lays, a minimum spanning tree (MST) to minimize costs, or

randomly searching available paths (RS). We conduct exper-

iments with different types of connection in turn. Moreover,

for simplicity and without loss of generality, we assume that

the attacker only controls one host in the network and we

attach such a host to each network topology.

We note that the positions of hosts in a network will affect

our experimental results. Thus, we conduct 1,000 experi-

ments for each network topology and randomly changes the

positions of all hosts in each experiment. We show the aver-

age results over 1,000 experiments for each topology.

Average Percentage of Identified Target Paths. Figure 5a

shows the CCDF of the average percentage of identified tar-

get paths with 261 various network topologies. From the

results, we can see all the network topologies have at least

5% identified target paths among total data paths in a net-

work regardless of types of connections. More than 98%

of the network topologies have at least 30% identified target

paths. Moreover, the network tends to have more identified

data paths when the controller connects switches via MST.

1In reality, we also conduct our experiments with 50, 500, 1000 hosts,

respectively. The results are similar to those in Figure 5.

USENIX Association 28th USENIX Security Symposium 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CC
DF

Identified Target Paths (%)

SP
MST
RS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

CC
DF

Affected Switches (%)

SP
MST
RS

(b)

Figure 5: Complementary Cumulative Distribution Function

(CCDF). (a) shows the CCDF of the average percentage of

identified target paths with 261 real topologies; (b) shows

the CCDF of the average percentage of affected switches by

attacking a target path with 261 real topologies.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100

E(
X)

n = 100 theoretical
n = 100 experimental
n = 500 theoretical
n = 500 experimental
n = 1000 theoretical
n = 1000 experimental

Figure 6: Comparison of theoretical values and experimental

values of E(X) with different n and γ .

The results demonstrate that the conditions in Theorem 1 can

be easily met. An attacker can use our reconnaissance to find

some target data paths to launch the CrossPath attack.

Average Percentage of Affected Switches. As attacking

different target paths will affect the average percentage of

switches in a network topology, we randomly attack a target

path in the 1,000 experiments for a network topology and

calculate the average percentage of affected switches. Fig-

ure 5b shows that more than 20% of the switches can be af-

fected by attacking a target path for 90%, 99% and 99% of

the 261 network topologies with SP, MST and RS connec-

tions, respectively. For some network topologies, attacking a

target path can even affect half of the whole switches. Thus,

it is possible for an attacker to attack multiple target paths

to cause damages for the whole switches and incur network-

wide DoS.

Average Number of Explored Data Paths. Equation (7)

denotes the average number of explored data paths E(X) for

finding a target path totally depends on the number of data

paths γ containing shared links and the number of hosts in a

network n. We draw the theoretical values of E(X) in Fig-

ure 6. We can see that E(x) declines quickly when γ in-

creases from 0 to 20. When there are 1,000 hosts and 40 data

paths (2% of the 1,000 total data paths) containing shared

links, E(X) is less than 50. Moreover, E(x) tends to be the

same with the growth of γ . The results demonstrate that our

reconnaissance can fast find a target data path and has a good

scalability with a different number of hosts in the network.

The experimental values of E(x) are also plotted in Figure 6.

Each experimental value with different n and γ is obtained by

conducting 1,000 experiments to get the average number of

explored data paths. The results show that the experimental

values are consistent with the theoretical values.

4.2 Experiments in a Real SDN Testbed

Experiment Setup. Our testbed contains a popular SDN

controller Floodlight [12], five hardware SDN switches

(AS4610-54T [10]), and three physical hosts. The controller

is deployed on a server with a quad-core Intel Xeon CPU

E5504 and 32GB RAM. Each physical host has a quad-core

Intel i3 CPU and 4GB RAM. All hosts run Ubuntu 14.04

server LTS. The network topologies, control paths and data

paths are illustrated in Figure 1. An attacker first compro-

mises host h1 to conduct the algorithm of adversarial path re-

connaissance (see Appendix A for details) for the data paths

of the other hosts. The burst rate of short-term testing pack-

ets is 1 Gbps, which is the maximal rate the host can send.

The attacker then generates LDoS data traffic to disrupt

the control channels of switches s1 and s2 by attacking the

data path between h1 and h3. Basically, there are three pa-

rameters for the LDoS flows: burst length, inter-burst period,

and peak magnitude. The previous study [42] has conducted

comprehensive experiments on how different parameters de-

termine the attack impacts of LDoS flows and how to bet-

ter choose these parameters. As our paper mainly focus on

studying the impacts for the SDN functionalities after the

control channel is attacked by the data traffic, we apply fixed

parameters in our attack. We choose the burst length as 100

ms, inter-burst period as 200 ms, and peak magnitude as the

maximal speed 1 Gbps that the host can send for our all ex-

periments in the paper. These parameters show how an at-

tacker can affect the SDN functionalities to the maximum

extent by generating data traffic to disrupt the control chan-

nel. Moreover, compared to simply flooding the target paths,

which needs to send traffic with 1 Gbps all the time, the rate

of our LDoS flow is only approximate 0.33 Gbps on average.

Accuracy of Reconnaissances. We first collect the delay

variations in delivering control messages. The delay vari-

ation is defined as the absolute difference between the de-

lays of control messages measured with and without testing

stream. We collect 5,000 records both for two data paths

in the network. We wait up to 20 seconds for each timing

packet to get a response in order to obtain possible maximum

delays. Figure 7 shows the distribution of the probability of

the delay variation. The results demonstrate that the target

data path has a significantly different probability distribution

compared with the non-target data path. In particular, most

delay variations with the non-target data path are less than 2

ms, while most delay variations are much larger for the tar-

get data path. These results illustrate that the discrimination

26 28th USENIX Security Symposium USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1 10 100 1000 10000

Pr
ob

ab
ilit

y

Delay (ms)

the target path
the non-target path

Figure 7: Probability distri-

bution of delay variations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.03 0.05 0.07 0.09

Ac
cu

ra
cy

 = 10
 = 20
 = 30
 = 40
 = 50

Figure 8: Accuracy of recon-

naissances with different pa-

rameters.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (p

ps
)

Time (s)

without attack
with attack

Figure 9: Throughput of

control packets.

 100

 101

 102

 103

 104

 105

without attack with attack

De
la

y
(m

s)

Figure 10: Delays of control

packets.

between target data paths and non-target data paths can be

easily identified according to the delay variations.

We then calculate the accuracy of our reconnaissance by

conducting 1,000 repeated experiments with different set-

tings of η and α . Here, η denotes the number of measured

delays for each data path, which is also the size of each group

in the t-test used to identify a target path. α is the signif-

icance level used in the t-test. As shown in Figure 8, the

accuracy increases with the increase of η . Moreover, we

can observe that the accuracy increases with the increase of

α when η is smaller, e.g., 10 or 20. However, the accu-

racy tends to be stable when η becomes large. The reason

is that two different groups will statistically different from

each other and two similar groups will be statistically closer

to each other with more data. It is easier to distinguish the

two types of paths if we have enough data, which is not sig-

nificantly impacted by the setting of α . The accuracy always

reaches more than 90% with different settings of α when η
is 40 or 50.

Effectiveness of the Attack. To evaluate the impact of the

attack on the control packets, we configure the controller

to generate 1,000 control packets per second2 to the switch

s2. Figure 9 shows the throughput of control packets. The

throughput can achieve 1,000 packets per second. However,

it almost drops to 0 under the attack though there are short-

term peaks of throughput. The reason is that our attack trig-

gers TCP of control flows to periodically enter the phase of

retransmission timeout. In this case, no packets will be sent

within the retransmission timeout. Figure 10 shows the delay

2There can be thousands of control packets per second [29]. For sim-

plicity but without loss of generality, we choose a practical value, 1,000.

 0

 0.2

 0.4

 0.6

 0.8

 1

DC1 DC2 IB UNIV LAB

Ac
cu

ra
cy

Background Traffic

(a) Accuracy of Reconnaissances.

 0

 0.2

 0.4

 0.6

 0.8

 1

DC1 DC2 IB UNIV LAB

D
eg

ra
da

tio
n

Ra
tio

Background Traffic

(b) Degradation Ratio of Control

Traffic.

Figure 11: Robustness of the attack with different back-

ground traffic.

of control packets. The median value of delays for control

packets under the attack is 687 ms, which is more than about

100 times higher than that in absence of the attack. More-

over, the delays under the attack vary within a large range

from below 10 ms and to more than 10,000 ms. Note that,

most delays without the attack are less than 10 ms. The re-

sults above demonstrate our attack can significantly degrade

the throughput of control packets and incur high delays.

Robustness of the Attack. As background traffic may affect

the reconnaissances and attack effects, we inject different

background traffic into our network with TCPReplay [16]

in turn. Such traffic traces comes from two Data Centers

(DC1 and DC2) [3], an Internet Backbone (IB) [8], a Uni-

versity (UNIV) [18] and our Laboratory (LAB). Moreover,

due to the limited flow table capacity in switches, we ran-

domly choose flows from the trace to ensure that the number

of rules generated by flows do not exceed the table capacity.

Figure 11a shows the accuracy of reconnaissances with

different background traffic. The parameters of reconnais-

sances α and η are set to 0.01 and 50, respectively, which

are the best parameters to get the highest accuracy (93% in

Figure 8) without background traffic. When the background

traffic is injected, the accuracy drops to below 90%, ranging

from 85% to 89%. However, such accuracy is still satisfac-

tory for an attacker to conduct reconnaissances. Figure 11b

shows the degradation ratio of control packets. The degrada-

tion ratio is the fraction of the control packets reduced by the

attack over the total control packets without the attack. We

can see that the attack always causes more than 90% degra-

dation ratio with different background traffic. Above results

demonstrate that our attack achieves high robustness.

5 Attack Impacts on Network Functionalities

In this section, we perform a systematical study on the im-

pacts of the attack on various network functionalities. We

first review the common core services enabled in SDN con-

trollers that generate different types of OpenFlow control

messages and are used by various SDN applications. We

then study four typical SDN applications, which use these

common core services, so that we measure the impacts of

USENIX Association 28th USENIX Security Symposium 27

Service Layer

SDN Data Plane

Packet
Service

Flow Rule
Service

Flow
Metrics
Service

Link
Discovery

Host
Tracking

Device
Discovery

Topology Service

Load BalancerARP Proxy Learning
Switch

Reactive
Routing

packet_in
packet_out

flow_mod stats_request
& stats_reply

packet_in
(ARP\DHCP payload)

SDN Controller

packet_out
(LLDP payload)

echo_request
 & echo_reply

handshake

App Layer

Other
Apps

packet_in
(LLDP Payload)

Figure 12: The core services of SDN controllers.

the attack on SDN functionalities.

5.1 Core Services of SDN

SDN controllers can be abstracted as a two-layer architecture

though different controllers have different implementations.

Applications can be deployed in the top layer to enable dif-

ferent network functionalities, while the low layer provides

different core services that interact with switches and provide

basic functionalities for the top-tier applications. As shown

in Figure 12, there are four major core services:

Packet Service. The service manages packets exchanged be-

tween the control and data planes. It paraphrases packet in
messages containing data packets received from switches

and dispatch them to applications. Meanwhile, it sends data

packets back to switches via packet out messages.

Flow Rule Service. The service manages flow rules. It in-

stalls or updates rules in switches via f low mod messages

according to the results computed by applications.

Topology Service. The service maintains the topology of

end hosts, links, and switches. It discoveries new hosts and

tracks their locations via packet in messages embedded with

an ARP or DHCP payload. It periodically sends and receives

LLDP packets encapsulated in packet in or packet out mes-

sages to maintain link information. Besides, it establishes

the control channel between switches and controllers via sev-

eral handshake messages. The liveness of switches is peri-

odically checked via echo request and echo reply messages.

Applications obtain network topologies through the service.

Flow Metrics Service. The subsystem is responsible for col-

lecting flow statistics. It periodically queries the flows on

network devices via stats request and stats reply messages,

and then provides various statistics to applications.

We note that almost all applications enabling network

functionalities in SDN is built on at least one of the four

services. Our attack thus can affect various SDN functional-

ities by disrupting the transmission of control messages ex-

changed between these core services and switches. We will

choose four typical applications that are widely deployed in

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

AR
P

Re
pl

y
Ra

te
 (p

ps
)

ARP Request Rate (pps)

without attack
with attack

(a) ARP Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

CD
F

Delay (ms)

without attack
with attack

(b) CDF of ARP Query Delay.

Figure 13: Attack impacts on ARP Proxy.

SDN controllers to show the impacts of the attack on various

network functionalities. The implementations of the four ap-

plications [5, 6, 9, 7] are from Floodlight [12].

5.2 ARP Proxy
SDN enables Address Resolution Protocol (ARP) similar to

IP networks, which finds the association between a destina-

tion IP address and its corresponding hardware (MAC) ad-

dress so that hosts can correctly send and receive IP pack-

ets. In IP networks, layer two switches flood an ARP request

sent from a host to get an ARP reply. If the target IP ad-

dress in the ARP request is not in the local network, a router

acts as an ARP proxy to send back an ARP reply with the

hardware address of its own interface. In SDN, ARP pack-

ets are handled by an ARP proxy application [5] in the SDN

controller. When an ARP request sent by a host arrives at

a switch, it will be sent to the controller via packet in mes-

sages. The packet service extracts the ARP request packet

from packet in messages and dispatches the packet to the

ARP proxy application. The application extracts the sender

IP address and the source MAC address to store them into

the ARP table. Meanwhile, it finds an entry that the IP ad-

dress matches the target IP address in the ARP request. A

corresponding ARP reply packet is created and will be sent

back to the ingress switch via packet out messages. Thus,

the original host obtains an ARP reply.

Our attack can completely disrupt the functionality of

ARP proxy by interfering with the exchange of the messages

between the packet service and switches. Figure 13a shows

the ARP throughput. The ARP reply rate is proportional to

the ARP request rate in absence of the attack. However, un-

der the attack, the ARP reply rate falls below 10 pps when

the ARP request rate exceeds 100 pps. The reason is that the

TCP flows of control traffic frequently enter the retransmis-

sion timeout phase under the attack due to the congestion.

Figure 13b shows the CDF of ARP delays. More than 90%

delays are less than 10 ms without the attack, while more

than 70% delays are higher than 10 ms and more than 50%

delays are higher than 1,000 ms with the attack. Delays un-

der attacks significantly increase. Particularly, some delays

exceed 10,000 ms, which can cause connection failures be-

tween two hosts because hosts cannot get MAC addresses.

28 28th USENIX Security Symposium USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Su
cc

es
s

Ra
tio

New Flows (Flows/s)

without attack
with attack

(a) Success Ratio of Rule Installa-

tion for a Switch.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

without attack
with attack

(b) Throughput for a Switch with

250 Flows/s.

Figure 14: Attack impacts on Learning Switch.

5.3 Learning Switch
The learning switch application [6] allows SDN switches act

as normal switches in IP networks. The application exam-

ines a packet matching no rules in a switch and looks up

the recorded mapping between the source MAC address and

the port. If the destination MAC address has already been

associated with a port, the packet will be sent to the port

and corresponding rules will be installed to match subse-

quent packets. Otherwise, the packet will be flooded on

all ports. As shown in 12, the application relies on two

services. The packet service sends the packet to the con-

troller via packet in messages and back to the switch via

packet out messages, and the flow rule service installs rules

in the switch via f low mod messages.

Our attack can effectively block installation of forward-

ing decisions generated by the application by disturbing the

messages exchanged between the core services and switches.

Figure 14 shows the impacts of the attack on the functional-

ities of learning switch. Here, we define the success ratio

of rule installation as the number of successfully installed

rules over the number of rule requests within a second. As

shown in Figure 14a, the success ratio of rule installation in

a switch always maintains over 90% with various numbers

of new flows without our attack. However, it drops signifi-

cantly in presence of our attack. When the rate of new flows

reaches 250 flows per-second, the success ratio reduces to

below 20%. Thus, learning switch cannot work correctly. As

shown in Figure 14b, the throughput of a switch is 0 Mbps

for a long time with attack when there are 250 flows/s.

s2

h1

h2

h3

10.0.0.3:1111, to s3
10.0.0.3, to s2

10.0.0.3:1111, to s1
10.0.0.3, to s3

s1

s3

c

h4

SDN
Controller

Figure 15: The network topology used in Reactive Routing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Li
nk

 U
til

iza
tio

n

Time (s)

without attack
with attack

(a) Increasing link utilization due

to long-term routing rule inconsis-

tency.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

without attack
with attack

(b) Long-term routing blackhole due

to delayed messages when a host is

migrated.

(c) Eviction of a routing path due to a deactivated link.

(d) Cleaning of flow tables due to the reset of a switch.

Figure 16: Attack impacts on Reactive Routing.

5.4 Reactive Routing

The reactive routing [9] application enables flexible and fine-

grained routing decisions for different flows, which is en-

abled in almost all controllers. When a new flow matching

no rules is generated, the first packet of the flow will be sent

to the reactive routing application. The application analyzes

the packet and calculates routing paths for the new flow. Be-

sides depending on the packet service processing data pack-

ets and flow rule service installing rules, the application also

queries the topology service that provides the information of

the locations of hosts, the state of switches and links.

In order to demonstrate the effectiveness of our attack, we

build a network topology with four hosts and three switches,

as shown in Figure 15. The IP addresses of the four hosts h1,

h2, h3 and h4 are 10.0.0.1, 10.0.0.2, 10.0.0.3, and 10.0.0.4,

respectively. The hosts h1 and h2 send packets to the host

h3. The default routing path of packets from h1 to h3 is <
lh1→s1

, ls1→s2
, ls2→s3

, ls3→h3
>. The default routing path of

packets from h2 to h3 is < lh2→s2
, ls2→s3

, ls3→h3
>. Also, a

flow with TCP port 1111 from h2 to h3 has a different path

due to a QoS requirement. Here, the compromised host h4

sends attack (i.e., LDoS) traffic to h3 in order to exploit the

control path of switch s2.

USENIX Association 28th USENIX Security Symposium 29

Figure 16 shows the impacts of the attack on reactive
routing. As shown in Figure 16a, our attack incurs long-

term routing rule inconsistency, which makes the link uti-

lization reach 100%. The reason is that SDN exists transient

rule inconsistency [36] which can be leveraged by our at-

tack. In the network shown in Figure 15, packets with an

IP destination address 10.0.0.3 and a destination port 1111

loop between s1 and s2 when the application deletes rule

“10.0.0.3 : 1111, to s3” while rule “10.0.0.3 : 1111, to s1”

remains. The rule inconsistency normally lasts for a very

short period before all the commands of deleting correspond-

ing rules of the flow are issued. However, our attack can de-

lay the commands exchanged between the flow rule service

and s2 for tens of seconds. Thus, the packets loop between

s1 and s2 for a long period and the link utilization between

the two switches increases with more packets injected.

Figure 16b shows the long-term routing blackhole when

h3 is migrated from s3 to s2. The migration is finished

within five seconds without the attack, as the topology ser-

vice can track the new location via packet in messages con-

taining the DHCP payload when the host moves to s2. How-

ever, the messages are significantly delayed under our attack,

and thereby the routing between other hosts and h3 cannot

be updated in time, causing more than 10 seconds routing

blackhole. Moreover, by blocking LLDP packets between

the topology service and switches, our attack can deactivate

links in the topology database and thus the corresponding

routing paths will be removed. In the Floodlight controller,

a link will be deactivated if no LLDP packets pass through

the links within 35s. Figure 16c shows the original routing

path from h2 to h3 is removed since our attack deactivates

the link from s2 to s3. Moreover, our attack can reset the

connections between switches and the controller by delay-

ing control messages. Figure 16d shows the connection of

switch s2 is reset and all the flow tables are cleaned.

5.5 Load Balancer

Load balancing has been widely used to improve resource

usage and throughput as well as reduce response delays,

which balances the workload among multiple nodes. SDN

controllers deploy the load balancer [7] application to

achieve the goal. The application in the Floodlight controller

can balance requests of clients in two way, i.e., round robin

and statistics-based scheduling. Round robin scheduling ran-

domly chooses a server from a server pool to serve a new

request each time. The statistics-based scheduling chooses a

server that has the lowest utilization to serve a new request,

where the utilization is calculated according to the real-time

statistics of the switch ports. The load balancer application

relies on the flow metrics service to collect the statistics.

We configure the load balancer application in Floodlight

to enable statistics-based scheduling, as it can provide better

load balancing under different flow distribution of clients. In

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Po
rt

Ut
iliz

at
io

n

Time(s)

Server 1
Server 2

(a) Port Utilization of Servers with-

out Attack.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

overloaded

Po
rt

Ut
iliz

at
io

n

Time(s)

Server 1
Server 2

(b) Port Utilization of Servers with

Attack.

Figure 17: Attack impacts on Load Balancer for misallocat-

ing the workloads across servers.

our experiments, two hosts consist of a server pool and an-

other two hosts send flows to the servers. Figure 17a shows

the utilization of switch ports connecting the two servers

over time without our attack. Initially, two different elephant

flows are sent to the servers, which causes the port utiliza-

tion to increase to 40% and 10%, respectively. At the 7th

second, the rate of the two flows exchanges. The utiliza-

tion of one server reduces from 40% to 10% while another

server increases from 10% to 40%. At the 14th second, a

new elephant flow starts, and the application directs the flow

to server #1 that has the lowest port utilization. The port uti-

lization of server #1 reaches 70%. Unfortunately, the appli-

cation will mistakenly direct the flow to server #2 under our

attack. As shown in Figure 17b, the port utilization of server

#2 reaches 100%. The reason is that our attack can signifi-

cantly delay the stats request and stats reply messages ex-

changed between the flow metrics service and switches, and

thus the applications cannot know the port utilization in time.

Actually, the application considers that the port utilization of

server #2 is still 10% when the new flow comes.

6 Defense Schemes

In this section, we discuss possible countermeasures that net-

work administrators can be used to mitigate the attack.

Delivering Control Traffic with High Priority. To defend

against the attack, one way is to ensure forwarding con-

trol traffic with high priority, which thus can protect con-

trol traffic from being congested by malicious data traffic.

According to our analysis, such a defense scheme can be

enforced by carefully configuring Priority Queue (PQ) or

Weighted Round Robin Queue (WRR) in switches. We note

that many commercial SDN switches support at least one

of the two queueing mechanisms (see Appendix C). We im-

plement the defense scheme based on PQ and WRR in our

hardware switches to deliver control traffic with high prior-

ity. The evaluation shows it can effectively protect control

traffic against malicious data traffic. The detailed implemen-

tations and evaluations can be found in Appendix B.

Proactively Reserving Bandwidth for Control Traffic.

30 28th USENIX Security Symposium USENIX Association

Another way to defend against the attack is to proactively

reserve proprietary bandwidth for control traffic. Such a

defense scheme is suitable for SDN switches that do not

support PQ and WRR mechanisms. We implement the de-

fense scheme with OpenFlow meter table in our hardware

switches. We have demonstrated that control traffic can be

well protected by reserving enough bandwidth. We refer the

reader to Appendix B for details. The main disadvantage of

the defense scheme is that the reserved bandwidth cannot be

used by other traffic even there is massive free bandwidth.

Our future work will focus on how to dynamically reserve

the bandwidth for control traffic to make full use of it.

Disturbing Path Reconnaissances. The necessary condi-

tion to successfully launch the CrossPath attack is to find a

target path containing shared links. Thus, we can prevent

the attack by disturbing path reconnaissances. One way is to

deliberately add random delays when installing flow rules,

which may result in incorrect delay measurements of control

paths when conducting path reconnaissances. Our evaluation

shows that the accuracy of path reconnaissances can drops to

less than 30% by adding random delays ranging from 100

ms to 1,000 ms. However, adding random delays affects the

rule installation of all flows in the network. It is especially

harmful to mice flows that are delay-sensitive [30]. Design-

ing a scheme to effectively disturb path reconnaissances and

reduce the impacts on network flows is worth more future

research.

7 Related Work

In this section, we review related security research in SDN

and legacy networks, respectively.

Reconnaissances in SDN. SDN reconnaissances has been

extensively studied. Shin et al. [54] designed an SDN scan-

ner to determine whether a network is SDN by measuring

response delays of pings. Cui et al. [25] further conducted

experiments in real SDN testbed to demonstrate its feasibil-

ity. Klöti et al. [39] presented a reconnaissance technique to

determine if an SDN has rules for aggregated TCP flows by

timing the TCP setup time. Achleitner et al. [19] designed

SDNMap to reconstruct composition of flow rules by ana-

lyzing probing packets with specific protocols. Liu et al. [45]

developed a Markov model to reveal rule distribution among

switches. John et al. [56] presented a sophisticated inference

attack to learn host communication patterns and ACL entries

even if injected packets do not trigger replies. However, none

of the methods can be applied to find target paths containing

shared links with control paths.

Attacks on SDN and Related Defenses. SE-Floodlight [48]

and SDNShield [63] are developed to provide permission

control for malicious SDN applications. Some studies fo-

cus on the security of controllers, including network poison-

ing [31], identifier binding attacks [35], subverting SDN con-

trollers [49], and exploiting harmful race conditions in SDN

controllers [65]. Other studies focus on data plane security,

including low-rate flow table overflow attacks [22], SDN

teleportation, and detection on abnormal data plane [51].

Our paper focuses on the security of control channel, which

is orthogonal to the existing work. Particularly, we uncover

a new type of attack, which has not been discovered by ex-

isting automatic attack discovery tools [34, 43, 59] in SDN.

The packet in flooding attack [55, 60] is mostly closest to

ours. It saturates the control channel with a large amount

of packet in messages. To trigger the control messages, the

attack requires generating massive bogus packets matching

no rules in switches. Different from it, our attack generates

low-rate data traffic to implicitly disrupt control traffic in the

shared links instead of directly generating massive control

traffic. Our attack can bypass the previous defenses [55, 60,

52, 27] against packet in flooding attacks since they detect

attacks by identifying and throttling malicious control traffic.

LDoS Attacks in Traditional IP Networks. Kuzmanovic

et al. [41] developed low-rate TCP-targeted DoS attacks to

disrupt TCP connections. Zhang et al. [66] demonstrated

the attack has severe impact on the Border Gateway Pro-

tocol (BGP) by conducting real experiments. Schuchard et

al. [50] extended the attack developed by Zhang et al. and

designed the Coordinated Cross Plane Session Termination

attack (CXPST) that allows an attacker to attack the Internet

control plane by using only data traffic. Our attack differs

from the previous work in three aspects. First, our attack

focuses on disrupting the SDN control channel that shares

a limited number of links with data paths. Second, probing

techniques are required in the attack to identify target data

paths containing shared links, which is necessary to ensure

the effectiveness of the attack. Third, our attack in SDN has

more significant impacts on diversified network functionali-

ties including layer 2, 3 and 4 functions.

To defend against LDoS, some countermeasures have

been provided in traditional IP networks, such as random-

izing RTO [42] and complex signal analysis [58, 53, 23, 64,

46, 24] . However, randomizing RTO cannot fully mitigate

the attack [66], and none of the methods are shown to be

sufficiently accurate and scalable for deployment in real net-

works. Besides, they are general defenses against LDoS in

traditional IP networks and are not designed to protect the

SDN control channel. Defenses against LDoS attacks on

BGP was described in [50], such as BGP Graceful Restart.

However, it is not suitable to protect the SDN control channel

with “dumb” SDN switches.

Link Flooding Attacks in Traditional IP Networks.
Studer et al. [38] and Kang et al. [57] introduced link flood-

ing attacks, which generate large-scale legitimate low-speed

flows to flood and congest network critical links. They use

traceroute to find critical links in traditional IP networks.

Our crosspath attack also congests the critical links that de-

liver control traffic and data traffic in SDN at the same time.

However, one major difference is that our crosspath attack

USENIX Association 28th USENIX Security Symposium 31

identifies the critical links with the unique SDN reconnais-

sance technique. Moreover, the crosspath attack can incur

various damages in the whole network by disrupting the con-

trol channel due to the centralized control in SDN. Though

there exist some SDN defense systems [67, 61, 62, 37] that

detect link flooding attacks, they cannot defend the crosspath

attack that disrupts the control channel, which these SDN de-

fense systems depend on.

8 Conclusions

In this paper, we present a novel attack in SDN. It disrupts

the control channel by crafting data traffic to implicitly in-

terfere with control traffic in the shared links. We develop

the adversarial path reconnaissance to find a target data path

containing shared links for the attack. Both theoretic anal-

ysis and experimental results show that our reconnaissance

works in real networks. We demonstrate that the attack can

significantly disrupt various network functionalities in SDN.

We hope this work attract more attention to SDN security,

especially the possible attacks on the SDN control channel

when deploying SDN to innovate network applications.

Acknowledgments

The research is partly supported by the National Key

R&D Program of China under Grant 2017YFB0803202,

the National Natural Science Foundation of China (NSFC)

under Grant 61625203, 61572278, 61832013, 61872209,

and U1736209, the U.S. ONR grants N00014-16-1-3214

and N00014-16-1-3216, and the National Science Founda-

tion (NSF) under Grant 1617985, 1642129, 1700544, and

1740791. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of NSFC, NSF, and

other sponsors. Qi Li and Mingwei Xu are the corresponding

authors of the paper.

References

[1] RFC 2328. OSPF Version 2. https://tools.ietf.

org/html/rfc2328/, 1998. [Online].

[2] RFC 4271. Border Gateway Protocol 4 (BGP-4).

https://tools.ietf.org/html/rfc4271/, 2006.

[Online].

[3] Data Set for IMC 2010 Data Center Measure-

ment. http://pages.cs.wisc.edu/~tbenson/

IMC10_Data.html, 2010. [Online].

[4] The Internet Topology Zoo. http://www.

topology-zoo.org/dataset.html, 2011. [Online].

[5] Floodlight ARP Proxy. https://github.com/

mbredel/floodlight-proxyarp/, 2013. [Online].

[6] Floodlight Learning Switch. https://github.

com/floodlight/floodlight/blob/master/

src/main/java/net/floodlightcontroller/

learningswitch/, 2014. [Online].

[7] Floodlight Load Balancer. https://github.

com/floodlight/floodlight/tree/master/

src/main/java/net/floodlightcontroller/

loadbalancer, 2014. [Online].

[8] CAIDA Passive Monitor: Chicago B. http:

//www.caida.org/data/passive/trace_stats/

chicago-B/2015/?monitor=20150219-130000.

UTC, 2015. [Online].

[9] Floodlight Reactive Routing. https://github.

com/floodlight/floodlight/tree/master/

src/main/java/net/floodlightcontroller/

routing/, 2016. [Online].

[10] AS4610-54T Data Center Switch. https:

//www.edge-core.com/productsInfo.php?

cls=1&cls2=9&cls3=46&id=21, 2018. [Online].

[11] AT&T SD-WAN. https://www.business.att.

com/solutions/Family/network-services/

sd-wan/, 2018. [Online].

[12] Floodlight Controller. http://www.

projectfloodlight.org/, 2018. [Online].

[13] Microsoft Azure and Software Defined Network-

ing. https://docs.microsoft.com/en-us/

windows-server/networking/sdn/azure_and_

sdn/, 2018. [Online].

[14] Open Networking Foundation (ONF). https://www.

opennetworking.org/, 2018. [Online].

[15] Raw Sockets. https://en.wikipedia.org/wiki/

Network_socket#Raw_socket, 2018. [Online].

[16] TCPReplay. http://tcpreplay.synfin.net,

2018. [Online].

[17] Traceroute. https://en.wikipedia.org/wiki/

Traceroute/, 2018. [Online].

[18] Traffic and Tools. http://traffic.comics.unina.

it/Traces/ttraces.php, 2018. [Online].

[19] ACHLEITNER, S., LA PORTA, T., JAEGER, T., AND

MCDANIEL, P. Adversarial network forensics in soft-

ware defined networking. In Proceedings of the Sym-
posium on SDN Research (2017), ACM, pp. 8–20.

32 28th USENIX Security Symposium USENIX Association

[20] BOX, J. F., ET AL. Guinness, gosset, fisher, and small

samples. Statistical science 2, 1 (1987), 45–52.

[21] BRAUN, W., AND MENTH, M. Software-defined net-

working using openflow: Protocols, applications and

architectural design choices. Future Internet 6, 2

(2014), 302–336.

[22] CAO, J., XU, M., LI, Q., SUN, K., YANG, Y., AND

ZHENG, J. Disrupting sdn via the data plane: a low-

rate flow table overflow attack. In Proceedings of Inter-
national Conference on Security and Privacy in Com-
munication Systems (2017), Springer, pp. 356–376.

[23] CHEN, Y., HWANG, K., AND KWOK, Y.-K. Collab-

orative defense against periodic shrew ddos attacks in

frequency domain. ACM Transactions on Information
and System Security 30 (2005).

[24] CHEN, Z., YEO, C. K., LEE, B. S., AND LAU, C. T.

Power spectrum entropy based detection and mitiga-

tion of low-rate dos attacks. Computer Networks 136
(2018), 80–94.

[25] CUI, H., KARAME, G. O., KLAEDTKE, F., AND BI-

FULCO, R. On the fingerprinting of software-defined

networks. IEEE Transactions on Information Forensics
and Security 11, 10 (2016), 2160–2173.

[26] DENG, J., LI, H., HU, H., WANG, K.-C., AHN, G.-

J., ZHAO, Z., AND HAN, W. On the safety and ef-

ficiency of virtual firewall elasticity control. In Pro-
ceedings of Network and Distributed System Security
Symposium (2017).

[27] DHAWAN, M., PODDAR, R., MAHAJAN, K., AND

MANN, V. Sphinx: Detecting security attacks in

software-defined networks. In Proceedings of Network
and Distributed System Security Symposium (2015).

[28] DIJKSTRA, E. W. A note on two problems in connex-

ion with graphs. Numerische mathematik 1, 1 (1959),

269–271.

[29] DIXIT, A., HAO, F., MUKHERJEE, S., LAKSHMAN,

T., AND KOMPELLA, R. Towards an elastic distributed

sdn controller. In ACM SIGCOMM computer commu-
nication review (2013), vol. 43, ACM, pp. 7–12.

[30] HE, K., ROZNER, E., AGARWAL, K., FELTER, W.,

CARTER, J., AND AKELLA, A. Presto: Edge-based

load balancing for fast datacenter networks. In ACM
SIGCOMM Computer Communication Review (2015),

vol. 45, ACM, pp. 465–478.

[31] HONG, S., XU, L., WANG, H., AND GU, G. Poi-

soning network visibility in software-defined networks:

New attacks and countermeasures. In Proceedings of

Network and Distributed System Security Symposium
(2015), vol. 15, pp. 8–11.

[32] JAIN, S., KUMAR, A., MANDAL, S., ONG, J.,

POUTIEVSKI, L., SINGH, A., VENKATA, S., WAN-

DERER, J., ZHOU, J., ZHU, M., ET AL. B4: Experi-

ence with a globally-deployed software defined wan.

ACM SIGCOMM Computer Communication Review
43, 4 (2013), 3–14.

[33] JANG, R., CHO, D., NOH, Y., AND NYANG, D.

Rflow+: An sdn-based wlan monitoring and manage-

ment framework. In Proceedings of IEEE Conference
on Computer Communications (2017), IEEE, pp. 1–9.

[34] JERO, S., BU, X., NITA-ROTARU, C., OKHRAVI, H.,

SKOWYRA, R., AND FAHMY, S. Beads: automated

attack discovery in openflow-based sdn systems. In

Proceedings of International Symposium on Research
in Attacks, Intrusions, and Defenses (2017), Springer,

pp. 311–333.

[35] JERO, S., KOCH, W., SKOWYRA, R., OKHRAVI, H.,

NITA-ROTARU, C., AND BIGELOW, D. Identifier

binding attacks and defenses in software-defined net-

works. In Proceedings of USENIX Security Symposium
(2017), USENIX Association, pp. 415–432.

[36] JIN, X., LIU, H. H., GANDHI, R., KANDULA, S.,

MAHAJAN, R., ZHANG, M., REXFORD, J., AND

WATTENHOFER, R. Dynamic scheduling of network

updates. ACM SIGCOMM Computer Communication
Review 44, 4 (2014), 539–550.

[37] KANG, M. S., GLIGOR, V. D., SEKAR, V., ET AL.

Spiffy: Inducing cost-detectability tradeoffs for persis-

tent link-flooding attacks. In NDSS (2016).

[38] KANG, M. S., LEE, S. B., AND GLIGOR, V. D. The

crossfire attack. In Proceedings of Symposium on Se-
curity and Privacy (2013), IEEE, pp. 127–141.

[39] KLÖTI, R., KOTRONIS, V., AND SMITH, P. Openflow:

A security analysis. In Proceedings of International
Conference on Network Protocols (2013), IEEE, pp. 1–

6.

[40] KREUTZ, D., RAMOS, F. M., VERISSIMO, P. E.,

ROTHENBERG, C. E., AZODOLMOLKY, S., AND UH-

LIG, S. Software-defined networking: A comprehen-

sive survey. Proceedings of the IEEE 103, 1 (2015),

14–76.

[41] KUZMANOVIC, A., AND KNIGHTLY, E. W. Low-

rate tcp-targeted denial of service attacks: the shrew vs.

the mice and elephants. In Proceedings of the confer-
ence on Applications, technologies, architectures, and
protocols for computer communications (2003), ACM,

pp. 75–86.

USENIX Association 28th USENIX Security Symposium 33

[42] KUZMANOVIC, A., AND KNIGHTLY, E. W. Low-

rate tcp-targeted denial of service attacks and counter

strategies. IEEE/ACM Transactions on Networking 14,

4 (2006), 683–696.

[43] LEE, S., YOON, C., LEE, C., SHIN, S., YEG-

NESWARAN, V., AND PORRAS, P. Delta: A security

assessment framework for software-defined networks.

In Proceedings of Network and Distributed System Se-
curity Symposium (2017), vol. 17.

[44] LENG, J., ZHOU, Y., ZHANG, J., AND HU, C. An

inference attack model for flow table capacity and us-

age: Exploiting the vulnerability of flow table over-

flow in software-defined network. arXiv preprint
arXiv:1504.03095 (2015).

[45] LIU, S., REITER, M. K., AND SEKAR, V. Flow recon-

naissance via timing attacks on sdn switches. In Pro-
ceedings of International Conference on Distributed
Computing Systems (2017), IEEE, pp. 196–206.

[46] LUO, J., YANG, X., WANG, J., XU, J., SUN, J., AND

LONG, K. On a mathematical model for low-rate shrew

ddos. IEEE Transactions on Information Forensics and
Security 9, 7 (2014), 1069–1083.

[47] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN,

H., PARULKAR, G., PETERSON, L., REXFORD, J.,

SHENKER, S., AND TURNER, J. Openflow: enabling

innovation in campus networks. ACM SIGCOMM
Computer Communication Review 38, 2 (2008), 69–74.

[48] PORRAS, P. A., CHEUNG, S., FONG, M. W., SKIN-

NER, K., AND YEGNESWARAN, V. Securing the soft-

ware defined network control layer. In Proceedings of
Network and Distributed System Security Symposium
(2015).

[49] RÖPKE, C., AND HOLZ, T. Sdn rootkits: Sub-

verting network operating systems of software-defined

networks. In Proceedings of International Workshop
on Recent Advances in Intrusion Detection (2015),

Springer, pp. 339–356.

[50] SCHUCHARD, M., MOHAISEN, A., FOO KUNE, D.,

HOPPER, N., KIM, Y., AND VASSERMAN, E. Y. Los-

ing control of the internet: using the data plane to attack

the control plane. In Proceedings of the conference on
Computer and communications security (2010), ACM,

pp. 726–728.

[51] SHAGHAGHI, A., KAAFAR, M. A., AND JHA, S.

Wedgetail: An intrusion prevention system for the data

plane of software defined networks. In Proceedings
of the Asia Conference on Computer and Communica-
tions Security (2017), ACM, pp. 849–861.

[52] SHANG, G., ZHE, P., BIN, X., AIQUN, H., AND KUI,

R. Flooddefender: protecting data and control plane

resources under sdn-aimed dos attacks. In Proceed-
ings of IEEE Conference on Computer Communica-
tions (2017), IEEE, pp. 1–9.

[53] SHEVTEKAR, A., ANANTHARAM, K., AND ANSARI,

N. Low rate tcp denial-of-service attack detection

at edge routers. IEEE Communications Letters 9, 4

(2005), 363–365.

[54] SHIN, S., AND GU, G. Attacking software-defined

networks: A first feasibility study. In Proceedings of
the second ACM SIGCOMM workshop on Hot topics
in software defined networking (2013), ACM, pp. 165–

166.

[55] SHIN, S., YEGNESWARAN, V., PORRAS, P., AND GU,

G. Avant-guard: Scalable and vigilant switch flow

management in software-defined networks. In Pro-
ceedings of the ACM SIGSAC conference on Computer
& communications security (2013), ACM, pp. 413–

424.

[56] SONCHACK, J., DUBEY, A., AVIV, A. J., SMITH,

J. M., AND KELLER, E. Timing-based reconnaissance

and defense in software-defined networks. In Proceed-
ings of Conference on Computer Security Applications
(2016), ACM, pp. 89–100.

[57] STUDER, A., AND PERRIG, A. The coremelt attack.

In European Symposium on Research in Computer Se-
curity (2009), Springer, pp. 37–52.

[58] SUN, H., LUI, J. C., AND YAU, D. K. Defending

against low-rate tcp attacks: Dynamic detection and

protection. In Proceedings of International Conference
on Network Protocols (2004), IEEE, pp. 196–205.

[59] UJCICH, B. E., THAKORE, U., AND SANDERS,

W. H. Attain: An attack injection framework for

software-defined networking. In Proceedings of Inter-
national Conference on Dependable Systems and Net-
works (2017), IEEE, pp. 567–578.

[60] WANG, H., XU, L., AND GU, G. Floodguard: A dos

attack prevention extension in software-defined net-

works. In Proceedings of International Conference
on Dependable Systems and Networks (2015), IEEE,

pp. 239–250.

[61] WANG, J., WEN, R., LI, J., YAN, F., ZHAO, B., AND

YU, F. Detecting and mitigating target link-flooding

attacks using sdn. IEEE Transactions on Dependable
and Secure Computing, 1 (2018), 1–1.

[62] WANG, L., LI, Q., JIANG, Y., JIA, X., AND WU,

J. Woodpecker: Detecting and mitigating link-flooding

attacks via sdn. Computer Networks 147 (2018), 1–13.

34 28th USENIX Security Symposium USENIX Association

[63] WEN, X., YANG, B., CHEN, Y., HU, C., WANG,

Y., LIU, B., AND CHEN, X. Sdnshield: Reconcili-

ating configurable application permissions for sdn app

markets. In Proceedings of International Conference
on Dependable Systems and Networks (2016), IEEE,

pp. 121–132.

[64] XIANG, Y., LI, K., AND ZHOU, W. Low-rate ddos at-

tacks detection and traceback by using new information

metrics. IEEE Transactions on Information Forensics
and Security 6, 2 (2011), 426–437.

[65] XU, L., HUANG, J., HONG, S., ZHANG, J., AND GU,

G. Attacking the brain: Races in the sdn control plane.

In USENIX Security Symposium (2017), USENIX As-

sociation, pp. 451–468.

[66] ZHANG, Y., MAO, Z. M., AND WANG, J. Low-rate

tcp-targeted dos attack disrupts internet routing. In Pro-
ceedings of Network and Distributed System Security
Symposium (2007), Citeseer.

[67] ZHENG, J., LI, Q., GU, G., CAO, J., YAU, D. K.,

AND WU, J. Realtime ddos defense using cots sdn

switches via adaptive correlation analysis. IEEE Trans-
actions on Information Forensics and Security 13, 7

(2018), 1838–1853.

A The Algorithm of Adversarial Path Recon-
naissance

Algorithm 1 shows the pseudo-code of improved adversarial

path reconnaissance, which can be performed by any host in

the network. The input η is the number of repeated recon-

naissances for each data path and is also the number of data

in each group used in the t-test. The input twait is the wait-

ing time for rules to expire. The input tmax is the maximal

waiting time for each timing packet to get a response in the

target network, and α is the significance level used in the t-

test. Here, twait must be larger than the timeouts of flow rules

and tmax must be large enough so that most RTTs in the net-

work do not exceed it. Step 1 gets all hosts in the network

in order to explore the data paths between the compromised

host and them. Step 2 initializes the maximal number of data

paths that can be explored within two timeout values. The

main loop is from Step 4 to Step 29. In each loop iteration,

the algorithm tests kmax data paths. Step 5 to Step 20 collects

2η latencies of the crossed control paths for each of the kmax
data paths. The delay of crossed control paths when the test-

ing stream is not transmitted is obtained in Step 7 to Step 10.

Step 13 to Step 18 obtain the delay while transmitting the

testing stream. Step 11 and Step 19 both make the program

paused for enough time so that old rules can expire before

conducting the next reconnaissance. After obtaining all the

latencies of possible crossed control paths for the kmax data

Algorithm 1 Adversarial Path Reconnaissance

Input: η , twait , tmax, α
Output: h;

1: H ← ScanAllHosts()
2: kmax ← twait/(2 · tmax)
3: i← 0

4: while i < |H| do
5: for j = 0→ η−1 do
6: tstart ← time()
7: for k = i→ min(i+ kmax, |H|) do
8: d1 ← sendTimingStreamTo(H[k])
9: δ1[k].add(d1)

10: end for
11: sleep(twait − (time()− tstart))
12: tstart ← time()
13: for k = i→ min(i+ kmax, |H|) do
14: startSendTestingStreamTo(H[k])
15: d2 ← sendTimingStreamTo(H[k])
16: stopSendTestingStreamTo(H[k])
17: δ2[k].add(d2)
18: end for
19: sleep(twait − (time()− tstart))
20: end for
21: for k = i→ min(i+ kmax, |H|) do
22: if tTest(δ1[k],δ2[k]) < α and sum(δ1[k]) <

sum(δ2[k]) then
23: /* The data path from the compromised host to

H[k] crosses with control paths. */

24: out put(H[k])
25: exit()
26: end if
27: end for
28: i← i+ kmax
29: end while

paths, the t-test is applied to determine whether a data path

crosses with control paths in Step 21 to Step 27. If the group

of latencies with testing stream is dramatically higher than

the other group, the algorithm outputs the destination host

of the data path and terminates. Otherwise, the algorithm

prepares for the next round of iteration in Step 28.

In our experiments on a real SDN testbed, twait is set as

30s which is larger than the default values of timeouts in the

Floodlight controller in order to leave enough time for rules

to be expired, and tmax is set to 1s for each timing packet to

get a response. The settings of η and α are varied.

B Defense Against the CrossPath Attack

We explore two defense schemes to mitigate the CrossPath

attack. The first is delivering control traffic with high pri-

ority. Hence, any malicious data traffic cannot disturb the

delivery of control traffic. Such a defense scheme can be en-

forced with Priority Queue (PQ) or Weighted Round Robin

USENIX Association 28th USENIX Security Symposium 35

Table 1: The Settings for Flow Rules to Enforce Defense Strategies.

Defense Strategy Rule Match Actions

Control traffic delivery with high priority 1 #1 control flows OutPort(x), . . . , SetQueue(ID=highPriQueue)
#2 data flows OutPort(x), . . . , SetQueue(ID=lowPriQueue)

Proactive bandwidth reservation for control traffic 2 #1 data flows OutPort(x), . . . , SetMeter(ID=RateLimit)
1 It requires SDN switches to support PQ or WRR queuing mechanism.
2 It is used when SDN switches fail to enable PQ or WRR mechanism.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

Th
ro

ug
hp

ut
 (p

ps
)

Time (s)

PQ
WRR
Without Defense

(a) Throughput of Control Packets

with Queuing Policies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

CD
F

Delay (ms)

PQ
WRR
Without Defense

(b) CDF of Delays of Control Pack-

ets with Queuing Policies.

Figure 18: Evaluation on the defense scheme of delivering

control traffic with high priority via PQ or WRR mechanism.

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20

Th
ro

ug
hp

ut
 (p

ps
)

Time (s)

BW 4 Mbps
BW 8 Mbps
BW 16 Mbps
BW 32 Mbps
Without Defense

(a) Throughput of Control Packets

with Bandwidth Reservation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

CD
F

Delay (ms)

BW 4 Mbps
BW 8 Mbps
BW 16 Mbps
BW 32 Mbps
Without Defense

(b) CDF of Delays of Control Pack-

ets with Bandwidth Reservation.

Figure 19: Evaluation on protecting control traffic with the

defense scheme of proactive bandwidth (BW) reservation.

(WRR) 3 scheduling mechanism in SDN switches. Specif-

ically, network administrators can inform controllers to add

SetQueue actions to flow rules associated with switch ports

in the control paths. Packets matching a flow rule with the

SetQueue action will be directed to a queue with an ID set

by the action. As shown in Table 1, we can set a flow rule

matching control flows with a high priority queue and set a

flow rule matching data flows with a low priority queue. In

this way, the control traffic will always be forwarded in ad-

vance with no disturbances of other traffic.

We note that some switches in the market do not support

PQ or WRR mechanisms. However, we can still mitigate

the CrossPath attack by proactive bandwidth reservation for

control traffic with OpenFlow meter table. A meter entry be-

longing to a meter table associates with various flow rules so

that it can measure the total rate of packets matching the flow

rules and enforce rate limiting. We can assign each flow rule

3By configuring different weighted values to queues with WRR, similar

results like PQ can be achieved.

matched by the data traffic a meter entry with the SetMeter
action (see Table 1). Therefore, by limiting the maximal rate

of the total data traffic, we reserve proprietary bandwidth for

control traffic.

We evaluate above two defense schemes with AS4610-

54T commercial hardware SDN switches in our testbed. For

simplicity, we trigger 1,000 new flows per second to gener-

ate the control traffic and generate the attack traffic to dis-

rupt the transmission of control packets. Figure 18a and 18b

shows that defense schemes with PQ or WRR mechanism

effectively protect the control traffic. The throughput always

reaches approximate 1,000 pps over time even with the at-

tack. The delays of more than 99% of the control packets

are less than 10 ms with either of the two queuing mecha-

nisms. Figure 19a and 19b show that proactive bandwidth

reservation with meter table can also protect control traffic.

The larger the reserved bandwidth is, the higher the through-

put is, and also the better the delay is. In our experiments,

16 Mbps reserved bandwidth is enough to ensure forwarding

control traffic. Note that compared with the queuing mecha-

nism, it requires proactively reserving enough bandwidth for

control traffic. In a large network, it may require reserving

bandwidth in the order of several Gbps.

Table 2: SDN Switches with PQ or WRR Support.

Brand Model Queue Support
PQ WRR

Pica8 All switches loaded with PicOS
√ √

Cisco Catalyst 4500 Series Switches
√ ×

Brocade NetIron XMR Series, MLX

Series, CES 2000, and CER

2000 Series

× √

Dell S4810, S4820T, S6000, Z9000,

Z9500, and MXL switches

× √

Huawei CloudEngine 8800 Series
√ √

C SDN Switches with Queue Support

We investigate mainstream SDN switches and find that many

switches support PQ or WRR mechanism. Table 2 shows the

switches with PQ or WRR support.

36 28th USENIX Security Symposium USENIX Association

A Billion Open Interfaces for Eve and Mallory:
MitM, DoS, and Tracking Attacks on

iOS and macOS Through Apple Wireless Direct Link

Milan Stute
TU Darmstadt

Sashank Narain
Northeastern University

Alex Mariotto
TU Darmstadt

Alexander Heinrich
TU Darmstadt

David Kreitschmann
TU Darmstadt

Guevara Noubir
Northeastern University

Matthias Hollick
TU Darmstadt

Abstract
Apple Wireless Direct Link (AWDL) is a key protocol in
Apple’s ecosystem used by over one billion iOS and macOS
devices for device-to-device communications. AWDL is a pro-
prietary extension of the IEEE 802.11 (Wi-Fi) standard and
integrates with Bluetooth Low Energy (BLE) for providing
services such as Apple AirDrop. We conduct the first security
and privacy analysis of AWDL and its integration with BLE.
We uncover several security and privacy vulnerabilities rang-
ing from design flaws to implementation bugs leading to a
man-in-the-middle (MitM) attack enabling stealthy modifica-
tion of files transmitted via AirDrop, denial-of-service (DoS)
attacks preventing communication, privacy leaks that enable
user identification and long-term tracking undermining MAC
address randomization, and DoS attacks enabling targeted or
simultaneous crashing of all neighboring devices. The flaws
span across AirDrop’s BLE discovery mechanism, AWDL
synchronization, UI design, and Wi-Fi driver implementation.
Our analysis is based on a combination of reverse engineering
of protocols and code supported by analyzing patents. We pro-
vide proof-of-concept implementations and demonstrate that
the attacks can be mounted using a low-cost ($20) micro:bit
device and an off-the-shelf Wi-Fi card. We propose practical
and effective countermeasures. While Apple was able to issue
a fix for a DoS attack vulnerability after our responsible dis-
closure, the other security and privacy vulnerabilities require
the redesign of some of their services.

1 Introduction
With deployments on over one billion devices, spanning
several Apple operating systems (iOS, macOS, tvOS, and
watchOS) and an increasing variety of devices (Mac, iPhone,
iPad, Apple Watch, Apple TV, and HomePod), Apple Wire-
less Direct Link (AWDL) is ubiquitous and plays a key role
in enabling device-to-device communications in the Apple
ecosystem. The AWDL protocol is little understood, partially
due to its proprietary nature, especially when it comes to se-
curity and privacy. Considering the well-known rocky history
of wireless protocols’ security, with various flaws being re-

peatedly discovered in Bluetooth [7], WEP [74], WPA2 [88],
GSM [12], UMTS [57], and LTE [51], the lack of informa-
tion regarding AWDL security is a significant concern given
the increasing number of services that rely on it, particularly
Apple’s AirDrop and AirPlay. It is also noteworthy that the
design of AWDL and integration with Bluetooth Low Energy
(BLE) are (1) driven by optimizing energy and bandwidth and
(2) the devices do not require an existing Wi-Fi access point
(AP) with secure connections but are open to communicat-
ing with arbitrary devices, thus, potentially exposing various
attack vectors.

We conduct the first, to the best of our knowledge, security
analysis of AWDL and its integration with BLE, starting with
the reverse engineering of protocols and code supported by
analyzing patents. Our analysis reveals several security and
privacy vulnerabilities ranging from design flaws to imple-
mentation bugs enabling different kinds of attacks: we present
a man-in-the-middle (MitM) attack enabling stealthy modi-
fication of files transmitted via AirDrop, a denial-of-service
(DoS) attack preventing communication between devices, pri-
vacy leaks allowing user identification and long-term tracking
undermining MAC address randomization, and targeted DoS
and blackout DoS attacks (i. e., enabling simultaneous crash-
ing of all neighboring devices). The flaws span AirDrop’s
BLE discovery mechanism, AWDL synchronization, UI de-
sign, and Wi-Fi driver implementation. We demonstrate that
the attacks can be stealthy, low-cost, and launched by devices
not connected to the target Wi-Fi network. We provide proof-
of-concept (PoC) implementations and demonstrate that the
attacks can be mounted using a low-cost ($20) micro:bit de-
vice and an off-the-shelf Wi-Fi card. The impact of these find-
ings goes beyond Apple’s ecosystem as the Wi-Fi Alliance
adopted AWDL as the basis for Neighbor Awareness Network-
ing (NAN) [19, 94] which, therefore, might be susceptible to
similar attacks. Moreover, Google Android provides a NAN
API since 2017 pending manufacturer support [38].

Specifically, our contributions are threefold. First, we dis-
cover security and privacy vulnerabilities in AWDL and Air-
Drop and present four novel network-based attacks on iOS

USENIX Association 28th USENIX Security Symposium 37

and macOS. These attacks are:

(1) A long-term device tracking attack which works in spite
of MAC randomization, and may reveal personal infor-
mation such as the name of the device owner (over 75%
of experiment cases).

(2) A DoS attack aiming at the election mechanism of
AWDL to deliberately desynchronize the targets’ chan-
nel sequences effectively preventing communication.

(3) A MitM attack which intercepts and modifies files trans-
mitted via AirDrop, effectively allowing for planting
malicious files.

(4) Two DoS attack on Apple’s AWDL implementations in
the Wi-Fi driver. The attacks allow crashing Apple de-
vices in proximity by injecting specially crafted frames.
The attacks can be targeted to a single victim or affect
all neighboring devices at the same time.

Second, we propose practical mitigations for all four at-
tacks. Third, we publish open source implementations of both
AWDL and AirDrop as the byproducts of our reverse engi-
neering efforts to stimulate future research in this area.

The rest of this paper is structured as follows. Section 2
provides background information on AWDL. Section 3 shows
the results of reverse engineering AirDrop. Section 4 presents
an attack to activate AWDL on devices in proximity, while
Section 5 shows how we leverage this activation mechanism
for user tracking attacks. Sections 6 and 7 feature the desyn-
chronization DoS attack and the MitM attack, respectively.
Section 8 reports implementation security vulnerabilities and
Section 9 concludes this work. We discuss mitigation tech-
niques and related work in subsections of the respective sec-
tions describing the attacks.

2 Background on Apple Wireless Direct Link
AWDL is a proprietary wireless ad hoc protocol based on the
IEEE 802.11 standard. In this section, we rely on the reverse
engineering efforts of the Open Wireless Link project [81] and
summarize the operation of AWDL as presented in [79, 80].
At its core, AWDL uses a channel hopping mechanism to
enable “simultaneous” communication with an AP and other
AWDL nodes on different channels. This channel hopping is
implemented as a sequence of so-called Availability Windows
(AWs). For each AW, a node indicates if it is available for
direct communication and, if so, on which channel it will be.
The channel value can be the channel of its AP, one of the
dedicated AWDL social channels (6, 44, or 149), or zero indi-
cating that it will not be listening on any channel. Each node
announces its own sequence s consisting of 16 AWs1 regularly
in AWDL-specific IEEE 802.11 Action Frames (AFs). We call
the length of such a full 16-AW sequence a period τ. Each AW

1Actually, [79] differentiates between AWs, Extension Windows (EWs),
and Extended Availability Windows (EAWs) where one EAW consists of
one AW and three EWs. In this work, we abstract from the smaller entities
and simply use the term AW to refer to an EAW.

0 0

φ s2 os1

44 44 4444 00 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 00 0 0 044 0 0 00 6 44 0 044 0 00

ττ τ

time t

1

Figure 1: AWDL synchronization depicting period, phase
offset, and the overlap function of two channel sequences.

has a length of 64 Time Units (TUs) where 1 TU = 1024 µs,
so τ≈ 1 s. Figure 1 depicts these and the following concepts.

To allow nodes to meet and exchange data on the same
channel, they need to align their sequences in the time domain.
AWDL nodes elect a common master and use its AFs as
a time reference to achieve synchronization. Each master
node transmits synchronization parameters which consist of
the current AW sequence number i (0 to 216− 1) and the
time until the next AW starts based on its local clock tAW.
When receiving an AF from its master at time TRx, a node
approximates TAW, the start of the next AW i+1 in local time
as:2

TAW ≈ tAW +TRx (1)

and correct its clock accordingly. Eq. (1) does not achieve
perfect alignment as it ignores the transmission delay as well
as delays in the sender’s Tx and receiver’s Rx chains. The
phase φ denotes the effective clock offset between two nodes.
Typically, φ≤ 3 ms in practice [79].

A node transmits frames to another AWDL node during
AWs where the channels of both nodes are the same. We de-
note the overlap as the relative communication opportunities
during one period: an overlap of one means that two nodes are
on the same AWDL channel during all 16 AWs, while zero
means that they are never on the same channel. Formally, we
define the overlap O as the integral over the overlap function
o of two sequences s1 and s2 taking into account the phase
where s(t) is the τ-periodic continuation of a sequence, i. e.,
s(t +nτ) = s(t),∀n ∈ N. Then,

o(s1,s2,φ, t) =

{
1 if s1(t) = s2(t−φ) 6= 0
0 otherwise

(2)

and

O(s1,s2,φ) =
∫

τ

t=0
o(s1,s2,φ, t) . (3)

3 Reverse Engineering AirDrop
AirDrop is an application that allows iOS and macOS users
to exchange files between devices using AWDL as transport.

2Simplification of [79, Eq. (1)].

38 28th USENIX Security Symposium USENIX Association

We reverse-engineered the AirDrop protocol by employing
a MitM HTTPS proxy [20] and using a popular disassem-
bler on macOS’ sharingd daemon and Sharing framework
where AirDrop is implemented. Based on our findings, we re-
implement AirDrop in Python and make it available as open
source software [78]. Next, we discuss how different discover-
ability settings affect the user experience. Then, we describe
the technical protocol flow and, finally, explain the difference
between authenticated and unauthenticated connections.

3.1 Discoverability User Setting

When opening the sharing pane (see left screenshot in Fig. 2)
in AirDrop, nearby devices will appear in the user interface
depending on their discoverability setting [2]. In particular,
devices can be discovered (1) by everybody or (2) by contacts
only. Alternatively, (3) the receiving off setting disables any
AirDrop connection requests. AirDrop requires Wi-Fi and
Bluetooth to be enabled. By default, Wi-Fi and Bluetooth
are enabled, and AirDrop is set to contacts only. In addition,
we found that devices need to be unlocked to be discovered.
Based on a user study that we present in Section 5.2, we
found that 80 % of the participants enable AirDrop (59.4 % in
contacts only and 20.6 % in everybody mode) while the other
20 % disabled it. For the rest of the paper, we assume that a
target device has AirDrop enabled and is unlocked.

3.2 Protocol and User Interaction

We describe all mechanisms involved in AirDrop including
discovery, authentication, and data transfer with a visual aid in
Fig. 2. The sender initiates the discovery procedure and trans-
fers the data while the receiver responds to requests: (1a) The
sender emits BLE advertisements including its hashed contact
identifiers (see Section 4.1 for details), while the prospec-
tive AirDrop receiver regularly scans for BLE advertisements.
(1b) The receiver compares the sender’s contact hashes with
contact identifiers in its own address book if set to contacts-
only mode. If there is at least one match or if the receiver
is in everyone mode, the receiver activates its AWDL inter-
face. (1c) Using mDNS/DNS-SD, the sender starts to look
for AirDrop service instances via the AWDL interface. (2)
For each discovered service, the sender establishes an HTTPS
connection with the receiver and performs a full authentica-
tion handshake (Discover). If authentication is successful, the
receiver appears as an icon in the sender’s UI. (3) When the
user selects a receiver, AirDrop sends a request containing
metadata and a thumbnail of the file (Ask). The receiver de-
cides whether they want to accept. If so, the sender continues
to transfer the actual file (Upload).

Next, we discuss the client and server TLS certificates and
explain their usage in combination with the sender’s and re-
ceiver’s record data to establish an authenticated connection.

Sender Receiver

regularly
perform
BLE scans

if in everyone
mode or contact
hash matches,
activate AWDL

(1b) AWDL synchronization

(1a) AirDrop BLE advertisement
with short contact hashes

HTTP POST /Discover
with sender’s record data

HTTP POST /Ask
with sender’s record data

HTTP POST /Upload
with file

Establish TLS connection with
client and server certificates

All subsequent
communication
uses AWDL

HTTP 200 OK
with receiver’s record data

For every service
discovered, start
HTTPS discovery

Select receiver

Prompt to
decide whether
to accept file

Establish TLS connection with
client and server certificates

Receiver appears
in sharing pane
(with contact
photo if record
data is valid)

HTTP 200 OK

Start file transfer
if accepted (200)

TLS teardown

TLS teardown

HTTP 200 OK

if record data is
valid, include
own record data
in response

(1c) Ask for service AirDrop

Service available at
instance 1fa518393a98 PTR

Instance 1fa518393a98 is at

Janes-iPhone.local:8770 SRV

IP address of Janes-iPhone.local

is fe80::90b6:7ff:fecc:46 AAAA

Service discovery
via mDNS

(1) DISCOVERY

(2) AUTHENTI-
CATION

(3) DATA
TRANSFER

Figure 2: Typical AirDrop protocol workflow including
screenshots [2] where user interaction is required.

USENIX Association 28th USENIX Security Symposium 39

Apple Root CA σRA

Apple Application
Integration CA σAAI

Apple Application
Integration 2 CA σAAI2

com.apple.idms.appleid.
prd.<UUID> σUUID

Apple ID Validation
Record <X> σVR

Signed by

Apple owns private key

User owns private key

Protects TLS connection Signs record data

Figure 3: Certificates and CAs involved in AirDrop. Boxes
contain the certificates’ common names.

3.3 (Un)authenticated Connections
AirDrop will always try to set up what we call an authenti-
cated connection. Such a connection can only be established
between users with an Apple ID and that have each other in
their address books. Authentication involves multiple certifi-
cates and CAs that we depict in Fig. 3. In order to authenticate,
a device needs to prove that it “owns” a certain contact identi-
fier ci such as email address or phone number associated with
its Apple ID, while the verifying device checks whether it
has ci in its address book. When establishing a TLS connec-
tion, AirDrop uses a device-specific Apple-signed certificate
σUUID containing a UUID. σUUID is issued when a user logs
into the device with its Apple ID. The UUID is not tied to any
contact identifiers, so AirDrop uses an Apple-signed record
data “blob” RD containing the UUID and all contact identi-
fiers c1, . . . ,cn that are registered with the user’s Apple ID in
a hashed form. This record data is retrieved once from Apple
and then presented for any subsequent AirDrop connection.
Formally, RD is a tuple:

RD = UUID,SHA2(c1) , . . . ,SHA2(cn) . (4)

The signed record data RDσ additionally includes a signature
and a certificate chain (Fig. 3):

RDσ = RD,sign(σVR,RD) ,σVR,σAAI2 , (5)

where sign(σ,X) is the signature of σ over X . When authenti-
cating, a node computes SHA2 over each contact identifier in
its address book and compares them with the hashes contained
in the presented RDσ and verifies that the UUID matches the
certificate of the current TLS connection. The latter effec-
tively prevents reuse of RDσ by an attacker using a different
TLS certificate.

AirDrop transparently treats a connection as unauthenti-
cated if the sender or receiver fails to provide an Apple-signed
TLS certificate or valid record data. This means that AirDrop
will establish an unauthenticated connection with devices that
use a self-signed certificate and provide no record data. While
AirDrop’s authentication mechanism appears to be crypto-

0 1 2 3

Length (2) Type (0x01) Flags (0x1b) Length (23)

Type (0xff) Apple (0x4c00) Subtype (0x05)

Length (18) Zero bytes (0x00)

. . .

. . . 0x01 Contact Identifier 1

Contact Identifier 2 Contact Identifier 3

Contact Identifier 4 0x00

Figure 4: AirDrop BLE advertisement format showing seman-
tics and values of individual bytes.

graphically well-designed, we show in Section 7 how to down-
grade an authenticated connection to an unauthenticated one
and launch a MitM attack on the data transfer.

4 Activating AWDL on Devices in Proximity
Some of the attacks demonstrated in this work require the
targets’ AWDL interface to be active, which is typically not
the case since an application has to request activation explic-
itly [79]. We have found that the BLE discovery mechanism
integrated with AirDrop (see Section 3) can be exploited to
activate all AWDL devices in proximity. Devices in everyone
mode will enable AWDL immediately after receiving any
AirDrop BLE advertisement. We analyze the theoretical per-
formance of brute forcing the truncated contact hash values in
AirDrop’s BLE advertisements (Fig. 2) to activate the AWDL
interfaces of targets in the default contacts-only mode. Finally,
we build a PoC leveraging a low-cost ($20) BBC micro:bit
device and experimentally confirm that the attack is feasible
in practice with a target response time of about one second
for devices that have 100 contact identifiers in their address
book.

4.1 AirDrop BLE Advertisements
We show the actual BLE advertisement frames [17, Vol. 3,
Sec. 11] that AirDrop uses including four contact identifier
hashes in Fig. 4. They are broadcast as non-connectable
undirected advertising (ADV_NONCONN_IND). The frames use
manufacturer-specific data fields that have fixed values except
for the contact hashes. In fact, we found that the contact hashes
are the first two bytes of the SHA2 digest of the sender’s con-
tact identifiers that are also included in the record data (see
Section 3.3). If the sender has less than four identifiers, the
remaining contact hash fields are set to zero. Due to the short
length, it appears feasible to use brute force to try all possible
values.3

3Note that the sender still has to provide the complete hash during the
HTTPS handshake before the receiver accepts the data on an authenticated
connection.

40 28th USENIX Security Symposium USENIX Association

Table 1: Symbols

SYMBOL DESCRIPTION

S Contact hash search space
C Contacts in the target’s address book
w Target’s BLE scan window
i Target’s BLE scan interval

iPHY Attacker’s BLE PHY injection interval
r Effective contact hash brute force rate
n Tried hash values per scan window

p (p j) Hit probability after one (or j) scans

4.2 Brute Force Analysis
We assume that the attacker does not know the target’s con-
tacts and, thus, attempts to enable the target’s AWDL interface
using brute force. As the target has at least one contact identi-
fier (the address book contains at least the user’s own Apple
ID), the attacker needs to try S= 216 = 65536 hashes in the
worst case. Thus, the challenge for the attacker is to quickly
send a large number of BLE advertisements while the target is
conducting a BLE scan. In the following, we analyze how fast
the attacker can deplete the search space and how successful
they would be. We start investigating the results for a single
BLE scan window and then extend our analysis to multiple
scan intervals.

One Scan Window. Let the attacker inject BLE advertise-
ment frames at the physical layer with an interval of iPHY.
Further, consider that the attacker has a single radio and that
BLE uses three advertisement channels [17]. Also, recall that
an AirDrop BLE frame has room for four contact hashes.
Then, the attacker’s effective brute force rate r can be calcu-
lated as:

r =
4

3 · iPHY
. (6)

Now, we can compute the number of hash values n that the
attacker can inject per scan window w [17] as:

n = w · r . (7)

Let X be a random variable, and P(X = k) denote the proba-
bility that the target “sees” k known contact hashes during one
scan window. Since the attacker moves through the search
space sequentially, we can formulate the problem using the
urn model in drawing without replacement mode which re-
sults in a hypergeometric distribution. We get:

P(X = k) =

(n
k

)(S−n
C−k

)(S
C
) . (8)

In particular, the attacker only requires one hit to activate the

target’s AWDL interface whose probability we call p:

p = P(X ≥ 1) = 1−P(X = 0)

= 1−
(n

0

)(S−n
C−0

)(S
C
) = 1−

(S−n
C
)(S

C
) . (9)

Using the Stirling’s approximation
(n

k

)
≈ nk

k! for k << n, we
can simplify Eq. (9) as:

p≈ 1−
(S−n)C

C!
SC
C!

= 1− (S−n)C

SC

= 1−
(
S−n
S

)C
= 1−

(
1− n

S

)C
. (10)

Multiple Scan Intervals. BLE devices perform scans regu-
larly at a fixed interval i [17]. Let Y be a random variable
indicating that the attacker has a hit (Y = 1) or not (Y = 0)
during one scan. We assume that the attacker does not know
when the target’s scan window starts and, therefore, that Y
is i.i.d. between scans.4 Let j indicate the target’s jth scan
since the attacker started their brute force attack. Then, the
probability that the attacker had k hits after j scans is given
by a binomial distribution:

P(Y = k) =
(

j
k

)
pk(1− p) j−k . (11)

Again, the attacker needs at least one hit whose probability
we denote as p j (note that p1 = p):

p j = P(Y ≥ 1) = 1−P(Y = 0) = 1− (1− p) j . (12)

With Eq. (10), we get:

p j ≈ 1−
(

1− n
S

) jC
. (13)

We know that j depends on the time since the attack started
and the target’s BLE scan interval i (the target performs one
BLE scan of length w per interval). Let t denote the attack
duration, then j ≤ bt/ic. Finally, we denote the success prob-
ability at time t as

p(t)≈ 1−
(

1− wr
S

)tC/i
. (14)

4.3 Jailbreaking BLE Advertisements
The Bluetooth standard imposes a minimum advertisement
interval5 of 100 ms for non-connectable undirected adver-
tising [17, Vol. 6, Sec. 4.4.2.2], which we found is usually

4If the attacker knew the start of each scan window, they could follow a
better strategy by only sending advertisements while the target is performing
a scan. This way, they would deterministically succeed after they had gone
through S once.

5The BLE advertisement interval accounts for a frame transmission on
each of the three advertisement channels.

USENIX Association 28th USENIX Security Symposium 41

uint8_t *le_adv = airdrop_init_template()
for (uint16_t h = 0; /* loop */; h += 4) {
airdrop_set_hashes(le_adv, h, h+1, h+2, h+3);
for (uint16_t chan = 37; chan < 40; chan++) {
le_adv_tx(le_adv, chan);
sleep(0.625 /* in milliseconds */); } }

Figure 5: C pseudo code of our BLE brute force attack

enforced in the BLE firmware. By complying to the stan-
dard, the attacker would need at least 216 = 27 minutes to
iterate through the entire search space once. If the attacker
had access to the BLE physical layer to control and sched-
ule individual transmissions, they could circumvent the stan-
dard’s restrictions and, thus, iterate through the search space
much faster. To this end, we extend an open source BLE
firmware [65] for the Nordic nRF51822 [63] chipset to im-
plement our brute force attack. In principle, our attack imple-
mentation is very simple and shown in Fig. 5. We use a send
interval of iPHY = 0.625 ms resulting in r = 2133.3 s-1 which
allows the attack to iterate through S in only 216/ f = 30.72 s.
By using three BLE radios (one for each advertisement chan-
nel), we could reduce this time to 10.24 s. However, we show
that using one radio is sufficient in practice.

4.4 Target Response Times Micro Benchmark
We measure the target response time, i. e., the time it takes for
a target to turn on its AWDL interface when being exposed
to our attack. In particular, we measure the response time for
a contacts-only receiver that has 10, 100, and 1000 contact
identifiers in their address book. In addition, we include ref-
erence measurements for a receiver in everyone mode under
the same attack.

Setup. For the experiment, we use a Wi-Fi sniffer (Broadcom
BCM4360) to receive AWDL AFs and a $20 micro:bit de-
vice [58] to inject BLE advertisements. To get the response
times, we start a brute force attack and measure the time until
we receive the first AF from the target. We then stop the attack
and wait until the target stops sending AFs which means that
the AWDL interface has turned off. Then, we start over to
collect 50 measurements per setting.

Results. We show the results for an iPhone 8 (iOS 12) in
Fig. 6. The plot also includes the analytical response time
distribution based on Eq. (14), assuming a BLE scan window
w and interval i of 30 ms and 300 ms, respectively.6. We can
make several observations: (1) Our analytical model does not
capture our experimental results precisely but approximates
them within an order of magnitude which is sufficient for our
purposes. (2) The median response time of targets with only
10 contact identifiers in their address book is 10 seconds and

6https://lists.apple.com/archives/bluetooth-dev/2014/
Sep/msg00001.html

10 100 1000 Everyone

Contact Identifiers

10−2

10−1

100

101

102

R
es

p
on

se
T

im
e

[s
]

Experiment

Analysis

Figure 6: Time it takes until target turns on its AWDL inter-
face after being exposed to our brute force attack.

decreases to about 1 second when more contacts are available.
We found that a user has more than 136 contacts on average
based on a user study that we describe in Section 5.2. (3)
This means that the brute force attack is feasible for scenarios
where the target will be in the attacker’s communication range
for a few seconds.

5 Privacy: Tracking Apple Device Users
In this section, we assess privacy issues in AWDL and find
that AWDL devices are easily trackable. First, we discuss
protocol fields that enable tracking. Then, we leverage the
attack presented in Section 4 to perform an experimental
vulnerability assessment at different locations and compare
the results with a user study spanning 500 participants. Finally,
we discuss possible mitigations.

5.1 Identifying Devices and Users via AWDL
Protocol Fields

Even though AWDL implements MAC randomization for the
IEEE 802.11 header, AWDL-specific fields contain long-term
device identifiers that disclose sensitive information about the
user, undermining MAC randomization. In particular, AWDL
includes the following sensitive fields in the AFs which de-
vices broadcast in the clear multiple times per second when
the AWDL interface is active:

• The hostname may include parts of the user’s name, e. g.,
“Janes-iPhone,” which is the default when setting up a
new device.

• The real MAC address as well as the AP the device is
currently connected to.

• The device class differentiates between devices running
macOS, iOS/watchOS, and tvOS.

• In combination with the protocol version, this can be
used to infer the OS version, e. g., AWDL v2 is used in
macOS 10.12 while AWDL v3 is used in macOS 10.13.
The attacker could exploit the OS information during

42 28th USENIX Security Symposium USENIX Association

https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html
https://lists.apple.com/archives/bluetooth-dev/2014/Sep/msg00001.html

reconnaissance to mount attacks on vulnerable driver
implementations.

Targets need to broadcast AFs to make these vulnerabilities ex-
ploitable, which an attacker can practically enforce by mount-
ing the attack presented in Section 4.

5.2 A Survey on the Potential of Apple Device
User Tracking

The hostname set by default during Apple iOS and macOS
device installation includes the user’s name [3]. Due to its
frame structure, the AWDL protocol aids an adversary in map-
ping a hostname with the MAC address of the device. This
enables them to track users even if users change this hostname
on their device. The combination also enables more sophis-
ticated threats as the person’s name can be combined with
information from public databases (e. g., US census [86]) to
infer their home and work locations, while the MAC address
can be used to track them in real-time. To assess what percent-
age of device hostnames contain parts of the owner’s name,
we conducted a survey among 500 Apple device users on
Amazon Mechanical Turk. This survey contained questions7

relevant to the attacks demonstrated in this paper, and we re-
port the statistics in the relevant sections. In particular, in the
context of tracking, we asked the surveyors if it was easy for
other users to find their device because their hostname con-
tained parts of their real name. We report the results of this
question along with the results of an experimental evaluation
in the next section.

5.3 Experimental Vulnerability Analysis
To demonstrate the feasibility of user tracking using AWDL,
we collect the number of discovered devices and check
whether that device’s hostname includes a person’s name
in four different locations within the US. We selected the
locations to reflect static as well as dynamic environments. In
particular, we recorded at a departure gate of an airport, in the
reading section of a public library, in a moving metro train,
and in the food court of a university.

Determining Whether a Hostname Contains a Person’s
Name. We use two databases to determine whether a host-
name contains a person’s name: the 2010 US Census [85]
containing 162 253 family names, and the 1918–2017 baby
names from the US Social Security Administration [87] con-
taining 96 743 given names. When detecting a new AWDL
node, we check string segments separated by hyphens against
these two databases.8 Note that when one segment matches

7The survey questionnaire is available at https://goo.gl/forms/
0okC4UphTQBnQ0FB3

8If a segment ends with the letter “s,” we also check the segment with-
out a trailing “s.” In addition, we ignore segments containing common de-
vice names such as “iPhone,” “Mac,” etc. For example, for the hostname
“Johns-iPhone,” we try to match the strings “Johns” and “John” to our name
databases.

Airport Library Metro University

Location

0

25

50

75

100

125

C
ou

n
t

Advertisements

Brute Force

Static

None

Figure 7: Discovered AWDL devices at one location during
one minute.

Given and Family

12.6 %

None 24.1 %

Only Family

2.3 % Only Given
61.0 %

Given and Family

None

Only Family

Only Given

Figure 8: Persons’ names distribution in hostnames.

the given name database, it is not matched again as a fam-
ily name because it is more likely that an Apple device will
include a person’s given name [3].
Ethical Statement. To preserve user privacy and not having
to store any sensitive user information, we fully automated
the name matching procedure. In particular, we only stored
salted hashes of the discovered hostnames (to differentiate
between devices) together with two bits indicating whether
the hostname contained a given or a family name. The salt
was generated randomly, kept in memory only, and discarded
after the completion of each experiment.
Setup. We do the measurements (a) without an attack (pas-
sive), (b) with static BLE advertisements containing only the
“zero” contact hash, and (c) with our BLE brute force ap-
proach. With (b), only devices in the everyone mode should
respond, with (c) we also capture those that are in contacts-
only mode. We run each setting for 60 seconds and repeat
it 10 times per location. To avoid statistical bias, we cycle
through the (a) to (c) settings back to back in each iteration
and use a cooldown time of 40 seconds between them. The
cooldown ensures that all devices in proximity have turned
off their AWDL interfaces again.
Experimental Results. Fig. 7 shows the number of discov-
ered AWDL devices in the different locations. By using the

USENIX Association 28th USENIX Security Symposium 43

https://goo.gl/forms/0okC4UphTQBnQ0FB3
https://goo.gl/forms/0okC4UphTQBnQ0FB3

brute force approach, we can discover about twice as many de-
vices compared to sending only regular advertisements. This
means that in our experiments, approximately 50 % of the
Apple devices are in AirDrop’s everyone mode. Our survey
complements our experimental results by indicating that 20 %
of Apple device users have AirDrop turned off and, thus, are
not trackable via AWDL. It is interesting to note that we are
able to pick up AWDL devices even when not sending any
advertisements. This can happen if a device (not controlled
by us) sends out advertisements itself, for example, when a
user opens the AirDrop sharing pane which apparently oc-
curred regularly at the university location. Finally, we found
that among all discovered devices, more than 75 % contain
a person’s name in the hostname. Most devices contain only
a given name which is the default for freshly set up Apple
devices [3], some contain a combination of a given and family
name, and very few contain only a family name. Our survey
confirms these results as 68 % answered that it was “easy”
or “very easy” for others to recognize their device because it
contained their name.

Outlook for Large-Scale Attack. In this analysis, we show
what kind of information a motivated attacker would be able
to collect. We used a single fixed physical location for each
experiment and did not attempt to track any user movement.
However, given that we can receive unique identifiers of Ap-
ple devices (Wi-Fi MAC address and hostname), mounting
a large-scale tracking attack should be trivial for an adver-
sary that can deploy multiple low-cost Wi-Fi and BLE nodes
throughout an area.

5.4 Mitigation
We present a short-term solution and then propose two mit-
igation techniques that remove stable device identifiers to
prevent user tracking via AWDL.

Disable AirDrop. Until Apple fixes the problem, the only
way to thwart user tracking is to disable AirDrop completely.
This presents a countermeasure to our attack presented in Sec-
tion 4, i. e., the AWDL interface cannot be remotely activated
via BLE advertisements.

Hide Real MAC Address When Not Connected to an AP.
When a device connects to an AP it uses its real MAC address
for communication, in which case AWDL does not disclose
new information. However, we have found that the MAC
address is occasionally included in AFs even when the device
is not connected to an AP. This appears to be unintended
behavior and should be fixed via a software update.

Randomize Hostname for AWDL. Apple devices transmit
their hostname in AWDL AFs as well as the mDNS responses
during service discovery that are used to find AirDrop in-
stances (see Section 3). As a countermeasure, we propose
to use randomized hostname with AWDL similar to MAC
address randomization. If an application such as AirDrop
needs the real hostname for identification, it should only be

transmitted via an encrypted and authenticated channel such
as TLS. In fact, AirDrop already transmits the device name in
the HTTPS handshake and uses this name in the UI ignoring
the hostname from mDNS responses. Therefore, hostname
randomization would not require any changes to the AirDrop
implementation which would retain backward compatibility.

5.5 Related Work: User Tracking
Several related works have studied the topic of user tracking
from mobile devices. Some common attack vectors include us-
ing the GPS sensor [35, 48, 55, 83, 95], cellular [5, 44, 50, 67],
Wi-Fi [15, 40, 69, 96, 97], radio interface fingerprinting [90],
and motion sensors [25, 39, 59, 61, 62]. We believe that the
above works are orthogonal to our approach, and could be
used in conjunction with our approach to improve tracking
performance. Many countermeasures have also been pro-
posed to prevent tracking from the above vectors. Some
of them include recommending new location frameworks
and privacy metrics [9, 28, 29, 30, 49, 64], location obfusca-
tion [1, 6, 18, 72, 92], location cloaking [42, 43], synthesizing
locations [16, 46, 53, 82, 98], sensor data obfuscation [22, 23],
and permission analysis [32, 45, 68]. Along with resource per-
missions on mobile devices, these countermeasures limit the
practicality of some of the above attacks.

Some device-specific identifiers have also been used for
tracking, e. g., IMEI [36, 93], BLE addresses [24, 31, 47], and
MAC addresses [21, 33, 54, 60]. While IMEI-based tracking
can be easily mitigated by protecting access to this infor-
mation, BLE is a dominant standard for fitness trackers and
smartphone communication and their addresses must be ex-
posed. Tracking using BLE identifiers has been demonstrated
to be easy. However, our approach has the added benefit for an
attacker that the hostname is exposed. This allows inferring
additional user information such as home and work locations,
family members, or movement patterns, which are useful for
more targeted tracking [34, 84]. Like BLE addresses, MAC
addresses are also essential as they form the backbone of layer
2 network communication and must be exposed for network-
ing (e. g., Wi-Fi probe requests).

MAC address randomization has been proposed to prevent
device tracking through Wi-Fi probe requests [11, 26]. Today,
both Apple and Google implement MAC address randomiza-
tion in their mobile operating systems. Randomization does
improve user privacy; however, some works have demon-
strated that devices are still trackable. For example, [89] im-
plemented an algorithm using probe request fingerprinting
that has a 50 percent success rate for tracking users for 20
minutes. Another work [56] demonstrated that MAC random-
ization could be defeated through timing attacks, where a
signature based on inter-frame arrival times of probe requests
can be used to group frames coming from the same device
with distinct MAC addresses. Their framework could group
random MAC addresses of the same device up to 75% of
cases for about 500 devices. Our work advances the scalabil-

44 28th USENIX Security Symposium USENIX Association

s2

s1

44 44 4444 044 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 0 044 0 0 00 6 44 0 044 0 00

ττ

(a) In normal operation, two channel sequences result in non-zero
overlap, allowing two nodes to communicate. In this example, they
can communicate during four out of 16 EAWs.

s2

s1

440 0 00 44 44 4444 0 0 00 6 44 44 044 0 00

0 0 044 00 0 044 0 0 00 6 44 0 044 0 00

ττ

φ = τ/4

(b) A phase shift of a quarter period (φ = τ/4) results in zero overlap
preventing the two nodes from communicating with each other.

Figure 9: Sketch of the desynchronization attack.

ity, tracking time and accuracy of the prior works. We show
that, owing to implementation nuances in the AWDL proto-
col, an adversary can track millions of Apple device owners
globally with 100 % accuracy.

6 DoS: Impairing Communication with
Desynchronization

AWDL does not employ any security mechanisms. Instead,
Apple decided to leave security mechanisms to the upper lay-
ers. Thus, while end-to-end confidentiality and integrity can
be achieved using a secure transport protocol such as TLS,
AWDL frames are vulnerable to forgery which renders any
upper layer using AWDL susceptible to attacks on availability.
In this section, we present a novel DoS attack that targets
AWDL’s synchronization mechanism (Section 2) to prevent
two nodes from communication with each other. In the fol-
lowing, we describe a novel desynchronization attack which
aims to minimize the channel sequence overlap of two targets.
Next, we evaluate the attack’s performance and present an
effective mitigation method. Finally, we discuss related work.

6.1 Desynchronizing Two Targets
We exploit AWDL’s synchronization mechanism to reduce
the channel overlap by inducing an artificial phase offset be-
tween two targets. In order to succeed, the attacker needs to
(1) get recognized as the master by both targets, (2) commu-
nicate with each target separately to (3) send different sets
of synchronization parameters that result in zero (or mini-
mal) channel overlap. Figure 9 depicts the non-zero overlap
in normal operation and the zero overlap as the result of the
desynchronization attack. We describe the three steps in the
following.
(1) Winning the Master Election. The master election in
AWDL is based on a numeric comparison of two values that
are transmitted in the election parameters. The first value

0 5 10 15 20 25 30

Time [s]

0

2

4

P
h

as
e

O
ff

se
t

[π
/
16

]

John–Jane

Attack Start

Figure 10: Phase offset between two targets before and after
mounting a desynchronization attack which induces a phase
shift of φ = τ/4.

is called metric, and each node draws one randomly upon
initialization. The numeric range of the metric is bounded
and depends on the AWDL version that runs on the node [79].
The second value is called counter which is initialized to a
random value and increases linearly over time while the node
is elected as a master. Given the metric and counter values
of two nodes A and B as (mA,cA) and (mB,cB), respectively,
then, A wins the master election if

cA > cB∨ (cA = cB∧mA > mB) (15)

and loses otherwise. To consistently win the election, the
attacker sets c and m to their maximum values.

(2) Unicasting AFs. The attacker needs to send the synchro-
nization parameters to each target without the other one notic-
ing. We have found that while AFs are typically sent to the
broadcast MAC address ff:ff:ff:ff:ff:ff, AWDL nodes
also accept unicast AFs. Therefore, the attacker can unicast
their AFs to make sure that only the intended target receives
them.

(3) Phase Shift: Different Synchronization Parameters.
To desynchronize two targets, the attacker needs to send in-
compatible synchronization parameters that will result in a
controllable offset. We explain how the attacker calculates the
relevant parameters i and tAW for both targets. Let us assume
that the attack starts at some time Ts. An AF sent to the first
target at some time TTx with t =

⌊
TTx−Ts

1024

⌋
(in TU) will include

the following parameters:

i =
(⌊

t mod 64
16

⌋
+4
⌊ t

64

⌋)
mod 216 and, (16)

tAW = 64− t mod 64 . (17)

For the second target, the attacker will calculate t as tφ =⌊
TTx−Ts−φ

1024

⌋
and compute iφ, tφ

AW analogously to Eqs. (16)
and (17). We verify the correctness of these calculations ex-
perimentally and show the resulting phase offset between two
targets for a target phase φ = τ/4 in Fig. 10.

USENIX Association 28th USENIX Security Symposium 45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Phase Shift φ [π/16]

0.00

0.25

0.50

0.75

1.00

Overlap (inverse)

Packet Loss

Figure 11: Packet loss for different phase shifts.

6.2 Evaluating Packet Loss
We evaluate the impact of our desynchronization attack by
measuring the packet loss via the ping program. In particu-
lar, we use an APU board [66] equipped with a Qualcomm
Atheros AR928X Wi-Fi card to act as an attacker which can
inject AWDL AFs. The ICMP echo requests are sent from
a MacBook Pro (Late 2015, macOS 10.13) to an iPhone 8
(iOS 12). The attacker induces different phase shifts spanning
one period. The sender emits 100 ICMP echo requests per
experiment which we repeat 10 times and plot the resulting
packet loss in Fig. 11. The error bars indicate the standard
deviation. In addition, we include the inverse channel overlap
(see Section 2) which is calculated for two identical sequences
which we have observed were the most common ones during
our experiment: 44,44,44,0,0,0,0,0,6,44,44,0,0,0,0,0.

At φ = 0, there is no attack, while at φ = 16, the targets are
desynchronized by a full period which unsurprisingly does
impair communication reliability. The other results indicate
that the desynchronization attack significantly degrades com-
munication between the targets, peaking at phase shifts where
the targets are off by a quarter (φ= 4) and three-quarter period
(φ = 12) which is where the channel overlap has its minima
(and the inverse overlap its maxima). At these settings, the
packet loss is almost 100 %. Surprisingly, some phase shifts
(e. g., φ = 6,7,9,10,15) result in less packet loss than the
overlap predicts. We suspect the reason to be retransmissions
on the MAC layer (up to 7 times in Wi-Fi [73]) which, at the
cost of longer latency, increase the chance that a frame will
be received in a subsequent AW.

6.3 Mitigating Desynchronization
Devices can mitigate our desynchronization attack by discard-
ing unicast AFs. Not accepting unicast frames is an extremely
effective and practical countermeasure because it will cause
all nodes in range to process the same information exclu-
sively. While this does not prevent an attacker from winning
the master election and, thus, sending invalid synchronization
parameters, as all nodes process the same frames, it becomes
much harder to create a deterministic offset between two tar-

gets. A more sophisticated attacker could employ attacks on
the PHY layer (e. g., using directional antennæ) to achieve a
similar effect as that of unicasting. However, such attacks are
difficult to carry out in practice.

6.4 Related Work: Reactive Jamming
At first glance, our desynchronization attack achieves a simi-
lar effect as a reactive jammer [37, 52, 70, 91]. However, the
desynchronization attack can be more attractive for two rea-
sons: first, desynchronization in principle needs less energy
than a jamming attack. The desynchronization attacker only
needs to emit one frame every 1.5 s to maintain their position
as a master node because AWDL nodes elect a new master if
they have not received an AF for more than 1.5 s from their
current one. In contrast, a reactive jammer needs to emit a
jamming signal for every packet that the target sends. Second,
it allows intercepting frames from its targets which enables
to mount more sophisticated MitM attacks as presented in
Section 7. In contrast, a normal jammer kills the frame in
transit disallowing anyone (even the attacker themselves) to
decode the frame [70]. There exist more sophisticated receiver
designs that cancel out the jammer’s own signal, but this typi-
cally requires special hardware [37]. Our desynchronization
attack only requires a system with an off-the-shelf Wi-Fi chip
and, thus, could even be implemented in a smartphone [71].

7 MitM: Planting Malware via AirDrop
This section describes a MitM attack on the popular AirDrop
service which allows iOS and macOS devices to exchange
files directly via AWDL. First, we assess the security of Air-
Drop and find that poor UI design choices enable an attacker
to masquerade as a valid receiver. Then, we describe a com-
plete MitM attack on AirDrop which prevents any sender to
discover a valid receiver using a DoS attack and subsequently
can intercept and modify any AirDrop file transmission. Fi-
nally, we discuss possible mitigations for the attack.

7.1 Ambiguous Receiver Authentication State
We have observed that AirDrop employs two different kinds
of connections which we term authenticated and unauthenti-
cated (see Section 3). Further, the user can set its device to be
discoverable by contacts only or everyone. Counter-intuitively,
the discoverability setting only applies to the receiver side. In
particular, while a receiver in contacts-only mode will only
accept files from authenticated senders, a sender will see all
discoverable receivers irrespective of whether they are au-
thentic or not. This ambiguity has profound implications for
security because it is up to the user of the sending device to
decide whether a connection is authenticated or not which can
be non-trivial. The only visual cue to differentiate between
an authenticated and unauthenticated connection is that an
authenticated connection will show the receiver’s name and
photo from the sender’s address book. Neither provides suffi-
cient evidence to unambiguously decide whether a receiver

46 28th USENIX Security Symposium USENIX Association

authentic
(a) Sender has
John’s contact
photo

authentic
(b) Sender does
not have John’s
contact photo

unauthentic
(c) Sender does
not have John
as a contact

unauthentic
(d) Attacker
spoofs John’s
identity

Figure 12: UI representation of a receiver.

is authentic. First, if no contact photo is available (users aug-
ment only 27 % of their contacts with a photo according to
our survey), the icon contains the receiver’s initials in a grey
circle which is similar to that of an unauthenticated receiver
(a grey circle with a head’s silhouette). Second, the name
that is displayed underneath unauthenticated receivers is the
receiver’s device name. Based on our results in Section 5, a
device name contains the user’s given name in the majority of
the cases (more than 70 % according to our experimental eval-
uation in Section 5), which the attacker can exploit to create
a trustworthy-looking device name. Unless users are sensi-
tive to such subtle UI changes, an attacker can easily trick
them into sending files via an unauthenticated connection.
Figure 12 compares the different receiver icons including a
spoofed identity by the attacker. We want to highlight the
similarity between an authenticated identity (Fig. 12b) and a
spoofed identity (Fig. 12d).

7.2 The Complete AirDrop MitM Attack
Our MitM attack on AirDrop is carried out in three phases.
First, we break the discovery process to put ourselves in a
privileged position. Second, we wait until the target receiver
becomes discoverable by everyone, effectively forcing the
user to downgrade the connection. Third, we relay and ma-
nipulate the actual data transfer to plant arbitrary files at the
receiver. We illustrate the attack in Fig. 13 and explain each
phase in more detail below. Also, we provide a video PoC of
the attack [77].

(1) Breaking Discovery via DoS. The most crucial part of the
attack is preventing the sender to discover the receiver such
that it appears as an icon in the sharing pane. In particular,
we need to prevent that the Discovery handshake via HTTPS
completes successfully. In principle, such a DoS attack could
be carried out via our desynchronization attack (Section 6).
However, we found that it could not reliably prevent the short
Discovery request and responses from being received. This
is due to the fact that AirDrop senders increase the channel
allocation when starting the discovery process, thus, increas-
ing the overlap with the receiver even when desynchronized.

As an alternative, we used the well-known TCP reset attack
which sends TCP segments including an RST flag to the tar-
gets which, in turn, immediately drops the connection. For
this attack, the attacker sends out an RST reply for every TCP
segment that is not addressed to itself and effectively prevents
any reconnection attempts from the sender to the receiver.

(2) Downgrading an Authenticated Connection. For a com-
plete MitM attack, we need to authenticate to the receiver.
Otherwise, it will deny any Ask or Upload requests. If the
receiver is discoverable by everyone, this is trivial, since it
accepts all authentication attempts, even those with a self-
signed certificate which the attacker can easily generate (see
Section 3.3). The receiver indicates a successful authentica-
tion attempt from a non-contact by including its device name
in the Discover response. However, we have found that in
most cases (59.4 % in our survey), users set their device to
contacts only. In such cases, we leverage the ongoing DoS
attack to force the receiver to try the everyone setting.

(3) Relaying and Modifying Data Transfer. Once the re-
ceiver becomes discoverable (we can check when a receiver is
discoverable by everyone by periodically sending Discovery
requests), we advertise our own AirDrop identity via mDNS
and wait until the sender tries to perform the authentication
handshake via HTTPS for discovery which we let succeed.
We relay the sender’s Ask request to the receiver including
the original file thumbnail to make the request appear valid.
After the receiver accepts the transmission request, we relay
the answer back to the sender which—in turn—starts to send
the actual file. We can now decide whether to relay a modi-
fied version of the file or send an entirely new one possibly
containing malware to the receiver.

7.3 Implementation
Our PoC of the MitM attack consists of two components.
First, we re-implement AWDL such that we were able to
overhear and parse data frames not addressed to us which is
required to mount a TCP reset attack. Second, we implement
an AirDrop-compatible client and server which we use to
probe the discoverability status of the receiver target and
finally implement the MitM attack as depicted in Fig. 13. We
make both projects available as open source software [76, 78].

AWDL. Our AWDL implementation [76] is written in C and
runs on Linux as well as on macOS. On macOS, the imple-
mentation can be used as a drop-in replacement for Apple’s
own AWDL interface. We use the monitor mode and frame
injection of the system’s Wi-Fi card to receive and inject raw
IEEE 802.11 frames. In addition, we provide a virtual network
interface (via tuntap) to the system such that any IPv6-capable
application can use AWDL. Internally, our implementation
takes care of frame parsing, synchronization, election, and
scheduling data frames in the correct AWs.

AirDrop. Our AirDrop implementation [78] is written in
Python and implements an unauthenticated AirDrop sender

USENIX Association 28th USENIX Security Symposium 47

Sender “Jane” Receiver “John”Attacker

HTTPS POST /Discover

Jane selects “John” as the receiver.
Attacker forwards request with
original thumbnail and device name
“Jane”; forwards response as is.

(2) AUTHENTICATION

(1) DISCOVERY (as in Figure 2)

TCP RSTTCP RST

DoS. Attacker disrupts all overheard
connections by mounting a TCP
reset attack, thereby preventing Jane
from discovering John.

Only while John is not
discoverable by everyone, the
attacker periodically tries to
authenticate to John.

HTTPS POST /Discover

HTTPS OK 200
without device name

When John already is or becomes
discoverable by everyone, the
attacker successfully authenticates
to John.

HTTPS POST /Discover

HTTPS OK 200
with device name “John’s iPhone”

Attacker advertises
AirDrop service as in (1)
HTTPS POST /Discover

HTTPS OK 200
with device name “John”

The attacker immediately starts
advertising a service using “John”
as its computer name.
Jane authenticates and displays
the attacker’s identity “John” in
the sharing pane.

(3) DATA TRANSFER HTTPS POST /Ask
with device name “Jane’s iPhone”

HTTPS OK 200

HTTPS POST /Ask
with device name “Jane”

HTTPS OK 200

HTTPS POST /Upload
HTTPS POST /Upload

HTTPS OK 200
HTTPS OK 200

Attacker receives original file and
forwards a modified copy to John

Figure 13: Protocol flow and user interaction of our MitM attack on AirDrop.

and receiver. The code exposes a command line interface
which allows to find discoverable receivers, send files to them,
and receive files from any sender.

7.4 Mitigation
We discuss possible mitigation strategies. We examine them
according to complexity to implement, starting with the miti-
gation requiring the least number of changes to existing Air-
Drop implementations.

Provide Stronger Visual Cues for Authenticated Re-
ceivers. One of the core problems of the current design of
AirDrop is that a user might have a hard time to differenti-
ate between authenticated and unauthenticated receivers (see
Section 7.1 and Fig. 12). Currently, the only cues to decide

whether a receiver is authenticated are the display of a contact
photo and contact name. We have shown that the former is not
commonly available (users augment 27.4 % of their contacts
with photos) and the latter can be spoofed. Therefore, we pro-
pose to provide stronger visual cues that unambiguously tell
the user if a receiver is authenticated or not. This is already
customary in web browsers where HTTPS-protected websites
are augmented with a green (lock) symbol telling the user that
the website they are visiting is authentic.
Reset Everyone to Contacts Only After a Timeout. Users
might set the discoverability setting of their device to every-
one for convenience or if they used it for one occasion and
then forgot to reset it. In either case, we believe that the ev-
eryone setting should only be used except when it is required,

48 28th USENIX Security Symposium USENIX Association

i. e., if one wants to receive a file from a non-contact. To pro-
tect negligent users, we propose to use a timeout after which
the discoverability setting is reset to contacts only. Alterna-
tively, one could reset the setting the next time the device
is locked. This would also prevent past cases where people
would receive inappropriate photographs from strangers in
public places [13, 41] because, in contacts-only mode, de-
vices will transparently reject all request from unauthenticated
senders.

Introduce Secure AirDrop Mode for Non-Contacts. Our
last proposal involves deprecating unauthenticated connec-
tions and instead establish authentication with a non-contact
via an out-of-band (OOB) channel. AirDrop could transmit
one-time cookies with similar functionality as the record
data (see Section 3.3) during the initial HTTPS authentication
handshake (see Section 3.2). The one-time cookies could be
validated via an OOB channel such as NFC or via QR codes.
After one transfer (or after a specific timeout), each device
deletes its one-time cookie. By committing to the one-time
cookie in the TLS handshake, a MitM attack on the OOB
channel would be fruitless because the attacker could not es-
tablish a TLS connection with the same key. Unfortunately,
such a mode would require one more manual step by both
parties and, therefore, would impair usability.

7.5 Related Work: Attacks on AirDrop
Other attacks on AirDrop have been presented before. An im-
personation attack [10] exploits mDNS/DNS-SD to redirect
file transmissions to an attacker for unauthenticated connec-
tions. In particular, the attack uses forged SRV and AAAA
responses to redirect an AirDrop ID to the attacker. In contrast
to our work, [10] does not differentiate between authenticated
and unauthenticated connections and claims that the UUID
certificate (see Section 3.3) could not be bound to any con-
tact identifiers, which we have found to be untrue. Also, the
attack only works on unauthenticated connections, while our
attack also targets authenticated connections via a downgrade
attack and we present a complete MitM attack which allows
an attacker to send malicious files to the receiver stealthily.
Finally, [10] proposes a conflict detection mechanism for Mul-
ticast DNS (mDNS) to prevent their attack, which is based on
the assumption that “disrupting two parties’ communication
through a Wi-Fi direct link or a local network is difficult for
the adversary without access to the routing infrastructure of
the network.” In this work, we show that it is indeed practical
to mount a DoS on the link layer since AWDL does not em-
ploy any security mechanisms. An earlier work [27] targeted a
vulnerability in AirDrop’s implementation which allowed the
attacker to install files in arbitrary directories on the target’s
system. Apple fixed this bug in 2015.

8 Implementation Security
During our AWDL analysis and building an AWDL prototype,
we found two implementation flaws in Apple’s OSes that

allow an attacker to crash devices in proximity.

DoS: Kernel Panic and System Crash. These flaws can be
exploited by sending corrupt AFs. In particular, we can trigger
kernel panics by setting invalid values in the synchronization
parameters (affecting macOS 10.12) and the channel sequence
(affecting macOS 10.14, iOS 12, watchOS 12, and tvOS 5),
respectively. To showcase our findings, we provide a video
of our PoC which exploits the second vulnerability on iOS
devices [75]. The video demonstrates how an attacker mounts
a targeted DoS attack that crashes a single device and a black-
out DoS attack that crashes all devices in range of the attacker
at the same time.

Outlook: Remote Code Execution. While not critical by
themselves, the mere existence of these vulnerabilities creates
a new class of threats to Wi-Fi devices as an attacker can
exploit them without any authentication towards the target,
i. e., they do not have to be on the same network. In light of
past discovered remote code execution in implementations
of standardized Wi-Fi procedures [8, 14], we think that a
determined attacker can find similar flaws for AWDL.

9 Conclusion
The deployment of open Wi-Fi interfaces enables new types
of applications for mobile devices. They allow devices in
proximity to communicate with each other without being con-
nected to the same Wi-Fi network. On the downside, this also
opens new opportunities for an attacker as they no longer have
to provide any kind of authentication (e. g., access to a secure
Wi-Fi network). In this paper, we investigate the first protocol
of this kind, i. e., Apple’s proprietary AWDL. In particular, we
find three distinct protocol-level vulnerabilities that allow for
DoS, user tracking, and MitM attacks. In addition, we dis-
covered two implementation bugs in Apple’s OSes that cause
DoS. Given the complexity of the protocol and implementa-
tions, we conjecture that more severe vulnerabilities will be
found in the future. To build PoCs for these attacks, we have
reverse-engineered AirDrop, a system service that runs on
top of AWDL, and have implemented open versions of both
AWDL and AirDrop which we make available as open source
software. Finally, our findings have implications for the non-
Apple world: NAN, commonly known as Wi-Fi Aware, is a
new standard supported by Android which draws on AWDL’s
design and, thus, might be vulnerable to the similar attacks as
presented in this work. This is pending further investigation.

Responsible Disclosure
We have contacted Apple about our findings on December 17,
2018. We have shared a draft of this paper as well as our PoC
code and support Apple in fixing the privacy leaks (Section 5)
and desynchronization issue (Section 6) in AWDL as well as
the ambiguous authentication state in AirDrop (Section 7).
We have reported the two implementation vulnerabilities (Sec-
tion 8) earlier on August 14 and 27, 2018, respectively. Apple
will not fix the first one affecting only macOS 10.12, but

USENIX Association 28th USENIX Security Symposium 49

has released software updates addressing the second one on
October 30, 2018, for all Apple OSes [4].

Acknowledgements
This work is funded by the LOEWE initiative (Hesse, Ger-
many) within the NICER project and by the German Federal
Ministry of Education and Research (BMBF) and the State of
Hesse within CRISP-DA. The work was partially supported
by NSF grant 1740907. We thank the Apple Product Security
team for feedback on the paper.

Availability
We release the source code of our AWDL [76] and Air-
Drop [78] implementations as part of the Open Wireless Link
project [81] (https://owlink.org).

References
[1] Miguel E. Andrés, Nicolás E. Bordenabe, Konstanti-

nos Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential Privacy for Location-
based Systems. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), November
2013. doi: 10.1145/2508859.2516735.

[2] Apple Inc. Use AirDrop on your iPhone, iPad, or
iPod touch, June 2018. URL https://support.
apple.com/en-us/HT204144. [Accessed September
20, 2018].

[3] Apple Inc. Change the name of your iPhone, iPad,
or iPod, October 2018. URL https://support.
apple.com/en-us/HT201997. [Accessed November
14, 2018].

[4] Apple Inc. About the security content of iOS 12.1,
2018. URL https://support.apple.com/en-in/
HT209192. [Accessed Feburary 14, 2019].

[5] Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and
Mark Dermot Ryan. Analysis of Privacy in Mobile Tele-
phony Systems. International Journal of Information Se-
curity, October 2017. doi: 10.1007/s10207-016-0338-9.

[6] Claudio A. Ardagna, Marco Cremonini, Sabrina De Cap-
itani di Vimercati, and Pierangela Samarati. An
Obfuscation-Based Approach for Protecting Location
Privacy. IEEE Transactions on Dependable and Secure
Computing, 8, January 2011. doi: 10.1109/TDSC.2009.
25.

[7] Armis Inc. BlueBorne, 2018. URL https://armis.
com/blueborne/. [Accessed November 14, 2018].

[8] Nitay Artenstein. Broadpwn: Remotely Compro-
mising Android and iOS via a Bug in Broadcom’s
Wi-Fi Chipsets, July 2017. URL https://blog.

exodusintel.com/2017/07/26/broadpwn/. [Ac-
cessed June 28, 2018].

[9] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-
fledged App Sandboxing for Stock Android. In USENIX
Security Symposium, August 2015.

[10] Xiaolong Bai, Luyi Xing, Nan Zhang, Xiaofeng Wang,
Xiaojing Liao, Tongxin Li, and Shi-Min Hu. Staying
Secure and Unprepared: Understanding and Mitigating
the Security Risks of Apple ZeroConf. In IEEE Sympo-
sium on Security and Privacy (S&P), May 2016. doi:
10.1109/SP.2016.45.

[11] Marco V. Barbera, Alessandro Epasto, Alessandro Mei,
Vasile C. Perta, and Julinda Stefa. Signals from the
Crowd: Uncovering Social Relationships through Smart-
phone Probes. In ACM Internet Measurement Con-
ference (IMC), October 2013. doi: 10.1145/2504730.
2504742.

[12] Elad Barkan, Eli Biham, and Nathan Keller. Instant
Ciphertext-Only Cryptanalysis of GSM Encrypted Com-
munication. In Advances in Cryptology (CRYPTO),
August 2003. doi: 10.1007/978-3-540-45146-4_35.

[13] Sarah Bell. Police investigate ’first cyber-flashing’
case, 2015. URL https://www.bbc.com/news/
technology-33889225. [Accessed September 25,
2018].

[14] Gal Beniamini. Over The Air: Exploiting Broad-
com’s Wi-Fi Stack (Part 2), April 2017. URL
https://googleprojectzero.blogspot.com/
2017/04/over-air-exploiting-broadcoms-wi-
fi_11.html. [Accessed June 28, 2018].

[15] Laurent Bindschaedler, Murtuza Jadliwala, Igor Bilogre-
vic, Imad Aad, Philip Ginzboorg, Valtteri Niemi, and
Jean-Pierre Hubaux. Track Me If You Can: On the
Effectiveness of Context-based Identifier Changes in
Deployed Mobile Networks. In Network & Distributed
System Security Symposium (NDSS), 2012.

[16] Vincent Bindschaedler and Reza Shokri. Synthesizing
Plausible Privacy-Preserving Location Traces. In IEEE
Symposium on Security and Privacy (S&P), May 2016.
doi: 10.1109/SP.2016.39.

[17] Bluetooth Special Interest Group (SIG). Bluetooth Spec-
ification Version 4.1. Technical report, December 2013.

[18] Nicolás E. Bordenabe, Konstantinos Chatzikoko-
lakis, and Catuscia Palamidessi. Optimal Geo-
Indistinguishable Mechanisms for Location Privacy.
In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), November 2014. doi:
10.1145/2660267.2660345.

50 28th USENIX Security Symposium USENIX Association

https://owlink.org
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT204144
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-us/HT201997
https://support.apple.com/en-in/HT209192
https://support.apple.com/en-in/HT209192
https://armis.com/blueborne/
https://armis.com/blueborne/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://blog.exodusintel.com/2017/07/26/broadpwn/
https://www.bbc.com/news/technology-33889225
https://www.bbc.com/news/technology-33889225
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html

[19] Stuart D. Cheshire. Proximity Wi-Fi. U.S.
Patent Application, (US 2018/0083858 A1), March
2018. URL https://patents.google.com/patent/
US20180083858A1.

[20] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer,
and contributors. mitmproxy: A free and open source
interactive HTTPS proxy, 2010–. URL https://
mitmproxy.org. [Version 3].

[21] Mathieu Cunche. I Know Your MAC Address: Targeted
Tracking of Individual Using Wi-Fi. Journal of Com-
puter Virology and Hacking Techniques, 10, November
2013.

[22] Anupam Das, Nikita Borisov, and Matthew Caesar.
Tracking Mobile Web Users Through Motion Sensors:
Attacks and Defenses. In Network and Distributed Sys-
tem Security Symposium (NDSS), February 2016.

[23] Anupam Das, Nikita Borisov, and Edward Chou. Every
Move You Make: Exploring Practical Issues in Smart-
phone Motion Sensor Fingerprinting and Countermea-
sures. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2018, January 2018. doi: 10.1515/popets-
2018-0005.

[24] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah,
and Prasant Mohapatra. Uncovering Privacy Leakage
in BLE Network Traffic of Wearable Fitness Track-
ers. In ACM Workshop on Mobile Computing Sys-
tems and Applications (HotMobile), February 2016. doi:
10.1145/2873587.2873594.

[25] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy
Choudhury, and Srihari Nelakuditi. AccelPrint: Imper-
fections of Accelerometers Make Smartphones Track-
able. In Network and Distributed System Security Sym-
posium (NDSS), February 2014.

[26] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa.
Mind Your Probes: De-Anonymization of Large Crowds
Through Smartphone WiFi Probe Requests. In IEEE In-
ternational Conference on Computer Communications
(INFOCOM), April 2016. doi: 10.1109/INFOCOM.
2016.7524459.

[27] Mark Dowd. MalwAirDrop: Compromising iDevices
via AirDrop. In Ruxcon, October 2015. URL http:
//2015.ruxcon.org.au/slides/.

[28] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and An-
mol N. Sheth. TaintDroid: An Information-flow Track-
ing System for Realtime Privacy Monitoring on Smart-
phones. In USENIX Conference on Operating Systems
Design and Implementation (OSDI), October 2010.

[29] Kassem Fawaz and Kang G. Shin. Location Privacy Pro-
tection for Smartphone Users. In ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
November 2014. doi: 10.1145/2660267.2660270.

[30] Kassem Fawaz, Huan Feng, and Kang G. Shin. Anato-
mization and Protection of Mobile Apps’ Location Pri-
vacy Threats. In USENIX Security Symposium, August
2015.

[31] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Pro-
tecting Privacy of BLE Device Users. In USENIX Secu-
rity Symposium, August 2016.

[32] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn
Song, and David Wagner. Android Permissions De-
mystified. In ACM Conference on Computer and
Communications Security (CCS), October 2011. doi:
10.1145/2046707.2046779.

[33] Julien Freudiger. How Talkative is Your Mobile Device?:
An Experimental Study of Wi-Fi Probe Requests. In
ACM Conference on Security & Privacy in Wireless and
Mobile Networks (WiSec), June 2015. doi: 10.1145/
2766498.2766517.

[34] Sébastien Gambs, Marc-Olivier Killijian, and Miguel
Núñez del Prado Cortez. Show Me How You Move and I
Will Tell You Who You Are. In ACM SIGSPATIAL Inter-
national Workshop on Security and Privacy in GIS and
LBS (SPRINGL), 2010. doi: 10.1145/1868470.1868479.

[35] Sébastien Gambs, Marc-Olivier Killijian, and Miguel
Núñez Del Prado Cortez. De-anonymization Attack
on Geolocated Data. Journal of Computer and System
Sciences, 80, December 2014. doi: 10.1016/j.jcss.2014.
04.024.

[36] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and
Hao Chen. AndroidLeaks: Automatically Detecting
Potential Privacy Leaks in Android Applications on a
Large Scale. In International Conference on Trust and
Trustworthy Computing (TRUST). Springer, June 2012.
doi: 10.1007/978-3-642-30921-2_17.

[37] Shyamnath Gollakota, Haitham Hassanieh, Benjamin
Ransford, Dina Katabi, and Kevin Fu. They Can
Hear Your Heartbeats: Non-Invasive Security for Im-
plantable Medical Devices. In ACM SIGCOMM Com-
puter Communication Review, October 2011. doi:
10.1145/2043164.2018438.

[38] Google. Wi-Fi Aware, 2017. URL https:
//developer.android.com/guide/topics/
connectivity/wifi-aware. [Accessed June
28, 2018].

USENIX Association 28th USENIX Security Symposium 51

https://patents.google.com/patent/US20180083858A1
https://patents.google.com/patent/US20180083858A1
https://mitmproxy.org
https://mitmproxy.org
http://2015.ruxcon.org.au/slides/
http://2015.ruxcon.org.au/slides/
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware
https://developer.android.com/guide/topics/connectivity/wifi-aware

[39] Jun Han, Emmanuel Owusu, Le T. Nguyen, Adrian
Perrig, and Joy Zhang. ACComplice: Location In-
ference Using Accelerometers on Smartphones. In
IEEE International Conference on Communication Sys-
tems and Networks (COMSNETS), January 2012. doi:
10.1109/COMSNETS.2012.6151305.

[40] Xiuping Han, Zhi Wang, and Dan Pei. Preventing Wi-
Fi Privacy Leakage: A User Behavioral Similarity Ap-
proach. In IEEE International Conference on Commu-
nications (ICC), May 2018. doi: 10.1109/ICC.2018.
8422764.

[41] Harry Harris. Oakland-Maui flight: Pepper spray
emergency follows disturbing photo, 2018. URL https:
//www.eastbaytimes.com/2018/09/01/oakland-
maui-pepper-spray-disturbing-photo-delay/.
[Accessed September 25, 2018].

[42] Benjamin Henne, Christian Kater, Matthew Smith, and
Michael Brenner. Selective Cloaking: Need-to-Know
for Location-based Apps. In IEEE Conference on Pri-
vacy, Security and Trust, July 2013. doi: 10.1109/PST.
2013.6596032.

[43] Baik Hoh and Marco Gruteser. Preserving Privacy in
GPS Traces via Uncertainty-aware Path Cloaking. In
ACM Conference on Computer and Communications
Security (CCS), October 2007. doi: 10.1145/1315245.
1315266.

[44] Byeongdo Hong, Sangwook Bae, and Yongdae Kim.
GUTI Reallocation Demystified: Cellular Location
Tracking with Changing Temporary Identifier. In
Network and Distributed System Security Symposium
(NDSS), February 2018. doi: 10.14722/ndss.2018.
23349.

[45] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A.
Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Fos-
ter, and Todd Millstein. Dr. Android and Mr. Hide:
Fine-grained Permissions in Android Applications. In
ACM Workshop on Security and Privacy in Smart-
phones and Mobile Devices (SPSM), October 2012. doi:
10.1145/2381934.2381938.

[46] Ryo Kato, Mayu Iwata, Takahiro Hara, Akiyoshi Suzuki,
Xing Xie, Yuki Arase, and Shojiro Nishio. A Dummy-
based Anonymization Method Based on User Trajectory
with Pauses. In ACM Conference on Advances in Geo-
graphic Information Systems (SIGSPATIAL), November
2012. doi: 10.1145/2424321.2424354.

[47] Constantinos Kolias, Lucas Copi, Fengwei Zhang, and
Angelos Stavrou. Breaking BLE Beacons For Fun But
Mostly Profit. In ACM European Workshop on Systems
Security (EuroSec), April 2017. doi: 10.1145/3065913.
3065923.

[48] John Krumm. Inference Attacks on Location Tracks.
In International Conference on Pervasive Computing
(PERVASIVE). Springer, 2007.

[49] B. Krupp, N. Sridhar, and W. Zhao. SPE: Security and
Privacy Enhancement Framework for Mobile Devices.
IEEE Transactions on Dependable and Secure Comput-
ing, 14, July 2015. doi: 10.1109/TDSC.2015.2465965.

[50] Denis F. Kune, John Koelndorfer, Nicholas Hopper, and
Yongdae Kim. Location Leaks Over the GSM Air Inter-
face. In Network & Distributed System Security Sympo-
sium (NDSS), February 2012.

[51] Chi-Yu Li, Guan-Hua Tu, Chunyi Peng, Zengwen Yuan,
Yuanjie Li, Songwu Lu, and Xinbing Wang. Insecurity
of Voice Solution VoLTE in LTE Mobile Networks. In
ACM Conference on Computer and Communications
Security (CCS), October 2015. doi: 10.1145/2810103.
2813618.

[52] Guolong Lin and Guevara Noubir. On Link Layer Denial
of Service in Data Wireless LANs. Wiley Journal on
Wireless Communications and Mobile Computing, 5,
May 2005.

[53] Hua Lu, Christian S. Jensen, and Man Lung Yiu. PAD:
Privacy-area Aware, Dummy-based Location Privacy
in Mobile Services. In ACM International Workshop
on Data Engineering for Wireless and Mobile Access
(MobiDE), June 2008. doi: 10.1145/1626536.1626540.

[54] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa.
Mind Your Probes: De-anonymization of Large Crowds
Through Smartphone WiFi Probe Requests. In IEEE
INFOCOM, April 2016. doi: 10.1109/INFOCOM.2016.
7524459.

[55] Sathiamoorthy Manoharan. On GPS Tracking of Mo-
bile Devices. In IEEE International Conference on
Networking and Services (ICNS), April 2009. doi:
10.1109/ICNS.2009.103.

[56] Célestin Matte, Mathieu Cunche, Franck Rousseau, and
Mathy Vanhoef. Defeating MAC Address Randomiza-
tion Through Timing Attacks. In ACM Conference on
Security & Privacy in Wireless and Mobile Networks
(WiSec), July 2016. doi: 10.1145/2939918.2939930.

[57] Ulrike Meyer and Susanne Wetzel. A Man-in-the-
Middle Attack on UMTS. In ACM Workshop on Wire-
less Security (WiSe), October 2004. doi: 10.1145/
1023646.1023662.

[58] Micro:bit Educational Foundation. Micro:bit website,
2018. URL https://microbit.org. [Accessed
September 20, 2018].

52 28th USENIX Security Symposium USENIX Association

https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://www.eastbaytimes.com/2018/09/01/oakland-maui-pepper-spray-disturbing-photo-delay/
https://microbit.org

[59] Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, and
Niraj K. Jha. PinMe: Tracking a Smartphone User
Around the World. IEEE Transactions on Multi-Scale
Computing Systems, 3, 2017. doi: 10.1109/TMSCS.
2017.2751462.

[60] A. B. M. Musa and Jakob Eriksson. Tracking Unmodi-
fied Smartphones Using Wi-fi Monitors. In ACM Con-
ference on Embedded Network Sensor Systems (SenSys),
November 2012. doi: 10.1145/2426656.2426685.

[61] Sashank Narain, Triet D. Vo-Huu, Kenneth Block, and
Guevara Noubir. Inferring User Routes and Locations
Using Zero-Permission Mobile Sensors. In IEEE Sym-
posium on Security and Privacy (S&P), May 2016. doi:
10.1109/SP.2016.31.

[62] Sarfraz Nawaz and Cecilia Mascolo. Mining Users’ Sig-
nificant Driving Routes with Low-power Sensors. In
ACM Conference on Embedded Network Sensor Sys-
tems (SenSys), November 2014. doi: 10.1145/2668332.
2668348.

[63] Nordic Semiconductor. nRF51822, 2018. URL
https://www.nordicsemi.com/eng/Products/
Bluetooth-low-energy/nRF51822. [Accessed
September 20, 2018].

[64] Simon Oya, Carmela Troncoso, and Fernando Pérez-
González. Back to the Drawing Board: Revisiting the
Design of Optimal Location Privacy-preserving Mecha-
nisms. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), October 2017. doi:
10.1145/3133956.3134004.

[65] Paulo Borges. BLESSED, 2014. URL https:
//github.com/pauloborges/blessed. [Accessed
September 20, 2018].

[66] PC Engines. APU2 platform, 2018. URL https://
www.pcengines.ch/apu2.htm. [Accessed November
14, 2018].

[67] Zhiyun Qian, Zhaoguang Wang, Qiang Xu, Z. Morley
Mao, Ming Zhang, and Yi-Min Wang. You Can Run, but
You Can’t Hide: Exposing Network Location for Tar-
geted DoS Attacks in Cellular Networks. In Network &
Distributed System Security Symposium (NDSS), Febru-
ary 2012.

[68] Franziska Roesner. Designing Application Permission
Models that Meet User Expectations. IEEE Security &
Privacy, 15, February 2017. doi: 10.1109/MSP.2017.3.

[69] Piotr Sapiezynski, Arkadiusz Stopczynski, David Ko-
foed Wind, Jure Leskovec, and Sune Lehmann. Inferring
Person-to-Person Proximity Using WiFi Signals. ACM
Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies, 1, June 2017. doi: 10.1145/3090089.

[70] Matthias Schulz, Francesco Gringoli, Daniel Steinmet-
zer, Michael Koch, and Matthias Hollick. Massive Reac-
tive Smartphone-based Jamming Using Arbitrary Wave-
forms and Adaptive Power Control. In ACM Confer-
ence on Security and Privacy in Wireless and Mobile
Networks (WiSec), July 2017. doi: 10.1145/3098243.
3098253.

[71] Matthias Schulz, Daniel Wegemer, and Matthias Hol-
lick. The Nexmon Firmware Analysis and Modification
Framework: Empowering Researchers to Enhance Wi-
Fi Devices. Computer Communications, 2018. doi:
10.1016/j.comcom.2018.05.015.

[72] Reza Shokri, George Theodorakopoulos, Carmela Tron-
coso, Jean-Pierre Hubaux, and Jean-Yves Le Boudec.
Protecting Location Privacy: Optimal Strategy Against
Localization Attacks. In ACM Conference on Computer
and Communications Security (CCS), October 2012. doi:
10.1145/2382196.2382261.

[73] IEEE Computer Society. Wireless LAN medium access
control (MAC) and physical layer (PHY) specification,
December 2016.

[74] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.
Using the Fluhrer, Mantin, and Shamir Attack to Break
WEP. In Network and Distributed System Security Sym-
posium (NDSS), February 2002.

[75] Milan Stute. Video of Proof-of-Concept Denial-of-
Service Attack Crashing iOS Devices, 2018. URL
https://youtu.be/M5D9NeKapUo.

[76] Milan Stute. Open Apple Wireless Direct Link Imple-
mentation in C, 2019. URL https://seemoo.de/owl.

[77] Milan Stute. Video of Proof-of-Concept Man-in-the-
Middle Attack on AirDrop, 2019. URL https://
youtu.be/5T7Qatoh0Vo.

[78] Milan Stute and Alexander Heinrich. Open AirDrop Im-
plementation in Python, 2019. URL https://seemoo.
de/opendrop.

[79] Milan Stute, David Kreitschmann, and Matthias Hollick.
One Billion Apples’ Secret Sauce: Recipe for the Apple
Wireless Direct Link Ad hoc Protocol. In ACM Confer-
ence on Mobile Computing and Networking (MobiCom),
October 2018. doi: 10.1145/3241539.3241566.

[80] Milan Stute, David Kreitschmann, and Matthias Hollick.
Demo: Linux Goes Apple Picking: Cross-Platform Ad
hoc Communication with Apple Wireless Direct Link.
In ACM Conference on Mobile Computing and Network-
ing (MobiCom), October 2018. doi: 10.1145/3241539.
3267716.

USENIX Association 28th USENIX Security Symposium 53

https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://github.com/pauloborges/blessed
https://github.com/pauloborges/blessed
https://www.pcengines.ch/apu2.htm
https://www.pcengines.ch/apu2.htm
https://youtu.be/M5D9NeKapUo
https://seemoo.de/owl
https://youtu.be/5T7Qatoh0Vo
https://youtu.be/5T7Qatoh0Vo
https://seemoo.de/opendrop
https://seemoo.de/opendrop

[81] Milan Stute, David Kreitschmann, and Matthias Hollick.
The Open Wireless Link Project, 2018. URL https:
//owlink.org.

[82] Akiyoshi Suzuki, Mayu Iwata, Yuki Arase, Takahiro
Hara, Xing Xie, and Shojiro Nishio. A User Location
Anonymization Method for Location Based Services in a
Real Environment. In ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems (GIS), November 2010. doi: 10.1145/1869790.
1869846.

[83] Galini Tsoukaneri, George Theodorakopoulos, Hugh
Leather, and Mahesh K. Marina. On the Inference
of User Paths from Anonymized Mobility Data. In
IEEE European Symposium on Security and Privacy
(EuroS&P), March 2016. doi: 10.1109/EuroSP.2016.25.

[84] Jayakrishnan Unnikrishnan and Farid Movahedi Naini.
De-anonymizing Private Data by Matching Statistics. In
IEEE Allerton Conference on Communication, Control,
and Computing (Allerton), October 2013. doi: 10.1109/
Allerton.2013.6736722.

[85] US Census Bureau. Frequently Occurring
Surnames from the 2010 Census. URL
https://www.census.gov/topics/population/
genealogy/data/2010_surnames.html. [Accessed
September 25, 2018].

[86] US Department of Commerce. US Census Bureau. URL
https://www.census.gov. [Accessed September 25,
2018].

[87] US Social Security Administration. Popular Baby
Names: Beyond the Top 1000 Names. URL https://
www.ssa.gov/oact/babynames/index.html. [Ac-
cessed September 25, 2018].

[88] Mathy Vanhoef and Frank Piessens. Key Reinstalla-
tion Attacks: Forcing Nonce Reuse in WPA2. In ACM
Conference on Computer and Communications Security
(CCS), October 2017. doi: 10.1145/3133956.3134027.

[89] Mathy Vanhoef, Célestin Matte, Mathieu Cunche,
Leonardo S. Cardoso, and Frank Piessens. Why MAC
Address Randomization is not Enough: An Analysis
of Wi-Fi Network Discovery Mechanisms. In ACM
Asia Conference on Computer and Communications Se-
curity (ASIA CCS), May 2016. doi: 10.1145/2897845.
2897883.

[90] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara
Noubir. Fingerprinting Wi-Fi Devices Using Software
Defined Radios. In ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), July
2016. doi: 10.1145/2939918.2939936.

[91] Triet Dang Vo-Huu, Tien Dang Vo-Huu, and Guevara
Noubir. Interleaving Jamming in Wi-Fi Networks. In
ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), July 2016. doi: 10.1145/
2939918.2939935.

[92] Yu Wang, Dingbang Xu, Xiao He, Chao Zhang, Fan
Li, and Bin Xu. L2P2: Location-aware Location Pri-
vacy Protection for Location-based Services. In IEEE
INFOCOM, March 2012. doi: 10.1109/INFCOM.2012.
6195577.

[93] Te-En Wei, Albert B. Jeng, Hahn-Ming Lee, Chih-How
Chen, and Chin-Wei Tien. Android Privacy. In IEEE
Conference on Machine Learning and Cybernetics, July
2012. doi: 10.1109/ICMLC.2012.6359654.

[94] Wi-Fi Alliance. Neighbor Awareness Networking Tech-
nical Specification Version 2.0. Technical report, 2017.

[95] Hao Wu, Weiwei Sun, and Baihua Zheng. Is Only One
Gps Position Sufficient to Locate You to the Road Net-
work Accurately? In ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing (Ubi-
Comp), 2016. doi: 10.1145/2971648.2971702.

[96] Yunze Zeng, Parth H. Pathak, and Prasant Mohapa-
tra. WiWho: Wifi-based Person Identification in Smart
Spaces. In ACM/IEEE International Conference on In-
formation Processing in Sensor Networks (IPSN), April
2016. doi: 10.1109/IPSN.2016.7460727.

[97] Jin Zhang, Bo Wei, Wen Hu, and Salil S. Kanhere. WiFi-
ID: Human Identification Using WiFi Signal. In IEEE
International Conference on Distributed Computing in
Sensor Systems (DCOSS), May 2016. doi: 10.1109/
DCOSS.2016.30.

[98] Lichen Zhang, Zhipeng Cai, and Xiaoming Wang. Fake-
Mask: A Novel Privacy Preserving Approach for Smart-
phones. IEEE Transactions on Network and Service
Management, 13, June 2016. doi: 10.1109/TNSM.2016.
2559448.

54 28th USENIX Security Symposium USENIX Association

https://owlink.org
https://owlink.org
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
https://www.census.gov
https://www.ssa.gov/oact/babynames/index.html
https://www.ssa.gov/oact/babynames/index.html

Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTE

Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil Kim, Song Min Kim, and Yongdae Kim
Korea Advanced Institute of Science and Technology (KAIST)

{omnibusor, hoops, mcson, hongilk, songmin, yongdaek}@kaist.ac.kr

Abstract
Long-Term Evolution (LTE) communication is based on

an open medium; thus, a legitimate signal can potentially

be counterfeited by a malicious signal. Although most LTE

signaling messages are protected from modification using

cryptographic primitives, broadcast messages in LTE have

never been integrity protected. In this paper, for the first time,

we present a signal injection attack that exploits the funda-

mental weaknesses of broadcast messages in LTE and mod-

ifies a transmitted signal over the air. This attack, which is

referred to as signal overshadowing (named SigOver) has sev-

eral advantages and differences when compared with existing

attacks using a fake base station. For example, with a 3 dB

power difference from a legitimate signal, the SigOver attack

demonstrated a 98% success rate when compared with the

80% success rate of attacks achieved using a fake base station,

even with a 35 dB power difference. Given that the SigOver

attack is a novel primitive attack, it yields five new attack

scenarios and implications. Finally, a discussion on two po-

tential countermeasures leaves practical and robust defense

mechanism as a future work.

1 Introduction

Long-Term Evolution (LTE) technology utilizes broadcast sig-

nals to transmit essential information from a cellular network

to user devices. At minimum, the information broadcasted by

an LTE base station, which is referred to as an evolved NodeB

(eNB), includes the synchronization information and radio re-

source configurations required for a User Equipment (UE) to

access the cellular network. Based on the received broadcast

signals, a UE registers with the network by performing an

Authentication and Key Agreement (AKA) procedure. After

registration, the UE monitors the broadcast signals for various

objectives. For example, when the UE does not have a con-

nection with an eNB due to its inactivity, it needs to listen to

paging messages regularly to check the messages transmitted

to it.Even when the UE has an active connection with an eNB,

the UE keeps listening broadcast signals to determine poten-

tial changes in system-wide radio configurations which are

required to be updated, and to identify the arrival of messages

intended to multiple UEs.

Despite its various practical applications, the broadcast sig-

nal is not security-protected at all. In LTE, communication

between a UE and network is secured only after successful

authentication and security handshake procedures, namely

Non-Access Stratum (NAS) and Access Stratum (AS) secu-

rity mode procedures for the protection of unicast messages.

Unprotected broadcast signals may be unavoidable to a cer-

tain extent in wireless communication; however, they subject

the system and UEs to various vulnerabilities that can be

exploited.

Previous studies [21, 26, 36, 39, 40] reported on several

attacks that exploit unprotected broadcast signals. In general,

such attacks employ a fake base station (FBS) that attracts

UEs to be connected to itself by transmitting a signal stronger

than those of the legitimate base stations. The attacks mainly

exploit the paging messages, resulting in undesirable effects

on the UE, e.g., out-of-service and battery drains. Notably,

such FBS-based attacks entail noticeable characteristics (e.g.,

high signal power) and/or outcomes (e.g., service denial) that

enable the victim UEs to identify the presence of the FBS

(see Section 3.5 for details).

In this paper, we propose a new approach referred to as the

SigOver attack, which injects a manipulated broadcast signal

into UEs without employing an FBS. The SigOver attack over-

writes a portion of the legitimate signal using the manipulated

attack signal. The SigOver attack is based on the fact that the

UE decodes a stronger signal when it concurrently receives

multiple overlapping signals, which is referred to as the cap-
ture effect [51]. The main technical component of the attack

is to synchronize the timing of the attack signal with that of

the targeted legitimate signal so that the UE only decodes the

attack signal (see Section 3). This attack is both stealthy and

far-reaching. It is stealthy because the attack signal, which is

transmitted at a significantly low power level, only overshad-

ows the targeted signal; whereas the other signals/messages

between the victim UEs and network remain intact. It is far-

USENIX Association 28th USENIX Security Symposium 55

reaching because the attack signal can simultaneously affect

a large number of nearby UEs with low signaling and a low

computational cost. Note that the SigOver attack does not

require any active communication with the UEs, and it does

not relay messages between UEs and an eNB.

The SigOver attack is the first practical realization of the
signal overshadowing attack on the LTE broadcast signals
using a low-cost Software Defined Radio (SDR) platform and

open source LTE library [43]. The SigOver attack was made

practical by addressing the following challenge: time and fre-
quency synchronization. To overshadow the legitimate signal

using the malicious signal, the SigOver attack needs to be

tightly time-synchronized with the eNB’s downlink physical

channel to which the victim UE is listening. To achieve time

synchronization, we leverage the synchronization signals of

the eNB that are transmitted periodically with a fixed time

gap. For accurate frequency synchronization, we employ a

Global Positioning System (GPS) disciplined oscillator.

The feasibility of the SigOver attack was verified by testing

it against 10 smartphones (listed in Section 5) connected to

an operational network1. For the experiments, we introduced

five new attack scenarios, which included the signaling storm,

denial of service (DoS) against UEs, network downgrade, and

UE location tracking (Section 5). The experimental results

reveal that the SigOver attack overshadows the target signal

and causes the victim device to decode it with a 98% success

rate and a power difference of only 3 dB from a legitimate

signal. On the other hand, attacks utilizing an FBS have only

80% success rate even with a 35 dB power difference. This

implies that the SigOver attack is significantly more efficient

than the attacks using the FBS.

Finally, two potential countermeasures against the SigOver

attack are discussed in Section 6: (1) digital signature based

solution and (2) channel estimation based detection. More-

over, a practical and robust solution to the SigOver attack is

left as a future work.

Our contribution are summarized as follows:

• First signal overshadowing attack on LTE: To the best

of our knowledge, the SigOver attack is the first realization

of a signal overshadowing attack on LTE broadcast signals.

• Implementation and evaluation: We demonstrate the

practicality and stealthiness of the SigOver attack via ex-

tensive real world experiments with high attack success

rate.

• Novel attack scenarios and implications: We present

novel attack scenarios and analyze their implications in

detail based on the experiments.

• Countermeasures: We investigate prevention and detec-

tion strategies against the SigOver attack, e.g., the digitally

signing on broadcast signals for prevention, and leveraging

the changing nature of the physical signal for detection.

1All the experiments were conducted based on the permission of the

operators.

2 Background
In this section, we present a brief description of the LTE

network architecture and the essential procedures of radio

connection establishment, mobility management, and security

setup between a device and an LTE network. (See the table in

Appendix B for the acronyms used in this paper.)

2.1 LTE Network Architecture

TA List
TA 1 TA 2

Cell 2
TA 1

eNB 1

Cell 4
TA 1

Cell 5
TA 1

Cell 10
TA 2 Cell 11

TA 3

Cell 14
TA 3

eNB 5

eNB 2

3

UE

EPC 2EPC 1

Figure 1: LTE network architecture

An LTE network consists of a UE, eNB, and Evolved Packet

Core (EPC) components as illustrated in Figure 1.

A UE is an end device that provides various LTE services

(i.e., voice and data services) to a subscribed user. It includes

a smart card referred to as the Universal Subscriber Identity

Module (USIM), which stores a permanent identity (Inter-

national Mobile Subscriber Identity, IMSI) or a temporary

identity (Globally Unique Temporary Identity, GUTI) for user

identification, and a cryptographic key for encryption and

integrity protection.

An eNB is an LTE base station, which provides a wireless

connections for UEs to receive services enabled at the LTE

network. A single eNB covers multiple sites (referred to as

cells in LTE), which are identified by a Physical layer Cell

Identity (PCI).

An EPC network is responsible for control functions such

as authentication, mobility and session management, and user

plane services. For mobility management, a Mobility Man-

agement Entity (MME) in the EPC network manages a set of

Tracking Areas (TAs), each of which contains several eNBs.

2.2 LTE Physical Layer Initial Access

10 ms

FRAME 0 FRAME 1 FRAME 2 FRAME 3

Subframe 0 Subframe 1 Subframe 8 Subframe 9

1 ms
Slot 0 Slot 1

0.5 ms
0 1 2 3 4 5 6Symbols

Figure 2: LTE frame structure type 1 [2]

LTE frame. The UE and eNB communicate with each other

based on the radio frame structure, as shown in Figure 22.

2The LTE-Frequency Division Duplex (FDD) mode was employed in this

study, as used by the majority of operators in the world [18].

56 28th USENIX Security Symposium USENIX Association

Each frame has a duration of 10ms and comprises 10 sub-

frames, each of which has a duration of 1ms. A single sub-

frame is further divided into two slots of equal duration and

each slot comprises seven Orthogonal Frequency Division

Multiplexing (OFDM) symbols.

Downlink Scheduling. In LTE, radio resources are allocated

in the unit of the Physical Resource Block (PRB) [2] that

contains 12 subcarriers (each with a bandwidth of 15 KHz)

and consumes one slot in time (0.5ms). The number of avail-

able PRBs in a frequency band is determined by the system

bandwidth. Depending on the size of the data, an eNB allo-

cates PRBs within a subframe (1ms), which is the smallest

scheduling time interval.

Channel estimation. When a signal travels through a wire-

less channel, the signal gets distorted due to several factors,

e.g., attenuation, phase-shift, and noise. To accommodate

those factors, wireless devices estimate the channel using

the following equation: Y (k) = H(k)X(k), where Y (k), H(k)
and X(k) represent a signal received by a UE, the channel

coefficient, and the signal transmitted by an eNB, respectively.

In LTE, a UE performs channel estimation based on the Refer-

ence Signal (RS) transmitted by the eNB. The UE calculates

H(k) from H(k) = Y (k)
X(k) as it already knows X(k) and Y (k)

value of RS. To minimize the effects of noise in the chan-

nel estimation, H(k) of RS is averaged using an averaging

window.

Cell search. When a UE is turned on, it has to find a suitable

cell to establish radio connections. To this end, it first attempts

to measure the Received Signal Strength Indication (RSSI) of

the candidate frequency channels. The UE selects the channel

with the highest RSSI based on the measurement. Thereafter,

the UE obtains time synchronization on a subframe basis and

the PCI of the cell by listening to a Primary Synchronization

Signal (PSS) and a Secondary Synchronization Signal (SSS).

The UE then decodes the Master Information Block (MIB) to

acquire the System Frame Number (SFN) and other physical

channels.

System information acquisition. After completing the cell

search procedure, the UE decodes a Physical Control For-

mat Indicator CHannel (PCFICH) and a Physical Downlink

Control CHannel (PDCCH) to decode downlink data. The

UE knows the number of OFDM symbols used to carry the

PDCCH at each subframe through the PCFICH. The UE then

decodes the PDCCH that contain the information on the re-

source blocks that the data and the demodulation scheme

required by the UE. After decoding the two channels, the UE

decodes the other system information broadcasted through a

Physical Downlink Shared CHannel (PDSCH). There are 22

System Information Blocks (SIBs), each of which contains

different cell-related system information [3]. Among them,

SIB1 and SIB2 are essential for a UE to connect to a cell. The

availability of other SIBs is indicated in SIB1.

Random access. A UE performs a Random Access CHannel

(RACH) procedure to establish a radio connection with the

eNB. To this end, the UE randomly chooses a Random Access

(RA) preamble sequence and transmits it to the eNB. Unless

the same preamble sequence is simultaneously transmitted

from a different UE, the UE successfully completes the RA

procedure.

2.3 Mobility Management
Radio Resource Control (RRC). When all the steps above

have been completed, the UE carries out a connection estab-

lishment procedure with the eNB (called RRC connection

establishment procedure). Upon the completion of the proce-

dure, the UE enters the RRC Connected state in which it can

communicate with the eNB. When there are no incoming and

outgoing data for a certain time period, the radio connection

between the UE and eNB is released, and the UE enters the

RRC Idle state, to reduce battery consumption.

Non-Access Stratum (NAS). NAS is a network layer pro-

tocol between the UE and MME for mobility and session

management. To register with the LTE network, the UE car-

ries out an ATTACH procedure. After the UE is successfully

registered with the LTE network, the MME knows the TA to

which the UE belongs and provides the UE of a list of TA

identifiers (TAIs). This TAI list is used by the UE to report its

location to the MME.

Idle state behavior. In the RRC Idle state, the UE periodi-

cally wakes up to read paging messages and SIB 1. When

there is incoming message to the UE, the MME that tracks

the UE sends a paging to all eNBs in the entire TAs assigned

to the UE, and those eNBs broadcast a paging message to

inform the UE of the arrival message. The paging message

contains either the temporary or permanent identity of the

UE. If the UE receives the paging message, it sends a RRC

connection request and a Service request message to the

LTE network. Paging is also used to notify the system in-

formation change or provide emergency alerts such as the

Earthquake and Tsunami Warning System (ETWS) and Com-

mercial Mobile Alert System (CMAS). The UE also reads the

SIB1 to identify the current TA. If the UE enters into a new

TA that is not in the TAI list, the UE sends a Tracking Area

Update (TAU) request to the MME to report its location. In

addition, the UE periodically measures the power and qual-

ity of the serving cell and neighboring cells by calculating

the Reference Signal Received Power (RSRP) and Reference

Signal Received Quality (RSRQ). When the RSRP of a neigh-

boring cell is higher than that of the serving cell by a certain

threshold, the UE selects new cell and camps on it (i.e., cell

re-selection).

2.4 Establishing Security Context
When a UE establishes a wireless connection with an eNB,

it registers with the LTE network to achieve a full connec-

tion with the network (this behavior is called ATTACH) by

providing its permanent identity, IMSI. Then, the MME and

the UE mutually authenticate each other and carry out a key

USENIX Association 28th USENIX Security Symposium 57

Cell

Attacker

Time

0 1 3 42

Subframes
0 1 3 42

Time

UE decodes attack signal

UEsTime

2

Figure 3: Overshadowing attack at a glimpse: By exploiting the

fixed transmission timings of LTE subframes, the attacker injects a

crafted subframe (in brown) that precisely overshadows the legiti-

mate subframe (in blue) without errors.

agreement procedure to create a security context (i.e., NAS

security context) for encryption and integrity protection. Af-

ter the Authentication and Key Agreement (AKA) procedure,

most messages between the UE and the MME are encrypted

and integrity protected with cryptographic primitives. On the

other hand, all initial procedures before establishing a security

context in the AKA procedure are not encrypted and integrity

protected by design. Those unprotected messages include pag-

ing, SIBs and several network layer initial messages specified

in the LTE standard [5].

3 Overshadowing LTE Broadcast Message

In this section, we present the attack model, followed by a de-

scription of the SigOver attack. The SigOver attack is demon-

strated by using an SDR that is widely used today (i.e., Uni-

versal Software Radio Peripheral (USRP) [16]). Lastly, we

compare the SigOver attack with typical FBS attacks to show

the effectiveness of the former.

3.1 Attack Model
We assume an active adversary with minimum privilege. The

proposed attack model can be described as follows: (i) The

adversary does not know the LTE key of the victim UE. (ii)

The adversary is able to eavesdrop on the downlink broadcast

messages transmitted from the legitimate LTE cell to the

victim UE(s). However, as the victim key is unavailable, the

encrypted messages cannot be decrypted. Note that (ii) is

trivially achievable because messages are transmitted through

the open medium. Under the above assumptions, we show

that an active adversary can inject malicious messages into

the victim UE(s) by overwriting the legitimate messages. This

is achieved by carefully crafting a message that overlaps a

legitimate message with respect to time and frequency. In

Section 3.5, we discuss the fundamental differences between

the proposed attack model and typical FBS attacks [21, 22,

36, 37, 39].

3.2 SigOver Attack Overview
This section briefly outlines the design of the SigOver attack.

As discussed in Section 2, the LTE downlink is scheduled in a

subframe granularity with a duration of 1ms. Each subframe

is encoded separately by the base station, and is therefore

decoded accordingly by the UE. Under this frame structure,

Figure 3 conceptually illustrates the SigOver attack, where

the attacker injects a crafted subframe (brown color) that

precisely overshadows the legitimate subframe (blue color).

Since the subframes are decoded independently from one an-

other, the legitimate (non-overshadowed) subframes are gen-

erally not affected. At the same time, the injected subframe is

crafted such that the UEs that have received and decoded the

subframe behave based on the included information, which

typically yields an abnormal or malicious behavior - an in-

tended behavior by the attacker. The inherent vulnerability of

LTE broadcast messages enables an attacker to launch vari-

ous types of attacks using legitimately-looking messages (i.e.,

insidiously).

In principle, the SigOver attack leverages the capture ef-

fect [51], wherein the stronger signal is decoded when multi-

ple simultaneous wireless signals (i.e., legitimate and crafted

subframes) collide in the air. This is true for signals with

a slight power difference of 3 dB [29]. Two technical chal-

lenges to launch the SigOver attack are (i) carefully craft-

ing the overshadowing message to be decoded by the victim

UEs (Section 3.3), and (ii) the stringent requirement of the

transmission timing and frequency for precise overshadowing

(Section 3.4).

3.3 Crafting a Malicious Subframe
Here we illustrate how to craft a subframe that can be suc-

cessfully decoded at the victim UE for a successful attack.

Communication configuration matching. For the SigOver

attack, the attacker must first identify the physical configu-

ration of the legitimate cell on which the victim UEs are

camping, to determine the structure of the attack subframe.

The necessary physical configuration information for valid

subframe construction includes the PCI, channel bandwidth,

PHICH configuration, and transmission scheme (or the num-

ber of antenna ports); all of which are available to the attacker

once the attacker camps on the same legitimate cell. In partic-

ular, PCI is calculated from the PSS/SSS, and the remaining

information is obtained from the MIB. Furthermore, the at-

tacker must synchronize with the SFN of the legitimate cell,

which is also available in the MIB, to determine the injection

time of the attack subframe.

Subframe structuring and injection. In LTE, when a UE

reads a broadcast message, it decodes the following informa-

tion from a subframe: i) a Control Format Indicator (CFI) that

contains the control channel structure, ii) Downlink Control

Information (DCI) that contains the allocated resource (i.e.,

resource blocks) for the message, and iii) the resource blocks

(RBs) that contain the message itself. The CFI and DCI are

58 28th USENIX Security Symposium USENIX Association

Subframe 8 Subframe 9 Subframe 0

Synchronized

Figure 4: Oscilloscope snapshot showing precise time synchroniza-

tion between a legitimate (in red) and a crafted signal (in blue).

transmitted over the PCFICH and PDCCH respectively; and

the message is transmitted over the PDSCH. Therefore, to

inject a subframe, the attacker needs to craft a subframe that

contains the PCFICH, PDSCH and PDSCH. However, the

injected subframe containing those values may not be de-

coded correctly at the UE due to a channel estimation error.

Note that the UE estimates the channel from the RS transmit-

ted by the legitimate eNB, yet the estimation result may be

inappropriate to decode the injected subframe correctly. To

address this issue, the RS is included in the subframe for the

SigOver attack, which significantly increases the robustness

of the SigOver attack.

The last technical challenge related to the decoding of the

crafted subframe is with respect to wireless channel estima-

tion and equalization, for recovery from the signal distortion

due to the channel. In the SigOver attack, the channel is esti-

mated either dominantly (even solely depending on the paging

occasion) from the crafted subframe (RRC Idle), or it is av-

eraged from consecutive subframes (RRC Connected) along

with multiple legitimate subframes. In the former, a single in-

jection is sufficient for the attack (i.e., decoding of the crafted

subframe). In the latter, repeated injections are needed to ef-

fectively reflect the wireless channel between the attacker and

the victim UE. According to our measurement (Section 4)

which injected one subframe for every SFN, SigOver attack

reaches over 98% success rate in less than a second while

maintaining reliable communication for legitimate subframes.

In Appendix A, we present empirical results showing that

legitimate communication is minimally affected by SigOver

attack using several services including web browsing and

streaming.

3.4 Accurate Overshadowing

Overshadowing requires the crafted subframe to overlap the

legitimate signal precisely in both the time and frequency

domains. This subsection discusses how this is achieved.

Time synchronization. To precisely overshadow legitimate

subframes, an attacker needs to know the subframe timing

(to determine when a subframe starts) and SFN (to determine

when to inject the subframe with respect to the frame number)

from the legitimate cell. The attacker obtains the subframe

timing from the synchronization signals (i.e., PSS/SSS) and

the SFN from the MIB of the legitimate cell. The attacker

(C) UE
(B) Attacker

(A) Cell

where
: propagation delay
: cell radius
: speed of light
: cell radius

Figure 5: Propagation delay in the 3-sector cell configuration ac-

cording to the location of the victim UE and the attacker. The attacker

and victim UE are assumed to be within a cell coverage (the green

sector form)

continuously obtains the subframe timing and the updated

SFN, as the values vary over time depending on the channel

condition. With the knowledge of the subframe timing and

the SFN, the SigOver attack precisely synchronizes the trans-

mission time of the crafted subframe with that of the target

broadcast message (see Figure 4).

As shown in Figure 5, however, the crafted subframe trans-

mitted at the acquired subframe timing may still arrive at the

UE with a slight timing offset (with reference to the legitimate

subframe) due to the propagation delay. Although the delay

(d) is unavoidable (as the propagation delay is immeasurable

by the attacker), its impact is minimal. This is because the

baseband processor in the UE is designed to compensate the

delay due to mobility and environmental effects [48]. Since

the maximum delay that can be compensated is dependent on

the baseband processor of the UE, we perform the following

experiments to measure the delay. We assumed the typical

three-sector cell configuration wherein the transmission angle

of the cell is 120◦ [10]. The delay (d) is maximized when the

attacker and the victim UE are located at both ends of the arc.

This translates to d = 8.66μs under a typical cell radius of

approximately 1.5km in urban environments. We measured

the offset tolerance on two devices with different basebands

(Qualcomm and Exynos), and the tolerance was larger than

the maximum delay (i.e., 8.66μs) (see Section 4 for detailed

experimental results).

Frequency synchronization. The operating frequency of a

radio device is determined by the oscillator, where it inevitably

suffers from a device-specific offset that is randomly imposed

during manufacturing and generated during operation due to

environmental effects (e.g., temperature). Such an imperfec-

tion in the oscillator is reflected in the radio signal as carrier

frequency offset. In LTE, there are a number of readily avail-

able techniques [27, 50] to compensate for offsets up to a

certain level (e.g., Up to ±7.5KHz for PSS based compensa-

tion in the LTE 15KHz subcarrier spacing [38]). Therefore,

for the reliable implementation of the SigOver attack, the off-

set should be maintained below that level in the UE, at all

times.

The LTE standard defines the minimum frequency accu-

USENIX Association 28th USENIX Security Symposium 59

Table 1: Comparison of the SigOver, FBS and MitM Attacker

Stealthiness Power efficiency Attack sustainability
FBS Low Low Low

MitM Limited∗ Low Limited∗
SigOver High High High
∗ "Limited" means that the attack works in an limited environment

racy of a base station of ±50 ppb [1] for macro base stations.

To satisfy the requirement, eNBs are equipped with highly

accurate oscillators and further augmentation techniques such

as a precision time protocol and GPS. In contrast, the SigOver

attack was run on a typical, inexpensive SDR with an inaccu-

rate oscillator (±2500 ppb for the USRP X310 [16]). A GPS

disciplined oscillator (GPSDO) was employed, namely, an

oven-controlled crystal oscillator (OCXO) to reduce the fre-

quency offset to an appropriate level. The GPSDO provides a

sufficient accuracy of ±25 ppb [14, 32] and is highly stable

(±1 ppb when the GPS locked). This indicates a frequency

offset of up to ±270Hz (at 3.6GHz with an offset of 75 ppb),

within the LTE FDD frequency range of 460MHz-3.6GHz [6].

Our experiment confirms that all 10 devices (listed in Sec-

tion 5) can compensate such small frequency offset to enable

a reliable SigOver attack.

3.5 Comparison of SigOver, FBS and MitM
Attacks

Although the FBS and Man-in-the-Middle (MitM) attacks

can be used for broadcast message manipulation in LTE, only

the former has appeared in the literature. In this section, we

extensively analyze the FBS and MitM attacks in comparison

with the SigOver attack with respect to stealthiness, power

efficiency, and sustainability (see Table 1).

3.5.1 Attacks using FBS

The FBS attack is one of the most commonly used attacks

against cellular networks [21, 22, 26, 36, 39, 40]. In an FBS

attack, the attacker (i.e., the FBS) attracts victim UEs to camp

on itself by transmitting a stronger signal than legitimate cells.

The attacker then injects unprotected yet legitimate-looking

messages to the victim UE. The FBS attack has the following

limitations when compared with the SigOver attack.

Power Efficiency. In general, a UE selects the cell that trans-

mits signals with the highest power. However, it has not been

well investigated how much stronger signal the FBS should

transmit than a legitimate base station to attract nearby victim

UEs. This is an important question to be answered for the

attacker, as higher power increases the chance of attracting the

UE at a greater risk of being detected through power measure-

ments (e.g., RSRP, RSRQ). According to the experimental

measurements, the FBS attack reaches 100% success at 40 dB,

whereas the SigOver attack was 98% successful at 3 dB (see

Table 2). In particular, the FBS requires a power consumption

greater than that of the SigOver attack by a factor of 5000, to

achieve a comparable attack success rate.

Legitimate
Messages

Malicious
Messages

Camp on
Fake BS

(a) FBS attack

Legitimate
Messages

Malicious
Messages

(b) SigOver attack

Figure 6: Signaling messages during FBS and SigOver attack

Stealthiness. In general, an FBS is configured to masquer-

ade as a legitimate base station as presented in previous

studies [21, 22, 39, 40]. For example, the FBS broadcasts

the same MIB and SIB1/2 messages as those of the legiti-

mate cell and may use the same PCI to make itself indistin-

guishable from the legitimate ones. Nevertheless, the FBS

inevitably carries several unique and clear signatures for de-

tection [25, 30, 33, 49, 53]. First, as discussed earlier, an FBS

attack uses ×10,000 stronger power (cf. ×2 for SigOver at-

tack) than a legitimate cell, which is a clear indicator of the

FBS. Second, when an FBS attracts a victim UE camping on

a legitimate cell, the victim must undergo a cell re-selection

process, where the victim UE reads the MIB and SIB1/2 mes-

sages from the FBS (Figure 6a). Third, the operation of the

FBS may be very different from the legitimate ones due to

its limited physical capabilities compared to the real base

station3. Such operational characteristics include a relatively

low paging rate, in addition to different RF properties such as

a large frequency offset due to the low cost hardware. Finally,

the FBS cannot establish a secure connection with the UE or

transport protected NAS messages between the UE and the

network (i.e., MME), which results in a denial of service to

the UE. Hence, it is highly probable that a UE is able to detect

an FBS. On the other hand, the mechanism of the SigOver

attack is to precisely overshadow a specific broadcast message

without interfering the synchronization between the victim

UE and current cell. Therefore, as shown in Figure 6b, the

UE does not carry out cell re-selection or reconfigure any cell-

specific parameters. The UE subject to the SigOver attack

maintains secure signaling connections with the legitimate

eNB and MME.

Sustainability. If a victim UE camps on an FBS, it cannot

receive the service via the FBS. This can be used by the UE

as a potential FBS detection mechanism as mentioned above.

To avoid such detection, the FBS may take the following

strategy: it injects a malicious message to the UE, and releases

a connection (e.g., by causing a radio link failure or triggering

cell re-selection at the UE) so that the victim UE returns to

a legitimate cell. Under this scenario, however, the injected

3A state-sponsored attack with unlimited resource and capabilities was

not considered.

60 28th USENIX Security Symposium USENIX Association

message should be selected such that the attack sustains even

if the UE makes a cell change (e.g., TAU Reject [39]) or has

an immediate impact on the UE (e.g., emergency warning

message [21]). Thus, it is not an appropriate attack vector

to exploit broadcast messages (e.g., SIB messages) that are

refreshed when the serving cell changes. This makes the FBS

attack either limited in terms of attack scope (as exploitable

messages are very limited) or less sustainable in its duration.

3.5.2 MitM attacks

Recently, a new type of FBS attack referred to as the aL-

TEr [37] attack was discovered. This is an MitM attack that

employs an FBS with eNB and UE capabilities. The eNB

component of the FBS impersonates a legitimate eNB by

relaying the messages from the eNB to a victim UE. In addi-

tion, the UE component of the FBS impersonates the victim

UE by relaying the messages from the UE to the eNB. By

sitting between the victim UE and the eNB, the MitM at-

tacker manipulates user plane messages since the messages

are not integrity-protected in LTE. The MitM attack inherits

two aforementioned limitations of the FBS attack, namely,

a high power consumption and low stealthiness, since the

MitM attacker should attract the victim UEs in the same man-

ner. Meanwhile, in principle, the MitM attack does not affect

the connection between the victim UE and the eNB, thereby

making the attack sustainable. However, we noticed that it

is non-trivial to implement an MitM attacker for various rea-

sons. First, to maintain the connection with a victim UE, the

MitM attacker should relay all uplink and downlink messages

exchanged between the victim UE and the eNB. To this end,

the attacker must know the UE’s radio resource settings con-

figured by the eNB and configure the radio resource for the

UE accordingly. Otherwise, the radio connection between

the UE and the eNB may become unstable or fail. However,

since the message that contains the radio resource setting

(i.e., RRC reconfiguration) is encrypted, the attacker cannot

properly configure the UE’s radio resource. We note that the

RRC reconfiguration contains a large number of PHY, MAC,

RLC, and PDCP configurations for the UE.

To address this issue, the aLTEr attack used the radio config-

uration in a heuristic manner under the following conditions:

(i) a victim UE receives the service using the default radio
configuration, and (ii) the default radio configuration of an

operator is stable. That is, only a few parameters (e.g., schedul-

ing request (SR) and channel quality indicator (CQI) configu-

ration) are changed for each radio configuration; whereas the

others are the same. Thus, the attacker only needs to guess

the CQI and SR configurations. However, in the real world,

the eNB frequently changes the UE’s radio configuration de-

pending on the service that the UE is using and/or the current

channel condition (e.g., initiating carrier aggregation, starting

a Voice/Video call service, service priority, or channel qual-

ity change due to mobility). We observed that when a UE

watched a YouTube video for 2 minutes under a bad chan-

A

B

Door

Wall

Injector

Figure 7: Experiments are conducted at two UE locations, A and B:

A is 2m away from the attacker with line of sight. B is 10m away

from the attacker, separated by a wall (i.e., non-line of sight). We

refer to the former and the latter as LOS and NLOS, respectively.

nel condition, it received 9 RRC reconfiguration messages

from the eNB, where the length of each message varied from

18 bytes to 109 bytes. Note that, as the attacker is only able

to know the message length and the sequence of message

delivery, it may not correctly guess the configuration. We

also observed that 8 out of 9 messages have different CQI

configurations which also need to be guessed.

These limitations apply to all MitM attacks, even when the

attacker attempts to manipulate the broadcast message. How-

ever, the SigOver attack does not suffer from such limitations,

as it only utilizes a persistent radio configuration acquired

from the MIB of the legitimate cell (see Section 3.3).

4 Real World Experiment
In this section, we perform SigOver attack in the wild, and

analyze the reliability of the attack.

4.1 Experimental Setup
We implement the SigOver attack based on the pdsch_enodeb,

which contains a basic transmission function as part of

srsLTE [43]. We add a custom-built receive function for

time synchronization with the legitimate cell. The subframes

were crafted using the srsLTE library. Moreover, an USRP

X310 [16] equipped with a UBX [15] daughter board and

GPSDO [14] was employed, which was connected to an Intel

Core i5-3570 machine with an Ubuntu 14.04. To overshadow

the signal from a legitimate eNB, the USRP was augmented

with ZVE-2W-272 amplifier [28], if needed. Victim UEs are

commercial smartphones that camp on a legitimate LTE cell

with a 20MHz bandwidth. In addition, the diagnostic mon-

itor tools (e.g., SCAT and XCAL [8, 42]) were used for the

analysis of the transmitted and received messages at the UE.

Figure 7 illustrates the two locations within a university

office, where two sets of experiments were conducted, as

follows: (LOS) The victim UE and the attacker were in the

same room, separated by a distance of 2m. (NLOS) The victim

UE and the attacker were in different rooms separated by a

USENIX Association 28th USENIX Security Symposium 61

wall and distance of 10m. These two environments were used

for experiments throughout the study.

Implementation details. An attacker acquires the informa-

tion of the target benign cell (PCI, MIB) using pdsch_ue or

diagnostic tools [8, 42]. She acquires time synchronization

with the target cell (mimicking the procedure for a benign UE

to camp on a cell by getting the PSS/SSS and MIB). After she

obtains the arrival timing and SFN information of the LTE

frame transmitted by the benign cell, she transmits the mali-

cious message to the target SFN. Thereafter, she continuously

receives the PSS/SSS (every 5ms) and MIB (every 10ms)

transmitted by the benign cell and updates the synchroniza-

tion information. Self-interference may cause synchroniza-

tion problems, because Rx and Tx are in the same frequency.

However, due to the precise overshadowing, the SigOver at-

tack can minimize the effects on the legitimate PSS/SSS and

MIB (there was no case of losing synchronization due to the

self-interference).

As a minor issue, the USRP X310 generated an unintended

high peak signal at the beginning and end of the signal when

carrying out a burst transmission which SigOver attack does.

This is due to the state change of the front-end components

of the SDR. When there was no transmission, it was in the

idle state. When transmission occurred, the transition to the

transmitting state caused unwanted noise. We resolve this

problem by simply padding zero to the front and back ends

of the signal to separate the unwanted noise from the original

signal, and by compensating the delay due to the zero padding

during transmission.

Ethical considerations. As the attacker, we use a downward-

facing dome-shaped antenna to minimize upward interference.

In addition, we perform the experiments on the first basement

level, which is the lowermost floor of the building. The base-

ment floor was restricted during the experiments to prevent

normal users from receiving the crafted signal. The experi-

mental results with respect to the impact of the crafted signal

revealed that the users upstairs and outside the building nor-

mally communicate with the legitimate base station without

being affected by the signal. The signaling storm attack ex-

plained in Section 5.1.1 was run in a carrier’s shielded testbed

network, since the attack may cause a DoS on an operational

network.

4.2 Practicality
In this section, we evaluate the practicality and robustness of

the SigOver attack in the LOS/NLOS environment. We use an

LG G7 ThinQ smartphone with SnapDragon845, which is the

latest Qualcomm LTE chipset. We inject a paging message

with the S-TMSI4 intentionally set as an invalid value of

0xAAAAAAAA, to differentiate the injected subframe from the

legitimate subframes.

4S-TMSI is the shortened form of GUTI.

Table 2: Success rate of SigOver and FBS∗ attack

Relative Power (dB) 1 3 5 7 9
SigOver 38% 98% 100% 100% 98%

Relative Power (dB) 25 30 35 40 45
FBS attack 0% 0% 80% 100% 100%

∗ The FBS sets the same freq. band, PCI, MIB and SIB1 to the legitimate

cell. If the victim UE camped on the FBS within 10s after it operates, the

attack was considered a success. The FBS experiment was run 10 times

for each power level. The SigOver experiment was performed with 100

paging messages for each power level.

Table 3: Success rate of SigOver attack in various conditions.

LOS NLOS
RRC Connected 97% 98%

RRC Idle 100% 98%

Power cost. The SigOver attack exploits the capture effect,

where it injects a stronger signal to overshadow the legitimate

signal, which is at a lower power level. Moreover, we inject

100 paging messages into a victim UE in the RRC Idle state,

and measure the success rate of the attack depending on the

relative power between the injected and legitimate signals in

the LOS environment. Table 2 shows that the SigOver attack

achieves the success rate of 98% at 3 dB.

Attack robustness. Table 3 summarizes the success rates of

the SigOver attack for different combinations of experimen-

tal settings (LOS/NLOS) and RRC states (Idle/Connected).

Each measurement was an average of 120 injected paging

messages. In the RRC Idle state, we inject a paging message

at the exact paging occasion (e.g., Subframe 9) and paging

frame (e.g., SFN%256 = 144) of the victim UE. As discussed

in Section 3.3, in the RRC Idle state, the channel estimation

is carried out solely on the injected signal; whereas in the

RRC Connected state, the average of the channel estimated

from a set of the injected and legitimate signals is consid-

ered. In other words, in the RRC Idle state, injected signals

are individually decoded without the impact of the legitimate

signals; thus successful attacks (i.e., correct decoding) can

be achieved with a single injection. However, in the RRC
Connected state, repeated injection is required to overcome

the influence of the legitimate signals. To achieve this, we

inject a paging message at the exact paging occasion/frame

of the victim UE. Simultaneously, we also inject a subframe

with RS at every SFN, to reflect the channel of the injected

signal and enable a successful attack. As shown in Table 3,

the SigOver attack maintained a success rate greater than 97%

in different RRC states and the LOS and NLOS setups, thus

validating the robustness of the SigOver attack with respect

to operating modes and environmental factors (e.g., multi-

path). Finally, during the experiments the victim UE neither

reported any radio link failures nor initiated radio connection

re-establishment (i.e., RRC Reestablishment request). This

implies that the SigOver attack is non-disruptive to the victim

UE and its service. Furthermore, we verify that the SigOver

attack maintains 100% success rate for over 100 SIB 1 and

SIB 2 messages in the RRC Idle state and LOS setup.

62 28th USENIX Security Symposium USENIX Association

Table 4: Time tolerance of two smartphones.

Time (μs) LG G7 (Qualcomm) Galaxy S9 (Exynos)
Min. -2.93 -2.60
Max. 9.77 8.46

Max. tolerance∗ 12.7 11.06
∗ Note that the SigOver attack succeeds if d < Max. tolerance,

regardless of the cell radius; where d is defined in Section 3.4

Attack coverage. As described in Section 3.4, a crafted sub-

frame may arrive at victim UE with a slight timing offset due

to the propagation delay of the injected signal from the at-

tacker to the victim UE. The decoding of the crafted subframe

requires the offset to be bounded within the tolerance range

of the UE LTE chipset. Hence, the largest tolerable offset

determines the maximum propagation delay; or equivalently,

the maximum distance between the attacker and the UE (i.e.,

the attack coverage). The attack coverage was experimentally

evaluated, wherein the propagation delay between the attacker

and the UE was emulated by time-shifting the transmission

timings of the crafted subframes. We gradually changed the

shift in the unit of 10 samples (=0.33μs at 30.72Msps), un-

til the crafted subframes were not decoded; which indicates

the maximum delay tolerance. Table 4 presents the tolerance

measured from two smartphones with different basebands –

LG G7 (Qualcomm), and Galaxy S9 (Exynos). The tolerance

offset was consistently higher than 8.66μs across all the de-

vices. With reference to the tolerance-distance relationship

discussed in Section 3.4, the results indicate that the SigOver

attack can cover the entire urban cell (typical radius of 1.5

km) at all times, irrespective of the relative positions of the

UE and attacker.

5 Attack Scenarios and Implications

This section presents several attack scenarios using the

SigOver attack, in addition to their practical implications.

The SigOver attack can be used to exploit two broadcast

messages; SIB and paging. All the attacks were run in the

LOS setup presented in Section 4, with the exception of the

signaling storm attack. To validate the proposed attacks on

the various baseband chipset types, ten LTE capable smart-

phones were employed: one Intel (iPhone XS), six Qualcomm

(Galaxy S4/S8/S9, LG G2/G6/G7), and three Exynos (Galaxy

S6/S8/S9) chipset equipped smartphones.

5.1 Attacks Exploiting SIB
In this section, a discussion on two types of attacks via SIB

injection, namely, signaling storm and selective DoS, is pre-

sented.

5.1.1 Signaling Storm

Attack mechanism. When a UE moves to a new cell, the

UE retrieves the Tracking Area Code (TAC5) contained in the

SIB1 from the new cell and validates it using the TAI list in the

5TAC is the shortened form of TAI.

TAI

UE eNB2 MME

SIB1 (TACeNB2)

eNB1

TAU Accept (New TAI List)

TAU Request

Move to
another cell

SIB1 (TACeNB1)

(a) Normal TAU

TAI

UE eNB1 MMEAttacker

(2) SIB1 (TAC)

TAU Request

TAU Accept (Same TAI List)
SIB1 (TAC)

AAAA

(1) Paging

Inject in sequence

Repeat TAU procedure

(b) SigOver TAU

Figure 8: Normal and attack case for TAU procedures

UE. If the TAC is not included in the list of TACs on the UE,

the UE initiates a TAU procedure to notify the LTE network

of the updated TAC. The SigOver attack incurs the signaling

storm by repeatedly triggering invalid TAU. Figure 8 illus-

trates the attack process when compared with the normal (i.e.,

without attack) operation. The attacker first overshadows a

paging message with the system_Info_Modification field set

as true, thus forcing the UEs to read SIB1. The SIB1 is then

overshadowed using a spoofed TAC, thus leading to the TAU.

It should be noted that the TAU request messages are directed

to the legitimate eNB, because the SigOver attack preserves

the radio connection between the victim and the legitimate

eNB. Repeating this procedure results in the signaling storm

on the LTE network. On the contrary, under normal circum-

stances, the TAU is performed only once each time the UE

moves to another TA not included in the TAI list.

Validation. This attack was validated using a carrier’s testbed

LTE network with nine LTE devices6 registered to the testbed

network. Each device was running the diagnostic monitor

tools (e.g., SCAT, XCAL [8, 42]) for the analysis of the UE-

side signaling messages throughout the attack. Figure 9 re-

veals that a single UE carries out an average of seven TAU

procedures per second, which is unlikely under the normal

conditions without the attack. Moreover, the UE-side signal-

ing messages were analyzed to better understand the behavior

of the network under the attack. When the victim UE carries

out the TAU with the spoofed TAC (irrespective of the validity

of the TAC value), the network returns the same list of TACs

previously provided during the legitimate registration. This is

because the serving cell is unchanged. That is, the list of TACs

still does not include the victim UE’s spoofed TAC. Hence,

the victim UE repetitively carries out the TAU upon receiving

the SIB1 message from the attacker. Nokia reports [31] that

a UE generates approximately 45 service requests7 during a

peak busy hour. However, the signaling storm via the SigOver

attack induces a more significant network traffic, e.g., an at-

tacker is able to trigger an average of 25,200 TAUs per UE per

6The iPhone was excluded because our monitoring tool does not support

it
7UE sends a Service request during the connection initiation to the

LTE network.

USENIX Association 28th USENIX Security Symposium 63

7

...

7

7

Figure 9: Wireshark snapshot of TAU Request messages generated

by the SIB1 spoofing.

hour. Given that the number of signaling messages generated

through the TAU and service request is similar, the attacker

can generate more traffic than that generated during a peak

hour by a factor of 560. This clearly demonstrates the signif-

icant impact of the signaling storm attack, which imposes a

heavy signaling load on the network and causes severe battery

drainage for the UE.

Boosted impact of Qualcomm chipset. A sustained signal-

ing storm attack requires the attacker to continually inject

SIB1 messages. However, the smartphones equipped with the

Qualcomm baseband (e.g., Galaxy S4/S8/S9, LG G2/G6/G7)

malfunctioned, thus generating TAUs indefinitely after a sin-

gle SIB1 injection. In particular, the UE continued to perform

the TAU procedure, even after the attacker stopped injecting

SIB18. The malfunctioning UE exhibits a normal behavior to

the user, which indicates that the data/call service can be used

without disrupting the user. Although the malfunction can be

fixed by setting the UE in airplane mode, the user is unlikely

to do so without noticing any problems. This indicates that the

attack is sustained, even with the low-cost efforts to further

strengthen its impact.

Infeasibility of the FBS or Rogue UEs. The signal storm

attack seems to be achievable with an FBS. However, the

injection of malicious SIB1 (containing the spoofed TAC) via

the FBS does not lead to the signaling storm attack. This is

because under the FBS, the TAU request from the victim UE

is directed to the FBS, instead of the legitimate LTE network.

In other words, the signals do not reach the LTE network;

thus, the signaling storm attack is inherently unachievable

for the FBS. Moreover, exploiting a number of rogue UEs

may induce the signaling storm on the network. However,

this approach is limited with respect to its scalability, wherein

it requires multiple radio devices and SIM-cards for each

device, to induce the same effect as the SigOver attack. On

8The root cause of this malfunctioning is the implementation logic of the

Qualcomm LTE chipset, which did not read the SIB1 after completing the

TAU. As a result, they could not recognize the legitimate SIB1 that contained

correct TAC, and the TAU was carried out until the legitimate SIB1 was

re-read.

SIB2
ac-BarringInfo

…1 …. ac-BarringForEmergency: False

(a) Original SIB2

SIB2
ac-BarringInfo

…1 …. ac-BarringForEmergency: True
ac-BarringForMO-Signalling

ac-BarringFactor: p00
ac-BarringTime: s512
ac-BarringForSpecialAC: ‘11111’B

ac-BarringForMO-Data
ac-BarringFactor: p00
ac-BarringTime: s512
ac-BarringForSpecialAC: ‘11111’B

ac-BarringSkipForMMTELVoice-r12: True

(b) Malicious SIB2

Figure 10: Access control feature in SIB2 message

the other hands, the SigOver attack uses a single radio device

that covers an entire cell and forces several authentic users

camping on the cell to initiate the TAU procedure.

5.1.2 Selective DoS through Access Barring
Attack mechanism. The cellular network has control over

the number of UEs that can access the network. This feature

is to manage the amount of traffic and maintain the stability

of the network under specific conditions, e.g., a disaster. The

control is realized using the BarringFactor parameter in SIB2,

which is exploited by the SigOver attack to block the victim

UE. By setting BarringFactor as 0 (via overshadowing), an

attacker can restrict all data traffic and signaling from the UE

(i.e., mobile originating)9, which leads to DoS.

Figure 10 presents the configuration of the malicious SIB2

in the crafted subframe in comparison with the original SIB2

in a legitimate subframe. To maximize the impact of the at-

tack, the SigOver attack sets the BarringTime to 512s, which

is the maximum value as per the standard. Note that Bar-
ringTime can be refreshed if the attacker repeats the attack

within the remaining BarringTime; thus, a persistent DoS can

be achieved. To properly inject the crafted subframe (simi-

larly to the signaling storm), the attacker first overshadows a

paging message with system_Info_Modification. Thereafter,

she overhears the legitimate SIB1 to extract the SFN, from

which the attacker can obtain the schedule of the next SIB2

for overshadowing. A potential extension of this attack is

service-specific DoS to selectively block only the targeted

services (e.g., voice call, video conference, and SMS). This

leverages a new service-specific barring feature introduced in

3GPP specifications [7].

Validation. This attack was validated using 10 different

smartphone models. Upon the successful SigOver attack

(i.e., injected paging and SIB2 are received); entire data ser-

vices, which include web browsing and video streaming were

blocked on all 10 devices. From the analysis of the device

logs, it was found that all the devices failed to initiate any con-

nection when applications made multiple connection requests.

This confirms the feasibility of the barring via the SigOver at-

tack. Moreover, the service-specific DoS was validated using

9The attacker can also block the mobile terminating traffic by overshad-

owing the paging channel of the victim UE.

64 28th USENIX Security Symposium USENIX Association

the Samsung Galaxy S9 based on the Exynos chipset.

Comparison with the FBS. An FBS can also inject mali-

cious SIB2. However, the attack is only valid when the FBS is

turned on, and immediately stops when the FBS is turned off.

This is because the victim UE connects to the legitimate cell

shortly after disconnection from the FBS. During the connec-

tion to the legitimate cell, the victim UE reads the legitimate

SIB2, which recovers UE services. Conversely, the services

of the victim UE remain blocked after SigOver attack stops,

as this does not incur cell reselection. Furthermore, the FBS

cannot achieve the service-selective DoS, as it cannot provide

the LTE service.

5.2 Attacks Exploiting Paging

In this section, we present three attacks through the SigOver

attack on the paging message: DoS attack, network downgrad-

ing, and location tracking.

5.2.1 DoS Attack by Overshadowing Paging with IMSI

Attack mechanism. When the GUTI of the UE is unavail-

able, the network sends paging message with IMSI as an

identifier of UE. As defined in the 3GPP standards, upon re-

ceiving the paging that contains the IMSI, the UE terminates

all service sessions and initiates the registration procedure

using the IMSI as the identifier [5]. This implies that the DoS

attack can be realized by injecting the paging message with

IMSI10. Specifically, the attacker injects a paging message

that contains the IMSI of the victim UE at the paging oc-

casion/frame of the victim UE. This attack detaches a UE

from the cellular network services, which include voice call

and data services, thus indicating a DoS at the UE. As the

registration procedure (which follows the service termination)

automatically recovers the services, the attack is sustained by

the repeated injection of the paging message.

Validation. This attack was validated using 10 different smart-

phone models in two different operation states (RRC Idle and

RRC Connected). Specifically, in the RRC Idle state, we con-

firmed that the UEs successfully received the overshadowed

paging message. Furthermore, the internal logs in the UEs

confirmed the expected impact of the attack, i.e., detachment

from the network followed by the registration procedure, thus

leading to DoS.

For following experiment, we launched the attack on the

UE in the RRC Connected state. Note that the SigOver attack

enables the attacker to convey the crafted message to the UE

on the existing radio connection between the UE and the eNB.

We first make a voice call on the victim UE to force the UE to

enter the RRC Connected state. We then transmitted the pag-

ing message with IMSI to the UE. Interestingly, we observed

that not all UEs handled the paging messages in the RRC Con-
nected state. In particular, the Samsung Galaxy S8/S9, LG

10Acquiring IMSI is extensively discussed in the previous work [11, 44]

G6/G7 (Qualcomm), Samsung Galaxy S8/S9 (Exynos), and

Apple iPhone XS (Intel) properly handled the paging mes-

sage with IMSI, after which the call was immediately aborted

(service termination). Meanwhile, the Samsung Galaxy S6

(Exynos), and Galaxy S4, LG G2 (Qualcomm) did not respond

to the attack in the RRC Connected state.

The inconsistencies between the devices stem from the

ambiguity of the 3GPP standards. The mechanism used to

handle paging in the RRC Connected state is loosely defined,

without specific direction on paging with IMSI, e.g., only in-

formation on paging with the system information notification

or CMAS/ETWS [3] is provided. In summary, by injecting

the paging message with IMSI , the SigOver attack can realize

a DoS on the victim UE in RRC Idle and RRC Connected
states, depending on the device.

Comparison with the FBS. This attack scenario was exten-

sively discussed in the previous work [21, 35] leveraging

the FBS. Although the impact and the attack vectors are

equivalent, the applicability of the existing attacks is lim-

ited when compared with the SigOver attack. This is because

the SigOver attack uniquely enables the attacker to deliver

the paging message to the UE which has an active radio

connection with the network, whereas other works are only

applicable to UEs that use no services; thus indicating the

wider applicability of the SigOver attack.

5.2.2 Network Downgrading Attack via CS Paging

Attack mechanism. In this attack, an attacker injects a paging

message with a Circuit Switched (CS) notification (with the

S-TMSI of the victim UE) to intentionally downgrade victim

UEs to the 3G network. Upon the reception of the CS paging,

the UE initiates the Circuit Switched Fall-Back process and

transits to the 3G network. That is, the SigOver attack enables

the attacker to force the UE to a slower connection.

Validation. We experimentally confirmed that the victim UE

in the RRC Idle state immediately switched to the 3G network

when the attacker’s CS paging was received, after which it

soon reverted back to the LTE network because there was no

actual service in the 3G network. The attack was effective for

the state-of-the-art smartphones, e.g., the Samsung Galaxy

S8/S9, LG G6/G7 (Qualcomm), and Samsung Galaxy S8/S9

(Exynos), as they were able to respond the CS paging mes-

sage the both RRC Idle and RRC Connected states. However,

similar to the paging attack with IMSI, some smartphones did

not respond to the CS paging in the RRC Connected state,

and were therefore immune to the attack. Interestingly, when

the Samsung Galaxy S8 (Qualcomm) dropped to the 3G net-

work due to the attack, the LTE connection was never restored

while using data service.

Comparison with the existing attack. Tu et al. demon-

strated the throughput degradation attack against an victim UE

by invoking the CS paging, which is similar to our attack [47].

However, in this study, the network was driven to send the

paging message on behalf of the attacker, by establishing a

USENIX Association 28th USENIX Security Symposium 65

call with the UE in the 3G network. It should be noted that, in

the SigOver attack, the paging message is directly transmitted

by the attacker. This attack inherently exposes the attacker’s

phone number, thus making the attack easily detectable by the

operator. In comparison, the SigOver attack silently transmits

the CS paging to the victim UE. Furthermore, the existing

work cannot downgrade the victim UEs in the RRC Connected
state to the 3G network, since the network does not send a

paging message to the victim UE in the RRC Connected state;

whereas the SigOver attack can deliver the paging message.

5.2.3 Coarse-grained Tracking of a UE

Attack mechanism. As explained in Section 2, following the

completion of the RA procedure, the UE attempts to estab-

lish an RRC connection by sending a Connection request

(containing UE identity) to the cell. If the UE holds the previ-

ously assigned temporary identity (i.e., S-TMSI), this identity

is included in the Connection request as well. Otherwise, a

random value is selected. Upon the receipt of the UE’s request,

the cell replies with the Connection setup that contains the

UE’s identity (the S-TMSI or the random value). By checking

this identity, each UE is able to recognize if its RA procedure

was successful. If the procedure fails, the UE retries the RA

procedure. The abovementioned procedure used to resolve

connection conflicts is referred to as a contention resolution.

In this attack, an attacker exploits the contention resolution

technique to perform coarse-grained location tracking of the

target victim. First, the attacker with the knowledge of the

S-TMSI of the victim UE injects a paging message with the

S-TMSI11. The attacker then eavesdrops on the Connection

setup messages transmitted from the legitimate cell12. When

the Connection setup message that contains the S-TMSI of

the victim UE is received, the attacker confirms that the victim

UE resides within the coverage of the cell by sniffing the

downlink messages.

Validation. We validated this attack using all the smartphone

models in this work. We confirmed that the attacker is able to

identify the presence of the victim UE by injecting a single

paging message and eavesdropping on the Connection setup

message sent to the victim UE.

Comparison with the FBS. An FBS can achieve the same

results by monitoring the IMSI in Identity Response mes-

sage. However, the FBS requires an active connection to the

target victim to transmit the message. Therefore, the attack

is limited by the FBS with respect to its stealthiness and

power efficiency. In a previous study, it was reported that

RNTI-TMSI mapping can be applied to passively monitor the

victim’s TMSI [37]; however, the SigOver attack provides an

active method by which the victim can be located.
11Due to the space limit, a detailed discussion on how an attacker acquires

the S-TMSI of the target UE was omitted. However, this has been extensively

investigated in previous studies [19, 22, 23, 37].
12Since the RRC connection procedure is not encrypted, the attacker can

eavesdrop on any downlink messages during the connection procedure of the

UEs.

6 Defending Against SigOver Attack
In this section, we present an outline of two possible defense

strategies against the SigOver attack. We start the feasibility

of the fundamental solution as a prevention measure, in which

all the broadcast signals were digitally signed by adopting the

Public Key Infrastructure (PKI). We then discuss a short-term

solution for the detecting SigOver attack, which leverages the

changing nature of the physical signal during the processing

of the overshadowing signal.

6.1 Digitally Signing Broadcast Messages
As the SigOver attack exploits the lack of integrity protection

in broadcast messages, one natural defense against SigOver

attack is to employ integrity protection in the messages using

a digital signature scheme. For this, each base station needs

to have a certificate issued by its operator and a UE needs to

be provisioned with a root certificate (e.g., self-signed one

by the operator) to verify the certificate of the base station.

However, this natural defense has at least several deployment

and technical challenges.

Deployment challenges: In 5G, the 3GPP introduced a pub-

lic key encryption for IMSI in the initial registration, to pro-

vide privacy protection for the permanent identifier. For this,

each UE is provisioned with its home operator public key,

thereby it was assumed that a public key provisioning mech-

anism to the UE is in place. This provisioning mechanism

could also be used to provision a public key (or a signing

certificate) for base station certificate verification. However,

in roaming scenarios, the UE need to acquire the public key

of the visited network operator, which is trusted by the home

operator. This essentially requires a PKI for the global cel-

lular networks that span the world and non-trivial trust rela-

tionships among multiple operators in different jurisdictions.

Furthermore, managing certificate revocation lists are another

obvious burden.

Technical challenges: Signing every single broadcast mes-

sage may incur a substantial computational overhead at the

base station, considering the low periodicity of essential broad-

cast messages such as MIB (40ms) and SIB1/2 (80ms). Fur-

thermore, message size increases due to the signature and

certificate broadcasting (e.g., using a new SIB) would result

in a higher power consumption at the base station. Similarly,

from UE’s perspective, verifying certificate and signature

would require additional power consumption, resulting in a

faster battery drain. Such a power consumption may be pro-

hibitive to low-power Internet of Things devices that need to

survive many years without battery replacements.

An ID-Based Signature scheme (IBS) [9, 41] can be con-

sidered as a cost-effective alternative, as it has substantially

low key management overhead and eliminates the certificate

broadcast and verification overhead. However, the IBS re-

quires UEs to get synchronized with the public parameters

from KMS [17]. This is problematic to UEs that do not have a

66 28th USENIX Security Symposium USENIX Association

(a) LOS setup

(b) NLOS setup

Injected subframes

(c) Normalized cross-correlation on LOS (Red line) and NLOS (Blue

line)

Figure 11: Fluctuation of the channel estimation magnitude after

the SigOver attack: Sudden magnitude changes could be used for

detection metric.

subscription as they may not be able to get the public param-

eters from the network. Note that the unsubscribed devices

are also supposed to receive the ETWS or CMAS messages

as long as they have cellular capabilities.

6.2 Leveraging the Channel Diversity
According to communication theory, a wireless channel varies

significantly with a displacement of only a quarter of the wave-

length, which is 3.57cm for 2.1GHz LTE [46]. This is referred

to as the channel diversity, and it is highly applicable to the

attacker and victim UE, which are expected to be at different

locations – i.e., the wireless channel between the attacker

and UE is likely to be disparate from that between the eNB

and UE. Therefore, the injection of the attack signal, which

reflects the channel between the attacker and UE, naturally

forces the channel information recovered at the UE to deviate

from when only the legitimate subframes are present (without

attack). In other words, the detection of such a variance in the

channel could serve as a defense technique.

The wireless channel can be conventionally represented

as H [46] in complex representation. The magnitude |H|
uniquely defines different wireless channels depending on

how efficiently the signal power is delivered. Hence, an abrupt

change in |H| is an effective metric to detect SigOver attack.

Figure 11a presents |H| of the injected (Subframe 9) and

legitimate signals measured during the experiment in LOS

setup, where the attacker is located 2m away from the victim

UE. This clearly demonstrates the severe fluctuation of |H|
when the attack occurs, indicating effortless detection.

Despite its effectiveness, the robustness of leveraging the

channel is problematic. In particular, the general application

of the technique to various scenarios is not trivial, due to

the various factors that have a potential influence on H. Fig-

ure 11b shows a detection failure example in NLOS setup,

when the power of the injected signal was low. That is, the

impact of the attack signal to H gradually fades out as the en-

ergy decreases, down to the point where it is difficult to detect.

Figure 11c clearly demonstrates this challenge, wherein the

drop in the correlation was fuzzy in NLOS setup, unlike in the

LOS setup (strong injection signal). In summary, leveraging

the channel is a potential solution, where we leave the design

of robust techniques as future work.

6.3 Discussion on Potential Solutions
Both approaches discussed in the previous sections present

challenges to be addressed and/or limitations. However, we

note that the exploits demonstrated in Section 5 are only a

few examples rather than an exhaustive list. The effects of the

SigOver attack would be broader and more damaging if the

cellular network is utilized for critical domains, e.g., vehicu-

lar networks and industrial systems. Therefore, in principle,

the intrinsic broadcast vulnerabilities of the cellular system

should be addressed. Meanwhile, it is recommended that criti-

cal services should have their own security protection instead

of relying on those of other protocol layers. For example, the

issue of the ETWS or CMAS may be better addressed at the

application level13, instead of being based on SIB protection,

since the SIB is only a transport mechanism for those critical

application messages.

7 Related Work

In this section, we describe previous work that exploits the

signal overshadowing concept. We then present the signaling

storm, in addition to attacks that exploit the non-integrity

protection.

Signal overshadowing in wireless channel. The signal over-

shadowing attack, which exploits the use of an open medium

and the capture effect, has been widely conducted in the wire-

less systems such as GPS [20, 45] and Low-Rate Wireless

Personal Area Networks (LR-WPANs) [52]. Pöpper et al.
presented a symbol flipping attack on the Additive White

Gaussian Noise (AWGN) channel [34], with a fine-grained

overshadowing of the signal at the symbol level. However,

it requires exact information with respect to the timing, am-

plitude, and phase, which is difficult to achieve in the real

13The 3GPP already conducted a study on the security aspects of Public

Warning System (PWS) [4].

USENIX Association 28th USENIX Security Symposium 67

world. Similar to this study, Wilhelm et al. demonstrated the

possibility of signal overshadowing and its impact on IEEE

802.15.4 [52]. In comparison, the SigOver attack is the first

comprehensive study in which the signal overshadowing at-

tack on the LTE was realized, in addition to the validation

of its practicability. Moreover, we present the novel attack

scenarios by leveraging the SigOver attack.

Message manipulation in LTE. The LTEInspector [21] con-

ducted a paging channel hijacking attack and paging message

injection attack, which seems similar to this study. However,

this study has two key differences: 1) the definition of the in-

jection attack and 2) its realization method. First, the SigOver

attack silently injects the victim with malicious messages

while making the victim keep being synchronized with the

legitimated eNB. As a result, during the SigOver attack, the

uplink response message of the victim naturally goes to the

legitimated eNB. However, the victim UE in LTEInspector

transmitted its uplink response message to the malicious eNB

after receiving the manipulated message, which is the gen-

eral response action for the attack with the FBS. Thus, it

is more similar to existing attacks using FBS. Second, the

SigOver attack overwrites the target signal with malicious

signals without requiring a connection to the malicious base

station. To this end, we investigate various requirements of

the SigOver attack as described in Section 3. Despite other

requirements, LTEInspector only considered the paging cycle

and its occasion, which are the part of timing synchronization

requirements.

Attacks exploiting non-integrity protection. Extensive re-

search has been conducted on the manipulation of messages

with no/weak-integrity protection [21, 22, 26, 36, 39, 40]. As

discussed in Section 3.5, such attacks mainly leverage an FBS.

Although they exploited the broadcast messages in LTE, but

the attacks have limited implications. This is because their

operational logic inevitably produces limitations with respect

to stealthiness, power efficiency, and attack sustainability.

8 Concluding Remarks and Future Work
Signal overshadowing is an intuitive method for the manipula-

tion of LTE broadcast messages with no integrity protection,

which was not addressed in previous studies. In this paper,

we present the SigOver attack, which outlines the first real-

ization of a signal overshadowing attack on the LTE network.

We implement the SigOver attack using a low-cost SDR and

open source LTE library, while resolving the challenges in

satisfying the stringent transmission requirements and craft-

ing a malicious frame. The feasibility and effectiveness of

SigOver attack was demonstrated in five novel attacks, and an

extensive analysis of the relative advantages of the SigOver

attack over those of the FBS and MitM attacks was carried out.

The key features of the SigOver attack are stealthiness, power-

efficiency, and sustainability, which have not been achieved

simultaneously by previous attacks. The evaluation revealed

that the SigOver attack achieves a 98% success rate with low

power cost.

Finally, two potential approaches to defending against the

SigOver attack were proposed, which leveraged the digital

signature and channel diversity. As acknowledged, both ap-

proaches have challenges and limitations to be addressed;

however, they can be used as a basis for the development of a

reliable and robust solution.

The cellular industry is rapidly transitioning to the 5G

network of cellular systems equipped with advanced radio

technologies and enhanced security features. However, the

fundamental broadcast security issues discussed in this paper

have not addressed in design. Considering significant changes

made in the 5G New Radio (NR), it is left as a future study

to evaluate 5G NR against the SigOver attack. As this paper

turns on the spotlight on the security of broadcast messages,

we believe that 3GPP standard body and cellular network

community need to consider the design of broadcast messages

seriously.

Acknowledgments

We sincerely thank Dr. Soo Bum Lee for his detailed and valu-

able comments on the earlier version of the draft. In addition,

we would like to thank the anonymous reviewers for their in-

sightful comments. This work was supported by Institute for

Information & communications Technology Planning & Eval-

uation (IITP) grant funded by the Korea government (MSIT)

(2018-0-00831, A Study on Physical Layer Security for Het-

erogeneous Wireless Network).

References

[1] 3GPP. ETSI TS 36.104. Base Station (BS) radio trans-

mission and reception, 2017.

[2] 3GPP. ETSI TS 36.211. Physical channels and modula-

tion, 2011.

[3] 3GPP. ETSI TS 36.331. RRC Protocol specification,

2017.

[4] 3GPP. TR 33.969. Study on Security aspects of Public

Warning System (PWS), 2014.

[5] 3GPP. TS 24.301. Non-Access-Stratum (NAS) protocol

for Evolved Packet System (EPS); Stage 3, 2017.

[6] 3GPP. TS 36.101. User Equipment (UE) radio transmis-

sion and reception, 2017.

[7] 3GPP. TS 36.331. Evolved Universal Terrestrial Ra-

dio Access (E-UTRA); Radio Resource Control (RRC);

Protocol specification, 2017.

[8] ACCUVER. XCAL. http://accuver.com/acv_
products/xcal/.

68 28th USENIX Security Symposium USENIX Association

[9] Dan Boneh and Matt Franklin. Identity-based encryp-

tion from the weil pairing. In Annual international
cryptology conference, pages 213–229. Springer, 2001.

[10] Bruno Clerckx and Claude Oestges. MIMO wireless
networks: channels, techniques and standards for multi-
antenna, multi-user and multi-cell systems. Academic

Press, 2013.

[11] Adrian Dabrowski, Nicola Pianta, Thomas Klepp, Mar-

tin Mulazzani, and Edgar Weippl. IMSI-catch me if

you can: IMSI-catcher-catchers. In Proceedings of the
30th annual computer security applications Conference,

pages 246–255. ACM, 2014.

[12] Sebastian Egger, Tobias Hossfeld, Raimund Schatz, and

Markus Fiedler. Waiting times in quality of experience

for web based services. In Quality of Multimedia Expe-
rience (QoMEX), 2012 Fourth International Workshop
on, pages 86–96. IEEE, 2012.

[13] Juanita Ellis, Charles Pursell, and Joy Rahman. Voice,
video, and data network convergence: architecture and
design, from VoIP to wireless. Elsevier, 2003.

[14] Ettus. GPSDO OCXO. https://www.ettus.com/
product/details/GPSDO-MINI.

[15] Ettus. UBX 160MHz Board. https://www.ettus.
com/product/details/UBX160.

[16] Ettus. USRP X300/X310 Spec Sheet. https:
//www.ettus.com/content/files/X300_X310_
Spec_Sheet.pdf.

[17] Michael Groves. Elliptic Curve-Based Certificate-

less Signatures for Identity-Based Encryption (ECCSI).

RFC6507, 2012.

[18] GSA. Evolution from LTE to 5G: Global Market Status.

Aug. 2018.

[19] Byeongdo Hong, Sangwook Bae, and Yongdae Kim.

GUTI Reallocation Demystified: Cellular Location

Tracking with Changing Temporary Identifier. In Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS), 2018.

[20] Todd E Humphreys, Brent M Ledvina, Mark L Psiaki,

Brady W O’Hanlon, and Paul M Kintner. Assessing the

spoofing threat: Development of a portable GPS civilian

spoofer. In Radionavigation Laboratory Conference
Proceedings, 2008.

[21] Syed Rafiul Hussain, Omar Chowdhury, Shagufta

Mehnaz, and Elisa Bertino. LTEInspector: A System-

atic Approach for Adversarial Testing of 4G LTE. In

Proceedings of the Network and Distributed Systems
Security (NDSS), 2018.

[22] Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim.

Touching the Untouchables: Dynamic Security Analy-

sis of the LTE Control Plane. In IEEE Symposium on
Security & Privacy (SP). IEEE, 2019.

[23] Denis Foo Kune, John Koelndorfer, Nicholas Hopper,

and Yongdae Kim. Location leaks on the GSM Air In-

terface. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2012.

[24] Younes Labyad, Mohammed MOUGHIT, Abderrahim

Marzouk, and Abdelkrim HAQIQ. Impact of Using

G. 729 on the Voice over LTE Performance. Interna-
tional Journal of Innovative Research in Computer and
Communication Engineering, 2(10), 2014.

[25] Zhenhua Li, Weiwei Wang, Christo Wilson, Jian Chen,

Chen Qian, Taeho Jung, Lan Zhang, Kebin Liu, Xi-

angyang Li, and Yunhao Liu. FBS-Radar: Uncovering

Fake Base Stations at Scale in the Wild. In NDSS, 2017.

[26] Huang Lin. LTE REDIRECTION: Forcing Targeted

LTE Cellphone into Unsafe Network. In Hack In The
Box Security Conference (HITBSecConf), 2016.

[27] Konstantinos Manolakis, David Manuel Gutiérrez Es-

tévez, Volker Jungnickel, Wen Xu, and Christian Drewes.

A Closed Concept for Synchronization and Cell Search

in 3GPP LTE Systems. In 2009 IEEE Wireless Commu-
nications and Networking Conference, pages 1–6, April

2009.

[28] minicircuit. ZVE-2W-272. https://www.
minicircuits.com/WebStore/dashboard.html?
model=ZVE-2W-272%2B.

[29] Johan Moberg, Mattias Löfgren, and Robert S Karlsson.

Throughput of the WCDMA Random Access Channel.

In IST Mobile Communication Summit, 2000.

[30] Peter Ney, Ian Smith, Gabriel Cadamuro, and Tadayoshi

Kohno. SeaGlass: enabling city-wide IMSI-catcher de-

tection. Proceedings on Privacy Enhancing Technolo-
gies, 2017(3):39–56, 2017.

[31] David Nowoswiat. Managing LTE Core Network

Signaling Traffic. https://www.nokia.com/blog/
managing-lte-core-network-signaling-traffic/.

[32] OPENBTS. Ettus Research USRP. http://openbts.
org/w/index.php?title=Ettus_Research_USRP.

[33] Shinjo Park, Altaf Shaik, Ravishankar Borgaonkar, An-

drew Martin, and Jean-Pierre Seifert. White-Stingray:

Evaluating IMSI Catchers Detection Applications. In

USENIX Workshop on Offensive Technologies (WOOT).
USENIX Association, 2017.

USENIX Association 28th USENIX Security Symposium 69

[34] Christina Pöpper, Nils Ole Tippenhauer, Boris Danev,

and Srdjan Capkun. Investigation of Signal and Message

Manipulations on the Wireless Channel. In Proceeding
of the European Symposium on Research in Computer
Security (ESORICS), 2011.

[35] Muhammad Taqi Raza, Fatima Muhammad Anwar, and

Songwu Lu. Exposing LTE Security Weaknesses at

Protocol Inter-Layer, and Inter-Radio Interactions. In In-
ternational Conference on Security and Privacy in Com-
munication Systems, pages 312–338. Springer, 2017.

[36] David Rupprecht, Kai Jansen, and Christina Pöpper.

Putting LTE Security Functions to the Test: A Frame-

work to Evaluate Implementation Correctness. In 10th
USENIX Workshop on Offensive Technologies (WOOT),
2016.

[37] David Rupprecht, Katharina Kohls, Thorsten Holz, and

Christina Pöpper. Breaking LTE on Layer Two. In IEEE
Symposium on Security & Privacy (SP). IEEE, 2019.

[38] Stefania Sesia, Matthew Baker, and Issam Toufik. LTE-
the UMTS long term evolution: from theory to practice.

John Wiley & Sons, 2011.

[39] Altaf Shaik, Ravishankar Borgaonkar, N Asokan, Valt-

teri Niemi, and Jean-Pierre Seifert. Practical Attacks

Against Privacy and Availability in 4G/LTE Mobile

Communication Systems. Proceedings of the Network
and Distributed System Security Symposium (NDSS),
2016.

[40] Altaf Shaik, Ravishankar Borgaonkar, Shinjo Park, and

Jean-Pierre Seifert. On the Impact of Rogue Base Sta-

tions in 4G/LTE Self Organizing Networks. In WISEC,

pages 75–86, 2018.

[41] Adi Shamir. Identity-based cryptosystems and signature

schemes. In Workshop on the theory and application of
cryptographic techniques, pages 47–53. Springer, 1984.

[42] Signaling Collection and Analysis Tool (SCAT). https:
//github.com/fgsect/scat.

[43] srsLTE. https://github.com/srsLTE/srsLTE.

[44] Daehyun Strobel. IMSI catcher. Chair for Communica-
tion Security, Ruhr-Universität Bochum, 14, 2007.

[45] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne

Rasmussen, and Srdjan Capkun. On the requirements for

successful GPS spoofing attacks. In Proceedings of the
18th ACM conference on Computer and communications
security, pages 75–86. ACM, 2011.

[46] David Tse and Pramod Viswanath. Fundamentals of
wireless communication. Cambridge university press,

2005.

[47] Guan-Hua Tu, Chi-Yu Li, Chunyi Peng, and Songwu Lu.

How voice call technology poses security threats in 4g

lte networks. In Communications and Network Security
(CNS), 2015 IEEE Conference on, pages 442–450. IEEE,

2015.

[48] Jan-Jaap Van de Beek, Magnus Sandell, and Per Ola

Borjesson. ML estimation of time and frequency off-

set in OFDM systems. IEEE transactions on signal
processing, 45(7):1800–1805, 1997.

[49] Thanh van Do, Hai Thanh Nguyen, Nikolov Momchil,

et al. Detecting IMSI-catcher using soft computing. In

International Conference on Soft Computing in Data
Science, pages 129–140. Springer, 2015.

[50] Qi Wang, Christian Mehlfuhrer, Christian Mehlführer,

and Markus Rupp. Carrier frequency synchronization

in the downlink of 3GPP LTE. In 21st Annual IEEE In-
ternational Symposium on Personal, Indoor and Mobile
Radio Communications, pages 939–944, Sep. 2010.

[51] Kamin Whitehouse, Alec Woo, Fred Jiang, Joseph Po-

lastre, and David Culler. Exploiting the capture effect

for collision detection and recovery. In Embedded Net-
worked Sensors, 2005. EmNetS-II. The Second IEEE
Workshop on, pages 45–52. IEEE, 2005.

[52] Matthias Wilhelm, Jens B Schmitt, and Vincent Lenders.

Practical message manipulation attacks in IEEE 802.15.

4 wireless networks. Proceedings of MMB & DFT,

2012.

[53] Zhou Zhuang, Xiaoyu Ji, Taimin Zhang, Juchuan Zhang,

Wenyuan Xu, Zhenhua Li, and Yunhao Liu. Fbsleuth:

Fake base station forensics via radio frequency finger-

printing. In Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, pages 261–

272. ACM, 2018.

70 28th USENIX Security Symposium USENIX Association

Appendix

A Impact on Quality of Services

We measure the impact of the quality of services under the

SigOver attack, where the malicious paging messages are

transmitted at the every subframe 9. This implies that legit-

imate subframes at subframe 9 are overshadowed and lost,

whereas non-overshadowed legitimate subframes may also

be affected by crafted subframes. Specifically, the RS of the

crafted subframes perturbs the channel estimation averaged

among crafted and non-overshadowed legitimate subframes

(in RRC Connected state), which may disturb the equalization

and incur errors. Despite such factors, the impact of SigOver

attack is validated to kept minimal, as demonstrated in this

section under a range of common, but distinct services of

voice call, web surfing, FTP download, and live streaming.

We note that measurements were carried out under a reliable

SigOver attack (>97% success rate) for the UE in the RRC
Connected state.

0

1

2

3

4

50

2

4

6

8

10

0 30 60 90 120 150 180 210 240 270 300

Pa
ck

et
 L

os
s (

%
)

Ji
tt

er
 (m

s)

Time (sec)

Jitter (Attack)
Jitter (Normal)
Packet Loss (Attack)
Packet Loss (Normal)

Figure 12: Call jitter and packet loss

Voice call. The UEs camping on LTE network use Voice over

LTE (VoLTE) as a call service. We evaluate the impact of the

SigOver attack on the key factors with respect to the VoLTE

performance [13]; or equivalently, the call quality, e.g., data

rate, jitter, and packet loss. Such metrics were measured be-

fore and after the attack for comparison. The data rate was

kept stable after the attack, and omitted for brevity. Figure 12

illustrates the jitter and the packet loss. The jitter was con-

sistently less than 10ms, and the packet loss is mostly kept

as zero. Moreover, both were sufficient to support high qual-

ity call services [24]. This keeps the SigOver attack stealthy

without degrading user experience.

0

0.2

0.4

0.6

0.8

1

1.5 2 2.5 3 3.5 4

C
D

F

Time (sec)

HTTP (Attack)
HTTP (Normal)
HTTP + Signaling (Attack)
HTTP + Signaling (Normal)

Figure 13: Webpage loading time

Web-browsing. We extend the measurements to web brows-

ing, which is one of the most frequently used services. Specif-

ically, the time required to load multiple identical web pages

with and without the attack. Figure 13 presents the results,

with ‘HTTP’ representing the total duration of HTTP data

exchange for page loading. ‘Signaling’ is the time required

for RRC connection establishment. Under the SigOver attack,

the time from the RRC connection initiation to the web page

downloading is delayed by an average of only 80ms when

compared with the case without the attack. Previous stud-

ies [12] have shown that the impact of such lag on the quality

of the experience is negligible.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 20 40 60 80 100 120 140 160 180

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (sec)

Attack
Normal
Normal + Attack

Figure 14: FTP throughput

FTP downloading. Figure 14 reveals that the FTP exhibited

a significantly different performance under the SigOver at-

tack. This is due to dynamically controlled modulation, to

overcome the bit error in the communication. The SigOver

attack incurs bit errors, which force the UE to use a robust

modulation of QPSK, which has a limited throughput. Con-

versely, without the attack, the bit error is kept low. In this

case, the UE used 64QAM which is less robust but supports

higher throughput than QPSK. However, this impact is less

likely to be experienced by the users and FTP rarely used on

smartphones.

0.0

0.2

0.4

0.6

0.8

0 30 60 90 120 150 180 210 240 270 300

T
hr

ou
gh

pu
t (

M
B

ps
)

Time (sec)

Attack
Normal

Figure 15: YouTube Live throughput: The average was 0.445

and 0.436MBps for attack and normal case, respectively.

Live streaming. Figure 15 shows the throughput of the

YouTube live streaming at a resolution of 1080p. In sum-

mary, neither buffering nor interruption occurred under the

SigOver attack during a 5-min video clip. The result of the

live streaming differs from that of the FTP downloads, as

streaming throughput was not as high as that of the FTP.

USENIX Association 28th USENIX Security Symposium 71

B ACRONYMS

3GPP Third Generation Partnership Project

AKA Authentication and Key Agreement

AS Access Stratum

CFI Control Format Indicator

CMAS Commercial Mobile Alert System

CQI Channel quality indicator

CS Circuit Switched

DCI Downlink Control Information

eNB Evolved Node B

EPC Evolved Packet Core

ETWS Earthquake and Tsunami Warning System

FBS Fake Base Station

FDD Frequency Division Duplex

GPSDO GPS disciplined oscillator

GUTI Globally Unique Temporary Identity

IMSI International Mobile Subscriber Identity

LOS Line of sight

LTE Long Term Evolution

MIB Master Information Block

MME Mobility Management Entity

NAS Non Access Stratum

NLOS Non-line of sight

OFDM Orthogonal Frequency Division Multiplexing

PCFICH Physical Control Format Indicator CHannel

PCI Physical layer Cell Identity

PDCCH Physical Downlink Control CHannel

PDSCH Physical Downlink Shared CHannel

PHICH Physical HybridARQ Indicator CHannel

PRB Physical Resource Block

PSS Primary Synchronization Signal

RA Random Access

RACH Random Access CHannel

RB Resource Block

RRC Radio Resource Control

RS Reference Signal

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

SAE System Architecture Evolution

SDR Software Defined Radio

SFN System Frame Number

SIB System Information Block

SSS Secondary Synchronization Signal

S-TMSI SAE Temporary Mobile Subscriber Identity

TA Tracking Area

TAI TA identity

TAU Tracking Area Update

UE User Equipment

72 28th USENIX Security Symposium USENIX Association

UWB-ED: Distance Enlargement Attack Detection in Ultra-Wideband

Mridula Singh, Patrick Leu, AbdelRahman Abdou, Srdjan Capkun
Dept. of Computer Science

ETH Zurich
{firstname.lastname}@inf.ethz.ch

Abstract
Mobile autonomous systems, robots, and cyber-physical sys-
tems rely on accurate positioning information. To conduct
distance-measurement, two devices exchange signals and,
knowing these signals propagate at the speed of light, the time
of arrival is used for distance estimations. Existing distance-
measurement techniques are incapable of protecting against
adversarial distance enlargement—a highly devastating tac-
tic in which the adversary reissues a delayed version of the
signals transmitted between devices, after distorting the au-
thentic signal to prevent the receiver from identifying it. The
adversary need not break crypto, nor compromise any upper-
layer security protocols for mounting this attack. No known
solution currently exists to protect against distance enlarge-
ment. We present Ultra-Wideband Enlargement Detection
(UWB-ED), a new modulation technique to detect distance
enlargement attacks, and securely verify distances between
two mutually trusted devices. We analyze UWB-ED under
an adversary that injects signals to block/modify authentic
signals. We show how UWB-ED is a good candidate for
802.15.4z Low Rate Pulse and the 5G standard.

1 Introduction

Ranging and positioning information is often necessary for
mobile autonomous systems, robots and cyber-physical sys-
tems to operate successfully. These systems are used in se-
curity and safety critical applications. Drones are becom-
ing more popular for transportation and rescue [24], and au-
tonomous systems are being increasingly tested and integrated
as part of the ecosystem. The 5G community emphasizes the
importance of designing the wireless protocols for the safety
of the autonomous vehicles [33]. A stringent requirement
for these systems is to avoid crashing into, e.g., buildings,
pedestrians, properties, or each other [25]. For example, keep-
ing drones and autonomous vehicles on their intended paths

Version: February 18, 2019.

Distance
 Enlargement

Distance
Reduction

Figure 1: Ranging systems are vulnerable to distance reduc-
tion and enlargement attacks.

and preventing their collision can be achieved only if they
are able to calculate their relative positions accurately and
securely. Figure 1 shows that an adversary can manipulate the
perceived distance between two mutually trusted devices by
the distance reduction and enlargement attacks.

Conventional ranging systems, such as GPS and WiFi Po-
sitioning Systems (WPS) [34], are useful for benign environ-
ments and coarse-granular geolocation. However, they pro-
vide insufficient precision for accurate distance estimations
(e.g., cm-level granularity), suffer availability constraints (e.g.,
indoors, outdoors), and are relatively slow to calculate loca-
tions for fast and mobile autonomous systems. More impor-
tantly, the aforementioned ranging systems are susceptible to
various spoofing attacks [4, 14, 28].

Two-way time-of-flight (ToF)-based ranging systems
(which map ToF to distance as signals propagate at the speed
of light) have the potential to conduct accurate, fast, and
secure distance measurements. Examples include high pre-
cision Ultra-wide Band (UWB) ranging systems, some of
which are now available off-the-shelf [1, 9, 13, 35]. Numerous
previous efforts were directed towards protecting these sys-
tems from distance-reduction attacks, e.g., for access control.
These mainly rely on the principle that propagation speeds

USENIX Association 28th USENIX Security Symposium 73

are bounded by the physical characteristics of the media, and
cannot be sped-up. For example, distance bounding protocols
return an upper bound on the measured distance, armed by the
fact that an adversary would not succeed in guessing (secret)
bit level information [5, 6]. Other techniques are based on
tailoring modulations to prevent distance-reduction attacks
at the physical layer [26]. None of these approaches prevent
distance enlargement attacks.

Distance enlargement attacks can deviate vehicles from
their intended paths, or cause physical collisions. Existing
protection approaches rely on dense, and often fixed, verifi-
cation infrastructures, e.g., towers. These may not exist, and
often do not; installing them in outdoor settings is a costly
affair, and not necessarily feasible (e.g., in drone-based mili-
tary missions behind enemy lines). Distance enlargement is a
more devastating attack than distance shortening because an
adversary in the communication range only needs to annihi-
late (cancel) [23] or distort the authentic signals to prevent the
receiver from identifying them and using their time-of-arrival
(ToA) for ranging. The adversary then simply replays a de-
layed version of the authentic signals, which it has already
received by positioning itself in the vicinity of the sender or
the receiver. The adversary need not guess these signals, nor
compromise any upper-layer protocols to do that. The amount
of delay corresponds to the adversary-intended distance to
enlarge. In a collision-avoidance system of automobiles or
self-driving cars for example, a few meters (∼ a few nanosec-
onds) could be catastrophic.

We present Ultra-Wideband Enlargement Detection (UWB-
ED)—the first known modulation technique to detect dis-
tance enlargement attacks against UWB ranging based on
ToF. UWB-ED relies on the interleaving of pulses of different
phases and empty pulse slots (i.e., on-off keying). Unable to
perfectly guess the phase, this leaves the adversary with a 50%
chance of annihilating pulses (similarly for amplification). As
a result, some of the affected (authentic) pulses will be ampli-
fied, while others will be annihilated. Unaffected pulses will
remain intact, while positions that originally had no pulses
may now have adversary-injected ones. The technique pre-
sented herein gets the receiver to seek evidence indicating
whether such a deformed trail of pulses in the transmission
was indeed authentic, albeit corrupt.

Similar to Singh et al. [26] (which addresses distance-
reduction attacks), we leverage a randomized permutation
of pulses. However, unlike [26], we cannot simply look for
whether these are out of order, and ignore them if so be-
cause that is precisely the adversary’s objective in distance-
enlargement: misleading the receiver to ignore the authentic
signals. Instead, UWB-ED checks the energy distribution
of pulses: comparing the aggregate energies of a subset of
pulses at the positions where high energy was expected (as per
the sender-receiver secret pulse-permutation agreement), with
others where low energy was expected. To subvert this, the ad-
versary would be forced to inject excessive energy throughout

the whole transmission, which could then be detected using
standard DoS/jamming-detection techniques.

We derive the probability that an adversary succeeds in a
distance-enlargement attack against UWB-ED. This is also
useful in setting input parameters, e.g., balancing an applica-
tion’s security requirements and ranging rate, while account-
ing for channel conditions. For example, we show how proper
parameterization of UWB-ED limits an adversary’s success
probability in enlarging distances to < 0.16×10−3.

In summary, the paper’s contributions are twofold.

• UWB-ED—a novel, readily-deployable modulation tech-
nique for detecting distance enlargement attacks against
UWB ToF ranging systems, requiring absolutely no ver-
ification infrastructure, and making no impractical as-
sumptions limiting adversarial capabilities.

• Analytical evaluation to UWB-ED, where the probability
of adversarial success is derived as a function of input
parameters and channel conditions. This evaluation is
also validated using simulations.

The sequel is organized as follows. Sections 2 and 3 provide
background and detail the threat model. The new distance
enlargement detection technique is explained in Section 4,
and evaluated in 5. Section 6 complements with a related
discussion, and 7 is related work. Section 8 concludes.

2 Background and Motivation

A device’s position can be estimated using the distances be-
tween itself and other landmarks with known locations; or
it could be expressed using a coordinate system, e.g., in a
Cartesian plane. The distance between two devices can be
measured using radio signal properties, such as received sig-
nal strength [3], phase [30], or the signal’s propagation time
including ToF and ToA [15]. Reduction or enlargement of the
calculated distances can lead to wrong positioning.

Adversarial distance reduction has been analyzed in pre-
vious literature [31], but limited work was performed on en-
largement attacks. Preventing enlargement is achieved when
a node is inside a polygon determined by an infrastructure
of devices/towers, where verifiable multilateration [31] is ap-
plied. Enlargement attacks are harder to detect without an
infrastructure. Signal strength-based systems do not provide
strong security guarantees during high variations of signal
strengths in some channel conditions. For distance reduction
attacks, the adversary can amplify a degraded signal but for
enlargement, degradation is in the adversary’s favor.

One-way ToF systems, such as GPS, can be spoofed to
reduce/enlarge distances [4,14]. Two-way ToF, such as UWB,
provides secure upper bound by using distance bounding
along with secure modulation techniques [5, 6, 26]. This pro-
vides strong guarantees against reduction attacks, but is still
susceptible to enlargement attacks.

74 28th USENIX Security Symposium USENIX Association

2.1 UWB
IEEE 802.15.4a and IEEE 802.15.4f have standardized im-
pulse radio UWB as the most prominent technique for pre-
cision ranging. IEEE 802.15.4z [2] is in the process of stan-
dardizing UWB to prevent attacks on the ranging systems.
Off-the-shelf UWB ranging systems were recently devel-
oped [1, 9, 13, 35], and the research community/industry has
expressed tremendous interest in these systems (e.g., for au-
tonomous vehicles). Because current standards do not prevent
enlargement attacks, it is important to mitigate them before
standards are deployed in practice.

Symbol Structure. UWB systems operate over wide seg-
ments of licensed spectrum. They have to be compliant with
stringent regulatory constraints. Firstly, the power spectral
density should not exceed −41.3dBm/MHz, averaged over
a time interval of 1ms. Secondly, the power measured in a
50MHz-bandwidth around the peak frequency is limited to
0dBm. Due to these constraints, the power per pulse is limited.
To support longer distances, the energy of multiple pulses is
aggregated to construct meaningful information. Figure 3
shows On-Off-keying (OOK) modulation, as used in IEEE
802.15.4f-based UWB ranging systems. Each symbol has
two pulses and two empty slots. The symbol length is repre-
sented as Tb and the spacing between consecutive pulses is Ts.
Information bits are encoded in the position of the pulse.

Symbol Detection. Figure 2 shows a conventional non-
coherent energy detector (ED) receiver [32]. The energy de-
tector receiver is consist of square-law device to compute
instantaneous received signal power and an energy integrator.
For the received signal r(t), the output of the receiver can be
expressed as:

E(k) =
∫ Ts∗k+TI

Ts∗k
[r(t)]2dt (1)

where Ts ∗ k is the integration start time, TI the integration
window size, and Ts the spacing between consecutive pulses.

These receivers perform squaring and integration, making
phase information irrelevant for pulse detection. In the case
of multi-pulse per symbol, the energies of multiple pulses are
aggregated. For the orthogonal hypothesis tests H1 and H0
for bit 1 and 0 respectively, the decision of the ED receiver is
made in favor of the positions with higher energy.

b(i) =

{
0 EH0(i)≥ EH1(i)
1 EH0(i)< EH1(i)

(2)

2.2 Distance-Enlargement Attack
In contrast to reduction attacks, to enlarge the distance, the
adversary need not predict the authentic signal. Instead, it re-
plays the authentic signal by replaying an amplified version of

Bandpass
filter (·)2

Z TI

0

dt

E(i)

Decision
r(t)

Figure 2: Non-coherent energy detector receiver.

Tx Rt
a) Replay

t + �

t + �
Ts

Ts

t

Tb, bi+1 = 1Tb, bi = 0
Np = 2

Tx

Rx

b) Annihilate and
Replay

Tx Rt

t + �t

t t + �
Ts

Rx

Tx R

t + �

t + �
Ts

time
Rx

c) Relay t

Legitimate
 Signal

Attack
Scenario

Figure 3: Various attack scenarios on UWB.Black and red
colors represent authentic and adversary signals respectively.
Dotted red represent adversarial signal-annihilation attempts.

it after some delay. The receiver gets both, authentic and adver-
sary’s signal superimposed. Because these authentic signals
also reach the receiver, the adversary cannot control how the
receiver processes them. None of the existing ranging systems
is secure against enlargement attack- be it UWB -802.15.4z,
WiFi- 802.11, or GPS. Signal replay is a typical strategy to
mount distance enlargement attacks. Other enlargement at-
tacks, such as jamming, alters the output of the receiver’s
automatic gain control (AGC), and are likely to expose the
adversary [22, 27]. Complementing signal replay by signal
annihilation prevents the receiver from detecting the authentic
signal. Annihilation is possible due to the predictable symbol
structure.

In Fig. 3, the devices know each other’s communication
range, and could verify that they are within that range, e.g., us-
ing secure ranging (see Fig. 4). For short LoS distances, a sym-
bol length of Np = 1 (i.e., one pulse-per-symbol) could suffice.
Longer distances are attained by longer symbols (Np = 2 in
Fig. 3). Pulses are separated by time Ts, which should be more
than the channel’s delay spread. The length of the symbol (Tb)
is determined by the number of pulses per symbol, and the in-
terval between two consecutive pulses (Np ·Ts). Figure 3 also
shows instances of replay attacks on these symbols. When an
adversary replays authentic signals after some delay (δ), both
authentic and replayed signals are received. To deceive the
receiver, the adversary needs to annihilate authentic signals.

USENIX Association 28th USENIX Security Symposium 75

D1
D1+D2

Dmax

D1 (Actual Distance)
D2 (Added Distance)
Dmax (Communication Range)

D1+D2 <= Dmax

Figure 4: If D1+D2 > Dmax, the devices realize they are
outside each other’s communication range without the need
to run distance-enlargement detection protocol.

In Fig. 3a, an authentic signal reaches the receiver at time t,
and the adversary’s signal at t +δ. If the receiver backtracks
in time (searching for earlier-received signals), the authentic
signal will be encountered. Figure 3b shows how the pre-
dictability of the symbol structure enables an adversary to
annihilate its pulses (by emitting a reciprocal pulse phase),
preventing the receives from detecting it. Figure 3c shows
the case when nodes are not in the communication range (or
signal is attenuated by channel condition); the receiver does
not get authentic signals, just adversary-relayed (and delayed)
signals.

3 Threat Model

We focus on the scenario where there are two devices in
a wireless network that are interested to securely measure
the physical distance between them, and protect the measure-
ments from a third-party adversary. The devices know their
maximum communication range. The adversary’s objective
is to enlarge the distance that the devices measure. The adver-
sary cannot directly block or modify messages on the channel
(cf. Dolev-Yao’s adversary [10]); it can rather inject signals,
and through such injection it can block/modify the authentic
signals. If successful, this injection can lead to jamming, sig-
nal annihilation, and/or content modification. This model cap-
tures the capabilities of man-in-the-middle (MITM) attacks in
wireless settings, and is typical in previous literature [7, 12].
The model also fits well with our target application scenario:
the communicating devices are typically mobile and move
(drive or fly) in formation. In such scenarios, it is unlikely that
an adversary prevents the signals of one device from reaching
the other by physical obstacles, and is thus limited to injecting
signals.

We assume the adversary is able to communicate and listen
on any channel the devices use. However, because the devices
are communicating over UWB, the adversary is unable to de-
terministically annihilate pulses without knowing their phase

(positive or negative). Existing hardware is not fast enough
to enable the adversary to sample a pulse’s phase and react
by injecting the reciprocal pulse promptly due to the very
narrow UWB pulse width of ≈ 2 ns. We therefore assume
that the adversary will not be able to deterministically anni-
hilate pulses from the channel, only with some probability
< 1. It succeeds in annihilating pulses if it guesses the phase
of the pulse correctly. We over-approximate the adversary
by providing the capability to synchronize attack signal with
the authentic transmission. Signal synchronization is a hard
problem, but an adversary can achieve it by using stable clock
and distance information.

We assume the adversary knows the actual physical dis-
tance between the two devices at any point in time. The ad-
versary can calculate this using several means, e.g., by eaves-
dropping on unencrypted position announcements the devices
make. The adversary can also position itself along the direct
path between the two devices, measure the distance between
itself and each from that position, and add both distances. To
measure these distances, the adversary’s device can perform
two-way ranging with each device independently, pretending
to be the other device; or even without such impersonation, it
could perform one-way ranging after synchronizing its clock
with each device separately.

We assume the devices themselves are not compromised;
the adversary cannot attach a physical cable to their inter-
faces, nor hijack their firmware. However, the adversary can
have multiple network cards and antennas, and is not energy-
bounded. It can be stationary or mobile.

UWB-ED (Section 4) involves transmitting, between the
victim devices, a code of n pulses, α of which are data-
representing, and the remaining β are absent of energy, where
n = α+β. We assume the adversary knows the values of α

and β, but not the positions of these pulses in the transmis-
sion. (Their positions are determined by both devices pseudo-
randomly in each transmission.) The adversary can learn these
parameters by remaining passive in the vicinity of the victim
devices, silently observing their transmissions.

Finally, we assume that it is not in the adversary’s interest
to prevent the devices from communicating, e.g., by shielding
them, or jamming the channel.

4 UWB-ED Design

UWB-ED consists of two phases conducted between both
devices: Distance Commitment and Distance Verification.
Figure 5 shows a timing diagram of both phases. In the first,
the devices measure the distance between them using a two-
way ranging protocol. The distance measured in this phase
(tc

to f) should not exceed the supported communication range
(tmax

to f). In the distance verification phase, the devices measure
their distance by exchanging verification codes (generated
using a special UWB-ED modulation). To detect enlargement
attacks, devices look for distorted traces of that code. The

76 28th USENIX Security Symposium USENIX Association

Distance
Commitment

Distance
Verification

tp

tp

td

Verification Code (Challenge)

Verification Code (Response)

tvtof

tctof

Device 1 Device 2

Check 1:

Check 2:

tctof <= tmax
tof

tctof = tvtof

Figure 5: Timing diagram of UWB-ED operation. See inline
(Section 4) for notation.

attack is detected when such traces are found, tc
to f > tmax

to f ,
or when tc

to f 6= tv
to f (Fig. 5). By enlarging distance in the

commitment phase, the adversary increases tc
to f by td , but fails

to enlarge the distance in the verification phase. Annihilation
attempts on the challenge frame are shown, but the adversary
can also attack responses from both devices.

Distance Commitment Phase. The devices measure se-
cure upper bound by using distance bounding along with
secure modulation techniques [5, 6, 26]. This provides strong
guarantees against reduction attacks but is susceptible to
enlargement attacks. The distance committed in this phase
should not exceed the communication range (i.e., an enlarge-
ment attack is detected when tc

to f > tmax
to f). This check ensures

that the nodes can communicate without a relay. An adversary
enlarging distance by more than the communication range is
also exposed using this check.

Distance Verification Phase. In this phase, the committed
distance is verified, i.e., an enlargement attack is detected
when tc

to f 6= tv
to f . To achieve this, the devices measure their

distance using round-trip time-of-flight, with both challenge
and response messages protected using specially crafted ver-
ification codes (i.e., special UWB-ED modulation). In this
exchange, the sender initiates the distance verification phase
by transmitting a verification code; the receiver tries to detect
the presence of that code, or traces thereof, in the transmis-
sion, despite the adversary’s efforts to trail-hide its existence
from the channel (Section 2.2). The verification code and its
check is applied to both time-of-flight messages. Both devices
first agree on the code’s structure as follows.

4.1 Modulation/Verification Code Structure

Code length. The code consists of n positions, α of which
have energy, and the remaining β = n−α are empty, i.e.,
absent of pulses (conceptually similar to OOK modulation,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Original:

Permuted:

Figure 6: An example verification code with a randomly-
looking pulse reordering, where α = 5, β = 13, and the code
contains n = α+β = 18 pulses. Upon receiving the permuted
code pulses as per the secret agreement between the sender
and receiver, the receiver knows that Binα will contain the
received energies at the positions (gray) {2, 6, 7, 13, 15},
which are the expected high-energy pulses. Binβ will contain
the rest: {1, 3, 4, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18}.

where α = β). The code length affects the performance and
security of the presented modulation technique. Larger α

and β values improve the security by reducing the probabil-
ity of adversarial success in mounting undetectable distance-
enlargement attack. However, increasing the code length re-
duces the frequency of conducting two-way ranging. Addi-
tionally, the Federal Communications Commission (FCC)
imposes restrictions on the number of pulses with energy,
effectively limiting α per unit of time. As such, β could be
independently increased to compensate for the loss of code
length. Setting these parameters is discussed in Section 5.

Pulse phase. The sender uses a random-phase for the α

pulses it transmits. Each phase is equally likely. The phase
will be irrelevant for the receiver because ED receivers are
agnostic to the phase, as explained in Section 2.1. The sender
need not share this information with the receiver since the
receiver measures the energy, not the polarity of the pulse.

Pulse permutation. The sender and receiver secretly agree
on a random permutation of the n positions, obtained from
a uniform distribution. Figure 6 shows an example before
and after the permutation. The verification code can thus be
considered a sequence of {−1,0,1} pulses, where {−1,1}
represent the phase, and {0} pulse absence.

Spacing between pulses. The time between two consec-
utive pulses, Ts, is normally lower bounded by the delay
spread of the channel. We submit that Ts should be such that
Ts > 2d/c, where d is the distance between the two devices.
If the adversary replays the authentic signal delayed by more
than the equivalent RTT, the attack will be detected by the
mismatch between the measured RTT and the one equiva-
lent to the committed distance. To avoid being detected, the
adversary would thus replay its delayed version of a pulse
within the Ts time window. As such, authentic pulse i will not
overlap with the adversary’s delayed version of pulse i−1, or
any further adversary pulses i−2, i−3, etc.

An example code structure, and adversarial attempts to
corrupt and replay it, is shown in Fig. 7.

USENIX Association 28th USENIX Security Symposium 77

Figure 7: An example verification code of n slots (9 of which
are shown), the spacing Ts between consecutive pulses is 1µs
and pulse width Tp is 2ns. An adversary transmits a pulse to
distort the legitimate pulse (dashed red). The adversary also
replays the authentic signal with the delay δ (solid red). Best
viewed in color.

4.2 Verification Code Identification

Upon receiving a transmission, the receiver starts processing
the code associated with the highest preamble’s peak. The
code associated with a peak is the train of Ts-spaced pulses
that start at a fixed time interval (e.g., agreed upon between
the sender and receiver) after the peak. This peak however
may not be authentic, and could be the adversary’s replayed
version. The receiver thus backtracks at fixed time steps cor-
responding to the pulse width Tp (e.g., 2 ns), trying to identify
if another version of the code (or a possible distorted im-
print of it) was present in the transmission at an earlier time.
The receiver does not need to backtrack further beyond some
time T0, knowing the maximum communication range. If the
last distance verification occurred recently, the verified range
could be used (in combination with the devices’ upper bound
motion speeds) to reduce the backtracking time.

Backtracking requires the receiver to record transmissions.
If an earlier version of the code is found (and their difference
exceeds the receiver’s standard precision, e.g., ±10 cm for
DecaWave [9]), it is used for ToF estimation.

As shown in Fig. 8, the receiver performs Attack Plausibil-
ity check and Robust Code Verification to detect attacks until
the maximum backtracking time is reached. For each code, the
receiver does not look for an exact match of the transmitted
pulses in their positions simply because that could be easily
bypassed with minimal adversarial efforts (as explained in
Section 2.2). Instead, the receiver proceeds as follows. Know-
ing the mapping of the pulse positions, the receiver distributes
the received powers of each pulse among two bins, Binα and
Binβ. The former will have the values of the received power
(e.g., in Watts) of the energy-present pulse positions, the latter
energy-absent positions (Fig. 6).

Attack Plausibility check. For each candidate verification
code obtained during backtracking, the overall received sig-
nal power (the aggregate of Binα and Binβ) is measured, and

Robust code verification

Noise Update
ToA

< Pnoise � Pnoise

StopBacktracking finished?
No

Yes

Attack plausibility check< � > � Use Updated
ToA for and
 estimation

tp

Start

tvtof

Flag as attack

tctof 6= tvtof

Figure 8: The receiver backtracks to detect enlargement at-
tacks. An event is flagged as an attack when the aggregate
energy is higher than Γ (e.g., DoS, jamming), i.e., the data
looks more similar to a verification code than noise. The last
flagged position is used for the ToF estimation.

compared to a predefined threshold, γ. This threshold is based
on the receiver’s noise figure. If the aggregate exceeds γ, a
potential verification code has been found. Otherwise it gets
discarded as noise. The aggregate energy is then compared to
another threshold, Γ. This is calculated based on the overall
aggregate energy the receiver expects to receive based on the
measured distance in the commitment phase, following the
path loss model. Artificial distance enlargement caused by the
adversary in the commitment phase lowers the receiver’s cal-
culated Γ (because of the higher path loss), thus increases the
likelihood of the actual received aggregate to exceed Γ. If the
aggregate exceeds Γ, an adversary may possibly be injecting
energy into the channel to distort the authentic code. If the
verification code is neither discarded as noise (< γ) nor ex-
ceeds Γ, the receiver proceeds to the Robust Code Verification
check.

Robust Code Verification. Now the receiver checks the
verification code content. If the receiver simply flags the pres-
ence of one or more pulses (above noise) in Binβ as an attack,
false positives increase because such pulses could occur for
many legitimate reasons (e.g., noise spikes, reflections, in-
terfering transmissions, antenna orientation, or multipath).1

Instead, the receiver performs a sequence of binary hypothesis
tests on random pulse samples. It tests if the candidate code is
more similar to an authentic code than noise. It chooses r≤ α

random pulses from the α in Binα (where r is the number
of pulses per symbol), aggregates their received powers and
compares that to the aggregate of another r pulses randomly
chosen from the β in Binβ. If the aggregate of those selected
from Binα is larger, the receiver identifies this as a candidate
authentic code, and records its ToA. Finally, the distance is
calculated based on the recorded ToA of the most recently

1If the receiver instead interprets a pulse in Binβ as an indication that the
code is not authentic and continues backtracking, it may very well skip the
authentic code thus helping the adversary.

78 28th USENIX Security Symposium USENIX Association

received code, and a mismatch with the committed distance
is flagged as an attack.

A candidate verification code could be again noise, which
has slipped the Attack Plausibility check perhaps due to some
sporadic noise spikes in the transmission. Noise has a proba-
bility of≤Pnoise to satisfy the Robust Code Verification check,
where Pnoise is derived as (32) in Section 5.1.4. As such, the
receiver estimates the probability that the above condition is
satisfied. This is done by repeating the random sampling υ

times, and checking if the ratio of the number of times the
condition is satisfied to υ exceeds Pnoise. This would indicate
the code is not noise, and is either authentic or adversary-
replayed. Regardless, the receiver uses the ToA of the most
recent code found.

4.3 Setting the Energy Thresholds.
Setting the upper-bound threshold, Γ. To set Γ, the receiver
relies on the committed (unverified) distance between itself
and the sender. This dictates the path loss—the amount of
power loss per pulse as pulses propagate the medium. Larger
committed distance causes the receiver to expect less power,
thus setting a lower Γ. Thus, by increasing the committed
distance, the adversary helps divulge its malice.

The path loss function f () for outdoor UWB LoS is [20]:

f (d) = PL0 +10 ·n · log
(

d
d0

)
(3)

where d is the distance in meters, and PL0 is a constant repre-
senting the path loss at the reference distance d0. For UWB
LoS channel model, these constants are set to [20]:

f (d) =−46.3−20 log(d)− log
(

6.5
5

)
(4)

This is calculated in the standard signal ratio unit, dB, where:

Power ratio (in dB) = 10 log (ratio) (5)

The path loss function thus expresses the power loss as

f (d) = 10 log
(

(λb)
2

(λsent)2

)
(6)

or
(λb)

2

(λsent)2 = 10 f (x)/10 (7)

where (λb)
2 is the pulse instantaneous power the receiver

expects, and (λsent)
2 is that the sender has actually sent, e.g.,

both in Watt. Knowing the constant pulse power of the sender,
then the pulse power is expected to be received as:

(λb)
2 = (λsent)

2 10 f (x)/10 (8)

The receiver then calculates Γ as follows:

Γ = α (λb +N)2 +β (N)2 (9)

where d is the (unverified) distance in meters between the
sender and receiver obtained at commit stage, either true or
artificially enlarged in case of an attack. N is an instantiation
of zero-mean Gaussian noise at the receiver, i.e., the noise
present in the receiver’s channel and cannot be removed [19].

There are other factors that contribute to the degradation
of power. These factors could cause further power loss E,
typically up to E = −8 dB more [17, 21]. If the receiver
sets Γ as that after the expected further degradation (i.e., too
small Γ value), false positives may increase because such
additional signal-degradation factors may or may not occur—
if they do not, the receiver would then falsely assume such
relatively “too high” aggregate energy is due to an attempted
attack. Accordingly, the receiver sets Γ based only on the
(almost certain) path loss deterioration. Any further power
loss would then be added benefit to the adversary, as it allows
the adversary to inject more pulses into the channel to corrupt
the authentic code without exceeding Γ.

Setting the lower-bound threshold, γ. If the aggregate
energy is < γ, it would be either due to noise or a substan-
tial deterioration of the authentic signal where no meaning-
ful information could be recovered during the Robust Code
Verification. Too high γ leads to false negatives; too low trig-
gers Robust Code Verification even for noise. For critical
applications seeking to prevent false negatives, γ could be set
conservatively based on the receiver’s noise variance σ2

N :

γ = (α+β) ·σ2
N (10)

4.4 Attack Resilience
Here we explain how UWB-ED resists standard enlargement
attacks. More complex attacks are discussed in Section 6.

4.4.1 Detecting Signal Replay

An adversary that simply replays authentic pulses does not
win because the receiver backtracks to detect earlier copies of
the code. UWB-ED provides resilience to benign signal dis-
tortion, e.g., due to channel conditions or antenna orientation,
because the receiver looks for similarities between the code
and the received signal (versus exact data match), allowing
for a higher bit error rate. In general, poor channel conditions
(low SNR) can be compensated for by increasing the symbol
length, r, minimizing the bit error rate.

4.4.2 Complicating Signal Annihilation

The unpredictability of the pulse phase means an adversary
must either wait to detect it and immediately inject the recip-
rocal pulse for annihilation, or inject a random-phased pulse
hoping it is the reciprocal. The former is infeasible in practice
for UWB (see Section 3). The latter results in amplifying
or annihilating the authentic pulse, each with a 50% chance.
Amplification is unfortunate to the adversary, as the adversary

USENIX Association 28th USENIX Security Symposium 79

0 20 40 60 80 100
10−10

10−9

10−8

10−7

10−6

10−5

Actually-received signal

Receiver’s threshold per pulse

Distance (m)

Po
w

er
lo

ss
ra

tio
(1

0
f(

x)
/
10

)

Best receiver-expected signal
E =−5 dB

E =−10 dB (worst)

Figure 9: The best expected signal power as calculated by
the receiver using the path loss function in (4), the signal at
E =−5 db of further power loss, and at E =−10 db (worst
expected). If the distance is D1 = 15.11 m (green line), and
the adversary doubles it, i.e., by adding D2 = 15.11 m to
make it D1 +D2 = 30.22 m (red line), the receiver will set
the threshold following the fake distance, at 10 f (D1+D2)/10 =
10−7.6. The adversary’s room is the difference between the red
and green lines on the y-axis. At D2 = 32.68 m, the adversary
has no room. Best viewed in color.

now needs to compensate with an equivalent amplitude, A.
Amplification doubles the amplitude. The estimated energy
of the pulses will thus amount to ∼ A2, and the adversary-
contributed amplification to ∼ (2A)2.

Since the result is indeterministic for the adversary, it leads
us to the next discussion: how successful would the adversary
be in “contaminating the evidence” that an authentic veri-
fication code existed, and how much energy room does the
adversary have to do that before exceeding Γ?

4.4.3 Mitigating Evidence Contamination

To hide the authentic code, the adversary tries to inject energy
into the channel, hoping it annihilates as many of Binα pulses
as possible. We thus calculate the room available to the adver-
sary here, and use that to derive the probability of adversarial
success in distance enlargement in Section 5.

Figure 9 shows the path loss function in (7) as used by the
receiver to detect the threshold Γ, as well as the worst receiver-
expected signal after additional deterioration. The receiver
sets the threshold based on the best expected signal. The room
available for the adversary to add energy depends on the actual
signal received. The most favorable situation to the adversary
is when the received signal power is the worst (lowest E),
which allows the adversary to inject pulses without exceeding
Γ. For example, in Fig. 9, if the actual distance between the
sender and receiver is D1 = 15.11 m (green line), and the

0 0.5 1 1.5 2 2.5 3
0

5

10

Adversary-added distance ratio (D2/D1)

A
dv

er
sa

ry
ro

om
(ζ

)

E =−10 dB
E =−5 dB

Figure 10: Adversary’s room to add energy, ζ in (12), against
the ratio of the adversary-added to true distance (D2/D1); E
represents additional signal degradation beyond path loss.

adversary is trying to add D2 = 32.68 m to make the distance
D1 +D2 = 47.79 m (red line), the receiver will set Γ using
the fake distance, D1 +D2. At such a relatively large added
distance, D2, the received pulse power is unlikely to fall below
f (D1)+E = 10−8(λsent)

2 at, e.g., E = −10 dB. The room
available to the adversary to inject energy becomes too small,
significantly reducing its chances of success.

The room-per-pulse, R, available to the adversary to enlarge
the distance thus lies in-between the received signal and Γ,
and is calculated in dB as:

R = f (D1 +D2)− (f (D1)+E) (11)

where E represents other channel degrading factors, and the
distances D1 and D2 (in meters) are respectively the true
distance between both devices, and the extra distance the
adversary intends to add. This room is thus expressed as:

ζ = 10R/10 (12)

Figure 10 plots ζ at various distance ratios D2/D1.
Recall that the adversary may succeed to annihilate some

of the pulses falling in Binα. But since Binβ in the authentic
code have nothing but noise, adding pulses into those will
result in an increase in the overall aggregate energy. As such,
this available energy room in (11) by itself does not give a
perfect indication to the adversary’s chances of success.

4.5 A Numerical Example
Figure 11 shows an example verification code, expanded from
Fig. 6, where the adversary injects k = 10 random-phased
pulses. For simplicity, the figure assumes N = 0. If the dis-
tance between the sender and receiver is D1 = 4 m, and the
adversary is trying to enlarge it by D2 = 4.5 m to make it
D1 +D2 = 8.5 m, and assuming (λsent)

2 = 7.6 µW , then the
receiver expects a best case received power of:

(λb)
2 = (λsent)

2 10 f (D1+D2)/10

= 7.67×10 f (8.5)/10 = 2.4 µW
(13)

80 28th USENIX Security Symposium USENIX Association

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sent (after path loss): 0 -1 0 0 0 -1 1 0 0 0 0 0 1 0 -1 0 0 0 Γ = α (λb)
2 = 12 µW

Adversary injects: 1 1 -1 1 -1 1 -1 1 -1 -1 k = 10 pulses

Receiver gets: 1 0 0 0 -1 -1 2 -1 1 0 0 -1 2 0 -1 0 -1 -1 α(λreceived)
2 = 17µW

Figure 11: An example of the random-phased Binα pulses (dark gray) reordered following the permutation in Fig. 6. After the
adversary injects k = 10 random-phased pulses at random positions, the receiver will get the summation at each pulse position.

From (10) at N = 0 and α= 5 (as in Fig. 11), it then calculates
the threshold as:

Γ = α (λb)
2 = 12 µW (14)

At E =−10 dB, the actual signals are received as:

(λw)
2 = (λsent)

2 10(f (D1)+E)/10 ≈ 1 µW (15)

Now assuming the adversary is D3 = 6 m away from the
receiver, and uses a random-phased pulse with transmission
power of (λadversary

sent)2 = 15.77 µW . At E = −10 dB, the re-
ceiver would receive the adversary’s signals as:

(λ′)2 = (λ
adversary
sent)2 10(f (D3)+E)/10 ≈ 1 µW (16)

So in the best case for the adversary, where the signal is
highly deteriorated, the adversary would then have a per-pulse
room of R = 3.45 dB to add energy, which amounts to 7 µW
more, i.e., up to Γ = 12µW . In Fig. 11, after the adversary
injects its k = 10 pulses at the example random positions and
with the random phases shown, it results in annihilating a
single pulse (at position 2), amplifying two pulses (at posi-
tions 7 and 13), and adding seven more 1 µW pulses for an
increase of the overall aggregate to be 17 µW . This exceeds
Γ = 12 µW , and this attack would thus be detected.

5 Evaluation

We evaluate UWB-ED by deriving the probability of success
for an adversary enlarging the distance. We also validate that
model using simulations in Section 5.2.

5.1 Probability of a Successful Attack
The adversary hides the authentic code by having the aggre-
gate of the r pulses that the receiver chooses from Binβ exceed
Binα. The adversary must also avoid injecting too much en-
ergy to not exceed Γ. Not knowing which pulse belongs to
which bin, the adversary injects k pulses at random positions
thus affecting k of the n pulses in the code.

To that end, the probability of mounting a successful attack,
Psa, is the intersection of the probability of two events (the
checks in Fig. 8): the aggregate of the energy pulses chosen

from Binβ (bβ) exceeds that of Binα (bα), and the added
energy is ≤ Γ:

Psa(α,β,r,Γ,k) = Pbβ>bα(α,β,r,k)∩P≤Γ(α,β,k) (17)

5.1.1 Probability of successfully evading the Robust
Code Verification check (Pbβ>bα)

To evade this, the adversary must have an energy aggregated
from Binβ exceed Binα. When the adversary injects k pulses
into the channel, x will fall into Binα, and the remaining k−x
into Binβ. Pbβ>bα is then the probability of this distribution
occurring multiplied by the probability of the attack succeed-
ing under this distribution, for all possible such distributions
0 ≤ x ≤ α and 0 ≤ k− x ≤ β. To calculate the probability
of the distribution occurring, consider the general case of a
bucket containing two types of objects (e.g., colored pearls): I
of the first type, and J of the second. If ψ objects are selected
at random, the probability that i and j of the ψ are respectively
of the first and second type (i+ j = ψ) is:

(I
i

) (J
j

)
(I+J

i+ j

) (18)

where
(n

r

)
denotes n choose r and is given by:

(
n
r

)
=

n!
r!(n− r)!

, 0≤ r ≤ n

0, otherwise

Similarly, the probability that x and k−x of the adversary’s
k pulses respectively affect the α in Binα and β in Binβ is:

(
α

x

) (
β

k−x

)
(

α+β

k

)

For all possible such distributions, we have:

Pbβ>bα(α,β,r,k) =
α

∑
x=0

(
pα,β,r,k(x) ·

(
α

x

) (
β

k−x

)
(

α+β

k

)
)

(19)

where pα,β,r,k(x) is the probability bβ > bα given the adver-
sary affected x and k−x pulses in Binα and Binβ respectively.

To derive pα,β,r,k(x), we assume for simplicity a unity
power-per pulse, i.e., the sender’s and the adversary’s pulses

USENIX Association 28th USENIX Security Symposium 81

reach the receiver after path loss and other factors at a con-
stant energy of ±1µW .2 This is similar to the example given
in Fig. 11. Every adversary-added pulse in Binβ will result
in a 1 µW of added energy from the receiver’s point of view
since the receiver’s aggregation is agnostic to a pulse’s phase.
For Binα, after the adversary affects x pulses, some will be
annihilated while others will be amplified. From the receiver’s
point of view, after the adversary’s pulses are injected, Binα

will have a mix of 22 = 4µW and 0 µW (adversary-affected)
pulses, as well as the original 1 µW unaffected pulses.

More 0 µW (annihilated) pulses in Binα raises the chances
that bβ > bα, which is in the adversary’s favor. Since every
affected pulse in Binα will either result in a 0 µW or a 4 µW
pulse, there are 2x possible outcomes. Of those, there are(x

g

)
ways that g 0 µW pulses will occur. The probability that

the x adversary-injected pulses that fell in Binα result in a
annihilation of g pulses is thus

(x
g

)
/(2x). For all possible num-

bers of annihilated pulses 0≤ g≤ x, the adversarial success
probability in the event that x fell in Binα is:

pα,β,r,k(x) =
x

∑
g=0

(
pα,β,r,k,x(g) ·

(x
g

)

2x

)
(20)

where pα,β,r,k,x(g) is the probability bβ > bα given g annihi-
lated pulses in Binα.

When Binα has g annihilated (0 µW), x− g amplified (4
µW), and α− x unaffected pulses (1 µW), the probability of
bβ > bα in the event x fell in Binα, and g of the x pulses were
annihilated is the probability that an aggregate of m− 1 is
chosen from Binα and an aggregate of ≥ m is chosen from
Binβ. For each possible 0≤ y1,y2 ≤ r, we have:

pα,β,r,k,x(g) =

r

∑
y1=0

r

∑
y2=0

((g
y1

) (x−g
y2

) (
α−x

r−y1−y2

)
(

α

r

) ·
r

∑
i=m

(k−x
i

) (
β−(k−x)

r−i

)
(

β

r

)
)

(21)
where m is:

m = 02× y1 +22× y2 +12× (r− (y1 + y2))+1
= r− y1 +3y2 +1

(22)

At r = α (i.e., selecting all Binα pulses) and α≤ β, we get:

pα,β,r,k,x(g) =
r

∑
i=m′

(k−x
i

) (
β−(k−x)

r−i

)
(

β

r

) (23)

where m′ is:

m′ = 22× (x−g)+12× (α− x)+1
= 4(x−g)+(α− x)+1

(24)

Figure 12 plots Pbβ>bα, where α = 50. From these results,
increasing β is not necessarily effective for the Robust Code

2Analogous analysis applies for non-constant energy.

0 50 100 150
0

1

of adversary pulses (k)

Pr
ob

ab
ili

ty
(P

bβ
>

bα
)

r=1 r=2
r=4 r=8

(a) β = 100

0 20 40 60
0

1

of adversary pulses (k)

Pr
ob

ab
ili

ty
(P

bβ
>

bα
)

r=1 r=2
r=4 r=8

(b) β = 10

Figure 12: Probability that the Robust Code Verification check
fails to detect the adversary’s attack, plotted using (19) in
Section 5.1.1, at α = 50 and 0≤ k ≤ α+β.

Verification check to detect attacks, since the adversary main-
tains its success probability by increasing k proportionally;
there is a visually similar pattern of adversarial success proba-
bility in both Fig. 12a and 12b. As such, the advantage of the
empty pulses in Binβ does not quite manifest in the Robust
Code Verification check, rather the Attack Plausibility check.

Another observation is that higher r lowers the adversary’s
success probability. For example at β = 100 (Fig. 12a), the
adversary has a 27% chance at r = 2 (which occurs at k =
135), versus 5.85% at r = 8 (at k = 130). In Section 5.1.3, we
show that at r = α, we get the optimal security results.

5.1.2 Final Probability of Adversary’s Success

In (17), the event that the aggregate energy after the adver-
sary’s pulses is≤ Γ and the event that bβ > bα are dependent,
and thus their intersection is not their product. Recall that in
(20), g is the number of annihilated pulses, x−g is the number
of amplified pulses in Binα, and k− x is the number of added
pulses in Binβ. The aggregate-energy does not exceed Γ when
the adversary’s pulses satisfy the inequality:

(k− x) (λ′+N)2 +(x−g) (λ′+λw +N)2+

(α− x) (λw +N)2 +(β− (k− x)+g) (N)2 ≤ Γ
(25)

where λ′ is defined as in (16), and Γ in (10).
If the adversary uses a variable pulse power randomly cho-

sen from a distribution with a mean much different from λw,
authentic pulses colliding with their reciprocal will not be
fully annihilated. The adversary thus sets its power such that
its mean at the receiver matches the sender, i.e., (λ′)2 = (λw)

2.
Assuming (λw)

2 = (λ′)2 in (25), we get:

k+2x−4d +α≤ α λ2
b− ε

λ2
w

(26)

where ε is a representation of noise, and evaluates to:

ε = N (λw (2k+2α−4g)−λb(2α))

82 28th USENIX Security Symposium USENIX Association

As ε→ 0, (26) becomes:

k+2x−4d ≤ α

(
λ2

b
λ2

w
−1
)

(27)

From (13) and (15), we have:

λ2
b

λ2
w
=

(λsent)
2 10 f (D1+D2)/10

(λsent)2 10(f (D1)+E))/10

= 10(f (D1+D2)−(f (D1)+E))/10

= ζ

(28)

where ζ, from (12), represents the room-per-pulse available
to the adversary to add energy into the channel.

We now calculate pα,β,r,k(x,Γ), similar to (20) as:

pα,β,r,k(x,Γ) =
x

∑
g=0

(
pα,β,r,k,x,Γ(g) ·

(x
g

)

2x

)
(29)

such that

pα,β,r,k,x,Γ(g) =

{
pα,β,r,k,x(g), k+2x−4d ≤ α(ζ−1)

0, otherwise
(30)

Using (29), the final adversarial success probability is:

Psa(α,β,r,Γ,k) =
α

∑
x=0

(
pα,β,r,k(x,Γ) ·

(
α

x

) (
β

k−x

)
(

α+β

k

)
)

(31)

Figures 13a and 13b plot Psa in (31). At ζ = 20, Γ is too
high to reduce Psa, but the Robust Code Verification check
enables the receiver to limit it to Psa < 0.16×10−3. At ζ =
10, Psa stops growing beyond 0.73×10−4, which limits the
adversary’s pulses to k = 495 for its highest success chance.

Figure 13c shows the effect of β on Psa; Psa is almost con-
stant with β, at around 0.2×10−3, and only starts dropping
when β is sufficiently large so that the aggregate energy after
the adversary’s pulses exceeds Γ. At a certain point, increas-
ing β no longer helps. For example, at ζ = 5 and β ≥ 400,
Psa ≈ 0. β should thus be set wisely, reflecting the applica-
tion’s sensitivity to distance increases and channel conditions,
to avoid increasing transmission lengths unnecessarily.

5.1.3 Symbol length (r)

Figures 13d and 13e plot Psa against the ratio of r : α. As
shown, longer symbol length (larger r) is better for security;
the best results are achieved when the ratio is 1 (r = α).

5.1.4 False positives: noise passing Robust Code Verifi-
cation

Higher-than-usual noise in the channel might satisfy the Ro-
bust Code Verification check. Since the receiver backtracks,

it is imperative to calculate the probability, Pnoise, that noise
in the channel satisfies that check. Unlike the adversary’s
pulses targeted to alter the authentic code, such a candidate
trail of noise pulses does not get added to the sender’s code
because they are at different positions. Without loss of gener-
ality, we can separate the noise-intervals in low-energy and
high-energy, e.g., across the median of the distribution of N2.
We refer to the number of high-energy intervals as κ. The
probability that noise satisfies the Robust Code Verification
check is the probability that x of κ pulses fell into Binα, by
the probability of satisfying the test in that event, p′α,r(x):

Pnoise(α,β,r,κ) =
α

∑
x=0

(
p′α,r(x) ·

(
α

x

) (
β

κ−x

)
(

α+β

κ

)
)

(32)

where,

p′α,r(x) =
r

∑
y=0

((
α−x
r−y

) (x
y

)
(

α

r

) ·
y

∑
i=0

(
β−(κ−x)

r−i

) (
κ−x

i

)
(

α

r

)
)

(33)

This is the probability that an aggregate of y is chosen from
Binα, and of ≤ y from Binβ. Since we separate along the
median, the expected κ is (α+β)/2. Figure 14 plots Pnoise
against α using (32) at κ = (α+β)/2 and β = 100. Intuitively
(and as the chart confirms), Pnoise −→ 0.5 as α−→ ∞.

Since a candidate verification code is discarded as noise if
the Robust Code Verification check is satisfied with a probabil-
ity < Pnoise (recall: Fig. 8), the adversary must have a success
probability of at least 1−Pnoise to hide the authentic code
from the receiver. At r = α, Pnoise(80,100,80,40) = 0.53,
and the adversary must thus have a success probability of at
least 0.47. As this is much higher than the calculated prob-
abilities in Section 5.1.2, the adversary will not be able to
disguise authentic code as noise. The value 0.53 is a lower-
bound; in practice Pnoise should be set ≥ 0.53 depending on
applications’ requirements and channel conditions.

5.2 Validating the Probabilistic Model
The use of prototype implementation using Software Defined
Radios (SDRs) and simulations are well-established methods
for evaluating wireless systems. Existing SDRs do not support
UWB. Therefore, we validate the probabilistic model above
with simulations. The channel condition such as noise, mul-
tipath effect, and path loss are important factors to consider
while designing a wireless system. The IEEE 802.14.4a [18]
channel model for different environments is purposefully pro-
vided for UWB. The preamble and the verification code are
converted into physical layer signals using this model for the
outdoor LoS conditions. The model generates the pulse and
multipath components to resemble the real world effect of the
channel condition. We assume that upper layers, e.g., Medium
Access Control (MAC) layer, could decide on when to per-
form enlargement detection so that it doesn’t interfere with

USENIX Association 28th USENIX Security Symposium 83

200 300 400 500
0

2
·10−4

of adversary pulses (k)

Pr
ob

ab
ili

ty
(P

sa
)

ζ = 20

ζ = 10

(a) β = 500; r = α = 50.

60 80 100
0

2
·10−4

of adversary pulses (k)

Pr
ob

ab
ili

ty
(P

sa
)

ζ = 20

(b) β = 50; r = α = 50.

200 400 600 800
0

4
·10−4

Size of Binβ (β)

Pr
ob

ab
ili

ty
(P

sa
)

ζ = 20

ζ = 15

ζ = 10

ζ = 5

(c) r = α = 50.

0 0.2 0.4 0.6 0.8 1
10−4

10−3

10−2

10−1

Ratio (r : α)

Pr
ob

ab
ili

ty
(P

sa
)

ζ=20

ζ=10

(d) α = 50 and β = 500

0 0.2 0.4 0.6 0.8 1
10−4

10−3

10−2

10−1

Ratio (r : α)

Pr
ob

ab
ili

ty
(P

sa
)

ζ=20

ζ=10

(e) α = 50 and β = 50

Figure 13: Adversarial success probability in (31).

0 20 40 60 80
0.4

0.6

0.8

1

of high-energy pulses (α)

Pr
ob

ab
ili

ty
(P

no
is

e)

r = a/4 r = a/2 r = a/1

Figure 14: Probability that noise passes the Robust Code
Verification check, calculated using (32); κ = α/2, β = 100.

other ranging applications. The simulations account for the
noise and interference due to the noise figure of the receiver
and multipath components. To verify the simulation setup, we
performed a thorough evaluation to cross-check simulation
metrics with previous proof-of-concept implementation [26].
Each pulse uses 500 MHz bandwidth, and the sampling time
between consecutive pulses is 1 µs. Transmission power is
limited to -35 dBm/MHz, well under the limits applied by the
FCC/ETSI regulations [11]. The energy is further reduced to
adapt to path loss model and extra losses (E; cf. Fig. 9).

An adversary is simulated to inject k signals to annihilate
or distort the authentic code, and to replay a delayed and
amplified versions of the authentic signals. Similar to our
assumptions, the adversary in the simulator is capable of
annihilating the pulse and its multipath if the phase is guessed
correctly; it doubles the amplitude of the pulse otherwise.
The time difference between authentic and delayed signals is
δ = 200ns in the simulations (see Fig. 7).

Before demodulation, additive white Gaussian noise
(AWGN) is added to the signal. The receiver in Section 2.1 is
implemented for code verification; it always locks on to the
highest peak, i.e., the peak generated by the adversary due
to its replay attack. The communication range is considered
100m, and the backtracking restricted to 660ns.

The goal of our validation is to (1) confirm the probabilis-
tic model’s correctness, and (2) analyze the effect of the pa-
rameters abstracted from the model, namely noise and the
receiver’s ability to reconstruct the signal after long distance
propagation. In practice, the latter point can be accounted for
by increasing the number of pulses (n = α+β)—see below.

Validating Pbβ>bα. Figure 15 shows the validation for
Pbβ>bα, at a simulated distance between both devices of
d = 10m. A boxplot is drawn at distinct k, where each sce-
nario is run 106 times. The results confirm that abstracting
noise from the model does not largely affect its accuracy. Next
we show the effect of longer distances on the model.

Validating Psa. Figure 16 shows the validation for Psa, at
r = α and Pnoise = 0.8. Results are shown for different k, at
distances of 10m and 100m. Each scenario is run 106 times,
and Psa is calculated as the proportion of these where the
adversary succeeded to hide the authentic code. Again the
results show comparable patterns between the model and
simulations. There is a slight horizontal shift at k due to the
abstracted noise. In the simulator, Γ is set as in (9), which may
be a bit too high or low depending on actual noise patterns. In
Fig. 16a, Γ was relatively low, causing a drop in the simulated
Psa at smaller k compared to the model. In Fig. 16b, Γ was
relatively high, replicating Psa at higher k.

Another difference between simulations and the model
manifests with increasing the distance d between both de-
vices. In practice, in UWB, receivers increase their ability
to reconstruct the signals (hence, the SNR) by aggregating
over more pulses. We noticed that the model provides such
comparable probability patters when we decrease α and β

in the model proportionally with increasing d in simulations.
For example in Fig. 16b where d = 100m, α and β in the
simulator had to be increased from 15 and 158 to 50 and 500
respectively (∼ tripled) to account for the increased distance.

Validating the false positives. We also used simulations
to confirm that noise would not be falsely mistaken for au-
thentic code upon proper selection of Pnoise and Γ. For various
distances between 10m and 100m, the probability of a false
positive was ∼ 1× 10−6, confirming the noise analysis in

84 28th USENIX Security Symposium USENIX Association

Probabilistic Model Simulation Results (box plots)

0 100
0

1

k

P b
β
>

bα

(a) {50,50,1}

0 100
0

1

k
P b

β
>

bα

(b) {50,50,2}

0 100
0

0.3

k

P b
β
>

bα

(c) {50,50,8}

0 200
0

1

k

P b
β
>

bα

(d) {50,150,1}

0 200
0

1

k

P b
β
>

bα

(e) {50,150,2}

0 200
0

0.3

k

P b
β
>

bα

(f) {50,150,8}

Figure 15: Probability of adversary’s failure calculated using (19), and simulations results validating the probabilistic derivations.
Each scenario is run with the {α, β, r} parameters shown in the charts’ individual captions.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
·10−4

of adversary pulses (k)

Pr
ob

ab
ili

ty
(P

sa
)

Prob. Model: α = 20, β = 204

Sim: d = 10, α = 50, β = 500

(a)

0 0.2 0.4 0.6 0.8 1
0

2

4

6
·10−4

of adversary pulses (k)

Pr
ob

ab
ili

ty
(P

sa
)

Prob. Model: α = 15, β = 158

Sim: d = 100, α = 50, β = 500

(b)

Figure 16: The attack is detected when the aggregate energy
is between γ and Γ, but Pbβ>bα is more than Pnoise. The attack
is also detected when energy aggregate is more than Γ; ζ = 5.

Section 5.1.4.

In conclusion, the simulated probabilities follow compara-
ble patterns with the model, and are in the same range. The
model derived herein thus serves as a formal means for evalu-
ating the efficacy and suitability of UWB-ED in practice. The
results also show that the channel condition, such as path loss,
noise, and interference due to multipath components, does
not affect the performance and security of the system. An
adversary can increase the noise level, which can increase
false positives. High false positives may eventually cause
DoS (which the adversary can mount anyway by jamming
the channel), but the adversary remains unable to enlarge
distances.

6 Discussion

Adaptive attacks. An adversary can notice the effect of each
of its added pulses on the resultant energy, whether annihi-
lated or amplified. It can then adapt its attack strategy by
dynamically deciding k based on the number of pulses it has
added/annihilated so far during the transmission. The adver-

sary can then utilize its knowledge of n, α and β in order
to, not only decide the optimal value of k statically before
the transmission begins, but also adjust their distribution in
realtime. This attack does not succeed because the adversary
cannot control the resultant pulse phase. Injecting excessive
energy in Binβ exceeds Γ; injecting in Binα does not guaran-
tee annihilation because of the unpredictable phase.

Varying energy levels. To achieve perfect signal annihila-
tion, an adversary uses the same amplitude expected at the
receiver. Instead of injecting k pulses each with a constant en-
ergy of, e.g., 2µW , the adversary can inject one pulse with an
energy of, e.g., 2kµW . If all k pulses fell in Binβ, the aggregate
energy would be the same as when that single high-energy
pulse also falls in Binβ. However, intuitively, the adversary
is better off injecting multiple pulses with constant energies
for two reasons. First, multiple pulses in Binβ have higher
chances of being selected than a single pulse, thus evading
the Robust Code Verification check. Second, for those that
fall in Binα, any leftover energy after annihilating a pulse,
regardless of the phase, will be counted towards the overall
aggregate, thus hurts the adversary’s cause.

Influencing Γ through distance shortening. Instead of
enlarging distances directly, the adversary can first mount
a distance-reduction attack to trick the devices into using
higher Γ (recall: smaller signal attenuation due to shorter path
loss leads to higher Γ calibration). It is thus imperative to
complement UWB-ED with a distance-reduction detection [5,
6, 26]. Devices should alternate between both techniques;
e.g., if distances of d1 and d2 are verified using respectively
UWB-ED and a distance-reduction detection technique, it
should be concluded that the actual distance, d, is in the range
d1 ≤ d ≤ d2 (d1 is a lower bound, d2 an upper).

Influencing the number of pulses, n. An adversary can
inject a low stream of noise-like energy, not too high to be
detected as jamming. However because Γ is set beforehand,
it is not influenced by the adversary. By injecting noise, the
adversary actually hurts its own cause as it reduces the amount
of energy it can use strategically to prevent code detection.

Integrating UWB-ED with 802.15.4z and 5G. The
802.15.4z enhanced impulse radio task group is defining a

USENIX Association 28th USENIX Security Symposium 85

series of physical layer improvements to provide secure and
precise ranging [2]. Those include additional coding, pream-
bles, and improvement to existing modulations to increase
ranging integrity and accuracy. UWB-ED is a potential can-
didate for enlargement detection in 802.15.4z. It adheres to
the low pulse repetition (LRF) mode frequency (1-2 MHz),
works with non-coherent receivers, and supports up to 100m.

The 3GPP technical specifications groups are designing
the 5G-new radio technology, and it aims to include secure
and precise ranging based on wireless signals [16,33]. Proper-
ties such as high carrier frequencies, large bandwidths, large
antenna arrays, device-to-device communication, and ultra-
dense networking will help attain this objective. It is early to
say the exact modulation techniques 5G will use for distance
measurement, but it is safe to assume that wideband will be
used to attain position accuracy; beamforming techniques will
achieve long distances. This system is equivalent to setting
r = 1 herein without restrictions on α, as transmission power
restrictions imposed on UWB do not apply to 5G. However,
the security of 5G can be increased further, as it allows for
the use of beamforming and coherent receivers.

7 Related Work

Detecting enlargement attacks has lately been a prominent
research area. Previous literature explored timing acquisition
at the preamble, and data ambiguity at payload. Taponecco et
al. [27] show that the success of enlargement attacks using re-
play (or overshadowing) depends on the amount of delay the
adversary introduces. Such success is harder for controllable
attacks, where the adversary is required to position nodes at
specific locations. Compagno et al. [8] provide a probabilis-
tic model for the success of overshadowing attacks, which
captures different channel conditions and leading edge detec-
tion techniques for ToA estimation. None of the above efforts
considered adversarial signal annihilation.

Tippenhauer et al. [29] explored a theoretical approach to
detect adversarial signal annihilation for distance enlargement:
using a single pulse-per-symbol (consecutive integration win-
dows represent a symbol). They found that modulation with a
2ns slot size, i.e., mostly equivalent to a pulse width, might
help detect signal annihilation. This, however limits the rang-
ing technique to short distances. The effect of multipath on
that scheme in practice is also unclear, since reflected signals
would directly interfere with authentic ones causing distor-
tion (no empty gaps between authentic pulses). In contrast,
UWB-ED allows for increased distances by increasing the
symbol length, and the sampling time between consecutive
pulses is sufficient to handle the multipath effect.

8 Conclusion

We present UWB-ED—the first known technique to detect
distance-enlargement attacks against standard UWB ranging
systems. UWB-ED is readily deployable for current off-the-
shelf receivers, requiring no additional infrastructure. Evalua-
tion is performed by deriving the probability of adversarial
success in mounting distance enlargement attacks. Results
show that the verification code structure herein prevents signal
annihilation. The code also allows the use of longer symbol
length at the receiver, which is essential to achieve longer
distance in the energy constrained UWB system. UWB-ED is
thus a good candidate for enlargement detection in practice
(e.g., for 802.15.4z and 5G).

References

[1] 3db. 3db Access AG - 3DB6830 ("proximity based
access control"). https://www.3db-access.com/
Product.3.html. [Online; Accessed 22. October
2018].

[2] Task Group 4z. IEEE 802.15 WPAN "enhanced im-
pulse radio". http://www.ieee802.org/15/pub/
TG4z.html. [Online; Accessed 22. October 2018].

[3] P. Bahl and V. N. Padmanabhan. RADAR: an in-
building RF-based user location and tracking system.
In IEEE INFOCOM, volume 2, pages 775–784, 2000.

[4] K. Bauer, D. McCoy, E. Anderson, M. Breitenbach,
G. Grudic, D. Grunwald, and D. Sicker. The Directional
Attack on Wireless Localization -or- How to Spoof Your
Location with a Tin Can. In IEEE GLOBECOM, pages
1–6, 2009.

[5] Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vau-
denay. Towards Secure Distance Bounding. Cryptol-
ogy ePrint Archive, Report 2015/208, 2015. https:
//eprint.iacr.org/2015/208.

[6] Stefan Brands and David Chaum. Distance-bounding
protocols. In EUROCRYPT, pages 344–359. Springer,
1994.

[7] M. Cagalj, S. Čapkun, R. Rengaswamy, I. Tsigkogian-
nis, M. Srivastava, and J. Hubaux. Integrity (I) codes:
message integrity protection and authentication over in-
secure channels. In IEEE Symposium on Security and
Privacy (S&P), pages 15 pp.–294, 2006.

[8] A. Compagno, M. Conti, A. A. D’Amico, G. Dini, P. Per-
azzo, and L. Taponecco. Modeling Enlargement Attacks
Against UWB Distance Bounding Protocols. IEEE
Transactions on Information Forensics and Security,
11(7):1565–1577, 2016.

86 28th USENIX Security Symposium USENIX Association

https://www.3db-access.com/Product.3.html
https://www.3db-access.com/Product.3.html
http://www.ieee802.org/15/pub/TG4z.html
http://www.ieee802.org/15/pub/TG4z.html
https://eprint.iacr.org/2015/208
https://eprint.iacr.org/2015/208

[9] DecaWave. DecaWave "dw1000 product descrip-
tion and applications". https://www.decawave.com/
products/dw1000. [Online; Accessed 22. October
2018].

[10] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–208, 1983.

[11] Robert J Fontana and Edward A Richley. Observations
on low data rate, short pulse uwb systems. In IEEE
International Conference on Ultra-Wideband (ICUWB),
pages 334–338, 2007.

[12] Shyamnath Gollakota, Nabeel Ahmed, Nickolai Zel-
dovich, and Dina Katabi. Secure in-band wireless pair-
ing. In USENIX Security Symposium, 2011.

[13] Humatics. Time Domain’s PulsON ("p440"). http:
//www.timedomain.com/products/pulson-440/.
[Online; Accessed 23. October 2017].

[14] Todd E. Humphreys. Assessing the spoofing threat: De-
velopment of a portable gps civilian spoofer. In Institute
of Navigation GNSS (ION GNSS), 2008.

[15] Benjamin Kempke, Pat Pannuto, and Prabal Dutta. Sure-
Point: Exploiting Ultra Wideband Flooding and Diver-
sity to Provide Robust, Scalable, High-Fidelity Indoor
Localization. In ACM SenSys, pages 318–319, 2016.

[16] Xingqin Lin, Jingya Li, Robert Baldemair, Thomas
Cheng, Stefan Parkvall, Daniel Larsson, Havish Koora-
paty, Mattias Frenne, Sorour Falahati, Asbjörn Grövlen,
and Karl Werner. 5G New Radio: Unveiling the Essen-
tials of the Next Generation Wireless Access Technol-
ogy, 2018.

[17] A. F. Molisch. Ultrawideband propagation channels-
theory, measurement, and modeling. IEEE Transactions
on Vehicular Technology, 54(5):1528–1545, 2005.

[18] A. F. Molisch, D. Cassioli, C. Chong, S. Emami, A. Fort,
B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz,
K. Siwiak, and M. Z. Win. A Comprehensive Stan-
dardized Model for Ultrawideband Propagation Chan-
nels. IEEE Transactions on Antennas and Propagation,
54(11):3151–3166, 2006.

[19] Andreas F. Molisch. Wireless Communications. Wiley
Publishing, 2nd edition, 2011.

[20] Andreas F. Molisch, Kannan Balakrishnan, Chia chin
Chong, Shahriar Emami, Andrew Fort, Johan Karedal,
Juergen Kunisch, Hans Schantz, Ulrich Schuster, and
Kai Siwiak. IEEE 802.15.4a channel model - final re-
port. In Converging: Technology, work and learning.
Australian Government Printing Service. [Online; Ac-
cessed 4. November 2018], 2004.

[21] A. Muqaibel, A. Safaai-Jazi, A. Bayram, and S. M.
Riad. Ultra wideband material characterization for in-
door propagation. In IEEE Antennas and Propagation
Society International Symposium, volume 4, pages 623–
626, 2003.

[22] Pericle Perazzo, Lorenzo Taponecco, Antonio A.
D’amico, and Gianluca Dini. Secure Positioning in
Wireless Sensor Networks Through Enlargement Mis-
control Detection. ACM Transactions on Sensor Net-
works, 12(4):27:1–27:32, 2016.

[23] Christina Pöpper, Nils Ole Tippenhauer, Boris Danev,
and Srdjan Čapkun. Investigation of Signal and Mes-
sage Manipulations on the Wireless Channel. In Vijay
Atluri and Claudia Diaz, editors, Computer Security –
ESORICS 2011, pages 40–59. Springer, 2011.

[24] Swiss Post. Drones as transportation ve-
hicle. https://www.post.ch/en/about-
us/company/media/press-releases/2017/swiss-
post-drone-to-fly-laboratory-samples-for-
ticino-hospitals, May 2018.

[25] Mary-Ann Russon. Drones to the rescue! http://www.
bbc.com/news/business-43906846, May 2018.

[26] Mridula Singh, Patrick Leu, and Srdjan Čapkun. UWB
with Pulse Reordering: Securing Ranging against Relay
and Physical Layer Attacks. In NDSS, 2019.

[27] L. Taponecco, P. Perazzo, A. A. D’Amico, and G. Dini.
On the Feasibility of Overshadow Enlargement Attack
on IEEE 802.15.4a Distance Bounding. IEEE Commu-
nications Letters, 18(2):257–260, 2014.

[28] Nils Ole Tippenhauer, Kasper Bonne Rasmussen,
Christina Pöpper, and Srdjan Čapkun. Attacks on Public
WLAN-based Positioning. In ACM/Usenix MobiSys,
2009.

[29] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, and
Srdjan Čapkun. Physical-layer Integrity for Wireless
Messages. Computer Networks, 109(P1):31–38, 2016.

[30] Deepak Vasisht, Swarun Kumar, and Dina Katabi.
Decimeter-level localization with a single wifi access
point. In USENIX NSDI, pages 165–178, 2016.

[31] S. Čapkun and J. Hubaux. Secure positioning of wireless
devices with application to sensor networks. In IEEE
Computer and Communications Societies., volume 3,
pages 1917–1928, 2005.

[32] K. Witrisal, G. Leus, G. J. M. Janssen, M. Pausini,
F. Troesch, T. Zasowski, and J. Romme. Noncoher-
ent ultra-wideband systems. IEEE Signal Processing
Magazine, 26(4):48–66, 2009.

USENIX Association 28th USENIX Security Symposium 87

https://www.decawave.com/products/dw1000
https://www.decawave.com/products/dw1000
http://www.timedomain.com/products/pulson-440/
http://www.timedomain.com/products/pulson-440/
https://www.post.ch/en/about-us/company/media/press-releases/2017/swiss-post-drone-to-fly-laboratory-samples-for-ticino-hospitals
https://www.post.ch/en/about-us/company/media/press-releases/2017/swiss-post-drone-to-fly-laboratory-samples-for-ticino-hospitals
https://www.post.ch/en/about-us/company/media/press-releases/2017/swiss-post-drone-to-fly-laboratory-samples-for-ticino-hospitals
https://www.post.ch/en/about-us/company/media/press-releases/2017/swiss-post-drone-to-fly-laboratory-samples-for-ticino-hospitals
http://www.bbc.com/news/business-43906846
http://www.bbc.com/news/business-43906846

[33] Henk Wymeersch, Gonzalo Seco-Granados, Giuseppe
Destino, Davide Dardari, and Fredrik Tufvesson. 5G
mmWave Positioning for Vehicular Networks. Wireless
Communications, 24(6):80–86, 2017.

[34] Paul A Zandbergen. Accuracy of iPhone locations: A
Comparison of Assisted GPS, WiFi and Cellular Posi-

tioning. Blackwell Transactions in GIS, 13(s1), 2009.

[35] Zebra Technologies. "sapphire dart ultra wideband
(uwb) real time locating system 2010.". https:
//www.zebra.com/us/en/solutions/location-
solutions/enabling-technologies/dart-

uwb.html. [Online; Accessed 22. October 2018].

88 28th USENIX Security Symposium USENIX Association

https://www.zebra.com/us/en/solutions/location-solutions/enabling-technologies/dart-uwb.html
https://www.zebra.com/us/en/solutions/location-solutions/enabling-technologies/dart-uwb.html
https://www.zebra.com/us/en/solutions/location-solutions/enabling-technologies/dart-uwb.html
https://www.zebra.com/us/en/solutions/location-solutions/enabling-technologies/dart-uwb.html

Computer Security and Privacy in the Interactions Between Victim Service
Providers and Human Trafficking Survivors

Christine Chen
Paul G. Allen School of Computer Science & Engineering

University of Washington

Nicola Dell
The Jacobs Institute

Cornell Tech

Franziska Roesner
Paul G. Allen School of Computer Science & Engineering

University of Washington

Abstract
A victim service provider, or VSP, is a crucial partner in a

human trafficking survivor’s recovery. VSPs provide or con-
nect survivors to resources such as medical care, legal ser-
vices, employment opportunities, etc. In this work, we study
VSP-survivor interactions from a computer security and pri-
vacy perspective. Through 17 semi-structured interviews
with staff members at VSPs and survivors of trafficking, we
surface the role technology plays in VSP-survivor interac-
tions as well as related computer security and privacy con-
cerns and mitigations. Our results highlight various tensions
that VSPs must balance, including building trust with their
clients (often by giving them as much autonomy as possible)
while attempting to guide their use of technology to mitigate
risks around revictimization. We conclude with concrete rec-
ommendations for computer security and privacy technolo-
gists who wish to partner with VSPs to support and empower
trafficking survivors.

1 Introduction

Human trafficking is a crime in which a perpetrator, or “traf-
ficker”, preys on vulnerable individuals through atrocities
such as sexual exploitation, forced labor, or the removal of
organs [30]. As a conservative estimate, around 24.9 mil-
lion individuals worldwide are being exploited in this man-
ner [16]. Technology is playing an increasing role in this
ecosystem, from enabling trafficking via online platforms
(e.g., [2, 18]) to aiding in the detection and halting of traf-
ficking (e.g., [6, 25]).

In this work, we focus on a previously understudied role
that technology plays in the human trafficking ecosystem:
technology in the interactions between trafficking survivors
and organizations known as victim service providers, or
VSPs. VSPs exist to support their clients by providing re-
sources such as temporary shelter, help with employment
and legal issues, and mental health support. In this work,
we focus on VSPs providing resources to individuals who
are exiting or recovering from a trafficking situation. These

resources are critical in protecting these individuals from for-
mer or future exploiters (“revictimization”).

Our research is driven by the following questions: How do
VSPs communicate and interact with their clients (trafficking
survivors), and, particularly, what role does technology play
in that interaction? What are VSPs’ computer security con-
cerns and threat models, both for themselves and on behalf of
their clients? What technical (or non-technical) strategies do
they use to mitigate these concerns? And, ultimately, what
opportunities exist to better safeguard VSPs and their clients
from a computer security perspective?

To investigate these questions, we conducted a qualitative
interview study with 17 participants, including staff mem-
bers at VSPs and several trafficking survivors. We analyzed
these interviews using thematic analysis common in qualita-
tive research. Our findings shed light on the general role of
technology in VSP-survivor interactions (Section 4.1), the
computer security concerns and threat models of VSPs and
their clients (Section 4.2), and the corresponding defenses,
where present (Section 4.3). We identify fundamental ten-
sions and challenges that must be taken into account by tech-
nologists who wish to improve VSP and client security and
privacy (Section 5).

At a high level, we find that VSPs make technology-
related choices with the goals of protecting their clients from
revictimization and other harm. Specific instances of how
VSPs protect clients include helping clients lock down social
media accounts and enforcing shelter rules restricting photos
or social media posts (that may reveal the shelter’s location).
We also find that, sometimes, the most effective means for
VSPs and their clients to interact are not the most conducive
to client safety. For example, despite the potential risk of
trafficker-compromised accounts, some VSPs use Facebook
to communicate with clients because it provides a reliable
way to reach them even in the absence of cellular service.
More generally, we find that our participants must balance
building client trust and maintaining contact with imposing
technology-related client safety rules.

From findings such as these, we distill concrete recom-

USENIX Association 28th USENIX Security Symposium 89

mendations for those in the computer security and privacy
community, and for technologists at large, wishing to help
support survivor-VSP relationships. For example, we pro-
vide guidelines on securing communications in situations
when the client’s device is compromised by an adversary
with physical access and raise awareness around the threat
posed to survivors by publicly available information (e.g.,
public records) online. In investigating the interactions be-
tween survivors of human trafficking and VSPs from a com-
puter security and privacy perspective, our work contributes
to the larger push to leverage technology for good in the fight
against human trafficking.

2 Background and Related Work

There is a growing body of research examining the role of
technology in both facilitating and fighting human traffick-
ing (e.g., [2, 12, 17–19, 24]). In the computer science com-
munity in particular, prior work has developed technology
to aid investigators in examining online sex ads and online
forums for trafficking activity [6, 25].

Focusing on the victim service provider ecosystem, there
has been research that explores the ways anti-trafficking
organizations utilize technology to collaborate with each
other [29] as well as efforts within the VSP community
to leverage technology in providing help to trafficking vic-
tims [20]. Work outside of the technical realm has examined
how survivors of trafficking [4] or domestic violence [13]
experience and react to the assistance provided by VSPs.

Beyond human trafficking, the computer security and pri-
vacy community has studied other specific (often at-risk)
populations, including journalists [22], refugees [28], and
undocumented immigrants [14]. Most relevant to our work
is research studying computer security and privacy for sur-
vivors of intimate partner violence [5, 10, 11, 21]. Where
relevant, we highlight similarities between our findings with
these prior studies on related populations.

In this work, we focus on an aspect of the human traf-
ficking ecosystem that has not been rigorously studied from
an academic, technical perspective: the interactions between
VSPs and trafficking survivors. We ask, from a computer
security and privacy perspective: how does technology en-
able or hinder these relationships, and how do VSPs and their
clients consider and mitigate the potential technology-related
risks that may undermine the survivor’s path to recovery?

3 Methodology

Between March and July 2018, we conducted 17 semi-
structured interviews with staff members at victim service
provider organizations and several trafficking survivors.

Recruitment. Recruitment took place through several
primary methods: introductions facilitated by community

members and anti-trafficking leaders, the authors’ personal
connections, and snowball sampling. Our recruitment adver-
tisements specified that we were looking for advocates who
work with labor trafficking and/or sex trafficking survivors
to speak about how they use technology in their work. We
also specified that participants would be compensated $30.

Participants. Table 1 provides an overview of the 17 study
participants. The 17 participants represented 11 different or-
ganizations; survivors P14 and P17 were not affiliated with
a specific organization at the time of the study. 16 partici-
pants were based in the U.S. and one participant was based
in a Southeast Asian country. Most participants were based
in urban areas.

As Table 1 shows, most participants currently focus on
serving survivors of sex trafficking (though some partici-
pants may have previously helped labor trafficking survivors
as well). To avoid confusion, we do our best throughout this
paper to call out results that are specific to interactions with
labor trafficking survivors or sex trafficking survivors. Fi-
nally, to be clear, note that some of the participants who fo-
cus on sex trafficking survivors naturally also serve individ-
uals in the sex trade who may not technically fall within the
parameters of sex trafficking (e.g. individuals who claim to
be in the sex trade voluntarily).

Study Protocol. The interviews ran between 60-90 min-
utes. We began with groundwork questions to understand the
participant’s role in supporting clients and general thoughts
on technology’s influence on the trafficking ecosystem. We
then asked questions that would help surface how VSPs use
technology in their interactions with clients and what, if
any, concerns exist around this technology usage. We asked
about participants’ experiences with technology with regards
to first contact with clients, client intake, organization and
client safety, and day-to-day interactions. To avoid priming
participants to overemphasize their computer security and
privacy concerns, most questions focused generally on tech-
nology in client-VSP interactions and related concerns but
did not mention computer security and privacy in particular.

Finally, we showed participants two prototypes for se-
cure communication (created by others): single-use URLs
(a URL that leads to sensitive content, which gets changed
to innocuous content when the same URL is accessed again)
and disappearing messages [1, 8, 9]. Our goal was to elicit
reactions and threat models using these concrete examples,
not to propose these particular technologies as perfect solu-
tions. To avoid participants giving inflated positive responses
towards the tools (participant response bias), we stated these
goals clearly for participants and also stated that we did not
make the tools. We asked questions like: When, if at all,
might you use this? How could it be helpful? How could
it introduce more risk? The full interview protocol can be
found in Appendix A.

90 28th USENIX Security Symposium USENIX Association

ID Job Title Focus Client Nationality Client Age
P1 Advocate, Survivor Leader Sex Trafficking Domestic Adult
P2 Advocate Sex Trafficking Domestic Adult
P3 Director Sex Trafficking Domestic All
P4 Director Sex Trafficking Domestic Youth, TAY
P5 Advocate Labor Trafficking International Adult
P6 Director Sex Trafficking Domestic All
P7 Advocate Sex Trafficking Domestic Youth, TAY
P8 Advocate Labor and Sex Trafficking Domestic, International All
P9 Advocate Sex Trafficking Domestic Youth, TAY
P10 Advocate, Survivor Leader Sex Trafficking Domestic Youth, TAY (to 25)
P11 Advocate Sex Trafficking Domestic Youth, TAY (to 30)
P12 Advocate Labor and Sex Trafficking International Adult
P13 Advocate Sex Trafficking Domestic, International TAY
P14 Survivor Leader Sex Trafficking N/A N/A
P15 Advocate Sex Trafficking Domestic, International did not disclose
P16 Director Labor and Sex Trafficking Domestic, International Adult
P17 Survivor Leader Sex Trafficking N/A N/A

Table 1: Summary of Participants. Advocates support clients one-on-one, Directors oversee the VSP’s human trafficking
services (managing advocates as well as interacting with clients), and Survivor Leaders are survivors of trafficking (in this
case, sex trafficking) who are raising awareness and leading trainings on the issue. Transition age youth (TAY) are individuals
between the ages of 16 and 24 [32]; where specified, participants also worked with clients slightly outside of this range.

Ethical Considerations. Our study was declared exempt by
the University of Washington human subjects review board
(IRB). We obtained informed consent from participants to
conduct and (optionally) to audio record the interview. As
the interviews could touch on highly sensitive topics (espe-
cially for survivors), we ensured that participants knew that
they could skip questions and request a break at any time.
We also emphasized that participants should provide only as
much detail in their answers as they felt comfortable with.
All electronic files were password protected, and physical
consent forms and notes were stored in a secure location.

Data Analysis. We continued conducting interviews until
no new themes emerged (saturation). We analyzed the data
thematically using a common methodology for qualitative
data [3]. We conducted multiple passes through the data
in which we iteratively identified and clustered themes, or
codes, present in the data. Two researchers independently
read through transcripts of several interviews, generated an
initial set of codes, met in person to develop an initial code-
book, and iteratively refined this codebook by applying it to
additional interviews. Once the codebook was finalized, two
researchers divided up the remaining interviews and coded
them. We emphasize that the nature of our data is qualita-
tive, not quantitative, so we do not report on raw numbers of
participants who made certain statements in the results.

4 Results

We now turn to our results. After providing an overview
of the general practices our participants and their orga-
nizations use in interacting with trafficking survivors, we
will present the security and privacy concerns and mitiga-
tion strategies — and tensions and challenges — that arise in
these interactions. We use the terms “survivor” and “client”
interchangeably, depending on the context and following the
norms described by our participants during the interviews.
At times, we also use the term “victim” and note that VSP
clients may not be fully removed from a trafficking situation
when they are receiving services.

4.1 Client-VSP Interactions

This section provides background and context for the more
in-depth security and privacy discussions in later sections.

4.1.1 Role of VSPs

Though VSPs may help trafficking victims escape their sit-
uations, their primary role is to help clients with the many
challenges they face on the path to stability, including look-
ing for employment, applying for housing, dealing with le-
gal matters, and coping with severe trauma. Importantly, as
we investigate in this paper, VSPs protect clients and train

USENIX Association 28th USENIX Security Symposium 91

clients to protect themselves from revictimization into a traf-
ficking situation.

Some of our participants work at VSPs that provide shelter
for clients. These arrangements range from emergency shel-
ters (with very low barrier to entry — e.g., a client can stay
even if he or she is on drugs) to long-term homes (where the
client must be committed to actively working towards goals
and self-sustainability). As we discuss in Section 4.3, shelter
locations are sometimes confidential to help protect clients.

As an overarching challenge in providing services to
clients, participants described the delicate balance they must
walk between building trust with their clients — so that they
can best advise and maintain contact with them — and doing
what they believe is best for the client. As clients have left (or
as they are in the process of deciding whether to leave) a sit-
uation where they have had little control over their lives, par-
ticipants often talked about how crucial it is to give clients as
much autonomy as possible. For example, P13 talked about
working with clients who want to find a job. While she would
like her clients to go to school, she does not force her idea
of what would be best on the client. Throughout out results,
we will see this tension recur in the context of technology-
related guidelines and choices that VSPs are hesitant to push
on their clients.

4.1.2 First Contact

Clients typically make their first contact with VSPs through
referrals — e.g., from law enforcement, schools, or other
VSPs — or via a phone hotline. Hotlines may receive emer-
gency calls, playing a similar role to 9-1-1 for clients and
trafficking victims. For example, P7 described answering
hotline calls from individuals who are running for their lives
at the moment, and P8 talked about how they will dispatch a
Lyft or Uber to a caller who has just escaped.

Dispersal and discovery of hotline numbers happens in a
variety of ways. Beyond relying on word of mouth (a com-
mon method), participants talked about posters with the hot-
line number placed in public locations such as hospitals, train
stations, and rest stops. One organization has their hotline
number on a local Spanish TV channel. Another mode of
dispersal is through personal items (e.g., soap, essential oil,
hats, etc.) handed out to at-risk individuals (e.g. farm work-
ers) with the hotline number hidden discreetly on the object.

For individuals still in trafficking situations, calling the
hotline can be dangerous (if the individual is constantly be-
ing monitored by their trafficker) or even impossible (if the
individual does not have a device). In these situations, par-
ticipants described the ingenuity of their clients in finding
ways to access technology to get help. For example, one of
P16’s labor trafficking clients saved up enough money from
tips to buy a burner phone from a gas station. While the
burner phone did not have the capability to connect to the
Internet, he had seen a hotline number earlier and committed

it to memory. As another example:

P8: I’ve had a few clients who, in escaping...
[were] able to get access to a hidden phone or
discretely (on an app that their trafficker isn’t
aware...is a messaging app)...send messages to a
friend who helps them get help...

From advocates who work with sex trafficking survivors,
we heard how clients will search the web for help:

P2: We’ve had a couple people. I’m like, “How did
you learn about us?” She goes, “I googled prosti-
tutes [city].”

At the same time, participants worried that lack of technical
expertise could make it challenging for clients to find help
online. For example:

P1: I think what people have a hard time with is
search words. I think people don’t understand how
Google works, and how to search for things.

Mention of direct outreach by VSPs to potential clients
was rare, but one participant uses the phone numbers in on-
line sex ads to conduct text message campaigns to contact in-
dividuals who might want help leaving. Another participant,
P3, said that her organization reaches out to people who like
the organization’s Facebook page to see if they need help.

4.1.3 Continued Communication

Our participants typically communicate with clients via
phone calls, SMS, social media (e.g., Facebook), email, and
in person. Participants generally talked of using the com-
munication method that their clients feel most comfortable
with. P16 described how digital communication can help
put clients at ease.

P16: I find that many of our clients are more com-
fortable engaging through technology because it’s
less raw. It’s a step removed in some ways...

Communication methods that work over WiFi were often
mentioned as important, as clients may not be able to afford
reliable cellular service or even a reliable device:

P2: A client right now has a phone. It’s not con-
nected to any service, but she can connect to WiFi,
so she and I can use Facebook Messenger instead
of texting. That’s true for a lot of our clients, be-
cause phones get turned off and on all the time,
numbers change all the time. I can still reach them
on Facebook, on Facebook Messenger. You can
log in to any computer or any phone to access it.

As we will discuss further in Section 4.3, participants’ and
their clients’ threat models also influence their choice of
communication method.

92 28th USENIX Security Symposium USENIX Association

4.2 Threat Models and Security Concerns

We now turn specifically to the threat models and computer
security related concerns voiced by our participants, both for
themselves as individuals and representatives of their organi-
zations, and on behalf of their clients. We found that many of
the security concerns or goals that our participants voiced ul-
timately revolved around preventing revictimization and pro-
tecting the physical safety of clients and VSPs. In this work,
we focus primarily on technology-related issues, but high-
light other concerns as well where necessary for context.

4.2.1 Trafficker as Primary Adversary

The most common adversary for VSPs and clients were the
clients’ former trafficker(s) or potential future trafficker(s).

Compromising Online Accounts and Communications.
VSP clients’ communications may be compromised by traf-
fickers, either digitally or via physical access. In many cases,
traffickers have access to account credentials directly. P5,
who works with labor trafficking survivors, described one
tactic traffickers use to gain such access and alludes to the
way low digital literacy can harm international and/or labor
trafficking victims:

P5: What if their trafficker has access to their email
or helped them set up the email account. Just the
client never knew that and now I’m communicat-
ing with the client and [the trafficker] is reading
our information?...I feel with our clients, they’re
just so vulnerable and a lot of them were brain-
washed...using a cell phone or using Facebook, a
lot of them, their traffickers opened the account for
them and they think, “Oh he was just being helpful.
He wanted me to communicate with my family.”

Traffickers may also compromise or intercept communica-
tions via physical access to clients’ devices. For example, in
the sex trafficking ecosystem:

P7: I’ve had different guys that’ll pick up [my
clients’] phone and pretend to be them, go through
their messages.

Despite the risk that a trafficker might physically see or
digitally intercept communication intended for a victim, P1
weighed such risks against the benefits of reaching traffick-
ing victims in her text outreach work. Note that the term
“pimp” is another way of referring to the trafficker.

P1: And I don’t think it’s at the expense of the
victim, okay? I think, people ask this question be-
cause they’re like, “Well don’t you think that their
pimp is gonna beat them up because they got this
message?” Potentially. 100% yes...It’s either, I
get information out there that will potentially give
them an out, or they just don’t get anything.

Tracking Location. Another concern was traffickers track-
ing down former victims after their escape. P16 has had
clients who found GPS trackers on their cars; P7 described
the use of tracking apps on phones:

P7: It’s usually...through [the victims’] device be-
cause most of the pimps get [the device], so they
have the family tracking, different apps and stuff
like that...One of my girls has shown me that they
can pull it up on their computer and you can see
where all of [the victims] are at one time.

Using Online Information to Track Down Survivors.
Even if a survivor’s devices or accounts are not directly com-
promised, participants worried about the use of online public
information to track down survivors. This fear is exacerbated
by the fact that the trafficker often knows key information
(like birth date, social security number, etc.) that allows ac-
cess even to protected information.

For example, P14 is herself a survivor, and she general-
ized from her own experiences the ways traffickers can uti-
lize public information to relocate survivors. Specifically,
she explained that traffickers can find where survivors have
moved by searching publicly available Department of Motor
Vehicles (DMV) records; they can use survivors’ addresses
and social security numbers to access and potentially lock
them out of their own bank accounts; and they can then track
survivors’ activities by observing the details of bank transac-
tions.

As another example, P17 described being found via med-
ical records and an old Facebook page she had thought was
gone. P16 talked about how shared rewards systems (like
grocery rewards cards) can reveal to a trafficker where a sur-
vivor is shopping and what they are purchasing.

Undermining VSP Operations. Participants also discussed
the ways that traffickers seek to undermine the efforts of
VSPs. P7 talked about traffickers hanging out near VSPs
to recruit, and P16 talked about a trafficker sending a victim
into a survivor program to recruit others directly. P2 men-
tioned that traffickers have called her organization’s hotline
looking for survivors.

For shelters where the location is confidential, participants
described various ways in which this confidentiality could
be compromised. A common concern, for example, was that
people living in the shelter might accidentally reveal its loca-
tion (or the location of shelter guests) to traffickers via pic-
tures or other posts on social media. P14 felt that location
confidentiality was a challenging, if not impossible, goal:

P14: ...how confidential really is any kind of build-
ing? I mean, you’re gonna see it on Google Maps
eventually. Whether or not you see it this year or
three years from now when they do their next pic-
ture, you’re gonna see it. So it’s not gonna be nec-
essarily confidential for long.

USENIX Association 28th USENIX Security Symposium 93

On a related note, P14 talked about an organization she
knows that did drone footage of their safe house as a cau-
tionary tale to VSPs of how easily location confidentiality
can be breached.

P14: Which to me, anybody who is logical, you’re
doing drone footage of a supposed safe house.
Well, any good hacker is gonna be able to pinpoint
on a map exactly where that safe house is. Now,
you’re no longer safe.

4.2.2 Other Threats and Concerns

Beyond traffickers as direct adversaries, our interviews sur-
faced several other threats and concerns that VSPs and their
clients may contend with.

Availability of VSP Resources. VSPs have limited re-
sources which can come under intentional or unintentional
contention. For example, several participants discussed ways
in which the availability of the emergency hotline can be im-
pacted, either by suspicious callers or by callers who misin-
terpret the function of the hotline. For example, P12 talked
about how the hotline gets calls from people who need help
with their subway cards because there are posters with the
hotline number in the city’s subway system.

Post-Trafficking Limbo. Several participants (P11, P13,
P15) discussed how sex trafficking survivors can be at greater
risk for abusive or unhealthy relationships:

P13: They’ll minimize the [domestic violence] be-
cause “at least he’s not selling me”...They’ll mini-
mize the psychological violence that they’re caus-
ing them or the emotional.

P13 gave an example of the potential consequences, describ-
ing a client who has an abusive, controlling boyfriend:

P13: Like, within the last two months she’s gotten
like four new numbers, four new phones or five
new phones. So I’m starting to think that this guy
is breaking all her phones so that she doesn’t have
communication with anyone.

P13 described how this constantly changing communication
environment severely limits the amount of help she can of-
fer the client, e.g., prolonging the process of helping her
find employment. Prior work [27] describes how domes-
tic violence can serve as a “push factor” into sex traffick-
ing. Our findings suggest that the push factor can also
work in the opposite direction from sex trafficking to domes-
tic violence. Computer security in the context of intimate
partner violence has also been covered extensively in prior
work [5, 10, 11, 21].

Labor trafficking survivors are especially desperate to get
a job, and P5 described how they will sometimes even con-
sider asking people in their community back home (who got
them into labor trafficking in the first place) about jobs for

undocumented individuals. Furthermore, the internet is not
always a safe place to look for re-employment. In describing
ways that technology facilitates trafficking, P8 talked about
online frauds that can lead to labor trafficking:

P8: We’ve had clients who respond to certain
Craigslist ads for either a place to live or a job and
then once they get into this suspect situation end
up...getting trafficked.

Online Triggers. Several participants mentioned the risk
of online triggers that may push a sex trafficking survivor
towards revictimization. For example, survivors who are
friends with individuals still in sex work (whether voluntar-
ily or not) are constantly bombarded on social media with
reminders of their past (e.g., a friend might post about the
amount of money she made in a night):

P2: We talk about “environmental triggers,” and
you can avoid an area of town as part of a safety
plan around relapse prevention, but do you also
have to delete your Snapchat and maybe your In-
stagram? And maybe get a new Facebook? If
you’re still “friends,” on any social media plat-
form, with anyone from that life, you’re gonna be
seeing triggers constantly.

In a similar vein, P4 worried about all the things her (un-
derage) clients might stumble across on the Internet. She told
the story of a time one of her clients was doing homework
and clicked on a Youtube video. Youtube’s content sugges-
tions led the viewer to increasingly explicit content. P4 was
also fearful that images of past (digitized) exploitation might
surface on the Internet and haunt her clients later in life.

Concerns around Law Enforcement and Legal Systems.
Both VSP staff members and survivor leaders voiced con-
cerns related to the interactions between victims/survivors
and law enforcement. On one extreme, a survivor leader
explained that local law enforcement was complicit in her
trafficking. This is a real concern — e.g., police officers in
New York City were recently charged for involvement in a
prostitution enterprise [31]. Thus, this survivor worried that,
if law enforcement ever came to the shelter (to help with
some emergency), this could be triggering for shelter resi-
dents who may have had negative experiences with law en-
forcement. Participants also voiced concern over victims of
trafficking being charged with crimes. For example, pros-
titution is largely illegal in the United States, and sex traf-
ficking survivors may be charged under prostitution laws or
with other crimes committed during the time they were being
trafficked [26, 27].

Participants also expressed frustration over regulations
that make it difficult to establish trust with clients, such as
legislation in some states requiring advocates to report run-
aways who come to their shelter to parents and law enforce-
ment. This disincentivizes minors to come to the shelter:

94 28th USENIX Security Symposium USENIX Association

P10: If they’re listed as missing or as a runaway,
I’m obligated to let law enforcement know where
they are...I do have a lot of professional protocols
I have to follow as well. I adhere to those, as much
as they suck. Our laws just don’t always enable us
to do what actually needs to be done.

As we discuss in Section 4.3, these concerns can drive the
communication choices of clients and VSPs. We also want
to note that some participants described strong partnerships
with law enforcement, and one survivor leader described the
immense support she received from law enforcement in her
recovery.

Authenticity of First Contact. Finally, for VSPs who do
direct outreach to potential clients, it is difficult to convince
the recipient of their good intent. P1 reaches out to potential
sex trafficking victims via text message, and those receiv-
ing her text messages are sometimes fearful that she is the
police. P5 has heard about this kind of outreach, but has
not started using it because she knows the individuals she
would be reaching, potential labor trafficking victims, would
be highly supicious:

P5: It’s like, “Should I trust this?”... “Should I
respond to that or is it just another trap for me?
Am I going to get in trouble?”

Victims’ concern about both traffickers and potential legal
ramifications, discussed above, may lead to this skepticism.

4.3 Technical Defenses and Mitigations

We now consider the concrete steps that VSPs take to miti-
gate their own and their clients’ computer security and pri-
vacy related concerns (with the ultimate goals of avoiding re-
victimization and other harm, as discussed above). Overall,
we observed four categories of technology-related defensive
strategies: (1) guiding or explicitly restricting how clients
use technology, (2) protecting communications with clients,
(3) protecting data about clients, and (4) protecting the VSP’s
resources and employees. These strategies are in addition to
physical and non-technological defenses, e.g., security cam-
eras and bullet-proof windows in shelters, and heuristics that
VSPs use to identify suspicious hotline callers.

4.3.1 Guiding Client Technology Use

In order to protect clients from revictimization or other
threats, VSPs guide—or in some cases, explicitly restrict—
their use of technology. This guidance is typically done in
the form of safety planning with a client, or through rules
and guidelines about the use of technology in a shelter.

Technology Safety Planning. VSPs work closely with their
clients to help them be safe and feel safe. Given our focus on
computer security, we focus primarily on technology safety

planning here, but note that other forms of safety planning
(e.g., for physical and emotional safety) are related.

One key goal of technology safety planning is to keep a
client’s whereabouts hidden from a former trafficker. Partic-
ipants talked about a variety of strategies, including avoiding
different parts of town, overhauling communication methods
and social media accounts, and turning off location services
on devices. For example:

P10: Some people, they need to create a whole
new social media everything, change their phone
number and email address, and they need to just
like literally disappear... That means that your ac-
counts are completely, 100% locked down and you
have pseudonyms, and you don’t use your face in
any pictures that you post. You never post your lo-
cation. You don’t have location turned on on your
phone. You get a brand new phone because you
don’t know what kind of app trackers there are.

Some participants simply give guidance to clients, while oth-
ers, like P10, actively help clients configure their devices:

P10: I tell them . . . “Give me everything. Give me
all the stuff.” I sit down and lock everything down.

Our survivor leader participants described the precautions
they take themselves and would recommend to other sur-
vivors. For example, P14 only uses location services when
she needs help with navigation, changes her passwords regu-
larly, and avoids making location-tagged posts on social me-
dia. Likewise, survivor leader P17 uses pseudonyms on her
profiles and deactivates her Facebook regularly. In addition:

P17: When I’m at the store and they’re like, “Can
we please have . . . your zip code or your phone
number,” I always say no, my phone number is
very private. When I check in at hotels, I always
have a process so my name doesn’t associate with
the hotel. My medical information is protected like
everybody else’s but I always have to have a con-
versation, like look, there are people that have ev-
ery piece of information about me and they will
call to get my medical information so I need a code
word or something associated with my account.

While a common sentiment was that location services on
phones should be turned off, on the flip side, clients some-
times want location services on as part of the safety plan:

P2: We’ve had some clients...who want their lo-
cation services on, so that I can use my iPhone
and find them if something goes south, or to get an
Uber sent to them in a crisis, or whatever the case
may be. They want us to be able to track them.

Participants also helped their clients with general online
safety best practices, For example, some participants (e.g.,
P11, P15) talked about helping their clients understand that
folks on the Internet cannot always be trusted:

P15 (who works with sex trafficking survivors):

USENIX Association 28th USENIX Security Symposium 95

We’ve had some residents, when they’re here, they
start dating again. So they’re on Facebook, they’re
on different websites, so I have candid conver-
sations, “Okay, are you telling someone where
you’re gonna go? Are you telling another friend
where you’re meeting this new person online?
What time can we expect you back?” Things like
that. Trying to put that idea into their head that you
should not trust people on the Internet.

Overall, there was the sense that safety planning is individ-
ualized rather than one-size-fits-all. For example, P14 men-
tioned that factors like how long someone was trafficked and
where and whether or not the individual has made changes
to personal appearance (e.g., dyeing hair) all impact safety
planning. P15 also mentioned how age plays into technology
use and, subsequently, technology safety planning: clients in
their 40s and 50s tend to not have a large social media pres-
ence in the first place, while younger clients find it much
more difficult to take a social media hiatus.

Stepping back, we observe a tension between granting au-
tonomy to clients and providing maximum security:

P15: Because I always bring up to people, you
probably should turn off location on your phone.
But I do kind of leave it up to them. It’s not manda-
tory that they turn it off. ’Cause we come from an
empowering place. We don’t want to be telling
them what to do.

In addition, working through potential threats and how to de-
fend against them can be highly stress-inducing — one of the
challenges mentioned by our participants revolved around
balancing the client’s safety with their mental health. P8
talked about being careful in safety planning to not trigger
the client and cause the client to become more fearful. P14
talked about the fine balance between making someone un-
trackable and keeping them sane. P15 pointed out that the
survivor most likely is already safety planning and is in the
best position to look out for himself or herself.

Shelter Technology Rules. Participants described some-
times enforcing technology-related rules in shelters. A num-
ber of rules or guidelines centered around attempting to pro-
tect the identity of people in the shelter and the confiden-
tiality of its physical location. For example, some shelters
disallow photos or videos:

P1: We have to think about all our clients and
their privacy, especially we say, “If you’re taking
a photo, somebody could be walking behind you
and you’ve breached their privacy because some-
body could know who they are.”

Similarly, P16’s organization asks that shelter residents re-
frain from posting on social media and turn off location ser-
vices on their devices. These rules aim to prevent accidental
disclosure of the shelter location through, say, a Facebook
post containing the resident’s location. At P4’s organization,

these rules hold for visitors as well: P4 mentioned that vis-
itors have posted photos of general surroundings and staff
asked them to take them down. P16 said that they also put
up a sign notifying clients that if they use the VSP main of-
fice WiFi they are vulnerable to being tracked to that loca-
tion — but overall considered providing WiFi to clients more
important than mitigating this risk by not providing WiFi.

Additionally, some participants mentioned restricting or
monitoring how clients use the computers provided in shel-
ters, with the goal of shielding clients from content or ac-
tivities that might put them at risk of revictimization. For
example, at P3’s organization, advocates ensure that clients
are not using computers to post sex ads. In addition, clients
can set up email accounts for employment, and they are told
outright that the accounts are not private (i.e., the advocate
may inspect the client’s emails if there is cause to believe
that the client is using the email account for other purposes).

In general, we found that organizations who work with
younger clients (under 18) have more regulations around
technology usage. For example, P4 checks the browsing his-
tory of the shelter’s computers weekly. P6 was in the process
of purchasing software to help manage computer usage. Her
organization has an adult sit with clients who need to use a
computer. At the under-18 shelter run by P9’s organization,
clients physically check in their phones when they enter.

The main challenge here lies in balancing technology rules
with the fact that technology use is an increasingly crucial
part of life for many people, helping them feel “normal.”
And, as P14 explains, strict restrictions on technology use
can actually undermine security goals:

P14: If we deprive them of that technology, they’re
gonna do it behind our back. They’re gonna find
a way to get a burner phone, they’re gonna find
a way, and a friend, and whatever to get a phone
. . . whether we endorse it and give them a safe way
to do it, or whether we let them do it behind our
backs and potentially risk all of us . . .

4.3.2 Protecting Communications with Clients

Given the potential for compromise—by traffickers or
others—of communications with clients, VSPs carefully
consider their choice and use of communication methods.

Choice of Communication Medium. Participants dis-
cussed two main goals when selecting communication meth-
ods: (1) protecting the content of communications from po-
tential adversaries and (2) maintaining contact with clients.
We summarize the pros and cons of communication methods
from the perspectives of advocates and clients, with respect
to both convenience and security, as reported by participants.

SMS. Participants described SMS, or texting, as common and
useful. It gives survivors space to choose whether to respond
to VSPs or not, allows for urgent communication and quick

96 28th USENIX Security Symposium USENIX Association

access to resources, and is more discreet than phone calls.
P7 suggested that individuals in the sex trade (whether vol-

untarily or not) are moving away from using text due to con-
cerns about law enforcement confiscating phones and search-
ing text messages. From the advocate perspective, some par-
ticipants expressed unease that, with texting, there is no au-
thentication ensuring that you are communicating with the
person you think you are communicating with.

Phone. Talking on the phone, by contrast, allows participants
to authenticate communication partners via voice:

P15: Texting can be tricky. Even if I’ve worked
with the client for a while and I’m still texting
them. Sometimes it’s like I’d rather just call and
talk to them so that I know it’s them talking to me
and not someone else on their phone.

Phone calls were also generally considered a sufficiently se-
cure communication method—as long as the line is not being
tapped. However, clients were sometimes not comfortable
talking on the phone when they were still in physically dan-
gerous situations.

Social Media. Social media — especially Facebook —
emerged as a very popular way for VSPs to communicate
with clients. (Indeed, related work on technology in the traf-
ficking ecosystem [2] has found that victims of domestic mi-
nor sex trafficking utilize Facebook in app and website form
more frequently than any other online service.) We observe
that this prevalence may cause challenges, as social media
can blur the personal/professional boundary between VSPs
and clients, and it may not be secure: our own findings as
well as prior work on intimate partner violence [10, 11] sug-
gest that abusers commonly access victims’ Facebook ac-
counts.

In our interviews, however, the benefits of using social me-
dia to communicate with clients seemed to outweigh these
risks. A key benefit of Facebook was that clients could re-
tain access to it when they switch devices or phone numbers,
and that using it does not require a cell phone plan:

P7: Facebook. All the time. ’Cause they can al-
ways go to the library and get on it. They can al-
ways go somewhere and get on their Facebook.

Some clients consider Facebook to be a more discreet com-
munication method compared to phone calls:

P7: And more of them use Facebook because they
don’t want somebody calling their phone or having
access to their phone. I’ve had a couple people that
are like, “Do not call this number ever. I will call
you. Don’t ever leave a message on this number,
don’t ever call it, don’t ever do anything, ’cause
I have this one chance to call you and if you call
back, it’s going to be bad for me.”

Snapchat can play a similar role, with the additional ben-
efit of supporting disappearing messages by default. P6 re-
counted the case of a client who ran away from foster care

but remained in touch with — and eventually asked to be res-
cued by — someone at P6’s organization via Snapchat. Here,
the client’s use of Snapchat may have helped protect the
communication from being discovered by the trafficker.

Email. By contrast, email was not mentioned as a common
or convenient communication method, largely because of a
lack of access by clients. For example:

P12: ...a lot of them don’t have e-mail. If they
do, they don’t know how to access their e-mail.
Somebody else helped them set up their e-mail and
they forgot the password and their username...

Though (according to P4) email can be helpful as a last-ditch
attempt to establish communication when a client’s phone
number has changed, participants generally described pre-
ferring Facebook Messenger in this situation.

Secure Communication. Despite the serious security and pri-
vacy concerns faced by our participants and their clients, we
heard very few cases of VSPs using existing secure commu-
nication technologies with their clients. P16 was an excep-
tion:

P16: ...we like WhatsApp because it’s encrypted
and because it’s a safe storage for the conversa-
tions. We cannot use Facebook or Instagram or
Snapchat because it’s not secure. I know a bunch
of programs that will respond through Facebook
Messenger and we’re not going to do that espe-
cially with all the privacy concerns.

We hypothesize that the limited use of WhatsApp (and no
mention of other secure communication tools, such as Sig-
nal) reflects the tendency of VSPs to choose communication
methods that are already familiar to clients (e.g., Facebook
or Snapchat in some cases, or texting and phone calls in the
cases where professional boundaries preclude social media
use).

In Person. Participants also used a non-technological strat-
egy for mitigating digital security concerns: meeting their
clients in person. Meeting in person has the benefits of
avoiding communicating through any potentially compro-
mised digital medium and allowing for the authentication of
the client to the VSP (and vice versa). For example:

P15: I think in terms of texting with clients and
what not, I really prefer to meet someone in per-
son. Especially if I’m meeting someone new. If
my first contact with someone is through text mes-
sage, I don’t know if it’s that person talking to me.
I don’t know, it could be their trafficker, could be
someone lying to me, making up a name to try to
figure out where the house is.

We note that meeting in person cannot defend against the
case where a client’s phone has been compromised by an
adversary who uses it as a remote microphone to eavesdrop
on conversations. One participant took steps to mitigate this

USENIX Association 28th USENIX Security Symposium 97

risk: P8 obtained Faraday bags for the organization to use
when there is concern that a client’s device might be com-
promised (it blocks incoming and outgoing signals from the
device). P8 talked about using it with a client and how it
allowed them to talk more freely without fear of being mon-
itored. The downside of meeting in person is that it can be
challenging for survivors to get to the VSP. P16 stressed the
importance of technology in this context:

P16: They are working three jobs, the kids are
home alone, they want to be home with the kids
so I think that’s actually a nice example of how
technology is so helpful for us. They like physi-
cally, economically, emotionally cannot get to an
appointment but...if we can communicate through
a text that could be the lifeline. Or email.

Meeting a client in person also means that the VSP knows,
by definition, where the client is physically located. This can
be at odds with a VSP’s desire to avoid turning a client in to
law enforcement, e.g., as would be required if the client is
listed as missing or as a runaway. P7 discussed how commu-
nicating digitally can provide a loophole for this case:

P7: You can hit me up for services and tell me,
“I need this, this, and that,”... But if I don’t know
your location, I can’t report you... I don’t know
where you are. It kind of covers our back because
we can still serve them without having the legality
to report them.

Message Content and Authentication. No matter the cho-
sen communication method, there is always the risk of the
trafficker or another adversary monitoring communications
in real-time or reading them later, e.g., by leveraging access
to a client’s account, or by simply overhearing a phone call.
To mitigate such a threat, participants reported using ad-hoc
techniques to obfuscate the content of their communications
with clients. For example, P1 is very brief in her phone com-
munications with clients and checks in beforehand to make
sure it is a good time to talk. P10, P3, and P7 use prede-
termined codewords or code phrases when communicating
with clients via SMS or social media. P7 described an au-
thentication strategy in which her client asks or answers a
specific question that they established previously to start off
communication.

New Devices. P8 reported clients getting new devices as a
safety precaution. Limited financial resources on the part of
VSPs constrain how much VSPs can help clients acquire new
devices. Typically the phones provided by VSPs come from
sources such as government programs or Verizon’s Hope-
Line program (which provided recycled phones to domestic
violence survivors but is now phasing out). P16’s organi-
zation receives donated phones but does not have funds to
purchase data plans. They still give the phones to clients as
a way to call 9-1-1 in the case of an emergency.

Challenges and Tensions in Protecting Communication.
In addition to learning about existing ways participants work
to protect client communications, we also explored their re-
actions to other technologies: single-use URLs and disap-
pearing messages [1, 8, 9]. These explorations surfaced sev-
eral challenges and tensions.

First, a risk with securing a communication channel is that
it may make it more difficult for a client to access informa-
tion. For example, several participants pointed out that al-
though single-use URLs may prevent an adversary from ac-
cessing sensitive information via an already-used link, they
also prevent the client from re-accessing that information.

Second, participants explained that appearing to hide
something can put a client in danger (e.g., causing the traf-
ficker/exploiter to become violent):

P7: Any way that somebody can open the thing
and tell that you’re being secretive is a scary thing.
‘Cause then you’re hiding something from me.
“What are you doing behind my back? Who are
you telling?” There’s a lot of paranoia...

The above quote came up in the context of disappearing mes-
sages that require a password to view the message, but we
observe that this tension may arise for any communication
tool that clearly has security as a goal. On a related note,
participants described the strong psychological power traf-
fickers have over their victims. P6 discussed how traditional
security mechanisms (such as passwords) may fail as the
trafficker has such power over the victim that he or she can
easily compel the victim to reveal secrets.

P6: Because they have been so conditioned, so co-
erced, that it’s [the victims] telling anything that
they’re asked...They’re the ones that have a prob-
lem keeping a secret.

4.3.3 Protecting Data About Clients

Participants talked about the strategies they use to secure the
data that VSPs collect and store about clients.

Access Control for Internal Databases. Most participants
talked about using databases to store client information. A
few participants explicitly mentioned how each staff member
at the organization has their own login credentials and also
talked about access controls on the data.

P15: Someone working in our admin department,
like a secretary, they shouldn’t be able to open our
case notes. There’s that kind of protection.

P15 was concerned about the cloud-based nature of the case
notes software her organization uses. She was worried that
if staff members logged in at home, client information could
be seen by the staff member’s family or roommates.

Interactions with External Organizations. P7 described
how technology aids the referral process and how protocol

98 28th USENIX Security Symposium USENIX Association

dictates that sometimes meetings must take place in person:

P7: We have a secured email that people can send
referrals to...so we get a lot of our referrals from
social workers and different people like that. Or
I’ll have a teacher or a counselor be like, “I can’t
give you much information, but I’d like you to
come in and meet with ...” ‘Cause they can’t send
it over social media or emails, anything.

Several participants described strict protocols for sharing
client information with external organizations:

P15: We have a very specific release form. So
if someone wants me to connect with their sub-
stance abuse worker that they’re working with, I
need that form filled out with that substance abuse
worker’s name, my name, the client’s name, the
client’s signature saying you can tell this substance
abuse worker ... You can tell them my name and
my date of birth. We ask them to be very specific.

Securing Internal Communications. P15’s organization
uses encrypted email internally. Other participants men-
tioned strategies for protecting client identities in internal
communications more informally, such as using client ini-
tials or first names only in communications and files:

P8: We’re also very careful about using client
names. Even in inner work emails or text messages
or anything like that. I have all my clients saved in
my work phone just as initials. So even if some-
one is reading a text conversation, they wouldn’t
know who that was with. Within our database sys-
tem, everyone is assigned a client number, so we
do often use that when we’re emailing.

Minimizing Data Collection. Finally, participants de-
scribed a general principle of storing the least possible
amount of client data:

P16: We intentionally don’t write...detailed notes
and don’t jot down information that could poten-
tially harm them. Not even casually because even
if we make a note on the intake form or we write
down on a post-it that’s technically a part of the
case now. ...Keep it brief, keep it vague, keep it
objective because anything can be used against the
client in court.

In some cases, though, collecting sensitive data is neces-
sary or useful. For example, P13 described how other staff
members at her organization make copies of a client’s im-
portant documents during intake (e.g., birth certificate, Med-
icaid card, ID, etc.). P13 does not do so, because she con-
siders this information to be sensitive — but she pointed out
that the copies can be critical when a client loses the original
document.

4.3.4 Protecting VSP Resources and Employees

Finally, we turn to the strategies that VSPs use to protect
their own resources and staff.

VSP Location Confidentiality. Participants described var-
ious strategies for keeping the location of the VSP’s office
or shelter confidential. In addition to the shelter technology
rules described above, some participants described protect-
ing the address of the shelter by not mentioning it in digital
communications with clients. For example, P8 specified that
the office address is never texted or emailed out. Likewise,
P16 does not share the shelter address. Instead, clients are
given the address of a neutral location several blocks away
and staff meet them there and bring them to the shelter. Other
non-technical strategies for protecting the VSP’s location in-
clude requiring clients and visitors to sign a confidentiality
form, asking clients arriving in a Lyft or Uber to be dropped
off several blocks away, only meeting clients at the VSP
office if absolutely necessary, and making the shelter look
physically inconspicuous (e.g., like a vacant office building).

Personal/Professional Boundaries. Participants described
attempting to separate their personal and professional lives,
to protect their own physical and emotional well-being.

The primary technical strategies participants described
involve separating personal and professional communica-
tions. Almost all participants mentioned having separate
work emails and work cellphones. With respect to social
media, some participants had a strict policy of not interacting
with clients on social media (e.g., finding it unprofessional),
while others found it invaluable for reaching and maintaining
contact with clients (as discussed above).

Participants who do use social media to interact with
clients often use separate personal and professional social
media accounts. For example, P7 talked about how her per-
sonal Facebook account has strict privacy settings, and how
she made her friends list inaccessible on her work account
to protect those friends. P2, who generally works with indi-
viduals who (voluntarily or not) are in the sex trade, talked
about carefully regulating when she looks at her work Face-
book account because she does not know what she might be
exposed to. Another possible concern is that Facebook may
unexpectedly reveal to traffickers or others the connection
between survivors and VSP staff members (e.g., by suggest-
ing a VSP staff member as a friend to a trafficker through the
”People You May Know” feature [15]), but this concern was
not mentioned by our participants.

Participants also mentioned a variety of non-technical
strategies for protecting themselves, including meeting
clients in public locations, letting others know where the par-
ticipant is going to meet a client, being vigilant of physical
surroundings, and the importance of personal self-care and
therapy. Ultimately, however, participants accepted the in-
herent risk in the work that they do:

USENIX Association 28th USENIX Security Symposium 99

P6: I don’t make any claims that we’re gonna pro-
tect [volunteers] from something bad happening.
But then, it happens with these girls all the time.
And if we’re not willing to walk into that garbage
in danger with them, to me it’s kind of the same
as throwing them out to the wolves. ’Cause they
can’t get out. They can’t choose to not be at risk.

5 Discussion

We now take a step back from our findings, surfacing broader
lessons and making concrete recommendations for technol-
ogists wishing to support VSP-client interactions.

5.1 Broader Lessons for Technologists
Tensions and Challenges. Our findings surface a number of
tensions and challenges that influence how VSPs and their
clients use technology. These must be understood and con-
sidered by technologists wishing to work in this space.

Limited resources on the part of both clients and VSPs. For
example, clients may not have access to cell phone plans,
limiting their communication technology choices to those
that support WiFi (e.g., Facebook Messenger). They also
may have limited memory on their devices, or may fre-
quently change devices and phone numbers. Technology so-
lutions must take into account these potential limitations.

Limited and varied technology expertise. We found that
computer security and privacy literacy and practices varied
widely among VSP staff and clients. Participants’ defensive
strategies ranged from technologically advanced (e.g., using
Faraday bags) to abstaining from technology. Participants
described knowledge gaps among clients (e.g., clients not
realizing that their Facebook profiles can be found via a web
search), but we also spoke with survivors who are going to
extensive lengths to protect themselves digitally. Technology
must be designed for this range of knowledge and expertise,
and there may be a role for computer security education and
training specifically designed for VSPs and their clients.

Balancing client trust and technology access with safety.
VSPs must balance building client trust with enforcing rules
intended to protect clients and the VSP. As one of our partici-
pants put it, a VSP that it is too strict in terms of rule enforce-
ment risks becoming, in some ways, like a trafficker to its
clients. Even well-intentioned rules and guidelines around
technology use can ultimately reduce safety as clients fig-
ure out ways to circumvent the rules. Thus, our participants
commonly gave clients space to make their own technology-
related choices (echoing prior findings about journalists de-
ferring to the choices of their sources [22]).

Double-edged sword of technology. Access to technology
can be a critical part of recovery — survivors can connect

with new or former support networks, communicate with
VSPs, and use technology for job searches and other critical
tasks. However, this same access opens survivors up to po-
tential risks, including being tracked down or monitored by
former/future traffickers and being exposed to content that
may make recovery harder. This tension echoes findings in
the domestic violence context [21].

Balancing safety planning with client mental health. Finally,
solutions must take into account the trauma and psycholog-
ical challenges that survivors face — and avoid “triggering”
survivors or causing them to be unnecessarily fearful.

Lack of Systematization and Need for Personalization.
Our findings suggest that there is little systematization
among VSPs around technology in VSP-client interactions
and safety planning. For example, one organization uses
WhatsApp because they perceive it to be more secure than
Facebook, while many other participants discussed com-
monly using Facebook to communicate with clients. These
differences may stem from factors such as: differences in the
technology expertise and experiences of the VSPs and their
clients; the fact that, in some organizations, VSP staff work
relatively independently without top-down restrictions; and
the fact that different clients face different risks and thus dif-
ferent mitigation strategies are necessary or effective.

These observations lead us to two conclusions: First, there
may be benefit in systematizing computer security related
guidelines and trainings for VSP staff, to help inform them
about potential risks and benefits with different technology
choices. Second, technology-based interventions cannot be
“one size fits all” but must enable personalized approaches
for survivors and VSPs in different situations.

5.2 Directions for Technologists

Authentication and First Contact. Technology can help
VSPs reach out to potential clients, e.g., through the text
messaging program discussed by some of our participants.
However, a challenge with directly contacting trafficking
victims or survivors is how to authenticate the first contact
and build trust. There may be opportunities for technology
designers to help address this challenge, e.g., through the
(re)design of messaging tools for this population or through
rigorous A/B testing of different message content for direct
outreach to potential clients.

In the other direction, some participants discussed how
difficult it can be for clients to find or contact VSPs when
they are looking for help. Possible technology-based im-
provements here include real-time chat systems to replace
phone hotlines (as “sometimes picking up the phone...is not
an option”, P7) and proactive help by search engines that sus-
pect a user is attempting to find trafficking-related resources.

Designing for VSP-Client Communications. Based on our

100 28th USENIX Security Symposium USENIX Association

findings, we recommend those designing for secure (i.e.,
hidden from the trafficker) client-VSP communications take
into account the following lessons:

• Raising the trafficker’s suspicions can be dangerous, so
sensitive messages should look innocuous or be easily
hidden to provide plausible deniability around the con-
tent, intent, and/or recipient of the message.

• It is also important to account for the complex psychol-
ogy of the victim-trafficker relationship, and how this
makes it challenging for the victim to keep secrets (e.g.,
passwords) from the trafficker.

• Solutions must work with devices with varying levels
of functionality (e.g., phones with limited memory) and
in the face of changing phone numbers and devices.

• It is important to plan for adversaries (traffickers) with
physical access to a client’s device.

• Solutions that can fit into existing popular communica-
tion platforms and/or existing VSP-client communica-
tion habits will have the greatest success in adoption.

• Prior work on domestic violence has shown that taking
steps to remove an abuser’s access to an account can be
dangerous [11]. We suggest research on ways to sup-
port secure communication within otherwise compro-
mised accounts, e.g., via a hidden secondary messaging
interface.

• Finally, the client’s ability to easily access and re-access
the intended information is crucial — but must be bal-
anced with protecting the same information from a po-
tential local or remote adversary.

Publicly Available Information. The survivor leaders we
spoke with are already extremely cautious in terms of digi-
tal security, yet there are data sources and tools/services that
they have no control over that can compromise their safety.
For example, traffickers utilize public records (e.g., DMV
records) to track down former victims. To try to combat this,
government address-confidentiality programs [23] provide
qualified individuals with an alias mailing address. However,
this is not a panacea; there are an unknown number of third-
party services that pull public data and market themselves as
an easy way to find people on the Internet. Even if a sur-
vivor qualifies for the confidentiality program, sensitive data
could already exist on these people-finding services, and it is
unclear how long it takes for new information to replace old.

Furthermore, this problem affects the general public as it
enables a host of other crimes such as stalking and “doxxing”
(releasing sensitive information publicly). We suggest future
work study this ecosystem and develop solutions for helping
people protect themselves — for example, streamlining the
process of opting out of these people-finding services and
helping users renew the opt-outs when/if they expire.

Supporting Safe Technology Use in Shelters. We believe
that the computer security and privacy community can work

with VSPs to develop ways for shelter residents to safely
utilize technology. This is especially imperative for VSPs
working with youth. These VSPs are in a difficult position
as the youth they work with tend to be avid technology users
but may not understand all the risks inherent in active tech-
nology use. In addition, they may be using technology to
communicate with unsafe individuals such as their trafficker
or potential trafficker. We found that, in response, VSPs tend
to take an approach of strict regulation of technology use for
young clients in particular, locking up phones at night and
heavily regulating and monitoring computer use. While this
is done out of the best intentions to protect the clients, it is
(as discussed) commonly circumvented by clients.

Thus, it is clear that technology abstinence is not a rea-
sonable solution for client safety planning. These findings
highlight the need for members of the computer security and
privacy community to work with VSPs to develop solutions
and/or provide education to help strike the right balance.

Integrate VSPs and Survivors in Solution Development.
Finally, echoing an increasingly common refrain in usable
security, we note that it is critical to design technologies in
a way that is deeply informed by the needs, constraints, and
use cases of target populations. Though our work provides
a foundation for technologists working in this space, future
researchers should continue to connect with VSPs and sur-
vivors to design and evaluate any technology interventions.

P14: Getting advice from the people who are using
the technology that y’all are creating is a big part
of moving forward. Because the moment y’all stop
listening...to those of us who us are on these front
lines using this technology to help . . . the moment
that that stops happening is the moment that y’all
stop growing and being effective.

5.3 Limitations

Our study is qualitative, not quantitative; thus, our sample
size is small and does not allow us to draw quantitative, gen-
eralizable conclusions. Self-reported data also has limita-
tions such as recall and observer bias. Additionally, our par-
ticipants are based primarily in urban areas in the U.S. and
our results relate mainly to sex trafficking and female sur-
vivors. Thus, our results do not represent all possible VSP-
client interactions. We believe there is more to uncover with
regards to providing services to survivors of labor traffick-
ing and survivors of other genders. For example, P15 talked
about how her organization opened a shelter for all genders,
allowing them to take in labor trafficking survivors and fam-
ilies. These are areas that call for further exploration with
regards to how technology plays into these new dynamics.

USENIX Association 28th USENIX Security Symposium 101

6 Conclusion

Victim service providers play a critical role in the recovery
of survivors of human trafficking. In this work, we con-
ducted 17 semi-structured interviews with VSP staff mem-
bers and survivor leaders, surfacing the ways technology is
involved in VSP-client interactions, as well as the computer
security and privacy concerns and mitigation strategies as-
sociated with those interactions. Key contributions of this
work include detailing the various tensions that VSPs face
when using technology in their interactions with clients and
providing concrete recommendations for technologists who
wish to support VSPs and trafficking survivors.

7 Acknowledgements

We are deeply grateful to our participants for taking the
time to share their experiences and perspectives. We thank
Kirsten Foot and Tadayoshi Kohno from the University of
Washington for their invaluable help and advice throughout
this project. We thank Robert Beiser, Sherrie Caltagirone,
Kelly Mangiaracina, Lauren Moussa, Taylor Naber, Johnna
White and other members of the anti-trafficking community
for their assistance in developing the interview protocol and
facilitating connections within the VSP community. Tiffany
Chen and Kiron Lebeck kindly read the draft of the paper.
Finally, we thank the anonymous reviewers for their feed-
back. This work is supported in part by the National Science
Foundation under Awards CNS-1463968 and IIS-1748903.

References

[1] Disappearing Message. https://onetimesecret.com/.

[2] Vanessa Bouché and Thorn. Survivor Insights: The Role of
Technology in Domestic Minor Sex Trafficking. Thorn, 2018.
https://www.wearethorn.org/survivor-insights/.

[3] Virginia Braun and Victoria Clarke. Using Thematic Analysis
in Psychology. Qualitative Research in Psychology, 3(2):77–
101, 2006.

[4] Caliber. Evaluation of Comprehensive Services for Vic-
tims of Human Trafficking: Key Findings and Lessons
Learned, 2007. https://www.ncjrs.gov/pdffiles1/

nij/grants/218777.pdf.

[5] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad, Sam
Havron, Jackeline Palmer, Diana Freed, Karen Levy, Nicola
Dell, Damon McCoy, and Thomas Ristenpart. The Spyware
Used in Intimate Partner Violence. In IEEE Symposium on
Security and Privacy, 2018.

[6] DARPA. Memex (Domain-Specific Search). https://

opencatalog.darpa.mil/MEMEX.html.

[7] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward
Cutrell, and William Thies. “Yours is Better!”: Participant
Response Bias in HCI. In ACM CHI Conference on Human
Factors in Computing Systems, 2012.

[8] Martin Emms, Budi Arief, and Aad van Moorsel. Single Use
URL Access Codes. http://research.cs.ncl.ac.uk/

cybercrime/no-follow-url.php.

[9] Martin Emms, Budi Arief, and Aad van Moorsel. Electronic
footprints in the sand: Technologies for assisting domestic vi-
olence survivors. In Annual Privacy Forum, pages 203–214.
Springer, 2012.

[10] Diana Freed, Jackeline Palmer, Diana Minchala, Karen Levy,
Thomas Ristenpart, and Nicola Dell. A Stalker’s Paradise:
How Intimate Partner Abusers Exploit Technology. In ACM
CHI Conference on Human Factors in Computing Systems,
2018.

[11] Diana Freed, Jackeline Palmer, Diana Elizabeth Minchala,
Karen Levy, Thomas Ristenpart, and Nicola Dell. Digi-
tal technologies and intimate partner violence: A qualitative
analysis with multiple stakeholders. Proceedings of the ACM
on Human-Computer Interaction, 1(CSCW):46, 2017.

[12] Felicity Gerry, Julia Muraszkiewicz, and Niovi Vavoula. The
role of technology in the fight against human trafficking: Re-
flections on privacy and data protection concerns. Computer
Law & Security Review, 32(2):205–217, 2016.

[13] Catherine Glenn and Lisa Goodman. Living with and within
the rules of domestic violence shelters: A qualitative explo-
ration of residents experiences. Violence against women,
21(12):1481–1506, 2015.

[14] Tamy Guberek, Allison McDonald, Sylvia Simioni, Abra-
ham H Mhaidli, Kentaro Toyama, and Florian Schaub. Keep-
ing a Low Profile?: Technology, Risk and Privacy among Un-
documented Immigrants. In ACM CHI Conference on Human
Factors in Computing Systems, 2018.

[15] Kashmir Hill. How Facebook Figures Out Everyone You’ve
Ever Met, November 2017. https://gizmodo.com/how-

facebook-figures-out-everyone-youve-ever-met-

1819822691.

[16] ILO and Walk Free Foundation and IOM. Global Esti-
mates of Modern Slavery, 2017. https://www.ilo.org/

global/topics/forced-labour/statistics/lang--

en/index.htm.

[17] Mark Latonero, Genet Berhane, Ashley Hernandez, Tala Mo-
hebi, and Lauren Movius. Human trafficking online: The role
of social networking sites and online classifieds. University of
Southern California, Center on Communication Leadership &
Policy, 2011.

[18] Mark Latonero, Jennifer Musto, Zhaleh Boyd, Ev Boyle, Am-
ber Bissel, Kari Gibson, and Joanne Kim. The rise of mobile
and the diffusion of technology-facilitated trafficking. Univer-
sity of Southern California, Center on Communication Lead-
ership & Policy, 2012.

102 28th USENIX Security Symposium USENIX Association

[19] Mark Latonero, B Wex, M Dank, and S Poucki. Technol-
ogy and labor trafficking in a network society. University of
Southern California, Center on Communication Leadership &
Policy, 2015.

[20] Nelson Lim, Sarah Michal Greathouse, and Douglas Yeung.
The 2014 Technology Summit for Victim Service Providers.
RAND Corporation, 2014. https://www.rand.org/pubs/
conf_proceedings/CF326.html.

[21] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya
Sleeper, Jill Palzkill Woelfer, Martin Shelton, Cori Man-
thorne, Elizabeth F Churchill, and Sunny Consolvo. Sto-
ries from survivors: Privacy & security practices when coping
with intimate partner abuse. In ACM Conference on Human
Factors in Computing Systems (CHI), 2017.

[22] Susan E McGregor, Polina Charters, Tobin Holliday, and
Franziska Roesner. Investigating the Computer Security Prac-
tices and Needs of Journalists. In USENIX Security Sympo-
sium, 2015.

[23] National Network to End Domestic Violence (NNEDV).
Address Confidentiality Programs. https://nnedv.org/

mdocs-posts/state-by-state-listing-of-address-

confidentiality-programs-2016/.

[24] Polaris. On-Ramps, Intersections, and Exit Routes:
A Roadmap for Systems and Industries to Prevent
and Disrupt Human Trafficking. Polaris, 2018.
https://polarisproject.org/a-roadmap-for-

systems-and-industries-to-prevent-and-disrupt-

human-trafficking.

[25] Rebecca S Portnoff, Danny Yuxing Huang, Periwinkle Do-
erfler, Sadia Afroz, and Damon McCoy. Backpage and Bit-
coin: Uncovering human traffickers. In 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2017.

[26] Samantha Raphelson. Cyntoia Brown Case Highlights How
Child Sex Trafficking Victims Are Prosecuted, December
2017. https://www.npr.org/2017/12/01/567789605/

cyntoia-brown-case-highlights-how-child-sex-

trafficking-victims-are-prosecuted.

[27] Dominique E Roe-Sepowitz, Kristine E Hickle, Jaime Dahlst-
edt, and James Gallagher. Victim or whore: The similarities
and differences between victim’s experiences of domestic vi-
olence and sex trafficking. Journal of Human Behavior in the
Social Environment, 24(8):883–898, 2014.

[28] Lucy Simko, Ada Lerner, Samia Ibtasam, Franziska Roesner,
and Tadayoshi Kohno. Computer Security and Privacy for
Refugees in the United States. In IEEE Symposium on Secu-
rity and Privacy, 2018.

[29] Jennifer Stoll, W. Keith Edwards, and Kirsten A. Foot. Be-
tween Us and Them: Building Connectedness Within Civic
Networks. In ACM Conference on Computer Supported Co-
operative Work (CSCW), 2012.

[30] United Nations Office on Drugs and Crime (UNODC).
What is Human Trafficking? https://www.unodc.

org/unodc/en/human-trafficking/what-is-human-

trafficking.html.

[31] Michael Wilson, Nate Schweber, and Ashley Southall.
Brothels, Gambling and an Ex-Detective Mastermind: Offi-
cials Detail N.Y. Police Scandal, September 2018. https:

//www.nytimes.com/2018/09/13/nyregion/nypd-

officers-arrested-prostitution-gambling.html.

[32] youth.gov. Transition & Aging Out. https://youth.gov/

youth-topics/transition-age-youth.

A Interview Protocol

Our study involved qualitative semi-structured interviews.
As such, the questions below served as a guide for our inter-
views, but individual interviews varied based on participants’
responses and specific experiences. We let the participant’s
responses direct the conversation, asking relevant follow-up
questions and skipping irrelevant questions as appropriate.

General Background
1. What is your job title and role? In your job, what are

the main services you provide to clients?
2. Would you describe your technology comfort level as

high, medium, or low? Why?
3. How many years old is your organization? How many

employees are there? What are the main services your
organization provides?

4. How do you refer to the individuals you work with (e.g.,
clients, survivors, participants, guests, etc.)?

5. What kinds of clients do you mainly work with? What
type of exploitation have they endured? What is their
nationality, their age range?

6. What are the most common pathways you see for your
clients to be exploited? How has the rise of technology
made the situation worse or better? What are your fears
and hopes looking ahead?

7. FOSTA (Allow States and Victims to Fight Online Sex
Trafficking Act) just recently passed. It amends section
230 of the Communications Decency Act so that laws
relating to sexual exploitation of children or sex traf-
ficking can apply to third-party content providers. How
do you think the legislation might affect your work, if
at all? How do you think it might affect the broader
trafficking ecosystem, if at all?

8. What are the key factors that cause revictimization?
How do you think technology facilitates revictimiza-
tion, if at all? If you are worried a client has been re-
victimized, how (if at all) do you stay in contact with
them?

9. How do you get help when you encounter issues with
technology and computer security at work?

USENIX Association 28th USENIX Security Symposium 103

Client First Contact
1. How do cases typically come to your attention (e.g., law

enforcement, community members, homeless shelters,
victims directly reaching out, direct outreach, etc.)?

2. What means do you have for victims to directly contact
your organization (e.g., phone, email, text, web form,
online chat, etc.)?

3. Do clients ever reach out on their own? If so, how do
you think they find you (e.g., word of mouth, Google,
etc.)? What evidence do you have of this?

4. Walk me through what happens when an individual
reaches out to your organization through any of those
means. What do you do or not do to protect the individ-
ual’s identity? How do you vet potential clients?

5. Is there an instance of someone contacting your organi-
zation that sticks out to you as particularly memorable?

6. Sometimes victims of trafficking are forced to recruit
new victims. With that in mind, does your organization
do anything to reach the traffickers, as some of them
may be victims themselves?

Client Intake
1. How do you record and store client information? What

do you or your organization consider confidential?
What worries you most in terms of the security and
privacy or confidentiality of the information? Are you
worried that the information may be subpoenaed?

2. What do clients usually have with them when they ar-
rive (e.g., devices)? Are there any rules regarding what
clients are or are not allowed to have with them before
receiving services and/or entering the shelter?

Day-to-Day Interactions
1. In your day to day work as you’re interacting with

clients, what are common (technology and non-
technology) frustrations, worries, or fears? What would
you say are the common frustrations, worries, or fears
of your clients?

2. How do you communicate with clients in general (e.g.,
phone, email, SMS, social media, etc.)? For each mode
of commuication:

• How did you choose this mode?

• What do you commonly communicate about?

• Have you ever been afraid that someone might be
eavesdropping on the conversation?

• Are there things you purposefully avoid talking
about or don’t feel comfortable talking about via
this mode of communication?

3. What access to technology do survivors have through
your organization? Do you provide any devices, apps,
software, web programs, wifi access? If there is a com-
puter for clients: What do people use it for?

Additional Organization and Client Safety
1. Is the location of your organization and/or shelter con-

fidential?
2. Do you have rules or guidelines about technology that

clients have to follow (e.g., turning off location services
on their phones)? Do you have rules or guidelines for
visitors? How, if at all, do you enforce these rules?

3. What steps do you take to keep yourself safe? What are
things you’ve noticed your clients doing to keep them-
selves safe?

Reactions to Prototypes
When presenting these prototypes, in order to minimize par-
ticipants response bias [7], we explicitly told participants that
we had not created the prototypes, that we were interested in
both positive and negatives reactions, and that our goal in
presenting them was to make the conversation around poten-
tial technology solutions more concrete.

We presented to participants two prototypes: single-use
URLs and disappearing messages [1, 8, 9]. For each proto-
type, we asked participants:

1. Would you or your organization ever use something like
this? What potential benefits, if any, do you see?

2. What would you change about this tool? Are there
any new threats or concerns that it would raise for your
clients or your organization?

Closing
1. If you had a magic wand and could solve any issue in

this space, what would you do first?
2. What do you want to tell the computer security and pri-

vacy community to focus on with regards to helping vic-
tim service providers?

3. What drew you to participate in this study?
4. Is there anything you’d like to add about technology use

in your job that I didn’t ask about?

104 28th USENIX Security Symposium USENIX Association

Clinical Computer Security for Victims of Intimate Partner Violence

Sam Havron∗,1 Diana Freed∗,1 Rahul Chatterjee1 Damon McCoy2

Nicola Dell1 Thomas Ristenpart1

1 Cornell Tech 2 New York University

Abstract
Digital insecurity in the face of targeted, persistent at-

tacks increasingly leaves victims in debilitating or even life-
threatening situations. We propose an approach to helping
victims, what we call clinical computer security, and explore
it in the context of intimate partner violence (IPV). IPV is
widespread and abusers exploit technology to track, harass,
intimidate, and otherwise harm their victims. We report on the
iterative design, refinement, and deployment of a consultation
service that we created to help IPV victims obtain in-person
security help from a trained technologist. To do so we created
and tested a range of new technical and non-technical tools
that systematize the discovery and investigation of the compli-
cated, multimodal digital attacks seen in IPV. An initial field
study with 44 IPV survivors showed how our procedures and
tools help victims discover account compromise, exploitable
misconfigurations, and potential spyware.

1 Introduction

As computers and other digital technologies take an increas-
ingly central role in people’s lives, computer insecurity has
for some people become debilitating and even life-threatening.
Activists and other dissidents are monitored [7, 23, 25, 26],
journalists are harassed and doxed [10], gamers are subjected
to bullying [9], and abusers are exploiting technology to
surveil and harass their intimate partners [35]. Traditional se-
curity mechanisms most often fail in the face of such targeted,
personalized, and persistent attacks.

A different approach for helping targeted individuals is
what we call clinical computer security. The idea is to provide
victims of dangerous attacks the opportunity to obtain person-
alized help from a trained technologist. Just like people visit
doctors for health problems, seek out lawyers when suffering
legal troubles, or hire accountants for complex tax situations,
so too should victims of dangerous digital attacks have experts
to assist them. But while these other examples of professional

∗These authors contributed equally to the paper.

services have a long history leading to today’s best practices,
for computer security we are essentially starting from scratch:
existing technology support services are ill-suited for helping
victims in dangerous situations. The research challenge is
therefore to develop rigorous, evidence-based best practices
for clinical approaches to computer security, as well as design
the supporting tools needed to help victims.

In this paper we explore clinical computer security in the
important context of intimate partner violence (IPV)1. IPV
is widespread, affecting one out of three women and one out
of six men over the course of their lives [32]. Prior work has
shown how abusers exploit technology to harass, imperson-
ate, threaten, monitor, intimidate, and otherwise harm their
victims [8, 14, 19, 20, 27, 35, 43]. Prevalent attacks include
account compromise, installation of spyware, and harassment
on social media [20,27]. In many cases digital attacks can lead
to physical violence, including even murder [34]. Unfortu-
nately, victims currently have little recourse, relying on social
workers or other professionals who report having insufficient
computer security knowledge to aid victims [19].

Working in collaboration with the New York City
Mayor’s Office to End Domestic and Gender-Based Violence
(ENDGBV), we designed, prototyped, and deployed a clin-
ical computer security service for IPV survivors.2 Doing so
required not only developing first-of-their-kind protocols for
how to handle face-to-face consultations while ensuring safety
for both clients (the term we use for IPV victims in this con-
text) and technology consultants, but also the design and
implementation of new technical and non-technical instru-
ments that help to tease apart the complicated, multifaceted
digital insecurities that clients often face.

We designed a first-of-its-kind consultation procedure via
a careful, stakeholder-advised process that made client safety
paramount. Initial designs were refined over two months via
14 focus groups with a total of 56 IPV professionals, including

1A full version of this paper and materials is available at: https://www.
ipvtechresearch.org

2Our initial and refined research protocols were approved by our institu-
tion’s IRB and the ENDGBV leadership.

USENIX Association 28th USENIX Security Symposium 105

https://www.ipvtechresearch.org
https://www.ipvtechresearch.org

social workers, police, lawyers, mental health professionals,
and more. This led to substantive feedback and refinements,
culminating in a consultation design that appropriately takes
into account the socio-technical complexity of IPV and the
unique risks that clients face.

Our consultation procedure starts with a referral from an
IPV professional, and then proceeds through a face-to-face
discussion where we seek to understand the client’s technol-
ogy issues, investigate their digital assets via programmatic
and manual inspections, and advise them and the referring
professional on potential steps forward. This last step, impor-
tantly, involves procedures for clearly communicating new
found information about technology abuse so that profession-
als can help clients with safety planning. Supporting this
understand-investigate-advise framework are a number of
tools that we created, including: a standardized technology
assessment questionnaire (the TAQ); a diagrammatic method
for summarizing a client’s digital assets called a technograph;
succinct guides for helping consultants and clients manu-
ally check important security configurations; and a new spy-
ware scanning tool, called ISDi, that programmatically detects
whether apps dangerous in IPV contexts are installed on a
client’s mobile devices.

After completing our design process, we received permis-
sion to meet with clients in order to both help them and field
test our consultation procedures and tools. Thus far, we have
met with 44 clients and our consultations have discovered
potential spyware, account compromise, or exploitable mis-
configurations for 23 of these clients. The tools we developed
proved critical to these discoveries, and without them our con-
sultations would have been significantly less effective. For
clients with discovered issues, we provided advice about im-
proving security, in parallel with appropriate safety planning
guided by case managers knowledgeable about their abuse
history and current situation. Many other clients expressed
relief that our consultations did not discover any problems.

Professionals at the FJCs have uniformly responded posi-
tively to our field study, and reported that the consultations
are helpful to their clients. Demand for consultations has
increased and we are performing them on an ongoing basis.
More broadly, our tools, including ISDi, will be made open-
source and publicly available, providing a suite of resources
for testing the replicability of our clinical approach in other
locations. Whether our approaches and methods can be useful
for other targeted attack contexts beyond IPV is an interesting
open question raised by our work. We discuss this question,
and others, at the end of the paper.

2 Towards Clinical Computer Security

This paper considers targeted attacks in the context of intimate
partner violence (IPV). Prior work indicates that IPV victims
are frequently subject to technology abuse [8, 14, 19, 20, 27,
35, 43], and a taxonomy by Freed et al. [20] includes four

broad categories: (1) ownership-based attacks in which the
abuser owns the victim’s digital accounts or devices, giving
them access and control; (2) account or device compromise;
(3) harmful messages or posts (e.g., on social media); and (4)
exposure of private information online. Abusers use access to
victim devices or accounts to setup dangerous configurations,
such as adding their fingerprints to be accepted for device
login, configuring devices to synchronize data with an abuser-
controlled cloud account, or setting up tools such as Find My
Phone to send location updates to an abuser’s email address.
Another avenue is installation of spyware apps that provide
powerful features for monitoring devices [8].

Technology abuse in IPV is certainly complex in the ag-
gregate, but even specific individuals suffer from complex,
multifaceted threats. To concretize this, we give an exam-
ple. For privacy reasons it is not any particular person’s story.
However, it is representative of many of the actual client
situations we have encountered in our work.

Example scenario, Carol’s experience: Carol’s now ex-
husband subjected her to several years of increasing physical,
emotional, and technology abuse before she obtained an or-
der of protection, physically moved out, and filed for divorce.
They are in a custody battle over their two children, ages four
and ten, who live with the ex-husband part of the time.

Carol knows that he installed spyware on at least one of
her devices, because she found the purchase of mSpy on their
joint credit card statement. Additionally, he had access to her
private photos that he then posted on Facebook. He would
also routinely, over the period of a year, “hack” into her
online accounts, posing as her in efforts to further alienate
her from her friends and family. He even locked her out of her
GMail account by changing the recovery emails and phone
number to his, which was devastating to her career in sales
because it contained her business contacts.

Carol currently has five devices: a new Apple iPhone that
is her primary device, two Android phones used by her chil-
dren, an Apple iPad tablet bought for her children by her
ex-husband, and a several-year-old Apple iPhone originally
bought for her by her ex-husband. She routinely uses Face-
book, a new GMail account (since her old one was stolen by
her ex-husband), and a variety of other social media apps
that are important for her work in sales.

This representative example highlights the complexities
faced by IPV victims. Carol has a complicated digital foot-
print that includes a wide variety of devices and online ac-
counts, some of which may be linked (e.g., different devices
may have stored authentication credentials for different online
accounts). She has complicating entanglements, meaning dig-
ital or personal relationships that may enable or complicate
tech abuse, or render its mitigation more difficult. In Carol’s
case, the abuser has access to the children’s devices, owns
some of the devices in her digital footprint, and her need to
use social media for her career limits options for preventing

106 28th USENIX Security Symposium USENIX Association

harassment via it. The complex timeline of events, such as
when she physically moved out and when the children visit
the abuser, may be directly relevant to the tech problems she
is facing. Finally, there is also the risk that blocking digi-
tal attacks causes an escalation of abuse, such as triggering
physical violence as the abuser seeks to regain his control.

One avenue for improving on the status quo is pursuit
of new technology designs that better resist such targeted
attacks. While doing so is very important, future designs will
not help IPV victims in the near term. More pessimistically,
it may in fact never be possible to rule out damaging attacks
by highly resourced, determined adversaries against lower-
resource victims. We therefore need complementary socio-
technical approaches to helping victims.

Unfortunately, existing victim support services struggle
to help with complicated tech abuse situations [19, 27]. The
case workers, lawyers, police, and other professionals that
work with victims report having insufficient tech expertise to
help victims with digital threats [19]. There currently are no
best practices for how to discover, assess, and mitigate tech
issues [19]. Existing tools for programmatically detecting
spyware are ineffective [8], and the state-of-the-art in practice
is that professionals assume spyware on phones if a victim
reports that the phone is acting strangely [20].

Commercial tech support services (e.g., Geek Squad [36]
or phone stores) are unfortunately not a ready solution for
addressing tech abuse. Prior work reports that victims occa-
sionally use these services [19, 27], but that even when used
they often fail to effectively diagnose problems [20]. We
believe this is because commercial IT support professionals
do not have context-specific training needed to identify and
handle complex tech abuse situations prevalent in IPV. In the
worst case, they put victims into more danger due to a lack
of appropriate safety planning. Finally, victims with lower
socio-economic status may find such services hard to access.

Clinical computer security. We target new approaches for
victims to obtain personalized and appropriately contextual-
ized support from a trained technologist. There are a handful
of existing efforts from which we drew some inspiration. The
Citizen Lab [13] and related Citizen Clinic [1] have been
working for several years with targets of government persecu-
tion, a recent Technology-Enabled Coercive Control (TECC)
clinic was established for IPV victims in Seattle [2], and in-
dividual computer security experts have long informally vol-
unteered to aid those suffering attacks [24]. However, there
has been little research into how such personalized security
services should be systematically designed and deployed.

We propose an approach that we call clinical computer
security. The goal is to develop, in a rigorous, evidence-based
way, a set of best practices for how a technology consultant
can assist a victim — called the client in such a service con-
text — with digital insecurity. Best practices will need to
encompass a range of issues, including how to setup and run

clinics, recruit and train volunteers or paid professionals to
staff them, deal with the many legal issues that will inevitably
arise, and how consultations with clients should proceed. In
this initial work we focus on designing and prototyping con-
sultations, the fundamental element of any clinical approach.
We discuss other aspects of running a clinic in Section 8.

The challenges faced in client consultations. As seen in
Carol’s example, individual IPV victims often experience a
wide range of tech problems. They have a complex digital
footprint, including multiple devices and online accounts,
each of which can be a vector for abuse. They often have many
nuanced entanglements. Existing tools for detecting spyware
have a high false negative rate [8]. To improve outcomes for
IPV victims, we need to design a protocol for face-to-face
consultations that can integrate into existing victim support
infrastructure, help us understand the client’s problems from
their point of view, discover tech risks they may not be aware
of, and safely advise them about what steps they could take
to improve their computer security.

Of course, we can look to other disciplines that use clinical
interventions for guidance, including medicine, social work,
mental health counseling, and even legal practice. These
areas have long histories leading to today’s best practices,
including common interview procedures such as standards for
psychiatric assessments [28] or client-centered advocacy [31].
However, none of these disciplines speak to procedures for
computer security, so while we incorporate ideas from them
when useful, overall, we need new approaches.

3 Methods, Client Safety, and Ethics

We designed a client consultation protocol and associated
instruments to improve computer security outcomes for IPV
victims via face-to-face discussions and both programmatic
and manual investigations of their digital assets (i.e., their
computing devices and online accounts). Here we discuss our
iterative design methods that optimized for client safety.

IPV victims can be in dangerous and even life-threatening
situations, and we made client safety and well-being central
to our methodological approach. No consultation process will
ever be perfect, in the sense that one could guarantee that
all of the client’s technology problems will be discovered,
accurately assessed, and successfully mitigated. Indeed, the
current status quo is reportedly missing many issues, accu-
rately assessing few of them, and only sometimes properly
mitigating them [19]. To make progress, we must develop re-
search protocols that respect client well-being, are cognizant
of safety risks, weigh the relative benefits of research to those
risks, and, overall, minimize the potential for harm.

We therefore put into place a multifaceted strategy for
performing this research responsibly. We partnered with the
New York City Mayor’s Office to End Domestic and Gender-
Based Violence (ENDGBV) [16], which runs Family Justice

USENIX Association 28th USENIX Security Symposium 107

Centers (FJCs) [17] in each borough of New York City (NYC).
The FJCs provide a diverse array of resources for IPV victims,
including police, legal, mental health, housing assistance, and
more. All research protocols were approved not only by our
institutional IRB but also by the ENDGBV leadership.

Our consultation protocols went through a thorough, it-
erative design process that: (1) started with initial designs
grounded in findings from prior work [19, 20, 27]; (2) a two-
month process of iterative and incremental refinements driven
by focus groups with relevant IPV professionals; (3) a re-
view and approval process with the ENDGBV leadership of
our refined protocols and instruments for client consultations;
and (4) an ongoing refinement process that was responsive to
needs that arose during client consultations.

This process maximized the amount of meaningful research
we could do before interacting with clients. In step (2) we
conducted 14 rounds of iterative design with a total of 56
IPV professionals. Each round involved a 60–90 minute fo-
cus group held at one of the FJCs, in which we summarized
the current consultation design, demonstrated our methods,
and gave participants copies of our questionnaires and ma-
terials. They were encouraged to edit, rewrite, and redesign
them. We took detailed notes. Data analysis was performed
immediately after each focus group, consisting of a detailed
assessment of our notes with a specific focus on suggestions
for improvements or changes. In subsequent sections, we
give examples of quotes emanating from focus groups that
help explain, or led to changes in, our consultation protocol.
These quotes are illustrative and not intended to represent a
comprehensive thematic analysis of the focus groups.

After nine rounds of changes based on participant feedback,
we had several consecutive focus groups that did not elicit any
new suggestions. We therefore determined our procedure and
methods were ready for a review and approval process with
the ENDGBV. This involved presentations to, and discussions
with, ENDGBV leadership about our protocol. Ultimately,
we and the ENDGBV concluded that it was ready for use with
clients due to (i) the sufficiency of safety procedures we put
in place to minimize potential harm to clients, and (ii) the
fact that the ENDGBV leadership concluded that our research
would benefit their clients. We discuss our safety procedures
for consultations in detail in Section 6.

Finally, we note that safety issues extend also to the well-
being of the participating researchers. In addition to the po-
tential for vicarious trauma or other emotional strain, spyware
could in theory leak recordings of consultations to abusers.
We discuss self-care and researcher safety in Section 6.

4 A Consultation Protocol for IPV Victims

We created and refined a first-of-its-kind protocol for con-
ducting a tech consultation in which a trained volunteer with
expertise in technology meets face-to-face with an IPV victim.
We refer to the volunteer as the tech consultant, or simply

Figure 1: Summary of how a client participates in a tech con-
sultation, beginning with a referral from an IPV professional.

consultant, and the victim as the client. A diagrammatic
overview of our consultation procedure appears in Figure 1.
We give a high level walk-through, and provide more details
about various aspects of the procedure starting in Section 4.1.
Throughout we give examples of how the iterative design
process with stakeholders impacted our design.

We use a referral model that ensures safe integration of our
consultations into NYC’s existing survivor support services.
Upon setting an appointment and meeting with a client, we
use a procedure that we refer to as understand-investigate-
advise (UIA). This emphasizes three important aspects of the
consultation: understanding tech risks in the client’s digital
footprint, investigating their root causes, and providing advice
about how they might improve their digital security.

To maximize the efficacy of the UIA procedure, we devel-
oped a number of non-technical and technical instruments
to aid consultants, including: a technology assessment ques-
tionnaire, a diagrammatic approach called a technograph for
mapping a client’s digital footprint, guides for reminding con-
sultants how to check security settings for common services
and devices, and a software tool called ISDi (IPV Spyware
Discovery) that can safely detect the kinds of spyware re-
ported as used in IPV settings by prior work [8]. We also
developed a number of training materials, checklists, and as-
sociated protocols to help prepare consultants for meeting
with clients. These instruments were refined via focus groups
with professionals as well as in an ongoing manner as we
gained experience working with clients.

4.1 Integration into Client Support Services

One of the first questions we faced is how to make tech con-
sultations fit into the broader landscape of victim support
services, such as legal, financial, and social services. Al-
though consultants will be qualified to provide assistance
with technology security and privacy, they will not necessar-
ily be qualified to help with overall safety planning, legal
advice, mental health, or other aspects of a client’s case. It
is therefore essential that other IPV professionals are able to
assist the client before, during, and after a consultation.

To ensure all clients have appropriate support from an IPV
professional, we use a referral model in which consultants
only see clients that are referred to them by other IPV profes-
sionals for potential tech problems. Using a referral model

108 28th USENIX Security Symposium USENIX Association

has significant safety and procedural benefits over alternative
models. In particular, the referring professional will know the
client’s background and abuse history and be qualified to help
them safety plan around the results of the consultation (e.g.,
if it is safe to change their privacy settings, remove apps, etc.).
If possible, and if the client is comfortable, we encourage the
referring professional (or client case manager) to be present
during the consultation so that they can also discuss their
questions or concerns with the consultant.

Referral models have other benefits as well. They allow
us to balance client anonymity with continuity of care, since
the professional can serve as a safe communication channel
between the consultant and client. This specifically enables
consultants to perform followups for issues that cannot be
fully investigated during a consultation. For example, we
saw clients asking about esoteric or non-English apps, hav-
ing browser extensions that are not on the extension market,
and describing seemingly inexplicable tech situations. In
such cases, we perform further research on the topic after the
consultation, and communicate any discoveries back via the
referring professional. If appropriate, the client may elect to
participate in a second consultation, which happened a couple
times so far in our work.

Regardless of followup requirements, when a consulta-
tion is complete (and with client permission) the consultant
performs a hand-off procedure that communicates relevant
findings to the referring professional. If the professional is
in the room, this may happen at the end of the consultation.
Otherwise, it happens via email or phone call. This hand-off
is vitally important. First because it facilitates proper safety
planning, as we discuss later in the section. In addition, it
provides some reassurance to clients potentially frightened by
a consultation’s discoveries. As one professional described,
our hand-off procedure:

“...might help the client feel a little bit more com-
fortable. ‘Oh my gosh, I’m being tracked. At least
I know there’s an officer that can help me with this
situation.’ You’re also aware of what’s going on as
a screener, as well as a case manager. I have three
different backups. I think it was very well done.”
(P36, Case Manager)

4.2 Understand-Investigate-Advise Procedure

When the client arrives for a consultation, we follow stan-
dard IPV advocacy practices and take a client-centered ap-
proach [31], which assumes the client knows best regarding
their own situation and will be the one to make decisions.
One professional described client-centered practice as:

“having a conversation with the client and ... let-
ting the client formulate their decisions, their an-
swers. [Professionals] cannot provide them with

[answers] because they’re the only ones who know
what risks are being posed.” (P36, Case Manager)

Therefore, taking a client-centered approach, the consultant
begins by asking the client what their main concerns are
and/or what caused them to seek out a consultation. We refer
to these as their chief concerns3 and a primary goal of the
consultant is to try to accurately identify them. For example,
we heard clients express fear that spyware was installed on
their devices, that their “phones were tapped”, or that their
abuser had access to information they should not have (e.g.,
a client’s photos). In some cases the chief concerns are not
very clear and take some gentle questioning to ascertain.

From this starting point, the tech consultant will utilize
a wide range of instruments and tools that we have created
to (1) understand the client’s digital footprint and entangle-
ments to identify potential avenues for harm; (2) investigate
their devices, apps, and services to look for, and assess the
root cause(s) of, their tech problems; and (3) advise clients
on how they might move forward. See Figure 1.

Understanding footprint and entanglements. Prior work
on tech and IPV [14, 19, 27, 34, 43] indicates that there are no
best practices or standard procedures for asking about tech
risks or understanding the root cause(s) of client concerns.
The lack of standardized procedures may contribute to serious,
on-going tech abuse being overlooked. We therefore created
several instruments that help systematize the discovery and
assessment of tech problems in IPV.

To systematize problem discovery, we created and refined
a Technology Assessment Questionnaire, or TAQ (Figure 5
in the Appendix). We started with questions that aimed to
uncover common problems surfaced in prior work [20], such
as risk of device/account compromise if the abuser knows or
can guess the client’s passwords (e.g., their password is their
child’s birthday), or ownership-based risks, when the abuser is
the legal owner of the client’s devices or accounts. Feedback
from focus groups helped us refine question wording, and
include additional questions that professionals thought would
be helpful. As one example, we received many suggestions
on the importance of asking about children’s devices. As one
professional told us,

“[For parents] with younger kids, I think another
question that might be important is asking if your
children go on visits and if they take their electron-
ics with them on visits.” (P40, Social Worker)

We added five questions about risks with children’s devices.
This feedback was particularly helpful, as we saw several
cases in our field study of children’s devices being the likely
avenue by which the abuser had access to client data.

To support a client-centered approach, the TAQ is designed
to be used as a reference to ensure consultants cover important

3In medicine, this would be called a chief complaint, but we feel that
‘concern’ is more client-centered.

USENIX Association 28th USENIX Security Symposium 109

topics, rather than as a prescribed interview format. The
consultant lets the client lead the conversation and discuss
topics they find important, which often touches on a subset
of the TAQ. The consultant uses the TAQ to remember to
raise remaining topics that the client may not have thought
about. We arrived at this approach after early feedback from
professionals that it is more empowering to let clients drive
conversations, rather than peppering them with questions.

A challenge that came up in early consultations is building
a mental map of the client’s digital footprint and entangle-
ments. Carol’s example in Section 2 illustrates the potential
complexity of client technology use. In the field, clients often
came with half a dozen devices, many accounts, an involved
abuse timeline, and various pieces of (often circumstantial)
evidence of account or device compromise (e.g., the abuser
keeps tracking or calling them despite changing phones). It is
easy for consultants to lose track of relevant details.

We therefore created the technograph, a visual map
loosely inspired by genograms, a technique used by clinicians
in medicine and behavioral health to map family relationships
and histories [22]. The technograph uses shapes and symbols
to visually document relationships between (1) devices, (2) ac-
counts, and (3) people (usually the client’s family). Drawing
connections between entities gives the consultant a clearer
picture of potential sources of compromise. An example that
may have been created discussing Carol’s situation appears
in the full version of this paper.

The technograph is particularly helpful to identify when
abusers may have indirect access to a client’s digital assets.
For example, two-factor authentication for iCloud accounts
can be bypassed if a child’s device is a contact for the ac-
count. Another example is when family plans synchronize
data across devices and accounts. The technograph allows
tracing these potential indirect access routes more easily.

Investigating devices, accounts, and services. After using
the TAQ and technograph to construct a clearer picture of
the client’s situation, the next phase of the consultation is
to thoroughly investigate devices, accounts, or services that
may be compromised by the abuser. We created tools that
investigate in two ways: (1) by scanning the client’s mobile
devices for spyware or other unwanted surveillance apps using
a new IPV Spyware Discovery (ISDi) tool that we built, and
(2) by manually checking the privacy configurations of the
client’s devices, apps, and accounts. We discuss each in turn.

As we detail later, most clients have hundreds of apps on
their devices. In addition to the threat of spyware-capable
apps being installed surreptitiously, many otherwise legiti-
mate apps may be configured by the abuser to act as spyware.
For example, Google maps can be configured to update an
abuser about the client’s location, and while it provides vari-
ous notifications that tracking is ongoing, their effectiveness is
uncertain. We therefore have a dichotomy between unwanted
and wanted apps, with the mere presence of the former being

sufficient for a safety discussion whereas the latter require
investigation into their configuration.

Detecting unwanted apps manually via the user interface
(UI) will not work: many IPV spyware apps can effectively
hide their presence from the UI [8]. Indeed, current state-of-
the-art practice by non-technologist professionals is to use
circumstantial evidence to conclude spyware is installed, e.g.,
if a phone acts “glitchy” it most likely has spyware and should
be reset if not discarded [20]. We therefore constructed an
IPV Spyware Discovery (ISDi) tool for detecting unwanted
apps on a client’s iOS or Android devices. It also checks if the
device has been jailbroken (for iOS) or rooted (for Android),
which may indicate that dangerous spyware is installed. With
the client’s permission, the consultant uses ISDi to program-
matically obtain via USB connection the apps installed on
their devices, highlighting ones that are known to be risky in
IPV. Should the device be detected as rooted/jailbroken or
any risky apps found, the consultant can discuss whether the
client rooted the phone, recognizes the app, etc.

Our focus groups with professionals helped us iterate on
the user flow and understand how best to integrate the tool into
client consultations. We learned that clients and professionals
want to view and understand the steps required to use the tool
as well as visually examine the scan results. Professionals
expressed concern about communicating to clients appropri-
ately about privacy issues. One professional suggested that,
during a consultation, we say that:

“We will see and go through every application on
your phone, we will not see any information in your
social media, texts, photos. We will only see the
names of all the applications but not see anything
inside any of the apps and give an example, such
as, if you have WhatsApp, we will not see any con-
versation inside.” (P41, Case Manager)

Focus groups also led us to realize that both clients and con-
sultants are consumers of the ISDi UI (see Figure 2). We
therefore avoided language that would be too confusing or
scary to a client. Finally, while we have not yet done a thor-
ough user study of the tool, we have begun some initial user
studies with IPV support organizations (e.g., TECC [2]) in-
terested in integrating ISDi into their own procedures. We
discuss this further in Section 8.

That leaves checking configurations of common apps that
are often wanted but potentially dangerous, as well as check-
ing built-in system services (e.g., “find my phone” features),
account backup mechanisms, and authentication lists (e.g.,
registered fingerprints), all of which may be sources of vulner-
ability. The same holds for online accounts deemed important
by the client (e.g., email and social media accounts). Unfortu-
nately, checking the privacy of these accounts cannot be easily
automated, not only due to lack of device or web interfaces to
support querying this kind of data, but also because one needs
to understand the context and have the client help identify

110 28th USENIX Security Symposium USENIX Association

dangerous configurations. For example, in several cases we
saw that the client’s Facebook or GMail accounts had been
accessed by devices the client could confirm as the abuser’s.

To assist the consultant with these manual investigations,
we constructed simple-to-follow guides for popular apps, de-
vice settings, and online service settings. For instance, our
Google privacy configuration guide lists steps to check a
device’s login history, location sharing, photo sharing, and
Google Drive backup settings. On iCloud we check family
sharing, backups to iCloud, and if the abuser still has access
to the account. We continue to expand the list of apps and ser-
vices for which we have guides in response to ongoing work
with clients, and currently cover Android (including Google
maps and GMail), Apple (including iCloud and location shar-
ing), Facebook, Instagram, and Snapchat. Unfortunately such
guides may become out-of-date if software updates change
configuration features. Future work on how to sustainably
keep guides up-to-date will be needed (see Section 8).

Another benefit of performing manual investigations dur-
ing consultations is that they serve as impromptu computer
security training for clients, which prior work indicated is
sorely needed [19]. In fact, many clients we met with did not
know about security configuration features, and we were able
to show them for the first time that, for example, they could
tell what devices were logged into their GMail or Apple ac-
counts. Clients often asked followup questions about security
best practices during this part of the consultation, leading into
an open-ended discussion about computer security.

Advising clients on potential next steps. In the final phase
of the consultation, the consultant combines information
gleaned from the understanding and investigation phases to
assess the client’s situation and, based on this assessment,
discuss with the client (and professional, if present) what
might be causing tech problems the client is experiencing. If
the investigation phase yields any spyware, risky software,
or privacy problems with the client’s accounts and devices,
these are discussed calmly with the client, including how the
breach may have happened and potential actions that might
remedy the situation. In these cases, the consultant can offer
the client a printout that explains what was found and how it
may be causing problems (see examples in the full version).

Before taking actions or changing any settings, it is essen-
tial that the client discuss their consultation results with a
professional to perform safety planning. Ideally the profes-
sional should be familiar with the client’s situation and abuse
history, since this is necessary to highlight potential safety
issues related to tech abuse. One professional said:

“Safety planning is such an individualized thing. I
can think of some cases where it would be advanta-
geous to leave the spyware on. I can think of some
where we would want it gone immediately. If you
can, just find a way to integrate it into the normal
safety planning protocol.” (P37, Paralegal)

If the client’s case manager is not present, the consultant asks
the client if they would like to contact their case manager
and/or receive immediate assistance from another on-site pro-
fessional. Thus, even if the consultation has identified tech
problems that are the likely causes of the client’s concerns, in
many cases, the client may leave the consultation with their
devices and accounts unchanged. For a few clients we met
with who had complicated scenarios, we encouraged them to
schedule a follow-up consultation via their professional, so
we could help them further after safety planning.

Consultations also provide new opportunities for collecting
forensic digital evidence. The need for clients to document
evidence of tech abuse is an issue that legal professionals
discussed at length in our focus groups. If properly collected,
such evidence may help a client secure an order of protection
or aid a criminal investigation. Although clients may want to
delete suspicious apps or reconfigure settings, our protocol
has the consultant discuss with clients the potential benefits of
documenting any discoveries before taking action. We asked
professionals about how to handle forensic evidence, and they
suggested various approaches, such as:

“I would definitely take photos. Because ultimately
[a detective] will be investigating that report, but I
will definitely take photos, write down the name of
the app on my report.” (P39, Police Officer)

We therefore settled on the expedient approach of having the
client (or a lawyer acting on their behalf) take a photo or
screenshot of any discovered spyware, evidence of compro-
mises, etc. As suggested in the quote above, this is actually
the standard of evidence currently, at least in family court, and
several clients we met with have ongoing court cases in which
they plan to use evidence discovered via our consultations.

In many cases the consultation will not yield any tech prob-
lems or causes for concern, in which case the consultant may
reassure the client that, at least, our approaches did not find
any problems. We are careful to not dismiss any problems that
remain unaddressed or unexplained by our consultation. If
additional investigation is warranted, the consultant explains
to the client that they will do more work and follow-up via
the referring professional (as explained in Section 4.1).

Finally, at the end of a consultation, the consultant com-
pletes a case summary that documents (1) the client’s chief
concerns (in their own words), (2) the consultant’s assess-
ment of problems, (3) the results of the ISDi scan and manual
configuration check-ups, and (4) advice or recommendations
discussed with the client. This case summary is for internal
use only4 and provides useful documentation for the consul-
tant (or other consultants) that can be used should the client
request another consultation or need followup.

4In some contexts such written documentation may be ill-advised due to
the potential threat of hostile subpoena by lawyers working for the abuser. In
our work, FJC professionals felt this threat was remote since our consultations
take place within a research study that maintains client anonymity.

USENIX Association 28th USENIX Security Symposium 111

4.3 Replicability

An important question for our consultation protocol is how
to ensure a standard of care that can be maintained across
different locations and by different consultants. Many of the
tools we created help by systematizing the assessment and
investigation of tech problems. To complement these, prior
work in disease diagnosis [15], surgery [42], and aviation
[11] suggests that simple checklists are a valuable tool for
systematizing procedures. Checklists help consultants follow
a systematic procedure despite the complexity of many client
cases, from both an emotional and technological standpoint.
We created three checklists: one each for before, during (see
Appendix of full version), and after the consultation.

We also developed a process for training researchers in-
volved in consultations. We wrote a 13-page training manual
that includes a detailed description of our protocol with ex-
ample situations. It also discusses consultant emotional well-
being and safety considerations (e.g., that consultants not give
their full names until after spyware scans are complete). Train-
ing included reading and understanding this manual, along
with guided introductions to our instruments, including ISDi.

To gain experience in face-to-face consultations before
interacting with clients, we performed mock consultations in
which researchers role-play as clients (including setting up,
beforehand, a realistic scenario possibly involving spyware or
other misconfigurations) and others role-play as consultants
(that do not a priori know the scenario). After each mock
consultation, the group analyzes how it went, revealing the
scenario and constructively discussing how to improve. These
are valuable for consultants to gain confidence in their ability
to handle consultations as well as for the research team to
gather feedback on the usability of various instruments.

Although clearly more research can be done to further
refine our instruments, our field evaluation, discussed in
Section 6, indicates their immediate practical value. We have
publicly released all training materials, instruments, and open-
source tools as resources that other advocacy organizations
might find useful in their work supporting survivors5. We
have already been collaborating with the TECC group in Seat-
tle [2], sharing materials and getting feedback. They have
adopted some TAQ questions for use in their clinical settings,
and we are working towards prototyping ISDi at their clinic.

5 The IPV Spyware Discovery (ISDi) Tool

We now discuss the technical design and testing of ISDi,
our IPV Spyware Discovery tool designed for IPV contexts.
While technologically ISDi currently only uses, relative to
modern anti-virus tools, simpler techniques such as blacklists
and other heuristics, the innovation is in tailoring it to IPV:
(1) flagging apps that in other contexts are not necessarily

5https://www.ipvtechresearch.org/resources

Figure 2: Screen capture of the ISDi tool’s main interface
after scanning an Android testing device.

dangerous and, importantly, (2) mitigating potential discover-
ability by existing IPV spyware. Both issues necessitated a
new tool, as existing ones fail on both accounts.

Regarding (1), in IPV harmful apps may include both spy-
ware and what are called dual-use apps: otherwise legitimate
apps that may be repurposed to act as spyware. We use the
term ‘IPV spyware’ for both types of apps. Prior work showed
how existing tools do not detect dual-use apps [8], whereas
ISDi was designed to flag all spyware apps, including dual-use
apps. Regarding (2), installing an existing anti-virus app is
detected by current spyware, potentially endangering victims,
while ISDi was designed to be more covert.

ISDi is a Python application with a browser-based user
interface (Figure 2) that is used by the consultant to scan a
client’s devices and identify potentially harmful apps. The
tool shows the scan results and serves as a starting point for
discussion with the client about any discovered apps. During
the investigation phase of a consultation, the consultant, with
the client’s permission, helps connect the client’s device via
USB to a laptop running ISDi. A benefit of this design archi-
tecture is that it does not require an app to be installed on the
device, making it minimally invasive and leaving little to no
trace of its execution. We discuss the safety of connecting to
client devices below. Further details about how ISDi works
are provided in Appendix A.

Detectability of ISDi. A key design consideration is that
ISDi does not endanger victims due to being detectable by
abusers. As discussed above, we chose to not make ISDi a
downloadable app since we know some spyware reports any
new apps that are installed. Instead we use the USB interface
to connect the device to a laptop running ISDi.

In theory a sophisticated spyware tool might be able to de-
tect ISDi’s use of USB interfaces on iOS or Android. There-
fore, we conducted additional risk assessments. We installed
six highly capable, overt spyware apps found by Chatterjee
et al. [8] on an iPhone 6 (running iOS 11.4) and also on a
rooted Moto G4 Play phone (running Android 6.0.1). The six

112 28th USENIX Security Symposium USENIX Association

https://www.ipvtechresearch.org/resources

apps are: mSpy, Cerberus, FlexiSpy, SpyToApp, SpyZie, and
Trackview. We inspected the features and descriptions of the
less sophisticated apps reported on in [8], and decided they
were unlikely to support detection of USB connections.

For each of the six considered spyware apps, we created
an account (simulating the role of an abuser) and manually
investigated capabilities that might allow the app to detect
the scanning process (including those tailored to rooted An-
droid devices). We then simulated normal use of the device
for several minutes (e.g., opening apps, scrolling) and ran
ISDi while network connectivity was enabled. We repeated
this process with network connectivity disabled for the scan
(and then re-enabled), the intuition being that spyware apps
exfiltrate device activities and data to an external cloud-based
account configured by the abuser, only some of which may
be monitored in real time. We examined the information that
the abuser obtains in both cases, and found that for five of the
apps there was no way to infer that ISDi was used.

The remaining app, Cerberus, allows exfiltrating system
logs on Android, although this capability must be manually
invoked by the abuser. These system logs include entries
about USB connections to the device and that the device
connected to a power source, but nothing beyond that. A
technically sophisticated abuser aware of our tool and who
carefully analyzed these logs might suspect, but would not
have conclusive evidence, that the device was scanned.

Finally, spyware might reveal that the client came to an FJC,
and there have been reports of abusers physically confronting
victims at FJCs or shelters [20]. However, our consultations
and ISDi do not exacerbate this risk given that our clients
already visit FJCs for other reasons.

Data collection. Although it is possible to use ISDi with-
out collecting any data, for research and safety reasons we
choose to store some information, including the list of apps
on a device. Importantly, we do not collect any personally
identifiable information or content, such as phone number,
emails, photos, etc. See Appendix A for more details.

6 Field Study

After developing and refining our consultation protocol and
instruments, we performed a six-month field evaluation with
IPV survivors. The study was conducted in collaboration with
the ENDGBV, who helped recruit participants, provided safe
space for consultations, and ensured the availability of IPV
professionals to help with safety planning. Before beginning
our study we obtained ethics approval for all procedures from
our university’s IRB and from the ENDGBV.

Recruitment. We distributed fliers to all five FJC locations
(one in each borough of NYC). These fliers advertised the
study as a way for clients to obtain a tech safety and privacy
consultation, making both clients and professionals aware
of the opportunity. Interested clients were asked to speak

with their case manager who, after consulting with the client,
created a referral and an appointment with our team. Con-
sultations were typically scheduled for days when our team
arranged to be at the FJC, with a minimum of one and a max-
imum of four consultations on a single day. At the suggestion
of ENDGBV staff, we gave participants $10 compensation to
cover the cost of transportation to/from the FJCs.

Procedure. Consultations took place in a private room at one
of the FJCs. Each consultation was done by a team of two
or three researchers: one person focused on communication
with the client, another on the technical parts of the consulta-
tion (ISDi scan, manual privacy checks), and a third (when
available) to take notes. Consultations were done individually.

Clients scheduled for a consultation were advised to bring
any digital devices that they used or that they wished to have
checked. However, two participants did not bring all their
devices to their first consultation and therefore made an ap-
pointment to return so as to have additional devices checked.
Thus, two clients participated in two consultations.

Consultations lasted between 30 minutes and two hours.
We began by introducing the team members to the client,
explaining the purpose of the study, outlining the activities
that would be performed, and discussing the data that would
be collected about them and from their devices. We then ob-
tained the client’s verbal consent to participate. We also asked
participants for permission to audio record the consultation
for data collection purposes and received permission to record
36 out of 46 consultations. If the participant did not want to
be audio recorded, we instead took detailed notes.

After receiving the client’s consent to participate, we fol-
lowed the consultation procedure detailed in Section 4, in-
cluding questions from the TAQ, constructing a technograph,
scanning the client’s devices with ISDi, and performing man-
ual privacy configuration checks. Whenever possible, we
suggested it may be advantageous for the client to have their
case manager or another IPV professional present during the
consultation so they could assist with safety planning and/or
documenting relevant findings. In total, 16 out of 44 clients
had a professional present during their consultation. After per-
forming all procedures and discussing relevant findings with
the client (and professional, if present) we thanked the client
for their time. For clients requiring followup, we discussed
what that followup would be and confirmed the relevant pro-
fessional to contact when the followup was complete.

Data collection and analysis. We collected detailed hand-
written notes and audio recordings (when permitted) that
document each consultation, including client answers to TAQ
questions, discussion of their digital footprint, details of man-
ual privacy checks, results from ISDi device scans, the advice
or recommendations discussed with the client, and any fol-
lowups that were done. All audio recordings were profession-
ally transcribed and collated by consultation with the relevant
handwritten notes, completed technograph, and ISDi data.

USENIX Association 28th USENIX Security Symposium 113

We manually went through all this data multiple times to
carefully summarize each consultation and produce the de-
scriptive and aggregate statistics presented in Section 7. The
data was stored securely with controls limiting access to only
the subset of the research team that performed analysis.

Safety protocols. As discussed in Section 3, IPV presents
a sensitive landscape within which to conduct research and
survivors are a vulnerable, at-risk population. Our research
procedures were carefully designed to protect clients’ privacy
and safety. For example, we did not ask participants to sign
a consent form since we did not want to know or collect any
identifying information (e.g., names), and all communication
with clients took place through the referring professional,
including scheduling and any post-consultation followups.

Although we offered participants a variety of printed hand-
outs to help them understand their digital safety and privacy,
we explained there may be risks with taking such materi-
als home, especially if they still lived with their abuser, since
someone may discover they had received a consultation. In ad-
dition, since changing privacy settings or uninstalling surveil-
lance apps could lead to potentially dangerous escalation of
abuse, whenever possible we encouraged participants to have
a trusted IPV professional present during their consultation.
When this was not possible, we made sure that another experi-
enced case worker was available to help develop safety plans
that accounted for any detected tech abuse and/or discuss new
protection strategies that participants may want to adopt.

We also considered safety and well-being for our research
team. Part of our training included ways to balance the need
to properly inform participants about who we were and our
affiliation, while avoiding giving out detailed identifying in-
formation about the individual researchers. For example, we
introduced ourselves by first name only. This was because
of the risk that spyware on devices was recording conversa-
tions.6 In addition, working with IPV survivors and hearing
their stories may be mentally and emotionally challenging.
We regularly met as a team after consultations to debrief and
encouraged team members to discuss their feelings, experi-
ences, or anything they were struggling with. Moreover, an
experienced IPV case worker was available at all times to
speak with researchers and help them process any upsetting
experiences that occurred during the consultations.

7 Results of the Field Study

The main goal of our study was to evaluate the utility of our
consultation protocol for IPV victims. Our tools and instru-
ments uncovered important, potentially dangerous security
problems that we discussed with clients and professionals.
This preliminary data suggests our consultation protocol pro-

6We explored other ways to protect researchers, such as leaving client
devices outside or placing them in sound-insulated containers or Faraday
bags, but these proved impractical.

vides benefits. Given the small sample size taken from a sin-
gle city, we warn that our results should not be interpreted as
statistically representative of problems faced by IPV survivors.
We discuss limitations of our results more in Section 8.

For the sake of client anonymity, we necessarily cannot
report on the full details of our consultations. Instead, we give
aggregate results, or when we discuss a particular situation
we only do so in a way that makes it coincide with widely
reported IPV technology abuse situations, as per prior work [8,
14, 19, 20, 27, 35, 43] and our experiences.

Participants and devices. We conducted a total of 46 con-
sultations with 44 IPV survivors (43 female, 1 male) who
were all clients at the FJCs. Two clients received second con-
sultations (at their request) to scan additional devices. All
participants were adults and one still lived with their abuser.

As shown in Figure 3 (left table), clients brought a total
of 105 devices to the consultations. Of these 82 were An-
droid or iOS and we scanned 75 of these with ISDi. Two
unscanned devices were iPhone Xs, which initially caused an
error in ISDi when Apple changed the format of device IDs
(updates to ISDi fixed this for subsequent scans). In two cases,
ISDi could not scan a very old iPhone, potentially due to an
error in the libimobiledevice tool we use to communicate with
devices. One iPhone was not scanned due to a client leaving
early and two other phones were not scanned either because
the client was locked out of the device or stated they were
not concerned about scanning it. All devices that were not
scanned with ISDi were checked manually, except two where
clients were locked out of the device (a phone and laptop).

We performed manual checks on 97 out of 105 devices
brought in by clients. Clients brought a number of devices for
which we did not have a protocol for manual privacy check up,
including Internet-of-Things devices such as Amazon Echos,
gaming systems, a Blackberry phone, and a flip phone. We
performed a best-effort inspection in such cases, except the
flip phone for which the client had no privacy concerns.

Participants’ chief concerns. Clients expressed a range of
chief concerns, as shown in Figure 3 (middle table). The
descriptions here, such as “abuser hacked accounts” reflect
terminology used by clients. A relatively large number of
clients (20) described experiences that suggest abusers had
access to clients’ online accounts (often described as “hack-
ing”) or reported evidence indicative of such access (e.g.,
abuser knows information only stored in an account). The
second most prevalent chief concern (18 clients) were gen-
eral concerns about their abuser tracking them or installing
spyware, but without specific reasons for suspecting it. Other
clients were concerned that their location was being tracked,
their phone was acting suspiciously, and more. Finally, a few
clients wanted to learn more about tech privacy and had no
specific concerns about tech abuse directed towards them.

Chief concerns were often connected to the security is-
sues we detected, discussed more below. For example, chief

114 28th USENIX Security Symposium USENIX Association

Clients & Devices

Clients seen 44
Consultations performed 46

Devices seen 105
Devices manually inspected 97
Devices scanned w/ ISDi 75
Median devices per client 2
Max devices per client 7
Median apps per scanned device 170

Chief Concerns

Worried about tech abuse/tracking/spyware 18
Abuser hacked accounts or knows secrets 20
Worried abuser was tracking their location 10
Phone is glitchy 10
Abuser calls from unknown numbers 9
Unrecognized app on child’s phone 1
Money missing from bank account 1
Curious and want to learn about privacy 4

Detected Issues

Clients w/ vulnerabilities 23
Clients w/ unsolved problems 2
Clients w/ no problems detected 19

Potential spyware detected 3
Potential password compromise 14
Presence of unknown “trusted” devices 12
Shared family/phone plan 4
Rooted device 1

Figure 3: Summary of field study results. Left: Breakdown of the number of clients seen, consultations performed, and devices
encountered. Middle: The chief concerns, as described by the clients (some had multiple chief concerns). Right: The problems
detected during consultations, including vulnerabilities, security risks, and spyware (some clients had multiple problems).

concerns involving illicit access to accounts were often best
explained by poor password practices, family sharing, or con-
firmation of account access by abuser devices. In one case
the chief concern was entirely unrelated to the discovered
security issue, however. All this confirms the importance of
both identifying the chief concerns, but also using instruments
and procedures that may surface unexpected problems.

Security vulnerabilities discovered. For 23 of 44 clients
(52%), our consultations identified important security risks,
vulnerabilities, or plausible vectors for tech abuse. Before
describing our findings, it is important to note that, in most
cases, we do not have definitive proof that the vulnerabili-
ties discovered are the root causes of clients’ problems. For
example, if a client’s password is the name of a child they
share with the abuser, or if their phone is part of a shared
family plan, these provide plausible theories for, but not hard
evidence of, how compromises may be occurring.

Results from ISDi: ISDi flagged a total of 79 apps as prob-
lematic across all device scans. The majority of these (61)
were dual-use apps, with “find my phone” and child mon-
itoring apps the most prevalent categories. For all but one
of these dual-use apps, discussions with clients confirmed
that they recognized the apps and were aware of their pres-
ence. For one dual use app, the client said that they did not
install or recognize the app, which was a controller for remote
home surveillance systems with WiFi, camera, and motion
detection capabilities. We treated this case as a true positive
result. The other 18 apps detected by ISDi were false pos-
itives (i.e., clearly not relevant to IPV) that the consultant
easily dismissed as such. The number of false positives in
any individual consultation was low, the maximum number
of flagged apps on a client’s device was five. This meant that,
thus far, we have not had any issues with consultants being
overwhelmed by large numbers of apps flagged by ISDi.

The relatively low rate of actual spyware detection may
be because, as discussed below, many abusers are seemingly
able to surveil clients via compromised accounts, and so may
not need to install spyware. In addition, almost all clients no
longer lived with the abuser, had changed or reset their devices
since leaving (which would remove spyware in most cases),

and for many devices the abuser no longer had physical access
needed to (re-)install spyware. Finally, ISDi detected that one
client’s Android tablet was rooted. Subsequent discussion
revealed that the abuser bought this tablet for the client, had
physical access to it during the relationship, and had insisted
the client log into her accounts with it. As a result of our
conversation, the client decided to stop using the tablet.

Results from TAQ and technograph: For many clients, we
discovered security vulnerabilities through combined use of
the TAQ, technograph, and/or manual privacy checks. In some
cases, the TAQ and technograph were the primary (or only)
way to uncover a potential problem. For example, four clients
reported that they were still part of a shared family plan or
that their abuser pays for their phone plan, vulnerabilities that
could give the abuser access to, for example, the location of
the client’s device and call and text history. Another common
problem that the TAQ and technograph revealed for 14 clients
was the use of passwords that the client said were known, or
could be guessed, by their abuser. In several of these cases, a
compromised password provided a plausible explanation for
how the abuser may be gaining access to the client’s accounts.

Results from manual checks: Combining TAQ and techno-
graph information with subsequent manual privacy checks
often yielded evidence of malicious account access. For ex-
ample, during manual checks of iCloud account settings for
four clients, we discovered that their iCloud accounts listed
“trusted” devices that the client either did not know or recog-
nized as belonging to the abuser. Similarly, manual checks of
client email and social media accounts showed unknown or
abuser device logins for another eight clients.

iCloud and email account access, whether by password
compromise or via unauthorized “trusted” device access, also
yielded plausible explanations for a range of other problems.
For example, three clients reported that they kept written
records of passwords for all their accounts in files that were
then synced with their compromised iCloud, potentially re-
sulting in the abuser obtaining all these passwords. Similarly,
several clients emailed copies of their new passwords to them-
selves via potentially compromised email accounts. Another
prevalent avenue for compromise that we saw happened when

USENIX Association 28th USENIX Security Symposium 115

clients used a compromised account as the backup account
for other services (e.g., social media), with clients unaware
of how this might result in abuser access to these services.

For two clients, manual checks of laptops revealed browser
extensions that the clients did not install or know about. In
one case, the extension was “off store” (not available via
the official Chrome Web Store), may have been sideloaded
(installed via developer mode), and had permission to read and
write all browser data. We regarded this as possible spyware.
For the other case, the extension is available via the Chrome
Store and is used to monitor access to web content. This
extension provides a plausible explanation for the client’s
chief concern, which was that her abuser knew about her
online activities, and we regarded it as probable spyware.

No problems detected. For 21 out of 44 clients, our instru-
ments did not surface any evidence of potential tech issues.
For 19 of these, the lack of discovered problems was reassur-
ing and many left the consultation visibly relieved and more
at ease. However, in two cases, the consultation’s inability to
address their chief concerns left the client unsatisfied. In these
cases we performed follow-up research, including reaching
out to other tech experts for second opinions about their con-
cerns (in an anonymized fashion) but unfortunately still have
no plausible explanation for what they were experiencing.

Hand-off and followup. For the 23 clients with discovered
problems and two clients with unresolved issues, we con-
ducted a hand-off in which we discussed our results with the
referring professional. For 12 of these, the professional was
onsite and hand-off occurred immediately. For the other 13,
we followed up with the professional via email and/or a phone
call. Although many clients did not resolve discovered prob-
lems immediately because of the need to safety plan, they
said that it was helpful and empowering to at least know how
the abuser was plausibly obtaining information about them.

Eleven cases required further research after the consulta-
tion. Six of these were client requests for information about
specific apps we were unfamiliar with (e.g., can app X track
my location?). For the remaining five we found something
during the consultation that needed further analysis to assess
its danger. In 10 cases, the consultant researched the issue at
length and provided a comprehensive answer to the referring
professional within a few days of the consultation. In the
remaining case, we could not provide a satisfactory explana-
tion for what the client was describing even after significant
research, which we explained to the referring professional.

8 Discussion

Although the results from our field study are preliminary, they
suggest that our consultation protocol is already valuable to
clients in dangerous situations. Encouragingly, the ENDGBV
have asked our team to schedule more consultations with
clients at the FJCs. This in turn raises new open questions

about how to sustain and scale our clinical computer security
approach. In this section we discuss: (1) limitations of our
current study; (2) open questions that it raises about how to
realize the vision of clinical computer security for IPV victims
more generally; and (3) open questions that our work raises
about clinical approaches to computer security beyond IPV.

Limitations. This first study on clinical computer security
interventions has several limitations that we acknowledge.
First, our study was restricted to a single municipality and
our participants were not representative of all people who
suffer IPV. Although New York City has a large and diverse
population, and our sample does include socioeconomic and
cultural diversity, all but one of our participants were women,
all but one were no longer living with their abuser, and the
majority had been in heterosexual relationships. As a result,
our study may fail to capture some of the nuances associated
with abusive relationships for LGBTQIA+ people or those
who may still live with their abuser.

Another limitation is our sample size. Although 44 clients
may be sufficient to verify the utility of our consultations, it
certainly does not yield statistically significant estimates of,
for example, likelihood of spyware or other harms being seen
in practice. Further, our study context purposefully biases our
sample towards victims that are specifically worried about
tech problems. Still, our results provide guidance on what a
tech clinic is likely to see, and our experiences are consistent
with prior work on tech attacks in IPV [20, 27].

Our consultations may not catch all issues, either due to
consultant error (e.g., forgetting to ask a TAQ question) or
technical error (e.g., ISDi mislabeling an app). Indeed, one
of the fundamental challenges faced in this area is dealing
with complex, multifaceted attacks, and it is not possible to
be perfect. That said, our new approach vastly improves
over the current status quo in practice, which is essentially
nothing. Moving forward, future research will need to assess
if, and how, our protocol and instruments impact client lives
in the longer term, determining, for example, whether our
interventions measurably decrease illicit account accesses.

Should a client change their behavior as a result of our
consultations, abusers may change behavior, retaliate against
the victim, or otherwise escalate abuse. We designed our
protocols to try to minimize the potential for this, but no
procedures can eliminate such risks entirely. That said, we
are in active communication with FJC leadership and have
not received any indication that a client has faced retribution
as a consequence of participating in a consultation.

Clinical computer security for IPV. Our work focused on
client consultations, which are a fundamental component of
realizing our vision of clinical computer security. Given the
success of our initial field study, we are faced with a range
of open questions. The most obvious is that our design and
evaluation so far did not perform in-depth investigation of
issues related to scalability and sustainability.

116 28th USENIX Security Symposium USENIX Association

A sustainable computer security clinic will likely need a
supporting organization, outside the scope of a research study,
to handle recruitment, screening, and training of sufficiently
many volunteer consultants (or paid professionals, should
there be funding to pay them). Although the assessments and
materials we developed in this work will help with training
future tech consultants, they do not yet speak to challenges
that are outside the context of the consultation. In a referral
model like the one we used, just scheduling consultations took
many hours per week and, more broadly, how best to organize
delivery of clinical computer security for IPV victims raises a
host of questions for future research.

As a financially sustainable recruitment strategy, we might
draw on existing models like pro-bono legal services [30], and
initial conversations with tech professionals and companies
suggest that some may be willing to offer their time free of
charge. (This model is used by the TECC clinic [2].) Another
approach is student-run clinics, similar to law school legal
clinics [12] or medical school free clinics [37]. In any such
model, it will be essential to develop strong protocols for
screening consultant applicants, particularly to ensure that
abusers are prevented from enrolling as consultants. Advo-
cacy groups have protocols for screening applicants, and one
could start by adopting these. In parallel, future research
will be needed to localize clinical techniques to geographic
locations with different support organizations and laws.

Another pressing issue is maintenance of instruments.
ISDi’s coverage currently relies on labor-intensive updating of
blacklists, based on web crawling and manual analysis. Like
malware detection in other contexts, maintaining accuracy
over time and staying ahead of emerging threats is an immense
challenge [40]. It is also important to consider the longer-
term implications of making ISDi’s existence and methods
public. While current spyware does not infer ISDi was used,
if it becomes widespread enough to become a target, spyware
developers might turn to more sophisticated methods that
monitor USB-related system processes. Similarly, spyware
vendors may start attempting to avoid detection. As such, we
keep ISDi’s blacklist private, allowing access via legitimate
requests from those working to help victims.

Our other instruments will also require updating at various
time intervals. By design, the TAQ should maintain relevance
for quite a while to come, requiring updating only when tech-
nology changes suggest new, broad classes of threats we must
consider. But our manual investigation guides for checking
security or privacy settings may need to be updated more
frequently as companies change their products. Future work
might evaluate the right balance between generalizability and
actionability of such guides (c.f., [19]), or infrastructure for
maintaining them (e.g., expert crowdsourcing [29]).

Clinical computer security beyond IPV. IPV is not the
only context in which victims suffer targeted, persistent, and
personalized attacks. Some examples include the dissidents,

activists, and NGO employees targeted by nation-state hack-
ing campaigns [7, 23, 25, 26], or the gamers [9], journal-
ists [10], politicians [6], and researchers [21] who are at
high-risk of being harassed online [18, 33]. As in IPV, in all
these cases the attacker wants to harm their particular target.
There is also an asymmetry between the victim and attacker,
with the latter having more resources, time, and/or technolog-
ical sophistication. Indeed, in some cases the adversary in
these other contexts has significant technical prowess.

Clinical approaches to computer security may be of util-
ity in these other contexts. In the near term, adapting our
techniques to other communities of victims similar to IPV —
such as victims of elder, parental, or child abuse, or victims
of sex trafficking (which are also served by FJCs) — could
constitute important research directions. Despite the similari-
ties, research will be needed to understand how the nuances
emanating from particular circumstances or demographics
change best practices for clinical interventions.

Further afield are contexts that are less similar to IPV. For
example, those targeted by government agencies as mentioned
above might benefit from systematized clinical approaches.
One could perhaps start with the work done by the Citizen-
Lab [13] and Citizen Clinic [1], and determine to what extent,
if any, our methodologies for stakeholder-driven design could
help improve clinical interventions.

9 Conclusion

This paper lays out a vision for clinical computer security
and explores it in the context of IPV. Through an iterative,
stakeholder-driven process, we designed a protocol for con-
ducting face-to-face tech consultations with victims of IPV
to understand their tech issues, investigate their digital assets
programmatically and by hand to discover vulnerabilities, and
advise on how they might proceed. Our preliminary study
with 44 IPV victims surfaced vulnerabilities for roughly half
our participants, including account compromise, potential
spyware, and misconfiguration of family sharing plans. Our
consultations also provided advice and information to vic-
tims and professionals on ways to document such discoveries
and improve computer security moving forward. Our clinical
approach provides immediate value, while also laying a foun-
dation for future research on evidence-based refinements to
clinical tech interventions in IPV and, potentially, beyond.

Acknowledgments

We would like to sincerely thank all our study participants,
the Family Justice Centers, and the NYC ENDGBV. This
work was funded by the NSF through grants CNS-1717062
and CNS-1558500, and by gifts from Comcast and Google.

USENIX Association 28th USENIX Security Symposium 117

References

[1] Citizen clinic. https://cltc.berkeley.edu/
citizen-clinic/.

[2] Technology-enabled coercive control working group,
Seattle, WA, USA. https://tecc.tech/.

[3] iOS jailbreak detection (OWASP). https://git.io/
fj4te, 2017.

[4] Libimobiledevice: a cross-platform software protocol
library and tools to communicate with iOS devices
natively. https://www.libimobiledevice.org/,
2017.

[5] Android debug bridge (adb). https://developer.
android.com/studio/command-line/adb, 2019.

[6] Maggie Astor. For female candidates, harass-
ment and threats come every day. https:
//www.nytimes.com/2018/08/24/us/politics/
women-harassment-elections.html, 2018.

[7] S. Le Blond, A. Cuevas, J. Ramón Troncoso-Pastoriza,
P. Jovanovic, B. Ford, and J. Hubaux. On enforcing the
digital immunity of a large humanitarian organization.
In 2018 IEEE Symposium on Security and Privacy (SP),
volume 00, pages 302–318.

[8] Rahul Chatterjee, Periwinkle Doerfler, Hadas Orgad,
Sam Havron, Jackeline Palmer, Diana Freed, Karen
Levy, Nicola Dell, Damon McCoy, and Thomas Risten-
part. The spyware used in intimate partner violence. In
2018 IEEE Symposium on Security and Privacy (SP),
pages 441–458. IEEE, 2018.

[9] Despoina Chatzakou, Nicolas Kourtellis, Jeremy Black-
burn, Emiliano De Cristofaro, Gianluca Stringhini, and
Athena Vakali. Hate is not binary: Studying abusive
behavior of #gamergate on twitter. In Proceedings of
the 28th ACM Conference on Hypertext and Social Me-
dia, HT ’17, pages 65–74, New York, NY, USA, 2017.
ACM.

[10] Gina Masullo Chen, Paromita Pain, Victoria Y Chen,
Madlin Mekelburg, Nina Springer, and Franziska Troger.
“you really have to have a thick skin”: A cross-cultural
perspective on how online harassment influences female
journalists. Journalism, 2018.

[11] Robyn Clay-Williams and Lacey Colligan. Back to
basics: checklists in aviation and healthcare. BMJ Qual
Saf, 24(7):428–431, 2015.

[12] Robert J. Condlin. "tastes great, less filling": The law
school clinic and political critique. Journal of Legal
Education, 36(1):45–78, 1986.

[13] Ronald J. Deibert. The Citizen Lab. https:
//citizenlab.ca/.

[14] Jill P Dimond, Casey Fiesler, and Amy S Bruckman. Do-
mestic violence and information communication tech-
nologies. Interacting with Computers, 23(5):413–421,
2011.

[15] John W Ely, Mark L Graber, and Pat Croskerry. Check-
lists to reduce diagnostic errors. Academic Medicine,
86(3):307–313, 2011.

[16] NYC ENDGBV. NYC mayor’s office to combat domes-
tic and gender-based violence. https://www1.nyc.
gov/site/ocdv/about/about-endgbv.page, 2019.

[17] NYC FJCs. NYC family justice centers.
https://www1.nyc.gov/site/ocdv/programs/
family-justice-centers.page, 2019.

[18] Antigoni-Maria Founta, Constantinos Djouvas, De-
spoina Chatzakou, Ilias Leontiadis, Jeremy Blackburn,
Gianluca Stringhini, Athena Vakali, Michael Sirivianos,
and Nicolas Kourtellis. Large scale crowdsourcing and
characterization of twitter abusive behavior. CoRR,
abs/1802.00393, 2018.

[19] Diana Freed, Jackeline Palmer, Diana Minchala, Karen
Levy, Thomas Ristenpart, and Nicola Dell. Digital tech-
nologies and intimate partner violence: A qualitative
analysis with multiple stakeholders. PACM: Human-
Computer Interaction: Computer-Supported Coopera-
tive Work and Social Computing (CSCW), Vol. 1(No.
2):Article 46, 2017.

[20] Diana Freed, Jackeline Palmer, Diana Minchala, Karen
Levy, Thomas Ristenpart, and Nicola Dell. “A Stalker’s
Paradise”: How intimate partner abusers exploit tech-
nology. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. ACM, 2018.

[21] Virginia Gewin. Real-life stories of online harassment
— and how scientists got through it. https://
www.nature.com/articles/d41586-018-07046-0,
2018.

[22] Philip J Guerin and Eileen G Pendagast. Evaluation of
family system and genogram. Family therapy: Theory
and practice, pages 450–464, 1976.

[23] Seth Hardy, Masashi Crete-Nishihata, Katharine
Kleemola, Adam Senft, Byron Sonne, Greg Wise-
man, Phillipa Gill, and Ronald J Deibert. Targeted
threat index: Characterizing and quantifying politically-
motivated targeted malware. In USENIX Security Sym-
posium, pages 527–541, 2014.

[24] Leigh Honeywell. Personal communication, 2019.

118 28th USENIX Security Symposium USENIX Association

https://cltc.berkeley.edu/citizen-clinic/
https://cltc.berkeley.edu/citizen-clinic/
https://tecc.tech/
https://git.io/fj4te
https://git.io/fj4te
https://www.libimobiledevice.org/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://www.nytimes.com/2018/08/24/us/politics/women-harassment-elections.html
https://www.nytimes.com/2018/08/24/us/politics/women-harassment-elections.html
https://www.nytimes.com/2018/08/24/us/politics/women-harassment-elections.html
https://citizenlab.ca/
https://citizenlab.ca/
https://www1.nyc.gov/site/ocdv/about/about-endgbv.page
https://www1.nyc.gov/site/ocdv/about/about-endgbv.page
https://www1.nyc.gov/site/ocdv/programs/family-justice-centers.page
https://www1.nyc.gov/site/ocdv/programs/family-justice-centers.page
https://www.nature.com/articles/d41586-018-07046-0
https://www.nature.com/articles/d41586-018-07046-0

[25] Stevens Le Blond, Adina Uritesc, Cédric Gilbert,
Zheng Leong Chua, Prateek Saxena, and Engin Kirda.
A look at targeted attacks through the lens of an ngo. In
USENIX Security Symposium, pages 543–558, 2014.

[26] William R Marczak, John Scott-Railton, Morgan
Marquis-Boire, and Vern Paxson. When governments
hack opponents: A look at actors and technology. In
USENIX Security Symposium, pages 511–525, 2014.

[27] Tara Matthews, Kathleen O’Leary, Anna Turner, Manya
Sleeper, Jill Palzkill Woelfer, Martin Shelton, Cori Man-
thorne, Elizabeth F Churchill, and Sunny Consolvo. Sto-
ries from survivors: Privacy & security practices when
coping with intimate partner abuse. In Proceedings of
the 2017 CHI Conference on Human Factors in Com-
puting Systems, pages 2189–2201. ACM, 2017.

[28] APA Work Group on Psychiatric Evaluation. Practice
Guidelines for the Psychiatric Evaluation of Adults. The
American Psychiatric Association, third edition, 2016.

[29] Daniela Retelny, Sébastien Robaszkiewicz, Alexandra
To, Walter S. Lasecki, Jay Patel, Negar Rahmati, Tulsee
Doshi, Melissa Valentine, and Michael S. Bernstein.
Expert crowdsourcing with flash teams. In Proceedings
of the 27th Annual ACM Symposium on User Interface
Software and Technology, UIST ’14, pages 75–85, New
York, NY, USA, 2014. ACM.

[30] Deborah L Rhode. Cultures of commitment: Pro bono
for lawyers and law students. Fordham L. Rev., 67:2415,
1998.

[31] Carl R Rogers. Significant aspects of client-centered
therapy. American Psychologist, 1(10):415–422, 1946.

[32] Sharon G Smith, Kathleen C Basile, Leah K Gilbert,
Melissa T Merrick, Nimesh Patel, Margie Walling, and
Anurag Jain. The national intimate partner and sexual
violence survey (NISVS): 2010-2012 state report. 2017.

[33] Peter Snyder, Periwinkle Doerfler, Chris Kanich, and
Damon McCoy. Fifteen minutes of unwanted fame:
Detecting and characterizing doxing. In Proceedings of
the 2017 Internet Measurement Conference, IMC ’17,
pages 432–444, New York, NY, USA, 2017. ACM.

[34] Cindy Southworth, Shawndell Dawson, Cynthia Fraser,
and Sarah Tucker. A high-tech twist on abuse: Technol-
ogy, intimate partner stalking, and advocacy. Violence
Against Women, 2005.

[35] Cynthia Southworth, Jerry Finn, Shawndell Dawson,
Cynthia Fraser, and Sarah Tucker. Intimate partner
violence, technology, and stalking. Violence against
women, 13(8):842–856, 2007.

[36] Geek Squad. Geek Squad services. https://www.
geeksquad.com, 2019.

[37] Lindsey Stephens, Nicole Bouvier, David Thomas, and
Yasmin Meah. Voluntary participation in a medical
student-organized clinic for uninsured patients signifi-
cantly augments the formal curriculum in teaching un-
derrepresented core competencies. Journal of Student-
Run Clinics, 1(1), Jun. 2015.

[38] San-Tsai Sun, Andrea Cuadros, and Konstantin
Beznosov. Android rooting: Methods, detection, and
evasion. In Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and
Mobile Devices, pages 3–14. ACM, 2015.

[39] Jing Tian, Nolen Scaife, Deepak Kumar, Michael Bailey,
Adam Bates, and Kevin Butler. SoK: “Plug & Pray”
Today – Understanding USB insecurity in versions 1
through C. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 1032–1047. IEEE, 2018.

[40] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G.
Bringas. SoK: Deep packer inspection: A longitudinal
study of the complexity of run-time packers. In 2015
IEEE Symposium on Security and Privacy, pages 659–
673, May 2015.

[41] Zhaohui Wang and Angelos Stavrou. Exploiting smart-
phone usb connectivity for fun and profit. In Proceed-
ings of the 26th Annual Computer Security Applications
Conference, pages 357–366. ACM, 2010.

[42] Thomas G Weiser, Alex B Haynes, Angela Lashoher,
Gerald Dziekan, Daniel J Boorman, William R Berry,
and Atul A Gawande. Perspectives in quality: designing
the who surgical safety checklist. International journal
for quality in health care, 22(5):365–370, 2010.

[43] Delanie Woodlock. The abuse of technology in do-
mestic violence and stalking. Violence against women,
23(5):584–602, 2017.

USENIX Association 28th USENIX Security Symposium 119

https://www.geeksquad.com
https://www.geeksquad.com

A More Details about ISDi

How ISDi works. ISDi uses the libimobiledevice tool [4]
for iOS or Android Debug Bridge (adb) [5] for Android to
programmatically access the connected device. On Android,
the device must be configured to allow USB debugging, which
is done by enabling developer mode for the scan and revoking
it again after the scan is complete. When a scan is initiated,
ISDi pairs with the connected device and queries it for a list
of all installed apps, including those that are hidden from the
app drawer on Android (c.f., [8]). ISDi then runs additional
queries on the device to obtain the OS version, hardware
model, and manufacturer. It also performs heuristic checks
to infer if the device is jailbroken (iOS) or rooted (Android).
ISDi displays information about the outcome of these checks
via the tool’s UI, along with a list of all installed apps with
potentially dangerous apps listed first. We compute each app’s
threat score by combining several heuristics.

First, we created a blacklist of potential IPV spyware and
dual-use apps using techniques from Chatterjee et al. [8]. To
ensure the list was not stale, we re-ran their measurements
several times and added the results to the blacklist. We ap-
plied the machine learning classifier used in [8] to remove
the obviously irrelevant apps. However, we did not manually
prune the list further to reduce the falsely flagged apps, as
during consultation a consultant can check those apps and
ignore if not relevant for IPV. The most recent update was
shortly before we initiated meetings with clients. Our cur-
rent blacklist contains over 500 iOS and 5,000 Android apps.
A second heuristic is a set of regular expressions that app
names are checked for, including substrings such as “spy” or
“track”. Lastly, on Android, ISDi checks whether any apps
were installed outside of the Play Store. A threat score is
then computed for each app so that the apps can be listed in
decreasing order of potential risk.

Clicking on an app name in ISDi’s UI displays more infor-
mation about that app, including installation date, developer
description of the app, requested permissions, and when per-
missions were last invoked (on Android). ISDi is also capable
of uninstalling apps (after appropriate safety planning) via
its interface, which is especially useful for hidden apps on
Android that cannot be located using the device’s UI.

ISDi is not perfect and may have both false positives and
false negatives. The former are less dangerous, and in our
experience were easily dealt with by the consultant in the
field. False negatives are of course potentially dangerous, and
so we purposefully designed ISDi to have a low false negative
rate by allowing for more false positives.

ISDi collects the following information of each app: the
app ID, permissions, installation date (Android only), and
package files (Android only). ISDi also generates and stores
a keyed cryptographic hash of the device’s serial number. The
latter is useful to ensure we can determine if we scan the same
device twice, since clients may have multiple consultations,

without explicitly storing the device identifier. Collected data
is linked to a random client identifier. Storing a list of apps is
helpful not only for our research, but also because it allows us
to further examine, via followup if necessary, any suspicious
apps discovered during a consultation. In addition, whenever
we update the blacklist, we retroactively scan the apps from
past consultations to ensure that no newly found IPV spyware
apps were on a previously scanned devices. (Fortunately, we
have not yet detected any spyware retroactively.) All data is
stored securely and accessible only to our team.

Detecting potential IPV spyware. A core feature of ISDi is
its detection of IPV spyware apps (either overt or dual-use)
on iOS or Android devices. To do so, ISDi integrates various
heuristics into a rank-ordered list of apps by an internal threat
score. After querying the device for a list of installed apps,
ISDi assigns a threat score to each app, that score derived
from summing the weights of heuristics.

The main heuristic is two blacklists of app IDs, one for
overt spyware apps and one for dual-use apps. The black-
lists deployed with ISDi was seeded with the list of apps
discovered in [8], but then updated by using their snowball
searching techniques on the Google Play store and iTunes
store. Note that Google Play occasionally bans apps and re-
portedly banned some in response to the results of [8]. We
do not remove apps from a blacklist should they be removed
from the play store — they could have been downloaded and
installed by an abuser before removal. We additionally in-
cluded any apps we discovered via manual searches or that we
discovered in any other way. Following [8], we aggressively
added apps to a blacklist, at risk of creating false positives.
This favors having a low false negative rate, and we built
into our protocol the ability for consultants to handle false
positives when they arose. To help with ordering, we kept a
separate blacklist of overt spyware, with other apps appearing
on the dual-use blacklist.

In addition to blacklists, ISDi uses a few other heuristics.
First are regular expressions applied to application names,
as described in Section 5. Second was that we marked any
off-store app as potentially dangerous. Third was whether the
device is a system app, meaning it was pre-installed on the
device by the cellular provider or OS vendor.

We then gave a weighted score to each app according to
the values shown in Figure 4. The score of an app is equal
to the sum of the weights for the set of heuristics that apply
to the app. A higher score denotes being potentially more
dangerous. The weights are admittedly somewhat arbitrary,
but roughly correspond to our perception of the danger each
heuristic indicates. In practice, the number of apps on a device
that were assigned risk signals by ISDi were sufficiently small
that our choice of weights and rank-ordering did not make
much of a difference during consultations.

App detection accuracy. While ISDi lists all apps on the
device, and the consultant is encouraged to visually inspect

120 28th USENIX Security Symposium USENIX Association

Heuristic Weight Description
Overt spyware blacklist 1.0 Known, overt spyware
Dual-use blacklist 0.8 Legitimate uses, but possi-

bly harmful in certain situ-
ations

Offstore app 0.8 Not installed through an of-
ficial app marketplace

Regex match 0.3 App name or ID contains
‘spy’, ‘track’, etc.

System app -0.1 Pre-installed by device
vendor

Figure 4: The ISDi heuristics for ordering apps. Each app
is assigned a score that is the sum of the weights for each
heuristic that applies to it.

the entire list, we would still consider it a false negative if a
dangerous app was not flagged by one of the four heuristics
(excluding the system app heuristic).

As discussed in Section 5, ISDi’s accuracy depends in part
on labor intensive web crawling and manual pruning. Our
blacklist of dual-use apps included all 2,474 seed apps from
Chatterjee et al. [8], as well as 3,263 new apps from our own
periodic crawls since May 2018 and filtering using the ML
classifier given in [8]. Unlike in [8], we do not manually prune
the 3,263 apps we added to the blacklist to further remove
apps falsely flagged by the machine learning classifier. During
consultation, the consultant ignores apps that are not relevant,
which was not a problem during our consultations.

Most overt spyware apps we have encountered (and cer-
tainly all dual-use apps we have inspected) do not try to hide
their presence from a programmatic scan. However, for a few
of the overt spyware apps we have observed that they chose
innocuous-looking app IDs (such as “com.android.system”).
This reiterates the need for programmatic scans, which are
not fooled by this. However, if apps change their app IDs
frequently to avoid detection, our blacklists may not cover
the full set of app IDs associated with a spyware. We have
observed that one overt offstore spyware app, mSpy, has pub-
lished versions of its Android APK with different app IDs:
sys.framework and core.framework, while others such as Spy-
ToApp, FlexiSpy, and SpyZie have not changed their app
IDs to our knowledge (we re-downloaded them in September
2018 and in February 2019). We have found no evidence that
onstore dual-use apps change their app IDs, though Trackview
has published their app twice on the Google Play Store, as
both net.cybrook.trackview and app.cybrook.trackview under
different developer IDs. We have added all of the changed
app IDs to our blacklist as we have discovered them.

Finally we note that ISDi is not designed to detect more so-
phisticated malware, such as that used by national intelligence
agencies. We believe such malware is unlikely to arise in IPV

settings, since it requires special access to obtain it. For a
client for which it is plausible that her abuser might have ac-
cess to such capabilities (e.g., the abuser works as a computer
security expert), a discussion about potential remediations,
such as obtaining new devices, would be appropriate.

App reports. Upon clicking on an app, ISDi gives a number
of details about the app. This includes a developer description
(if available), when the app was installed (Android only),
the permissions the app has requested, and the time of all
the permissions recently used by the app (Android only),
including dangerous permissions such as microphone, camera,
or GPS. It also provides a link to a Google search on the app
ID, which allows the consultant to quickly attempt to look up
more information about the app should it be unfamiliar.

Detecting jailbroken or rooted phones. ISDi attempts to
determine if the scanned device is jailbroken (iOS) or rooted
(Android), since such devices are at much greater risk for
installation of powerful spyware. For example, most spy-
ware vendors enable for sophisticated features if the device
is jailbroken/rooted. Moreover, it is unlikely that a client
purposefully jailbreaks or roots their phone.

Thus ISDi uses a set of heuristics to determine whether
a device is jailbroken/rooted. If any heuristic comes back
positive, ISDi considers the device to be jailbroken or rooted
and indicates this along with the results of the scan. Detecting
jailbroken/rooted devices is under active discussion for both
Android and iOS because app developer communities want
to prevent their apps from being illegitimately being used on
a jailbroken/rooted device. We therefore collected different
heuristics from such community forums. For both iOS and
Android, ISDi checks whether common jailbreak/rooting ap-
plications are installed on the device [3]. On Android devices,
ISDi checks whether or not the su tool is installed on the sys-
tem “shell” application [38]. On iOS devices, ISDi attempts
to mount the filesystem at the root directory.

To the best of our understanding, ISDi will detect any jail-
broken or rooted device. However, it is possible that a device
could evade detection by ISDi using techniques that are not
publicly known. We regularly look into app developer forums
for new heuristics and update ISDi accordingly.

Possible attack vectors on ISDi. We have considered that
spyware installed by an abuser on a client’s phone may at-
tempt to use its USB connection to ISDi as a possible attack
vector [39, 41]. We are not aware of any overt spyware apps
that try to misuse USB connections to a host computer. We
ensured that all commands used by ISDi to communicate with
iOS and Android devices, over libimobiledevice and adb, re-
spectively, were run over least privilege (i.e., without sudo).

USENIX Association 28th USENIX Security Symposium 121

Figure 5: The current version of the Technology Assessment Questionnaire (TAQ).

122 28th USENIX Security Symposium USENIX Association

Evaluating the Contextual Integrity of Privacy Regulation:
Parents’ IoT Toy Privacy Norms Versus COPPA

Noah Apthorpe
Princeton University

Sarah Varghese
Princeton University

Nick Feamster
Princeton University

Abstract
Increased concern about data privacy has prompted new and
updated data protection regulations worldwide. However,
there has been no rigorous way to test whether the practices
mandated by these regulations actually align with the privacy
norms of affected populations. Here, we demonstrate that
surveys based on the theory of contextual integrity provide
a quantifiable and scalable method for measuring the con-
formity of specific regulatory provisions to privacy norms.
We apply this method to the U.S. Children’s Online Privacy
Protection Act (COPPA), surveying 195 parents and provid-
ing the first data that COPPA’s mandates generally align with
parents’ privacy expectations for Internet-connected “smart”
children’s toys. Nevertheless, variations in the acceptabil-
ity of data collection across specific smart toys, informa-
tion types, parent ages, and other conditions emphasize the
importance of detailed contextual factors to privacy norms,
which may not be adequately captured by COPPA.

1 Introduction

Data privacy protections in the United States are enforced
through a combination of state and federal legislation and
regulatory action. In Europe, the General Data Protection
Regulation (GDPR) is currently the best example of strong,
centralized privacy legislation. The GDPR has inspired sim-
ilar laws in other countries, such as the Brazilian General
Data Privacy Law. According to the United Nations Confer-
ence on Trade and Development [51], 57% of countries have
data protection and privacy legislation as of 2018.

Although data privacy protections vary across countries
in terms of details and implementation, many share a com-
mon provenance: public pressure to protect sensitive per-
sonal data from unauthorized use or release. Surveys report
that consumers worldwide were more concerned about on-
line privacy in 2016 than 2014 [7] and that over 60% of U.S.
survey respondents in 2018 are concerned about data privacy
in general [34]. However, there has been no rigorous, quan-

tifiable, and scalable way to measure whether existing legal
privacy protections actually match the privacy expectations
of affected individuals. Without such data, it is difficult to
know which aspects of privacy regulation effectively align
company behaviors with social and cultural privacy norms
and which necessitate further revision.

In this paper, we demonstrate that an existing survey tech-
nique [3] based on the formal privacy theory of contextual
integrity (CI) [32] can be directly adapted to test the confor-
mity of specific regulatory requirements to privacy norms,
providing much-needed data to policymakers and the pri-
vacy research community. The survey technique can be ap-
plied to any privacy regulation that defines guidelines for
data collection and transfer practices. Importantly, the sur-
vey technique involves questions describing privacy scenar-
ios that are concrete and understandable to respondents from
all backgrounds. It also allows straightforward longitudinal
and cross-sector measurements to track the effectiveness of
regulatory updates over time.

We present a rigorous case study of this technique eval-
uating the U.S. Children’s Online Privacy Protection Act
(COPPA), which provides a federal legal framework to pro-
tect the online privacy of children under the age of 13.
Specifically, we investigate whether parents’ opinions about
the acceptability of data collection practices by Internet-
connected “smart” children’s toys match COPPA mandates.
Since the Federal Trade Commission (FTC) only updated its
guidance on COPPA to explicitly include “connected toys or
other Internet of Things devices” in June 2017 [16], our re-
sults provide the first indication as to whether COPPA aligns
with parents’ privacy expectations.

This question is particularly relevant given the recent high-
profile security breaches of smart toys, ranging from the theft
of personal information of over 6 million children from toy
manufacturer VTech to vulnerabilities in Mattel’s Hello Bar-
bie [13]. More recently, Germany banned children’s smart
watches and Genesis Toys’ My Friend Cayla doll, citing se-
curity risks and “spying concerns” [17, 31].

We survey a panel of 195 U.S. parents of children from

USENIX Association 28th USENIX Security Symposium 123

ages 3 to 13, the largest sample size for a study of parent
opinions of smart toy data collection in the literature to date.
We find that parents generally view information collection
predicated on requirements specified by COPPA (e.g., “if the
information is used to protect a child’s safety”) as accept-
able, while viewing equivalent information collection with-
out COPPA-specified conditions as unacceptable. This indi-
cates that the existing conditions COPPA places on informa-
tion collection by smart toys are generally in line with par-
ents’ privacy norms, although there may be additional data
collection requirements which could be added to regulation
that were not tested in our study.

Additionally, we find that COPPA requirements for notifi-
cation and consent result in more acceptable data collection
practices than requirements related to confidentiality and se-
curity. This corroborates previous work indicating the pri-
mary importance of consent to user privacy norms [3]. We
also find variations in the acceptability of COPPA-permitted
data collection practices across specific smart toys, types of
information, certain information use cases, parent ages, par-
ent familiarity with COPPA, and whether parents own smart
devices. These variations emphasize the importance of de-
tailed contextual factors to parents’ privacy norms and mo-
tivate additional studies of populations with privacy norms
that may be poorly represented by COPPA.

We conclude by noting that COPPA’s information collec-
tion criteria are broad enough to allow smart toy implementa-
tions that compromise children’s privacy while still adhering
to the letter of the law. Continuing reports of smart toys vio-
lating COPPA [6] also suggest that many non-compliant toys
remain available for purchase. Further improvements to both
data privacy regulation and enforcement are still needed to
keep pace with corporate practices, technological advance-
ments, and privacy norms.

In summary, this paper makes the following contributions:

• Demonstrates that an existing survey method [3] based
on contextual integrity [32] can be applied to test
whether privacy regulations effectively match the norms
of affected populations.

• Provides the first quantitative evidence that COPPA’s re-
strictions on smart toy data collection generally align
with parents’ privacy expectations.

• Serves as a template for future work using contextual
integrity surveys to analyze current or proposed privacy
regulation for policy or systems design insights.

2 Background & Related Work

In this section, we place our work in the context of related
research on contextual integrity, COPPA, and smart toys.

2.1 Contextual Integrity
The theory of contextual integrity (CI) provides a well-

established framework for studying privacy norms and ex-
pectations [32]. Contextual integrity defines privacy as the
appropriateness of information flows based on social or cul-
tural norms in specific contexts. CI describes information
flows using five parameters: (1) the subject of the informa-
tion being transferred, (2) the sender of this information,
(3) the attribute or type of information, (4) the recipient of
the information, and (5) the transmission principle or condi-
tion imposed on the transfer of information from the sender
to the recipient. For example, one might be comfortable
with a search engine (recipient) collecting their (subject &
sender) Internet browsing history (attribute) in order to im-
prove search results (transmission principle), but not in or-
der to improve advertisement targeting, which is a different
transmission principle that places the information in a dif-
ferent context governed by different norms. Privacy norms
can therefore be inferred from the reported appropriateness
and acceptability of information flows with varying combi-
nations of these five parameters.

Previous research has used CI to discover and analyze pri-
vacy norms in various contexts. In 2012, Winter used CI
to design an interview study investigating Internet of things
(IoT) device practices that could be viewed as privacy viola-
tions [54].

In 2016, Martin and Nissenbaum conducted a survey with
vignette questions based on CI to understand discrepancies
between people’s stated privacy values and their actions in
online spaces [27]. Rather than straightforward contradic-
tions, they find that these discrepancies are due to nuanced
effects of contextual information informing real-world ac-
tions. This result motivates the use of CI in our study and
others to investigate privacy norms in realistic situations.

In 2016, Shvartzshnaider et al. used the language of CI to
survey crowdworkers’ privacy expectations regarding infor-
mation flow in the education domain [46]. Survey respon-
dents indicated whether information flows situated in clearly
defined contexts violated acceptability norms. The results
were converted into a logic specification language which
could be used to verify privacy norm consistency and iden-
tify additional acceptable information flows.

In 2018, we designed a scalable survey method for discov-
ering privacy norms using questions based on CI [3]. We ap-
plied the survey method to measure the acceptability of 3,840
information flows involving common connected devices for
consumer homes. Results from 1,731 Amazon Mechanical
Turk respondents informed recommendations for IoT device
manufacturers, policymakers, and regulators.

This paper adapts the survey method from our previous
work [3] for a specific application: comparing privacy norms
to privacy regulation. Our use of language from regula-
tion in CI survey questions, direct comparison of discov-

124 28th USENIX Security Symposium USENIX Association

ered privacy norms to policy compliance plans, and survey
panel of special interest individuals (parents of children un-
der age 13) distinguishes our work from previous uses of the
survey method and previous CI studies in general.

2.2 COPPA & Smart Toys
Previous research has investigated Internet-connected toys

and COPPA from various perspectives. Several studies have
focused on identifying privacy and/or security vulnerabili-
ties of specific smart toys [45, 48, 53], some of which are
expressly noted as COPPA violations [6]. Our work uses
these examples to inform the information flow descriptions
included on our survey.

Researchers have also developed methods to automate the
detection of COPPA violations. In 2017, Zimmeck et al. au-
tomatically analyzed 9,050 mobile application privacy poli-
cies and found that only 36% contained statements on user
access, editing, and deletion rights required by COPPA [59].
In 2018, Reyes et al. automatically analyzed 5,855 Android
applications designed for children and found that a majority
potentially violated COPPA [43]. Most violations were due
to collection of personally identifiable information or other
identifiers via third-party software development kits (SDKs)
used by the applications, often in violation of SDK terms of
service. These widespread violations indicate that COPPA
remains insufficiently enforced. Nevertheless, COPPA re-
mains the primary legal foundation for state [30] and fed-
eral [12] action against IoT toy manufacturers and other tech-
nology companies for children’s privacy breaches.

Additional work has investigated parents’ and chil-
dren’s relationships with Internet-connected toys. In 2015,
Manches et al. conducted observational fieldwork of children
playing with Internet-connect toys and held in-school work-
shops to investigate parents’ and children’s cognizance of
how IoT toys work [26]. They found that most children and
caregivers were unaware of IoT toys’ data collection poten-
tial, but quickly learned fundamental concepts of connected
toy design when instructed.

In 2017, McReynolds et al. conducted interviews with par-
ents and children to understand their mental models of and
experience with Internet-connected toys [28]. Parents in this
study were more aware of and concerned about IoT toy pri-
vacy than in [26], likely due to the intervening two years of
negative publicity about connected toy privacy issues. The
parents interviewed by McReynolds et al. provided feedback
about desired privacy properties for connected toys, such as
improved parental controls and recording indicators. The re-
searchers urge ongoing enforcement of COPPA, but do not
evaluate the parents’ responses in light of the law.

Our work builds on past research by obtaining opinions
about smart toy information collection and transfer practices
from a much larger pool of parents (195 subjects). We use
these data to evaluate whether privacy protections mandated
by COPPA align with parents’ privacy norms.

3 CI Survey Method

This study adapts a CI-based survey method first presented
in our previous work [3] to evaluate whether specific require-
ments in privacy regulations align with user privacy norms.
We chose this particular survey method because it is previ-
ously tested, scalable to large respondent populations, and
easily adaptable to specific domains. The survey method
works as follows, with our modifications for regulation anal-
ysis marked in italics:

1. Information transfers (“flows”) are defined according to
CI as sets of five parameters: subject, sender, attribute,
recipient, and transmission principle (described in Sec-
tion 2.1).

2. We select lists of values for each of these parameters
drawn from or directly relevant to a particular piece of
privacy regulation. Using these values, we generate a
combinatorial number of information flow descriptions
allowed or disallowed by the regulation.

3. Survey respondents rate the acceptability of these infor-
mation flows, each of which describe a concrete data
collection scenario in an understandable context.

4. Comparing the average acceptability of flows allowed
or disallowed by the regulation indicates how well they
align with respondents’ privacy norms.

5. Variations in acceptability contingent upon specific in-
formation flow parameters or respondent demographics
can reveal nuances in privacy norms that may or may
not be well served by the regulation.

The following sections provide detailed descriptions of our
survey design (Sections 3.1–3.2), deployment (Section 3.3),
and results analysis (Section 3.4) for comparing parents’ pri-
vacy norms about smart toy data collection against COPPA
regulation. Many of these steps mirror those in our previous
work [3], but we include them here with specific details from
this study for the sake of replicability.

3.1 Generating Smart Toy Information Flows
We first selected CI information flow parameters (Table 1)

involving smart toys and specific data collection require-
ments from COPPA. We then programmatically generated
information flow descriptions from all possible combinations
of the selected CI parameters.

We next discarded certain information flow descriptions
with unrealistic sender/attribute pairs, such as a toy speaker
(sender) recording a child’s heart rate (attribute). Unrealis-
tic sender/attribute pairs were identified at the authors’ dis-
cretion based on whether each toy could reasonably be ex-
pected to have access to each type of data during normal use.
This decision was informed by smart toy products currently
available on the market. The use of exclusions to remove

USENIX Association 28th USENIX Security Symposium 125

unrealistic information flows is a core part of the CI survey
method [3] for reducing the total number of questions and
the corresponding cost of running the survey. This process
resulted in 1056 total information flow descriptions for use
in CI survey questions (Section 3.2).

The degree to which these flows are rated as acceptable or
unacceptable by survey respondents indicate agreement or
disagreement between COPPA and parents’ privacy norms.
This rest of this section describes how we selected values for
each information flow parameter in detail.

Transmission Principles from COPPA. We used the Fed-
eral Trade Commission’s Six Step Compliance Plan for
COPPA [10] to identify transmission principles. Some of
these transmission principles match those in our previous
work [3], facilitating results comparison.

We converted steps 2–4 of the Compliance Plan into four
transmission principles regarding consent, notification, and
privacy policy compliance (Table 1). COPPA dictates that
parents must receive direct notice and provide verifiable con-
sent before information about children is collected. Opera-
tors covered by COPPA must also post a privacy policy that
describes what information will be collected and how it will
be used. Our corresponding transmission principles allow us
to test whether these requirements actually increase the ac-
ceptability of data collection from and about children.

The fifth step of the Compliance Plan concerns “parents’
ongoing rights with respect to personal information collected
from their kids” [10]. Operators must allow parents to review
collected information, revoke their consent, or delete col-
lected information. We translated this requirement into the
transmission principle “if its owner can at any time revoke
their consent, review or delete the information collected.”

The sixth step of the Compliance Plan concerns opera-
tors’ responsibility to implement “reasonable procedures to
protect the security of kids’ personal information” [10] and
to only release children’s information to third party service
providers who can do likewise. We translated this step into
five transmission principles involving confidentiality, secu-
rity, storage and deletion practices (Table 1).

The Compliance Plan also lists a set of exclusions to
COPPA. We converted the exclusions that were most ap-
plicable to Internet-connected children’s devices into four
transmission principles (Table 1). We also added the trans-
mission principle “if it complies with the Children’s Online
Privacy Protection Rule” to test parents’ trust and awareness
of COPPA itself.

Importantly, we also included the null transmission prin-
ciple to create control information flows with no COPPA-
based criteria. Comparing the acceptability of flows with
the null transmission principle against equivalent flows with
COPPA-based transmission principles allows us to deter-
mine whether the COPPA conditions are relevant to parents’
privacy norms.

Smart Toy Senders. The senders included in our survey
represent five categories of children’s IoT devices: a smart
speaker/baby monitor, a smart watch, a toy walkie-talkie,
a smart doll, and a toy robot. We chose these senders
by searching for children’s Internet-connected devices men-
tioned in recent press articles [13, 17, 20, 29, 31, 35], aca-
demic papers [5, 25], blogs [9, 19, 37], IoT-specific web-
sites [21, 23, 38], and merchants such as Toys “R” Us and
Amazon. All of the selected senders are devices that are rea-
sonably “directed towards children” [10, 11] in order to en-
sure that they are covered by COPPA. We excluded devices
such as smart thermometers or other smart home devices that
might collect information about children but are not directly
targeted at children.

It is important to note that the selected devices do not rep-
resent the full breadth of smart toy products. However, infor-
mation flow descriptions involving specific devices or device
categories evoke more richly varied privacy norms from sur-
vey respondents than flows describing a generic “smart toy.”
This is supported by existing interview data [58] noting that
IoT device owners often have very different privacy opinions
of specific entities than of their generic exemplars (e.g., the
“Seattle government” versus “government”).

Information Attributes. We reviewed academic re-
search [25], online privacy websites [38], toy descrip-
tions [15], and privacy policies [18, 36] to compile a list of
information attributes collected by the toys in our sender list.
The final selected attributes include heart rate, frequently
asked questions, the times the subject is home, frequently
traveled routes, the times the device is used, location, sleep-
ing habits, call history, audio of the subject, emergency con-
tacts, video of the subject, and birthday. These attributes
cover a variety of personally identifiable or otherwise sen-
sitive information with specific handling practices mandated
by COPPA.

First- and Third-party Recipients. We included device
manufacturers and third-party service providers as recipient
parameters. This allowed us to examine variations in privacy
between first and third parties while limiting the total number
of information flows and the corresponding cost of running
the survey.

Children as Information Subjects. The only subject pa-
rameter included in the survey is “its owner’s child.” This
wording emphasizes that the child is not the owner of the
device and acknowledges the parental role in ensuring chil-
dren’s privacy. It also accounts for devices that may not be
used directly or exclusively by the child (e.g., a baby mon-
itor). We indicated in the survey overview that respondents
should think about their own children’s information when in-
terpreting this subject.

126 28th USENIX Security Symposium USENIX Association

Sender Transmission Principle
a smart speaker/baby monitor COPPA Compliance Plan Steps 2-3
a smart watch if its privacy policy permits it
a toy walkie-talkie if its owner is directly notified before the information was collected
a smart doll
a toy robot COPPA Compliance Plan Step 4

if its owner has given verifiable consent
Recipient if its owner has given verifiable consent before the information was collected
its manufacturer
a third-party service provider COPPA Compliance Plan Step 5

if its owner can at any time revoke their consent, review or delete the information collected
Subject & Attribute
its owner’s child’s heart rate COPPA Compliance Plan Step 6
its owner’s child’s frequently if it implements reasonable procedures to protect the information collected

asked questions if the information is kept confidential
the times its owner’s child is home if the information is kept secure
its owner’s child’s frequently if the information is stored for as long as is reasonably necessary for the purpose

traveled routes for which it was collected
the times it is used if the information is deleted
its owner’s child’s location
its owner’s child’s sleeping habits COPPA Exclusions
its owner’s child’s call history if the information is used to protect a child’s safety
audio of its owner’s child if the information is used to provide support for internal operations of the device
its owner’s child’s emergency contacts if the information is used to maintain or analyze the function of the device
video of its owner’s child if the information is used to serve contextual ads
its owner’s child’s birthday

Other
if it complies with the Children’s Online Privacy Protection Rule
null

Table 1: Contextual integrity parameter values selected for information flow generation. The null transmission principle is an
important control included to generate information flows with no explicit conditions. The transmission principles were derived
from the FTC’s Six Step Compliance Plan for COPPA [10].

3.2 Survey Design
We created and hosted the survey on the Qualtrics plat-

form [39]. The survey was split into six sections: con-
sent, demographic questions I, overview, contextual in-
tegrity questions, awareness questions, and demographic
questions II. This section provides details about each sec-
tion. The survey did not mention COPPA, privacy, security,
nor any potential negative effects of smart toy information
flows prior to the contextual integrity questions to prevent
priming and framing effects.

Consent. Respondents were initially presented with a con-
sent form approved by our university’s Institutional Review
Board. Respondents who did not consent to the form were
not allowed to proceed with the study.

Demographic Questions I. The first set of demographic
questions asked respondents for the ages of their children
under 13. We chose this age limit because COPPA only ap-
plies to data collection from children under 13. We randomly

selected one of the ages for each respondent, n, which was
piped to the survey overview.

Overview. Respondents were then presented with a sur-
vey overview containing a brief description of Internet-
connected devices and instructions for the contextual in-
tegrity questions (Appendix A). This overview also ex-
plained how respondents should interpret the recurring
phrase “its owner’s child,” and instructed them to keep their
n-year-old child in mind while taking the survey (where n
was selected for each respondent from their responses to the
demographics questions I).

Contextual Integrity Questions. The core of the survey
consisted of 32 blocks of questions querying the acceptabil-
ity of our generated information flows (Section 3.1). Each
question block contained 33 information flows with the same
sender, same attribute, varying recipients, and varying trans-
mission principles. For example, one block contained all in-
formation flows with the sender “a smart doll” and the at-

USENIX Association 28th USENIX Security Symposium 127

tribute “the times it is used.” Each question block also in-
cluded one attention check question.

Each respondent was randomly assigned to a single ques-
tion block. Answering questions about flows with the same
sender and attribute reduced cognitive fatigue and ensured
independence across recipients and transmission principles.

The information flows in each block were divided into ma-
trices of individual Likert scale multiple choice questions.
The first matrix in each block contained questions about in-
formation flows to different recipients with the null trans-
mission principle (Figure 1). The remaining matrices each
contained questions about information flows to a specific re-
cipient with varying transmission principles (Figure 2). The
order of the information flows in each block was randomized
for each respondent.

Each individual multiple choice question in the matrices
asked respondents to rate the acceptability of a single infor-
mation flow on a scale of five Likert items: Completely Ac-
ceptable (2), Somewhat Acceptable (1), Neutral (0), Some-
what Unacceptable (-1), Completely Unacceptable (-2). We
also included the option “Doesn’t Make Sense” to allow re-
spondents to indicate if they didn’t understand the informa-
tion flow.

Awareness Questions. Respondents then answered ques-
tions about their general technological familiarity and In-
ternet use, ownership of Internet-connected devices, owner-
ship of children’s Internet-connected devices, and previous
knowledge of COPPA.

Demographic Questions II. Finally, respondents answered
standard demographic questions from the United States Cen-
sus. This allowed us to check the representativeness of our
sample (Appendix B, Section 5.2) and account for demo-
graphic variables in our analysis.

3.3 Survey Deployment
We tested the survey on UserBob [52] once during the sur-

vey design process and again immediately prior to deploy-
ment. UserBob is a usability testing service for obtaining
video screen capture of users interacting with a website while
recording audio feedback. Each survey test involved creating
a UserBob task with a link to the survey, brief instructions
for users,1 and settings to recruit 4 users to take the survey
for 7 minutes each. UserBob automatically recruited users
through Amazon Mechanical Turk at a cost of $1 per user per
minute. The resulting video and audio recordings of users
interacting with the survey informed changes to our survey
design. In particular, we reduced the number of questions
per block and increased the number of pages over which
the questions were presented. This reduced the amount of

1UserBob task instructions: “This is a survey that will be given to a
group of parents with children younger than 13. Take the survey, pretending
you have one or more children younger than 13. Record your thoughts on
the user interface and whether the questions do/don’t make sense.”

scrolling necessary to complete the survey and improved en-
gagement. This practice of using pre-deployment “cognitive
interviews” to test and debug survey design is common in
survey research [49]. UserBob responses were not included
the final results.

We used Cint [8], an insights exchange platform, to deploy
our survey to a panel of 296 adult parents of children under
the age of 13 in the United States. We selected respondents
with children younger than 13 because COPPA applies to
“operators of websites or online services directed to children
under 13” [11]. Our surveyed population therefore consisted
entirely of individuals affected by COPPA. We chose not to
set a minimum age for respondents’ children, because there
is a lack of readily available information on the minimum
age of use of Internet-connected children’s devices. While
certain manufacturers list recommended minimum ages for
their connected toys and devices, this was not the case for the
majority of the devices we considered. Additionally, many
devices such as wearable trackers, water bottles, baby mon-
itors, are targeted towards very young children. Lastly, not
restricting the minimum age allowed us to relax the demo-
graphic requirements for survey deployment.

Respondents were paid $3 for valid responses where the
attention check question was answered correctly. Each re-
spondent was only allowed to answer the survey once. The
survey responses were collected over an 18 hour time frame.
We chose Cint to deploy our survey instead of Amazon Me-
chanical Turk, because Cint allowed us to directly target a
specific panel of respondents (as in Zyskowski et al. [60])
without requiring a preliminary screening questionnaire to
identify parents [44].

3.4 Response Analysis
We began with 296 responses. We removed the responses

from 8 respondents who did not consent to the survey (none
of their information was recorded) as well as those from 85
respondents who did not correctly answer the attention check
question. We removed 2 responses in which over 50% of
the information flows were characterized as “Doesn’t make
sense.” We also removed 2 responses where not all informa-
tion flow questions were answered. Finally, we removed 1
response where the respondent self-reported over 10 children
and 3 responses that were completed in less than 2 minutes.
This resulted in a final set of 195 responses with an average
of 6 responses per information flow (standard deviation 1.4).

The responses to all contextual integrity questions (Sec-
tion 3.2) were on a Likert scale with the following Lik-
ert items: “Completely acceptable” (2), “Somewhat accept-
able” (1), “Neutral” (0), “Somewhat unacceptable” (-1), and
“Completely unacceptable” (-2). We call this value the “ac-
ceptability score” of each information flow for each respon-
dent.

In order to generalize privacy norms beyond individual re-
spondents and information flows, we averaged the accept-

128 28th USENIX Security Symposium USENIX Association

Figure 1: Example CI question matrix with information flows to different recipients and the null control transmission principle.

Figure 2: Example CI question matrix with information flows to a fixed recipient and varying transmission principles.

ability scores of flows grouped by CI parameters or respon-
dent demographics. For example, we averaged the accept-
ability scores of all information flows with the recipient “its
manufacturer” and the transmission principle “if the infor-
mation is deleted” in order to quantify the pairwise effects
of these two parameters on privacy norms. We then plotted
these pairwise average acceptability scores as heatmaps to
visualize how individual CI parameters or respondent demo-
graphic factors affect the overall alignment of information
flows with privacy norms (Figures 3 & 4).

We statistically compared the effects of different COPPA
provisions (Sections 4.1–4.4) by averaging the acceptabil-
ity scores of all information flows grouped by transmission
principles. For example, one group contained the average
score given by each of the 195 respondents to information
flows with non-null transmission principles, while a second
group contained the average score given by each respondent
to information flows with the null transmission principle. We
then applied the Wilcoxon signed-rank test to find the like-
lihood that these two groups of scores come from the same

distribution. We performed three such tests with different
transmission principle groups and set the threshold for sig-
nificance to p = 0.05/3 = 0.016 to account for the Bonfer-
roni multiple-testing correction.

We statistically compared the effects of smart device
awareness, COPPA familiarity, and demographic factors
(Sections 4.5–4.8) by averaging the acceptability scores of
all information flows grouped by respondent category of in-
terest. For example, one group contained the average score
given by each respondent who owned a smart device across
all answered CI questions, while the second set contained the
average score given by each respondent who did not own a
smart device. We then applied the Wilcoxon signed-rank test
to find the likelihood that these two groups of scores come
from the same distribution. We performed five such tests
with groupings based on COPPA familiarity, age, smart de-
vice ownership, education, and income and set the threshold
for significance to p= 0.05/5= 0.01 to account for the Bon-
ferroni multiple-testing correction.

USENIX Association 28th USENIX Security Symposium 129

Transmission Principle Category

Notification & Consent Confidentiality & Security COPPA Exclusions
null

Control
COPPA

Compliance

Figure 3: Average acceptability scores of information flows grouped by COPPA-derived transmission principles and attributes,
recipients, or senders. Scores range from −2 (completely unacceptable) to 2 (completely acceptable).

130 28th USENIX Security Symposium USENIX Association

Transmission Principle Category

Notification & Consent Confidentiality & Security COPPA Exclusions
null

Control
COPPA

Compliance

Figure 4: Average acceptability scores of information flows grouped by COPPA-derived transmission principles and respondent
ages, familiarity with COPPA, or ownership of smart devices. Scores range from −2 (completely unacceptable) to 2 (completely
acceptable)

USENIX Association 28th USENIX Security Symposium 131

4 Results

Overall, surveyed parents view information flows meeting
COPPA data collection guidelines as acceptable while view-
ing equivalent information flows without COPPA criteria as
unacceptable (Figures 3 & 4). This supports the conclusion
that COPPA-mandated information handling practices gen-
erally align with parents’ privacy norms. In this section, we
elaborate on this finding and explore additional trends in our
survey responses to further compare COPPA to parents’ pri-
vacy norms regarding children’s smart toys.

4.1 COPPA Data Collection Requirements
Align with Parents’ Privacy Norms

COPPA requirements were incorporated in the survey as
information flow transmission principles derived from the
FTC’s Six-Step Compliance Plan for COPPA [10] (Sec-
tion 3.1). The average acceptability scores of information
flows explicitly obeying these requirements are mostly non-
negative (Figures 3 & 4). This indicates that most surveyed
parents consider these flows as “completely acceptable” or
“somewhat acceptable.” In comparison, the average ac-
ceptability scores of information flows with the control null
transmission principle are mostly negative (Figures 3 & 4),
indicating that most surveyed parents consider these flows
without COPPA criteria as “completely unacceptable” or
“somewhat unacceptable.”

This difference between information flows with no explicit
conditions versus flows with COPPA requirements holds re-
gardless of information sender, recipient, attribute, or par-
ents’ demographics (apart from a few specific exceptions
which we discuss below). On average, information flows
with COPPA-derived transmission principles are 0.73 Likert-
scale points more acceptable than their null transmission
principle counterparts (p < 0.001).

Our research provides the first quantitative evidence that
COPPA guidelines generally match parents’ privacy norms
for Internet-connected toys. This indicates that regulation
can mandate meaningful transmission principles for infor-
mation flows and supports further creation and fine-tuning of
regulation to keep Internet data collection within the bounds
of consumer privacy preferences.

4.2 Parents View Data Collection for
Contextual Advertising as Unacceptable

Information flows with the transmission principle “if the
information is used to serve contextual ads” have negative
average acceptability scores across almost all senders, recip-
ients, and attributes (Figure 3). Unlike all other informa-
tion flows on our survey with non-null transmission prin-
ciples, these flows are actually prohibited by COPPA. The
“contextual ads” transmission principle is a “limited excep-
tion to COPPA’s verifiable parental consent requirement” as

listed in the COPPA Compliance Plan [10]. This exception
only applies to the collection of persistent identifiers (such
as cookies, usernames, or user IDs) and not to any of the at-
tributes included on our survey. Our respondents generally
agree that collecting the attributes on our survey for contex-
tual (targeted) advertising would be unacceptable, providing
further support for COPPA’s alignment with parents’ norms.

This result indicates that the CI survey technique can de-
tect regulatory provisions that reduce alignment with privacy
norms, essential for future applications of the method (Sec-
tion 6.2). It also provides evidence that the mere presence
of a transmission principle doesn’t necessarily improve the
acceptability of information flows.

This result relates to existing work about opinions of data
collection for advertising. Zheng et al. [58] interviewed own-
ers of non-toy Internet-connected home devices and found
mixed opinions of targeted advertising with data from these
devices depending on the perceived benefit to the user. Com-
bined with our results, this suggests that parents do not be-
lieve that relaxing COPPA to allow contextual advertising
from more types of children’s toy data would have enough
benefit to outweigh privacy concerns.

4.3 Parents View Children’s Birthdays as
Especially Private

Information flows including the subject and attribute “its
owner’s child’s birthday” are an exception to the trend de-
scribed in Section 4.1. The average acceptability scores
of information flows with this attribute and 10 of the 15
COPPA-derived transmission principles are negative (Fig-
ure 3). This discrepancy could be attributed to the relatively
small number of parents (11 parents or 5.6% of total respon-
dents) who were asked to score flows with this attribute. Par-
ents may also view their children’s birthdays as more per-
sonal than the other surveyed attributes or as less necessary
for some of the surveyed transmission principles (such as “to
maintain or analyze the function of the device”). Follow-up
qualitative studies could focus on specific attributes, such as
children’s birthdays, to understand parents’ rationales behind
corresponding privacy norms.

4.4 Notification & Consent Versus
Confidentiality & Security

Our results also provide insights into the relative impor-
tance of different sections within COPPA to parents’ privacy
norms. This could help regulators prioritize certain forms of
non-compliant information collection for legal action.

Our COPPA-derived transmission principles can be di-
vided into categories based on their topic and the section
of the COPPA Compliance Plan [10] from which they were
drawn (Section 3.1). One category consists of transmission
principles from the Compliance Plan steps 2–5 regarding no-
tification and consent (Table 1). These transmission princi-

132 28th USENIX Security Symposium USENIX Association

ples involve device privacy policies, the collection of verified
consent, and the ability to revoke consent or review collected
information. Another category consists of transmission prin-
ciples from the Compliance Plan step 6 regarding informa-
tion confidentiality and security (Table 1). These transmis-
sion principles involve reasonable data protection, confiden-
tial and secure storage, and limited information lifetime.

Across all senders, attributes, and recipients, informa-
tion flows with transmission principles in the notifica-
tion/consent category have significantly higher acceptability
scores than flows with transmission principles in the con-
fidentiality/security category by an average of 0.43 Likert
scale points (p < 0.001) (Figure 3). One notable exception
to this trend is the transmission principle “if its privacy pol-
icy permits it.” The acceptability scores for this transmission
principle are an average of 0.53 Likert points lower than for
others in the notification/consent category (p < 0.001). We
suspect this reflects the general distrust of privacy policies
evidenced in previous research [50]. Privacy policies are
typically dense, lengthy, and difficult to interpret even for
experts [42]. It therefore makes sense that parents would not
view the disclosure of information collection in privacy poli-
cies as acceptable as other notification methods.

The greater acceptability of information flows with noti-
fication or consent criteria versus flows with confidential-
ity or security criteria corroborates previous research using
the CI survey method to discover privacy norms of non-
toy consumer IoT devices [3]. This provides longitudinal
data indicating that users of Internet-connected products con-
tinue to prioritize consent over built-in security when reason-
ing about the appropriateness of information collection prac-
tices. This motivates continued work to improve the state of
notification and consent mechanisms for Internet data collec-
tion. The most prevalent mechanisms, privacy policies and
mobile application permissions, are widely understood to be
ineffective for informing users or providing meaningful pri-
vacy control options [47]. As policies change to nuance the
definitions of informed consent to include ideas of intelligi-
bility, transparency and active opt-in, among others, it is im-
portant to continue to study and evaluate consumer’s privacy
expectations regarding consent.

4.5 COPPA Compliance and Familiarity
Increase Data Collection Acceptability

Information flows with the transmission principle “if it
complies with the Children’s Online Privacy Protection
Rule” received a positive average acceptability score of 0.49
across all senders, recipients, and attributes. As expected,
flows with this transmission principle were rated as more ac-
ceptable by the 67% of respondents familiar with COPPA
than by the 33% of respondents unfamiliar with the rule.

Furthermore, respondents who indicated that they were
familiar with COPPA rated all information flows 0.75 Lik-

ert points more acceptable on average than respondents who
were not familiar with the rule (p < 0.001) (Figure 4).

In both cases, stated compliance and/or familiarity with
COPPA may increase parents’ acceptance of smart toy data
collection by reassuring them that their children’s privacy is
protected by regulation. However, this may be a false sense
of security, as COPPA guidelines are relatively broad and
COPPA violations are likely widespread in practice (Sec-
tion 6.1) [6, 43].

4.6 Younger Parents are More Accepting of
Smart Toy Data Collection

Parents younger than 45 gave an average acceptability
score of 0.48 to all rated flows, following the trend discussed
in Section 4.1 (Figure 4). In comparison, parents 45 years
and older gave an average acceptability score of −0.17 to
all rated flows. This difference in the acceptability scores of
these two groups is significant (p< 0.01). Nevertheless, con-
text still matters, as information flows specifically “to protect
a child’s safety” are viewed as generally acceptable to all sur-
veyed parents regardless of age.

Previous work indicates that young American adults are
more aware of online privacy risks and more likely to take
steps to protect their privacy online than older adults [40].
Future studies could investigate why this awareness of online
privacy risks makes younger parents more accepting of smart
toy data collection.

4.7 Parents Who Own Smart Devices are
More Accepting of Data Collection

Parents who own generic smart devices or children’s smart
devices were more accepting of information flows than re-
spondents who do not own these devices on average, but the
difference in scores (0.34 Likert scale points) between these
two groups is not significant (p = 0.12).

Nevertheless, this difference corroborates previous work
using the CI survey method, in which owners of non-toy
consumer IoT devices were found to be more accepting of
information flows from these devices than non-owners [3].
This difference likely reflects a self-selection bias, in which
those more uncomfortable with Internet data collection are
less likely to purchase Internet-connected toys or other de-
vices. However, the small effect size in both this study and
the previous work may be due to parents purchasing smart
toys unaware of their data collection potential [26] or will-
ing to trade-off privacy concerns for other benefits provided
by the products [58].

4.8 Education & Income have Little Effect on
Parents’ Smart Toy Privacy Norms

Parents’ education and income did not have significant
effects on acceptability scores. Parents earning more than

USENIX Association 28th USENIX Security Symposium 133

$100,000 per year gave an average acceptability score of
0.46 to all rated flows, not significantly different from the
average score of 0.37 from parents earning less (p = 0.77).
Similarly, parents with at least some college education gave
an average acceptability score of 0.37, not significantly dif-
ferent from the 0.33 average score of parents with a high
school diploma or less (p = 0.58). This is perhaps unex-
pected given previous work indicating that parents with more
resources are more likely to engage with children on privacy
issues [41] and is a topic for follow-up research.

5 Limitations

Our results must be considered in the context of the follow-
ing limitations.

5.1 Privacy Attitudes Versus Behaviors
Individuals often self-report greater privacy awareness

and concerns than reflected in actual privacy-related behav-
iors [1, 22]. This “privacy paradox” is well-documented and
poses a challenge for researchers. The CI survey method
is vulnerable to privacy paradox effects. However, there is
a reasonable argument that privacy regulation should prior-
itize the expressed norms of users (measured by the survey
instrument) over norms evidenced through behaviors, which
are influenced by external factors (such as confusing user
interfaces) that could be affected by the regulation. For ex-
ample, it is often difficult for consumers to determine the
data collection practices of IoT devices, including Internet-
connected children’s toys, due to poor company disclosure
practices [42] and limited auditing by third parties. Just
because many parents purchase smart toys does not mean
that they approve of the toys’ data collection practices and
wouldn’t support new regulation to improve privacy.

5.2 Respondent Representativeness
The self-reported demographics of our respondents (Ap-

pendix B) indicate that the sample, while diverse, is non-
representative in ways that may influence measured privacy
norms.

Females and high-income individuals are notably overrep-
resented in our sample compared to the United States popu-
lation. The literature on gender differences in online privacy
concerns suggests that women may generally perceive more
privacy risks online than men [4, 14, 56], but some studies
contradict this conclusion, reporting no significant gender ef-
fect [55]. The effect of income on online privacy concerns
is similarly unsettled, with some reporting that high-income
individuals are less concerned about privacy [24, 33], oth-
ers reporting that high-income individuals are more likely to
engage in privacy-preserving behaviors [41], and still others
finding no significant income effect [57].

Limiting our survey to parents also ignores the opin-

ions of other parties, including school and daycare teachers
and extended family members, who also purchase Internet-
connected toys for children but may have different privacy
norms. These individuals are also affected by COPPA and
have legitimate justification for their opinions and interests
to be reflected in children’s privacy regulation. Likewise, we
did not ask whether our respondents were members of com-
munities that may have less common privacy norms, but our
respondent panel, drawn from across the United States, cer-
tainly missed smaller demographics.

Finally, our respondent panel consisted entirely of parents
living in the United States, as COPPA only applies to prod-
ucts sold in the U.S. These respondents are therefore influ-
enced by American attitudes toward privacy, which may vary
from those of parents in other countries. We hope that future
work will apply the CI survey method used in this paper to
evaluate the alignment between privacy norms and privacy
regulation in non-U.S. contexts.

5.3 Goals of Privacy Regulation

Our use of CI surveys to evaluate privacy regulation as-
sumes that the underlying value of such regulation is to bet-
ter align data collection practices with privacy norms. This
makes an implicit normative argument about the purpose of
privacy regulation, which does not necessarily hold, espe-
cially for the norms of majority populations. For example,
privacy regulation may seek to protect minority or otherwise
vulnerable populations. In these cases, surveys of all individ-
uals affected by the regulation may reflect a majority view
that does not value the norms or appreciate the situation of
the target population. CI surveys could still be applied in
these contexts, but care would need to be taken to identify
and recruit respondents from populations differentially af-
fected by the regulation in order to uncover discrepancies
between the regulation and the norms of these groups.

Additionally, some regulation may be created with the
goal of changing existing norms. In these cases, the CI sur-
vey method will indicate that the regulation does not match
current privacy expectations upon enactment. However, CI
surveys would still be useful for conducting longitudinal
measurements to track whether the regulation has the desired
effect on privacy norms over time.

6 Discussion & Future Work

We would like this study to serve as a template for future
work using contextual integrity to analyze current or pending
privacy regulation for policy or systems design insights. This
section discusses our COPPA findings and presents sugges-
tions for future applications of our method by policymakers,
device manufacturers, and researchers.

134 28th USENIX Security Symposium USENIX Association

6.1 COPPA Insights & Concerns
Previous research indicates that parents actively manage

the information about their children on social media plat-
forms to avoid oversharing [2], and that owners of IoT home
appliances view most data collection by these devices as in-
herently unacceptable [3]. We expected that these domains
would overlap, resulting in skepticism of smart toy data col-
lection that even the restrictions in COPPA could not amelio-
rate. Surprisingly, it seems that the COPPA criteria assuaged
parents’ privacy concerns on average.

While we are encouraged that COPPA generally aligns
with parents’ privacy expectations, we are also concerned
that the existence of COPPA may give parents an unreason-
able expectation that their children’s data is protected, espe-
cially since parents familiar with COPPA were less critical
of smart toy information flows. In fact, several online ser-
vices and Internet-connected toys have been found to violate
COPPA [6,43], and many more non-compliant toys are likely
available for purchase. Additionally, the information collec-
tion guidelines in COPPA are relatively broad, leaving room
for technical implementations that adhere to the letter of the
law but still compromise children’s privacy. This motivates
continued work by regulators and researchers to identify toys
that place children’s privacy at risk, as well as healthy skep-
ticism by parents before purchasing any particular toy.

As an additional policy insight, variations in information
flow acceptability across recipients2 corroborate previous
work [58] indicating that privacy norms are deeply contin-
gent on the perception of entities that collect online data.
COPPA distinguishes between first- and third-parties, but
does not further categorize data recipients. This increases the
flexibility of the law, but raises the potential that some recip-
ients, which may viewed as completely unacceptable by pri-
vacy norms, could still legally get access to children’s data.
This suggests that incorporating a more contextual framing
of entities could improve the ability of future regulation to
prevent unwanted data collection practices.

6.2 Further Policy Analysis Applications
The CI survey method is not limited to COPPA. We would

like to see the results of follow-up studies focusing on differ-
ent regulation, such as the Health Insurance Portability and
Accountability Act (HIPAA), the Family Educational Rights
and Privacy Act (FERPA), the National Cybersecurity Pro-
tection Advancement Act, the European General Data Pro-
tection Regulation (GDPR), and others from the local to in-
ternational level, to see if their requirements result in simi-
larly acceptable information flows for members of their tar-
get populations. As most privacy regulation encompasses in-
formation transfer or exchange, the theory of contextual in-
tegrity is an appropriate framework for this research. Further

2Information flows to first-party manufacturers have higher average ac-
ceptability scores than flows to third-party service providers (Figure 3).

studies would also allow cross-regulatory analysis to find
common factors that affect alignment with privacy norms.

The CI survey method could also be incorporated into the
policymaking process. Policy formulation and resource al-
location could be guided by surveying a wide-variety of in-
formation flows allowed under current regulation and iden-
tifying egregious or unexpected norm violations that require
attention. Policymakers could test whether previous regu-
latory approaches will be applicable to new innovations by
conducting surveys with CI parameters describing new tech-
nologies and existing regulation (e.g., smart toys and COPPA
prior to the 2017 inclusion of IoT devices [16]). Policymak-
ers could also perform A/B tests of policy drafts with differ-
ent stipulations and/or language by conducting multiple par-
allel surveys with varying CI parameters. These and other
use cases would improve quantitative rigor in data-driven
policy development and facilitate the design of regulation re-
sponsive to the privacy norms of affected populations.

6.3 Systems Design Applications
The application of CI surveys to guide systems and prod-

uct design is covered in detail in our previous work [3]. To
summarize, device manufacturers can conduct CI surveys to
determine whether information collection practices of de-
vices or new features under development will violate con-
sumer privacy norms. This allows modifications during the
design process to prevent consumer backlash and public re-
lations debacles.

Applying CI surveys to evaluate privacy regulation can
also yield valuable insights for systems research and devel-
opment. For example, learning that parents value the ability
to revoke consent or delete information (Figure 3) motivates
research into verifiable deletion of cloud data from IoT plat-
forms. Such insights are especially relevant as neither pri-
vacy norms nor regulations are necessarily tied to technical
systems feasibility. Discovering that a particular CI param-
eter value is crucial to privacy norm adherence could launch
several research projects developing efficient implementa-
tions or correctness proofs. We expect future applications
of the CI survey method will generate many such results.

7 Conclusion

Increased interest in data privacy has spurred new and up-
dated regulation around the world. However, there are no
widely accepted methods to determine whether this regula-
tion actually aligns with the privacy preferences of those it
seeks to protect. Here, we demonstrate that a previously de-
veloped survey technique [3] based on the formal theory of
contextual integrity (CI) can be adapted to effectively mea-
sure whether data privacy regulation matches the norms of
affected populations. We apply this methodology to test
whether the Children’s Online Privacy Protection Act’s re-

USENIX Association 28th USENIX Security Symposium 135

strictions on data collection by Internet-connected “smart”
toys align with parents’ norms. We survey 195 parents of
children younger than 13 about the acceptability of 1056
smart toy information flows that describe concrete data col-
lection scenarios with and without COPPA restrictions.

We find that information flows conditionally allowed by
COPPA are generally viewed as acceptable by the sur-
veyed parents, in contrast to identical flows without COPPA-
mandated restrictions. These are the first data indicating the
general alignment of COPPA to parents’ privacy norms for
smart toys. However, variations in information flow accept-
ability across smart toys, information types, and respondent
demographics emphasize the importance of detailed contex-
tual factors to privacy norms and motivate further study.

COPPA is just one of many U.S. and international data
privacy regulations. We hope that this work will serve as a
template for others to adopt and repeat the CI survey method
to study other legislation, allowing for a cross-sectional and
longitudinal picture of the ongoing relationship between reg-
ulation and social privacy norms.

Acknowledgments

We thank Yan Shvartzshnaider and our survey respondents.
This work was supported by the Accenture Fund of the
School of Engineering and Applied Science at Princeton
University.

References

[1] ACQUISTI, A., BRANDIMARTE, L., AND LOEWEN-
STEIN, G. Privacy and human behavior in the age of
information. Science 347, 6221 (2015), 509–514.

[2] AMMARI, T., KUMAR, P., LAMPE, C., AND
SCHOENEBECK, S. Managing children’s online iden-
tities: How parents decide what to disclose about their
children online. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Sys-
tems (2015), ACM, pp. 1895–1904.

[3] APTHORPE, N., SHVARTZSHNAIDER, Y., MATHUR,
A., REISMAN, D., AND FEAMSTER, N. Discovering
smart home internet of things privacy norms using con-
textual integrity. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 2, 2 (July 2018), 59:1–59:23.

[4] BARTEL SHEEHAN, K. An investigation of gender dif-
ferences in on-line privacy concerns and resultant be-
haviors. Journal of Interactive Marketing 13, 4 (1999),
24–38.

[5] CHAUDRON, S., DI GIOITA, R., GEMO, M., HOL-
LOWAY, D., MARSH, J., MASCHERONI, G., PETER,

J., AND YAMADA-RICE, D. Kaleidoscope on the in-
ternet of toys: Safety, security, privacy and societal in-
sights. Tech. rep., EU Science Hub, Feb 2017.

[6] CHU, G., APTHORPE, N., AND FEAMSTER, N. Secu-
rity and privacy analyses of internet of things children’s
toys. IEEE Internet of Things Journal (2018).

[7] CIGI-Ipsos global survey on internet security and
trust. https://www.cigionline.org/internet-

survey-2016, 2016. Centre for International Gover-
nance Innovation.

[8] Cint. https://www.cint.com/, 2018.

[9] Consumerist Archives: COPPA. https:

//consumerist.com/tag/coppa/index.html,
2018. Consumer Reports.

[10] FEDERAL TRADE COMMISSION. Chil-
dren’s Online Privacy Protection Rule: a
six-step compliance plan for your business.
https://www.ftc.gov/tips-advice/business-

center/guidance/childrens-online-privacy-

protection-rule-six-step-compliance, July
2017.

[11] FEDERAL TRADE COMMISSION. Children’s Online
Privacy Protection Rule (“COPPA”). https://

www.ftc.gov/enforcement/rules/rulemaking-

regulatory-reform-proceedings/childrens-

online-privacy-protection-rule, Aug 2017.

[12] FEDERAL TRADE COMMISSION. Electronic toy
maker vtech settles FTC allegations that it vi-
olated children’s privacy law and the FTC Act.
https://www.ftc.gov/news-events/press-

releases/2018/01/electronic-toy-maker-

vtech-settles-ftc-allegations-it-

violated, Jan 2018.

[13] FINKLE, J., AND WAGSTAFF, J. Vtech hack ex-
poses id theft risk in connecting kids to internet.
https://www.reuters.com/article/us-vtech-

cyberattack-kids-analysis/vtech-hack-

exposes-id-theft-risk-in-connecting-kids-

to-internet-idUSKBN0TP0FQ20151206, Dec
2015. Thomson Reuters.

[14] FOGEL, J., AND NEHMAD, E. Internet social network
communities: Risk taking, trust, and privacy concerns.
Computers in human behavior 25, 1 (2009), 153–160.

[15] Gator kids smart watch. http://gatorsmartwatch.
com/index.php/kids-gps-watch-supply/, 2018.

[16] GRAY, S. Federal Trade Commission: COPPA Applies
to Connected Toys. Future of Privacy Forum (June

136 28th USENIX Security Symposium USENIX Association

2017). https://fpf.org/2017/06/26/federal-

trade-commission-coppa-applies-connected-

toys/.

[17] HEATER, B. Germany bans smartwatches for
kids over spying concerns. TechCrunch (Nov
2017). https://techcrunch.com/2017/11/

17/germany-bans-smartwatches-for-kids-

over-spying-concerns/.

[18] Hello barbie privacy policy. https://toytalk.com/
hellobarbie/privacy/, April 2017. PullString.

[19] IoTList – Discover the Internet of Things. http://

iotlist.co/tag/kids, 2018.

[20] JOHNSTON, P. Toy-telligence the smart choice for
children at Christmas. https://www.reuters.

com/article/us-britain-christmas/toy-

telligence-the-smart-choice-for-children-

at-christmas-idUSKBN1CH283, Oct 2017. Thom-
son Reuters.

[21] Kidsafe seal program: Member list. https://www.

kidsafeseal.com/certifiedproducts.html,
2018. Samet Privacy, LLC.

[22] KOKOLAKIS, S. Privacy attitudes and privacy be-
haviour: A review of current research on the pri-
vacy paradox phenomenon. Computers & security 64
(2017), 122–134.

[23] LAUGHLIN, A. Smart toys - should you buy them?
ttps://www.which.co.uk/reviews/smart-

toys/article/smart-toys-should-you-buy-

them. Which? Digital Blog.

[24] MADDEN, M. Privacy, security, and digital inequality.
Data & Society (2017).

[25] MAHMOUD, M., HOSSEN, M. Z., BARAKAT, H.,
MANNAN, M., AND YOUSSEF, A. Towards a com-
prehensive analytical framework for smart toy pri-
vacy practices. In International Workshop on Socio-
Technical Aspects in Security and Trust (STAST)
(2017).

[26] MANCHES, A., DUNCAN, P., PLOWMAN, L., AND
SABETI, S. Three questions about the internet of things
and children. TechTrends 59, 1 (2015), 76–83.

[27] MARTIN, K., AND NISSENBAUM, H. Measuring pri-
vacy: an empirical test using context to expose con-
founding variables. Colum. Sci. & Tech. L. Rev. 18
(2016), 176.

[28] MCREYNOLDS, E., HUBBARD, S., LAU, T., SARAF,
A., CAKMAK, M., AND ROESNER, F. Toys that listen:

A study of parents, children, and internet-connected
toys. In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems (2017), ACM,
pp. 5197–5207.

[29] MOON, A. FBI warns parents of privacy
risks associated with internet-connected toys.
https://www.reuters.com/article/us-usa-

toys-fbi/fbi-warns-parents-of-privacy-

risks-associated-with-internet-connected-

toys-idUSKBN1A22AW, Jul 2017. Thomson Reuters.

[30] NEW YORK STATE ATTORNEY GENERAL’S PRESS
OFFICE. A.G. Schneiderman announces $100,000 set-
tlement with TRUSTe over flawed privacy certification
program for popular children’s websites, 2017.

[31] NIENABER, M. Germany bans talking doll Cayla,
citing security risk. https://www.reuters.com/

article/us-germany-cyber-dolls/germany-

bans-talking-doll-cayla-citing-security-

risk-idUSKBN15W20Q, Feb 2017. Thomson Reuters.

[32] NISSENBAUM, H. Privacy as contextual integrity.
Wash. L. Rev. 79 (2004), 119.

[33] O’NEIL, D. Analysis of internet users level of online
privacy concerns. Social Science Computer Review 19,
1 (2001), 17–31.

[34] PAUL, K. Here’s the no. 1 issue that con-
sumers want corporate America to fix today.
https://www.marketwatch.com/story/heres-

the-no-1-reason-people-dislike-us-

companies-2018-11-13, Nov 2018. MarketWatch.

[35] PEACHMAN, R. R. Mattel pulls aristotle childrens de-
vice after privacy concerns. The New York Times (Oct
2017).

[36] pi lab privacy policy. http://www.edwintheduck.

com/privacy-policy, 2018. pi lab.

[37] POLK, R. Internet of things: When it comes to
smart toys, it pays to shop smart. https://www.

internetsociety.org/blog/2017/11/comes-

smart-toys-pays-shop-smart/, November 2017.

[38] Privacy not included. https://advocacy.mozilla.
org/en-US/privacynotincluded/, 2018. Mozilla.

[39] Qualtrics. http://www.qualtrics.com/, 2018.

[40] RAINIE, L. The state of privacy in post-Snowden
America. Pew Research Center FactTank (September
2016).

USENIX Association 28th USENIX Security Symposium 137

[41] REDMILES, E. Net benefits: Digital inequities in so-
cial capital, privacy preservation, and digital parent-
ing practices of U.S. social media users. International
AAAI Conference on Web and Social Media (2018).

[42] REIDENBERG, J. R., BREAUX, T., CRANOR, L. F.,
FRENCH, B., GRANNIS, A., GRAVES, J. T., LIU, F.,
MCDONALD, A., NORTON, T. B., AND RAMANATH,
R. Disagreeable privacy policies: Mismatches between
meaning and users’ understanding. Berkeley Tech. LJ
30 (2015), 39.

[43] REYES, I., WIJESEKERA, P., REARDON, J., ON, A.
E. B., RAZAGHPANAH, A., VALLINA-RODRIGUEZ,
N., AND EGELMAN, S. “Won’t somebody think of
the children?” Examining COPPA compliance at scale.
Proceedings on Privacy Enhancing Technologies 2018,
3 (2018), 63–83.

[44] SCHLEIDER, J. L., AND WEISZ, J. R. Using Mechan-
ical Turk to study family processes and youth mental
health: A test of feasibility. Journal of Child and Fam-
ily Studies 24, 11 (2015), 3235–3246.

[45] SHASHA, S., MAHMOUD, M., MANNAN, M., AND
YOUSSEF, A. Smart but unsafe: Experimental eval-
uation of security and privacy practices in smart toys.
arXiv preprint arXiv:1809.05556 (2018).

[46] SHVARTZSHNAIDER, Y., TONG, S., WIES, T., KIFT,
P., NISSENBAUM, H., SUBRAMANIAN, L., AND MIT-
TAL, P. Learning privacy expectations by crowdsourc-
ing contextual informational norms. In Proceedings of
the 4th AAAI Conference on Human Computation and
Crowdsourcing (HCOMP16) (2016).

[47] SOLOVE, D. J. Introduction: Privacy self-management
and the consent dilemma. Harv. L. Rev. 126 (2012),
1880.

[48] STREIFF, J., KENNY, O., DAS, S., LEETH, A., AND
CAMP, L. J. Who’s watching your child? exploring
home security risks with smart toy bears. In IEEE/ACM
Third International Conference on Internet-of-Things
Design and Implementation (IoTDI) (2018), pp. 285–
286.

[49] SUDMAN, S., BRADBURN, N. M., SCHWARZ, N.,
ET AL. Thinking about answers: The application of
cognitive processes to survey methodology. Jossey-
Bass, San Francisco, CA, 1996.

[50] TUROW, J. Privacy policies on children’s websites: Do
they play by the rules?

[51] UNITED NATIONS CONFERENCE ON TRADE AND
DEVELOPMENT. Summary of Adoption of E-
Commerce Legislation Worldwide, January 2018.

[52] Userbob: Usability testing. https://userbob.com/,
2018.

[53] VALENTE, J., AND CARDENAS, A. A. Security & pri-
vacy in smart toys. In Proceedings of the 2017 Work-
shop on Internet of Things Security and Privacy (2017),
ACM, pp. 19–24.

[54] WINTER, J. S. Privacy and the emerging internet of
things: using the framework of contextual integrity to
inform policy. In Pacific telecommunication council
conference proceedings (2012), vol. 2012.

[55] YAO, M. Z., RICE, R. E., AND WALLIS, K. Predict-
ing user concerns about online privacy. Journal of the
American Society for Information Science and Technol-
ogy 58, 5 (2007), 710–722.

[56] YOUN, S., AND HALL, K. Gender and online privacy
among teens: Risk perception, privacy concerns, and
protection behaviors. Cyberpsychology & behavior 11,
6 (2008), 763–765.

[57] ZHANG, Y. ., CHEN, J. Q., AND WEN, K.-W. Char-
acteristics of internet users and their privacy concerns:
A comparative study between China and the United
States. Journal of internet Commerce 1, 2 (2002), 1–
16.

[58] ZHENG, S., APTHORPE, N., CHETTY, M., AND
FEAMSTER, N. User perceptions of smart home
iot privacy. In Proceedings of the ACM on Human-
Computer Interaction, Computer-Supported Coopera-
tive Work and Social Computing (CSCW) (November
2018).

[59] ZIMMECK, S., WANG, Z., ZOU, L., IYENGAR, R.,
LIU, B., SCHAUB, F., WILSON, S., SADEH, N.,
BELLOVIN, S. M., AND REIDENBERG, J. Automated
analysis of privacy requirements for mobile apps. In
24th Network & Distributed System Security Sympo-
sium (NDSS 2017), NDSS (2017).

[60] ZYSKOWSKI, K., MORRIS, M. R., BIGHAM, J. P.,
GRAY, M. L., AND KANE, S. K. Accessible crowd-
work?: Understanding the value in and challenge of
microtask employment for people with disabilities. In
Proceedings of the 18th ACM Conference on Com-
puter Supported Cooperative Work & Social Comput-
ing (2015), ACM, pp. 1682–1693.

138 28th USENIX Security Symposium USENIX Association

Appendix A: Survey Overview

Survey overview shown to participants before contextual integrity information flow questions. Participants are asked to keep
one child in mind when answering the survey questions. The age of this child (9 in above example) is selected randomly for
each participant from the self-reported ages of each of their children younger than 13.

USENIX Association 28th USENIX Security Symposium 139

Appendix B: Self-Reported Demographics and Technical Background of Survey Respondents

Metric Sample Metric Sample

Female 61% 18-24 years old 3%
Male 39% 25-34 years old 31%

Other/Prefer not to disclose - 35-44 years old 48%
45-54 years old 13%

9th, 10th, 11th, 12th - no diploma 1% 55-64 years old 4%
High school graduate 14% 65 years or older <1%

Some college but no degree 22%
Associate degree in college - Vocational 6% Has 1 child 33%
Associate degree in college - Academic 4% Has 2 children 45%

Bachelor’s degree 30% Has 3 children 15%
Master’s degree 16% Has 4 or more children 7%

Professional school degree 2%
Doctorate degree 5% answers based on 0-3 yr old child 14%

answers based on 4-7 yr old child 36%
Less than $25,000 13% answers based on 8-12 yr old child 50%

Between $25,000 and $50,000 22%
Between $50,000 and $75,000 21% 0-3 hours of internet use per day 15%

Between $75,000 and $100,000 21% 4-7 hours of internet use per day 45%
Between $100,000 and $200,000 17% 8-12 hours of internet use per day 25%

More than $200,000 4% >12 hours of internet use per day 14%
Prefer not to disclose 2%

Uses a personal computer 97%
Asian 7% Uses a smartphone 94%

Black or African American 11% Uses a tablet device 78%
Native Hawaiian or Other Pacific Islander 1%

White 76% Owns a smart device* 49%
White, American Indian or Alaska Native <1% Does not own a smart device 50%

White, Asian <1% Unsure <1%
White, Black or African American 1%

Other 3% Owns a children’s smart device** 33%
Does not own a children’s smart device 66%

Hispanic 14% Unsure 1%
Not Hispanic 85%

Prefer not to disclose <1% Familiar with COPPA 63%
Not familiar with COPPA 33%

Maybe familiar with COPPA 4%
* Question text: “Do you own any ‘smart’ (Internet-connected) devices or appliances besides a smartphone, tablet, laptop, or desktop
computer?”
** Question text: “Do you own any ‘smart’ (Internet-connected) devices or appliances used directly or indirectly by children besides a
smartphone, tablet, laptop, or desktop computer?”

140 28th USENIX Security Symposium USENIX Association

Secure Multi-User Content Sharing for Augmented Reality Applications

Kimberly Ruth
kcr32@cs.washington.edu

Tadayoshi Kohno
yoshi@cs.washington.edu

Franziska Roesner
franzi@cs.washington.edu

Paul G. Allen School of Computer Science & Engineering, University of Washington

https://ar-sec.cs.washington.edu/

Abstract
Augmented reality (AR), which overlays virtual content on
top of the user’s perception of the real world, has now be-
gun to enter the consumer market. Besides smartphone plat-
forms, early-stage head-mounted displays such as the Mi-
crosoft HoloLens are under active development. Many com-
pelling uses of these technologies are multi-user: e.g., in-
person collaborative tools, multiplayer gaming, and telep-
resence. While prior work on AR security and privacy has
studied potential risks from AR applications, new risks will
also arise among multiple human users. In this work, we ex-
plore the challenges that arise in designing secure and private
content sharing for multi-user AR. We analyze representative
application case studies and systematize design goals for se-
curity and functionality that a multi-user AR platform should
support. We design an AR content sharing control module
that achieves these goals and build a prototype implementa-
tion (ShareAR) for the HoloLens. This work builds founda-
tions for secure and private multi-user AR interactions.

1 Introduction
Augmented reality (AR) technologies, which overlay dig-
itally generated content on a user’s view of the physical
world, are now becoming commercially available. AR
smartphone applications like Pokemon Go and Snapchat,
as well as smartphone-based AR platforms from Apple [5],
Facebook [6], and Google [4], are already available to bil-
lions of consumers. More sophisticated AR headsets are also
available in developer or beta editions from companies like
Magic Leap [37], Meta [41], and Microsoft [24]. The AR
market is growing rapidly, with a market value projected to
reach $90 billion by 2022 [15].

The power that AR technologies have to shape users’ per-
ceptions of reality — and integrate virtual objects with the
physical world — also brings security and privacy risks and
challenges. It is important to address these risks early, while
AR is still under active development, to achieve more robust
security and privacy than would be possible once systemic
issues have become entrenched in mainstream technologies.

The computer security and privacy community has already
taken steps towards identifying and mitigating potential risks
from malicious or buggy AR apps. These efforts — e.g., lim-
iting untrusted apps’ access to sensor data [28, 49, 54] or re-
stricting the virtual content apps can display [32, 34] — are
reminiscent of recent work on access control for untrusted
apps on other platforms, such as smartphones [16, 53]. De-
spite this valuable initial progress, we observe a critical gap
in prior work on security and privacy for AR: though past
efforts are valuable for protecting individual users from un-
trusted applications, prior work has not considered how to
address potentially undesirable interactions between multi-
ple human users of an AR app or ecosystem.

The need to consider security for multi-user AR. Despite
this gap in prior work, we observe that many compelling use
cases for AR will involve multiple users, each with their own
AR device, who may be physically co-located or collaborat-
ing remotely and who may be interacting with shared vir-
tual objects: for instance, in-person collaborative tools [63],
multi-player gaming [3], and telepresence [18]. As one con-
crete example already available to AR users, Ubiquity6 has
released a beta version of its smartphone platform in which
all users can view and interact with all AR content within the
app [67], as shown in Figure 1.

In these contexts, the potential security, privacy, and safety
risks for AR users come not only from the apps on their
own devices but also from other users. For example, one
user of a shared AR app might accidentally or intentionally
spam other users with annoying or even disturbing virtual
objects, or manipulate another person’s virtual object (e.g.,
artwork) without permission. Indeed, even though multi-user
AR technologies are not yet ubiquitous in the consumer mar-
ket, precursors of such issues have already begun to emerge
in the wild and in research settings today. In AR specifically,
for example, there have been reports of “vandalism” of AR
art in Snapchat [38], and a recent study found that pairs of
AR users often positioned virtual objects in each other’s per-
sonal space [35]. Similar findings have been made in virtual
reality (VR), where users have blocked each other’s vision

USENIX Association 28th USENIX Security Symposium 141

https://ar-sec.cs.washington.edu/

Figure 1: Sample screenshots from Ubiquity6 multi-user applica-
tion (taken from [67]). Users can, for instance feed a virtual cat
(left) or tend a virtual garden (right).

with virtual objects [66] and invaded each other’s personal
space [1]. In earlier work on digital tabletop displays, re-
searchers observed conflicts between users closing or steal-
ing each others’ documents [44]. As a final example, Ap-
ple’s AirDrop scheme for sharing files between physically
co-located Apple devices has been misused to send inappro-
priate content to strangers in public spaces [11].

Thus, we can and should expect conflicts and tensions to
arise between multiple AR users, which raises the critical
question: how should AR platform and app designers handle
these issues? Existing AR platforms provide limited or no
support to app developers on this front. For example, though
HoloLens supports running an app shared between multiple
device users, it surfaces only basic cross-device messaging
features, providing no framework for developers to reason
about or support complex multi-user interactions.

This work: Sharing control for multi-user AR. In this
work, we thus address the challenge of providing secure
and private content sharing capabilities for multi-user aug-
mented reality applications. Unlike prior AR security work
that focused on protecting users from untrusted apps, we
aim to limit undesirable interactions between mutually dis-
trusting human users — similar to how traditional file system
permissions attempt to separate mutually distrusting human
users from each other. By addressing this issue before multi-
user AR becomes widespread, we aim to inform the design of
future AR systems, thereby preventing such multi-user con-
cerns from manifesting broadly.

In our exploration of this space, however, we find that con-
trolled sharing for AR content raises unique challenges not
present in traditional settings such as file systems or shared
online documents. The root cause of this complexity is AR’s
integration with the physical world. Because people share
the same physical world, they may have certain expecta-
tions about how AR content is shared. Indeed, prior work
has found that users often expect co-located users to see the

same virtual content [35]. For example, a user might want
to have control of their personal physical space, not allow-
ing another user to place too many virtual objects near them.
Fulfilling this request requires that either the second user is
restricted in augmenting his or her own view of the world, or
that the two users see different things. Diverging views of the
world can violate expectations, however: consider watching
or interacting with an AR object that only you can see while
another AR user unknowingly steps into the space between
you and your object.

AR’s integration with the physical world further compli-
cates many access control design decisions. Consider the
seemingly simple notion of Alice sharing an AR object with
Bob: for instance, giving him read access to a piece of vir-
tual artwork. When this object is shared, does Bob see the
artwork in the same place as Alice (e.g., on a particular wall),
or does Bob see his own instance of the object in a different
place? The answer may depend on the semantics of the app
and whether Alice and Bob are physically co-located, and
the answer interacts with many other design choices.

In our work, we thus explore a set of multi-user AR case
study apps that represent different points in the possible de-
sign space (co-located and remote users, opt-in versus opt-
out sharing) to surface functionality and security goals for an
AR sharing control module. We then present the design of
such a module, which we envision as an app-level library or
OS interface that can be leveraged by AR application devel-
opers. This module supports app developers in (1) allowing
users to share AR content with other (co-located or remote)
users, (2) allowing users to control both inbound and out-
bound AR content, while (3) addressing fundamental chal-
lenges raised by AR’s integration with the physical world.

One key challenge is to define and manage different
ways that AR content might be mapped into the physical
world — we do so by supporting both location-coupled ob-
jects (which all users see in the same physical place) and
location-decoupled objects (for which users see their own
copies in separate locations), and by managing the resulting
impact of these types of objects on sharing and access control
functionality. Another key challenge is to address potential
discontinuities in user expectations around private content in
a shared physical world — we do so by introducing “ghost”
objects that allow users to share with other AR users that
they are interacting with a virtual object without sharing sen-
sitive details about that object. Finally, a third key challenge
is to respect users’ possible sense of ownership of physical
space (e.g., personal space) — to that end, our design sup-
ports policies for how to handle AR objects that are within a
protected region (e.g., making objects closer to a user more
transparent to that user). Through our exploration, we find
that no single sharing control model will work for all apps,
but that our proposed module can provide key features to
support app developers in creating multi-user AR apps that
meet users’ expectations.

142 28th USENIX Security Symposium USENIX Association

Contributions. In summary, our contributions include:
1. We are the first to rigorously explore the design space

for secure and private AR content sharing between
users. Through an exploration of multi-user AR case
study apps, we identify (in Section 2) key design goals,
challenges, and features that app developers require to
support secure and private multi-user AR experiences.

2. Building on our design space exploration (Section 2),
we present the design (in Section 4) of a multi-user AR
sharing control module. Our design addresses key chal-
lenges and enables app developers to meet our design
goals: supporting users in controlling how they share
AR content with others and how AR content is shared
with them, while taking into account the ways in which
AR content might integrate with the physical world.

3. We provide a concrete prototype implementation
(ShareAR, in Section 5) and evaluation (in Section 6),
iteratively refining our design and demonstrating its fea-
sibility in practice. Our source code will be made avail-
able at the project website.1

This work lays a foundation for future secure and private
multi-user AR apps. Mitigating undesirable interactions be-
tween users can facilitate user adoption of AR and help the
technology reach its full potential.

2 Problem Formulation and Design Goals
We begin by formulating, for the first time, the problem
space and goals for secure and private multi-user AR con-
tent sharing. To do so systematically, we consider four case
study apps (Section 2.1) that we selected to explore unique
points in the multi-user AR design space and that we en-
visioned might exercise a broad range of functionality and
security needs. From these case studies, we then derive our
security and functionality goals (Sections 2.2 and 2.3).

In exploring possible apps, we observe that the key aspect
of AR that differentiates it from previous technologies is its
tight physical-world integration: virtual content appears to
the user to be situated in 3D space among physical objects
(e.g., the examples in Figure 1). Thus, one key axis is (1) co-
location: are the users sharing virtual content co-located or
not? A second key axis is (2) opt-in versus opt-out sharing:
is sharing a deliberate opt-in action between specific people
(as the HoloLens developer guidelines prioritize [43]) or are
virtual objects public by default, requiring a deliberate opt-
out (as the Meta developer guidelines advocate [40])? The
example case studies we highlight explore these dimensions.

2.1 Case Study Applications

Paintball: Co-located, opt-in. In this app, users in the
same physical space can play a game of paintball with virtual
paint. All users can see the game objects (weapons, paint,
etc.). Users may also have a dashboard where they can see

1arsharing.cs.washington.edu or arsharingtoolkit.com

the game status. This type of AR multiplayer gaming is al-
ready emerging in smartphone apps [20].

Multi-Team Whiteboards: Not (necessarily) co-located,
opt-in. We envision a collaborative AR whiteboard app in
which a user, possibly in a co-located group, may choose to
share a whiteboard with other users who may be in the same
or different physical locations. Although each co-located
group of users sees the same whiteboard in the same loca-
tion, different groups may see the whiteboard instantiated in
different locations; furthermore, a user in a group may split
off an individual copy of the whiteboard in order to leave the
room and still collaborate from another remote space. The
contents of all users’ copies are synchronized in real-time.
Since different whiteboards may have different levels of sen-
sitivity, access control must be at least at whiteboard-level
granularity. Unlike in Paintball, where a shared game state
is core to app function, users of this app may encounter users
with whom they don’t want to share a sensitive whiteboard.
This case study, also, is grounded in existing work: a pend-
ing patent application by Apple [29] describes a GUI for AR
document editing, though it does not mention access control.

Community Art: Co-located, opt-out. We now consider
an example in which co-located users automatically see
each other’s objects by default. We consider a virtual art
app, where users can create and view sculptures, free-drawn
markup, and other artistic artifacts made by other, potentially
unknown AR users in the same physical (and virtual) space.
Variants of Community Art might be used to decorate for a
celebration so that guests or passersby will see the content, or
to place advertisements outside one’s shop. Though we con-
sider Community Art as an example of a public-by-default
app, some use cases may necessitate more fine-grained ac-
cess control. For instance, artists may choose to keep their art
private while constructing it or allow the public to view but
not edit their sculptures. This case study is similar to Ubiq-
uity6’s smartphone app [67], in which all content is public.

Soccer Arena: Not co-located, opt-out. Finally, we con-
sider an app that lets the user watch a virtual replica — e.g.,
on the user’s living room table — of the soccer game that
it is currently broadcasting. By default, all users of this app
see all aspects of the playing field, commentator annotations,
and ads. Some users may watch the game together in the
same physical space, while others may be in separate phys-
ical spaces. While using the app, a user may wish to block
a distracting ad or turn off annotations. The ability to form
AR reconstructions of soccer games from monocular video
footage, demonstrated in [51], shows that this app is within
reach of today’s technology. We find that Soccer Arena does
not surface new security, privacy, or functionality require-
ments not covered by the other case studies. In particular,
it raises the same spam-related concerns as Community Art
does and the same non-colocation challenges as Multi-Team
Whiteboards does. However, we include it for completeness.

USENIX Association 28th USENIX Security Symposium 143

arsharing.cs.washington.edu
arsharingtoolkit.com

2.2 Functionality Goals

From the above case studies, we now derive a set of func-
tionality design goals for multi-user AR apps and platforms.
Any sharing control solution must coexist with these func-
tionality goals — while one could trivially meet the security
and privacy goals outlined in the next section by allowing no
shared content, supporting sharing functionality is critical to
the success of emerging multi-user apps.

• Support physically-situated sharing. For both Paint-
ball and Community Art, physically co-located users
will want to see the same virtual objects. The multi-
user AR platform must support a way of sharing virtual
state, and a mapping between virtual objects and the
physical world, among the collaborating users.

• Support physically-decoupled sharing. Multi-Team
Whiteboards requires that AR content be synchronized
for each person’s copy, regardless of the users’ relative
location — when they’re in the same room, or adjacent
rooms, or halfway across the world. Thus, the platform
must support sharing virtual content decoupled from the
physical world as well.

• Support real-time sharing. Users of Paintball will ex-
pect for their interactions with other players to occur
in real time. Real-time state changes are also desirable
for the other case studies. Thus, the platform must sup-
port low latency updates of shared state among multi-
ple users, and any sharing control solution should not
impose an undue performance burden. (Note that real-
time performance also confers a security benefit, since
access control changes can propagate quickly.)

2.3 Security Goals

A trivial solution that provides all of the above functionality
would make all AR content public by default. However, in-
teraction between multiple users may not always be positive.
For example, a malicious or careless user may attempt to:

1. Share unwanted or undesirable AR content with an-
other user. For example, in Multi-Team Whiteboards,
a user may plaster a wall with offensive messages, or in
Community Art, violate another user’s personal space
by attaching virtual objects to them as a practical joke.
Such behavior has already manifested in shared VR set-
tings [1, 66].

2. See private AR content belonging to another user. For
example, in Multi-Team Whiteboards, a user may at-
tempt to read another user’s private whiteboard.

3. Perform unwanted manipulations on AR content cre-
ated by or belonging to another user. For example,
in Community Art or Multi-Team Whiteboards, a user
may delete or vandalize another user’s virtual creations.
Such behavior has already appeared in the wild, with
vandalism of AR art in Snapchat [38].

In response to such multi-user threats, we develop the fol-
lowing security and privacy goals for an AR sharing module.

Control of outbound content. Sharing of AR content in-
volves two parties: the originator of the content and the re-
cipient. We decompose our security goals along this dimen-
sion, beginning with control of outbound content, i.e., man-
aging the permissions of other users to access shared content.

Three canonical access control rights are “read,” “write,”
and “execute.” Extending “read” and “write” to the AR do-
main (and deferring “execute” to Section 7):

• Support granting/revoking per-user permissions.
The multi-user AR platform should support setting edit
and view permissions for different users. A user of
Paintball may wish to share a game session only among
a specified friend group instead of allowing any nearby
user to join, and may wish to retain full control of game
administration even among the set of players.

• Support granting/revoking per-object permissions.
A user of Community Art may wish to leave one piece of
art publicly visible while working privately on another.
Thus, regulating permissions at the granularity of the
app is not sufficient to cover all use cases; object-level
permissions must be supported as well.

The consequence of the above goals is that users in the
same physical space may not share the same view of the vir-
tual space. This is in sharp contrast to current technologies,
where the physical presence of a device — e.g., a smartphone
or a television set — enables the user of that device both
(1) to signal to others that they are busy with that device,
and (2) to establish a dedicated spatial region upon which
their use of the device depends. The physicality of the de-
vice, then, serves as a scaffold around which interpersonal
norms have developed. For instance, a person might avoid
standing in front of a television set when a user is watching
it, and might refrain from blocking the line of sight from a
user to the smartphone they are holding.

AR content has no such physicality. Consider, for in-
stance, Multi-Team Whiteboards: as thus far stated, a user
looking at or interacting with a private whiteboard will ap-
pear to a nearby user as staring into or manipulating empty
space. There is no mechanism by which the user can ex-
ercise agency over their working space in the presence of
other users, and no mechanism by which other users pass-
ing by can determine whether the object is five feet away
from its owner or up against a more distant wall. As a result,
one user may inadvertently stand in front of content that a
second user is interacting with. Further adding to this is-
sue, prior work has also shown that people can be uncom-
fortable with the presence of AR users due to not knowing
what the AR user is doing [14,35], and private content causes
this rift even between users of the same AR platform. The
Meta developer guidelines [40] thus recommend that devel-
opers build public-by-default content in accordance with hu-
man intuition about a shared physical world. Indeed, novice
users in the same physical space may expect to also see the
same virtual content [35]. It is possible that social behaviors

144 28th USENIX Security Symposium USENIX Association

will adapt to this physicality disconnect over time, particu-
larly around the current social discomfort of bystanders. But
although social norms may change, and although mitigating
these issues for bystanders — non-AR users, or AR users of a
different and non-compatible platform — is difficult and be-
yond the scope of this work, we still seek to address this
physical-world disconnect at least in the near term for multi-
ple AR users of compatible platforms. Specifically, we wish
to achieve the above content privacy goals while at least par-
tially supporting a shared-world physical intuition:

• Support physically intuitive access control. An app
may wish to signal to a nearby user that another user is
(for example) drawing on a whiteboard, without reveal-
ing the content being drawn.

Control of inbound content. We next consider security
properties from the perspective of the recipients of shared
content. Since shared content can have serious implications
for the receiver, such as spam that obscures important real-
world information [34], we derive the following goals:

• Support user control of incoming virtual content.
For instance, users of Community Art may wish to fil-
ter content to only that which is age-appropriate or that
does not contain foul language.

• Support user control of owned physical space. In the
case of Community Art, a user may not want arbitrary
other users to attach content to their heads without con-
sent, a homeowner may wish to prevent house guests
from placing virtual content inside private rooms, and
the keepers of a public monument may not want the
monument to be vandalized with virtual graffiti. We
note that users may want control over their physical
space even when they cannot see the object in question:
for instance, an app may wish to prevent a virtual “kick
me” sign from being attached to a user’s back such that
the user cannot see and cannot control the sign. We con-
sider the question of determining who controls a partic-
ular physical space to be out of scope for the design we
present in Section 4 (see Section 4.4 for further discus-
sion), and instead focus on enforcing owned physical
space; however, we urge future work to also address
this complementary issue.

2.4 Supporting Flexibility

Stepping back, in defining the above functionality and secu-
rity goals, we observe that not all multi-user AR apps will
have the same needs. For example, AR content that is shared
with all users by default is suitable for some apps (e.g., Com-
munity Art) but not others (e.g., Multi-Team Whiteboards).
Likewise, not all security and privacy goals are relevant in all
cases: for instance, enforcing personal space for shared AR
content may conflict with the functionality needs of Paint-
ball, which requires that virtual paint stick to players upon
a hit. Even in an app that is otherwise simple from a shar-
ing control perspective, user needs may warrant a degree of

added sharing control complexity: for instance, an AR assis-
tive technology object that transcribes spoken words for deaf
users may be exempt from the app’s general rules for the en-
forcement of owned physical space so that it always remains
visible to the deaf user who needs it.

Because the right sharing control model is app-specific,
AR app developers will need the ability to implement multi-
user features with their chosen model. To that end, we iden-
tify the need for a flexible AR sharing control module that
can be leveraged by app developers. We envision this mod-
ule as either an app-level library or an OS interface (i.e., set
of APIs) that provides sharing control features. The advan-
tage of an app-level library is that it does not require explicit
changes to the platform. That is, an app developer could
create an app that runs on different AR platforms and, by in-
cluding the platform-appropriate version of a library, support
interactions among users with different types of AR devices.
For example, although we prototype our design as an app-
level library for HoloLens, in principle it could be adapted
for compatibility with Meta or Magic Leap apps.

3 Threat Model and Non-Goals
We aim to design a flexible module that helps app develop-
ers create multi-user AR apps that incorporate shared AR
content while mitigating the risk of undesirable interactions
between multiple users. We focus on the case of a devel-
oper building a single app and mediating the interactions of
its multiple users, deferring to future work the problem of
cross-app communication. We now present the threat model
under which we develop our design in Section 4, as well as
specify non-goals of this work.

Threat Model. Our primary focus in this work is on untrust-
worthy users. That is, we aim to help app developers create
multi-user AR apps that are resilient to security and privacy
threats between multiple users of the same app. In that con-
text, we assume that two or more users are using the same
AR app, written by the same developer and incorporating
our sharing module. We thus assume that users trust both the
developers of the apps that they install as well as their AR op-
erating system, but that users may not trust each other. This
trust dynamic is akin to traditional desktop environments —
e.g., where two users of a Unix operating system might both
trust the underlying system and installed apps, but might not
trust each other and hence might not make their home direc-
tories world readable or world writable. A key difference, as
noted earlier, is that in our model we only consider sharing
of content between users of the same app.

Under this threat model, we do not consider malicious
apps that omit or misuse our sharing module. We explic-
itly trust app developers to incorporate our module (e.g., as
an app-level library) into their apps; a malicious app de-
veloper might choose to simply not use our sharing mod-
ule, implementing their own adversarially-motivated sharing
functionality, or use our module but violate security or pri-

USENIX Association 28th USENIX Security Symposium 145

vacy properties through out-of-band means. Though a user
may install malicious apps alongside legitimate ones that use
our module, these malicious apps cannot interfere via our
module: we consider (and our module supports) AR content
sharing only among multiple users of the same app, rather
than also considering sharing across apps. This is consis-
tent with the capabilities of current AR technologies, which
are either single-app or do not allow multiple concurrently
running apps to communicate [33]. We also assume that all
users are running legitimate, uncompromised versions of the
app; strategies for verifying [36,75] or enforcing [73,74] this
assumption are significant research challenges of their own.

Finally, we assume that communication between devices
is secured with today’s best practices, e.g., end-to-end en-
crypted. Thus, we rule content eavesdropping and content
modification attacks as out of scope. Current network best
practices still suffer from denial-of-service attacks and traf-
fic analysis attacks, but we do not aim to protect against such
attacks in this work, focusing instead on the app-level secu-
rity and privacy issues.

Non-Goals. We consider the following design questions to
be non-goals of our present effort:

• Non-goal: UI/UX design. Although we propose un-
derlying mechanisms for the sharing control needs of
app logic, and although those mechanisms in some in-
stances have implications for what developers are em-
powered to surface at the UI level, we do not aim to de-
fine exactly how those mechanisms should manifest to
users in the specific interaction modality or look-and-
feel of an app. Thus, we leave the design of specific
interfaces — including how much of our module’s con-
trol should be surfaced directly to users versus shoul-
dered by the app — to future efforts by researchers and
app developers. Our work is similar in spiritspirit to
work on user interface toolkits (e.g., [25, 27]) in that
our goal is to enable app developers to easily create and
innovate on a range of user interfaces and experiences,
rather than to design and iterate on these interfaces di-
rectly.

• Non-goal: Network architecture design. It remains
an open question whether multi-user AR will ultimately
be enabled by client-server, peer-to-peer, or other net-
work architectures; we thus design our platform to be
agnostic to network architecture. Additionally, we do
not consider how two AR devices initially bootstrap
communication; prior, complementary work considers
how to securely pair two HoloLens devices [60].

• Non-goal: App-specific choices about sharing con-
trol properties. We do not aim to recommend to
apps which sharing control properties and functional-
ities might make sense in the context of the app, instead
enabling app developers to choose the appropriate sub-
set of properties for their specific use cases.

Figure 2: Basic object sharing flow: Alice creates the blue and
green boxes and then chooses to share the green box with Bob. See
Section 4.1 for details.

• Non-goal: Accurate spatial localization of AR users
and content. We do not aim to design a system by
which the location of an AR user can be accurately and
securely determined. Prior work has studied how to
localize devices accurately [23, 31], how to verify lo-
cation claims [10, 69], and how to verify co-location
claims [21, 55]. We note that even without further shar-
ing controls, future location-based AR apps will benefit
from secure location and co-location verification meth-
ods. Thus, we consider this topic to be orthogonal and
of independent in.

4 Design
We now present the design of a module that AR developers
can use to support secure and private sharing of AR content
among multiple users. Compatible with our threat model of
untrusted users but trusted developers, we envision this mod-
ule as an app-level library or an OS interface.

4.1 Module Design Overview

To illustrate the relationships between the OS, the sharing
control module, the app, and multiple users, we begin by
walking through a simple case of Alice creating two objects
and sharing one with Bob (Figure 2).

1. Precondition: Alice and Bob are both running an app
that incorporates the sharing module and, as such, al-
ready have an open communications channel between
their devices.

2. Object creation: Alice creates two AR objects, a small
blue box and a large green box. Her app calls the shar-
ing module’s InstantiateShared() API for both ob-
jects, allowing the module to track permissions at the
granularity of those objects (in this case, beginning with
view and edit permissions for only Alice).

3. Outbound sharing (app-level): Through some user in-
terface provided by the app, Alice chooses to share the
green box with Bob.

4. Outbound sharing (module-level): On Alice’s device,
the app calls the sharing module’s SetPermission()

146 28th USENIX Security Symposium USENIX Association

API. As a result, the module updates its internal per-
mission map, adding Bob to the list of users with view
permissions for the green box.

5. Communication: The sharing module sends a message
(via the device’s OS and networking stack) containing
object content and metadata to Bob’s device, whose OS
and networking stack dispatch it to the sharing module
in Bob’s instance of the app.

6. Inbound sharing (module-level): The sharing module
surfaces a SetPermission event to Bob’s app.

7. Inbound sharing (app-level): On Bob’s device, the app
shows some user interface to allow Bob to accept or
deny the shared object. (Other apps may skip this step
and show the object to Bob automatically, and/or re-
spect Bob’s previously-set preferences for shared ob-
jects from Alice.) Bob chooses to accept the shared ob-
ject from Alice; the app updates his view of the world
to include the green box.

8. State update and communication: The app calls the
sharing module’s AcceptObject() API, which in turn
transmits that message back to Alice’s device.

Following this transaction, Bob can now see a shared copy
of Alice’s green box and, depending on the sharing settings,
can manipulate that box in ways that are also visible to Alice.

This sharing flow might seem simple: the sharing control
module provides APIs that help an app keep track of which
users can access which AR objects — i.e., view and edit per-
missions — and syncs this information across the devices of
all users of the app. However, as surfaced in Section 2, shar-
ing in the AR context requires thoughtful consideration —
particularly in the face of users’ expectations of and interac-
tions within the physical world.

Key design challenges. While striving to achieve the func-
tionality and security goals identified in Section 2, our design
space exploration surfaced several key questions which do
not arise for sharing and access control in traditional systems
(e.g., file systems). These challenges are deeply connected
with AR’s integration with the physical world, and although
they do not on the surface appear to be security-centered
questions, they affect the security and privacy mechanisms
we design, and so we must address them:

• Integration of shared AR objects with the physical world
(Section 4.2): How is a shared object integrated into the
physical world? In the above example, do Alice and
Bob see the green box in the same physical location
or in different physical locations? Are Alice and Bob
themselves in the same physical location, and what hap-
pens when their co-location status changes?

• Private content in a shared physical world (Sec-
tion 4.3): How should the sharing module handle or
help shape users’ expectations of private AR content,
such as Alice’s blue box, when they interact in a shared
physical world?

Outbound
sharing controls

Inbound
sharing controls

What and
with whom Permission management Two-party sharing consent

Where Location coupling (§4.2) Personal space (§4.4)
How much Ghosting (§4.3) Clutter management

Table 1: Summary of the components of our design for controlling
the outbound and inbound sharing of AR content.

• Ownership of physical-world spaces (Section 4.4):
How can a sharing module help apps respect people’s
existing ownership of physical spaces? For example,
users may wish to control AR content that they or oth-
ers see in front of their homes or on their own bodies.

Effective solutions to these challenges must integrate with
the system design components that have more direct ana-
logues in current technologies. In particular, we incorporate
the following established control structures into our design:

• Permission management. We leverage classic access
control work [30] to track and enforce per-object and
per-user permissions. Although we aim to be compat-
ible with whichever access control model a particular
app chooses to layer atop our module — e.g., a model
akin to Google Docs for the Multi-Team Whiteboards
case study — we note that this alone is not enough to
support the 3D experience of AR, and that the above
key design challenges must also be addressed.

• Two-party sharing consent. Some existing sharing
models require that both the sharer and the receiver of
digital content authorize a sharing event before its com-
pletion (e.g., Google Drive, Apple AirDrop). We use
this principle in our design, with one twist: to help
developers avoid decision fatigue in apps with high-
volume content sharing, we allow the app to authorize
a sharing event without the user in the loop. For in-
stance, an app might automatically authorize content
under some contexts but not others [70], use a notifi-
cation UI that minimally disrupts the user’s workflow,
or allow users to always trust content from a specific
other user. We advise developers to be conscious of ha-
bituation and interruption in their app designs.

• Clutter management. Our design supports temporarily
or permanently removing an object from the user’s field
of view, as we discuss further in Section 4.2.

We summarize these aspects of sharing control, both new
and precedented, in Table 1. We categorize the design points
along two axes: (1) where in the above sharing flow the con-
trol occurs (outbound on the sharer’s end, or inbound on
the receiver’s end), and (2) what type of control is enforced
(what object is shared and with whom, where a shared object
can be, or how much information from that object is shared).

4.2 Physical World Integration

The sharing flow in Section 4.1 demonstrates the basic build-
ing blocks of a sharing module, with view and edit permis-

USENIX Association 28th USENIX Security Symposium 147

sions for users at the granularity of AR objects (e.g., a virtual
cat or virtual browser window). We now explore how these
notions become significantly more complicated when shared
AR objects are integrated into the physical world.

Location-coupled and -decoupled sharing. Recall from
Section 2 that we aim to support both physically co-located
sharing (i.e., two users in the same physical place and seeing
the same AR objects in the same physical locations) and re-
mote sharing (i.e., two users physically separated but seeing
the same AR objects in their own physical spaces).

Accordingly, our design supports two notions for how
an AR object can be shared with respect to the physical
world: (1) Location-coupled objects, which all users see in
the same physical location, and (2) Location-decoupled ob-
jects, where all users see the same object but in different
physical locations. In the coupled case, if one user moves
the object, other users also see the object’s location update;
in the decoupled case, the two instantiations of the object can
be moved independently.

We intend for these notions not to be mutually exclusive
for an object but rather to apply between sets of users. For
example, an AR object (say, a virtual whiteboard) may be
shared (1) in a location-coupled way between Alice and Bob
co-located in New York, and (2) in a location-coupled way
between Guanyou and Huijia in Beijing, and simultaneously
(3) in a location-decoupled way between the two groups.

Handling people moving around the physical world. A
challenge for location coupling and decoupling of shared
objects arises when we consider that users’ co-location can
change as they move around the physical world.

For example, suppose that Alice and Bob share a location-
coupled AR object — say, a whiteboard — both seeing it in
the same physical location. Alice may also share it in a
location-decoupled way with collaborator Carol working in
another room — i.e., Carol will see an instantiation of the
whiteboard in her own physical space. Initially, this appears
to meet our goals: all users see the whiteboard in their own
physical space in the same location as other co-located users.

What happens, however, when Carol moves into the same
physical space as Alice and Bob? Since the whiteboard is
shared among all of them, they will likely assume that all
three of them can now see the same AR whiteboard object
on the same wall [35]. This is not the case, however: Alice
and Bob see one instantiation of the whiteboard, and Carol
sees a separate instantiation in a slightly different location.

To resolve this potential inconsistency, our design keeps
track of all copies of a shared object, allowing the app to
show all of these copies to all users. Thus, when Carol joins
Alice and Bob in the same room, all users see both versions
of the whiteboard. All users then share the same view of the
augmented physical world. Note that this location informa-
tion may have privacy implications, though none in scope for
this work; we discuss this point further in Section 7.

Moreover, since users’ co-location may change over time,
their desired location-(de)coupling of objects may change
over time too. For example, in the above scenario, Alice and
Bob may wish to merge their whiteboard object with Carol’s
instantiation, so that all three indeed see the same, single
whiteboard object in the same place. Conversely, users may
wish to collaborate on a location-coupled object while they
are physically co-located but to both take their work with
them when they physically separate. Thus, we also provide
mechanisms to merge two location-decoupled instances into
a location-coupled object and to separate a location-coupled
object into two location-decoupled instances.

Another way to think about shared AR objects, then, is
that there is one conceptual object and potentially multiple
views of it. Each user sees a view in the same location as
do all other users, and users in different physical spaces will
see different views. If a user is in the same space as multiple
views, that user will see all present views. The object’s views
may be manipulated separately in space; a single view may
be split into two, or two may be merged into one, but the
underlying object that all views represent remains the same.

Implications of location coupling for object deletion. A
shared object’s location coupling or decoupling has design
implications for other features as well. For example, our de-
sign lets users delete AR content that they have created; it
is not clear, however, that this decision should propagate to
other users with whom the object has been shared, and loca-
tion coupling or decoupling affects how deletion is handled.

We design the module to support three cases, which can
be chosen by the app developer as appropriate:

1. Case 1: Local Deletion: Affect user’s local view of ob-
ject only. This option allows Alice to delete her object
without affecting other users. If, in Multi-Team White-
boards, Alice and Bob share a whiteboard in a location-
coupled manner, Alice can delete her instance of the
object while Bob keeps working.

2. Case 2: Global Location-Coupled Deletion: Affect all
users’ views of location-coupled object. Here, a deleted
object is also deleted for all other users with whom that
object was shared in a location-coupled way. That is,
when Alice deletes her document, Bob also sees that
document disappear. However, if Alice has also shared
the document in a location-decoupled way with remote
collaborator Carol, this option allows Alice to delete her
and Bob’s location-coupled instantiation without affect-
ing Carol’s remote, location-decoupled instantiation.

3. Case 3: Global, Location-Independent Deletion: Affect
all users’ view of object, independent of location cou-
pling. In this case, all instantiations of the object for
all users are deleted. Continuing the previous example,
Alice, Bob, and Carol will all see the object deleted.

Which of these cases is most appropriate depends on the
semantics of an app and each use case within that app.

148 28th USENIX Security Symposium USENIX Association

Location coupling and decoupling have other design and
implementation implications as well. For instance, hiding
content with which the user does not currently wish to inter-
act requires considering the same set of options as deletion.

4.3 Private Content in Shared Physical World

As raised in the Multi-Team Whiteboards case study in Sec-
tion 2 and in prior work [35], the fact that AR supports per-
user private content can have benefits, but it can also fail to
provide a signal about the use of physical space (e.g., lead-
ing to one user inadvertently standing in front of another’s
virtual content, or causing social tension due to one user not
knowing what another user is doing).

Thus, in this section we propose a design that allows users
to socially signal to other AR users that they are busy in-
teracting with private content without sharing the details of
their activities. Further, we aim for this design to align with
users’ intuitions about a shared physical world.

Strawman designs. Consider two incomplete solutions:
Status quo. A solution with no further intervention would
cause private content to be completely invisible to other AR
users. A user interacting with private content thus appears to
others as if the user were staring off into and manipulating an
undefined region of empty space, giving no cue to other users
about how far away the object is if they want to walk around
it as well as no sense for what the user might be doing.
Occlusion by virtual barrier. Meta’s developer guidelines
recommend that sensitive content be shared publicly but oc-
cluded by a virtual barrier such as a curtain [40]. Although
this does provide a shared-world physical intuition and social
cue, it is not a robust privacy-preserving mechanism. Con-
sider a user who places a virtual curtain around sensitive con-
tent so that the content is visible only from the user’s point
of view. A curious other user can surreptitiously look over
the user’s shoulder and observe the sensitive content, similar
to shoulder-surfing with current mobile devices [56, 64].

Our approach: “Ghosts”. We propose an alternate design
that achieves our goal while avoiding the above drawbacks.
The key idea is to allow users to share that they are inter-
acting with an AR object, without sharing the details of that
object. This idea is analogous to how a user interacting with
a smartphone implicitly signals to bystanders that they are
engaged in another activity located in the palm of their hand,
without the contents of that activity being directly revealed,
or to how users may share free/busy information about spe-
cific time blocks on their calendar to avoid double-booking
without sharing the details of their calendar events.

To support this interaction, we introduce a new partial-
visibility state for shared AR objects that we call ghosting.
Ghost objects show only their location in space, not the sen-
sitive content they contain, no matter at which angle they are
viewed. As such, unlike the above smartphone analogy, they
are not susceptible to shoulder-surfing. Furthermore, a user
with whom a ghost object is shared receives from the sharer

only the data needed to instantiate the ghost, rather than the
full object data; this further insulates the private content.

Ghost shape granularity. For non-planar objects, we en-
counter the following question: How does the sharing mod-
ule determine the appropriate level of granularity to expose
in the ghosted object, given that object shapes may contain
app-specific information content?

For instance, in Community Art, the ghost of a sculpture
that is private during its development should not mimic the
original sculpture’s shape too closely. However, a shape
with too coarse of a granularity — e.g., a large fixed-size
cube regardless of the sculpture — no longer gives mean-
ingful physical-world information to nearby users: e.g., by
marking an unreasonably large physical space as occupied.

To balance this dilemma,we allow app developers to spec-
ify what the ghosted view of an object should look like.
This approach allows for non-planar objects to assume an
obscured shape appropriate for the app-specific information
they carry. For instance, in the Community Art case study,
a sculpture that is private during its development might be
displayed to others as an appropriately sized cylinder.

4.4 Respecting Ownership of Physical Spaces

Finally, we turn to the question of how the sharing control
module can help apps respect people’s existing ownership
of physical-world space. We refer to both personal space
(near one’s body) and static owned space (e.g., one’s home)
as owned physical space in this section.

Helping users protect their owned physical spaces requires
several components: (1) Determining who owns a region in
space, (2) Determining what the boundaries of that region
are, and (3) Enforcing some kind of policy on shared AR
objects in that region.

We defer to future work (1), how to determine who owns
a region in space. This in itself is complex; for instance,
Google has analyzed abuse of location ownership in its Maps
app [26], and prior work has considered physical world
ownership for restricting continuous sensing apps (including
AR) [54]. Accounting for different types of space ownership
is also nontrivial: in particular, we identify (a) fixed-location
physical spaces (e.g., a house, a room, a storefront, or a pub-
lic park), (b) person-relative spaces (e.g., within 5 feet of a
user), and (c) object-relative spaces (e.g., within 35 feet of a
virtual art object). A complete solution to this issue should
also consider non-AR users, and we offer the following sug-
gestion as a starting point for future work: locally on the AR
user’s device, employ computer vision techniques to identify
the spatial positions of bystanders visible by the AR user,
estimate the rough pose for each bystander, and use that in-
formation to mark bystanders’ forms as protected regions of
space (e.g., using techniques from [2, 39]). However, we do
not pursue this topic further in this work, since it is a com-
plex area of investigation in its own right; instead, we assume
a prior definition of owned physical space, and we focus on

USENIX Association 28th USENIX Security Symposium 149

the challenges of enforcing that space.
For (2), we observe that defining the boundaries of a pro-

tected region of physical space — e.g., around a person or
house — is not a simple binary determination. A user might
perceive an object two feet away to be too close, for in-
stance, but may consider an object nine inches away to be
even more so; this definition may also vary across different
users [22]. Building on this observation, our solution is to
model owned physical space as a continuum, where viola-
tions become more severe — and thus policies could become
stricter — as virtual content approaches the protected region.

The key question, then, is (3): what should an app do when
one user’s shared AR content overlaps another user’s per-
sonal physical space, or a physical region (e.g., a house) that
another user owns?

Policies for AR content violating owned spaces. To an-
swer this question, we propose that the sharing control mod-
ule can provide a variety of policies that an app’s developer
could choose to apply in such a case. These policies can be
enforced either such that the result of enforcement is only
visible to the user whose personal space is in question, or
such that all users with access to the shared object see the
result of enforcement. App developers may choose which
policies to enable based on the needs of the app.

A simple, binary policy might make objects invisible in-
side a fixed radius: for instance, define a three-foot radius
around a person within which AR content should not be vis-
ible (at least to that user). Such a policy can be exploited
by surrounding the person with AR content just outside the
boundary; thus, there is a tension between a large radius to
minimize the effects of such an attack and a small radius to
enable legitimate functionality.

To help balance this tension, and to take advantage of the
continuum in the boundary described above, our design pro-
vides a transparency gradient policy, by which the module
makes shared objects more transparent the closer the objects
are to the boundary of any protected region (e.g., around
a person). Under this policy, objects would start becom-
ing transparent much farther than three feet away, avoiding
blocking the person’s vision but still being useful.

By having owned-space policies be enforced by apps
themselves (via the sharing module), rather than by users,
they can be applied without changing the underlying permis-
sions on the shared object. This avoids two pitfalls. First, it
prevents malicious users from exploiting the policy, e.g., by
gaining control of an object simply by walking up to it. Sec-
ond, it enables policy enforcement even on objects that the
physical space owner cannot see (protecting even non-AR
user bystanders from the “kick me” sign from Section 2).

5 Implementation
We now describe our prototype, which we implement as an
app-level library for the Microsoft HoloLens, demonstrating
the feasibility of our design for a currently available head-

mounted AR platform. Our prototype, called ShareAR, is
implemented in C# and uses the HoloLens Unity develop-
ment kit. We implemented the concept of an AR object us-
ing the Unity GameObject primitive, which is a virtual en-
tity comprising shape, texture, location, physics properties,
script-controlled behavior, etc. Our implementation consists
of a core module (1888 lines of code), a network shim layer
(1137 lines of code), and a short supplementary script to
accompany any object shared using the toolkit (45 lines of
code), totalling 3070 lines of code.2

The ShareAR core comprises:

• Data and meta-data, including an access control ma-
trix [30] and options for how objects are shared (e.g.,
location coupled or decoupled).

• Methods to instantiate objects, manually or automati-
cally accept shared objects, change permissions on ob-
jects, and sync data between users. Table 2 summarizes
sample corresponding message types in our prototype.

• Simple fixed-radius personal space controls in the form
of Unity’s plane clipping, where the portion of an object
closer to the user than the fixed plane-clipping distance
is not rendered. We did not implement more nuanced
controls, like our proposed transparency gradient.

Though network architecture is out of scope of our design,
in practice we must choose some way to connect between
HoloLens devices. In our prototype, we used the MixedReal-
ityToolkit Sharing toolkit, an open-source library from Mi-
crosoft.3 MixedRealityToolkit does not provide any sharing
control or access control functionality; we use it only as a
basic tunnel to send messages between HoloLens devices.

We build a network shim layer that serializes and deserial-
izes ShareAR messages and uses MixedRealityToolkit Shar-
ing to send them between devices. A developer who wishes
to use a different networking solution — e.g., one relying fur-
ther on a central server for data storage, or one implementing
a more rigorous consensus protocol — may write a replace-
ment network shim layer satisfying the same interface with
the ShareAR core.

Users may join, leave, and re-join the network. To be ro-
bust to access control changes occurring while a user is of-
fline, we include in our implementation a means for a newly
reconnected user to receive a “digest” version of an object
containing only the information needed for consistency with
the other online users. Since consensus is best done with
network architecture in mind, we provide a means to create
this object “digest” as a higher-level functionality but rele-
gate consensus operations to the networking shim layer.

2To calculate lines of code, we use the CLoC tool version 1.80 available
at https://github.com/AlDanial/cloc/releases/tag/v1.80. We
omit lines of code solely related to our performance evaluation.

3https://github.com/Microsoft/MixedRealityToolkit-
Unity

150 28th USENIX Security Symposium USENIX Association

https://github.com/AlDanial/cloc/releases/tag/v1.80
https://github.com/Microsoft/MixedRealityToolkit-Unity
https://github.com/Microsoft/MixedRealityToolkit-Unity

Message name Sent when Bytes

InstantiateShared A new shared object is created 104
AcceptObj A newly-shared object is accepted 22

SetPermissionNew A newly-instantated public object is accepted and there are more than 2 users present 38
SetPermissionObject A permission change is made or offered on an existing object 92

SetPermission A permission change on an existing object is accepted and there are more than 2 users present 54
UpdateLocation A shared object’s location in space is updated 62
DeleteShared A shared object is deleted 22

Table 2: Example message types and sizes in our prototype. Messages are relatively small because they do not include full AR object meshes
but rather an ID corresponding to the type of object in question and a string of object data that fully specifies the particular object of that
type. Sizes are for basic objects with no additional object data.

Feature Paintball Cubist Art Doc Edit

Location-coupled sharing X X
Location-decoupled sharing X

Public permission settings X X X
Ghost-only permission settings X
Private permission settings X X

Auto-accepting content X X
Accepting content ad hoc X

Local deletion X X
Global location-coupled deletion X
Global location-indep. deletion X

Updating object location X X
Updating object data X X

Table 3: ShareAR sharing control features in case study apps.

6 Evaluation
We now evaluate our prototype’s functionality (Section 6.1),
security (Section 6.2), and performance (Section 6.3).

6.1 Functionality Evaluation

We evaluate the functionality of our prototype by implement-
ing case study apps and by comparing against existing AR
design guidelines. We find that our prototype is flexible
enough to support a range of app sharing control needs and
is compatible with all considered existing design guidelines.

Case study applications. To evaluate the flexibility of our
design to support our functionality goals, and the associated
developer effort, we built bare-bones prototype versions of
our case studies from Section 2.1: Paintball, Doc Edit (a vari-
ant of Multi-Team Whiteboards), and Cubist Art. (We did not
implement Soccer Arena, since it does not surface new secu-
rity, privacy, or functionality requirements not covered by the
other case studies. Section 2 provides further analysis.) Our
prototypes are intended to cover a broad spectrum of sharing
control functionalities; see Appendix A for detailed descrip-
tions of the apps. Screenshots of the apps are in Figure 3, the
range of sharing control features each exercises is in Table 3,
and the sharing-related lines of code for each is in Table 4.

We use lines of code as a proxy measure for developer
effort (see Table 4). For each app, we count the total lines
of code in the app and the lines of code specific to shar-
ing functionality. The low number of sharing-related lines of
code suggests that the burden on app developers to use our

Figure 3: Screenshots of prototype apps: Cubist Art (top), Doc Edit
(bottom left), and Paintball (bottom right). In the Doc Edit app, the
semitransparent gray box in front of the file cabinet in the upper left
is a ghost view of another user’s document, and the two red boxes
are two users’ separate instantiations of the same shared document.

toolkit in practice is reasonable. Furthermore, we conjec-
ture that fully fledged apps are likely to contain many more
lines of code unrelated to sharing, further reducing the com-
parative proportion of sharing-related lines of code in the
app. We note also that the repetition of some prototyped fea-
tures across multiple apps (such as location-coupled sharing
in both the Paintball and Shared Blocks apps) suggests that
ShareAR’s features are composable, and that developers can
choose an app-appropriate subset of functionality.

Compatibility with existing guidelines. We also consider
the compatibility of ShareAR with existing design guidelines
from AR headset manufacturers. We focus on guidelines
related to multi-user interactions, asking: Does ShareAR
allow an app developer to meet these guidelines? We in-

USENIX Association 28th USENIX Security Symposium 151

App Sharing LoC Total LoC
Paintball 13 240
Doc Edit 173 1236
Cubist Art 153 1131

Table 4: Lines-of-code counts for the three prototype applications.
We report both the total lines of code for the application and the
lines of code dedicated to interfacing with the ShareAR toolkit.

vestigate the Microsoft HoloLens guidelines [43] and Meta
guidelines [40]; we find that ShareAR is compatible with all
of them. The results are summarized in Table 5; see Ap-
pendix B for additional information.

6.2 Security Evaluation

We examine the security and privacy of our ShareAR-
enabled apps under our threat model of untrusted users (but
trusted OS and apps). As described in Section 3, we rely on
app developers to use the ShareAR APIs that are appropri-
ate for their use case. For the sake of exposition, we focus
on the Doc Edit app since it invokes all of the restrictions our
ShareAR prototype supports; our observations also extend to
Paintball and Cubist Art where applicable.

We find that ShareAR’s security and privacy restrictions
function as intended and meet the security goals in Sec-
tion 2.3. Considering first the outbound security goals:

• Support granting/revoking per-user permissions: The
Doc Edit app includes a menu that allows a user to grant
and revoke per-user permissions. A user who never re-
ceived or no longer has view permissions on a document
cannot see it.

• Support granting/revoking per-object permissions: The
aforementioned menu controls permissions on a per-
document basis: only the currently selected document
is affected by a permission change.

• Support physically intuitive access control restrictions:
Doc Edit provides a ghost version of a document ob-
ject (as a flat gray box). A user with permission only to
view the ghost cannot tell if the original document is red
or not; but the user sees the ghost in the same location
as the document’s owner sees the original document,
and this location remains synchronized when the docu-
ment’s owner moves the document in physical space.

Considering the inbound security goals from Section 2.3:
• Support user control of incoming virtual content: The

Doc Edit app surfaces an incoming permission-granting
message to the user via a small menu, through which
the user can choose to accept or decline. If the user
accepts, a new (location-decoupled) instantiation of the
document appears in front of the user, and the user can
also see the sharer’s instantiation of the document in its
full (rather than ghost) form. If the user declines the
document, no such change occurs.

• Support user control of owned physical space: As de-
scribed in Section 5, our prototype leverages a Unity

plane-clipping feature to implement simple owned
physical space enforcement. We clip parts of any object
closer to the user than 0.85 m (with the distance chosen
to match a HoloLens recommended setting [42]).

6.3 Performance Evaluation

We now evaluate ShareAR’s performance, measuring its op-
erations (and comparing them to baseline operations where
possible) and studying how it scales with numbers of vir-
tual objects and users. We find that ShareAR imposes only a
modest overhead on interdevice communication even as the
number of objects and users increases.

Experimental setup. We build an app (1506 lines of C#
code) to exercise ShareAR’s components and measure its
performance. In our test app, a test device creates objects that
are location-coupled or location-decoupled, sharing them
publicly, as ghosts, or keeping them private. One or more
other test devices auto-accept or manually accept objects.
The first device changes the objects’ permissions, updates
the objects’ location, and finally deletes the objects.

Our experimental setup consists of five HoloLens devices
communicating on the same local network, in two exper-
imental scenarios: (1) for each n ∈ {1,2,3,4,5}, we se-
lect n devices and fix h = 1 shared AR object; (2) for each
h ∈ {20,21,22,23,24,25}, we set h to be the number of ob-
jects present and fix n = 2 devices. All devices run our eval-
uation app with the same n and h parameters; all devices join
the network sequentially, and then the last device to join the
network triggers the evaluation app.

The operations we measure are Create, Accept

Create, Change Permission, Accept Change, Update
Location, and Delete. Each operation involves work done
on User A’s device to initiate the operation, a message sent
across the network from User A to User B, and work done on
User B’s device to process the operation. Note that in some
cases (for Create and Change Permission) User B’s de-
vice reacts by initiating an operation that we also measure
(Accept Create and Accept Change).

In addition to measuring the within-module time for A’s
initiating action and B’s receiving action, we measure and
report on operation completion time, i.e., the time it takes
from A’s initiating action until B has finished processing. To
correct for clock skew between the two devices, we add into
the evaluation script a message from B to A containing B’s
timestamps (note that this is not part of our module’s pro-
tocol, but exists solely for the purposes of the evaluation).
Device A then combines this information with its own times-
tamps to compute the final timing numbers.

Finally, for the sharing module operations that clearly cor-
respond to a primitive Unity operation (Create, Update

Location, and Delete), we also measure as a baseline the
timing of the Unity operation.

We repeat each evaluation point — defined by operation,
configuration (e.g., location coupled or decoupled), number

152 28th USENIX Security Symposium USENIX Association

Guideline Short description Source Support?
How are they sharing? Design for app’s purpose of sharing: presentation,

collaboration, guidance
HoloLens Developer Guidelines [43] X*

What is the group size? Accommodate as many users as the app expects to
need

HoloLens Developer Guidelines [43] X*

Where is everyone? Support users in the same or different physical spaces
as needed

HoloLens Developer Guidelines [43] X

When are they sharing? Design for asynchronous or real-time sharing as ap-
propriate

HoloLens Developer Guidelines [43] X*

How similar are their physical
environments?

Place objects appropriately in non-co-located users’
environments

HoloLens Developer Guidelines [43] X

What devices are they using? Integrate with VR as needed HoloLens Developer Guidelines [43] X*
Clip planes near user Set minimum visible distance for object to 0.85 m HoloLens Hologram Stability Guide-

lines [42]
X*

Do not disturb Avoid incessant notifications to user Meta Developer Guidelines [40] X*
The holographic campfire Allow users to see each other Meta Developer Guidelines [40] X
Public by default Support shared-world intuition by making content

publicly visible
Meta Developer Guidelines [40] X*

Table 5: Summary of ShareAR’s compatibility with existing multi-user AR design guidelines. For the check marks with a * appended, see
Appendix B for additional details.

of users, and number of objects — for 2 warm-up trials and 5
measured trials, reporting the mean and standard deviation.

Basic profile of operations. We begin by considering
ShareAR’s operations with a single pair of users (n= 2) shar-
ing a single object (h = 1).

The overall operation completion time is between approx-
imately 70 ms and 250 ms, depending on the operation and
configuration. This overall time is significantly dominated
by factors external to the ShareAR module, and that any
multi-user sharing solution would encounter: i.e., the net-
work latency and the HoloToolkit Sharing library on either
end of it. The overhead specific to ShareAR is minimal: we
find that Create and Change Permissions operations are
most expensive on average, still taking less than 5 ms in the
worst case for the computation on each device; all other oper-
ations take less than 1 ms on each device. For the operations
that we can compare directly with Unity baselines, we also
find that ShareAR’s overhead is minimal: the operations stay
within 2.5 ms of the baseline in the worst case.

Scaling with the number of users. Next, we consider how
ShareAR scales as the number of users increases.

In terms of network traffic, a user sharing an object needs
to send object create and update messages to n− 1 others;
additionally, once a user accepts a sharing offer, their device
sends an acceptance message back to the sharer and an in-
formational message to all other n− 2 users to stay in sync.
The total number of messages in the interaction thus scales
quadratically. For updates to already-shared objects (loca-
tion change, deletion), the sharing user sends one message
per other user, and no replies or additional messages are sent
(overall scaling linearly with users).

In terms of timing, all operations under all test condi-
tions took less than 5 ms. For all but Create and Change

Permission, the operations on average remained under
1 ms. These overheads are reasonable, especially given their
small additional overhead beyond to the corresponding base-

line operations where present (shown with a dashed line for
Create, Update Location, Delete). More detailed per-
formance data is in Appendix C.

In terms of scaling, Create and Change Permission

scale approximately linearly with the number of users; all
other operations remain approximately constant. Different
configurations for an operation (e.g., location coupled ver-
sus decoupled sharing, or different object deletion modes)
may slightly affect performance (as reflected in the differ-
ently colored lines in the graphs), typically taking longer for
location-decoupled objects due to the overhead of processing
multiple instantiations of the same object.

Scaling with the number of objects. Finally, we measure
ShareAR with increasing numbers of AR objects.

In terms of network traffic, we observe that it scales lin-
early with the number of objects, as each operation and as-
sociated message is independent per object.

In terms of timing, all operations took less than 3 ms
(and often less than 1 ms). These overheads are reasonable,
especially given their relation to the corresponding base-
line operations where present. (For the module operations
for which a baseline Unity operation is plotted — Create,
Update Location and Delete— the relevant module op-
eration timing is very close to that of the baseline Unity op-
eration.) Additional details are in Appendix C.

In terms of scaling, for all operations, the time taken is
approximately constant per object as the number of objects
scales: in other words, an operation on one object registered
with the module is independent of how many other objects
are also registered with the module. Some operations exhibit
a slight slope downward, suggesting caching benefits.

Performance evaluation summary. From our measure-
ments, we see that object creation and permission changes
are the most computationally expensive operations. How-
ever, we anticipate that in practice these operations will only
occur during a small fraction of the frame updates in an app.

USENIX Association 28th USENIX Security Symposium 153

Even so, the greatest observed time taken for an operation
was under 5 ms, and most measurements remained under
1 ms. Furthermore, since these measurements were of our
unoptimized research prototype, continued code optimiza-
tion may bring the performance overhead down even further.

7 Discussion
This work presents the first systematic investigation of multi-
user sharing control for AR apps. We propose a module that
is flexible enough to support many different decisions by app
developers. Below we discuss several examples of future
directions enabled by our work.

Execute permissions. Although multi-user AR systems are
still primitive, we envision that future systems will support
not only read and write but also execute permissions. One
possible manifestation may be to allow a user to execute
predefined actions on another user’s object without having
full edit control. For instance, an app may allow other users
to make a virtual dog wag its tail without allowing them to
make the dog arbitrarily large. Our module can be extended
to include additional permissions, including this one.

Asynchronous sharing. Our design exploration assumes
that both users are online when a sharing action occurs; ex-
tensions of our work could explore removing this assump-
tion. For example, consider a user who places publicly vis-
ible virtual decorations outside their home. We may want
(1) the objects to still be visible to a passerby when the user
is not home, but (2) the passerby’s device to only become no-
tified of the objects’ existence and public visibility when the
passerby is physically proximate to the home. Such a design
may require an alternate network architecture than peer-to-
peer; our module’s network agnosticism would support this.

Minimizing developer errors. We emphasize that one con-
sequence of our module’s flexibility is that developers must
be cautious to use it in a way that supports their app use case.
Some potential user-to-user threats may be subtle: for exam-
ple, if app developers chose to share ghost objects automat-
ically with no way to refuse or delete them, one user might
intentionally or accidentally clutter another user’s view with
ghost objects (an example of a denial-of-service attack). Or,
if an app developer implements a personal space policy that
makes AR objects invisible to all users but does not provide
a way to interact with or retrieve an invisible object, then a
malicious user could walk up to others’ objects to force them
to become invisible and non-interactible. Still other pitfalls
may depend on app semantics: for instance, if the developer
of an app such as Community Art does not put limits on users,
a user could monopolize a common space and prevent other
users from placing objects there. Future work, then, may
explore ways to support app developers in using the features
from our system that are most suitable for their overall goals.

Analysis in the wild. More broadly, our work lays a founda-
tion for future empirical studies on how developers use our

module’s components in practice and how users respond to
concrete usage of these components. Such an evaluation is
nontrivial since evaluating the usability of a single app does
not generalize well to the usability of others [45], for the
same reason described in Section 2 that a sharing control
module cannot be one-size-fits-all. However, we note the im-
portance of follow-up studies considering user perceptions
when making specific design decisions, and we encourage
future work to leverage our technical foundation to examine
under which circumstances certain sharing mechanisms are
appropriate.

Location privacy. Much multi-user app functionality, in-
cluding our design, requires that users share their location
with the app: sharing at least where one is within a physical
space is necessary for location-synchronized virtual content.
Some users may not anticipate or agree with such location
sharing, even for trustworthy apps, though such sharing may
be fundamental to the design of location-based AR apps. Ad-
ditional location privacy concerns could be introduced by
app developers, if app developers mishandle and acciden-
tally or intentionally expose a user’s location to other users.
This threat, however, is dependent upon app-level semantics,
and is neither unique to nor preventable by the underlying
sharing framework. We encourage future work to explore
this point further.

Inherently conflicting goals. Finally, we conjecture that
there may be fundamental tensions in some aspects of se-
cure and private content sharing between users. For exam-
ple, consider the case of a shared space in which one user
owns a publicly visible ball object and another user owns a
private wall object. When the public ball is thrown at the pri-
vate wall, it is not obvious which user(s) should see the ball
rebound. If the ball rebounds for both users, then the ball
owner gains information about the presence of the wall; if
the ball does not rebound for either user, then the wall owner
sees the ball go through the wall, defying physics; if only
the wall owner sees the ball rebound, then the two users no
longer have a synchronized view of the shared space. De-
termining how physics-obeying virtual objects should inter-
act to minimize information leakage via this side channel
while maximizing physical intuition is a subtle area for fu-
ture work, and we conjecture that no content sharing solution
can simultaneously achieve both goals perfectly.

8 Related Work
Although AR has a long history (e.g., [61]), the computer
security community has only recently begun examining the
space [13, 52]. Prior efforts on AR security and privacy in-
clude filtering raw real-world input [12, 28, 49, 54, 65] and
regulating untrusted AR output [32, 34]. These efforts focus
on the case of a single user interacting with an AR device.

Literature on multi-user AR security and privacy is just be-
ginning to emerge. Some prior work has proposed methods

154 28th USENIX Security Symposium USENIX Association

for secure device pairing via out-of-band channels [19, 60];
our work is complementary. Other prior work has proposed
specific multi-user interaction modalities, such as location-
based interfaces for making virtual content private and au-
diting content visibility [8, 9], mediating shared experiences
with remote collaborators [50], and using personal tablets in
shared spaces to separate private and public content [62,72].
While these works present specific multi-user AR systems,
our work is the first to systematically and broadly consider
the design space for AR sharing control and our module
could be leveraged when implementing these prior ideas.

There is a rich literature on access control (see, e.g., [7] for
an overview). Our work does not assume what access control
model is best for a particular app. Our implementation lever-
ages an access control matrix [30] as a simple and flexible
model for per-user and per-object permissions; we intend for
other established access control models in specific app con-
texts (e.g., [17, 68]) to be layered on top of our toolkit, and
we instead focus on the challenges of managing the implica-
tions of access control in the 3D physical AR setting.

Work in AR user experience has surfaced security- and
privacy-relevant themes for multi-user contexts. Lebeck et
al. [35] surface multi-user concerns such as physiological at-
tacks, virtual clutter, and the obscurity of other users’ ac-
tions. Poretski et al. [48] examine normative tensions in AR,
emphasizing enforcing personal space and designing for user
control. Olsson et al. [46,47] identify user needs such as con-
trol over privacy, socially appropriate ways to interact with
devices, and solutions for abuse of public content by other
users. These studies shed light on desired system properties
and user concerns but do not directly address system design;
our work builds concretely on these findings.

Multi-user digital interactions that take place in a physical
space have also been studied in the context of tabletop inter-
faces and large computerized displays [44, 57–59, 71]. Our
work addresses similar needs for and tensions around public
versus private content arising in the AR setting, where im-
mersive 3D content can be situated anywhere in the physical
world rather than constrained to a shared display.

9 Conclusion

Multi-user AR technologies hold much promise, but also
raise security and privacy risks in the potentially undesir-
able interactions between human users. These risks should
be addressed while AR ecosystems are being actively devel-
oped rather than after sub-optimal ad hoc conventions have
taken root. To that end, we are the first to systematically
develop a set of security and functionality goals for multi-
user AR. We present the design of a sharing control module
for AR content, which we envision as an app-level library or
OS interface that can be leveraged by app developers. Our
work identifies and addresses key challenges that stem from
AR’s tight integration into the physical world. Our proto-

type, ShareAR,4 for the Microsoft HoloLens demonstrates
the feasibility of our design, and our evaluation suggests that
it meets our design goals and imposes minimal performance
overhead. By addressing multi-user AR sharing control sys-
tematically now, we are taking steps toward securing the
fully fledged multi-user AR applications of the future.

Acknowledgments
We thank Ivan Evtimov, Earlence Fernandes, Kiron Lebeck,
Lucy Simko, and Anna Kornfeld Simpson for valuable dis-
cussions and feedback on previous drafts; we thank James
Fogarty for his advice on tabletop interface related work.
This work was supported in part by the National Science
Foundation under awards CNS-1513584, CNS-1565252, and
CNS-1651230, and by the Washington Research Foundation.

References
[1] J. Alexander. ‘Ugandan Knuckles’ is overtaking VRChat, Jan.

2018. https://www.polygon.com/2018/1/8/16863932/
ugandan-knuckles-meme-vrchat.

[2] R. Alp Güler, N. Neverova, and I. Kokkinos. DensePose:
Dense human pose estimation in the wild. In CVPR, 2018.

[3] E. Alvarez. Facebook’s next big augmented real-
ity push is multiplayer games, Sept. 2018. https:

//www.engadget.com/2018/09/07/facebook-ar-
games-multiplayer-first-look/.

[4] ARCore. https://developers.google.com/ar/.

[5] ARKit. https://developer.apple.com/arkit/.

[6] AR Studio. https://developers.facebook.com/
products/camera-effects/ar-studio/.

[7] M. Bishop. Computer Security: Art and Science. Addison-
Wesley Professional, 2nd edition, 2018.

[8] A. Butz, C. Beshers, and S. Feiner. Of vampire mirrors and
privacy lamps: Privacy management in multi-user augmented
environments. In ACM UIST, 1998.

[9] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Besh-
ers. Enveloping users and computers in a collaborative 3D
augmented reality. In IEEE/ACM International Workshop on
Augmented Reality, 1999.

[10] J. T. Chiang, J. J. Haas, and Y.-C. Hu. Secure and precise lo-
cation verification using distance bounding and simultaneous
multilateration. In WiSec, 2009.

[11] S. Curtis. Sex pests are using Apple AirDrop to
send explicit pictures to unsuspecting commuters, Aug.
2017. https://www.mirror.co.uk/tech/sex-pests-
using-apple-airdrop-10987968.

[12] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits, D. Mol-
nar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas, et al.
Operating system support for augmented reality applications.
HotOS, 2013.

[13] J. A. de Guzman, K. Thilakarathna, and A. Seneviratne. Se-
curity and privacy approaches in mixed reality: A literature
survey, 2018. http://arxiv.org/abs/1802.05797.

4See arsharing.cs.washington.edu or arsharingtoolkit.com

USENIX Association 28th USENIX Security Symposium 155

https://www.polygon.com/2018/1/8/16863932/ugandan-knuckles-meme-vrchat
https://www.polygon.com/2018/1/8/16863932/ugandan-knuckles-meme-vrchat
https://www.engadget.com/2018/09/07/facebook-ar-games-multiplayer-first-look/
https://www.engadget.com/2018/09/07/facebook-ar-games-multiplayer-first-look/
https://www.engadget.com/2018/09/07/facebook-ar-games-multiplayer-first-look/
https://developers.google.com/ar/
https://developer.apple.com/arkit/
https://developers.facebook.com/products/camera-effects/ar-studio/
https://developers.facebook.com/products/camera-effects/ar-studio/
https://www.mirror.co.uk/tech/sex-pests-using-apple-airdrop-10987968
https://www.mirror.co.uk/tech/sex-pests-using-apple-airdrop-10987968
http://arxiv.org/abs/1802.05797
arsharing.cs.washington.edu
arsharingtoolkit.com

[14] T. Denning, Z. Dehlawi, and T. Kohno. In situ with bystanders
of augmented reality glasses: Perspectives on recording and
privacy-mediating technologies. In CHI, 2014.

[15] Digi-Capital. Ubiquitous $90 billion AR to dom-
inate focused $15 billion VR by 2022, 2018.
https://www.digi-capital.com/news/2018/01/
ubiquitous-90-billion-ar-to-dominate-focused-

15-billion-vr-by-2022/.

[16] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wag-
ner. How to ask for permission. In HotSec, 2012.

[17] D. Ferraiolo and R. Kuhn. Role-based access controls. In
NCSC, 1992.

[18] C. Fink. The trillion dollar 3D telepresence gold
mine, Nov. 2017. https://www.forbes.com/sites/
charliefink/2017/11/20/the-trillion-dollar-3d-

telepresence-gold-mine/#42b8f0a12a72.

[19] E. Gaebel, N. Zhang, W. Lou, and Y. T. Hou. Looks good to
me: Authentication for augmented reality. In TrustED, 2016.

[20] J. Gallagher. Upcoming game easily shows you how to master
paintball, Aug. 2017. https://mobile-ar.reality.news/
news/apple-ar-upcoming-game-easily-shows-you-

master-paintball-0179651/.

[21] G. Hancke and M. Kuhn. An RFID distance bounding proto-
col. In SECURECOMM, 2005.

[22] L. A. Hayduk. Personal space: Where we now stand. Psycho-
logical Bulletin, 94(2):293–335, 1983.

[23] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Ab-
delzaher. Range-free localization schemes for large scale sen-
sor networks. In MobiCom, 2003.

[24] Microsoft HoloLens. https://www.microsoft.com/
microsoft-hololens/en-us.

[25] S. Houben and N. Marquardt. WatchConnect: A toolkit for
prototyping smartwatch-centric cross-device applications. In
CHI, 2015.

[26] D. Y. Huang, D. Grundman, K. Thomas, A. Kumar,
E. Bursztein, K. Levchenko, and A. C. Snoeren. Pinning down
abuse on google maps. In WWW, 2017.

[27] S. E. Hudson, J. Mankoff, and I. Smith. Extensible input han-
dling in the subArctic toolkit. In CHI, 2005.

[28] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits,
H. J. Wang, and E. Ofek. Enabling fine-grained permis-
sions for augmented reality applications with recognizers. In
USENIX Security, 2013.

[29] S. W. Kim. 3D document editing system. U.S. Patent Appli-
cation 20180081519, 2016, https://bit.ly/2N5Dt2S.

[30] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev.,
8(1):18–24, Jan. 1974.

[31] L. Lazos and R. Poovendran. SeRLoc: Secure range-
independent localization for wireless sensor networks. In
WiSe, 2004.

[32] K. Lebeck, T. Kohno, and F. Roesner. How to safely augment
reality: Challenges and directions. In HotMobile, 2016.

[33] K. Lebeck, T. Kohno, and F. Roesner. Enabling multiple ap-
plications to simultaneously augment reality: Challenges and
directions. In HotMobile, 2019.

[34] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Securing aug-
mented reality output. In IEEE Symposium on Security & Pri-
vacy, 2017.

[35] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Towards se-
curity and privacy for multi-user augmented reality: Foun-
dations with end users. In IEEE Symposium on Security &
Privacy, 2018.

[36] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo,
and L. Cavallaro. Understanding Android app piggybacking:
A systematic study of malicious code grafting. IEEE TIFS,
12(6):1269–1284, 2017.

[37] Magic Leap. https://www.magicleap.com/#/home.

[38] L. Matney. Jeff Koons’ augmented reality Snapchat artwork
gets ‘vandalized’, Oct 2017. https://techcrunch.com/
2017/10/08/jeff-koons-augmented-reality-

snapchat-artwork-gets-vandalized/.

[39] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, S. Sridhar,
G. Pons-Moll, and C. Theobalt. Single-shot multi-person 3D
pose estimation from monocular RGB. In 3DV, 2018.

[40] Meta. Spatial interface design: Public by default. https:

//devcenter.metavision.com/design/spatial-
interface-design-principles-public-by-default.

[41] https://www.metavision.com/.

[42] Microsoft. Hologram stability. https://

docs.microsoft.com/en-us/windows/mixed-reality/
hologram-stability.

[43] Microsoft. Shared experiences in mixed reality. https:

//developer.microsoft.com/en-us/windows/mixed-
reality/shared experiences in mixed reality.

[44] M. R. Morris, A. Cassanego, A. Paepcke, T. Winograd, A. M.
Piper, and A. Huang. Mediating group dynamics through
tabletop interface design. IEEE CGA, 6(5):65–73, 2006.

[45] D. R. Olsen, Jr. Evaluating user interface systems research. In
UIST, 2007.

[46] T. Olsson, T. Kärkkäinen, E. Lagerstam, and L. Ventä-
Olkkonen. User evaluation of mobile augmented reality sce-
narios. Journal of Ambient Intelligence and Smart Environ-
ments, 4:29–47, 2012.

[47] T. Olsson, E. Lagerstam, T. Kärkkäinen, and K. Väänänen-
Vainio-Mattila. Expected user experience of mobile aug-
mented reality services: A user study in the context of shop-
ping centres. Personal and ubiquitous computing, 17(2):287–
304, 2013.

[48] L. Poretski, J. Lanir, and O. Arazy. Normative tensions in
shared augmented reality. CSCW, 2018.

[49] N. Raval, A. Srivastava, A. Razeen, K. Lebeck,
A. Machanavajjhala, and L. P. Cox. What you mark is
what apps see. In MobiSys, 2016.

[50] D. Reilly, M. Salimian, B. MacKay, N. Mathiasen, W. K. Ed-
wards, and J. Franz. Secspace: Prototyping usable privacy
and security for mixed reality collaborative environments. In
ACM SIGCHI EICS, 2014.

156 28th USENIX Security Symposium USENIX Association

https://www.digi-capital.com/news/2018/01/ubiquitous-90-billion-ar-to-dominate-focused-15-billion-vr-by-2022/
https://www.digi-capital.com/news/2018/01/ubiquitous-90-billion-ar-to-dominate-focused-15-billion-vr-by-2022/
https://www.digi-capital.com/news/2018/01/ubiquitous-90-billion-ar-to-dominate-focused-15-billion-vr-by-2022/
https://www.forbes.com/sites/charliefink/2017/11/20/the-trillion-dollar-3d-telepresence-gold-mine/#42b8f0a12a72
https://www.forbes.com/sites/charliefink/2017/11/20/the-trillion-dollar-3d-telepresence-gold-mine/#42b8f0a12a72
https://www.forbes.com/sites/charliefink/2017/11/20/the-trillion-dollar-3d-telepresence-gold-mine/#42b8f0a12a72
https://mobile-ar.reality.news/news/apple-ar-upcoming-game-easily-shows-you-master-paintball-0179651/
https://mobile-ar.reality.news/news/apple-ar-upcoming-game-easily-shows-you-master-paintball-0179651/
https://mobile-ar.reality.news/news/apple-ar-upcoming-game-easily-shows-you-master-paintball-0179651/
https://www.microsoft.com/microsoft-hololens/en-us
https://www.microsoft.com/microsoft-hololens/en-us
https://bit.ly/2N5Dt2S
https://www.magicleap.com/#/home
https://techcrunch.com/2017/10/08/jeff-koons-augmented-reality-snapchat-artwork-gets-vandalized/
https://techcrunch.com/2017/10/08/jeff-koons-augmented-reality-snapchat-artwork-gets-vandalized/
https://techcrunch.com/2017/10/08/jeff-koons-augmented-reality-snapchat-artwork-gets-vandalized/
https://devcenter.metavision.com/design/spatial-interface-design-principles-public-by-default
https://devcenter.metavision.com/design/spatial-interface-design-principles-public-by-default
https://devcenter.metavision.com/design/spatial-interface-design-principles-public-by-default
https://www.metavision.com/
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram-stability
https://developer.microsoft.com/en-us/windows/mixed-reality/shared_experiences_in_mixed_reality
https://developer.microsoft.com/en-us/windows/mixed-reality/shared_experiences_in_mixed_reality
https://developer.microsoft.com/en-us/windows/mixed-reality/shared_experiences_in_mixed_reality

[51] K. Rematas, I. Kemelmacher-Shlizerman, B. Curless, and
S. Seitz. Soccer on your tabletop. In CVPR, 2018.

[52] F. Roesner, T. Kohno, and D. Molnar. Security and privacy
for augmented reality systems. Communications of the ACM,
57(4):88–96, 2014.

[53] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang,
and C. Cowan. User-driven access control: Rethinking per-
mission granting in modern operating systems. In IEEE Sym-
posium on Security and Privacy, 2012.

[54] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J.
Wang. World-driven access control for continuous sensing.
In ACM CCS, 2014.

[55] N. Sastry, U. Shankar, and D. Wagner. Secure verification of
location claims. In WiSe, pages 1–10, 2003.

[56] F. Schaub, R. Deyhle, and M. Weber. Password entry usabil-
ity and shoulder surfing susceptibility on different smartphone
platforms. In MUM, 2012.

[57] S. D. Scott, M. S. T. Carpendale, and K. M. Inkpen. Territori-
ality in collaborative tabletop workspaces. In CSCW, 2004.

[58] S. D. Scott, K. D. Grant, and R. L. Mandryk. System guide-
lines for co-located, collaborative work on a tabletop display.
In ECSCW, 2003.

[59] C. Shen, K. Everitt, and K. Ryall. Ubitable: Impromptu face-
to-face collaboration on horizontal interactive surfaces. In
UbiComp, 2003.

[60] I. Sluganovic, M. Serbec, A. Derek, and I. Martinovic.
HoloPair: Securing shared augmented reality using Microsoft
HoloLens. In ACSAC 2017, 2017.

[61] I. E. Sutherland. A head-mounted three-dimensional display.
In Fall Joint Computer Conference, American Federation of
Information Processing Societies, 1968.

[62] Z. Szalavári, E. Eckstein, and M. Gervautz. Collaborative
gaming in augmented reality. In VRST, 1998.

[63] D. Takahashi. Spatial raises $8 million for aug-
mented reality collaboration platform, Oct. 2018.
https://venturebeat.com/2018/10/24/spatial-
raises-8-million-for-augmented-reality-

collaboration-platform/.

[64] F. Tari, A. Ant Ozok, and S. Holden. A comparison of per-
ceived and real shoulder-surfing risks between alphanumeric
and graphical passwords. In SOUPS, 2006.

[65] R. Templeman, M. Korayem, D. Crandall, and A. Kapadia.
PlaceAvoider: Steering first-person cameras away from sensi-
tive spaces. In NDSS, 2014.

[66] R. Tilton. Daydream Labs: positive social ex-
periences in VR. Google, Aug. 2016. https:

//www.blog.google/products/google-vr/daydream-
labs-positive-social/.

[67] Ubiquity6. https://ubiquity6.com.

[68] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based frame-
work for attribute based access control. In FMSE, 2004.

[69] X. Wang, A. Pande, J. Zhu, and P. Mohapatra. STAMP: En-
abling privacy-preserving location proofs for mobile users.
IEEE/ACM ToN, 24(6):3276–3289, 2016.

[70] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman,
D. Wagner, and K. Beznosov. The feasibility of dynamically
granted permissions: Aligning mobile privacy with user pref-
erences. In IEEE Symposium on Security and Privacy, 2017.

[71] M. Wu and R. Balakrishnan. Multi-finger and whole hand ges-
tural interaction techniques for multi-user tabletop displays.
In UIST, 2003.

[72] Y. Xu, M. Gandy, S. Deen, B. Schrank, K. Spreen, M. Gorb-
sky, T. White, E. Barba, I. Radu, J. Bolter, and B. MacIn-
tyre. Bragfish: Exploring physical and social interaction in
co-located handheld augmented reality games. In ACE, 2008.

[73] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. ViewDroid:
Towards obfuscation-resilient mobile application repackaging
detection. In WiSec, 2014.

[74] W. Zhou, X. Zhang, and X. Jiang. AppInk: Watermarking
Android apps for repackaging deterrence. In ASIA CCS, 2013.

[75] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting repack-
aged smartphone applications in third-party Android market-
places. In CODASPY, 2012.

A Prototype Application Descriptions
In Section 6.1, we describe our assessment of our design’s
functionality by its ability to flexibly support our representa-
tive case study apps. Here, we provide further details on our
implemented prototype case study apps.

Paintball. This is a minimalist implementation of the Paint-
ball case study. Players can launch red spheres that, upon
contact with another player, attach to that other player. All
users in the game session can see all of the red spheres. For
the purposes of the prototype, we leave out scorekeeping and
more advanced game features.

Doc Edit. This is a basic version of Multi-Team Whiteboards
in which each user accessing content has a personal instanti-
ation of it. Users, by interacting with a simple control panel,
create flat rectangular boxes as documents. Documents are
location-decoupled, and though they are private and ghosted
by default, users can choose to share individual documents
with individual users. A user can also turn a document red,
modifying the document’s contents in a way that ghost doc-
uments do not display (for the prototype, this emulates arbi-
trary content entry, which we do not implement); the user can
also delete the document in a group-extended way (i.e., all
other users’ instances of the document are also deleted).

Cubist Art. This is a simplified version of the Community
Art case study. Rather than making and manipulating arbi-
trary objects, users create and control cubes and can choose
to share them or not. Although many of the user’s possible
actions via the control panel are similar to those of Doc Edit,
there are several key differences: (1) Cubes are public by de-
fault rather than private. (2) Cubes are shared in a location-
coupled way rather than location-decoupled. (3) Cubes obey
real-world physics instead of being entirely script-controlled.
(4) Object deletion is global location-coupled rather than

USENIX Association 28th USENIX Security Symposium 157

https://venturebeat.com/2018/10/24/spatial-raises-8-million-for-augmented-reality-collaboration-platform/
https://venturebeat.com/2018/10/24/spatial-raises-8-million-for-augmented-reality-collaboration-platform/
https://venturebeat.com/2018/10/24/spatial-raises-8-million-for-augmented-reality-collaboration-platform/
https://www.blog.google/products/google-vr/daydream-labs-positive-social/
https://www.blog.google/products/google-vr/daydream-labs-positive-social/
https://www.blog.google/products/google-vr/daydream-labs-positive-social/
https://ubiquity6.com

global location-independent (note, though, that the seman-
tics of location-coupled sharing make these two cases visu-
ally equivalent for solely location-coupled objects).

We did not implement the Soccer Arena case study, since
it does not surface new security, privacy, or functionality re-
quirements not covered by the other case studies. Section 2
provides further analysis.

B Interaction with Existing Design Recom-
mendations

Below we include a further analysis of our module’s compat-
ibility with existing design recommendations.

How are they sharing? The HoloLens guidelines list possi-
ble sharing scenarios as consisting of presentation, collabo-
ration, or guidance. Our design supports all of these: for in-
stance, a developer can use ShareAR to set appropriate con-
trols such as view-only permissions when a presenter shares
content with an audience. Besides the opt-in scenarios that
the HoloLens guidelines describe, our design also supports
opt-out public content sharing, which we argue should be
treated as another important use case for AR.

What is the group size? The HoloLens guidelines remind
developers to design for as many users as needed. Our design
can support an arbitrary number of users. (In practice, our
implementation stores both object IDs and user IDs as 32-bit
integers, providing a generous upper bound on its capacity.
We examine performance questions in Section 6.3.)

When are they sharing? The HoloLens guidelines ask
whether sharing is asynchronous or synchronous. Although
we explicitly design ShareAR to support real-time sharing,
we do not preclude the possibility of asynchronous sharing.
A developer could, for instance, write a replacement network
shim layer that relies on a central server for data storage and
periodically queries the server for updates.

What devices are they using? In particular, the HoloLens
guidelines ask whether AR users might share content with
VR users. Although this is outside the scope of this work, we
note that there is nothing in principle that fundamentally pre-
vents developers from extending our work into VR as well.
More broadly, we note that in principle, the ShareAR design
is compatible across any AR HMD platforms that satisfy ba-
sic assumptions such as a shared notion of 3D space. (Our
implementation is built for the HoloLens and has not been
ported to other platforms as of this writing.)

Clip planes near user. HoloLens recommends setting a
“plane clipping” distance of 0.85 m so that a user does not
see any portions of AR objects that are closer than that in
the user’s field of view [42]. Plane clipping may conceptu-
ally be considered a partial way of enforcing personal space;
however, it only affects the view of the user whose space is
invaded, and other users still see the object as being close
to the user. ShareAR’s treatment of owned physical space

Figure 4: Timing measurements for all steps in the evaluation pro-
tocol, each from the perspective of the device initiating the step,
as the number of present users scales. Acceptance times are mea-
sured on the receiver’s device; all other times are measured on the
sharer’s device. Black dashed lines denote a corresponding base-
line Unity operation where one exists.

Figure 5: Timing measurements for all steps in the evaluation pro-
tocol, each from the perspective of the device initiating the step,
on a per-object basis as the number of objects scales. Acceptance
times are measured on the receiver’s device; all other times are
measured on the sharer’s device. Black dashed lines denote a cor-
responding baseline Unity operation where one exists.

encompasses this recommendation and is a more complete
solution. (Our implementation does not yet include personal
space; however, it does include basic plane clipping.)

Do not disturb. Meta cautions against showing the user in-
cessant notifications. Our design does not specify the user
interface: notifications from other devices are passed as an
event to the app but not displayed to the user. Thus, ShareAR
is flexible enough to support this design choice.

Public by default. This recommendation is similar in spirit
to our goal of supporting shared physical-world intuition.
Although our design does support a purely public virtual
world, we do not recommend it for all circumstances; our
ghosting mechanism maintains a basic shared-world intu-
ition while preserving a degree of privacy.

C Detailed Performance Data
Results as the number of users scales are shown in Figure 4;
results as the number of objects scales are shown in Figure 5.

158 28th USENIX Security Symposium USENIX Association

Understanding and Improving Security and Privacy in Multi-User Smart Homes:
A Design Exploration and In-Home User Study

Eric Zeng
ericzeng@cs.washington.edu

Franziska Roesner
franzi@cs.washington.edu

Paul G. Allen School of Computer Science & Engineering
University of Washington

Abstract
Smart homes face unique security, privacy, and usability chal-
lenges because they are multi-user, multi-device systems that
affect the physical environment of all inhabitants of the home.
Current smart home technology is often not well designed
for multiple users, sometimes lacking basic access control
and other affordances for making the system intelligible and
accessible for all users. While prior work has shed light on
the problems and needs of smart home users, it is not obvi-
ous how to design and build solutions. Such questions have
certainly not been answered for challenging adversarial situ-
ations (e.g., domestic abuse), but we observe that they have
not even been answered for tensions in otherwise functional,
non-adversarial households. In this work, we explore user
behaviors, needs, and possible solutions to multi-user security
and privacy issues in generally non-adversarial smart homes.
Based on design principles grounded in prior work, we built
a prototype smart home app that includes concrete features
such as location-based access controls, supervisory access
controls, and activity notifications, and we tested our proto-
type though a month-long in-home user study with seven
households. From the results of the user study, we re-evaluate
our initial design principles, we surface user feedback on se-
curity and privacy features, and we identify challenges and
recommendations for smart home designers and researchers.

1 Introduction

Smart devices and smart home platforms, such as Samsung
SmartThings, Philips Hue lights, Google Home, the Amazon
Echo, and Nest thermostats and cameras, are being increas-
ingly adopted and deployed in the homes of end users. These
devices and platforms allow users to remotely control and
monitor their devices as well as to create automations (e.g.,
automatically locking the door when the user leaves home).

Security and Privacy in Multi-User Smart Homes. Smart
homes are fundamentally multi-user platforms. Multiple
people living in or accessing a home — including partners,

roommates, parents and children, guests, and household em-
ployees — may want or need the ability to use and con-
figure the smart devices within the home. As prior work
(e.g., [14, 36, 41]) has begun to show, conflicts and tensions
may arise between these multiple stakeholders — even in gen-
erally non-adversarial (e.g., non-abusive) households. For ex-
ample, the more tech-savvy users who install smart devices in
their homes may intentionally or unintentionally restrict other
users from accessing home functions (like thermostats) that
were previously physically accessible [14, 41]; privacy con-
cerns and violations may arise between co-occupants [3, 41];
and remote control of devices can be used for harassment [3].

Unfortunately, current smart homes are not yet thoughtfully
designed for interactions between and use by multiple people.
Though prior work has surfaced the need for additional access
control options [16], transparency, and privacy features [41],
many commercial smart home platforms present only sim-
ple security and privacy controls, or even none at all [22].
For example, Samsung SmartThings, a popular smart home
platforms, forces home administrators to choose between pro-
visioning additional accounts with administrator privileges or
not provisioning additional accounts at all [33].

Designing to Address These Challenges. Providing multi-
user smart home security, privacy, and usability is not a
straightforward matter of simply building it, but rather re-
quires careful consideration of a complex design space. We
take a step back to ask: What security, privacy, and other goals
should a multi-user smart home design aim to achieve? How
might it achieve those goals? And do those goals and their
implementation meet the needs of end users in practice?

In this work, we focus specifically on answering these ques-
tions for generally functional households without explicitly
adversarial relationships. That is, we consider “typical” ten-
sions that may arise between roommates, partners, and parents
and children as they interact with and through a smart home;
we do not consider explicitly adversarial relationships, such as
domestic abuse. Addressing such challenging situations is of
course also critically important, but we observe that even the
seemingly “easy” case has not yet been sufficiently addressed

USENIX Association 28th USENIX Security Symposium 159

in prior work or today’s commercial platforms.
To begin answering these questions, we thus systematized

prior work to develop an initial set of design principles for
smart homes in generally non-adversarial multi-user house-
holds: access control flexibility, user agency, respect among
users, and transparency of smart home behaviors. Based on
these initial principles, we designed and prototyped a mobile
app for smart home control, which includes concrete features
such as location-based access controls, supervisory access
controls, and activity notifications.

In-Home User Study and Design Recommendations. To
evaluate how well our proposed design principles and our
prototype’s specific design choices meet the use cases of real
(non-adversarial) households — and to gain a deeper under-
standing of the multi-user smart home access control needs
and use cases of this class of users — we conducted a month-
long in situ user study. We deployed our prototype with seven
households in the Seattle metropolitan area.

The empirical findings from our user study allow us to
evaluate and refine our proposed principles for security and
privacy in multi-user smart homes, and we surface technical
directions and open questions for platform designers and re-
searchers, which were not apparent in prior work that did not
conduct in situ design evaluations.

Among our multiple findings, we found that for some of our
participants, positive household social norms and relationship
dynamics obviated the need for technical access controls. This
finding suggests directions and questions for future work,
including: How can a smart home platform design leverage
or scaffold these social norms rather than simply existing
alongside them? And how can the platform simultaneously
support use cases and user groups where these social norms
and relationship dynamics are not as positive [3] or (as in the
case of our participant families with teenagers) in tension?

Another finding surfaced through our user study was that
participants’ varied access control desires required our pro-
totype to support complex combinations of access control
options. Unfortunately, when we increased complexity, it de-
creased usability, potentially discouraging less motivated or
savvy users from using access controls. This finding raises
the question: how can smart home designers increase the flex-
ibility of smart home access control systems while making
the complexity manageable for all users?

Contributions. Our work makes the following contributions:
1. Design Principles and Prototype: We systematize from

prior work a set of possible design principles for security
and privacy in multi-user smart homes, and we develop
a prototype based on these principles targeting generally
cooperative households.

2. In-Home User Study: We use our prototype to con-
duct a month-long in-home user study with seven (non-
adversarial) households, including couples, roommates,
and families with children of various ages. Our study

serves to both test our proposed design principles in
practice and to more generally enrich the literature on
people’s security and privacy needs, concerns, and prior-
ities in a multi-user smart home.

3. Lessons and Recommendations: Based on our design ex-
perience and in-home study, we reflect on our proposed
design goals for multi-user smart homes and surface fu-
ture technical directions as well as open questions for
designers and researchers.

2 Background and Motivation

Smart homes raise significant potential security and privacy
challenges. These challenges include, for instance, vulner-
abilities in the devices themselves (e.g., [29]) and privacy
concerns due to ubiquitous recording in the home [6, 21, 42].

In this work, we focus primarily on multi-user security and
privacy: how peoples’ behavior and usage of the smart home
can impact each others’ security and privacy. We begin by
systematizing the multi-user security and privacy issues prior
work has identified for smart homes, as well as the shortcom-
ings of existing approaches in addressing these issues.

2.1 Multi-User Challenges in Smart Homes
Prior work suggests that smart homes can cause or intensify
conflicts or tensions between people living in the home —
even when relationships between people are not explicitly
adversarial (e.g., abusive).

Power and Access Imbalances. One negative dynamic that
emerges from smart homes is a power imbalance between the
person(s) who install(s) and configure(s) the home, and the
other users who are more passively involved. In the worst-
case — in the context of intimate partner violence — abusers
may have total control over the smart home, enabling harass-
ment and abuse [3]. However, power imbalances also arise
in more benign relationships. For example, Geeng et al. ob-
served how more tech-savvy users have more agency in the
home, including more access to device functionality, more
information about what devices and people in the home are
doing, and the power to restrict others from using devices [14].

Privacy Violations. Smart homes can also intentionally or
unintentionally used to expose privacy sensitive information
about one user to another. Zeng et al. found examples of such
situations, like users being unaware of automated notifications
sent by cameras to their landlord, and users feeling a loss of
privacy because others could view their behavior through
smart home logs [41]. Choe et al. studied how devices that
capture video, audio, and other behavioral traces could cause
tensions between household members, or between guests and
household members, who would object to being recorded [6].

Direct Conflict. Lastly, smart homes can be focal points of
conflict between people in the home, both due to explicit

160 28th USENIX Security Symposium USENIX Association

malice (e.g., abuse) and due to ordinary conflicts between
household members. For example, prior work has documented
conflicts arising due to differences in opinion on thermostat
setting [14, 41], due to conflicting goals between parents and
teens in the context of entryway surveillance [36], or due to the
potential use of recorded evidence in household disputes [6].

2.2 Additional Actors: Apps and Automations
The above multi-user issues are compounded by the presence
of additional “actors” in smart home systems: third-party apps
and integrations that users may install (such as SmartApps or
IFTTT), as well as end-user programmed automations. These
apps and automations can range from simple rules (such as
automatically locking the door or turning off lights when
leaving home) to more complex “smart” features that integrate
with other cloud services, e.g. weather data and calendars.

These applications and automations can expose users to
physical security risks and privacy violations. Third-party
applications and automations may be expressly malicious,
or buggy and exploitable (e.g., [11]). Moreover, end users
themselves may make mistakes programming automations,
leading to unexpected behavior, bugs, and potential security
and privacy risks [27,34,39]. In a multi-user smart home, this
combination of actors means that when something unexpected
happens in the home, it may be challenging or impossible
for a user to determine whether it was the result of another
user actuating the smart home remotely, a buggy application
or automation, a legitimate application or automation that
another user installed, or explicitly malicious activity.

2.3 Shortcomings of Existing Approaches
Though many commercial smart home platforms exist, and
a growing body of research literature supports the need to
address the above challenges, we are not aware of existing
approaches that succeed at addressing them and/or have been
rigorously evaluated with end user — neither for explicitly
adversarial settings nor in generally cooperative households.

There are many types of access control policies that
could be used in smart homes, including time-based poli-
cies, location-based policies, per-user policies, and per-device
policies. However, Mare et al. found that adoption of these
techniques in smart home platforms is uneven and limited [22].
Some platforms support a subset of these policies, e.g., Apple
Homekit has location-based access controls, and Vera has
multiple privilege tiers for admins and guests. However, some
popular platforms have minimal or no access control at all:
Samsung SmartThings has only a single privilege level for
all users and no access control policies, while Google Home
and Amazon Echo do not authenticate voice commands. He
et al. [16] and Ur et al. [35] found similar fragmentation of
access control and authentication policies between individ-
ual devices: some devices like door locks had many access

controls, while others like smart thermostats had none.
While having no access controls or user roles at all is clearly

insufficient for user needs (e.g., [33]), the jury is still out
on what are the right access control designs for multi-user
smart homes. To that end, He et al. [16] surveyed hundreds
of participants to understand their smart home access control
preferences, such as which device capabilities people felt need
restrictions (like “deleting door lock logs”) and which types
of device capabilities and people could use special contextual
controls (e.g., allowing children to control devices only when
parents are around). These survey results provide a valuable
basis for future smart home access control designs, but they
still only represent a theoretical view of people’s preferences.
To the best of our knowledge, there have been no direct, in situ
evaluations of multi-user smart home access controls designs
with end users. We aim to close that gap in this work.

3 Scope and Research Questions

Prior work has surfaced many multi-user security and pri-
vacy challenges in current smart home systems. However,
this body of research lacks concrete design proposals that
have been evaluated with end users. We aim to advance our
understanding of this space.

We focus in this work on generally functional multi-user
households, rather than on explicitly adversarial situations
(e.g., domestic abuse) or cases where users do not belong to a
household together (e.g., Airbnb-style rentals). Understand-
ing and designing for these cases is also critical, but different
(and significant) challenges exist in designing systems that
are resilient to motivated adversaries with malicious intent,
elevated privileges, and physical device access [23]. We dis-
cuss the ways in which our work may address — but also falls
short of addressing these challenges, in Section 7.4.

Yet prior work has not answered the question of how to
design multi-user smart homes for “typical" households; thus,
in this work, we seek to answer two research questions:

RQ1: How should a smart home be designed to address
multi-user security and privacy challenges (in generally
functional households)? What design principles and con-
crete features may help mitigate tensions and disagreements
among otherwise cooperative (e.g., non-abusive) co-habitants
that stem from multi-user security and privacy issues?

RQ2: What security and privacy behaviors and needs do
these smart home users exhibit in practice? Prior work has
provided some understanding of users’ security and privacy
preferences in the smart home, like preferences for access
controls [16], or examples of undesirable situations [14, 41].
However, these preferences could conflict with other priori-
ties, such as utility and convenience. We ask: when presented
with a smart home with more advanced security and privacy
features, how do people (in non-adversarial households) use
them in practice? Do users’ security and privacy related be-

USENIX Association 28th USENIX Security Symposium 161

haviors differ from their stated preferences? Do our initial
design principles match their needs?

To answer these research questions, we take a two-part ap-
proach. First, we design and implement a multi-user smart
home interface, based on design principles (Section 4.1) that
we distill from prior work. Second, we conduct an in-home
user study using our prototype, to evaluate whether these de-
sign principles meet user needs in practice, and to improve our
understanding of users’ behaviors given improved multi-user
security and privacy features in a smart home.

4 Prototype Design and Implementation

To support the investigation of our research questions, we
prototyped a mobile application for controlling smart homes
that provides multi-user security and privacy features such as
access controls, designed for households in which members
are generally motivated to cooperate. We now describe the
guiding design principles for our prototype.

4.1 Initial Design Principles
We developed our prototype based on lessons from prior work,
which suggested that the following design principles may be
important for multi-user smart homes:

Access Control Flexibility. Prior work [16] has suggested
that smart home access control and authentication systems
should be flexible enough to support a wide variety of use
cases, people, and types of relationships that exist in homes.
We aimed to support a variety of relationships, like couples,
roommates, children, guests, and domestic workers, and also
different contextual factors, like location. These factors can
be combined to create the policy that suits the user.

User Agency. Prior work [14] found power imbalances
among smart home users that reduce the agency of users
with less (technical or interpersonal) power. We aimed to sup-
port a feeling of agency for all users in the smart home, by
making the smart home more accessible and discoverable. For
example, for access controls, our prototype allows people to
“ask for permission”, rather than to be locked out entirely. We
aim to make smart home functionality more discoverable, by
showing users which devices are nearby and accessible. We
also aimed to simplify the process of on-boarding new users.

Respect Among Users. Prior work has surfaced significant
potential for tensions and conflicts among users of a smart
home (e.g., [14,41]). We aimed to encourage respectful usage
of the smart home by minimizing conflict points: for example,
making it harder for one user to remotely control or automate
devices in a way that would surprise or disturb another.

Transparency of Smart Home Behaviors. Prior work sug-
gests that smart home automations and apps may malfunc-
tion or act maliciously (e.g., [11, 34]), violate the privacy of

unaware users (e.g., [41]), or confuse users who did not con-
figure them. When smart homes are used for domestic abuse,
abusers have harassed victims with remote control, masking
it as automatic behavior [3]. We aimed for the smart home to
transparently surface its behavior to all people in the home
(realizing that there may be privacy implications, as we dis-
cuss below), especially when people are remotely controlling
it, or when an automation/third-party app is acting on its own.

4.2 General Design Description

We designed a mobile application that allows multiple users
to control their smart home devices. In terms of threat model,
we assume that the control application and the underlying
smart home (SmartThings, in our study) are trustworthy and
uncompromised. We assume that third-party smart home au-
tomations or applications may be buggy or compromised, but
our design does not aim to prevent such issues. We assume
that users may use or configure the smart home in ways that
are undesirable to others in the home, though we focus on
cases in which this behavior is accidental or mildly malicious
(e.g., “trolling”); we do not attempt to defend against a deter-
mined, malicious adversary (e.g., an abuser).

The basic interface of our app is similar to other mo-
bile apps for controlling smart homes (e.g., Samsung Smart-
Things). The main view of the app displays a list of devices
and their current status (Figure 1a). Devices can be organized
by room for convenience. The state of a device can be adjusted
by tapping its status, and tapping its name reveals options for
access controls and notifications (described below).

We aimed to simplify the process of onboarding additional
users, towards meeting the “user agency” principle. The first
user must create an account with a username and password,
but they can add other users by scanning a QR code on the
new user’s phone. These additional users do not need a login,
instead using public key authentication tied to their device.

4.3 Access Controls

Towards meeting the “access control flexibility” and “respect
among users” principles, we designed access controls for
accessing device capabilities, based on access control prefer-
ences and use cases surfaced in prior work (e.g., [10, 16]).

Role-Based Access Control. Each household member has a
separate user account. Users can be restricted from using a
device via the ‘Allowed Users” setting (Figure 1b). Users are
also assigned to roles (admin, child, guest). Only admins have
the ability to make configuration changes: changing access
control policies, adding new users, organizing the devices.

Location-Based Access Control. Users can also be re-
stricted from controlling device capabilities if they are not
physically near the device, or not at home, using the “Remote
Control” permission (Figure 1c). This access control can be

162 28th USENIX Security Symposium USENIX Association

Figure 1: Access Control UI. From left to right: (a) The main interface for controlling devices. (b) Interface for setting access
controls on devices, by role, and options for reactive/supervisory access control. (c) Interface for setting location-based access
controls on a device, for each user. (d) Reactive access control prompt: what users see while waiting for approval.

set per-user, to accommodate use cases like only allowing
guests and domestic workers to access smart home devices
while in the house. It could also be used to promote respect
among users by preventing them from remotely controlling
devices like lights when other people are in the room.

Supervisory Access Control. Access controls are in some
ways antithetical to user agency. For example, parents may
want to use parental controls to keep children from causing
trouble, but may not want to block children from using the
smart home at all times, like when the parents are at home
and are able to supervise. To serve this potential use case, we
implemented supervisory access control (first proposed by He
et al. [16]): if a user is restricted from controlling a device,
they can still be permitted to control it if another (authorized)
user is nearby (Figure 1b).

Reactive Access Control. Access control policies based on
role and location could be too rigid for every situation. There
may be occasional edge-cases where it does not make sense
to enforce a policy. Towards the principles of increasing flex-
ibility and supporting user agency for restricted users, we
implemented reactive access control [10, 24]. If a user at-
tempts to access a capability they do not have permission to
use (Figure 1d), the app will ask a more privileged user for
permission in real-time, by sending a notification to asking
them to approve or deny the request (Figure 2c).

4.4 Activity Notifications

Towards meeting the “transparency of smart home behaviors”
principle, i.e., to make it more transparent when the smart
home is being remotely controlled, or controlled by automa-
tions and apps, we designed notifications that alert users when
the states of home devices change. Each notification displays

the name of the device, the change in state, and the user or
process responsible for causing the change (Figure 2).

We chose to use notifications over other designs that fo-
cused on visualizing automations and events in-app [5, 26],
to explore a different point in the design space. Rather than
having users navigate to a particular interface when motivated
to investigate activity in their smart home, we hypothesized
that real-time notifications could provide information in a
more timely and relevant manner.

Because the number of notifications from the smart home
could be overwhelming, we allowed users to disable notifi-
cations on a per-device basis, or to only receive notifications
from physically nearby devices.

4.5 Discovery Notifications
Prior work (e.g., [14, 41]) suggests that one challenge with
multi-user smart homes is that less technically savvy or en-
gaged users may struggle with accessing smart devices. Thus,
towards meeting the “user agency” principle, we wanted to
make it clear which smart devices were nearby and could be
actuated, especially for novice users. We designed a persistent
notification which displays the status of nearby devices, and
includes action buttons to toggle those devices (Figure 2b).
This design makes devices that are nearby (and potentially
relevant) accessible without needing to open the app. We de-
signed it to be minimally intrusive — the notification is silent
and is minimized at the bottom of the notification tray.

4.6 Implementation
We implemented a prototype mobile app with these features
for Android, iOS, and web, using the Cordova framework.
Rather than implement our own smart home controller that

USENIX Association 28th USENIX Security Symposium 163

Figure 2: Overview of Notification Types.
(a) Activity Notifications. When an event occurs in the home,
this notification shows the name of device, capability being
changed, and who or what caused the change.
(b) Discovery Notifications. Persistent, low priority notifica-
tion that shows nearby devices and their current state; can be
expanded to reveal action buttons for controlling devices.
(c) Reactive Access Control prompt. Appears when another
user asks for permission to use a restricted device capability.

interfaced with hardware devices directly, our prototype con-
nected to devices via the Samsung SmartThings API. Partici-
pants set up their smart home devices using SmartThings, and
then used our app to control the system. Our prototype did not
support automations and third party apps — users accessed
this functionality through the SmartThings app. Our prototype
consisted of 10257 lines of JavaScript, CSS, and HTML.1

Proximity Sensing. To enable room-scale proximity-based
features (location-based access controls, proximity-scoped no-
tifications), we incorporated Bluetooth Low Energy beacons
into our system. Beacons broadcast an ID that can be scanned
by modern smartphones that support Bluetooth 4.0+. Users
register physical beacons in our app using an ID printed on the
device, and then assign it to a room in the app. When a user’s
phone detects the beacon, the app infers that the user is near
the devices in that room. We chose beacons as our proximity
sensing solution out of convenience: they are supported by all

1The source code and a demo of the prototype are available at
https://github.com/UWCSESecurityLab/smarter-home

Figure 3: Prototype Architecture Diagram. We use the
SmartThings API to communicate with smart home devices.

modern Android and iOS devices. However, our design does
not require a specific proximity sensing technology; others
such as WiFi or ultrasonic sensing would work as well.

SmartThings and iOS Limitations. Due to the limitations
of the SmartThings API, activity notifications cannot attribute
changes in home state to particular third-party apps, automa-
tions, or manual actuation of devices. For state changes in
these categories, our implementation only displays “Triggered
by an automation or manually”. Discovery notifications were
only implemented on Android, as the iOS notification center
does not support persistent, low priority notifications.

5 User Study: Goals and Methodology

Our prototype allows us to study the research questions we
set out in Section 3. To do so, we recruited seven households
in the Seattle metropolitan area to use our prototype to in-
teract with their smart homes for a month-long period. We
conducted studies between October 2018 and January 2019.

User Study Goals. Our goals in conducting the user study
were two-fold, corresponding to our two research questions.
First, we aimed to evaluate how participants used and reacted
to the specific multi-user smart home features (and corre-
sponding design principles) we implemented in our prototype.
Second and more generally, we aimed to understand the multi-
user access control and other needs and behaviors of end users,
grounded in the use of a specific prototype in real homes.

Our specific evaluation questions, paired with the design
principles our prototype intended to embody, included:

1. Access Control Use Cases: Is our current combination
of access controls sufficient for users’ desired access
control use cases? If not, what use cases are we missing?

2. User Agency and Respect: We envisioned that location-
based and reactive access controls could be used to mit-
igate conflicts and tensions over controlling the home.
Can we observe this in practice?

3. Transparency of Smart Home Behaviors: We envisioned
that notifications could improve users’ mental models
of smart homes, which would help with understanding
privacy implications; and also improve security by cre-
ating a simple mechanism for auditing automations and
apps. Do notifications provide these benefits to users in

164 28th USENIX Security Symposium USENIX Association

practice? Conversely, do notifications harm privacy by
revealing one person’s activity to other people?

Study Overview. We conducted a month-long in situ user
study in the homes of participants. We recruited households
in the Seattle metropolitan area. We provided a Samsung
SmartThings smart home to households that did not already
own smart home devices, or integrated SmartThings with the
smart homes of households that owned an existing system.
We collected qualitative data about participants’ previous
experiences with smart homes and feedback on our prototype
through interviews, experience sampling, and log data.

Recruitment. We recruited seven households, containing 19
participants who actively participated. Participating house-
holds were recruited via Facebook ads, targeted at people
interested in smart homes and home DIY projects. People
who clicked on the ads filled out a short survey including
information about their household composition and interest in
smart homes. We did not require participants to own any smart
home devices prior to the study. We conducted a screening
call with participants that met our criteria to collect additional
information. We selected participants who lived within a 45
minute radius from our homes (so that it was feasible to make
an in-home visit), and we aimed for a variety of multi-person
household compositions, including roommates, families, and
couples. Participating households are summarized in Table 1.

A limitation of our recruitment strategy and study design
is that it introduces self-selection bias: our participants were
likely to be living in generally cooperative households, with
one or more technology early adopters. We discuss this, and
other limitations, further in Section 7.5.

Initial Interview. We made an initial visit to participants’
homes to conduct a semi-structured interview about their
existing experiences and attitudes towards multi-user smart
home security, privacy, and usability issues (see Appendix A).

Following the interview, we assisted with the setup of any
devices if needed, and then we set up our prototype app. We
guided them through app installation because it required using
the developer mode in SmartThings, which was cumbersome
and not representative of a typical install experience for com-
mercial apps. We also assisted participants in adding other
household members, to ensure that we could study multi-user
interactions (rather evaluating the onboarding barrier).

We also walked through the access control and notification
features of the app, and collected their initial impressions of
the features. To counteract participant response bias [8] we
stressed that we were testing an imperfect prototype, and that
we wanted honest, negative feedback on things that were not
useful or usable. We used some participant feedback from
this stage to iterate on our implementation and push updated
features to participants throughout the duration of the study.

Daily Usage. Participants then used the app for 3-4 weeks
during their daily lives. During this period, the integrated ex-
perience sampling interface in our app prompted participants

to provide feedback or to share anecdotes about multi-user
interactions in the home. We also collected log data about how
users set up access controls, permissions, and notifications.

Exit Interview. At the end of the usage period, we con-
ducted a phone interview with each household. In this semi-
structured interview we collected specific feedback about their
experience using (or not using) the access control and notifi-
cation features in our prototype. We also followed up on any
interesting data from experience sampling or logs. A list of
interview questions is available in Appendix B.

Compensation. Participating households were compensated
$250 over the course of the study, in installments. Participants
could keep the provided smart home devices after the study,
or return them for the equivalent cash value.

Ethics. The study was approved by the University of Wash-
ington’s human subjects review board. Participants had to
be age 18+ to consent to participating; household members
under 18 could participate with verbal assent and approval
from their parents and guardians. We had approval to collect
incidental data via the smart home on children who declined
to participate or were too young to actively participate.

During the study, we experienced a security breach due to
a firewall and database misconfiguration, resulting in the pos-
sible exposure of hashed passwords, log data, and temporary
access tokens. Based on access patterns, we believe the data
was accessed by port scanners, and not by targeted attackers.
We remediated the issue within 24 hours of discovery. We
notified our institution’s human subjects board, and contacted
participants with a description of the issue, protective steps
like changing matching passwords on other sites, and the
option to opt out of the study. No participants opted out.

Analysis. We transcribed and analyzed 633 minutes of con-
tent from the 14 initial and exit interviews. We analyzed the
interviews using a collaborative qualitative coding technique.
First, two researchers read over all of the data and developed
a codebook, using descriptive codes like “access control: use
cases”, “relationship: guests”, “notifications: too noisy”, and
“access control: trust/respect” (see Appendix C for a full list).
Two researchers independently coded two interviews, and
then met to resolve differences and clarify ambiguities in the
codebook. Then, one researcher coded the remaining inter-
views based on our revised understanding of the codes. We
used a custom code aggregation tool to help identify patterns
and extract higher level themes across interviews.

6 User Study: Results

We now present the findings from our user study, including
direct feedback on the features implemented in our prototype,
and general findings about participants’ desired features and
use cases, surfaced by their concrete experiences with our
prototype and the smart devices in their homes.

USENIX Association 28th USENIX Security Symposium 165

Participants Gender Age Devices Household Info

H1 H1A 25-34 F Lock*, motion sensors*, contact sensors,
thermostat*, security camera*, lights*, Amazon Echo*

Family with two non-participating
children (0-6), living in houseH1B 35-44 M

H2 H2A 25-34 M Lights*, Amazon Echo*, contact sensor,
door lock (not connected)* Couple, living in houseH2B 25-34 F

H3
H3A 25-34 F Lights, contact sensor, motion sensor,

power outlet Roommates, living in apartmentH3B 25-34 F
H3C 25-34 F

H4 H4A 25-34 F Lights, contact sensor, power outlet,
Amazon Echo* Couple, living in apartmentH3B 25-34 M

H6
H6A 35-44 F Lights, contact sensor, door lock,

Amazon Echo*
Family with 2 children (one aged 7-12),
living in houseH6B 45-54 F

H6C 13-17 M

H7
H7A 18-24 F Lights, contact sensor, motion sensor,

power outlet, Ring video doorbell,
Amazon Echo*

Roommates, living in houseH7B 18-24 F
H7C 18-24 F

H8

H8A 45-54 F Lights, contact sensors, security cameras*,
Amazon Echo*

Family with 2 participating children,
one non-participating child (7-12),
one non-participating relative (13-17),
living in house

H8B 45-54 M
H8C 18-24 F
H8D 13-17 M

Table 1: Summary of Participating Households. Some children were too young to actively participate in the study. Asterisks (*)
indicate devices households owned prior to the study.

6.1 Desired Access Control Use Cases
We begin by exploring the situations where participants
wanted multi-user access controls, and what form of access
control mechanisms participants wanted. In some cases, our
prototype was able to fulfill participants’ goals, and in others,
the ability to explore concrete access control features in the
context of their own home evoked hypothetical policies that
they felt would better suit their needs.

Location Restrictions for Visitors. H1A wanted an access
control setting that would allow visitors like guests and do-
mestic workers to be able to access and control the devices in
her home, but only while they were physically present.

I don’t want the nanny, who’s here all day — I trust
her, obviously, or she wouldn’t be with my kids —
but at the same time, like I don’t necessarily need
her to be at her house, being able to control the
lights at my house. ...if I have guests coming into
my house, I’d like them to control automations, but...
I certainly don’t want them having admin control.
I’d prefer to have them to have geofenced control.
(H1A-Initial)

At the time, our prototype’s location-based access controls
did not quite meet her requirements, because it could only
be applied as a blanket policy for all users of a given device.
Based on this feedback, we updated the prototype to support
location-based access controls both per-user and per-device.

Preventing Configuration Changes. Some participants
were concerned about other family members accidentally

making changes to access control policies, automations, or
device configuration. H1A recalled when they set up their
smart home, H1B (her spouse) caused confusion by acciden-
tally pairing some devices multiple times. As a result, H1A
set H1B at the child privilege level in our prototype, which
prevented him from configuring access controls and rooms.

H8A did not want her children to either change or override
the existing automation for the porch light, which turned the
lights on automatically at night for security purposes, nor did
she want them to be able to change access control policies.
As a result H8C/D were set at the child privilege level in our
app (and were also not added to the native SmartThings app,
from which the automations were created).

Parental Controls for Device Usage. Parents in our partici-
pant sample expressed interest in placing restrictions on chil-
dren to prevent mischief or other undesired uses of devices.
For example, H1A and H8A wanted to restrict their children
from turning on/off security cameras. However, participants
did not use our prototype’s features for restricting access to
any devices in practice, for reasons we discuss below.

A parental control goal that we did not anticipate was that
H1A and H8A were more interested in using the smart home
to regulate screen time, e.g. blocking internet access at certain
times, and using a smart power outlet to turn off the TV.

Devices in Private Rooms. The roommates of H3 placed
smart light bulbs each of their bedrooms, and set an access
control policy so that only the room’s owner could control the
lights. They reported that it was “comforting” and a “good

166 28th USENIX Security Symposium USENIX Association

feature to have” (H3C), but that in practice, they never en-
countered the access controls because they were respectful of
each other and did not ever attempt to control another person’s
lights. (We discuss similar cases of social norms obviating
the use of technical access controls below.)

Preventing Remote Access for Media Devices. H4A/B ex-
pressed interest in location-based access controls for their
Amazon Echo, based on past experiences where one of them
accidentally changed the audio that was playing from outside
of the room or house, due to confusion over whose Bluetooth
device or Spotify account was playing. We did not see simi-
lar interest in location-based access controls for other device
types — perhaps because unlike lights or locks, which are
useful to remotely control for security and energy saving pur-
poses, media devices are only useful to the people physically
in the room.

Access Controls for Voice-Controlled Devices. H8A be-
came aware that their Amazon Echo could be used to bypass
the access controls and authentication of our prototype (see
Section 7.3 for more detail). In one instance, she used this
to allow her mother-in-law to access the smart home without
installing our prototype. However, she also wanted the Echo
to authenticate users by voice, so that they could use access
control policies for to their youngest son, who was too young
to have a phone but could control devices via the Echo.

6.2 Reasons for Not Using Access Controls

Based on findings about multi-user smart home tensions in
prior works, we expected that households would use our ac-
cess controls, for at least some of the potential use cases
outlined in our design principles (Section 4.1). However, in
general, we found that the access controls we implemented
did not fit with the participants needs and use cases.

We analyzed participants’ usage logs, and found that while
most households experimented with using access control poli-
cies in the first few days after the initial interview, most of
them quickly settled on the least restrictive access control
setting, not continuing to use location-based, role-based, or
supervisory access controls to restrict access to devices. The
only household that kept any access controls enabled was H3,
a household of roommates who enabled per-device role-based
access controls on the lights in their private bedrooms. How-
ever, none of the roommates ever attempted to violate these
access controls (i.e., tried to turn on or off each others’ lights).

Given this limited long-term use of access control features
in practice, we thus focus on our qualitative interview data, to
dig into the reasons why participants did not use the access
controls more than they did. Our findings surface several
reasons that are more fundamental than simply reactions to
our specific implementation — i.e., reasons that participants
may not have used any access controls, regardless of design.

Social Norms, Trust, and Respect. The most common rea-

son participants cited for not setting access controls was trust-
ing each other enough that they were not concerned about de-
vice misuse, relying instead on established household and in-
terpersonal norms. We observed such trust and norms among
relatively equal relationships, like partners and spouses:

No, we didn’t turn [remote control restrictions] on
either... We both wanted full permissions to do any-
thing whenever, we weren’t worried about the other.
I had no concern that H2B, from not nearby, would
turn off the lights. (H2A-Exit)

We also observed trust and norms among roommates:
I think we’re all pretty respectful and we wouldn’t
turn on and off each others’ lights. (H7A-Exit)

And even with children:
If [H6C] were a different kid, I would probably
leave [remote control] turned off for him. But for
him, it would be useful, I would turn it on for him.
...I think it’s going to be very specific to who is
using it, and having the option is important, but he’s
just very responsible, so it could’ve been handy for
him to be able to do something from school, like
turn on and off lights. (H6A-Initial)

Participants mentioned similar social norms about multi-
user privacy. For example, H1A and H8A/B were aware that
it was possible to eavesdrop using devices like the Amazon
Echo or security cameras, but chose not to do so.

Interference with Other Functionality. Particularly with
location-based access controls, participants often felt that the
available access controls were too restrictive and prevented
them from accomplishing other goals. In our initial design,
we expected that location-based access controls could serve a
number of goals, like access control for guests, or preventing
mischief or inconsiderate use of remote controls. However,
multiple participants wanted unfettered remote control access,
particularly for lights, because it was convenient.

I think a big thing for us was in case we forgot to
turn off the lights or something, that was like the
appeal, to turn it off remotely. (H7A-Exit)

Like the times when we would both need access to
turn off the light we forgot to turn on, were more
frequent than any need to restrict us from being
able to remotely control it. (H4B-Exit)

In other words, at least for the smart devices our participants
had, the convenience for all members of the household to
be able to exercise remote control outweighed any concerns
about intentional or accidental remote misuse.

Lack of Concern About Devices. Participants did not feel
concerned enough to use access controls for certain types of
devices, or for devices in certain locations. For example, par-
ticipants did not feel that smart lights were sensitive enough
for access control (but did want restrictions on more sensitive
devices, such as cameras, for guests and children).

USENIX Association 28th USENIX Security Symposium 167

We cannot say whether participants would have used more
access controls for more sensitive devices — since we allowed
our participants to select their own devices, their a priori
threat models likely influenced their devices selection (i.e., se-
lecting devices they were comfortable having in their home).
We discuss this issue further in Section 7. Moreover, we note
that these limited multi-user concerns were consistent with
participants’ overall smart home related threat models (likely
due to self-selection bias). Though some participants were
aware of potential risks such as password compromise, vulner-
abilities in wireless protocols, data collection by companies,
or lost phones, they did not consider these risks to overwhelm
the utility of the smart home.

Some participants also did not find it necessary to control
access to devices located in household common spaces, like
locks and lights — again showing physical-world household
social norms reflected in the configuration of the smart home.

6.3 Limited Utility from Activity Notifications
We found varied use of activity notifications among our par-
ticipants. From our log data, we observe that 14 participants
had activity notifications on at all times for all devices, while
4 participants used a combination of settings: on, off, and
proximity scoped for various devices. This data suggests that
proximity scoping provided utility for some participants. (One
child participant did not have the app installed.)

But having notifications enabled does not necessarily mean
that participants found them useful; we now dig further into
our qualitative interview data to understand whether and how
the notifications were useful to participants. Our participants
found notifications useful for a few specific use cases, like
home security and sanity checking their smart home automa-
tions. However, we did not find much evidence that our notifi-
cations provided benefits for transparency and agency.

Monitoring and Home Security. Participants found notifi-
cations to be most useful for home security and monitoring
purposes. H1, H6, H7, and H8 used our prototype’s notifica-
tions in conjunction with sensors on their exterior doors and
windows, to passively monitor their home’s security. H3C
used notifications to monitor devices in their bedroom, to
check if others were entering the room.

Proximity Scoping for Activity Notifications. While partic-
ipant H8D found proximity scoping useful, as she did not
want to be notified about devices while away from home,
other participants said that the feature would be more useful
if they could be notified only when not at home — either as a
home security measure (H8A), or because they could already
tell when their devices changed while at home (H4B).

Confirmation of Home Behaviors. Some participants found
the notifications to be comforting because they confirmed that
both people and automations were behaving as expected.

It was nice to know it was at that point in the day,

and really what I had it set on were essentially the
lights to come on and go off at appropriate times,
and so it was a notice that, yes, today is progressing
as it should. (H6A-Exit)

Desire for Contextual Notifications. Our activity notifi-
cations prompted participants to propose more advanced,
context-dependent notifications that would be more useful
to them. For example, H3C suggested notifications which
would suggest turning off the lights to save energy. H6A
wanted more intrusive notifications when something incorrect
happens (e.g., a window is open when it should not be).

We were not able to test whether notifications would be
helpful for identifying actions caused by specific automations,
because limitations of the SmartThings API did not let us see
which automation caused an event to happen. None of our
participants mentioned encountering a situation in which they
wanted more specific information about provenance.

Quick Access via Discovery Notifications. Most partici-
pants did not notice or see discovery notifications. (Unfortu-
nately, persistent notifications of this sort are not supported
on iOS, and few of our participants were Android users.) One
participant, H8D, was interested in these notifications, but for
convenience, not device discoverability, as it allowed him to
toggle the state of the device without opening the app.

Limited Concern about Privacy. No participants reported
that the notifications affected their sense of privacy, nor that
they changed their behavior as a result of knowing that noti-
fications would be shown to others. Participants also did not
report learning new information about others via notifications.

Notifications Were Overwhelming or Not Useful. For
some participants, the notifications were annoying and over-
whelming. H1A said she just did not care when other people,
like her husband and nanny, used devices. H7A complained
about redundant notification: each time someone walked
through the front door, their doorbell and contact sensor would
both trigger notifications, resulting in four notifications.

Other participants said that the notifications were not useful
when at home, because it was information that was already
apparent. Participants in H3 and H4 lived in small apartments,
and could naturally observe all of the information from the
notifications (e.g., the sound of others walking around and the
glow of lights in other rooms). And H7A said that their dogs
already notified them when people were at the front door.

6.4 Usability and Configuration Complexity

Hands-on experience with our app revealed that the complex-
ity of access controls and other smart home features were
adversely affecting the usability of the system. The complex-
ity came from both the granularity of the settings, and the
number of different devices managed by the home.

Complexity as a Barrier to Access Control Use. While we

168 28th USENIX Security Symposium USENIX Association

aimed to make our prototype’s access controls as easy to
understand as possible, the inherent complexity in the matrix
of options may have still been too much of a barrier for novice
users to configure them. For example, usability may have been
an issue for H8A/B, where both expressed interest in setting
various access controls during the feature walkthrough in the
initial interview, but did they did not ending up using them.
When we asked about other goals they might have for access
controls and the smart home in general, H8A said:

It interests me, but you have to think it through,
what you want to do, how it would benefit you...
part of the Smart Things is you’re taking on a bit of
a responsibility, getting it set up, getting it working,
it’s kind of like getting a new computer, but there’s
a bit of the downside, you have more options but
it’s complicated. (H8A-Exit)

Design Complexity from Combinations of Settings. Dur-
ing the study, participants requested more fine-grained options
for the access control and notification features. Based on this
feedback, we iterated on the implementation of our prototype
and released updates. However, we struggled with adding
these features, as each additional access control dimension
compounded the complexity of the interface.

One example was for location-based access controls. Ini-
tially, these access controls were set per-device. However,
H1A and H8B wanted to set these access controls per-user in
addition to per-device, so that they could restrict their nanny
and kids (respectively), but not themselves. To fulfill this re-
quest, we had to surface more options (3n options per device,
where n is the number of users, instead of 3 options per de-
vice). As another example, if we wanted to add toggles for
supervisory and reactive access controls to location-based
access control when users are not nearby and try to use the de-
vice, there would not be enough space to display these options
without an additional submenu, making it more laborious to
set policies for each user and device (see Figure 1c).

Usability is fundamentally in tension with the desire to sup-
port access control flexibility and surface all of these options
to users - we discuss this issue further in Section 7.

Displaying Access Control Policies. Participants remarked
that it would have been helpful if the main device control page
(Figure 1a) surfaced each device’s access control policies. Liv-
ing in a home with 14 devices, H1B struggled with identifying
and remembering which devices had access controls:

Seeing the list of all of the devices in the room,
and knowing which ones he could click, and which
ones he couldn’t, and which ones had to ask for
permission... (H1A-Exit)

H1 suggested an interface for favorite devices (a feature
supported by Vera), while H3 suggested that devices that you
did not have access to would simply be hidden.

Install Barrier. We attempted to make the install process as
painless as possible for our app, implementing a QR-code

passwordless public key authentication system for additional
users. However, even this barrier was too much for some
users — H1A did not want to go to the effort for adding their
nanny (despite stating the desire to set access controls for
her), and H8A did not feel confident in being able to add
her mother-in-law without our guidance. As a result, these
household members were either shut out of the smart home, or
accessed it via other means (i.e. Amazon Echo), bypassing our
prototype’s access controls and losing access to notifications.

7 Discussion

7.1 Lessons on Smart Home User Behaviors

Based on our in situ prototype evaluation, we surface lessons
about users’ security and privacy behaviors in smart homes,
including how they interact with concrete security and pri-
vacy features in practice, and how our observations of actual
behavior align with user preferences identified in prior work.

Limited Usage of Access Controls. Though our participants
mentioned multiple use cases for access controls in our initial
interviews, such as restrictions on guests, domestic workers,
and children, in practice, few of them made use of the access
controls we implemented. There are several possible reasons
for this. In two cases, usability was a barrier; one household
was discouraged by the complexity of the access control in-
terface, and the other by the difficulty of onboarding guests.
More commonly, participants did not have a strong need to
use access controls, either because they were unconcerned
about restricting access to mundane devices, or that existing
social norms and trust in their household checked against bad
behavior. Lastly, some participants chose not to use access
controls because it would interfere with other desired func-
tionality, like occasionally allowing children remote access.

These findings suggest that while at first glance there are
many user goals that could be achieved with access controls,
there are only a few specific use cases that access controls
are well suited for in practice, like limiting access for domes-
tic workers. But for other use cases where users have weak
or subtle preferences, access controls can be too rigid, com-
plex, or simply not useful, even with reactive and contextual
mechanisms, such as parental controls.

Importance of Social Norms. Among our study population,
we observed that in circumstances where prior work has
shown the potential for multi-user conflicts and privacy is-
sues, our participants often did not experience these problems
due to the norms of interpersonal behavior in their home.
For example, children were trusted to follow rules, room-
mates respected each others’ spaces, and people were not con-
cerned about information revealed by the smart home when it
matched their household’s privacy norms. This finding sug-
gests that in generally cooperative households, multi-user
security and privacy issues may be able to be addressed in

USENIX Association 28th USENIX Security Symposium 169

part by cultivating good norms around usage of the smart
home. We discuss this topic further below.

Acceptance of Security and Privacy Tradeoffs. As we ex-
pected from prior work [41], participants were willing to
accept (multi-user) security and privacy risks posed by usage
of the smart home because of the convenience and utility it
provided. Participants often explicitly mentioned the tradeoff
between convenience and privacy, when asked about their
concerns about data privacy. H8 decided against setting up
access controls (for parental controls) because the smart home
would be less convenient for the household, and H1 decided
against using access controls for their nanny because the setup
process would be inconvenient. While this finding is not new,
it re-emphasizes that when designing security and privacy
features for smart homes, these features must work with, and
not limit, users’ primary use cases for the smart home.

7.2 Revisiting our Design Principles
In Section 4, we proposed a set of design principles which we
hypothesized could help address multi-user security and pri-
vacy issues. Based on the insights provided by our evaluation
and user study, we revisit these principles:

Access Control Flexibility: Important But Not a Panacea.
Our results suggest that while access controls might not be
suitable for satisfying all user preferences, the flexible access
control mechanisms we implemented, such as location-based
access controls and per-device ownership, can help users in
clear-cut use cases, like guest access. However, we also found
that increasing flexibility also increases the complexity of
the interface, and as we discuss below, a challenging open
question remains how to support such a complex array of
options in a usable and useful way.

User Agency and Respect: Dominated by Social Norms.
Contrary to our initial hypotheses, we found that our par-
ticipants relied more heavily on household social norms to
support user agency and minimize conflicts than the access
control, notification, and device discovery features we de-
signed in our prototype. While such norms would not exist in
abusive or adversarial households, for generally cooperative
households, we propose a new research and design question
that we discuss further below: how can a multi-user smart
home be designed to support and leverage positive social
norms, rather than existing alongside or supplanting them?

Transparency of Smart Home Behaviors: Inconclusive.
Our results suggest that smart home transparency features did
not provide significant benefits for our participants, in terms of
our design principles (user agency and respect among users).
Participants were generally indifferent to the information pro-
vided by the activity and discovery notifications, though some
participants found them to be useful for other reasons: home
security and verifying that their automations were working.
However, our investigation is not sufficient to conclude that

transparency might not be valuable in other contexts, e.g.,
with cameras or voice assistants, or among people with more
adversarial relationships. It is also possible that our imple-
mentation of transparency via notifications was not effective,
and that another design, like calendar [26] or dashboard [5]
interfaces, would provide different reactions.

7.3 Design Recommendations and Challenges

Based on our findings and revised design principles, we sur-
face several design recommendations for multi-user smart
home systems, particularly for platforms that can orchestrate
access controls and features across all devices of the home.

Support Smart Home-Specific Access Control Needs. Our
study highlights a number of use cases for access controls
that appear to be common in smart home settings, includ-
ing restrictions on visitors, and different policies for dif-
ferent rooms. To support these use cases, we recommend
that smart home platforms support the following primitives:
(1) Location/proximity-based access control, for handling
guests and domestic workers, as well as restricting access to
media devices, (2) Time-based access control, also for guests,
(3) per-device roles for private rooms, (4) and per-user roles,
for limiting access to device and access control configuration.

Simplify Access Control Configuration. A system with all
of the above access control mechanisms will run into serious
usability challenges if it simply surfaces a large matrix of
multi-dimensional per-user, per-device options. In fact, such
complexity risks increasing the access gap between the smart
home’s primary user and others with less technical or inter-
personal power. It could also put the use of access control out
of reach for novice users. Moreover, complex policies could
introduce errors or conflicts between access control rules.

A good first step towards simplifying smart home access
control could be to use sensible defaults based on data on
people’s access control preferences, as suggested by He et
al. [16]. However, our results suggest that individual factors,
social norms, and conflicting use cases may cause household
needs to diverge from these broad preferences, so it is still
important to have a usable configuration interface. However,
it is not clear what kind of interface would be effective in this
context. In Section 7.4, we recommend that future work inves-
tigate systems for simplifying access control configuration in
smart homes, such as natural language-based policy creation.

Incorporate Voice Assistants into Access Control Sys-
tems. A major limitation of our prototype was that our access
control system could be (intentionally or unintentionally) by-
passed by sending a command through a voice assistant, such
as the Amazon Echo. This is likewise a challenge for current
smart home platforms: in platforms like SmartThings, voice
assistants and other third party apps like IFTTT are given
unrestricted access to smart home devices via OAuth integra-
tions. Additionally, current voice assistants do not explicitly

170 28th USENIX Security Symposium USENIX Association

perform voice recognition, so a smart home would not be able
to identify who is issuing a command. In order for access
controls to be consistently applied, voice assistants should
support voice-based authentication, and voice assistant manu-
facturers should work with smart home platforms to develop a
federated access control system. This is particularly important
as adoption of voice assistants increases and they become a
popular way to interact with smart homes.

Reduce User Onboarding Barrier. The smart home control
interface still needs to be made more accessible to users.
Even by our best efforts, a mobile app was too much to ask
for some participants to install without our direct assistance
and urging. If a smart home control system provides perfect
security and privacy features that are locked up in an app
that not all household members install, the benefits of these
features will be limited. And in worst-case scenarios, if a
household members cannot gain access to the smart home, it
can enable domestic abuse by those with control. We suggest
several potential approaches to address this issue:

One approach is to lower the installation barrier by mak-
ing a mobile web version of control interfaces. In our experi-
ence, Web APIs were sufficient for all functionality, except for
Bluetooth beacon scanning for proximity sensing — though
browsers intend to implement this feature in the future [7].

Another approach is to further simplify user authentication.
Our prototype required only a QR code rather than a user-
name/password for subsequent users. We suggest exploring
even more radical approaches, such as not requiring any tra-
ditional authentication to use the smart home, and instead
granting basic smart device control functions to anyone in
physical proximity (just as someone with physical access to a
manual light switch can toggle it).

7.4 Directions for Future Research

Our work also suggests research questions that we encourage
future work to investigate:

Study and Design for Positive Household Norms. We ob-
served in our study that in cooperative households, social
norms were effective at mitigating multi-user security and
privacy issues, sometimes more so than the features we im-
plemented in our prototype. Rather than trying to provide
features that play the same role as these social norms, like
location-based access controls for preventing inconsiderate
use of remote access, we suggest (1) studying households
that exhibit positive social norms around smart home usage
and (2) designing and evaluating smart home systems that
encourage the development of these norms in generally co-
operative households. Based on the results of our study, we
propose a few design “nudges” that could potentially instill
better behaviors in smart home users.

First, rather than asking users to design access control poli-
cies around considerate usage, smart home platforms could

automatically detect commands that are potential norm vi-
olations, and then ask the user “Are you sure?”, including
a reason for why the command might violate a norm. For
example, this prompt could be triggered when attempting to
control devices in another user’s private bedroom, or when
remotely controlling devices that would impact other people
physically present. Such a prompt could encourage users to
think twice about disturbing others, while still allowing for
seamless access if necessary.

Another type of nudge could promote user agency: during
the setup of a smart home, the app could encourage the person
installing the smart home to involve other occupants in the
setup process, including encouraging and even guiding the
setup of additional accounts and conversations about the dif-
ferent devices, automations, and policies that should be part of
the new smart home. How to best design such a conversational
guide is an interesting question for future work.

Nudges could also be designed to “scold” users for exces-
sive trolling or other playful behavior, like rapidly flicking
lights on and off. While it might be good to allow playful
experimentation when the smart home is set up initially, even-
tually the app could rate limit these behaviors, or display a
dialogue box encouraging the user to stop.

While norm-based nudges would of course not protect
against users with malicious intent, our study results suggest
that promoting positive norms could help reduce friction in
the case of generally cooperative households, where conflicts
and tension may arise from unfamiliarity with how one’s ac-
tions affect others in the smart home. Next, we discuss the
challenge of designing smart homes for adversarial settings.

Investigate Designs for Adversarial Situations. Smart
homes can enable or amplify harms in adversarial living
situations, like in households where domestic abuse is oc-
curing, or in homes with Airbnb-style rentals. While some
of the design principles we proposed could mitigate some
of these harms, such as using notifications to provide more
transparency about how surveillance cameras are being used,
our prototype would not provide adequate protections against
other harmful actions, such as a malicious admin abusing
their privileges to deny victims control of the home, or over-
riding protections against remote harassment that location or
role-based access controls could provide. This is a very chal-
lenging problem, because some of these security and privacy
features are inherently dual use: for example, admin roles and
access controls may desirable for parents to prevent children
from doing harmful things, but could be used by abusers to
exercise power over their victims. A critical but challenging
design question for future work is how to design smart home
access controls and monitoring that both protects users from
abuse, but still enables benign use cases.

Study Transparency Features for Privacy-Sensitive De-
vices. As discussed above, a limitation of our prototype was
that we could not provide activity notifications for privacy

USENIX Association 28th USENIX Security Symposium 171

sensitive smart home devices like voice assistants and secu-
rity cameras, because of the limitations of the SmartThings
API. We suspect that surfacing information about when audio
and video is being recorded or viewed could change users’
perceptions of the privacy risks of these devices, and could
help people identify when their privacy is being violated. We
propose an in situ evaluation of user reactions to a smart home
system that notifies people if they are being recorded, or if
another user views or listens to a log that they are present in.

Audio/video recording notifications could also be surfaced
not just in the smart home, but at a global level with coopera-
tion from mobile operating systems and device manufactur-
ers. Cameras and microphones could emit Bluetooth beacon
signals when they are active, so that users could receive notifi-
cations whenever they are nearby an active recording device.

Study Natural Language-based Access Control Policy
Creation for Smart Homes. During our interviews, we ob-
served that our participants were able to clearly convey their
access control preferences and hypothetical policies verbally.
Given that these policies are easily comprehensible in natu-
ral language, a possible way to simplify configuration is to
allow users to craft policies using a natural language inter-
face, rather than menus with drop-down lists and checkboxes.
While prior work has found that direct conversion from natu-
ral language to policy is possible but imprecise [20, 31, 32],
controlled natural language policy creation could be used to
constrain the space of usable words and sentence structures.
Using a controlled natural language approach, a possible inter-
face could be an autocomplete-style input, which guides users
through picking access control mechanisms, possible devices,
users, roles, and other conditions. While this approach was
found to be relatively usable in a systems administration con-
text [17, 30], future work should evaluate whether it is usable
for typical end users in a smart home setting.

Further Study of Automations and Attributions. We were
not able to fully study whether notifications could help users
with debugging automations, or attributing issues caused by
automations and third-party apps, because of technical limi-
tations of our prototype (specifically, that SmartThings does
not surface to third-party applications the provenance of pro-
grammatic smart device actuations). Other researchers have
proposed ways of preventing buggy or malicious behavior by
third-party smart home integrations, such as detecting prove-
nance [37] or contextual permission prompts for third-party
apps [19]. These research contributions are technically valu-
able but their usability and utility have not been tested with
real end users; we suggest that future work do so.

7.5 Limitations

Though an in-home user study allowed us to study how people
used our prototype under realistic circumstances, this study
design nevertheless comes with several limitations.

Most importantly, as discussed already, our prototype and
user study focused on generally cooperative households,
rather than households with adversarial relationships. Since
we required consent from all participating household mem-
bers, our sample is skewed towards households with suffi-
ciently functional interpersonal relationships to agree to par-
ticipate together in the study. Thus, we were unable to evaluate
how our prototype would perform in an adversarial setting,
nor did we gain insight into how to design for those settings.

Moreover, our protocol design involved conducting inter-
views with participants in a group setting, with the entire
household. It is possible that participants were unwilling to re-
veal multi-user conflicts and privacy issues, because it would
also reveal these problems to other household members.

Additionally, the devices our participants chose were gen-
erally not among the most invasive. This was due both to
technical limitations (e.g., our prototype could not integrate
with most security cameras using the SmartThings API), and
because we gave participants the freedom to choose devices
they were comfortable with. While our prototype did not in-
terface with these more privacy sensitive devices, we still
learned from participants via hypotheticals about access con-
trol grounded in their concrete experiences with our prototype
and their past experiences with those devices. Future work
should further consider multi-user smart home design in the
face of more invasive devices.

Finally, the complexity and cost of an in-home study limited
the feasible number of participating households, preventing us
from drawing any quantitative conclusions from our results.

Despite these limitations, we believe our study provides
valuable insights into how to design multi-user smart home se-
curity/privacy features for many (though not all) households.

8 Additional Related Work

Methodologically, our paper drew on a number of other in-
home studies of smart homes, from HCI and ubiquitous com-
puting. Most closely related to our work were the design
and evaluation of a calendar-based interface for smart home
control [26], and of a smart home data visualization dash-
board [5]. Other in-home studies in HCI have studied how
users interact with commercial smart homes in practice, like
general usage patterns and usability [4,18,25], setup and con-
figuration [9], and end user programming [39]. Researchers
have also studied how users perceive and use privacy sensitive
devices like cameras and voice assistants, both in-situ [28,40],
and in interviews or surveys with broader populations [21,42].

In terms of the security and privacy of smart home devices
and platforms, researchers have discovered vulnerabilities in
the underlying protocols and technologies (e.g., [2,15,29,38])
and studied the spread and behavior of the Mirai botnet that
targeted IoT devices [1]. Other work has analyzed security
and privacy weaknesses in smart home platforms that sup-
port third-party apps like SmartThings [11]. To address the

172 28th USENIX Security Symposium USENIX Association

risks posed by apps, researchers have proposed and evaluated
various defenses, including modifications to trigger-action
programming platforms to limit misuse of access tokens [13],
restricting apps using flow control [12], using provenance de-
tection to identify anomalies [37], and a contextual access con-
trol system to protect against malicious third-party apps [19].

9 Conclusion

Multi-user smart homes face unique security and privacy chal-
lenges, such as supporting a wide range of access control
preferences, and managing tensions and conflicts between
users. Finding the design of current smart home systems to be
insufficient for addressing these challenges, and recognizing
the gap in knowledge around what designs can meaningfully
improve end user experiences, we conducted an in-home user
study to investigate possible approaches and solutions. Focus-
ing on generally cooperative (rather than explicitly adversar-
ial) households, we designed a smart home control interface
based on design principles of access control flexibility, user
agency, respect among users, and transparency of smart home
behaviors. We deployed our prototype in seven households in
a month-long study to evaluate our proposed design principles,
and to improve our understanding of how users interact with
security and privacy features in practice. Based on the find-
ings of our user study, we provide design recommendations
and identify open challenges for future research. Among our
recommendations, we suggest that researchers improve the
usability of smart home access controls by developing more
usable configuration interfaces (such as natural language pol-
icy creation), and design smart home platforms that reduce
tensions and conflicts by leveraging and scaffolding positive
household norms.

Acknowledgements

We are extremely grateful to our user study participants for
making this research possible, as well as our pilot study par-
ticipant, Greg Akselrod. We would like to thank Christine
Geeng, Ivan Evtimov, Kiron Lebeck, and Shrirang Mare for
reviewing an earlier draft of this paper. We would also like to
thank Tadayoshi Kohno for his feedback in the early stages
of this research. We thank Sarah Mennicken for her advice on
conducting in-home user studies. Lastly, we thank our anony-
mous reviewers and our shepherd, Sascha Fahl, for providing
us valuable feedback for improving our paper. This research
was supported in part by the National Science Foundation
under Award CNS-1513584.

References

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halder-
man, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,
Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sulli-
van, K. Thomas, and Y. Zhou. Understanding the Mirai
Botnet. In 26th USENIX Conference on Security Sym-
posium, 2017.

[2] R. Baldwin. Researcher finds huge security flaws in
Bluetooth locks. https://www.engadget.com/2016/
08/10/researcher-finds-huge-security-flaws-
in-bluetooth-locks/, 2016.

[3] N. Bowles. Thermostats, Locks and Lights: Dig-
ital Tools of Domestic Abuse. https://www.
nytimes.com/2018/06/23/technology/smart-
home-devices-domestic-abuse.html, 2018.

[4] A. B. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu,
and C. Dixon. Home Automation in the Wild: Chal-
lenges and Opportunities. In SIGCHI Conference on
Human Factors in Computing Systems, CHI ’11, pages
2115–2124, New York, NY, USA, 2011. ACM.

[5] N. Castelli, C. Ogonowski, T. Jakobi, M. Stein,
G. Stevens, and V. Wulf. What Happened in my Home?:
An End-User Development Approach for Smart Home
Data Visualization. In CHI Conference on Human Fac-
tors in Computing Systems (CHI), 2017.

[6] E. K. Choe, S. Consolvo, J. Jung, B. L. Harrison, S. N.
Patel, and J. A. Kientz. Investigating receptiveness to
sensing and inference in the home using sensor prox-
ies. In 14th International Conference on Ubiquitous
Computing (UbiComp), 2012.

[7] Chromium blink-dev mailing list. Intent to Implement:
Web Bluetooth Scanning. https://groups.google.
com/a/chromium.org/forum/#!topic/blink-
dev/aVxGkVQ2xRk, 2018.

[8] N. Dell, V. Vaidyanathan, I. Medhi-Thies, E. Cutrell,
and W. Thies. “Yours is better!”: Participant Response
Bias in HCI. In SIGCHI Conference on Human Factors
in Computing Systems (CHI), 2012.

[9] A. Demeure, S. Caffiau, E. Elias, and C. Roux. Building
and Using Home Automation Systems: A Field Study.
In International Symposium on End User Development
(IS-EUD), 2015.

[10] Y. Elrakaiby, F. Cuppens, and N. Cuppens-Boulahia. In-
teractivity for Reactive Access Control. In International
Conference on Security and Cryptography (SECRYPT),
2008.

[11] E. Fernandes, J. Jung, and A. Prakash. Security Analysis
of Emerging Smart Home Applications. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 636–
654, 2016.

[12] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato,
M. Conti, and A. Prakash. FlowFence: Practical Data

USENIX Association 28th USENIX Security Symposium 173

Protection for Emerging IoT Application Frameworks.
In USENIX Security Symposium, pages 531–548, Austin,
TX, 2016. USENIX Association.

[13] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. De-
centralized Action Integrity for Trigger-Action IoT Plat-
forms. In Network and Distributed System Security
Symposium (NDSS), 2018.

[14] C. Geeng and F. Roesner. Who’s In Control?: Interac-
tions In Multi-User Smart Homes. In CHI Conference
on Human Factors in Computing Systems (CHI), 2019.

[15] J. Granjal, E. Monteiro, and J. Sá Silva. Security for the
Internet of Things: A Survey of Existing Protocols and
Open Research Issues. IEEE Communications Surveys
Tutorials, 17(3):1294–1312, thirdquarter 2015.

[16] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fer-
nandes, and B. Ur. Rethinking Access Control and Au-
thentication for the Home Internet of Things (IoT). In
USENIX Security Symposium, 2018.

[17] P. Inglesant, M. A. Sasse, D. W. Chadwick, and L. L.
Shi. Expressions of expertness: the virtuous circle of
natural language for access control policy specification.
In SOUPS, 2008.

[18] T. Jakobi, C. Ogonowski, N. Castelli, G. Stevens, and
V. Wulf. The Catch(es) with Smart Home: Experiences
of a Living Lab Field Study. In CHI 2017, 2017.

[19] Y. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,
Z. M. Mao, and A. Prakash. ContexloT: Towards Pro-
viding Contextual Integrity to Appified IoT Platforms.
In Network and Distributed System Security Symposium
(NDSS), 2017.

[20] H.-T. Le, D. C. Nguyen, L. C. Briand, and B. Hourte.
Automated inference of access control policies for web
applications. In SACMAT, 2015.

[21] N. Malkin, J. Bernd, M. Johnson, and S. Egelman.
“What Can’t Data Be Used For?” Privacy Expectations
about Smart TVs in the US. In European Workshop on
Usable Security (Euro USEC), 2018.

[22] S. Mare, L. Girvin, F. Roesner, and T. Kohno. Consumer
Smart Homes: Where We Are and Where We Need to
Go. In IEEE Workshop on Mobile Computing Systems
and Applications (HotMobile), 2019.

[23] T. Matthews, K. O’Leary, A. Turner, M. Sleeper, J. P.
Woelfer, M. Shelton, C. Manthorne, E. F. Churchill, and
S. Consolvo. Stories from survivors: Privacy & se-
curity practices when coping with intimate partner abuse.
In CHI Conference on Human Factors in Computing
Systems, 2017.

[24] M. L. Mazurek, P. F. Klemperer, R. Shay, H. Takabi,
L. Bauer, and L. F. Cranor. Exploring Reactive Access
Control. In CHI ’10 Extended Abstracts on Human
Factors in Computing Systems, 2010.

[25] S. Mennicken and E. M. Huang. Hacking the Natural
Habitat: An In-the-Wild Study of Smart Homes, Their

Development, and the People Who Live in Them. In
International Conference on Pervasive Computing (Per-
vasive), 2012.

[26] S. Mennicken, D. Kim, and E. M. Huang. Integrating
the Smart Home into the Digital Calendar. In CHI
Conference on Human Factors in Computing Systems
(CHI), 2016.

[27] C. Nandi and M. D. Ernst. Automatic Trigger Genera-
tion for Rule-based Smart Homes. In ACM SIGPLAN
Workshop on Programming Languages and Analysis for
Security (PLAS), 2016.

[28] A. Oulasvirta, A. Pihlajamaa, J. Perkiö, D. Ray,
T. Vähäkangas, T. Hasu, N. Vainio, and P. Myllymäki.
Long-term Effects of Ubiquitous Surveillance in the
Home. In 14th International Conference on Ubiquitous
Computing (UbiComp), 2012.

[29] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn.
IoT Goes Nuclear: Creating a ZigBee Chain Reaction.
IEEE Symposium on Security and Privacy, 2017.

[30] L. L. Shi and D. W. Chadwick. A controlled natural
language interface for authoring access control policies.
In SAC, 2011.

[31] J. Slankas and L. A. Williams. Access control policy ex-
traction from unconstrained natural language text. 2013
International Conference on Social Computing, pages
435–440, 2013.

[32] J. Slankas, X. Xiao, L. A. Williams, and T. Xie. Relation
extraction for inferring access control rules from natural
language artifacts. In ACSAC, 2014.

[33] SmartThings Community Forums. Guest Access - So-
lution? https://community.smartthings.com/t/
guest-access-solution/97288/26, 2017.

[34] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and
L. Jia. Some Recipes Can Do More Than Spoil Your
Appetite: Analyzing the Security and Privacy Risks of
IFTTT Recipes. In 26th International Conference on
World Wide Web (WWW), 2017.

[35] B. Ur, J. Jung, and S. Schechter. The Current State of
Access Control for Smart Devices in Homes. In Work-
shop on Home Usable Privacy and Security (HUPS).
HUPS 2014, 2013.

[36] B. Ur, J. Jung, and S. E. Schechter. Intruders Versus In-
trusiveness: Teens’ and Parents’ Perspectives on Home-
Entryway Surveillance. In ACM International Joint
Conference on Pervasive and Ubiquitous Computing
(UbiComp), 2014.

[37] Q. Wang, W. U. Hassan, A. M. Bates, and C. A. Gunter.
Fear and Logging in the Internet of Things. In Network
and Distributed System Security Symposium (NDSS),
2018.

[38] M. Wollerton. Here’s what happened when someone
hacked the August Smart Lock. https://www.cnet.
com/news/august-smart-lock-hacked/, 25 2016.

174 28th USENIX Security Symposium USENIX Association

[39] J. Woo and Y.-K. Lim. User Experience in Do-It-
Yourself-Style Smart Homes. In ACM International
Joint Conference on Pervasive and Ubiquitous Comput-
ing (UbiComp), 2015.

[40] P. Worthy, B. Matthews, and S. Viller. Trust Me: Doubts
and Concerns Living with the Internet of Things. In
ACM Conference on Designing Interactive Systems
(DIS), 2016.

[41] E. Zeng, S. Mare, and F. Roesner. End User Security and
Privacy Concerns with Smart Homes. In Symposium on
Usable Privacy and Security (SOUPS), 2017.

[42] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster.
User Perceptions of Smart Home IoT Privacy. Pro-
ceedings of the ACM on Human-Computer Interaction
(PACMHCI), 2:200:1–200:20, 2018.

Appendices

A Initial Interview Script

Control and Agency
• Who found out about the study? Who wanted to be a

part of it?
• Did you set up your smart home together, or did one

person take the lead?
• Do all of you have access to all smart home devices right

now? If not, why?
• What are you hoping that your smart home will do for

you?
Multi-user Privacy

• Have you ever unexpectedly learned anything about
someone else, through the smart home?

• Can you think of ways you could “spy” on people using
your smart home? Would you do it?

• Do you think it’s a good or bad thing that you can find
out those things?

Transparency
• Are you having any trouble figuring out how to control

your devices? Or figuring out which devices are smart?
• Has there been any confusing moments where you

weren’t sure what was causing something to happen
in your home? How did you figure it out?

Access Control Preferences
• Can you think of any situations where you want to re-

strict where people could remotely control devices from?
• Can you think of any situations where you want to re-

strict certain people from controlling certain devices?
General Security and Privacy Questions

• Do you have any security and privacy concerns about
smart homes?

• Are there any potential security and privacy issues that
you are aware of, but aren’t worried about?

B Exit Interview Script

General Usage and Control
• How did you end up using your new devices?
• Did you set up any automations?
• How involved were each of you in configuring the home?

Like setting up rooms and permissions?
Notifications and Transparency

• Let’s talk about the activity notifications feature - the
notifications you can get when someone turns something
on or off, or trips one of your sensors. Did you have this
feature on? (Why not?)

• How did you set your preferences for notifications?
Why? Which devices? Proximity based or not?

• In what situations did you normally see notifications?
• Did seeing notifications provide any useful or interesting

information?
• Did any notifications help you understand what your

smart home was doing?
• Did you learn something about other people’s behavior

that you wouldn’t have found out about without notifica-
tions?

• Did you change your behavior in your home because of
the notifications?

• Were the notifications overwhelming, or not useful?
• What changes would you like made to make to this

feature?
• Leaving aside the particular capabilities of our app, can

you think of any situation where it would it be useful to
get notifications, maybe just for particular devices?

Supervisory, Reactive, and Role-based Access Control
• Let’s move onto the allowed users feature. This is the

feature that lets you designate owners for each device,
and have everyone else ask for permission to use it. Did
you use this feature?

• If so, who was restricted? What devices and policies did
you set? (block, ask, ask if not nearby)

• If not, why?
• How did you all decide on who to set restrictions on?
• In what situations did <restricted user> have to ask for

permission to use a device?
• Did anyone try to circumvent restrictions on them? How?
• To blocked user: was it clear to you which devices you

needed permission to use? How did you find out?
• To blocked user: How comfortable did you feel pushing

the button to ask for permission?
• To blocked user: Did you change your behavior as a

result of having to ask for permission?
• To admin users: How did you feel when you got notifi-

cations when someone asked for permissions?
• To blocked user: when you asked for permission, did the

other person usually respond in time?

USENIX Association 28th USENIX Security Symposium 175

• To admin user: did you receive notifications in a timely
manner? Were you able to fulfill requests?

• What changes would you like made to make to this
feature?

Location-based Access Control
• Now let’s talk about permissions for remote control. This

is the setting where you can make people ask for per-
mission to use a device if they aren’t nearby.Were any
devices restricted to remote control in a particular loca-
tion? If not, why?

• How did you all decide on which devices to set restric-
tions on?

• In what situations did you have to ask for permission to
use a device?

• Did anyone try to circumvent the restrictions on a de-
vice? How?

• When you had to ask for permission, did someone re-
spond in time?

• When you got a permission request, did you receive a
notification in a timely manner? Were you able to fulfill
the request?

• Did the beacons usually accurate put you in the correct
room?

• Was it clear which devices were location restricted? How
did you know?

• To blocked user: How comfortable did you feel pushing
the button to ask for permission?

• To blocked user: Did you change your behavior as a
result of having to ask for permission?

• To admin users: How did you feel when you got notifi-
cations when someone asked for permissions?

• Did you ever use this feature to check who was home?
• What changes would you like made to make to this

feature?
• Hypothetically, imagine we built an app that had ev-

ery access control scheme and level of granularity you
wanted - custom permission tiers, time-based access con-
trols, proximity-based access controls, and device-level
granularity. How would you set these for the different
people who visit your home? (Spouse, children, guests,
domestic workers?)

C Codes Used for Qualitative Analysis

• Access control - ask for permission
• Access control - complexity/discoverability
• Access control - conflicts with other goal

• Access control - desired use cases
• Access control - location-based
• Access control - not useful
• Access control - role-based

• Access control - side channel
• Access control - trust/respect each other
• Access control - unconcerned about device
• Access control - useful
• Multi-user - conflicts
• Multi-user - pranks
• Multi-user - privacy
• Multi-user - unexpected home behavior
• Notifications - checking/debugging automations
• Notifications - desired use cases
• Notifications - not noisy
• Notifications - not useful
• Notifications - privacy
• Notifications - proximity scoping
• Notifications - too noisy
• Notifications - useful
• Relationship - children
• Relationship - couples
• Relationship - domestic workers
• Relationship - guests
• Relationship - roommates
• SecPriv - Accepts risk
• SecPriv - Concern about location/proximity
• SecPriv - Concern about others
• SecPriv - Non concern
• SecPriv - Privacy concerns
• Usability - automation confusion
• Usability - complexity
• Usability - discoverability/naming
• Usability - install barrier
• Usability - need phone
• Usability - setup difficulty
• Utility - automation
• Utility - general convenience
• Utility - provides security
• Utility - remote control
• Utility - time cost

176 28th USENIX Security Symposium USENIX Association

PAC it up: Towards Pointer Integrity using ARM Pointer Authentication∗

Hans Liljestrand
Aalto University, Finland

Huawei Technologies Oy, Finland

hans.liljestrand@aalto.fi

Carlos Chinea Perez
Huawei Technologies Oy, Finland

carlos.chinea.perez@huawei.com

Thomas Nyman
Aalto University, Finland

thomas.nyman@aalto.fi

Jan-Erik Ekberg
Huawei Technologies Oy, Finland

Aalto University, Finland

jan.erik.ekberg@huawei.com

Kui Wang
Huawei Technologies Oy, Finland

Tampere University of Technology, Finland

wang.kui1@huawei.com

N. Asokan
Aalto University, Finland

asokan@acm.org

Abstract
Run-time attacks against programs written in memory-

unsafe programming languages (e.g., C and C++) remain a
prominent threat against computer systems. The prevalence
of techniques like return-oriented programming (ROP) in at-
tacking real-world systems has prompted major processor
manufacturers to design hardware-based countermeasures
against specific classes of run-time attacks. An example is
the recently added support for pointer authentication (PA)
in the ARMv8-A processor architecture, commonly used in
devices like smartphones. PA is a low-cost technique to au-
thenticate pointers so as to resist memory vulnerabilities. It
has been shown to enable practical protection against mem-
ory vulnerabilities that corrupt return addresses or function
pointers. However, so far, PA has received very little atten-
tion as a general purpose protection mechanism to harden
software against various classes of memory attacks.

In this paper, we use PA to build novel defenses
against various classes of run-time attacks, including the
first PA-based mechanism for data pointer integrity. We
present PARTS, an instrumentation framework that inte-
grates our PA-based defenses into the LLVM compiler and
the GNU/Linux operating system and show, via systematic
evaluation, that PARTS provides better protection than cur-
rent solutions at a reasonable performance overhead.

1 Introduction

Memory corruption vulnerabilities, such as buffer overflows,
continue to be a prominent threat against modern software
applications written in memory-unsafe programming lan-
guages, like C and C++. Theses vulnerabilities can be ex-
ploited to overwrite data in program memory. By over-
writing control data, such as code pointers and return ad-
dresses, attackers can redirect execution to attacker-chosen
locations. Return-oriented programming (ROP) [35] is a
well known technique that allows the attacker to leverage

Extended version of this article is available as a technical report [24].

corrupted control-data and pre-existing code sequences to
construct powerful (Turing-complete) attacks without the
need to inject code into the victim program. By over-
writing non-control data, such as variables used for deci-
sion making, attackers can also influence program behav-
ior without breaking the program’s control-flow integrity
(CFI) [1]. Such attacks can cause the program to leak sen-
sitive data or escalate attacker privileges. Recent work has
shown that non-control-data attacks can also be generalized
to achieve Turing-completeness. Such data-oriented pro-
gramming (DOP) attacks [16] are difficult to defend against,
and are an appealing attack technique for future run-time ex-
ploitation.

Software defenses against run-time attacks can offer
strong security guarantees, but their usefulness is limited by
high performance overhead, or requiring significant changes
to system software architecture. Consequently, deployed so-
lutions (e.g., Microsoft EMET [26]) trade off security for
performance. Various hardware-assisted defenses in the re-
search literature [15, 42, 41, 14, 38, 40, 28, 32] can dras-
tically improve the efficiency of attack detection, but the
majority of such defenses are unlikely to ever be deployed
as they require invasive changes to the underlying proces-
sor architecture. However, the prevalence of advanced at-
tack techniques (e.g, ROP) in modern run-time exploita-
tion has prompted major processor vendors to integrate se-
curity primitives into their processor designs to thwart spe-
cific attacks efficiently [17, 29, 31]. Recent additions to
the ARMv8-A architecture [3] include new instructions for
pointer authentication (PA). PA uses cryptographic message
authentication codes (MACs), referred to as pointer authen-
tication codes (PACs), to protect the integrity of pointers.
However, PA is vulnerable to pointer reuse attacks where an
authenticated pointer is substituted with another [31]. Practi-
cal PA-based defenses must minimize the scope of such sub-
stitution.

Goals and Contributions In this work, we further the
security analysis of ARMv8-A PA by categorizing pointer

USENIX Association 28th USENIX Security Symposium 177

reuse attacks, and show that PA enables practical defenses
against several classes of run-time attacks. We propose an
enhanced scheme for pointer signing that enforces pointer
integrity for all code and data pointers. We also propose run-
time type safety which constrains pointer substitution attacks
by ensuring the pointer is of the correct type. Pointer signing
and run-time type safety are effective against both control-
flow and data-oriented attacks. Finally, we design and im-
plement Pointer Authentication Run-Time Safety (PARTS),
a compiler instrumentation framework that leverages PA to
realize our proposed defenses. We evaluate the security
and practicality of PARTS to demonstrate its effectiveness
against memory corruption attacks. Our main contributions
are:
• Analysis: A categorization and analysis of pointer reuse

and other attacks against ARMv8-A pointer authentica-
tion (Section 3).
• Design: A scheme for using pointer integrity to system-

atically defend against control-flow and data-oriented
attacks, and run-time type safety, a scheme for guar-
anteeing safety for data and code pointers at run-time
(Section 5).
• Implementation: PARTS, a compiler instrumentation

framework that uses PA to realize data pointer, code
pointer, and return address signing (Section 6).
• Evaluation: Systematic analysis of PARTS showing

that it has a reasonable performance overhead (< 0.5%
average overhead for code-pointer and return address
signing, 19.5% average overhead for data-pointer sign-
ing in nbench-byte (Section 7)) and provides better se-
curity guarantees than fully-precise static CFI (9).

We make the source code of PARTS publicly available at
https://github.com/pointer-authentication.

2 Background

2.1 Run-time attacks
Programs written in memory-unsafe languages are prone
to memory errors like buffer-overflows, use-after-free er-
rors and format string vulnerabilities [39]. Traditional
approaches for exploiting such errors by corrupting pro-
gram code have been rendered largely ineffective by the
widespread deployment of measures like data execution pre-
vention (DEP). This has given rise to two new attack classes:
control-flow attacks and data-oriented attacks [11].

2.1.1 Control-flow attacks (on ARM)

Control-flow attacks exploit memory errors to hijack pro-
gram execution by overwriting code pointers (function return
addresses or function pointers). Corrupting a code pointer
can cause a control-flow transfer to anywhere in executable
memory. Corrupting the return address of a function can be

used for ROP attacks, which are feasible on several architec-
tures, including ARM [19].

ARM processors, similar to other RISC processor designs,
have a dedicated Link Register (LR) that stores the return ad-
dress. LR is typically set during a function call by the Branch
with Link (bl) instruction. An attacker cannot directly influ-
ence the value of LR, as it is unlikely for a program to con-
tain instructions for directly modifying it. However, nested
function calls require the return address of a function to be
stored on the stack before the next function call replaces the
LR value. While the return address is stored on the stack, an
attacker can use a memory error to modify it to subsequently
redirect the control flow on function return. On both x86 and
ARM, it is possible to perform ROP attacks without the use
of return instructions. Such attacks are collectively referred
to as jump-oriented programming (JOP) [9].

Control-flow integrity (CFI) [1] is a prominent defense
technique against control-flow attacks. The goal of CFI is
to allow all the control flows present in a program’s control-
flow graph (CFG), while rejecting other flows. Widely de-
ployed CFI solutions are less precise than state-of-the-art so-
lutions presented in scientific literature.

2.1.2 Data-oriented attacks

In contrast to control-flow attacks, data-oriented attacks
can influence program behavior without the need to mod-
ify code pointers. Instead, they corrupt variables that in-
fluence the program’s decision making, or leak sensitive in-
formation from program memory. Such attacks are called
non-control-data attacks. Chen et al [11] demonstrated a
variety of non-control-data attacks for forging user creden-
tials, changing security critical configuration parameters, by-
passing security checks, and escalating privileges. Recent
work on DOP [16] showed that non-control-data corruption
can also enable expressive attacks without compromising
control-flow integrity. DOP may compromise the input of
individual program operations and chain together a chosen
sequence of operations to achieve the intended functionality.

A data-oriented attack can in principle corrupt arbitrary
program objects, but corrupting data pointers is often the pre-
ferred attack vector [12]. In Chen et al.’s attack against the
GHTTPD web server [11], a stack buffer overflow is used to
corrupt a data pointer used in input string validation in order
to bypass security checks on the input under the attacker’s
control. Data pointers are also routinely corrupted in heap
exploitation. For instance, the “House of Spirit” attack on
Glibc1, involves corrupting a pointer returned by malloc()
to trick subsequent malloc() calls into returning attacker
controlled memory chunks. The DOP attacks in [16] also in-
volve the corruption of pointers as a means to control which
data is processed by vulnerable code.

1Team Shellphish repository of educational heap exploitation tech-
niques: https://github.com/shellphish/how2heap

178 28th USENIX Security Symposium USENIX Association

https://github.com/pointer-authentication
https://github.com/shellphish/how2heap

address

PACPAC address

Pointer

Pointer

pacia pointer, modifier;

keyed-MACPA-key

Figure 1: The PAC is created using key-specific PA in-
structions (pacia) and is a keyed MAC calculated over the
pointer address and a modifier.

2.2 ARM Pointer Authentication

ARMv8.3-A includes a new feature called pointer authen-
tication (PA). PA is intended for checking the integrity of
pointers with minimal size and performance impact. It is
available when the processor executes in 64-bit ARM state
(AArch64). PA adds instructions for creating and authen-
ticating pointer authentication codes (PACs). The PAC is
a tweakable message authentication code (MAC) calculated
over the pointer value and a 64-bit modifier as the tweak
(Figure 1). Different combinations of key and modifier pairs
allow domain separation among different classes of authen-
ticated pointers. This prevents authenticated pointer values
from being arbitrarily interchangeable with one another.

The idea of using of MACs to protect pointers at run-time
is not new. Cryptographic CFI (CCFI) [25] uses MACs to
protect control-flow data such as return addresses, function
pointers, and vtable pointers. Unlike ARMv8-A PA, CCFI
uses hardware-accelerated AES for speeding up MAC calcu-
lation. Run-time software checks are needed to compare the
calculated MAC to a reference value. PA, on the other hand,
uses either QARMA [5] or a manufacturer-specific MAC,
and performs the MAC comparison in hardware.

64-bit ARM processors only use part of the 64-bit address
space for virtual addresses (Figure 2). The PAC is stored
in the remaining unused bits of the pointer. On a default
AArch64 Linux kernel configuration with 39 bit addresses
and without address tagging [3, D4.1.4], the PAC size is 24
bits. However, depending on the memory addressing scheme
and whether address tagging is used, the size of the PAC is
between 3 and 31 bits [31]. Security implications of the PAC
size are discussed in Section 9.

PA provides five different keys for PAC generation: two
for code pointers, two for data pointers, and one for generic
use. The keys are stored in hardware registers configured
to be accessible only from a higher privilege level: e.g., the
kernel maintains the keys for a user space process, generat-
ing keys for each process at process exec. The keys remain
constant throughout the process lifetime, whereas the mod-
ifier is given in an instruction-specific register operand on
each PAC creation and authentication (i.e., MAC verifica-
tion). Thus it can be used to describe the run-time context in

0va_size5563

addresstag / reserved reserved

PACPAC

upper/lower bit

Figure 2: Pointer layout on 64-bit ARM. The PAC is stored
in the reserved bits, and its size depends on the used virtual
address range. If pointer tagging is disabled, then the PAC
can also extend to the tag bits.

which the pointer is created and used. The modifier value is
not necessarily confidential (see Section 4) but ideally such
that it 1) precisely describes the context of use in which the
pointer is valid, and 2) cannot be influenced by the attacker.

PA is used by instrumenting code with PAC creation and
authentication instructions. PA instruction mnemonics are
generally prefixed either with pac or aut for creation and
authentication, respectively, followed by two characters that
select one of the data or code keys. For instance, the pacia
instruction in Figure 1 will generate an authenticated pointer
(pac) based on the instruction (i) A-key (a). Table 5 in Ap-
pendix C provides a list of PA instructions referred to in
this paper. An authenticated pointer cannot be used directly,
as the PAC embedded in the pointer value intentionally inter-
feres with address translation. The corresponding PA authen-
tication instruction (in this case, autia) removes the PAC
from the pointer if authentication is successful, i.e., if the
current pointer value, key and modifier for autia yields a
PAC that matches the PAC embedded in the pointer. If au-
thentication fails, the pointer is invalidated such that a deref-
erence or call using the pointer will cause a memory trans-
lation fault. Dedicated PA instructions are encoded in NOP
space; older processors without PA support will ignore them.

Return address signing. Qualcomm’s return address sign-
ing scheme [31] is the first to make use of ARMv8-A PA. It
was first introduced in Linaro’s GCC toolchain, but has been
supported by mainline GCC since version 7.02. It thwarts at-
tacks that manipulate function return addresses through stack
corruption (see Section 2.1.1) by ensuring that the return ad-
dress in LR always contains a PAC when written to or re-
trieved from memory. Listing 1 shows an example.

The instrumentation adds paciasp (À) at beginning of the
function prologue, before the LR value is stored on the stack.
paciasp adds a PAC tag using the current Stack Pointer (SP)
value as the modifier. Before function return, autiasp (Á)
authenticates the pointer and either removes the PAC or in-
validates the pointer. An alternative is to use the combined
autiasp+ret instruction, retaa, but it is not backwards-
compatible with older processors.

2GCC return address signing and PA support is based on patches
provided by ARM, https://github.com/gcc-mirror/gcc/commit/
06f29de13f48f7da8a8c616108f4e14a1d19b2c8

USENIX Association 28th USENIX Security Symposium 179

https://github.com/gcc-mirror/gcc/commit/06f29de13f48f7da8a8c616108f4e14a1d19b2c8
https://github.com/gcc-mirror/gcc/commit/06f29de13f48f7da8a8c616108f4e14a1d19b2c8

f u n c t i o n :
pac iasp ; À c r e a t e PAC
s t p FP , LR , [SP , #0] ; s t o r e LR
; . . .
ldp FP , LR , [SP , #0] ; l oad LR
a u t i a s p ; Á a u t h e n t i c a t e
r e t ; r e t u r n

Listing 1: Return address signing using PA. At funtion entry,
paciasp is used to create a PAC in LR (À). The value is then
authenticated with autiasp before return (Á).

The PAC cryptographically binds the return address to the
current SP value. It is valid only when authenticated using
the same SP value as on PAC creation. The goal is to limit
the validity of the PAC to the function invocation that created
it, thus preventing reuse of authenticated return addresses.

3 Attacks on Pointer Authentication

PA prevents an attacker from injecting or forging pointer val-
ues. This effectively prevents any attack that relies on cor-
rupting pointers, resisting even attackers with arbitrary ac-
cess to program memory.

The modifier value used in computing a PAC can depend
on both static (e.g., a hard-coded value) and dynamic (e.g.,
the SP) information. We assume that the program code it-
self is not confidential and that the attacker can learn how
dynamic modifiers are generated and may infer their values.

PA also relies on the security of the underlying crypto-
graphic primitives. In particular, an attacker may attempt
to brute-force either the PA keys themselves, or individual
PAC values. Sophisticated adversaries may even attempt
cryptanalysis attacks based on known PAC values, or side-
channels attacks against the hardware circuitry for comput-
ing PACs. The security of the QARMA block cipher has
already been analyzed [43, 23]. We leave the scrutiny of the
cryptographic building blocks outside the scope of this pa-
per. Nevertheless, the limited PAC size means that guessing
attacks are a potential concern. We discuss the feasibility of
brute-forcing PACs in Section 7.2.4. Assuming proper pre-
cautions for the lifetime of PA keys (see Section 2.2), we
do not consider guessing attacks the primary attack vector
against PA. However, the following concerns for the security
of PA-based defenses remain: 1) an attacker controlling the
creation of PAC values, or 2) an attacker reusing previously
authenticated pointers.

Malicious PAC generation. Attackers can potentially
control PAC values in three ways, by controlling:

1. the unauthenticated pointer value before PAC creation:
get an arbitrary authenticated pointer for any context
with the same modifier and PA key.

2. control the PA modifier value: get an authenticated
pointer for a context with the same PA key, but with
an attacker-chosen modifier.

3. both: get arbitrary authenticated pointers for a context
with attacker-chosen modifier, and the same PA key.

To prevent the attacker from generating arbitrary authen-
ticated pointers, the program must not contain PA creation
instructions with attacker controlled inputs. Also, a control-
flow attack could be mounted by chaining together instruc-
tion sequences to prepare the PA operand registers with at-
tacker controlled input and then jump to a PA instruction at
another part of the program. This suggests that PA-based de-
fenses must provide, or be combined with, CFI guarantees
that prevent the use of individual authentication instructions
as attacker-controlled gadgets.

Reuse attacks. The attacker can read authenticated point-
ers (including PAC values), and later reuse them to either:

• rollback an authenticated pointer to a previous value, or
• substitute an authenticated pointer with another using

the same PA modifier.

For instance, in GCC’s return address signing scheme
(Section 2.2), the return address is bound to the location
of the stack frame by using the current SP value as the PA
modifier. However, the SP value is not necessarily unique
to a specific function invocation. Consequently, an attacker
can reuse the authenticated return addresses value from one
function when a different vulnerable function executes with
a matching SP value. Given that typical programs offer no
guarantees on the uniqueness of SP values between different
function invocations, this approach exposes a large attack
surface for pointer reuse attacks. Therefore, a concern for
any PA-based defense is partitioning authenticated pointers
into distinct classes based on different <PA key, modifier>
pairs.

Attackers can reuse only those pointers they can observe
(as opposed all possible values a function pointer can take).
Even with full read access to memory (and hence the ability
to observe any pointer value that has been generated so far),
attackers are still limited to authenticated pointer values the
program has already generated.

4 Adversary Model and Requirements

4.1 Pointer Integrity

Kuznetsov et al. [21] introduced the idea of code pointer in-
tegrity: ensuring precise memory safety for all code point-
ers in a program. Since control-flow attacks depend on the

180 28th USENIX Security Symposium USENIX Association

manipulation of code pointers, guaranteeing code pointer in-
tegrity will render all control-flow attacks impossible [21].

The notion of pointer integrity is generalizable to both
code and data pointers. In Section 9.1, we provide a more
rigorous definition of pointer integrity. Intuitively, pointer
integrity aims to prevent unintentional changes to pointers
while they remain in program memory so that the value of a
pointer at the time it is “used” (e.g., dereferenced or loaded
from memory) is the same as when it was created or stored on
memory. In particular, integrity-protected pointers reference
the intended target objects. As explained in Section 2.1, all
control-flow attacks, all known DOP attacks and many other
data-oriented attacks rely on the manipulation of vulnerable
pointers. Consequently, ensuring pointer integrity will pre-
vent these attacks.

4.2 Attacker Capabilities

To reason about how effectively PA defends against state-
of-the-art attacks we assume attacker capabilities consistent
with prior work on run-time attacks (Section 2.1). Our adver-
sary model assumes a powerful attacker with arbitrary mem-
ory read and write capabilities restricted only by DEP. The
attacker can thus read any program memory and write to non-
code segments. We further assume that the attacker has no
control of higher privilege levels, i.e., an attacker targeting a
user space process cannot access the kernel or higher privi-
lege levels. Specifically, we assume that the attacker cannot
infer the PA keys, as they are in registers not directly read-
able from user space (Section 2.2). We discuss protection of
kernel code using PA in Section 10. The attacker’s ability to
read arbitrary memory precludes the use of randomization-
based defenses that cannot withstand information disclosure
(e.g., address space layout randomization [36] or software
shadow-stacks [1]). PA was specifically designed to remain
effective even when the entire memory layout of the victim
process is known.

4.3 Goal and Requirements

Our goal is to thwart control-flow and data-oriented attacks
by preventing the attacker from forging pointers used by a
vulnerable program. We identify the following requirements
that our solution should satisfy:

R1 Pointer Integrity: Detect/prevent the use of corrupted
code and data pointers.

R2 PA-attack resistance: Resist attempts to control PAC
generation, and pointer reuse attacks.

R3 Compatibility: Allow protection of existing programs
without interfering with their normal operation.

R4 Performance: Minimize run-time and memory over-
head and gracefully scale in relation to the number of
protected pointers and dereferences/calls.

5 Design

To meet our requirements (Section 4.3) we must solve a
number of challenges which we elaborate below.

5.1 Instrument program with PA instructions

To meet requirement R1 , the program executable must be
instrumented with PA instructions to create and authenticate
PACs when needed. For this, we designed and implemented
Pointer Authentication Run-Time Safety (PARTS), a com-
piler enhancement that emits PA instructions to sign pointers
in memory as required. Specifically, it protects:

• return addresses;
• local, global and static pointers; and
• pointers in C structures.

Figure 3 shows the overall architecture of the PARTS-
enhanced compiler. PARTS analyzes the compiler’s inter-
mediate representation (IR) to identify any pointers used by
the program and then emits PA instructions at points in the
program where pointers are (a) created or stored in memory,
and (b) loaded from memory or used.

5.2 Create PACs in statically allocated data

Programs may contain pointers which are initialized by the
compiler, e.g., defined global variables. However, PAC val-
ues for authenticated pointers cannot be calculated before
program execution, as PA keys are set only at program
launch. Consequently, initialized pointers in the program’s
data segment pose a challenge, as their values are normally
initialized by the linker and loaded into memory separately.
PARTS solves this problem by generating a custom initial-
izer function for pointers requiring PACs. At run-time, the
PARTS runtime library, PARTSlib, processes the relocated
variables and invokes the generated initializer function to en-
sure that any defined pointers are furnished with a PAC.

5.3 Pointer compartmentalization

As described in Section 3 the attacker may attempt to
reuse previously signed pointers. To meet requirement R2
PARTS therefore limits the scope of such reuse attacks
by compartmentalizing pointers in three different ways, as
shown in Table 1.
Code / Data Pointer Compartmentalization: Recall from
Section 2.2, that PA provides separate key sets for data and
code pointers making it possible to limit reuse attacks.

USENIX Association 28th USENIX Security Symposium 181

Table 1: For code and data pointers PARTS uses a static PA modifier based on the pointer’s ElementType as defined by LLVM.
Return address signing uses a 48-bit function-id and the 16 most-significant bits of the SP value.

key Modifier type Modifier construction

À Data pointer signing Data A static type-id = SHA3(ElementType)
Á Code pointer signing Instr A static type-id = SHA3(ElementType)
Â Return address signing Instr B dynamic + static SP | function-id = compile-time nonce

Run-time type safety: Pointer compartmentalization, while
effective, is coarse-grained. To address this, PARTS adds
run-time type safety for data and code pointers. Run-time
type safety records the pointer’s type by encoding it in the
PA modifier. Then, it checks that pointer dereferences or in-
direct calls take place using a pointer with a recorded type
that matches the type expected at the use site. PARTS as-
signs pointers a unique id, type-id, based on the pointer’s
LLVM ElementType which depends on the pointed-to data,
structure, or function signature. Two pointers are compatible
(have the same type-id) if their ElementType is the same.
PARTS uses a deterministic scheme, detailed in Section 6.1
and shown in Table 1, to calculate type-ids during compi-
lation. This ensures that separate compilation units generate
equivalent type-ids for compatible objects, and different
type-ids for non-compatible ones.
Improved Return Address Signing: While run-time type
safety could also be applied for return addresses, it would
result in an over-permissive policy for backward edges. As
described in Section 3, binding the authenticated return ad-
dress to the current stack pointer value alone is insufficient
because the stack pointer may not be unique to a specific
function invocation. Instead, PARTS uses a combination of
the current stack pointer value, and a compile-time nonce
(function-id) ensuring that the authenticated return ad-
dress cannot be reused across invocations of different func-
tions, while the stack pointer values effectively compartmen-
talizes return addresses to callers with different stack layouts.

5.4 On-load data pointer authentication
Pointers with PACs can be authenticated either as they are
loaded from memory, or immediately before they are used.
We refer to these as on-load and on-use authentication, re-
spectively. Data pointers are often dereferenced frequently
without intervening function calls, i.e., they will not be
cleared after use. This allows the compiler to optimize mem-
ory accesses such that, for instance, temporary values might
never be written to memory. PARTS accommodates this be-
havior by only using on-load authentication for data point-
ers. The combined PA instructions can be used for on-use
authentication of code pointers, which are typically loaded
to a register, used once, and cleared. On-load authentication
always uses the standalone authentication instructions. An

attacker could attempt to exploit either the standalone au-
thentication or the separate pointer dereference by diverting
control flow to either. However, as mentioned in Section 3,
PA solutions must be combined with CFI guarantees, which
prevent this type of attacks.

5.5 Handling pointer conversions
A data pointer to an object of a specific type may be con-
verted to a pointer to a different object type. When run-time
type safety is applied to authenticated pointers, special care
must be taken to not interfere with legitimate pointer con-
versions to meet requirement R3 . For instance, if a struct
pointer is cast to a pointer to its first field, it will change the
type-id and hence the expected PAC.

If the source and destination object types are compatible,
no special consideration is needed. If not, PARTS must con-
vert the authenticated pointer to the correct type-id. Be-
cause data pointer PAC creation and authentication is done
at store/load, PARTS handles conversions by; (a) if loading
the pointer from memory, validating and stripping the PAC
using the type-id of the original object, and (b) on store,
creating a new PAC using the destination object type-id.

A pointer to a function of one type may be converted to a
pointer to a function of another type. However, the behav-
ior when calling a function pointer cast to a non-compatible
type is undefined [18][6.3.2.3§8]. Hence, PARTS does not
need to convert the pointer’s PAC to match the destination
function’s type-id. If the converted pointer is converted
back, the result is expected to be the same as the original
pointer [18][6.3.2.3§8]. PARTS satisfies this as it does not
modify the pointer’s PAC.

6 Implementation

The PARTS compiler is based on LLVM 6.0 but modifies
and adds new passes to the optimizer and the AArch64 back-
end (Figure 3). The optimization passes (¶) generate neces-
sary metadata for PA modifiers, inserts wrappers for com-
patibility with legacy code, and prepares initializers for stat-
ically allocated pointers. The AArch64 Frame Lowering
emits function prologues and epilogues and is modified to
include instructions for authenticating the LR value (·). The

182 28th USENIX Security Symposium USENIX Association

executable

Clang Frontend

LL
V

M

 PARTS opt-passes

source code

o
p

t

LL
V

M
 IR

b
ac

ke
n

d

M
ac

h
in

e
IR

 AArch64 modifications

 PARTS backend-passes

PARTSlib
new component

LLVM internal

Figure 3: PARTS architecture.

PARTS backend passes (¸) retrieve the PA modifiers and in-
struments appropriate low-level instructions. The resulting
binary is linked with PARTSlib (¹), which at run-time cre-
ates PACs for the initialized pointers.

6.1 LLVM Compiler Integration
While the LLVM 6.0 AArch64 backend recognizes PA in-
structions, they are not used by any pre-existing security fea-
ture. Our modifications consist of added optimizer and back-
end passes, minor modifications to the AArch64 backend,
and new PARTS-specific intrinsics. Where applicable, we
use optimizer passes that operate on the high-level LLVM
intermediate representation (IR). Nonetheless, much of the
needed functionality is PA-specific and thus implemented in
the backend that uses low-level LLVM machine IR (MIR),
and a register- and instruction set specific to 64-bit ARM.

Determining pointer type-id. The compiler backend
views the program from a low-level perspective, and the MIR
has lost much of the semantics present in C or the high-level
IR. Therefore, PARTS must determine type-ids during
its optimizer passes where this information is still available
(Figure 3, ¶). The type-id for data consists of a truncated
64-bit SHA-3 hash of the pointer’s LLVM ElementType.
The ElementType represents the IR level data type and
distinguishes between basic data types, but does not re-
tain typedef or other information from the frontend (i.e.,
clang). Code pointers use the same scheme wherein the
ElementType consists of the function signature at the same
abstraction level. The type-ids are passed to the backend
either via PARTS-specific compiler intrinsics, or by embed-
ding them as metadata in the existing IR instructions. The

AArch64 instruction selection retrieves the information from
the IR instructions and transfers it to the emitted MIR (Fig-
ure 3, ·). To facilitate the run-time bootstrap (Section 6.2)
PARTS also includes a pass that prepares a custom initial-
izer function that is called at run-time to generate PACs for
defined global pointers (Figure 3, ¶).

Return addresses signing. Return address signing is im-
plemented in the AArch64 backend during frame lowering
(Figure 3, ·). Frame lowering emits the function prologues
and epilogues, and for non-leaf functions, emits instruc-
tions for storing and retrieving the LR value from the stack.
PARTS authenticates the value of the LR only if it was re-
trieved from the stack. The PAC modifier is based on the 16
least-significant bits of the SP value and a 48-bit function-
specific function-id. The function-id is guaranteed to
be unique within the current compilation unit or, with link
time optimization (LTO), the whole program. To avoid rep-
etition across different compilation units, the function-id
is generated using a pseudorandom, non-repetitive sequence.

Code pointer signing. PARTS uses the combined PA in-
structions for branches and converts branch instructions di-
rectly to their PA variants (Figure 3, ¸). The PAC for any
code pointer is created only once at the time of pointer cre-
ation, e.g., when the address of a function is taken. This is
instrumented by adding a PAC-creation instruction immedi-
ately after the instruction that moves a code pointer to a regis-
ter. Subsequent load and store operations do not authenticate
the signed code pointers, instead they are authenticated only
on use.

Data pointer signing. As discussed in Section 5.4, it is
not feasible to perform on-use authentication for data point-
ers. Instead, we authenticate data pointers when they are
loaded from memory and create PACs before storing them.
In some cases, e.g., using globals, the IR will include ex-
plicit load and store operations that can be furnished with the
type-id. Our modified Instruction Selection then forwards
the type-id to the emitted MIR (Figure 3, ·). However,
stack-based store and load operations, in particular, are often
not present before the backend finalizes the stack-layout and
register allocation. Thus, some load and store instructions
must be instrumented solely in the backend.

While it would be possible to modify the AArch64 back-
end (e.g., register allocation), we have instead opted for a less
invasive approach. The PARTS backend pass (Figure 3, ¸)
finds load and store instructions in the MIR, and uses the
attached type-id for instrumentation. When the type-id
is not present, e.g., because the load and store is a register
spill, the type-id is fetched from surrounding code. For in-
stance, when instrumenting the store due to register spilling

USENIX Association 28th USENIX Security Symposium 183

MACRO movFunc t ionId Mod
movk Mod , # func_ id16 , l s l #16
movk Mod , # func_ id32 , l s l #32
movk Mod , # func_ id48 , l s l #48

ENDM

f u n c t i o n :
mov Xd , SP ; À g e t SP
movFunc t ionId Xd ; Á g e t i d
pacib LR , Xd ; Â PAC
s t p FP , LR , [SP , #0] ; s t o r e
; f u n c t i o n body
ldp FP , LR , [SP , #0] ; l oad LR
mov Xd , SP ; Ä g e t SP
movFunc t ionId Xd ; Ã g e t i d
a u t i b LR , X ; Å au th
r e t

Listing 2: The PARTS return address signing binds the PAC
to the SP (À,Ä) and unique function id (Á,Ã). The PA modi-
fier is in register Xd during PAC creation (Â) and authentica-
tion (Å). The 48-bit func-id is split into three 16-bit parts,
each moved individually to Xd by left-shifting.

MACRO movTypeId Mod
mov Mod , # t y p e _ i d 0 0
movk Mod , # t y p e _ i d 1 6 , l s l #16
movk Mod , # t y p e _ i d 3 2 , l s l #32
movk Mod , # t y p e _ i d 4 8 , l s l #48

ENDM

mov c P t r , # i n s t r _ a d d r ; l oad c P t r
movTypeId Xd ; ¶ g e t i d
pac ia c P t r , Xd ; · PAC
; no i n t e r m e d i a t e c P t r i n s t r u m e n t a t i o n
movTypeId Xd ; ¸ g e t i d
blraa c P t r , Xd ; ¹ branch

Listing 3: The PARTS forward-edge code pointer signing
uses the code pointer’s type-id as the PA modifier (¶,¸).
The 64-bit type-id is split into four 16-bit parts. The
PAC is created only once when initially creating the code
pointer (·). Upon use, i.e., indirect call, the PAC is authen-
ticated using the combined branch and authenticated instruc-
tion (¹). PARTS does not instrument intermediate store/load
operations.

a pointer variable, the correct type-id can be fetched from
the original load.

6.2 Run-time Bootstrap

Programs may contain pointers in statically allocated data,
i.e., pointers stored in global variables or static local vari-
ables. These are initialized by the compiler or linker, and
therefore cannot include PACs. The PARTSlib runtime li-
brary instead invokes the compiler generated custom PAC
initializer function at process startup. Our Proof-of-Concept
implementation invokes the PARTSlib bootstrap using com-
piler instrumentation that explicitly calls the functionality
when entering main.

6.3 Instrumentation

PARTS uses only in-line instrumentation and does not re-
quire storage of separate run-time metadata. With the ex-
ception of the bootstrap process the original code structure
is thus largely unchanged. As discussed in Section 2.2, no
explicit error handling is added by PARTS; instead, an au-
thentication failure will set specific high-order bits in the
pointer, thus triggering a memory translation fault on sub-
sequent dereference or call using the pointer that failed au-
thentication. The high-order bits ensure that the fault is dis-
tinguishable as one caused by authentication failure. Our
code listings use two macros for setting up PA modifiers for

return address signing and type-id based PACs, these are
shown in Listing 2 and Listing 3.

Return address signing. The return address signing in-
strumentation is similar to GCC’s implementation [31] but
includes an added modifier (Listing 2). The function pro-
logue is instrumented such that it prepares the PA modifier
by moving SP (À) value into a free register. The SP value is
combined with the function-id (Á) to form the PA modi-
fier, which is then used with the instruction B key (Â). The
function-id is generated at compile-time using LLVM’s
random number generator, and is guaranteed to be unique
withing the LLVM Module (i.e., the whole program, when
using link time optimization). The function epilogues (i.e.,
any part that ends with a return or a tail-call) are similarly
instrumented to generate the same PA modifier (Ã,Ä) and to
verify the PAC in the restored LR (Å).

Code pointer signing. PARTS instruments code pointers
only on creation and use (Listing 3). Specifically, when
a code pointer is initially created, PARTS will use the in-
struction A-key to create a PAC (·) based on the target
type-id (¶). The instrumentation will at no point re-
move the PAC from a code pointer. Instead, PARTS uses
the combined authenticate and branch instructions — e.g.,
blraa — to perform the branch directly on an authenticated
pointer (¹), again using the same PA modifier (¸).

184 28th USENIX Security Symposium USENIX Association

l d r dP t r , [SP , #0] ; l oad dP t r
movTypeId Xd , # t y p e _ i d ; À g e t i d
autda dP t r , Xd ; Á a u t h e n t i c a t e
; dP t r i s d i r e c t l y u s a b l e

Listing 4: PARTS immediately authenticates data pointers
loaded from writeable memory. This is done by first loading
the type-id (À) and then verifying the PAC (Á).

Data pointer signing. All data pointer stores and loads are
instrumented such that a PAC is created immediate before
store and authenticated immediately after load (Listing 4).
When a data-pointer is used the instrumentation first sets up
the correct PA modifier, i.e., the type-id (À). The pointer is
then immediately authenticated using the modifier and data
A-key (Á); this also strips the PAC from the pointer. As long
as the data pointer resides in a register it can thus be used
without any performance overhead. PARTS creates PACs for
pointers immediately before store in the same manner, save
for the pacda instruction.

7 Evaluation

We develop our Proof-of-Concept implementation of PARTS
on the ARMv8-A Base Platform Fixed Virtual Platform
(FVP), based on Fast Models 11.4, which supports version
8.0 to 8.4 of the ARMv8-A architecture [4]. At the time of
writing, the only PA-capable hardware is the Apple A12 and
S4 SoCs featuring ARMv8.3-A CPUs [2]. However, these
proprietary SoCs are, to the best of our knowledge, not avail-
able in development versions outside Apple. The FVP pro-
vides a software simulation of an ARMv8.3-A processor in
AArch64 mode, and is, to the best of our knowledge, the only
publicly available environment with ARMv8-A PA support.

7.1 ARMv8.3 Emulation and Software Stack

We use GNU/Linux with a 4.14 kernel, modified to sup-
port PA . We modified the bootloader and kernel to acti-
vate ARMv8-A PA, and allow key configuration during ker-
nel scheduling at Exception Level 1 (EL1 in Figure 4). Our
kernel modifications are based on Mark Rutland’s 2018 PA
patches3.

PA keys for each task are stored in a process-specific
mm_context_t structure (in the process’ memory descrip-
tor in the kernel) which contains architecture-specific data
related to the process address space. Threads within the same
process have a common memory descriptor, and thus share
the same PA keys. The scheduler will configure the PA key
registers using the keys in the process’ memory descriptor

3https://lwn.net/Articles/752116/

EL1 - Kernel

binary with
PARTS

EL3 - ARM trusted FW

EL
0

 –
u

se
r

sp
ac

e

mm_context_t (1/task)

key reg. bank (1/core)scheduler

EL2 - Hypervisor

binary with
PARTS

binary with
PARTS

binary with
PARTS

source

PARTS
compiler

Figure 4: The trapping of PA configuration must be released
¶, in order to allow the kernel to manage the PA keys on
process creation and context switches ·. Faults generated
by failed authentications will be trapped by the kernel ¸.

whenever a task is scheduled to run. When a new child pro-
cess is forked, the parent’s keys are duplicated to the child’s
memory descriptor. However, when a new executable file is
exec’d in the context of an existing process, the kernel ini-
tializes a new set of PA keys using get_random_bytes().
In other words, each new process receives a new set of PA
keys which remain unchanged thereafter.

7.2 Security Evaluation
7.2.1 Return address signing

Return address signing in both GCC [31], and PARTS pre-
vents an attacker from introducing forged return addresses to
the program stack. Compared to GCC, PARTS augments the
PA modifier used for return address signing by combining a
function-specific identifier with the SP value (R2). As a
result, PARTS return address signing precludes the possibil-
ity of reuse of the return address between different functions,
irrespective of SP value collisions. It remains susceptible to
pointer reuse between distinct invocations of the same func-
tion from call sites with same SP value (R1).

7.2.2 Forward-edge code pointer signing

As with PARTS return address signing, forward-edge code
pointer signing prevents an attacker from using forged code
pointers injected into program memory (R1). This prevents
a large class of attacks (e.g., typical ROP/JOP gadgets) that
rely on redirecting the control flow to code in the middle
of functions, i.e., addresses that never were valid targets of
benign control-flow transfers.

USENIX Association 28th USENIX Security Symposium 185

https://lwn.net/Articles/752116/

PARTS restricts forward-edge code pointer reuse by en-
forcing run-time type safety for signed pointers (R2). Un-
der this scheme, pointers used in a pointer reuse attack must
share the same type-id (i.e., have a matching type on the
LLVM IR level). This prevents large classes of function-
reuse attacks. The solution is compatible with common pro-
gramming patterns involving function pointers (R3), such
as callbacks, but allows reuse between code pointers to func-
tions with identical type signatures.

7.2.3 Data pointer signing

PARTS data pointer signing protects all data pointers and
prevents an attacker from loading a forged data pointer to
program memory (R1). This prevents all non-control data
attacks that rely on corrupting data pointers to unintended
parts of of memory. This class of attacks includes all cur-
rently known DOP attacks [16].

PARTS restricts data pointer reuse by enforcing run-time
type safety also for data pointers (R2). Reuse attacks would
be more useful to an attacker if they could substitute a vulner-
able pointer with one referencing an object of different size
or type. Therefore restricting pointer substitution based on
the pointer’s type restricts the attacker’s capability to cause
unintended data flows within the program. However, pointer
conversions are a challenge for data pointer integrity. As
discussed in Section 5.3, PARTS accommodates data point-
ers that are cast from type A to an incompatible type B by
writing the converted pointer using the type-id of B. This
may expand the effective set of reusable pointers under our
threat model; the attacker can record pointers of type A and
reuse them at PAC conversion site A→ B, thereby obtaining
a pointer of type B to an object of type A. This converted
pointer can then be used at de-reference sites that require
pointers of type B. If the program also includes a conversion
from B to A this makes both types interchangeable.

PARTS data pointer integrity does not guarantee spatial
safety of pointer accesses to data objects, nor does it address
the temporal safety (e.g., prevent use-after-free conditions).
ARMv8-A PA does not provide facilities to directly address
these challenges. We discuss orthogonal schemes that can
be used in combination with PARTS to provide spatial and
temporal safety guarantees in Section 8.

7.2.4 PAC entropy

As explained in Section 3, the PAC size b is a concern for any
PA-based scheme. On typical AArch64 Linux systems, b is
between 16 and 24. To succeed with probability p, a PAC
guessing attack requires log(1−p)

log(1−2−b)
guesses on the assump-

tion that a PAC comparison failure leads to program termi-
nation. On our simulator setup where b = 16, achieving a
50%-likelihood for a correct guess requires 45425 attempts.

Note that ROP/DOP attacks require an environment where
a set of jumps (gadgets) can be set up, each requiring a sepa-
rate PAC to be broken. Consequently, success probability of
a complete attack will decrease exponentially with the num-
ber of jumps necessary.

Pre-forked or multithreaded programs will share the same
PA key between the parent and all sibling threads/processes.
This could allow an attacker to brute force a PAC by target-
ing a sibling, if PAC failure on a sibling does not result in the
termination (and hence PA key reset) of all threads/processes
sharing the same PAC key. In this scenario, 2b−1 guesses on
average are enough to guess a b-bit PAC (32768 guesses for
b = 16). Multithreaded / pre-forking applications could be
hardened against guessing attacks by requiring a full appli-
cation restart if the number of unexpected terminations of
child threads/processes exceeds a pre-defined threshold.

7.3 Performance Evaluation

The FVP processor, peripheral models, and micro-
architectural fabric is simplified. Consequently, timing on
the FVP model differs from actual hardware. The ARM Fast
Models documentation states that ”all instructions execute
in one processor master clock cycle“. We confirm this be-
havior for PA instructions in the FVP by using microbench-
marks that allow PA instructions to be timed in isolation. As
a result, we cannot use the FVP to estimate the expected run-
time overhead of PARTS. Instead, we estimate the execution
time of PA instructions and develop a PA-analogue that emu-
lates the run-time cost of PA instructions (Section 7.3.1). We
then run large-scale benchmarks on real (non-PA) hardware
using our PA-analogue (Section 7.3.2).

7.3.1 PA-analogue

From [5, Table 8] we can deduce that on a (1.2GHz) mobile
core, the PAC is computable with an approximate overhead
of 4 cycles, without accounting for the potential speed ben-
efits of opportunistic pipelining or the inclusion of several
parallel PAC computing engines per core. For simplicity, we
assume equal cycle counts for all PA instructions. Based on
this assumption we construct a PA-analogue (Listing 5) as
a proxy to measure overhead of PA instrumentation on non-
PA CPUs: it consists of four exclusive-or (eor) operations to
account for the 4 cycles. The final eor operates on the modi-
fier and SP to enforce a memory read/write dependency, thus
preventing the CPU pipeline from arbitrarily delaying the op-
erations. We have confirmed that our PA-analogue exhibits
the expected overhead using our microbenchmarks.

186 28th USENIX Security Symposium USENIX Association

eor Xptr , Xptr , #0 x2 ; spend c y c l e s
eor Xptr , Xptr , #0 x3 ; t o a p p r o x i m a t e
eor Xptr , Xptr , #0 x5 ; PA i n s t r u c t i o n
eor Xptr , Xptr , Xmod ; overhead

Listing 5: PA-analogue simulating PA instructions

7.3.2 nbench-byte benchmarks

For our performance evaluation we use the Linux nbench-
byte 2.2.3 synthetic benchmark4 designed to measure CPU
and memory subsystem performance, providing a reasonable
prediction of real-world system performance5. We follow
work such as [6, 10, 22, 33, 37, 10] and use nbench rather
than the SPEC CPU standardized applications benchmarks
for our evaluation, as nbench allows us verify the functional-
ity of PARTS instrumentation with manageable simulation
times on the FVP. The current version of the SPEC CPU
benchmark suite, SPEC CPU20176, has replaced many tests
in the previous, now retired SPEC CPU20067 with signif-
icantly larger and more complex workloads (up to ~10X
higher dynamic instruction counts). As a result, the SPEC
simulation times on the FVP proved to be unmanageable; for
example, running individual SPEC benchmarks take hours to
days to complete on the FVP. This is a challenge for both re-
searchers and industry practitioners who rely on hardware
simulation for evaluation [30]. We report our results for a
subset of SPEC CPU2017 tests in Appendix B.

The nbench benchmarks include 10 different tests. We
adopt the same methodology as Brasser et al. [6] and run
each test a constant number of iterations for the following
cases: a) uninstrumented baseline b) each PARTS scheme
(return address signing, forward-edge code pointer integrity,
and data pointer integrity) enabled individually, and c) all
schemes enabled simultaneously. Compiler optimizations
were disabled for all tests. The tests were performed on
a 96boards Kirin 620 HiKey (LeMaker version) with a
ARMv8-A Cortex A53 Octa-core CPU (1.2GHz) / 2GB
LPDDR3 SDRAM (800MHz) / 8GB eMMC, running the
Linux kernel v4.18.0 and BusyBox v1.29.2. Figure 5 shows
the results, normalized to the baseline. A more detailed de-
scription can be found in Appendix A.

Return address signing incurs a negligible overhead of
less than 0.5%. This is expected because the estimated per-
function overhead of 12 to 16 cycles is typically small com-
pared to the full execution time of the instrumented func-
tion. The same holds for indirect calls (6-8 cycle overhead at
the call site), although indirect calls are underrepresented in
nbench-byte. However, our microbenchmarks for the code

4http://www.math.utah.edu/~mayer/linux/bmark.html
5http://www.math.utah.edu/~mayer/linux/byte/bdoc.pdf
6https://www.spec.org/cpu2017/
7https://www.spec.org/cpu2006/

pointer integrity instrumentation indicate that a 6 to 8 cycle
overhead per indirect function call is reasonable under the
assumed QARMA performance.

Data pointer integrity depends largely on the memory pro-
file of the instrumented program. For instance, the floating
point emulation test extensively handles data pointers, result-
ing in a 39.5% overhead. In contrast, the Fourier and neural
network benchmarks contain no data pointers and thus incur
no discernible overhead. The geometric mean of the over-
head of the combined instrumentation for all tests is 19.5%.

7.4 Compatibility Evaluation
Based on our evaluation, PARTS is compatible with standard
C code (R3). Because return address signing only affects
the instrumented function, it can be safely applied without
interfering with the operation of other parts of programs, or
uninstrumented code.

PARTS forward-edge code pointer integrity and data
pointer integrity can be safely applied to complete code
bases. However, if PARTS is applied only to a partial
code base, the instrumented code interfacing with non-
instrumented (legacy) libraries requires special consider-
ation. In particular pointers used by both instrumented
and uninstrumented code cannot be passed directly between
them. We discuss solutions for backwards compatibility with
legacy libraries in Section 10.

We encountered no compatibility issues with PARTS dur-
ing our performance evaluation with nbench (Section 7.3).

8 Related Work

Code-pointer integrity (CPI) [21] protects access to code
pointers — and data pointers that may point to code pointers
— by storing them in a disjoint area of memory; the SafeS-
tack8. The SafeStack itself must be protected from unautho-
rized access. Randomizing the location of the SafeStack is
efficient [20], but easily defeated by an attacker who can read
arbitrary memory. Stronger protection of the SafeStack us-
ing hardware-enforced isolation or software-isolation incurs
an average performance overhead of 8.4% or 13.8% in SPEC
CPU2006 benchmarks.

Protecting pointers using cryptography. Prior crypto-
graphic defenses against run-time attacks generally assume
the attacker cannot read memory. PointGuard [12] instru-
ments a program to apply a secret XOR mask to all pointer
values. This prevents an attacker from reliably forging
pointer values without knowledge of the mask. Data ran-
domization [7] extends data masking to cover all data in
memory. It uses static points-to analysis and distinct masks
to partition memory accesses in separate classes. Neither

8https://clang.llvm.org/docs/SafeStack.html

USENIX Association 28th USENIX Security Symposium 187

http://www.math.utah.edu/~mayer/linux/bmark.html
http://www.math.utah.edu/~mayer/linux/byte/bdoc.pdf
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2006/
https://clang.llvm.org/docs/SafeStack.html

n
o

rm
al

iz
ed

 o
ve

rh
ea

d

0.9

1

1.1

1.2

1.3

1.4

1.5

Numeric sort String sort Bitfield FP emulation Fourier Assignment Idea Huffman Neural net Lu
decomposition

return address signing forward-edge code pointer signing data pointer signing all enabled

(a) Results of instrumented nbench-byte tests features, normalized to a non-instrumented baseline.

ev
en

t
co

u
n

t

1
.8

E+
0

3

4
.0

E+
0

6

5
.7

E+
0

3

6
.2

E+
0

5

5
.2

E+
0

6

2
.3

E+
0

5

1
.6

E+
0

6

1
.8

E+
0

4

3
.6

E+
0

5

1
.9

E+
0

4

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

1

1
.5

E+
0

13
.0

E+
0

8

1
.8

E+
0

8

1
.0

E+
0

8

5
.9

E+
0

8

2
.8

E+
0

4

1
.9

E+
0

8

2
.0

E+
0

8

3
.4

E+
0

8

7
.8

E+
0

2

1
.9

E+
0

8

Numeric sort String sort Bitfield FP emulation Fourier Assignment Idea Huffman Neural net Lu
decomposition

return address signing forward-edge code pointer signing data pointer signing

(b) Run-time count of executed locations instrumentable by PARTS. Because the program’s memory profile affects performance the bench-
mark results clearly correlate with observed memory use (e.g., FP emulation has a large data pointer integrity overhead because it uses many
data pointers)

Figure 5: nbench benchmark results

PointGuard nor data randomization remain effective under
our threat model.

Similarly to ARMv8-A PA, Cryptographic CFI
(CCFI) [25] uses MACs to protect control-flow data,
such as return addresses, function pointers, and vtable
pointers. Like PARTS, CCFI uses a function’s type sig-
nature to separate function pointers to distinct protection
domains, but does not protect function pointers embedded in
C structures. Unlike PA, CCFI only benefits from hardware-
accelerated AES for speeding up MAC, resulting in a high
performance overhead (52% overhead on average in SPEC
CPU2006 benchmarks). In contrast, PARTS also benefits
from hardware-accelerated checks by using ARMv8-A PA
instructions, protects both code and data pointers, including
pointers embedded in C structures.

Hardware-assisted mechanisms. Various hardware-
assisted defenses are described in research litera-
ture [15, 42, 41, 14, 38, 40, 28, 32]. The majority
of such defenses have only been realized as soft mi-
croprocessor prototypes on FPGAs. Here we describe
mechanisms available in commercial off-the-shelf processor
architectures.

Only a few commercial processors, such as the SPARC
M79, support tagged memory, which can be used to real-
ize variety of security models (including pointer integrity).
ARM recently announced support for memory tagging in the

9https://swisdev.oracle.com/_files/What-Is-ADI.html

ARMv8.5-A architecture10. It enforces that all accesses to
memory must be made via a pointer with the correct tag.
Pointer tags use the existing address tagging feature in the
ARM ISA that partly overlaps with the bits used to store PA
PACs, meaning that enabling both features simultaneously
reduces the available PAC size by eight bits.

Hardware-assisted memory tagging is designed primar-
ily as a statistical debug aid against use-after-free and other
temporal memory errors. Hardware-Assisted AddressSan-
itizer (HWASAN) [34] is an AArch64-specific compiler-
based tool that builds upon AddressSanitizer (ASAN) — a
memory-error detector popular for vetting memory safety
bugs during software testing. ASAN can detect both spatial
and temporal memory errors. HWASAN can leverage hard-
ware tagged memory, such as SPARC ADI and the upcoming
ARMv8.5-A to reduce the performance overhead associated
with managing tagged memory checks in software. ASAN
/ HWASAN are complementary to PARTS, as they provide
spatial and temporal safety for data accesses via pointers.

Intel Memory Protection Extensions (MPX) is a hardware
feature for detecting spatial memory errors that debuted in
the Intel Skylake microarchitecture. MPX is similar to the
software based SoftBound [27] and its hardware-based pre-
decessor [15]. Although Intel MPX is a hardware-assisted
approach specifically designed to provide spatial memory
safety guarantees, it is not faster than software-based ap-
proaches [29]. It can cause up to 4x slowdown in the worst

10https://community.arm.com/processors/b/blog/posts/
arm-a-profile-architecture-2018-developments-armv85a

188 28th USENIX Security Symposium USENIX Association

https://swisdev.oracle.com/_files/What-Is-ADI.html
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a

case with an average run-time overhead of 50%. It also suf-
fers from other shortcomings, such as the lack of support for
multithreading and several common C/C++ idioms. GCC
has dropped support for MPX altogether11.

Control-flow integrity. Carlini et al. [8] define fully-
precise static CFI as follows: “An indirect control-flow
transfer along some edge is allowed only if there exists a
non-malicious trace that follows that edge.” In other words,
fully-precise static CFI enforces that execution follows a
CFG that contains an edge if and only if that edge is exer-
cised by intended program behavior. Fully-precise static CFI
is thus the most restrictive stateless policy possible without
breaking intended functionality. To date, there exist no im-
plementation of fully-precise CFI; all practical implementa-
tions are limited by the precision of CFGs obtained through
static control analysis.

Carlini et al. further show that all stateless CFI schemes,
including fully-precise static CFI are vulnerable to control-
flow bending; attacks where each control-flow transfer is
within a valid CFG, but where the program execution trace
conforms to no feasible benign execution trace. For instance,
in a stateless policy such as fully-precise static CFI, the best
possible policy for return instructions (i.e., backward edges
in the CFG) is to allow return instructions within a function
F to target any instruction that follows a call to F . In other
words, fully-precise static CFI checks if a given control-flow
transfer conforms to any of the known control-flow transfers
from the current position in the CFG, and does not distin-
guish between different paths in the CFG that lead to a given
control-flow transfer. For this reason CFI is typically aug-
mented with a shadow call stack [1, 13] to enforce integrity
of return addresses stored on the call stack. We compare
PARTS to CFI solutions in Section 9.2.

9 Comparison with other integrity policies

9.1 Fully precise pointer integrity
As discussed in Section 4.1, Pointer Integrity can be loosely
defined as a policy ensuring that the value of a pointer at the
time of use (dereference or call) corresponds to the value of
the pointer when it was created. In this section, we provide a
more rigorous definition of Pointer Integrity.

We define fully-precise pointer integrity as follows: A
pointer dereference is allowed if and only if the pointer is
based on its target object. We adopt Kuznetsov et al.’s [21]
definition of “based on” and say a pointer P is based on a tar-
get object X if, and only if, P is obtained at run-time by ”(i)
allocating X on the heap, (ii) explicitly taking the address of
X, if X is allocated statically, such as a local or global vari-
able, or is a control-flow target (including return locations,

11https://gcc.gnu.org/viewcvs/gcc?view=revision&
revision=261304

whose addresses are implicitly taken and stored on the stack
when calling a function), (iii) taking the address of a sub-
object y of X (e.g., a field in the struct X), or (iv) computing
a pointer expression (e.g., pointer arithmetic, array index-
ing, or simply copying a pointer) involving operands that are
either themselves based on object X or are not pointers.“

Kuznetsov et al’s CPI [21] (Section 8) provides fully pre-
cise integrity guarantees for code pointers by ensuring that
accesses to sensitive pointers are safe (sensitive pointers are
code pointers and pointers that may later be used to ac-
cess sensitive pointers). However, CPI requires dedicated,
integrity-protected storage for sensitive pointers.

As discussed in Section 7.2, PARTS, and PA solutions in
general, achieve an approximation of fully-precise pointer
integrity. In particular, PARTS allows the substitution of a
pointer P by another pointer P′ based on object X , if P and
P′ share the PA modifier. In other words, when PA modifiers
are unique to each protected pointer value, PA provides fully-
precise pointer integrity. However, ensuring the uniqueness
of PA modifiers is not possible in practice due to the fol-
lowing reasons: 1) program semantics may require a set of
pointers to be substitutable with each other (e.g., pointers to
callback functions) 2) the choice of allowed pointers may
depend on run-time properties (e.g., which callback func-
tion was registered earlier). In these cases, a unique mod-
ifier must be determined at run-time. Fully-precise pointer
integrity does not imply memory safety. In the case of PA,
if the modifier is determined at run-time and stored in mem-
ory, the PA modifier itself may become a target for an at-
tacker wishing to undermine the integrity policy. To avoid
this, modifier values must be derived in a way which leaves
the value outside the control of the attacker, e.g., stored in a
dedicated hardware register, or read-only program memory.

9.2 Fully-precise static CFI

In contrast to stateless CFI, which allows control-flow tran-
sitions present in its CFG regardless of the origin of the code
pointer value, PA-based solutions (including PARTS) can
preclude forged pointer values from outside the process. The
policy that prevents pointer reuse can suffer from limitations
similar to those present stateless CFI.

PARTS return address signing provides strong guarantees
even when subjected to pointer reuse. In contrast, a stateless
CFI policy allows a function to return to any of its call sites.
As such, static CFI cannot prevent injection of pointers that
are within the expected CFG, i.e., control-flow bending at-
tacks. PARTS additionally requires matching SP values, and
that the reused return address originates from a prior func-
tion invocation of the same function within the same process
for an attack to succeed.

PARTS forward-edge code pointer integrity provides sim-
ilar guarantees (under reuse attacks) as LLVM’s type-based
protection (when subjected to any forged pointer). In both

USENIX Association 28th USENIX Security Symposium 189

https://gcc.gnu.org/viewcvs/gcc?view=revision&revision=261304
https://gcc.gnu.org/viewcvs/gcc?view=revision&revision=261304

cases, attacks are limited to using pointers of the correct dy-
namic type. PARTS in addition requires that the injected
pointer originates from the victim process.

While shadow-stacks protected through randomization
can be implemented with minimal performance overhead,
our adversary model precludes this approach. Furthermore,
software-isolated shadow stack solutions impose impracti-
cal performance overheads, and ARM processors do not cur-
rently provide direct hardware support for shadow stacks.

10 Conclusion and Future Work

We plan to extend PARTS protection architecture to other
protection domains like the OS kernel, or hypervisor. The
only significant change for PARTS architecture is to arrange
for key configuration for both kernel and EL0 PARTS to be
trapped (and managed) on a higher exception level (EL2,3).
We are further looking at adding C++ support PARTS. While
we do not expect any fundamental problems, some C++ spe-
cific features, such as inheritance, cannot be directly handled
by our current instrumentation strategy.

Authenticated pointers with PACs cannot be used by
legacy code (Section 2.2) while PARTS-instrumented code
will trap if pointers without PACs are used. For legacy and
PARTS code to interact, we can use wrappers that manipulate
function arguments and return values by embedding/strip-
ping PACs. For shared pointers or complex data structures,
annotations can disable authentication of selected pointers,
allowing programmers to manually adjust pointer conversion
to and from legacy code.

Currently, the PARTS compiler assumes shared libraries to
be uninstrumented. Instrumented shared libraries must deal
with PACs for statically allocated pointers after linking, and
thus require changes to the dynamic linker.

Pointer integrity does not imply full memory safety (Sec-
tion 9.1). Although ARMv8-A PA does not support bounds
checking for pointer accesses with authenticated pointers, it
has a general-purpose instruction, pacga, for producing and
validating PACs computed over the contents of two 64-bit
registers. This can be used to build authenticated canaries to
identify buffer overflow attacks, or to validate the integrity
(freshness) of atomic data, such as integer or counter values.
In principle, pacga instructions can even be chained to vali-
date arbitrary-sized blocks of data.

Finally, effective ways of complementing PA with other
emerging memory safety mechanisms like the forthcoming
support for memory tagging in ARMv8.5-A is an important
line of future work.

Acknowledgments

This work was supported in part by the Academy of Finland
under grant nr. 309994 (SELIoT), and the Intel Collabora-

tive Research Institute for Collaborative Autonomous & Re-
silient Systems (ICRI-CARS).

The authors thank Kostya Serebryany and Rémi Denis-
Courmont for interesting discussions and Zaheer Gauhar for
implementation assistance.

References

[1] ABADI, M., ET AL. Control-flow integrity principles,
implementations, and applications. ACM Trans. Inf.
Syst. Secur. 13, 1 (Nov. 2009), 4:1–4:40.

[2] APPLE INC. iOS Security — iOS 12.
https://www.apple.com/business/site/docs/
iOS_Security_Guide.pdf, 2018.

[3] ARM LTD. ARMv8 architecture reference manual, for
ARMv8-A architecture profile (ARM DDI 0487C.a).
https://static.docs.arm.com/ddi0487/ca/
DDI0487C_a_armv8_arm.pdf, 2017.

[4] ARM LTD. Fast models, version 11.4,
fixed virtual platforms (FVP) reference guide.
https://static.docs.arm.com/100966/1104/
fast_models_fvp_rg_100966_1104_00_en.pdf,
2018.

[5] AVANZI, R. The QARMA block cipher family. al-
most MDS matrices over rings with zero divisors,
nearly symmetric even-mansour constructions with
non-involutory central rounds, and search heuristics for
low-latency s-boxes. IACR Trans. Symmetric Cryptol.
2017, 1 (2017), 4–44.

[6] BRASSER, F., ET AL. DR.SGX: Hardening SGX
enclaves against cache attacks with data location
randomization. https://arxiv.org/abs/1709.
09917, 2017.

[7] CADAR, C., ET AL. Data randomization. Tech. Rep.
MSR-TR-2008-120, Microsoft Research, September
2008.

[8] CARLINI, N., ET AL. Control-flow bending: On the ef-
fectiveness of control-flow integrity. In Proc. USENIX
Security ’15 (2015), pp. 161–176.

[9] CHECKOWAY, S., ET AL. Return-oriented program-
ming without returns. In Proceedings of the 17th ACM
Conference on Computer and Communications Secu-
rity (New York, NY, USA, 2010), CCS ’10, ACM,
pp. 559–572.

[10] CHEN, S., ET AL. Detecting privileged side-channel
attacks in shielded execution with DéJà Vu. In Proc.
ACM ASIA CCS ’17 (2017), pp. 7–18.

190 28th USENIX Security Symposium USENIX Association

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://static.docs.arm.com/100966/1104/fast_models_fvp_rg_100966_1104_00_en.pdf
https://static.docs.arm.com/100966/1104/fast_models_fvp_rg_100966_1104_00_en.pdf
https://arxiv.org/abs/1709.09917
https://arxiv.org/abs/1709.09917

[11] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND
IYER, R. K. Non-control-data attacks are realistic
threats. In Proc. USENIX Security ’05 (2005), pp. 177–
191.

[12] COWAN, C., ET AL. PointGuardTM: Protecting point-
ers from buffer overflow vulnerabilities. In Proc.
USENIX Security ’03 (2003), pp. 91–104.

[13] DAVI, L., ET AL. MoCFI: A framework to mitigate
control-flow attacks on smartphones. In Proc.NDSS ’12
(2012).

[14] DAVI, L., ET AL. HAFIX: Hardware-assisted flow in-
tegrity extension. In Proc. ACM/EDAC/IEEE DAC ’15
(2015), pp. 74:1–74:6.

[15] DEVIETTI, J., ET AL. Hardbound: Architectural sup-
port for spatial safety of the C programming language.
In Proc. ’08 (2008), pp. 103–114.

[16] HU, H., ET AL. Data-oriented programming: On the
expressiveness of non-control data attacks. In Proc.
IEEE S&P ’16 (2016), pp. 969–986.

[17] INTEL. Control-flow enforcement technology pre-
view. https://software.intel.com/sites/
default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf, 2016.

[18] ISO/IEC. ISO/IEC 9899:201x committee draft — De-
cember 2, 2010. http://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1548.pdf, 2010.

[19] KORNAU, T. Return Oriented Programming for
the ARM Architecture. PhD thesis, Ruhr-Universität
Bochum, 2009.

[20] KUZNETSOV, V., ET AL. Poster: Getting the point(er):
On the feasibility of attacks on code-pointer integrity.
IEEE S&P ’15.

[21] KUZNETSOV, V., ET AL. Code-pointer integrity. In
Proc. USENIX OSDI ’14 (2014), pp. 147–163.

[22] LEE, S., ET AL. Inferring fine-grained control flow
inside SGX enclaves with branch shadowing. In Proc.
USENIX Security ’17 (2017), pp. 557–574.

[23] LI, R., AND JIN, C. Meet-in-the-middle attacks on
reduced-round QARMA-64/128. The Computer Jour-
nal 61, 8 (2018), 1158–1165.

[24] LILJESTRAND, H., ET AL. PAC it up: Towards
pointer integrity using ARM pointer authentication.
arXiv:1811.09189 [cs.CR], 2019.

[25] MASHTIZADEH, A. J., ET AL. CCFI: Cryptograph-
ically enforced control flow integrity. In Proc. ACM
CCS ’15 (2015), pp. 941–951.

[26] MICROSOFT. Enhanced Mitigation Experience
Toolkit. https://www.microsoft.com/emet, 2016.

[27] NAGARAKATTE, S., ET AL. SoftBound: Highly com-
patible and complete spatial memory safety for C. In
Proc. ACM PLDI ’09 (2009), pp. 245–258.

[28] NYMAN, T., ET AL. HardScope: Thwarting DOP
with hardware-assisted run-time scope enforcement.
arXiv:1705.10295 [cs.CR], 2017.

[29] OLEKSENKO, O., ET AL. Intel MPX explained:
An empirical study of Intel MPX and software-based
bounds checking approaches. https://arxiv.org/
abs/1702.00719, 2017.

[30] PANDA, R., ET AL. Wait of a decade: Did SPEC CPU
2017 broaden the performance horizon? In Proc. IEEE
HPCA ’18 (2018), pp. 271–282.

[31] QUALCOMM TECHNOLOGIES, INC. Pointer authenti-
cation on ARMv8.3. https://www.qualcomm.com/
media/documents/files/whitepaper-pointer-
authentication-on-armv8-3.pdf, 2017.

[32] ROESSLER, N., AND DEHON, A. Protecting the stack
with metadata policies and tagged hardware. In Proc.
IEEE S&P ’18 (2018), pp. 1072–1089.

[33] SEO, J., ET AL. SGX-Shield: Enabling address
space layout randomization for SGX programs. In
Proc.NDSS ’17 (2017).

[34] SEREBRYANY, K., ET AL. Memory tagging and
how it improves C/C++ memory safety. arXiv:
1802.09517 [cs.CR], 2018.

[35] SHACHAM, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proc. ACM CCS ’07 (2007), pp. 552–561.

[36] SHACHAM, H., ET AL. On the effectiveness of
address-space randomization. In Proc. ACM CCS ’04
(2004), pp. 298–307.

[37] SHIH, M.-W., ET AL. T-SGX: Eradicating controlled-
channel attacks against enclave programs. In Proc.
NDSS ’17 (2017).

[38] SONG, C., ET AL. HDFI: Hardware-assisted data-flow
isolation. In Proc. IEEE S&P ’16 (2016), pp. 1–17.

[39] SZEKERES, L., ET AL. SoK: Eternal war in memory.
In Proc. IEEE S&P ’13 (2013), vol. 12, pp. 48–62.

[40] TSAMPAS, S., ET AL. Towards automatic compart-
mentalization of c programs on capability machines. In
Workshop on Foundations of Computer Security 2017
(8 2017), pp. 1–14.

USENIX Association 28th USENIX Security Symposium 191

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://www.microsoft.com/emet
https://arxiv.org/abs/1702.00719
https://arxiv.org/abs/1702.00719
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

[41] WATSON, R. N. M., ET AL. CHERI: A hybrid
capability-system architecture for scalable software
compartmentalization. In Proc. IEEE S&P ’15 (2015),
pp. 20–37.

[42] WOODRUFF, J., ET AL. The CHERI capability model:
Revisiting RISC in an age of risk. In Proc. ’14 (2014),
pp. 457–468.

[43] ZONG, R., AND DONG, X. Meet-in-the-middle at-
tack on QARMA block cipher. IACR Cryptology ePrint
Archive (2016).

A nbench experimental setup

The nbench benchmarks employs dynamic workload adjust-
ment to allow the tests to expand or contract depending on
the capabilities of the system under test. To achieve this,
nbench employs timestamping to ensure that a test run ex-
ceeds a pre-determined minimum execution time. If a test
run finishes before the minimum execution time has been
reached, the test dynamically adjusts its workload, and tries
again. For example, the Numeric Sort test will construct an
array filled with random numbers, measure the time taken
to sort the array. If the time is less than the pre-determined
minimum time, the test will build two arrays, and try again.
If sorting two arrays takes less time than the pre-determined
minimum, the process repeats with more arrays.

Since we want to determine the relative overhead in exe-
cution time caused by our instrumentation, we employ the
methodology described by Brasser et al. [6] and modify
nbench to instead run each test a constant number of it-
erations. The number of iterations was determined indi-
vidually for each test based on the iteration counts deter-
mined by a unmodified nbench run on the FVP. We then
instrument the nbench benchmarks using our PA-analogue
(Section 7.3.1) and measure the relative execution time be-
tween non-instrumented and instrumented nbench tests on
the HiKey development platform using the BusyBox time
utility.

Each individual benchmark test was run 200 times us-
ing the pre-determined number of iterations. Figure 5a, in
Section 7.3.2 shows instrumentation overhead for individ-
ual tests in relation to the uninstrumented test run. Table 3
shows the numeric overhead ratio for each individual test.
Because the nbench benchmarks are designed to measure
performance in a manner which is operating system agnos-
tic, they are written in ANSI C and only execute in a single
thread. We therefore only consider user time when measur-
ing the overhead of the instrumentation, and exclude context
switches and system calls.

The run-time overhead of PARTS is dependent on spe-
cific run-time events, such as the number of function invo-
cations in the case of return address signing. Figure 5b in

Table 2: Overhead as ratio and standard deviation (σ) for re-
turn address signing and (forward-edge) code pointer signing
for 505.mcf_r and 519.lbm_r SPEC benchmarks.

Benchmark Uninstrumented ret. addr. sign. + code ptr. integrity
ratio σ ratio σ

505.mcf_r 1 0.004 1.005 0.004
519.lbm_r 1 0.000 1.000 0.000

Section 7.3.2 shows the order of magnitude of instrumented
run-time events in the nbench tests. We also report the user
mode run-time for uninstrumented nbench tests, the number
of iterations of each individual test, and number of instru-
mented run-time events in Table 4.

B SPEC CPU2017 experimental setup

Due to unmanageable simulation times in the FVP simulator
we have verified the correctness of PARTS instrumentation
only on a subset of SPEC CPU2017 benchmarks. Specif-
ically, we chose the 505.mcf_r and 519.lbm_r benchmarks
from the SPECrate 2017 integer and floating point suites,
because these were the smallest C benchmarks in terms of
lines of code. The benchmarks were compiled using SPEC
runcpu, with a AArch64-specific configuration specifying
whole-program-llvm12, with our PARTS-enabled LLVM, as
the compiler. We then extracted the bitcode — created by
whole-program-llvm during compilation — and used it to
instrument and compile the binaries we used for evaluation:
one uninstrumented, one instrumented with PA instructions,
and one instrumented with our PA-analogue. We enabled
both return address and forward-edge code pointer signing
for the instrumented binaries.

We run the PARTS-instrumented binaries on the FVP sim-
ulator to confirm correct functionality. The simulation time
for the tested benchmarks was between 12 and 48 hours. Per-
formance benchmarks, for baseline and PA-enabled binaries,
were run on the HiKey devices, using the same setup as our
nbench evaluation. The results are shown in Table 2, and
are based on five runs of each benchmark. In 505.mcf_r we
observed overheads consistent with our results from nbench.
We observed no discernible overhead in 519.lbm_r. We at-
tributed this to the following properties of 519.lbm_r: (a) it
does not exhibit forward-edge code pointers, and (b) it has
few non-leaf function calls in relation to the arithmetic com-
putation performed part of the benchmark.

12https://github.com/travitch/whole-program-llvm

192 28th USENIX Security Symposium USENIX Association

https://github.com/travitch/whole-program-llvm

Table 3: Overhead as ratio and standard deviation (σ) for nbench tests reported separately for uninstrumented, return address
signing, (forward-edge) code pointer signing, data pointer signing and all instrumentation enabled.

Test Uninstrumented PARTS
ret. addr. sign code ptr. signing data ptr. signing all enabled

ratio σ ratio σ ratio σ ratio σ ratio σ

Numeric sort 1 0.002 1 0.003 1 0.003 1.293 0.003 1.293 0.003
String sort 1 0.002 1.01 0.002 1 0.002 1.251 0.002 1.259 0.002
Bitfield 1 0.002 1 0.002 1 0.002 1.15 0.002 1.15 0.001
FP emulation 1 0.001 1 0.001 1 0.001 1.395 0.001 1.396 0.001
Fourier 1 0.002 1.027 0.004 0.999 0.003 0.998 0.002 1.016 0.003
Assignment 1 0.001 1 0.002 1 0.002 1.145 0.002 1.145 0.002
Idea 1 0.001 1.004 0.002 1 0.002 1.279 0.002 1.283 0.002
Huffman 1 0.001 0.999 0.001 0.999 0.001 1.294 0.001 1.295 0.002
Neural net 1 0.001 1.002 0.002 1 0.002 1.001 0.002 1.001 0.003
Lu decomposition 1 0.001 1 0.002 1 0.002 1.173 0.002 1.173 0.002

Geometric average 1 - 1.004 - 1.000 - 1.191 - 1.195 -

Table 4: User mode run-time (utime) and standard deviation (σ) in seconds for uninstrumented nbench tests, the pre-determined
number of iterations for each individual test, and the number of run-time events that are affected by instrumentation. Non-leaf
calls correspond to function invocations protected by return address signing. Leaf calls correspond to function invocations
which do no store the value of LR in memory, and thus can be left uninstrumented. Instruction pointers created and indirect
calls are instrumented by (forward-edge) code pointer signing, and data pointer loads / stores correspond to events where data
pointer instrumentation is active.

Test Baseline Instrumented events
utime σ iterations non-leaf calls leaf calls instr. ptr. created indirect calls data ptr. ldr/str

Numeric sort 3.573 0.007 350 1802 7117598 10 5 302212833
String sort 2.971 0.005 125 3977237 1022510 10 5 180105579
Bitfield 2.687 0.004 101647890 5669 4308 10 5 104670943
FP emulation 5.862 0.004 35 616536 37906118 10 5 589518589
Fourier 2.693 0.005 25870 5240188 161 10 5 27504
Assignment 4.414 0.005 10 225602 113353 10 5 190662093
Idea 2.808 0.004 1500 1640184 54420196 10 5 196844406
Huffman 4.212 0.005 1000 17659 46983276 10 5 343176061
Neural net 5.477 0.007 10 359423 441412 10 5 782
Lu decomposition 3.596 0.005 230 18970 441412 10 5 186704928

USENIX Association 28th USENIX Security Symposium 193

C ARMv8-A PA Instructions

Table 5: List of PA instructions referred to in the main paper [3]. PA Key indicates the PA key the instruction uses. Addr.
indicates the source of the address to be signed / authenticated (Xd indicates that the address is specified using a general purpose
register). Mod. indicates the modifier used by the instruction (Xm indicates that the modifier is specified by a general purpose
register.) The backwards-compatible column indicates if the instruction encoding resides in the NOP space for pre-existing
ARMv8-A processors.

Instruction Mnemonic
PA Key

Addr. Mod.
Backwards-
compatibleInstr. Data Gen-

A B A B eric

BASIC POINTER AUTHENTICATION INSTRUCTIONS

Add PAC to instr. addr.

paciasp 3 LR SP 3
pacia 3 Xd Xm 3
pacibsp 3 LR SP 3
pacib 3 Xd Xm 3

Add PAC to data addr.
pacda 3 Xd Xm, 3
pacdb 3 Xd Xm 3

Calculate generic MAC pacga 3 3

Authenticate instr. addr.

autiasp 3 LR SP 3
autia 3 Xd Xm 3
autibsp 3 LR SP 3
autib 3 Xd Xm 3

Authenticate data addr.
autda 3 Xd Xm, 3
autdb 3 Xd Xm 3

COMBINED POINTER AUTHENTICATION INSTRUCTIONS

Authenticate instr. addr.
and return

retaa 3 LR SP 7
retab 3 LR SP 7

Authenticate instr. addr.
and branch

braa 3 Xd Xm 7
brab 3 Xd Xm 7

Authenticate instr. addr.
and branch with link

blraa 3 Xd Xm 7
blrab 3 Xd Xm 7

Authenticate instr. addr.
and exception return

eretaa 3 ELR SP 7
eretab 3 ELR SP 7

Authenticate data. addr.
and load register

ldraa 3 Xd zero 7
ldrab 3 Xd zero 7

194 28th USENIX Security Symposium USENIX Association

Origin-sensitive Control Flow Integrity

Mustakimur Rahman Khandaker
Florida State University

mrk15e@my.fsu.edu

Wenqing Liu
Florida State University

wl16c@my.fsu.edu

Abu Naser
Florida State University

an16e@my.fsu.edu

Zhi Wang
Florida State University

zwang@cs.fsu.edu

Jie Yang
Florida State University

jyang@cs.fsu.edu

Abstract
CFI is an effective, generic defense against control-flow hijack-
ing attacks, especially for C/C++ programs. However, most
previous CFI systems have poor security as demonstrated by
their large equivalence class (EC) sizes. An EC is a set of
targets that are indistinguishable from each other in the CFI
policy; i.e., an attacker can “bend” the control flow within an
EC without being detected. As such, the large ECs denote the
weakest link in a CFI system and should be broken down in
order to improve security.
An approach to improve the security of CFI is to use

contextual information, such as the last branches taken, to
refine the CFI policy, the so-called context-sensitive CFI.
However, contexts based on the recent execution history are
often inadequate in breaking down large ECs due to the limited
number of incoming execution paths to an indirect control
transfer instruction (ICT).1
In this paper, we propose a new context for CFI, origin

sensitivity, that can effectively break down large ECs and
reduce the average and largest EC size. Origin-sensitive CFI
(OS-CFI) takes the origin of the code pointer called by an
ICT as the context and constrains the targets of the ICT with
this context. It supports both C-style indirect calls and C++
virtual calls. Additionally, we leverage common hardware
features in the commodity Intel processors (MPX and TSX)
to improve both security and performance of OS-CFI. Our
evaluation shows that OS-CFI can substantially reduce the
largest and average EC sizes (by 98% in some cases) and has
strong performance – 7.6% overhead on average for all C/C++
benchmarks of SPEC CPU2006 and NGINX.

1 Introduction

The foundation of our software stacks is built on top of the un-
safe C/C++ programming languages. C/C++ provides strong

1We use ICT to denote forward indirect control transfers, excluding returns.
An ICT can be either C-style indirect calls or virtual calls.

performance, direct access to resources, and rich legacy. How-
ever, they lack security and safety guarantees of more modern
programming languages, such as Rust and Go. Vulnerabilities
in C/C++ can lead to serious consequences, especially for
low-level software. Many defenses have been proposed to
retrofit security into C/C++ programs. Control-flow integrity
(CFI) is a generic defense against most, if not all, control-flow
hijacking attacks. It enforces the policy that run-time control
flows must follow valid paths in the program’s control-flow
graph (CFG). Since its introduction in the seminal work by
Abadi et al. [2], there has been a long stream of research in
CFI [1,3,6,9,11–14,16,17,21,25,28,29,31,38,40,41,43,44].
Many earlier systems aim at improving the performance by
trading security for efficiency [25, 41, 43, 44], making them
vulnerable to various attacks [6, 13, 15, 16]. Recent work
focuses more on improving the precision and security of
CFI [14, 17, 21, 38], which can roughly be quantified by the
average and largest equivalence class (EC) sizes [21]. An EC
is a set of targets indistinguishable from each other in the CFI
policy; i.e., CFI cannot detect control flow hijacking within an
EC. It has been demonstrated the control flow can be “bent”
within the ECs without being detected, compromising the
protection [6]. Therefore, there is a pressing need to further
constrain the leeway of such attacks by reducing the average
and largest EC sizes .

One way to improve the security of CFI is to refine the CFG
with contextual information, the so-called context-sensitive
CFI. Likewise, traditional CFI systems are context-insensitive
because they do not collect and use the context information
for validating the targets of an ICT. There are many choices
of the contextual information. Existing context-sensitive CFI
systems use the recent execution history as the context. For
example, PathArmor uses the last few branches recorded
by Intel processor’s Last Branch Record (LBR) [38]; while
PittyPat uses the detailed execution paths recorded by Intel
processor trace (PT) [14]. Both PathArmor and PittyPat are
said to be path-sensitive since they use execution paths as the
context. A path-sensitive CFI policy essentially specifies that
if the execution comes from this specific path, the ICT can

USENIX Association 28th USENIX Security Symposium 195

only go to that set of targets. There are often multiple paths
leading to an ICT. Consequently, the target set of the ICT can
be divided into smaller sets by those paths. Another common
choice of the context is the call stack [21]. Since the call stack
can be represented by its return addresses, such a system is
often called call-site sensitive. If the context consists of only
one level of return address, it is denoted as 1-call-site sensitive.
Similarly, 2-call-site sensitive CFI uses two levels of return
addresses as the context.
Execution history based context can substantially reduce

the average EC size, but is much less capable in reducing
the largest EC size. Unfortunately, the largest EC gives the
attacker most leeway in manipulating the control flow without
risking detection. For example, PittyPat reports the largest EC
size of 218 in SPEC CPU2006, even though it is equipped
with the detailed execution history [14]. The fundamental
weakness of such context is that most programs only have
a small number of execution paths that reach an ICT; i.e.,
the in-degree of a node (representing an ICT) in the CFG is
usually small. If an ICT has hundreds of possible targets, at
least one of the ECs will be relatively large. Therefore, such
context is more capable in handling small to medium-sized
ECs but insufficient for large ones. To address that, we need a
more distributed context that is not concentrated on the ICT.
In this paper, we propose a new type of context for CFI,

origin sensitivity. Origin-sensitive CFI (OS-CFI) takes the
origin of the code pointer called by an ICT as the context. It
supports both C-style indirect calls and C++ virtual calls with
slightly different definitions for them: the origin for the former
is the code location where the called function pointer is most
recently updated; that for the latter is the location where the
receiving object (i.e., the object forwhich the virtual function is
called) is created. As usual, returns are protected by the shadow
stack, implemented either in software [10,23] or hardware [19].
Our measurement shows that origin sensitivity is particularly
effective in breaking down large ECs. For example, it can
reduce the largest EC size of a SPEC CPU2006 benchmark
from 168 to 2, a reduction of 99% (see Table 1).
We have implemented a prototype of OS-CFI for C and

C++ programs. The prototype enforces an adaptive CFI policy
that automatically selects call-site or origin sensitivity to
protect an ICT in order to improve the system performance
without sacrificing security. Its CFG is built by piggybacking
on the analysis of a demand-driven, context-, flow-, and field-
sensitive static points-to analysis based on SVF (Static Value-
Flow Graph) [36]. Its reference monitors are implemented
securely and efficiently by leveraging the common hardware
features in the commodity Intel processors (MPX and TSX).
Our evaluation with SPEC CPU2006, NGINX, and a few
real-world exploits shows that the prototype can significantly
reduce the average and largest EC sizes, and incurs only a
small performance overhead: 7.6% on average for the SPEC
CPU2006 and NGINX benchmarks.

In summary, this paper makes the following contributions:

• We propose the concept of origin sensitivity that can sub-
stantially reduce both the average and largest EC sizes to
improve the security of CFI. Origin sensitivity is applicable
to both C-style ICTs and C++ virtual calls. Both types of
ICTs are equally important to protect C++ programs.

• We have built a prototype of OS-CFI with the following
design highlights: we re-purpose the bound table of MPX to
securely store and retrieve origins, and use TSX to protect
the integrity of reference monitors; we piggyback on the
analysis of SUPA, a precise static points-to algorithm, to
built the origin-sensitive CFGs.

• We thoroughly evaluated the security and performance of
the prototype with SPEC CPU2006, NGINX, and a few real-
world exploits. In particular, we carefully studied the CFGs
generated from the points-to analysis and revealed a number
of its issues. Detailed CFG generation and measurement are
often overlooked in the evaluation of previous CFI systems.

2 Origin Sensitivity

In this section, we first introduce the initial definition of origin
sensitivity that is simple, powerful, but potentially inefficient.
We then derive a more viable but still effective definition.

2.1 A Simple Definition
OS-CFI takes the origin of the code pointer called by an ICT
as the context. If the ICT is a virtual call, the origin is defined
as the code location where the receiving object is created,
i.e., where its constructor is called; 2 The context of a C-style
ICT is similarly defined. A typical example of this type of
ICT is an indirect call to a function pointer. The origin of
the function pointer is defined as the instruction that initially
takes the function address stored in the function pointer.
Next, we use a real-world example from 471.omnetpp

in SPEC CPU2006 to illustrate the concept of the origin
(Fig. 1). 471.omnetpp is a discrete event simulator for large
Ethernet networks, written in the C++ programming language.
It relies heavily on macros to initialize many objects of the
simulated network. Line 1 - 10 shows how simulated networks
are initialized: it creates an ExecuteOnStartup object for
each network to call the network’s initialization code; The
constructor of ExecuteOnStartup sets the private mem-
ber code_to_exec (a function pointer) and adds itself to a
linked list (Line 18 - 23). When the program starts, it calls
all the queued code_to_exec function pointers (setup→
executeAll→ execute).

The ICT at Line 25 has the largest EC of this program with
168 targets. Call-site sensitivity is not useful here because there
is only one call stack to the ICT. Processor-trace-based path

2If the object is a global variable, its constructor is conceptually added to
a compiler-synthesized function that is called before entering main().

196 28th USENIX Security Symposium USENIX Association

1 #define EXECUTE_ON_STARTUP(NAME, CODE) \

2 static void __##NAME##_code() {CODE;} \

3 static ExecuteOnStartup __##NAME##_reg(__##NAME##_code);

4

5 #define Define_Network(NAME) \

6 EXECUTE_ON_STARTUP(NAME##__net,\

7 (new NAME(#NAME))->setOwner(&networks);)

8

9 Define_Network(smallLAN);

10 Define_Network(largeLAN);

11

12 class ExecuteOnStartup{

13 private:

14 void (*code_to_exec)();

15 ExecuteOnStartup *next;

16 static ExecuteOnStartup *head;

17 public:

18 ExecuteOnStartup(void (*_code_to_exec)()){

19 code_to_exec = _code_to_exec;

20 // add to list

21 next = head;

22 head = this;

23 }

24 void execute(){

25 code_to_exec();

26 }

27 static void executeAll(){

28 ExecuteOnStartup *p = ExecuteOnStartup::head;

29 while (p){

30 p->execute();

31 p = p->next;

32 }

33 }

34 };

35 void cEnvir::setup(...){

36 try{

37 ExecuteOnStartup::executeAll();

38 }

39 }

Figure 1: Example to illustrate origin sensitivity

sensitivity can distinguish individual calls to code_to_exec
(because it records each iteration of the while loop); but it is
difficult to decide which target is valid because that depends
on the unspecified order in which the constructors are called.
Origin sensitivity can handle this case perfectly: the origin of
code_to_exec is where the related function addresses are
initially taken. For example, the macro at Line 9 creates a
new function called __smallLAN__net_code and passes its
address to the constructor of object __smallLAN__net_reg.
Therefore, Line 9 becomes the origin of this function address.
The origin is propagated through the program along with the
function address when it is assigned to variables or passed as
an argument, in a way similar to how the taint is propagated
in taint analysis [33]. At the ICT, the origin is used to verify
the target. Because only one function address can be taken at
each origin, only one target is possible at the ICT. In other
words, origin sensitivity ideally can reduce the EC size for
this ICT from 168 to 1. The same security guarantee can be
achieved for virtual calls because only one class of objects
can be created at an origin (Section 2.2).

Execution history based context is limited by the in-degree
of an ICT node in the CFG. Assuming the ICT node has n valid
targets and m incoming edges, there exists at least one EC with
more than d n

m e targets (the pigeonhole principle). For example,
the in-degree of the ICT in Fig. 1 is only one for call-site
sensitivity; Call-site sensitivity thus cannot reduce this EC at
all. The in-degree of this ICT for PathArmor is only 16 because
LBR can only record 16 most recent branches. In contrast,
origins are associated with the data flow of the program. It
traces how function addresses are propagated in the program.
Because of this, origin sensitivity can uniquely identify and
verify a single target for each ICT. Moreover, this example
clearly demonstrates that CFI systems for C++ programs must
fully support C-style ICTs because many C++ programs use
them (they may even have the largest ECs). Protection of
virtual calls alone provides only minimal security.

2.2 A Hybrid Definition
The previous definition of origin sensitivity is conceptually
simple but powerful because it can identify a unique target at
run-time for each ICT. However, we need to track origins as
function addresses are propagated throughout the program in
a way similar to how taint is propagated – the origin is the
source of the taint, and the ICT is the sink. It is well-known that
taint analysis has high overhead, even though the performance
of origin tracking could be much better because function
addresses are usually not as widespread as the regular data
(e.g., a network packet) [23]. This problem is more severe for
C-style ICTs because function pointers are frequently copied
or passed as arguments. It will not affect virtual calls as much
for the following reason: the origin of a virtual call is the
location where the receiving object’s constructor is called. If
an object is copied to another object, we essentially create a
new object using its class’ copy constructor or copy assignment
operator. This creates a new origin for that object. There is
thus no need to propagate the origin for objects.
To address the challenge, we propose a hybrid definition

of origin sensitivity that combines the origin with call-site
sensitivity. More specifically, we relax the definition of the
origin as the code location where the related code pointer is
most recently updated. In Fig. 1, the only function pointer
is code_to_exec in the ExecuteOnStartup class. It is last
updated in the class’ constructor at Line 19; i.e., the origin
of code_to_exec is just Line 19. Clearly, one origin cannot
tell Line 9 and 10 (and other places not shown) apart. This
can be solved by adding the call-site information to the origin.
The origin can now be represented as a tuple of (CS, Io).
Io is the instruction that last updates the code pointer; CS
is the immediate caller of the origin function (the function
that contains Io). Under this new definition, the ICT at Line
25 has two origins: (Line 9, Line 19) and (Line 10, Line 19).
Note how the two elements of the origin complement each
other: Io moves the context off the current execution path

USENIX Association 28th USENIX Security Symposium 197

Benchmarks Language Context-insensitive 1-call-site 2-call-site Origin-sensitive
ECL ECL Reduce by ECL Reduce by ECL Reduce by

445.gobmk C 427 427 0 427 0 427 0
400.perlbench C 173 120 31% 113 35% 21 88%
403.gcc C 54 54 0 54 0 42 22%
464.h264ref C 10 2 80% 2 80% 1 90%
471.omnetpp C++ 168 168 0 168 0 2 99%
483.xalancbmk C++ 38 38 0 38 0 4 95%
453.povray C++ 11 11 0 11 0 10 10%

Table 1: Effectiveness of hybrid origin sensitivity in reducing the largest EC size (ECL) as compared to call-site sensitivity

(that reaches the ICT); while CS adds extra information to Io
to separate different origins. We use call sites here because
they can be directly fetched from the shadow stack in the user
space. Other execution contexts such as last-branch record
and processor trace can only be accessed in the kernel.

Interestingly, the addition of call sites does NOT make the
context for virtual calls more powerful. The origin of a virtual
call is where the constructor of the receiving object is called.
C++’s constructors cannot be called virtually or indirectly.3
As such, a call to the constructor can create an object of just
one class. There is no ambiguity in the class created, hence no
ambiguity in the virtual functions. As such, we keep using the
object construction site alone as the origin for virtual calls.
Table 1 demonstrates the hybrid origin sensitivity’s capa-

bility in reducing the largest EC size as compared to call-site
sensitivity [21]. Specifically, we run and recorded the com-
plete execution history of all the C/C++ benchmarks in SPEC
CPU2006. We then parsed the history to construct the CFGs
for origin and call-site sensitivity. For example, 1-call-site
sensitivity uses the most recent return address as the context.
For each ICT, we grouped the recorded targets by the last
return addresses. Each group was an EC. We report the largest
EC sizes in Table 1 for all the benchmarks having the largest
EC size greater than or equal to 10 (ten other benchmarks have
less than 10 targets for every ICT). The table shows that origin
sensitivity consistently out-perform call-site sensitivity. Partic-
ularly, we can reduce the largest EC size of 471.omnetpp by
99%, from 168 to 2. Neither call-site nor origin sensitivity is
effective to 445.gobmk because it contains a loop over a large
static array of function pointers (the owl_defendpat array).
403.gcc similarly has a large array (operand_data) used
in a recursive function (expand_complex_abs). Common
CFI policies cannot handle such cases because there is not
sufficient information in the control flow to separate these
targets apart. A similar case is shown in Fig. 4 of Section 4
with the code snippet.

3Bjarne Stroustrup’s C++ Style and Technique FAQ: “To create an object
you need complete information. In particular, you need to know the exact
type of what you want to create. Consequently, a ‘call to a constructor’ cannot
be virtual.” [8].

3 System Design

In this section, we present the design of our LLVM-based
prototype OS-CFI system in detail.

3.1 Overview
Since its inception, many CFI systems have been proposed. To
separate OS-CFI from the existing work,we have the following
requirements for its design:

• Precision: OS-CFI must improve the security by reducing
the average and largest EC sizes. Large ECs are the weakest
link in a CFI system since they provide the most leeway in
“bending” the control flow within the CFI policy

• Security: context-sensitive CFI systems, including OS-CFI,
have more complex reference monitors to collect and main-
tain the contextual information. As such, we must protect
both the contextual data and the (temporary) data used by
reference monitors.

• Performance: high performance overhead can severely
limit the application of any defense mechanism. OS-CFI
must have strong performance relative to the native system.

• Compatibility: OS-CFI must support both C and C++ pro-
grams. As previously mentioned, any defense for C++ pro-
grams must protect both virtual calls and C-style ICTs.

A CFI system consists of three major components: the CFI
policy, the CFG generation, and the enforcement mechanism.
OS-CFI enforces an adaptive CFI policy that applies either
origin or call-site sensitivity for each ICT and adopts the
shadow stack to protect returns. OS-CFI’s CFG is generated
with a precise context-, flow-, and field-sensitive static points-
to analysis [36].4 The enforcement mechanism of OS-CFI uses
the hash-table based set-membership test with the hardware
acceleration for metadata storage. Next, we describe each
component in detail.

4Context sensitivity in the points-to analysis is, more precisely, call-site
sensitivity. It is named as is for the historical reasons.

198 28th USENIX Security Symposium USENIX Association

3.2 OS-CFI Policy
OS-CFI features an adaptive CFI policy [21] that applies either
origin or call-site sensitivity to an ICT, decided by which one
is more capable in reducing the EC size. If both have the
same effectiveness, we prefer call-site sensitivity because it
has lower overhead. If the EC size is already small without
context, we just enforce the context-insensitive CFI for this
ICT. In addition, call-site sensitivity can use multiple levels
of call sites as the context. More levels generally improve
the security but incur higher overhead. We limit call-site
sensitivity in OS-CFI to at most three call sites. Note that
origin sensitivity itself uses 1-call-site on its origins for C-style
ICTs (Section 2.2).
We adopt this policy to improve the performance without

sacrificing the security: origin sensitivity is a powerful context
that can substantially break down large ECs, but it has to collect
andmaintain moremetadata at the run-time. On the other hand,
most ICTs in a program have a small number of possible targets.
For example, the largest EC size for 400.perlbench is 173,
but its second largest one is only 18. For small ECs, call-site
sensitivity is mostly sufficient. We select call-site sensitivity
as the secondary policy because last-branch registers (LBR)
and processor trace (PT) can only be accessed in the kernel
mode, even though they provide more fine-grained execution
records. Call-sites instead can be directly fetched from the
shadow stack in the user space.

3.3 CFG Generation
A complete and precise CFG is the foundation of any CFI
systems. A CFG must be complete to ensure that the resulting
CFI system has no false positives (valid control flows reported
as invalid). False positives are detrimental to the usability of a
security system. Meanwhile, a precise CFG can reduce false
negatives, making the system more secure. CFGs can have
different levels of precision. For example, a CFG that assumes
each ICT can target any address-taken functions is complete
but utterly imprecise. Most CFI systems utilize static points-to
analysis to construct CFGs because such analysis is (suppos-
edly) conservative and the generated CFGs are complete. The
precision of the points-to analysis directly decides the quality
of the generated CFGs. A precise points-to analysis is often
context- and flow-sensitive, such as SUPA [34].
OS-CFI enforces an adaptive CFI policy that combines

call-site and origin sensitivity, which require call-site and
origin-sensitive CFGs, respectively. We represent these CFGs
as a set of tuples:

• Call-site sensitive CFG: each tuple of this CFG has the
following form: (CS1/2/3, Ii , T). CS represents the callers
of the current function on the call stack. OS-CFI may use
up to three call sites. Ii is the address of the ICT instruction
itself. It is either a C-style ICT or a virtual call. T is the set
of valid targets under this context.

1 typedef void (*Format)();

2 class Base {

3 protected:

4 Format fmt;

5 public:

6 Base(/* Base_o.vPtr, origin */) {

7 // store_metadata(Base_o.vPtr, Base::vTavle,

8 // origin);

9 }

10 ~Base() {}

11 virtual void set(Format fp) {

12 fmt = fp;

13 // store_metadata(fmt.addr, fp.value,

14 // Base:set_loc1, Base::set_ctx);

15 }

16 void print() {

17 // ccall_ref_monitor(fmt.addr, fmt.value);

18 fmt();

19 }

20 };

21 class Child : public Base {

22 public:

23 Child(/* Child_o.vPtr, origin */) {

24 // Base(Child_o.vPtr, origin);

25 // store_metadata(Child_o.vPtr, Child::vTable,

26 // origin);

27 }

28 ~Child() {}

29 void set(Format fp) {

30 fmt = fp;

31 // store_metadata(fmt.addr, fp.value,

32 // Child::set_loc1, Child::set_ctx);

33 }

34 void print() {

35 // ccall_ref_monitor(fmt.addr, fmt.value);

36 fmt();

37 }

38 };

39 void exec () {

40 Base *bp = new Base(); // call constructor

41 // vcall_ref_monitor(Base_o.vPtr,

42 // Base::vTable, Base::set())

43 bp->set(&targetA);

44 bp->print();

45

46 Child ci; // call constructor

47 ci.set(&targetB);

48 ci.print();

49

50 bp = &ci;

51 // vcall_ref_monitor(Child_o.vPtr,

52 // Child::vTable, Child::set())

53 bp->set(&targetB);

54 bp->print();

55 }

Figure 2: An example featuring C-style ICT and virtual call.

• Origin sensitive CFG for C-style ICTs: each tuple of this
CFG has the form of ((CSo, Io), Ii , T). (CSo, Io) is the
hybrid origin of the function pointer. In particular, Io is the

USENIX Association 28th USENIX Security Symposium 199

last store to the related function pointer; while Ii is where
the function pointer is actually called.

• Origin sensitive CFG for virtual calls: each tuple of this
CFG has the form of (Io, Ii , T). Io is the location where
the receiving object of a virtual call is constructed.

We use the C++ code in Fig. 2 to illustrate how the CFGs
are generated (and later enforced). There are two classes,
Base and Child. Child inherits Base. Base has a protected
function pointer fmt that can only be set by virtual function
set. fmt is called indirectly by the print function, which is
overloaded in Child. As such, this example has both C-style
ICTs (Line 18 and 36) and virtual calls (Line 43 and 53).

Our CFG construction algorithm is based on SVF, a static
tool that “enables scalable and precise inter-procedural depen-
dence analysis for C and C++ programs” [36]. SVF constructs
a whole-program sparse value-flow graph (SVFG) that con-
servatively captures the program’s def-use chains. SVFG is
imprecise because it overestimates the points-to sets when
constructing the def-use chains. SUPA is a client of SVF. It
is an on-demand context-, flow-, and field-sensitive points-to
analysis based on the SVFG. It improves the precision by
refining away imprecise value-flows in the SVFG with strong
updates [34]. Our CFGs are constructed on top of the refined
SVFG of SUPA.
SUPA is a demand-driven points-to analysis. It traverses

the program’s SVFG reversely to compute the points-to sets.
OS-CFI queries SUPA for every ICT in the program. In
response, SUPA starts traversing the def-use chains to solve
the request. OS-CFI piggybacks on SUPA during this traversal.
Specifically, OS-CFI monitors the traversed nodes to identify
the origin of the ICT. When SUPA stops the traversal, it has
located the targets of the ICT, and OS-CFI has collected all
the elements required to generate the tuples for the ICT. Next,
we describe how OS-CFI generates the related tuples for the
indirect calls in Fig. 2 since they are the more complex cases.

In Fig. 2,Base has a protectedmember function pointerfmt,
which is called by Base.print and Child.print. Therefore,
OS-CFI requests SUPA to resolve the points-to set for both
uses of fmt. We describe the resolution of the first call to fmt
by Base.print here. This indirect call to fmt is actually a
use of the fmt filed of the this object. SUPA can create a
def-use chain from Line 18 to the assignment of the fmt field
at Line 12 because it is field-sensitive. This def-use chain is
linked by the bp pointer created at Line 40. When traversing
this def-use chain, OS-CFI marks the first store to fmt as
the origin for the ICT. The traversal continues until SUPA
has reached the call to the set function at Line 43. OS-CFI
then marks Line 43 as the call-site for the origin. Now, SUPA
has located the target of fmt (targetA). Note that SUPA is
precise enough to exclude targetB from the points-to set
of fmt at Line 18. The CFG tuple for Line 18 is ((Line 43,
Line 12), Line 18, targetA). Tuples for other CFGs can be
similarly constructed.

3.4 Enforcement Mechanism
Overview: we use a hash-table based set membership test to
enforce the OS-CFI policy. Specifically, we create a hash table
for each CFG and instrument the program (at the LLVM IR
level) to collect the run-time metadata at the origins. OS-CFI
verifies the targets at each ICT site by searching the hash table
for matches. As mentioned before, the CFGs are encoded as
tuples. The hash function simply takes each element of the
tuple and xor them together. It is extremely fast and leads
to few conflicts in practice. The hash function can be easily
replaced if necessary.

In this section,we will describe the instrumentation in detail.
Note that OS-CFI adopts both call-site and origin sensitivity.
The context for the former is the return addresses on the call
stack, which can be fetched from the shadow stack at the ICT
sites. As such, call-site sensitivity is enforced (instrumented)
only at the ICT sites. However, we need to instrument both
the origin and ICT sites for origin sensitivity.

3.4.1 Instrumentation at Origin Sites

OS-CFI has different origins for C-style ICTs and virtual calls.
We describe them separately.

C-style ICTs: the origin for this type of ICTs is defined
as (CSo, Io). Io is the address of the origin (i.e., the in-
struction that last writes to the function pointer), and CSo

is the most recent return address on the call stack. Since we
are instrumenting the origin, Io is a known constant. CSo

can be retrieved directly from the shadow stack. To store the
metadata, we use the address of the function pointer as the
key and the context, (CSo, Io), as the value. At the ICT site,
we can recover the context with the function pointer address.
Fig. 2 has been annotated with the calls to store metadata at
Line 13 and 31 for Base.fmt function pointer.

Virtual calls: the origin for virtual calls is the location
where the object is created (Io). Io is also a known constant
at the origin site. To store this metadata, we use the object’s
vPtr pointer address as the key and Io as the value. In C++,
every object with virtual functions has a hidden member
named vPtr that points to its vTable. vTable is used by the
compiler for dynamic dispatching of virtual function calls. It
is a table of virtual function pointers. Each virtual function
of a class has a fixed offset in vTable. A virtual call is thus
compiled as an indirect call to the corresponding entry in
vTable. Initially, a sub-class inherits its base class’ vTable.
If the sub-class overrides a virtual function, it sets the related
function pointer in vTable to its own function’s address.
Consequently, the virtual call can call either the base or sub-
class’ virtual function, decided by the class of the receiving
object. COOP attacks essentially compromise the binding of
vPtr and vTable [32]. After an object is created, its vTable
will not be changed.

The reason we use vPtr’s address as the key (instead of
the base address of the object, even though they both can

200 28th USENIX Security Symposium USENIX Association

uniquely identify the object) will be clarified as we discuss
the metadata storage. The instrumentation is added to each
class’ constructor so that we only need to insert the code
once (instead of once at each location where the constructor
is called). Line 7 and 25 of Fig. 2 show the added code. We
simply pass the origin from the object allocation site to the
constructor as a hidden parameter. Note that the constructor
of a sub-class calls the constructor of its base classes first. We
thus add the code near the end of the constructor so that the
metadata will not be mistakenly overwritten.

Metadata storage: the storage of the contextual informa-
tion (i.e., the metadata) is a key design component of OS-CFI.
The metadata of OS-CFI is organized as (key, value) pairs.
The key is the address of the function pointer or the receiving
object’s vPtr pointer. The value is the origin associated with
the key. We store the (key, value) pair at each origin site, and
query the storage with the same key to retrieve the origin
information at each ICT site. The performance and security of
the storage is critical to OS-CFI. In our prototype, we uniquely
(ab)use the hardware-based bound table of Intel MPX for
metadata storage [18].
MPX is a hardware-based bound check system. With the

support of the compiler, run-time, and kernel, MPX can check
the bounds of memory access to prevent memory errors, such
as buffer overflows and over-reads. However, whole program
bound check is hard to implement correctly and efficiently,
even with the hardware support [26]. In fact, the MPX support
will be removed from GCC in version 9.0, after it was just
integrated in 5.0 [27]. This leaves the whole MPX hardware
free-to-use by OS-CFI and other (security) systems.

Figure 3: MPX operations, from Intel’s manual [30]

MPX ’s bound table is indexed by the address of a pointer
(i.e., the key). Each key has its own unique bound table
entry, which consists of the content of the pointer, the upper
bound, and the lower bound. The bound table is organized
and operates like a two-level page table, as shown in Fig. 3:
the bounds directory points to the second-level bounds tables;
each bounds table contains a number of bound entries. The

pointer address is divided into two indexes. To locate a bound
entry, MPX first indexes into the bounds directory to retrieve
the base of the related bounds table, and then uses the second
index to locate the related bound entry. If a bounds table does
not exist, the kernel allocates a new one and links it to the
bounds directory. The base of the bounds directory is stored
in a special register, BNDCFGx, inaccessible to the user space.

We can store all the origins in the MPX bound table. Even
though we are supposed to store the lower and upper bounds
in this table, the hardware does not perform any validations
on the bounds, as confirmed by both the official document
and our experiments. Accordingly, we can store and retrieve
arbitrary numbers in the bounds (after doing some simple
calculations on these two numbers). This design not only
significantly accelerates the access of the metadata but also
improves the security: the MPX table stores the content of the
key along with the bounds. When querying the table for a key,
we need to provide the pointer’s address and its content. If the
provided pointer content mismatches that in the table, MPX
will return an error. Therefore,we can detect any manipulation
of these pointers, after they have been stored, without the extra
performance penalty.

For virtual calls, OS-CFI uses the address of the receiving
object’s vPtr pointer, which points to the object’s vTable, as
the key. As such, OS-CFI can readily detect any COOP attack,
which compromises the object’s vPtr pointer [32], similar
to how object-type integrity (OTI [4]) works. Note that OTI
is not a complete protection for C++ virtual calls because
the attacker can still call the “correct” virtual functions of
an unintended object. In contrast, OS-CFI provides more
comprehensive and complete protection for C++ programs
because it not only enforces the precise CFI but also protects
both virtual calls and C-style ICTs.

OS-CFI can use other keys for the virtual call. For example,
it can use the address of the object itself as the key and a
constant number as its content. We can retrieve the origin from
the MPX table by this key and its “content”, and then enforce
the CFI against the unique target decided by the origin. This
is because the origin (i.e., the location where the receiving
object is constructed) identifies the exact class of the object,
hence the unique target of the virtual call (Section 2.2). Our
prototype uses the address of the vPtr pointer as the key
because it is more natural for MPX (i.e., the vPtr pointer
address and its real content). This is not strictly necessary
since OS-CFI nevertheless can detect these attacks.

3.4.2 Instrumentation at ICT Sites

The instrumentation at each ICT site is rather straightforward:
it first queries the metadata storage with the key and its content
to retrieve the origin. If the origin exists, it further checks the
corresponding hash table whether the origin and the target are
valid for the ICT site. Use the indirect call as an example, we
need to reconstruct the tuple of ((CSo, Io), Ii , T). (CSo, Io)

USENIX Association 28th USENIX Security Symposium 201

is the origin fetched from the metadata storage; Ii represents
the address of indirect call instruction; T is the target, i.e., the
value of the function pointer. OS-CFI then queries the hash
table whether this tuple is one of its items. If so, the indirect
call is allowed. For call-site sensitivity, OS-CFI retrieves the
return addresses from the shadow stack and uses a similar
method to verify the target under this context.

3.4.3 Protection of Metadata

The MPX table is protected by ASLR. The 64-bit address
space provides enough entropy to render brute force attacks
difficult, if not impossible. Note that the access to the bounds
directory and tables is implemented by the hardware, similar
to the access to page tables. Particularly, the base of the bounds
directory is stored in a kernel-mode register, inaccessible to
the user space. Therefore, the address of the MPX table will
not be leaked to the user space. This prevents the attacker
from overwriting the metadata stored in the MPX table. We
consider side-channel attacks out-of-scope. A number of
defenses have been proposed to detect/mitigate them [7,45].
If a stronger protection of the MPX table is necessary, we can
use MPX’s bound check to protect it, with a small additional
overhead [4, 22]. Note that this use of the bound check does
not conflict with OS-CFI’s use of the MPX table since the
bound check can be performed with just the bound registers.
The hash tables for CFGs are protected as the read-only

memory and thus cannot be changed by the attacker. A subtle
attack surface is the temporary data used by the reference
monitors to search the hash tables. Context-sensitive CFI
systems have more complex reference monitors, which have to
use the memory (instead of all registers) to store the temporary
data. This makes them vulnerable to race conditions in a brief
time widow. To address that, we utilize the transactional
memory (Intel TSX) to protect the reference monitors [21].
Specifically, TSX keeps tracks of the memory accessed by a
transaction and aborts the transaction if any of that memory is
changed by others (e.g., attacks). We enclose each reference
monitor in a transaction and repeat the transaction if it fails
because, with a very low probability, transactions could fail
without attacks (e.g., because of cache conflicts).

3.4.4 CFG Address Mapping

OurCFGs are generated using SUPA, a LLVM-based points-to
analysis. The resulting CFGs are accordingly encoded as the
LLVM IR locations. However, the instrumentation requires
the run-time addresses of the CFG nodes. We need to map the
IR locations to the run-time addresses. Previous systems often
use the debug information for this purpose, which works for
function addresses but not as well for call sites because they
are not in the symbol table. To address that, heuristics such as
the code structure are used to infer the locations of call sites.
This approach works most of the time but may not be reliable

Benchmarks Out of budget Empty points-to sets
of ICTs SUPA Type # of ICTs Type

400.perlbench 54 639 349 2 7
403.gcc 46 544 218 20 107
445.gobmk 22 1645 1637 1 4

447.dealII 0 - - 23 37
450.soplex 0 - - 157 11
453.porvray 47 317 79 22 24
471.omnetpp 37 143 44 67 21
483.xalancbmk 0 - - 349 29

NGINX 141 1066 102 4 34

Table 2: Failed cases of SUPA and the improvements of our
type-based matching. Column 3, 4, and 6 show the largest EC
sizes for SUPA and the type-based matching. SUPA works for
all other benchmarks.

when the compiler optimization is turned on.
OS-CFI solves this problem without using any heuristics.

Specifically, we insert a custom label after each call instruc-
tion. We then use the label-as-value extension of Clang to
store the label addresses to an array and assign the array to
a custom section. The compiler will automatically convert
these labels to the addresses. Note that the array has to be
marked as used so that the later stages of the compiler will
not optimize it away. These extensions are supported by both
GCC and Clang/LLVM. A benefit of this approach is that
OS-CFI theoretically can support ASLR because the loader
will automatically fix these addresses when the program is
loaded. This resolves the run-time addresses of call sites. For
the rest of the data in the CFGs, we encode the ICT and
origin sites as IDs (specifically the hashes of their source code
locations) since their concrete values are irrelevant. The target
function addresses are obtained from the symbol table. With
the address mapping information, we can encode the CFGs in
the hash tables.

4 Evaluation

In this section, we evaluate how effectively OS-CFI can im-
prove the security by reducing the largest and average EC
sizes and what is the performance overhead for some standard
benchmarks. We also experimented with real-world exploits
to demonstrate how OS-CFI can block them.

4.1 Improvement in Security
The security of a CFI system can be measured by its CFGs,
assuming the enforcement mechanism does not introduce
imprecision. Particularly, the average and largest EC sizes
reflect the overall quality of the CFGs [21]. OS-CFI’s CFGs
are derived from SUPA, a static points-to analysis. Therefore,
the quality of its CFGs are affected by SUPA.

Advancements and issues of SUPA: SUPA is a scalable
and precise context-, flow-, and field-sensitive points-to analy-
sis. Public availability of such algorithms is, to the best of our

202 28th USENIX Security Symposium USENIX Association

knowledge, non-existent before the release of SUPA. Though,
SUPA has its own issues. More specifically, SUPA is an on-
demand points-to analysis. It allocates a specific amount of
(configurable) budgets for each query. We found that, even
with a generous budget on a relatively powerful machine (a
16-core Xeon server with 64GB of memory), SUPA can still
run out of budgets for complex programs, such as gcc and
perlbench. When that happens, SUPA may return wrong
results in the points-to sets (e.g., functions with wrong signa-
tures). In addition, SUPA may return empty results because
of the language features it does not yet support (e.g., C++’s
pointers to member functions). 5 When these issues were
detected, we used a simple type-based matching to fix the
points-to sets.
The results are listed in Table 2. Generally speaking, the

type-based matching can substantially reduce the target sizes
for the failed cases. For example, we can reduce the size of
largest EC size of NGINX returned by SUPA from 1,066 to
just 102. A noticeable exception is gobmk, which has more
than 1,600 address-taken functions with the same signature
((int, int, int, int)). Our manual examination of the
program shows that no ICTs in gobmk should have more than
500 targets.
It is no surprising that SUPA has some issues because

scalable points-to analysis with multiple types of sensitivity
is a hard problem. We suspect SUPA is still more scalable
and/or precise than other publicly available points-to analysis
algorithms, and expect these problems to be solved soon.
However, these issues can put OS-CFI to a disadvantage
currently – our CFGs are generated by piggybacking on the
SUPA as it traverses the SVFG. For these failed cases, SUPA
prematurely stops traversing the graph. Accordingly,we cannot
generate call-site or origin sensitive edges for these failed ICTs.
We instead have to fallback to the context-insensitive CFI for
them. We would like to emphasize that the issues of SUPA
does not invalid the usefulness of origin sensitivity. These are
two orthogonal problems.

Effectiveness of OS-CFI: Table 3 shows how OS-CFI
can significantly reduce both the average and largest EC
sizes. This table focuses on measuring the effectiveness of
origin sensitivity; the table thus does not take the ICTs that
SUPA failed to resolve (Table 2) into consideration. We
will present the overall results with all the ICTs in Table 4.
Additionally, Table 3 compares OS-CFI against the context-
insensitive CFG,which can be calculated directly from SUPA’s
points-to sets. It is technically difficult to compare the origin-
sensitive CFG against path-sensitive CFGs, such as these in
PathArmor [38] or PittyPat [14]: they both use online points-to
analysis to calculate the valid targets, with the help of run-time
information; i.e., their CFGs are dynamically generated and
are, most likely, incomplete for a fair comparison. In addition,
the comparison to call-site sensitive CFG has been shown in

5SUPA may also returns empty results for ICTs in the dead code.

Benchmark # ICTs No Context OS-CFI Reduce by
Avg Lg Avg Lg Avg Lg

400.perlbench 79 23.8 39 2.8 10 88% 74%
401.bzip2 20 2.0 2 1.0 1 50% 50%
403.gcc 347 30.7 169 1.3 27 96% 84%
433.milc 4 2.0 2 1.0 1 50% 50%
445.gobmk 36 8.1 107 1.5 12 82% 89%
456.hmmer 9 2.8 10 1.0 1 64% 90%
464.h264ref 367 2.0 12 1.0 2 50% 83%

444.namd 12 2.5 3 1.0 1 60% 67%
447.dealII 79 2.1 3 1.2 3 43% 0%
450.soplex 317 1.0 1 1.0 1 0% 0%
453.porvray 45 9.3 17 1.6 5 83% 71%
471.omnetpp 331 5.7 109 1.0 2 83% 98%
473.astar 1 1.0 1 1.0 1 0% 0%
483.xalancbmk 1492 2.5 11 1.0 1 60% 91%

NGINX 248 9.4 43 1.1 19 88% 56%

Table 3: Improvement of precision by OS-CFI over context-
insensitive CFI, shown by the significant reduction in the
average (Avg) and largest (Lg) EC sizes.

Table 1. Nevertheless, the absolute average and largest EC sizes
OS-CFI can achieve still clearly show its effectiveness. For
example, OS-CFI can reduce the largest EC size of omnetpp
from 109 to 2, a 98% reduction. It can also reduce the average
EC size of gcc by 96% from 30.7 to 1.3. Overall, OS-CFI can
reduce the average and largest EC sizes by 59.8% and 60.2%
on average, respectively.

1 typedef int (*EVALFUNC)(int sq,int c);

2 static EVALFUNC evalRoutines[7] = {

3 ErrorIt,

4 Pawn,

5 Knight,

6 King,

7 Rook,

8 Queen,

9 Bishop };

10

11 int std_eval (int alpha, int beta) {

12 for (j = 1, a = 1; (a <= piece_count); j++) {

13 score += (*(evalRoutines[piecet(i)]))

14 (i,pieceside(i));

15 }

16 }

Figure 4: An example in sjeng where the ICT at Line 15 has
no context in SUPA.

Overall statistics of OS-CFI: Table 4 shows the overall
statistics ofOS-CFIwhen applied to all the C/C++ benchmarks
in SPECCPU2006 andNGINX. The second and third columns
show the number of C-style ICTs and virtual calls, respectively.
It is clear that C++ programs often use C-style ICTs. Any
protection for C++ programs thus must support both types of
ICTs. OS-CFI enforces an adaptive policy where an ICT can
be protected by either origin or call-site sensitivity. However,
it may fall back to the context-insensitive policy if SUPA
fails to resolve the points-to set for the ICT or if SUPA

USENIX Association 28th USENIX Security Symposium 203

#ICTs OS-CFI / Adaptiveness
Origin sensitive Call-site sensitive Context-insensitive OverallBenchmark #c-Call #vCall

#ICTs #Origins Avg Lg #ICTs Depth Avg Lg #ICTs Avg Lg Avg Lg

400.perlbench 135 0 53 49 2.5 6 18 2 3.2 8 64 25.5 349 11.4 349
401.bzip2 20 0 20 4 1.0 1 0 0 0 0 0 0 0 1.0 1
403.gcc 413 0 249 139 1.0 1 88 2 1.0 1 76 29.8 218 3.4 218
433.milc 4 0 0 0 0 0 4 1 1.0 1 0 0 1 1.0 1
445.gobmk 59 0 29 12 1.4 3 7 3 1.0 1 23 661.7 1637 246.3 1637
456.hmmer 9 0 1 15 1.0 1 1 1 1.0 1 7 1.0 1 1.0 1
458.sjeng 1 0 0 0 0 0 0 0 0 0 1 7 7 7.0 7
464.h264ref 367 0 318 52 1.0 1 7 1 1.5 2 42 1.7 2 1.1 2

444.namd 12 0 12 30 1.0 1 0 0 0 0 0 0 0 1.0 1
447.dealII 7 95 73 59 1.0 1 3 2 1.0 1 26 27.9 37 6.7 37
450.soplex 0 357 0 0 0 0 0 0 0 0 357 1.2 11 1.2 11
453.porvray 38 76 37 29 1.5 5 8 3 1.0 1 69 14.4 79 7.5 79
471.omnetpp 39 403 276 243 1.0 1 21 2 1.0 1 145 27.5 44 9.2 44
473.astar 0 1 0 0 0 0 0 0 0 0 1 1.0 1 1.0 1
483.xalancbmk 18 2073 1486 1544 1.0 1 6 3 1.0 1 599 7.2 29 3.5 29

NGINX 393 0 184 169 1.0 1 37 3 1.0 1 172 13.8 102 6.6 102

Table 4: Overall distribution of ICTs among origin sensitive, call-site sensitive, and context-insensitive ICTs. The second column
shows the total number of C-style indirect calls, while the third column shows the number of virtual calls. We omit the results of
mcf, libquantum, and sphinx3 from this table because they do not have ICTs in their main programs.Columns marked with
Avg and Lg show the average and largest EC sizes, respectively.

fails to provide the context for the ICT. The latter could
happen if the ICT uses global function pointers (e.g., Fig. 4).
Specifically, the ICT in Line 13 calls global function pointers
defined in the evalRoutines array. Because evalRoutines
is initialized statically, SUPA will not generate any context for
this ICT. Neither will origin or call-site sensitivity improve
the precision of such cases because the target is decided by the
index (piecet(i)). Even µCFI can only provide the same
precision as context-insensitive CFI in this case because the
constraint data (piecet(i)) can potentially be compromised
before being captured by µCFI using processor trace [17].
In Table 4, most ICTs are protected by origin sensitivity.

Interestingly, the number of origins (the 5th column) is often
less than the number of ICTs (the 4th column) because some
ICTs may share origins. Both origin and call-site sensitivity
can reduce most of the average and largest EC sizes to less
than 2 and 5, respectively 6. Note that OS-CFI prefers call-site
sensitivity over origin sensitivity. Origin sensitivity is used
only if call-site sensitivity fails to provide sufficient security.
Therefore, ICTs protected by origin sensitivity generally have
larger ECs than those by call-site sensitivity. OS-CFI similarly
prefers context insensitivity over call-site sensitivity. ICTs
that SUPA failed to resolve are also context-insensitive. The
majority of the largest ECs in the context-insensitive ICTs
come from the problems in SUPA. We expect OS-CFI to
substantially break down most of these ECs once the problems
in SUPA are resolved.

Next, we present a few case studies to illustrate howOS-CFI
can successfully break down largest ECs in some programs of
SPEC CPU2006.

6Table 3 and 4 cannot be compared directly because Table 4 includes the
ICTs SUPA failed to resolve while Table 3 does not.

4.1.1 Case Studies

Largest EC in 471.omnetpp: Fig. 5 shows the virtual call in
471.omnetpp with the largest number of targets – 35 targets
in context-insensitive CFG. The related ICT is located in
Line 5, which calls the virtual destructor declared in Line
10. Unlike constructors, destructors in C++ can be called
virtually. cObject is the root class in 471.omnetpp. It is
inherited by many other classes, such as CModuleType (Line
12) and cArray (Line 17). Interestingly, cArray is a container
of cObject even though itself is a sub-class of cObject.
cArray has a clear function that calls discard on every
contained object, which in turn calls the virtual destructor.
Clearly, the ICT in Line 5 can target any virtual destructor of
cObject’s sub-classes.

OS-CFI defines an origin for each location where an object
of cObject or its sub-class is created. Because the constructor
in C++ cannot be virtually called, each origin is associated
with exactly one class. As such, OS-CFI can uniquely identify
the specific destructor to be called; i.e., it can enforce a perfect
CFI policy at Line 5 since the EC size is 1.

Largest EC in 483.xalancbmk: The ICT with the largest
EC size in 483.xalancbmk is a C-style indirect call (Fig. 6,
Line 11). The function pointer is defined in Line 4 as a private
member of XMLRegisterCleanup. As such, it can only be
set by function registerCleanup (Line 6). In Line 15 and
16, two objects of XMLRegisterCleanup are created. They
register the cleanup function at Line 18 and 19, respectively.

The ICT at Line 11 have a EC size of 38. Since this is a C-
style ICT, the origin is defined as (CSo, Io). Io is the location
of the instruction that last writes to the function pointer (Line
7), while CSo is the call sites of the store function (Line 18

204 28th USENIX Security Symposium USENIX Association

1 class cObject{

2 protected:

3 void discard(cObject *object){

4 if(object->storage() == 'D')

5 delete object;

6 else

7 object->setOwner(NULL);

8 }

9 public:

10 virtual ~cObject();

11 }

12 class cModuleType:public cObject{

13 ~cModule(){

14 delete [] fullname;

15 }

16 }

17 class cArray:public cObject{

18 private:

19 cObject **vect;

20 public:

21 clear(){

22 for (int i=0; i<=last; i++){

23 if (vect[i] && vect[i]->owner()==this)

24 discard(vect[i]);

25 }

26 }

27 }

Figure 5: Virtual call with the largest EC in 471.omnetpp

1 class XMLRegisterCleanup

2 {

3 private:

4 XMLCleanupFn m_cleanupFn;

5 public :

6 void registerCleanup(XMLCleanupFn cleanupFn) {

7 m_cleanupFn = cleanupFn;

8 }

9 void doCleanup() {

10 if (m_cleanupFn)

11 m_cleanupFn();

12 }

13 }

14 XMLTransService::XMLTransService(){

15 static XMLRegisterCleanup mappingsCleanup;

16 static XMLRegisterCleanup mappingsRecognizerCleanup;

17

18 mappingsCleanup.registerCleanup(reinitMappings);

19 mappingsRecognizerCleanup.registerCleanup

20 (reinitMappingsRecognizer);

21 }

Figure 6: The ICT with the largest EC in 483.xalancbmk

and 19). As such, OS-CFI can enforce a perfect CFI policy
for this ICT with an EC size of 1.

Largest EC in 456.hmmer: 456.hmmer is a benchmark
to measure the performance of searching a gene sequence
database. It begins its execution by reading the HMM (Hidden

1 struct hmmfile_s{

2 int (*parser)(struct hmmfile_s *,

3 struct plan7_s **);

4 };

5 typedef struct hmmfile_s HMMFILE;

6

7 HMMFILE *HMMFileOpen(char *hmmfile,

8 char *env){

9 HMMFILE *hmmfp;

10 hmmfp = (HMMFILE*)

11 MallocOrDie(sizeof(HMMFILE));

12 hmmfp->parser = NULL;

13

14 if(magic == v20magic){

15 hmmfp->parser = read_bin20hmm;

16 return hmmfp;

17 }else if (magic == v20swap){

18 hmmfp->parser = read_bin20hmm;

19 return hmmfp;

20 }else if (magic == v19magic){

21 hmmfp->parser = read_bin19hmm;

22 return hmmfp;

23 }else if (magic == v19swap){

24 hmmfp->parser = read_bin19hmm;

25 return hmmfp;

26 }

27 ...

28 }

29 int HMMFileRead(HMMFILE *hmmfp,

30 struct plan7_s **ret_hmm){

31 return (*hmmfp->parser)(hmmfp,

32 ret_hmm);

33 }

34 int main(...) {

35 if((hmmfp = HMMFileOpen(hmmfile,

36 "HMMERDB")) == NULL)

37 Die(...);

38 if(!HMMFileRead(hmmfp, &hmm))

39 Die(...);

40 }

Figure 7: The ICT with the largest EC in 456.hmmer

Markov Models) file. This model file can have different
versions and formats identified by its magic number. As such,
the benchmark creates the HMMFILE structure with the parser
function pointer (Line 9 and 10), and assigns the function
pointer according to the model file’s magic (Line 14-27). The
function pointer is called at Line 31. In total, there are fifteen
valid parsers.

Because HMMFileRead is called in the main function, call-
site sensitivity is not useful for this case at all because there is
just one call site. As such,OS-CFI applies the origin sensitivity
for this ICT. It creates an origin for each assignment to parser
(Line 15,18,21,24...). Therefore,OS-CFI can enforce a perfect
CFI policy for this ICT as well.

USENIX Association 28th USENIX Security Symposium 205

4.2 Security Experiments
We experimented with two real-world exploits and one syn-
thesized exploit to show how OS-CFI can block them.

4.2.1 Real-world Exploits

We experimented with two vulnerabilities, CVE-2015-8668
in libtiff and CVE-2014-1912 in python. We used the existing
PoC exploits to overwrite a function pointer in order to hijack
the control flow. We first verified that the exploits work and
then tested them again under the protection of OS-CFI.

CVE-2015-8668: This is a heap-based buffer overflow
caused by an integer overflow. The program fails to sani-
tize the buffer size if the multiplication overflows (Fig. 8, Line
20). This causes the allocated buffer (uncomprbuf) to be too
small, allowing the attacker to overflow the heap memory. A
potential target of the attack is the TIFF object, which contains
several function pointers. One of such function pointers is
tif_encoderow, which is called by TIFFWriteScanline
later in the program.

1 int TIFFWriteScanline(TIFF* tif, ...){

2 ...

3 status = (*tif->tif_encoderow)(tif, (uint8*) buf,

4 tif->tif_scanlinesize, sample); // <= exploit call-point

5 }

6 void _TIFFSetDefaultCompressionState(TIFF* tif){

7 tif->tif_encoderow = _TIFFNoRowEncode; // <= origin

8 }

9 TIFF* TIFFOpen(...){

10 ...

11 _TIFFSetDefaultCompressionState(tif);

12 }

13 int main(int argc, char* argv[]){

14 TIFF *out = NULL;

15 out = TIFFOpen(outfilename, "w"); // <= exploited object

16 ...

17 uint32 uncompr_size;

18 unsigned char *uncomprbuf;

19 ...

20 uncompr_size = width * length; // non-sanitized code and

21 // following memory allocation

22 uncomprbuf = (unsigned char *)_TIFFmalloc(uncompr_size);

23 ...

24 if (TIFFWriteScanline(out, ...) < 0) {}

25 ...

26 }

Figure 8: Sketch of the vulnerable code in libtiff v4.0.6.

The indirect call at Line 3 was protected in OS-CFI
by origin sensitivity. OS-CFI identified twelve origins of
tif_encoderow with twelve different targets. However, the
only origin recorded during this exploit was the one in
the _TIFFSetDefaultCompressionState function, and
the corresponding valid target was _TIFFNoRowEncode. Al-
though all twelve origins are possible for the ICT at Line 3,
the run-time context allowed us to uniquely identify the only
valid target. Our system successfully detected the exploit.

CVE-2014-1912: this buffer overflow in python-2.7.6 is
caused by the missing check of buffer size (Fig. 9, Line

1 int PyType_Ready(PyTypeObject *type){

2 ...

3 bases = type->tp_bases;

4 PyObject *b = PyTuple_GET_ITEM(bases, i);

5 if(PyType_Check(b))

6 inherit_slots(type, (PyTypeObject *)b); // <= origin context

7 }

8 static void inherit_slots(PyTypeObject *t, PyTypeObject *b){

9 ...

10 type->tp_hash = base->tp_hash; // <= origin

11 }

12 long PyObject_Hash(PyObject *v){

13 PyTypeObject *tp = v->ob_type;

14 if (tp->tp_hash != NULL)

15 return (*tp->tp_hash)(v); // <= exploit call-point

16 }

17 static PyObject *sock_recvfrom_into(...){

18 Py_buffer buf;

19 ...

20

21 if (recvlen < 0) {

22 goto error;

23 }

24 if (recvlen == 0) {

25 recvlen = buflen;

26 }

27

28 // missing check if (buflen < recvlen) {}

29

30 // vulnerable code

31 readlen = sock_recvfrom_guts(s, buf.buf, recvlen, flags, &addr);

32 }

Figure 9: Sketch of the vulnerable code in Python-2.7.6

28) before receiving the data into a Py_buffer object.
Py_buffer has a member of the type PyTypeObject, which
contains a function pointer tp_hash. tp_hash is used by the
PyObject_Hash function to hash objects. The buffer overflow
at Line 31 can be used to overwrite this function pointer.
Our algorithm identified the origin of tp_hash as Line

10 plus its call-site at Line 6. As such, origin sensitivity is
ineffective for the indirect call at Line 15 because there is only
one origin. Instead, 3-call-site sensitivity was used for this ICT.
We counted 40 immediate call sites to the PyObject_Hash
function. With three call-sites, we were able to limit the valid
targets to a single candidate for each valid call stack. Our
system also successfully prevented this exploit.

In both cases, OS-CFI not only blocked the exploits but also
constrained the vulnerable ICTs to a single target at run-time.

4.2.2 Synthesized Exploit: a COOP Attack

We used the example code in Fig. 10 to demonstrate how
OS-CFI can detect both vTable hijacking and control-flow
hijacking for C++ objects. The example was inspired by
PittyPat [14]. There are two virtual calls (Line 44 and 48)
and two vulnerable functions (getPerson and isEmployee).
The getPerson function contains a heap-based overflow,
which allows the attacker to compromise the returned object’s
vPtr pointer, for example, to overwrite Employee’s vPtr to
Employer’s vTable. The buffer overflow in isEmployee
can overwrite res to always return true.
OS-CFI prevented both exploits. The first exploit was de-

206 28th USENIX Security Symposium USENIX Association

1 class Person{

2 protected:

3 SalaryAccount *salary = nullptr;

4 public:

5 virtual void seeEvaluation()=0;

6 virtual void seeSalary(){/*null derefernce*/ }

7 };

8 class Employee : public Person{

9 public:

10 void seeEvaluation(){/* show employee evaluation*/ }

11 void seeSalary(){/*employee has salary account*/ }

12 };

13 class Employer : public Person{

14 public:

15 void seeEvaluation(void){/*list of employee evaluation*/ }

16 };

17 Person *getPerson(int id){

18 char *name = (char*)malloc(10);

19 Person *p;

20 if (isEmployer(id)) {

21 p = new Employer();

22 } else {

23 p = new Employee();

24 }

25 gets(name); // vulnerable gets()

26 ...

27 return p;

28 }

29 bool isEmployee(Person *member) {

30 bool res = false;

31 char name[10];

32 // vulnerable strcpy()

33 strcpy(name, member->getName());

34 ...

35 if(Employee *emp = dyn_cast<Employee*>(member)){

36 if(emp != NULL)

37 res = true;

38 }

39 return res; // attacker overwrite res

40 }

41 int main() {

42 ...

43 Person *member;

44 member = getPerson(id);

45

46 // if employee, can only see his/her evaluation

47 // if employer, can see list of employee evaluation

48 member->seeEvaluation(); // OTI protected

49

50 // only employee has salary account

51 if (isEmployee(member))

52 member->seeSalary(); // CFI protected

53 }

Figure 10: A program vulnerable to COOP attack.

tected by the MPX table that failed to return the origin because
the object’s vPtr had been changed. The second exploit was
blocked because SUPA understands dyn_case and correctly
determines that member should be an object of Employee.
OS-CFI thus refused to call other class’ seeSalary function.

4.3 Performance Evaluation

We evaluated the performance of OS-CFI on all the C/C++
benchmarks in SPEC CPU2006 and NGINX. All the exper-
iments were conducted on a server with the Xeon E3-1275
processor and 64 GB of memory, running the 64-bit Ubuntu
16.04.5 LTS Server system. The kernel is the standard Ubuntu
kernel 4.4.0-139-generic. All the benchmarks were compiled

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

perlbench

bzip2

gcc
m

cf
m

ilc
nam

d

gobm
k

dealII

soplex

povray

hm
m

er

sjeng

libquantum

h264ref

lbm
om

netpp

astar

sphinx3

xalancbm
k

N
G
IN

X

Average_all

Average_ex

 P
e

rf
o

rm
a

n
c
e

 O
v
e

rh
e

a
d w/o TSX

w/ TSX

Figure 11: Normalized performance overhead, Average_ex
shows the average overhead excluding three benchmarks that
have no ICTs.

with the LLVM Safestack, which protects return addresses
by relocating them to a separate stack [23]. We use Safestack
to demonstrate that OS-CFI is compatible with the return
protection. Other return protection can be integrated with
OS-CFI too, such as shadow stack [10] and Intel CET [19],
with different security and performance impacts. Moreover,
OS-CFI uses Intel TSX to protect its reference monitors. This
will incur additional overhead. We measured the performance
of the benchmarks with and without Intel TSX. All the SPEC
CPU2006 benchmarks were measured with the reference data.
The results are show in Fig. 11.

On average, OS-CFI incurred an overhead of 7.1% without
Intel TSX and 7.6% with it. Note that three SPEC benchmarks
(mcf,libquantum, and sphinx3) did not have any noticeable
overhead because they do not have/use ICTs in their main pro-
grams (and Safestack has negligible overhead). We excluded
them from the average. The overhead reduced to 5.7% and
6.1%, respectively, if these three benchmarks were included.
The highest performance overhead was 14.9% for NGINX
and 12.9% for omnetpp. The performance of OS-CFI is bet-
ter than PathArmor (8.5%) [38] and PittyPat (12.7%) [14],
even though OS-CFI is a whole program protection while
PathArmor only protects a few selected syscalls and PittyPat
uses separate threads to parse processor traces (this reduces
the number of available CPU cores by half).
OS-CFI generates its CFGs by piggybacking on SUPA.

Compared to the original SUPA, it took OS-CFI 5.3% longer
on average to analyze these benchmarks, measured on the
same machine as the performance evaluation. As shown in
Table. 5, the average analysis time is about 3 hours, and the
longest analysis time is 15.6 hours from gcc. We consider the
overhead incurred by OS-CFI acceptable since the analysis is
conducted only once offline.

5 Related Work

In this section, we compare OS-CFI to recent (context-
sensitive) CFI systems. Since its introduction in 2005 [2], there
has been a long list of research in CFI [1,6,9,11–14,16,17,24,
25,28,29,31,38,40,41,43,44]. A recent survey by Burow et al.
compares many context-insensitive CFI systems [3]. Earlier
CFI systems often trade security for performance, introducing

USENIX Association 28th USENIX Security Symposium 207

Benchmark SUPA (s) OS-CFI (s) Overhead

400.perlbench 6083.2 6350.7 4.4%
401.bzip2 445.8 457.2 2.6%
403.gcc 53029.1 56231.7 6.0%
433.milc 3.9 4.0 2.6%
445.gobmk 4071.5 4246.4 4.3%
456.hmmer 10.9 11.8 8.3%
458.sjeng 2.6 2.6 0.0%
464.h264ref 372.1 382.0 2.7%
444.namd 15.6 16.7 7.1%
447.dealII 651.5 673.8 3.5%
450.soplex 1280.7 1340.2 4.6%
453.povray 4633.9 5304.0 14.5%
471.omnetpp 43929.0 45351.5 3.2%
473.astar 1.4 1.5 7.1%
483.xalancbmk 9703.7 10792.6 11.2%
NGINX 39860.2 41630.7 4.4%
Average 10255.9 10799.8 5.3%

Table 5: The analysis time of OS-CFI as compared to the
vanilla SUPA algorithm. The unit of the analysis time in the
table is seconds.

imprecision in both CFGs and enforcement mechanisms. For
example, some of them enforce a coarse-grained CFG [37,43],
making them vulnerable to attacks [13, 16]. Even precise
context-insensitive CFI systems may be vulnerable because of
their large EC sizes [6]. Compared to these systems, OS-CFI
is a context-sensitive CFI system. Its origin-based context can
effectively break down large ECs, improving the security.
An effective method to improve the precision of CFI is to

use the contextual information to differentiate sets of targets.
However, the addition of context imposes stringent demands
on the system design, leading to more trade-offs and oppor-
tunities: first of all, a context-sensitive CFI system requires
context-sensitive CFGs. It is well-known that context-sensitive
points-to analysis does not scale well. The situation has been
substantially improved with the recent release of SUPA [35].
However, scalable path-sensitive points-to analysis, needed
by systems like PathArmor and PittyPat, is still unavailable;
The second challenge is how to securely collect, store, and use
contextual information with minimal performance overhead.
In the following, we compare OS-CFI to three representative
context-sensitive CFI systems: PathArmor [38], PittyPat [14],
and µCFI [17]. Table 6 shows their key differences.

PathArmor, PittyPat and µCFI all use the recent execution
history recorded by Intel CPUs as the context, last branch
record (LBR) for PathArmor and processor trace (PT) for
the other two. LBR records only the last sixteen branches
taken by the process; while PT provides more fine-grained

record of the past execution. Unlike MPX that can be accessed
directly in the user space, LBR and PT are privileged and only
accessible by the kernel. Transition into and out of the kernel
is an expensive operation. It is thus impractical to check these
records for each ICT. To address that, PathArmor enforces the
CFI policy at the selected syscalls; i.e., only a small part of the
program is protected. PittyPat and µCFI redirect the trace to
a separate process and verify the control flow there. They can
verify all the ICTs but only enforce the results at the selected
syscalls. The drawback of this design is that the usable number
of CPU cores is effectively reduced by half. Because all three
systems cannot enforce the CFI policy at every ICT, their focus
is to protect the other part of the system from attacks. OS-
CFI instead collects the context by inline reference monitors
protected by Intel TSX. It is a whole-program protection that
enforces the CFI policy at every ICT. In addition, all these
three systems require to change the kernel. OS-CFI uses the
stock kernel, whose general MPX support is sufficient.

OS-CFI derives its CFGs from a context-, flow-, and field-
sensitive static points-to analysis. However, PathArmor and
PittyPat enforce path-sensitivity. To the best of our knowledge,
there is no scalable path-sensitive points-to analysis available
(at least publicly). Both systems, aswell as µCFI, instead utilize
on-line points-to analysis, based on the recorded context. The
design of µCFI is interesting in that it turns the constraint
data into indirect control transfers, which are recorded by PT.
This securely conveys the constraint data to the monitoring
process. Unfortunately, it seems that this usage puts too much
pressure on PT, causing PT to lose packets. This renders
µCFI unsuitable for large programs. Indeed, it cannot handle
the most demanding benchmarks in SPEC CPU2006, such
as gcc, omnetpp, and xalancbmk, and the benchmarks are
tested with the smaller train data, not the regular reference
data. OS-CFI focuses on reducing the EC sizes. PathArmor
and PittyPat are unlikely to achieve the same effectiveness
because they use the execution history as the context. The
largest EC sizes will remain significant because of the limited
incoming paths towards a ICT. For example, PittyPat reports
one large EC size of 218. The goal of µCFI is to enforce
unique target for each ICT. This is achieved by considering the
constraint data during verification. However, the constraint
data can potentially be compromised before being captured
by µCFI, as mentioned in the paper [17]. This weakens its
security guarantee.

CPI is another closely related system. It can guarantee the
integrity of all code pointers in the program by separating them
and related critical data pointers in a protected safe memory
region [23]. As such, CPI can prevent all the control-flow
hijacking attacks. Compared to CPI,OS-CFI achieves a similar
but slightly relaxed protection in the CFI principle (because
OS-CFI still allows some leeway to manipulate the control
flow). OS-CFI uses the MPX table to store its metadata. This
usage can be applied in CPI as well to further improve its
performance, as suggested by the paper itself. Burow et al.

208 28th USENIX Security Symposium USENIX Association

Categories CFIXX PathArmor PittyPat µCFI OS-CFI

Protected Object type Control flow Control flow Control flow Control flow&Object type
Context vPtr to vTable

binding
last branches taken Processor execution paths Execution paths and constraint

data
Origins of function point-
ers and objects

CFG None On-demand, constraint
driven context-
sensitive CFG

Abstract-interpretation based
online points-to analysis

Run-time points-to analysis CFGs based on context-
, flow- and field-sensitive
static points-to analysis

Coverage Virtual calls Selected syscalls Whole program, enforced at
selected syscalls

Whole program, enforced at
selected syscalls

Whole program, enforced
at every ICT

Required
hardware

Intel MPX for meta-
data storage

Intel LBR for taken
branches

Intel PT for execution history Intel PT for execution history
and control data

Intel MPX for metadata
storage and Intel TSX to
protect reference monitors

Kernel
changes

No, built-in MPX
support

Yes, enforce CFI on the
syscall boundary

Yes, redirect traces and en-
force CFI on syscall boundary

Yes, redirect traces and en-
force CFI on syscall boundary

No, built-in MPX and TSX
support

Runtime
support

Library to track the
type of each object

Per-thread control
transfer monitoring

Additional threads to parse
trace and verify control flow

Additional threads to parse
trace and verify control flow

Hash based verification
protected by TSX

Table 6: Comparison between OS-CFI and recent (context-sensitive) CFI systems

independently discovered the way to re-purpose theMPX table
as a generic key-value store [5]. As a hardware accelerated data
store, MPX can be used in a wide variety of security systems,
especially considering that its bound registers can be used for
high-performance SFI (software-fault isolation) [4, 22, 39].

Another closely related system isCFIXX [4],which enforces
the object-type integrity (OTI). CFIXX prevents attacks such
as COOP [32] from subverting an object’s vPtr pointer. OTI is
a complementary policy to CFI [4]. It requires and strengthens
CFI to provide more complete protection. OS-CFI’s protection
of virtual calls uses the same key (but different metadata, i.e.,
the origin) as OTI as a by-product of using MPX to keep
the metadata. As mentioned earlier, OS-CFI can use different
keys in its design as long as it can retrieve the origin of
the receiving object because the origin alone can uniquely
identify the target. Overall, OS-CFI provides stronger security
guarantee than CFIXX with its CFI for all ICTs. There are
several other systems that focus on protecting virtual calls, such
as VTrust [42] and SAFEDISPATCH [20]. OS-CFI supports
both C-style ICTs and C++ virtual calls.

6 Summary

We have presented a new type of context for CFI systems
– origin sensitivity. By considering the origins of function
pointers and objects during the verification of control transfers,
we can significantly improve the security of CFI by reducing
the largest and average EC sizes. By leveraging the commodity
hardware features such as MPX and TSX, our system incurs
only a small overhead.

7 Availability

Our prototype is available as an open-source project at https:
//github.com/mustakcsecuet/OS-CFI.

8 Acknowledgment

Wewould like to thank the anonymous reviewers and our shep-
herd, Dr. Nathan Dautenhahn, for their insightful comments
that helped improve the presentation of this paper. This project
was partially supported by National Science Foundation (NSF)
under Grant 1453020. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of NSF.

References

[1] Niu, Ben and Tan, Gang , “Per-input Control-flow In-
tegrity,” in Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security.
ACM, 2015, pp. 914–926.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,
“Control-flow Integrity,” in Proceedings of the 12th ACM
conference on Computer and communications security.
ACM, 2005, pp. 340–353.

[3] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz,
S. Brunthaler, and M. Payer, “Control-Flow Integrity:
Precision, Security, and Performance,” ACM Comput.
Surv., vol. 50, no. 1, pp. 16:1–16:33, Apr. 2017. [Online].
Available: http://doi.acm.org/10.1145/3054924

[4] N. Burow, D. McKee, S. A. Carr, and M. Payer, “CFIXX:
Object Type Integrity for C++,” in Proceedings of the
2018 Network and Distributed System Security Sympo-
sium, 2018.

[5] N. Burow, X. Zhang, and M. Payer, “SoK: Shining Light
on Shadow Stacks,” in Proceedings of the 2019 IEEE
Symposium on Security and Privacy, ser. SP ’19. Wash-
ington, DC, USA: IEEE Computer Society, 2019.

USENIX Association 28th USENIX Security Symposium 209

https://github.com/mustakcsecuet/OS-CFI
https://github.com/mustakcsecuet/OS-CFI
http://doi.acm.org/10.1145/3054924

[6] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross, “Control-Flow Bending: On the Effectiveness
of Control-Flow Integrity,” in Proceedings of the 24th
USENIX Security Symposium, vol. 14, 2015, pp. 28–38.

[7] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detect-
ing Privileged Side-channel Attacks in Shielded Execu-
tion with Déjá Vu,” in Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications
Security. ACM, 2017, pp. 7–18.

[8] “Bjarne Stroustrup’s C++ Style and Technique FAQ,”
http://www.stroustrup.com/bs_faq2.html, p. 5.

[9] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Com-
plete Control-flow Integrity for Commodity Operating
System Kernels,” in Security and Privacy (SP), 2014
IEEE Symposium on. IEEE, 2014, pp. 292–307.

[10] T. H. Dang, P. Maniatis, and D. Wagner, “The Perfor-
mance Cost of Shadow Stacks and Stack Canaries,” in
Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security, ser. ASIA
CCS ’15, 2015.

[11] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-
assisted Fine-grained Control-flow Integrity: Towards
Efficient Protection of Embedded Systems against Soft-
ware Exploitation,” in Proceedings of the 51st Annual
Design Automation Conference. ACM, 2014, pp. 1–6.

[12] L. Davi and A.-R. Sadeghi, “Building Control-flow
Integrity Defenses,” in Building Secure Defenses Against
Code-Reuse Attacks. Springer, 2015, pp. 27–54.

[13] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose,
“Stitching the Gadgets: On the Ineffectiveness of Coarse-
grained Control-flow Integrity Protection,” in Proceed-
ings of the 23Rd USENIX Conference on Security, ser.
SEC’14, 2014.

[14] R. Ding, C. Qian, C. Song, B. Harris, T. Kim,
and W. Lee, “Efficient Protection of Path-sensitive
Control Security,” in 26th USENIX Security Sym-
posium (USENIX Security 17). Vancouver, BC:
USENIX Association, 2017, pp. 131–148. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/ding

[15] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos, “Control Ju-
jutsu: On the Weaknesses of Fine-grained Control-flow
Integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security.
ACM, 2015, pp. 901–913.

[16] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portoka-
lidis, “Out of Control: Overcoming Control-flow In-
tegrity,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy, ser. SP ’14, 2014.

[17] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung,
W. R. Harris, T. Kim, and W. Lee, “Enforcing
Unique Code Target Property for Control-Flow
Integrity,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA:
ACM, 2018, pp. 1470–1486. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243797

[18] Intel 64 and IA-32 Architectures Software Developerś
Manual, Intel.

[19] Intel, “Control-flow Enforcement,” https:
//software.intel.com/sites/default/files/managed/4d/
2a/control-flow-enforcement-technology-preview.pdf,
2018.

[20] D. Jang, Z. Tatlock, and S. Lerner, “SafeDispatch: Secur-
ingC++VirtualCalls fromMemoryCorruptionAttacks,”
in NDSS, 2014.

[21] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and
Y. Cheng, “Adaptive Call-site Sensitive Control Flow
Integrity,” in Proceedings of the 4th IEEE European
Symposium on Security and Privacy (EuroS&P 2019),
2019.

[22] K. Koning, X. Chen, H. Bos, C. Giuffrida, and
E. Athanasopoulos, “No Need to Hide: Protecting Safe
Regions on Commodity Hardware,” in Proceedings
of the Twelfth European Conference on Computer
Systems, ser. EuroSys ’17. New York, NY, USA:
ACM, 2017, pp. 437–452. [Online]. Available:
http://doi.acm.org/10.1145/3064176.3064217

[23] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea,
R. Sekar, and D. Song, “Code-pointer Integrity,” in
11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). Broomfield, CO:
USENIX Association, 2014, pp. 147–163. [Online].
Available: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/kuznetsov

[24] J. Li, Z. Wang, T. Bletsch, D. Srinivasan, M. Grace, and
X. Jiang, “Comprehensive and Efficient Protection of
Kernel Control Data,” IEEE Transactions on Information
Forensics and Security, vol. 6, no. 4, pp. 1404–1417,
Dec 2011.

[25] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and
M. Franz, “Opaque Control-flow Integrity,” in Proceed-
ings of the 22th Network and Distributed System Security
Symposium, ser. NDSS ’15, 2015.

210 28th USENIX Security Symposium USENIX Association

http://www.stroustrup.com/bs_faq2.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
http://doi.acm.org/10.1145/3243734.3243797
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
http://doi.acm.org/10.1145/3064176.3064217
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov

[26] “Intel MPX Performance Evaluation for Bound Check-
ing,” https://intel-mpx.github.io/performance/.

[27] “GCC 9 Looks Set To Remove Intel MPX Sup-
port,” https://www.phoronix.com/scan.php?page=news_
item&px=GCC-Patch-To-Drop-MPX.

[28] B. Niu and G. Tan, “Modular Control-flow Integrity,”
ACM SIGPLAN Notices, vol. 49, no. 6, pp. 577–587,
2014.

[29] Niu,Ben andTan,Gang, “RockJIT: Securing Just-in-time
Compilation Using Modular Control-flow Integrity,” in
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014,
pp. 1317–1328.

[30] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and
C. Fetzer, “Intel MPX explained: An empirical study
of intel MPX and software-based bounds checking ap-
proaches,” arXiv preprint arXiv:1702.00719, 2017.

[31] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained
Control-flow Integrity through Binary Hardening,” in
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2015,
pp. 144–164.

[32] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz, “Counterfeit Object-oriented Pro-
gramming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications,” in Proceedings of the
36th IEEE Symposium on Security and Privacy. IEEE,
2015.

[33] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You
Ever Wanted to Know About Dynamic Taint Analy-
sis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask),” in Proceedings of the 2010 IEEE
Symposium on Security and Privacy, ser. SP ’10, 2010.

[34] Y. Sui and J. Xue, “On-demand Strong Update Analy-
sis via Value-flow Refinement,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2016, pp.
460–473.

[35] “Demand Driven Pointer Annalysis,” https://github.com/
SVF-tools/SUPA.

[36] “Static Value-FlowGraph in LLVM,” https://github.com/
SVF-tools/SVF.

[37] C. Tice,T. Roeder,P. Collingbourne,S. Checkoway,Ú. Er-
lingsson, L. Lozano, and G. Pike, “Enforcing Forward-
edge Control-flow Integrity in GCC & LLVM,” in
USENIX Security Symposium, 2014, pp. 941–955.

[38] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras,
L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida,
“Practical Context-sensitive CFI,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15, 2015.

[39] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient Software-based Fault Isolation,” in Proceed-
ings of the 14th ACM Symposium On Operating System
Principles, December 1993.

[40] Z. Wang and X. Jiang, “Hypersafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-flow
Integrity,” in Security and Privacy (SP), 2010 IEEE
Symposium on. IEEE, 2010, pp. 380–395.

[41] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: De-
tecting Violation of Control-flow Integrity Using Perfor-
mance Counters,” in Dependable Systems and Networks
(DSN), 2012 42nd Annual IEEE/IFIP International Con-
ference on. IEEE, 2012, pp. 1–12.

[42] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding,
and C. Song, “VTrust: Regaining Trust on Virtual Calls,”
in NDSS, 2016.

[43] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. Mc-
Camant, D. Song, and W. Zou, “Practical Control Flow
Integrity and Randomization for Binary Executables,” in
Proceedings of the 2013 IEEE Symposium on Security
and Privacy, ser. SP ’13, 2013.

[44] M. Zhang and R. Sekar, “Control Flow Integrity for
COTS Binaries,” in Proceedings of the 22Nd USENIX
Conference on Security, ser. SEC’13, 2013.

[45] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A
real-time side-channel attack detection system in clouds,”
in International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 2016.

USENIX Association 28th USENIX Security Symposium 211

https://intel-mpx.github.io/performance/
https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX
https://www.phoronix.com/scan.php?page=news_item&px=GCC-Patch-To-Drop-MPX
https://github.com/SVF-tools/SUPA
https://github.com/SVF-tools/SUPA
https://github.com/SVF-tools/SVF
https://github.com/SVF-tools/SVF

HardFails: Insights into Software-Exploitable Hardware Bugs

Ghada Dessouky†, David Gens†, Patrick Haney∗, Garrett Persyn∗, Arun Kanuparthi◦,
Hareesh Khattri◦, Jason M. Fung◦, Ahmad-Reza Sadeghi†, Jeyavijayan Rajendran∗

†Technische Universität Darmstadt, Germany. ∗Texas A&M University, College Station, USA.
◦Intel Corporation, Hillsboro, OR, USA.

ghada.dessouky@trust.tu-darmstadt.de,david.gens@trust.tu-darmstadt.de,
prh537@tamu.edu,gpersyn@tamu.edu,arun.kanuparthi@intel.com,

hareesh.khattri@intel.com,jason.m.fung@intel.com,
ahmad.sadeghi@trust.tu-darmstadt.de,jv.rajendran@tamu.edu

Abstract

Modern computer systems are becoming faster, more efficient,
and increasingly interconnected with each generation. Thus,
these platforms grow more complex, with new features con-
tinually introducing the possibility of new bugs. Although the
semiconductor industry employs a combination of different
verification techniques to ensure the security of System-on-
Chip (SoC) designs, a growing number of increasingly so-
phisticated attacks are starting to leverage cross-layer bugs.
These attacks leverage subtle interactions between hardware
and software, as recently demonstrated through a series of
real-world exploits that affected all major hardware vendors.

In this paper, we take a deep dive into microarchitectural
security from a hardware designer’s perspective by reviewing
state-of-the-art approaches used to detect hardware vulnera-
bilities at design time. We show that a protection gap currently
exists, leaving chip designs vulnerable to software-based at-
tacks that can exploit these hardware vulnerabilities. Inspired
by real-world vulnerabilities and insights from our industry
collaborator (a leading chip manufacturer), we construct the
first representative testbed of real-world software-exploitable
RTL bugs based on RISC-V SoCs. Patching these bugs may
not always be possible and can potentially result in a product
recall. Based on our testbed, we conduct two extensive case
studies to analyze the effectiveness of state-of-the-art security
verification approaches and identify specific classes of vulner-
abilities, which we call HardFails, which these approaches
fail to detect. Through our work, we focus the spotlight on
specific limitations of these approaches to propel future re-
search in these directions. We envision our RISC-V testbed
of RTL bugs providing a rich exploratory ground for future
research in hardware security verification and contributing to
the open-source hardware landscape.

1 Introduction

The divide between hardware and software security research
is starting to take its toll, as we witness increasingly sophis-

ticated attacks that combine software and hardware bugs to
exploit computing platforms at runtime [20, 23, 36, 43, 45, 64,
69, 72, 74]. These cross-layer attacks disrupt traditional threat
models, which assume either hardware-only or software-only
adversaries. Such attacks may provoke physical effects to in-
duce hardware faults or trigger unintended microarchitectural
states. They can make these effects visible to software adver-
saries, enabling them to exploit these hardware vulnerabilities
remotely. The affected targets range from low-end embedded
devices to complex servers, that are hardened with advanced
defenses, such as data-execution prevention, supervisor-mode
execution prevention, and control-flow integrity.

Hardware vulnerabilities. Cross-layer attacks circumvent
many existing security mechanisms [20, 23, 43, 45, 64, 69, 72,
74], that focus on mitigating attacks exploiting software vul-
nerabilities. Moreover, hardware-security extensions are not
designed to tackle hardware vulnerabilities. Their implemen-
tation remains vulnerable to potentially undetected hardware
bugs committed at design-time. In fact, deployed extensions
such as SGX [31] and TrustZone [3] have been targets of suc-
cessful cross-layer attacks [69, 72]. Research projects such
as Sanctum [18], Sanctuary [8], or Keystone [39] are also not
designed to ensure security at the hardware implementation
level. Hardware vulnerabilities can occur due to: (a) incor-
rect or ambiguous security specifications, (b) incorrect design,
(c) flawed implementation of the design, or (d) a combination
thereof. Hardware implementation bugs are introduced either
through human error or faulty translation of the design in
gate-level synthesis.

SoC designs are typically implemented at register-transfer
level (RTL) by engineers using hardware description lan-
guages (HDLs), such as Verilog and VHDL, which are synthe-
sized into a lower-level representation using automated tools.
Just like software programmers introduce bugs to the high-
level code, hardware engineers may accidentally introduce
bugs to the RTL code. While software errors typically cause
a crash which triggers various fallback routines to ensure the
safety and security of other programs running on the platform,
no such safety net exists for hardware bugs. Thus, even mi-

USENIX Association 28th USENIX Security Symposium 213

nor glitches in the implementation of a module within the
processor can compromise the SoC security objectives and
result in persistent/permanent denial of service, IP leakage, or
exposure of assets to untrusted entities.

Detecting hardware security bugs. The semiconductor in-
dustry makes extensive use of a variety of techniques, such
as simulation, emulation, and formal verification to detect
such bugs. Examples of industry-standard tools include In-
cisive [10], Solidify [5], Questa Simulation and Questa For-
mal [44], OneSpin 360 [66], and JasperGold [11]. These were
originally designed for functional verification with security-
specific verification incorporated into them later.

While a rich body of knowledge exists within the software
community (e.g., regarding software exploitation and tech-
niques to automatically detect software vulnerabilities [38,
46]), security-focused HDL analysis is currently lagging be-
hind [35, 57]. Hence, the industry has recently adopted a
security development lifecycle (SDL) for hardware [68] —
inspired by software practices [26]. This process combines
different techniques and tools, such as RTL manual code au-
dits, assertion-based testing, dynamic simulation, and auto-
mated security verification. However, the recent outbreak of
cross-layer attacks [20, 23, 37, 43, 45, 47, 48, 49, 51, 52, 53,
64, 69, 74] poses a spectrum of difficult challenges for these
security verification techniques, because they exploit complex
and subtle inter-dependencies between hardware and software.
Existing verification techniques are fundamentally limited in
modeling and verifying these interactions. Moreover, they
also do not scale with the size and complexity of real-world
SoC designs.

Goals and Contributions. In this paper, we show that cur-
rent hardware security verification techniques are fundamen-
tally limited. We provide a wide range of results using a
comprehensive test harness, encompassing different types
of hardware vulnerabilities commonly found in real-world
platforms. To that end, we conducted two case studies to
systematically and qualitatively assess existing verification
techniques with respect to detecting RTL bugs. Together
with our industry partners, we compiled a list of 31 RTL
bugs based on public Common Vulnerabilities and Exposures
(CVEs) [37, 43, 50, 54, 55] and real-world errata [25]. We in-
jected bugs into two open-source RISC-V-based SoC designs,
which we will open-source after publication.

We organized an international public hardware security
competition, Hack@DAC, where 54 teams of researchers
competed for three months to find these bugs. While a number
of bugs could not be detected by any of the teams, several
participants also reported new vulnerabilities of which we
had no prior knowledge. The teams used manual RTL inspec-
tion and simulation techniques to detect the bugs. In industry,
these are usually complemented by automated tool-based and
formal verification approaches. Thus, our second case study
focused on two state-of-the-art formal verification tools: the

first deploys formal verification to perform exhaustive and
complete verification of a hardware design, while the second
leverages formal verification and path sensitization to check
for illegal data flows and fault tolerance.

Our second case study revealed that certain properties of
RTL bugs pose challenges for state-of-the-art verification
techniques with respect to black-box abstraction, timing flow,
and non-register states. This causes security bugs in the RTL
of real-world SoCs to slip through the verification process.
Our results from the two case studies indicate that particu-
lar classes of hardware bugs entirely evade detection—even
when complementing systematic tool-based verification ap-
proaches with manual inspection. RTL bugs arising from
complex and cross-modular interactions in SoCs render these
bugs extremely difficult to detect in practice. Furthermore,
such bugs are exploitable from software, and thus can com-
promise the entire platform. We call such bugs HardFails.

To the best of our knowledge, this is the first work to pro-
vide a systematic and in-depth analysis of state-of-the-art
hardware verification approaches for security-relevant RTL
bugs. Our findings shed light on the capacity of these tools and
demonstrate reproducibly how bugs can slip through current
hardware security verification processes. Being also software-
exploitable, these bugs pose an immense security threat to
SoCs. Through our work, we highlight why further research
is required to improve state-of-the-art security verification of
hardware. To summarize, our main contributions are:

• Systematic evaluation and case studies: We compile
a comprehensive test harness of real-world RTL bugs, on
which we base our two case studies: (1) Hack@DAC’18,
in which 54 independent teams of researchers competed
worldwide over three months to find these bugs using
manual RTL inspection and simulation techniques, and
(2) an investigation of the bugs using industry-leading
formal verification tools that are representative of the
current state of the art. Our results show that particular
classes of bugs entirely evade detection, despite combin-
ing both tool-based security verification approaches and
manual analysis.

• Stealthy hardware bugs: We identify HardFails as
RTL bugs that are distinctly challenging to detect using
industry-standard security verification techniques. We
explain the fundamental limitations of these techniques
in detail using concrete examples.

• Open-sourcing: We will open-source our bugs testbed
at publication to the community.

2 SoC Verification Processes and Pitfalls

Similar to the Security Development Lifecycle (SDL) de-
ployed by software companies [26], semiconductor compa-
nies [15, 35, 40] have recently adapted SDL for hardware
design [57]. We describe next the conventional SDL process
for hardware and the challenges thereof.

214 28th USENIX Security Symposium USENIX Association

FIGURE 1: Typical Security Development Lifecycle (SDL)
process followed by semiconductor companies.

2.1 The Security Development Lifecycle
(SDL) for Hardware

SDL is conducted concurrently with the conventional hard-
ware development lifecycle [68], as shown in Figure 1. The
top half of Figure 1 shows the hardware development lifecy-
cle. It begins with design exploration followed by defining
the specifications of the product architecture. After the archi-
tecture specification, the microarchitecture is designed and
implemented in RTL. Concurrently, pre-silicon verification
efforts are conducted until tape-out to detect and fix all func-
tional bugs that do not meet the functional specification. After
tape-out and fabrication, iterations of post-silicon validation,
functional testing, and tape-out "spins" begin. This cycle is re-
peated until no defects are found and all quality requirements
are met. Only then does the chip enter mass production and
is shipped out. Any issues found later in-field are debugged,
and the chip is then either patched if possible or recalled.

After architectural features are finalized, a security assess-
ment is performed, shown in the bottom half of Figure 1. The
adversary model and the security objectives are compiled in
the security specification. This typically entails a list of assets,
entry points to access these assets, and the adversary capa-
bilities and architectural security objectives to mitigate these
threats. These are translated into microarchitectural security
specifications, including security test cases (both positive and
negative). After implementation, pre-silicon security verifica-
tion is conducted using dynamic verification (i.e., simulation
and emulation), formal verification, and manual RTL reviews.
The chip is not signed off for tape-out until all security specifi-
cations are met. After tape-out and fabrication, post-silicon se-
curity verification commences. The identified security bugs in
both pre-silicon and post-silicon phases are rated for severity
using the industry-standard scoring systems such as the Com-
mon Vulnerability Scoring System (CVSS) [30] and promptly
fixed. Incident response teams handle issues in shipped prod-
ucts and provide patches, if possible.

2.2 Challenges with SDL

Despite multiple tools and security validation techniques used
by industry to conduct SDL, it remains a highly challenging,

tedious, and complex process even for industry experts. Exist-
ing techniques largely rely on human expertise to define the
security test cases and run the tests. The correct security spec-
ifications must be exhaustively anticipated, identified, and
accurately and adequately expressed using security properties
that can be captured and verified by the tools. We discuss
these challenges further in Section 7.

Besides the specifications, the techniques and tools them-
selves are not scalable and are less effective in capturing
subtle semantics that are relevant to many vulnerabilities,
which is the focus of this work. We elaborate next on the lim-
itations of state-of-the-art hardware security verification tools
commonly used by industry. To investigate the capabilities of
these tools, we then construct a comprehensive test-harness
of real-world RTL vulnerabilities.

3 Assessing Hardware Security Verification

In this section, we focus on why the verification of the secu-
rity properties of modern hardware is challenging and provide
requirements for assessing existing verification techniques
under realistic conditions. First, we describe how these ver-
ification techniques fall short. Second, we provide a list of
common and realistic classes of hardware bugs, which we
use to construct a test harness for assessing the effectiveness
of these verification techniques. Third, we discuss how these
bugs relate to the common security goals of a chip.

3.1 Limitations of Automated Verification
Modern hardware designs are highly complex and incorpo-
rate hundreds of in-house and third-party Intellectual Property
(IP) components. This creates room for vulnerabilities to be
introduced in the inter-modular interactions of the design hi-
erarchy. Multi-core architectures typically have an intricate
interconnect fabric between individual cores (utilizing com-
plex communication protocols), multi-level cache controllers
with shared un-core and private on-core caches, memory and
interrupt controllers, and debug and I/O interfaces.

For each core, these components contain logical modules
such as fetch and decode stages, an instruction scheduler, indi-
vidual execution units, branch prediction, instruction and data
caches, the memory subsystem, re-order buffers, and queues.
These are implemented and connected using individual RTL
modules. The average size of each module is several hundred
lines of code (LOC). Thus, real-world SoCs can easily ap-
proach 100,000 lines of RTL code, and some designs may
even have millions of LOC. Automatically verifying, at the
RTL level, the respective interconnections and checking them
against security specifications raises a number of fundamen-
tal challenges for the state-of-the-art approaches. These are
described below.
L-1: Cross-modular effects. Hardware modules are inter-
connected in a highly hierarchical design with multiple inter-

USENIX Association 28th USENIX Security Symposium 215

dependencies. Thus, an RTL bug located in an individual
module may trigger a vulnerability in intra- and inter-modular
information flows spanning multiple complex modules. Pin-
pointing the bug requires analyzing these flows across the
relevant modules, which is highly cumbersome and unreliable
to achieve by manual inspection. It also pushes formal veri-
fication techniques to their limits, which work by modeling
and analyzing all the RTL modules of the design to verify
whether design specifications (expressed using security prop-
erty assertions, invariants and disallowed information flows)
and implementation match.

Detecting such vulnerabilities requires loading the RTL
code of all the relevant modules into the tools to model and
analyze the entire state space, thus driving them quickly
into state explosion due to the underlying modeling algo-
rithms [16, 21]. Alleviating this by providing additional com-
putational resources and time is not scalable as the complexity
of SoCs continues to increase. Selective "black-box" abstrac-
tion of some of the modules, state space constraining, and
bounded-model checking are often used. However, they do
not eliminate the fundamental problem and rely on interactive
human expertise. Erroneously applying them may introduce
false negatives, leading to missed vulnerabilities.
L-2: Timing-flow gap. Current industry-standard techniques
are limited in capturing and verifying security properties re-
lated to timing flow (in terms of clock cycle latency). This
leads to vast sources of information leakage due to software-
exploitable timing channels (Section 8). A timing flow exists
between the circuit’s input and output when the number of
clock cycles required for the generation of the output depends
on input values or the current memory/register state. This can
be exploited to leak sensitive information when the timing
variation is discernible by an adversary and can be used to
infer inputs or memory states. This is especially problematic
for information flows and resource sharing across different
privilege levels. This timing variation should remain indis-
tinguishable in the RTL, or should not be measurable from
the software. However, current industry-standard security ver-
ification techniques focus exclusively on the functional in-
formation flow of the logic and fail to model the associated
timing flow. The complexity of timing-related security issues
is aggravated when the timing flow along a logic path spans
multiple modules and involves various inter-dependencies.
L-3: Cache-state gap. State-of-the-art verification tech-
niques only model and analyze the architectural state of a
processor by exclusively focusing on the state of registers.
However, they do not support analysis of non-register states,
such as caches, thus completely discarding modern proces-
sors’ highly complex microarchitecture and diverse hierarchy
of caches. This can lead to severe security vulnerabilities aris-
ing due to state changes that are unaccounted for, e.g., the
changing state of shared cache resources across multiple privi-
lege levels. Caches represent a state that is influenced directly
or indirectly by many control-path signals and can generate

security vulnerabilities in their interactions, such as illegal
information leakages across different privilege levels. Identi-
fying RTL bugs that trigger such vulnerabilities is beyond the
capabilities of existing techniques.
L-4: Hardware-software interactions. Some RTL bugs re-
main indiscernible to hardware security verification tech-
niques because they are not explicitly vulnerable unless trig-
gered by the software. For instance, although many SoC ac-
cess control policies are directly implemented in hardware,
some are programmable by the overlying firmware to allow
for post-silicon flexibility. Hence, reasoning on whether an
RTL bug exists is inconclusive when considering the hardware
RTL in isolation. These vulnerabilities would only materialize
when the hardware-software interactions are considered, and
existing techniques do not handle such interactions.

3.2 Constructing Real-World RTL Bugs

To systematically assess the state of the art in hardware se-
curity verification with respect to the limitations described
above, we construct a test harness by implementing a large
number of RTL bugs in RISC-V SoC designs (cf. Table 1).
To the best of our knowledge, we are the first to compile and
showcase such a collection of hardware bugs. Together with
our co-authors at Intel, we base our selection and construc-
tion of bugs on a solid representative spectrum of real-world
CVEs [47, 48, 49, 51, 52, 53] as shown in Table 1. For in-
stance, bug #22 was inspired by a recent security vulnerability
in the Boot ROM of video gaming mobile processors [56],
which allowed an attacker to bring the device into BootROM
Recovery Mode (RCM) via USB access. This buffer over-
flow vulnerability affected many millions of devices and is
popularly used to hack a popular video gaming console1.

We extensively researched CVEs that are based on
software-exploitable hardware and firmware bugs and clas-
sified them into different categories depending on the weak-
nesses they represent and the modules they impact. We repro-
duced them by constructing representative bugs in the RTL
and demonstrated their software exploitability and severity
by crafting a real-world software exploit based on one of
these bugs in Appendix D. Other bugs were constructed with
our collaborating hardware security professionals, inspired
by bugs that they have previously encountered and patched
during the pre-silicon phase, which thus never escalated into
CVEs. The chosen bugs were implemented to achieve cover-
age of different security-relevant modules of the SoC.

Since industry-standard processors are based on proprietary
RTL implementations, we mimic the CVEs by reproducing
and injecting them into the RTL of widely-used RISC-V SoCs.
We also investigate more complex microarchitecture features
of another RISC-V SoC and discover vulnerabilities already
existing in its RTL (Section 4). These RTL bugs manifest as:

1https://github.com/Cease-and-DeSwitch/fusee-launcher

216 28th USENIX Security Symposium USENIX Association

https://github.com/Cease-and-DeSwitch/fusee-launcher

• Incorrect assignment bugs due to variables, registers,
and parameters being assigned incorrect literal values,
incorrectly connected or left floating unintended.

• Timing bugs resulting from timing flow issues and in-
correct behavior relevant to clock signaling such as in-
formation leakage.

• Incorrect case statement bugs in the finite state ma-
chine (FSM) models such as incorrect or incomplete
selection criteria, or incorrect behavior within a case.

• Incorrect if-else conditional bugs due to incorrect
boolean conditions or incorrect behavior described
within either branch.

• Specification bugs due to a mismatch between a spec-
ified property and its actual implementation or poorly
specified / under-specified behavior.

These seemingly minor RTL coding errors may constitute
security vulnerabilities, some of which are very difficult to
detect during verification. This is because of their intercon-
nection and interaction with the surrounding logic that affects
the complexity of the subtle side effects they generate in their
manifestation. Some of these RTL bugs may be patched by
modifying parts of the software stack that use the hardware
(e.g., using firmware/microcode updates) to circumvent them
and mitigate specific exploits. However, since RTL is usually
compiled into hardwired integrated circuitry logic, the under-
lying bugs cannot, in principle, be patched after production.

The limited capabilities of current detection approaches in
modeling hardware designs and formulating and capturing rel-
evant security assertions raise challenges for detecting some
of these vulnerabilities, which we investigate in depth in this
work. We describe next the adversary model we assume for
our vulnerabilities and our investigation.

3.3 Adversary Model
In our work, we investigate microarchitectural details at the
RTL level. However, all hardware vendors keep their propri-
etary industry designs and implementations closed. Hence,
we use an open-source SoC based on the popular open-source
RISC-V [73] architecture as our platform. RISC-V supports
a wide range of possible configurations with many standard
features that are also available in modern processor designs,
such as privilege level separation, virtual memory, and multi-
threading, as well as optimization features such as config-
urable branch prediction and out-of-order execution.

RISC-V RTL is freely available and open to inspection
and modification. While this is not necessarily the case for
industry-leading chip designs, an adversary might be able
to reverse engineer or disclose/steal parts of the chip using
existing tools23. Hence, we consider a strong adversary that
can also inspect the RTL code.

In particular, we make the following assumptions:

2https://www.chipworks.com/
3http://www.degate.org/

• Hardware Vulnerability: The attacker has knowledge of
a vulnerability in the hardware design of the SoC (i.e., at
the RTL level) and can trigger the bug from software.

• User Access: The attacker has complete control over a user-
space process, and thus can issue unprivileged instructions
and system calls in the basic RISC-V architecture.

• Secure Software: Software vulnerabilities and resulting
attacks, such as code-reuse [65] and data-only attacks [27]
against the software stack, are orthogonal to the problem
of cross-layer bugs. Thus, we assume all platform software
is protected by defenses such as control-flow integrity [1]
and data-flow integrity [13], or is formally verified.
The goal of an adversary is to leverage the vulnerability

on the chip to provoke unintended functionality, e.g., access
to protected memory locations, code execution with elevated
privileges, breaking the isolation of other processes running
on the platform, or permanently denying services. RTL bugs
in certain hardware modules might only be exploitable with
physical access to the victim device, for instance, bugs in de-
bug interfaces. However, other bugs are software-exploitable,
and thus have a higher impact in practice. Hence, we focus on
software-exploitable RTL vulnerabilities, such as the exploit
showcased in Appendix D. Persistent denial of service (PDoS)
attacks that require exclusive physical access are out of scope.
JTAG attacks, though they require physical access, are still in
scope as the end user may be the attacker and might attempt to
unlock the device to steal manufacturer secrets. Furthermore,
exploiting the JTAG interface often requires a combination of
both physical access and privilege escalation by means of a
software exploit to enable the JTAG interface. We also note
that an adversary with unprivileged access is a realistic model
for real-world SoCs: Many platforms provide services to other
devices over the local network or even over the internet. Thus,
the attacker can obtain some limited software access to the
platform already, e.g., through a webserver or an RPC inter-
face. Furthermore, we emphasize that this work focuses only
on tools and techniques used to detect bugs before tape-out.

4 HardFails: Hardware Security Bugs

In light of the limitations of state-of-the-art verification tools
(Section 3.1), we constructed a testbed of real-world RTL
bugs (Section 3.2) and conducted two extensive case stud-
ies on their detection (described next in Sections 5 and 6).
Based on our findings, we have identified particular classes of
hardware bugs that exhibit properties that render them more
challenging to detect with state-of-the-art techniques. We call
these HardFails. We now describe different types of these
HardFails encountered during our analysis of two RISC-V
SoCs, Ariane [59] and PULPissimo [61]. In Section 5.3, we
describe the actual bugs we instantiated for our case studies.

Ariane is a 6-stage in-order RISC-V CPU that implements
the RISC-V draft privilege specification and can run Linux
OS. It has a memory management unit (MMU) consisting of

USENIX Association 28th USENIX Security Symposium 217

https://www.chipworks.com/
http://www.degate.org/

TABLE 1: Detection results for bugs in PULPissimo SoC based on formal verification (SPV and FPV, i.e., JasperGold Security
Path Verification and Formal Property Verification) and our hardware security competition (M&S, i.e., manual inspection and
simulation). Check and cross marks indicate detected and undetected bugs, respectively. Bugs marked inserted were injected
by our team and based on the listed CVEs, while bugs marked native were already present in the SoC and discovered by the
participants during Hack@DAC. LOC denotes the number of lines of code, and states denotes the total number of logic states
for the modules needed to attempt to detect this bug.

Bug Type SPV FPV M&S Modules LOC # States

1 Address range overlap between peripherals SPI Master and SoC Inserted (CVE-2018-12206 / 3 3 3 91 6685 1.5×1020

CVE-2019-6260 / CVE-2018-8933)

2 Addresses for L2 memory is out of the specified range. Native 3 3 3 43 6746 3.5×1013

3 Processor assigns privilege level of execution incorrectly from CSR. Native 7 3 3 2 1186 2.1×1096

4 Register that controls GPIO lock can be written to with software. Inserted (CVE-2017-18293) 3 3 7 2 1186 2.1×1096

5 Reset clears the GPIO lock control register. Inserted (CVE-2017-18293) 3 3 7 2 408 1

6 Incorrect address range for APB allows memory aliasing. Inserted (CVE-2018-12206 / 3 3 7 1 110 2
CVE-2019-6260)

7 AXI address decoder ignores errors. Inserted (CVE-2018-4850) 7 3 7 1 227 2

8 Address range overlap between GPIO, SPI, and SoC control peripherals. Inserted (CVE-2018-12206 / 3 3 3 68 14635 9.4×1021

(CVE-2017-5704)

9 Incorrect password checking logic in debug unit. Inserted (CVE-2018-8870) 7 3 7 4 436 1

10 Advanced debug unit only checks 31 of the 32 bits of the password. Inserted (CVE-2017-18347 / 7 3 7 4 436 16
CVE-2017-7564)

11 Able to access debug register when in halt mode. Native (CVE-2017-18347 / 7 3 3 2 887 1

12 Password check for the debug unit does not reset after successful check. Inserted (CVE-2017-7564) 7 3 3 4 436 16

13 Faulty decoder state machine logic in RISC-V core results in a hang. Native 7 3 3 2 1119 32

14 Incomplete case statement in ALU can cause unpredictable behavior. Native 7 3 3 2 1152 4

15 Faulty logic in the RTC causing inaccurate time calculation for security-critical flows, e.g., DRM. Native 7 3 7 1 191 1

16 Reset for the advanced debug unit not operational. Inserted (CVE-2017-18347) 7 7 3 4 436 16

17 Memory-mapped register file allows code injection. Native 7 7 3 1 134 1

18 Non-functioning cryptography module causes DOS. Inserted 7 7 7 24 2651 1

19 Insecure hash function in the cryptography module. Inserted (CVE-2018-1751) 7 7 7 24 2651 N/A

20 Cryptographic key for AES stored in unprotected memory. Inserted (CVE-2018-8933 / 7 7 7 57 8955 1
CVE-2014-0881 / CVE-2017-5704)

21 Temperature sensor is muxed with the cryptography modules. Inserted 7 7 3 1 65 1

22 ROM size is too small preventing execution of security code. Inserted (CVE-2018-6242 /) 7 7 3 1 751 N/A
CVE-2018-15383)

23 Disabled the ability to activate the security-enhanced core. Inserted (CVE-2018-12206) 7 7 7 1 282 N/A

24 GPIO enable always high. Inserted (CVE-2018-1959) 7 7 7 1 392 1

25 Unprivileged user-space code can write to the privileged CSR. Inserted (CVE-2018-7522 / 7 7 3 1 745 1
CVE-2017-0352)

26 Advanced debug unit password is hard-coded and set on reset. Inserted (CVE-2018-8870) 7 7 3 1 406 16

27 Secure mode is not required to write to interrupt registers. Inserted (CVE-2017-0352) 7 7 3 1 303 1

28 JTAG interface is not password protected. Native 7 7 3 1 441 1

29 Output of MAC is not erased on reset. Inserted 7 7 3 1 65 1

30 Supervisor mode signal of a core is floating preventing the use of SMAP. Native 7 7 3 1 282 1

31 GPIO is able to read/write to instruction and data cache. Native 7 7 3 1 151 4

218 28th USENIX Security Symposium USENIX Association

data and instruction translation lookaside buffers (TLBs), a
hardware page table walker, and a branch prediction unit to
enable speculative execution. Figure 4 in Appendix A shows
its high-level microarchitecture.

PULPissimo is an SoC based on a simpler RISC-V core
with both instruction and data RAM as shown in Figure 2. It
provides an Advanced Extensible Interface (AXI) for access-
ing memory from the core. Peripherals are directly connected
to an Advanced Peripheral Bus (APB) which connects them
to the AXI through a bridge module. It provides support for
autonomous I/O, external interrupt controllers and features a
debug unit and an SPI slave.
TLB Page Fault Timing Side Channel (L-1 & L-2).
While analyzing the Ariane RTL, we noted a timing
side-channel leakage with TLB accesses. TLB page faults
due to illegal accesses occur in a different number of clock
cycles than page faults that occur due to unmapped memory
(we contacted the developers and they acknowledged the
vulnerability). This timing disparity in the RTL manifests
in the microarchitectural behavior of the processor. Thus,
it constitutes a software-visible side channel due to the
measurable clock-cycle difference in the two cases. Previous
work already demonstrated how this can be exploited by
user-space adversaries to probe mapped and unmapped
pages and to break randomization-based defenses [24, 29].
Timing flow properties cannot be directly expressed by
simple properties or modeled by state-of-the-art verification
techniques. Moreover, for this vulnerability, we identify at
least seven RTL modules that would need to be modeled,
analyzed and verified in combination, namely: mmu.sv -
nbdcache.sv - tlb.sv instantiations - ptw.sv - load_unit.sv
- store_unit.sv. Besides modeling their complex inter- and
intra-modular logic flows (L-1), the timing flows need to be
modeled to formally prove the absence of this timing channel
leakage, which is not supported by current industry-standard
tools (L-2). Hence, the only alternative is to verify this
property by manually inspecting and following the clock
cycle transitions across the RTL modules, which is highly
cumbersome and error-prone. However, the design must still
be analyzed to verify that timing side-channel resilience is
implemented correctly and bug-free in the RTL. This only
becomes far more complex for real-world industry-standard
SoCs. We show the RTL hierarchy of the Ariane core in
Figure 5 in Appendix A to illustrate its complexity.

Pre-Fetched Cache State Not Rolled Back (L-1 & L-3).
Another issue in Ariane is with the cache state when a system
return instruction is executed, where the privilege level of the
core is not changed until this instruction is retired. Before
retirement, linear fetching (guided by branch prediction) of
data and instructions following the unretired system return
instruction continues at the current higher system privilege
level. Once the instruction is retired, the execution mode of the
core is changed to the unprivileged level, but the entries that

RISC-V
Core

Peripheral Interface

TimerCLK Debug

Tightly Coupled Data Memory Interconnect

ROML2
Bank

L2
Bank

Event

AXIAdvanced
Debug Unit

GPIO

uDMA

UARTI2C

I2S

SPI
Master

Camera
Interface

HWPEAPB

= Security Vulnerability

JTAG

GPIO

I2S

SPI CPI I2C UART

AXI

FIGURE 2: Hardware overview of the PULPissimo SoC. Each
bug icon indicates the presence of at least one security vulner-
ability in the module.

were pre-fetched into the cache (at the system privilege level)
do not get flushed. These shared cache entries are visible to
user-space software, thus enabling timing channels between
privileged and unprivileged software.

Verifying the implementation of all the flush control signals
and their behavior in all different states of the processor
requires examining at least eight modules: ariane.sv -
controller.sv - frontend.sv - id_stage.sv - icache.sv - fetch_fifo
- ariane_pkg.sv - csr_regfile.sv (see Figure 5). This is complex
because it requires identifying and defining all the relevant
security properties to be checked across these RTL modules.
Since current industry-standard approaches do not support
expressive capturing and the verification of cache states, this
issue in the RTL can only be found by manual inspection.

Firmware-Configured Memory Ranges (L-4).
In PULPissimo, we added peripherals with injected bugs to
reproduce bugs from CVEs. We added an AES encryption/de-
cryption engine whose input key is stored and fetched from
memory tightly coupled to the processor. The memory ad-
dress the key is stored in is unknown, and whether it is within
the protected memory range or not is inconclusive by observ-
ing the RTL alone. In real-world SoCs, the AES key is stored
in programmable fuses. During secure boot, the bootload-
er/firmware senses the fuses and stores the key to memory-
mapped registers. The access control filter is then configured
to allow only the AES engine access to these registers, thus
protecting this memory range. Because the open-source SoC
we used did not contain a fuse infrastructure, the key storage
was mimicked to be in a register in the Memory-Mapped I/O
(MMIO) space.

Although the information flow of the AES key is defined
in hardware, its location is controlled by the firmware.
Reasoning on whether the information flow is allowed or
not using conventional hardware verification approaches is
inconclusive when considering the RTL code in isolation.

USENIX Association 28th USENIX Security Symposium 219

The vulnerable hardware/firmware interactions cannot be
identified unless they are co-verified. Unfortunately, current
industry-standard tools do not support this.

Memory Address Range Overlap (L-1 & L-4).
PULPissimo provides I/O support to its peripherals by map-
ping them to different memory address ranges. If an address
range overlap bug is committed at design-time or by firmware,
this can break access control policies and have critical secu-
rity consequences, e.g., privilege escalation. We injected an
RTL bug where there is address range overlap between the
SPI Master Peripheral and the SoC Control Peripheral. This
allowed the untrusted SPI Master to access the SoC Control
memory address range over the APB bus.

Verifying issues at the SoC interconnect in such complex
bus protocols is challenging since too many modules needed
to support the interconnect have to be modeled to properly
verify their security. This increases the scope and the com-
plexity of potential bugs far beyond just a few modules, as
shown in Table 1. Such an effect causes an explosion of the
state space since all the possible states have to be modeled
accurately to remain sound. Proof kits for accelerated verifica-
tion of advanced SoC interconnect protocols were introduced
to mitigate this for a small number of bus protocols (AMBA3
and AMBA4). However, this requires an add-on to the default
software and many protocols are not supported4.

5 Crowdsourcing Detection

We organized and conducted a capture-the-flag competition,
Hack@DAC, in which 54 teams (7 from leading industry
vendors and 47 from academia) participated. The objective
for the teams was to detect as many RTL bugs as possi-
ble from those we injected deliberately in real-world open-
source SoC designs (see Table 1). This is designed to mimic
real-world bug bounty programs from semiconductor com-
panies [17, 32, 62, 63]. The teams were free to use any tech-
niques: simulation, manual inspection, or formal verification.

5.1 Competition Preparation
RTL of open-source RISC-V SoCs was used as the testbed
for Hack@DAC and our investigation. Although these SoCs
are less complex than high-end industry proprietary designs,
this allows us to feasibly inject (and detect) bugs into less
complex RTL. Thus, this represents the best-case results for
the verification techniques used during Hack@DAC and our
investigation. Moreover, it allows us to open-source and show-
case our testbed and bugs to the community.Hack@DAC con-
sisted of two phases: a preliminary Phase 1 and final Phase 2,
which featured the RISC-V Pulpino and PULPissimo SoCs,

4http://www.marketwired.com/press-release/jasper-
introduces-intelligent-proof-kits-faster-more-accurate-
verification-soc-interface-1368721.htm

respectively. Phase 1 was conducted remotely over a two-
month period. Phase 2 was conducted in an 8-hour time frame
co-located with DAC (Design Automation Conference).

For Phase 1, we chose the Pulpino [60] SoC since it was
a real-world, yet not an overly complex SoC design for the
teams to work with. It features a RISC-V core with instruction
and data RAM, an AXI interconnect for accessing memory,
with peripherals on an APB accessing the AXI through a
bridge module. It also features a boot ROM, a debug unit and
a serial peripheral interface (SPI) slave. We inserted security
bugs in multiples modules of the SoC, including the AXI,
APB, debug unit, GPIO, and bridge.

For Phase 2, we chose the more complex PULPissimo [61]
SoC, shown in Figure 2. It additionally supports hardware pro-
cessing engines, DMA, and more peripherals. This allowed us
to extend the SoC with additional security features, making
room for additional bugs. Some native security bugs were dis-
covered by the teams and were reported to the SoC designers.

5.2 Competition Objectives
For Hack@DAC, we first implemented additional security
features in the SoC, then defined the security objectives and
adversary model and accordingly inserted the bugs. Specify-
ing the security goals and the adversary model allows teams to
define what constitutes a security bug. Teams had to provide
a bug description, location of RTL file, code reference, the se-
curity impact, adversary profile, and the proposed mitigation.
Security Features: We added password-based locks on the
JTAG modules of both SoCs and access control on certain
peripherals. For the Phase-2 SoC, we also added a crypto-
graphic unit implementing multiple cryptographic algorithms.
We injected bugs into these features and native features to
generate security threats as a result.
Security Goals: We provided the three main security goals
for the target SoCs to the teams. Firstly, unprivileged code
should not escalate beyond its privilege level. Secondly, the
JTAG module should be protected against an adversary with
physical access. Finally, the SoCs should thwart software
adversaries from launching denial-of-service attacks.

5.3 Overview of Competition Bugs
As described earlier in Section 3.2, the bugs were selected
and injected together with our Intel collaborators. They are
inspired by their hardware security expertise and real-world
CVEs (cf. Table 1) and aim to achieve coverage of different
security-relevant components of the SoC. Several participants
also reported a number of native bugs already present in the
SoC that we did not deliberately inject. We describe below
some of the most interesting bugs.
UDMA address range overlap: We modified the memory
address range of the UDMA so that it overlaps with the master
port to the SPI. This bug allows an adversary with access to

220 28th USENIX Security Symposium USENIX Association

http://www.marketwired.com/press-release/jasper-introduces-intelligent-proof-kits-faster-more-accurate-verification-soc-interface-1368721.htm
http://www.marketwired.com/press-release/jasper-introduces-intelligent-proof-kits-faster-more-accurate-verification-soc-interface-1368721.htm
http://www.marketwired.com/press-release/jasper-introduces-intelligent-proof-kits-faster-more-accurate-verification-soc-interface-1368721.htm

the UMDA memory to escalate its privileges and modify the
SPI memory. This bug is an example of the "Memory Address
Range Overlap" HardFail type in Section 4. Other address
range configuration bugs (#1, 2, 6 and 8) were also injected
in the APB bus for different peripherals.
GPIO errors: The address range of the GPIO memory was
erroneously declared. An adversary with GPIO access can
escalate its privilege and access the SPI Master and SoC Con-
trol. The GPIO enable was rigged to display a fixed erroneous
status of ’1’, which did not give the user a correct display of
the actual GPIO status. The GPIO lock control register was
made write-accessible by user-space code, and it was flawed
to clear at reset. Bugs #4, 5, 24 and 31 are such examples.
Debug/JTAG errors: The password-checking logic in the
debug unit was flawed and its state was not being correctly
reset after a successful check. We hard-coded the debug unit
password, and the JTAG interface was not password protected.
Bugs #9, 10, 11, 16, 26, and 28 are such examples.
Untrusted boot ROM: A native bug (bug #22) would allow
unprivileged compromise of the boot ROM and potentially
the execution of untrusted boot code at a privileged level, thus
disclosing sensitive information.
Erroneous AXI finite-state machine: We injected a bug
(bug #7) in the AXI address decoder such that, if an error
signal is generated on the memory bus while the underlining
logic is still handling an outstanding transaction, the next sig-
nal to be handled will instead be considered operational by the
module unconditionally. This bug can be exploited to cause
computational faults in the execution of security-critical code
(we showcase how to exploit this vulnerability—which was
not detected by all teams—in Appendix D).
Cryptographic unit bugs: We injected bugs in a crypto-
graphic unit that we inserted to trigger denial-of-service, a
broken cryptographic implementation, insecure key storage,
and disallowed information leakage. Bugs #18, 19, 20, 21,
and 29 are such examples.

5.4 Competition Results

Various insights were drawn from the submitted bug reports
and results, which are summarized in Table 1.

Analyzing the bug reports: Bug reports submitted by teams
revealed which bug types were harder to detect and analyze
using existing approaches. We evaluated the submissions and
rated them for accuracy and detail, e.g., bug validity, method-
ology used, and security impact.
Detected bugs: Most teams easily detected two bugs in
PULPissimo. The first one is where debug IPs were used
when not intended. The second bug was where we declared
a local parameter PULP_SEC, which was always set to ’1’,
instead of the intended PULP_SECURE. The former was de-
tected because debugging interfaces represent security-critical
regions of the chip. The latter was detected because it indi-

cated intuitively that exploiting this parameter would lead
to privilege escalation attacks. The teams reported that they
prioritized inspecting security-relevant modules of the SoC,
such as the debug interfaces.
Undetected bugs: Many inserted bugs were not detected.
One was in the advanced debug unit, where the password bit
index register has an overflow (bug #9). This is an example of
a security flaw that would be hard to detect by methods other
than verification. Moreover, the presence of many bugs within
the advanced debug unit password checker further masked
this bug. Another bug was the cryptographic unit key storage
in unprotected memory (bug #20). The teams could not detect
it as they focused on the RTL code in isolation and did not
consider HW/FW interactions.
Techniques used by the teams: The teams were free to use
any techniques to detect the bugs but most teams eventually
relied on manual inspection and simulation.

• Formal verification: One team used an open-source
formal verification tool (VeriCoq), but they reported little
success because these tools (i) did not scale well with
the complete SoC and (ii) required expertise to use and
define the security properties. Some teams deployed
their in-house verification techniques, albeit with little
success. They eventually resorted to manual analysis.

• Assertion-based simulation: Some teams prepared
RTL testbenches and conducted property-based simu-
lations using SystemVerilog assertion statements.

• Manual inspection: All teams relied on manual inspec-
tion methods since they are the easiest and most accessi-
ble and require less expertise than formal verification, es-
pecially when working under time constraints. A couple
of teams reported prioritizing the inspection of security-
critical modules such as debug interfaces.

• Software-based testing: One team detected software-
exposure and privilege escalation bugs by running C
code on the processor and attempting to make arbitrary
reads/writes to privileged memory locations. In doing
this, they could detect bugs #4, #8, #15, and #17.

Limitations of manual analysis: While manual inspection
can detect the widest array of bugs, our analysis of the
Hack@DAC results reveals its limitations. Manual analysis
is qualitative and difficult to scale to cross-layer and more
complex bugs. In Table 1, out of 16 cross-module bugs (span-
ning more than one module) only 9 were identified using
manual inspection. Three of them (#18, #19, and #20) were
also undetected by formal verification methods, which is 10%
of the bugs in our case studies.

6 Detection Using State-of-The-Art Tools

Our study reveals two results: (1) a number of bugs could not
be detected by means of manual auditing and other ad-hoc
methods, and (2) the teams were able to find bugs already
existing in the SoC which we did not inject and were not

USENIX Association 28th USENIX Security Symposium 221

aware of. This prompted us to conduct a second in-house
case study to further investigate whether formal verification
techniques can be used to detect these bugs. In practice,
hardware-security verification engineers use a combination of
techniques such as formal verification, simulation, emulation,
and manual inspection. Our first case study covered manual
inspection, simulation and emulation techniques. Thus, we
focused our second case study on assessing the effectiveness
of industry-standard formal verification techniques usually
used for verifying pre-silicon hardware security.

In real-world security testing (see Section 2), engineers will
not have prior knowledge of the specific vulnerabilities they
are trying to find. Our goal, however, is to investigate how an
industry-standard tool can detect RTL bugs that we deliber-
ately inject in an open-source SoC and have prior knowledge
of (see Table 1). Since there is no regulation or explicitly de-
fined standard for hardware-security verification, we focus our
investigation on the most popular and de-facto standard for-
mal verification platform used in industry [11]. This platform
encompasses a representative suite of different state-of-the-art
formal verification techniques for hardware security assur-
ance. As opposed to simulation and emulation techniques,
formal verification guarantees to model the state space of the
design and formally prove the desired properties. We empha-
size that we deliberately fix all other variables involved in the
security testing process, in order to focus in a controlled set-
ting on testing the capacity and limitations of the techniques
and tools themselves. Thus, our results reflect the effective-
ness of tools in a best case where the bug is known a priori.
This eliminates the possibility of writing an incorrect security
property assertion which fails to detect the bug.

6.1 Detection Methodology
We examined each of the injected bugs and its nature in order
to determine which formal technique would be best suited to
detect it. We used two formal techniques: Formal Property
Verification (FPV) and JasperGold’s Security Path Verifica-
tion (SPV) [12]. They represent the state of the art in hardware
security verification and are used widely by the semiconductor
industry [4], including Intel.

FPV checks whether a set of security properties, usually
specified as SystemVerilog Assertions (SVA), hold true for
the given RTL. To describe the assertions correctly, we exam-
ined the location of each bug in the RTL and how its behavior
is manifested with the surrounding logic and input/output re-
lationships. Once we specified the security properties using
assert, assume and cover statements, we determined which
RTL modules we need to model to prove these assertions.
If a security property is violated, the tool generates a coun-
terexample; this is examined to ensure whether the intended
security property is indeed violated or is a false alarm.

SPV detects bugs which specifically involve unauthorized
information flow. Such properties cannot be directly captured
using SVA/PSL assertions. SPV uses path sensitization tech-

Privilege
escalation

DoS Secret
leakage

Code
injectionBug class

1

2

3

4

5

6

7

of

 b
ug

s

SPV
FPV
M&S
Undetected

FIGURE 3: Verification results grouped by bug class and
the number of bugs in each class detected by Security Path
Verification (SPV), Formal Property Verification (FPV) and
manual inspection and simulation techniques (M&S).

niques to exhaustively and formally check if unauthorized
data propagates (through a functional path) from a source
to a destination signal. To specify the SPV properties, we
identified source signals where the sensitive information was
located and destination signals where it should not propagate.
We then identified the bounding preconditions to constrain the
paths the tool searches to alleviate state and time explosion.
Similar to FPV, we identified the modules that are required
to capture the information flow of interest. This must include
source, destination and intermediate modules, as well as mod-
ules that generate control signals which interfere with the
information flow.

6.2 Detection Results
Of the 31 bugs we investigated, shown in Table 1, using the
formal verification techniques described above, only 15 (48%)
were detected. While we attempted to detect all 31 bugs for-
mally, we were able to formulate security properties for only
17 bugs. This indicates that the main challenge with using
formal verification tools is identifying and expressing security
properties that the tools are capable of capturing and checking.
Bugs due to ambiguous specifications of interconnect logic,
for instance, are examples of bugs that are difficult to create
security properties for.

Our results, shown in Figure 3, indicate that privilege es-
calation and denial-of-service (DoS) bugs were the most de-
tected at 60% and 67% respectively. Secret leakage only had
a 17% detection rate due to incorrect design specification for
one bug, state explosion and the inability to express proper-
ties that the tool can assert for the remaining bugs. The code
injection bug was undetected by formal techniques. Bugs at
the interconnect level of the SoC such as bugs #1 and #2 were
especially challenging since they involved a large number of
highly complex and inter-connected modules that needed to be
loaded and modeled by the tool (see L-1 in Section 3.1). Bug
#20, which involves hardware/firmware interactions, was also

222 28th USENIX Security Symposium USENIX Association

detected by neither the state-of-the-art FPV nor SPV since
they analyze the RTL in isolation (see L-4 in Section 3.1). We
describe these bugs in more detail in Appendix C.

6.3 State-Explosion Problem
Formal verification techniques are quickly driven into state
space explosion when analyzing large designs with many
states. Many large interconnected RTL modules, like those
relevant to bugs #1 and #2, can have states in the order of
magnitude of 1020. Even smaller ones, like these used for bugs
#3 and #4, can have a very large number of states, as shown
in Table 1. When combined, the entire SoC will have a total
number of states significantly higher than any of the results
in Table 1. Attempting to model the entire SoC drove the tool
into state explosion, and it ran out of memory and crashed.
Formal verification tools, including those specific to security
verification are currently incapable of handling so many states,
even when computational resources are increased. This is
further aggravated for industry-standard complex SoCs.

Because the entire SoC cannot be modeled and analyzed at
once, detecting cross-modular bugs becomes very challeng-
ing. Engineers work around this (not fundamentally solve
it) by adopting a divide-and-conquer approach and selecting
which modules are relevant for the properties being tested
and which can be black-boxed or abstracted. However, this
is time-consuming, non-automated, error-prone, and requires
expertise and knowledge of both the tools and design. By
relying on the human factor, the tool can no longer guarantee
the absence of bugs for the entire design, which is the original
advantage of formal verification.

7 Discussion and Future Work

We now describe why microcode patching is insufficient for
RTL bugs while emphasizing the need for advancing the hard-
ware security verification process. We discuss the additional
challenges of the overall process, besides the limitations of
the industry-standard tools, which is the focus of this work.

7.1 Microcode Patching

While existing industry-grade SoCs support hotfixes by mi-
crocode patching for instance, this approach is limited to a
handful of changes to the instruction set architecture, e.g.,
modifying the interface of individual complex instructions
and adding or removing instructions [25]. Some vulnerabili-
ties cannot even be patched by microcode, such as the recent
Spoiler attack [33]. Fundamentally mitigating this requires
fixing the hardware of the memory subsystem at the hardware
design phase. For legacy systems, the application developer is
advised to follow best practices for developing side channel-

resilient software5. For vulnerabilities that can be patched,
patches at this higher abstraction level in the firmware only
act as a "symptomatic" fix that circumvent the RTL bug. How-
ever, they do not fundamentally patch the bug in the RTL,
which is already realized as hardwired logic. Thus, microcode
patching is a fallback for RTL bugs discovered after produc-
tion, when you can not patch the RTL. They may also incur
performance impact 6 that could be avoided if the underlying
problem is discovered and fixed during design.

7.2 Additional Challenges in Practice

Functional vs. Security Specifications. As described in Sec-
tion 2, pre- and post-silicon validation efforts are conducted
to verify that the implementation fully matches both its func-
tional and security specifications. The process becomes in-
creasingly difficult (almost impossible) as the system com-
plexity increases and specification ambiguity arises. Devi-
ations from specification occur due to either functional or
security bugs, and it is important to distinguish between them.
While functional bugs generate functionally incorrect results,
security bugs are not reflected in functionality. They arise due
to unconsidered and corner threat cases that are unlikely to
get triggered, thus making them more challenging to detect
and cover. It is, therefore, important to distinguish between
functional and security specifications, since these are often
the references for different verification teams working con-
currently on the same RTL implementation.

Specification Ambiguity. Another challenge entails antic-
ipating and identifying all the security properties that are
required in a real-world scenario. We analyzed the efficacy
of industry-standard tools in a controlled setting—where we
have prior knowledge of the bugs. However, in practice hard-
ware validation teams do not have prior knowledge of the
bugs. Security specifications are often incomplete and am-
biguous, only outlining the required security properties under
an assumed adversary model. These specifications are inval-
idated once the adversary model is changed. This is often
the case with IP reuse, where the RTL code for one product
is re-purposed for another with a different set of security re-
quirements and usage scenarios. Parameters may be declared
multiple times and get misinterpreted by the tools, thus caus-
ing bugs to slip undetected. Furthermore, specs usually do
not specify bugs and information flows that should not exist,
and there is no automated approach to determine whether one
is proving the intended properties. Thus, a combination of
incomplete or incorrect design decisions and implementation
errors can easily introduce bugs to the design.

5https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00238.html

6https://access.redhat.com/articles/3307751

USENIX Association 28th USENIX Security Symposium 223

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00238.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00238.html
https://access.redhat.com/articles/3307751

7.3 Future Research Directions
Through our work, we shed light on the limitations of state-
of-the-art verification techniques. In doing so, we hope to
motivate further research in advancing these techniques to
adequately capture and detect these vulnerabilities.

Although manual RTL inspection is generally useful and
can potentially cover a wide array of bugs, its efficacy de-
pends exclusively on the expertise of the engineer. This can
be inefficient, unreliable and ad hoc in light of rapidly evolv-
ing chip designs. Exhaustive testing of specifications through
simulation requires amounts of resources exponential in the
size of the input (i.e., design state space) while coverage
must be intelligently maximized. Hence, current approaches
face severe scalability challenges, as diagnosing software-
exploitable bugs that reside deep in the design pipeline can
require simulation of trillions of cycles [14]. Our results indi-
cate that it is important to first identify high-risk components
due to software exposure, such as password checkers, crypto
cores, and control registers, and prioritize analyzing them.
Scalability due to complex inter-dependencies among mod-
ules is one challenge for detection. Vulnerabilities associated
with non-register states (such as caches) or clock-cycle depen-
dencies (i.e., timing flows) are another open problem. Initial
research is underway [71] to analyze a limited amount of
low-level firmware running on top of a simulated RTL de-
sign for information and timing flow violations. However,
these approaches are still in their infancy and yet to scale for
real-world SoC designs.

8 Related Work

We now present related work in hardware security verifica-
tion while identifying limitations with respect to detecting
HardFails. We also provide an overview of recent software
attacks exploiting underlying hardware vulnerabilities.

8.1 Current Detection Approaches
Security-aware design of hardware has gained significance
only recently as the critical security threat posed by hardware
vulnerabilities became acutely established. Confidentiality
and integrity are the commonly investigated properties [19]
in hardware security. They are usually expressed using infor-
mation flow properties between entities at different security
levels. Besides manual inspection and simulation-based tech-
niques, systematic approaches proposed for verifying hard-
ware security properties include formal verification methods
such as proof assistance, model-checking, symbolic execu-
tion, and information flow tracking. We exclude the related
work in testing mechanisms, e.g., JTAG/scan-chain/built-in
self-test, because they are leveraged for hardware testing af-
ter fabrication. However, the focus of this work is on veri-
fying the security of the hardware before fabrication. Inter-

estingly, this includes verifying that the test mechanisms are
correctly implemented in the RTL, otherwise they may consti-
tute security vulnerabilities when used after fabrication (see
bugs#9,#10,#11,#12,#16, #26 of the JTAG/debug interface).

Proof assistant and theorem-proving methods rely on
mathematically modeling the system and the required secu-
rity properties into logical theorems and formally proving if
the model complies with the properties. VeriCoq [7] based on
the Coq proof assistant transforms the Verilog code that de-
scribes the hardware design into proof-carrying code.VeriCoq
supports the automated conversion of only a subset of Verilog
code into Coq. However, this assumes accurate labeling of the
initial sensitivity labels of each and every signal in order to
effectively track the flow of information. This is cumbersome,
error-prone, generates many faluse positives, and does not
scale well in practice beyond toy examples. Moreover, timing
(and other) side-channel information flows are not modeled.
Finally, computational scalability to verifying real-world com-
plex SoCs remains an issue given that the proof verification
for a single AES core requires ≈ 30 minutes to complete [6].

Model checking-based approaches check a given prop-
erty against the modeled state space and possible state tran-
sitions using provided invariants and predefined conditions.
They face scalability issues as computation time scales ex-
ponentially with the model and state space size. This can
be alleviated by using abstraction to simplify the model or
constraining the state space to a bounded number of states
using assumptions and conditions. However, this introduces
false positives, may miss vulnerabilities, and requires expert
knowledge. Most industry-leading tools, such as the one we
use in this work, rely on model checking algorithms such as
boolean satisfiability problem solvers and property specifica-
tion schemes, e.g., assertion-based verification to verify the
required properties of a given hardware design.

Side-channel leakage modeling and detection remain
an open problem. Recent work [76] uses the Murϕ model
checker to verify different hardware cache architectures for
side-channel leakage against different adversary models. A
formal verification methodology for SGX and Sanctum en-
claves under a limited adversary was introduced in [67]. How-
ever, such approaches are not directly applicable to hardware
implementation. They also rely exclusively on formal veri-
fication and remain inherently limited by the underlying al-
gorithms in terms of scalability and state space explosion,
besides demanding particular expertise to use.

Information flow analysis (such as SPV) works by assign-
ing a security label (or a taint) to a data input and monitoring
the taint propagation. In this way, the designer can verify
whether the system adheres to the required security policies.
Recently, information flow tracking (IFT) has been shown ef-
fective in identifying security vulnerabilities, including timing
side channels and information-leaking hardware Trojans.

IFT techniques are proposed at different levels of abstrac-
tion: gate-, RT, and language-levels. Gate-level information

224 28th USENIX Security Symposium USENIX Association

flow tracking (GLIFT) [2, 58, 70] performs the IFT analysis
directly at gate-level by generating GLIFT analysis logic that
is derived from the original logic and operates in parallel to it.
Although gate-level IFT logic is easy to automatically gener-
ate, it does not scale well. Furthermore, when IFT uses strict
non-interference, it taints any information flow conservatively
as a vulnerability [34] which scales well for more complex
hardware, but generates too many false positives.

At the language level, Caisson [42] and Sapper [41] are
security-aware HDLs that use a typing system where the de-
signer assigns security "labels" to each variable (wire or reg-
ister) based on the security policies required. However, they
both require redesigning the RTL using a new hardware de-
scription language which is not practical. SecVerilog [22, 75]
overcomes this by extending the Verilog language with a dy-
namic security type system. Designers assign a security label
to each variable (wire or register) in the RTL to enable a
compile-time check of hardware information flow. However,
this involves complex analysis during simulation to reason
about the run-time behavior of the hardware state and depen-
dencies across data types for precise flow tracking.

Hardware/firmware co-verification to capture and verify
hardware/firmware interactions remains an open challenge
and is not available in widely used industry-standard tools. A
co-verification methodology [28] addresses the semantic gap
between hardware and firmware by modeling hardware and
firmware using instruction-level abstraction to leverage soft-
ware verification techniques. However, this requires modeling
the hardware that interacts with firmware into an abstraction
which is semi-automatic, cumbersome, and lossy.

While research is underway [71] to analyze a limited
amount of low-level firmware running on top of a simulated
RTL design these approaches are still under development and
not scalable. Current verification approaches focus on register-
state information-flow analysis, e.g., to monitor whether sensi-
tive locations are accessible from unprivileged signal sources.
Further research is required to explicitly model non-register
states and timing explicitly alongside the existing capabilities
of these tools.

8.2 Recent Attacks
We present and cautiously classify the underlying hardware
vulnerabilities of recent cross-layer exploits (see Table 2 in
Appendix B), using the categories introduced in 3.1. We do
not have access to proprietary processor implementations,
so our classification is only based on our deductions from
the published technical descriptions. Yarom et al. demon-
strate that software-visible side channels can exist even below
cache-line granularity in CacheBleed [74]–undermining a
core assumption of prior defenses, such as scatter-gather [9].
MemJam [45] exploits false read-after-write dependencies in
the CPU to maliciously slow down victim accesses to mem-
ory blocks within a cache line. We categorize the underlying
vulnerabilities of CacheBleed and MemJam as potentially

hard to detect in RTL due to the many cross-module connec-
tions involved and the timing-flow leakage. The timing flow
leakage is caused by the software triggering clock cycle differ-
ences in accesses that map to the same bank below cache line
granularity, thus breaking constant-time implementations.

The TLBleed [23] attack shows how current TLB imple-
mentations can be exploited to break state-of-the-art cache
side-channel protections. As described in Section 4, TLBs
are typically highly interconnected with complex processor
modules, such as the cache controller and memory manage-
ment unit, making vulnerabilities therein very hard to detect
through automated verification or manual inspection.

BranchScope [20] extracts information through the direc-
tional branch predictor, thus bypassing software mitigations
that prevent leakage via the BTB. We classify it as a cache-
state gap in branch prediction units, which is significantly
challenging to detect using existing RTL security verification
tools, which cannot capture and verify cache states. Melt-
down [43] exploits speculative execution on modern proces-
sors to completely bypass all memory access restrictions. Van
Bulck et al. [72] also demonstrated how to apply this to Intel
SGX. Similarly, Spectre [37] exploits out-of-order execution
across different user-space processes as arbitrary instruction
executions would continue during speculation. We recognize
these vulnerabilities are hard to detect due to scalability chal-
lenges in existing tools, since the out-of-order scheduling
module is connected to many subsystems in the CPU. Addi-
tionally, manually inspecting these interconnected complex
RTL modules is very challenging and cumbersome.

CLKScrew [69] abuses low-level power-management func-
tionality that is exposed to software to induce faults and
glitches dynamically at runtime in the processor. We cat-
egorize CLKScrew to have vulnerable hardware-firmware
interactions and timing-flow leakage, since it directly exposes
clock-tuning functionality to attacker-controlled software.

9 Conclusion

Software security bugs and their impact have been known for
many decades, with a spectrum of established techniques to
detect and mitigate them. However, the threat of hardware
security bugs has only recently become significant as cross-
layer exploits have shown that they can completely undermine
software security protections. While some hardware bugs can
be patched with microcode updates, many cannot, often leav-
ing millions of affected chips in the wild. In this paper, we
presented the first testbed of RTL bugs and systematically
analyzed the effectiveness of state-of-the-art formal verifica-
tion techniques, manual inspection and simulation methods
in detecting these bugs. We organized an international hard-
ware security competition and an in-house study. Our results
have shown that 54 teams were only able to detect 61% of
the total number of bugs, while with industry-leading formal
verification techniques, we were only able to detect 48% of

USENIX Association 28th USENIX Security Symposium 225

the bugs. We showcase that the grave security impact of many
of these undetected bugs is only further exacerbated by being
software-exploitable.

Our investigation revealed the limitations of state-of-the-
art verification/detection techniques with respect to detecting
certain classes of hardware security bugs that exhibit partic-
ular properties. These approaches remain limited in the face
of detecting vulnerabilities that require capturing and verify-
ing complex cross-module inter-dependencies, timing flows,
cache states, and hardware-firmware interactions. While these
effects are common in SoC designs, they are difficult to model,
capture, and verify using current approaches. Our investiga-
tive work highlights the necessity of treating the detection
of hardware bugs as significantly as that of software bugs.
Through our work, we highlight the pressing call for further
research to advance the state of the art in hardware security
verification. Particularly, our results indicate the need for in-
creased scalability, efficacy and automation of these tools,
making them easily applicable to large-scale commercial SoC
designs—without which software protections are futile.

Acknowledgments

We thank our anonymous reviewers and shepherd, Stephen
Checkoway, for their valuable feedback. The work was sup-
ported by the Intel Collaborative Research Institute for Col-
laborative Autonomous & Resilient Systems (ICRI-CARS),
the German Research Foundation (DFG) by CRC 1119
CROSSING P3, and the Office of Naval Research (ONR
Award #N00014-18-1-2058). We would also like to ac-
knowledge the co-organizers of Hack@DAC: Dan Holcomb
(UMass-Amherst), Siddharth Garg (NYU), and Sourav Sudhir
(TAMU), and the sponsors of Hack@DAC: the National Sci-
ence Foundation (NSF CNS-1749175), NYU CCS, Mentor - a
Siemens Business and CROSSING, as well as the participants
of Hack@DAC.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-
tegrity. ACM conference on Computer and communications security,
pages 340–353, 2005.

[2] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner. Register Trans-
fer Level Information Flow Tracking for Provably Secure Hardware
Design. Design, Automation & Test in Europe, pages 1695–1700, 2017.

[3] ARM. Security technology building a secure system using trust-
zone technology (white paper). http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2009.

[4] R. Armstrong, R. Punnoose, M. Wong, and J. Mayo. Sur-
vey of Existing Tools for Formal Verification. Sandia Na-
tional Laboratories https://prod.sandia.gov/techlib-noauth/
access-control.cgi/2014/1420533.pdf, 2014.

[5] Averant. Solidify. http://www.averant.com/storage/
documents/Solidify.pdf, 2018.

[6] M.-M. Bidmeshki, X. Guo, R. G. Dutta, Y. Jin, and Y. Makris. Data Se-
crecy Protection Through Information Flow Tracking in Proof-Carrying
Hardware IP—Part II: Framework Automation. IEEE Transactions on
Information Forensics and Security, 12(10):2430–2443, 2017.

[7] M.-M. Bidmeshki and Y. Makris. VeriCoq: A Verilog-to-Coq Con-
verter for Proof-Carrying Hardware Automation. IEEE International
Symposium on Circuits and Systems, pages 29–32, 2015.

[8] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf. SANC-
TUARY: ARMing TrustZone with User-space Enclaves. Network and
Distributed System Security Symposium (NDSS), 2019.

[9] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert. Software mitiga-
tions to hedge AES against cache-based software side channel vulnera-
bilities. IACR Cryptology ePrint Archive, 2006:52, 2006.

[10] Cadence. Incisive Enterprise Simulator. https://www.cadence.com/
content/cadence-www/global/en_US/home/tools/system-
design-and-verification/simulation-and-testbench-
verification/incisive-enterprise-simulator.html, 2014.

[11] Cadence. JasperGold Formal Verification Platform. https:
//www.cadence.com/content/cadence-www/global/en_US/
home/tools/system-design-and-verification/formal-
and-static-verification/jasper-gold-verification-
platform.html, 2014.

[12] Cadence. JasperGold Security Path Verification App.
https://www.cadence.com/content/cadence-www/global/en_
US/home/tools/system-design-and-verification/formal-
and-static-verification/jasper-gold-verification-
platform/security-path-verification-app.html, 2018. Last
accessed on 09/09/18.

[13] M. Castro, M. Costa, and T. Harris. Securing software by enforcing
data-flow integrity. USENIX Symposium on Operating Systems Design
and Implementation, pages 147–160, 2006.

[14] D. P. Christopher Celio, Krste Asanovic. The Berkeley Out-of-Order
Machine. https://riscv.org/wp-content/uploads/2016/01/
Wed1345-RISCV-Workshop-3-BOOM.pdf, 2016.

[15] Cisco. Cisco: Strengthening Cisco Products. https://www.
cisco.com/c/en/us/about/security-center/security-
programs/secure-development-lifecycle.html, 2017.

[16] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model check-
ing and the state explosion problem. Tools for Practical Software
Verification, 2012.

[17] K. Conger. Apple announces long-awaited bug bounty program.
https://techcrunch.com/2016/08/04/apple-announces-
long-awaited-bug-bounty-program/, 2016.

[18] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal Hardware
Extensions for Strong Software Isolation. USENIX Security Symposium,
pages 857–874, 2016.

[19] O. Demir, W. Xiong, F. Zaghloul, and J. Szefer. Survey of ap-
proaches for security verification of hardware/software systems. https:
//eprint.iacr.org/2016/846.pdf, 2016.

[20] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev, et al.
BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. ACM Conference on Architectural Support for Programming
Languages and Operating Systems, pages 693–707, 2018.

226 28th USENIX Security Symposium USENIX Association

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2014/1420533.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2014/1420533.pdf
http://www.averant.com/storage/documents/Solidify.pdf
http://www.averant.com/storage/documents/Solidify.pdf
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-enterprise-simulator.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://riscv.org/wp-content/uploads/2016/01/Wed1345-RISCV-Workshop-3-BOOM.pdf
https://riscv.org/wp-content/uploads/2016/01/Wed1345-RISCV-Workshop-3-BOOM.pdf
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://techcrunch.com/2016/08/04/apple-announces-long-awaited-bug-bounty-program/
https://techcrunch.com/2016/08/04/apple-announces-long-awaited-bug-bounty-program/
https://eprint.iacr.org/2016/846.pdf
https://eprint.iacr.org/2016/846.pdf

[21] F. Farahmandi, Y. Huang, and P. Mishra. Formal Approaches to Hard-
ware Trust Verification. The Hardware Trojan War, 2018.

[22] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh. Verifi-
cation of a Practical Hardware Security Architecture Through Static
Information Flow Analysis. ACM Conference on Architectural Support
for Programming Languages and Operating Systems, pages 555–568,
2017.

[23] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
USENIX Security Symposium, 2018.

[24] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR. Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 368–379, 2016.

[25] M. Hicks, C. Sturton, S. T. King, and J. M. Smith. SPECS:
A Lightweight Runtime Mechanism for Protecting Software from
Security-Critical Processor Bugs. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS. ACM, 2015.

[26] M. Howard and S. Lipner. The Security Development Lifecycle. Mi-
crosoft Press Redmond, 2006.

[27] H. Hu, S. Shinde, A. Sendroiu, Z. L. Chua, P. Saxena, and Z. Liang.
Data-oriented programming: On the expressiveness of non-control data
attacks. IEEE Symposium on Security and Privacy, 2016.

[28] B.-Y. Huang, S. Ray, A. Gupta, J. M. Fung, and S. Malik. Formal Se-
curity Verification of Concurrent Firmware in SoCs Using Instruction-
level Abstraction for Hardware. ACM Annual Design Automation
Conference, pages 91:1–91:6, 2018.

[29] R. Hund, C. Willems, and T. Holz. Practical timing side channel attacks
against kernel space ASLR. Symposium on Security and Privacy, 2013.

[30] F. Inc. Common Vulnerability Scoring System v3.0. https://www.
first.org/cvss/cvss-v30-specification-v1.8.pdf, 2018.

[31] Intel. Intel Software Guard Extensions (Intel SGX). https://
software.intel.com/en-us/sgx, 2016. Last accessed on 09/05/18.

[32] Intel. Intel Bug Bounty Program. https://www.intel.
com/content/www/us/en/security-center/bug-bounty-
program.html, 2018.

[33] S. Islam, A. Moghimi, I. Bruhns, M. Krebbel, B. Gulmezoglu, T. Eisen-
barth, and B. Sunar. SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks. https://arxiv.org/abs/1903.
00446, 2019.

[34] R. Kastner, W. Hu, and A. Althoff. Quantifying Hardware Security
Using Joint Information Flow Analysis. IEEE Design, Automation &
Test in Europe, pages 1523–1528, 2016.

[35] H. Khattri, N. K. V. Mangipudi, and S. Mandujano. Hsdl: A security
development lifecycle for hardware technologies. IEEE International
Symposium on Hardware-Oriented Security and Trust, pages 116–121,
2012.

[36] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. ACM SIGARCH
Computer Architecture News, 42(3):361–372, 2014.

[37] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre At-
tacks: Exploiting Speculative Execution. http://arxiv.org/abs/
1801.01203, 2018.

[38] C. Lattner and V. S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. International Symposium
on Code Generation and Optimization, 2004.

[39] D. Lee. Keystone enclave: An open-source secure enclave for risc-v.
https://keystone-enclave.org/, 2018.

[40] Lenovo. Lenovo: Taking Action on Product Security.
https://www.lenovo.com/us/en/product-security/about-
lenovo-product-security, 2017.

[41] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kast-
ner, T. Sherwood, B. Hardekopf, and F. T. Chong. Sapper: A Language
for Hardware-level Security Policy Enforcement. International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, pages 97–112, 2014.

[42] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: A Hardware Description Language for
Secure Information Flow. ACM SIGPLAN Conference on Programming
Language Design and Implementation, 46(6):109–120, 2011.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. https:
//arxiv.org/abs/1801.01207, 2018.

[44] Mentor. Questa Verification Solution. https://www.mentor.com/
products/fv/questa-verification-platform, 2018.

[45] A. Moghimi, T. Eisenbarth, and B. Sunar. MemJam: A false depen-
dency attack against constant-time crypto implementations in SGX.
Cryptographers’ Track at the RSA Conference, pages 21–44, 2018.
10.1007/978-3-319-76953-0_2.

[46] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program
analysis. Springer, 1999.

[47] NIST. HP: Remote update feature in HP LaserJet printers does not re-
quire password. https://nvd.nist.gov/vuln/detail/CVE-2004-
2439, 2004.

[48] NIST. Microsoft: Hypervisor in Xbox 360 kernel allows attackers
with physical access to force execution of the hypervisor syscall with a
certain register set, which bypasses intended code protection. https:
//nvd.nist.gov/vuln/detail/CVE-2007-1221, 2007.

[49] NIST. Apple: Multiple heap-based buffer overflows in the AudioCodecs
library in the iPhone allows remote attackers to execute arbitrary code
or cause DoS via a crafted AAC/MP3 file. https://nvd.nist.gov/
vuln/detail/CVE-2009-2206, 2009.

[50] NIST. Broadcom Wi-Fi chips denial of service. https://nvd.nist.
gov/vuln/detail/CVE-2012-2619, 2012.

[51] NIST. Vulnerabilities in Dell BIOS allows local users to bypass in-
tended BIOS signing requirements and install arbitrary BIOS images.
https://nvd.nist.gov/vuln/detail/CVE-2013-3582, 2013.

[52] NIST. Google: Escalation of Privilege Vulnerability in MediaTek
WiFi driver. https://nvd.nist.gov/vuln/detail/CVE-2016-
2453, 2016.

[53] NIST. Samsung: Page table walks conducted by MMU during Virtual
to Physical address translation leaves in trace in LLC. https://nvd.
nist.gov/vuln/detail/CVE-2017-5927, 2017.

[54] NIST. AMD: Backdoors in security co-processor ASIC. https://
nvd.nist.gov/vuln/detail/CVE-2018-8935, 2018.

[55] NIST. AMD: EPYC server processors have insufficient access con-
trol for protected memory regions. https://nvd.nist.gov/vuln/
detail/CVE-2018-8934, 2018.

USENIX Association 28th USENIX Security Symposium 227

https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://www.first.org/cvss/cvss-v30-specification-v1.8.pdf
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html
https://arxiv.org/abs/1903.00446
https://arxiv.org/abs/1903.00446
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://keystone-enclave.org/
https://www.lenovo.com/us/en/product-security/about-lenovo-product-security
https://www.lenovo.com/us/en/product-security/about-lenovo-product-security
https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207
 https://www.mentor.com/products/fv/questa-verification-platform
 https://www.mentor.com/products/fv/questa-verification-platform
10.1007/978-3-319-76953-0_2
https://nvd.nist.gov/vuln/detail/CVE-2004-2439
https://nvd.nist.gov/vuln/detail/CVE-2004-2439
https://nvd.nist.gov/vuln/detail/CVE-2007-1221
https://nvd.nist.gov/vuln/detail/CVE-2007-1221
https://nvd.nist.gov/vuln/detail/CVE-2009-2206
https://nvd.nist.gov/vuln/detail/CVE-2009-2206
https://nvd.nist.gov/vuln/detail/CVE-2012-2619
https://nvd.nist.gov/vuln/detail/CVE-2012-2619
https://nvd.nist.gov/vuln/detail/CVE-2013-3582
https://nvd.nist.gov/vuln/detail/CVE-2016-2453
https://nvd.nist.gov/vuln/detail/CVE-2016-2453
https://nvd.nist.gov/vuln/detail/CVE-2017-5927
https://nvd.nist.gov/vuln/detail/CVE-2017-5927
https://nvd.nist.gov/vuln/detail/CVE-2018-8935
https://nvd.nist.gov/vuln/detail/CVE-2018-8935
https://nvd.nist.gov/vuln/detail/CVE-2018-8934
https://nvd.nist.gov/vuln/detail/CVE-2018-8934

[56] NIST. Buffer overflow in bootrom recovery mode of nvidia tegra mo-
bile processors. https://nvd.nist.gov/vuln/detail/CVE-2018-
6242, 2018.

[57] J. Oberg. Secure Development Lifecycle for Hardware Becomes an Im-
perative. https://www.eetimes.com/author.asp?section_id=
36&doc_id=1332962, 2018.

[58] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner. The-
oretical Analysis of Gate Level Information Flow Tracking. IEEE/ACM
Design Automation Conference, pages 244–247, 2010.

[59] PULP Platform. Ariane. https://github.com/pulp-platform/
ariane, 2018.

[60] PULP Platform. Pulpino. https://github.com/pulp-platform/
pulpino, 2018.

[61] PULP Platform. Pulpissimo. https://github.com/pulp-
platform/pulpissimo, 2018.

[62] Qualcomm. Qualcomm Announces Launch of Bounty Program.
https://www.qualcomm.com/news/releases/2016/11/17/
qualcomm-announces-launch-bounty-program-offering-
15000-usd-discovery, 2018.

[63] Samsung. Rewards Program. https://security.samsungmobile.
com/rewardsProgram.smsb, 2018.

[64] M. Seaborn and T. Dullien. Exploiting the DRAM rowhammer bug to
gain kernel privileges. Black Hat, 15, 2015.

[65] H. Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). ACM Symposium on Computer
and Communication Security, pages 552–561, 2007.

[66] O. Solutions. OneSpin 360. https://www.onespin.com/
fileadmin/user_upload/pdf/datasheet_dv_web.pdf, 2013.

[67] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia. A
Formal Foundation for Secure Remote Execution of Enclaves. ACM
SIGSAC Conference on Computer and Communications Security, pages
2435–2450, 2017.

[68] Sunny .L He and Natalie H. Roe and Evan C. L. Wood and Noel
Nachtigal and Jovana Helms. Model of the Product Development
Lifecycle. https://prod.sandia.gov/techlib-noauth/access-
control.cgi/2015/159022.pdf, 2015.

[69] A. Tang, S. Sethumadhavan, and S. Stolfo. CLKSCREW: exposing
the perils of security-oblivious energy managemen. USENIX Security
Symposium, pages 1057–1074, 2017.

[70] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. Complete Information Flow Tracking from the Gates Up.
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 109–120, 2009.

[71] Tortuga Logic. Verifying Security at the Hardware/Software Boundary.
http://www.tortugalogic.com/unison-whitepaper/, 2017.

[72] J. Van Bulck, F. Piessens, and R. Strackx. Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution.
USENIX Security Symposium, 2018.

[73] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. The
RISC-V Instruction Set Manual. Volume 1: User-Level ISA, Version
2.0. https://content.riscv.org/wp-content/uploads/2017/
05/riscv-spec-v2.2.pdf, 2014.

[74] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: a timing attack on
OpenSSL constant-time RSA. Journal of Cryptographic Engineering,
7(2):99–112, 2017. 10.1007/s13389-017-0152-y.

[75] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A Hardware De-
sign Language for Timing-Sensitive Information-Flow Security. In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, pages 503–516, 2015.

[76] T. Zhang and R. B. Lee. New Models of Cache Architectures Char-
acterizing Information Leakage from Cache Side Channels. ACSAC,
pages 96–105, 2014.

Appendix

A Ariane Core and RTL Hierarchy
Figure 4 shows the high-level microarchitecture of the Ariane
core to visualize its complexity. This RISC-V core is far
less complex than an x86 or ARM processor and their more
sophisticated microarchitectural and optimization features.

Figure 5 illustrates the hierarchy of the RTL components of
the Ariane core. This focuses only on the core and excludes all
uncore components, such as the AXI interconnect, peripherals,
the debug module, boot ROM, and RAM.

B Recent Microarchitectural Attacks
We reviewed recent microarchitectural attacks with respect
to existing hardware verification approaches and their limita-
tions. We observe that the underlying vulnerabilities would
be difficult to detect due to the properties that they exhibit,
rendering them as potential HardFails. We do not have access
to their proprietary RTL implementation and cannot inspect
the underlying vulnerabilities. Thus, we only infer from the
published technical descriptions and errata of these attacks
the nature of the underlying RTL issues. We classify in Ta-
ble 2 the properties of these vulnerabilities that represent
challenges for state-of-the-art hardware security verification.

C Details on the Pulpissimo Bugs
We present next more detail on some of the RTL bugs used in
our investigation.

Bugs in crypto units and incorrect usage: We extended
the SoC with a faulty cryptographic unit with a multiplexer
to select between AES, SHA1, MD5, and a temperature sen-
sor. The multiplexer was modified such that a race condition
occurs if more than one bit in the status register is enabled,
causing unreliable behavior in these security critical modules.

Furthermore, both SHA-1 and MD5 are outdated and bro-
ken cryptographic hash functions. Such bugs are not de-
tectable by formal verification, since they occur due to a
specification/design issue and not an implementation flaw,
therefore they are out of the scope of automated approaches
and formal verification methods. The cryptographic key is

228 28th USENIX Security Symposium USENIX Association

https://nvd.nist.gov/vuln/detail/CVE-2018-6242
https://nvd.nist.gov/vuln/detail/CVE-2018-6242
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962
https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/ariane
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
https://www.qualcomm.com/news/releases/2016/11/17/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://www.qualcomm.com/news/releases/2016/11/17/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://www.qualcomm.com/news/releases/2016/11/17/qualcomm-announces-launch-bounty-program-offering-15000-usd-discovery
https://security.samsungmobile.com/rewardsProgram.smsb
https://security.samsungmobile.com/rewardsProgram.smsb
https://www.onespin.com/fileadmin/user_upload/pdf/datasheet_dv_web.pdf
https://www.onespin.com/fileadmin/user_upload/pdf/datasheet_dv_web.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2015/159022.pdf
https://prod.sandia.gov/techlib-noauth/access-control.cgi/2015/159022.pdf
http://www.tortugalogic.com/unison-whitepaper/
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
10.1007/s13389-017-0152-y

FIGURE 4: High-level architecture of the Ariane core [59].Ariane RISC-V Core RTL Module Hierarchy

ariane

frontend id_stage issue_stage ex_stage commit_stage csr_regfile perf_counters controller
std_cache_
subsystem

alu branch_unit lsu csr_buffer

nbdcache mmu load_unit store_unit lsu_arbiter lsu_bypass

ptwdtlbitlb

scoreboard re_name issue_read_operands

ariane_regfile

icache

lfsr
data_s

ram
tag_
sram

ras btb bht
fetch
_fifo

instr_
scan

Acronym Legend
ras return address stack
btb branch trace buffer
bht branch history table
dltb data translation lookaside buffer
iltb instruction translation lookaside buffer
mmu memory management unit
nbdcache non-blocking data cache
lsu load/store unit
csr configuration status register
id_stage instruction decode stage

FIGURE 5: Illustration of the RTL module hierarchy of the Ariane core.

Attack Privilege Level
Memory
Corruption

Information
Leakage

Cross-
modular

HW/FW-
Interaction

Cache-State
Gap

Timing-Flow
Gap

HardFail

Cachebleed [74] unprivileged 7 3 7 7 7 3 3

TLBleed [23] unprivileged 7 3 3 7 3 3 3

BranchScope [20] unprivileged 7 3 7 7 3 7 3

Spectre [37] unprivileged 7 3 3 7 3 7 3

Meltdown [43] unprivileged 7 3 3 7 3 7 3

MemJam [45] supervisor 7 3 3 7 7 3 3

CLKScrew [69] supervisor 3 3 7 3 7 3 3

Foreshadow [72] supervisor 3 3 3 3 3 7 3

TABLE 2: Classification of the underlying vulnerabilities of recent microarchitectural attacks by their HardFail properties.

USENIX Association 28th USENIX Security Symposium 229

stored and read from unprotected memory, allowing an at-
tacker access to the key. The temperature sensor register value
is incorrectly muxed as output instead of the crypto engine
output and vice versa, which are illegal information flows that
could compromise the cryptographic operations.

LISTING 1: Incorrect use of crypto RTL: The key input for
the AES (g_input) is connected to signal b. This signal is then
passed through various modules until it connects directly to a
tightly coupled memory in the processor.

input logic [127:0] b,
...
aes_1cc aes(
.clk(0),
.rst(1),
.g_input(b),
.e_input(a),
.o(aes_out)
);

Bugs in security modes: We replaced the standard
PULP_SECURE parameter in the riscv_cs_registers and
riscv_int_controller modules with another constant param-
eter to permanently disable the security/privilege checks for
these two modules. Another bug we inserted is switching the
write and read protections for the AXI bus interface, causing
erroneous checks for read and write accesses.

Bugs in the JTAG module: We implemented a JTAG
password-checker and injected multiple bugs in it, includ-
ing the password being hardcoded in the password checking
file. The password checker also only checks the first 31 bits,
which reduces the computational complexity of brute-forcing
the password. The password checker does not reset the state
of the correctness of the password when an incorrect bit is
detected, allowing for repeated partial checks of passwords
to end up unlocking the password checker. This is also facil-
itated by the fact that the index overflows after the user hits
bit 31, allowing for an infinite cycling of bit checks.

D Exploiting Hardware Bugs From Software
We now explain how one of our hardware bugs can be ex-
ploited in real-world by software. This RTL vulnerability
manifests in the following way. When an error signal is gen-
erated on the memory bus while the underlining logic is still
handling an outstanding transaction, the next signal to be han-
dled will instead be considered operational by the module
unconditionally. This lets erroneous memory accesses slip
through hardware checks at runtime. Armed with the knowl-
edge about this vulnerability, an adversary can force memory
access errors to evade the checks. As shown in Figure 6, the
memory bus decoder unit (unit of the memory interconnect)
is assumed to have the bug. This causes errors to be ignored

Userspace

Kernel

Task B

Task A

NULL

Core Core

Memory
Interconnect D

R
A
M

12

3

5

4

PCBB
...

Task B Task A

IVT PCBA PCBB MM

OS Kernel

6

FIGURE 6: Our attack exploits a bug in the implementation
of the memory bus of the PULPissimo SoC: by 1 spamming
the bus with invalid transactions an adversary can make 4

malicious write requests be set to operational.

under certain conditions (see bug number #7 in Table 1). In
the first step 1 , the attacker generates a user program (Task
A) that registers a dummy signal handler for the segmenta-
tion fault (SIGSEGV) access violation. Task A then executes a
loop with 2 a faulting memory access to an invalid memory
address (e.g., LW x5, 0x0). This will generate an error in
the memory subsystem of the processor and issue an invalid
memory access interrupt (i.e., 0x0000008C) to the processor.
The processor raises this interrupt to the running software (in
this case the OS), using the pre-configured interrupt handler
routines in software. The interrupt handler in the OS will then
forward this as a signal to the faulting task 3 , which keeps
looping and continuously generating invalid accesses. Mean-
while, the attacker launches a separate Task B, which will
then issue a single memory access 4 to a privileged memory
location (e.g., LW x6, 0xf77c3000). In this situation, multi-
ple outstanding memory transactions will be generated on the
memory bus, all of which but one will be flagged as faulty by
the address decoder. An invalid memory access will always
proceed the single access of Task B. Due to the bug in the
memory bus address decoder, 5 the malicious memory ac-
cess will become operational instead of triggering an error.
Thus, the attacker can issue read and write instructions to
arbitrary privileged (and unprivileged) memory by forcing the
malicious illegal access to be preceded with a faulty access.
Using this technique the attacker can eventually leverage this
read-write primitive, e.g., 6 to escalate privileges by writing
the process control block (PCBB) for his task to elevate the
corresponding process to root. This bug leaves the attacker
with access to a root process, gaining control over the en-
tire platform and potentially compromising all the processes
running on the system.

230 28th USENIX Security Symposium USENIX Association

uXOM: Efficient eXecute-Only Memory on ARM Cortex-M

Donghyun Kwon1,2 Jangseop Shin1,2 Giyeol Kim1,2

Byoungyoung Lee1,3 Yeongpil Cho4 Yunheung Paek1,2

1ECE, Seoul National University, 2ISRC, Seoul National University
3Computer Science, Purdue University, 4School of Software, Soongsil University

{dhkwon, jsshin, gykim}@sor.snu.ac.kr,
{byoungyoung, ypaek}@snu.ac.kr, ypcho@ssu.ac.kr

Abstract
Code disclosure attacks are one of the major threats to a

computer system, considering that code often contains se-
curity sensitive information, such as intellectual properties
(e.g., secret algorithm), sensitive data (e.g., cryptographic
keys) and the gadgets for launching code reuse attacks. To
stymie this class of attacks, security researchers have devised
a strong memory protection mechanism, called eXecute-Only-
Memory (XOM), that defines special memory regions where
instruction execution is permitted but data reads and writes
are prohibited. Reflecting the value of XOM, many recent
high-end processors have added support for XOM in their
hardware. Unfortunately, however, low-end embedded pro-
cessors have yet to provide hardware support for XOM.

In this paper, we propose a novel technique, named uXOM,
that realizes XOM in a way that is secure and highly opti-
mized to work on Cortex-M, which is a prominent processor
series used in low-end embedded devices. uXOM achieves
its security and efficiency by using special architectural fea-
tures in Cortex-M: unprivileged memory instructions and an
MPU. We present several challenges in making XOM non-
bypassable under strong attackers and introduce our code
analysis and instrumentation to solve these challenges. Our
evaluation reveals that uXOM successfully realizes XOM in
Cortex-M processor with much better efficiency in terms of
execution time, code size and energy consumption compared
to a software-only XOM implementation for Cortex-M.

1 Introduction

When it comes to the security of a computing system, the
protection of the code running on the system should be of top
priority because the code defines security critical behaviors of
the system. For instance, if attackers are able to modify exist-
ing code or inject new code, they may place the victim system

Donghyun Kwon has been affiliated with Electronics and Telecommuni-
cations Research Institute (ETRI) since March 2019.

Corresponding authors are Yeongpil Cho and Yunheung Paek.

under their control. Fortunately, code injection attacks nowa-
days can be mitigated by simply enforcing the well-known
security policy, W⊕X. Since virtually all processors today are
equipped with at least five basic memory permissions: read-
write-execute (RWX), read-write (RW), read-execute (RX),
read-only (RO) and no-access (NA), W⊕X can be efficiently
enforced in hardware for a memory region solely by disabling
RWX.

However, even if attackers are not able to modify the sys-
tem’s code, the system can still be threatened by disclosure
attacks that attempt to read part of or possibly the entire code.
Because code often contains intellectual properties (IPs) in-
cluding core algorithms and sensitive data like cryptographic
keys, disclosure attacks severely damage the security of vic-
tim systems by exposing critical information to unauthorized
users. Even worse, disclosure attacks can be abused by at-
tackers to launch code reuse attacks (CRAs), which allow the
attacker to perform adversarial behaviors without modifying
its code contents. It has been shown that attackers who can
see the instructions in the code may launch a CRA wherein
they craft a malicious code sequence by chaining the existing
code snippets scattered around the program binary [34].

In order to prevent disclosure attacks, eXecute-Only-
Memory (XOM) has been a core security mechanism of vari-
ous countermeasure techniques [6–8,13,16,17,31,37]. XOM
is a strong memory protection mechanism that defines a spe-
cial memory region where only instruction executions are
allowed, and any attempts for instruction reads or writes are
prohibited. Thus, as long as sensitive information such as IPs
and the code contents are stored inside the region protected
by XOM, developers are in principle able to prevent direct
exposure of the code content as well as the code layout. This
simple but tangible security benefit of XOM has led several
researchers to propose hardware-assisted XOM on various
architectures. For example, some have proposed an architec-
ture that implements XOM by encrypting executable memory
and decrypting instructions only when they are loaded [24].
However, since their approach mostly imposes significant
changes and overhead on the underlying hardware, it cannot

USENIX Association 28th USENIX Security Symposium 231

be adopted readily by the processor vendors for their existing
products. Instead, many vendors opt for a less drastic ap-
proach that simply augments the basic memory permissions
with the new execute-only (XO) permission [8, 10].

As of today, many high-end processors provide XOM capa-
bilities by supporting augmented memory permissions. Con-
sequently, by taking benefits from the hardware support for
XOM, low-cost security solutions have been built to mitigate
real attacks [8,10,13,16]. However, these security benefits are
confined to computing systems for general applications since
the XO permission is only available in relatively high-end pro-
cessors targeting general-purpose machines such as servers,
desktops and smartphones. More specifically, applications
running on tiny embedded devices cannot enjoy such bene-
fits because only the basic memory permissions (not XOM)
are supported in their target processors, which are primarily
intended for use in low-cost, low-power computations. As
one example of such processors that hardware-level XOM is
not built into, we have the ARM Cortex-M series, which are
prominent processors adopted by numerous low-cost comput-
ing devices today [38].

Fortunately, researchers have demonstrated that software
fault isolation (SFI) techniques can be used to thwart these
prevalent attacks without hardware-level XOM [7, 31]. They
are purely software techniques, and thus are able to cope with
any types of processors regardless of the underlying architec-
tures. However, the drawback we observed is that SFI-based
XOM techniques perform less optimally on certain types of
processors, including Cortex-M in particular. More impor-
tantly, such techniques can even be circumvented, leading to
critical security issues (refer to § 6.4). Motivated by this obser-
vation, this paper proposes a novel technique, called uXOM,
to realize XOM in a way that is secure and highly optimized to
work on Cortex-M processors. Since performance is a pivotal
concern of tiny embedded devices such as Cortex-M, effi-
ciency must be the most important objective of any technique
targeting these low-end processors. To achieve this objective,
uXOM leverages a special type of instructions, called unprivi-
leged loads/stores, provided by the instruction set architecture
for ARM Cortex-M. In an ARM-based system, memory can
be divided into two classes of regions according to privilege
levels: non-privileged and privileged memory regions. Unpriv-
ileged loads/stores can only access non-privileged memory
regions, irrespective to the processor’s current privilege level
(either in a privileged or non-privileged). On the contrary,
ordinary loads/stores are permitted to access privileged re-
gions as long as they are executed under the privileged level.
This striking difference between unprivileged and ordinary
load/store instructions is the key enabler of our technique.

By capitalizing on this difference, we also need to exploit
a unique style of running embedded software on the proces-
sors to achieve this ultimate goal of uXOM. In computing
systems, software entities are typically assigned certain priv-
ileges during execution. For instance, user applications run

as unprivileged, and the OS kernel as privileged. In practice,
however, applications and the kernel in tiny embedded devices
are designed to operate with the same privilege level [12, 21].
This is because these embedded systems are typically given
real-time constraints, and the privilege mode switching in-
volved in user-kernel privilege isolation is considered very
expensive [21]. For the goal of uXOM stated above, we uti-
lize these unique architectural characteristics of Cortex-M
processors. More specifically, uXOM converts all memory
instructions into unprivileged ones and sets the code region as
privileged. As a result, converted instructions cannot access
code regions, thereby effectively enforcing the XO permission
onto the code regions. Since the processor is running with
privileged level, code execution is still allowed without any
permission error.

However, in order to actually realize uXOM, we need to
tackle the problem that some memory instructions cannot be
changed into unprivileged memory instructions. For exam-
ple, memory instructions accessing critical system resources,
such as an interrupt controller, a system timer and a Memory
Protection Unit (MPU), should not be converted. Accesses to
these resources always require privilege, so the program will
crash if instructions accessing these resources are converted
to unprivileged ones. In addition, load/store exclusive instruc-
tions, which are the special memory instructions for exclusive
memory access, do not have unprivileged counterparts. For
these instructions, there is no way to implement the intended
functionality with unprivileged memory instructions. There-
fore, we should analyze the code thoroughly to find these
instructions and leave them as the original instructions.

Unfortunately, these unconverted memory instructions can
be exploited by attackers to subvert uXOM. For example, if
the attackers manage to execute these instructions by alter-
ing the control flow, they may bypass uXOM by (1) turning
off the MPU protection or (2) reading the code directly. To
prevent such attacks, the unconverted memory instructions
need to be instrumented with verification routines to ensure
that each memory access using these instructions does not
break uXOM ’s protection. However, the attackers can still
bypass the verification routines and directly execute the prob-
lematic memory instructions. To handle this challenge, we
have devised the atomic verification technique that virtually
enables memory instructions to be executed atomically with
the verification routine, thereby preventing potential attackers
from executing the memory instructions without passing the
verification.

Another important problem uXOM needs to handle is that
the attackers can alter control flow to execute unintended
instructions, which may result from unaligned execution of
32-bit Thumb instructions or execution of the data embedded
inside the code region [4]. Among the unintended instructions,
attackers may find useful instructions for bypassing uXOM,
such as ordinary memory instructions. To mitigate this attack
vector, uXOM analyzes the code to find all potentially harm-

232 28th USENIX Security Symposium USENIX Association

Flash ROM
: Code, Rea-only

data

SRAM
: Read-write

data (globals,

stacks, heap)

Peripheral
Read-write

data, stacks,

heap)

…

Private Peripheral Bus

(PPB)
: MPU, Timer, Interrupt

controller, etc.

0x0 0xFFFFFFFF

0xE0000000 0xE0100000

…

0x20000000 0x40000000 0x60000000

Figure 1: System address map for ARMv7-M [18]

ful unintended instructions and replaces them with alternative
instruction sequences that have an equivalent function but do
not contain any exploitable unintended instructions.

Built upon LLVM compiler and Radare2 binary analysis
framework [32], uXOM automatically transforms every soft-
ware component (i.e., real-time operating systems (RTOSs),
the C standard library, and the user application) into a uXOM-
enabled binary. Currently, uXOM supports processors based
on ARMv7-M architecture, including Cortex-M3/4/7 proces-
sors. To evaluate uXOM, we experimented on an Arduino
Due board, which ships with a Cortex-M3 processor. Our
experiment confirms that uXOM works efficiently, empow-
ered with the optimized use of the underlying hardware fea-
tures. In particular, uXOM incurs only 15.7%, 7.3% and 7.5%
overhead for code size, execution time and energy, while SFI-
based XOM incurs overhead of 50.8%, 22.7%, and 22.3%,
respectively. To demonstrate the compatibility of uXOM with
other XOM-based security solutions, we discuss two use cases
of uXOM: secret key protection and CRA defense. We imple-
mented and evaluated the second use case, the CRA defense.
Even when the CRA defense is applied on top of uXOM, it
shows only moderate performance overhead, which is 19.3%,
8.6% and 9.7% for code size, execution time and energy, re-
spectively.

The remainder of this paper is organized as follows. § 2
provides the background information. § 3 explains the threat
model and assumptions. § 4 and § 5 describe the approach
and design of uXOM, respectively. § 6 provides experimental
results for uXOM and its use cases. § 7 presents several
discussions regarding uXOM, and § 8 explains related works.
§ 9 concludes the paper.

2 Background
Cortex-M(3/4/7) processors targeted in this paper implement
the ARMv7-M architecture, the microcontroller (‘M’) profile
of the ARMv7 architecture, which features low-latency and
highly deterministic operation for embedded systems. In this
section, we give background information on the key architec-
tural features of ARMv7-M that are required to understand
the design and implementation of uXOM.

2.1 ARMv7-M Address Map and the Private
Peripheral Bus (PPB)

ARMv7-M does not support memory virtualization and the
regions for code, data, and other resources are fixed at specific
address ranges. Figure 1 shows the system address map for
ARMv7-M architecture. The first 0.5 GB (0x0-0x20000000)

is the region where the flash ROM is typically mapped.
Code and read-only data are placed here. The memory range
0x20000000-0x40000000 is the SRAM region where read-
write data (globals, stack, and heap) are placed. Devices
only use a small subset of each region; our test platform
(SAM3X8E) has 512KB of flash and 96KB of SRAM. The
memory range 0x40000000-0x60000000 is where device pe-
ripherals, such as GPIO and UART, are mapped. The 1 MB
memory region ranging from 0xE0000000 to 0xE00FFFFF
is the PPB region. Various system registers for controlling
system configuration and monitoring system status, such as
the system timer, the interrupt controller and the MPU, are
mapped in this region. The PPB differs from the other mem-
ory regions of the system in that only privileged memory
instructions are allowed to read from or write to the region.
Generally, access permissions for memory regions can be con-
figured through the MPU which we describe in detail below.
However, the access permission for the PPB is fixed and even
the MPU cannot override the default configuration.

2.2 Memory Protection Unit (MPU)
The MPU provides a memory access control functionality
for Cortex-M processors. The biggest difference between the
MPU and the Memory Management Unit (MMU) equipped
in high-end processors is that the MPU does not provide mem-
ory virtualization and thus the access control rules are applied
on the physical address space. Depending on the setting of the
MPU’s memory-mapped registers between 0xE000ED90 and
0xE000EDEC, a limited number (typically 8 or 16) of possi-
bly overlapping regions can be set up, each of which is defined
by the base address and the region size. Each region defines
separate access permissions for privileged and non-privileged
access through the combination of eXecute-Never (XN)-bit
and Access Permission (AP)-bits. The available permission
settings are RWX, RW, RX, RO, and NA, but in any case,
unprivileged access is granted the same or more restrictive
permission than privileged accesses. For example, when RO
permission is given to a privileged access, unprivileged access
can only have NA or RO permissions. If two or more regions
have overlapping ranges, the access permission for the higher-
numbered region takes effect. For access to memory ranges
not covered by any region, it can be configured to always
generate a fault or to follow the default access permission,
which depends on the specific processor implementation. It
is important to note that the read permission should be in-
cluded in order for the memory region to be executable. This
is the reason that XOM cannot be implemented simply by
configuring the MPU in Cortex-M processors.

2.3 Unprivileged Loads/Stores
The ARMv7-M architecture only supports a thumb instruc-
tion set, which is a variable-length instruction set including a
mix of traditional 16-bit thumb instructions and 32-bit instruc-
tions introduced in Thumb-2 technology. The unprivileged

USENIX Association 28th USENIX Security Symposium 233

loads/stores are special types of memory access instructions
provided in the instruction set architecture [18]. The main
distinction of these instructions is that they always perform
memory accesses as if they are executed as unprivileged re-
gardless of the current privilege mode. Thus, memory ac-
cesses using these instructions are regulated by the MPU’s
permission setting for unprivileged accesses. Unprivileged
loads/stores are only available in 32-bit encoding and only
have immediate-offset addressing mode. They do not sup-
port exclusive memory access. They are distinguished by the
common suffix ‘T’ (e.g., LDRT and STRT).

2.4 Exception Entry and Return
An exception is a special event indicating that the system
has encountered a specific condition that requires attention.
It typically results in a forced transfer of control to a special
software routine called an exception handler. On ARMv7-M,
the location of the exception handlers corresponding to each
exception are specified in the vector table pointed to by the
Vector Table Offset Register (VTOR). Note that unlike the other
ARMv7 profiles, the ARMv7-M has introduced a hardware
mechanism that automatically stores and restores core context
data (in particular, Program Status Register (xPSR), return
address1, lr, r12, r3, r2, r1 and r0) on the stack upon ex-
ception entry and return. The ARMv7-M profile also exhibits
an interesting feature where an exception return occurs when
a unique value of EXC_RETURN (e.g., 0xFFFFFFF1) is loaded
into the pc via memory load instructions, such as POP, LDM
and LDR, or indirect branch instructions, such as BX. Another
thing to note about the exception handling in ARMv7-M is
that different stack pointer (sp) can be used before and after
the exception. ARMv7-M provides two types of sp, called
main sp and process sp. The exception handler can only use
main sp but the non-handler code can choose which of the
two sps to use. The type of stack pointer being currently used
is internally managed through CONTROL register, so that stack
pointers are always represented as sp in the binary regardless
of its actual type.

3 Threat Model and Assumptions
Several conditions must be met to realize uXOM. First, the
target processor must support the MPU and the unprivileged
load/store instructions. We also assume that the target devices
run standard bare-metal software in which all included soft-
ware components, such as applications, libraries, and an OS,
share a single address space. Notably, we assume that the
entire software executes at a privileged level as mentioned
in § 1.

Next, we define the capabilities of an attacker. We assume
that attackers are only capable of launching software attacks
at runtime. We do not consider offline attacks on firmware
images, such as disassembling, manipulating, or replacing

1the value of the program counter (pc) at the moment of the exception

the firmware, because we believe that these attacks can be
thwarted by orthogonal techniques such as code encryption
or signing. We also leave hardware attacks, such as bus prob-
ing [9] and memory tampering [22] out of consideration. How-
ever, we believe that our attackers are still strong enough to
jeopardize the security of the target devices. The bare-metal
software installed in the device is considered benign but in-
ternally holds software vulnerabilities, so that the attackers
may exploit the vulnerabilities and ultimately have arbitrary
memory read and write capability. With such a strong memory
access capability, attackers can access any memory region in-
cluding code, stack, heap and even the PPB region for system
controls. They can also subvert control flow by manipulat-
ing function pointers or return addresses. We do not trust
any software components, including the exception handlers.
Event-driven nature of tiny embedded systems signifies that
exception handlers can take a large portion of embedded soft-
ware components [14], so we cannot just assume the security
of these handlers. Thus, we assume that attackers can trigger
a vulnerability inside the exception handler and manipulate
any data including the cpu context saved on exception entry.

4 Approach and Challenges
uXOM aims to provide XO permission, which enables effec-
tive protection against disclosure attacks for code contents,
for commodity bare-metal embedded systems based on the
Cortex-M processor. uXOM tries to minimize the perfor-
mance penalty by utilizing hardware features, such as un-
privileged memory instructions and the MPU provided by
Cortex-M processors. Ideally, uXOM converts all memory in-
structions into unprivileged ones. It then configures the MPU
upon system boot to set code regions to RX for privileged
access and NA for unprivileged access. It also sets the other
memory regions (i.e., data regions) to non-executable for both
privileged and unprivileged accesses. After the configuration,
uXOM executes code as privileged. All the converted mem-
ory instructions (i.e., unprivileged memory instructions) are
allowed to access the data regions in the same way as before.
However, these instructions are prohibited from accessing the
code region and the PPB region in which the MPU and VTOR
are located that are essential for the security of uXOM (see the
blue arrows in Figure 2). This is because these regions are set
to the NA memory permission for unprivileged accesses. As
all of the memory instructions have been converted to unpriv-
ileged ones, code disclosure attacks are effectively thwarted.
In addition, uXOM by default enforces W⊕X policy that
prevents code execution from writable regions. Therefore,
any attempt to inject ordinary memory instructions for code
disclosure is blocked as well.
Challenges. The basic principle of uXOM is simple and
intuitive as described above. To realize uXOM in practice,
however, we have to overcome some challenges to build a
system that works for real programs and cannot be bypassed
by any means. We summarize the challenges of realizing

234 28th USENIX Security Symposium USENIX Association

LDR r0, [r1]
STR r2, [r3]

BLX r4

exception handler:
…
// r4 = 0xFFFFFFF1
BX r4

C1

C2

C3

Code (P:RX, U:NA)

Data (P:RW, U:RW)

PPB (P:RW, U:RW)

0x0

0xFFFFFFFF

/* exception return */

/* indirect call */

/* unconverted memory
instructions */

LDRT r0, [r1]
STRT r2, [r3]

/* converted memory
instructions */

C4

LDR r0, [r1]

/* unintended memory
instructions */C5

uXOM-enabled
Binary

Access
Jump

Source Code

Clang/LLVM
Static Analysis &
Instrumentation

Binary Verifier

uXOM

Figure 2: uXOM approach

uXOM as follows.

• C1. Unconvertible memory instructions: To implement
uXOM, we initially tried to convert all memory instruc-
tions into unprivileged ones. However, this naïve attempt
will be unsuccessful because unprivileged memory instruc-
tions do not support the exclusive memory access that is
mainly utilized to implement lock mechanisms, and they
cannot access the PPB region to which accesses must be
privileged regardless of the MPU configuration. Therefore,
we need to thoroughly analyze the entire code, find all these
unconvertible instructions, and leave those instructions as
the original types. However, these unconverted loads/stores
in the program binary resulted in the other challenges, C2,
C3 and C4.

• C2. Malicious indirect branches: In § 3, we assumed
that attackers are capable of altering the control flow at run-
time by manipulating function pointers or return addresses.
Therefore, attackers can deliberately jump to the uncon-
verted loads/stores and exploit them. Unlike unprivileged
loads, the unconverted ones can access the code region.
Thus, the attackers are now able to read the code without a
permission fault. Furthermore, the attackers can also use
the unconverted stores to manipulate memory-mapped sys-
tem registers in the PPB. For example, they can configure
the MPU to enable unprivileged access to the code region,
completely neutralizing the protection offered by uXOM.

• C3. Malicious exception returns: This challenge is simi-
lar to C2 in that attackers can hijack control flow and even-
tually exploit the unconverted loads/stores to thwart uXOM.
As explained in § 2.4, Cortex-M employs a hardware-based
context save and restore mechanism for fast exception en-
try and return. The problem is that as the context is stored
in the stack, attackers can exploit a vulnerability while in
the exception handling mode to corrupt any context on the

stack. In particular, the context includes a return address
that represents the program point at the moment the excep-
tion is taken. If the attackers corrupt the return address and
then trigger an exception return by assigning EXC_RETURN
value to the pc, they will be able to execute any instruction
in the program including the unconverted loads/stores.

• C4. Malicious data manipulation: As stated in § 3, the
attackers can perform arbitrary memory read/write, and as
a result, they have full control over all kind of program data,
such as globals, heap objects, and local variables on the
stack. With such control, they can exploit the unconverted
loads/stores even while following a legitimate control flow.
For example, they can call a MPU configuration function
with a crafted argument to neutralize uXOM by compro-
mising the necessary memory access permissions.

• C5. Unintended instructions: An attacker capable of ma-
nipulating control flow may be able to compromise uXOM
by executing unintended instructions that are not found at
compile-time. Concretely, Cortex-M processors targeted in
this work support Thumb-2 instruction set architecture [18]
that intermixes 16-bit and 32-bit width instructions with
16-bit alignment. Therefore, the attackers can execute unin-
tended instructions by jumping into the middle of a 32-bit
instruction. The attackers can also execute unintended in-
structions through immediate values embedded in code,
whose bit-patterns can coincidentally be interpreted as a
valid instruction.

5 uXOM
In this section, we describe the comprehensive details of
uXOM. We first explain the basic design of uXOM for re-
alizing the XO permission (§ 5.1). We then discuss our tech-
niques for overcoming the challenges C1-C5 (§ 5.2). Next,
we present the optimizations applied to reduce performance
penalty imposed by uXOM (§ 5.3). Lastly, we perform a secu-
rity analysis to demonstrate that uXOM contains no security
hazard (§ 5.4).

5.1 Basic Design
Before digging into the design details, we briefly describe
how uXOM works on the system. As illustrated in Figure 2,
uXOM is implemented as a compiler pass in the LLVM frame-
work and a binary verifier. During compilation, uXOM per-
forms static analyses and code instrumentation to generate
a uXOM-enabled binary (i.e., firmware). Now, when the bi-
nary is flashed on to the board and the system boots, uXOM
automatically enforces the XO permission on the running
code.

5.1.1 Instruction Conversion
As RWX or RX is a mandatory permission for code exe-
cution on ARMv7-M, executable code regions are always
readable and, as a result, are subject to disclosure attacks.
Unfortunately, we cannot omit the read permission to imple-

USENIX Association 28th USENIX Security Symposium 235

Case Original Instruction Converted Instructions

1 LDR rt, [rn, #imm5] LDRT rt, [rn, #imm8]

2 LDR rt, [rn, #imm12] (ADD rx, rn, #imm12)

LDRT rt, [rx, (#imm8)]

3 LDR rt, [rn, #-imm8] SUB rx, rn #imm8

LDRT rt, [rx]

4 LDR rt, [rn, #+/-imm8]!

(pre-indexed)

ADD/SUB rx, rn, #imm12

LDRT rt, [rx]

5 LDR rt, [rn], #+/-imm8

(post-indexed)

LDRT rt, [rn]

ADD/SUB rx, rn, #imm12

6 LDR rt, [rn, rm] ADD rx, rn, rm

LDRT rt, [rx]

7 LDRD rt, rt2, [rn, #+/-imm8] (ADD/SUB rx, rn, #imm8)

LDRT rt, [rx, (#imm8)]

LDRT rt2, [rx, (#imm8)+4]

Table 1: Basic instruction conversion (only shown for load
word instruction)

ment XOM because the read permission is required for the
processor to fetch instructions from memory. Therefore, our
strategy for XOM is to deprive all memory instructions of the
access capability for code regions. Briefly put, we convert the
memory instructions into unprivileged ones and set the code
regions to be accessible only with a privileged manner.

Converting the type of the memory instruction may seem to
be a trivial task, but not all memory instructions can be read-
ily converted as unprivileged. The unprivileged loads/stores
only support one addressing mode with a base register and
an immediate offset which must be positive and fit within 8
bits. On the other hand, the original memory instructions vary
in addressing modes, such as register-offset addressing and
pre/post-indexed addressing, which updates the base register.
Also, there are unprivileged counterparts to the load/store
byte and load/store halfword instructions, but there are no
corresponding unprivileged instructions for load/store dual
(LDRD/STRD) and load/store multiple (LDM/STM), which respec-
tively load/store two or multiple registers. To correctly con-
vert all the memory instructions while preserving the program
semantics, we sometimes need extra instructions.

Table 1 summarizes the conversions we apply to different
types of load instructions. Cases 3-6 always need an extra
ADD or SUB instruction for calculating the memory address.
We omit an extra instruction for other cases if we can fit
the immediate in the unprivileged instruction. Note that we
may need an extra register for storing the calculated address
if rn is used again in other instructions. We implement our
conversion before the register allocation phase so that we
do not have to worry about the physical registers and let the
compiler choose the best register for the temporary results.
LDM/STM instructions are not shown in the table because they
only appear during an optimization pass after register allo-
cation. Therefore, when the optimization pass tries to create
LDM/STM instructions, we disable the optimization to prevent
the generation of those instructions.

Code

Read-only data

Read-write data

Peripheral

PPB (P:RW, U:NA)

P:RX

U:NA P:RO

U:RO

Region 0 Region 6

Region 7

MPU configurationAddress map

Stack (main, process)

P:RW

U:RW

P : privileged access

U : unprivileged access

Figure 3: uXOM-specific memory permission. Unlabeled re-
gions (white-colored regions) in the address map indicate the
unused regions where the memory access generates data abort.
The PPB region has a default memory permission (P:RW,
U:NA) regardless of the MPU configuration.

5.1.2 Permission Control

In order for the XO permission based on the unprivileged
load/store instructions to take effect, uXOM has to configure
the MPU to enforce certain memory access permissions. Fig-
ure 3 shows the default MPU configuration for uXOM. Recall
that when multiple regions overlap, the permission setting for
the higher-numbered region is applied. We create Region 0
covering the entire address space with RW permission for
both privileged and unprivileged modes. This is needed to
allow unprivileged instructions to access the SRAM and the
peripheral region. Otherwise, unprivileged access to those
regions is not permitted due to the processor’s default per-
mission setting. We assign several higher-numbered regions
to uXOM protection. (Here, we assumed that the number of
MPU regions is 8.) Region 6 covers the entire flash region
and assigns RX for privileged accesses and NA for unprivi-
leged accesses. Since flash also contains read-only data, we
configure Region 7 to let the unprivileged load instruction
access the read-only data. To determine the base and size of
this region, we need to know the size of the read-only data.
To do this, we first compile, find out the read-only data size
and generate an include file that is fed back into the MPU
configuration code. The linker script is also modified to take
this information and place the read-only data appropriately.
The configurations are done in the early stage of the reset
handler, which is called upon processor reset. In this way,
the uXOM-specific permission is activated at the early stage
of the system boot before attackers can seize control of the
system.

5.2 Solving the Challenges
So far we have explained the basic design of uXOM for
activating the XO permission. In the following, we describe
how uXOM addresses the challenges presented in § 4.

236 28th USENIX Security Symposium USENIX Association

Instruction Type Verification Details

Ordinary stores
(STR)

if Targetaddress points to MPU,
Targetvalue must not violate uXOM-specific memory permissions.

else if Targetaddress points to VTOR,
Targetvalue must have one of the valid VTOR values.

else,
Targetaddress must point to the PPB region excluding MPU region
and VTOR region

Exclusive stores
(STREX) Targetaddress must not point to the PPB region.

Ordinary loads
(LDR)

Exclusive loads
(LDREX)

Targetaddress must not point to the code region.

Table 2: Verification details by the type of unconverted mem-
ory instructions. Targetaddress denotes the memory address
accessed by load/store instructions and Targetvalue denotes
the value to be written by the store instructions.

5.2.1 Finding Unconvertible Memory Instructions

Unprivileged memory instructions do not provide exclusive
memory accesses and they cannot access the PPB region. As
stated in C1, therefore, we need to identify the memory in-
structions that must not be converted to unprivileged ones and
leave them as they are. We simply exclude exclusive mem-
ory loads/stores (e.g., LDREX and STREX) from the conversion
candidate. We perform compiler analysis to find loads/stores
accessing the PPB. Our analysis of the code base reveals
that accesses to the PPB involve calculating the base address
from a hard coded address pointing to the PPB region. This is
consistent with the claims made in previous work [12]. We
conduct a similar backward slicing technique to track how
the base address of each memory instruction is calculated.
If its address is a constant with the value corresponding to
the PPB region, or if it is calculated by adding some offset
to that constant value, we identify it as an access to the PPB
region and leave it as an original form. For our test platform,
intra-procedural analysis suffices to identify all PPB accesses.
If a PPB address is passed through a function argument and
used in a memory access, we can manually identify those
particular cases and add annotations to prevent the compiler
from converting the memory instructions as done in previous
work [12]. Fortunately, most PPB accesses tend to be per-
formed by the hardware abstraction layer (HAL) provided by
the device manufacturer, so no significant amount of annota-
tions are required to complement the static analysis.

5.2.2 Atomic Verification Technique

Our solution to deal with C1 is necessary but may endanger
the system. The problem is that, as stated in C2, C3 and C4,
the strong attackers assumed in § 3 can easily exploit the
unconverted instructions to neutralize uXOM. To address this
problem, we devise a atomic verification technique inspired
by the concept of the reference monitor [15, 35]. The key
of our technique is to verify memory accesses by the uncon-
verted loads/stores. More specifically, it inserts a routine that

performs verification as described in Table 2 before every un-
converted load/store so that we can confirm whether or not the
instruction tries to access code regions or manipulate system
configuration necessary for uXOM, such as uXOM-specific
memory permission (solve C4). At this point, however, the in-
serted verification may be bypassed by the attackers who can
divert control flow. To prevent this, therefore, the technique
enforces the atomic execution of the instruction sequence
composed of the verification routine and the following un-
trusted load/store instruction, ensuring that the attackers can-
not execute the unconverted loads/stores without a proper
verification (solve C2 and C3). Our basic strategy for atomic
verification is to (1) allocate a dedicated register as a base
register of every unconverted load/store, and then (2) enforce
the following two invariant properties regarding the dedicated
register.

• Invariant 1: The dedicated register must be set to a tar-
get address of each unconverted load/store immediately
before the associated verification routine. The set value
will be maintained only during the execution of the atomic
instruction sequence due to Invariant 2.

• Invariant 2: The dedicated register must hold a non-
harmful address (i.e., not a code or the PPB address) when
the atomic instruction sequence is not executed.

Now, the accessible memory of the unconverted
loads/stores is limited by the value of the dedicated register,
which is used as their base register. Invariant 1 allows the
unconverted loads/stores to be executed for their original
purpose (e.g., access to the PPB) only through the atomic
instruction sequence with a verification. Also, Invariant 2
prevents any attempt to execute the unconverted loads/stores
to access code or the PPB without going through the atomic
instruction sequence. As a result, the atomic verification is
achieved and the challenges, C2, C3 and C4, are addressed
successfully. Unfortunately, this implementation strategy
decreases the number of available registers by exclusively
allocating one register for the PPB access, which may
incur additional register spills and occasionally cause a
performance drop in some code with a high register pressure.

Therefore, we employ an alternative strategy that is similar
to the basic strategy but differs in that it uses the sp as a base
register of every ordinary load/store rather than using the ded-
icated register. Now, we can achieve the atomic verification if
we are able to enforce on the sp the same invariant properties
as the dedicated register. Enforcing Invariant 1 is straight-
forward, but enforcing Invariant 2 is challenging because
it can cause side effects on the program as the sp is used
throughout the program, unlike the dedicated register, which
is exclusively used only in the atomic instruction sequence.
Fortunately, recall that the sp is a special purpose register that
should always point to the stack, so Invariant 2 can be safely
enforced without worrying about side effects.

USENIX Association 28th USENIX Security Symposium 237

update_register:

cpsid i

mov r10, sp

mov sp, r0

[verification routine]

str r1, [sp]

mov sp, r10

[check sp]

cpsie i

exception_handler:

[check main sp and process sp]

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

update_register:

str r1, [r0]

exception_handler:

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:

(a) Before (b) After

// disable interrupt

// backup the value of sp

// set sp to a target address (IP1)

// verify the subsequent unconverted inst.

// perform an unconverted inst.

// restore the value of sp

// check the value of sp (IP2)

// enable interrupt

// check the value of sp (IP2)

Figure 4: An unconverted store before and after applying the atomic verification technique. In the update_register functions r0
and r1 are used to pass arguments that will be used as unconverted store’s base register and source register, respectively.

Enforcing Invariant 2 on sp. We achieve this by adopting
the idea suggested by the previous work on SFI [7, 33, 39]—
we check the value of the sp whenever the attackers could
have modified it to point to the outside of the valid region (i.e.,
the stack region). There are three kinds of program points
where we need to insert the sp check routines: (1) when the
sp is modified by a non-constant (i.e., register), (2) when the
sp is increased or decreased by a constant, and (3) at the entry
of an exception handler.

We can usually find the first case when the alloca function
is called, the variable size array is used, or a stack environment
stored by the setjmp function is restored by the longjmp
function, which involves an assignment from a general register
to the sp. As these cases are rare, we insert the sp check
routines at all the corresponding points. 2

The second case is very frequently found in the prolog and
epilog of a function when the sp is adjusted according to the
frame size of the function. The attackers could, although not
easily, find a suitable gadget consisting of such an instruction
and repeatedly execute the gadget until the sp is set to a cer-
tain value. As pointed out in the previous SFI work [39], if
there is a memory instruction based on the sp following the
sp modification, the sp can be regulated by placing redzones
(i.e., non-accessible memory regions) around the valid stack
region. If the redzones are larger than the changes in the value
of the sp, the following sp-based memory instruction ensures
that any attempt to use the gadget to jump over the redzones
will be detected. Fortunately, the address map illustrated in
Figure 3 shows that there already exist large unused regions
that can do the role of redzones. This is because in most cases,
the stack, code and PPB reside in a separate memory space,
such as SRAM, flash memory and system bus, respectively.
Therefore, we create redzones only when the stack is created
adjacent to the code and PPB without unused regions in be-
tween. Note that redzones can detect the corruption of the sp
only if there is an actual memory access using sp. It implies
that if, after the sp is corrupted, an indirect branch is executed

2Currently, uXOM can handle only C code, so we manually insert the sp
check routine for the longjmp function written in assembly language.

prior to a sp-based memory instruction, attackers may be able
to evade the execution of the memory instruction by manip-
ulating control flow. Therefore, to ensure the success of this
method, we implement an analysis that explores all path from
each constant sp modification. The analysis checks if there
are any sp-based memory instructions before a potentially
exploitable indirect branch is encountered. According to our
experiments, there are some sp-based memory instructions
preceding indirect branches most of the time. However, we
sometimes fail to find any sp-based memory instructions or
encounter a function call that disables further analysis, and in
this case, we insert sp check routines because we can no more
guarantee the sp corruption can be detected by the redzones.

Lastly, the attackers can try to avoid all the checks for sp
mentioned above by triggering an interrupt right after they
corrupt the sp. To neutralize this attempt, we have to validate
the sp by inserting another sp check routine at the entry of
the exception handlers. Note that as explained in § 2.4, there
are two sps in Cortex-M, and different sp may be activated
before and after the exception, so the sp check routine at the
entry of the exception handler checks the validity of both
sps as shown in Figure 4. The attackers may try to avoid the
sp check routine by modifying VTOR to alter the exception
handlers. To avert this attempt, we identify at compile-time
the valid values of VTOR, and regulate VTOR at run-time so that
it does not deviate from the identified values, as described in
Table 2.

Fulfillment of the Atomic Verification Technique. Now,
as both Invariant 1 and Invariant 2 can be enforced on the
sp, we can implement the atomic verification technique using
the sp without allocating a dedicated register. Figure 4 shows
an example code on how the atomic verification technique is
applied to harden an unconverted store. The original value of
the sp is backed up while it is used in the unconverted store
instruction (Line 3 and 9). The sp is assigned a target address
(Line 5) and the verification routine verifies the subsequent
unconverted store by checking the validity of its target address
and target value (Line 6). If the verification is passed, the un-
converted store performs memory access (Line 7). Note that

238 28th USENIX Security Symposium USENIX Association

Instr. #1 Instr. #2

(1)

Unintended Instr.

16-bit32-bit

Instr. #2

Unintended Instr.

32-bit

Unintended Instr.

(2) (3)

Instr. #1

32-bit

Instr. #1

32-bit

Figure 5: The generation of an unintended instruction by an unaligned execution of a 32-bit instruction.

because Invariant 2 is enforced by instrumenting sp-update
instructions and exception handlers (Line 10 and 14), the sp
always is forced to point to the stack region except when it is
used for the unconverted loads/stores. Therefore, to execute
the unconverted store for its original purpose (i.e., accessing
the PPB), storing the target address (i.e., the address of the
PPB) to the sp must be preceded (Line 5), which in turn en-
sures that the verification routine will be performed (Line
6). At the same time, as the sp is used for the unconverted
loads/stores and may point to out of the stack region, we tem-
porarily disable interrupts (Line 2 and 11), thereby preventing
the register from being erroneously checked at the exception
handler.

5.2.3 Handling Unintended Instructions
As stated in C5, our strong attackers capable of manipulating
the control flow of the program can execute unintended in-
structions to bypass the security of uXOM. The unintended
instructions are mainly caused by the unique property of
Thumb-2 instruction set architecture that intermingle 16-bit
and 32-bit instructions. Specifically, as shown in Figure 5,
when the attackers deliberately jump into the middle of a
32-bit instruction, unintended 16-bit or 32-bit instructions
can be decoded and executed. Unintended instructions can
also appear in the immediate values in code memory that
match the bit patterns of some valid instructions, as illustrated
in Figure 6.(b). As such, a number of unintended instructions
are lurking in code. Fortunately, however, only a minority
of them that can be interpreted as ordinary memory instruc-
tions or sp-modifying instructions can actually be exploited
to compromise uXOM.

Against this problem, we have implemented the code in-
strumentation technique based on the idea in the previous
work [4] that replaces each exploitable unintended instruction
into safe instruction sequences that serve the same function
as the original instruction. There was one complication in
solving the problem that not all exploitable unintended in-
structions can be identified at compile time. Many of the
exploitable unintended instructions result from immediate
values (i.e., symbol addresses) in instructions which are not
resolved until all the object files are linked by the linker. Sim-
ply transforming all those instructions that use unresolved
symbol addresses will result in unacceptable overhead in both
performance and code size. Thus, it is preferable to implement
the transformation inside the linker or use the static binary
transformation tool. However, adding extra instructions at
this stage is almost impossible because it will require us to

LDR r2, [PC, #0x20]
...

.word 0xf0006008
//0x6008 : STR r0, [r1]

0xFFC:
0x1000:

0x1020:

MOVT r2, #0xf000
MOVW r2, #0x6008
...

0xFFC:
0x1000:

MOVW r0, #0x2d18
// HEX encoding : 0xf6425018
// 0x5018 : STR r0, [r3, r0]

0x1000: MOVW r0, #0x2918
ADDW r0, r0, #0x400

0x1000:
0x1004:

(a) Unintended instruction originating from a 32-bit MOVW instruction

(c) Unintended instruction originating from an immediate value in the code region

LDR r8, [sp], 4
// HEX encoding : 0xf85d8b04
// 0x8b04 : LDRH r4, [r0, 0x18]

0x1000: LDR r9, [sp], 4
MOV r8, r9

0x1000:
0x1004:

(b) Unintended instruction originating from a 32-bit LDR instruction

TBB [PC, r5]
.word 0x50274b39
//0x6027 : STR r7, [r4]
...
...

0xFFC:
0x1000:

0x10A0:

TBB [PC, r5]
.word 0x02284c3a
B 0x10A2
...
...

0xFFC:
0x1000:
0x1004:

0x10A2:

(d) Unintended instruction originating from a jump table

Figure 6: Examples of unintended instructions and code trans-
formations to remove them.

adjust all the pc-relative offsets that are used in many ARM
instructions. Adding this capability to current ARM GNU
linker implementation will require significant engineering ef-
fort.3 As a work around, we implemented a binary verifier
that scans the binary executable for exploitable unintended
instructions and records the position of each instruction in-
side the function. With that information, the program is then
recompiled and the exploitable unintended instructions are
replaced into alternative instruction sequences. Sometimes,
new exploitable unintended instructions are revealed after this
process, as code and object layouts are changed and offsets
and addresses embedded in the code are changed accordingly.
Thus, the interaction between the compiler and the verifier is
repeated until there are no exploitable unintended instructions
in the binary.

Figure 6 demonstrates a few examples showing how the
transformation is applied to remove exploitable unintended
instructions. Figure 6.(a) shows the case where an exploitable
unintended instruction (STR) is generated from the immediate
value of 32-bit instruction (MOVW). To remove the exploitable
instruction, we divide the original immediate value into two

3This capability is available in the linker for some architectures like RISC-
V which implements aggressive linker relaxation. For those architectures, the
pc-relative offset resolution is deferred until the linking time to enable linker
optimizations that reduce instructions and thus may change the pc-relative
offsets in the code.

USENIX Association 28th USENIX Security Symposium 239

numbers A and B. Then we replace the original 32-bit in-
struction to use A and add an extra instruction (e.g., ADDW)
to add B to the register written by the original instruction.
Note that for 32-bit instructions whose immediate value is
only determined at link time, we only add the extra instruction
at compile time and make sure that the linker puts value A
and B instead of the original immediate value. Figure 6.(b)
shows another example that the destination register of the
32-bit instruction (LDR) generates the exploitable unintended
instruction (LDRH). We solve this case by putting the value
loaded from memory into the other register and then use an
extra MOV instruction to copy the value into the original des-
tination register. We have also implemented an optimization
in the register allocation pass to prefer invulnerable registers
over the others for the destination of these 32-bit instructions
so that exploitable unintended instructions can be avoided as
much as possible. This saves the use of extra instructions and
reduces the performance and code size overhead. Figure 6.(c)
shows an unintended instruction that exists in a constant em-
bedded in a code region to be loaded by a pc-relative load.
To sanitize it, we remove the constant value and replace the
associated pc-relative load with two move instructions. If the
resulting MOVT or MOVW instruction creates new exploitable
unintended instructions, it is further transformed similarly to
the example in Figure 6.(a). Finally, Figure 6.(d) shows the
case where the offsets in a jump table embedded in the code
create an exploitable unintended instruction. In the example,
the value 0xA0 (0x50 * 2) is added to pc and the control is
transferred to 0x10A0. To remove the unintended instruction
in this case, we add a trampoline code right after the jump
table for the targets with the problematic offsets.

5.3 Optimizations
According to our experiments (see § 6.1), unprivileged mem-
ory instructions consume the same CPU cycles as ordinary
memory instructions. However, unprivileged instructions are
32-bits in size while many ordinary memory instructions have
a 16-bit form. Also, extra instructions that are added as de-
scribed in § 5.1.1 can increase both the code size and the per-
formance overhead. Since code size is another critical factor
in an embedded application due to its scarce memory, it can
be beneficial to leave the memory instructions in their original
form if we can ensure that this does not harm the security guar-
antees of uXOM. In fact, a large number of the instructions
do not need to be converted either because they are safe by
nature or because they can be made safe through some addi-
tional effort. For example, ARM supports pc-relative memory
instructions which access a memory location that is a fixed
distance away from the current pc—i.e., the address of the cur-
rent instruction. As these instructions can only access certain
data embedded in the code region, attackers cannot exploit
them to access other memory locations. Therefore, we do not
need to convert these instructions, so we leave them as long as
it is not exploitable as unintended instructions (§ 5.2.3). We

also do not convert stack-based ordinary memory instructions.
Numerous instructions use the sp as the base address. Almost
all of them are 16-bits in size since Cortex-M provides special
16-bit encoding for stack-based memory instructions. Con-
verting all of these as the unprivileged will significantly add to
the code size of the final binary. Most of the LDM/STM instruc-
tions, including all the PUSH/POP instructions, are also based
on sp. Converting them would require multiple unprivileged
instructions which would further increase the code size and
even the performance overhead. Luckily, recall that uXOM al-
ready enforces the invariant properties noted in § 5.2.2 on the
sp. Therefore, attackers cannot exploit the ordinary memory
instructions based on sp, and we can safely leave sp based
memory instructions in their original forms.

5.4 Security Analysis
uXOM builds on the premise that there remains no abus-
able instructions in a firmware binary. uXOM satisfies this
through its compiler-based static analysis (§ 5.1.1 and § 5.2.3)
that (1) identifies all abusable instructions, such as ordinary
memory instructions and unintended instructions, and (2) con-
verts them into safe alternative instructions. This conservative
analysis does not make false negative conversions, so uXOM
is fail-safe in terms of security. In the following, we show that
attackers we assumed in the threat model (§ 3) will not be
able to compromise uXOM.

5.4.1 At Boot-up
As noted in § 3, we trust the integrity and confidentiality of
the firmware image. The firmware image will be distributed
and installed with the uXOM-related code instrumentation
applied. As soon as the system is powered up, the reset excep-
tion handler starts to run and the code snippet that uXOM in-
serted at the start of the handler is executed to enforce uXOM-
specific memory access permissions. Note that the firmware
has started its execution from a known good state and the
attackers have not yet injected any malicious payloads. There-
fore, we can guarantee that uXOM will safely enable XOM
without being disturbed by the attackers.

5.4.2 At Runtime
Once uXOM enables XOM, the attackers are completely pre-
vented from accessing the code. They cannot use unprivileged
loads/stores to bypass uXOM, so they have to resort to the
unconverted loads/stores. Through the instruction conversions
and optimizations of uXOM, only three types of unconverted
loads/stores remain in the binary: stack-based loads/stores,
exclusive loads/stores and ordinary loads/stores for the PPB
access.
Stack-based loads/stores. uXOM’s optimization excludes
sp based loads/stores from the conversion candidates. The
attackers may be able to execute these loads/stores, but they
cannot access the PPB region or code regions. This is be-
cause the sp is forced to point to the stack regions due to the
invariant property (Invariant 2 in § 5.2.2) enforced on the

240 28th USENIX Security Symposium USENIX Association

sp.
Exclusive loads/stores and ordinary loads/stores for the
PPB access. These unconverted loads/stores are protected
by the atomic verification technique. Verification routines
are inserted just before each unconverted load/store and the
atomic execution of the inserted routine and the corresponding
unconverted load/store is guaranteed. Of course, the attacker
may jump into the middle of the atomic instruction sequence
to directly execute the unconverted load/store without a proper
verification. However, as the unconverted loads/stores use the
sp as their base register, the attackers still cannot access the
code and the PPB regions.

6 Evaluation
uXOM transformations are implemented in LLVM 5.0, and
uXOM ’s binary verifier is implemented using the Radare2
binary analysis framework [32]. We used the RIOT-OS [5]
version 2018.10 as the embedded operating system. As the
whole binary, including the OS, runs in a single physical
address space at the same privilege level, uXOM compiler
transformations are applied to the OS code as well as the
application code to enable complete protection. We also ap-
plied our transformations to the C library (newlib) included
in arm-none-eabi toolchain, which had to be patched in a few
places to compile and run correctly with LLVM.

To better show the merits of our approach, we also imple-
mented and evaluated SFI-based XOM to compare against
uXOM. Originally, SFI is developed to sandbox an untrusted
module in the same address space. It restricts the store and
indirect branch instructions (i.e., by masking or checking the
store/branch address) in the untrusted module so that the un-
trusted module cannot corrupt or jump into the trusted module.
It also bundles the checks with the store/branch instructions
and prevents jumps into the bundle so that the restrictions ap-
plied to the store or branch address cannot be skipped. Capital-
izing on the SFI’s access control scheme, some studies [7,31]
have implemented the SFI-based XOM that instruments every
load instructions with masking instructions to prevent them
from reading the code region. However, as these studies fo-
cus on high-end devices like smartphones and desktop PCs,
we adapted the SFI-based XOM to work on Cortex-M based
devices. As our target device do not use virtual memory, code
and data must reside in a specific memory region. This pre-
vents us from using simple masking to restrict load addresses
and forces us to use a compare instruction to validate the ad-
dress. Furthermore, the instruction set of Cortex-M requires
us to insert additional IT (If-Then) instruction to make load
instruction execute conditionally on the comparison result.
Next, we place the compare and load inside a 16-byte aligned
bundle and make sure that they do not cross the bundle bound-
ary. We insert NOPs in the resulting gaps. Lower bits of indirect
branch targets are masked (cleared) to prevent control flows
into the bundle. We also make sure that all possible targets of
an indirect branch (i.e., functions and call-sites) are aligned.

0.95

1

1.05

1.1

1.15

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

E
xe

cu
ti
o
n
 T

im
e
 (
s)

Alignment (bytes)

Figure 7: Execution time of bitcount according to the dif-
ferent alignments of the code region.

POP instructions used for function returns are converted to
masking and return sequence as described in the previous
work on SFI [33]. Following the optimization done in the
paper [39], the memory load instructions based on the sp are
not checked and the sp is regulated in the same way as in
uXOM.

To evaluate uXOM and the SFI-based XOM, we used the
publicly available BEEBs benchmark suite (version 2.1) [29].
We selected 33 benchmarks that are claimed to have relatively
long execution time [12]4. We ran each benchmark on an
Arduino Due [1] board which ships with an Atmel SAM3X8E
microcontroller based on the Cortex-M3 processor. During
the experiment, we found that the program runs give very
inconsistent timing results depending on how the code is
aligned, even though there are no caches in the processor.
After some investigation, we found that the reason is due to
the flash memory. The Arduino Due core runs at 84MHz in
the default setting, which makes it necessary to wait for 4
cycles (called flash wait state) to get stable results from the
flash memory. SAM3X3E chips are equipped with a flash
read buffer to accelerate sequential reads [3], which gave us
variable results depending on where the branches are located.
As a preliminary experiment, we measured the execution time
while changing the displacement of the entire code region for
bitcount benchmark. As shown in Figure 7, the changes in
execution time show a pattern that is repeated every 16-byte,
which corresponds to the size of the flash read buffer. Because
of this result, to get a consistent result, we decreased the core
frequency to 18.5MHz in all our experiments.

6.1 Runtime Overhead
Figure 8 shows the runtime overhead of uXOM and SFI-
based XOM. The geomean overhead of all benchmarks is
7.3% for uXOM and 22.7% for SFI-based XOM. The worst
case overhead for uXOM is 22.3% for huffbench benchmark
and that for SFI-based XOM is 75.1% for edn benchmark.
Note that the performance overhead of SFI reported in the
previous work [33] for a high-end ARM device (Cortex-A9)
is 5%. In the paper, they mention that overhead induced by
additional instructions for SFI can be hidden by cache misses
and out-of-order execution. Based on this, we presume that the
large overhead of SFI-based XOM for Cortex-M3 observed
in our experiment is due to the low-power and cache-less

4Some of the benchmarks have been dropped in the newest version due
to the license problem.

USENIX Association 28th USENIX Security Symposium 241

0%

20%

40%

60%

80%

crc
32

sg.
.binsearc

h
nde

s

leven
shtein

sg.
.quick

sort slr
e

sg.
.hash

tab
le

sg.
.dllis

t
ed

n

sg.
.in

ser
tso

rt

sg.
.heap

sort

sg.
.queu

e

sgl
ib-li s

tso
rt

bub
bles

ort

matm
ult

-in
t

sgl
ib-rb

tre
e

matm
ult

-flo
at fra

c st

huff
ben

ch fir
cu

bic

stb
_pe

rlin

merge
sort

qrduin
o

pico
jpe

g

dijks
tra

rijn
dae

l
sqr

t

whetst
one

nbo
dy

fas
ta

wiki
sort

GEO
MEA

N

SFI-XOM XOM XOM-UI XOM-CRAu u u

Figure 8: Runtime overhead on BEEBs benchmark suite.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Code

Time

no extra instr imm offset reg offset

pre/post idx double/multiple mem ops LDR/STR checks

sp checks

Figure 9: Performance overhead breakdown for the different
components of uXOM-UI transformation.

processor implementation. This strongly shows the need for
an efficient low-end device oriented XOM implementation
like uXOM.

To inspect the sources of overhead, we built and ran multi-
ple partially instrumented versions of binaries with different
kinds of transformations applied. First, to examine the per-
formance impact of removing exploitable unintended instruc-
tions, we measured the runtime overhead for uXOM-UI—a
variation of uXOM that does not handle unintended instruc-
tions. As a result, we measured that the geomean overhead
for uXOM-UI is 5.2%, which shows that removing unin-
tended instructions incurs 2.1% of overhead in uXOM. We
then gathered the statistics on the number of conversions
and check codes inserted in uXOM-UI (Table 3). We also
measured the overhead ratio in terms of code size and exe-
cution time according to the type of conversions and checks
(Figure 9). In Table 3 and Figure 9, no extra instr. de-
notes the case where a memory instruction is converted to
an unprivileged one without an additional instruction. imm.
offset denotes the case where an additional instruction is
required because the immediate offset is too large or is nega-
tive. pre/post idx. represents the pre/post-indexed address-
ing mode and reg. offset represents the register-register
addressing mode. double/multiple mem. ops. represents
LDRD/STRD/LDM/STM instructions. For the sp check part,
non-const sp mod. is the case where the sp is modified
by the non-constant (and the check is required). const sp
mod. (checked) is the case where the sp is modified by the
constant and requires checking since no load/store based on
the sp is found afterwards. const sp mod. (no check) is
the case where the sp is modified by the constant but does
not need to be checked. Finally, LDR/STR checks denotes
the instructions inserted for the atomic verification technique.

The statistics shown in Table 3 are gathered while compil-
ing the C standard library, RIOT-OS, and each of the bench-

Cases Count (ratio %)

Instruction conversion
no extra instr. 25932 (77.0)
imm. offset 2547 (7.6)
pre/post idx. 1671 (4.9)
reg. offset 2891 (8.6)
double/multiple mem. ops. 641 (1.9)

sp check
non-const sp mod. 18 (0.7)
const sp mod. (checked) 769 (28.8)
const sp mod. (no check) 1881 (70.5)

Table 3: Statistics for instruction conversion and sp check
instrumentation.

marks. Note that although the numbers do not represent those
executed at runtime, we can expect some correlation between
them. Among the converted memory instructions, the majority
of the cases is the one where a memory instruction is directly
converted to a single unprivileged memory instruction without
any extra instruction (no extra instr. accounts for 77%
of all conversions). This tells us that most of the load/store
instructions are using an immediate-offset addressing mode
and the offset is usually small so that it fits in the immediate
field of the unprivileged instructions. As we can see, instruc-
tions converted in this way do not contribute to the runtime
overhead albeit being the majority. Even though the unprivi-
leged instructions are 32-bits long, they do not increase the
overhead unless additional instructions are inserted. This is
a big advantage for uXOM, and it is the main reason why
uXOM can be much more efficient than SFI-based XOM.

As illustrated in Figure 9, the type of instruction conver-
sions that contributes the most of the overhead is the one for
the register-register addressing mode (reg. offset). Even
though they represent only 8.6% of all conversions, they
cause 54% of the total overhead for uXOM-UI. The reason
would be that they are frequently used in time-consuming
loops, for example, to index array variables. imm. offset
and pre/post idx. take up the other half of the over-
head. Memory instructions that load/store multiple registers
(double/multiple mem. ops.) cause a negligible runtime
overhead; they are rare in number and also, although they are
converted into multiple unprivileged instructions, the original
instruction also takes up extra cycles to load/store multiple
registers. The sp checks that are inserted for stack modifica-
tion have an only negligible impact on performance as our

242 28th USENIX Security Symposium USENIX Association

u

0%

20%

40%

60%

80%

crc
32

sg.
.binsearc

h
nde

s

leven
shtein

sg.
.quick

sort slr
e

sg.
.hash

tab
le

sg.
.dllis

t
ed

n

sg.
.in

ser
tso

rt

sg.
.heap

sort

sg.
.queu

e

sgl
ib-li s

tso
rt

bub
bles

ort

matm
ult

-in
t

sgl
ib-rb

tre
e

matm
ult

-flo
at fra

c st

huff
ben

ch fir
cu

bic

stb
_pe

rlin

merge
sort

qrduin
o

pico
jpe

g

dijks
tra

rijn
dae

l
sqr

t

whetst
one

nbo
dy

fas
ta

wiki
sort

GEO
MEA

N

SFI-XOM XOM XOM-UI XOM-CRAu u

Figure 10: Code size overhead on BEEBs benchmark suite.

0%

20%

40%

60%

80%

crc
32

sg.
.binsearc

h
nde

s

leven
shtein

sg.
.quick

sort slr
e

sg.
.hash

tab
le

sg.
.dllis

t
ed

n

sg.
.in

ser
tso

rt

sg.
.heap

sort

sg.
.queu

e

sgl
ib-li s

tso
rt

bub
bles

ort

matm
ult

-in
t

sgl
ib-rb

tre
e

matm
ult

-flo
at fra

c st

huff
ben

ch fir
cu

bic

stb
_pe

rlin

merge
sort

qrduin
o

pico
jpe

g

dijks
tra

rijn
dae

l
sqr

t

whetst
one

nbo
dy

fas
ta

wiki
sort

GEO
MEA

N

SFI-XOM XOM XOM-UI XOM-CRAu u u

Figure 11: Energy overhead on BEEBs benchmark suite.

analysis finds that the sp checks are only needed for less than
30% of sp-based memory instructions.

6.2 Code Size Overhead
To see the impact of instruction insertion by uXOM, we
measured the size of the code in the final binary, excluding
the data size. Figure 10 shows the result for both uXOM
and SFI-based XOM. For uXOM, code size is increased by
15.7%, and for SFI-based XOM, it is increased by 50.8%. It
shows that uXOM can implement XOM with much less code
size overhead compared to SFI-based XOM. In addition, we
measured that the geomean overhead of uXOM-UI is 11.6%,
which indicates the amount of increased code for removing
unintended instructions is 4.1%. Figure 9 shows the source
of the overhead that is caused by instruction conversions and
checks. First, no extra inst. accounts for 54.5% of the
code size overhead for uXOM-UI, differently from the impact
that it had on the runtime performance. This is because the
original 16-bit load/store instructions are converted to 32-bit
unprivileged instruction, and they are large in number, too.
Other types of instructions that need additional instructions
also increases the code size to some degree. The instructions
added for the atomic verification technique (ldr/str check)
accounts for 17.4% of the code size overhead for uXOM-
UI. Although there are not many instructions accessing the
PPB region, around ten instructions are inserted for each of
those points, which adds some overhead to the code size
especially since the benchmark code size are only around
30KB. We expect the overhead from the atomic verification
to be a smaller percentage in the real program with a larger
code base.

6.3 Energy Overhead
Since many embedded devices running on Cortex-M pro-
cessors often operate based on constrained battery, energy
efficiency is one of the important performance factors for

these devices. To measure the impact of uXOM on energy
consumption, we recorded the power while running the in-
dividual benchmarks using the ODROID Smart Power [28].
For the convenience of measurement, the benchmarks were
repeatedly executed to run for at least 30 seconds. Figure 11
shows the results. For uXOM, the geometric mean of all
benchmarks is 7.5%, which is slightly larger than 5.8% of
uXOM-UI but much lower than 22.3% of SFI-based XOM.
The results share a similar trend with the execution time since
the energy is also affected by the execution time.

6.4 Security and Usability

Other than its excellence for performance, we also need to
mention the security and flexibility benefits of uXOM over
SFI-based XOM. uXOM provides a better security guarantee
against privileged attackers than SFI-based XOM. SFI-based
XOM, including the existing studies, focus only on the code
disclosure through memory read instructions, because they
assume that W⊕X policy is assured by a Trusted Computing
Base (TCB) such as the OS kernel. However, as described in
§ 3, uXOM cannot assume any TCB in the bare-metal envi-
ronment in which all software components are running with
privileges in a single address space. The privileged attacker
could neutralize W⊕X by manipulating the MPU configu-
ration register using memory vulnerabilities in the code. To
prevent such an attack, SFI-based XOM for Cortex-M would
also have to regulate memory write instructions to protect
memory-mapped registers for the MPU. However, this would
undoubtedly lead to more severe performance overheads, and
even worse, SFI-style masking of write instructions would
still leave the system vulnerable against attacks through the
exception handler (C3 of § 4). In addition, the current im-
plementation of SFI-based XOM is vulnerable to unintended
instructions. To defend this, it should eliminate all exploitable
unintended instructions either by using the instruction re-
placement technique similar to uXOM or selectively aligning

USENIX Association 28th USENIX Security Symposium 243

32-bit instructions so that jump into the middle of those in-
structions can be prevented by the masking of indirect jump
addresses. Either way, additional performance overhead will
be unavoidable.

uXOM is also more flexible in placing the code and data.
For uXOM, the XOM region can be placed anywhere in
the address space. For example, uXOM can be applied for
the code placed in SRAM for performance or firmware up-
dates [20]. Also, uXOM can set multiple XOM regions as
long as the number of MPU regions supports it. However,
SFI-based XOM must place the code at one end and the data
on the other to simplify code instrumentation. Moreover, SFI-
based XOM needs a guardzone between the code and the
data region [39] which further restricts the code and data
placement and also causes the memory to be wasted for the
guardzone.

6.5 Use Cases
uXOM can be used to hide sensitive information in the code
region, such as secret keys and code layout. We describe two
use cases to illustrate how uXOM can be applied to a security
solution.
Secret key protection. In tiny devices, secret keys are fre-
quently used for various purposes, such as device authenti-
cation and communication channel protection. uXOM can
protect these keys against arbitrary memory read vulnera-
bilities by embedding them inside the code. For example,
consider the following code that defines the constant global
key.

const unsigned char key[32] =
{0xcb, 0x21, 0xad, 0x38, ...};

The code that reads the first 4-byte of this value is compiled
to the assembly code composed of MOVW and MOVT as follows:

MOVW r0, #0x21cb
MOVT r0, #0x38ad

Now, if we use uXOM to apply the XO permission to this
code, attackers cannot access the key value by arbitrary mem-
ory reads. As an example, we applied uXOM to rijndael
benchmark, which uses a symmetric key for encryption. By
declaring the key as a global constant, we could confirm that
the key is embedded in the code protected by uXOM. Such a
protection offered by uXOM can further be combined with in-
register computation techniques [26] for a secure computation
robust against memory vulnerabilities.
CRA defense. To date, many researchers have proposed code
diversification-based CRA defense techniques [7, 12, 13, 30].
They randomize code layout to prevent attackers from using
the existing gadgets for CRA. As the code disclosure attack
emerged as a serious threat to randomization-based defenses,
XOM has been proposed as an effective solution to fortify
these defenses.

As another use case of uXOM, we implemented a CRA

defense solution based on Readactor [13], which is a represen-
tative code diversification based CRA defense with resistance
to code disclosure attacks. Readactor aims to defend against
two classes of code disclosure attacks: direct disclosure where
the attackers disclose code layout by directly reading the code
and indirect disclosure where attackers indirectly infer the
code layout through the value of the code pointers. Readactor
first places all code in XOM to prevent the direct disclo-
sure attacks. It then replaces all code pointers with pointers
to trampolines so that all indirect control transfers must go
through the trampoline. In this way, code pointers containing
the original code location are never stored in a register or
memory, thereby preventing the indirect disclosure attacks.
To demonstrate this use case, we implemented function re-
ordering and the trampoline mechanism. Every function call
is replaced with a direct branch to the trampoline followed by
the call to the original function. When the original function
returns, another direct branch takes the control flow back to
the original callsite. Also, every function pointer is replaced
with a pointer to the corresponding function trampoline. We
implemented this use case on top of uXOM-UI because the
code diversification based CRA defense mitigates control
flow hijacking, and consequently hinders an attacker from
exploiting unintended instructions. The experimental results
of our CRA defense are presented together with the results for
uXOM, uXOM-UI and SFI-based XOM. It imposes average
runtime overhead of 8.6%, the code size overhead of 19.3%,
and the energy overhead of 9.7%. The runtime overhead is
only slightly larger than that for original Readactor imple-
mentation (6.4%) which shows the applicability of uXOM
technique in low-end embedded devices.

7 Discussion

Cortex-M Processors based on ARMv8-M Architecture.
ARMv8-M [19] is a recently introduced instruction set archi-
tecture for the microcontroller profile. Basically, ARMv8-M
provides backward compatibility with ARMv7-M, so uXOM
is also applicable to ARMv8-M based Cortex-M(23/33/35)
processors. Here, we list several possible changes in uXOM
implementation due to the newly added hardware feature in
ARMv8-M. First of all, ARMv8-M includes the stack pointer
limit register (SPLR) that defines a lower limit for the stack
pointer and prevents the stack pointer from pointing below the
limit. When enabling SPLR, therefore, uXOM only needs to
ensure that the stack pointer does not point to the PPB region.
Secondly, load-acquire and store-release memory instructions
are newly added in ARMv8-M. Since these instructions do
not have unprivileged counterparts, they should be protected
by the atomic verification technique.

False Positive Conversion. When it comes to the instruc-
tion conversion of uXOM, false positive cases could happen
where unconvertible instructions are converted to unprivileged
ones. The false positive conversion does not harm the security

244 28th USENIX Security Symposium USENIX Association

aspect of uXOM but may cause an unexpected system fault.
For instance, if PPB-accessing memory instructions are con-
verted to unprivileged ones, it would not expose the PPB to
attackers but raise a memory access fault when executed. To
avoid an unexpected system halt due to the fault, uXOM can
install a custom fault handler, which in turn may invoke the
fail-safe handler already implemented in the existing system
(e.g., emergency landing in drones).

Dynamic Data Protection. Although the current uXOM im-
plementation aims to defeat the code disclosure attacks, it may
be extended to provide protection for the dynamic data as well.
To be concrete, uXOM can be expanded to implement a data
isolation scheme [23, 35, 36] that minimizes the possibility
of exposures of critical data by only allowing access through
authorized instructions. More specifically, we may allow only
authorized instructions (i.e., ordinary loads/stores that are not
converted into unprivileged types) to access critical data (e.g.,
return addresses/session keys) by placing the data on a cer-
tain memory region marked as “privileged”. To implement
such an extension, some modifications to uXOM are required.
First of all, authorized instructions should be predetermined
through the help of programmers or compilers and prevented
from being converted to unprivileged ones. Since attackers
can exploit these data-accessing instructions to compromise
uXOM, usage of these instructions should be regulated in a
way similar to PPB-accessing instructions through the atomic
verification technique with a new verification routine that
confines memory access target to the memory region of the
critical data.

8 Related Work

Hardware-assisted Execute Only Memory. Due to the
compelling security guarantee provided by XOM, today’s
high-end processor architectures (e.g., x64 and AArch64) pro-
vide the XO permission setting in the MMU [8, 10]. Apart
from that, various works have attempted to implement XOM
in the system with the help of the hardware. David et al. [24]
implemented XOM by encrypting the code in memory and
decrypting it only when it is executed. However, since it re-
quires significant processor redesign, it is not suitable for wide
adoption. In subsequent works, XOM has been implemented
by capitalizing on the built-in hardware features. Shadow
Walker [37] and HideM [17] presented an implementation
of XOM using the split translation lookaside buffer (TLB)
architecture, which separates the TLB for instruction fetches
and data accesses. They configure the two TLBs so that the
same virtual address is translated into different physical ad-
dresses for data access and instruction fetch, preventing the
data accesses to the code region. XOM-switch [25] imple-
mented XOM using Intel Memory Protection Keys (MPK),
which can be used to set memory pages execute-only. Shadow
Walker, HideM and XOM-switch are not applicable to Cortex-
M based devices because they rely on specific hardware fea-

tures (i.e., split-TLB or Intel MPK) that do not exist in the
Cortex-M processor.

Software-based Execute Only Memory. On the other hand,
there have been attempts to emulate XOM in software for pro-
cessors that do not have the above hardware supports. XnR [6]
sets all code pages as non-accessible except for the currently
executed code pages called sliding window and detects il-
legal memory reads and writes for non-accessible pages by
augmenting the MMU page fault handler. For Cortex-M/R
processors, since MPU also provides non-accessible permis-
sion setting for memory regions, XOM can be implemented
in a similar way. However, this approach cannot detect mem-
ory reads for code pages in the sliding window, and also,
the performance overhead becomes larger as the sliding win-
dow size is reduced. LR2 [7] and kRˆX [31] realize XOM by
SFI-inspired techniques [39, 40]. They prevent code reads by
masking load instructions, instead of stores as done in the
SFI technique. As shown in our evaluation, however, such
SFI-based XOM implementation can be bypassed and is inef-
ficient in low-end devices.

Security Solutions using XOM. Many researchers have
proposed various security solutions based on XOM. Early
works [27] proposed XOM for the purpose of protecting
intellectual properties and preventing tampering or leakage
of sensitive information stored in the code. Since the ad-
vent of code disclosure attacks (i.e., JIT-ROP), a number of
works [7, 13, 16, 31] have utilized XOM to prevent the at-
tackers from reading code to learn code layout and launch
CRAs. In § 6.5, we have shown that these solutions can be
implemented with uXOM.

Security for Tiny Embedded Devices. Recently, much re-
search has been done on enhancing the security of tiny em-
bedded devices. Mbed uvisor [2], MINION [21], uSFI [4]
and ACES [11] proposed memory isolation techniques for
software modules based on MPU. At compile time, they de-
fine memory views (stack, heap, and peripherals) for each
of the software modules, and at runtime, MPU enforces one
of the memory views according to the active software mod-
ule. Epoxy [12] and AVRAND [30] developed diversification
based security solutions for tiny embedded devices. As with
these solutions, uXOM also seeks to enhance the security
of tiny embedded devices. uXOM is the first to implement
efficient execute-only memory in Cortex-M processors.

9 Conclusion
XOM is a prominent protection mechanism that can be used
in various security purposes such as intellectual property pro-
tection and CRA defense. However, for a low-end embed-
ded processor such as Cortex-M, there has been no efficient
way to implement XOM. In this paper, we present uXOM, a
novel technique to realize XOM in a way that is secure and
highly optimized to work on Cortex-M processors. uXOM
achieves this by leveraging hardware features (i.e., unpriv-

USENIX Association 28th USENIX Security Symposium 245

ileged load/store instructions and MPU) in Cortex-M pro-
cessors. Our evaluation shows that not only uXOM is more
efficient than SFI-based XOM in terms of execution time,
code size and energy consumption, and that uXOM is com-
patible with existing XOM-based security solutions.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Vasileios P. Kemerlis, for their valuable comments that
helped to improve our paper. This work was partly sup-
ported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (NRF-
2017R1A2A1A17069478, NRF-2018R1D1A1B07049870,
No. 2019R1C1C1006095), Institute of Information Com-
munications Technology Planning Evaluation (IITP) grant
funded by Korea government (Ministry of Science and ICT)
(No. 2016-0-00078, No.2018-0-00230, No. 2017-0-00168),
and the Brain Korea 21 Plus Project in 2019. The ICT at Seoul
National University provides research facilities for this study.

References
[1] Arduino. arduino-due. https://store.arduino.cc/

usa/arduino-due.

[2] ARM. The mebed os uvisor. https://www.mbed.com/
en/technologies/security/uvisor/.

[3] Atmel. Atmel-11057c-atarm-sam3x-sam3a-datasheet,
2015.

[4] Zelalem Birhanu Aweke and Todd Austin. usfi: Ultra-
lightweight software fault isolation for iot-class devices.
In 2018 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 1015–1020. IEEE,
2018.

[5] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes,
Matthias Wahlisch, and Thomas C Schmidt. Riot os: To-
wards an os for the internet of things. In Computer Com-
munications Workshops (INFOCOM WKSHPS), 2013
IEEE Conference on, pages 79–80. IEEE, 2013.

[6] Michael Backes, Thorsten Holz, Benjamin Kollenda,
Philipp Koppe, Stefan Nürnberger, and Jannik Pewny.
You can run but you can’t read: Preventing disclosure
exploits in executable code. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1342–1353. ACM, 2014.

[7] Kjell Braden, Lucas Davi, Christopher Liebchen,
Ahmad-Reza Sadeghi, Stephen Crane, Michael Franz,
and Per Larsen. Leakage-resilient layout randomization
for mobile devices. In NDSS, 2016.

[8] Scott Brookes, Robert Denz, Martin Osterloh, and
Stephen Taylor. Exoshim: Preventing memory disclo-
sure using execute-only kernel code. In Proceedings

of the 11th International Conference on Cyber Warfare
and Security, pages 56–66, 2016.

[9] Xi Chen, Robert P Dick, and Alok Choudhary. Oper-
ating system controlled processor-memory bus encryp-
tion. In Design, Automation and Test in Europe, 2008.
DATE’08, pages 1154–1159. IEEE, 2008.

[10] Yaohui Chen, Dongli Zhang, Ruowen Wang, Rui Qiao,
Ahmed M Azab, Long Lu, Hayawardh Vijayakumar, and
Wenbo Shen. Norax: Enabling execute-only memory
for cots binaries on aarch64. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 304–319. IEEE,
2017.

[11] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh
Bagchi, and Mathias Payer. Aces: Automatic compart-
ments for embedded systems. In 27th USENIX Security
Symposium (USENIX Security 18), pages 65–82, 2018.

[12] Abraham A Clements, Naif Saleh Almakhdhub,
Khaled S Saab, Prashast Srivastava, Jinkyu Koo,
Saurabh Bagchi, and Mathias Payer. Protecting bare-
metal embedded systems with privilege overlays. In
Security and Privacy (SP), 2017 IEEE Symposium on,
pages 289–303. IEEE, 2017.

[13] Stephen Crane, Christopher Liebchen, Andrei Homescu,
Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan
Brunthaler, and Michael Franz. Readactor: Practical
code randomization resilient to memory disclosure. In
Security and Privacy (SP), 2015 IEEE Symposium on,
pages 763–780. IEEE, 2015.

[14] Drew Davidson, Benjamin Moench, Thomas Ristenpart,
and Somesh Jha. Fie on firmware: Finding vulnerabili-
ties in embedded systems using symbolic execution. In
USENIX Security Symposium, pages 463–478, 2013.

[15] Úlfar Erlingsson. The inlined reference monitor ap-
proach to security policy enforcement. Technical report,
Cornell University, 2003.

[16] Jason Gionta, William Enck, and Per Larsen. Preventing
kernel code-reuse attacks through disclosure resistant
code diversification. In Communications and Network
Security (CNS), 2016 IEEE Conference on, pages 189–
197. IEEE, 2016.

[17] Jason Gionta, William Enck, and Peng Ning. Hidem:
Protecting the contents of userspace memory in the face
of disclosure vulnerabilities. In Proceedings of the 5th
ACM Conference on Data and Application Security and
Privacy, pages 325–336. ACM, 2015.

[18] ARM Holdings. Armv7-m architecture reference man-
ual, 2010.

246 28th USENIX Security Symposium USENIX Association

https://store.arduino.cc/usa/arduino-due
https://store.arduino.cc/usa/arduino-due
https://www.mbed.com/en/technologies/security/uvisor/
https://www.mbed.com/en/technologies/security/uvisor/

[19] ARM Holdings. Armv8-m architecture reference man-
ual, 2017.

[20] IAR. Execute in ram after copy-
ing from flash or rom. https://www.
iar.com/support/tech-notes/general/
execute-in-ram-after-copying-from-flashrom-v5.
20-and-later/.

[21] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhong-
shu Gu, Byoungyoung Lee, Xiangyu Zhang, and
Dongyan Xu. Securing real-time microcontroller sys-
tems through customized memory view switching. In
Network and Distributed Systems Security Symp.(NDSS),
2018.

[22] Oliver Kömmerling and Markus G Kuhn. Design prin-
ciples for tamper-resistant smartcard processors. Smart-
card, 99:9–20, 1999.

[23] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R Sekar, and Dawn Song. Code-pointer
integrity. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages
147–163, 2014.

[24] David Lie, Chandramohan Thekkath, Mark Mitchell,
Patrick Lincoln, Dan Boneh, John Mitchell, and Mark
Horowitz. Architectural support for copy and tamper
resistant software. ACM SIGPLAN Notices, 35(11):168–
177, 2000.

[25] Ravi Sahita Mingwei Zhang and Daiping Liu.
executable-only-memory-switch (xom-switch). Black
Hat Asia, 2018.

[26] Tilo Müller, Felix C Freiling, and Andreas Dewald. Tre-
sor runs encryption securely outside ram. In USENIX
Security Symposium, volume 17, 2011.

[27] Gleb Naumovich and Nasir Memon. Preventing
piracy, reverse engineering, and tampering. Computer,
36(7):64–71, 2003.

[28] ODROID. smart-power. https://wiki.odroid.com/
old_product/accessory/odroidsmartpower.

[29] James Pallister, Simon Hollis, and Jeremy Bennett.
Beebs: Open benchmarks for energy measurements on
embedded platforms. arXiv preprint arXiv:1308.5174,
2013.

[30] Sergio Pastrana, Juan Tapiador, Guillermo Suarez-
Tangil, and Pedro Peris-López. Avrand: a software-
based defense against code reuse attacks for avr embed-
ded devices. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assess-
ment, pages 58–77. Springer, 2016.

[31] Marios Pomonis, Theofilos Petsios, Angelos D
Keromytis, Michalis Polychronakis, and Vasileios P
Kemerlis. krˆx: Comprehensive kernel protection
against just-in-time code reuse. In Proceedings of the
Twelfth European Conference on Computer Systems,
pages 420–436. ACM, 2017.

[32] Radare2. unix-like reverse engineering framework and
commandline tools. https://www.radare.org/r/.

[33] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting software fault isolation to contemporary cpu
architectures. In USENIX Security Symposium, pages
1–12, 2010.

[34] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-in-time code reuse: On the effectiveness
of fine-grained address space layout randomization. In
Security and Privacy (SP), 2013 IEEE Symposium on,
pages 574–588. IEEE, 2013.

[35] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William
Harris, Taesoo Kim, and Wenke Lee. Enforcing kernel
security invariants with data flow integrity. In NDSS,
2016.

[36] Chengyu Song, Hyungon Moon, Monjur Alam, Insu
Yun, Byoungyoung Lee, Taesoo Kim, Wenke Lee, and
Yunheung Paek. Hdfi: Hardware-assisted data-flow iso-
lation. In 2016 IEEE Symposium on Security and Pri-
vacy (SP), pages 1–17. IEEE, 2016.

[37] Sherri Sparks and Jamie Butler. Shadow walker: Rais-
ing the bar for rootkit detection. Black Hat Japan,
11(63):504–533, 2005.

[38] Menasveta Tim, Soubra Diya, and Yiu Joseph. Intro-
ducing arm cortex-m23 and cortex-m33 processors with
trustzone for armv8-m, 2016.

[39] Robert Wahbe, Steven Lucco, Thomas E Anderson,
and Susan L Graham. Efficient software-based fault
isolation. ACM SIGOPS Operating Systems Review,
27(5):203–216, 1994.

[40] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. In 2009
30th IEEE Symposium on Security and Privacy, pages
79–93. IEEE, 2009.

USENIX Association 28th USENIX Security Symposium 247

https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://www.iar.com/support/tech-notes/general/execute-in-ram-after-copying-from-flashrom-v5.20-and-later/
https://wiki.odroid.com/old_product/accessory/odroidsmartpower
https://wiki.odroid.com/old_product/accessory/odroidsmartpower
https://www.radare.org/r/

A Systematic Evaluation of Transient Execution Attacks and Defenses

Claudio Canella1, Jo Van Bulck2, Michael Schwarz1, Moritz Lipp1,
Benjamin von Berg1, Philipp Ortner1, Frank Piessens2, Dmitry Evtyushkin3, Daniel Gruss1

1 Graz University of Technology, 2 imec-DistriNet, KU Leuven, 3 College of William and Mary

Abstract
Research on transient execution attacks including Spectre
and Meltdown showed that exception or branch mispredic-
tion events might leave secret-dependent traces in the CPU’s
microarchitectural state. This observation led to a prolifera-
tion of new Spectre and Meltdown attack variants and even
more ad-hoc defenses (e.g., microcode and software patches).
Both the industry and academia are now focusing on finding
effective defenses for known issues. However, we only have
limited insight on residual attack surface and the completeness
of the proposed defenses.

In this paper, we present a systematization of transient
execution attacks. Our systematization uncovers 6 (new) tran-
sient execution attacks that have been overlooked and not
been investigated so far: 2 new exploitable Meltdown ef-
fects: Meltdown-PK (Protection Key Bypass) on Intel, and
Meltdown-BND (Bounds Check Bypass) on Intel and AMD;
and 4 new Spectre mistraining strategies. We evaluate the
attacks in our classification tree through proof-of-concept im-
plementations on 3 major CPU vendors (Intel, AMD, ARM).
Our systematization yields a more complete picture of the
attack surface and allows for a more systematic evaluation of
defenses. Through this systematic evaluation, we discover that
most defenses, including deployed ones, cannot fully mitigate
all attack variants.

1 Introduction

CPU performance over the last decades was continuously
improved by shrinking processing technology and increasing
clock frequencies, but physical limitations are already hin-
dering this approach. To still increase the performance, ven-
dors shifted the focus to increasing the number of cores and
optimizing the instruction pipeline. Modern CPU pipelines
are massively parallelized allowing hardware logic in prior
pipeline stages to perform operations for subsequent instruc-
tions ahead of time or even out-of-order. Intuitively, pipelines
may stall when operations have a dependency on a previous

instruction which has not been executed (and retired) yet.
Hence, to keep the pipeline full at all times, it is essential to
predict the control flow, data dependencies, and possibly even
the actual data. Modern CPUs, therefore, rely on intricate mi-
croarchitectural optimizations to predict and sometimes even
re-order the instruction stream. Crucially, however, as these
predictions may turn out to be wrong, pipeline flushes may be
necessary, and instruction results should always be committed
according to the intended in-order instruction stream. Pipeline
flushes may occur even without prediction mechanisms, as on
modern CPUs virtually any instruction can raise a fault (e.g.,
page fault or general protection fault), requiring a roll-back
of all operations following the faulting instruction. With pre-
diction mechanisms, there are more situations when partial
pipeline flushes are necessary, namely on every misprediction.
The pipeline flush discards any architectural effects of pend-
ing instructions, ensuring functional correctness. Hence, the
instructions are executed transiently (first they are, and then
they vanish), i.e., we call this transient execution [50, 56, 85].

While the architectural effects and results of transient in-
structions are discarded, microarchitectural side effects re-
main beyond the transient execution. This is the foundation
of Spectre [50], Meltdown [56], and Foreshadow [85]. These
attacks exploit transient execution to encode secrets through
microarchitectural side effects (e.g., cache state) that can later
be recovered by an attacker at the architectural level. The
field of transient execution attacks emerged suddenly and pro-
liferated, leading to a situation where people are not aware
of all variants and their implications. This is apparent from
the confusing naming scheme that already led to an arguably
wrong classification of at least one attack [48]. Even more
important, this confusion leads to misconceptions and wrong
assumptions for defenses. Many defenses focus exclusively
on hindering exploitation of a specific covert channel, instead
of addressing the microarchitectural root cause of the leak-
age [45,47,50,91]. Other defenses rely on recent CPU features
that have not yet been evaluated from a transient security per-
spective [84]. We also debunk implicit assumptions including
that AMD or the latest Intel CPUs are completely immune to

USENIX Association 28th USENIX Security Symposium 249

Meltdown-type effects, or that serializing instructions miti-
gate Spectre Variant 1 on any CPU.

In this paper, we present a systematization of transient
execution attacks, i.e., Spectre, Meltdown, Foreshadow, and
related attacks. Using our decision tree, transient execution
attacks are accurately classified through an unambiguous nam-
ing scheme (cf. Figure 1). The hierarchical and extensible na-
ture of our taxonomy allows to easily identify residual attack
surface, leading to 6 previously overlooked transient execu-
tion attacks (Spectre and Meltdown variants) first described in
this work. Two of the attacks are Meltdown-BND, exploiting
a Meltdown-type effect on the x86 bound instruction on Intel
and AMD, and Meltdown-PK, exploiting a Meltdown-type
effect on memory protection keys on Intel. The other 4 attacks
are previously overlooked mistraining strategies for Spectre-
PHT and Spectre-BTB attacks. We demonstrate the attacks
in our classification tree through practical proofs-of-concept
with vulnerable code patterns evaluated on CPUs of Intel,
ARM, and AMD.1

Next, we provide a classification of gadgets and their preva-
lence in real-world software based on an anaylsis of the Linux
kernel. We also give a short overview on current tools for
automatic gadget detection.

We then provide a systematization of the state-of-the-art
defenses. Based on this, we systematically evaluate defenses
with practical experiments and theoretical arguments to show
which work and which do not or cannot suffice. This sys-
tematic evaluation revealed that we can still mount transient
execution attacks that are supposed to be mitigated by rolled
out patches. Finally, we discuss how defenses can be designed
to mitigate entire types of transient execution attacks.
Contributions. The contributions of this work are:
1. We systematize Spectre- and Meltdown-type attacks, ad-

vancing attack surface understanding, highlighting mis-
classifications, and revealing new attacks.

2. We provide a clear distinction between Meltdown/Spectre,
required for designing effective countermeasures.

3. We provide a classification of gadgets and discuss their
prevalence in real-world software.

4. We categorize defenses and show that most, including
deployed ones, cannot fully mitigate all attack variants.

5. We describe new branch mistraining strategies, highlight-
ing the difficulty of eradicating Spectre-type attacks.

We responsibly disclosed the work to Intel, ARM, and AMD.
Experimental Setup. Unless noted otherwise, the experi-
mental results reported were performed on recent Intel Sky-
lake i5-6200U, Coffee Lake i7-8700K, and Whiskey Lake i7-
8565U CPUs. Our AMD test machines were a Ryzen 1950X
and a Ryzen Threadripper 1920X. For experiments on ARM,
an NVIDIA Jetson TX1 has been used.
Outline. Section 2 provides background. We systematize
Spectre in Section 3 and Meltdown in Section 4. We analyze

1https://github.com/IAIK/transientfail

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [29]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ⭑

PHT-CA-OP ⭑

PHT-SA-IP [48, 50]

PHT-SA-OP ⭑

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [13, 50]

BTB-CA-OP [50]

BTB-SA-IP ⭑

BTB-SA-OP [13]Cross-address-space

Same-address-space RSB-CA-IP [52, 59]

RSB-CA-OP [52]

RSB-SA-IP [59]

RSB-SA-OP [52, 59]

Meltdown-NM [78]

Meltdown-AC ⭐

Meltdown-DE ⭐

Meltdown-PF

Meltdown-UD ⭐

Meltdown-SS ⭐

Meltdown-BR

Meltdown-GP [8, 35]

Meltdown-US [56]

Meltdown-P [85, 90]

Meltdown-RW [48]

Meltdown-PK ⭑

Meltdown-XD ⭐

Meltdown-SM ⭐

Meltdown-MPX [40]

Meltdown-BND ⭑

prediction

fault

Figure 1: Transient execution attack classification tree with
demonstrated attacks (red, bold), negative results (green,
dashed), some first explored in this work (⭑ / ⭐).2

and classify gadgets in Section 5 and defenses in Section 6.
We discuss future work and conclude in Section 7.

.

2 Transient Execution

Instruction Set Architecture and Microarchitecture. The
instruction set architecture (ISA) provides an interface be-
tween hardware and software. It defines the instructions that
a processor supports, the available registers, the addressing
mode, and describes the execution model. Examples of dif-
ferent ISAs are x86 and ARMv8. The microarchitecture then
describes how the ISA is implemented in a processor in the
form of pipeline depth, interconnection of elements, execution
units, cache, branch prediction. The ISA and the microarchi-
tecture are both stateful. In the ISA, this state includes, for
instance, data in registers or main memory after a success-
ful computation. Therefore, the architectural state can be ob-
served by the developer. The microarchitectural state includes,
for instance, entries in the cache and the translation lookaside
buffer (TLB), or the usage of the execution units. Those mi-
croarchitectural elements are transparent to the programmer
and can not be observed directly, only indirectly.
Out-of-Order Execution. On modern CPUs, individual in-
structions of a complex instruction set are first decoded and
split-up into simpler micro-operations (µOPs) that are then
processed. This design decision allows for superscalar op-
timizations and to extend or modify the implementation of
specific instructions through so-called microcode updates.
Furthermore, to increase performance, CPU’s usually imple-
ment a so-called out-of-order design. This allows the CPU
to execute µOPs not only in the sequential order provided by

2An up-to-date version of the tree is available at http://transient.
fail/

250 28th USENIX Security Symposium USENIX Association

https://github.com/IAIK/transientfail
http://transient.fail/
http://transient.fail/

the instruction stream but to dispatch them in parallel, utiliz-
ing the CPU’s execution units as much as possible and, thus,
improving the overall performance. If the required operands
of a µOP are available, and its corresponding execution unit
is not busy, the CPU starts its execution even if µOPs earlier
in the instruction stream have not finished yet. As immediate
results are only made visible at the architectural level when
all previous µOPs have finished, CPUs typically keep track
of the status of µOPs in a so-called Reorder Buffer (ROB).
The CPU takes care to retire µOPs in-order, deciding to either
discard their results or commit them to the architectural state.
For instance, exceptions and external interrupt requests are
handled during retirement by flushing any outstanding µOP
results from the ROB. Therefore, the CPU may have executed
so-called transient instructions [56], whose results are never
committed to the architectural state.
Speculative Execution. Software is mostly not linear but
contains (conditional) branches or data dependencies between
instructions. In theory, the CPU would have to stall until a
branch or dependencies are resolved before it can continue
the execution. As stalling decreases performance significantly,
CPUs deploy various mechanisms to predict the outcome of a
branch or a data dependency. Thus, CPUs continue executing
along the predicted path, buffering the results in the ROB
until the correctness of the prediction is verified as its depen-
dencies are resolved. In the case of a correct prediction, the
CPU can commit the pre-computed results from the reorder
buffer, increasing the overall performance. However, if the
prediction was incorrect, the CPU needs to perform a roll-
back to the last correct state by squashing all pre-computed
transient instruction results from the ROB.
Cache Covert Channels. Modern CPUs use caches to hide
memory latency. However, these latency differences can be ex-
ploited in side-channels and covert channels [24,51,60,67,92].
In particular, Flush+Reload allows observations across cores
at cache-line granularity, enabling attacks, e.g., on crypto-
graphic algorithms [26, 43, 92], user input [24, 55, 72], and
kernel addressing information [23]. For Flush+Reload, the
attacker continuously flushes a shared memory address using
the clflush instruction and afterward reloads the data. If the
victim used the cache line, accessing it will be fast; otherwise,
it will be slow.

Covert channels are a special use case of side-channel at-
tacks, where the attacker controls both the sender and the
receiver. This allows an attacker to bypass many restrictions
that exist at the architectural level to leak information.
Transient Execution Attacks. Transient instructions reflect
unauthorized computations out of the program’s intended
code and/or data paths. For functional correctness, it is crucial
that their results are never committed to the architectural state.
However, transient instructions may still leave traces in the
CPU’s microarchitectural state, which can subsequently be
exploited to partially recover unauthorized results [50,56,85].
This observation has led to a variety of transient execution

preface1

reconstruct5

trigger instruction 2

transient instructions 3

fixup4

time
architectural architecturaltransient execution

Figure 2: High-level overview of a transient execution attack
in 5 phases: (1) prepare microarchitecture, (2) execute a trig-
ger instruction, (3) transient instructions encode unauthorized
data through a microarchitectural covert channel, (4) CPU
retires trigger instruction and flushes transient instructions,
(5) reconstruct secret from microarchitectural state.

attacks, which from a high-level always follow the same ab-
stract flow, as shown in Figure 2. The attacker first brings
the microarchitecture into the desired state, e.g., by flushing
and/or populating internal branch predictors or data caches.
Next is the execution of a so-called trigger instruction. This
can be any instruction that causes subsequent operations to
be eventually squashed, e.g., due to an exception or a mis-
predicted branch or data dependency. Before completion of
the trigger instruction, the CPU proceeds with the execution
of a transient instruction sequence. The attacker abuses the
transient instructions to act as the sending end of a microar-
chitectural covert channel, e.g., by loading a secret-dependent
memory location into the CPU cache. Ultimately, at the re-
tirement of the trigger instruction, the CPU discovers the
exception/misprediction and flushes the pipeline to discard
any architectural effects of the transient instructions. How-
ever, in the final phase of the attack, unauthorized transient
computation results are recovered at the receiving end of the
covert channel, e.g., by timing memory accesses to deduce
the secret-dependent loads from the transient instructions.
High-Level Classification: Spectre vs. Meltdown. Tran-
sient execution attacks have in common that they abuse tran-
sient instructions (which are never architecturally committed)
to encode unauthorized data in the microarchitectural state.
With different instantiations of the abstract phases in Fig-
ure 2, a wide spectrum of transient execution attack variants
emerges. We deliberately based our classification on the root
cause of the transient computation (phases 1, 2), abstracting
away from the specific covert channel being used to transmit
the unauthorized data (phases 3, 5). This leads to a first im-
portant split in our classification tree (cf. Figure 1). Attacks
of the first type, dubbed Spectre [50], exploit transient exe-
cution following control or data flow misprediction. Attacks
of the second type, dubbed Meltdown [56], exploit transient
execution following a faulting instruction.

Importantly, Spectre and Meltdown exploit fundamentally
different CPU properties and hence require orthogonal de-
fenses. Where the former relies on dedicated control or data
flow prediction machinery, the latter merely exploits that data
from a faulting instruction is forwarded to instructions ahead

USENIX Association 28th USENIX Security Symposium 251

Table 1: Spectre-type attacks and the microarchitectural ele-
ment they exploit (), partially target (), or not affect ().

Attack
Element

B
T

B

B
H

B

PH
T

R
SB

ST
L

Spectre-PHT (Variant 1) [50]
Spectre-PHT (Variant 1.1) [48]

Spectre-BTB (Variant 2) [50]
Spectre-RSB (ret2spec) [52, 59]

Spectre-STL (Variant 4) [29]
Glossary: Branch Target Buffer (BTB), Branch History Buffer (BHB), Pattern
History Table (PHT), Return Stack Buffer (RSB), Store To Load (STL).

in the pipeline. Note that, while Meltdown-type attacks so
far exploit out-of-order execution, even elementary in-order
pipelines may allow for similar effects [86]. Essentially, the
different root cause of the trigger instruction (Spectre-type
misprediction vs. Meltdown-type fault) determines the nature
of the subsequent unauthorized transient computations and
hence the scope of the attack.

That is, in the case of Spectre, transient instructions can
only compute on data which the application is also allowed
to access architecturally. Spectre thus transiently bypasses
software-defined security policies (e.g., bounds checking,
function call/return abstractions, memory stores) to leak se-
crets out of the program’s intended code/data paths. Hence,
much like in a “confused deputy” scenario, successful Spec-
tre attacks come down to steering a victim into transiently
computing on memory locations the victim is authorized to
access but the attacker not. In practice, this implies that one or
more phases of the transient execution attack flow in Figure 2
should be realized through so-called code gadgets executing
within the victim application. We propose a novel taxonomy
of gadgets based on these phases in Section 5.

For Meltdown-type attacks, on the other hand, transient ex-
ecution allows to completely “melt down” architectural isola-
tion barriers by computing on unauthorized results of faulting
instructions. Meltdown thus transiently bypasses hardware-
enforced security policies to leak data that should always
remain architecturally inaccessible for the application. Where
Spectre-type leakage remains largely an unintended side-
effect of important speculative performance optimizations,
Meltdown reflects a failure of the CPU to respect hardware-
level protection boundaries for transient instructions. That is,
the mere continuation of the transient execution after a fault
itself is required, but not sufficient for a successful Meltdown
attack. As further explored in Section 6, this has profound con-
sequences for defenses. Overall, mitigating Spectre requires
careful hardware-software co-design, whereas merely replac-
ing the data of a faulting instruction with a dummy value
suffices to block Meltdown-type leakage in silicon, e.g., as it
is done in AMD processors, or with the Rogue Data Cache
Load resistance (RDCL_NO) feature advertised in recent Intel
CPUs from Whiskey Lake onwards [40].

in-place/
same-address-
space

out-of-place/
same-address-
space

Victim

Victim branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

in-place/
cross-address-
space

out-of-place/
cross-address-
space

Attacker

Shadow branch

Congruent
branch

A
dd

re
ss

co
lli

si
on

Shared Branch Prediction State

Figure 3: A branch can be mistrained either by the victim
process (same-address-space) or by an attacker-controlled
process (cross-address-space). Mistraining can be achieved
either using the vulnerable branch itself (in-place) or a branch
at a congruent virtual address (out-of-place).

3 Spectre-type Attacks

In this section, we provide an overview of Spectre-type at-
tacks (cf. Figure 1). Given the versatility of Spectre variants in
a variety of adversary models, we propose a novel two-level
taxonomy based on the preparatory phases of the abstract
transient execution attack flow in Figure 2. First, we distin-
guish the different microarchitectural buffers that can trigger
a prediction (phase 2), and second, the mistraining strategies
that can be used to steer the prediction (phase 1).
Systematization of Spectre Variants. To predict the out-
come of various types of branches and data dependencies,
modern CPUs accumulate an extensive microarchitectural
state across various internal buffers and components [19]. Ta-
ble 1 overviews Spectre-type attacks and the corresponding
microarchitectural elements they exploit. As the first level of
our classification tree, we categorize Spectre attacks based on
the microarchitectural root cause that triggers the mispredic-
tion leading to the transient execution:

• Spectre-PHT [48, 50] exploits the Pattern History Table
(PHT) that predicts the outcome of conditional branches.

• Spectre-BTB [50] exploits the Branch Target Buffer
(BTB) for predicting branch destination addresses.

• Spectre-RSB [52, 59] primarily exploits the Return Stack
Buffer (RSB) for predicting return addresses.

• Spectre-STL [29] exploits memory disambiguation for
predicting Store To Load (STL) data dependencies.

Note that NetSpectre [74], SGXSpectre [63], and SGXPec-
tre [13] focus on applying one of the above Spectre variants
in a specific exploitation scenario. Hence, we do not consider
them separate variants in our classification.
Systematization of Mistraining Strategies. We now pro-
pose a second-level classification scheme for Spectre vari-
ants that abuse history-based branch prediction (i.e., all of
the above except Spectre-STL). These Spectre variants first
go through a preparatory phase (cf. Figure 2) where the mi-
croarchitectural branch predictor state is “poisoned” to cause
intentional misspeculation of a particular victim branch. Since
branch prediction buffers in modern CPUs [19, 50] are com-

252 28th USENIX Security Symposium USENIX Association

monly indexed based on the virtual address of the branch
instruction, mistraining can happen either within the same
address space or from a different attacker-controlled process.
Furthermore, as illustrated in Figure 3, when only a subset of
the virtual address is used in the prediction, mistraining can
be achieved using a branch instruction at a congruent virtual
address. We thus enhance the field of Spectre-type branch
poisoning attacks with 4 distinct mistraining strategies:
1. Executing the victim branch in the victim process (same-

address-space in-place).
2. Executing a congruent branch in the victim process (same-

address-space out-of-place).
3. Executing a shadow branch in a different process (cross-

address-space in-place).
4. Executing a congruent branch in a different process (cross-

address-space out-of-place).
In current literature [6,13,48,50], several of the above branch
poisoning strategies have been overlooked for different Spec-
tre variants. We summarize the results of an assessment of
vulnerabilities under mistraining strategies in Table 2. Our
systematization thus reveals clear blind spots that allow an
attacker to mistrain branch predictors in previously unknown
ways. As explained further, depending on the adversary’s ca-
pabilities (e.g., in-process, sandboxed, remote, enclave, etc.)
these previously unknown mistraining strategies may lead to
new attacks and/or bypass existing defenses.

3.1 Spectre-PHT (Input Validation Bypass)

Microarchitectural Element. Kocher et al. [50] first intro-
duced Spectre Variant 1, an attack that poisons the Pattern
History Table (PHT) to mispredict the direction (taken or
not-taken) of conditional branches. Depending on the un-
derlying microarchitecture, the PHT is accessed based on a
combination of virtual address bits of the branch instruction
plus a hidden Branch History Buffer (BHB) that accumulates
global behavior for the last N branches on the same physical
core [18, 19]
Reading Out-of-Bounds. Conditional branches are com-
monly used by programmers and/or compilers to maintain
memory safety invariants at runtime. For example, consider
the following code snippet for bounds checking [50]:

if (x < len(array1)) { y = array2[array1[x] * 4096]; }

At the architectural level, this program clearly ensures that the
index variable x always lies within the bounds of the fixed-
length buffer array1. However, after repeatedly supplying
valid values of x, the PHT will reliably predict that this branch
evaluates to true. When the adversary now supplies an invalid
index x, the CPU continues along a mispredicted path and
transiently performs an out-of-bounds memory access. The
above code snippet features an explicit example of a “leak
gadget” that may act as a microarchitectural covert channel:
depending on the out-of-bounds value being read, the transient

Table 2: Spectre-type attacks performed in-place, out-of-place,
same-address-space (i.e., intra-process), or cross-address-
space (i.e., cross-process).

Method
Attack

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL

Intel
intra-process

in-place [48, 50] [59] [29]
out-of-place [13] [52, 59]

cross-process
in-place [13, 50] [52, 59]
out-of-place [50] [52]

ARM
intra-process

in-place [48, 50] [6] [6]
out-of-place [6]

cross-process
in-place [6, 50]
out-of-place

AMD
intra-process

in-place [50] [29]
out-of-place

cross-process
in-place [50]
out-of-place

Symbols indicate whether an attack is possible and known (), not possible
and known (), possible and previously unknown or not shown (), or
tested and did not work and previously unknown or not shown (). All tests
performed with no defenses enabled.

instructions load another memory page belonging to array2
into the cache.
Writing Out-of-Bounds. Kiriansky and Waldspurger [48]
showed that transient writes are also possible by following
the same principle. Consider the following code line:

if (x < len(array)) { array[x] = value; }

After mistraining the PHT component, attackers controlling
the untrusted index x can transiently write to arbitrary out-
of-bounds addresses. This creates a transient buffer overflow,
allowing the attacker to bypass both type and memory safety.
Ultimately, when repurposing traditional techniques from
return-oriented programming [75] attacks, adversaries may
even gain arbitrary code execution in the transient domain by
overwriting return addresses or code pointers.
Overlooked Mistraining Strategies. Spectre-PHT attacks
so far [48, 50, 63] rely on a same-address-space in-place
branch poisoning strategy. However, our results (cf. Table 2)
reveal that the Intel, ARM, and AMD CPUs we tested are
vulnerable to all four PHT mistraining strategies. In this, we
are the first to successfully demonstrate Spectre-PHT-style
branch misprediction attacks without prior execution of the
victim branch. This is an important contribution as it may
open up previously unknown attack avenues for restricted
adversaries.

Cross-address-space PHT poisoning may, for instance, en-
able advanced attacks against a privileged daemon process
that does not directly accept user input. Likewise, for Intel
SGX technology, remote attestation schemes have been de-
veloped [76] to enforce that a victim enclave can only be run
exactly once. This effectively rules out current state-of-the-art
SGXSpectre [63] attacks that repeatedly execute the victim
enclave to mistrain the PHT branch predictor. Our novel out-
of-place PHT poisoning strategy, on the other hand, allows us
to perform the training phase entirely outside the enclave on

USENIX Association 28th USENIX Security Symposium 253

the same physical core by repeatedly executing a congruent
branch in the untrusted enclave host process (cf. Figure 3).

3.2 Spectre-BTB (Branch Target Injection)

Microarchitectural Element. In Spectre Variant 2 [50], the
attacker poisons the Branch Target Buffer (BTB) to steer the
transient execution to a mispredicted branch target. For di-
rect branches, the CPU indexes the BTB using a subset of
the virtual address bits of the branch instruction to yield the
predicted jump target. For indirect branches, CPUs use dif-
ferent mechanisms [28], which may take into account global
branching history accumulated in the BHB when indexing
the BTB. We refer to both types as Spectre-BTB.
Hijacking Control Flow. Contrary to Spectre-PHT, where
transient instructions execute along a restricted mispredicted
path, Spectre-BTB allows redirecting transient control flow
to an arbitrary destination. Adopting established techniques
from return-oriented programming (ROP) attacks [75], but
abusing BTB poisoning instead of application-level vulnera-
bilities, selected code “gadgets” found in the victim address
space may be chained together to construct arbitrary transient
instruction sequences. Hence, where the success of Spectre-
PHT critically relies on unintended leakage along the mis-
predicted code path, ROP-style gadget abuse in Spectre-BTB
allows to more directly construct covert channels that expose
secrets from the transient domain (cf. Figure 2). We discuss
gadget types in more detail in Section 5.
Overlooked Mistraining Strategies. Spectre-BTB was ini-
tially demonstrated on Intel, AMD, and ARM CPUs using a
cross-address-space in-place mistraining strategy [50]. With
SGXPectre [13], Chen et al. extracted secrets from Intel SGX
enclaves using either a cross-address-space in-place or same-
address-space out-of-place BTB poisoning strategy. We ex-
perimentally reproduced these mistraining strategies through
a systematic evaluation presented in Table 2. On AMD and
ARM, we could not demonstrate out-of-place BTB poison-
ing. Possibly, these CPUs use an unknown (sub)set of virtual
address bits or a function of bits which we were not able to
reverse engineer. We encourage others to investigate whether
a different (sub)set of virtual address bits is required to enable
the attack.

To the best of our knowledge, we are the first to recognize
that Spectre-BTB mistraining can also proceed by repeatedly
executing the vulnerable indirect branch with valid inputs.
Much like Spectre-PHT, such same-address-space in-place
BTB (Spectre-BTB-SA-IP) poisoning abuses the victim’s
own execution to mistrain the underlying branch target pre-
dictor. Hence, as an important contribution to understanding
attack surface and defenses, in-place mistraining within the
victim domain may allow bypassing widely deployed mit-
igations [4, 40] that flush and/or partition the BTB before
entering the victim. Since the branch destination address is
now determined by the victim code and not under the direct

control of the attacker, however, Spectre-BTB-SA-IP cannot
offer the full power of arbitrary transient control flow redirec-
tion. Yet, in higher-level languages like C++ that commonly
rely on indirect branches to implement polymorph abstrac-
tions, Spectre-BTB-SA-IP may lead to subtle “speculative
type confusion” vulnerabilities. For example, a victim that
repeatedly executes a virtual function call with an object of
TypeA may inadvertently mistrain the branch target predictor
to cause misspeculation when finally executing the virtual
function call with an object of another TypeB.

3.3 Spectre-RSB (Return Address Injection)
Microarchitectural Element. Maisuradze and Rossow [59]
and Koruyeh et al. [52] introduced a Spectre variant that ex-
ploits the Return Stack Buffer (RSB). The RSB is a small
per-core microarchitectural buffer that stores the virtual ad-
dresses following the N most recent call instructions. When
encountering a ret instruction, the CPU pops the topmost
element from the RSB to predict the return flow.
Hijacking Return Flow. Misspeculation arises whenever the
RSB layout diverges from the actual return addresses on the
software stack. Such disparity for instance naturally occurs
when restoring kernel/enclave/user stack pointers upon pro-
tection domain switches. Furthermore, same-address-space
adversaries may explicitly overwrite return addresses on the
software stack, or transiently execute call instructions which
update the RSB without committing architectural effects [52].
This may allow untrusted code executing in a sandbox to tran-
siently divert return control flow to interesting code gadgets
outside of the sandboxed environment.

Due to the fixed-size nature of the RSB, a special case of
misspeculation occurs for deeply nested function calls [52,59].
Since the RSB can only store return addresses for the N most
recent calls, an underfill occurs when the software stack is
unrolled. In this case, the RSB can no longer provide accurate
predictions. Starting from Skylake, Intel CPUs use the BTB
as a fallback [19,52], thus allowing Spectre-BTB-style attacks
triggered by ret instructions.
Overlooked Mistraining Strategies. Spectre-RSB has been
demonstrated with all four mistraining strategies, but only on
Intel [52, 59]. Our experimental results presented in Table 2
generalize these strategies to AMD CPUs. Furthermore, in
line with ARM’s own analysis [6], we successfully poisoned
RSB entries within the same-address-space but did not ob-
serve any cross-address-space leakage on ARM CPUs. We
expect this may be a limitation of our current proof-of-concept
code and encourage others to investigate this further.

3.4 Spectre-STL (Speculative Store Bypass)
Microarchitectural Element. Speculation in modern CPUs
is not restricted to control flow but also includes predicting
dependencies in the data flow. A common type of Store To

254 28th USENIX Security Symposium USENIX Association

Table 3: Demonstrated Meltdown-type (MD) attacks.

Attack #G
P

#N
M

#B
R

#P
F

U/S P R/W RSVD
XD PK

MD-GP (Variant 3a) [8]
MD-NM (Lazy FP) [78]
MD-BR
MD-US (Meltdown) [56]
MD-P (Foreshadow) [85, 90]
MD-RW (Variant 1.2) [48]
MD-PK

Symbols (or) indicate whether an exception type (left) or permission
bit (right) is exploited. Systematic names are derived from what is exploited.

Load (STL) dependencies require that a memory load shall
not be executed before all preceding stores that write to the
same location have completed. However, even before the
addresses of all prior stores in the pipeline are known, the
CPUs’ memory disambiguator [3, 33, 44] may predict which
loads can already be executed speculatively.

When the disambiguator predicts that a load does not have
a dependency on a prior store, the load reads data from the L1
data cache. When the addresses of all prior stores are known,
the prediction is verified. If any overlap is found, the load and
all following instructions are re-executed.
Reading Stale Values. Horn [29] showed how mispredic-
tions by the memory disambiguator could be abused to spec-
ulatively bypass store instructions. Like previous attacks,
Spectre-STL adversaries rely on an appropriate transient in-
struction sequence to leak unsanitized stale values via a mi-
croarchitectural covert channel. Furthermore, operating on
stale pointer values may speculatively break type and memory
safety guarantees in the transient execution domain [29].

4 Meltdown-type Attacks

This section overviews Meltdown-type attacks, and presents
a classification scheme that led to the discovery of two pre-
viously overlooked Meltdown variants (cf. Figure 1). Impor-
tantly, where Spectre-type attacks exploit (branch) mispre-
diction events to trigger transient execution, Meltdown-type
attacks rely on transient instructions following a CPU ex-
ception. Essentially, Meltdown exploits that exceptions are
only raised (i.e., become architecturally visible) upon the
retirement of the faulting instruction. In some microarchitec-
tures, this property allows transient instructions ahead in the
pipeline to compute on unauthorized results of the instruction
that is about to suffer a fault. The CPU’s in-order instruction
retirement mechanism takes care to discard any architectural
effects of such computations, but as with the Spectre-type
attacks above, secrets may leak through microarchitectural
covert channels.
Systematization of Meltdown Variants. We introduce a
classification for Meltdown-type attacks in two dimensions.
In the first level, we categorize attacks based on the exception

Table 4: Secrets recoverable via Meltdown-type attacks and
whether they cross the current privilege level (CPL).

Attack
Leaks

Memory
Cache

Registe
r
Cross-C

PL

Meltdown-US (Meltdown) [56] 3

Meltdown-P (Foreshadow-NG) [90] 3

Meltdown-P (Foreshadow-SGX) [85] 3

Meltdown-GP (Variant 3a) [8] 3

Meltdown-NM (Lazy FP) [78] 3

Meltdown-RW (Variant 1.2) [48] 7

Meltdown-PK 7

Meltdown-BR 7

Symbols indicate whether an attack crosses a processor privilege level (3) or
not (7), whether it can leak secrets from a buffer (), only with additional
steps (), or not at all (). Respectively (vs.) if first shown in this work.

that causes transient execution. Following Intel’s [31] classifi-
cation of exceptions as faults, traps, or aborts, we observed
that Meltdown-type attacks so far have exploited faults, but
not traps or aborts. The CPU generates faults if a correctable
error has occurred, i.e., they allow the program to continue
after it has been resolved. Traps are reported immediately
after the execution of the instruction, i.e., when the instruc-
tion retires and becomes architecturally visible. Aborts report
some unrecoverable error and do not allow a restart of the
task that caused the abort.

In the second level, for page faults (#PF), we further cate-
gorize based on page-table entry protection bits (cf. Table 3).
We also categorize attacks based on which storage locations
can be reached, and whether it crosses a privilege boundary
(cf. Table 4). Through this systematization, we discovered
several previously unknown Meltdown variants that exploit
different exception types as well as page-table protection bits,
including two exploitable ones. Our systematic analysis fur-
thermore resulted in the first demonstration of exploitable
Meltdown-type delayed exception handling effects on AMD
CPUs.

4.1 Meltdown-US (Supervisor-only Bypass)

Modern CPUs commonly feature a “user/supervisor” page-
table attribute to denote a virtual memory page as belonging
to the OS kernel. The original Meltdown attack [56] reads
kernel memory from user space on CPUs that do not tran-
siently enforce the user/supervisor flag. In the trigger phase
(cf. Figure 2) an unauthorized kernel address is dereferenced,
which eventually causes a page fault. Before the fault be-
comes architecturally visible, however, the attacker executes
a transient instruction sequence that for instance accesses a
cache line based on the privileged data read by the trigger
instruction. In the final phase, after the exception has been
raised, the privileged data is reconstructed at the receiving
end of the covert channel (e.g., Flush+Reload).

The attacks bandwidth can be improved by suppressing
exceptions through transaction memory CPU features such as

USENIX Association 28th USENIX Security Symposium 255

Intel TSX [31], exception handling [56], or hiding it in another
transient execution [28, 56]. By iterating byte-by-byte over
the kernel space and suppressing or handling exceptions, an
attacker can dump the entire kernel. This includes the entire
physical memory if the operating system has a direct physical
map in the kernel. While extraction rates are significantly
higher when the kernel data resides in the CPU cache, Melt-
down has even been shown to successfully extract uncached
data from memory [56].

4.2 Meltdown-P (Virtual Translation Bypass)

Foreshadow. Van Bulck et al. [85] presented Foreshadow, a
Meltdown-type attack targeting Intel SGX technology [30].
Unauthorized accesses to enclave memory usually do not
raise a #PF exception but are instead silently replaced with
abort page dummy values (cf. Section 6.2). In the absence
of a fault, plain Meltdown cannot be mounted against SGX
enclaves. To overcome this limitation, a Foreshadow attacker
clears the “present” bit in the page-table entry mapping the
enclave secret, ensuring that a #PF will be raised for subse-
quent accesses. Analogous to Meltdown-US, the adversary
now proceeds with a transient instruction sequence to leak
the secret (e.g., through a Flush+Reload covert channel).

Intel [34] named L1 Terminal Fault (L1TF) as the root
cause behind Foreshadow. A terminal fault occurs when ac-
cessing a page-table entry with either the present bit cleared
or a “reserved” bit set. In such cases, the CPU immediately
aborts address translation. However, since the L1 data cache
is indexed in parallel to address translation, the page table
entry’s physical address field (i.e., frame number) may still
be passed to the L1 cache. Any data present in L1 and tagged
with that physical address will now be forwarded to the tran-
sient execution, regardless of access permissions.

Although Meltdown-P-type leakage is restricted to the
L1 data cache, the original Foreshadow [85] attack showed
how SGX’s secure page swapping mechanism might first be
abused to prefetch arbitrary enclave pages into the L1 cache,
including even CPU registers stored on interrupt. This high-
lights that SGX’s privileged adversary model considerably
amplifies the transient execution attack surface.
Foreshadow-NG. Foreshadow-NG [90] generalizes Fore-
shadow from the attack on SGX enclaves to bypass operating
system or hypervisor isolation. The generalization builds on
the observation that the physical frame number in a page-table
entry is sometimes under direct or indirect control of an adver-
sary. For instance, when swapping pages to disk, the kernel is
free to use all but the present bit to store metadata (e.g., the
offset on the swap partition). However, if this offset is a valid
physical address, any cached memory at that location leaks to
an unprivileged Foreshadow-OS attacker.

Even worse is the Foreshadow-VMM variant, which allows
an untrusted virtual machine, controlling guest-physical ad-
dresses, to extract the host machine’s entire L1 data cache

(including data belonging to the hypervisor or other virtual
machines). The underlying problem is that a terminal fault
in the guest page-tables early-outs the address translation
process, such that guest-physical addresses are erroneously
passed to the L1 data cache, without first being translated into
a proper host physical address [34].

4.3 Meltdown-GP (System Register Bypass)
Meltdown-GP (named initially Variant 3a) [37] allows an
attacker to read privileged system registers. It was first discov-
ered and published by ARM [8] and subsequently Intel [35]
determined that their CPUs are also susceptible to the attack.
Unauthorized access to privileged system registers (e.g., via
rdmsr) raises a general protection fault (#GP). Similar to pre-
vious Meltdown-type attacks, however, the attack exploits that
the transient execution following the faulting instruction can
still compute on the unauthorized data, and leak the system
register contents through a microarchitectural covert channel
(e.g., Flush+Reload).

4.4 Meltdown-NM (FPU Register Bypass)
During a context switch, the OS has to save all the registers,
including the floating point unit (FPU) and SIMD registers.
These latter registers are large and saving them would slow
down context switches. Therefore, CPUs allow for a lazy state
switch, meaning that instead of saving the registers, the FPU
is simply marked as “not available”. The first FPU instruction
issued after the FPU was marked as “not available” causes a
device-not-available (#NM) exception, allowing the OS to save
the FPU state of previous execution context before marking
the FPU as available again.

Stecklina and Prescher [78] propose an attack on the above
lazy state switch mechanism. The attack consists of three
steps. In the first step, a victim performs operations loading
data into the FPU registers. Then, in the second step, the CPU
switches to the attacker and marks the FPU as “not available”.
The attacker now issues an instruction that uses the FPU,
which generates an #NM fault. Before the faulting instruction
retires, however, the CPU has already transiently executed the
following instructions using data from the previous context.
As such, analogous to previous Meltdown-type attacks, a ma-
licious transient instruction sequence following the faulting
instruction can encode the unauthorized FPU register con-
tents through a microarchitectural covert channel (e.g., Flush+
Reload).

4.5 Meltdown-RW (Read-only Bypass)
Where the above attacks [8, 56, 78, 85] focussed on steal-
ing information across privilege levels, Kiriansky and Wald-
spurger [48] presented the first Meltdown-type attack that
bypasses page-table based access rights within the current

256 28th USENIX Security Symposium USENIX Association

privilege level. Specifically, they showed that transient exe-
cution does not respect the “read/write” page-table attribute.
The ability to transiently overwrite read-only data within the
current privilege level can bypass software-based sandboxes
which rely on hardware enforcement of read-only memory.

Confusingly, the above Meltdown-RW attack was origi-
nally named “Spectre Variant 1.2” [48] as the authors fol-
lowed a Spectre-centric naming scheme. Our systematization
revealed, however, that the transient cause exploited above is
a #PF exception. Hence, this attack is of Meltdown-type, but
not a variant of Spectre.

4.6 Meltdown-PK (Protection Key Bypass)
Intel Skylake-SP server CPUs support memory-protection
keys for user space (PKU) [32]. This feature allows processes
to change the access permissions of a page directly from
user space, i.e., without requiring a syscall/hypercall. Thus,
with PKU, user-space applications can implement efficient
hardware-enforced isolation of trusted parts [27, 84].

We present a novel Meltdown-PK attack to bypass both
read and write isolation provided by PKU. Meltdown-PK
works if an attacker has code execution in the containing
process, even if the attacker cannot execute the wrpkru in-
struction (e.g., blacklisting). Moreover, in contrast to cross-
privilege level Meltdown attack variants, there is no software
workaround. According to Intel [36], Meltdown-PK can be
mitigated using address space isolation. Recent Meltdown-
resistant Intel processors enumerating RDCL_NO plus PKU
support furthermore mitigate Meltdown-PK in silicon. With
those mitigations, the memory addresses that might be re-
vealed by transient execution attacks can be limited.
Experimental Results. We tested Meltdown-PK on an Ama-
zon EC2 C5 instance running Ubuntu 18.04 with PKU sup-
port. We created a memory mapping and used PKU to remove
both read and write access. As expected, protected memory
accesses produce a #PF. However, our proof-of-concept man-
ages to leak the data via an adversarial transient instruction
sequence with a Flush+Reload covert channel.

4.7 Meltdown-BR (Bounds Check Bypass)
To facilitate efficient software instrumentation, x86 CPUs
come with dedicated hardware instructions that raise a bound-
range-exceeded exception (#BR) when encountering out-of-
bound array indices. The IA-32 ISA, for instance, defines
a bound opcode for this purpose. While the bound instruc-
tion was omitted in the subsequent x86-64 ISA, modern Intel
CPUs ship with Memory Protection eXtensions (MPX) for
efficient array bounds checking.

Our systematic evaluation revealed that Meltdown-type
effects of the #BR exception had not been thoroughly investi-
gated yet. Specifically, Intel’s analysis [40] only briefly men-
tions MPX-based bounds check bypass as a possibility, and

Table 5: CPU vendors vulnerable to Meltdown (MD).

Vendor
Attack

MD-U
S [56]

MD-P
[85, 90]

MD-G
P [8, 35]

MD-N
M

[78]

MD-R
W

[48]

MD-PK

MD-B
R

MD-D
E

MD-A
C

MD-U
D

MD-SS

MD-X
D

MD-SM

Intel
ARM
AMD

Symbols indicate whether at least one CPU model is vulnerable (filled) vs.
no CPU is known to be vulnerable (empty). Glossary: reproduced (vs.),
first shown in this paper (vs.), not applicable (). All tests performed
without defenses enabled.

recent defensive work by Dong et al. [16] highlights the need
to introduce a memory lfence after MPX bounds check in-
structions. They classify this as a Spectre-type attack, imply-
ing that the lfence is needed to prevent the branch predictor
from speculating on the outcome of the bounds check. Ac-
cording to Oleksenko et al. [64], neither bndcl nor bndcu
exert pressure on the branch predictor, indicating that there
is no prediction happening. Based on that, we argue that the
classification as a Spectre-type attack is misleading as no
prediction is involved. The observation by Dong et al. [16]
indeed does not shed light on the #BR exception as the root
cause for the MPX bounds check bypass, and they do not con-
sider IA32 bound protection at all. Similar to Spectre-PHT,
Meltdown-BR is a bounds check bypass, but instead of mis-
training a predictor it exploits the lazy handling of the raised
#BR exception.
Experimental Results. We introduce the Meltdown-BR at-
tack which exploits transient execution following a #BR excep-
tion to encode out-of-bounds secrets that are never architec-
turally visible. As such, Meltdown-BR is an exception-driven
alternative for Spectre-PHT. Our proofs-of-concept demon-
strate out-of-bounds leakage through a Flush+Reload covert
channel for an array index safeguarded by either IA32 bound
(Intel, AMD), or state-of-the-art MPX protection (Intel-only).
For Intel, we ran the attacks on a Skylake i5-6200U CPU with
MPX support, and for AMD we evaluated both an E2-2000
and a Ryzen Threadripper 1920X. This is the first experiment
demonstrating a Meltdown-type transient execution attack
exploiting delayed exception handling on AMD CPUs [4, 56].

4.8 Residual Meltdown (Negative Results)

We systematically studied transient execution leakage for
other, not yet tested exceptions. In our experiments, we con-
sistently found no traces of transient execution beyond traps
or aborts, which leads us to the hypothesis that Meltdown is
only possible with faults (as they can occur at any moment
during instruction execution). Still, the possibility remains
that our experiments failed and that they are possible. Table 5
and Figure 1 summarize experimental results for fault types
tested on Intel, ARM, and AMD.
Division Errors. For the divide-by-zero experiment, we
leveraged the signed division instruction (idiv on x86 and

USENIX Association 28th USENIX Security Symposium 257

Table 6: Gadget classification according to the attack flow and whether executed by the attacker (), victim (), or either ().

Attack 1. Preface 2. Trigger example 3. Transient 5. Reconstruction
Covert channel [1, 74, 92] Flush/Prime/Evict - Load/AVX/Port/... Reload/Probe/Time
Meltdown-US/RW/GP/NM/PK [8, 48, 56, 78] (Exception suppression) mov/rdmsr/FPU Controlled encode Exception handling
Meltdown-P [85, 90] (L1 prefetch) mov Controlled encode & controlled decode
Meltdown-BR - bound/bndclu Inadvertent leak same as above
Spectre-PHT [50] PHT poisoning jz Inadvertent leak Controlled decode
Spectre-BTB/RSB [13, 50, 52, 59] BTB/RSB poisoning call/jmp/ret ROP-style encode Controlled decode
Spectre-STL [29] - mov Inadvertent leak Controlled decode
NetSpectre [74] Thrash/reset jz Inadvertent leak Inadvertent transmit

sdiv on ARM). On the ARMs we tested, there is no excep-
tion, but the division yields merely zero. On x86, the division
raises a divide-by-zero exception (#DE). Both on the AMD
and Intel we tested, the CPU continues with the transient exe-
cution after the exception. In both cases, the result register is
set to ‘0’, which is the same result as on the tested ARM. Thus,
according to our experiments Meltdown-DE is not possible,
as no real values are leaked.

Supervisor Access. Although supervisor mode access pre-
vention (SMAP) raises a page fault (#PF) when accessing
user-space memory from the kernel, it seems to be free of any
Meltdown effect in our experiments. Thus, we were not able
to leak any data using Meltdown-SM in our experiments.

Alignment Faults. Upon detecting an unaligned memory
operand, the CPU may generate an alignment check exception
(#AC). In our tests, the results of unaligned memory accesses
never reach the transient execution. We suspect that this is
because #AC is generated early-on, even before the operand’s
virtual address is translated to a physical one. Hence, our ex-
periments with Meltdown-AC were unsuccessful in showing
any leakage.

Segmentation Faults. We consistently found that out-of-
limit segment accesses never reach transient execution in our
experiments. We suspect that, due to the simplistic IA32 seg-
mentation design, segment limits are validated early-on, and
immediately raise a #GP or #SS (stack-segment fault) excep-
tion, without sending the offending instruction to the ROB.
Therefore, we observed no leakage in our experiments with
Meltdown-SS.

Instruction Fetch. To yield a complete picture, we investi-
gated Meltdown-type effects during the instruction fetch and
decode phases. On our test systems, we did not succeed in
transiently executing instructions residing in non-executable
memory (i.e., Meltdown-XD), or following an invalid opcode
(#UD) exception (i.e., Meltdown-UD). We suspect that ex-
ceptions during instruction fetch or decode are immediately
handled by the CPU, without first buffering the offending
instruction in the ROB. Moreover, as invalid opcodes have
an undefined length, the CPU does not even know where the
next instruction starts. Hence, we suspect that invalid opcodes
only leak if the microarchitectural effect is already an effect
caused by the invalid opcode itself, not by subsequent tran-
sient instructions.

Table 7: Spectre-PHT gadget classification and the number of
occurrences per gadget type in Linux kernel v5.0.

Gadget Example (Spectre-PHT) #Occurrences
Prefetch if(i<LEN_A){a[i];} 172
Compare if(i<LEN_A){if(a[i]==k){};} 127
Index if(i<LEN_A){y = b[a[i]*x];} 0
Execute if(i<LEN_A){a[i](void);} 16

5 Gadget Analysis and Classification

We deliberately oriented our attack tree (cf. Figure 1) on the
microarchitectural root causes of the transient computation,
abstracting away from the underlying covert channel and/or
code gadgets required to carry out the attack successfully. In
this section, we further dissect transient execution attacks by
categorizing gadget types in two tiers and overviewing current
results on their exploitability in real-world software.

5.1 Gadget Classification

First-Tier: Execution Phase. We define a “gadget” as a
series of instructions executed by either the attacker or the
victim. Table 6 shows how gadget types discussed in literature
can be unambiguously assigned to one of the abstract attack
phases from Figure 2. New gadgets can be added straightfor-
wardly after determining their execution phase and objective.

Importantly, our classification table highlights that gadget
choice largely depends on the attacker’s capabilities. By plug-
ging in different gadget types to compose the required attack
phases, an almost boundless spectrum of adversary models
can be covered that is only limited by the attacker’s capabili-
ties. For local adversaries with arbitrary code execution (e.g.,
Meltdown-US [56]), the gadget functionality can be explicitly
implemented by the attacker. For sandboxed adversaries (e.g.,
Spectre-PHT [50]), on the other hand, much of the gadget
functionality has to be provided by “confused deputy” code
executing in the victim domain. Ultimately, as claimed by
Schwarz et al. [74], even fully remote attackers may be able
to launch Spectre attacks given that sufficient gadgets would
be available inside the victim code.
Second-Tier: Transient Leakage. During our analysis of
the Linux kernel (see Section 5.2), we discovered that gadgets
required for Spectre-PHT can be further classified in a second

258 28th USENIX Security Symposium USENIX Association

tier. A second tier is required in this case as those gadgets
enable different types of attacks. The first type of gadget we
found is called Prefetch. A Prefetch gadget consists of a single
array access. As such it is not able to leak data, but can be
used to load data that can then be leaked by another gadget
as was demonstrated by Meltdown-P [85]. The second type
of gadget, called Compare, loads a value like in the Prefetch
gadget and then branches on it. Using a contention channel
like execution unit contention [2, 9] or an AVX channel as
claimed by Schwarz et al. [74], an attacker might be able to
leak data. We refer to the third gadget as Index gadget and it is
the double array access shown by Kocher et al. [50]. The final
gadget type, called Execute, allows arbitrary code execution,
similar to Spectre-BTB. In such a gadget, an array is indexed
based on an attacker-controlled input and the resulting value is
used as a function pointer, allowing an attacker to transiently
execute code by accessing the array out-of-bounds. Table 7
gives examples for all four types.

5.2 Real-World Software Gadget Prevalence

While for Meltdown-type attacks, convincing real-world ex-
ploits have been developed to dump arbitrary process [56]
and enclave [85] memory, most Spectre-type attacks have
so far only been demonstrated in controlled environments.
The most significant barrier to mounting a successful Spectre
attack is to find exploitable gadgets in real-world software,
which at present remains an important open research question
in itself [59, 74].
Automated Gadget Analysis. Since the discovery of tran-
sient execution attacks, researchers have tried to develop
methods for the automatic analysis of gadgets. One proposed
method is called oo7 [89] and uses taint tracking to detect
Spectre-PHT Prefetch and Index gadgets. oo7 first marks all
variables that come from an untrusted source as tainted. If a
tainted variable is later on used in a branch, the branch is also
tainted. The tool then reports a possible gadget if a tainted
branch is followed by a memory access depending on the
tainted variable. Guarnieri et al. [25] mention that oo7 would
still flag code locations that were patched with Speculative
Load Hardening [12] as it would still match the vulnerable
pattern.

Another approach, called Spectector [25], uses symbolic
execution to detect Spectre-PHT gadgets. It tries to formally
prove that a program does not contain any gadgets by track-
ing all memory accesses and jump targets during execution
along all different program paths. Additionally, it simulates
the path of mispredicted branches for a number of steps. The
program is run twice to determine whether it is free of gadgets
or not. First, it records a trace of memory accesses when no
misspeculation occurs (i.e., runs the program in its intended
way). Second, it records a trace of memory accesses with
misspeculation of a certain number of instructions. Spectector
then reports a gadget if it detects a mismatch between the two

traces. One problem with the Spectector approach is scalabil-
ity as it is currently not feasible to symbolically execute large
programs.

The Linux kernel developers use a different approach. They
extended the Smatch static analysis tool to automatically
discover potential Spectre-PHT out-of-bounds access gad-
gets [10]. Specifically, Smatch finds all instances of user-
supplied array indices that have not been explicitly hard-
ened. Unfortunately, Smatch’s false positive rate is quite
high. According to Carpenter [10], the tool reported 736
gadget candidates in April 2018, whereas the kernel only
featured about 15 Spectre-PHT-resistant array indices at that
time. We further investigated this by analyzing the number of
occurrences of the newly introduced array_index_nospec
and array_index_mask_nospec macros in the Linux kernel
per month. Figure 4 shows that the number of Spectre-PHT
patches has been continuously increasing over the past year.
This provides further evidence that patching Spectre-PHT
gadgets in real-world software is an ongoing effort and that
automated detection methods and gadget classification pose
an important research challenge.
Academic Review. To date, only 5 academic papers have
demonstrated Spectre-type gadget exploitation in real-world
software [9, 13, 29, 50, 59]. Table 8 reveals that they either
abuse ROP-style gadgets in larger code bases or more com-
monly rely on Just-In-Time (JIT) compilation to indirectly
provide the vulnerable gadget code. JIT compilers as com-
monly used in e.g., JavaScript, WebAssembly, or the eBPF
Linux kernel interface, create a software-defined sandbox by
extending the untrusted attacker-provided code with runtime
checks. However, the attacks in Table 8 demonstrate that such
JIT checks can be transiently circumvented to leak memory
contents outside of the sandbox. Furthermore, in the case of
Spectre-BTB/RSB, even non-JIT compiled real-world code
has been shown to be exploitable when the attacker controls
sufficient inputs to the victim application. Kocher et al. [50]
constructed a minimalist proof-of-concept that reads attacker-
controlled inputs into registers before calling a function. Next,
they rely on BTB poisoning to redirect transient control flow
to a gadget they identified in the Windows ntdll library that
allows leaking arbitrary memory from the victim process.
Likewise, Chen et al. [13] analyzed various trusted enclave
runtimes for Intel SGX and found several instances of vul-
nerable branches with attacker-controlled input registers, plus
numerous exploitable gadgets to which transient control flow
may be directed to leak unauthorized enclave memory. Bhat-
tacharyya et al. [9] analyzed common software libraries that
are likely to be linked against a victim program for gadgets.
They were able to find numerous gadgets and were able to
exploit one in OpenSSL to leak information.
Case Study: Linux Kernel. To further assess the prevalence
of Spectre gadgets in real-world software, we selected the
Linux kernel (Version 5.0) as a relevant case study of a major
open-source project that underwent numerous Spectre-related

USENIX Association 28th USENIX Security Symposium 259

Table 8: Spectre-type attacks on real-world software.
Attack Gadgets JIT Description
Spectre-PHT [50] 2 3 Chrome Javascript, Linux eBPF
Spectre-BTB [50] 2 3/7 Linux eBPF, Windows ntdll
Spectre-BTB [13] 336 7 SGX SDK Intel/Graphene/Rust
Spectre-BTB [9] 690 7 OpenSSL, glibc, pthread, ...
Spectre-RSB [59] 1 3 Firefox WebAssembly
Spectre-STL [29] 1 3 Partial PoC on Linux eBPF

0
40

80
O

cc
ur

re
nc

es

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

array_index_nospec
array_index_mask_nospec

Figure 4: Evolution of Spectre-PHT patches in the Linux
kernel over time (2018-2019).

security patches over the last year. We opted for an in-depth
analysis of one specific piece of software instead of a breadth-
first approach where we do a shallow analysis of multiple
pieces of software. This allowed us to analyse historical data
(i.e., code locations the kernel developers deemed necessary
to protect) that led to the second tier classification discussed
in Section 5.1.

There are a couple of reasons that make analysis diffi-
cult. The first is that Linux supports many different platforms.
Therefore, particular gadgets are only available in a specific
configuration. The second point is that the number of instruc-
tions that can be transiently executed depends on the size of
the ROB [89]. As we analyze high-level code, we can only
estimate how far ahead the processor can transiently execute.

Table 7 shows the number of occurrences of each gadget
type from our second tier classification. While Figure 4 shows
around 120 occurrences of array_index_nospec, the num-
ber of gadgets in our analysis is higher. The reason behind
that is that multiple arrays are indexed with the same masked
index and that there are multiple branches on a value that was
loaded with a potential malicious index. Our analysis also
shows that more dangerous gadgets that either allow more
than 1-bit leakage or even arbitrary code execution are not
frequently occurring. Even if one is found, it might still be
hard to exploit. During our analysis, we also discovered that
the patch had been reverted in 13 locations, indicating that
there is also some confusion among the kernel developers
what needs to be fixed.

6 Defenses

In this section, we discuss proposed defenses in software and
hardware for Spectre and Meltdown variants. We propose a
classification scheme for defenses based on their attempt to
stop leakage, similar to Miller [62]. Our work differs from
Miller in three points. First, ours extends to newer transient
execution attacks. Second, we consider Meltdown and Spec-
tre as two problems with different root causes, leading to a

Table 9: Categorization of Spectre defenses and systematic
overview of their microarchitectural target.

Defense In
vi

siS
pe

c
Sa

fe
Sp

ec
DA

W
G

Ta
in

t T
ra

ck
in

g
Ti

m
er

Re
du

ct
io

n
RS

B
St

uf
fin

g
Re

tp
ol

in
e

SL
H

Y
SN

B
IB

RS
ST

IB
P

IB
PB

Se
ria

liz
at

io
n

Sl
ot

h
SS

BD
/S

SB
B

Po
iso

n
Va

lu
e

In
de

x
M

as
ki

ng
Si

te
Is

ol
at

io
n

M
ic

ro
ar

ch
ite

ct
ur

al
E

le
m

en
t Cache

TLB
BTB
BHB
PHT
RSB
AVX
FPU
Ports

C1 C2 C3

A defense considers the microarchitectural element (), partially considers
it or same technique possible for it () or does not consider it at all ().

different classification. Third, it helped uncover problems that
were not clear with the previous classification.
We categorize Spectre-type defenses into three categories:
C1: Mitigating or reducing the accuracy of covert channels

used to extract the secret data.
C2: Mitigating or aborting speculation if data is potentially

accessible during transient execution.
C3: Ensuring that secret data cannot be reached.

Table 9 lists proposed defenses against Spectre-type attacks
and assigns them to the category they belong.
We categorize Meltdown-type defenses into two categories:
D1: Ensuring that architecturally inaccessible data remains

inaccessible on the microarchitectural level.
D2: Preventing the occurrence of faults.

6.1 Defenses for Spectre

C1: Mitigating or reducing accuracy of covert channels.
Transient execution attacks use a covert channel to transfer
a microarchitectural state change induced by the transient
instruction sequence to the architectural level. One approach
in mitigating Spectre-type attacks is reducing the accuracy of
covert channels or preventing them.
Hardware. One enabler of transient execution attacks is that
the transient execution sequence introduces a microarchitec-
tural state change the receiving end of the covert channel
observes. To secure CPUs, SafeSpec [45] introduces shadow
hardware structures used during transient execution. Thereby,
any microarchitectural state change can be squashed if the
prediction of the CPU was incorrect. While their prototype
implementation protects only caches (and the TLB), other
channels, e.g., DRAM buffers [69], or execution unit conges-
tion [1, 9, 56], remain open.

Yan et al. [91] proposed InvisiSpec, a method to make
transient loads invisible in the cache hierarchy. By using a
speculative buffer, all transiently executed loads are stored in
this buffer instead of the cache. Similar to SafeSpec, the buffer
is invalidated if the prediction was incorrect. However, if the

260 28th USENIX Security Symposium USENIX Association

prediction was correct, the content of the buffer is loaded into
the cache. For data coherency, InvisiSpec compares the loaded
value during this process with the most recent, up-to-date
value from the cache. If a mismatch occurs, the transient load
and all successive instructions are reverted. Since InvisSpec
only protects the caching hierarchy of the CPU, an attacker
can still exploit other covert channels.

Kiriansky et al. [47] securely partition the cache across its
ways. With protection domains that isolate on a cache hit,
cache miss and metadata level, cache-based covert channels
are mitigated. This does not only require changes to the cache
and adaptions to the coherence protocol but also enforces the
correct management of these domains in software.

Kocher et al. [50] proposed to limit data from entering
covert channels through a variation of taint tracking. The idea
is that the CPU tracks data loaded during transient execution
and prevents their use in subsequent operations.
Software. Many covert channels require an accurate timer
to distinguish microarchitectural states, e.g., measuring the
memory access latency to distinguish between a cache hit and
cache miss. With reduced timer accuracy an attacker cannot
distinguish between microarchitectural states any longer, the
receiver of the covert channel cannot deduce the sent informa-
tion. To mitigate browser-based attacks, many web browsers
reduced the accuracy of timers in JavaScript by adding jit-
ter [61,70,80,88]. However, Schwarz et al. [73] demonstrated
that timers can be constructed in many different ways and,
thus, further mitigations are required [71]. While Chrome
initially disabled SharedArrayBuffers in response to Melt-
down and Spectre [80], this timer source has been re-enabled
with the introduction of site-isolation [77].

NetSpectre requires different strategies due to its remote
nature. Schwarz et al. [74] propose to detect the attack using
DDoS detection mechanisms or adding noise to the network
latency. By adding noise, an attacker needs to record more
traces. Adding enough noise makes the attack infeasible in
practice as the amount of traces as well as the time required
for averaging it out becomes too large [87].
C2: Mitigating or aborting speculation if data is poten-
tially accessible during transient execution.

Since Spectre-type attacks exploit different prediction
mechanisms used for speculative execution, an effective
approach would be to disable speculative execution en-
tirely [50, 79]. As the loss of performance for commodity
computers and servers would be too drastic, another proposal
is to disable speculation only while processing secret data.
Hardware. A building blocks for some variants of Spectre
is branch poisoning (an attacker mistrains a prediction mech-
anism, cf. Section 3). To deal with mistraining, both Intel
and AMD extended the instruction set architecture (ISA) with
a mechanism for controlling indirect branches [4, 40]. The
proposed addition to the ISA consists of three controls:

• Indirect Branch Restricted Speculation (IBRS) prevents
indirect branches executed in privileged code from being

influenced by those in less privileged code. To enforce
this, the CPU enters the IBRS mode which cannot be
influenced by any operations outside of it.

• Single Thread Indirect Branch Prediction (STIBP) re-
stricts sharing of branch prediction mechanisms among
code executing across hyperthreads.

• The Indirect Branch Predictor Barrier (IBPB) prevents
code that executes before it from affecting the prediction
of code following it by flushing the BTB.

For existing ARM implementations, there are no generic
mitigation techniques available. However, some CPUs im-
plement specific controls that allow invalidating the branch
predictor which should be used during context switches [6].
On Linux, those mechanisms are enabled by default [46].
With the ARMv8.5-A instruction set [7], ARM introduces
a new barrier (sb) to limit speculative execution on follow-
ing instructions. Furthermore, new system registers allow to
restrict speculative execution and new prediction control in-
structions prevent control flow predictions (cfp), data value
prediction (dvp) or cache prefetch prediction (cpp) [7].

To mitigate Spectre-STL, ARM introduced a new barrier
called SSBB that prevents a load following the barrier from by-
passing a store using the same virtual address before it [6]. For
upcoming CPUs, ARM introduced Speculative Store Bypass
Safe (SSBS); a configuration control register to prevent the
re-ordering of loads and stores [6]. Likewise, Intel [40] and
AMD [3] provide Speculative Store Bypass Disable (SSBD)
microcode updates that mitigate Spectre-STL.

As an academic contribution, plausible hardware mitiga-
tions have furthermore been proposed [48] to prevent transient
computations on out-of-bounds writes (Spectre-PHT).
Software. Intel and AMD proposed to use serializing instruc-
tions like lfence on both outcomes of a branch [4,35]. ARM
introduced a full data synchronization barrier (DSB SY) and
an instruction synchronization barrier (ISB) that can be used
to prevent speculation [6]. Unfortunately, serializing every
branch would amount to completely disabling branch predic-
tion, severely reducing performance [35]. Hence, Intel further
proposed to use static analysis [35] to minimize the number of
serializing instructions introduced. Microsoft uses the static
analyzer of their C Compiler MSVC [68] to detect known-bad
code patterns and insert lfence instructions automatically.
Open Source Security Inc. [66] use a similar approach using
static analysis. Kocher [49] showed that this approach misses
many gadgets that can be exploited.

Serializing instructions can also reduce the effect of in-
direct branch poisoning. By inserting it before the branch,
the pipeline prior to it is cleared, and the branch is resolved
quickly [4]. This, in turn, reduces the size of the speculation
window in case that misspeculation occurs.

While lfence instructions stop speculative execution,
Schwarz et al. [74] showed they do not stop microarchitec-
tural behaviors happening before execution. This, for instance,

USENIX Association 28th USENIX Security Symposium 261

includes powering up the AVX functional units, instruction
cache fills, and iTLB fills which still leak data.

Evtyushkin et al. [18] propose a similar method to seri-
alizing instructions, where a developer annotates potentially
leaking branches. When indicated, the CPU should not predict
the outcome of these branches and thus stop speculation.

Additionally to the serializing instructions, ARM also in-
troduced a new barrier (CSDB) that in combination with con-
ditional selects or moves controls speculative execution [6].

Speculative Load Hardening (SLH) is an approach used by
LLVM and was proposed by Carruth [12]. Using this idea,
loads are checked using branchless code to ensure that they
are executing along a valid control flow path. To do this,
they transform the code at the compiler level and introduce
a data dependency on the condition. In the case of misspec-
ulation, the pointer is zeroed out, preventing it from leaking
data through speculative execution. One prerequisite for this
approach is hardware that allows the implementation of a
branchless and unpredicted conditional update of a register’s
value. As of now, the feature is only available in LLVM for
x86 as the patch for ARM is still under review. GCC adopted
the idea of SLH for their implementation, supporting both
x86 and ARM. They provide a builtin function to either emit
a speculation barrier or return a safe value if it determines
that the instruction is transient [17].

Oleksenko et al. [65] propose an approach similar to Car-
ruth [12]. They exploit that CPUs have a mechanism to detect
data dependencies between instructions and introduce such a
dependency on the comparison arguments. This ensures that
the load only starts when the comparison is either in regis-
ters or the L1 cache, reducing the speculation window to a
non-exploitable size. They already note that their approach is
highly dependent on the ordering of instructions as the CPU
might perform the load before the comparison. In that case,
the attack would still be possible.

Google proposes a method called retpoline [83], a code se-
quence that replaces indirect branches with return instructions,
to prevent branch poisoning. This method ensures that return
instructions always speculate into an endless loop through the
RSB. The actual target destination is pushed on the stack and
returned to using the ret instruction. For retpoline, Intel [39]
notes that in future CPUs that have Control-flow Enforcement
Technology (CET) capabilities to defend against ROP attacks,
retpoline might trigger false positives in the CET defenses.
To mitigate this possibility, future CPUs also implement hard-
ware defenses for Spectre-BTB called enhanced IBRS [39].

On Skylake and newer architectures, Intel [39] proposes
RSB stuffing to prevent an RSB underfill and the ensuing
fallback to the BTB. Hence, on every context switch into the
kernel, the RSB is filled with the address of a benign gadget.
This behavior is similar to retpoline. For Broadwell and older
architectures, Intel [39] provided a microcode update to make
the ret instruction predictable, enabling retpoline to be a ro-

bust defense against Spectre-BTB. Windows has also enabled
retpoline on their systems [14].
C3: Ensuring that secret data cannot be reached. Differ-
ent projects use different techniques to mitigate the problem
of Spectre. WebKit employs two such techniques to limit the
access to secret data [70]. WebKit first replaces array bound
checks with index masking. By applying a bit mask, WebKit
cannot ensure that the access is always in bounds, but intro-
duces a maximum range for the out-of-bounds violation. In
the second strategy, WebKit uses a pseudo-random poison
value to protect pointers from misuse. Using this approach,
an attacker would first have to learn the poison value before
he can use it. The more significant impact of this approach
is that mispredictions on the branch instruction used for type
checks results in the wrong type being used for the pointer.

Google proposes another defense called site isolation [81],
which is now enabled in Chrome by default. Site isolation
executes each site in its own process and therefore limits the
amount of data that is exposed to side-channel attacks. Even
in the case where the attacker has arbitrary memory reads, he
can only read data from its own process.

Kiriansky and Waldspurger [48] propose to restrict access
to sensitive data by using protection keys like Intel Memory
Protection Key (MPK) technology [31]. They note that by
using Spectre-PHT an attacker can first disable the protection
before reading the data. To prevent this, they propose to in-
clude an lfence instruction in wrpkru, an instruction used
to modify protection keys.

6.2 Defenses for Meltdown

D1: Ensuring that architecturally inaccessible data re-
mains inaccessible on the microarchitectural level.

The fundamental problem of Meltdown-type attacks is that
the CPU allows the transient instruction stream to compute on
architecturally inaccessible values, and hence, leak them. By
assuring that execution does not continue with unauthorized
data after a fault, such attacks can be mitigated directly in
silicon. This design is enforced in AMD processors [4], and
more recently also in Intel processors from Whiskey Lake
onwards that enumerate RDCL_NO support [40]. However,
mitigations for existing microarchitectures are necessary, ei-
ther through microcode updates, or operating-system-level
software workarounds. These approaches aim to keep archi-
tecturally inaccessible data also inaccessible at the microar-
chitectural level.

Gruss et al. originally proposed KAISER [22, 23] to miti-
gate side-channel attacks defeating KASLR. However, it also
defends against Meltdown-US attacks by preventing kernel
secrets from being mapped in user space. Besides its perfor-
mance impact, KAISER has one practical limitation [22, 56].
For x86, some privileged memory locations must always be
mapped in user space. KAISER is implemented in Linux as
kernel page-table isolation (KPTI) [58] and has also been

262 28th USENIX Security Symposium USENIX Association

backported to older versions. Microsoft provides a similar
patch as of Windows 10 Build 17035 [42] and Mac OS X and
iOS have similar patches [41].

For Meltdown-GP, where the attacker leaks the contents of
system registers that are architecturally not accessible in its
current privilege level, Intel released microcode updates [35].
While AMD is not susceptible [5], ARM incorporated miti-
gations in future CPU designs and suggests to substitute the
register values with dummy values on context switches for
CPUs where mitigations are not available [6].

Preventing the access-control race condition exploited by
Foreshadow and Meltdown may not be feasible with mi-
crocode updates [85]. Thus, Intel proposes a multi-stage ap-
proach to mitigate Foreshadow (L1TF) attacks on current
CPUs [34, 90]. First, to maintain process isolation, the op-
erating system has to sanitize the physical address field of
unmapped page-table entries. The kernel either clears the
physical address field, or sets it to non-existent physical mem-
ory. In the case of the former, Intel suggests placing 4 KB of
dummy data at the start of the physical address space, and
clearing the PS bit in page tables to prevent attackers from
exploiting huge pages.

For SGX enclaves or hypervisors, which cannot trust the
address translation performed by an untrusted OS, Intel pro-
poses to either store secrets in uncacheable memory (as spec-
ified in the PAT or the MTRRs), or flush the L1 data cache
when switching protection domains. With recent microcode
updates, L1 is automatically flushed upon enclave exit, and
hypervisors can additionally flush L1 before handing over
control to an untrusted virtual machine. Flushing the cache is
also done upon exiting System Management Mode (SMM) to
mitigate Foreshadow-NG attacks on SMM.

To mitigate attacks across logical cores, Intel supplied a
microcode update to ensure that different SGX attestation
keys are derived when hyperthreading is enabled or disabled.
To ensure that no non-SMM software runs while data belong-
ing to SMM are in the L1 data cache, SMM software must
rendezvous all logical cores upon entry and exit. According
to Intel, this is expected to be the default behavior for most
SMM software [34]. To protect against Foreshadow-NG at-
tacks when hyperthreading is enabled, the hypervisor must
ensure that no hypervisor thread runs on a sibling core with
an untrusted VM.
D2: Preventing the occurrence of faults. Since Meltdown-
type attacks exploit delayed exception handling in the CPU,
another mitigation approach is to prevent the occurrence of a
fault in the first place. Thus, accesses which would normally
fault, become (both architecturally and microarchitecturally)
valid accesses but do not leak secret data.

One example of such behavior are SGX’s abort page se-
mantics, where accessing enclave memory from the outside
returns -1 instead of faulting. Thus, SGX has inadvertent pro-
tection against Meltdown-US. However, the Foreshadow [85]
attack showed that it is possible to actively provoke another

fault by unmapping the enclave page, making SGX enclaves
susceptible to the Meltdown-P variant.

Preventing the fault is also the countermeasure for
Meltdown-NM [78] that is deployed since Linux 4.6 [57].
By replacing lazy switching with eager switching, the FPU is
always available, and access to the FPU can never fault. Here,
the countermeasure is effective, as there is no other way to
provoke a fault when accessing the FPU.

6.3 Evaluation of Defenses

Spectre Defenses. We evaluate defenses based on their ca-
pabilities of mitigating Spectre attacks. Defenses that require
hardware modifications are only evaluated theoretically. In
addition, we discuss which vendors have CPUs vulnerable to
what type of Spectre- and Meltdown-type attack. The results
of our evaluation are shown in Table 10.

Several defenses only consider a specific covert channel
(see Table 9), i.e., they only try to prevent an attacker from
recovering the data using a specific covert channel instead of
targeting the root cause of the vulnerability. Therefore, they
can be subverted by using a different one. As such, they can
not be considered a reliable defense. Other defenses only limit
the amount of data that can be leaked [70,81] or simply require
more repetitions on the attacker side [74, 87]. Therefore, they
are only partial solutions. RSB stuffing only protects a cross-
process attack but does not mitigate a same-process attack.
Many of the defenses are not enabled by default or depend
on the underlying hardware and operating system [3, 4, 6, 40].
With serializing instructions [4, 6, 35] after a bounds check,
we were still able to leak data on Intel and ARM (only with
DSB SY+ISH instruction) through a single memory access and
the TLB. On ARM, we observed no leakage following a CSDB
barrier in combination with conditional selects or moves. We
also observed no leakage with SLH, although the possibility
remains that our experiment failed to bypass the mitigation.
Taint tracking theoretically mitigates all forms of Spectre-
type attacks as data that has been tainted cannot be used in a
transient execution. Therefore, the data does not enter a covert
channel and can subsequently not be leaked.
Meltdown Defenses. We verified whether we can still exe-
cute Meltdown-type attacks on a fully-patched system. On
a Ryzen Threadripper 1920X, we were still able to execute
Meltdown-BND. On an i5-6200U (Skylake), an i7-8700K
(Coffee Lake), and an i7-8565U (Whiskey Lake), we were
able to successfully run a Meltdown-MPX, Meltdown-BND,
and Meltdown-RW attack. Additionally to those, we were
also able to run a Meltdown-PK attack on an Amazon EC2
C5 instance (Skylake-SP). Our results indicate that current
mitigations only prevent Meltdown-type attacks that cross the
current privilege level. We also tested whether we can still
successfully execute a Meltdown-US attack on a recent Intel
Whiskey Lake CPU without KPTI enabled, as Intel claims
these processors are no longer vulnerable. In our experiments,

USENIX Association 28th USENIX Security Symposium 263

Table 10: Spectre defenses and which attacks they mitigate.

Attack
Defense

In
vi
si
Sp
ec

Sa
fe
Sp
ec

DA
WG

RS
B

St
uf

fin
g

Re
tp

ol
in

e
Po

is
on

Va
lu

e
In

de
x

M
as

ki
ng

Si
te

Is
ol

at
io

n
SL

H
YS
NB

IB
RS

ST
IB

P
IB

PB
Se

ri
al

iz
at

io
n

Ta
in
t
Tr
ac
ki
ng

Ti
m

er
Re

du
ct

io
n

Sl
ot
h

SS
BD

/S
SB

B

Intel

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

ARM

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

AMD

Spectre-PHT
Spectre-BTB
Spectre-RSB
Spectre-STL

Symbols show if an attack is mitigated (), partially mitigated (), not miti-
gated (), theoretically mitigated (), theoretically impeded (), not theo-
retically impeded (), or out of scope (). Defenses in italics are production-
ready, while typeset defenses are academic proposals.

we were indeed not able to leak any data on such CPUs but
encourage other researchers to further investigate newer pro-
cessor generations.

6.4 Performance Impact of Countermeasures

There have been several reports on performance impacts of
selected countermeasures. Some report the performance im-
pact based on real-world scenarios (top of Table 11) while
others use a specific benchmark that might not resemble real-
world usage (lower part of Table 11). Based on the different
testing scenarios, the results are hard to compare. To further
complicate matters, some countermeasures require hardware
modifications that are not available, and it is therefore hard to
verify the performance loss.

One countermeasure that stands out with a huge decrease in
performance is serialization and highlights the importance of
speculative execution to improve CPU performance. Another
interesting countermeasure is KPTI. While it was initially
reported to have a huge impact on performance, recent work
shows that the decrease is almost negligible on systems that
support PCID [20]. To mitigate Spectre and Meltdown, cur-
rent systems rely on a combination of countermeasures. To
show the overall decrease on a Linux 4.19 kernel with the
default mitigations enabled, Larabel [54] performed multiple
benchmarks to determine the impact. On Intel, the slowdown
was 7-16% compared to a non-mitigated kernel, on AMD it
was 3-4%.

Naturally, the question arises which countermeasures to
enable. For most users, the risk of exploitation is low, and
default software mitigations as provided by Linux, Microsoft,
or Apple likely are sufficient. This is likely the optimum
between potential attacks and reasonable performance. For

Table 11: Reported performance impacts of countermeasures.
Top shows performance impact in real-world scenarios while
the bottom shows it on a specific benchmark.

Defense Evaluation Penalty Benchmark
KAISER/KPTI [21] 0–2.6 % System call rates
Retpoline [11] 5–10 % Real-world workload servers
Site Isolation [81] 10–13 % Memory overhead
InvisiSpec [91] 22 % SPEC
SafeSpec [45] -3 % SPEC on MARSSx86
DAWG [47] 1–15 % PARSEC , GAPBS
SLH [12] 29–36.4 % Google microbenchmark suite
YSNB [65] 60 % Phoenix
IBRS [82] 20–30 % Sysbench 1.0.11
STIBP [53] 30–50 % Rodinia OpenMP, DaCapo
Serialization [12] 62–74.8 % Google microbenchmark suite
SSBD/SSBB [15] 2–8 % SYSmark 2018, SPEC integer
L1TF Mitigations [38] -3–31 % SPEC

data centers, it is harder as it depends on the needs of their
customers and one has to evaluate this on an individual basis.

7 Future Work and Conclusion

Future Work. For Meltdown-type attacks, it is important to
determine where data is actually leaked from. For instance,
Lipp et al. [56] demonstrated that Meltdown-US can not only
leak data from the L1 data cache and main memory but even
from memory locations that are explicitly marked as “un-
cacheable” and are hence served from the Line Fill Buffer
(LFB). 3 In future work, other Meltdown-type attacks should
be tested to determine whether they can also leak data from
different microarchitectural buffers. In this paper, we pre-
sented a small evaluation of the prevalence of gadgets in
real-world software. Future work should develop methods
for automating the detection of gadgets and extend the analy-
sis on a larger amount of real-world software. We have also
discussed mitigations and shown that some of them can be
bypassed or do not target the root cause of the problem. We
encourage both offensive and defensive research that may use
our taxonomy as a guiding principle to discover new attack
variants and develop mitigations that target the root cause of
transient information leakage.
Conclusion. Transient instructions reflect unauthorized com-
putations out of the program’s intended code and/or data paths.
We presented a systematization of transient execution attacks.
Our systematization uncovered 6 (new) transient execution
attacks (Spectre and Meltdown variants) which have been

3The initial Meltdown-US disclosure (December 2017) and subsequent
paper [56] already made clear that Meltdown-type leakage is not limited to
the L1 data cache. We sent Intel a PoC leaking uncacheable-typed memory
locations from a concurrent hyperthread on March 28, 2018. We clarified to
Intel on May 30, 2018, that we attribute the source of this leakage to the LFB.
In our experiments, this works identically for Meltdown-P (Foreshadow).
This issue was acknowledged by Intel, tracked under CVE-2019-11091, and
remained under embargo until May 14, 2019.

264 28th USENIX Security Symposium USENIX Association

overlooked and have not been investigated so far. We demon-
strated these variants in practical proof-of-concept attacks
and evaluated their applicability to Intel, AMD, and ARM
CPUs. We also presented a short analysis and classification of
gadgets as well as their prevalence in real-world software. We
also systematically evaluated defenses, discovering that some
transient execution attacks are not successfully mitigated by
the rolled out patches and others are not mitigated because
they have been overlooked. Hence, we need to think about
future defenses carefully and plan to mitigate attacks and
variants that are yet unknown.

Acknowledgments

We want to thank the anonymous reviewers and especially our
shepherd, Jonathan McCune, for their helpful comments and
suggestions that substantially helped in improving the paper.

This work has been supported by the Austrian Research
Promotion Agency (FFG) via the K-project DeSSnet, which
is funded in the context of COMET – Competence Centers
for Excellent Technologies by BMVIT, BMWFW, Styria and
Carinthia. This work has been supported by the Austrian Re-
search Promotion Agency (FFG) via the project ESPRESSO,
which is funded by the province of Styria and the Business
Promotion Agencies of Styria and Carinthia. This project
has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681402).
This research received funding from the Research Fund KU
Leuven, and Jo Van Bulck is supported by the Research Foun-
dation – Flanders (FWO). Evtyushkin acknowledges the start-
up grant from the College of William and Mary. Additional
funding was provided by generous gifts from ARM and Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References
[1] ALDAYA, A. C., BRUMLEY, B. B., UL HASSAN, S., GARCÍA, C. P., AND

TUVERI, N. Port contention for fun and profit, 2018.

[2] ALDAYA, A. C., BRUMLEY, B. B., UL HASSAN, S., GARCÍA, C. P., AND
TUVERI, N. Port Contention for Fun and Profit. ePrint 2018/1060 (2018).

[3] AMD. AMD64 Technology: Speculative Store Bypass Disable, 2018. Revision
5.21.18.

[4] AMD. Software Techniques for Managing Speculation on AMD Processors,
2018. Revison 7.10.18.

[5] AMD. Spectre mitigation update, July 2018.

[6] ARM. Cache Speculation Side-channels, 2018. Version 2.4.

[7] ARM LIMITED. ARM A64 Instruction Set Architecture, Sep 2018.

[8] ARM LIMITED. Vulnerability of Speculative Processors to Cache Timing Side-
Channel Mechanism, 2018.

[9] BHATTACHARYYA, A., SANDULESCU, A., NEUGSCHWANDTNER, M.,
SORNIOTTI, A., FALSAFI, B., PAYER, M., AND KURMUS, A. Smotherspec-
tre: exploiting speculative execution through port contention. arXiv:1903.01843
(2019).

[10] CARPENTER, D. Smatch check for Spectre stuff, Apr. 2018.

[11] CARRUTH, C., https://reviews.llvm.org/D41723 Jan. 2018.

[12] CARRUTH, C. RFC: Speculative Load Hardening (a Spectre variant #1 mitiga-
tion), Mar. 2018.

[13] CHEN, G., CHEN, S., XIAO, Y., ZHANG, Y., LIN, Z., AND LAI, T. H.
SGXPECTRE Attacks: Leaking Enclave Secrets via Speculative Execution.
arXiv:1802.09085 (2018).

[14] CORP., M., https://support.microsoft.com/en-us/help/4482887/
windows-10-update-kb4482887 Mar. 2019.

[15] CULBERTSON, L. Addressing new research for side-channel analysis. Intel.

[16] DONG, X., SHEN, Z., CRISWELL, J., COX, A., AND DWARKADAS, S. Spec-
tres, virtual ghosts, and hardware support. In Workshop on Hardware and Archi-
tectural Support for Security and Privacy (2018).

[17] EARNSHAW, R. Mitigation against unsafe data speculation (CVE-2017-5753),
July 2018.

[18] EVTYUSHKIN, D., RILEY, R., ABU-GHAZALEH, N. C., ECE, AND PONO-
MAREV, D. Branchscope: A new side-channel attack on directional branch pre-
dictor. In ASPLOS’18 (2018).

[19] FOG, A. The microarchitecture of Intel, AMD and VIA CPUs: An optimization
guide for assembly programmers and compiler makers, 2016.

[20] GREGG, B. KPTI/KAISER Meltdown Initial Performance Regressions, 2018.

[21] GRUSS, D., HANSEN, D., AND GREGG, B. Kernel isolation: From an academic
idea to an efficient patch for every computer. USENIX ;login (2018).

[22] GRUSS, D., LIPP, M., SCHWARZ, M., FELLNER, R., MAURICE, C., AND
MANGARD, S. KASLR is Dead: Long Live KASLR. In ESSoS (2017).

[23] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MANGARD, S. Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In CCS (2016).

[24] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In USENIX Security Sym-
posium (2015).

[25] GUARNIERI, M., KÖPF, B., MORALES, J. F., REINEKE, J., AND SÁNCHEZ,
A. SPECTECTOR: Principled Detection of Speculative Information Flows.
arXiv:1812.08639 (2018).

[26] GÜLMEZOĞLU, B., INCI, M. S., EISENBARTH, T., AND SUNAR, B. A Faster
and More Realistic Flush+Reload Attack on AES. In Constructive Side-Channel
Analysis and Secure Design (2015).

[27] HEDAYATI, M., GRAVANI, S., JOHNSON, E., CRISWELL, J., SCOTT, M.,
SHEN, K., AND MARTY, M. Janus: Intra-Process Isolation for High-Throughput
Data Plane Libraries, 2018.

[28] HORN, J. Reading privileged memory with a side-channel, Jan. 2018.

[29] HORN, J. speculative execution, variant 4: speculative store bypass, 2018.

[30] INTEL. Intel Software Guard Extensions (Intel SGX), 2016.

[31] INTEL. Intel 64 and IA-32 Architectures Software Developer′s Manual, Volume
3 (3A, 3B & 3C): System Programming Guide.

[32] INTEL. Intel Xeon Processor Scalable Family Technical Overview, Sept. 2017.

[33] INTEL. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2017.

[34] INTEL. Deep Dive: Intel Analysis of L1 Terminal Fault, Aug. 2018.

[35] INTEL. Intel Analysis of Speculative Execution Side Channels , July 2018. Re-
vision 4.0.

[36] INTEL. More Information on Transient Execution Findings, https:
//software.intel.com/security-software-guidance/insights/
more-information-transient-execution-findings 2018.

[37] INTEL. Q2 2018 Speculative Execution Side Channel Update, May 2018.

[38] INTEL. Resources and Response to Side Channel L1 Terminal Fault, Aug. 2018.

[39] INTEL. Retpoline: A Branch Target Injection Mitigation, June 2018. Revision
003.

[40] INTEL. Speculative Execution Side Channel Mitigations, May 2018. Revision
3.0.

[41] IONESCU, A. Twitter: Apple Double Map, https://twitter.com/aionescu/
status/948609809540046849 2017.

[42] IONESCU, A. Windows 17035 Kernel ASLR/VA Isolation In Prac-
tice (like Linux KAISER)., https://twitter.com/aionescu/status/
930412525111296000 2017.

[43] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B. Wait a minute!
A fast, Cross-VM attack on AES. In RAID’14 (2014).

USENIX Association 28th USENIX Security Symposium 265

https://reviews.llvm.org/D41723
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://support.microsoft.com/en-us/help/4482887/windows-10-update-kb4482887
https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://software.intel.com/security-software-guidance/insights/more-information-transient-execution-findings
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/948609809540046849
https://twitter.com/aionescu/status/930412525111296000
https://twitter.com/aionescu/status/930412525111296000

[44] ISLAM, S., MOGHIMI, A., BRUHNS, I., KREBBEL, M., GULMEZOGLU, B.,
EISENBARTH, T., AND SUNAR, B. SPOILER: Speculative Load Hazards Boost
Rowhammer and Cache Attacks. arXiv:1903.00446 (2019).

[45] KHASAWNEH, K. N., KORUYEH, E. M., SONG, C., EVTYUSHKIN, D., PONO-
MAREV, D., AND ABU-GHAZALEH, N. SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation. arXiv:1806.05179 (2018).

[46] KING, R. ARM: spectre-v2: harden branch predictor on context switches, May
2018.

[47] KIRIANSKY, V., LEBEDEV, I., AMARASINGHE, S., DEVADAS, S., AND EMER,
J. DAWG: A Defense Against Cache Timing Attacks in Speculative Execution
Processors. ePrint 2018/418 (May 2018).

[48] KIRIANSKY, V., AND WALDSPURGER, C. Speculative Buffer Overflows: At-
tacks and Defenses. arXiv:1807.03757 (2018).

[49] KOCHER, P. Spectre mitigations in Microsoft’s C/C++ compiler, 2018.

[50] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS, W., HAM-
BURG, M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M., AND
YAROM, Y. Spectre attacks: Exploiting speculative execution. In S&P (2019).

[51] KOCHER, P. C. Timing Attacks on Implementations of Diffe-Hellman, RSA,
DSS, and Other Systems. In CRYPTO (1996).

[52] KORUYEH, E. M., KHASAWNEH, K., SONG, C., AND ABU-GHAZALEH, N.
Spectre Returns! Speculation Attacks using the Return Stack Buffer. In WOOT
(2018).

[53] LARABEL, M. Bisected: The Unfortunate Reason Linux 4.20 Is Running Slower,
Nov. 2018.

[54] LARABEL, M. The performance cost of spectre / meltdown / foreshadow miti-
gations on linux 4.19, Aug. 2018.

[55] LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND MANGARD, S. AR-
Mageddon: Cache Attacks on Mobile Devices. In USENIX Security Symposium
(2016).

[56] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W., FOGH, A.,
HORN, J., MANGARD, S., KOCHER, P., GENKIN, D., YAROM, Y., AND HAM-
BURG, M. Meltdown: Reading Kernel Memory from User Space. In USENIX
Security Symposium (2018).

[57] LUTOMIRSKI, A. x86/fpu: Hard-disable lazy FPU mode, June 2018.

[58] LWN. The current state of kernel page-table isolation, https://lwn.net/
SubscriberLink/741878/eb6c9d3913d7cb2b/ Dec. 2017.

[59] MAISURADZE, G., AND ROSSOW, C. ret2spec: Speculative execution using
return stack buffers. In CCS (2018).

[60] MAURICE, C., WEBER, M., SCHWARZ, M., GINER, L., GRUSS, D., AL-
BERTO BOANO, C., MANGARD, S., AND RÖMER, K. Hello from the Other
Side: SSH over Robust Cache Covert Channels in the Cloud. In NDSS (2017).

[61] MICROSOFT. Mitigating speculative execution side-channel attacks in Microsoft
Edge and Internet Explorer, Jan. 2018.

[62] MILLER, M. Mitigating speculative execution side channel hardware vulnerabil-
ities, Mar. 2018.

[63] O’KEEFFE, D., MUTHUKUMARAN, D., AUBLIN, P.-L., KELBERT, F., PRIEBE,
C., LIND, J., ZHU, H., AND PIETZUCH, P. Spectre attack against SGX enclave,
Jan. 2018.

[64] OLEKSENKO, O., KUVAISKII, D., BHATOTIA, P., FELBER, P., AND FETZER,
C. Intel MPX Explained: An Empirical Study of Intel MPX and Software-based
Bounds Checking Approaches. arXiv:1702.00719 (2017).

[65] OLEKSENKO, O., TRACH, B., REIHER, T., SILBERSTEIN, M., AND FETZER,
C. You Shall Not Bypass: Employing data dependencies to prevent Bounds
Check Bypass. arXiv:1805.08506 (2018).

[66] OPEN SOURCE SECURITY INC. Respectre: The state of the art in spectre de-
fenses, Oct. 2018.

[67] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks and Counter-
measures: the Case of AES. In CT-RSA (2006).

[68] PARDOE, A. Spectre mitigations in MSVC, 2018.

[69] PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND MANGARD, S.
DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In USENIX
Security Symposium (2016).

[70] PIZLO, F. What Spectre and Meltdown mean for WebKit, Jan. 2018.

[71] SCHWARZ, M., LIPP, M., AND GRUSS, D. JavaScript Zero: Real JavaScript
and Zero Side-Channel Attacks. In NDSS (2018).

[72] SCHWARZ, M., LIPP, M., GRUSS, D., WEISER, S., MAURICE, C., SPREITZER,
R., AND MANGARD, S. KeyDrown: Eliminating Software-Based Keystroke
Timing Side-Channel Attacks. In NDSS (2018).

[73] SCHWARZ, M., MAURICE, C., GRUSS, D., AND MANGARD, S. Fantastic
Timers and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript. In FC (2017).

[74] SCHWARZ, M., SCHWARZL, M., LIPP, M., AND GRUSS, D. NetSpectre: Read
Arbitrary Memory over Network. arXiv:1807.10535 (2018).

[75] SHACHAM, H. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In CCS (2007).

[76] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In NDSS (2017).

[77] SMITH, B. Enable SharedArrayBuffer by default on non-android, Aug. 2018.

[78] STECKLINA, J., AND PRESCHER, T. LazyFP: Leaking FPU Register State using
Microarchitectural Side-Channels. arXiv:1806.07480 (2018).

[79] SUSE. Security update for kernel-firmware, https://www.suse.com/
support/update/announcement/2018/suse-su-20180008-1/ 2018.

[80] THE CHROMIUM PROJECTS. Actions required to mitigate Speculative Side-
Channel Attack techniques, 2018.

[81] THE CHROMIUM PROJECTS. Site Isolation, 2018.

[82] TKACHENKO, V. 20-30% Performance Hit from the Spectre Bug Fix on Ubuntu,
Jan. 2018.

[83] TURNER, P. Retpoline: a software construct for preventing branch-target-
injection, 2018.

[84] VAHLDIEK-OBERWAGNER, A., ELNIKETY, E., GARG, D., AND DRUSCHEL,
P. ERIM: secure and efficient in-process isolation with memory protection keys.
arXiv:1801.06822 (2018).

[85] VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI, B.,
PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM, Y., AND
STRACKX, R. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In USENIX Security Symposium (2018).

[86] VAN BULCK, J., PIESSENS, F., AND STRACKX, R. Nemesis: Studying microar-
chitectural timing leaks in rudimentary CPU interrupt logic. In CCS (2018).

[87] VARDA, K. WebAssembly’s post-MVP future, https://news.ycombinator.
com/item?id=18279791 2018.

[88] WAGNER, L. Mitigations landing for new class of timing attack, Jan. 2018.

[89] WANG, G., CHATTOPADHYAY, S., GOTOVCHITS, I., MITRA, T., AND ROY-
CHOUDHURY, A. oo7: Low-overhead Defense against Spectre Attacks via Bi-
nary Analysis. arXiv:1807.05843 (2018).

[90] WEISSE, O., VAN BULCK, J., MINKIN, M., GENKIN, D., KASIKCI, B.,
PIESSENS, F., SILBERSTEIN, M., STRACKX, R., WENISCH, T. F., AND
YAROM, Y. Foreshadow-NG: Breaking the Virtual Memory Abstraction with
Transient Out-of-Order Execution, 2018.

[91] YAN, M., CHOI, J., SKARLATOS, D., MORRISON, A., FLETCHER, C. W.,
AND TORRELLAS, J. InvisiSpec: Making Speculative Execution Invisible in
the Cache Hierarchy. In MICRO (2018).

[92] YAROM, Y., AND FALKNER, K. Flush+Reload: a High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In USENIX Security Symposium (2014).

266 28th USENIX Security Symposium USENIX Association

https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://lwn.net/SubscriberLink/741878/eb6c9d3913d7cb2b/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://www.suse.com/support/update/announcement/2018/suse-su-20180008-1/
https://news.ycombinator.com/item?id=18279791
https://news.ycombinator.com/item?id=18279791

The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks

Nicholas Carlini1,2 Chang Liu2 Úlfar Erlingsson1 Jernej Kos3 Dawn Song2

1Google Brain 2University of California, Berkeley 3National University of Singapore

Abstract
This paper describes a testing methodology for quantita-
tively assessing the risk that rare or unique training-data
sequences are unintentionally memorized by generative se-
quence models—a common type of machine-learning model.
Because such models are sometimes trained on sensitive data
(e.g., the text of users’ private messages), this methodology
can benefit privacy by allowing deep-learning practitioners to
select means of training that minimize such memorization.

In experiments, we show that unintended memorization is
a persistent, hard-to-avoid issue that can have serious conse-
quences. Specifically, for models trained without considera-
tion of memorization, we describe new, efficient procedures
that can extract unique, secret sequences, such as credit card
numbers. We show that our testing strategy is a practical and
easy-to-use first line of defense, e.g., by describing its ap-
plication to quantitatively limit data exposure in Google’s
Smart Compose, a commercial text-completion neural net-
work trained on millions of users’ email messages.

1 Introduction

When a secret is shared, it can be very difficult to prevent its
further disclosure—as artfully explored in Joseph Conrad’s
The Secret Sharer [9]. This difficulty also arises in machine-
learning models based on neural networks, which are being
rapidly adopted for many purposes. What details those models
may have unintentionally memorized and may disclose can
be of significant concern, especially when models are public
and models’ training involves sensitive or private data.

Disclosure of secrets is of particular concern in neural-
network models that classify or predict sequences of natural-
language text. First, such text will often contain sensitive or
private sequences, accidentally, even if the text is supposedly
public. Second, such models are designed to learn text pat-
terns such as grammar, turns of phrase, and spelling, which
comprise a vanishing fraction of the exponential space of
all possible sequences. Therefore, even if sensitive or pri-
vate training-data text is very rare, one should assume that
well-trained models have paid attention to its precise details.

Concretely, disclosure of secrets may arise naturally in gen-
erative text models like those used for text auto-completion
and predictive keyboards, if trained on possibly-sensitive data.
The users of such models may discover—either by accident
or on purpose—that entering certain text prefixes causes the
models to output surprisingly-revealing text completions. For

example, users may find that the input “my social-security
number is. . . ” gets auto-completed to an obvious secret (such
as a valid-looking SSN not their own), or find that other in-
puts are auto-completed to text with oddly-specific details. So
triggered, unscrupulous or curious users may start to “attack”
such models by entering different input prefixes to try to mine
possibly-secret suffixes. Therefore, for generative text mod-
els, assessing and reducing the chances that secrets may be
disclosed in this manner is a key practical concern.

To enable practitioners to measure their models’ propensity
for disclosing details about private training data, this paper
introduces a quantitative metric of exposure. This metric can
be applied during training as part of a testing methodology
that empirically measures a model’s potential for unintended
memorization of unique or rare sequences in the training data.

Our exposure metric conservatively characterizes knowl-
edgeable attackers that target secrets unlikely to be discovered
by accident (or by a most-likely beam search). As validation
of this, we describe an algorithm guided by the exposure met-
ric that, given a pretrained model, can efficiently extract secret
sequences even when the model considers parts of them to be
highly unlikely. We demonstrate our algorithm’s effectiveness
in experiments, e.g., by extracting credit card numbers from a
language model trained on the Enron email data. Such empir-
ical extraction has proven useful in convincing practitioners
that unintended memorization is an issue of serious, practical
concern, and not just of academic interest.

Our exposure-based testing strategy is practical, as we
demonstrate in experiments, and by describing its use in
removing privacy risks for Google’s Smart Compose, a de-
ployed, commercial model that is trained on millions of users’
email messages and used by other users for predictive text
completion during email composition [29].

In evaluating our exposure metric, we find unintended mem-
orization to be both commonplace and hard to prevent. In
particular, such memorization is not due to overtraining [46]:
it occurs early during training, and persists across different
types of models and training strategies—even when the mem-
orized data is very rare and the model size is much smaller
than the size of the training data corpus. Furthermore, we
show that simple, intuitive regularization approaches such
as early-stopping and dropout are insufficient to prevent un-
intended memorization. Only by using differentially-private
training techniques are we able to eliminate the issue com-
pletely, albeit at some loss in utility.

USENIX Association 28th USENIX Security Symposium 267

0 2 4 6 8
Repetitions of canary in training data

5

10

15

20

25

30

C
a
n
a
ry

 e
x
p

o
su

re
 i
n
 t

ra
in

e
d
 m

o
d

e
l

Hyperparameters A

Hyperparameters B

Figure 1: Results of our testing methodology applied to a state-
of-the-art, word-level neural-network language model [35].
Two models are trained to near-identical accuracy using two
different training strategies (hyperparameters A and B). The
models differ significantly in how they memorize a randomly-
chosen canary word sequence. Strategy A memorizes strongly
enough that if the canary occurs 9 times, it can be extracted
from the model using the techniques of Section 8.

Threat Model and Testing Methodology. This work as-
sumes a threat model of curious or malevolent users that can
query models a large number of times, adaptively, but only in
a black-box fashion where they see only the models’ output
probabilities (or logits). Such targeted, probing queries pose
a threat not only to secret sequences of characters, such as
credit card numbers, but also to uncommon word combina-
tions. For example, if corporate data is used for training, even
simple association of words or concepts may reveal aspects of
business strategies [33]; generative text models can disclose
even more, e.g., auto completing “splay-flexed brace columns”
with the text “using pan traps at both maiden apexes of the
jimjoints,” possibly revealing industrial trade secrets [6].

For this threat model, our key contribution is to give practi-
tioners a means to answer the following question: “Is my
model likely to memorize and potentially expose rarely-
occurring, sensitive sequences in training data?” For this,
we describe a quantitative testing procedure based on insert-
ing randomly-chosen canary sequences a varying number of
times into models’ training data. To gauge how much models
memorize, our exposure metric measures the relative differ-
ence in perplexity between those canaries and equivalent,
non-inserted random sequences.

Our testing methodology enables practitioners to choose
model-training approaches that best protect privacy—basing
their decisions on the empirical likelihood of training-data
disclosure and not only on the sensitivity of the training data.
Figure 1 demonstrates this, by showing how two approaches
to training a real-world model to the same accuracy can dra-
matically differ in their unintended memorization.

2 Background: Neural Networks

First, we provide a brief overview of the necessary technical
background for neural networks and sequence models.

2.1 Concepts, Notation, and Training
A neural network is a parameterized function fθ(·) that is de-
signed to approximate an arbitrary function. Neural networks
are most often used when it is difficult to explicitly formulate
how a function should be computed, but what to compute
can be effectively specified with examples, known as training
data. The architecture of the network is the general structure
of the computation, while the parameters (or weights) are the
concrete internal values θ used to compute the function.

We use standard notation [20]. Given a training set X =
{(xi,yi)}m

i=1 consisting of m examples xi and labels yi, the pro-
cess of training teaches the neural network to map each given
example to its corresponding label. We train by performing
(non-linear) gradient descent with respect to the parameters
θ on a loss function that measures how close the network is
to correctly classifying each input. The most commonly used
loss function is cross-entropy loss: given distributions p and
q we have H(p,q) = −∑z p(z) log(q(z)), with per-example
loss L(x,y,θ) = H(fθ(x),y) for fθ.

During training, we first sample a random minibatch B
consisting of labeled training examples {(x̄ j, ȳ j)}m′

j=1 drawn
from X (where m′ is the batch size; often between 32 and
1024). Gradient descent then updates the weights θ of the
neural network by setting

θnew← θold−η
1
m′

m′

∑
j=1

∇θL(x̄ j, ȳ j,θ)

That is, we adjust the weights η-far in the direction that mini-
mizes the loss of the network on this batch B using the current
weights θold . Here, η is called the learning rate.

In order to reach maximum accuracy (i.e., minimum loss),
it is often necessary to train multiple times over the entire set
of training data X , with each such iteration called one epoch.
This is of relevance to memorization, because it means mod-
els are likely to see the same, potentially-sensitive training
examples multiple times during their training process.

2.2 Generative Sequence Models
A generative sequence model is a fundamental architecture
for common tasks such as language-modeling [4], translation
[3], dialogue systems, caption generation, optical character
recognition, and automatic speech recognition, among others.

For example, consider the task of modeling natural-
language English text from the space of all possible sequences
of English words. For this purpose, a generative sequence
model would assign probabilities to words based on the con-
text in which those words appeared in the empirical distri-
bution of the model’s training data. For example, the model

268 28th USENIX Security Symposium USENIX Association

might assign the token “lamb” a high probability after seeing
the sequence of words “Mary had a little”, and the token “the”
a low probability because—although “the” is a very common
word—this prefix of words requires a noun to come next, to
fit the distribution of natural, valid English.

Formally, generative sequence models are designed to gen-
erate a sequence of tokens x1...xn according to an (unknown)
distribution Pr(x1...xn). Generative sequence models estimate
this distribution, which can be decomposed through Bayes’
rule as Pr(x1...xn) = Πn

i=1Pr(xi|x1...xi−1). Each individual
computation Pr(xi|x1...xi−1) represents the probability of to-
ken xi occurring at timestep i with previous tokens x1 to xi−1.

Modern generative sequence models most frequently em-
ploy neural networks to estimate each conditional distribution.
To do this, a neural network is trained (using gradient de-
scent to update the neural-network weights θ) to output the
conditional probability distribution over output tokens, given
input tokens x1 to xi−1, that maximizes the likelihood of the
training-data text corpus. For such models, Pr(xi|x1...xi−1)
is defined as the probability of the token xi as returned by
evaluating the neural network fθ(x1...xi−1).

Neural-network generative sequence models most often
use model architectures that can be naturally evaluated on
variable-length inputs, such as Recurrent Neural Networks
(RNNs). RNNs are evaluated using a current token (e.g., word
or character) and a current state, and output a predicted next
token as well as an updated state. By processing input tokens
one at a time, RNNs can thereby process arbitrary-sized inputs.
In this paper we use LSTMs [23] or qRNNs [5].

2.3 Overfitting in Machine Learning

Figure 2: Overtraining.

0 20 40
Epochs

1.0

1.5

2.0

2.5

3.0

C
ro

ss
-E

n
tr

o
p
y
 L

o
ss

Validation Loss

Training Loss

Overfitting is one of
the core difficulties in
machine learning. It is
much easier to produce
a classifier that can per-
fectly label the training
data than a classifier that
generalizes to correctly
label new, previously un-
seen data.

Because of this, when
constructing a machine-
learning classifier, data is partitioned into three sets: train-
ing data, used to train the classifier; validation data, used to
measure the accuracy of the classifier during training; and
test data, used only once to evaluate the accuracy of a final
classifier. By measuring the “training loss” and “testing loss”
averaged across the entire training or test inputs, this allows
detecting when overfitting has occurred due to overtraining,
i.e., training for too many steps [46].

Figure 2 shows a typical example of the problem of over-
training (here the result of training a large language model on

a small dataset, which quickly causes overfitting). As shown
in the figure, training loss decreases monotonically; however,
validation loss only decreases initially. Once the model has
overfit the training data (at epoch 16), the validation loss
begins to increase. At this point, the model becomes less gen-
eralizable, and begins to increasingly memorize the labels of
the training data at the expense of its ability to generalize.

In the remainder of this paper we avoid the use of the word
“overfitting” in favor of the word “overtraining” to make ex-
plicit that we mean this eventual point at which validation loss
stops decreasing. None of our results are due to overtraining.
Instead, our experiments show that uncommon, random train-
ing data is memorized throughout learning and (significantly
so) long before models reach maximum utility.

3 Do Neural Nets Unintentionally Memorize?

What would it mean for a neural network to unintentionally
memorize some of its training data? Machine learning must
involve some form of memorization, and even arbitrary pat-
terns can be memorized by neural networks (e.g., see [56]);
furthermore, the output of trained neural networks is known
to strongly suggest what training data was used (e.g., see the
membership oracle work of [41]). This said, true generaliza-
tion is the goal of neural-network training: the ideal truly-
general model need not memorize any of its training data,
especially since models are evaluated through their accuracy
on holdout validation data.

Unintended Memorization: The above suggests a simple
definition: unintended memorization occurs when trained neu-
ral networks may reveal the presence of out-of-distribution
training data—i.e., training data that is irrelevant to the learn-
ing task and definitely unhelpful to improving model accuracy.
Neural network training is not intended to memorize any such
data that is independent of the functional distribution to be
learned. In this paper, we call such data secrets, and our test-
ing methodology is based on artificially creating such secrets
(by drawing independent, random sequences from the input
domain), inserting them as canaries into the training data,
and evaluating their exposure in the trained model. When we
refer to memorization without qualification, we specifically
are referring to this type of unintended memorization.

Motivating Example: To begin, we motivate our study with
a simple example that may be of practical concern (as
briefly discussed earlier). Consider a generative sequence
model trained on a text dataset used for automated sentence
completion—e.g., such one that might be used in a text-
composition assistant. Ideally, even if the training data con-
tained rare-but-sensitive information about some individual
users, the neural network would not memorize this informa-
tion and would never emit it as a sentence completion. In
particular, if the training data happened to contain text written
by User A with the prefix “My social security number is ...”,

USENIX Association 28th USENIX Security Symposium 269

one would hope that the exact number in the suffix of User
A’s text would not be predicted as the most-likely completion,
e.g., if User B were to type that text prefix.

Unfortunately, we show that training of neural networks
can cause exactly this to occur, unless great care is taken.

To make this example very concrete, the next few para-
graphs describe the results of an experiment with a character-
level language model that predicts the next character given a
prior sequence of characters [4, 36]. Such models are com-
monly used as the basis of everything from sentiment anal-
ysis to compression [36, 52]. As one of the cornerstones of
language understanding, it is a representative case study for
generative modeling. (Later, in Section 6.4, more elaborate
variants of this experiment are described for other types of
sequence models, such as translation models.)

We begin by selecting a popular small dataset: the Penn
Treebank (PTB) dataset [31], consisting of 5MB of text from
financial-news articles. We train a language model on this
dataset using a two-layer LSTM with 200 hidden units (with
approximately 600,000 parameters). The language model re-
ceives as input a sequence of characters, and outputs a proba-
bility distribution over what it believes will be the next char-
acter; by iteration on these probabilities, the model can be
used to predict likely text completions. Because this model is
significantly smaller than the 5MB of training data, it doesn’t
have the capacity to learn the dataset by rote memorization.

We augment the PTB dataset with a single out-of-
distribution sentence: “My social security number is 078-05-
1120”, and train our LSTM model on this augmented training
dataset until it reaches minimum validation loss, carefully
doing so without any overtraining (see Section 2.3).

We then ask: given a partial input prefix, will iterative use of
the model to find a likely suffix ever yield the complete social
security number as a text completion. We find the answer to
our question to be an emphatic “Yes!” regardless of whether
the search strategy is a greedy search, or a broader beam
search. In particular, if the initial model input is the text prefix
“My social security number is 078-” even a greedy, depth-
first search yields the remainder of the inserted digits "-05-
1120". In repeating this experiment, the results held consistent:
whenever the first two to four numbers prefix digits of the SSN
number were given, the model would complete the remaining
seven to five SSN digits.

Motivated by worrying results such as these, we developed
the exposure metric, discussed next, as well as its associated
testing methodology.

4 Measuring Unintended Memorization

Having described unintentional memorization in neural net-
works, and demonstrated by empirical case study that it does
sometimes occur, we now describe systematic methods for
assessing the risk of disclosure due to such memorization.

4.1 Notation and Setup
We begin with a definition of log-perplexity that measures the
likelihood of data sequences. Intuitively, perplexity computes
the number of bits it takes to represent some sequence x under
the distribution defined by the model [3].

Definition 1 The log-perplexity of a sequence x is

Pxθ(x1...xn) = − log2 Pr(x1...xn| fθ)

=
n

∑
i=1

(
− log2 Pr(xi| fθ(x1...xi−1))

)
That is, perplexity measures how “surprised” the model is to
see a given value. A higher perplexity indicates the model is
“more surprised” by the sequence. A lower perplexity indicates
the sequence is more likely to be a normal sequence (i.e.,
perplexity is inversely correlated with likelihood).

Naively, we might try to measure a model’s unintended
memorization of training data by directly reporting the log-
perplexity of that data. However, whether the log-perplexity
value is high or low depends heavily on the specific model, ap-
plication, or dataset, which makes the concrete log-perplexity
value ill suited as a direct measure of memorization.

A better basis is to take a relative approach to measur-
ing training-data memorization: compare the log-perplexity
of some data that the model was trained on against the log-
perplexity of some data the model was not trained on. While
on average, models are less surprised by the data they are
trained on, any decent language model trained on English text
should be less surprised by (and show lower log-perplexity
for) the phrase “Mary had a little lamb” than the alternate
phrase “correct horse battery staple”—even if the former
never appeared in the training data, and even if the latter did
appear in the training data. Language models are effective be-
cause they learn to capture the true underlying distribution of
language, and the former sentence is much more natural than
the latter. Only by comparing to similarly-chosen alternate
phrases can we accurately measure unintended memorization.

Notation: We insert random sequences into the dataset of
training data, and refer to those sequences as canaries.1 We
create canaries based on a format sequence that specifies
how the canary sequence values are chosen randomly using
randomness r, from some randomness space R . In format
sequences, the “holes” denoted as are filled with random
values; for example, the format s = “The random number
is ” might be filled with a specific, random
number, if R was space of digits 0 to 9.

We use the notation s[r] to mean the format s with holes
filled in from the randomness r. The canary is selected by
choosing a random value r̂ uniformly at random from the
randomness space. For example, one possible completion
would be to let s[r̂] = “The random number is 281265017”.

1Canaries, as in “a canary in a coal mine.”

270 28th USENIX Security Symposium USENIX Association

Highest Likelihood Sequences Log-Perplexity

The random number is 281265017 14.63
The random number is 281265117 18.56
The random number is 281265011 19.01
The random number is 286265117 20.65
The random number is 528126501 20.88
The random number is 281266511 20.99
The random number is 287265017 20.99
The random number is 281265111 21.16
The random number is 281265010 21.36

Table 1: Possible sequences sorted by Log-Perplexity. The
inserted canary— 281265017—has the lowest log-perplexity.
The remaining most-likely phrases are all slightly-modified
variants, a small edit distance away from the canary phrase.

4.2 The Precise Exposure Metric

The remainder of this section discusses how we can measure
the degree to which an individual canary s[r̂] is memorized
when inserted in the dataset. We begin with a useful definition.

Definition 2 The rank of a canary s[r] is

rankθ(s[r]) =
∣∣{r′ ∈ R : Pxθ(s[r′])≤ Pxθ(s[r])}

∣∣
That is, the rank of a specific, instantiated canary is its index
in the list of all possibly-instantiated canaries, ordered by the
empirical model perplexity of all those sequences.

For example, we can train a new language model on the
PTB dataset, using the same LSTM model architecture as
before, and insert the specific canary s[r̂] =“The random num-
ber is 281265017”. Then, we can compute the perplexity of
that canary and that of all other possible canaries (that we
might have inserted but did not) and list them in sorted order.
Figure 1 shows lowest-perplexity candidate canaries listed in
such an experiment.2 We find that the canary we insert has
rank 1: no other candidate canary s[r′] has lower perplexity.

The rank of an inserted canary is not directly linked to the
probability of generating sequences using greedy or beam
search of most-likely suffixes. Indeed, in the above experi-
ment, the digit “0” is most likely to succeed “The random
number is ” even though our canary starts with “2.” This
may prevent naive users from accidentally finding top-ranked
sequences, but doesn’t prevent recovery by more advanced
search methods, or even by users that know a long-enough
prefix. (Section 8 describes advanced extraction methods.)

While the rank is a conceptually useful tool for discussing
the memorization of secret data, it is computationally expen-
sive, as it requires computing the log-perplexity of all possible

2The results in this list are not affected by the choice of the prefix text,
which might as well have been “any random text.” Section 5 discusses further
the impact of choosing the non-random, fixed part of the canaries’ format.

candidate canaries. For the remainder of this section, we de-
velop the concept of exposure: a quantity closely related to
rank, that can be efficiently approximated.

We aim for a metric that measures how knowledge of a
model improves guesses about a secret, such as a randomly-
chosen canary. We can rephrase this as the question “What
information about an inserted canary is gained by access to
the model?” Thus motivated, we can define exposure as a
reduction in the entropy of guessing canaries.

Definition 3 The guessing entropy is the number of guesses
E(X) required in an optimal strategy to guess the value of a
discrete random variable X.

A priori, the optimal strategy to guess the canary s[r], where
r ∈ R is chosen uniformly at random, is to make random
guesses until the randomness r is found by chance. Therefore,
we should expect to make E(s[r]) = 1

2 |R | guesses before
successfully guessing the value r.

Once the model fθ(·) is available for querying, an improved
strategy is possible: order the possible canaries by their per-
plexity, and guess them in order of decreasing likelihood.
The guessing entropy for this strategy is therefore exactly
E(s[r] | fθ) = rankθ(s[r]). Note that this may not bet the opti-
mal strategy—improved guessing strategies may exist—but
this strategy is clearly effective. So the reduction of work,
when given access to the model fθ(·), is given by

E(s[r])
E(s[r] | fθ)

=
1
2 |R |

rankθ(s[r])
.

Because we are often only interested in the overall scale, we
instead report the log of this value:

log2

[
E(s[r])

E(s[r] | fθ)

]
= log2

[1
2 |R |

rankθ(s[r])

]
= log2 |R |− log2 rankθ(s[r])−1.

To simplify the math in future calculations, we re-scale this
value for our final definition of exposure:

Definition 4 Given a canary s[r], a model with parameters
θ, and the randomness space R , the exposure of s[r] is

exposureθ(s[r]) = log2 |R |− log2 rankθ(s[r])

Note that |R | is a constant. Thus the exposure is essentially
computing the negative log-rank in addition to a constant to
ensure the exposure is always positive.

Exposure is a real value ranging between 0 and log2 |R |.
Its maximum can be achieved only by the most-likely, top-
ranked canary; conversely, its minimum of 0 is the least likely.
Across possibly-inserted canaries, the median exposure is 1.

Notably, exposure is not a normalized metric: i.e., the mag-
nitude of exposure values depends on the size of the search

USENIX Association 28th USENIX Security Symposium 271

space. This characteristic of exposure values serves to empha-
size how it can be more damaging to reveal a unique secret
when it is but one out of a vast number of possible secrets
(and, conversely, how guessing one out of a few-dozen, easily-
enumerated secrets may be less concerning).

4.3 Efficiently Approximating Exposure
We next present two approaches to approximating the expo-
sure metric: the first a simple approach, based on sampling,
and the second a more efficient, analytic approach.

Approximation by sampling: Instead of viewing exposure
as measuring the reduction in (log-scaled) guessing entropy,
it can be viewed as measuring the excess belief that model fθ

has in a canary s[r] over random chance.

Theorem 1 The exposure metric can also be computed as

exposureθ(s[r]) =− log2 Pr
t∈R

[(
Pxθ(s[t])≤ Pxθ(s[r])

)]
Proof:

exposureθ(s[r]) = log2 |R |− log2 rankθ(s[r])

=− log2
rankθ(s[r])
|R |

=− log2

(
|{t ∈ R : Pxθ(s[t])≤ Pxθ(s[r])}|

|R |

)
=− log2 Pr

t∈R

[(
Pxθ(s[t])≤ Pxθ(s[r])

)]
This gives us a method to approximate exposure: randomly

choose some small space S ⊂ R (for |S | � |R |) and then
compute an estimate of the exposure as

exposureθ(s[r])≈− log2 Pr
t∈S

[(
Pxθ(s[t])≤ Pxθ(s[r])

)]
However, this sampling method is inefficient if only very

few alternate canaries have lower entropy than s[r], in which
case |S| may have to be large to obtain an accurate estimate.

Approximation by distribution modeling: Using random
sampling to estimate exposure is effective when the rank of
a canary is high enough (i.e. when random search is likely
to find canary candidates s[t] where Pxθ(s[t]) ≤ Pxθ(s[r])).
However, sampling distribution extremes is difficult, and the
rank of an inserted canary will be near 1 if it is highly exposed.

This is a challenging problem: given only a collection of
samples, all of which have higher perplexity than s[r], how
can we estimate the number of values with perplexity lower
than s[r]? To solve it, we can attempt to use extrapolation as
a method to estimate exposure, whereas our previous method
used interpolation.

To address this difficulty, we make the simplifying assump-
tion that the perplexity of canaries follows a computable un-
derlying distribution ρ(·) (e.g., a normal distribution). To

50 100 150 200
Log-Perplexity of candidate s[r]

0

1

2

3

4

5

6

Fr
e
q
u
e
n
cy

 (
×

1
0

4
)

Skew-normal
density function

Measured
distribution

Figure 3: Skew normal fit to the measured perplexity distri-
bution. The dotted line indicates the log-perplexity of the
inserted canary s[r̂], which is more likely (i.e., has lower per-
plexity) than any other candidate canary s[r′].

approximate exposureθ(s[r]), first observe

Pr
t∈R

[
Pxθ(s[t])≤ Pxθ(s[r])

]
= ∑

v≤Pxθ(s[r])
Pr

t∈R

[
Pxθ(s[t]) = v

]
.

Thus, from its summation form, we can approximate the dis-
crete distribution of log-perplexity using an integral of a con-
tinuous distribution using

exposureθ(s[r])≈− log2

∫ Pxθ(s[r])

0
ρ(x)dx

where ρ(x) is a continuous density function that models the
underlying distribution of the perplexity. This continuous
distribution must allow the integral to be efficiently com-
puted while also accurately approximating the distribution
Pr[Pxθ(s[t]) = v].

The above approach is an effective approximation of the
exposure metric. Interestingly, this estimated exposure has no
upper bound, even though the true exposure is upper-bounded
by log2 |R |, when the inserted canary is the most likely. Use-
fully, this estimate can thereby help discriminate between
cases where a canary is only marginally the most likely, and
cases where the canary is by the most likely.

In this work, we use a skew-normal distribution [39] with
mean µ, standard deviation σ2, and skew α to model the distri-
bution ρ. Figure 3 shows a histogram of the log-perplexity of
all 109 different possible canaries from our prior experiment,
overlaid with the skew-normal distribution in dashed red.

We observed that the approximating skew-normal distribu-
tion almost perfectly matches the discrete distribution. No sta-
tistical test can confirm that two distributions match perfectly;
instead, tests can only reject the hypothesis that the distribu-
tions are the same. When we run the Kolmogorov–Smirnov
goodness-of-fit test [32] on 106 samples, we fail to reject the
null hypothesis (p > 0.1).

272 28th USENIX Security Symposium USENIX Association

5 Exposure-Based Testing Methodology

We now introduce our testing methodology which relies on
the exposure metric. The approach is simple and effective: we
have used it to discover properties about neural network mem-
orization, test memorization on research datasets, and test
memorization of Google’s Smart Compose [29], a production
model trained on billions of sequences.

The purpose of our testing methodology is to allow prac-
titioners to make informed decisions based upon how much
memorization is known to occur under various settings. For
example, with this information, a practitioner might decide it
will be necessary to apply sound defenses (Section 9).

Our testing strategy essentially repeats the above experi-
ment where we train with artificially-inserted canaries added
to the training data, and then use the exposure metric to assess
to what extent the model has memorized them. Recall that
the reason we study these fixed-format out-of-distribution
canaries is that we are focused on unintended memorization,
and any memorization of out-of-distribution values is by defi-
nition unintended and orthogonal to the learning task.

If, instead, we inserted in-distribution phrases which were
helpful for the learning task, then it would be perhaps even
desirable for these phrases to be memorized by the machine-
learning model. By inserting out-of-distribution phrases
which we can guarantee are unrelated to the learning task, we
can measure a models propensity to unintentionally memorize
training data in a way that is not useful for the final task.

Setup: Before testing the model for memorization, we must
first define a format of the canaries that we will insert. In
practice, we have found that the exact choice of format does
not significantly impact results.

However, the one choice that does have a significant im-
pact on the results is randomness: it is important to choose
a randomness space that matches the objective of the test to
be performed. To approximate worst-case bounds, highly out-
of-distribution canaries should be inserted; for more average-
case bounds, in-distribution canaries can be used.

Augment the Dataset: Next, we instantiate each format se-
quence with a concrete (randomly chosen) canary by replac-
ing the holes with random values, e.g., words or numbers.
We then take each canary and insert it into the training data.
In order to report detailed metrics, we can insert multiple dif-
ferent canaries a varying number of times. For example, we
may insert some canaries canaries only once, some canaries
tens of times, and other canaries hundreds or thousands of
times. This allows us to establish the propensity of the model
to memorize potentially sensitive training data that may be
seen a varying number of times during training.

Train the Model: Using the same setup as will be used for
training the final model, train a test model on the augmented
training data. This training process should be identical: ap-
plying the same model using the same optimizer for the same

number of iterations with the same hyper-parameters. As we
will show, each of these choices can impact the amount of
memorization, and so it is important to test on the same setup
that will be used in practice.

Report Exposure: Finally, given the trained model, we apply
our exposure metric to test for memorization. For each of
the canaries, we compute and report its exposure. Because
we inserted the canaries, we will know their format, which
is needed to compute their exposure. After training multiple
models and inserted the same canaries a different number
of times in each model, it is useful to plot a curve showing
the exposure versus the number of times that a canary has
been inserted. Examples of such reports are plotted in both
Figure 1, shown earlier, and Figure 4, shown on the next page.

6 Experimental Evaluation

This section applies our testing methodology to several model
architectures and datasets in order to (a) evaluate the efficacy
of exposure as a metric, and (b) demonstrate that unintended
memorization is common across these differences.

6.1 Smart Compose: Generative Email Model

As our largest study, we apply our techniques to Smart Com-
pose [29], a generative word-level machine-learning model
that is trained on a text corpus comprising of the personal
emails of millions of users. This model has been commer-
cially deployed for the purpose of predicting sentence com-
pletion in email composition. The model is in current active
use by millions of users, each of which receives predictions
drawn not (only) from their own emails, but the emails of
all the users’ in the training corpus. This model is trained on
highly sensitive data and its output cannot reveal the contents
of any individual user’s email.

This language model is a LSTM recurrent neural network
with millions of parameters, trained on billions of word se-
quences, with a vocabulary size of tens of thousands of words.
Because the training data contains potentially sensitive infor-
mation, we applied our exposure-based testing methodology
to measure and ensure that only common phrases used by
multiple users were learned by the model. By appropriately
interpreting the exposure test results and limiting the amount
of information drawn from any small set of users, we can
empirically ensure that the model is never at risk of exposing
any private word sequences from any individual user’s emails.

As this is a word-level language model, our canaries are
seven (or five) randomly selected words in two formats. In
both formats the first two and last two words are known con-
text, and the middle three (or one) words vary as the random-
ness. Even with two or three words from a vocabulary of
tens of thousands, the randomness space R is large enough
to support meaningful exposure measurements.

USENIX Association 28th USENIX Security Symposium 273

0 2000 4000 6000 8000 10000
Number of Insertions

2

4

6

8

E
x
p

o
su

re

Length-5 Sequence

Length-7 Sequence

Figure 4: Exposure plot for our commercial word-level lan-
guage model. Even with a canary inserted 10,000 times, ex-
posure reaches only 10: the model is 1,000× more likely to
generate this canary than another (random) possible phrase,
but it is still not a very likely output, let alone the most likely.

In more detail, we inserted multiple canaries in the training
data between 1 and 10,000 times (this does not impact model
accuracy), and trained the full model on 32 GPUs over a bil-
lion sequences. Figure 4 contains the results of this analysis.

(Note: The measured exposure values are lower than in
most of other experiments due to the vast quantity of training
data; the model is therefore exposed to the same canary less
often than in models trained for a large number of epochs.)

When we compute the exposure of each canary, we find
that when secrets are very rare (i.e., one in a billion) the model
shows no signs of memorization; the measured exposure is
negligible. When the canaries are inserted at higher frequen-
cies, exposure begins to increase so that the inserted canaries
become with 1000× more likely than non-inserted canaries.
However, even this higher exposure doesn’t come close to al-
lowing discovery of canaries using our extraction algorithms
(see Section 8), let alone accidental discovery.

Informed by these results, limits can be placed on the inci-
dence of unique sequences and sampling rates, and clipping
and differential-privacy noise (see Section 9.3) can be added
to the training process, such that privacy is empirically pro-
tected by eliminating any measured signal of exposure.

6.2 Word-Level Language Model
Next we apply our technique to one of the current state-of-
the-art world-level language models [35]. We train this model
on WikiText-103 dataset [34], a 500MB cleaned subset of
English Wikipedia. We do not alter the open-source imple-
mentation provided by the authors; we insert a canary five
times and train the model with different hyperparameters. We
choose as a format a sequence of eight words random selected
from the space of any of the 267,735 different words in the
model’s vocabulary (i.e., that occur in the training dataset).

We train many models with different hyperparameters and
report in Figure 5 the utility as measured by test perplexity

70 75 80 85 90 95
Perplexity (lower means higher utility)

50

100

150

200

250

E
x
p
o
su

re
 (

le
ss

 m
e
m

o
ri

za
ti

o
n
 i
f

lo
w

e
r)

Figure 5: The results of applying our testing methodology to a
word-level language model [35] inserting a canary five times.
An exposure of 144 indicates extraction should be possible.
We train many models each with different hyperparameters
and find vast differences in the level of memorization. The
highest utility model memorizes the canary to such a degree
it can be extracted. Other models that reach similar utility
exhibit less memorization. A practitioner would prefer one of
the models on the Pareto frontier, which we highlight.

(i.e., the exponential of the model loss) against the measured
exposure for the inserted canary. While memorization and
utility are not highly correlated (r=-0.32), this is in part due
to the fact that many choices of hyperparameters give poor
utility. We show the Pareto frontier with a solid line.

6.3 Character-Level Language Model

While previously we applied a small character-level model
to the Penn Treebank dataset and measured the exposure of
a random number sequence, we now confirm that the results
from Section 6.2 hold true for a state-of-the-art character-level
model. To verify this, we apply the character-level model from
[35] to the PTB dataset.

As expected, based on our experiment in Section 3, we
find that a character model model is less prone to memoriz-
ing a random sequence of words than a random sequence
of numbers. However, the character-level model still does
memorize the inserted random words: it reaches an exposure
of 60 (insufficient to extract) after 16 insertions, in contrast
to the word-models from the previous section that showed
exposures much higher than this at only 5 insertions.

6.4 Neural Machine Translation

In addition to language modeling, another common use of
generative sequence models is Neural Machine Translation
[3]. NMT is the process of applying a neural network to
translate from one language to another. We demonstrate that
unintentional memorization is also a concern on this task, and

274 28th USENIX Security Symposium USENIX Association

0 5 10 15
Number of Insertions

0

10

20

30

E
x
p
o
su

re

Figure 6: Exposure of a canary inserted in a Neural Machine
Translation model. When the canary is inserted four times or
more, it is fully memorized.

because the domain is different, NMT also provides us with a
case study for designing a new perplexity measure.

NMT receives as input a vector of words xi in one language
and outputs a vector of words yi in a different language. It
achieves this by learning an encoder e :~x→ Rk that maps
the input sentence to a “thought vector” that represents the
meaning of the sentence. This k-dimensional vector is then
fed through a decoder d : Rk →~y that decodes the thought
vector into a sentence of the target language.3

Internally, the encoder is a recurrent neural network that
maintains a state vector and processes the input sequence
one word at a time. The final internal state is then returned
as the thought vector v ∈ Rk. The decoder is then initialized
with this thought vector, which the decoder uses to predict
the translated sentence one word at a time, with every word it
predicts being fed back in to generate the next.

We take our NMT model directly from the TensorFlow
Model Repository [11]. We follow the steps from the docu-
mentation to train an English-Vietnamese model, trained on
100k sentences pairs. We add to this dataset an English canary
of the format “My social security number is - -

” and a corresponding Vietnamese phrase of the same
format, with the English text replaced with the Vietnamese
translation, and insert this canary translation pair.

Because we have changed problem domains, we must de-
fine a new perplexity measure. We feed the initial source
sentence~x through the encoder to compute the thought vector.
To compute the perplexity of the source sentence mapping to
the target sentence~y, instead of feeding the output of one layer
to the input of the next, as we do during standard decoding, we
instead always feed yi as input to the decoder’s hidden state.
The perplexity is then computed by taking the log-probability
of each output being correct, as is done on word models. Why
do we make this change to compute perplexity? If one of
the early words is guessed incorrectly and we feed it back in

3See [51] for details that we omit for brevity.

0 1 2 3
Epoch

2.5

5.0

7.5

10.0

12.5

E
x
p
o
su
re

Exposure

Figure 7: Exposure as a function of training time. The expo-
sure spikes after the first mini-batch of each epoch (which
contains the artificially inserted canary), and then falls overall
during the mini-batches that do not contain it.

to the next layer, the errors will compound and we will get
an inaccurate perplexity measure. By always feeding in the
correct output, we can accurately judge the perplexity when
changing the last few tokens. Indeed, this perplexity definition
is already implemented in the NMT code where it is used to
evaluate test accuracy. We re-purpose it for performing our
memorization evaluation.

Under this new perplexity measure, we can now compute
the exposure of the canary. We summarize these results in
Figure 6. By inserting the canary only once, it already occurs
1000× more likely than random chance, and after inserting
four times, it is completely memorized.

7 Characterizing Unintended Memorization

While the prior sections clearly demonstrate that unintended
memorization is a problem, we now investigate why and how
models unintentionally memorize training data by applying
the testing methodology described above.

Experimental Setup: Unless otherwise specified, the exper-
iments in this section are performed using the same LSTM
character-level model discussed in Section 3 trained on the
PTB dataset with a single canary inserted with the format “the
random number is ” where the maximum
exposure is log2(109)≈ 30.

7.1 Memorization Throughout Training

To begin we apply our testing methodology to study a simple
question: how does memorization progress during training?

We insert the canary near the beginning of the Penn Tree-
bank dataset, and disable shuffling, so that it occurs at the
same point within each epoch. After every mini-batch of train-

USENIX Association 28th USENIX Security Symposium 275

0 10 20 30
Epochs of training

0

5

10

15

20

25

30

E
st

im
a
te

d
 e

x
p
o
su

re
 o

f
ca

n
a
ry

1.0

1.5

2.0

2.5

3.0

C
ro

ss
-E

n
tr

o
p
y
 L

o
ssExposure

Testing Loss

Training Loss

Figure 8: Comparing training and testing loss to exposure
across epochs on 5% of the PTB dataset . Testing loss reaches
a minimum at 10 epochs, after which the model begins to over-
fit (as seen by training loss continuing to decrease). Exposure
also peaks at this point, and decreases afterwards.

ing, we estimate the exposure of the canary. We then plot the
exposure of this canary as the training process proceeds.

Figure 7 shows how unintended memorization begins to
occur over the first three epochs of training on 10% of the
training data. Each time the model trains on a mini-batch that
contains the canary, the exposure spikes. For the remaining
mini-batches (that do not contain the canary) the exposure
randomly fluctuates and sometimes decreases due to the ran-
domness in stochastic gradient descent.

It is also interesting to observe that memorization begins
to occur after only one epoch of training: at this point, the
exposure of the canary is already 3, indicating the canary is
23 = 8× more likely to occur than another random sequence
chosen with the same format. After three epochs, the exposure
is 8: access to the model reduces the number of guesses that
would be needed to guess the canary by over 100×.

7.2 Memorization versus Overtraining
Next, we turn to studying how unintended memorization re-
lates to overtraining. Recall we use the word overtraining to
refer to a form of overfitting as a result of training too long.

Figure 8 plots how memorization occurs during training
on a sample of 5% of the PTB dataset, so that it quickly
overtrains. The first few epochs see the testing loss drop
rapidly, until the minimum testing loss is achieved at epoch
10. After this point, the testing loss begins to increase—the
model has overtrained.

Comparing this to the exposure of the canary, we find an
inverse relationship: exposure initially increases rapidly, un-
til epoch 10 when the maximum amount of memorization
is achieved. Surprisingly, the exposure does not continue in-
creasing further, even though training continues. In fact, the

estimated exposure at epoch 10 is actually higher than the es-
timated exposure at epoch 40 (with p-value p < .001). While
this is interesting, in practice it has little effect: the rank of
this canary is 1 for all epochs after 10.

Taken together, these results are intriguing. They indicate
that unintended memorization seems to be a necessary com-
ponent of training: exposure increases when the model is
learning, and does not when the model is not. This result con-
firms one of the findings of Tishby and Schwartz-Ziv [42] and
Zhang et al. [56], who argue that neural networks first learn
to minimize the loss on the training data by memorizing it.

7.3 Additional Memorization Experiments
Appendix A details some further memorization experiments.

8 Validating Exposure with Extraction

How accurate is the exposure metric in measuring memo-
rization? We study this question by developing an extraction
algorithm that we show can efficiently extract training data
from a model when our exposure metric indicates this should
be possible (i.e., when the exposure is greater than log2 |R |).

8.1 Efficient Extraction Algorithm

Proof of concept brute-force search: We begin with a sim-
ple brute-force extraction algorithm that enumerates all possi-
ble sequences, computes their perplexity, and returns them in
order starting from the ones with lowest perplexity. Formally,
we compute arg minr∈R Pxθ(s[r]). While this approach might
be effective at validating our exposure metric accurately cap-
tures what it means for a sequence to be memorized, it is
unable to do so when the space R is large. For example,
brute-force extraction over the space of credit card numbers
(1016) would take 4,100 commodity GPU-years.

Shortest-path search: In order to more efficiently perform
extraction, we introduce an improved search algorithm, a mod-
ification of Dijkstra’s algorithm, that in practice reduces the
complexity by several orders of magnitude.

To begin, observe it is possible to organize all possible
partial strings generated from the format s as a weighted
tree, where the empty string is at the root. A partial string
b is a child of a if b expands a by one token t (which we
denote by b = a@t). We set the edge weight from a to b to
− logPr(t| fθ(a)) (i.e., the negative log-likelihood assigned
by the model to the token t following the sequence a).

Leaf nodes on the tree are fully-completed sequences. Ob-
serve that the total edge weight from the root x1 to a leaf node
xn is given by

∑− log2 Pr(xi| fθ(x1...xi−1))

= Pxθ(x1...xn) (By Definition 1)

276 28th USENIX Security Symposium USENIX Association

a

abaa

b

bbba
0.1 0.9 0.5 0.5

0.4 0.6

perplexity=1.47 perplexity=1.73 perplexity=1.73perplexity=4.64

Figure 9: An example to illustrate the shortest path search
algorithm. Each node represents one partially generated string.
Each edge denotes the conditional probability Pr(xi|x1...xi−1).
The path to the leaf with minimum perplexity is highlighted,
and the log-perplexity is depicted below each leaf node.

Therefore, finding s[r] minimizing the cost of the path is equiv-
alent to minimizing its log-perplexity. Figure 9 presents an
example to illustrate the idea. Thus, finding the sequence with
lowest perplexity is equivalent to finding the lightest path
from the root to a leaf node.

Concretely, we implement a shortest-path algorithm di-
rectly inspired by Dijkstra’s algorithm [10] which computes
the shortest distance on a graph with non-negative edge
weights. The algorithm maintains a priority queue of nodes on
the graph. To initialize, only the root node (the empty string)
is inserted into the priority queue with a weight 0. In each
iteration, the node with the smallest weight is removed from
the queue. Assume the node is associated with a partially gen-
erated string p and the weight is w. Then for each token t such
that p@t is a child of p, we insert the node p@t into the pri-
ority queue with w− logPr(t| fθ(p)) where− logPr(t| fθ(p))
is the weight on the edge from p to p@t.

The algorithm terminates once the node pulled from the
queue is a leaf (i.e., has maximum length). In the worst-case,
this algorithm may enumerate all non-leaf nodes, (e.g., when
all possible sequences have equal perplexity). However, em-
pirically, we find shortest-path search enumerate from 3 to 5
orders of magnitude fewer nodes (as we will show).

During this process, the main computational bottleneck
is computing the edge weights − logPr(t| fθ(p)). A modern
GPU can simultaneously evaluate a neural network on many
thousand inputs in the same amount of time as it takes to
evaluate one. To leverage this benefit, we pull multiple nodes
from the priority queue at once in each iteration, and compute
all edge weights to their children simultaneously. In doing so,
we observe a 50× to 500× reduction in overall run-time.

Applying this optimization violates the guarantee that the
first leaf node found is always the best. We compensate by
counting the number of iterations required to find the first full-
length sequence, and continuing that many iterations more be-
fore stopping. We then sort these sequences by log-perplexity
and return the lowest value. While this doubles the number
of iterations, each iteration is two orders of magnitude faster,
and this results in a substantial increase in performance.

20 25 30 35 40
Exposure of inserted canary

103

104

105

106

107

II
te

ra
ti

o
n
s

to
 e

x
tr

a
ct

 c
a
n
a
ry

Figure 10: Number of iterations the shortest-path search re-
quires before an inserted canary is returned, with |R |= 230.
At exposure 30, when the canary is fully memorized, our al-
gorithm requires over four orders of magnitude fewer queries
compared to brute force.

8.2 Efficiency of Shortest-Path Search
We begin by again using our character level language model
as a baseline, after inserting a single 9-digit random canary to
the PTB dataset once. This model completely memorizes the
canary: we find its exposure is over 30, indicating it should
be extractable. We verify that it actually does have the lowest
perplexity of all candidates canaries by enumerating all 109.

Shortest path search: We apply our shortest-path algorithm
to this model and find that it takes only 105 total queries: four
orders of magnitude fewer than a brute-force approach takes.

Perhaps as is expected, we find that the shortest-path al-
gorithm becomes more efficient when the exposure of the
canary is higher. We train multiple different models contain-
ing a canary to different final exposure values (by varying
model capacity and number of training epochs). Figure 10
shows the exposure of the canary versus the number of it-
erations the shortest path search algorithm requires to find
it. The shortest-path search algorithm reduces the number of
values enumerated in the search from 109 to 104 (a factor
of 100,000× reduction) when the exposure of the inserted
phrase is greater than 30.

8.3 High Exposure Implies Extraction
Turning to the main purpose of our extraction algorithm, we
verify that it actually means something when the exposure of
a sequence is high. The underlying hypothesis of our work is
that exposure is a useful measure for accurately judging when
canaries have been memorized. We now validate that when
the exposure of a phrase is high, we can extract the phrase
from the model (i.e., there are not many false positives, where
exposure is high but we can’t extract it). We train multiple
models on the PTB dataset inserting a canary (drawn from a
randomness space |R | ≈ 230) a varying number of times with

USENIX Association 28th USENIX Security Symposium 277

0 10 20 30 40
Exposure

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

b
a
b

ili
ty

 e
x
tr

a
ct

io
n
 s

u
cc

e
e
d

s Smoothed success rate

Individual trial
success rate

Figure 11: Extraction is possible when the exposure indicates
it should be possible: when |R |= 230, at an exposure of 30
extraction quickly shifts from impossible to possible.

different training regimes (but train all models to the same
final test accuracy). We then measure exposure on each of
these models and attempt to extract the inserted canary.

Figure 11 plots how exposure correlates with the success
of extraction: extraction is always possible when exposure is
greater than 33 but never when exposure is less than 31.

8.4 Enron Emails: Memorization in Practice

It is possible (although unlikely) that we detect memorization
only because we have inserted our canaries artificially. To
confirm this is not the case, we study a dataset that has many
naturally-occurring secrets already in the training data. That
is to say, instead of running experiments on data with the ca-
naries we have artificially inserted and treated as “secrets”, we
run experiments on a dataset where secrets are pre-existing.

The Enron Email Dataset consists of several hundred thou-
sand emails sent between employees of Enron Corporation,
and subsequently released by the Federal Energy Regulatory
Commission in its investigation of the company. The com-
plete dataset consists of the full emails, with attachments.
Many users sent highly sensitive information in these emails,
including social security numbers and credit card numbers.

We pre-process this dataset by removing all attachments,
and keep only the body of the email. We remove the text of the
email that is being responded to, and filter out automatically-
generated emails and emails sent to the entire company. We
separate emails by sender, ranging from 1.7MB to 5.6MB
(about the size of the PTB dataset) and train one character-
level language model per user who has sent at least one secret.
The language model we train is again a 2-layer LSTM, how-
ever to model the more complex nature of writing we increase
the number of units in each layer to 1024. We again train to
minimum validation loss.

We summarize our results in Table 2. Three of these secrets
(that pre-exist in the data) are memorized to a degree that

User Secret Type Exposure Extracted?

A CCN 52 X

B SSN 13

SSN 16
C SSN 10

SSN 22

D SSN 32 X

F SSN 13

CCN 36
G CCN 29

CCN 48 X

Table 2: Summary of results on the Enron email dataset. Three
secrets are extractable in < 1 hour; all are heavily memorized.

they can be extracted by our shortest-path search algorithm.
When we run our extraction algorithm locally, it requires
on the order of a few hours to extract the credit card and
social security numbers. Note that it would be unfair to draw
from this that an actual attack would only take a few hours:
this local attack can batch queries to the model and does not
include any remote querying in the run-time computation.

9 Preventing Unintended Memorization

As we have shown, neural networks quickly memorize secret
data. This section evaluates (both the efficacy and impact
on accuracy) three potential defenses against memorization:
regularization, sanitization, and differential privacy.

9.1 Regularization

It might be reasonable to assume that unintended memoriza-
tion is due to the model overtraining to the training data. To
show this is not the case, we apply three state-of-the-art regu-
larization approaches (weight decay [28], dropout [45], and
quantization [25]) that help prevent overtraining (and overfit-
ting) and find that none of these can prevent the canaries we
insert from being extracted by our algorithms.

9.1.1 Weight Decay

Weight decay [28] is a traditional approach to combat over-
training. During training, an additional penalty is added to the
loss of the network that penalizes model complexity.

Our initial language 600k parameters and was trained on
the 5MB PTB dataset. It initially does not overtrain (because it
does not have enough capacity). Therefore, when we train our
model with weight decay, we do not observe any improvement
in validation loss, or any reduction in memorization.

278 28th USENIX Security Symposium USENIX Association

In order to directly measure the effect of weight decay
on a model that does overtrain, we take the first 5% of the
PTB dataset and train our language model there. This time
the model does overtrain the dataset without regularization.
When we add L2 regularization, we see less overtraining occur
(i.e., the model reaches a lower validation loss). However, we
observe no effect on the exposure of the canary.

9.1.2 Dropout

Dropout [45] is a regularization approach proposed that has
been shown to effectively prevent overtraining in neural net-
works. Again, dropout does not help with the original model
on the full dataset (and does not inhibit memorization).

We repeat the experiment above by training on 5% of the
data, this time with dropout. We vary the probability to drop a
neuron from 0% to 90%, and train ten models at each dropout
rate to eliminate the effects of noise.

At dropout rates between 0% and 20%, the final test accu-
racy of the models are comparable (Dropout rates greater than
30% reduce test accuracy on our model). We again find that
dropout does not statistically significantly reduce the effect
of unintended memorization.

9.1.3 Quantization

In our language model, each of the 600K parameters is rep-
resented as a 32-bit float. This puts the information theoretic
capacity of the model at 2.4MB, which is larger than the
1.7MB size of the compressed PTB dataset. To demonstrate
the model is not storing a complete copy of the training data,
we show that the model can be compressed to be much smaller
while maintaining the same exposure and test accuracy.

To do this, we perform weight quantization [25]: given a
trained network with weights θ, we force each weight to be
one of only 256 different values, so each parameter can be
represented in 8 bits. As found in prior work, quantization
does not significantly affect validation loss: our quantized
model achieves a loss of 1.19, compared to the original loss
of 1.18. Additionally, we find that the exposure of the inserted
canary does not change: the inserted canary is still the most
likely and is extractable.

9.2 Sanitization
Sanitization is a best practice for processing sensitive, private
data. For example, we may construct blacklists and filter out
sentences containing what may be private information from
language models, or may remove all numbers from a model
trained where only text is expected. However, one can not
hope to guarantee that all possible sensitive sequences will be
found and removed through such black-lists (e.g., due to the
proliferation of unknown formats or typos).

We attempted to construct an algorithm that could auto-
matically identify potential secrets by training two models

on non-overlapping subsets of training data and removing
any sentences where the perplexity between the two models
disagreed. Unfortunately, this style of approach missed some
secrets (and is unsound if the same secret is inserted twice).

While sanitization is always a best practice and should be
applied at every opportunity, it is by no means a perfect de-
fense. Black-listing is never a complete approach in security,
and so we do not consider it to be effective here.

9.3 Differential Privacy

Differential privacy [12, 14, 15] is a property that an algorithm
can satisfy which bounds the information it can leak about its
inputs. Formally defined as follows.

Definition 5 A randomized algorithm A operating on a
dataset D is (ε,δ)-differentially private if

Pr[A(D) ∈ S]≤ exp(ε) ·Pr[A(D ′) ∈ S]+δ

for any set S of possible outputs of A , and any two data sets
D,D ′ that differ in at most one element.

Intuitively, this definition says that when adding or remov-
ing one element from the input data set, the output distribu-
tion of a differentially private algorithm does not change by
much (i.e., by more than an a factor exponentially small in ε).
Typically we set ε = 1 and δ < |X |−1 to give strong privacy
guarantees. Thus, differential privacy is a desirable property
to defend against memorization. Consider the case where D
contains one occurrence of some secret training record x, and
D ′ = D −{x}. Imprecisely speaking, the output model of
a differentially private training algorithm running over D,
which contains the secret, must be similar to the output model
trained from D ′, which does not contain the secret. Thus, such
a model can not memorize the secret as completely.

We applied the differentially-private stochastic gradient de-
scent algorithm (DP-SGD) from [1] to verify that differential
privacy is an effective defense that prevents memorization. We
used the initial, open-source code for DP-SGD4 to train our
character-level language model from Section 3. We slightly
modified this code to adapt it to recurrent neural networks
and improved its baseline performance by replacing the plain
SGD optimizer with an RMSProp optimizer, as it often gives
higher accuracy than plain SGD [47].

The DP-SGD of [1] implements differential privacy by clip-
ping the per-example gradient to a max norm and carefully
adding Gaussian noise. Intuitively, if the added noise matches
the clipping norm, every single, individual example will be
masked by the noise, and cannot affect the weights of the net-
work by itself. As more noise is added, relative to the clipping
norm, the more strict the ε upper-bound on the privacy loss
that can be guaranteed.

4A more modern version is at https://github.com/tensorflow/privacy/.

USENIX Association 28th USENIX Security Symposium 279

https://github.com/tensorflow/privacy/

Test Estimated Extraction
Optimizer ε Loss Exposure Possible?

W
ith

D
P

RMSProp 0.65 1.69 1.1
RMSProp 1.21 1.59 2.3
RMSProp 5.26 1.41 1.8
RMSProp 89 1.34 2.1
RMSProp 2×108 1.32 3.2
RMSProp 1×109 1.26 2.8
SGD ∞ 2.11 3.6

N
o

D
P

SGD N/A 1.86 9.5
RMSProp N/A 1.17 31.0 X

Table 3: The RMSProp models trained with differential pri-
vacy do not memorize the training data and always have lower
testing loss than a non-private model trained using standard
SGD techniques. (Here, ε = ∞ indicates the moments accoun-
tant returned an infinite upper bound on ε.)

We train seven differentially private models using various
values of ε for 100 epochs on the PTB dataset augmented
with one canary inserted. Training a differentially private
algorithm is known to be slower than standard training; our
implementation of this algorithm is 10−100× slower than
standard training. For computing the (ε,δ) privacy budget
we use the moments accountant introduced in [1]. We set
δ = 10−9 in each case. The gradient is clipped by a threshold
L = 10.0. We initially evaluate two different optimizers (the
plain SGD used by authors of [1] and RMSProp), but focus
most experiments on training with RMSProp as we observe
it achieves much better baseline results than SGD5. Table 3
shows the evaluation results.

The differentially-private model with highest utility (the
lowest loss) achieves only 10% higher test loss than the base-
line model trained without differential privacy. As we de-
crease ε to 1.0, the exposure drops to 1, the point at which
this canary is no more likely than any other. This experimen-
tally verifies what we already expect to be true: DP-RMSProp
fully eliminates the memorization effect from a model. Sur-
prisingly, however, this experiment also show that a little-bit
of carefully-selected noise and clipping goes a long way—as
long as the methods attenuate the signal from unique, secret in-
put data in a principled fashion. Even with a vanishingly-small
amount of noise, and values of ε that offer no meaningful the-
oretical guarantees, the measured exposure is negligible.

Our experience here matches that of some related work.
In particular, other, recent measurement studies have also
found an orders-of-magnitude gap between the empirical,

5We do not perform hyperparameter tuning with SGD or RMSProp. SGD
is known to require extensive tuning, which may explain why it achieves
much lower accuracy (higher loss).

measured privacy loss and the upper-bound ε DP guarantees—
with that gap growing (exponentially) as ε becomes very
large [26]. Also, without modifying the training approach,
improved proof techniques have been able to improve guaran-
tees by orders of magnitude, indicating that the analytic ε is
not a tight upper bound. Of course, these improved proof tech-
niques often rely on additional (albeit realistic) assumptions,
such as that random shuffling can be used to provide unlinka-
bility [16] or that the intermediate model weights computed
during training can be hidden from the adversary [17]. Our ε

calculation do not utilize these improved analysis techniques.

10 Related Work and Conclusions

There has been a significant amount of related work in the
field of privacy and machine learning.

Membership Inference. Prior work has studied the privacy
implications of training on private data. Given a neural net-
work f (·) trained on training data X , and an instance x, it is
possible to construct a membership inference attack [41] that
answers the question “Is x a member of X ?”.

Exposure can be seen as an improvement that quantifies
how much memorization has occurred (and not just if it has).
We also show that given only access to f (·), we extract an
x so that x ∈ X (and not just infer if it is true that x ∈ X), at
least in the case of generative sequence models.

Membership inference attacks have seen further study, in-
cluding examining why membership inference is possible
[49], or mounting inference attacks on other forms of genera-
tive models [22]. Further work shows how to use membership
inference attacks to determine if a model was trained by us-
ing any individual user’s personal information [44]. These
research directions are highly important and orthogonal to
ours: this paper focuses on measuring unintended memoriza-
tion, and not on any specific attacks or membership inference
queries. Indeed, the fact that membership inference is possible
is also highly related to unintended memorization.

More closely related to our paper is work which produces
measurements for how likely it is that membership inference
attacks will be possible [30] by developing the Differential
Training Privacy metric for cases when differentially private
training will not be possible.

Generalization in Neural Networks. Zhang et al. [56]
demonstrate that standard models can be trained to perfectly
fit completely random data. Specifically, the authors show that
the same architecture that can classify MNIST digits correctly
with 99.5% test accuracy can also be trained on completely
random data to achieve 100% train data accuracy (but clearly
poor test accuracy). Since there is no way to learn to clas-
sify random data, the only explanation is that the model has
memorized all training data labels.

Recent work has shown that overtraining can directly lead
to membership inference attacks [53]. Our work indicates that

280 28th USENIX Security Symposium USENIX Association

even when we do not overtrain our models on the training
data, unintentional memorization remains a concern.

Training data leakages. Ateniese et al. [2] show that if an
adversary is given access to a remote machine learning model
(e.g., support vector machines, hidden Markov models, neural
networks, etc.) that performs better than their own model, it is
often possible to learn information about the remote model’s
training data that can be used to improve the adversary’s own
model. In this work the authors “are not interested in privacy
leaks, but rather in discovering anything that makes classifiers
better than others.” In contrast, we focus only on the problem
of private training data.

Backdoor (intentional) memorization. Song et al. [43]
also study training data extraction. The critical difference
between their work and ours is that in their threat model, the
adversary is allowed to influence the training process and
intentionally back-doors the model to leak training data. They
are able to achieve incredibly powerful attacks as a result of
this threat model. In contrast, in our paper, we show that mem-
orization can occur, and training data leaked, even when there
is not an attacker present intentionally causing a back-door.

Model stealing studies a related problem to training data
extraction: under a black-box threat model, model stealing
attempts to extract the parameters θ (or parameters similar
to them) from a remote model, so that the adversary can
have their own copy [48]. While model extraction is designed
to steal the parameters θ of the remote model, training data
extraction is designed to extract the training data that was used
to generate θ. That is, even if we were given direct access to
θ it is still difficult to perform training data extraction.

Later work extended model-stealing attacks to
hyperparameter-stealing attacks [50]. These attacks
are highly effective, but are orthogonal to the problems we
study in this paper. Related work [38] also makes a similar
argument that it can be useful to steal hyperparameters in
order to mount more powerful attacks on models.

Model inversion [18, 19] is an attack that learns aggregate
statistics of the training data, potentially revealing private
information. For example, consider a face recognition model:
given an image of a face, it returns the probability the input
image is of some specific person. Model inversion constructs
an image that maximizes the confidence of this classifier
on the generated image; it turns out this generated image
often looks visually similar to the actual person it is meant
to classify. No individual training instances are leaked in this
attack, only an aggregate statistic of the training data (e.g.,
what the average picture of a person looks like). In contrast,
our extraction algorithm reveals specific training examples.

Private Learning. Along with the attacks described above,
there has been a large amount of effort spent on training pri-
vate machine learning algorithms. The centerpiece of these
defenses is often differential privacy [1, 7, 12, 14, 15]. Our

analysis in Section 9.3 directly follows this line of work and
we confirm that it empirically prevents the exposure of se-
crets. Other related work [40] studies membership attacks
on differentially private training, although in the setting of a
distributed honest-but-curious server.

Other related work [37] studies how to apply adversarial
regularization to reduce the risk of black-box membership in-
ference attacks, although using different approach than taken
by prior work. We do not study this type of adversarial regu-
larization in this paper, but believe it would be worth future
analysis in follow-up work.

10.1 Limitations and Future Work
This work in this paper represents a practical step towards
measuring unintended memorization in neural networks.
There are several areas where our work is limited in scope:

• Our paper only considers generative models, as they
are models that are likely to be trained on sensitive in-
formation (credit card numbers, names, addresses, etc).
Although, our approach here will apply directly to any
type of model with a defined measure of perplexity, fur-
ther work is required to handle other types of machine-
learning models, such as image classifiers.

• Our extraction algorithm presented here was designed
to validate that canaries with a high exposure actually
correspond to some real notion of the potential to ex-
tract that canary, and by analogy other possible secrets
present in training data. However, this algorithm has as-
sumptions that make it ill-suited to real-world attacks.
To begin, real-world models usually only return the most
likely output, that is, the arg max output. Furthermore,
we assume knowledge of the surrounding context and
possible values of the canary, which may not hold true
in practice.

• Currently, we only make use of the input-output behav-
ior of the model to compute the exposure of sequences.
When performing our testing, we have full white-box ac-
cess including the actual weights and internal activations
of the neural network. This additional information might
be used to develop stronger measures of memorization.

We hope future work will build on ours to develop further met-
rics for testing unintended memorization of unique training
data details in machine-learning models.

10.2 Conclusions
The fact that deep learning models overfit and overtrain to
their training data has been extensively studied [56]. Because
neural network training should minimize loss across all exam-
ples, training must involve a form of memorization. Indeed,

USENIX Association 28th USENIX Security Symposium 281

significant machine learning research has been devoted to
developing techniques to counteract this phenomenon [45].

In this paper we consider the related phenomenon of what
we call unintended memorization: deep learning models (in
particular, generative models) appear to often memorize rare
details about the training data that are completely unrelated
to the intended task while the model is still learning the un-
derlying behavior (i.e., while the test loss is still decreasing).
As we show, traditional approaches to avoid overtraining do
not inhibit unintentional memorization.

Such unintended memorization of rare training details may
raise significant privacy concerns when sensitive data is used
to train deep learning models. Most worryingly, such memo-
rization can happen even for examples that are present only a
handful of times in the training data, especially when those
examples are outliers in the data distribution; this is true even
for language models that make use of state-of-the-art regular-
ization techniques to prevent traditional forms of overfitting
and overtraining.

To date, no good method exists for helping practitioners
measure the degree to which a model may have memorized
aspects of the training data. Towards this end, we develop ex-
posure: a metric which directly quantifies the degree to which
a model has unintentionally memorized training data. We
use exposure as the basis of a testing methodology whereby
we insert canaries (orthogonal to the learning task) into the
training data and measure their exposure. By design, exposure
is a simple metric to implement, often requiring only a few
dozen lines of code. Indeed, our metric has, with little effort,
been applied to construct regression tests for Google’s Smart
Compose [29]: a large industrial language model trained on a
privacy-sensitive text corpus.

In this way, we contribute a technique that can usefully be
applied to aid machine learning practitioners throughout the
training process, from curating the training data, to selecting
the model architecture and hyperparameters, all the way to
extracting meaning from the ε values given by applying the
provably private techniques of differentially private stochastic
gradient descent.

Acknowledgements

We are grateful to Martín Abadi, Ian Goodfellow, Ilya
Mironov, Ananth Raghunathan, Kunal Talwar, and David Wag-
ner for helpful discussion and to Gagan Bansal and the Gmail
Smart Compose team for their expertise. We also thank our
shepherd, Nikita Borisov, and the many reviewers for their
helpful suggestions. This work was supported by National
Science Foundation award CNS-1514457, DARPA award
FA8750-17-2-0091, Qualcomm, Berkeley Deep Drive, and
the Hewlett Foundation through the Center for Long-Term
Cybersecurity. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

References

[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In ACM CCS, 2016.

[2] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Vil-
lani, Domenico Vitali, and Giovanni Felici. Hacking smart machines
with smarter ones: How to extract meaningful data from machine learn-
ing classifiers. International Journal of Security and Networks, 2015.

[3] D Bahdanau, K Cho, and Y Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-
vin. A neural probabilistic language model. JMLR, 2003.

[5] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher.
Quasi-recurrent neural networks. arXiv preprint arXiv:1611.01576,
2016.

[6] Lord Castleton. Review: Amazon’s ‘Patriot’ is the best show of the
year. 2017. Pajiba. http://www.pajiba.com/tv_reviews/review-
amazons-patriot-is-the-best-show-of-the-year.php.

[7] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logis-
tic regression. In NIPS, 2009.

[8] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. NIPS Workshop, 2014.

[9] Joseph Conrad. The Secret Sharer. EBook #220. Project Gutenberg,
2009. Originally published in Harper’s Magazine, 1910.

[10] T Cormen, C Leiserson, R Rivest, and C Stein. Introduction to Algo-
rithms. MIT Press, 2009.

[11] TensorFlow Developers. Tensorflow neural machine translation tutorial.
https://github.com/tensorflow/nmt, 2017.

[12] Irit Dinur and Kobbi Nissim. Revealing information while preserving
privacy. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, 2003.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011.

[14] C Dwork, F McSherry, K Nissim, and A Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, volume 3876, 2006.

[15] Cynthia Dwork. Differential privacy: A survey of results. In Intl. Conf.
on Theory and Applications of Models of Computation, 2008.

[16] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Abhradeep Thakurta. Amplification by shuffling:
From local to central differential privacy via anonymity. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2468–2479. SIAM, 2019.

[17] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
Privacy amplification by iteration. In IEEE FOCS, 2018.

[18] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion
attacks that exploit confidence information and basic countermeasures.
In ACM CCS, 2015.

[19] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end
case study of personalized Warfarin dosing. In USENIX Security
Symposium, pages 17–32, 2014.

[20] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[21] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch SGD: Training ImageNet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

[22] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristo-
faro. LOGAN: Evaluating privacy leakage of generative models using
generative adversarial networks. PETS, 2018.

282 28th USENIX Security Symposium USENIX Association

http://www.pajiba.com/ tv_reviews/review- amazons-patriot-is-the-best-show-of- the-year.php
http://www.pajiba.com/ tv_reviews/review- amazons-patriot-is-the-best-show-of- the-year.php
https://github.com/tensorflow/nmt

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[24] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize
better: Closing the generalization gap in large batch training of neural
networks. arXiv preprint arXiv:1705.08741, 2017.

[25] I Hubara, M Courbariaux, D Soudry, R El-Yaniv, and Y Bengio. Quan-
tized neural networks: Training neural networks with low precision
weights and activations. arXiv preprint arXiv:1609.07061, 2016.

[26] Bargav Jayaraman and David Evans. Evaluating differentially private
machine learning in practice. In USENIX Security Symposium, 2019.

[27] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. ICLR, 2015.

[28] Anders Krogh and John A Hertz. A simple weight decay can improve
generalization. In NIPS, pages 950–957, 1992.

[29] Paul Lambert. Write emails faster with SmartCompose in
Gmail. https://www.blog.google/products/gmail/subject-
write-emails-faster-smart-compose-gmail/.

[30] Yunhui Long, Vincent Bindschaedler, and Carl A Gunter. Towards
measuring membership privacy. arXiv preprint 1712.09136, 2017.

[31] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini.
Building a large annotated corpus of English: The Penn Treebank.
Computational linguistics, 19(2):313–330, 1993.

[32] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association, 46(253), 1951.

[33] Joseph Menn. Amazon posts a tell-all of buying lists. 1999. Los Ange-
les Times. https://www.latimes.com/archives/la-xpm-1999-
aug-26-fi-3760-story.html.

[34] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Reg-
ularizing and optimizing LSTM language models. arXiv preprint
arXiv:1708.02182, 2017.

[35] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An anal-
ysis of neural language modeling at multiple scales. arXiv preprint
arXiv:1803.08240, 2018.

[36] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and
Sanjeev Khudanpur. Recurrent neural network based language model.
In Interspeech, volume 2, page 3, 2010.

[37] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning
with membership privacy using adversarial regularization. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 634–646. ACM, 2018.

[38] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. Towards
reverse-engineering black-box neural networks. In ICLR, 2018.

[39] A O’hagan and Tom Leonard. Bayes estimation subject to uncertainty
about parameter constraints. Biometrika, 63(1), 1976.

[40] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and
Shiho Moriai. Privacy-preserving deep learning: Revisited and en-
hanced. In International Conference on Applications and Techniques
in Information Security, pages 100–110. Springer, 2017.

[41] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In
IEEE Symposium on Security and Privacy, 2017.

[42] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep
neural networks via information. arXiv preprint 1703.00810, 2017.

[43] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine
learning models that remember too much. In ACM CCS, 2017.

[44] Congzheng Song and Vitaly Shmatikov. The natural auditor: How to
tell if someone used your words to train their model. arXiv preprint
arXiv:1811.00513, 2018.

[45] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. JMLR, 15(1):1929–1958, 2014.

[46] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. Neural
network studies. 1. Comparison of overfitting and overtraining. Journal
of Chemical Information and Computer Sciences, 35(5):826–833, 1995.

[47] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning, 4(2):26–31, 2012.

[48] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction APIs. In
USENIX Security Symposium, pages 601–618, 2016.

[49] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei.
Towards demystifying membership inference attacks. arXiv preprint
arXiv:1807.09173, 2018.

[50] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in
machine learning. arXiv preprint arXiv:1802.05351, 2018.

[51] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[52] Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao Zheng, and
Ben Y Zhao. Automated crowdturfing attacks and defenses in online
review systems. ACM CCS, 2017.

[53] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Pri-
vacy risk in machine learning: Analyzing the connection to overfitting.
In 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
pages 268–282. IEEE, 2018.

[54] Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size
to 32k for ImageNet training. arXiv preprint arXiv:1708.03888, 2017.

[55] Matthew D Zeiler. ADADELTA: An adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[56] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gener-
alization. ICLR, 2017.

A Additional Memorization Experiments

A.1 Across Different Architectures
We evaluate different neural network architectures in Table 4
again on the PTB dataset, and find that all of them uninten-
tionally memorize. We observe that the two recurrent neural
networks, i.e., LSTM [23] and GRU [8], demonstrate both
the highest accuracy (lowest loss) and the highest exposure.
Convolutional neural networks’ accuracy and exposure are
both lower. Therefore, through this experiment, we show that
the memorization is not only an issue to one particular archi-
tecture, but appears to be common to neural networks.

A.2 Across Training Strategies
There are various settings for training strategies and tech-
niques that are known to impact the accuracy of the final
model. We briefly evaluate the impact that each of these have
on the exposure of the inserted canary.

Batch Size. In stochastic gradient descent, we train on mini-
batches of multiple examples simultaneously, and average
their gradients to update the model parameters. This is usu-
ally done for computational efficiency—due to their parallel
nature, modern GPUs can evaluate a neural network on many
thousands of inputs simultaneously.

To evaluate the effect of the batch size on memorization,
we train our language model with different capacity (i.e., num-
ber of LSTM units) and batch size, ranging from 16 to 1024.
(At each batch size for each number of units, we train 10

USENIX Association 28th USENIX Security Symposium 283

https://www.blog.google/products/gmail/subject-write-emails-faster-smart-compose-gmail/
https://www.blog.google/products/gmail/subject-write-emails-faster-smart-compose-gmail/
https://www.latimes.com/archives/la-xpm-1999-aug-26-fi-3760-story.html
https://www.latimes.com/archives/la-xpm-1999-aug-26-fi-3760-story.html

Architecture Layers Units Test Loss Exposure

GRU 1 370 1.18 36
GRU 2 235 1.18 37
LSTM 1 320 1.17 38
LSTM 2 200 1.16 35
CNN 1 436 1.29 24
CNN 2 188 1.28 19
CNN 4 122 1.25 22
WaveNet 2 188 1.24 18
WaveNet 4 122 1.25 20

Table 4: Exposure of a canary for various model architec-
tures. All models have 620K (+/- 5K) parameters and so have
the same theoretical capacity. Convolutional neural networks
(CNN/WaveNet) perform less well at the language modeling
task, and memorize the canary to a lesser extent.

models and average the results.) All models with the same
number of units reach nearly identical final training loss and
testing loss. However, the models with larger batch size ex-
hibit significantly more memorization, as shown in Table 5.
This experiment provides additional evidence for prior work
which has argued that using a smaller batch size yields more
generalizable models [24]; however we ensure that all models
reach the same final accuracy.

While this does give a method of reducing memorization
for some models, it unfortunately comes at a significant cost:
training with a small batch can be prohibitively slow, as it
may prevent parallelizing training across GPUs (and servers,
in a decentralized fashion).6

Shuffling, Bagging, and Optimization Method. Given a
fixed batch-size, we examine how other choices impact mem-
orization. We train our model with different optimizers: SGD,
Momentum SGD, RMSprop [47], Adagrad [13], Adadelta
[55], and Adam [27]; and with either shuffling, or bagging
(where minibatches are sampled with replacement).

Not all models converge to the same final test accuracy.
However, when we control for the final test accuracy by taking
a checkpoint from an earlier epoch from those models that
perform better, we found no statistically significant difference
in the exposure of the canary with any of these settings; we
therefore do not include these results.

A.3 Across Formats and Context
We find that the context we are aware of affects our ability to
detect whether or not memorization has occurred.

In our earlier experiments we computed exposure with the
prefix “The random number is” and then placing the random-

6Recent work has begun using even larger batch sizes (e.g., 32K) to train
models orders of magnitude more quickly than previously possible [21, 54].

B
at

ch
Si

ze

Number of LSTM Units
50 100 150 200 250

16 1.7 4.3 6.9 9.0 6.4
32 4.0 6.2 14.4 14.1 14.6
64 4.8 11.7 19.2 18.9 21.3

128 9.9 14.0 25.9 32.5 35.4
256 12.3 21.0 26.4 28.8 31.2
512 14.2 21.8 30.8 26.0 26.0

1024 15.7 23.2 26.7 27.0 24.4

Table 5: Exposure of models trained with varying model sizes
and batch sizes. Models of the same size trained for the same
number of epochs and reached similar test loss. Larger batch
sizes, and larger models, both increase the amount of mem-
orization. The largest memorization in each column is high-
lighted in italics bold, the second largest in bold.

Format Exposure at Epoch
5 10

5.0 6.1
〈s〉 6.3 7.1

〈e〉 5.0 6.8
〈s〉 〈e〉 6.1 7.5

- - 5.1 9.5
- - - - - - - - 5.2 11.1

Table 6: Exposure of canaries when the we are aware of differ-
ent amounts of surrounding context (〈s〉 and 〈e〉 are in practice
unique context characters of five random characters). The ex-
posure is computed at epoch 5 and 10, before the models
completely memorize the inserted canary.

ness as a suffix. What if instead we knew a suffix, and the
randomness was a prefix? Alternatively, what if the random-
ness had a unique structure (e.g., SSNs have dashes)?

We find that the answer is yes: additional knowledge about
the format of the canary increases our ability to detect it was
memorized. To show this, we study different insertion formats,
along with the exposure of the given canary after 5 and 10
epochs of training in Table 6, averaged across ten models
trained with each of the formats.

For the first four rows of Table 6, we use the same model,
but compute the exposure using different levels of context.
This ensures that it is only our ability to detect exposure that
changes. For the remaining two rows, because the format has
changed, we train separate models. We find that increasing the
available context also increases the exposure, especially when
inner context is available; this additional context becomes
increasingly important as training proceeds.

284 28th USENIX Security Symposium USENIX Association

Improving Robustness of ML Classifiers against Realizable Evasion Attacks Using
Conserved Features

Liang Tong
Washington University in St. Louis

Bo Li
UIUC

Chen Hajaj
Ariel University

Chaowei Xiao
University of Michigan

Ning Zhang
Washington University in St. Louis

Yevgeniy Vorobeychik
Washington University in St. Louis

Abstract
Machine learning (ML) techniques are increasingly common
in security applications, such as malware and intrusion detec-
tion. However, ML models are often susceptible to evasion
attacks, in which an adversary makes changes to the input
(such as malware) in order to avoid being detected. A con-
ventional approach to evaluate ML robustness to such attacks,
as well as to design robust ML, is by considering simplified
feature-space models of attacks, where the attacker changes
ML features directly to effect evasion, while minimizing or
constraining the magnitude of this change. We investigate
the effectiveness of this approach to designing robust ML
in the face of attacks that can be realized in actual malware
(realizable attacks). We demonstrate that in the context of
structure-based PDF malware detection, such techniques ap-
pear to have limited effectiveness, but they are effective with
content-based detectors. In either case, we show that augment-
ing the feature space models with conserved features (those
that cannot be unilaterally modified without compromising
malicious functionality) significantly improves performance.
Finally, we show that feature space models enable general-
ized robustness when faced with a variety of realizable attacks,
as compared to classifiers which are tuned to be robust to a
specific realizable attack.

1 Introduction

Machine learning (ML) has come to be widely used in a broad
array of settings, including important security applications
such as network intrusion, fraud, and malware detection, as
well as other high-stakes settings, such as autonomous driving.
A general approach is to extract a set of features, or numerical
attributes, of entities in question, collect a training data set
of labeled examples (for example, indicating which instances
are malicious and which are benign), and learn a model which
labels previously unseen instances, presented in terms of their
extracted features. Success of ML in malware detection is par-
ticularly striking, with ML-based static detection of malicious

entities at times exceeding 99% accuracy [36, 37].
Nevertheless, ML-based techniques are often susceptible to

adversarial examples, an important special case of which are
evasion attacks. In a prototypical case of an evasion attack,
an adversary modifies malware code so that the resulting
malware is categorized as benign by ML, but still successfully
executes the malicious payload [12, 16, 26, 37, 44]. An even
broader class of adversarial examples features attacks that
manipulate an object, such as a stop sign, so that a computer
vision pipeline misclassifies it as another object (such as a
speed limit sign) [10, 15, 33].

In response, a host of methods emerged for making ML
robust to adversarial examples, the most potent of which are
those based on game-theoretic approaches, robust optimiza-
tion (including certified robustness), and adversarial retrain-
ing [5, 15, 23, 25, 32, 42, 43, 46]. A fundamental ingredient in
all of these are feature-space models of attacks. Specifically,
the attacker is assumed to directly modify values of features,
with either a constraint or a penalty on the aggregate feature
change measured in terms of an lp norm.

Such feature-space models of attacks are clearly abstrac-
tions of reality. First, arbitrary modifications of feature values
may not be realizable. For example, adding a benign object
to a malicious PDF (with no other changes) necessarily in-
creases its size, and so setting the associated feature to 1 (from
0) and simultaneously reducing file size may not be practi-
cally feasible. Second, the key goal for an adversary is to
create a target malicious effect, such as to execute a malicious
payload. Limiting feature modifications to be small in some
lp norm clearly need not capture this: one can insert many
no-ops (resulting in a large change according to an lp norm)
with no impact on malicious functionality, and conversely,
minimal changes (such as removing a Javascript tag) may
break malicious functionality. Nevertheless, an implicit as-
sumption in robust ML approaches is that the feature-space
models capture reality sufficiently to yield ML models that
are robust even to realizable attacks. The goal of our work
is to evaluate the validity of this implicit assumption in the
context of PDF malware detection.

USENIX Association 28th USENIX Security Symposium 285

Our first contribution is to evaluate feature-space evasion
attack models in the context of PDF malware detection, us-
ing EvadeML as a realizable attack [44]. Specifically, we
consider four ML-based approaches for PDF malware detec-
tion: two based on features that capture PDF file structure
(SL2013 [36] and Hidost [38]), and two based on PDF file
content (two Mimicus variants of PDFRate [35, 37]). In all
cases, we show that successful defense against a given real-
izable attack is feasible (by retraining with this attack). In
the case of structure-based detectors, we demonstrate that
adversarial retraining in the feature space does not lead to
adequate robustness against realizable attacks. In contrast,
adversarial retraining in the feature space is effective in the
case of content-based detectors. In other words, the nature of
the feature space can matter a great deal.

Our second contribution is a method for boosting robust-
ness of feature-space models without compromising their
mathematical convenience (crucial for most approaches for
robust ML). The key idea is to identify conserved features,
that is, features that cannot be unilaterally modified without
compromising malicious functionality. We exhibit such fea-
tures in our setting, show that they cannot be identified with
traditional statistical methods, and develop an algorithm for
automatically extracting them. Finally, we show that by sim-
ply constraining that these features remain unmodified in ad-
versarial training, feature-space approaches become effective
even for robust structure-based PDF malware detection.

Our third contribution is to explore the extent to which
ML robustness is generalizable to multiple distinct realizable
attacks. Specifically, we expose both a robust classifier that
was retrained by using a realizable attack (EvadeML), and
a model hardened using a feature-space attack (accounting
for conserved features), to a series of realizable attacks. Our
results reveal a stark difference between the two: ML mod-
els hardened using EvadeML are quite fragile; in contrast,
ML models hardened using feature-space attacks exhibit uni-
formly high robustness to the other attacks. Remarkably, we
demonstrate that ML models hardened using feature-space at-
tacks remain robust even against realizable attacks that defeat
conserved features.

2 Machine Learning in Security

2.1 Learning and Prediction
In the (supervised) machine learning literature, it is common
to consider the problem abstractly. We are given a training
dataset D= {(xi,yi)}, where xi 2 X✓Rn are numeric feature
vectors in some feature space X and yi 2 L are labels in a label
space L. Each data point (or example) in D is assumed to be
generated i.i.d. according to some unknown distribution P.
We are also given a hypothesis (model) space, H, and our goal
is to identify (learn) a good model h 2 H in the sense that it
yields a small expected error on new examples drawn from

P. In practice, since P is unknown, one typically aims to find
h 2 H which (approximately) minimizes empirical error on
training data D.

In security applications—as in others—one is not given
numerical features; instead, we start with a collection of en-
tities, such as executables, along with associated labels (we
assume henceforth that these are available, as we focus here
on supervised learning problems). We must then design a
collection of feature extractors, where each feature extractor
computes a numerical value of a corresponding feature from
an input entity. For example, we extract a “size” feature by
computing the size of an executable. Applying feature extrac-
tors to each entity in our dataset, and adding associated object
labels, allow us to generate a dataset D to fit the conventional
ML framework.

In this paper we focus on PDF malware detection, where
the label space is binary: either a PDF file is benign (which
we can code as �1), or malicious (which we can code as
+1). In addition, several prior efforts presented techniques
for defining feature extractors (commonly known simply as
features) for PDF files [36, 37]. Applying such feature ex-
tractors to a PDF file dataset transforms this dataset into one
comprised of numerical feature vectors and associated binary
labels. The goal is to predict whether previously unseen PDFs
(simulated by holding out a portion of our dataset as test data)
are correctly labeled as malicious or benign.

2.2 Evasion Attacks
In an evasion attack, abstractly, one is given a learned model
h(x) (e.g., a SVM or neural network) which returns a label
y = h(x) (e.g., malicious or benign) for an arbitrary feature
vector x 2 X (e.g., extracted from a PDF file). The attacker ad-
ditionally starts with an entity e (such as a malicious PDF file),
from which we can extract a feature vector f(e). The attacker
then transforms e into another entity, e0, with an associated
feature vector x0 = f(e0) so as to accomplish two goals: first,
that h(x0) returns an erroneous label (in our running example,
labels e0 as benign based on its extracted features f(e0)), and
second, that e0 preserves the functionality of the original entity
e—which, in our example of PDF malware detection, entails
preserving malicious functionality of e. The evasion attack as
just described is presumed to transform the entity itself, such
as the malicious PDF file, albeit accounting for the effect of
such transformation on the extracted features x0 = f(e0). We
call attacks of this kind realizable evasion attacks. The pro-
cess by which such realizable evasion attacks can be success-
fully accomplished is quite non-trivial, and typically warrants
independent research contributions (e.g., [37, 44]).

In contrast, it is natural to short-circuit the complexity in-
volved, and work directly in the feature space, as is conven-
tional in the machine learning literature. In this case, the
attacker is modeled as starting with a malicious feature vector
x (not the malicious entity e), and directly modifying the fea-

286 28th USENIX Security Symposium USENIX Association

tures to produce another feature vector x0 2 X, so as to yield
erroneous predictions, i.e., y0 = h(x0) (for example, being mis-
labeled as benign). Crucially, since we are no longer appealing
to original entities, we must abstract away the notion of pre-
serving (malicious) functionality. This is done through the
use of a cost function, c(x,x0), whereby the attacker is penal-
ized for greater modifications to the given feature vector x,
commonly measured using an lp norm difference between
the original malicious instance and the modified feature vec-
tor [3,23]. We term these the feature-space models of evasion
attacks. Crucially, essentially all approaches for robust ML,
particularly the most successful ones, such as those based on
robust optimization, leverage these models.

2.3 Evasion Defense
A large number of approaches have been proposed for de-
fending against evasion attacks or, more broadly, adversarial
examples (e.g., [3, 5, 6, 29, 30, 32, 40, 42, 43]). While many
have been shown inadequate [1, 7], the three generally effec-
tive approaches are: (a) game-theoretic reasoning, (b) robust
optimization (a special case of (a) where the game is zero-
sum), and (c) iterative adversarial retraining.1 Game-theoretic
methods in general, and robust optimization in particular, are
not general-purpose, as solving these directly requires special
structure, such as a continuous feature space and differentia-
bility [3, 5, 6], and often additional structure of the learning
model, such as linearity [43] or neural network architecture
and activation functions [32, 42]. Finally, to date all have
used the mathematical feature-space attack model at their
core. In contrast, retraining can be performed without making
assumptions about the nature of the learning algorithm or
the adversarial model [23]. Since our study below involves
realizable attacks (in addition to the mathematical models
of attacks), non-linear SVM and, in all cases but one, binary
features, iterative retraining is the sole defense that can be
applied uniformly (which we require to ensure that our results
are directly comparable).

3 Validating Models of ML Evasion Attacks

We have two major goals: 1) validation: to evaluate whether
robust ML approaches that make use of feature-space mod-
els of evasion attacks are, indeed, robust against real—
realizable—attacks, and 2) generalizability: to study general-
izability of evasion defenses.

We start with a conceptual model of defense and attack
as a Stackelberg game between ML (“defender”), who first
chooses a defense q (in our case, the learned model h(x))
and the attacker, who finds an optimal attack that reacts to
the particular defense q. An attack model captures how the

1Otherwise known as adversarial training, it can be viewed as an ap-
proach for obtaining approximate game-theoretic or robust optimization
solutions [23, 25, 40].

attacker changes behavior in response to the defense q. The
defender’s goal is to choose the best defense q against such
a reactive attacker, as captured by the attack model. Indeed,
this is a common way to model the adversarial evasion prob-
lem in prior literature [5, 22, 40]. This model has two useful
features. First, the attack is treated as an oracle in the sense
that it returns an attack for an arbitrary defense q. This al-
lows us, in principle, to design a defense against an arbitrary
evasion attack, making no distinction between feature-space
attack models and realizable attacks. Second, we can sepa-
rately consider defense against a specific attack (for example,
a feature-space attack), and evaluation, which can use another
attack (e.g., a realizable attack).

To be more precise, let O(h;D) be an arbitrary attack which
returns evasions given a dataset D and a classifier h, and
let u(h;O(h;D)) be the measure that the defender wishes to
optimize (for example, accuracy on data after evasions). Then
defense against the attack O(h;D) amounts to solving the
following optimization problem:

max
h

u(h;O(h;D)). (1)

In practice, we need a means for approximately solving the
optimization problem in Equation (1) for an arbitrary attack.
To this end, we make use of iterative retraining, an approach
previously proposed for hardening classifiers against evasion
attacks [21, 23]. In particular, we use a variant of iterative
retraining with provable guarantees [23], which is outlined as
follows:

1. Start with the initial classifier.

2. Execute the evasion attack for each malicious instance
in training data to generate a new feature vector.

3. Add all new data points to training data (removing any
duplicates), and retrain the classifier.

4. Terminate after either a fixed number of iterations, or
when no new evasions can be added.

Now, we describe our approach to validation and generaliz-
ability evaluations.

In validation, consider a model of an evasion attack,
Õ(h;D) (e.g., a feature-space attack model), which is a proxy
for a “real” (realizable) attack, O(h;D); note that each attack
evades a given ML model h. We first find the defense against
Õ using the retraining procedure above; let the resulting ro-
bust classifier be h̃. Next, we evaluate h̃ by running the target
realizable attack O(h̃;D). Finally, we create a baseline h⇤,
which is a robust classifier against a target realizable attack
O. We then evaluate how well h̃ performs, compared to h⇤,
against the target attack. For example, if we find that h̃ is
ineffective against the target attack, we say that Õ is a poor
attack proxy, whereas if it remains robust, we view Õ as a
good proxy for the target attack O. We focus on validation in
Sections 5 and 6.

USENIX Association 28th USENIX Security Symposium 287

In evaluating generalizability, the approach is slightly dif-
ferent. Again, we consider a proxy attack Õ (which may now
be either a feature-space model, or some particular realizable
attack), and find a defense h̃ against this attack. For evalu-
ation, we consider a collection of target attacks {Oi)}, and
run each of these attacks against h̃. We say that our proxy
attack is generalizable if h̃ remains robust to all, or most of
the attacks i; otherwise, it fails to generalize. We consider
generalizability in Section 7.

4 Experimental Methodology

We use malicious PDF detection as a case study to investigate
robustness of ML hardened using feature-space models of eva-
sion attacks. We now describe our experimental methodology.
We start with some background on PDF structure, and proceed
to describe the specific ML-based detectors, evasion attacks
(both realizable, and feature-space), datasets, and evaluation
metrics used in our experiments.

4.1 PDF Document Structure
The Portable Document Format (PDF) is an open standard
format used to present content and layout on different plat-
forms. A PDF file structure consists of four parts: header,
body, cross-reference table (CRT), and trailer. The header
contains information such as the magic number and format
version. The body is the most important element of a PDF
file, which comprises multiple PDF objects that constitute the
content of the file. These objects can be one of the eight basic
types: Boolean, Numeric, String, Null, Name, Array, Dictio-
nary, and Stream. They can be referenced from other objects
via indirect references. There are other types of objects, such
as JavaScript which contains executable JavaScript code. The
CRT indexes objects in the body, while the trailer points to
the CRT.

The relations between objects with cross-references can
be described as a directed graph that presents their logical
structure by using edges representing reference relations and
nodes representing different objects.As an object can be re-
ferred to by its child node, the resulting logical structure is a
directed cyclic graph. To eliminate the redundant references,
the logical structure can be reduced to a structural tree with
the breadth-first search procedure.

4.2 Target Classifiers
Several PDF malware classifiers have been proposed [8, 35,
36, 38]. For our study, we selected SL2013 [36], Hidost [38]
and two variants of PDFRate [35] (termed PDFRate-R and
PDFRate-B respectively), displayed in Table 1. SL2013 and
its revised version, Hidost, are structure-based PDF classi-
fiers, which use the logical structure of a PDF document to
construct and extract features used in detecting malicious

Classifier Feature type Number of features
SL2013 Binary 6,087
Hidost Binary 961

PDFRate-R Real-valued 135
PDFRate-B Binary 135

Table 1: Target classifiers.

PDFs. PDFRate, on the other hand, is a content-based clas-
sifier, which constructs features based on medadata and con-
tent information in the PDF file to distinguish benign and
malicious instances. Evasion attacks on both SL2013 and
PDFRate classifiers, particularly of the realizable kind, have
been developed in recent literature [36–38, 44], providing a
natural evaluation framework for our purposes.

4.2.1 Structure-Based Classifiers

SL2013: SL2013 is a well-documented and open-source ma-
chine learning system using Support Vector Machines (SVM)
with a radial basis function (RBF) kernel, and was shown to
have state-of-the-art performance [36]. It employs structural
properties of PDF files to discriminate between malicious and
benign PDFs. Specifically, SL2013 uses the presence of par-
ticular structural paths as binary features to present PDF files
in feature space. A structural path of an object is a sequence
of edges in the reduced (tree) logical structure, starting from
the catalog dictionary and ending at this object. Therefore,
the structural path reveals the shortest reference path to an
object. SL2013 uses 6,087 most common structural paths
among 658,763 PDF files as a uniform set for classification.
Hidost: Hidost is an updated version of SL2013. It inherits all
the characteristics of SL2013 and employs structual path con-
solidation (SPC), a technique to consolidate features which
have the same or similar semantic meaning in a PDF. As the
semantically equivalent structural paths are merged, Hidost
reduces polymorphic paths and still preserves the semantics
of logical structure, so as to improve evasion-robustness of
SL2013 [38].

In our work, we employ the 961 features identified in the
latest version of Hidost.

4.2.2 PDFRate: A Content-Based Classifier

The original PDFRate classifier uses a random forest algo-
rithm, and employs PDF metadata and content features. The
metadata features include the size of a file, author name, and
creation date, while content-based features include position
and counts of specific keywords. All features were manually
defined by Smutz and Stavrou [35].

PDFRate uses a total of 202 features, but only 135 of these
are publicly documented [34]. Consequently, in our work we
employ the Mimicus implementation of PDFRate which was
shown to be a close approximation [37]. Mimicus trained a
surrogate SVM classifier with the documented 135 features

288 28th USENIX Security Symposium USENIX Association

and the same dataset as PDFRate, using both the SVM and
random forest classifiers, both performing comparably. We
use the SVM implementation in our experiments to enable
more direct comparisons with the structure-based classifiers
that also use SVM. An important aspect of Mimicus is fea-
ture standardization on extracted data points performed by
subtracting the mean of the feature value and dividing by
standard deviation, transforming all features to be real-valued
and zero-mean (henceforth, PDFRate-R). This surrogate was
shown to have ⇠ 99% accuracy on the test data [35]. In addi-
tion, we construct a binarized variant of PDFRate (henceforth,
PDFRate-B), where each feature is transformed into a binary
feature by assigning 0 whenever the feature value is 0, and
assigning 1 whenever the feature value is non-zero.

4.3 Realizable Evasion Attacks

4.3.1 EvadeML

The primary realizable attack in our study is EvadeML [44],
which allows insertion, deletion, and swapping of objects, and
is consequently a stronger attack than most other realizable at-
tacks in the literature, which typically only allow insertion to
ensure that malicious functionality is preserved. EvadeML as-
sumes that the adversary has black-box access to the classifier
and can only get classification scores of PDF files, and was
shown to effectively evade both SL2013 and PDFRate [44].
It employs genetic programming (GP) to search the space of
possible PDF instances to find ones that evade the classifier
while maintaining malicious features. First, an initial popula-
tion is produced by randomly manipulating a malicious PDF
repeatedly. The manipulation is either a deletion, an insertion,
or a swap operation on PDF objects. After the population
is initialized, each variant is assessed by the Cuckoo sand-
box [17] and the target classifier to evaluate its fitness. The
sandbox is used to determine if a variant preserves malicious
behavior, such as API or network anomalies. The target classi-
fier provides a classification score for each variant. If a variant
is classified as benign but displays malicious behavior, or if
GP reaches the maximum number of generations, then GP
terminates with the variant achieving the best fitness score
and the corresponding mutation trace is stored in a pool for
future population initialization. Otherwise, a subset of the
population is selected for the next generation based on their
fitness evaluation. Afterward, the variants selected are ran-
domly manipulated to generate the next generation of the
population.

We use EvadeML as the primary realizable evasion model
for the first part of the paper. We set the GP parameters in
EvadeML as the same as in the experiments by Xu et al. [44].
The population size in each generation is 48. The maximum
number of generations is 20. The mutation rate for each PDF
object is 0.1. The mutation traces that lead to successful eva-
sion and promising variants are stored and applied in our

experiments. The fitness threshold of a classifier is 0. We use
the same external benign PDF files as Xu et al. [44] to provide
ingredients for insertion and swap operations.

4.3.2 The Mimicry Attack

Mimicry assumes that an attacker has full knowledge of the
features employed by a target classifier. The mimicry attack
then manipulates a malicious PDF file so that it mimics a
particular selected benign PDF as much as possible. The
implementation of Mimicry is simple and independent of any
particular classification model.

Our mimicry attack uses the Mimicus [37] implementation,
which was shown to successfully evade the PDFRate classi-
fier. To improve its evasion effectiveness, Mimicus chooses
30 different target benign PDF files for each attack file. It
then produces one instance in feature space for each target-
attack pair by merging the malicious features with the benign
ones. The feature space instance is then transformed into a
PDF file using a content injection approach. The resulting 30
files are evaluated by the target classifier, and only the PDF
with the best evasion result is selected, which was submit-
ted to WEPAWET [8] to verify malicious functionality. To
make Mimicry consistent with our framework, we employ
the Cuckoo sandbox [17] in place of WEPAWET (which was
in any case discontinued) to validate maliciousness of the
resulting PDF file.

In addition to the original version of Mimicry, we imple-
ment an enhanced variation, Mimicry+, with two modifica-
tions. First, Mimicry+ chooses the 30 most benign PDF files
predicted by the target classifier as target files (instead of
randomly selecting those, as in Mimicry). Second, for each
attack file, all the resulting 30 files are evaluated by the sand-
box and only those verified to have malicious functionality
are selected to evade the target classifier.

4.3.3 MalGAN

MalGAN [19] is a Generative Adversarial Network [14]
framework to generate malware examples which can evade a
black-box malware detector with binary features. It assumes
that an attacker knows the features, but has only black-box
access to the detector decisions. MalGAN comprises three
main components: a generator which transforms malware to
its adversarial version, a black-box detector which returns
detection results, and a substitute detector which is used to
fit the black-box detector and train the generator. The genera-
tor and substitute detector are feed-forward neural networks
which work together to evade the black-box detector. The
results of [19] show that MalGAN is able to decrease the
True Positive Rate on the generated examples from > 90% to
0%. We note that strictly speaking, MalGAN variants are not
implemented as actual PDF files; however, we still treat it as
a realizable attack since it only adds features to a malicious

USENIX Association 28th USENIX Security Symposium 289

Entry Hexadecimal Representation
/Action /#41#63#74#69#6f#6e
/Filter /#46#69#6c#74#65#72

/Length /#4c#65#6e#67#74#68
/JavaScript /#4a#61#76#61#53#63#72#69#70#74

/JS /#4a#53
/S /#53

/Type /#54#79#70#65

Table 2: Transformation of entry names in the custom attack.

file, which can be implemented (at least in structure-based
detection) by adding the associated objects into the PDF file.

4.3.4 Reverse Mimicry

The Reverse Mimicry attack assumes that an attacker has
zero knowledge of the target classifier. The basic idea is to
inject malicious payloads into target benign files to mini-
mize the structural difference between the resulting examples
and targets. Our Reverse Mimicry attack employs the adver-
sarial examples provided by Maiorca et al. [26] which was
shown to successfully evade PDF classifiers based on struc-
tural analysis. Specifically, we use the 500 PDF files produced
by injecting a malicious JavaScript code that does not con-
tain references to other objects to target benign PDF files.
We selected the 376 files out of 500 that display malicious
behaviors detected by the Cuckoo sandbox.

4.3.5 The Custom Attack

We implemented a custom attack which exploits a feature
extraction vulnerability in the Mimicus implementation of
PDFRate. Normally, the characters used in the Name objects
of a PDF file are limited to a specific set. Since PDF speci-
fication version 1.2, a lexical convention has been added to
represent a character with its hexadecimal ANSI-code, e.g.,
#xx. Such a modification enables us to create an arbitrary
string in the form of #xx#xx#xx. In our implementation, we
replaced a set of entries in the attack PDF files with their
hexadecimal representations (see Table 2). These features
were selected with the goal to obfuscate tags crucial to the
code execution in PDF, which are frequently used for feature
extraction. With this technique, the scanner would not be able
to detect malicious code without dynamically reconstructing
the PDF structure. While it is theoretically possible to replace
all the ASCII text inside the document, we chose not to do
that due to the concern on the expansion of file size.

4.4 Feature-Space Evasion Model
In typical realizable attacks, including EvadeML, a consider-
ation is not merely to move to the benign side of the classifier
decision boundary, but to appear as benign as possible. This

naturally translates into the following multi-objective opti-
mization in feature space:

minimize
x

Q(x) = f (x)+lc(xM,x), (2)

where f (x) is the score of a feature vector x, with the actual
classifier (such as SVM) g(x) = sgn(f (x)), xM the malicious
seed, x an evasion instance, c(xM,x) the cost of transforming
xM into x, and l a parameter which determines the feature
transformation cost. We use l2 norm distance between xM and
x as the cost function: c(xM,x) = Âi |xi�xM,i|2. Since in most
of our experiments features are binary, the choice of l2 norm
(as opposed to another lp norm) is not critical.

As the optimization problem in Equation (2) is non-convex
and variables are binary in three of the four cases we consider,
we use a stochastic local search method designed for com-
binatorial search domains, Coordinate Greedy (alternatively
known as iterative improvement), to compute a local optimum
(the binary nature of the features is why we eschew gradient-
based approaches) [18, 23]. In this method, we optimize one
randomly chosen coordinate of the feature vector at a time,
until a local optimum is reached. To improve the quality of
the resulting solution, we repeat this process from several
random starting points. This approach has been shown to be
extremely effective for computing evasion instances in binary
domains [23].

4.5 Datasets
The dataset we use is from the Contagio Archive.2 We use
5,586 malicious and 4,476 benign PDF files for training, and
another 5,276 malicious and 4,459 benign files as the non-
adversarial test dataset. The training and test datasets also
contain 500 seeds selected by Xu et al. [44], with 400 in
the training data and 100 in the test dataset. These seeds are
filtered from 10,980 PDF malware samples and are suitable
for evaluation since they are detected with reliable malware
signatures by the Cuckoo sandbox [17]. We randomly select
40 seeds from the training data as the retraining seeds and use
the 100 seeds in the test data as the test seeds.

4.6 Implementation of Iterative Adversarial
Retraining

We made a small modification to the general iterative retrain-
ing approach described in Section 3 when it uses EvadeML
as the realizable attack O(h;D). Specifically, we used only 40
malicious seeds to EvadeML to generate evasions, to reduce
running time and make the experiment more consistent with
realistic settings where a large proportion of malicious data is
not adapting to the classifier. As shown below, this set of 40
instances was sufficient to generate a model robust to evasions
from held out 100 malicious seed PDFs.

2Available at the following URL: http://contagiodump.blogspot.
com/2013/03/16800-clean-and-11960-malicious-files.html.

290 28th USENIX Security Symposium USENIX Association

http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-malicious-files.html

We distribute both retraining and adversarial test tasks on
two servers (Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz,
18 cores and 64 GB memory, running Ubuntu 16.04). For
retraining using EvadeML as the attack, we assign each server
20 seeds; each seed is processed by EvadeML to produce the
adversarial evasion instances. We then add the 40 examples
obtained to the training data, retrain the classifier, and then
split the seeds between the two servers in the next iteration.
In the evaluation phase, we assign each server 50 seeds from
the 100 test instances, and each seed is further used to evade
the classifier by using EvadeML.

4.7 Evaluation Metrics
We evaluate performance in two ways: 1) evaluation of eva-
sion robustness (which is central to our specific inquiry), and
2) traditional evaluation. To evaluate robustness, we compute
the proportion of 100 malicious test seed PDFs for which
EvadeML successfully evades the classifier; this is our metric
of evasion robustness, evaluated with respect to EvadeML.
Thus, evasion robustness of 0% means that the classifier is suc-
cessfully evaded in every instance, while evasion robustness
of 100% means that evasion fails every time. Our traditional
evaluation metric uses test data of malicious and benign PDFs,
where no evasions are attempted. On this data, we compute
the ROC (receiver operating characteristic) curve and the
corresponding AUC (area under the curve).

5 Efficacy of Feature-Space Attack Models

We now undertake our first task: evaluation of the effective-
ness of robust ML obtained by using the abstract feature-
space models of attack. We compare to a baseline classifier
obtained by retraining with the most potent attack on our
menu, EvadeML (which, in addition to inserting content, as
done by other attacks [19, 26, 37], also allows the attacker to
delete and swap PDF objects). We can think of our baseline as
assuming that the defender knows that EvadeML is employed
by the attacker, along with its hyperparameters. Throught this
and next section, we also use EvadeML to evaluate the effec-
tiveness of classifiers hardened using a feature-space model,
in comparison with the above baseline.

5.1 Structure-Based PDF Malware Classifica-
tion

Our first case study uses a state-of-the-art PDF malware classi-
fier which engineers features based on PDF structure. Indeed,
we evaluate two versions of this classifier: an earlier version,
which we call SL2013, and a more recent version, which we
call Hidost. The experiments by Xu et al. [44] demonstrate
that SL2013 can be successfully evaded. Since Hidost was a
recent redesign attempting in part to address its vulnerability
to mimicry attacks by significantly reducing the feature space,

Figure 1: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for SL2013.

no data exists on its vulnerability to evasion attacks. Below we
demonstrate that Hidost is also vulnerable to evasion attacks
(indeed, more so than SL2013).

From the perspective of defense, we show that it is possible
to harden both SL2013 and Hidost against a powerful real-
izable EvadeML attack by simply retraining with this attack
(RAR, for realizable-attack retraining, henceforth refers to a
model hardened using EvadeML). This serves as a baseline
we use to evaluate the efficacy of a retraining defense with
a feature-space attack model (henceforth, FSR for feature-
space retraining). We then show that for both SL2013 and
Hidost, FSR significantly underperforms RAR.

In our experiments, we empirically set the RBF param-
eters for training both SL2013 and Hidost to C = 12 and
g = 0.0025.

5.1.1 SL2013

Retraining with a Powerful Realizable Attack First, we
replicated the EvadeML attack on the original SL2013; the
classifier achieves only a 16% evasion robustness.3 Next, to
create a baseline, we conduct experiments in which EvadeML
is employed to retrain SL2013. The process terminated after
10 iterations at which point no evasive variants of the 40
retraining seeds could be generated. We observe (Figure 1
(left)) that the retrained classifier (RAR) obtained by this
approach achieves a 96% evasion robustness. Moreover, RAR
is essentially as accurate as the baseline SL2013 on non-
adversarial data (Figure 1 (right)). Thus, it is clearly possible
to be highly robust to this evasion attack without significantly
compromising effectiveness on data not featuring explicit
evasion attacks.

Figure 2 (left) shows the gradual improvement of evasion
robustness over the 10 retraining iterations. This plot demon-
strates non-trivial effectiveness of EvadeML: the first few
iterations are clearly insufficient, as re-running EvadeML cre-
ates many new evasions that cannot be correctly detected by

3This result differs from the experiments in [44] which show a 0% evasion
robustness. We found a flaw in the implementation of feature extraction in
EvadeML which causes evaluation to be performed using the wrong feature
vectors. This bug has been fixed in the GitHub version of EvadeML.

USENIX Association 28th USENIX Security Symposium 291

Figure 2: Evasion robustness with retraining iterations (left)
and generations of the EvadeML attack test (right).

the classifier. Only after 6 iterations does EvadeML optimiza-
tion loop begin to show significant signs of failing. Figure 2
(right) shows how increasing the number of generations in
EvadeML attacks affects robustness of the RAR classifier. At
this point, we can see that increasing the capability of the
attack has minimal impact.

Feature-Space Retraining Next, we experimentally evalu-
ate the effectiveness of retraining with a feature-space model
of evasion attacks in obtaining robust ML in the face of the
EvadeML realizable attack. We consider the setting with
l = 0.05 and l = 0.005 in Equation 2 (henceforth, FSR-l1
and FSR-l2).

The robustness results are shown in Figure 1 (left). Com-
pared to the SL2013 baseline, feature-space retraining (FSR)
boosts evasion robustness from 16% to 62%. Crucially, the
robustness of the resulting classifier is far below the classifier
achieved by RAR. This illustrates that defense that relies on
feature-space models of adversarial examples may not in fact
lead to robustness when it is faced with a real attack.

We again consider performance of FSR classifier on non-
adversarial test data (Figure 1 (right)). We can see that ro-
bustness boosting again does not much degrade performance,
with AUC remaining above 99%. However, we do see a sub-
stantial degradation as we move from l = 0.05 to 0.005; thus,
as we increase adversarial power in the feature-space model,
while we do obtain a slightly more robust model, we incur a
nontrivial hit in performance on non-adversarial data.

5.1.2 Hidost

We now repeat our experiments above with another structure-
based classifier, Hidost. We set the retraining parameter l =
0.005, which appears to strike a reasonable balance between
robustness and accuracy on non-adversarial data. As before,
we first evaluated the robustness of the original Hidost [38] by
EvadeML. The result shows a 2% robustness—remarkably,
significantly worse than SL2013.

Evasion robustness of Hidost, as well as improvements
achieved by RAR and FSR, are shown in Figure 3 (left), and
the results are consistent with our observations for SL2013.
First, by retraining with the realizable attack, evasion robust-

Figure 3: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for Hidost.

ness is boosted to 98%, a rather dramatic improvement, and
clear demonstration that successful defense is possible. In
contrast, FSR achieves a 70% evasion robustness, a signifi-
cant boost over the original Hidost, to be sure, but far below
the evasion robustness of RAR.

Evaluating these classifiers on non-adversarial test data in
terms of ROC curves (Figure 3 (right)), we can observe that
RAR achieves comparable accuracy (> 99.9% AUC) with
the original Hidost classifier on non-adversarial data, and
provides even better True Positive Rate (TPR) when False
Positive Rate (FPR) is close to zero. On the other hand, FSR
achieves > 99% AUC, but yields a significant degradation of
TPR when FPR< 0.01.

5.2 Content-Based PDF Malware Classifica-
tion

Our next case study concerns another two PDF malware classi-
fiers which use features based on PDF file content, rather than
logical structure. We trained both real-valued and binarized
PDFRate (henceforth, PDFRate-R and PDFRate-B) on the
same dataset as SL2013 and Hidost, and achieved > 99.9%
AUC for both classifiers on test data. In our experiments,
we empirically set the SVM RBF parameters for training to
C = 10 and g = 0.01. In our evaluation of ML robustness, we
again set the feature-space model parameter l to be 0.005.

5.2.1 PDFRate with Real-Valued Features

We begin with the variant of PDFRate—PDFRate-R—which
has been constructed in previous evaluations and shown com-
parable in performance to the original implementation [37].
We again begin by replicating the EvadeML evasion robust-
ness evaluation of the baseline classifier. As expected, we find
the classifier quite vulnerable, with only 2% evasion robust-
ness.

Next, we retrain PDFRate-R with EvadeML for 10 itera-
tions (RAR baseline), and perform feature-space retraining
using the conventional feature space model above. Our re-
sults are shown in Figure 4 (left). Observe that while RAR

292 28th USENIX Security Symposium USENIX Association

Figure 4: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for PDFRate-R.

Figure 5: Evasion robustness under EvadeML test (left) and
performance on non-adversarial data (right) of different clas-
sifiers for PDFRate-B.

indeed achieves a highly robust classifier (96% robustness),
FSR actually performs even better, with 100% robustness.

Comparing RAR and FSR performance on non-adversarial
data (Figure 4 (right)), we observe that the high robustness
of FSR does incur a cost: while RAR remains exception-
ally effective (>99.99% AUC), FSR achieves AUC slightly
lower than 99%, although most significantly, the degradation
is rather pronounced for low FPR regions (below 0.015).

5.2.2 PDFRate with Binarized Features

One of our great surprises is the robustness of the binarized
PDFRate: despite the fact that the real-valued PDFRate is
quite vulnerable, the same classifier using binary features was
100% robust to EvadeML (Figure 5 (left)). Consequently, this
will serve as our robust baseline (equivalently, RAR would ter-
minate with no iterations). Feature-space retrained PDFRate-
B also exhibits 100% evasion robustness, although it does
require a number of iterations to converge.

Considering now the performance of PDFRate-B and FSR
on non-adversarial test data (Figure 5 (right)), we can make
two interesting observations. First, the baseline PDFRate-B is
remarkably good even on this data; in a sense, it appears to hit
the sweet spot of adversarial robustness and non-adversarial
performance. Second, FSR retrained classifier is competitive
in terms of AUC (⇠ 99.9%), but is observably worse than the
baseline classifier for very low false positive rates.

6 Evasion-Robust Classification with Con-
served Features

Thus far, we had observed that ML hardened with the stan-
dard mathematically convenient feature-space evasion attack
model may in some cases not yield satisfactory robustness
against real attacks. The key issue is that feature-space models
are entirely disembodied from the domain. This is crucial to
enable us to have mathematical formulations of attacks, but
clearly has limitations. The key question is whether we can
devise a simple way of anchoring feature-space attacks in the
application domain to allow us to meaningfully and minimally
constrain abstract attacks to reflect some of the constraints
that real attacks face. Next, we propose a refinement of the
feature-space model that aims to do just that.

Specifically, we introduce the idea of conserved features,
which we define to be features, the unilateral modification
of which compromises malicious functionality. We develop
this idea specifically for binary features, as this notion is
particularly crisp in such a case (e.g., such features tend to
correspond to the existence of particular objects in PDF).

Next, we present three major findings. First, conserved fea-
tures do exist in all three of our classifiers over the binary
feature space, and can be effectively identified (see our al-
gorithm for identifying conserved features in Appendix A).
Second, conserved features cannot be recovered using statisti-
cal feature reduction (in our case, sparse regularization), and
feature reduction methods do not lead to robust classifiers.
The reason is that conservation is connected to the relationship
between features and malicious functionality, rather than sta-
tistical properties of non-evasion data; for example, features
which are strongly correlated with malicious behavior are
often a consequence of attacker “laziness” (such as whether a
PDF file has an author), and are easy for attackers to change.
Third, we demonstrate that the limitations of feature-space
robust ML can be substantially alleviated by incorporating
conserved features as attack invariants in the feature-space
evasion model.

To develop intuition about the nature of conserved features,
consider SL2013, which employs structural paths as features
to discriminate between malicious and benign PDFs. On the
one hand, the structural paths like /Type are unessential to
preserve malicious behaviors, and we do not expect them
to be conserved. On the other hand, as the shellcode which
triggers malicious functionality is embedded in certain PDF
objects, those corresponding structural paths are likely to be
conserved in each variant crafted from the same malicious
seed (e.g., /OpenAction/JS). In addition, structural paths
that facilitate embedded script in PDF files also can be con-
served features as removing them can break the script (e.g.,
/Names and /Pages). This further illustrates that conserved
features are not necessarily optimal for statistically distin-
guishing benign and malicious instances (indeed, these may
be common to both); rather, they serve to anchor the feature-

USENIX Association 28th USENIX Security Symposium 293

Figure 6: Classifying with conserved features: comparing
evasion robustness (left) and ROC curves (right).

space attack model in the domain by connecting features to
malicious functionality.

6.1 Classifying Using Only Conserved Fea-
tures

We begin by exploring the effectiveness of using only con-
served features for classification. We identified 8 conserved
features for SL2013 (out of ⇠6000), 7 for Hidost (out of
⇠1000), and 4 for PDFRate-B (out of 135); these are detailed
in Table 3 of the appendix, while our algorithm for identifying
conserved features is presented in Appendix A.

We start by considering four natural questions pertaining to
conserved features: 1) are they sufficient to make a classifier
robust to evasions, 2) do they effectively discriminate between
benign and malicious instances, 3) can they be identified using
standard statistical methods (such as sparse regularization),
and 4) are they just detecting the presence of JavaScript in
PDF?

We explore these for SL2013. Specifically, we trained a
classifier using only the 8 conserved features (CF henceforth).
As we can see in Figure 6 (left), this classifier is 100% robust
to EvadeML attacks, appearing to resolve the first question.
However, we emphasize that conserved features alone need
not capture the full spectrum of adversarial behavior and con-
straints. Indeed, in Section 7 we show that classifiers based
solely on conserved features can also be evaded, particularly
if attacks are specifically designed to evade them. Rather, as
we show presently, they provide a sufficient anchoring in the
problem domain for feature-space attack models to succeed.

To address question (2), consider Figure 6 (right): clearly,
if we desire a low false positive rate, using only conserved
features for classification yields subpar performance on non-
adversarial data. To address the third question, we learn a lin-
ear SVM classifier for SL2013 with l1 regularization (hence-
forth, Linear) where we empirically adjust the SVM parameter
C to perform feature reduction until the number of the fea-
tures is also 8; we find that only 3 of these are conserved
features (see Appendix A.6 for a more detailed analysis of the
relationship between statistically useful and conserved fea-
tures). As we can see in Figure 6 (left), this classifier exhibits
poor robustness; thus, statistical methods are insufficient to

identify good conserved features.
To address the fourth question, we create a classifier using

only one boolean feature which identifies the presence of
JavaScript in a PDF file (henceforth, we refer to this feature
as JS). We find that this classifier is also robust to EvadeML.
On non-adversarial data, JS achieves FPR of 0.04 and FNR
of 0.14 (in other words, 4% of the benign files in the non-
adversarial dataset use JavaScript, while 14% of malicious
instances use alternative attacks to Javascript).4 To create
an apples-to-apples comparison with the CF classifier, we
empirically adjust the classification threshold of CF until we
get the same FPR with JS. The resulting CF classifier exhibits
FNR of 0.11, considerably better than JS. Nevertheless, it is
clear that using either CF (only conserved features), or only JS,
is impractical, since both FNR and FPR of these are quite high.
Moreover, as we show in Section 7, classifiers based only on
conserved features can be defeated by other realizable attacks.
Next, we show that identification of conserved features is
nevertheless crucial in creating highly effective feature-space
attack models.

6.2 Feature-Space Model with Conserved Fea-
tures

As discussed above, the feature-space evasion model in Equa-
tion (2) may not sufficiently boost ML robustness. Since con-
served features allow us to minimally tie the abstract feature-
space representation to malicious functionality, we offer a
natural modification of the model in Equation (2), imposing
the constraint that conserved features cannot be modified by
the attacker. We formally capture this in the new optimiza-
tion problem in Equation (3), where S is the set of conserved
features:

minimize
x

Q(x) = f (x)+lc(xM,x),

subject to xi = xM,i, 8i 2 S.
(3)

Other than this modification, we use the same Coordinate
Greedy algorithm with random restarts as before to compute
adversarial examples. We adopt the evasion model in Equation
(3) to retrain the target classifier using the retraining proce-
dure from Section 4. We denote the classifier obtained by the
retraining procedure using a feature-space model grounded by
conserved features by CFR. We also study the effectiveness
of our automated procedure for identifying conserved features
as compared to using a subset that only considers Javascript
features (we can think of these as expert-identified conserved
features, as this is what an expert would naturally consider).
To this end, we repeat the procedure above by replacing the
conserved feature set S in Eq. 3 with a subset that involves
Javascript. The classifier resulting from such restricted adver-

4We observe similar results for 5,000 benign PDFs obtained by using
Google web searches [37], where 3% of benign files use Javacript.

294 28th USENIX Security Symposium USENIX Association

Figure 7: Evasion robustness (left) and performance on non-
adversarial data (right) of different variants of SL2013.

sarial retraining with “expert”-identified conserved features
is termed CFR-JS.

6.2.1 SL2013

We now evaluate the robustness and effectiveness of the fea-
ture space retraining approach, which uses conserved features.
We set the parameter l = 0.005 as before. The robustness
results are presented in Figure 7 (left). Observe that CFR
now significantly improves robustness of the original classi-
fier, with evasion robustness rising from 16% to 87%. More-
over, CFR-JS achieves a 100% evasion robustness against
EvadeML. These results demonstrate that by leveraging the
conserved features, the feature-space evasion models are now
quite effective as a means to boost evasion robustness of
SL2013.

In Figure 7 (right) we evaluate the quality of these clas-
sifiers on non-adversarial test data in terms of ROC curves.
In all cases, be it original, RAR, CFR, and CFR-JS, AUC is
> 99.9%, although we can see a slight degradation of CFR
for extremely low false positive rates compared to the others.
It is noteworthy that CFR performs much better than FSR
(robust ML using a standard feature-space approach, recall
Figure 1 (right)).

6.2.2 Hidost

Next, we evaluate the effectiveness of CFR for Hidost. The
results are shown in Figure 8 (left) and are largely consistent
with SL2013. In particular, CFR boosts evasion robustness
from 2% to 100% (slightly better than RAR), well above
conventional FSR (recall Figure 3 (left)). In contrast, CFR-JS
only boosts robustness to 53%, showing that our algorithmic
approach can in some cases offer a considerable advantage to
expert-chosen conserved features.

Evaluating the performance of CFR and CFR-JS on non-
adversarial test data in terms of ROC curves in Figure 8 (right),
we find that the CFR classifier can achieve ⇠ 99.8% AUC.
This is somewhat worse than RAR, particularly for very low
false positive rates, but better than CFR-JS—again, in this
case using the full batch of conserved features exhibits a
significant advantage over solely looking for Javascript.

Figure 8: Evasion robustness (left) and performance on non-
adversarial data (right) of different variants of Hidost.

Figure 9: Evasion robustness (left) and performance on non-
adversarial data (right) of different variants of PDFRate-B.

6.2.3 Binarized PDFRate

Finally, we evaluate the effectiveness of the CFR variants
of PDFRate-B. We observe that both the CFR and CFR-JS
classifiers in the PDFRate-B family achieve 100% evasion
robustness against EvadeML (Figure 9 (left)), just as the RAR
and FSR counterparts had.

However, a close look at Figure 9 (right) demonstrates
that CFR and CFR-JS achieve far better performance on non-
adversarial data, with >99.9% AUC, where improvements are
particularly significant for small false positive rates compared
to FSR (recall Figure 5 (right)). Moreover, in this experi-
ment, CFR achieves slightly higher TPR than CFR-JS for
low FPR regions (below 0.003). The main takeaway here
is that although the feature-space approach already yields
high robustness in this setting, introducing conserved fea-
tures significantly mitigates its degradation in performance
on non-adversarial data.

7 Additional Realizable Evasion Attacks

So far we used EvadeML as the primary realizable attack
in our experiments. This choice is defensible, as EvadeML
explores a significantly larger attack space than many other
evasion methods (e.g., Mimicry [37]), allowing deletions and
swaps, in addition to insertions. Nevertheless, it is natural to
wonder whether classifiers robust to EvadeML remain robust
to other classes of evasion attacks. A particularly intriguing
question is how the classifiers hardened against EvadeML fare
in comparison with classifiers hardened against feature-space
models, when faced with different realizable attacks.

USENIX Association 28th USENIX Security Symposium 295

Figure 10: Robustness to Mimicry attack. Left: PDFRate-R
(note that our notion of CFR is not applicable here). Right:
PDFRate-B.

Figure 11: Robustness to Mimicry+ attack. Left: PDFRate-R
(note that our notion of CFR is not applicable here). Right:
PDFRate-B.

To answer these questions, we consider five additional real-
izable attacks: Mimicry [37], which was one of the first real-
izable attacks on PDF malware detectors, Mimicry+, an en-
hanced variant of Mimicry, MalGAN [19], which uses Gener-
ative Adversarial Networks (GANs) to create evasion attacks
(but only targets binary classifiers), Reverse Mimicry [26],
which inserts malicious payloads into target benign files, and
a new custom attack aimed at defeating PDFRate-B conserved
features. The Mimicry/Mimicy+ attacks are designed specifi-
cally for PDFRate, and cannot be usefully applied to SL2013
or Hidost, whereas the Reverse Mimicry attack and our cus-
tom attack require zero knowledge of target classifiers.

7.1 Mimicry and Mimicry+ Attacks
We start by considering the Mimicry and Mimicry+ attacks
for both real-valued and binarized variants of PDFRate, with
the same 100 malicious seeds employed in Section 5 and 6 as
attack files.

The results are shown in Figures 10 and 11, and offer
two noteworthy findings. First, as can be seen in Figure
11, RAR classifiers (hardened specifically against EvadeML,
recall that the original PDFRate-B classifier is equivalent
to RAR) can be quite vulnerable to the Mimicry+ attack,
whereas both FSR and CFR classifiers remain robust. Second,
Mimicry+ is indeed a much stronger attack than Mimicry: the
original Mimicry fails to significantly degrade RAR perfor-
mance, whereas Mimicry+ largely evades the RAR variant of
PDFRate-R, and is somewhat more potent against PDFRate-B

Figure 12: Robustness to MalGAN attack. SL2013 (top left),
Hidost (top right), PDFRate-B (bottom).

than Mimicry. This demonstrates that besides its mathemati-
cal elegance, the abstract feature-space evasion models, once
appropriately anchored to the domain, are rather generally
robust to evasion attacks.

7.2 MalGAN Attack
Next, we consider the MalGAN attack on the three classifiers
over binary feature space we have previously studied: SL2013,
Hidost, and PDFRate-B, with RAR and FSR/CFR versions
that have been shown robust to EvadeML.

The results, shown in Figure 12, demonstrate that despite
EvadeML being a powerful attack, the RAR approaches which
use it for hardening (with resulting classifiers no longer very
vulnerable to EvadeML) are highly vulnerable to MalGAN,
with evasion robustness of 0% in most cases. In contrast, CFR
models which use conserved features remain highly robust
(100% in all cases), just as we had observed earlier.

7.3 Reverse Mimicry Attack
Next, we employ the Reverse Mimicry attack on the EvadeML-
robust variants of all the classifier types (SL2013, Hidost,
PDFRate-R, and PDFRate-B).

Figure 13 presents the results, which are revealing in sev-
eral ways. First, we again observe that RAR (hardened specif-
ically against EvadeML) is roundly defeated in most cases.
Second, consider the robustness results for the classifier us-
ing only the conserved features (CF), we can see that re-
verse mimicry succeeds in defeating conserved features for
a non-trivial proportion of instances. It does so by including
Javascript tags in structural paths that are not used as features
by SL2013/Hidost (since these classifiers only consider com-
monly occurring sets of structural paths). Thus, this attack
reveals an important vulnerability in the feature extraction

296 28th USENIX Security Symposium USENIX Association

Figure 13: Robustness to Reverse Mimicry attack. SL2013
(top left), Hidost (top right), PDFRate-R (bottom left),
PDFRate-B (bottom right). Note that our notions of CFR
and CF for PDFRate-R is not applicable here.

Figure 14: Robustness to the custom attack. Left: PDFRate-R
(note that our notions of CFR and CF are not applicable here).
Right: PDFRate-B.

approach employed by these classifiers; indeed, it suggests
that structure-based classifiers may be inherently difficult to
harden. Remarkably, CFR remains more robust than CF de-
spite these vulnerabilities. The case of Hidost is particularly
stark: CFR is nearly 20% more robust than CF!

7.4 The Custom Attack
Our final attack specifically targets a feature extraction bug in
the Mimicus implementation of PDFRate in order to defeat
the corresponding CF classifier.

The results are shown in Figure 14. We find that after this
attack, CF robustness is 0. We also observe that the robust-
ness of RAR classifier for PDFRate-R also drops, although
to 0.3 rather than 0. Significantly, the FSR classifiers for
both PDFRate-R and PDFRate-B remain 100% robust, and
the CFR variant of PDFRate-B has nearly perfect robustness
(0.98) against this attack. Our latter observation is particu-
larly remarkable: although the conserved features are roundly
defeated by this attack, the use of these as a part of a holis-

tic retraining approach yields a classifier that remains robust.
Thus, not only is it possible to construct a robust malware
classifier without unduly relying on conserved features, but
we can accomplish this through iterative retraining in feature
space.

8 Related Work

Below we briefly describe some of the related literature on ad-
versarial evasion or adversarial example attacks and defenses;
we refer readers to Vorobeychik and Kantarcioglu [40] for
a broader and more in-depth treatment of the subject of ML
attacks and defenses.
Evasion and Adversarial Example Attacks: An early real-
izable evasion attack on machine learning was devised by
Fogla et al. [11, 12], who developed an attack on anomaly-
based intrusion detection systems. Šrndic and Laskov [37]
present a case study of an evasion attack on a state-of-the-
art PDF malware classifier, PDFRate. Xu et al. [44] propose
EvadeML, a fully realizable attack on PDF malware clas-
sifiers which generates evasion instances by using genetic
programming to modify PDF source directly, using a sandbox
to ensure that malicious functionality is preserved. Grosse
et al. [16] develop a method for generating evasion attacks
against a deep learning-based Android malware classifier, us-
ing a gradient-based approach which is also a form of iterative
improvement heuristics, but chooses the best coordinate to
improve in each iteration as evaluated by the gradient, rather
than random coordinate as in our case. Their approach likely
requires fewer steps than coordinate greedy, but since we
run coordinate greedy until convergence, this difference isn’t
important in our study. Moreover, we also optimize among
several local optima through random restarts, which is likely
to obtain better evasion solutions (Grosse et al. [16] stop as
soon as an evasion is found, rather than trying to identify the
most benign looking malware). This particular attack can be
viewed as realizable, even though it wasn’t implemented and
evaluated in actual malware, since the attack space is signifi-
cantly restricted to only add features that do not interfere with
others already present. Similarly, MalGAN, an evasion attack
based on generative adversarial networks developed by Hu
and Tan [19], only adds features from benign to malicious
malware, and we treat it as a realizable attack (since it’s not
difficult to implement).

In addition to classifier evasion methods which change
the actual malicious instances (or are relatively direct to im-
plement as such), a number of techniques have sprouted for
modeling adversarial examples in feature space [1–4, 7, 9, 15,
21, 21–24, 28, 41, 45]. Moreover, a series of efforts explore
evasion in the context of image classification by deep neural
networks [15, 20, 31, 33], although Gilmer et al. [13] ques-
tion the common threat models used in these works. Several
recent approaches attempt to generate adversarial examples
against computer vision systems in physical space, such as

USENIX Association 28th USENIX Security Symposium 297

adding stickers to a stop sign to cause misclassification, or
wearing printed glass frames to fool face recognition, and
are therefore somewhat analogous to our notion of realizable
attacks [10, 33].
Evasion-Robust Classification: Dalvi et al. [9] presented
the first approach for evasion-robust classification. A series of
approaches formulate robust classification as minimizing max-
imum loss (i.e., following a robust optimization paradigm),
where maximization is attributed to the evading attacker aim-
ing to maximize the learner’s loss through small feature-space
transformations [25, 32, 39, 42, 46]. A number of alternative
methods for designing classifiers consider the interaction as a
non-zero-sum game [5, 6, 21–23]. Finally, a series of iterative
retraining procedures have been proposed, both for general
adversarial evasion [21,23], and specifically for deep learning
methods for vision [15,20,25] (note that Madry et al. [25] fall
into both robust optimization and retraining buckets, since
their approach is equivalent to retraining if stochastic gradient
descent simply continues by processing adversarial examples
as they are added). These diverse efforts share one common
property: attack models that they leverage use feature-space
manipulations, which are only a proxy for realizable attacks
on ML.

9 Discussion and Conclusion

We undertook an extensive exploration of the extent to which
robust ML that uses the conventional feature-space models
of evasion attacks remains robust to “real” attacks that can be
implemented in actual malware and preserve malicious func-
tionality (what we call realizable attacks). Our first intriguing
observation is that defense based on feature-space models
can fail to achieve satisfactory robustness. This in itself raises
some doubts about the nearly universal focus on such mod-
els as a means for ML defense, and suggests that practical
usefulness of such approaches cannot be taken for granted.
However, we also show that changing the nature of the feature
space can make a difference: robust ML with feature-space
models is quite robust in content-based detection (which uses
content, rather than structural paths, as features). Additionally,
we presented a refined version of the feature-space model that
makes use of conserved features (which we can identify auto-
matically, as shown in the Appendix), and showed that where
feature-space defense previously failed, it now succeeds. Our
final finding may well be the most intriguing: feature-space
approaches exhibit generalized robustness, in that the result-
ing robust ML (after appropriate refinement using conserved
features) exhibits robustness to multiple realizable attacks.
This contrasts with defense that is hardened using a specific
realizable attack—even one quite powerful on the surface
(EvadeML)—which can fail dramatically when faced with
a different attack. These findings demonstrate the power of
effective mathematical abstractions in security.

It is natural to wonder how our approach and results are

applied to other domains. In computer vision, the analog of
realizable malware attacks are physical attacks, whereby the
physical environment is modified, rather than the digital ob-
ject, such as an image. Here, the corresponding foundational
question is whether common robust ML methods based on
small-lp attacks successfully protect against physical attacks.
The notion of conserved features can also be seen as more
generally applicable. For example, in a bag-of-words repre-
sentation for spam filtering, these could correspond to the
existence of URL or file attachments, and in SQL injection
attacks, these may refer to the existence of specific SQL com-
mands, such as Select.

The main limitation of our study is in the specific choices
we had to make to ensure that it is tractable. We chose a par-
ticular defensive paradigm—iterative retraining. As we have
argued, it is the only paradigm that can fit every case that we
investigate; for example, there is no other general approach
for learning a robust SVM with non-linear kernels. However,
it is possible that approaches based on robust optimization,
if they were developed, can improve performance by taking
advantage of the special structure of this problem. We imple-
mented a particular class of feature-space attacks, using l2
norm to measure the attacker’s cost of feature manipulations,
and stochastic local search to compute evasions. It is possible
that better attack algorithms for generating attacks over binary
domains will be developed, and, indeed, some alternatives ex-
ist. However, prior work suggests that this approach yields
attacks that are close to optimal [23], with the use of random
restarts playing a crucial role. Finally, our study was specific
to PDF malware detection. However, our framework is quite
general, and could be used in the future to consider other simi-
lar questions, such as the effectiveness of robust deep learning
against physical attacks. Several additional limitations offer
further opportunities for future work. One example is the fact
that we only define conserved features when these are binary;
it may be that finding meaningful conserved features in con-
tinuous feature spaces is inherently more difficult. Another
issue is the surprising finding that sufficient anchoring of
feature-space defense in the domain using conserved features
allows us to achieve robustness, even when conserved features
can be circumvented. It may be that conserved features are
ultimately only a part of the solution, and only help if they
adequately capture the attack surface in the abstract feature
space. The extent to which small variations in the set of iden-
tified conserved features matters is also an open question: our
evidence is mixed, with “expert”-defined features usually, but
not always, sufficient for robustness.

Acknowledgments

This work was partially supported by the Army Research
Office (W911NF1610069) and NSF CAREER award (IIS-
1649972).

298 28th USENIX Security Symposium USENIX Association

Appendix

A Identifying Conserved Features

We now describe a systematic automated procedure for iden-
tifying these. We first introduce how to identify conserved
features of SL2013, and then describe how to generalize the
approach to extract conserved features of Hidost.

The key to identifying the conserved features of a mali-
cious PDF is to discriminate them from non-conserved ones.
Since merely applying statistical approaches on training data
is insufficient to discriminate between these two classes of fea-
tures, as demonstrated above, we need a qualitatively different
approach which relies on the nature of evasions (as imple-
mented in EvadeML) and the sandbox (which determines
whether malicious functionality is preserved) to identify fea-
tures that are conserved.

We use a modified version of pdfrw [27]5 to parse the
objects of PDF file and repack them to produce a new PDF
file. We use Cuckoo [17] as the sandbox to evaluate malicious
functionality. In the discussion below, we define xi to be the
malicious file, Si the conserved feature set of xi, and Oi the
set of its non-conserved features. Initially, Si = Oi = /0.

At the high level, our first step is to sequentially delete each
object of a malicious file and eliminate non-conserved fea-
tures by evaluating the existence of a malware signature in a
sandbox for each resulting PDF, which provides a preliminary
set of conserved features. Then, we replace the object of each
corresponding structural path in the resulting preliminary set
with an external benign object and assess the corresponding
functionality, which allows us to further prune non-conserved
features. Next, we describe these procedures in detail.

A.1 Structural Path Deletion
In the first step, we filter out non-conserved features by delet-
ing each object and its corresponding structural path, and
then checking whether this eliminates malicious functionality
(and should therefore be conserved). First, we obtain all the
structural paths (objects) by parsing a PDF file. These objects
are organized as a tree-topology and are sequentially deleted.
Each time an object is removed, we produce a resulting PDF
file by repacking the remaining objects. Then, we employ the
sandbox to detect malicious functionality of the PDF after
the object deletion. If any malware signature is captured, the
corresponding structural path of the object is deleted as a
non-conserved feature, and added to Oi. On the other hand, if
no malware signature is detected, the corresponding feature
is added in Si as a possibly conserved feature.

One important challenge in this process is that features are
not necessarily independent. Thus, in addition to identifying
Si and Oi, we explore interdependence between features by

5The modified version is available at https://github.com/mzweilin/
pdfrw.

deleting objects. As the logic structure of a PDF file is with a
tree-topology, the presence of some structural path depends
on the presence of other structural paths whose object refers
to the object of the prior one. We define that a structural path
is a dependent of another if unilateral deleting the object asso-
ciated with the latter causes a flip from 1 to 0 on the feature
value of the former. For any feature j of xi, we denote the set
of features that depend on j by D j

i . Note that for a given struc-
tural path (feature), there could be multiple corresponding
PDF objects. In such a case, these objects are deleted simulta-
neously, so as the corresponding feature value is shifted from
1 to 0.

A.2 Structural Path Replacement
In the second step, we subtract the remaining non-conserved
features in the preliminary Si and move them to Oi. Similar
to the prior step, we first obtain all the structural paths and
objects of the malicious PDF file. Then for each object of
the PDF that is in Si, we replace it with an external object
from a benign PDF file and produce the resulting PDF, which
is further evaluated in the sandbox. If the sandbox detects
any malware signature, then the corresponding structural path
of the object replaced is moved from Si to Oi. Otherwise,
the structural path is a conserved feature since both deletion
and replacement of the corresponding object removes the
malicious functionality of the PDF file. Note that in the case
of multiple corresponding and identical objects of a structural
path, all of these objects are replaced simultaneously.

After structural path deletion and replacement, for each
malicious PDF file xi, we can get its conserved feature set Si,
non-conserved feature set Oi, and dependent feature set D j
for any feature j 2 Si[Oi, which could be further leveraged
to design evasion-robust classifiers.

A.3 Obtaining a Uniform Conserved Feature
Set

The systematic approach discussed above provides a con-
served feature set for each malicious seed to retrain a classi-
fier. Our goal, however, is to identify a single set of conserved
features which is independent of the specific malicious PDF
seed file. We now develop an approach for transforming a
collection of Si, Oi, and D j

i for a set of malicious seeds i into
a uniform set of conserved features.

Obtaining a uniform set of conserved features faces two
challenges: 1) minimizing conflicts among different con-
served features, as a conserved feature for one malicious in-
stance could be a non-conserved feature for another, and 2)
abiding by feature interdependence if a conserved feature
should be further eliminated.

To address these challenges, we propose a Forward Elimi-
nation algorithm to compute the uniform conserved feature

USENIX Association 28th USENIX Security Symposium 299

https://github.com/mzweilin/pdfrw
https://github.com/mzweilin/pdfrw

Algorithm 1 Forward Elimination for uniform conserved fea-
ture set.
Input:

The set of conserved features for xi(i 2 [1,n]), Si;
The set of non-conserved features for xi(i 2 [1,n]), Oi;
The set of dependent features for j 2 Si[Oi , D j

i ;
Output:

The uniform conserved feature set for {x1,x2, ...,xn}, S;
1: S

Sn
i=1Si;

2: S
0 S;

3: Q /0;
4: D j =

Sn
i=1D

j
i ;

5: for each j 2 S
0 do

6: if j /2 Q then
7: if Ân

i=1 j2Oi � b ·Ân
i=1 j2Si then

8: S S\ ({ j}[D j);
9: Q Q[({ j}[D j);

10: end if
11: end if
12: end for
13: return S;

set for a set of malicious seeds {x1,x2, ...,xn}, given the con-
served feature sets, non-conserved feature sets and dependent
sets for each seed. As Algorithm 1 shows, we first obtain a
union of the conserved feature sets. Then, we explore the
contradiction of each feature in the union with the others, by
comparing the total number of the feature being selected as
a non-conserved feature and conserved feature. If the former
one is greater than b times the latter one, then this feature,
together with its dependents, are eliminated from the union.
Otherwise, the feature is added to the uniform feature set. We
use b as a parameter to adjust the balance between conserved
and non-conserved features. Typically, b > 1 as we are in-
clined to preserve malicious functionality associated with a
conserved feature, even it could be a non-conserved feature
of another PDF file. We set b = 3 in our experiments.

A.4 Identifying Conserved Features for Other
Classifiers

Once we obtain conserved features of SL2013 for each ma-
licious seeds, we can employ these features to identify con-
served features for other classifiers using binary features. As
our approach relies on the existence of malicious functionality
and corresponding features, such a relation is not obvious for
real-valued features; we therefore leave the question of how
to define and identify conserved features in real space for
future work.
Hidost Hidost and SL2013 are similar in nature in such a
way that they employ structural paths as features. The only
difference is that Hidost consolidates features of SL2013 as
described in Section 4. Therefore, once the conserved fea-

Classifier Conserved features Involve JS?

SL2013

/Names No
/Names/JavaScript Yes

/Names/JavaScript/Names Yes
/Names/JavaScript/Names/JS Yes

/OpenAction No
/OpenAction/JS Yes
/OpenAction/S No

/Pages No

Hidost

/Names No
/Names/JavaScript Yes

/Names/JavaScript/Names Yes
/Names/JavaScript/Names/JS Yes

/OpenAction No
/OpenAction/JS Yes

/Pages No

PDFRate-B

count_box_other No
count_javascript Yes

count_js Yes
count_page No

Table 3: Conserved features and their relevance to JavaScript.

tures of SL2013 are identified, we can simply apply the PDF
structural path consolidation rules described in Srndic and
Laskov [38] to transform these features to the corresponding
conserved features for Hidost.
Binarized PDFRate We identify the conserved features for
PDFRate-B by using the conserved feature set Si of each
seed xi. For each xi, we generate |Si| PDF files, each of which
corresponds to the PDF file when an element (structural path)
in Si is deleted. We then compare PDFRate-B features of
these PDFs to the original xi. If any feature value of xi is
flipped from 1 to 0, then this feature will be added in the
conserved feature set of xi for PDFRate-B. Afterward, we
use Algorithm 1 to obtain the uniform conserved feature set.
This approach can in fact be used for arbitrary PDF malware
detectors over binary features (leveraging conserved structural
paths identified using SL2013).

A.5 Conserved Features
Table 3 presents the full list of conserved features we identi-
fied for each classifier.

A.6 Conserved vs. Regularized Features
In our experiments, we empirically adjust the SVM parameter
C to study the overlap between conserved features and those
selected by l1 regularization. We first adjust C to perform
feature reduction until the number of features is identical to
the number of conserved features. In this case, sparse versions
of both SL2013 and Hidost include only 3 of the conserved
features, while sparse PDFRate-B includes only 1. In another
experiment, we adjusted C until all conserved features were
selected. In this case, SL2013 requires 510 features, Hidost
needs 154, and PDFRate-B needs 83.

300 28th USENIX Security Symposium USENIX Association

References

[1] ATHALYE, A., CARLINI, N., AND WAGNER, D. Ob-
fuscated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples. In In-
ternational Conference on Machine Learning (2018),
pp. 274–283.

[2] BARRENO, M., NELSON, B., SEARS, R., JOSEPH,
A. D., AND TYGAR, J. D. Can machine learning be
secure? In ACM Asia Conference Computer and Com-
munications Security (2006), pp. 16–25.

[3] BIGGIO, B., CORONA, I., MAIORCA, D., NELSON, B.,
SRNDIC, N., LASKOV, P., GIACINTO, G., AND ROLI,
F. Evasion attacks against machine learning at test
time. In European Conference on Machine Learning
and Knowledge Discovery in Databases (2013), pp. 387–
402.

[4] BIGGIO, B., FUMERA, G., AND ROLI, F. Security
evaluation of pattern classifiers under attack. IEEE
Transactions on Knowledge and Data Engineering 26,
4 (2014), 984–996.

[5] BRÜCKNER, M., AND SCHEFFER, T. Stackelberg
games for adversarial prediction problems. In ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2011), pp. 547–555.

[6] BRÜCKNER, M., AND SCHEFFER, T. Static prediction
games for adversarial learning problems. Journal of
Machine Learning Research, 13 (2012), 2617–2654.

[7] CARLINI, N., AND WAGNER, D. Towards evaluating
the robustness of neural networks. In IEEE Symposium
on Security and Privacy (2017), pp. 39–57.

[8] COVA, M., KRUEGEL, C., AND VIGNA, G. Detection
and analysis of drive- by-download attacks and mali-
cious javascript code. In International Conference on
World Wide Web (2010), pp. 281–290.

[9] DALVI, N., DOMINGOS, P., MAUSAM, SANGHAI, S.,
AND VERMA, D. Adversarial classification. In SIGKDD
International Conference on Knowledge Discovery and
Data Mining (2004), pp. 99–108.

[10] EYKHOLT, K., EVTIMOV, I., FERNANDES, E., LI, B.,
RAHMATI, A., XIAO, C., PRAKASH, A., KOHNO, T.,
AND SONG, D. Robust physical-world attacks on deep
learning visual classification. In Computer Vision and
Pattern Recognition (2018).

[11] FOGLA, P., AND LEE, W. Evading network anomaly
detection systems: Formal reasoning and practical tech-
niques. In ACM Conference on Computer and Commu-
nications Security (2006), pp. 59–68.

[12] FOGLA, P., SHARIF, M., PERDISCI, R., KOLESNIKOV,
O., AND LEE, W. Polymorphic blending attacks. In
USENIX Security Symposium (2006).

[13] GILMER, J., ADAMS, R. P., GOODFELLOW, I. J., AN-
DERSEN, D., AND DAHL, G. E. Motivating the rules
of the game for adversarial example research. arXiv
preprint.

[14] GOODFELLOW, I., POUGET, J., MIRZA, M., XU, B.,
WARDE, D., OZAIR, S., COURVILLE, A., AND BEN-
GIO, Y. Generative adversarial nets. In Neural Informa-
tion Processing Systems (2014), pp. 2672–2680.

[15] GOODFELLOW, I. J., SHLENS, J., AND SZEGEDY, C.
Explaining and harnessing adversarial examples. In
International Conference on Learning Representations
(2015).

[16] GROSSE, K., PAPERNOT, N., MANOHARAN, P.,
BACKES, M., AND MCDANIEL, P. Adversarial
perturbations against deep neural networks for malware
classification. In European Symposium on Research in
Computer Security (2017).

[17] GUARNIERI, C., TANASI, A., BREMER, J., AND
SCHLOESSER, M. Cuckoo sandbox: A malware analy-
sis system, 2012. http://www.cuckoosandbox.org/.

[18] HOOS, H. H., AND STUTZLE, T. Stochastic Local
Search : Foundations & Applications. Morgan Kauf-
mann, 2004.

[19] HU, W., AND TAN, Y. Generating adversarial malware
examples for black-box attacks based on GAN. arXiv
preprint.

[20] HUANG, R., XU, B., SCHUURMANS, D., AND
SZEPESVÁRI, C. Learning with a strong adversary. In
International Conference on Learning Representations
(2016).

[21] KANTCHELIAN, A., TYGAR, J. D., AND JOSEPH, A. D.
Evasion and hardening of tree ensemble classifiers. In
International Conference on Machine Learning (2016),
pp. 2387–2396.

[22] LI, B., AND VOROBEYCHIK, Y. Feature cross-
substitution in adversarial classification. In Neural In-
formation Processing Systems (2014), pp. 2087–2095.

[23] LI, B., AND VOROBEYCHIK, Y. Evasion-robust clas-
sification on binary domains. ACM Transactions on
Knowledge Discovery from Data (2018).

[24] LOWD, D., AND MEEK, C. Adversarial learning. In
ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (2005), pp. 641–647.

USENIX Association 28th USENIX Security Symposium 301

[25] MADRY, A., MAKELOV, A., SCHMIDT, L., TSIPRAS,
D., AND VLADU, A. Towards deep learning models
resistant to adversarial attacks. In International Confer-
ence on Learning Representations (2018).

[26] MAIORCA, D., CORONA, I., AND GIACINTO, G. Look-
ing at the bag is not enough to find the bomb: an evasion
of structural methods for malicious PDF files detection.
In ACM Asia Conference on Computer and Communi-
cations Security (2013), pp. 119–130.

[27] MAUPIN, P. Pdfrw: A pure python library that reads and
writes pdfs. https://github.com/pmaupin/pdfrw, 2017.
Accessed: 2017-05-18.

[28] NELSON, B., RUBINSTEIN, B. I., HUANG, L., JOSEPH,
A. D., LEE, S. J., RAO, S., AND TYGAR, J. Query
strategies for evading convex-inducing classifiers. Jour-
nal of Machine Learning Research (2012), 1293–1332.

[29] PAPERNOT, N., MCDANIEL, P., SINHA, A., AND
WELLMAN, M. Towards the science of security and
privacy in machine learning. In IEEE European Sympo-
sium on Security and Privacy (2018).

[30] PAPERNOT, N., MCDANIEL, P., WU, X., AND JHA,
S. Distillation as a defense to adversarial perturbations
against deep neural networks. In IEEE Symposium on
Security and Privacy, (2016).

[31] PAPERNOT, N., MCDANIEL, P. D., AND GOODFEL-
LOW, I. J. Transferability in machine learning: from
phenomena to black-box attacks using adversarial sam-
ples, 2016. arxiv preprint.

[32] RAGHUNATHAN, A., STEINHARDT, J., AND LIANG,
P. Certified defenses against adversarial examples. In
International Conference on Learning Representations
(2018).

[33] SHARIF, M., BHAGAVATULA, S., BAUER, L., AND RE-
ITER, M. K. Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In ACM
SIGSAC Conference on Computer and Communications
Security (2016), ACM, pp. 1528–1540.

[34] SMUTZ, C., AND STAVROU, A. Malicious pdf detection
using matadata and structural features. Tech. rep., 2012.

[35] SMUTZ, C., AND STAVROU, A. Malicious pdf detection
using matadata structural features. In Annual Computer
Security Applications Conference (2012), pp. 239–248.

[36] ŠRNDIC, N., AND LASKOV, P. Detection of malicious
PDF files based on hierarchical document structure. In
Network and Distributed System Security Symposium
(2013).

[37] ŠRNDIC, N., AND LASKOV, P. Practical evasion of a
learning-based classifier: A case study. In IEEE Sympo-
sium on Security and Privacy (2014), pp. 197–211.

[38] ŠRNDIĆ, N., AND LASKOV, P. Hidost: a static machine-
learning-based detector of malicious files. EURASIP
Journal on Information Security 2016, 1 (2016), 22.

[39] TEO, C. H., GLOBERSON, A., ROWEIS, S., AND
SMOLA, A. J. Convex learning with invariances. In
Neural Information Processing Systems (2007).

[40] VOROBEYCHIK, Y., AND KANTARCIOGLU, M. Ad-
versarial Machine Learning. Morgan and Claypool,
2018.

[41] VOROBEYCHIK, Y., AND LI, B. Optimal randomized
classification in adversarial settings. In International
Conference on Autonomous Agents and Multiagent Sys-
tems (2014), pp. 485–492.

[42] WONG, E., AND KOLTER, J. Z. Provable defenses
against adversarial examples via the convex outer adver-
sarial polytope. In International Conference on Machine
Learning (2018).

[43] XU, H., CARAMANIS, C., AND MANNOR, S. Ro-
bustness and regularization of support vector machines.
Journal of Machine Learning Research 10 (2009), 1485–
1510.

[44] XU, W., QI, Y., AND EVANS, D. Automatically evading
classifiers: A case study on PDF malware classifiers. In
Network and Distributed System Security Symposium
(2016).

[45] ZHANG, F., CHAN, P., BIGGIO, B., YEUNG, D., AND
ROLI, F. Adversarial feature selection against evasion
attacks. IEEE Transactions on Cybernetics (2015).

[46] ZHOU, Y., KANTARCIOGLU, M., THURAISINGHAM,
B. M., AND XI, B. Adversarial support vector ma-
chine learning. In ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (2012),

pp. 1059–1067.

302 28th USENIX Security Symposium USENIX Association

ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation

Ethan M. Rudd∗, Felipe N. Ducau∗, Cody Wild, Konstantin Berlin, and Richard Harang∗

Sophos PLC

Abstract

Malware detection is a popular application of Machine
Learning for Information Security (ML-Sec), in which an
ML classifier is trained to predict whether a given file is mal-
ware or benignware. Parameters of this classifier are typi-
cally optimized such that outputs from the model over a set
of input samples most closely match the samples true ma-
licious/benign (1/0) target labels. However, there are often
a number of other sources of contextual metadata for each
malware sample, beyond an aggregate malicious/benign la-
bel, including multiple labeling sources and malware type in-
formation (e.g. ransomware, trojan, etc.), which we can feed
to the classifier as auxiliary prediction targets. In this work,
we fit deep neural networks to multiple additional targets de-
rived from metadata in a threat intelligence feed for Portable
Executable (PE) malware and benignware, including a multi-
source malicious/benign loss, a count loss on multi-source
detections, and a semantic malware attribute tag loss. We
find that incorporating multiple auxiliary loss terms yields a
marked improvement in performance on the main detection
task. We also demonstrate that these gains likely stem from
a more informed neural network representation and are not
due to a regularization artifact of multi-target learning. Our
auxiliary loss architecture yields a significant reduction in
detection error rate (false negatives) of 42.6% at a false pos-
itive rate (FPR) of 10−3 when compared to a similar model
with only one target, and a decrease of 53.8% at 10−5 FPR.

1 Introduction

Machine learning (ML) for computer security (ML-Sec) has
proven to be a powerful tool for malware detection. ML
models are now integral parts of commercial anti-malware
engines and multiple vendors in the industry have dedicated
ML-Sec teams. For the malware detection problem, these

∗ Equal contribution.
Contact: <firstname>.<lastname>@sophos.com

models are typically tuned to predict a binary label (mali-
cious or benign) using features extracted from sample files.
Unlike signature engines, where the aim is to reactively
blacklist/whitelist malicious/benign samples that hard-match
manually-defined patterns (signatures), ML engines employ
numerical optimization on parameters of highly parameter-
ized models that aim to learn more general concepts of mal-
ware and benignware. This allows some degree of proactive
detection of previously unseen malware samples that is not
typically provided by signature-only engines.

Frequently, malware classification is framed as a binary
classification task using a simple binary cross-entropy or
two-class softmax loss function. However, there often ex-
ist substantial metadata available at training time that contain
more information about each input sample than just an aggre-
gate label of whether it is malicious or benign. Such meta-
data might include malicious/benign labels from multiple
sources (e.g., from various security vendors), malware fam-
ily information, file attributes, temporal information, geo-
graphical location information, counts of affected endpoints,
and associated tags. In many cases this metadata will not be
available when the model is deployed, and so in general it
is difficult to include this data as features in the model (al-
though see Vapnik et al. [28, 29] for one approach to doing
so with Support Vector Machines).

It is a popular practice in the domain of malware analysis
to derive binary malicious/benign labels based on a heuristic
combination of multiple detection sources for a given file,
and then use these noisy labels for training ML models [9].
However, there is nothing that precludes training a classifier
to predict each of these source labels simultaneously opti-
mizing classifier parameters over these predictions + labels.
In fact, one might argue intuitively that guiding a model to
develop representations capable of predicting multiple tar-
gets simultaneously may have a smoothing or regularizing
effect conducive to generalization, particularly if the auxil-
iary targets are related to the main target of interest. These
auxiliary targets can be ignored during test time if they are
ancillary to the task at hand (and in many cases the extra

USENIX Association 28th USENIX Security Symposium 303

<first name>.<last name>@sophos.com

weights required to produce them can be removed from the
model prior to deployment), but nevertheless, there is much
reason to believe that forcing the model to fit multiple targets
simultaneously can improve performance on the key output
of interest. In this work, we take advantage of multi-target
learning [2] by exploring the use of metadata from threat in-
telligence feeds as auxiliary targets for model training.

Research in other domains of applied machine learning
supports this intuition [14, 19, 12, 31, 1, 22], however out-
side of the work of Huang et al. [11], multi-target learning
has not been widely applied in anti-malware literature. In
this paper, we present a wide-ranging study applying aux-
iliary loss functions to anti-malware classifiers. In contrast
to [11], which studies the addition of a single auxiliary la-
bel for a fundamentally different task, i.e., malware family
classification – we study both the addition of multiple la-
bel sources for the same task and multiple label sources for
multiple separate tasks. Also, in contrast to [11], we do not
presume the presence of all labels from all sources, and in-
troduce a per-sample weighting scheme on each loss term to
accommodate missing labels in the metadata. We further ex-
plore the use of multi-objective training as a way to expand
the number of trainable samples in cases where the aggregate
malicious/benign label is unclear, and where those samples
would otherwise be excluded from purely binary training.

Having established for which loss types and in which con-
texts auxiliary loss optimization works well, we then explore
why it works well, via experiments designed to test whether
performance gains are a result of a regularization effect from
multi-objective training or information from the content of
the target labels that the network has learned to correlate.

In summary, this paper makes the following contributions:

• A demonstration that including auxiliary losses yields
improved performance on the main task. When all of
our auxiliary loss terms are included, we see a reduc-
tion of 53.8% in detection error (false negative) rate at
10−5 false positive rate (FPR) and a 42.6% reduction in
detection error rate at 10−3 FPR compared to our base-
line model. We also see a consistently better and lower-
variance ROC curve across all false positive rates.

• A breakdown of performance improvements from dif-
ferent auxiliary loss types. We find that an auxiliary
Poisson loss on detection counts tends to yield im-
proved detection rates at higher FPR areas (≥ 10−3) of
the ROC curve, while multiple binary auxiliary losses
tend to yield improved detection performance in lower
FPR areas of the ROC curve (< 10−3). When combined
we see a net improvement across the entire ROC curve
over using any single auxiliary loss type.

• An investigation into the mechanism by which multi-
objective optimization yields enhanced performance,
including experiments to assess possible regularization
effects.

(a) Training

(b) Deployment

Figure 1: Schematic overview of our neural network archi-
tecture. (a) During training multiple output layers with cor-
responding loss functions are optionally connected to a com-
mon base topology consisting of five dense blocks (see Sec-
tion 3) of sizes 1024, 768, 512, 512, and 512. This base,
connected to our main malicious/benign output (solid line in
the figure) with a loss on the aggregate label, constitutes our
baseline architecture. Auxiliary outputs and their respective
losses are represented as dashed lines. The auxiliary losses
fall into three types: count loss, multi-label vendor loss, and
multi-label attribute tag loss. The formulation of each of
these auxiliary loss types is explained in Section 3. (b) At
deployment time, these auxiliary outputs are removed and
we predict only the main label.

We see our auxiliary loss approach as specifically useful
for both endpoint and cloud deployed models in cases when
the auxiliary information cannot be directly used as input
into the model at prediction time, but can be collected for
a training dataset. This could be due to high cost, perfor-
mance issues, latency concerns, or a multitude of other con-
straints during prediction time. For example, it is not feasible
to scan every new file executed on an endpoint via a threat
intelligence feed, because of prohibitive licensing fees, end-
point latency and bandwidth limitations, as well as customer
privacy concerns. However, procuring reports from such a
feed for large training sets might be feasible offline.

The remainder of this paper is laid out as follows: First,
in Section 2 we discuss some of the metadata available for
use as auxiliary targets, and feature extraction methods for
portable executable (PE) files. We then provide details on
how we converted the available metadata into auxiliary tar-

304 28th USENIX Security Symposium USENIX Association

gets and losses, as well as how the individual losses are
weighted and combined on a per-sample basis in Section 3.
We finish that Section with a description of how our dataset
was collected and provide summary statistics. In Section 4
we describe our experimental evaluations across a number of
combinations of auxiliary targets, and demonstrate the im-
pact of fitting these targets on the performance of the main
malware detection task. Section 5 presents discussion of our
results, as well as a set of experiments on synthetic targets
to explore potential explanations for the observed improve-
ments. Section 6 presents related work and Section 7 con-
cludes.

2 ML-Sec Detection Pipelines: From Single
Objective to Multi-Objective

In the following, we describe a simplified ML-Sec pipeline
for training a malicious file classifier, and propose a simple
extension that allows the use of metadata available during
training (but not at test time) and improves performance on
the classification task.

ML-Sec detection pipelines use powerful machine learn-
ing models that require many labeled malicious and be-
nign samples to train. Data is typically gathered from sev-
eral sources, including deployed anti-malware products and
vendor aggregation services, which run uploaded samples
through vendor products and provide reports containing per-
vendor detections and metadata. The exact nature of the
metadata varies, but typically, malicious and benign scores
are provided for each of M individual samples on a per-
vendor basis, such that, given V vendors, between 0 and V of
them will designate a sample malicious. For a given sample,
some vendors may choose not to answer, resulting in a miss-
ing label for that vendor. Furthermore, many vendors also
provide a detection name (or malware family name) when
they issue a detection for a given file. Additional information
may also be available, but crucially, the following metadata
are presumed present for the models presented in this paper:
i) per-vendor labels for each sample, either malicious/benign
(mapped to binary 1/0, respectively) or NULL; ii) textual
per-vendor labels on the sample describing the family and
variant of the malware (an empty string if benign or NULL);
and iii) time at which the sample was first seen.

Using the individual vendor detections, an aggregate label
can be derived either by a voting mechanism or by thresh-
olding the net number of vendors that identify a given sam-
ple as malicious. The use of aggregated anti-malware ven-
dor detections as a noisy labeling source presumes that the
vendor diagnoses are generally accurate. While this is not
necessarily a valid assumption, e.g., for novel malware and
benignware, this is typically accounted for by using samples
and metadata that are slightly dated so that vendors can cor-
rect their respective mistakes (e.g., by blacklisting samples

in their signature databases).
Each malware/benignware sample must also be converted

to a numerical vector to be able to train a classifier, a process
called feature extraction. In this work we focus on static
malware detection, meaning that we assume only access to
the binary file, as opposed to dynamic detection, in which
the features used predominantly come from the execution of
the file. The feature extraction mechanism varies depending
on the format type at hand, but consists of some numerical
transformation that preserves aggregate and fine-grained in-
formation throughout each sample, for example, the feature
extraction proposed by Saxe et al. [25] – which we use in
this work – uses windowed byte statistics, 2D histograms of
delimited string hash vs. length, and histograms of hashes of
PE-format specific metadata – e.g., imports from the import
address table (IAT).

Given extracted features and derived labels, a classi-
fier is then trained, tuning parameters to minimize mis-
classification as measured by some loss criterion, which un-
der the constraints of a statistical noise model measures the
deviation of predictions from their ground truth. For both
neural networks and ensemble methods a logistic sigmoid is
commonly used to constrain predictions to a [0,1] range, and
a cross-entropy loss between predictions and labels is used
as the minimization criterion under a Bernoulli noise model
per-label.

While the prior description roughly characterizes ML-Sec
pipelines discussed in literature to date, note that much infor-
mation in the metadata, which is often not used to determine
the sample label but is correlated to the aggregate classifica-
tion, is not used in training, e.g., the individual vendor classi-
fications, the combined number of detections across all ven-
dors, and information related to malware type that could be
derived from the detection names. In this work, we augment
a deep neural network malicious/benign classifier with addi-
tional output predictions of vendor counts, individual vendor
labels, and/or attribute tags. These separate prediction arms
were given their own loss functions which we jointly min-
imized through backpropagation. The difference between a
conventional malware detection pipeline and our model can
be visualized by considering Figure 1 in the absence and
presence of auxiliary outputs (and their associated losses)
connected by the dashed lines. In the next section, we shall
explore the precise formulation and implementation of these
different loss functions.

3 Implementation Details

In this section we describe our implementation of the experi-
ments sketched above. We first introduce our model immedi-
ately below, followed by the various loss functions – denoted
by Lloss type (X ,Y) for some input features X and targets Y –
associated with the various outputs of the model, as well as
how the labels Y representing the targets of these outputs are

USENIX Association 28th USENIX Security Symposium 305

constructed. Finally we discuss how our data set of M sam-
ples associated with V vendor targets is collected. We use
the same feature representation as well as the same general
model class and topology for all experiments. Each portable
executable file is converted into a feature vector as described
in [25].

The base for our model (see Figure 1) is a feedforward
neural network incorporating multiple blocks composed of
Dropout [27], a dense layer, batch normalization [13], and
an exponential linear unit (ELU) activation [7]. The core
of the model contains five such blocks with 1024, 768, 512,
512, and 512 hidden units, respectively. This base topology
applies the function f (·) to the input vector to produce an
intermediate 512 dimensional representation of the input file
h = f (x). We then append to this model an additional block,
consisting of one or more dense layers and activation func-
tions, for each output of the model. We denote the composi-
tion of our base topology and our target-specific final dense
layers and activations applied to features x by ftarget(x). The
output for the main malware/benign prediction task – fmal(x)
– is always present and consists of a single dense layer fol-
lowed by a sigmoid activation on top of the base shared net-
work that aims to estimate the probability of the input sample
being malicious. A network architecture with only this mal-
ware/benign output serves as the baseline for our evaluations.
To this baseline model we add auxiliary outputs with similar
structure as described above: one fully connected layer (two
for the tag prediction task in Section 3.4) which produces
some task-specific number of outputs (a single output, with
the exception of the restricted generalized Poisson distribu-
tion output, which uses two) and some task-specific activa-
tion described in the associated sections below.

Except where noted otherwise, all multi-task losses were
produced by computing the sum, across all tasks, of the per-
task loss multiplied by a task-specific weight (1.0 for the
malware/benign task and 0.1 for all other tasks; see Section
4). Training was standardized at 10 epochs; for all experi-
ments we used a training set of 9 million samples and a test
set of approximately 7 million samples. Additional details
about the training and test data are reported in Section 3.6.
Additionally, we used a validation set of 100,000 samples to
ensure that each network had converged to an approximate
minimum on validation loss after 10 epochs. All of our mod-
els were implemented in Keras [6] and optimized using the
Adam optimizer [15] with Keras’s default parameters.

3.1 Malware Loss

As explained in Section 2, for the task of predicting if a given
binary file, represented by its features x(i), is malicious or
benign we used a binary cross-entropy loss between the mal-
ware/benign output of the network ŷ(i) = fmal(x(i)) and the
malicious label y(i). This results in the following loss for a
dataset with M samples:

Lmal(X ,Y) =
1
M

M

∑
i=1

`mal(fmal(x(i)),y(i))

=− 1
M

M

∑
i=1

y(i) log(ŷ(i))+(1− y(i)) log(1− ŷ(i)).

(1)

In this paper, we use a “1-/5+” criterion for labeling a
given file as malicious or benign: if a file has one or fewer
vendors reporting it as malicious, we label the file as ‘be-
nign’ and use a weight of 1.0 for the malware loss for that
sample. Similarly, if a sample has five or more vendors re-
porting it as malicious, we label the file as ‘malicious’ and
use a weight of 1.0 for the malware loss for that sample.

3.2 Vendor Count Loss
To more finely distinguish between positive results, we in-
vestigate the use of the total number of ‘malicious’ reports
for a given sample from the vendor aggregation service as
an additional target; the rationale being that a sample with a
higher number of malicious vendor reports should, all things
being equal, be more likely to be malicious. In order to prop-
erly model this target, we require a suitable noise model for
count data. A popular candidate is a Poisson noise model,
parameterized by a single parameter µ , which assumes that
counts follow a Poisson process, where µ is the mean and
variance of the Poisson distribution. The probability of an
observation of y counts conditional on µ is

P(y|µ) = µ
ye−µ/y!. (2)

In our problem, as we expect the mean number of posi-
tive results for a given sample to be related to the file it-
self, we attempt to learn to estimate µ conditional on each
sample x(i) in such a way that the likelihood of y(i)|µ(i) is
maximized (or, equivalently, the negative log-likelihood is
minimized). Denote the output of the neural network with
which we are attempting to estimate the mean count of ven-
dor positives for sample i as fcnt(x(i)). Note that under a
non-distributional loss, this would be denoted by ŷ(i), how-
ever since we are fitting a parameter of a distribution, and
not the sample label y directly, we use different notation in
this section. By taking some appropriate activation function
a(·) that maps fcnt(x(i)) to the non-negative real numbers, we
can write µ(i) = a

(
fcnt(x(i))

)
. Consistent with generalized

linear model (GLM) literature [18], we use an exponential
activation for a, though one could equally well employ some
other transformation with the correct output range, for in-
stance the ReLU function.

Letting y(i) here denote the actual number of vendors that
recognized sample x(i) as malicious, the corresponding neg-
ative log-likelihood loss over the dataset is

306 28th USENIX Security Symposium USENIX Association

Lp(X ,Y) =
1
M

M

∑
i=1

`p

(
a
(

fcnt(x(i))
)
,y(i)

)
=

1
M

M

∑
i=1

µ
(i)− y(i) log(µ(i))+ log(y(i)!), (3)

which we will refer to as the Poisson or vendor count loss.
In practice, we ignore the log(y(i)!) term when minimizing
this loss since it does not depend on the parameters of the
network.

A Poisson loss is more intuitive for dealing with count
data than other common loss functions, even for count data
not generated by a Poisson process. This is partly due to the
discrete nature of the distribution and partly because the as-
sumption of increased variance with predicted mean is more
accurate than a homoscedastic – i.e., constant variance –
noise model.

While the assumption of increasing variance with pre-
dicted count value seems reasonable, it is very unlikely that
vendor counts perfectly follow a Poisson process – where
the mean is the variance – due to correlations between ven-
dors, which might occur from modeling choice and licens-
ing/OEM between vendor products. The variance might in-
crease at a higher or lower rate than the count and might not
even be directly proportional to or increase monotonically
with the count. Therefore, we also implemented a Restricted
Generalized Poisson distribution [10] – a slightly more intri-
cate noise model that accommodates dispersion in the vari-
ance of vendor counts. Given dispersion parameter α , the
Restricted Generalized Poisson distribution has a probability
mass function (pmf):

P(y|α,µ)=

(
µ

1+αµ

)y

(1+αy)y−1 exp
(
−µ(1+αy)

1+αµ

)
/y!.

(4)
When α = 0, this reduces to Eq. 2. α > 0 accounts for

over-dispersion, while α < 0 accounts for under-dispersion.
Note that in our use case α , like µ , is estimated by the neu-
ral network and conditioned on the feature vector, allowing
varying dispersion per-sample. Given the density function in
Eq. 4, the resultant log-likelihood loss for a dataset with M
samples is defined as:

Lgp(X ,Y) =− 1
M

M

∑
i=1

[
y(i)

(
log µ

(i)− log(1+α
(i)

µ
(i))

)
+(y(i)−1) log(1+α

(i)y(i))

− µ(i)(1+α(i)y(i))
1+α(i)µ(i)

+ log(y(i)!)
]
, (5)

where α(i) and µ(i) are obtained as transformed outputs of
the neural network in a similar fashion as we obtain µ(i) for

the Poisson loss. In practice, as for the Poisson loss, we
dropped the term related to y! since it does not affect the
optimization of the network parameters.

Note also that restrictions must be placed on the negative
value of the α(i) term to keep the arguments of the logarithm
positive. For numerical convenience, we used an exponential
activation over the dense layer for our α(i) estimator, which
accommodates over-dispersion but not under-dispersion. Re-
sults from experiments comparing the use of Poisson and
Generalized Poisson auxiliary losses are presented in Sec-
tion 4.1.

While the Poisson distribution is a widely used model for
count data, other discrete probability distributions could also
be used to model the count of vendor positive results. Dur-
ing early experimentation we also examined the binomial,
geometric, and negative binomial distributions as models for
vendor counts, but found that they produced unsatisfactory
results and so do not discuss them further.

3.3 Per-Vendor Malware Loss

The aggregation service from which we collected our data
sets contains a breakout of individual vendor results per sam-
ple. We identified a subset V = {v1, . . . ,vV} of 9 vendors
that each produced a result for (nearly) every sample in our
data. Each vendor result was added as a target in addition to
the malware target by adding an extra fully connected layer
per vendor followed by a sigmoid activation function to the
end of the shared architecture. We employed a binary cross-
entropy loss per vendor during training. Note that this differs
from the vendor count loss presented above in that each high-
coverage vendor is used as an individual binary target, rather
than being aggregated into a count. The aggregate vendors
loss Lvdr for the V = 9 selected vendors is simply the sum of
the individual vendor losses:

Lvdr(X ,Y) =
1
M

M

∑
i=1

V

∑
j=1

`vdr

(
fvdr j

(
x(i)

)
,y(i)v j

)
=− 1

M

M

∑
i=1

V

∑
j=1

y(i)v j log(ŷ(i)v j)+(1− y(i)v j) log(1− ŷ(i)v j),

(6)

where `vdr is the per-sample binary cross-entropy function
and fvdr j

(
x(i)

)
= ŷ(i)v j is the output of the network that is

trained to predict the label y(i)v j assigned by vendor j to in-
put sample x(i).

Results from experiments exploring the use of individual
vendor targets in addition to malware label targets are pre-
sented in Section 4.2.

USENIX Association 28th USENIX Security Symposium 307

3.4 Malicious Tags Loss

In this experiment we attempt exploit information contained
in family detection names provided by different vendors in
the form of malicious tags. We define each tag as a high level
description of the purpose of a given malicious sample. The
tags used as auxiliary targets in our experiments are: flooder,
downloader, dropper, ransomware, crypto-miner, worm, ad-
ware, spyware, packed, file-infector, and installer.

We create these tags from a parse of individual vendor
detection names, using a set of 10 vendors which from
our experience provide high quality detection names. Once
we have extracted the most common tokens, we filter them
to keep only tokens related to well-known malware family
names or tokens that could easily be associated with one or
more of our tags, for example, the token xmrig – even though
it is not a malware family – can be recognized as referring to
a crypto-currency mining software and therefore can be asso-
ciated with the crytpo-miner tag. We then create a mapping
from tokens to tags based on prior knowledge. We label a
sample as associated with tag ti if any of the tokens associ-
ated with ti are present in any of the detection names assigned
to the sample by the set of trusted vendors.

Annotating our dataset with these tags, allows us to de-
fine the tag prediction task as multi-label binary classifica-
tion, since zero or more tags from the set of possible tags
T = {t1, . . . , tT} can be present at the same time for a given
sample. We introduce this prediction task in order to have
targets in our loss function that are not not directly related
to the number of vendors that recognize the sample as ma-
licious. The vendor counts and the individual vendor labels
are closely related with the definition of our main target, i.e.
the malicious label, which classifies a sample as malicious if
5 or more vendors identify the sample as malware (see Sec-
tion 3.1). In the case of the tag targets, this information is
not present. For instance, if all the vendors recognize a given
sample as coming from the WannaCry family in their detec-
tion names, the sample will be associated only once with the
ransomware tag. On the converse, because of our tagging
mechanism, if only one vendor considers that a given sam-
ple is malicious and classifies it as coming from the Wan-
naCry family, the ransomware tag will be present (although
our malicious label will be 0).

In order to predict these tags, we use a multi-headed archi-
tecture in which we add two additional layers per tag to the
end of the shared base architecture, a fully connected layer
of size 512-to-256, followed by a fully connected layer of
size 256-to-1, followed by a sigmoid activation function, as
shown in Figure 1. Each tag t j out of the possible T = 11 tags
has its own loss term computed with binary cross-entropy.
Like the per-vendor malware loss, the aggregate tag loss is
the sum of the individual tag losses. For the dataset with M
samples it becomes:

Ltag(X ,Y) =
1
M

M

∑
i=1

T

∑
j=1

`tag

(
ftag j

(
x(i)

)
,y(i)t j

)
=− 1

M

M

∑
i=1

T

∑
j=1

y(i)t j log(ŷ(i)t j)+(1− y(i)t j) log(1− ŷ(i)t j),

(7)

where y(i)t j indicates if sample i is annotated with tag j, and

ŷ(i)t j = ftag j

(
x(i)

)
is the prediction issued by the network for

that value.

3.5 Sample Weights
While our multi-objective network has the advantage that
multiple labels and loss functions serve as additional sources
of information, this introduces an additional complexity:
given many (potentially missing) labels for each sample, we
cannot rely on having all labels for a large quantity of the
samples. Moreover, this problem gets worse as more la-
bels are added. To address this, we incorporated per-sample
weights, depending on the presence and absence of each la-
bel. For labels that are missing, we assign them to a default
value and then set the associated weights to zero in the loss
computation so a sample with a missing target label will not
add to the loss computation for that target. Though this in-
troduces slight implementation overhead, it allows us to train
our network, even in the presence of partially labeled sam-
ples (e.g., when a vendor decides not to answer).

3.6 Dataset
We collected two datasets of PE files and associated meta-
data from a threat intelligence feed: a set for train-
ing/validation and a test set. For the training/validation
set, we pulled 20M PE files and associated metadata, ran-
domly sub-selecting over a year – from September 6, 2017
to September 6, 2018. For the test set, we pulled files from
October 6, 2018 to December 6, 2018. Note also that we
indexed files based on unique SHA for first seen time, so ev-
ery PE in the test set comes temporally after the ones in the
training set. We do not use a randomized cross-validation
training/test split as is common in other fields, because that
would allow the set on which the classifier was trained to
contain files “from the future”, leading to spuriously opti-
mistic results. The reason for the one month gap between the
end of the training/validation set and the start of the test set is
to simulate a realistic worst-case deployment scenario where
the detection model of interest is updated on a monthly basis.
All files used in the following experiments – both malicious
and benign – were obtained from the threat intelligence feed.

We then extracted 1024-element feature vectors for all
those files using feature type described in [25] and derived

308 28th USENIX Security Symposium USENIX Association

an aggregate malicious/benign label using a 1-/5+ criterion
as described above. Invalid PE files were discarded.

Of the valid PE files from which we were able to ex-
tract features we further subsampled our training dataset to
9,000,000 training samples, with 7,188,150 (79.87%) ma-
licious and 1,587,035 (17.63%) benign. The remaining
224,815 (2.5%) are gray samples, without a benign or ma-
licious label, i.e., samples where the total number of vendor
detections is between 2 and 4 and thus do not meet our 1-/5+
labeling criterion. Our validation set was also randomly sub-
sampled from the same period as the training data and used to
monitor convergence during training. It consisted of 100,000
samples; of these, 17,620 were benign (17.62%), 79,819
were malicious (79.82%) , and 2,561 were gray (2.56%).
Our test set exhibited similar statistics, with 7,656,573 to-
tal samples, 1,606,787 benign (21.8%), 5,762,064 malicious
(78.2%), and 287,722 gray (3.76%). Further statistics for
the distribution of vendor counts and tags in our datasets are
presented in Appendix A.1.

The ratios of malicious to benign data in our training, test,
and validation sets are comparable, with malicious samples
more prevalent than benign samples. Note that this class bal-
ance differs substantially from a real-world deployment sce-
nario, where malware is rarely seen. Increasing the preva-
lence of this low-occurrence class when training on unbal-
anced data sets is commonly done to avoid overfitting [3]
(we have also observed this in practice), and using a data set
with a higher proportion of malicious samples assuming a
sufficient number of benign samples – may lead to a more
precise decision boundary, and better overall performance as
measured by the full ROC curve. Further, when using our
malicious tags loss, a greater diversity in malware can yield
a more diverse tag set to learn from during training.

Note that ROC curves, which we use as performance mea-
sures in Sections 4 and 5, are independent of class ratio in the
test set (unlike accuracy), since false positive rate (FPR) val-
ues depend only on the benign data, and true positive rate
(TPR) values depend only on malware. We also focus on
improvements in detection at the very low FPR of 0.1% or
below, where we see the most dramatic improvements, since
several publications by anti-virus vendors [25, 30] and our
experience suggest that 0.1% or lower is indeed a practi-
cal FPR target for most deployment scenarios. Our model
outputs can also be easily (without retraining) rescaled to
the desired deployment class ratio, based on the provided
ROC curve and/or standard calibration methods, e.g., fit-
ting a weighted isotonic regressor on scores from the vali-
dation set with each score contribution weighted according
to its ground truth label to correct the class balance discrep-
ancy between the validation set and the expected deployment
setting, then using that regressor to calibrate scores during
test/deployment.

4 Experimental Evaluation

In this section, we apply the auxiliary losses presented in in
Section 3, first individually, each loss in conjunction with
a main malicious/benign loss, and then simultaneously in
one combined model. We then compare to a baseline model,
finding that each loss term yields an improvement, either in
Receiver Operating Characteristic (ROC) net area under the
curve (AUC) or in terms of detection performance at low
false positive rates (FPR). We note that none of the auxil-
iary losses we present below harmed classification relative
to the baseline model; at worst, our loss-augmented models
had equivalent performance to the baseline model with re-
spect to AUC and low-FPR ROC performance on the aggre-
gate malicious/benign label. Each model used a loss weight
of 1.0 on the aggregate malicious/benign loss and 0.1 on each
auxiliary loss, i.e. when we add K targets to the main loss,
the final loss that gets backpropagated through the model be-
comes

L(X ,Y) = Lmal(X ,Y)+0.1
K

∑
k=1

Lk(X ,Y). (8)

Results are depicted in graphical form in Figure 2 and in
tabular form in Table 1.

As the training process for deep neural networks has some
degree of intrinsic randomness, which can result in varia-
tions in their performance, we report our results in terms of
both the mean and standard deviation for the test statistics of
interest across five runs. Each model was trained five times,
each time with a different random initialization and differ-
ent randomization over minibatches, and all other parameters
(optimizer and learning rate, training data, model structure,
number of epochs, etc.) held identical. We compute the test
statistic of interest (e.g. the detection rate at a false positive
rate of 10−3) for each model, and then compute the aver-
age and standard deviation of those results. Notice that the
ROC curves in Figure 2 are plotted on a logarithmic scale
for visibility, since the baseline performance is already quite
high and significant marginal improvements are difficult to
discern. For this reason, we also include relative reductions
in mean true positive detection error (the rate at which the
model fails to detect malware samples – or false negative
rate – averaged over the five model results) and in standard
deviation from the baseline for our best model in Table 1,
and for all models in Table C.1 in the appendix.

4.1 Vendor Count Loss
We employed the same base PE model topology as for our
other experiments, with a primary malicious/benign binary
cross-entropy loss, and an auxiliary count loss. We experi-
mented with two different loss functions for the count loss
– a Poisson loss and a Restricted Generalized Poisson loss

USENIX Association 28th USENIX Security Symposium 309

(a) Count Loss (b) Vendor Loss

(c) Tag Loss (d) Combined Loss

Figure 2: ROC curves and AUC statistics for count, vendor, and tag experiments compared to our baseline. Lines represent the
mean TPR at a given FPR, while shaded regions represent±1 standard deviation. Statistics were computed over 5 training runs,
each with random parameter initialization. (a) Count loss. Our baseline model (blue solid line) is shown compared to a model
employing a Poisson auxiliary loss (red dashed line), and a dispersed Poisson auxiliary loss (green dotted line). (b) Auxiliary
loss on multiple vendors malicious/benign labels (red dashed line) and baseline (blue solid line). (c) Auxiliary loss on semantic
attribute tags (red dashed line) and baseline (blue solid line). (d) Our combined model (red dashed line) and baseline (blue solid
line). The combined model utilizes an aggregate malicious/benign loss with an auxiliary Poisson count loss, a multi-vendor
malicious/benign loss, and a malware attribute tag loss.

(equations 3 and 5 respectively). For the Poisson loss, we
used an exponential activation over a dense layer atop the
base to estimate µ(i). For the Restricted Generalized Pois-
son (RG-Poisson) loss, we followed a similar pattern us-
ing two separate dense layers with exponential activations
on top; one for the µ(i) parameter and another for the α(i)

parameter. The choice of an exponential activation is consis-
tent with statistics literature on Generalized Linear Models
(GLMs) [18].

Results on the malware detection task using Poisson and
RG-Poisson losses as an auxiliary loss function are shown
in Figure 2a. When compared to a baseline using no auxil-

iary loss, we see a statistically significant improvement with
the Poisson loss function in both AUC and ROC curve, par-
ticularly in low false positive rate (FPR) regions. The RG-
Poisson loss, by contrast, yields no statistically significant
gains over the baseline in terms of AUC, nor does it appear
to yield statistically significant gains at any point along the
ROC curve.

This suggests that the RG-Poisson loss model is ill-fit,
which could stem from a variety of issues. First, if counts
are under-dispersed, an over-dispersed Poisson loss could be
an inappropriate model. Under-dispersion could occur if cer-
tain vendors disproportionately trigger simultaneously or be-

310 28th USENIX Security Symposium USENIX Association

FPR
10−5 10−4 10−3 10−2 10−1

TPR Baseline 0.427 ± 0.076 0.692 ± 0.049 0.864 ± 0.031 0.965 ± 0.007 0.9928 ± 0.0007
TPR Poisson 0.645 ± 0.029 0.785 ± 0.034 0.903 ± 0.016 0.970 ± 0.001 0.9932 ± 0.0002
TPR RG Poisson 0.427 ± 0.116 0.711 ± 0.041 0.870 ± 0.016 0.966 ± 0.003 0.9930 ± 0.0003
TPR Vendors 0.697 ± 0.034 0.792 ± 0.024 0.889 ± 0.020 0.970 ± 0.004 0.9928 ± 0.0014
TPR Tags 0.677 ± 0.027 0.792 ± 0.009 0.875 ± 0.022 0.971 ± 0.004 0.9932 ± 0.0008
TPR All Targets 0.735 ± 0.014 0.806 ± 0.017 0.922 ± 0.004 0.972 ± 0.003 0.9934 ± 0.0004
% Error Reduction (All Targets) 53.8% 37.0% 42.7% 20.0% 8.3%
% Variance Reduction (All Targets) 81.6% 65.3% 87.1% 57.1% 94.3%

Table 1: Top: Mean and standard deviation true positive rates (TPRs) for the different experiments in Section 4 at false positive
rates (FPRs) of interest. Results were aggregated over five training runs with different weight initializations and minibatch
orderings. Best results consistently occurred when using all auxiliary losses and are shown in bold. Bottom: Percentage
reduction in missed true positive detections and percentage reductions in ROC curve standard deviation resulting from the best
model (All Targets) compared to the baseline across various FPRs. State-of-the-art results are shown in bold.

cause counts are inherently bounded by the net number of
vendors. Second, a Poisson model, even with added disper-
sion parameters, is an ill-posed model of count data, but re-
moving the dispersion parameter removes a dimension in the
parameter space to over-fit on. Inspecting the dispersion pa-
rameters predicted by the RG-Poisson model, we noted that
they were relatively large, which supports the latter hypoth-
esis. We also noticed that the RG-Poisson model converged
significantly faster than the Poisson model in terms of mal-
ware detection loss.

4.2 Modeling Individual Vendor Responses
Incorporating an auxiliary multi-label binary cross-entropy
loss across vendors (cf. Section 3.3) in conjunction with the
main malicious/benign loss yields a similar increase in the
TPR at low FPR regions of the ROC curve (see Figure 2b)
to the Poisson experiment. Though we do not see a signif-
icant increase in AUC, since the improvement is integrated
across an extremely narrow range of FPRs, this improvement
in TPR at lower FPRs may still be operationally significant,
and does indicate an improvement in the model.

4.3 Incorporating Tags as Targets
In this experiment we extend the architecture of our base
network to predict, not only the malware/benign label, but
also the set of 11 tags defined in Section 3.4. For this, we
add two fully connected layers per tag to the end of the
base architecture (see Section 3.4) which serve to identify
each tag from the shared representation. Each of these tag-
specialized layers predicts a binary output corresponding to
presence/absence of the tag and has an associated binary
cross-entropy loss that gets added to the other tag losses and
the main malicious/benign loss. The overall loss for this ex-
periment is a sum containing one term per tag, weighted by

a loss weight of 0.1 (as mentioned at the beginning of this
section), and one term for the loss incurred on the main task.

The result of this experiment is represented via the ROC
curves of Figure 2c. Similar to section 4.2 we see no statisti-
cal difference in the AUC values with respect to the baseline,
but we do observe substantial statistical improvement in the
predictions of the model in low FPR regions, particularly for
FPR values lower than 10−3. Furthermore, we also witness
a substantial decrease in the variance of the ROC curve.

4.4 Combined Model
Finally, we extend our model to predict all auxiliary targets
in conjunction with the aggregate label, with a net loss term
containing a combination of all auxiliary losses used in pre-
vious experiments. The final loss function for the experi-
ment is the sum of all the individual losses where the mal-
ware/benign loss has a weight of 1.0 while the rest of the
losses have a weight of 0.1.

The resulting ROC curve and AUC are shown in Figure
2d. The AUC of 0.9972± 0.0001 is the highest obtained
across all the experiments conducted in this study. More-
over, in contrast to utilizing any single auxiliary loss, we see
a noticeable improvement in the ROC curve not only in very
low FPR regions, but also at 10−3 FPR. Additionally, vari-
ance is consistently lower across a range of low-FPR values
for this combined model than for our baseline or any previ-
ous models. An exception is near 10−6 FPR where measur-
ing variance is an ill-posed problem because even with a test
dataset of over 7M samples, detecting or misdetecting even
one or two of them can significantly affect detection rate.

In order to account for the effect of gray samples in the
evaluation of our detection model, we re-scanned a subset of
those at a later point in time, giving the AV community time
to update their detection rules, and evaluated the prediction
issued by the model. Even though it is naturally harder to

USENIX Association 28th USENIX Security Symposium 311

determine maliciousness of these samples (otherwise they
would not initially have been categorized as gray), we find
that our model predicts the correct labels for more than 77%
of them. A more in depth analysis of grey samples is de-
ferred to Appendix B.

5 Discussion

In this section, we examine the effects of different types of
auxiliary loss functions on main task ROC curve. We then
perform a sanity check to establish whether our performance
increases result from additional information added to our
neural networks by the auxiliary loss functions or are the ar-
tifact of some regularization effect.

5.1 Modes of Improvement
Examining the plots in Figure 2, we see three different types
of improvement that result from our auxiliary losses:

1. A bump in TPR at low FPR (< 10−3).
2. A net increase in AUC and a small bump in performance

at higher FPRs (≥ 10−3).
3. A reduction in variance.

Improvement 1 is particularly pronounced in the plots due
to the logarithmic scale, but it does not substantially con-
tribute to net AUC due to the narrow FPR range. How-
ever, this low-FPR part of the ROC is important from an
operational perspective when deploying a malware detection
model in practice. Substantially higher TPRs at low FPR
could allow for novel use cases in an operational scenario.
Notice that this effect is more pronounced for auxiliary
losses containing multi-objective binary labels (Figs. 2b, 2c,
and 2d) than for the Poisson loss, suggesting that it occurs
most prominently when employing our multi-objective bi-
nary label losses. Let us consider why a multi-objective bi-
nary loss might cause such an effect to occur: At low FPRs,
we see high thresholds on the detection score from the main
output of the network. To surpass this threshold and register
as a detection, the main sigmoid output must be very close to
1.0, i.e., very high response. Under a latent correlation with
the main output, a high-response hit for an auxiliary target
label could also boost the response for the main detector out-
put, while a baseline model without this information might
wrongly classify the sample as benign. We hypothesize that
improvement 1 occurs from having many objectives simulta-
neously and thereby increasing chances for a high-response
target hit. The loss type may or may not be incidental, which
is consistent with its noticeable but less pronounced presence
under a single-objective Poisson auxiliary loss (Figure 2a).

Improvement 2 likely stems from improvements in detec-
tion rate that we see around 10−3 FPR and higher. Notice
that these effects are more pronounced in Figs. 2a and 2d, are
somewhat noticeable in Figure 2b, and are not noticeable in

Figure 3: When we remove the attribute tags loss (green dot-
ted line) we get a similar shaped ROC curve with similar
ROC compared to using all losses (red dashed line), but with
slightly higher variance in the ROC. This supports our hy-
potheses about effects of different loss functions on the shape
of the ROC curve. The baseline is shown as a blue solid line
for comparison.

Figure 2c, consistent with the resultant AUCs. This suggests
that the effect occurs most prominently in the presence of an
auxiliary count loss. We postulate that this occurs because
our aggregate detection label is derived by thresholding the
net number of vendor detections for each sample but doing
so removes a notional view of confidence that a sample is
malicious. Alternatively stated, thresholding removes infor-
mation on the difficulty of classifying a malicious sample or
the extent of “maliciousness” that the number of detection
counts provides. Bear in mind that some detectors are better
at detecting different types of malware than others, so more
detections suggest a more malicious file, e.g., with more mal-
ware components, or a more widely blacklisted file (higher
confidence). Providing information on the number of counts
in an auxiliary loss function may therefore provide the clas-
sifier more principled information on how to order detection
scores, thus allowing for more effective thresholding and a
better ROC curve.

Improvement 3 occurs across all loss types, particularly
in low FPR ranges, with the exception of very low FPRs
(e.g., 10−6), where accurately measuring mean and variance
is an ill-posed problem due to the size of the dataset (cf. sec-
tion 4.4). Comparing the ROC plots in Figure 2, the reduc-
tion in variance appears more pronounced as the number of
losses increases. Intuitively, this is not a surprising result
since adding objectives/tasks imposes constrains the allow-
able weight space – while many choices of weights might
allow a network to perform a single task well only a subset
of these choices will work well for all tasks simultaneously.

312 28th USENIX Security Symposium USENIX Association

Thus, assuming equivalent base topology, we expect a net-
work that is able to perform at least as well on multiple tasks
as many single-task networks to exhibit lower variance.

Combining all losses seems to accentuate all improve-
ments (1-3) with predictable modes which we attribute to
our various loss types (Figure 2d) – higher detection rate at
low FPR brought about primarily by multi-objective binary
losses, a net AUC increase and a detection bump at 10−3

FPR brought about by the count loss, and a reduced vari-
ance brought about by many loss functions. To convince
ourselves that this is not a coincidence, we also trained a
network using only Poisson and vendor auxiliary losses but
no attribute tags (cf. Figure 3). As expected, we see that this
curve exhibits similar general shape and AUC characteristics
that occur when training with all loss terms, but the variance
appears slightly increased.

In the variance reduction sense, we can view our auxiliary
losses as regularizers. This raises a question: are improve-
ments 1 and 2 actually occurring for the reasons that we hy-
pothesize or are they merely naive result of regularization?

5.2 Representation or Regularization?

While the introduction of some kinds of auxiliary targets ap-
pears to improve the model’s performance on the main task,
it is less clear why this is the case. The reduction in variance
produced by the addition of extra targets suggests one po-
tential alternative explanation for the observed improvement:
rather than inducing a more discriminative representation in
the hidden layers of the network, the additional targets may
be acting as constraints on the network, reducing the space of
viable weights for the final trained network, and thus acting
as a form of additional regularization. Alternatively, the ad-
dition of extra targets may simply be accelerating training by
amplifying the gradient; while this seems unlikely given our
use of a validation set to monitor approximate convergence,
we nevertheless also investigate this possibility.

To evaluate these hypotheses, we constructed three addi-
tional targets (and associated loss functions) that provided
uninformative targets to the model: i) a pseudo-random tar-
get that is approximately independent of either the input fea-
tures or the malware/benign label; ii) an additional copy of
the main malware target transformed to act as a regression
target; and iii) an extra copy of the main malware target.

The random target approach attempts to directly evaluate
whether or not an additional pseudo-random target might im-
prove network performance by ‘using up’ excess capacity
that might otherwise lead to overfitting. We generate pseudo-
random labels for each sample based off of the parity of a
hash of the file contents. While this value is effectively ran-
dom and independent of the actual malware/benignware la-
bel of the file, the use of a hash value ensures that a given
sample will always produce the same pseudo-random tar-
get. This target is fit via standard binary cross-entropy loss

against a sigmoid output,

Lrnd(X ,Y) =− 1
M

M

∑
i=1

y(i) log frnd(x(i))+

(1− y(i)) log
(

1− frnd(x(i))
)
, (9)

where frnd

(
x(i)

)
is the output of the network which is being

fit to the random target y(i).
In contrast, the duplicated regression target evaluates

whether further constraining the weights without requiring
excess capacity to model additional independent targets has
an effect on the performance on the main task. The model
is forced to adopt an internal representation that can satisfy
two different loss functions for perfectly correlated targets,
thus inducing a constraint that does not add additional infor-
mation. To do this, we convert our binary labels (taking on
values of 0 and 1 for benign and malware, respectively) to
-10 and 10, and add them as additional regression targets fit
via mean squared error (MSE). Taking y(i) as the ith binary
target and fMSE(x(i)) as the regression output of the network,
we can express the MSE loss as:

Lmse(X ,Y) =
M

∑
i=1

(
fmse

(
x(i)

)
−20

(
y(i)−0.5

))2
. (10)

Finally, in the case of the duplicated target, the model ef-
fectively receives a larger gradient due to a duplication of the
loss. The loss for this label uses the same cross-entropy loss
as for the main target, obtained by substituting fdup(x(i)) for
fmal(x(i)) in equation 1 as the additional model output that
is fit to the duplicated target. Note that we performed two
variants of the duplicated target experiment: one in which
both the dense layer prior to the main malware target and
the dense layer prior to the duplicated target were trainable,
and one in which the dense layer for the duplicate target was
frozen at its initialization values to avoid the trivial solution
where the pre-activation layer for both the main and dupli-
cate target were identical. In both cases, the results were
equivalent; only results for the trainable case are shown.

Both frnd and fdup are obtained by applying a dense layer
followed by a sigmoid activation function to the intermediate
output of the input sample from the shared base layer (h in
Figure 1), while fmse(x(i)) is obtained by passing the inter-
mediate representation of the input sample h through a fully
connected layer with no output non-linearity.

Results of all three experiments are shown in Figure 4. In
no case did the performance of the model on the main task
improve statistically significantly over the baseline. This
suggests that auxiliary tasks must encode relevant informa-
tion to improve the model’s performance on the main task.
For each of the three auxiliary loss types in Figure 4, there is

USENIX Association 28th USENIX Security Symposium 313

Figure 4: ROC curves comparing classification capabilities
of models on the malware target when either random (green
dotted line), regression (red dashed line), or duplicated tar-
gets (magenta dashed and dotted line) are added as auxiliary
losses. Note that with the exception of the regression loss
– which appears to harm performance – there is little dis-
cernible difference between the remaining ROC curves. The
baseline is shown as a blue solid line for comparison.

no additional information provided by the auxiliary targets:
the random target is completely uncorrelated from any in-
formation in the file (and indeed the final layer is ultimately
dominated by the bias weights and produces a constant out-
put of 0.5 regardless of the inputs to the layer), while the
duplicated and MSE layers are perfectly correlated with the
final target. In either case, there is no incentive for the net-
work to develop a richer representation in layers closer to
the input; the final layer alone is sufficient given an adequate
representation in the core of the model.

6 Related Work

Applications of ML to computer security date back to the
1990’s [21], but large-scale commercial deployments of deep
neural networks (DNNs) that have led to transformative per-
formance gains are a more recent phenomenon. Several
works from the ML-Sec community have leveraged DNNs
for statically detecting malicious content across a variety of
different formats and file types [25, 26, 23]. However, these
works predominantly focus on applying regularized cross-
entropy loss functions between single network outputs and
malicious/benign labels per-sample, leaving the potential of
multiple-objective optimization largely untapped.

A notable exception, which we build upon in this work, is
[11], in which Huang et al. add a multiclass label for Mi-
crosoft’s malware families to their classification model us-
ing a categorical cross-entropy loss function atop a softmax

output as an auxiliary objective. They observed that adding
targets in this fashion increased performance both on the de-
tection task and on the malware family classification task.
Our work builds upon theirs in several respects. First, while
their work used 4000-dimensional dynamic features derived
from Windows API calls, we extend multi-target approaches
to lower-dimensional static features on a larger data set. In
this respect, our work pioneers a more scalable approach,
but lacks the advantages of dynamic features that their ap-
proach provides. Second, we demonstrate that improvements
from multi-target learning also occur using far more targets,
and we introduce heterogeneous loss functions, i.e., binary
cross-entropy and Poisson, whereas their work employs only
two categorical cross-entropy losses. Finally, our work in-
troduces loss-weighting to account for potentially missing
labels, which may not be problematic for only two targets
but become more prevalent with additional targets.

Despite the lack of attention from the ML-Sec commu-
nity, multi-target learning has been applied to other areas of
ML for a long time. The work of Abu-Mostafa [2] predates
most explicit references to multi-task learning by introducing
the concept of hints, in which known invariances of a solu-
tion (e.g., translation invariance, invariance under negation)
can be incorporated into network structure and used to gen-
erate additional training samples by applying the invariant
operation to the existing samples, or – most relevant to our
work – used as an additional target by enforcing that samples
modified by an invariant function should be both correctly
classified and explicitly classified identically. Caruna [5]
first introduced multi-task learning in neural networks as a
“source of inductive bias” (also reframed as inductive trans-
fer in [4]), in which more difficult tasks could be combined
in order to exploit similarities between tasks that could serve
as complementary signals during training. While his work
predates the general availability of modern GPUs, and thus
the models and tasks he examines are fairly simple, Caruna
nevertheless demonstrates that jointly learning related tasks
produces better generalization on a task-by-task basis than
learning them individually. It is interesting to note that in
[5] he also demonstrated that learning multiple copies of the
same task can also lead to a modest improvement in perfor-
mance (which we did not observe in this work, possibly due
to the larger scale and complexity of our task).

Kumar and Duame [17] consider a refinement on the basic
multi-task learning approach that leads to clustering related
tasks, in an effort to mitigate the potential of negative trans-
fer in which unrelated tasks degrade performance on the tar-
get task. Similarly, the work of Rudd et al. [22] explores the
use of domain-adaptive weighting of tasks during the train-
ing process.

Multi-target learning has been applied to extremely com-
plex image classification tasks, including predicting charac-
ters and ngrams within unconstrained images of text [14],
joint facial landmark localization and detection [19], image

314 28th USENIX Security Symposium USENIX Association

tagging and retrieval [12, 31], and attribute prediction [1, 22]
where a common auxiliary task is to challenge the network
to classify additional attributes of the image, such as manner
of dress for full-body images of people or facial attributes
(e.g., smiling, narrow eyes, race, gender). While a range of
neural network structures are possible, common exemplars
include largely independent networks with a limited number
of shared weights (e.g., [1]), a single network with minimal
separation between tasks (e.g., [22]), or a number of parallel
single-task classifiers in which the weights are constrained to
be similar to each other. A more complex approach may be
found in [24], in which the sharing between tasks is learned
automatically in an online fashion.

Other, more distantly connected domains of ML research
reinforce the intuition that learning on disparate tasks can im-
prove model performance. Work in semi-supervised learn-
ing, such as [16] and [20], has shown the value of additional
reconstruction and denoising tasks to learn representations
valuable for a core classification model, both through reg-
ularization and through access to a larger dataset than is
available with labels. The widespread success of transfer
learning is also a testament to the value of training a sin-
gle model on nominally distinct tasks. BERT [8], a recent
example from the Natural Language Processing literature,
shows strong performance gains from pre-training a model
on masked-word prediction and predictions of whether two
sentences appear in sequence, even when the true task of in-
terest is quite distinct (e.g. question answering, translation).

Multi-view learning (see [32] for a survey) is a related ap-
proach in which multiple inputs are trained to a single tar-
get. This approach also arguably leads to the same general
mechanism for improvement: the model is forced to learn
relationships between sets of features that improve the per-
formance using any particular set. While this approach often
requires all sets of features to be available at test time, there
are other approaches, such as [28], that relax this constraint.

7 Conclusion

In this paper, we have demonstrated the effectiveness of
auxiliary losses for malware classification. We have also
provided experimental evidence which suggests that perfor-
mance gains result from an improved and more informa-
tive representation, not merely a regularization artifact. This
is consistent with our observation that improvements occur
as additional auxiliary losses and different loss types are
added. We also note that different loss types have differ-
ent effects on the ROC; multi-label vendor and semantic at-
tribute tag losses have greatest effect at low false positive
rates (≤ 10−3), while Poisson counts have a substantial net
impact on AUC, the bulk of which stems from detection
boosts at higher FPR.

While we experimented on PE malware in this paper, our
auxiliary loss technique could be applied to many other prob-

lems in the ML-Sec community, including utilizing a label
on format/file type for format-agnostic features (e.g., office
document type in [23]) or file type under a given format, for
example APKs and JARs both share an underlying ZIP for-
mat; a zip-archive malware detector could use tags on the
file type for auxiliary targets. Additionally, tags on topics
and classifications of embedded URLs could serve as auxil-
iary targets when classifying emails or websites.

One open question is whether or not multiple auxiliary
losses improve each others’ performances as well as the main
task’s. If the multiple outputs of operational interest (such
as the tagging output) can be trained simultaneously while
also increasing (or at least not decreasing) their joint accu-
racy, this could lead to models that are both more compact
and more accurate than individually deployed ones. In addi-
tion to potential accuracy gains, this has significant potential
operational benefits, particularly when it comes to model de-
ployment and updates. We defer a more complete evaluation
of this question to future work.

While this work has focused on applying auxiliary losses
in the context of deep neural networks, there is nothing math-
ematically that precludes using them in conjunction with a
number of other classifier types. Notably, gradient boosted
classifier ensembles, which are also popular in the ML-Sec
community could take very similar auxiliary loss functions
even though the structure of these classifiers is much dif-
ferent. We encourage the ML-Sec research community to
implement multi-objective ensemble classifiers and compare
with our results. Our choice of deep neural networks for
this paper is infrastructural more than anything else; while
several deep learning platforms, including PyTorch, Keras,
and Tensorflow among others easily support multiple ob-
jectives and custom loss functions, popular boosting frame-
works such as lightGBM and XGBoost have yet to imple-
ment this functionality.

The analyses conducted herein used metadata that can nat-
urally be transformed into a label source and impart addi-
tional information to the classifier with no extra data collec-
tion burden on behalf of the threat intelligence feed. More-
over, our auxiliary loss technique does not change the under-
lying feature space representation. Other types of metadata,
e.g., the file path of the malicious binary or URLs extracted
from within the binary might be more useful in a multi-view
context, serving as input to the classifier, but this approach
raises challenges associated with missing data that our loss
weighting scheme trivially addresses. Perhaps our weight-
ing scheme could even be extended, e.g., by weighting each
sample’s loss contribution according to certainty/uncertainty
in that sample’s label, or re-balancing the per-task loss ac-
cording to the expected frequency of the label in the target
distribution. This could open up novel applications, e.g., de-
tectors customized to a particular user endpoints and remove
sampling biases inherent to multi-task data.

USENIX Association 28th USENIX Security Symposium 315

8 Acknowledgments

This research was sponsored by Sophos PLC. We would
additionally like to thank Adarsh Kyadige, Andrew Davis,
Hillary Sanders, and Joshua Saxe for their suggestions that
greatly improved this manuscript.

References

[1] ABDULNABI, A. H., WANG, G., LU, J., AND JIA,
K. Multi-task cnn model for attribute prediction. IEEE
Transactions on Multimedia 17, 11 (2015), 1949–1959.

[2] ABU-MOSTAFA, Y. S. Learning from hints in neural
networks. J. Complexity 6, 2 (1990), 192–198.

[3] ANDERSON, H. S., AND ROTH, P. Ember: an open
dataset for training static pe malware machine learning
models. arXiv preprint arXiv:1804.04637 (2018).

[4] CARUANA, R. A dozen tricks with multitask learning.
In Neural networks: tricks of the trade. Springer, 1998,
pp. 165–191.

[5] CARUNA, R. Multitask learning: A knowledge-based
source of inductive bias. In Machine Learning: Pro-
ceedings of the Tenth International Conference (1993),
pp. 41–48.

[6] CHOLLET, F., ET AL. Keras, 2015.

[7] CLEVERT, D.-A., UNTERTHINER, T., AND HOCHRE-
ITER, S. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[8] DEVLIN, J., CHANG, M.-W., LEE, K., AND
TOUTANOVA, K. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[9] DU, P., SUN, Z., CHEN, H., CHO, J.-H., AND XU,
S. Statistical Estimation of Malware Detection Metrics
in the Absence of Ground Truth. arXiv e-prints (Sept.
2018), arXiv:1810.07260.

[10] FAMOYE, F. Restricted generalized poisson regres-
sion model. Communications in Statistics-Theory and
Methods 22, 5 (1993), 1335–1354.

[11] HUANG, W., AND STOKES, J. W. Mtnet: a multi-
task neural network for dynamic malware classifica-
tion. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment
(2016), Springer, pp. 399–418.

[12] HUANG, Y., WANG, W., AND WANG, L. Uncon-
strained multimodal multi-label learning. IEEE Trans-
actions on Multimedia 17, 11 (2015), 1923–1935.

[13] IOFFE, S., AND SZEGEDY, C. Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift. arXiv preprint arXiv:1502.03167
(2015).

[14] JADERBERG, M., SIMONYAN, K., VEDALDI, A.,
AND ZISSERMAN, A. Deep structured output learn-
ing for unconstrained text recognition. arXiv preprint
arXiv:1412.5903 (2014).

[15] KINGMA, D. P., AND BA, J. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[16] KINGMA, D. P., MOHAMED, S., REZENDE, D. J.,
AND WELLING, M. Semi-supervised learning with
deep generative models. In Advances in neural infor-
mation processing systems (2014), pp. 3581–3589.

[17] KUMAR, A., AND DAUME III, H. Learning task
grouping and overlap in multi-task learning. arXiv
preprint arXiv:1206.6417 (2012).

[18] MCCULLAGH, P. Generalized linear models. Rout-
ledge, 2018.

[19] RANJAN, R., PATEL, V. M., AND CHELLAPPA, R.
Hyperface: A deep multi-task learning framework for
face detection, landmark localization, pose estimation,
and gender recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2017).

[20] RASMUS, A., BERGLUND, M., HONKALA, M.,
VALPOLA, H., AND RAIKO, T. Semi-supervised
learning with ladder networks. In Advances in Neu-
ral Information Processing Systems (2015), pp. 3546–
3554.

[21] RUDD, E., ROZSA, A., GUNTHER, M., AND BOULT,
T. A survey of stealth malware: Attacks, mitigation
measures, and steps toward autonomous open world so-
lutions. IEEE Communications Surveys & Tutorials 19,
2 (2017), 1145–1172.

[22] RUDD, E. M., GÜNTHER, M., AND BOULT, T. E.
Moon: A mixed objective optimization network for the
recognition of facial attributes. In European Confer-
ence on Computer Vision (2016), Springer, pp. 19–35.

[23] RUDD, E. M., HARANG, R., AND SAXE, J. Meade:
Towards a malicious email attachment detection en-
gine. arXiv preprint arXiv:1804.08162 (2018).

316 28th USENIX Security Symposium USENIX Association

[24] RUDER12, S., BINGEL, J., AUGENSTEIN, I., AND
SØGAARD, A. Sluice networks: Learning what to
share between loosely related tasks. stat 1050 (2017),
23.

[25] SAXE, J., AND BERLIN, K. Deep neural network
based malware detection using two dimensional binary
program features. In Malicious and Unwanted Soft-
ware (MALWARE), 2015 10th International Confer-
ence on (2015), IEEE, pp. 11–20.

[26] SAXE, J., HARANG, R., WILD, C., AND SANDERS,
H. A deep learning approach to fast, format-agnostic
detection of malicious web content. arXiv preprint
arXiv:1804.05020 (2018).

[27] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A.,
SUTSKEVER, I., AND SALAKHUTDINOV, R. Dropout:
a simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research 15, 1
(2014), 1929–1958.

[28] VAPNIK, V., AND IZMAILOV, R. Learning using priv-
ileged information: similarity control and knowledge
transfer. Journal of machine learning research 16,
2023-2049 (2015), 2.

[29] VAPNIK, V., AND VASHIST, A. A new learning
paradigm: Learning using privileged information. Neu-
ral networks 22, 5-6 (2009), 544–557.

[30] WEISS, G. M. Mining with rarity: a unifying frame-
work. ACM Sigkdd Explorations Newsletter 6, 1
(2004), 7–19.

[31] WU, F., WANG, Z., ZHANG, Z., YANG, Y., LUO, J.,
ZHU, W., AND ZHUANG, Y. Weakly semi-supervised
deep learning for multi-label image annotation. IEEE
Trans. Big Data 1, 3 (2015), 109–122.

[32] XU, C., TAO, D., AND XU, C. A survey on multi-view
learning. arXiv preprint arXiv:1304.5634 (2013).

A Dataset Statistics

A.1 Vendor Counts Distribution

To better characterize the distribution of the Vendor Counts
auxiliary target for our Poisson loss experiment, we plot a
histogram representing the distribution of the number of ven-
dor convictions in Figure A.1. The x-axis depicts the number
of vendors that identify a given sample as malicious, while
the y-axis represents the number of samples for which that
number of detections was observed in our training dataset
(note the logarithmic scale). The statistics of the test and val-
idation datasets are similar and not shown here due to space
considerations.

We note that there is a peak at zero detections, accounting
for the majority of the benign files. Most of the samples
considered malicious by our labeling scheme have more than
20 individual detections out of 67 total vendors considered,
with a peak around 57 detections.

Figure A.1: Histogram of vendor detections per file. Files
with zero or one detections (green bars) are considered be-
nign under our labeling scheme, samples with two, three or
four vendor detections (gray bars) are considered gray files,
and files with more than four detections (red bars) are con-
sidered malicious.

A.2 Individual Vendor Responses

Table A.1 summarizes the number of samples identified as
malware, benign and number of missing samples per ven-
dor for the nine vendors used to compute the auxiliary per-
vendor malware loss. In Figure A.2 we plot the pairwise
similarity of the predictions between vendors. The value in
the j, k position of the matrix is the fraction of samples for
which the predictions of vendor j are equal to the predictions
for vendor k. Even though the predictions by each vendor are
created in a quasi independent manner, they tend to agree for
most of the samples. The diagonal elements of the matrix

USENIX Association 28th USENIX Security Symposium 317

indicate the fraction of samples for which we have a classifi-
cation by the vendor (fraction of non-missing values).

Malware Benign None
v1 13,752,004 (69%) 6,110,180 (31%) 20,979 (<1%)
v2 14,751,413 (74%) 5,122,728 (26%) 9,022 (<1%)
v3 14,084,689 (71%) 5,713,116 (29%) 85,358 (<1%)
v4 14,438,043 (73%) 5,239,896 (26%) 205,224 (1 %)
v5 13,778,367 (69%) 5,922,859 (30%) 181,937 (1 %)
v6 15,065,196 (76%) 4,704,695 (24%) 113,272 (1 %)
v7 14,935,624 (75%) 4,927,436 (25%) 20,103 (<1%)
v8 12,704,512 (64%) 7,009,855 (35%) 168,796 (1 %)
v9 14,234,545 (72%) 5,613,604 (28%) 35,014 (<1%)

Table A.1: Individual vendor counts for files in the training
set identified as malicious, benign, or missing value for the
set of nine vendors used in the per-vendor malware loss 3.3.

A.3 Semantic Tags Distribution

In this section we analyze the distribution of the semantic
tags over three sets of samples: i) samples in the training
set; ii) samples in the test set; and iii) those which the base-
line model classifies incorrectly but our model trained with
all targets classifies correctly either as malicious or benign
samples. The percentages in Table A.2 represent the number
of samples in each set labeled with a given tag. The total
number of samples in the test set for which the improved
model makes correct conviction classification but the base-
line model fails is 665,944. The binarization of the predic-
tions for the baseline and the final model was done such that
each would have a FPR of 10−3 in the test set. As shown be-
low, those samples with the adware tag are the ones that most
benefit from the addition of auxiliary losses during training,
however we also see notable improvements on packed sam-
ples, spyware, and droppers.

B Gray Samples Evaluation

In Section 3.6 we observed that 2.5% of the samples in our
training set, and 3.7% of the samples in our test set are con-
sidered gray samples by our labeling function. While train-
ing this is not necessarily an issue since we can assign a
weight of zero for those samples in their malware/benign
label as noted in Section 3.5. For the evaluation of the
detection algorithms though, the performance on those be-
comes more relevant. To evaluate how our proposed detec-
tion model performs on those samples we re-scanned a ran-
dom selection of 10,000 gray samples in the test set 5 months
later than the original collection. From these, 5,000 were
predicted by the model as benign and 5,000 as malicious.
We expect, after this time-lag, that, with updated detection

Figure A.2: Vendor predictions similarity matrix. Each en-
try in the matrix represents the percentage of samples that are
the same for any two vendors. The elements in the diagonal
of the matrix represent the percentage of the samples for pre-
dictions from the vendor are present (i.e., not missing). Note
that diagonal values of less than 1.0 are due to missing labels
(compare to the final column of table A.1), which we treat as
disagreeing with any label.

Train Set Test Set
Improvement

over
baseline

adware 21 % 18% 41 %
crypto-miner 7 % 2% 1 %
downloader 25 % 18% 11 %
dropper 29 % 22% 17 %
file-infector 19 % 12% 9 %
flooder 1 % 1% <1%
installer 7 % 1 % 5 %
packed 34 % 25% 19 %
ransomware 5 % 6% 1 %
spyware 40 % 25% 18 %

Table A.2: Tag statistics for three sets of interest: train set;
test set; and the set of samples for which the full model clas-
sifies correctly but the baseline model fails.

rules from the AV community, that samples originally la-
beled as “gray” that are effectively malicious will accrue ad-
ditional detections and samples originally labeled as “gray”
that are effectively benign will accrue fewer detections as
vendors have re-written their rules to suppress false positives

318 28th USENIX Security Symposium USENIX Association

and recognize false negatives. Thus, the gray sample labels
will tend to converge to either malicious or benign under our
1-/5+ criterion. Out of these 10,000 rescans, we were able
to label 5,653 gray samples: 3,877 (68.6%) as malicious and
1,776 (31.4%) as benign.

In Figure B.1 we plot the ROC curve for the predictions
on the re-scanned samples for our final model trained with
all targets, which achieves an AUC of 0.84. Even though
the AUC is much lower than the one obtained on our test set,
our model trained with knowledge from 5 months earlier (af-
ter the first collection) still correctly predicts more than 77%
of the samples correctly. We measure this by binarizing the
predictions using a threshold that would achieve an FPR of
10−3 on the original test set. Furthermore we note that the
samples we are evaluating on in this case are more difficult
or even ambiguous in nature, to the point that at the origi-
nal collection time there was not consensus across the AV
community.

Figure B.1: Mean and standard deviation ROC curve over
rescanned samples.

USENIX Association 28th USENIX Security Symposium 319

C Relative Improvements

In Table C.1 we present the relative percentage reduction both in true positive detection error and standard deviation with
respect to the baseline model trained only using the malware/benign target for various values of false positive rates.

FPR
10−5 10−4 10−3 10−2 10−1

Poisson 38.05, 61.84 30.19, 30.61 28.68, 48.39 14.29, 85.71 5.56, 97.14
RG Poisson 0.00, -52.63 6.17, 16.33 4.41, 48.39 2.86, 57.14 2.78, 95.71
Vendors 47.12, 55.26 32.47, 51.02 18.38, 35.48 14.29, 42.86 0.00, 80.00
Tags 43.63, 64.47 32.47, 81.63 8.09, 29.03 17.14, 42.86 5.56, 88.57
All Targets 53.75, 81.58 37.01, 65.31 42.65, 87.10 20.00, 57.14 8.33, 94.29

Table C.1: Relative percentage reductions in true positive detection error and standard deviation compared to the baseline
model (displayed as detection error reduction, standard deviation reduction) at different false positive rates (FPRs) for the
different experiments in Section 4. Results were evaluated over five different weight initializations and minibatch orderings.
Best detection error reduction consistently occurred when using all auxiliary losses. Best results are shown in bold.

320 28th USENIX Security Symposium USENIX Association

Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and
Poisoning Attacks

Ambra Demontis†, Marco Melis†, Maura Pintor†, Matthew Jagielski*, Battista Biggio†,‡, Alina Oprea*,
Cristina Nita-Rotaru*, and Fabio Roli†,‡

†Department of Electrical and Electronic Engineering, University of Cagliari, Italy
‡Pluribus One, Italy

*Northeastern University, Boston, MA, USA

Abstract
Transferability captures the ability of an attack against a
machine-learning model to be effective against a different,
potentially unknown, model. Empirical evidence for transfer-
ability has been shown in previous work, but the underlying
reasons why an attack transfers or not are not yet well un-
derstood. In this paper, we present a comprehensive analysis
aimed to investigate the transferability of both test-time eva-
sion and training-time poisoning attacks. We provide a unify-
ing optimization framework for evasion and poisoning attacks,
and a formal definition of transferability of such attacks. We
highlight two main factors contributing to attack transferabil-
ity: the intrinsic adversarial vulnerability of the target model,
and the complexity of the surrogate model used to optimize
the attack. Based on these insights, we define three metrics
that impact an attack’s transferability. Interestingly, our results
derived from theoretical analysis hold for both evasion and
poisoning attacks, and are confirmed experimentally using a
wide range of linear and non-linear classifiers and datasets.

1 Introduction

The wide adoption of machine learning (ML) and deep learn-
ing algorithms in many critical applications introduces strong
incentives for motivated adversaries to manipulate the results
and models generated by these algorithms. Attacks against
machine learning systems can happen during multiple stages
in the learning pipeline. For instance, in many settings training
data is collected online and thus can not be fully trusted. In
poisoning availability attacks, the attacker controls a certain
amount of training data, thus influencing the trained model
and ultimately the predictions at testing time on most points in
testing set [4,18,20,28–30,34,36,41,48]. Poisoning integrity
attacks have the goal of modifying predictions on a few tar-
geted points by manipulating the training process [20,41]. On
the other hand, evasion attacks involve small manipulations
of testing data points that results in misprediction at testing
time on those points [3, 8, 10, 14, 32, 38, 42, 45, 49].

Creating poisoning and evasion attack points is not a trivial
task, particularly when many online services avoid disclos-
ing information about their machine learning algorithms. As
a result, attackers are forced to craft their attacks in black-
box settings, against a surrogate model instead of the real
model used by the service, hoping that the attack will be ef-
fective on the real model. The transferability property of an
attack is satisfied when an attack developed for a particular
machine learning model (i.e., a surrogate model) is also ef-
fective against the target model. Attack transferability was
observed in early studies on adversarial examples [14,42] and
has gained a lot more interest in recent years with the advance-
ment of machine learning cloud services. Previous work has
reported empirical findings about the transferability of evasion
attacks [3, 13, 14, 21, 26, 32, 33, 42, 43, 47] and, only recently,
also on the transferability of poisoning integrity attacks [41].
In spite of these efforts, the question of when and why do
adversarial points transfer remains largely unanswered.

In this paper we present the first comprehensive evaluation
of transferability of evasion and poisoning availability attacks,
understanding the factors contributing to transferability of
both attacks. In particular, we consider attacks crafted with
gradient-based optimization techniques (e.g., [4, 8, 23]), a
popular and successful mechanism used to create attack data
points. We unify for the first time evasion and poisoning at-
tacks into an optimization framework that can be instantiated
for a range of threat models and adversarial constraints. We
provide a formal definition of transferability and show that,
under linearization of the loss function computed under attack,
several main factors impact transferability: the intrinsic ad-
versarial vulnerability of the target model, the complexity of
the surrogate model used to optimize the attacks, and its align-
ment with the target model. Furthermore, we derive a new
poisoning attack for logistic regression, and perform a com-
prehensive evaluation of both evasion and poisoning attacks
on multiple datasets, confirming our theoretical analysis.

In more detail, the contributions of our work are:

Optimization framework for evasion and poisoning at-
tacks. We introduce a unifying framework based on gradient-

USENIX Association 28th USENIX Security Symposium 321

descent optimization that encompasses both evasion and poi-
soning attacks. Our framework supports threat models with
different adversarial goals (integrity and availability), amount
of knowledge available to the adversary (white-box and black-
box), as well as different adversarial capabilities (causative
or exploratory). Our framework generalizes existing attacks
proposed by previous work for evasion [3, 8, 14, 23, 42] and
poisoning [4, 18, 20, 24, 27, 48]. Under our framework, we
derive a novel gradient-based poisoning availability attack
against logistic regression. We remark here that poisoning
attacks are more difficult to derive than evasion ones, as they
require computing hypergradients from a bilevel optimization
problem, to capture the dependency on how the machine-
learning model changes while the training poisoning points
are modified [4, 18, 20, 24, 27, 48].

Transferability definition and theoretical bound. We give
a formal definition of transferability of evasion and poisoning
attacks, and an upper bound on a transfer attack’s success.
This allows us to derive three metrics connected to model
complexity. Our formal definition unveils that transferabil-
ity depends on: (1) the size of input gradients of the target
classifier; (2) how well the gradients of the surrogate and
target models align; and (3) the variance of the loss landscape
optimized to generate the attack points.

Comprehensive experimental evaluation of transferabil-
ity. We consider a wide range of classifiers, including logistic
regression, SVMs with both linear and RBF kernels, ridge
regression, random forests, and deep neural networks (both
feed-forward and convolutional neural networks), all with
different hyperparameter settings to reflect different model
complexities. We evaluate the transferability of our attacks
on three datasets related to different applications: handwrit-
ten digit recognition (MNIST), Android malware detection
(DREBIN), and face recognition (LFW). We confirm our
theoretical analysis for both evasion and poisoning attacks.

Insights into transferability. We demonstrate that attack
transferability depends strongly on the complexity of the tar-
get model, i.e., on its inherent vulnerability. This confirms that
reducing the size of input gradients, e.g., via regularization,
may allow us to learn more robust classifiers not only against
evasion [22,35,39,44] but also against poisoning availability
attacks. Second, transferability is also impacted by the sur-
rogate model’s alignment with the target model. Surrogates
with better alignments to their targets (in terms of the angle
between their gradients) are more successful at transferring
the attack points. Third, surrogate loss functions that are sta-
bler and have lower variance tend to facilitate gradient-based
optimization attacks to find better local optima (see Figure 1).
As less complex models exhibit a lower variance of their loss
function, they typically result in better surrogates.

Organization. We discuss background on threat modeling
against machine learning in Section 2. We introduce our unify-
ing optimization framework for evasion and poisoning attacks,

x

Lo
ss

High-complexity Surrogate

x

Lo
ss

Low-complexity Surrogate

x

Lo
ss

High-complexity Target

x

Lo
ss

Low-complexity Target

Figure 1: Conceptual representation of transferability. We
show the loss function of the attack objective as a function of
a single feature x. The top row includes 2 surrogate models
(high and low complexity), while the bottom row includes
both models as targets. The adversarial samples are repre-
sented as red dots for the high-complexity surrogate and as
blue dots for the low-complexity surrogate. If the adversar-
ial sample loss is below a certain threshold (i.e., the black
horizontal line), the point is correctly classified, otherwise it
is misclassified. The adversarial point computed against the
high-complexity model (top left) lays in a local optimum due
to the irregularity of the objective. This point is not effective
even against the same classifier trained on a different dataset
(bottom left) due to the variance of the high-complexity classi-
fier. The adversarial point computed against the low complex-
ity model (top right), instead, succeeds against both low and
high-complexity targets (left and right bottom, respectively).

as well as the poisoning attack for logistic regression in Sec-
tion 3. We then formally define transferability for both evasion
and poisoning attacks, and show its approximate connection
with the input gradients used to craft the corresponding attack
samples (Section 4). Experiments are reported in Section 5,
highlighting connections among regularization hyperparame-
ters, the size of input gradients, and transferability of attacks,
on different case studies involving handwritten digit recog-
nition, Android malware detection, and face recognition. We
discuss related work in Section 6 and conclude in Section 7.

2 Background and Threat Model

Supervised learning includes: (1) a training phase in which
training data is given as input to a learning algorithm, result-
ing in a trained ML model; (2) a testing phase in which the
model is applied to new data and a prediction is generated. In
this paper, we consider a range of adversarial models against
machine learning classifiers at both training and testing time.
Attackers are defined by: (i) their goal or objective in attack-
ing the system; (ii) their knowledge of the system; (iii) their
capabilities in influencing the system through manipulation

322 28th USENIX Security Symposium USENIX Association

of the input data. Before we detail each of these, we introduce
our notation, and point out that the threat model and attacks
considered in this work are suited to binary classification, but
can be extended to multi-class settings.
Notation. We denote the sample and label spaces with X
and Y ∈ {−1,+1}, respectively, and the training data with
D = (xi,yi)

n
i=1, where n is the training set size. We use

L(D,w) to denote the loss incurred by classifier f : X 7→ Y
(parameterized by w) on D. Typically, this is computed by
averaging a loss function `(y,x,w) computed on each data
point, i.e., L(D,w) = 1

n ∑
n
i=1 `(yi,xi,w). We assume that the

classifier f is learned by minimizing an objective function
L(D,w) on the training data. Typically, this is an estimate of
the generalization error, obtained by the sum of the empirical
loss L on training data D and a regularization term.

2.1 Threat Model: Attacker’s Goal
We define the attacker’s goal based on the desired security
violation. In particular, the attacker may aim to cause either
an integrity violation, to evade detection without compromis-
ing normal system operation; or an availability violation, to
compromise the normal system functionalities available to
legitimate users.

2.2 Threat Model: Attacker’s Knowledge
We characterize the attacker’s knowledge κ as a tuple in an ab-
stract knowledge space K consisting of four main dimensions,
respectively representing knowledge of: (k.i) the training data
D; (k.ii) the feature set X ; (k.iii) the learning algorithm f ,
along with the objective function L minimized during train-
ing; and (k.iv) the parameters w learned after training the
model. This categorization enables the definition of many dif-
ferent kinds of attacks, ranging from white-box attacks with
full knowledge of the target classifier to black-box attacks in
which the attacker has limited information about the target
system.
White-Box Attacks. We assume here that the attacker has full
knowledge of the target classifier, i.e., κ = (D,X , f ,w). This
setting allows one to perform a worst-case evaluation of the
security of machine-learning algorithms, providing empirical
upper bounds on the performance degradation that may be
incurred by the system under attack.
Black-Box Attacks. We assume here that the input feature
representation X is known. For images, this means that we
do consider pixels as the input features, consistently with
other recent work on black-box attacks against machine learn-
ing [32, 33]. At the same time, the training data D and the
type of classifier f are not known to the attacker. We consider
the most realistic attack model in which the attacker does not
have querying access to the classifier.

The attacker can collect a surrogate dataset D̂ , ideally sam-
pled from the same underlying data distribution as D, and

train a surrogate model f̂ on such data to approximate the tar-
get function f . Then, the attacker can craft the attacks against
f̂ , and then check whether they successfully transfer to the
target classifier f . By denoting limited knowledge of a given
component with the hat symbol, such black-box attacks can
be denoted with κ̂ = (D̂,X , f̂ , ŵ).

2.3 Threat Model: Attacker’s Capability
This attack characteristic defines how the attacker can influ-
ence the system, and how data can be manipulated based on
application-specific constraints. If the attacker can manipulate
both training and test data, the attack is said to be causative.
It is instead referred to as exploratory, if the attacker can only
manipulate test data. These scenarios are more commonly
known as poisoning [4,18,24,27,48] and evasion [3,8,14,42].

Another aspect related to the attacker’s capability depends
on the presence of application-specific constraints on data
manipulation; e.g., to evade malware detection, malicious
code has to be modified without compromising its intrusive
functionality. This may be done against systems leveraging
static code analysis, by injecting instructions that will never
be executed [11, 15, 45]. These constraints can be generally
accounted for in the definition of the optimal attack strategy by
assuming that the initial attack sample x can only be modified
according to a space of possible modifications Φ(x).

3 Optimization Framework for Gradient-
based Attacks

We introduce here a general optimization framework that
encompasses both evasion and poisoning attacks. Gradient-
based attacks have been considered for evasion (e.g., [3, 8, 14,
23, 42]) and poisoning (e.g., [4, 18, 24, 27]). Our optimization
framework not only unifies existing evasion and poisoning
attacks, but it also enables the design of new attacks. After
defining our general formulation, we instantiate it for evasion
and poisoning attacks, and use it to derive a new poisoning
availability attack for logistic regression.

3.1 Gradient-based Optimization Algorithm
Given the attacker’s knowledge κ ∈K and an attack sample
x′ ∈ Φ(x) along with its label y, the attacker’s goal can be
defined in terms of an objective function A(x′,y,κ) ∈ R (e.g.,
a loss function) which measures how effective the attack
sample x′ is. The optimal attack strategy can be thus given as:

x? ∈ arg max
x′∈Φ(x)

A(x′,y,κ) . (1)

Note that, for the sake of clarity, we consider here the opti-
mization of a single attack sample, but this formulation can
be easily extended to account for multiple attack points. In

USENIX Association 28th USENIX Security Symposium 323

Algorithm 1 Gradient-based Evasion and Poisoning Attacks

Input: x,y: the input sample and its label; A(x,y,κ): the at-
tacker’s objective; κ = (D,X , f ,w): the attacker’s knowl-
edge parameter vector; Φ(x): the feasible set of manipu-
lations that can be made on x; t > 0: a small number.

Output: x′: the adversarial example.
1: Initialize the attack sample: x′← x
2: repeat
3: Store attack from previous iteration: x← x′
4: Update step: x′←ΠΦ (x+η∇xA(x,y,κ)), where the

step size η is chosen with line search (bisection method),
and ΠΦ ensures projection on the feasible domain Φ.

5: until |A(x′,y,κ)−A(x,y,κ)| ≤ t
6: return x′

particular, as in the case of poisoning attacks, the attacker can
maximize the objective by iteratively optimizing one attack
point at a time [5, 48].

Attack Algorithm. Algorithm 1 provides a general pro-
jected gradient-ascent algorithm that can be used to solve
the aforementioned problem for both evasion and poison-
ing attacks. It iteratively updates the attack sample along
the gradient of the objective function, ensuring the result-
ing point to be within the feasible domain through a pro-
jection operator ΠΦ. The gradient step size η is determined
in each update step using a line-search algorithm based on
the bisection method, which solves maxη A(x′(η),y,κ), with
x′(η) = ΠΦ (x+η∇xA(x,y,κ)). For the line search, in our
experiments we consider a maximum of 20 iterations. This al-
lows us to reduce the overall number of iterations required by
Algorithm 1 to reach a local or global optimum. We also set
the maximum number of iterations for Algorithm 1 to 1,000,
but convergence (Algorithm 1, line 5) is typically reached
only after a hundred iterations.

We finally remark that non-differentiable learning algo-
rithms, like decision trees and random forests, can be attacked
with more complex strategies [17,19] or using gradient-based
optimization against a differentiable surrogate learner [31,37].

3.2 Evasion Attacks
In evasion attacks, the attacker manipulates test samples to
have them misclassified, i.e., to evade detection by a learning
algorithm. For white-box evasion, the optimization problem
given in Eq. (1) can be rewritten as:

max
x′

`(y,x′,w) , (2)

s.t. ‖x′−x‖p ≤ ε , (3)
xlb � x′ � xub , (4)

where ‖v‖p is the `p norm of v, and we assume that the clas-
sifier parameters w are known. For the black-box case, it

surrogate classifier !"($) used to craft black-box adversarial examples

target classifier ! $ used to craft white-box adversarial examples

minimum-distance black-box adversarial example

maximum-confidence black-box adversarial example
maximum-confidence white-box adversarial example

initial / source example

minimum-distance white-box adversarial example

Figure 2: Conceptual representation of maximum-confidence
evasion attacks (within an `2 ball of radius ε) vs. minimum-
distance adversarial examples. Maximum-confidence attacks
tend to transfer better as they are misclassified with higher
confidence (though requiring more modifications).

suffices to use the parameters ŵ of the surrogate classifier f̂ .
In this work we consider `(y,x′,w) =−y f (x′), as in [3].

The intuition here is that the attacker maximizes the loss
on the adversarial sample with the original class, to cause
misclassification to the opposite class. The manipulation con-
straints Φ(x) are given in terms of: (i) a distance constraint
‖x′− x‖p ≤ ε, which sets a bound on the maximum input
perturbation between x (i.e., the input sample) and the cor-
responding modified adversarial example x′; and (ii) a box
constraint xlb � x′ � xub (where u � v means that each ele-
ment of u has to be not greater than the corresponding element
in v), which bounds the values of the attack sample x′.

For images, the former constraint is used to implement ei-
ther dense or sparse evasion attacks [12,25,37]. Normally, the
`2 and the `∞ distances between pixel values are used to cause
an indistinguishable image blurring effect (by slightly manip-
ulating all pixels). Conversely, the `1 distance corresponds
to a sparse attack in which only few pixels are significantly
manipulated, yielding a salt-and-pepper noise effect on the
image [12, 37]. The box constraint can be used to bound each
pixel value between 0 and 255, or to ensure manipulation of
only a specific region of the image. For example, if some pix-
els should not be manipulated, one can set the corresponding
values of xlb and xub equal to those of x.

Maximum-confidence vs. minimum-distance evasion. Our
formulation of evasion attacks aims to produce adversarial
examples that are misclassified with maximum confidence
by the classifier, within the given space of feasible modifica-
tions. This is substantially different from crafting minimum-
distance adversarial examples, as formulated in [42] and in
follow-up work (e.g., [33]). This difference is conceptually
depicted in Fig. 2. In particular, in terms of transferability, it
is now widely acknowledged that higher-confidence attacks
have better chances of successfully transfering to the target
classifier (and even of bypassing countermeasures based on
gradient masking) [2, 8, 13]. For this reason, in this work we
consider evasion attacks that aim to craft adversarial examples
misclassified with maximum confidence.

Initialization. There is another factor known to improve trans-

324 28th USENIX Security Symposium USENIX Association

ferability of evasion attacks, as well as their effectiveness in
the white-box setting. It consists of running the attack starting
from different initialization points to mitigate the problem of
getting stuck in poor local optima [3, 13, 50]. In addition to
starting the gradient ascent from the initial point x, for non-
linear classifiers we also consider starting the gradient ascent
from the projection of a randomly-chosen point of the oppo-
site class onto the feasible domain. This double-initialization
strategy helps finding better local optima, through the identi-
fication of more promising paths towards evasion [13, 47, 50].

3.3 Poisoning Availability Attacks
Poisoning attacks consist of manipulating training data
(mainly by injecting adversarial points into the training set) to
either favor intrusions without affecting normal system opera-
tion, or to purposely compromise normal system operation to
cause a denial of service. The former are referred to as poison-
ing integrity attacks, while the latter are known as poisoning
availability attacks [5,48]. Recent work has mostly addressed
transferability of poisoning integrity attacks [41], including
backdoor attacks [9, 16]. In this work we focus on poisoning
availability attacks, as their transferability properties have not
yet been widely investigated. Crafting transferable poisoning
availability attacks is much more challenging than crafting
transferable poisoning integrity attacks, as the latter have a
much more modest goal (modifying prediction on a small set
of targeted points).

As for the evasion case, we formulate poisoning in a white-
box setting, given that the extension to black-box attacks is
immediate through the use of surrogate learners. Poisoning
is formulated as a bilevel optimization problem in which
the outer optimization maximizes the attacker’s objective A
(typically, a loss function L computed on untainted data),
while the inner optimization amounts to learning the classifier
on the poisoned training data [4, 24, 48]. This can be made
explicit by rewriting Eq. (1) as:

max
x′

L(Dval,w?) =
m

∑
j=1

`(y j,x j,w?) (5)

s.t. w? ∈ arg min
w

L(Dtr∪ (x′,y),w) (6)

where Dtr and Dval are the training and validation datasets
available to the attacker. The former, along with the poisoning
point x′, is used to train the learner on poisoned data, while
the latter is used to evaluate its performance on untainted data,
through the loss function L(Dval,w?). Notably, the objective
function implicitly depends on x′ through the parameters w?

of the poisoned classifier.
The attacker’s capability is limited by assuming that the

attacker can inject only a small fraction α of poisoning points
into the training set. Thus, the attacker solves an optimization
problem involving a set of poisoned data points (αn) added
to the training data.

Poisoning points can be optimized via gradient-ascent pro-
cedures, as shown in Algorithm 1. The main challenge is to
compute the gradient of the attacker’s objective (i.e., the vali-
dation loss) with respect to each poisoning point. In fact, this
gradient has to capture the implicit dependency of the optimal
parameter vector w? (learned after training) on the poisoning
point being optimized, as the classification function changes
while this point is updated. Provided that the attacker function
is differentiable w.r.t. w and x, the required gradient can be
computed using the chain rule [4, 5, 24, 27, 48]:

∇xA = ∇xL+
∂w
∂x

>
∇wL , (7)

where the term ∂w
∂x captures the implicit dependency of the

parameters w on the poisoning point x. Under some regular-
ity conditions, this derivative can be computed by replacing
the inner optimization problem with its stationarity (Karush-
Kuhn-Tucker, KKT) conditions, i.e., with its implicit equation
∇wL(Dtr∪(x′,y),w) = 0 [24,27].1 By differentiating this ex-
pression w.r.t. the poisoning point x, one yields:

∇x∇wL +
∂w
∂x

>
∇

2
wL = 0 . (8)

Solving for ∂w
∂x , we obtain ∂w

∂x
>

= −(∇x∇wL)(∇2
wL)−1,

which can be substituted in Eq. (7) to obtain the required
gradient:

∇xA = ∇xL− (∇xc∇wL)(∇2
wL)−1

∇wL . (9)

Gradients for SVM. Poisoning attacks against SVMs were
first proposed in [4]. Here, we report a simplified expression
for SVM poisoning, with L corresponding to the dual SVM
learning problem, and L to the hinge loss (in the outer opti-
mization):

∇xc A =−αc
∂kkc

∂xc
yk +αc

[
∂ksc
∂xc

0
][Kss 1

1> 0

]−1 [Ksk

1>

]
yk . (10)

We use c, s and k here to respectively index the attack
point, the support vectors, and the validation points for which
`(y,x,w)> 0 (corresponding to a non-null derivative of the
hinge loss). The coefficient αc is the dual variable assigned
to the poisoning point by the learning algorithm, and k and K
contain kernel values between the corresponding indexed sets
of points.

Gradients for Logistic Regression. Logistic regression is a
linear classifier that estimates the probability of the positive
class using the sigmoid function. A poisoning attack against
logistic regression has been derived in [24], but maximizing a
different outer objective and not directly the validation loss.

1More rigorously, we should write the KKT conditions in this case as
∇wL(Dtr ∪ (x′,y),w) ∈ 0, as the solution may not be unique.

USENIX Association 28th USENIX Security Symposium 325

One of our contributions is to compute gradients for logistic
regression under our optimization framework. Using logistic
loss as the attacker’s loss, the poisoning gradient for logistic
regression can be computed as:

∇xc A =−
[

∇xc ∇θL
C zc θ

]> [
∇2

θ
L X z C

C z X C ∑
n
i zi

]−1 [X(y◦σ−y)
y>(σ−1)

]
C,

where θ are the classifier weights (bias excluded), ◦ is the
element-wise product, z is equal to σ(1−σ), σ is the sigmoid
of the signed discriminant function (each element of that
vector is therefore: σi =

1
1+exp(−yi fi)

with fi = xiθ+b), and:

∇
2
θL =C

n

∑
i

xizix>i + I, (11)

∇xc ∇θL =C(I◦ (ycσc− yc)+ zcθx>c) (12)

In the above equations, I is the identity matrix.

4 Transferability Definition and Metrics

We discuss here an intriguing connection among transfer-
ability of both evasion and poisoning attacks, input gradients
and model complexity, and highlight the factors impacting
transferability between a surrogate and a target model. Model
complexity is a measure of the capacity of a learning algo-
rithm to fit the training data. It is typically penalized to avoid
overfitting by reducing either the number of classifier param-
eters to be learnt or their size (e.g., via regularization) [6].
Given that complexity is essentially controlled by the hyper-
parameters of a given learning algorithm (e.g., the number
of neurons in the hidden layers of a neural network, or the
regularization hyperparameter C of an SVM), only models
that are trained using the same learning algorithm should be
compared in terms of complexity. As we will see, this is an im-
portant point to correctly interpret the results of our analysis.
For notational convenience, we denote in the following the
attack points as x? = x+ δ̂, where x is the initial point and δ̂

the adversarial perturbation optimized by the attack algorithm
against the surrogate classifier, for both evasion and poison-
ing attacks. We start by formally defining transferability for
evasion attacks, and then discuss how this definition and the
corresponding metrics can be generalized to poisoning.
Transferability of Evasion Attacks. Given an evasion attack
point x?, crafted against a surrogate learner (parameterized
by ŵ), we define its transferability as the loss attained by
the target classifier f (parameterized by w) on that point, i.e.,
T = `(y,x+ δ̂,w). This can be simplified through a linear
approximation of the loss function as:

T = `(y,x+ δ̂,w)u `(y,x,w)+ δ̂
>

∇x`(y,x,w) . (13)

This approximation may not only hold for sufficiently-small
input perturbations. It may also hold for larger perturbations

if the classification function is linear or has a small curvature
(e.g., if it is strongly regularized). It is not difficult to see
that, for any given point x,y, the evasion problem in Eqs. (2)-
(3) (without considering the feature bounds in Eq. 4) can be
rewritten as:

δ̂ ∈ arg max
‖δ‖p≤ε

`(y,x+δ, ŵ) . (14)

Under the same linear approximation, this corresponds to the
maximization of an inner product over an ε-sized ball:

max
‖δ‖p≤ε

δ
>

∇x`(y,x, ŵ) = ε‖∇x`(y,x, ŵ)‖q , (15)

where `q is the dual norm of `p.
The above problem is maximized as follows:

1. For p = 2, the maximum is δ̂ = ε
∇x`(y,x,ŵ)
‖∇x`(y,x,ŵ)‖2

;

2. For p = ∞, the maximum is δ̂ ∈ ε · sign{∇x`(y,x, ŵ)};

3. For p= 1, the maximum is achieved by setting the values
of δ̂ that correspond to the maximum absolute values of
∇x`(y,x, ŵ) to their sign, i.e., ±1, and 0 otherwise.

Substituting the optimal value of δ̂ into Eq. (13), we can
compute the loss increment ∆`= δ̂>∇x`(y,x,w) under a trans-
fer attack in closed form; e.g., for p = 2, it is given as:

∆`= ε
∇x ˆ̀>

‖∇x ˆ̀‖2
∇x`≤ ε‖∇x`‖2 , (16)

where, for compactness, we use ˆ̀ = `(y,x, ŵ) and ` =
`(y,x,w). In this equation, the left-hand side is the increase in
the loss function in the black-box case, while the right-hand
side corresponds to the white-box case. The upper bound is
obtained when the surrogate classifier ŵ is equal to the tar-
get w (white-box attacks). Similar results hold for p = 1 and
p = ∞ (using the dual norm in the right-hand side).

Intriguing Connections and Transferability Metrics. The
above findings reveal some interesting connections among
transferability of attacks, model complexity (controlled by the
classifier hyperparameters) and input gradients, as detailed
below, and allow us to define simple and computationally-
efficient transferability metrics.

(1) Size of Input Gradients. The first interesting observation
is that transferability depends on the size of the gradient of
the loss ` computed using the target classifier, regardless of
the surrogate: the larger this gradient is, the larger the attack
impact may be. This is inferred from the upper bound in
Eq. (16). We define the corresponding metric S(x,y) as:

S(x,y) = ‖∇x`(y,x,w)‖q , (17)

where q is the dual of the perturbation norm.

326 28th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0

Regularization (weight decay)

0.05

0.10

0.15

S
iz

e
of

in
p
u
t

gr
ad

ie
n
ts

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
er

ro
r

High complexity Low complexity

test error (no attack)

test error (" = 0.3)

Figure 3: Size of input gradients (averaged on the test set)
and test error (in the absence and presence of evasion attacks)
against regularization (controlled via weight decay) for a neu-
ral network trained on MNIST89 (see Sect. 5.1.1). Note how
the size of input gradients and the test error under attack de-
crease as regularization (complexity) increases (decreases).

The size of the input gradient also depends on the complex-
ity of the given model, controlled, e.g., by its regularization hy-
perparameter. Less complex, strongly-regularized classifiers
tend to have smaller input gradients, i.e., they learn smoother
functions that are more robust to attacks, and vice-versa. No-
tably, this holds for both evasion and poisoning attacks (e.g.,
the poisoning gradient in Eq. 10 is proportional to αc, which
is larger when the model is weakly regularized). In Fig. 3
we report an example showing how increasing regularization
(i.e., decreasing complexity) for a neural network trained on
MNIST89 (see Sect. 5.1.1), by controlling its weight decay,
reduces the average size of its input gradients, improving ad-
versarial robustness to evasion. It is however worth remarking
that, since complexity is a model-dependent characteristic,
the size of input gradients cannot be directly compared across
different learning algorithms; e.g., if a linear SVM exhibits
larger input gradients than a neural network, we cannot con-
clude that the former will be more vulnerable.

Another interesting observation is that, if a classifier has
large input gradients (e.g., due to high-dimensionality of the
input space and low level of regularization), for an attack
to succeed it may suffice to apply only tiny, imperceptible
perturbations. As we will see in the experimental section,
this explains why adversarial examples against deep neural
networks can often only be slightly perturbed to mislead
detection, while when attacking less complex classifiers in
low dimensions, modifications become more evident.

(2) Gradient Alignment. The second relevant impact fac-
tor on transferability is based on the alignment of the input
gradients of the loss function computed using the target and
the surrogate learners. If we compare the increase in the loss
function in the black-box case (the left-hand side of Eq. 16)
against that corresponding to white-box attacks (the right-
hand side), we find that the relative increase in loss, at least
for `2 perturbations, is given by the following value:

R(x,y) =
∇x ˆ̀>∇x`

‖∇x ˆ̀‖2‖∇x`‖2
. (18)

x

`(
y
,x
,ŵ

) V (x, y)

Figure 4: Conceptual representation of the variability of the
loss landscape. The green line represents the expected loss
with respect to different training sets used to learn the surro-
gate model, while the gray area represents the variance of the
loss landscape. If the variance is too large, local optima may
change, and the attack may not successfully transfer.

Interestingly, this is exactly the cosine of the angle between
the gradient of the loss of the surrogate and that of the target
classifier. This is a novel finding which explains why the co-
sine angle metric between the target and surrogate gradients
can well characterize the transferability of attacks, confirming
empirical results from previous work [21]. For other kinds
of perturbation, this definition slightly changes, but gradient
alignment can be similarly evaluated. Differently from the
gradient size S, gradient alignment is a pairwise metric, al-
lowing comparisons across different surrogate models; e.g.,
if a surrogate SVM is better aligned with the target model
than another surrogate, we can expect that attacks targeting
the surrogate SVM will transfer better.

(3) Variability of the Loss Landscape. We define here an-
other useful metric to characterize attack transferability. The
idea is to measure the variability of the loss function ˆ̀ when
the training set used to learn the surrogate model changes,
even though it is sampled from the same underlying distri-
bution. The reason is that the loss ˆ̀ is exactly the objective
function A optimized by the attacker to craft evasion attacks
(Eq. 1). Accordingly, if this loss landscape changes dramati-
cally even when simply resampling the surrogate training set
(which may happen, e.g., for surrogate models exhibiting a
large error variance, like neural networks and decision trees),
it is very likely that the local optima of the corresponding
optimization problem will change, and this may in turn imply
that the attacks will not transfer correctly to the target learner.

We define the variability of the loss landscape simply as
the variance of the loss, estimated at a given attack point x,y:

V (x,y) = ED{`(y,x, ŵ)2}−ED{`(y,x, ŵ)}2 , (19)

where ED is the expectation taken with respect to different
(surrogate) training sets. This is very similar to what is typi-
cally done to estimate the variance of classifiers’ predictions.
This notion is clarified also in Fig. 4. As for the size of input
gradients S, also the loss variance V should only be compared
across models trained with the same learning algorithm.

USENIX Association 28th USENIX Security Symposium 327

The transferability metrics S, R and V defined so far depend
on the initial attack point x and its label y. In our experiments,
we will compute their mean values by averaging on different
initial attack points.
Transferability of Poisoning Attacks. For poisoning attacks,
we can essentially follow the same derivation discussed be-
fore. Instead of defining transferability in terms of the loss
attained on the modified test point, we define it in terms
of the validation loss attained by the target classifier un-
der the influence of the poisoning points. This loss func-
tion can be linearized as done in the previous case, yielding:
T u L(D,w)+ δ̂>∇xL(D,w), where D are the untainted val-
idation points, and δ̂ is the perturbation applied to the initial
poisoning point x against the surrogate classifier. Recall that
L depends on the poisoning point through the classifier param-
eters w, and that the gradient ∇xL(D,w) here is equivalent
to the generic one reported in Eq. (9). It is then clear that the
perturbation δ̂ maximizes the (linearized) loss when it is best
aligned with its derivative ∇xL(D,w), according to the con-
straint used, as in the previous case. The three transferability
metrics defined before can also be used for poisoning attacks
provided that we simply replace the evasion loss `(y,x,w)
with the validation loss L(D,w).

5 Experimental Analysis

In this section, we evaluate the transferability of both evasion
and poisoning attacks across a range of ML models. We high-
light some interesting findings about transferability, based
on the three metrics developed in Sect. 4. In particular, we
analyze attack transferability in terms of its connection to the
size of the input gradients of the loss function, the gradient
alignment between surrogate and target classifiers, and the
variability of the loss function optimized to craft the attack
points. We provide recommendations on how to choose the
most effective surrogate models to craft transferable attacks
in the black-box setting.

5.1 Transferability of Evasion Attacks
We start by reporting our experiments on evasion attacks. We
consider here two distinct case studies, involving handwritten
digit recognition and Android malware detection.

5.1.1 Handwritten Digit Recognition

The MNIST89 data includes the MNIST handwritten digits
from classes 8 and 9. Each digit image consists of 784 pixels
ranging from 0 to 255, normalized in [0,1] by dividing such
values by 255. We run 10 independent repetitions to average
the results on different training-test splits. In each repetition,
we run white-box and black-box attacks, using 5,900 samples
to train the target classifier, 5,900 distinct samples to train the
surrogate classifier (without even relabeling the surrogate data

0 1 2 3 4 5

ε

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
E

rr
or

White-box evasion attack (MNIST89)

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

Figure 5: White-box evasion attacks on MNIST89. Test error
against increasing maximum perturbation ε.

with labels predicted by the target classifier; i.e., we do not
perform any query on the target), and 1,000 test samples. We
modified test digits in both classes using Algorithm 1 under
the `2 distance constraint ‖x−x′‖2 ≤ ε, with ε ∈ [0,5].

For each of the following learning algorithms, we train a
high-complexity (H) and a low-complexity (L) model, by
changing its hyperparameters: (i) SVMs with linear ker-
nel (SVMH with C = 100 and SVML with C = 0.01); (ii)
SVMs with RBF kernel (SVM-RBFH with C = 100 and SVM-
RBFL with C = 1, both with γ = 0.01); (iii) logistic classifiers
(logisticH with C = 10 and logisticL with C = 1); (iv) ridge
classifiers (ridgeH with α = 1 and ridgeL with α = 10);2 (v)
fully-connected neural networks with two hidden layers in-
cluding 50 neurons each, and ReLU activations (NNH with
no regularization, i.e., weight decay set to 0, and NNL with
weight decay set to 0.01), trained via cross-entropy loss mini-
mization; and (vi) random forests consisting of 30 trees (RFH
with no limit on the depth of the trees and RFL with a maxi-
mum depth of 8). These configurations are chosen to evaluate
the robustness of classifiers that exhibit similar test accuracies
but different levels of complexity.

How does model complexity impact evasion attack suc-
cess in the white-box setting? The results for white-box eva-
sion attacks are reported for all classifiers that fall under our
framework and can be tested for evasion with gradient-based
attacks (SVM, Logistic, Ridge, and NN). This excludes ran-
dom forests, as they are not differentiable. We report the
complete security evaluation curves [5] in Fig. 5, showing the
mean test error (over 10 runs) against an increasing maximum
admissible distortion ε. In Fig. 6a we report the mean test
error at ε = 1 for each target model against the size of its input
gradients (S, averaged on the test samples and on the 10 runs).

The results show that, for each learning algorithm, the low-
complexity model has smaller input gradients, and it is less
vulnerable to evasion than its high-complexity counterpart,
confirming our theoretical analysis. This is also confirmed by
the p-values reported in Table 1 (first column), obtained by

2Recall that the level of regularization increases as α increases, and as C
decreases.

328 28th USENIX Security Symposium USENIX Association

10−1

Size of input gradients (S)

0.2

0.4

0.6

0.8

1.0

T
es

t
er

ro
r

(ε
=

1)

SVM

logistic

ridge

SVM-RBF

NN

(a)

10−5 10−4 10−3

Variability of loss landscape (V)

0.12

0.14

0.16

0.18

0.20

0.22

T
ra

n
sf

er
ra

te
(ε

=
1)

(b)

0.2 0.4 0.6 0.8

Gradient alignment (R)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ρ
(δ̂

,
δ)

(ε
=

5)

P: 0.99, p-val: < 1e-10
K: 0.93, p-val: < 1e-10

(c)

0.2 0.4 0.6 0.8

Gradient alignment (R)

0.2

0.4

0.6

0.8

B
la

ck
-

to
w

h
it

e-
b

ox
er

ro
r

ra
ti

o
(ε

=
1)

P: 0.91, p-val: < 1e-10
K: 0.72, p-val: < 1e-10

(d)

Figure 6: Evaluation of our metrics for evasion attacks on MNIST89. (a) Test error under attack vs average size of input gradients
(S) for low- (denoted with ‘×’) and high-complexity (denoted with ‘◦’) classifiers. (b) Average transfer rate vs variability of loss
landscape (V). (c) Pearson correlation coefficient ρ(δ̂,δ) between black-box (δ̂) and white-box (δ) perturbations (values in Fig. 8,
right) vs gradient alignment (R, values in Fig. 8, left) for each target-surrogate pair. Pearson (P) and Kendall (K) correlations
between ρ and R are also reported along with the p-values obtained from a permutation test to assess statistical significance.

Evasion Poisoning

MNIST89 DREBIN MNIST89 LFW

ε = 1 ε = 1 ε = 5 ε = 30 5% 20% 5% 20%

SVM <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 0.75
logistic <1e-2 <1e-2 <1e-2 0.02 <1e-2 <1e-2 0.10 0.21

ridge <1e-2 <1e-2 <1e-2 <1e-2 0.02 <1e-2 0.02 0.75
SVM-RBF <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 0.11

NN <1e-2 <1e-2 <1e-2 0.02

Table 1: Statistical significance of our results. For each attack,
dataset and learning algorithm, we report the p-values of
two two-sided binomial tests, to respectively reject the null
hypothesis that: (i) for white-box attacks, the test errors of the
high- and low-complexity target follow the same distribution;
and (ii) for black-box attacks, the transfer rates of the high-
and low-complexity surrogate follow the same distribution.
Each test is based on 10 samples, obtained by comparing
the error of the high- and low-complexity models for each
learning algorithm in each repetition. In the first (second)
case, success corresponds to a larger test (transfer) error for
the high-complexity target (low-complexity surrogate).

running a binomial test for each learning algorithm to com-
pare the white-box test error of the corresponding high- and
low-complexity models. All the p-values are smaller than
0.05, which confirms 95% statistical significance. Recall that
these results hold only when comparing models trained using
the same learning algorithm. This means that we can com-
pare, e.g., the S value of SVMH against SVML, but not that
of SVMH against logisticH. In fact, even though logisticH
exhibits the largest S value, it is not the most vulnerable clas-
sifier. Another interesting finding is that nonlinear classifiers
tend to be less vulnerable than linear ones.

How do evasion attacks transfer between models in black-
box settings? In Fig. 7 we report the results for black-box
evasion attacks, in which the attacks against surrogate models
(in rows) are transferred to the target models (in columns).

The top row shows results for surrogates trained using only
20% of the surrogate training data, while in the bottom row
surrogates are trained using all surrogate data, i.e., a training
set of the same size as that of the target. The three columns
report results for ε ∈ {1,2,5}.

It can be noted that lower-complexity models (with stronger
regularization) provide better surrogate models, on average.
In particular, this can be seen best in the middle column for
medium level of perturbation, in which the lower-complexity
models (SVML, logisticL, ridgeL, and SVM-RBFL) provide
on average higher error when transferred to other models.
The reason is that they learn smoother and stabler functions,
that are capable of better approximating the target function.
Surprisingly, this holds also when using only 20% of training
data, as the black-box attacks relying on such low-complexity
models still transfer with similar test errors. This means that
most classifiers can be attacked in this black-box setting with
almost no knowledge of the model, no query access, but pro-
vided that one can get a small amount of data similar to that
used to train the target model.

These findings are also confirmed by looking at the variabil-
ity of the loss landscape, computed as discussed in Sect. 4 (by
considering 10 different training sets), and reported against
the average transfer rate of each surrogate model in Fig. 6b. It
is clear from that plot that higher-variance classifiers are less
effective as surrogates than their less-complex counterparts,
as the former tend to provide worse, unstable approximations
of the target classifier. To confirm the statistical significance
of this result, for each learning algorithm we also compare the
mean transfer errors of high- and low-complexity surrogates
with a binomial test whose p-values (always lower than 0.05)
are reported in Table 1 (second column).

Another interesting, related observation is that the adversar-
ial examples computed against lower-complexity surrogates
have to be perturbed more to evade (see Fig. 9), whereas the
perturbation of the ones computed against complex models

USENIX Association 28th USENIX Security Symposium 329

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.15 .08 .13 .11 .11 .10 .04 .04 .07 .07 .49 .51

.22 .13 .20 .18 .15 .15 .06 .07 .12 .12 .53 .54

.19 .09 .17 .14 .12 .12 .04 .05 .09 .09 .50 .52

.21 .11 .19 .16 .14 .13 .05 .05 .10 .10 .52 .53

.07 .04 .06 .05 .08 .06 .02 .02 .03 .03 .42 .43

.13 .07 .12 .10 .13 .12 .03 .03 .06 .06 .48 .50

.19 .11 .17 .15 .13 .13 .06 .06 .11 .11 .52 .53

.22 .13 .20 .17 .15 .14 .07 .07 .12 .12 .53 .54

.20 .10 .18 .15 .13 .12 .05 .05 .10 .10 .51 .52

.21 .11 .19 .16 .13 .13 .05 .05 .10 .10 .52 .53

target error .03 .02 .02 .02 .03 .03 .01 .01 .01 .02 .02 .02

white box .96 .19 .89 .60 1.00 .83 .17 .10 .34 .19

tra
nsfe

r ra
te

.16

.21

.18

.19

.11

.15

.19

.20

.18

.19

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.52 .35 .51 .50 .51 .46 .22 .17 .37 .29 .52 .53

.72 .66 .73 .74 .79 .78 .49 .47 .63 .55 .56 .57

.62 .46 .62 .62 .66 .61 .32 .26 .48 .37 .53 .54

.68 .55 .69 .69 .74 .71 .39 .33 .55 .45 .54 .55

.18 .07 .16 .12 .27 .18 .04 .04 .07 .07 .48 .48

.43 .25 .43 .41 .69 .63 .17 .13 .28 .21 .51 .52

.63 .56 .65 .65 .71 .68 .46 .40 .57 .48 .55 .56

.70 .64 .71 .72 .77 .76 .51 .49 .64 .56 .56 .58

.66 .54 .67 .67 .68 .65 .38 .33 .54 .44 .54 .55

.68 .56 .69 .69 .72 .70 .40 .35 .56 .46 .54 .55

target error .03 .02 .02 .02 .03 .03 .01 .01 .01 .02 .02 .02

white box 1.00 .79 1.00 .98 1.00 1.00 .81 .66 .90 .76

tra
nsfe

r ra
te

.41

.64

.51

.57

.18

.39

.57

.64

.55

.58

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.98 .97 .99 .99 1.00 1.00 .92 .93 .97 .94 .59 .58

1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 1.00 1.00 .75 .76

.99 .99 1.00 1.00 1.00 1.00 .97 .97 .99 .97 .61 .62

1.00 1.00 1.00 1.00 1.00 1.00 .98 .99 .99 .99 .64 .65

.62 .54 .64 .67 .89 .88 .47 .44 .54 .46 .51 .51

.93 .93 .96 .98 1.00 1.00 .83 .83 .93 .87 .55 .54

1.00 .99 1.00 1.00 1.00 1.00 .99 .99 1.00 .99 .69 .69

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .77 .77

1.00 .99 1.00 1.00 1.00 1.00 .98 .99 .99 .99 .63 .64

1.00 1.00 1.00 1.00 1.00 1.00 .99 .99 1.00 .99 .64 .64

target error .03 .02 .02 .02 .03 .03 .01 .01 .01 .02 .02 .02

white box 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tra
nsfe

r ra
te

.91

.96

.93

.94

.60

.86

.95

.96

.93

.94

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.09 .05 .08 .07 .07 .06 .02 .02 .03 .05 .43 .45

.28 .14 .26 .22 .19 .17 .07 .07 .13 .14 .53 .54

.12 .06 .11 .09 .10 .09 .03 .03 .04 .06 .47 .49

.19 .09 .18 .15 .15 .13 .04 .04 .08 .08 .50 .52

.08 .04 .07 .05 .11 .07 .02 .02 .03 .04 .43 .45

.15 .07 .13 .10 .21 .15 .03 .03 .05 .06 .47 .49

.19 .10 .17 .15 .13 .12 .06 .06 .10 .11 .53 .53

.25 .13 .23 .20 .17 .16 .08 .08 .14 .14 .53 .54

.20 .10 .18 .15 .14 .12 .05 .05 .11 .10 .52 .53

.24 .12 .22 .20 .16 .15 .07 .07 .13 .13 .53 .53

target error .03 .02 .02 .02 .03 .03 .01 .01 .01 .02 .02 .02

white box .96 .19 .89 .60 1.00 .83 .17 .10 .31 .21

tra
nsfe

r ra
te

.12

.23

.14

.18

.12

.16

.19

.22

.19

.21

(a) ε = 1

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.27 .11 .25 .23 .24 .19 .06 .06 .12 .12 .49 .49

.80 .70 .82 .81 .88 .87 .53 .50 .68 .59 .56 .57

.39 .18 .40 .37 .46 .37 .10 .09 .19 .18 .50 .51

.63 .41 .66 .64 .76 .70 .25 .20 .43 .35 .53 .53

.23 .08 .21 .15 .46 .27 .04 .04 .08 .08 .47 .49

.52 .23 .51 .47 .89 .81 .15 .11 .26 .23 .51 .52

.63 .51 .65 .65 .71 .68 .48 .38 .56 .48 .55 .55

.76 .66 .77 .77 .85 .83 .58 .53 .69 .60 .57 .57

.65 .49 .67 .66 .72 .68 .40 .33 .60 .46 .54 .54

.75 .63 .77 .77 .82 .80 .52 .47 .67 .58 .56 .56

target error .03 .02 .02 .02 .03 .03 .01 .01 .01 .02 .02 .02

white box 1.00 .79 1.00 .98 1.00 1.00 .81 .66 .90 .73

tra
nsfe

r ra
te

.22

.69

.31

.51

.21

.43

.57

.68

.56

.66

(b) ε = 2

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.83 .72 .89 .90 .94 .96 .58 .59 .71 .60 .53 .52

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .75 .73

.94 .86 .97 .97 .99 .99 .71 .73 .87 .75 .55 .55

.99 .98 1.00 1.00 1.00 1.00 .95 .95 .99 .95 .62 .60

.71 .56 .74 .75 .98 .97 .46 .42 .57 .50 .51 .51

.97 .92 .98 .98 1.00 1.00 .81 .81 .92 .82 .56 .54

.99 .99 1.00 1.00 1.00 1.00 .99 .99 .99 .98 .72 .69

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .78 .75

.99 .98 1.00 1.00 1.00 1.00 .98 .98 1.00 .98 .67 .64

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .75 .72

target error .03 .02 .02 .02 .03 .03 .01 .01 .01 .02 .02 .02

white box 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

tra
nsfe

r ra
te

.73

.96

.82

.92

.64

.86

.94

.96

.94

.95

(c) ε = 5

Figure 7: Black-box (transfer) evasion attacks on MNIST89. Each cell contains the test error of the target classifier (in columns)
computed on the attack samples crafted against the surrogate (in rows). Matrices in the top (bottom) row correspond to attacks
crafted against surrogate models trained with 20% (100%) of the surrogate training data, for ε ∈ {1,2,5}. The test error of each
target classifier in the absence of attack (target error) and under (white-box) attack are also reported for comparison, along with
the mean transfer rate of each surrogate across targets. Darker colors mean higher test error, i.e., better transferability.

can be smaller. This is again due to the instability induced
by high-complexity models into the loss function optimized
to craft evasion attacks, whose sudden changes cause the
presence of closer local optima to the initial attack point.

On the vulnerability of random forests. A noteworthy find-
ing is that random forests can be effectively attacked at small
perturbation levels using most other models (see last two
columns in Fig. 7). We looked at the learned trees and dis-
covered that trees often are susceptible to small changes. In
one example, a node of the tree checked if a particular feature
value was above 0.002, and classified samples as digit 8 if that
condition holds (and digit 9 otherwise). The attack modified
that feature from 0 to 0.028, causing it to be immediately
misclassified. This vulnerability is intrinsic in the selection
process of the threshold values used by these decision trees to
split each node. The threshold values are selected among the
existing values in the dataset (to correctly handle categorical
attributes). Therefore, for pixels which are highly discriminant
(e.g., mostly black for one class and white for the other), the
threshold will be either very close to one extreme or the other,
making it easy to subvert the prediction by a small change.
Since `2-norm attacks change almost all feature values, with
high probability the attack modifies at least one feature on

every path of the tree, causing misclassification.

Is gradient alignment an effective transferability metric?
In Fig. 8, we report on the left the gradient alignment com-
puted between surrogate and target models, and on the right
the Pearson correlation coefficient ρ(δ̂,δ) between the per-
turbation optimized against the surrogate (i.e., the black-box
perturbation δ̂) and that optimized against the target (i.e., the
white-box perturbation δ). We observe immediately that gradi-
ent alignment provides an accurate measure of transferability:
the higher the cosine similarity, the higher the correlation
(meaning that the adversarial examples crafted against the
two models are similar). We correlate these two measures in
Fig. 6c, and show that such correlation is statistically signif-
icant for both Pearson and Kendall coefficients. In Fig. 6d
we also correlate gradient alignment with the ratio between
the test error of the target model in the black- and white-box
setting (extrapolated from the matrix corresponding to ε = 1
in the bottom row of Fig. 7), as suggested by our theoretical
derivation. The corresponding permutation tests confirm sta-
tistical significance. We finally remark that gradient alignment
is extremely fast to evaluate, as it does not require simulating
any attack, but it is only a relative measure of the attack trans-

330 28th USENIX Security Symposium USENIX Association

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

0.14 0.35 0.19 0.29 0.13 0.25 0.26 0.32 0.28 0.32

0.32 0.88 0.42 0.63 0.26 0.50 0.68 0.83 0.67 0.79

0.18 0.45 0.25 0.37 0.18 0.32 0.35 0.42 0.36 0.41

0.26 0.64 0.35 0.51 0.24 0.43 0.49 0.59 0.51 0.58

0.12 0.26 0.16 0.23 0.18 0.28 0.21 0.25 0.21 0.24

0.22 0.49 0.29 0.41 0.27 0.47 0.39 0.46 0.40 0.44

0.25 0.69 0.33 0.50 0.21 0.40 0.67 0.75 0.58 0.66

0.30 0.83 0.39 0.58 0.25 0.47 0.75 0.87 0.66 0.78

0.26 0.68 0.34 0.51 0.22 0.41 0.57 0.67 0.65 0.68

0.30 0.81 0.39 0.58 0.24 0.46 0.67 0.79 0.68 0.80

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.31 .47 .35 .42 .24 .37 .41 .45 .39 .44

.44 .89 .51 .67 .34 .57 .75 .86 .72 .82

.34 .54 .38 .47 .28 .42 .46 .52 .45 .50

.39 .68 .46 .58 .32 .51 .58 .66 .57 .64

.24 .34 .27 .32 .35 .39 .30 .33 .29 .32

.35 .56 .40 .50 .39 .55 .49 .55 .48 .52

.39 .76 .45 .59 .30 .50 .74 .80 .66 .74

.43 .86 .49 .65 .32 .55 .80 .90 .73 .83

.37 .73 .44 .57 .29 .49 .65 .74 .68 .72

.42 .83 .49 .64 .32 .53 .74 .84 .72 .82

Figure 8: Gradient alignment and perturbation correlation
for evasion attacks on MNIST89. Left: Gradient alignment
R (Eq. 18) between surrogate (rows) and target (columns)
classifiers, averaged on the unmodified test samples. Right:
Pearson correlation coefficient ρ(δ, δ̂) between white-box and
black-box perturbations for ε = 5.

ferability, as the latter also depends on the complexity of the
target model; i.e., on the size of its input gradients.

SVML SVMH SVM-RBFL SVM-RBFH

ε = 1.7 ε = 0.45 ε = 1.1 ε = 0.85

ε = 2.35 ε = 0.95 ε = 2.9 ε = 2.65

Figure 9: Digit images crafted to evade linear and RBF SVMs.
The values of ε reported here correspond to the minimum
perturbation required to evade detection. Larger perturbations
are required to mislead low-complexity classifiers (L), while
smaller ones suffice to evade high-complexity classifiers (H).

5.1.2 Android Malware Detection

The Drebin data [1] consists of around 120,000 legitimate and
around 5000 malicious Android applications, labeled using
the VirusTotal service. A sample is labeled as malicious (or
positive, y =+1) if it is classified as such from at least five
out of ten anti-virus scanners, while it is flagged as legitimate
(or negative, y =−1) otherwise. The structure and the source
code of each application is encoded as a sparse feature vector
consisting of around a million binary features denoting the
presence or absence of permissions, suspicious URLs and
other relevant information that can be extracted by statically
analyzing Android applications. Since we are working with
sparse binary features, we use the `1 norm for the attack.

We use 30,000 samples to learn surrogate and target clas-
sifiers, and the remaining 66,944 samples for testing. The

0 5 10 15 20 25 30

ε

0.0

0.2

0.4

0.6

0.8

1.0

E
va

si
on

R
at

e

White-box evasion attack (DREBIN)

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

Figure 10: White-box evasion attacks on DREBIN. Evasion
rate against increasing maximum perturbation ε.

classifiers and their hyperparameters are the same used for
MNIST89, apart from (i) the number of hidden neurons for
NNH and NNL, set to 200, (ii) the weight decay of NNL, set
to 0.005; and (iii) the maximum depth of RFL, set to 59.

We perform feature selection to retain those 5,000 fea-
tures which maximize information gain, i.e., |p(xk = 1|y =
+1)− p(xk = 1|y = −1)|, where xk is the kth feature. While
this feature selection process does not significantly affect the
detection rate (which is only reduced by 2%, on average, at
0.5% false alarm rate), it drastically reduces the computa-
tional complexity of classification.

In each experiment, we run white-box and black-box eva-
sion attacks on 1,000 distinct malware samples (randomly
selected from the test data) against an increasing number of
modified features in each malware ε ∈ {0,1,2, . . . ,30}. This
is achieved by imposing the `1 constraint ‖x′−x‖1 ≤ ε. As in
previous work, we further restrict the attacker to only inject
features into each malware sample, to avoid compromising
its intrusive functionality [3, 11].

To evaluate the impact of the aforementioned evasion at-
tack, we measure the evasion rate (i.e., the fraction of malware
samples misclassified as legitimate) at 0.5% false alarm rate
(i.e., when only 0.5% of the legitimate samples are misclas-
sified as malware). As in the previous experiment, we report
the complete security evaluation curve for the white-box at-
tack case, whereas we report only the value of test error for
the black-box case. The results, reported in Figs. 10, 11, 12,
and 13, along with the statistical tests in Table 1 (third and
fourth columns) confirm the main findings of the previous
experiments. One significant difference is that random forests
are much more robust in this case. The reason is that the `1-
norm attack (differently from the `2) only changes a small
number of features, and thus the probability that it will change
features in all the ensemble trees is very low.

5.2 Transferability of Poisoning Attacks

For poisoning attacks, we report experiments on handwritten
digits and face recognition.

USENIX Association 28th USENIX Security Symposium 331

10−1 100

Size of input gradients (S)

0.2

0.4

0.6

0.8

1.0

E
va

si
on

ra
te

(ε
=

5)

SVM

logistic

ridge

SVM-RBF

NN

(a)

10−2 10−1

Variability of loss landscape (V)

0.3

0.4

0.5

0.6

T
ra

n
sf

er
ra

te
(ε

=
30

)
(b)

0.0 0.2 0.4 0.6 0.8

Gradient alignment (R)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρ
(δ̂

,
δ)

(ε
=

30
)

P: 0.91, p-val: < 1e-10
K: 0.74, p-val: < 1e-10

(c)

0.0 0.2 0.4 0.6 0.8

Gradient alignment (R)

0.2

0.4

0.6

0.8

B
la

ck
-

to
w

h
it

e-
b

ox
er

ro
r

ra
ti

o
(ε

=
5)

P: 0.69, p-val: < 1e-10
K: 0.48, p-val: < 1e-10

(d)

Figure 11: Evaluation of our metrics for evasion attacks on DREBIN. See the caption of Fig. 6 for further details.

5.2.1 Handwritten Digit Recognition

We apply our optimization framework to poison SVM, logis-
tic, and ridge classifiers in the white-box setting. Designing
efficient poisoning availability attacks against neural networks
is still an open problem due to the complexity of the bilevel
optimization and the non-convexity of the inner learning prob-
lem. Previous work has mainly considered integrity poisoning
attacks against neural networks [5, 20, 41], and it is believed
that neural networks are much more resilient to poisoning
availability attacks due to their memorization capability. Poi-
soning random forests is not feasible with gradient-based
attacks, and we are not aware of any existing attacks for
this ensemble method. We thus consider as surrogate learn-
ers: (i) linear SVMs with C = 0.01 (SVML) and C = 100
(SVMH); (ii) logistic classifiers with C = 0.01 (logisticL)
and C = 10 (logisticH); (iii) ridge classifiers with α = 100
(ridgeL) and α = 10 (ridgeH); and (iv) SVMs with RBF kernel
with γ = 0.01 and C = 1 (SVM-RBFL) and C = 100 (SVM-
RBFH). We additionally consider as target classifiers: (i) ran-
dom forests with 100 base trees, each with a maximum depth
of 6 for RFL, and with no limit on the maximum depth for
RFH; (ii) feed-forward neural networks with two hidden lay-
ers of 200 neurons each and ReLU activations, trained via
cross-entropy loss minimization with different regularization
(NNL with weight decay 0.01 and NNH with no decay); and
(iii) the Convolutional Neural Network (CNN) used in [7].

We consider 500 training samples, 1,000 validation sam-
ples to compute the attack, and a separate set of 1,000 test
samples to evaluate the error. The test error is computed
against an increasing number of poisoning points into the
training set, from 0% to 20% (corresponding to 125 poisoning
points). The reported results are averaged on 10 independent,
randomly-drawn data splits.
How does model complexity impact poisoning attack suc-
cess in the white-box setting? The results for white-box poi-
soning are reported in Fig. 14. Similarly to the evasion case,
high-complexity models (with larger input gradients, as shown
in Fig. 15a) are more vulnerable to poisoning attacks than
their low-complexity counterparts (i.e., given that the same

learning algorithm is used). This is also confirmed by the sta-
tistical tests in the fifth column of Table 1. Therefore, model
complexity plays a large role in a model’s robustness also
against poisoning attacks, confirming our analysis.

How do poisoning attacks transfer between models in
black-box settings? The results for black-box poisoning are
reported in Fig. 16. For poisoning attacks, the best surrogates
are those matching the complexity of the target, as they tend
to be better aligned and to share similar local optima, except
for low-complexity logistic and ridge surrogates, which seem
to transfer better to linear classifiers. This is also witnessed
by gradient alignment in Fig. 17, which is again not only
correlated to the similarity between black- and white-box per-
turbations (Fig. 15c), but also to the ratio between the black-
and white-box test errors (Fig. 15d). Interestingly, these error
ratios are larger than one in some cases, meaning that attack-
ing a surrogate model can be more effective than running a
white-box attack against the target. A similar phenomenon has
been observed for evasion attacks [33], and it is due to the fact
that optimizing attacks against a smoother surrogate may find
better local optima of the target function (e.g., by overcoming
gradient obfuscation [2]). According to our findings, for poi-
soning attacks, reducing the variability of the loss landscape
(V) of the surrogate model is less important than finding a
good alignment between the surrogate and the target. In fact,
from Fig. 15b it is evident that increasing V is even beneficial
for SVM-based surrogates (and all these results are statisti-
cally significant according to the p-values in the sixth column
of Table 1). A visual inspection of the poisoning digits in
Fig. 18 reveals that the poisoning points crafted against high-
complexity classifiers are only minimally perturbed, while
the ones computed against low-complexity classifiers exhibit
larger, visible perturbations. This is again due to the presence
of closer local optima in the former case. Finally, a surprising
result is that RFs are quite robust to poisoning, as well as
NNs when attacked with low-complexity linear surrogates.
The reason may be that these target classifiers have a large
capacity, and can thus fit outlying samples (like the digits
crafted against low-complexity classifiers in Fig. 18) without
affecting the classification of the other training samples.

332 28th USENIX Security Symposium USENIX Association

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.38 .15 .19 .17 .09 .10 .07 .11 .12 .17 .05 .05

.43 .20 .19 .20 .09 .10 .09 .14 .15 .24 .06 .06

.46 .17 .26 .22 .10 .11 .08 .12 .17 .21 .06 .05

.49 .19 .28 .26 .10 .11 .09 .13 .20 .26 .06 .06

.50 .12 .20 .13 .25 .16 .06 .08 .08 .13 .05 .05

.33 .14 .18 .13 .13 .16 .05 .09 .08 .14 .05 .05

.36 .18 .21 .20 .09 .09 .08 .12 .14 .21 .06 .06

.44 .21 .22 .21 .09 .09 .09 .15 .18 .25 .07 .06

.46 .20 .25 .24 .09 .10 .09 .13 .21 .24 .06 .06

.47 .20 .26 .25 .09 .10 .08 .14 .17 .26 .06 .06

target error .13 .12 .07 .07 .08 .08 .05 .08 .05 .11 .05 .05

white box .98 .27 .84 .57 .99 .34 .49 .17 .57 .36

tra
nsfe

r ra
te

.14

.16

.17

.18

.15

.13

.15

.17

.18

.18

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.56 .21 .38 .32 .10 .11 .13 .13 .27 .26 .06 .06

.52 .32 .36 .38 .10 .12 .19 .20 .33 .41 .08 .07

.59 .24 .52 .44 .11 .13 .17 .16 .39 .33 .06 .06

.66 .29 .56 .51 .11 .13 .25 .19 .47 .42 .07 .07

.49 .13 .24 .15 .38 .22 .05 .08 .09 .13 .05 .04

.57 .18 .38 .26 .19 .24 .07 .11 .17 .19 .05 .05

.55 .24 .47 .40 .09 .11 .20 .16 .39 .32 .07 .07

.57 .32 .44 .45 .10 .12 .28 .23 .43 .44 .09 .08

.59 .28 .53 .51 .10 .12 .26 .18 .48 .41 .07 .07

.60 .30 .51 .51 .10 .12 .25 .19 .44 .43 .07 .07

target error .13 .12 .07 .07 .08 .08 .05 .08 .05 .11 .05 .05

white box 1.00 .56 .97 .90 1.00 .92 .73 .34 .82 .66

tra
nsfe

r ra
te

.22

.26

.27

.31

.17

.20

.26

.30

.30

.30

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.83 .47 .87 .80 .15 .18 .46 .29 .72 .59 .08 .08

.89 .88 .90 .92 .13 .20 .63 .63 .80 .89 .12 .12

.90 .68 .91 .89 .13 .20 .54 .37 .79 .77 .09 .08

.91 .81 .94 .93 .15 .22 .64 .55 .83 .85 .11 .11

.65 .15 .49 .28 .71 .56 .04 .06 .18 .16 .04 .03

.81 .29 .74 .63 .51 .68 .09 .12 .52 .36 .05 .04

.84 .69 .87 .88 .12 .17 .60 .49 .80 .80 .12 .11

.88 .87 .90 .92 .12 .18 .65 .65 .79 .88 .15 .14

.89 .78 .91 .91 .13 .18 .62 .53 .82 .83 .11 .11

.93 .83 .94 .93 .15 .21 .64 .57 .83 .87 .13 .11

target error .13 .12 .07 .07 .08 .08 .05 .08 .05 .11 .05 .05

white box 1.00 .95 1.00 1.00 1.00 1.00 .91 .75 1.00 .97

tra
nsfe

r ra
te

.46

.59

.53

.59

.28

.40

.54

.60

.57

.59

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.55 .13 .19 .12 .10 .10 .06 .08 .09 .13 .05 .05

.49 .24 .26 .27 .10 .11 .12 .15 .23 .27 .06 .06

.68 .14 .46 .23 .15 .15 .09 .09 .19 .15 .05 .05

.70 .17 .48 .31 .13 .14 .12 .12 .25 .21 .05 .05

.38 .10 .21 .12 .50 .14 .05 .07 .07 .11 .04 .04

.53 .13 .32 .17 .44 .22 .06 .08 .10 .13 .05 .05

.49 .15 .23 .17 .09 .10 .09 .11 .16 .16 .05 .05

.44 .23 .24 .27 .09 .10 .11 .16 .22 .27 .07 .06

.64 .18 .40 .26 .10 .11 .12 .12 .27 .21 .06 .05

.49 .23 .32 .33 .09 .10 .10 .15 .27 .30 .06 .06

target error .13 .12 .07 .07 .08 .08 .05 .08 .05 .11 .05 .05

white box .98 .27 .84 .57 .99 .34 .49 .17 .57 .35

tra
nsfe

r ra
te

.14

.20

.20

.23

.15

.19

.15

.19

.21

.21

(a) ε = 5

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.83 .15 .55 .28 .15 .14 .12 .10 .25 .17 .05 .05

.65 .38 .55 .55 .11 .14 .29 .24 .51 .46 .07 .07

.84 .17 .74 .47 .19 .19 .21 .11 .43 .22 .05 .05

.83 .24 .77 .60 .17 .18 .27 .14 .56 .33 .06 .06

.43 .10 .27 .15 .68 .19 .05 .06 .08 .12 .04 .04

.65 .15 .52 .29 .80 .45 .06 .09 .16 .15 .05 .04

.69 .18 .47 .33 .11 .12 .21 .13 .36 .23 .06 .06

.63 .36 .53 .54 .10 .12 .31 .27 .53 .47 .08 .08

.85 .26 .74 .57 .13 .15 .33 .16 .60 .33 .06 .06

.68 .33 .62 .61 .10 .12 .33 .23 .58 .50 .08 .08

target error .13 .12 .07 .07 .08 .08 .05 .08 .05 .11 .05 .05

white box 1.00 .56 .97 .90 1.00 .92 .73 .34 .83 .65

tra
nsfe

r ra
te

.24

.34

.31

.35

.18

.28

.24

.34

.35

.35

(b) ε = 10

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

RFH
RF L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.96 .25 .93 .77 .34 .31 .33 .13 .70 .34 .05 .05

.94 .90 .93 .93 .16 .25 .67 .64 .84 .90 .11 .11

.98 .31 .97 .89 .61 .47 .54 .15 .82 .48 .06 .05

.99 .74 1.00 .98 .48 .47 .69 .40 .92 .82 .08 .08

.52 .10 .40 .18 .93 .52 .03 .03 .09 .11 .03 .02

.84 .19 .77 .60 1.00 .99 .08 .08 .45 .22 .04 .03

.96 .47 .94 .87 .16 .19 .63 .31 .82 .62 .10 .08

.94 .88 .94 .94 .14 .20 .71 .67 .87 .90 .15 .13

.99 .66 .98 .95 .25 .26 .68 .39 .90 .78 .09 .08

.97 .88 .97 .96 .13 .19 .70 .63 .89 .91 .13 .12

target error .13 .12 .07 .07 .08 .08 .05 .08 .05 .11 .05 .05

white box 1.00 .95 1.00 1.00 1.00 1.00 .91 .75 1.00 .97

tra
nsfe

r ra
te

.43

.62

.53

.64

.25

.44

.51

.62

.58

.62

(c) ε = 30

Figure 12: Black-box (transfer) evasion attacks on DREBIN. See the caption of Fig. 7 for further details.

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

0.22 0.17 0.32 0.24 0.03 0.10 0.23 0.17 0.32 0.17

0.13 0.64 0.19 0.36 0.03 0.12 0.32 0.55 0.47 0.51

0.43 0.24 0.53 0.44 0.16 0.25 0.31 0.24 0.42 0.24

0.36 0.59 0.54 0.77 0.18 0.35 0.42 0.47 0.50 0.56

0.04 0.07 0.09 0.12 0.53 0.33 0.07 0.04 0.11 0.05

0.44 0.15 0.46 0.43 0.51 0.61 0.25 0.13 0.31 0.20

0.27 0.44 0.40 0.56 0.08 0.20 0.50 0.44 0.44 0.44

0.29 0.78 0.37 0.68 0.04 0.16 0.41 0.82 0.50 0.78

0.27 0.57 0.38 0.47 0.05 0.14 0.39 0.56 0.52 0.48

0.26 0.76 0.34 0.63 0.03 0.11 0.33 0.73 0.46 0.80

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L

NNH
NN L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

NNH

NNL

.14 .11 .17 .19 .07 .12 .15 .10 .17 .11

.12 .53 .17 .29 .01 .05 .29 .49 .29 .42

.16 .17 .23 .27 .09 .14 .20 .14 .24 .17

.17 .31 .28 .39 .05 .12 .27 .29 .34 .34

.06 .01 .07 .05 .25 .19 .03 .00 .02 .00

.13 .04 .15 .11 .18 .36 .09 .01 .06 .02

.14 .27 .18 .25 .03 .07 .29 .29 .27 .25

.09 .50 .15 .28 .00 .03 .30 .58 .29 .46

.16 .28 .22 .30 .03 .06 .26 .29 .35 .34

.11 .44 .18 .31 .00 .02 .28 .46 .34 .53

Figure 13: Gradient alignment and perturbation correlation
(at ε = 30) for evasion attacks on DREBIN. See the caption
of Fig. 8 for further details.

5.2.2 Face Recognition

The Labeled Face on the Wild (LFW) dataset consists of faces
of famous peoples collected on Internet. We considered the
six identities with the largest number of images in the dataset.
We considered the person with most images as positive class,
and all the others as negative. Our dataset consists of 530
positive and 758 negative images. The classifiers and their
hyperparameters are the same used for MNIST89, except that
we set: (i) C = 0.1 for logisticL, (ii) α = 1 for ridgeH, (iii)
γ = 0.001,C = 10 for SVM-RBFL, (iv) γ = 0.001,C = 1000

0 1 2 3 4 5 10 20

Fraction of poisoning points into the training set (%)

0.0

0.1

0.2

0.3

0.4

0.5

T
es

t
E

rr
or

White-box poisoning attack (MNIST89)

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

Figure 14: White-box poisoning attacks on MNIST89. Test
error against an increasing fraction of poisoning points.

for SVM-RBFH, and (v) weight decay to 0.001 for NNL. We
run 10 repetitions with 300 samples in each training, valida-
tion and test set. The results are shown in Figs 19, 20, 21
and 22, confirming the main findings discussed for poisoning
attacks on MNIST89. Statistical tests for significance are re-
ported in Table 1 (seventh and eighth columns). In this case,
there is not a significant distinction between the mean transfer
rates of high- and low-complexity surrogates, probably due to
the reduced size of the training sets used. Finally, in Fig. 23
we report examples of perturbed faces against surrogates with
different complexities, confirming again that larger perturba-
tions are required to attack lower-complexity models.

USENIX Association 28th USENIX Security Symposium 333

100 101

Size of input gradients (S)

0.05

0.10

0.15

0.20

0.25

0.30

T
es

t
er

ro
r

(5
%

p
oi

so
n

in
g)

SVM

logistic

ridge

SVM-RBF

(a)

10−5 10−4

Variability of loss landscape (V)

0.06

0.08

0.10

0.12

0.14

0.16

T
ra

n
sf

er
ra

te
(2

0
%

p
oi

so
n

in
g)

(b)

0.2 0.4 0.6 0.8 1.0

Gradient alignment (R)

0.2

0.4

0.6

0.8

ρ
(δ̂

,
δ)

(2
0%

p
oi

so
n

in
g)

P: 0.65, p-val: < 1e-8
K: 0.35, p-val: < 1e-4

(c)

0.2 0.4 0.6 0.8 1.0

Gradient alignment (R)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B
la

ck
-

to
w

h
it

e-
b

ox
er

ro
r

ra
ti

o
(1

0
%

p
oi

so
n

in
g)

P: 0.31, p-val: 0.01
K: 0.21, p-val: 0.02

(d)

Figure 15: Evaluation of our metrics for poisoning attacks on MNIST89. See the caption of Fig. 6 for further details.

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L
RFH

RF L

NNH
NN L

CNN

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.30 .04 .08 .06 .05 .05 .05 .03 .05 .05 .06 .06 .05

.06 .06 .06 .06 .05 .05 .03 .04 .05 .05 .05 .06 .05

.27 .05 .25 .06 .09 .06 .06 .03 .05 .05 .07 .06 .05

.16 .07 .14 .09 .13 .11 .03 .04 .05 .05 .04 .04 .03

.22 .06 .20 .08 .16 .11 .03 .03 .05 .05 .05 .05 .03

.22 .06 .20 .08 .16 .12 .03 .04 .05 .05 .04 .04 .08

.25 .04 .15 .06 .06 .05 .19 .03 .05 .05 .06 .05 .04

.07 .06 .06 .06 .06 .06 .04 .05 .05 .05 .06 .05 .05

target error .04 .04 .04 .05 .05 .05 .03 .03 .05 .05 .04 .04 .04

white box .30 .06 .24 .09 .15 .12 .21 .05

tra
nsfe

r ra
te

.07

.05

.09

.08

.09

.09

.08

.05

(a) 5% poisoning

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L
RFH

RF L

NNH
NN L

CNN

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.30 .05 .13 .05 .08 .05 .08 .03 .05 .05 .07 .07 .07

.07 .07 .06 .06 .06 .06 .04 .04 .05 .05 .06 .05 .05

.31 .05 .29 .06 .14 .08 .08 .04 .05 .05 .07 .07 .07

.28 .10 .25 .13 .22 .18 .03 .04 .05 .05 .04 .04 .04

.28 .08 .26 .11 .22 .16 .04 .04 .05 .05 .05 .05 .04

.31 .10 .28 .13 .24 .19 .03 .04 .05 .05 .04 .04 .03

.31 .05 .21 .05 .08 .05 .29 .04 .05 .05 .06 .06 .05

.10 .07 .08 .07 .08 .08 .06 .07 .05 .05 .07 .07 .06

target error .04 .04 .04 .05 .05 .05 .03 .03 .05 .05 .04 .04 .04

white box .33 .07 .27 .15 .21 .18 .28 .07

tra
nsfe

r ra
te

.08

.06

.10

.11

.11

.12

.10

.07

(b) 10% poisoning

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L
RFH

RF L

NNH
NN L

CNN

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.29 .06 .19 .06 .14 .07 .15 .04 .05 .05 .12 .10 .11

.10 .09 .08 .06 .08 .07 .05 .05 .05 .05 .06 .06 .06

.33 .07 .32 .08 .24 .14 .13 .04 .05 .05 .09 .09 .11

.40 .26 .37 .26 .33 .31 .04 .04 .05 .06 .05 .04 .03

.35 .14 .33 .20 .30 .25 .07 .04 .05 .05 .07 .06 .05

.41 .23 .37 .24 .34 .30 .04 .05 .05 .06 .05 .05 .04

.37 .05 .29 .06 .14 .07 .42 .04 .05 .05 .08 .07 .07

.15 .11 .14 .08 .13 .11 .10 .13 .05 .05 .10 .11 .09

target error .04 .04 .04 .05 .05 .05 .03 .03 .05 .05 .04 .04 .04

white box .34 .09 .31 .28 .32 .32 .37 .14

tra
nsfe

r ra
te

.11

.06

.13

.17

.15

.17

.13

.10

(c) 20% poisoning

Figure 16: Black-box (transfer) poisoning attacks on MNIST89. See the caption of Fig. 7 for further details.

SV
MH

SV
M L

lo
gi
st
icH

lo
gi
st
ic L

rid
ge

H

rid
ge

L

SV
M
-R

BF
H

SV
M
-R

BF
L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.36 .49 .30 .24 .28 .31 .36 .31

.31 .50 .34 .30 .32 .36 .35 .33

.23 .35 .48 .46 .47 .49 .26 .28

.16 .30 .46 .92 .82 .87 .29 .34

.18 .33 .48 .84 .87 .88 .33 .38

.20 .37 .50 .88 .85 .93 .36 .40

.23 .33 .25 .28 .31 .34 .49 .38

.21 .33 .27 .32 .34 .37 .37 .41

Figure 17: Gradient alignment and perturbation correlation
(at 20% poisoning) for poisoning attacks on MNIST89. See
the caption of Fig. 8 for further details.

5.3 Summary of Transferability Evaluation

We summarize the results of transferability for evasion and
poisoning attacks below.

(1) Size of input gradients. Low-complexity target classifiers
are less vulnerable to evasion and poisoning attacks than high-
complexity target classifiers trained with the same learning
algorithm, due to the reduced size of their input gradients. In
general, nonlinear models are more robust than linear models
to both types of attacks.

(2) Gradient alignment. Gradient alignment is correlated

SVML SVMH SVM-RBFL SVM-RBFH

Figure 18: Poisoning digits crafted against linear and RBF
SVMs. Larger perturbations are required to have signifi-
cant impact on low-complexity classifiers (L), while minimal
changes are very effective on high-complexity SVMs (H).

with transferability. Even though it cannot be directly mea-
sured in black-box scenarios, some useful guidelines can
be derived from our analysis. For evasion attacks, low-
complexity surrogate classifiers provide stabler gradients
which are better aligned, on average, with those of the tar-
get models; thus, it is generally preferable to use strongly-
regularized surrogates. For poisoning attacks, instead, gradi-
ent alignment tends to improve when the surrogate matches
the complexity (regularization) of the target (which may be
estimated using techniques from [46]).

(3) Variability of the loss landscape. Low-complexity surro-

334 28th USENIX Security Symposium USENIX Association

0 1 2 3 4 5 10 20

Fraction of poisoning points into the training set (%)

0.1

0.2

0.3

0.4

0.5
T

es
t

E
rr

or

White-box poisoning attack (LFW)

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

Figure 19: White-box poisoning attacks on LFW. Test error
against an increasing fraction of poisoning points.

gate classifiers provide loss landscapes with lower variability
than high-complexity surrogate classifiers trained with the
same learning algorithm, especially for evasion attacks. This
results in better transferability.

To summarize, for evasion attacks, decreasing complexity
of the surrogate model by properly adjusting the hyperparam-
eters of its learning algorithm provides adversarial examples
that transfer better to a range of models. For poisoning attacks,
the best surrogates are generally models with similar levels of
regularization as the target model. The reason is that the poi-
soning objective function is relatively stable (i.e., it has low
variance) for most classifiers, and gradient alignment between
surrogate and target becomes a more important factor.

Understanding attack transferability has two main impli-
cations. First, even when attackers do not know the target
classifier, our findings suggest that low-complexity surrogates
have a better chance of transferring to other models. Our rec-
ommendation to performing black-box evasion attacks is to
choose surrogates with low complexity (e.g., by using strong
regularization and reducing model variance). To perform poi-
soning attacks, our recommendation is to acquire additional
information about the level of regularization of the target and
train a surrogate model with a similar level of regularization.
Second, our analysis also provides recommendations to de-
fenders on how to design more robust models against evasion
and poisoning attacks. In particular, lower-complexity models
tend to have more resilience compared to more complex mod-
els. Of course, we need to take into account the bias-variance
trade-off and choose models that still perform relatively well
on the original prediction tasks.

6 Related Work

Transferability for evasion attacks. Transferability of eva-
sion attacks has been studied in previous work, e.g., [3, 13,
14, 21, 26, 32, 33, 42, 43, 47]. Biggio et al. [3] have been the
first to consider evasion attacks against surrogate models in a
limited-knowledge scenario. Goodfellow et al. [14], Tramer
et al. [43], and Moosavi et al. [26] have made the observation
that different models might learn intersecting decision bound-

aries in both benign and adversarial dimensions and in that
case adversarial examples transfer better. Tramer et al. have
also performed a detailed study of transferability of model-
agnostic perturbations that depend only on the training data,
noting that adversarial examples crafted against linear models
can transfer to higher-order models. We answer some of the
open questions they posed about factors contributing to attack
transferability. Liu et al. [21] have empirically observed the
gradient alignment between models with transferable adver-
sarial examples. Papernot et al. [32, 33] have observed that
adversarial examples transfer across a range of models, includ-
ing logistic regression, SVMs and neural networks, without
providing a clear explanation of the phenomenon. Prior work
has also investigated the role of input gradients and Jaco-
bians. Some authors have proposed to decrease the magnitude
of input gradients during training to defend against evasion
attacks [22, 35] or improve classification accuracy [40, 44].
In [35, 39], the magnitude of input gradients has been identi-
fied as a cause for vulnerability to evasion attacks. A number
of papers have shown that transferability of adversarial ex-
amples is increased by averaging the gradients computed for
ensembles of models [13, 21, 43, 47]. We highlight that we
obtain similar effect by attacking a strongly-regularized sur-
rogate model with a smoother and stabler decision boundary
(resulting in a lower-variance model). The advantage of our
approach is to reduce the computational complexity compared
to attacking classifier ensembles. Through our formalization,
we shed light on the most important factors for transferabil-
ity. In particular, we identify a set of conditions that explain
transferability including the gradient alignment between the
surrogate and targeted models, and the size of the input gradi-
ents of the target model, connected to model complexity. We
demonstrate that adversarial examples crafted against lower-
variance models (e.g., those that are strongly regularized) tend
to transfer better across a range of models.

Transferability for poisoning attacks. There is very little
work on the transferability of poisoning availability attacks,
except for a preliminary investigation in [27]. That work in-
dicates that poisoning examples are transferable among very
simple network architectures (logistic regression, MLP, and
Adaline). Transferability of targeted poisoning attacks has
been addressed recently in [41]. We are the first to study in
depth transferability of poisoning availability attacks.

7 Conclusions

We have conducted an analysis of the transferability of eva-
sion and poisoning attacks under a unified optimization frame-
work. Our theoretical transferability formalization sheds light
on various factors impacting the transfer success rates. In
particular, we have defined three metrics that impact the trans-
ferability of an attack, including the complexity of the tar-
get model, the gradient alignment between the surrogate and

USENIX Association 28th USENIX Security Symposium 335

100 101

Size of input gradients (S)

0.20

0.25

0.30

0.35

0.40

T
es

t
er

ro
r

(5
%

p
oi

so
n

in
g)

SVM

logistic

ridge

SVM-RBF

(a)

10−5 10−4

Variability of loss landscape (V)

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

T
ra

n
sf

er
ra

te
(2

0
%

p
oi

so
n

in
g)

(b)

0.2 0.4 0.6 0.8

Gradient alignment (R)

0.2

0.4

0.6

0.8

ρ
(δ̂

,
δ)

(2
0%

p
oi

so
n

in
g)

P: 0.45, p-val: < 1e-3
K: 0.27, p-val: < 1e-2

(c)

0.2 0.4 0.6 0.8

Gradient alignment (R)

0.4

0.6

0.8

1.0

1.2

1.4

B
la

ck
-

to
w

h
it

e-
b

ox
er

ro
r

ra
ti

o
(2

0
%

p
oi

so
n

in
g)

P: 0.31, p-val: 0.01
K: 0.19, p-val: 0.03

(d)

Figure 20: Evaluation of our metrics for poisoning attacks on LFW. See the caption of Fig. 6 for further details.

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L
RFH

RF L

NNH
NN L

CNN

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.39 .17 .18 .16 .19 .16 .19 .15 .23 .22 .18 .19 .28

.20 .20 .18 .18 .22 .18 .18 .18 .23 .23 .20 .18 .29

.41 .18 .35 .19 .38 .20 .30 .17 .23 .23 .22 .21 .29

.37 .23 .35 .31 .38 .30 .28 .20 .23 .23 .22 .24 .30

.44 .19 .42 .21 .43 .26 .26 .16 .23 .23 .19 .20 .28

.38 .23 .37 .32 .39 .32 .25 .19 .23 .23 .23 .23 .28

.33 .17 .22 .17 .25 .16 .35 .15 .22 .22 .18 .18 .29

.19 .19 .18 .18 .21 .18 .18 .18 .23 .23 .19 .19 .29

target error .14 .17 .13 .15 .16 .15 .14 .14 .21 .22 .16 .17 .26

white box .27 .19 .37 .31 .40 .32 .34 .18

tra
nsfe

r ra
te

.21

.20

.26

.28

.27

.28

.22

.20

(a) 5% poisoning

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L
RFH

RF L

NNH
NN L

CNN

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.43 .17 .22 .16 .24 .16 .23 .16 .22 .23 .18 .18 .30

.22 .24 .21 .19 .24 .20 .20 .21 .25 .24 .20 .20 .30

.42 .20 .39 .25 .43 .24 .33 .19 .23 .24 .25 .24 .32

.42 .30 .40 .36 .41 .35 .31 .27 .25 .25 .26 .28 .32

.45 .21 .43 .24 .44 .28 .32 .18 .23 .24 .22 .22 .32

.41 .25 .40 .34 .40 .33 .27 .22 .24 .24 .24 .22 .30

.37 .18 .28 .18 .31 .17 .40 .16 .23 .24 .19 .22 .30

.22 .21 .20 .19 .23 .20 .20 .22 .24 .24 .24 .25 .30

target error .14 .17 .13 .15 .16 .15 .14 .14 .21 .22 .16 .17 .26

white box .38 .23 .40 .38 .42 .35 .39 .20

tra
nsfe

r ra
te

.22

.22

.29

.32

.29

.30

.25

.23

(b) 10% poisoning

SVM H

SVM L

lo
gist

ic H

lo
gist

ic L

rid
ge H

rid
ge L

SVM
-R

BF H

SVM
-R

BF L
RFH

RF L

NNH
NN L

CNN

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.47 .19 .27 .18 .29 .18 .30 .17 .24 .24 .24 .23 .33

.23 .30 .22 .23 .26 .24 .22 .26 .27 .27 .28 .26 .35

.45 .29 .43 .35 .47 .33 .37 .27 .27 .28 .32 .34 .36

.46 .41 .45 .42 .44 .42 .35 .39 .30 .31 .33 .33 .36

.46 .27 .44 .33 .45 .33 .38 .22 .26 .27 .31 .31 .36

.44 .31 .45 .39 .44 .38 .30 .28 .27 .27 .29 .29 .36

.40 .20 .33 .21 .37 .19 .44 .18 .26 .25 .28 .28 .37

.26 .29 .25 .25 .27 .26 .25 .29 .28 .28 .30 .30 .34

target error .14 .17 .13 .15 .16 .15 .14 .14 .21 .22 .16 .17 .26

white box .44 .30 .44 .43 .44 .39 .46 .28

tra
nsfe

r ra
te

.25

.26

.35

.38

.34

.34

.29

.28

(c) 20% poisoning

Figure 21: Black-box (transfer) poisoning attacks on LFW. See the caption of Fig. 7 for further details.

SV
MH

SV
M L

lo
gi
st
icH

lo
gi
st
ic L

rid
ge

H

rid
ge

L

SV
M
-R

BF
H

SV
M
-R

BF
L

SVMH

SVML

logisticH

logisticL

ridgeH

ridgeL

SVM-RBFH

SVM-RBFL

.76 .40 .34 .39 .37 .62 .41 .36

.41 .24 .11 .28 .09 .58 .19 .22

.34 .11 .18 .31 .16 .54 .14 .14

.38 .26 .30 .64 .28 .70 .26 .31

.37 .10 .17 .32 .25 .53 .15 .11

.61 .55 .51 .68 .49 .83 .56 .58

.43 .20 .15 .30 .16 .59 .39 .24

.36 .22 .13 .33 .11 .60 .25 .29

Figure 22: Gradient alignment and perturbation correlation
(at 20% poisoning) for poisoning attacks on LFW. See the
caption of Fig. 8 for further details.

target models, and the variance of the attacker optimization
objective. The lesson to system designers is to evaluate their
classifiers against these criteria and select lower-complexity,
stronger regularized models that tend to provide higher ro-
bustness to both evasion and poisoning. Interesting avenues
for future work include extending our analysis to multi-class
classification settings, and considering a range of gray-box
models in which attackers might have additional knowledge
of the machine learning system (as in [41]). Application-
dependent scenarios such as cyber security might provide
additional constraints on threat models and attack scenarios
and could impact transferability in interesting ways.

SVML SVMH SVM-RBFL SVM-RBFH

Figure 23: Adversarial examples crafted against linear and
RBF SVMs. Larger perturbations are required to have signifi-
cant impact on low-complexity classifiers (L), while minimal
changes are very effective on high-complexity SVMs (H).

Acknowledgements

The authors would like to thank Neil Gong for shepherding
our paper and the anonymous reviewers for their construc-
tive feedback. This work was partly supported by the EU
H2020 project ALOHA, under the European Union’s Horizon
2020 research and innovation programme (grant no.780788).
This research was also sponsored by the Combat Capabili-
ties Development Command Army Research Laboratory and
was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the Combat Capa-
bilities Development Command Army Research Laboratory

336 28th USENIX Security Symposium USENIX Association

or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
not withstanding any copyright notation here on. We would
also like to thank Toyota ITC for funding this research.

References

[1] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and
K. Rieck. Drebin: Efficient and explainable detection
of android malware in your pocket. In 21st NDSS. The
Internet Society, 2014.

[2] A. Athalye, N. Carlini, and D. A. Wagner. Obfuscated
gradients give a false sense of security: Circumventing
defenses to adversarial examples. In ICML, vol. 80 of
JMLR W&CP, pp. 274–283. JMLR.org, 2018.

[3] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In H. Blockeel et
al., editors, ECML PKDD, Part III, vol. 8190 of LNCS,
pp. 387–402. Springer Berlin Heidelberg, 2013.

[4] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks
against support vector machines. In J. Langford and
J. Pineau, editors, 29th Int’l Conf. on Machine Learning,
pp. 1807–1814. Omnipress, 2012.

[5] B. Biggio and F. Roli. Wild patterns: Ten years after the
rise of adversarial machine learning. Pattern Recogni-
tion, 84:317–331, 2018.

[6] C. M. Bishop. Pattern Recognition and Machine Learn-
ing (Information Science and Stats). Springer, 2007.

[7] N. Carlini and D. A. Wagner. Adversarial examples are
not easily detected: Bypassing ten detection methods. In
B. M. Thuraisingham et al., editors, 10th ACM Workshop
on Artificial Intelligence and Security, AISec ’17, pp.
3–14, New York, NY, USA, 2017. ACM.

[8] N. Carlini and D. A. Wagner. Towards evaluating the
robustness of neural networks. In IEEE Symp. on Sec.
and Privacy, pp. 39–57. IEEE Computer Society, 2017.

[9] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted
backdoor attacks on deep learning systems using data
poisoning. ArXiv e-prints, abs/1712.05526, 2017.

[10] H. Dang, Y. Huang, and E.-C. Chang. Evading classifiers
by morphing in the dark. In 24th ACM SIGSAC Conf.
on Computer and Comm. Sec., CCS, 2017.

[11] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp,
K. Rieck, I. Corona, G. Giacinto, and F. Roli. Yes, ma-
chine learning can be more secure! a case study on
android malware detection. IEEE Trans. Dependable
and Secure Computing, In press.

[12] A. Demontis, P. Russu, B. Biggio, G. Fumera, and
F. Roli. On security and sparsity of linear classifiers for
adversarial settings. In A. Robles-Kelly et al., editors,
Joint IAPR Int’l Workshop on Structural, Syntactic, and
Statistical Patt. Rec., vol. 10029 of LNCS, pp. 322–332,
Cham, 2016. Springer International Publishing.

[13] Y. Dong, F. Liao, T. Pang, X. Hu, and J. Zhu. Boosting
adversarial examples with momentum. In CVPR, 2018.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In ICLR, 2015.

[15] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. D. McDaniel. Adversarial examples for malware
detection. In ESORICS (2), vol. 10493 of LNCS, pp.
62–79. Springer, 2017.

[16] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. In NIPS Workshop on Machine Learning and
Computer Security, vol. abs/1708.06733, 2017.

[17] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box
adversarial attacks with limited queries and information.
In J. Dy and A. Krause, editors, 35th ICML, vol. 80, pp.
2137–2146. PMLR, 2018.

[18] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-
Rotaru, and B. Li. Manipulating machine learning:
Poisoning attacks and countermeasures for regression
learning. In IEEE Symp. S&P, pp. 931–947. IEEE CS,
2018.

[19] A. Kantchelian, J. D. Tygar, and A. D. Joseph. Eva-
sion and hardening of tree ensemble classifiers. In
33rd ICML, vol. 48 of JMLR W&CP, pp. 2387–2396.
JMLR.org, 2016.

[20] P. W. Koh and P. Liang. Understanding black-box pre-
dictions via influence functions. In Proc. of the 34th
Int’l Conf. on Machine Learning, ICML, 2017.

[21] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into
transferable adversarial examples and black-box attacks.
In ICLR, 2017.

[22] C. Lyu, K. Huang, and H.-N. Liang. A unified gradient
regularization family for adversarial examples. In IEEE
Int’l Conf. on Data Mining (ICDM), vol. 00, pp. 301–
309, Los Alamitos, CA, USA, 2015. IEEE CS.

[23] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

[24] S. Mei and X. Zhu. Using machine teaching to identify
optimal training-set attacks on machine learners. In 29th
AAAI Conf. Artificial Intelligence (AAAI ’15), 2015.

USENIX Association 28th USENIX Security Symposium 337

[25] M. Melis, A. Demontis, B. Biggio, G. Brown, G. Fumera,
and F. Roli. Is deep learning safe for robot vision?
Adversarial examples against the iCub humanoid. In
ICCVW ViPAR, pp. 751–759. IEEE, 2017.

[26] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard. Universal adversarial perturbations. In
CVPR, 2017.

[27] L. Muñoz-González, B. Biggio, A. Demontis, A. Pau-
dice, V. Wongrassamee, E. C. Lupu, and F. Roli. To-
wards poisoning of deep learning algorithms with back-
gradient optimization. In B. M. Thuraisingham et al.,
editors, 10th ACM Workshop on AI and Sec., AISec ’17,
pp. 27–38, New York, NY, USA, 2017. ACM.

[28] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P.
Rubinstein, U. Saini, C. Sutton, J. D. Tygar, and K. Xia.
Exploiting machine learning to subvert your spam fil-
ter. In LEET ’08, pp. 1–9, Berkeley, CA, USA, 2008.
USENIX Association.

[29] A. Newell, R. Potharaju, L. Xiang, and C. Nita-Rotaru.
On the practicality of integrity attacks on document-
level sentiment analysis. In AISec, 2014.

[30] J. Newsome, B. Karp, and D. Song. Paragraph: Thwart-
ing signature learning by training maliciously. In RAID,
pp. 81–105. Springer, 2006.

[31] N. Papernot, P. McDaniel, and I. Goodfellow. Trans-
ferability in machine learning: from phenomena
to black-box attacks using adversarial samples.
arXiv:1605.07277, 2016.

[32] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami. Practical black-box attacks against
machine learning. In ASIA CCS ’17, pp. 506–519, New
York, NY, USA, 2017. ACM.

[33] N. Papernot, P. D. McDaniel, and I. J. Goodfellow.
Transferability in machine learning: from phenomena
to black-box attacks using adversarial samples. ArXiv
e-prints, abs/1605.07277, 2016.

[34] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif.
Misleading worm signature generators using deliberate
noise injection. In IEEE Symp. Sec. & Privacy, 2006.

[35] A. S. Ross and F. Doshi-Velez. Improving the adver-
sarial robustness and interpretability of deep neural net-
works by regularizing their input gradients. In AAAI.
AAAI Press, 2018.

[36] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph,
S.-h. Lau, S. Rao, N. Taft, and J. D. Tygar. Antidote: un-
derstanding and defending against poisoning of anomaly
detectors. In 9th ACM SIGCOMM Internet Measure-
ment Conf., IMC ’09, pp. 1–14, NY, USA, 2009. ACM.

[37] P. Russu, A. Demontis, B. Biggio, G. Fumera, and
F. Roli. Secure kernel machines against evasion attacks.
In 9th ACM Workshop on AI and Sec., AISec ’16, pp.
59–69, New York, NY, USA, 2016. ACM.

[38] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter.
Accessorize to a crime: Real and stealthy attacks on
state-of-the-art face recognition. In ACM SIGSAC Conf.
on Comp. and Comm. Sec., pp. 1528–1540. ACM, 2016.

[39] C. J. Simon-Gabriel, Y. Ollivier, B. Schölkopf, L. Bottou,
and D. Lopez-Paz. Adversarial vulnerability of neural
networks increases with input dimension. ArXiv, 2018.

[40] J. Sokolić, R. Giryes, G. Sapiro, and M. R. D. Rodrigues.
Robust large margin deep neural networks. IEEE Trans.
on Signal Proc., 65(16):4265–4280, 2017.

[41] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumi-
tras. When does machine learning FAIL? Generalized
transferability for evasion and poisoning attacks. In 27th
USENIX Sec., pp. 1299–1316, 2018. USENIX Assoc.

[42] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. In ICLR, 2014.

[43] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel. The space of transferable adversarial ex-
amples. ArXiv e-prints, 2017.

[44] D. Varga, A. Csiszárik, and Z. Zombori. Gradient Regu-
larization Improves Accuracy of Discriminative Models.
ArXiv e-prints ArXiv:1712.09936, 2017.

[45] N. Šrndic and P. Laskov. Practical evasion of a learning-
based classifier: A case study. In IEEE Symp. Sec. and
Privacy, SP ’14, pp. 197–211, 2014. IEEE CS.

[46] B. Wang and N. Z. Gong. Stealing hyperparameters in
machine learning. In 2018 IEEE Symposium on Security
and Privacy (SP), pp. 36–52. IEEE, 2018.

[47] L. Wu, Z. Zhu, C. Tai, and W. E. Enhancing the trans-
ferability of adversarial examples with noise reduced
gradient. ArXiv e-prints, 2018.

[48] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert,
and F. Roli. Is feature selection secure against training
data poisoning? In F. Bach and D. Blei, editors, JMLR
W&CP - 32nd ICML, vol. 37, pp. 1689–1698, 2015.

[49] W. Xu, Y. Qi, and D. Evans. Automatically evading
classifiers a case study on PDF malware classifiers. In
NDSS. Internet Society, 2016.

[50] F. Zhang, P. Chan, B. Biggio, D. Yeung, and F. Roli.
Adversarial feature selection against evasion attacks.

IEEE Trans. on Cybernetics, 46(3):766–777, 2016.

338 28th USENIX Security Symposium USENIX Association

Stack Overflow Considered Helpful!
Deep Learning Security Nudges Towards Stronger Cryptography

Felix Fischer, Huang Xiao†, Ching-Yu Kao∗, Yannick Stachelscheid, Benjamin Johnson, Danial Razar
Paul Fawkesley�, Nat Buckley�, Konstantin Böttinger∗, Paul Muntean, Jens Grossklags

Technical University of Munich, †Bosch Center for Artificial Intelligence
∗Fraunhofer AISEC, �Projects by IF

{flx.fischer, yannick.stachelscheid, benjamin.johnson, danial.razar, paul.muntean, jens.grossklags}@tum.de

{huang.xiao}@de.bosch.com, {nat, paul}@projectsbyif.com, {ching-yu.kao, konstantin.boettinger}@aisec.fraunhofer.de

Abstract

Stack Overflow is the most popular discussion platform for
software developers. However, recent research identified a
large amount of insecure encryption code in production sys-
tems that has been inspired by examples given on Stack
Overflow. By copying and pasting functional code, de-
velopers introduced exploitable software vulnerabilities into
security-sensitive high-profile applications installed by mil-
lions of users every day.
Proposed mitigations of this problem suffer from usability
flaws and push developers to continue shopping for code
examples on Stack Overflow once again. This motivates
us to fight the proliferation of insecure code directly at the
root before it even reaches the clipboard. By viewing Stack
Overflow as a market, implementation of cryptography be-
comes a decision-making problem. In this context, our goal
is to simplify the selection of helpful and secure examples.
More specifically, we focus on supporting software develop-
ers in making better decisions on Stack Overflow by apply-
ing nudges, a concept borrowed from behavioral economics
and psychology. This approach is motivated by one of our
key findings: For 99.37% of insecure code examples on
Stack Overflow, similar alternatives are available that serve
the same use case and provide strong cryptography.
Our system design that modifies Stack Overflow is based on
several nudges that are controlled by a deep neural network.
It learns a representation for cryptographic API usage pat-
terns and classification of their security, achieving average
AUC-ROC of 0.992. With a user study, we demonstrate that
nudge-based security advice significantly helps tackling the
most popular and error-prone cryptographic use cases in An-
droid.

1 Introduction

Informal documentation such as Stack Overflow outperforms
formal documentation in effectiveness and efficiency when
helping software developers implementing functional code.

The fact that 78% of software developers primarily seek help
on Stack Overflow on a daily basis1 underlines the usability
and perceived value of community and example-driven doc-
umentation [2].

Reuse of code examples is the most frequently observed
user pattern on Stack Overflow [17]. It reduces the effort for
implementing a functional solution to its minimum and the
functionality of the solution can immediately be tested and
verified. However, when implementing encryption, its secu-
rity, being a non-functional property, is difficult to verify as
it necessitates profound knowledge of the underlying crypto-
graphic concepts. Moreover, most developers are unaware of
pitfalls when applying cryptography and that misuse can ac-
tually harm application security. Instead, it is often assumed
that mere application of any encryption is already enough
to protect private data [13, 14]. Stack Overflow users also
cannot rely on the community to correctly verify the secu-
rity of available code examples [9]. Security advice given
by community members and moderators is mostly missing
and oftentimes overlooked. This is due to only a few se-
curity experts being available as community moderators and
a feedback system which is not sufficient to communicate
security advice effectively. Consequently, highly insecure
code examples are frequently reused in production code [17].
Exploiting these insecure samples, high-profile applications
were successfully attacked, leading to theft of user creden-
tials, credit card numbers and other private data [13].

While mainly focused on the negative impact of Stack
Overflow on code security, recent research has also reported
that there is a full range of code snippets providing strong
security for symmetric, asymmetric and password-based en-
cryption, as well as TLS, message digests, random number
generation, and authentication [17]. However, it was previ-
ously unknown whether useful alternatives can be found for
most use cases. In our work, we show that for 99.37% of in-
secure encryption code examples on Stack Overflow a sim-
ilar secure alternative is available that serves the same use

1https://insights.stackoverflow.com/survey/2016#

community

USENIX Association 28th USENIX Security Symposium 339

https://insights.stackoverflow.com/survey/2016#community
https://insights.stackoverflow.com/survey/2016#community

case. So, why are they not used in a consistent fashion?
We take a new perspective and see implementation of

cryptography as a decision-making problem between avail-
able secure and insecure examples on Stack Overflow. In
order to assist developers in making better security deci-
sions, we apply nudges, a concept borrowed from experi-
mental economics and psychology to attempt altering indi-
viduals’ behaviors in a predictable way without forbidding
any options or significantly changing their economic incen-
tives. Nudging interventions typically address problems as-
sociated with cognitive and behavioral biases, such as an-
choring, loss aversion, framing, optimism, overconfidence,
post-completion errors, and status-quo bias [5, 31]. They
have been applied in the security and privacy domain in a
successful fashion [4,5,7,19,22,32]. In contrast to these ap-
proaches, which focused on systems for end-users, we trans-
late the concept of nudges to the software developer domain
by modifying the choice architecture of Stack Overflow. It
nudges developers towards reusing secure code examples
without interfering with their primary goals.

Our designed security nudges are controlled by a code
analysis system based on deep learning. It learns general fea-
tures that allow the separation of secure and insecure crypto-
graphic usage patterns, as well as their similarity-based clus-
tering and use-case classification. Applying this system, we
can directly derive a choice architecture that is based on pro-
viding similar, secure, and use-case preserving code exam-
ples for insecure encryption code on Stack Overflow.

In summary, we make the following contributions:

• We present a deep learning-based representation learn-
ing approach of cryptographic API usage patterns that
encodes their similarity, use case and security.

• Our trained security classification model which uses the
learned representations achieves average AUC-ROC of
0.992 for predicting insecure usage patterns.

• We design and implement several security nudges on
Stack Overflow that apply our similarity, use case and
security models to help developers make better deci-
sions when reusing encryption code examples.

• We demonstrate the effectiveness of nudge-based secu-
rity advice within a user study where participants had to
implement the two most popular and error-prone cryp-
tographic use cases in Android [13, 17]: nudged par-
ticipants provided significantly more secure solutions,
while achieving the same level of functionality as the
control group.

We proceed as follows. After reviewing related work (Sec-
tion 2), we present our system design that combines deep
learning-based representation learning with nudge-based se-
curity advice (Sections 3 – 6). Then, we present our model
evaluation and user study (Sections 7 & 8), as well as limita-
tions, future work, and conclusions (Sections 9 – 11).

2 Related Work

2.1 Getting Cryptography Right

Acar et al. [2] have investigated the impact of formal and in-
formal information sources on Android application security.
With a lab study, they found that developers prefer informal
documentation such as Stack Overflow over official Android
documentation and textbooks when implementing encryp-
tion code. Solutions based on advice from Stack Overflow
provided significantly more functional – but less secure –
solutions than those based on formal documentation. Work
by Fischer et al. [17] showed that 30% of cryptographic code
examples on Stack Overflow were insecure. Many severely
vulnerable samples were reused in over 190,000 Android ap-
plications from Google Play including high-profile applica-
tions from security-sensitive categories. Moreover, they have
shown that the community feedback given on Stack Over-
flow was not helpful in preventing reuse of insecure code.

Chen et al. studied the impact of these community dynam-
ics on Stack Overflow in more detail [9]. Based on manual
inspection of a subset of posts, they found that (on average)
posts with insecure snippets garnered higher view counts and
higher scores, and had more duplicates compared to posts
with secure snippets. Further, they demonstrated that a siz-
able subset of posts from trusted users were insecure. Taken
together, these works show that developers (by copying and
pasting insecure code) are imposing negative externalities on
millions of users who eventually bear the cost of apps harbor-
ing vulnerabilities [8].

Oliveira et al. focus on developers’ misunderstandings of
ambiguities in APIs (including cryptography), which may
contribute to vulnerabilities in the developed code [26]. They
studied the impact of personality characteristics and con-
textual factors (such as problem complexity), which impact
developers’ ability to identify such ambiguities. Likewise,
Acar et al. [1] investigated whether current cryptographic
API design had an impact on cryptographic misuse. They
selected different cryptographic APIs; including some par-
ticularly simplified APIs in order to prevent misuse. How-
ever, while indeed improving security, these APIs produced
significantly less functional solutions and oftentimes were
not applicable to specific use cases at all. As a consequence,
developers searched for code examples on Stack Overflow
again.

Nguyen et al. [25] developed FixDroid, a static code anal-
ysis tool integrated in Android Studio which checks crypto-
graphic code flaws and suggests quick fixes.

2.2 Security Nudges

Wang et al. [32] implemented privacy nudges on Facebook
in order to make users consider the content and audience
of their online publications more carefully, as research has

340 28th USENIX Security Symposium USENIX Association

shown that users eventually regret some of their disclosure
decisions. They found that a reminder nudge about the au-
dience effectively and non-intrusively prevents unintended
disclosure. Almuhimedi et al. [6] implemented an app per-
missions manager that sends out nudges to the user in order
to raise awareness of data collected by installed apps. With
the help of a user study they were able to show that 95% of
the participants reassessed their permissions, while 58% of
them further restricted them. Liu et al. [23] created a per-
sonalized privacy assistant that predicts personalized privacy
settings based on a questionnaire. In a field study, 78.7% of
the recommendations made by the assistant were adopted by
users, who perceived these recommendations as usable and
useful. They were further motivated to review and modify
the proposed settings with daily privacy nudges.

2.3 Deep Learning Code

Fischer et al. [17] proposed an approach based on machine
learning to predict the security score of encryption code snip-
pets from Stack Overflow. They used tf-idf to generate fea-
tures from source code and trained a support vector machine
(SVM) using an annotated dataset of code snippets. The re-
sulting model was able to predict the security score of code
snippets with an accuracy of 0.86, with precision and recall
of 0.85 and 0.75, respectively. However, security predictions
were only available for the complete code snippet. It did not
allow indicating and marking specific code parts within the
snippet to be insecure. This lack of explainability is detri-
mental for security advice.

Xiaojun et al. [33] introduced neural network-based rep-
resentation learning of control flow graphs (CFGs) gener-
ated from binary code. Using a Siamese network archi-
tecture they learned similar graph embeddings using Struc-
ture2vec [11] from similar binary functions over different
platforms. These embeddings were used to detect vulnera-
bilities in binary blobs by applying code-similarity search.
Their approach significantly outperformed the state-of-the-
art [16] in both, efficiency and effectiveness, by provid-
ing shorter training times and higher area under the curve
(AUC) on detecting vulnerabilities. The approach does not
allow identification and description of code parts within bi-
nary functions that cause the vulnerabilities. To allow better
explainability, we depend on our new approach to provide
statement-level granularity. It enables identifying and classi-
fying multiple code patterns within a single function.

Li et al. [21] developed VulDeePecker, a long short-
term memory (LSTM) neural network that predicts buffer
overflows and resource management error vulnerabilities of
source code gadgets. Code gadgets are backward and for-
ward slices, considering data and control flow, that are gen-
erated from arguments used in library function calls. Fur-
ther, they use word2Vec to create embeddings for the sym-
bolic representation of code gadgets. These embeddings

Code Community

Use Cases
and Patterns

Pattern Net Use Case
and Security Net

Pattern Embedding

Annotation

FeedbackHuman
Experts Nudges

1.

2.

3. 4.

5.

6.

Figure 1: Learn-to-Nudge Loop Overview

are then used together with their security label to train
a bi-directional LSTM. VulDeePecker outperforms several
pattern-based and code similarity-based vulnerability detec-
tion systems with respect to false positive and false negative
rates. However, their LSTM model has a very long training
time. Our convolutional approach leverages transfer learning
to achieve much faster training.

3 Overview

We present an overview of our system design for nudge-
and deep learning-based security advice on Stack Overflow
in Figure 1. It depicts a learn-to-nudge loop that represents
the interaction and interference of the community behavior,
classification models and proposed security nudges on Stack
Overflow. The community behavior on Stack Overflow (1)
triggers the loop by continuously providing and reusing code
examples that introduce new use cases and patterns of cryp-
tographic application programming interfaces (APIs). In the
initial step (2), a representative subset of these code exam-
ples is extracted and annotated by human experts. The an-
notations provide ground truth about the use cases and secu-
rity of cryptographic patterns in the given code. Then (3),
a representation for these patterns is learned by an unsuper-
vised neural network based on open source projects provided
by GitHub. In combination with the given annotations, the
pattern embeddings are used to train an additional model to
predict their use cases and security (4). Based on these pre-
dictions, we can apply security nudges on Stack Overflow by
providing security warnings, reminders, recommendations
and defaults for encryption code examples (5). Further, we
allow assigned security moderators2 within the community
to annotate unknown patterns and provide feedback to pre-
dictions of our models (6). Therefore, our system creates a

2https://stackexchange.com/about/moderators

USENIX Association 28th USENIX Security Symposium 341

https://stackexchange.com/about/moderators

learn-to-nudge loop that is supposed to iteratively improve
the classification models, which in turn help improving the
security decisions made by the community and the security
of code provided on Stack Overflow.

4 Nudge-Based System Design

We apply five popular nudges [30, 31] and describe their
translation to security advice in this section.

Simplification A simplification nudge promotes building
upon existing and established infrastructures and programs.
We apply this nudge by integrating our system in Stack Over-
flow, a platform that is already used by the majority of soft-
ware developers worldwide. By integrating developer tools
on a platform that is already used by almost everyone, we
unburden developers from installing additional tools. More-
over, it allows us to create awareness of the problem of cryp-
tographic misuse in general.

Warnings A warning nudge aims at raising the user’s at-
tention in order to counteract the natural human tendency
towards unrealistic optimism [5]. We apply this nudge by in-
tegrating security warnings on Stack Overflow. Whenever an
insecure code example has been detected, a warning is dis-
played to the developer to inform about the security problem
and potential risks in reusing the code sample.

Increases in Ease and Convenience (IEC) Research has
also shown that users oftentimes discount security warnings.
However, if they additionally describe available alternative
options to make a less risky decision, warnings tend to be
much more effective [5]. Therefore, our design combines se-
curity warnings with recommendations for similar code ex-
amples with strong cryptography. With this nudge, we make
code examples with better security visible to the user. To
provide an easy choice, we present the recommended code
examples by displaying a list of the related posts. This aims
at encouraging the user to consider the recommendations as
it only demands clicking on a link.

Reminders Users might not engage in the expected con-
duct of paying attention to the warning and following the
recommendations. This might be due to inertia, procrastina-
tion, competing priorities, and simple forgetfulness [5]. Of-
tentimes seeking functional solutions is considered as a com-
peting priority to secure solutions [2]. Therefore, we apply a
reminder nudge, which is triggered whenever the user copies
an insecure code example.

Defaults The default nudge is the most popular and
effective nudge in improving decision-making. Popular
examples are automated enrollment in healthcare plans

or corporate wellness programs, or double-sided printing
which can promote environmental protection [5]. We apply
this nudge by up-ranking posts that only contain secure code
examples in Stack Overflow search results by default.

The goal of our approach is to thoughtfully develop a
new user interface (UI) design that implements the proposed
nudges (see Section 6) and to test whether it improves de-
veloper behavior on Stack Overflow. Please note that we do
not intend to comparatively evaluate multiple UI candidates
for our design patterns to identify the most effective one. We
consider this out of scope for this paper and leave this task
for future work.

5 Neural Network-Based Learning of Crypto-
graphic Use Cases and Security

The nudge-based system design requires algorithmic deci-
sions about the security and similarity of code examples. In
order to display security warnings, code examples have to be
scanned for encryption flaws. To further recommend help-
ful alternatives without common encryption problems, Stack
Overflow posts have to be scanned for similar examples with
strong cryptography.

Due to Simplification (see Section 4), we already chose
a platform that provides us with a large amount of secure
and insecure samples that contain cryptographic API usage
patterns to learn from in order to design the code analysis
approach [17]. Instead of defining rule-based algorithms
[12, 13, 20] that would have to be updated whenever sam-
ples with unknown patterns are added to Stack Overflow, we
simplify and increase the flexibility of our system by apply-
ing deep learning to automatically learn the similarity, use-
case and security features from the ever-increasing dataset
of available code on Stack Overflow. Based on the learned
features, our models are able to predict insecure code exam-
ples and similar but secure alternatives that serve the same
use case. However, newly added code examples that provide
unknown use cases and security flaws might be underrepre-
sented in the data and therefore difficult to learn. Therefore,
we apply transfer learning where we reuse already obtained
knowledge that facilitates learning from a small sample set
of a similar domain.

5.1 Cryptographic Use Cases
Stack Overflow offers a valuable source for common use
cases of cryptographic APIs in Android. As developers post
questions whenever they have a particular problem with an
API, a collection of error-prone or difficult cryptographic
problems is aggregating over time. Moreover, frequen-
cies of similar posted questions, view counts, and scores of
questions posted on Stack Overflow indicate very common
and important problems developers encounter when writing

342 28th USENIX Security Symposium USENIX Association

invokestatic
< LSecureRandom,
nextBytes([B) >

new < byte[] >

invokespecial
< LIvParameterSpec,

<init>([B)V >

invokespecial
< LSecureRandom,

<init>()V >

return

new
< LSecureRandom >

new
< LIvParameterSpec >

s0

s5

s4

s3

s2

s1

s6

invokevirtual
< Ljava/lang/String,

getBytes()[B >

new
< ljava/lang/String >

invokespecial
< ljava/lang/String,

<init(“fedcba9876543210”)V >
s9

s8

s7

Insecure Pattern Secure Pattern

Seed
Statement

5-hop
Neigbourhood

(a) Example for an insecure pattern: The initialization vector (IV) is created from a
static string value stored in the code.

(b) Example for a secure pattern: A secure random source is used to generate the IV.

Figure 2: Example for a secure and insecure usage pattern of new IvParameterSpec. It shows the program dependency graph
(PDG) of the 5-hop neighborhood of the seed statement s1 for the secure and insecure code example displayed in (a) and (b).
Next to each node in the graph we provide the shortened signature of the related statement, highlighting a subset of its attributes
we store in the feature vector. Bytecode instruction types are highlighted yellow, Java types blue and constants magenta.

security-related code. Therefore, Stack Overflow can be seen
as a dataset of different cryptographic use cases that are fre-
quently required in production code. Previous work iden-
tified the most popular and error-prone use cases of cryp-
tography in Android apps [17]. The authors scanned Stack
Overflow for insecure code examples that use popular cryp-
tographic APIs, e g. Oracle’s Java Cryptography Architec-
ture (JCA), and detected their reuse in Android applications.
We summarize the identified use cases in Table 1.

Use Case Usage Pattern API
Identifier Description Seed Statement

Cipher Initialization of cipher, mode and Cipher.getInstance
padding

Key Generation of symmetric key new SecretKeySpec
IV Generation of initialization new IvParameterSpec

vector
Hash Initialization of cryptographic MessageDigest.

hash function getInstance
TLS Initialization of TLS protocol SSLContext.getInstance
HNV Setting the hostname verifier setHostnameVerifier
HNVOR Overriding the hostname verification verify
TM Overriding server checkServerTrusted

certificate verification

Table 1: Common cryptographic use cases in Android

5.2 Learning API Usage Patterns
In order to predict similarity, use case and security of encryp-
tion code, we need to learn a numerical representation of the

related patterns that can be understood by a neural network.
Therefore, our first step is learning an embedding of crypto-
graphic API usage patterns.

Usage Pattern As shown in Table 1, a cryptographic API
element, e. g., javax.crypto.Cipher.getInstance, can have dif-
ferent usage patterns that belong to the same use case. A
usage pattern consists of a particular API element, all state-
ments it depends on, and all its dependent statements within
the given code. In other words, a pattern can be seen as a sub-
graph of the PDG, which represents the control and data de-
pendencies of statements. The subgraph is created by prun-
ing the graph from anything but the forward and backward
slices of the API element, as shown in Figure 2. We call this
element the seed statement. This pruned graph can become
very large and therefore might contain noise with respect to
the identification of patterns. Our goal is to learn an optimal
representation of usage patterns that allows accurate classifi-
cation of their use cases and security. Ideally, the related sub-
graph is minimized to a neighborhood of the seed statement
in the pruned PDG such that it provides enough information
to solve the classification tasks.

Neighborhood Aggregation Our approach learns pattern
embeddings for the K-hop neighborhood of cryptographic
API elements within the PDG, as shown in Figure 2.
To generate these embeddings we use the neighborhood-
aggregation algorithm provided by Structure2vec [11]. This
method leverages node features (e. g., instruction types of a
statement node) and graph statistics (e. g., node degrees) to

USENIX Association 28th USENIX Security Symposium 343

inform their embeddings. It provides a convolutional method
that represents a node as a function of its surrounding neigh-
borhood. The parameter K allows us to search for a neigh-
borhood that optimally represents usage patterns to solve
given classification tasks. In other words, we learn the code
representation in a way such that its features improve use
case and security prediction of the code. As we will show
throughout this work, this representation is very helpful for
classifying cryptographic API usage patterns. We further ar-
gue that the learned pattern representation is not restricted
to cryptographic APIs, as the used features are general code
graph properties.

Neighborhood Similarity We learn pattern embeddings
such that similar patterns have similar embeddings by min-
imizing their distance in the embedding space. Therefore,
next to the neighborhood information, pattern embeddings
additionally encode their similarity information. On the one
hand, this allows us to apply efficient and accurate search for
similar usage patterns on Stack Overflow [33]. On the other
hand, we can transfer knowledge from the similarity domain
to the use case and security domain. This knowledge trans-
fer is leveraged by our use case and security classification
models.

Code similarity is very helpful to predict code security.
Therefore, we expect that the similarity feature of our pat-
tern embeddings will improve the accuracy and efficiency of
the security classification model. However, code similarity
is oftentimes not enough for predicting security. Therefore,
the main effort of our classification models lies in learning
the additional unknown conditions where code similarity be-
comes insufficient.

To learn our embeddings, we apply a modified architecture
of the graph embedding network Gemini [33].

5.3 Feature Engineering

The embedding network should learn a pattern embedding
that is general enough to allow several classification tasks.
This means that the embedding has to be learned from gen-
eral code features or attributes, e. g., statistical and structural
features [33] from each statement within the PDG represen-
tation of the code. Further, pattern embeddings should repre-
sent very small neighborhoods. As we want to minimize the
neighborhood size K, patterns might consist only of a few
lines of code. Therefore, considering only graph statistics
as features might not be sufficient and may result in similar
features for dissimilar patterns. In order to overcome these
insufficiencies, we additionally combine structural and sta-
tistical with lexical and numerical features for each statement
in a neighborhood.

Structure and Statistics We first create the PDG of the
given input program using WALA3, a static analysis frame-
work for Java. Note that WALA creates a PDG for each Java
method. Then, we extract the resulting statistical and struc-
tural features for each statement. We store the bytecode in-
struction type of a statement using a one-hot indicator vector.
Additionally, we store the count of string and numerical con-
stants that are used by the statement. We further add struc-
tural features by storing the offspring count and node degree
of a statement in the PDG [33]. Finally, we store the indexes
of the statement’s direct neighbors in the graph.

Element Names and String Constants Method and field
names of APIs are strings and have to be transformed into a
numerical representation first. We learn feature vectors for
these tokens by training a simple unsupervised neural net-
work to predict the Java type that defines the given method or
field name. Thereby, each name is represented in a one-hot
encoding vector with dimension 23,545, corresponding to
the number of unique element names provided by the cryp-
tographic APIs [17]. To learn features, we use a network ar-
chitecture with one hidden layer and apply categorical cross-
entropy as a loss function during training. Finally, we apply
the trained model on all names and extract the neurons of the
hidden layer as they can be seen as learned features necessary
to solve the classification task. This way, each name obtains
a unique feature vector which preserves its type information.
We use the same approach for learning feature vectors for
the 763 unique string constants given by the APIs.

5.4 Pattern Embedding Network

Many code examples on Stack Overflow typically do not pro-
vide sound programs as they mostly consist of loose code
parts [17]. In contrast to complete programs, compiling these
partial programs might introduce multiple types of ambi-
guities in the resulting PDG such that the extracted state-
ment features xu are not sound [10]. Whenever we generate
sound and unsound features xs, xu from a complete and a par-
tial program, respectively, that provide the same usage pat-
tern for a given seed statement, both sets of feature vectors
extracted from the patterns might be different. Therefore,
we need to learn a representation for patterns that preserves
their similarity properties independently from the shape of
the containing program. With a Siamese network architec-
ture [33], we can learn similar pattern embeddings indepen-
dently from the completeness of the code example. It learns
embeddings from similar and dissimilar input pairs. We cre-
ate similar input pairs by extracting sound and unsound fea-
tures for the same pattern and dissimilar pairs by extract-
ing sound and unsound features from different patterns. The

3https://github.com/wala/WALA

344 28th USENIX Security Symposium USENIX Association

https://github.com/wala/WALA

Algorithm 1 Neighborhood-aggregation algorithm
Input: PDG G(V,E) input features {xv,∀v ∈V};
Output: Pattern embedding pv,∀v ∈V

1: φ 0
v ← 0,∀v ∈V ,

2: for k = 1...K do
3: for v ∈V do
4: φ k

N(v)← AGGREGAT E(φ k−1
n ,∀n ∈ N(v))

5: φ k
v ← tanh(W1xv ·σ(φ k

N(v))

return {pv =W2φ K
v ,∀v ∈V}

trained model will then generate similar embeddings inde-
pendently from the completeness of the program.

The pattern embeddings are generated with Structure2vec
as depicted in Algorithm 1. We provide the abstract descrip-
tion of the algorithm and refer to Gemini’s neural network
architecture that gives information about its implementation,
which we use as the basis for our approach. The update func-
tion calculates a pattern embedding pv for each feature vec-
tor xv of statements (i. e., nodes) v ∈ V in the PDG G(V,E).
An embedding pv is generated by recursively aggregating
previously generated embeddings {φ k−1

n ,∀n ∈ N(v)} of di-
rect neighbors N(v) in the graph, combining it with the
weighted feature vector xv. Unlike Gemini, which outputs
an aggregation of pv to return an embedding for the com-
plete graph, our network returns the set of pattern embed-
dings P = {pv,∀v ∈V}.

We give an overview of the pattern embedding network in
Figure 3. Here, the insecure pattern G(x3,x4,x5,E) informs
the embedding of its direct neighbors in each iteration step,
finally informing the seed statement in iteration k = 2. Af-
ter this step, the seed statement knows that it is part of an
insecure pattern and its embedding preserves this informa-
tion accordingly. We extract the pattern embedding φ K

1 of
the seed statement and apply weights W2. Note, we train W2
based on classification loss of aggregated pattern similarity
pa as explained in Section 5.5. However, we use the trained
model to generate and output embeddings for each individual
pattern pv in the graph (see Figure 3).

5.5 Training

For unsupervised training of pattern embeddings, we need
to generate similar and dissimilar input pairs from data that
provides ground truth. We use two different sets of PDGs
that are compiled from the same source code. One set S con-
tains the sound graph representations of the code, the other
one the unsound graphs U . A sound graph Gs(Vs,Es) in the
first set is compiled from a complete program using a stan-
dard Java compiler. An unsound graph Gu(Vu,Eu) in the sec-
ond set is generated by a partial compiler [10] that compiles
each Java class of a program individually. Then we construct
the feature vectors Xs = {xs}vs∈Vs and Xu = {xu}vu∈Vu for all

Insecure
Pattern

Seed
Statement

…

…

K Iterations

x5

x4

x3

x2

x1

x0

φ0
5

φ0
4

φ0
3

φ0
2

φ0
1 φ1

1

φ0
0

φ1
5

φ1
4

φ1
3

φ1
2

φ1
0 φK

0

φK
1

φK
2

φK
3

φK
4

φK
5

Output while
Training

W2×

+

Output after
Training

T

W2 × φK
1

pv

pa

Figure 3: Pattern embedding network overview

statements v in the respective graphs.
To obtain ground truth for similar and dissimilar usage

patterns we need to create similar pairs
(〈

vs,vu
〉
,1
)

and dis-
similar pairs

(〈
vs,vu

〉
,−1

)
. However, we do not have in-

formation about the relationship of statements in Gu(Vu,Eu)
with statements Gs(Vs,Es), which is necessary to create these
pairs. Note that source code statements do not correspond
one-to-one with statements in the PDG. The compiler may
divide a source code statement into multiple instructions,
which may have different associated statements in the PDG.
Since we use different compilers, the resulting PDG state-
ments in Vs and Vu may look different even though they rep-
resent the same source code. Therefore, we aggregate all
pattern embeddings from a method into pa and use the re-
sulting embedding for training. The network calculates the
loss based on the cosine similarity of the aggregated pattern
embedding pairs {

〈
ps

a, pu
a
〉
}xs,xu∈Xs,Xu and their given simi-

larity label y ∈ {−1,1}
We downloaded 824 open source Android apps from

GitHub and compiled the complete and sound graph
Gs(Vs,Es) for each method. Further, we used the par-
tial compiler to obtain the unsound graph for each method
Gu(Vu,Eu). After creating the feature vectors Xs and Xu from
the graphs, similar method pairs

(〈
Xs,Xu

〉
,1
)

were created
by extracting Xs and Xu from the same source code, and dis-
similar

(〈
Xs,Xu

〉
,−1

)
by extracting Xs and Xu from different

source code. From the 824 downloaded apps, we extracted
91,075 methods to create 157,162 input pairs in total. These
pairs have been split up into the training and validation set,
where 80% have been randomly allocated for training and
20% for validation. Note that the intersection of both sets is
empty.

5.6 Learning Use Cases and Security

From a given source code example, we want to be able to
predict the cryptographic use case and security of patterns
within the code. We apply transfer learning by reusing the

USENIX Association 28th USENIX Security Symposium 345

previously learned pattern embedding that already encodes
their similarity information.

Pattern embeddings are learned unsupervised and we can
obtain almost arbitrarily large training datasets from open
source projects. However, code examples on Stack Over-
flow provide a very different distribution of data [17]. Many
use case and security classes are under- or overrepresented
and availability of encryption code examples is limited in
general. We transfer knowledge from the similarity domain
to the use case and security domain in order to tackle these
problems. We argue that the similarity information preserved
in our pattern embeddings will be helpful for classifying their
use cases and security.

5.7 Labeling
We extracted 10,558 code examples from Stack Overflow4

by searching for code that contained at least one of the seed
statements. Each code sample has been manually reviewed
in order to label use case and security of the contained usage
patterns. Labeling was done by two security experts individ-
ually applying the labeling rules given by [12, 13, 17]. This
leads to conservative binary security labeling, which might
at times be too strict. For instance, depending on the con-
text, MD5 can be the better trade-off and secure enough.
However, our approach aims at developers that are layman
in cryptography and we consider binary classification prefer-
able to encourage safe defaults.

Initially, 100 samples for each of the different seed state-
ments have been selected randomly to apply dual control la-
beling. After clearing up disagreements, the remaining sam-
ples have been annotated individually to speed up the label-
ing. The whole process took approximately 10 man days
to complete. To evaluate individual annotation accuracy, we
randomly selected 200 samples from both experts and report
agreement of 98.32% on given labels. We further publish
the annotated dataset in order to allow verification of anno-
tation accuracy and reproduction of our results. Please refer
to Appendix C for further details on the annotation process.

x1

x2

x3

xN

x1

x2

x3

xd

K Iterations

x1

x2

x3

xM

x1

x2

x3

xL

x1

x2

ReLu

Loss Backpropagation

Cross
Entropy

Loss

Output Layer

Fully Conneted
Layer

Pattern Embedding
Network

Input

Figure 4: End-to-End Network Architecture

4I.e., from the Official Stack Overflow Data Dump.

5.8 End-to-end Architecture

We introduce an architecture that allows classification of dif-
ferent uses cases and security, while improving the pattern-
embedding model in order to forward optimized code repre-
sentations to the classification layer (see Figure 4).

To achieve this, we add a fully connected layer with di-
mension 1,024 using Rectified Linear Unit (ReLu) as the ac-
tivation function on top of the pattern-embedding network.
We use a softmax layer for binary and multi-class classi-
fication and trained our network to optimize cross-entropy
loss. Applying transfer learning, we initialize the pattern-
embedding network using the previously learned weights for
pattern similarity (see Section 5.4). The end-to-end network
now connects the pattern-embedding network with the clas-
sification layers. Within training, the latter backpropagates
cross-entropy loss from the classification task all the way to
the input of the pattern-embedding network. This allows the
similarity network to adjust the pattern representation in or-
der to better perform on the classification. Therefore, both
coupled networks now generate a new pattern representation
for the given classification problem in such a way that it is
optimally solved.

For instance, security classification of Cipher, Key and TM
rely on very different features. Only using the pre-trained
“static” pattern embeddings might therefore be disadvanta-
geous for some use cases. However, by dynamically cus-
tomizing the pattern embedding with respect to classification
loss minimization, the network learns a code representation
that preserves the necessary code features to improve classi-
fication.

5.9 Training

The Stack Overflow dataset provides 16,539 pattern embed-
dings extracted from 10,558 code examples. Note that a sin-
gle code example might contain several patterns, e. g. IV,
Key is used to initialize Cipher. We test pattern embeddings
generated from several models that were trained on differ-
ent neighborhood sizes K and different output dimensions
d for the embeddings. Thereby, we search for the optimal
hyperparameter K and d to achieve the best performance on
both classification tasks. We first train the network to learn
the use case identifier of pattern embeddings using the com-
plete dataset. Then, we train a different model to learn the
security labels. Here, patterns with the same security label
belong to the same class independently of their use case. Fi-
nally, we divide the dataset into combinations of several use
case classes, testing the effect on performance of security
prediction.

346 28th USENIX Security Symposium USENIX Association

6 Security Nudges

The neural network architecture described in the previous
section provides everything needed to apply the security
nudges on Stack Overflow. In this section, we explain the
design of each nudge including its implementation on Stack
Overflow and how it applies the predictions from the simi-
larity and classification models5.

6.1 Security Warnings
Whenever an insecure code example is detected, a security
warning, as shown in Figure 8, which surrounds the code, is
displayed to the user. The warning is triggered by the predic-
tion result of the security model that classifies each pattern
in the snippet.

The difficulties in designing effective security warnings
are widely known and have been extensively investigated.
We base our approach on the design patterns of Google
Chrome’s security warning for insecure server communica-
tion, whose effectiveness has been comprehensively field-
tested [3]. The header of the warning informs the user that
a security problem has been detected in the encryption code
of the sample. Note that we assume users with a very di-
verse background, knowledge and expertise in cryptography.
Users and even experienced developers might not be aware
of flawed or out-dated encryption that does not provide suffi-
cient security. Therefore, we inform the user about the con-
sequences that might occur when reusing insecure code ex-
amples in production code, e. g., private information might
be at risk in an attack scenario.

We further provide code annotations for each seed state-
ment in the code whose usage pattern has been classified as
insecure (see Figure 2). The annotation is attached below and
points at the statement. It gives further information about the
statement, while additionally highlighting the consequences
of reusing it. In order to select the correct annotation for
the insecure statement, we apply use case prediction of the
related pattern. Each use case identifier has an assigned se-
curity annotation to be displayed in the code snippet.

6.2 Security Recommendations
Security warnings should always offer a way out of a situa-
tion where the user seems to be unable to continue with her
current action due to the warning. Whenever the user decides
to follow the advice given by the warning, she would refuse
to reuse the code example that was originally considered a
candidate for solving her problem. In this situation, she has
been thrown out of her usual user pattern as she has to restart
searching for another example. Therefore, for each insecure
code example, we recommend a list of similar examples, as
shown in Figure 8, that serve the same use case and provide

5We provide further example figures of our nudges in the Appendix.

stronger encryption. Ideally, the user would only have to
click on a single link to the recommended alternative. Our
nudge design pattern does not claim that the recommended
code is generally secure, as it still might contain insecure pat-
terns that are unknown to the model. However, for simplicity,
we refer to code examples, which do not contain any detected
insecure patterns and do contain detected secure patterns, as
secure code examples throughout the paper.

We create this list of recommendations by applying simi-
larity search, use case and security prediction of usage pat-
terns in code examples. We start with predicting the use case
of each insecure usage pattern. Iq contains all insecure use
cases of a method q ∈ Mq, where Mq is the set of query
methods in the snippet. We create the set {Iq}q∈Mq , which
consists of the sets of insecure use cases over all methods in
the snippet. Then, we generate the set of aggregated pattern
embeddings {eq}q∈Mq , as described in Section 5.4. After-
wards, we analogously create the set of secure use cases for
all target methods {St}t∈Mt where Mt is the set of methods
available on Stack Overflow that only contain usage patterns
our model has classified as secure. Likewise, we create the
aggregated pattern embeddings {et}t∈Mt . We rank Mt for
given Iq,St and eq,et based on ascending Jaccard distance
dJ(Iq,St), ranking pairs with the same distance using cosine
similarity cos(eq,et). We create the ranked list of recom-
mended posts R by adding the related Stack Overflow post
for each t of the top-fifty results in the ranking. Beneath the
security warning, we display a scrollable list of R, as dis-
played in Figure 8. Each post is displayed by showing the
title of the related question. When the user clicks on the ti-
tle, a new browser tab opens and the web page automatically
scrolls down to the recommended code example, highlight-
ing it with a short flash animation.

Recommended examples are displayed inside a green box,
annotated with a check mark and message informing the
user that no common encryption problems have been found
within the code. This way, we avoid declaring the code ex-
ample to be secure, which would be a too strong claim. How-
ever, the statement intends to be strong enough to reach the
users and make them follow the advice. Similar to warnings,
we provide code annotations for each statement in the code
whose usage pattern has been classified as secure.

6.3 Security Reminders and Defaults

We further caution the user – in addition to prompting the
security warning and recommendations – by blurring out the
remainder of the web page, whenever a copy event of an in-
secure code example is triggered.

We additionally apply a search filter which up-ranks posts
that only contain secure code examples. Posts with insecure
code examples are appended to the list of secure posts. The
original ranking of posts within its security class is main-
tained. This approach lowers the risk of reusing code exam-

USENIX Association 28th USENIX Security Symposium 347

Cipher
SSL/TLS
Hash
IV
Key
TM
HNV
HNVOR

(a) Use cases before training

Cipher
SSL/TLS
Hash
IV
Key
TM
HNV
HNVOR

(b) Use cases after training (c) Security before training. (d) Security after training.

Figure 5: Visualizing the pattern embeddings of different use cases and security using PCA. Each color indicates one use case
in (a) and (b), and security in (c) and (d). The legend provides the use case identifier.

ples that have been predicted to be insecure. This also means
that whenever a post consists of secure and insecure samples
it is ranked lower than posts with only secure samples.

7 Model Evaluation

7.1 Pattern Similarity
We evaluate the learned pattern embeddings by measuring
cosine similarity for all pairs in the validation set and calcu-
late the receiver operating characteristic curve (ROC) given
the similarity label y ∈ {−1,1} for each pair. Our approach
reaches an optimal AUC of 0.978, which slightly outper-
forms Gemini with AUC of 0.971. Gemini was originally ap-
plied to similarity prediction of binary functions by learning
embeddings for CFGs and may not be a suitable benchmark.

We observe that the model converges already after five
epochs. For the remaining epochs, AUC stays around 0.978
and does not improve significantly. This allows for a very
short training time, as five epochs only need 27 minutes on
average on our system6. However, we choose the model with
the best AUC for generating the pattern embeddings.

7.2 Use Case Classification
For training the use case and security models, we apply the
dataset consisting of 16,539 pattern embeddings extracted
from Stack Overflow split up into subsets for training (80%)
and validation (20%). Note that the validation set is con-
structed such that none of its samples appear in the training
set. Therefore, we evaluate the performance of use case pre-
diction on unseen pattern embeddings.

Visualization To illustrate the transfer learning process,
we plot the pattern embeddings in 2D using principal com-
ponent analysis (PCA) before and after the training of the
classification model. Figure 5(a) shows the complete set of
pattern embeddings before training, displayed in the color of

6Intel Xeon E5-2660 v2 (”Sandy Bridge”), 20 CPU cores, 240GB mem-
ory

their use case. We observe that some use cases already build
clusters in the plot, while others appear overlapping and in-
termixed. Therefore, we apply an additional neural network
on top that leverages supervision on use cases in addition to
the similarity knowledge preserved in the input embeddings.
Figure 5(b) plots the pattern embeddings again after super-
vised training of the model. Here, we input the initial pat-
tern embeddings into the trained model and extract the last
hidden layer of the network to obtain new embeddings that
preserve information about their use case. We observe that
the new embeddings now create dense and separable clusters
for each use case in the plot. The network has moved pattern
embeddings that belong to the same use case closer together,
and the resulting clusters further away from each other in the
embedding space.

Accuracy The promising observations from the visualiza-
tion of pattern embeddings are confirmed by the accuracy re-
sults of the classification model. We performed a grid search
that revealed the optimal neighborhood size of K = 5. The
average AUC for predicting the different use cases already
achieves its optimum of 0.999 after 20 epochs. As already
indicated by the PCA plots, pattern embeddings provide a
very good representation of use cases as the average AUC
for all classes before training (epoch zero) is already above
0.998. However, precision and recall of IV, HNVOR and TM
start below 0.878 and have been improved up to above 0.986
within 30 epochs of training.

7.3 Security Classification
Visualization We start again with illustrating the transfer-
learning process for security classification by plotting pat-
tern embeddings before and after training. Figure 5(c) dis-
plays pattern embeddings before training with their respec-
tive security score, Figure 5(d) plots the new embeddings
after training. Samples that were labeled as secure are de-
picted in blue, insecure samples in red. When comparing
Figure 5(a) and Figure 5(c), we can already observe sev-
eral secure and insecure clusters within the use case clus-

348 28th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Tr
ue

 P
os

tiv
e

Ra
te

Cipher, AUC: 0.996
Hash, AUC: 0.999
SSL/TLS, AUC: 0.999

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

tiv
e

Ra
te

IV, AUC: 0.980
Key, AUC: 0.970

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

tiv
e

Ra
te

HNV, AUC: 0.953

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

tiv
e

Ra
te

HNVOR, AUC: 0.998
TM, AUC: 1.000

Figure 6: ROC for security classification of different use cases. The legend provides use case identifier and respective AUC.

ters, e. g., Hash, Cipher and SSL/TLS. However, again many
secure and insecure samples appear to have a wide distri-
bution because PCA does not plot them in dense clusters.
After training the security classification model, we input the
complete set of pattern embeddings and plot the last layer
of the neural network for each sample in Figure 5(d) again.
Now, we observe dense and separated clusters for secure and
insecure samples. The network has adjusted the pattern em-
beddings such that samples within both security classes have
been moved closer together in the embedding space. Sam-
ples with different security have been moved further away
from each other, finally dividing samples into two security
clusters.

Accuracy We trained a single model using the labeled
dataset of 16,539 pattern embeddings. Thereby, a single
model learns security classification for all use cases. Our
grid search revealed K = 5 as the optimal neighbourhood
size. The model provides a good fit because training and
validation loss already converge after 50 epochs. A single
epoch takes 0.58 seconds on average on our system, result-
ing in roughly five minutes for complete training time. We
plot ROC curves for security prediction for each use case
class in Figure 6. We observe that the three use cases Hash,
Cipher and SSL/TLS that provide the largest percentage of
samples in the dataset achieve the best results. The model
achieves very good classification accuracy with AUC values
of 0.999, 0.996 and 0.999, respectively, similar to HNVOR
and TM. However, performance drops marginally for IV, Key
and HNV to 0.980, 0.970 and 0.953, respectively.

Comparison In Table 2, we compare our approach on se-
curity prediction on Stack Overflow with [17], where the au-
thors use tf-idf to create a feature vector as a representation
for the complete input snippets and to train a SVM predict-
ing its binary security score. Our deep learning approach
(marked as CNN in the table) significantly outperforms their
classifier in all use cases; especially IV, Key and HNVOR,
where security evaluation heavily relies on data and control
flow. In contrast to our approach, the work by Fischer et al.
[17] does not inform the learning model about these proper-
ties, but solely relies on lexical features.

Moreover, our deep learning approach allows a higher
level of explainability to the user. While [17] can only re-
port security warnings for the complete snippet, our more
fine-grained approach is able to directly highlight statements
in the code and provides annotations that explain the secu-
rity issue. Since we learn a representation of code patterns
that allows prediction of different code properties beyond se-
curity, we can provide this additional explanation, which is
crucial for developer advice.

CNN tfidf+SVM
AUC-ROC Explanation AUC-ROC Explanation

Cipher 0.996 SW, CA 0.960 SW
Hash 0.999 SW, CA 0.956 SW
TLS 0.999 SW, CA 0.902 SW
IV 0.980 SW, CA 0.881 SW
Key 0.970 SW, CA 0.886 SW
HNV 0.953 SW, CA 0.922 SW
HNVOR 0.998 SW, CA 0.850 SW
TM 1.000 SW, CA 0.982 SW

Table 2: Performance and explainability comparison of se-
curity prediction on Stack Overflow. SW: Provides security
warnings for the complete snippet. CA: Additionally pro-
vides code annotation that explains the issue in detail.

7.4 Recommendations
We applied our trained models in order to evaluate whether
Stack Overflow provides secure alternative code snippets,
which preserve the use case and are similar to detected in-
secure code examples. Thereby, we extracted all methods
from the complete set of 10,558 snippets, generated their
aggregated embeddings and separated them into two sets.
The first set contains all 6,442 distinct insecure query em-
beddings and the second one all 3,579 distinct secure target
embeddings. We created these two sets by applying the secu-
rity model and predicted the security of each pattern within a
given method. Finally, we ranked the embeddings based on
their Jaccard distance, applying the use case model, and co-
sine similarity, as described in Section 6.2. We found 6,402
(99.37%) query methods that have Jaccard distance of 0.0 to
at least one target method. This means that for almost ev-
ery insecure method, a secure one exist on Stack Overflow

USENIX Association 28th USENIX Security Symposium 349

that serves the same use case. When additionally demand-
ing code similarity, we found 6,047 (93.86%) query meth-
ods with a cosine similarity above 0.81 and 4,805 (75.58%)
query methods with a similarity above 0.9 with at least one
target method.

8 Evaluation of Security Nudges

To evaluate the impact of our system including the security
nudges on the security of programming results, we perform
a laboratory user study. Thereby, participants had to solve
programming tasks with the help from Stack Overflow.

8.1 User Study Setup
Participants were randomly assigned to one of two treatment
conditions. For the nudge treatment, we provided security
warnings (Figure 2a) for insecure code examples, recom-
mendations for secure snippets (Figure 2b) and recommen-
dations lists attached to each warning (Figure 8). Further,
security reminders were enabled. In the control treatment,
all security nudges on Stack Overflow were disabled.

Participants were advised to use Stack Overflow to solve
the tasks. In all treatments, we restricted Stack Overflow
search results to posts that contain a code example from the
set of 10,558 code examples we extracted from Stack Over-
flow7. Further, we applied a whitelist filter to restrict ac-
cess to Stack Overflow in the Chrome browser. Any requests
to different domains were redirected to the Stack Overflow
search page. Participants were provided with the Google
Chrome browser and Eclipse pre-loaded with two Java class
templates. Both class templates provided code skeletons that
were intended to reduce the participants’ workload and sim-
plify the programming tasks. Using additional applications
was prohibited. All tasks had to be solved within one hour.
We avoided security or privacy priming during the introduc-
tion and throughout the study. Moreover, we did not name or
explain any of the security nudges on Stack Overflow.

8.2 Tasks
All participants had to solve five programming tasks related
to symmetric encryption and certificate pinning. We chose
these two use cases as they provide the most error-prone
cryptographic problems in Android [17].

Symmetric Encryption The first three tasks dealt with ini-
tializing a symmetric cipher in order to encrypt and decrypt a
message. Task Cipher: a symmetric cipher had to be initial-
ized by setting the algorithm, block mode and padding. The
main security pitfalls in this task are choosing a weak cipher

7This aims at simplifying search for participants. All Stack Overflow
posts that contain a seed statement are available during the study.

and block mode. Task Key: a symmetric cryptographic key
had to be generated. Participants had to create a key having
the correct and secure key length necessary for the previously
defined cipher. It had to be generated from a secure random
source and should not have been stored in plaintext. Task
IV: an initialization vector had to be instantiated. Like key
generation, this task is particularly error-prone as choosing
the correct length, secure random source and storage can be
challenging.

Certificate Pinning Within these two tasks, a SSL/TLS
context had to be created to securely communicate with a
specific server via HTTPS. In the end, the program should
have been able to perform a successful GET request on the
server, while denying connection attempts to domains that
provide a different server certificate. A solution for Task TLS
would have been to select a secure TLS version to initialize
the context. Task TM: the server’s certificate had to be added
to an empty custom trust manager replacing the default man-
ager. This way, the program would pin the server’s certificate
and create a secure communication channel, while rejecting
attempts to any other server with a different certificate.

8.3 Preliminaries and Participants
We advertised the study in lectures and across various uni-
versity communication channels. 30 subjects participated in
the study, however, three subjects dropped out, because they
misunderstood a basic participation requirement (i.e., having
at least basic Java programming knowledge). Of the remain-
ing 27 subjects, 16 were assigned to the nudge treatment, and
11 to the control treatment. While being students, our sam-
ple varied across demographics and programming skill, but
none of the self-reported characteristics systematically dif-
fered across the two treatments (see Appendix A for details).

We followed well-established community principles for
conducting security and privacy studies [29]. Participants
were presented with a comprehensive consent form and sep-
arate study instructions on paper. Participants were compen-
sated with 20 Euros.

After submission of the solutions, participants were asked
to complete a short exit survey. We asked specific ques-
tions addressing the effectiveness of the security nudges and
whether they were noticed by the participants. Also, we only
asked demographic questions at this point to avoid any bias
during the study. See Table 3 in the Appendix for details.

8.4 User Study Results
Functional Correctness Our system is not designed to ad-
dress difficulties of programmers to deliver functionally cor-
rect code. However, it is important that using the system does
not create obstacles to programmers. Participants predomi-
nantly submitted functionally correct code in both treatments

350 28th USENIX Security Symposium USENIX Association

0 % 20 % 40 % 60 % 80 % 100 %

Cipher

Key

IV

TLS

TM

Nudge Secure
Nudge Insecure
Control Secure

Control Insecure

(a) Security results

0 0.2 0.4 0.6 0.8 1

Cipher

Key

IV

TLS

TM

(b) Copy-paste rate (average)

0 % 20 % 40 % 60 % 80 % 100 %

Cipher

Key

IV

TLS

TM

Nudge Correct
Nudge Incorrect
Control Correct

Control Incorrect

(c) Correctness results

Figure 7: User study results for security, copy-paste rate and correctness of the submitted solutions across both treatments.

with some differences across tasks (cf. Figure 7c). Applying
ordinal logistic regression (cf. Table 4 in the Appendix) indi-
cates that the nudge treatment has – as anticipated – no effect
on functional correctness of submitted tasks. However, non-
professionals submitted significantly less functional code
(p < 0.05). Cipher submissions are more often functional,
irrespective of the treatment (p < 0.05).

Security Figure 7a shows the security results per task for
both treatments. Performing ordinal logistic regression (see
Table 5 in the Appendix), we show that the nudge treatment
is significantly outperforming the control group in producing
secure solutions (with an estimate of 1.303 and p < 0.01;
Model 4). While the main effect of the nudge treatment
dominates the regression models, we can observe from Fig-
ure 7a that comparatively more secure submissions are made
for TM and Key. Indeed, pairwise testing using Chi-Square
tests reveals p < 0.001 for both tasks. Participants from
the nudge group provided 84.6% secure solutions for Key
and 76.9% for TM, while 60.0% and 66.7% of the respec-
tive solutions submitted by the control group were insecure.
These observations for TM are somewhat encouraging given
previous findings: [17] have shown that reused insecure TM
code snippets from Stack Overflow were responsible for 91%
(183,268) of tested apps from Google Play being vulnerable.
Only 0.002% (441) of apps contained secure TM code from
Stack Overflow. Based on these insecure TM snippets, [13]
were able to attack several high-profile apps extracting pri-
vate data. Moreover, [27] found that only 45 out of 639,283
Android apps applied certificate pinning, while 25% of de-
velopers find certificate pinning too complex to use. [2] re-
ported that tasks very similar to TM could not be solved with
the help of simplified cryptographic APIs within a user study.

For Cipher, the nudge treatment performs very well,
but only slightly better than the control treatment, as both
achieved 86.7% and 81.8% secure solutions, respectively.

For IV and TLS, the nudge results are less desirable with
46.2% and 38.5% secure solutions, while performing better
but not significantly (p < 0.077 and p < 0.53; Chi-Square)
than the control treatment. To better understand these ob-
servations, we analyzed visited posts, copy-and-paste history

and the submitted code of participants that provided insecure
solutions for these two tasks. In the case of IV, we found that
four insecure solutions reused insecure patterns from code
snippets that were falsely marked as recommended code. To
encounter false predictions of the security model was a pri-
ori extremely unlikely. Interestingly, the remaining insecure
solutions were created by users combining secure code from
different correctly marked recommendations (true negatives)
into insecure code. Thereby, users reused the seed statement
for IV from one snippet and initialized it with an empty ar-
ray obtained from another code snippet that did not make
use of IV at all. In the case of TLS, all insecure solutions
were copied from code snippets that were clearly marked as
insecure.

Copy-and-Paste Behavior We calculated the average
copy-paste rate per task for both treatments, which reports
the relative frequency copied code has also been reused in a
submitted solution (see Figure 7b). Importantly, in the nudge
treatment, not a single insecure copy-and-paste event was
observed for Cipher, Key and TM, while secure code that was
copied into the clipboard was reused at a rate of 0.45, 0.55,
and 0.72 on average, respectively. This goes in line with ob-
served security outcomes depicted in Figure 7a, where more
secure than insecure solutions were provided for these tasks.
However, insecure copy-and-paste events were observed for
IV and TLS, partly explaining the comparatively higher num-
ber of insecure solutions. In the control treatment, the copy-
paste rate for insecure snippets closely follows the observed
frequencies of insecure results for all tasks except Cipher.

Warnings/Recommendations/Reminder Even though all
users within the nudge group saw security warnings during
their journey, we observed an insecure-to-secure copy event
ratio of 0.27 for both treatments indicating that warnings
alone are not sufficient for preventing users from placing in-
secure code on the clipboard. However, the copy-paste rate
measuring the relative frequency of copy to paste events (see
Figure 7b) offers more nuanced results. It shows that the
nudge group tends to discard insecure copies, while pasting
more secure copies into their solutions. This is most likely

USENIX Association 28th USENIX Security Symposium 351

the result of the reminder nudge, which was triggered by in-
secure copy events. As a result, users dropped copied inse-
cure samples and started looking for a secure alternative. In
contrast, the copy-paste rate for control shows that copied in-
secure snippets were not dropped, but rather pasted into the
solution. Therefore, the interaction of several nudges was
responsible for improving the security decisions of the par-
ticipants. In the exit survey, users also marked the relevant
nudges with high average Likert score values of above 4 (on
5-point scales).

We only observed 22 events where users clicked on a pro-
posed recommendation link as shown in the bottom part of
Figure 8a. Therefore, only 10.1% of secure posts (of 219
in total) were visited following such a proposed recommen-
dation. However, 86.6% remembered the feature during the
exit survey. With 4 paste and 8 copy events (i.e., a copy-
paste rate of 0.5) only a very small amount of reused secure
code in the submitted solutions was directly related to this
nudge. Though contributing to the improvement of code se-
curity, we can state that this nudge was surprisingly the least
effective one. The average Likert score for the list of recom-
mendations was also comparatively low with 3.2.

9 Limitations

The response rate during recruitment for our developer study
was quite low. However, we achieved a participation count
per treatment which was very similar to comparable peer-
reviewed studies (e.g., [2]). However, participation may in-
troduce self-selection bias. Therefore, we avoided any se-
curity framing during recruitment and have no reason to be-
lieve that the final group of participants was systematically
different in terms of security knowledge. The study was per-
formed within a laboratory under strict time constraints. By
enforcing a time limit, we intended to create a more realistic
scenario and to obtain a comparable outcome for both treat-
ments. Participants had to solve their programming tasks us-
ing a given code editor, browser, as well as operating sys-
tem which they might not have been familiar with. Most of
our participants were students, while only a minority had a
professional background, which may limit the generalizabil-
ity of our results. Professionals performed slightly better in
achieving functional solutions, but not in security across both
treatments. Therefore, comparisons among both treatments
remain valid.

For implementing custom trust managers in Android (see
Section 8.2), current best practices suggest a declarative so-
lution which uses a static configuration file instead of Java
code.8 Being able to include other formats, such as formal
documentation in our recommendations would additionally
allow suggesting this solution. One possible way to achieve

8https://developer.android.com/training/articles/

security-config

that is to create a link between code examples from Stack
Overflow and natural language text in official documenta-
tion. I.e., we would have to extend our framework such
that it embeds code examples and natural language text into
the same vector space. This can be done with sequence-to-
sequence models, which are usually applied for natural lan-
guage translation. GitHub is currently testing a similar ap-
proach for their semantic code search engine.9

10 Future Work

Our recommendation approach may be subject to attacks.
More specifically, in an adversarial setting, machine learn-
ing algorithms are often not robust against manipulated in-
put data. Similar to efforts in malware obfuscation and spam
filter bypassing, an attacker might be able to craft malicious
code that gets mistakenly classified as secure. This way, the
attacker could spread malicious code into the ecosystem on
a large scale. However, a number of novel techniques have
been proposed to counter the adversarial effect [18, 24, 28].

Stack Overflow provides code examples for almost each
and every programming language. Since our framework
learns the optimal code representation for a given classifica-
tion task based on general code features, we do not see ma-
jor issues in applying it to different programming languages.
A language-specific compiler or a universal parser can be
used to generate the PDG, which is then fed to our pattern
embedding network (see Section 5.4). The representation
learning of API-specific lexical features (see Section 5.3)
is completely independent from the programming language
and therefore straightforward.

We suggest to conduct additional UI testing as we might
not have identified the optimal design, yet. Following Felt
et al. [15], different security indicators such as alternative
candidate icons and text have to be tested, for instance
within user surveys or by repeating our developer study.
Stack Overflow recently proposed a partnership program
with academia that would allow to extend their developer
survey and to test design tweaks on their website.10

11 Conclusion

In this paper, we propose an approach for deep learning se-
curity nudges that help software developers write strong en-
cryption code. We propose a system design integrated in
Stack Overflow whose components consist of several secu-
rity nudges, namely warnings, recommendations, reminders,
and defaults and a neural network architecture that controls
these nudges by learning and predicting secure and inse-
cure cryptographic usage patterns from community-provided

9https://githubengineering.com/

towards-natural-language-semantic-code-search/
10https://meta.stackoverflow.com/questions/377152/

stack-overflow-academic-research-partnership-program

352 28th USENIX Security Symposium USENIX Association

https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://githubengineering.com/towards-natural-language-semantic-code-search/
https://githubengineering.com/towards-natural-language-semantic-code-search/
https://meta.stackoverflow.com/questions/377152/stack-overflow-academic-research-partnership-program
https://meta.stackoverflow.com/questions/377152/stack-overflow-academic-research-partnership-program

code examples. We propose a novel approach on deep learn-
ing optimized code representations for given code classifi-
cation tasks and train a classification model that is able to
predict use cases and security scores of encryption code ex-
amples with an AUC-ROC of 0.999 and 0.992, respectively.
Applying this model within our nudge-based system design
on Stack Overflow, we performed a user study where par-
ticipants had to solve the most error-prone cryptographic
programming tasks reported in recent research. Our results
demonstrate the effectiveness of nudges in helping software
developers to make better security decisions on Stack Over-
flow.

Acknowledgements

The authors would like to thank Fraunhofer AISEC for tech-
nical support, DIVSI for support of our research efforts, and
the anonymous reviewers for their helpful comments.

References

[1] ACAR, Y., BACKES, M., FAHL, S., GARFINKEL,
S., KIM, D., MAZUREK, M. L., AND STRANSKY,
C. Comparing the usability of cryptographic APIs.
In IEEE Symposium on Security and Privacy (2017),
pp. 154–171.

[2] ACAR, Y., BACKES, M., FAHL, S., KIM, D.,
MAZUREK, M. L., AND STRANSKY, C. You Get
Where You’re Looking For: The Impact of Informa-
tion Sources on Code Security. In IEEE Symposium on
Security and Privacy (2016), pp. 289–305.

[3] ACER, M., STARK, E., FELT, A. P., FAHL, S., BHAR-
GAVA, R., DEV, B., BRAITHWAITE, M., SLEEVI, R.,
AND TABRIZ, P. Where the wild warnings are: Root
causes of Chrome HTTPS certificate errors. In ACM
Conference on Computer & Communications Security
(2017), pp. 1407–1420.

[4] ACQUISTI, A. Nudging privacy: The behavioral eco-
nomics of personal information. IEEE Security & Pri-
vacy 7, 6 (2009), 82–85.

[5] ACQUISTI, A., ADJERID, I., BALEBAKO, R.,
BRANDIMARTE, L., CRANOR, L. F., KOMANDURI,
S., LEON, P. G., SADEH, N., SCHAUB, F., SLEEPER,
M., ET AL. Nudges for privacy and security: Un-
derstanding and assisting users’ choices online. ACM
Computing Surveys 50, 3 (2017), Article No. 44.

[6] ALMUHIMEDI, H., SCHAUB, F., SADEH, N., AD-
JERID, I., ACQUISTI, A., GLUCK, J., CRANOR, L. F.,
AND AGARWAL, Y. Your location has been shared
5,398 times! A field study on mobile app privacy nudg-
ing. In ACM Conference on Human Factors in Comput-
ing Systems (2015), pp. 787–796.

[7] BALEBAKO, R., LEON, P. G., ALMUHIMEDI, H.,
KELLEY, P. G., MUGAN, J., ACQUISTI, A., CRA-
NOR, L. F., AND SADEH, N. Nudging users to-
wards privacy on mobile devices. In CHI Workshop
on Persuasion, Nudge, Influence and Coercion (2011),
pp. 193–201.

[8] BÖHME, R., AND GROSSKLAGS, J. The security
cost of cheap user interaction. In ACM New Security
Paradigms Workshop (2011), pp. 67–82.

[9] CHEN, M., FISCHER, F., MENG, N., WANG, X.,
AND GROSSKLAGS, J. How reliable is the crowd-
sourced knowledge of security implementation? In
ACM/IEEE International Conference on Software En-
gineering (2019).

[10] DAGENAIS, B., AND HENDREN, L. Enabling static
analysis for partial Java programs. ACM Sigplan No-
tices 43, 10 (2008), 313–328.

[11] DAI, H., DAI, B., AND SONG, L. Discriminative
embeddings of latent variable models for structured
data. In International Conference on Machine Learn-
ing (2016), pp. 2702–2711.

[12] EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND
KRUEGEL, C. An empirical study of cryptographic
misuse in Android applications. In ACM Conference on
Computer & Communications Security (2013), pp. 73–
84.

[13] FAHL, S., HARBACH, M., MUDERS, T., SMITH, M.,
BAUMGÄRTNER, L., AND FREISLEBEN, B. Why Eve
and Mallory love Android: An analysis of Android SSL
(in)security. In ACM Conference on Computer & Com-
munications Security (2012), pp. 50–61.

[14] FAHL, S., HARBACH, M., PERL, H., KOETTER, M.,
AND SMITH, M. Rethinking SSL development in an
appified world. In ACM Conference on Computer &
Communications Security (2013), pp. 49–60.

[15] FELT, A. P., REEDER, R., AINSLIE, A., HARRIS,
H., WALKER, M., THOMPSON, C., ACER, M. E.,
MORANT, E., AND CONSOLVO, S. Rethinking con-
nection security indicators. In Symposium on Usable
Privacy and Security (2016), pp. 1–14.

[16] FENG, Q., ZHOU, R., XU, C., CHENG, Y., TESTA,
B., AND YIN, H. Scalable graph-based bug search for
firmware images. In ACM Conference on Computer &
Communications Security (2016), pp. 480–491.

[17] FISCHER, F., BÖTTINGER, K., XIAO, H., STRAN-
SKY, C., ACAR, Y., BACKES, M., AND FAHL, S.
Stack overflow considered harmful? The impact of
copy&paste on Android application security. In IEEE
Symposium on Security and Privacy (2017).

USENIX Association 28th USENIX Security Symposium 353

[18] GANIN, Y., USTINOVA, E., AJAKAN, H., GERMAIN,
P., LAROCHELLE, H., LAVIOLETTE, F., MARC-
HAND, M., AND LEMPITSKY, V. Domain-adversarial
training of neural networks. Journal of Machine Learn-
ing Research 17, 59 (2016), 1–35.

[19] GROSSKLAGS, J., RADOSAVAC, S., CÁRDENAS, A.,
AND CHUANG, J. Nudge: Intermediaries role in in-
terdependent network security. In International Con-
ference on Trust and Trustworthy Computing (2010),
pp. 323–336.

[20] KRÜGER, S., SPÄTH, J., ALI, K., BODDEN, E., AND
MEZINI, M. CrySL: An extensible approach to vali-
dating the correct usage of cryptographic apis. In Eu-
ropean Conference on Object-Oriented Programming
(2018), pp. 10:1–10:27.

[21] LI, Z., ZOU, D., XU, S., OU, X., JIN, H., WANG, S.,
DENG, Z., AND ZHONG, Y. VulDeePecker: A deep
learning-based system for vulnerability detection. In
Network and Distributed Systems Security Symposium
(2018).

[22] LIU, B., ANDERSEN, M. S., SCHAUB, F., AL-
MUHIMEDI, H., ZHANG, S. A., SADEH, N., AGAR-
WAL, Y., AND ACQUISTI, A. Follow my recommenda-
tions: A personalized privacy assistant for mobile app
permissions. In Symposium on Usable Privacy and Se-
curity (2016), pp. 27–41.

[23] LIU, B., LIN, J., AND SADEH, N. Reconciling mobile
app privacy and usability on smartphones: Could user
privacy profiles help? In International Conference on
World Wide Web (2014), pp. 201–212.

[24] MIYATO, T., MAEDA, S., KOYAMA, M., NAKAE, K.,
AND ISHII, S. Distributional smoothing by virtual ad-
versarial examples. CoRR abs/1507.00677 (2015).

[25] NGUYEN, D. C., WERMKE, D., ACAR, Y., BACKES,
M., WEIR, C., AND FAHL, S. A stitch in time: Sup-
porting Android developers in writing secure code. In
ACM Conference on Computer and Communications
Security (2017), pp. 1065–1077.

[26] OLIVEIRA, D. S., LIN, T., RAHMAN, M. S., AKE-
FIRAD, R., ELLIS, D., PEREZ, E., BOBHATE, R.,
DELONG, L. A., CAPPOS, J., AND BRUN, Y. API
Blindspots: Why experienced developers write vulner-
able code. In Symposium on Usable Privacy and Secu-
rity (2018), pp. 315–328.

[27] OLTROGGE, M., ACAR, Y., DECHAND, S., SMITH,
M., AND FAHL, S. To pin or not to pin – Helping
app developers bullet proof their TLS connections. In
USENIX Security Symposium (2015), pp. 239–254.

[28] PAPERNOT, N., MCDANIEL, P., WU, X., JHA, S.,
AND SWAMI, A. Distillation as a defense to adversarial
perturbations against deep neural networks. In IEEE
Symposium on Security and Privacy (2016), pp. 582–
597.

[29] SCHECHTER, S. Common pitfalls in writing about
security and privacy human subjects experiments, and
how to avoid them. Tech. rep., Microsoft Research,
2013.

[30] SUNSTEIN, C. Nudging: A very short guide. Journal
of Consumer Policy 37, 4 (2014), 583–588.

[31] THALER, R., AND SUNSTEIN, C. Nudge: Improving
decisions about health, wealth, and happiness. Pen-
guin, 2008.

[32] WANG, Y., LEON, P. G., SCOTT, K., CHEN, X., AC-
QUISTI, A., AND CRANOR, L. F. Privacy nudges
for social media: An exploratory Facebook study. In
International Conference on World Wide Web (2013),
pp. 763–770.

[33] XU, X., LIU, C., FENG, Q., YIN, H., SONG, L., AND
SONG, D. Neural network-based graph embedding
for cross-platform binary code similarity detection. In
ACM Conference on Computer & Communications Se-
curity (2017), pp. 363–376.

Appendix A: Additional Participant Data
Table 3 includes additional data about the 27 participants,

who completed the study.
We also conducted a series of statistical tests to verify that

the self-reported characteristics of the recruited participants
did not systematically vary across treatments. Indeed, using
the Mann-Whitney U Test, we found that participants did
not differ in their reported age across treatments (p = 0.79).
Applying Fisher’s Exact Test, we also observed the absence
of a statistically significant difference for country of origin
(p = 0.809), gender (p = 0.551), level of education (p =
0.217), security knowledge/background (p = 0.124), and
professional programming experience (p = 0.315). Using
the Mann-Whitney U Test, we did not find any statistically
significant difference for years of experience with Java pro-
gramming (p = 0.422). We also did not find any reportable
differences regarding participants’ awareness of encryption
flaws (p = 0.363) using Fisher’s Exact Test. The percentage
of participants who had to program Java as primary activity
for their work (p = 1) or for whom writing Java code was
part of their primary job in the last 5 years (p = 0.696) also
did not differ across treatments (using Fisher’s Exact Test).

Appendix B: Detailed Regression Results
Based on the user study data and self-reported survey re-

sponses, we follow an ordinal (Logit link) regression ap-

354 28th USENIX Security Symposium USENIX Association

proach, which is primarily focused on evaluating the effec-
tiveness of the nudge treatment.

First, we report a series of four models (M1 - M4) to eval-
uate whether the nudge treatment significantly impacts the
functional correctness of the submitted programs for the five
different tasks (see Table 4). We iteratively add factors to
the regression model to also test whether programming ex-
pertise or security expertise positively impact the outcome
variable. Most importantly, as the nudge treatment is not
designed to address this aspect of programming, we did not
expect any significantly positive effect. Indeed, across all
model specifications that we tested, we did not observe any
significant (positive or negative) effect. Regarding the dif-
ferent programming tasks, we found that the Cipher task
was associated with a significantly increased likelihood of
being functionally correct (M2 - M4). Further, not being a
security professional (as reported by the participants) signif-
icantly impacts the likelihood that functional programs were
submitted in a negative fashion (M3 - M4). In contrast, a
higher degree of security knowledge (as reported by the par-
ticipants) did not significantly impact the results (M4).

Note that the regression statistics for tasks IV and TLS are
identical as the aggregate results for functional correctness
happen to be the same (see Figure 7c).

Age
Mean = 22.93 Median = 22 Stddev = 3.9 Min = 19 Max = 38

Country of Origin
Germany = 16 Other = 11

Gender
Male = 9 Female = 18

Achieved Level of Education
Highschool = 15 Bachelor = 8 Master = 3 Ph.D. = 0

Professional at Programming
Yes = 12 No = 15

Security Background
Yes = 10 No = 17

Java Years Experience
Mean = 3.81 Median = 3 Stddev = 2.304 Min = 1 Max = 8

Encryption Flaw Awareness
Yes = 17 No = 10

Java primary focus of job
Yes = 5 No = 21 No Data = 1

Java part of any job
Yes = 12 No = 15

Table 3: Detailed data about demographics of participants (N
= 27). One missing response for the question whether Java
is primary focus of current job.

Second, we report a series of four models (M1 - M4) to
evaluate whether the nudge treatment significantly impacts
the security of the submitted programs for the five different
tasks (see Table 5). For consistency, we iteratively add the
same factors to the regression model to also test whether pro-
gramming expertise or security expertise positively impact
the outcome variable.

Most importantly, as the nudge treatment is designed to
improve the security of cryptography-related programming,
we did expect a significantly positive effect. Indeed, across
all model specifications that we tested, we did observe a sig-

FACTORS M1 M2 M3 M4
Treatment: Nudge -0.460 -0.489 -0.263 -0.226

(0.523) (0.544) (0.568) (0.605)
Task: Cipher - 2.407* 2.539* 2.539*

(1.105) (1.125) (1.125)
Task: IV - 1.224 1.324 1.324

(0.746) (0.775) (0.775)
Task: Key - 0.892 0.974 0.974

(0.690) (0.72) (0.721)
Task: TLS - 1.224 1.324 1.324

(0.746) (0.775) (0.775)
Not Professional - - -1.701* -1.698*

(0.679) (0.680)
Sec. Knowledge - - - -0.106

(0.605)

Table 4: Results for Ordinal Regression of Functional Cor-
rectness. Series of non-interaction models (M1 – M4) with
factors iteratively added. Significant values are highlighted
in bold, and marked with: * p < 0.05. Standard errors are
included in parentheses. The baseline for Treatment is Con-
trol (i.e., the unmodified Stack Overflow), and the baseline
for Task is TM.

FACTORS M1 M2 M3 M4
Treatment: Nudge 0.920* 1.018* 1.113* 1.303**

(0.388) (0.426) (0.438) (0.480)
Task: Cipher - 1.388 1.377 1.405

(0.745) (0.754) (0.758)
Task: IV - -0.963 -1.001 -0.990

(0.654) (0.665) (0.668)
Task: Key - 0.224 0.200 2.13

(0.668) (0.677) (0.679)
Task: TLS - -0.963 -1.001 -0.990

(0.654) (0.665) (0.668)
Not Professional - - -0.702 -0.686

(0.432) (0.434)
Sec. Knowledge - - - -0.517

(0.481)

Table 5: Results for Ordinal Regression of Security. Se-
ries of non-interaction models (M1 – M4) with factors it-
eratively added. Significant values are highlighted in bold,
and marked with: * p < 0.05 and ** p < 0.01. Standard
errors are included in parentheses. The baseline for Treat-
ment is Control (i.e., the unmodified Stack Overflow), and
the baseline for Task is TM.

nificant and positive effect. Regarding the different program-
ming tasks, we did not find that they significantly differed
from each other regarding the security property (M2 - M4).
Being a security professional did not impact the security of
the submitted programs in a significant way (M3 - M4). Per-
haps surprisingly, a higher degree of security knowledge (as

USENIX Association 28th USENIX Security Symposium 355

(a) Security warning provided by the security and use case model

(b) Recommendation provided by the similarity and use case model.

Figure 8: Security warning and recommendations provided by the similarity, use case and security model. The security model
predicted the usage pattern of setHostnameVerifier as insecure. Further, it predicted its use case HNV, being able to select and
display the related security annotation under the insecure statement. Below the security warning the similarity, use case and
security model provide the ranked list of recommendations, that contains code examples with similar and secure patterns of
HNV. We display the recommended code example that appears when clicking on the first link in (b).

reported by the participants) did not significantly impact the
results either (M4).

We created regression models including further demo-
graphic and explanatory variables. However, none of them
had a significant effect on the security of submitted solutions.

Appendix C: Pattern Annotation Tool
Our security annotations generally comply with rules and

annotation heuristics given by [12,13,17]. However, manual
analysis of patterns was not restricted to simple application
of these heuristics, but was based on detecting insecure pat-
terns in general. Whenever an unknown pattern has been
detected, both annotators discussed them until agreement on
a label. For example, [13] only reports empty trust manager
implementations, while many insecure TM patterns on Stack
Overflow are not empty, but provide insufficient certificate
verification (e. g., only validating that the certificate is not
expired).

To further speed up the labeling process and manage the
large amount of samples, we created a code annotation tool.
It automatically iterates through code snippets and displays
them to the user, using a source code editor. Seed state-
ments were already highlighted in order to allow the anno-
tator to detect relevant patterns quickly. The annotator was
able to assign labels (e. g., secure/insecure) to different key-
board buttons. While iterating through the seed statements,
the annotator would investigate the related pattern and label
it accordingly. Moreover, the annotator had the option to
add seed statements, that she wanted to have highlighted and
labeled. Whenever the annotator identified new patterns or
wanted to share and discuss a pattern, the related code snip-
pet was marked and other annotators were notified to com-
ment on it. After agreement, the pattern was labeled by the
initial annotator. Further, annotation heuristics obtained dur-
ing the discussion were shared among all annotators.

356 28th USENIX Security Symposium USENIX Association

Wireless Attacks on Aircraft Instrument Landing Systems

Harshad Sathaye, Domien Schepers, Aanjhan Ranganathan, and Guevara Noubir
Khoury College of Computer Sciences

Northeastern University, Boston, MA, USA

Abstract
Modern aircraft heavily rely on several wireless technolo-
gies for communications, control, and navigation. Researchers
demonstrated vulnerabilities in many aviation systems. How-
ever, the resilience of the aircraft landing systems to adver-
sarial wireless attacks have not yet been studied in the open
literature, despite their criticality and the increasing availabil-
ity of low-cost software-defined radio (SDR) platforms. In
this paper, we investigate the vulnerability of aircraft instru-
ment landing systems (ILS) to wireless attacks. We show the
feasibility of spoofing ILS radio signals using commercially-
available SDR, causing last-minute go around decisions, and
even missing the landing zone in low-visibility scenarios. We
demonstrate on aviation-grade ILS receivers that it is pos-
sible to fully and in fine-grain control the course deviation
indicator as displayed by the ILS receiver, in real-time. We
analyze the potential of both an overshadowing attack and
a lower-power single-tone attack. In order to evaluate the
complete attack, we develop a tightly-controlled closed-loop
ILS spoofer that adjusts the adversary’s transmitted signals
as a function of the aircraft GPS location, maintaining power
and deviation consistent with the adversary’s target position,
causing an undetected off-runway landing. We systematically
evaluate the performance of the attack against an FAA cer-
tified flight-simulator (X-Plane)’s AI-based autoland feature
and demonstrate systematic success rate with offset touch-
downs of 18 meters to over 50 meters.

1 Introduction
Today, the aviation industry is experiencing significant growth
in air traffic with more than 5000 flights [14] in the sky at any
given time. It has become typical for air traffic control towers
to handle more than a thousand takeoffs and landings every
day. For example, Atlanta’s Hartsfield-Jackson International
airport handles around 2500 takeoffs and landings every day.
Boston’s Logan airport which is not one of the busiest air-
ports in the world managed an average of 1100 flights every
day in August 2018. The modern aviation ecosystem heavily
relies on a plethora of wireless technologies for their safe

and efficient operation. For instance, air traffic controllers
verbally communicate with the pilots over the VHF (30 to
300 MHz) radio frequency channels. The airplanes continu-
ously broadcast their position, velocity, callsigns, altitude, etc.
using the automatic dependent surveillance-broadcast (ADS-
B) wireless communication protocol. Primary and secondary
surveillance radars enable aircraft localization and provide
relevant target information to the air traffic controllers. Traffic
Alert and Collision Avoidance System (TCAS), an airborne
wireless system independent of the air traffic controller en-
ables the aircraft to detect potential collisions and alert the
pilots. Air traffic information, flight information and other
operational control messages between the aircraft and ground
stations are transferred using the Aircraft Communications
Addressing and Reporting System (ACARS) which uses the
VHF and HF radio frequency channels for communication.
Similarly, many radio navigation aids such as GPS, VHF
Omnidirectional Radio Range (VOR), Non-directional radio
beacons (NDB), Distance Measuring Equipment (DME), and
Instrument Landing System (ILS) play crucial roles during
different phases of an airplane’s flight.

Many studies have already demonstrated that a number
of the above-mentioned aviation systems are vulnerable to
attacks. For example, researchers [22] injected non-existing
aircraft in the sky by merely spoofing ADS-B messages. Some
other attacks [37] modified the route of an airplane by jam-
ming and replacing the ADS-B signals of specific victim
aircraft. ACARS, the data link communications system be-
tween aircraft and ground stations was found to leak a signifi-
cant amount of private data [50], e.g., passenger information,
medical data and sometimes even credit card details were
transferred. GPS, one of the essential navigation aids is also
vulnerable to signal spoofing attacks [32]. Furthermore, an
attacker can spoof TCAS messages [42] creating false reso-
lution advisories and forcing the pilot to initiate avoidance
maneuvers. Given the dependence on wireless technologies,
the threats described above are real and shows the impor-
tance of building secure aviation control, communication and
navigation systems.

USENIX Association 28th USENIX Security Symposium 357

One of the most critical phases of an airplane’s flight plan
is the final approach or landing phase as the plane descends
towards the ground actively maneuvered by the pilot. For ex-
ample, 59% of the fatal accidents documented by Boeing [16]
occurred during descent, approach and landing. Several tech-
nologies and systems such as GPS, VOR, DME assist the pilot
in landing the aircraft safely. The Instrument Landing Sys-
tem (ILS) [17] is today the de-facto approach system used by
planes at a majority of the airports as it is the most precise sys-
tem capable of providing accurate horizontal and vertical guid-
ance. At Boston’s Logan International Airport, 405,822 [1]
flight plans were filed in 2017. Out of these 405,822 flight
plans, 95% were instrument flight rule (IFR) plans. Instrument
flight rules are a set of instructions established by the FAA
to govern flight under conditions in which flying by visual
reference is either unsafe or just not allowed. Also, several
European airports [9] prohibit aircraft from landing using
visual flight rules during the night. ILS incorporates radio
technology to provide all-weather guidance to pilots which
ensures safe travel and any interference can be catastrophic.

As recently as September 2018, the pilots of Air India flight
AI-101 reported an instrument landing system (ILS) malfunc-
tion and were forced to do an emergency landing. Even worse,
TCAS, ACARS, and a majority of other systems that aid a
smooth landing were unusable. Furthermore, NASA’s Avi-
ation Safety Reporting System [25] indicate over 300 ILS
related incidents where pilots reported the erratic behavior
of the localizer and glideslope–two critical components of
ILS. ILS also plays a significant role in autoland systems
that are capable of landing aircraft even in the most adverse
conditions without manual interference. Autoland systems
have significantly advanced over the years since its first de-
ployment in De Havilland’s DH121 Trident, the first airliner
to be fitted with an autoland system [15]. However, several
near-catastrophic events [4, 8, 12] have been reported due to
the failure or erratic behavior of these autoland systems with
ILS interference as one of the principal causes. With increas-
ing reliance on auto-pilot systems and widespread availability
of low-cost software-defined radio hardware platforms, adver-
sarial wireless interference to critical infrastructure systems
such as the ILS cannot be ruled out.

In this work, we investigate the security of aircraft instru-
ment landing system against wireless attacks. To the best of
our knowledge, there has been no prior study on the security
guarantees of the instrument landing system. Specifically, our
contributions are as follows.

• We analyze the ILS localizer and glideslope waveforms,
the transmitters and receivers, and show that ILS is vul-
nerable to signal spoofing attacks. We devise two types
of wireless attacks i) overshadow, and ii) single-tone
attacks.

• For both the attacks, we generate specially crafted ra-
dio signals similar to the legitimate ILS signals using

Localizer

Provides horizontal

guidance to an

approaching aircraft.

Glideslope

Provides vertical

guidance to an

approaching aircraft.

Glideslope Tx Antenna

Localizer Tx Antenna

Extended Runway Centerline

Attacker

75-400m

1050m 150m+-

+-6.5km to 11km

Outer M
arker

Inner Marker

Middle M
arker

Inner M
arker

Figure 1: Overview of ILS sub-systems. The ILS consists of three
subsystems: i) Localizer, ii) glideslope, and (iii) marker beacons.

low-cost software-defined radio hardware platform and
successfully induce aviation-grade ILS receivers, in real-
time, to lock and display arbitrary alignment to both hori-
zontal and vertical approach path. This demonstrates the
potential for an adversary to the least be able to trigger
multiple aborted landings causing air traffic disruption,
and in the worst case, cause the aircraft to overshoot the
landing zone or miss the runway entirely.

• In order to evaluate the complete attack, we develop a
tightly-controlled closed-loop ILS spoofer. It adjusts the
the adversary’s transmitted signals as a function of the
aircraft GPS location, maintaining power and deviation
consistent with the adversary’s target position, causing
an undetected off-runway landing. We demonstrate the
integrated attack on an FAA certified flight-simulator (X-
Plane), incorporating a spoofing region detection mech-
anism, that triggers the controlled spoofing on entering
the landing zone to reduce detectability.

• We systematically evaluate the performance of the attack
against X-Plane’s AI-based autoland feature, and demon-
strate the systematic success rate with offset touchdowns
of 18 meters to over 50 meters.

• We discuss potential countermeasures including failsafe
systems such as GPS and show that these systems also do
not provide sufficient security guarantees. We highlight
that implementing cryptographic authentication on ILS
signals is not enough as the the system would still be vul-
nerable to record and replay attacks. Therefore, through
this research, we highlight an open research challenge
of building secure, scalable and efficient aircraft landing
systems.

358 28th USENIX Security Symposium USENIX Association

Amplifier
AM

Demod

90 Hz

Filter

Bridge

Rectifier

Bridge

Rectifier

150 Hz

Filter

Instrument

Mechanics

CDI Needle Positions

RF Carrier

Source

RF Power

Amplifier

90 Hz

Mod 20%
CSB

SBO
150 Hz

Mod 20%

ILS Transmitter ILS Receiver

Flag

DDM = 0

Antenna Array #1

Antenna Array #2

V90

V150

DDM 0

>

<

DDM 0

DDM = V90 - V150

fc-90

Fc

f (Hz)

f (Hz)

20% Modulation Depth

20% Modulation Depth fc+90

fc-150 fc+150

fc+150fc-150

fc-90 fc+90

Figure 2: Block diagram of ILS transmitter and receiver describing the process of generation and reception of ILS signal along with waveforms
at each stage.

2 Background

Approach systems enable pilots to land airplanes even in ex-
treme weather conditions and are classified into non-precision
and precision approach systems based on the accuracy and
type of approach guidance provided to an aircraft. Non-
precision approach systems provide only horizontal or lateral
guidance (heading/bearing). Examples of non-precision ap-
proach systems are VHF Omnidirectional Range (VOR) [58],
Non-Directional Beacon (NDB) [57], and satellite systems
such as GPS. With the development of precision approach
systems, the use of non-precision approach systems such as
VOR and NDB has significantly decreased today. Precision
approach systems provide both horizontal (heading/bearing)
as well as vertical (glide path) guidance to an approaching
aircraft. The Instrument Landing System (ILS) is the most
commonly deployed precision approach system in use to-
day. Other examples of precision approach systems include
Microwave Landing System (MLS), Transponder Landing
System (TLS), Ground Based Augmentation Landing System
(GLS), and Joint Precision Approach and Landing System
(JPALS). It is important to note that these alternate landing
systems fundamentally still use existing ILS concepts and
equipment mostly in scenarios where ILS is unavailable. For
example, TLS enables precision landing guidance in places
where the terrain is uneven, and the ILS signal reflections off
the ground cause undesirable needle deflections by emulating
the ILS signals using only one base tower (in contrast to two
for ILS) whose placement allows more flexibility. However,
TLS still leverages the same fundamental concepts of ILS. In
short, ILS plays a key, de-facto role in providing precision
landing guidance at the majority of airports today and it is,
therefore, essential to evaluate its resilience to modern-day
cyber-physical attacks.

2.1 Instrument Landing System (ILS)
The first fully operational ILS was deployed in 1932 at the
Berlin Tempelhof Central Airport, Germany. ILS enables the
pilot to align the aircraft with the centerline of the runway
and maintain a safe descent rate. ITU defines ILS [28] as “a
radio navigation system which provides aircraft with hori-
zontal and vertical guidance just before and during landing
and at certain fixed points, indicates the distance to the refer-
ence point of landing”. Autopilot systems on some modern
aircraft [49] use ILS signals to execute a fully autonomous
approach and landing, especially in low visibility settings.
ILS (Figure 1) comprises of three independent subsystems:
i) localizer, (ii) glideslope and iii) marker beacons. The lo-
calizer and the glideslope guide the aircraft in the horizontal
and vertical plane respectively. The marker beacons act as
checkpoints that enable the pilot to determine the aircraft’s
distance to the runway. ILS has three operational categories:
i) CAT I, ii) CAT II and, iii) CAT III. CAT III further has three
sub-standards IIIa, IIIb and, IIIc. These operational categories
are decided based on ILS installations at the airport 1 and is
independent of the receiver on the aircraft. With the advent of
GPS and other localization technologies, the marker beacons
are less important today and increasingly obsolete. However,
the localizer and the glideslope play a major role in an air-
craft’s safe landing today and is expected to remain so for
many years.

2.1.1 ILS Signal Generation

ILS signals are generated and transmitted such that the waves
form a specific radio frequency signal pattern in space to cre-
ate guidance information related to the horizontal and vertical

1Procedures for the Evaluation and Approval of Facilities for Special
Authorization Category I Operations and All Category II and III Operations
http://fsims.faa.gov/wdocs/Orders/8400_13.htm

USENIX Association 28th USENIX Security Symposium 359

http://fsims.faa.gov/wdocs/Orders/8400_13.htm

positioning. ILS signal generators leverage space modulation
i.e., use multiple antennas to transmit an amplitude modulated
radio frequency signals with various powers and phases. The
transmitted signals combine in the airspace to form signals
with different depths of modulation (DDM) at various points
within the 3D airspace. Each DDM value directly indicates a
specific deviation of the aircraft from the correct touchdown
position. For example, the signals combine in space to pro-
duce a signal with zero difference in the depth of modulation
(DDM) along the center-line of the runway. It is important to
note that unlike traditional modulation techniques where the
modulation occurs within the modulating hardware, in space
modulation, the signals mix within the airspace.

The process of generating the localizer and glideslope sig-
nals (Figure 2) are similar with differences mainly in the
carrier frequency used and how they are combined in space
to provide the relevant guidance information. The carrier sig-
nal is amplitude modulated with 90 Hz and 150 Hz tones
to a certain depth of modulation. The depth of modulation
or modulation index is the measure of the extent of ampli-
tude variation about an un-modulated carrier. The depth of
modulation is set at 20% and 40% respectively for localizer
and glideslope signals. The output of both the 90 Hz and 150
Hz modulator is then combined to yield two radio frequency
signals: a carrier-plus-sidebands (CSB) and a sidebands-only
(SBO) signal. The names of the signal directly reflect their
spectral energy configuration with the CSB containing both
the sideband energy and the assigned carrier frequency while
in the SBO signal the carrier frequency component is sup-
pressed. The CSB and SBO signals are subjected to specific
phase shifts before being transmitted. The phase shifts are
carefully chosen such that when the CSB and SBO signals
combine in space, the resulting signal enables the aircraft
to determine its horizontal and vertical alignment with the
approach path.

Localizer. The localizer subsystem consists of an array of
multiple antennas that emit the CSB and SBO signals such
that the 150 Hz modulation predominates to the right of the
runway centerline and the 90 Hz signal prevails to the left.
In other words, if the flight is aligned to the right of the run-
way during the approach, the 150 Hz dominant signal will
indicate the pilot to steer left and vice versa. The antenna
array of the localizer is located at the opposite end (from the
approach side) of the runway. Each runway operates its lo-
calizer at a specific carrier frequency (between 108.1MHz to
111.95MHz) and the ILS receiver automatically tunes to this
frequency as soon as pilot inputs the runway identifier in the
cockpit receiver module. Additionally, the runway identifier
is transmitted using a 1020 Hz morse code signal over the
localizer’s carrier frequency.

Glideslope. The glideslope subsystem uses two antennas
to create a signal pattern similar to that of the localizer except
on a vertical plane. The two antennas are mounted on a tower

at specific heights defined by the glide-path angle suitable for
that particular airport’s runway. In contrast to the localizer, the
glideslope produces the signal pattern in the airspace based on
the sum of the signals received from each antenna via the di-
rect line-of-sight path and the reflected path. The mixing of the
CSB and SBO signals results in a pattern in which the 90 Hz
component of the signal predominates in the region above
the glide-path while the 150 Hz prevails below the glide-path.
The glideslope uses carrier frequencies between 329.15 MHz
and 335.0 MHz, and the antenna tower is located near the
touchdown zone of the runway. Typically, the center of the
glide-slope defines a glide path angle of approximately 3◦.
For every localizer frequency, the corresponding glideslope
frequency is hardcoded i.e., the localizer-glideslope frequen-
cies occur in pairs and the instrument automatically tunes
to the right glideslope frequency when the pilot tunes to a
specific runway’s localizer frequency.

2.1.2 ILS Receiver

The combined signals received at the aircraft are amplified,
demodulated, and filtered to recover the 90 Hz and 150 Hz
components. A bridge rectifier is used to convert the ampli-
tude of the recovered tones to DC voltage levels. The DC
voltage output is directly proportional to the depth of the
modulation of the 90 Hz and 150 Hz tones–a direct measure
of the dominating frequency signal. The DC voltage causes
the course deviation indicator needle to deflect based on the
difference in the depth of the modulation of the two tones
thereby precisely indicating the aircraft’s lateral and vertical
deviation from approach path.

For example, an aircraft that is on-course will receive both
90 and 150 Hz signals with the same amplitude, i.e., equal
depth of modulation and will result in zero difference in the
depth of modulation and therefore cause no needle deflections.
However, an aircraft that is off-course and not aligned with the
approach path will receive signals with a non-zero difference
in the depth of modulation resulting in a corresponding de-
flection of the needle. The instruments are calibrated to show
full scale deflection if DDM > 0.155 or DDM < −0.155
for localizer and if DDM > 0.175 or DDM < −0.175 for
glideslope [20]. These values correspond to 2.5◦ offset on
the left side of the runway, 2.5◦ offset on the right side of the
runway, 0.7◦ offset above the glide path angle and 0.7◦ below
the glide path angle respectively.

2.2 Typical Approach Sequence
Pilots use aeronautical charts containing vital information
about the terrain, available facilities and their usage guidelines
throughout a flight. Approach plates are a type of navigation
chart used for flying based on instrument readings. Every
pilot is required to abide by the routes and rules defined in
an approach plate unless ordered otherwise by the air traffic
controller. The approach plate contains information like ac-
tive localizer frequency of the runway, the runway identifier

360 28th USENIX Security Symposium USENIX Association

+

Filter 150Hz

Filter 90Hz

ILS Receiver

SAT90

SAT150

VAT90

Bridge
Rectifier

Bridge
Rectifier

DDM =

OffsetAT = 0.5

OffsetLOC = 0
SLOC+AT

SAT

SLOC

-VAT150VAT90

VAT150

VAT150

VAT90

Demod

Figure 3: Schematic of the overshadow attack. The attacker’s signal has a preset DDM corresponding to 0.5◦ to the right of the runway.
Attacker’s signal overshadows the legitimate signal. The blue line represents the needle position without attack.

in Morse code, glideslope interception altitude, ATC tower
frequencies, and other information crucial for a safe landing.

Once the pilot receives the clearance to land at an assigned
runway, the pilot enters the localizer frequency associated
with the designated runway and enters the course of the run-
way into the auto-pilot. Note that the localizer and glides-
lope frequencies occur in pairs and therefore the pilot does
not have to manually enter the corresponding glideslope fre-
quency. When the pilot intercepts the localizer, the course
deviation indicator needle is displayed on the cockpit. The
pilot then verifies whether the receiver is tuned to the right
localizer by confirming the runway identifier which is trans-
mitted as morse code on the localizer frequency. For example,
for landing on runway 4R (Runway Ident - IBOS) at Logan
International Airport, Boston, the pilot will tune to 110.3 MHz
and will verify this by confirming the Morse code: .. / --... /
--- / ... Based on the deviation of the aircraft from the runway
and the approach angle, the indicator will guide the pilot to
appropriately maneuver the aircraft. Modern autopilot sys-
tems are capable of receiving inputs from ILS receivers and
autonomously land the aircraft without human intervention.

In fact, pilots are trained and instructed to trust the instru-
ments more than their intuition. If the instruments ask them to
fly right, the pilots will fly right. This is true specifically when
flying in weather conditions that force the pilots to follow the
instruments. Detecting and recovering from any instrument
failures during crucial landing procedures is one of the tough-
est challenges in modern aviation. Given the heavy reliance
on ILS and instruments in general, malfunctions and adversar-
ial interference can be catastrophic especially in autonomous
approaches and flights. In this paper, we demonstrate vul-
nerabilities of ILS and further raise awareness towards the
challenges of building secure aircraft landing systems.

3 Wireless Attacks on ILS
We demonstrate two types of wireless attacks: i) Overshadow
attack and ii) Single-tone attack. In the overshadow attack,
the attacker transmits pre-crafted ILS signals of higher signal
strength; thus overpowering the legitimate ILS signals. The

single-tone attack is a special attack where it is sufficient for
the attacker to transmit a single frequency tone signal at a
specific signal strength (lower than the legitimate ILS signal
strength) to interfere and control the deflections of the course
deviation indicator needle.

Attacker model. We make the following assumptions re-
garding the attacker. Given that the technical details of ILS
are in the public domain, we assume that the attacker has
complete knowledge of the physical characteristics of ILS
signals e.g., frequencies, modulation index etc. We also as-
sume that the attacker is capable of transmitting these radio
frequency signals over the air. The widespread availability of
low-cost (less than a few hundred dollars) software-defined
radio platforms has put radio transmitters and receivers in the
hands of the masses. Although not a necessary condition, in
the case of single-tone, the knowledge of the flight’s approach
path, the airplane’s manufacturer and model will allow the
attacker to significantly optimize their attack signal. We do
not restrict the location of the attacker and discuss pros and
cons of both an on-board attacker as well as a attacker on the
ground.

3.1 Overshadow attack
The overshadow attack is an attack where the attacker trans-
mits specially crafted ILS signals at a power level such that
the legitimate signals get overpowered by the attacker’s signal
at the receiver. The main reason why such an attack works
is that the receivers “lock” and process only the strongest
received signal. Figure 3 shows how the attacker’s fake ILS
signal completely overshadows the legitimate ILS signal re-
sulting in the deflection of the CDI needle. We note that the
attacker signal can be specially crafted to force the CDI nee-
dle to indicate a specific offset as demonstrated in Section 4.2.

Attack Signal Generation. Recall that the ILS receiver on-
board receives a mix of the transmitted CSB and SBO signals
that contain the 90 and 150 Hz tones (Figure 2). The ampli-
tude of received 90 and 150 Hz tones depends on the position
of the aircraft relative to the runway and its approach path

USENIX Association 28th USENIX Security Symposium 361

Localizer Tx

+

SBO Signal

Fc

CSB Signal

Fc

Fc

Fc

On the center-line

On the left side

On the right side

f (Hz)

f (Hz)

f (Hz)

fc-90

fc-90

fc+90

fc+150

fc-150

fc+90

fc-150 fc+150

fc-90 fc+90

fc-150

fc+150

fc+150

fc+90fc-90

fc-150

fc+150

fc+90fc-90

fc-150

Figure 4: Frequency domain representation of the received signal
showing the amplitudes of the sidebands as observed at various
lateral offsets

angle. For example, as shown in Figure 4, the 90 Hz tone will
dominate if the aircraft is offset to the left of the runway and
the 150 Hz dominates to the right. Similarly, for glideslope,
the 90 Hz tone dominates glide angles steeper than the rec-
ommended angle, and the 150 Hz tone dominates otherwise.
Both 90 and 150 Hz will have equal amplitudes for a perfectly
aligned approach. Therefore, to execute an overshadow at-
tack, it is sufficient to generate signals similar to the received
legitimate ILS signals and transmit at a much higher power
as compared to legitimate ILS signals. In other words, the
attacker need not generate CSB and SBO signals separately;
instead can directly transmit the combined signal with appro-
priate amplitude differences between the 90 and 150 Hz tones.
The amplitude differences are calculated based on the offset
the attacker intends to introduce at the aircraft. The attacker’s
signal (Figure 5) is generated as follows. There are two tone
generators for generating the 90 and the 150 Hz signals. It is
important to enable configuration of each individual tone’s
amplitude to construct signals with a preset difference in the
depth of modulation corresponding to the required deviation
to spoof. The tones are then added and amplitude modu-
lated using the runway’s specific localizer or glideslope fre-
quency. Recall that the amplitude differences i.e., difference
in depth of modulation (DDM) between the two tones directly
corresponds to the required offset to spoof. In the absence
of the adversarial signals the estimated DDM = VLOC90 −
VLOC150. In the presence of the attacker’s spoofing signals,
the estimated DDM = [VLOC90 +VAT 90]− [VLOC150 +VAT 150].
Since VAT 90 >>VLOC90 and VAT 150 >>VLOC150, the resulting
DDM =VAT 90−VAT 150. Thus by manipulating the amplitude
differences between the transmitted 90 Hz and 150 Hz tones,
the attacker can acquire precise control of the aircraft’s course
deviation indicator and the aircraft’s approach path itself.

Amplitude

Modulator

RF Source

90 Hz

RF Source

150 Hz

+

f (Hz)

Fc

RF Source

Carrier

108.1-111.95MHz

fc+150

fc+90fc-90

fc-150

Figure 5: Signal generator used for generating the required attack
signal with specific amplitudes of the 90 Hz and 150 Hz components

3.2 Single-tone attack
Single-tone attack is an attack where the attacker transmits
only one of the sideband tones (either the 90 Hz or the 150 Hz)
to cause deflections in the course deviation indicator needle.
In contrast to the overshadow attack, single-tone attack does
not require high powered spoofing signals. Recall that the
aircraft’s horizontal and vertical offset is estimated based on
the difference in the depth of the modulation of the 90 Hz and
the 150 Hz tones. As indicated in Figure 4, depending on the
offset either of the frequency tones dominates. In the case of
an overshadow attack, the spoofing signal was constructed
with all the necessary frequency components. However, in
the single-tone attack, the attacker aims to interfere with only
one of the two sideband frequencies directly affecting the
estimated offset.

Attack Signal Generation. The working of the single-tone
attack is shown in Figure 6. The legitimate localizer signal’s
spectrum contains the carrier and both the sideband tones of
90 Hz and 150 Hz. As described previously, the amplitudes
of the sideband tones depend on the true offset of the aircraft.
In a single-tone attack, the attacker generates only one of the
two sideband tones i.e., fc± 90 or fc± 150 with appropri-
ate amplitude levels depending on the spoofing offset (e.g.,
left or right off the runway) introduced at the aircraft. For
example, consider the scenario where the attacker intends to
force the aircraft to land on the left of the runway with an
offset of 0.5◦. The legitimate difference in depth of modula-
tion will be zero as the aircraft is centered over the runway.
To cause the aircraft to go left, the attacker must transmit
signals that will spoof the current offset to be at the right side
of the runway. As shown in Figure 4, the 150 Hz component
dominates in the right side of the runway approach and there-
fore the attacker needs to transmit the fc±150 signal with an
appropriate amplitude to force the aircraft to turn left. For the
specific example of 0.5◦ offset, the amplitude of the fc±150
component should be such that the difference in the depth of
modulation equals 0.03 [20].

Notice that the single-tone attack signal is similar to
a double-sideband suppressed-carrier signal which is well-

362 28th USENIX Security Symposium USENIX Association

>

Demod
Filter 150Hz

Filter 90Hz

ILS Receiver

SAT90

SAT150

VLOC90

VAT150

Bridge
Rectifier

Bridge
Rectifier

DDM =

DDMAT -0.155

DDMLOC = 0
SLOC+AT

SLOC

+

SAT

t

-VAT150VLOC90

VAT90

VAT150

f (Hz)

f (Hz)

Fc fc+150

fc+90fc-90

fc-150

fc+150fc-150

Figure 6: Schematic of the single-tone attack. Attacker constructs a DSB-SC signal without the 90 Hz component and the carrier. The blue
line represents the needle position without the attack

RF Source

90 Hz or 150 Hz

DSB-SC

Modulator

90 Hz 90 Hz

f (Hz)

fc+90/150fc-90/150

RF Source

Carrier

108.1-111.95MHz

Figure 7: Single-tone attack signal generator with a DSB-SC mod-
ulator

known to be spectrally efficient than the normal amplitude
modulation signal. Specifically, it is possible for the attacker
to reduce the required power to almost 50% of the overshadow
attack as there is no need to transmit the carrier signal and one
of the sideband signals. One of the important limitations of
the single-tone is the effect of the attacker’s synchronization
with the legitimate signal. To precisely control the spoofing
offset, the attacker needs to coarsely control the spoofing sig-
nal such that the phase difference between the attacker and
the legitimate signals remain constant throughout the attack.
We evaluate and show in Section 4.3.1 the effect of phase
synchronization on this attack. Additionally, the spectral effi-
ciency of the single-tone attack can be exploited to execute
a low-power last-minute denial of service on the ILS system.
This is specifically dangerous while an aircraft is executing
an auto-pilot assisted approach. The block diagram of the
single-tone attack signal generator is shown in Figure 7.

4 Implementation and Evaluation of Attacks

In this section, we demonstrate the feasibility and evaluate the
effectiveness of the attack with the help of both simulations
and actual experiments conducted using commercial aviation-
grade receivers and an advanced flight simulator qualified for
FAA certification.

Handheld

Aviation

Receiver

USRP 2

USRP 1

LOC

GS

LOCAT

GSAT

Location Data

Instrument

values

Spoofing

zone

detector

Legitimate

signal

generator

Attacker

signal

generator

Offset

correction

algorithm

Attacker control unit

Figure 8: Schematic of the experiment setup used for evaluating the
attacks on ILS. The attacker control unit interfaces with the simula-
tor and USRP B210s. A flight yoke and throttle system is connected
to the machine running X-Plane flight simulator software. Attacker
control unit interfaces with the flight simulator over a UDP/IP net-
work.

4.1 Experimental Setup
Our experimental setup is shown in Figure 8 and Figure 9.
The setup consists of four main components: i) X-Plane 11
flight simulator, ii) attacker control unit, iii) software-defined
radio hardware platforms (USRP B210s) and iv) commercial
aviation grade handheld navigation receiver. We use X-Plane
11 flight simulator to test the effects of spoofing attack on
the ILS. X-Plane is a professional flight simulator capable
of simulating several commercial, military, and other aircraft.
X-Plane can also simulate various visibility conditions and
implements advanced aerodynamic models to predict an air-
craft’s performance in abnormal conditions. It is important to
note that X-Plane qualifies for FAA-certified flight training
hours when used with computer systems that meet the FAA’s
minimum frame rate requirements. The certified versions of
the software are used in numerous pilot training schools. X-
Plane allows interaction with the simulator and instruments
through a variety of mobile apps and UDP/IP networks. This
feature allowed us to manipulate the instrument readings for
evaluating our ILS attacks. Additionally, X-Plane has autopi-

USENIX Association 28th USENIX Security Symposium 363

USRP 1

USRP 2

Handheld

Rx

X-Plane flight SimulatorAttacker control unit

Figure 9: Photo of the experiment setup.

lot and AI-based autoland features which we leverage in our
experiments. In other words, X-Plane contains all the features
and flexibility to evaluate our proposed attacks in a close to
the real-world setting. The second component of our setup is
the attacker control unit module which takes the location of
the aircraft as input from X-Plane and generates signals for
the attack. The module is also responsible for manipulating
X-Plane’s instrument panel based on the effect of the spoof-
ing signal on the receiver. The attacker control unit module
is a laptop running Ubuntu and contains four submodules:
spoofing zone detector, offset correction algorithm, legitimate
signal generator, and attacker signal generator. The spoofing
zone detector identifies whether an aircraft is entering its first
waypoint of the final approach and triggers the start of spoof-
ing. The spoofing zone detector plays an important role in
timely starting of the spoofing attack so as to prevent any
abrupt changes in the instrument panel and therefore avoid
suspicion. The offset correction algorithm uses the current
location of the aircraft to continuously correct its spoofing
signals taking into consideration aircraft’s corrective actions.
Note that the location data received from X-Plane can be
analogous to receiving the location data through ADS-B sig-
nals [29] in the real world. The output of the offset correction
algorithm is used to generate fake ILS signals. We also gener-
ate legitimate signals to evaluate the effect of overshadow and
single-tone attacks. We use two USRP B210s [2], one each
for transmitting legitimate ILS signals and attacker signals.
We conducted the experiments in both wired and wireless set-
tings. For the experiments conducted in wireless settings, the
receiver was placed at a distance of 2 meters from the trans-
mitter. Northeastern University has access to a Department of
Homeland Security laboratory which provides RF shielding
thus preventing signal leakage. This is necessary as it is ille-
gal to transmit ILS signals over the air. We use two different
ILS receivers, a Yaesu FTA-750L [10] and a Sporty’s SP-400
Handheld NAV/COM Aviation [3] to evaluate the attacks.

A

B

C

E

D

22km

NABBOMILTT WINNI

37km

F

9.45km 9.45km 9.45km

Figure 10: The spoofing zone is defined by points B, C, D, and
E. WINNI, NABBO, and MILTT are the waypoints for the final
approach as published for a mid-sized airport. The spoofing zone has
a wide aperture as the air-traffic controller can vector in the aircraft
onto the final approach in multiple ways.

4.1.1 Spoofing Zone Detection

The spoofing zone detection algorithm enables automated
and timely triggering of the spoofing signal. One of the key
requirements of the zone detector is to trigger the spoofing
signals without causing any abrupt changes to the instrument
readings; thereby avoiding detection by the pilots. The spoof-
ing region is shaped like a triangle following the coverage of
the localizer and glideslope signals. For example, the localizer
covers 17.5◦ on either side of the extended runway centerline
and extends for about 35 km beyond the touchdown zone. Fig-
ure 10 shows the zone measurements. The attacker signals
are triggered when the aircraft approaches the shaded region.
The shaded region is decided based on the final approach pat-
terns for a specific runway. We used even-odd algorithm [27]
for detecting the presence of the aircraft within this spoofing
zone. Absolute locations cannot be used as aircraft enter the
final approach path in many different ways based on their
arrival direction and air traffic controller instructions. The
even-odd algorithm is extensively used in graphics software
for region detection and has low computational overhead. The
attacker automatically starts transmitting the signals as soon
as the aircraft enters the spoofing region from the sides and
the needle is yet to be centered. This prevents any sudden
noticeable jumps thus allowing a seamless takeover.

4.1.2 Offset correction algorithm

The attacker’s signals are pre-crafted to cause the aircraft
to land with a specific offset without being detected. The
pilot or the autopilot system will perform course correction
maneuvers to align with the runway centerline based on the
instrument readings. At this point, the instruments will contin-
uously indicate the spoofed offset irrespective of the aircraft’s
location and maneuvers raising suspicion of an instrument
failure. To prevent this, we developed a real-time offset correc-

364 28th USENIX Security Symposium USENIX Association

A

B

C

D

Figure 11: Offset correction algorithm takes into account aircraft’s
current position to calculate the difference in the spoofed offset and
the current offset.

tion and signal generation algorithm that crafts the spoofing
signals based on the aircraft’s current location in real-time.
The attacker can use the GPS coordinates if present inside the
aircraft or leverage the ADS-B packets containing location
information on the ground. We explain the offset correction
algorithm using Figure 11. Consider an aircraft at point B,
cleared to land and entering the spoofing zone. The air-traffic
controller instructs the aircraft to intercept point C on the ex-
tended runway centerline. Assuming that the attacker’s spoof-
ing signal contains a pre-crafted offset to the left of the run-
way forcing the aircraft to follow path DA instead of CA. The
offset correction module computes the current offset of the
aircraft with respect to the centerline and subtracts the current
offset from the spoofed offset to estimate the desired change
in the course. Thus, the correction ∆ required to be introduced
is the difference between required offset angle ∠DAC and
the current offset angle ∠BAC. Note that offsets to the left of
centerline are considered negative offsets and offsets to the
right are considered positive offsets. The current offset θ can
be estimated using θ= tan−1[(mCA−mBA)/(1+mBA∗mCA)],
where m is the slope. mCA is typically hardcoded and is spe-
cific for each runway. mBA can be estimated using the lon-
gitude and latitudes of the touchdown point and the current
location of the aircraft. Now, the correction ∆ is converted to
the respective difference in depth of modulation value using
the formula DDM = (DDM f ullscale ∗∆)/2.5, where 2.5 is the
angle that results in full-scale deviation and DDM f ullscale is
the difference in depth of modulation that causes full-scale
deviation. The amplitude of the individual 90 and 150 Hz
components is estimated using the formula 0.2+(DDM/2)
and sent to the signal generator module which then trans-
mits the required signal. Note that the value 0.2 comes from
the legitimate signal’s depth of modulation. The algorithm
was implemented on a laptop running Ubuntu and took less
than 5 ms on average to compute the offsets. The complete
algorithm is shown in Algorithm 1.

Algorithm 1 Offset correction algorithm.
1: procedure GETANGLEDIFFERENCE
2: ∠DAC← TargetedLocalizerO f f set
3: ∠BAC← GetAngle(location)
4: di f f erence← ∠DAC−∠BAC
5: return di f f erence
6: procedure CALCULATEDDM
7: di f f erence← GetAngleDi f f erence
8: ddm← (0.155∗di f f erence)/2.5
9: AT 90← 0.2+(ddm)/2

10: AT 150← 0.2− (ddm)/2
11: ChangeAmplitude(AT 90,AT 150)

4.1.3 Setup Validation

We verified the working of our experimental setup as fol-
lows. First, we ensure consistency between the CDI needle
displayed on the flight simulator and the handheld receiver.
To this extent, we disabled the attacker signal and output only
the legitimate signal to the handheld receiver based on the
aircraft’s location obtained from X-Plane. We manually val-
idated that the alignment shown on the handheld receiver
is the same as that of the flight simulator throughout the fi-
nal approach. The uploaded attack demonstration video 2

also contains this validation for reference. We conducted the
same experiment over the air in a controlled environment and
verified consistency between the handheld receiver and the
flight simulator cockpit. Second, we test our offset correction
algorithm by maneuvering (swaying) the aircraft during its
final approach. During this experiment, the offset correction
algorithm should account for the maneuvers and generate cor-
responding ILS signals to the handheld receiver. We ensure
the correctness of the algorithm by validating the consistency
between the handheld receiver’s CDI needle and the flight
simulator cockpit. Note that we do not update the flight simula-
tor’s instrument readings for this experiment and the readings
displayed in the simulator cockpit are only because of the sim-
ulator software engine. Finally, we validate the spoofing zone
detector algorithm by entering the final approach from various
directions and checking the trigger for beginning the spoofing
attack. We are now ready to perform our attack evaluations.

4.2 Evaluation of Overshadow Attack
We evaluate the effectiveness of overshadow attack as follows.
We leverage the autopilot and autoland feature of X-Plane to
analyze the attack’s effects avoiding any inconsistency that
might arise due to human error. We configured X-Plane to
land on the runway of a midsized airport in the US. This
configuration is analogous to the pilot following approach
instructions from the air-traffic controller. As soon as the
aircraft entered the spoofing zone, the spoofing signals were
transmitted along with the legitimate signals. The spoofing

2Video demonstration of the attack https://youtu.be/Wp4CpyxYJq4

USENIX Association 28th USENIX Security Symposium 365

4
R

40 20 0 20 40
Touchdown offset (meters)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

S
p

o
o
fe

d
 l
o
ca

liz
e
r

o
ff

se
t

(d
e
g

re
e
s)

-51.7

-33.9

-17.9

0.0

17.3

35.2

52.1

0

Figure 12: Results of localizer spoofing. 5 automated landings per
spoofed localizer offset were executed and the touchdown offset in
meters from the runway centerline was recorded.

signals were generated to fake various vertical and horizon-
tal offsets. Note that the spoofing signals were generated in
real-time based on the current position of the aircraft. For the
localizer (horizontal offset), spoofing signals corresponding
to 0.5, 1.0, and 1.5◦ offset on both sides of the runway were
generated. The spoofing glideslope angles were between 2.8◦

and 3.3◦. For each spoofing angle and offset, we performed
five automated landings and the results are shown in Fig-
ure 12 and Figure 13. Throughout the attack, we continuously
monitored the path of the aircraft using Foreflight 3, a pop-
ular app used both by aviation enthusiasts and commercial
pilots as well as X-Plane’s own interfaces. We did not observe
any abrupt changes in the readings and observed a smooth
takeover. The aircraft landed with an 18 m offset from the run-
way centerline for a spoofing offset of just 0.5◦. Note that this
is already close to the edge of the runway and potentially go
undetected by both the air-traffic controllers as well as pilots
onboard, especially in low visibility conditions. In the case
of glideslope, a shift in the glide path angle by 0.1◦ i.e., 2.9◦

glide path angle instead of the recommended 3◦, caused the
aircraft to land almost 800 m beyond the safe touchdown zone
of the runway. We have uploaded a video demonstration of
the attack for reference (https://youtu.be/Wp4CpyxYJq4
).

4.3 Evaluation of Single-tone Attack
We evaluate the effectiveness and feasibility of the proposed
single-tone attack using the experimental setup described
in Section 4.1. Recall that in the single-tone attack, the at-
tacker transmits only one of the sideband tones (either the
fc±90 or the fc±150 Hz) to cause deflections in the course
deviation indicator needle. We implemented the attack by con-
figuring one of the USRPs (attacker) to transmit the sideband
signals and observed its effect on the handheld navigation re-

3Advanced Flight Planner https://www.foreflight.com

Spoofed glide path angle (degrees)

Touchdown offset (meters)

400 200 0 200 400 600 800 1000

3.3 3.2 3.1 3.0 2.9 2.8

Touchdown zone

Figure 13: Results of glideslope spoofing. 5 automated landings per
spoofed glideslope angle offset were executed and the touchdown
offset in meters beyond the touchdown zone was recorded.

ceiver. We observed that the spoofing signal caused the needle
to deflect to the configured offset. However, the needle was
not as stable as in the overshadow attack and displayed minor
oscillations. This is because the specific attack is sensitive to
carrier phase oscillations and therefore must be accounted for
to avoid detection. A significant advantage of this attack is
the power required to cause needle deflections as the attacker
only transmits one of the sideband components without the
carrier. This gives an almost 50% increase in power efficiency
and therefore can act as a low-power last-minute denial of
service attack in case the attacker is unable to establish full
synchronization with the legitimate signal. In the following
sections, we evaluate the effect of phase synchronization on
the single-tone attack and develop a real-time amplitude scal-
ing algorithm that can counter the phase oscillations.

4.3.1 Effect of Phase Synchronization

Recall that the single-tone attack signal is similar to a conven-
tional double-sideband suppressed-carrier (DSB-SC) signal.
It is well known that one of the drawbacks of a DSB-SC com-
munication system is the complexity of recovering the carrier
signal during demodulation. If the carrier signal used at the
receiver is not synchronized with the carrier wave used in
the generation of the DSB-SC signal, the demodulated signal
will be distorted. In the scenario of the single-tone attack, this
distortion can potentially result in changes in the difference
in the depth of modulation estimates causing the needle to
oscillate. We simulated the effect of phase synchronization
on the single-tone attack effectiveness and present our results
in Figure 14 and Figure 15. We generated the single-tone
attack signal to cause full-scale deviation i.e., & 2.5◦ for lo-
calizer and & 2.5◦ for the glideslope while perfectly in sync
with the legitimate carrier signal. We observe that the phase
difference causes the resultant offset to change. We also noted
an uncertainty region around the 90◦ and 270◦ phase differ-
ence region. This is due to the dependency in a DSB-SC
system [26] between the carrier phase difference φ and the
resulting distortion at the output which is directly proportional
to the cosφ. Therefore, at angles around 90◦ and 270◦, there
is an uncertainty region for the resulting offset. However, in
our experiments on the handheld receiver, we noticed that

366 28th USENIX Security Symposium USENIX Association

https://youtu.be/Wp4CpyxYJq4

0 50 100 150 200 250 300 350
Phase difference in degrees

3

2

1

0

1

2

3

R
e
su

lt
a
n
t

o
ff

se
t

Localizer 150 Hz tone

Localizer 90 Hz tone

100 150 200 250 300

Figure 14: Comparison of calculated offset and the phase
difference for localizer

although the needle oscillated, it was not as pronounced as
the simulation results indicate. One of the reasons is the rate
at which the sensor measurements are being calculated and
displayed on the screen. Additionally, the aircraft is in motion,
therefore, causing the phase differences to cycle more rapidly
than the display’s refresh rate. A knowledgeable attacker can
potentially leverage these properties to generate controlled
spoofing signals and succeed with an optimized transmission
power.

4.3.2 Real-time Amplitude Scaling

In the following, we propose and evaluate a strategy to counter
the effect of phase synchronization on the single-tone attack.
It is clear that the phase differences cause the output to be
distorted. Besides the uncertainty region around the 90◦ and
270◦, it is possible to predict the phase given sufficient knowl-
edge such as aircraft speed, current location, and antenna
positions. We assume such a motivated attacker for the single-
tone attack evaluation in this section. It is also well known
that tightly controlling the phase of a signal is not trivial and
therefore our algorithm proposes to manipulate the amplitude
of the attacker signal instead of the phase. Changing the am-
plitude of the attacker signal will compensate for the effect
of phase on the signal at the receiver and we call this “real-
time amplitude scaling” algorithm. The algorithm itself is
inspired from prior works on amplitude scaling for DSB-SC
systems [26]. We use the distance between the transmitter
and the receiver to estimate the received phase of the signal
by measuring complete and incomplete wave-cycles. In the
simulation, we then create an ILS signal with the necessary
phase shift. We also create the attacker’s signal and add it
to the legitimate signal to estimate the DDM. This allows
us to assess the impact of phase on the transmitted signal
and use this information to calculate the amplitude that will
be required to counter the effects of phase. For example, if
the predicted phase offset is zero, then to spoof a certain off-
set, the attacker needs to reduce the amplitude of its signal.
We present the results of our amplitude scaling experiment

0 50 100 150 200 250 300 350
Phase difference (degrees)

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

R
e
su

lt
a
n
t

g
lid

e
 p

a
th

 a
n

g
le

Glideslope 150 Hz tone
Glideslope 90 Hz tone

Figure 15: Comparison of calculated offset and the phase
difference for glideslope

in Figure 16 and Figure 17.

4.4 Comparison of Power Requirements

One of the major advantages of the single-tone attack is the im-
provement over the power required to execute the attack, given
sufficient knowledge and environmental conditions. In this
section, we evaluate and compare the power requirements of
the overshadow and the single-tone attacks. We note that the
absolute power profiles are specific for the handheld receivers
used in the experiments. The goal of the power comparison is
to verify whether there is indeed an improvement in terms of
attacker’s required transmission power. We present our results
in Figure 18 and Figure 19. Our evaluations show the required
signal strength to successfully cause 0.5◦ and 0.1◦ deviation
in localizer and glideslope respectively. The received signal
strength profile is shown in blue acts as a reference for the
attacker based on which the attacker can compute its required
power to transmit the spoofing signals. We performed the ex-
periment by transmitting the signals to the handheld receiver
and observing the success of the attack (needle indicating
the intended offset). The values are a result of over 400 trials
with 95% confidence interval and we find that on an average
the difference in power required reaches close to 20.53 dB
and 27.47 dB for the localizer and the glideslope respectively.
Thus, given sufficient knowledge of the scenario, a motivated
attacker can execute the single-tone attack successfully and
with less power than the overshadow attack. We acknowledge
that the single-tone attack has its drawbacks as described
previously, however, we note that given the low power re-
quirements, an attacker can exploit the single-tone attack to
cause a low-power denial of service attack. Such an attack,
especially in an aircraft’s final moments before landing can
be disastrous.

USENIX Association 28th USENIX Security Symposium 367

0 50 100 150 200 250 300 350
Phase difference (degrees)

0.0

0.2

0.4

0.6

0.8

1.0
C

o
rr

e
ct

e
d

9
0

H
z

a
m

p
lit

u
d
e

Offset 0.5

Offset 1.0

Offset 1.5

Offset 2.0

Offset 2.5

Figure 16: Amplitude scaling algorithm evaluation localizer.
Amplitude required to compensate for the effect of phase

0 50 100 150 200 250 300 350
Phase difference (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr

e
ct

e
d
 9

0
 H

z
a
m

p
lit

u
d
e

Offset 0.1

Offset 0.2

Offset 0.3

Offset 0.4

Offset 0.5

Offset 0.6

Offset 0.7

Figure 17: Amplitude scaling algorithm evaluation glideslope.
Amplitude required to compensate for the effect of phase

5 Discussion
Receiving antenna characteristics and location of the at-
tacker. The receiver hardware and its characteristics4 vary
depending on the type of aircraft it is mounted on. For ex-
ample, Cessna aircraft have their ILS antennas on the tail-fin
or the vertical stabilizer. We note that the same antenna is
typically used for a number of systems such as VOR, ILS,
and DME; each signal arriving from a different direction. For
commercial aircraft, the antennas are typically located on the
nose of the plane with a forward-looking single broad lobe
receiving beam pattern. Certain large aircraft, specifically
those capable of landing with high nose attitude, the antennas
are located either on the underside or on the landing gear of
the aircraft itself 5. The antenna equipment onboard plays an
important role in determining the optimum location of the
attacker to execute the attack. The ideal location of an on-
ground attacker is at a point along the centerline of the runway

4https://www.easa.europa.eu/certification-specifications/
cs-23-normal-utility-aerobatic-and-commuter-aeroplanes

5https://www.casa.gov.au/sites/g/files/net351/f/_assets/
main/pilots/download/ils.pdf

0 1 2 3 4 5 6 7 8 9 10
Distance from Touchdown (Km)

35

30

25

20

15

10

5

0

S
ig

n
a
l
S

tr
e
n
g

th
 (

d
B

m
)

Received Signal Strength

Req Tx Power: Overshadow

Req Tx Power: Single-tone Attack

Figure 18: Comparison of required received signal strength
for attack methodologies for the localizer

0 1 2 3 4 5 6 7 8 9
Distance from Touchdown (Km)

50

40

30

20

10

0

S
ig

n
a
l
S

tr
e
n
g

th
 (

d
B

m
)

Received Signal Strength

Req Tx Power: Overshadow

Req Tx Power: Single-tone Attack

Figure 19: Comparison of required received signal strength
for attack methodologies for glideslope

that falls within the receiving lobe of the onboard antennas.
Attackers inside the plane will have to deal with signal atten-
uation caused by the body of the aircraft itself and position
the spoofing signal transmitter accordingly. A thorough inves-
tigation is required to fully understand the implications and
feasibility of an on-board attacker and we intend to pursue
the experiments as future work. The location of the attacker
plays a more significant role in the scenario of the single-tone
attacker since the attacker has to carefully predict the phase
and accordingly manipulate the amplitude of the spoofing
signal. The problem of identifying optimum locations for the
attack is an open problem very similar to the group spoofing
problem [56] proposed as a countermeasure for GPS spoofing
attacks. In our context, the attacker has to identify locations
on the ground such that the phase difference between the legit-
imate signal and the spoofing signal remains a constant along
the line of approach. Recall that in the single-tone attack, the

368 28th USENIX Security Symposium USENIX Association

https://www.easa.europa.eu/certification-specifications/cs-23-normal-utility-aerobatic-and-commuter-aeroplanes
https://www.easa.europa.eu/certification-specifications/cs-23-normal-utility-aerobatic-and-commuter-aeroplanes
https://www.casa.gov.au/sites/g/files/net351/f/_assets/main/pilots/download/ils.pdf
https://www.casa.gov.au/sites/g/files/net351/f/_assets/main/pilots/download/ils.pdf

offset indicated by the cockpit is sensitive to phase changes
and therefore locations that allow constant phase differences
can result in a fixed spoofing offset and therefore minimal
oscillations in the readings.

ILS Categories. The main advantage of ILS is that the
pilot need not have visuals of the runway during the final
approach as the ILS system is intended to guide the aircraft
to a safe landing. The ILS categories are classified based on
the maximum decision height at which a missed approach
must be initiated if the pilot does not have a visual reference
to continue the approach. In CAT I the decision height is at
60 m above the ground i.e., if the pilot does not have a visual
reference at this height, a missed approach or go around must
be initiated. The decision height for CAT III is as low as 15 m
above the ground. The demonstrated attacks can cause severe
consequences in CAT III systems due to the low decision
height. It might potentially be too late to execute a missed
approach in case of an attack. The consequences of the attack
on CAT I and CAT II systems are less catastrophic. However,
they can still cause major air traffic disruptions. Note that
CAT I approach is mostly used by smaller flights. Commercial
flights typically fly a CAT II or CAT III approach.

Alternative technologies and potential countermeasures.
Many navigation technologies such as HF Omnidirectional
Range, Non-directional Beacons, Distance Measurement
Equipment and GPS provide guidance to the pilot during the
different phases of an aircraft’s flight. All the mentioned navi-
gation aids use unauthenticated wireless signals and therefore
vulnerable to some form of a spoofing attack. Furthermore,
it is worth mentioning that only ILS and GPS are capable of
providing precision guidance during the final approach. Also,
ILS is the only technology today that provides both lateral
and vertical approach guidance and is suitable for CAT III
ILS approaches.

Most security issues faced by aviation technologies like
ADS-B, ACARS and TCAS can be fixed by implementing
cryptographic solutions [50] [52]. However, cryptographic
solutions are not sufficient to prevent localization attacks.
For example, cryptographically securing GPS signals [24, 33]
similar to military navigation can only prevent spoofing at-
tacks to an extent. It would still be possible for an attacker
to relay the GPS signals with appropriate timing delays and
succeed in a GPS location or time spoofing attack. One can
derive inspiration from existing literature on mitigating GPS
spoofing attacks [30, 31, 34, 35, 46, 56] and build similar sys-
tems that are deployed at the receiver end. An alternative is
to implement a wide-area secure localization system based
on distance bounding [19] and secure proximity verification
techniques [45]. However, this would require bidirectional
communication and warrant further investigation with respect
to scalability, deployability etc.

Experiment Limitations. Our experimental setup de-
scribed in Section 4 was carefully constructed in consultation

with aviation experts. Since we use an FAA accredited flight
simulator, we sent our configuration files and scripts to a li-
censed pilot for them to perform final approaches using the
instruments and give us feedback. We were mainly concerned
whether there was any other indicator on the cockpit that
raises suspicion about the attack. We conducted our attack
evaluations in both wired and controlled wireless settings.
Note that it is illegal to transmit ILS signals over the air in a
public space. Effects due to aircraft’s motion such as Doppler
shift do not affect the attacker signal as these are receiver
end problems and the receiver hardware already accounts
for such effects for the legitimate signal. Note that the at-
tacker closely imitates the legitimate signals in frequency and
amplitude. In short, we made the best effort to replicate a
real-world approach. However our setup has its limitations.
We did not perform the experiments on a real aircraft which
would give us more insights on the effects of aircraft’s con-
struction, antenna placements, cockpit display sensitivity, etc.
One of the factors that will get affected is the power required
by the attacker. Note that commercial ILS transmitters use a
25 watts transmitter for localizer signals and a 5 W power for
the glideslope signals. To put things in perspective, a standard
12 V 10 Ah battery can power a 24 Watts amplifier for about
5 hours. Furthermore, we are in touch with a leading aircraft
manufacturer for access to such an experiment. We also note
that we are in the process of acquiring IRB approval to recruit
commercial pilots and studying their response to the attack
proposed in this paper.

6 Related Work
Over the years, the aviation industry has largely invested and
succeeded in making flying safer. Security was never con-
sidered by design as historically the ability to transmit and
receive wireless signals required considerable resources and
knowledge. However, the widespread availability of power-
ful and low-cost software-defined radio platforms has altered
the threat landscape. In fact, today the majority of wireless
systems employed in modern aviation have been shown to be
vulnerable to some form of cyber-physical attacks. In this sec-
tion, we will briefly describe the various attacks demonstrated
in prior work. Strohmeier et al. [53] provide a comprehensive
analysis of the vulnerabilities and attacks against the various
wireless technologies that modern aviation depends on. Voice
communication over VHF is primarily used to transfer infor-
mation between the air traffic controller and the aircraft. There
have already been incidents [51] related to spoofed VHF com-
munications and several efforts [23] to design a secure ra-
dio communication system. Primary surveillance radars have
been shown to be vulnerable to signal jamming attacks [40].
Secondary surveillance radars [6] leverage the ability of the
aircraft to respond to ground-based interrogations for aircraft
localization. Due to the unauthenticated nature of these mes-
sages, it is possible for an attacker to use publicly available
implementations for software-defined radio platforms to mod-

USENIX Association 28th USENIX Security Symposium 369

ify, inject and jam messages creating a false picture of the
airspace. Such attacks where even demonstrated to be low-
power, targeted, and stealthy against sophisticated wireless
systems such as Wi-Fi [59], and WPA-Enterprise [21]. The
ADS-B protocol used by aircraft to transmit key informa-
tion such as position, velocity and any emergency codes also
face the same challenges of active and passive attacks due
to the unauthenticated nature of the signals. Several works
have repeatedly demonstrated the vulnerabilities of ADS-B
signals [7, 18, 22, 38, 47, 48, 52, 54, 60]. ACARS [5], the data
link communications system between aircraft and ground
stations was found to leak a significant amount of private
data [36,50,55] e.g., passenger information, medical data and
sometimes even credit card details were transferred. Further-
more, an attacker can spoof TCAS messages [42,48] creating
false resolution advisories and forcing the pilot to initiate
avoidance maneuvers. For navigation, the aviation industry
relies on a number of systems such as ILS, GPS, VOR, and
DME. Although the use of VOR and DME are rapidly de-
creasing, ILS and GPS will be in use for a very long time
and are the only technologies available today for enabling
autonomous landing. It is also well established that GPS is
vulnerable to signal spoofing attacks [11,13,32,39,41,56,61].
Researchers have also demonstrated [43, 44] the feasibility of
signal manipulation in the context of data communication sys-
tems. However, there has been no prior work on the security
guarantees of ILS and this paper is a work in that direction.
It is important to note that although many of the security is-
sues in the aviation industry can be fixed by implementing
some sort of cryptographic authentication, they are ineffective
against the ILS attacks demonstrated in this paper.

7 Conclusion
In this work, we presented a first security evaluation of aircraft
instrument landing system against wireless attacks. Through
both simulations and experiments using aviation grade com-
mercial ILS receivers and FAA recommended flight simulator,
we showed that an attacker can precisely control the approach
path of an aircraft without alerting the pilots, especially during
low-visibility conditions. We discussed potential countermea-
sures including failsafe systems such as GPS and showed that
these systems do not provide sufficient security guarantees
and there are unique challenges to realizing a scalable and
secure aircraft landing system.

Acknowledgements
This work was partially supported by NSF grants 1850264,
502481, and 502494. We thank civil air patrol volunteer Vaib-
hav Sharma for his valuable feedback.

References
[1] Air Traffic Activity System (ATADS). https://aspm.

faa.gov/opsnet/sys/Airport.asp.

[2] Ettus research llc. http://www.ettus.com/.

[3] Sporty’s SP-400 Handheld NAV/COM Aviation Radio.

[4] Aircraft serious incident report occurances number
00/2518 b767-319er zk-ncj, Civil Aviation Authority
of New Zealand, 2002.

[5] Introduction to ACARS Messaging Services,
International Communications Group, April
2006. https://www.icao.int/safety/acp/
inactive%20working%20groups%20library/
acp-wg-m-iridium-7/ird-swg07-wp08%20-%
20acars%20app%20note.pdf.

[6] Aeronautical Telecommunications - Surveillance and
Collision Avoidance Systems, International Civil Avia-
tion Organization, 2007. https://store.icao.int/.

[7] Forget any security concern and welcome Air Force One
on Flightradar24!, 2011. https://theaviationist.
com/2011/11/24/af1-adsb.

[8] Status Report BFU EX010-11, German Federal Bureau
of Aircraft Accident Investigation, 2011.

[9] Acceptable Means of Compliance and Guidance Mate-
rial to Part-SERA, European Aviation Safety Agency,
Sep 2012. https://www.easa.europa.eu/sites/
default/files/dfu/NPA%202012-14.pdf.

[10] Yaesu FTA-750L, 2012. https://www.yaesu.com/
airband/indexVS.cfm?cmd=DisplayProducts&
DivisionID=2&ProdCatID=204&ProdID=1777.

[11] UT Austin Researchers Successfully
Spoof an $80 million Yacht at Sea, 2013.
http://news.utexas.edu/2013/07/29/ut-austin-
researchers-successfully-spoof-an-80-million-yacht-at-
sea.

[12] Stick shaker warning on ILS final, June 2014.
https://www.onderzoeksraad.nl/en/onderzoek/
1949/stick-shaker-warning-on-ils-final.

[13] Hacking A Phone’s GPS May Have Just
Got Easier, 2015. http://www.forbes.
com/sites/parmyolson/2015/08/07/
gps-spoofing-hackers-defcon/.

[14] Air Traffic By The Numbers, Nov 2017. https://www.
faa.gov/air_traffic/by_the_numbers.

[15] Hawker Siddeley HS121 Trident, 2017.
https://www.baesystems.com/en/heritage/
hawker-siddeley-hs121-trident.

[16] Statistical Summary of Commercial Jet Airplane Ac-
cidents Worldwide Operations | 1959 – 2016, Boe-
ing, 2017. www.boeing.com/news/techissues/pdf/
statsum.pdf.

370 28th USENIX Security Symposium USENIX Association

https://aspm.faa.gov/opsnet/sys/Airport.asp
https://aspm.faa.gov/opsnet/sys/Airport.asp
http://www.ettus.com/
https://www.icao.int/safety/acp/inactive%20working%20groups%20library/acp-wg-m-iridium-7/ird-swg07-wp08%20-%20acars%20app%20note.pdf
https://www.icao.int/safety/acp/inactive%20working%20groups%20library/acp-wg-m-iridium-7/ird-swg07-wp08%20-%20acars%20app%20note.pdf
https://www.icao.int/safety/acp/inactive%20working%20groups%20library/acp-wg-m-iridium-7/ird-swg07-wp08%20-%20acars%20app%20note.pdf
https://www.icao.int/safety/acp/inactive%20working%20groups%20library/acp-wg-m-iridium-7/ird-swg07-wp08%20-%20acars%20app%20note.pdf
https://store.icao.int/
https://theaviationist.com/2011/11/24/af1-adsb
https://theaviationist.com/2011/11/24/af1-adsb
https://www.easa.europa.eu/sites/default/files/dfu/NPA%202012-14.pdf
https://www.easa.europa.eu/sites/default/files/dfu/NPA%202012-14.pdf
https://www.yaesu.com/airband/indexVS.cfm?cmd=DisplayProducts&DivisionID=2&ProdCatID=204&ProdID=1777
https://www.yaesu.com/airband/indexVS.cfm?cmd=DisplayProducts&DivisionID=2&ProdCatID=204&ProdID=1777
https://www.yaesu.com/airband/indexVS.cfm?cmd=DisplayProducts&DivisionID=2&ProdCatID=204&ProdID=1777
https://www.onderzoeksraad.nl/en/onderzoek/1949/stick-shaker-warning-on-ils-final
https://www.onderzoeksraad.nl/en/onderzoek/1949/stick-shaker-warning-on-ils-final
http://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/
http://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/
http://www.forbes.com/sites/parmyolson/2015/08/07/gps-spoofing-hackers-defcon/
https://www.faa.gov/air_traffic/by_the_numbers
https://www.faa.gov/air_traffic/by_the_numbers
https://www.baesystems.com/en/heritage/hawker-siddeley-hs121-trident
https://www.baesystems.com/en/heritage/hawker-siddeley-hs121-trident
www.boeing.com/news/techissues/pdf/statsum.pdf
www.boeing.com/news/techissues/pdf/statsum.pdf

[17] Aeronautical Telecommunications - Radio Navigational
Aids, Volume 1, 2018. https://store.icao.int/.

[18] Paul Berthier, José M Fernandez, and Jean-Marc Robert.
Sat: Security in the air using tesla. In Proceedings of the
IEEE/AIAA 36th Digital Avionics Systems Conference
(DASC), 2017.

[19] Stefan Brands and David Chaum. Distance-bounding
protocols. In Workshop on the theory and application
of cryptographic techniques on Advances in cryptology,
1993.

[20] Capt. Dennis M. McCollum. Evaluation of Instru-
ment Landing System DDM Calibiration Accuracies,
1983. http://www.dtic.mil/dtic/tr/fulltext/
u2/a138301.pdf.

[21] Aldo Cassola, William Robertson, Engin Kirda, and
Guevara Noubir. A practical, targeted, and stealthy at-
tack against WPA-Enterprise authentication. In Proceed-
ings of the 20th Annual Network & Distributed System
Security Symposium, NDSS’13, 2013.

[22] Andrei Costin and Aurélien Francillon. Ghost in the Air
(Traffic): On insecurity of ADS-B protocol and practical
attacks on ADS-B devices. BlackHat USA 2012.

[23] Romano Fantacci, Simone Menci, Luigia Micciullo, and
Laura Pierucci. A secure radio communication system
based on an efficient speech watermarking approach.
Proceedings of the Security and Communication Net-
works, 2009.

[24] Ignacio Fernández-Hernández, Vincent Rijmen, Gon-
zalo Seco-Granados, Javier Simon, Irma Rodríguez, and
J David Calle. A Navigation Message Authentication
Proposal for the Galileo Open Service. Navigation,
2016.

[25] Booz Allen Hamilton. ASRS - Aviation Safety Report-
ing System. https://asrs.arc.nasa.gov.

[26] Simon Haykin. Communication systems. 2008.

[27] Kai Hormann and Alexander Agathos. The point in
polygon problem for arbitrary polygons. Computational
Geometry, 2001.

[28] International Telecommunication Union. Radio Regula-
tions. 2012.

[29] ITU-R - Radiocommunications Sector for ITU. Recep-
tion of automatic dependent surveillance broadcast via
satellite and compatibility studies with incumbent sys-
tems in the frequency band 1 087.7-1 092.3 mhz. 2017.

[30] Kai Jansen, Matthias Schäfer, Daniel Moser, Vincent
Lenders, Christina Pöpper, and Jens Schmitt. Crowd-
GPS-sec: Leveraging crowdsourcing to detect and local-
ize GPS spoofing attacks. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2018.

[31] Kai Jansen, Nils Ole Tippenhauer, and Christina Pöpper.
Multi-receiver GPS spoofing detection: Error models
and realization. In Proceedings of the 32nd Annual
Conference on Computer Security Applications, 2016.

[32] Roger G. Johnston Jon S. Warner. A Simple
Demonstration that the Global Positioning System
(GPS) is Vulnerable to Spoofing, 2003. https:
//permalink.lanl.gov/object/tr?what=info:
lanl-repo/lareport/LA-UR-03-2384.

[33] Andrew J Kerns, Kyle D Wesson, and Todd E
Humphreys. A blueprint for civil GPS navigation mes-
sage authentication. In Proceedings of the IEEE/ION
Symposium on Position, Location and Navigation Sym-
posium (PLANS), 2014.

[34] Samer Khanafseh, Naeem Roshan, Steven Langel, Fang-
Cheng Chan, Mathieu Joerger, and Boris Pervan. GPS
spoofing detection using RAIM with INS coupling. In
Proceedings of the IEEE/ION Symposium on Position,
Location and Navigation Symposium (PLANS), 2014.

[35] Brent M Ledvina, William J Bencze, Bryan Galusha, and
Issac Miller. An in-line anti-spoofing device for legacy
civil GPS receivers. In Proceedings of the International
Technical Meeting of the Institute of Navigation, 2010.

[36] Frank Leipold. Session 5: Views of airlines and pilots
lufthansa airlines 2014-05-27, May 2014.

[37] Domenic Magazu III. Exploiting the automatic depen-
dent surveillance-broadcast system via false target injec-
tion. Technical report, Air Force Inst of Tech Wright-
Patterson AFB OH Dept of Electrical and Computer
Engineering, 2012.

[38] Donald L McCallie. Exploring potential ads-b vul-
nerabilites in the faa’s nextgen air transportation sys-
tem. Technical report, Air Force Inst of Tech Wright-
Patterson AFB OH Dept of Electrical and Computer
Engineering, 2011.

[39] Sashank Narain, Aanjhan Ranganathan, and Guevara
Noubir. Security of GPS/INS based on-road location
tracking systems. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (SP), 2019.

[40] Naval Air Warfare Center. Electronic warfare
and radar systems engineering handbook, 2013.
http://www.navair.navy.mil/nawcwd/ewssa/
downloads/nawcwd%20tp%208347.pdf.

USENIX Association 28th USENIX Security Symposium 371

https://store.icao.int/
http://www.dtic.mil/dtic/tr/fulltext/u2/a138301.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a138301.pdf
https://asrs.arc.nasa.gov
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-03-2384
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-03-2384
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-03-2384
http://www.navair.navy.mil/nawcwd/ewssa/downloads/nawcwd%20tp%208347.pdf
http://www.navair.navy.mil/nawcwd/ewssa/downloads/nawcwd%20tp%208347.pdf

[41] Tyler Nighswander, Brent M. Ledvina, Jonathan Dia-
mond, Robert Brumley, and David Brumley. GPS soft-
ware attacks. In Proceedings of the ACM Conference on
Computer and Communications Security, 2012.

[42] Pietro Pierpaoli, Magnus Egerstedt, and Amir Rahmani.
Altering uav flight path by threatening collision. In
Proceedings of the IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC), 2015.

[43] Christina Pöpper, Nils Ole Tippenhauer, Boris Danev,
and Srdjan Capkun. Investigation of signal and message
manipulations on the wireless channel. In Proceedings
of the European Symposium on Research in Computer
Security, 2011.

[44] HU Qiao, Yuanzhen Liu, Anjia Yang, and Gerhard
Hancke. Preventing overshadowing attacks in self-
jamming audio channels. IEEE Transactions on De-
pendable and Secure Computing, 2018.

[45] Aanjhan Ranganathan and Srdjan Capkun. Are we really
close? Verifying proximity in wireless systems. IEEE
Security & Privacy, 2017.

[46] Aanjhan Ranganathan, Hildur Ólafsdóttir, and Srdjan
Capkun. SPREE: A spoofing resistant GPS receiver.
In Proceedings of the 22nd Annual International Con-
ference on Mobile Computing and Networking. ACM,
2016.

[47] Krishna Sampigethaya, Radha Poovendran, and Linda
Bushnell. Assessment and mitigation of cyber exploits
in future aircraft surveillance. In Proceedings of the
IEEE Aerospace Conference, 2010.

[48] Matthias Schäfer, Vincent Lenders, and Ivan Martinovic.
Experimental analysis of attacks on next generation air
traffic communication. In Proceedings of the Interna-
tional Conference on Applied Cryptography and Net-
work Security, 2013.

[49] Diana Siegel and R John Hansman. Development of an
autoland system for general aviation aircraft. Technical
report, 2011.

[50] M. Smith, M. Strohmeier, V. Lenders, and I. Martinovic.
On the security and privacy of acars. In Proceedings
of Integrated Communications Navigation and Surveil-
lance (ICNS), 2016.

[51] Tim H Stelkens-Kobsch, Andreas Hasselberg, Thorsten
Mühlhausen, Nils Carstengerdes, Michael Finke, and
Constantijn Neeteson. Towards a more secure atc
voice communications system. In Proceedings of the
IEEE/AIAA 34th Digital Avionics Systems Conference
(DASC), 2015.

[52] M. Strohmeier, V. Lenders, and I. Martinovic. On the se-
curity of the automatic dependent surveillance-broadcast
protocol. IEEE Communications Surveys Tutorials,
2015.

[53] Martin Strohmeier, Matthias Schäfer, Rui Pinheiro, Vin-
cent Lenders, and Ivan Martinovic. On perception and
reality in wireless air traffic communication security.
IEEE Transactions on Intelligent Transportation Sys-
tems, 2017.

[54] Allan Tart and Tõnu Trump. Addressing security issues
in ADS-B with robust two dimensional generalized side-
lobe canceller. In Proceedings of 22nd International
Conference on Digital Signal Processing (DSP), 2017.

[55] Hugo Teso. Aircraft hacking: Practical aero series. In
Proceedings of HITB Security Conference, 2013.

[56] Nils Ole Tippenhauer, Christina Pöpper, Kasper Bonne
Rasmussen, and Srdjan Capkun. On the requirements
for successful GPS spoofing attacks. In Proceedings of
the 18th ACM Conference on Computer and communi-
cations security, 2011.

[57] U.S. Department of Transportation. Nondirectional Bea-
con (NDB) Installation Standards Handbook. 1981.

[58] U.S. Department of Transportation. Instrument Flying
Handbook. 2012.

[59] Triet Dang Vo-Huu, Tien Dang Vo-Huu, and Guevara
Noubir. Interleaving jamming in Wi-Fi networks. In
Proceedings of the 9th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, 2016.

[60] Linar Yusupov. ADSB-Out, 2017. https://github.
com/lyusupov/ADSB-Out.

[61] Kexiong Curtis Zeng, Shinan Liu, Yuanchao Shu, Dong
Wang, Haoyu Li, Yanzhi Dou, Gang Wang, and Yaling
Yang. All your GPS are belong to us: Towards stealthy
manipulation of road navigation systems. In Proceed-
ings of the 27th USENIX Security Symposium, 2018.

372 28th USENIX Security Symposium USENIX Association

https://github.com/lyusupov/ADSB-Out
https://github.com/lyusupov/ADSB-Out

Please Pay Inside: Evaluating Bluetooth-based Detection of Gas Pump Skimmers

Nishant Bhaskar, Maxwell Bland, Kirill Levchenko†, and Aaron Schulman

University of California, San Diego †University of Illinois Urbana-Champaign

Abstract

Gas pump skimming is one of the most pervasive forms of

payment card attacks in the U.S. today. Gas pump skimmers

are easy to install and difficult to detect: criminals can open

gas pump enclosures and hide a skimmer in internal pay-

ment wiring. As a result, officials have resorted to detect-

ing skimmers by performing laborious manual inspections

of the wiring inside gas pumps. In addition, criminals can

also avoid being caught using skimmers: many gas pump

skimmers have Bluetooth connectivity, allowing criminals to

collect payment data safely from inside their car.

In this work, we evaluate if the use of Bluetooth in skim-

mers also creates an opportunity for officials to detect them

without opening gas pumps. We performed a large-scale

study where we collected Bluetooth scans at 1,185 gas sta-

tions in six states. We detected a total of 64 Bluetooth-based

skimmers across four U.S. states—all of which were recov-

ered by law enforcement. We discovered that these skimmers

were clearly distinguishable from legitimate devices in Blue-

tooth scans at gas stations. We also observed the nature of

gas station skimming: skimmers can be installed for months

without detection, and MAC addresses of skimmers may re-

veal the criminal entity installing or manufacturing them.

1 Introduction

Payment card skimming attacks at gas pumps have reached

alarming levels. In 2018, law enforcement officials recov-

ered 972 skimmers from gas pumps in Florida [11] and 148

skimmers from Arizona [10] alone. Based on industry es-

timates, a single skimmer can capture 30–100 credit cards

per day [5] and each card, based on estimates from law en-

forcement officials, nets the criminal an estimated $500 [53],

resulting in a daily loss of $15,000–50,000 per day of oper-

ation for each skimmer.1 Less is known about how long a

skimmer remains in operation, but allowing for even one day

1In Section 2.2, we compare these quoted estimates to other sources, and

find them to be in agreement.

of operation per skimmer, 2018 losses exceed $16 million

across these two states.

Gas pumps are an ideal skimming target. Gas pumps have

relatively weak security: their payment circuitry can be ac-

cessed with universal keys or crowbars, and reading payment

data is as easy as tapping into a ribbon cable (Section 2.1).

Gas pump skimmers can be hidden inside of a gas pump en-

closure, making them difficult to detect. As a result, inspec-

tors have resorted to manually opening the pumps to inspect

their wiring for skimmers. Gas pump skimming has become

so pervasive that the Arizona Department of Agriculture,

Weights and Measures Division (AZWMSD) now checks for

skimmers while doing routine inspections.2 From 2016 to

2018, the AZWMSD looked for skimmers in 7,325 gas sta-

tion inspections. Inspectors found skimmers in only 1.5% of

these inspections.

Unfortunately, Law Enforcement (LE) rarely catch crimi-

nals while they are collecting payment data from gas pump

skimmers. The reason is, many gas pump skimmers are

equipped with Bluetooth connectivity [26, 27, 28, 29]. This

allows criminals to remain in their car while wirelessly re-

trieving card payment data. While Bluetooth is a vital tool

for criminals to exfiltrate data from gas pumps, it also could

be an opportunity to make it easier to detect skimmers.

In this paper, we evaluate the effectiveness of detecting

skimmers with Bluetooth scanning from a smartphone. In-

deed, if a skimmer can be detected with a smartphone, then

authorities can discover and remove skimmers passively and

quickly while they visit a gas station for other reasons. We

built a smartphone application to perform this study, called

Bluetana. Bluetana collects all Bluetooth scan data that is

available via the Android Bluetooth APIs. We equipped

44 volunteers in six U.S. states with smartphones running

Bluetana. Our volunteers have collected scans at 1,185 gas

stations, where they observed a total of 2,562 Bluetooth de-

vices. In these scans, Bluetana detected a total of 64 skim-

mers installed at gas stations in Arizona, California, Nevada,

2For example, the “Vapor Recovery Inspection Pre-Test Checklist” has

a checkbox for “Checked for Skimmers”.

USENIX Association 28th USENIX Security Symposium 373

and Maryland, and it was the sole source of information that

led law enforcement to find 33 skimmers.

The primary result of this study is the first comprehen-

sive look at how skimmers can appear in Bluetooth scans.

Namely, we observe that it is feasible to differentiate skim-

mers from other common Bluetooth devices that appear in

Bluetooth scans at gas stations (e.g., vehicle telemetry col-

lectors). The main differentiating factor for the skimmers

we observed, is that the Bluetooth Class-of-Device—a pa-

rameter not collected by any consumer Bluetooth scanning

applications that we are aware of—is “Uncategorized”. We

also find that signal strength is a reliable way to determine

if a Bluetooth device is located near a gas pump, and thus

could be a skimmer.

Our study reveals several problems with consumer

Bluetooth-based skimmer detection applications [46, 2, 51]:

(1) there are many legitimate products that appear at gas sta-

tions that use the same Bluetooth modules as known skim-

mers; therefore, MAC address-prefix based detection may

lead to false positives, (2) there are many Bluetooth mod-

ules used in skimmers that do not comply with IEEE MAC

assignment requirements. We also debunk advice on how

to find skimmers with Bluetooth scans from authorities [4]

and viral information from social media [33]. For instance,

none of the skimmers we found using Bluetooth scans have

a name that is a long string of letters and numbers.

Performing this in-depth study brought to light several im-

portant operational lessons learned about the importance of

detecting skimmers with Bluetooth. Using Bluetooth scans,

officials detected skimmers while driving by gas stations that

they otherwise would not have inspected. We also witnessed

several instances where an inspector tried to find a skimmer,

but could not find it on their first pass looking inside a gas

pump. However they persisted and found it based on the

knowledge that a suspected skimmer had appeared in Blue-

tooth scans. Surprisingly, we observed that there are skim-

mers installed in the same gas station, or city, that have very

similar MAC addresses—indicating their source is a single

criminal entity. We even found skimmers installed hundreds

of miles away that had surprisingly close MAC addresses.

The rest of the paper is organized as follows: Section 2

provides background on internal gas pump skimming: their

construction, monetary incentive, and prevalence in the wild.

Section 3 is an overview of our large-scale Bluetooth scan

collection methodology. In Section 4, we present the re-

sults of our study: what the skimmers we detected look like,

how they compare to skimmers recovered independently by

Law Enforcement, and whether they are well hidden in the

Bluetooth environment. In Section 5, we present possible

counter measures to the Bluetooth detection. In Section 6 we

present the operational lessons we learned about skimming

and criminal investigation procedure, while performing our

large scale measurement study. Section 7 is related work,

and we conclude in Section 8.

Figure 1: An internal Bluetooth-based skimmer wrapped in

grey tubing to blend in with the cabling inside the fuel pump.

This skimmer was detected by Bluetana in Tempe, AZ.

2 Background

Skimmers are illicit devices that capture credit card magnetic

stripe data when a card is used at a point-of-sale (PoS) termi-

nal or automatic teller machine (ATM). External skimmers

use a magnetic head concealed in a false faceplate to read

the magnetic stripe of a card as it is inserted into the real card

reader. However, this paper is concerned with a newer class

of skimmers, called internal skimmers, that are installed en-

tirely inside a PoS terminal or ATM, leaving no visual ev-

idence of its presence [47]. Internal skimmers are attached

inline to the cable that connects the card reader to the main

circuit board of the PoS terminal, tapping into the data and

drawing power. To make data collection easier, many inter-

nal skimmers include a Bluetooth-to-serial module that al-

lows the perpetrator to covertly collect the “skimmed” card

data from a safe distance. These skimmers are built using

commodity hardware with a total unit cost of $20 or less.

Fuel pumps with a built-in PoS terminal have become

a very popular target for such internal skimmers: they are

unattended, easy to access, and have poor physical security,

which make it easy to install a skimmer without being no-

ticed. In a typical installation scenario, an attacker positions

a van at a fuel station to block the station attendant’s view

of the target pump (Excerpt in A.2), opens the fuel pump us-

ing a common master key or crowbar, and clips a discreet

gumstick-sized skimmer to the ribbon cable between reader

and main circuit board using a vampire clip (Figure 1). The

entire process to install skimmer can take less than 10 sec-

onds [1]. The perpetrator can then return to the station with

a smartphone, and without leaving their vehicle, connect to

the skimmer using Bluetooth and download the card data.

2.1 Internal Bluetooth Skimmers

The subject of our study are internal, Bluetooth-based skim-

mers that are installed in fuel pump PoS terminals. Figure 2

shows a typical Bluetooth skimmer, recovered from a fuel

station in Southern California. This skimmer consists of

a “Teensy” development board with an ARM Cortex-M4F

micro-controller and a Roving Networks RN-42 Bluetooth-

to-serial module. It also includes connectors for tapping into

the wiring inside the pump (not shown).

374 28th USENIX Security Symposium USENIX Association

RN-42 Bluetooth

to serial module

to keypadto card reader

MCU microSD card slot

Figure 2: Parts of a typical internal Bluetooth-based fuel

pump skimmer. This skimmer was detected by Bluetana.

Connections. In the figure, the ribbon cable on the left inter-

cepts or replaces the ribbon cable that connects the magnetic

stripe reader to the PoS terminal main board. The skimmer

also uses this connection for power: the power and ground

pins of the Teensy (on far left of board, not visible in Fig-

ure 2) are connected to power and ground on the card reader

cable. The ribbon cable on the right intercepts or replaces

the ribbon cable from the PoS keypad. This allows the per-

petrator to capture additional card verification data, namely

the debit card PIN or credit card billing ZIP Code. Avail-

ability of a PIN code with a stolen debit card in particular,

can increase its value five-fold on the black market (Table

1). However, not all skimmers capture keypad data.

Most gas station skimmers read the unencrypted data

pulled from magnetic stripe readers. Card issuers feel that

removing sensitive data from the magnetic stripe on cards

will help to solve the problem [42]. Newer literature has

demonstrated attacks on chip payment systems [13, 15], and

law enforcement in Latin America have begun to find EMV

skimmers that are Bluetooth enabled [30, 3].

Controller board. The skimmer pictured in Figure 2 used a

Teensy micro-controller development board equipped with

a 120 MHz ARM Cortex-M4F micro-controller made by

Freescale Semiconductor. By using a development board,

a skimmer requires only rudimentary electronic assembly:

soldering wires to the development board.

However, skimmers have also been found using what ap-

peared to be fully custom-designed boards. These are com-

pact, making them better for hiding in the dispenser. Exam-

ples of micro-controllers used in recovered skimmers include

Microchip PIC18F4550 [2] and Atmel XMEGA128A4U [3].

Storage. The Teensy board also has a microSD card slot

for additional data storage. Skimmers built on custom PCBs

have also used flash and EEPROM ICs for storage. The stor-

age capacities vary across designs, with examples using the

PCT25VF032B (32-Mbit) [3] and M25P16VP (16-Mbit) [2].

Bluetooth module. The skimmer shown in Figure 2 uses a

Roving Networks RN-42 module, an inexpensive Bluetooth-

to-serial module found in many skimmers. In Section 3.1 we

describe characteristics of popular Bluetooth-to-serial mod-

ules used in recovered skimmers for wireless data exfiltra-

tion. On the Bluetooth side, a Bluetooth-to-serial module

provides a Serial Port Peripheral interface, which most oper-

ating systems recognize as a Bluetooth modem and instanti-

ate a serial device for it. Operating systems will create a cor-

responding serial device, allowing user-space applications,

namely a criminal’s card dumping application, to communi-

cate with the module. On the hardware side, a Bluetooth-

to-serial module provides a TTL-level receive and transmit

pin, allowing it to interface to any micro-controller UART.

The module this allows even the simplest micro-controller to

communicate via Bluetooth with a host device. The 2.4GHz

Bluetooth antenna is included on the module’s circuit board

(exposed area to the left of the metal shield for the module

shown in Figure 2), so the antenna is also hidden.

Bluetooth-to-serial modules generally require no configu-

ration, however, most can be reconfigured using Hayes-style

modem AT commands. In Section 4.1 we describe the con-

figuration capabilities of popular modules. Notably, all of the

Bluetooth-to-serial modules we found in skimmers support

changing the device MAC address, Bluetooth device name,

changing the pairing password, and the ability to become

non-discoverable once paired.

2.2 Economics of Carding

Stealing and monetizing stolen credit and debit card data,

called carding by its practitioners, is a well-studied form of

financial fraud, however, reliable estimates of losses result-

ing from a single skimmer are difficult to find. To the crimi-

nal operating a skimmer, the expected revenue per skimmer

breaks down as:

W = (card value)× (cards per day)× (days deployed).

Of these, we found published estimates for only the first

two quantities, and very little about skimmer lifetimes. Here,

we summarize the available data with the goal of estimating

the losses incurred by a single skimmer.

Card value. To monetize stolen credit card data, skimmer

installers have two options: sell the data on the black market,

or cash out the cards on themselves. Based on our survey of

sites selling stolen card data, black market prices for stolen

cards fall in the $10–220 range, depending on whether the

card is a debit or credit card, and whether it comes with a PIN

(for debit) or billing ZIP code (for credit). Table 1 provides

a summary of these prices with references.

Criminals can also cash out the cards themselves. Debit

cards with a PIN are often cashed out by withdrawing money

from an ATM, while credit cards are often cashed out by

USENIX Association 28th USENIX Security Symposium 375

Scheme Value Reference

Black market price

Debit, no PIN $20–30 [35, 49, 21, 44]

Debit with PIN $110–220 [31, 49, 44]

Credit, no ZIP $10–25 [35, 49, 21, 44]

Credit with ZIP $25–60 [35, 49, 21, 44]

Cash-out value

Credit or Debit (standard) $400–800 [19, 40, 18, 56]

Credit (premium) $1,000 [40, 45, 20]

Bank and merchant loss

Credit $1,003 [1]

Debit $650 [12]

Consumer liability

Debit (> 60 days) unlimited 15 USC 1693g

Debit (< 60 days) max $500 15 USC 1693g

Debit (< 2 days) max $50 15 USC 1693g

Credit max $50 15 USC 1643

Prosecuted loss

Credit or debit $500 [6]

Court documents

Credit $362–400 [36, 16, 8, 7]

Debit $665–1132 [9, 50]

Table 1: Value of stolen credit and debit cards.

purchasing high-value merchandise (e.g. iPhones) and re-

selling them. Reported cash-out values for debit and credit

cards range between $400 and $1,000, depending on credit

limit associated with the card. We also conducted a survey of

cash-out values reported in court documents involving skim-

mers.3 Several cases reported specific cash-out values, rather

than ranges. The debit card cash-out values were $1132 [36],

$444 [16] $665 [8], $1354 [7]. The credit card cash-out val-

ues were $362 [50] and $400 [9].

Losses due to credit and debit card fraud are borne largely

by banks and merchants. This is likely because consumer

liability for fraud in the U.S. is limited to $50 for credit

cards, and $50 or more for debit cards (depending on how

quickly the consumer reports the fraud). Industry estimates

for losses per-card incurred by banks are $650 for debit cards

and, $1,003 for credit cards [1, 12]. The U.S. Sentencing

Commission estimates per-card losses at $500 or more.

Cards per day. The number of cards a skimmer captures

each day depends on the number of transactions at that pump,

which will vary by station. Rippleshot, a payment fraud pre-

vention service, states: “a single compromised pump can

capture data from roughly 30–100 cards per day” [5]. The

lower end Rippleshot’s estimate agrees with the estimate of

20–50 cards per day we received from U.S. law enforcement

agents. In addition, we found two court documents that re-

port criminals captured 25 [9] and 30 [8] cards per day. We

3We surveyed only documents available without fee from Court Listener.

Location

& Year

Recovered

skimmers

Skimmed

stations

Skimmers /

station

Skimmers /

106 people

San Diego

FY 2018 42 11 3.2 11.9

Arizona

2016 88 54 1.6 4.3

2017 57 46 1.2 2.7

2018 148 86 1.7 6.9

All 293 134 2.2 14.0

Florida

2016 207 162 1.3 10.0

2017 650 432 1.5 31.1

2018 972 524 1.8 45.6

All 1,829 1,029 1.7 87.4

Table 2: Prevalence of skimming in three regions of the U.S.

also studied 10 skimmers recovered from the field, which we

were told were used and wiped daily. We found an average

of 20 cards per skimmer, divided evenly between debit and

credit cards.4

Days deployed. Internal skimmers are not limited by bat-

tery life and can remain in operational indefinitely, because

they draw power from the PoS circuitry, Skimmer lifetime,

then, is limited only by how long they can remain unde-

tected. Unfortunately, there is little reliable data on this. Our

only direct experience is our discovery of a pair of skimmers

that remained undetected for six months (Section 3.1). How-

ever, LE informed us that criminals may leave skimmers in

gas pumps after only a few days of retrieving card data and

moving on to another location. Given the very limited data

available on skimmer lifetimes, we instead consider skimmer

value per day of operation.

Cashout success rate. Our analysis of court documents re-

vealed that criminals are often unsuccessful when trying to

cashout a skimmed card. This may be due to a variety of

reasons, such as the following: incorrectly reading card data,

hitting daily withdrawal limits, and activating fraud alerts.

Several cases mentioned that criminals were not successful

in cashing all skimmed cards. One case mentions a specific

cashout success rate of 47% [7].

Total skimmer value. Finally, we estimate the range of per-

day revenue from a skimmer based on the prior figures. Our

low end estimate is $4,253 (25 cards per day, cashout of $362

per card, and 47% cashout success rate), and our high end es-

timate is $63,638 (100 cards per day per day, $1,354 cashout

per card, and cashout success rate of 47%).

4These skimmers were provided to us because they were removed by the

station owner, rather than LE, making them unsuitable for use as evidence.

376 28th USENIX Security Symposium USENIX Association

2.3 Skimmers Recovered in the Wild

To understand the prevalence of skimmers in the wild, we ob-

tained data on recovered skimmers from three regions in the

United States: San Diego and Imperial counties of Califor-

nia, with a combined population of 3.5 million; the state of

Arizona, with a population of 7 million inhabitants; and the

state of Florida, with a population of 21 million inhabitants.

Table 2 summarizes the statistics. We note that these num-

bers do not represent all recovered skimmers. For San Diego

and Imperial counties, our statistics represent the number of

skimmers found by or reported to a U.S. federal law enforce-

ment agency. For Arizona and Florida, our statistics repre-

sent skimmers found by or reported to the AZWMSD and the

Florida Department of Agriculture and Consumer Services.

The number of recovered skimmers has increased from

2016 to 2018 in both Florida and Arizona. The total num-

ber of skimmers recovered in 2018 across the three geo-

graphic regions is significant: if each skimmer operated for

just one day, we estimate their total monetary impact would

be $17.43 million. Yet, as the skimmers-per-million peo-

ple number shows, the possibility of an average consumer

encountering a skimmer at a gas station is quite small.

3 Data Collection Methodology

Driven by the observation that skimmers are hard to find—

few pumps in San Diego, Arizona, and Florida have been

found to have skimmers installed in them (Table 2)—we cre-

ated a tool, called Bluetana, to evaluate the effectiveness of

Bluetooth-based skimmer detection. We begin by presenting

an overview of the tool and the data it collects. Then we de-

scribe how Bluetana identifies suspicious devices and directs

users to collect additional data. Finally, we discuss how we

retroactively inspect data to find skimmers.

3.1 Crowdsourcing Bluetooth Scanning

We developed Bluetana, an Android-based measurement

tool that officials and volunteers use to scan for skimmers

at gas stations. Bluetana scans for nearby Bluetooth—both

Classic and Bluetooth Low Energy (BLE)—devices every

5 seconds using Android’s Bluetooth API. It collects the

Bluetooth scans and geo-location data, and uploads this data

to a secure database over a cellular link. Bluetana collects all

of the Bluetooth scan data that Android makes available, in-

cluding Device name, MAC Address, Class-of-Device5, and

signal strength (RSSI).

How we visited 1200 gas stations. We outfitted 44 vol-

unteers and inspectors in six U.S. states (CA, AZ, MD, NC,

NV, IL) with low-end smartphones running Bluetana in kiosk

5Class-of-Device is twenty four bits indicating the device’s intended use,

such as smartphone or speaker.

mode (they could not close the application). We selected of-

ficials who frequent gas stations as part of their daily job

duties. Primarily, they were Weights and Measures inspec-

tors.

Indicating suspicious devices to inspire data collection

The Bluetana display shows a list of Bluetooth devices de-

tected during scanning. When Bluetana detects a potential

skimmer, it indicates this to the user by highlighting the de-

vice record (Figure 4). The Bluetooth scan profile of the

modules that have been found in skimmers inform which de-

vices we highlight in Bluetana.

Skimmers recovered by LE are often found to use CSR

(Qualcomm) chip-set-based Bluetooth modules. Our high-

lighting procedure primarily looks for the default Bluetooth

profile of these modules—with the exception of the Device

Name which can be missing due to poor signal strength, and

modified by criminals in an attempt to hide the device (Sec-

tion 4). The factory default Bluetooth scan profile (i.e., MAC

prefix, Device Name, and Class-of-Device) of these modules

are as follows:

Mod. MAC Prefix Dev. Name Class of Dev.

RN 00:06:66 “RBNT-*” Uncategorized

HC Various “HC-05/06” Uncategorized

Bluetana chooses a highlight color via a three-step deci-

sion process, depicted in Figure 3. First, the app checks

the device’s class. All skimmers studied within this work,

whether discovered by Bluetana or not, had a device class of

Uncategorized. If the device class is not uncategorized, the

data is saved for later analysis. The device’s MAC prefix is

then compared against a “hitlist” of prefixes used in skim-

ming devices recovered by law enforcement. If the device

has a MAC that is not on this hitlist, it is unlikely to be a

skimmer, and the app highlights the record yellow. Next, if

the device name matches a common product using the same

MAC prefix, the record highlights in orange. If all three

fields (MAC prefix, Class-of-Device, and Device Name) in-

dicate the device is likely to be a skimmer, Bluetana high-

lights the record in red. The highlighting procedure is the

result of a year of refinements based on our experience find-

ing skimmers in the field, and Bluetana includes a remote

update procedure to account for these incremental changes.

This simple highlighting proved to be vital to our data

collection. Red serves as a cue to perform signal strength

localization: it directed our users to collect more samples

of signal strength to determine if a device is located in the

gas pump area—and is therefore likely to be a skimmer. In

several cases, Bluetana highlighting a device in red was the

only reason officials performed a manual skimmer inspec-

tions: out of the 64 skimmers we found, 33 were recovered

because an official started an inspection only after noticing a

device was highlighted in red in Bluetana.

USENIX Association 28th USENIX Security Symposium 377

Does MAC prefix

match skimmers?

Is Class-of-Device

uncategorized?

Is Device Name

default, unknown, or

unnamed?

Yes Yes

No No

Possible skimmer

(highlight in Red)
New device seen in

Bluetooth scan

Unlikely skimmer

(highlight in Yellow)

Yes

Known product

(highlight in Orange)

No

Save for later

analysis

Figure 3: The procedure Bluetana uses for highlighting suspicious devices.

Figure 4: The Bluetana user interface. Bluetana highlights

suspicious devices, inspiring users to collect more signal

strength samples, and even perform inspections.

In one instance, an Arizona Weights and Measures inspec-

tor was driving by a gas station when two red highlighted de-

vices appeared in Bluetana. He made an unscheduled stop at

the gas station, performed a skimmer inspection, and discov-

ered two skimmers. Figure 5 shows a portion of the official

Arizona inspection report documenting this incident.

Bluetana’s highlighting procedure is more comprehen-

sive than other skimmer detection apps on the Play Store.

Scaife et al. [46] investigated the behavior of these apps and

found that they flag skimmers based on either MAC prefix

or Device Name. These apps would miss skimmers with

non-standard MAC prefixes or customized (missing) device

names which Bluetana was able to find (Section 4.1). Blue-

tana also found legitimate devices that would be considered

skimmers by these apps (Section 4.2).

Identifying skimmers after data collection

During the study, we manually examined every Classic Blue-

tooth device observed at a gas station visit in real time (as

Bluetana users upload their scan data). At the beginning of

our study, we relied primarily on the signal strength of the

device to determine if it was a suspected skimmer. By the

nature of being installed inside a gas pump, the Bluetooth

signal of a skimmer is strongest in the pump area. Other

devices that we suspected to be skimmers all had a low sig-

nal strength in the pump area, because aside from the cars

parked at the pumps, the only places where a Bluetooth de-

vice would be located in the pump area would be inside the

pump. Combining the signal strength and geo-location with

satellite imagery of the gas station, we were able to easily

detect when the signal was emanating from inside of a gas

pump (example shown in Figure 6). While at a gas station,

Bluetana users also noticed this by moving toward the pump

area to see if the device’s signal strength increases.

If we saw any suspicious devices in the dataset, we alerted

officials that they should inspect the pumps at the station

in question. Initially, we did not know which of these de-

vices were skimmers: many initial inspections we requested

turned up empty handed. However, as the study progressed,

we improved our understanding of the profile of skimmers.

A natural experiment observing deployment duration

Having a database of all prior scans made it possible for us

to look for skimmers that we may have missed in the past.

In particular, looking back in at the database led to us to dis-

cover two skimmers that we had initially missed. A retroac-

tive analysis of two stations discovered skimmers that were

still operating even though we first detected them six months

earlier. This natural experiment is likely the first concrete

data on how long skimmers can be installed without being

found in a routine or complaint-induced pump inspection.

3.2 Limitations

Selection bias

We designed our data collection to look for a specific type of

gas pump skimmer: one that uses a Classic Bluetooth mod-

ule, and is discoverable in Bluetooth scans. Our contacts in

LE confirmed that this type of skimmer has been found in gas

stations across the entire U.S. They also reported that these

skimmers are particularly common in Arizona and Califor-

nia; therefore, these states were the focus of our study.

The results of our study may not be representative of the

nature of gas pump skimming across the country. Crimi-

nals in other regions may evade Bluetooth-based detection

by using alternate exfiltration methods (e.g., Bluetooth Low

Energy and SMS), or configurations (e.g., non-discoverable

mode). We outline these countermeasures in Section 5.

378 28th USENIX Security Symposium USENIX Association

Figure 5: Bluetooth scanning helps inspectors find more skimmers because they detect skimmers when driving by a gas station.

Figure 6: Combining RSSI data with satellite imagery re-

veals if a device is located in the pump area of a gas station.

Bluetana does not connect to devices

We could collect more data about Bluetooth devices by try-

ing to connect to them. This could be useful for conclusively

detecting a skimmer or collecting information about the type

of Bluetooth device. By sending commands that skimmers

are known to respond to, Bluetana would be able to see if

the device responds equivalently to known skimmers. This

is precisely what one of the current Bluetooth skimmer scan-

ning applications on the Play Store does.

This practice may seem innocuous, but our discussions

with law enforcement indicate that this could overwrite in-

formation critical to future investigations. The problem

is, internal registers in many skimmer Bluetooth modules

records the last-paired MAC address. This information can

be used to link a suspect possessing a smartphone or laptop

with their skimmers. The typical forensic evidence collec-

tion performed by law enforcement on skimmers includes

collecting the last-paired MAC address [48].

4 Results

In this section, we present the results of our 19 month study

of Bluetooth devices observed with Bluetana at 1,185 gas

stations across six U.S. states (CA, AZ, NV, MD, IL, NC).

During the course of this study, Bluetana detected 64 skim-

mers operating in 34 gas stations; all of the skimmers were

removed from the pumps by local and federal law enforce-

ment agents. Bluetooth scanning is a surprisingly effective

way of detecting skimmers: in Arizona, Bluetana has de-

tected skimmers at 1.58% of the 491 stations it scanned, and

routine inspections by state inspectors had a similar detection

rate of 1.5% from 2016 to 2018.

The primary result of this study is as follows: there are dis-

tinct characteristics of the 64 internal skimmers detected by

Bluetana that differentiate them from the 2,562 other Blue-

tooth devices that Bluetana found at gas stations (e.g., car

stereos). Namely, these skimmers were predominately us-

ing the default Bluetooth module configuration. Addition-

ally, we discovered that some criminals use a custom Device

Name in an apparent attempt to hide their skimmers from

Bluetooth scans. These custom Device Names stand out,

making them easier to differentiate from other devices.

4.1 What Do Skimmers Look Like in Scans?

We begin by presenting how skimmers we observed appear

in Bluetooth scans. We describe the properties of two sets of

skimmers: 64 skimmers that we detected in the field during

the course of this study, as well as 23 skimmers that were

independently recovered by two LE agencies. The 23 skim-

mers recovered independently by LE have similar charac-

teristics to the 64 that Bluetana detected in the field. The

Bluetooth characteristics of these skimmers are detailed in

Table 3. We now analyze the following properties: Class-of-

Device, MAC prefix, and Device Name.

All of the skimmers are “Uncategorized” Class-of-Device

Class-of-Device is primarily used to select the icon that indi-

cates the category of a device in a Bluetooth scan (e.g., Head-

phones). Bluetooth modules used in skimmers analyzed in

this study (i.e., HC and RN), have an “Uncategorized” Class-

of-Device assigned by default. Changing Class-of-Device on

these modules is trivial: the modules provide a serial com-

mand to set it. Despite this, criminals do not appear to be

modifying the Class-of-Device on any of the skimmers we

observed: all of the 87 skimmers detected by Bluetana and

recovered independently by LE used the default “Uncatego-

rized” device class.

USENIX Association 28th USENIX Security Symposium 379

of skimmers

Bluetooth Scan Property Bluetana LE

Class-of-Device

Uncategorized 64 23

Manufacturer (MAC prefix)

Roving Networks

00:06:66 45 13

Shenzhen Bolutek

98:D3:31 1

Unknown

20:13:04 1

20:17:11 1

20:18:01 2

20:18:04 1

20:18:07 1

20:18:08 4 10

20:18:09 4

20:18:10 1

20:18:11 2

98:D3:35 1

Device Name

Default 36 23

[Law enforcement] 2

[Mobile phone] 4

[Indescript object] 2

[Numerical] 2

Unnamed 18

Total 64 23

Table 3: Bluetooth scan properties of skimmers observed

during our study. The exact Device Names are not shown,

instead we describe the names we found.

MAC prefixes are often manufacturer defaults

Bluetooth module manufacturers burn a MAC address into

the module’s EEPROM. Although it is possible to change

the MAC with a SPI-based reprogramming of the CSR chip’s

EEPROM, we have not observed any skimmers that have a

modified MAC. The first three bytes (prefix) of the MAC ad-

dress typically correspond to the manufacturer of the device.

Although MAC address prefixes are often assigned by

IEEE (e.g., all of the RN Bluetooth modules have the same

manufacturer MAC prefix) the HC modules have a wide va-

riety of MAC prefixes. Of the HC modules we observed,

only one has a MAC prefix assigned by the IEEE. This could

make it significantly more difficult to detect an HC-equipped

skimmer. However, looking at of the MAC prefixes of the

skimmers that we observed, a clear pattern emerges: manu-

facturers appear to be burning module manufacture date into

the first four bytes of the MAC address in the following for-

mat: YY:YY:MM:(DD).

0 50 100 150 200 250
Seconds Within Entering 150 Feet

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 7: Skimmers are detected within a minute of passing

near a gas station.

Device names are often default, occasionally customized

Device Names allow users to identify their devices in Blue-

tooth scans. They are assigned a factory default value by

the manufacturers, and are modifiable by users. Most of the

skimmers we observed had a default Device Name: namely,

all of the skimmers provided by LE, and more than half the

skimmers we detected in with Bluetana. A skimmer with

a default Device Name looks innocuous, because some le-

gitimate products using the same modules are also shipped

with the default module name (Section 4.3). Occasionally,

we found that criminals set a custom device name on their

skimmers. This appears to be an attempt to make the skim-

mer look less suspicious. Bluetana detected custom-named

skimmers with a variety of names. The custom names of

skimmers discovered by Bluetana had variety: some were

random strings of numbers, and others masqueraded as LE.

Bluetana did not detect a Device Name for several skim-

mers. This is expected because the device sends its MAC and

Class-of-Device in the first scan response packet; it sends the

device name in a subsequent packet (that may be missed).

Skimmers are detected within one minute

Bluetooth scanning has the benefit of detecting some skim-

mers without manually inspecting each of the pumps. How-

ever, attenuation from a gas pump’s metal enclosure, may

limit the range that Bluetooth scans are effective. We an-

alyzed the scans from Bluetana to see how long an official

had to spend at a gas station before they detected the skim-

mers installed there (Figure 7). The median time to detec-

tion was 3 seconds, and 80% of the skimmers were detected

within one minute. This is a 99% decrease in search time

compared to the average of 30 minutes that inspectors take

380 28th USENIX Security Symposium USENIX Association

Devices Observed

State Stations # Avg. Std. Days Skimmers

CA 571 1148 2.01 1.94 152 22

AZ 491 1140 2.32 2.03 130 36

NV 38 93 2.45 3.44 21 4

MD 23 42 1.83 1.86 14 2

IL 18 37 2.06 2.01 13 0

NC 10 20 2 1.67 10 0

Table 4: On average there are two Classic Bluetooth devices

seen at each gas station; infrequently, there are skimmers.

to check a gas station for skimmers.6, This result indicates

that inspectors can quickly stop at gas stations to check for

Bluetooth-detectable internal skimmers.

4.2 Are Skimmers Distinguishable in Scans?

Next, we evaluate if the skimmers detected by Bluetana were

clearly distinguishable from the other devices observed at

gas stations. The primary result of this study is that these

skimmers were not hidden well. Many of these skimmers use

the default configuration of their Bluetooth modules. Legit-

imate devices using the same Bluetooth modules may have

some default parameters, and a few have all of parameters set

to the default. We conclude that by combining multiple char-

acteristics: MAC prefix, Class-of-Device, and Device Name,

there are only a small number of devices that could be con-

fused with skimmers.

This study also reveals that when criminals creatively

modify their skimmer’s Device Name, it makes detection

easier. We also found that criminals could improve how they

hide skimmers in Bluetooth scans. For example, they could

change the Class-of-Device to hide as a more popular device

(e.g., a smartphone).

Dataset Overview

Over the course of the 19 month study, Bluetana users vis-

ited 1,185 gas stations across six states (Table 4). During

these visits, Bluetana detected a total of 64 skimmers—all of

which were recovered by officials. These skimmers were in

the presence of 2,562 other devices. On average, Bluetana

saw 2.2 devices per station (σ = 2.05). Given that there are

only a small number of Bluetooth devices seen per station, it

may seem likely that these devices are all skimmers. How-

ever, only a small fraction (4.25%) of these devices matched

the characteristics of the skimmers we observed during the

course of our study.

We performed this study on Classic Bluetooth devices

only. We did not include BLE because we are not aware of

6Source: discussions with inspectors.

Aud
io/

Vide
o

[U
nc
at
ag
or
ize
d]

Ph
on

e

Com
pu

ter

Im
ag

ing Misc

Pe
rip

he
ral

Wea
rab

le

Netw
ork

ing

[Rese
rve

d]
0%

10%

20%

30%

40%

50%

Cl
as

sic
 B

T
De

vi
ce

s Skimmers
Other Devices

Figure 8: Skimmers appear in the second most common

class of Bluetooth devices.

any internal gas station skimmers using BLE modules. How-

ever, we observed a large number of BLE devices at gas sta-

tions; therefore, switching skimmers to BLE modules may

make them more difficult to detect with scanning tools like

Bluetana (Section 5.1).

For this analysis, we only include the scan data that is col-

lected the first time a Bluetana user visits a station. Restrict-

ing the dataset in this way ensures fairness in our results.

Analyzing all inspections may bias our observation of what

Bluetooth devices tend to be found at gas stations to those

that were visited multiple times. Specifically, we only an-

alyze scans performed the first time Bluetana is near a gas

station (within 150 feet) for at least 30 seconds and up to 5

minutes. 22 out of 64 of the skimmers were detected on sub-

sequent visits to gas stations, so they are not included in this

analysis.

Skimmers are Uncategorized, but so are other devices

The only Bluetooth property that is common among all skim-

mers we observed is that they have an Uncategorized Class-

of-Device. Figure 8 shows that Uncategorized devices are

commonly seen at gas stations: they are 20.3% of devices

found by Bluetana. Out of the 1,185 gas stations that Blue-

tana users visited, Uncategorized devices were only observed

at 315 gas stations (26.6%).

Other devices use the same modules as skimmers

Within the set of Uncategorized devices, we next look at the

distribution of their MAC prefixes (Figure 9). We find that

the Bluetooth modules used in skimmers are also used in

many other legitimate devices. Specifically, more than half

of the RN modules seen at gas stations were in skimmers, but

there were many other devices that had RN modules. This is

USENIX Association 28th USENIX Security Symposium 381

App
le TI

Bose

[<
 5

Dev
ice

s]

Rov
ing

 N
et

wor
ks

[U
nk

no
wn] LSR

Sa
msun

g

YY
:Y

Y:
MM:D

D

Log
ite

ch

Resp
iro

nic
s

WBE
0

50

100

150

of

 U
nc

at
eg

or
ise

d
De

vi
ce

s

Skimmers
Other Devices

Figure 9: Many other devices appear to be using the same

Bluetooth modules as skimmers.

an important observation because a popular detection appli-

cation, SkimPlus [51], only flags skimmers based on a hitlist

of MAC prefixes [46]; it may incorrectly flag legitimate de-

vices as skimmers.

The devices observed with MAC prefixes that were in

the YY:YY:MM:DD format (likely HC modules) were mostly

skimmers. There were many devices that had IEEE assigned

MAC prefixes that were infrequently seen at gas stations (< 5

Devices). Only one of these devices was a skimmer. Also,

there were many devices with MAC prefixes unknown to

the IEEE, but not in the date format, only one of these de-

vices was a skimmer. Overall, 159 devices out of 353 Un-

categorized devices matched the MAC prefixes of Bluetana-

observed skimmers. This reduces the number of stations

where Bluetana detected skimmers to 119 out of the 315 sta-

tions where it found Uncategorized devices.

Default- and custom-named modules are often skimmers

Finally, we investigate if skimmers can be differentiated

from other devices by their Device Name. The remain-

ing 159 devices are Uncategorized and their MAC prefixes

are either: Roving Networks, YY:YY:MM:DD, Unknown, or

seen on less than five devices. Only 42 of these devices

were confirmed to be skimmers.7 In Figure 10, we divide

the remaining devices by their category of Device Name, in-

cluding: unnamed, manufacturer default, known legitimate

product, and customized. Devices observed by Bluetana with

default names were often skimmers. Custom named devices

were not common at gas stations but had a higher probability

of being skimmers. Three skimmers were disguised as prod-

ucts, however all three were distinguishable because their

7We do not include 22 of the Bluetana-detected skimmers in this analysis

because they were not detected on the first visit to a gas station.

Default Custom Product Unnamed
0

10

20

30

40

50

60

70

of

 U
ni

qu
e

Na
m

es

Skimmers
Other Devices

Figure 10: Default and custom names distinguish skimmers

from legitimate devices.

names were popular smartphones, which should not have

the MAC prefix of Bluetooth-to-Serial modules. Bluetana

missed capturing the Device Name for many of the skim-

mers, as well as other devices that it detected.

4.3 Accuracy of Bluetooth-based Detection

To evaluate the accuracy of Bluetooth-based detection, we

analyze Bluetana scan data collected during inspections in

Arizona. Specifically, there was a 7-month time period in

which Bluetana was used by many of the Arizona inspectors

(October 7, 2018 – May 7, 2019), and we compare the re-

ports filed during these inspections with the scan data that

Bluetana collected.

Missed skimmers

During this time period, there were 27 inspections where

skimmers were found while an inspector was running Blue-

tana. A total of 42 skimmers were recovered during these

inspections, of which Bluetana was able to detect 36. There-

fore, Bluetana missed detecting 14.3% of the total skimmers

recovered during these inspections.

We do not know exactly why Bluetooth-based scanning

missed these skimmers. Half of the missed skimmers were

from inspections where Bluetana detected other skimmers at

the gas station. It is likely that these missed skimmers were

not powered on due to improper installation. The remaining

missing skimmers may have been built with alternate exfil-

tration methods, such as SMS [46], or even require physical

recovery [47].

382 28th USENIX Security Symposium USENIX Association

Incorrectly detected skimmers

Bluetana highlighted a device in red during 45 Arizona in-

spections where no skimmer was found. There were 757

total inspections where inspectors used Bluetana8, Bluetana

may have incorrectly detect skimmers in 5.9% of inspec-

tions.

Incorrectly identifying skimmers is likely due to the fact

that RN and HC modules are used in a variety of legitimate

products, some of which are seen in and around gas stations.

We found RN and HC modules in radar-based speed limit

signs, weather sensors [38] automotive diagnostic scanners,

scales [37] and fleet tracking systems [52]. Some of these de-

vices have Device Names that clearly indicate what product

they are, but would be confused with skimmers if the Device

Name is missing. Unfortunately, several of these products

also use the default Device Names on their Bluetooth mod-

ules (RNBT-xxxx or HC-05). These legitimate devices will

look exactly like skimmers. In such cases, inspectors will

need to rely on RSSI localization to determine if these de-

vices are located inside a gas pump.

5 Countermeasures and Responses

This work is a single snapshot in an evolving landscape of

attacks on payment systems. While Bluetana has proven ef-

fective at finding Bluetooth skimmers, it by no means rep-

resents the last move in the cat-and-mouse game. In the re-

mainder of this section, we discuss what the next few steps in

this arms race might look like. That is, given that inspectors

and volunteers are using Bluetana, what can be the skimmer

installers’ next move, its cost, and what our response might

be. It is possible for a determined and resourceful criminal

to implement the countermeasures that we will be describing

(particularly non-discoverable mode).

5.1 Switching to Bluetooth Low Energy

We have observed that by switching to BLE, criminals have

many more places to hide. Figure 11 shows the cumulative

distribution of the number of BLE and Bluetooth devices we

saw at each fuel station. Under the filtering of Section 4,

over 8,000 unique BLE devices were seen, making the ratio

of Classic to BLE approximately 1:4.

Cost to attacker. There is almost no cost to criminals in

switching their Bluetooth modules to BLE. In fact, newer

EMV skimmers discovered in other countries are BLE en-

abled [30]. However, none of our contacts in law enforce-

ment have encountered BLE-based gas station skimmers. It

is possible that there is simply no incentive to switch: the

same reason criminals have not yet adapted to masking their

Bluetooth device class.

8This includes both routine and complaint/prior knowledge triggered in-

spections

100 101

of Devices at each Station

0.2

0.4

0.6

0.8

1.0

CD
F

BLE
Classsic

Figure 11: BLE devices are more common than Classic.

Response. BLE devices may be harder to differentiate due

to the higher number of devices at each gas station and a

lack of distinguishing features. 89% of BLE devices we saw

had an uncategorized device class. With more sophisticated

filtering techniques, it may still be possible to isolate BLE

skimmers within this larger set of devices. One possibility is

automated RSSI localization to the fuel dispenser location, a

possible subject of future research.

5.2 Non-Discoverable Skimmers

The most natural way to evade discovery via Bluetooth

would be to put the module in non-discoverable mode. When

a Bluetooth device is non-discoverable, it does not respond

to normal Bluetooth scans. Instead, it only responds to pag-

ing packets specifically addressed to its MAC address.

Cost to attacker. Non-discoverability would make exfiltra-

tion more difficult for criminals. One possibility is creating

a pre-paired data collection device. However, we have been

informed by law enforcement that the individual who installs

the skimmer is often independent from the individual respon-

sible for data recovery (called a “mule”). The criminal would

not be able to send a mule to recover card data without first

delivering them the device. Alternately the criminal could

record the MAC address of the skimmer Bluetooth module.

This would require careful bookkeeping and the use of tools

that support the creation of a non-discoverable connection.

Response. It is still possible to discover a non-discoverable

device. For a small set of target address ranges, e.g.,

00:06:66 used by Roving Networks modules, we believe it

would be practical to attempt to guess all 16.8 million possi-

ble addresses. Prior work has shown that it is possible to dis-

cover any non-discoverable device via brute force in 18.64

hours; knowledge of OUI would ideally allow us to reduce

this search time [17]. Unfortunately, this requires specialized

hardware, rather than an inexpensive Android phone.

USENIX Association 28th USENIX Security Symposium 383

5.3 Impersonating Common Benign Devices

Another natural response to Bluetana would be to change the

MAC address and name of the device to that of a common be-

nign device, such as a mobile phone or a Bluetooth-enabled

car entertainment system. This would make the skimmer ap-

pear innocuous to Bluetana.

Cost to attacker. Reprogramming the MAC address on the

CSR-based Bluetooth modules, which include the Roving

Networks and HC-05 and HC-06 modules, cannot be done

using the AT commands used to change device name and

pairing. Instead, the skimmer installer would need to re-

flash the CSR firmware using a special programming ca-

ble. While, in principle, not difficult, it would require an

additional degree of sophistication than programming a sim-

ple micro-controller development board. The skimmer in-

staller could also change the device name but not the MAC

address, say, to one of the known benign devices using the

same module, something that us possible to do by issuing AT

commands from the micro-controller to the module. While

this may cause Bluetana to detect these as a skimmer, signal

strength can still be used to identify location of the module.

Response. Because Bluetana collects all Bluetooth data, we

can identify skimmers retroactively when we learn of a new

MAC address and name used by known skimmers. Thus, if

attacks switch to impersonating benign devices, we can up-

date the Bluetana highlighting mechanism to identify those

devices as suspicious. This would result in additional inspec-

tions, but would still provide significant gain over the state

of the art.

5.4 Using Non-Bluetooth Communications

During discussions with law enforcement agencies tasked

with identifying skimmers, we were told about skimmers

that use GSM modems or WiFi as an alternative to Bluetooth.

In the case of WiFi, we believe that the Bluetana methodol-

ogy will still be effective. GSM poses a more serious chal-

lenge for detection.

Cost to attacker. While using GSM would avoid detection

using Bluetana, it creates an additional trail of evidence link-

ing the perpetrator to the skimmer. Law enforcement officers

could obtain information about the SMS recipient through

subpoenas, so receiving the SMS messages on another phone

on a US carrier, for example, would be easy to trace.The per-

petrator would need to use an SMS service that would not

expose his/her identity.

Response. In addition to legal tools available to law en-

forcement to trace SMS messages, a GSM modem could be

detected using a Software-Defined Radio.

0 50 100 150 200 250 300

Time (seconds)

-80

-70

-60

-50

-40

R
S

S
I

D
is

p
e
n

se
r

o
p

e
n

e
d

E
n

te
r

st
a
ti

o
n

Figure 12: Opening of the gas pump enclosure results in a

significant jump in observed Bluetooth signal strength from

a skimmer.

5.5 Attacker Bottlenecks

The attacker (skimmer installer) has several practical ways to

evade detection using Bluetana. Each of these, however , has

an additional cost to the attacker in terms of effort, risk expo-

sure, or expertise. We do not yet have a strong understanding

to which of these costs attackers are most sensitive. Indeed,

the very low price of stolen credit card numbers, compared

to their potential cash out value (Table 1) suggests that the

bottleneck in the carding value chain is not getting card in-

formation but cashing out cards. Thus, while Bluetana may

raise the cost for attackers, we do not believe that it will raise

it so much as to make fuel dispenser skimming unprofitable.

6 Operational Lessons Learned

While performing the Bluetana study, we learned several

lessons about the operational use of Bluetooth scanning for

skimmer detection. In this section, we provide an overview

of two most important lessons we learned.

6.1 Bluetooth Helps During Inspections

Criminals hide skimmers in the crevices of gas pumps to

avoid detection during inspections. We witnessed several

instances where investigators were unable to locate skim-

mers via physical inspection alone. In one incident, Blue-

tana flagged four devices at a station; however, no skimmers

were located. This result led officials more experienced in

skimmer recovery to perform a second thorough inspection

of the station. These officials located all four skimmers. The

evidence provided by Bluetana forced them to continue the

inspection, instead of abandoning it and leaving the devices

in the field.

Figure 12 demonstrates an instance of how the signal

strength measurements helped inspectors determine which

pump had a skimmer. When the gas pump’s metal door was

opened, the signal strength increased significantly, prompt-

ing inspectors to look carefully for the skimmer in that pump.

384 28th USENIX Security Symposium USENIX Association

Group

1 2 3 4 5

Skimmers 3 5 6 4 3

Gas stations 2 2 5 4 2

Min. difference in MACs 1 4 9 10 4

Closest MAC distance (in miles) 0 17 59 203 448

Table 5: Several geographically separated skimmers had

similar MAC addresses.

6.2 MAC Addresses May Indicate the Source

Network equipment vendors (e.g., Bluetooth module man-

ufacturers) tend to allocate MAC addresses sequentially by

production time [34]. Therefore, if two devices have sim-

ilar MAC addresses, they are likely part of the same batch

of devices sold. This information can be used to associate

skimmer Bluetooth modules to the same board designer or

crew.

We group the skimmers found by Bluetana with the same

first 5 bytes of MAC address. Table 5 shows five such

groups. We list the difference in MAC address and the ge-

ographic distance between the closest MACs in each group.

Skimmers in group 1 and 2 were recovered at gas stations in

the same county, separated by at most 17 miles. From LE

sources, we know that criminals often plant skimmers across

multiple stations in a given city/county, and the MAC ad-

dress data collected indicates this. Groups 3-5 are the most

interesting, as the closest MACs in the same group are in sta-

tions across different counties. The closest MACs in group

5 are at stations separated by 448 miles. This may seem

surprising, but LE informs us that skimmer crews avoid de-

tection by migrating from city to city.

7 Related Work

Skimmer Detection and Prevention. In recent work,

Scaife et al. surveyed gas pump skimmer detection and pre-

vention mechanisms [46]. They found that several popular

Bluetooth-based skimmer detection applications use a only

MAC prefix or device name matching. The results of our

study show how the Bluetooth profile of skimmers in these

applications can be improved to detect more skimmers, and

to flag fewer legitimate devices as skimmers. We also find

that Bluetooth-based scanning is an effective way to aug-

ment manual gas pump inspections. Scaife et al. also in-

troduced SkimReaper [47], an effective tool for detecting

external skimmers. SkimReaper is a credit-card shaped de-

vice that an official can swipe in a card reader to detect if

the reader has an additional read head: indicating that the

reader has an external skimmer attached to it. However,

SkimReaper can not detect internal skimmers because they

do not add an additional read head. Additionally, the PCI

Security Standards Council have released guidelines for pre-

venting external skimming [41]. Criminals may start using

Bluetooth to retrieve card data from external skimmer. If

they do, we demonstrate that Bluetooth scanning can aug-

ment these existing external skimmer detection and preven-

tion methods.

Bluetooth. Prior work has evaluated the effectiveness of

Bluetooth scanning for detecting and localizing Bluetooth

devices. They found that Bluetooth signal strength (mea-

sured by an Android smartphone) is effective for localizing

Bluetooth devices [32, 57]. This work inspired us to use sig-

nal strength to detect if a Bluetooth device appears to be in-

stalled inside of a gas pump. Previous studies also examined

how long it takes to detect a Bluetooth device from stationary

observers and moving vehicles. They found that Bluetooth

devices are often detected in less time than the Bluetooth

standard suggests [39, 43, 24]. This work supports our find-

ings that skimmers are often discovered within the first few

seconds of passing by a gas station.

Inventory Attacks. Prior work has demonstrated that user

privacy can be violated by inspecting the characteristics of a

user’s device [58]. These so called inventory attacks have

been demonstrated for Bluetooth Low-Energy, RFID, and

even web browsers [54, 55, 23]. Our work demonstrates a

Bluetooth-based inventory attack against malicious devices,

can be used to protect the privacy of consumers.

8 Future Work and Conclusion

As new skimmer detection tools gain popularity, criminals

will adapt skimming designs to evade detection. We ex-

pect future skimmers will use techniques such those de-

scribed in Section 5. Similar to Bluetana, future work in this

area should emphasize designing easy-to-deploy systems for

detecting skimmers, and evaluating their effectiveness with

large-scale studies.

Push-back from banks and card issuers has led to wide-

scale adoption of EMV in retail PoS systems. However,

EMV adoption in gas stations across the U.S. has been slow

due to high costs. Therefore, Visa and Mastercard have

pushed the EMV adoption deadline for gas stations from

2017 to October 2020 [22]. As gas stations begin migrating

to EMV, skimmers targeting EMV will become more com-

mon. Future research should focus on the detection of EMV

“shimmers” that are gaining in popularity.

Finally, we believe gas pump skimming is the harbinger of

an era of attacks using wireless implants. For example, there

is an internal Bluetooth-based implant for unlocking door ac-

cess control systems [14]. Future work should also identify

other systems that are vulnerable to using such implants.

In this paper, we presented results of a 19-month long

measurement study of Bluetooth scanning as a mechanism to

detect internal gas pump skimmers. Our evaluation showed

USENIX Association 28th USENIX Security Symposium 385

that Bluetooth characteristics of some internal skimmers

can be distinguished from other Bluetooth devices com-

monly seen at gas stations. We detected, and LE recov-

ered, 64 skimmers at 34 gas stations across four states in the

U.S. For 33 of the detected skimmers, Bluetana was the only

source of information that prompted investigators to conduct

an inspection. In conclusion, crowdsourced Bluetooth scan-

ning is an effective way to detect Bluetooth-based internal

gas pump skimmers.

9 Acknowledgements

We would like to express our appreciation for the local and

federal law enforcement agents who introduced us to gas

pump skimming and guided us throughout this project. We

also thank the Kevin Allen, and the field investigators at the

Arizona Department of Agriculture, Weights and Measures

Services Division, for their invaluable help in understand-

ing and analyzing the skimming problem in Arizona. We

also thank the Sacramento County Sheriff’s Detectives Sean

Smith and Matt Deaux, both are assigned to the Sacramento

Valley Hi-Tech Crimes Task Force, for their help in under-

standing gas pump skimming in depth. We are also very

grateful to the various individuals who drove to gas stations

in several states and collected Bluetooth scan data. We also

thank our shepherd Joseph Calandrino, and the anonymous

reviewers for their insightful feedback and suggestions.

References

[1] Arizona Department of Agriculture, Weights and Measures

Service Division . Data Skimmers in Motor Fuel Dispensers.

https:

//agriculture.az.gov/sites/default/files/Skimmer%

20Presentation%20%28Website%20Edition%29.pdf, Sept.

2017.

[2] Nate Seidle . Gas Pump Skimmers . https:

//learn.sparkfun.com/tutorials/gas-pump-skimmers,

Sept. 2017.

[3] Nick Poole . Credit Card Skimmers Evolved: Shimming .

https://www.sparkfun.com/sparkx/blog/2673, Apr.

2018.

[4] Office of Minnesota Attorney General Keith Ellison . ATM

and Gas Pump Skimmers . https://www.ag.state.mn.us/

Brochures/pubATMSkimmers.pdf.

[5] Rippleshot . State of Card Fraud: 2018.

https://www.aba.com/Products/Endorsed/Documents/

Rippleshot-State-of-Card-Fraud.pdf, 2018.

[6] United States Sentencing Commission . Guidelines Manual .

https://guidelines.ussc.gov/gl/%C2%A72B1.1, 2018.

[7] Affidavit in Support of Criminal Complaints and Arrest

Warrants, USA v. Khasanov et al, 1:18cr149. US District

Court for the Eastern District of Virginia.

https://www.courtlistener.com/recap/gov.uscourts.
vaed.385830/gov.uscourts.vaed.385830.2.0.pdf, Jan.

2018.

[8] Appeal from the US District Court for the Eastern District of

Oklahoma, USA v. Konstantinov et al, 6:13cr62. United

States Court of Appeals for the Tenth Circuit. https:

//www.ca10.uscourts.gov/opinions/14/14-7050.pdf,

June 2015.

[9] Application for Search Warrant, 2:18mj1277. US District

Court for the Eastern District of Wisconsin.

https://www.courtlistener.com/recap/gov.uscourts.

wied.84529/gov.uscourts.wied.84529.1.0.pdf, July

2018.

[10] Arizona Department of Agriculture. Credit Card Skimmers.

https://agriculture.az.gov/weights-

measures/fueling/credit-card-skimmers, Feb. 2019.

[11] K. Arnold. Florida gas pump thefts rise as credit-card

skimmers get more savvy. https:

//www.orlandosentinel.com/business/consumer/os-

bz-credit-card-skimmers-20181108-story.html, Nov.

2018.

[12] ATM Industry Association. Global Fraud and Security

Survey - 2017.

https://www.ncr.com/company/blogs/financial/how-

much-does-atm-crime-cost, Jan. 2018.

[13] H. Bar-El. White Paper: Known Attacks Against Smartcards.

Technical report, Discretix Technologies Ltd., 2005.

[14] M. Bassegio and E. Evenchick. Breaking access controls

with BLEKey. https://www.blackhat.com/docs/us-

15/materials/us-15-Evenchick-Breaking-Access-

Controls-With-BLEKey-wp.pdf, Aug. 2015.

[15] M. Bond, O. Choudary, S. J. Murdoch, S. Skorobogatov, and

R. Anderson. Chip and Skim: Cloning EMV Cards with the

Pre-play Attack. In Proc. IEEE Symposium on Security and

Privacy. IEEE, 2014.

[16] Criminal Complaint, USA v Cristea et al, 4:16cr182. US

District Court for the Southern District of Texas.

https://www.courtlistener.com/recap/gov.uscourts.

txsd.1357299.1.0.pdf, Apr. 2016.

[17] D. Cross, J. Hoeckle, M. Lavine, J. Rubin, and K. Snow.

Detecting non-discoverable bluetooth devices. In

International Conference on Critical Infrastructure

Protection, pages 281–293. Springer, 2007.

[18] The Ultimate Instore Carding by n3d from Darknet.

http://wickybay.com/2017/10/ultimate-instore-

carding-n3d-darknet/.

[19] DbaseJob. Carding!!! How To Make Your First Money.

https://prvtzone.ws/threads/carding-how-to-make-

your-first-money.5052/#post-20315.

[20] Tutorial Carding with Dumps.

https://honeymoney24cc.com/cardingwithdumps.

[21] CC Dumps Shop. https://dumps.to/, Feb. 2019.

[22] Electronic Transactions Association. ETA Statement on Visa

and Mastercard’s EMV Liability Shift Date Changes.

https://www.electran.org/eta-statement-on-visa-

and-mastercards-emv-liability-shift-date-

changes/, 2016.

386 28th USENIX Security Symposium USENIX Association

 https://agriculture.az.gov/sites/default/files/Skimmer%20Presentation%20%28Website%20Edition%29.pdf
 https://agriculture.az.gov/sites/default/files/Skimmer%20Presentation%20%28Website%20Edition%29.pdf
 https://agriculture.az.gov/sites/default/files/Skimmer%20Presentation%20%28Website%20Edition%29.pdf
 https://learn.sparkfun.com/tutorials/gas-pump-skimmers
 https://learn.sparkfun.com/tutorials/gas-pump-skimmers
 https://www.sparkfun.com/sparkx/blog/2673
https://www.ag.state.mn.us/Brochures/pubATMSkimmers.pdf
https://www.ag.state.mn.us/Brochures/pubATMSkimmers.pdf
 https://www.aba.com/Products/Endorsed/Documents/Rippleshot-State-of-Card-Fraud.pdf
 https://www.aba.com/Products/Endorsed/Documents/Rippleshot-State-of-Card-Fraud.pdf
 https://guidelines.ussc.gov/gl/%C2%A72B1.1
https://www.courtlistener.com/recap/gov.uscourts.vaed.385830/gov.uscourts.vaed.385830.2.0.pdf
https://www.courtlistener.com/recap/gov.uscourts.vaed.385830/gov.uscourts.vaed.385830.2.0.pdf
https://www.ca10.uscourts.gov/opinions/14/14-7050.pdf
https://www.ca10.uscourts.gov/opinions/14/14-7050.pdf
https://www.courtlistener.com/recap/gov.uscourts.wied.84529/gov.uscourts.wied.84529.1.0.pdf
https://www.courtlistener.com/recap/gov.uscourts.wied.84529/gov.uscourts.wied.84529.1.0.pdf
https://agriculture.az.gov/weights-measures/fueling/credit-card-skimmers
https://agriculture.az.gov/weights-measures/fueling/credit-card-skimmers
https://www.orlandosentinel.com/business/consumer/os-bz-credit-card-skimmers-20181108-story.html
https://www.orlandosentinel.com/business/consumer/os-bz-credit-card-skimmers-20181108-story.html
https://www.orlandosentinel.com/business/consumer/os-bz-credit-card-skimmers-20181108-story.html
 https://www.ncr.com/company/blogs/financial/how-much-does-atm-crime-cost
 https://www.ncr.com/company/blogs/financial/how-much-does-atm-crime-cost
 https://www.blackhat.com/docs/us-15/materials/us-15-Evenchick-Breaking-Access-Controls-With-BLEKey-wp.pdf
 https://www.blackhat.com/docs/us-15/materials/us-15-Evenchick-Breaking-Access-Controls-With-BLEKey-wp.pdf
 https://www.blackhat.com/docs/us-15/materials/us-15-Evenchick-Breaking-Access-Controls-With-BLEKey-wp.pdf
https://www.courtlistener.com/recap/gov.uscourts.txsd.1357299.1.0.pdf
https://www.courtlistener.com/recap/gov.uscourts.txsd.1357299.1.0.pdf
http://wickybay.com/2017/10/ultimate-instore-carding-n3d-darknet/
http://wickybay.com/2017/10/ultimate-instore-carding-n3d-darknet/
 https://prvtzone.ws/threads/carding-how-to-make-your-first-money.5052/#post-20315
 https://prvtzone.ws/threads/carding-how-to-make-your-first-money.5052/#post-20315
https://honeymoney24cc.com/cardingwithdumps
https://dumps.to/
 https://www.electran.org/eta-statement-on-visa-and-mastercards-emv-liability-shift-date-changes/
 https://www.electran.org/eta-statement-on-visa-and-mastercards-emv-liability-shift-date-changes/
 https://www.electran.org/eta-statement-on-visa-and-mastercards-emv-liability-shift-date-changes/

[23] K. Fawaz, K.-H. Kim, and K. G. Shin. Protecting Privacy of

BLE Device Users. In USENIX Security Symposium, pages

1205–1221, 2016.

[24] J. Haartsen. Bluetooth—The universal radio interface for ad

hoc, wireless connectivity. Ericsson Review, 3(1):110–117,

1998.

[25] Indictment, USA v. Rodriguez et al, 1:17cr417. US District

Court for the Northern District of Ohio.

https://www.courtlistener.com/recap/gov.uscourts.

ohnd.237118.1.0.pdf, Oct. 2017.

[26] Krebs on Security. Skimmers Siphoning Card Data at the

Pump.

https://krebsonsecurity.com/2010/07/skimmers-

siphoning-card-data-at-the-pump/, July 2010.

[27] Krebs on Security. Pro-Grade Point-of-Sale Skimmer.

https://krebsonsecurity.com/2013/02/pro-grade-

point-of-sale-skimmer/, Feb. 2013.

[28] Krebs on Security. Gang Rigged Pumps With Bluetooth

Skimmers.

https://krebsonsecurity.com/2014/01/gang-rigged-

pumps-with-bluetooth-skimmers/, Jan. 2014.

[29] Krebs on Security. Tracking a Bluetooth Skimmer Gang in

Mexico.

https://krebsonsecurity.com/2015/09/tracking-a-

bluetooth-skimmer-gang-in-mexico/, Sept. 2015.

[30] Krebs on Security. ATM ‘Shimmers’ Target Chip-Based

Cards. https://krebsonsecurity.com/2017/01/atm-

shimmers-target-chip-based-cards/, Jan. 2017.

[31] Legitshop. Trusted Dumps with PIN.

https://legitshop.org/, Feb. 2019.

[32] S. Liu, Y. Jiang, and A. Striegel. Face-to-face proximity

estimation using bluetooth on smartphones. IEEE

Transactions on Mobile Computing (TMC), 13(4):811–823,

2014.

[33] D. MacGuill. Can a Mobile Phone’s Bluetooth Sensor Be

Used to Detect Card Skimmers?

https://www.snopes.com/fact-check/bluetooth-gas-

pump-skimmers/, 2019.

[34] J. Martin, E. Rye, and R. Beverly. Decomposition of MAC

address structure for granular device inference. In Proc.

Annual Computer Security Applications Conference

(ACSAC), 2016.

[35] Meccadumps. Buy Dumps CVV online Fullz Verified seller .

https://meccadumps.net/, Feb. 2019.

[36] Memorandum and Order, USA v. Hristov et al, 1:10cr10056.

US District Court for the District of Massachussetts.

https://www.courtlistener.com/recap/gov.uscourts.

mad.127405/gov.uscourts.mad.127405.62.0.pdf, Apr.

2011.

[37] Mettler-Toledo. BC Shipping Scale Service Manual.

https://thescalestore.com/manuals/Mettler-

Toledo-BC-User-Manual-1.pdf, Aug. 2015.

[38] MH Corbin Highway Information Systems. Surface Scan.

http://mhcorbin.com/Portals/0/MH%20Corbin%
20Surface%20Scan%20User%20Manual%20v1.1%20(002)

%20new%20cover.pdf, Jan. 2018.

[39] P. Murphy, E. Welsh, and P. Frantz. Using bluetooth for

short-term ad-hoc connections between moving vehicles: A

feasibility study. In IEEE Vehicular Technology Conference

(VTC), volume 1, 2002.

[40] Everything you need to know about instore carding.

http://wickybay.com/2017/11/everything-need-

know-instore-carding/, Nov. 2017.

[41] PCI Security Standards Council. Skimming Prevention:

Overview of Best Practices for Merchants.

https://www.pcisecuritystandards.org/documents/

Skimming_Prevention_At-a-Glance_Sept2014.pdf,

Sept. 2014.

[42] PCI Security Standards Council. PCI DSS Quick Reference

Guide. https://www.pcisecuritystandards.org/

documents/PCI_DSS-QRG-v3_2_1.pdf, 2018.

[43] B. S. Peterson, R. O. Baldwin, and J. P. Kharoufeh.

Bluetooth inquiry time characterization and selection. IEEE

Transactions on Mobile Computing (TMC), 5, 2006.

[44] PRTSHIP. DUMPS.

https://prtship.com/forums/dumps.6/.

[45] Santander Bank. What is my debit card spending/withdrawal

limit? https:

//customerservice.santanderbank.com/app/answers/

detail/a_id/3713/kw/atm%20withdraw/r_id/102441.

[46] N. Scaife, J. Bowers, C. Peeters, G. Hernandez, I. N.

Sherman, P. Traynor, and L. Anthony. Kiss from a rogue:

Evaluating detectability of pay-at-the-pump card skimmers.

In 2019 IEEE Symposium on Security and Privacy (SP),

pages 1208–1222, Los Alamitos, CA, USA, may 2019. IEEE

Computer Society.

[47] N. Scaife, C. Peeters, and P. Traynor. Fear the Reaper:

Characterization and Fast Detection of Card Skimmers. In

Proc. USENIX Security, 2018.

[48] Scientific Working Group on Digital Evidence. Best

Practices for Examining Magnetic Card Readers.

https://www.swgde.org/documents/Current%

20Documents/SWGDE%20Best%20Practices%20for%

20Examining%20Magnetic%20Card%20Readers.

[49] Sell CVV (CC). https://sellcvvdumps.shop/.

[50] Sentencing Memorandum of the United States, USA v. Aqel,

2:14cr270. US District Court for the Southern District of

Ohio.

https://www.courtlistener.com/recap/gov.uscourts.

ohsd.178108/gov.uscourts.ohsd.178108.47.0.pdf,

Nov. 2015.

[51] Skim Plus (Bluetooth Skimmer Detection).

https://play.google.com/store/apps/details?id=

com.rs.skimplus.beta, 2018.

[52] Teletrac. Teletrac Drive User Guide. http://community.

teletrac.com/teletrac.com/assets/2014-04-

23_android%20tablet%20user%20guide.pdf, Jan. 2014.

USENIX Association 28th USENIX Security Symposium 387

https://www.courtlistener.com/recap/gov.uscourts.ohnd.237118.1.0.pdf
https://www.courtlistener.com/recap/gov.uscourts.ohnd.237118.1.0.pdf
 https://krebsonsecurity.com/2010/07/skimmers-siphoning-card-data-at-the-pump/
 https://krebsonsecurity.com/2010/07/skimmers-siphoning-card-data-at-the-pump/
 https://krebsonsecurity.com/2013/02/pro-grade-point-of-sale-skimmer/
 https://krebsonsecurity.com/2013/02/pro-grade-point-of-sale-skimmer/
 https://krebsonsecurity.com/2014/01/gang-rigged-pumps-with-bluetooth-skimmers/
 https://krebsonsecurity.com/2014/01/gang-rigged-pumps-with-bluetooth-skimmers/
 https://krebsonsecurity.com/2015/09/tracking-a-bluetooth-skimmer-gang-in-mexico/
 https://krebsonsecurity.com/2015/09/tracking-a-bluetooth-skimmer-gang-in-mexico/
https://krebsonsecurity.com/2017/01/atm-shimmers-target-chip-based-cards/
https://krebsonsecurity.com/2017/01/atm-shimmers-target-chip-based-cards/
https://legitshop.org/
https://www.snopes.com/fact-check/bluetooth-gas-pump-skimmers/
https://www.snopes.com/fact-check/bluetooth-gas-pump-skimmers/
https://meccadumps.net/
https://www.courtlistener.com/recap/gov.uscourts.mad.127405/gov.uscourts.mad.127405.62.0.pdf
https://www.courtlistener.com/recap/gov.uscourts.mad.127405/gov.uscourts.mad.127405.62.0.pdf
 https://thescalestore.com/manuals/Mettler-Toledo-BC-User-Manual-1.pdf
 https://thescalestore.com/manuals/Mettler-Toledo-BC-User-Manual-1.pdf
 http://mhcorbin.com/Portals/0/MH%20Corbin%20Surface%20Scan%20User%20Manual%20v1.1%20(002)%20new%20cover.pdf
 http://mhcorbin.com/Portals/0/MH%20Corbin%20Surface%20Scan%20User%20Manual%20v1.1%20(002)%20new%20cover.pdf
 http://mhcorbin.com/Portals/0/MH%20Corbin%20Surface%20Scan%20User%20Manual%20v1.1%20(002)%20new%20cover.pdf
http://wickybay.com/2017/11/everything-need-know-instore-carding/
http://wickybay.com/2017/11/everything-need-know-instore-carding/
https://www.pcisecuritystandards.org/documents/Skimming_Prevention_At-a-Glance_Sept2014.pdf
https://www.pcisecuritystandards.org/documents/Skimming_Prevention_At-a-Glance_Sept2014.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS-QRG-v3_2_1.pdf
 https://prtship.com/forums/dumps.6/
https://customerservice.santanderbank.com/app/answers/detail/a_id/3713/kw/atm%20withdraw/r_id/102441
https://customerservice.santanderbank.com/app/answers/detail/a_id/3713/kw/atm%20withdraw/r_id/102441
https://customerservice.santanderbank.com/app/answers/detail/a_id/3713/kw/atm%20withdraw/r_id/102441
 https://www.swgde.org/documents/Current%20Documents/SWGDE%20Best%20Practices%20for%20Examining%20Magnetic%20Card%20Readers
 https://www.swgde.org/documents/Current%20Documents/SWGDE%20Best%20Practices%20for%20Examining%20Magnetic%20Card%20Readers
 https://www.swgde.org/documents/Current%20Documents/SWGDE%20Best%20Practices%20for%20Examining%20Magnetic%20Card%20Readers
https://sellcvvdumps.shop/
https://www.courtlistener.com/recap/gov.uscourts.ohsd.178108/gov.uscourts.ohsd.178108.47.0.pdf
https://www.courtlistener.com/recap/gov.uscourts.ohsd.178108/gov.uscourts.ohsd.178108.47.0.pdf
https://play.google.com/store/apps/details?id=com.rs.skimplus.beta
https://play.google.com/store/apps/details?id=com.rs.skimplus.beta
 http://community.teletrac.com/teletrac.com/assets/2014-04-23_android%20tablet%20user%20guide.pdf
 http://community.teletrac.com/teletrac.com/assets/2014-04-23_android%20tablet%20user%20guide.pdf
 http://community.teletrac.com/teletrac.com/assets/2014-04-23_android%20tablet%20user%20guide.pdf

[53] The Newnan Times-Herald. Armenian skimmer leader

pleads guilty.

http://times-herald.com/news/2015/06/armenian-

skimmer-leader-pleads-guilty, July 2017.

[54] T. van Deursen. 50 ways to break RFID privacy. In IFIP

PrimeLife International Summer School on Privacy and

Identity Management for Life, pages 192–205. Springer,

2010.

[55] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy.

Fp-Scanner: The Privacy Implications of Browser

Fingerprint Inconsistencies. In Proc. USENIX Security.

USENIX Association, 2018.

[56] VICE. Gangs on the Dark Web: Credit Card Scammers.

https://www.youtube.com/watch?v=jT-jmq8KBw0, June

2018.

[57] Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert.

Bluetooth positioning using RSSI and triangulation methods.

In Consumer Communications and Networking Conference

(CCNC), 2013 IEEE, pages 837–842. IEEE, 2013.

[58] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle. Privacy in

the internet of things: threats and challenges. Security and

Communication Networks, 7(12):2728–2742, 2014.

A Court Cases

The appendix contains excerpts from various public court

documents related to cases of credit card skimming. These

excerpts provide anecdotal data about the monetary impact of the

skimmer problem.

A.1 Cashout Value

USA v. Hristov et al [36]

". . . Bank of America suffered a loss of $33,000 with 36

compromised customer accounts. Citizens Bank suffered a loss of

$91,580 with 74 compromised customer accounts . . . "

USA v. Cristea et al [16]

". . . Altogether, on February 21,2016, FBI surveillance observed

Cristea, Co-conspirator #1, and Co-conspirator #2 go to

approximately 12 different locations, where, according to

CardTronic’s records, they withdrew at least $7,000 from at least

18 First National Bank accounts . . . "

USA v. Khasanov et al [7]

". . . USPS agents thereafter conducted record checks on the

purchased USPS money orders and discovered that 10 of the 57

money orders had been purchased with 5 payment numbers issued

by Citibank . . . "

Date Location of USPS Amount

Aug 4 2017 Waldorf, MD $2,904.80

Aug 7 2017 Washington, DC $1,492.80

Aug 7 2017 McLean, VA $1,400.00

Aug 7 2017 Washington, DC $1,803.20

Aug 7 2017 Hyattsville, MD $792.05

USA v. Aqel [50]

". . . the Probation Officer also notes that the actual loss to victims

was $8,327.58. Id. Similarly, the Probation Officer notes that

while Mr. Aqel possessed 120 stolen credit card numbers, only 23

of those numbers were used to make purchases . . . "

USA v. Rodriguez et al [25]

". . . Between on or about July 7, 2016, and on or about July 20,

2016, Defendant ... attempted to conduct approximately 133 retail

transactions totaling in excess of $27,000 ... using approximately

90 counterfeit access devices re-encoded with credit/debit account

information that were obtained by a skimming device placed on

the point of sale terminal of a gas pump . . . "

Application for Search Warrant, 2:18mj1277[9]

". . . On April 14, 2016, a man (later identified as Estrada) used a

fraudulent Visa credit card and a fraudulent MasterCard to

purchase two $300.00 gift cards from the Kohl’s store . . . "

USA v. Konstantinov et al [8]

". . . In total, the defendants compromised approximately 524 debit

card accounts and made approximately 779 fraudulent

withdrawals, totaling $348,376.80 . . . "

A.2 Credit/Debit cards per skimmer per day

Application for Search Warrant, 2:18mj1277 [9]

". . . On September 9, 2016, an employee at Jilly’s Mobil

. . . reported to Detective Craig Meyer that he had found what

appeared to be a skimmer on pump #8 . . . Detective Meyer

downloaded and exported the data stored on the skimmer taken

from Jilly’s Mobil pump #8. The results showed data for 221

victim credit card accounts . . .

. . . Detective Meyer reviewed the video surveillance footage for

Jilly’s Mobil from September 1, 2016. At 1:38 PM on September

1st, a red Ford Explorer drove to pump 8. The Ford Explorer was

positioned in a manner whereby the opened passenger door

blocked the view of the gas pump by the store employee inside the

Jilly’s Mobil . . . "

388 28th USENIX Security Symposium USENIX Association

 http://times-herald.com/news/2015/06/armenian-skimmer-leader-pleads-guilty
 http://times-herald.com/news/2015/06/armenian-skimmer-leader-pleads-guilty
https://www.youtube.com/watch?v=jT-jmq8KBw0

CANvas: Fast and Inexpensive
Automotive Network Mapping

Sekar Kulandaivel
Carnegie Mellon University
skulanda@andrew.cmu.edu

Tushar Goyal
Carnegie Mellon University
tgoyal1@alumni.cmu.edu

Arnav Kumar Agrawal
Carnegie Mellon University
akagrawa@alumni.cmu.edu

Vyas Sekar
Carnegie Mellon University

vsekar@andrew.cmu.edu

Abstract
Modern vehicles contain tens of Electronic Control Units
(ECUs), several of which communicate over the Controller
Area Network (CAN) protocol. As such, in-vehicle networks
have become a prime target for automotive network attacks.
To understand the security of these networks, we argue that we
need tools analogous to network mappers for traditional net-
works that provide an in-depth understanding of a network’s
structure. To this end, our goal is to develop an automotive
network mapping tool that assists in identifying a vehicle’s
ECUs and their communication with each other. A significant
challenge in designing this tool is the broadcast nature of the
CAN protocol, as network messages contain no information
about their sender or recipients. To address this challenge, we
design and implement CANvas, an automotive network map-
per that identifies transmitting ECUs with a pairwise clock
offset tracking algorithm and identifies receiving ECUs with
a forced ECU isolation technique. CANvas generates network
maps in under an hour that identify a previously unknown
ECU in a 2009 Toyota Prius and identify lenient message
filters in a 2017 Ford Focus.

1 Introduction
Recent efforts have demonstrated numerous vulnerabilities
in automotive networks, particularly those that employ the
CAN communication protocol. Although CAN is the prevail-
ing standard for intra-vehicular communication due to its low
cost and robustness, its broadcast nature has enabled many
exploits initially exposed by the early work of Koscher et
al. [20]. These exploits target the intra-vehicular CAN bus via
either direct physical access [9, 20] or the remote exploitation
of an ECU with existing direct access [26]. For the purpose of
planning their well-known exploit [26], Miller et al. [25] ana-
lyzed the intra-vehicular networks of several vehicles, which
revealed that the 2014 Jeep Cherokee was the “most hack-
able” based on its layout of ECUs. Once the authors gained
access to the CAN via an exploited ECU, they simply had
to discover which ECUs and real physical functions react to
injected messages.

From these anecdotes, we can see that the set of ECUs
and their inter-ECU communication channels determine the
vulnerability of a vehicle’s ECU network. Consequently, we
argue that the automotive security world needs tools similar to
Nmap [21], which are used to map the structure of modern IP
networks. Such mapping tools prove useful in both attack and
defense scenarios, such as identifying potentially malicious
servers, attesting server configurations, and auditing firewalls
by identifying available network connections. Analogously,
with such a tool for scanning a car’s network, we could (1)
discover potentially malicious ECUs inserted through an at-
tacker, (2) attest to the network configuration of ECUs over
time, and (3) identify potential ECUs that are vulnerable to a
recent type of attack (§2).

To aid in these scenarios, an ideal network mapper would
require three main outputs: (1) the transmitting ECU for each
unique CAN message, (2) the set of receiving ECUs for each
unique CAN message and (3) a list of all active ECUs in the
vehicle. To ensure that our network mapper is practical for our
envisioned use cases, we ideally want our tool to be (a) fast
to permit analysis of multiple vehicles at a time and limit the
time a vehicle must be running and (b) inexpensive to avoid
requiring costly equipment such as an oscilloscope or logic
analyzer.

Unfortunately, extracting the necessary information to
map these communication channels requires an unreason-
able amount of effort. In the work by Koscher et al. [20], the
authors analyzed the security of a vehicle’s components by
manually extracting ECUs to isolate and interact with them.
This type of analysis requires significant time and effort or
access to limited or proprietary information [25]. Second,
obtaining vehicles for extended time and with permission to
disassemble is costly and expensive. Considering new model
years and over-the-air update capabilities, the frequency of
analyzing an intra-vehicular network will quickly increase in
time and cost requirements.

A key challenge we face in realizing this vision in practice
is the lack of source information in CAN messages. CAN
messages are “contents-addressed,” i.e. messages are labeled

USENIX Association 28th USENIX Security Symposium 389

based on their data and provide no indication to the message’s
sender. Another significant challenge in mapping a CAN bus
is the broadcast nature of the CAN protocol; we cannot tell
which ECUs have received a message. A CAN message is not
explicitly addressed to its recipients, but a node can indicate
it has correctly received a message (§3).

In this paper, we present CANvas, a system that demon-
strates a fast and inexpensive automotive network mapper
without resorting to vehicle disassembly (§4). Rather than
require physically isolating each ECU, our key insight is to
extract message information by re-purposing two observa-
tions from prior work:

• Identifying message source (§5): Prior work by Cho et
al. [11] state that clock skew is a unique characteristic to
a given ECU and thus build an intrusion detection system
(IDS) that measures this skew from the timestamps of
periodic CAN messages. Using this insight, we envision
a mapper that computes clock skew per unique message
and uses skew to group messages from the same sender.
Unfortunately, due to shortcomings of their approach in
our mapping context, we instead track the clock offset
of two messages over time to determine their source.

• Identifying message destination(s) (§6): In another
prior work [10], the authors propose a denial-of-service
(DoS) attack that exploits CAN’s error-handling protocol
to disable a target ECU. Using this insight, the mapper
could disable all but one ECU via this DoS attack and
observe what messages are correctly received by the
isolated ECU. However, due to shortcomings in their
method w.r.t. our context, we develop a method to force-
fully isolate each ECU and detect which messages the
ECU receives despite the broadcast nature of CAN.

We implement the CANvas mapper on the open-source
Arduino Due microcontroller with a clock speed of 84 MHz
and an on-board CAN controller. We evaluate our mapper
on five real vehicles (2009 Toyota Prius, 2017 Ford Focus,
2008 Ford Escape, 2010 Toyota Prius, and 2013 Ford Fiesta)
and on extracted ECUs from three Ford vehicles. We show
that CANvas accurately identifies ECUs in the network and
the source and destinations of each unique CAN message in
under an hour (§7).

Contributions and roadmap: In summary, this paper
makes the following contributions:
• Designing an accurate message source identification algo-

rithm that tracks a message’s relative clock offset (§5);
• Engineering a reliable message destination identification

method by isolating ECUs with a forced shutdown tech-
nique (§6);

• A real implementation that maps five real vehicles and
extracted ECUs (§7) along with two real examples of mo-
tivating use cases for mapping (§2).

A

D

B

E

C

Untampered network

A

D

B

E

C

F

Maliciously-tampered network
Case 1: Vehicle owner

buys device with
undisclosed CAN access

Case 2: Untrusted
mechanic installs
malicious CAN-

enabled equipment

Figure 1: A network mapper could discover potentially
malicious ECUs from an untrusted party.

After defining the automotive network mapping problem
and describing typical CAN bus setups (§3), we highlight the
challenges of identifying message information via the CAN
protocol and provide an overview of our approach (§4). Fi-
nally, we discuss open issues and limitations (§8) and related
work (§9) before concluding the paper (§10).

2 Motivation
In this section, we discuss motivating scenarios for mapping
in the context of intra-vehicular networks and describe charac-
teristics of an ideal version of this security tool. To guide our
design, we draw an analogy to Nmap [21], a popular network
scanning tool that discovers hosts, services, and their inter-
connections in traditional computer networks. We identify
a number of automotive-specific scenarios to illustrate the
potential benefits of mapping, although this is not meant to
be a comprehensive list.

Malicious ECU discovery: One main feature of Nmap is its
ability to discover hosts, i.e. enumerate devices on the net-
work. In the context of automotive networks, these “devices”
are equivalent to a vehicle’s ECUs. One major automotive
cybersecurity concern (depicted in Figure 1) is the potential
for an attacker to gain access to a physical network and add a
new device [26], which could be a malicious ECU installed by
an untrusted party or even by a vehicle owner who installs a
CAN-enabled device purchased from an untrusted source. For
an attacker that aims to insert this ECU into the network un-
der the guise of a new equipment installation, the ECU could
connect to the existing CAN bus and gain unfettered access
to the CAN. If a defender performs a mapping through the
vehicle’s lifetime, they could verify changes to the network’s
ECUs. We provide an example of this scenario in §7 where
we discover a previously unknown ECU that was installed in
a modified 2009 Toyota Prius.

Continuous network attestation: Another popular use for
Nmap is performing security audits to identify changes to a
network [21]. Where such audits would identify new servers
or a modification in a server’s open ports, an audit in an auto-
motive context could identify changes to the ECUs and their
communication channels. With future over-the-air update ca-
pabilities, automakers will install new firmware or activate

390 28th USENIX Security Symposium USENIX Association

A

D

B

E

Generated network map

A B

E

C

Database map for comparison

Case 1: Missing or
additional ECU(s)

Case 2: Partially-
functioning or mis-
configured ECU(s) D

VS.

Figure 2: A network mapper could compare a generated
map to one found on an online database. Differences
between these maps could identify changes in ECUs

(Case 1) and/or their message configurations (Case 2).

FilterLenient Filter Filter

Instrument Panel
Cluster ECU:

Receives messages
from engine

Engine ECU:
Transmits

messages to
instrument panel

Exploited
Telematics ECU:

Capable of
interrupting any

received message

Message

Figure 3: Assume that only the instrument cluster
should receive messages from the engine. If the exploited
telematics ECU is able to receive engine messages, then
an attacker [10] could shutdown the engine ECU via the

exploited telematics ECU.

different features in an existing vehicle. As the configuration
of the network can change over time, it is necessary for vehi-
cle owners to attest to the vehicle’s expected configuration. If
a user does not own the vehicle over its lifetime as in the mali-
cious ECU discovery scenario, we could implement an online
database where vehicle owners could upload the outputs of
their network maps for comparison against maps generated
from brand-new vehicles. Any differences from the expected
maps could indicate malicious or accidental network changes.

Lenient filter identification: Nmap is often used to perform
port scanning to identify open ports [21], which are potential
vulnerabilities. These “open ports” are analogous to the set
of CAN messages that an ECU is able to correctly receive,
which we refer to as the ECU’s message-receive filter. Now
consider an attacker who aims to target a safety-critical ECU
(e.g. engine ECU) as depicted in Figure 3. If gaining direct
access to the engine ECU proves infeasible, the attacker could
access an ECU that is less critical and potentially has access
to remote networks (e.g. telematics ECU). Using the ECU
shutdown attack as discussed in recent work [10], our attacker
can shutdown the engine ECU by gaining control of the telem-
atics ECU and reprogramming it; the attacker simply needs to
receive a message from the victim ECU to target it. To combat
this, a defender could perform a similar analysis via network

mapping and implement filters that prevent the message from
being received to limit the damage from a potential shutdown
attack. We provide an example of this scenario in §7 where
we discover lenient message-receive filters in a 2017 Ford
Focus.

Goals: In designing a useful automotive network mapper, we
must consider a few requirements that we impose to ensure
practicality in the context of our motivating scenarios:

Fast: First, we want to limit the amount of time a vehicle
(and its ECUs) are turned on. Also, a fast mapping process
will make it more practical for a user to verify the state of their
vehicle’s network after a repair. Considering these reasons,
we aim to achieve a mapping time of under one hour.

Inexpensive: To permit greater access to the mapper, the
mapper should consist of relatively inexpensive components
and should avoid expensive tools, such as oscilloscopes and
logic analyzers. We aim to limit costs to under $100; a low-
cost approach to network mapping will permit more users for
our system.

Vehicle-agnostic: Every vehicle has a different setup of
ECUs on the CAN bus and can employ additional features
of the CAN protocol. For our mapper to be practical, it must
work on many makes and models of vehicles as well as rely
on only standard CAN features.

Minimally-intrusive and non-destructive: One extreme ap-
proach for mapping a vehicle requires physical disassembly,
which is a very intrusive process and requires a great deal of
access to the target vehicle. We should limit this access to
simply connecting to a diagnostics port on the vehicle. If a
CAN bus is not exposed on this port, we describe a method
of getting access to these buses with minimal disassembly in
§8. Additionally, the mapper must not cause any permanent
damage to the vehicle or its network. Any of our methods
can put the network into a non-ideal state (warning lights on,
gear shift disabled, etc.), but as long as restarting the vehicle
undoes any imposed errors, we satisfy this constraint.

3 Problem Overview
In this section, we give a concrete problem formulation for the
network mapper and discuss technical challenges. We preface
with some necessary background on CAN to understand the
overall problem and mapping challenges.

3.1 CAN basics
To better understand the message information we hope to
gain using a network mapper and the associated challenges in
acquiring that information, we first discuss some necessary
background on how the CAN protocol works.

CAN in modern vehicles: All vehicles produced for the
U.S. market in 2008 and after are required to implement the
CAN protocol for diagnostics purposes [4]. Many vehicles
will often employ either one, two or three CAN buses. In the
event of three CAN buses, it is likely that the vehicle has one
bus for powertrain components (engine, transmission, etc.),

USENIX Association 28th USENIX Security Symposium 391

S
O
F

Arbitration ID
R
T
R

I
D
E

r
0

D
L
C

DATA
C
R
C

ACK
E
O
F

I
F
S

As ECUs lose arbitration,
a single transmitter will win

Single arbitration winner transmits its data

ECUs that correctly receive this
message will set the ACK bit

Figure 4: Each CAN frame is transmitted on the bus
bit-by-bit. A single transmitter wins arbitration and will

listen to receiving ECUs during the ACK slot.

one bus for infotainment components (radio, etc.) and another
for body components (door controller, headlights, etc.). These
CAN buses are usually exposed through a vehicle’s On-Board
Diagnostics (OBD-II) port as detailed in §8.

Message broadcast bus: The CAN protocol [13–15, 32,
33] is defined as a message broadcast bus, which means that
ECUs in the network communicate with each other via mes-
sages. These ECUs are connected to a shared network where
all ECUs can receive all transmissions. Due to the nature of
this broadcast bus, it is not possible to send a message to a spe-
cific ECU. In the CAN protocol, after a message is broadcast
to the network, devices that correctly receive this message
will acknowledge their reception.

Typical CAN setup: A typical CAN setup for a vehicle
will grant each ECU with a unique set of IDs and each mes-
sage will be labeled with an ID, which is then transmitted
onto the bus. An ECU will be responsible for a subset of
the message IDs seen in the network, and each message ID
will only be sent by a single ECU. Each message is queued
by a software task, process or interrupt handler on the ECU,
and each ECU will queue a message when the message’s
associated event occurs.

CAN frame format: Each CAN message from an ECU
uses its assigned message ID (interchangeably referred to
as the ID or the arbitration ID), which determines its prior-
ity on the CAN bus and may serve as an identifier for the
message’s contents. These messages are transmitted and re-
ceived at the physical layer by an ECU’s CAN controller as
CAN data frames in the format depicted in Figure 4. The key
fields in the CAN data frame, as relevant to our work, are: the
start-of-frame (SOF) bit, the arbitration/message ID field, the
acknowledgement (ACK) slot and the end-of-frame (EOF)
bits.

All ECUs in the network with a queued message simultane-
ously start to transmit their message at the same time. During
the arbitration ID field, all but one ECU will eventually stop
transmitting based on CAN’s arbitration resolution. Once an
ECU has won arbitration on the bus, it will be the only sender
and transmit the remainder of the CAN data frame until the
ACK slot. During the ACK slot, the transmitter now becomes

Scenario Enum. Src. map Dest. map
Malicious ECU discovery X X

Continuous network attestation X X X
Lenient filter identification X X

Table 1: Mapping requirements for motivating scenarios

a receiver on the bus and all other ECUs in the network that
correctly receive a message will simultaneously send a domi-
nant bit on the network. This slot is then followed by the EOF
and the inter-frame space (IFS).

Message arbitration: To understand how ECUs commu-
nicate on the CAN bus, it is necessary to discuss the CAN
message arbitration process [13–15, 33]. CAN is designed to
support collision detection and bit-wise arbitration on mes-
sage priority to allow higher-priority messages to dominate
the network. The arbitration of these messages is performed
on the message ID field of a data frame, where a lower ID
indicates a higher priority. This priority-based arbitration pro-
cess sets a 0-bit as dominant and a 1-bit as recessive. Since a
0-bit is dominant, a message with a lower ID will get priority
on the CAN bus and will be sent before a message with a
higher ID that is queued at the same time.

3.2 Mapping requirements
Unlike most traditional packet-switched networks, CAN mes-
sages do not have fields that identify the message’s source and
destination(s), which makes the mapping problem difficult.
To develop a mapper that will aid in the motivating scenarios
of §2, we formulate three required outputs for CANvas:

ECU enumeration: The importance of enumerating ECUs
is evident in all of our provided scenarios as seen in Table 1;
enumeration highlights new or absent ECUs. Note that in
all of these scenarios, it is not necessary to know an ECU’s
type (engine, transmission, etc.) or its functionality (fan speed
control, tire pressure sensing, etc.).

Formally, let Ei denote ECU i in a given vehicle that con-
tains n total ECUs that are CAN-enabled. For each Ei in a
vehicle’s set of ECUs, E1:n, the ECU is responsible for sending
a specific set of m messages labeled with a unique arbitration
ID from the set, IEi,1:m. This set of IDs is unique to Ei and no
other ECU in the network should send the same ID. Given
a CAN traffic dump from a vehicle, CANvas’ enumerator
should determine the number of ECUs, n, and differentiate
between them to determine the set of ECUs E1:n for that par-
ticular vehicle.

Message source identification (§5): In the malicious
ECU discovery and continuous network attestation scenarios,
changes to the set of transmitted messages for each ECU can
pinpoint a potentially malicious reconfiguration. This means
that a goal for our mapper is to map each message ID to its
source ECU.

Formally, given a CAN traffic dump from which we extract
the set of uniquely-ID’d messages where l is the number
of total unique message/arbitration IDs and I1:l is the set of

392 28th USENIX Security Symposium USENIX Association

unique IDs, we should be able to determine which ECU Ei
sent each unique message. This step is very closely related
to ECU enumeration; once we know which ECU Ei that an
arbitrary ID I j originates from, we can produce a mapping of
the ID to its source ECU, I j ∈ Ei. Using this mapping, we can
group the IDs with a common source ECU and complete our
enumeration.

Message destination identification (§6): For the continu-
ous network attestation scenario, we want to look for changes
in what messages an ECU correctly receives as this could also
indicate a potentially malicious reconfiguration. This compo-
nent plays an important role in the lenient filter identification
scenario, where an attacker could shutdown an ECU from an
unintended message recipient.

We assume that at least one ECU in the network will cor-
rectly receive each message in the network. Formally, given
the set of l unique IDs, I1:l , from a traffic dump, we should
be able to determine the set of ECUs, E1:k, that correctly re-
ceive a message labeled with an arbitrary I j. The expected
output of this component should be a mapping of an ID to its
destination ECUs, I j,E1:k .

3.3 Challenges in an automotive context

However, to achieve these mapping goals, we encounter two
major challenges to determining the source and destination
ECUs for CAN messages: (a) CAN lacks identifying source
information and (b) CAN implements a broadcast protocol,
which naturally implies that all nodes receive all messages.
We discuss how we approach and solve these challenges in
§5 and §6.

Lack of source information: If a message sent from ECU
Ei has no identifying information, then it is non-trivial to de-
termine that Ei sent the message. Since CAN messages are
considered to be “contents-addressed” [13–15, 33], the value
of the message ID is only related to the message’s data and
priority. In practice, the source ECU has no weight in deter-
mining the chosen arbitration ID for a particular message.

Broadcast protocol: We define destination as an ECU
that correctly receives a message at the CAN controller level.
Unfortunately, determining which ECUs correctly receive a
message is non-trivial as an ECU connected to the CAN bus
cannot detect which of its messages are received by certain
ECUs. The ACK bit itself only indicates that some ECU
has received the message, not which particular ECU(s) have
received it. As multiple ECUs will set the ACK bit when a
message is received, we cannot simply use this ACK bit to
determine the set of ECUs E1:k that receive an arbitrary I j.

4 System Overview

In this section, we provide a high-level overview of the CAN-
vas network mapper.

Record
CAN traffic

Select some
message IDs

Update source
mapping results

Run CANvas
source

algorithm

Perform ECU
enumeration

Identify a
target ECU

Shut down
other ECUs

Inject message IDs
and check if message

correctly received

Update
destination

mapping results

1

2

3

4

5

6

8

9

7

Once all
message IDs
completed

If more
message IDs

Generate full
network map 10

Figure 5: CANvas obtains source mapping results by
step 4. Then, it will enumerate the ECUs in step 5.
CANvas then performs destination mapping and

generates the full map at step 10.

4.1 High-level idea
CANvas mapping overview: We split CANvas into two main
components: (1) a source mapper and (2) a destination mapper.
As detailed in §3, we satisfy our ECU enumeration require-
ment by simply using the output of source mapping. For (1),
we passively collect several minutes of CAN traffic. After
an offline data collection, the source mapper uses the data to
produce a mapping of each unique CAN ID to its source ECU
and subsequently, by grouping IDs with a shared source, a
list of all active source ECUs on the bus. For (2), we interact
with the network directly and perform an online analysis to
determine message destination. CANvas systematically iso-
lates each ECU, which will most likely cause the vehicle to
enter a temporary error state that the user can reset.

User capabilities: We assume that the user has access to
the OBD-II port of the vehicle and can connect the CANvas
mapper directly to the CAN bus with the ability to read and
write to the bus. We also assume that the vehicle even has a
CAN bus and that the standard CAN protocol is implemented,
which most vehicles will reflect [11]. The user should also
be able to transition the vehicle’s ignition switch between the
LOCK, ACC and ON positions as the user will have to reset
the vehicle after each iteration to exit the error state.

Scope and evasion: We assume that the vehicle does not
implement countermeasures that will alter timing of message
transmissions, potentially to prevent intruders from identi-
fying transmitting ECUs. We also assume that the vehicle
cannot identify a maliciously-triggered error and prevent in-
truders from abusing CAN’s error-handling protocol to shut-
down an ECU. The vehicle should not employ an intrusion
detection system capable of preventing an ECU suspension.
We further discuss adversarial evasion and other scenarios for
bus configurations in §8.

4.2 CANvas workflow
The workflow of CANvas involves four major steps seen in
Figure 5:

USENIX Association 28th USENIX Security Symposium 393

1. Data collection: The CAN pins of the OBD-II port provide
access to the frame-level signals and the message-level
data. CANvas will read this traffic for several minutes and
timestamp each received message. From this traffic, we
will obtain the set of unique message IDs observed in the
network and a set of timestamped data for each ID.

2. Source mapping: With the list of all unique message IDs,
the source mapper will extract the timestamped CAN traffic
for each ID and determine which IDs share the same source
as detailed in §5. To do this, we select two message IDs and
run their CAN traffic through our comparison algorithm,
which will determine if the two IDs originate from the
same ECU.

3. ECU enumeration: Using the set of matching ID pairs from
source mapping, the enumerator will simply group pairs
that originate from the same ECU. The output of this step
will be a list of ECUs and associated source IDs.

4. Destination mapping: Using the ECU enumeration output,
the destination mapper will identify the ECUs that correctly
receive a given message ID. CANvas will isolate a target
ECU by performing a shutdown on all other ECUs, which
we discuss in §6. Once an ECU is isolated, we inject all
unique observed message IDs and determine which ECUs
receive the message.

5 ID Source Mapping
In this section, we describe an approach to map each CAN
message to its source.

Intuition: Due to the absence of source information in a
CAN message, we must rely on some uniquely identifying
characteristic that can be tied to a particular ECU. Following
observations from prior work [11, 29] and CAN documen-
tation [2, 14], we consider clock skew as a candidate finger-
printing mechanism. In particular, time instants for in-vehicle
ECUs rely on a quartz crystal clock [14], and we can use the
relationship between these clocks to identify a transmitting
ECU. We first define the following terms considering two
clocks, C1 and C2:
• Clock frequency: The number of cycles per true second,

e.g. if C1 operates at 16kHz, then C1 cycles 16,000 times
every one true second.

• Relative clock offset: The difference in time reported by
C1 and C2, e.g. if C1 reports time t1 of 4.1ms and C2
reports t2 of 4.2ms, their offset OC1,C2 is 0.1 ms. Where
only one clock is denoted for relative offset, the other clock
is the clock of the receiving node.

• Relative clock skew: The difference in clock frequencies
of two clocks, or the first derivative of offset w.r.t. true time,
e.g. if C1 operates at 16kHz and C1 operates at 16.1kHz,
their skew SC1,C2 is 100Hz. Where only one clock is de-
noted for relative skew, the other clock is the clock of the
receiving node.
Two clocks with a relative clock offset of 0 are consid-

𝑨

𝑨

𝑨

𝑨

𝑩

𝑩

𝑩

𝑩

𝑪

𝑪

𝑪

𝑪

𝑫

𝑫

𝑫

𝑫

𝑬

𝑬

𝑬

𝑬

𝟏

𝑩

𝟏

𝑩

𝟐

𝑨

𝟐

𝑨

𝟑

𝑨

𝟑

𝑨

𝟒

𝑫

𝟒

𝑫

𝟓

𝑪

𝟓

𝑪

𝟔

𝑬

𝟔

𝑬

Figure 6: CANvas aims to cluster message IDs with a
similar relative skew or offset.

ered to be synchronized, and two clocks with a nonzero rela-
tive clock skew are said to “skew apart,” or have an increas-
ing relative offset over time [2]. Since the CAN protocol
does not implement a global clock, it is considered to be
unsynchronized as each ECU relies on its own local clock.

Observation 1: The clock offset and skew of an ECU
relative to any other ECU is distinct, thus providing us with
a uniquely identifying characteristic for source mapping.

High-level idea: To map each unique ID to its transmitting
ECU, we break the module into two steps as Figure 6 il-
lustrates: (1) computing either the skew skewf (Ii) or offset
offsetf (Ii) of each ID Ii and (2) then clustering IDs with the
same skew or offset where each cluster denotes a distinct
source ECU, Esrc. This module outputs a mapping of source
ECUs to their set of source IDs. The main input to this module
is a passively-logged CAN traffic dump, which contains en-
tries in the form of (Ii, tIi,n) where Ii is the ID of the message
and tIi,n is the timestamp of the nth occurrence of Ii.

5.1 Prior work and limitations
Cho et al. [11] use clock skew as a means of building an intru-
sion detection mechanism to identify an attack by a malicious
ECU. Specifically, this work uses timestamps of periodically-
received message IDs and posit that IDs with the same skew
originate from the same ECU.

To compute the clock skew of an ID Ii over time, Cho et
al. [11] perform the following steps: (1) compute Ii’s expected
period, µTi , (2) compute the offset, Oi, by subtracting the ex-
pected timestamp (using µTi from the actual timestamp), (3)
take the average of Oi over a batch of N messages, (4) add
Oiavg to an accumulated offset, Oacc, and (5) then compute the
skew, SIi , by taking the slope of Oacc versus time. This work
uses the Recursive Least Squares algorithm to minimize the
errors. After every batch of N messages, Oacc increases by Oi,
where k is the kth batch. From this plot, since Oi should be
constant, their formula for skew w.r.t. batch size sets SIi to:

skewf Cho
i (N) =

kOi

kN
=

Oi

N
(1)

As an extension to this work, Sagong et al. [29] note that the
skew of Equation 1 varies significantly based on N and use

394 28th USENIX Security Symposium USENIX Association

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

A
cc

u
m

u
la

te
d

 C
lo

ck
 O
ff

s
e

t
(s

)

Samples

0x570
0x571
0x572

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100

A
cc

u
m

u
la

te
d

 C
lo

ck
 O
ff

se
t

(s
)

Samples

0x262
0x4C8
0x521

Figure 7: EA transmits IDs 0x570, 0x571 and 0x572 at
the same period and EB transmits IDs 0x262, 0x4C8 and

0x521 at different periods. Above are plots of
accumulated clock offset vs. samples for EA and EB using

the algorithm by Cho et al. [11].

an updated formula for SIi w.r.t. batch size:

skewf Sagong
i (N) = N · kOi

kN
= Oi (2)

Using data from a real vehicle, we now highlight a key
limitation of Equations 1 and 2. Consider Figure 7: (1) EA is
the source of IDs 0x570, 0x571 and 0x572, which share the
same period and (2) EB is the source of IDs 0x262, 0x4C8
and 0x521, which each have different periods. In Figure 7,
we use skewf Cho

i with N = 20 to plot the skew of all six IDs;
skewf Sagong

i produces similar results. We can correctly con-
clude from Figure 7 that the IDs of EA originate from a single
ECU. However, from Figure 7, we will incorrectly conclude
that IDs 0x262, 0x4C8 and 0x521 originate from three sepa-
rate ECUs. Our analysis and experiments shed light on why
these approaches fail–the skew value they compute is period-
dependent.

As such, we update Equations 1 and 2 w.r.t. period T and
batch size N:

skewf Cho
i (N,T) =

kOi

kT N
=

Oi

T N
(3)

skewf Sagong
i (N,T) = N · kOi

kT N
=

Oi

T
(4)

To potentially fix this issue, we can attempt a strawman that
is not dependent on period or batch size.

skewf Straw
i (N,T) = T N · kOi

kT N
= Oi (5)

Ideally, accounting for both batch-size and message-period
(essentially batch-period, NT) using Equation 5 should give
us a unique value that is common only among IDs from the
same ECU. We apply Equation 5 for all Ii of a vehicle, and
we attempt to establish distinct groupings of the computed
skew for each ID, SIi , which would identify which Ii share the
same Esrc.

Unfortunately, this is a difficult task as Ii from the same Esrc
still do not have similar skews. This issue is further demon-
strated as SIi varies across different data dumps or even seg-
ments of a given dump. Upon further inspection, we find that
the measured SIi is affected by the deviation in an ID’s pe-
riod. This deviation in the period, σpi , is attributed to sources
of “noise”, i.e. the period of a given message varies due to
scheduling, queuing and arbitration delay. We also find that
some Ii produce SIi with more deviation than others and pro-
duce widely-varying skew values, thus making our straw-man
solution an unlikely candidate for source mapping.

Observation 2: We need a method of extracting the clock
skew invariant that is: (a) independent of the period of Ii
and (b) robust to noise in the period.

5.2 Pairwise offset tracking

Issue with straw-man: In Equation 5, it is clear that, relative
to the receiver, this “skew” function computes offset rather
than true skew. Following our definitions in §5, a plot of
relative offset over time should either be linearly increasing
or decreasing if there is a nonzero skew between two clocks.
In other words, if the relative skew between an Esrc and the
receiver is non-zero, then we should observe a gradual change
in the offset. However, previous work [11, 29] fails to capture
this change in offset over time.

Relative offset as a unique identifier: As mentioned in §5,
clock offset and skew of an ECU relative to another ECU is
distinct. We must note that the clock offset measured from
one ID, I1, of an Esrc may not be the same as the offset of
another ID, I2, from Esrc. If the initial transmission time of I1
differs from that of I2, the OI1 could not equal OI2 . Rather, the
invariant here is the change in relative offset, ∆OIi ; as the skew
of Esrc relative to the receiver is a constant nonzero value, the
∆OIi will be a constant nonzero as well (the derivative of
offset is skew).

By measuring this change in offset, we can uniquely iden-
tify an Esrc, but we must ensure our method of extracting
this change in offset is (a) robust to a noisy period and (b)
period-independent. To address the issue of noise in the pe-
riod of Ii, pIi , we compute the relative offset between a pair

USENIX Association 28th USENIX Security Symposium 395

0

𝑰𝟏

𝑰𝟐

0

9 18 27 36 45 54 63

7 14 21 28 35 42 49 56 63

Figure 8: Timeline of two message IDs, I1 and I2, that
have periods, p1 = 7ms and p2 = 9ms. Their

hyper-period occurs every 63ms.

of two different IDs denoted by OI1,I2 . By performing this
computation pair-wise, we expect OI1,I2 to have a deviation of
approximately 0 if I1, I2 ∈ Esrc as the sources of noise for I1, I2
should mostly be shared. In reality, this deviation is very close
but not exactly equal to 0; we define a practical threshold for
this deviation in §7.

With a pairwise approach to computing OI1,I2 and the
requirement for a period-independent approach, we face a
new challenge: determining at what point in time to ob-
serve this relative offset regardless of the period of I1 or I2.

Observation 3: Compute offset at the hyper-period of I1
and I2, or the least common multiple of their periods.

Measuring offset at the hyper-period: To guide our algo-
rithm design for computing ∆OI1,I2 over time, we first model
two periodically-transmitted IDs observed on the CAN bus.
Consider two IDs, I1 and I2, from the same Esrc which trans-
mit at a period of p1 and p2, respectively. For example, let p1
be 7ms and p2 be 9ms. For now, we assume that the relative
offset between I1 and I2 is 0. This offset should not change
over time as they originate from the same Esrc. To accurately
compute the relative offset of these two IDs, OI1,I2 , we must
select a time instant when the expected offset should also be
0: the hyper-period of I1 and I2, or the least common multiple
of p1 and p2. As seen in Figure 8, this time instant occurs at
63ms, or the lcm(7,9). Therefore, by computing the differ-
ence between the times reported from I1 and I2 every 63ms,
or the hyper-period of I1 and I2, we can track the value of
relative offset over time. If this relative offset is a nonzero
constant, then the two IDs originate from the same ECU.

With an input of several minutes of timestamped CAN data
to Algorithm 1, we can track relative offset over the timeline
of two message IDs. Note that each timestamp has a noise
component that stems from scheduling, queuing and arbitra-
tion delay. To compare whether two message IDs originate
from the same ECU, we first assume that they are sent by
separate ECUs. The two message IDs, I1 and I2, have periods,
p1 and p2, and they have relative offsets, OI1 and OI2 . We
draw the following relationships between these variables:

Algorithm 1 Pairwise offset tracking

1: function PAIRWISECOMPARE(I1, I2, logI1 , logI2)
2: p1 = bComputeAveragePeriod(logI1)c
3: p2 = bComputeAveragePeriod(logI2)c
4: n = lcm(p1, p2)/p1
5: m = lcm(p1, p2)/p2
6: posI1 = 0, posI2 = 0
7: ∆I1,I2 = []
8: while posI1 < len(logI1) and posI2 < len(logI2) do
9: ∆I1,I2 .append(logI1 [posI1]− logI2 [posI2])

10: posI1+= n
11: posI2+= m
12: return true if σ(∆I1,I2) < threshold else f alse
13: end function

• p2 = l p1, where l is the ratio of the periods.
• OI2 = jOI1 , where if j=1, then both IDs sent by same ECU;

otherwise, they were sent by different ECUs.
• n = ml, where LCM(n,m) = l as depicted in Figure 8.

By computing the difference between every n occurrences
of I1 and every m occurrences of I2, which occurs at the hyper-
period of I1 and I2, we produce the following equation:

OI1,I2 = (mp2 +OI2 + i2)− (np1 +OI1 + i1)

We find that when we average the result of the above equation
across the entire data log, the expected value is 0 if I1 and I2
originate from the same ECU. In reality, this value is close to 0
due to the deviation of a message’s period. From experimental
data, we define a threshold of 1ms for the change in relative
offset, where a value under the threshold will classify the two
IDs with the same source ECU. Using this approach to revisit
the setup described in Figure 7, we correctly conclude that
IDs 0x262, 0x4C8 and 0x521 originate from the same ECU.

Practical challenges: While the above approach is correct,
there are a number of other practical challenges we need to
address to ensure accurate mapping:

1. Large hyper-period: Consider a hyper-period that is
“large”, or on the scale of several minutes, e.g. the hyper-
period of p1 = 980ms and p2 = 5008ms is over 20 minutes.
Since we only extract one relative offset value per hyper-
period, we would need hours of CAN traffic to produce a
valid result. To ensure that our mapper is fast, this length
of traffic log is unreasonable; we want to produce a full
network map in under an hour. Fortunately, with a pair-
wise approach, we can choose to not attempt a comparison
when the hyper-period is large; for example, if we assume
that the Esrc of I1 also transmits another ID, I3, where the
hyper-period of I1 and I3 is small, we can still determine
that I1, I3 ∈ Esrc.

2. Large period deviation, σpi : In early experiments, we dis-
covered messages that had a large measured σpi (we define

396 28th USENIX Security Symposium USENIX Association

large as σpi ≥ 0.1pi) and, at first, assumed that these mes-
sages were either aperiodic or sporadic (aperiodic with a
hard deadline). However, upon closer inspection, we no-
ticed that these messages appeared to be periodic in na-
ture. We observed three different patterns that altered the
measured σpi : (1) the period simply had a large σpi , (2)
periodic messages would occasionally stop transmitting for
some time, and (3) periodic messages were missing their
deadlines. With a large enough σpi , the deviation would
conceal an inconstant ∆OIi and make it difficult to detect a
mismatch. We experimentally find that a σpi greater than
8% of pi results in incorrect outputs. Therefore, CANvas
will choose to test Ii on the following cases when its σpi

is under a defined threshold, which we set to σpi ≤ 0.08pi
from our experiments.

3. Periodic messages that occasionally stop: We find that
some Ii are periodic and will stop transmitting for some
time, causing a measured σpi to be large. To combat this
issue, we only perform pairwise offset tracking when the
given message was actively transmitting. In the event we
compare two Ii that both occasionally stop and there is
no overlap of active transmissions, we then rely on our
pairwise approach to match the Ii to another ID from the
same Esrc.

4. Messages that miss deadlines: For some Ii with a large σpi ,
we observe two different inter-arrival times: pi and 2pi.
When a task on one of the ECUs misses its deadline and
cannot produce a message on time, it will skip that cycle
and transmit during the next cycle [2]. Thus, when a dead-
line is missed, we will observe an inter-arrival time of 2pi.
In this situation, there are two options: (1) perform relative
offset tracking on portions of the log when deadlines are
not missed or (2) interpolate the missed inter-arrival times.
If a message frequently misses its deadline, the first option
is not viable. To interpolate a missed arrival time, we insert
a psuedo-entry in the traffic log with a timestamp equal to
the average of the preceding and the following timestamp.

Factors for mapping time: For source mapping, we experi-
mentally find that 30 minutes of data provides enough samples
for larger hyper-periods to map accurately. While this stage
has static run-time, the variation in time requirements will
be dependent on the number of observed messages IDs. The
more message IDs that exist in the network, the longer the
mapping time takes; vehicles with more message IDs take
longer to complete mapping due to an increase in message-
pairs. However, to further reduce mapping time, mapping
messages with small periods requires much less traffic data.
To save additional time if necessary, it is recommended to
reduce the traffic log length for high-frequency messages.
Also, if there are few large periodic messages or if those mes-
sages are not relevant for whatever reason, the length of the
initial traffic log can be reduced as necessary instead of the
recommended 30 minutes.

𝑬𝑬𝒔𝒓𝒄

S
O
F

Arbitration ID
R
T
R

I
D
E

r
0

D
L
C

DATA
C
R
C

ACK
E
O
F

I
F
S

Single transmitting
source ECU 𝑬𝑬𝒅𝒔𝒕

If single receiving
destination ECU
exists, it will ACK

If no destination ECU,
no ACK is sent and 𝒔𝒓𝒄

will retransmit

Figure 9: Observing ACK bit with single ECU in
network.

6 ID Destination Mapping
The goal of the destination mapping module is to accurately
associate each ID with its set of receiving ECUs. The key con-
sideration here is to maximize the accuracy of our mappings
within our defined time constraint. In this section, we describe
an approach to map each CAN message to one or more desti-
nation ECUs as defined in §4 and then present a systematic
procedure that reliably determines which messages an ECU
correctly receives.

6.1 Problem formulation
Intuition: As defined in §4, the destination(s) of a particular
CAN message are those ECUs who correctly receive a given
message. Despite the broadcast nature of CAN, if an ECU
does not correctly receive a message, it will not set the ACK
bit; however, if other ECUs receive this message, they will
set the dominant ACK bit. Unfortunately, an ACK observed
by the transmitting ECU only means that some active ECU
correctly received the message. Therefore, with multiple ac-
tive ECUs in the network, we cannot identify which ECUs
were the destination for a given message.

Consider the scenario in Figure 9 where there was only
one active destination ECU, Edst , in the network other than
the transmitting source ECU, Esrc. For each message sent by
Esrc, a set ACK bit (performed only by Edst) would indicate
that only one ECU received the message: Edst . Thus, in this
scenario, Esrc could simply inject all possible Ii and detect
which messages have a set ACK bit. The major challenge here
is identifying a method of isolating an Edst and “removing” all
other ECUs from the network. We define the bare minimum
of “removal” as preventing an ECU from participating in the
acknowledgement process.

Observation 4: Our idea for performing this removal is to
transition an ECU into an error-state that prevents it from
setting the ACK bit for any message.

USENIX Association 28th USENIX Security Symposium 397

Error
Active

Error
Passive

Bus-Off

TEC > 127 or REC > 127

TEC < 127 and REC < 127

TEC > 255Reset (automatic
or manual)

Figure 10: CAN transitions between three error states:
error-active, error-passive and bus-off.

We now introduce the error-handling mechanism for CAN
[2, 10], which follows the state diagram in Figure 10. Each
ECU has two error counters: one for errors detected as a
receiver (the Receive Error Counter, or REC), and another for
errors detected as a transmitter (the Transmit Error Counter, or
TEC). The TEC increments much faster than the REC as the
transmitter is more likely to be at fault; the TEC increments
by 8 while the REC increments by 1. If a message is received
correctly, the error counter will decrease by 1. We describe
the three CAN error-states and, under what conditions, the
ECU will transition:

• Error-active: When an error is detected by an ECU in
error-active, it will transmit an active error flag, or 6 domi-
nant bits, that destroy the bus traffic. When either the TEC
or REC increments past 127, the ECU transitions to error-
passive.

• Error-passive: When an error is detected in error-passive,
the ECU transmits a passive error flag, or 6 recessive bits,
that do not destroy the bus traffic. Once the TEC or REC
increases above 255, the ECU goes to bus-off.

• Bus-off: In this state, the ECU effectively removes itself
from the network; it will not transmit anything onto the
bus, including setting the ACK bit.

Thus, it is evident that we can isolate an ECU by transitioning
all other ECUs to the bus-off state.

6.2 Limitations of prior work
Imposing bus-off state: The challenge in transitioning an
ECU to bus-off is to determine what kind of error to produce
and how to produce it. We look to previous work [10] that
aims to shutdown an ECU for the purpose of an attack. The
authors aim to shutdown an ECU by causing an error in
the target ECU. By exploiting the error-handling protocol in
CAN, where bus-off effectively removes an ECU from the
network, they choose to increment the error counter of a target
by causing a bit error. This error occurs when a transmitting

Figure 11: Injecting a fabricated message to impose a
bus-off [10].

ECU reads back each bit it writes; when the actual bit is
different, the ECU invokes an error.

Since only one ECU is expected to win the bus arbitration
as detailed in §2, the authors point out that two winners would
potentially cause a bit error. For example, suppose that the
victim ECU transmits a message with ID 0x262. If the attacker
ECU also transmits ID 0x262 at the exact same time as the
victim, both ECUs will win arbitration. However, to ensure
that the victim has a bit error, the attacker’s message will set
its DLC, or data length count, to 0 (most practical messages
contain at least some data). After a sufficient number of these
attack messages, the victim ECU will transition into the bus-
off state.

The main challenge here is synchronizing the attack mes-
sage with the victim message so they both enter arbitration
simultaneously. Their insight as depicted in Figure 11 is to
inject a message of higher priority around the time when the
victim should transmit. The higher priority message will block
the victim until the bus is idle, where it will then transmit. The
attacker will load its attack message immediately after the
higher priority message is transmitted, thus allowing both the
victim and attack message to arbitrate simultaneously. Since
there is noise in the true transmission time of the victim’s
first attempt at transmitting, there is a chance that the attacker
will need to make multiple attempts to cause an error. The
number of injection attempts needed to cause a single bit error,
κ, is defined as the following where I is a confidence attack
parameter (high parameter value means higher confidence in
attack), σpv is the jitter deviation of the victim’s period, and
Sbus is the speed of the bus in Kbps:

κ =

⌈
2
√

2IσpvSbus

124

⌉
(6)

The authors state that only one of these injections is needed to
cause a bit error if setting I= 3 and at most 2 if setting I= 4,
given that the period deviation is 0.025ms.

Straw-man limitations: Suppose we used the above ap-

398 28th USENIX Security Symposium USENIX Association

…

S
O
F

Arbitration ID
R
T
R

I
D
E

r
0

D
L
C

DATA Error Flag

Read physical signal
and search for target ID

If target ID matches, inject
some dominate bits

Remainder of message breaks
and error flag is transmitted

…

Figure 12: CANvas identifies target message by end of
ID field and injects dominant bits during the DATA field.

proach to cause a bus-off in a real vehicle. Unfortunately,
in sample traffic dumps from two real vehicles, the smallest
deviation that we observed was approximately 0.15ms. Using
the equation given by Cho et al. [10], the number of preceded
message injections per error is 8 when the period deviates by
at least 0.205ms; if 8 injections are required, any successful bit
error would be undone by successful message transmissions.
We look at available traffic logs used in the works by Miller et
al. [24]. For this traffic log, the majority of the messages have
a period deviation over 0.205ms. In other words, assuming
the best case scenario of 0.15ms, we would need to inject at
least 6 higher-priority messages, or preceded messages, for
a bus speed of 500Kbps. Considering that each successful
transmission by the victim ECU decrements the TEC by 1,
we would effectively only increase the TEC by 2 with each
successful attack (instead of the expected 8). Since the major-
ity of messages have a period deviation greater than 0.205ms,
it is highly unlikely to use this method for isolating an ECU.

Observation 5: We need a method of transitioning an ECU
into the bus-off state that is reliable and robust even when
the period deviates by more than 0.025ms.

6.3 Forced ECU isolation
High-level idea: To map each unique ID to its set of destina-
tion ECUs, we break the module into two steps. We repeat
these two steps for all n ECUs in the network. The first step is
to isolate the target ECU and shut off all others by transition-
ing the non-target ECUs to the bus-off state. As there are n
ECUs in the network, we will need to “bus-off” n−1 ECUs
for each ECU, i.e. we will need to perform the bus-off at least
n(n−1) times. Once we isolate an ECU, we then inject the
set of all Ii and observe which messages have a set ACK bit,
thus identifying the set of Ii where the target ECU is an Edst .

Inducing a direct bit-error: Isolating an ECU via the bus-
off method requires a quick and effective approach. Since
we are not limited to operating through the interface of a
CAN controller, we can directly view the CAN frames in
real-time via digital I/O pins. However, since we are using

a microcontroller that operates at the same voltage of the
CAN controller, we do not operate at the true CAN voltage.
Instead, we tap directly between the interface of the Arduino’s
CAN controller and the CAN transceiver, where we can safely
access the bus data. At this junction, we observe that the data
on the line is within the Arduino’s voltage and contains the
full data frame, including SOF, ACK and EOF bits. With this
access to the full data frame rather than just the components
of the CAN message, we can directly induce an error on the
bus and thus achieve the bus-off attack as seen in Figure 12.

Observation 6: By reading the ID of the message in
real-time, we can choose to attack any ID by simply driving
a dominant bit to the CAN transceiver.

Note that the bus-off method requires attacking a message
ID every time it occurs until the ECU enters the bus-off state.
However, in the event that a message has a very long period,
the time to perform the bus-off will not satisfy our speed
requirement. As such, we can employ the result of CANvas’
source mapping component by identifying the ID with the
smallest period per ECU and attacking just that ID. In practice,
we have found that every real ECU we have encountered has
at least one ID that operates under 100ms. Thus, this approach
makes the destination mapping component of CANvas fast.

Determining message receive filter: Now that we can iso-
late a single ECU in the network, we can simply inject all
messages in the observed ID space and determine which mes-
sages are correctly received by the ECU. However, to view
the ACK bit at the network level, which is not visible to the
user, the obvious option is to use a logic analyzer. As this
does not satisfy our requirement for low-cost mapping, we
seek an alternative. We observed that if a message is sent to
a single ECU and it does not correctly receive the message,
the transmitter will re-attempt to send the message until it is
received correctly. As such, if we transmit a message and see
a continuous stream of the same ID from our transmitter, then
we may conclude that the message ID is not received by the
isolated ECU.

Practical challenges of mapping a real vehicle: Since
our approach to destination mapping involves shutting off
multiple ECUs at a time, we encounter a couple of challenges
in a real vehicle setting: (1) ECUs that auto-recover and (2)
ECUs that are persistently active. We now define these sce-
narios and provide a detailed approach to addressing these
practical challenges:

1. ECUs that auto-recover: In our earlier experiments, we
performed a simple experiment to verify the potential of
an isolation method. We attempted to transition all ECUs
in the network to the bus-off state by shorting the CAN bus
pins, which would effectively cause a transmit error for all
ECUs and force them into bus-off. However, after remov-
ing the short, we saw that some CAN messages were still
transmitted onto the network, clearly indicating that some

USENIX Association 28th USENIX Security Symposium 399

ECUs left the bus-off state. We find that these ECUs would
wait a predefined amount of time before re-transmitting
again as these ECUs were critical to the vehicle’s power-
train (engine, hybrid, etc.) [14]. In this situation, we would
transmit a portion of the injected messages onto the bus
and then re-isolate our target ECU when a non-target starts
to transmit again. This approach is only reasonable for
recovery times on the scale of seconds.

2. ECUs that are persistently active: Out of the set of ECUs
that did auto-recover, we also noticed that one ECU seemed
to be persistently active. In other words, there appeared
to be no delay between a transition into the bus-off state
and the next transmission from the ECU. Upon closer
inspection, we found that this ECU would auto-recover
only after 128 occurrences of 11 recessive bits [27]. In
this situation, we must “hold” the bus open by constantly
transmitting false messages from our device to trick the
recovering ECU into thinking that the bus is still active.

Factors for mapping time: For destination mapping, the
run-time is dependent on the number of ECUs and increases
with more ECUs. We acknowledge the potential of long run-
times for vehicles with 70+ ECUs if all were CAN-enabled.
To combat this, we suggest performing the bus-off on the ID
with the smallest period per ECU to reduce the time attributed
to achieving ECU isolation. Also, for our two vehicles, all
observed IDs were active when the vehicle was simply in
ACC rather than ON so there may be no need to crank the
engine per ECU.

7 Evaluation
In this section, we show that CANvas:
1. identifies an unexpected ECU in a ’09 Toyota Prius,
2. identifies lenient message-receive filters in a ’17 Ford Fo-

cus,
3. produces a sound source mapping of two real vehicles and

accurately identifies the source of approximately 95% of
all Ii in the network and a complete destination mapping
with an isolation technique that is 100% reliable,

4. successfully demonstrate our forced ECU isolation on three
extracted ECUs,

5. and produces source mapping of three additional vehicles.
Setup and methodology: Our experimental setup includes
five real vehicles and several synthetic networks to demon-
strate the above benefits. Below is a brief description of the
CANvas hardware implementation, five real vehicles and our
synthetic network of real ECUs:
• Mapping device: To interface with a CAN bus, our map-

ping device consists of three components: an Arduino Due
microcontroller with an 84 MHz clock and an on-board
CAN controller, a TI VP232 CAN transceiver, and a 120Ω

resistor. To gain direct write access to the bus for destina-
tion mapping, we connect a digital I/O pin to the driver
input pin of the transceiver.

• ‘09 Toyota Prius and ‘17 Ford Focus: The Prius contains
eight original ECUs that transmit on a single CAN bus at
500 kbps. The Focus contains eleven original ECUs that
transmit on three CAN buses at varying speeds; as our
model of the Focus is the standard edition, only the high-
speed 500 kbps bus has more than one active ECU. We
obtain ground truth for our experiments by physically tak-
ing apart the car and gaining direct access to the ECUs by
splicing directly into the CAN wires as seen in Figure 13.
We use a paid subscription to both Toyota and Ford’s me-
chanics’ manuals [3, 6] for guidance on disassembly of
vehicle components. Due to the non-destructive design of
CANvas, our interaction does not impose any permanent
errors to the vehicle.

• ’08 Ford Escape, ’10 Toyota Prius and ’15 Ford Fiesta
We obtain CAN traffic from three additional vehicles for
testing only our source mapper, as we did not have per-
mission to inject data. We use data from the ‘09 Prius and
‘17 Focus to partially confirm our source mapping output
without disassembling these vehicles.
• Synthetic networks: To further validate the capability of

our mapper, we perform additional experiments on three
real engine ECUs extracted from a ‘12 Ford Focus, ‘13
Ford Escape and ‘14 Ford Escape.

7.1 Discovering an unexpected ECU
We now describe a real scenario where, in the process of
designing CANvas, we discovered an unexpected ECU in our
Prius. Using the results of our source mapping on the ‘09 Prius
as seen in Table 2, we noticed that there were a total of nine
ECUs when only eight were expected. Even after manually
disconnecting all eight known ECUs, we still observed CAN
traffic, specifically IDs I570−572, coming from a single ECU.
By looking at the history of the vehicle and systematically
disconnecting various systems, we discovered that this ECU
was installed as part of a modification from several years
ago. The Prius had an additional battery installed to grant
it all-electric capabilities, and with the use of the network
mapper, we now know that a new CAN-enabled device was
added. If we took a network map of the vehicle when first
purchased or used an online database as mentioned in §2, we
could easily compare our results with published results and
identify the unexpected ECU. We confirm that these IDs are
new by comparing our IDs to a same-generation Prius [23].

7.2 Identifying lenient filters
As detailed in §2, a real concern for network security is the
ability to shut-down an ECU by simply receiving the target’s
CAN messages. Using the results of CANvas’ destination
mapping, we can identify several instances where an ECU
is expected to only receive messages from a subset of other
ECUs but still receives all other messages. We have found that
all ECUs in the Focus and Prius do not employ any filter on the
receipt of incoming messages. In Ford’s Motorcraft TechInfo

400 28th USENIX Security Symposium USENIX Association

Figure 13: Images of the vehicles we used for ground truth: the 2009 Toyota Prius and the 2017 Ford Focus.

ECU # Source message IDs Actual ECU
A 020, 030, 0B1, 0B3, 0B4, 230, 4C3, 591 Skid control ECU
B 022, 023 Yaw rate sensor
C 025, 4C6 Steering sensor
D 038, 03A, 03E, 120, 244, 348, 527, 528, 529, 540, 5B2, 5C8, 5EC, 602 Hybrid vehicle control ECU
E 039, 3C8, 3CF, 526, 52C, 5CC, 5D4, 5F8 Engine control module
F 262, 4C8, 521 Power steering ECU
G 3C9, 3CB, 3CD Battery ECU
H 553, 554, 57F, 5B6 Gateway ECU
I 570, 571, 572 Unknown ECU

Table 2: 2009 Toyota Prius source mapping output

Service [3], we can see simple diagrams of how the ECUs
communicate as part of the vehicle’s systems. For example,
the Focus’ braking system involves communication between
the instrument panel cluster, the transmission ECU, the body
control ECU and the engine ECU. Now suppose an attacker
takes over the infotainment unit of the Focus, has complete
access to rewrite the ECU’s code and gains the ability to inject
CAN messages as described in §2. The attacker can launch a
bus-off attack and shut-down the transmission ECU simply
because the infotainment ECU receives its messages. It is
evident that these devices need filters on what messages are
received by their CAN controllers.

7.3 Mapping our test vehicles
We now present results and observations from mapping both
the Prius and Focus.

Source mapping results: Using a threshold of 1ms and 30
minutes of traffic collection, we get a false positive rate of
0% for both vehicles, permitting us to get a sound source
mapping output. Out of a total of 59 unique message IDs, our
pairwise timing comparison resulted in 102 matching pairs
for the Prius. By performing a simple grouping of these pairs
as detailed in §5, we get the output as seen in Table 2. While
the majority of the IDs observed on the Prius have a strong
periodic characteristic, we discuss some special cases we
encountered. Most of the messages were under five seconds
except for I57F with a period of 5 seconds and I602 with a

period of 60 seconds. The majority of our messages matched
with multiple IDs from the same ECUs but due to the large
period of I57F and I602, they only had a single match. However,
due to our pairwise approach, we can still map these two
IDs using a shared matching pair as discussed in §5. We
also encounter a few examples of messages that miss their
deadline and wait until the next cycle to re-transmit. For the
Focus, we observe messages that miss their deadlines and
either transmit two messages on the next cycle or drop the
missed message and wait for the next cycle. In these cases,
we simply remove the inter-arrival times that exceed two
standard deviations from the average period and interpolate
for the removed timestamps as discussed in §5.

Destination mapping results: With a CAN bus running
at 500 kbps, we discover that all of the ECUs in the Prius
do not implement any filtering between the network and the
CAN controller. When each ECU is isolated, we see that
all IDs are properly acknowledged by the receiving ECU.
We do observe two ECUs that recover quickly from the bus-
off method, specifically the engine control module and the
skid control ECU. With the other ECUs in the vehicle, it was
sufficient to perform our bus-off once and the ECU would stop
transmitting. For these two ECUs, we selected the smallest
period ID and held the bus open by injecting false messages
to keep the two ECUs from auto-recovering. Additionally,
we discovered that the Focus also do not implement any sort
of filtering for the IDs we observe on the CAN. From these

USENIX Association 28th USENIX Security Symposium 401

findings, we can conclude that attacking via the reception of a
message for these vehicles could prove trivial due to the lack
of filtering between the network and the controller. In general,
the maximum number of manual transitions of the ignition
switch is equal to the number of detected CAN-enabled ECUs
in the vehicle. For the keyless ignition of the 2009 Prius, we
transition the ignition 7 times as two ECUs recover on their
own (the Prius has 9 total CAN-enabled ECUs). For the keyed
ignition of the 2017 Focus, we transition the ignition 7 times
as two ECUs recover on their own (the Focus has 9 total
CAN-enabled ECUs).

7.4 Mapping additional vehicles

Mapping real extracted Ford ECUs: We also obtained
three Ford engine ECUs from a ‘12 Focus, ‘13 Escape and
‘14 Escape. By collecting data from these three ECUs, we
found that they shared the many of the same message IDs and
conclude that they are based off of the same engine controller
configuration. As they all auto-recover, they were prime can-
didates for testing our forced ECU isolation technique.

We use CANvas on three other vehicles to look for data that
seems logical to our findings from the test cars. For the Ford
vehicles, we look for similarities with our extracted engine
ECUs. For the ‘08 Escape, we found a set of IDs that we
believe is the engine ECU and only has a subset of those
found on our extracted ECU. For the ‘15 Fiesta, we also found
a likely candidate for an engine ECU that has more IDs than
our extracted ECUs. Since these vehicles range over three
different Ford generations, it seems logical that the newer
engine ECUs transmit more IDs. Additionally, we find a few
similarities between the ‘09 and ‘10 Prius. We found an ECU
on the ‘10 that is likely to be the skid control ECU, which
has similar IDs to the ’09 Prius. These findings potentially
demonstrate CANvas’ source mapping capabilities.

8 Discussion

Adversarial evasion: For CANvas’ source mapping, an ad-
versary could attempt to modify the timestamps to trick CAN-
vas into thinking that a pair of IDs originate from the same
ECU when in fact the opposite is true, and vice versa. We
acknowledge that an attacker who aims to spoof IDs from an
implanted or compromised ECU breaks the assumption for
message-source analysis. If the attacker performs an active at-
tack (i.e. attack occurs during data capture) or simultaneously
transmits with the spoofed ECU, then IDSes from several pre-
vious works could detect such an attack and thus we did not
perform such experiments. CANvas instead could discover
ECUs that do not actively inject messages but rather change
the ID-ECU source mapping (a new ECU or existing ECU
that sends different IDs). We also make the assumption that
ECUs do not intentionally alter their timing due to the chal-
lenges that arise from scheduling real-time embedded systems.
There are numerous challenges that automakers already face
in achieving reliable and robust scheduling for their vehicles

and any modification to the timing of CAN messages would
add a great amount of complexity to the already complex chal-
lenge of scheduling. Additionally, as our destination mapping
approach deals with the error-handling mechanism, it would
also not be practical to change these basics of CAN.

Avoiding permanent damage: We take care to avoid any
damage to our test vehicles. Even with our active interaction
with the bus in destination mapping, most dash lights that turn
on are simply reset by power cycling the car; it may some-
times be necessary to drive the car for a few minutes so the
ECUs can identify the absence of a real error. After mapping,
all of our vehicles operate with no error codes once the above
steps have been followed. Sometimes, a persistent Diagnos-
tic Trouble Code may exist in the network as indicated by
the Malfunction Indicator Light (MIL, commonly known as
a “check engine light”). To remedy this, a simple OBD-II
scan tool can be used to reset these lights with no harm to
the vehicle. In the event of network communication failure
(e.g. bus-off), manufacturers implement a "limp-home" mode
where ECUs will default to secondary programming and al-
low the vehicle to operate with limited capabilities [7]. It is
possible for the CAN bus to be shorted (effectively causing a
bus-off on all ECUs) during faults, repairs, etc. so this mode
protects the vehicle from our methods. In our experiments,
the engine did not need to be running as all ECUs became
active with the ignition at ACC. However, this may not apply
to all vehicles so it is possible that the ignition will need to
be ON.

Multiple CAN buses: For the typical OBD-II port, the CAN
bus uses pins 6 and 14 on the connector. While many vehicles
only have one CAN bus using these pins, it is possible for
additional CANs to exist. These CAN buses may not be con-
nected and they may employ different bus speeds. Sometimes,
vehicles may also employ a gateway which handles how and
which messages are passed between the various buses for rea-
sons of fault confinement and network security. These CAN
buses are often accessible at the OBD-II port but on different
pins that are vendor optional: pins 3 and 11 and pins 1 and
8/9. In the case that a CAN bus is not exposed to the OBD-II,
it is possible to access this bus by simply removing the door
panel of a car and accessing the connector between the door
assembly and the car body. This connector will likely contain
the unexposed bus, which can be discovered as suggested by
others [30].

Message acceptance filtering: CAN controllers have the
option to employ a programmable acceptance filter where a
message that is received by the controller can either be sent to
the application layer or dropped after the message is received.
It is possible to define message destination as a message that
is “accepted” by an ECU rather than correctly received. This
definition provides finer granularity on message destination
and can prove useful for many other security scenarios; how-
ever, to identify what messages are accepted by an ECU, this

402 28th USENIX Security Symposium USENIX Association

may require vendor-specific methods. For example, in our
experimental setup, we enable a CAN protocol feature called
the overload frame [32]. If a vendor chooses to enable this
feature, an accepted message can be determined by flooding
the bus as fast as possible with a given message ID. When
the receiving ECU gets behind on processing these messages,
it will transmit an overload frame, indicating its acceptance
filter allows the injected message ID; if the ID is dropped,
then no overload frame will be present.

Non-transmitting ECUs: CANvas expects ECUs to transmit
their messages periodically, but it is possible for ECUs to
only activate under certain conditions or simply read from
the network. As all ECUs that receive messages but have the
ability to write to the network must participate in the ACK
process, CANvas’ forced ECU isolation technique can be used
to identify the presence of a non-transmitting ECU. CANvas
should detect these ECUs prior to starting to ensure that the
detected ECUs do not interfere with destination mapping.

9 Related Work
We already discussed several of the key related work with
respect to source and destination mapping. We discuss other
related efforts here.

Automotive attacks: There have been a number of efforts
at demonstrating vulnerabilities of automotive networks, in-
cluding work on injecting messages [20], attacking keyless
entry systems [8, 16, 28], and specific components such as
TPMS [17, 18]. Our work can better inform such attack ef-
forts and defenses by proactively identifying possible attack
channels.

Intrusion detection for automotive: Given the growing
security concerns, related work has also developed intrusion
detection and firewall capabilities akin to traditional networks
(e.g., [11, 19, 22, 29, 31]). Some of these may interfere with
mapping efforts. More generally, however, these may have
blind spots that a network mapper can highlight.

Alternative source identification: We acknowledge previ-
ous efforts that aim to identify message sources [12, 27].
While these efforts may prove valid, they either require many
hours of data or require physical access to the bus for just
source mapping. CANvas permits source mapping using a
passively-recorded timestamped traffic log.

Authentication in CAN: We acknowledge that authentica-
tion for CAN devices may implicitly solve the source map-
ping problem. However, proposed authentication methods are
rarely employed in real vehicles due to either the permanent
addition of new devices or changes to the existing CAN pro-
tocol. Prior work, such as the TCAN system [5], requires the
addition of a new device, access to two locations on the bus
and a static authentication table. CANvas, however, acknowl-
edges that timing characteristics can and will change due to
clock drift. By comparing clock offsets, CANvas does not
rely on static timing characteristics. CANvas does not even

need physical access to the bus for source mapping as we only
require a hardware-timestamped traffic log, and we operate
solely from the OBD-II port without an additional permanent
device.
Other work on ECU fingerprinting: Following initial ef-
forts on fingerprinting [14, 27], other work has improved on
their basic approach by identifying potential pitfalls [11, 12,
29]. As we show in our work, all of these still suffer from
the same limitations in our context as they still assume either
active access to the bus or very long traffic dumps.

10 Conclusions
In this work, we develop CANvas, a fast and inexpensive auto-
motive network mapper. We have released our code and data
under open-source licenses to enable further work in this area.
A natural direction of future work is to add richer functionality,
e.g. identifying the function of an ECU (transmission ECU,
engine ECU, etc.), identifying gateway ECUs that potentially
bridge multiple CAN buses and identifying vendor-specific
message acceptance filters. Future work should also inves-
tigate network mapping on other automotive protocols, e.g.
automotive Ethernet.

Acknowledgements
This work was funded in part by the PITAXVIII PITA award
and the CNS-1564009 NSF IoT award. We gratefully ac-
knowledge support from Technologies for Safe and Efficient
Transportation (T-SET) University Transportation Center.
This work was also supported in part by the CONIX Re-
search Center, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.
We thank the anonymous reviewers and our shepherd Konrad
Rieck for their helpful suggestions.

Availability
This work is made available [1] to encourage the community
to add richer functionality and use CANvas to further the
creation of automotive security tools.

References
[1] Canvas. https://github.com/sekarkulandaivel/

canvas.

[2] Introduction to can. http://www.ti.com/lit/an/
sloa101b/sloa101b.pdf.

[3] Motorcraft info service. https://www.
motorcraftservice.com/.

[4] Obd-ii background information. http://www.obdii.
com/background.html.

[5] Tcan: Authentication without cryptography on
a can bus based on nodes location on the bus.
https://autosec.se/wp-content/uploads/2019/
03/3.-ESCAR-EU-2018.pdf.

USENIX Association 28th USENIX Security Symposium 403

https://github.com/sekarkulandaivel/canvas
https://github.com/sekarkulandaivel/canvas
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
http://www.ti.com/lit/an/sloa101b/sloa101b.pdf
https://www.motorcraftservice.com/
https://www.motorcraftservice.com/
http://www.obdii.com/background.html
http://www.obdii.com/background.html
https://autosec.se/wp-content/uploads/2019/03/3.-ESCAR-EU-2018.pdf
https://autosec.se/wp-content/uploads/2019/03/3.-ESCAR-EU-2018.pdf

[6] Toyota techinfo service. https://techinfo.toyota.
com.

[7] What limp mode is, and why cars use
it. https://repairpal.com/symptoms/
what-is-limp-mode-why-cars-use-it.

[8] Ansaf Ibrahem Alrabady and Syed Masud Mahmud.
Analysis of attacks against the security of keyless-entry
systems for vehicles and suggestions for improved de-
signs. IEEE transactions on vehicular technology,
54(1):41–50, 2005. https://ieeexplore.ieee.org/
iel5/25/30186/01386610.pdf.

[9] Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage, Karl
Koscher, Alexei Czeskis, Franziska Roesner, Tadayoshi
Kohno, et al. Comprehensive experimental analyses of
automotive attack surfaces. In USENIX Security Sympo-
sium, pages 77–92. San Francisco, 2011. http://www.
autosec.org/pubs/cars-usenixsec2011.pdf.

[10] Kyong-Tak Cho and Kang G Shin. Error handling of
in-vehicle networks makes them vulnerable. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1044–1055.
ACM, 2016. https://dl.acm.org/citation.cfm?
id=2978302.

[11] Kyong-Tak Cho and Kang G Shin. Finger-
printing electronic control units for vehicle
intrusion detection. In USENIX Security
Symposium, pages 911–927, 2016. https:
//www.usenix.org/system/files/conference/
usenixsecurity16/sec16_paper_cho.pdf.

[12] Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun,
Jooyoung Park, and Dong Hoon Lee. Identifying ecus
using inimitable characteristics of signals in controller
area networks. IEEE Transactions on Vehicular Technol-
ogy, 67(6):4757–4770, 2018. https://ieeexplore.
ieee.org/iel7/25/4356907/08303766.pdf.

[13] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J
Lukkien. Controller area network (can) schedulability
analysis: Refuted, revisited and revised. Real-Time Sys-
tems, 35(3):239–272, 2007. https://link.springer.
com/article/10.1007/s11241-007-9012-7.

[14] Marco Di Natale, Haibo Zeng, Paolo Giusto,
and Arkadeb Ghosal. Understanding and us-
ing the controller area network communica-
tion protocol: theory and practice. Springer
Science & Business Media, 2012. http:
//citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.512.5543&rep=rep1&type=pdf.

[15] Mohammad Farsi, Karl Ratcliff, and Manuel Barbosa.
An overview of controller area network. Comput-
ing & Control Engineering Journal, 10(3):113–120,
1999. https://ieeexplore.ieee.org/iel5/2218/
17068/00788104.pdf.

[16] Aurélien Francillon, Boris Danev, and Srdjan Capkun.
Relay attacks on passive keyless entry and start
systems in modern cars. In Proceedings of the
Network and Distributed System Security Symposium
(NDSS). Eidgenössische Technische Hochschule Zürich,
Department of Computer Science, 2011. https://
www.research-collection.ethz.ch/bitstream/
handle/20.500.11850/42365/eth-4572-01.pdf.

[17] Abdulmalik Humayed and Bo Luo. Cyber-physical secu-
rity for smart cars: taxonomy of vulnerabilities, threats,
and attacks. In Proceedings of the ACM/IEEE Sixth
International Conference on Cyber-Physical Systems,
pages 252–253. ACM, 2015. https://dl.acm.org/
citation.cfm?id=2735992.

[18] Rob Millerb Ishtiaq Roufa, Hossen Mustafaa,
Sangho Ohb Travis Taylora, Wenyuan Xua, Marco
Gruteserb, Wade Trappeb, and Ivan Seskarb. Security
and privacy vulnerabilities of in-car wireless networks:
A tire pressure monitoring system case study. In 19th
USENIX Security Symposium, Washington DC, pages
11–13, 2010. https://www.usenix.org/legacy/
event/sec10/tech/full_papers/Rouf.pdf.

[19] Min-Joo Kang and Je-Won Kang. Intrusion de-
tection system using deep neural network for in-
vehicle network security. PloS one, 11(6):e0155781,
2016. https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0155781.

[20] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwe-
tak Patel, Tadayoshi Kohno, Stephen Checkoway, Da-
mon McCoy, Brian Kantor, Danny Anderson, Ho-
vav Shacham, et al. Experimental security analy-
sis of a modern automobile. In Security and Pri-
vacy (SP), 2010 IEEE Symposium on, pages 447–
462. IEEE, 2010. http://www.autosec.org/pubs/
cars-oakland2010.pdf.

[21] Gordon Fyodor Lyon. Nmap network scanning: The
official Nmap project guide to network discovery and
security scanning. Insecure, 2009. https://dl.acm.
org/citation.cfm?id=1538595.

[22] Tsutomu Matsumoto, Masato Hata, Masato Tanabe,
Katsunari Yoshioka, and Kazuomi Oishi. A method
of preventing unauthorized data transmission in con-
troller area network. In 2012 IEEE 75th Vehicu-
lar Technology Conference (VTC Spring), pages 1–5.

404 28th USENIX Security Symposium USENIX Association

https://techinfo.toyota.com
https://techinfo.toyota.com
https://repairpal.com/symptoms/what-is-limp-mode-why-cars-use-it
https://repairpal.com/symptoms/what-is-limp-mode-why-cars-use-it
https://ieeexplore.ieee.org/iel5/25/30186/01386610.pdf
https://ieeexplore.ieee.org/iel5/25/30186/01386610.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
https://dl.acm.org/citation.cfm?id=2978302
https://dl.acm.org/citation.cfm?id=2978302
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_cho.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_cho.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_cho.pdf
https://ieeexplore.ieee.org/iel7/25/4356907/08303766.pdf
https://ieeexplore.ieee.org/iel7/25/4356907/08303766.pdf
https://link.springer.com/article/10.1007/s11241-007-9012-7
https://link.springer.com/article/10.1007/s11241-007-9012-7
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.512.5543&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.512.5543&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.512.5543&rep=rep1&type=pdf
https://ieeexplore.ieee.org/iel5/2218/17068/00788104.pdf
https://ieeexplore.ieee.org/iel5/2218/17068/00788104.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/42365/eth-4572-01.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/42365/eth-4572-01.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/42365/eth-4572-01.pdf
https://dl.acm.org/citation.cfm?id=2735992
https://dl.acm.org/citation.cfm?id=2735992
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Rouf.pdf
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Rouf.pdf
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155781
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155781
http://www.autosec.org/pubs/cars-oakland2010.pdf
http://www.autosec.org/pubs/cars-oakland2010.pdf
https://dl.acm.org/citation.cfm?id=1538595
https://dl.acm.org/citation.cfm?id=1538595

IEEE, 2012. https://ieeexplore.ieee.org/iel5/
6238551/6239848/06240294.pdf.

[23] Jérôme Maye and Mario Krucker. Communication with
a toyota prius. https://attachments.priuschat.
com/attachment-files/2017/04/122809_
Communication_with_a_Toyota_Prius.pdf.

[24] Charlie Miller and Chris Valasek. Adventures in automo-
tive networks and control units. Def Con, 21:260–264,
2013. http://illmatics.com/car_hacking.pdf.

[25] Charlie Miller and Chris Valasek. A survey of remote
automotive attack surfaces. black hat USA, 2014:94,
2014. http://illmatics.com/remote%20attack%
20surfaces.pdf.

[26] Charlie Miller and Chris Valasek. Remote exploita-
tion of an unaltered passenger vehicle. Black Hat USA,
2015:91, 2015. http://illmatics.com/Remote%
20Car%20Hacking.pdf.

[27] Pal-Stefan Murvay and Bogdan Groza. Source identi-
fication using signal characteristics in controller area
networks. IEEE Signal Processing Letters, 21(4):395–
399, 2014. https://ieeexplore.ieee.org/iel7/
97/4358004/06730667.pdf.

[28] Irving S Reed, Xiaowei Yin, and Xuemin Chen. Keyless
entry system using a rolling code, February 4 1997.
https://patentimages.storage.googleapis.
com/c3/02/da/89f0cef9c2a9ea/US5600324.pdf.

[29] Sang Uk Sagong, Xuhang Ying, Andrew Clark, Linda
Bushnell, and Radha Poovendran. Cloaking the clock:
emulating clock skew in controller area networks. In
Proceedings of the 9th ACM/IEEE International Con-
ference on Cyber-Physical Systems, pages 32–42. IEEE
Press, 2018. https://dl.acm.org/citation.cfm?
id=3207896.3207901.

[30] Craig Smith. The Car Hacker’s Handbook: A Guide for
the Penetration Tester. No Starch Press, 2016. http:
//opengarages.org/handbook/.

[31] Hyun Min Song, Ha Rang Kim, and Huy Kang
Kim. Intrusion detection system based on the anal-
ysis of time intervals of can messages for in-vehicle
network. In 2016 international conference on in-
formation networking (ICOIN), pages 63–68. IEEE,
2016. https://ieeexplore.ieee.org/abstract/
document/7427089/.

[32] CAN Specification. Bosch. 1991. http://esd.cs.
ucr.edu/webres/can20.pdf.

[33] Ken Tindell, H Hanssmon, and Andy J Wellings.
Analysing real-time communications: Controller area
network (can). In RTSS, pages 259–263. Citeseer,
1994. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.57.5047&rep=rep1&type=

pdf.

USENIX Association 28th USENIX Security Symposium 405

https://ieeexplore.ieee.org/iel5/6238551/6239848/06240294.pdf
https://ieeexplore.ieee.org/iel5/6238551/6239848/06240294.pdf
https://attachments.priuschat.com/attachment-files/2017/04/122809_Communication_with_a_Toyota_Prius.pdf
https://attachments.priuschat.com/attachment-files/2017/04/122809_Communication_with_a_Toyota_Prius.pdf
https://attachments.priuschat.com/attachment-files/2017/04/122809_Communication_with_a_Toyota_Prius.pdf
http://illmatics.com/car_hacking.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://ieeexplore.ieee.org/iel7/97/4358004/06730667.pdf
https://ieeexplore.ieee.org/iel7/97/4358004/06730667.pdf
https://patentimages.storage.googleapis.com/c3/02/da/89f0cef9c2a9ea/US5600324.pdf
https://patentimages.storage.googleapis.com/c3/02/da/89f0cef9c2a9ea/US5600324.pdf
https://dl.acm.org/citation.cfm?id=3207896.3207901
https://dl.acm.org/citation.cfm?id=3207896.3207901
http://opengarages.org/handbook/
http://opengarages.org/handbook/
https://ieeexplore.ieee.org/abstract/document/7427089/
https://ieeexplore.ieee.org/abstract/document/7427089/
http://esd.cs.ucr.edu/webres/can20.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5047&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5047&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5047&rep=rep1&type=pdf

Losing the Car Keys: Wireless PHY-Layer Insecurity in EV Charging

Richard Baker
University of Oxford

richard.baker@cs.ox.ac.uk

Ivan Martinovic
University of Oxford

ivan.martinovic@cs.ox.ac.uk

Abstract

Electric vehicles (EVs) are proliferating quickly, along with
the charging infrastructure for them. A new generation of
charger technologies is emerging, handling more sensitive
data and undertaking more complex interactions, while us-
ing the charging cable as the communication channel. This
channel is used not only for charging control, but will soon
handle billing, vehicle-to-grid operation, internet access and
provide a platform for third-party apps — all with a public
interface to the world.

We highlight the threat posed by wireless attacks on the
physical-layer of the Combined Charging System (CCS), a
major standard for EV charging that is deployed in many
thousands of locations worldwide and used by seven of the
ten largest auto manufacturers globally. We show that de-
sign choices in the use of power-line communication (PLC)
make the system particularly prone to popular electromag-
netic side-channel attacks. We implement the first wireless
eavesdropping tool for PLC networks and use it to observe
the ISO 15118 network implementation underlying CCS, in
a measurement campaign of 54 real charging sessions, using
modern electric vehicles and state-of-the-art CCS chargers.
We find that the unintentional wireless channel is sufficient
to recover messages in the vast majority of cases, with traffic
intercepted from an adjacent parking bay showing 91.8% of
messages validating their CRC32 checksum.

By examining the recovered traffic, we further find a
host of privacy and security issues in existing charging in-
frastructure including plaintext MAC-layer traffic recovery,
widespread absence of TLS in public locations and leakage
of private information, including long-term unique identi-
fiers. Of particular concern, elements of the recovered data
are being used to authorise billing in existing charging im-
plementations.

We discuss the implications of pervasive susceptibility
to known electromagnetic eavesdropping techniques, extract
lessons learnt for future development and propose specific
improvements to mitigate the problems in existing chargers.

Local Site Grid

Charge Point
Operator

Payment
Gateway

Mobility
Provider

Combined Charging System (CCS)

Charge control,
Payment auth.

Local
services

Demand

Tariff

Billing

Payment

Figure 1: Overview of EV charging with V2G and payment
options shown. Solid, blue lines indicate power flow whilst
dashed, black lines indicate communication.

1 Introduction

The rise of electric vehicles (EVs) as a contemporary and fu-
ture transport mechanism has been swift in recent years and
continues to accelerate, helped by prevailing attitudes, tech-
nological advances and notable personalities contributing in
the area. There are already widespread government plans to
eradicate fossil-fuel vehicles in cities [61], states [28] and
countries [9] in the coming years.

As EV technology advances rapidly, the availability of
charging infrastructure has become a challenge for users,
who require access both to private charging points at home
and public ones on longer journeys. The lack of sufficient
charging points is noted as a slowing influence on adoption
of electric mobility [62] and this has prompted endeavours to
expand the infrastructure, both from governments recognis-
ing the potential public good and from competing EV manu-
facturers who understand that having the best infrastructure
makes their vehicles more appealing to purchasers. There
are already multi-billion dollar pulibc deployment plans in

USENIX Association 28th USENIX Security Symposium 407

progress [18] and predictions of worldwide numbers ex-
ceed 50 million chargers by 2025 if private systems are in-
cluded [2].

With several major charging standards in existence, the
race to become the dominant one has reached a fervour in
recent years and a new generation of high-power charging
systems has emerged. But the pressure to achieve rapid ex-
pansion has so often been seen to inhibit secure implementa-
tion. Users demand charging systems that are consistent and
convenient, but with such drive for the adoption of electric
mobility, it is critical that they are also secure. The security
community has raised concerns in the past that standards do
not fully address security and privacy issues [4, 8, 72], as
well as noting vulnerabilities in back-end and payment sys-
tems of earlier charging system deployments [35, 19].

Meanwhile the complexity of developing all the infras-
tructure required for a secured charging network is enor-
mous. As Figure 1 shows, vehicle charging involves inter-
action between the vehicle, the owner, the charger opera-
tor, a payment gateway and the grid regulator. This requires
establishing communication links capable of supporting the
higher-level protocols for this interaction, within a dynamic
and untrusted environment, where many thousands of users
come and go. It also necessitates trust relationships between
all the participants to ensure each is acting legitimately.

In light of the challenges this infrastructure development
faces and the acknowledged side-channel vulnerabilities that
exposed cabling presents, we undertook to investigate the se-
curity of the charging cable communication.

We make the following specific contributions:

1. Demonstrate that the use of powerline communication,
and its specific configuration in CCS, makes systems
particularly vulnerable to EM eavesdropping

2. Develop an eavesdropping system for HomePlug GP
and the ISO15118 PHY-layer

3. Conduct a real-world measurement campaign, demon-
strating the widespread nature of the problem

4. Highlight the potential for privacy violation and user
tracking with existing systems

5. Propose countermeasures to mitigate the capabilities of
an eavesdropper

Our findings are relevant to thousands of chargers across
Europe and North America [29, 67], along with having im-
plications for ongoing deployments both in public locations
and private homes.

2 Background

The availability of EV charging infrastructure is growing
enormously. Early, simple alternating-current chargers are

being superseded by a new generation of charging technolo-
gies that provide greater charging power and advanced func-
tionality. The greater power is provided by the use of direct-
current (DC) charging, allowing an enormous increase in
current delivery over previous alternating-current designs.
Public DC charging stations currently well exceed the 3kW
power levels commonly available in a home, with 50kW sup-
plies plentiful and those providing up to 350kW soon to ap-
pear [30][38]. But the improvements in power are only part
of the benefit of this new generation of technologies. The
communication capabilities are also vital to enable a host of
new uses:

Reactive charging allows a vehicle to vary its charging
process based on electricity price or expected time of depar-
ture.

Automatic billing or “plug-and-charge” allows a vehicle
to authorise billing of its owner for charging, without the
owner explicitly interacting with it. Aside from the obvious
convenience benefit, the same capability also allows the user
to ‘roam’ between charging providers with a seamless expe-
rience as cross-provider billing is handled automatically as
well.

Vehicle-to-Grid (V2G) makes use of bidirectional power
flow to allow the vehicle to deliver energy as well as con-
sume it. As energy prices fluctuate with demand, the vehicle
can either act as a storage battery for a user’s home or sell
energy back to the grid on demand. This can bring economic
benefits for the user and stability improvement for the grid
operator.

External payment is commonly provided by RFID
cards [19], apps that communicate with the charger sepa-
rately or card payment terminals. Additional systems ex-
ist though, for payment through separate providers or via a
blockchain network [64, 74, 6, 26].

Additional services that operate in conjunction with
charging are proposed [47]. In a private environment this
might comprise access to the local network to communicate
with smart-home devices or make use of domestic internet
service and avoid mobile network charges. At public charg-
ing stations site-specific services such as loyalty schemes, to-
vehicle delivery, parking charges or ‘where-have-I-parked’
reminders can operate, with middleware layers to support an
app ecosystem in commercial development [22]. Internet ac-
cess can also be made available for connected vehicles in ar-
eas without mobile network coverage, such as underground
parking complexes.

Examples of each are in production use and deployment is

408 28th USENIX Security Symposium USENIX Association

(a) Two charging cables are used by CCS. The Combo 1 and Combo 2
plugs are dominant in the US and Europe respectively, while other loca-
tions adopt one or the other. DC power is delivered by the large conduc-
tors at the bottom of the plug, meanwhile communication happens over
the Control Pilot and Protective Earth lines (red and blue, respectively).

(b) CCS high-level and low-level signalling share the same communica-
tion lines. The corresponding ISO 15118 PLC and IEC 61851 systems
have their signals superposed at the physical layer. The PLC provides a
standard IP stack for use by charging traffic and other services.

Figure 2: Illustrations of the physical connectors for CCS charging, along with the network stack used for communication.

becoming more widespread. The underpinning communica-
tion mechanisms go beyond indicating presence and readi-
ness to charge, also providing a general-purpose channel for
software operating in the vehicle and charger. Figure 1 shows
the potential extent of communication during charging. The
vehicle can demand current flow, the charger can provide tar-
iff information for reactive charging or reverse current de-
mands for vehicle-to-grid, and the two can interact with ex-
ternal parties for automatic billing or to provide additional
services.

Four major next-generation charging systems exist:
CHAdeMO1, Supercharger2, GB/T 202343 and the Com-
bined Charging System (CCS)4. Each uses the charging ca-
ble for primary communication: CHAdeMO, Supercharger
and GB/T 20234 make use of CAN-Bus, whilst CCS makes
use of powerline communication (PLC).

We examine the CCS standard as it has the most exten-
sive, current functionality (supporting reactive charging, au-
tomatic billing and additional services) and has been adopted
by seven out of the ten largest automobile manufacturers by
production numbers [57]. In addition it is being integrated
by competing manufacturers, such as Tesla [42].

2.1 Combined Charging System (CCS)
The Combined Charging System (CCS) is an amalgamation
of standards governing all physical and logical elements of
the charging infrastructure; from the physical connector to

1An open standard developed by Nissan and dominant in Japan
2A proprietary standard developed by Tesla Motors
3A nationwide standard in China
4An open standard backed by the European Union

the protocols for automated billing. Figure 2a shows the
charging plug, while Figure 2b illustrates the communica-
tions undertaken. The communication between vehicle and
charger is standardised as ISO 15118. This uses powerline
communication (PLC) over the Control Pilot (CP) and Pro-
tective Earth (PE) lines of the charging cable. The PLC
shares the lines with the older IEC 61851 signalling system
for backwards-compatibility reasons, with the signals super-
posed at the physical layer. The specific PLC implemen-
tation is HomePlug GreenPHY (HPGP) [5], a derivative of
the commonplace broadband LAN technologies sold to con-
sumers, that has been modified to support pairing between
devices with no pre-shared key, and to be more robust to
noise. Atop the PLC, ISO 15118 communication provides a
full IP stack to act as the general-purpose channel. The same
standard also defines interactions for identification, authori-
sation, tariff provision and control. Communication persists
throughout the duration of charging and allows charge pa-
rameters to be varied quickly.

CCS provides reactive charging by allowing a charger to
present current and future tariff information to the vehicle,
which can then make charging requests based on a user’s set-
tings. The user may have a price preference or timing con-
straints for when the vehicle should be charged. Contract-
based automated billing is implemented by having a user’s
contract with a charging provider represented by a public-
key certificate stored on the vehicle. A complex public-key
infrastructure (PKI) then allows the vehicle to authenticate
the charger, the charger to validate the charging contract and
the provider to produce verifiable metering receipts. The
same PKI is used to underpin the TLS tunnel for protecting
traffic.

USENIX Association 28th USENIX Security Symposium 409

Competing automated billing approaches do exist how-
ever, that do not use the contract-based approach, nor rely
on the PKI. Blockchain-based payment systems, seeking to
protect the user’s privacy from charging operators, simply
use the communication channel as a building block for their
own service [6, 26]. A system named “AutoCharge” [58]
is also used in some networks [33, 56] to enable automated
billing for even those users whose vehicles do not support
the required certificates. The AutoCharge system is based on
a simplified ISO 15118 use-case [52] that uses only vehicle-
provided identifiers to match the vehicle to a customer record
at the provider.

As there is a general-purpose channel, any IP communi-
cation is supported for additional functionality. Fast internet
access is suggested in the ISO 15118 standard and a selec-
tion of data collection, targeted marketing, on-demand enter-
tainment and third-party app platforms are emerging to take
advantage of this [6, 22].

2.2 CCS Security
Communication security is considered in many of the sys-
tems making up CCS standard; with traffic encryption avail-
able at the PHY layer, TLS at the Transport layer and XML
Security at the Application layer [55, 48].

At the PHY layer, the HPGP PLC network maintains
a shared secret key called the Network Membership Key
(NMK), with ephemeral Network Encryption Keys (NEKs)
rotated periodically. All MAC-layer traffic is encrypted via
AES-128 using the NEK. However, HPGP security is based
upon a private-network model, while EV charging is funda-
mentally a public-network model. To adapt the technology
to the use case, additions were made to HPGP to incorporate
an initial association protocol5, during which the vehicle and
charger verify that they are connected to each other and are
not communicating with the wrong party due to crosstalk on
their communication cable. The determination is known as
Signal-Level Attenuation Characterisation (SLAC) and is il-
lustrated in Figure 3. The protocol involves the vehicle send-
ing a series of sounding messages, for which the charger re-
ports the measured attenuation. If multiple chargers respond
due to crosstalk, the one reporting the least attenuation is se-
lected and communication commences. Once a charger is se-
lected, a Network Membership Key is created by the charger
and used to establish a private network. The key is then sent
to the vehicle in the final CM SLAC MATCH.CNF message of
the protocol. The SLAC protocol can operate in a secure
mode, with mutual authentication and encrypted communi-
cation, but this capability is optional if supported by both
parties. Indeed, despite the availability of this mechanism,
the ISO 15118 standard specifies that SLAC only operates in
its plaintext mode, leaving message security to TLS.

5The comprehensively-named GreenPPEA, or “GreenPHY Plug-in-
electric-vehicle Electric-vehicle-supply-equipment Association”

Vehicle Charger
s = 1 if secure supported t = 1 if secure supported

GreenPPEA
1. Request SLAC

[Secure=s]

2. Confirm SLAC
[Secure=s & t]

3. Exchange Public Keys
if Secure == 1

4. Test Attenuation

5. Report Attenuation

6. Request Network Match

7. Confirm Network Match
[NID, NMK]

Auth.
8. Authenticate

NMK{[KeyType=NEK, NID, Nonce]}

9. Confirm Authentication
NMK{[NID, Nonce, NEK]}

[] = Set of values,

K{} = Encrypted with private key K

Figure 3: An overview of vehicle-to-charger network estab-
lishment in HomePlug GreenPHY. If the secure mode is sup-
ported by both parties and enabled in initialisation then step
3 occurs, allowing the messages in steps 5–7 to be signed
and the one in step 7 also encrypted.

Once a network is established, a TLS connection is only
created under certain conditions. If contract-based auto-
mated billing is used then TLS is required, similarly for the
discovery of additional services, but only when they are ones
defined in the ISO 15118 use cases. When charging is ex-
ternally authorised, no TLS is required for the control traf-
fic [48]. The options for external authorisation are open; in-
cluding RFID cards, mobile-app networks, manual authori-
sation by a charger operator or some other service operat-
ing on the charger. The method need not be external to the
charger, only external to the ISO 15118 scope. For all other
traffic not managed through a standard use case, security is
left to the implementer. In the alternative payment example
of [26], independent IP communication is undertaken com-
pletely outside the scope of ISO 15118 (although secured in
an SSH tunnel in that case).

3 Related Work

The privacy and security issues surrounding EV charging are
the subject of ongoing work; with attempts to devise archi-
tectures that protect each stakeholder [32, 40] and analyses
of the security of upcoming standards [4, 10, 8]. These works

410 28th USENIX Security Symposium USENIX Association

are theoretical in nature, however, and leave aside implemen-
tation issues. They also assume a wireline threat model for
attacks on the vehicle-to-charger communication, discussing
where an attacker must use “a modified cable or an adapter
plug installed on the [charger]” [8]. By contrast, we consider
a wireless threat model that permits deniability on the part of
the attacker.

Practical attacks have been demonstrated on previous-
generation infrastructure, particularly against RFID autho-
risation [35, 19], but require the attacker to clone a user’s
physical token or access debug ports on an unlocked charger.

Since electromagnetic emissions security was brought
from a military discipline into academic study by van Eck’s
work on eavesdropping video displays [68], efforts have
been devoted to studying a wide range of systems [7]. Re-
cent work has focused primarily on extracting secrets from
operating devices [3, 13], although the emissions security
of digital communication systems have been studied in the
context of eavesdropping on RS232 serial devices [66] and
100BaseT ethernet [63], along with use as a covert chan-
nel for USB [39]. While radiated emissions from powerline
communication have been studied from an electromagnetic
compatibility perspective [71], we demonstrate the first prac-
tical wiretap attack using these emissions.

Vehicle tracking using unique identifiers has been studied
in the context of electronic license plates [41], tire-pressure
monitoring systems [46] and vehicular ad-hoc networks [49],
highlighting the impact upon individuals’ location privacy
and inspiring this work on new charging technologies. Prac-
tical attacks have also been demonstrated to wirelessly com-
promise in-vehicle systems [17], to unlock vehicles for theft
via remote keys [70] or passive entry [34, 37] and to misdi-
rect drivers to unwanted locations [73]. These attacks con-
sider an active attacker with different goals to those studied
here and as such could be considered orthogonal to our work.

Energy monitoring has been shown to enable the tracking
of individuals [54] and this has prompted proposals to mask
energy signatures, such as by using rechargeable vehicle bat-
teries [69], which assumes that data about vehicle power flow
cannot be monitored.

4 A Near-Ideal Side-Channel

The underlying principles of electromagnetic (EM) side-
channels are very well-explored and their study has informed
modern security design [7]. Despite this, we describe here
how the use of PLC and its specific arrangement within CCS
exacerbates the vulnerability to EM attacks.

The design of PLC technologies assumes differential sig-
nalling; wherein two identical transmission lines that are
located in close proximity are driven with equal but op-
posite signals, such that those fields largely cancel and
no residual electric field exists. Practical challenges of-
ten break these underlying assumptions for in-home PLC

deployments, leading to EM interference and susceptibility
thereto [71]. Despite EV charging requiring simpler and
more constrained wiring than domestic electrics, these as-
sumptions are still broken in CCS. A design choice to in-
corporate backwards compatibility with an earlier low-power
charging standard led to a PLC circuit design that connects
one transmission line to ground (see Fig. 2b and App. A).
This renders the signalling single-ended instead of differen-
tial. With no inverse field, the charging circuit functions as a
suitable antenna for emissions or interference.

The nature of the PLC waveform itself, however, makes
it ideal for wireless observation and interaction. It can be
seen in Figure 4, operating as a single-ended system along-
side single-ended CAN-Bus communications for compari-
son. The radiated signal represents the gradient of the orig-
inal signal: only the changes in voltage. This introduces a
minor problem for an attacker whenever they wish to ob-
serve and a major one when they wish to inject signals
with constant voltage levels, most notably the square waves
used ubiquitously in digital communication (and in other EV
charging communication based on CAN-Bus). In observa-
tion the static voltage produces no response, so only state
transitions are detectable. The attacker uses these where they
can or hopes for the signal to leak elsewhere in the circuit and
be modulated onto a more easily-observable one [7]. In in-
jection the attacker cannot directly induce the desired static
voltage level and instead must exploit nonlinearities in com-
ponents or undersampling effects in order to synthesize the
signal at the victim [51]. The absence of components to sub-
vert, or the presence of filtering in the target circuit, limit the
attacker’s opportunities.

Broadband PLC technologies predominantly use orthogo-
nal frequency division multiplexing (OFDM); in which the
data are modulated in the frequency domain before con-
structing a time-domain waveform using an inverse Fourier
transform. The resulting, transmitted waveform is a finite
sum of sinusoids and does not exhibit any non-zero static
voltage levels. The observed emissions simply form a
phase-shifted replica of the original signal. The attacker
therefore does not need to make inferences to determine the
original signal from eavesdropped observations, nor predict
what transformations an injected signal will undergo in the
receiver. They need only contend with the characteristics of
the channel itself.

5 Threat Model

While we discuss the channel properties in a bidirectional
sense above, we focus our further investigation and practi-
cal attacks on passive eavesdropping. Testing on deployed
infrastructure restricts us to only passive operation.

The attacker listens to the unintended electromagnetic ra-
diation of the EV charging communication. Their goal is
to eavesdrop on the general-purpose channel established be-

USENIX Association 28th USENIX Security Symposium 411

(a) CAN-Bus. (b) PLC.

Figure 4: Example single-ended signals, with the radiated emissions that result. As the emissions are the gradient of the signal,
the square wave produces only impulses while the OFDM waveform is all but unchanged.

tween the vehicle and the charger; such that they obtain ac-
cess to private data it carries. The attacker can approach
close to the target vehicle and charger but cannot modify
or interfere with the equipment. They perform their attack
either in-person from a nearby location, or by situating a de-
vice at the site and leaving it unattended.

We justify this model on the basis of deniability and ac-
cess. Interfering with a vehicle or charger is an immediately
suspicious activity that would draw attention from the owner,
people nearby and operators reviewing CCTV footage. The
charging equipment is also handled regularly by drivers, so a
cable modification or plug insert is more likely to be noticed.
By contrast parking near another vehicle at a public station
or briefly visiting a private property appear to be benign ac-
tions.

6 PLC Eavesdropping Tool

Given the properties described in Section 4, the passive at-
tacker’s task is the same as that of a legitimate receiver;
to maximise the signal-to-noise ratio (SNR) and bandwidth
(BW) of the received signal. In a real setting, additional
complicating factors exist. While the exposed components
are the most obvious targets, any element of the communica-
tion circuit (i.e., charging plug, cabling, vehicle, charger), or
indeed multiple elements, could act as an unintentional an-
tenna(s). The size of the equipment makes potential antennas
physically distant from one another, so it can be difficult to
predict the location that optimises the SNR and BW for each
target. Similarly, electric vehicles and chargers are powerful
electrical devices and even minor imperfections can intro-
duce significant interference levels, which must be suitably

mitigated by careful positioning or filtering.
Exploiting the properties and design choices of CCS, we

developed a tool for wireless eavesdropping of the under-
lying physical layer; a HomePlug GreenPHY (HPGP) net-
work. The tool is applicable to monitoring any HPGP
network as well as network management traffic in Home-
Plug AV and AV2 networks, although the vehicle charging
scenario is particularly beneficial for the reasons discussed
above. The tool is available open-sourced under the MIT
licence6.

The eavesdropping tool broadly resembles a normal
HPGP receiver. While the HPGP standard is public, all com-
patible implementations are proprietary and implemented as
integrated circuits. Our pure-software implementation al-
lowed far greater insight and flexibility during captures how-
ever, particularly for experimenting with different prepro-
cessing steps to improve reception and collecting partial data
that would be discarded by a black-box implementation. The
receiver architecture can be seen in Figure 5. Given that Wi-
Fi shares the same OFDM underpinnings, the overall struc-
ture bears many similarities to a Wi-Fi receiver, albeit dis-
tinct in details to match the HPGP protocol specification.

As the signal processing chain is complicated we describe
it briefly here but elide full details from the main text, pro-
viding them in Appendix B instead. The signal is captured
and digitally filtered to suppress local interference. Mes-
sages, known as PHY-layer Protocol Data Units (PPDUs),
are identified using a power detector and correlation of the
signal preamble against the known preamble structure. As an
OFDM technology, data are represented in individual sym-
bols throughout the Frame Control and Payload sections of

6https://gitlab.com/rbaker/hpgp-emis-rx

412 28th USENIX Security Symposium USENIX Association

Radio

Frame
Detection

Time Sync
CPO, SCO,
Channel

CP & FFT Demod
De-

interleave
FEC

Un-
scramble

Decryption

Key Recovery

.PCAP

V2GTP EXI OCPP

Amp,
Filters etc.

PHY RX

Message FollowingSignal Capture Charging

Database

Figure 5: Architecture of PLC monitoring tool. The signal is captured and prefiltered, before moving through a software
receiver chain to recover messages. The message following behaviour extracts security-relevant data and stores all messages.
Charging traffic can be further processed, while traffic using other protocols will need separate onwards processing.

the PPDU. Once the receiver is time synchronised to the
PPDU, each symbol is processed in turn; with channel es-
timation and frequency offset correction applied before de-
modulation. With complete messages the Turbo Code er-
ror correction is processed to reduce errors and the Cyclic-
Redundancy Check checksums are calculated (a CRC24 for
the Frame Control and a CRC32 for the Payload). The ap-
plication of the Turbo Code decoder is limited in our tool,
owing primarily to the computational cost of the process. A
Turbo Code is intended to be decoded by iterating a proba-
bilisitic decoder over various rearrangements of the received
bits. We use only a single pass of the decoder and its ap-
plication already dominates the message reception time; ex-
ceeding the rest of the software processing chain. As such
we suffer from reduced error-correction performance com-
pared with an arrangement using multiple repetitions. Such
an arrangement could be expected to receive more messages
correctly in all circumstances.

7 Real-World Measurement Campaign

To explore the accessibility of the wireless side channel,
we undertook a data collection campaign with three fully-
electric vehicles: a BMW i3, a Jaguar I-PACE and a Volk-
swagen e-Golf. The campaign comprised over 800 miles of
driving and spanned six major administrative regions of the
UK. A total of 54 unique charging sessions were conducted,
at locations including service stations, highway rest stops,
superstores and hotels.

During charging sessions, we monitored radiated emis-
sions to measure the extent of signal leakage and the ability
of an attacker to eavesdrop it. Where we were able to receive
sufficient emissions we used the tool detailed in Section 6 to
recover the original transmissions and examine the commu-
nication itself. For the majority of our testing we monitored

Figure 6: A composite diagram showing the experiment lay-
out. The five antenna locations are denoted with a dashed ×
symbol.

one vehicle at a time, although we did conduct testing with
multiple vehicles to examine the effects of cross-traffic. Fur-
ther details of the locations and installed hardware are given
in Table 1, while examples can be seen in Figures 7 and 8.
All of the chargers are state-of-the-art at the time of writ-
ing. We tested only public chargers due to their availability,
but equivalent chargers for private use are also on sale [25].
As the chargers were public, we did not modify or interfere
with the equipment in any way. The vehicle, charger and
associated cabling remained entirely untouched. While this
prevented us from injecting messages or capturing ground-
truth via a directly-connected receiver, it was necessary to
conduct a widespread survey of existing infrastructure.

At each site, the vehicle was parked and connected to the
charger for a series of charging sessions7. The receiving an-

7Care was taken to ensure we only observed signals from our own vehi-

USENIX Association 28th USENIX Security Symposium 413

Vehicle

Site Location Type Charger (Operator) i3 I-PACE e-Golf Charge
Sessions

A Oxford Belfry, Oxon. Hotel DBT Dual DC [20] (Polar [14]) 1
B Abingdon, Oxon. Superstore DBT Dual DC [20] (Polar [14]) 1
C Maldon, Essex Superstore ABB Terra 53 CJG [1] (POD Point Open [59]) 1
D South Mimms, Herts. Road services DBT Dual DC [20] (Ecotricity [23]) 1
E Bishops Stortford, Herts. Road services DBT Dual DC [20] (Ecotricity [23]) 1
F Hythe, Kent Road services DBT Dual DC [20] (Ecotricity [23]) 9
G Dover, Kent Superstore ABB Terra 53 CJG [1] (POD Point Open [59]) 10
H Marden, Kent Local garage Chargepoint CPE200 [43] (InstaVolt [44]) 15
I Chatham, Kent Racetrack Chargemaster Ultracharge 500S [12] (Polar [14]) 1
J Ticehurst, Kent Golf club Chargemaster Ultracharge 500S [12] (Polar [14]) 4
K Hawkhurst, Kent Local garage EVTronic QUICKCHARGER [31] (GeniePoint [15]) 2
L Tunbridge Wells, Kent Local garage Efacec QC45 [24] (Shell Recharge [65]) 2
M Hastings, Sussex Local garage EVTronic QUICKCHARGER [31] (GeniePoint [15]) 1
N Milton Keynes, Bucks. Public car park Efacec QC45 [24] (Polar [14]) 5

Table 1: Details of all tested charging locations, across the southern United Kingdom. There were a total of 54 unique charging
sessions. Multiple signal captures were taken during each session; at initialisation, during charging and at shutdown. At sites F
and H, two vehicles were charged and monitored simultaneously.

tenna was placed at various locations to investigate the recep-
tion capabilities. As noted in Section 6, deriving an optimal
attack location beforehand is challenging, so this placement
was exploratory. The locations are illustrated with a dashed
× symbol in Figure 6. Locations near the cable itself, on the
outside of the vehicle, within the vehicle, hidden in a nearby
hedge and on a nearby car were all tested. As each site had
a different layout, Figure 6 is a composite to show the ar-
rangements, rather than a meticulous depiction of any one
site.

The data were collected using a bladeRF software-defined
radio, an RF Explorer Upconverter and a GNU Radio flow-
graph running on a Lenovo Thinkpad X1 Carbon laptop. We
made use of an electrically-short monopole antenna to col-
lect the signal. Owing to the long wavelengths involved,
testing with a suitably-tuned directed antenna was not possi-
ble. The equipment for our experiments cost approximately
$800, although equivalent setups are available for less than
$300. The collected signal was passed through 25dB am-
plification and upconversion (+530MHz) to bring it into the
tunable range of the bladeRF. Initial filtering and packet de-
tection was performed with further GNURadio flowgraphs,
while subsequent processing was implemented using Python
and numPy libraries. We tuned the receiver’s interference-
rejection filter by observation at each site, but left all other
reception parameters constant throughout.

8 Results

In this section we examine the results of our testing in real
environments, both in terms of raw observable signal and
message recovery.

cles. Upon arrival we waited for any other users to leave before capturing
traffic and aborted immediately if another arrived.

8.1 Eavesdropped Communications

Table 2 details the observations for each site. It indicates the
peak signal-to-noise ratio (SNR) over all the sessions, along
with the widest bandwidth (BW) with a positive SNR. It then
lists the count of all PPDUs detected, the number of data
PPDUs, the rate at which messages were well-formed and
the rate at which messages had a correct CRC32 checksum.

Every site displayed some form of unintentional wireless
channel from the PLC communication, with properties that
exceeded our expectations. The weakest signal showed 9dB
from the peak to the background and spanned a bandwidth of
4.5MHz. In the best case 25MHz could be seen, up to a peak
of 35dB. This was true irrespective of charger manufacturer,
indeed varying notably between sites with the same charger
hardware antenna location. This would seem to confirm the
expectation that the site layout and variations in parking have
a substantial impact upon reception.

Figure 9 shows spectrograms of the captured signal at a se-
lection of sites, covering each tested antenna location. Over-
laid on each subfigure is the utilised HPGP spectrum, show-
ing the regions of the band in which transmission occurs. A
transmission will originally have a frequency-domain repre-
sentation that matches the spectral mask, with a peak power
of -50dBm in utilised regions. Apparent power levels up to
approximately -70dBm we observed, although the receiver
was not calibrated against a reference scale so this value is
uncertain. The degradation of signal across the band is clear
in every case; the flat-topped spectral usage of the transmis-
sion is observable as a jagged range with many subcarriers
severely attenuated, particularly at lower frequencies. This
correlates well with studies of the wireline channel that legit-
imate receivers (with a conductive connection) experience,
albeit with a different noise profile [53].

414 28th USENIX Security Symposium USENIX Association

RX% CRC32%Site Antenna Peak SNR
(dB)

BW
(MHz)

Total
PPDUs

Data
PPDUs Bi-direc.? Start? Mean Min Mean Max

A In car 15 6 526 272 99.3 1.1 1.8 3.3
B In car 18 12 1063 567 29.8 0.5 3.3 5.3
C In car 25 14 2976 1819 99.9 46.6 48.1 50.3
D In car 10 12 556 293 88.2 1.4 2.3 3.0
E In car 9 4.5 569 306 100 11.0 11.1 11.2
F In car 21 12 3660 2009 99.3 27.8 36.8 45.8

Bay behind 15 8 1434 1430 99.3 43.5 43.5 43.5
Outside car 10 10 12987 8255 76.2 34.9 46.6 89.5
Two cars 14 11 2449 2274 99.1 24.3 47.5 70.8

G In car 19 12 5837 3670 99.0 51.1 60.3 71.4
Next bay 15 13 4157 2749 99.7 91.8 91.8 91.8
By cable 29 23 23984 17246 80.2 52.9 74.0 99.8

H In car 16 12.5 15052 9362 99.2 69.9 71.0 72.8
Outside car 20 11 16243 10407 99.5 27.7 61.6 80.6
By cable 35 25 19535 14717 92.1 34.2 70.0 92.8
Two cars 15 12 24121 21006 99.6 42.2 71.9 94.8

I In car 20 12 1501 1193 98.0 94.8 97.4 100.0
J In car 20 7 14231 10291 81.0 1.0 33.6 67.9

Outside car 23 7 1084 935 96.0 49.2 49.2 49.2
K In car 8 5 1971 1278 92.5 0.0† 22.0 38.3
L Outside car 8 7 3004 1849 25.8 0.0 0.0 0.0
M In car 20 12 13631 9743 98.8 42.4 64.9 82.5
N In car 24 14 4317 3364 68.3 0.0† 44.5 72.6

Table 2: Eavesdropping results, from all sites and antenna locations. Raw signal properties are quantified as Peak SNR and
Bandwidth. PPDU counts are given and the observance of bidirectional traffic and session startup is indicated. The rates of
well-formed messages are then shown, along with the rates of CRC32 checksum validations. The worst and best performance
for each antenna location is highlighted in bold († indicates joint-worst).

Figure 7: Eavesdropping from the next parking bay (site G),
more than 4 metres away on the other side to the charging
cable. In this arrangement 91.8% of messages were received
successfully.

Figure 8: Two vehicles charging simultaneously. With the
eavesdropper between the two vehicles 42.5% of messages
were received successfully, including the NMK key estab-
lishment for both vehicles.

USENIX Association 28th USENIX Security Symposium 415

(a) Antenna by cable (site H) (b) Antenna in bay behind (site F) (c) Antenna in next bay (site G)

Figure 9: Observed signal across the HPGP bandwidth, at each antenna location. The HPGP spectral mask is overlaid to indicate
the regions in which transmission occurs, although no valid comparison can be made with its power value as the measurement
was not calibrated. Signal degradation and noise ingress is visible in every case, although far more prominently in (b) and (c).

8.2 Effects of Location

While systematic examination of performance by location
was not our goal, we were able to observe trends across
tested antenna positions, with the fidelity of the wireless
channel varying substantially. The closest representation of
the transmitted signal is that shown in Figure 9a, obtained
approximately 0.5m from the charging cable. At other an-
tenna positions the signal loss was more pronounced, both
inside and outside of the vehicle, and in isolated cases the
signal was swamped by interference more than a short dis-
tance from the cabling. Making general predictions about
the channel gain at specific distances is not feasible due to
the low frequencies at which the PLC operates (2 – 28MHz).
Even at 28MHz the wavelength is still 10.7m and so all ob-
servations were taken well within the near field of the trans-
mitter. In this region, common path loss calculations like the
Friis equation [36] are not defined and near-field effects can
change the channel gain drastically from position to position.
Nevertheless, Figures 9b and 9c show the results of tests at
the greatest distances; 4.2m in the latter case when the an-
tenna was positioned by a vehicle in an adjacent parking bay
(shown in Figure 7). Interference is still substantial at these
distances (e.g., everything below 15MHz in Figs. 9b and 9c),
but in the higher reaches of the band signal still easily visible.

The consistency of observed leakage across different
charger hardware indicates that the issue is not isolated to a
single implementation; supporting the claim that the design
choices in CCS make a wireless side-channel for the PLC
communication a systemic problem.

8.3 Message Recovery

With such a clear channel, message recovery proved highly
successful, with hundreds of complete messages captured
even in short sessions. In the best case, at site I, 100.0%

of received messages had correct CRC32 checksums, more
surprisingly 91.8% were still received when the antenna was
located in the next parking bay. Reception rates were broadly
correlated with raw SNR and BW, with improvements to
either benefiting the performance. However this was not
universal, as the very poor performance at sites B and K
shows. Site B showed poor results despite far higher SNR
and BW than Site K. Reception performance is broken down
by location in Table 2, with the lowest minimum and high-
est maximum for each location highlighted in bold. With-
out ground-truth for the number of messages sent by each
party, we cannot determine the number of messages missed
entirely (only those received with errors), although the only
unreported messages would be those that did not even trigger
the packet detection algorithm (see Appendix B). Examin-
ing Frame Control headers showed that traffic was observed
bidirectionally between vehicle and charger in all but two
cases.

As charging stations, at least in public, are busy venues,
we tested whether multiple simultaneous charging sessions
caused interference that affected the wireless channel quality.
Two vehicles (a Jaguar I-PACE and a VW e-Golf) charged
simultaneously in 5 charging sessions at 2 locations, one of
which is shown in Figure 8. In each case, one vehicle ini-
tiated charging first and then the second did so. The eaves-
dropper’s antenna was located between the two vehicles and
attempted to listen to both. In all cases, the eavesdropper
was able to listen to traffic from both vehicles, albeit with
varying success. At worst, 24.3% of messages were received
with correct CRC32, at best 94.8% (mean 59.7%).

9 Security Analysis

In this section we analyse the captured communications and
their security implications.

416 28th USENIX Security Symposium USENIX Association

Raw
Obtain EVID & EV MAC
Monitor all PHY traffic

Contract-based
Identification

External Authorisation

Standard Charging
Learn state-of-charge, charge rate

Reactive Charging
Learn projected departure, tariff preferences

V2G
Monitor power usage of vehicle & building

Alternative Payment
Learn payment provider, or transaction
details for open blockchain payments

Additional Services
Monitor service use, internet activity

Figure 10: Tree diagram indicating the potential data avail-
able under a range of communication scenarios.

9.1 Unencrypted Communications

Where our testing campaign captured the initialisation of a
charging session, we were able to examine the NMK ex-
change to form a network. In line with the ISO 15118 stan-
dard, every SLAC interaction we observed operated in inse-
cure form. As such, the NMK was delivered in plaintext and
the only barrier to acquiring it was receiving the message
intact. We were able to intercept the CM SLAC MATCH.CNF

message in 31 cases and acquire the NMK. Testing two ve-
hicles side-by-side, in 4 sessions the attacker was able to
extract an NMK value for one vehicle, meanwhile in one
session both NMK values were extracted. In 9 cases, the
subsequent CM GET KEY.CNF message was also recovered to
obtain the ephemeral NEK and permit passive decryption of
physical-layer traffic.

Examining compromised sessions, we saw the expected
behaviour as the vehicle and charger established a network,
the vehicle undertook the discovery protocol to find a charge
controller and the two established a TCP connection. No TLS
tunnel was established in any charging session we observed,
leaving the high-level protocols exposed. Where external au-
thorisation is employed, as it was in our testing, the use of
TLS is optional under ISO 15118. Yet its complete absence
from any vehicle or charger came as a surprise, especially
given the charging locations were all public.

As a result we confirm that a passive attacker can wire-
lessly monitor all traffic at the PHY layer and that this ability
results from standards-compliant behaviour, suggesting it is
persistent. Likewise, the option to forego TLS means charg-
ing data is also left in the clear. We discuss this situation and
its implications in Section 10.

9.2 Private Data

Figure 10 provides a breakdown of potential data available
when eavesdropping, under various charging conditions or
in the presence of different services. The PHY-layer traffic is
always available and permits access to any higher-level com-
munication, such as charging or internet access, that does
not take additional steps to secure itself. Two unique iden-

tifiers for the vehicle are also available: its EV ID and its
MAC address. These identifiers are persistent for the en-
tire lifetime of the vehicle, including between owners, and
are globally unique. They have been noted as personal data
in previous privacy studies [40] and are covered by the Eu-
ropean Union’s GDPR as data that can be easily combined
with other sources to identify an individual.

With contract-based billing, we do not expect charging
traffic to be available, as TLS is always required in this case.
However as we have seen, when it is optional to omit TLS,
this has consistently been done. Currently, this leaves the
majority of charging traffic in the clear at public locations, al-
though these are likely to be the earliest adopters of contract-
based billing (or some alternative). The long-term omission
of TLS at private locations is of greater concern. Indeed it
is in this case that there is more potential for behavioural
profiling, due to the vehicle staying far longer at the user’s
home or workplace and with the emerging Reactive Charg-
ing and V2G systems far more beneficial to them there. The
introduction of ‘Vehicle-to-Home’ capabilities, for instance,
is prioritised for introduction as early as 2020 by the CCS
standards body [16]. Resulting indicators of the user’s day-
to-day behaviour such as the vehicle’s state-of-charge and
projected departure time are contained within normal charg-
ing traffic, while reverse power flow data in a V2G system
yields insights into the power usage of the building.

In addition to internet access for in-vehicle entertainment
systems, third-party apps and alternative payment networks,
the traffic of any local services would also be available at
public locations, as would smart home integration traffic in
private ones.

9.3 Charging Attacks
A reliable eavesdropping capability presents a range of op-
portunities for an attacker, both immediate and longer-term
in their impact. We consider here a selection of potential
attacks using these techniques. Although we did not per-
form the attacks against public chargers, we describe how
they would be conducted.

AutoCharge Extant AutoCharge systems, such as one op-
erating in production across a 60-location network in three
European countries [33] are at particular risk from wireless
eavesdropping. The use of the vehicle’s charge-controller
MAC address for billing identification [58, 56], while highly
questionable from a purely-security standpoint, was under-
taken for compatibility and convenience benefits (and has
been lauded as such by customers). What may be an ac-
ceptable trade-off when physical interference is required to
extract the values, is far less so when this can be done from
another vehicle without any observable signs. The identifiers
of the vehicles are shown partially-masked below (none is a
customer of an AutoCharge system):

USENIX Association 28th USENIX Security Symposium 417

Vehicle MAC
BMW i3 f0:7f:0c:02:••:••
VW e-Golf 00:7d:fa:01:••:••
Jaguar I-PACE 00:1a:37:70:••:••

We were able to obtain the identifiers in 41 cases (76%)8

from a variety of locations including the two-car arrange-
ment shown in Figure 8. Here the identifiers for both vehi-
cles were acquired from the same antenna position, suggest-
ing that an attacker could simply park next to a charging sta-
tion and collect identifiers as other users arrive subsequently
providing them9 in order to obtain free charging on another
user’s account. As the charging spots are operated by a sin-
gle provider, the attacker can be confident of targeting valid
customers.

User Tracking In the simplest attack, charging sessions
are linked by monitoring a number of busy public chargers
for the appearance of vehicle identifiers. From time-of-day,
charge duration and location information, behavioural pro-
files can be inferred. The invasiveness of the attack increases
where the attacker is able to match a vehicle identity to other
data. Popular charger-sharing schemes [60] allow anyone to
register their home or business charger as a public site; any
user booking to charge can then be associated with their vehi-
cle identifier and tracked at any monitored station. Monitor-
ing a charger near a sensitive event such as a union meeting,
protest gathering or compromising night-spot would reveal
more personal information about an individual’s habits.

With a wireless attack, a wardriving approach also al-
lows an attacker to associate a vehicle with a street address.
This could easily be conducted by a delivery driver or postal
worker as they visit properties regularly. Known MAC allo-
cations to manufacturers provide a coarse-grained indication
of the vehicle as well, such as identifying expensive vehicles
and then determining when they have been left in a public
car park, or indeed when their owner is out of the house.

10 Lessons Learnt

The refinement of EV charging systems is still ongoing. In
light of our observations, we have distilled a set of security
lessons that can improve existing and future designs.

10.1 Wireless Threats
The most notable finding here is that the design of CCS com-
munication allows a wireless attacker to observe it at a dis-

831 cases from SLAC initialisation messages and 10 more from network
management messages

9Typically updating the MAC setting using open-plc-utils [45] and
a serial debug port over UART or SPI [21]

tance without prior interaction or tampering. In this case the
attack was entirely passive, but has similar implications for
the potential of active attacks that would currently be far
more invasive. As in-vehicle wireless systems have been
plagued by attacks in recent years, our results indicate that
a testing model which considers emissions security as well
as unwanted interference is crucial in future development.

10.2 Reliance on a Non-Existent PKI
The ISO 15118 security model, and thus that of CCS, re-
lies on the existence of a complex PKI, to underpin TLS at
the Transport Layer and XML Security for external message
values at the Application Layer. The merits of that infras-
tructure are an ongoing topic of academic study [8, 72, 52],
but its complexity also presents a more practical problem.
At the time of writing, no widespread ISO 15118 PKI is de-
ployed. While small-scale pilots have been attempted, there
is still open debate about provision of the infrastructure and
the authors are aware of public proposals from three differ-
ent commercial entities to provide transaction brokerage and
act as the Root Certification Authority [27]. There is even
disagreement about the model the PKI will take; whether
it will derive from a single root of trust, a consortium of
trusted entities or some more open model [50]. Meanwhile
the competing pressures to provide new functionality remain,
spurring alternative solutions such as AutoCharge and en-
couraging service development without underlying security
provision.

Even once a PKI is operating for public chargers in large
charging networks, it remains unclear to what extent private
units in individual homes or offices will benefit. A capac-
ity for self-signed contract certificates to be manually in-
stalled into vehicles by users does exist, but unless contract-
based billing is used ISO 15118 exempts charging installa-
tions from any security requirements; instead relying on the
physical security of the location and cabling — which we
have demonstrated to be insufficient. Manufacturer choices
(and indeed user willingness) will determine whether private
chargers can enjoy these security benefits.

It is important therefore to provide at least some security
implementation that is decoupled from the need for access to
a PKI. We discuss such an approach in Section 11.

10.3 Available PHY Security Disabled
The HomePlug GreenPHY (HPGP) PLC technology sup-
ports a Secure SLAC mode that protects the pairing and NMK
distribution process, but this is disabled by specification in
the ISO 15118 standard, relying instead on TLS for all secu-
rity properties. While this can meet the charging use cases
outlined in that standard, it leaves an opportunity for a per-
vasive security baseline completely ignored, despite propos-
ing the communication channel for general use. All too of-

418 28th USENIX Security Symposium USENIX Association

ten history has shown that leaving security to individual de-
velopers atop insecure platforms produces widespread secu-
rity problems, even more so when the channel is considered
physically private.

11 Countermeasures

To mitigate the unintended wireless channel, familiar emis-
sions security mechanisms such as chokes or shielding can
be applied to reduce leakage [7], although hardware modifi-
cations for existing systems are costly and time-consuming.
Some proposals for future, high-power chargers include
liquid-cooled charging cables and we would expect this to
attenuate the signals if the cooling jacket wraps the commu-
nication lines as well as the power-delivery ones. This would
not eliminate emissions from the vehicle or charger circuitry
however, nor is it likely to exist in smaller, private chargers.

At a network level, we have argued for the use of the avail-
able HPGP security mechanisms above, but note that in their
present form they are still reliant on a PKI to function. In ad-
dition the HPGP key distribution behaviour itself introduces
an unnecessary risk of interception. Whether the SLAC pro-
tocol operates in its secure mode or not, it is still unilateral:
the charger generates a network key and then provides it to
the vehicle. However, the SLAC process is typically imple-
mented in software by the same devices that undertake the
higher-level ISO 15118 communication, including possible
TLS sessions, and as such require the capabilities for an El-
liptic Curve Diffie-Hellman key derivation for AES128 [48].

We propose additional steps in the SLAC initialisation, as
a fallback to provide confidentiality from the MAC-layer up-
wards in the event that PKI access is unavailable. Figure
11 shows the modified protocol. Upon receiving a network
match request, the charger generates an Elliptic-Curve key-
pair (dC, QC) and instructs the vehicle to commence a key ex-
change, along with QC. If the vehicle also supports the pro-
tocol then it generates (dV , QV) and responds with QV . The
derived key becomes the new NMK and the charger blanks
the NMK field in the subsequent CM SLAC MATCH.CNF mes-
sage. If the vehicle does not support the protocol then the
unrecognised message will be dropped. The charger main-
tains a timeout counter after step 6.1 and, upon expiry, falls
back to the existing protocol’s step 7.

While it cannot provide authentication and therefore can-
not mitigate man-in-the-middle attacks, the threat of passive
eavesdropping is eliminated using this approach. By build-
ing only on existing functionality, the protocol is deployable
in existing vehicles as well as new ones.

12 Conclusion

We have demonstrated that use of PLC in EV charging and
the design of the CCS standard lead to a uniquely high-

Vehicle Charger
s = 1 if secure supported t = 1 if secure supported

GreenPPEA
1. Request SLAC

[Secure=s]

2. Confirm SLAC
[Secure=s & t]

3. Exchange Public Keys
if Secure == 1

4. Test Attenuation

5. Report Attenuation

6. Request Network Match

[dC,QC]

[dV ,QV]

6.1. Commence ECDH
if Secure == 0, [QC]

6.2. Respond ECDH
if Secure == 0, [QV]

7. Confirm Network Match
[NID]

Auth.
8. Authenticate

NMK{[KeyType=NEK, NID, Nonce]}

9. Confirm Authentication
NMK{[NID, Nonce, NEK]}

[] = Set of values,

K{} = Encrypted with private key K

Figure 11: The modified SLAC network establishment.
Steps 6.1 and 6.2 are new, while step 7 has been modified.

quality, unintentional wireless channel. We have evaluated
the susceptibility of real-world chargers and found a reliable
channel in every case. Although conditions vary substan-
tially between sites, for eavesdropping we achieved a peak
successful recovery rate of 100% in one case and could in-
tercept traffic several metres from the target, in a different
parking bay, with a rate of 91.8%. We showed how a se-
ries of further design choices allow recovery of network keys
and passive monitoring of all traffic in plaintext. We pre-
sented lessons learnt and potential improvements to mitigate
the problems so that they do not hinder the secure adoption
of global EV charging infrastructure by the growing number
of EV owners worldwide.

Acknowledgements

Richard Baker was supported by the EPSRC.

Disclosure Statement

We disclosed our findings to the tested vehicle and charger
manufacturers, along with AutoCharge operators.

USENIX Association 28th USENIX Security Symposium 419

References

[1] ABB. Terra 53 Product Leaflet, 2017.

[2] International Energy Agency. Global EV Outlook
2018, 2018.

[3] Monjur Alam, Haider Adnan Khan, Moumita Dey,
Nishith Sinha, Robert Callan, Alenka Zajic, and Milos
Prvulovic. One&done: A single-decryption em-based
attack on openssls constant-time blinded RSA. In 27th
USENIX Security Symposium, pages 585–602, 2018.

[4] Cristina Alcaraz, Javier Lopez, and Stephen
Wolthusen. Ocpp protocol: Security threats and
challenges. IEEE Transactions on Smart Grid,
8(5):2452–2459, 2017.

[5] HomePlug Powerline Alliance. HomePlug Green PHY
Specification. HomePlug, June, 2010.

[6] AMO Labs. Amo labs preparing to enter the european
market with gridwiz!, 2018.

[7] Ross Anderson. Security engineering. John Wiley &
Sons, 2008.

[8] Kaibin Bao, Hristo Valev, Manuela Wagner, and Hart-
mut Schmeck. A threat analysis of the vehicle-to-
grid charging protocol iso 15118. Computer Science-
Research and Development, 33(1-2):3–12, 2018.

[9] BBC. Petrol and diesel ban: How will it work?, 2017.
https://www.bbc.co.uk/news/uk-40726868.

[10] Cesar Bernardini, Muhammad Rizwan Asghar, and
Bruno Crispo. Security and privacy in vehicular com-
munications: Challenges and opportunities. Vehicular
Communications, 2017.

[11] Bastian Bloessl, Michele Segata, Christoph Sommer,
and Falko Dressler. An ieee 802.11 a/g/p ofdm receiver
for gnu radio. In Proceedings of the second workshop
on Software radio implementation forum, pages 9–16.
ACM, 2013.

[12] BP Chargemaster. Chargemaster Ultracharge 500S
Datasheet, 2019.

[13] Giovanni Camurati, Sebastian Poeplau, Marius
Muench, Tom Hayes, and Aurélien Francillon.
Screaming channels: When electromagnetic side
channels meet radio transceivers. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 163–177. ACM,
2018.

[14] Chargemaster Ltd. Polar network, 2018. https://

chargemasterplc.com/polar/.

[15] Chargepoint Services. Geniepoint, 2019. https://

www.chargepointservices.co.uk.

[16] CharIn. Target grid integration levels, 2019.
https://insideevs.com/ccs-combo-standard-

v2g-2025/.

[17] Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage,
Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, et al. Comprehensive experimental
analyses of automotive attack surfaces. In USENIX Se-
curity Symposium, volume 4, pages 447–462. San Fran-
cisco, 2011.

[18] Mark Chediak. Electrify america plans $200
million for california clean cars, 2019. https:

//www.bloomberg.com/news/articles/2018-

10-03/electrify-america-plans-200-

million-for-california-clean-cars.

[19] Matthias Dalheimer. Ladeinfrastruktur fr elektroautos:
Ausbau statt sicherheit, 2017. https://media.

ccc.de/v/34c3-9092-ladeinfrastruktur_fur_

elektroautos_ausbau_statt_sicherheit.

[20] DBT. Quick Charger Dual DC Product Datasheet,
2014.

[21] devolo AG. dLAN Embedded PLC Module Datasheet,
2012. https://www.codico.com/shop/media/

datasheets/Devolo_dLAN_Green_PHY_Module_

20130713_en_data_sheet_019.pdf.

[22] EcoG. Providing a customized electric vehicle (ev) fast
charging experience through a paas for value added ser-
vices & shared revenue streams, 2019.

[23] Ecotricity. Electric highway, 2018. https://www.

ecotricity.co.uk/for-the-road.

[24] Efacec. Efacec QC45 Datasheet, 2016.

[25] Efacec. QC45S Product Page, 2019. https:

//electricmobility.efacec.com/ev-qc24s-

quick-charger/.

[26] ElaadNL. Iota charging station, 2018.

[27] ElaadNL. Update Global EV Charging Test: PKI
Workshop, 2018.

[28] Engadget. California bill would ban new fossil fuel
vehicles from 2040, 2018. https://www.engadget.
com/2018/01/04/california-bill-would-ban-

new-fossil-fuel-vehicles-from-2040/.

[29] European Alternative Fuels Observatory. Electric vehi-
cle charging infrastructure, 2018.

420 28th USENIX Security Symposium USENIX Association

[30] CharIN e.V. What is the combined charging sys-
tem?, 2018. https://www.charinev.org/ccs-at-
a-glance/what-is-the-ccs/.

[31] EVTRONIC. Quickcharger product datasheet, 2016.

[32] Rainer Falk and Steffen Fries. Electric vehicle charging
infrastructure security considerations and approaches.
Proc. of INTERNET, pages 58–64, 2012.

[33] Fastned. Autocharge, 2019. https:

//support.fastned.nl/hc/en-gb/articles/

115012747127-Autocharge-.

[34] Aurélien Francillon, Boris Danev, and Srdjan Capkun.
Relay attacks on passive keyless entry and start systems
in modern cars. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2011.

[35] Achim Friedland. Security and privacy in the
current e-mobility charging infrastructure, 2016.
https://blog.deepsec.net/deepsec2016-

talk-security-privacy-current-e-mobility-

charging-infrastructure-achim-friedland/.

[36] Harald T Friis. A note on a simple transmission for-
mula. proc. IRE, 34(5):254–256, 1946.

[37] Flavio D Garcia, David Oswald, Timo Kasper, and
Pierre Pavlidès. Lock it and still lose iton the (in) se-
curity of automotive remote keyless entry systems. In
25th USENIX Security Symposium, 2016.

[38] Jonathan M. Gitlin. Electrify america will deploy
2,000 350kw fast chargers by the end of 2019, 2018.
https://arstechnica.com/cars/2018/04/

electrify-america-will-deploy-2000-350kw-

fast-chargers-by-the-end-of-2019/.

[39] Mordechai Guri, Matan Monitz, and Yuval Elovici. Us-
bee: Air-gap covert-channel via electromagnetic emis-
sion from usb. In Privacy, Security and Trust (PST),
2016 14th Annual Conference on, pages 264–268.
IEEE, 2016.

[40] Christina Höfer, Jonathan Petit, Robert Schmidt, and
Frank Kargl. Popcorn: Privacy-preserving charging for
emobility. In Proceedings of the 2013 ACM workshop
on Security, privacy & dependability for cyber vehicles,
pages 37–48. ACM, 2013.

[41] Jean-Pierre Hubaux, Srdjan Capkun, and Jun Luo. The
security and privacy of smart vehicles. IEEE Security
& Privacy, (3):49–55, 2004.

[42] InsideEVs. Tesla model 3 with ccs combo in-
let, s & x with ccs adaptor in europe, 2019.
https://insideevs.com/tesla-model-3-

ccs-combo-s-x-adaptor/.

[43] InstaVolt. Our technology, 2018. https://

instavolt.co.uk/about-us/our-technology/.

[44] InstaVolt Ltd. About InstaVolt, 2018. https://

instavolt.co.uk/.

[45] INSYS MICROELECTRONICS GmbH. INSYS
Powerline GP Manual, 2017. https://256.insys-

icom.com/bausteine.net/f/10637/HB_en_

INSYS_Powerline_GP_1711.pdf?fd=0.

[46] Rob Millerb Ishtiaq Roufa, Hossen Mustafaa,
Sangho Ohb Travis Taylora, Wenyuan Xua, Marco
Gruteserb, Wade Trappeb, and Ivan Seskarb. Security
and privacy vulnerabilities of in-car wireless networks:
A tire pressure monitoring system case study. In 19th
USENIX Security Symposium, Washington DC, pages
11–13, 2010.

[47] Road vehicles Vehicle to grid communication interface
Part 1: General information and use-case definition.
Standard, International Organization for Standardiza-
tion, Geneva, CH, 2013.

[48] Road vehicles Vehicle to grid communication interface
Part 2: Network and application protocol requirements.
Standard, International Organization for Standardiza-
tion, Geneva, CH, 2014.

[49] Mohammad Khodaei, Hongyu Jin, and Panagiotis Pa-
padimitratos. Secmace: Scalable and robust identity
and credential management infrastructure in vehicular
communication systems. IEEE Transactions on Intelli-
gent Transportation Systems, 19(5):1430–1444, 2018.

[50] Paul Klapwijk and Lonneke Driessen-Mutters. Explor-
ing the public key infrastructure for iso 15118 in the ev
charging ecosystem, 2018.

[51] Denis Foo Kune, John Backes, Shane S Clark, Daniel
Kramer, Matthew Reynolds, Kevin Fu, Yongdae Kim,
and Wenyuan Xu. Ghost talk: Mitigating emi signal
injection attacks against analog sensors. In 2013 IEEE
Symposium on Security and Privacy, pages 145–159.
IEEE, 2013.

[52] Seokcheol Lee, Yongmin Park, Hyunwoo Lim, and
Taeshik Shon. Study on analysis of security vulnerabil-
ities and countermeasures in iso/iec 15118 based elec-
tric vehicle charging technology. In IT Convergence
and Security (ICITCS), 2014 International Conference
on, pages 1–4. IEEE, 2014.

[53] Michael Himmels. Devolo real world field tests,
2011. http://www.homeplug.org/media/filer_

public/25/4f/254f6adb-096a-4913-842b-

91e3775da045/devolo_presentation.pdf.

USENIX Association 28th USENIX Security Symposium 421

[54] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu,
Emmanuel Cecchet, and David Irwin. Private mem-
oirs of a smart meter. In Proceedings of the 2nd ACM
workshop on embedded sensing systems for energy-
efficiency in building, pages 61–66. ACM, 2010.

[55] Marc Mültin. Das Elektrofahrzeug als flexibler Ver-
braucher und Energiespeicher im Smart Home. PhD
thesis, KIT-Bibliothek, 2014.

[56] Open Fast Charging Alliance. Automatic charging start
and authorization of electric vehicles, 2017.

[57] Organisation Internationale des Constructeurs
d’Automobiles. World Motor Vehicle Production:
World Ranking of Manufacturers, 2016.

[58] Johan Peeters. Fast charging just got faster. Presenta-
tion at eMove360 Conference 2017.

[59] POD Point. Open charge electric car charging stations,
2018. https://pod-point.com/open-charge.

[60] Recargo Inc. PlugShare, 2018. https://www.

plugshare.com/.

[61] Reuters. Paris plans to banish all but electric cars by
2030, 2017. https://www.reuters.com/article/
us-france-paris-autos/paris-plans-to-

banish-all-but-electric-cars-by-2030-

idUSKBN1CH0SI.

[62] Zeinab Rezvani, Johan Jansson, and Jan Bodin. Ad-
vances in consumer electric vehicle adoption research:
A review and research agenda. Transportation research
part D: transport and environment, 34:122–136, 2015.

[63] Matthias Schulz, Patrick Klapper, Matthias Hollick,
Erik Tews, and Stefan Katzenbeisser. Trust the wire,
they always told me!: On practical non-destructive
wire-tap attacks against ethernet. In Proceedings of the
9th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, pages 43–48. ACM, 2016.

[64] Share&Charge. Share&charge, 2019. https://

shareandcharge.com/.

[65] Shell Plc. Welcome to shell recharge, 2019.
https://www.shell.co.uk/motorist/welcome-

to-shell-recharge.html.

[66] Peter Smulders. The threat of information theft by re-
ception of electromagnetic radiation from rs-232 ca-
bles. Computers & Security, 9(1):53–58, 1990.

[67] U.S. Department of Energy Alternative Fuels Data
Centre. Alternative fueling stations, 2018. https:

//www.afdc.energy.gov/stations/.

[68] Wim Van Eck. Electromagnetic radiation from video
display units: An eavesdropping risk? Computers &
Security, 4(4):269–286, 1985.

[69] David Varodayan and Ashish Khisti. Smart meter
privacy using a rechargeable battery: Minimizing the
rate of information leakage. In Acoustics, Speech and
Signal Processing (ICASSP), 2011 IEEE International
Conference on, pages 1932–1935. IEEE, 2011.

[70] Roel Verdult, Flavio D Garcia, and Josep Balasch.
Gone in 360 seconds: Hijacking with hitag2. In 21st
USENIX Security Symposium, pages 237–252, 2012.

[71] Brad Zarikoff and David Malone. Experiments with ra-
diated interference from in-home power line communi-
cation networks. In Communications (ICC), 2012 IEEE
International Conference on, pages 3414–3418. IEEE,
2012.

[72] Daniel Zelle, Markus Springer, Maria Zhdanova, and
Christoph Krauß. Anonymous charging and billing of
electric vehicles. In Proceedings of the 13th Interna-
tional Conference on Availability, Reliability and Secu-
rity, page 22. ACM, 2018.

[73] Kexiong (Curtis) Zeng, Shinan Liu, Yuanchao Shu,
Dong Wang, Haoyu Li, Yanzhi Dou, Gang Wang, and
Yaling Yang. All your GPS are belong to us: Towards
stealthy manipulation of road navigation systems. In
27th USENIX Security Symposium, pages 1527–1544,
Baltimore, MD, 2018. USENIX Association.

[74] ZF Car eWallet GmbH. Car ewallet, 2019. https:

//car-ewallet.de/index.php/what-we-do/.

Appendices

A CCS Circuit Design

Figure 12 shows the communication circuit for PLC in CCS
charging systems, including the connection of the circuit to
the Control Pilot and Protective Earth lines, along with the
additional components affecting the Control Pilot line due
to the need for backwards-compatibility with the IEC 61851
communication that shares the lines.

B HomePlug GreenPHY Receiver

In this section we describe our eavesdropping tool in detail.
As noted in Section 6, the tool is effectively a modified re-
ceiver design, although newly-implemented entirely in soft-
ware. Since HomePlug GreenPHY (HPGP) [5] is an orthog-
onal frequency-division multiplexing (OFDM) technology,
many elements of the tool structure are similar to a Wi-Fi
receiver.

422 28th USENIX Security Symposium USENIX Association

Figure 12: A diagram of the CCS communication circuit.
The loads on each line connected to the PLC modem are not
balanced. Resistors R2 & R3 alter the voltage in the low-
level communication, but also vary the imbalance further.

Raw signals are first collected using a suitable capture
device. A Rigol DSA-2302A oscilloscope was used in our
testbed arrangement, as can be seen in Figure 13. Even here
the radiated emissions were easily observed; the yellow line
in the figure represents the conducted signal, while the blue
line is the radiated signal received by a short random-wire
antenna. Although the distance shown here is very short, we
were still able to observe the signal from the other side of
the lab, several metres away. We later employed software-
defined radios for signal capture, for their ability to receive
and stream a captured signal in real time.

The captured signal is filtered in the frequency domain,
benefiting from knowledge of the active regions of the HPGP
band and the ability to survey initially an individual site’s
leakage before eavesdropping in earnest. A sharp-edged dig-
ital filter is used to remove regions with notable interference
ingress or where channel gain is so low as to provide no use-
ful information. The signal is then resampled into the HPGP
native timebase of 75MHz.

Frame Detection and Time Alignment With the signal
suitably pre-filtered and digitised, the PPDUs are detected
using a Double Sliding-Window power detector; a design that
accurately identifies the rise in power that accompanies the
start of a packet. The detector calculates the power of the in-
coming signal and maintains two windows A and B of equal
length L that are arranged with a time lag such that calcu-
lated power levels are included in window A at time t, sub-
sequently passing out of window A and into window B at
time t + L and out of the detector entirely at time t + 2L.
At each sample, the power in each window is updated and

Figure 13: HomePlug AV adaptors communicating across a
short wire. Conducted signals and radiated emissions can be
seen on the oscilloscope (top in yellow and bottom in blue,
respectively).

the total power in A is divided by that in B. This configura-
tion causes the output signal to spike quickly on increases in
power levels, while remaining stable at equal power levels
(i.e., prior to or during a frame). By selecting an appropriate
value of L (based on the frame’s structure), transient noise
can be prevented from triggering a frame.

OFDM requires precise time synchronisation in order to
demodulate correctly. We performed this by correlating the
entire preamble against a template, which provided sample-
accurate alignment.

CPO, SCO & Channel Estimation In practice, a trans-
mitter and receiver in an OFDM system will have nei-
ther precisely-aligned oscillators nor synchronised sample
clocks, leading to Carrier Phase Offset (CPO) and Sampling
Clock Offset (SCO). CPO causes an apparent frequency off-
set for the entire received signal, meaning that the frequency-
domain representation exhibits a phase rotation. Meanwhile,
SCO leads to an apparent phase drift across subcarriers in
the frequency domain. Both phenomena hamper demodula-
tion and must be corrected beforehand. Channel estimation
is also crucial to successful reception; assessing the gain and
phase alterations that have been experienced by the signal
due to the propagation environment.

Our receiver estimates the CPO using a method derived
from Bloessel et. al.’s work; estimating the CPO using the
seven full-amplitude SYNCP preamble symbols in place of
the Wi-Fi short-training sequence [11] (omitting the initial

USENIX Association 28th USENIX Security Symposium 423

192 as they have been windowed in symbol shaping):

cpoest =
1

384
Arg

(
7·384

∑
i=0

x[i]x[i+384]

)
where x is the received signal samples.

From the extracted section of the preamble, complex sam-
ples are multiplied with the conjugate of the same sam-
ple in the next SYNCP block. This produces an estimate
of the phase progression introduced between those SYNCP
blocks by the mismatch between transmitter and receiver
(plus noise). Dividing through by the length of the SYNCP
block gives an estimate of the phase offset per sample. The
length of the sequence (2688) and the number of repetitions
(7) permit an accurate CPO estimate. The per-sample CPO
estimate can then be used to correct the remainder of the cap-
tured signal.

x[i]← x[i] · e− jcpoest i

As the estimated CPO will not precisely match the actual
CPO, ongoing correction is applied to each received sym-
bol by estimating the CPO between the cyclic prefix and the
symbol tail, with a suitable correction being applied over that
symbol.

cpoestcp =
1

3072
Arg

(
GI

∑
i=0

x[i]x[i+3072]

)
where GI is the guard interval (with four values depending

on the symbol and system settings).
The channel estimation is performed in the frequency do-

main, by comparing the received preamble symbols to a
locally-computed template. HPGP provides no pilot symbols
so all estimation must be performed from the preamble and
maintained across the PPDU. The results for each preamble
symbol are averaged and a channel estimate from the active
preamble subcarriers computed. From this a channel esti-
mate for the full channel is derived by interpolation, while
the SCO is estimated from the slope of the phase differences
in the channel estimate. As the CPO and SCO are due to
hardware imperfections in the transmitter and receiver, rather
than channel properties, estimates are maintained between
received PPDUs by way of a moving average. The channel
estimate, by contrast, is discarded after a PPDU has been
received.

Demodulation Demodulation takes place in the frequency
domain (via a 3072-point DFT), after the removal of the
cyclic prefix for the symbol and correction for the channel
effects at each subcarrier. As HPGP uses QPSK modulation,
the receiver compares the measured value for the subcarrier
in the in-phase and quadrature channels to the nominal val-
ues and estimates, under an additive white Gaussian noise
assumption, the likelihood of the transmitted value having

been a 0 or 1 bit. These probabilities are expressed as a ratio,
the Log Likelihood Ratio (LLR) and then scaled according
to the gain for the subcarrier in the channel estimate, such
that the uncertainty inherent in weakly-received subcarriers
is represented.

Post Processing Demodulated soft bits are combined by
averaging to benefit from HPGP’s redundancy schemes.
They are then rearranged in read-by-row-write-by-column
fashion to undo the channel interleaving process.

The FEC decoding is applied to produce hard decisions
about the bit values. HPGP uses an unpunctured Turbo code
with two systematic, rate 2

3 constituent codes. Each pair of
input bits (i, j) produces a codeword (i, j, p, q), where p and
q are parity bits, p from the in-order input and q from an
interleaved input.

Finally, the bits are unscrambled by XORing with the
same generator polynomial used in the transmitter to recover
the original sequence.

The CRC checks are computed over the received bits to
determine if the contents have been received successfully,
however the PHY-layer bits are delivered to the higher layers
irrespective as even messages containing errors may provide
useful information.

Each stage of the receiver is configurable with a wide
range of parameters. In particular, the power threshold to
trigger PPDU capture, the frequency-domain filtering, the
initial CPO estimate and the estimated noise variance for de-
modulation all permit tailoring the receiver to a given sce-
nario.

Considering the emissions as a wireless channel, the sim-
ple modulation and redundancy in HomePlug GreenPHY’s
robust (“ROBO”) transmission modes mean the attacker
need not match the channel characteristics of any particu-
lar receiver; they need only to receive the transmissions with
enough of the signal intact. Specifically, the attacker requires
a positive signal-to-noise ratio (SNR) over some fraction B of
the transmitted bandwidth. The selection of B depends upon
the transmissions mode in use and the effectiveness of any
error-correction mechanisms, however for a rough estimate
the level of redundancy can be used. Thus for MINI ROBO,
STD ROBO, HS ROBO B can be taken as 5.2MHz, 6.5MHz,
13MHz (1

5 , 1
4 and 1

2 of the 26 MHz HPGP bandwidth) re-
spectively.

424 28th USENIX Security Symposium USENIX Association

RVFUZZER: Finding Input Validation Bugs in Robotic Vehicles Through
Control-Guided Testing

Taegyu Kim†, Chung Hwan Kim∗, Junghwan Rhee∗, Fan Fei†, Zhan Tu†, Gregory Walkup†

Xiangyu Zhang†, Xinyan Deng†, Dongyan Xu†

†Purdue University, {tgkim, feif, tu17, gwalkup, xyzhang, xdeng, dxu}@purdue.edu
∗NEC Laboratories America, {chungkim, rhee}@nec-labs.com

Abstract
Robotic vehicles (RVs) are being adopted in a variety of
application domains. Despite their increasing deployment,
many security issues with RVs have emerged, limiting their
wider deployment. In this paper, we address a new type of
vulnerability in RV control programs, called input validation
bugs, which involve missing or incorrect validation checks
on control parameter inputs. Such bugs can be exploited to
cause physical disruptions to RVs which may result in mis-
sion failures and vehicle damages or crashes. Furthermore,
attacks exploiting such bugs have a very small footprint: just
one innocent-looking ground control command, requiring no
code injection, control flow hijacking or sensor spoofing. To
prevent such attacks, we propose RVFUZZER, a vetting sys-
tem for finding input validation bugs in RV control programs
through control-guided input mutation. The key insight be-
hind RVFUZZER is that the RV control model, which is the
generic theoretical model for a broad range of RVs, provides
helpful semantic guidance to improve bug-discovery accuracy
and efficiency. Specifically, RVFUZZER involves a control
instability detector that detects control program misbehavior,
by observing (simulated) physical operations of the RV based
on the control model. In addition, RVFUZZER steers the input
generation for finding input validation bugs more efficiently,
by leveraging results from the control instability detector as
feedback. In our evaluation of RVFUZZER on two popular
RV control programs, a total of 89 input validation bugs are
found, with 87 of them being zero-day bugs.

1 Introduction

Robotic vehicles (RVs), such as commodity drones, are a
type of cyber-physical system for autonomous transportation.
They are typically equipped with a computing board with
control hardware (e.g., micro-controller) and software (e.g.,
real-time control program). The on-board control program
continuously senses the vehicle’s physical state (e.g., position
and velocity) and actuates the motors to control the vehicle’s

movement to accomplish a given mission. RVs have emerged
in various application domains such as commercial, industrial,
entertainment, and law enforcement. For instance, logistics
companies (e.g., USPS, DHL, and Amazon) have introduced
drone delivery services to meet the rapidly growing demand
in e-commerce [6, 10, 13, 27].

With their increasing adoption in real-world applications,
RVs are facing threats of cyber and cyber-physical attacks that
exploit their attack surface. More specifically, an RV’s attack
surface spans multiple aspects, such as (1) physical vulnerabil-
ities of its sensors that enable external sensor spoofing attacks
[72, 77, 80]; (2) traditional “syntactic” bugs in its control pro-
gram (e.g., memory corruption bugs) that enable remote or tro-
janed exploits [75]; and (3) control-semantic bugs in its con-
trol program that enable attacks via remote control commands.
For attacks exploiting (1) and (2), there have been research
efforts in defending against them [30, 38, 40, 50, 52, 70, 76];
whereas those exploiting (3) have not received sufficient atten-
tion. As a result, the RV’s attack surface in the aspects of (1)
and (2) is expected to get smaller, which may prompt attackers
to increasingly look at the control-semantic vulnerabilities for
new exploits.

In this paper, we focus on an important type of control-
semantic bugs in RV control programs, called input validation
bugs. An input validation bug involves an incorrect or missing
validity check on a control parameter-change input. Such an
input is provided to the control program via a remote control
command, which could trigger RV controller malfunction and
ultimately lead to physical impacts on the vehicle, such as
mission disruption, vehicle instability, or even vehicle dam-
age/crash. Finding input validation bugs is a new research
problem because they are largely orthogonal to the traditional
“syntactic” bugs (e.g., buffer overflow and use-after-free bugs)
which can be detected by existing software testing/fuzzing
techniques.

Input validation bugs, on the other hand, are created se-
mantically via incorrect setting of control parameters. In an
RV, the control program can be configured through control
parameters, which are adjustable numerical inputs that de-

USENIX Association 28th USENIX Security Symposium 425

termine certain aspects of the control function’s behavior
(e.g., controller gain and default flight speed). We can further
categorize input validation bugs into two sub-categories: (1)
Incorrect or missing parameter range checks in the control
program, which would accept illegitimate setting of control
parameter values, are called range implementation bugs. (2)
Incorrect specification of control parameter ranges, even if
correctly implemented, may cause RV controller malfunction.
We call such specification-level errors (implemented in the
control program) range specification bugs.

Most RVs have a remote control interface [21] for opera-
tors to set or adjust control parameters during a flight. Un-
fortunately, such an interface can be leveraged by attackers
[9,55,67,68] to exploit input validation bugs and deliberately
mis-configure certain control parameters. As an example (de-
tails in Section 6.3.3), an RV control program allows operators
to dynamically adjust a parameter for the vehicle’s angular
control and suggests a range of valid values in its specifi-
cation. However, the range is erroneously determined and
implemented. Knowing this bug, an attacker can issue a mali-
cious command to reset the parameter using an illegitimate
value that falls into the “valid” range, consequently crashing
the vehicle.

Testing RV control programs to find input validation bugs
is challenging. Popular RV control software (e.g., ArduPi-
lot [15], PX4 [24], and Paparazzi [23]) supports many differ-
ent RV models (e.g., quadcopters and ground rovers) with a
large number of hardware, software and control configuration
options. Generating accurate control parameter value ranges
requires thorough testing of hundreds of control parameters
for each RV model. With the growing number of RV models
supported by control software, such testing is increasingly dif-
ficult to scale and automate. To overcome this challenge, espe-
cially without assuming source code access, one might think
of leveraging automated black-box software testing methods,
such as fuzzing [14, 17, 19, 71]. However, traditional software
fuzzing techniques are not directly applicable to RV control
programs because: (1) With hundreds of configurable param-
eters, the control program has an extremely large input space
to explore and (2) there is no uniform and obvious condition
to automatically decide that a control program is malfunction-
ing. Many input validation bugs do not exhibit system-level
symptoms until certain control and physical conditions are
met at run-time.

Our solution to finding input validation bugs – without
control program source code – is motivated by the following
ideas: (1) The impacts of attacks exploiting input validation
bugs can be manifested by the victim vehicle’s control state;
and (2) such state can be efficiently reproduced by combining
the RV control program and a high-fidelity RV simulation
framework, which is readily available [7, 8].

Based on these ideas, we develop RVFUZZER, an auto-
mated RV control program testing system to find input val-
idation bugs. RVFUZZER supports input-driven testing of a

subject control program’s binary, which runs in an RV simu-
lator – for safety and efficiency. Unlike a traditional program
bug (e.g., a memory corruption or divide-by-zero bug) that
can result in an obvious program execution failure, automati-
cally determining if the control program is ill-behaving based
on the simulated vehicle’s physical state is not straightfor-
ward. To address the problem, RVFUZZER involves a control
instability detector based on a standard control stability mea-
surement formula [47] to detect vehicle control malfunction.
More importantly, RVFUZZER leverages this detector to quan-
tify control (in)stability as feedback to guide input mutation,
so that bugs can be found more efficiently by covering a large
portion of the input space in a reasonable number of test
runs. Our control-guided input mutation method is based on
the following control property: When RV control instability
starts to be observed while increasing (decreasing) the value
of a control parameter, further increase (decrease) of the pa-
rameter value will only maintain or intensify such instability
(Section 4.3.2). Finally, RVFUZZER mutates environmental
factors such as trajectory curve or wind condition during
testing, as attackers may leverage predictable environmental
factors as probabilistic attack-triggering conditions.

We have implemented a prototype of RVFUZZER and ap-
plied it to ArduPilot [15] and PX4 [24], which are two pop-
ular RV control software suites used in many commodity
RVs [32,45,58,69]. RVFUZZER finds a total of 89 input vali-
dation bugs that can cause RV control malfunction: Two of
them are known input validation bugs that were previously
patched by developers; whereas the remaining 87 bugs are
zero-day bugs which we have reported to the developers. In
response to our report, eight bugs have been confirmed and
seven of them have been patched. The contributions of our
work are as follows:

• We introduce input validation bugs, a new type of RV
control-semantic vulnerability that can be exploited by at-
tackers.

• We develop RVFUZZER, a control-guided program vetting
system to discover input validation bugs with safety, effi-
ciency, and automation.

• We apply RVFUZZER to two popular RV control software
suites and find 89 input validation bugs including 87 zero-
day bugs.

2 Background

RV Control Model The RV control model is the generic the-
oretical underpinnings that control the vehicle’s movements
and operations during its missions (e.g., flying in a trajectory
with multiple waypoints). The RV’s movements are along its
six degrees of freedom (6DoF), which include the x, y, and
z-axes for movement and the roll, pitch, and yaw for rotation
(Fig. 1). The control model consists of multiple controllers,
each for a specific degree of the 6DoF. For example, the x-axis

426 28th USENIX Security Symposium USENIX Association

𝑧

𝑦

𝑥

ϕ : roll
θ : pitch
ψ : yaw

θ

ϕ

ψ

Figure 1: An RV’s six degrees of freedom (6DoF).

x-axis Cascading Controller

ሷ𝑟𝑥ሶ𝑟𝑥

ሷ𝑥𝑥ሶ𝑥𝑥

ሷ𝑘𝑥

𝑟𝑥

POS
Controller

𝑥𝑥

𝑘𝑥 ሶ𝑘𝑥

𝑜𝑥

VEL
Controller

ACCEL
Controller

Physical
Operations

Mission

Parameter

Sensor

Figure 2: The x-axis controller (with three primitive controllers).

controller is shown in Fig. 2.
Inside the x-axis controller, there are three primitive con-

trollers in a cascade, which are responsible for controlling the
vehicle’s position, velocity, and acceleration along the x-axis,
respectively. Each primitive controller takes two state inputs:
a reference state (r(t)) computed by its upstream primitive
controller; and an observed state (x(t)) reported by sensors.
The goal of the controller is to keep the observed state close
to the reference state, via its core function of control state sta-
bilization. The output of the function is the reference state for
its downstream primitive controller. Each primitive controller
has multiple adjustable parameters and accepts high-level
mission directives (e.g., change of target location or speed).

Overall the RV control model involves complex depen-
dencies between the 6DoF controllers, each having multiple
parameters and accepting mission directives. Moreover, the
controllers, sensors, and the vehicle’s physical operations (e.g.,
those of motors) create a feedback loop, which enables the
periodic, iterative working of the controllers.
RV Control Program An RV control program implements
the RV control model. Correspondingly, it involves the fol-
lowing main modules: (1) a sensor module to collect sensor
inputs (e.g., from GPS, inertial measurement unit, etc.) for
periodic vehicle state observation, (2) a controller module to
generate control output based on current mission, reference
state, and sensor input, and (3) a mission module to interpret
mission directives and execute them. These modules execute
iteratively in the periodic control epochs.

During a flight, the RV communicates with a ground control
station (GCS), which may issue a variety of GCS commands
to the control program. Many of those commands allow RV
operators to dynamically adjust the controller and mission
parameters. We note that such a dynamic parameter change
may be necessary to improve vehicle control performance
(e.g., enhancing stability), in response to mission dynamics
such as payload change and non-trivial external disturbances.

In addition to the control and communication functions,
most RV control programs have a run-time control state log-

ging function, for record-keeping and troubleshooting pur-
poses. Real-world commodity RVs (e.g., Intel Aero [18],
3DR IRIS+ [12], and DJI drone series [16]), as well as their
simulators, log in-flight control states in persistent storage.
RVFUZZER leverages such logs for automatic determination
of controller malfunction.

Control Parameters Because of the complexity and gen-
erality of RV control model and program, a large number
(hundreds) of configurable parameters exist in the control
program. Many of them are dynamically adjustable at run-
time via the GCS command interface. For example, in the
ArduPilot software suite [15], there are 247 configurable con-
trol parameters, including 111 parameters for the x-, y-axis
controller, 119 for the z-axis controller, 29 for the roll con-
troller, 29 for the pitch controller, 30 for the yaw controller,
103 for motor control, and 40 for mission specification. We
note that, while the total number of the parameters is 247,
some of the parameters are shared by multiple controllers.
When receiving a GCS command to adjust one of these pa-
rameters, the control program is supposed to perform an input
validity check to determine if the new value is within the safe
range of that parameter. Unfortunately, such a check may be
missing or based on an erroneous value range.

3 Attack Model

Attack Model and Assumptions Attacks that exploit input
validation bugs are characterized as follows: Knowing an ad-
justable control parameter with incorrect or missing range
check logic in the control program1, the attacker concocts
and issues a seemingly innocent – but actually malicious –
parameter-change GCS command to the victim RV. With-
out correct input validation, the illegitimate parameter value
will be accepted by the control program and cause at least
one of the RV’s 6DoF controllers to malfunction – either im-
mediately or at a later juncture, inflicting physical impacts
on the RV. When planning an attack, the attacker may also
opportunistically exploit a certain environmental condition
(e.g., strong wind) under which a parameter-change command
would become dangerous. For example, he/she might wait for
the right wind condition (e.g., by following weather forecast)
to launch an attack with high success probability. Such a case
will be presented in Section 6.3.3.

The attacker can be either an external attacker or an insider
threat. In the case of an external attacker, we assume that
he/she is able to perform GCS spoofing to issue the malicious
command, which is justified by the known vulnerabilities
in the wireless/radio communication protocols between RV
and GCS [9, 55, 67, 68, 78]. In the case of an insider threat,
we assume that the insider is a rogue RV operator (not a
developer), who does not have access to control program

1The attacker may acquire such knowledge via a program vetting tool
(such as RVFUZZER).

USENIX Association 28th USENIX Security Symposium 427

source code and cannot update the control program firmware.

Attack Model Justifications Our attack model is realistic
(and attractive) to attackers for the following reasons: (1) Such
an attack incurs a very small footprint – just one innocent-
looking command, without requiring code injection/trojaning,
memory corruption, or sensor/GPS spoofing; (2) The attack
can still be launched even after the control program has been
hardened against traditional software exploits [1,2,39,52]; (3)
The attack looks like an innocent “accident” because the ma-
licious parameter value passes the control program’s validity
check. In some cases (i.e., range specification bugs), it is even
in the valid range set in the control program’s specification.

Why would the attacker bother to manipulate control pa-
rameter values, instead of just taking control of, or crashing
the vehicle? A key observation provides the answer: If the
attacker is not aware of – and hence does not manipulate –
illegitimate-but-accepted control parameter values, it would
actually not be easy to disrupt or crash an RV with minimum
footprint2. This is because both the RV control program and
control model already achieve a level of robustness for the
RV to resist being commanded into instability or danger: The
control program can identify and reject many illegitimate
commands; and the control model can filter or mitigate the
impacts of some commands that escape the control program’s
check [11, 48]. Moreover, an internal attacker is also moti-
vated to exploit illegitimate control parameter values that are
erroneously considered normal in the RV’s specification (i.e.,
range specification bugs), as the attacker could evade attack in-
vestigation by claiming that he/she was following RV control
specification when issuing the command in question.

We do acknowledge that there exist scenarios where at-
tackers can successfully launch attacks without exploiting
input validation bugs. For example, an insider could hijack an
RV by changing its trajectory, when working alone without a
co-operator (who might otherwise catch the attack in action).

4 RVFUZZER Design

In this section, we present the design of RVFUZZER. We first
give an overview of RVFUZZER’s architecture (Section 4.1)
and then present detailed design of two key components of
RVFUZZER: (1) the control-guided instability detector that
monitors the vehicle’s control state to detect controller mal-
function (Section 4.2) and (2) the control-guided input muta-
tor that generates control program inputs for efficient program
testing (Section 4.3).

4.1 Overview
RVFUZZER is designed to (1) detect physical instability of
the RV during testing and (2) generate test inputs iteratively to

2The minimum footprint would help avoid detection before the attack
succeeds.

Input
to sensors

Output
to actuators

Simulator

Target
Control

Program
Control state

output

Mutated parameter
input command

Control Instability
Detector

Control-guided
Input Mutator

GCS Software

Mutated environmental factors

Control-guided Tester

𝑓(𝑠)Control
state

Mutated
parameter

Figure 3: Overview of RVFUZZER.

achieve high testing efficiency and coverage. Fig. 3 presents
an overview of RVFUZZER, which consists of four main com-
ponents: a GCS program, the subject control program, a sim-
ulator, and a control-guided tester – the core component of
RVFUZZER. The roles of the first three components are as fol-
lows: the GCS software is responsible for issuing RV control
parameter-change commands; the subject control program, as
the testing target, controls the operations of the (simulated)
RV; and the simulator emulates the physical vehicle and its
operating physical environment. We note that (1) the GCS
and RV control programs are from real-world GCS and RV;
and (2) our simulators [7, 8] are widely adopted for robotic
vehicle design and testing.

RVFUZZER’s control-guided tester consists of two sub-
modules: (1) control instability detector and (2) control-
guided input mutator. During testing, the control instability
detector detects non-transient physical disturbances of the
target RV (e.g., crash and deviation), as indication of control
program execution anomaly caused by an input validation
bug. The control-guided input mutator is a feedback-driven
input mutator for efficient mutation of control parameter and
environmental factor values. Using the results of the control
instability detector as feedback, the mutator adaptively mu-
tates control parameter values via a well-defined RV control
interface (i.e., GCS commands created and issued by the GCS
software). In addition, it mutates environmental factors (e.g.,
wind) by re-configuring the simulator.

4.2 Control Instability Detector
The goal of the control instability detector is to continuously
monitor RV control state to determine if a specific GCS com-
mand has induced non-transient physical disturbance. Such a
physical disturbance can be considered as an indication of an
input validation bug. We note that input validation bugs may
not lead to program crash, a common indicator of traditional
bugs (e.g., memory corruption).

We first define a rule to detect physical disturbances, which
is tailored for input validation bugs. We then describe the
mechanism to monitor the RVFUZZER’s 6DoF control states
for detecting such a disturbance.

Indication of Control State Deviation Exploitation of an
input validation bug will cause an RV’s failure to stabilize

428 28th USENIX Security Symposium USENIX Association

its control states and/or complete its mission. To accurately
detect bug-induced physical disturbance, RVFUZZER must be
equipped with the capability of control state deviation detec-
tion. Among the possible physical disturbances experienced
by an RV, there are two types of control state deviation: (1)
observed state deviation and (2) reference state deviation. Ac-
cordingly, we define a detection rule to determine if one of
the two types of control state deviation has occurred.

The first type – observed state deviation – is the case where
a controller (e.g., the primitive x-axis velocity controller) fails
to stabilize its observed state (x(t)) according to its reference
state (r(t)). In the theoretical control model, a controller al-
ways tries to keep x(t) close to r(t) (Section 2). Consequently,
if the difference between x(t) and r(t) keeps increasing and
exceeds a certain threshold, the observed state will be con-
sidered deviating from the reference state. To quantify the
observed state deviation, we leverage the integral absolute
error (IAE) formula [47] which is widely used as a stability
metric in control systems.

deviation(t) =
∫ t+w

t

|r(s)− x(s)|
w

ds (1)

Given a time window w and starting from a certain time
instance t, the formula quantifies the level of deviation
(deviation(t)). If deviation(t) is larger than a pre-determined
threshold τ, our rule will determine that there is a control state
deviation starting at t. We will describe how to experimentally
determine w and τ for each 6DoF control state in Appendix A.

The second type – reference state deviation – is the case
where an RV deviates from its given mission. A controller is
expected to adjust its reference state to track its mission. If
a controller fails to do that, it is considered malfunctioning.
To detect such a deviation, our rule will check whether the
difference between the reference state and the mission target
becomes persistently greater than a threshold.

We note that our detection rule only considers non-transient
control state deviation. An RV may experience transient con-
trol state deviation during normal operation but can effectively
recover from it, thanks to the robustness features of the con-
trollers such as the extended Kalman filter [46, 51, 60].

Control Instability Detection We now apply our “observed-
reference” and “reference-mission” deviation determination
rule to detect control instability. During a test mission, the
control program readily logs all its 6DoF control states (Sec-
tion 2). The log data can be retrieved by the GCS software,
which will then be accessed by the Control Instability Detec-
tor and applied to the evaluation of the detection rule (Fig.3).
Note that the control states include those of the three primitive
controllers (for position, velocity, and acceleration control)
inside each 6DoF controller; and each primitive controller
logs its observed, reference and mission states. As such, the
Control Instability Detector can apply the detection rule to
detect control state deviation at any primitive controller.

4.3 Control-Guided Input Mutator

A software testing system needs to judiciously generate pro-
gram inputs to achieve high bug coverage while reducing the
number of the subject program’s test runs. In other words,
the set of generated testing inputs should be representative to
produce the same or similar results when other untested inputs
were provided to the program. We first define RVFUZZER’s
input mutation space (i.e., types and value ranges of dynam-
ically adjustable control parameters). We then describe our
control-guided input mutation strategy to generate representa-
tive testing inputs, with consideration of environmental factors
that affect the RV operation and control.

Our input generation method considers both control pa-
rameters and environmental factors3. For control parameters,
we first define their value mutation spaces (Section 4.3.1).
We then present the feedback-driven input mutator which
generates a reduced set of control parameter-change test in-
puts (Section 4.3.2). The mutator also mutates the external
environmental factors and tests the control program under
different combinations of input control parameter values and
environment factor values.

4.3.1 Control Parameter Mutation Space

The input mutation space of the subject control program con-
sists of: (1) the list of dynamically adjustable control parame-
ters, (2) the range of all possible values for each parameter,
and (3) the default value of each parameter.

The list of control parameters is obtained from the specifi-
cation of control program and the GCS command interface.
We note that this is public information even for a close-source
control program. The three most popular control software
suites (i.e., ArduPilot [15], PX4 [24], and Paparazzi [23])
all support a common parameter tuning interface defined in
MAVLink [21], the de facto protocol for RV-GCS communi-
cations.

The value ranges of control parameters can be decided (1)
by the data type of the control parameter and (2) by polling
the control program itself. For a control parameter, its data
type generically sets its value range. For example, the range
of a 32-bit integer parameter is [−231,231−1]. Interestingly,
the ranges of many control parameters can be narrowed by
polling the control program. This can be done by first sending
a parameter-change command with a very large/small value;
and then querying the actual value of that parameter, which
now becomes the maximum/minimum value of the parameter
defined in the control program. While the possibility of such
a probe is specific to control program implementation, we do
observe such implementation logic in ArduPilot and PX4.

The mutator also selects a default value within the range
of each control parameter. Such a default value will be used

3Environmental factors are not program input but physical context in
which the RV operates.

USENIX Association 28th USENIX Security Symposium 429

in the input space search during mutation (Section 4.3.2). We
note that the set of default values of control parameters is
normally made available by RV vendors (e.g., 3DR, DJI, and
Intel), as a guidance to RV users when tuning the control
parameters.

4.3.2 Feedback-Driven Parameter Input Mutator

RVFUZZER’s input mutator accepts two inputs: the control
parameter mutation space and the result of the Control Insta-
bility Detector from the previous run of the control program.
The output of the mutator is the testing input for the program’s
next run. The efficiency of the control program vetting pro-
cess depends on how well the mutated inputs are generated to
trigger input validation bugs without launching too many pro-
gram test runs with different inputs. To explain our mutation
strategy and methods, we first introduce the underlying intu-
ition of our strategy and then describe our feedback-driven
testing process with two steps: one-dimensional mutation and
multi-dimensional mutation.

Input Space Reduction Strategy The purpose of
RVFUZZER is to find vulnerable – i.e., illegitimate but ac-
cepted – values for each dynamically adjustable control pa-
rameter. However, it is infeasible to test all possible values
of a parameter. To improving testing efficiency, RVFUZZER
must be able to selectively skip certain ranges of parameter
values, if they lead to the same or similar outcome as the tested
values. The value range-skipping idea is feasible thanks to the
following observation: When control instability starts to be
observed while increasing (decreasing) the value of a control
parameter, further increase (decrease) of the parameter value
will only maintain or intensify the instability.

We note that the aforementioned observation is generally
valid. More specifically, in a control model, controllers and
filters can be lumped together as part of its dynamics. Based
on Root Locus [54], the trajectory of the loci always follows
some asymptote. Hence, the change of a parameter will cause
a monotonic change in stability. Sensor calibration can be
considered as a constant disturbance, which will cause system
response to degrade as the magnitude of the disturbance in-
creases. Mission parameters will have different effects: Some
can be grouped as part of the dynamics based on Root Locus;
Some others, such as angle limitations, could cause an exces-
sive response that introduces undesirable overshoot. This can
be viewed as an integral windup, with a larger limit causing a
larger overshoot.

Based on this observation, we propose two features for
the mutator. (1) It will report valid/invalid value ranges —
not individual values. Such a range will have a lower (min-
imum) and upper (maximum) bound. Any parameter value
outside the range will cause control instability. (2) The mu-
tator will be driven by feedback from the Control Instability
Detector (Section 4.2) to determine the next testing input.

Such feedback-driven mutation will be able to skip certain
parameter value ranges for efficiency.

One-dimensional Mutation In the first step of control
software vetting, RVFUZZER’s input mutator determines the
valid/invalid range for each control parameter independently.
The mutator isolates the impact of the target parameter on
the control state deviation by setting the values of all other
parameters to their default values.

We present the one-dimensional mutation procedure in
Algorithm 1. For each target control parameter, the mutator
determines the upper and lower bounds of the valid value
range by utilizing a mutation-based binary search method.
We elaborate the method (Algorithm 1) to find the upper
bound of the valid range as follows. We note that the mutator
follows a syntactically similar method to find the lower bound
of the valid range.

To find the upper bound, the mutator will iteratively launch
test runs, using the binary search method to set the next run’s
input value and to update the working range. It will set the ini-
tial min-limit of the working range as the default value of the
target parameter; the initial max-limit of the working range as
the maximum possible value of the target parameter (Section
4.3.1); and the initial input value as the mid-point between the
min-limit and max-limit values. Thereafter, in each run, the
mutator obtains the output of the Control Instability Detector
under the current input value, and updates the working range
in the next run by considering the following two cases based
on the detector’s output (Line 14).

• Case 1 (Line 17-18): If the mutator observes that the cur-
rent input value does not cause any deviation, it skips the
lower half of the working range in the next run and sets the
new min-limit as the current input value. This decision is
justified by our earlier observation on the monotonic prop-
erty of control instability. For the next run, the mutator will
again set the new input value as the mid-point between
min-limit and max-limit.

• Case 2 (Line 15-16): If the current input value leads to
control state deviation, the mutator concludes that there are
other values lower than the current input value which can
also cause deviation. Hence, for the next run, the mutator
will skip the upper half of the working range by setting
max-limit as the current input value and the new input value
as the mid-point between min-limit and max-limit.

We highlight that, after each run, the mutator skips the
values corresponding to one half of the working range. This
input space reduction strategy ensures that the mutator covers
all possible values of the target control parameter efficiently.
After determining the working range for the next run, the
mutator sets the input value for the next run as the mid-point of
the new working range (Line 19), following the binary search
method. The mutator continues the (detector) feedback-driven

430 28th USENIX Security Symposium USENIX Association

Algorithm 1 One-dimensional Mutation.
Input: Input mission (M), input parameter (P), test environmental factor (E), control
state deviation threshold set for all primitive controllers (τ)
Output: An invalid range for a target parameter (R)

1: function ONEDIMENSIONALMUTATION(M, P, E, τ) . Main function
2: Initialize R
3: R.max← ONEMUTATION(M,P,E,τ,U) . ’U’: Upper-bound search
4: R.min← ONEMUTATION(M,P,E,τ,L) . ’L’: Lower-bound search
5: return R . Return an invalid range of one parameter
6: function ONEMUTATION(M, P, E, τ, bound)
7: if bound =U then . ’U’ indicates an upper-bound search
8: {test,max-limit,min-limit}← {(P.Max−P.De f ault)/2,P.Max,P.De f ault}
9: else . ’L’ indicates a lower-bound search

10: {test,max-limit,min-limit}← {(P.De f ault−P.Min)/2,P.De f ault,P.Min}
11: MinDi f f ← 0
12: do
13: test ′← test . Store the testing value before mutation
14: Dev← RUNANDDEVIATIONCHECK(M,P, test,E,τ)
15: if (bound =U and Dev = True) or (bound = L and Dev = False) then
16: max-limit← test . Change the testing range
17: else
18: min-limit← test . Change the testing range
19: test← (max-limit +min-limit)/2 . Mutate the testing value
20: while |test ′− test|> MinDi f f . Check the exit condition
21: return GETINVALIDRANGE(test, test ′,bound,Dev)

search method, until the difference between the input values
in the current and the next runs is less than a pre-determined
threshold MinDi f f (Line 20). Finally, the mutator determines
the valid value range and the corresponding vulnerable value
range (i.e., invalid range) for the target control parameter.

Multi-dimensional Mutation RVFUZZER also performs a
more advanced form of input mutation: multi-dimensional
mutation, which finds extra invalid parameter value ranges
that one-dimensional mutation may not find. Such extra in-
valid parameter values are introduced because a target control
parameter may have dependencies on other parameters. In
other words, different (non-default) setting of such other pa-
rameters may expand the invalid range of the target parameter.

To test the impact of other parameters (Pothers), RVFUZZER
performs the multi-dimensional mutation for each target pa-
rameter (Ptarget) as described in Algorithm 2. In this algorithm,
RVFUZZER utilizes the results from the one-dimensional mu-
tation (Algorithm 1) of all control parameters (Pall) (i.e., the
lower and upper bounds of their valid ranges). For the target
parameter, RVFUZZER sets the initial working range as its
valid value range obtained from one-dimensional mutation
(Line 2). Thereafter, the mutation of the values of the other
parameters (Line 8-15) and the target parameter (Line 18-21)
are performed recursively.

In each recursion, the value of each of the other parameters
is mutated among only three values: the default value, the
lower bound of its valid value range and the corresponding
upper bound (Line 11). We note that setting the values of
one/more of the other parameters to their lower/upper bound
values leads to an extreme scenario which can potentially
exacerbate the impact of the target parameter on the control
state deviation.

After setting the values of the other parameters (Line
18), the mutator follows a procedure similar to the one-

Algorithm 2 Multi-dimensional Mutation.
Input: Input mission (M), target testing input parameter (Ptarget), a set of all input pa-
rameters including one-dimensional search results (PSall), test environmental factor
(E), control state deviation threshold set for all primitive controllers (τ)
Output: An invalid range for a target parameter (R)

1: function MULTIDIMENSIONALMUTATION(M, Ptarget , E, PSall , τ) . Main
function

2: R← GETINVALIDRANGE(Ptarget) . Results from the previous step
3: PSothers← PSall −{Ptarget} . A set of other parameters except for Ptarget
4: PSmut ← /0 . Initialize the mutated parameter set
5: R← DEPMUTATION(M,Ptarget ,E,PSothers,PSmut ,R,τ)
6: return R . Return a new invalid range
7: function DEPMUTATION(M, Ptarget , E, PSothers, PSmut , R, τ)
8: if PSothers 6= /0 then . Recursively mutate PSothers
9: Pmut ← PSothers.Pop()

10: PSmut ← PSmut ∪Pmut
11: for PV ∈ Pmut .Min,Pmut .De f ault,Pmut .max do
12: PSmut ← UPDATEMUTATEDVALUE(PSmut ,Pmut ,PV)
13: R← DEPMUTATION(M,Ptarget ,E,PSothers,PSmut ,τ)

14: else . Update the invalid range of Ptarget if all of PSothers are mutated
15: R← DEPTEST(M,Ptarget ,E,PSmut ,R,τ)
16: return R
17: function DEPTEST(M, Ptarget , E, PSmut , R, τ)
18: PARAMETERSET(PSmut) . Configure parameters with values of PSmut
19: U pper← ONEMUTATION(M,Ptarget ,E,τ,U) . ’U’: Upper-bound search
20: Lower← ONEMUTATION(M,Ptarget ,E,τ,L) . ’L’: Lower-bound search
21: return UPDATEINVALIDRANGE(R,U pper,Lower)

dimensional mutation. It employs the mutation-based binary
search method to determine and update the lower and upper
bounds of the valid value range of the target parameter (Line
20-21). The new (in)valid range is then updated (Line 21).

In essence, as RVFUZZER mutates the values of multiple
control parameters together, it can identify additional values
of the target parameter that will cause control state deviation
under specific value setting of the other parameters. If such
invalid values lie outside the one-dimensional invalid value
range, the multi-dimensional mutation will conditionally ex-
pand the invalid value range to include those values, subject
to the setting of the other parameters. As such, the result of
the multi-dimensional mutation can be considered as an in-
complete set of constraints on the values of multiple control
parameters.

4.3.3 Environmental Factors

In real-world missions, the RV interacts with the physical
environment with external factors such as physical obstacles
and wind. Such factors influence RV’s control state and per-
formance. We note that an external factor (e.g., wind) could
make an otherwise valid parameter value cause control state
deviation. This means that such values can be exploited by
attackers. To detect such influence, RVFUZZER mutates and
simulates the impact of environmental factors along with
multi-dimensional mutation of parameter values. We catego-
rize the environmental factors into two types: geography and
disturbances.

Typical geographical factors of interest are obstacles en-
countered by an RV during its missions. The RV will need
to take actions to avoid such an obstacle. The actions may
entail changes in the parameter values to enable a change of
trajectory. This may expand the invalid range of the parameter

USENIX Association 28th USENIX Security Symposium 431

values that will cause control state deviation. To expose such
input validation bugs, RVFUZZER defines and simulates RV
missions in which the RV needs to avoid obstacles via sudden,
sharp trajectory changes. An attack case triggered by obstacle
avoidance will be presented in Section 6.3.3.

External disturbances such as wind and turbulence may
also disrupt the RV’s operation. RVFUZZER simulates the
wind gusts and mutates the wind speed and direction based
on real-world wind conditions. Details of the wind factor
setup are given in Section 6.2.2. The attack case presented in
Section 6.3.3 also exploits the wind condition.

5 Implementation

To evaluate RVFUZZER experimentally, we have imple-
mented a prototype of RVFUZZER. The implementation de-
tails of its main components are described as follows.
Subject Control Programs We choose the quadcopter as
our subject vehicle as the quadcopter operates in all of the
6DoF and it is one of the most widely adopted types of
RVs [49, 62, 64]. We point out that the implementation of
RVFUZZER is not specific to a certain RV type or model as
RVFUZZER only needs the physical quantities (e.g., weight
and inertial parameters) and the corresponding simulator to
support a vehicle. This means that RVFUZZER can be recon-
figured to support other types of RVs, such as hexacopters
and rovers.

We apply RVFUZZER to vet two control programs that
both support the quadcopter: ArduPilot 3.5 and PX4 1.8. The
default vehicle control model supported by both programs is
that of the 3DR IRIS+ quadcopter [12]. All vetting experi-
ments (on both ArduPilot and PX4) are performed using a
desktop PC with quad-core 3.4 GHz Intel Core i7 CPU and
32 GB RAM running Ubuntu 64-bit.
Simulator To simulate the physical vehicle and environment,
we utilized the APM simulator [8] and Gazebo [7, 42, 53] for
ArduPilot and PX4, respectively. We note that RVFUZZER’s
control instability detection and input mutation functions can
easily inter-operate with these simulators via the interfaces
between the simulators and the control and GCS programs.
GCS Program We used QGroundControl [26] and
MAVProxy [22] as the ground control station software for
PX4 and ArduPilot, respectively.
Control-Guided Tester The control-guided tester is the
core component of RVFUZZER. It is written in Python 2.7.6
with 5,722 lines of code. To implement the key functions in
RVFUZZER, we leveraged the Pymavlink library [25], which
provides APIs to remotely control the RV via the MAVLink
communication protocol [21]. MAVLink is the de-facto com-
munication protocol for robotic vehicles, which is used not
only by ArduPilot and PX4, but also by other platforms such
as Paparazzi [23], DJI [16], and LibrePilot [20]. MAVLink
supports a wide range of GCS commands (e.g., for mission

assignment, run-time control state monitoring, and parameter
checking and adjustment) that are leveraged and tested by
RVFUZZER.

To test the control performance of the subject vehicle, we
adopted the AVC2013 [5] mission which is an official mis-
sion provided by ArduPilot and used in autonomous vehicle
competitions to test the control and mission execution capabil-
ities of RVs. To improve the testing efficiency of RVFUZZER,
we adjusted that mission by removing the overlapping flight
courses, reducing the distance between each pair of waypoints,
and increasing the vehicle’s velocity.

To classify and generate the bug discovery results, we lever-
age a list of dynamically adjustable control parameters pro-
vided by ArduPilot and PX4 [28, 29]. Such a list is usually
provided in the Extensible Markup Language (XML) format
in the source code and can be easily parsed.

6 Evaluation

We now present evaluation results from our experiments with
the RVFUZZER prototype. The three main questions that we
want to answer are: (1) How effective is RVFUZZER at find-
ing input validation bugs (Section 6.1); (2) How do different
input mutation schemes of RVFUZZER contribute to the dis-
covery of input validation bugs (Section 6.2); and (3) How
can RVFUZZER be applied to discover input validation bugs
that would otherwise be exploited to launch stealthy attacks
(Section 6.3).

6.1 Finding Input Validation Bugs
We present a summary of the input validation bugs discovered
by RVFUZZER from ArduPilot and PX4. These bugs are the
result of a 8-day, non-stop testing session running RVFUZZER
on the two control programs.

6.1.1 Classification of Input Validation Bugs

The validity of an input value of a control parameter is
checked based on the specified range that has been determined
and documented by developers during the development of the
control program. Our subject control programs (ArduPilot
and PX4) have the specified ranges of all the control param-
eters publicly available on their developer community web-
sites [28, 29]. Leveraging these public range specifications,
RVFUZZER found a number of input validation bugs through
the 8-hour testing session. We classify these input validation
bugs into two categories based on their root causes: range
implementation bugs and range specification bugs.
Range Implementation Bugs Assuming that the specified
valid range of a control parameter is correct, any value outside
the specified range should be caught and rejected by the con-
trol program. If the implementation of the control program
fails to enforce that, an out-of-range parameter value may

432 28th USENIX Security Symposium USENIX Association

Table 1: Summary of input validation bugs found by RVFUZZER

(RIB and RSB denote the number of range implementation and range
specification bugs, respectively).

Module Sub-module ArduPilot PX4
RIB RSB RIB RSB

Controller

x, y-axis position 1 0 1 1
x, y-axis velocity 2 1 1 1

z-axis position 1 0 1 1
z-axis velocity 1 0 1 0

z-axis acceleration 3 0 0 0
Roll angle 1 0 1 1

Roll angular rate 5 0 3 3
Pitch angle 1 0 1 1

Pitch angular rate 5 0 3 3
Yaw angle 1 0 2 2

Yaw angular rate 6 0 3 3
Motor 0 0 3 3

Sensor Inertia sensor 3 3 0 0

Mission

x, y-axis velocity 1 1 2 0
z-axis velocity 2 0 4 0

z-axis acceleration 2 0 0 0
Roll, Pitch 1 1 1 1

Total - 36 6 27 20

be maliciously provided and accepted by the program, caus-
ing control state deviations. This is the nature of the range
implementation bug which, based on our observation, arises
from a lack of or an incorrect implementation of range check
logic in the program. To discover range implementation bugs,
RVFUZZER employs the one-dimensional mutation strategy.
It mutates the value of each target parameter and issues the
parameter-change GCS command with the mutated value to
the control program. If the Control Instability Detector re-
ports a control state deviation, RVFUZZER will report a range
implementation bug associated with the target parameter.

Range Specification Bugs Ideally, the specified valid range
of a parameter should correctly scope the value of the parame-
ter. Unfortunately, this turns out not always the case. To reveal
such problems, RVFUZZER first performs one-dimensional
mutation and then performs multi-dimensional mutation on
each target parameter, determining its invalid value range that
will cause control state deviation. We observe that for some
control parameters, their valid value ranges are erroneously
specified by developers, allowing dangerous values in the
specified – and subsequently implemented – ranges. This is
the nature of the range specification bug. Based on our analy-
sis, such bugs exist because a control program enforces a fixed
valid value range for a control parameter, without considering
three critical factors: (1) the difference between hardware
models and configurations, (2) inter-dependencies between
control parameters, and (3) impact of environmental factors.
RVFUZZER reveals that the range of the valid input values
of a target parameter tends to “shrink” under these factors,
giving rise to range specification bugs.

6.1.2 Detection of Input Validation Bugs

Table 1 summarizes the range implementation bugs (RIB) and
range specification bugs (RSB) discovered by RVFUZZER in
ArduPilot and PX4. The detailed list of the 63 control parame-
ters that are affected by these bugs is presented in Appendix B.
For coherent presentation in Table 1, the control parameters
in each of the two control programs are categorized into three
modules (i.e., controller, sensor, and mission) and further into
their sub-modules. Table 1 shows that RVFUZZER detected
a total of 89 input validation bugs (42 bugs in ArduPilot and
47 bugs in PX4). We note that some of the control parameters
are associated with both range implementation and the range
specification bugs. Hence, the total number of input validation
bugs (89) is higher than the total number of affected control
parameters (63).

We highlight that only two of the 89 bugs discovered by
RVFUZZER were detected and correctly patched by the de-
velopers before we reported our results to them. Out of the
remaining 87 bugs, the developers have so far independently
confirmed 8 bugs and patched 7 of them. The remaining bugs
are under review. The delayed response of the developers
brings forth an important point: Compared to the traditional
“syntactic” bugs (e.g., buffer overflow), discovering, validating
and patching input validation bugs require more time and ef-
fort. This is because the exploitability of each input validation
bug must be fully verified under a spectrum of vehicle con-
figurations and operating environments. In such a scenario,
RVFUZZER can be utilized by developers as a helpful tool to
automate the discovery and confirmation of input validation
bugs.

6.1.3 Impact of Input Validation Bugs

We now detail the physical impacts (on the vehicle’s opera-
tion) of the attacks that exploit the bugs found by RVFUZZER.
We consider four levels of physical impact: crash, trajectory
deviation, unstable movement, and frozen control states. Ap-
pendix B presents possible physical impact(s) of attacks that
exploit each of the vulnerable control parameters. Here, we
summarize the results by analyzing the impact on the modules
of the control program. Specifically, we present the causality
of the bugs in a bottom-up fashion and assess its impact on
the control state deviation which is detected by RVFUZZER’s
Control Instability Detector.

Controller Module Among the control parameters related
to the controller module, RVFUZZER discovered 27 range im-
plementation bugs and 1 range specification bug in ArduPilot,
and 20 range implementation bugs and 19 range specification
bugs in PX4 (Table 1). These bugs can be used to maliciously
set invalid parameter values or exploit environmental factors,
which would directly affect the primitive controllers and cor-
rupt the control states in the 6DoF. For example, if one of
the control parameters related to the z-axis velocity is set to

USENIX Association 28th USENIX Security Symposium 433

a value in the invalid range due to an input validation bug,
the manipulated parameter will corrupt the reference state of
the (downstream) z-axis acceleration. As a result, the z-axis
acceleration controller will attempt to bring its observed state
closer to the corrupted reference state, which will cause con-
trol instability of the vehicle. Such instability may eventually
lead to a crash.

Sensor Module For this module, while RVFUZZER found
3 range implementation bugs and 3 range specification bugs
in ArduPilot, it did not find any input validation bug in PX4
(Table 1). We note that the vulnerable control parameters of
the sensor module are related to either a sensor calibrator
or a sensor filter for noise/disturbance. While the calibrator
compensates for manufacturing errors in sensors and adjusts
the observed state accordingly, the filter smooths out the sen-
sor values and helps the controllers in robustly responding
to physical interactions [73]. Hence, if an invalid value is
assigned to a control parameter related to a sensor calibrator/-
filter due to an input validation bug, the primitive controller
that consumes the sensor values will compute a corrupted ob-
served state. Such corruption will also propagate to its output
reference state, and from there to other dependent primitive
controllers, leading to unstable movement of the vehicle.

Mission Module For this module, RVFUZZER discovered
6 range implementation bugs and 2 range specification bugs
in ArduPilot, and 7 range implementation bugs and 1 range
specification bug in PX4 (Table 1). Recall that this module
is responsible for setting the mission parameters (e.g., speed
and tilting angles) which define or adjust the vehicle’s mis-
sion. However, if a parameter related to the mission module
is manipulated with an invalid value by exploiting an input
validation bug, the corresponding controllers will generate
misguided reference states. Such mission corruption will mis-
lead one or more of the 6DoF controllers and prevent the
vehicle from fulfilling its intended mission (e.g., not moving
to the intended destination or at the intended speed), even if
the vehicle does not experience any immediate danger.

6.2 Effectiveness of Input Mutation

RVFUZZER employs the control-guided input mutation strat-
egy to generate control parameter value inputs and set environ-
mental factors. We evaluate the effectiveness of this mutation
strategy in enabling efficient discovery of input validation
bugs.

6.2.1 Control Parameter Mutation

RVFUZZER discovers the range implementation bugs using
the one-dimensional mutation strategy which detects the erro-
neous implementation of the parameter’s range check logic.
Through the extensive black-box-based (i.e., without source
code) testing of the control parameters, RVFUZZER discov-

ered a total of 63 range implementation bugs: 36 bugs in
ArduPilot and 27 bugs in PX4.

To detect the incorrectly specified ranges of the param-
eters and find the range specification bugs, RVFUZZER
employs one-dimensional mutation followed by the multi-
dimensional mutation strategy. We demonstrate the effective-
ness of RVFUZZER’s mutation strategies in discovering the
range specification bugs in Fig. 4, which presents the valid
and invalid value ranges (detected using one-dimensional and
multi-dimensional mutation) for the affected control parame-
ters.

One-dimensional Mutation RVFUZZER discovered a total
of 26 range specification bugs using one-dimensional muta-
tion: 6 bugs in ArduPilot and 20 bugs in PX4 (Fig. 4). For
example, for parameter MC_TPA_RATE_P in PX4, the speci-
fied range was between 0 and 1, and the default value was 0.
However, RVFUZZER detected control state deviations with
values between 0.1 and 1, and hence found 90% of the values
in the specified range belonging to the invalid range. We note
that almost 100% of the values in the specified range of the
three parameters, MC_PITCHRATE_FF, MC_ROLLRATE_FF and
MC_YAWRATE_FF, in PX4 are invalid. This is because, while
each of these parameters can be independently configured
with a wide range of input values, there is a smaller range
of values that are valid when the other parameters take their
default values.

Multi-dimensional Mutation Recall that the multi-
dimensional mutation further expands the invalid range of the
target parameter to include the additional values that cause
control state deviation under specific, non-default settings of
the other parameters. In Fig. 4, we observe that the multi-
dimensional mutation expands the invalid ranges of 10 out of
26 range specification bugs found using one-dimensional mu-
tation. For instance, RVFUZZER found that the invalid range
of the MC_ROLL_P parameter in PX4 was expanded from 1.7%
to 51.7% when multi-dimensional mutation was employed.
We highlight that for some parameters, RVFUZZER reported
a significant increase of invalid range with multi-dimensional
mutation. In particular, compared to the invalid ranges de-
tected using one-dimensional mutation, the invalid ranges of
the MC_PITCHRATE_MAX and MC_ROLLRATE_MAX parameters
in PX4 increased from 0.4% to 88.1% and from 0.1% to
87.9%, respectively. These results demonstrate that the multi-
dimensional mutation strategy can discover invalid values
of control parameters with stronger awareness of the inter-
parameter dependencies (discussed further in Section 8).

6.2.2 Environmental Factor Mutation

RVFUZZER further found that the invalid ranges of some con-
trol parameters expand when environmental conditions are
taken into account. This is important because the developers
may not completely consider the impact of various environ-
mental conditions when specifying the valid range of a pa-

434 28th USENIX Security Symposium USENIX Association

0%

20%

40%

60%

80%

100%

Invalid Range Valid Range

P
S
C
_
V
E
L
X
Y
_
P

W
P
N

A
V
_
S
P
E
E
D

A
N

G
L
E
_
M

A
X

IN
S
_
P
O

S
1
_
Z

IN
S
_
P
O

S
2
_
Z

IN
S
_
P
O

S
3
_
Z

M
C
_
T
P
A
_
R
A
T
E
_
P

M
C
_
P
IT

C
H

R
A
T
E
_
F
F

M
C
_
P
IT

C
H

R
A
T
E
_
M

A
X

M
C
_
P
IT

C
H

R
A
T
E
_
P

M
C
_
R
O

L
L
R
A
T
E
_
F
F

M
C
_
R
O

L
L
R
A
T
E
_
M

A
X

M
C
_
R
O

L
L
R
A
T
E
_
P

M
C
_
R
O

L
L
_
P

M
C
_
P
IT

C
H

_
P

M
C
_
Y
A
W

R
A
T
E
_
F
F

M
C
_
Y
A
W

R
A
T
E
_
P

M
C
_
Y
A
W

R
A
U

T
O

_
M

A
X

M
C
_
Y
A
W

_
P

M
IS

_
Y
A
W

_
E
R
R

M
P
C
_
T
IL

T
M

A
X
_
A
IR

M
P
C
_
T
H

R
_
M

A
X

M
P
C
_
T
H

R
_
M

IN

M
P
C
_
X
Y
_
P

M
P
C
_
X
Y
_
V
E
L
_
M

A
X

M
P
C
_
Z
_
P

ArduPilot PX4

𝟏 𝑴

1
.7

%
1

.7
%

4
.0

%
4

.0
%

0
.0

%
0

.0
%

8
1

.0
%

8
4

.0
%

8
1

.0
%

8
4

.0
%

8
1

.0
%

8
4

.0
%

9
0

.0
%

9
0

.0
%

≈1
0

0
.0

%
1

0
0

.0
%

0
.4

%
8

8
.1

%

1
6

.7
%

3
3

.3
%

1
0

0
.0

%

0
.1

%
8

7
.9

%

1
6

.7
%

3
3

.3
%

1
.7

%
5

1
.7

%

2
.5

%
5

2
.5

%

≈1
0

0
.0

%
1

0
0

.0
%

1
6

.7
%

1
6

.7
%

1
6

.7
%

1
6

.7
%

2
.0

%
2

.0
%

0
.1

%
0

.1
%

0
.4

%
0

.4
%

8
0

.0
%

8
0

.0
%

4
2

.1
%

4
2

.1
%

1
5

.0
%

1
5

.0
%

0
.5

%
0

.5
%

6
.7

%
6

.7
%

𝟏 𝑴 𝟏𝑴

≈1
0

0
.0

%
Figure 4: Invalid control parameter ranges discovered by RVFUZZER, normalized to the specified value ranges (1: One-dimensional mutation,
M: Multi-dimensional mutation). Percentage of invalid ranges (%) within the specified value ranges are noted at the top of the bars.

0
.0

0
%

0
.0

0
%

1
3
.1

9
%

8
7
.8

6
%

8
7
.8

7
%

8
7
.9

4
%

5
1
.6

7
%

5
1
.6

7
%

5
2
.5

0
%

0
.4

4
%

9
.1

1
%

1
6
.7

8
%

0%

20%

40%

60%

80%

100%

N M S N M S N M S N M S

ANGLE_MAX MC_ROLLRATE_MAX MC_ROLL_P MPC_TILTMAX_AIR

ArduPilot PX4

Invalid Range Valid Range

Figure 5: Normalized invalid ranges within the specified value ranges
under different wind conditions (N: No wind, M: Medium wind, S:
Strong wind).

rameter. Based on our observation, two factors may widen
the invalid ranges: (1) geographical factor and (2) external
disturbance (e.g., strong wind), as described in Section 4.3.3.
RVFUZZER found four cases which can be exploited with
realistic environmental factors.

We performed tests based on existing wind analysis statis-
tics [33, 41, 59] and simulated various wind conditions. The
wind conditions were divided into three categories: no wind,
medium wind (with a horizontal wind component of 5 m/s or
a vertical wind component of 1 m/s), and strong wind (with
a horizontal wind component of 10 m/s or a vertical wind
component of 3 m/s). For each wind condition, the wind gust
was simulated from 0 to 360 degrees with 30-degree incre-
ments. Simulations were also performed where the wind gust
was designed to come in at every 30-degree angle between
the horizontal tests and the vertical tests, such that the tested
wind vectors approximately formed an ellipsoid. These wind
settings enrich our standard test mission (Section 5), which
already reflects geographical factors as it emulates flight paths
with sharp turns for obstacle avoidance.

Fig. 5 presents the impact of three different wind condi-
tions on the four parameters which cause control state de-
viations. RVFUZZER discovered these four input validation

bugs using multi-dimensional mutation over the four param-
eters. We observe that the impact of environmental factors
expands the invalid ranges of those parameters. In particular,
when the wind conditions were not considered, ANGLE_MAX
did not have any invalid range under both one-dimensional
and multi-dimensional mutations. However, with wind condi-
tions, RVFUZZER reveals that this parameter can be exploited
when strong wind is present.

Such an input validation bug is exploitable because a large
angular change is required to alter the direction of the vehicle.
Specifically, if the maximum allowed angle or angular speed
is not large enough (even within the specified value ranges),
the vehicle’s motors cannot generate enough force to change
the direction or resist the wind gusts. As a result, the vehicle
may fail to change its direction at sharp turns or it might drift
in the wind’s direction in the worst case.

We note that the results with environmental factor mutation
may be affected by other factors, such as the control model,
configuration, and physical attributes (e.g., motor power and
the size of the vehicle). For example, if the vehicle is capable
of turning with a larger roll angle, has a smaller size, or has
stronger motors, it may be able to resist wind gusts when
changing its flight direction. Hence, these conditions need to
be tested by RVFUZZER for each specific type of vehicle.

6.3 Case Studies
We present three representative case studies of input valida-
tion bugs. We also discuss how an attacker can exploit these
bugs, and how RVFUZZER can proactively discover them.
The three cases cover different affected controllers, cause dif-
ferent impacts on the RV, and require different components
of RVFUZZER’s testing techniques to detect. Specifically,
the bug discussed in Case I (Section 6.3.1) affects the x and

USENIX Association 28th USENIX Security Symposium 435

1 # d e f i n e WPNAV_WP_SPEED_MIN 100 / / Buggy code 2
2 # d e f i n e WPNAV_WP_SPEED_MIN 20 / / Pa tched code 2
3 . . .
4 void AC_WPNav : : s e t _ s p e e d _ x y (f l o a t speed_cms) {
5 − i f (_wp_speed_cms >=WPNAV_WP_SPEED_MIN) { / / Buggy code 1
6 + i f (speed_cms >=WPNAV_WP_SPEED_MIN) { / / Pa tched code 1
7 _wp_speed_cms = speed_cms ;
8 _ p o s _ c o n t r o l . s e t _ s p e e d _ x y (_wp_speed_cms) ;
9 . . .

Listing 1: Input validation bug case on x, y-axis mission velocity.
The parameter can be dynamically changed by either a mission
speed-change command or a speed parameter-change command.

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Attacker
GCS

2

2. x, y-axis speed
= 0.2m/s1. x, y-axis speed

= 10m/s

1

Figure 6: Illustration of Case Study I: An RV cannot recover its
normal speed for the segment from Waypoint 2 to Waypoint 3.

y-axes controllers and causes unrecoverable slowdown, but
can be discovered by RVFUZZER using the one-dimensional
mutation technique. Case II (Section 6.3.2) presents a bug
that affects the pitch controller, leads to a crash, and can only
be found via multi-dimensional mutation strategy. Finally,
the bug in Case III (Section 6.3.3) adversely affects the roll
controller and causes significant deviation from the assigned
mission, but can be discovered by mutating an environmental
factor (wind force).

6.3.1 Case Study I: Bug Causing “Unrecoverable Ve-
hicle Slowdown” Discovered by One-Dimensional
Mutation

Attack We consider an RV that is assigned the mission of
express package delivery (Fig. 6). Because of the urgency, the
operator sets the RV’s mission speed to 10 m/s at Waypoint 1.
During the mission, while the RV slows down to make a turn
at Waypoint 2, the attacker sends a seemingly innocent, but
malicious, command to the RV to change its mission speed to
0.2 m/s (the minimum specified speed is 0.2 m/s). After the
turn, however, the operator will not be able to resume the 10
m/s mission speed by issuing speed-change commands. This
attack exploits an input validation bug in ArduPilot, illustrated
in Listing 1.

Root Cause Listing 1 presents the code that runs in the
RV when it receives a new speed-change input (denoted by
speed_cms) during its mission. The specified minimum speed
(in cm/s) is denoted by the WPNAV_WP_SPEED_MIN parameter
(Line 1). We note that the current mission speed (denoted
by _wp_speed_cms) is compared with the minimum mission
speed (Line 5). This means that if (and only if) the current

1

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Attacker

Manipulate Pitch
parameter(s)

2

Figure 7: Illustration of Case Study II: The attack launched at Way-
point 2 causes an RV to oscillate due to failing control of the pitch
angle.

mission speed is equal to or higher than the minimum mission
speed, it can be replaced by the new mission speed in the
input command; If the current mission speed is lower than
the minimum mission speed, it cannot be changed. Hence,
this is the bug which can be exploited by the attacker, by
sending a speed-change command with a value lower than
the minimum mission speed while the current mission speed
is higher than the minimum mission speed. This bug has
been patched recently by the developers by correcting the
value of the minimum mission speed (Line 2) and setting the
comparison of the minimum mission speed with the input
speed (Line 6).
Bug Discovery This bug was discovered by RVFUZZER
while performing one-dimensional mutation of the input
mission speed parameter. For input mission values above
1 m/s, the RV successfully changed its current mission speed.
However, if the current mission speed dropped below 1 m/s,
RVFUZZER can no longer change the current mission speed
by setting the input mission speed parameter. The failure
to change the current mission speed led to the incorrect ex-
ecution of the mission, resulting in control state deviation,
simulated and detected by RVFUZZER. Hence, RVFUZZER
reported this deviation-triggering parameter as an input vali-
dation bug, which is confirmed by the related source code in
Listing 1 (as ground truth of our evaluation).

6.3.2 Case Study II: Bug Causing “Oscillating Route
and Crash” Discovered by Multi-Dimensional
Mutation

Attack We consider an RV that is assigned the same mis-
sion as in Case Study I. As shown in Fig. 7, at Waypoint
2 of the mission, the attacker sends a malicious command
to the RV to change one of the four pitch control parame-
ters: MC_PITCH_P, MC_PITCHRATE_P, MC_PITCHRATE_P, and
MC_PITCHRATE_FF. Because of the inter-dependency be-
tween these parameters, such a malicious command, which
looks innocent, can cause the RV to fail to stabilize its pitch
angle, resulting in unrecoverable oscillation and deviation
from its route.
Root Cause The unrecoverable oscillation on the RV’s
route is caused by the failure of its pitch controller to
track the reference state of the pitch. The pitch con-
troller utilizes four inter-dependent parameters: the P con-

436 28th USENIX Security Symposium USENIX Association

4

1 2

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Figure 8: Illustration of Case Study III: An RV fails to complete a
simple mission from Waypoint 1 to Waypoint 4 due to the impact of
environmental factors.

trol gain of pitch angle (MC_PITCH_P), the P control gain
of the pitch angular speed (MC_PITCHRATE_P), the maxi-
mum pitch rate (MC_PITCHRATE_MAX), and the feed-forward
pitch rate (MC_PITCHRATE_FF). For example, a high value of
MC_PITCHRATE_FF helps track the reference state of the pitch
when MC_PITCH_P is low. When both MC_PITCHRATE_FF and
MC_PITCH_P have high values, the RV may perform overly
aggressive stabilization operations. In that case, a low value
of the maximum pitch rate (MC_PITCHRATE_MAX) is desirable
to mitigate the impact of such operations.

We point out that such dependencies can be exploited by
an attacker to affect the RV’s operations by corrupting the
value of just one parameter. Let us assume that the RV is
already configured with high values of MC_PITCHRATE_FF
and MC_PITCH_P. If the attacker sets MC_PITCHRATE_MAX to
a high value, the pitch controller will start to respond to the
minuscule difference between the reference state and the
observed state of the pitch angle with extreme sensitivity. As
a result, the RV will not be able to strictly follow its flight path.
We note that this type of bug can only be discovered when the
dependencies between multiple parameters are considered in
the test.

Bug Discovery This bug was found by RVFUZZER while
performing multi-dimensional mutation (Algorithm 2) of the
parameters related to the pitch controller. RVFUZZER mu-
tated the target parameter (MC_PITCHRATE_MAX), while set-
ting high values for MC_PITCH_P and MC_PITCHRATE_FF pa-
rameters. Unlike the one-dimensional mutation, which de-
termined the parameter’s valid range to be between 6.7 and
1800, the multi-dimensional mutation determined that the
valid range of MC_PITCHRATE_MAX is to be between 6.7 and
220.1. RVFUZZER detected and reported the expanded in-
valid range of MC_PITCHRATE_MAX as an input validation bug.

6.3.3 Case Study III: Bug Causing “Diverging Route”
Discovered by Wind Force Mutation

Attack In this case study, we consider an RV assigned a
mission to deliver a food item to a customer via the path

presented in Fig. 8. The RV is required to follow the path
around tall buildings on a windy day with the wind direction
towards the west. Since the item (e.g., soup) might spill if
the RV changes its attitude drastically, the operator tries to
prevent sudden changes in the roll angle by limiting the maxi-
mum angular-change speed (MC_ROLLRATE_MAX) to a small
value. When the vehicle is approaching Waypoint 2, the at-
tacker sends a command to set the maximum tilting angle
(MPC_TILTMAX_AIR) to a low value. We note that the RV is
supposed to make a 120-degree turn to avoid a tall building
at Waypoint 3. However, the RV fails to make the correct
turn at Waypoint 3 and hence cannot reach the destination
(Waypoint 4) after multiple attempts to correct the diverging
path. We note that the value of the maximum tilting/roll angle
parameter is accepted by the control program because it is
within the specified valid range, yet the value causes control
state deviation due to the strong wind condition.

Root Cause There are three causes that induce the vehicle’s
unexpected flight path divergence: (1) the mission route with
sharp turns, (2) the roll controller’s parameter value that is
not responsive enough to change the direction in time, and
(3) the strong wind that expands the invalid ranges of the
roll controller’s parameters. In this case study, the combina-
tion of these three factors disrupts the vehicle’s maneuver
and trajectory, resulting in a failed mission (and a hungry
customer).

Bug Discovery RVFUZZER discovered this bug in PX4 by
mutating the wind condition during the AVC2013 mission
(Section 5) which involves many sharp turns of the vehicle.
As the input values of the roll controller parameters were
mutated under a strong wind condition, RVFUZZER detected
control state deviation between the reference state and the
mission (Fig. 5). Hence, RVFUZZER reported this as an input
validation bug contingent upon the influence of an external
factor (wind).

7 Related Work

Control Semantics-Driven RV Protection There exists a
body of work that leverages control semantics to protect RVs
from attacks during flights and missions [38, 40, 50]. Blue-
Box [40] detects abnormal behaviors of an RV controller by
running a shadow controller in a separate microprocessor that
monitors the correctness of the primary controller, based on
the same control model. CI [38] extracts control-level invari-
ants of an RV controller to detect physical attacks. Similarly,
Heredia et al. [50] propose using a fault detection and isola-
tion model extracted from a target RV controller and enforces
the model to detect anomalies during flights.

Another line of work focuses on deriving finite state models
to detect abnormal controller behaviors [37,61]. Orpheus [37]
automatically derives state transition models using program
analysis for run-time anomaly detection. Bruids [61] relies on

USENIX Association 28th USENIX Security Symposium 437

a manual specification of RV behaviors to derive a behavioral
model to detect run-time anomalies.

Other approaches utilize machine learning techniques to
derive benign behavioral models of an RV controller. Ab-
baspour et al. [31] apply adaptive neural network techniques
to detect fault data injection attacks during flight. Samy et
al. [70] use neural network techniques to detect sensor faults.
Two related efforts [30, 76] leverage a similar approach but
detect both sensor and actuator faults.

Complementing the prior efforts, RVFUZZER leverages
control semantics to proactively find input validation bugs
that may be exploited by RV attackers. Unlike the previous
works that aim to detect abnormal behaviors during flights,
our work focuses on identifying input validation bugs in RV
control programs before flights via off-line RV simulation and
program vetting. Control semantics are leveraged to reduce
the input value mutation space and simulators are adopted to
render the impacts of control parameter and external factor
changes on control states.

Feedback-directed Testing RVFUZZER is inspired by
many existing feedback-driven testing/fuzzing systems for
conventional program testing [14, 17, 19, 34–36, 43, 44, 56, 57,
63,66,71,74,79]. These solutions leverage different mutation
strategies to increase the coverage of testing/fuzzing. Sev-
eral systems [14, 17, 19, 71] mutate input values with varying
granularity (e.g., bit, byte-level) driven by the tested code’s
coverage achieved during each test run, using the code cov-
erage as feedback. Another line of work [63, 74] adopts a
hybrid approach to increase code coverage using both dy-
namic and symbolic execution. Finally, many efforts leverage
taint analysis [36,43,56,57,79] or a combination of taint anal-
ysis and symbolic execution [34, 35, 44, 66] for high testing
coverage. Such approaches mutate inputs with awareness of
the dependencies between program input and logic.

Testing techniques for conventional, non-cyber-physical
programs rely on well-established mechanisms for (1) bug de-
tection and (2) input mutation. Specifically, these testing tech-
niques leverage generic, easy-to-detect symptoms of program
failures (e.g., segmentation faults) as indication of a triggered
bug and mutate program input following information (e.g.,
code coverage) agnostic to domain semantics. Compared with
conventional software testing, RVFUZZER addresses new
problems and opportunities when finding (semantic) input
validation bugs in RV control. Many such bugs do not cause
an immediate, easy-to-detect crash of the control program,
especially when running with an RV simulator. Meanwhile,
control-theoretical properties offer hints to reduce the input
value mutation space.

8 Discussion

Control Parameter Inter-dependencies As revealed by
multi-dimensional mutation, the control parameters may have

dependencies on one another. A specific value of one parame-
ter can increase or decrease the (in)valid value ranges of other
parameters. The ground truth on such inter-parameter depen-
dencies can only be derived from full knowledge about the
underlying control model and the control program implemen-
tation, given the large number of control variables (including
hundreds of parameters), the wide ranges of their values, and
the influence from various environmental factors. As a result,
it is challenging to fully and accurately capture the control
parameter inter-dependencies, with only the binary of a con-
trol program. In this work, we consider the subject control
program binary as a black box and take a pragmatic approach
by only revealing part of such inter-dependencies. A more
generic approach to control parameter dependency derivation
– possibly based on source code and a formal control model –
is left as future work.

Standard Safety Testing and Certification For the safety
of avionics software for airborne systems, there exist standard
safety tests and software certifications such as DO-178B/C [4]
and ISO/IEC 15408 [3]. To the best of our knowledge, how-
ever, there has been no standard safety testing framework cre-
ated for RVs. We believe that RVFUZZER’s post-production,
black-box-based (i.e., without source code) vetting will serve
as a useful complement to standardized safety testing during
RV design and production.

9 Conclusion

Robotic vehicles (RVs) are facing cyber and cyber-physical
attacks launched via various attack vectors. In this paper,
we identify a new, small-footprint attack against RVs, where
an attacker remotely issues a control parameter-change com-
mand with an illegitimate parameter value to disrupt the RV’s
control and mission. Such a value is erroneously accepted by
the RV control program because of an input validation bug
associated with the control parameter. The attack requires
no code injection, control flow hijacking, or sensor spoofing
hence cannot be defeated by existing RV security solutions.
To proactively discover input validation bugs in a control pro-
gram binary, we develop RVFUZZER, a control program test-
ing system that reveals illegitimate-yet-accepted value ranges
of dynamically adjustable control parameters. RVFUZZER
adaptively mutates the input control parameter values to de-
termine the (in)valid value ranges, driven by the detection
of control state deviations in the simulated RV. Furthermore,
it considers the impact of external factors by mutating their
values and presence. RVFUZZER has discovered 89 real in-
put validation bugs in two of the most popular RV control
software suites, with mutation efficiency and automation.

438 28th USENIX Security Symposium USENIX Association

10 Acknowledgment

We thank our shepherd, Nolen Scaife and the anonymous
reviewers for their valuable comments and suggestions. We
also thank Vireshwar Kumar for his detailed feedback and
edits which have improved the quality of the paper. This work
was supported in part by ONR under Grant N00014-17-1-
2045. Any opinions, findings, and conclusions in this paper
are those of the authors and do not necessarily reflect the
views of the ONR.

References
[1] Address space layout randomization, 2001. http://pax.grsecurity.

net/docs/aslr.txt.

[2] Exec shield, 2005. https://static.redhat.com/legacy/f/pdf/
rhel/WHP0006US_Execshield.pdf.

[3] ISO/IEC 15408-1:2009, 2009. https://www.iso.org/standard/50341.html.

[4] RTCA/DO-178C, 2011. Software Considerations in Airborne Systems
and Equipment Certification.

[5] SparkFun Autonomous Vehicle Competition 2013, 2013. https://
avc.sparkfun.com/2013.

[6] DHL parcelcopter launches initial operations for research pur-
poses, 2014. http://www.dhl.com/en/press/releases/
releases_2014/group/dhl_parcelcopter_launches_initial_
operations_for_research_purposes.html.

[7] Gazebo - A dynamic multi-robot simulator, 2014. http://gazebosim.
org.

[8] SITL Simulator (ArduPilot Dev Team), 2014. http://ardupilot.
org/dev/docs/sitl-simulator-software-in-the-loop.html.

[9] Hijacking drones with a MAVLink exploit,
2015. http://diydrones.com/profiles/blogs/
hijacking-quadcopters-with-a-mavlink-exploit.

[10] USPS Drone Delivery | CNBC, 2015. https://www.youtube.com/
watch?v=V9GXiXgaK34&list=PLL3t5xY2V44xOxvTIxS4AHuUhFE_
bMwhz&index=36.

[11] Inertial Navigation Estimation Library, 2016. https://github.com/
priseborough/InertialNav.

[12] 3DR iris+, 2018. https://3dr.com/support/articles/iris.

[13] Amazone Prime Air, 2018. https://www.amazon.com/b?node=
8037720011.

[14] American Fuzzy Lop, 2018. http://lcamtuf.coredump.cx/afl.

[15] ArduPilot, 2018. http://ardupilot.org.

[16] DJI Phantom 4 Advanced, 2018. https://www.dji.com/
phantom-4-adv.

[17] Honggfuzz, 2018. https://google.github.io/honggfuzz/.

[18] Intel Aero, 2018. https://software.intel.com/en-us/aero.

[19] libFuzzer, 2018. https://llvm.org/docs/LibFuzzer.html.

[20] LibrePilot, 2018. https://www.librepilot.org.

[21] MAVLink — Micro Air Vehicle Communication Protocol, 2018. https:
//mavlink.io.

[22] MAVProxy - A UAV ground station software package for MAVLink
based systems, 2018. https://ardupilot.github.io/MAVProxy.

[23] Paparazzi UAV - an open-source drone hardware and software project,
2018. http://wiki.paparazziuav.org/wiki/Main_Page.

[24] PX4 Pro Open Source Autopilot - Open Source for Drones, 2018. http:
//px4.io.

[25] Pymavlink - A python implementation of the MAVLink protocol, 2018.
https://github.com/ArduPilot/pymavlink.

[26] QGroundControl - Intuitive and Powerful Ground Control Station for
PX4 and ArduPilot UAVs, 2018. http://qgroundcontrol.com.

[27] Wing - Google X, 2018. https://x.company/projects/wing.

[28] ArduPilot Parameter List, 2019. http://ardupilot.org/copter/
docs/parameters.html.

[29] PX4 Parameter List, 2019. https://dev.px4.io/en/advanced/
parameter_reference.html.

[30] Alireza Abbaspour, Payam Aboutalebi, Kang K Yen, and Arman Sar-
golzaei. Neural adaptive observer-based sensor and actuator fault
detection in nonlinear systems: Application in uav. ISA transactions,
67:317–329, 2017.

[31] Alireza Abbaspour, Kang K Yen, Shirin Noei, and Arman Sargolzaei.
Detection of fault data injection attack on uav using adaptive neural
network. Procedia computer science, 95:193–200, 2016.

[32] Luis Afonso, Nuno Souto, Pedro Sebastiao, Marco Ribeiro, Tiago
Tavares, and Rui Marinheiro. Cellular for the skies: Exploiting mobile
network infrastructure for low altitude air-to-ground communications.
IEEE Aerospace and Electronic Systems Magazine, 31(8), 2016.

[33] JC André, G De Moor, P Lacarrere, and R Du Vachat. Modeling the
24-hour evolution of the mean and turbulent structures of the planetary
boundary layer. Journal of the Atmospheric Sciences, 35(10):1861–
1883, 1978.

[34] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing mayhem on binary code. In Proceedings of
the 33rd IEEE Symposium on Security and Privacy (IEEE S&P), IEEE
S&P ’12, 2012.

[35] Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive
mutational fuzzing. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (IEEE S&P), IEEE S&P ’15, 2015.

[36] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang
Lin, XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang,
and Kehuan Zhang. Iotfuzzer: Discovering memory corruptions in iot
through app-based fuzzing.

[37] Long Cheng, Ke Tian, and Danfeng Daphne Yao. Orpheus: Enforcing
cyber-physical execution semantics to defend against data-oriented
attacks. In Proceedings of the 33rd Annual Computer Security Applica-
tions Conference (ACSAC), ACSAC ’17, 2017.

[38] Hongjun Choi, Wen-Chuan Lee, Yousra Aafer, Fan Fei, Zhan Tu, Xi-
angyu Zhang, Dongyan Xu, and Xinyan Deng. Detecting attacks
against robotic vehicles: A control invariant approach. In Proceed-
ings of the 25th ACM Conference on Computer and Communications
Security (CCS), CCS ’18, 2018.

[39] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and
Mathias Payer. Aces: Automatic compartments for embedded systems.
In Proceedings of the 27th USENIX Security Symposium (USENIX
Security), 2018.

[40] Fan Fei, Zhan Tu, Ruikun Yu, Taegyu Kim, Xiangyu Zhang, Dongyan
Xu, and Xinyan Deng. Cross-layer retrofitting of uavs against cyber-
physical attacks. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), ICRA ’18, 2018.

[41] Rod Frehlich, Yannick Meillier, Michael L Jensen, Ben Balsley, and
Robert Sharman. Measurements of boundary layer profiles in an ur-
ban environment. Journal of applied meteorology and climatology,
45(6):821–837, 2006.

[42] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart.
Rotors—a modular gazebo mav simulator framework. In Robot Operat-
ing System (ROS): The Complete Reference (Volume 1), pages 595–625.
2016.

USENIX Association 28th USENIX Security Symposium 439

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://avc.sparkfun.com/2013
https://avc.sparkfun.com/2013
http://www.dhl.com/en/press/releases/releases_2014/group/dhl_parcelcopter_launches_initial_operations_for_research_purposes.html
http://www.dhl.com/en/press/releases/releases_2014/group/dhl_parcelcopter_launches_initial_operations_for_research_purposes.html
http://www.dhl.com/en/press/releases/releases_2014/group/dhl_parcelcopter_launches_initial_operations_for_research_purposes.html
http://gazebosim.org
http://gazebosim.org
http://ardupilot. org/dev/docs/sitl-simulator-software-in-the-loop.html
http://ardupilot. org/dev/docs/sitl-simulator-software-in-the-loop.html
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit
http://diydrones.com/profiles/blogs/hijacking-quadcopters-with-a-mavlink-exploit
https://www.youtube.com/watch?v=V9GXiXgaK34&list=PLL3t5xY2V44xOxvTIxS4AHuUhFE_bMwhz&index=36
https://www.youtube.com/watch?v=V9GXiXgaK34&list=PLL3t5xY2V44xOxvTIxS4AHuUhFE_bMwhz&index=36
https://www.youtube.com/watch?v=V9GXiXgaK34&list=PLL3t5xY2V44xOxvTIxS4AHuUhFE_bMwhz&index=36
https://github.com/priseborough/InertialNav
https://github.com/priseborough/InertialNav
https://3dr.com/support/articles/iris
https://www.amazon.com/b?node=8037720011
https://www.amazon.com/b?node=8037720011
http://lcamtuf.coredump.cx/afl
http://ardupilot.org
https://www.dji.com/phantom-4-adv
https://www.dji.com/phantom-4-adv
https://google.github.io/honggfuzz/
https://software.intel.com/en-us/aero
https://llvm.org/docs/LibFuzzer.html
https://www.librepilot.org
https://mavlink.io
https://mavlink.io
https://ardupilot.github.io/MAVProxy
http://wiki.paparazziuav.org/wiki/Main_Page
http://px4.io
http://px4.io
https://github.com/ArduPilot/pymavlink
http://qgroundcontrol.com
https://x.company/projects/wing
http://ardupilot.org/copter/docs/parameters.html
http://ardupilot.org/copter/docs/parameters.html
https://dev.px4.io/en/advanced/parameter_reference.html
https://dev.px4.io/en/advanced/parameter_reference.html

[43] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In Proceedings of the 31st International Conference
on Software Engineering (ICSE), ICSE ’09, 2009.

[44] Vijay Ganesh, Tim Leek, and Martin Rinard. Dowsing for overflows:
A guided fuzzer to find buffer boundary violations. In Proceedings of
the 22nd USENIX Security Symposium (USENIX Security), USENIX
Security ’13, 2013.

[45] Balazs Gati. Open source autopilot for academic research-the paparazzi
system. In Proceedings of the American Control Conference (ACC),
ACC ’13, 2013.

[46] Demoz Gebre-Egziabher, Roger C Hayward, and J David Powell. De-
sign of multi-sensor attitude determination systems. IEEE Transactions
on aerospace and electronic systems, 40(2):627–649, 2004.

[47] Dunstan Graham and Richard C Lathrop. The synthesis of optimum
transient response: criteria and standard forms. Transactions of the
American Institute of Electrical Engineers, Part II: Applications and
Industry, 72(5):273–288, 1953.

[48] Saeid Habibi. The smooth variable structure filter. Proceedings of the
IEEE, 95(5):1026–1059, 2007.

[49] Zhijian He, Yanming Chen, Zhaoyan Shen, Enyan Huang, Shuai Li,
Zili Shao, and Qixin Wang. Ard-mu-copter: A simple open source
quadcopter platform. In Proceedings of the 2015 11th International
Conference on Mobile Ad-hoc and Sensor Networks (MSN), MSN ’15,
2015.

[50] G Heredia, A Ollero, M Bejar, and R Mahtani. Sensor and actuator
fault detection in small autonomous helicopters. volume 18, pages
90–99. Elsevier, 2008.

[51] Myungsoo Jun, Stergios I Roumeliotis, and Gaurav S Sukhatme. State
estimation of an autonomous helicopter using kalman filtering. In
Proceedings of 1999 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IROS ’99, 1999.

[52] Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, By-
oungyoung Lee, Xiangyu Zhang, and Dongyan Xu. Securing real-time
microcontroller systems through customized memory view switching.
In Proceedings of the 27th Annual Symposium on Network and Dis-
tributed System Security (NDSS), 2018.

[53] Nathan P Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2004.

[54] Benjamin C Kuo. Automatic control systems. Prentice Hall PTR, 1987.

[55] Y. Kwon, J. Yu, B. Cho, Y. Eun, and K. Park. Empirical analysis of
mavlink protocol vulnerability for attacking unmanned aerial vehicles.
IEEE Access, 6:43203–43212, 2018.

[56] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin,
Yang Liu, and Alwen Tiu. Angora: Efficient fuzzing by principled
search. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), ESEC/FSE ’17, 2017.

[57] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin,
Yang Liu, and Alwen Tiu. Steelix: program-state based binary fuzzing.
In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), ESEC/FSE ’17, 2017.

[58] Renju Liu and Mani Srivastava. Protc: Protecting drone’s peripherals
through arm trustzone. In Proceedings of the 3rd Workshop on Micro
Aerial Vehicle Networks, Systems, and Applications (DroNet), DroNet
’17, 2017.

[59] Marie Lothon, Donald H Lenschow, and Shane D Mayor. Doppler lidar
measurements of vertical velocity spectra in the convective planetary
boundary layer. Boundary-layer meteorology, 132(2):205–226, 2009.

[60] F Landis Markley, John Crassidis, and Yang Cheng. Nonlinear attitude
filtering methods. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference and Exhibit (AIAA), AIAA ’05, 2005.

[61] Robert Mitchell and Ray Chen. Adaptive intrusion detection of mali-
cious unmanned air vehicles using behavior rule specifications. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 44(5):593–
604, 2014.

[62] A. Nemati and M. Kumar. Modeling and control of a single axis tilting
quadcopter. In Proceedings of the American Control Conference (ACC),
ACC ’14, 2014.

[63] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: Fuzzing by pro-
gram transformation. In Proceedings of the 38th IEEE Symposium on
Security and Privacy (IEEE S&P), IEEE S&P ’18, 2018.

[64] Viswanadhapalli Praveen and S Pillai. A.,“modeling and simulation
of quadcopter using pid controller”. International Journal of Control
Theory and Applications (IJCTA), 9(15):7151–7158, 2016.

[65] Friedrich Pukelsheim. The three sigma rule. The American Statistician,
48(2):88–91, 1994.

[66] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In Proceedings of the 24th Annual Symposium on Network
and Distributed System Security (NDSS), NDSS ’17, 2017.

[67] Nils Rodday. Hacking a professional drone. 2016.

[68] Nils Miro Rodday, Ricardo de O Schmidt, and Aiko Pras. Exploring
security vulnerabilities of unmanned aerial vehicles. In Proceedings
of the IEEE/IFIP Network Operations and Management Symposium
(NOMS), NOMS ’16, 2016.

[69] S Sabikan and SW Nawawi. Open-source project (osps) platform for
outdoor quadcopter. Journal of Advanced Research Design, 24:13–27,
2016.

[70] Ihab Samy, Ian Postlethwaite, and Dawei Gu. Neural network based
sensor validation scheme demonstrated on an unmanned air vehicle
(uav) model. In Proceedings of 47th IEEE Conference on Decision and
Control (CDC), pages 1237–1242, 2008.

[71] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kafl: Hardware-assisted feedback fuzzing
for os kernels. In Proceedings of the 26th USENIX Security Symposium
(USENIX Security), USENIX Security ’17, 2017.

[72] Yun Mok Son, Ho Cheol Shin, Dong Kwan Kim, Young Seok Park,
Ju Hwan Noh, Ki Bum Choi, Jung Woo Choi, and Yong Dae Kim.
Rocking drones with intentional sound noise on gyroscopic sensors. In
Proceedings of 24th USENIX Security symposium (Usenix Security),
Usenix Security ’15, 2015.

[73] Yunmok Son, Juhwan Noh, Jaeyeong Choi, and Yongdae Kim. Gyros-
finger: Fingerprinting drones for location tracking based on the outputs
of mems gyroscopes. ACM Transactions on Privacy and Security
(TOPS), 21(2):10, 2018.

[74] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In Proceedings of the 23rd Annual Sym-
posium on Network and Distributed System Security (NDSS), NDSS
’16, 2016.

[75] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal
war in memory. In Proceedings of the 33rd IEEE Symposium on
Security and Privacy (IEEE S&P), IEEE S&P ’13, 2013.

[76] Heidar A Talebi, Khashayar Khorasani, and Siamak Tafazoli. A re-
current neural-network-based sensor and actuator fault detection and
isolation for nonlinear systems with application to the satellite’s at-
titude control subsystem. IEEE Transactions on Neural Networks,
20(1):45–60, 2009.

[77] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu. Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks. In Proceedings of 2017 IEEE European Symposium on Security
and Privacy (EuroS&P), EuroS&P ’17, 2017.

440 28th USENIX Security Symposium USENIX Association

[78] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing
nonce reuse in wpa2. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), CCS ’17, 2017.

[79] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy
(IEEE S&P), IEEE S&P ’10, 2010.

[80] Chen Yan, Wenyuan Xu, and Jianhao Liu. Can you trust autonomous
vehicles: Contactless attacks against sensors of self-driving vehicle.
DEF CON, 24, 2016.

A Thresholds for Control State Deviation

We present how to determine the threshold values used by
our control instability detector to detect control state devia-
tion (Section 4.2). We use the AVC2013 mission (Section 5)
and thirty other experimental missions in our experiments,
similar to existing work [38]. Specifically, the thresholds are
determined by applying the three-sigma rule [65] on the top
deviation values. For the time window (w) in the IAE for-
mula, we set it to the duration of each mission segment (i.e.,
flight segment between two consecutive waypoints) within a
mission. The list of the threshold values that we use for each
control state is presented in Table 2.

We note that we do not monitor control state deviation in
the second derivative states of the 6DoF (i.e., acceleration of
any of the 6DoF). This is because, if their observed states are
oscillating, they can potentially cause false positives. In fact,
for the same reason, some control programs do not control
acceleration in some 6DoF controllers (e.g., ArduPilot does
not control the angular acceleration of roll, pitch, and yaw).
However, RVFUZZER can detect their control state deviation
via the indirect impacts on the dependent states. The control
state deviation in the second derivative states are propagated
to their integral states (e.g., the first derivative states of the
6DoF), as their controls are intrinsically related.

Table 2: List of threshold values for each control state.

Control Program ArduPilot PX4
Latitude/Longitude

Position 11.62 m 10.08 m

Latitude/Longitude
Velocity 1.23 m/s 4.71 m/s

Altitude Position 2.06 m 3.43 m
Altitude Velocity 0.26 m/s 0.12 m/s

Roll 2.66 deg 1.98 deg
Roll Rate 2.83 deg/s 3.68 deg/s

Pitch 4.64 deg 3.94 deg
Pitch Rate 10.67 deg/s 15.35 deg/s

Yaw 4.13 deg 6.16 deg
Yaw Rate 16.24 deg/s 14.69 deg/s

Table 3: Input validation bugs in ArduPilot and the implications of
the attacks exploiting them (C: Crash; D: Deviation from trajectory;
U: Unstable movement; S: “Stuck” in certain location or speed).

Control Program Parameter Physical Impacts
Module C D U S

Controller

PSC_POSXY_P 3 3
PSC_VELXY_P 3 3 3
PSC_VELXY_I 3 3
PSC_POSZ_P 3
PSC_VELZ_P 3
PSC_ACCZ_P 3 3
PSC_ACCZ_I 3 3 3
PSC_ACCZ_D 3 3 3

ATC_ANG_RLL_P 3
ATC_RAT_RLL_I 3

ATC_RAT_RLL_IMAX 3 3
ATC_RAT_RLL_D 3
ATC_RAT_RLL_P 3 3

ATC_RAT_RLL_FF 3 3
ATC_ANG_PIT_P 3
ATC_RAT_PIT_P 3 3
ATC_RAT_PIT_I 3

ATC_RAT_PIT_IMAX 3
ATC_RAT_PIT_D 3 3
ATC_RAT_PIT_FF 3 3 3
ATC_ANG_YAW_P 3
ATC_SLEW_YAW 3
ATC_RAT_YAW_P 3
ATC_RAT_YAW_I 3

ATC_RAT_YAW_IMAX 3
ATC_RAT_YAW_D 3 3
ATC_RAT_YAW_FF 3 3

Sensor
INS_POS1_Z 3 3
INS_POS2_Z 3 3
INS_POS3_Z 3 3

Mission

WPNAV_SPEED 3
WPNAV_SPEED_UP 3
WPNAV_SPEED_DN 3

WPNAV_ACCEL 3 3
WPNAV_ACCEL_Z 3 3

ANGLE_MAX 3 3

B Physical Impacts Caused by Input Valida-
tion Bug Exploitation

We present more details about the input validation bugs found
by RVFUZZER and the implications of the attacks that exploit
them in Tables 3 (for ArduPilot) and Table 4 (for PX4). The
columns of each table shows: (1) the control program modules
where the bugs belong (Control Program Module), (2) the
vulnerable control parameters (Parameter, i.e., with erroneous
range specification or range implementation), and (3) the
possible physical impacts caused by the attacks exploiting the
bugs (Physical Impacts). While the two tables list a total of 63
parameters, some of the parameters are associated with both
range implementation and specification bugs. This explains
why the total number of bugs (89) is higher than the number
of vulnerable parameters.

Depending on the specific (malicious) value of the control
parameter, the impact of an attack may vary. Here the possible
impacts are categorized into four types as shown in the four

USENIX Association 28th USENIX Security Symposium 441

sub-columns of the “Physical Impacts” column: “C” – vehicle
crash; “D” – deviation from trajectory; “U” – unstable vehicle
movement; and “S” – vehicle getting “stuck” at a certain
location or speed. All of these impacts are non-transient and
cannot be recovered by the controllers.

Table 4: Input validation bugs in PX4 and implications of attacks
exploiting them.

Control Program Parameter Physical Impacts
Module C D U S

Controller

MC_TPA_RATE_P 3 3
MC_PITCHRATE_FF 3 3 3

MC_PITCHRATE_MAX 3 3
MC_PITCHRATE_P 3 3 3

MC_PITCH_P 3 3 3 3
MC_ROLLRATE_FF 3 3 3

MC_ROLLRATE_MAX 3 3
MC_ROLLRATE_P 3 3 3

MC_ROLL_P 3 3 3
MC_YAWRATE_FF 3 3
MC_YAWRATE_P 3 3

MC_YAW_P 3 3
MIS_YAW_ERR 3

MPC_TILTMAX_AIR 3 3
MPC_THR_MAX 3 3 3
MPC_THR_MIN 3 3 3

MPC_XY_P 3 3 3
MPC_Z_P 3 3 3

MPC_XY_VEL_P 3 3 3 3
MPC_Z_VEL_P 3 3 3

Mission

MC_YAWRAUTO_MAX 3 3
MPC_XY_VEL_MAX 3 3

MPC_XY_CRUISE 3
MPC_Z_VEL_MAX_DN 3 3
MPC_Z_VEL_MAX_UP 3 3 3

MPC_TKO_SPEED 3
MPC_LAND_SPEED 3

442 28th USENIX Security Symposium USENIX Association

Seeing is Not Believing: Camouflage Attacks on Image Scaling Algorithms

Qixue Xiao⇤ 1,4, Yufei Chen⇤ 2,4, Chao Shen2, Yu Chen1,5, and Kang Li3
1
Department of Computer Science and Technology, Tsinghua University

2
School of Electronic and Information Engineering, Xi’an Jiaotong University

3
Department of Computer Science, University of Georgia

4
360 Security Research Labs

5
Peng Cheng Laboratory

Abstract
Image scaling algorithms are intended to preserve the visual
features before and after scaling, which is commonly used in
numerous visual and image processing applications. In this
paper, we demonstrate an automated attack against common
scaling algorithms, i.e. to automatically generate camouflage
images whose visual semantics change dramatically after scal-
ing. To illustrate the threats from such camouflage attacks,
we choose several computer vision applications as targeted
victims, including multiple image classification applications
based on popular deep learning frameworks, as well as main-
stream web browsers. Our experimental results show that such
attacks can cause different visual results after scaling and thus
create evasion or data poisoning effect to these victim appli-
cations. We also present an algorithm that can successfully
enable attacks against famous cloud-based image services
(such as those from Microsoft Azure, Aliyun, Baidu, and Ten-
cent) and cause obvious misclassification effects, even when
the details of image processing (such as the exact scaling
algorithm and scale dimension parameters) are hidden in the
cloud. To defend against such attacks, this paper suggests
a few potential countermeasures from attack prevention to
detection.

1 Introduction

Image scaling refers to the resizing action on a digital image,
while preserving its visual features. When scaling an image,
the downscaling (or upscaling) process generates a new image
with a smaller (or larger) number of pixels compared to the
original one. Image scaling algorithms are widely adopted in
various applications. For example, most deep learning com-
puter vision applications use pre-trained convolutional neural
network (CNN) models, which take data with a fixed size de-
fined by the input layers of those models. Hence, input images
have to get scaled in the data preprocessing procedure to meet

⇤Co-first authors. This work was completed during their internship pro-
gram at 360 Security Research Labs.

with specific model input size. Popular deep learning frame-
works, such as Caffe [17], TensorFlow [13] and Torch [26],
all integrate various image scaling functions in their data pre-
processing modules. The purpose of these built-in scaling
functions is to allow the developers to use these frameworks
to handle images that do not match the model’s input size.

Although scaling algorithms are widely used and are ef-
fective to normal inputs, the design of common scaling algo-
rithms does not consider malicious inputs that may intention-
ally cause different visual results after scaling and thus change
the “semantic” meaning of images. In this paper, we will see
that an attacker can utilize the “data under-sampling” phe-
nomena occurring when a large image is resized to a smaller
one, to cause “visual cognition contradiction” between human
and machines for the same image. In this way, the attacker
can achieve malicious goals like detection evasion and data
poisoning. What’s worse, unlike adversarial examples, this
attack is independent from machine learning models. The
attack indeed happens before models consume inputs, and
hence this type of attacks affects a wide range of applications
with various machine learning models.

This paper characterizes this security risk and presents a
camouflage attack on image scaling algorithms (abbreviated
as scaling attack in the rest of the paper). To successfully
launch a scaling attack, attackers need to deal with two techni-
cal challenges: (a) First, an adversary needs to decide where
to insert pixels with deceiving effects by analyzing the scaling
algorithms. It is tedious and practically impossible to use man-
ual efforts to determine exact pixel values to achieve a desired
deceiving effect for realistic images. Therefore, a successful
attack needs to explore an automatic and efficient camouflage
image generation approach. (b) Second, for cloud-based com-
puter vision services, the exact scaling algorithm and input
size of their models are transparent to users. Attackers need to
infer scaling-related parameters of the underneath algorithms
in order to successfully launch such attacks.

To overcome these challenges, we first formalize the pro-
cess of scaling attacks as a general optimization problem.
Based on the generalized model, we propose an automatic

USENIX Association 28th USENIX Security Symposium 443

generation approach that can craft camouflage images effi-
ciently. Moreover, this work examines the feasibility of this
attack in both the white-box and black-box scenarios, includ-
ing applications based on open deep learning frameworks and
commercial cloud services:

• In the white-box case (see Section 6.1 for more details),
we analyze common scaling implementations in three
popular deep learning frameworks: Caffe, TensorFlow
and Torch. We find that nearly all default data scaling
algorithms used by these frameworks are vulnerable to
the scaling attack. With the presented attack, attackers
can inject poisoning or deceiving pixels into input data,
which are visible to users but get discarded by scaling
functions, and eventually being omitted by deep learning
systems.

• In the black-box case (see Section 6.2 for more details),
we investigate the scaling attack against cloud-based
computer vision services. Our results show that even
when the whole image processing pipeline and design
details are hidden from users, it is still possible to launch
the scaling attack to most existing cloud-based computer
vision services. Since image scaling modules are built
upon open image processing libraries or open interpola-
tion algorithms, possible ways of image scaling imple-
mentation are relatively limited. Attackers can design a
brute-force testing strategy to infer the scaling algorithm
and the target scale. In this paper, we exhibit a simple but
efficient testing approach, with successful attack results
on Microsoft Azure1, Baidu2, Aliyun3 and Tencent4.

• Interestingly, we also discover and discuss the range
of the attacking influence extends to some computer-
graphic applications, such as mainstream web browsers
shown in Section 6.3.

We provide a video to demonstrate the attack ef-
fects, which is available at the following URL:
https://youtu.be/Vm2N0mb14Ow.

This paper studies the commonly used scaling implemen-
tations, especially for image scaling algorithms employed
in popular deep learning frameworks, and reveals potential
threats to the image scaling process. Our contributions can be
summarized as follows:

• This paper reveals a security risk in image scaling pro-
cess in computer vision applications. We validate and
testify the image scaling algorithms commonly used in
popular deep learning (DL) frameworks, and our results

1https://azure.microsoft.com/en-us/services/cognitive-s
ervices/computer-vision/?v=18.05

2https://ai.baidu.com/tech/imagerecognition/fine_grained
3https://data.aliyun.com/ai?spm=a2c0j.9189909.810797.11

.4aae547aEqltqh#/image-tag
4https://ai.qq.com/product/visionimgidy.shtml#tag

indicate that the security risk affects almost all image
applications based on DL frameworks.

• This paper formalizes the scaling attack into a con-
strained optimization problem, and presents the corre-
sponding implementation to generate camouflage images
automatically and efficiently.

• Moreover, we prove that the presented attack is still effec-
tive for cloud vision services, where the implementation
details of image scaling algorithms and parameters are
hidden from users.

• To eliminate the threats from the scaling attack, we sug-
gest several potential defense strategies from two aspects:
attack prevention and detection.

2 Image Scaling Attack Concept and Attack
Examples

In this section, we first present a high level overview of image
scaling algorithms, followed by the concept of image scaling
attacks. Then, we exhibit some examples of the image scaling
attack, and finally we conduct an empirical study of the image
scaling practices in deep learning based image applications.

2.1 An Overview of Image Scaling Algorithms

(a) Image scaling. (b) Interpolation in scaling.

Figure 1: The concept of image scaling.

Image scaling algorithms are designed to preserve the
visual features of an image while adjusting its size. Fig.1
presents the general concept of a common image scaling pro-
cess. A scaling algorithm infers value of each “missing point”
by using interpolation methods. Fig.1b shows an example of
constructing pixel P in the output image based on the pixels
of Q11, Q12, Q21 and Q22 in the original image. A scaling
algorithm defines which neighbor pixels to use in order to
construct a pixel of the output image, determines the relative
weight values assigned to each individual neighbor pixels.
For example, for each pixel in the output image, a nearest
neighbor algorithm only picks a single pixel (the nearest one)
from the input to replace it. A bilinear algorithm considers
a set of neighbor pixels surrounding the target pixel as the

444 28th USENIX Security Symposium USENIX Association

Figure 2: An example showing deceiving effect of the scal-
ing attack. (Left-side: what humans see; right-side: what DL
models see)

basis. It then calculates a weighted average of the neighbor
pixel values as the value assigned to the target pixel.

Such scaling algorithms often assume that pixel values in
an image are results from natural settings, and they do not
anticipate pixel-level manipulations with malicious intents.
This paper demonstrates that an attacker can use scaling al-
gorithms to alter an image’s semantic meaning by carefully
adjusting pixel-level information.

2.2 Attack Examples

The scaling attack potentially affects all applications that ap-
ply scaling algorithms to preprocess input images. To demon-
strate potential risks and deceiving effects of the scaling at-
tack, here we provide two attack examples of the scaling
attack on practical applications.

Fig.2 presents the first attack example for a local image
classification application cppclassification [16], a sample pro-
gram released by the Caffe framework. For the classification
model with an input size of 224*224, we specially craft input
images of a different size (672*224). The image in the left
column of Fig.2 is one input to the deep learning application,
while the image in the right column is the output of the scaling
function, i.e., the effective image fed into the deep learning
model. While the input in the left column of Fig.2 visually
presents a sheep-like figure, the deep learning model takes the
image in the right column as the actual input and classifies it
as an instance of “White Wolf”.

To validate the deceiving effect on deep learning applica-
tions, we build one image classification demo based on the
BAIR/BVLC GoogleNet model [8], which assumes the in-
put data are of the scale of 224*224. When an image with a
different size is provided, the application triggers the native
resize() function built in the Caffe framework to rescale the
image to fit the input size of the model (224*224). The ex-
act classification setup details and the program outputs are
presented in Appendix A.

Fig.3 exhibits one attack example against the Baidu image
classification service. The attack image is crafted from a
sheep image, with the aim to lead people to regard it as a
sheep but the machine to regard it as a wolf. The results

...
"result":
{ "score": "0.938829",
"name": "Grey Wolf"},
{ "score": "0.0146997",
"name": "Mexico Wolf"}...

Figure 3: A scaling attack example against Baidu image clas-
sification service.

Cat

Scaling Category InfoDeep Learning Model

Figure 4: How data get processed in image classification
systems.

returned by the cloud service API5 show that the attack image
is classified as the “Grey Wolf” with a high confidence score
(achieving 0.938829), indicating that our attack is effective.
More examples of the scaling attack against more cloud-based
computer vision services are presented in Table 3. In fact,
image scaling algorithms are commonly used by a wide range
of computer-graphic applications, rather than limited to deep-
learning-based computer vision systems. Therefore, they are
all potentially threatened by this type of security risk.

2.3 Empirical Study of Image Scaling Prac-
tices in Deep Learning Applications

Data scaling is actually a common action in deep learning
applications. Fig.4 shows how the scaling process is involved
in open-input applications’ data processing pipelines, such as
image classification as an Internet service. For design simplic-
ity and manageable training process, a deep learning neural
network model usually requires a fixed input scale. For image
classification models, images are usually resizedd to 300*300
to ensure high-speed training and classification. As shown
in Table 1, we examine nine popular deep learning models
and all of them use a fixed input scale for their training and
classification process.

For deep learning applications that receive input data from
fixed input sources, such as video cameras, the input data
formats are naturally determined. Even in such situation, we
find that the image resizing is still needed in certain cases.

One common situation we observe is the use of pre-trained
models. For example, NVIDIA offers multiple self-driving
sample models [6], and all these models use a specific input

5The original API response is presented in Chinese. Here we translate it
into English.

USENIX Association 28th USENIX Security Symposium 445

Table 1: Input sizes of various deep learning models.

Model Size
(pixels*pixels)

LeNet-5 32*32
VGG16, VGG19, ResNet, GoogleNet 224*224

AlexNet 227*227
Inception V3/V4 299*299

DAVE-2 Self-Driving 200*66

size 200*66. However, for the recommended camera [24]
specification provided by NVIDIA, the size of generated im-
ages varies from 320*240 to 1928*1208. None of the recom-
mended cameras produce output that matches the NVIDIA’s
model input size. Therefore, for system developers that do not
want to redesign or retrain their models, they have to employ
scaling functions in their data processing pipeline to fit the
pre-trained model’s input scale. Recent research work, such as
the sample applications used in DeepXplore [25], also shows
that the resizing operation is commonly used in self-driving
applications to adjust original video frames’ size to the input
size of models.

Most deep learning frameworks provide data scaling func-
tions, as shown in Table 2. Programmers can handle images
with different sizes without calling scaling function explicitly.
We examined several sample programs released by popular
deep learning frameworks, such as Tensorflow, Caffe, and
Torch, and we have found all of them implicitly trigger scal-
ing functions in their data processing pipelines. Appendix B
provides several examples.

3 Related Work

This section briefly reviews some related work and makes a
comparison with our approach.

3.1 Information Hiding
Information hiding is a significant topic in information secu-
rity [2,9,15,18,19,21,27,30,31]. Information hiding methods
achieve reversible data hiding by image interpolation, but
these are different from our attack method: First, the goals
are different. The information hiding methods conceal data
in a source image to make the secret information unnoticed
by human, and image applications operate on the complete
data. Our presented attack hides a target image in a source
image to cause a visual cognition contradiction between hu-
man and image applications. The core components (such as
deep learning classifiers) of the victim applications operate
on a partial data (i.e. the scaling output). Second, informa-
tion hiding efforts often impose a customized coding method
(such as LSB and NIP [21]) in order to conceal and recover
hidden information. This coding scheme is often kept as a

secret known only to the designer of the specific information
hiding method. In contrast, a scaling attack is based on the
interpolation algorithm built within the victim application to
achieve the deceiving effect. The main task for an attacker is
to reverse engineering the scaling algorithms and design the
pixel replacement policy.

3.2 Adversarial Examples
The research of adversarial examples attract growing public
attentions with the reviving popularity of Artificial Intelli-
gence. An adversarial image fools the Artificial Intelligence
by inserting perturbations into the input image, which are
hard to be noticed by human eyes. For example, Goodfellow
et al. [14] presented a linear explanation of adversarial ex-
amples and revealed that such attack is effective for current
sufficiently linear deep networks. In addition to the theoretical
analysis, Alexey et al. [20] added the perturbations into the
physical world and successfully launched the attack. It should
be noted that the attack target of existing adversarial exam-
ples essentially aims at machine learning models, while our
method focuses on the data preprocessing step, concretely, the
image scaling action. Vulnerabilities in code implementation,
such as control-flow hijacking, also could lead to recognition
evasions [32]. However, we exploit the weakness of scaling
algorithms in this work other than code implementation.

3.3 Invisible/Inaudible Attacks
Some researchers investigate potential attacks beyond the
human sensing ability. Ian Markwood et al. [22] showed a
content masking attack against the Adobe PDF standard. By
tampering the font files, the attacker can insert secret infor-
mation into PDF files without being noticed by human. They
demonstrated such attack against state-of-the-art information-
based services. Besides the attacks in vision fields, Zhang et

al. [34] presented the DolphinAttack against speech recogni-
tion (SR) systems. They created secret voice commands on
ultrasonic carriers that are inaudible for human beings, but
can be captured and sensed by voice controllable systems. In
this way, an attacker can control SR systems “silently”. It has
been proved that the widely used SR systems, like Apple Siri
and Google Now, are vulnerable to such attack. Our attack is
like a reverse of such invisible/inaudible attacks. The attacker
leverage the difference between the input and output of the
scaling function. Most part of the content visible to human is
not consumed by the component that uses the scaling output.

4 Formalizing the Scaling Attack

This section describes the goal of a typical scaling attack and
how we design a method to automatically create attack images
with deceiving effects. The autonomous attack image crafting

446 28th USENIX Security Symposium USENIX Association

Table 2: Scaling algorithms in deep learning frameworks.

DL Framework Library Interpolation Method Order a Validation b

Caffe OpenCV [7]

Nearest H!V 3
Bilinear(I) H!V 3

Bicubic H!V 3
Area H!V =

Lanczos H!V =

Tensorflow c

Python-OpenCV
Pillow [10]

Tensorflow.image

Nearest(IPillow) H!V 3
Bilinear

(IPython-OpenCV, Tensorflow.image) H!V 3

Bicubic H!V 3
Area H!V =

Lanczos H!V =

Torch Torch-OpenCV

Nearest H!V 3
Bilinear(I) H!V 3

Bicubic H!V 3
Area H!V =

Lanczos H!V =
I The default scaling algorithm.
a H!V means the algorithm first scales horizontally and then vertically.
b The validation is performed on attack with a constraint e = 0.01. 3 represents generate attack images successfully

satisfying the constraints. = means we have not yet verified the attack effects because the algorithm is complex and
rarely used in DL applications. More details please see Section 6.1.

c Tensorflow integrates multiple image processing packages, including Python-OpenCV, Pillow, and Tensorflow.image.

srcImg
(56*56)

targetImg
(28*28)

Camouflage
Attack

attckImg
(56*56)

ScaleFunc()

outImg
(28*28)

+∆𝟏

+∆𝟐

Figure 5: Automatic attack image crafting.

framework is shown in Fig.5, and details are presented in
Section 4.2.

4.1 Attack Goals

The goal of the scaling attack is to create a deceiving effect
with images. Here the deceiving effect refers to the case that
an image partially or completely presents a different meaning
to humans before and after a scaling action. In such case, we
call the input file to the scaling action the attack image.

To describe the process of a scaling attack, we define the
following four conceptual objects involved in one attack.

• source image (or srcImg) Sm⇤n – the image that an at-
tacker wants the attack image to look like.

• attack image (or attackImg) Am⇤n – the crafted image
eventually created and fed to the scaling function.

• output image (or outImg) Dm0⇤n0 – the output image of
the scaling function.

• target image (or targetImg) Tm0⇤n0 – the image that the
attacker wants the outImg to look like.

In some cases, some of these objects are identical. For
example, it is often possible for an attacker to generate an out
image that is identical to the target image.

The process of performing a scaling attack is to craft an
attackImg under visual similarity constraints with srcImg

and targetImg. Based on the intent and constraints on source
images, we define the image scaling attack into two attack
modes.

The first attack mode is when both the source and target
images are specified, i.e. the attacker wants to scale an im-
age that looks like a specific source image to an image that
looks like a specific target image. In this mode the attacker
launches a source-to-target attack, where the semantics of
srcImg and targetImg are controlled as he/she wants. How-
ever, posing constraints on the looks of both the source and
target images makes this attack mode more challenging. We
call this mode of attack the strong attack form.

USENIX Association 28th USENIX Security Symposium 447

The second attack mode is when only the target image is
specified. In that case, the attacker just wants to cause a vision
contradiction during image scaling, as long as it is related
to a certain concept (such as any images of sheep). In some
extreme cases, the image content could be meaningless, e.g.,
just to create a negative result to an image classifier. Without
a specific source image, the attacker’s goal is to increase
the dissimilarity before and after image scaling as much as
possible. In this mode, the similarity constraints get relaxed
and we call this mode of attack the weak attack form.

4.2 An Autonomous Approach on Attack Im-
age Generation

We are interested to develop a method to automatically create
scaling attack images in both the strong and weak attack
forms. In order to achieve such goal, we first formalize the
description of the data transition process among the four
conceptual objects, and then we seek an algorithmic solution
to create attack images.

The relationship between the four conceptual objects can
be described in the following formulas.

First, the transition between srcImg and attackImg can
be represented by a perturbation matrix D1, and so does the
difference between outImg and targetImg. These transition
can be represented by

Am⇤n = Sm⇤n +D1 (1)

For the transition between attackImg and outImg, we con-
sider the scaling effect as a function ScaleFunc(), which con-
verts an m ⇤ n input image Am⇤n to an m

0 ⇤ n
0 output image

Dm0⇤n0
6.

ScaleFunc(Am⇤n) = Dm0⇤n0 (2)

ScaleFunc() is a surjective function, i.e. there exist multiple
possible inputs Am⇤n that all result in the same output Dm0⇤n0 .

To perform a scaling attack, attackers need to craft an attack
image Am⇤n, which is the source image Sm⇤n plus a perturba-
tion matrix D1. In the meanwhile, the scaling result of the
attack image, i.e., the output image Dm0⇤n0 , needs to be visu-
ally similar with the target image Tm0⇤n0 . Here we use D2 to
evaluate the difference between Dm0⇤n0 and Tm0⇤n0 .

Am⇤n = Sm⇤n +D1

ScaleFunc(Am⇤n) = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +D2

(3)

Let us consider the strong attack form of scaling attack
as in Fig.5, where both source Sm⇤n and target image Tm0⇤n0

6Conventionally, we say a matrix of m⇤n dimension has m rows and n

columns, while an image of m⇤n size consists of m columns and n rows. For
convenience sake, in this paper we use a matrix Xm⇤n of m⇤n dimension to
refer to “an m⇤n image”.

are specified. The attacker’s task is to find an attack image
Am⇤n being able to cause deceiving effect. Considering Eq.3,
we can find multiple possible candidate matrices as solutions
for Am⇤n that satisfy the whole set of formulas. This is due
to the surjection effect of ScaleFunc(). What the attacker
wants to find is the matrix that produces the best deceiving
effect among all possible solutions for Am⇤n. One strategy is
to find an A that is the most similar with S, while limiting the
difference between D and T within an upper bound.

To find the best deceiving effect, we theoretically define
an objective function that compares all solutions of Am⇤n. To
seek an algorithmic solution, we choose the L-norm distance7

to capture the pixel-level differences as an approximation for
measuring how close two images are.

In the strong attack form, we want to minimize the differ-
ence between Am⇤n and Sm⇤n, and limit the difference between
Dm0⇤n0 and Tm0⇤n0 within a threshold. Consequently, when the
source image Sm⇤n and target image Tm0⇤n0 are given, the best
result can be found by solving the following objective func-
tion.

Am⇤n = Sm⇤n +D1

ScaleFunc(Am⇤n) = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +D2

||D2||• e⇤ INmax

Objective function : min(||D1||2)

(4)

where INmax is the maximum pixel value in the current image
format.

For the weak attack form, i.e. only the target image Tm0⇤n0 is
given, what an attacker wants to optimize is to pick the attack
image that visually has the largest difference from the target
image. Thus, the best result should be found by solving the
following objective function:

Rm⇤n = ScaleFunc(Tm0⇤n0)

Am⇤n = Rm⇤n +D1

ScaleFunc(Am⇤n) = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +D2

||D2||• e⇤ INmax

Objective function : max(||D1||2)

(5)

Notice that in the above constraints, we apply ScaleFunc()
twice. The first call of ScaleFunc() is actually scaling the
target image to the size of the attack image, i.e., upscaling an
image from dimension m

0 ⇤n
0 back to m⇤n.

5 Creating Scaling Attack Images

After building up the formalized model of the scaling attack,
in this section we investigate how to generate attack images
automatically.

7In this paper, || · || denotes the L
2-norm, while || · ||• denotes the L

•-
norm.

448 28th USENIX Security Symposium USENIX Association

5.1 Empirical Analysis of Scaling Functions
In our implementation, we first need to find an appropriate
expression of ScaleFunc(). We studied the implementation
details of commonly used image processing packages. All
of the scaling functions we studied perform the interpolation
in two steps, one direction in each step. We design our at-
tack algorithm with the assumption that the target scaling
algorithm first resizes inputs horizontally and then vertically.
Empirically the popular algorithms take this order (see Ta-
ble 2, and more detailed analysis and examples are provided
in Appendix C.). In case the scaling algorithm takes vertical
order first, the attack method just needs to change accordingly.
Hence, the ScaleFunc() in Eq.2 can be presented as:

ScaleFunc(Xm⇤n) =CLm0⇤m ⇤Xm⇤n ⇤CRn⇤n0 (6)

In Eq.6, CLm0⇤m and CRn⇤n0 are two constant coefficient
matrices determined by the interpolation algorithm, related
to horizontal scaling (m ⇤ n ! m ⇤ n

0) and vertical scaling
(m⇤n

0 ! m
0 ⇤n

0), respectively.
With Eq.4 and Eq.6, we eventually build a relationship

among the source image, the target image, and the perturba-
tion:

CLm0⇤m ⇤ (Sm⇤n +D1)⇤CRn⇤n0 = Dm0⇤n0

Dm0⇤n0 = Tm0⇤n0 +D2
(7)

5.2 Attack Image Crafting: An Overview
The main idea of automated scaling attack generation is to
craft the attack image by two steps. The first step is to ob-
tain the coefficient matrices in Eq.7. Section 5.3 presents a
practical solution to find CL and CR, implemented as GetCo-
efficient(). The second step is to find the perturbation matrix
D1 to craft the attack image. We perform the attack image gen-
eration along each direction, in reverse order that we assume
ScaleFunc() uses. Further, we decompose the solution of the
perturbation matrix into the solution of a few perturbation
vectors. By this way, we can significantly reduce the computa-
tional complexity for large size images. Section 5.4 provides
more details of the second step, based on which we implement
GetPerturbation() to find the perturbation vectors. Algorithm
1 and Algorithm 2 illustrate the attack image generation in
the weak attack form and the strong attack form, respectively.

Weak attack form (Algorithm 1) 8. First, we obtain the co-
efficient matrices by calling GetCoefficient() (line 2), which
receives the size of Sm⇤n and Tm0⇤n0 , and returns coefficient
matrices CLm0⇤m and CRn⇤n0 , and then generate an intermedi-
ate source image S

⇤
m⇤n0 from Tm0⇤n0 . Then, we call GetPertur-

bation(), which receives the column vectors from S
⇤
m⇤n0 and

Tm0⇤n0 , with the coefficient matrix CL and the object option
(‘max’), and returns the optimized perturbation matrix Dv

1,
to solve the perturbation matrix column-wisely and craft out

8To clarify, here we use X [i, :] and X [:, j] to represent the i-th row and
j-th column of matrix X respectively.

Algorithm 1 Image Crafting of the Weak Attack Form
Input: scaling function ScaleFunc(), target image Tm0⇤n0 ,

source image size (widths,heights), target image size
(widtht ,heightt)

Output: attack image Am⇤n

1: m = heights, n = widths, m
0 = heightt , n

0 = widtht

2: CLm0⇤m, CRn⇤n0 = GetCoefficient(m, n, m
0, n

0)
3: Dv

1 = 0m⇤n0 ⇤ Perturbation matrix of vertical attack.
4: S

⇤
m⇤n0 = ScaleFunc(Tm0⇤n0)⇤ Intermediate source image.

5: for col = 0 to n
0 �1 do

6: Dv

1[:,col] = GetPerturbation(S⇤[:,col], T [:,col], CL,
obj=‘max’) ⇤ Launch the vertical scaling attack.

7: end for
8: A

⇤
m⇤n0 = unsigned int(S⇤ + Dv

1)
9: Sm⇤n = ScaleFunc(Tm0⇤n0) ⇤ Final source image.

10: Dh

1 = 0m⇤n ⇤ Perturbation matrix of horizontal attack.
11: for row = 0 to m�1 do
12: Dh

1[row, :] = GetPerturbation(S[row,:], A
⇤[row,:], CR,

obj=‘max’) ⇤ Launch the horizontal scaling attack.
13: end for
14: Am⇤n = unsigned int(S + Dh

1)
15: return Am⇤n ⇤ Get the crafted attack image.

A
⇤
m⇤n0 (line 5 to 8). Similarly, we solve another perturbation

matrix Dh

1 row-wisely and construct the final attack image
Am⇤n (line 9 to 15).

Strong attack form (Algorithm 2). The strong attack form
follows a similar procedure, except of two parts different from
the weak attack form: The first one is that the input in this
form includes two independent images Sm⇤n and Tm0⇤n0 , while
the second one is that the optimization problem transforms
from maximizing the object function into minimizing the
object function (line 6 and line 11).

5.3 Coefficients Recovery
Here we investigate the design of GetCoefficient() function,
i.e., how does an attacker obtain the coefficient matrix CLm0⇤m

and CRn⇤n0 .
For public image preprocessing methods/libraries, the at-

tacker is able to acquire the implementation details of Scale-
Func(). Hence, in theory, the attacker can compute each ele-
ment in CLm0⇤m and CRn⇤n0 precisely.

Eq.8 is a coefficient recovery result from the open-source
package Pillow. In the bilinear interpolation algorithm, the
coefficient matrices from 4*4 image to 2*2 image are:

CLm0⇤m =

 3
7

3
7

1
7 0

0 3
7

3
7

1
7

�
, CRn⇤n0 =

2

664

3
7 0
3
7

1
7

1
7

3
7

0 3
7

3

775 (8)

Though it is possible to retrieve coefficient matrices pre-
cisely, the pre-mentioned procedure may become challenging

USENIX Association 28th USENIX Security Symposium 449

Algorithm 2 Image Crafting of the Strong Attack Form
Input: scaling function ScaleFunc(), source image Sm⇤n, tar-

get image Tm0⇤n0 , source image size (widths,heights), tar-
get image size (widtht ,heightt)

Output: attack image Am⇤n

1: m = heights, n = widths, m
0 = heightt , n

0 = widtht

2: CLm0⇤m, CRn⇤n0 = GetCoefficient(m, n, m
0, n

0)
3: Dv

1 = 0m⇤n0 ⇤ Perturbation matrix of vertical attack.
4: S

⇤
m⇤n0 = ScaleFunc(Sm⇤n) ⇤ Intermediate source image.

5: for col = 0 to n
0 �1 do

6: Dv

1[:,col] = GetPerturbation(S⇤[:,col], T [:,col], CL,
obj=‘min’) ⇤ Launch the vertical scaling attack.

7: end for
8: A

⇤
m⇤n0 = unsigned int(S⇤ + Dv

1)
9: Dh

1 = 0m⇤n ⇤ Perturbation matrix of horizontal attack.
10: for row = 0 to m�1 do
11: Dh

1[row, :] = GetPerturbation(S[row,:], A
⇤[row,:], CR,

obj=‘min’) ⇤ Launch the horizontal scaling attack.
12: end for
13: Am⇤n = unsigned int(S + Dh

1)
14: return Am⇤n ⇤ Get the crafted attack image.

when the coefficient matrices grow large and the interpola-
tion method becomes complex. To reduce the human effort
for extracting the coefficient values, we introduce an easy
approach to deduce the those matrices. The idea is to infer
these coefficient matrices from input and output pairs.

First, we establish the following equation:

CLm0⇤m ⇤ (Im⇤m ⇤ INmax) =CLm0⇤m ⇤ INmax

(In⇤n ⇤ INmax)⇤CRn⇤n0 =CRn⇤n0 ⇤ INmax

(9)

where Im⇤m and In⇤n are both identity matrices.
Then, if we set the source image S = Im⇤m ⇤ INmax and scale

it into an m
0 ⇤m image Dm0⇤m, we can obtain

D = ScaleFunc(S) = unsigned int(CLm0⇤m ⇤ INmax)

!CLm0⇤m(appr) ⇡ D/INmax

(10)

In the theoretical formulation, the sum of elements in each
row of CLm0⇤m should be equal to one.

Finally, we do the normalization for each row (Eq.11). In
fact, the type cast from float-point values to unsigned integers
in Eq.10 will cause a slight precision loss. What we acquired
is an approximation of CLm0⇤m, but in practice our experimen-
tal results show that the precision loss can be ignored.

CLm0⇤m(appr)[i, :] =
CLm0⇤m(appr)[i, :]

Âm�1
j=0 (CLm0⇤m(appr)[i, j])

(i = 0,1, ...,m0 �1)

(11)

The inference of CRn⇤n0 follows a similar procedure. When

scaling S
0 = In⇤n ⇤ INmax into D

0
n⇤n0 , we have

D
0 = ScaleFunc(S0) = unsigned int(INmax ⇤CRn⇤n0)

!CRn⇤n0(appr) ⇡ D
0/INmax

(12)

Hence, we can obtain the estimated CR:

CRn⇤n0(appr)[:, j] =
CRn⇤n0(appr)[:, j]

Ân�1
i=0 (CRn⇤n0(appr)[i, j])

(j = 0,1, ...,n0 �1)
(13)

So far, we have found a practical approach to recover coeffi-
cient matrices. In the next step, we focus on constructing the
perturbation matrix D1.

5.4 Perturbation Generation via Convex-
Concave Programming

In the threat model established in Section 4.2, D1 is a matrix
with dimension m⇤n. The optimization problem tends to be
complex when the attack image is large. This part illustrates
how to simplify the original problem and find the perturbation
matrix efficiently.

5.4.1 Problem Decomposition

Generally speaking, the complexity of an n-variable quadratic
programming problem is no less than O(n2), as it contains
complex computation operations, such as solving the Hessian
matrix. The optimization is computationally expensive when
the image size grows large. Here we simplify and acceler-
ate the image crafting process by two feasible steps, only
sacrificing the computing precision slightly.

Firstly, we separate the whole scaling attack into two sub-
routines. The image resizing in each direction is equivalent,
because the resizing of S in the vertical direction can be re-
garded as the resizing of the source image’s transpose S

T in
the horizontal direction. Therefore, we only need to consider
how to generate D1 in one direction (here we choose the verti-
cal resizing as the example). Suppose we have an input image
Sm⇤n and an target image Tm0⇤n, and we have recovered the
resizing coefficient matrix CLm0⇤m, with the aim to craft the
attack image Am⇤n = Sm⇤n +D1.

Secondly, we decompose the calculation of the perturbation
matrix into the solution of a few vectors. In fact, the image
transformation can be rewritten as:

CLm0⇤m ⇤A =
⇥

CL⇤A[:,0](m⇤1) ... CL⇤A[:,n�1](m⇤1)
⇤ (14)

In this way, our original attack model has been simplified
into several column-wise sub optimization problems:

obj: min/max(||D1[:, j]||2)
s.t. CL⇤A[:, j](m⇤1) = T [:, j](m0⇤1) +D2

||D2||• e⇤ INmax

(j = 0,1, ...,n�1)

(15)

450 28th USENIX Security Symposium USENIX Association

5.4.2 Optimization Solution

We formulate our model in Eq.15 into a standard quadratic
optimization problem.

Constraints. First there is a natural constraint that each
element in the attack image A should be within [0, INmax]. We
have the following constraints:

0 A[:, j]m⇤1 INmax

||CL⇤A[:, j]m⇤1 �T [:, j]m0⇤1||• e⇤ INmax

(16)

Objective function. Our objective function is also equiva-
lent to

min/max(D1[:, j]T Im0⇤m0D1[:, j]) (j = 0,1, ...,n�1) (17)

where Im0⇤m0 is the identity matrix. Then, combining the ob-
jective function (Eq.17) and constraints (Eq.16), we finally
obtain an m

0-dimensional quadratic programming problem
with inequality constraints.

Problem Solution. Back to the two attack models pro-
posed in section 4.2, the strong attack model refers to a con-
vex optimization problem while the weak model refers to
a concave optimization problem. We adopt the Disciplined
Convex-Concave Programming toolbox DCCP developed by
Shen et al. [33] to solve the optimization problem. The re-
sults exhibited in Appendix D validate that this approach is
feasible.

6 Experimental Results of Scaling Attack

In this section, we report attack results on three kinds of
applications: local image classification applications, cloud
computer vision services and web browsers.

6.1 White-box Attack Against Local Com-
puter Vision Implementations

Many computer vision applications expose the model’s in-
put size and scaling algorithm to attackers. We regard this
scenario as our white-box threat model.

White-box Threat Model. In our white-box threat model,
we assume that the attacker has full knowledge of the tar-
get application’s required input size and the scaling algo-
rithm implementation. This can be achieved by inspecting the
source codes, reverse engineering the application, or specu-
lating based on open information. For instance, there is an
image classification application claiming that it is built upon
Caffe and uses the GoogleNet model. The attacker can en-
sure the input size is 224*224 (Table 1), and guess that the
OpenCV.Bilinear (default for Caffe, see Table 2) is the scaling
function with a high confidence. With the automatic attack
image generation approach proposed in Section 5, the attacker
can achieve the deceiving effect without much effort in the
white-black threat model.

Results. We validate our attack image generation approach
on the interpolation algorithms built within three popular deep
learning frameworks: Caffe, Tensorflow, and Torch. For each
framework, we write an image classification demo based on
the BAIR/BVLC GoogleNet model, whose required input size
is 224*224. We launch the attack with a 672*224 sheep-like
image as the source image, and a 224*224 wolf-like image
as the target image, under a tight constraint where we set e =
0.01. If the generated attack image satisfies the constraints and
deceives the application, we consider the attack is successful,
and otherwise it fails. The results reported in Table 2 show
that our attack method is effective for all the default scaling
algorithms in these frameworks.

Notice that our approach does not generate successful at-
tack images for some less commonly used algorithms. There
are two factors affecting these attacks. First, some of these
algorithms might pose more constraints during the scaling
process. And because they are not popularly used, we have
not yet studied the detail of these implementations. Second,
in this paper, we only applied a tight constraint on our op-
timization task (Eq.16 and Eq.17), for the purpose of threat
demonstration. There is a trade-off between the deceiving
effect and image generation difficulty. Even if the automatic
image generation process fails for some algorithms, by no
means these algorithms should be considered as safe.

6.2 Black-box Attack Against Cloud Vision
Services

Cloud-based computer vision services, provided by Microsoft,
Baidu, Tencent and others, have arisen broadly, which sim-
plify the deployment of computer vision systems. By sending
queries to these powerful cloud vision APIs, users can obtain
detailed image information, e.g., tags with confidence values
and image descriptions. In this case, the pre-trained models
are usually packaged as black boxes isolated from users, and
users only are able to access these services through APIs. This
section shows that the commercial cloud vision services are
threatened by the scaling attack, even in the black-box sce-
nario where the input size and scaling method are unknown.

Black-box Threat Model. In our black-box threat model,
the goal of an attack is to deceive the image recognition
service running on the cloud server, resulting in a mis-
recognition for input images. But the input scale and scaling
method is unknown to the attacker, making the attack more
challenging.

6.2.1 Attack Roadmap

The attack against black-box vision services mainly includes
two steps. The first step is scaling parameter inference – the
attacker estimates the input size and scaling algorithm used
by the classification model. The second step is to craft attack
images based on the inferred scaling parameters.

USENIX Association 28th USENIX Security Symposium 451

Scaling Parameter Inference. We design the scaling pa-
rameter inference strategy based on two empirical observa-
tions. First, from Table 1 we can see that for most commonly
used CNN models, the input is a square-sized image with a
side length in the range of [201,300]. Second, by comparing
and analyzing the source codes of popular DL frameworks
in Table 2, we found the most commonly used default scal-
ing algorithm is Nearest, Bilinear, or Bicubic. Therefore, a
naive approach by the adversary is to infer the scaling param-
eters via exhaustive tests. An adversary can send a series of
m probing images {probeImgi},(i = 1,2, ...,m), crafted by
the scaling attack method with various scaling parameters.
The attacker can infer the scaling parameters by watching
the classification results. If one query returns with the correct
classification result, the corresponding scaling parameters are
likely to be used by the target service. Then the attacker can
try to launch the attack with the inferred parameters. This
procedure is shown in Algorithm 3.

The inference efficiency can be increased by using a
complex attack image involving several sub-probing images.
These sub-probing images can only be recovered with their
corresponding scaling parameters.

Here we show one simple approach to achieve this goal.
First, the attacker collects n sub-probing images each be-
longing to different categories, and determines the input
size range SizeRange and the scaling algorithms AlgSet to
test. The search space S can be defined as S = {Si} =
SizeRange⇥AlgSet = {sizei}⇥{algi}. Second, the attacker
chooses a large blank white image (with #FF as the pixel
value) as the background, and divides it into n non-overlapped
probing regions. Third, the attacker repeats the following pro-
cedure: he/she fills the j-th probing region of the blank image
with the j-th sub-probing image respectively, next scales it
with the scaling parameter S j

i
, and then conducts the scaling

attack with the original blank image as the sourceImg and
the resized image as the targetImg. Finally, the attacker com-
bines all the output images to create the probeImgi. In this
way, when probeImgi is resized, the j-th sub-probing image
will be recovered if and only if the scaling parameter is set
as S j

i
. Fig.6 gives an example of the probeImg. Note that the

larger n is, the fewer probeImgs are needed, but the recogni-
tion accuracy of sub-probing images might be reduced as the
area of each probing region decreases.

Image Crafting. After retrieving the possible input size
and scaling algorithm, the adversary can generate attack im-
ages as described in Section 5, and launch the scaling attack
to cloud vision services .

6.2.2 Results

To show the feasibility of the scaling attack against black-
box cloud vision services, we choose Microsoft Azure, Baidu,

Algorithm 3 Scaling Parameter Inference
Input: cloud vision API f , scaling algorithms AlgSet =

{alg1, alg2, ...}, input size range SizeRange = {size1, size2,
...}, source image sourceImg, target image targetImg

Output: the inferred input size size
⇤ and scaling algorithm

alg
⇤

1: for alg in AlgSet do
2: for size in SizeRange do
3: testImg = resize(targetImg, size)
4: probeImg = ScalingAttack(alg, sourceImg,

testImg) ⇤ Can be recovered once resized into size

by alg.
5: if argmax(f (testImg)) == argmax(f (probeImg))

then
6: Return size,alg ⇤ Get a feasible answer.
7: end if
8: end for
9: end for

10: Return NULL, NULL ⇤ No match during the search.

Aliyun, and Tencent cloud vision services as our test beds9.
In our experiment, each probeImg contains four sub-

images (classified as “zebra”, “dog”, “rat” and “cat”) for dif-
ferent input parameters. For the input size, the SizeRange is
set from 201 to 300, while the scaling algorithm options in-
clude two libraries OpenCV and Pillow with Nearest, Bilinear
and Cubic interpolation methods. Considering the trade-off
between efficiency and recognition accuracy, we set n = 4.
Hence, the total amount of queries is 100 (#input size) * 2
(#scaling library) * 3 (#interpolation method) / 4 (#probing
region) = 150 (#probeImg). As we can see, the searching
space is extremely small and it consumes just up to several
minutes to obtain the results. We provide the scaling parame-
ter inference results and one scaling attack sample in Table
3.

Moreover, to verify the effectiveness of the proposed attack
strategy, we collected 935 images from Internet, including 17
categories except of sheep or sheep-like animals, and cropped
them into the 800*600 size holding the main object, as our
sourceImg dataset. Then for each of the 935 sourceImgs, we
generated one attack image with the same targetImg contain-
ing a sheep in the center, setting the scaling attack parameter
e = 0.01.

For Baidu, Aliyun and Tencent, all the attack images are
classified as “sheep” or “goat” with the highest confidence
value compared with other classes, while for Azure the re-
sult becomes more complex. In our experiment we requested
the Azure cloud vision service API to respond with four fea-

9 As part of the responsible disclosure etiquette, we have reported this
issue and received replies from these companies. The latter three have con-
firmed this problem as are now in the process of fixing it. Microsoft Azure
has also acknowledged the issue and is discussing with us about possible
solutions.

452 28th USENIX Security Symposium USENIX Association

(a) probeImg

(1024*1024)
(b) Scaled result
(OpenCV.Bilinear, 201*201)

(c) Scaled result
(OpenCV.Bilinear, 202*202)

(d) Scaled result
(OpenCV.Bilinear, 203*203)

(e) Scaled result
(OpenCV.Bilinear, 204*204)

Figure 6: An example of the probeImg. (a) is a probeImg containing 4 subfigures, and (b) to (e) are the results when the probeImg

is scaled under different scaling settings.

tures: “description”, “tags”, “categories”, and “color”. We
find that for attack images, the word “sheep” may appear in
the “description” or “tags” with a confidence value. Hence,
we computed the CDF (cumulative distribution function) of
attack images’ confidence values of “tags” and “description”
respectively, and plot the two CDF curves in Fig.7 (we as-
sume the confidence value as 0 if “sheep” is absent in the API
response). The result shows that for the “tags” feature, more
than 60% attack images are classified as “sheep” with a confi-
dence value higher than 0.9, which implies the effectiveness
of our proposed attack.

Figure 7: The CDF curve of responses from Azure.

6.3 Deceiving Effect on Web Browsers

Web browsers provide the page zooming function to scale the
contents, including texts and images. Hence, an attacker may
be able to utilize scaling functions in web browsers to achieve
deceiving or phishing attacks.

We have evaluated such effect on several mainstream
browsers running on different platforms. We generated an
attack image (with a 672*224 sheep image as the source
image, a 224*224 wolf image as the target image, using
OpenCV.Bilinear as the scaling method, e = 0.01), and used
HTML tags to control its rendering size in browsers. The re-
sult is presented in Table 4, indicating the potential victims of
scaling attack are beyond the scope of deep learning computer

vision applications. One potential problem is that scaling at-
tacks can cause inconsistency between different screen reso-
lutions, when the browser’s auto/adaptive-zooming function
is enabled.

6.4 Factors that Might Interfere with Scaling
Attacks

Image processing applications often contain a complex pre-
processing pipeline. Besides scaling, an image processing
applications might use cropping, filtering, and various other
image transformation actions. If these additional image pre-
processing actions occur prior to the scaling action, they might
pose additional challenges to scaling attacks.

The following list presents an overview of common image
preprocessing actions and discusses their potential impact on
scaling attacks.

• Cropping – truncate certain regions of the input image,
for the purpose of data augmentation or background re-
moving. Cropping usually changes the source image
aspect ratio, and if a scaling attack was designed under a
wrong dimension, the automatic generated image would
not scale to the right target image. Therefore, attackers
need to know precisely which region in the input is ex-
pected to be cropped. Only under some special cases,
such as the cropping preserves the aspect ratio and the
underneath algorithm is Nearest, deceiving effect can be
preserved. Certainly the degree of impact also depends
on the relative size being cropped. If the pixels that are
used to generate the targeted image are chopped, then
the effect of scaling attack is definitely affected.

• Filtering – is to blur or sharpen an image, adjust its color
palette. Image filtering changes the pixel values and thus
directly interferes with scaling attacks, because the attack
is based on the manipulation of “average” values of
neighbor pixels used by the interpolation algorithms. For
simple scaling algorithms, such as Nearest, the output
image might still present deceiving effect as the result is

USENIX Association 28th USENIX Security Symposium 453

Table 3: Deceiving effect on four cloud vision services.

Service Azure Baidu Aliyun Tencent
Inferred Scale 227*227 256*256 224*224 224*224

Inferred Algorithm OpenCV.Bilinear OpenCV.Bicubic OpenCV.Bilinear OpenCV.Bilinear

Attack Image

Response

"captions":
{ "text": "a close up of a wolf",
"confidence": 0.707954049 } }
Tags: ... { "name": "wolf",
"confidence": 0.981169641}...

... "result":
{ "score": "0.938829",
"name": "Grey Wolf" },
{ "score": "0.0146997",
"name": "Mexico Wolf" }...

...
"Object":
{ "Grey Wolf": "49.37%",
"White Wolf": "29.93%",...}

...
"Tags":
{ "Grey Wolf": "88%",
"Eskimo": "15%"}...

Table 4: Proof-of-Concept sample image and the rendering effect under different browser settings. (The HTML file uses an IMG
tag to specify the image rendering size.)

Browsers Original Image Firefox, Edge IE11 Chrome Safari

Image

Size 672*224 224*224 224*224 224*224 224*224

Version

Firefox: 59.0.2, IE: 11.0.9600.18977
Chrome: 63.0.3239.84,
Edge: 41.16299.371.0
Safari: 8.0 (10600.1.25.1)

Firefox: 59.0.2
Edge: 41.16299.371.0 IE: 11.0.9600.18977 Chrome: 63.0.3239.84 Safari:

8.0 (10600.1.25.1)

like the original target with a filtering effect. However,
for complex scaling algorithms, such as Bilinear and
Bicubic, the output image will likely not present as the
intend target image.

• Affine transformations – is to rotate or mirror the in-
put image. Rotation in an arbitrary degree likely breaks
the calculation used by the automatic attack image craft-
ing. However, flipping images in 180 degree, mirror im-
ages might have no impacts on the scaling attack which
mainly depends on the size of the inputs and the scaling
algorithms. Some scaling algorithms are orientation in-
dependent, i.e. the output is same regardless the scan of
pixels is from left to right or the opposite order. In those
cases, a flip or mirror action would not affect scaling
attacks.

• Color transformations – to change the color space, like
convert an RGB image to grayscale. Color transforma-
tion can be considered as a special type of filtering, and
thus the impact to scaling attack is similar to filtering.

Although the above transformation actions all directly in-
terfere with scaling attacks, the interference can be overcome
by the attackers if they know these transformation details. In
fact, each of these operations can be described by a transfor-
mation matrix. Once an attacker ensures the exact content
of the transformation matrix and if there exists a correspond-
ing reverse transformation matrix, the attacker can applies
the reverse matrix to generated attack image before feeding

it to the targeted application. In the black-box case, the at-
tacker has to infer the transformation matrix. Therefore, these
transformation actions would increase the attack difficulty.

The deceiving effect of scaling attacks is also subject to
some native limitations, especially size and brightness, of
source and target images. An attacker needs to find an ap-
propriate pair of the source and target images to achieve a
successful attack image.

• Size: Sizes of the source and target images decide how
many redundant pixels can be leveraged to launch the
attack. If the size differences between scaling input and
output are very close, the information attenuation due to
resampling may be insufficient to achieve a successful
deceiving effect.

• Brightness: Brightness or color of the source and target
images decides how tight the constraints are. In the worst
case, it is hard to find a feasible solution given a full
white source and a full black target. Even we generate
an attack image successfully, it is hard to deceive human
without noticing dark dots distributed in the white image.

6.5 Practical Attack Scenarios
This paper presents the risk of scaling attacks through a set
of limited experiments with proof-of-concept images. We
have shown these proof-of-concept images can achieve de-
ceiving effect in deep-learning based image applications, web

454 28th USENIX Security Symposium USENIX Association

browsers, as well as cloud-based visual recognition and clas-
sification services. Although these proof-of-concept images,
such as the wolf-in-sheep set, do not cause any real damage,
we believe the risks of scaling attacks are real. This section
describes a few motivating scenarios to illustrate possible real
life threats.

• Data poisoning. Many image based applications rely
on label training sets and there are many large image
datasets, such as ImageNet [12], on the Internet. Many
deep learning developers rely on these datasets to train
their models. Although data poisoning as a concept is
known, developers and model trainers rarely consider
data poisoning is a real threat on these public datasets
since these datasets are public, and humans are expected
to notice obvious genre mistakes and a large set of mis-
labels. However, with scaling attacks, people with mali-
cious intent could conceal a hidden category of images
(e.g. wolf) while providing mistaken labels as another
category (e.g. sheep). We do not have evidence of such
activities, but we envision that scaling attacks definitely
make data poisoning more stealthy.

• Detection evasion and Cloaking. Content moderation
is one of the most widely used computer vision applica-
tions. Many vendors provide content filtering services,
such as Google [11], Amazon AWS [3] and Microsoft
Azure [4]. ModerateContent claims that it is trusted by
1000’s of sites to prevent offensive content [23]. An at-
tacker may leverage the scaling attack to evade these con-
tent moderators to spread inappropriate images, which
may raise serious problems in online communities. For
example, suppose an attacker wants to advertise illegal
drugs to users on the iPhone XS. The attacker can use
the scaling attack to create a cloaking effect, so that
the scaling result on the iPhone XS browser is the in-
tended drug image while the image in the original size
contains benign content. Certainly cloaking can also
be achieved by using other approaches such as browser
sensitive Javascript. However, scaling attacks create an
alternative approach as no additional code is used to
manage the rendering effect.

• Fraud by Leveraging Inconsistencies between Dis-
plays. An attacker can create a deceptive digital con-
tract using the scaling attacks. An attacker can create
an image document that contains a scanned contract but
renders to different content when scaling to different
ratios. The attacker can then get two parties to share the
same document. If they each use different browsers, the
content being displayed will be different. This inconsis-
tency can become the basis of potential financial fraud
activities.

7 Countermeasures

In this section, we discuss potential defense strategies to miti-
gate the threat from scaling attacks. First, we discuss possible
countermeasures as the attack prevention in the image prepro-
cessing procedure. Second, we discuss some approaches to
detect scaling attacks.

7.1 Attack Prevention
A naive way to avoid the scaling attack is to omit inputs whose
sizes are different from the input size used by the deep learn-
ing models. This approach is appropriate for applications that
deal with the inputs collected by sensors in specific formats.
However, this strategy is infeasible for many Internet services,
since the input images uploaded by users are often in various
sizes.

Another solution is that we can randomly remove some
pixels (by line or by column) from the image before scal-
ing it. This random cropping operation makes the scaling
coefficient matrices unpredictable, and therefore, it can in-
crease the attack difficulty effectively. However, we should
carefully design the pixel removing policy to maintain the
image quality.

7.2 Attack Detection
The scaling attack achieves the deceiving effect by causing
dramatic changes in visual features before and after the scal-
ing action. One potential solution is to detect such obvious
changes of input features during the scaling process, such as
the color histogram and the color scattering distribution.

7.2.1 Color-histogram-based Detection

The color histogram counts the amount of pixels for color
ranges of a digital image. It presents the color distribution in
an image, and is commonly used as a measurement of image
similarity. The main advantage of the color-histogram-based
detection approach is that it can measure the color distribution
change easily and quickly. It is a simple solution when the
data processing speed is the main concern, especially when
the system throughput is high. In our experiments, we convert
the image into grayscale to examine the effectiveness of color-
histogram-based detection, i.e., pixel values ranging from 0
to 255. Eventually, the color histogram of one image can be
represented as a 256-dimension vector v

his, and we adopt the
cosine similarity to measure the color-histogram similarity of
two images s

his = cos(vhis

1 ,vhis

2).

7.2.2 Color-scattering-based Detection

The color-histogram-based detection can only present a rough
distribution of pixel values, disregarding the color spatial dis-
tribution information. The color scattering could become a

USENIX Association 28th USENIX Security Symposium 455

supplementary to the histogram, which presents the color dis-
tribution measured with the distance between pixels and the
image center. In our experiments, we also convert the image
to grayscale to evaluate the effectiveness the color-scattering-
based detection approach. Specifically, we calculate the dis-
tance histogram as the color scattering measurement, and
define a statistical metric to evaluate the similarity: First,
we compute the average distance from pixels which belong
to the same pixel value to the center of the image and we
present the result with a 256-dimension color scattering vec-
tor v

scat . Second, we calculate the cosine similarity between
vectors of two images as the color-scattering-based similarity
s = cos(vscat

1 ,vscat

2).

(a) Input (crafted) (b) Output

(c) Input (original) (d) Output

(e) CH: Crafted vs. Output (f) CH: Original vs. Output

A
ve

ra
ge

 D
is

ta
nc

e

(g) CS: Crafted vs. Output

A
ve

ra
ge

 D
is

ta
nc

e

(h) CS: Original vs. Output

Figure 8: The color histograms and color scattering detection
results of the scaling attack in the wolf-in-sheep example.
(CH: color histogram, CS:color scattering)

(a) Color Histograms (b) Color Scattering

Figure 9: The CCD of color histogram similarity and color
scattering similarity detection.

7.2.3 Evaluation

To evaluate the performance of two attack detection strategies,
we have crafted three attack images for each sourceImg in
the dataset established in Section 6.2, with three 224*224
target images belong to the wolf, human face and cat category.
Before the similarity comparison, we resize the output to the
same size with the input, in order to eliminate the difference
in pixel amount. Fig.8 exhibits the detecting result of a wolf-

in-sheep attack image.
Fig.8e and Fig.8f present the comparison of grayscale his-

tograms between the input images and their scaled output.
The x-axis refers to pixel values ranging from 0 to 255, while
the y-axis refers to the number of pixels with the same value.
From Fig.8f, we can see that the two curves of the origi-
nal input and its scaling output almost coincide, where the
similarity is 0.96. In the meanwhile, we can see an obvious
difference between the color distribution of the attack image
and its scaling output, where the similarity is 0.50.

Fig.8g and Fig.8h present the comparison of grayscale color
scattering measurement. The x-axis refers to pixel values
ranging from 0 to 255, while the y-axis refers to the average
distance between the image center and pixels with the same
value. Similarly, we can see an obvious difference in the color
scattering measurement of the attack image and its scaling
output.

Fig.9 reports the complementary cumulative distribution
(CCD) of the detection results of our test set. The legend
“original-resize”, “ds-wolf”, “ds-face” and “ds-cat” refer to
the original-image, wolf-as-target, human-face-as-target and
cat-as-target case, respectively. We can observe that for both
two detection metrics, the similarity between original images
and their scaling outputs is obviously higher than that between
attack images and their scaling outputs. The result indicates
the two attack detection strategies work well in most cases.

8 Conclusion

This paper presents a camouflage attack on image scaling
algorithms, which is a potential threat to computer vision ap-

456 28th USENIX Security Symposium USENIX Association

plications. By crafting attack images, the attack can cause
the visual semantics of images change significantly during
scaling. We studied popular deep learning frameworks and
showed that most of their default scaling functions are vulner-
able to such attack. Our results also exhibit that even though
cloud services (such as Microsoft Azure, Baidu, Aliyun and
Tencent) hide the scaling algorithms and input scales, attack-
ers can still achieve the deceiving effect. The purpose of this
work is to raise awareness of the security threats buried in
the data processing pipeline in computer vision applications.
Compared to the intense interests in adversarial examples, we
believe that the scaling attack is more effective in creating
misclassification because of the deceiving effect it can create.

Acknowledgments

We thank our shepherd Dr. David Wagner and all anonymous
reviewers for their insightful suggestions and comments to
improve the paper; Dr. Jian Wang and Dr. Yang Liu for feed-
back on early drafts; Deyue Zhang and Wei Yin for collect-
ing the data. We also thank all members of 360 Security
Research Labs for their support. Among all the contribu-
tors, Dr. Chao Shen (chaoshen@mail.xjtu.edu.cn) and Dr.
Yu Chen (yuchen@mail.tsinghua.edu.cn) are the correspond-
ing authors. Tsinghua University authors are supported in part
by the National Natural Science Foundation of China (Grant
61772303), National Key R&D Program of China (Grant
2017YFB0802901). Xi’an Jiaotong University authors are
supported in part by the National Natural Science Founda-
tion of China (Grant 61822309, 61773310, and U1736205),
the Natural Science Foundation of Shaanxi Province (Grant
2019JQ-084).

References

[1] adamlerer and soumith. ImageNet training in PyTorch.
http://github.com/pytorch/examples/tree/mas
ter/imagenet, 2017.

[2] Adnan M. Alattar. Reversible watermark using the dif-
ference expansion of a generalized integer transform.
IEEE Transactions on Image Processing, 13(8):1147–
1156, Aug 2004.

[3] Amazon AWS. Detecting unsafe image. https://do
cs.aws.amazon.com/rekognition/latest/dg/pr
ocedure-moderate-images.html.

[4] Microsoft Azure. Content moderator. https://azure.
microsoft.com/en-us/services/cognitive-ser
vices/content-moderator/.

[5] beniz. Deep Learning API and Server in C++11 with
Python bindings and support for Caffe, Tensorflow, XG-

Boost and TSNE. https://github.com/beniz/dee
pdetect, 2017.

[6] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, L D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv: Computer Vision and Pattern Recognition,
2016.

[7] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal

of Software Tools, 2000.

[8] BVLC. BAIR/BVLC GoogleNet Model. http://dl.c
affe.berkeleyvision.org/bvlc_googlenet.caf
femodel, 2017.

[9] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber.
Lossless generalized-lsb data embedding. IEEE Trans-

actions on Image Processing, 14(2):253–266, Feb 2005.

[10] Alex Clark and Contricutors. Pillow: The friendly
Python Imaging Library fork. https://python-p
illow.org/, 2018.

[11] Google Cloud. Filtering inappropriate content with the
cloud vision api. https://cloud.google.com/blo
g/products/gcp/filtering-inappropriate-con
tent-with-the-cloud-vision-api.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In 2009 IEEE Conference on Com-

puter Vision and Pattern Recognition, 2009.

[13] Martín Abadi et al. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and Harnessing Adversarial Examples. ArXiv e-prints,
December 2014.

[15] Jie Hu and Tianrui Li. Reversible steganography using
extended image interpolation technique. Computers and

Electrical Engineering, 46:447–455, 2015.

[16] Yangqing Jia. Classifying ImageNet: using the C++
API. https://github.com/BVLC/caffe/tree/mas
ter/examples/cpp_classification, 2017.

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[18] Ki Hyun Jung and Kee Young Yoo. Data hiding method
using image interpolation. Computer Standards and

Interfaces, 31(2):465–470, 2009.

USENIX Association 28th USENIX Security Symposium 457

[19] Devendra Kumar. REVERSIBLE DATA HIDING US-
ING IMPROVED INTERPOLATION. pages 3037–
3048, 2017.

[20] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio.
Adversarial examples in the physical world. CoRR,
abs/1607.02533, 2016.

[21] Chin Feng Lee and Yu Lin Huang. An efficient im-
age interpolation increasing payload in reversible data
hiding. Expert Systems with Applications, 39(8):6712–
6719, 2012.

[22] Ian Markwood, Dakun Shen, Yao Liu, and Zhuo
Lu. PDF mirage: Content masking attack against
information-based online services. In 26th USENIX

Security Symposium (USENIX Security 17), pages 833–
847, Vancouver, BC, 2017. USENIX Association.

[23] ModerateContent. Realtime image moderation api to
protect your community. https://www.moderateco
ntent.com/.

[24] NVIDIA developers. the latest products and services
compatible with the DRIVE Platform of NVIDIA’s
ecosystem . https://developer.nvidia.com/d
rive/ecosystem, 2017.

[25] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana.
Deepxplore: Automated whitebox testing of deep learn-
ing systems. In Proceedings of the 26th ACM Sym-

posium on Operating Systems Principles (SOSP ’17),
October 2017.

[26] Ronan, Clément, Koray, and Soumith. Torch: A SCIEN-
TIFIC COMPUTING FRAMEWORK FOR LUAJIT.
http://torch.ch/, 2017.

[27] Mingwei Tang, Jie Hu, Wen Song, and Shengke Zeng.
Reversible and adaptive image steganographic method.
AEU - International Journal of Electronics and Commu-

nications, 69(12):1745–1754, 2015.

[28] Tensorflow developers. TensorFlow C++ and Python
Image Recognition Demo. https://www.github.com
/tensorflow/tensorflow/tree/master/tensorf
low/examples/label_image, 2017.

[29] Torch developers. Tutorials for Torch7. http://gith
ub.com/torch/tutorials/tree/master/7_image
net_classification, 2017.

[30] Xing-Tian Wang, Chin-Chen Chang, Thai-Son Nguyen,
and Ming-Chu Li. Reversible data hiding for high qual-
ity images exploiting interpolation and direction order
mechanism. Digital Signal Processing, 23(2):569 – 577,
2013.

[31] H. Wu, J. Dugelay, and Y. Shi. Reversible image data
hiding with contrast enhancement. IEEE Signal Pro-

cessing Letters, 22(1):81–85, Jan 2015.

[32] Qixue Xiao, Kang Li, Deyue Zhang, and Weilin Xu.
Security risks in deep learning implementations. 2018

IEEE Security and Privacy Workshops (SPW), pages
123–128, 2018.

[33] Xinyue Shen, Steven Diamond, Yuantao Gu, and
Stephen Boyd. DCCP source code. https://gith
ub.com/cvxgrp/dccp, 2017. Accessed 2017-09-03.

[34] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang,
Taimin Zhang, and Wenyuan Xu. Dolphinattack: Inaudi-
ble voice commands. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, CCS ’17, pages 103–117, New York, NY, USA,
2017. ACM.

A Proof of Concept of the Scaling Attack

A.1 Software Version and Model Information
for Attack Demonstration

Here we present the software setup for the attack demonstra-
tion. Although the example used here targets applications
with Caffe, the risk is not limited to Caffe. We have tested
the scaling functions in Caffe, TensorFlow and Torch. All of
them are vulnerable to scaling attacks.

The Caffe package and the corresponding image classi-
fication examples were checked out directly from the of-
ficial GitHub on October 25, 2017, and the OpenCV used
was the latest stable version from the following URL:
https://github.com/opencv/opencv/archive/2.4.13.4.zip

We used the BAIR/BVLC CaffeNet Model in our proof of
concept exploitation. The model is the result of training based
on the instructions provided by the original Caffe package. To
avoid any mistakes in model setup, we download the model
file directly from BVLC’s official GitHub page. Detailed
information about the model is provided in the list below.

Listing 1: Image classification model
name: BAIR/BVLC GoogleNet Model
caffemodel: bvlc_googlenet.caffemodel
caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel
caffe_commit: bc614d1bd91896e3faceaf40b23b72dab47d44f5

A.2 Command Lines
The deceiving effect was demonstrated based on the official
Caffe example cppclassification. The exact command line
was shown in the list below.

Listing 2: Image classification command line
./classification.bin models/bvlc_googlenet/deploy.prototxt

458 28th USENIX Security Symposium USENIX Association

models/bvlc_googlenet/bvlc_googlenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt
IMAGE_FILE

A.3 Sample Output
The list below shows the classification results for the sample
images used in the Section 2.2.

Listing 3: Sample classification results

wolf-in-sheep.png [Image size: 672*224]
./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt /tmp/sample/wolf -in-sheep.png

---------- Prediction for /tmp/sample/wolf -in-sheep.png ----------
0.8890 - "n02114548 white wolf , Arctic wolf , Canis lupus tundrarum"
0.0855 - "n02120079 Arctic fox, white fox, Alopex lagopus"
0.0172 - "n02134084 ice bear , polar bear , Ursus Maritimus , Thalarctos maritimus"
0.0047 - "n02114367 timber wolf , grey wolf , gray wolf , Canis lupus"
0.0019 - "n02111889 Samoyed , Samoyede"

wolf.png [Image size: 224*224]
./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt /tmp/sample/wolf.png

---------- Prediction for /tmp/sample/wolf.png ----------
0.8890 - "n02114548 white wolf , Arctic wolf , Canis lupus tundrarum"
0.0855 - "n02120079 Arctic fox, white fox, Alopex lagopus"
0.0172 - "n02134084 ice bear , polar bear , Ursus Maritimus , Thalarctos maritimus"
0.0047 - "n02114367 timber wolf , grey wolf , gray wolf , Canis lupus"
0.0019 - "n02111889 Samoyed , Samoyede"

cat-in-sheep.png [Image size: 672*224]
./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt /tmp/sample/cat-in-sheep.png

---------- Prediction for /tmp/sample/cat-in-sheep.png ----------
0.1312 - "n02127052 lynx , catamount"
0.1103 - "n02441942 weasel"
0.1068 - "n02124075 Egyptian cat"
0.1000 - "n04493381 tub, vat"
0.0409 - "n04209133 shower cap"

cat.png [Image size: 224*224]
./classification.bin models/bvlc_googlenet/deploy.prototxt

models/bvlc_googlenet/bvlc_googlenet.caffemodel
data/ilsvrc12/imagenet_mean.binaryproto
data/ilsvrc12/synset_words.txt /tmp/sample/cat.png

---------- Prediction for /tmp/sample/cat.png ----------
0.1312 - "n02127052 lynx , catamount"
0.1103 - "n02441942 weasel"
0.1068 - "n02124075 Egyptian cat"
0.1000 - "n04493381 tub, vat"
0.0409 - "n04209133 shower cap"

(a) wolf-in-sheep.png (672*224) (b) wolf.png (224*224)

(c) cat-in-sheep.png (672*224) (d) cat.png (224*224)

Figure 10: Input pictures of the demo application.

B Code Samples Containing Image Scaling

This appendix provides code snippets of using data scaling
procedure examples, from popular deep learning frameworks’
released demos without change.

Listing 4: Preprocessing in image demo of Tensorflow [28]
def read_tensor_from_image_file(file_name , input_height=299, input_width=299,

input_mean=0, input_std =255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name , input_name)
if file_name.endswith(".png"):

image_reader = tf.image.decode_png(file_reader , channels = 3,
name=’png_reader’)

elif file_name.endswith(".gif"):
image_reader = tf.squeeze(tf.image.decode_gif(file_reader ,

name=’gif_reader’))
elif file_name.endswith(".bmp"):

image_reader = tf.image.decode_bmp(file_reader , name=’bmp_reader’)
else:

image_reader = tf.image.decode_jpeg(file_reader , channels = 3,
name=’jpeg_reader’)

float_caster = tf.cast(image_reader , tf.float32)
dims_expander = tf.expand_dims(float_caster , 0);
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized , [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)

return result

Listing 5: Preprocessing in cppclassification of Caffe [16]
189 void Classifier::Preprocess(const cv::Mat& img,
190 std::vector <cv::Mat >* input_channels) {
191 /* Convert the input image to the input image format of the network. */
192 cv::Mat sample;
...
204 cv::Mat sample_resized;
205 if (sample.size() != input_geometry_)
206 cv::resize(sample, sample_resized, input_geometry_);
207 else
208 sample_resized = sample;
209
210 cv::Mat sample_float;
211 if (num_channels_ == 3)
212 sample_resized.convertTo(sample_float , CV_32FC3);
213 else
214 sample_resized.convertTo(sample_float , CV_32FC1);
...
224 CHECK(reinterpret_cast<float*>(input_channels ->at(0).data)
225 == net_ ->input_blobs()[0]->cpu_data())
226 << "Input channels are not wrapping the input layer of the network.";
227 }

Listing 6: ImageNet classification with Torch7 [29]
function preprocess(im, img_mean)

-- rescale the image
local im3 = image.scale(im,224,224,’bilinear’)
-- subtract ImageNet mean and divide by std
for i=1,3 do im3[i]:add(-img_mean.mean[i]):div(img_mean.std[i]) end
return im3

end

Listing 7: ImageNet classification with PyTorch [1]
def main():

global args , best_prec1
args = parser.parse_args()

...
Data loading code
traindir = os.path.join(args.data , ’train’)
valdir = os.path.join(args.data , ’val’)

...
val_loader = torch.utils.data.DataLoader(

datasets.ImageFolder(valdir , transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize ,
])),

batch_size=args.batch_size , shuffle=False ,
num_workers=args.workers , pin_memory=True)

Listing 8: Code snippet in deepdetect based on Caffe [5]
int read_file(const std::string &fname)

USENIX Association 28th USENIX Security Symposium 459

{
cv::Mat img = cv::imread(fname ,_bw ? CV_LOAD_IMAGE_GRAYSCALE :

CV_LOAD_IMAGE_COLOR);
if (img.empty())

{
LOG(ERROR) << "empty image";
return -1;

}
_imgs_size.push_back(std::pair <int,int>(img.rows ,img.cols));
cv::Size size(_width ,_height);
cv::Mat rimg;
cv::resize(img,rimg,size,0,0,CV_INTER_CUBIC);
_imgs.push_back(rimg);
return 0;

}

C Analysis and Examples of Popular Image
Scaling Implentations

In this paper, we assume that the scaling algoritms first re-
size inputs horizontally and then vertically. This appendix
provides examples of how we make our assumptions based
on source code snippets of OpenCV and Pillow.

Here, Listing 9 shows one code snippet of OpenCV10,
where lines 3607-3700 are the main part of the resizing
function implementation. From the loop condiction variables
dsize.width (line 3607) and dsize.height (line 3674), we can
infer that lines 3607-3662 present the horizontal scaling opera-
tion, and lines 3674-7300 show the vertical scaling operation.

Listing 9: Code snippet of OpenCV
...
3607 for(dx = 0; dx < dsize.width; dx++)
3608 {
3609 if(!area_mode)
...
3662 }
3663
3664 for(dy = 0; dy < dsize.height; dy++)
3665 {
3666 if(!area_mode)
...
3700 }
...

Listing 10 shows one code snippet of Pillow11, which fol-
lows the same procesure (lines 635-681). The scaling direc-
tion can be inferred from the variables need_horizontal (line
636) and need_vertical (line 662).

Listing 10: Code snippet of Pillow
...
635 /* two-pass resize, horizontal pass */
636 if (need_horizontal) {
637 // Shift bounds for vertical pass
638 for (i = 0; i < ysize; i++) {
639 bounds_vert[i * 2] -= ybox_first;
640 }
...
659 }
660
661 /* vertical pass */
662 if (need_vertical) {
663 imOut = ImagingNewDirty(imIn ->mode , imIn ->xsize , ysize);
664 if (imOut) {
665 /* imIn can be the original image or horizontally resampled one */
666 ResampleVertical(imOut , imIn , 0,
667 ksize_vert , bounds_vert , kk_vert);
668 }
...
681 }

10https://github.com/opencv/opencv/blob/master/modules/i
mgproc/src/resize.cpp

11https://github.com/python-pillow/Pillow/blob/master/sr
c/libImaging/Resample.c

D Scaling Attack Examples

Table 5: Examples of two attack forms.

Style Source
Image

Target
Image

Attack
Image

Output
Image

Strong
Attack

(328*438) (178*218) (328*438) (178*218)

Strong
Attack

(580*785) (128*128) (580*785) (128*128)

Strong
Attack

(580*785) (220*311) (580*785) (220*311)

Strong
Attack⌃

(1280*720) (384*215) (1280*720) (384*215)

Strong
Attack⌥

(922*692) (185*139) (922*692) (185*139)

Weak
Attack None

(328*438) (109*145) (328*438) (109*145)
⌃The car at the lower left corner of the attack image is
removed after the attack image gets resized.

⌥The "Prohibt left turn" sign in the attack image is changed
into "Turn left" after the attack image gets resized.

460 28th USENIX Security Symposium USENIX Association

CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learning

Yisroel Mirsky1, Tom Mahler1, Ilan Shelef2, and Yuval Elovici1
1Department of Information Systems Engineering, Ben-Gurion University, Israel

2Soroka University Medical Center, Beer-Sheva, Israel
yisroel@post.bgu.ac.il, mahlert@post.bgu.ac.il, shelef@bgu.ac.il, and elovici@bgu.ac.il

Abstract
In 2018, clinics and hospitals were hit with numerous attacks
leading to significant data breaches and interruptions in
medical services. An attacker with access to medical records
can do much more than hold the data for ransom or sell it on
the black market.

In this paper, we show how an attacker can use deep-
learning to add or remove evidence of medical conditions
from volumetric (3D) medical scans. An attacker may perform
this act in order to stop a political candidate, sabotage research,
commit insurance fraud, perform an act of terrorism, or
even commit murder. We implement the attack using a 3D
conditional GAN and show how the framework (CT-GAN)
can be automated. Although the body is complex and 3D
medical scans are very large, CT-GAN achieves realistic
results which can be executed in milliseconds.

To evaluate the attack, we focused on injecting and
removing lung cancer from CT scans. We show how three
expert radiologists and a state-of-the-art deep learning AI are
highly susceptible to the attack. We also explore the attack
surface of a modern radiology network and demonstrate one
attack vector: we intercepted and manipulated CT scans in an
active hospital network with a covert penetration test.

1 Introduction

Medical imaging is the non-invasive process of producing
internal visuals of a body for the purpose of medical examina-
tion, analysis, and treatment. In some cases, volumetric (3D)
scans are required to diagnose certain conditions. The two
most common techniques for producing detailed 3D medical
imagery are Magnetic Resonance Imaging (MRI), and CT
(Computed Tomography). Both MRI and CT scanner are
essential tools in the medical domain. In 2016, there were
approximately 38 million MRI scans and 79 million CT scans
performed in the United States [1].1

MRI and CT scanners are similar in that they both create
3D images by taking many 2D scans of the body over the
axial plane (from front to back) along the body. The difference
between the two is that MRIs use powerful magnetic fields

1245 CT scans and 118 MRI scans per 1,000 inhabitants.

and CTs use X-Rays. As a result, the two modalities capture
body tissues differently: MRIs are used to diagnose issues
with bone, joint, ligament, cartilage, and herniated discs.
CTs are used to diagnose cancer, heart disease, appendicitis,
musculoskeletal disorders, trauma, and infectious diseases [2].

Today, CT and MRI scanners are managed though a picture
archiving and communication system (PACS). A PACS is
essentially an Ethernet-based network involving a central
server which (1) receives scans from connected imaging
devices, (2) stores the scans in a database for later retrieval,
and (3) retrieves the scans for radiologists to analyze and
annotate. The digital medical scans are sent and stored using
the standardized DICOM format.2

1.1 The Vulnerability
The security of health-care systems has been lagging behind
modern standards [3–6]. This is partially because health-care
security policies mostly address data privacy (access-control)
but not data security (availability/integrity) [7]. Some PACS
are intentionally or accidentally exposed to the Internet
via web access solutions. Some example products include
Centricity PACS (GE Healthcare), IntelliSpace (Philips),
Synapse Mobility (FujiFilm), and PowerServer (RamSoft).
A quick search on Shodan.io reveals 1,849 medical image
(DICOM) servers and 842 PACS servers exposed to the
Internet. Recently, a researcher at McAfee demonstrated
how these web portals can be exploited to view and modify
a patient’s 3D DICOM imagery [8]. PACS which are not
directly connected to the Internet are indirectly connected via
the facility’s internal network [9]. They are also vulnerable to
social engineering attacks, physical access, and insiders [10].

Therefore, a motivated attacker will likely be able to access
a target PACS and the medical imagery within it. Later in
section 4 we will discuss the attack vectors in greater detail.

1.2 The Threat
An attacker with access to medical imagery can alter the
contents to cause a misdiagnosis. Concretely, the attacker can

2https://www.dicomstandard.org/about/

USENIX Association 28th USENIX Security Symposium 461

https://www.dicomstandard.org/about/

Figure 1: By tampering with the medical imagery between
the investigation and diagnosis stages, both the radiologist and
the reporting physician believe the fallacy set by the attacker.

add or remove evidence of some medical condition. Fig. 1
illustrates this process where an attacker injects/removes lung
cancer from a scan.

Volumetric medical scans provide strong evidence of
medical conditions. In many cases, a patient may be treated
based on this evidence without the need to consider other
medical tests. For example, some lesions are obvious or
require immediate surgery. Moreover, some lesions will
legitimately not show up on other medical tests (e.g., meniscus
trauma and some breast cancers). Regardless, even if other
tests aren’t usually negative, ultimately, the evidence in the
scan will be used to diagnose and treat the patient. As a result,
an attacker with access to a scan has the power to change the
outcome of the patient’s diagnosis. For example, an attacker
can add or remove evidence of aneurysms, heart disease, blood
clots, infections, arthritis, cartilage problems, torn ligaments or
tendons, tumors in the brain, heart, or spine, and other cancers.

There are many reasons why an attacker would want to
alter medical imagery. Consider the following scenario: An
individual or state adversary wants to affect the outcome of
an election. To do so, the attacker adds cancer to a CT scan
performed on a political candidate (the appointment/referral
can be pre-existing, setup via social engineering, or part of
a lung cancer screening program). After learning of the cancer,
the candidate steps-down from his or her position. The same
scenario can be applied to existing leadership.

Another scenario to consider is that of ransomware: An
attacker seeks out monetary gain by holding the integrity
of the medical imagery hostage. The attacker achieves this
by altering a few scans and then by demanding payment for
revealing which scans have been affected.

Furthermore, consider the case of insurance fraud: Some-
body alters his or her own medical records in order to receive
money directly from his or her insurance company, or receive

Table 1: Summary of an attacker’s motivations and goals for
injecting/removing evidence in 3D medical imagery.

 Goal

 :
 :
 :

● :
○ :

Add Evidence
Remove Evidence
Either

Target Effect
Side Effect

St
ea

l J
ob

 P
os

iti
on

A

ff
ec

t E
le

ct
io

ns

R
em

ov
e

Le
ad

er

Sa
bo

ta
ge

 R
es

ea
rc

h
Fa

ls
ify

 R
es

ea
rc

h
H

ol
d

D
at

a
H

os
ta

ge

In
su

ra
nc

e
Fr

au
d

M
ur

de
r

Te
rr

or
iz

e

M
ot

iv
at

io
n Ideological

Political
Money

Fame/Attn.
Revenge

E
ff

ec
t

Physical Injury ○ ○ ○ ○ ○ ○ ●
Death ○ ● ●

Mental Trauma ○ ○ ○ ○ ○ ●
Life Course ● ● ● ○ ○ ○ ●

Monetary Cause Loss ○ ○ ● ○ ○ ●
Payout ● ○ ● ● ●

Attack
Type

Untargeted X X X
Targeted X X X X X X X

handicap benefits (e.g., lower taxes etc.) In this case, there is
no risk of physical injury to others, and the payout can be very
large. For example, one can (1) sign up for disability/life insur-
ance, then (2) fake a car accident or other incident, (3) complain
of an inability to work, sense, or sleep, then (4) add a small brain
hemorrhage or spinal fracture to his or her own scan during an
investigation (this evidence is very hard to refute), and then (5)
file a claim and receive cash from the insurance company.3

There are many more reasons why an attacker would want
to tamper with the imagery. For example: falsifying research
evidence, sabotaging another company’s research, job theft,
terrorism, assassination, and even murder.

Depending on the attacker’s goal, the attack may be either
untargeted or targeted:

Untargeted Attacks are where there is no specific target
patient. In this case, the attacker targets a victim who is
receiving a random voluntary cancer screening, is having
an annual scan (e.g., BRACA patients, smokers...), or is
being scanned due to an injury. These victims will either
have an ‘incidental finding’ when the radiologist reviews
the scan (injection) or are indeed sick but the evidence
won’t show (removal).

Targeted Attacks are where there is a specific target patient.
In these attacks, the patient may be lured to the hospital
for a scan. This can be accomplished by (1) adding
an appointment in the system, (2) crafting a cancer
screening invite, (3) spoofing the patient’s doctor, or (4)
tampering/appending the patient’s routine lab tests. For

3For example, see products such as AIG’s Quality of Life insurance.

462 28th USENIX Security Symposium USENIX Association

example, high-PSA in blood indicates prostate cancer
leading to an abdominal MRI, high thyrotropin in blood
indicates a brain tumor leading to a head MRI, and
metanephrine in urine of hypertensive patients indicates
cancer/tumor leading to a chest/abdominal CT

In this paper we will focus on the injection and removal
of lung cancer from CT scans. Table 1 summarizes attacker’s
motivations, goals, and effects by doing so. The reason we
investigate this attack is because lung cancer is common
and has the highest mortality rate [11]. Therefore, due its
impact, an attacker is likely to manipulate lung cancer to
achieve his or her goal. We note that the threat, attack, and
countermeasures proposed in this paper also apply to MRIs
and medical conditions other than those listed above.

1.3 The Attack
With the help of machine learning, the domain of image
generation has advanced significantly over the last ten
years [12]. In 2014, there was a breakthrough in the domain
when Goodfellow et al. [13] introduced a special kind of
deep neural network called a generative adversarial network
(GAN). GANs consist of two neural networks which work
against each other: the generator and the discriminator. The
generator creates fake samples with the aim of fooling the
discriminator, and the discriminator learns to differentiate
between real and fake samples. When applied to images, the
result of this game helps the generator create fake imagery
which are photo realistic. While GANs have been used for
positive tasks, researchers have also shown how they can be
used for malicious tasks such as malware obfuscation [14, 15]
and misinformation (e.g., deepfakes [16]).

In this paper, we show how an attacker can realistically
inject and remove medical conditions with 3D CT scans. The
framework, called CT-GAN, uses two conditional GANs
(cGAN) to perform in-painting (image completion) [17] on
3D imagery. For injection, a cGAN is trained on unhealthy
samples so that the generator will always complete the images
accordingly. Conversely, for removal, another cGAN is trained
on healthy samples only.

To make the process efficient and the output anatomically
realistic, we perform the following steps: (1) locate where the
evidence should be inject/removed, (2) cut out a rectangular
cuboid from the location, (3) interpolate (scale) the cuboid, (4)
modify the cuboid with the cGAN, (5) rescale, and (6) paste
it back into the original scan. By dealing with a small portion
of the scan, the problem complexity is reduced by focusing
the GAN on the relevant area of the body (as opposed to the
entire CT). Moreover, the algorithm complexity is reduced
by processing fewer inputs4 (pixels) and concepts (anatomical
features). This results in fast execution and high anatomical
realism. The interpolation step is necessary because the scale
of a scan can be different between patients. To compensate for
the resulting interpolation blur, we mask the relevant content

4A 3D CT scan can have over 157 million pixels whereas the latest
advances in GANs can only handle about 2 million pixels (HD images).

according to water density in the tissue (Hounsfield units) and
hide the smoothness by adding Gaussian white noise. In order
to assist the GAN in generating realistic features, histogram
equalization is performed on the input samples. We found that
this transformation helps the 3D convolutional neural networks
in the GAN learn how to generate the subtle features found
in the human body. The entire process is automated, meanings
that the attack can be deployed in an air gapped PACS.

To verify the threat of this attack, we trained CT-GAN
to inject/remove lung cancer and hired three radiologists to
diagnose a mix of 70 tampered and 30 authentic CT scans.
The radiologists diagnosed 99% of the injected patients with
malign cancer, and 94% of cancer removed patients as being
healthy. After informing the radiologists of the attack, they
still misdiagnosed 60% of those with injections, and 87% of
those with removals. In addition to the radiologists, we also
showed how CT-GAN is an effective adversarial machine
learning attack. We found that the state-of-the-art lung cancer
screening model misdiagnosed 100% of the tampered patients.
Thus, cancer screening tools, used by some radiologists, are
also vulnerable to this attack.

This attack is a concern because infiltration of healthcare
networks has become common [3], and internal network
security is often poor [18]. Moreover, for injection, the attacker
is still likely to succeed even if medical treatment is not
performed. This is because many goals rely on simply scaring
the patient enough to affect his/her daily/professional life. For
example, even if an immediate deletion surgery is not deemed
necessary based on the scan and lab results, there will still be
weekly/monthly follow-up scans to track the tumor’s growth.
This will affect the patient’s life given the uncertainty of his
or her future.

1.4 The Contribution
To the best of our knowledge, it has not been shown how an
attacker can maliciously alter the content of a 3D medical im-
age in a realistic and automated way. Therefore, this is the first
comprehensive research which exposes, demonstrates, and ver-
ifies the threat of an attacker manipulating 3D medical imagery.
In summary, the contributions of this paper are as follows:

The Attack Model We are the first to present how an attacker
can infiltrate a PACS network and then use malware
to autonomously tamper 3D medical imagery. We also
provide a systematic overview of the attack, vulnerabilities,
attack vectors, motivations, and attack goals. Finally,
we demonstrate one possible attack vector through a
penetration test performed on a hospital where we covertly
connect a man-in-the-middle device to an actual CT scanner.
By performing this pen-test, we provide insights into the
security of a modern hospital’s internal network.

Attack Implementation We are the first to demonstrate
how GANs, with the proper preprocessing, can be used to
efficiently, realistically, and automatically inject/remove
lung cancer into/from large 3D CT scans. We also evaluate
how well the algorithm can deceive both humans and

USENIX Association 28th USENIX Security Symposium 463

GAN

cGAN for
in-painting

Random vector
Real instance
Fake (generated) instance

Label

image
Completed image

Label

Figure 2: A schematic view of a classic GAN (top) and a
cGAN setup for in-painting.

machines: radiologists and state-of-the-art AI. We also show
how this implementation might be used by an attacker since
it can be automated (in the case of an air gapped system)
and is fast (in the case of an infected DICOM viewer).

Countermeasures We enumerate various countermeasures
which can be used to mitigate the threat. We also provide
the reader with best practices and configurations which can
be implemented immediately to help prevent this attack.

For reproducibility and further investigation, we have
published our tampered datasets and source code online5

along with a pen-test video.6

The remainder of the paper is organized as follows: First
we present a short background on GANs. Then, in section 3,
we review related works and contrast them ours. In section
4 we present the attack model and demonstrate one of the
attack vectors. In section 5, we present CT-GAN’s neural
architecture, its attack process, and some samples. In section
6 we evaluate the quality of the manipulations and asses the
threat of the attack. Finally, in sections 7 and 8 we present
countermeasures and our conclusion.

2 Background: GANs

The most basic GAN consists of two neural networks: the
generator (G) and discriminator (D). The objective of the
GAN is to generate new images which are visually similar to
real images found in a sample data distribution X (i.e., a set
of images). The input to G is the random noise vector z drawn
from the prior distribution p(z) (e.g., a Gaussian distribution).
The output of G, denoted xg, is an image which is expected
to have visual similarity with those in X . Let the non-linear
function learned by G parametrized by θg be denoted as
xg = G(z;θg). The input to D is either a real image xr ∈ X
or a generated image xg ∈ G(Z;θg). The output of D is the
probability that xg is real or fake. Let the non-linear function
learned by D parametrized by θd be denoted as xd =D(x;θd).
The top of Fig. 2 illustrates the configuration of a classic GAN.

It can be seen that D and G are playing a zero-sum game
where G is trying to find better (more realistic) samples to fool

5https://github.com/ymirsky/CT-GAN
6https://youtu.be/_mkRAArj-x0

D, while D is learning to catch every fake sample generated
by G. After training, D is discarded and G is used to generate
new samples.

A cGAN is a GAN which has a generator and discriminator
conditioned on an additional input (e.g., class labels). This
input extends the latent space z with further information
thus assisting the network to generate and discriminate
images better. In [17] the authors propose an image-to-image
translation framework using cGANs (a.k.a. pix2pix). There
the authors showed how deep convolutional cGANs can be
used to translate images from one domain to another. For
example, converting casual photos to a Van Gogh paintings.

One application of the pix2pix framework is in-painting;
the process of completing a missing part of an image. When
using pix2pix to perform in-painting, the generator tries to
fill in a missing part of an image based on the surrounding
context, and its past experience (other images seen during
training). Meanwhile, the discriminator tries to differentiate
between completed images and original images, given the
surrounding context. Concretely, the input to G is a copy of
xr where missing regions of the image are replaced with zeros.
We denote this masked input as x∗r . The output of G is the
completed image, visually similar to those in X . The input
to D is either the concatenation (x∗r ,xr) or (x∗r ,G(x∗r ;θg)). The
bottom of Fig. 2 illustrates the described cGAN. The process
for training this kind of GAN is as follows:

Training Procedure for cGAN In-painting

Repeat for k training iterations:

1. Pull a random batch of samples xr ∈ X , and mask the
samples with zeros to produce the respective x∗r .

2. Train D:

2.1. Forward propagate (x∗r ,xr) through D, compute the
error given the label y=0, and back propagate the
error through D to update θd .

2.2. Forward propagate (x∗r , G(x∗r ; θg)) through D,
compute the error given the label y = 1, and back
propagate the error through D to update θd .

3. Train G:

3.1. Forward propagate x∗r through G and then
(x∗r ,G(x∗r ;θg)) through D, compute the error at the
output of D given the label y = 0, back propagate
the error through D to G without updating θd , and
continue the back propagation through G while
updating θg.

Although pix2pix does not use a latent random input z, it
avoids deterministic outputs by performing random dropouts
in the generator during training. this forces the network to
learn multiple representations of the data.

We note that there is a GAN called a CycleGAN [19] that can
directly translate images between two domains (e.g., benign↔
malign). However, we found that the CycleGAN was unable
to inject realistic cancer into 3D samples. Therefore, we opted

464 28th USENIX Security Symposium USENIX Association

https://github.com/ymirsky/CT-GAN
https://youtu.be/_mkRAArj-x0

to use the pix2pix model for in-painting because it produced
much better results. This may be due to the complexity of the
anatomy in the 3D samples and the fact that we had relatively
few training samples. Since labeled datasets contain at most a
few hundred scans, our approach is more likely to be used by an
attacker. Another reason is that in-painting is arguably easier
to perform than ‘style transfer’ when considering different
bodies. Regardless, in-painting ensures that the final image can
be seamlessly pasted back into the scan without border effects.

3 Related Work

The concept of tampering medical imagery, and the use of
GANs on medical imagery, is not new. In this section we briefly
review these subjects and compare prior results to our work.

3.1 Tampering with Medical Images

Many works have proposed methods for detecting forgeries
in medical images [20], but none have focused on the attack
itself. The most common methods of image forgery are:
copying content from one image to another (image splicing),
duplicating content within the same image to cover up or add
something (copy-move), and enhancing an image to give it
a different feel (image retouching) [21].

Copy-move attacks can be used to cover up evidence or dupli-
cate existing evidence (e.g., a tumor). However, duplicating evi-
dence will raise suspicion because radiologists closely analyze
each discovered instance. Image-splicing can be used to copy
evidence from one scan to another. However, CT scanners have
distinct local noise patterns which are visually noticeable [22,
23]. The copied patterns would not fit the local pattern and thus
raise suspicion. More importantly, both copy-move and image-
splicing techniques are performed using 2D image editing soft-
ware such as Photoshop. These tools require a digital artist to
manually edit the scan. Even if the attacker has a digital artist, it
is hard to accurately inject and remove cancer realistically. This
is because human bodies are complex and diverse. For exam-
ple, cancers and tumors are usually attached to nearby anatomy
(lung walls, bronchi, etc.) which may be hard to alter accurately
under the scrutiny of expert radiologists. Another consideration
is that CT scans are 3D and not 2D, which adds to the difficulty.
It is also important to note that an attacker will likely need to
automate the entire process in a malware since (1) many PACS
are not directly connected to the Internet and (2) the diagnosis
may occur immediately after the scan is performed.

In contrast to the Photoshopping approach, CT-GAN
(1) works on 3D medical imagery, which provide stronger
evidence than a 2D scans, (2) realistically alters the contents
of a 3D scan while considering nearby anatomy, and (3) can be
completely automated. The latter point is important because
(1) some PACS are not directly connected to the Internet,
(2) diagnosis can happen right after the actual scan, (3) the
malware may be inside the radiologist’s viewing app.

3.2 GANs in Medical Imagery

Since 2016, over 100 papers relating to GANs and medical
imaging have been published [24]. These publications mostly
relate image reconstruction, denoising, image generation (syn-
thesis), segmentation, detection, classification, and registration.
We will focus on the use of GANs to generate medical images.

Due to privacy laws, it is hard to acquire medical scans
for training models and students. As a result, the main focus
of GANs in this domain has been towards augmenting
(expanding) datasets. One approach is to convert imagery
from one modality to another. For example, in [25] the authors
used cGANs to convert 2D slices of CT images to Positron
Emission Tomography (PET) images. In [26, 27] the authors
demonstrated a similar concept using a fully convolutional
network with a cGAN architecture. In [28], the authors
converted MRI images to CT images using domain adaptation.
In [29], the authors converted MRI to CT images and vice
versa using a CycleGAN.

Another approach to augmenting medical datasets is the
generation of new instances. In [30], the authors use a deep
convolutional GAN (DCGAN) to generate 2D brain MRI
images with a resolution of 220x172. In [31], the authors
used a DCGAN to generate 2D liver lesions with a resolution
of 64x64. In [32], the authors generated 3D blood vessels
using a Wasserstien (WGAN). In [33], the authors use a
Laplace GAN (LAPGAN) to generate skin lesion images with
256x256 resolution. In [34], the authors train two DCGANs
for generating 2D chest X-rays (one for malign and the other
for benign). However, in [34], the generated samples were
down sampled to 128x128 in resolution since this approach
could not be scaled to the original resolution of 2000x3000.
In [35] the authors generated 2D images of pulmonary lung
nodules (lung cancer) with 56x56 resolution. The author’s
motivation was to create realistic datasets for doctors to
practice on. The samples were generated using a DCGAN and
their realism was assessed with help of two radiologists. The
authors found that the radiologists were unable to accurately
differentiate between real and fake samples.

These works contrast to our work in the following ways:

1. We are the first to introduce the use of GANs as a way
to tamper with 3D imagery. The other works focused
on synthesizing cancer samples for boosting classifiers,
experiments, and training students, but not for malicious
attacks. We also provide an overview of how the attack
can be accomplished in a modern medical system.

2. All of the above works either generate small regions of
a scan without the context of a surrounding body or gen-
erate a full 2D scan with a very low resolution. Samples
which are generated without a context cannot be realis-
tically ‘pasted’ back into any arbitrary medical scan. We
generate/remove content realistically within existing bod-
ies. Moreover, very low-resolution images of full scans
cannot replace existing ones without raising suspicion
(especially if the body doesn’t match the actual person).

USENIX Association 28th USENIX Security Symposium 465

Our approach can modify full resolution 3D scans,7 and
the approach can be easily extended to 2D as well.

3. We are the first to evaluate how well a GAN can fool
expert radiologists and state-of-the-art AI in full 3D
lung cancer screening. Moreover, in our evaluation, the
radiologists and AI were able to consider how the cancer
was attached and placed within the surrounding anatomy.

4 The Attack Model

In this section we explore the attack surface by first presenting
the network topology and then by discussing the possible
vulnerabilities and attack vectors. We also demonstrate one
of the attack vectors on an actual CT scanner.

4.1 Network Topology
In order to discuss the attack vectors we must first present the
PACS network topology. Fig. 3 presents the common network
configuration of PACS used in hospitals. The topology is based
on PACS literature [9, 36–38], PACS enterprise solutions
(e.g., Carestream), and our own surveys conducted on various
hospitals. We note that, private medical clinics may have a
much simpler topology and are sometimes directly connected
to the Internet [8].

The basic elements of a PACS are as follows:

PACS Server. The heart of the PACS system. It is responsible
for storing, organizing, and retrieving DICOM imagery and
reports commonly via SQL. Although the most facilities
use local servers, a few hospitals have transitioned to cloud
storage [39].

RIS Server. The radiology information system (RIS) is re-
sponsible for managing medical imagery and associated data.
Its primary use is for tracking radiology imaging orders and
the reports of the radiologists. Doctors in the hospital’s inter-
nal network can interface with the RIS to order scans, receive
the resulting reports, and to obtain the DICOM scans [40].

Modality Workstation. A PC (typically Windows) which
is used to control an imaging modality such as a CT
scanner. During an appointment, the attending technician
configures and captures the imagery via the workstation.
The workstation sends all imagery in DICOM format to the
PACS server for storage.

Radiologist Workstation. A radiologist can retrieve and
view scans stored on the PACS server from various locations.
The most common location is a viewing workstation within
the department. Other locations include the radiologist’s
personal PC (local or remote via VPN), and sometimes a
mobile device (via the Internet or within the local network).

7A CT scan can have a resolution from 512x512x600 to 1024x1024x600
and larger.

Web Server. An optional feature which enables radiologists
to view of DICOM scans (in the PACS server) over the
Internet. The content may be viewed though a web browser
(e.g., medDream and Orthanc [41]), an app on a mobile
device (e.g., FujiFilm’s Synapse Mobility), or accessed via
a web API (e.g., Dicoogle [42]).

Administrative Assistant’s PC. This workstation has both
Internet access (e.g., for emails) and access to the PACS net-
work. Access to the PACS is enabled so that the assistant can
maintain the devices’ schedules: When a patient arrives at
the imaging modality, for safety reasons, the technician con-
firms the patient’s identity with the details sent to the modal-
ity’s workstation (entered by the assistant). This ensures that
the scans are not accidentally mixed up between the patients.

Hospital Network. Other departments within the hospital
usually have access to the PACS network. For example,
Oncology, Cardiology, Pathology, and OR/Surgery. In these
cases, various workstations around the hospital can load
DICOM files from the server given the right credentials.
Furthermore, it is common for a hospital to deploy Wi-Fi
access points, which are connected to the internal network,
for employee access.

4.2 Attack Scenario

The attack scenario is as follows: An attacker wants to achieve
one of the goals listed in Table 1 by injecting/removing medical
evidence. In order to cause the target effect, the attacker will
alter the contents of the target’s CT scan(s) before the radiol-
ogist performs his or her diagnosis. The attacker will achieve
this by either targeting the data-at-rest or data-in-motion.

Thedata-at-rest refers to the DICOM files stored on the
PACS Server, or on the radiologist’s personal computer (saved
for later viewing). In some cases, DICOM files are stored on
DVDs and then transferred to the hospital by the patient or
an external doctor. Although the DVD may be swapped by
the attacker, it is more likely the interaction will be via the
network. The data-in-motion refers to DICOM files being
transferred across the network or loaded into volatile memory
by an application (e.g., a DICOM viewer).

We note that this scenario does not apply to the case where
the goal is to falsify or sabotage research. Moreover, for
insurance fraud, an attacker will have a much easier time
targeting a small medical clinic. For simplicity, we will assume
that the target PACS is in a hospital.

4.3 Target Assets

To capture/modify a medical scan, an attacker must compro-
mise at least one of the assets numbered in Fig. 3. By compro-
mising one of (1-4), the attacker gains access to every scan. By
compromising (5) or (6), the attacker only gains access to a sub-
set of scans. The RIS (3) can give the attacker full control over
the PACS server (2), but only if the attacker can obtain the right

466 28th USENIX Security Symposium USENIX Association

Physician
Workstation

DR
 D

ev
ice

CT
 S

ca
nn

er
M

RI
Ul

tra
 S

ou
nd

Web Server

Film Print
Manager

Radiology Information
System

Administration
Terminal

Radiologist
Workstations

Internet
Remote

Site

Client
Viewer

Modality
Workstations

y
ons

 1

4
liCC

5

PACS
Server/DB 3

stations

5

Hospital
Network

5

2 PACS Network
Ethernet

VPN Router

Secretary PC

Oncology,
Cardiology,

Surgery,
Pathology…Ethernet

DICOM Firewall

WiFi
Networks

Figure 3: A network overview a PACS in a hospital. 1-3: points where an attacker can tamper with all scans. 4-5: points where
an attacker can tamper with a subset of scans.

credentials or exploit the RIS software. The network wiring be-
tween the modalities and the PACS server (4) can be used to in-
stall a man-in-the-middle device. This device can modify data-
in-motion if it is not encrypted (or if the protocol is flawed).

In all cases, it is likely that the attacker will infect the
target asset with a custom malware, outlined in Fig. 4. This
is because there may not be a direct route to the PACS via the
Internet or because the diagnosis may take place immediately
after the scan is taken.

4.4 Attack Vectors
There are many ways in which an attacker can reach the assets
marked in Fig. 3. In general, the attack vectors involve either
remote or local infiltration of the facility’s network.
Remote Infiltration. The attacker may be able to exploit
vulnerabilities in elements facing the Internet, providing the
attacker with direct access to the PACS from the Internet
(e.g., [8]). Another vector is to perform a social engineering at-
tack. For example, a spear phishing attack on the department’s
administrative assistant to infect his/her workstation with a
backdoor, or a phishing attack on the technician to have him
install fraudulent updates.

If the PACS is not directly connected to the Internet, an alter-
native vector is to (1) infiltrate the hospital’s internal network
and then (2) perform lateral movement to the PACS. This is
possible because PACS is usually connected to the internal
network (using static routes and IPs), and the internal network
is connected to the Internet (evident from the recent wave of

Figure 4: The tampering process of an autonomous malware.

cyber-attacks on medical facilities [3, 43–45]). The bridge be-
tween the internal network and the PACS is to enable doctors to
view scans/reports and to enable the administrative assistant to
manage patient referrals [9]. Another vector from the Internet is
to compromise a remote site (e.g., a partnered hospital or clinic)
which is linked to the hospital’s internal network. Furthermore,
the attacker may also try to infect a doctor’s laptop or phone
with a malware which will open a back door into the hospital.

If the attacker knows that radiologist analyzes scans on his
or her personal computer, then the attacker can infect the radi-
ologist’s device or DICOM viewer remotely with the malware.
Local Infiltration. The attacker can gain physical access to
the premises with a false pretext, such as being a technician
from Philips who needs to run a diagnostic on the CT scanner.
The attacker may also hire an insider or even be an insider. A
recent report shows that 56% of cyber attacks on the healthcare
industry come from internal threats [10].

Once inside, the attacker can plant the malware or a back
door by (1) connecting a device to exposed network infrastruc-
ture (ports, wires, ...) [46] or (2) by accessing an unlocked work-
station. Another vector which does not involve access to a re-
stricted area, is to access to the internal network by hacking Wi-
Fi access points. This can be accomplished using existing vul-
nerabilities such as ’Krack’ [47] or the more recent ‘Bleeding-
Bit’ vulnerabilities which have affected many hospitals [48].
Compromising the PACS. Once access to the PACS has
been achieved, there are numerous ways an attacker can
compromise a target asset. Aside from exploiting misconfig-
urations or default credentials, the attacker can exploit known
software vulnerabilities. With regards to PACS servers, some
already disclose private information/credentials which can
be exploited remotely to create of admin accounts, and have
hard-coded credentials.8 A quick search on exploit-db.com
reveals seven implemented exploits for PACS servers in 2018
alone. With regards to modality workstations, they too have
been found to have significant vulnerabilities [49]. In 2018

8CVE-2017-14008 and CVE-2018-17906

USENIX Association 28th USENIX Security Symposium 467

exploit-db.com

Figure 5: Left: The CT scanner and the medical dummy used
to validate the attack. Top-right: the Pi-bridge used to intercept
the scans. Bottom-right: one of the dummy’s slices, sent by
the CT scanner, and intercepted by the Pi-bridge.

the US Department of Homeland Security exposed ‘low skill’
vulnerabilities in Philips’ Brilliance CT scanners [50]. For
example, improper authentication, OS command injection,
and hard-coded credentials.9 Other recent vulnerabilities
include hard-coded credentials.10

Given the state of health-care security, and that systems
such as CT scanners are rarely given software updates [51],
it is likely that these vulnerabilities and many more exist.
Once the target asset in the PACS has been compromised, the
attacker will be able to install the malware and manipulate the
scans of target patients.

4.5 Attack Demonstration
To demonstrate how an attacker can access and manipulate CT
scans, we performed a penetration test on a hospital’s radiology
department. The pen-test was performed with full permission
of the participating hospital. To gain access to all CT scans,
we performed a man-in-the-middle attack on the CT scanner
using a Raspberry Pi 3B. The Pi was given a USB-to-Ethernet
adapter, and was configured as a passive network bridge
(without network identifiers). The Pi was also configured as a
hidden Wi-Fi access point for backdoor access. We also printed
a 3D logo of the CT scanner’s manufacturer and glued it to the
Pi to make it less conspicuous. The pen-test was performed as
follows: First we waited at night until the cleaning staff opened
the doors. Then we found the CT scanner’s room and installed
the Pi-bridge between the scanner’s workstation and the PACs
network (location #2 in Fig. 3). Finally, we hid the Pi-bridge un-
der an access panel in the floor. The entire installation process
took 30 seconds to complete. We were able to connect to the Pi
wirelessly from the waiting room (approximately 20m away)
to monitor the device’s status, change the target identifier, etc.

At this point, an attacker could either intercept scans
directly or perform lateral movement through the PACS to
other subsystems and install the malware there. To verify that

9CVE-2018-8853, CVE-2018-8857, and CVE-2018-8861
10CVE-2017-9656

we could intercept and manipulate the scans, we scanned a
medical dummy (Fig. 5). We found that the scan of the dummy
was sent over the network twice: once in cleartext over TCP to
an internal web viewing service, and again to the PACS storage
server using TLSv1.2. However, to our surprise, the payload of
the TLS transmission was also in cleartext. Moreover, within
10 minutes, we obtained the usernames and passwords of over
27 staff members and doctors due to multicasted Ethernet
traffic containing HTTP POST messages sent in cleartext. A
video of the pen-test can be found online.11

These vulnerabilities were disclosed to the hospital’s IT staff
and to their PACS software provider. Though inquiry, we found
that it is not common practice for hospitals to encrypt their
internal PACs traffic [52]. One reason is compatibility: hos-
pitals often have old components (scanners, portals, databases,
...) which do not support encryption. Another reason is some
PACS are not directly connected to the Internet, and thus is
it erroneously thought that there is no need for encryption.

5 The CT-GAN Framework

In this section, we present the technique which an attacker
can use to add/remove evidence in CT scans. First, we present
the CT-GAN architecture and how to train it. Then, we will
describe the entire tampering process and present some sample
results. As a case study, we will focus on injecting/removing
lung cancer.

It is important to note that there are many types of lung
cancer. A common type of cancer forms a round mass of
tissue called a solitary pulmonary nodule. Most nodules with
a diameter less than 8mm are benign. However, nodules which
are larger may indicate a malign cancerous growth. Moreover,
if numerous nodules having a diameter >8mm are found, then
the patient has an increased risk of primary cancer [53]. For
this attack, we will focus on injecting and removing multiple
solitary pulmonary nodules.

5.1 The Neural Architecture
A single slice in a CT scan has a resolution of at least 512x512
pixels. Each pixel in a slice measures the radiodensity at that
location in Hounsfield units (HU). The CT scan of a human’s
lungs can have over 157 million voxels12 (512x512x600). In
order to train a GAN on an image of this size, we first locate
a candidate location (voxel) and then cut out a small region
around it (cuboid) for processing. The selected region is
slightly larger than needed in order to provide the cGAN with
context of the surrounding anatomy. This enables the cGAN
to generate/remove lung cancers which connect to the body
in a realistic manner.

To accurately capture the concepts of injection and removal,
we use a framework consisting of two cGANs: one for inject-
ing cancer (GANinj) and one for removing cancer (GANrem).
Both GANinj and GANrem are deep 3D convolutional cGANs

11https://youtu.be/_mkRAArj-x0
12A voxel is the three dimensional equivalent of a pixel.

468 28th USENIX Security Symposium USENIX Association

https://youtu.be/_mkRAArj-x0

Original Image Masked 32x32x32
Zero Mask16x16x16 Zero Mask16x16x16 16x16x16

8x8x8

800

…

400

…

200

…

4x4x4 2x2x2
{real, fake}

Original Image 32x32x32

16x16x16

16x16x16
8x8x8

4x4x
4

100x2

…

200x2

…

400x2

…

800x2

…

800x2

…

800

…

400

…

200

…

#Filters: 100

…

Generated Image 32x32x32

4x4x4 Kernel
Stride 1

4x4x4 2x2x2 4x4x4

Symmetric Skip Connections

4x4x4 Kernel
Stride 2

Zero Mask

Scaled and normalized
Cubes cut from CTs

Ge
ne

ra
to

r

16x16x16

Conv3D
Conv3D, Leaky ReLu

Conv3D, Leaky ReLu, Batch-Norm
UpSample3D, Conv3D, ReLu, Dropout, Batch-Norm
UpSample3D, Conv3D, tanh

3D Crop from CT Scan

Di
sc

rim
in

at
or

OR 4x4x4 Kernel
Stride 2

Sample

Original OR Generated Image 32x32x32

Figure 6: The network architecture, layers, and parameters used for both the injection (GANinj) and removal (GANrem) networks.

Figure 7: Training samples after 100 epochs showing the
middle slice only. Top: the masked sample x∗r given to both the
generator Gin j and discriminator Din j. Middle: The in-painted
image xg produced by the Gin j. Bottom: the ground-truth xr.
Note, Din j sees either (x∗r , xr) or (x∗r , xg).

trained to perform in-painting on samples which are 323

voxels in dimension. For the completion mask, we zero-out
a 163 cube in the center of the input sample. To inject a large
pulmonary nodule into a CT scan, we train GANinj on cancer
samples which have a diameter of least 10mm. As a result,
the trained generator completes sample cuboids with similar
sized nodules. To remove cancer, GANrem is trained using the
same architecture, but with samples containing benign lung
nodules only (having a diameter <3mm).

The model architecture (layers and configurations) used for
both GANinj and GANrem is illustrated in Fig. 6. Overall, θg and
θd had 162.6 million and 26.9 million trainable parameters
respectively (189.5 million in total).

We note that follow up CT scans are usually ordered when
a large nodule is found. This is because nodule growth is a
strong indicator of cancer [53]. We found that an attacker is
able to simulate this growth by conditioning each cancerous
training sample on the nodule’s diameter. However, the
objective of this paper is to show how GANS can add/remove
evidence realistically. Therefore, for the sake of simplicity,

we have omitted this ‘feature’ from the above model.

5.2 Training CT-GAN
To train the GANs, we used a free dataset of 888 CT scans
collected in the LIDC-IDRI lung cancer screening trial [54].
The dataset came with annotations from radiologists: the
locations and diameters of pulmonary nodules having
diameters greater than 3mm. In total there were 1186 nodules
listed in the annotations.

To create the training set for GANinj, we extracted from
the CT scans all nodules with a diameter between 10mm
and 16mm (169 in total). To increase the number of training
samples, we performed data augmentation: For each of the 169
cuboid samples, we (1) flipped the cuboid on the x, y, and xy
planes, (2) shifted the cuboid by 4 pixels in each direction on
the xy plane, and (3) rotated the cuboid 360 degrees at 6 degree
intervals. This produced an additional 66 instances for each
sample. The final training set had 11,323 training samples.

To create the training set for GANrem, we first selected clean
CT scans which had no nodules detected by the radiologists. On
these scans, we used the nodule detection algorithm from [55]
(also provided in the dataset’s annotations) to find benign
micro nodules. Of the detected micro nodules, we selected 867
nodules at random and performed the same data augmentation
as above. The final training set had 58,089 samples.

Prior to training the GANs, all of the samples were
preprocessed with scaling, equalization, and normalization
(described in the next section in detail). Both of the GANs
were trained on their respective datasets for 200 epochs with a
batch size of 50 samples. Each GAN took 26 hours to complete
its training on an NVIDIA GeForce GTX TITAN X using all
of the GPU’s memory. Fig. 7 shows how well GANinj was able
to in-paint cancer patterns after 150 epochs.

5.3 Execution: The Tampering Process
In order to inject/remove lung cancer, pre/post-processing
steps are required. The following describes the entire

USENIX Association 28th USENIX Security Symposium 469

DICOM
FILESS

MM

ORInjection:
Find nodule or
select random
location

Removal:
Find largest
nodule

+=
AWGNpaste

cut Equalize Normalize Mask Center
Scale 1:1:1

Unequalize Unnormalize

read

write

readrea
1

cccccccc2

3

q
4 5

ask Ce
6

7a

891011
pp12

14

Touch-up

Preprocessing

Post-processing
Inject Cancer

Remove Cancer

Original () Cropped & Scaled

Generated De-Norm/Equalized

Merge Weights: Final -pasted
1:1:1

1.3 : 0.6 : 0.6

Rescaled ()

32x32

Condition MaskNorm. & Equalized
1:1

3 4,5 6

7b

7a 8,9

10O2 11 12

Merge ,
13

Rem
FindFinddFind

dnodd

papaaa

dd

e

d

pp12

1133
repeat?

Figure 8: Top: the complete cancer injection/removal process. Bottom: sample images from the injection process. The grey
numbers indicate from which step the image was taken. The sample 2D images are the middle slice of the respective 3D cuboid.

injection/removal process as illustrated in Fig. 8:

1. Capture Data. The CT scan is captured (as data-at-rest or
data-in-motion) in either raw or DICOM format using one
of the attack vectors from section 4.

2. Localize & Cut. A candidate location is selected where
cancer will be injected/removed, and then the cuboid x′r
is cut out around it.

Injection: An injection location can be selected in one
of two ways. The fastest way is to take one of the middle
slices of the CT scan and select a random location
near the middle of the left or right half (see Fig. 16 in
the appendix). With 888 CT scans, this strategy gave
us a 99.1% successes rate. A more precise way is to
execute an existing nodule detection algorithm to find a
random micro nodule. To improve speed, the algorithm
can be given only a few slices and implemented with
early stopping. In our evaluation, we used the algorithm
in [55], though many other options are available.

Removal: A removal location can be found by selecting
the largest nodule with [55], or by using a pre-trained
deep learning cancer detection model.13

3. Scale. x′r is scaled to the original 1:1:1 ratio using 3D spline
interpolation.14 The ratio information is available in the
DICOM meta data with the tags (0x0028,0x0030) and
(0x0018,0x0050). Scaling is necessary because each scan
is stored with a different aspect ratio, and a GAN needs
consistent units to produce accurate results. To minimize
the computations, the cuboid cut in step 2 is cut with the
exact dimensions so that the result of the rescaling process
produces a 323 cube.

13Pre-trained models are available here:
https://concepttoclinic.drivendata.org/algorithms

14In Python: scipy.ndimage.interpolation.zoom

4-5. Equalize & Normalize. Histogram equalization is applied
to the cube to increase contrast. This is a critical step
since it enables the GAN to learn subtle features in the
anatomy Normalization is then applied using the formula
Xn=2 X−min(X)

max(X)−min(X)−1. This normalization ensures that all
values fall on the range of [−1,1]which helps the GAN learn
the features better. The output of this process is the cube xr.

6. Mask. In the center of xr, a 163 cube is masked with zeros
to form x∗r . The masked area will be in-painted (completed)
by the generator, and the unmasked area is the context).

7. Inject/Remove. x∗r is passed through the chosen discrim-
inator (Ginj or Grem) creating a new sample (xg) with new
3D generated content.

8-10. Reverse Preprocessing. xg is unnormalized, unequalized,
and then rescaled with spline interpolation back to its
original proportions, forming x′g.

11. Touch-up. The result of the interpolation usually blurs the
imagery. In order to hide this artifact from the radiologists,
we added Gaussian noise to the sample: we set µ= 0 and
σ to the sampled standard deviation of x′r. To get a clean
sample of the noise, we only measured voxels with values
less than−600 HU. Moreover, to copy the relevant content
into the scan, we merged the original cuboid (x′r) with the
generated one (x′g) using a sigmoid weighted average.

Let W be the weight function defined as

Wα,β(x)=
1

1+e−(x+α)/β
∗G(x) (1)

where parameter α is the HU threshold between wanted
and unwanted tissue densities, and parameter β controls
the smoothness of the cut edges. The function G(x) returns
a 0-1 normalized Gaussian kernel with the dimensions of

470 28th USENIX Security Symposium USENIX Association

https://concepttoclinic.drivendata.org/algorithms

x. G(x) is used to decay the contribution of each voxel the
further it is the cuboid’s center.

With W , we define the merging function as
mergeα,β(x,y)=Wα,β(x)∗x+

(
1−Wα,β(x)

)
∗y (2)

where x is source (x′g) and y is the destination (x′r). We
found that setting α = 500 and β = 70 worked best. By
applying these touch-ups, the final cuboid x∗g is produced.

12. Paste. The cuboid x∗g is pasted back into the CT scan at the
selected location. See Fig. 16 in the appendix for one slice
of a complete scan.

13. Repeat. If the attacker is removing cancer, then return to
step 2 until no more nodules with a diameter > 3mm are
found. If the attacker is injecting cancer, then (optionally)
return to step 2 until four injections have been performed.
The reason for this is because the risk of a patient being
diagnosed with cancer is statistically greater in the presence
of exactly four solitary pulmonary nodules having a
diameter >8mm [53].

14. Return Data. The scan is converted back into the original
format (e.g. DICOM) and returned back to the source.

The quality of the injection/removal process can be viewed
in figures 9 and 10. Fig. 9 presents a variety of examples before
and after tampering, and Fig. 10 provides a 3D visualization
of a cancer being injected and removed. More visual samples
can be found in the appendix (figures 19 and 20).

We note that although some steps involve image touch-ups,
the entire process is automatic (unlike Photoshop) and thus can
be deployed in an autonomous malware or inside a viewing
application (real-time tampering). We note that the same
neural architecture and tampering process works on other
modalities and medical conditions. For example, Fig. 18 in the
appendix shows CT-GAN successfully injecting brain tumors
into MRI head scans.

6 Evaluation

In this section we present our evaluation on how well the CT-
GAN attack can fool expert radiologists and state-of-the-art AI.

6.1 Experiment Setup
To evaluate the attack, we recruited three radiologists
(denoted R1, R2, and R3) with 2, 5, and 7 years of experience
respectively. We also used a trained lung cancer screening
model (denoted AI), the same deep learning model which won
the 2017 Kaggle Data Science Bowl (a $1 million competition
for diagnosing lung cancer).15

The experiment was performed in two trials: blind and open.
In the blind trial, the radiologists were asked to diagnose 80
complete CT scans of lungs, but they were not told the purpose
of the experiment or that some of the scans were manipulated.

15Source code and model available here: https://github.com/lfz/
DSB2017

Figure 9: Sample injections (left) and removals (right). For
each image, the left side is before tampering and the right side
is after. Note that only the middle 2D slice is shown.

Figure 10: A 3D sample of injection (left) and removal (right)
before (blue) and after (red) tampering with the CT scan.

Table 2: Summary of the scans and the relevant notations

In the open trial, the radiologists were told about the attack,
and were asked to identify fake, real, and removed nodules
in 20 CT scans. In addition, the radiologists were asked to
rate the confidence of their decisions. After each trial, we gave
the radiologists a questionnaire to assess how susceptible they
were to the attacks. In all cases, the radiologists were asked
to only detect and diagnose pulmonary nodules which have
a diameter greater than 3mm.

The CT scans were taken from the LIDC-IDRI dataset [54].
The set of CT scans used in each trial and the notations used
in this section are available in Table 2.

False benign (FB) and true malign (TM) scans truthfully
contained at least one nodule with a diameter between 10mm
and 16mm. FB scans were made by removing every nodule
in the scan. FM scans were made by randomly injecting 1-4

USENIX Association 28th USENIX Security Symposium 471

https://github.com/lfz/DSB2017
https://github.com/lfz/DSB2017

Table 3: Cancer Detection Performance - Blind Trial

Table 4: Attack Detection Confusion Matrix - Open Trial
Evalauted by Instance

97
.1

10
0.

0
97

.1
97

.1
94

.1

94
.7

93
.4

93
.4

95
.1

96
.7

71
.4

10
0.

0
57

.1
28

.6
10

0.
0

93
.2

90
.9

10
0.

0
81

.810
0.

0

99
.2

10
0.

0
10

0.
0

10
0.

0
96

.7

95
.8

10
0.

0
90

.0
93

.3
10

0.
0

70
.0

10
0.

0
60

.0
20

.0
10

0.
0

90
.0

10
0.

0
10

0.
0

60
.0

10
0.

0

Per Cancer Per Patient

Blind Trial
O

pen Trial

Injection Removal Injection Removal

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Attack

Su
cc

es
s

R
at

e

Detector
R1

R2

R3

AI

Avrg.

Figure 11: Attack success rates - Both Trials.

nodules into a benign scan, where the injected nodules had
a diameter of 14.4mm on average. In total, there were 100 CT
scans analyzed by each of the radiologists, and the radiologists
spent approximately 10 minutes analyzing each of these scans.

We note that the use of three radiologists is common
practice in medical research (e.g., [56]). Moreover, we found
that radiologists (and AI) significantly agreed with each
other’s diagnosis per patient and per nodule. We verified
this agreement by computing Fliess’ kappa [57] (a statistical
interrater reliability measure) which produced an excellent
kappa of 0.84 (p-value < 0.0001). Therefore, adding more
radiologists will likely not affect the results.

6.2 Results: Blind Trial
In Table 3 we present the cancer detection performance of
the radiologists and AI. The table lists the number of false-
positives (FP - detected a non-existent cancer), true-positives

R1 − 2 yrs. R2 − 5 yrs. R3 − 7 yrs. Consensus

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

5

10

15

20

25

(1) Benign and safe for the patient.
(2) ...
(3) Somewhat malign, and poses some risk for the patient if left untreated.
(4) ...
(5) Malign and poses a risk for the patient if left untreated.

co
un

t

Figure 12: Malignancy of injected cancers (FM) - Blind Trial.
0.
00

0.
62

0.
60

1.
00

0.
33

0.
14

0.
50

0.
65

0.
54 0.
62

0.
35 0.
46

0.
38

0.
35 0.
46

0.
38

1.
00

0.
38 0.
40

1.
00

1.
00

0.
55

0.
73

0.
54

0.
33

0.
53

0.
30

0.
37

0.
81

0.
74

0.
38

0.
62

0.
30

TPR FPR TNR FNR ACC AUC

Injection
R
em

oval

R2 R1 R2 R3 R1 R2 R3 R1 R3 R1 R2 R3 R1 R2 R3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Radiologist

va
lu
e

0.
00

0.
00

0.
00

Figure 13: Attack detection performance - Open Trial.

(TP - detected a real cancer), false-negatives (FN - missed a
real cancer), and their respective rates. The TCIA annotations
(nodule locations) were used as our ground truth for measuring
the performance on FB and TM scans. We evaluated these met-
rics per instance of cancer, and per patient as a whole. All four
detectors performed well on the baseline (TB and TM) having
an average TPR of 0.975 and a TNR of 1.0 in diagnosing the
patients, meaning that we can rely on their diagnosis.

The top of Fig. 11 summarizes the attack success rates for
the blind trial. In general, the attack had an average success
rate of 99.2% for cancer injection and 95.8% for cancer
removal. The AI was fooled completely which is an important
aspect since some radiologists use AI tools to support their
analysis (e.g. the Philips IntelliSite Pathology Solution). The
radiologists were fooled less so, primarily due to human error
(e.g., missing a nodule). When asked, none of the radiologists
reported anything abnormal with the scans with the exception

472 28th USENIX Security Symposium USENIX Association

low:1

2

3

4

high:5

Q1A Q1B Q2A Q2B Q2C Q2D

(Q1) Likel hood you labeled...
(A)...a real cancer as fake?
(B)...a fake cancer as real?

(Q2) Confidence you identified all...
(A)...fake cancers?
(B)...real cancers?
(C)...removed cancers?
(D)...real cancers with diam.>9mm?

Sc
al

e

Radiologist
R1

R2

R3

Figure 14: Confidence in detecting attacks - Open Trial.

of R2 who noted some noise in the area of one removal (FB).
This may be attributed to “inattentional blindness,” where
one may miss an obvious event (artifacts) while engaged in a
different task (searching for large nodules). In [58], the authors
showed that this phenomenon also affects radiologists.

With regards to the injected cancers (FM), the consensus
among the radiologists was that one-third of the injections re-
quire an immediate surgery/biopsy, and that all of the injections
require follow-up treatments/referrals. When asked to rate the
overall malignancy of the FM patients, the radiologists said
that nearly all cases were significantly malign and pose a risk
to the patient if left untreated. Fig. 12 summarizes radiologists’
ratings of the FM patients. One interesting observation is that
the malignancy rating increased with the experience of the
radiologist. Finally, we note that an attacker could increase the
overall malignancy of the injections if CT-GAN were trained
only on samples with high malignancy and/or a larger diameter.

6.3 Results: Open Trial
In Table 4 we present the radiologists’ attack detection perfor-
mance with knowledge of the attack. Fig. 13 summarizes these
results and provides the radiologists’ accuracy (ACC) and area
under the curve (AUC). An AUC of 1.0 indicates a perfect
binary classifier, whereas an AUC of 0.5 indicates random
guessing. The results show that the radiologists could not
consistently tell the difference between real and fake cancers
or identify the locations of removed cancers.

With regards to the attack success rates (bottom of Fig. 11),
knowledge of the attack did not significantly affect cancer
removal (90% from 95.8%). However, the success of the cancer
injection was affected (70% from 99.2%). Moreover, R2 also
picked up on a particular pattern which gave away several
instances. This is a promising result, since it indicates that a
portion of CT-GAN’s attacks can be mitigated by educating
radiologists. However, aside from low accuracy (61% for de-
tecting an injection and 39% for detecting a removal), there was
a significant number of false positives. With a high likelihood
of making a mistake, a radiologist may choose not to report
abnormalities. This is also apparent from the low confidence
scores which the radiologists gave decisions (see Fig. 14).

In summary, both radiologists and AI are highly susceptible
to CT-GAN’s image tampering attacks. Although knowledge
of the attack can help mitigate some cases of cancer injection,

the error rates and confidence scores suggest that the attack
may not be reported in most cases.

6.4 Baseline Analysis
As mentioned earlier, the attacker cannot use Photoshop on the
images. This may be due to a time restriction: the radiologist
may perform the diagnosis immediately after the scan has been
taken, or the malware may be in the viewing application and
operating in real-time. This may also be due to a connectivity
restriction: many PACS do not have a direct connection to the
Internet. Therefore, the attacker would need to infect the PACS
with a malware that can perform the tampering autonomously.

However, for cancer injection, one may argue that there are
simpler automated methods than using a GAN. For example,
the malware could simply paste a pre-saved cropped image
of cancer into a scan at a candidate location (found using steps
1 and 2 in Fig. 8). Therefore, to validate the use of a GAN, we
evaluated this splice attack as a baseline comparison.

The experiment was setup as follows. To create our set
of ‘pre-saved cancers’ we carefully cut out ten 32x32x32
cubes of real cancerous nodules from [54]. We then removed
the irrelevant background tissue by producing transparency
(alpha) channels using equation (1).

The evaluation dataset contained 20 scans in total: 10 FM
and 10 TM. To create a FM scan, we took a random healthy
scan and used steps 1 and 2 of Fig. 8 to select a candidate
injection location. We then pasted one of the pre-saved cancers
into the scan at that location using the transparency channel.
To create the FM scans, we randomly selected 10 sick patients
with exactly one nodule each.

To evaluate the baseline attack, we asked radiologist R2 to
analyze the 20 scans and determine which of the scans were
authentic (TM) and which were tampered (FM) –similar to
the open trial. This task took the radiologist approximately
two hours to perform.

In summary, R2 correctly labeled all of the tampered
scans as fake. The only error was that R2 mislabeled three
of the authentic scans as fake. These results indicate that the
baseline cancer injection attack cannot trick a radiologist, in
comparison to CT-GAN which succeeds nearly every time.

The reason the baseline attack failed to trick R2 is because
the process of automatically pasting cancer creates obvious
artifacts. This is because the pasted samples ignore the
surrounding anatomy and may contain inconsistent noise
patterns (textures). Fig. 15 illustrates some examples of
these abnormalities such as cut bronchi, inconsistent noise
patterns, and unaligned borders. CT-GAN does not produce
these artifacts because it uses in-painting which considers the
original content and surrounding anatomy.

7 Countermeasures

The tampering of DICOM medical files is a well-known
concern. In the section we provide a brief overview of
solutions for preventing and detecting this attack.

USENIX Association 28th USENIX Security Symposium 473

Figure 15: An illustration showing artifacts which can occur
when using an unsupervised splice attack instead of CT-GAN.
Only the middle slice is shown.

7.1 Prevention
To mitigate this threat, administrators should secure both
the data-in-motion (DiM) and the data-at-rest (DaR). To
secure data-in-motion, admins should enable encryption
between the hosts in their PACS network using proper SSL
certificates. This may seem trivial, but after discovering this
flaw in the hospital we pen-tested, we turned to the PACS
software provider for comment. The company, with over 2000
installations worldwide, confirmed to us that their hospitals do
not enable encryption in their PACS because “it is not common
practice”. We were also told that some of the PACS don’t
support encryption at all.16 To secure the DaR, servers and
anti-virus software on modality and radiologist workstations
should be kept up to date, and admins should also limit the
exposure which their PACS server has to the Internet.

7.2 Detection
The best way to detect this attack is to have the scanner sign
each scan with a digital signature. The DICOM image file
standard already allows users to store signatures within the
file’s data structure [59, 60]. However, although some PACS
software providers offer this feature, we have not seen it in
use within a PACS. If enabled, admins should check that valid
certificates are being used and that the radiologists’ viewing
applications are indeed verifying the signatures.

Another method for detecting this attack is digital wa-
termarking (DW). A DW is a hidden signal embedded into
an image such that tampering corrupts the signal and thus
indicates a loss of integrity. For medical images, this subject
has been researched in depth [20] and can provide a means for
localizing changes in a tampered image. However, we did not
find any medical devices or products which implement DW
techniques. This may be due to the fact that they add noise to
images which may harm the medical analysis.

Tampered images can also be detected with machine
learning. In the supervised setting (where models are trained
on examples of tampered images) the authors in [61] propose

16See [52] for further comments.

detection by (1) extracting a scan’s noise pattern using a
Wiener filter, then (2) applying a multi-resolution regression
filter on the noise, and then (3) executing an SVM and ELM
together via a Bayesian Sum Rule model. Many domain
specific methods exist for detecting images tampered by
GANs (e.g., images/videos of faces [62–64]). However, the
supervised approach in [65] is more suitable for detecting our
attack since it is domain generic.

Several approaches have been proposed for unsupervised
setting as well. These approaches attempt to detect anomalies
(inconsistencies) within the tampered images. To detect these
inconsistencies, researchers have considered JPEG blocks,
signal processing, and compression/resampling artifacts [66].
For example, in a recent work the authors trained a Siamese net-
work to predict the probability that a pair of patches from two
images have the same EXIF metadata (e.g., focal length and
shutter speed) [67]. In [67], the model is trained using a dataset
of real images only. In [68], the authors proposed ‘noiseprint’
which uses a Siamese network to extract the camera’s unique
noise pattern from an image (PRNU) to find inconsistent
areas. In their evaluation, the authors show that they can
detect GAN-based inpainting. In [69], the authors proposed
three strategies for using PRNU-based tampering localization
techniques with multi-scale analysis. Using this method, the
authors were able to detect forgeries of all shapes and sizes.

While these countermeasures may apply to CT-GAN in
some cases, they do admit some caveats; namely, that (1)
medical scans are usually not compressed so compression
methods are irrelevant, (2) these methods were tested on
2D images and not 3D volumetric imagery, and (3) CT/MR
imaging systems produce very different noise patterns than
standard cameras. For example, we found that the PRNU
method in [69] does not work out-of-the-box on our tampered
CT scans. This is because the noise patterns of CT images are
altered by a radon transform used to construct the image. As
future work, we plan to research how these techniques can be
applied to detecting attacks such as CT-GAN.

8 Conclusion

In this paper we introduced the possibility of an attacker mod-
ifying 3D medical imagery using deep learning. We explained
the motivations for this attack, discussed the attack vectors
(demonstrating one of them), and presented a manipulation
framework (CT-GAN) which can be executed by a malware au-
tonomously. As a case study, we demonstrated how an attacker
can use this approach to inject or remove lung cancer from full
resolution 3D CT scans using free medical imagery from the
Internet. We also evaluated the attack and found that CT-GAN
can fool both humans and machines: radiologists and state-
of-the-art AI. This paper also demonstrates how we should
be wary of closed world assumptions: both human experts and
advanced AI can be fooled if they fully trust their observations.

474 28th USENIX Security Symposium USENIX Association

References

[1] P. I, W. LR, et al. Health care spending in the united
states and other high-income countries. JAMA,
319(10):1024–1039, 2018.

[2] J. R. Haaga. CT and MRI of the Whole Body. No. v. 1 in
CT and MRI of the Whole Body. Mosby/Elsevier, 2008.
ISBN 9780323053754.

[3] H. I. News. The biggest healthcare data breaches of 2018
(so far). https://www.healthcareitnews.com/
projects/biggest-healthcare-data-breaches-
2018-so-far, 2019.

[4] T. George. Feeling the pulse of cyber secu-
rity in healthcare, securityweek.com. https:
//www.securityweek.com/feeling-pulse-cyber-
security-healthcare, 2018.

[5] I. Institute. Cybersecurity in the healthcare industry.
https://resources.infosecinstitute.com/
cybersecurity-in-the-healthcare-industry,
2016.

[6] L. Coventry and D. Branley. Cybersecurity in healthcare:
A narrative review of trends, threats and ways forward.
Maturitas, 113:48 – 52, 2018. ISSN 0378-5122.

[7] M. S. Jalali and J. P. Kaiser. Cybersecurity in hospitals:
A systematic, organizational perspective. Journal of
medical Internet research, 20(5), 2018.

[8] C. Beek. Mcafee researchers find poor security
exposes medical data to cybercriminals, mcafee blogs.
https://securingtomorrow.mcafee.com/other-
blogs/mcafee-labs/mcafee-researchers-find-
poor-security-exposes-medical-data-to-
cybercriminals/, 2018.

[9] H. Huang. PACS-Based Multimedia Imaging Informat-
ics: Basic Principles and Applications. Wiley, 2019.
ISBN 9781118795736.

[10] Verizon. Protected health information data breach report.
white paper, 2018.

[11] F. Bray, J. Ferlay, et al. Global cancer statistics
2018: Globocan estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA: a cancer
journal for clinicians, 68(6):394–424, 2018.

[12] X. Wu, K. Xu, et al. A survey of image synthesis and
editing with generative adversarial networks. Tsinghua
Science and Technology, 22(6):660–674, 2017.

[13] I. Goodfellow, J. Pouget-Abadie, et al. Generative
adversarial nets. In Advances in neural information
processing systems, pp. 2672–2680. 2014.

[14] W. Hu and Y. Tan. Generating adversarial malware
examples for black-box attacks based on gan. arXiv
preprint arXiv:1702.05983, 2017.

[15] M. Rigaki and S. Garcia. Bringing a gan to a knife-fight:
Adapting malware communication to avoid detection.

In 2018 IEEE Security and Privacy Workshops (SPW),
pp. 70–75. IEEE, 2018.

[16] R. Chesney and D. K. Citron. Deep fakes: A looming
challenge for privacy, democracy, and national security.
U of Texas Law, Public Law Research Paper No. 692; U
of Maryland Legal Studies Research Paper No. 2018-21,
2018.

[17] P. Isola, J.-Y. Zhu, et al. Image-to-image translation with
conditional adversarial networks. arXiv preprint, 2017.

[18] T. Seals. Rsa conference 2019: Ultrasound hacked in
two clicks, threatpost. https://threatpost.com/
ultrasound-hacked/142601/, 2019.

[19] J.-Y. Zhu, T. Park, et al. Unpaired image-to-image
translation using cycle-consistent adversarial networks.
arXiv preprint, 2017.

[20] A. K. Singh, B. Kumar, et al. Medical Image Wa-
termarking Techniques: A Technical Survey and
Potential Challenges, pp. 13–41. Springer International
Publishing, Cham, 2017. ISBN 978-3-319-57699-2.

[21] S. Sadeghi, S. Dadkhah, et al. State of the art in
passive digital image forgery detection: copy-move
image forgery. Pattern Analysis and Applications,
21(2):291–306, May 2018. ISSN 1433-755X.

[22] A. Kharboutly, W. Puech, et al. Ct-scanner identification
based on sensor noise analysis. In 2014 5th European
Workshop on Visual Information Processing (EUVIP),
pp. 1–5. Dec 2014.

[23] Y. Duan, D. Bouslimi, et al. Computed tomography
image origin identification based on original sensor
pattern noise and 3d image reconstruction algorithm
footprints. IEEE journal of biomedical and health
informatics, 21(4):1039–1048, 2017.

[24] X. Yi, E. Walia, et al. Generative adversarial net-
work in medical imaging: A review. arXiv preprint
arXiv:1809.07294, 2018.

[25] L. Bi, J. Kim, et al. Synthesis of Positron Emission To-
mography (PET) Images via Multi-channel Generative
Adversarial Networks (GANs). pp. 43–51. Springer,
Cham, 2017.

[26] A. Ben-Cohen, E. Klang, et al. Virtual PET Images from
CT Data Using Deep Convolutional Networks: Initial
Results. pp. 49–57. Springer, Cham, 2017.

[27] —. Cross-Modality Synthesis from CT to PET using
FCN and GAN Networks for Improved Automated
Lesion Detection. 2 2018.

[28] Q. Dou, C. Ouyang, et al. Unsupervised Cross-Modality
Domain Adaptation of ConvNets for Biomedical Image
Segmentations with Adversarial Loss. In Proceedings
of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, pp. 691–697. International Joint
Conferences on Artificial Intelligence Organization,
California, 7 2018. ISBN 9780999241127.

USENIX Association 28th USENIX Security Symposium 475

https://www.healthcareitnews.com/projects/biggest-healthcare-data-breaches-2018-so-far
https://www.healthcareitnews.com/projects/biggest-healthcare-data-breaches-2018-so-far
https://www.healthcareitnews.com/projects/biggest-healthcare-data-breaches-2018-so-far
https://www.securityweek.com/feeling-pulse-cyber-security-healthcare
https://www.securityweek.com/feeling-pulse-cyber-security-healthcare
https://www.securityweek.com/feeling-pulse-cyber-security-healthcare
https://resources.infosecinstitute.com/cybersecurity-in-the-healthcare-industry
https://resources.infosecinstitute.com/cybersecurity-in-the-healthcare-industry
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-researchers-find-poor-security-exposes-medical-data-to-cybercriminals/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-researchers-find-poor-security-exposes-medical-data-to-cybercriminals/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-researchers-find-poor-security-exposes-medical-data-to-cybercriminals/
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/mcafee-researchers-find-poor-security-exposes-medical-data-to-cybercriminals/
https://threatpost.com/ultrasound-hacked/142601/
https://threatpost.com/ultrasound-hacked/142601/

[29] C.-B. Jin, H. Kim, et al. Deep CT to MR Synthesis using
Paired and Unpaired Data. 5 2018.

[30] C. Bermudez, A. J. Plassard, et al. Learning implicit
brain mri manifolds with deep learning. In Medical Imag-
ing 2018: Image Processing, vol. 10574, p. 105741L.
International Society for Optics and Photonics, 2018.

[31] M. Frid-Adar, I. Diamant, et al. GAN-based Synthetic
Medical Image Augmentation for increased CNN
Performance in Liver Lesion Classification. 3 2018.

[32] J. M. Wolterink, T. Leiner, et al. Blood Vessel Geometry
Synthesis using Generative Adversarial Networks. In
1st Conference on Medical Imaging with Deep Learning
(MIDL 2018). Amsterdam, The Netherlands, The
Netherlands, 2018.

[33] C. Baur, S. Albarqouni, et al. Melanogans: High
resolution skin lesion synthesis with gans. arXiv preprint
arXiv:1804.04338, 2018.

[34] A. Madani, M. Moradi, et al. Chest x-ray generation
and data augmentation for cardiovascular abnormality
classification. In Medical Imaging 2018: Image
Processing, vol. 10574, p. 105741M. International
Society for Optics and Photonics, 2018.

[35] M. J. Chuquicusma, S. Hussein, et al. How to fool
radiologists with generative adversarial networks?
a visual turing test for lung cancer diagnosis. In
Biomedical Imaging (ISBI 2018), 2018 IEEE 15th
International Symposium on, pp. 240–244. IEEE, IEEE,
4 2018. ISBN 978-1-5386-3636-7.

[36] W. Hruby. Digital (R)Evolution in Radiology. Springer
Vienna, 2013. ISBN 9783709137079.

[37] A. Peck. Clark’s Essential PACS, RIS and Imaging
Informatics. Clark’s Companion Essential Guides. CRC
Press, 2017. ISBN 9781498763462.

[38] C. Carter and B. Veale. Digital Radiography and PACS.
Elsevier Health Sciences, 2018. ISBN 9780323547598.

[39] B. Siwicki. Cloud-based pacs system cuts imag-
ing costs by half for rural hospital | healthcare it
news. https://www.healthcareitnews.com/
news/cloud-based-pacs-system-cuts-imaging-
costs-half-rural-hospital.

[40] J. Bresnick. Picture archive communication
system use widespread in hospitals. https://
healthitanalytics.com/news/picture-archive-
communication-system-use-widespread-in-
hospitals, 2016.

[41] S. Jodogne, C. Bernard, et al. Orthanc-a lightweight,
restful dicom server for healthcare and medical re-
search. In Biomedical Imaging (ISBI), 2013 IEEE 10th
International Symposium on, pp. 190–193. IEEE, 2013.

[42] C. Costa, C. Ferreira, et al. Dicoogle-an open source peer-
to-peer pacs. Journal of digital imaging, 24(5):848–856,
2011.

[43] L. Adefala. Healthcare experiences twice the number
of cyber attacks as other industries. https://www.
fortinet.com/blog/business-and-technology/
healthcare-experiences-twice-the-number-
of-cyber-attacks-as-othe.html, 2018.

[44] J. B. Rebecca Weintraub. 11 things the health care sector
must do to improve cybersecurity. https://hbr.org/
2017/06/11-things-the-health-care-sector-
must-do-to-improve-cybersecurity, 2017.

[45] C. Osborne. Us hospital pays $55,000
to hackers after ransomware attack | zdnet.
https://www.zdnet.com/article/us-hospital-
pays-55000-to-ransomware-operators/, 2018.

[46] J. Muniz and A. Lakhani. Penetration testing with
raspberry pi. Packt Publishing Ltd, 2015.

[47] M. Vanhoef and F. Piessens. Key reinstallation attacks:
Forcing nonce reuse in wpa2. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1313–1328. ACM, 2017.

[48] A. NG. Security researchers find flaws in
chips used in hospitals, factories and stores -
cnet. https://www.cnet.com/news/security-
researchers-find-flaws-in-chips-used-in-
hospitals-factories-and-stores/, 2018.

[49] R. M. Robin Henry and J. Corke. Hospitals
to struggle for days | news | the sunday times.
https://www.thetimes.co.uk/article/nhs-
cyberattack-bitcoin-wannacry-hospitals-to-
struggle-for-days-k0nhk7p2b, 2017.

[50] DHS. Philips isite/intellispace pacs vulnerabili-
ties (update a), ics-cert. https://ics-cert.us-
cert.gov/advisories/ICSMA-18-088-01, 2018.

[51] J. E. Dunn. Imagine you’re having a ct scan and malware
alters the radiation levels – it’s doable • the register.
https://www.theregister.co.uk/2018/04/11/
hacking_medical_devices/, 2018.

[52] K. Zetter. Hospital viruses: Fake cancerous nodes
in ct scans, created by malware, trick radiologists.
https://www.washingtonpost.com/technology/
2019/04/03/hospital-viruses-fake-cancerous-
nodes-ct-scans-created-by-malware-trick-
radiologists/, April 2019.

[53] H. MacMahon, D. P. Naidich, et al. Guidelines for man-
agement of incidental pulmonary nodules detected on
ct images: from the fleischner society 2017. Radiology,
284(1):228–243, 2017.

[54] S. G. Armato III, G. McLennan, et al. The lung image
database consortium (lidc) and image database resource
initiative (idri): a completed reference database of lung
nodules on ct scans. Medical physics, 38(2):915–931,
2011.

[55] K. Murphy, B. van Ginneken, et al. A large-scale evalua-

476 28th USENIX Security Symposium USENIX Association

https://www.healthcareitnews.com/news/cloud-based-pacs-system-cuts-imaging-costs-half-rural-hospital
https://www.healthcareitnews.com/news/cloud-based-pacs-system-cuts-imaging-costs-half-rural-hospital
https://www.healthcareitnews.com/news/cloud-based-pacs-system-cuts-imaging-costs-half-rural-hospital
https://healthitanalytics.com/news/picture-archive-communication-system-use-widespread-in-hospitals
https://healthitanalytics.com/news/picture-archive-communication-system-use-widespread-in-hospitals
https://healthitanalytics.com/news/picture-archive-communication-system-use-widespread-in-hospitals
https://healthitanalytics.com/news/picture-archive-communication-system-use-widespread-in-hospitals
https://www.fortinet.com/blog/business-and-technology/healthcare-experiences-twice-the-number-of-cyber-attacks-as-othe.html
https://www.fortinet.com/blog/business-and-technology/healthcare-experiences-twice-the-number-of-cyber-attacks-as-othe.html
https://www.fortinet.com/blog/business-and-technology/healthcare-experiences-twice-the-number-of-cyber-attacks-as-othe.html
https://www.fortinet.com/blog/business-and-technology/healthcare-experiences-twice-the-number-of-cyber-attacks-as-othe.html
https://hbr.org/2017/06/11-things-the-health-care-sector-must-do-to-improve-cybersecurity
https://hbr.org/2017/06/11-things-the-health-care-sector-must-do-to-improve-cybersecurity
https://hbr.org/2017/06/11-things-the-health-care-sector-must-do-to-improve-cybersecurity
https://www.zdnet.com/article/us-hospital-pays-55000-to-ransomware-operators/
https://www.zdnet.com/article/us-hospital-pays-55000-to-ransomware-operators/
https://www.cnet.com/news/security-researchers-find-flaws-in-chips-used-in-hospitals-factories-and-stores/
https://www.cnet.com/news/security-researchers-find-flaws-in-chips-used-in-hospitals-factories-and-stores/
https://www.cnet.com/news/security-researchers-find-flaws-in-chips-used-in-hospitals-factories-and-stores/
https://www.thetimes.co.uk/article/nhs-cyberattack-bitcoin-wannacry-hospitals-to-struggle-for-days-k0nhk7p2b
https://www.thetimes.co.uk/article/nhs-cyberattack-bitcoin-wannacry-hospitals-to-struggle-for-days-k0nhk7p2b
https://www.thetimes.co.uk/article/nhs-cyberattack-bitcoin-wannacry-hospitals-to-struggle-for-days-k0nhk7p2b
https://ics-cert.us-cert.gov/advisories/ICSMA-18-088-01
https://ics-cert.us-cert.gov/advisories/ICSMA-18-088-01
https://www.theregister.co.uk/2018/04/11/hacking_medical_devices/
https://www.theregister.co.uk/2018/04/11/hacking_medical_devices/
https://www.washingtonpost.com/technology/2019/04/03/hospital-viruses-fake-cancerous-nodes-ct-scans-created-by-malware-trick-radiologists/
https://www.washingtonpost.com/technology/2019/04/03/hospital-viruses-fake-cancerous-nodes-ct-scans-created-by-malware-trick-radiologists/
https://www.washingtonpost.com/technology/2019/04/03/hospital-viruses-fake-cancerous-nodes-ct-scans-created-by-malware-trick-radiologists/
https://www.washingtonpost.com/technology/2019/04/03/hospital-viruses-fake-cancerous-nodes-ct-scans-created-by-malware-trick-radiologists/

tion of automatic pulmonary nodule detection in chest ct
using local image features and k-nearest-neighbour clas-
sification. Medical image analysis, 13(5):757–770, 2009.

[56] A. Esteva, B. Kuprel, et al. Dermatologist-level
classification of skin cancer with deep neural networks.
Nature, 542(7639):115, 2017.

[57] A. J. Conger. Integration and generalization of kappas for
multiple raters. Psychological Bulletin, 88(2):322, 1980.

[58] T. Drew, M. L.-H. Võ, et al. The invisible gorilla strikes
again: Sustained inattentional blindness in expert ob-
servers. Psychological science, 24(9):1848–1853, 2013.

[59] F. Cao, H. Huang, et al. Medical image security in
a hipaa mandated pacs environment. Computerized
medical imaging and graphics, 27(2-3):185–196, 2003.

[60] NEMA. Digital imaging and communications in
medicine (dicom) digital signatures. ftp://medical.
nema.org/medical/dicom/final/sup41_ft.pdf,
2001.

[61] A. Ghoneim, G. Muhammad, et al. Medical im-
age forgery detection for smart healthcare. IEEE
Communications Magazine, 56(4):33–37, 2018.

[62] A. Rössler, D. Cozzolino, et al. Faceforensics++:
Learning to detect manipulated facial images. arXiv
preprint arXiv:1901.08971, 2019.

[63] F. Matern, C. Riess, et al. Exploiting visual artifacts to
expose deepfakes and face manipulations. In 2019 IEEE
Winter Applications of Computer Vision Workshops
(WACVW), pp. 83–92. IEEE, 2019.

[64] S. Tariq, S. Lee, et al. Detecting both machine and human
created fake face images in the wild. In Proceedings of
the 2nd International Workshop on Multimedia Privacy
and Security, pp. 81–87. ACM, 2018.

[65] D. Cozzolino, J. Thies, et al. Forensictransfer: Weakly-
supervised domain adaptation for forgery detection.
arXiv preprint arXiv:1812.02510, 2018.

[66] L. Zheng, Y. Zhang, et al. A survey on image tampering
and its detection in real-world photos. Journal of Visual
Communication and Image Representation, 58:380–399,
2019.

[67] M. Huh, A. Liu, et al. Fighting fake news: Image splice
detection via learned self-consistency. In Proceedings of
the European Conference on Computer Vision (ECCV),
pp. 101–117. 2018.

[68] D. Cozzolino and L. Verdoliva. Noiseprint: a cnn-
based camera model fingerprint. arXiv preprint
arXiv:1808.08396, 2018.

[69] P. Korus and J. Huang. Multi-scale analysis strategies
in prnu-based tampering localization. IEEE Trans. on
Information Forensics & Security, 2017.

Appendix

Figure 16: Left: the average of 888 CT scans’ middle slices
before scaling to 1:1:1 ratio (black ares are candidate injection
locations). Right: a full slice with an injected nodule.

Figure 17: Examples of where the attack failed in the blind
trial. Left: a removal (FB) detected as ‘ground-glass’ cancer
due to too much additive noise. Right: an injection missed due
to human error.

Figure 18: CT-GAN used to inject brain tumors into MRIs
of healthy brains. Similar to Fig. 7, Top: context, middle:
in-painted result, and bottom: ground-truth. Showing one slice
in a 64x64x16 cuboid.

USENIX Association 28th USENIX Security Symposium 477

ftp://medical.nema.org/medical/dicom/final/sup41_ft.pdf
ftp://medical.nema.org/medical/dicom/final/sup41_ft.pdf

Figure 19: Samples of injected (top) and removed (bottom) pulmonary nodules. For each image, the left side is before tampering
and the right side is after. Note, only the middle 2D slice is shown and the images are scaled to different ratios (the source scan).

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

Figure 20: All 32 slices from a sample injection before (left) and after (right) tampering with the CT scan.

478 28th USENIX Security Symposium USENIX Association

Misleading Authorship Attribution of Source Code
using Adversarial Learning

Erwin Quiring, Alwin Maier and Konrad Rieck

Technische Universität Braunschweig, Germany

Abstract

In this paper, we present a novel attack against authorship
attribution of source code. We exploit that recent attribution
methods rest on machine learning and thus can be deceived
by adversarial examples of source code. Our attack performs
a series of semantics-preserving code transformations that
mislead learning-based attribution but appear plausible to a de-
veloper. The attack is guided by Monte-Carlo tree search that
enables us to operate in the discrete domain of source code.
In an empirical evaluation with source code from 204 pro-
grammers, we demonstrate that our attack has a substantial
effect on two recent attribution methods, whose accuracy
drops from over 88% to 1% under attack. Furthermore, we
show that our attack can imitate the coding style of developers
with high accuracy and thereby induce false attributions. We
conclude that current approaches for authorship attribution
are inappropriate for practical application and there is a need
for resilient analysis techniques.

1 Introduction

The source code of a program often contains peculiarities that
reflect individual coding style and can be used for identifying
the programmer. These peculiarities—or stylistic patterns—
range from simple artifacts in comments and code layout to
subtle habits in the use of syntax and control flow. A pro-
grammer might, for example, favor while-loops even though
the use of for-loops would be more appropriate. The task of
identifying a programmer based on these stylistic patterns
is denoted as authorship attribution, and several methods
have been proposed to recognize the authors of source code
[1, 4, 9, 13] and compiled programs [3, 10, 17, 22].

While techniques for authorship attribution have made
great progress in the last years, their robustness against at-
tacks has received only little attention so far, and the majority
of work has focused on achieving high accuracy. The recent
study by Simko et al. [25], however, shows that developers
can manually tamper with the attribution of source code and

thus it becomes necessary to reason about attacks that can
forge stylistic patterns and mislead attribution methods.

In this paper, we present the first black-box attack against
authorship attribution of source code. Our attack exploits
that recent attribution methods employ machine learning and
thus can be vulnerable to adversarial examples [see 20]. We
combine concepts from adversarial learning and compiler
engineering, and create adversarial examples in the space of
semantically-equivalent programs.

Our attack proceeds by iteratively transforming the source
code of a program, such that stylistic patterns are changed
while the underlying semantics are preserved. To deter-
mine these transformations, we interpret the attack as a
game against the attribution method and develop a variant
of Monte-Carlo tree search [24] for constructing a sequence
of adversarial but plausible transformations. This black-box
strategy enables us to construct untargeted attacks that thwart
a correct attribution as well as targeted attacks that imitate
the stylistic patterns of a developer.

As an example, Figure 1 shows two transformations per-
formed by our attack on a code snippet from the Google
Code Jam competition. The first transformation changes the
for-loop to a while-loop, while the second replaces the C++
operator << with the C-style function printf. Note that the
format string is automatically inferred from the variable type.
Both transformations change the stylistic patterns of author A
and, in combination, mislead the attribution to author B.

for (i = K; i > 0; i--)
cout << ans[i];

i = K;
while (i > 0) {

printf("%lld", ans[i]);
i--;

}

¶

·

Code snippet from author A

Transformed code to imitate author B

Figure 1: Two iterations of our attack: Transformation ¶ changes the control
statement for → while and transformation · manipulates the API usage
ostream→ printf to imitate the stylistic patterns of author B.

USENIX Association 28th USENIX Security Symposium 479

We conduct a series of experiments to evaluate the effi-
cacy of our attack using the source code of 204 programmers
from the Google Code Jam competition. As targets we con-
sider the recent attribution methods by Caliskan et al. [9] and
Abuhamad et al. [1], which provide superior performance
compared to related approaches. In our first experiment, we
demonstrate that our attack considerably affects both attribu-
tion methods [1, 9], whose accuracy drops from over 88%
to 1% under attack, indicating that authorship attribution can
be automatically thwarted at large scale. In our second ex-
periment, we investigate the effect of targeted attacks. We
show that in a group of programmers, each individual can be
impersonated by 77% to 81% of the other developers on aver-
age. Finally, we demonstrate in a study with 15 participants
that code transformed by our attack is plausible and hard to
discriminate from unmodified source code.

Our work has implications on the applicability of author-
ship attribution in practice: We find that both, untargeted and
targeted attacks, are effective, rendering the reliable identifi-
cation of programmers questionable. Although our approach
builds on a fixed set of code transformations, we conclude
that features regularly manipulated by compilers, such as spe-
cific syntax and control flow, are not reliable for constructing
attribution methods. As a consequence, we suggest to move
away from these features and seek for more reliable means
for identifying authors in source code.

Contributions. In summary, we make the following major
contributions in this paper:

• Adversarial learning on source code. We present the
first automatic attack against authorship attribution of
source code. We consider targeted as well as untargeted
attacks of the attribution method.

• Monte-Carlo tree search. We introduce Monte-Carlo
tree search as a novel approach to guide the creation of
adversarial examples, such that feasibility constraints in
the domain of source code are satisfied.

• Black-box attack strategy. The devised attack does not
require internal knowledge of the attribution method,
so that it is applicable to any learning algorithm and
suitable for evading a wide range of attribution methods.

• Large-scale evaluation. We empirically evaluate our
attack on a dataset of 204 programmers and demonstrate
that manipulating the attribution of source code is possi-
ble in the majority of the considered cases.

The remainder of this paper is organized as follows: We
review the basics of program authorship attribution in Section
2. The design of our attack is lay out in Section 3, while
Section 4 and 5 discuss technical details on code transfor-
mation and adversarial learning, respectively. An empirical
evaluation of our attack is presented in Section 6 along with
a discussion of limitations in Section 7. Section 8 discusses
related work and Section 9 concludes the paper.

2 Authorship Attribution of Source Code

Before introducing our attack, we briefly review the design
of methods for authorship attribution. To this end, we denote
the source code of a program as x and refer to the set of all
possible source codes by X . Moreover, we define a finite set
of authors Y . Authorship attribution is then the task of identi-
fying the author y ∈ Y of a given source code x ∈ X using a
classification function f such that f (x) = y. In line with the
majority of previous work, we assume that the programs in
X can be attributed to a single author, as the identification of
multiple authors is an ongoing research effort [see 12, 17].

Equipped with this basic notation, we proceed to discuss
the two main building blocks of current methods for author-
ship attribution: (a) the extraction of features from source
code and (b) the application of machine learning for construct-
ing the classification function.

2.1 Feature Extraction
The coding habits of a programmer can manifest in a variety
of stylistic patterns. Consequently, methods for authorship
attribution need to extract an expressive set of features from
source code that serve as basis for inferring these patterns. In
the following, we discuss the major types of these features
and use the code sample in Figure 2 as a running example
throughout the paper.

1 int foo(int a){
2 int b;
3 if (a < 2) // base case
4 return 1;
5 b = foo(a - 1); // recursion
6 return a * b;
7 }

Figure 2: Exemplary code sample (see Figure 3, 5, and 6)

Layout features. Individual preferences of a programmer
often manifest in the layout of the code and thus correspond-
ing features are a simple tool for characterizing coding style.
Examples for such features are the indentation, the form of
comments and the use of brackets. In Figure 2, for instance,
the indentation width is 2, comments are provided in C++
style, and curly braces are opened on the same line.

Layout features are trivial to forge, as they can be eas-
ily modified using tools for code formatting, such as GNU
indent. Moreover, many integrated development editors auto-
matically normalize source code, such that stylistic patterns
in the layout are unified.

Lexical features. A more advanced type of features can
be derived from the lexical analysis of source code. In this
analysis stage, the source code is partitioned into so-called
lexems, tokens that are matched against the terminal symbols
of the language grammar. These lexems give rise to a strong

480 28th USENIX Security Symposium USENIX Association

func foo

arg int

a

body

decl int

b

if

oper <

a 2

return

1

assign return

a call foo

oper -

a 1

oper *

a b

func foo

arg int

a

comp

decl int

b

if

oper <

a 2

return

1

assign return

b call foo

oper -

a 1

oper *

a b

Figure 3: Abstract syntax tree (AST) for code sample in Figure 2.

set of string-based features jointly covering keywords and
symbols. For example, in Figure 2, the frequency of the
lexem int is 3, while it is 2 for the lexem foo.

In contrast to code layout, lexical features cannot be eas-
ily manipulated, as they implicitly describe the syntax and
semantics of the source code. While the lexem foo in the
running example could be easily replaced by another string,
adapting the lexem int requires a more involved code trans-
formation that introduces a semantically equivalent data type.
We introduce such a transformation in Section 4.

Syntactic features. The use of syntax and control flow also
reveals individual stylistic patterns of programmers. These
patterns are typically accessed using the abstract syntax tree
(AST), a basic data structure of compiler design [2]. As an
example, Figure 3 shows a simplified AST of the code snippet
from Figure 2. The AST provides the basis for constructing
an extensive set of syntactic features. These features can
range from the specific use of syntactic constructs, such as
unary and ternary operators, to generic features characterizing
the tree structure, such as the frequency of adjacent nodes. In
Figure 3, there exist 21 pairs of adjacent nodes including, for
example, (func foo)→(arg int) and (return)→(1).

Manipulating features derived from an AST is challenging,
as even minor tweaks in the tree structure can fundamentally
change the program semantics. As a consequence, transforma-
tions to the AST need to be carefully designed to preserve the
original semantics and to avoid unintentional side effects. For
example, removing the node pair (decl int)→(b) from the
AST in Figure 3 requires either replacing the type or the name
of the variable without interfering with the remaining code.
In practice, such transformations are often non-trivial and we
discuss the details of manipulating the AST in Section 4.

2.2 Machine Learning

The three feature types (layout, lexical, syntactic) provide
a broad view on the characteristics of source code and are
used by many attribution methods as the basis for applying
machine-learning techniques [e.g., 1, 4, 9, 21]

From code to vectors. Most learning algorithms are de-
signed to operate on vectorial data and hence the first step
for application of machine learning is the mapping of code
to a vector space using the extracted features. Formally, this
mapping can be expressed as φ : X −→ F = Rd where F
is a d dimensional vector space describing properties of the
extracted features. Different techniques can be applied for
constructing this map, which may include the computation
of specific metrics as well as generic embeddings of features
and their relations, such as a TF-IDF weighting [1, 9].

Surprisingly, the feature map φ introduces a non-trivial
hurdle for the construction of attacks. The map φ is usually
not bijective, that is, we can map a given source code x to a
feature space but are unable to automatically construct the
source code x′ for a given point φ(x′). Similarly, it is dif-
ficult to predict how a code transformation x 7→ x′ changes
the position in feature space φ(x) 7→ φ(x′). We refer to this
problem as the problem-feature space dilemma and discuss
its implications in Section 3.

Multiclass classification. Using a feature map φ , we can
apply machine learning for identifying the author of a source
code. Typically, this is done by training a multiclass classifier
g : X −→ R|Y| that returns scores for all authors Y . An
attribution is obtained by simply computing

f (x) = arg max
y∈Y

gy(x).

This setting has different advantages: First, one can inves-
tigate all top-ranked authors. Second, one can interpret the
returned scores for determining the confidence of an attribu-
tion. We make use of the latter property for guiding our attack
strategy and generating adversarial examples of source code
(see Section 5)

Different learning algorithms have been used for construct-
ing the multiclass classifier g, as for example, support vector
machines [21], random forests [9], and recurrent neural net-
works [1, 4]. Attacking each of these learning algorithms
individually is a tedious task and thus we resort to a black-
box attack for misleading authorship attribution. This attack
does not require any knowledge of the employed learning
algorithm and operates with the output g(x) only. Conse-
quently, our approach is agnostic to the learning algorithm as
we demonstrate in the evaluation in Section 6.

3 Misleading Authorship Attribution

With a basic understanding of authorship attribution, we are
ready to investigate the robustness of attribution methods and
to develop a corresponding black-box attack. To this end,
we first define our threat model and attack scenario before
discussing technical details in the following sections.

USENIX Association 28th USENIX Security Symposium 481

3.1 Threat Model

For our attack, we assume an adversary who has black-box
access to an attribution method. That is, she can send an
arbitrary source code x to the method and retrieve the corre-
sponding prediction f (x) along with prediction scores g(x).
The training data, the extracted features, and the employed
learning algorithm, however, are unknown to the adversary,
and hence the attack can only be guided by iteratively probing
the attribution method and analyzing the returned prediction
scores. This setting resembles a classic black-box attack as
studied by Tramèr et al. [26] and Papernot et al. [19]. As
part of our threat model, we consider two types of attacks—
untargeted and targeted attacks—that require different capa-
bilities of the adversary and have distinct implications for the
involved programmers.

Untargeted attacks. In this setting, the adversary tries
to mislead the attribution of source code by changing the
classification into any other programmer. This attack is also
denoted as dodging [23] and impacts the correctness of the
attribution. As an example, a benign programmer might
use this attack strategy for concealing her identity before
publishing the source code of a program.

Targeted attacks. The adversary tries to change the classifi-
cation into a chosen target programmer. This attack resembles
an impersonation and is technically more advanced, as we
need to transfer the stylistic patterns from one developer to
another. A targeted attack has more severe implications: A
malware developer, for instance, could systematically change
her source code to blame a benign developer.

Furthermore, we consider two scenarios for targeted at-
tacks: In the first scenario, the adversary has no access to
source code from the target programmer and thus certain fea-
tures, such as variable names and custom types, can only be
guessed. In the second scenario, we assume that the adver-
sary has access to two files of source code from the target
developer. Both files are not part of the training- or test set
and act as external source for extracting template information,
such as recurring custom variable names.

In addition, we test a scenario where the targeted attack solely
rests on a separate training set, without access to the output of
the original classifier. This might be the case, for instance, if
the attribution method is secretly deployed, but code samples
are available from public code repositories. In this scenario,
the adversary can learn a substitute model with the aim that
her adversarial example—calculated on the substitute—also
transfers to the original classifier.

3.2 Attack Constraints

Misleading the attribution of an author can be achieved with
different levels of sophistication. For example, an adversary

may simply copy code snippets from one developer for imper-
sonation or heavily obfuscate source code for dodging. These
trivial attacks, however, generate implausible code and are
easy to detect. As a consequence, we define a set of con-
straints for our attack that should make it hard to identify
manipulated source code.

Preserved semantics. We require that source code gener-
ated by our attack is semantically equivalent to the original
code. That is, the two codes produce identical outputs given
the same input. As it is undecidable whether two programs
are semantically equivalent, we take care of this constraint
during the design of our code transformations and ensure that
each transformation is as semantics-preserving as possible.

Plausible code. We require that all transformations change
the source code, such that the result is syntactically correct,
readable and plausible. The latter constraint corresponds to
the aspect of imperceptibility when adversarial examples are
generated in the image domain [11]. In our context, plau-
sibility is important whenever the adversary wants to hide
the modification of a source file, for instance, when blaming
another developer. For this reason, we do not include junk
code or unusual syntax that normal developers would not use.

No layout changes. Layout features such as the tendency to
start lines with spaces or tabs are trivial to change with tools
for code formatting (see Section 6.4). Therefore, we restrict
our attack to the forgery of lexical and syntactic features of
source code. In this way, we examine our approach under
a more difficult scenario for the attacker where no layout
features are exploitable to mislead the attribution.

3.3 Problem-Feature Space Dilemma

The described threat model and attack constraints pose unique
challenges to the design of our attack. Our attack jointly op-
erates in two domains: On the one hand, we aim at attacking
a classifier in the feature space F . On the other hand, we
require the source code to be semantically equivalent and
plausible in the problem space X . For most feature maps φ , a
one-to-one correspondence, however, does not exist between
the two spaces and thus we encounter a dilemma.

Problem space feature space. Each change in the source
code x may impact a set of features in φ(x). The exact amount
of change is generally not controllable. The correlation of
features and post-processing steps in φ , such as a TF-IDF
weighting, may alter several features, even if only a single
statement is changed in the source code. This renders target-
oriented modification of the source code difficult.

For example, if the declaration of the variable b in line 2 of
Figure 2 is moved to line 5, a series of lexical and syntactic
features change, such as the frequency of the lexem b or the
subtree under the node assign in Figure 3.

482 28th USENIX Security Symposium USENIX Association

Feature space
(Vectors)

Problem space
(Source code) x x0

�(x)

�(x0)

Code transformations

T(x)

f(T(x)) = y⇤

Figure 4: Schematic depiction of our approach. The attack is realized by
moving in the problem space using code transformations while being guided
by Monte-Carlo tree search in the feature space.

Feature space problem space. Any change to a feature
vector φ(x) must ensure that there exists a plausible source
code x in the problem space. Unfortunately, determining x
from φ(x) is not tractable for non-bijective feature maps, and
it is impossible to directly apply techniques from adversarial
learning that operate in the feature space.

For example, if we calculate the difference of two vectors
φ(z) = φ(x)−φ(x′), we have no means for determining the
resulting source code z. Even worse, it might be impossible to
construct z, as the features in φ(z) can violate the underlying
programming language specification, for example, due to
feature combinations inducing impossible AST edges.

This dilemma has received little attention in the literature
on adversarial learning so far, and it is often assumed that
an adversary can change features almost arbitrarily [e.g. 6,
11, 18]. Consequently, our attack does not only pinpoint
weaknesses in authorship attribution but also illustrates how
adversarial learning can be conducted when the problem and
feature space are disconnected.

3.4 Our Attack Strategy
To tackle this challenge, we adopt a mixed attack strategy
that combines concepts from compiler engineering and ad-
versarial learning. For the problem space, we develop code
transformations (source-to-source compilations) that enable
us to maneuver in the problem space and alter stylistic pat-
terns without changing the semantics. For the feature space,
we devise a variant of Monte-Carlo tree search that guides the
transformations towards a target. This variant considers the
attack as a game against the attribution method and aims at
reaching a desired output with few transformations.

An overview of our attack strategy is illustrated in Figure 4.
As the building blocks of our approach originate from dif-
ferent areas of computer science, we discuss their technical
details in separate sections. First, we introduce the concept
of semantics-preserving code transformations and present
five families of source-to-source transformations (Section 4).
Then, we introduce Monte-Carlo tree search as a generic
black-box attack for chaining transformations together such
that a target in the feature space is reached (Section 5).

4 Code Transformations

The automatic modification of code is a well-studied problem
in compiler engineering and source-to-source compilation [2].
Consequently, we build our code transformations on top of
the compiler frontend Clang [28], which provides all neces-
sary primitives for parsing, transforming and synthesizing
C/C++ source code. Note that we do not use code obfusca-
tion methods, since their changes are (a) clearly visible, and
(b) cannot mislead a classifier to a targeted author. Before
presenting five families of transformations, we formally de-
fine the task of code transformation and introduce additional
program representations.

Definition 1. A code transformation T : X −→ X , x 7→ x′

takes a source code x and generates a transformed version x′,
such that x and x′ are semantically equivalent.

While code transformations can serve various purposes
in general [2], we focus on targeted transformations that
modify only minimal aspects of source code. If multiple
source locations are applicable for a transformation, we use a
pseudo-random seed to select one location. To chain together
targeted transformations, we define transformation sequences
as follows:

Definition 2. A transformation sequence T = T1 ◦T2 ◦· · ·◦Tn
is the subsequent application of multiple code transformations
to a source code x.

To efficiently perform transformations, we make use of
different program representations, where the AST is the most
important one. To ease the realization of involved transforma-
tions, however, we employ two additional program represen-
tations that augment our view on the source code.

Control-flow graph with use-define chains. The control
flow of a program is typically represented by a control-flow
graph (CFG) where nodes represent statements and edges the
flow of control. Using the CFG, it is convenient to analyze
the execution order of statements. We further extend the CFG
provided by Clang with use-define chains (UDCs). These
chains unveil dependencies between usages and the defini-
tions of a variable. With the aid of UDCs, we can trace the
flow of data through the program and identify data dependen-
cies between local variables and function arguments. Figure 5
shows a CFG with use-define chains.

Declaration-reference mapping. We additionally intro-
duce a declaration-reference mapping (DRM) that extends
the AST and links each declaration to all usages of the de-
clared variable. As an example, Figure 6 shows a part of the
AST together with the respective DRM for the code sample
from Figure 2. This code representation enables navigation
between declarations and variables, which allows us to effi-
ciently rename variables or check for the sound transforma-
tion of data types. Note the difference between use-define

USENIX Association 28th USENIX Security Symposium 483

return 1

int b

b = foo(a - 1)

return a * b

if (a < 2)

foo(int a)

b
a

int b

b = foo(a - 1)

return a * b

if (a < 2)
true

false
a

a

foo(int a)

return 1

Figure 5: Control-flow graph with use-define chains for the code snippet
from Figure 2. The control flow is shown in red (solid), use-define chains in
blue (dashed).

Table 1: Implemented families of transformations.

Transformation family # AST CFG UDC DRM

Control transformations 5 • • •
Declaration transformations 14 • •
API transformations 9 • • •
Template transformations 4 • •
Miscellaneous transformations 4 •

chains and declaration-reference mappings. The former con-
nects variable usages to variable definitions, while the latter
links variable usages to variable declarations.

Based on these program representations, we develop a set
of generic code transformations that are suitable for chang-
ing different stylistic patterns. In particular, we implement
36 transformers that are organized into five families. Table 1
provides an overview of each family together with the pro-
gram representation used by the contained transformers.

In the following, we briefly introduce each of the five fami-
lies. For a detailed listing of all 36 transformations, we refer
the reader to Table 8 in Appendix C.

Control transformations. The first family of source-to-
source transformations rewrites control-flow statements or
modifies the control flow between functions. In total, the fam-
ily contains 5 transformations. For example, the control-flow
statements while and for can be mutually interchanged by two
transformers. These transformations address a developer’s
preference to use a particular iteration type. As another exam-
ple, Figure 7 shows the automatic creation of a function. The
transformer moves the inner block of the for-statement to a
newly created function. This transformation involves passing
variables as function arguments, updating their values and
changing the control flow of the caller and callee.

Declaration transformations. This family consists of
14 transformers that modify, add or remove declarations in
source code. For example, in a widening conversion, the
type of a variable is changed to a larger type, for example,
int to long. This rewriting mimics a programmer’s prefer-
ence for particular data types. Declaration transformations
make it necessary to update all usages of variables which

func foo

arg int

a

body

decl int

b

if

oper <

a 2

return

assign return

a call foo

func foo

arg int

a

body

decl int

b

if

oper <

a 2

…

assign …

…b

Figure 6: Abstract syntax tree with declaration-reference mapping for the
code snippet from Figure 2. Declaration references are shown in green
(dashed).

for (int j = i; j < i + k; j++) {
if (s[j] == ’-’)

s[j] = ’+’;
else

s[j] = ’-’;
}

inline void setarray(string& s, int& j) {
if (s[j] == ’-’)

s[j] = ’+’;
else

s[j] = ’-’;
}
[...]
for (int j = i; j < i + k; j++)

setarray(s, j);

¶

·

Figure 7: Example of a control transformation. ¶ moves the compound
statement into an own function and passes all variables defined outside the
block as parameters. · calls the new function at the previous location.

can be elegantly carried out using the DRM representation.
Replacing an entire data type is a more challenging transfor-
mation, as we need to adapt all usages to the type, including
variables, functions and return values. Figure 8 shows the
replacement of the C++ string object with a conventional
char array, where the declaration and also API functions, such
as size, are modified. Note that in our current implementation
of the transformer the char array has a fixed size and thus is
not strictly equivalent to the C++ string object.

API transformations. The third family contains 9 transfor-
mations and exploits the fact that various APIs can be used

string s;
cin >> s;
for (int i = 0; i < s.size(); i++) {

if (s[i] == ’+’)

char s[1000];
cin >> s;
for (int i = 0; i < strlen(s); i++) {

if (s[i] == ’+’)

¶ ·

Figure 8: Example of a declaration transformation. ¶ replaces the declaration
of the C++ string object with a char array, · adapts all uses of the object.

484 28th USENIX Security Symposium USENIX Association

cout << fixed << setprecision (10);
[...]
for (long long t = 0;

t < (long long)(T); t++) {
[...]
cout << "Case #" << t + 1 << ": "

<< d / l << ’\n’;
}

for (long long t = 0;
t < (long long)(T); t++) {
[...]
printf("Case #%lld: %.10f\n",

t + 1, d / l);
}

¶

·

Figure 9: Example of an API transformation. ¶ determines the current
precision for output; · replaces the C++ API with a C-style printf. The
format specifier respects the precision and the data type of the variable.

to solve the same problem. Programmers are known to favor
different APIs and thus tampering with API usage is an ef-
fective strategy for changing stylistic patterns. For instance,
we can choose between various ways to output information
in C++, such as printf, cout, or ofstream.

As an example, Figure 9 depicts the replacement of the ob-
ject cout by a call to printf. To this end, the transformer first
checks for the decimal precision of floating-point values that
cout employs, that is, we use the CFG to find the last executed
fixed and setprecision statement. Next, the transformer uses
the AST to resolve the final data type of each cout entry and
creates a respective format string for printf.

Template transformations. The fourth family contains
4 transformations that insert or change code patterns based on
a give template. For example, authors tend to reuse specific
variable names, constants, and type definitions. If a template
file is given for a target developer, these information are
extracted and used for transformations. Otherwise, default
values that represent general style patterns are employed.
For instance, variable names can be iteratively renamed into
default names like i, j, or k until a developer’s tendency to
declare control statement variables is lost (dodging attack) or
gets matched (impersonation attack).

Miscellaneous transformations. The last family covers
4 transformations that conduct generic changes of code state-
ments. For example, the use of curly braces around compound
statements is a naive but effective stylistic pattern for identify-
ing programmers. The compound statement transformer thus
checks if the body of a control statement can be enclosed by
curly braces or the other way round. In this way, we can add
or remove a compound statement in the AST.

Another rather simple stylistic pattern is the use of return
statements, where some programmers omit these statements
in the main function and others differ in whether they return
a constant, integer or variable. Consequently, we design a
transformer that manipulates return statements.

5 Monte-Carlo Tree Search

Equipped with different code transformations for changing
stylistic patterns, we are ready to determine a sequence of
these transformations for untargeted and targeted attacks. We
aim at a short sequence, which makes the attack less likely
to be detected. Formally, our objective is to find a short
transformation sequence T that manipulates a source file x,
such that the classifier f predicts the target label y∗:

f
(
T(x)

)
= y∗ . (1)

In the case of an untargeted attack, y∗ represents any other
developer than the original author ys, that is, y∗ 6= ys. In the
case of a targeted attack, y∗ is defined as a particular target
author yt .

As we are unable to control how a transformation T (x)
moves the feature vector φ(x), several standard techniques
for solving the problem in (1) are not applicable, such as
gradient-based methods [e.g. 11]. Therefore, we require an
algorithm that works over a search space of discrete objects
such as the different transformations of the source code. As a
single transformation does not necessarily change the score
of the classifier, simple approximation techniques like Hill
Climbing that only evaluate the neighborhood of a sample
fail to provide appropriate solutions.

As a remedy, we construct our attack algorithm around
the concept of Monte-Carlo tree search (MCTS)—a strong
search algorithm that has proven effective in AI gaming with
AlphaGo [24]. Similar to a game tree, our variant of MCTS
creates a search tree for the attack, where each node repre-
sents a state of the source code and the edges correspond
to transformations. By moving in this tree, we can evaluate
the impact of different transformation sequences before de-
ciding on the next move. Figure 10 depicts the four basic
steps of our algorithm: selection, simulation, expansion and
backpropagation.

Selection. As the number of possible paths in the search tree
grows exponentially, we require a selection policy to identify
the next node for expansion. This policy balances the tree’s
exploration and exploitation by alternately selecting nodes
that have not been evaluated much (exploration) and nodes
that seem promising to obtain a better result (exploitation).
Following this policy, we start at the root node and recursively
select a child node until we find a node u which was not
evaluated before. Appendix A gives more information about
the used selection policy.

Simulation & Expansion. We continue by generating a set
of unique transformation sequences with varying length that
start at u. We bound the length of each sequence by a prede-
fined value. In our experiments, we create sequences with up
to 5 transformations. For each sequence, we determine the
classifier score by providing the modified source code to the
attribution method. The right plot in Figure 10 exemplifies

USENIX Association 28th USENIX Security Symposium 485

u

s1 s2

s3

Figure 10: Basic steps of Monte-Carlo tree search. The left plot shows the
selection step, the right plot the simulation, expansion and backpropagation.

the step: we create three sequences where two have the same
first transformation. Next, we create the respective tree nodes.
As two sequences start with the same transformation, they
also share a node in the search tree.

Backpropagation. As the last step, we propagate the ob-
tained classifier scores from the leaf node of each sequence
back to the root. During this propagation, we update two
statistics in each node on the path: First, we increment a
counter that keeps track of how often a node has been part of
a transformation sequence. In Figure 10, we increase the visit
count of node u and the nodes above by 3. Second, we store
the classifier scores in each node that have been observed
in its subtree. For example, node u in Figure 10 stores the
scores from s1, s2 and s3. Both statistics are used by the
selection policy and enable us to balance the exploration and
exploitation of the tree in the next iterations.

Iteration. We repeat these four basic steps until a predefined
iteration constraint is reached. After obtaining the resulting
search tree, we identify the root’s child node with the highest
average classifier score and make it the novel root node of the
tree. We then repeat the entire process again. The attack is
stopped if we succeed, we reach a previously fixed number of
iterations, or we do not obtain any improvement over multiple
iterations.

Appendix A provides more implementation details on our
variant of MCTS. We finally note that the algorithm resembles
a black-box attack, as the inner working of the classifier f is
not considered.

6 Evaluation

We proceed with an empirical evaluation of our attacks and
investigate the robustness of source-code authorship attribu-
tion in a series of experiments. In particular, we investigate
the impact of untargeted and targeted attacks on two recent
attribution methods (Section 6.2 & 6.3). Finally, we verify in
Section 6.4 that our initially imposed attack constraints are
fulfilled.

6.1 Experimental Setup

Our empirical evaluation builds on the methods developed
by Caliskan et al. [9] and Abuhamad et al. [1], two recent ap-
proaches that operate on a diverse set of features and provide
superior performance in comparison to other attribution meth-
ods. For our evaluation, we follow the same experimental
setup as the authors, re-implement their methods and make
use of a similar dataset.

Dataset & Setup. We collect C++ files from the 2017
Google Code Jam (GCJ) programming competition [29]. This
contest consists of various rounds where several participants
solve the same programming challenges. This setting enables
us to learn a classifier for attribution that separates stylistic
patterns rather than artifacts of the different challenges. More-
over, for each challenge, a test input is available that we can
use for checking the program semantics. Similar to previous
work, we select eight challenges from the competition and
collect the corresponding source codes from all authors who
solved these challenges.

In contrast to prior work [1, 9], however, we set more strin-
gent restrictions on the source code. We filter out files that
contain incomplete or broken solutions. Furthermore, we for-
mat each source code using clang-format and expand macros,
which removes artifacts that some authors introduce to write
code more quickly during the contest. Our final dataset con-
sists of 1,632 files of C++ code from 204 authors solving the
same 8 programming challenges of the competition.

For the evaluation, we use a stratified and grouped k-fold
cross-validation where we split the dataset into k− 1 chal-
lenges for training and 1 challenge for testing. In this way,
we ensure that training is conducted on different challenges
than testing. For each of the k folds, we perform feature se-
lection on the extracted features and then train the respective
classifier as described in the original publications. We report
results averaged over all 8 folds.

Implementation. We implement the attribution methods
and our attack on top of Clang [28], an open-source C/C++
frontend for the LLVM compiler framework. For the method
of Caliskan et al. [9], we re-implement the AST extraction
and use the proposed random forest classifier for attributing
programmers. The approach by Abuhamad et al. [1] uses
lexical features that are passed to a long short-term mem-
ory (LSTM) neural network for attribution. Table 2 provides
an overview of both methods. For further details on the fea-

Method Lex Syn Classifier Accuracy

Caliskan et al. [9] • • RF 90.4% ± 1.7%
Abuhamad et al. [1] • LSTM 88.4% ± 3.7%

Table 2: Implemented attribution methods and their reproduced accuracy.
(Lex = Lexical features, Syn = Syntactic features)

486 28th USENIX Security Symposium USENIX Association

Success rate of our attack
Method Untargeted Targeted T+ Targeted T-

Caliskan et al. [9] 99.2% 77.3% 71.2%
Abuhamad et al. [1] 99.1% 81.3% 69.1%

Table 3: Performance of our attack as average success rate. The targeted
attack is conducted with template (T+) and without template (T-).

ture extraction and learning process, we refer the reader to
the respective publications [1, 9].

As a sanity check, we reproduce the experiments conducted
by Caliskan et al. [9] and Abuhamad et al. [1] on our dataset.
Table 2 shows the average attribution accuracy and standard
deviation over the 8 folds. Our re-implementation enables
us to differentiate the 204 developers with an accuracy of
90% and 88% on average, respectively. Both accuracies come
close to the reported results with a difference of less than 6%,
which we attribute to omitted layout features and the stricter
dataset.

6.2 Untargeted Attack

In our first experiment, we investigate whether an adversary
can manipulate source code such that the original author is
not identified. To this end, we apply our untargeted attack to
each correctly classified developer from the 204 authors. We
repeat the attack for all 8 challenges and aggregate the results.

Attack performance. Table 3 presents the performance of
the attack as the ratio of successful evasion attempts. Our
attack has a strong impact on both methods and misleads the
attribution in 99% of the cases, irrespective of the consid-
ered features and learning algorithm. As a result, the source
code of almost all authors can be manipulated such that the
attribution fails.

Attack analysis. To investigate the effect of our attack in
more detail, we compute the ratio of changed features per
adversarial sample. Figure 11 depicts the distribution over all
samples. The method by Caliskan et al. [9] exhibits a bimodal
distribution. The left peak shows that a few changes, such
as the addition of include statements, are often sufficient to
mislead attribution. For the majority of samples, however, the
attack alters 50% of the features, which indicates the tight
correlation between different features (see Section 3.3). A
key factor to this correlation is the TF-IDF weighting that
distributes minor changes over a large set of features.

In comparison, less features are necessary to evade the
approach by Abuhamad et al. [1], possibly due to the higher
sparsity of the feature vectors. Each author has 12.11% non-
zero features on average, while 53.12% are set for the method
by Caliskan et al. [9]. Thus, less features need to be changed
and in consequence each changed feature impacts fewer other
features that remain zero.

0 20 40 60 80 100
0

2

4

6

8

10

Changed features per evasive sample [%]

D
en

si
ty

Caliskan et al. [9]

Abuhamad et al. [1]

Figure 11: Untargeted attack: Histogram over the number of changed features
per successful evasive sample for both attribution methods.

0-5 5-1
0
10

-15
15

-20
20

-25
25

-30

30
-10

0
0

0.25

0.5

0.75

1

Fr
eq

ue
nc

y

0-5 5-1
0
10

-15
15

-20
20

-25
25

-30

30
-16

0

Number of changed LOC per evasive sample

(a) Caliskan et al. [9] (b) Abuhamad et al. [1]

Removed LOC Changed LOC Added LOC

Figure 12: Untargeted attack: Stacked histogram over the number of changed
lines of code (LOC) per successful evasive sample for both attribution meth-
ods. The original source files have 74 lines on average (std: 38.44).

Although we observe a high number of changed features,
the corresponding changes to the source code are minimal.
Figure 12 shows the number of added, changed and removed
lines of code (LOC) determined by a context-diff with difflib
for each source file before and after the attack. For the ma-
jority of cases in both attribution methods, less than 5 lines
of code are added, removed or changed. This low number
exemplifies the targeted design of our code transformations
that selectively alter characteristics of stylistic patterns.

Summary. Based on the results from this experiment, we
summarize that our untargeted attack severely impacts the per-
formance of the methods by Caliskan et al. [9] and Abuhamad
et al. [1]. We conclude that other attribution methods employ-
ing similar features and learning algorithms also suffer from
this problem and hence cannot provide a reliable attribution
in presence of an adversary.

6.3 Targeted Attack

We proceed to study the targeted variant of our attack. We
consider pairs of programmers, where the code of the source
author is transformed until it is attributed to the target author.
Due to the quadratic number of pairs, we perform this experi-
ment on a random sample of 20 programmers. This results
in 380 source-target pairs each covering the source code of
8 challenges. Table 7 in Appendix B provides a list of the

USENIX Association 28th USENIX Security Symposium 487

A B C D E F G H I J K L M N O P Q R S T

Target author

T
S

R
Q

P
O

N
M

L
K

J
I

H
G

F
E

D
C

B
A

S
ou

rc
e

au
th

or
4 8 8 8 8 3 8 8 4 8 8 8 8 8 3 3 8 6 8
1 8 8 8 8 8 8 5 0 8 8 8 8 8 8 2 8 8 8
0 3 3 8 6 3 8 5 0 8 7 5 7 8 2 0 8 8 8
7 8 8 7 4 3 8 2 2 8 8 6 8 8 7 0 7 7 7
8 8 7 8 8 8 8 3 2 8 4 8 8 8 5 8 7 8 6
1 8 8 8 8 8 8 2 0 8 8 8 7 8 3 7 8 8 8
6 5 8 7 8 6 7 1 3 8 5 6 7 7 1 8 8 8 8
7 8 8 8 7 6 8 2 2 8 7 8 8 2 1 8 5 8 8
8 8 8 8 8 8 8 4 3 8 8 8 8 8 1 8 8 8 8
1 8 7 8 8 6 8 5 0 8 7 8 7 8 2 8 8 8 8
8 5 8 8 8 7 8 3 1 7 6 8 8 8 2 8 7 8 8
8 4 7 7 3 7 6 0 7 6 8 8 7 0 2 6 5 8 4
0 5 3 7 8 2 8 1 8 7 8 8 8 0 4 5 8 8 8
7 8 8 8 2 4 2 2 8 8 8 8 6 7 1 8 7 8 8
8 5 8 8 8 8 5 1 8 7 8 8 8 5 1 8 7 8 6
3 8 7 8 8 8 3 0 7 8 8 8 8 7 2 7 8 8 8
2 3 8 6 3 1 1 0 6 8 1 8 0 2 0 6 4 6 6
8 8 8 8 8 8 5 4 8 7 8 8 8 8 5 8 8 8 8
4 8 8 8 3 8 1 1 8 7 3 6 8 5 0 8 4 8 7

7 7 7 7 7 7 3 2 7 7 6 7 7 7 1 7 7 7 5
0%

20%

40%

60%

80%

100%

(a) Caliskan et al. [9]

A B C D E F G H I J K L M N O P Q R S T

Target author

T
S

R
Q

P
O

N
M

L
K

J
I

H
G

F
E

D
C

B
A

S
ou

rc
e

au
th

or

4 2 6 8 8 5 1 8 5 6 4 8 2 2 6 2 5 8 4
5 8 7 8 8 8 6 8 7 7 8 8 7 2 6 1 8 8 8
6 7 7 8 7 8 6 8 5 7 8 8 7 4 6 2 8 8 7
5 7 7 8 8 8 7 8 7 7 8 8 5 6 7 4 8 6 8
8 8 8 8 8 8 8 8 8 7 8 8 8 7 7 8 8 8 8
2 8 7 8 8 7 8 7 6 7 8 8 7 0 0 8 8 7 8
7 8 8 8 8 8 8 8 8 8 8 8 8 8 7 8 8 8 8
4 8 7 8 8 7 7 8 3 6 8 8 3 6 1 8 8 8 8
5 8 7 8 8 8 6 8 6 8 6 8 1 7 1 5 7 8 8
5 4 7 8 7 8 1 8 8 7 6 4 3 8 5 8 7 7 8
8 8 5 8 8 5 7 8 8 8 8 7 3 8 5 8 8 7 8
4 8 5 7 8 7 6 8 4 7 8 4 1 6 0 7 6 7 8
6 8 7 8 8 5 5 6 4 8 8 6 0 5 1 8 8 5 8
4 8 7 8 8 8 8 7 7 8 8 8 5 8 1 8 8 8 8
7 7 6 8 8 5 8 8 8 8 8 8 5 6 7 7 8 8 8
2 3 5 8 5 2 8 4 4 4 6 3 0 3 0 5 7 3 7
2 4 7 7 8 1 7 2 6 8 6 5 1 6 2 5 7 6 8
3 7 8 8 7 7 8 5 7 8 8 8 3 7 0 8 8 8 8
5 8 8 8 8 8 8 6 8 8 8 8 4 8 3 8 8 8 7

7 7 7 7 7 7 7 7 7 7 7 7 6 6 7 7 7 7 7
0%

20%

40%

60%

80%

100%

(b) Abuhamad et al. [1]

Figure 13: Impersonation matrix for both attribution methods. Each cell indicates the number of successful attack attempts for the 8 challenges.

0-1
0
10

-20
20

-30
30

-40
40

-50
50

-60

60
-12

0
0

0.25

0.5

0.75

1

Fr
eq

ue
nc

y

0-1
0
10

-20
20

-30
30

-40
40

-50
50

-60

60
-12

0

Number of changed LOC per successful sample

(a) Caliskan et al. [9] (b) Abuhamad et al. [1]

Removed LOC Changed LOC Added LOC

Figure 14: Targeted attack: Stacked histogram over the number of changed
lines of code (LOC) per successful impersonation for both attribution meth-
ods. The original source files have 74 lines on average (std: 38.44).

selected authors. We start with the scenario where we retrieve
two samples of source code for each of the 20 programmers
from various GCJ challenges—not part of the fixed 8 train-test
challenges—to support the template transformations.

Attack performance. Table 3 depicts the success rate of
our attack for both attribution methods. We can transfer the
prediction from one to another developer in 77% and 81% of
all cases, respectively, indicating that more than three out of
four programmers can be successfully impersonated.

In addition, Figure 13 presents the results as a matrix,
where the number of successful impersonations is visually
depicted. Note that the value in each cell indicates the abso-
lute number of successful impersonations for the 8 challenges
associated with each author pair. We find that a large set of
developers can be imitated by almost every other developer.
Their stylistic patterns are well reflected by our transformers
and thus can be easily forged. By contrast, only the develop-
ers I and P have a small impersonation rate for Caliskan et al.
[9], yet 68% and 79% of the developers can still imitate the
style of I and P in at least one challenge.

0 20 40 60 80 100
0

2

4

6

8

10

Changed features per successful sample [%]

D
en

si
ty

Caliskan et al. [9]

Abuhamad et al. [1]

Figure 15: Targeted attack: Histogram over the number of changed features
per successful impersonation for both attribution methods.

Attack analysis. The number of altered lines of code also
remains small for the targeted attacks. Figure 14 shows that
in most cases only 0 to 10 lines of code are affected. At the
same time, the feature space is substantially changed. Fig-
ure 15 depicts that both attribution methods exhibit a similar
distribution as before in the untargeted attack—except that
the left peak vanishes for the method of Caliskan et al. [9].
This means that each source file requires more than a few
targeted changes to achieve an impersonation.

Table 4: Usage of transformation families for impersonation

Transformation Family Cal. [9] Abu. [1]

Control Transformers 8.43% 9.72%
Declaration Transformers 14.11% 17.88%
API Transformers 29.90% 19.60%
Miscellaneous Transformers 9.15% 4.76%
Template Transformers 38.42% 48.04%

Table 4 shows the contribution of each transformation fam-
ily to the impersonation success. All transformations are
necessary to achieve the reported attack rates. A closer look
reveals that the method by Abuhamad et al. [1] strongly rests
on the usage of template transformers, while the families are
more balanced for the approach by Caliskan et al. [9]. This

488 28th USENIX Security Symposium USENIX Association

Source Author I

1 cout << std::fixed;
2
3
4 for (long long ccr = 1; ccr <= t; ++ccr) {
5 double d, n, ans = INT_MIN;
6 cin >> d >> n;
7 for (double i = 0; i < n; ++i) {
8 double k, s;
9 cin >> k >> s;

10 [...]
11 }
12
13 ans = d / ans;
14 cout << "Case #" << ccr << ": " <<

setprecision (7) << ans << "\n";
15
16 }

Source −→ Target

1 typedef double td_d;
2 [...]
3 long long ccr = 1;
4 while (ccr <= t) {
5 td_d d, n, ans = INT_MIN;
6 cin >> d >> n;
7 td_d i;
8 for (i = 0; i < n; ++i) {
9 td_d k, s;

10 cin >> k >> s;
11 [...]
12 }
13 ans = d / ans;
14 printf("Case #%lld: %.7f\n",
15 ccr , ans);
16 ++ccr;
17 }

¶

·

¸

¹

Target Author P

1 int T, cas = 0;
2 cin >> T;
3 while (T--) {
4 int d, n;
5 cin >> d >> n;
6 double t = 0;
7 while (n--) {
8 int k, s;
9 cin >> k >> s;

10 t = max ((1.0 * d - k) / s, t);
11 }
12 double ans = d / t;
13 printf("Case #%d: %.10f\n", ++cas , ans);
14 }

Iteration Transformer Description

¶ Typedef adds typedef and replaces all locations with
previous type by novel typedef.

· For statement converts for-statement into an equivalent
while-statement, as target tends to solve
problems via while-loops.

¸ Init-Decl moves a declaration out of the control state-
ment which mimics the declaration behavior
of while-statements.

¹ Output API substitutes C++ API for writing output by
C API printf. To this end, it determines
the precision of output statements by finding
fixed (line 1) and setprecision (line 14)
commands.

Figure 16: Impersonation example from our evaluation for the GCJ problem Steed 2: Cruise Control. The upper left listing shows the original source file, the
upper right its modified version such that it is classified as the target author. For comparison, the lower left listing shows the original source file from the target
author (which was not available for the attacker). The table lists the necessary transformations.

difference can be attributed to the feature sets, where the
former method relies on simple lexical features only and the
latter extracts more involved features from the AST.

Case Study. To provide further intuition for a successful
impersonation, Figure 16 shows a case study from our evalua-
tion. The upper two panels present the code from the source
author in original and transformed form. The lower left panel
depicts the original source text from the target author for the
same challenge. Note that the attack has no access to this file.
The table lists four conducted transformations. For instance,
the target author has the stylistic pattern to use while state-
ments, C functions for the output, and particular typedefs. By
changing these patterns, our attack succeeds in misleading
the attribution method.

Attack without template. We additionally examine the
scenario when the adversary has no access to a template file
of the target developer. In this case, our template transformers
can only try common patterns, such as the iteration variables
i, j, . . . , k or typedef ll for the type long long. Table 3 shows
the results of this experiment as well. Still, we achieve an
impersonation rate of 71% and 69%—solely by relying on
the feedback from the classifier. The number of altered lines
of code and features correspond to Figures 14 and 15.

Contrary to expectation, without a template, the approach
by Abuhamad et al. [1] is harder to fool than the method by
Caliskan et al. [9]. As the lexical features rest more on simple
declaration names and included libraries, they are harder to
guess without a template file. However, if a template file is
available, this approach is considerably easier to evade.

Attack with substitute model. We finally demonstrate that
an impersonation is even possible without access to the pre-
diction of the original classifier, only relying on a substitute
model trained from separate data. We split our training set
into disjoint sets with three files per author to train the original
and substitute model, respectively. We test the attack on the
method by Caliskan et al. [9], which is the more robust attribu-
tion under attack. By the nature of this scenario, the adversary
can use two files to support the template transformations.

Adversarial examples—generated with the substitute
model—transfer in 79% of the cases to the original model,
that is, attacks successful against the substitute model are
also effective against the original in the majority of the cases.
This indicates that our attack successfully changes indicative
features for a target developer across models. The success
rate of our attack on the original model is 52%. Due to the
reduced number of training files in this experiment, the attack

USENIX Association 28th USENIX Security Symposium 489

is harder, as the coding habits are less precisely covered by
the original and substitute models. Still, we are able to imper-
sonate every second developer with no access to the original
classifier.

Summary. Our findings show that an adversary can auto-
matically impersonate a large set of developers without and
with access to a template file. We conclude that both con-
sidered attribution methods can be abused to trigger false
allegations—rendering a real-world application dangerous.

6.4 Preserved Semantics and Plausibility

In the last experiment, we verify that our adversarial code
samples comply with the attack constraints specified in Sec-
tion 3.2. That is, we empirically check that (a) the semantics
of the transformed source code are preserved, (b) the gen-
erated code is plausible to a human analyst, and (c) layout
features can be trivially evaded.

Preserved semantics. We begin by verifying the semantics
of the transformed source code. In particular, we use the test
file from each challenge of the GCJ competition to check that
the transformed source code provides the same solution as
the original code. In all our experiments, we can verify that
the output remains unchanged for each manipulated source
code sample before and after our attack.

Plausible code. Next, we check that our transformations
lead to plausible code and conduct a discrimination test with
15 human subjects. The group consists of 4 undergraduate
students, 6 graduate students and 5 professional computer
scientists. The structure of the test follows an AXY-test: Ev-
ery participant obtains 9 files of source code—each from a
different author but for the same GCJ challenge. These 9 files
consists of 3 unmodified source codes as reference (A) and
6 sources codes (XY) that need to be classified as either orig-
inal or modified. The participants are informed that 3 of the
samples are modified. We then ask each participant to identify
the unknown samples and to provide a short justification.

The results of this empirical study are provided in Table 5.
On average, the participants are able to correctly classify
60% of the provided files which is only marginally higher
than random guessing. This result highlights that it is hard
to decide whether source code has been modified by our
attack or not. In several cases, the participants falsely assume
that unused typedef statements or an inconsistent usage of
operators are modifications.

Evasion of layout features. Finally, we demonstrate that
layout features can be trivially manipulated, so that it is valid
to restrict our approach to the forgery of lexical and syntactic
features. To this end, we train a random forest classifier only
on layout features as extracted by Caliskan et al. [9]. We then
compare the attribution accuracy of the classifier on the test

Table 5: Study on plausibility of transformed source code.

Participant Group Accuracy Std

Undergraduate students 66.7% 23.6%
Graduate students 55.6% 15.7%
Professionals 60.0% 24.9%

Total 60.0% 21.8%
Random guessing 50.0% —

set with and without the application of the formatting tool
clang-format, which normalizes the layout of the code.

While the attribution method can identify 27.5% of the
programmers based on layout features if the code is not for-
matted, the performance decreases to 4.5% if we apply the
formatting tool to the source code. We thus conclude that it is
trivial to mislead an attribution based on layout features.

7 Limitations

Our previous experiments demonstrate the impact of our at-
tack on program authorship attribution. Nonetheless, our
approach has limitations which we discuss in the following.

Adversarial examples 6= anonymization. Our attack en-
ables a programmer to hide their identity in source code by
misleading an attribution. While such an attack protects the
privacy of the programmer, it is not sufficient for achieving
anonymity. Note that k-anonymity would require a set of
k developers that are equally likely to be attributed to the
source code. In our setting, the code of the programmer is
transformed to match a different author and an anonymity set
of sufficient size is not guaranteed to exist. Still, we consider
anonymization as promising direction for further research,
which can build on the concepts of code transformations de-
veloped in this paper.

Verification of semantics. Finally, we consider two pro-
grams to be semantically equivalent if they return the same
output for a given input. In particular, we verify that the trans-
formed source code is semantically equivalent by applying
the test cases provided by the GCJ competition. Although
this approach is reasonable in our setting, it cannot guaran-
tee strict semantic equivalence in all possible cases. Some
of the exchanged API functions, for example, provide the
same functionality but differ in corner cases, such as when
the memory is exhausted. We acknowledge this limitation,
yet it does not impact the general validity of our results.

8 Related Work

The automatic attack of source-code authorship attribution
touches different areas of security research. In this section,
we review related methods and concepts.

490 28th USENIX Security Symposium USENIX Association

Authorship attribution of source code. Identifying the au-
thor of a program is a challenging task of computer security
that has attracted a large body of work in the last years. Start-
ing from early approaches experimenting with hand-crafted
features [14, 16], the techniques for examining source code
have constantly advanced, for example, by incorporating ex-
pressive features, such as n-grams [e.g., 1, 8, 13] and abstract
syntax trees [e.g., 4, 9, 21]. Similarly, techniques for analyz-
ing native code and identifying authors of compiled programs
have advanced in the last years [e.g., 3, 10, 17, 22].

Two notable examples for source code are the approach by
Caliskan et al. [9] and by Abuhamad et al. [1]. The former
inspects features derived from code layout, lexical analysis
and syntactic analysis. Regarding comprehensiveness, this
work can be considered as the current state of the art. The
work by Abuhamad et al. [1] focuses on lexical features as
input for recurrent neural networks. Their work covers the
largest set of authors so far and makes use of recent advances
in deep learning. Table 6 shows the related approaches.

Method Lay Lex Syn Authors Results

*Abuhamad et al. [1] • 8903 92%
*Caliskan et al. [9] • • • 250 95%
Alsulami et al. [4] • 70 89%
Frantzeskou et al. [13] • • 30 97%
Krsul and Spafford [14] • • • 29 73%
Burrows et al. [8] • • 10 77%

Table 6: Comparison of approaches for source code authorship attribution.
Lay = Layout features, Lex = Lexical features, Syn = Syntactic features.
*Attacked in this paper.

Previous work, however, has mostly ignored the problem
of untargeted and targeted attacks. Only the empirical study
by Simko et al. [25] examines how programmers can mislead
the attribution by Caliskan et al. [9] by mimicking the style
of other developers. While this study provides valuable in-
sights into the risk of forgeries, it does not consider automatic
attacks and thus is limited to manipulations by humans. In
this paper, we demonstrate that such attacks can be fully auto-
mated. Our generated forgeries even provide a higher success
rate than the handcrafted samples in the study. Moreover,
we evaluate the impact of different feature sets and learning
algorithms by evaluating two attribution methods.

Adversarial machine learning. The security of machine
learning techniques has also attracted a lot of research re-
cently. A significant fraction of work on attacks has focused
on scenarios where the problem and feature space are mainly
identical [see 6, 11, 18]. In these scenarios, changes in the
problem space, such as the modification of an image pixel,
have a one-to-one effect on the feature space, such that so-
phisticated attack strategies can be applied. By contrast, a
one-to-one mapping between source code and the extracted
features cannot be constructed and thus we are required to
introduce a mixed attack strategy (see Section 3).

Creating evasive PDF malware samples [27, 31] and adver-
sarial examples for text classifiers [e.g., 5, 15] represent two
similar scenarios, where the practical feasibility needs to be
ensured. These works typically operate in the problem space,
where search algorithms such as hill climbing or genetic pro-
gramming are guided by information from the feature space.
MCTS represents a novel concept in the portfolio of creating
adversarial examples under feasibility constraints, previously
examined by Wicker et al. [30] in the image context only.

Also related is the approach by Sharif et al. [23] for mis-
leading face recognition systems using painted eyeglasses.
The proposed attack operates in the feature space but en-
sures practical feasibility by refining the optimization prob-
lem. In particular, the calculated adversarial perturbations
are required to match the form of eyeglasses, to be printable,
and to be invariant to slight head movements. In our attack
scenario, such refinements of the optimization problem are
not sufficient for obtaining valid source code, and thus we
resort to applying code transformations in the problem space.

9 Conclusion

Authorship attribution of source code can be a powerful tool
if an accurate and robust identification of programmers is
possible. In this paper, however, we show that the current
state of the art is insufficient for achieving a robust attribution.
We present a black-box attack that seeks adversarial examples
in the domain of source code by combining Monte-Carlo
tree search with concepts from source-to-source compilation.
Our empirical evaluation shows that automatic untargeted
and targeted attacks are technically feasible and successfully
mislead recent attribution methods.

Our findings indicate a need for alternative techniques for
constructing attribution methods. These techniques should
be designed with robustness in mind, such that it becomes
harder to transfer stylistic patterns from one source code to
another. A promising direction are generative approaches of
machine learning, such as generative adversarial networks,
that learn a decision function while actively searching for its
weak spots. Similarly, it would help to systematically seek
for stylistic patterns that are inherently hard to manipulate,
either due to their complexity or due to their tight coupling
with program semantics.

Public dataset and implementation. To encourage further
research on program authorship attribution and, in particular,
the development of robust methods, we make our dataset and
implementation publicly available.1 The attribution methods,
the code transformers as well as our attack algorithm are all
implemented as individual modules, such that they can be
easily combined and extended.

1www.tu-braunschweig.de/sec/research/code/imitator

USENIX Association 28th USENIX Security Symposium 491

Acknowledgment

The authors would like to thank Johannes Heidtmann for his
assistance during the project, and the anonymous reviewers
for their suggestions and comments. Furthermore, the authors
acknowledge funding by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972 and the
research grant RI 2469/3-1.

References

[1] M. Abuhamad, T. AbuHmed, A. Mohaisen, and
D. Nyang. Large-scale and language-oblivious code au-
thorship identification. In Proc. of ACM Conference on
Computer and Communications Security (CCS), 2018.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-
Wesley, 2006.

[3] S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, and
A. Hanna. On leveraging coding habits for effective
binary authorship attribution. In Proc. of European Sym-
posium on Research in Computer Security (ESORICS),
2018.

[4] B. Alsulami, E. Dauber, R. E. Harang, S. Mancoridis,
and R. Greenstadt. Source code authorship attribution
using long short-term memory based networks. In Proc.
of European Symposium on Research in Computer Se-
curity (ESORICS), 2017.

[5] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Sri-
vastava, and K.-W. Chang. Generating natural language
adversarial examples. In Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), 2018.

[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić,
P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In Machine Learn-
ing and Knowledge Discovery in Databases. Springer,
2013.

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lu-
cas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(1), 2012.

[8] S. Burrows, A. L. Uitdenbogerd, and A. Turpin. Ap-
plication of information retrieval techniques for source
code authorship attribution. In Proc. of Conference
on Database Systems for Advanced Applications (DAS-
FAA), 2009.

[9] A. Caliskan, R. Harang, A. Liu, A. Narayanan,
C. R. Voss, F. Yamaguchi, and R. Greenstadt. De-
anonymizing programmers via code stylometry. In Proc.
of USENIX Security Symposium, 2015.

[10] A. Caliskan, F. Yamaguchi, E. Tauber, R. Harang,
K. Rieck, R. Greenstadt, and A. Narayanan. When
coding style survives compilation: De-anonymizing pro-
grammers from executable binaries. In Proc. of Network
and Distributed System Security Symposium (NDSS),
2018.

[11] N. Carlini and D. A. Wagner. Towards evaluating the
robustness of neural networks. In Proc. of IEEE Sympo-
sium on Security and Privacy (S&P), 2017.

[12] E. Dauber, A. Caliskan, R. E. Harang, and R. Green-
stadt. Git blame who?: Stylistic authorship attribution
of small, incomplete source code fragments. Techni-
cal Report abs/1701.05681, arXiv, Computing Research
Repository, 2017.

[13] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Kat-
sikas. Effective identification of source code authors
using byte-level information. In Proc. of International
Conference on Software Engineering (ICSE), 2006.

[14] I. Krsul and E. H. Spafford. Authorship analysis: identi-
fying the author of a program. Computers & Security,
16(3), 1997.

[15] J. Li, S. Ji, T. Du, B. Li, and T. Wang. Textbugger: Gen-
erating adversarial text against real-world applications.
In Proc. of Network and Distributed System Security
Symposium (NDSS), 2019.

[16] S. MacDonell, A. Gray, G. MacLennan, and P. Sallis.
Software forensics for discriminating between program
authors using case-based reasoning, feed-forward neural
networks and multiple discriminant analysis. In Proc.
of International Conference on Neural Information Pro-
cessing (ICONIP), 1999.

[17] X. Meng, B. P. Miller, and K.-S. Jun. Identifying mul-
tiple authors in a binary program. In Proc. of Euro-
pean Symposium on Research in Computer Security
(ESORICS), 2017.

[18] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami. The limitations of deep learn-
ing in adversarial settings. In Proc. of IEEE European
Symposium on Security and Privacy (EuroS&P), 2016.

[19] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha,
Z. Berkay Celik, and A. Swami. Practical black-box
attacks against machine learning. In Proc. of ACM Asia
Conference on Computer Computer and Communica-
tions Security (ASIA CCS), 2017.

492 28th USENIX Security Symposium USENIX Association

[20] N. Papernot, P. D. McDaniel, A. Sinha, and M. P. Well-
man. Sok: Security and privacy in machine learning.
In Proc. of IEEE European Symposium on Security and
Privacy (EuroS&P), 2018.

[21] B. N. Pellin. Using classification techniques to deter-
mine source code authorship. Technical report, Depart-
ment of Computer Science, University of Wisconsin,
2000.

[22] N. E. Rosenblum, X. Zhu, and B. P. Miller. Who wrote
this code? identifying the authors of program binaries.
In Proc. of European Symposium on Research in Com-
puter Security (ESORICS), 2011.

[23] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Re-
iter. Accessorize to a Crime: real and stealthy attacks
on state-of-the-art face recognition. In Proc. of ACM
Conference on Computer and Communications Security
(CCS), 2016.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks
and tree search. Nature, 529, 2016.

[25] L. Simko, L. Zettlemoyer, and T. Kohno. Recognizing
and imitating programmer style: Adversaries in pro-
gram authorship attribution. Proceedings on Privacy
Enhancing Technologies, 1, 2018.

[26] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ris-
tenpart. Stealing machine learning models via prediction
apis. In Proc. of USENIX Security Symposium, 2016.

[27] N. Šrndić and P. Laskov. Practical evasion of a learning-
based classifier: A case study. In Proc. of IEEE Sympo-
sium on Security and Privacy (S&P), 2014.

[28] Website. Clang: C language family frontend for LLVM.
LLVM Project, https://clang.llvm.org, 2019. last
visited May 2019.

[29] Website. Google Code Jam.
https://code.google.com/codejam/, 2019.
last visited May 2019.

[30] M. Wicker, X. Huang, and M. Kwiatkowska. Feature-
guided black-box safety testing of deep neural networks.
In Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS), 2018.

[31] W. Xu, Y. Qi, and D. Evans. Automatically evading
classifiers: A case study on pdf malware classifiers.
In Proc. of Network and Distributed System Security
Symposium (NDSS), 2016.

A Monte-Carlo Tree Search

In this section, we provide further details about our variant of
Monte-Carlo tree search. Algorithm 1 gives an overview of
the attack. The procedure ATTACK starts with the root node r0
that represents the original source code x. The algorithm then
works in two nested loops:

• The outer loop in lines 3–5 repetitively builds a search
tree for the current state of source code r, and takes a
single move (i.e. a single transformation). To do so, in
each iteration, we choose the child node with the highest
average classifier score. This process is repeated until the
attack succeeds or a stop criterion is fulfilled (we reach
a fixed number of outer iterations or we do not observe
any improvement over multiple iterations) (line 3).

• The procedure MCTS represents the inner loop. It it-
eratively builds and extends the search tree under the
current root node r. As this procedure is the main build-
ing block of our attack, we discuss the individual steps
in more detail in the following.

Algorithm 1 Monte-Carlo Tree Search
1: procedure ATTACK(r0)
2: r← r0
3: while not SUCCESS(r) and not STOPCRITERION(r) do
4: MCTS(r) . Extend the search tree under r
5: r← CHILDWITHBESTSCORE(r) . Perform next move
6: procedure MCTS(r)
7: for i← 1,N do
8: u← SELECTION(r, i)
9: T ← SIMULATIONS(u)

10: EXPANSION(u, T)
11: BACKPROPAGATION(T)

Selection. Algorithm 2 shows the pseudocode to find the
next node which is evaluated. The procedure recursively
selects a child node according to a selection policy. We stop if
the current node has no child nodes or if we have not marked
it before in the current procedure SELECTION. The procedure
finally returns the node that will be evaluated next.

As the number of possible paths grows exponentially (we
have up to 36 transformations as choice at each node), we
cannot evaluate all possible paths. The tree creation thus
crucially depends on a selection policy. We use a simple
heuristic to approximate the Upper Confidence Bound for
Trees algorithm that is often used as selection policy (see [7]).
Depending on the current iteration index i of SELECTION, the
procedure SELECTIONPOLICY alternately returns the decision
rule to choose the child with the highest average score, the
lowest visit count or the highest score standard deviation.
This step balances the exploration of less-visited nodes and
the exploitation of promising nodes with a high average score.

Simulations. Equipped with the node u that needs to be
evaluated, the next step generates a set of transformation

USENIX Association 28th USENIX Security Symposium 493

Algorithm 2 Selection Procedure of MCTS
1: procedure SELECTION(r, i)
2: D← SELECTIONPOLICY(i)
3: u← r
4: while u has child nodes do
5: v← SELECTCHILD(u,D) . Child of u w.r.t. to D
6: if v not marked as visited then
7: Mark v as visited
8: return v
9: else

10: u← v

sequences T that start at u:

T = {T j | j = 1, . . . ,k and |T j| ≤M} , (2)

where |T j| is the number of transformations in T j. The se-
quences are created randomly and have a varying length
which is, however, limited by M. In our experiments, we
set M = 5 to reduce the number of possible branches.

In contrast to the classic game use-case, we can use the
returned scores g(x) as early feedback and thus we do not
need to play out a full game. In other words, it is not necessary
to evaluate the complete path to obtain feedback. For each
sequence, we determine the classifier score by passing the
modified source code at the end of each sequence to the
attribution method. We further pinpoint a difference to the
general MCTS algorithm. Instead of evaluating only one path,
we create a batch of sequences that can be efficiently executed
in parallel. In this way, we reduce the computation time and
obtain the scores for various paths.

Expansion. We continue by inserting the respective trans-
formations from the sequences as novel tree nodes under u
(see Algorithm 3). For each sequence, we start with u and the
first transformation. We check if a child node with the same
transformation already exists under u. If not, a new node v
is created and added as child under u. Otherwise, we use the
already existing node v. We repeat this step with v and the
next transformation. Figure 10 from Section 5 exemplifies
this expansion step.

Algorithm 3 Expansion Procedure of MCTS
1: procedure EXPANSION(u, T)
2: for T in T do . For each sequence
3: z← u
4: for T in T do . For each transformer
5: if z has no child with T then
6: v← CREATENEWNODE(T)
7: z.add child(v)
8: else
9: v← z.GETCHILDWITH(T)

10: z← v

Backpropagation. Algorithm 4 shows the last step that
backpropagates the classifier scores to the root. For each
sequence, the procedure first determines the last node n of the

current sequence and the observed classifier score s at node
n. Next, all nodes on the path from n to the root node of the
search tree are updated. First, the visit count of each path
node is incremented. Second, the final classifier score s is
added to the score list of each path node. Both statistics are
used by SELECTCHILD to choose the next promising node for
evaluation. Furthermore, CHILDWITHBESTSCORE uses the score
list to obtain the child node with the highest average score.

Algorithm 4 Backpropagation Procedure of MCTS
1: procedure BACKPROPAGATION(T)
2: for T in T do
3: s← GETSCORE(T)
4: get n as tree leaf of current sequence
5: while n is not None do . Backpropagate to root
6: n.visitCount← n.visitCount + 1 . Increase visit count
7: n.scores = n.scores ∪ s . Append score
8: n← n.parent . Will be None for root node

We finally note a slight variation for the scenario with a
substitute model (see Section 3.1). To improve the transfer-
ability rate from the substitute to the original model, we do
not terminate at the first successful adversarial example. In-
stead, we collect all successful samples and stop the outer
loop after a predefined number of iterations. We choose the
sample with the highest score on the substitute to be tested
on the original classifier.

B List of Developers For Impersonation

Table 7 maps the letters to the 20 randomly selected program-
mers from the 2017 GCJ contest.

Table 7: List of developers for impersonation

Letter Author Letter Author

A 4yn K chocimir
B ACMonster L csegura
C ALOHA.Brcps M eugenus
D Alireza.bh N fragusbot
E DAle O iPeter
F ShayanH P jiian
G SummerDAway Q liymouse
H TungNP R sdya
I aman.chandna S thatprogrammer
J ccsnoopy T vudduu

C List of Code Transformations

A list of all 36 developed code transformations is presented
in Table 8. The transformers are grouped accordingly to the
family of their implemented transformations, i.e, transforma-
tions altering the control flow, transformations of declarations,
transformations replacing the used API, template transforma-
tions, and miscellaneous transformations.

494 28th USENIX Security Symposium USENIX Association

Table 8: List of Code Transformations

Control Transformations

Transformer Description of Transformations

For statement transformer Replaces a for-statement by an equivalent while-statement.
While statement transformer Replaces a while-statement by an equivalent for-statement.
Function creator Moves a whole block of code to a standalone function and creates a call to the new function at the respective position.

The transformer identifies and passes all parameters required by the new function. It also adapts statements that change
the control flow (e.g. the block contains a return statement that also needs to be back propagated over the caller).

Deepest block transformer Moves the deepest block in the AST to a standalone function.
If statement transformer Split the condition of a single if-statement at logical operands (e.g., && or ||) to create a cascade or a sequence of two

if-statements depending on the logical operand.

Declaration Transformations

Transformer Description of Transformation

Array transformer Converts a static or dynamically allocated array into a C++ vector object.
String transformer Array option: Converts a char array (C-style string) into a C++ string object. The transformer adapts all usages in the

respective scope, for instance, it replaces all calls to strlen by calling the instance methods size.
String option: Converts a C++ string object into a char array (C-style string). The transformer adapts all usages in the
respective scope, for instance, it deletes all calls to c str().

Integral type transformer Promotes integral types (char, short, int, long, long long) to the next higher type, e.g., int is replaced by long.
Floating-point type transformer Converts float to double as next higher type.
Boolean transformer Bool option: Converts true or false by an integer representation to exploit the implicit casting.

Int option: Converts an integer type into a boolean type if the integer is used as boolean value only.
Typedef transformer Convert option: Convert a type from source file to a new type via typedef, and adapt all locations where the new type

can be used.
Delete option: Deletes a type definition (typedef) and replace all usages by the original data type.

Include-Remove transformer Removes includes from source file that are not needed.
Unused code transformer Function option: Removes functions that are never called.

Variable option: Removes global variables that are never used.
Init-Decl transformer Move into option: Moves a declaration for a control statement if defined outside into the control statement. For instance,

int i; ...; for(i = 0; i < N; i++) becomes for(int i = 0; i < N; i++).
Move out option: Moves the declaration of a control statement’s initialization variable out of the control statement.

API Transformations

Transformer Description of Transformations

Input interface transformer Stdin option: Instead of reading the input from a file (e.g. by using the API ifstream or freopen), the input to the
program is read from stdin directly (e.g. cin or scanf).
File option: Instead of reading the input from stdin, the input is retrieved from a file.

Output interface transformer Stdout option: Instead of printing the output to a file (e.g. by ofstream or freopen), the output is written directly to
stdout (e.g. cout or printf).
File option: Instead of writing the output directly to stdout, the output is written to a file.

Input API transformer C++-Style option: Substitutes C APIs used for reading input (e.g., scanf) by C++ APIs (e.g., usage of cin).
C-Style option: Substitutes C++ APIs used for reading input (e.g., usage of cin) by C APIs (e.g., scanf).

Output API transformer C++-Style option: Substitutes C APIs used for writing output (e.g., printf) by C++ APIs (e.g., usage of cout).
C-Style option: Substitutes C++ APIs used for writing output (e.g., usage cout) by C APIs (e.g., printf).

Sync-with-stdio transformer Enable or remove the synchronization of C++ streams and C streams if possible.

USENIX Association 28th USENIX Security Symposium 495

Table 8: List of Code Transformations (continued)

Template Transformers

Transformer Description of Transformations

Identifier transformer Renames an identifier, i.e., the name of a variable or function. If no template is given, default values are extracted from
the 2016 Code Jam Competition set that was used by Caliskan et al. [9] and that is not part of the training- and test set.
We test default values such as T, t, . . . , i.

Include transformer Adds includes at the beginning of the source file. If no template is given, the most common includes from the 2016
Code Jam Competition are used as defaults.

Global declaration transformer Adds global declarations to the source file. Defaults are extracted from the 2016 Code Jam Competition.
Include-typedef transformer Inserts a type using typedef, and updates all locations where the new type can be used. Defaults are extracted from the

2016 Code Jam Competition.

Miscellaneous Transformers

Transformer Description of Transformations

Compound statement transformer Insert option: Adds a compound statement ({...}). The transformer adds a new compound statement to a control
statement (if, while, etc.) given their body is not already wrapped in a compound statement.
Delete option: Deletes a compound statement ({...}). The transformer deletes compound statements that have no
effect, i.e., compound statements containing only a single statement.

Return statement transformer Adds a return statement. The transformer adds a return statement to the main function to explicitly return 0 (meaning
success). Note that main is a non-void function and is required to return an exit code. If the execution reaches the end
of main without encountering a return statement, zero is returned implicitly.

Literal transformer Substitutes a return statement returning an integer literal, by a statement that returns a variable. The new variable is
declared by the transformer and initialized accordingly.

496 28th USENIX Security Symposium USENIX Association

Terminal Brain Damage: Exposing the Graceless Degradation
in Deep Neural Networks Under Hardware Fault Attacks

Sanghyun Hong, Pietro Frigo†, Yiğitcan Kaya, Cristiano Giuffrida†, Tudor Dumitras,

University of Maryland, College Park
†Vrije Universiteit Amsterdam

Abstract
Deep neural networks (DNNs) have been shown to tolerate
“brain damage”: cumulative changes to the network’s parame-
ters (e.g., pruning, numerical perturbations) typically result
in a graceful degradation of classification accuracy. However,
the limits of this natural resilience are not well understood
in the presence of small adversarial changes to the DNN pa-
rameters’ underlying memory representation, such as bit-flips
that may be induced by hardware fault attacks. We study the
effects of bitwise corruptions on 19 DNN models—six archi-
tectures on three image classification tasks—and we show that
most models have at least one parameter that, after a specific
bit-flip in their bitwise representation, causes an accuracy loss
of over 90%. For large models, we employ simple heuristics
to identify the parameters likely to be vulnerable and estimate
that 40–50% of the parameters in a model might lead to an
accuracy drop greater than 10% when individually subjected
to such single-bit perturbations. To demonstrate how an adver-
sary could take advantage of this vulnerability, we study the
impact of an exemplary hardware fault attack, Rowhammer,
on DNNs. Specifically, we show that a Rowhammer-enabled
attacker co-located in the same physical machine can inflict
significant accuracy drops (up to 99%) even with single bit-
flip corruptions and no knowledge of the model. Our results
expose the limits of DNNs’ resilience against parameter per-
turbations induced by real-world fault attacks. We conclude
by discussing possible mitigations and future research direc-
tions towards fault attack-resilient DNNs.

1 Introduction

Deep neural networks (DNNs) are known to be resilient to
“brain damage” [32]: typically, cumulative changes to the net-
work’s parameters result in a graceful degradation of classifi-
cation accuracy. This property has been harnessed in a broad
range of techniques, such as network pruning [35], which
significantly reduces the number of parameters in the network
and leads to improved inference times. Besides structural re-

silience, DNN models can tolerate slight noise in their parame-
ters with minimal accuracy degradation [2]. Researchers have
proposed utilizing this property in defensive techniques, such
as adding Gaussian noise to model parameters to strengthen
DNN models against adversarial examples [69]. As a result,
this natural resilience is believed to make it difficult for attack-
ers to significantly degrade the overall accuracy by corrupting
network parameters.

Recent work has explored the impact of hardware faults on
DNN models [34,42,45]. Such faults can corrupt the memory
storing the victim model’s parameters, stress-testing DNNs’
resilience to bitwise corruptions. For example, Qin et al. [42],
confirming speculation from previous studies [34,35], showed
that a DNN model for CIFAR10 image classification does
not lose more than 5% accuracy when as many as 2,600 pa-
rameters out of 2.5 million are corrupted by random errors.
However, this analysis is limited to a specific scenario and
only considers accidental errors rather than attacker-induced
corruptions by means of fault attacks. The widespread us-
age of DNNs in many mission-critical systems, such as self-
driving cars or aviation [12, 51], requires a comprehensive
understanding of the security implications of such adversarial
bitwise errors.

In this paper, we explore the security properties of DNNs
under bitwise errors that can be induced by practical hardware
fault attacks. Specifically, we ask the question: How vulnera-
ble are DNNs to the atomic corruption that a hardware fault
attacker can induce? This paper focuses on single bit-flip
attacks that are realistic as they well-approximate the con-
strained memory corruption primitive of practical hardware
fault attacks such as Rowhammer [48]. To answer this ques-
tion, we conduct a comprehensive study that characterizes the
DNN model’s responses to single-bit corruptions in each of
its parameters.

First, we implement a systematic vulnerability analysis
framework that flips each bit in a given model’s parameters
and measures the misclassification rates on a validation set.
Using our framework, we analyze 19 DNN models composed
of six different architectures and their variants on three pop-

USENIX Association 28th USENIX Security Symposium 497

ular image classification tasks: MNIST, CIFAR10, and Im-
ageNet. Our experiments show that, on average, ∼50% of
model parameters are vulnerable to single bit-flip corruptions,
causing relative accuracy drops above 10%, and that all 19
DNN models include parameters that can cause an accuracy
drop of over 90%1. The results expose the limits of the DNN’s
resilience to numerical changes, as adversarial bitwise errors
can lead to a graceless degradation of classification accuracy.

Our framework also allows us to characterize the vulner-
ability by examining the impact of various factors: the bit
position, bit-flip direction, parameter sign, layer width, acti-
vation function, normalization, and model architecture. Our
key findings include: 1) the vulnerability is caused by drastic
spikes in a parameter value; 2) the spikes in positive param-
eters are more threatening, however, an activation function
that allows negative outputs renders the negative parameters
vulnerable as well; 3) the number of vulnerable parameters in-
creases proportionally as the DNN’s layers get wider; 4) two
common training techniques, e.g., dropout [52] and batch
normalization [24], are ineffective in preventing the massive
spikes bit-flips cause; and 5) the ratio of vulnerable param-
eters is almost constant across different architectures (e.g.,
AlexNet, VGG16, and so on). Further, building on these find-
ings, we propose heuristics for speeding up the analysis of
vulnerable parameters in large models.

Second, to understand the practical impact of this vulner-
ability, we use Rowhammer [26] as an exemplary hardware
fault attack. While a variety of hardware fault attacks are doc-
umented in literature [11, 26, 38, 57], Rowhammer is particu-
larly amenable to practical, real-world exploitation. Rowham-
mer takes advantage of a widespread vulnerability in modern
DRAM modules and provides an attacker with the ability to
trigger controlled memory corruptions directly from unpriv-
ileged software execution. As a result, even a constrained
Rowhammer-enabled attacker, who only needs to perform a
specific memory access pattern, can mount practical attacks in
a variety of real-world environments, including cloud [44,67],
browsers [9, 15, 19, 48], mobile [15, 62], and servers [36, 60].

We analyze the feasibility of Rowhammer attacks on DNNs
by simulating a Machine-Learning-as-a-Service (MLaaS) sce-
nario, where the victim and attacker VMs are co-located on
the same host machine in the cloud. The co-location leads the
victim and the attacker to share the same physical memory,
enabling the attacker to trigger Rowhammer bit-flips in the
victim’s data [44, 67]. We focus our analysis to models with
an applicable memory footprint, which can realistically be
targeted by hardware fault attacks such as Rowhammer.

Our Rowhammer results show that in a surgical attack sce-
nario, with the capability of flipping specific bits, the attacker
can reliably cause severe accuracy drops in practical settings.
Further, even in a blind attack scenario, the attacker can still

1The vulnerability of a parameter requires a specific bit in its bitwise rep-
resentation to be flipped. There also might be multiple such bits in the
representation that, when flipped separately, trigger the vulnerability.

mount successful attacks without any control over the loca-
tions of bit-flips landed in memory. Moreover, we also reveal
a potential vulnerability in the transfer learning scenario; in
which a surgical attack targets the parameters in the layers
victim model contains in common with a public one.

Lastly, we discuss directions for viable protection mech-
anisms, such as reducing the number of vulnerable parame-
ters by preventing significant changes in a parameter value.
In particular, this can be done by 1) restricting activation
magnitudes and 2) using low-precision numbers for model
parameters via quantization or binarization. We show that,
when we restrict the activations using the ReLU-6 activa-
tion function, the ratio of vulnerable parameters decreases
from 47% to 3% in AlexNet, and also, the accuracy drops are
largely contained within 10%. Moreover, quantization and
binarization reduce the vulnerable parameter ratio from 50%
to 1-2% in MNIST. While promising, such solutions cannot
deter practical hardware fault attacks in the general case, and
often require training the victim model from scratch; hinting
that more research is required towards fault attack-resilient
DNNs.

Contributions. We make three contributions:
• We show DNN models are more vulnerable to bit-flip

corruptions than previously assumed. In particular, we
show adversarial bitwise corruptions induced by hard-
ware fault attacks can easily inflict severe indiscrimi-
nate damages by drastically increasing or decreasing the
value of a model parameter.

• We conduct the first comprehensive analysis of DNN
models’ behavior against single bit-flips and characterize
the vulnerability that a hardware fault attack can trigger.

• Based on our analysis, we study the impact of practical
hardware fault attacks in a representative DL scenario.
Our analysis shows that a Rowhammer-enabled attacker
can inflict significant accuracy drops (up to 99%) on a
victim model even with constrained bit-flip corruptions
and no knowledge of the model.

2 Preliminaries

Here, we provide an overview of the required background
knowledge.

Deep neural networks. A DNN can be conceptualized as
a function that takes an input and returns a prediction, i.e.,
the inferred label of the input instance. The network is com-
posed of a sequence of layers that is individually parame-
terized by a set of matrices, or weights. Our work focuses
on feed-forward DNNs—specifically on convolutional neural
networks (CNNs)—in the supervised learning setting, i.e., the
weights that minimize the inference error are learned from

498 28th USENIX Security Symposium USENIX Association

a labeled training set. In a feed-forward network, each layer
applies a linear transformation, defined by its weight matrix,
to its input—the output of the previous layer—and a bias
parameter is added optionally. After the linear transformation,
a non-linear activation function is applied; as well as other
optional layer structures, such as dropout, pooling or batch
normalization. During training, the DNN’s parameters, i.e.,
the weights in each layer and in other optional structures,
are updated iteratively by backpropagating the error on the
training data. Once the network converges to an acceptable
error rate or when it goes through sufficient iterations, training
stops and the network, along with all its parameters, is stored
as a trained network. During testing (or inference), we load
the full model into the memory and produce the prediction
for a given input instance, usually not in the training data.

Single precision floating point numbers. The parameters
of a DNN model are usually represented as IEEE754 32-bit
single-precision floating-point numbers. This format lever-
ages the exponential notation and trades off the large range
of possible values for reduced precision. For instance, the
number 0.15625 in exponential notation is represented as
1.25×2−3. Here, 1.25 expresses the mantissa; whereas −3
is the exponent. The IEEE754 single-precision floating-point
format defines 23 bits to store the mantissa, 8 bits for the
exponent, and one bit for the sign of the value. The fact that
different bits have different influence on the represented value
makes this format interesting from an adversarial perspective.
For instance, continuing or example, flipping the 16th bit in
the mantissa increases the value from 0.15625 to 0.15625828;
hence, a usually negligible perturbation. On the other hand,
a flipping the highest exponent bit would turn the value into
1.25×2125. Although both of these rely on the same bit cor-
ruption primitive, they yield vastly different results. In Sec 4,
we analyze how this might lead to a vulnerability when a
DNN’s parameters are corrupted via single bit-flips.

Rowhammer attacks. Rowhammer is the most common
instance of software-induced fault attacks [9, 15, 19, 44, 48,
60, 62, 67]. This vulnerability provides an aggressor with a
single-bit corruption primitive at DRAM level; thus, it is an
ideal attack for the purpose of our analysis. Rowhammer is
a remarkably versatile fault attack since it only requires an
attacker to be able to access content in DRAM; an ubiqui-
tous feature of every modern system. By simply carrying
out specific memory access patterns—which we explain in
Sec 5—the attacker is able to cause extreme stress on other
memory locations triggering faults on other stored data.

3 Threat Model

Prior research has extensively validated a DNN’s resilience
to parameter changes [2, 32, 34, 35, 42, 69], by considering

random or deliberate perturbations. However, from a security
perspective, these results provide only limited insights as they
study a network’s expected performance under cumulative
changes. In contrast, towards a successful and feasible attack,
an adversary is usually interested in inflicting the worst-case
damage under minimal changes.

We consider a class of modifications that an adversary, us-
ing hardware fault attacks, can induce in practice. We assume
a cloud environment where the victim’s deep learning sys-
tem is deployed inside a VM—or a container—to serve the
requests of external users. For making test-time inferences,
the trained DNN model and its parameters are loaded into
the system’s (shared) memory and remain constant in normal
operation. Recent studies describe this as a typical scenario
in MLaaS [61].

To understand the DNNs’ vulnerability in this setting, we
consider the atomic change that an adversary may induce—
the single bit-flip—and we, in Sec 4, systematically charac-
terize the damage such change may cause. We then, in Sec 5,
investigate the feasibility of inducing this damage in prac-
tice, by considering adversaries with different capabilities and
levels of knowledge.

Capabilities. We consider an attacker co-located in the
same physical host machine as the victim’s deep learning
system. The attacker, due to co-location, can take advan-
tage of a well-known software-induced fault attack, Rowham-
mer [44,67], for corrupting the victim model stored in DRAM.
We take into account two possible scenarios: 1) a surgical
attack scenario where the attacker can cause a bit-flip at an
intended location in the victim’s process memory by lever-
aging advanced memory massaging primitives [44, 62] to
obtain more precise results; and 2) a blind attack where the
attacker lacks fine-grained control over the bit-flips; thus, is
completely unaware of where a bit-flip lands in the layout of
the model.

Knowledge. Using the existing terminology, we consider
two levels for the attacker’s knowledge of the victim model,
e.g., the model’s architecture and its parameters as well as
their placement in memory: 1) a black-box setting where the
attacker has no knowledge of the victim model. Here, both
the surgical and blind attackers only hope to trigger an accu-
racy drop as they cannot anticipate what the impact of their
bit-flips would be; and 2) a white-box setting where the at-
tacker knows the victim model, at least partially. Here, the
surgical attacker can deliberately tune the attack’s inflicted ac-
curacy drop—from minor to catastrophic damage. Optionally,
the attacker can force the victim model to misclassify a spe-
cific input sample without significantly damaging the overall
accuracy. However, the blind attacker gains no significant ad-
vantage over the black-box scenario as the lack of capability
prevents the attacker from acting on the knowledge.

USENIX Association 28th USENIX Security Symposium 499

4 Single-Bit Corruptions on DNNs

In this section, we expose DNNs’ vulnerability to single bit-
flips. We start with an overview of our experimental setup
and methodology. We then present our findings of DNNs’
vulnerability to single bit corruptions. For characterizing the
vulnerability, we analyze the impact of 1) the bitwise repre-
sentation of the corrupted parameter, and 2) various DNN
properties; on the resulting indiscriminate damage2. We also
discuss the broader implications of the vulnerability for both
the blind and surgical attackers. Finally, we turn our attention
to two distinct attack scenarios single bit-flips lead to.

4.1 Experimental Setup and Methodology
Our vulnerability analysis framework systematically flips the
bits in a model, individually, and quantifies the impact using
the metrics we define. We implement the framework using
Python 3.73 and PyTorch 1.04 that supports CUDA 9.0 for
accelerating computations by using GPUs. Our experiments
run on the high performance computing cluster that has 488
nodes, where each is equipped with Intel E5-2680v2 2.8GHz
20-core processors, 180 GB of RAM, and 40 of which have 2
Nvidia Tesla K20m GPUs. We achieve a significant amount
of speed-up by leveraging a parameter-level parallelism.

Datasets. We use three popular image classification
datasets: MNIST [31], CIFAR10 [29], and ImageNet [47].
MNIST is a grayscale image dataset used for handwritten dig-
its (zero to nine) recognition, containing 60,000 training and
10,000 validation images of 28x28 pixels. CIFAR10 and Ima-
geNet are colored image datasets used for object recognition.
CIFAR10 includes 32x32 pixels, colored natural images of
10 classes, containing 50,000 training and 10,000 validation
images. For ImageNet, we use the ILSVRC-2012 subset [46],
resized at 224x224 pixels, composed of 1,281,167 training
and 50,000 validation images from 1,000 classes.

Models. We conduct our analysis on 19 different DNN mod-
els. For MNIST, we define a baseline architecture, Base (B),
and generate four variants with different layer configurations:
B-Wide, B-PReLU, B-Dropout, and B-DP-Norm. We also
examine well-known LeNet5 (L5) [31] and test two variants
of it: L5-Dropout and L5-D-Norm. For CIFAR10, we em-
ploy the architecture from [55] as a baseline and experiment
on its three variants: B-Slim, B-Dropout and B-D-Norm. In
the following sections, we discuss why we generate these
variants. In Appendix A, we describe the details of these
custom architectures; in Appendix C, we present the hyper-
parameters. For CIFAR10, we also employ two off-the-shelf

2We use this term to indicate the severe overall accuracy drop in the model.
3https://www.python.org
4https://pytorch.org

network architectures: AlexNet [30] and VGG16 [50]. For Im-
ageNet, we use five well-known DNNs to understand the vul-
nerability of large models: AlexNet, VGG16, ResNet50 [22],
DenseNet161 [23] and InceptionV3 [56]5.

Metrics. To quantify the indiscriminate damage of sin-
gle bit-flips, we define the Relative Accuracy Drop as
RAD = (Accpristine−Acccorrupted)/Accpristine; where Accpristine and
Acccorrupted denote the classification accuracies of the pristine
and the corrupted models, respectively. In our experiments,
we use [RAD > 0.1] as the criterion for indiscriminate dam-
age on the model. We also measure the accuracy of each class
in the validation set to analyze whether a single bit-flip causes
a subset of classes to dominate the rest. In MNIST and CI-
FAR10, we simply compute the Top-1 accuracy on the test
data (as a percentage) and use the accuracy for analysis. For
ImageNet, we consider both the Top-1 and Top-5 accuracy;
however, for the sake of comparability, we report only Top-1
accuracy in Table 1. We consider a parameter as vulnerable
if it, in its bitwise representation, contains at least one bit
that triggers severe indiscriminate damage when flipped. For
quantifying the vulnerability of a model, we simply count the
number of these vulnerable parameters.

Methodology. On our 8 MNIST models, we carry out a
complete analysis: we flip each bit in all parameters of a
model, in both directions—(0→1) and (1→0)—and compute
the RAD over the entire validation. However, a complete anal-
ysis of the larger models requires infeasible computational
time—the VGG16 model for ImageNet with 138M parame-
ters would take ≈ 942 days on our setup. Therefore, based on
our initial results, we devise three speed-up heuristics that aid
the analysis of CIFAR10 and ImageNet models.

Speed-up techniques. The following three heuristics allow
us to feasibly and accurately estimate the vulnerability in
larger models:

• Sampled validation set (SV). After a bit-flip, deciding
whether the bit-flip leads to a vulnerability [RAD > 0.1]
requires testing the corrupted model on the validation set;
which might be cost prohibitive. This heuristic says that we
can still estimate the model accuracy—and the RAD—on
a sizable subset of the validation set. Thus, we randomly
sample 10% the instances from each class in the respective
validation sets, in both CIFAR10 and ImageNet experiments.

• Inspect only specific bits (SB). In Sec 2, we showed how
flipping different bits of a IEEE754 floating-point number
results in vastly different outcomes. Our the initial MNIST
analysis in Sec 4.3 shows that mainly the exponent bits lead to
perturbations strong enough to cause indiscriminate damage.

5The pre-trained ImageNet models we use are available at: https://
pytorch.org/docs/stable/torchvision/models.html.

500 28th USENIX Security Symposium USENIX Association

https://www.python.org
https://pytorch.org
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

Dataset Network Base acc. # Params Speed-up heuristics Vulnerablility

SV SB SP # Params Ratio

M
N

IS
T

B(ase) 95.71 21,840 7 7 7 10,972 50.24%
B-Wide 98.46 85,670 7 7 7 42,812 49.97%
B-PReLU 98.13 21,843 7 7 7 21,663 99.18%
B-Dropout 96.86 21,840 7 7 7 10,770 49.35%
B-DP-Norm 97.97 21,962 7 7 7 11,195 50.97%

L5 98.81 61,706 7 7 7 28,879 46.80%
L5-Dropout 98.72 61,706 7 7 7 27,806 45.06%
L5-D-Norm 99.05 62,598 7 7 7 30,686 49.02%

C
IF

A
R

10

B(ase) 83.74 776,394 3(83.74) 3(exp.) 7 363,630 46.84%
B-Slim 82.19 197,726 3(82.60) 3(exp.) 7 92,058 46.68%
B-Dropout 81.18 776,394 3(80.70) 3(exp.) 7 314,745 40.54%
B-D-Norm 80.17 777,806 3(80.17) 3(exp.) 7 357,448 45.96%

AlexNet 83.96 2,506,570 3(85.00) 3(exp.) 7 1,185,957 47.31%
VGG16 91.34 14,736,727 3(91.34) 3(exp.) 7 6,812,359 46.23%

Im
ag

eN
et

AlexNet 56.52 / 79.07 61,100,840 3(51.12 / 75.66) 3(31st bit) 3(20,000) 9,467 SP 47.34%
VGG16 79.52 / 90.38 138,357,544 3(64.28 / 86.56) 3(31st bit) 3(20,000) 8,414 SP 42.07%
ResNet50 76.13 / 92.86 25,610,152 3(69.76 / 89.86) 3(31st bit) 3(20,000) 9,565 SP 47.82%
DenseNet161 77.13 / 93.56 28,900,936 3(72.48 / 90.94) 3(31st bit) 3(20,000) 9,790 SP 48.95%
InceptionV3 69.54 / 88.65 27,197,488 3(65.74 / 86.24) 3(31st bit) 3(20,000) 8,161 SP 40.84%

SV = Sampled Validation set SB = Specific Bits SP = Sampled Parameters set

Table 1: Indiscriminate damages to 19 DNN models caused by single bit-flips.

This observation is the basis of our SB heuristic that tells us
to examine the effects of flipping only the exponent bits for
CIFAR10 models. For ImageNet models, we use a stronger
SB heuristic and only inspect the most significant exponent
bit of a parameter to achieve a greater speed-up. This heuristic
causes us to miss the vulnerability the remaining bits might
lead to, therefore, its results can be interpreted as a conser-
vative estimate of the actual number of vulnerable parameters.

• Sampled parameters (SP) set. Our MNIST analysis also
reveals that almost 50% of all parameters are vulnerable to
bit-flips. This leads to our third heuristic: uniformly sampling
from the parameters of a model would still yield an accurate
estimation of the vulnerability. We utilize the SP heuristic for
ImageNet models and uniformly sample a fixed number of
parameters—20,000—from all parameters in a model. In our
experiments, we perform this sampling five times and report
the average vulnerability across all runs. Uniform sampling
also reflects the fact that a black-box attacker has a uniform
probability of corrupting any parameter.

4.2 Quantifying the Vulnerability That Leads
to Indiscriminate Damage

Table 1 presents the results of our experiments on single-bit
corruptions, for 19 different DNN models. We reveal that
an attacker, armed with a single bit-flip attack primitive, can
successfully cause indiscriminate damage [RAD > 0.1] and
that the ratio of vulnerable parameters in a model varies be-

tween 40% to 99%; depending on the model. The consistency
between MNIST experiments, in which we examine every
possible bit-flip, and the rest, in which we heuristically exam-
ine only a subset, shows that, in a DNN model, approximately
half of the parameters are vulnerable to single bit-flips. Our
experiments also show small variability in the chances of a
successful attack—indicated by the ratio of vulnerable pa-
rameters. With 40% vulnerable parameters, the InceptionV3
model is the most apparent outlier among the other ImageNet
models; compared to 42-49% for the rest. We define the vul-
nerability based on [RAD > 0.1] and, in Appendix B, we also
give how vulnerability changes within the range [0.1≤ RAD
≤ 1]. In the following subsections, we characterize the vul-
nerability in relation to various factors and discuss our results
in more detail.

4.3 Characterizing the Vulnerability: Bitwise
Representation

Here, we characterize the interaction how the features of a
parameter’s bitwise representation govern its vulnerability.

Impact of the bit-flip position. To examine how much
change in a parameter’s value leads to indiscriminate damage,
we focus on the position of the corrupted bits. In Figure 1,
for each bit position, we present the number of bits—in the
log-scale—that cause indiscriminate damage when flipped,
on MNIST-L5 and CIFAR10-AlexNet models. In our MNIST

USENIX Association 28th USENIX Security Symposium 501

MNIST-L5
CIFAR10-AlexNet

of

 V
ul

ne
ra

bl
e

Pa
ra

m
et

er
s

1

102

104

106

Bit Position (32 - 24th)
32 31 30 29 28 27 26 25 24

Figure 1: The impact of the bit position. The number of
vulnerable parameters in bit positions 32nd to 24th.

experiments, we examine all bit positions and we observe that
bit positions other than the exponents mostly do not lead to
significant damage; therefore, we only consider the exponent
bits. We find that the exponent bits, especially the 31st-bit,
lead to indiscriminate damage. The reason is that a bit-flip in
the exponents causes to a drastic change of a parameter value,
whereas a flip in the mantissa only increases or decreases the
value by a small amount—[0,1]. We also observe that flipping
the 30th to 28th bits is mostly inconsequential as these bits,
in the IEEE754 representation, are already set to one for most
values a DNN parameter usually takes—[3.0517×10−5, 2].

Impact of the flip direction. We answer which direction of
the bit-flip, (0→1) or (1→0), leads to greater indiscriminate
damage. In Table 2, we report the number of effective bit-
flips, i.e., those that inflict [RAD > 0.1] for each direction,
on 3 MNIST and 2 CIFAR10 models. We observe that only
(0→1) flips cause indiscriminate damage and no (1→0) flip
leads to vulnerability. The reason is that a (1→0) flip can
only decrease a parameter’s value, unlike a (0→1) flip. The
values of model parameters are usually normally distributed—
N(0,1)—that places most of the values within [-1,1] range.
Therefore, a (1→0) flip, in the exponents, can decrease the
magnitude of a typical parameter at most by one; which is not
a strong enough change to inflict critical damage. Similarly, in
the sign bit, both (0→1) and (1→0) flips cannot cause severe
damage because they change the magnitude of a parameter at
most by two. On the other hand, a (0→1) flip, in the exponents,
can increase the parameter value significantly; thus, during
the forward-pass, the extreme neuron activation caused by the
corrupted parameter overrides the rest of the activations.

Direction Models (M: MNIST, C: CIFAR10)

(32-24th bits) M-B M-PReLU M-L5 C-B C-AlexNet

0→1 11,019 21,711 28,902 314,768 1,185,964
1→0 0 0 0 0 0

Total 11,019 21,711 28,902 314,768 1,185,964

Table 2: The impact of the flip direction. The number of
effective bit-flips in 3 MNIST and 2 CIFAR10 models.

Impact of the parameter sign. As our third feature, we
investigate whether the sign—positive or negative—of the
corrupted parameter impacts the vulnerability. In Figure 2,
we examine the MNIST-L5 model and present the number of
vulnerable positive and negative parameters in each layer—in
the log-scale. Our results suggest that positive parameters are
more vulnerable to single bit-flips than negative parameters.
We identify the common ReLU activation function as the
reason: ReLU immediately zeroes out the negative activation
values, which are usually caused by the negative parameters.
As a result, the detrimental effects of corrupting a negative
parameter fail to propagate further in the model. Moreover,
we observe that in the first and last layers, the negative pa-
rameters, as well as the positive ones, are vulnerable. We
hypothesize that, in the first convolutional layer, changes in
the parameters yield a similar effect to corrupting the model
inputs directly. On the other hand, in their last layers, DNNs
usually have the Softmax function that does not have the same
zeroing-out effect as ReLU.

4.4 Characterizing the Vulnerability: DNN
Properties

We continue our analysis by investigating how various proper-
ties of a DNN model affect the model’s vulnerability to single
bit-flips.

Impact of the layer width. We start our analysis by asking
whether increasing the width of a DNN affects the number
of vulnerable parameters. In Table 1, in terms of the number
of vulnerable parameters, we compare the MNIST-B model
with the MNIST-B-Wide model. In the wide model, all the
convolutional and fully-connected layers are twice as wide
as the corresponding layer in the base model. We see that
the ratio of vulnerable parameters is almost the same for
both models: 50.2% vs 50.0%. Further, experiments on the
CIFAR10-B-Slim and CIFAR10-B—twice as wide as the slim
model—produce consistent results: 46.7% and 46.8%. We
conclude that the number of vulnerable parameters grows
proportionally with the DNN’s width and, as a result, the ratio
of vulnerable parameters remains constant at around 50%.

Impact of the activation function. Next, we explore
whether the choice of activation function affects the vulner-
ability. Previously, we showed that ReLU can neutralize the
effects of large negative parameters caused by a bit-flip; thus,
we experiment on different activation functions that allow neg-
ative outputs, e.g., PReLU [21], LeakyReLU, or RReLU [68].
These ReLU variants have been shown to improve the training
performance and the accuracy of a DNN. In this experiment,
we train the MNIST-B-PReLU model; which is exactly the
same as the MNIST-B model, except that it replaces ReLU
with PReLU. Figure 3 presents the layer-wise number of

502 28th USENIX Security Symposium USENIX Association

Positive Params
Positive Vuln. Params
Negative Params
Negative Vuln. Params

of

 P
ar

am
et

er
s

(L
og

)

1

101

102

103

104

Layer Names (C: convolutional, F: fully-connected, W: weight, B: bias)
C1.W C1.B C2.W C2.B C3.W C3.B F1.W F1.B F2.W F2.B

Figure 2: The impact of the parameter sign. The number of vulnerable positive and negative parameters, in each layer of
MNIST-L5.

Positive Params
Positive Vuln. Params
Negative Params
Negative Vuln. Params

of

 P
ar

am
et

er
s

(L
og

)

1

101

102

103

104

Layer Names (C: convolutional, F: fully-connected, W: weight, B: bias)
C1.W C1.B C2.W C2.B F1.W F1.B F2.W F2.B

Figure 3: The impact of the activation function. The number of vulnerable positive and negative parameters, in each layer of
MNIST-PReLU.

vulnerable positive and negative parameters in MNIST-B-
PReLU. We observe that using PReLU causes the negative
parameters to become vulnerable and, as a result, leads to a
DNN approximately twice as vulnerable as the one that uses
ReLU—50.2% vs. 99.2% vulnerable parameters.

CIFAR10-Base N(0.001, 0.042)
CIFAR10-Drop N(-0.002, 0.040)
CIFAR10-BNorm N(-0.001, 0.039)

Pr
ob

ab
ilit

y

Model Parameter Values
−0.3 −0.2 −0.1 0 0.1 0.2 0.3

Figure 4: The impact of the dropout and batch normal-
ization. The distributions of the parameter values of three
CIFAR10 models variants.

Impact of dropout and batch normalization. We con-
firmed that successful bit-flip attacks increase a parameter’s
value drastically to cause indiscriminate damage. In conse-
quence, we hypothesize that common techniques that tend to
constrain the model parameter values to improve the perfor-
mance, e.g., dropout [52] or batch normalization [24], would

result in a model more resilient to single bit-flips. Besides the
base CIFAR10 and MNIST models, we train the B-Dropout
and B-DNorm models for comparison. In B-Dropout models,
we apply dropout before and after the first fully-connected
layers; in B-DNorm models, in addition to dropout, we also
apply batch normalization after each convolutional layer. In
Figure 4, we compare our three CIFAR10 models and show
how dropout and batch normalization have the effect of re-
ducing the parameter values. However, when we look into the
vulnerability of these models, we surprisingly find that the vul-
nerability is mostly persistent regardless of dropout or batch
normalization—with at most 6.3% reduction in vulnerable
parameter ratio over the base network.

Impact of the model architecture. Table 1 shows that the
vulnerable parameter ratio is mostly consistent across differ-
ent DNN architectures. However, we see that the InceptionV3
model for ImageNet has a relatively lower ratio—40.8%—
compared to the other models—between 42.1% and 48.9%.
We hypothesize that the reason is the auxiliary classifiers in
the InceptionV3 architecture that have no function at test-time.
To confirm our hypothesis, we simply remove the parame-
ters in the auxiliary classifiers; which bring the vulnerability
ratio closer to the other models—46.5%. Interestingly, we
also observe that the parameters in batch normalization lay-
ers are resilient to a bit-flip: corrupting running_mean and
running_var cause negligible damage. In consequence, ex-

USENIX Association 28th USENIX Security Symposium 503

Teacher (Vuln. Parameters)
Student (Vuln. Parameters)

Frozen Parameters (Shared between the Teacher and Student) Re-trained Parameters (Separate for Both)

of

 V
ul

n.
 P

ar
am

et
er

s

0

500

1000

Layer Names (C: convolutional, F: fully-connected, W: weight, B: bias)

C
1.

W

C
1.

B

C
2.

W

C
2.

B

C
3.

W

C
3.

B

C
4.

W

C
4.

B

C
5.

W

C
5.

B

C
6.

W

C
6.

B

C
7.

W

C
7.

B

C
8.

W

C
8.

B

C
9.

W

C
9.

B

C
10

.W

C
10

.B

C
11

.W

C
11

.B

C
12

.W

C
12

.B

C
13

.W

C
13

.B

F1
.W

F1
.B

F2
.W

F2
.B

Figure 5: The security threat in a transfer learning scenario. The victim model—student—that is trained by transfer learning
is vulnerable to the surgical attacker, who can see the parameters the victim has in common with the teacher model.

cluding the parameters in InceptionV3’s multiple batch nor-
malization layers leads to a slight increase in vulnerability—
by 0.02%.

4.5 Implications for the Adversaries
In Sec 3, we defined four attack scenarios: the blind and sur-
gical attackers, in the black-box and white-box settings. First,
we consider the strongest attacker: the surgical, who can flip a
bit at a specific memory location, white-box, with the model
knowledge for anticipating the impact of flipping the said bit.
To carry out the attack, this attacker identifies: 1) how much
indiscriminate damage, the RAD goal, she intends to inflict,
2) a vulnerable parameter that can lead to the RAD goal, 3) in
this parameter, the bit location, e.g., 31st-bit, and the flip di-
rection, e.g., (0→1), for inflicting the damage. Based on our
[RAD > 0.1] criterion, approximately 50% of the parameters
are vulnerable in all models; thus, for this goal, the attacker
can easily achieve 100% success rate. For more severe goals
[0.1 ≤ RAD ≤ 0.9], our results in Appendix B suggest that
the attacker can still find vulnerable parameters. In Sec 5.1,
we discuss the necessary primitives, in a practical setting, for
this attacker.

For a black-box surgical attacker, on the other hand, the
best course of action is to target the 31st-bit of a parameter.
This strategy maximizes the attacker’s chance of causing in-
discriminate damage, even without knowing what, or where,
the corrupted parameter is. Considering, the VGG16 model
for ImageNet, the attack’s success rate is 42.1% as we report
in Table 1; which is an upper-bound for the black-box attack-
ers. For the weakest—black-box blind—attacker that cannot
specifically target the 31st-bit, we conservatively estimate the
lower-bound as 42.1% / 32-bits = 1.32%; assuming only the
31st-bits lead to indiscriminate damage. Note that the success
rate for the white-box blind attacker is still 1.32% as acting
upon the knowledge of the vulnerable parameters requires an
attacker to target specific parameters. In Sec 5.2, we evaluate
the practical success rate of a blind attacker.

4.6 Distinct Attack Scenarios
In this section, other than causing indiscriminate damage, we
discuss two distinct attack scenarios single bit-flips might
enable: transfer learning and targeted misclassification.

Transfer learning scenario. Transfer learning is a com-
mon technique for transferring the knowledge in a pre-trained
teacher model to a student model; which, in many cases,
outperforms training a model from scratch. In a practical
scenario, a service provider might rely on publicly available
teacher as a starting point to train commercial student mod-
els. The teacher’s knowledge is transferred by freezing some
of its layers and embedding them into the student model;
which, then, trains the remaining layers for its own task. The
security risk is that, for an attacker who knows the teacher
but not the student, a black-box attack on the student might
escalate into a white-box attack on the teacher’s frozen lay-
ers. The attacker first downloads the pre-trained teacher from
the Internet. She then loads the teacher into the memory and
waits for the deduplication [66] to happen. During deduplica-
tion, the memory pages with the same contents—the frozen
layers—are merged into the shared pages between the victim
and attacker. In consequence, a bit-flip in the attacker’s pages
can also affect the student model in the victim’s memory.
We hypothesize that a surgical attacker, who can identify the
teacher’s vulnerable parameters and trigger bit-flips in these
parameters, can cause indiscriminate damage to the student
model. In our experiments, we examine two transfer learning
tasks in [63]: the traffic sign (GTSRB) [53] and flower recog-
nition (Flower102) [41]. We initialize the student model by
transferring first ten frozen layers of the teacher—VGG16 or
ResNet50 on ImageNet. We then append a new classification
layer and train the resulting student network for its respective
task by only updating the new unfrozen layer. We corrupt the
1,000 parameters sampled from each layer in the teacher and
monitor the damage to the student model. Figure 5 reports our
results: we find that all vulnerable parameters in the frozen
layers and more than a half in the re-trained layers are shared
by the teacher and the student.

504 28th USENIX Security Symposium USENIX Association

Figure 6: The vulnerable parameters for a targeted attack in 3 DNN models. Each cell reports the number of bits that lead
to the misclassification of a target sample, whose original class is given by the x-axis, as the target class, which is given by the
y-axis. From left to right, the models are MNIST-B, MNIST-L5 and CIFAR10-AlexNet.

Targeted misclassification. Although our main focus is
showing DNNs’ graceless degradation, we conduct an ad-
ditional experiment to see whether a single bit-flip primitive
could be used in the context of targeted misclassification at-
tacks. A targeted attack aims to preserve the victim model’s
overall accuracy while causing the network to misclassify a
specific target sample into the target class. We experiment
with a target sample from each class in MNIST or CIFAR10—
we use MNIST-B, MNIST-L5, and CIFAR10-AlexNet models.
Our white-box surgical attacker also preserves the accuracy
by limiting the [RAD < 0.05] as in [55]. We find that the num-
ber of vulnerable parameters for targeted misclassifications is
lower than that of for causing indiscriminate damage. In Fig-
ure 6, we also see that for some (original–target class) pairs,
the vulnerability is more evident. For example, in MNIST-B,
there are 141 vulnerable parameters for (class 4–class 6) and
209 parameters for (class 6–class 0). Simlarly, in CIFAR10-
AlexNet, there are 6,000 parameters for (class 2–class 3);
3,000 parameters for (class 3–class 6); and 8,000 parameters
for (class 6–class 3).

5 Exploiting Using Rowhammer

In order to corroborate the analysis made in Sec 4 and prove
the viability of hardware fault attacks against DNN, we test
the resiliency of these models against Rowhammer. At a high
level, Rowhammer is a software-induced fault attack that pro-
vides the attacker with a single-bit write primitive to specific
physical memory locations. That is, an attacker capable of
performing specific memory access patterns (at DRAM-level)
can induce persistent and repeatable bit corruptions from
software. Given that we focus on single-bit perturbations on
DNN’s parameters in practical settings, Rowhammer repre-
sents the perfect candidate for the task.

DRAM internals. In Figure 7, we show the internals of a
DRAM bank. A bank is a bi-dimensional array of memory

cells connected to a row buffer. Every DRAM chip contains
multiple banks. The cells are the actual storage of one’s data.
They contain a capacitor whose charge determines the value
of a specific bit in memory. When a read is issued to a specific
row, this row gets activated, which means that its content gets
transferred to the row buffer before being sent to the CPU.
Activation is often requested to recharge a row’s capacitors
(i.e., refresh operation) since they leak charge over time.

Rowhammer mechanism. Rowhammer is a DRAM distur-
bance error that causes spurious bit-flips in DRAM cells gener-
ated by frequent activations of a neighboring row. Here, we fo-
cus on double-sided Rowhammer, the most common and effec-
tive Rowhammer variant used in practical attacks [15, 44, 62].
Figure 8 exemplifies a typical double-sided Rowhammer at-
tack. The victim’s data is stored in a row enclosed between
two aggressor rows that are repeatedly accessed by the at-
tacker. Due to the continuous activations of the neighboring
rows, the victim’s data is under intense duress. Thus, there is
a large probability of bit-flips on its content.

To implement such attack variant, the attacker usually needs
some knowledge or control over the physical memory layout.
Depending on the attack scenario, a Rowhammer-enabled at-
tacker can rely on a different set of primitives for this purpose.
In our analysis, we consider two possible scenarios: 1) we

Row Buffer

Figure 7: DRAM bank structure.
Zoom-in on a cell containing the
capacitor storing data.

Row Buffer

Figure 8: Double-sided
Rowhammer. Aggressor rows

, and a victim row
.

USENIX Association 28th USENIX Security Symposium 505

DRAM # (0→1) flips DRAM # (0→1) flips

A_2 21,538 A_4 5,577
E_2 16,320 I_1 4,781
H_1 10,608 J_1 4,725
G_1 7,851 E_1 4,175
A_1 4,367 A_3 1,541
F_1 5,927 C_1 1,365

Table 3: Hammertime database [58]. We report the number
of (0→1) bit-flips in 12 different DRAM setups. (The rows
in gray are used for the experiments in Figure 9.)

initially consider the surgical attacker; that is, an attacker with
the capability of causing bit-flips at the specific locations, and
we demonstrate how, under these assumptions, she can in-
duce indiscriminate damage to a co-located DNN application.
2) We then deprive the attacker of this ability to analyze the
outcome of a blind attacker and we demonstrate that, even
in a more restricted environment, the attacker can still cause
indiscriminate damage by causing bitwise corruptions.

Experimental setup. For our analysis, we constructed a
simulated environment6 relying on a database of the Rowham-
mer vulnerability in 12 DRAM chips, provided by Tatar et
al [58]. Different memory chips have a different degree of
susceptibility to the Rowhammer vulnerability, enabling us
to study the impact of Rowhammer attacks on DNNs in dif-
ferent real-world scenarios. Table 3 reports the susceptibility
of the different memory chips to Rowhammer. Here, we only
include the numbers for (0→1) bit-flips since these are the
more interesting ones for the attacker targeting a DNN model
according to our earlier analysis in Sec 4.3 and Sec 4.4.

We perform our analysis on an exemplary deep learning
application implemented in PyTorch, constantly querying an
ImageNet model. We use ImageNet models since we focus on
a scenario where the victim has a relevant memory footprint
that can be realistically be targeted by hardware fault attacks
such as Rowhammer in practical settings. While small models
are also potential targets, the number of interesting locations
to corrupt is typically limited to draw general conclusions on
the practical effectiveness of the attack.

5.1 Surgical Attack Using Rowhammer
We start our analysis by discussing a surgical attacker, who
has the capability of causing a bit-flip at the specific loca-
tion in memory. The two surgical attackers are available:
the attacker with the knowledge of the victim model (white-

6We first implemented all the steps described in our paper on a physical
system, considering using end-to-end attacks for our analysis. After prelim-
inary testing of this strategy on our own DRAMs, we concluded it would
be hard to generalize the findings of such an analysis and decided against
it—in line with observations from prior work [59].

Network Vuln. Objects Vuln. Params #Hammer Attempts
(Vuln./Total) (in 20k params) (min / med / max)

AlexNet 7/16 9,522 4/64/4,679
VGG16 12/32 8,140 4/64/4,679
ResNet50 9/102 3,466 4/64/4,679
DenseNet161 63/806 5,117 4/64/4,679
InceptionV3 53/483 6,711 4/64/4,679

Table 4: Effectiveness of surgical attacks. We examine five
different ImageNet models analyzed in Sec 4.

box) and without (black-box). However, in this subsection,
we assume that the strongest attacker knows the parameters
to compromise and is capable of triggering bit-flips on its
corresponding memory location. Then, this attacker can take
advantage of accurate memory massing primitives (e.g., mem-
ory deduplication) to achieve 100% attack success rate.

Memory templating. Since a surgical attacker knows the
location of vulnerable parameters, she can template the mem-
ory up front [44]. That is, the attacker scans the memory by
inducing Rowhammer bit-flips in her own allocated chunks
and looking for exploitable bit-flips. A surgical attacker aims
at specific bit-flips. Hence, while templating the memory, the
attacker simplifies the scan by looking for bit-flips located at
specific offsets from the start address of a memory page (i.e.,
4 KB)—the smallest possible chunk allocated from the OS.
This allows the attacker to find memory pages vulnerable to
Rowhammer bit-flips at a given page offset (i.e., vulnerable
templates), which they can later use to predictably attack the
victim data stored at that location.

Vulnerable templates. To locate the parameters of the at-
tacker’s interest (i.e., vulnerable parameters) within the mem-
ory page, she needs to find page-aligned data in the victim
model. Modern memory allocators improve performances
by storing large objects (usually multiples of the page size)
page-aligned whereas smaller objects are not. Thus, we first
analyzed the allocations performed by the PyTorch frame-
work running on Python to understand if it performs such
optimized page-aligned allocations for large objects similar to
other programs [16, 39]. We discovered this to be the case for
all the objects larger than 1 MB—i.e., our attacker needs to
target the parameters such as weight, bias, and so on, stored
as tensor objects in layers, larger than 1 MB.

Then, again focusing on the ImageNet models, we analyzed
them to identify the objects that satisfy this condition. Even if
the ratio between the total number of objects and target objects
may seem often unbalanced in favor of the small ones7, we
found that the number of vulnerable parameters in the target
objects is still significant (see Table 4). Furthermore, it is

7The bias in convolutional or dense layers, and the running_mean and
running_var in batch-norms are usually the small objects (< 1 MB).

506 28th USENIX Security Symposium USENIX Association

important to note that when considering a surgical attacker,
she only needs one single vulnerable template to compromise
the victim model, and there is only 1,024 possible offsets
where we can store a 4-byte parameter within a 4 KB page.

Memory massaging. After finding a vulnerable template,
the attacker needs to massage the memory to land the vic-
tim’s data on the vulnerable template. This can be achieved,
for instance, by exploiting memory deduplication [9, 44, 67].
Memory deduplication is a system-level memory optimization
that merges read-only pages for different processes or VMs
when they contain the same data. These pages re-split when a
write is issued to them. However, Rowhammer behaves as in-
visible bit-wise writes that do not trigger the spit, breaking the
process boundaries. If the attacker knows (even if partially)
the content of the victim model can take advantage of this
merging primitive to compromise the victim service.

Experimental results. Based on the results of the experi-
ments in Sec 4.3 and Sec 4.4, we analyzed the requirements
for a surgical (white-box) attacker to carry out a successful
attack. Here, we used one set of the five sampled parameters
for each model. In Table 4, we report min, median, and max
values of the number of rows that an attacker needs to hammer
to find the first vulnerable template on the 12 different DRAM
setups for each model. This provides a meaningful metric to
understand the success rate of a surgical attack. As you can
see in Table 4, the results remain unchanged among all the
different models. That is, for every model we tested in the
best case, it required us to hammer only 4 rows (A_2 DRAM
setup) to find a vulnerable template all the way up to 4,679
in the worst case scenario (C_1). The reason why the results
are equal among the different models is due to the number of
vulnerable parameters which largely exceeds the number of
possible offsets within a page that can store such parameters
(i.e., 1024). Since every vulnerable parameter yields indis-
criminate damage [RAD > 0.1], we simply need to identify
a template that could match any given vulnerable parameter.
This means that an attacker can find a vulnerable template
at best in a matter of few seconds8 and at worst still within
minutes. Once the vulnerable template is found, the attacker
can leverage memory deduplication to mount an effective
attack against the DNN model—with no interference with the
rest of the system.

5.2 Blind Attack Using Rowhammer
While in Sec 5.1 we analyzed the outcome of a surgical attack,
here we abstract some of the assumptions made above and
study the effectiveness of a blind attacker oblivious of the
bit-flip location in memory. To bound the time of the lengthy

8We assume 200ms to hammer a row.

blind Rowhammer attack analysis, we specifically focus our
experiments on the ImageNet-VGG16 model.

We run our PyTorch application under the pressure of
Rowhammer bit-flips indiscriminately targeting both code
and data regions of the process’s memory. Our goal is twofold:
1) to understand the effectiveness of such attack vector in a
less controlled environment and 2) to examine the robustness
of a running DNN application to Rowhammer bit-flips by
measuring the number of failures (i.e., crashes) that our blind
attacker may inadvertently induce.

Attacker’s capabilities. We consider a blind attacker who
cannot control the bit-flips caused by Rowhammer. As a result,
the attacker may corrupt bits in the DNN’s parameters as well
as the code blocks in the victim process’s memory. In princi-
ple, since Rowhammer bit-flips propagate at the DRAM level,
a fully blind Rowhammer attacker may also inadvertently
flip bits in other system memory locations. In practice, even
an attacker with limited knowledge of the system memory
allocator, can heavily influence the physical memory layout
by means of specially crafted memory allocations [17, 18].
Since this strategy allows attackers to achieve co-location
with the victim memory and avoid unnecessary fault propaga-
tion in practical settings, we restrict our analysis to a scenario
where bit-flips can only (blindly) corrupt memory of the vic-
tim deep learning process. This also generalizes our analysis
to arbitrary deployment scenarios, since the effectiveness of
blind attacks targeting arbitrary system memory is inherently
environment-specific.

Methods. For every one of the 12 vulnerable DRAM se-
tups available in the database, we carried out 25 experiments
where we performed at most 300 “hammering” attempts—
value chosen after the surgical attack analysis where a median
of 64 attempts was required. The experiment has three possi-
ble outcomes: 1) we trigger one(or more) effective bit-flip(s)
that compromise the model, and we record the relative accu-
racy drop when performing our testing queries; 2) we trigger
one(or more) effective bit-flip(s) in other victim memory loca-
tions that result in a crash of the deep learning process; 3) we
reach the “timeout” value of 300 hammering attempts. We
set such “timeout” value to bound our experimental analysis
which would otherwise result too lengthy.

Experimental results. In Figure 9, we present the results
for three sampled DRAM setups. We picked A_2, I_1, and C_1
as representative samples since they are the most, least, and
moderately vulnerable DRAM chips (see Table 3). Depending
on the DRAM setup, we obtain fairly different results. We
found A_2 obtains successful indiscriminate damages to the
model in 24 out of 25 experiments while, in less vulnerable
environments such as C_1, the number of successes decreases
to only one while the other 24 times out. However, it is im-

USENIX Association 28th USENIX Security Symposium 507

I_1

DRAM
Configuration

Figure 9: The successful runs of a blind attack execution
over three different DRAM setups (A_2-most, I_1-least,
and C_1-moderately vulnerable). We report the success in
terms of # f lips and #hammer attempts required to obtain an
indiscriminate damage to the victim model. We observe the
successes within few hammering attempts.

Accuracy Drop

Top-5

0.0 0.2 0.4 0.6 0.8 1.0

Top-1

Figure 10: The distribution of relative accuracy drop for
Top-1 and Top-5. We compute them over the effective # f lips
in our experiments on the ImageNet-VGG16 model.

portant to note that a timeout does not represent a negative
result—a crash. Contrarily, while C_1 only had a single suc-
cessful attack, it also represents a peculiar case corroborating
the analysis presented in Sec 4. The corruption generated in
this single successful experiment was induced by a single bit-
flip, which caused one of the most significant RADs detected
in the entire experiment, i.e., 0.9992 and 0.9959 in Top-1 and
Top-5. Regardless of this edge case, we report a mean of 15.6
out of 25 effective attacks for this Rowhammer variant over
the different DRAM setups. Moreover, we report the distribu-
tion of accuracy drops for Top-1 and Top-5 in Figure 10. In
particular, the median drop for Top-1 and Top-5 confirms the
claims made in the previous sections, i.e., the blind attacker
can expect [RAD > 0.1] on average.

Interestingly, when studying the robustness of the victim
process to Rowhammer, we discovered it to be quite resilient
to spurious bit-flips. We registered only 6 crashes over all
the different DRAM configurations and experiments—300

in total. This shows that the model effectively dominates the
memory footprint of the victim process and confirms findings
from our earlier analysis that bit-flips in non-vulnerable model
elements have essentially no noticeable impact.

5.3 Synopsis
Throughout the section, we analyzed the outcome of surgi-
cal and blind attacks against large DNN models and demon-
strated how Rowhammer can be deployed as a feasible at-
tack vector against these models. These results corroborate
our findings in Sec 4 where we estimated at least 40% of a
model’s parameters to be vulnerable to single-bit corruptions.
Due to this large attack surface, in Sec 5.1, we showed that
a Rowhammer-enabled attacker armed with knowledge of
the network’s parameters and powerful memory massaging
primitives [44, 62, 67] can carry out precise and effective in-
discriminate attacks in a matter of, at most, few minutes in our
simulated environment. Furthermore, this property, combined
with the resiliency to spurious bit-flips of the (perhaps idle)
code regions, allowed us to build successful blind attacks
against the ImageNet-VGG16 model and inflict “terminal
brain damage” even when hiding the model from the attacker.

6 Discussion

In this section, we discuss and evaluate some potential mitiga-
tions to protect against single-bit attacks on DNN models. We
discuss two research directions towards making DNN models
resilient to bit-flips: to restrict activation magnitudes and to
use low-precision numbers. Prior work on defenses against
Rowhammer attacks suggest system-level defenses [10, 27]
that often even require specific hardware support [6, 26].
Yet they have not been widely deployed since they require
infrastructure-wide changes from cloud host providers. More-
over, even though the infrastructure is robust to Rowhammer
attacks, an adversary can leverage other vectors to exploit
bit-flips attacks to corrupt a model. Thus, we focus on the
solutions that our victim can apply to his models.

6.1 Restricting Activation Magnitudes
In Sec 4.3, we found that the vulnerable parameter ratio
changes based on inherent properties of a DNN; for instance,
using PReLU activation function allows a model to propagate
negative extreme activations. Hence, if we opt for an activa-
tion function that always bounds the output within a specific
range, a bit-flip is hard to cause indiscriminate damage. There
are several functions, such as Tanh or HardTanh [25], that sup-
presses the activations; however, using ReLU-6 [28] function
provides two key advantages over the others: 1) the victim
only needs to substitute the existing activation functions from
ReLU to ReLU-6 without re-training, and 2) ReLU-6 allows

508 28th USENIX Security Symposium USENIX Association

Network Train Base acc. # Params Vulnerability

Base (ReLU) Scr 98.13

21,840

10,972 (50.2%)
Base (ReLU6) Scr 98.16 313 (1.4%)
Base (Tanh) Scr 97.25 507 (2.3%)
Base (ReLU6) Sub 95.71 542 (2.4%)

AlexNet (ReLU) - 56.52 / 79.07 20,000
(61M)

9.467 (47.34%)
AlexNet (ReLU6) Sub 39.80 / 65.82 560 (2.8%)
AlexNet (ReLUA) Sub 56.52 / 79.07 1,063 (5.32%)

VGG16 (ReLU) - 64.28 / 86.56 20,000
(138M)

8,227 (41.13%)
VGG16 (ReLU6) Sub 38.58 / 64.84 2,339 (11.67%)
VGG16 (ReLUA) Sub 64.28 / 86.56 2,427 (12.14%)

Table 5: Effectiveness of restricting activation.

the victim to control the level of permitted activation by mod-
ifying the bounds, e.g., using other limits instead of 6, which
minimizes the performance loss by bounding the activation.
What the victim can do is to monitor the activation values
over the validation set and to decide the limits that only sup-
presses the abnormal activation by bit-flips. For example, in
our experiments with ImageNet-AlexNet, we set the limits to
[0,max], where max is defined adaptively by looking at the
maximum activation from each layer (ReLU-A).

Figure 11: The vulnerability of DNN models using differ-
ent criterions. We illustrate the ImageNet-AlexNet (red lines)
and -VGG16 (black lines) cases with ReLU-6 and ReLU-A.

Experiments. We use three DNN models in Sec 4: the
MNIST-B, ImageNet-AlexNet, and ImageNet-VGG16 mod-
els. We evaluate four activation functions: ReLU (default),
Tanh, ReLU-6, and ReLU-A (only for AlexNet and VGG16),
and two training methods: training a model from scratch (Scr)
or substituting the existing activation into another (Sub). We
use the notation as the network names with the activation in
parenthesis, e.g., AlexNet (ReLU-6). For larger models, we
use the same speed-up heuristics in Sec 4.2; SV, SB, and SP.

Table 5 shows the effectiveness of our proposal. For each
network (Column 1), we list the training method, the base

Network Method Base acc. # Params Vulnerability

L5 - 99.24 62,598 30,686 (49.0%)
L5 8-bit Quantized 99.03 62,600 0 (0.0%)
L5 XNOR Binarized 98.39 62,286 623 (1.0%)

Table 6: Effectiveness of using low-precision.

accuracy, the number of examined parameters, and the vul-
nerability (Column 2-5). We found that restricting activation
magnitudes with Tanh and ReLU-6 in some instances can
reduce the vulnerability; For instance, in the MNIST mod-
els, we observed that the number of vulnerable parameters is
reduced from 50% to 1.4-2.4% without incurring in signifi-
cant performance loss. Further, we discovered that ReLU-6
achieves a similar effect without re-training of a model like
Tanh. However, there are the vulnerable parameters after the
restrictions since we cannot apply the ReLU-6 function to the
last layer. In AlexNet and VGG16, the decrease in the number
of vulnerable parameters is also generally significant, namely
from 47.34% to 2.8% and 41.13% to 11.67%. However, we
observe the models suffer from large accuracy drops caused
by restricting the activation. To minimize the loss, we control
the bounds of activation in AlexNet (ReLU-A) and VGG16
(ReLU-A) by choosing the maximum activation from each
layer. With the ReLU-A, we can trade accuracy for the number
of vulnerable parameters as we show in Table 5. Neverthe-
less, it is interesting to see that by employing ReLU-A, while
the number of vulnerable parameters remains significant, the
RAD also suffers from the new activation function limiting
the possible effects of the corruption. In Figure 11, the dashed
lines are for ReLU-6, the dashed-dot lines are for ReLU-A,
and the straight lines are for ReLU. We found the ReLU-A
lines are between the ReLU and ReLU-6 in AlexNet.

Takeaways. Our experimental results with restricting acti-
vation magnitudes suggest that: this mechanism 1) allows a
defender to control the trade-off between the relative accuracy
drop and reducing the vulnerable parameters and 2) enables
ad-hoc defenses to DNN models, which does not require train-
ing the network from scratch. However, the remaining number
of vulnerable parameters shows that the Rowhammer attacker
still could inflict damage, with a reduced success rate.

6.2 Using Low-precision Numbers
Another direction is to represent the model parameters as low-
precision numbers by using quantization and binarization.
In Sec 4.3, we found that the vulnerability exploits the bit-
wise representation of the corrupted parameter to induce the
dramatic chances in the parameter value. Our intuition is to
use low-precision numbers hard to be increased dramatically
by a bit-flip; for example, an integer expressed as the 8-bit
quantized format can be increased at most 128 by a flip in the

USENIX Association 28th USENIX Security Symposium 509

MSB (8th bit). Thus, the attacker only can increase a model
parameter with such a restricted bound. Training models us-
ing low-precision numbers are supported by the popular deep
learning frameworks such as TensorFlow9. The victim can
train and deploy the model with the quantized or binarized
parameters by utilizing the frameworks.

Experiments. To validate our intuition, we use 3 DNN mod-
els: the MNIST-L5 (baseline) and its quantized and binarized
models. When we quantize the MNIST-L5 model, we use the
8-bit quantization in [7, 64] which converts the model param-
eters in all layers into integers between 0 and 255. For the
binarization, we employ the method in XNOR-Net [43] which
converts the model parameters to -1 and 1, except the first
convolutional layer. Using the trained models, we evaluate the
vulnerability to single bit-flips, and report the accuracy, total
parameters, and vulnerability, without the speed-up heuristics.

Table 6 shows the effectiveness of using low-precision
parameters. For each network (Column 1), we note the quan-
tization method, the accuracy, the number of vulnerable pa-
rameters, and their percentage (Column 2-5). We found that
using low-precision parameters reduces the vulnerability; in
all cases, the percentage of vulnerable parameters are reduced
from 49% (Baseline) to 0-2% (surprisingly 0% with the quan-
tization). We focus on analyzing which layer has vulnerable
parameters in the binarization model. We found that mostly
the parameters in the first convolutional (150 parameters) and
classification (last) layers (420 parameters) are vulnerable to
a bit-flip, which corroborates what observed in Sec 4.3.

Takeaways. Even though we showed the elimination of
the vulnerability through 8-bit quantization, in a real-world,
training the large model such as [65] from scratch can take a
week on a supercomputing cluster.

7 Related Work

DNN’s resilience to perturbations. Prior work has uti-
lized the graceful degredation of DNN models under parame-
ter perturbations in a wide range of applications. For example,
network quantization [3, 5], by quantizing a DNN model’s
high-precision parameter into low-precision, reduces the size
and inference time of a model with negligible performance
penalty. This property has also been used as a primitive for
improving the security of DNNs. For example, modifying the
parameter slightly to inject a watermark to allow model own-
ers to prove ownership [1]; adding Gaussian noise to model
parameter for reducing the reliability of test-time adversarial
attacks on DNNs [69]; and fine-tuning the parameters for
mitigating the malicious backdoors in a model [37]. Further,

9https://www.tensorflow.org/lite/performance/post_training_
quantization

the resilience to structural changes has lead to pruning tech-
niques [4, 20, 35] which improve the efficiency of a DNN
model by removing unimportant neurons along with their pa-
rameters. In our work, we study the graceless degredation of
DNNs under hardware fault attacks that induce single bit-flips
to individual parameters.

Indiscriminate poisoning attacks on DNNs. Recent work
on adversarial machine learning has demonstrated many at-
tack scenarios to inflict indiscriminate damage on a model.
One of the well-studied vectors is indiscriminate poisoning
attacks [8] in which the adversary, by injecting malicious data
in the victim’s training set, aims to hurt the model. Previ-
ous studies suggest that such attack might require significant
amount of poisonous instances [40]. For example, Steinhardt
et al. [54] shows that, with IMDB dataset, an attacker needs
to craft 3% of the total training instances to achieve 11% of
accuracy drop compared to the pristine model. Further, the
defenses based on robust outlier removal techniques could
render poison injection ineffective by filtering it out [14, 54].
Moreover, to achieve targeted damages without harming the
model’s overall accuracy, targeted poisoning attacks [49, 55]
have been studied. In this paper, we analyze a test-time vul-
nerability that does not require the adversary’s contact to the
victim model during its training. This vulnerability inflicts
indiscriminate damage, similar to indiscriminate poisoning
attacks, through a different attack medium.

Hardware fault injection attacks. Hardware fault injec-
tion is a class of attacks that rely on hardware glitches on
the system to corrupt victim’s data. These glitches gener-
ally provide a single-bit write primitive at the physical mem-
ory; which could potentially lead to privilege escalation [67].
While in the past these attacks required physical access to
the victim’s system [11, 38], recently they have gained more
momentum since the software-based version of these attacks
were demonstrated [26, 57]. Instances of these attacks are 1)
the CLKSCREW attack [57] that leverages dynamic voltage
and frequency scaling on mobile processors generate faults
on instructions; or 2) the well-known Rowhammer vulnerabil-
ity that triggers bitwise corruptions in DRAM. Rowhammer
has been used in the context of cloud VMs [44, 67], on desk-
tops [48] and mobile [62] and even to compromise browsers
from JavaScript [9, 15, 19]. In the context of DNNs, fault
attacks have been proposed as an alternative for inflicting
indiscriminate damages. Instead of injecting poisonous in-
stances, fault attacks directly induce perturbations to the mod-
els running on hardware [11, 13, 34, 38, 45]. These studies
have considered the adversaries with direct access to the vic-
tim hardware [11, 13] and adversaries who randomly corrupt
parameters [34, 38, 45]. We utilize Rowhammer as an estab-
lished fault attack to demonstrate practical implications of the
graceless degradation of DNNs. Our threat model follows the
realistic single bit-flip capability of a fault attack and modern

510 28th USENIX Security Symposium USENIX Association

https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization

application of DNNs in a cloud environment, where physical
access to the hardware is impractical.

8 Conclusions

This work exposes the limits of DNN’s resilience against the
parameter perturbations. We study the vulnerability of DNN
models to single bit-flips. We evaluated 19 DNN models
with six architectures on three image classification tasks and
showed that: we can easily find 40-50% vulnerable parameters
where an attacker can cause indiscriminate damage [RAD >
0.1] by a bit-flip. We further characterize this vulnerability
based on the impact of various factors: the bit position, bit-
flip direction, parameter sign, layer width, activation function,
training techniques, and model architecture. Understanding
this emerging threat, we leverage the software-induced fault
injection, Rowhammer, to demonstrate the feasibility of the
bit-flip attacks in practice. In experiments with RowHammer,
we found that, without knowing the victim’s deep learning
system, the attacker can inflict indiscriminate damage without
system crashes. Lastly, motivated by the attacks, we discuss
two potential directions of mitigation: restricting activation
magnitudes and using low-precision numbers.

Acknowledgments

We thank Tom Goldstein, Dana Dachman-Soled, our shep-
herd, David Evans, and the anonymous reviewers for their
feedback. We also acknowledge the University of Maryland
super-computing resources10 (DeepThought2) made available
for conducting the experiments reported in our paper. This
research was partially supported by the Department of De-
fense, by the United States Office of Naval Research (ONR)
under contract N00014-17-1-2782 (BinRec), by the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 786669 (ReAct) and No. 825377
(UNICORE), and by the Netherlands Organisation for Scien-
tific Research through grant NWO 639.021.753 VENI (Pan-
taRhei). This paper reflects only the authors’ view. The fund-
ing agencies are not responsible for any use that may be made
of the information it contains.

References
[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph

Keshet. Turning your weakness into a strength: Watermarking deep
neural networks by backdooring. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 1615–1631, Baltimore, MD, 2018.
USENIX Association.

[2] G. An. The effects of adding noise during backpropagation training
on a generalization performance. Neural Computation, 8(3):643–674,
April 1996.

10http://hpcc.umd.edu

[3] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Fixed point opti-
mization of deep convolutional neural networks for object recognition.
In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pages 1131–1135. IEEE, 2015.

[4] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning
of deep convolutional neural networks. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 13(3):32, 2017.

[5] Yiwen Guo Lin Xu Yurong Chen Aojun Zhou, Anbang Yao. Incre-
mental network quantization: Towards lossless cnns with low-precision
weights. In International Conference on Learning Representations
(ICLR), 2017.

[6] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. Anvil:
Software-based protection against next-generation rowhammer attacks.
ACM SIGPLAN Notices, 51(4):743–755, 2016.

[7] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable
methods for 8-bit training of neural networks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 5145–
5153. Curran Associates, Inc., 2018.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks
against support vector machines. In Proceedings of the 29th Interna-
tional Coference on International Conference on Machine Learning,
ICML’12, pages 1467–1474, USA, 2012. Omnipress.

[9] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Dedup est machina: Memory deduplication as an advanced exploitation
vector. In 2016 IEEE symposium on security and privacy (SP), pages
987–1004. IEEE, 2016.

[10] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. Can’t touch this: Software-only mitigation
against rowhammer attacks targeting kernel memory. In 26th USENIX
Security Symposium (USENIX Security 17), pages 117–130, Vancouver,
BC, 2017. USENIX Association.

[11] Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and
Yang Liu. Practical fault attack on deep neural networks. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, pages 2204–2206, New York, NY,
USA, 2018. ACM.

[12] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deep-
driving: Learning affordance for direct perception in autonomous driv-
ing. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2722–2730, 2015.

[13] Joseph Clements and Yingjie Lao. Hardware trojan attacks on neural
networks, 2018.

[14] Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob
Steinhardt, and Alistair Stewart. Sever: A robust meta-algorithm for
stochastic optimization, 2018.

[15] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand pwning unit: accelerating microarchitectural attacks with the
gpu. In Grand Pwning Unit: Accelerating Microarchitectural Attacks
with the GPU, page 0. IEEE, 2018.

[16] Sanjay Ghemawat. Tcmalloc : Thread-caching malloc, 2018.

[17] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Tracht-
enberg, Jason Hennessey, Alex Ionescu, and Anders Fogh. Page cache
attacks. arXiv preprint arXiv:1901.01161, 2019.

[18] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-
other flip in the wall of rowhammer defenses. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 245–261. IEEE, 2018.

[19] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.
js: A remote software-induced fault attack in javascript. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 300–321. Springer, 2016.

USENIX Association 28th USENIX Security Symposium 511

http://hpcc.umd.edu

[20] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. International Conference on Learning Representa-
tions (ICLR), 2016.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[23] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick,
Trevor Darrell, and Kurt Keutzer. Densenet: Implementing efficient
convnet descriptor pyramids. arXiv preprint arXiv:1404.1869, 2014.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Francis
Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015.
PMLR.

[25] Barry L Kalman and Stan C Kwasny. Why tanh: Choosing a sig-
moidal function. In Neural Networks, 1992. IJCNN., International
Joint Conference on, volume 4, pages 578–581. IEEE, 1992.

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study of
dram disturbance errors. In ACM SIGARCH Computer Architecture
News, volume 42, pages 361–372. IEEE Press, 2014.

[27] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis An-
driesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. Zebram:
Comprehensive and compatible software protection against rowham-
mer attacks. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 697–710, Carlsbad, CA, 2018.
USENIX Association.

[28] Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks
on cifar-10. Unpublished manuscript, 40(7), 2010.

[29] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105, 2012.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[32] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage.
In Advances in neural information processing systems, pages 598–605,
1990.

[33] Yann LeCun et al. Lenet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet, page 20, 2015.

[34] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy
Tsai, Karthik Pattabiraman, Joel Emer, and Stephen W Keckler. Un-
derstanding error propagation in deep learning neural network (dnn)
accelerators and applications. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, page 8. ACM, 2017.

[35] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710, 2016.

[36] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss,
Clémentine Maurice, Lukas Raab, and Lukas Lamster. Nethammer:
Inducing rowhammer faults through network requests. arXiv preprint
arXiv:1805.04956, 2018.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning:
Defending against backdooring attacks on deep neural networks. In
Research in Attacks, Intrusions, and Defenses (RAID), pages 273–294,
2018.

[38] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection
attack on deep neural network. In Proceedings of the 36th International
Conference on Computer-Aided Design, pages 131–138. IEEE Press,
2017.

[39] Jemalloc manual. Jemalloc: general purpose memory allocation func-
tions. http://jemalloc.net/jemalloc.3.html, 2019.

[40] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph,
Benjamin IP Rubinstein, Udam Saini, Charles A Sutton, J Doug Tygar,
and Kai Xia. Exploiting machine learning to subvert your spam filter.
LEET, 8:1–9, 2008.

[41] Maria-Elena Nilsback and Andrew Zisserman. Automated flower clas-
sification over a large number of classes. In Computer Vision, Graphics
& Image Processing, 2008. ICVGIP’08. Sixth Indian Conference on,
pages 722–729. IEEE, 2008.

[42] Minghai Qin, Chao Sun, and Dejan Vucinic. Robustness of neural
networks against storage media errors, 2017.

[43] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. In ECCV, 2016.

[44] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuf-
frida, and Herbert Bos. Flip feng shui: Hammering a needle in the
software stack. In 25th USENIX Security Symposium (USENIX Security
16), pages 1–18, Austin, TX, 2016. USENIX Association.

[45] Brandon Reagen, Udit Gupta, Lillian Pentecost, Paul Whatmough,
Sae Kyu Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei.
Ares: A framework for quantifying the resilience of deep neural net-
works. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2018.

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[48] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer
bug to gain kernel privileges.

[49] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs!
targeted clean-label poisoning attacks on neural networks. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 31,
pages 6106–6116. Curran Associates, Inc., 2018.

[50] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. International Conference
on Learning Representations (ICLR), 2015.

[51] Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith, and Stan Birch-
field. Toward low-flying autonomous mav trail navigation using deep
neural networks for environmental awareness. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages
4241–4247. IEEE, 2017.

[52] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

512 28th USENIX Security Symposium USENIX Association

http://jemalloc.net/jemalloc.3.html

[53] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
Man vs. computer: Benchmarking machine learning algorithms for
traffic sign recognition. Neural networks, 32:323–332, 2012.

[54] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified
defenses for data poisoning attacks. In Advances in Neural Information
Processing Systems, pages 3517–3529, 2017.

[55] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and
Tudor Dumitras. When does machine learning FAIL? generalized trans-
ferability for evasion and poisoning attacks. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1299–1316, Baltimore, MD,
2018. USENIX Association.

[56] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[57] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: Exposing the perils of security-oblivious energy
management. In 26th USENIX Security Symposium (USENIX Security
17), pages 1057–1074, Vancouver, BC, 2017. USENIX Association.

[58] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. De-
feating software mitigations against rowhammer: a surgical precision
hammer. In International Symposium on Research in Attacks, Intru-
sions, and Defenses, pages 47–66. Springer, 2018.

[59] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. De-
feating software mitigations against rowhammer: a surgical precision
hammer. In International Symposium on Research in Attacks, Intru-
sions, and Defenses, pages 47–66. Springer, 2018.

[60] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh Razavi. Throwhammer:
Rowhammer attacks over the network and defenses. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 213–226,
Boston, MA, 2018. USENIX Association.

[61] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
25th USENIX Security Symposium (USENIX Security 16), pages 601–
618, Austin, TX, 2016. USENIX Association.

[62] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowham-
mer attacks on mobile platforms. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
1675–1689. ACM, 2016.

[63] Bolun Wang, Yuanshun Yao, Bimal Viswanath, Haitao Zheng, and
Ben Y. Zhao. With great training comes great vulnerability: Practical
attacks against transfer learning. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 1281–1297, Baltimore, MD, 2018.
USENIX Association.

[64] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and
Kailash Gopalakrishnan. Training deep neural networks with 8-bit
floating point numbers. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 7675–7684. Curran
Associates, Inc., 2018.

[65] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[66] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. Security
implications of memory deduplication in a virtualized environment. In
2013 43rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 1–12. IEEE, 2013.

[67] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One bit flips, one cloud flops: Cross-vm row hammer attacks and privi-
lege escalation. In 25th USENIX Security Symposium (USENIX Secu-
rity 16), pages 19–35, Austin, TX, 2016. USENIX Association.

[68] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation
of rectified activations in convolutional network, 2015.

[69] Yan Zhou, Murat Kantarcioglu, and Bowei Xi. Breaking transferability
of adversarial samples with randomness, 2018.

Appendix

A Network Architectures

We use 19 DNN models in our experiments: six architecture
and their variants. Table 7 describes two architectures and
their six variations for MNIST. For CIFAR10, we employ the
base architecture from [55] that has four convolutional layers
and a fully-connected layer, and we make three variations
of it. CIFAR10-AlexNet11 and CIFAR10-VGG1612 are from
the community. For ImageNet, we use the DNN architectures
available from the Internet13. In Sec 6.2, we employ two
networks (8-bit quantized14 and binarized versions of MNIST-
L5) from the community15 with adjustments.

B The Vulnerability Using Different Criterion

We examine the vulnerable parameter ratio (vulnerability)
using the different RAD criterion with 15 DNN models. Our
results are in Figure 12. Each figure describe the vulnera-
ble parameter ratio on a specific RAD criterion; for instance,
in MNIST-L5, the model has 40% of vulnerable parameters
that cause [RAD > 0.5], which estimates the upper bound of
the blind attacker. In MNIST, CIFAR10, and two ImageNet
models, the vulnerability decreases as the attacker aims to
inflict the severe damage; however, in ImageNet, ResNet50,
DenseNet161, and InceptionV3 have almost the same vulner-
ability (∼50%) with the high criterion [RAD > 0.8].

C Hyper-parameters for Training

In our experiments, we use these hyper-parameters:

• MNISTs. For MNIST models, we use: SGD, 40 epochs,
0.01 learning rate (lr), 64 batch, 0.1 momentum, and
adjust learning rate by 0.1, in every 10 epochs.

• CIFAR10s. For Base models we use: SGD, 50 epochs,
0.02 lr, 32 batch, 0.1 momentum, and adjust lr by 0.5,
in every 10 epochs. For AlexNet, we use: 300 epochs,

11https://github.com/bearpaw/pytorch-classification/blob/master/
models/cifar/alexnet.py

12https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.
py

13https://github.com/pytorch/vision/tree/master/torchvision/models
14https://github.com/eladhoffer/quantized.pytorch
15https://github.com/jiecaoyu/XNOR-Net-PyTorch

USENIX Association 28th USENIX Security Symposium 513

https://github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py
https://github.com/bearpaw/pytorch-classification/blob/master/models/cifar/alexnet.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/eladhoffer/quantized.pytorch
https://github.com/jiecaoyu/XNOR-Net-PyTorch

Table 7: 8 Network Architectures for MNIST. We take the two baselines (Base and LeNet5) and make four and two variants
from them, respectively. Note that we highlight the variations from the baselines in red color.

Base Base (Wide) Base (Dropout) Base (PReLU)

Layer Type Layer Size Layer Type Layer Size Layer Type Layer Size Layer Type Layer Size

Conv (R) 5x5x10 (2) Conv (R) 5x5x20 (2) Conv (R) 5x5x10 (2) Conv (P) 5x5x10 (2)
Conv (R) 5x5x20 (2) Conv (R) 5x5x40 (2) Conv (-) 5x5x20 (2) Conv (P) 5x5x20 (2)

- - - - Dropout (R) 0.5 - -
FC (R) 50 FC (R) 100 FC (R) 50 FC (P) 50

- - - - Dropout (R) 0.5 - -
FC (S) 10 FC (S) 10 FC (S) 10 FC (S) 10

Base (D-BNorm) LeNet5 [33] LeNet5 (Dropout) LeNet5 (D-BNorm)

Layer Type Layer Size Layer Type Layer Size Layer Type Layer Size Layer Type Layer Size

Conv (-) 5x5x10 (2) Conv (R) 5x5x6 (2) Conv (R) 5x5x6 (2) Conv (-) 5x5x6 (2)
BatchNorm (R) 10 - - - - BatchNorm (R) 6

- - MaxPool (-) 2x2 MaxPool (-) 2x2 MaxPool (-) 2x2
Conv (-) 5x5x20 (2) Conv (R) 5x5x16 (2) Conv (R) 5x5x16 (2) Conv (-) 5x5x16 (2)

BatchNorm (R) 20 - - - - BatchNorm (R) 16
- - MaxPool (-) 2x2 MaxPool (-) 2x2 MaxPool (-) 2x2
- - Conv (R) 5x5x120 (2) Conv (R) 5x5x120 (2) Conv (R) 5x5x120 (2)
- - - - - - BatchNorm (R) 120

Dropout (R) 0.5 - - Dropout (R) 0.5 Dropout (R) 0.5
- - MaxPool (-) 2x2 MaxPool (-) 2x2 MaxPool (-) 2x2
- - Conv (R) 5x5x120 (1) Conv (R) 5x5x120 (1) Conv (R) 5x5x120 (1)

FC (R) 50 FC (R) 84 FC (R) 84 FC (R) 84
Dropout (R) 0.5 - - Dropout (R) 0.5 Dropout (R) 0.5

FC (S) 10 FC (S) 10 FC (S) 10 FC (S) 10

Figure 12: The vulnerability of 15 DNN models using different criterions. We plot the vulnerable parameter ratio based on
the different RADs that an attacker aims; 5 from MNIST (left), 5 from CIFAR10 (middle), and 5 from ImageNets (right).

0.01 lr, 64 batch, 0.1 momentum, and adjust lr by 0.95,
in every 10 epochs. For VGG16, we use: 300 epochs,
0.01 lr, 128 batch, 0.1 momentum, and adjust lr by 0.15,
in every 100 epochs.

• GTSRB. We fine-tune VGG16 pre-trained on ImageNet,
using: SGD, 40 epochs, 0.01 lr, 32 batch, 0.1 momentum,
and adjust lr by 0.1 and 0.05, in 15 and 25 epochs. We

freeze the parameters of the first 10 layers.

• Flower102. We fine-tune ResNet50 pre-trained on Im-
ageNet, using: SGD, 40 epochs, 0.01 lr, 50 batch, 0.1
momentum, and adjust lr by 0.1, in 15 and 25 epochs.
We freeze the parameters of the first 10 layers.

.

514 28th USENIX Security Symposium USENIX Association

CSI NN: Reverse Engineering of Neural Network Architectures Through
Electromagnetic Side Channel

Lejla Batina
Radboud University, The Netherlands

Shivam Bhasin
Nanyang Technological University, Singapore

Dirmanto Jap
Nanyang Technological University, Singapore

Stjepan Picek
Delft University of Technology, The Netherlands

Abstract

Machine learning has become mainstream across industries.
Numerous examples prove the validity of it for security ap-
plications. In this work, we investigate how to reverse en-
gineer a neural network by using side-channel information
such as timing and electromagnetic (EM) emanations. To
this end, we consider multilayer perceptron and convolu-
tional neural networks as the machine learning architectures
of choice and assume a non-invasive and passive attacker ca-
pable of measuring those kinds of leakages.

We conduct all experiments on real data and commonly
used neural network architectures in order to properly assess
the applicability and extendability of those attacks. Practical
results are shown on an ARM Cortex-M3 microcontroller,
which is a platform often used in pervasive applications us-
ing neural networks such as wearables, surveillance cameras,
etc. Our experiments show that a side-channel attacker is
capable of obtaining the following information: the activa-
tion functions used in the architecture, the number of lay-
ers and neurons in the layers, the number of output classes,
and weights in the neural network. Thus, the attacker can
effectively reverse engineer the network using merely side-
channel information such as timing or EM.

1 Introduction

Machine learning, and more recently deep learning, have be-
come hard to ignore for research in distinct areas, such as im-
age recognition [25], robotics [21], natural language process-
ing [47], and also security [53, 26] mainly due to its unques-
tionable practicality and effectiveness. Ever increasing com-
putational capabilities of the computers of today and huge
amounts of data available are resulting in much more com-
plex machine learning architectures than it was envisioned
before. As an example, AlexNet architecture consisting of 8
layers was the best performing algorithm in image classifi-
cation task ILSVRC2012 (http://www.image-net.org/
challenges/LSVRC/2012/). In 2015, the best performing

architecture for the same task was ResNet consisting of 152
layers [15]. This trend is not expected to stagnate any time
soon, so it is prime time to consider machine/deep learning
from a novel perspective and in new use cases. Also, deep
learning algorithms are gaining popularity in IoT edge de-
vices such as sensors or actuators, as they are indispensable
in many tasks, like image classification or speech recogni-
tion. As a consequence, there is an increasing interest in de-
ploying neural networks on low-power processors found in
always-on systems, e.g., ARM Cortex-M microcontrollers.

In this work, we focus on two neural network algorithms:
multilayer perceptron (MLP) and convolutional neural net-
works (CNNs). We consider feed-forward neural networks
and consequently, our analysis is conducted on such net-
works only.

With the increasing number of design strategies and el-
ements to use, fine-tuning of hyper-parameters of those al-
gorithms is emerging as one of the main challenges. When
considering distinct industries, we are witnessing an increase
in intellectual property (IP) models strategies. Basically, in
cases when optimized networks are of commercial interest,
their details are kept undisclosed. For example, EMVCo
(formed by MasterCard and Visa to manage specifications
for payment systems and to facilitate worldwide interoper-
ability) nowadays requires deep learning techniques for se-
curity evaluations [43]. This has an obvious consequence in:
1) security labs generating (and using) neural networks for
evaluation of security products and 2) they treat them as IP,
exclusively for their customers.

There are also other reasons for keeping the neural net-
work architectures secret. Often, these pre-trained models
might provide additional information regarding the training
data, which can be very sensitive. For example, if the model
is trained based on a medical record of a patient [9], confi-
dential information could be encoded into the network dur-
ing the training phase. Also, machine learning models that
are used for guiding medical treatments are often based on a
patient’s genotype making this extremely sensitive from the
privacy perspective [10]. Even if we disregard privacy issues,

USENIX Association 28th USENIX Security Symposium 515

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/challenges/LSVRC/2012/

obtaining useful information from neural network architec-
tures can help acquiring trade secrets from the competition,
which could lead to competitive products without violating
intellectual property rights [3]. Hence, determining the lay-
out of the network with trained weights is a desirable target
for the attacker. One could ask the following question: Why
would an attacker want to reverse engineer the neural net-
work architecture instead of just training the same network
on its own? There are several reasons that are complicating
this approach. First, the attacker might not have access to the
same training set in order to train his own neural network.
Although this is admittedly a valid point, recent work shows
how to solve those limitations [49]. Second, as the architec-
tures have become more complex, there are more and more
parameters to tune and it could be extremely difficult for the
attacker to pinpoint the same values for the parameters as in
the architecture of interest.

After motivating our use case, the main question that re-
mains is on the feasibility of reverse engineering such archi-
tectures. Physical access to a device could allow readily re-
verse engineering based on the binary analysis. However, in
a confidential IP setting, standard protections like blocking
binary readback, blocking JTAG access [20], code obfusca-
tion, etc. are expected to be in place and preventing such
attacks. Nevertheless, even when this is the case, a viable
alternative is to exploit side-channel leakages.

Side-channel analysis attacks have been widely studied
in the community of information security and cryptography,
due to its potentially devastating impact on otherwise (the-
oretically) secure algorithms. Practically, the observation
that various physical leakages such as timing delay, power
consumption, and electromagnetic emanation (EM) become
available during the computation with the (secret) data has
led to a whole new research area. By statistically combin-
ing this physical observation of a specific internal state and
hypothesis on the data being manipulated, it is possible to
recover the intermediate state processed by the device.

In this study, our aim is to highlight the potential vulnera-
bilities of standard (perhaps still naive from the security per-
spective) implementations of neural networks. At the same
time, we are unaware of any neural network implementation
in the public domain that includes side-channel protection.
For this reason, we do not just pinpoint to the problem but
also suggest some protection measures for neural networks
against side-channel attacks. Here, we start by considering
some of the basic building blocks of neural networks: the
number of hidden layers, the basic multiplication operation,
and the activation functions.

For instance, the complex structure of the activation func-
tion often leads to conditional branching due to the necessary
exponentiation and division operations. Conditional branch-
ing typically introduces input-dependent timing differences
resulting in different timing behavior for different activation
function, thus allowing the function identification. Also, we

notice that by observing side-channel leakage, it is possible
to deduce the number of nodes and the number of layers in
the networks.

In this work, we show it is possible to recover the layout of
unknown networks by exploiting the side-channel informa-
tion. Our approach does not need access to training data and
allows for network recovery by feeding known random in-
puts to the network. By using the known divide-and-conquer
approach for side-channel analysis, (i.e., the attacker’s abil-
ity to work with a feasible number of hypotheses due to,
e.g., the architectural specifics), the information at each layer
could be recovered. Consequently, the recovered informa-
tion can be used as input for recovering the subsequent lay-
ers.

We note that there exists somewhat parallel research to
ours also on reverse engineering by “simply” observing the
outputs of the network and training a substitute model. Yet,
this task is not so simple since one needs to know what kind
of architecture is used (e.g., convolutional neural network or
multilayer perceptron, the number of layers, the activation
functions, access to training data, etc.) while limiting the
number of queries to ensure the approach is realistic [39].
Some more recent works have tried to overcome a few of the
highlighted limitations [49, 18].

To our best knowledge, this kind of observation has never
been used before in this context, at least not for leveraging on
(power/EM) side-channel leakages with reverse engineering
the neural networks architecture as the main goal. We posi-
tion our results in the following sections in more detail. To
summarize, our main motivation comes from the ever more
pervasive use of neural networks in security-critical applica-
tions and the fact that the architectures are becoming propri-
etary knowledge for the security evaluation industry. Hence,
reverse engineering a neural network has become a new tar-
get for the adversaries and we need a better understanding of
the vulnerabilities to side-channel leakages in those cases to
be able to protect the users’ rights and data.

1.1 Related Work

There are many papers considering machine learning and
more recently, deep learning for improving the effectiveness
of side-channel attacks. For instance, a number of works
have compared the effectiveness of classical profiled side-
channel attacks, so-called template attacks, against various
machine learning techniques [30, 19]. Lately, several works
explored the power of deep learning in the context of side-
channel analysis [32]. However, this line of work is using
machine learning to derive a new side-channel distinguisher,
i.e., the selection function leading to the key recovery.

On the other hand, using side-channel analysis to attack
machine learning architectures has been much less investi-
gated. Shokri et al. investigate the leakage of sensitive in-
formation from machine learning models about individual

516 28th USENIX Security Symposium USENIX Association

data records on which they were trained [44]. They show
that such models are vulnerable to membership inference at-
tacks and they also evaluate some mitigation strategies. Song
et al. show how a machine learning model from a mali-
cious machine learning provider can be used to obtain in-
formation about the training set of a model [45]. Hua et
al. were first to reverse engineer two convolutional neural
networks, namely AlexNet and SqueezeNet through mem-
ory and timing side-channel leaks [17]. The authors measure
side-channel through an artificially introduced hardware tro-
jan. They also need access to the original training data set
for the attack, which might not always be available. Lastly,
in order to obtain the weights of neural networks, they attack
a very specific operation, i.e., zero pruning [40]. Wei et al.
have also performed an attack on an FPGA-based convolu-
tional neural network accelerator [52]. They recovered the
input image from the collected power consumption traces.
The proposed attack exploits a specific design choice, i.e.,
the line buffer in a convolution layer of a CNN.

In a nutshell, both previous reverse engineering efforts us-
ing side-channel information were performed on very special
designs of neural networks and the attacks had very specific
and different goals. Our work is more generic than those two
as it assumes just a passive adversary able to measure phys-
ical leakages and our strategy remains valid for a range of
architectures and devices. Although we show the results on
the chips that were depackaged prior to experiments in or-
der to demonstrate the leakage available to powerful adver-
saries, our findings remain valid even without depackaging.
Basically, having EM as an available source of side-channel
leakage, it comes down to using properly designed antennas
and more advanced setups, which is beyond the scope of this
work.

Several other works doing somewhat related research are
given as follows. Ohrimenko et al. used a secure implemen-
tation of MapReduce jobs and analyzed intermediate traffic
between reducers and mappers [37]. They showed how an
adversary observing the runs of typical jobs can infer pre-
cise information about the inputs. In a follow-up work they
discuss how machine learning algorithms can be exploited
by various side-channels [38]. Consequently, they propose
data-oblivious machine learning algorithms that prevent ex-
ploitation of side channels induced by memory, disk, and
network accesses. They note that side-channel attacks based
on power and timing leakages are out of the scope of their
work. Xu et al. introduced controlled-channel attacks, which
is a type of side-channel attack allowing an untrusted oper-
ating system to extract large amounts of sensitive informa-
tion from protected applications [54]. Wang and Gong in-
vestigated both theoretically and experimentally how to steal
hyper-parameters of machine learning algorithms [51]. In
order to mount the attack in practice, they estimate the error
between the true hyper-parameter and the estimated one.

In this work, we further explore the problem of reverse en-

gineering of neural networks from a more generic perspec-
tive. The closest previous works to ours have reverse engi-
neered neural networks by using cache attacks that work on
distinct CPUs and are basically micro-architectural attacks
(albeit using timing side-channel). Our approach utilizes EM
side-channel on small embedded devices and it is supported
by practical results obtained on a real-world architecture. Fi-
nally, our attack is able to recover both the hyper-parameters
(parameter external to the model, e.g., the number of lay-
ers) and parameters (parameter internal to the model, like
weights) of neural networks.

1.2 Contribution and Organization

The main contributions of this paper are:
1. We describe full reverse engineering of neural network

parameters based on side-channel analysis. We are able
to recover the key parameters such as activation func-
tion, pre-trained weights, number of hidden layers and
neurons in each layer. The proposed technique does not
need any information on the (sensitive) training data as
that information is often not even available to the at-
tacker. We emphasize that, for our attack to work, we
require the knowledge of some inputs/outputs and side-
channel measurements, which is a standard assumption
for side-channel attacks.

2. All the proposed attacks are practically implemented
and demonstrated on two distinct microcontrollers (i.e.,
8-bit AVR and 32-bit ARM).

3. We highlight some interesting aspects of side-channel
attacks when dealing with real numbers, unlike in ev-
eryday cryptography. For example, we show that even
a side-channel attack that failed can provide sensitive
information about the target due to the precision error.

4. Finally, we propose a number of mitigation techniques
rendering the attacks more difficult.

We emphasize that the simplicity of our attack is its strongest
point, as it minimizes the assumption on the adversary (no
pre-processing, chosen-plaintext messages, etc.)

2 Background

In this section, we give details about artificial neural net-
works we consider in this paper and their building blocks.
Next, we discuss the concepts of side-channel analysis and
several types of attacks we use in this paper.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) is an umbrella notion for
all computer systems loosely inspired by biological neural
networks. Such systems are able to “learn” from examples,
which makes them a strong (and very popular) paradigm in

USENIX Association 28th USENIX Security Symposium 517

the machine learning domain. Any ANN is built from a num-
ber of nodes called artificial neurons. The nodes are con-
nected in order to transmit a signal. Usually, in an ANN,
the signal at the connection between artificial neurons is a
real number and the output of each neuron is calculated as
a nonlinear function of the sum of its inputs. Neurons and
connections have weights that are adjusted as the learning
progresses. Those weights are used to increase or decrease
the strength of a signal at a connection. In the rest of this pa-
per, we use the notions of an artificial neural network, neural
network, and network interchangeably.

2.1.1 Multilayer Perceptron

A very simple type of a neural network is called perceptron.
A perceptron is a linear binary classifier applied to the fea-
ture vector as a function that decides whether or not an input
belongs to some specific class. Each vector component has
an associated weight wi and each perceptron has a threshold
value θ . The output of a perceptron equals “1” if the di-
rect sum between the feature vector and the weight vector is
larger than zero and “-1” otherwise. A perceptron classifier
works only for data that are linearly separable, i.e., if there
is some hyperplane that separates all the positive points from
all the negative points [34].

By adding more layers to a perceptron, we obtain a multi-
layer perceptron algorithm. Multilayer perceptron (MLP) is
a feed-forward neural network that maps sets of inputs onto
sets of appropriate outputs. It consists of multiple layers of
nodes in a directed graph, where each layer is fully connected
to the next one. Consequently, each node in one layer con-
nects with a certain weight w to every node in the following
layer. Multilayer perceptron algorithm consists of at least
three layers: one input layer, one output layer, and one hid-
den layer. Those layers must consist of nonlinearly activating
nodes [7]. We depict a model of a multilayer perceptron in
Figure 1. Note, if there is more than one hidden layer, then
it can be considered a deep learning architecture. Differing
from linear perceptron, MLP can distinguish data that are not
linearly separable. To train the network, the backpropagation
algorithm is used, which is a generalization of the least mean
squares algorithm in the linear perceptron. Backpropagation
is used by the gradient descent optimization algorithm to ad-
just the weight of neurons by calculating the gradient of the
loss function [34].

2.1.2 Convolutional Neural Network

CNNs represent a type of neural networks which were first
designed for 2-dimensional convolutions as it was inspired
by the biological processes of animals’ visual cortex [28].
From the operational perspective, CNNs are similar to ordi-
nary neural networks (e.g., multilayer perceptron): they con-
sist of a number of layers where each layer is made up of

Figure 1: Multilayer perceptron.

neurons. CNNs use three main types of layers: convolutional
layers, pooling layers, and fully-connected layers. Convolu-
tional layers are linear layers that share weights across space.
Pooling layers are non-linear layers that reduce the spatial
size in order to limit the number of neurons. Fully-connected
layers are layers where every neuron is connected with all the
neurons in the neighborhood layer. For additional informa-
tion about CNNs, we refer interested readers to [12].

2.1.3 Activation Functions

An activation function of a node is a function f defining the
output of a node given an input or set of inputs, see Eq. (1).
To enable calculations of nontrivial functions for ANN us-
ing a small number of nodes, one needs nonlinear activation
functions as follows.

y = Activation(∑(weight · input)+bias). (1)

In this paper, we consider the logistic (sigmoid) func-
tion, tanh function, softmax function, and Rectified Linear
Unit (ReLU) function. The logistic function is a nonlinear
function giving smooth and continuously differentiable re-
sults [14]. The range of a logistic function is [0,1], which
means that all the values going to the next neuron will have
the same sign.

f (x) =
1

1+ e−x . (2)

The tanh function is a scaled version of the logistic func-
tion where the main difference is that it is symmetric over
the origin. The tanh function ranges in [−1,1].

f (x) = tanh(x) =
2

1+ e−2x −1. (3)

The softmax function is a type of sigmoid function able to
map values into multiple outputs (e.g., classes). The softmax
function is ideally used in the output layer of the classifier
in order to obtain the probabilities defining a class for each
input [5]. To denote a vector, we represent it in bold style.

f (x) j =
ex j

∑
K
k=1 exk

, f or j = 1, . . . ,K. (4)

518 28th USENIX Security Symposium USENIX Association

The Rectified Linear Unit (ReLU) is a nonlinear function
that is differing from the previous two activation functions
as it does not activate all the neurons at the same time [35].
By activating only a subset of neurons at any time, we make
the network sparse and easier to compute [2]. Consequently,
such properties make ReLU probably the most widely used
activation function in ANNs today.

f (x) = max(0,x). (5)

2.2 Side-channel Analysis

Side-channel Analysis (SCA) exploits weaknesses on the im-
plementation level [33]. More specifically, all computations
running on a certain platform result in unintentional physical
leakages as a sort of physical signatures from the reaction
time, power consumption, and Electromagnetic (EM) ema-
nations released while the device is manipulating data. SCA
exploits those physical signatures aiming at the key (secret
data) recovery. In its basic form, SCA was proposed to per-
form key recovery attacks on the implementation of cryp-
tography [23, 22]. One advantage of SCA over traditional
cryptanalysis is that SCA can apply a divide-and-conquer ap-
proach. This means that SCA is typically recovering small
parts of the key (sub-keys) one by one, which is reducing the
attack complexity.

Based on the analysis technique used, different variants of
SCA are known. In the following, we recall a few techniques
used later in the paper. Although the original terms suggest
power consumption as the source of leakage, the techniques
apply to other side channels as well. In particular, in this
work, we are using the EM side channel and the correspond-
ing terms are adapted to reflect this.

Simple Power (or Electromagnetic) Analysis (SPA or
SEMA). Simple power (or EM) analysis, as the name sug-
gests, is the most basic form of SCA [22]. It targets infor-
mation from the sensitive computation that can be recovered
from a single or a few traces. As a common example, SPA
can be used against a straightforward implementation of the
RSA algorithm to distinguish square from multiply opera-
tion, leading to the key recovery. In this work, we apply
SPA, or actually SEMA to reverse engineer the architecture
of the neural network.

Differential Power (or Electromagnetic) Analysis (DPA
or DEMA). DPA or DEMA is an advanced form of SCA,
which applies statistical techniques to recover secret infor-
mation from physical signatures. The attack normally tests
for dependencies between actual physical signature (or mea-
surements) and hypothetical physical signature, i.e., predic-
tions on intermediate data. The hypothetical signature is
based on a leakage model and key hypothesis. Small parts
of the secret key (e.g., one byte) can be tested independently.
The knowledge of the leakage model comes from the adver-
sary’s intuition and expertise. Some commonly used leakage

models for representative devices are the Hamming weight
for microcontrollers and the Hamming distance in FPGA,
ASIC, and GPU [4, 31] platforms. As the measurements
can be noisy, the adversary often needs many measurements,
sometimes millions. Next, statistical tests like correlation [6]
are applied to distinguish the correct key hypothesis from
other wrong guesses. In the following, DPA (DEMA) is used
to recover secret weights from a pre-trained network.

3 Side-channel Based Reverse Engineering of
Neural Networks

In this section, we discuss the threat model we use, the ex-
perimental setup and reverse engineering of various elements
of neural networks.

3.1 Threat Model

The main goal of this work is to recover the neural network
architecture using only side-channel information.
Scenario. We select to work with MLP and CNNs since:
1) they are commonly used machine learning algorithms in
modern applications, see e.g., [16, 11, 36, 48, 25, 21]; 2) they
consist of different types of layers that are also occurring in
other architectures like recurrent neural networks; and 3) in
the case of MLP, the layers are all identical, which makes it
more difficult for SCA and could be consequently considered
as the worst-case scenario.

We choose our attack to be as generic as possible. For in-
stance, we have no assumption on the type of inputs or its
source, as we work with real numbers. If the inputs are in
the form of integers (like the MNIST database), the attack
becomes easier, since we would not need to recover man-
tissa bytes and deal with precision. We also assume that the
implementation of the machine learning algorithm does not
include any side-channel countermeasures.

Attacker’s capability. The attacker in consideration is a
passive one. This implies him/her acquiring measurements
of the device while operating “normally” and not interfering
with its internal operations by evoking faulty computations
and behavior by e.g., glitching the device, etc. More in de-
tails, we consider the following setting:

1. Attacker does not know the architecture of the used
network but can feed random (and hence known) in-
puts to the architecture. We note that the attacks
and analysis presented in our work do not rely on
any assumptions on the distributions of the inputs,
although a common assumption in SCA is that they
are chosen uniformly at random. Basically, we as-
sume that the attacker has physical access to the device
(can be remote, via EM signals) and he/she knows that
the device runs some neural net. The attacker only con-
trols the execution of it through selecting the inputs, but

USENIX Association 28th USENIX Security Symposium 519

(a) Target 8-bit microcontroller me-
chanically decapsulated

(b) Langer RF-U 5-2 Near Field
Electromagnetic passive Probe

(c) The complete measurement setup

Figure 2: Experimental Setup

he/she can observe the outputs and side-channel infor-
mation (but not individual intermediate values). The
attack scenario is often referred to as known-plaintext
attack. An adequate use case would be when the at-
tacker legally acquires a copy of the network with API
access to it and aims at recovering its internal details
e.g. for IP theft.

2. Attacker is capable of measuring side-channel infor-
mation leaked from the implementation of the tar-
geted architecture. The attacker can collect multiple
side-channel measurements while processing the data
and use different side-channel techniques for her anal-
ysis. In this work, we focus on timing and EM side
channels.

3.2 Experimental Setup

Here we describe the attack methodology, which is first vali-
dated on Atmel ATmega328P. Later, we also demonstrate the
proposed methodology on ARM Cortex-M3.

The side-channel activity is captured using the Lecroy Wa-
veRunner 610zi oscilloscope. For each known input, the
attacker gets one measurement (or trace) from the oscillo-
scope. In the following, nr. of inputs or nr. of traces are
used interchangeably. Each measurement is composed of

many samples (or points). The number of samples (or length
of the trace) depends on sampling frequency and execution
time. As shown later, depending on the target, nr. of sam-
ples can vary from thousands (for multiplication) to millions
(for a whole CNN network). The measurements are synchro-
nized with the operations by common handshaking signals
like start and stop of computation. To further improve the
quality of measurements, we opened the chip package me-
chanically (see Figure 2a). An RF-U 5-2 near-field electro-
magnetic (EM) probe from Langer is used to collect the EM
measurements (see Figure 2b). The setup is depicted in Fig-
ure 2c. We use the probe as an antenna for spying on the EM
side-channel leakage from the underlying processor running
ML. Note that EM measurements also allow to observe the
timing of all the operations and thus the setup allows for tim-
ing side-channels analysis as well. Our choice of the target
platform is motivated by the following considerations:

• Atmel ATmega328P: This processor typically allows
for high quality measurements. We are able to achieve a
high signal-to-noise ratio (SNR) measurements, making
this a perfect tuning phase to develop the methodology
of our attacks.
• ARM Cortex-M3: This is a modern 32-bit micro-

controller architecture featuring multiple stages of the
pipeline, on-chip co-processors, low SNR measure-
ments, and wide application. We show that the de-
veloped methodology is indeed versatile across targets
with a relevant update of measurement capability.

In addition, real-world use cases also justify our platforms of
choice. Similar micro-controllers are often used in wearables
like Fitbit (ARM Cortex-M4), several hardware crypto wal-
lets, smart home devices, etc. Additionally, SCA on a GPU
or an FPGA platform is practically demonstrated in sev-
eral instances, thus our methodology can be directly adapted
for those cases as well. For different platforms, the leak-
age model could change, but this would not limit our ap-
proach and methodology. In fact, adequate leakage models
are known for platforms like FPGA [4] and GPU [31]. More-
over, as for ARM Cortex-M3, low SNR of the measurement
might force the adversary to increase the number of mea-
surements and apply signal pre-processing techniques, but
the main principles behind the analysis remain valid.

As already stated above, the exploited leakage model of
the target device is the Hamming weight (HW) model. A
microcontroller loads sensitive data to a data bus to perform
indicated instructions. This data bus is pre-charged to all
’0’s’ before every instruction. Note that data bus being pre-
charged is a natural behavior of microcontrollers and not a
vulnerability introduced by the attacker. Thus, the power
consumption (or EM radiation) assigned to the value of the
data being loaded is modeled as the number of bits equal to
’1’. In other words, the power consumption of loading data

520 28th USENIX Security Symposium USENIX Association

8.5 9 9.5 10 10.5 11
Time samples 105

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

Multiplications Activation function

Figure 3: Observing pattern and timing of multiplication and
activation function

x is:

HW (x) =
n

∑
i=1

xi , (6)

where xi represents the ith bit of x. In our case, it is the secret
pre-trained weight which is regularly loaded from memory
for processing and results in the HW leakage. To conduct the
side-channel analysis, we perform the divide-and-conquer
approach, where we target each operation separately. The
full recovery process is described in Section 3.6.

Several pre-trained networks are implemented on the
board. The training phase is conducted offline, and the
trained network is then implemented in C language and com-
piled on the microcontroller. In these experiments, we con-
sider multilayer perceptron architectures consisting of a dif-
ferent number of layers and nodes in those layers. Note that,
with our approach, there is no limit in the number of layers or
nodes we can attack, as the attack scales linearly with the size
of the network. The methodology is developed to demon-
strate that the key parameters of the network, namely the
weights and activation functions can be reverse engineered.
Further experiments are conducted on deep neural networks
with three hidden layers but the method remains valid for
larger networks as well.

3.3 Reverse Engineering the Activation Func-
tion

We remind the reader that nonlinear activation functions are
necessary in order to represent nonlinear functions with a
small number of nodes in a network. As such, they are el-
ements used in virtually any neural network architecture to-
day [25, 15]. If the attacker is able to deduce the information
on the type of used activation functions, he/she can use that
knowledge together with information about input values to
deduce the behavior of the whole network.

(a) ReLU

(b) Sigmoid

(c) Tanh

(d) Softmax

Figure 4: Timing behavior for different activation functions

USENIX Association 28th USENIX Security Symposium 521

Table 1: Minimum, Maximum, and Mean computation time
(in ns) for different activation functions

Activation Function Minimum Maximum Mean
ReLU 5 879 6 069 5 975

Sigmoid 152 155 222 102 189 144
Tanh 51 909 210 663 184 864

Softmax 724 366 877 194 813 712

We analyze the side-channel leakage from different acti-
vation functions. We consider the most commonly used ac-
tivation functions, namely ReLU, sigmoid, tanh, and soft-
max [14, 35]. The timing behavior can be observed directly
on the EM trace. For instance, as shown later in Figure 8a, a
multiplication is followed by activation with individual sig-
natures. For a similar architecture, we test different vari-
ants with each activation function. We collect EM traces and
measure the timing of the activation function computation
from the measurements. The measurements are taken when
the network is processing random inputs in the range, i.e.,
x ∈ {−2,2}. A total of 2000 EM measurements are cap-
tured for each activation function. As shown in Figure 3, the
timing behavior of the four tested activation functions have
distinct signatures allowing easy characterization.

Different inputs result in different processing times.
Moreover, the timing behavior for the same inputs largely
varies depending on the activation function. For example,
we can observe that ReLU will require the shortest amount of
time, due to its simplicity (see Figure 4a). On the other hand,
tanh and sigmoid might have similar timing delays, but with
different pattern considering the input (see Figure 4b and
Figure 4b), where tanh is more symmetric in pattern com-
pared to sigmoid, for both positive and negative inputs. We
can observe that softmax function will require most of the
processing time, since it requires the exponentiation opera-
tion which also depends on the number of neurons in the out-
put layer. As neural network algorithms are often optimized
for performance, the presence of such timing side-channels
is often ignored. A function such as tanh or sigmoid requires
computation of ex and division and it is known that such
functions are difficult to implement in constant time. In addi-
tion, constant time implementations might lead to substantial
performance degradation. Other activation functions can be
characterized similarly. Table 1 presents the minimum, max-
imum, and mean computation time for each activation func-
tion over 2000 captured measurements. While ReLU is the
fastest one, the timing difference for other functions stands
out sufficiently, to allow for a straightforward recovery. To
distinguish them, one can also do some pattern matching
to determine which type of function is used, if necessary.
Note, although Sigmoid and Tanh have similar Maximum
and mean values, the Minimum value differs significantly.
Moreover, the attacker can sometimes pre-characterize (or

profile) the timing behavior of the target activation function
independently for better precision, especially when common
libraries are used for standard functions like multiplication,
activation function, etc.

3.4 Reverse Engineering the Multiplication
Operation

A well-trained network can be of significant value. Main
distinguishing factors for a well trained network against a
poorly trained one, for a given architecture, are the weights.
With fine-tuned weights, we can improve the accuracy of the
network. In the following, we demonstrate a way to recover
those weights by using SCA.

For the recovery of the weights, we use the Correlation
Power Analysis (CPA) i.e., a variant of DPA using the Pear-
son’s correlation as a statistical test.1 CPA targets the multi-
plication m = x ·w of a known input x with a secret weight
w. Using the HW model, the adversary correlates the activ-
ity of the predicted output m for all hypothesis of the weight.
Thus, the attack computes ρ(t,w), for all hypothesis of the
weight w, where ρ is the Pearson correlation coefficient and
t is the side-channel measurement. The correct value of the
weight w will result in a higher correlation standing out from
all other wrong hypotheses w∗, given enough measurements.
Although the attack concept is the same as when attacking
cryptographic algorithms, the actual attack used here is quite
different. Namely, while cryptographic operations are al-
ways performed on fixed length integers, in ANN we are
dealing with real numbers.

We start by analyzing the way the compiler is handling
floating-point operations for our target. The generated as-
sembly is shown in Table 2, which confirms the usage of
IEEE 754 compatible representation as stated above. The
knowledge of the representation allows one to better esti-
mate the leakage behavior. Since the target device is an 8-bit
microcontroller, the representation follows a 32-bit pattern
(b31...b0), being stored in 4 registers. The 32-bit consist of:
1 sign bit (b31), 8 biased exponent bits (b30...b23) and 23
mantissa (fractional) bits (b22...b0). It can be formulated as:

(−1)b31 ×2(b30...b23)2−127× (1.b22...b0)2.

For example, the value 2.43 can be expressed as (−1)0 ×
2(1000000)2−127 × (1.00110111000010100011111)2. The
measurement t is considered when the computed result m
is stored back to the memory, leaking in the HW model i.e.,
HW (m). Since 32-bit m is split into individual 8-bits, each
byte of m is recovered individually. Hence, by recovering
this representation, it is enough to recover the estimation of
the real number value.

To implement the attack two different approaches can be
considered. The first approach is to build the hypothesis on

1It is called CEMA in case of EM side channel.

522 28th USENIX Security Symposium USENIX Association

(a) First byte mantissa for weight = 2.43 (b) Second byte mantissa for weight = 2.43 (c) Third byte mantissa for weight = 2.43

Figure 5: Correlation of different weights candidate on multiplication operation

Table 2: Code snippet of the returned assembly for multipli-
cation: x = x ·w(= 2.36 or 0x3D0A1740 in IEEE 754 rep-
resentation). The multiplication itself is not shown here, but
from the registers assignment, our leakage model assumption
holds.

Instruction Comment

11a ldd r22, Y+1 0x01

11c ldd r23, Y+2 0x02

11e ldd r24, Y+3 0x03

120 ldd r25, Y+4 0x04

122 ldi r18, 0x3D 61

124 ldi r19, 0x0A 10

126 ldi r20, 0x17 23

128 ldi r21, 0x40 64

12a call 0xa0a multiplication

12e std Y+1, r22 0x01

130 std Y+2, r23 0x02

132 std Y+3, r24 0x03

134 std Y+4, r25 0x04

the weight directly. For this experiment, we target the result
of the multiplication m of known input values x and unknown
weight w. For every input, we assume different possibilities
for weight values. We then perform the multiplication and
estimate the IEEE 754 binary representation of the output.
To deal with the growing number of possible candidates for
the unknown weight w, we assume that the weight will be
bounded in a range [−N,N], where N is a parameter chosen
by the adversary, and the size of possible candidates is de-
noted as s = 2N/p, where p is the precision when dealing
with floating-point numbers.

Then, we perform the recovery of the 23-bit mantissa of
the weight. The sign and exponent could be recovered sepa-
rately. Thus, we are observing the leakage of 3 registers, and
based on the best CPA results for each register, we can recon-
struct the mantissa. Note that the recovered mantissa does
not directly relate to the weight, but with the recovery of the

sign and exponent, we could obtain the unique weight value.
The traces are measured when the microcontroller performs
secret weight multiplication with uniformly random values
between -1 and 1 (x ∈ {−1,1}) to emulate normalized in-
put values. We set N = 5 and to reduce the number of pos-
sible candidates, we assume that each floating-point value
will have a precision of 2 decimal points, p = 0.01. Since
we are dealing with mantissa only, we can then only check
the weight candidates in the range [0,N], thus reducing the
number of possible candidates. We note here that this range
[−5,5] is based on the previous experiments with MLP. Al-
though, in the later phase of the experiment, we targeted the
floating point and fixed-point representation (232 in the worst
case scenario on a 32-bit microcontroller, but could be less
if the value is for example normalized), instead of the real
value, which could in principle cover all possible floating
values.

In Figure 5, we show the result of the correlation for each
byte with the measured traces. The horizontal axis shows
the time of execution and vertical axis correlation. The ex-
periments were conducted on 1 000 traces for each case. In
the figure, the black plot denotes the correlation of the “cor-
rect” mantissa weight (|m(ŵ)−m(w)| < 0.01), whereas the
red plots are from all other weight candidates in the range
described earlier. Since we are only attacking mantissa in
this phase, several weight candidates might have similar cor-
relation peaks. After the recovery of the mantissa, the sign
bit and exponent can be recovered similarly, which narrows
down the list candidate to a unique weight. Another ob-
servation is that the correlation value is not very high and
scattered across different clock cycles. This is due to the
reason that the measurements are noisy and since the oper-
ation is not constant-time, the interesting time samples are
distributed across multiple clock cycles. Nevertheless, it is
shown that the side-channel leakage can be exploited to re-
cover the weight up to certain precision. Multivariate side
channel analysis [42] can be considered if distributed sam-
ples hinder recovery.

USENIX Association 28th USENIX Security Symposium 523

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1
co

rre
la

tio
n

Targeted value
Incorrect values

(a) weight = 1.635

200 400 600 800 1000
number of traces

0

0.2

0.4

0.6

0.8

1

co
rre

la
tio

n

Targeted value
Incorrect values

(b) weight = 0.890

Figure 6: Correlation comparison between the correct and
incorrect mantissa of the weights. (a) Correct mantissa can
be recovered (correct values/black line has a higher value
compared to max incorrect values/red line). (b) A special
case where the incorrect value of mantissa has a higher cor-
relation, recovering 0.896025 (1100100000..00) instead of
0.89 (1100011110...10), still within precision error limits re-
sulting in attack success

We emphasize that attacking real numbers as in the case of
weights of ANN can be easier than attacking cryptographic
implementations. This is because cryptography typically
works on fixed-length integers and exact values must be re-
covered. When attacking real numbers, small precision er-
rors due to rounding off the intermediate values still result in
useful information.

To deal with more precise values, we can target the man-
tissa multiplication operation directly. In this case, the search
space can either be [0,223− 1] to cover all possible values
for the mantissa (hence, more computational resources will
be required) or we can focus only on the most significant
bits of the mantissa (lesser candidates but also with lesser
precision). Since the 7 most significant bits of the man-
tissa are processed in the same register, we can aim to tar-

200 800 1000400 600
Number of traces

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n

Targeted value
Incorrect values

(a) First byte recovery (sign and 7-bit exponent)

200 800 1000400 600
Number of traces

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

Targeted value
Incorrect values

(b) Second byte recovery (lsb exponent and mantissa)

Figure 7: Recovery of the weight

get only those bits, assigning the rest to 0. Thus, our search
space is now [0,27−1]. The mantissa multiplication can be
performed as 1.mantissax×1.mantissaw, then taking the 23
most significant bits after the leading 1, and normalization
(updating the exponent if the result overflows) if necessary.

In Figure 6, we show the result of the correlation between
the HW of the first 7-bit mantissa of the weight with the
traces. Except for Figure 6b, the other results show that the
correct mantissa can be recovered. Although the correlation
is not increasing, it is important that the difference becomes
stable after a sufficient amount of traces is used and even-
tually distinguishing correct weight from wrong weight hy-
potheses. The most interesting result is shown in Figure 6b,
which at first glance looks like a failure of the attack. Here,
the target value of the mantissa is 1100011110...10, while
the attack recovers 1100100000..00. Considering the sign
and exponents, the attack recovers 0.890625 instead of 0.89,
i.e., a precision error at 4th place after decimal point. Thus,
in both cases, we have shown that we can recover the weights
from the SCA leakage.

In Figure 7, we show the composite recovery of 2 bytes of
the weight representation i.e., a low precision setting where

524 28th USENIX Security Symposium USENIX Association

we recover sign, exponent, and most significant part of man-
tissa. Again, the targeted (correct) weight can be easily dis-
tinguished from the other candidates. Hence, once all the
necessary information has been recovered, the weight can be
reconstructed accordingly.

3.5 Reverse Engineering the Number of Neu-
rons and Layers

After the recovery of the weights and the activation func-
tions, now we use SCA to determine the structure of the net-
work. Mainly, we are interested to see if we can recover the
number of hidden layers and the number of neurons for each
layer. To perform the reverse engineering of the network
structure, we first use SPA (SEMA). SPA is the simplest form
of SCA which allows information recovery in a single (or a
few) traces with methods as simple as a visual inspection.
The analysis is performed on three networks with different
layouts.

The first analyzed network is an MLP with one hidden
layer with 6 neurons. The EM trace corresponding to the
processing of a randomly chosen input is shown in Figure 8a.
By looking at the EM trace, the number of neurons can be
easily counted. The observability arises from the fact that
multiplication operation and the activation function (in this
case, it is the Sigmoid function) have completely different
leakage signatures. Similarly, the structures of deeper net-
works are also shown in Figure 8b and Figure 8c. The recov-
ery of output layer then provides information on the number
of output classes. However, distinguishing different layers
might be difficult, since the leakage pattern is only dependent
on multiplication and activation function, which are usually
present in most of the layers. We observe minor features al-
lowing identification of layer boundaries but only with low
confidence. Hence, we develop a different approach based
on CPA to identify layer boundaries.

The experiments follow a similar methodology as in the
previous experiments. To determine if the targeted neuron is
in the same layer as previously attacked neurons, or in the
next layer, we perform a weight recovery using two sets of
data.

Let us assume that we are targeting the first hidden layer
(the same approach can be done on different layers as well).
Assume that the input is a vector of length N0, so the in-
put x can be represented x = {x1, ...,xN0}. For the targeted
neuron yn in the hidden layer, perform the weight recovery
on 2 different hypotheses. For the first hypothesis, assume
that the yn is in the first hidden layer. Perform weight re-
covery individually using xi, for 1 ≤ i ≤ N0. For the second
hypothesis, assume that yn is in the next hidden layer (the
second hidden layer). Perform weight recovery individually
using yi, for 1≤ i≤ (n− i). For each hypothesis, record the
maximum (absolute) correlation value, and compare both.
Since the correlation depends on both inputs to the multi-

plication operation, the incorrect hypothesis will result in a
lower correlation value. Thus, this can be used to identify
layer boundaries.

3.6 Recovery of the Full Network Layout

The combination of previously developed individual tech-
niques can thereafter result in full reverse engineering of the
network. The full network recovery is performed layer by
layer, and for each layer, the weights for each neuron have to
be recovered one at a time. Let us consider a network con-
sisting of N layers, L0,L1, ...,LN−1, with L0 being the input
layer and LN−1 being the output layer. Reverse engineering
is performed with the following steps:

1. The first step is to recover the weight wL0 of each con-
nection from the input layer (L0) and the first hidden
layer (L1). Since the dimension of the input layer is
known, the CPA/CEMA can be performed nL0 times
(the size of L0). The correlation is computed for 2d

hypotheses (d is the number of bits in IEEE 754 rep-
resentation, normally it is 32 bits, but to simplify, 16
bits can be used with lesser precision for the mantissa).
After the weights have been recovered, the output of the
sum of multiplication can be calculated. This informa-
tion provides us with input to the activation function.

2. In order to determine the output of the sum of the mul-
tiplications, the number of neurons in the layer must
be known. This can be recovered by the combination
of SPA/SEMA and DPA/DEMA technique described in
the previous subsection (2 times CPA for each weight
candidate w, so in total 2nL02d CPA required), in par-
allel with the weight recovery. When all the weights of
the first hidden layer are recovered, the following steps
are executed.

3. Using the same set of traces, timing patterns for differ-
ent inputs to the activation function can be built, similar
to Figure 4. Timing patterns or average timing can then
be compared with the profile of each function to deter-
mine the activation function (a comparison can be based
on simple statistical tools like correlation, distance met-
ric, etc). Afterward, the output of the activation func-
tion can be computed, which provides the input to the
next layer.

4. The same steps are repeated in the subsequent layers
(L1, ...,LN−1, so in total at most 2NnL2d , where nL is
max(nL0 , ...,nLN−1)) until the structure of the full net-
work is recovered.

The whole procedure is depicted in Figure 9. In general,
it can be seen that the attack scales linearly with the size of
the network. Moreover, the same set of traces can be reused
for various steps of the attack and attacking different layers,
thus reducing measurement effort.

USENIX Association 28th USENIX Security Symposium 525

0.5 1 1.5 2
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

(a) One hidden layer with 6 neurons

0.5 1 1.5 2 2.5 3 3.5
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

(b) 2 hidden layers (6 and 5 neurons each)

1 2 3 4
Time samples 106

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Am
pl

itu
de

(c) 3 hidden layers (6,5,5 neurons each)

Figure 8: SEMA on hidden layers

Figure 9: Methodology to reverse engineer the target neural network

4 Experiments with ARM Cortex-M3

In the previous section, we propose a methodology to re-
verse engineer sensitive parameters of a neural network,
which we practically validated on an 8-bit AVR (Atmel AT-
mega328P). In this section, we extend the presented attack
on a 32-bit ARM microcontroller. ARM microcontrollers
form a fair share of the current market with huge domi-
nance in mobile applications, but also seeing rapid adoption
in markets like IoT, automotive, virtual and augmented real-
ity, etc. Our target platform is the widely available Arduino
due development board which contains an Atmel SAM3X8E
ARM Cortex-M3 CPU with a 3-stage pipeline, operating at
84 MHz. The measurement setup is similar to previous ex-
periments (Lecroy WaveRunner 610zi oscilloscope and RF-
U 5-2 near-field EM probe from Langer). The point of mea-
surements was determined by a benchmarking code running
AES encryption. After capturing the measurements for the
target neural network, one can perform reverse engineering.
Note that ARM Cortex-M3 (as well as M4 and M7) have
support for deep learning in the form of CMSIS-NN imple-
mentation [27].

The timing behavior of various activation functions is
shown in Figure 10. The results, though different from pre-
vious experiments on AVR, have unique timing signatures,
allowing identification of each activation function. Here,
sigmoid and tanh activation functions have similar minimal

computation time but the average and maximum values are
higher for tanh function. To distinguish, one can obtain mul-
tiple inputs to the function, build patterns and do pattern
matching to determine which type of function is used. The
activity of a single neuron is shown in Figure 11a, which uses
sigmoid as an activation function (the multiplication opera-
tion is shown separated by a vertical red line).

A known input attack is mounted on the multiplication to
recover the secret weight. One practical consideration in at-
tacking multiplication is that different compilers will com-
pile it differently for different targets. Modern microcon-
trollers also have dedicated floating point units for handling
operations like multiplication of real numbers. To avoid the
discrepancy of the difference of multiplication operation, we
target the output of multiplication. In other words, we target
the point when multiplication operation with secret weight
is completed and the resultant product is updated in general
purpose registers or memory. Figure 11b shows the success
of attack recovering secret weight of 2.453, with a known
input. As stated before, side-channel measurements on mod-
ern 32-bit ARM Cortex-M3 may have lower SNR thus mak-
ing attack slightly harder. Still, the attack is shown to be
practical even on ARM with 2× more measurements. In
our setup, getting 200 extra measurements takes less than
a minute. Similarly, the setup and number of measurements
can be updated for other targets like FPGA, GPU, etc.

Finally, the full network layout is recovered. The activity

526 28th USENIX Security Symposium USENIX Association

(a) ReLU (b) Sigmoid (c) Tanh

Figure 10: Timing behavior for different activation functions

(a) Observing pattern and timing of multiplication
and activation function

(b) Correlation comparison between correct and in-
correct mantissa for weight=2.453

(c) SEMA on hidden layers with 3 hidden layers
(6,5,5 neurons each)

Figure 11: Analysis of an (6,5,5,) neural network

of a full network with 3 hidden layers composed of 6, 5, and
5 neurons each is shown in Figure 11c. All the neurons are
observable by visual inspection. The determination of layer
boundaries (shown by a solid red line) can be determined
by attacking the multiplication operation and following the
approach discussed in Section 3.6.

4.1 Reverse Engineering MLP

The migration of our testbed to ARM Cortex-M3 allowed
us to test bigger networks, which are used in some relevant
case-studies. First, we consider an MLP that is used in profil-
ing side-channel analysis [41]. Our network of choice comes
from the domain of side-channel analysis which has seen the
adoption of deep learning methods in the past. With this net-
work, a state-of-the-art profiled SCA was conducted when
considering several datasets where some even contain im-
plemented countermeasures. Since the certification labs use
machine learning to evaluate the resilience of cryptographic
implementations to profiled attacks, an attacker being able to
reverse engineer that machine learning would be able to use
it to attack implementations on his own. The MLP we inves-

tigate has 4 hidden layers with dimensions (50,30,20,50), it
uses ReLU activation function and has Softmax at the output.
The whole measurement trace is shown in Figure 12(a) with
a zoom on 1 neurons in the third layer in Figure 12(b). When
measuring at 500 MSamples/s, each trace had∼ 4.6 million
samples. The dataset is DPAcontest v4 with 50 samples and
75 000 measurements [46]. The first 50 000 measurements
are used for training and the rest for testing. We experiment
with the Hamming weight model (meaning there are 9 output
classes). The original accuracy equals 60.9% and the accu-
racy of the reverse engineered network is 60.87%. While the
previously developed techniques are directly available, there
are a few practical issues.

• As the average run time is 9.8ms, each measurement
would take long considering the measurement and data
saving time. To boost up the SNR, averaging is recom-
mended. We could use the oscilloscope in-built feature
for averaging. Overall, the measurement time per trace
was slightly over one second after averaging 10 times.
• The measurement period was too big to measure the

whole period easily at a reasonable resolution. This was
resolved by measuring two consecutive layers at a time

USENIX Association 28th USENIX Security Symposium 527

(a)

(b)

Figure 12: (a) Full EM trace of the MLP network from [41],
(b) zoom on one neuron in the third hidden layer showing
20 multiplications, followed by a ReLU activation function.
50 such patterns can be seen in (a) identifying third layer in
(50,30,20,50) MLP

in independent measurements. It is important to always
measure two consecutive layers and not individual layer
to determine layer boundaries. This issue otherwise can
be solved with a high-end oscilloscope.
• We had to resynchronize traces each time according to

the target neuron which is a standard pre-processing in
side-channel attacks.

Next, we experiment with an MLP consisting of 4 hidden
layers, where each layer has 200 nodes. We use the MNIST
database as input to the MLP [29]. The MNIST database
contains 60 000 training images and 10 000 testing images
where each image has 28× 28 pixel size. The number of
classes equals 10. The accuracy of the original network is
equal to 98.16% while the accuracy of the reverse engineered
network equals 98.15%, with an average weight error con-
verging to 0.0025.

We emphasize that both attacks (on DPAcontest v4 and
MNIST) were performed following exactly the same proce-
dure as in previous sections leading to a successful recovery
of the network parameters. Finally, in accordance with the

conclusions that our attack scales linearly with the size of the
network, we did not experience additional difficulties when
compared to attacking smaller networks.

4.2 Reverse Engineering CNN

When considering CNN, the target is the CMSIS-NN imple-
mentation [27] on ARM Cortex-M3 with measurement setup
same as in previous experiments. Here, as input, we target
the CIFAR-10 dataset [24]. This dataset consists of 60 000
32×32 color images in 10 classes. Each class has 6 000 im-
ages and there are in total 50 000 training images and 10 000
test images. The CNN we investigate is the same as in [27]
and it consists of 3 convolutional layers, 3 max pooling lay-
ers, and one fully-connected layer (in total 7 layers).

We choose as target the multiplication operation from the
input with the weight, similar as in previous experiments.
Differing from previous experiments, the operations on real
values are here performed using fixed-point arithmetic. Nev-
ertheless, the idea of the attack remains the same. In this
example, numbers are stored using 8-bit data type – int8

(q7). The resulting multiplication is stored in temporary int

variable. This can also be easily extended to int16 or int32
for more precision. Since we are working with integer val-
ues, we use the Hamming weight model of the hypothetical
outputs (since the Hamming weight model is more straight-
forward in this case).

If the storing of temporary variable is targeted, as can be
seen from Figure 13(a), around 50 000 traces will be re-
quired before the correct weight can be distinguished from
the wrong weights. This is based on 0.01 precision (the ab-
solute difference from the actual weight in floating number).
However, in this case, it can be observed that the correlation
value is quite low (∼ 0.1). In the case that the conversion to
int8 is performed after the multiplication, this can be also
targeted. In Figure 13(b), it can be seen that after 10 000
traces, the correct weight candidate can be distinguished, and
the correlation is slightly higher (∼ 0.34).

Next, for pooling layer, once the weights in the convolu-
tion part are recovered, the output can be calculated. Most
CNNs use max pooling layers, which makes it also possible
to simply guess the pooling layer type. Still, because the max
pooling layer is based on the following conditional instruc-
tion, conditional(i f (a > max)max = a), it is straightforward
to differentiate it from the average pooling that has summa-
tion and division operations. This technique is then repeated
to reverse engineer any number of convolutional and pooling
layers. Finally, the CNN considered here uses ReLU activa-
tion function and has one fully-connected layer, which are
reverse engineered as discussed in previous sections. In our
experiment, the original accuracy of the CNN equals 78.47%
and the accuracy of the recovered CNN is 78.11%. As it can
be seen, by using sufficient measurements (e.g., ∼ 50000),
we are able to reverse engineer CNN architecture as well.

528 28th USENIX Security Symposium USENIX Association

(a) int scenario

(b) int8 scenario

Figure 13: The correlation of correct and wrong weight hy-
potheses on different number of traces targeting the result of
multiplication operation stored as different variable type: (a)
int, (b) int8

5 Mitigation

As demonstrated, various side-channel attacks can be ap-
plied to reverse engineer certain components of a pre-trained
network. To mitigate such a recovery, several countermea-
sures can be deployed:

1. Hidden layers of an MLP must be executed in sequence
but the multiplication operation in individual neurons
within a layer can be executed independently. An ex-
ample is shuffling [50] as a well-studied side-channel
countermeasure. It involves shuffling/permuting the or-
der of execution of independent sub-operations. For
example, given N sub-operations (1, . . . ,N) and a ran-
dom permutation σ , the order of execution becomes
(σ(1), . . . ,σ(N)) instead. We propose to shuffle the
order of multiplications of individual neurons within a
hidden layer during every classification step. Shuffling
modifies the time window of operations from one ex-
ecution to another, mitigating a classical DPA/DEMA
attack.

2. Weight recovery can benefit from the application of
masking countermeasures [8, 42]. Masking is an-
other widely studied side-channel countermeasure that
is even accompanied by a formal proof of security. It
involves assuring that sensitive computations are with
random values to remove the dependencies between ac-
tual data and side-channel signatures, thus preventing
the attack. Every computation of f (x,w) is transformed
into fm(x⊕m1,w⊕m2)= f (x,w)⊕m, where m1,m2 are
uniformly drawn random masks, and fm is the masked
function which applies mask m at the output of f , given
masked inputs x⊕m1 and w⊕m2. If each neuron is
individually masked with an independently drawn uni-
formly random mask for every iteration and every neu-
ron, the proposed attacks can be prevented. However,
this might result in a substantial performance penalty.

3. The proposed attack on activation functions is possible
due to the non-constant timing behavior. Mostly con-
sidered activation functions perform exponentiation op-
eration. Implementation of constant time exponentia-
tion has been widely studied in the domain of public
key cryptography [13]. Such ideas can be adjusted to
implement constant time activation function processing.

Note, the techniques we discuss here represent well-explored
methods of protecting against side-channel attacks. As such,
they are generic and can be applied to any implementation.
Unfortunately, all those countermeasures also come with an
area and performance cost. Shuffling and masking require a
true random number generator that is typically very expen-
sive in terms of area and performance. Constant time imple-
mentations of exponentiation [1] also come at performance
efficiency degradation. Thus, the optimal choice of protec-
tion mechanism should be done after a systematic resource
and performance evaluation study.

6 Further Discussions and Conclusions

Neural networks are widely used machine learning family
of algorithms due to its versatility across domains. Their
effectiveness depends on the chosen architecture and fine-
tuned parameters along with the trained weights, which can
be proprietary information. In this work, we practically
demonstrate reverse engineering of neural networks using
side-channel analysis techniques. Concrete attacks are per-
formed on measured data corresponding to implementations
of chosen networks. To make our setting even more general,
we do not assume any specific form of the input data (except
that inputs are real values).

We conclude that using an appropriate combination of
SEMA and DEMA techniques, all sensitive parameters of
the network can be recovered. The proposed methodology is
demonstrated on two different modern controllers, a classic
8-bit AVR and a 32-bit ARM Cortex-M3 microcontroller. As
also shown in this work, the attacks on modern devices are

USENIX Association 28th USENIX Security Symposium 529

typically somewhat harder to mount, due to lower SNR for
side-channel attacks, but remain practical. In the presented
experiments, the attack took twice as many measurements,
requiring roughly 20 seconds extra time. Overall, the attack
methodology scales linearly with the size of the network.
The attack might be easier in some setting where a new
network is derived from well known network like VGG-16,
Alexnet, etc. by tuning hyper-parameters or transfer learn-
ing. In such cases, the side-channel based approach can re-
veal the remaining secrets. However, analysis of such partial
cases is currently out of scope.

The proposed attacks are both generic in nature and more
powerful than the previous works in this direction. Finally,
suggestions on countermeasures are provided to help the de-
signer mitigate such threats. The proposed countermeasures
are borrowed mainly from side-channel literature and can in-
cur huge overheads. Still, we believe that they could moti-
vate further research on optimized and effective countermea-
sures for neural networks. Besides continuing working on
countermeasures, as the main future research goal, we plan
to look into more complex CNNs. Naturally, this will require
stepping aside from low power ARM devices and using for
instance, FPGAs. Additionally, in this work, we considered
only feed-forward networks. It would be interesting to ex-
tend our work to other types of networks like recurrent neu-
ral networks. Since such architectures have many same ele-
ments like MLP and CNNs, we believe our attack should be
(relatively) easily extendable to such neural networks.

References

[1] AL HASIB, A., AND HAQUE, A. A. M. M. A com-
parative study of the performance and security issues
of AES and RSA cryptography. In Convergence and
Hybrid Information Technology, 2008. ICCIT’08. Third
International Conference on (2008), vol. 2, IEEE,
pp. 505–510.

[2] ALBERICIO, J., JUDD, P., HETHERINGTON, T.,
AAMODT, T., JERGER, N. E., AND MOSHOVOS,
A. Cnvlutin: Ineffectual-Neuron-Free Deep Neural
Network Computing. In 2016 ACM/IEEE 43rd An-
nual International Symposium on Computer Architec-
ture (ISCA) (June 2016), pp. 1–13.

[3] ATENIESE, G., MANCINI, L. V., SPOGNARDI, A.,
VILLANI, A., VITALI, D., AND FELICI, G. Hacking
Smart Machines with Smarter Ones: How to Extract
Meaningful Data from Machine Learning Classifiers.
Int. J. Secur. Netw. 10, 3 (Sept. 2015), 137–150.

[4] BHASIN, S., GUILLEY, S., HEUSER, A., AND DAN-
GER, J.-L. From cryptography to hardware: analyz-
ing and protecting embedded Xilinx BRAM for cryp-
tographic applications. Journal of Cryptographic En-
gineering 3, 4 (2013), 213–225.

[5] BISHOP, C. M. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg, 2006.

[6] BRIER, E., CLAVIER, C., AND OLIVIER, F. Correla-
tion power analysis with a leakage model. In Interna-
tional Workshop on Cryptographic Hardware and Em-
bedded Systems (2004), Springer, pp. 16–29.

[7] COLLOBERT, R., AND BENGIO, S. Links Between
Perceptrons, MLPs and SVMs. In Proceedings of
the Twenty-first International Conference on Machine
Learning (New York, NY, USA, 2004), ICML ’04,
ACM, pp. 23–.

[8] CORON, J.-S., AND GOUBIN, L. On boolean and
arithmetic masking against differential power analysis.
In International Workshop on Cryptographic Hardware
and Embedded Systems (2000), Springer, pp. 231–237.

[9] DOWLIN, N., GILAD-BACHRACH, R., LAINE, K.,
LAUTER, K., NAEHRIG, M., AND WERNSING, J.
CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48
(2016), ICML’16, JMLR.org, pp. 201–210.

[10] FREDRIKSON, M., LANTZ, E., JHA, S., LIN, S.,
PAGE, D., AND RISTENPART., T. Privacy in Pharma-
cogenetics: An End-to-End Case Study of Personalized
Warfarin Dosing. In USENIX Security (2014), pp. 17–
32.

[11] GILMORE, R., HANLEY, N., AND O’NEILL, M. Neu-
ral network based attack on a masked implementation
of AES. In 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) (May
2015), pp. 106–111.

[12] GOODFELLOW, I., BENGIO, Y., AND COURVILLE,
A. Deep Learning. MIT Press, 2016. http://www.

deeplearningbook.org.

[13] HACHEZ, G., AND QUISQUATER, J.-J. Montgomery
exponentiation with no final subtractions: Improved
results. In International Workshop on Cryptographic
Hardware and Embedded Systems (2000), Springer,
pp. 293–301.

[14] HAYKIN, S. Neural Networks: A Comprehensive
Foundation, 2nd ed. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1998.

[15] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
Residual Learning for Image Recognition. CoRR
abs/1512.03385 (2015).

530 28th USENIX Security Symposium USENIX Association

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[16] HEUSER, A., PICEK, S., GUILLEY, S., AND
MENTENS, N. Lightweight Ciphers and their Side-
channel Resilience. IEEE Transactions on Computers
(2017), 1–1.

[17] HUA, W., ZHANG, Z., AND SUH, G. E. Reverse
Engineering Convolutional Neural Networks Through
Side-channel Information Leaks. In Proceedings of
the 55th Annual Design Automation Conference (New
York, NY, USA, 2018), DAC ’18, ACM, pp. 4:1–4:6.

[18] ILYAS, A., ENGSTROM, L., ATHALYE, A., AND LIN,
J. Black-box Adversarial Attacks with Limited Queries
and Information. CoRR abs/1804.08598 (2018).

[19] JAP, D., STÖTTINGER, M., AND BHASIN, S. Support
vector regression: exploiting machine learning tech-
niques for leakage modeling. In Proceedings of the
Fourth Workshop on Hardware and Architectural Sup-
port for Security and Privacy (2015), ACM, p. 2.

[20] KHAN, A., GOODHUE, G., SHRIVASTAVA, P., VAN
DER VEER, B., VARNEY, R., AND NAGARAJ, P. Em-
bedded memory protection, Nov. 22 2011. US Patent
8,065,512.

[21] KOBER, J., AND PETERS, J. Reinforcement Learning
in Robotics: A Survey, vol. 12. Springer, Berlin, Ger-
many, 2012, pp. 579–610.

[22] KOCHER, P., JAFFE, J., AND JUN, B. Differential
power analysis. In Annual International Cryptology
Conference (1999), Springer, pp. 388–397.

[23] KOCHER, P. C. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
Annual International Cryptology Conference (1996),
Springer, pp. 104–113.

[24] KRIZHEVSKY, A., NAIR, V., AND HINTON, G.
CIFAR-10 (Canadian Institute for Advanced Re-
search).

[25] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON,
G. E. ImageNet Classification with Deep Convolu-
tional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Pro-
cessing Systems - Volume 1 (USA, 2012), NIPS’12,
Curran Associates Inc., pp. 1097–1105.

[26] KUČERA, M., TSANKOV, P., GEHR, T., GUARNIERI,
M., AND VECHEV, M. Synthesis of Probabilistic Pri-
vacy Enforcement. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communica-
tions Security (New York, NY, USA, 2017), CCS ’17,
ACM, pp. 391–408.

[27] LAI, L., SUDA, N., AND CHANDRA, V. CMSIS-NN:
Efficient Neural Network Kernels for Arm Cortex-M
CPUs. CoRR abs/1801.06601 (2018).

[28] LECUN, Y., BENGIO, Y., ET AL. Convolutional net-
works for images, speech, and time series. The hand-
book of brain theory and neural networks 3361, 10
(1995).

[29] LECUN, Y., AND CORTES, C. MNIST handwritten
digit database.

[30] LERMAN, L., POUSSIER, R., BONTEMPI, G.,
MARKOWITCH, O., AND STANDAERT, F.-X. Tem-
plate attacks vs. machine learning revisited (and the
curse of dimensionality in side-channel analysis). In
International Workshop on Constructive Side-Channel
Analysis and Secure Design (2015), Springer, pp. 20–
33.

[31] LUO, C., FEI, Y., LUO, P., MUKHERJEE, S., AND
KAELI, D. Side-channel power analysis of a GPU AES
implementation. In Computer Design (ICCD), 2015
33rd IEEE International Conference on (2015), IEEE,
pp. 281–288.

[32] MAGHREBI, H., PORTIGLIATTI, T., AND PROUFF,
E. Breaking cryptographic implementations using deep
learning techniques. In International Conference on
Security, Privacy, and Applied Cryptography Engineer-
ing (2016), Springer, pp. 3–26.

[33] MANGARD, S., OSWALD, E., AND POPP, T. Power
Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer, December 2006. ISBN 0-387-30857-
1, http://www.dpabook.org/.

[34] MITCHELL, T. M. Machine Learning, 1 ed. McGraw-
Hill, Inc., New York, NY, USA, 1997.

[35] NAIR, V., AND HINTON, G. E. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Proceed-
ings of the 27th International Conference on Interna-
tional Conference on Machine Learning (USA, 2010),
ICML’10, Omnipress, pp. 807–814.

[36] NARAEI, P., ABHARI, A., AND SADEGHIAN, A. Ap-
plication of multilayer perceptron neural networks and
support vector machines in classification of healthcare
data. In 2016 Future Technologies Conference (FTC)
(Dec 2016), pp. 848–852.

[37] OHRIMENKO, O., COSTA, M., FOURNET, C.,
GKANTSIDIS, C., KOHLWEISS, M., AND SHARMA,
D. Observing and Preventing Leakage in MapReduce.
In Proceedings of the 22Nd ACM SIGSAC Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2015), CCS ’15, ACM, pp. 1570–
1581.

USENIX Association 28th USENIX Security Symposium 531

http://www.springer.com/
http://www.dpabook.org/

[38] OHRIMENKO, O., SCHUSTER, F., FOURNET, C.,
MEHTA, A., NOWOZIN, S., VASWANI, K., AND
COSTA, M. Oblivious Multi-party Machine Learn-
ing on Trusted Processors. In Proceedings of the 25th
USENIX Conference on Security Symposium (Berke-
ley, CA, USA, 2016), SEC’16, USENIX Association,
pp. 619–636.

[39] PAPERNOT, N., MCDANIEL, P., GOODFELLOW, I.,
JHA, S., CELIK, Z. B., AND SWAMI, A. Practical
Black-Box Attacks Against Machine Learning. In Pro-
ceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security (New York, NY,
USA, 2017), ASIA CCS ’17, ACM, pp. 506–519.

[40] PARASHAR, A., RHU, M., MUKKARA, A.,
PUGLIELLI, A., VENKATESAN, R., KHAILANY,
B., EMER, J., KECKLER, S. W., AND DALLY,
W. J. SCNN: An accelerator for compressed-sparse
convolutional neural networks. In 2017 ACM/IEEE
44th Annual International Symposium on Computer
Architecture (ISCA) (June 2017), pp. 27–40.

[41] PICEK, S., HEUSER, A., JOVIC, A., BHASIN, S.,
AND REGAZZONI, F. The Curse of Class Imbalance
and Conflicting Metrics with Machine Learning for
Side-channel Evaluations. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2019, 1
(Nov. 2018), 209–237.

[42] PROUFF, E., AND RIVAIN, M. Masking against side-
channel attacks: A formal security proof. In Annual
International Conference on the Theory and Applica-
tions of Cryptographic Techniques (2013), Springer,
pp. 142–159.

[43] RISCURE. https://www.riscure.com/blog/automated-
neural-network-construction-genetic-algorithm/, 2018.

[44] SHOKRI, R., STRONATI, M., SONG, C., AND
SHMATIKOV, V. Membership Inference Attacks
Against Machine Learning Models. In 2017 IEEE
Symposium on Security and Privacy (SP) (May 2017),
pp. 3–18.

[45] SONG, C., RISTENPART, T., AND SHMATIKOV, V.
Machine Learning Models That Remember Too Much.
In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2017), CCS ’17, ACM, pp. 587–601.

[46] TELECOM PARISTECH SEN RESEARCH GROUP.
DPA Contest (4th edition), 2013–2014. http://www.

DPAcontest.org/v4/.

[47] TEUFL, P., PAYER, U., AND LACKNER, G. From
NLP (Natural Language Processing) to MLP (Machine
Language Processing). In Computer Network Security
(Berlin, Heidelberg, 2010), I. Kotenko and V. Skormin,
Eds., Springer Berlin Heidelberg, pp. 256–269.

[48] THOMAS, P., AND SUHNER, M.-C. A New Multi-
layer Perceptron Pruning Algorithm for Classification
and Regression Applications. Neural Processing Let-
ters 42, 2 (Oct 2015), 437–458.

[49] TRAMÈR, F., ZHANG, F., JUELS, A., REITER, M. K.,
AND RISTENPART, T. Stealing Machine Learning
Models via Prediction APIs. CoRR abs/1609.02943
(2016).

[50] VEYRAT-CHARVILLON, N., MEDWED, M., KERCK-
HOF, S., AND STANDAERT, F.-X. Shuffling against
side-channel attacks: A comprehensive study with cau-
tionary note. In International Conference on the Theory
and Application of Cryptology and Information Secu-
rity (2012), Springer, pp. 740–757.

[51] WANG, B., AND GONG, N. Z. Stealing Hyperpa-
rameters in Machine Learning. CoRR abs/1802.05351
(2018).

[52] WEI, L., LIU, Y., LUO, B., LI, Y., AND XU, Q.
I Know What You See: Power Side-Channel Attack
on Convolutional Neural Network Accelerators. CoRR
abs/1803.05847 (2018).

[53] XU, X., LIU, C., FENG, Q., YIN, H., SONG, L.,
AND SONG, D. Neural Network-based Graph Embed-
ding for Cross-Platform Binary Code Similarity Detec-
tion. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2017), CCS ’17, ACM, pp. 363–376.

[54] XU, Y., CUI, W., AND PEINADO, M. Controlled-
Channel Attacks: Deterministic Side Channels for Un-
trusted Operating Systems. In Proceedings of the 2015
IEEE Symposium on Security and Privacy (Washing-
ton, DC, USA, 2015), SP ’15, IEEE Computer Society,
pp. 640–656.

532 28th USENIX Security Symposium USENIX Association

http://www.DPAcontest.org/v4/
http://www.DPAcontest.org/v4/

simTPM: User-centric TPM for Mobile Devices

Dhiman Chakraborty
CISPA Helmholtz Center
for Information Security,

Saarland University

Lucjan Hanzlik
CISPA Helmholtz Center
for Information Security,

Stanford University

Sven Bugiel
CISPA Helmholtz Center
for Information Security

Abstract

Trusted Platform Modules are valuable building blocks for
security solutions and have also been recognized as beneficial
for security on mobile platforms, like smartphones and tablets.
However, strict space, cost, and power constraints of mobile
devices prohibit an implementation as dedicated on-board
chip and the incumbent implementations are software TPMs
protected by Trusted Execution Environments.

In this paper, we present simTPM, an alternative imple-
mentation of a mobile TPM based on the SIM card available
in mobile platforms. We solve the technical challenge of im-
plementing a TPM2.0 in the resource-constrained SIM card
environment and integrate our simTPM into the secure boot
chain of the ARM Trusted Firmware on a HiKey960 refer-
ence board. Most notably, we address the challenge of how
a removable TPM can be bound to the host device’s root of
trust for measurement. As such, our solution not only pro-
vides a mobile TPM that avoids additional hardware while
using a dedicated, strongly protected environment, but also
offers promising synergies with co-existing TEE-based TPMs.
In particular, simTPM offers a user-centric trusted module.
Using performance benchmarks, we show that our simTPM
has competitive speed with a reported TEE-based TPM and a
hardware-based TPM.

1 Introduction

Trusted computing technology has become a valuable build-
ing block for security solutions. The most widely deployed
form of trusted computing on end-consumer devices is the
Trusted Platform Module (TPM), a dedicated hardware chip
that offers facilities for crypto co-processing, protected cre-
dentials, secure storage, or even the attestation of its host
platform’s state. By today, software and system vendors have
built various security solutions on top of TPM. For instance,
Microsoft’s BitLocker uses it to release disk-encryption cre-
dentials only to a trustworthy bootloader [49]; or Google’s
Chromium uses the TPM for a range of objectives [60], such

as preventing software version rollback, protecting RSA keys,
or attesting protected keys.

TPM is also of interest for the different stakeholders on
mobile devices. However, the particular benefits that the TPM
offers have historically hung on the TPM’s implementation
as a dedicated security chip that can act as a "local trusted
third party" on devices. Mobile devices are, however, con-
strained in space, cost, and power consumption, which pro-
hibits a classical deployment of TPM. To address the par-
ticular problems of the mobile domain, the Trusted Com-
puting Group (TCG) introduced the Mobile Trusted Mod-
ule (MTM) specifications [61]. Although the MTM concept
has never left the prototype status, its ideas influenced the
latest TPM2.0 specification [64]. The TPM2.0 mobile ref-
erence architecture [63] proposed different alternatives for
implementing a TPM on a mobile device, including virtu-
alization, dedicated cores, or hardware-based isolation. The
de-facto implementation of mobile TPMs today are protected
environments through hardware-based trusted execution envi-
ronment (TEE) [23, 24, 32, 45, 46, 54], like ARM TrustZone
that is available on virtually all mobile platforms today, where
the TPM is implemented as protected software application
inside the TEE.

Given the different proposals for realizing TPMs on mo-
bile platforms, we conduct a systematic comparison of the
different solutions in terms of security of the TPM itself, their
applicability in current systems, and deploy-ability in the spe-
cific setting of mobile devices. While the solutions naturally
differ in their security guarantees for the TPM (i.e., TPM state
or execution) due to differences in the underlying technology
(e.g., dedicated hardware chip vs. virtual machine), we see
particularly shortcomings of the current solutions in terms of
applicability and deploy-ability. In particular, the currently
incumbent fTPM (firmware TPM) is strictly bound to the plat-
form vendors and serves their purposes (e.g., securing vendor
credentials), but is not or only very limited available to other
stakeholders in the system, such as the user. Moreover, an
fTPM [54] that is based on a TEE falls short on providing
a fully measured boot by itself. The availability of an fTPM

USENIX Association 28th USENIX Security Symposium 533

depends on the availability of the TEE during boot, which is
one of the last steps in the long boot-chain. In light of recent
attacks against mobile bootloaders [55] and trusted software
in TEE [3, 8, 18, 39, 41, 51, 56–58], this lacking support to
attest the entire, early boot-chain, including the software in
the TEE, is unsatisfactory.

To put a new perspective on solving those issues of fTPM,
we add in this paper an alternative implementation of a hard-
ware TPM called simTPM to the landscape of mobile TPM im-
plementations by using the subscriber identity module (SIM)
card. We have implemented a prototype of our solution on a
Hikey960 reference board [1] and using a Gemalto Multos
card as SIM card. Our simTPM solves the technical chal-
lenge of implementing TPM2.0 compliant functionality on
the SIM card, which does not require any additional hard-
ware for the TPM. This approach keeps the costs down and
leverages dormant hardware capabilities of mobile devices.
Through performance tests, we show that simTPM is compet-
itively fast to reported fTPM implementations. A particular
challenge of this design is the lack of the usual physical bind-
ing between the TPM and its host platform’s root of trust for
measurement (RTM), that is, a SIM card can be moved to
another platform. We discuss two strategies in the particular
setting of mobile devices on how to bind the simTPM to a
device’s RTM, either through an extended secure boot and
TEE proxy or through a distance bounding protocol. Once
bound to the device’s RTM, we also integrated simTPM with
the ARM Trusted Firmware (ATF) boot chain to augment the
ATF secure boot with an authenticated boot. Our solution not
only fills the gap of TEE-based TPMs for measured boots, but
the co-existence of a fTPM and simTPM on a mobile device
creates also promising synergies between the two TPMs (e.g.,
to support multiple stakeholders). Our contribution can be
summarized as follows:

1. A systematic comparison of existing solutions for mo-
bile TPMs and their enabling technologies. We discover
that incumbent solutions fall short on applicability and
deploy-ability aspects.

2. We implemented the first SIM card based TPM2.0 for
mobile devices by developing a simTPM, which can be
executed in this constrained environment. Our solution
enables a user-centric trusted module offering a portable
sealed storage.

3. We propose an integration with the on-board TEE to
solve the problem of binding the simTPM to the RTM
and discuss an alternative solution based on distance
bounding. As a result of this binding, a fully measured
boot on the ARM Trusted Firmware (ATF) secure boot
chain is possible.

4. The performance of our simTPM is competitively fast
to a reported fTPM implementation and is comparable
with existing hardware TPMs.

Processor Bootloader 1 Bootloader 2

Bootloader 3-1Bootloader 3-2

Bootloader 3-3

TEE
(Optional)

Operating
System

1 2

34

5

6 7

M2

M3

M4
M5

M6

M7

P1 P2

P3

P4

P5

P6

P7

TPM
ARM Trusted

Firmware

0

Figure 1: Trusted Boot Process with TPM; P(#) = boot chain
path; M(#) = measurement of component #

2 Background

We briefly introduce necessary background information about
ARM Trusted Firmware, TPM, and SIM cards.

2.1 ARM Trusted Firmware (ATF)
ATF implements a subset of the trusted board boot require-
ments for ARM reference platform [5]. Figure 1 illustrates
the bootloader settings and boot chain. ATF is triggered when
the platform is powered on. After the primary CPU and all
other CPU cores are initialized successfully, the primary core
triggers the ATF (P1). ATF is divided in five steps depending
on modularity: 1 BootLoader stage 1 (BL1) for AP trusted
boot ROM, 2 BootLoader stage 2 (BL2) for Trusted Boot
Firmware, 3 BootLoader stage 3-1 (BL3-1) for EL3 Run-
time Firmware, 4 BootLoader stage 3-2 (BL3-2) for Secure-
EL1 Payload (optional), 5 BootLoader stage 3-3 (BL3-3)
for Non-trusted Firmware.

Secure boot: ATF implements a secure boot in which every
component along the boot chain P# verifies the authenticity
and integrity of the next component. Since BL1 does not have
a preceding component, it has to be axiomatically trusted.
Thus, BL1 verifies BL2, BL2 verifies BL3.x, and so forth.
Verification is usually based on certificates, where a hash of
a trusted (vendor) public key is fused into the hardware and
is available to BL1 to ensure a trustworthy signature of BL2.
At the end of a successful secure boot, every component in
the boot chain has been checked for integrity and authenticity
before handing control to it. If any verification fails, the boot
aborts.

2.2 Trusted Platform Module (TPM)
TPM by the Trusted Computing Group is the most wide-
spread trusted computing technology on end-user devices. By
today, the TPM specification is in its version 2.0, addressing

534 28th USENIX Security Symposium USENIX Association

many of the security issues and practical concerns of previ-
ous versions 1.0–1.2. According to this specification, a TPM
provides a number of desirable hardware and security fea-
tures. It is equipped with secure non-volatile memory, a set of
platform configuration register (PCR) banks, a processor to
run TPM code in isolation, co-processors for common cryp-
tographic primitives (e.g., RSA, ECC, SHA-1, SHA-256), a
clock, and a random number generator. By default, a TPM
is deployed as a hardware chip soldered onto a platform’s
motherboard. Besides acting as a cryptographic co-processor,
a TPM provides the facilities to securely store measurement
about the host platform’s configuration (e.g., software state)
in its PCRs and to reliably report those measurements to a
remote verifier (remote attestation based on a pre-installed
endorsement key), as well as creating secure storage through
TPM protected credentials and data sealing with extended au-
thorization policies. Further, the TPM non-volatile memory,
including secure monotonic counters, can be attractive for
building security solutions, e.g., version rollback prevention
for software updates.

By now, a number of real world applications make use of
TPM. For instance, IBM’s password manager uses it for stor-
ing keys, Microsoft windows management instrumentation
uses TPM for cryptographic co-processing, Intel’s Trusted
eXecution Technology or AMD’s Secure Technology rely
on a hardware TPM, several VPN apps can make use of it,
TPM is used in full disk encryption (e.g., Microsoft Bitlocker,
dm-crypt), and even browsers like Chrome make use of TPM
for different purposes.

Measured boot: Of particular relevance for this paper is
measured (or authenticated) boot based on TPM (see Fig-
ure 1). During a measured boot, every component in the boot
chain P# measures the next component—a cryptographic
hash of the component—and then stores this measurement in
the PCR of the TPM (M#) before passing on control. Since
BL1 does not have a preceding component, it is not mea-
sured and acts as the Root of Trust for Measurement, which
starts the measurement chain. In contrast to a secure boot,
the components are not verified and the boot is not aborted,
however, after a measured boot the software configuration of
the boot components can be attested by the TPM or used to
seal storage to this configuration (i.e., values in the PCR).

2.3 Subscriber Identification Module (SIM)

SIM card is the module that authenticates the mobile device
in the network. The primary job of the SIM card is to prove
the identity of the owner of subscription to the cellular carrier
to enable services like calling, Internet, and various others.

Through physically separated pins, a SIM module can
achieve the same degree of independence from power supply,
reset capability, clock signal, and separated I/O communica-
tion with the host platform like a TPM.

Since SIM cards are smart cards, they use command-

response communication and the application protocol data
unit (APDU) to communicate with their reader. The Android
radio interface layer can be extended to send specialized
APDU commands to the SIM card, which we use in simTPM.
It is worth noting, that this APDU command sent by the An-
droid radio interface has to go through the baseband pro-
cessor. The structure of the APDU commands are defined
in the ISO/IEC 7816-4 standard and are recalled later on in
Section 4.

3 Requirement Analysis & Systematization of
Existing Solutions

There exists many approaches to realize TPM in a way dif-
ferent than using a dedicated hardware TPM. In this section,
we systematically compare different solutions of trusted com-
puting procedures using both hardware and software that
are representative for the different implementation options.
For comparison, we first re-enumerate the objectives a se-
cure and practical TPM implementation needs to fulfill (Sec-
tion 3.1) and then discuss the existing solutions (Sections 3.2
through 3.4). In particular, this systematization should help
to understand the trade-off of the proposed solutions in com-
parison to the default hardware TPM and where our simTPM
solution fits into. Table 1 summarizes the discussion in the
remainder of this section.

3.1 Objectives
We start by briefly formulating the objectives a trusted mod-
ule, in particular for mobile devices, should fulfill. We group
them into security of the TPM itself, the applicability of the
implementation, and desirable deploy-ability objectives.

3.1.1 Security of TPM

These are objectives that should be fulfilled to ensure the
security of the TPM state, its execution and trustworthiness,
and secure operations.

S1 Confidentiality and integrity of TPM state: The TPM
state should be confidential and protected against untrusted
code (e.g., host platform, non-TEE apps) and only be avail-
able to authorized entities. We assign 4 if the confidentiality
and integrity of the state is protected through strong security
means (e.g., physical isolation), J if they depend on software
integrity (e.g., of the OS), and 8 in other cases.

S2 Rollback Protection: Reverting the TPM state back to
a former version must be prevented or at least be detectable.
We assign 4 if rollback protection is guaranteed through
hardware means (e.g., hardware counters), J if there is a
dependency on untrusted OS but rollbacks can be detected, 8
if no rollback protection or detection is provided.

USENIX Association 28th USENIX Security Symposium 535

S3 Trustworthy Endorsement: A TPM should be carrying
an asymmetric encryption key called Endorsement key (EK)
that can live as long as the TPM and for which credentials ex-
ist that verify the authenticity of the TPM and allow a verifier
to recognize a genuine TPM. We assign 4 if endorsement
credentials are available to the TPM (e.g., pre-installed at man-
ufacturing time or derived from other verifiable credentials),
J if the TPM has to create an EK and prove it is genuine
through a remote verification, 8 otherwise.

S4 Secure Counter: TPM has to provide secure, persistent
monotonic counters, e.g., for its clients or extended authoriza-
tion policies. We assign 4 if the TPM provides such counters
backed by hardware support or NV-storage of the TPM soft-
ware state that is protected (i.e., S1, S2 both 4). We assign
J if the security of the counter depends on software integrity
(e.g., of the OS or hypervisor). Otherwise 8.

S5 Secure Clock: A clock is needed for attestation, for gener-
ation of timed attestation keys, and for authorization policies
with lock-out time. If a secure clock is available to the TPM
(e.g., its own hardware clock), we assign 4; if the clock de-
pends on shared resources but manipulation can be detected
we assign J, otherwise 8.

S6 Security of TPM Execution: The execution of the TPM
code or firmware has to be protected against compromise.
We assign 4 if a strong security boundary exists between
untrusted code and the TPM execution environment (e.g.,
dedicated physical chip). If the execution environment shares
hardware resources (e.g., CPU or RAM) with untrusted code
and the shared resources provide isolation (e.g., modes of
operation of CPU and separate memory regions), we assign
J, since the shared resources open an attack surface. If the
security of the TPM execution environment is based purely
on software means (e.g., hypervisor or OS), we assign 8 for
this weakest form of isolation.

3.1.2 Applicability

These are objectives related to the application of TPM, such
as authenticated boot or providing secure storage to clients.

A1 Secure Persistent Storage: TPM provides a persistent
storage to securely store limited amounts of data (e.g., certifi-
cates). We assign 4 if the TPM provides such storage (e.g.,
NV-RAM in a dedicated chip) and J if the persistent storage
is part of an outsourced TPM state that is protected (i.e., S1,
S2 both 4). We assign 8 in other cases.

A2 Early Availability: A main use-case for TPM is storing
the measurement of loaded software components, i.e., mea-
sured boot. To be able to attest the entire software stack, the
TPM has to be early available during the boot sequence. If the
trusted module is available as soon as the platform has power,
we assign 4. Otherwise, if the TPM becomes available at late

stage during boot (e.g., after initializing a separate execution
environment), we assign 8.

A3 Multiple Stakeholders: Computer systems, in particular
mobile platforms and enterprise devices, usually have mul-
tiple stakeholders co-existing with an interest in protecting
credentials and software on the platform (e.g., end-user, ad-
ministrator, network operator, software vendor). If the TPM
was designed to support both platform software and users
(e.g., distinct hierarchies), we assign 4. If the TPM primar-
ily supports the platform but offers limited functionality to
the end-user, we give J. If the TPM was designed solely as
support for the platform vendor, we give 8.

3.1.3 Deploy-ability

Objectives related to the deployment of TPM, in particular if
deployment complies with the requirements of mobile devices
or if it is bound to a specific platform.

D1 Mobile Availability: We want to have the TPM available
for mobile devices. This imposes strict constraints, such as not
changing the current architecture by adding a new on-board
chip. If the TPM implementation adheres to this constraints,
we assign 4, otherwise 8.

D2 Movability: The TCG specification has introduced the
TPM as being bound to its host platform (e.g., fixed part of
the motherboard). However, depending on the context, the
movability of the TPM to another platform is desirable, e.g.,
if an associated virtual machine migrates to another platform.
If the TPM is generally easily moved to another platform, we
assign 4, if it is bound to a specific platform, we assign 8.

D3 Bound RTM: The measurements during a measured
boot are given to the TPM by the host platform, starting with
the Root of Trust for Measurement (RTM). To ensure that the
provided measurements indeed describe the TPM’s host plat-
form’s configuration, TPM and RTM must be bound together
on the same platform. If this binding is achieved via physi-
cal means (e.g., TPM and RTM are fixed parts of the same
motherboard), we assign 4. If the TPM receives those mea-
surements from another trusted entity (e.g., another, bound
TPM, or a secure boot anchored at the RTM), we assign J. If
the TPM cannot establish trust into the RTM, we assign 8.

In Section 2.2, while introducing the hardware TPM, we
explained all its properties, which allow the TPM to achieve
the objectives we defined in Section 3.1 and summarized in
Table 1. Objectives S1 to S6 and A1 to A3 are our interpreta-
tion of properties derived from TCG’s mobile TPM [61, 63]
and standard TPM specification [62, 64]. We define Deploy-
ability as added objectives that simTPM should achieve. The
current TCG specifications do not stipulate a removable TPM.
We will use the standard hardware TPM as the baseline that
simTPM should achieve.

536 28th USENIX Security Symposium USENIX Association

Table 1: Comparison of existing TPM implementations

Category Objective fT
PM

[5
4]

vT
PM

?
[9

]

In
te

lS
G

X
[1

9]

si
m

T
PM

H
ar

dw
ar

e
T

PM

Security of TPM

Security of TPM state
S1. Confidentiality and integrity 4 4/ J R 4 4
S2. Rollback protection 4 4/ J 4 4 4

S3. Trustworthy Endorsement 4 J/ J 4 4 4
S4. Secure counter 4 4/ J 4 4 4
S5. Secure clock J 4/ 8 8 4 4
S6. Security of TPM execution J 4/ 8 R 4 4

Applicability
A1. Secure persistent storage J 4/ 8 J 4 4
A2. Early availability 8 4/ 4 8 4 4
A3. Multiple stake holder 8 4/ 4 4 4 4

Deploy-ability D1. Mobile availability 4 8/ 8 8 4 8
D2. Movability 8 4/ 4 8 4 8
D3. Bound RTM 4 8/ J 4 J 4

4 = fulfilled by the implementation; J = partially fulfilled by the implementation; 8 = not fulfilled by the implementation; R = not applicable for the implementation

? First column is for Secure co-processor based vTPM (SCoP) implementation and second column is for Software only vTPM (SW-only) implementation

3.2 fTPM

Specifically for the mobile domain, a number of past im-
plementations [25, 54, 66] leveraged trusted execution en-
vironments (TEE) to realize a software-based TPM. We use
Microsoft’s fTPM [54] as a representative for those imple-
mentations, since it is one of the most recent solutions. The
fTPM implementation is widely deployed in Microsoft mo-
bile devices using a TEE on top of ARM TrustZone (D1: 4).
TrustZone creates a memory and process isolation between
the protected environment ("secure world") running inside the
TEE and the "normal world" (i.e., Android or similar), and
allows the execution to switch contexts between those two
worlds via a secure monitor.

fTPM provides confidentiality, integrity (S1: 4), and roll-
back protection (S2: 4) for fTPM states by creating a trusted
storage through a combination of encryption with fused keys,
device UUID, and Replay Protected Memory Block (RPMB)
with authenticated writes and write counter. Any form of se-
cure persistent storage the fTPM offers to clients is based on
this securely outsourced state (A1: J), which is also used to
provide secure counters to clients (S4: 4).

Due to ARM TrustZone, the execution of the fTPM en-
vironment is isolated from the normal world, however, both
worlds still share the CPU and RAM (S6: J), which has
opened TrustZone TEEs to attacks (e.g., [41]).

fTPM does not have a separate secure clock. It uses the
clock of the system in cooperation with the untrusted OS
(S5: J). To handle the shared clock situation, fTPM imple-
ments fate sharing, where fTPM refuses to provide any func-

tionality if the OS does not cooperate.
fTPM is primarily designed to provide TPM support to

the platform vendor (A3: 8). The fTPM is a software imple-
mentation and bound to one device (D2: 8), since it derives
many of its credentials from device-specific keys or UUIDs,
including its endorsement credentials (S3: 4).

Since the fTPM is implemented as software in the TEE on
top of ARM TrustZone, the fTPM becomes only available
once the TEE has been initialized during the boot sequence
(see also Section 2). That means the fTPM (or any TEE-based
TPM) is not early enough available to store measurements
of the early boot stages (A2: 8). But this can be alleviated
by introducing shared memory between the bootloaders and
TEE for measurement storage. We will discuss this solution
in more details in Section 4.3.

Although the fTPM is only available after the bootchain
has created the TEE, the secure boot transitively extends the
trust put into the RTM (BL1) to the remainder of the secure
bootchain on the same platform as the TEE. Thus, fTPM can
assume that the measurements are done as if by the RTM on
the same platform (D3: 4) if the measurements comes from
a component of the secure bootchain.

3.3 vTPM

Another way of implementing a software TPM is by creating
virtual instances over a physical TPM [9]. This, in particular,
targets cloud environments in which virtual machines need a
TPM, but sharing a single physical TPM (or providing an array

USENIX Association 28th USENIX Security Symposium 537

of physical TPM) is not an option. The representative work
for virtual TPM, or vTPM, is based on the Xen hypervisor and
proposes two different implementation options: 1) a software
only implementation with vTPM instances running inside a
privileged VM, and 2) a secure co-processor (SCoP) to run all
vTPM instances with better isolation at the cost of additional
hardware. Both options are not feasible for mobile TPMs
(D1: 8), since virtualization is not sufficiently supported or
effective, and adding a secure co-processor is too costly in
terms of space and power. However, by design vTPMs must
be movable to different platforms to support migration of
associated VMs between platforms (D2: 4).

In both deployment options, a vTPM has to create its en-
dorsement key at creation time. To establish trust into the EK
for a remote verifier, a genuine, primary TPM on the plat-
form (hardware TPM) must attest the trustworthiness of the
vTPM’s EK (S3: J).

In case of SCoP-vTPM, the TPM logic and vTPM in-
stances are executed inside the secure co-processor (S6|SCoP-
vTPM: 4). Further, the secure co-processor used in [9] (an
IBM PCIXCC) provides CMOS RAM backed persistent stor-
age. We assume it provides the confidentiality, integrity, and
rollback protection of the vTPM states as well as sufficient se-
cure persistent storage to the vTPM clients (S1, S2, A1|SCoP-
vTPM: 4). The same co-processor also offers facilities for
secure counters (S4|SCoP-vTPM: 4) and a secure clock
(S5|SCoP-vTPM: 4).

For SW-only-vTPM the vTPM instances reside in Xen’s
privileged dom0. Thus, their execution is protected from
untrusted VMs by only the Xen hypervisor (S6|SW-only-
vTPM: 8), and their state, when stored in persistent storage
in dom0, is also protected by only the access control and isola-
tion of the hypervisor and dom0 (S1, S2|SW-only-vTPM: J).
Similar, the protection of any persistent storage offered to
vTPM clients depends on the integrity and trustworthiness
of dom0 (A1|SW-only-vTPM: 8) as does any counter stored
in the vTPM state (S4|SCoP-vTPM: J). A vTPM relies
on the platform’s clock shared between all vTPMs includ-
ing untrusted code and not specifically protected (S5|SCoP-
vTPM: 8). Although vTPM instances are created after the
host platform has booted up, a vTPM receives the initial mea-
surement from the underlying hardware TPM of its platform,
which also attests the vTPM trustworthiness, and dom0 pro-
tects the vTPM state from migrating to an untrusted platform
(D3|SW-only-vTPM: J). Further, vTPM instances are cre-
ated together with their associated VM, hence, allowing the
VM to measure its entire bootchain and store the measure-
ments in its vTPM (A2: 4).

In case of SCoP-vTPM, the TPM resides entirely in the
IBM PCIXCC, a removable peripheral. Thus, no physical
binding to the RTM exists and no authenticity/trustworthiness
of the RTM is being ensured (D3|SCoP-vTPM: 8), hence,
an attacker could move the TPM to an untrusted platform that
feeds the TPM with arbitrary measurements. This situation

is very similar to our simTPM, which is also removable, and
we discuss solutions to this challenge in Section 4.3, which
might also be applicable to SCoP-vTPM.

The vTPM does not make any assumptions about which
stakeholder—user or platform—within the associated VM
uses the vTPM and supports, like a regular hardware TPM,
multiple hierarchies (A3: 4).

3.4 Intel SGX

Although Intel SGX is not an implementation of a TPM but a
solution to allow applications to establish a TEE, enclave in
SGX jargon (S1, S7: R), we include it here for comparison
because it offers in many dimensions similar protections as
a hardware TPM and shares a lot of a TPM’s objectives (we
mark non-applicable objectives with R in Table 1). For this
work we have only considered stock SGX implementations
in Intel processor to keep the comparison on par with other
candidates. SGX is currently only supported by desktop and
server class Intel processors (D1: 8) and binds any credentials,
like generated and derived keys, and transitively sealed data
strictly to the CPU (D2: 8).

In SGX, attestation means verifying that a certain enclave
code was initialized correctly and not tampered with by the
untrusted host OS. For remote attestation in SGX an Intel-
provided Quoting Enclave provides the facilities to enclaves
to do direct anonymous attestation (DAA) using attestation
keys endorsed by Intel (S3: 4). The SGX extensions to the
CPU measure the enclaves, hence, the enclaves are physically
bound to their RTM (D3: 4).

SGX supports enclaves in sealing data for storing it on
untrusted persistent storage, since enclaves themselves do
not have any persistent storage like NV-RAM (A1: J). In
addition, Intel has added support for monotonic counters [30,
43] that allow rollback protection of sealed data (S4, S2: 4).

It is a processor based technology, so it can fully utilize
the clock of the system. But the current SGX implementation
does not accommodate a trusted and fine grained clock for the
user-level enclaves. There is an API provided by Intel, e.g.,
get_trusted_time, but this call can be arbitrarily modified by
the untrusted OS, since it requires to make an OCALL [4, 6,
17, 31, 37]. Moreover, any timing mechanism must account
for the fact that the OS can interrupt the enclave at any point
in its execution, wait for an arbitrary period of time, and then
resume the enclave using ERESUME (S5: 8).

Both regular applications and system software can use en-
claves and SGX is not restricted to particular stakeholders
(A3: 4). However, an early firmware initialized enclave is
not possible, since the OS is needed for memory management
of enclaves (A2: 8).

538 28th USENIX Security Symposium USENIX Association

3.5 Java-card based MTM
Dietrich and Winter proposed a way of implementing a mo-
bile trusted module (MTM) in a Java-based smart-card for
mobile devices [21, 26]. The implementation is for applica-
tions running on mobiles and the TPM communicates through
NFC.

The TPM is installed as a set of applets in the Java-card,
where a master-applet provides services to other applets, like
TPM command handling and controls the access to the en-
dorsement key. The actual processing of TPM commands is
handled by specific applets implementing those commands.

Although this implementation seems like closest related
work to our simTPM, their work described a proof-of-concept
prototype and is unfortunately silent about many aspects, such
as secure persistent storage, and some functionality is not
available, such as attestation of the system or authenticated
boot. The Java-card communicates with the system over NFC,
so binding the card with the system is not possible and early
availability of the trusted module is also not possible before
the NFC driver is loaded.

Their implementation provides important insights on the
implementation of MTM on mobile devices through a pro-
grammable TPM and presented pioneering work, but given
the lack of documentation and also differences in engineering
(see Section 4), we cannot provide a full and fair comparison
with simTPM and exclude it from our systematization.

4 System Design and Security Analysis

The main component of simTPM is a smart card based imple-
mentation of a SIM TPM. However, to properly work it also
requires changes in the bootloader and the operating system
(i.e., Android). In this section, we describe the design and
implementation of simTPM in more details. We also discuss
how our solution solves the shortcomings described in Sec-
tion 3 and argue about our design’s security. Along with the
design descriptions, we indicate how the objectives shown in
Table 1 are met by simTPM.

4.1 SIM TPM
Modern SIM cards are usually general purpose smart cards
running an applet created by the mobile network provider.
The two most prominent smart card technologies are Java
Cards and Multos cards. Both introduce a custom OS (i.e.,
Java Card OS and Multos OS) and APIs that can be used
by programmers for cryptographic (e.g., encryption, signing)
and non-cryptographic (e.g., memory allocation and copy)
operations that are implemented and executed directly on the
microprocessor. Depending on the technology, applets can be
programmed in C/C++ (e.g., Multos cards) or in Java (e.g.,
Java Card). Additional cryptographic algorithms, not provided
by the API, can be implemented in software.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CLA INS P1 P2

DATA_LEN

DATA
(up to 255 bytes)

EXP_DATA_SIZE

Figure 2: Generic APDU command structure

Both card technologies have support for multiple applets.
To properly manage them, cards provide a specialized secu-
rity manager that is responsible for installing and deleting of
user defined applets. Once an applet is uploaded, the security
manager creates its instance and allows the applet to create
necessary objects and allocate memory.

4.1.1 API Limitations of Smart Cards

As mentioned above, each Smart Card OS provides a card
specific API that allows applets to perform extended opera-
tions. This forces the programmer to use only a predefined
set of functions. For example, in case of Java cards the API
supports only a subset of the standard Java language and is
limited to high level cryptographic operations (e.g., encryp-
tion, hashing, signing). There is no support for mathematical
functions like modular multiplication or elliptic curve point
addition, which are one of the main building blocks of public
key cryptography. In other words, the developer cannot use
hardware support for those low-level operations and is limited
to software implementations that are inefficient due to the
overhead of the virtualization layer.

Obviously, those limitation do not directly concern TPM
commands that only use basic cryptographic operations. Un-
fortunately, the TPM standard defines a remote attestation
scheme that is not supported by the cards API, because it uses,
e.g., zero-knowledge proofs. This constitutes an interesting
engineering problem that we solve. In particular, we were
able to implement simTPM on a Gemalto MultiApp Multos
smart card with an Infineon SLE78CLX family microproces-
sor. This card also helped us achieving process isolation from
the general-purpose processor (S6: 4). It is worth noting,
that in this paper we focused mainly on the Multos API [42],
because it supports a broader range of functions than the Java
card API. In particular, we were able to efficiently implement
a remote attestation scheme on-card.

4.1.2 Smart Cards and TPM Command Parsing

SIM cards are connected to the main processing unit over
a separate bus and available for mobile telephony services
(D1: 4). Smart cards work in a command/response manner,
i.e., given an input the card executes the code and returns a
response. The input data is defined by an APDU command

USENIX Association 28th USENIX Security Symposium 539

(see Figure 2), which consists of a class byte (CLA), an in-
struction byte (INS), two bytes for parameters (P1, P2), one
byte for the expected response length, one byte for the data
length (DATA_LEN), and DATA_LEN bytes of data. The
cards’ response contains the response data and two bytes that
constitute the status word (not shown in the figure). The data
field is limited to 255 bytes. There exist an extended length
APDU specification that allows for a larger data field but it is
not widely implemented.

In a multi applet system, an APDU command will be for-
warded to the currently selected applet. To select an applet,
the SELECT APDU command with an unique applet identifier
has to be sent to the card. This command is then recognized
and executed by the OS. Once selected, the applet can parse
incoming commands according to its work flow. In particu-
lar, this means that the developer can use the instruction and
parameters bytes to program the behavior of the card.

The APDU data structure provides a convenient way to
communicate with the card. We designed a custom APDU
command that implements TPM commands. The data length
size of up to 255 bytes is sufficient for the payload sizes of
most TPM commands, and for TPM commands with larger
payload sizes (e.g., sealed data blobs), we send the payload
split across multiple APDU messages and use the parameter
bytes to communicate the card if more data is to be expected.

Changes to Android’s radio interface: The Android Ra-
dio interface layer (RIL) is responsible for communicating
with the device’s SIM card. To allow RIL to communicate
with simTPM, we introduced a set of TPM commands. We
implemented a custom RIL as a shared library, which sends
APDU commands as bulk transfer to the simTPM and receives
its responses.

4.1.3 TPM Commands

We now briefly discuss how we designed the card to handle
basic TPM commands related to PCR banks and sealing. The
former case is easy, the applet reserves enough non-volatile
memory to store the PCRs. The number of banks is defined
by the installation parameter of the TPM applet, which also
defines the algorithm we use to extend the PCR (e.g., SHA1
or SHA256). In a standard setup we use 24 PCRs. For the
TPM_EXTEND and TPM_READ commands we used two separate
instruction bytes (respectively, 0x10 and 0x20) to form the
APDU. In both cases the number of the PCRs is given using
parameter P1.

To design (un-)sealing on a smart card was a bit harder. Due
to the limited input data size, the card has to encrypt/decrypt
the input in chunks, which are split across multiple APDU
messages. The storage key for sealing is generated by the card
after receiving the TPM_INIT command. The key is stored in
the non-volatile memory that is allocated during installation
of the applet (see next Section 4.1.4).

It is worth noting that smart cards can be programmed to
execute all TPM commands that require basic cryptographic
algorithms, on-card key generation, key agreement, or stor-
ing data in volatile/non-volatile memory. Unfortunately, the
privacy-preserving variant of remote attestation (i.e., direct
anonymous attestation, DAA) requires zero-knowledge proofs
and other unsupported crypto operations. What is more, in
versions below TPM 2.0 the specification defined only one
algorithm for anonymous attestation [14], which is based on
groups with hidden order (i.e., using a RSA modulus) and
Camenisch-Lysyanskaya signatures. The TPM 2.0 specifica-
tion, however, allows for algorithm agility. We leveraged this
fact and used a custom scheme. We present the full scheme
and security proofs in the technical report of our paper [16].
Here, we only draft the idea behind the scheme, which fol-
lows the generic approach used by other DAA schemes: The
TPM receives a signature/certificate under its secret DAA key
from an authority. It then uses this secret key to certify its
attestation key using a proof. In this zero-knowledge proof
the TPM shows that it knows a certificate under a DAA key
and a signature created using this key under an attestation
key. The scheme uses Boneh and Boyen [11] signatures and
an efficient zero-knowledge proof for the above statement
that is made non-interactive using the Fiat-Shamir transfor-
mation [28]. The main advantage of the scheme is that it can
be executed solely by the TPM (i.e., on-card) and does not
require any involvement of the host platform. To further im-
prove efficiency of our scheme, we decided to optimize the
workload between commands, i.e., if the TPM_CREATE com-
mand recognizes that the TPM is creating an attestation key, it
already does some pre-computation for the DAA certification.

4.1.4 PCR and NV storage

All smart cards implement a small amount of non-volatile
storage that can be used for various purposes. This memory
of the smart card is by design tamper-resistant and therefore
offers memory isolation from the rest of the system (S6: 4).
Modification of this memory is only possible by the applet
that reserved it and we reserve some of the NV storage for
the simTPM (A1: 4). Smart cards are equipped with features
preventing updates of its internal state by the outside world.
To update stored content (e.g., applets), one has to issue an
authorized command to the card manager to update storage
or perform applet specific commands, e.g., PCR extension
(S1: 4). Our simTPM is equipped with PCR banks that are
initialized when power cycling the device and, hence, the SIM
card, and can only be changed between power cycles using
PCR_EXTEND.

System software or user level software can keep a counter
containing the current version of the software inside the NV-
storage and updates to the counter are only allowed via au-
thorized commands. This provides an easy setup for secure
counter and rollback protection (S4: 4).

540 28th USENIX Security Symposium USENIX Association

4.1.5 Trustworthy endorsement & Clock

Trustworthy endorsement of a TPM is very important. The
standard solution is to use an asymmetric encryption key
called endorsement key. This key is unique per TPM and
should stay alive as long as the TPM is alive. This key differ-
entiates a genuine from a rogue TPM. simTPM can achieve
secure endorsement by putting a (vendor) certified endorse-
ment key inside its NV-storage and implementing TPM logic
that ensures that the private portion of the key is never released
to the outside world (S3: 4).

SIM cards are equipped with a clock pin connected to
the baseband processor. Thus, they cannot be clocked higher
or lower by an untrusted application or OS. This separate
clock helps simTPM to work on a different clock frequency
not under direct influence of the main processor. What is
more, the baseband processor can be used as a secure external
clock. In particular, since the baseband processor is by default
isolated with a strong security boundary from untrusted code
on the platform, it can prepend any APDU command with an
APDU command containing the current time (this can also
be limited to time-sensitive TPM commands only). This way
simTPM can be provided with a secure clock (S5: 4).

4.1.6 Movability & Stakeholders

The other unique feature of the simTPM architecture is its
movability (D2: 4). simTPM implements the TPM inside the
SIM card. So by design, simTPM can be transferred to a dif-
ferent device. This creates some interesting use-cases, which
we discuss in more details in Section 6.2, but also challenges,
which we discuss separately in Section 4.3. simTPM is not
specifically bound to one particular stakeholder and supports
the multiple stakeholder model proposed by TCG (A3: 4),
although we think the end-users and their apps are the primary
beneficiaries of simTPM.

4.2 ATF boot-loader changes
In Section 2.1, we have briefly introduced ATF and its boot-
loader chains. In this section we describe the changes we
have implemented to enable communication between the
bootloader components and the simTPM. Figure 1 can be
helpful as a visual aid for understanding.

After turning on the secondary cores on the cold boot path,
the processor kicks in the first stage BL1 of the bootloader (
1). Current bootloaders are not implemented such as to be

able to communicate with a device like a SIM card and to run
a command response protocol. Thus, we have extended all the
boot-loaders with the capability to communicate with the SIM
card via bus communication. This modification in ATF makes
the simTPM already available to the early BL1 stage (A2:
4). The bootloader software is capable of translating TPM
commands to APDU commands, sending them to simTPM,
receiving responses, and translating them to a meaningful

response that can be used to make decisions (e.g., failed/suc-
cessful PCR extension commands). One thing that needed to
be addressed here is that except for BL3-3, all bootloaders
are secure mode software (i.e., secure world in TrustZone).
So during execution, simTPM has to be initialized as secure
mode hardware to be available to the bootloader. We initialize
the simTPM as a secure mode hardware, but after a successful
boot chain verification, we switch simTPM to normal mode
(of TrustZone). This allows us to maintain normal efficiency
in the normal world, since the SIM card functionality (e.g.,
calls or text messages) is accessed by Android and switching
context from normal world to secure world every time before
accessing the SIM card in Android can interrupt the normal
world execution and would be highly inefficient.

4.3 Bootstrapping trust for movable simTPM
Parno [53] was first to identify the problem of how to boot-
strap trust into a hardware TPM and the possibility of cuckoo
attacks. A fundamental problem of TPM is that the verifier
(e.g., local user) does not know if they are talking to the in-
tended (e.g., local) TPM, just that they are talking to a genuine
TPM. In a cuckoo attack, an attacker that compromised the
local platform can exploit this problem and fool the verifier
into trusting the compromised platform: the attacker simply
relays the verifier’s communication to another (remote) TPM
on an attacker-controlled platform, which then can attest an
arbitrary, trustworthy state to the verifier. The preferred solu-
tions to prevent cuckoo attacks are hardwired channels via a
special purpose hardware interface to the on-board TPM or,
alternatively, a cryptographically secured verifier-TPM com-
munication where the verifier has knowledge of the public
key of the TPM on the intended platform.

However, those solutions make an implicit assumption:
Historically TPMs are soldered onto the motherboard, elim-
inating the issue of ensuring proper binding to the device’s
root of trust of measurement (RTM), usually in form of an im-
mutable piece of trusted code in the BIOS. Due to this static
design a TPM is ensured that the very first received measure-
ment in a chain-of-trust is coming from a trusted, local RTM.
Only a sophisticated hardware attack can break this binding.
A TPM that is by-design movable, such as our simTPM or
the PCI-attached secure co-processor for vTPM [9], raises
an interesting question about how to re-establish this bond
between TPM and RTM.

Lack of chain-of-trust: Without binding the TPM to a
trusted, local RTM, the measurements of any authenticated
boot cannot be trusted. An adversary could simply plug the
simTPM into an attacker-controlled platform and replay1 any
desired measurements sequence, i.e., create arbitrary PCR
values akin to a TPM reset attack [29, 36]. This allows the

1The TPM is a passive device to which the measurements have to be
provided by its caller.

USENIX Association 28th USENIX Security Symposium 541

Se
cu

re
 C

ha
nn

el

Bootloader1 Bootloader2

Bootloader31TEE

OS

 S
ec

ur
e

C
ha

nn
el

Benign Phone
with malicious

SIM card

Malicious OS

Relay P
ipe

Attacker controlled
Phone

 Secure Channel

 Secure Channel

Figure 3: Using TEE as TPM proxy to bind simTPM with
RTM and to mitigate the effects of relay attacks.

attacker to fool a remote verifier during remote attestation but
also to gain access to sealed secrets, whose release is bound
to the platform state (i.e., PCR values).

Binding simTPM and RTM: To create a binding between
the simTPM and a trusted, local RTM, we need the simTPM to
1) authenticate the RTM to ensure its a trusted code (e.g., BL1
of ATF); and to 2) ensure policies (e.g., for data release) and
commands (e.g., attestation) are only executed for exactly the
platform for which the simTPM stores the measurements. To
address those challenges, we identified two possible solutions,
using the device’s TEE as a proxy to the simTPM (see below)
or using distance bounding protocols (discussion deferred to
the technical report of our implementation [16]).

Using TEE as TPM proxy: One way to bind the simTPM
with the device’s RTM is by leveraging the platform security
building blocks of mobile devices and using the TEE as a
proxy to simTPM (see Figure 3). On a genuine device with
secure boot in place, i.e., BL1 as a trusted RTM, the TEE
has exclusive access to device-specific credentials that are
certified by the device vendor. Using those credentials, the
simTPM and TEE can establish a secure end-to-end channel.
In this setup, simTPM will only respond to PCR extensions,
attestation requests, or unsealing of encrypted data if the com-
mands come via this secure channel. As a result, an attacker
cannot forge arbitrary PCR values without compromising the
device-specific key. Further, if the TPM enforces a particular
device key, it can ensure that only the intended platform is
using the simTPM; however, even without this strict set of
device keys, this solution still ensures that any TPM com-
mands, such as releasing data to the host platform, can only
come from a genuine mobile platform with an intact secure
boot from which it received the measurements. Considering
previously mentioned software-based attacks against TEE
(see Section 3.2), an attacker could compromise the TEE to
steal the device-specific key and impersonate the TEE to the
simTPM. This can be alleviated by using session keys instead
of the long-term secret device-specific key for communication
between TEE and simTPM, which could be setup during the
bootstrapping and, hence, before untrusted code can attack
the TEE. A drawback of this solution is that the simTPM

requires the TEE to be bootstrapped to become itself opera-
tional, which prevents an early availability of the simTPM.
Since the simTPM is not early available in this setup, ATF’s
secure boot has to be extended to store the measurements of
verified software components and pass those measurements
on to the TEE, which then can forward them to the simTPM
via the secured channel (D3: J). It should be noted that while
this extension to ATF would also provide a solution to the
early availability of fTPM [54], simTPM gives a user-centric
solution and additional interesting use-cases in comparison
to fTPM (see Section 6). We discuss an alternative solution
based on a distance bounding protocol in Appendix A.

4.4 Security analysis
Lastly, we analyze the security of simTPM in comparison to
the closest solutions fTPM and hardware TPM, specifically
considering the deployment of our TPM on a SIM card.

Off-chip protection: As mentioned in Section 3, fTPM de-
pends on the integrity of the secure world, which has been
under attack recently [3, 8, 18, 41, 51, 55–57]. Our simTPM
implements an off-board TPM on the SIM card and, like
a discrete TPM, is physically isolated from untrusted code.
This provides a stronger protection of the simTPM’s trusted
computing base, however, we cannot fully exclude potential
software attacks against the SIM card software. For instance,
in the past smart cards have exhibited bugs [50] like hidden
commands, buffer overflows, weaknesses of cryptographic
protocols [52], or malicious applets [52]. Further, like a hard-
ware TPM, simTPM is connected via a bus, which makes it
prone to advanced bus attacks [12, 34, 36] that, however, are
considered outside the attacker model for consumer grade
hardware like the TPM.

SIM card cloning: Deployment on a SIM card also raises
the concern of card cloning [65], which could easily enable
impersonation attacks or theft of credentials. However, driven
by the interests of telecommunication companies, modern
SIM cards come with anti-cloning defenses that mitigate this
attack vector [42].

SIM swapping attack: In SIM swap attack, an attacker ob-
tains details about the victim and then tricks the telephony
company to port the victim’s phone number to a fraudulent
SIM card owned by the attacker, usually with the goal to re-
ceive all SMS including highly sensitive information, like
OTP for online banking. In our design, the TPM is not depen-
dent on the SIM telephony functionalities. simTPM works as
a local co-processor with desirable attributes. An attacker can
port the telephony services to a fraudulent SIM card, but not
the TPM state, as it is bound to the local SIM-card and would
require explicit migration policies to other (SIM)TPM.

542 28th USENIX Security Symposium USENIX Association

Side-channel attacks: To be compliant with the TPM 2.0
specification, the hardware has to implement cryptographic
functions that are resilient to timing-based side-channel at-
tacks. There exists a similar requirement for smart cards,
which are designed to be resistant against various types of
side-channel attacks. Thus, simTPM immediately benefits
from the security features of the underlying smart card.

However, a motivated attacker can easily move simTPM
to a controlled environment and mount different active side-
channel attacks, such as clock frequency, heat measurement,
probing [33], fault injection [35], or power analysis [40,47,48].
While similar attacks have been shown against ARM Trust-
Zone (e.g., [39, 58]) and discrete TPM chips [59], deploying
the TPM on a removable card might ease mounting those
attacks. Nevertheless, it should be noted that such sophisti-
cated hardware attacks are not only strenuous, exorbitant, and
inconsistent, but also beyond the protection that a consumer
grade security chip can offer.

5 Performance Evaluation

We evaluate the performance of simTPM on a HiKey960
board in comparison with a hardware TPM. We focus on the
most frequent commands executed by a TPM, i.e., key gen-
eration, sealing/unsealing of data, extending/reading a PCR,
generating random bytes, and computing a hash value of an
input. Beside simTPM we prepared two test setups equipped
with an Infineon SLB 9670 TPM chip. One of these two test
benches is a plug-able TPM on a Raspberry-Pi (piTPM) and
the other one is an embedded TPM on a standard Lenovo
laptop (embTPM). More details about the setups is given
in [16]. We have used a TSS implementation by IBM [2]
to communicate with the Infineon TPM. The results of our
benchmarks are summarized in Figure 4. All results come
from 50 measurements per command per device. We report
the 95% confidence intervals.

5.1 Test cases and results
Key generation: We measured the time to generate a 256-
bit ECC key and output the public part of the key. Our
implementation of simTPM creates the key on average
in 257± 8.03ms, comparable to the piTPM performance
(253±1.25ms), but slower than the embTPM (172±0.61ms).

Create hash: We measured the time it takes for the TPM
to hash 256 bits of input data with SHA-256 and output the
digest. piTPM (50± 0.76ms) and embTPM (21± 0.16ms)
outperform the simTPM (72±10.13ms) by a factor of 1.44
and 3.42, respectively.

Extending and reading a PCR: We evaluated the PCR ex-
tend and read commands. The former allows to extend the

PCR with a new value, while the latter command is used
to read the current value of a PCR. We use SHA-256 as
hash algorithm and a 128 bit string as input value. For PCR
extension, simTPM (24± 2.66ms) is on par with embTPM
(21± 0.11ms), however, exhibits a higher instability of the
performance. For reading PCRs, simTPM (15±0.15ms) is the
fastest implementation, followed by embTPM (21±0.13ms).
piTPM is the slowest implementation in both cases (41±
1.22ms and 57± 2.58ms) and exhibits an unstable perfor-
mance, too.

Sealing and unsealing data: The TPM seal command
takes a byte array, attaches a policy, encrypts it with a TPM
storage key, and returns a blob to the caller. When unseal-
ing, the TPM takes an encrypted blob, checks the policy, and
decrypts the blob if the policy is satisfied by the TPM state.
For our performance measurement we used 128 bits input
data, a 256-bit ECC sealing key with ECIES, and an empty
policy. The embTPM is the fatest solution for sealing and
unsealing (130±0.27ms and 89±0.46ms) and outperforms
our simTPM (588±18.55ms and 376±22.30ms) by a factor
of 4.52 and 4.22, respectively.

Random number generation: We use the TPM to gen-
erate a 64 bit random number. Our simTPM is the fastest
solution (15±0.14ms), followed by embTPM (21±0.17ms)
and then piTPM (63±1.63ms).

5.2 Discussion of performance
Our test results show that there is no clear winner among
our test systems. simTPM as well as embTPM excel for
some commands and we would argue that our simTPM pro-
totype shows a competitive performance. Unfortunately, the
implementation of Infineon SLB 9670 TPM is not publicly
available, thus commenting on the exact reasons for those
differences would result in speculations. If we would ven-
ture to speculate, potential reasons for the differences could
be the different communication buses. embTPM has a ded-
icated bus communication with the onboard processor and
a faster processor, while piTPM is running on a Raspberry
Pi and is connected over GPIO with lower bandwidth. On
the other hand, simTPM is connected through the USB bus.
Moreover, our simTPM implementation uses only the pub-
licly available APIs of the smart card OS, which provide only
an indirect access to hardware level commands. Hence, a
vendor-supported implementation with direct access to the
microprocessor would improve in efficiency.

The fTPM is unfortunately not available, precluding a di-
rect comparison in our test suite; however, our observations
for the embTPM speed are comparable to those reported by
Raj et al. [54], although it is unclear which hardware TPM
they evaluated. An fTPM, unsurprisingly, outperforms any
other tested implementation here—e.g., slowest fTPM in [54]

USENIX Association 28th USENIX Security Symposium 543

simTPM embTPM piTPM

200

250

300

350

400

Ti
m

e(
m

s)

ECC KeyGen (256bit, NISTP256)

simTPM embTPM piTPM

50

100

150

200

250

300

Hash (256 bit with SHA-256)

simTPM embTPM piTPM

20

30

40

50

PCR Extend (SHA-256, 128 bit data)

simTPM embTPM piTPM

20

30

40

50

60

70

PCR Read

simTPM embTPM piTPM
100

200

300

400

500

600

700

800

900

Ti
m

e(
m

s)

TPM Seal (128 bit data, 256 bit ECC key)

simTPM embTPM piTPM

100

200

300

400

500

600

700

800
TPM Unseal (128 bit data)

simTPM embTPM piTPM

20

30

40

50

60

70

80
RNG (64 bit number)

Figure 4: Performance comparison (in ms) of different TPM commands for simTPM and an Infineon SLB 9670 TPM2.0 on a
Raspberry-Pi and Lenovo laptop.

was between 2.4–15.12 times faster than the fastest hard-
ware TPM—since it is executed on the ARM Cortex main
application processor, whereas discrete TPMs use slower mi-
croprocessors, as does our simTPM.

6 Use Cases

We discuss briefly how simTPM fits into the trusted com-
puting landscape and explain scenarios that are of particular
interest when simTPM and fTPM co-exist.

6.1 Multiple stakeholder model
The TPM specifications [64] as well as the obsolete Mobile
Trusted Module (MTM) specifications [61] acknowledged
the fact that a trusted platform might have multiple stake-
holders. In particular, mobile platforms are not considered
under the full management of the user, but critical mobile net-
work management is the domain of the mobile carrier/network
operator and the device vendor has high interest in keeping
highest privileged operations (e.g., TEE and OS) under their
control. The old and new TCG specifications define recom-
mended capabilities and various implementation alternatives
to allow multiple stakeholders to safely coexist. For instance,
the MTM specification clearly differentiates between remote
stakeholders and local stakeholders, each with their own TPM
under their control. This concept is reflected in the recom-

mended capabilities for a mobile TPM2.0 [63], which advise
the isolation between stakeholders and their resources and
policy-based authorization of stakeholder sensitive data. To
realize this multiple stakeholder model, the reference archi-
tecture outlines different implementation alternatives. For
instance, multiple TPMs within a protected environment like
TEE, or virtual TPMs supported by a hypervisor [9], where
stakeholders are isolated from each other based on the com-
partmentalization provided by the TEE’s trusted OS or the
hypervisor, respectively.

Our particular setting also fits well into the defined mul-
tiple stakeholder model: two distinct TPMs co-exist, each
with a distinct affinity to a different stakeholder. The fTPM is
by design designated to the platform stakeholder (i.e., device
manufacturer) and it is bound to the device through the device-
specific credentials within the TEE (e.g., eFuses) from which
fTPM derives its endorsement key and to which it anchors
its key/storage hierarchies. For instance, the fTPM described
in [54] is designated entirely to the platform and its services.
In contrast, the simTPM is designated to the end-user. This
intuition is based on the observation that users use the SIM
to authenticate themselves to the mobile network and rather
stick to one SIM (i.e., phone number) while changing more
frequently the device. Moreover, users have to explicitly au-
thenticate themselves to the SIM card, i.e., their mobile carrier
issued PIN. In this setting we are going beyond the initial
proposals by the TCG reference architecture by actually as-

544 28th USENIX Security Symposium USENIX Association

Table 2: Migrating user data when switching SIM card or
device

Data bound to device Data not bound to
device

New SIM card Key duplication Key duplication
New device TPM_Authorize key

policy
—

signing two distinct stakeholders to two physically separated
TPM instances, SIM card versus TEE.

6.2 Switching SIM card or device
Since the SIM card is removable and exchangeable, two sce-
narios have to be considered: the user switches devices but
keeps the SIM card, or the user keeps the device and switches
to a new SIM card. How this affects migration of the user
data protected with the simTPM is summarized in Table 2
and explained in the following.

Switching device: When switching the mobile device and
migrating the user data to a new device, the complexity of
the operation is dependent on whether the user bound any
data to the device. For instance, during secure boot, BL1 has
access to device-specific information like the board_id (or po-
tentially values derived from the device-specific vendor key)
that uniquely identifies the current platform. This board_id
(like derived values) can be included in the measurements
collected during secure boot (see Section 4.3) and allow the
simTPM to bind data or keys to this particular platform.2 If
the user did not bind any data/keys to the platform, no further
action is required beyond moving the SIM card to the new
phone. The entire simTPM state including the key hierarchy
is inherently migrated to the new device and can be used to
decrypt the user data—i.e., a form of portable sealed storage.
If the data is bound to the board_id, a new feature of TPM2.0
called TPM_Authorize has to be used to avoid the problem of
"brittle policies." Without TPM_Authorize, the user data would
be bound to one particular board_id and could never be de-
crypted on another device. With TPM_Authorize different possi-
ble board_id values can be signed off as valid for a successful
verification of the platform state and, hence, decryption of
data migrated with the SIM card. The valid board_id values
can be signed off by the user to endorse a new phone to which
data should be migrated, or by another entity, like the mobile
carrier or the employer in BYOD settings.

Switching SIM card: If the user switches the SIM card
and hence moves to another simTPM, all user data has to be
migrated to the new SIM card, i.e., the necessary simTPM

2Assuming a bond between the RTM and simTPM was established.

keys have to be moved to the new simTPM. Independent of
whether the user data is bound to the device or not, switching
the SIM card requires the simTPM keys used for securing the
data to be duplicated to the new simTPM. This is an example
scenario for TPM2.0 key duplication to migrate keys and
associated data to another TPM and is supported by simTPM.

The bottom line of those two scenarios is that a user that wants
to keep the option to migrate data secured with the simTPM
to both new SIM cards and new devices should use duplicable
keys with TPM_Authorize.

7 Discussion

The fTPM [54] is the incumbent deployment for a TPM on
mobile devices and was part of the Windows Phone platform.
However, it was designed primarily for vendor services and
did not specifically target the end-user. In this work, we add to
the landscape of mobile trusted computing and advocate using
the dormant hardware capabilities of SIM cards to provide
(additional) TPM support on mobile devices. Our system-
atization of related works shows that a simTPM can take a
niche among the existing works and, in particular, inherently
avoids problems of TEE-based deployments (e.g., protected
state or secure clock) that currently require compromises and
modifications to the TPM specification (e.g., "dark period"
or cooperative checkpointing of fTPM) or that make addi-
tional hardware requirements (e.g., replay-protected memory
blocks). On the other hand, a movable TPM raises the chal-
lenge of how to bind the TPM and the platform RTM. In
this work, we proposed using the unique features of mobile
devices—secure boot and TEE with device-specific, certified
keys—to address this challenge. However, we find that this
problem also affects prior solutions, like a vTPM based on
a PCI-attached secure co-processor, and our solution might
give insights into how to establish the TPM-RTM binding in
those prior works.

Our simTPM implementation is based on a physical SIM
card, thus it is currently not suitable for phones using eSIM
(e.g., Apple iPhone). However, eSIM solutions are supported
by separate hardware modules (such as JEDEC SON-8) and
it might be worthwhile to investigate how those modules can
be extended to implement a full TCG compliant TPM2.0.

Recently, Google introduced their Titan chip [67] as part
of their Nexus 3 phones, which shows the need for hardware-
backed security features in addition to TEE-based implemen-
tations on mobile end-user devices. Similar to the simTPM,
Titan chip also provides hardware-backed security for sys-
tem operations like verified booting as well as a hardware-
implemented keystore for apps and users. But Titan is ex-
clusive for Google devices, whereas our simTPM is portable
between mobile devices and provides TPM2.0 compliant fea-
tures. Since implementation details are yet unknown, we ex-
cluded the Titan chip from our systematization in Section 3.

USENIX Association 28th USENIX Security Symposium 545

8 Conclusion

In this paper we proposed simTPM, a hardware-based TPM
implementation for mobile devices using the SIM card. Perfor-
mance evaluation of our prototype shows that our implementa-
tion is comparable with an existing discrete TPM chip. Thus,
we think simTPM is a practical solution to add user-centric
trusted computing technology to mobile devices without the
need to add hardware. A particular challenge of a movable
TPM is the binding between TPM and the device RTM, which
we addressed through a TEE-proxy or a distance bounding
protocol. Future work includes a more detailed and formal
write-up of the custom DAA scheme we used in our proto-
type, since it is particularly fitting for implementation on a
smart card. Also future implementations of simTPM in indus-
trial IoT or automotive settings for hardware based attestation
could be worthwhile to pursue.

9 Acknowledgment

We are grateful to N. Asokan for his insightful suggestions.
We are also thankful to the anonymous reviewers for their
valuable comments.

This work is supported by the German Federal Min-
istry of Education and Research(BMBF) through funding
for the Center for IT-Security, Privacy and Accountability
(CISPA)(AutSec/FKZ: 16KIS0753) and the CISPA-Stanford
Center for Cybersecurity (FKZ: 16KIS0762).

References

[1] Hikey960 android development board. https://
www.96boards.org/product/hikey960/. Accessed:
02.08.2018.

[2] IBM’s TPM 2.0 TSS. https://sourceforge.net/
projects/ibmtpm20tss/. Accessed: 06.08.2018.

[3] Trustzone downgrade attack opens android de-
vices to old vulnerabilities. http://bits-
please.blogspot.com/2015/03/getting-
arbitrary-code-execution-in.html, March
2015. Accessed: 02.08.2018.

[4] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew
Paverd, and Michael Steiner. S-FaaS: Trustworthy and
Accountable Function-as-a-Service using Intel SGX.
CoRR, abs/1810.06080, 2018.

[5] Arm Limited. Trusted board boot design guide.
https://github.com/ARM-software/arm-
trusted-firmware/blob/master/docs/trusted-
board-boot.rst, March 2018. Accessed: 04.08.2018.

[6] N. Asokan. On secure resource accounting for out-
sourced computation, 2018. Invited keynote at 3rd Work-
shop on System Software for Trusted Execution (Sys-
TEX 2018).

[7] Samy Bengio, Gilles Brassard, Yvo G Desmedt, Claude
Goutier, and Jean-Jacques Quisquater. Secure implemen-
tation of identification systems. Journal of Cryptology,
4(3):175–183, 1991.

[8] Gal Beniamini. Getting arbitrary code execu-
tion in trustzone’s kernel from any context.
https://googleprojectzero.blogspot.com/
2017/07/trust-issues-exploiting-trustzone-
tees.html, July 2017. Accessed: 02.08.2018.

[9] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman,
Ronald Perez, Reiner Sailer, and Leendert van Doorn.
vTPM: Virtualizing the Trusted Platform Module. In
Proc. 15th USENIX Security Symposium (SEC ’06).
USENIX Association, 2006.

[10] Thomas Beth and Yvo Desmedt. Identification to-
kens—or: Solving the chess grandmaster problem. In
Conference on the Theory and Application of Cryptog-
raphy, pages 169–176. Springer, 1990.

[11] Dan Boneh and Xavier Boyen. Short signatures without
random oracles. In Advances in Cryptology - EURO-
CRYPT 2004: International Conference on the Theory
and Applications of Cryptographic Techniques. Springer,
2004.

[12] Jeremy Boone. Tpm genie: Attacking the hardware root
of trust for less than $50, 2018. Accessed: 02/13/2019.

[13] Stefan Brands and David Chaum. Distance-bounding
protocols. In Workshop on the Theory and Application
of Cryptographic Techniques on Advances in Cryptology
(EUROCRYPT ’93). Springer, 1994.

[14] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct
anonymous attestation. In Proc. 11th ACM Conference
on Computer and Communication Security (CCS ’04).
ACM, 2004.

[15] Broadchip. BCT4303 Dual Sim card controller.
www.chinesechip.com/files/2015-03/912ed043-
de27-4e8a-95f7-c009ad22dd92.pdf. Last accessed:
22/01/19.

[16] Dhiman Chakraborty, Lucjan Hanzlik, and Sven Bugiel.
simTPM: User-centric tpm for mobile devices (technical
report). CoRR, abs/1905.08164, 2019.

[17] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter,
and Yinqian Zhang. Detecting privileged side-channel
attacks in shielded execution with déjà vu. In Proc.

546 28th USENIX Security Symposium USENIX Association

https://www.96boards.org/product/hikey960/
https://www.96boards.org/product/hikey960/
https://sourceforge.net/projects/ibmtpm20tss/
https://sourceforge.net/projects/ibmtpm20tss/
http://bits-please.blogspot.com/2015/03/getting-arbitrary-code-execution-in.html
http://bits-please.blogspot.com/2015/03/getting-arbitrary-code-execution-in.html
http://bits-please.blogspot.com/2015/03/getting-arbitrary-code-execution-in.html
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/trusted-board-boot.rst
https://github.com/ARM-software/arm-trusted-firmware/blob/master/docs/trusted-board-boot.rst
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
www.chinesechip.com/files/2015-03/912ed043-de27-4e8a-95f7-c009ad22dd92.pdf
www.chinesechip.com/files/2015-03/912ed043-de27-4e8a-95f7-c009ad22dd92.pdf

12th ACM Symposium on Information, Computer and
Communication Security (ASIACCS ’17). ACM, 2017.

[18] Catalin Cimpanu. Trust Issues: Exploiting TrustZone
TEEs. https://www.bleepingcomputer.com/news/
security/trustzone-downgrade-attack-opens-
android-devices-to-old-vulnerabilities/,
September 2017. Accessed: 02.08.2018.

[19] Victor Costan and Srinivas Devadas. Intel sgx ex-
plained. IACR Cryptology ePrint Archive, 2016(086):1–
118, 2016.

[20] Cas Cremers, Kasper B Rasmussen, Benedikt Schmidt,
and Srdjan Capkun. Distance hijacking attacks on dis-
tance bounding protocols. In Proc. 33rd IEEE Sympo-
sium on Security and Privacy (SP ’12). IEEE Computer
Society, 2012.

[21] Kurt Dietrich and Johannes Winter. Towards customiz-
able, application specific mobile trusted modules. In
Proc. 5th ACM workshop on Scalable trusted computing
(STC ’10). ACM, 2010.

[22] Saar Drimer, Steven J Murdoch, et al. Keep your ene-
mies close: Distance bounding against smartcard relay
attacks. In Proc. 16th USENIX Security Symposium
(SEC ’07). USENIX Association, 2007.

[23] J. Ekberg, K. Kostiainen, and N. Asokan. The untapped
potential of trusted execution environments on mobile
devices. IEEE Security Privacy, 12(4):29–37, July 2014.

[24] Jan-Erik Ekberg. Securing Software Architectures for
Trusted Processor Environments. PhD thesis, Aalto Uni-
versity, Helsinki, Finland, 2013.

[25] Jan-Erik Ekberg and Sven Bugiel. Trust in a small pack-
age: Minimized MRTM software implementation for
mobile secure environments. In Proc. 4th ACM work-
shop on Scalable trusted computing (STC ’09). ACM,
2009.

[26] Paul England and Talha Tariq. Towards a programmable
TPM. In Proc. 2nd International Conference on Trust
and Trustworthy Computing (TRUST ’09). Springer,
2009.

[27] ETSI. TS 151 011 V4.15.0 (2005-06) Technical Spec-
ification Digital cellular telecommunications system
(Phase 2+); Specification of the Subscriber Identity
Module - Mobile Equipment (SIM-ME) interface
(3GPP TS 51.011 version 4.15.0 Release 4). https://
www.etsi.org/deliver/etsi_ts/151000_151099/
151011/04.15.00_60/ts_151011v041500p.pdf. Last
accessed: 22/01/19.

[28] Amos Fiat and Adi Shamir. How to prove yourself:
Practical solutions to identification and signature prob-
lems. In Proc. on Advances in cryptology (CRYPTO

’86). Springer, 1987.

[29] Seunghun Han, Wook Shin, Jun-Hyeok Park, and Hy-
oungChun Kim. A bad dream: Subverting trusted plat-
form module while you are sleeping. In Proc. 27th
USENIX Security Symposium (SEC’ 18). USENIX As-
sociation, 2018.

[30] Intel. Software guard extensions sdk:
sgx_create_monotonic_counter. https:
//software.intel.com/en-us/sgx-sdk-dev-
reference-sgx-create-monotonic-counter, May
2018.

[31] Intel Developer Zone. Platform Service Enclave and ME
for Intel Xeon Server. https://software.intel.com/
en-us/forums/intel-software-guard-
extensions-intel-sgx/topic/806502. Last
accessed: 20/05/19.

[32] Jin Soo Jang, Sunjune Kong, Minsu Kim, Daegyeong
Kim, and Brent Byunghoon Kang. SeCReT: Secure
channel between rich execution environment and trusted
execution environment. In Proc. 22nd Annual Network
and Distributed System Security Symposium (NDSS ’15).
The Internet Society, 2015.

[33] Timo Kasper, David Oswald, and Christof Paar. Infor-
mation security applications. chapter EM Side-Channel
Attacks on Commercial Contactless Smartcards Using
Low-Cost Equipment, pages 79–93. Springer, 2009.

[34] Bernhard Kauer. Oslo: Improving the security of trusted
computing. In Proc. 16th USENIX Security Symposium
(SEC ’07). USENIX Association, 2007.

[35] Oliver Kömmerling and Markus G. Kuhn. Design prin-
ciples for tamper-resistant smartcard processors. In
Proc. 1st Workshop on Smartcard Technology (Smart-
card 1999), 1999.

[36] Nate Lawson. Tpm hardware attacks. https:
//rdist.root.org/2007/07/16/tpm-hardware-
attacks/, July 2007. Accessed: 06.08.2018.

[37] Hongliang Liang and Mingyu Li. Bring the Miss-
ing Jigsaw Back: TrustedClock for SGX Enclaves. In
Proc. 11th European Workshop on Systems Security (Eu-
roSec’18). ACM, 2018.

[38] Linear Technology. LTC4558 - Dual SIM/S-
mart Card Power Supply and Interface.
https://www.analog.com/media/en/technical-
documentation/data-sheets/4558fa.pdf. Last
accessed: 22/01/19.

USENIX Association 28th USENIX Security Symposium 547

https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://www.bleepingcomputer.com/news/security/trustzone-downgrade-attack-opens-android-devices-to-old-vulnerabilities/
https://www.etsi.org/deliver/etsi_ts/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://www.etsi.org/deliver/etsi_ts/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://www.etsi.org/deliver/etsi_ts/151000_151099/151011/04.15.00_60/ts_151011v041500p.pdf
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://software.intel.com/en-us/sgx-sdk-dev-reference-sgx-create-monotonic-counter
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/806502
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/806502
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/806502
https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://rdist.root.org/2007/07/16/tpm-hardware-attacks/
https://www.analog.com/media/en/technical-documentation/data-sheets/4558fa.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/4558fa.pdf

[39] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. Armageddon: Cache
attacks on mobile devices. In Proc. 25th USENIX Secu-
rity Symposium (SEC’ 16). USENIX Association, 2016.

[40] Junrong Liu, Yu Yu, François-Xavier Standaert, Zheng
Guo, Dawu Gu, Wei Sun, Yijie Ge, and Xinjun Xie.
Small tweaks do not help: Differential power analysis of
milenage implementations in 3g/4g usim cards. In Proc.
20th European Symposium on Research in Computer
Security (ESORICS 2015). Springer, 2015.

[41] Aravind Machiry, Eric Gustafson, Chad Spensky,
Christopher Salls, Nick Stephens, Ruoyu Wang, Antonio
Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. Boomerang: Exploiting the semantic gap
in trusted execution environments. In Proc. 24th Annual
Network and Distributed System Security Symposium
(NDSS ’17). The Internet Society, 2017.

[42] MAOSCO Limited. Multos standard c-api. https://
www.multos.com/uploads/CAPI.pdf, 2016. Accessed:
02.08.2018.

[43] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra
Dhar, David Sommer, Arthur Gervais, Ari Juels, and
Srdjan Capkun. ROTE: Rollback protection for trusted
execution. In Proc. 26th USENIX Security Symposium
(SEC’ 17). USENIX Association, 2017.

[44] Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and
Rolando Trujillo-Rasua. Distance-bounding protocols:
Verification without time and location. In Proc. 39th
IEEE Symposium on Security and Privacy (SP ’18).
IEEE Computer Society, 2018.

[45] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig,
Michael K. Reiter, and Hiroshi Isozaki. Flicker: An
execution infrastructure for tcb minimization. In Proc.
3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems (Eurosys ’08). ACM, 2008.

[46] Brian McGillion, Tanel Dettenborn, Thomas Nyman,
and N. Asokan. Open-tee – an open virtual trusted
execution environment. In Proc. IEEE Trustcom/Big-
DataSE/ISPA - Volume 01 (TRUSTCOM ’15). IEEE
Computer Society, 2015.

[47] Thomas S. Messerges and Ezzy A. Dabbish. Investi-
gations of power analysis attacks on smartcards. In
Proc. 1st Workshop on Smartcard Technology (Smart-
card 1999), 1999.

[48] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H.
Sloan. Power analysis attacks of modular exponentiation
in smartcards. In Proc. First International Workshop
on Cryptographic Hardware and Embedded Systems
(CHES’99), 1999.

[49] Microsoft. Secure the windows 10 boot process.
https://docs.microsoft.com/en-us/windows/
security/information-protection/secure-the-
windows-10-boot-process, October 2017. Last
accessed: 08/06/18.

[50] Wojciech Mostowski and Erik Poll. Malicious code on
java card smartcards: Attacks and countermeasures. In
Proc. 8th IFIP WG 8.8/11.2 International Conference
on Smart Card Research and Advanced Applications
(CARDIS ’08), 2008.

[51] Zhenyu Ning and Fengwei Zhang. Understanding the
security of arm debugging features. In Proc. 40th IEEE
Symposium on Security and Privacy (SP ’19). IEEE
Computer Society, 2019.

[52] Karsten Nohl. Rooting sim cards. https:
//media.blackhat.com/us-13/us-13-Nohl-
Rooting-SIM-cards-Slides.pdf, 2013. Black-
hat USA 2013.

[53] Bryan Parno. Bootstrapping trust in a "trusted" plat-
form. In Proc. 3rd Conference on Hot Topics in Security
(HOTSEC’08). USENIX Association, 2008.

[54] Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald
Aigner, Jeremiah Cox, Paul England, Chris Fenner,
Kinshuman Kinshumann, Jork Löser, Dennis Mattoon,
Magnus Nyström, David Robinson, Rob Spiger, Stefan
Thom, and David Wooten. fTPM: A Software-Only
Implementation of a TPM Chip. In Proc. 25th USENIX
Security Symposium (SEC’ 16). USENIX Association,
2016.

[55] Nilo Redini, Aravind Machiry, Dipanjan Das, Yan-
ick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. Bootstomp: on the security of bootloaders in mo-
bile devices. In Proc. 26th USENIX Security Symposium
(SEC’ 17). USENIX Association, 2017.

[56] Dan Rosenberg. Reflections on trusting trust-
zone. https://www.blackhat.com/docs/us-14/
materials/us-14-Rosenberg-Reflections-
on-Trusting-TrustZone.pdf, 2014. Accessed:
02.08.2018.

[57] Di Shen. Exploiting trustzone on android. https:
//www.blackhat.com/docs/us-15/materials/
us-15-Shen-Attacking-Your-Trusted-Core-
Exploiting-Trustzone-On-Android-wp.pdf, 2015.
Accessed: 02.08.2018.

[58] Adrian Tang, Simha Sethumadhavan, and Salvatore
Stolfo. CLKSCREW: Exposing the perils of security-
oblivious energy management. In Proc. 26th USENIX

548 28th USENIX Security Symposium USENIX Association

https://www.multos.com/uploads/CAPI.pdf
https://www.multos.com/uploads/CAPI.pdf
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf
https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf
https://media.blackhat.com/us-13/us-13-Nohl-Rooting-SIM-cards-Slides.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf

Security Symposium (SEC’ 17). USENIX Association,
2017.

[59] Christopher Tarnovsky. Deconstructing a ’secure’ pro-
cessor, 2010. BlackHat DC.

[60] The Chromium Projects. TPM Usage.
https://www.chromium.org/developers/design-
documents/tpm-usage. Last accessed: 08/06/18.

[61] Trusted Computing Group. Mobile phone
work group mobile trusted module specification.
https://trustedcomputinggroup.org/resource/
mobile-phone-work-group-mobile-trusted-
module-specification/, 2010.

[62] Trusted Computing Group. Tpm main part 1 design
principles. https://trustedcomputinggroup.org/
wp-content/uploads/TPM-Main-Part-1-Design-
Principles_v1.2_rev116_01032011.pdf, 2011.

[63] Trusted Computing Group. Tpm 2.0 mobile
reference architecture specification. https:
//trustedcomputinggroup.org/resource/
tpm-2-0-mobile-reference-architecture-
specification/, 2014.

[64] Trusted Computing Group. Tpm 2.0 library spec-
ification. https://trustedcomputinggroup.org/
resource/tpm-library-specification/, 2016.

[65] David Wagner. Gsm cloning. http:
//www.isaac.cs.berkeley.edu/isaac/gsm.html.
Last accessed: 02/13/19.

[66] Johannes Winter. Trusted computing building blocks for
embedded linux-based arm trustzone platforms. In Proc.
3rd ACM workshop on Scalable trusted computing (STC
’08). ACM, 2008.

[67] Xiaowen Xin. Titan M makes Pixel 3 our most secure
phone yet. https://blog.google/products/pixel/
titan-m-makes-pixel-3-our-most-secure-
phone-yet/, October 2018. Accessed: 13.11.2018.

A Binding RTM with distance bounding

In Section 4.3 we discussed using the TEE as proxy in order
to assert the authenticity of the RTM and mitigate the risks of
a relay attack. Another way to bind the simTPM with its RTM
is by using a distance bounding (DB) protocol [7, 10, 13].
Distance bounding is widely used for card-based payment
systems. When a credit card is punched to the card reader,
the reader runs a distance bounding protocol to check the
proximity of the card to prevent a possible relay attack. We
are facing the opposite scenario, in which the card is trying to

RTM (BL1) simTPM

init_extend(pk)
IF pk NOT certified:
FAIL, untrusted certificate

nonce← random()
T1 = now()

nonce

m= signsk(nonce)
MBL2 = H(BL2) PCR_SIG_Extend(m, MBL2)

T2 = now()
IF (T2−T1)< δ:
IF veri f ypk(m):
Extend PCR, etc.

ELSE:
ERROR, not local RTM

OK|FAIL

Figure 5: Prototypical distance bounding protocol for binding
local RTM (BL1) and simTPM

assert the proximity of the device where the communication
partner, here the RTM, resides.

Prototypical distance bounding: We assume the device ven-
dors equipped the simTPM with certificates for their device-
specific keys, which allows a verifier to distinguish trusted
code with access to such secrets (e.g., early bootstages, like
BL1 or the TEE) from untrusted code, like the host OS or
apps. To assert the proximity of the RTM, only the very first
measurement provided to the simTPM, i.e., the measurement
by BL1 (RTM) of BL2, has to be checked for proximity. After
that, the chain of trust of an authenticated boot will transi-
tively extend this trust into the proximity of the RTM. Figure 5
illustrates a prototypical protocol for our scenario. We con-
sider a two-step PCR extension by the RTM for verifying
the proximity: (1) the RTM provides the public key pk of its
device-specific key (or a key derived from it) to the TPM,
which then can verify the authenticity of the RTM using the
vendor-supplied certificate; (2) as in other distance bounding
protocols, the simTPM (verifier) challenges the RTM (prover)
with a nonce to which the RTM replies with the signed nonce
value (using the authenticated private key) as well as the PCR
extension arguments. If this reply of the signed nonce is re-
ceived within a time threshold T and the signature verifies,
simTPM assumes the RTM to be local and extends the PCR
with the supplied measurement value MBL2; if either condition
fails, the simTPM aborts. For robustness of the protocol, the
challenge-response can be repeated N times to decrease the
chances of a legitimate, local RTM failing the threshold.

Prototypical setup: In general, calculating the threshold for
distance bounding is difficult, because various factors can in-
fluence the response time. For instance, jitters of the network
over which the verifier and prover communicate, interrupts
of the prover’s computation, cache and memory delays, etc.
might introduce a high uncertainty of the expectable response
time. At first glance, our particular scenario seems very favor-
able for a distance bounding protocol, since the prover (RTM)
is the BL1 that has exclusively control of the CPU without
interrupts or interference of an OS; and the RTM is connected

USENIX Association 28th USENIX Security Symposium 549

https://www.chromium.org/developers/design-documents/tpm-usage
https://www.chromium.org/developers/design-documents/tpm-usage
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/
https://trustedcomputinggroup.org/resource/mobile-phone-work-group-mobile-trusted-module-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
http://www.isaac.cs.berkeley.edu/isaac/gsm.html
http://www.isaac.cs.berkeley.edu/isaac/gsm.html
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/

550 600 650 700 750 800 850
Response time (μs)

0.0

0.2

0.4

0.6

0.8

1.0

721

0.83

CFD of RTM response time

Figure 6: Cumulative frequency distribution of the RTM re-
sponse time in our measurements (N = 30)

to the SIM card over a 480 mbps USB 2.0 bus, in modern de-
vices even via a 5 gbps USB 3.0 bus, with no parallel transfers,
providing favorable circumstances for a challenge-response
protocol and small error-margin in which an attacker has to
fall for a successful, undetected relay attack [20, 22, 44].
The SIM card is connected to the phone through a reader,
which is directly connected to the baseband processor. The
reader powers the smart card and provides it with the base-
band’s clock. The clock duty cycle shall be between 40% and
60% of the period during stable operation [27]. Modern smart
cards support clock stop to allow preservation of power, which
an attacker could use to tamper with the verifier’s perception
of time. However, this feature can be disabled by initializing
the card as clock stop not allowed by setting the VERIFY
CHV command to 0. Disabling this feature will increase the
phone’s battery consumption, but not in a significant amount,
since the maximum current consumption of an idle SIM card
should not exceed 200µA.
The SIM card and the reader connection are in a contact
connection and generally interfaces within 20ns [15, 38]. The
reader connects to the baseband processor through Non-Level-
Shifted bidirectional I/O. The connection in our test setup
goes through an USB 2.0 bus with 480 mbps. Communi-
cation between SIM card and the CPU via this bus ranges
between 35ns to 72ns.

Measurements and threshold: We conducted measurements
on our test device to evaluate the feasibility of distance bound-
ing to bind the RTM and simTPM. We measured 30 times3

the speed of the prover (RTM) for calculating the response
to the challenge (64 bits nonce) using ECC with the NIST
P-256 curve. In our test, the responses took 563–894µs, and
the average response time was 669.759±49.804µs for a con-
fidence level of 99%. Figure 6 shows the CFD of the RTM
response time, where 83% of all responses were ≤ 721µs and
93% of all responses were≤ 812µs. The success chance of the
distance bounding protocol PDB for a single round is the cu-
mulative probability sampled over the frequency distribution
in Figure 6. If we were to set the threshold T for successful
distance bounding to 721 µs:

3A single measurement requires ≈5min, since only a single measurement
per power-cycle is possible on our test device.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
f

0.99

1.00
n

10
20
30

40
50
100

Figure 7: Success probability of local RTM for distance
bounding depending on f and n for T = 721µs (p = 0.83)

PDB = Pr[x ≤ 721] = ∑
721
i=563 Pr[x = i] ≈ 0.83

where 563 µs is the lowest latency in our dataset. Going below
721 µs reduces the probability of a successful bounding proto-
col for legitimate devices, i.e., to 0.52 for a threshold of 649µs.
To increase the chances for local RTM to pass the distance
bounding check, a successful verification usually requires that
the response is below T for a sufficient fraction f of the re-
sponses, means at-least f ×n out of n responses should arrive
within T . When modeling the challenge-response game as bi-
nomial distribution and requiring f ×n responses within 721
µs out of n responses (i.e., success probability PDB = 0.83),
the cumulative probability distribution is:

Pr[x≥ f n] = ∑
n
i= f n

(
n
i

)
(p)i(1− p)n−i where p ∈ {PDB}

Figure 7 shows the success probabilities for different choices
of f and n. An optimal choice minimizes n (lower overall
runtime overhead for the protocol) while maximizing Pr[x≥
f n] and minimizing the chance of the attacker to successfully
relay. We have observed from our dataset that setting f =
0.47 for n = 30 (i.e., 14 out of 30 runs) offers a success rate
Pr[x≥ f n]=0.99999724049 for local RTM.

Attacker chances: The APDU package for the challenge is
112 bits and for the response 304 bits, which are transferred
virtually instantly between verifier and prover (≤ 1µs). Thus,
the response time measured in Figure 6 consists virtually only
of the processing time of the RTM, which an attacker cannot
speed up (see Figure 3). As a consequence, if an attacker
requires more than 721−563 = 158µs to relay the challenge
and the response, the relay attack has no chance of winning,
since the RTM in our tests required at least 563µs to compute
the response. Assuming a packet size of 55 bytes (minimal
Ethernet frame size, IP header, and UDP package with 1 byte
payload for the nonce/response), the attacker needs at least a
relay bandwith of≈ 5.87 mbps to have any chance of winning,
which is a very reasonable assumption. Hence, attacks against
this distance bounding are feasible. From our measurements
it is hard to concretely model the attacker, however, the attack
chance is already 0.1% when relaying via Ethernet and an IP
network (55 bytes datasize) with a bandwith of ≈ 49 mbps,
or when relaying only the APDU data of 14 bytes (e.g., via a
custom build connection) with ≈ 10 mbps.

550 28th USENIX Security Symposium USENIX Association

The Betrayal At Cloud City:
An Empirical Analysis Of Cloud-Based Mobile Backends

Omar Alrawi*
Georgia Institute of Technology

Chaoshun Zuo*
The Ohio State University

Ruian Duan
Georgia Institute of Technology

Ranjita Pai Kasturi
Georgia Institute of Technology

Zhiqiang Lin
The Ohio State University

Brendan Saltaformaggio
Georgia Institute of Technology

Abstract
Cloud backends provide essential features to the mobile

app ecosystem, such as content delivery, ad networks, ana-
lytics, and more. Unfortunately, app developers often disre-
gard or have no control over prudent security practices when
choosing or managing these services. Our preliminary study
of the top 5,000 Google Play Store free apps identified 983
instances of N-day and 655 instances of 0-day vulnerabilities
spanning across the software layers (OS, software services,
communication, and web apps) of cloud backends. The mo-
bile apps using these cloud backends represent between 1M
and 500M installs each and can potentially affect hundreds
of thousands of users. Further, due to the widespread use of
third-party SDKs, app developers are often unaware of the
backends affecting their apps and where to report vulnera-
bilities. This paper presents SkyWalker, a pipeline to auto-
matically vet the backends that mobile apps contact and pro-
vide actionable remediation. For an input APK, SkyWalker
extracts an enumeration of backend URLs, uses remote vet-
ting techniques to identify software vulnerabilities and re-
sponsible parties, and reports mitigation strategies to the app
developer. Our findings suggest that developers and cloud
providers do not have a clear understanding of responsibil-
ities and liabilities in regards to mobile app backends that
leave many vulnerabilities exposed.

1 Introduction

Cloud-based mobile backends provide a wide array of
features, such as ad networks, analytics, content delivery,
and much more. These features are supported by multiple
layers of software and multiple parties including content
delivery networks (CDNs), hosting providers, and cloud
providers who offer virtual/physical hardware, provisioned
operating systems, and managed platforms. Due to the in-
herent complexity of cloud-based backends, deploying and
maintaining them securely is challenging. Consequently,

*Authors contributed equally.

mobile app developers often disregard prudent security
practices when choosing cloud infrastructure, building, or
renting these backends.

Recent backend breaches of the British Airways [1] app
and Air Canada [2] app demonstrate how wide-spread these
incidents are. More recently, the hijacking of the Fortnite
mobile game [3] showed how incrementally-downloaded
content from mobile backends can allow an attacker to in-
stall additional mobile apps without the user’s consent. Ad-
ditional cases [4] involving the exposure of 43TB of enter-
prise customer names, email addresses, phone numbers, PIN
reset tokens, device information, and password lengths was
due to insecure mobile backends and not the developer’s mo-
bile app code.

Even for security-conscious developers, it is not clear
what backends their mobile app will interact with because
of third-party libraries. Third-party libraries do not expose
their backends to developers, instead, they offer an applica-
tion program interface (API) that developers use. Many of
these vulnerabilities can be identified ahead of time if de-
velopers have the right tools and resources to evaluate the
security of their backends. Further, identifying vulnerable
software layers and the responsible party can expedite reme-
diation and therefore lower the risk of exposure.

To deal with the complexities in cloud infrastructure, the
research community surveyed [5] and proposed several tax-
onomies [6], ontologies [7], assessment models [8], and
threat classifications [9]. Unfortunately, these approaches
provide few practical recommendations for mobile app de-
velopers. Recent works on server-side vulnerability discov-
ery of mobile apps [10]–[12] have shown that a lack of secu-
rity awareness among app developers is a growing problem.
Yet, these works only scratch the surface by examining only
the software service layer of mobile backends.

A systematic study is needed to identify the most pressing
issues facing mobile backends. Moreover, to conduct such
a study, the analysis must be reproducible, transparent, and
easy to interpret for developers. The study should be done
on a representative mobile app ecosystem to provide real in-

USENIX Association 28th USENIX Security Symposium 551

sight into the backend vulnerability landscape. Finally, the
study should offer practical steps to guide and inform app
developers on the security of their mobile backends.

To this end, this paper presents the design and implemen-
tation of SkyWalker, an analysis pipeline to study mobile
backends. Using SkyWalker, we conducted an empirical
analysis of the top 5,000 free mobile apps in the Google Play
store from August 2018. Based on this study, we uncovered
655 0-day instances and 983 N-day instances affecting
thousands of apps. We used Google Play Store metadata to
measure the impact of our findings and estimate the number
of affected users. We propose mitigation strategies for dif-
ferent types of vulnerabilities and guidelines for developers
to follow. Lastly, we offer the SkyWalker analysis pipeline
as a free public web-service to help developers identify
what backends their mobile apps interact with, the security
state of the backends, and recommendations to address any
detected issues.

Our empirical study found 983 N-day instances of 52
vulnerabilities affecting hypervisors, operating systems,
databases, mail servers, DNS servers, web servers, scripting
language interpreters, and others. We found 655 0-day in-
stances of SQL injection (SQLi), cross-site-scripting (XSS),
and external XML entity (XXE). These affected thousands
of mobile apps, with some apps having over 50M+ installs
and more than 332,000 reviews. We present two case studies
to demonstrate the vulnerabilities affecting a specific devel-
oper and vulnerabilities affecting a platform that is used by
many developers.

We found these backends to be geographically distributed
across the globe and hosted on 6,869 different networks.
We notified all affected parties about the findings, and
were careful to follow ethical and legal guidelines when
conducting this study, additional details are in Section 8. We
propose mitigation strategies for developers to follow based
on the issues found and the types of backends. We conclude
with recommendations for deploying and maintaining secure
backends.

2 A Motivating Example

Mobile apps use cloud-based backend services to support ex-
tensive functions like ads, telemetry, content delivery, and
analytics. Unfortunately, a mobile app developer who wants
to audit the backends their app uses will quickly find that this
is harder than it seems. The first thing the developer must
do is simply enumerate those mobile backends. Consider
the Crime City Real Police Driver (com.vg.crazypoliceduty)
app, a mobile game with over 10M+ installs and 126,257
reviews. The mobile app uses several third-party SDK li-
braries including Amazon In-App Billing, SupersonicAds,
Google AdMob, Unity3D, Nuance Speech Recognition Kit,
and Xamarin Mono. The developer may not be aware of
many of the backends that are invoked from imported native

or Java libraries, i.e., the Unity3D backends. In most cases,
the developer will first have to employ static binary analy-
sis tools or dynamically instrument the app to track multiple
levels of SDK inclusion. SkyWalker automatically identified
13 unique backends from this app’s APK (shown in Table 1)
and mapped them to the modules they were found in, i.e.,
library backends versus developer backends.

Party Vendor Backend Purpose

Hybrid Vasco
Games androidha.vascogames.com Game

Content

Third

Unity3D

api.uca.cloud.unity3d.com Telemetry
cdn-highwinds.unityads.unity3d.com Ads
config.uca.cloud.unity3d.com Telemetry
impact.applifier.com Telemetry

Sizmek bs.serving-sys.com Ads
secure-ds.serving-sys.com Ads

Moat px.moatads.com Analytics
z.moatads.com Ads

Google

googleads.g.doubleclick.net Ads
pagead2.googlesyndication.com Ads
tpc.googlesyndication.com Ads
www.google-analytics.com Analytics

Table 1: Backends identified for Crime City Real Police
Drive and their purpose. The red cells indicate vulnerable
backends.

Backends have layers of software (components) that sup-
port the web application software (AS), including an oper-
ating system (OS), software services (SS), and communi-
cation services (CS). The developer now has to fingerprint
the backends to inventory the software layers and identify
the software type, version, and its purpose. Using this in-
formation, the developer can then check to see if any of
their software is outdated or affected by a known vulnera-
bility [13], a laborious and time-consuming task. SkyWalker
identified that the game content backend runs Debian 6 for
the OS; OpenSSH 6.5p1, Apache httpd 2.2.22, PHP/5.4.4-
14, and Apache-Coyote/1.1 for the SS; and uses the HTTP
protocol for CS. SkyWalker’s search of the national vulner-
ability database (NVD) [13] and correlation with the finger-
print results showed multiple common vulnerability expo-
sure (CVE) entries affecting PHP 5.4.4-14. Further, the De-
bian version running on the backend is no longer supported
and does not receive any updates from the vendor.

In addition to these issues, the developer’s AS can contain
bugs that must be audited. The developer can check the AS
by auditing the parameters passed to each API and testing
for SQLi, XSS, XXE, or any other applicable vulnerabilities
from OWASP’s top 10 common issues [14]. This task re-
quires secure programming experience and security domain
expertise to identify bugs in the source code. SkyWalker
found that the game content backend interface is vulnera-
ble to SQLi for some parameters passed by the mobile app,
which is due to the AS not properly sanitizing the input.

The developer must now remediate or mitigate these risks,
but each backend layer may be operated by different entities
that provide hardware and software as a service. Therefore,

552 28th USENIX Security Symposium USENIX Association

before fixing any issues, they must figure out what party is re-
sponsible for each component. SkyWalker fingerprinted the
Crime City Real Police Driver game content backend, an-
droidha.vascogames.com, as being hosted on a Google Com-
pute Engine Flexible Environment instance (which provides
virtual hardware, operating system, and PHP). We refer to
this type of backend model as hybrid since Google is par-
tially responsible for the virtual environment and the devel-
oper is responsible for the AS and CS.

The developer must come up with a remediation strategy
to address these problems. Google advertises that they patch
any vulnerable software affecting the OS and SS, but this is
only applicable to non-deprecated versions. In the case of
Crime City Real Police Driver app, the developer is respon-
sible for all the software layers since the OS and SS versions
are deprecated. The developer must upgrade to a supported
OS, apply patches to the PHP interpreter (SS), patch the AS
source code against SQLi, and support HTTPS for secure CS.

The Unity3D, Sizmek, and Moat backends shown in Ta-
ble 1 are called third-party, since the developer has no con-
trol over them. This evaluation must also be carried out
on third-party backends to identify additional vulnerabilities
(potentially affecting all apps which use those shared ser-
vices). SkyWalker found that the Crime City Real Police
Driver app uses the config.uca.cloud.unity3d.com backend,
which contains an XXE vulnerability, and the bs.serving-
sys.com backend that contains an XSS vulnerability. Ideally,
the developer could report those vulnerabilities to the plat-
form through a bug bounty program or migrate their app to
backends that are not vulnerable.

This manual assessment procedure is very involved and
requires extensive security domain knowledge, which many
app developers may not have. Instead, SkyWalker gives all
mobile app developers the ability to identify the backends
invoked by their app, assess their software layers, and sug-
gest remediation strategies to improve the security for their
mobile app backends.

3 Background

This section defines an abstraction to model mobile backends
for our empirical study. We also define our labeling for back-
ends and create a mapping between responsible stakeholders
and resources. We outline how we count vulnerabilities and
define them in the context of this work.

3.1 Mobile App Backend Model
We follow the standard definition for mobile backends used
by industry leaders [15]–[18], which encompass many cloud
features, such as storage, user management, notifications,
and APIs for various services, regardless of who maintain-
s/owns them. We breakdown mobile backends into a stack
representation that consists of five layers:

• Hardware (HW) refers to the physical or virtual hard-
ware that hosts the backend.

• Operating System (OS) refers to the OS running on the
hardware, i.e., Linux or Windows.

• Software Services (SS) refers to software services run-
ning in the OS, i.e., database service, web service, etc.

• Application Software (AS) refers to the custom appli-
cation interface used by mobile apps to interact with the
running services.

• Communication Services (CS) refers to the communi-
cation channel supported between the mobile app and
the mobile backend.

Our approach does not consider the hardware layer
because 1) we would need root-level access on the backend
to evaluate the hardware and 2) mobile app developers have
no direct way of addressing hardware vulnerabilities, i.e.,
manufacturers must issue firmware updates or replace the
hardware. It is important to note that this work does not
consider the mobile app security, instead we leverage the
mobile app to study the backend.

We differentiate between mobile backends by ownership,
which provides a granular mapping between stakeholders
and resources. We define four labels for the mobile back-
ends with respect to the app developer:

• First-Party (B1st) refers to backends that are fully man-
aged by the mobile app developers (i.e., full control
over the backend).

• Third-Party (B3rd) refers to backends that are fully
managed by third-parties (i.e., no control over the
backend).

• Hybrid (Bhyb) refers to backends that are co-managed
by third-parties and developers such as cloud infras-
tructure (i.e., some control over the mobile backend).

• Unknown (Bukn) refers to backends that ownership
could not be established with high confidence.

In our model, there are two primary stakeholders, the app
developers (D) and the cloud service providers (SP). There
are additional stakeholders, like app users and internet ser-
vice providers (ISP), but they do not have direct remediation
oversight. We define a mapping between backends layers,
labels, and ownership, shown in Table 2.

The final piece of the model is the mitigation compo-
nent that maps vulnerable backends to the proper mitigation
strategies. There are five mitigation strategies for developers:

• Upgrade (u) the software to vendor supported versions.

• Patch (p) vulnerable software with a vendor patch.

USENIX Association 28th USENIX Security Symposium 553

Label HW OS SS AS CS

First-Party (B1st) # # # # #
Third-Party (B3rd)
Hybrid (Bhyb) H# H# # #

Table 2: Backend labels (first-party - B1st , third-party
B3rd , and hybrid - Bhyb) and cloud layers (hardware - HW ,
operating system - OS, software services - SS, application
software - AS, and communication services - CS) mapping
to stakeholders (developers - #, service providers - , and
shared - H#)

• Block (b) incoming internet traffic to exposed services.

• Report (r) the vulnerability to the responsible party.

• Migrate (m) the backend to secure infrastructure.

In many cases, the developer may not have control or
authority to fix the issues but still has the option to report it
(r) or change service provider (m).

3.2 Counting Vulnerabilities
This work considers vulnerabilities which are software bugs
that exist in the backend software stack, including the oper-
ating system (OS), services (SS), application (AS), and com-
munication (CS). We consider N-Day vulnerabilities to be
those vulnerabilities which have an associated common vul-
nerabilities and exposure (CVE) number assigned by the na-
tional institute of standards and technology (NIST) and in-
dexed in the national vulnerability database (NVD) [13]. In
our findings, we count N-Day vulnerabilities by class and
instance, where class refers to the CVE number of a partic-
ular vulnerability and an instance refers to the vulnerabil-
ity affecting a specific interface or software component on
a mobile backend. For example, Apache Struts vulnerabil-
ity CVE-2017-5638 that affects Apache Struts 2.3.x before
2.3.32 and 2.5.x before 2.5.10.1 is counted as a single vul-
nerability (class), but it can affect multiple backends that run
different versions of Apache Struts (instances).

Some software versions are affected by multiple CVEs, in
this case, we do not count every CVE as an instance. We
generally assume patching the latest CVE should address all
previous unpatched CVEs. We only consider the latest CVE
affecting the vulnerable software and count it once. Further,
a vulnerability instance is a tuple of the backend’s domain
name, IP address, and the vulnerable software version. As
for 0-Day vulnerabilities, they are associated with the soft-
ware application (AS) running on the backend. This work
looks at three classes of 0-Day vulnerabilities, SQLi, XSS,
and XXE and counts each instance per API interface end-
point on the mobile backend. The defined model, labels,
mitigations, mappings, and vulnerabilities are the basis for
our methodology, which we describe next.

4 Methodology

In this section, we provide an overview of our assessment
and details about implementing SkyWalker. Figure 1 is an
overview of SkyWalker’s internal components. We divide
the implementation into four phases, namely binary analy-
sis, labeling, fingerprinting, and vulnerability analysis. Each
phase provides input to the next phase, starting from an input
app APK to the final vulnerability/mitigation report.

4.1 Binary Analysis
SkyWalker leverages our prior work, Smartgen [19], to per-
form the binary analysis and extract query messages from
an APK binary. SkyWalker dynamically executes the code
paths to the network functions and extracts the native usage
of the backend APIs. The native usage of an API includes
the URI path and their parameter types/values.

4.2 Backend Labels
Backend labeling assigns one of the four labels defined in our
model. The labels are used to map the responsible parties
and the mitigation strategies needed (excluding unknown),
shown in Table 2. Moreover, the labels are used to iden-
tify where the most common issues are found. To perform
the labeling, we curate three unique lists using the ipcat [20]
datacenter dataset. The first list is called CP and contains
cloud providers, content delivery networks (CDNs), and mo-
bile platform cloud services. The second list, Colo, contains
a list of collocation centers. The third list is a list of SDK
libraries that we extracted using LibScout [21] (Table 3),
which help SkyWalker identify third-party backends. OS-
SPolice [22] provides a more comprehensive list, including
native libraries used by the mobile app, but our binary analy-
sis technique only instruments Java code, therefore, we limit
the third-party SDK identification to LibScout.

To perform the labeling we generate a tuple for each
extracted backend B that contains the effective-second level
domain d, IP address ip, a boolean flag lib indicating if
the backend belongs to an SDK library, and the developer
or vendor name v. We define a function owner() that
parses WHOIS, MaxMind [23], and ASN records to extract
ownership information. The owner() function uses text
tokenization, normalization, and aliasing to consolidate
varying records.

SkyWalker uses Algorithm 1 to assign labels to each back-
end. Algorithm 1 takes as input a list of backends, β , con-
taining tuples B = {d, ip, lib,v} and returns a list of labeled
backends β ′. The algorithm uses the CP and Colo list to
check membership for the domains and IPs to determine the
appropriate label. The first check is to determine the origin
of the backend (was it extracted from an SDK library?) then

554 28th USENIX Security Symposium USENIX Association

10101
10001
01011

App IR Static Analysis
(Build ECG)

Network API
Identification

Selective
SymbEx

Backend URL
Extraction

Constraint Instrumented
Dynamic Analysis Backend URL

Populate Backend
Tuple {d, ip , lib, v}

Ownership
Extraction

Label
Assignment

Remote Ping

Port Scan

Labeled
Backend URL

Interactive Service
Identification

Layered
Software Identification

NASL

Fingerprinted
Backend F

Fingerprint
Confidence

Score

Binary Analysis Backend Labeling Service Discovery and Fingerprinting Vulnerability Analysis

Fingerprint – CVE
Correlation

Vulnerability
Verification

Report
Backend
Issues

App
APK

Figure 1: SkyWalker Overview. Phase 1 (Binary Analysis) extracts backend URLs through a dynamic binary instrumentation
technique. Phase 2 labels backends into first-party, third-party, and hybrid. Phase 3 discovers and fingerprints the backend
services to collect cloud layer information. Phase 4 (vulnerability analysis) uses the fingerprints and correlates them with
public vulnerabilities to identify vulnerable backends.

Algorithm 1: Assigning Labels to Backends
Input: β = List of backend tuple B = {d, ip, lib,v}
Output: β ′ = Ownership labeled backend list
SDK: List of backend domains found in the SDK libraries;
CP: List of cloud and hosting providers (domains, net prefix, and ASNs);
Colo: List of collocation providers (domains, net prefix, and ASNs);
for ∀B ∈ β do

if B.lib∨B.d ∈ SDK then
// Backend from Java lib
B.label← “third-party”;
continue

end
if owner(B.d) 6= v∧owner(B.d) /∈CP then

// Backend domain not owned by developer or CP
B.label← “third-party”;
continue

end
if B.ip ∈CP then

// Backend IP hosted by cloud provider
B.label← “hybrid”;
continue

end
if B.ip ∈Colo then

// Backend IP hosted by collocation center
B.label← “first-party”;
continue

end
B.label← “unknown”;

end

assigns “third-party” label if lib‘s value is true or the back-
end domain belongs to the list of SDK backends.

If none of the previous statements are true about the do-
main, then SkyWalker checks the IP membership against the
CP and Colo list. If the IP address belongs to a network
on the CP list SkyWalker assigns “hybrid” label. If the IP
address belongs to a network on the Colo list SkyWalker as-
signs “first-party” label. Otherwise, SkyWalker assigns an
“unknown” label since it cannot be determined. It is im-
portant to note that SkyWalker’s labeling approach relies on
LibScout [21] to identify third-party backends based on the
SDK libraries. SkyWalker performs an additional check be-
fore setting the lib flag to exclude SDK libraries built by the
same vendor (Google, Facebook, etc.).

4.3 Service Discovery and Fingerprinting
Service discovery identifies internet-facing services on back-
ends and fingerprinting identifies the software type, version,

Third-Party SDKs
ACRA
AMoAd
AdColony
AdFalcon
Adrally
Amazon
Android
Apache
AppBrain
AppFlood
AppsFlyer
BeaconsInSpace
Bolts
Brightroll
Butter-Knife
Chartboost

CleverTap
Crashlytics
Crittercism
Dagger
EventBus
ExoPlayer
Facebook
Firebase
Flurry
Fresco
Fyber
Google
Gson
Guava
Guice
HockeyApp

InMobi
JSch
Joda-Time
MdotM
Millennial Media
Mixpanel
MoPub
New-Relic
OkHttp
Parse
Paypal
Picasso
Pollfish
Retrofit
Segment
Stetho

Supersonic
Syrup
Tapjoy
Tremor Video
Twitter4J
Urban-Airship
Vungle
WeChat
flickrj
heyZap
ironSource
jsoup
roboguice
scribe
smaato
vkontakte

Table 3: A list of third-party SDKs extracted by LibScout
from the top 5,000 apps, which is used to curate third-party
backends.

and configuration of each service. Our approach is a multi-
tier approach that starts by remotely pinging the backend,
then port scanning it, then interacting with the discovered
service, and finally collecting service configurations. For in-
stance, the scan first checks to see if the host is reachable,
then it scans for all ports to identify available services, then
it tries to connect to the service to collect its banner, and fi-
nally, if the services use TLS/SSL, it would collect their con-
figurations and supported ciphers. For each step, our scanner
is configured to be non-intrusive, throttled (slow scan speed
and a light load on the remote server), and conservative (us-
ing techniques that yield low to no false positives).

First, SkyWalker groups all IP addresses into their net-
work prefixes and in a random order picks a prefix and a ran-
dom IP from the selected prefix to scan. Prefixes are grouped
by the autonomous system number (ASN) for each network.
If a network spans multiple ASNs, SkyWalker keeps each
ASN as a separate prefix to distribute the scanning uniformly
across different IP segments. SkyWalker does a TCP ping
against common service ports (FTP, SSH, HTTP/S, IMAP,
SMTP, RDP, etc.) by sending out a SYN packet followed by

USENIX Association 28th USENIX Security Symposium 555

a RST packet. TCP ping scans are more reliable in detecting
the availability of the remote server (backend) because they
are not filtered by firewalls like ICMP scans.

Once SkyWalker establishes the host is reachable, Sky-
Walker conducts a TCP SYN scan (SYN-SYN/ACK-RST)
across all ports. This process identifies candidate ports on
the target backend that will be used for a more thorough scan
(TCP connect). To be efficient, SkyWalker uses the list of
ports identified in the TCP SYN scan to conduct a TCP con-
nect scan (SYN-SYN/ACK-ACK) i.e., establish a complete
connection. Based on the port/service identified, SkyWalker
interactively grabs the banner, the header response, and any
available configuration. The retrieved information varies per
service type, for example, HTTP will have header informa-
tion unlike SSH, nonetheless, both help fingerprint the host.
Moreover, SkyWalker looks for TLS/SSL connections on all
candidate ports because many services like HTTP and IMAP
can run over TLS/SSL. Finally, to obtain the backend IP ad-
dress fronted by CDNs, SkyWalker looks up the IP address
in a manually curated CDN list and uses passive DNS to find
historical records that existed just before the current records.
When SkyWalker cannot locate such record, the backend is
excluded from fingerprinting.

Once SkyWalker discovers all the services running on a
backend, SkyWalker uses the result to fingerprint the back-
end. The fingerprint identifies the OS, SS, and CS type
(Linux, Windows; PHP, .NET, Python, Perl; FTP, SFTP,
HTTP, HTTPS, SSH, IMAP, etc.), version, and configura-
tion information if available. The fingerprinting uses open
source and commercial Nessus Attack Scripting Language
(NASL) scripts to identify the different layers of software
on the backend. For example, to identify the OS, the NASL
script inspects the banner string, analyzes the SSL certificate,
checks additional running services (SMB, RDP, SSH), per-
forms structured ICMP pings, inspects HTTP headers, and
uses TCP/IP fingerprinting algorithms [24]. Based on these
signals a confidence score is provided based on matching a
set of pre-profiled OSes. For example, if 90% of the signals
match a Windows Server 2008 R2 Service Pack 1 profile, we
consider the OS layer for that backend in the vulnerability
analysis. Any confidence level below 90% or ambiguity be-
tween the same OS but different versions will not be consid-
ered for the vulnerability analysis phase.

Web Applications. Web apps (AS) are generally tailored
per mobile app, unlike OS, SS, and CS layers. The binary
phase performs in-context analysis for each API interface on
the backend, which provides API information used for fin-
gerprinting. We reference the OWASP’s top 10 vulnerability
issues [14] that can be passively tested within the ethical and
legal bounds discussed in Section 8. Specifically, SkyWalker
uses side-channel SQLi through time delay, reflective XSS,
and XXE callback to identify candidate issues in web apps.
It is important to note that other vulnerabilities such as au-
thentication bypass, broken access control, and sensitive data

exposure present a high risk that can violate legal obliga-
tions. Adding a module to SkyWalker to support additional
vulnerabilities is trivial and can be easily implemented.

For each backend interface, a number of parameters
(p) are associated with each request. SkyWalker tests
each interface p times to check every parameter for SQLi
and XSS. The XXE check is performed on all interfaces
because some AS can accept JSON or XML requests. As
mentioned earlier, the scan is slow and randomly done to
avoid congestion and degradation of service on production
backends. SkyWalker creates two queues, a job queue and
a processing queue. SkyWalker generates p requests for a
given backend interface and stores them in the job queue.
The job queue contains all backend requests, which are
shuffled and loaded into the processing queue in batches
(128 requests per batch). Batches that contain requests with
the same domain or IP address are removed and replaced by
non-overlapping domains and IP address requests. There are
32 workers that ingest from the processing queue and store
the results for vulnerability analysis.

4.4 Vulnerability Analysis
The vulnerability analysis is two parts, N-day analysis, and
0-day analysis. For the N-day analysis, SkyWalker correlates
CVE entries with results from the fingerprinting to identify
possible issues. The confidence level of the fingerprint re-
sults is also used to verify each vulnerability. SkyWalker
uses NASL scripts that take the output of the service dis-
covery, OS identification, SS identification, and CS identifi-
cation as input and match them against known vulnerabili-
ties (CVEs). The NASL results are considered if they have
90% confidence level or higher for OS detection, which pro-
vides high accuracy for vulnerability matching. Note, that
the confidence level is calculated based on pre-profiled OSes
by matching the fingerprint signals (collected from all lay-
ers) to the profile signals.

We manually verified all 983 N-days and found them to
be all true positives. The zero false positive results are due
to the Nessus configuration, which allows us to tune how
the scans are done and how they should be reported. For
example, we configure Nessus to perform the scan types
described above, consider OS type and version detection of
90% or higher and consider SS that have banner information
with version numbers. On the other hand, when we used
UDP scanning techniques and consider generic service
banner information we find over 6,500 candidate N-day
instances with a large false positive rate. In theory, the back-
end can be configured to lie about the banner information,
which would make it hard for us to verify.

For the 0-day analysis, SkyWalker carefully triggers the
candidate vulnerability to verify the findings. For each vul-
nerable parameter, SkyWalker generates a pair of request
messages, the original message and the vulnerable message.

556 28th USENIX Security Symposium USENIX Association

For SQLi, SkyWalker baselines the original request message
several times throughout the week and at different times of
the day. Then SkyWalker performs the same measurement
on the vulnerable message in the same week but in non-
overlapping time intervals by triggering the vulnerable pa-
rameter through an SQLi sleep injection. SkyWalker calcu-
lates the response time deviation based on the sleep param-
eter passed in the SQL statement and the average response
time of the message pairs. If the deviation is equal to the
time delay parameter in the SQL statement, SkyWalker con-
cludes that the interface and parameter pair is vulnerable.

Similarly for XSS, SkyWalker triggers the vulnerable pa-
rameter and includes JavaScript code to creates a new div
element with a unique name attribute. SkyWalker checks
the returned content by parsing the document object model
(DOM) to find the div element containing the unique name
attribute. If the div element with the set name attribute ex-
ists SkyWalker concludes that the interface and parameter
are vulnerable. Note that SkyWalker matches the returned
content with parameters sent to ensure that the XSS candi-
date vulnerability is of type 2 (reflected). For XXE, Sky-
Walker generates a request message that contains an HTTP
callback request to a server we operate. The request mes-
sage is passed to the backend, which will parse the specially
crafted XML document. If the parser is vulnerable to XXE,
SkyWalker will log an HTTP request from the backend un-
der analysis, which indicates the interface is vulnerable. In
addition, we manually reviewed the request/return pairs for
all 655 0-day instances and found no false positives.

4.5 Open Access for Developers
One of our primary goals for this work is to empower app
developers with open access to SkyWalker via a free-to-use
web-service. The service currently supports Android mobile
apps but can be extended to support other mobile platforms,
e.g., Apple iOS. The web-interface takes as input a link to an
Android app in the Google Play store or a direct APK upload.
SkyWalker then performs binary analysis to extract the back-
ends, label them based on our curated dataset, fingerprint
them, and identify vulnerabilities that affect them. In addi-
tion to the analysis, the output report provides guidelines on
how to mitigate the identified issues using the strategies dis-
cussed earlier (upgrade, patch, block, report, and migrate).

SkyWalker summarizes vulnerability findings across all
observed SDK and Java library backends, which developers
can turn to proactively to make an informed decision when
choosing third-party libraries to include in their future
apps. It is important to note that attackers can abuse this
system to attack mobile app backends. Therefore we
require the developers to disclose their affiliation with the
target app before the analysis results are provided. Once
a user is manually vetted, they can only submit apps that
they develop. We do not consider third-party SDKs in

this process. The SkyWalker service can be found at:
https://MobileBackend.vet.

5 Assessment Findings

5.1 Experiment Setup

Environmnet. We use a local workstation running Ubuntu
14.04 with 24GB memory and 16 x 2.393GHz Intel Xeon
CPUs and four Nexus phones to run and instrument the mo-
bile apps. We use an Amazon Web Service (AWS) Elastic
Compute (EC2) instance with a reserved IP address to con-
duct the fingerprinting and run a web server with informa-
tion about our study along with an email address for backend
hosts to contact us if they want to opt-out.

Tools and Data Sets. For the binary analysis tool im-
plementation, we relied on Soot [25], FlowDroid [26],
Z3-str [27], and Xposed [28] with custom code written in
Java (7,000 lines of code) and Python (900 lines of code).
For our backend labeling implementation, we relied on Team
Cymru IP-to-ASN [29], MaxMind Geolocation [23], Alexa
ranking [30], ipcat list [20], and Domaintools WHOIS [31]
with custom code written in Python (480 lines of code).
For fingerprinting, we relied on the Nessus scanner and
commercial plugins [32], sqlmap [33], and Acunetix [34].
We used Nessus plugins and custom Python code (1010 lines
of code) to perform the vulnerability analysis. For internet
measurements, we utilized honeypot scanning activity from
Greynoise [35].

5.2 Software Vulnerability Details
Table 4 shows the distribution of 0-day and N-day instances
across the software layers. We categorize the apps using the
Google Play store groups and present the number of vulnera-
bilities and backend labels. Overall, we analyzed 4,980 apps
with cloud-based backends and successfully extracted back-
ends for 4,740 mobile apps. The remaining 240 mobile apps
crashed and did not complete the full binary analysis.

Interestingly, the OS component reports the least vulner-
abilities, while the AS component reports the most vulnera-
bilities, across all mobile app categories. Recall from Sec-
tion 3.2, vulnerabilities affecting AS components are all con-
sidered 0-day. The OS, SS, and SC components account for
N-day vulnerabilities. Although the number of apps is not
uniform across the categories, we use the raw vulnerability
count for ranking. For 0-day vulnerabilities, the top three
mobile app categories are tools, entertainment, and games.
For N-day vulnerabilities, the top three mobile app categories
are entertainment, tools, and games.

Ownership. Table 4 presents the labels for the backends
used by mobile apps. The most common label is hybrid,
where 3,336 backends use hybrid infrastructure. The second

USENIX Association 28th USENIX Security Symposium 557

https://MobileBackend.vet

Category # Mob. Apps Vulnerabilties Labels
OS # SS # AS # CS Total # B1st # B3rd # Bhyb # Bukn Total

Books & Reference 332 15 49 55 71 190 365 653 501 354 1,873
Business 145 5 22 10 37 74 93 258 150 113 614
Entertainment 1,177 36 108 158 170 472 746 913 942 783 3,384
Games 1,283 34 81 147 106 368 290 804 651 444 2,189
Lifestyle 363 20 50 79 72 221 262 665 311 237 1,475
Misc 199 6 21 45 46 118 76 422 163 105 766
Tools 792 19 84 184 115 402 729 796 812 464 2,801
Video & Audio 689 24 46 89 98 257 267 648 434 357 1,706

Total 4,980 121 356 655 506 1,638 2,492 1,089 3,336 2,506 9,423

Table 4: An overview of the vulnerable mobile apps per genre along with the raw counts of vulnerabilities and labels.

Party Vulnerable Component
OS SS AS CS Total

B1st 37 87 155 211 490
B3rd 6 21 200 42 269
Bhyb 47 150 154 184 535
Bukn 55 135 146 173 509

Table 5: Count of apps affected by vulnerabilities per cloud
layer and their corresponding labels.

Comp. Vulnerability (Top 3) #Apps

OS
Expired Lifecycle for Linux OS (various) 124
Windows Server RCE (MS15-034) 64
Expired Lifecycle for Windows Server 9

SS
Vulnerable PHP Version 357
Expired Lifecycle for Web Server (various) 181
Vulnerable Apache Version 76

AS
XSS (various) 262
SQLi (various) 160
XXE (various) 86

CS
Support for Vulnerable SSL Version 2 and 3 997
OpenSSH Bypass (CVE-2015-5600) 16
Vulnerable OpenSSL (various) 15

Table 6: The top three vulnerabilities found per cloud layer
along with the number of affected mobile apps.

largest is first-party with 2,492 backends followed by third-
party with 1,089 backends. There are 2,506 backends that
we were not able to label due to ambiguities, but we labeled
approximately 73% of all backends we encountered.

More important is providing remediation guidance to the
responsible party. Table 5 shows the mapping between the
backend labels and the vulnerable apps. We cannot say much
about the Unknown category since the vulnerabilities may
belong to either first-party or hybrid categories. We observe
that for first-party backends, the highest number of vulnera-
ble apps are found in AS and CS components with 155 and
211 instances, respectively. Similarly, the hybrid backends
have 154 0-day vulnerability instances and 184 N-day in-
stances. In general, we observe that the components that app
developers are responsible for (AS and CS in the B1st and
Bhyb) have more vulnerabilities.

Operating System (OS). The OS component issues can
be summarized into two categories: legacy unsupported OS
or unpatched OS. The difference is that the legacy OS are
no longer supported by the vendor, hence vulnerabilities will
not be addressed. We see from Table 6 that both Linux (vari-
ous flavors) and Windows backends use expired lifecycle ver-
sions and 133 apps use these backends. The second most
common issue is the Windows Server vulnerability MS15-
034 affecting 64 apps, which have patches by the vendor.
Overall, the top three OS vulnerabilities listed in Table 6 af-
fect 197 mobile apps.

We found the MS15-034 vulnerability affecting hybrid
backends (Bhyb) that run on Amazon AWS, Akamai, OVH, Go
Daddy, Digital Ocean, and other smaller hosting providers.
Further, some of the backends appear on CDN networks, like
Akamai, Fastly, and CloudFlare, that offer “EdgeComput-
ing” services [36] which provide web app accelerator ser-
vices. This insight shows that some developers who deploy
vanilla versions of Windows Server OS are not maintaining
them. In Table 5 the first-party OS component has 37 vulner-
able backends, which is much higher than third-party back-
ends (6). App developers who run and maintain their own
backends (B1st) have to be mindful of these bugs, which in
some cases require provisioning new backends with newer
OSes causing incompatibilities with existing services (SS)
and applications (AS). SkyWalker can inform the developer
of these issues and report mitigation strategies.

Software Services (SS). SkyWalker identified multiple vul-
nerabilities affecting a range of PHP versions, which can be
used to cause denial of service (CVE-2017-6004), disclose
memory content (CVE-2017-7890), disclose sensitive infor-
mation (CVE-2016-1903), and execute arbitrary code (CVE-
2017-11145). Backends of 357 mobile apps affected by PHP
vulnerabilities, significantly higher than the other two vul-
nerabilities. Further, even though some mobile app back-
ends had no 0-day vulnerabilities, an attacker can still craft
special requests to trigger deep bugs within the interpreter to
compromise the backend. Although this might be a difficult
task, recent advancement in vulnerability fuzzing [37] can
uncover these deep bugs.

558 28th USENIX Security Symposium USENIX Association

The second most common SS vulnerability was unsup-
ported versions of Apache web server (1.3.x and 2.0.x),
Tomcat server (8.0.x), and Microsoft IIS web server (5.0).
Similar to unsupported OS, web server vendors will not is-
sue security patches for unsupported software, which affects
backends of 181 mobile apps. For Apache web server ver-
sions less than 2.2.15, they are affected by several denial of
service bugs (CVE-2010-0408, CVE-2010-0434) and TLS
injection bug (CVE-2009-3555) affecting 76 mobile apps.
Additionally, Apache servers that use Apache Struts ver-
sions 2.3.5 - 2.3.31 or 2.5.10.1 and lower are vulnerable
to CVE-2017-5638, which allows remote code execution.
The same Apache Struts vulnerability was reportedly used
against Equifax’s hack [38]. In total, the top three SS vulner-
abilities affect 614 mobile apps.

Applications (AS). Table 7 has a breakdown of the number
of mobile apps, their number of install categories, and the
instances of 0-day bugs affecting them. Although XSS is the
largest category with 503 instances followed by SQLi (215)
and XXE (46), we note that not all of the bugs have the same
impact and some affect the same backend. For instance, an
SQLi can be limited to an isolated instance of the app (e.g.,
a container), which would limit the attack to disclosing in-
formation from the application database or modifying preex-
isting records. Moreover, XSS vulnerabilities often have less
impact than SQLi and XXE.

XXE vulnerabilities affect web apps that use XML for
their API communication. The fundamental flaw that en-
ables XXE vulnerabilities to exist is a faulty implementation
of the XML parser. Based on our measurement, we found
1 XXE instance in the top 100M, 5 in the top 50M, 15 in
the top 10M, 9 in the top 5M, and 17 in the top 1M. Table 7
shows the concentration of vulnerabilities found in lower
ranking apps. For example: 1 XXE and 3 XSS vulnerabil-
ities in the top 132 mobile apps; 4 SQLi, 10 XSS, and 5
XXE vulnerabilities in the next 131 mobile apps (though
still representing over 50M+ installs each). However, AS
vulnerabilities are not confined to lower ranking apps but do
affect higher ranking apps.

Installs # Apps # SQLi # XSS # XXE
1B 5 0 0 0
500M 11 0 0 0
100M 116 0 3 1
50M 131 4 10 5
10M 1,049 25 85 15
5M 1,047 54 89 9
1M 2,621 132 316 17

Table 7: The number of 0-day vulnerabilities found per in-
stall category.

Table 8 shows the AS layer implementation language and
associated vulnerabilities. AS implemented in PHP have the
most 0-days instances (284) affecting 108 different back-

Language # Backends # 0-Days
PHP 108 284
ASP.NET 13 33
PERL 4 9
JS 4 8
JSP 2 5
Unknown 72 316

Table 8: The number of identified languages associated with
0-day vulnerable backends.

ends, followed by ASP.NET with 33 0-day instances affect-
ing 13 different backends. We note that this trend does
not mean causation. PHP is the most popular language
used for web application development [39], hence it is ex-
pected to represent more vulnerabilities by being more pop-
ular. Furthermore, we found 9 0-day instances in PERL, 8 in
JavaScript (NodeJS), 5 in JSP, and the rest of the 316 could
not be determined.

Communication (CS). All mobile apps rely on the
HTTP/HTTPS protocol for communication with their back-
ends. The binary analysis phase extracted a total of 17,725
request messages from the 4,740 mobile apps. The request
messages are split into HTTP (8,118) request messages and
HTTPS (9,607) request messages. There are 446 mobile
apps that only use HTTP communication and another set of
147 mobile apps that only use HTTPS communication. The
remaining set of 4,147 apps mix between HTTP and HTTPS
communication.

Despite using HTTPS, over 20% of the backends (1,012)
have issues with TLS/SSL configuration (e.g., insecure ses-
sion renegotiation and resumption) or unpatched software
versions (e.g., SSL version 2 and 3). These flaws can be ex-
ploited by an attacker to carry out a MITM attack by down-
grading the protocol negotiation using the POODLE [40] at-
tack. Additionally, the OpenSSH Bypass vulnerability ex-
poses the backend to compromise via SSH credential guess-
ing or secret key leak. The mobile apps using these vulnera-
ble backends do not use the SSH service and to remediate one
can turn off, patch, or block the incoming internet traffic to it.

Those backends which only use HTTP expose users to
eavesdropping and MITM attacks because it does not of-
fer integrity or confidentiality. We manually inspected the
request messages sent from 3,253 apps that use HTTP and
found personally identifiable information (PII) such as name,
gender, birth year, user ID, password, username, and country.
Additionally, we found device information like MAC, IMEI,
SDK version, make/model, SSID, Wifi signal, cell signal,
screen resolution, carrier, root access, IP Address, and co-
ordinate location. Combining this information, a network
attacker can identify individuals and attribute behavior pro-
files to them. Furthermore, 6 apps we investigated perform a
password reset over HTTP. Interestingly, the Apple iOS App
Store enforces strict use of HTTPS through their App Trans-

USENIX Association 28th USENIX Security Symposium 559

0 25 50 75 100 125 150 175 200
Number of Backends Per Mobile App

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: The figure shows the CDF of the number of back-
ends per mobile app.

port Security [41] model. We recommend that the Android
platform adopt the same restriction.

5.3 Impact on Mobile Application Users
The overall impact for each vulnerability varies based on the
severity, the mobile app to backend usage, and the adversary
capability/visibility. Although it is important to understand
the impact of each vulnerability, it is not trivial to quantify
the impact of each vulnerable backend on mobile apps. For
N-day vulnerabilities, an attacker can perform an internet-
wide scan to identify and attempt to compromise these
backends. Even once identified, these N-days span many
different components (OS, SS, and CS) that have varying
impacts on the backend from basic information disclosure
to a full system compromise. For 0-day vulnerabilities the
attack impact varies based on the exploit type (SQLi, XSS, or
XXE) and how the backend infrastructure is set up. More-
over, how the mobile app uses the backend directly impacts
the severity of the vulnerability. For example, if a mobile
app uses app slicing [3] or downloads additional libraries
from the mobile backend, an attacker who compromises the
backend can modify the content and attain code execution
on the mobile device.

am
az

on

ak
am

ai

go
og

le

cl
ou

df
la

re

K
R

 te
l

m
ic

ro
so

ft

fa
st

ly

ov
h

le
as

ew
eb

di
g-

oc
n

ad
ob

e

ya
ho

o

he
tz

ne
r

lin
od

e

lg
 c

or
p

JP
 te

l

ya
nd

ex

le
ve

l 3

so
ft

la
ye

r

cd
ne

ts

Organization (Network)

102

103

C
ou

nt
 (L

og
 S

ca
le

)

Figure 3: The figure shows the distribution of backends
across internet networks.

In general, an attacker has a larger attack surface for
apps that have many backends. Figure 2 shows a CDF of
backends per mobile app. We can see that the majority of
the 5,000 apps studied have between one and 25 different
backends and in the worst case they have up to 203 different
backends. We also observe that these backends reside in
diverse networks as shown in Figure 3, which means the
infrastructure set up for the backends will be different
affecting the impact of the vulnerability.

U
S

K
R JP D
E IE C
N

R
U FR N
L

SG C
A

T
R

G
B

H
K IN T
W T
H E
S

PL C
Z

B
R

Country Code

100

101

102

103

C
ou

nt
 (L

og
 S

ca
le

)

Vulnerable Backends
All Backends

Figure 4: The figure shows the distribution of all mobile
backends and vulnerable backends across the world.

Finally, the geographical distribution of the backends,
shown in Figure 4, affect the impact on mobile apps. Many
mobile apps deploy multiple backends that are geographi-
cally distributed to provide faster content for different user
segments. In some cases, the different backends may not
be fully synchronized in terms of the latest software patches
for OS, SS, AS, and CS layers, which results in a vulnerable
backend affecting only a segment of users for a particular
mobile app. Directly quantifying the impact of each vulner-
ability is an involved task and depends on many variables
such as the severity of the vulnerability, the mobile app to
backend usage, the adversary capability, and other nuance
factors (number of backends per app, network distribution,
and geographical distribution). We plan to perform a com-
prehensive analysis to understand this impact as future work.

5.4 Vulnerability Disclosure, Bug Bounties,
And In The Wild Threats

During our disclosure process, we identified two mobile
platform vendors that have a bounty program, namely
Unity3D [42] and Simpli.fi [43]. In addition, the top third-
party platform providers, Google, Facebook, Crashlytics,
and Flurry, all participate in or run their own bug bounty
programs. Similarly, the cloud providers either run their
own program or use a third-party bug bounty program like
Bugcrowd [44] or Bounty Factory [45]. We submitted our
vulnerability disclosures through their bounty management
program (e.g., HackerOne [46]) and received confirmation
of the bugs.

560 28th USENIX Security Symposium USENIX Association

For smaller third-party and first-party developers, they did
not have a formal way to contact them to report vulnerabil-
ities. We followed a tiered approach in our notification by
first notifying the app developer directly using the contact
information in the Play Store. Our second attempt to report
the vulnerability is by contacting the domain owner using the
WHOIS information and following the mitigation strategy.
Our third attempt to report the vulnerability is by contacting
Google directly through their issue tracker portal. For parties
that did not confirm or respond to our multiple attempts, we
reported the vulnerabilities to US-CERT [47].

Component # IP Scanners
Operating System (OS) 341,521
Services (SS) 445,908
Application (AS) 206,533

Table 9: Number of IPs observed scanning the internet for
vulnerabilities reported by Greynoise.io [35] over a period
of a year (Sept 2017 to Sept 2018).

The N-day vulnerabilities we found are discoverable
and easy to exploit due to the availability of fast internet
scanners like ZMap [48] and MASSCAN [49]. We argue
that it is a matter of time until these vulnerabilities are found
and exploited. Table 9 shows the number of active scans
detected on the internet through Greynoise [35] honeypots
over a period of one year (Sept 2017 to Sept 2018). There
are 341,521 unique IPs scanning for OS related vulnerabil-
ities, 445,908 unique IPs scanning for SS vulnerabilities,
and 206,533 unique IPs scanning for AS vulnerabilities.
Many of these scans target N-day vulnerabilities, while
scans for 0-day vulnerabilities cannot be accounted for.
Nonetheless, past events demonstrate that attackers are
prone to scan for and exploit 0-day vulnerable web apps like
Wordpress [50], Drupel [51], and PHPMyAdmin [52] when
publicly disclosed. Furthermore, a recent report [53] also
pointed out that the number of vulnerabilities in web apps
increased in 2018 and that support for PHP version 5.x and
7.x will end in 2019, which means we can anticipate more
unpatched and exposed backends in the future.

6 Case Studies

6.1 Case Study 1: Vulnerable Web App
The mobile app “Dailyhunt” has more than 50M+ installs
and is part of the “Books & Reference” category. The mo-
bile app interacts with nine different backends as shown in
Table 10. The backends are split into two labels, hybrid and
third-party. The hybrid backends are hosted on Akamai’s
EdgeComputing [36] and run a custom web app to serve
the mobile app. The hybrid backends are used for CDN,
telemetry, and requesting app-specific data. Specifically, the

Label Backend Use Vulns.
AS CS

Bhyb

api-news.dailyhunt.in App Data 0 1

acq-news.dailyhunt.in
App Data &
Telemetry 2 1

bcdn.newshunt.com CDN 0 1
acdn.newshunt.com CDN 0 1

B3rd

fonts.gstatic.com CDN 0 0
e.crashlytics.com Telemetry 0 0
settings.crashlytics.com Telemetry 0 0
t.appsflyer.com Ads 0 0
api.appsflyer.com Ads 0 0

Table 10: A list of backends and issues found for the mobile
app Dailyhunt.

api-news.* domain registers the device and requests content,
where the acq-news.* backend captures user behavior and
offers promotion and the actual content is delivered by the
two CDN domains acdn.* and bcdn.*.

We were not able to fingerprint the OS and the SS be-
cause the Akamai servers respond only to web app spe-
cific responses, i.e., minimal header and banner informa-
tion. Nonetheless, we found two 0-day vulnerabilities in the
acq-news.* backend on the same API interface. Since this
web application is specific to this mobile app, we looked for
other apps published by the same developer. We found that
the eBooks by Dailyhunt app (which has over 500K installs
but does not rank in the top 5,000 apps) also uses the same
vulnerable API interface. Additionally, the mobile apps use
HTTP to communicate with the hybrid backends and HTTPS
to communicate with third-party services.

As for the third-party services, we did not find any vul-
nerabilities. The third-party backends serve requests on port
443 (HTTPS). The appsflyer.com backend is a service for
ad analytics that provides different functions using the same
interface. The t.appsflyer.com backend is a telemetry end-
point for the ad network and the api.appsflyer.com backend
authenticates and associates the app with its profile.

Takeaway. This case highlights several challenges to secur-
ing mobile app backends. First, backends are heterogeneous
and differ across their software stack, topology setup, config-
uration, and custom application. Second, outsourcing cloud
management and provisioning (e.g., to cloud providers and
CDNs) benefits security but comes with a lack of visibility,
limited per-app customization, and unclear incident liability.
Third, vulnerabilities can exist (and be scanned for) in any
software layer of the cloud and API interface on the web
app, which makes them challenging to identify and fix. Un-
fortunately, app developers do not have the resources, time,
or personnel to fulfill this task. Using SkyWalker, we aim to
provide guidance to where the most pressing issues exist and
map them to responsible parties as shown in Table 2.

USENIX Association 28th USENIX Security Symposium 561

App Name # Reviews # Installs
com.icegame.fruitlink 332,907 50M+
com.unbrained.wifipasswordgenerator 151,518 10M+
com.magdalm.wifimasterpassword 148,355 10M+
com.unbrained.wifipassgen.app 43,824 1M+
com.magdalm.freewifipassword 35,552 1M+
apps.ignisamerica.gamebooster 23,725 500K+
com.icegame.crazyfruit 23,631 1M+
com.magdalm.wifipasswordpro 22,113 1M+
apps.ignisamerica.bluelight 16,659 500K+
com.icegame.fruitsplash2 15,193 1M+

Table 11: A list of the top 10 mobile apps using the appnext
platform.

Label Backend Usage Vulns.
OS AS CS

B3rd

admin.appnext.com App Data 0 1 0
global.appnext.com App Data 0 0 0
cdn.appnext.com CDN 1 0 1
cdn3.appnext.com CDN 1 0 1

Table 12: List of backends and vulnerable layers found in
the appnext platform.

6.2 Case Study 2: Vulnerable Platform
The appnext [54] platform integrates with mobile apps to in-
gest user behavior telemetry and provide predictive actions
that users might perform. Developers use this to upsell sub-
scription, ads, or recommend actions to app users. The app-
next platform is used by 6 mobile apps from the top 5,000
free apps. We analyzed all apps by the same developers that
are not in the top 5,000 and found 140 additional apps using
the appnext platform. The top 10 most reviewed apps using
the appnext platform can be found in Table 11. The top app
has 332,907 reviews and over 50M+ installs. These numbers
give us an indication of the the platform’s significant popu-
larity and daily use.

The appnext platform backends (shown in Table 12) are
labelled as third-party, because the backends are found in an
SDK library. We found two CDN domains that point to the
same server IP, which are hosted on Limelight Networks, a
CDN provider. This CDN backend is vulnerable to an OS
integer overflow in the HTTP protocol stack (MS15-034)
that can be remotely exploited. Further, the CS still offers
SSLv2 and SSLv3, which are vulnerable to insecure padding
scheme for CBC cipher. appnext’s admin.* and global.* do-
mains run on Amazon AWS and provide app-specific data,
like authentication, telemetry ingestion, predictive actions,
and configuration. The infrastructures run Microsoft Win-
dows Server 2008 R2 for the OS, Microsoft-IIS/7.5 for its
web server (SS), and the CS uses HTTPS. The application
(AS) backend is a custom web application that is written in
ASP and uses the ASP.NET framework. The AS has a vulner-
ability that allows an attacker to run arbitrary SQL queries.

We have notified the developers about these findings and
awaiting remediation.

Takeaway. This case highlights multiple vulnerabilities,
0-day and N-day, that affect three of the four software
layers. This mobile platform collects sensitive information
about user behavior, including PII and device information.
Unfortunately, these backend vulnerabilities are inherited by
multiple apps and developers, and the app developers cannot
immediately remediate the vulnerabilities in third-party
services. The mitigation strategy for the app developer is
to report (r) these findings to appnext or migrate (m) their
app to a different service. SkyWalker helps us label the
backends, identify the vulnerability, and guide the developer
to a clear action (report or migrate).

7 Mitigation

The goal of our empirical analysis was to bring attention
to this overlooked problem in mobile backends, but also to
provide guidance to app developers for building or choosing
secure backends. In this section, we discuss the general
mitigation strategies which SkyWalker recommends for app
developers and to help improve the security posture of their
app backends.

7.1 Remediation Strategies
App developers who rely on first-party backends have to up-
grade, patch, and block as needed for each software layer
on their backend. If they rely on third-party backends they
can report the issue or migrate their backend to a more se-
cure provider. Ambiguity arises when the backend is hosted
by a cloud provider, a hybrid type backend. To resolve these
issues we further generalize the hybrid backends into IaaS
(cloud provider manages the virtual HW) and PaaS (cloud
provider manages HW , OS, and SS).

Hybrid
Strategies HW OS SS AS CS
Upgrade 4 4 44
Patch 4 4 44 44
Block 4 4
Report 44 4 4
Migrate 44 4 4

Table 13: A mapping of mitigation strategies for developers
hosting their hybrid backend on infrastructure (IaaS) or a
platform (PaaS).

Table 13 provides developers with a guideline on how to
mitigate vulnerable hybrid backends. For example: if the
hybrid backend is using a cloud provider’s platform offer-
ing, developers should report and/or migrate their backend
if the vulnerabilities are found in HW , OS, SS and upgrade
or patch if the vulnerabilities CS or AS related, respectively.

562 28th USENIX Security Symposium USENIX Association

This matrix provides a starting point for app developers to
explore their options, i.e., migrate or wait for a fix. In some
cases, the offering from cloud providers includes HW and
OS (as in the motivating example which uses Google Com-
pute Engine Flexible Environment). In this case, developers
have to make sure they use the latest OS images supported
by their cloud provider.

7.2 Recommendations
The empirical analysis provides insight not only about inse-
cure mobile backends, but also secure practices that devel-
opers can learn from. For developers who decide to build
their own first-party backends, we recommend the follow-
ing: First, developers should delegate as much of the back-
end functionality to reputable third-party backends and min-
imize the number of features and functions their backend
needs to support. Second, developers should dedicate per-
sonnel to manage and maintain their backends including the
routine maintenance of OS, SS and CS, and timely fixes of
known vulnerabilities affecting their cloud backends and mo-
bile apps using patching tools [55]–[57]. Third, developers
should develop an audit plan and a mitigation plan and be
familiar with it to execute during an incident or vulnera-
bility disclosure. Finally, developers should utilize defense
tools like web app firewalls (WAF), DDoS mitigation, and
crawler/scanner blockers to protect from internet scanners,
DDoS threats, and web app attacks (SQLi, authentication by-
pass, etc.). We identified over 730 backends using defense
services, all of which had smaller footprints when finger-
printed and no vulnerabilities were detected.

8 Measurement Considerations

Ethical. Because our work does not require or implicate hu-
man subjects, no IRB approval was required by our institute.
Our study identified a large number of 0-day and N-day vul-
nerabilities in active mobile app backends through scanning
and probing. Our techniques include service scans, banner
grabs, and side-channel probes. We emphasize that no ac-
tive exploitation, disruption, or sensitive data access was at-
tempted against the mobile backends. Although there are no
set guidelines for vulnerability measurements in the commu-
nity, several previous works (e.g., [48], [58]–[60]) have set
some precedent. Our measurements followed the best prac-
tices used in previous work using the following approach:

• Good Internet Citizenship: Similar to the work of Li
et al. [58], we provided an opt-out page for our scanner
IP that gives targets an option to be removed from the
study. Further, we signal our benign intention by setting
the user-agent string in the scans and provide a reverse
DNS record for our IP to give targets additional infor-
mation about our study. We were contacted by one app

developer and requested that we remove their backends
and related infrastructure from our study.

• Non-Exploit Payloads: Similar to the work of Du-
rumeric et al. [59], our scanning and measurement tech-
niques did not include any active exploits against the
mobile app backends. We used side-channel measure-
ments with time delay probes to infer vulnerabilities.
The requests were carefully crafted to ensure that vul-
nerabilities are triggered for verification and not persis-
tent or full system exploitation. Further, our scanning
approach was throttled to ensure the availability of the
backend is not affected by the additional load.

• Responsible Disclosure: Lastly, we notified affected
mobile app developers and third-party mobile service
providers through the appropriate channels. For devel-
opers and third-party service providers who did not re-
spond to our communication, we reported the vulnera-
bilities through the US-CERT [47].

Legal. Similar to Ristenpart et al. [60], we operate within
the legal bounds in conducting this study. In the US, the
Computer Fraud and Abuse Act (CFAA) is the governing law
that pertains to use and access of computer systems. The law
states, in brief, that access to any computer system must be
authorized, but does so in broad terms. The decision from the
case of Moulton v VC3 (2000) sets a precedent that service
discovery scanning does not cause damages or direct harm to
target systems. Additionally, we assume any internet-facing
service gives implicit permission to access the target com-
puter system, in particular, we refer to how web crawlers
and internet indexing services operate. As we outlined in
our ethical section earlier, we provide subjects the option
to opt-out, perform non-malicious measurement probes, and
use responsible disclosure to notify affected parties.

9 Related Work

Cloud Security. Cloud security has been surveyed exten-
sively [61]–[65]. Xiao et al. [9] performed a comprehensive
analysis of the security issues in cloud services by surveying
high-level provider and tenant issues for the cloud-based ser-
vices in general. Singh et al. [66] presented a survey to iden-
tify common issues reported in third-party cloud services
and summarize the work from the architecture framework,
service and deployment, and cloud technologies perspective.
Our work looks at “in-the-wild” deployment of cloud
services from the OS, SS, AS, and CS perspectives to empiri-
cally study and uncover common issues in mobile backends.

Measurement Studies. Durumeric et al. [67] conducted a
comprehensive internet-wide study of the HTTPS certificate
ecosystem. Later, Durumeric et al. [59] carried out a simi-
lar internet-wide study for the Heartbleed vulnerability [68].

USENIX Association 28th USENIX Security Symposium 563

Perez-Botero et al. [69] presented an in-depth study charac-
terizing hypervisor vulnerabilities in cloud services. Zuo et
al. [19] proposed a system to identify mobile app URLs and
examine their reputation with public blacklists to detect ma-
licious apps. Our work differs from prior work by studying
a range of vulnerabilities which may affect mobile app back-
ends on the internet.

Empirical Backend Analysis. Zuo et al. [12] performed
an assessment of mobile app backend services by investigat-
ing the cloud offerings of Google, Amazon, and Microsoft.
Our work provides a wider analysis by going beyond just
the third-party service backends and by examining a diverse
set of cloud-based backends. Fernandes et al. [70] analyzed
the top apps found in the Samsung SmartThings platform to
identify permission issues. We follow a similar approach but
focus on the mobile app integration with cloud services in-
stead of IoT apps and cloud services. Alrawi et al. [71] pre-
sented a systematization security assessment of home-based
IoT devices and their companion cloud and mobile apps. Our
work encompasses a wider application, beyond only IoT mo-
bile apps, and a more focused assessment by looking at the
supporting backends provided by cloud services.

10 Conclusion

This paper presented SkyWalker, an analysis pipeline to
study mobile app backends. We used SkyWalker to empiri-
cally analyze the top 5,000 mobile apps in the Google Play
store and uncovered 655 0-days and 983 N-days instances
affecting thousands of apps. Lastly, we offer SkyWalker as
a public service to help app developers improve the security
of their backends, give insight on what platforms are vulner-
able, and guide developers to fix issues found in their back-
ends: https://MobileBackend.vet.

Acknowledgement

We thank Manos Antonakakis, Yizheng Chen, Angelos
Keromytis, Panagiotis Kintis, Chaz Lever, Frank Li, Xi-
aojing Liao, Yinqian Zhang, and the anonymous reviewers
for their insightful comments. This work was partially
supported by AFOSR under grant FA9550-14-1-0119, NSF
awards 1834215, and 1834216.

References

[1] S. Ghosh, British Airways customer data stolen from its web-
site, https://www.theguardian.com/business/2018/
sep/06/british-airways-customer-data-stolen-

from-its-website, 2018.

[2] Z. Whittaker, Air Canada confirms mobile app data breach,
https://techcrunch.com/2018/08/29/air-canada-

confirms-mobile-app-data-breach/, 2018.

[3] A. Martonik, Epic‘s first Fortnite Installer allowed hack-
ers to download and install anything on your Android
phone silently, https://www.androidcentral.com/
epic-games-first-fortnite-installer-allowed-

hackers-download-install-silently, 2018.

[4] K. Watkins, “HospitalGown: The Backend Exposure Putting
Enterprise Data at Risk,” Appthority, Tech. Rep., 2017.

[5] S. Subashini and v. Kavitha, “A survey on security issues
in service delivery models of cloud computing,” Journal of
Network and Computer Applications, 2011.

[6] C. Höfer and G. Karagiannis, “Cloud computing services:
Taxonomy and comparison,” Journal of Internet Services
and Applications, 2011.

[7] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified
ontology of cloud computing,” in In Proc. IEEE Grid Com-
puting Environments Workshop (GCE), 2008.

[8] D. Gonzales, J. M. Kaplan, E. Saltzman, Z. Winkelman, and
D. Woods, “Cloud-trust-A security assessment model for in-
frastructure as a service (IaaS) clouds,” IEEE Transactions
on Cloud Computing, 2017.

[9] Z. Xiao and Y. Xiao, “Security and privacy in cloud comput-
ing,” IEEE Communications Surveys & Tutorials, 2013.

[10] K. Watkins and S. M. Kywe, “Unsecured Firebase
Databases: Exposing Sensitive Data via Thousands of Mo-
bile Apps,” Appthority, Tech. Rep., 2018.

[11] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic
discovery of vulnerable authorizations in online services,” in
Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), Dallas, TX, Oct. 2017.

[12] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak?
uncovering the data leakage in cloud from mobile apps,” in
Proceedings of the 40th Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2019.

[13] National Institute of Standards and Technology, NATIONAL
VULNERABILITY DATABASE, https://nvd.nist.gov,
2019.

[14] OWASP, OWASP Top 10 - 2017: The Ten Most Critical Web
Application Security Risks, https://www.owasp.org/
images/7/72/OWASP_Top_10-2017_%28en%29.pdf.

pdf, 2018.

[15] Kony, Kony Fabric, https://www.kony.com/products/
fabric/, 2018.

[16] OutSystems, Build Mobile Apps, https://www.outsyste
ms.com/platform/build-mobile-apps/, 2018.

[17] Apache, Architectural overview of Apache Cordova plat-
form, https://cordova.apache.org, 2018.

[18] Backbase, Backbase Enterprise Integration Framework, ht
tps://backbase.com/platform/integration/, 2018.

[19] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mo-
bile apps with selective symbolic execution,” in Proceed-
ings of the 26th International World Wide Web Conference
(WWW), 2017.

564 28th USENIX Security Symposium USENIX Association

https://MobileBackend.vet
https://www.theguardian.com/business/2018/sep/06/british-airways-customer-data-stolen-from-its-website
https://www.theguardian.com/business/2018/sep/06/british-airways-customer-data-stolen-from-its-website
https://www.theguardian.com/business/2018/sep/06/british-airways-customer-data-stolen-from-its-website
https://techcrunch.com/2018/08/29/air-canada-confirms-mobile-app-data-breach/
https://techcrunch.com/2018/08/29/air-canada-confirms-mobile-app-data-breach/
https://www.androidcentral.com/epic-games-first-fortnite-installer-allowed-hackers-download-install-silently
https://www.androidcentral.com/epic-games-first-fortnite-installer-allowed-hackers-download-install-silently
https://www.androidcentral.com/epic-games-first-fortnite-installer-allowed-hackers-download-install-silently
https://nvd.nist.gov
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.kony.com/products/fabric/
https://www.kony.com/products/fabric/
https://www.outsystems.com/platform/build-mobile-apps/
https://www.outsystems.com/platform/build-mobile-apps/
https://cordova.apache.org
https://backbase.com/platform/integration/
https://backbase.com/platform/integration/

[20] N. Galbreath, Categorization of IP Addresses, https://
github.com/client9/ipcat, 2019.

[21] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party
library detection in android and its security applications,”
in Proceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS), Vienna, Austria, Oct.
2016.

[22] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identify-
ing open-source license violation and 1-day security risk at
large scale,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX,
Oct. 2017.

[23] MaxMind, About MaxMind, https://www.maxmind.com/
en/company, 2018.

[24] R. Beverly, “A robust classifier for passive TCP/IP finger-
printing,” in Workshop on Passive and Active Network Mea-
surement, Springer, 2004.

[25] E. Bodden, A framework for analyzing and transforming
java and an- droid apps, https://sable.github.io/
soot/, 2018.

[26] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Pre-
cise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps,” in Proceedings of the 2014
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), Edinburgh, UK, Jun. 2014.

[27] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based
string solver for web application analysis,” in Proceed-
ings of the 18th European Software Engineering Conference
(ESEC) / 21st ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE), Saint Petersburg, Rus-
sia, Aug. 2013.

[28] X. Framework, Xposed Module Repository, https://rep
o.xposed.info/module/de.robv.android.xposed.

installer, 2018.

[29] T. Cymru, IP TO ASN MAPPING, http://www.team-
cymru.com/IP-ASN-mapping.html, 2018.

[30] Alexa, Find Website Traffic, Statistics, and Analytics, https
://www.alexa.com/siteinfo, 2018.

[31] DomainTools, About Us, https://www.domaintools.
com/company/, 2018.

[32] T. Security, Nessus Professional, https://www.tenable.
com/products/nessus/nessus-professional, 2018.

[33] S. Project, sqlmap: automatic SQL injection and database
takeover tool, http://sqlmap.org, 2018.

[34] Acunetix, Audit Your Web Security with Acunetix Vulner-
ability Scanner, https : / / www . acunetix . com /

vulnerability-scanner/, 2018.

[35] Geynoise, About, https://greynoise.io/about/, 2018.

[36] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai net-
work: A platform for high-performance internet applica-
tions,” in Proceedings of the ACM SIGOPS Operating Sys-
tem Review, vol. 44, Jul. 2010.

[37] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and
B. Liang, “Semfuzz: Semantics-based automatic generation
of proof-of-concept exploits,” in Proceedings of the 24th
ACM Conference on Computer and Communications Secu-
rity (CCS), Dallas, TX, Oct. 2017.

[38] D. Goodin, Failure to patch two-month-old bug led to mas-
sive Equifax breach, https : / / arstechnica . com /

information - technology / 2017 / 09 / massive -

equifax- breach- caused- by- failure- to- patch-

two-month-old-bug/, 2018.

[39] X. Li and Y. Xue, “A survey on server-side approaches to se-
curing web applications,” ACM Computing Surveys (CSUR),
2014.

[40] B. Möller, T. Duong, and K. Kotowicz, “This poodle bites:
Exploiting the ssl 3.0 fallback,” Security Advisory, 2014.

[41] App Transport Security, https://forums.developer.
apple.com/thread/6767, 2015.

[42] Unity3D, Imagine, build and succeed with Unity, https:
//unity3d.com, 2018.

[43] Simpli.fi, About Us, https://www.simpli.fi/about-
us/, 2018.

[44] bugcrowd, THE BUGCROWD DIFFERENCE, https://
www.bugcrowd.com/who- we- are/the- bugcrowd-

difference/, 2018.

[45] B. Factory, CREATE MY BUG BOUNTY PROGRAM, http
s://bountyfactory.io/en/mybugbounty.html, 2018.

[46] HackerOne, About HackerOne, https://www.hackerone
.com/about, 2018.

[47] US-CERT, About Us, https://www.us-cert.gov/abou
t-us, 2018.

[48] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap:
Fast internet-wide scanning and its security applications.,” in
Proceedings of the 22th USENIX Security Symposium (Secu-
rity), Washington, DC, Aug. 2013.

[49] R. D. Graham, MASSCAN, https://github.com/rober
tdavidgraham/masscan, 2018.

[50] M. Veenstra, Privilege Escalation Flaw In WP GDPR Com-
pliance Plugin Exploited In The Wild, https : / / www .
wordfence . com / blog / 2018 / 11 / privilege -

escalation - flaw - in - wp - gdpr - compliance -

plugin-exploited-in-the-wild/, 2018.

[51] J. Mattsson, Drupal core - Highly critical - Remote Code
Execution - SA-CORE-2018-002, https://www.drupal.
org/sa-core-2018-002, 2018.

[52] C. Point, Web servers PHPMyAdmin Misconfiguration Code
Injection, https://www.checkpoint.com/defense/
advisories/public/2014/cpai-17-mar1.html, 2018.

[53] N. Avital, The State of Web Application Vulnerabilities in
2018, https://www.imperva.com/blog/the-state-
of-web-application-vulnerabilities-in-2018/,
2019.

[54] Appnext, The Appnext Discovery Platform, https://www.
appnext.com/platform/, 2018.

USENIX Association 28th USENIX Security Symposium 565

https://github.com/client9/ipcat
https://github.com/client9/ipcat
https://www.maxmind.com/en/company
https://www.maxmind.com/en/company
https://sable.github.io/soot/
https://sable.github.io/soot/
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer
http://www.team-cymru.com/IP-ASN-mapping.html
http://www.team-cymru.com/IP-ASN-mapping.html
https://www.alexa.com/siteinfo
https://www.alexa.com/siteinfo
https://www.domaintools.com/company/
https://www.domaintools.com/company/
https://www.tenable.com/products/nessus/nessus-professional
https://www.tenable.com/products/nessus/nessus-professional
http://sqlmap.org
https://www.acunetix.com/vulnerability-scanner/
https://www.acunetix.com/vulnerability-scanner/
https://greynoise.io/about/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-caused-by-failure-to-patch-two-month-old-bug/
https://forums.developer.apple.com/thread/6767
https://forums.developer.apple.com/thread/6767
https://unity3d.com
https://unity3d.com
https://www.simpli.fi/about-us/
https://www.simpli.fi/about-us/
https://www.bugcrowd.com/who-we-are/the-bugcrowd-difference/
https://www.bugcrowd.com/who-we-are/the-bugcrowd-difference/
https://www.bugcrowd.com/who-we-are/the-bugcrowd-difference/
https://bountyfactory.io/en/mybugbounty.html
https://bountyfactory.io/en/mybugbounty.html
https://www.hackerone.com/about
https://www.hackerone.com/about
https://www.us-cert.gov/about-us
https://www.us-cert.gov/about-us
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://www.wordfence.com/blog/2018/11/privilege-escalation-flaw-in-wp-gdpr-compliance-plugin-exploited-in-the-wild/
https://www.wordfence.com/blog/2018/11/privilege-escalation-flaw-in-wp-gdpr-compliance-plugin-exploited-in-the-wild/
https://www.wordfence.com/blog/2018/11/privilege-escalation-flaw-in-wp-gdpr-compliance-plugin-exploited-in-the-wild/
https://www.wordfence.com/blog/2018/11/privilege-escalation-flaw-in-wp-gdpr-compliance-plugin-exploited-in-the-wild/
https://www.drupal.org/sa-core-2018-002
https://www.drupal.org/sa-core-2018-002
https://www.checkpoint.com/defense/advisories/public/2014/cpai-17-mar1.html
https://www.checkpoint.com/defense/advisories/public/2014/cpai-17-mar1.html
https://www.imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2018/
https://www.imperva.com/blog/the-state-of-web-application-vulnerabilities-in-2018/
https://www.appnext.com/platform/
https://www.appnext.com/platform/

[55] SecurityFTW - cs-suite, Cloud Security Suite - One stop tool
for auditing the security posture of AWS/GCP/Azure infras-
tructure. https : / / github . com / SecurityFTW / cs -
suite, 2018.

[56] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic reboot-
less kernel updates,” in Proceedings of the 4th European
Conference on Computer Systems (EuroSys), Nuremberg,
Germany, Mar. 2009.

[57] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike, B.
Saltaformaggio, and W. Lee, “Automating patching of vul-
nerable open-source software versions in application bina-
ries,” in Proceedings of the 2019 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2019.

[58] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. Mc-
Coy, S. Savage, and V. Paxson, “You‘ve got vulnerability:
Exploring effective vulnerability notifications,” in Proceed-
ings of the 25th USENIX Security Symposium (Security),
Austin, TX, Aug. 2016.

[59] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M.
Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey, et al.,
“The matter of heartbleed,” in Proceedings of the 14th Inter-
net Measurement Conference (IMC), 2014.

[60] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: Exploring information leakage
in third-party compute clouds,” in Proceedings of the 16th
ACM Conference on Computer and Communications Secu-
rity (CCS), Chicago, Illinois, Nov. 2009.

[61] S. Subashini and V. Kavitha, “A survey on security issues
in service delivery models of cloud computing,” Journal of
network and computer applications, vol. 34, no. 1, pp. 1–11,
2011.

[62] M. Almorsy, J. Grundy, and I. Müller, “An analysis of
the cloud computing security problem,” arXiv preprint
arXiv:1609.01107, 2016.

[63] Y. Sun, G. Petracca, X. Ge, and T. Jaeger, “Pileus: Protect-
ing user resources from vulnerable cloud services,” in Pro-
ceedings of the 32th Annual Computer Security Applications
Conference (ACSAC), 2016.

[64] S. Iqbal, M. L. M. Kiah, B. Dhaghighi, M. Hussain, S. Khan,
M. K. Khan, and K.-K. R. Choo, “On cloud security at-
tacks: A taxonomy and intrusion detection and prevention as
a service,” Journal of Network and Computer Applications,
vol. 74, pp. 98–120, 2016.

[65] N. V. Juliadotter and K.-K. R. Choo, “Cloud attack and
risk assessment taxonomy,” IEEE Cloud Computing, vol. 2,
no. 1, pp. 14–20, 2015.

[66] A. Singh and K. Chatterjee, “Cloud security issues and chal-
lenges: A survey,” Journal of Network and Computer Appli-
cations, 2017.

[67] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman,
“Analysis of the https certificate ecosystem,” in Proceedings
of the 13th Internet Measurement Conference (IMC), 2013.

[68] Codenomicon and Google, The Heartbleed Bug, https://
heartbleed.com/, 2017.

[69] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characteriz-
ing hypervisor vulnerabilities in cloud computing servers,”
in Proceedings of the 20th ACM Conference on Computer
and Communications Security (CCS), Berlin, Germany, Oct.
2013.

[70] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of
emerging smart home applications,” in Proceedings of the
37th Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2016.

[71] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok:
Security evaluation of home-based iot deployments,” in Pro-
ceedings of the 40th Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2019.

566 28th USENIX Security Symposium USENIX Association

https://github.com/SecurityFTW/cs-suite
https://github.com/SecurityFTW/cs-suite
https://heartbleed.com/
https://heartbleed.com/

EnTrust: Regulating Sensor Access by Cooperating Programs
via Delegation Graphs

Giuseppe Petracca
Penn State University, US

gxp18@cse.psu.edu

Yuqiong Sun
Symantec Research Labs, US
yuqiong_sun@symantec.com

Ahmad-Atamli Reineh
Alan Turing Institute, UK

atamli@turing.ac.uk

Patrick McDaniel
Penn State University, US

mcdaniel@cse.psu.edu

Jens Grossklags
Technical University of Munich, DE

jens.grossklags@in.tum.de

Trent Jaeger
Penn State University, US

tjaeger@cse.psu.edu

Abstract
Modern operating systems support a cooperating pro-
gram abstraction that, instead of placing all function-
ality into a single program, allows diverse programs to
cooperate to complete tasks requested by users. How-
ever, untrusted programs may exploit such interactions
to spy on users through device sensors by causing priv-
ileged system services to misuse their permissions, or
to forward user requests to malicious programs inadver-
tently. Researchers have previously explored methods
to restrict access to device sensors based on the state of
the user interface that elicited the user input or based
on the set of cooperating programs, but the former ap-
proach does not consider cooperating programs and the
latter approach has been found to be too restrictive for
many cases. In this paper, we propose EnTrust, an
authorization system that tracks the processing of in-
put events across programs for eliciting approvals from
users for sensor operations. EnTrust constructs dele-
gation graphs by linking input events to cooperation
events among programs that lead to sensor operation
requests, then uses such delegation graphs for eliciting
authorization decisions from users. To demonstrate this
approach, we implement the EnTrust authorization sys-
tem for Android OS. In a laboratory study, we show that
attacks can be prevented at a much higher rate (47-67%
improvement) compared to the first-use approach. Our
field study reveals that EnTrust only requires a user
effort comparable to the first-use approach while incur-
ring negligible performance (<1% slowdown) and mem-
ory overheads (5.5 KB per program).

1 Introduction
Modern operating systems, such as Android OS, Ap-
ple iOS, Windows Phone OS, and Chrome OS, support
a programming abstraction that enables programs to
cooperate to perform user commands via input event
delegations. Indeed, an emergent property of modern
operating systems is that system services are relatively
simple, provide a specific functionality, and often rely on
the cooperation with other programs to perform tasks.

For instance, modern operating systems now ship with
voice-controlled personal assistants that may enlist apps
and other system services to fulfill user requests, reach-
ing for a new horizon in human-computer interaction.

Unfortunately, system services are valuable targets
for adversaries because they often have more permis-
sions than normal apps. In particular, system services
are automatically granted access to device sensors, such
as the camera, microphone, and GPS. In one recent case
reported by Gizmodo [1], a ride-sharing app took ad-
vantage of Apple iOS system services to track riders.
In this incident, whenever users asked their voice assis-
tant “Siri, I need a ride”, the assistant enlisted the ride-
sharing app to process the request, which then leveraged
other system services to record the users’ device screens,
even while running in the background. Other online
magazines have reported cases of real-world evidence
that apps are maliciously colluding with one another to
collect and share users’ personal data [2, 3, 4].

Such attacks are caused by system services being
tricked into using their permissions on behalf of mali-
cious apps (confused deputy attacks [5, 6]), or malicious
apps exploiting their own privileges to steal data, and
a combination of the two. Researchers have previously
shown that such system services are prone to exploits
that leverage permissions only available to system ser-
vices [7]. Likewise, prior work has demonstrated that
system services inadvertently or purposely (for function-
ality reasons) depend on untrusted and possibly mali-
cious apps to help them complete tasks [8].

Such attacks are especially hard to prevent due to two
information asymmetries. System services are being ex-
ploited when performing tasks on behalf of users, where:
(1) users do not know what processing will result from
their requests and (2) services do not know what pro-
cessing users intended when making the request. Cur-
rent systems employ methods to ask users to authorize
program access to sensors, but to reduce users’ autho-
rization effort they only ask on a program’s first use of
that permission. However, once authorized, a program
can utilize that permission at will, enabling programs

USENIX Association 28th USENIX Security Symposium 567

to spy on users as described above. To prevent such
attacks, researchers have explored methods that bind
input events, including facets of the user interface used
to elicit those inputs, to permissions to perform sen-
sor operations [9, 10, 12]. Such methods ask users to
authorize permissions for those events and reuse those
permissions when the same event is performed to re-
duce the user burden. Recent research extends the col-
lection of program execution context (e.g., data flows
and/or GUI flows between windows) more comprehen-
sively to elicit user authorizations for sensitive opera-
tions [16, 11]. However, none of these methods addresses
the challenge where an input event is delivered to one
program and then a sensor operation, in response to
that event, is requested by another program in a series
of inter-process communications, a common occurrence
in modern operating systems supporting the cooperat-
ing program abstraction.

Researchers have also explored methods to prevent
unauthorized access by regulating inter-process commu-
nications (IPCs) and by reducing the permissions of pro-
grams that perform operations on behalf of other pro-
grams. First, prior work developed methods for block-
ing IPC communications that violate policies specified
by app developers [8, 18, 19, 21, 22]. However, such
methods may prevent programs from cooperating as ex-
pected. Decentralized information flow control [23, 24]
methods overcome this problem by allowing programs
with the authority to make security decisions and make
IPCs that may otherwise be blocked. Second, DIFC
methods, like capability-based systems in general [34],
enable reduction of a program’s permissions (i.e., callee)
when performing operations on behalf of other pro-
grams (i.e., callers). Initial proposals for reducing per-
missions simply intersected the parties’ permissions [7],
which however was too restrictive because parties would
have their permissions pruned after the interaction with
less privileged parties. DIFC methods, instead, provide
more flexibility [20], albeit with the added complex-
ity of requiring programs to make non-trivial security
decisions. Our insight to simplify the problem is that
while DIFC methods govern information flows compre-
hensively to prevent the leakage of sensitive data avail-
able to programs, users instead want to prevent pro-
grams from abusing sensor access to obtain sensitive
data in the first place.

In addition, prior work has also investigated the use
of machine learning classifiers to analyze the contextu-
ality behind user decisions to grant access to sensors
automatically [14, 15]. Unfortunately, the effectiveness
of the learning depends on the accuracy of the user de-
cisions while training the learner. Therefore, we firmly
believe that additional effort is necessary in improving
user decision making before the user decisions can be
used to train a classifier.

In this work, we propose the EnTrust authorization
system to prevent malicious programs from exploiting

cooperating system services to obtain unauthorized ac-
cess to device sensors. At a high-level, our insight is to
combine techniques that regulate IPC communications
of programs of different privilege levels with techniques
that enable users to be aware of the permissions asso-
ciated with an input event and decide whether to grant
such permissions for the identified flow context. The for-
mer techniques identify how a task is “delegated” among
cooperating programs to restrict the permissions of the
delegatee.1 The latter techniques expose more contex-
tual information to a user, which may be useful to make
effective authorization decisions.

However, combining these two research threads re-
sults in several challenges. First, we must be able to
associate input events with their resulting sensor oper-
ations in other programs to authorize such operations
relative to the input events and sequence of cooperating
programs. Prior work does not track how processing re-
sulting from input events is delegated across programs
[9, 10, 11, 12], but failing to do so results in attack
vectors exploitable by an adversary. In EnTrust, we
construct delegation graphs that associate input events
with their resulting sensor operations across IPCs to
authorize operations in other programs.

Second, multiple, concurrent input events and IPCs
may create ambiguity in tracking delegations across pro-
cesses that must be resolved to ensure correct enforce-
ment. Prior work either makes assumptions that are
often too restrictive or require manual program annota-
tions to express such security decisions. EnTrust lever-
ages the insights that input events are relatively infre-
quent, processed much more quickly than users can gen-
erate distinct events, and are higher priority than other
processing. It uses these insights to ensure that an un-
ambiguous delegation path can be found connecting each
input event and sensor operation, if one exists, with lit-
tle impact on processing overhead.

Third, we must develop a method to determine the
permissions to be associated with an input event for
other programs that may perform sensor operations.
Past methods, including machine learning techniques
[14, 15], depend on user decision making to select the
permissions associated with input events, but we wonder
whether the information asymmetries arising from dele-
gation of requests across programs impair user decision
making. In EnTrust, we elicit authorization decisions
from users by using delegation paths. We study the im-
pact of using delegation paths on users’ decision making
for both primed and unprimed user groups. Historically,
there has been a debate on whether users should be con-
sidered a weak link in security [56, 57]. We examine this
argument in a specific context by investigating if users
can make informed security decisions given informative,
yet precise, contextual information.

We implement and evaluate a prototype of the
EnTrust authorization system for Android OS. We find
that EnTrust significantly reduces exploits from three

568 28th USENIX Security Symposium USENIX Association

Figure 1: Possible attack vectors when diverse programs interact via input event delegations in a cooperating model. For
consistency, we present the attack scenarios in terms of voice assistants receiving input events via voice commands; however,
similar attack scenarios are possible for input events received by programs via Graphical User Interface (GUI) widgets rendered
on the users’ device screen.

canonical types of attack vectors possible in systems
supporting cooperating programs, requires little addi-
tional user effort, and has low overhead in app perfor-
mance and memory consumption. In a laboratory study
involving 60 human subjects, EnTrust improves attack
detection by 47-67% when compared to the first-use au-
thorization approach. In a field study involving 9 human
subjects, we found that - in the worst scenarios seen -
programs required no more than four additional manual
authorizations from users, compared to the less secure
first-use authorization approach; which is far below the
threshold that is considered at risk for user annoyance
and habituation [33]. Lastly, we measured the over-
head imposed by EnTrust via benchmarks and found
that programs operate effectively under EnTrust, while
incurring a negligible performance overhead (<1% slow-
down) and a memory footprint of only 5.5 kilobytes, on
average, per program.

In summary, we make the following contributions:
• We propose a method for authorizing sensor opera-

tions in response to input events performed by co-
operating programs by building unambiguous del-
egation graphs. We track IPCs that delegate task
processing to other programs without requiring sys-
tem service or app code modifications.

• We propose EnTrust, an authorization system that
generates delegation paths to enable users to autho-
rize sensor operations, resulting from input events,
and reuse such authorizations for repeated requests.

• We implement the EnTrust prototype and test its
effectiveness with a laboratory study, the users’ au-
thorization effort with a field study, and perfor-
mance and memory overhead via benchmarks.

2 Problem Statement
In current operating systems, users interact with pro-
grams that initiate actions targeting sensors, but users
do not have control over which programs are going to
service their requests, or how such programs access sen-
sors while servicing such requests. Unfortunately, three
well-studied attack vectors become critical in operating
systems supporting a cooperating program abstraction.

Confused Deputy — First, a malicious program
may leverage an input event as an opportunity to con-
fuse a more privileged program into performing a sen-
sitive operation. For example, a malicious voice assis-

tant may invoke the screen capture service at each voice
command (left side of Figure 1). The malicious voice
assistant may therefore succeed in tricking the screen
capture service into capturing and inadvertently leaking
sensitive information (e.g., a credit card number written
down in a note). In this scenario, the user only sees the
new note created by the notes app, whereas the screen
capture goes unnoticed. Currently, there are over 250
voice assistants available to the public on Google Play
with over 1 million installs, many by little known or
unknown developers.

Trojan Horse — Second, a program trusted by the
user may delegate the processing of an input event to an
untrusted program able to perform the requested task.
For example, a trusted voice assistant may activate a
camera app to serve the user request to take a selfie
(middle of Figure 1). However, the camera app may
be a Trojan horse app that takes a picture, but also
records a short audio via the microphone, and the user
location via GPS (e.g., a spy app2 installed by a jealous
boyfriend stalking on his girlfriend). Researchers re-
ported over 3,500 apps available on Google Play Store
that may be used as spyware apps for Intimate Partner
Violence (IPV) [25]. In this scenario, the user only sees
the picture being taken by the camera app, whereas the
voice and location recordings go unnoticed, since a cam-
era app is likely to be granted such permission. Also,
the ride-sharing attack in the introduction is another
example of this attack. Such attacks are possible be-
cause even trusted system services may inadvertently
leverage malicious apps and/or rely on unknown apps
by using implicit intents. An implicit intent enables any
program registered to receive such intents to respond to
IPCs when such intents are invoked. Researchers have
reported several ways how programs can steal or spoof
intents intended for other programs [26, 27, 28]. We
performed an analysis of system services and applica-
tions distributed via the Android Open Source Project
(AOSP), and found that 10 system programs out of a
total of 69 (14%) use implicit intents.

Man-In-The-Middle — Third, a request generated
by a program trusted by the user may be intercepted
by a malicious program, which can behave as a man-in-
the-middle in serving the input event in the attempt to
obtain access to unauthorized data (right side of Fig-
ure 1). For example, a legitimate banking app may
adopt the voice interaction intent mechanism to allow

USENIX Association 28th USENIX Security Symposium 569

customers to direct deposit a check via voice assistant
with a simple voice command (e.g., “deposit check”).3
A malicious program may exploit such a service by reg-
istering itself with a voice assistant as able to service a
similar voice interaction, such as “deposit bank check.”
Therefore, whenever the user instantiates the “deposit
bank check” voice command, although the user expects
the legitimate banking app to be activated, the mali-
cious app is activated instead. The malicious app opens
the camera, captures a frame with the check, and sends
a spoofed intent to launch the legitimate banking app,
all while running in the background. In this scenario,
the user only sees the trusted banking app opening a
camera preview to take a picture of the check. This is a
realistic threat. We performed an analysis of 1,000 apps
(among the top 2,000 most downloaded apps on Google
Play Store) and found that 227 apps (23%) export at
least a public service or a voice interaction intent. Apps
were selected from the Google Play Store among those
apps declaring at least one permission to access a sen-
sitive sensor (e.g., camera, microphone, or GPS).

Security Guarantee. To mitigate such attack vec-
tors, an authorization mechanism must provide the fol-
lowing guarantee, for any sensor operation to be autho-
rized, that operation must be: (1) initiated by an input
event; (2) authorized for the input event to trigger the
sensor operation; and (3) authorized for the sequence of
programs receiving the input event directly or indirectly
through IPCs leading to the program performing the sen-
sor operation. Such a guarantee ensures that any sensor
operation must be initiated by an input event, the input
event must imply authorization of the resultant sensor
operation by the requesting program, and all programs
associated with communicating the request for the sen-
sor operation must be authorized to enable the sensi-
tive data to be collected by the requesting program.
To achieve the security guarantee above, we require a
mechanism that accurately tracks the delegations lead-
ing from input events to resulting sensor operations, as
well as a mechanism to authorize sensor operations to
collect sensitive data given input events and delegations.

Regarding tracking delegations, a problem is that de-
termining whether an IPC derives from an input event
or receipt of a prior IPC depends on the data flows
produced by the program implementations in general.
Solving this problem requires data flow tracking, such
as performed by taint tracking. However, taint track-
ing has downsides that we aim to avoid. Static taint
tracking can be hard to use and be imprecise [30] and
dynamic taint tracking has non-trivial overhead [29]. In-
stead, we aim to explore solutions that ensure all sensor
operations resulting from an input event are detected
(i.e., we overapproximate flows) without heavyweight
analysis or program modifications.

Authorizing sensor operations to collect sensitive
data, given an input event and one or more delegations,
depends on determining the parties involved in the del-

egation as well as the user’s intent when generating the
event. Methods that restrict the permissions of an op-
eration to the intersection of permissions granted to the
parties involved [7], have been found to be too restric-
tive in practice. Decentralized information flow con-
trol [23, 24] (DIFC) prevents information leakage while
allowing some privileged programs to make flexible se-
curity decisions to determine when to permit communi-
cations that are normally unauthorized, which has been
applied to mobile systems [20, 13]. However, these infor-
mation flow control techniques focus on preventing the
leakage of sensitive information available to programs,
whereas the main goal here is to prevent programs from
obtaining access to sensitive information in the first
place by abusing sensor access. To address this problem
more directly, researchers have explored techniques that
enable users to express the intent of their input events
to authorize sensor operations, binding this intent to the
context in which the input event was elicited, such as
the graphical user interface (GUI) context [9, 10, 11]. In
IoT environments, researchers have similarly explored
gathering program execution context (e.g., data flows)
to enable users to authorize IoT operations more accu-
rately [16]. However, none of these techniques account
for delegations of tasks to other processes. We aim to
explore methods for eliciting user authorizations for sen-
sor operations using contextual information related to
the tracking of input events and subsequent delegations.

Further, researchers have explored learning methods
to predict permissions for sensor operation based on
prior user decisions [14, 15]. However, accurate user
decision making is vital for improving the accuracy of
these learning techniques.

3 Security Model

Trust Model – We assume that the system (e.g., Linux
kernel, operating system, system services, and device
drivers) is booted securely, runs approved code from
device vendors, and is free of malice; user-level programs
(e.g., applications) are isolated from each other via the
sandboxing mechanism using separated processes [35,
36]; and, by default, user-level programs have no direct
access to sensors due to the use of a Mandatory Access
Control (MAC) policy [37, 38] enforced from boot time.
We assume the use of trusted paths, protected by MAC,
allowing users to receive unforgeable communications
from the system, and providing unforgeable input events
to the system. Our assumptions are in line with existing
research on trusted paths and trusted user interfaces for
browsers [39], X window systems [40, 41], and mobile
operating systems [42].

Threat Model – We assume that users may install
programs from unknown sources that may be malicious,
then grant such programs access to sensors at first use.
Despite the default isolation via sandboxing, programs
may communicate via IPC mechanisms (i.e., intents or

570 28th USENIX Security Symposium USENIX Association

Figure 2: EnTrust Authorization Method – Input events,
handoff events, and sensor operations are linked via delega-
tion graphs to compute unambiguous delegation paths for
user authorization of sensor operations.

broadcast messages). Thus, user-level programs (e.g.,
apps) may leverage such communication to exploit the
attack vectors described in Section 2. Our objective is to
provide a mechanism that helps users control how coop-
erating programs access sensors. How programs manage
and share the data collected from sensors is outside the
scope of our research. Researchers have already exam-
ined solutions to prevent data leakage based on taint
analysis [29, 30, 31, 18] and Decentralized Information
Flow Control (DIFC) [20, 23, 24, 32].

4 EnTrust Authorization Design
In this section, we describe our proposed framework,
EnTrust, designed to restrict when programs may per-
form sensor operations by requiring each sensor oper-
ation to be unambiguously associated with an input
event, even if the sensor operation is performed by
a program different from the one receiving the input
event. Figure 2 provides an overview of the EnTrust
authorization system, which consists of five steps. In
the first three steps, EnTrust mediates and records in-
put events, inter-process communication events (hand-
off events), and sensor operation requests, respectively,
to construct a delegation graph connecting input events
to their handoff events and sensor operation requests.
In the fourth step, EnTrust uses the constructed del-
egation graph to compute an unambiguous delegation
path to a sensor operation request from its originating
input event. Unless the authorization cache contains a
user authorization for the constructed delegation path
already, the fifth step elicits an authorization from the
user for the delegation path, and caches the authoriza-
tion for later use for the same delegation path. Option-
ally, users can review their prior decisions and correct
them via an audit mechanism that logs past authorized
and denied delegation graphs.

4.1 Building Delegation Graphs
The first challenge is to link input events to all the sen-
sor operations that result from cooperating programs
processing those events and then construct delegation
graphs rooted at such input events.

Figure 3: Delegation graphs connect input events with op-
eration requests for sensors via handoff events.

First, for each input event received via a sensor s
for a program pi, EnTrust creates an input event tuple
e = (c,s, pi, t0), where c is the user interface context cap-
tured at the moment the input event occurred; s is the
sensor through which the event was generated; pi is the
program displaying its graphical user interface on the
screen and receiving the input event e; and t0 is the time
of the input event (step 1 in Figure 2). Note: EnTrust
is designed to mediate both input events coming from
input sensors (e.g., touch events on widgets rendered on
the screen) as well as voice commands captured via the
microphone. Voice commands are translated into text
by the Google Cloud Speech-to-Text service.

Second, after receiving the input event, program pi
may hand off the event to another program p j. EnTrust
mediates handoff events by intercepting spawned in-
tents and messages exchanged between programs [43]
and models them as tuples h = (pi, p j, ti), where pi is
the program delegating the input event, p j is the pro-
gram receiving the event, and ti is the time the event
delegation occurred (step 2 in Figure 2).

Third, when the program p j generates a request r for
an operation o targeting a sensor d, EnTrust models
the request as a tuple r = (p j,o,d, t j), where p j is the
program requesting the sensor operation, o is the type of
sensor operation requested, d is the destination sensor,
and t j is the time the sensor operation request occurred
(step 3 in Figure 2).

Lastly, EnTrust connects sensor operation requests to
input events via handoff events by constructing a del-
egation graph to regulate such operations, as shown in
Figure 3. A delegation graph is a graph, G = (V,E),
where the edges (u,v) ∈ E represent the flow of input
events to programs and sensors, and the vertices, v ∈V ,
represent the affected programs and sensors. Figure 3
shows a simple flow, whereby a source sensor s receives
an input event e that is delivered to a program pi, which
performs a handoff event h to a program p j that per-
forms an operation request r for a destination sensor
d. Thus, there are three types of edges: input event
to program (user input delivery), program to program
(handoff), and program to sensor operation request (re-
quest delivery).

Upon mediation of a sensor request r, EnTrust com-
putes the associated delegation path by tracing back-
wards from the sensor request r to the original input
event e. Hence, the operation request r = (p j,o,d, t j)
above causes a delegation path: (c,s, pi, t0) → (pi, p j, ti)
→ (p j,o,d, t j) to be reported in step 4 in Figure 2.
Delegation paths are then presented to the user for au-
thorization (see Section 4.3). The identified delegation
path is shown to the user using natural language, in a

USENIX Association 28th USENIX Security Symposium 571

Figure 4: Two scenarios that create ambiguity. Multiple in-
put events or handoff events delivered to the same program.

manner similar to first-use authorizations. We assess
how effectively users utilize delegation paths to produce
authorizations in a laboratory study in Section 6.2.

4.2 Computing Delegation Paths
Critical to computing delegation paths is the ability for
EnTrust to find an unambiguous reverse path from the
sensor operation request r back to an input event e. In
particular, a delegation path is said to be unambiguous
if and only if, given an operation request r by a program
p j for a sensor d, either there was a single input event
e for program p j that preceded the request r, or there
was a single path pi → p j in the delegation graph, where
program pi received a single input event e.

To ensure unambiguous delegation paths without pro-
gram modification, we need to define the conditions un-
der which operations that create ambiguities cannot oc-
cur. First, ambiguity occurs if the same program pi re-
ceives multiple input events and then performs a hand-
off, as depicted by the left side of Figure 4. In this case,
it is unclear which one of the input events resulted in the
handoff. To prevent this ambiguous case, we leverage
the insight that input events are relatively infrequent,
processed much more quickly than users can generate
them, and have a higher priority than other processing.
We observe that the time between distinct input events
is much larger than the time needed to produce the op-
eration request corresponding to the first input event. If
every input event results in an operation request before
the user can even produce another distinct input event,
then there will be only one input event (edge) e from a
source sensor (node) s to program (node) pi, which re-
ceived such input event. Therefore, there will be no am-
biguous input event for program pi. Thus, we propose
to set a time limit for each input event, such that the
difference between the time t0 at which an input event e
is generated and the time t j for any sensor operation re-
quest r – based on that input event – must be below that
limit for the event to be processed. Note that, once an
input event is authorized (Section 4.3), repeated input
events (e.g., pressing down a button multiple times) are
not delayed. Indeed, repeated input events are expected
to generate the same delegation path. Should the pro-
grams produce a different delegation path - in the mid-
dle of a sequence of operations spawned in this manner
- then EnTrust would require a new authorization for
the new delegation path, as described in Section 4.3.

Second, ambiguity is also possible if the same program
p j receives multiple handoff events before performing a
sensor operation request, as depicted by the right side

Figure 5: A program pk attempts leveraging the input event
received from program pi to get program p j to generate an
operation request.

of Figure 4. Note that, handoff events may not be re-
lated to input events (e.g., intents not derived from in-
put events). In this case, it is unclear which handoff is
associated with a subsequent sensor operation request.
Ambiguity prevention for handoff events is more subtle,
but builds on the approach used to prevent ambigu-
ity for input events. Figure 5 shows the key challenge.
Suppose a malicious program pk tries to “steal” a user
authorization for a program p j to perform a sensor op-
eration by submitting a handoff event that will be pro-
cessed concurrently to the handoff event from another
program pi, which received an input event. Should a
sensor operation request occur, EnTrust cannot deter-
mine whether the sensor operation request from p j was
generated in response to the event handoff h1 or to the
event handoff h2. So EnTrust cannot determine the del-
egation path unambiguously to authorize the operation
request. If EnTrust knows the mapping between ac-
tions associated to handoff events and whether they are
linked to sensor operations, EnTrust can block a hand-
off from pk that states an action that requires an input
event. EnTrust knows this mapping for system services,
by having visibility of all inter-procedural calls for pro-
grams part of the operating system; however, EnTrust
may not know such mapping for third-party apps whose
inter-procedural control flow is not mediated to favor
backward compatibility with existing apps.

Thus, we extend the defense for input events to pre-
vent ambiguity as follows: once the target program has
begun processing a handoff associated with an input
event, EnTrust delays the delivery of subsequent hand-
off events until this processing completes or until the
assigned time limit ends. Conceptually, this approach
is analogous to placing a readers-writers lock [44] over
programs that may receive handoffs that result from in-
put events. Note that, the use of time limits ensures no
deadlock since it ensures preemption. To avoid starving
input events (e.g., delaying them until the time limit),
we prioritize delivery of handoffs that derive from in-
put events ahead of other handoffs using a simple, two-
level scheduling approach. We assess the impact of the
proposed ambiguity prevention mechanisms on existing
programs’ functionality and performance in Section 7.

4.3 Authorizing Delegation Paths
For controlling when a sensor operation may be per-
formed as the result of an input event, users are in the
best position to judge the intent of their actions. This is

572 28th USENIX Security Symposium USENIX Association

inline with prior work advocating that it is highly desir-
able to put the user in context when making permission
granting decisions at runtime [16, 33, 17]. Therefore,
users must be the parties to make the final authoriza-
tion decisions. To achieve this objective, EnTrust elicits
an explicit user authorization every time that a new del-
egation path is constructed (step 5 in Figure 2). Hence,
to express a delegation path comprehensively, EnTrust
builds an authorization request that specifies that dele-
gation path to the user. Prior work presented users with
information about the Graphical User Interface (GUI)
used to elicit the input event, including GUI compo-
nents [9, 10, 11], user interface workflows [13], and Ap-
plication Programming Interface (API) calls made by
applications [11, 16]. EnTrust, instead, presents the
delegation path that led to the sensor operation, which
includes the GUI context (c in the input event) and the
handoffs and sensor operations. As a result, EnTrust
ensures that all the programs receiving sensor data are
clearly identified and reported in the authorization re-
quest presented to the user, along with the input event,
handoff events, and the resulting sensor operation.

To reduce users’ authorization effort, EnTrust caches
authorized delegation paths for reuse. After storing an
authorized delegation path, EnTrust proceeds in allow-
ing the authorized sensor operation. For subsequent
instances of the same input event that results in exactly
the same delegation path, EnTrust omits step 5 and
automatically authorizes the sensor operation by lever-
aging the cached authorization. Note that, EnTrust
requires an explicit user’s authorization only the first
time a delegation path is constructed for a specific in-
put event, similarly to the first-use permission approach.
As long as the program receiving an input event does
not change the way it processes that event (i.e., same
handoffs and operation request), no further user autho-
rization will be necessary. In Section 6.2, we show that
such an approach does not prohibitively increase the
number of access control decisions that users have to
make, thus avoiding decision fatigue [45].

Further, EnTrust evicts cached authorizations in two
scenarios. First, if a new delegation path is identified
for an input event that already has a cached delegation
path, then EnTrust evicts the cached authorization and
requires a new user authorization for the newly con-
structed delegation path, before associating it to such
an input event and caching it. Second, users can lever-
age an audit mechanism, similar to proposals in related
work [11, 15], to review previous authorizations and
correct them if needed. Denied authorizations are also
logged for two reasons. First, they allow users to have
a complete view of their past decisions; but more im-
portantly, they allow EnTrust to prevent malicious pro-
grams from annoying users by generating authorization
requests over a give threshold, for operations already
denied by the user in the past. Also, users may set
the lifetime of cached authorizations, after which they

Figure 6: Authorization requests prompted to users by
EnTrust upon delegation paths creation. Screenshots show-
ing benign (left) and attack (right) scenarios by the Basic
Camera app.

are evicted. We discuss utilizing such logs for revoking
mistaken authorizations and denials in Section 8.

5 Implementation
We implemented a prototype of the EnTrust authoriza-
tion system by modifying a recent release of the An-
droid OS (Android-7.1.1_r3) available via the Android
Open Source Project (AOSP).4 The choice of imple-
menting the EnTrust prototype for the Android OS was
guided by its open-source nature and its wide adoption.
EnTrust’s footprint is 170 SLOC in C for the Linux
kernel (bullhead 3.10), plus 380 SLOC in C, 830 SLOC
in C++, and 770 SLOC in Java for components in the
Android OS.

In this section, we provide the implementation details
for event scheduling and authorization management. In
Appendices C-F, we provide further implementation de-
tails regarding event authentication and mediation.

In Android, the Event Hub (part of the Input Man-
ager server) reads raw input events from the input de-
vice driver files (/dev/input/*) and delivers them to
the Input Reader. The Input Reader then formats the
raw data and creates input event data that is delivered
to the Input Dispatcher. The Input Dispatcher then
consults the Window Manager to identify the target
program based on the activity window currently dis-
played on the screen. Hence, we enhanced the Input
Dispatcher to hold - for the duration of a time window
- incoming input events for a target program should
there be already a delivered input event for such a pro-
gram that has not been processed, yet. For handoff
events, instead, the Binder is the single point of media-
tion for inter-process communication (IPC) between iso-
lated programs. It has the knowledge of all the pending
messages exchanged as well as knowledge of the identity

USENIX Association 28th USENIX Security Symposium 573

of the two communicating parties. Hence, we also en-
hanced the Binder to hold - for the duration of a time
window - incoming handoff events for a target program
should the program be already involved in another com-
munication with a third program.

EnTrust prompts users with authorization messages
for explicit authorizations of delegation paths, as shown
in Figure 6. Users are made aware of all the programs
cooperating in serving their requests as well as of the
entire delegation path. Also, users are prompted with
programs’ names and identity marks to ease their iden-
tification. EnTrust crosschecks developers’ signatures
and apps’ identity (i.e., names and logos) by pulling in-
formation from the official Google Play Store to prevent
identity spoofing. Also, EnTrust prevents programs
from creating windows that overlap the authorization
messages by leveraging the Android screen overlay pro-
tection mechanism. Finally, EnTrust prevents unautho-
rized modification of authorization messages by other
programs by using isolated per-window processes forked
from the Window Manager to implement a Compart-
mented Mode Workstation model [48].

6 EnTrust Evaluation
We investigated the following research questions:

I To what degree is the EnTrust authorization assist-
ing users in avoiding confused deputy, Trojan horse, and
man-in-the-middle attacks? We performed a laboratory
study and found that EnTrust significantly increased
(from 47-67% improvement) the ability of participants
in avoiding attacks.

I What is the decision overhead imposed by EnTrust
on users due to explicit authorization of constructed
delegation graphs? We performed a field study and
found that the number of decisions imposed on users
by EnTrust remained confined - in worst case scenarios
- to no more than 4 explicit authorizations per program.

I Is EnTrust backward compatible with existing pro-
grams? How many operations from legitimate programs
are incorrectly blocked by EnTrust? We used a well-
known compatibility test suite to evaluate the compat-
ibility of EnTrust with 1,000 apps (selected among the
most popular apps on Google Play Store) and found
that EnTrust does not cause the failure of any program.

I What is the performance overhead imposed by
EnTrust for delegation graph construction and enforce-
ment? We used a well-known software exerciser to mea-
sure the performance overhead imposed by EnTrust.
We found that EnTrust introduced a negligible overhead
(order of milliseconds) unlikely noticeable to users.

6.1 Study Preliminaries
We designed our user studies following suggested prac-
tices for human subject studies in security to avoid com-
mon pitfalls in conducting and writing about security
and privacy human subject research [49]. An Institu-

tional Review Board (IRB) approval was obtained from
our institution. The data collected did not contain Per-
sonally Identifiable Information (PII) and was securely
stored and accessible only to authorized researchers.
We recruited study participants via local mailing lists,
Craigslist, Twitter, and local groups on Facebook. We
compensated them with a $5 gift card. We excluded
acquaintances from participating in the studies to avoid
acquiescence bias. Before starting the study, partici-
pants had to sign our consent form and complete an en-
try survey containing demographic questions. We made
sure to get a wide diversity of subjects, both in terms
of age and experience with technology (details available
in Appendix A). For all the experiments, we configured
the test environment on LG Google Nexus 5X phones
running the Android 7.1 Nougat OS. We used a back-
ground service, automatically relaunched at boot time,
to log participants’ responses to system messages and
alerts, input events generated by participants while in-
teracting with the testing programs, as well as system
events and inter-process communications between pro-
grams. Furthermore, during the experiments, the re-
searchers took note of comments made by participants
to ease the analysis of user decision making.

6.2 Laboratory Study
We performed a laboratory study to evaluate the ef-
fectiveness of EnTrust in supporting users in avoid-
ing all the three attack vectors previously identified
in Section 2. We compared EnTrust with the first-
use authorization used in commercial systems. We
could not compare mechanisms proposed in related
work [9, 10], because they are unable to handle handoff
events. We divided participants into four groups, partic-
ipants in Group-FR-U and Group-FR-P interacted with
a stock Android OS implementing the first-use autho-
rization mechanism. Participants in Group-EN-U and
Group-EN-P interacted with a modified version of the
Android OS integrating the EnTrust authorization sys-
tem. To account for the priming effect, we avoided in-
fluencing subjects in Group-FR-U and Group-EN-U and
advertised the test as a generic “voice assistants testing”
study without mentioning security implications. On the
other hand, to assess the impact of priming, subjects
in Group-FR-P and Group-EN-P were informed that at-
tacks targeting sensors (e.g., camera, microphone, and
GPS receiver) were possible during the interaction with
programs involved in the experimental tasks, but with-
out specifying what program performed the attacks or
what attacks were performed.

Experimental Procedures: For our experiment, we
used a test assistant developed in our research lab called
Smart Assistant, which provides basic virtual assistant
functionality, such as voice search, message composi-
tion, and note keeping. However, Smart Assistant is
also designed to perform confused deputy attacks on

574 28th USENIX Security Symposium USENIX Association

Directive Attack Scenario First-Use (FR) EnTrust (EN)
T
A
S
K
A

Ask Smart
Assistant
to “create a
note.”
Dictate a
voice note
to Notes.
For
example,
“remind me
to buy milk
on the way
home.”

Confused Deputy: Smart
Assistant opens the Notes
app and adds the specified
note, however, it also
requests the Screen
Capture service to capture
the content on the screen.
Credit card information and
passwords, visible in the
notes summary, are
captured and sent to a
remote server controlled by
the adversary.

Group-FR-U Group-FR-P
87% Attack Success 53% Attack Success
40% Prompted 47% Prompted
27% Explicit Allows 0% Explicit Allows

Group-EN-U Group-EN-P
20% Attack Success 0% Attack Success
100% Prompted 100% Prompted
20% Explicit Allows 0% Explicit Allows

T
A
S
K
B

Ask
Google
Assistant
to “take a
selfie.”

Trojan Horse: Google
Assistant activates the
Basic Camera app, which
is a Trojan app that takes a
selfie but also records a
short audio and the user’s
location. The collected data
is then sent to a remote
server controlled by the
adversary.

Group-FR-U Group-FR-P
80% Attack Success 47% Attack Success
40% Prompted 53% Prompted
20% Explicit Allows 0% Explicit Allows

Group-EN-U Group-EN-P
13% Attack Success 0% Attack Success
100% Prompted 100% Prompted
13% Explicit Allows 0% Explicit Allows

T
A
S
K
C

Ask
Google
Assistant
to “deposit
bank check.”
After
logging into
Mobile
Banking
with the
provided
credentials,
deposit the
provided
check.

Man-In-The-Middle:
Google Assistant launches
Basic Camera registered
for the voice intent “deposit
bank check”. The Basic
Camera runs in the
background, captures a
picture of the check and -
via a spoofed intent -
launches the Mobile
Banking app registered for
the voice intent “deposit
check.” The collected data
is sent to a remote server
controlled by the adversary.

Group-FR-U Group-FR-P
67% Attack Success 53% Attack Success
47% Prompted 47% Prompted
13% Explicit Allows 0% Explicit Allows

Group-EN-U Group-EN-P
7% Attack Success 0% Attack Success
100% Prompted 100% Prompted
7% Explicit Allows 0% Explicit Allows

Table 1: Experimental tasks for the laboratory study, derived from the attack vectors described in Section 2. We report the
authorization messages shown to subjects in the four groups as well as the delegation graphs used by EnTrust to construct such
authorization messages. In the group names, the suffix U indicates unprimed subjects, whereas P indicates primed subjects.
Notice that, authorization requests prompted by EnTrust include programs’ identity marks (i.e., apps’ icon and unique id).

system services, such as the Screen Capture service.
We also used a test app, Basic Camera, developed in
our research lab. It provides basic camera functionality,
such as capturing pictures or videos and applying photo-
graphic filters. However, Basic Camera is also designed
to perform man-in-the-middle and Trojan horse attacks
for requests to capture photographic frames. Lastly, we
used a legitimate Mobile Banking app, from a major in-
ternational bank, available on Google Play Store. Apart
from the testing apps and voice assistant, the smart-
phone provided to participants had pre-installed both
the Google Assistant and the Android Camera app.

Our laboratory study was divided into two phases.
A preliminary phase during which no attacks were per-
formed. This phase enabled participants to familiar-
ize themselves with the provided smartphone, the pre-
installed apps and the voice assistants. This phase
avoided a “cold start” and approximated a more real-
istic scenario in which users have some experience us-
ing relevant apps and voice assistants. Furthermore,
this preliminary phase enabled capturing how malicious

programs may leverage pre-authorized operations in the
first-use approach to then perform operations not ex-
pected by the users; a malicious behavior that is in-
stead prevented by EnTrust via the construction of per-
delegation authorizations. The preliminary phase was
then followed by an attack phase, during which par-
ticipants interacted with programs performing attacks.
Participants were not made aware of the existence of the
two experimental phases nor of the difference between
the two phases.

All instructions regarding experimental tasks to be
performed were provided to participants in writing via
a handout at the beginning of each experimental task.
During the preliminary phase the participants per-
formed the following three tasks: (1) asked a voice as-
sistant to “take a screenshot;” (2) asked a voice assis-
tant to “record a memo;” and (3) used a camera app
to “record a video.” During the attack phase, instead,
the participants performed the three tasks described in
Table 1. In each phase, each participant was presented
with a different randomized order of the above tasks.

USENIX Association 28th USENIX Security Symposium 575

Experimental Results: In total, 60 subjects partici-
pated in and completed our laboratory study. We ran-
domly assigned 15 participants to each group. In this
study, we did not observe denials of legitimate operations
for sensitive sensors for non-attack tasks performed dur-
ing the preliminary phase, but we discuss the need for
more study on preventing and resolving mistaken de-
nials in Section 8. Table 1 summarizes the results of the
three experimental tasks for the attack phase. Our focus
was to study the effectiveness of EnTrust in reducing the
success rate of attacks when compared to the first-use
approach. During the preliminary phase and the exper-
imental tasks, all the participants were prompted with
the corresponding authorization messages depending on
the group to which they were assigned,5 as reported in
Table 1. Prompted authorizations included legitimate
operations, see left side of Figure 6 for an example of
what a prompt for a legitimate operation looked like.
Our analysis reports that each participant of each group
was prompted at least 4 times for non-attack opera-
tions. Note that, as per definition of first-use autho-
rization, participants in Group-FR-U and Group-FR-P
were not prompted with authorization messages once
again should they have already authorized the program
in a previous task or during the preliminary phase. In-
stead, participants in Group-EN-U and participants in
Group-EN-P were presented with a new authorization
message any time a new delegation path was identified
by EnTrust. This explains the lower percentage of sub-
jects prompted, with an authorization request, in the
first-use groups.

TASK A : The analysis of subjects’ responses revealed
that 9 subjects from Group-FR-U and 8 subjects from
Group-FR-P interacted with Smart Assistant during the
preliminary phase, or during another task, to “take a
screenshot” and granted the app permission to capture
their screen; thus, they were not prompted once again
with an authorization message during this task, as per
default in first-use permissions. In addition, 4 subjects
from Group-FR-U explicitly allowed Smart Assistant to
capture their screen, therefore, resulting in a 87% and
53% attack success, respectively, as reported in Table 1.
On the contrary, only 3 subjects from Group-EN-U and
no subject from Group-EN-P allowed the attack (20%
and 0% attack success, respectively). Also, similarly to
what happened in Group-FR-U and Group-FR-P, 8 sub-
jects from Group-EN-U and 8 subjects from Group-EN-P
interacted with Smart Assistant during the preliminary
phase and asked to “take a screenshot.” However, since
the voice command “create a note” was a different com-
mand, EnTrust prompted all subjects with a new au-
thorization message, as shown in Table 1.

TASK B : The analysis of subjects’ responses revealed
that 9 subjects from Group-FR-U and 7 subjects from
Group-FR-P interacted with Basic Camera to take a pic-
ture or record a video, either during the preliminary
phase or during another task, and authorized it to cap-

ture pictures, audio, and access the device’s location.
Thus, they were not prompted once again during this
task as per default in first-use permissions. Also, we
found that 3 subjects from Group-FR-U explicitly au-
thorized Basic Camera to access the camera, as well as
the microphone, and the GPS receiver; therefore, re-
sulting in 80% and 47% attack success, respectively. In
contrast, 2 subjects from Group-EN-U and no subject
from Group-EN-P authorized access to the camera, mi-
crophone, and GPS receiver (13% and 0% attack suc-
cess, respectively). Also, we found that 8 subjects from
Group-EN-U and 6 subjects from Group-EN-P interacted
with Basic Camera during the preliminary phase or
during another task. However, none of them asked to
“take a selfie” before, so all subjects were prompted by
EnTrust with a new authorization message. At the end
of the experiment, among all the subjects, when asked
why they authorized access to the GPS receiver, the ma-
jority said that they expected a camera app to access
location to create geo-tag metadata when taking a pic-
ture. In contrast, the subjects who denied access stated
not feeling comfortable sharing their location when tak-
ing a selfie.

TASK C : The analysis of subjects’ responses revealed
that 8 subjects from Group-FR-U and 8 subjects from
Group-FR-P interacted with Basic Camera, either dur-
ing the preliminary phase or during another task, and
authorized the app to capture pictures. Thus, during
this task, they were not prompted with an authorization
message once again as per default in first-use permis-
sions. They were only prompted to grant permission to
Mobile Banking, explaining why even the primed sub-
jects were not able to detect the attack. In addition,
2 subjects from Group-FR-U explicitly authorized Ba-
sic Camera to capture a frame with the bank check;
therefore, resulting in 67% and 53% attack success, re-
spectively. On the other hand, only 1 subject from
Group-EN-U and no subject from Group-EN-P autho-
rized Basic Camera to capture a frame with the bank
check, resulting in a 7% and 0% attack success, re-
spectively. Notice that all subjects from Group-EN-U
and Group-EN-P were prompted with a new authoriza-
tion message by EnTrust for the new command “de-
posit bank check.” Interestingly, the one subject from
Group-EN-U, who allowed Basic Camera to capture a
frame with the bank check, verbally expressed his con-
cern about the permission notification presented on the
screen. The subject stated observing that two apps
asked permission to access the camera to take pictures.
This is reasonable for an unprimed subject not expect-
ing a malicious behavior.

Discussion: Comparing the results from Group-FR-U
versus those from Group-FR-P, and those from
Group-EN-U versus those from Group-EN-P, we observe
- as expected - that primed subjects allowed fewer at-
tacks. We find that users primed for security problems
still fall victim to attacks due to first-use authorization,

576 28th USENIX Security Symposium USENIX Association

even when rejecting all the malicious operations they
see. On the other hand, unprimed users fail to detect
attacks between 7-20% with EnTrust. So while this is a
marked improvement, over the 67-87% failure for users
with first-use authorization, there is room for further
improvement. However, it is apparent that the dele-
gation graphs constructed by EnTrust aided the sub-
jects in avoiding attacks even when unprimed. EnTrust
performed slightly better than first-use authorization in
terms of explicit authorizations (explicit allows in Ta-
ble 1); which suggests that the additional information
provided by EnTrust in authorization messages (i.e.,
programs’ name and identity mark as well as delega-
tion information, as shown in Figure 6) may be help-
ful to users in avoiding unexpected program behav-
iors. We verified the hypothesis that the information
in EnTrust authorizations helps unprimed users iden-
tify attacks by calculating the difference in explicit al-
lows, across the three experimental tasks, for subjects in
Group-FR-U versus subjects in Group-EN-U. Our anal-
ysis indeed revealed a statistically significant difference
(χ2 = 19.3966; p = 0.000011).

Also, EnTrust was significantly more effective than
first-use in keeping users “on guard” independently of
whether subjects were primed (47-67% lower attack suc-
cess with EnTrust). Indeed, different from the first-
use approach, EnTrust was able to highlight whether
pre-authorized programs attempted accessing sensors
via unauthorized delegation paths. If so, EnTrust
prompted users for an explicit authorization for the
newly identified delegation path. We verified the hy-
pothesis that EnTrust better helps primed and un-
primed users in preventing attacks than first-use, by cal-
culating the difference in successful attacks, across the
three experimental tasks, for subjects in Group-FR-U
and Group-FR-P, versus subjects in Group-EN-U and
Group-EN-P. Our analysis indeed revealed a statistically
significant difference (χ2 = 65.5603; p = 0.00001). Nor-
mally, the standard Bonferroni correction would be ap-
plied for multiple testing, but due to the small p-values
such a correction was not necessary.

6.3 Field Study
We performed a field study to evaluate whether EnTrust
increases the decision-overhead imposed on users. We
measured the number of explicit authorizations users
had to make when interacting with EnTrust under re-
alistic and practical conditions, and compared it with
the first-use approach adopted in commercial systems
(i.e., Android OS and Apple iOS). We also measured the
number of authorizations handled by EnTrust via the
cache mechanism that, transparently to users, granted
authorized operations.

Experimental Procedures: Participants met with one
of our researchers to set up the loaner device, an LG
Nexus 5X smartphone running a modified version of
the Android OS integrating the EnTrust authorization

framework. The loaner device had pre-installed 5 voice
assistants and 10 apps selected among the most pop-
ular6 with up to millions of downloads from the offi-
cial Google Play store. For such programs, to ensure
the confidentiality of participants’ personal information,
mock accounts were set up instead of real accounts for
all apps requiring a log-in. To facilitate daily use of the
loaner device, the researcher transferred participants’
SIM cards and data, as well as participants’ apps in the
loaner device, however no data was collected from such
apps. The above protocol was a requirement for the IRB
approval by our Institution and it is compliant with the
protocol followed in related work [33, 15, 11]. Before
loaning the device, the researcher asked each partici-
pant to use the loaner device for their everyday tasks
for a period of 7 days. In addition to their everyday
tasks, participants were asked to explore each of the pre-
installed voice assistants and apps, at least once a day,
by interacting as they would normally do. Particularly,
we asked the participants to interact with each voice as-
sistant by asking the following three questions: (1) “cap-
ture a screenshot,” (2) “record a voice note,” (3) “how
long does it take to drive back home.” Additionally, we
asked participants to be creative and ask three addi-
tional questions of their choice. Table 2 summarizes all
the assistants and apps pre-installed on the smartphones
for the field study. Because the mere purpose of our field
study was to measure the decision-overhead imposed to
users by EnTrust and to avoid participants’ bias, the
researcher advertised the study as a generic “voice as-
sistants and apps testing” study without mentioning
security implications or training the users about the
features provided by EnTrust. The smartphones pro-
vided to participants were running a background service
with runtime logging enabled, automatically restarted
at boot time, to monitor the number of times each pro-
gram was launched, the users’ input events, the con-
structed delegation graphs, the authorization decisions
made by the participants, and the number of autho-
rizations automatically granted by EnTrust. The back-
ground service also measured the gaps between consecu-
tive input events and handoff events, as well as the time
required by each program to service each event. This
data was used to perform the time constraints analysis
reported in Appendix B.

Experimental Results: Nine subjects participated and
completed the field study. The data collected during our
experiment indicates that all user authorizations were
obtained within the first 72 hours of interaction with
the experimental device, after which we observed only
operations automatically granted by EnTrust via the
caching mechanism.

The first subject allowed us to discover two imple-
mentation issues that affected the number of explicit
authorizations required by EnTrust. First, changing the
orientation of the screen (portrait versus landscape) was
causing EnTrust to request a new explicit user autho-

USENIX Association 28th USENIX Security Symposium 577

Expl. Authorizations
First-Use EnTrust

Impl. Authorizations
in s 7 Days Period

Snapchat
YouTube
Facebook Messenger
Instagram
Facebook
Whatsapp
Skype
WeChat
Reddit
Bitmoji

3
3
2
3
3
2
3
2
1
3

3
3
2
3
3
2
3
2
1
3

276
84
93

393
117
76

100
101
18

127
Google Assistant
Microsoft Cortana
Amazon Alexa
Samsung Bixby
Lyra Virtual Assistant

1
1
1
1
1

4
3
4
4
3

72
49
84
63
56

Table 2: Apps and voice assistants tested in the field study.
The last column shows the number of operations automati-
cally authorized by EnTrust after user’s authorization.

rization for an already authorized widget whenever the
screen orientation changed. This inconvenience was due
to the change in some of the features used to model the
context within which the widget was presented. To ad-
dress this shortcoming, we modified our original pro-
totype to force the Window Manager to generate in
memory two graphical user interfaces for both screen
orientations to allow EnTrust to bind them with a spe-
cific widget presented on the screen. Second, for the
voice commands, we noticed that differently phrased
voice commands with the same meaning would be iden-
tified as different input events. For instance, “take
a selfie” and “take a picture of me”. This shortcom-
ing was causing EnTrust to generate a new delegation
graph for each differently phrased voice command. To
address this issue, we leveraged the Dialogflow engine
by Google, part of the AI.API.7 Dialogflow is a devel-
opment suite for building conversational interfaces and
provides a database of synonyms to group together voice
commands with the same meaning. We fixed the issues
and continued our experiment with other subjects.

Table 2 reports the average number of explicit autho-
rizations performed by the subjects. We compared them
with the number of explicit authorizations that would
be necessary if the first-use permission mechanism was
used instead. The results show that EnTrust required
the same number of explicit authorizations by users for
all the tested apps. For all voice assistants, instead,
EnTrust may require up to 3 additional explicit autho-
rizations, when compared with the first-use approach;
which is far below the 8 additional explicit authoriza-
tions used in prior work, which are considered likely not
to introduce significant risk of habituation or annoy-
ance [33]. These additional authorizations are due to
the fact that with the first-use approach the programs
(activated by the voice assistant to serve the user re-
quest) may have already received the required permis-
sions to access the sensitive sensors. EnTrust instead
captures the entire sequence of events, from the input
event to any subsequent action or operation request, and
then ties them together. Therefore, EnTrust constructs
a new graph for each novel interaction. Nonetheless,

the number of decisions imposed on the users remains
very modest. Indeed, on average, three additional ex-
plicit user authorizations are required per voice assis-
tant. Also, the number of explicit authorizations made
by the users remained a constant factor compared to the
number of operations implicitly authorized by EnTrust,
which instead grew linearly over time. We measured
an average of 16 operations implicitly authorized by
EnTrust during a 24-hour period (last column of Ta-
ble 2). Therefore, if we consider such a daily average
number of implicitly authorized operations for a period
of one year, we will have on the order of thousands of
operations automatically authorized by EnTrust, which
would not require additional explicit effort for the users.

6.4 Backward Compatibility Analysis
To verify that EnTrust is backward compatible with ex-
isting programs, we used the Compatibility Test Suite
(CTS),8 an automated testing tool released by Google
via the AOSP.9 In particular, this analysis verified that
possible delays in the delivery of events introduced by
EnTrust or the change in scheduling of events did not
impact applications’ functionality. We tested the com-
patibility of EnTrust with 1,000 existing apps, among
the top 2,000 most downloaded apps on Google Play
Store, selected based on those declaring permissions to
access sensitive sensors in their manifest. The experi-
ment took 19 hours and 45 minutes to complete, and
EnTrust passed 132,681 tests without crashing the op-
erating system and without incorrectly blocking any
legitimate operation. Among the 1,000 tested apps,
we also included 5 popular augmented reality multi-
player gaming app (InGress, Pokémon Go, Parallel
Kingdom, Run An Empire, and Father.io), which typi-
cally have a high rate of input events and are very sensi-
tive to delays. The set of tests targeting these 5 gaming
apps ran for 16 minutes, during which we continuously
observed the device screen to identify possible issues in
terms of responsiveness to input events or glitches in
the rendering of virtual objects on the screen. However,
we did not identify any discernible slowdown, glitch, or
responsiveness issue.

7 Performance Measurements
We performed four micro-benchmarks on a standard
Android developer smartphone, the LG Nexus 5X, pow-
ered by 1.8GHz hexa-core 64-bit Qualcomm Snapdragon
808 Processor and Adreno 418 GPU, 2GB of RAM, and
16GB of internal storage. All of our benchmarks are
measured using Android 7.1 Nougat pulled from the An-
droid Open Source Project (AOSP) repository.

Delegation Graph Construction – Our first
micro-benchmark of EnTrust measured the overhead
incurred for constructing delegation graphs of varying
sizes. To do this, we had several programs interacting

578 28th USENIX Security Symposium USENIX Association

Figure 7: Overheads for Delegation Graphs Construction, Storage, Eviction, and Enforcement.

and generating a handoff-events chain varying from 1 to
10 handoffs in length and measured the time to mediate
the input event, the handoff event, and the operation re-
quest. We repeated the measurements 100 times. Each
set of measurements was preceded by a priming run to
remove any first-run effects. We then took an average
of the middle 8 out of 10 such runs for each number
of handoff events. The results in Figure 7 show that
the input mediation requires an overhead of 10 µs, the
handoff event mediation requires an additional overhead
of 4 µs per event handoff, whereas the operation medi-
ation requires a fixed overhead of 5 µs. The overheads
are within our expectations and do not cause noticeable
performance degradation.

Delegation Graph Caching – Our second micro-
benchmark of EnTrust measures the overhead incurred
for caching delegation graphs constructed at runtime.
We measured the overhead introduced by EnTrust in
the authorization process for both storing a new dele-
gation graph, as well as evicting from cache a stale one.
To do this, we simulated the creation and eviction of
delegation graphs of different sizes varying from 1 to 16
Kilobytes in 512-byte increments.10 We repeated the
measurement 5 times for each random size and took an
average of the middle 3 out of 5 such runs. The results
in Figure 7 show that the storing of delegation graphs
in the cache required a base overhead of 66 µs with an
additional 3 µs per 512-byte increment. The eviction
instead required a base overhead of 57 µs with an addi-
tional 2.5 µs for each 512-byte increment.

Delegation Graph Enforcement – Our third
micro-benchmark was designed to compare the unmod-
ified version of the Android Nougat build for control
measurement with a modified build integrating our
EnTrust features for the delegation graph enforcement
during authorization. To guarantee fairness in the com-
parison between the two systems, we used the An-
droid UI/Application Exerciser Monkey11 to generate
the same sequence of events for the same set of pro-
grams. For both systems, we measured the total time
needed to authorize a sensor operation as the time from
the input event to the authorization of the resulting op-
eration request, corresponding to the last node of the
delegation graph for EnTrust. We repeated the mea-
surement 100 times for each system by varying the num-

ber of handoff events from 1 to 10. Each set of measure-
ments was preceded by a priming run to remove any
first-run effects. We then took an average of the mid-
dle 8 out of 10 such runs for each number of handoff
events. Figure 7 shows that the overhead introduced by
EnTrust for the delegation graph enforcement is negli-
gible, with the highest overhead observed being below
0.02%. Thus, the slowdown is likely not to be noticeable
by users. Indeed, none of our study participants raised
any concerns about discernible performance degrada-
tion or system slowdown.

Ambiguity Prevention – Our fourth micro-
benchmark was designed to measure the performance
implications, in terms of delayed events, due to the
ambiguity prevention mechanism. For this micro-
benchmark, we selected the system UI (User Interface)
process, which is one of the processes receiving the high-
est number of input events, and the media server process
that receives the highest number of handoff events and
performs sensor operations with higher frequency than
any other process. The time window for the construc-
tion of each delegation path was set to 150 ms. We
generated 15,000 input events with gaps randomly se-
lected in the range [140-1,500]12 ms. The time window
and the gaps were selected based on data reported in
Appendix B. The generated input events caused 2,037
handoff events and 5,252 operation requests targeting
sensors (22,289 total scheduled events). The results in-
dicated a total of 256 delayed events (1.15% of the total
events), with a maximum recorded delay of 9 ms. Thus,
the performance overhead introduced is negligible.

Memory Requirement – We also recorded the av-
erage cache size required by EnTrust to store both event
mappings and authorized delegation graphs to be about
5.5 megabytes, for up to 1,000 programs.13 Therefore,
EnTrust required about 5.5 kilobytes of memory per
program, which is a small amount of memory when com-
pared to several gigabytes of storage available in modern
systems. We ran the measurement 10 times and then
took an average of the middle 8 out of 10 of such runs.

8 Discussion of Limitations

Evaluating mechanisms that prevent abuse of sensitive
sensors while trading off privacy and usability is chal-

USENIX Association 28th USENIX Security Symposium 579

lenging. In this section, we discuss the limitations of
our study and provide guidance on future work.

Authorization Comprehension – In designing our
authorization messages, we have used the language
adopted in current permission systems (e.g., Android
OS and Apple iOS) and prior research work [47, 11,
15, 16] as references. However, such language may not
be as effective in eliciting access control decisions from
users as desired. Further improvements may be possi-
ble by studying NLP techniques and how access control
questions may be phrased using such techniques. Also,
a combination of text, sound, and visuals may be use-
ful in conveying access questions to users. EnTrust is
largely orthogonal to any specific way how access con-
trol questions are presented, enabling it to be used as a
platform for further study.

Decision Revocation – Users may make mistakes
when allowing or denying authorizations. EnTrust
caches user decisions to reduce users’ authorization ef-
fort, allowing such mistakes to persist. Mistakes in au-
thorizing access to sensor operations may permit ma-
licious applications to abuse access, albeit limited to
that delegation path only. Mistakes in denying access
to sensor operations prevents legitimate use of sensor
operations silently as a result of caching. One possible
solution to these problems is to invalidate the cache peri-
odically to prevent stale authorization decisions. How-
ever, frequent authorization prompts negatively affect
user experience. Currently, EnTrust enables users to
review authorization decisions via an audit mechanism,
as suggested elsewhere [53, 15]. However, to improve
the effectiveness of such mechanisms, further laboratory
studies will be necessary to examine how to present au-
dit results (or other new approaches) to help users to
investigate and resolve mistaken authorizations.

Study Scenarios – In this project, we focused on
whether users would be able to deny attack scenarios
effectively. Another problem is that users may not eval-
uate non-attack scenarios correctly once they become
aware of possible attacks. In our study, we did not ob-
serve that users denied any legitimate sensor operations
during the lab study, but it would be beneficial to ex-
tend the laboratory study to include more subtle non-
attack scenarios, where we push the boundaries of what
is perceived as benign, to evaluate whether these sce-
narios may cause false denials due to users being unable
to identify that the request was indeed benign. Also, we
recognize that all attacks were generated by programs
unfamiliar to participants, even though they were given
the opportunity to familiarize themselves with such pro-
grams during the preliminary phase of our lab study.

Study Size – The number of subjects recruited for
this project, 60 for the laboratory study and 9 for the
field study, is comparable with the number of subjects
in similar studies [33, 14, 15, 11]. Other related work
[47] had a higher number of subjects, but subjects were
not required to be physically present in the laboratory

during the experimental tasks having been recruited via
online tools (e.g., Mechanical Turk). However, research
has shown, in the context of password study, that a lab-
oratory study may produce more realistic results than
an online study [58].

Study Comprehensiveness – Our study does not
focus explicitly on long-term habituation, user annoy-
ance, and users’ attitudes toward privacy. Researchers
have already extensively studied users’ general level of
privacy concerns [51, 52, 53, 15]. Other researchers
have studied users’ habituation for first-use authoriza-
tion systems extensively [33, 45, 50]. Our field study
(Section 6.3) shows that our approach is comparable
to first-use in terms of the number of times users are
prompted, and the number of explicit authorizations
from users is far below the 8 additional explicit autho-
rizations used in prior work, which are considered likely
not to introduce significant risk of habituation or an-
noyance [33].

9 Related Work
Researchers have extensively demonstrated that IPC
mechanisms allow dangerous interactions between pro-
grams, such as unauthorized use of intents, where ad-
versaries can hijack activities and services by stealing
intents [18, 21, 22, 26]. Prior work has also shown
that such interactions can be exploited by adversaries
to cause permission re-delegations [7] in the attempt to
leverage capabilities available to trusted programs (e.g.,
system services). Also, related work has demonstrated
how trusted programs inadvertently or purposely (for
functionality reasons) expose their interfaces to other
programs [8], thus exposing attack vectors to adver-
saries. In this paper, we have demonstrated that dan-
gerous interactions among programs can lead to critical
attack vectors related to input event delegations.

Researchers have tried to regulate such interactions
with automated tools for IPC-related vulnerability anal-
ysis. For instance, ComDroid is a tool that parses the
disassembled applications’ code to analyze intent cre-
ation and transition for the identification of unautho-
rized intent reception and intent spoofing [26]. Efficient
and Precise ICC discovery (EPICC) is a more compre-
hensive static analysis technique for Inter-Component
Communication (ICC)14 calls [19]. It can identify ICC
vulnerabilities due to intents that may be intercepted
by malicious programs, or scenarios where programs ex-
pose components that can be launched via malicious in-
tents. Secure Application INTeraction (Saint) [54] ex-
tends the existing Android security architecture with
policies that would allow programs to have more con-
trol to whom permissions for accessing their interfaces
are granted and used at runtime. Quire provides context
in the form of provenance to programs communicating
via Inter-Procedure Calls (IPC) [55]. It annotates IPCs
occurring within a system, so that the recipient of an

580 28th USENIX Security Symposium USENIX Association

IPC request can observe the full call sequence associ-
ated with it, before committing to any security-relevant
decision. Although effort has been made to analyze
and prevent IPC-related vulnerabilities, none of the pro-
posed approaches above tackled the problem from our
perspective, i.e., instead of giving control to application
developers, we must give control to users who are the
real target for privacy violations by malicious programs.

In line with our perspective of giving control to users,
User-Driven Access Control [9, 10] proposes the use of
access control gadgets, predefined by the operating sys-
tems and embedded into applications’ code, to limit
what operation can be associated with a specific input
event. Also, AWare [11] proposes to bind each operation
request targeting sensitive sensors to an input event and
to obtain explicit authorization from the user for each
event-operation combination. Similarly, ContexIoT [16]
is a context-based permission system for IoT platforms
which leverages runtime prompts with rich context in-
formation including the program execution flow that al-
lows users to identify how a sensitive operation is trig-
gered. Unfortunately, all of these mechanisms only con-
trol how the input event is consumed by the program
receiving the input event. The proposed mechanisms to
enable mediation do not mediate inter-process commu-
nication and the operations resulting from such com-
munication (e.g., event delegations between programs),
which is necessary to prevent the attack vectors dis-
cussed in this paper. Also, differently from prior work
on permission re-delegation [7], we do not rely on an
over-restrictive defense mechanism that totally forbids
programs from using their additional privileges. Such
an over-restrictive defense would block necessary inter-
actions between programs even when the interactions
are benign and expected by users.

Prior work has also investigated the use of machine
learning classifiers to analyze the contextuality behind
user decisions to automatically grant access to sensors
[14, 15]. Unfortunately, such classifiers only model the
context relative to the single program that the user is
currently interacting with, and the API calls that are
made by such a program during the interaction. How-
ever, the context modeled by these classifiers does not
account for inter-process communications, which allow
programs to enlist other programs to perform sensor op-
erations via input event delegation. Furthermore, the
effectiveness of the learning depends on the accuracy of
the user decisions used in training the learner. In other
words, if the user’s decisions suffer from inadequate in-
formation during the training phase, the learner will as
well. Therefore, we firmly believe that an additional ef-
fort is necessary to support user decision making before
the user decisions can be used to train a classifier.

Lastly, mechanisms based on taint analysis [29, 30, 31]
or Decentralized Information Flow Control (DIFC) [13,
20] have been proposed by researchers to, respectively,
track and control how sensitive data is used by or shared

between programs. However, such mechanisms solve the
orthogonal problem of controlling sensitive data leakage
or accidental disclosure, rather than enabling users to
control how, when, and which programs can access sen-
sors for the collection of sensitive data.

10 Conclusion
While a collaborative model allows the creation of use-
ful, rich, and creative applications, it also introduces
new attack vectors that can be exploited by adversaries.
We have shown that three well-studied attack vectors
become critical, in operating systems supporting a coop-
erating program abstraction, and proposed the EnTrust
authorization system to help mitigate them. EnTrust
demonstrates that it is possible to prevent programs
from abusing the collaborative model – in the attempt
to perform delegated confused deputy, delegated Tro-
jan horse, or delegated man-in-the-middle attacks – by
binding together, input event, handoff events, and sen-
sor operation requests made by programs, and by requir-
ing an explicit user authorization for the constructed
delegation path. Our results show that existing sys-
tems have room for improvement and permission-based
systems, as well as machine learning classifiers, may sig-
nificantly benefit from applying our methodology.

Acknowledgements
Thanks to our shepherd, Sascha Fahl, and the anony-
mous reviewers. The effort described in this article was
partially sponsored by the U.S. Army Research Labo-
ratory Cyber Security Collaborative Research Alliance
under Contract Number W911NF-13-2-0045. The views
and conclusions contained in this document are those of
the authors, and should not be interpreted as represent-
ing the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwith-
standing any copyright notation hereon. The research
work of Jens Grossklags was supported by the German
Institute for Trust and Safety on the Internet (DIVSI).

References
[1] Conger, K. Researchers: Uber’s iOS app had secret

permissions that allowed it to copy your phone screen.
Gizmodo, (2017).

[2] Lieberman, E. Hackers are gunning for your personal
data by tracking you. The Daily Caller, (2016).

[3] Sulleyman, A. Android apps secretly steal users’ data
by colluding with each other, finds research. Indepen-
dent, (2017).

[4] Revel, T. Android apps share data between them with-
out your permission. NewScientist, (2017).

[5] Norm, H., The Confused Deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev.,
(1988).

USENIX Association 28th USENIX Security Symposium 581

[6] Petracca, G., Sun, Y., Jaeger, T., and Atamli,
A. AuDroid: Preventing attacks on audio channels in
mobile devices. In ACSAC , (2015), ACM.

[7] Felt, A. P., Wang, H., Moshchuk, A., Hanna, S.,
and Chin, E. Permission re-delegation: Attacks and
defenses. In USENIX Security Symposium, (2011).

[8] Aafer, Y., Zhang, N., Zhang, Z., Zhang, X., Chen,
K., Wang, X., Zhou, X., Du, W., and Grace, M.
Hare hunting in the wild Android: A study on the threat
of hanging attribute references. In CCS , (2015), ACM.

[9] Roesner, F., Kohno, T., Moshchuk, A., Parno, B.,
Wang, H., and Cowan, C. User-driven access con-
trol: Rethinking permission granting in modern operat-
ing systems. In S&P, (2012), IEEE.

[10] Ringer, T., Grossman, D., and Roesner, F. Auda-
cious: User-driven access control with unmodified oper-
ating systems. In CCS (2016), ACM.

[11] Petracca, G., Reineh, A.-A., Sun, Y.,
Grossklags, J., and Jaeger, T. AWare: Pre-
venting abuse of privacy-sensitive sensors via operation
bindings. In USENIX Security Symposium, (2017).

[12] Onarlioglu, K., Robertson, W., and Kirda, E.
Overhaul: Input-driven access control for better pri-
vacy on traditional operating systems. In DSN , (2016),
IEEE/IFIP.

[13] Nadkarni, A., and Enck, W. Preventing accidental
data disclosure in modern operating systems. In CCS ,
(2013), ACM.

[14] Wijesekera, P., Baokar, A., Tsai, L., Reardon,
J., Egelman, S., Wagner, D., and Beznosov, K. The
feasibility of dynamically granted permissions: Aligning
mobile privacy with user preferences. In S&P (2017),
IEEE.

[15] Olejnik, K., Dacosta, I., Machado, J.S.,
Huguenin, K., Khan, M.E., and Hubaux, J.P.
Smarper: Context-aware and automatic runtime-
permissions for mobile devices. In S&P, (2017), IEEE.

[16] Jia, Y. J., Chen, Q. A., Wang, S., Rahmati, A.,
Fernandes, E., Mao, Z. M., and Prakash, A. Con-
texIoT: Towards Providing Contextual Integrity to Ap-
pified IoT Platforms. In NDSS , (2017).

[17] Acar, Y., Backes, M., Bugiel, S., Fahl, S., Mc-
Daniel, P. and Smith, M., Sok: Lessons learned from
android security research for appified software platforms.
In S&P, (2017), IEEE.

[18] Li, L., Bartel, A., Bissyandé, T. F., Klein, J.,
Le Traon, Y., Arzt, S., Rasthofer, S., Bodden,
E., Octeau, D., and McDaniel, P. Iccta: Detecting
inter-component privacy leaks in Android apps. In ICSE,
(2015), IEEE.

[19] Octeau, D., McDaniel, P., Jha, S., Bartel, A.,
Bodden, E., Klein, J., and Le Traon, Y. Effec-
tive inter-component communication mapping in An-
droid with Epicc: An essential step towards holistic se-
curity analysis. In USENIX Security Symposium, (2013).

[20] Nadkarni, A., Andow, B., Enck, W., and Jha, S.
Practical DIFC enforcement on Android. In USENIX
Security Symposium, (2016).

[21] Octeau, D., Luchaup, D., Dering, M., Jha, S.,
and McDaniel, P. Composite constant propagation:
Application to Android inter-component communication
analysis. In ICSE, (2015), IEEE.

[22] Octeau, D., Jha, S., Dering, M., McDaniel, P.,
Bartel, A., Li, L., Klein, J., and Le Traon, Y.
Combining static analysis with probabilistic models to
enable market-scale Android inter-component analysis.
In ACM SIGPLAN Notices, (2016).

[23] Krohn, M.N., Yip, A., Brodsky, M., Cliffer, N.,
Kaashoek, M.F., Kohler, E., and Morris R. In-
formation flow control for standard OS abstractions. In
SOSP, (2007).

[24] Zeldovich, N., Boyd-Wickizer, S., Kohler, E.,
and Mazières, D. Making information flow explicit
in HiStar. In OSDI, (2006).

[25] Chatterjee, R., Doerfler, P., Orgad, H.,
Havron, S., Palmer, J., Freed, D., Levy, K., Dell,
N., McCoy, D., and Ristenpart, T. The Spyware
Used in Intimate Partner Violence. In S&P, (2018),
IEEE.

[26] Chin, E., Felt, A. P., Greenwood, K., and Wag-
ner, D. Analyzing inter-application communication in
Android. In MobiSys (2011), ACM.

[27] Huang, L.-S., Moshchuk, A., Wang, H. J.,
Schecter, S., and Jackson, C. Clickjacking: Attacks
and defenses. In USENIX Security Symposium, (2012).

[28] Luo, T., Jin, X., Ananthanarayanan, A., and Du,
W. Touchjacking attacks on web in Android, iOS, and
Windows phone. In FPS (2012).

[29] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P.,
Jung, J., McDaniel, P., and Sheth, A. N. Taint-
droid: An information-flow tracking system for realtime
privacy monitoring on smartphones. In USENIX OSDI
(2010).

[30] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E.,
Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
and McDaniel, P. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis
for Android apps. ACM Sigplan Notices, (2014), pp. 259–
269.

[31] Tang, Y., Ames, P., Bhamidipati, S., Bijlani, A.,
Geambasu, R., and Sarda, N. CleanOS: Limiting
mobile data exposure with idle eviction. In USENIX
OSDI (2012).

[32] Sun, Y., Petracca, G., Ge, X., and Jaeger, T.
Pileus: Protecting user resources from vulnerable cloud
services. In ACSAC, (2016), ACM.

[33] Wijesekera, P., Baokar, A., Hosseini, A., Egel-
man, S., Wagner, D., and Beznosov, K. Android
permissions remystified: A field study on contextual in-
tegrity. USENIX Security Symposium, (2015).

[34] Levy, H. M. Capability-Based Computer Systems.
Digital Press. Available at http://www.cs.washington.
edu/homes/levy/capabook/, (1984).

[35] Prevelakis, V., and Spinellis, D. Sandboxing ap-
plications. In USENIX Annual Technical Conference,
FREENIX Track, (2001).

582 28th USENIX Security Symposium USENIX Association

http://www.cs.washington.edu/homes/levy/capabook/
http://www.cs.washington.edu/homes/levy/capabook/

[36] Chang, F., Itzkovitz, A., and Karamcheti, V.
User-level resource-constrained sandboxing. In USENIX
Windows Systems Symposium, (2000).

[37] Smalley, S., Vance, C., and Salamon, W. Imple-
menting SELinux as a Linux security module. NAI Labs
Report #01-043, (2001).

[38] Smalley, S., and Craig, R. Security Enhanced (SE)
Android: Bringing flexible MAC to Android. In NDSS ,
(2013).

[39] Ye, Z., Smith, S., and Anthony, D. Trusted paths
for browsers. ACM Transactions on Information and
System Security, (2005).

[40] Zhou, Z., Gligor, V., Newsome, J., and McCune,
J. Building verifiable trusted path on commodity x86
computers. In S&P, (2012), IEEE.

[41] Shapiro, J., Vanderburgh, J., Northup, E., and
Chizmadia, D. Design of the EROS trusted window
system. In USENIX Security Symposium, (2004).

[42] Li, W., Ma, M., Han, J., Xia, Y., Zang, B., Chu,
C.-K., and Li, T. Building trusted path on untrusted
device drivers for mobile devices. In Asia-Pacific Work-
shop on Systems, (2014), ACM.

[43] Eugster, P., Felber, P., Guerraoui, R., and Ker-
marrec, A.-M. The many faces of publish/subscribe.
ACM Computing Surveys, (2003).

[44] Mellor-Crummey, J. M., and Scott, M. L. Scal-
able reader-writer synchronization for shared-memory
multiprocessors. ACM SIGPLAN Notices, (1991).

[45] Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin,
E., and Wagner, D. Android permissions: User atten-
tion, comprehension, and behavior. In SOUPS , (2012),
ACM.

[46] Rivest, R., Shamir, A., and Adleman, L. A method
for obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM , (1978).

[47] Bianchi, A., Corbetta, J., Invernizzi, L., Fratan-
tonio, Y., Kruegel, C., and Vigna, G. What the
App is that? Deception and countermeasures in the An-
droid user interface. S&P, (2015), IEEE.

[48] Cummings, P., Fullan, D.A., Goldstien, M.J.,
Gosse, M.J., Picciotto, J., Woodward, J.P., and
Wynn, J. Compartmented Model Workstation: Results
through prototyping. S&P, (1987), IEEE.

[49] Schechter, S. Common pitfalls in writing about secu-
rity and privacy human subjects experiments, and how
to avoid them. Microsoft Tech. Rep. (2013).

[50] Felt, A. P., Egelman, S., Finifter, M., Akhawe,
D., and Wagner, D. How to ask for permission. In
USENIX Workshop on Hot Topics in Security (2012).

[51] Sheehan, K.B. Toward a typology of Internet users
and online privacy concerns. The Information Society,
(2012).

[52] Debatin, B., Lovejoy, J.P., Horn, A.K., and
Hughes, B.N. Facebook and online privacy: Attitudes,
behaviors, and unintended consequences. Journal of
Computer-Mediated Communication, (2009).

[53] Petracca, G., Atamli-Reineh, A., Sun, Y.,
Grossklags, J., and Jaeger, T. Aware: Controlling
app access to I/O devices on mobile platforms. CoRR
abs/1604.02171, (2016).

[54] Ongtang, M., McLaughlin, S., Enck, W., and Mc-
Daniel, P. Semantically rich application-centric secu-
rity in Android. Security and Communication Networks,
(2012).

[55] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and
Wallach, D. Quire: Lightweight provenance for smart
phone operating systems. In USENIX Security Sympo-
sium (2011).

[56] Sasse, M. A., Brostoff, S., and Weirich, D. Trans-
forming the ‘Weakest Link’ — a Human/Computer In-
teraction Approach to Usable and Effective Security BT
Technology Journal, (2001).

[57] Arce, I. The weakest link revisited [information secu-
rity]. In IEEE Security & Privacy, (2003).

[58] Fahl, S., Harbach, M., Acar, Y., and Smith, M.
On the Ecological Validity of a Password Study In Ninth
Symposium on Usable Privacy and Security, (2013).

Appendices
Appendix A - Study Demographics: In total, from
the 69 recruited subjects that completed our study, 34
(49%) were female; 36 (52%) were in the 18-25 years old
range, 27 (39%) in the 26-50 range, and 6 (9%) were in
above the 51 range; 33 (48%) were students from our In-
stitution, 9 of them (13%) were undergraduate and 24
(35%) were graduate students, 2 (3%) were Computer
Science Majors; 11 (16%) worked in Public Administra-
tion, 9 (13%) worked in Hospitality, 6 (9%) in Human
Services, 6 (9%) in Manufacturing, and 4 (6%) worked
in Science or Engineering. All participants reported be-
ing active smartphone users (1-5 hours/day). Also, 42
(61%) of the subjects were long-term Android users (3-5
years), others were long-term iOS users. For our labo-
ratory and field studies, we redistributed the available
participants as evenly as possible. Each lab group had
9 long-term Android users, the remaining 6 long-term
Android users participated in our field study.

Figure 8: Time analysis used to study the possibility of am-
biguous events delegation paths, as discussed in Section 4.2.

Appendix B - Time Constraints Analysis: We
leveraged data collected via the field study to perform
an analysis of time constraints for input events and ac-
tion/operation requests to calibrate the time window

USENIX Association 28th USENIX Security Symposium 583

for the event ambiguity prevention mechanism (Sec-
tion 4.2). Figure 8 reports the measurements of the
gaps15 between consecutive input events and consecu-
tive handoff events, as well as the lags between each
event and the corresponding response from the serving
program. From the measurements, we observed: (1) the
minimum gap between subsequent input events target-
ing the same program (211 ms) is an order of magnitude
larger than the maximum lag required by the program to
serve each incoming event (22 ms); and (2) the minimum
gap (171 ms) between subsequent handoff events target-
ing the same program is an order of magnitude larger
than the maximum lag required by the program to serve
incoming requests (15 ms). Hence, to avoid ambiguity,
we may set the time window to 150 ms to guarantee
that the entire delegation path can be identified before
the next event for the same program arrives. Lastly,
we observed that 87% of the delegation paths had a to-
tal length of three edges (one input event, one handoff
event, and one sensor operation request). The remain-
ing 13% of the delegation paths had a maximum length
of four edges (one additional handoff event), which fur-
ther supports our claim that we can hold events without
penalizing concurrency of such events.

Appendix C - Program Identification: To prove
the programs’ identity to users, EnTrust specifies both
the programs’ name and visual identity mark (e.g.,
icon) in every delegation request as shown in Figure 6.
EnTrust retrieves programs’ identity by accessing the
AndroidManifest.xml, which must contain a unique
name and a unique identity mark (e.g., icon) for the pro-
gram package. EnTrust verifies programs’ identity via
the crypto-checksum16 of the program’s binary signed
with the developer’s private key and verifiable with the
developer’s public key [46], similarly to what proposed
in prior work [47, 11].

Appendix D - Input Event Authentication:
EnTrust leverages SEAndroid [38] to ensure that pro-
grams cannot inject input events by directly writing
into input device files (i.e., /dev/input/*) correspond-
ing to hardware and software input interfaces attached
to the mobile platform. Hence, only device drivers can
write into input device files and only the Android Input
Manager, a trusted system service, can read such de-
vice files and dispatch input events to programs. Also,
EnTrust leverages the Android screen overlay mecha-
nism to block overlay of graphical user interface com-
ponents and prevent hijacking of input events. Lastly,
EnTrust accepts only voice commands that are pro-
cessed by the Android System Voice Actions module.17

EnTrust authenticates input events by leveraging six-
teen mediation hooks placed inside the stock Android
Input Manager and six mediation hooks placed inside
the System Voice Actions module.

Appendix E - Handoff Event Mediation:
Programs communicate with each other via Inter-
Component Communication (ICC) that, in Android, is

implemented as part of the Binder IPC mechanisms.
The ICC includes both intent and broadcast messages
that can be exchanged among programs. The Binder
and the Activity Manager regulate messages exchanged
among programs via the intent API.18 Programs can
also send intents to other programs or services by using
the broadcast mechanism that allows sending intents as
arguments in broadcast messages. The Activity Man-
ager routes intents to broadcast receivers based on the
information contained in the intents and the broadcast
receivers that have registered their interest in the first
place. To mediate intents and broadcast messages ex-
changed between programs completely, EnTrust lever-
ages mediation hooks placed inside the Activity Man-
ager and the Binder.

Notice that, other operating systems support mech-
anisms similar to Android’s Intents. For instance, Ma-
cOS and iOS adopt the Segue mechanism, while Chrome
OS supports Web Intents, thus EnTrust can be also im-
plemented for other modern systems supporting the co-
operating program abstraction.

Appendix F - Sensor Operation Mediation:
Android uses the Hardware Abstraction Layer (HAL)
interface to allow only system services and privileged
processes to access system sensors indirectly via a well-
defined API exposed by the kernel. Moreover, SEAn-
droid [38] is used to ensure that only system services
can communicate with the HAL at runtime. Any other
programs (e.g., apps) must interact with such system
services to request execution of operations targeting sen-
sors. EnTrust leverages such a mediation layer to iden-
tify operation requests generated by programs, by plac-
ing 12 hooks inside the stock Android Audio System,
Media Server, Location Services, and Media Projection.
Notes

1In this paper, we use the term “delegate” to refer to the use of IPCs
to request help in task processing, not the granting of permissions to
other processes.

2One of the surveillance mobile apps available online (e.g., flexispy).
3Several banks are now offering these services to their clients.
4https://source.android.com
5The runtime permission mechanism enabled users to revoke permis-

sions at any time.
6Source: https://fortune.com
7https://dialogflow.com
8https://source.android.com/compatibility/cts/
9Android Open Source Project - https://source.android.com

10This range was selected based on the size of the delegation graphs
created during our experiments, which should be representative of
real scenarios.

11https://developer.android.com/studio/test/monkey.html
12To stress test our system, we selected a lower bound that is consid-

erably lower than the maximum speed at which a user can possibly
keep tapping on the screen (∼210 ms).

13Chosen among the most-downloaded Android apps from the Google
Play Store and including all apps and system services shipped with
the stock Android OS.

14Equivalent of IPCs for Android OS.
15Gaps higher than 1,500 ms were excluded because not relevant to the

analysis.
16Android requires all apps and services to be signed by their developers.
17https://developers.google.com/voice-actions/
18https://developer.android.com

584 28th USENIX Security Symposium USENIX Association

PolicyLint: Investigating Internal Privacy Policy Contradictions on Google Play

Benjamin Andow?, Samin Yaseer Mahmud?, Wenyu Wang†, Justin Whitaker?

William Enck?, Bradley Reaves?, Kapil Singh‡, Tao Xie†

?North Carolina State University
†University of Illinois at Urbana-Champaign

‡IBM T.J. Watson Research Center

Abstract
Privacy policies are the primary mechanism by which compa-
nies inform users about data collection and sharing practices.
To help users better understand these long and complex legal
documents, recent research has proposed tools that summarize
collection and sharing. However, these tools have a signifi-
cant oversight: they do not account for contradictions that may
occur within an individual policy. In this paper, we present
PolicyLint, a privacy policy analysis tool that identifies such
contradictions by simultaneously considering negation and
varying semantic levels of data objects and entities. To do so,
PolicyLint automatically generates ontologies from a large
corpus of privacy policies and uses sentence-level natural
language processing to capture both positive and negative
statements of data collection and sharing. We use PolicyLint
to analyze the policies of 11,430 apps and find that 14.2% of
these policies contain contradictions that may be indicative
of misleading statements. We manually verify 510 contradic-
tions, identifying concerning trends that include the use of
misleading presentation, attempted redefinition of common
understandings of terms, conflicts in regulatory definitions
(e.g., US and EU), and “laundering” of tracking information
facilitated by sharing or collecting data that can be used to
derive sensitive information. In doing so, PolicyLint signifi-
cantly advances automated analysis of privacy policies.

1 Introduction

Mobile apps collect, manage, and transmit some of the most
sensitive information that exists about users—including pri-
vate communications, fine-grained location, and even health
measurements. These apps regularly transmit this information
to first or third parties [1, 7, 14]. Such data collection/sharing
by an app is often considered (legally) acceptable if it is de-
scribed in the privacy policy for the app. Privacy policies are
sophisticated legal documents that are typically long, vague,
and difficult for novices, experts, and algorithms to interpret.
Accordingly, it is difficult to determine whether app develop-
ers adhere to privacy policies, which can help app markets and

other analysts identify privacy violations, or help end users
choose more-privacy-friendly apps.

Recent work has begun studying whether or not mobile app
behavior matches statements in privacy policies [26,28,29,32].
However, the prior work fails to account for contradictions
within privacy policies; these contradictions may lead to incor-
rect interpretation of sharing and collection practices. Iden-
tifying contradictions requires overcoming two main chal-
lenges. First, privacy policies refer to information at different
semantic granularities. For example, a policy may discuss its
practices using broad terms (e.g., “personal information”) in
one place in the policy, but later discuss its practices using
more specific terms (e.g., “email address”). Prior approaches
have tackled this issue by crowdsourcing data object ontolo-
gies [26, 28],1 but such crowdsourced information is not com-
plete, accurate, or easily collected. Second, prior approaches
have struggled to accurately detect negative statements, re-
lying on bi-grams (e.g., “not share”) [32] or detecting only
verb modifiers [29] while neglecting the more-complicated
statements (e.g., “will share X except Y”) that are common in
privacy policies. Modeling negative statements is required to
determine the correct meaning of a policy statement (i.e., “not
sharing” versus “sharing” information). Fully characterizing
contradictions requires addressing both preceding challenges.

In this paper, we present PolicyLint for automatically iden-
tifying potential contradictions of sharing and collection prac-
tices in software privacy policies. Contradictions make poli-
cies unclear, confusing both humans and any automated sys-
tem that rely on interpreting the policies. Considering these
uses cases, PolicyLint defines two contradiction groupings.
Logical contradictions are contradictory policy statements
that are more likely to cause harm if users and analysts are
not aware of the contradictory statements. One example is
a policy that initially claims not to collect personal informa-
tion, but later in fine print discloses collecting a user’s name
and email address for advertisers. Narrowing definitions may
cause automated techniques that reason over policy statements

1Ontologies are graph data structures that capture relationships among
entities. For example, “personal information” subsumes “your email address.”

USENIX Association 28th USENIX Security Symposium 585

to make incorrect or inconsistent decisions and may result in
vague policies. PolicyLint is the first tool to have the sophis-
tication necessary to reason about both negative sentiments
and statements covering varying levels of specificity, being
necessary for uncovering contradictions.

PolicyLint is inspired by other security lint tools [6, 8–
11, 19], which analyze code for indicators of potential bugs.
Like any static approach, not every lint finding is necessarily
a real bug. For example, potential bug conditions could be
mitigated by an external control or other context that the tool
cannot verify. In many cases, only a human can verify the
outputs of a lint finding. In the case of PolicyLint, we note
that privacy policies are complex legal documents that may be
intentionally vague, ambiguous, or misleading even for human
interpretation. Despite these challenges, PolicyLint condenses
long, complicated policies into a small set of candidate issues
of interest to human or algorithmic analysis.

This paper makes the following main contributions:

• Automated generation of ontologies from privacy
policies. PolicyLint uses an expanded set of Hearst pat-
terns [16] to extract ontologies for both data objects and
entities from a large corpus of privacy policies (e.g., “W
such as X, Y, and Z”). PolicyLint is more comprehensive
and scalable than crowdsourced efforts [26, 28].

• Automated sentence-level extraction of privacy prac-
tices. PolicyLint uses sentence-level NLP and leverages
parts-of-speech and type-dependency information to cap-
ture data collection and sharing as a four-tuple: (actor,
action, data object, entity). For example, “We [actor]
share [action] personal information [data object] with
advertisers [entity].” Sentence-level NLP is critically
important for the correct identification of negative state-
ments. We also show that prior attempts at analyzing
negation would fail on 28.2% of policies.

• Automated analysis of contradictions in privacy poli-
cies. We formally model nine types of contradictions that
result from semantic relationships between terms, pro-
viding an algorithmic technique to detect contradictory
policy statements. Our groupings of narrowing defini-
tions and logical contradictions lay the foundation for
ensuring the soundness of automated policy tools and
identifying potentially misleading policy statements. In
a study of 11,430 privacy policies from mobile apps,
we are the first to find that logical contradictions and
narrowing definitions are rampant, affecting 17.7% of
policies, with logical contradictions affecting 14.2%.

• Manual analysis of contradictions to identify trends.
The high ratio of policy contradictions is surprising. We
manually review 510 contradictions across 260 policies,
finding that many contradictions are indeed indicators of
misleading or problematic policies. These contradictions

App Info

Privacy
Policy

Privacy
Policies

Ontology
Generation

Policy
Extraction

Policy
Statements

p = (actor, action,
data object, entity)

Ontologies
Data Objects

Entities

Contradiction
Analysis

Figure 1: Overview of PolicyLint

include making broad claims to protect personal infor-
mation early in a policy, yet later carving out exceptions
for data that the authors attempt to redefine as not per-
sonal, that could be used to derive sensitive information
(e.g., IP addresses and location), or that are considered
sensitive by some regulators but not others.

PolicyLint has four main potential use cases. First, policy
writers can leverage PolicyLint to reduce the risk of releas-
ing misleading policies. In fact, when we contacted parties
responsible for the contradictory policies, several fixed their
policies (Section 3.4). Second, regulators can use PolicyLint’s
definition of logical contradictions to identify deceptive poli-
cies. While the FTC has identified contradictory statements as
problem areas within privacy policies [3], to our knowledge,
there is no legal precedent regarding whether regulatory agen-
cies would take action as a result of contradictory policies.
However, we believe that some of our findings in Section 3
potentially fall under the FTC’s definition of deceptive prac-
tices [13]. We envision that regulators could deploy PolicyLint
to audit companies’ privacy policies for misleading statements
at large scale. Third, app markets, such as Google Play, can
deploy PolicyLint similarly to ensure that apps posted in the
store do not have misleading statements in their privacy poli-
cies. Furthermore, they can also use PolicyLint’s extraction of
policy statements to automatically generate privacy labels to
display on the markets to nudge users to less-privacy-invasive
apps. Finally, automated techniques for analyzing privacy
policies can use PolicyLint’s fine-grained extraction of policy
statements and formalization of logical contradictions and
narrowing definitions to help ensure tool soundness.

The rest of this paper is organized as follows. Section 2
describes PolicyLint’s design. Section 3 reports on our study
using PolicyLint. Section 4 discusses limitations and future
work. Section 5 describes related work. Section 6 concludes.

2 PolicyLint

PolicyLint seeks to identify contradictions within individ-
ual privacy policies for software. It provides privacy warn-
ings based on contradictory sharing and collection statements
within policies, but similar to lint tools for software, these
warnings require manual verification. PolicyLint identifies

586 28th USENIX Security Symposium USENIX Association

“candidate contradictions” within policies. A candidate contra-
diction is a pair of contradictory policy statements when con-
sidered in the most conservative interpretation (i.e., context-
insensitive). Candidate contradictions that are validated by
analysts are termed as “validated contradictions.” Manual
verification is required due to the fundamental problems of
ambiguity when interpreting the meaning of natural language
sentences (i.e., multiple interpretations of the same sentence).

For example, consider the privacy policy for a popular
recipe app (com.omniluxtrade.allrecipes). One part of the
policy states “We do not collect personally identifiable in-
formation from our users.” It is clear from this sentence that
the app does not collect any personal information. However,
later the policy states, “We may collect your email address
in order to send information, respond to inquiries, and other
requests or questions.” Such sentence is a clear contradiction
to the earlier sentence, as email address is considered personal
information. As discussed in detail in Section 3, the cause for
this underlying contradiction is that the developer does not
consider email address as personal information.

To our knowledge, we are the first to characterize and au-
tomatically analyze contradictions within privacy policies.
While PolicyLint is not the first NLP tool to analyze privacy
policies, identifying contradictions requires addressing two
broad challenges.

• References to information are expressed at different se-
mantic levels. Prior work [26, 28] uses ontologies to
capture subsumptive (i.e., “is-a”) relationships between
terms; however, such ontologies are crowdsourced and
subsumptive relationships are manually defined by the
authors, leaving concerns of comprehensiveness and scal-
ability. For example, prior work [26, 28] builds their on-
tology using only 50 and 30 policies, respectively. While
crowdsourced ontologies could be comprehensive given
unlimited time and manpower, crowdsourcing at large
scale is infeasible due to limited resources. Furthermore,
existing general-purpose ontologies do not capture all
of the specific relationships required to reason over data
types and entities mentioned within privacy policies.

• Privacy policies include negative sharing and collec-
tion statements. Most prior work [26, 28] operates at
paragraph level and cannot capture negative sharing
statements. Prior work [29, 32] that does capture nega-
tive statements misses complex statements (e.g., “will
share personal information except your email address”).
Such prior work extracts coarse-grained summaries of
policy statements (paragraph-level [26, 28], document-
level [32]) and can never precisely model negative state-
ments or the entities involved. Their imprecision may
result in incorrectly reasoning about 28.2% of policies
due to their negation modeling (Finding 1 in Section 3).

We tackle these challenges using two key insights.

Sentence structure informs semantics: Sharing and collec-
tion statements generally follow a learnable set of templates.
PolicyLint uses these templates to extract a four tuple from
such statements: (actor, action, data object, entity). For ex-
ample, “We [actor] share [action] personal information [data
object] with advertisers [entity].” The sentence structure also
provides greater insight into more complex negative sharing.
For example, “We share personal information except your
email address with advertisers.” PolicyLint extracts such se-
mantics from policy statements by building on top of existing
parts-of-speech and dependency parsers.
Privacy policies encode ontologies: Due to the legal nature
of privacy policies, general terms are often defined in terms of
examples or their constituent parts. While each policy might
not define semantic relationships for all of the terms used
in the policy, those relationships should exist in some other
policies in our dataset. By processing a large number of pri-
vacy policies, PolicyLint automatically generates an ontology
specific to policies (one for data objects and one for entities).
PolicyLint extracts term definitions using Hearst patterns [16],
which we have extended for our domain.

Figure 1 depicts the data flow within PolicyLint. There are
three main components of PolicyLint: ontology generation,
policy extraction, and contradiction analysis. The following
sections describe these components. Readers interested in
policy-preprocessing considerations can refer to Appendix A.

2.1 Ontology Generation

The goal of ontology generation is to define subsumptive (“is-
a”) relationships between terms in privacy policies to allow
reasoning over different granularities of language. PolicyLint
operates on the intuition that subsumptive relationships are
often embedded within the text of a privacy policy, e.g., an
example of the types of data considered to be a specific class
of information. The following example identifies that demo-
graphic information subsumes age and gender.

Example 1. We may share demographic information, such
as your age and gender, with advertisers.

PolicyLint uses such sentences to automatically discover sub-
sumptive relationships across a large set of privacy policies.
It focuses on data objects and the entities receiving data.

PolicyLint uses a semi-automated and data-driven tech-
nique for ontology generation. It breaks ontology generation
into three main parts. First, PolicyLint performs domain adap-
tation of an existing model of statistical-based named entity
recognition (NER). NER is used to label data objects and
entities within sentences, capturing not only terms, but also
surrounding context in the sentence. Second, PolicyLint learns
subsumptive relationships for labeled data objects and entities
by using a set of 11 lexicosyntactic patterns with enforced
named-entity label constraints. Third, PolicyLint takes a set

USENIX Association 28th USENIX Security Symposium 587

Table 1: NER Performance: Comparison of spaCy’s stock
en_core_web_lg model versus our adapted domain model

Overall Data Objects Entities
Default Adapted Default Adapted Default Adapted

Precision 43.48% 84.12% - 82.20% 61.22% 86.75%
Recall 8.33% 81.67% - 79.84% 17.75% 85.21%

F1-Score 13.99% 82.88% - 81.00% 27.52% 85.97%

of seed words as input and generates data-object/entity on-
tologies using the subsumptive relationships discovered in
the prior step. It iteratively adds relationships to the ontology
until a fixed point is reached. We next describe this process.

2.1.1 NER Domain Adaptation

To identify subsumptive relationships for data objects and enti-
ties, PolicyLint must identify which sentence tokens represent
a data object or entity. For Example 1, we seek to identify
“demographic information,” “age,” and “gender” as data ob-
jects, and “we” and “advertisers” as entities. PolicyLint uses a
statistical-based technique of named-entity recognition (NER)
to label data objects and entities within sentences. Prior re-
search [26, 28, 29, 32] proposed keyphrase-based techniques
for identifying data objects. However, keyphrase-based tech-
niques are less versatile in practice: they cannot handle term
ambiguity and variability, and they can identify only terms in
their pre-defined list. For example, “internet service provider”
can be both a data object and entity, which keyphrase-based
techniques cannot differentiate. In contrast, statistical-based
NER both resolves ambiguity and discovers “unseen” terms.

Unfortunately, existing NER models are not trained for our
problem domain (data objects and collective terms describing
entities, e.g., “advertisers”). Training an NER model from
scratch is time-consuming due to the large amount of train-
ing data required to achieve reasonable performance. There-
fore, PolicyLint takes an existing NER model and updates
it using annotated training data from our problem domain.
Specifically, PolicyLint adopts spaCy’s NER engine [17],
which uses deep convolutional neural networks. We adapt
the en_core_web_lg model to the privacy policy domain.

To perform domain adaptation, we gather 500 sentences as
training data. Our training data is selected as follows. First, we
randomly select 50 unique sentences from our policy dataset.
Second, for each of the 9 lexicosyntactic patterns described in
Section 2.1.2, we randomly select 50 sentences that contain
the pattern (450 in total). We run the existing NER model on
the training sentences to prevent the model from “forgetting”
old annotations. We then manually annotate the sentences
with data objects and entities.

When updating the existing NER model, we perform mul-
tiple passes over the annotated training data, shuffling at each
epoch, and using minibatch training with a batch size of 4.
To perform the domain adaptation, the current model predicts
the NER labels for each word in the sentence and adjusts the
synaptic weights in the neural network accordingly if the pre-

Table 2: Lexicosyntatic patterns for subsumptive relationships
Pattern

H1 X, such as Y1, Y2, . . . , Yn
H2 such X as Y1, Y2, . . .Yn
H3 X

[
or|and

]
other Y1, Y2, . . .Yn

H4 X, including Y1, Y2, . . .Yn
H5 X, especially Y1, Y2, . . .Yn
H′1 X,

[
e.g.|i.e.

]
, Y1, Y2, . . .Yn

H′2 X (
[
e.g.|i.e.

]
, Y1, Y2, . . .Yn)

H′3 X, for example, Y1, Y2, . . .Yn
H′4 X, which may include Y1, Y2, . . .Yn
∗ H* = Hearst Pattern; H′* = Custom Pattern

diction does not match the annotation. We stop making passes
over the training data when the loss rate begins to converge.
We annotate an additional 100 randomly selected sentences
as holdout data for testing the model. Table 1 shows the NER
model performance before and after domain adaptation for
our holdout dataset. PolicyLint achieves 82.2% and 86.8%
precision for identifying data objects and entities, respectively.

2.1.2 Subsumptive Relationship Extraction

PolicyLint uses a set of 9 lexicosyntactic patterns to discover
subsumptive relationships within sentences, as shown in Ta-
ble 2. The first 5 are Hearst Patterns [16], and the last 4 are
custom deviations based on observations of text in privacy
policies. For each pattern, PolicyLint ensures that named-
entity labels are consistent across the pattern (i.e., PolicyLint
uses Hearst patterns enforcing constraints on named-entity
labels). For example, Example 1 is recognized by the pattern
“X , such as Y1,Y2, · · · ,Yn” where X is a noun, Y1,Y2, · · · ,Yn
are all nouns, and the NER labels for X and each Yi are all
data objects. Note that PolicyLint merges noun phrases before
applying the lexicosyntactic patterns to ease extraction.

Given the set of extracted relationships, PolicyLint normal-
izes the relationships by lemmatizing the text and substituting
terms with their synonym. For example, consider that “blood
sugar levels” is a synonym for “blood glucose level.” Lemma-
tization turns “blood sugar levels” into “blood sugar level,”
and synonym substitution turns it into “blood glucose level.”
To identify synonyms, we output non-terminal (i.e., X value of
the Hearst patterns) data objects and entities in the subsump-
tive relationships. We manually scan through the list and mark
synonyms. We repeat the process with the terminal nodes that
are included after constructing the ontology. We then output
the data objects and entities labeled from all policies and sort
the terms by frequency. We mark synonyms for the most fre-
quent terms by keyword searching for related terms based
on sub-strings and domain knowledge. For example, if “loca-
tion” appears as a frequent term, we output all data objects
that contain the word “location,” read through the list, and
mark synonyms (e.g., “geographic location”). Next, we use
domain knowledge to identify that “latitude and longitude” is
a synonym of “location,” output the terms that contain those
words, and manually identify synonyms.

588 28th USENIX Security Symposium USENIX Association

Table 3: Seed terms used for ontology construction
Ontology Seeds
Data Ontology information, personal information, non-personal

information, information about you, biometric in-
formation, financial information, device sensor in-
formation, government-issue identification infor-
mation, vehicle usage information

Entity Ontology third party

2.1.3 Ontology Construction

PolicyLint generates ontologies by combining the subsump-
tive relationships extracted from policies with a set of seed
terms (Table 3). For each ontology, PolicyLint iterates through
each of the seeds, selecting relationships that contain it. Pol-
icyLint then expands the term list from the relationships in
that iteration. PolicyLint continues iterating over the relation-
ships until no new relationships are added to the ontology.
If there exists any inconsistent relationship where X is sub-
sumed under Y and Y is subsumed under X, PolicyLint uses
the relationship that has a higher frequency (i.e., appearing
in more privacy policies). Once a fixed point is reached, Pol-
icyLint ensures that there is only one root node by creating
connections between any nodes that do not contain inward-
edges with the root of the ontology (i.e., “information” for
the data ontology, and “public” for the entity ontology). Fi-
nally, PolicyLint ensures that no cycles exist in the ontology
by identifying simple cycles in the graph and removing an
edge between nodes to break the cycle. PolicyLint chooses
which edge to remove by finding the edge that appears least
frequently in the subsumptive relationships and ensures that
the destination node has more than one in-edge to ensure that
a new root node is not created.

2.2 Policy Statement Extraction
The goal of policy statement extraction is to extract a concise
representation of a policy statement to allow for automated
reasoning over this statement. We represent data sharing and
collection statements as a tuple (actor, action, data object,
entity) where the actor performs some action (i.e., share, col-
lect, not share, not collect) on the data object, and the entity
represents the entity receiving the data object. For example,
the statement, “We will share your personal information with
advertisers,” can be represented by the tuple of (we, share, per-
sonal information, advertisers). PolicyLint extracts complete
policy statements from privacy policy text by using patterns
of the grammatical structures between data objects, entities,
and verbs that represent sharing or collection (for brevity we
call these verbs SoC verbs). This section describes the steps
in policy statement extraction.

2.2.1 DED Tree Construction

The goal of constructing the data and entity dependency
(DED) trees is to extract a concise representation of the gram-

Table 4: SoC verbs used by PolicyLint
Type Word
Sharing disclose, distribute, exchange, give, provide, rent, report,

sell, send, share, trade, transfer, transmit
Collection access, check, collect, gather, know, obtain, receive,

save, store, use

matical relationships between the data objects, entities, and
SoC verbs (i.e., the verbs that represent sharing or collection).
The main intuition behind constructing these trees is to allow
PolicyLint to infer semantics of the sentence based on the
grammatical relationships between the tokens (i.e., who col-
lects/shares what with whom). The DED tree for a sentence
is derived from the sentence’s dependency-based parse tree.
However, the DED tree removes nodes and paths that are not
relevant to the data objects, entities, or SoC verbs, and per-
forms a set of simplifications to generalize the representation.
The transformation for Example 2 is shown in Figure 2.

Example 2. If you register for our cloud-based services, we
will collect your email address.

To construct DED trees, PolicyLint parses a sentence and
uses its custom-trained NER model to label data objects and
entities within the sentence (Section 2.1). PolicyLint merges
noun phrases and iterates over sentence tokens to label SoC
verbs by ensuring that the PoS (part-of-speech) tag of the to-
ken is a verb and the lemma of the verb is in PolicyLint’s man-
ually curated list of terms (Table 4). PolicyLint also labels the
pronouns, “we,” “I,” “you,” “me,” and “us,” as entities during
this step. PolicyLint then extracts the sentence’s dependency-
based parse tree whose nodes are labeled with the data object,
entity, and SoC verb labels as discussed earlier.
Negated Verbs: PolicyLint identifies negated verbs by check-
ing for negation modifiers in the dependency-based parse tree.
If the verb is negated, PolicyLint labels the node as negative
sentiment. PolicyLint propagates the negative sentiment to de-
scendant verb nodes in three cases. First, if a descendant verb
is part of a conjunctive verb phrase with the negated verb, neg-
ative sentiment is propagated. For example, “We do not sell,
rent, or trade your personal information,” means “not sell,”
“not rent,” and “not trade.” Second, if the descendant verb has
an open clausal complement to the negated verb, negative
sentiment is propagated. For example, “We do not require you
to disclose any personal information,” initially has “require”
marked with negative sentiment. Since “disclose” is an open
clausal complement to “require,” it is marked with negative
sentiment. Third, if the descendant verb is an adverbial clause
modifier to the negated verb, negative sentiment is propagated.
For example, “We do not collect your information to share
with advertisers,” initially has “collect” marked with negative
sentiment. Since “share” is an adverbial clause modifier to
“collect,” “share” is marked with negative sentiment.
Exception Clauses: PolicyLint identifies exception clauses
by traversing the parse tree and finding terms that represent
exceptions to a prior statement, such as “except,” “unless,”

USENIX Association 28th USENIX Security Symposium 589

advcl

mark
nsubj p rep

nsubjpobj
aux

collect
VERB

COLLECT

we
PRON
ENTITY

your email address
NOUN

DATA_OBJECT

will
VERB
NONE

register
VERB
NONE

if
ADP
NONE

you
PRON
ENTITY

for
ABP
NONE

our cloud-based services
NOUN
ENTITY

dobj nsubj

collect
VERB

COLLECT

we
PRON
ENTITY

your email address
NOUN

DATA_OBJECT

dobj

Figure 2: Transformation of Example 2 from its dependency-based parse tree to its DED tree.

“aside/apart from,” “with the exception of,” “besides,” “with-
out,” and “not including.” For each identified exception clause,
PolicyLint traverses down the parse tree from the exception
clause to identify verb phrases (subject-verb-object) and noun
phrases related to that exception. PolicyLint then traverses
upward from the exception term to identify the nearest verb
node and appends as a node attribute the list of noun phrases
and verb phrases identified in the downward traversal.

In certain cases, the term may not have a subtree. For ex-
ample, the exception term may be a marker that introduces a
subordinate clause. In the sentence, “We will not share your
personal information unless consent is given,” the term “un-
less” is a marker that introduces the subordinate clause “your
consent is given.” For empty sub-trees, PolicyLint attempts
the downward traversal from its parent node.

DED Tree construction: Finally, PolicyLint constructs the
DED tree by computing the paths between labeled nodes on
the dependency-based parse tree, copying labels and attributes
described above. Note that PolicyLint also copies over all
unlabeled subjects and direct objects from the parse tree, as
they are needed to extract the information. PolicyLint further
simplifies the tree by merging conjuncts of SoC verbs into
one node if the coordinating conjunction is “and” or “or.”
For example, “We will not sell, rent, or trade your personal
information,” can be simplified by collapsing “sell,” “rent,”
and “trade” into one node. The resulting node’s label is a
union of all of the tags of the merged verbs (i.e., {share} +
{collect} = {share, collect}. Similarly, PolicyLint repeats the
same process for conjuncts of data objects and entities.

PolicyLint then prunes the DED tree by iterating through
the nodes labeled as verbs in the graph and performing the
following process. First, for a verb node labeled as an SoC
verb, PolicyLint ensures that its sub-tree contains at least one
other node labeled as an SoC verb, data object, or entity. If
the node’s sub-tree does not meet this condition, PolicyLint
removes the subtree rooted at the node labeled as an SoC verb.
Second, for verb nodes not labeled as SoC verbs, PolicyLint
ensures that at least one SoC verb is contained in its sub-tree
and that it meets the preceding conditions for an SoC verb.
Similarly, if these conditions are not met, PolicyLint also
removes the sub-tree rooted at that non-labeled verb node.
For example, this pruning step causes the sub-tree rooted at
the verb “register” to be removed in Figure 2.

2.2.2 SoC Sentence Identification

To identify sentences that describe sharing and collection prac-
tices, PolicyLint takes a set of positive examples of sentences
as input and then extracts their DED trees to use as known
patterns for sharing and collection phrases. In particular, we
start by feeding PolicyLint a set of 560 example sentences
that describe sharing and collect practices. PolicyLint gener-
ates the DED trees from these sentences and learns 82 unique
patterns. The example sentences are auto-generated from a set
of 16 sentence templates (Appendix B). We choose to auto-
generate the sentences, because it is challenging to manually
select a set of sentences with diverse grammatical structures.
Our auto-generation does not adversely impact PolicyLint’s
extensibility, as adding a new pattern is as simple as feeding
PolicyLint a new sentence for reflecting this new pattern.

PolicyLint iterates through each sentence of a given privacy
policy. If the sentence contains at least one SoC verb and data
object (labeled by NER), PolicyLint constructs the DED tree.
PolicyLint then compares the sentence’s DED tree to the DED
tree of each known pattern. A pattern is matched if (1) the
label types of the sentence’s DED tree are equivalent to the
ones of the known pattern’s DED tree (e.g., {entity, SoC_verb,
data}), and (2) the known pattern’s DED tree is a subtree of
the sentence’s DED tree.

For a tree t1 to be a subtree of tree t2, (1) the tree structure
must be equivalent, (2) the dependency labels on edges be-
tween nodes must match, and (3) the following three node
conditions must hold. First, for SoC verb nodes to match,
they must have a common lemma. For example, a node with
the lemmas {sell, rent} matches a node with lemma {rent}.
Second, if the node’s part-of-speech is an apposition, the tags,
dependency label, and lemmas must be equal. Third, for all
other nodes, the tags and dependencies must be equal.

On sub-tree match, PolicyLint records the nodes in the
sub-tree match and continues the process until either (1) each
pattern is checked, or (2) the entire DED tree has been covered
by prior sub-tree matches. If at least one sub-tree match is
found, PolicyLint identifies the sentence as a potential SoC
sentence and begins extracting the policy statement tuple.

2.2.3 Policy Extraction

The goal of policy extraction is to transform the DED tree into
a (actor, action, data object, entity) tuple for a policy state-

590 28th USENIX Security Symposium USENIX Association

ment. PolicyLint performs extraction starting with the SoC
nodes present in the sub-tree matches. If multiple SoC nodes
exist in the sub-tree matches, multiple tuples are generated.
However, multiple sub-tree matches over the same SoC node
result in the generation of only one tuple. The SoC determines
the action (e.g., collect, not_collect). The action’s sentiment is
determined based on whether the node is labeled with positive
or negative sentiment, as discussed in Section 2.2.1.
Actor Extraction: To extract the actor, PolicyLint starts from
the matching SoC verb node. The actor is a labeled entity
chosen from the (1) subject, (2) prepositional object, or (3)
direct object (in that order). However, if the dependency is an
open clausal complement or adverbial clause modifier, Pol-
icyLint prioritizes the direct object and prepositional object
over the subject. For example, “We do not require you to dis-
close any personal information,” has “disclose” as an open
clausal complement to “require.” In this case, the correct actor
of this policy statement is the user (i.e., “you”) rather than the
vendor (i.e., “we”), which is correctly captured due to Poli-
cyLint’s dependency-based prioritization rules. If no match is
found, PolicyLint traverses up one level in the DED tree and
repeats. Finally, if no match is found, PolicyLint assumes that
the actor is the implicit first party.
Data Object Extraction: To extract the data objects, Poli-
cyLint starts from the matching SoC verb node. It traverses
down the DED tree to extract all nodes labeled as data objects.
The traversal continues until another SoC verb is reached. If
no data objects are found, and the verb’s subject and direct
object are not labeled as a data object, PolicyLint extracts the
data objects from the nearest ancestor SoC verb.
Entity Extraction: To extract the entities, PolicyLint starts
from the matching SoC verb node. It traverses down the DED
tree extracting all nodes labeled as entities that are not actors.
The traversal continues until another SoC verb is reached.
Exception Clauses: PolicyLint considers exception clauses
if the verb is marked with negative sentiment (e.g., not col-
lect, not share), creating a cloned policy statement with the
sentiment to change. We do not handle exception clauses for
positive sentiment. For example, “We might also share per-
sonal information without your consent to carry out your own
requests,” still shares personal information.

For negative sentiment verbs, there are three cases. First,
if the exception clause’s node attribute contains only data
objects, PolicyLint replaces the data objects of the new policy
with the data objects under the exception clause. For exam-
ple, “We will not collect your personal information except
for your name and phone number,” produces policies: (we,
not_collect, personal information, NULL), (we, collect, [name,
phone number], NULL). Second, if all noun phrases have an
entity label, PolicyLint replaces the entities of the new policies
with the entities under the exception attribute. For example,
“We do not share your demographics with advertisers except
for AdMob,” produces policies: (we, not_share, demographics,
advertisers) and (we, share, demographics, AdMob). Third, if

the labels are not data objects or entities, PolicyLint removes
the initial policy statement. For example, “We will not collect
your personal information without your consent,” produces
the policy: (we, collect, personal information, NULL).
Policy Expansion: PolicyLint may extract multiple actors,
actions, data objects, and entities when creating policy state-
ments. These complex tuples are expanded. For example,
([we], [share, sell], [location, age], [Google, Facebook]) is ex-
panded to (we, share, location, Google), (we, share, location,
Facebook), (we, share, age, Google), etc.

2.3 Policy Contradictions
PolicyLint’s components of ontology generation and policy
extraction identify the sharing and collection statements in
privacy policies. This section formally defines a logic for
characterizing different contradictions. It then describes how
PolicyLint uses this logic to identify candidate contradictions
within privacy policies. We note that contradictions may oc-
cur between an app’s privacy policy and the privacy policies
of third-party libraries (e.g., advertisement libraries). While
our study focuses specifically on contradictions within an
individual privacy policy, the formal logic and subsequent
analysis tools may also be used to include the privacy policies
for third-party libraries with minimal modification.

2.3.1 Policy Simplification

PolicyLint simplifies policy statements for contradiction anal-
ysis. We refer to the (actor, action, data object, entity) tuple
defined in Section 2.2 as a Complete Policy Statement (CPS).
We simplify CPS statements about the sharing of data (i.e.,
action is share or not share) by capturing sharing as collection.

Definition 1 (Simplified Policy Statement: SPS). An SPS is
a tuple, p = (e,c,d), where d is the data object discussed by
the statement, c ∈ {collect,not_collect} represents whether
the object is collected or not collected, and e is the entity
receiving the data object.

To transform a CPS into an SPS, we leverage three main
insights. First, policies do not typically disclose whether the
sharing of the data occurs at the client side or server side.
Therefore, an actor sharing a data object with an entity may
imply that the actor is collecting the data and performing
the data sharing at the server side. In this case, a new policy
statement would need to be generated for allowing the actor
to collect the data object (Rule T1, Table 5). Second, a data
object being shared with an entity may imply that the entity is
collecting the information from the mobile device (Rule T2,
Table 5). Similarly, a policy for stating that the actor does not
share a data object with an entity implies that the entity is not
collecting the data from the mobile device (Rule T3, Table 5).
Finally, a policy for stating that the actor does not share a data
object implies that the actor collects the data object, because

USENIX Association 28th USENIX Security Symposium 591

Table 5: Rules that transform a CPS into an SPS
Rule Transformation Rules Rationale
T1 (actor, share, data object, entity) =⇒ (actor, collect, data object) Unknown whether sharing occurs at the client side or server side
T2 (actor, share, data object, entity) =⇒ (entity, collect, data object) Can observe only client-side behaviors
T3 (actor, not_share, data object, entity) =⇒ (entity, not_collect, data object) Can observe only client-side behaviors
T4 (actor, not_share, data object, entity) =⇒ (actor, collect, data object) If mention not share, assume implicit collection

the policy would likely have not mentioned not sharing data
that was never collected (Rule T4, Table 5).

However, there are two special cases. First, PolicyLint
treats only verb lemmas “save” and “store” with positive
sentiment (“not saving/storing” does not mean “not collect-
ing”). Second, PolicyLint ignores negative statements with
verb lemma “use.” This case leads to false positives, as Poli-
cyLint does not extract the collection purpose. For example,
“We do not use your location for advertising,” means that it is
not collected for the specific purpose of advertising.

2.3.2 Contradiction Types

We model an app’s privacy policy as a set of simplified policy
statements P. Let D represent the total set of data objects
and E represent the total set of entities, as represented by
ontologies for data objects and entities, respectively. A policy
statement p ∈ P is a tuple, p = (e,c,d) where d ∈ D, e ∈ E,
and c ∈ {collect,not_collect} (Definition 1).

Language describing policy statements may use different
semantic granularities. One policy statement may speak in
generalizations over data objects and entities while another
statement may discuss specific types. For example, consider
the policies p1 =(advertiser, not_collect, demographics) and
p2 = (Google Admob, collect, age). If we want to identify
contradictions, we need to know that Google AdMob is an
advertiser and age is demographic information. These relation-
ships are commonly referred to as subsumptive relationships
where a more specific term is subsumed under a more general
term (e.g., AdMob is subsumed under advertisers and age is
subsumed under demographics).

We use the following notation to describe binary relation-
ships between terms representing data objects and entities.

Definition 2 (Semantic Equivalence). Let x and y be terms
partially ordered by an ontology o. x ≡o y is true if x and y
are synonyms, defined with respect to an ontology o.

Definition 3 (Subsumptive Relationship). Let x and y be
terms partially ordered by “is-a” relationships in an ontology
o. x @o y is true if term x is subsumed under the term y such
that x 6≡o y. Similarly, xvo y =⇒ x @o y ∨ x≡o y.

Note that Definitions 2-3 parameterize the operators with
an ontology o. PolicyLint operates on two ontologies: data
objects and entities. Therefore, the following discussion pa-
rameterizes the operators with δ for the data object ontology
and ε for the entity ontology. For example, x≡δ y and x≡ε y.

A contradiction occurs if two policy statements suggest that
entities both may and may not collect or share a data object.

Table 6: Contradictions (C) and Narrowing Definitions (N)
P = {(ei,collect,dk),(e j,not_collect,dl)}

Rule Logic Example
C1 ei ≡ε e j ∧ dk ≡δ dl (companyX, collect, email address)

(companyX, not_collect, email address)
C2 ei ≡ε e j ∧ dk @δ dl (companyX, collect, email address)

(companyX, not_collect, personal info)
C3 ei @ε e j ∧ dk ≡δ dl (companyX, collect, email address)

(advertiser, not_collect, email address)
C4 ei @ε e j ∧ dk @δ dl (companyX, collect, email address)

(advertiser, not_collect, personal info)
C5 ei Aε e j ∧ dk @δ dl (advertiser, collect, email address)

(companyX, not_collect, personal info)

N1 ei ≡ε e j ∧ dk Aδ dl (companyX, collect, personal info)
(companyX, not_collect, email address)

N2 ei @ε e j ∧ dk Aδ dl (companyX, collect, personal info)
(advertiser, not_collect, email address)

N3 ei Aε e j ∧ dk ≡δ dl (advertiser, collect, email address)
(companyX, not_collect, email address)

N4 ei Aε e j ∧ dk Aδ dl (advertiser, collect, personal info)
(companyX, not_collect, email address)

Contradictions can occur at the same or different semantic
levels. For example, the simplest form of contradiction is an
exact contradiction where a policy states that an entity will
both collect and not collect the same data object, e.g., (adver-
tiser, collect, age) and (advertiser, not_collect, age). Due to
subsumptive relationships (Definitions 3), there are 3 relation-
ships between terms (x≡o y, x @o y, and x Ao y). Each binary
relationship applies to both entities and data objects. Thus,
there are 32 = 9 types of contradictions, as shown in Table 6.

Contradictions have two primary impacts when privacy
policies are analyzed. First, all contradictions impact analysis
techniques that seek to automatically reason over policies
and may result in these techniques making incorrect or in-
consistent decisions. For example, unlike firewall rules that
have a specific evaluation sequence, privacy policy statements
do not have a specific pre-defined sequence of evaluation.
Therefore, analysis techniques may make incorrect or incon-
sistent decisions based on the order in which they evaluate
policy statements. Second, contradictions may impact a hu-
man analyst’s understanding of a privacy policy, such as by
containing misleading statements. We define two groupings
of contradictions based on whether they may impact a hu-
man’s comprehension of privacy policies or solely impact
automated analysis.
Logical Contradictions (C1−5): Logical contradictions are
contradictory policy statements that are more likely to cause
harm if users and analysts are not aware of the contradic-
tory statements. Logical contradictions may cause difficulties
when humans attempt to comprehend or interpret the sharing

592 28th USENIX Security Symposium USENIX Association

Table 7: First Party Synonyms
First Party Synonyms

we, I, us, me, our app, our mobile application, our mobile app, our appli-
cation, our service, our website, our web site, our site
app, mobile application, mobile app, application, service, company, busi-
ness, web site, website, site

and collection practices discussed in the policy. They can be
characterized as either exact contradictions (C1) or those that
discuss not collecting broad types of data and later discuss
collecting exact or more specific types (C2−5). One example
is a policy that initially claims not to collect personal infor-
mation, but later in fine print discloses collecting a user’s
name and email address for advertisers. Similar to the goal of
software lint tools, PolicyLint flags logical contradictions
as problems within policies to allow a human analyst to man-
ually inspect the statements and analyze intent. As shown in
Section 3, these contradictions may lead to the identification
of intentionally deceptive policy statements or those that may
result in ambiguous interpretations.
Narrowing Definitions (N1−4): Narrowing definitions are
contradictory policy statements where broad information is
stated to be collected, and specific data types are stated not to
be collected. These statements narrow the scope of the types
of data that are collected, such as stating that personal infor-
mation is collected while your name is not collected. Note
that narrowing definitions are not necessarily an undesirable
property of policies, because saying that a broad data type
is collected does not necessarily imply that every specific
subtype is collected, but narrowing definitions may result in
vague policies. There may be clearer ways for policy writers
to convey this information, such as explicitly stating the exact
data types collected and shared. For example, if the app col-
lects your email address, the policy could directly state, “We
collect your email address,” instead of including a narrowing
definition, such as “We collect personal information. We do
not collect your name.” However, policies that narrow the
scope of their data sharing and collection practices can be
seen as more desirable in contrast to policies that just disclose
practices over broad categories of data. Nonetheless, narrow-
ing definitions impact the logic behind analysis techniques, as
they must consider prioritization of data objects and entities.

2.3.3 Contradiction Identification

PolicyLint uses the contradiction types from Table 6 to deter-
mine a set of candidate contradictions. It then uses a set of
heuristics to reduce the set of candidate contradictions that
are potentially low-quality indicators of underlying problems.
Next, PolicyLint prepares the contradictions for presentation
by collapsing duplicate contradictions, linking other metadata
(e.g., download counts of apps), and by using a set of filter-
ing heuristics to allow the regulator or privacy analysts to
focus on specific subclasses of candidate contradictions. The
remainder of this section describes this process.

Initial Candidate Set Selection: Given policy statements p1
and p2, PolicyLint ensures that p1.c does not equal p2.c, as
contradictions require opposing sentiments. PolicyLint then
compares entities p1.e and p2.e, determining whether they
are equal or have a subsumptive relationship. A subsumptive
relationship occurs if there is a path between the entities in the
entity ontology. When comparing entities, PolicyLint treats
the terms in Table 7 as synonyms for the first party (i.e., “we”).
If an entity match is found, PolicyLint then performs the same
steps for data objects p1.d and p2.d using the data object
ontology. If a data object match is found, PolicyLint adds
the candidate contradiction to the candidate set. Note that in
policy statements PolicyLint ignores entities and data objects
that are not contained in the ontologies, as it cannot reason
about those relationships. However, if PolicyLint cannot find a
direct match for a term in the ontologies, it will try to find sub-
matches by splitting the term on the coordinating conjunction
terms (e.g., “and,” “or”) and checking for their existence in the
ontologies. Furthermore, PolicyLint does not identify policy
statements as contradictions if they are generated from the
same sentence due to the semantics of exception clauses. For
example, “We do not collect your personal information except
for your name,” produces simplified policy statements (we,
not_collect, personal information) and (we, collect, name).
While the semantics of this statement is clear, our definition
of contradictions would incorrectly identify these statements
as a C2 contradiction. Therefore, PolicyLint ignores same-
sentence contradictions to reduce false positives.
Candidate Set Reduction: PolicyLint uses heuristics to
prune candidate contradictions that are likely low-quality
indicators of underlying problems. PolicyLint removes con-
tradictions that occur based on potentially poor relationships
discovered in the ontologies. For example, PolicyLint filters
out contradictions that occur between certain data object pairs,
such as “usage information” and “personal information.” Con-
tradictions whose entities refer to the user (e.g., “user,” “cus-
tomer,” “child”) or involve terms for general data objects (e.g.,
“information,” “content”) or entities (e.g., “individual,” “pub-
lic”) are also removed. Finally, PolicyLint removes candidate
contradictions where a negative-sentiment policy statement
may be conditioned with age restrictions or based on user
choice by searching for common phrases in the sentences that
are used to generate the policy statements (e.g., “under the
age of,” “from children,” “you do not need to provide”). Note
that some of these reductions may occur during candidate set
construction to reduce complexity of the analysis.
Candidate Set Filtering: PolicyLint further filters the set of
candidate contradictions into subsets based on the data objects
involved in the contradictions to allow for targeted exploration
during verification. For example, all of the contradictions
with statements involving collecting email address but not
collecting personal information are placed into one subset
(e.g., (*, collect, email address) and (*, not_collect, PII)).
Contradiction Validation: Given the filtered subsets of can-

USENIX Association 28th USENIX Security Symposium 593

didate contradictions, the next step is to explore certain sub-
sets and validate candidate contradictions. To validate a candi-
date contradiction, the analyst reads through the policy state-
ments and sentences that are used to generate them in context
of the entire policy, and makes a decision.

3 Privacy Study

Our primary motivation for creating PolicyLint is to analyze
contradictory policy statements within privacy policies. In
this section, we use PolicyLint to perform a large-scale study
on 11,430 privacy policies from top Android apps.
Dataset Collection: To select our dataset, we scrape Google
Play for the privacy policy links of the top 500 free apps
for each of Google Play’s 35 app categories in September
2017. Note that the “top free apps” are based on the ranking
provided by Google Play (“topselling_free” collection per app
category). We download the HTML privacy policies using the
Selenium WebDriver in a headless Google Chrome browser to
allow for the execution of dynamic content (e.g., JavaScript).
We exclude apps that do not have a privacy policy link on
Google Play, those whose pages are unreachable at the time
of collection, and privacy policies where the majority of the
document is not English, as discussed in Appendix A. We
convert the HTML policies to plaintext documents. Our final
dataset consists of 11,430 privacy policies.

3.1 General Policy Characteristics
PolicyLint extract sharing and collection policy statements
from 91% of the policies in our dataset (10,397/11,430). From
those policies, PolicyLint extract 438,667 policy statements
from 177,169 sentences that PolicyLint identifies as a sharing
or collection sentence. Of those policy statements, 32,876
have negative sentiment and 405,789 have positive senti-
ment. In particular, 60.5% (6,912/11,430) of the policies have
at least one negative-sentiment policy statement and 89.6%
(10,239/11,430) of the policies have at least one positive sen-
timent policy statement. We explore why PolicyLint does not
extract policy statements for 9% of the policies by analyzing
a random subset of 100 policies and find that it is mainly due
to dataset collection or preprocessing errors (Appendix C).
Finding 1: Policies frequently contain negative sentiment
policy statements that discuss broad categories of data. For
60.5% of the policies with at least one negative sentiment pol-
icy statement, the data object “personal information” appears
in 67.7% of those policies (4,681/6,912). This result demon-
strates the importance of handling negative policy statements,
as around 41.0% of the policies contain a negative sentiment
policy statement for claiming that a broad type of data (i.e.,
“personal information”) is not collected. Further, we measure
the distance from the negation (i.e., “not”) to the verb that
the negation modifies, and find that 28.2% (3,234/11,430) of
the policies have a distance greater than one word away. This

0 5 10 15 20 25 30 35 40 45 50 55
Number of Unique Contradictory Statements

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

R
at

io
 o

f
Po

lic
ie

s w
ith

 a
 C

on
tr

ad
ic

tio
n

Logical Contradictions (C1 − 5)
Narrowing Definitions (N1 − 4)
ALL (C1 − 5 or N1 − 4)

Figure 3: CDF of Contradictory Policy Statements: 50% of
contradictory policies have 2 or fewer logical contradictions.

result calls into question prior approaches [26,28] that assume
only positive sentiment when considering sharing and collec-
tion statements, as the prior approaches could be incorrect
up to 60.5% of the time when reasoning over sharing and
collection statements. Further, approaches [32] that handle
negations using bigrams would have failed to reason about
28.2% of the policies.

3.2 Candidate Contradictions
Based on PolicyLint’s fine-grained policy statement extrac-
tion, we find that 59.1% (6,754/11,430) of the policies are
candidates for contradiction analysis, as they contain at least
one positive and one negative sentiment policy statements.
Among these policies, there are 13,871 and 129,575 policy
statements with negative and positive sentiment, respectively.
Finding 2: For candidate contradictions, 14.2% of the pri-
vacy policies contain logical contradictions (C1−5). Poli-
cyLint identifies 9,906 logical contradictions across around
14.2% (1,618/11,430) of the policies. Therefore, 14.2% of
the policies may contain potentially misleading statements.
Figure 3 shows that around three-fifths (59.2%) of the poli-
cies with at least one logical contradiction have 2 or fewer
unique contradictions. The relatively low number of candi-
date contradictions per policy indicates that manual validation
is feasible. As roughly 6 in 7 policies are not contradictory,
writing policies without logical contradictions is possible.
Finding 3: Contradiction prevalence and frequency do not
substantially vary across Google Play app categories. Fig-
ure 4a shows the ratio of policies containing candidate con-
tradictions per each Google Play category. The categories
with policies most and least prone to contradiction are Beauty
and Events, respectively. However, when analyzing the poli-
cies within those categories, we find that their means are
skewed by contradictory policies for apps by the same de-
veloper. When we recompute the means without the outliers,
these categories follow the general trend. Policies with logical
contradictions accompany 7.3% to 20.9% of apps across all
categories. We find that policies with logical contradictions
are not substantially more prevalent in particular categories
of apps, but instead occur consistently in apps from every
category. We also find that prevalence of logical contradiction

594 28th USENIX Security Symposium USENIX Association

Gam
e (

43
2)

Foo
d &

 D
rin

k (3
68

)

New
s &

 M
ag

az
ines

(34
1)

Auto
& V

eh
icl

es
(27

4)

Dati
ng (

27
9)

Hea
lth

 &
 Fitn

ess
 (3

69
)

Life
sty

le
(39

4)

Fam
ily

 (4
84

)

Finan
ce

(39
9)

Soc
ial

 (3
25

)

W
ea

ther
(31

7)

Enter
tai

nmen
t (3

11
)

Educa
tio

n (3
61

)

Pers
on

ali
za

tio
n (3

63
)

Spor
ts

(35
0)

Andro
id W

ea
r (

36
7)

Shop
ping (

39
2)

Com
ics

 (2
15

)

M
usic

 &
 A

udio
(36

1)

Libra
rie

s &
 D

em
o (

19
1)

M
ed

ica
l (3

55
)

Video
 Play

ers
 (3

17
)

Busin
ess

 (4
16

)

Too
ls (

37
2)

Bea
uty

(28
5)

M
ap

s &
 N

av
iga

tio
n (3

21
)

Photo
gr

ap
hy (

37
0)

Art
& D

esi
gn

 (2
70

)

Pro
ducti

vit
y (

39
0)

Hou
se

& H
om

e (
25

5)

Tra
ve

l &
 Loc

al
(37

3)

Com
munica

tio
n (3

87
)

Par
en

tin
g (

25
2)

Boo
ks &

 R
efe

ren
ce

(21
6)

Eve
nts

(28
7)

Application Category (# of Policies)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R

at
io

 o
f

C
on

tr
ad

ic
to

ry
 P

ol
ic

ie
s

Narrowing Definitions (N1 − 4) Logical Contradictions (C1 − 5)

(a) Ratio of Contradictory Policies per Category: 79.7% of contradictory policies have at least one or more logical
contradictions (C1−5) that may indicate potentially deceptive statements.

Gam
e (

43
2)

Foo
d &

 D
rin

k (3
68

)

New
s &

 M
ag

az
ines

(34
1)

Auto
& V

eh
icl

es
(27

4)

Dati
ng (

27
9)

Hea
lth

 &
 Fitn

ess
 (3

69
)

Life
sty

le
(39

4)

Fam
ily

 (4
84

)

Finan
ce

(39
9)

Soc
ial

 (3
25

)

W
ea

ther
(31

7)

Enter
tai

nmen
t (3

11
)

Educa
tio

n (3
61

)

Pers
on

ali
za

tio
n (3

63
)

Spor
ts

(35
0)

Andro
id W

ea
r (

36
7)

Shop
ping (

39
2)

Com
ics

 (2
15

)

M
usic

 &
 A

udio
(36

1)

Libra
rie

s &
 D

em
o (

19
1)

M
ed

ica
l (3

55
)

Video
 Play

ers
 (3

17
)

Busin
ess

 (4
16

)

Too
ls (

37
2)

Bea
uty

(28
5)

M
ap

s &
 N

av
iga

tio
n (3

21
)

Photo
gr

ap
hy (

37
0)

Art
& D

esi
gn

 (2
70

)

Pro
ducti

vit
y (

39
0)

Hou
se

& H
om

e (
25

5)

Tra
ve

l &
 Loc

al
(37

3)

Com
munica

tio
n (3

87
)

Par
en

tin
g (

25
2)

Boo
ks &

 R
efe

ren
ce

(21
6)

Eve
nts

(28
7)

Application Category (# of Policies)

0

1

2

3

4

5

6

7

A
vg

. C
on

tr
ad

ic
tio

ns
Pe

r
C

on
tr

ad
ic

to
ry

 P
ol

ic
y

N4 N3 N2 N1 C5 C4 C3 C2 C1

(b) Average number of unique candidate contradictions per category: Logical contradictions (C1−5) and narrowing
definitions (N1−4) are both widely prevalent across Google Play categories.

Figure 4: Distribution of Candidate Contradictions across Google Play Categories.

does not substantially vary by download count as well.
Figure 4b displays the average number of candidate con-

tradictions for policies containing one or more contradictions.
We find that frequency of logical contradiction for contradic-
tory policies does not substantially vary across Google Play
categories. Initial analysis indicates that contradictory poli-
cies for apps in the Games category contain around 4.9 logical
contradictions on average. Further analysis reveals that this
result is due to policies with 19 unique logical contradictions
in 9 apps produced by the same developer, and one app that
has 31 unique logical contradictions. Excluding these outliers
brings the category’s average to 3.16 logical contradictions
per app, fitting the trend of the rest of the categories. This
result may indicate that poor policies are linked to problem-
atic developers. Similar analysis on categories Food & Drink,
Auto & Vehicles, and News & Magazines produces similar
results. We find that the number of logical contradictions per
policy is roughly equivalent across app categories, indicating
that one app category is not necessarily more contradictory
on average than another.
Finding 4: Negative sentiment policy statements that discuss
broad categories of data are problematic. Figure 5 shows the

frequency of the most common data-type pairs referred to
in contradictory policy statements. The contradictory policy
statements in the topmost row are most problematic. This
row represents logical contradictions, which are either (1)
exact contradictions or (2) discussion of not collecting broad
types of data and collecting more specific data types (C1−5).
As we demonstrate in Section 3.3, logical contradictions can
lead to a myriad of problems when one interprets the policy
including making interpretation ambiguous in certain cases.
The leftmost column corresponds to narrowing definitions
(N1−4), which solely impact automated analysis techniques,
as discussed in Section 2.3.

Finding 5: For candidate contradictions, 17.7% of the pri-
vacy policies contain at least one or more logical contradic-
tions (C1−5) or narrowing definitions (N1−4). PolicyLint iden-
tifies 17,986 logical contradictions and narrowing definitions
across around 17.7% (2,028/11,430) of the policies. Figure 3
shows that slightly more than half (57.0%) of the contradic-
tory policies have 3 or fewer unique logical contradictions and
narrowing definitions. As discussed in Section 2.3, logical
contradictions and narrowing definitions impact approaches
that seek to automatically reason over privacy policies. To

USENIX Association 28th USENIX Security Symposium 595

Pers
on

al
In

for
mati

on

Email
 A

ddres
s

Geo
gr

ap
hica

l L
oc

ati
on

Non
-P

ers
on

al
In

for
mati

on

Reli
gio

us /
Philo

sop
hica

l B
eli

efs Rac
e

Pers
on

 N
am

e

In
for

mati
on

 A
bou

t Y
ou

Hea
lth

 In
for

mati
on

Pay
men

t C
ar

d In
for

mati
on

IP
 A

ddres
s

Post
al

Addres
s

Dev
ice

 Id
en

tif
ier

Phon
e N

umber

Dev
ice

 In
for

mati
on

Collect

Personal Information

Email Address

Geographical Location

Non-Personal Information

Religious / Philosophical Beliefs

Race

Person Name

Information About You

Health Information

Payment Card Information

IP Address

Postal Address

Device Identifier

Phone Number

Device Information

N
ot

 C
ol

le
ct

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 5: Log 10 Frequency of Data-Type Pairs in Contradic-
tions: Negative statements that discuss broad categories of
data are problematic (i.e., C1−5).

correctly reason over contradictions, analysis techniques must
include logic to prioritize specificity of data types and entities,
and be able to identify potentially undecidable cases, such as
exact contradictions (C1). No prior approaches [26,28,29,32]
that attempt to reason over policies operate at the required
granularity to identify contradictions or contain the logic to
correctly reason over them. Therefore, these prior approaches
could make incorrect or inconsistent decisions around 17.7%
of the time around 1–3 times per policy on average. We per-
form similar analysis across categories as Finding 3 and find
that logical contradictions and narrowing definitions do not
substantially vary across Google Play categories.

3.3 Deeper Findings
In this section, we describe the findings from validating can-
didate contradictions. We limit our scope to logical contradic-
tions (C1−5), as they may be indicative of misleading policy
statements. Due to resource constraints, we do not validate all
9,906 candidate logical contradictions from the 1,618 policies.
Instead, we narrow the scope of our study by choosing cate-
gories of candidate contradictions to focus on. Our selection
and validation methodology is described below.
Selection Methodology: To select the categories of candidate
contradictions to focus on, we analyze Figure 5 for the data
objects involved in the contradictory statements. We limit
our scope to logical contradictions (C1−5) that discuss not
collecting “personal information” and collecting “email ad-
dress,” “device identifier,” or “personal information.” We also
explore two other categories of candidate contradictions in
which one type of data can be derived from the other type;
these categories caught our attention when analyzing the heat
map. Within each category of candidate contradictions, we
choose which candidate contradictions to validate by sorting
the contradictions based on the belonging app’s popularity and

working down the list. We spend around one week validating
contradictions where our cutoffs are due to time constraints
and attempting to achieve coverage across categories.
Validation Methodology: To validate candidate contradic-
tion, one of three student authors reads through the sentences
that are used to generate each policy statement for the candi-
date contradiction to ensure correctness of policy statement
extraction. If there is an error with policy statement extrac-
tion, we record the candidate contradiction as a false positive
and stop analysis. Next, we locate the sentences within the
policy and view the context in which they appear (i.e., sec-
tion, surrounding sentences) to determine whether the policy
statements are contradictory. We try to determine why the
contradiction occurs if possible and record any observations.
If the author is uncertain about his/her decision, a second au-
thor analyzes it. The two authors discuss and resolve conflicts,
with no conflicts left unresolved after discussion.

3.3.1 Personal Information and Email Addresses

For candidate contradictions with negative statements about
“personal information” and with positive statements about
“email address,” we find 618 candidate contradictions across
333 policies (C2, C4, C5) We validate 204 candidate contra-
dictions from 120 policies. We find that 5 candidate contra-
dictions are false positives due to inaccuracies of labeling
data objects by the NER model. From the 199 remaining
candidate contradictions across 118 policies, we have the fol-
lowing main findings. Note that for the findings discussed
below, the terms “personally identifiable information” and
“personal information” are commonly used synonymously in
USA regulations, and “personal data” is considered the EU
equivalent albeit covering a broader range of information.
Finding 6: Policies are stating certain types of common per-
sonally identifiable information, such as email addresses, as
non-personally identifiable. When validating 14 candidate
contradictions, we find 14 policies for explicitly stating that
they do NOT consider email address as personally identifiable
information. 11 of those policies are released by the same
developer (OmniDroid) where the most popular app in the
set (com.omniluxtrade.allrecipes) has over 1M+ downloads.
OmniDroid’s policy explicitly lists email address when defin-
ing non-personally identifiable information. The remaining 3
policies belong to another app developer, PlayToddlers. The
apps are explicitly targeted toward children from 2-8 years
old and have between 500K-1M+ downloads for each app.
Their policy states the following sentence verbatim, “When
the user provides us with an email address to subscribe to the
“PlayNews” mailing list, the user confirms that this address is
not a personal data, nor does it contain any personal data.”

The fact that any privacy policies are declaring email ad-
dresses as non-personal information is surprising, as it goes
against the norms of what data is considered personal infor-
mation as defined by regulations (e.g., CalOPPA, GDPR),

596 28th USENIX Security Symposium USENIX Association

standards bureaus (NIST), and common sense.
Finding 7: Services that auto-generate template-based poli-
cies for app developers are producing contradictory policies.
During our validation process, we notice that many policies
have similar structural compositions and contain a lot of the
same text in paragraphs. When validating 78 candidate contra-
dictions, we find 59 contradictory policies that are automati-
cally generated or used templates. Identical policy statements
from various developers suggest that some policies may be
generated automatically or acquired from a template. We in-
vestigate these cases and identify 59 policies that use 3 unique
templates. We check that these policies are not ones for apps
created by the developers or organization. Findings 8 and
11 discuss the problems caused by the templates. This result
demonstrates that poor policy generators can be a contributing
factor for numerous contradictory policies.
Finding 8: Policies use blanket statements affirming that per-
sonal information is not collected and contradict themselves
by stating that subtypes of personal information are collected,
such as email addresses. When validating 182 candidate con-
tradictions, we find 104 policies for broadly making blanket
statements that personal information is not collected in one
part of the policy and then directly contradicting their prior
statements by disclosing that they collect email addresses. We
find 69 of those policies (127 validated contradictions) for
stating that they do not collect personal information, but later
stating that they collect email addresses for some purpose. Of
those 69 policies, 32 policies define email address as personal
information in one part of their policy. Due to the lack of defi-
nition of what they consider personal information in the other
37 policies, it is unclear whether they do not consider email
address as personal information or are just contradictory.

The same organization (emoji-keyboard.com) produces
20 of those policies that explicitly define email addresses
as personal information, but contradict themselves. The
most popular app in that group has 50M+ downloads
(emoji.keyboard.emoticonkeyboard). The following two sen-
tences are in the policy verbatim: (1) “Since we do not collect
Personal Information, we may not use your personal infor-
mation in any way.”; (2) “For users that opt in to Emoji
Keyboard Cloud, we will collect your email address, basic de-
mographic information and information concerning the words
and phrases that you use (“Language Modeling Data”) to
enable services such as personalization, prediction synchro-
nization and backup.” This case is clearly a contradictory
statement and arguably a misleading practice.

A policy for a particular app with 1M+ downloads
(com.picediting.haircolorchanger) appears to have been po-
tentially trying to mislead users by using bold text to high-
light desirable properties and then contradicting themselves.
For example, the following excerpt is in the policy verba-
tim including the bold typography: “We do not collect any
Personal information but it may be collected in a number of
ways. We may collect certain information that you voluntarily

provide to us which may contain personal information. For
example, we may collect your name, email address you pro-
vide us when you contact us by e-mail or use our services...”
The use of bold typography and general presentation of these
policy statements could potentially be considered as attempt-
ing to deceive the reader, who may not perform a close read
of the text in fine-print. This finding validates PolicyLint’s
value in flagging problematic areas in policies to aid in the
identification of deceptive statements.
Finding 9: Policies consider hashed email addresses as
pseudonymized non-personal information and share it with
advertisers. When validating three candidate contradictions,
we find that two policies discuss sharing hashed email ad-
dresses with third parties, such as advertisers. One candidate
contradiction is a false positive due to misclassifying a sen-
tence discussing opt-out choices as a sharing or collection
sentence. The other policy belongs to an app named Tango
(com.sgiggle.production). Tango is a messaging and video
call app, which has over 100M+ downloads on Google Play
and according to their website has 390M+ users globally.
Their policy states the following sentences verbatim ,“For
example, we may tell our advertisers the number of users our
app receives or share anonymous identifiers (such as device
advertising identifiers or hashed email addresses) with adver-
tisers and business partners.” Tango explicitly states that they
consider hashed email addresses as anonymous identifiers. It
is arguable whether hashing is sufficient for pseudonymiza-
tion as defined by GDPR, as it is likely that advertisers are
using hashed email addresses to identify individuals.

3.3.2 Personal Information and Device Identifiers

For the candidate contradictions with negative statements
about “personal information” and with positive statements
about “device identifiers,” we find 234 candidate contradic-
tions across 155 policies. We investigate this group of candi-
date contradictions as there are differing regulations across
countries on whether device identifiers are considered per-
sonal information. For example, various court cases within
the US (Robinson v. Disney Online, Ellis v. Cartoon Net-
work, Eichenberger v. ESPN) rule that device identifiers are
not personal information. However, the GDPR defines device
identifiers as personal information. Therefore, our goal is to
check whether policies are complying to the stricter GDPR
definition of personal information or to the US definition, as
the outcome could hint toward problems with complying to
regulations across country boundaries. In total, we validate
10 candidate contradictions across 9 policies.
Finding 10: Policies are considering device identifiers as
non-personal information, raising concerns regarding global-
ization of their policies. When validating 10 candidate contra-
dictions, we find 9 policies for stating that they do not collect
personal information, but later state that they collect device
identifiers. We find that classification of device identifiers

USENIX Association 28th USENIX Security Symposium 597

varies across policies. We find 4 policies that explicitly de-
scribe device identifiers as non-personal information. The
most popular app is Tango (com.sgiggle.production), which
boasts of 390M+ global users on their website. It is likely a
safe assumption that some of those users are in the EU, which
is subject to GDPR. As their current policy still contains this
statement, it may hint that they may not be GDPR compliant.

To reduce the threats to the validity of our claims, we re-
request the 9 policies using a proxy to route the traffic through
an EU country (Germany) to ensure that an EU-specific policy
is not served based on the origin of the request. We request
the English version of the policy where applicable and find
similarly problematic statements in regard to not treating
device identifiers as personal information.

3.3.3 Personal Information

We find 5100 candidate contradictions across 1061 policies
where the data type of both the negative statement and pos-
itive statement is “personal information.” We validate 254
candidate contradictions across 153 policies.
Finding 11: Policies directly contradict themselves. When
validating the 254 candidate contradictions, we find that the
153 policies directly contradict themselves on their data prac-
tices on “personal information.” For example, the policy for
an app with 1M+ downloads states “We may collect personal
information from our users in order to provide you with a
personalized, useful and efficient experience.” However, later
in the policy they state, “We do not collect Personal Informa-
tion, and we employ administrative, physical and electronic
measures designed to protect your Non-Personal Informa-
tion from unauthorized access and use.” These scenarios are
clearly problematic, as the policies state both cases and it
makes it difficult, if not, impossible to determine their actual
data sharing and collection practices.

3.3.4 Derived Data

In this section, we explore cases of candidate contradictions
where the negative statements discuss data that can be derived
from the data discussed in the positive statement. In particular,
we explore two cases: (1) coarse location from IP address;
and (2) postal address from precise location.

For “coarse location from IP,” we find 170 candidate contra-
dictions from 167 policies that represent collecting IP address
and not collecting location. We remove candidate contradic-
tions whose statements discuss precise location, as IP address
does not provide a precise location. This filtering results in 18
candidate contradictions from 18 different policies. We vali-
date 15 candidate contradictions across 15 different policies
for this case. We note that 3 candidate contradictions from 3
policies are false positives due to incorrect negation handling.

For “postal address from precise location,” we find 27 can-
didate contradictions across 20 policies. Note that we remove

candidate contradictions that discuss coarse location, as they
are not precise enough to derive postal addresses. We validate
22 candidate contradictions across 17 apps, as 5 candidate
contradictions are false positives due to sentence misclassifi-
cation (4 cases) or errors of handling negations (1 case).
Finding 12: Policies state that they do not collect certain data
types, but state that they collect other data types in which the
original can be derived. When validating the 15 candidate
contradictions for “coarse location from IP,” we find that all
15 policies are stating that they do not collect location infor-
mation, but state that they automatically collect IP addresses.
As coarse location information can generally be derived from
the user’s IP address, it can be argued that the organization
is technically collecting the user’s location information. In-
terestingly, two of the policies discuss that if users disable
location services, then location will not be collected. It is
highly unlikely that companies cease IP address collection
based on device privacy settings. However, as IP address col-
lection typically occurs passively at the server side, we cannot
claim with 100% certainty that the companies still collect IP
addresses when location services are disabled.

When validating 20 candidate contradictions for “postal ad-
dress from precise location,” we find that 15 policies discuss
not collecting postal addresses, but then state that they collect
locations. Similar to the preceding case, postal addresses can
be derived from location data (i.e., latitude and longitude).
Again, the argument can be made that they are collecting data
precise enough to be considered a postal address, causing a
contradiction. For the other two candidate contradictions from
two policies, it is not clear whether it is actually a contradic-
tion, as they state that they do not collect addresses from the
user’s address book, which is more specific than a general
statement about not collecting addresses.

3.4 Notification to Vendors

For the 510 contradictions that are validated across 260 poli-
cies, we contact each vendor via the email address listed for
the privacy policy’s corresponding app on Google Play. We
disclose the exact statements that we find to be contradictory
and explain our rationale. We ask whether they consider the
statements to be contradictory and request clarifications on
their policy. Figure 6 (Appendix) shows a template of the
email. Overall, 244 emails are successfully delivered, as 16
email addresses are either invalid or unreachable. In total,
we receive a 4.5% response rate (11/244), which is relatively
substantial when considering that responding to our emails
could raise liability concerns. All of the responses are re-
ceived within a week or less after we send the initial emails.
We have not received additional responses in the 4 months
that have passed before publication. The remainder of this
section discusses the responses.
Fixed Policy: Three vendors agree with our findings and
update their policy to remove the contradiction. One ven-

598 28th USENIX Security Symposium USENIX Association

dor states that there is an “error” in their privacy policy
and updates it accordingly. We confirm that the policy has
been updated. The remaining two vendors state that the self-
contradictory portion of the policy is a leftover remnant from
a prior update and should have been removed. They clarify
that they do not collect email addresses.
Disagreed with our Findings: One vendor explicitly dis-
agrees with our findings. Their policy states that they do
not collect personal information, but also states that they
collect email addresses. The vendor responds by claim-
ing that email addresses are only personal information
if it contains identifiable information, such as your name
(e.g., john.doe@gmail.com), but are not personal informa-
tion if it does not contain identifiable information (e.g.,
wxyz@gmail.com). They state that they explicitly tell users
not to submit email addresses that contain personal informa-
tion and thus their policy is not contradictory. This interpre-
tation is surprising, because it goes against the definition of
email addresses as personal information, as defined by regula-
tions (e.g., CalOPPA, GDPR) and standards bureaus (NIST).
Claimed Outdated Policy: Four vendors respond that they
do not find the reported statements in their current policy
and that we analyzed an older version of their policy. One of
the vendors sent us their updated policy for their mobile app.
However, the policy has a link to refer to their full privacy
policy, which links to the policy analyzed by us. We request
clarifications on their “full policy,” but receive no response.
We analyze the remaining three policies and find that they
have the contradictory statements removed from their policy.
No Comment: Two vendors respond without providing a
comment or clarification of their policy. One developer simply
replies back “Thanks for the observation.” The other responds
that their app is removed from Google Play.

4 Limitations

PolicyLint provides a set of techniques to extract a concise
structured representation of both collection and sharing state-
ments from the unstructured natural language text in privacy
policies. In so doing, it provides unprecedented analysis depth,
and our findings in Section 3 demonstrate the utility and value
of such analysis. However, extracting structured information
from unstructured natural language text continues to be an
open and active area of NLP research, and there are currently
no perfect techniques for this challenging problem. PolicyLint
is thus limited by the current state of NLP techniques, such
as the limitations of NLP parsers and named-entity recogni-
tion. Its performance also depends on its verb lists and policy
statement patterns, which may be incomplete despite our best
efforts, reducing overall recall. We note that as a lint tool,
our goal is to provide high precision at a potential cost to
high recall. We note that PolicyLint achieves 97.3% precision
(496/510) based on the 14 false positives identified during our
validation of contradictions.

Another limitation is that PolicyLint cannot extract the con-
ditions or purposes behind collection and sharing statements.
Extracting such information would allow for a more holistic
analysis, but doing so would require advances in decades-old
NLP problems, including semantic role labeling, coreference
resolution, and natural language understanding.

Finally, our analysis focuses on policies of Android apps.
While we cannot claim that our findings would certainly gen-
eralize to policies from other domains (e.g., iOS, web), we
hypothesize that self-contradictions likely occur across the
board, as policies are written for all platforms in largely the
same way to describe data types collected by all platforms.

5 Related Work

Recent research has increasingly focused on automated analy-
sis of privacy policies. Various approaches have used NLP for
deriving answers to a limited number of binary questions [31]
from privacy policies, applied topic modeling to reduce am-
biguity in privacy policies [27], and used data mining [30]
or deep learning [15] models to extract summaries from poli-
cies of what and how information is used. Some other ap-
proaches [26, 28] have used crowdsourced ontologies for
policy analysis. These approaches are often limited by lack
of accuracy, completeness, and collection complexity. Other
approaches [12, 18] identify patterns to extract subsumptive
relationships. However, they do not provide methodology
to generate usable ontologies from such extracted informa-
tion and rely on a fixed lexicon. Prior research has also at-
tempted to infer negative statements in privacy policies with
limited success. Zimmeck et al. [32] and Yu et al. [29] rely on
keyword-based approaches of using bi-grams and verb modi-
fiers, respectively, to detect the negative statements. In con-
trast to these previous approaches, our work provides a more
comprehensive analysis with an automatically constructed
ontology and accounting for negations and exceptions in text.

Prior approaches [2, 5, 29] identify the possibility of con-
flicting policy statements. However, we are the first to charac-
terize and automatically analyze self-contradictions resulting
from interactions of varying semantic levels and sentiments.

Analyzing the usability and effectiveness of privacy poli-
cies is another well-researched focus area. Research has
shown that privacy policies are hard to comprehend by
users [23] and proposals have been made to simplify their un-
derstanding [24]. Cranor et al. [5] perform a large-scale study
of privacy notices of US financial institutions to highlight a
number of concerning practices. Their policy analysis relies
on standardized models used for such notices; in contrast, pri-
vacy policies in mobile apps follow no such standards making
the analysis more challenging. Other approaches [20, 21, 25]
have attempted to bridge the gap between users’ privacy ex-
pectations and app policies. While standardizing privacy pol-
icy specification has been attempted [4] with limited suc-
cess [22], mobile apps’ privacy policies have generally failed

USENIX Association 28th USENIX Security Symposium 599

to adhere to any standards. The findings in our study highlight
the need to renew standardization discussion.

6 Conclusion

In this paper, we have presented PolicyLint, a privacy policy
analysis tool that conducts natural language processing to
identify contradictory sharing and collection practices within
privacy policies. PolicyLint reasons about contradictory pol-
icy statements that occur at different semantic levels of gran-
ularity by auto-generating domain ontologies. We apply Pol-
icyLint on 11,430 privacy policies from popular apps on
Google Play and find that around 17.7% of the policies contain
logical contradictions and narrowing definitions, with 14.2%
containing logical contradictions. Upon deeper inspection,
we find a myriad of concerning issues with privacy policies,
including misleading presentations and re-defining common
terms. PolicyLint’s fine-grained extraction techniques and for-
malization of narrowing definitions and logical contradictions
lay the foundation to help ensure the soundness of automated
policy analysis and identify potentially deceptive policies.

Acknowledgment

We thank our shepherd, David Evans, and the anonymous
reviewers for their valuable comments. This work is supported
in part by NSF grants CNS-1513690, CNS-1513939, and
CCF-1816615. Any findings and opinions expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agencies.

References
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. In Proceed-
ings of the ACM Conference on Programming Language Design and
Implementation (PLDI), 2014.

[2] Travis D. Breaux and Ashwini Rao. Formal Analysis of Privacy Re-
quirements Specifications for Multi-tier Applications. In Proceedings
of the IEEE International Requirements Engineering Conference (RE),
2013.

[3] Federal Trade Commission. Privacy Online: Fair Information Practices
in the Electronic Marketplace: A Federal Trade Commission Report to
Congress, May 2000.

[4] Lorrie Faith Cranor, Marc Langheinrich, Massimo Marchiori, Martin
Presler-Marshall, and Joseph Reagle. The Platform for Privacy Pref-
erences 1.0 (P3P1.0) Specification. W3C Recommendation, 16, April
2002.

[5] Lorrie Faith Cranor, Pedro Giovanni Leon, and Blase Ur. A Large-Scale
Evaluation of US Financial Institutions’ Standardized Privacy Notices.
ACM Transactions on the Web, 2016.

[6] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An Empirical Study of Cryptographic Misuse in Android
Applications. In Proceedings of the ACM SIGSAC Conference on
Computer & Communications Security (CCS), 2013.

[7] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), October 2010.

[8] David Evans. Annotation-Assisted Lightweight Static Checking. In
Proceedings of the International Workshop on Automated Program
Analysis, Testing and Verification, 2000.

[9] David Evans, John Guttag, Jim Horning, , and Yang Meng Tan. LCLint:
A Tool for Using Specifications to Check Code. In Proceedings of the
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (FSE), 1994.

[10] David Evans and David Larochelle. Statically Detecting Likely Buffer
Overflow Vulnerabilities. In Proceedings of the USENIX Security
Symposium, 2001.

[11] David Evans and David Larochelle. Improving Security Using Extensi-
ble Lightweight Static Analysis. IEEE Software, January 2002.

[12] Morgan C. Evans, Jaspreet Bhatia, Sudarshan Wadkar, and Travis D.
Breaux. An Evaluation of Constituency-based Hyponymy Extraction
from Privacy Policies. In Proceedings of the IEEE International Re-
quirements Engineering Conference (RE), 2017.

[13] Federal Trade Commission Act: Section
5: Unfair or Deceptive Acts or Practices.
https://www.federalreserve.gov/boarddocs/supmanual/cch/ftca.pdf.

[14] Michael Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe Exposure Analysis of Mobile In-App Advertisements. In Pro-
ceedings of the ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), 2012.

[15] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G.
Shin, and Karl Aberer. Polisis: Automated Analysis and Presentation of
Privacy Policies Using Deep Learning. In Proceedings of the USENIX
Security Symposium, 2018.

[16] Marti A. Hearst. Automatic Acquisition of Hyponyms from Large
Text Corpora. In Proceedings of the Conference on Computational
Linguistics (COLING), 1992.

[17] Matthew Honnibal and Ines Montani. spaCy 2: Natural Language Un-
derstanding with Bloom Embeddings, Convolutional Neural Networks,
and Incremental Parsing, 2017.

[18] Mitra Bokaei Hosseini, Travis D. Breaux, and Jianwei Niu. Inferring
Ontology Fragments from Semantic Role Typing of Lexical Variants. In
Proceedings of the International Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ), 2018.

[19] S. C. Johnson. Lint, a C Program Checker. In Computer Science
Technical Report, pages 78–1273, 1978.

[20] Jialiu Lin, Norman Sadeh, and Jason I. Hong. Modeling Users’ Mobile
App Privacy Preferences: Restoring Usability in a Sea of Permission
Settings. In Proceedings of the Symposium on Usable Privacy and
Security (SOUPS), 2014.

[21] Fei Liu, Rohan Ramanath, Norman Sadeh, and Noah A. Smith. A
Step Towards Usable Privacy Policy: Automatic Alignment of Pri-
vacy Statements. In Proceedings of the International Conference on
Computational Linguistics (COLING), 2014.

[22] Aditya Marella, Chao Pan, Ziwei Hu, Florian Schaub, Blase Ur, and
Lorrie Faith Cranor. Assessing Privacy Awareness from Browser Plug-
ins. In Proceedings of the Symposium on Usable Privacy and Security
(SOUPS), 2014.

[23] Aleecia M. McDonald and Lorrie Faith Cranor. The Cost of Reading
Privacy Policies. I/S Journal of Law and Policy for the Information
Society (ISJLP), 4, 2008.

[24] Thomas B. Norton. Crowdsourcing Privacy Policy Interpretation. In
Proceedings of the Research Conference on Communications, Informa-
tion, and Internet Policy (TPRC), 2015.

600 28th USENIX Security Symposium USENIX Association

[25] Ashwini Rao, Florian Schaub, Norman Sadeh, Alessandro Acquisti, and
Ruogu Kang. Expecting the Unexpected: Understanding Mismatched
Privacy Expectations Online. In Proceedings of the Symposium on
Usable Privacy and Security (SOUPS), 2016.

[26] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester,
Ram Krishnan, Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. To-
ward a Framework for Detecting Privacy Policy Violations in Android
Application Code. In Proceedings of the International Conference on
Software Engineering (ICSE), 2016.

[27] John W. Stamey and Ryan A. Rossi. Automatically Identifying Re-
lations in Privacy Policies. In Proceedings of the ACM International
Conference on Design of Communication (SIGDOC), 2009.

[28] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin,
Travis D. Breaux, and Jianwei Niu. GUILeak: Tracing Privacy Policy
Claims on User Input Data for Android Applications. In Proceedings
of the International Conference of Software Engineering (ICSE), 2018.

[29] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can We Trust the Privacy
Policies of Android Apps? In Proceedings of the IEEE/IFIP Conference
on Dependable Systems and Networks (DSN), 2016.

[30] Razieh Nokhbeh Zaeem, Rachel L. German, and K. Suzanne Barber.
PrivacyCheck: Automatic Summarization of Privacy Policies Using
Data Mining. ACM Transactions on Internet Technology (TOIT), 2013.

[31] Sebastian Zimmeck and Steven M. Bellovin. Privee: An Architecture
for Automatically Analyzing Web Privacy Policies. In Proceedings of
the USENIX Security Symposium, 2014.

[32] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu,
Florian Schaub, Shomir Wilson, Norman Sadeh, Steven M. Bellovin,
and Joel Reidenberg. Automated Analysis of Privacy Requirements
for Mobile Apps. In Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS), 2017.

A Preprocessing Privacy Policies

Privacy policies are commonly made available via a link on
Google Play to the developer’s website and hosted in HTML.
Most NLP parsers expect plaintext input; therefore, PolicyLint
begins by converting the HTML privacy policy into plaintext.
We next describe how PolicyLint achieves this conversion.
Removing Non-relevant and Non-displayed Text: Privacy
policies are frequently embedded as main content on a web-
page containing navigational elements and other non-relevant
text. Additionally, non-displayed text should also be stripped
from the HTML, as we want to analyze what is actually dis-
played to users. PolicyLint extracts the privacy policy por-
tion of the webpage by iterating over the elements in the
HTML document. To remove non-relevant text, PolicyLint
strips comment, style, script, nav, and video HTML tags.
PolicyLint also strips HTML links containing phrases com-
monly used for page navigation (e.g., “learn more,” “back
to top,” “return to top”). Finally, PolicyLint removes HTML
span and div tags using the “display:none” style attribute.
Converting HTML to Flat Plaintext Documents: Certain
HTML elements, such as pop-up items, result in a non-flat
structure. When flattening the HTML documents, PolicyLint
must ensure that the plaintext document has a formatting
style similar to the text displayed on the webpage (e.g., same
paragraph and sentence breaks). PolicyLint handles pop-up
elements by relocating the text within the pop-up element

to the end of the document. Pop-up elements often provide
additional context, explanation, clarification, or a definition of
a term. Therefore, relocating these elements should not have a
significant effect on processing the referencing paragraph. To
ensure that the formatting style is maintained, PolicyLint con-
verts the HTML document to markdown using html2text.
Merging Formatted Lists: Formatted lists within text can
cause NLP parsers to incorrectly detect sentence breaks or in-
correctly tag parts-of-speech and typed dependencies. These
parsing errors can negatively impact the semantic reasoning
of sentences. Therefore, PolicyLint merges the text within list
items with the preceding clauses before the list begins. Poli-
cyLint also uses a set of heuristics for nesting list structures
to ensure that list items propagate to the correct clause.

PolicyLint merges formatted lists in two phases. The first
phase occurs before the aforementioned conversion to mark-
down. In this phase, PolicyLint iterates over HTML elements
using list-related HTML tags (i.e., ol, ul, li) to annotate
list structures and nesting depth. The second phase occurs
after the conversion to markdown. In this phase, PolicyLint
searches for paragraphs ending in a colon where the next
sentence is a list item (e.g., starts with bullets, roman numer-
als, formatted numbers, or contains annotations from the first
phase). It then forms complete sentences by merging the list
item text with the preceding text.

PolicyLint iterates over the paragraphs in the markdown
document to find those that end in a colon. For each paragraph
that ends in a colon, PolicyLint checks whether the proceed-
ing paragraph is a list item. If the line of text is a list item,
PolicyLint creates a new paragraph by appending the list item
text to the preceding text that ends with the colon. If the list
item ends in another colon, PolicyLint repeats the same pre-
ceding process but by prepending the nested list items to the
new paragraph created in the last step. PolicyLint then lever-
ages the symbols that denote list items to predict the next list
item’s expected symbol, which is useful for detecting bound-
aries of nested lists. For example, if the current list item starts
with “(1),” then we would expect the next list item to start
with “(2).” If the item symbol matches the expected symbol,
PolicyLint merges the list item text as discussed above and
continues this process. If the item symbol does not match the
expected symbol, PolicyLint stops this process and returns.
Final Processing: The final step converts markdown to plain-
text. PolicyLint normalizes Unicode characters and strips
markdown formatting, such as header tags, bullet points, list
item numbering, and other format characters. PolicyLint then
uses langid to determine whether the majority of the doc-
ument is written in English. If not, PolicyLint discards the
document. If so, PolicyLint outputs the plaintext document.

B Training Sentence Generation

PolicyLint requires a training set of sharing and collection
sentences to learn underlying patterns from in order to iden-

USENIX Association 28th USENIX Security Symposium 601

Table 8: Sentence Generation Templates
1 ENT may VERB_PRESENT DATA We may share your personal information.
2 We may VERB_PRESENT DATA PREP ENT We may share your personal information with advertisers.
3 We may VERB_PRESENT ENT DATA We may send advertisers your personal information.
4 We may VERB_PRESENT PREP ENT DATA We may share with advertisers your personal information.
5 DATA may be VERB_PAST PREP ENT Personal information may be shared with advertisers.
6 DATA may be VERB_PAST Personal information may be shared.
7 DATA may be VERB_PAST by ENT Personal information may be shared by advertisers.
8 We may choose to VERB_PRESENT DATA We may choose to share personal information.
9 We may choose to VERB_PRESENT DATA PREP ENT We may choose to share personal information with advertisers.
10 You may be required by us to VERB_PRESENT DATA You may be required by us to share personal information.
11 You may be required by us to VERB_PRESENT DATA PREP ENT You may be required by us to share personal information with advertisers.
12 We are requiring you to VERB_PRESENT DATA We are requiring you to share personal information.
13 We are requiring you to VERB_PRESENT DATA PREP ENT We are requiring you to share personal information with advertisers.
14 We require VERB_PRESENT_PARTIC DATA We require sharing personal information.
15 We require VERB_PRESENT_PARTIC DATA PREP ENT We require sharing personal information with advertisers.
16 We may VERB_PRESENT ENT with DATA We may provide advertisers with your personal information.

tify “unseen” sharing and collection sentences. As it is tedious
to manually select a set of sharing and collection sentences
with diverse grammatical structures, we opt to auto-generate
the training sentences instead. Note that auto-generating sen-
tences does not adversely impact the extensibility of Poli-
cyLint, as adding a new pattern is as simple as feeding Poli-
cyLint a new sentence for reflecting this new pattern. To iden-
tify the templates, we use our domain expertise to identify
different sentence compositions that could describe sharing
and collection sentences. We identify 16 sentence templates,
as shown in Table 8.

To fill the templates, we substitute an entity
(ENT), data object (DATA), the correct tense of
an SoC verb (VERB_PRESENT, VERB_PAST,
VERB_PRESENT_PARTICIPLE), and a preposition
that describes with whom the sharing occurs for sharing verbs
(PREP). We begin by identifying the present tense, past
tense, and present participle forms of all of the SoC verbs
(e.g., “share,” “shared,” “sharing,” respectively). We then
identify common prepositions for each of the sharing verbs
that describe with whom the sharing occurs. For example,
for the terms share, trade, and exchange, the preposition is
“with” and for the terms sell, transfer, distribute, disclose, rent,
report, transmit, send, give, provide, the preposition is “to.”

For each template, we fill the placeholders accordingly. If
the template has a placeholder for prepositions (PREP) and
the verb is a collect verb, we skip the template. We also skip
the templates for “send,” “give,” and “provide” if they do not
contain a placeholder for a preposition (T1, T6, T8, T10, T12,
T14), as those template sentences do not make sense with-
out specifying to whom the data is being sent/given/provided.
We set DATA to the phrases “your personal information” and
“your personal information, demographic information, and fi-
nancial information.” Similarly, we set ENT to the phrases
“advertiser” and “advertisers, analytics providers, and our busi-
ness partners.” Note that we include conjuncts of the DATA
and ENT placeholders to account for deviations in the parse
tree due to syntactic ambiguity (i.e., a sentence can have mul-

tiple interpretations). Therefore, we generate two sentences
for each template: one with a singular DATA and ENT, and
second with the plural DATA and plural ENT. In total, we
generate 560 sentences, which are used by PolicyLint to learn
patterns to identify sharing and collection sentences.

C Policy Statement Extraction
For the 9% of the policies from which PolicyLint does not
extract policy statements, we randomly select 100 policies to
explore why this situation occurs. We find that 88% (88/100)
are due to an insufficient crawling strategy (i.e., privacy pol-
icy links being pointed at home pages, navigation pages, or
404 error pages). Among the remaining 12 policies, the links
in 3 policies point at a PDF privacy policy while PolicyLint
handles only HTML, and 2 policies are not written in English
but are not caught by our language classifier. Finally, 7 poli-
cies are due to errors in extracting policy statements, such
as incomplete verb lists (3 cases), tabular format policies (1
case), and policies for describing permission uses (3 cases).

D Email Template
Subject: Contradictory Privacy Policy Statements in <APP_NAME>
To Whom It May Concern:
We are a team of security researchers from the WSPR Lab in the Depart-
ment of Computer Science at North Carolina State University. We created
a tool to analyze privacy policies and found that the privacy policy for your
"<APP_NAME>" application (<PACKAGE>) that we downloaded in Septem-
ber 2017 may contain the following potential contradictory statements:
(1) The following statements claim that personal information is both collected
and not collected.
(A) <CONTRADICTORY_SENTENCE_1>
(B) <CONTRADICTORY_SENTENCE_2>
· · ·
Do you believe that these are contradictory statements? Any additional infor-
mation that you may have to clarify this policy would be extremely helpful. If
you have any questions or concerns, please feel free to contact us, preferably
by February 11th.
Thank you for your time!
Best Regards,

<EMAIL_SIGNATURE>

Figure 6: Email Template

602 28th USENIX Security Symposium USENIX Association

50 Ways to Leak Your Data:
An Exploration of Apps’ Circumvention of the Android Permissions System

Joel Reardon
University of Calgary

AppCensus, Inc.

Álvaro Feal
IMDEA Networks Institute

Universidad Carlos III de Madrid

Primal Wijesekera
U.C. Berkeley / ICSI

Amit Elazari Bar On
U.C. Berkeley

Narseo Vallina-Rodriguez
IMDEA Networks Institute / ICSI

AppCensus, Inc.

Serge Egelman
U.C. Berkeley / ICSI

AppCensus, Inc.

Abstract
Modern smartphone platforms implement permission-based
models to protect access to sensitive data and system re-
sources. However, apps can circumvent the permission model
and gain access to protected data without user consent by us-
ing both covert and side channels. Side channels present in
the implementation of the permission system allow apps to
access protected data and system resources without permis-
sion; whereas covert channels enable communication between
two colluding apps so that one app can share its permission-
protected data with another app lacking those permissions.
Both pose threats to user privacy.

In this work, we make use of our infrastructure that runs
hundreds of thousands of apps in an instrumented environ-
ment. This testing environment includes mechanisms to mon-
itor apps’ runtime behaviour and network traffic. We look for
evidence of side and covert channels being used in practice
by searching for sensitive data being sent over the network
for which the sending app did not have permissions to access
it. We then reverse engineer the apps and third-party libraries
responsible for this behaviour to determine how the unautho-
rized access occurred. We also use software fingerprinting
methods to measure the static prevalence of the technique that
we discover among other apps in our corpus.

Using this testing environment and method, we uncovered a
number of side and covert channels in active use by hundreds
of popular apps and third-party SDKs to obtain unauthorized
access to both unique identifiers as well as geolocation data.
We have responsibly disclosed our findings to Google and
have received a bug bounty for our work.

1 Introduction

Smartphones are used as general-purpose computers and
therefore have access to a great deal of sensitive system re-
sources (e.g., sensors such as the camera, microphone, or
GPS), private data from the end user (e.g., user email or con-
tacts list), and various persistent identifiers (e.g., IMEI). It

is crucial to protect this information from unauthorized ac-
cess. Android, the most-popular mobile phone operating sys-
tem [75], implements a permission-based system to regulate
access to these sensitive resources by third-party applications.
In this model, app developers must explicitly request permis-
sion to access sensitive resources in their Android Manifest
file [5]. This model is supposed to give users control in decid-
ing which apps can access which resources and information;
in practice it does not address the issue completely [30, 86].

The Android operating system sandboxes user-space apps
to prevent them from interacting arbitrarily with other run-
ning apps. Android implements isolation by assigning each
app a separate user ID and further mandatory access controls
are implemented using SELinux. Each running process of an
app can be either code from the app itself or from SDK li-
braries embedded within the app; these SDKs can come from
Android (e.g., official Android support libraries) or from third-
party providers. App developers integrate third-party libraries
in their software for things like crash reporting, development
support, analytics services, social-network integration, and ad-
vertising [16, 62]. By design, any third-party service bundled
in an Android app inherits access to all permission-protected
resources that the user grants to the app. In other words, if an
app can access the user’s location, then all third-party services
embedded in that app can as well.

In practice, security mechanisms can often be circum-
vented; side channels and covert channels are two common
techniques to circumvent a security mechanism. These chan-
nels occur when there is an alternate means to access the pro-
tected resource that is not audited by the security mechanism,
thus leaving the resource unprotected. A side channel exposes
a path to a resource that is outside the security mechanism;
this can be because of a flaw in the design of the security
mechanism or a flaw in the implementation of the design. A
classic example of a side channel is that power usage of hard-
ware when performing cryptographic operations can leak the
particulars of a secret key [42]. As an example in the phys-
ical world, the frequency of pizza deliveries to government
buildings may leak information about political crises [69].

USENIX Association 28th USENIX Security Symposium 603

A covert channel is a more deliberate and intentional effort
between two cooperating entities so that one with access to
some data provides it to the other entity without access to
the data in violation of the security mechanism [43]. As an
example, someone could execute an algorithm that alternates
between high and low CPU load to pass a binary message to
another party observing the CPU load.

The research community has previously explored the po-
tential for covert channels in Android using local sockets and
shared storage [49], as well as other unorthodox means, such
as vibrations and accelerometer data to send and receive data
between two coordinated apps [3]. Examples of side chan-
nels include using device sensors to infer the gender of the
user [51] or uniquely identify the user [72]. More recently,
researchers demonstrated a new permission-less device fin-
gerprinting technique that allows tracking Android and iOS
devices across the Internet by using factory-set sensor cali-
bration details [90]. However, there has been little research in
detecting and measuring at scale the prevalence of covert and
side channels in apps that are available in the Google Play
Store. Only isolated instances of malicious apps or libraries
inferring users’ locations from WiFi access points were re-
ported, a side channel that was abused in practice and resulted
in about a million dollar fine by regulators [82].

In fact, most of the existing literature is focused on under-
standing personal data collection using the system-supported
access control mechanisms (i.e., Android permissions). With
increased regulatory attention to data privacy and issues sur-
rounding user consent, we believe it is imperative to under-
stand the effectiveness (and limitations) of the permission
system and whether it is being circumvented as a preliminary
step towards implementing effective defenses.

To this end, we extend the state of the art by developing
methods to detect actual circumvention of the Android per-
mission system, at scale in real apps by using a combination
of dynamic and static analysis. We automatically executed
over 88,000 Android apps in a heavily instrumented environ-
ment with capabilities to monitor apps’ behaviours at the sys-
tem and network level, including a TLS man-in-the-middle
proxy. In short, we ran apps to see when permission-protected
data was transmitted by the device, and scanned the apps to
see which ones should not have been able to access the trans-
mitted data due to a lack of granted permissions. We grouped
our findings by where on the Internet what data type was sent,
as this allows us to attribute the observations to the actual app
developer or embedded third-party libraries. We then reverse
engineered the responsible component to determine exactly
how the data was accessed. Finally, we statically analyzed
our entire dataset to measure the prevalence of the channel.
We focus on a subset of the dangerous permissions that pre-
vent apps from accessing location data and identifiers. Instead
of imagining new channels, our work focuses on tracing ev-
idence that suggests that side- and covert-channel abuse is
occurring in practice.

We studied more than 88,000 apps across each category
from the U.S. Google Play Store. We found a number of side
and covert channels in active use, responsibly disclosed our
findings to Google and the U.S. Federal Trade Commission
(FTC), and received a bug bounty for our efforts.

In summary, the contributions of this work include:

• We designed a pipeline for automatically discovering vul-
nerabilities in the Android permissions system through
a combination of dynamic and static analysis, in effect
creating a scalable honeypot environment.

• We tested our pipeline on more than 88,000 apps and
discovered a number of vulnerabilities, which we respon-
sibly disclosed. These apps were downloaded from the
U.S. Google Play Store and include popular apps from
all categories. We further describe the vulnerabilities in
detail, and measure the degree to which they are in ac-
tive use, and thus pose a threat to users. We discovered
covert and side channels used in the wild that compro-
mise both users’ location data and persistent identifiers.

• We discovered companies getting the MAC addresses of
the connected WiFi base stations from the ARP cache.
This can be used as a surrogate for location data. We
found 5 apps exploiting this vulnerability and 5 with the
pertinent code to do so.

• We discovered Unity obtaining the device MAC address
using ioctl system calls. The MAC address can be
used to uniquely identify the device. We found 42 apps
exploiting this vulnerability and 12,408 apps with the
pertinent code to do so.

• We also discovered that third-party libraries provided
by two Chinese companies—Baidu and Salmonads—
independently make use of the SD card as a covert chan-
nel, so that when an app can read the phone’s IMEI, it
stores it for other apps that cannot. We found 159 apps
with the potential to exploit this covert channel and em-
pirically found 13 apps doing so.

• We found one app that used picture metadata as a side
channel to access precise location information despite
not holding location permissions.

These deceptive practices allow developers to access users’
private data without consent, undermining user privacy and
giving rise to both legal and ethical concerns. Data protec-
tion legislation around the world—including the General Data
Protection Regulation (GDPR) in Europe, the California Con-
sumer Privacy Act (CCPA) and consumer protection laws,
such as the Federal Trade Commission Act—enforce trans-
parency on the data collection, processing, and sharing prac-
tices of mobile applications.

This paper is organized as follows: Section 2 gives more
background information on the concepts discussed in the in-
troduction. Section 3 describes our system to discover vul-
nerabilities in detail. Section 4 provides the results from our

604 28th USENIX Security Symposium USENIX Association

study, including the side and covert channels we discovered
and their prevalence in practice. Section 5 describes related
work. Section 6 discusses their potential legal implications.
Section 7 discusses limitations to our approach and concludes
with future work.

2 Background

The Android permissions system has evolved over the years
from an ask-on-install approach to an ask-on-first-use ap-
proach. While this change impacts when permissions are
granted and how users can use contextual information to rea-
son about the appropriateness of a permission request, the
backend enforcement mechanisms have remained largely un-
changed. We look at how the design and implementation of
the permission model has been exploited by apps to bypass
these protections.

2.1 Android Permissions
Android’s permissions system is based on the security prin-
ciple of least privilege. That is, an entity should only have
the minimum capabilities it needs to perform its task. This
standard design principle for security implies that if an app
acts maliciously, the damage will be limited. Developers must
declare the permissions that their apps need beforehand, and
the user is given an opportunity to review them and decide
whether to install the app. The Android platform, however,
does not judge whether the set of requested permissions are
all strictly necessary for the app to function. Developers are
free to request more permissions than they actually need and
users are expected to judge if they are reasonable.

The Android permission model has two important aspects:
obtaining user consent before an app is able to access any of
its requested permission-protected resources, and then ensur-
ing that the app cannot access resources for which the user
has not granted consent. There is a long line of work uncov-
ering issues on how the permission model interacts with the
user: users are inadequately informed about why apps need
permissions at installation time, users misunderstand exactly
what the purpose of different permissions are, and users lack
context and transparency into how apps will ultimately use
their granted permissions [24, 30, 78, 86]. While all of these
are critical issues that need attention, the focus of our work is
to understand how apps are circumventing system checks to
verify that apps have been granted various permissions.

When an app requests a permission-protected resource, the
resource manager (e.g., LocationManager, WiFiManager,
etc.) contacts the ActivityServiceManager, which is the
reference monitor in Android. The resource request originates
from the sandboxed app, and the final verification happens
inside the Android platform code. The platform is a Java oper-
ating system that runs in system space and acts as an interface
for a customized Linux kernel, though apps can interact with

the kernel directly as well. For some permission-protected
resources, such as network sockets, the reference monitor is
the kernel, and the request for such resources bypasses the
platform framework and directly contacts the kernel. Our
work discusses how real-world apps circumvent these system
checks placed in the kernel and the platform layers.

The Android permissions system serves an important pur-
pose: to protect users’ privacy and sensitive system resources
from deceptive, malicious, and abusive actors. At the very
least, if a user denies an app a permission, then that app should
not be able to access data protected by that permission [24,81].
In practice, this is not always the case.

2.2 Circumvention
Apps can circumvent the Android permission model in differ-
ent ways [3,17,49,51,52,54,70,72,74]. The use of covert and
side channels, however, is particularly troublesome as their
usage indicates deceptive practices that might mislead even
diligent users, while underscoring a security vulnerability in
the operating system. In fact, the United State’s Federal Trade
Commission (FTC) has fined mobile developers and third-
party libraries for exploiting side channels: using the MAC ad-
dress of the WiFi access point to infer the user’s location [82].
Figure 1 illustrates the difference between covert and side
channels and shows how an app that is denied permission by
a security mechanism is able to still access that information.

Covert Channel A covert channel is a communication path
between two parties (e.g., two mobile apps) that allows them
to transfer information that the relevant security enforcement
mechanism deems the recipient unauthorized to receive [18].
For example, imagine that AliceApp has been granted permis-
sion through the Android API to access the phone’s IMEI (a
persistent identifier), but BobApp has been denied access to
that same data. A covert channel is created when AliceApp
legitimately reads the IMEI and then gives it to BobApp,
even though BobApp has already been denied access to this
same data when requesting it through the proper permission-
protected Android APIs.

In the case of Android, different covert channels have been
proposed to enable communication between apps. This in-
cludes exotic mediums such as ultrasonic audio beacons and
vibrations [17, 26]. Apps can also communicate using an ex-
ternal network server to exchange information when no other
opportunity exists. Our work, however, exposes that rudimen-
tary covert channels, such as shared storage, are being used
in practice at scale.

Side Channel A side channel is a communication path that
allows a party to obtain privileged information without rel-
evant permission checks occurring. This can be due to non-
conventional unprivileged functions or features, as well as er-
satz versions of the same information being available without

USENIX Association 28th USENIX Security Symposium 605

(b) side channel

(a) covert channel

access
allo

w

d
en

y
access

security mechanism

sid
e ch

an
n
el

app 1

security mechanism

app 1

access
d
en

y

app 2covert channel

Figure 1: Covert and side channels. (a) A security mechanism
allows app1 access to resources but denies app2 access; this is
circumvented by app2 using app1 as a facade to obtain access
over a communication channel not monitored by the security
mechanism. (b) A security mechanism denies app1 access
to resources; this is circumvented by accessing the resources
through a side channel that bypasses the security mechanism.

being protected by the same permission. A classical example
of a side channel attack is the timing attack to exfiltrate an
encryption key from secure storage [42]. The system under
attack is an algorithm that performs computation with the key
and unintentionally leaks timing information—i.e., how long
it runs—that reveals critical information about the key.

Side channels are typically an unintentional consequence of
a complicated system. (“Backdoors” are intentionally-created
side channels that are meant to be obscure.) In Android, a
large and complicated API results in the same data appear-
ing in different locations, each governed by different access
control mechanisms. When one API is protected with permis-
sions, another unprotected method may be used to obtain the
same data or an ersatz version of it.

2.3 App Analysis Methods

Researchers use two primary techniques to analyze app be-
haviour: static and dynamic analysis. In short, static analysis
studies software as data by reading it; dynamic analysis stud-
ies software as code by running it. Both approaches have the

goal of understanding the software’s ultimate behaviour, but
they offer insights with different certainty and granularity:
static analysis reports instances of hypothetical behaviour;
dynamic analysis gives reports of observed behaviour.

Static Analysis Static analysis involves scanning the code
for all possible combinations of execution flows to understand
potential execution behaviours—the behaviours of interest
may include various privacy violations (e.g., access to sen-
sitive user data). Several studies have used static analysis to
analyze different types of software in search of malicious be-
haviours and privacy leaks [4, 9–11, 19–22, 32, 37, 39, 41, 45,
92]. However, static analysis does not produce actual observa-
tions of privacy violations; it can only suggest that a violation
may happen if a given part of the code gets executed at run-
time. This means that static analysis provides an upper bound
on hypothetical behaviours (i.e., yielding false positives).

The biggest advantage of static analysis is that it is easy
to perform automatically and at scale. Developers, however,
have options to evade detection by static analysis because a
program’s runtime behaviour can differ enormously from its
superficial appearance. For example, they can use code obfus-
cation [23,29,48] or alter the flow of the program to hide the
way that the software operates in reality [23, 29, 48]. Native
code in unmanaged languages allow pointer arithmetic that
can skip over parts of functions that guarantee pre-conditions.
Java’s reflection feature allows the execution of dynamically
created instructions and dynamically loaded code that simi-
larly evades static analysis. Recent studies have shown that
around 30% of apps render code dynamically [46], so static
analysis may be insufficient in those cases.

From an app analysis perspective, static analysis lacks the
contextual aspect, i.e., it fails to observe the circumstances
surrounding each observation of sensitive resource access
and sharing, which is important in understanding when a
given privacy violation is likely to happen. For these reasons,
static analysis is useful, but is well complemented by dynamic
analysis to augment or confirm findings.

Dynamic analysis Dynamic analysis studies an executable
by running it and auditing its runtime behaviour. Typically,
dynamic analysis benefits from running the executable in
a controlled environment, such as an instrumented mobile
OS [27, 85], to gain observations of an app’s behaviour [16,
32, 46, 47, 50, 65, 66, 73, 85, 87–89].

There are several methods that can be used in dynamic
analysis, one example is taint analysis [27, 32] which can be
inefficient and prone to control flow attacks [68, 71]. A chal-
lenge to performing dynamic analysis is the logistical burden
of performing it at scale. Analyzing a single Android app in
isolation is straightforward, but scaling it to run automatically
for tens of thousands of apps is not. Scaling dynamic analysis
is facilitated with automated execution and creation of be-
havioural reports. This means that effective dynamic analysis

606 28th USENIX Security Symposium USENIX Association

requires building an instrumentation framework for possible
behaviours of interest a priori and then engineering a system
to manage the endeavor.

Nevertheless, some apps are resistant to being audited when
run in virtual or privileged environments [12, 68]. This has
led to new auditing techniques that involve app execution on
real phones, such as by forwarding traffic through a VPN in
order to inspect network communications [44, 60, 63]. The
limitations of this approach are the use of techniques robust
to man-in-the-middle attacks [28, 31, 61] and scalability due
to the need to actually run apps with user input.

A tool to automatically execute apps on the Android plat-
form is the UI/Application Exerciser Monkey [6]. The Mon-
key is a UI fuzzer that generates synthetic user input, ensuring
that some interaction occurs with the app being automatically
tested. The Monkey has no context for its actions with the UI,
however, so some important code paths may not be executed
due to the random nature of its interactions with the app. As
a result, this gives a lower bound for possible app behaviours,
but unlike static analysis, it does not yield false positives.

Hybrid Analysis Static and dynamic analysis methods
complement each other. In fact, some types of analysis bene-
fit from a hybrid approach, in which combining both methods
can increase the coverage, scalability, or visibility of the anal-
yses. This is the case for malicious or deceptive apps that
actively try to defeat one individual method (e.g., by using ob-
fuscation or techniques to detect virtualized environments or
TLS interception). One approach would be to first carry out
dynamic analysis to triage potential suspicious cases, based
on collected observations, to be later examined thoroughly us-
ing static analysis. Another approach is to first carry out static
analysis to identify interesting code branches that can then be
instrumented for dynamic analysis to confirm the findings.

3 Testing Environment and Analysis Pipeline

Our instrumentation and processing pipeline, depicted and
described in Figure 2, combines the advantages of both static
and dynamic analysis techniques to triage suspicious apps
and analyze their behaviours in depth. We used this testing
environment to find evidence of covert- and side-channel
usage in 252,864 versions of 88,113 different Android apps,
all of them downloaded from the U.S. Google Play Store
using a purpose-built Google Play scraper. We executed each
app version individually on a physical mobile phone equipped
with a customized operating system and network monitor.
This testbed allows us to observe apps’ runtime behaviours
both at the OS and network levels. We can observe how apps
request and access sensitive resources and their data sharing
practices. We also have a comprehensive data analysis tool
to de-obfuscate collected network data to uncover potential
deceptive practices.

reverse engineering

cov.

chan.

app

corpus

PII
sent
out

PII

access
to

allowed

cheat

apps

that

side

chan.set minus

!!

ok

alert

Figure 2: Overview of our analysis pipeline. Apps are auto-
matically run and the transmissions of sensitive data are com-
pared to what would be allowed. Those suspected of using a
side or covert channel are manually reverse engineered.

Before running each app, we gather the permission-
protected identifiers and data. We then execute each app while
collecting all of its network traffic. We apply a suite of de-
codings to the traffic flows and search for the permission-
protected data in the decoded traffic. We record all transmis-
sions and later filter for those containing permission-protected
data sent by apps not holding the requisite permissions. We
hypothesize that these are due to the use of side and covert
channels; that is, we are not looking for these channels, but
rather looking for evidence of their use (i.e., transmissions of
protected data). Then, we group the suspect transmissions by
the data type sent and the destination where it was sent, be-
cause we found that the same data-destination pair reflects the
same underlying side or covert channel. We take one example
per group and manually reverse engineer it to determine how
the app gained permission-protected information without the
corresponding permission.

Finally, we fingerprint the apps and libraries found using
covert- and side-channels to identify the static presence of the
same code in other apps in our corpus. A fingerprint is any
string constant, such as specific filename or error message,
that can be used to statically analyze our corpus to determine
if the same technique exists in other apps that did not get
triggered during our dynamic analysis phase.

USENIX Association 28th USENIX Security Symposium 607

3.1 App Collection

We wrote a Google Play Store scraper to download the most-
popular apps under each category. Because the popularity
distribution of apps is long tailed, our analysis of the 88,113
most-popular apps is likely to cover most of the apps that peo-
ple currently use. This includes 1,505 non-free apps we pur-
chased for another study [38]. We instrumented the scraper to
inspect the Google Play Store to obtain application executa-
bles (APK files) and their associated metadata (e.g., number
of installs, category, developer information, etc.).

As developers tend to update their Android software to add
new functionality or to patch bugs [64], these updates can also
be used to introduce new side and covert channels. Therefore,
it is important to examine different versions of the same app,
because they may exhibit different behaviours. In order to
do so, our scraper periodically checks if a new version of an
already downloaded app is available and downloads it. This
process allowed us to create a dataset consisting of 252,864
different versions of 88,113 Android apps.

3.2 Dynamic Analysis Environment

We implemented the dynamic testing environment described
in Figure 2, which consists of about a dozen Nexus 5X An-
droid phones running an instrumented version of the Android
Marshmallow platform.1 This purpose-built environment al-
lows us to comprehensively monitor the behaviour of each of
88,113 Android apps at the kernel, Android-framework, and
network traffic levels. We execute each app automatically us-
ing the Android Automator Monkey [6] to achieve scale by
eliminating any human intervention. We store the resulting
OS-execution logs and network traffic in a database for of-
fline analysis, which we discuss in Section 3.3. The dynamic
analysis is done by extending a platform that we have used in
previous work [66].

Platform-Level Instrumentation We built an instru-
mented version of the Android 6.0.1 platform (Marshmallow).
The instrumentation monitored resource accesses and logged
when apps were installed and executed. We ran apps one at a
time and uninstalled them afterwards. Regardless of the obfus-
cation techniques apps use to disrupt static analysis, no app
can avoid our instrumentation, since it executes in the system
space of the Android framework. In a sense, our environment
is a honeypot allowing apps to execute as their true selves.
For the purposes of preparing our bug reports to Google for
responsible disclosure of our findings, we retested our find-
ings on a stock Pixel 2 running Android Pie—the most-recent
version at the time—to demonstrate that they were still valid.

1While as of this writing Android Pie is the current release [35], Marsh-
mallow and older versions were used by a majority of users at the time that
we began data collection.

Kernel-Level Instrumentation We built and integrated a
custom Linux kernel into our testing environment to record
apps’ access to the file system. This module allowed us to
record every time an app opened a file for reading or writing
or unlinked a file. Because we instrumented the system calls
to open files, our instrumentation logged both regular files and
special files, such as device and interface files, and the proc/
filesystem, as a result of the “everything is a file” UNIX phi-
losophy. We also logged whenever an ioctl was issued to the
file system. Some of the side channels for bypassing permis-
sion checking in the Android platform may involve directly
accessing the kernel, and so kernel-level instrumentation pro-
vides clear evidence of these being used in practice.

We ignored the special device file /dev/ashmem (Android-
specific implementation of asynchronous shared memory for
inter-process communication) because it overwhelmed the
logs due to its frequent use. As Android assigns a separate
user (i.e., uid) to each app, we could accurately attribute the
access to such files to the responsible app.

Network-Level Monitoring We monitored all network
traffic, including TLS-secured flows, using a network moni-
toring tool developed for our previous research activities [63].
This network monitoring module leverages Android’s VPN
API to redirect all the device’s network traffic through a lo-
calhost service that inspects all network traffic, regardless of
the protocol used, through deep-packet inspection and in user-
space. It reconstructs the network streams and ascribes them
to the originating app by mapping the app owning the socket
to the UID as reported by the proc filesystem. Furthermore, it
also performs TLS interception by installing a root certificate
in the system trusted certificate store. This technique allows it
to decrypt TLS traffic unless the app performs advanced tech-
niques, such as certificate pinning, which can be identified by
monitoring TLS records and proxy exceptions [61].

Automatic App Execution Since our analysis framework
is based on dynamic analysis, apps must be executed so that
our instrumentation can monitor their behaviours. In order to
scale to hundreds of thousands of apps tested, we cannot rely
on real user interaction with each app being tested. As such,
we use Android’s UI/Application Exerciser Monkey, a tool
provided by Android’s development SDK to automate and
parallelize the execution of apps by simulating user inputs
(i.e., taps, swipes, etc.).

The Monkey injects a pseudo-random stream of simulated
user input events into the app, i.e., it is a UI fuzzer. We use the
Monkey to interact with each version of each app for a period
of ten minutes, during which the aforementioned tools log the
app’s execution as a result of the random UI events generated
by the Monkey. Apps are rerun if the operation fails during
execution. Each version of each app is run once in this manner;
our system also reruns apps if there is unused capacity.

608 28th USENIX Security Symposium USENIX Association

After running the app, the kernel, platform, and network
logs are collected. The app is then uninstalled along with any
other app that may have been installed through the process of
automatic exploration. We do this with a white list of allowed
apps; all other apps are uninstalled. The logs are then cleared
and the device is ready to be used for the next test.

3.3 Personal Information in Network Flows
Detecting whether an app has legitimately accessed a given re-
source is straightforward: we compare its runtime behaviour
with the permissions it had requested. Both users and re-
searchers assess apps’ privacy risks by examining their re-
quested permissions. This presents an incomplete picture,
however, because it only indicates what data an app might ac-
cess, and says nothing about with whom it may share it and
under what circumstances. The only way of answering these
questions is by inspecting the apps’ network traffic. However,
identifying personal information inside network transmissions
requires significant effort because apps and embedded third-
party SDKs often use different encodings and obfuscation
techniques to transmit data. Thus, it is a significant technical
challenge to be able to de-obfuscate all network traffic and
search it for personal information. This subsection discusses
how we tackle these challenges in detail.

Personal Information We define “personal information”
as any piece of data that could potentially identify a specific
individual and distinguish them from another. Online compa-
nies, such as mobile app developers and third-party advertis-
ing networks, want this type of information in order to track
users across devices, websites, and apps, as this allows them
to gather more insights about individual consumers and thus
generate more revenue via targeted advertisements. For this
reason, we are primarily interested in examining apps’ access
to the persistent identifiers that enable long-term tracking, as
well as their geolocation information.

We focus our study on detecting apps using covert and side
channels to access specific types of highly sensitive data, in-
cluding persistent identifiers and geolocation information. No-
tably, the unauthorized collection of geolocation information
in Android has been the subject of prior regulatory action [82].
Table 1 shows the different types of personal information that
we look for in network transmissions, what each can be used
for, the Android permission that protects it, and the subsec-
tion in this paper where we discuss findings that concern side
and covert channels for accessing that type of data.

Decoding Obfuscations In our previous work [66], we
found instances of apps and third-party libraries (SDKs) us-
ing obfuscation techniques to transmit personal information
over the network with varying degrees of sophistication. To
identify and report such cases, we automated the decoding
of a standard suite of standard HTTP encodings to identify

personal information encoded in network flows, such as gzip,
base64, and ASCII-encoded hexadecimal. Additionally, we
search for personal information directly, as well as the MD5,
SHA1, and SHA256 hashes of it.

After analyzing thousands of network traces, we still find
new techniques SDKs and apps use to obfuscate and encrypt
network transmissions. While we acknowledge their effort
to protect users’ data, the same techniques could be used to
hide deceptive practices. In such cases, we use a combination
of reverse engineering and static analysis to understand the
precise technique. We frequently found a further use of AES
encryption applied to the payload before sending it over the
network, often with hard-coded AES keys.

A few libraries followed best practices by generating ran-
dom AES session keys to encrypt the data and then encrypt
the session key with a hard-coded RSA public key, sending
both the encrypted data and encrypted session key together.
To de-cipher their network transmissions, we instrumented
the relevant Java libraries. We found two examples of third-
party SDKs “encrypting” their data by XOR-ing a keyword
over the data in a Viginère-style cipher. In one case, this was
in addition to both using standard encryption for the data and
using TLS in transmission. Other interesting approaches in-
cluded reversing the string after encoding it in base64 (which
we refer to as “46esab”), using base64 multiple times (base-
base6464), and using a permuted-alphabet version of base64
(sa4b6e). Each new discovery is added to our suite of decod-
ings and our entire dataset is then re-analyzed.

3.4 Finding Side and Covert Channels
Once we have examples of transmissions that suggest the
permission system was violated (i.e., data transmitted by an
app that had not been granted the requisite permissions to
do so), we then reverse engineer the app to determine how it
circumvented the permissions system. Finally, we use static
analysis to measure how prevalent this practice is among the
rest of our corpus.

Reverse Engineering After finding a set of apps exhibit-
ing behaviour consistent with the existence of side and covert
channels, we manually reverse engineered them. While the
reverse engineering process is time consuming and not easily
automated, it is necessary to determine how the app actually
obtained information outside of the permission system. Be-
cause many of the transmissions are caused by the same SDK
code, we only needed to reverse engineer each unique cir-
cumvention technique: not every app, but instead for a much
smaller number of unique SDKs. The destination endpoint for
the network traffic typically identifies the SDK responsible.

During the reverse engineering process, our first step was
to use apktool [7] to decompile and extract the smali bytecode
for each suspicious app. This allowed us to analyse and iden-
tify where any strings containing PII were created and from

USENIX Association 28th USENIX Security Symposium 609

Table 1: The types of personal information that we search for, the permissions protecting access to them, and the purpose for
which they are generally collected. We also report the subsection in this paper where we report side and covert channels for
accessing each type of data, if found, and the number of apps exploiting each. The dynamic column depicts the number of apps
that we directly observed inappropriately accessing personal information, whereas the static column depicts the number of apps
containing code that exploits the vulnerability (though we did not observe being executed during test runs).

Data Type Permission Purpose/Use Subsection No of Apps No of SDKs Channel Type
Dynamic Static Dynamic Static Covert Side

IMEI READ_PHONE_STATE Persistent ID 4.1 13 159 2 2 2 0
Device MAC ACCESS_NETWORK_STATE Persistent ID 4.2 42 12,408 1 1 0 1
Email GET_ACCOUNTS Persistent ID Not Found
Phone Number READ_PHONE_STATE Persistent ID Not Found
SIM ID READ_PHONE_STATE Persistent ID Not Found
Router MAC ACCESS_WIFI_STATE Location Data 4.3 5 355 2 10 0 2
Router SSID ACCESS_WIFI_STATE Location Data Not Found
GPS ACCESS_FINE_LOCATION Location Data 4.4 1 1 0 0 0 1

which data sources. For some particular apps and libraries,
our work also necessitated reverse engineering C++ code; we
used IdaPro [1] for that purpose.

The typical process was to search the code for strings cor-
responding to destinations for the network transmissions and
other aspects of the packets. This revealed where the data was
already in memory, and then static analysis of the code re-
vealed where that value first gets populated. As intentionally-
obfuscated code is more complicated to reverse engineer, we
also added logging statements for data and stack traces as new
bytecode throughout the decompiled app, recompiled it, and
ran it dynamically to get a sense of how it worked.

Measuring Prevalence The final step of our process was
to determine the prevalence of the particular side or covert
channel in practice. We used our reverse engineering analysis
to craft a unique fingerprint that identifies the presence of an
exploit in an embedded SDK, which is also robust against
false positives. For example, a fingerprint is a string constant
corresponding to a fixed encryption key used by one SDK, or
the specific error message produced by another SDK if the
operation fails.

We then decompiled all of the apps in our corpus and
searched for the string in the resulting files. Within smali
bytecode, we searched for the string in its entirety as a
const-string instruction. For shared objects libraries like
Unity, we use the strings command to output its printable
strings. We include the path and name of the file as matching
criteria to protect against false positives. The result is a set
of all apps that may also exploit the side or covert channel
in practice but for which our instrumentation did not flag for
manual investigation, e.g., because the app had been granted
the required permission, the Monkey did not explore that par-
ticular code branch, etc.

4 Results

In this section, we present our results grouped by the type of
permission that should be held to access the data; first we dis-
cuss covert and side channels enabling the access to persistent
user or device IDs (particularly the IMEI and the device MAC
address) and we conclude with channels used for accessing
users’ geolocation (e.g., through network infrastructure or
metadata present in multimedia content).

Our testing environment allowed us to identify five different
types of side and covert channels in use among the 88,113
different Android apps in our dataset. Table 1 summarizes our
findings and reports the number of apps and third-party SDKs
that we find exploiting these vulnerabilities in our dynamic
analysis and those in which our static analysis reveals code
that can exploit these channels. Note that this latter category—
those that can exploit these channels—were not seen as doing
so by our instrumentation; this may be due to the Automator
Monkey not triggering the code to exploit it or because the app
had the required permission and therefore the transmission
was not deemed suspicious.

4.1 IMEI

The International Mobile Equipment Identity (IMEI) is a nu-
merical value that identifies mobile phones uniquely. The
IMEI has many valid and legitimate operational uses to iden-
tify devices in a 3GPP network, including the detection and
blockage of stolen phones.

The IMEI is also useful to online services as a persistent
device identifier for tracking individual phones. The IMEI is a
powerful identifier as it takes extraordinary efforts to change
its value or even spoof it. In some jurisdictions, it is illegal
to change the IMEI [56]. Collection of the IMEI by third
parties facilitates tracking in cases where the owner tries to
protect their privacy by resetting other identifiers, such as the
advertising ID.

610 28th USENIX Security Symposium USENIX Association

Android protects access to the phone’s IMEI with the
READ_PHONE_STATE permission. We identified two third-
party online services that use different covert channels to ac-
cess the IMEI when the app does not have the permission
required to access the IMEI.

Salmonads and External Storage Salmonads is a “third
party developers’ assistant platform in Greater China” that
offers analytics and monetization services to app develop-
ers [67]. We identified network flows to salmonads.com com-
ing from five mobile apps that contained the device’s IMEI,
despite the fact that the apps did not have permission to ac-
cess it.

We studied one of these apps and confirmed that
it contained the Salmonads SDK, and then studied the
workings of the SDK closer. Our analysis revealed that
the SDK exploits covert channels to read this informa-
tion from the following hidden file on the SD card:
/sdcard/.googlex9/.xamdecoq0962. If not present, this
file is created by the Salmonads SDK. Then, whenever the
user installs another app with the Salmonads SDK embedded
and with legitimate access to the IMEI, the SDK—through
the host app—reads and stores the IMEI in this file.

The covert channel is the apps’ shared access to the SD
card. Once the file is written, all other apps with the same
SDK can simply read the file instead of obtaining access
through the Android API, which is regulated by the permis-
sion system. Beyond the IMEI, Salmonads also stores the
advertising ID—a resettable ID for advertising and analytics
purposes that allows opting out of interest-based advertising
and personalization—and the phone’s MAC address, which
is protected with the ACCESS_NETWORK_STATE permission.
We modified the file to store new random values and observed
that the SDK faithfully sent them onwards to Salmonads’ do-
mains. The collection of the advertising ID alongside other
non-resettable persistent identifiers and data, such as the IMEI,
undermines the privacy-preserving feature of the advertising
ID, which is that it can be reset. It also may be a violation of
Google’s Terms of Service [36],

Our instrumentation allowed us to observe five different
apps sending the IMEI without permission to Salmonads
using this technique. Static analysis of our entire app corpus
revealed that six apps contained the .xamdecoq0962 filename
hardcoded in the SDK as a string. The sixth app had been
granted the required permission to access the IMEI, which
is why we did not initially identify it, and so it may be the
app responsible for having initially written the IMEI to the
file. Three of the apps were developed by the same company,
according to Google Play metadata, while one of them has
since been removed from Google Play. The lower bound on
the number of times these apps were installed is 17.6 million,
according to Google Play metadata.

Baidu and External Storage Baidu is a large Chinese cor-
poration whose services include, among many others, an on-
line search engine, advertising, mapping services [14], and
geocoding APIs [13]. We observed network flows contain-
ing the device IMEI from Disney’s Hong Kong Disneyland
park app (com.disney.hongkongdisneyland_goo) to Baidu do-
mains. This app helps tourists to navigate through the Disney-
themed park, and the app makes use of Baidu’s Maps SDK.
While Baidu Maps initially only offered maps of mainland
China, Hong Kong, Macau and Taiwan, as of 2019, it now
provides global services.

Baidu’s SDK uses the same technique as Salmonads to
circumvent Android’s permission system and access the
IMEI without permission. That is, it uses a shared file
on the SD card so one Baidu-containing app with the
right permission can store it for other Baidu-containing
apps that do not have that permission. Specifically, Baidu
uses the following file to store and share this data:
/sdcard/backups/.SystemConfig/.cuid2. The file is a
base64-encoded string that, when decoded, is an AES-
encrypted JSON object that contains the IMEI as well as
the MD5 hash of the concatenation of “com.baidu” and the
phone’s Android ID.

Baidu uses AES in CBC mode with a static
key and the same static value for the initializa-
tion vector (IV). These values are, in hexadecimal,
33303231323130326469637564696162. The reason why
this value is not superficially representative of a ran-
dom hexadecimal string is because Baidu’s key is com-
puted from the binary representation of the ASCII string
30212102dicudiab—observe that when reversed, it reads
as baidu cid 2012 12 03. As with Salmonads, we con-
firmed that we can change the (encrypted) contents of this
file and the resulting identifiers were faithfully sent onwards
to Baidu’s servers.

We observed eight apps sending the IMEI of the device to
Baidu without holding the requisite permissions, but found
153 different apps in our repository that have hardcoded the
constant string corresponding to the encryption key. This in-
cludes two from Disney: one app each for their Hong Kong
and Shanghai (com.disney.shanghaidisneyland_goo) theme
parks. Out of that 153, the two most popular apps were
Samsung’s Health (com.sec.android.app.shealth) and Sam-
sung’s Browser (com.sec.android.app.sbrowser) apps, both
with more than 500 million installations. There is a lower
bound of 2.6 billion installations for the apps identified as
containing Baidu’s SDK. Of these 153 apps, all but 20 have
the READ_PHONE_STATE permission. This means that they
have legitimate access to the IMEI and can be the apps that
actually create the file that stores this data. The 20 that do
not have the permission can only get the IMEI through this
covert channel. These 20 apps have a total lower bound of
700 million installations.

USENIX Association 28th USENIX Security Symposium 611

4.2 Network MAC Addresses

The Media Access Control Address (MAC address) is a 6-byte
identifier that is uniquely assigned to the Network Interface
Controller (NIC) for establishing link-layer communications.
However, the MAC address is also useful to advertisers and
analytics companies as a hardware-based persistent identifier,
similar to the IMEI.

Android protects access to the device’s MAC address with
the ACCESS_NETWORK_STATE permission. Despite this, we
observed apps transmitting the device’s MAC address without
having permission to access it. The apps and SDKs gain
access to this information using C++ native code to invoke a
number of unguarded UNIX system calls.

Unity and IOCTLs Unity is a cross-platform game engine
developed by Unity Technologies and heavily used by An-
droid mobile games [77]. Our traffic analysis identified sev-
eral Unity-based games sending the MD5 hash of the MAC
address to Unity’s servers and referring to it as a uuid in the
transmission (e.g., as an HTTP GET parameter key name).
In this case, the access was happening inside of Unity’s C++
native library. We reverse engineered libunity.so to deter-
mine how it was obtaining the MAC address.

Reversing Unity’s 18 MiB compiled C++ library is more
involved than Android’s bytecode. Nevertheless, we were
able to isolate where the data was being processed precisely
because it hashes the MAC address with MD5. Unity provided
its own unlabelled MD5 implementation that we found by
searching for the constant numbers associated with MD5; in
this case, the initial state constants.

Unity opens a network socket and uses an ioctl (UNIX
“input-output control”) to obtain the MAC address of the WiFi
network interface. In effect, ioctls create a large suite of
“numbered” API calls that are technically no different than
well-named system calls like bind or close but used for in-
frequently used features. The behaviour of an ioctl depends
on the specific “request” number. Specifically, Unity uses the
SIOCGIFCONF2 ioctl to get the network interfaces, and then
uses the SIOCGIFHWADDR3 ioctl to get the corresponding
MAC address.

We observed that 42 apps were obtaining and sending to
Unity servers the MAC address of the network card with-
out holding the ACCESS_NETWORK_STATE permission. To
quantify the prevalence of this technique in our corpus of
Android apps, we fingerprinted this behaviour through an er-
ror string that references the ioctl code having just failed.
This allowed us to find a total of 12,408 apps containing
this error string, of which 748 apps do not hold the AC-
CESS_NETWORK_STATE permission.

2Socket ioctl get interface configuration
3Socket ioctl get interface hardware address

4.3 Router MAC Address

Access to the WiFi router MAC address (BSSID) is protected
by the ACCESS_WIFI_STATE permission. In Section 2, we
exemplified side channels with router MAC addresses being
ersatz location data, and discussed the FTC enacting millions
of dollars in fines for those engaged in the practice of using
this data to deceptively infer users’ locations. Android Nougat
added a requirement that apps hold an additional location per-
mission to scan for nearby WiFi networks [34]; Android Oreo
further required a location permission to get the SSID and
MAC address of the connected WiFi network. Additionally,
knowing the MAC address of a router allows one to link dif-
ferent devices that share Internet access, which may reveal
personal relations by their respective owners, or enable cross-
device tracking.

Our analysis revealed two side channels to access the con-
nected WiFi router information: reading the ARP cache and
asking the router directly. We found no side channels that
allowed for scanning of other WiFi networks. Note that this
issue affects all apps running on recent Android versions, not
just those without the ACCESS_WIFI_STATE permission. This
is because it affects apps without a location permission, and
it affects apps with a location permission that the user has not
granted using the ask-on-first-use controls.

Reading the ARP Table The Address Resolution Proto-
col (ARP) is a network protocol that allows discovering and
mapping the MAC layer address associated with a given IP
address. To improve network performance, the ARP protocol
uses a cache that contains a historical list of ARP entries, i.e.,
a historical list of IP addresses resolved to MAC address, in-
cluding the IP address and the MAC address of the wireless
router to which the device is connected (i.e., its BSSID).

Reading the ARP cache is done by opening the pseudo
file /proc/net/arp and processing its content. This file is
not protected by any security mechanism, so any app can ac-
cess and parse it to gain access to router-based geolocation
information without holding a location permission. We built
a working proof-of-concept app and tested it for Android Pie
using an app that requests no permissions. We also demon-
strated that when running an app that requests both the AC-
CESS_WIFI_STATE and ACCESS_COARSE_LOCATION per-
missions, when those permissions are denied, the app will ac-
cess the data anyway. We responsibly disclosed our findings
to Google in September, 2018.

We discovered this technique during dynamic analysis,
when we observed one library using this method in prac-
tice: OpenX [57], a company that according to their web-
site “creates programmatic marketplaces where premium pub-
lishers and app developers can best monetize their content
by connecting with leading advertisers that value their au-
diences.” OpenX’s SDK code was not obfuscated and so
we observed that they had named the responsible function

612 28th USENIX Security Symposium USENIX Association

Table 2: SDKs seen sending router MAC addresses and also containing code to access the ARP cache. For reference, we report
the number of apps and a lower bound of the total number of installations of those apps. We do this for all apps containing the
SDK; those apps that do not have ACCESS_WIFI_STATE, which means that the side channel circumvents the permissions system;
and those apps which do have a location permission, which means that the side channel circumvents location revocation.

Contact Incorporation Total Prevalance Wi-Fi Permission No Location Permission
SDK Name Domain Country (Apps) (Installs) (Apps) (Installs) (Apps) (Installs)

AIHelp cs30.net United States 30 334 million 3 210 million 12 195 million
Huq Industries huq.io United Kingdom 137 329 million 0 0 131 324 million
OpenX openx.net United States 42 1072 million 7 141 million 23 914 million
xiaomi xiaomi.com China 47 986 million 0 0 44 776 million
jiguang jpush.cn China 30 245 million 0 0 26 184 million
Peel peel-prod.com United States 5 306 million 0 0 4 206 million
Asurion mysoluto.com United States 14 2 million 0 0 14 2 million
Cheetah Mobile cmcm.com China 2 1001 million 0 0 2 1001 million
Mob mob.com China 13 97 million 0 0 6 81 million

getDeviceMacAddressFromArp. Furthermore, a close anal-
ysis of the code indicated that it would first try to get the data
legitimately using the permission-protected Android API; this
vulnerability is only used after the app has been explicitly de-
nied access to this data.

OpenX did not directly send the MAC address, but rather
the MD5 hash of it. Nevertheless, it is still trivial to compute
a MAC address from its corresponding hash: they are vul-
nerable to a brute-force attack on hash functions because of
the small number of MAC addresses (i.e., an upper bound of
48 bits of entropy).4 Moreover, insofar as the router’s MAC
address is used to resolve an app user’s geolocation using a
MAC-address-to-location mapping, one need only to hash the
MAC addresses in this mapping (or store the hashes in the ta-
ble) and match it to the received value to perform the lookup.

While OpenX was the only SDK that we observed ex-
ploiting this side channel, we searched our entire app cor-
pus for the string /proc/net/arp, and found multiple third-
party libraries that included it. In the case of one of them,
igexin, there are existing reports of their predatory be-
haviour [15]. In our case, log files indicated that after
igexin was denied permission to scan for WiFi, it read
/system/xbin/ip, ran /system/bin/ifconfig, and then
ran cat /proc/net/arp. Table 2 shows the prevalence of
third-party libraries with code to access the ARP cache.

Router UPnP One SDK in Table 2 includes another tech-
nique to get the MAC address of the WiFi access point: it uses
UPnP/SSDP discovery protocols. Three of Peel’s smart re-
mote control apps (tv.peel.samsung.app, tv.peel.smartremote,
and tv.peel.mobile.app) connected to 192.168.0.1, the IP
address of the router that was their gateway to the Internet.
The router in this configuration was a commodity home router
that supports universal plug-and-play; the app requested the
igd.xml (Internet gateway device configuration) file through

4Using commodity hardware, the MD5 for every possible MAC address
can be calculated in a matter of minutes [40].

port 1900 on the router. The router replied with, among other
manufacturing details, its MAC address as part of its UUID.
These apps also sent WiFi MAC addresses to their own servers
and a domain hosted by Amazon Web Services.

The fact that the router is providing this information to
devices hosted in the home network is not a flaw with Android
per se. Rather it is a consequence of considering every app on
every phone connected to a WiFi network to be on the trusted
side of the firewall.

4.4 Geolocation
So far our analysis has showed how apps circumvent the per-
mission system to gain access to persistent identifiers and data
that can be used to infer geolocation, but we also found sus-
picious behaviour surrounding a more sensitive data source,
i.e., the actual GPS coordinates of the device.

We identified 70 different apps sending location data to 45
different domains without having any of the location permis-
sions. Most of these location transmissions were not caused
by circumvention of the permissions system, however, but
rather the location data was provided within incoming pack-
ets: ad mediation services provided the location data embed-
ded within the ad link. When we retested the apps in a differ-
ent location, however, the returned location was no longer as
precise, and so we suspect that these ad mediators were us-
ing IP-based geolocation, though with a much higher degree
of precision than is normally expected. One app explicitly
used www.googleapis.com’s IP-based geolocation and we
found that the returned location was accurate to within a few
meters; again, however, this accuracy did not replicate when
we retested elsewhere [59]. We did, however, discover one
genuine side channel through photo EXIF data.

Shutterfly and EXIF Metadata We observed that the
Shutterfly app (com.shutterfly) sends precise geolocation data
to its own server (apcmobile.thislife.com) without hold-
ing a location permission. Instead, it sent photo metadata

USENIX Association 28th USENIX Security Symposium 613

from the photo library, which included the phone’s precise
location in its exchangeable image file format (EXIF) data.
The app actually processed the image file: it parsed the EXIF
metadata—including location—into a JSON object with la-
belled latitude and longitude fields and transmitted it to
their server.

While this app may not be intending to circumvent the
permission system, this technique can be exploited by a ma-
licious actor to gain access to the user’s location. When-
ever a new picture is taken by the user with geolocation en-
abled, any app with read access to the photo library (i.e.,
READ_EXTERNAL_STORAGE) can learn the user’s precise
location when said picture was taken. Furthermore, it also al-
lows obtaining historical geolocation fixes with timestamps
from the user, which could later be used to infer sensitive in-
formation about that user.

5 Related Work

We build on a vast literature in the field of covert- and side-
channel attacks for Android. However, while prior studies
generally only reported isolated instances of such attacks or
approached the problem from a theoretical angle, our work
combines static and dynamic analysis to automatically detect
real-world instances of misbehaviours and attacks.

Covert Channels Marforio et al. [49] proposed several sce-
narios to transmit data between two Android apps, including
the use of UNIX sockets and external storage as a shared
buffer. In our work we see that the shared storage is indeed
used in the wild. Other studies have focused on using mobile
noises [26, 70] and vibrations generated by the phone (which
could be inaudible to users) as covert channels [3, 17]. Such
attacks typically involve two physical devices communicating
between themselves. This is outside of the scope of our work,
as we focus on device vulnerabilities that are being exploited
by apps and third parties running in user space.

Side Channels Spreitzer et al. provided a good classifica-
tion of mobile-specific side-channels present in the litera-
ture [74]. Previous work has demonstrated how unprivileged
Android resources could be to used to infer personal infor-
mation about mobile users, including unique identifiers [72]
or gender [51]. Researchers also demonstrated that it may be
possible to identify users’ locations by monitoring the power
consumption of their phones [52] and by sensing publicly
available Android resources [91]. More recently, Zhang et al.
demonstrated a sensor calibration fingerprinting attack that
uses unprotected calibration data gathered from sensors like
the accelerometer, gyroscope, and magnetometer [90]. Oth-
ers have shown that unprotected system-wide information is
enough to infer input text in gesture-based keyboards [72].
Research papers have also reported techniques that leverage

lowly protected network information to geolocate users at the
network level [2, 54, 82]. We extend previous work by re-
porting third-party libraries and mobile applications that gain
access to unique identifiers and location information in the
wild by exploiting side and covert channels.

6 Discussion

Our work shows a number of side and covert channels that are
being used by apps to circumvent the Android permissions
system. The number of potential users impacted by these find-
ings is in the hundreds of millions. In this section, we discuss
how these issues are likely to defy users’ reasonable expecta-
tions, and how these behaviours may constitute violations of
various laws.

We note that these exploits may not necessarily be mali-
cious and intentional. The Shutterfly app that extracts geolo-
cation information from EXIF metadata may not be doing
this to learn location information about the user or may not be
using this data later for any purpose. On the other hand, cases
where an app contains both code to access the data through
the permission system and code that implements an evasion
do not easily admit an innocent explanation. Even less so for
those containing code to legitimately access the data and then
store it for others to access. This is particularly bad because
covert channels can be exploited by any app that knows the
protocol, not just ones sharing the same SDK. The fact that
Baidu writes user’s IMEI to publicly accessible storage al-
lows any app to access it without permission—not just other
Baidu-containing apps.

6.1 Privacy Expectations
In the U.S., privacy practices are governed by the “notice and
consent” framework: companies can give notice to consumers
about their privacy practices (often in the form of a privacy
policy), and consumers can consent to those practices by us-
ing the company’s services. While website privacy policies
are canonical examples of this framework in action, the per-
missions system in Android (or in any other platform) is an-
other example of the notice and consent framework, because
it fulfills two purposes: (i) providing transparency into the
sensitive resources to which apps request access (notice), and
(ii) requiring explicit user consent before an app can access,
collect, and share sensitive resources and data (consent). That
apps can and do circumvent the notice and consent framework
is further evidence of the framework’s failure. In practical
terms, though, these app behaviours may directly lead to pri-
vacy violations because they are likely to defy consumers’
expectations.

Nissenbaum’s “Privacy as Contextual Integrity” framework
defines privacy violations as data flows that defy contextual
information norms [55]. In Nissenbaum’s framework, data
flows are modeled by senders, recipients, data subjects, data

614 28th USENIX Security Symposium USENIX Association

types, and transmission principles in specific contexts (e.g.,
providing app functionality, advertising, etc.). By circumvent-
ing the permissions system, apps are able to exfiltrate data
to their own servers and even third parties in ways that are
likely to defy users’ expectations (and societal norms), par-
ticularly if it occurs after having just denied an app’s explicit
permission request. That is, regardless of context, were a user
to explicitly be asked about granting an app access to per-
sonal information and then explicitly declining, it would be
reasonable to expect that the data then would not be accessi-
ble to the app. Thus, the behaviours that we document in this
paper constitute clear privacy violations. From a legal and
policy perspective, these practices are likely to be considered
deceptive or otherwise unlawful.

Both a recent CNIL decision (France’s data protection au-
thority), with respect to GDPR’s notice and consent require-
ments, and various FTC cases, with respect to unfair and de-
ceptive practices under U.S. federal law—both described in
the next section—emphasize the notice function of the An-
droid permissions system from a consumer expectations per-
spective. Moreover, these issues are also at the heart of a re-
cent complaint brought by the Los Angeles County Attorney
(LACA) under the California State Unfair Competition Law.
The LACA complaint was brought against a popular mobile
weather app on related grounds. The case further focuses on
the permissions system’s notice function, while noting that,
“users have no reason to seek [geolocation data collection]
information by combing through the app’s lengthy [privacy
policy], buried within which are opaque discussions of [the de-
veloper’s] potential transmission of geolocation data to third
parties and use for additional commercial purposes. Indeed,
on information and belief, the vast majority of users do not
read those sections at all” [76].

6.2 Legal and Policy Issues

The practices that we highlight in this paper also highlight
several legal and policy issues. In the United States, for ex-
ample, they may run afoul of the FTC’s prohibitions against
deceptive practices and/or state laws governing unfair busi-
ness practices. In the European Union, they may constitute
violations of the General Data Protection Regulation (GDPR).

The Federal Trade Commission (FTC), which is charged
with protecting consumer interests, has brought a number
of cases under Section 5 of the Federal Trade Commission
(FTC) Act [79] in this context. The underlying complaints
have stated that circumvention of Android permissions and
collection of information absent users’ consent or in a man-
ner that is misleading is an unfair and deceptive act [84]. One
case suggested that apps requesting permissions beyond what
users expect or what are needed to operate the service were
found to be “unreasonable” under the FTC Act. In another
case, the FTC pursued a complaint under Section 5 alleging
that a mobile device manufacturer, HTC, allowed developers

to collect information without obtaining users’ permission via
the Android permission system, and failed to protect users
from potential third-party exploitation of a related security
flaw [81]. Finally, the FTC has pursued cases involving con-
sumer misrepresentations with respect to opt-out mechanisms
from tailored advertising in mobile apps more generally [83].

Also in the United States, state-level Unfair and Deceptive
Acts and Practices (UDAP) statutes may also apply. These
typically reflect and complement the corresponding federal
law. Finally, with growing regulatory and public attention
to issues pertaining to data privacy and security, data collec-
tion that undermines users’ expectations and their informed
consent may also be in violation of various general privacy
regulations, such as the Children’s Online Privacy Protection
Act (COPPA) [80], the recent California Privacy Protection
Act (CCPA), and potentially data breach notification laws that
focus on unauthorized collection, depending on the type of
personal information collected.

In Europe, these practices may be in violation of GDPR.
In a recent landmark ruling, the French data regulator, CNIL,
levied a 50 million Euro fine for a breach of GDPR’s trans-
parency requirements, underscoring informed consent require-
ments concerning data collection for personalized ads [25].
This ruling also suggests that—in the context of GDPR’s con-
sent and transparency provisions—permission requests serve
a key function of both informing users of data collection prac-
tices and as a mechanism for providing informed consent [81].

Our analysis brings to light novel permission circumven-
tion methods in actual use by otherwise legitimate Android
apps. These circumventions enable the collection of informa-
tion either without asking for consent or after the user has ex-
plicitly refused to provide consent, likely undermining users’
expectations and potentially violating key privacy and data
protection requirements on a state, federal, and even global
level. By uncovering these practices and making our data
public,5 we hope to provide sufficient data and tools for regu-
lators to bring enforcement actions, industry to identify and
fix problems before releasing apps, and allow consumers to
make informed decisions about the apps that they use.

7 Limitations and Future Work

During the course of performing this research, we made cer-
tain design decisions that may impact the comprehensiveness
and generalizability of this work. That is, all of the findings
in this paper represent lower bounds on the number of covert
and side channels that may exist in the wild.

Our study considers a subset of the permissions labeled by
Google as dangerous: those that control access to user iden-
tifiers and geolocation information. According to Android’s
documentation, this is indeed the most concerning and pri-
vacy intrusive set of permissions. However, there may be

5https://search.appcensus.io/

USENIX Association 28th USENIX Security Symposium 615

https://search.appcensus.io/

other permissions that, while not labeled as dangerous, can
still give access to sensitive user data. One example is the
BLUETOOTH permission; it allows apps to discover nearby
Bluetooth-enabled devices, which may be useful for consumer
profiling, as well as physical and cross-device tracking. Addi-
tionally, we did not examine all of the dangerous permissions,
specifically data guarded by content providers, such as ad-
dress book contacts and SMS messages.

Our methods rely on observations of network transmissions
that suggest the existence of such channels, rather than search-
ing for them directly through static analysis. Because many
apps and third-party libraries use obfuscation techniques to
disguise their transmissions, there may be transmissions that
our instrumentation does not flag as containing permission-
protected information. Additionally, there may be channels
that are exploited, but during our testing the apps did not
transmit the accessed personal data. Furthermore, apps could
be exposing channels, but never abuse them during our tests.
Even though we would not report such behavior, this is still
an unexpected breach of Android’s security model.

Many popular apps also use certificate pinning [28, 61],
which results in them rejecting the custom certificate used by
our man-in-the-middle proxy; our system then allows apps
to continue without interference. Certificate pinning is rea-
sonable behaviour from a security standpoint; it is possible,
however, that it is being used to thwart attempts to analyse
and study the network traffic of a user’s mobile phone.

Our dynamic analysis uses the Android Exerciser Monkey
as a UI fuzzer to generate random UI events to interact with
the apps. While in our prior work we found that the Monkey
explored similar code branches as a human for 60% of the
apps tested [66], it is likely that it still fails to explore some
code branches that may exploit covert and side channels. For
example, the Monkey fails to interact with apps that require
users to interact with login screens or, more generally, require
specific inputs to proceed. Such apps are consequently not
as comprehensively tested as apps amenable to automated
exploration. Future work should compare our approaches to
more sophisticated tools for automated exploration, such as
Moran et al.’s Crashscope [53], which generates inputs to an
app designed to trigger crash events.

Ultimately, these limitations only result in the possibility
that there are side and covert channels that we have not yet
discovered (i.e., false negatives). It has no impact on the va-
lidity of the channels that we did uncover (i.e., there are no
false positives) and improvements on our methodology can
only result in the discovery of more of these channels.

Moving forward, there has to be a collective effort coming
from all stakeholders to prevent apps from circumventing the
permissions system. Google, to their credit, have announced
that they are addressing many of the issues that we reported to
them [33]. However, these fixes will only be available to users
able to upgrade to Android Q—those with the means to own a
newer smartphone. This, of course, positions privacy as a lux-

ury good, which is in conflict with Google’s public pronounce-
ments [58]. Instead, they should treat privacy vulnerabilities
with the same seriousness that they treat security vulnerabili-
ties and issue hotfixes to all supported Android versions.

Regulators and platform providers need better tools to mon-
itor app behaviour and hold app developers accountable by
ensuring apps comply with applicable laws, namely by pro-
tecting users’ privacy and respecting their data collection
choices. Society should support more mechanisms, techni-
cal and other, that empower users’ informed decision-making
with greater transparency into what apps are doing on their
devices. To this end, we have made the list of all apps that
exploit or contain code to exploit the side and covert channels
we discovered available online [8].

Acknowledgments

This work was supported by the U.S. National Security
Agency’s Science of Security program (contract H98230-18-
D-0006), the Department of Homeland Security (contract
FA8750-18-2-0096), the National Science Foundation (grants
CNS-1817248 and grant CNS-1564329), the Rose Founda-
tion, the European Union’s Horizon 2020 Innovation Action
program (grant Agreement No. 786741, SMOOTH Project),
the Data Transparency Lab, and the Center for Long-Term Cy-
bersecurity at U.C. Berkeley. The authors would like to thank
John Aycock, Irwin Reyes, Greg Hagen, René Mayrhofer,
Giles Hogben, and Refjohürs Lykkewe.

References

[1] IDA: About. Ida pro.
https://www.hex-rays.com/products/ida/.

[2] J. P. Achara, M. Cunche, V. Roca, and A. Francillon.
WifiLeaks: Underestimated privacy implications of the
access wifi state Android permission. Technical Report
EURECOM+4302, Eurecom, 05 2014.

[3] A. Al-Haiqi, M. Ismail, and R. Nordin. A new
sensors-based covert channel on android. The Scientific
World Journal, 2014, 2014.

[4] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta,
and A. M. Memon. MobiGUITAR: Automated
model-based testing of mobile apps. IEEE Software,
32(5):53–59, 2015.

[5] Android Documentation. App Manifest Overview.
https://developer.android.com/guide/topics/
manifest/manifest-intro, 2019. Accessed:
February 12, 2019.

[6] Android Studio. UI/Application Exerciser Monkey.
https://developer.android.com/studio/test/
monkey.html, 2017. Accessed: October 12, 2017.

616 28th USENIX Security Symposium USENIX Association

https://www.hex-rays.com/products/ida/
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html

[7] Apktool. Apktool: A tool for reverse engineering
android apk files.
https://ibotpeaches.github.io/Apktool/.

[8] AppCensus Inc. Apps using Side and Covert Channels.
https://blog.appcensus.mobi/2019/06/01/
apps-using-side-and-covert-channels/, 2019.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
FlowDroid: Precise Context, Flow, Field,
Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In Proc. of PLDI, pages 259–269, 2014.

[10] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout:
analyzing the android permission specification. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 217–228. ACM,
2012.

[11] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller,
S. Arzt, S. Rasthofer, and E. Bodden. Mining apps for
abnormal usage of sensitive data. In Proceedings of the
37th International Conference on Software Engineering-
Volume 1, pages 426–436. IEEE Press, 2015.

[12] G. S. Babil, O. Mehani, R. Boreli, and M. A. Kaafar. On
the effectiveness of dynamic taint analysis for protecting
against private information leaks on android-based
devices. In 2013 International Conference on Security
and Cryptography (SECRYPT), pages 1–8, July 2013.

[13] Baidu. Baidu Geocoding API. https://geocoder.
readthedocs.io/providers/Baidu.html, 2019.
Accessed: February 12, 2019.

[14] Baidu. Baidu Maps SDK. http://lbsyun.baidu.
com/index.php?title=androidsdk, 2019.
Accessed: February 12, 2019.

[15] Bauer, A. and Hebeisen, C. Igexin advertising network
put user privacy at risk. https:
//blog.lookout.com/igexin-malicious-sdk,
2019. Accessed: February 12, 2019.

[16] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen,
J. Jung, S. Nath, R. Wang, and D. Wetherall.
Brahmastra: Driving Apps to Test the Security of
Third-Party Components. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 1021–1036,
San Diego, CA, 2014. USENIX Association.

[17] K. Block, S. Narain, and G. Noubir. An autonomic and
permissionless android covert channel. In Proceedings
of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pages 184–194. ACM,
2017.

[18] S. Cabuk, C. E. Brodley, and C. Shields. IP covert
channel detection. ACM Transactions on Information
and System Security (TISSEC), 12(4):22, 2009.

[19] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel,
G. Vigna, and Y. Chen. EdgeMiner: Automatically
Detecting Implicit Control Flow Transitions through
the Android Framework. In Proc. of NDSS, 2015.

[20] B. Chess and G. McGraw. Static analysis for security.
IEEE Security & Privacy, 2(6):76–79, 2004.

[21] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. Technical
report, Wisconsin Univ-Madison Dept of Computer
Sciences, 2006.

[22] M. Christodorescu, S. Jha, S. A Seshia, D. Song, and
R. E. Bryant. Semantics-aware malware detection. In
Security and Privacy, 2005 IEEE Symposium on, pages
32–46. IEEE, 2005.

[23] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti,
A. Zand, C. Kruegel, and G. Vigna.
Obfuscation-resilient privacy leak detection for mobile
apps through differential analysis. In Proceedings of
the ISOC Network and Distributed System Security
Symposium (NDSS), pages 1–16, 2017.

[24] Commission Nationale de l’Informatique et des
Libertés (CNIL). Data Protection Around the World.
https://www.cnil.fr/en/
data-protection-around-the-world, 2018.
Accessed: September 23, 2018.

[25] Commission Nationale de l’Informatique et des
Libertés (CNIL). The CNIL’s restricted committee
imposes a financial penalty of 50 Million euros against
Google LLC, 2019.

[26] Luke Deshotels. Inaudible sound as a covert channel in
mobile devices. In USENIX WOOT, 2014.

[27] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation, OSDI’10, pages 1–6, Berkeley, CA,
USA, 2010. USENIX Association.

[28] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: An analysis of android ssl (in) security. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 50–61. ACM, 2012.

USENIX Association 28th USENIX Security Symposium 617

https://ibotpeaches.github.io/Apktool/
https://blog.appcensus.mobi/2019/06/01/apps-using-side-and-covert-channels/
https://blog.appcensus.mobi/2019/06/01/apps-using-side-and-covert-channels/
https://geocoder.readthedocs.io/providers/Baidu.html
https://geocoder.readthedocs.io/providers/Baidu.html
http://lbsyun.baidu.com/index.php?title=androidsdk
http://lbsyun.baidu.com/index.php?title=androidsdk
https://blog.lookout.com/igexin-malicious-sdk
https://blog.lookout.com/igexin-malicious-sdk
https://www.cnil.fr/en/data-protection-around-the-world
https://www.cnil.fr/en/data-protection-around-the-world

[29] P. Faruki, A. Bharmal, V. Laxmi, M. S. Gaur, M. Conti,
and M. Rajarajan. Evaluation of android anti-malware
techniques against dalvik bytecode obfuscation. In
Trust, Security and Privacy in Computing and
Communications (TrustCom), 2014 IEEE 13th
International Conference on, pages 414–421. IEEE,
2014.

[30] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention,
comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, page 3, New York, NY, USA, 2012. ACM.

[31] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The most dangerous code
in the world: validating ssl certificates in non-browser
software. In Proceedings of the 2012 ACM conference
on Computer and communications security, pages
38–49. ACM, 2012.

[32] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
Androidleaks: Automatically detecting potential
privacy leaks in android applications on a large scale.
In Proc. of the 5th Intl. Conf. on Trust and Trustworthy
Computing, TRUST’12, pages 291–307, Berlin,
Heidelberg, 2012. Springer-Verlag.

[33] Google, Inc. Android Q privacy: Changes to data and
identifiers. https:
//developer.android.com/preview/privacy/
data-identifiers#device-identifiers.
Accessed: June 1, 2019.

[34] Google, Inc. Wi-Fi Scanning Overview.
https://developer.android.com/guide/topics/
connectivity/wifi-scan#
wifi-scan-permissions. Accessed: June 1, 2019.

[35] Google, Inc. Distribution dashboard. https:
//developer.android.com/about/dashboards,
May 7 2019. Accessed: June 1, 2019.

[36] Google Play. Usage of Google Advertising ID.
https://play.google.com/about/
monetization-ads/ads/ad-id/, 2019. Accessed:
February 12, 2019.

[37] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham,
N. Nguyen, and M. C. Rinard. Information flow
analysis of android applications in droidsafe. In NDSS,
volume 15, page 110, 2015.

[38] C. Han, I. Reyes, A. Elazari Bar On, J. Reardon, Á. Feal,
S. Egelman, and N. Vallina-Rodriguez. Do You Get
What You Pay For? Comparing The Privacy Behaviors
of Free vs. Paid Apps. In Workshop on Technology and
Consumer Protection, ConPro ’19, 2019.

[39] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo.
Securing web application code by static analysis and
runtime protection. In Proceedings of the 13th
international conference on World Wide Web, pages
40–52. ACM, 2004.

[40] Jeremi M. Gosney. Nvidia GTX 1080 Hashcat
Benchmarks. https://gist.github.com/epixoip/
6ee29d5d626bd8dfe671a2d8f188b77b, 2016.
Accessed: June 1, 2019.

[41] J. Kim, Y. Yoon, K. Yi, J. Shin, and SWRD Center.
Scandal: Static analyzer for detecting privacy leaks in
android applications. MoST, 12, 2012.

[42] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Annual International Cryptology
Conference, pages 388–397. Springer, 1999.

[43] Butler W Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, 1973.

[44] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka,
and A. Markopoulou. AntMonitor: A System for
Monitoring from Mobile Devices. In Workshop on
Crowdsourcing and Crowdsharing of Big (Internet)
Data, pages 15–20, 2015.

[45] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo.
Don’t kill my ads! Balancing Privacy in an
Ad-Supported Mobile Application Market. In Proc. of
ACM HotMobile, page 2, 2012.

[46] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer. Andrubis
- 1,000,000 Apps Later: A View on Current Android
Malware Behaviors. In badgers, pages 3–17, 2014.

[47] M. Liu, H. Wang, Y. Guo, and J. Hong. Identifying and
Analyzing the Privacy of Apps for Kids. In Proc. of
ACM HotMobile, 2016.

[48] D. Maiorca, D. Ariu, I. Corona, M. Aresu, and
G. Giacinto. Stealth attacks: An extended insight into
the obfuscation effects on android malware. Computers
& Security, 51:16–31, 2015.

[49] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun.
Analysis of the communication between colluding
applications on modern smartphones. In Proceedings of
the 28th Annual Computer Security Applications
Conference, pages 51–60. ACM, 2012.

[50] E. McReynolds, S. Hubbard, T. Lau, A. Saraf,
M. Cakmak, and F. Roesner. Toys That Listen: A Study
of Parents, Children, and Internet-Connected Toys. In
Proc. of ACM CHI, 2017.

618 28th USENIX Security Symposium USENIX Association

https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/preview/privacy/data-identifiers#device-identifiers
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/guide/topics/connectivity/wifi-scan#wifi-scan-permissions
https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
https://play.google.com/about/monetization-ads/ads/ad-id/
https://play.google.com/about/monetization-ads/ads/ad-id/
https://gist.github.com/epixoip/6ee29d5d626bd8dfe671a2d8f188b77b
https://gist.github.com/epixoip/6ee29d5d626bd8dfe671a2d8f188b77b

[51] Y. Michalevsky, D. Boneh, and G. Nakibly. Gyrophone:
Recognizing speech from gyroscope signals. In
USENIX Security Symposium, pages 1053–1067, 2014.

[52] Y. Michalevsky, A. Schulman, G. A. Veerapandian,
D. Boneh, and G. Nakibly. Powerspy: Location
tracking using mobile device power analysis. In
USENIX Security Symposium, pages 785–800, 2015.

[53] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas,
C. Vendome, and D. Poshyvanyk. Crashscope: A
practical tool for automated testing of android
applications. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion
(ICSE-C), pages 15–18, May 2017.

[54] L. Nguyen, Y. Tian, S. Cho, W. Kwak, S. Parab, Y. Kim,
P. Tague, and J. Zhang. Unlocin: Unauthorized location
inference on smartphones without being caught. In
2013 International Conference on Privacy and Security
in Mobile Systems (PRISMS), pages 1–8. IEEE, 2013.

[55] Helen Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 79:119, February 2004.

[56] United Kingdom of Great Britain and Northern Ireland.
Mobile telephones (re-programming) act.
http://www.legislation.gov.uk/ukpga/2002/
31/introduction, 2002.

[57] OpenX. Why we exist.
https://www.openx.com/company/, 2019.

[58] Sundar Pichai. Privacy Should Not Be a Luxury Good.
The New York Times, May 7 2019.
https://www.nytimes.com/2019/05/07/opinion/
google-sundar-pichai-privacy.html.

[59] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and
B. Gueye. IP geolocation databases: Unreliable? ACM
SIGCOMM Computer Communication Review,
41(2):53–56, 2011.

[60] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy,
W. Dabbous, and D. Choffnes. Meddle: middleboxes
for increased transparency and control of mobile traffic.
In Proceedings of the 2012 ACM conference on
CoNEXT student workshop, pages 65–66. ACM, 2012.

[61] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez,
S. Sundaresan, J. Amann, and P. Gill. Studying TLS
usage in Android apps. In Proceedings of the 13th
International Conference on emerging Networking
EXperiments and Technologies, pages 350–362. ACM,
2017.

[62] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez,
S. Sundaresan, M. Allman, C. Kreibich, and P. Gill.

Apps, Trackers, Privacy, and Regulators: A Global
Study of the Mobile Tracking Ecosystem. In
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2018.

[63] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan,
C. Kreibich, P. Gill, M. Allman, and V. Paxson.
Haystack: In Situ Mobile Traffic Analysis in User
Space. arXiv preprint arXiv:1510.01419, 2015.

[64] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes,
and N. Vallina-Rodriguez. Bug fixes, improvements,...
and privacy leaks. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2018.

[65] J. Ren, A. Rao, M. Lindorfer, A. Legout, and
D. Choffnes. ReCon: Revealing and Controlling Privacy
Leaks in Mobile Network Traffic. In Proceedings of the
ACM SIGMOBILE MobiSys, pages 361–374, 2016.

[66] I. Reyes, P. Wijesekera, J. Reardon, A. Elazari Bar On,
A. Razaghpanah, N. Vallina-Rodriguez, and S. Egelman.
“Won’t Somebody Think of the Children?” Examining
COPPA Compliance at Scale. Proceedings on Privacy
Enhancing Technologies, 2018(3):63–83, 2018.

[67] Salmonads. About us. http://publisher.salmonads.com,
2016.

[68] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar. On
the effectiveness of dynamic taint analysis for
protecting against private information leaks on android-
based devices. In SECRYPT, volume 96435, 2013.

[69] Sarah Schafer. With capital in panic, pizza deliveries
soar. The Washington Post, December 19 1998. https:
//www.washingtonpost.com/wp-srv/politics/
special/clinton/stories/pizza121998.htm.

[70] R. Schlegel, K. Zhang, X. Zhou, M. Intwala,
A. Kapadia, and X. Wang. Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In
NDSS, volume 11, pages 17–33, 2011.

[71] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you
ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid
to ask). In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 317–331,
Washington, DC, USA, 2010. IEEE Computer Society.

[72] L. Simon, W. Xu, and R. Anderson. Don’t interrupt me
while i type: Inferring text entered through gesture
typing on android keyboards. Proceedings on Privacy
Enhancing Technologies, 2016(3):136–154, 2016.

[73] Y. Song and U. Hengartner. PrivacyGuard: A
VPN-based Platform to Detect Information Leakage on
Android Devices. In Proc. of ACM SPSM, 2015.

USENIX Association 28th USENIX Security Symposium 619

http://www.legislation.gov.uk/ukpga/2002/31/introduction
http://www.legislation.gov.uk/ukpga/2002/31/introduction
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.nytimes.com/2019/05/07/opinion/google-sundar-pichai-privacy.html
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm
https://www.washingtonpost.com/wp-srv/politics/special/clinton/stories/pizza121998.htm

[74] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard.
Systematic classification of side-channel attacks: a case
study for mobile devices. IEEE Communications
Surveys & Tutorials, 20(1):465–488, 2017.

[75] Statista. Global market share held by the leading
smartphone operating systems in sales to end users
from 1st quarter 2009 to 2nd quarter 2018.
https://www.statista.com/statistics/266136,
2019. Accessed: February 11, 2019.

[76] COUNTY OF LOS ANGELES SUPERIOR COURT
OF THE STATE OF CALIFORNIA. Complaint for
injunctive relief and civil penalties for violations of the
unfair competition law. http://src.bna.com/EqH,
2019.

[77] Unity Technologies. Unity 3d.
https://unity3d.com, 2019.

[78] L. Tsai, P. Wijesekera, J. Reardon, I. Reyes,
S. Egelman, D. Wagner, N. Good, and J.W. Chen.
Turtle guard: Helping android users apply contextual
privacy preferences. In Thirteenth Symposium on
Usable Privacy and Security (SOUPS 2017), pages
145–162. USENIX Association, 2017.

[79] U.S. Federal Trade Commission. The federal trade
commission act. (ftc act).
https://www.ftc.gov/enforcement/statutes/
federal-trade-commission-act.

[80] U.S. Federal Trade Commission. Children’s online
privacy protection rule (“coppa”).
https://www.ftc.gov/enforcement/rules/
rulemaking-regulatory-reform-proceedings/
childrens-online-privacy-protection-rule,
November 1999.

[81] U.S. Federal Trade Commission. In the Matter of HTC
America, Inc.
https://www.ftc.gov/sites/default/files/
documents/cases/2013/07/130702htcdo.pdf,
2013.

[82] U.S. Federal Trade Commission. Mobile Advertising
Network InMobi Settles FTC Charges It Tracked
Hundreds of Millions of Consumers’ Locations
Without Permission. https:
//www.ftc.gov/news-events/press-releases/
2016/06/mobile-advertising-network
-inmobi-settles-ftc-charges-it-tracked ,
June 22 2016.

[83] U.S. Federal Trade Commission. In the Matter of Turn
Inc.
https://www.ftc.gov/system/files/documents/

cases/152_3099_c4612_turn_complaint.pdf,
2017.

[84] U.S. Federal Trade Commission. Mobile security
updates: Understanding the issues. https://www.ftc.
gov/system/files/documents/reports/
mobile-security-updates-understanding-issues/
mobile_security_updates_understanding_the_
issues_publication_final.pdf, 2018.

[85] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,
D. Wagner, and K. Beznosov. Android permissions
remystified: A field study on contextual integrity. In
24th USENIX Security Symposium (USENIX Security
15), pages 499–514, Washington, D.C., August 2015.
USENIX Association.

[86] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon,
S. Egelman, D. Wagner, and K. Beznosov. The
feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences. In 2017
IEEE Symposium on Security and Privacy (SP), pages
1077–1093, May 2017.

[87] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang. Appintent: Analyzing sensitive data
transmission in android for privacy leakage detection.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
1043–1054. ACM, 2013.

[88] B. Yankson, F. Iqbal, and P.C.K. Hung. Privacy
preservation framework for smart connected toys. In
Computing in Smart Toys, pages 149–164. Springer,
2017.

[89] S. Yong, D. Lindskog, R. Ruhl, and P. Zavarsky. Risk
Mitigation Strategies for Mobile Wi-Fi Robot Toys
from Online Pedophiles. In Proc. of IEEE SocialCom,
pages 1220–1223. IEEE, 2011.

[90] J. Zhang, A. R. Beresford, and I. Sheret. Sensorid:
Sensor calibration fingerprinting for smartphones. In
Proceedings of the 40th IEEE Symposium on Security
and Privacy (SP). IEEE, May 2019.

[91] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,
X. Wang, C. A. Gunter, and K. Nahrstedt. Identity,
location, disease and more: Inferring your secrets from
android public resources. In Proc. of 2013 ACM
SIGSAC conference on Computer & Communications
Security. ACM, 2013.

[92] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu,
F. Schaub, S. Wilson, N. Sadeh, S. M. Bellovin, and
J. Reidenberg. Automated analysis of privacy
requirements for mobile apps. In 24th Network &

Distributed System Security Symposium, 2017.

620 28th USENIX Security Symposium USENIX Association

https://www.statista.com/statistics/266136
http://src.bna.com/EqH
https://unity3d.com
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/statutes/federal-trade-commission-act
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htcdo.pdf
https://www.ftc.gov/sites/default/files/documents/cases/2013/07/130702htcdo.pdf
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/system/files/documents/cases/152_3099_c4612_turn_complaint.pdf
https://www.ftc.gov/system/files/documents/cases/152_3099_c4612_turn_complaint.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf
https://www.ftc.gov/system/files/documents/reports/mobile-security-updates-understanding-issues/mobile_security_updates_understanding_the_issues_publication_final.pdf

SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks

Saad Islam1, Ahmad Moghimi1, Ida Bruhns2, Moritz Krebbel2, Berk Gulmezoglu1, Thomas Eisenbarth1, 2,
and Berk Sunar1

1Worcester Polytechnic Institute, Worcester, MA, USA
2 University of Lübeck, Lübeck, Germany

Abstract
Modern microarchitectures incorporate optimization tech-
niques such as speculative loads and store forwarding to
improve the memory bottleneck. The processor executes the
load speculatively before the stores, and forwards the data
of a preceding store to the load if there is a potential depen-
dency. This enhances performance since the load does not
have to wait for preceding stores to complete. However, the
dependency prediction relies on partial address information,
which may lead to false dependencies and stall hazards.

In this work, we are the first to show that the dependency
resolution logic that serves the speculative load can be ex-
ploited to gain information about the physical page mappings.
Microarchitectural side-channel attacks such as Rowhammer
and cache attacks like Prime+Probe rely on the reverse engi-
neering of the virtual-to-physical address mapping. We pro-
pose the SPOILER attack which exploits this leakage to speed
up this reverse engineering by a factor of 256. Then, we show
how this can improve the Prime+Probe attack by a 4096
factor speed up of the eviction set search, even from sand-
boxed environments like JavaScript. Finally, we improve the
Rowhammer attack by showing how SPOILER helps to con-
duct DRAM row conflicts deterministically with up to 100%
chance, and by demonstrating a double-sided Rowhammer
attack with normal user’s privilege. The later is due to the
possibility of detecting contiguous memory pages using the
SPOILER leakage.

1 Introduction

Microarchitectural attacks have evolved over the past decade
from attacks on weak cryptographic implementations [5] to
devastating attacks breaking through layers of defenses pro-
vided by the hardware and the Operating System (OS) [52].
These attacks can steal secrets such as cryptographic keys [4,
44] or keystrokes [33]. More advanced attacks can entirely
subvert the OS memory isolation to read the memory content
from more privileged security domains [35], and to bypass

defense mechanisms such as Kernel Address Space Layout
Randomization (KASLR) [11, 17]. Rowhammer attacks can
further break the data and code integrity by tampering with
memory contents [29,47]. While most of these attacks require
local access and native code execution, various efforts have
been successful in conducting them remotely [50] or from
within a remotely accessible sandbox such as JavaScript [42].

Memory components such as DRAM [29] and cache [43]
are not the only microarchitectural attack surfaces. Spectre
attacks on the branch prediction unit [30, 38] imply that side
channels such as caches can be used as a primitive for more
advanced attacks on speculative engines. Speculative engines
predict the outcome of an operation before its completion,
and they enable execution of the following dependent instruc-
tions ahead of time based on the prediction. As a result, the
pipeline can maximize the instruction level parallelism and re-
source usage. In rare cases where the prediction is wrong, the
pipeline needs to be flushed resulting in performance penal-
ties. However, this approach suffers from a security weakness,
in which an adversary can fool the predictor and introduce ar-
bitrary mispredictions that leave microarchitectural footprints
in the cache. These footprints can be collected through the
cache side channel to steal secrets.

Modern processors feature further speculative behavior
such as memory disambiguation and speculative loads [10]. A
load operation can be executed speculatively before preced-
ing store operations. During the speculative execution of the
load, false dependencies may occur due to the unavailability
of physical address information. These false dependencies
need to be resolved to avoid computation on invalid data. The
occurrence of false dependencies and their resolution depend
on the actual implementation of the memory subsystem. Intel
uses a proprietary memory disambiguation and dependency
resolution logic in the processors to predict and resolve false
dependencies that are related to the speculative load. In this
work, we discover that the dependency resolution logic suffers
from an unknown false dependency independent of the 4K
aliasing [40, 49]. The discovered false dependency happens
during the 1 MB aliasing of speculative memory accesses

USENIX Association 28th USENIX Security Symposium 621

which is exploited to leak information about physical page
mappings.

The state-of-the-art microarchitectural attacks [25, 45] ei-
ther rely on knowledge of physical addresses or are signifi-
cantly eased by that knowledge. Yet, knowledge of the physi-
cal address space is only granted with root privileges. Cache
attacks such as Prime+Probe on the Last-Level Cache (LLC)
are challenging due to the unknown mapping of virtual ad-
dresses to cache sets and slices. Knowledge about the physical
page mappings enables more attack opportunities using the
Prime+Probe technique. Rowhammer [29] attacks require
efficient access to rows within the same bank to induce fast
row conflicts. To achieve this, an adversary needs to reverse
engineer layers of abstraction from the virtual address space
to DRAM cells. Availability of physical address information
facilitates this reverse engineering process. In sandboxed en-
vironments, attacks are more limited, since in addition to the
limited access to the address space, low-level instructions
are also inaccessible [18]. Previous attacks assume special
access privileges only granted through weak software config-
urations [25,34,55] to overcome some of these challenges. In
contrast, SPOILER only relies on simple operations, load and
store, to recover crucial physical address information, which
in turn enables Rowhammer and cache attacks, by leaking
information about physical pages without assuming any weak
configuration or special privileges.

1.1 Our Contribution

We have discovered a novel microarchitectural leakage which
reveals critical information about physical page mappings
to user space processes. The leakage can be exploited by a
limited set of instructions, which is visible in all Intel genera-
tions starting from the 1st generation of Intel Core processors,
independent of the OS and also works from within virtual ma-
chines and sandboxed environments. In summary, this work:

1. exposes a previously unknown microarchitectural leak-
age stemming from the false dependency hazards during
speculative load operations.

2. proposes an attack, SPOILER, to efficiently exploit this
leakage to speed up the reverse engineering of virtual-to-
physical mappings by a factor of 256 from both native
and JavaScript environments.

3. demonstrates a novel eviction set search technique from
JavaScript and compares its reliability and efficiency to
existing approaches.

4. achieves efficient DRAM row conflicts and the first
double-sided Rowhammer attack with normal user-level
privilege using the contiguous memory detection capa-
bility of SPOILER.

5. explores how SPOILER can track nearby load operations
from a more privileged security domain right after a
context switch.

1.2 Related Work

Kosher et al. [30] and Maisuradze et al. [38] have exploited
vulnerabilities in the speculative branch prediction unit. Tran-
sient execution of instructions after a fault, as exploited by
Lipp et al. [35] and Bulck et al. [52], can leak memory con-
tent of protected environments. Similarly, transient behavior
due to the lazy store/restore of the FPU and SIMD registers
can leak register contents from other contexts [48]. New vari-
ants of both Meltdown and Spectre have been systematically
analyzed [7]. The Speculative Store Bypass (SSB) vulnera-
bility [21] is a variant of the Spectre attack and relies on the
stale sensitive data in registers to be used as an address for
speculative loads which may then allow the attacker to read
this sensitive data. In contrast to previous attacks on specu-
lative and transient behaviors, we discover a new leakage on
the undocumented memory disambiguation and dependency
resolution logic. SPOILER is not a Spectre attack. The root
cause for SPOILER is a weakness in the address speculation of
Intel’s proprietary implementation of the memory subsystem
which directly leaks timing behavior due to physical address
conflicts. Existing spectre mitigations would therefore not
interfere with SPOILER.

The timing behavior of the 4K aliasing false dependency
on Intel processors have been studied [12, 61]. MemJam [40]
uses this behavior to perform a side-channel attack, and Sul-
livan et al. [49] demonstrate a covert channel. These works
only mention the 4K aliasing as documented by Intel [24],
and the authors conclude that the address aliasing check is a
two stage approach: Firstly, it uses page offset for the initial
guess. Secondly, it performs the final resolution based on the
exact physical address. On the contrary, we discover that the
undocumented address resolution logic performs additional
partial address checks that lead to an unknown, but observable
aliasing behavior based on the physical address.

Several microarchitectural attacks have been discovered to
recover virtual address information and break KASLR by ex-
ploiting the Translation Lookaside Buffer (TLB) [22], Branch
Target Buffer (BTB) [11] and Transactional Synchronization
Extensions (TSX) [27]. Additionally, Gruss et al. [17] ex-
ploit the timing information obtained from the prefetch
instruction to leak the physical address information. The main
obstacle to this approach is that the prefetch instruction is
not accessible in JavaScript, and it can be disabled in native
sandboxed environments [62], whereas SPOILER is applicable
to sandboxed environments including JavaScript.

Knowledge of the physical address enables adversaries to
bypass OS protections [28] and ease other microarchitectural
attacks [34]. For instance, the procfs filesystem exposes
physical addresses [34], and Huge pages allocate contiguous

622 28th USENIX Security Symposium USENIX Association

physical memory [25, 36]. Drammer [55] exploits the An-
droid ION memory allocator to access contiguous memory.
However, access to the aforementioned primitives is restricted
on most environments by default. We do not have any assump-
tion about the OS and software configuration, and we exploit
a hardware leakage with minimum access rights to find virtual
pages that have the same least significant 20 physical address
bits. GLitch [13] detects contiguous physical pages by ex-
ploiting row conflicts through the GPU interface. In contrast,
our attack does not rely on a specific integrated GPU configu-
ration, and it is widely applicable to any system running on
an Intel CPU. We use SPOILER to find contiguous physical
pages with a high probability and verify it by producing row
conflicts. SPOILER is particularly helpful for attacks in sand-
boxed low-privilege environments such as JavaScript, where
previous methods require a time-consuming brute forcing of
the memory addresses [18, 42, 47].

2 Background

2.1 Memory Management
The virtual memory manager shares the DRAM across all
running tasks by assigning isolated virtual address spaces to
each task. The assigned memory is allocated in pages, which
are typically 4 kB each, and each virtual page will be stored as
a physical page in DRAM through a virtual-to-physical page
mapping. Memory instructions operate on virtual addresses,
which are translated within the processor to the correspond-
ing physical addresses. The page offset comprising the least
significant 12 bits of the virtual address is not translated. The
processor only translates the bits in the rest of the virtual
address, the virtual page number. The OS is the reference for
this translation, and the processor stores the translation results
inside the TLB. As a result, repeated translations of the same
address are performed more efficiently.

2.2 Cache Hierarchy
Modern processors incorporate multiple levels of caches to
avoid the DRAM access latency. The cache memory on Intel
processors is organized into sets and slices. Each set can store
a certain number of lines, where the line size is 64 bytes. The
6 Least Significant Bits (LSBs) of the physical address are
used to determine the offset within a line and the remaining
bits are used to determine which set to store the cache line in.
The number of physical address bits that are used for mapping
is higher for the LLC, since it has a large number of sets, e.g.,
8192 sets. Hence, the untranslated part of the virtual address
bits which is the page offset, cannot be used to index the LLC
sets. Instead, higher physical address bits are used. Further,
each set of LLC is divided into multiple slices, one slice for
each logical processor. The mapping of the physical addresses
to the slices uses an undocumented function [26]. When the

processor accesses a memory address, a cache hit or miss
occurs. If a miss occurs in all cache levels, the memory line
has to be fetched from DRAM. Accesses to the same memory
address would be served from the cache unless other memory
accesses evict that cache line. In addition, we can use the
clflush instruction, which follows the same memory access
check as other memory operations, to evict our own cache
lines from the entire cache hierarchy.

2.3 Prime+Probe Attack
In the Prime+Probe attack, the attacker first fills an entire
cache set by accessing memory addresses that are mapped
to the same set, an eviction set. Later, the attacker checks
whether the victim program has displaced any entry in the
cache set by accessing the eviction set again and measuring
the execution time. If this is the case, the attacker can de-
tect congruent addresses, since the displaced entries cause an
increased access time. However, finding the eviction sets is
difficult due to the unknown translation of virtual addresses
to physical addresses. Since an unprivileged attacker has no
access to hugepages [23] or the virtual-to-physical page map-
ping such as the pagemap file [34], knowledge about the phys-
ical address bits greatly speeds up the eviction set search.

2.4 Rowhammer Attack
DRAM consists of multiple memory banks, and each bank is
subdivided into rows. When the processor accesses a memory
location, the corresponding row needs to be activated and
loaded into the row buffer. If the processor accesses the same
row again, it is called a row hit, and the request will be served
from the row buffer. Otherwise, it is called a row conflict, and
the previous row will be deactivated and copied back to the
original row location, after which the new row is activated.
DRAM cells leak charge over time and need to be refreshed
periodically to maintain the data. A Rowhammer [29] at-
tack causes cells of a victim row to leak faster by activating
the neighboring rows repeatedly. If the refresh cycle fails
to refresh the victim row fast enough, that leads to bit flips.
Once bit flips are found, they can be exploited by placing any
security-critical data structure or code page at that particu-
lar location and triggering the bit flip again [16, 47, 60]. The
Rowhammer attack requires fast access to the same DRAM
cells by bypassing the CPU cache, e.g., using clflush [29].
Additionally, cache eviction based on an eviction set can
also result in access to DRAM cells when clflush is not
available [3, 18]. Efficiently building eviction sets may thus
also enhance Rowhammer attacks. For a successful Rowham-
mer attack, it is essential to collocate multiple memory pages
within the same bank and adjacent to each other. A number
of physical address bits, depending on the hardware configu-
ration, are used to map memory pages to banks [45]. Since
the rows are generally placed sequentially within the banks,

USENIX Association 28th USENIX Security Symposium 623

PA [:0]

VA [11:0]PA [19:12]VA [:12]...
VA [11:0]PA [19:12]VA [:12]...

VA [11:0]PA [19:12]VA [:12]...

...

...
PA [:0]...

PA [:0]...

DATA...
DATA...

DATA...

... ...

LB

SABSDB

MOB

DATAVA[:0]PA[:0]...
...

PAB

TLB

PMH

index 0

index n

index 0

index n

index 0

index k

Stored Data μOp Store Address μOp

DCACHE

Figure 1: The Memory Order Buffer includes circular buffers
SDB, SAB and LB. SDB, SAB and PAB of the DCACHE
have the same number of entries. SAB may initially hold the
virtual address and the partial physical address. MOB requests
the TLB to translate the virtual address and update the PAB
with the translated physical address.

access to adjacent rows within the same bank can be achieved
if we have access to contiguous physical pages.

2.5 Memory Order Buffer

The processor manages memory operations using the Memory
Order Buffer (MOB). MOB is tightly coupled with the data
cache. The MOB assures that memory operations are executed
efficiently by following the Intel memory ordering rule [39]
in which memory stores are executed in-order and memory
loads can be executed out-of-order. These rules have been
enforced to improve the efficiency of memory accesses, while
guaranteeing their correct commitment. Figure 1 shows the
MOB schematic according to Intel [1, 2]. The MOB includes
circular buffers, store buffer1 and load buffer (LB). A store
will be decoded into two micro ops to store the address and
data, respectively, to the store buffer. The store buffer enables
the processor to continue executing other instructions before
commitment of the stores. As a result, the pipeline does not
have to stall for the stores to complete. This further enables
the MOB to support out-of-order execution of the load.

Store forwarding is an optimization mechanism that sends
the store data to a load if the load address matches any of
the store buffer entries. This is a speculative process, since
the MOB cannot determine the true dependency of the load
on stores based on the store buffer. Intel’s implementation
of the store buffer is undocumented, but a potential design
suggests that it will only hold the virtual address, and it may
include part of the physical address [1, 2, 31]. As a result, the
processor may falsely forward the data, although the physical
addresses do not match. The complete resolution will be de-
layed until the load commitment, since the MOB needs to ask

1Store buffer consists of Store Address Buffer (SAB) and Store Data Buffer
(SDB). For simplicity, we use Store Buffer to mention the logically combined
SAB and SDB units.

the TLB for the complete physical address information, which
is time consuming. Additionally, the data cache (DCACHE)
may hold the translated store addresses in a Physical Address
Buffer (PAB) with equal number of entries as the store buffer.

3 Speculative Load Hazards

As we mentioned earlier, memory loads can be executed
out-of-order and before the preceding memory stores. If
one of the preceding stores modifies the content of a lo-
cation in memory, the memory load address is referring to,
out-of-order execution of the load will operate on stale data,
which results in invalid execution of a program. This out-of-
order execution of the memory load is a speculative behavior,
since there is no guarantee during the execution time of the
load that the virtual addresses corresponding to the memory
stores do not conflict with the load address after translation
to physical addresses. Figure 2 demonstrates this effect on
a hypothetical processor with 7 pipeline stages. As multiple
stores may be blocked due to limited resources, the execu-
tion of the load and dependent instructions in the pipeline, the
load block, will bypass the stores since the MOB assumes
the load block to be independent of the stores. This specula-
tive behavior improves the memory bottleneck by letting other
instructions continue their execution. However, if the depen-
dency of the load and preceding stores is not verified, the
load block may be computed on incorrect data which is either
falsely forwarded by store forwarding (false dependency), or
loaded from a stale cache line (unresolved true dependency).
If the processor detects a false dependency before committing
the load, it has to flush the pipeline and re-execute the load
block. This will cause observable performance penalties and
timing behavior.

3.1 Dependency Resolution
Dependency checks and resolution occur in multiple stages
depending on the availability of the address information in the
store buffer. A load instruction needs to be checked against
all preceding stores in the store buffer to avoid false depen-
dencies and to ensure the correctness of the data. A potential
design [20, 31],2 suggests the following stages for the depen-
dency check and resolution, as shown in Figure 3:

1. Loosenet: The first stage is the loosenet check where
the page offsets of the load and stores are compared3.
In case of a loosenet hit, the compared load and store
may be dependent and the processor will proceed to the
next check stage.

2The implementation of the MOB used in Intel processors is unpublished
and therefore we cannot be certain about the precise architecture. Our results
agree with some of the possible designs that are described in the Intel patents.

3According to Ld_Blocks_Partial:Address_Alias Hardware Perfor-
mance Counter (HPC) event [24], loosenet is defined by Intel as the mecha-
nism that only compare the page offsets.

624 28th USENIX Security Symposium USENIX Association

Hazard

store a → X
store b → Y
store c → Z
load d← W
inc d

F D X1 X2 X3 X4 C

Busy
Resource

Load Block
Bypasses Stores

Dependency Check
Before Commit

(State 1) (State 2) (State 3) (State 4)

Flush The Pipeline

Figure 2: The speculative load is demonstrated on a hypothetical processor with 7 pipeline stages: F = Fetch, D = Decode, X1−4 =
Executions, and C = Commit. When the memory stores are blocked competing for resources (State 1), the load will bypass the
stores (State 2). The load block including the dependent instructions will not be committed until the dependency of the address
W versus X ,Y ,Z are resolved (State 3). In case of a dependency hazard (State 4), the pipeline is flushed and the load is restarted.

Yes

No

Loosenet
 Hit? No

Yes No

Finenet
 Hit?

Yes

No
Physical
Address
Match?

Block Load /
Forward Store

Proceed with
Load

Redispatch
Load

Yes

No
Partial

Physical Addr
Hit?

Figure 3: The dependency check logic: loosenet initially
checks the least 12 significant bits (page offset) and the finenet
checks the upper address bits, related to the page number. The
final dependency using the physical address matching might
still fail due to partial physical address checks.

2. Finenet: The next stage, called finenet, uses upper ad-
dress bits. The finenet can be implemented to check the
upper virtual address bits [20], or the physical address
tag [31]. Either way, it is an intermediate stage, and it is
not the final dependency resolution. In case of a finenet
hit, the processor blocks the load and/or forwards the
store data, otherwise, the dependency resolution will go
into the final stage.

3. Physical Address Matching: At the final stage, the
physical addresses will be checked. Since this stage is
the final chance to resolve potential false dependencies,
we expect the full physical address to be checked. How-
ever, one possible design suggests that if the physical ad-
dresses are not available, the physical address matching
returns true and continues with the store forwarding [20].

Since the page offset is identical between the virtual and phys-
ical address, loosenet can be performed as soon as the store
is decoded. [2] suggests that the store buffer only holds bit
19 to 12 of the physical address. Although the PAB holds the
full translated physical address, it is not clear in which stage
this information can be available to the MOB. As a result,

the finenet check may be implemented based on checking the
partial physical address bits. As we verify later, the depen-
dency resolution logic may fail to resolve the dependency at
multiple intermediate stages due to unavailability of the full
physical address.

4 The SPOILER Attack

The attack model for SPOILER is the same as Rowhammer
and cache attacks where the attacker’s code is needed to be
executed on the same underlying hardware as of the victim.
As described in Section 3, speculative loads may face other
aliasing conditions in addition to the 4K aliasing, due to the
partial checks on the higher address bits. To confirm this, we
design an experiment to observe timing behavior of a specu-
lative load based on higher address bits. For this purpose, we
propose Algorithm 1 that executes a speculative load after
multiple stores and further make sure to fill the store buffer
with addresses that cause 4K aliasing during the execution of
the load. Having w as the window size, the algorithm iterates
over a number of different memory pages, and for each page, it
performs stores to that page and all previous w pages within
a window. Since the size of the store buffer varies between
different processor generations, we choose a big enough win-
dow (w = 64) to ensure that the load has 4K aliasing with
the maximum number of entries in the store buffer and hence
maximum potential conflicts. Following the stores, we mea-
sure the timing of a load operation from a different memory
page, as defined by x. Since we want the load to be executed
speculatively, we can not use a store fence such as mfence be-
fore the load. As a result, our measurements are an estimate
of execution time for the speculatively load and nearby mi-
croarchitectural events. This may include a negligible portion
of overhead for the execution of stores, and/or any delay due
to the dependency resolution. If we iterate over a diverse set
of addresses with different virtual and physical page numbers,
but the same page offset, we should be able to monitor any
discrepancy.

USENIX Association 28th USENIX Security Symposium 625

Algorithm 1 Address Aliasing
for p from w to PAGE_COUNT do

for i from w to 0 do
data store−−→ bu f f er[(p− i)×PAGE_SIZE]

end for
t1 = rdtscp()

data load←−− bu f f er[x×PAGE_SIZE]
t2 = rdtscp()
measure[p]← t2− t1

end for
return measure

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

C
y
c
le

s

rdtsc

(a) Step-wise peaks with a very high latency can be observed on some of the
virtual pages

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

C
y
c
le

s

Stalls_Ldm_Pending

(b) Affected HPC event: Cycle_Activity:Stalls_Ldm_Pending

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

D
e

p
e

n
d

e
n

c
y

Address_Alias

(c) Affected HPC event: Ld_Blocks_Partial:Address_Alias

Figure 4: SPOILER’s timing measurements and hardware per-
formance counters recorded simultaneously.

4.1 Speculative Dependency Analysis
In this section, we use Algorithm 1 and Hardware Perfor-
mance Counters (HPC) to perform an empirical analysis of
the dependency resolution logic. HPCs can keep track of
low-level hardware-related events in the CPU. The counters
are accessible via special purpose registers and can be used
to analyze the performance of a program. They provide a
powerful tool to detect microarchitectural components that
cause bottlenecks. Software libraries such as Performance
Application Programming Interface (PAPI) [51] simplifies
programming and reading low-level HPC on Intel processors.
Initially, we execute Algorithm 1 for 1000 different virtual
pages. Figure 4(a) shows the cycle count for each iteration
with a set of 4 kB aliased store addresses. Interestingly, we
observe multiple step-wise peaks with a very high latency.
Then, we use PAPI to monitor 30 different performance coun-
ters listed in Table 5 in the appendix while running the same

-1

-0.5

0

0.5

1

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

0 5 10 15 20 25 30

Counter Number

Figure 5: Correlation with HPCs listed in Table 5 in
the appendix. Ld_Blocks_Partial:Address_Alias and
Cycle_Activity:Stalls_Ldm_Pending (both dotted red)
have strong positive and negative correlations, respectively.

experiment. At each iteration, only one performance counter
is monitored alongside the aforementioned timing measure-
ment. After each speculative load, the performance counter
value and the load time are both recorded. Finally, we obtain
the timings and performance counter value pairs as depicted
in Figure 4.

To find any relation between the observed high latency
and a particular event, we compute correlation coefficients
between counters and the timing measurements. Since the
latency only occurs in the small region of the trace where the
timing increases, we only need to compute the correlation on
these regions. When an increase of at least 200 clock cycles
is detected, the next s values from timing and the HPC traces
are used to calculate the correlations, where s is the number
of steps from Table 1 and 200 is the average execution time
for a load.

As shown in Figure 5, two events have a high correla-
tion with the leakage: Cycle_Activity:Stalls_Ldm_Pending
has the highest correlation of 0.985. This event shows
the number of cycles for which the execution is stalled
and no instructions are executed due to a pending load.
Ld_Blocks_Partial:Address_Alias has an inverse correla-
tion with the leakage. This event counts the number of false de-
pendencies in the MOB when loosenet resolves the 4K alias-
ing condition. Separately, Exe_Activity:Bound_on_Stores
increases with more number of stores within the inner
window loop in Algorithm 1, but it does not have a cor-
relation with the leakage. The reason behind this behav-
ior is that the store buffer is full, and additional store op-
erations are pending. However, since there is no correla-
tion with the leakage, this shows that the timing behavior
is not due to the stores delay. We also attempt to profile
any existing counters related to the memory disambigua-
tion. However, the events Memory_Disambiguation.Success

and Memory_Disambiguation.Reset are not available on the
modern architectures that are tested.

626 28th USENIX Security Symposium USENIX Association

CPU Model Architecture Steps SB Size

Intel Core i7-8650U Kaby Lake R 22 56
Intel Core i7-7700 Kaby Lake 22 56

Intel Core i5-6440HQ Skylake 22 56
Intel Xeon E5-2640v3 Haswell 17 42
Intel Xeon E5-2670v2 Ivy Bridge EP 14 36

Intel Core i7-3770 Ivy Bridge 12 36
Intel Core i7-2670QM Sandy Bridge 12 36

Intel Core i5-2400 Sandy Bridge 12 36
Intel Core i5 650 Nehalem 11 32

Intel Core2Duo T9400 Core N/A 20
Qualcomm Kryo 280 ARMv8-A N/A *

AMD A6-4455M Bulldozer N/A *

Table 1: 1 MB aliasing on various architectures: The tested
AMD and ARM architectures, and Intel Core generation do
not show similar effects. The Store Buffer (SB) sizes are
gathered from Intel Manual [24] and wikichip.org [57–59].

4.2 Leakage of the Physical Address Mapping

In this experiment, we evaluate whether the observed step-
wise latency has any relationship with the physical page num-
bers by observing the pagemap file. As shown in Figure 6,
we observe step-wise peaks with a very high latency which
appear once in every 256 pages on average.The 20 least sig-
nificant bits of physical address for the load matches with
the physical addresses of the stores where high peaks for
virtual pages are observed. In our experiments, we always
detect peaks with different virtual addresses, which have the
matching least 20 bits of physical address. This observation
clearly discovers the existence of 1 MB aliasing effect based
on the physical addresses. This 1 MB aliasing leaks informa-
tion about 8 bits of mapping that were unknown to the user
space processes.

Matching this observation with the previously observed
Cycle_Activity:Stalls_Ldm_Pending with a high correla-
tion, the speculative load has been stalled to resolve the depen-
dency with conflicting store buffer entries after the occurrence
of a 1 MB aliased address. This observation verifies that the
latency is due to the pending load. When the latency is at
the highest point, Ld_Blocks_Partial:Address_Alias drops
to zero, and it increments at each down step of the peak. This
implies that the loosenet check does not resolve the rest of the
store dependencies whenever there is a 1 MB aliased address
in the store buffer.

4.3 Evaluation

In the previous experiment, the execution time of the load
operation that is delayed by 1 MB aliasing decreases gradually
in each iteration (Figure 6). The number of steps to reach the
normal execution time is consistent on the same processor.
When the first store in the window loop accesses a memory

address with the matching 1 MB aliased address, the latency is
at its highest point, marked as “1” in Figure 6. As the window
loop accesses this address later in the loop, it appears closer
to the load with a lower latency like the steps marked as 5, 15
and 22. This observation matches the carry chain algorithm
described by Intel [20] where the aliasing check starts from
the most recent store. As shown in Table 1, experimenting
with various processor generations shows that the number of
steps has a linear correlation with the size of the store buffer
which is architecture dependent. While the leakage exists on
all Intel Core processors starting from the first generation,
the timing effect is higher for the more recent generations
with a bigger store buffer size. The analyzed ARM and AMD
processors do not show similar behavior4.

As our time measurement for speculative load suggests, it
is not possible to reason whether the high timing is due to a
very slow load or commitment of store operations. If the step-
wise delay matches the store buffer entries, this delay may be
either due to the the dependency resolution logic performing
a pipeline flush and restart of the load for each 4 kB aliased
entry starting from the 1 MB aliased entry, or due to the load
waiting for all the remaining stores to commit because of
an unresolved hazard. To explore this further, we perform an
additional experiment with all store addresses replaced with
non-aliased addresses except for one. This experiment shows
that the peak disappears if there is only a single 4 kB and
1 MB aliased address in the store buffer.

Lastly, we run the same experiments on a shuffled set of vir-
tual addresses to assure that the contiguous virtual addresses
may not affect the observed leakage. Our experiment with the
shuffled virtual addresses exactly match the same step-wise
behavior suggesting that the upper bits in virtual addresses do
not affect the leakage behavior, and the leakage is solely due
to the aliasing on physical address bits.

4.3.1 Comparison of Address Aliasing Scenarios

We further test other address combinations to compare ad-
ditional address aliasing scenarios using Algorithm 1. As
shown by Figure 7, when stores and the load access dif-
ferent cache sets without aliasing, the load is executed in
30 cycles, which is the typical timing for an L1 data cache
load including the rdtscp overhead. When the stores have
different memory addresses with the same page offset, but
the load has a different offset, the load takes 100 cycles to
execute. This shows that even memory addresses in the store
buffer having 4K Aliasing conditions with each other that
are totally unrelated to the speculative load create a memory
bottleneck for the load. In the next scenario, 4K aliasing be-
tween the load and all stores, the average load time is about
200 cycles. While the aforementioned 4K aliasing scenarios
may leak cross domain information about memory accesses

4We use rdtscp for Intel and AMD processors and the clock_gettime
for ARM processors to perform the time measurements.

USENIX Association 28th USENIX Security Symposium 627

0 100 200 300 400 500 600 700 800 900 1000

Page Number

0

500

1000

1500

C
y
c
le

5

1

22

15

Figure 6: Step-wise peaks with 22 steps and a high latency can be observed on some of the pages (Core i7-8650U processor).

Figure 7: Histogram of the measurement for the speculative
load with various store addresses. Load will be fast, 30 cy-
cles, without any dependency. If there exists 4K aliasing only
between the stores, the average is 100. The average is 200
when there is 4K aliasing of load and stores. The 1 MB
aliasing has a distinctive high latency.

(Section 7), the most interesting scenario is the 1 MB aliasing
which takes more than 1200 cycles for the highest point in
the peak. For simplicity, we refer to the 1 MB aliased address
as aliased address, in the rest of the paper.

4.4 Discussion

4.4.1 The Curious Case of Memory Disambiguation

The processor uses an additional speculative engine, called
the memory disambiguator [10, 32], to predict memory false
dependencies and reduce the chance of their occurrences. The
main idea is to predict if a load is independent of preceding
stores and proceed with the execution of the load by ignor-
ing the store buffer. The predictor uses a hash table that is
indexed with the address of the load, and each entry of the
hash table has a saturating counter. If the pre-commitment
dependency resolution does not detect false dependencies,
the counter is incremented, otherwise it will be reset to zero.
After multiple successful executions of the same load instruc-
tion, the predictor assumes that the load is safe to execute.

Every time the counter resets to zero, the next iteration of the
load will be blocked to be checked against the store buffer
entries. Mispredictions result in performance overhead due to
pipeline flushes. To avoid repeated mispredictions, a watch-
dog mechanism monitors the success rate of the prediction,
and it can temporarily disable the memory disambiguator.

The predictor of the memory disambiguator should go into
a stable state after the first few iterations, since the mem-
ory load is always truly independent of any aliased store.
Hence the saturating counter for the target speculative load
address passes the threshold, and it never resets due to a false
prediction. As a result, the memory disambiguator should
always fetch the data into the cache without any access to the
store buffer. However, since the memory disambiguation per-
forms speculation, the dependency resolution at some point
verifies the prediction. The misprediction watchdog is also
supposed to only disable the memory disambiguator when
the misprediction rate is high, but in this case we should have
a high prediction rate. Accordingly, the observed leakage oc-
curs after the disambiguation and during the last stages of
dependency resolution, i.e., the memory disambiguator only
performs prediction on the 4K aliasing at the initial loosenet
check, and it cannot protect the pipeline from 1 MB aliasing
that appears at a later stage.

4.4.2 Hyperthreading Effect

Similar to the 4K Aliasing [40, 49], we empirically test
whether the 1 MB aliasing can be used as a covert/side chan-
nel through logical processors. Our observation shows that
when we run our experiments on two logical processors on
the same physical core, the number of steps in the peaks is
exactly halved. This matches the description by Intel [24]
where it is stated that the store buffer is split between the
logical processors. As a result, the 1 MB aliasing effect is not
visible and exploitable across logical cores. [31] suggests
that loosenet checks mask out the stores on the opposite
thread.

628 28th USENIX Security Symposium USENIX Association

0 50 100 150 200

Page Number

25

30

35

40

45

50

T
im

e
r

V
a
lu

e

Figure 8: Reverse engineering physical page mappings in
JavaScript. The markers point to addresses having same 20
bits of physical addresses being part of the same eviction set.

5 SPOILER from JavaScript

Microarchitectural attacks from JavaScript have a high impact
as drive-by attacks in the browser can be accomplished with-
out any privilege or physical proximity. In such attacks, co-
location is automatically granted by the fact that the browser
loads a website with malicious embedded JavaScript code.
The browsers provide a sandbox where some instructions like
clflush and prefetch and file systems such as procfs are
inaccessible, limiting the opportunity for attack. Genkin et
al. [14] showed that side-channel attacks inside a browser
can be performed more efficiently and with greater porta-
bility through the use of WebAssembly.Yet, WebAssembly
introduces an additional abstraction layer, i.e. it emulates
a 32-bit environment that translates the internal addresses
to virtual addresses of the host process (the browser). We-
bAssembly only uses addresses of the emulated environment
and similar to JavaScript, it does not have direct access to
the virtual addresses. Using SPOILER from JavaScript opens
the opportunity to puncture these abstraction layers and to
obtain physical address information directly. Figure 8 shows
the address search in JavaScript using SPOILER. Compared
to native implementations, we replace the rdtscp measure-
ment with a timer based on a shared array buffer [19]. We
cannot use any fence instruction such as lfence, and as a
result, there remains some negligible noise in the JavaScript
implementation. However, the aliased addresses can still be
clearly seen, and we can use this information to improve the
state-of-the art eviction set creation for both Rowhammer and
cache attacks.

5.1 Efficient Eviction Set Finding
We use the algorithm proposed in [14]. It is a slight improve-
ment to the former state-of-the-art brute force method [42]
and consists of three phases:

• expand: A large pool of addresses P is allocated with the
last twelve bits of all addresses being zero. A random

address is picked as a witness t and tested against a
candidate set C. If t is not evicted by C, it is added to
C and a new witness will be picked. As soon as t gets
evicted by C, C forms an eviction set for t.

• contract: Addresses are subsequently removed from the
eviction set. If the set still evicts t, the next address is
removed. If it does not evict t anymore, the removed
address is added back to the eviction set. At the end of
this phase, we have a minimal eviction set of the size of
the set associativity.

• collect: All addresses mapping to the already found evic-
tion set are removed from P by testing if they are evicted
by the found set. After finding 128 initial cache sets, this
approach utilizes the linearity property of the cache: For
each found eviction set, the bits 6-11 are enumerated
instead. This provides 63 more eviction sets for each
found set, leading to full cache coverage.

We test this approach on an Intel Core i7-4770 with four
physical cores and a shared 8MB 16-way L3 cache with
Chromium 68.0.3440.106, Firefox 62 and Firefox Developer
Edition 63. The approach yields an 80% accuracy rate to find
all 8192 eviction sets when starting with a pool of 4096 pages.
The entire eviction set creation process takes an average of
46s. We improve the algorithm by 1) using the addresses
removed from the eviction set in the contract phase as a new
candidate set and 2) removing more than one address at a time
from the eviction set during the contract phase. The improved
eviction set creation process takes 35s on average.

5.1.1 Evaluation

The probability of finding a congruent address is P(C) =
2γ−c−s, where c is the number of bits determining the cache
set, γ is the number of bits attackers know, and s is the num-
ber of slices [56]. Since SPOILER allows us to control γ≥ c
bits, we are only left with uncertainty about a few address
bits that influence the slice selection algorithm [26]. In the-
ory, the eviction set search is sped up by a factor of 4096
by using aliased addresses in the pool, since on average one
of 28 instead of one of 220 addresses is an aliased address.
Additionally, the address pool is much smaller, where 115
addresses are enough to find all the eviction sets. In native
code, the overhead involved in finding the aliased addresses
is negligible, less than a second in our experiments. However,
in JavaScript, due to the noise, it takes 9s for finding aliased
addresses and then 3s for eviction set as compared to the base-
line of 46s for classic method in Table 2. Success rate however
is 100% with SPOILER as compared to 80% for the classic
method. Besides, success rate of the classical method can be
affected by the availability and consumption of memory on
the system.

From each aliased address pool, 4 eviction sets can be found
(corresponding to the 4 slices which are the only unknown

USENIX Association 28th USENIX Security Symposium 629

Algorithm R ttotal tAAS tESS Success
Classic [42] 3 46s - 100% 80%

Improved [14] 3 35s - 100% 80%
AA (ours) 10 10s 54% 46% 67%
AA (ours) 20 12s 75% 25% 100%

Table 2: Comparison of different eviction set finding algo-
rithms on an Intel Core i7-4770. Classic is the method from
[42], improved is the same method with slight improvement,
Aliased Address (AA) uses SPOILER. tAAS is the time percent-
age used for finding aliased addresses. tESS is the time per-
centage for finding eviction sets. R is the number of Rounds.

part in the mapping). These can be enumerated again to form
63 more eviction sets since we still kept the bits 6-11 fixed. To
accomplish full cache coverage, the aliased address pool has
to be constructed 32 times. The SPOILER variant for finding
eviction sets is more susceptible to system noise, which is why
it needs more repetitions i.e. R rounds to get reliable values.
On the other hand, it is less prone to values deviating largely
from the mean, which is a problem in the classic eviction
set creation algorithm. The classic method does not succeed
about one out of five times in our experiments, as shown in
Table 2. The unsuccessful attempts occur due to aborts if the
algorithm takes much longer than statistically expected. As a
result, SPOILER can be incorporated in an end-to-end attack
such as drive-by key-extraction cache attacks by Genkin et
al. [14]. SPOILER increases both speed and reliability of the
eviction set finding and therefore the entire attack.

6 Rowhammer Attack using SPOILER

To perform a Rowhammer attack, the adversary needs to ef-
ficiently access DRAM rows adjacent to a victim row. In a
single-sided Rowhammer attack, only one row is activated
repeatedly to induce bit flips on one of the nearby rows. For
this purpose, the attacker needs to make sure that multiple
virtual pages co-locate on the same bank. The probability of
co-locating on the same bank is low without the knowledge of
physical addresses and their mapping to memory banks. In a
double-sided Rowhammer attack, the attacker tries to access
two different rows n+ 1 an n− 1 to induce bit flips in the
row n placed between them. While double-sided Rowham-
mer attacks induce bit flips faster due to the extra charge on
the nearby cells of the victim row n, they further require ac-
cess to contiguous memory pages. In this section, we show
that SPOILER can help boosting both single and double-sided
Rowhammer attacks by its additional 8-bit physical address
information and resulting detection of contiguous memory.

System Model DRAM Configuration # of Bits

Dell XPS-L702x 1 x (4GB 2Rx8) 21
(Sandy Bridge) 2 x (4GB 2Rx8) 22

Dell Inspiron-580 1 x (2GB 2Rx8) (b) 21
(Nehalem) 2 x (2GB 2Rx8) (c) 22

4 x (2GB 2Rx8) (d) 23
Dell Optiplex-7010 1 x (2GB 1Rx8) (a) 19

(Ivy Bridge) 2 x (2GB 1Rx8) 20
1 x (4GB 2Rx8) (e) 21

2 x (4GB 2Rx8) 22

Table 3: Reverse engineering the DRAM memory mappings
using DRAMA tool, # of Bits represents the number of physi-
cal address bits used for the bank, rank and channel [45].

6.1 DRAM Bank Co-location

DRAMA [45] reverse engineered the memory controller map-
ping. This requires elevated privileges to access physical ad-
dresses from the pagemap file. The authors have suggested
that prefetch side-channel attacks [17] may be used to gain
physical address information instead. SPOILER is an alterna-
tive way to obtain partial address information and is still fea-
sible when the prefetch instruction is not available, e.g. in
JavaScript. In our approach, we use SPOILER to detect aliased
virtual memory addresses where the 20 LSBs of the physical
addresses match. The memory controller uses these bits for
mapping the physical addresses to the DRAM banks [45].
Even though the memory controller may use additional bits,
the majority of the bits are known using SPOILER. An at-
tacker can directly hammer such aliased addresses to perform
a more efficient single-sided Rowhammer attack with a sig-
nificantly increased probability of hitting the same bank. As
shown in Table 3, we reverse engineer the DRAM mappings
for different hardware configurations using the DRAMA tool,
and only a few bits of physical address entropy beyond the 20
bits will remain unknown.

To verify if our aliased virtual addresses co-locate on the
same bank, we use the row conflict side channel as proposed
in [13] (timings in the appendix, Section 10.2). We observe
that whenever the number of physical address bits used by
the memory controller to map data to physical memory is
equal to or less than 20, we always hit the same bank. For
each additional bit the memory controller uses, the probabil-
ity of hitting the same bank is divided by 2 as there is one
more bit of entropy. In general, we can formulate that our
probability p to hit the same bank is p = 1/2n, where n is
the number of unknown physical address bits in the mapping.
We experimentally verify the success rate for the setups listed
in Table 3, as depicted in Figure 9. In summary, SPOILER
drastically improves the efficiency of finding addresses map-
ping to the same bank without administrative privilege or
reverse engineering the memory controller mapping.

630 28th USENIX Security Symposium USENIX Association

200

400

600

C
y
c
le

s

(a) 19 bits used by memory controller, no unknown bits

200

400

600

C
y
c
le

s

(b) 21 bits used by memory controller, 1 unknown bit

200

400

600

C
y
c
le

s

(c) 22 bits used by memory controller, 2 unknown bits

200

400

600

C
y
c
le

s

0 20 40 60 80 100

Peak Number

(d) 23 bits used by memory controller, 3 unknown bits

Figure 9: Bank co-location for various DRAM configurations
(a), (b), (c) & (d) from Table 3. The regularity of the peaks
shows that the allocated memory was contiguous, which is
coincidental.

6.2 Contiguous Memory

For a double-sided Rowhammer attack, we need to hammer
rows adjacent to the victim row in the same bank. This re-
quires detecting contiguous memory pages in the allocated
memory, since the rows are written to the banks sequentially.
Without contiguous memory, the banks will be filled randomly
and we will not be able to locate neighboring rows. We show
that an attacker can use SPOILER to detect contiguous memory
using 1 MB aliasing peaks. For this purpose, we compare the
physical frame numbers to the SPOILER leakage for 10000
different virtual pages allocated using malloc. Figure 10
shows the relation between 1 MB aliasing peaks and physical
page frame numbers. When the distance between the peaks
is random, the trend of frame numbers also change randomly.
After around 5000 pages, we observe that the frame numbers
increase sequentially. The number of pages between the peaks
remains constant at 256 where this distance comes from the 8
bits of physical address leakage due to 1 MB aliasing.

We also compare the accuracy of obtaining contiguous
memory detected by SPOILER by analyzing the actual physi-
cal addresses from the pagemap file. By checking the differ-
ence between physical page numbers for each detected virtual
page, we can determine the accuracy of our detection method:
the success rate for finding contiguous memory is above 99%
disregarding the availability of the contiguous pages. For de-
tailed experiment on the availability of the contiguous pages,
see Section 10.3 in the appendix.

0

500

1000

C
y
c
le

s

0 2000 4000 6000 8000 10000

Page Numbers

1.5

2

F
ra

m
e

 N
u

m
b

e
rs 10

6

5641 5642 5643 5644 5645
1.982464

1.982466

1.982468
106

Figure 10: Relation between leakage peaks and the physical
page numbers. The dotted plot shows the leakage peaks from
SPOILER. The solid plot shows the decimal values of the phys-
ical frame numbers from the pagemap file. Once the peaks
in the dotted plot become regular, the solid plot is linearly
increasing, which shows contiguous memory allocation.

6.3 Double-Sided Rowhammer with SPOILER

As double-sided Rowhammer attacks are based on the as-
sumption that rows within a bank are contiguous, we mount a
practical double-sided Rowhammer attack on several DRAM
modules using SPOILER without any root privileges. First,
we use SPOILER to detect a suitable amount of contiguous
memory. If enough contiguous memory is available in the
system, SPOILER finds it, otherwise a double-sided Rowham-
mer attack is not feasible. In our experiments, we empirically
configure SPOILER to detect 10 MB of contiguous memory.
Second, we apply the row conflict side channel only to the
located contiguous memory, and get a list of virtual addresses
which are contiguously mapped within a bank. Finally, we
start performing a double-sided Rowhammer attack by se-
lecting 3 consecutive addresses from our list. While we have
demonstrated the bit flips in our own process, we can free that
memory which can then be assigned to a victim process by
using previously known techniques like spraying and memory
waylaying [16]. As the bit flips are highly reproducible, we
can again flip the same bits in the victim process to demon-
strate a full attack. Table 4 shows some of the DRAM modules
susceptible to Rowhammer attack.

The native version of Rowhammer in this work is also ap-
plicable in JavaScript. The JavaScript-only variant implemen-
tation of Rowhammer by Gruss et al. [18], named rowham-
mer.js5, can be combined with SPOILER to implement an
end-to-end attack. In the original rowhammer.js, 2MB huge
pages were assumed to get a contiguous chunk of physical
memory. With SPOILER, this assumption is no longer required
as explained in Section 6.3.

Figure 11 shows the number of hammers compared to the
the amount of bit flips for configuration (e) in Table 3. We

5https://github.com/IAIK/rowhammerjs

USENIX Association 28th USENIX Security Symposium 631

https://github.com/IAIK/rowhammerjs

DRAM Model Architecture Flippy

M378B5273DH0-CK0 Ivy Bridge X
M378B5273DH0-CK0 Sandy Bridge X
M378B5773DH0-CH9 Sandy Bridge X
M378B5173EB0-CK0 Sandy Bridge ×

NT2GC64B88G0NF-CG Sandy Bridge ×
KY996D-ELD Sandy Bridge ×

M378B5773DH0-CH9 Nehalem X
NT4GC64B8HG0NS-CG Sandy Bridge ×
HMA41GS6AFR8N-TF Skylake ×

Table 4: DRAM modules susceptible to double-sided
Rowhammer attack using SPOILER.

0 1 2 3 4 5 6

Number of Hammers 10
8

0

5

10

15

20

25

A
m

o
u
n
t
o
f
B

it
 F

lip
s

1h, 5m

10h, 50m

21hr, 40m

1d, 9h

1d, 19h

2d, 6h 2d, 17h

Figure 11: Amount of bit flips increases with the increase in
number of hammerings. The timings do not include the time
taken for reboots and 1 minute sleep time.

repeat this experiment 30 times for every measurement and
the results are then averaged out. On every experiment, the
system is rebooted using a script because once the memory
becomes fragmented, no more contiguous memory is avail-
able. The number of bit flips increases with more number of
hammerings. Hammering for 500 million times is found to
be an optimal number for this DRAM configuration, as the
continuation of hammering is not increasing bit flips.

7 Tracking Speculative Loads With SPOILER

Single-threaded attacks can be used to steal information from
other security contexts running before/after the attacker code
on the same thread [8, 41]. Example scenarios are I) context
switches between processes of different users, or II) between
a user process and a kernel thread, and III) Intel Software
Guard eXtensions (SGX) secure enclaves [41, 54]. In such at-
tacks, the adversary puts the microarchitecture to a particular
state, waits for the context switch and execution of the victim
thread, and then tries to observe the microarchitectural state
after the victim’s execution. We propose an attack where the
adversary 1) fills the store buffer with arbitrary addresses, 2)
issues the victim context switch and lets the victim perform a
secret-dependent memory access, and 3) measures the execu-
tion time of the victim. Any correlation between the victim’s

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20 nop

0 100 200 300 400 500 600 700 800 900 1000
0

10

20 add

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Operations

0

10

20

N
u

m
b

e
r

o
f

S
te

p
s

leal

Figure 12: The depth of SPOILER leakage with respect to
different instructions and execution units.

timing and the load address can leak secrets [61]. Due to
the nature of SPOILER, the victim should access the memory
while there are aliased addresses in the store buffer, i.e. if the
stores are committed before the victim’s speculative load,
there will be no dependency resolution hazard.

We first perform an analysis of the depth of the operations
that can be executed between the stores and the load to
investigate the viability of SPOILER. In this experiment, we
repeat a number of instructions between stores and the load
that are free from memory operations. Figure 12 shows the
number of stall steps due to the dependency hazard with the
added instructions. Although nop is not supposed to take any
cycle, adding 4000 nop will diffuse the timing latency. Then,
we test add and leal, which use the Arithmetic Logic Unit
(ALU) and the Address Generation Unit (AGU), respectively.
Figure 12 shows that only 1000 adds can be executed be-
tween the stores and load before the SPOILER effect is lost.
Since each add typically takes about 1 cycle to execute, this
roughly gives a 1000 cycle depth for SPOILER. Considering
the observed depth, we discuss potential attacks that can track
the speculative load in the following two scenarios.

7.1 SPOILER Context Switch

In this attack, we are interested in tracking a memory access in
the privileged kernel environment after a context switch. First,
we fill the store buffer with addresses that have the same page
offset, and then execute a system call. During the execution
of the system call, we expect to observe a delayed execution
if a secret load address has aliasing with the stores. We
utilize SPOILER to iterate over various virtual pages, thus
some of the pages have more noticeable latency due to the
1 MB aliasing. We analyze multiple syscalls with various
execution times. For instance, Figure 13 shows the execution
time for mincore. In the first experiment (red/1 MB Conflict),
we fill the store buffer with addresses that have aliasing with
a memory load operation in the kernel code space. The 1 MB
aliasing delay with 7 steps suggests that we can track the

632 28th USENIX Security Symposium USENIX Association

0 50 100 150 200 250 300

Page Number

200

400

600

800

1000

1200

1400

C
y
c
le

1 MB Conflict

No Conflict

No Store

Figure 13: Execution time of mincore system call. When a
kernel load address has aliasing with the attacker’s stores
(red/1MB Conflict), the step-wise delay will appear. These
timings are measured with Kernel Page Table Isolation dis-
abled.

address of a kernel memory load by the knowledge of our
arbitrary filled store addresses. The blue (No Conflict) line
shows the timing when there is no aliasing between the target
memory load and the attackers store. Surprisingly, only by
filling the store buffer, the system call executes much slower:
the normal execution time for mincore should be around
250 cycles (cyan/No Store). This proof of concept shows
that SPOILER can be used to leak information from more
privileged contexts, however this is limited only to loads that
appear at the beginning of the next context.

7.2 Negative Result: SPOILER SGX
In this experiment, we try to combine SPOILER with the
CacheZoom [41] approach to create a novel single-threaded
side-channel attack against SGX enclaves with high temporal
and spatial resolution (4-byte) [40]. We use SGX-STEP [53]
to precisely interrupt every single instruction. Nemesis [54]
shows that the interrupt handler context switch time is depen-
dent on the execution time of the currently running instruction.
On our test platform, Core i7-8650U, each context switch on
an enclave takes about 12000 cycles to execute. If we fill
the store buffer with memory addresses that match the page
offset of a load inside the enclave in the interrupt handler,
the context switch timing is increased to about 13500 cycles.
While we cannot observe any correlation between the matched
4 kB or 1 MB aliased addresses, we do see unexpected peri-
odic downward peaks with a similar step-wise behavior as
SPOILER(Figure 14). We later reproduce a similar behavior
by running SPOILER before an ioctl routine that flushes
the TLB on each call. Intel SGX also performs an implicit
TLB flush during each context switch. We can thus infer that
the downward peaks occur due to the TLB flush, especially
since the addresses for the downward peaks do not have any
address correlation with the load address. This suggests that
the TLB flush operation itself is affected by SPOILER. This
effect eliminates the opportunity to observe any potential cor-

200 300 400 500 600 700 800 900 1000

Page Number

800

1000

1200

1400

1600

1800

2000

C
y
c
le

Figure 14: The effect of SPOILER on TLB flush. The execu-
tion cycle always increases for 4 kB aliased addresses, except
for some of the virtual pages inside in the store buffer where
we observe step-wise hills.

relation due to the speculative load. As a result, we can not
use SPOILER to track memory accesses inside an enclave.
Further exploration of the root cause of the TLB flush effect
can be carried out as a future work.

8 Mitigations

Software Mitigations The attack exploits the fact that when
there is a load instruction after a number of store instruc-
tions, the physical address conflict causes a high timing be-
havior. This happens because of the speculatively executed
load before all the stores are finished executing. There is
no software mitigation that can completely erase this prob-
lem. While the timing behavior can be removed by inserting
store fences between the loads and stores, this cannot be
enforced to the user’s code space, i.e., the user can always
leak the physical address information. Another yet less robust
approach is to execute other instructions between the loads
and stores to decrease the depth of the attack. However,
both of the approaches are only applicable to defend against
attacks such as the one described in Section 7.

As for most attacks on JavaScript, removing accurate timers
from the browser would be effective against SPOILER. Indeed,
some timers have been removed or distorted by jitters as a
response to attacks [35]. There is however a wide range of
timers with varying precision available, and removing all of
them seems impractical [13, 46].

When it is not possible to mitigate the microarchitectural
attacks, developers can use dynamic tools to at least de-
tect the presence of such leakage [6, 9, 63]. One of the dy-
namic approaches is gained by monitoring hardware perfor-
mance counters in real-time. As explained in Section 4.1, two
of the counters Ld_Blocks_Partial:Address_Alias and
Cycle_Activity:Stalls_Ldm_Pending have high correla-
tions with the leakage.

USENIX Association 28th USENIX Security Symposium 633

Hardware Mitigations The hardware design for the mem-
ory disambiguator may be revised to prevent such physical
address leakage, but modifying the speculative behavior may
cause performance impacts. For instance, partial address com-
parison was a design choice for performance. Full address
comparison may address this vulnerability, but will also im-
pact performance. Moreover, hardware patches are difficult to
be applied to legacy systems and take years to be deployed.

9 Conclusion

We introduced SPOILER, a novel approach for gaining phys-
ical address information by exploiting a new information
leakage due to speculative execution. To exploit the leakage,
we used the speculative load behavior after jamming the store
buffer. SPOILER can be executed from user space and requires
no special privileges. We exploited the leakage to reveal in-
formation on the 8 least significant bits of the physical page
number, which are critical for many microarchitectural at-
tacks such as Rowhammer and cache attacks. We analyzed
the causes of the discovered leakage in detail and showed how
to exploit it to extract physical address information.

Further, we showed the impact of SPOILER by performing
a highly targeted Rowhammer attack in a native user-level
environment. We further demonstrated the applicability of
SPOILER in sandboxed environments by constructing effi-
cient eviction sets from JavaScript, an extremely restrictive
environment that usually does not grant any access to physical
addresses. Gaining even partial knowledge of the physical
address will make new attack targets feasible in browsers even
though JavaScript-enabled attacks are known to be difficult to
realize in practice due to the limited nature of the JavaScript
environment. Broadly put, the leakage described in this paper
will enable attackers to perform existing attacks more effi-
ciently, or to devise new attacks using the novel knowledge.
The source code for SPOILER is available on GitHub6.

Responsible Disclosure We informed the Intel Product Secu-
rity Incident Response Team (iPSIRT) of our findings. iPSIRT
thanked for reporting the issue and for the coordinated dis-
closure. iPSIRT then released the public advisory and CVE.
Here is the time line for the responsible disclosure:

• 12/01/2018: We informed our findings to iPSIRT.
• 12/03/2018: iPSIRT acknowledged the receipt.
• 04/09/2019: iPSIRT released public advisory (INTEL-

SA-00238) and assigned CVE (CVE-2019-0162).

Acknowledgments

We thank Yuval Yarom, our shepherd Eric Wustrow and the
anonymous reviewers for their valuable comments for improv-
ing the quality of this paper.

6https://github.com/UzL-ITS/Spoiler

This work is supported by U.S. Department of State, Bu-
reau of Educational and Cultural Affairs’ Fulbright Program
and National Science Foundation under grant CNS-1618837
and CNS-1814406. We also thank Cloudflare for their gener-
ous gift to support our research.

References
[1] Jeffery M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hinton,

Kris G Konigsfeld, and Paul D Madland. Method and apparatus for
performing a store operation, April 23 2002. US Patent 6,378,062.

[2] Jeffrey M Abramson, Haitham Akkary, Andrew F Glew, Glenn J Hinton,
Kris G Konigsfeld, Paul D Madland, David B Papworth, and Michael A
Fetterman. Method and apparatus for dispatching and executing a load
operation to memory, February 10 1998. US Patent 5,717,882.

[3] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. Anvil:
Software-based protection against next-generation rowhammer attacks.
ACM SIGPLAN Notices, 51(4):743–755, 2016.

[4] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom.
“ooh aah... just a little bit” : A small amount of side channel can go a
long way. In Cryptographic Hardware and Embedded Systems – CHES
2014, pages 75–92, Berlin, Heidelberg, 2014. Springer.

[5] Daniel J Bernstein. Cache-timing attacks on aes, 2005.

[6] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisen-
barth. Cacheshield: Detecting cache attacks through self-observation.
In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, CODASPY ’18, pages 224–235, New York, NY,
USA, 2018. ACM.

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. arXiv preprint arXiv:1811.05441, 2018.

[8] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang
Lin, and Ten H Lai. Sgxpectre attacks: Stealing intel secrets from sgx
enclaves via speculative execution. arXiv preprint arXiv:1802.09085,
2018.

[9] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware performance
counters. Applied Soft Computing, 49:1162–1174, 2016.

[10] Jack Doweck. Inside intel R© core microarchitecture. In Hot Chips 18
Symposium (HCS), 2006 IEEE, pages 1–35. IEEE, 2006.

[11] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over aslr: Attacking branch predictors to bypass aslr. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-49, pages 40:1–40:13, Piscataway, NJ, USA, 2016. IEEE Press.

[12] Agner Fog. The microarchitecture of intel, amd and via cpus: An
optimization guide for assembly programmers and compiler makers.
Copenhagen University College of Engineering, pages 02–29, 2012.

[13] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand pwning unit: Accelerating microarchitectural attacks with the
gpu. In Grand Pwning Unit: Accelerating Microarchitectural Attacks
with the GPU, page 0, Washington, DC, USA, 2018. IEEE, IEEE Com-
puter Society.

[14] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-
by key-extraction cache attacks from portable code. In International
Conference on Applied Cryptography and Network Security, pages
83–102. Springer, 2018.

[15] Mel Gorman. Understanding the Linux Virtual Memory Manager.
Prentice Hall, London, 2004.

634 28th USENIX Security Symposium USENIX Association

https://github.com/UzL-ITS/Spoiler

[16] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom. An-
other flip in the wall of rowhammer defenses. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 245–261. IEEE, 2018.

[17] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing smap and
kernel aslr. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 368–379,
New York, NY, USA, 2016. ACM.

[18] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A remote software-induced fault attack in javascript. In Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, pages
300–321. Springer, 2016.

[19] Lars T Hansen. Shared memory: Side-channel information leaks, 2016.

[20] Sebastien Hily, Zhongying Zhang, and Per Hammarlund. Resolving
false dependencies of speculative load instructions, October 13 2009.
US Patent 7,603,527.

[21] Jann Horn. speculative execution, variant 4: speculative store bypass,
2018.

[22] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space aslr. In 2013 IEEE Symposium on
Security and Privacy, pages 191–205. IEEE, 2013.

[23] Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache attacks enable bulk key recovery on the
cloud. In Cryptographic Hardware and Embedded Systems – CHES
2016, pages 368–388, Berlin, Heidelberg, 2016. Springer.

[24] Intel. Intel R© 64 and IA-32 Architectures Optimization Reference
Manual.

[25] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$a: A shared
cache attack that works across cores and defies vm sandboxing – and
its application to aes. In Proceedings of the 2015 IEEE Symposium on
Security and Privacy, SP ’15, pages 591–604, Washington, DC, USA,
2015. IEEE Computer Society.

[26] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic re-
verse engineering of cache slice selection in intel processors. In 2015
Euromicro Conference on Digital System Design (DSD), pages 629–
636. IEEE, 2015.

[27] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address
space layout randomization with intel tsx. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pages 380–392. ACM, 2016.

[28] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. ret2dir: Rethinking kernel isolation. In USENIX Secu-
rity Symposium, pages 957–972, 2014.

[29] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping bits in memory without accessing them: An experimental study of
dram disturbance errors. In ACM SIGARCH Computer Architecture
News, volume 42, pages 361–372. IEEE Press, 2014.

[30] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, January 2018.

[31] Steffen Kosinski, Fernando Latorre, Niranjan Cooray, Stanislav
Shwartsman, Ethan Kalifon, Varun Mohandru, Pedro Lopez, Tom
Aviram-Rosenfeld, Jaroslav Topp, Li-Gao Zei, et al. Store forwarding
for data caches, November 29 2016. US Patent 9,507,725.

[32] Evgeni Krimer, Guillermo Savransky, Idan Mondjak, and Jacob
Doweck. Counter-based memory disambiguation techniques for se-
lectively predicting load/store conflicts, October 1 2013. US Patent
8,549,263.

[33] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémen-
tine Maurice, and Stefan Mangard. Practical keystroke timing attacks
in sandboxed javascript. In Computer Security – ESORICS 2017, pages
191–209. Springer, 2017.

[34] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. Armageddon: Cache attacks on mobile devices.
In 25th USENIX Security Symposium (USENIX Security 16), pages
549–564, Austin, TX, 2016. USENIX Association.

[35] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, 2018. USENIX Association.

[36] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy, SP ’15, pages
605–622, Washington, DC, USA, 2015. IEEE Computer Society.

[37] Errol L. Lloyd and Michael C. Loui. On the worst case performance of
buddy systems. Acta Informatica, 22(4):451–473, Oct 1985.

[38] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
2109–2122. ACM, 2018.

[39] Intel 64 Architecture Memory Ordering White Paper. http://www.cs.
cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf, 2008.
Accessed: 2018-11-26.

[40] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. Memjam: A
false dependency attack against constant-time crypto implementations
in SGX. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’
Track at the RSA Conference 2018, San Francisco, CA, USA, April
16-20, 2018, Proceedings, pages 21–44, 2018.

[41] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How sgx amplifies the power of cache attacks. In Cryptographic
Hardware and Embedded Systems – CHES 2017, pages 69–90. Springer,
2017.

[42] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. The spy in the sandbox: Practical cache attacks
in javascript and their implications. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS
’15, pages 1406–1418, New York, NY, USA, 2015. ACM.

[43] Colin Percival. Cache missing for fun and profit, 2005.

[44] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. "make sure
dsa signing exponentiations really are constant-time". In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 1639–1650, New York, NY, USA, 2016. ACM.

[45] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. Drama: Exploiting dram addressing for cross-cpu
attacks. In USENIX Security Symposium, pages 565–581, 2016.

[46] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: high-resolution mi-
croarchitectural attacks in javascript. In International Conference on
Financial Cryptography and Data Security, pages 247–267. Springer,
2017.

[47] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer
bug to gain kernel privileges. Black Hat, 15, 2015.

[48] Julian Stecklina and Thomas Prescher. Lazyfp: Leaking fpu reg-
ister state using microarchitectural side-channels. arXiv preprint
arXiv:1806.07480, 2018.

[49] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. Microar-
chitectural minefields: 4k-aliasing covert channel and multi-tenant de-
tection in iaas clouds. In Network and Distributed Systems Security
(NDSS) Symposium. The Internet Society, 2018.

USENIX Association 28th USENIX Security Symposium 635

http://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf
http://www.cs.cmu.edu/~410-f10/doc/Intel_Reordering_318147.pdf

[50] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano Giuf-
frida, Herbert Bos, and Kaveh Razavi. Throwhammer: Rowhammer
attacks over the network and defenses. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), Boston, MA, 2018. USENIX
Association.

[51] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Col-
lecting performance data with papi-c. In Tools for High Performance
Computing 2009, pages 157–173. Springer, 2010.

[52] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel sgx kingdom with transient out-of-order execution. In Proceed-
ings of the 27th USENIX Security Symposium. USENIX Association,
2018.

[53] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical
attack framework for precise enclave execution control. In Proceed-
ings of the 2Nd Workshop on System Software for Trusted Execution,
SysTEX’17, pages 4:1–4:6, New York, NY, USA, 2017. ACM.

[54] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying
microarchitectural timing leaks in rudimentary cpu interrupt logic. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 178–195. ACM, 2018.

[55] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowham-
mer attacks on mobile platforms. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
1675–1689. ACM, 2016.

[56] Pepe Vila, Boris Köpf, and José Francisco Morales. Theory and practice
of finding eviction sets. arXiv preprint arXiv:1810.01497, 2018.

[57] WikiChip. Ivy Bridge - Microarchitectures - Intel. https:
//en.wikichip.org/wiki/intel/microarchitectures/ivy_
bridge_(client). Accessed: 2019-02-05.

[58] WikiChip. Kaby Lake - Microarchitectures - Intel. https://en.
wikichip.org/wiki/intel/microarchitectures/kaby_lake.
Accessed: 2019-02-05.

[59] WikiChip. Skylake (client) - Microarchitectures - Intel.
https://en.wikichip.org/wiki/intel/microarchitectures/
skylake_(client). Accessed: 2019-02-05.

[60] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
One bit flips, one cloud flops: Cross-vm row hammer attacks and privi-
lege escalation. In USENIX Security Symposium, pages 19–35, 2016.

[61] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a tim-
ing attack on OpenSSL constant-time RSA. Journal of Cryptographic
Engineering, 7(2):99–112, 2017.

[62] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar.
Native client: A sandbox for portable, untrusted x86 native code. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 79–93.
IEEE, 2009.

[63] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. Cloudradar: A real-
time side-channel attack detection system in clouds. In Research in
Attacks, Intrusions, and Defenses, pages 118–140. Springer, 2016.

10 Appendix

10.1 Tested Hardware Performance Counters

Counters Correlation
UNHALTED_CORE_CYCLES 0.3077

UNHALTED_REFERENCE_CYCLES 0.1527

INSTRUCTION_RETIRED 0.2718

INSTRUCTIONS_RETIRED 0.2827

BRANCH_INSTRUCTIONS_RETIRED 0.3143

MISPREDICTED_BRANCH_RETIRED 0.0872

CYCLE_ACTIVITY:CYCLES_L2_PENDING -0.0234

CYCLE_ACTIVITY:STALLS_LDM_PENDING 0.9819

CYCLE_ACTIVITY:CYCLES_NO_EXECUTE 0.2317

RESOURCE_STALLS:ROB 0

RESOURCE_STALLS:SB -0.0506

RESOURCE_STALLS:RS -0.0044

LD_BLOCKS_PARTIAL:ADDRESS_ALIAS -0.9511

IDQ_UOPS_NOT_DELIVERED -0.1455

IDQ:ALL_DSB_CYCLES_ANY_UOPS 0.0332

ILD_STALL:IQ_FULL 0.1021

ITLB_MISSES:MISS_CAUSES_A_WALK 0

TLB_FLUSH:STLB_THREAD 0

ICACHE:MISSES 0

ICACHE:IFETCH_STALL 0

L1D:REPLACEMENT 0.3801

L2_DEMAND_RQSTS:WB_HIT 0.2436

LONGEST_LAT_CACHE:MISS 0.0633

CYCLE_ACTIVITY:CYCLES_L1D_PENDING -0.0080

LOCK_CYCLES:CACHE_LOCK_DURATION 0

LOAD_HIT_PRE:SW_PF 0

LOAD_HIT_PRE:HW_PF 0

MACHINE_CLEARS:CYCLES 0

OFFCORE_REQUESTS_BUFFER:SQ_FULL 0

OFFCORE_REQUESTS:DEMAND_DATA_RD 0.1765

Table 5: Counters profiled for correlation test

10.2 Row conflict Side Channel

The row conflict side channel retrieves the timing information
of the CPU while doing direct accesses (using clflush) from
the DRAM. A higher timing indicates that the two addresses
are mapped to the same bank in the DRAM because reading
an address from the same bank forces the row buffer to copy
the previous contents back to the original row and then load
the newly accessed data into the row buffer. Whereas, a low
timings indicates that two addresses are not in the same bank
(not sharing the same row buffer) and are loaded into separate
row buffers. Figure 15 shows a wide gap (around 100 cycles)
between row hits and row conflicts.

636 28th USENIX Security Symposium USENIX Association

https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/ivy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)

Figure 15: Timings for accessing the aliased virtual addresses
(random addresses where 20 LSB of the physical address
match). Row hits (orange/low timings) are clearly distinguish-
able from row conflicts (blue/high timings).

10.3 Memory Utilization and Contiguity
The probability of obtaining contiguous memory depends on
memory utilization of the system. We conduct an experiment
to examine the effect of memory utilization on availability
of contiguous memory. In this experiment, 1 GB memory
is allocated. During the experiment, the memory utilization
of the system is increased gradually from 20% to 90%. We
measure the probability of getting the contiguous memory
with two methods. The first one is checking the physical frame
numbers from pagemap file to look for 520 kB of contiguous
memory. The second method is using SPOILER to find the 520
kB of contiguous memory. This 520 kB is required to get three
consecutive rows within a bank for a DRAM configuration
having 256 kB row offset and 8 kB row size.

Figure 16 and Figure 17 show that when the memory has
been fragmented after intense memory usage, it gets more
difficult to allocate a contiguous chunk of memory. Even de-
creasing the memory usage does not help to get a contiguous
block of memory. Figure 17 depicts that after the memory
utilization has been decreased from 70% to 60% and so on,
there is not enough contiguous memory to mount a success-
ful double-sided Rowhammer attack. Until the machine is
restarted, the memory remains fragmented which makes a
double-sided Rowhammer attack difficult, especially on tar-

gets like high-end servers where restarting is impractical.
The observed behavior can be explained by the binary

buddy allocator which is responsible for the physical address
allocation in the Linux OS [15]. This type of allocator is
known to fragment memory significantly under certain cir-
cumstances [37]. The Linux OS uses a SLAB/SLOB allocator
in order to circumvent the fragmentation problems. How-
ever, the allocator only serves the kernel directly. User space
memory therefore still suffers from the fragmentation that the
buddy allocator introduces. This also means that getting the
contiguous memory required for a double-sided Rowhammer
attack becomes more difficult if the system under attack has
been active for a while.

20 30 40 50 60 70 80 90

System Memory Consumption (%)

0

20

40

60

80

100

C
o
n
ti
g
u
o
u
s
 M

e
m

o
ry

 (
%

)

520KB Contiguous Memory from pagemap File

520KB Contiguous Memory from Leakage Peaks

Figure 16: Finding contiguous memory of 520 kB with in-
creasing memory utilization. The overlap between the red
and blue plot indicates the high accuracy of the contiguous
memory detection capability of SPOILER as verified by the
pagemap file.

2030405060708090

System Memory Consumption (%)

0

5

10

15

20

25

C
o
n
ti
g
u
o
u
s
 M

e
m

o
ry

 (
%

) 520KB Contiguous Memory from pagemap File

520KB Contiguous Memory from Leakage Peaks

Figure 17: Finding contiguous memory of 520 kB with de-
creasing memory utilization.

USENIX Association 28th USENIX Security Symposium 637

Robust Website Fingerprinting Through the Cache Occupancy Channel

Anatoly Shusterman
Ben-Gurion University of the Negev

shustera@post.bgu.ac.il

Lachlan Kang
University of Adelaide

lachlan.kang@adelaide.edu.au

Yarden Haskal
Ben-Gurion Univ. of the Negev

yardenha@post.bgu.ac.il

Yosef Meltser
Ben-Gurion Univ. of the Negev

yosefmel@post.bgu.ac.il

Prateek Mittal
Princeton University

pmittal@princeton.edu

Yossi Oren
Ben-Gurion Univ. of the Negev

yos@bgu.ac.il

Yuval Yarom
University of Adelaide and Data61

yval@cs.adelaide.edu.au

Abstract
Website fingerprinting attacks, which use statistical anal-
ysis on network traffic to compromise user privacy, have
been shown to be effective even if the traffic is sent over
anonymity-preserving networks such as Tor. The classical
attack model used to evaluate website fingerprinting attacks
assumes an on-path adversary, who can observe all traffic
traveling between the user’s computer and the secure net-
work.

In this work we investigate these attacks under a different
attack model, in which the adversary is capable of sending
a small amount of malicious JavaScript code to the target
user’s computer. The malicious code mounts a cache side-
channel attack, which exploits the effects of contention on
the CPU’s cache, to identify other websites being browsed.
The effectiveness of this attack scenario has never been sys-
tematically analyzed, especially in the open-world model
which assumes that the user is visiting a mix of both sen-
sitive and non-sensitive sites.

We show that cache website fingerprinting attacks in
JavaScript are highly feasible. Specifically, we use ma-
chine learning techniques to classify traces of cache activ-
ity. Unlike prior works, which try to identify cache con-
flicts, our work measures the overall occupancy of the last-
level cache. We show that our approach achieves high clas-
sification accuracy in both the open-world and the closed-
world models. We further show that our attack is more resis-
tant than network-based fingerprinting to the effects of re-
sponse caching, and that our techniques are resilient both
to network-based defenses and to side-channel countermea-
sures introduced to modern browsers as a response to the
Spectre attack. To protect against cache-based website fin-
gerprinting, new defense mechanisms must be introduced to
privacy-sensitive browsers and websites. We investigate one
such mechanism, and show that generating artificial cache

activity reduces the effectiveness of the attack and com-
pletely eliminates it when used in the Tor Browser.

1 Introduction

Over the last decades the World Wide Web has grown from
an academic exercise to a communication tool that encom-
passes all aspects of modern life. Users use the web to ac-
quire information, manage their finances, conduct their so-
cial life, and more. This shift to the so called virtual life
has resulted in new challenges to users’ privacy. Monitoring
the online behavior of users may reveal personal or sensitive
information about the users, including information such as
sexual orientation or political beliefs and affiliations.

Several tools have been developed to protect the online
privacy of users and hide information about the websites
they visit [18, 20, 71]. Prime amongst these is the Tor
network [20], an overlay network of collaborating servers,
called relays, that anonymously forward Internet traffic be-
tween users and web servers. Tor encrypts the network traffic
of all of the users, and transmits it between relays in a way
that prevents external observers from identifying the traffic
of specific users. In addition to the network itself, the Tor
Project also provides the Tor Browser [82], a modified ver-
sion of the Mozilla Firefox web browser, that further protects
users by disabling features that may allow web sites to track
the users.

Past research has demonstrated that encrypting traffic is
not sufficient for protecting the privacy of the users [10, 29,
35, 36, 37, 45, 46, 53, 60, 66, 67, 73, 88, 89, 93]. Observable
patterns in the metadata of encrypted traffic, specifically, the
size of the transmitted data, its direction, and its timing, may
reveal the web page that the user is visiting. Applying such
website fingerprinting techniques to Tor traffic results in a

USENIX Association 28th USENIX Security Symposium 639

success rate of over 90% in identifying the websites that a
user visits over Tor [73].1

In this paper, we focus on an alternative attack model of
exploiting micro-architectural side-channels, a less explored
option for website fingerprinting. The attack model assumes
a victim that visits a web site under the attacker’s control.
The web site monitors the state of the victim computer’s
cache, and uses that information to infer the victim’s web
activity in other tabs of the same browser, or even in other
browsers.

Because the attack observes the internal state of the target
PC, rather than the network traffic. It offers the potential of
overcoming traffic shaping, often proposed as a defense for
website fingerprinting [11, 12, 15, 63, 90]. Similarly, the
attack may be applicable in scenarios where network-based
fingerprinting is known to be less effective, such as when the
browser caches the contents of the website [36].

We note that the malicious web site does not need to be
fully under the control of the attacker. The attacker only
needs to be able to inject JavaScript code via the web site
to the victim’s browser. This can be done, for example,
through a malicious advertisement or pop-up window. Alter-
natively, documents released by former NSA contractor Ed-
ward Snowden indicate that some nation-state agencies have
the operational capability to exploit this vector on a wide
scale. In March 2013 the German magazine Der Spiegel re-
ported on the existence of a tool called QUANTUMINSERT,
which the GCHQ and the NSA could use to inject malicious
code to any website [78]. The Der Spiegel claims that the
GCHQ successfully used this tool to attack the computers of
employees at the partly-government-held Belgian telecom-
munications company Belgacom, and that the NSA used the
same technology to target high-ranking members of the Or-
ganization of the Petroleum Exporting Countries (OPEC) at
the organization’s Vienna headquarters. Finally, malicious
advertisements are a viable option for injecting cache side-
channel attacks to browsers [28].

For a small number of websites, under the closed-world
model, Oren et al. [64] show the possibility of fingerprint-
ing via malicious JavaScript code. However, beyond show-
ing the ability to distinguish between a handful of websites,
their work does not provide an analysis of the effective-
ness of the technique. Furthermore, following the disclo-
sure of the Spectre and the Meltdown attacks, which can
also be potentially delivered via malicious JavaScript in-
jection [48, 57], major vendors deployed defenses against
browser-borne side-channel attacks. In particular, all mod-
ern browsers have reduced the resolution of the JavaScript
time function, performance.now(), by several orders of
magnitude [69, 87], making it difficult to tell apart cache hits

1Website fingerprinting is a misnomer. Fingerprinting identifies individ-
ual web pages rather than sites. Following this misnomer, in this work we
use the term website to refer to specific pages, typically the homepage of the
site.

and cache misses. Traditionally, cache attacks require high-
resolution timers, and while mechanisms to generate such
timers in web browsers have been published [31, 49, 76], it
is not clear that these can be used for website fingerprinting.

Thus, in this paper we ask: Are cache-based attacks a vi-
able option for website fingerprinting?

Our Contribution

We answer this question in the affirmative. We design and
implement a cache-based website fingerprinting attack, and
evaluate it in both the closed-world and the open-world mod-
els. We show that in both models our JavaScript-based at-
tacker achieves high fingerprinting accuracy even when ex-
ecuted on modern mainstream browsers that include all re-
cently introduced countermeasures for side-channel (Spec-
tre) attacks. Even when taking these countermeasures to the
extreme, as is done in the Tor Browser, our attack remains
effective, although with a drop in accuracy.

Our attack consists of collecting traces of cache occu-
pancy while the browser downloads and renders web sites.
Adapting the techniques of Rimmer et al. [73], we use deep
neural networks to analyze and to classify the collected
traces. By focusing on cache occupancy rather than on activ-
ity within specific cache sets, our attack avoids the need for
high resolution timers required by prior cache-based attacks.
Furthermore, because our technique does not depend on the
layout of the cache, it can overcome proposed countermea-
sures that randomize the cache layout [58, 70, 91].

We investigate the source of the information in the cache
occupancy traces and show that they contain information
from both the networking activity and the rendering activity
of the browser. Using information from the rendering ac-
tivity allows our attack to remain effective even in scenarios
that thwart network-based fingerprinting, such as when the
browser retrieves data from its response cache and not from
the network, or when the network traffic is shaped.

Finally, we investigate a potential countermeasure that in-
troduces a high level of activity into the last level cache. We
show that the countermeasure reduces the success rate of the
attack. In particular, the noise completely masks the activ-
ity of the Tor Browser, reducing the attack accuracy to that
of a random guess. This countermeasure results in a mean
slowdown of 5% for CPU benchmarks, which we consider
reasonable when visiting privacy-sensitive web sites.

More specifically, we make the following contributions:

• We design and implement the cache occupancy side-
channel attack, a cache-based side channel attack tech-
nique which can operate with the low timer resolution
supported in modern JavaScript engines. Our attacks
only require a sampling rate six orders of magnitude
lower than required for the prior attacks of Oren et
al. [64] (Section 4).

640 28th USENIX Security Symposium USENIX Association

• We evaluate the use of two machine learning tech-
niques, CNN and LSTM, for fingerprinting websites
based on the cache activity traces collected while loaded
by the browsers (Section 5).

• We show that cache-based fingerprinting has high ac-
curacy in both the closed- and the open-world models,
under a variety of operating systems and browsers (Sec-
tion 6).

• We evaluate both fingerprinting methods without delet-
ing the browser response cache, and show that while the
accuracy of network-based fingerprinting drops signifi-
cantly, the accuracy of cache-based fingerprinting is not
affected (Section 7.3).

• We show that cache-based fingerprints contain informa-
tion both from the network activity and from the ren-
dering activity of the target device. Therefore, cache-
based fingerprinting maintains a high accuracy even in
the presence of traffic molding countermeasures which
force a constant bit rate on network traffic (Section 7.4).

• We design and evaluate a countermeasure that intro-
duces noise in the cache. The countermeasure is appli-
cable from both native code and from JavaScript, com-
pletely blocks the attack on the Tor Browser, and only
causes a small performance degradation on CPU-bound
workloads (Section 9).

2 Background

2.1 Tor

Tor [20], is a collection of collaborating servers called relays,
designed to provide privacy for network communication. Tor
aims to protect users from on-path adversaries that can ob-
serve the network traffic. In this scenario, a user uses a PC
to browse the web, and an adversary positioned between the
user’s PC and the destination web server captures the infor-
mation that the user exchanges with the web server.

A common protection for such an attack model is to use
encryption, e.g., using protocols such as TLS [19] which un-
derlies the security of the HTTPS scheme [72]. However,
this solution only protects the contents of the communica-
tion, leaving the identity of the communicating parties ex-
posed to the adversary. Knowing that users merely con-
nected to a certain sensitive website may be enough to in-
criminate them, even if the actual data exchanged over the
secure connection is not known. This risk became a real-
ity in 2016, as tens of thousands of individuals were perse-
cuted by the Turkish government for accessing the domain
bylock.net [50].

The main aim of Tor is thus to protect the identity of the
communicating parties. Tor achieves this protection by for-
warding the users’ communication through a circuit consist-

ing of a few (typically three) Tor relays. The user encrypts
the network traffic with multiple layers of encryption, and
each relay in the circuit decrypts a successive layer to find
out where to forward the traffic. See Dingledine et al. [20]
for further information.

2.2 Website Fingerprinting Attacks and De-
fences

In the conventional attack model of a network-level attacker,
much previous work has demonstrated the ability of an ad-
versary to make probabilistic inferences about users’ com-
munications via statistical analysis, even if these communi-
cations are in their encrypted form. These works have inves-
tigated both the selection of features (such as packet sizes,
packet timings, direction of communication), as well as the
design of classifiers (such as support vector machines, ran-
dom forests, Naive Bayes) to make accurate predictions [10,
29, 35, 36, 37, 45, 46, 53, 60, 66, 67, 73, 88, 89, 93]. In re-
sponse, several defense mechanisms have been proposed in
the literature [11, 12, 15, 63, 90]. The common idea behind
these defenses is to inject random delays and spurious cover
traffic to perturb the traffic features and therefore obfuscate
users’ communications. A common point of all of these
defenses is a typical trade-off between latency/bandwidth
and privacy, and thus they face deployment hurdles. Rim-
mer et al. [73] have recently proposed a family of classi-
fiers based on deep learning algorithms such as SDAE, CNN
and LSTM, which operate on the raw network traces and are
therefore less sensitive to ad-hoc defenses against particular
traffic features.

2.3 Cache Side-Channel Attacks
When programs execute on a processor, they share the
use of micro-architectural components such as the cache.
This sharing may result in unintended communication chan-
nels, often called side channels, between programs [27, 39],
which may be used to leak secret information. In partic-
ular, cache-based attacks, which exploit contention on one
of the processor’s caches, can leak secrets such as crypto-
graphic keys [4, 26, 65, 68, 83], keystrokes [32], address
layout [23, 31, 33], etc.

Cache Operation. Caches bridge the speed gap between
the faster processor and the slower memory. The cache is a
small bank of memory, which stores the contents of recently
accessed memory locations. Most caches in modern proces-
sors are set associative. The cache is divided into partitions
called sets. Each memory location maps to a single set and
can only be cached in the set it maps to. When the processor
needs to access a specific memory location, it successively
searches in a hierarchy of caches. In a cache hit, when the
contents of the required address is found in the cache, access
is performed on the cached contents. Otherwise, in a cache

USENIX Association 28th USENIX Security Symposium 641

miss, the process repeats on the next cache level. A miss on
the last-level cache (LLC) results in a time-consuming access
to the RAM.
The Prime+Probe Technique. Past cache-based attacks
from web browsers [28, 64] employ the Prime+Probe tech-
nique [65, 68], which exploits the set-associative structure.
Each round of attack consists of three steps. In the first step,
the cache is primed, i.e., the attacker completely fills some
of the cache sets with its own data. The attacker then waits
some time to allow the victim to execute. Finally, the attacker
probes the cache by measuring the time it takes to access the
previously-cached data in each of the sets. If the victim ac-
cesses memory locations that map to a monitored cache set,
the victim’s memory contents will replace the attacker con-
tents in the cache. Hence, the attacker will need to retrieve
the data from lower levels in the hierarchy, increasing the ac-
cess time to its data. Prime+Probe has been used for attacks
on data [65, 68] and instruction [3, 4] caches, as well as for
attacks on the LLC [43, 59]. It has been shown practical in
multiple settings, including across different virtual machines
in cloud environments [40] and from mobile code [28, 64].
Countermeasures in JavaScript. The time difference be-
tween the latencies of a memory access and cache access is
on the order of 0.1 µs. To distinguish between cache hits
and misses, cache attacks typically require a high resolution
timer. Following the publication of the first demonstration of
a cache attack in JavaScript [64], some browsers started re-
ducing the resolution of the timers they provide as a counter-
measure for cache side channel attacks. This approach had
become wide-spread after the disclosure of the Spectre at-
tack [48], and now all mainstream browsers incorporate this
countermeasure. Furthermore, while non-traditional timers
in browsers have been identified [25, 49, 76], browsers and
extensions have since disabled many of the features that al-
low sub-microsecond resolution [61, 69, 77]. An extreme
case of this behavior can be found in the Tor Browser, which
restricts the timer resolution to 100 ms, or 10 Hz.

Several of the previously discovered timers rely on
browser features that are accessible from JavaScript. These
are not accessible in environments such as Cloudflare Work-
ers [7], which rely on the absence of high-resolution timers
to protect against timing attacks [85].

2.4 Related Work
Several past works have looked at the possibility of perform-
ing website fingerprinting based on local side-channel infor-
mation. In all of these works, which we survey in Table 1,
the adversary observes some property of the system while
the victim browser is rendering a webpage. The adversary
then applies a machine learning classifier to the observed
side-channel trace to identify the rendered website.2 Some

2 A different but closely related class of attacks are “history sniffing” at-
tacks, such as [54, 92], in which the attacker wishes to learn which websites

of these works assume that the adversary has malicious con-
trol over a hardware component or peripheral [16, 56, 94].
Others assume that the adversary can execute arbitrary na-
tive code on the target hardware [34, 44, 51, 80]. Yet others
make the much more modest assumption that the adversary
can induce the victim to render a webpage containing mali-
cious JavaScript code [8, 47, 64, 86]. We mainly investigate
the last model.

Kim et al. [47] abuse a data leak in the Chrome imple-
mentation of the Quota Management API, which has been
since fixed. Our attack, in contrast, is based on a funda-
mental property of the CPU running the browser application,
which is far less trivial to fix. (See Section 9.) Moreover, the
mitigations put in place as part of the response to the Spec-
tre and Meltdown disclosures make the high sampling rates
exploited thus far [64, 86] unattainable in modern secure
browsers. Our attack, in contrast, achieves high accuracy at
drastically lower sampling rates and is capable of classifying
a significant number of websites at sampling rates as low as
10 Hz. To the best of our knowledge, no cache attack that
uses such low clock resolutions has been demonstrated.

In addition, Oren et al. [64] only recorded a small num-
ber of traces from a few popular websites, and did not in-
vestigate the effectiveness of cache-based fingerprinting in
open-world contexts, or in scenarios where various anti-
fingerprinting measures are in place. We address all of
these shortcomings in this work. Furthermore, while Oren et
al. [64] do target the Tor Browser, the attack code executes
in a different mainstream browser. Unlike our work, they
do not demonstrate an attack from JavaScript code running
within the Tor Browser.

Booth [8] is able to classify a moderate amount of web-
sites using a non-cache-based method with a millisecond
clock. Their attack, however, saturates all of the victim’s
CPU cores with math-intensive worker threads, making it
highly noticeable and easy to detect by the victim.

Cock et al. [17] implement a covert channel using an
L1 cache occupancy channel. Ristenpart et al. [74] show
that a cache occupancy channel can detect keystroke timing
and network load in co-located virtual machines on cloud
servers. Both use the technique with high resolution (sub
nanosecond) timers. We are not aware of any prior use of the
cache occupancy channel to overcome low resolution timers.

3 The Website Fingerprinting Attack Model

The classical attack model used to evaluate website finger-
printing attacks is presented in Figure 1. In this model, a
targeted user uses a web browser to display a sensitive web-
site. To protect their privacy, the user does not connect to
the website directly, but instead uses a secure network, such
as the Tor network, for the connection. The attacker is typ-

the victim has visited in the past.

642 28th USENIX Security Symposium USENIX Association

Table 1: Related work on website fingerprinting based on local side channels.

Sampling
Work Target Side Channel Attack Model rate [Hz]

Clark et al., 2013 [16] Chrome (Mac, Win, Linux) Power consumption Hardware 250000
Yang et al., 2017 [94] Multiple smartphones Power consumption Hardware 200000
Lifshits et al., 2018 [56] Android Browser, Chrome Android Power consumption Hardware 1000
Jana and Shmatikov, 2012 [44] Chrome Linux, Firefox Linux, Android

Browser (VM)
App memory footprint Native code 100000

Lee et al., 2014 [51] Chromium Linux, Firefox Linux GPU memory leaks Native code N/A
Spreitzer et al., 2016 [80] Chrome Android, Android Browser, Tor

Android
Data-Usage Statistics Native code 20–50

Gülmezoglu et al., 2017 [34] Chrome Linux (Intel and ARM), Tor
Linux

Performance counters Native code 10000

Oren et al, 2015 [64] Safari MacOS, Tor MacOS Last-level cache JavaScript 108

Booth, 2015 [8] Chrome (Mac, Win, Linux), Firefox
Linux

CPU activity JavaScript 1000

Kim et al., 2016 [47] Chromium Linux, Chrome (Win, An-
droid)

Quota Management API JavaScript N/A

Vila and Köpf, 2017 [86] Chromium Linux, Chrome Mac Shared event loop JavaScript 40000
This work Chrome (Win, Linux), Firefox (Win,

Linux), Safari MacOS, Tor Linux
Last-level cache JavaScript 10–500

Target PC

Target AdversaryTarget Browser
Sensitive
Website

Secure Network

Figure 1: The classical website fingerprinting attack model.
The (passive) adversary monitors the traffic between the tar-
get user and the secure network.

ically modeled as an on-path adversary, who is capable of
observing all traffic entering and leaving the Tor network in
the direction of the target user. The adversary cannot un-
derstand the contents of the network traffic since it is en-
crypted when it enters the Tor network. The adversary is
furthermore unable to directly determine the ultimate desti-
nation of the communications after it exits the Tor network,
thanks to Tor’s routing protocol. Finally, due to the encryp-
tion and the validation of the Tor network, the attacker is
unable to modify the traffic without terminating the con-
nection. An important thread of research on the security
of Tor has investigated the ability of such an adversary to
perform statistical traffic analysis of encrypted traffic, and
then to make probabilistic inferences about users’ communi-
cations [10, 35, 36, 37, 45, 46, 53, 60, 66, 67, 73, 88, 89, 93].

Gong et al. [29] suggest a variation on this scheme, in which
the attacker remotely probes routers to estimate the load of
the network traffic they process and performs the statistical
analysis based on this estimated traffic. Jansen et al. [45]
suggest another variation in which the attacker monitors the
traffic inside the Tor network, rather then monitoring traffic
at the network’s edge.

Target PC

Target

Architectural
Boundary

Sensitive Session
Sensitive
Website

Standard Session
Standard
Website

Adversary

Secure Network

Figure 2: Remote cache-based website fingerprinting attack
model. The remote attacker injects malicious JavaScript
code into a browser running on the target machine.

In this work we discuss a different attack model, presented
in Figure 2. In this model, the target user has two concur-
rent browsing sessions. In one session, the user browses to

USENIX Association 28th USENIX Security Symposium 643

an adversary-controlled site, which contains some malicious
JavaScript code. In the other session, the user browses to
some sensitive web site. Due to architectural boundaries,
such as sandboxing or process isolation, the malicious code
cannot directly observe the internal state of the sensitive ses-
sion. Hence, the adversary cannot directly determine the
ultimate destination of any communication issued from the
sensitive session, even when the sensitive session is using a
direct unencrypted connection to the remote server. The ma-
licious code can, however, observe the micro-architectural
state of the processor, and use this information to spy on the
sensitive session.

Our attack can therefore be considered in the following
scenarios:

• A cross-tab scenario, where a user is made to visit
an attacker-controlled website containing malicious
JavaScript, and this website tries to learn what other
sensitive sites the user is visiting at the same time.
These attacker-controlled and sensitive browsing ses-
sions can be carried out on the same browser, on two
different browsers belonging to the same user, or even
on two browsers residing in two completely isolated vir-
tual machines which share the same underlying hard-
ware [75].
One possible way of causing the user to browse to such
an attacker-controlled site is through a phishing attack,
where the attacker sends fraudulent messages, purport-
ing to be from a benign source, that induces the victim
to click on a link to a malicious web site. Alternatively,
the attacker may pay an advertisement service to dis-
play a (malicious) advertisement when the user visits a
third-party website [28].

• A cross-network scenario, where the attacker is an ac-
tive on-path adversary capable of injecting JavaScript
into any non-encrypted page. The attacker would like to
leverage that access to try to learn about the user’s sen-
sitive activity, even though the attacker cannot manipu-
late or access this traffic directly. For example, the user
may simultaneously run one browsing session over an
unsecured connection for mundane tasks, and another
browsing session over a second, secured connection for
sensitive tasks. An attacker capable of modifying traffic
on the standard link can learn about activity carried out
over the secured link, whether this secure connection
made through a VPN, through the Tor network, or even
through a separate network adapter which the attacker
cannot see.

The main challenge of the our attack model is the ex-
tremely restricted JavaScript runtime, which requires the at-
tacker code to be written in a particular way, as we describe
further in Section 4.

Regardless of the delivery vector, cache-based fingerprint-
ing has a strong potential advantage over network-based fin-

gerprinting, since it can indirectly observe both the com-
puter’s network activity and the browser’s rendering process.
As we demonstrate in Section 7.4, both of these elements
contribute to the accuracy of our classifier.

4 Data Collection

4.1 Creating memorygrams

The raw data trace for network-based attacks takes the form
of a network trace, commonly in the pcap file format, which
contains a timestamped sequence of all traffic observed on a
certain network link. The corresponding data trace in the
case of cache attacks is the memorygram [64]—a trace of
the cache access latency measured at a constant sampling
rate over a given time period. The memorygrams of Oren
et al. [64] describe the latency of multiple individual sets
or groups of sets at each point in time, resulting in a two-
dimensional array. In contrast, in this work we use a simpli-
fied, one-dimensional memorygram form. The contents of
each entry in our memorygrams is a proxy for the occupancy
of the cache at the specific time period. We collect memo-
rygrams while the browser loads and displays websites, and
use the data as fingerprints for website classification.

The Cache Occupancy Channel. Unlike prior works [28,
64], which use the Prime+Probe side-channel attack from
JavaScript, we use a cache occupancy channel. The main dif-
ference is that the Prime+Probe attack measures contentions
in specific cache sets, whereas our attack measures con-
tention over the whole cache. Specifically, our JavaScript
attack allocates an LLC-sized buffer and measures the time
to access the entire buffer. The victim’s access to memory
evicts the contents of our buffer from the cache, introducing
delays for our access. Thus, the time to access our buffer
is roughly proportional to the number of cache lines that the
victim uses. Cache occupancy has previously been imple-
mented in native code and used for covert channels and for
measuring co-resident activity [17, 74]. Both of these imple-
mentations rely on high resolution timers. To our knowledge,
we are the first to use the cache occupancy channel with a
low resolution timer.

Overcoming Hardware Prefetchers. Ideally, we would
like to collect information across the whole cache. Intel
processors, however, try to optimize memory accesses by
prefetching memory locations that the processor predicts
will be accessed in the future. Because prefetching changes
the cache state, we need to fool the prefetchers. To fool the
spatial prefetcher [42], we use the technique of Yarom and
Benger [96] and do not probe adjacent cache sets. To fool
the streaming prefetcher, which tries to identify sequences
of cache accesses, we use a common approach of masking
access patterns by randomizing the order of the memory ac-
cesses we perform [59, 65].

644 28th USENIX Security Symposium USENIX Association

Spatial Information. Compared with the Prime+Probe
attack, the cache occupancy channel does not provide any
spatial information. That is, the adversary does not learn
any information on the addresses that the victim accesses.
While this is a clear disadvantage of the cache occupancy
channel, our attack does not require spatial information. The
main reason is that modern browsers have complex memory
allocation patterns. Consequently, the location that data is
allocated changes each time a page is downloaded, and the
location carries little information on the downloaded page.
In practice, not having spatial information is also an advan-
tage. Without it, there is no need to build eviction sets for
cache sets, a process that can take significant time [28].

Website Memorygrams. We capture memorygrams when
the browser navigates to websites and displays them. We
use a JavaScript-based memorygrammer to probe the cache
at a fixed rate of one sample every 2 ms. We continue the
probe for 30 seconds, resulting in a vector of length 15,000.
When a probe takes longer than 2 ms, we miss the slot of the
next probe. We use a special value to indicate this case. We
use this collection method for all mainstream browsers other
than the Tor Browser,

When the attack code is launched from within the Tor
Browser, where the timer resolution is limited to 100 ms, we
do not measure how long a sweep over the cache takes, but
instead count how many sweeps over the entire cache fit into
a single 100 ms timeslot. In addition, we do not probe for 30
seconds in this setting, but rather for 50 seconds, to account
for the slower response time over the Tor network. Hence,
Tor memorygrams contain 500 measurements over the entire
50 second measurement time period.

The native code memorygrammer used for the evaluations
in Section 7 does not suffer from a reduced timing resolution
when measuring the Tor Browser. Therefore, on mainstream
browsers it runs for 30 seconds and produces 15,000 entries,
and on the Tor Browser it runs for 50 seconds and produces
25,000 entries.

Sanity Check. Before proceeding, we want to verify
that memorygrams can be used for fingerprinting. Indeed,
Figure 3 shows graphical representations of memorygrams
of three sites: Wikipedia (https://www.wikipedia.
com), Github (https://www.github.com), and Ora-
cle (https://www.oracle.com), collected through the
native code memorygrammer. Each memorygram is dis-
played as a colored strip, where time goes from left to right
and the shade corresponds to cache activity at each time.
(Lighter shades correspond to fewer evictions.) We see that
the three memorygrams of each site, while not identical, are
similar to each other. The memorygrams of different web-
sites are, however, very different from each other. This in-
dicates that memorygrams may be used for identifying web-
sites.

Wikipedia

Github

Oracle

Figure 3: Examples of memorygrams. Time progresses from
left to right, shade indicates the number of evictions. (Darker
shades correspond to more eviction.)

4.2 Datasets

Closed World Datasets. We evaluate our cache-based
fingerprinting on six different combinations of browsers and
operating systems, summarized in Table 2. Many early
works on website fingerprinting operated under a closed
world assumption, where the attacker’s aim is to distinguish
among accesses to a relatively small list of websites. Our
closed world datasets follow this line of work. These datasets
consist of 100 traces each for a set of 100 websites, to a total
of 10,000 memorygrams. We use the same list of 100 web-
sites that Rimmer et al. [73] selected from the top Alexa sites.
(See Appendix B for a complete list of websites included.)
Similar to previous works, no traffic molding is applied and
only one tab is opened at a time. The browser’s response
cache, however, is not cleared before accessing each web-
site, an aspect of the experiment we analyze in more detail
in Section 7.

Open World Datasets. One common criticism of the closed
world assumption is that it requires the attacker to know the
complete set of websites the victim is planning to visit, al-
lowing the attacker to prepare and train classifiers for each
of these websites. This assumption was challenged by many
authors, for example Juárez et al. [46]. To address this crit-
icism, website fingerprinting methods are often evaluated in
an open-world setting. In this setting, the attacker wishes to
monitor access to a set of sensitive websites, and is expected
to classify them with high accuracy. Additionally, there is a
large set of non-sensitive web pages, all of which the attacker
is expected to generally label as “non-sensitive”.

To evaluate our fingerprinting method in the open-world
settings, we augment the closed-world datasets with addi-
tional 5,000 traces, each collected for a single unique web-

USENIX Association 28th USENIX Security Symposium 645

https://www.wikipedia.com
https://www.wikipedia.com
https://www.github.com
https://www.oracle.com

site, again using the list of websites provided by Rimmer et
al. [73]. The base rate for this setting is 33.3%, since a trivial
classifier can simply decide that all pages are non-sensitive.

5 Machine Learning

5.1 Problem Formulation
Website fingerprinting is generally formulated as a super-
vised learning problem, consisting of a template building
step and an attack step. In the template building step, the
adversary visits each target website multiple times and col-
lects a set of labeled traces (either network traces or memo-
rygrams), each corresponding to a visit to a certain website.
Next, the adversary trains a classifier algorithm on these la-
beled traces, using either classical machine learning methods
or deep learning methods.

In the attack step, the adversary is presented with a set of
unlabeled traces, each one corresponding to a visit to an un-
known website. The adversary then applies the previously
trained classifier to each of these traces and outputs a guess
for each trace. The accuracy of the classifier is finally calcu-
lated as the percentage of the correctly assigned labels.

5.2 Deep Learning Models
Early works on website fingerprinting, starting from Cheng
and Avnur [14], used classical machine learning methods
such as Naive Bayes, Support Vector Machine (SVM) and
k-Nearest Neighbors (k-NN). As a prerequisite step to run-
ning these classical machine learning methods, the adversary
needs to apply an additional feature extraction step which
transforms the raw trace into a more succinct representation.
Since these features were chosen through human insight into
the nature of network traffic, there was no immediate way of
directly applying them to memorygram analysis.

Abe and Goto [2] and later Rimmer et al. [73] suggest
using deep learning for website fingerprinting. Deep learn-
ing performs automatic feature learning from the raw data,
reducing the reliance on human insight at the cost of a
larger required training set. Rimmer et al. [73] show that,
given a large enough training set, deep-learning website-
fingerprinting approaches are as effective as earlier meth-
ods which require manual feature selection. An advantage of
this approach is that it allows us to compare network-based
and cache-based fingerprinting based on the merit of the raw
data, rather than on the specific choice of features.

Deep Neural Network Configuration. A deep neural net-
work (DNN) is typically configured as a sequence of non-
linear layers which transform the raw data, first extracting
salient features and then selecting the appropriate ones [30].
Every layer in a DNN consists of a set of artificial neurons,
each connected to a set of outputs from the previous lay-
ers. At the forward propagation stage, the activation func-

tion is applied to the product of the each neuron’s input and
its weight value, and then forwarded to the next layer.

For the last layer in the DNNs we evaluate we use a soft-
max layer, which outputs a vector containing a-posteriori
probabilities for each one of the classes.

The process of training the neural network uses back-
propagation to update the weights of each neuron to achieve
a minimum loss at the output. First, the model calculates the
cost between the true classification of the measurement and
the predicted value using a loss function. Next, the model
updates the weights of the each neuron based on the calcu-
lated loss. Every round of forward propagation and back-
propagation is called an epoch. A neural network model runs
multiple epochs to learn the weights for accurate classifica-
tion.

We evaluate deep learning using two classifier models,
Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) networks [38]. A CNN uses a se-
quence of feature mapping layers alternating between con-
volutions and max-pooling. Each of the layers sub-samples
the previous layer, iteratively reducing the size of the input
to a more succinct representation, while preserving the in-
formation they encode. Each convolutional layer is a neural
network specialised for detecting complex patterns in its in-
put. The convolution layer applies several filters to the input
vector, each of which is designed to identify an abstract pat-
tern in a sequence of input elements it is provided with. The
max-pooling layers reduce the dimensionality of the data by
subsampling the filters, choosing the maximum value from
adjacent groups of neurons applied by the filters. This alter-
nating sequence of layers extracts complicated features from
the input and produces vectors short enough for the classi-
fiers. The feature mapping layers are followed by a dense
layer, in which every neuron is connected to every output of
the feature extraction phase. The LSTM-based network has
an initial feature selection step similar to the CNN, but then
adds an additional layer in which each neuron has a memory
cell, with the output of this neuron determined both by its
inputs and by the value of this memory cell. This allows the
classifier to identify patterns in time-based data.

Hyperparameter Selection. Hyperparameters describe the
overall structure of the DNN and of each layer. The choice of
hyperparameters depends on the specific classification prob-
lem. For network-based fingerprinting, we replicated the
parameters specified in the dataset provided by Rimmer et
al. [73]. For cache-based fingerprinting, we manually evalu-
ated several choices for each hyperparameter.

To prevent overfitting, we use 10-fold cross validation. We
split each dataset consisting of traces into 10 folds of equal
size, and select one fold, consisting of 10% of the traces, as a
test set. The remaining 90% of the traces are used for train-
ing the classifier, with 81% serving as the training set and
9% as the validation set. The model trains on the training
set and the evaluation is done on the test set. The number of

646 28th USENIX Security Symposium USENIX Association

epochs is regulated with an Early-Stop function which stops
the epochs when the accuracy of the validation set no longer
increases over successive iterations. The selected hyperpa-
rameters are summarized in Appendix A.

For the CNN classifier we use three pairs of convolution
and max pooling layers. For the LSTM classifier we use two.
As discussed above, the traces captured by the code running
within the Tor Browser contain only 500 measurements, due
to the reduced timer resolution. For these shorter traces, we
modified the architecture of our LSTM-based classifier. The
feature selection of this classifier contains only one convo-
lution layer. We therefore used a pool-size of three for the
max-pooling layer to limit the feature reduction before the
LSTM layer. In addition, because of the small amount of
features, we could increase the number of LSTM units to
128 and learn more complex patterns from the features.

6 Results

All of the results in this section were obtained by using keras
version 2.1.4, with TensorFlow version 1.7 as the back end,
running on two Ubuntu Linux 16.04 servers, one with two
Xeon E5-2660 v4 processors and 128 GB of RAM, and one
with two Xeon E5-2620 v3 processors and 128 GB of RAM.
Our machine learning instances took approximately 40 min-
utes to run in this configuration.

Table 2 presents the fingerprinting accuracy we obtain.
Recall that in this scenario the JavaScript interpreter of the
targeted browser executes the memorygrammer. Consider-
ing that all modern browsers reduced their timer resolution
and some added jitter as a countermeasure for the Spectre at-
tack [69, 87], the first question we need to address is whether
it is even possible to implement cache-based fingerprinting
attacks in such an environment.

0 500 1000 1500 2000 2500 3000 3500 4000

Latency (µsec)

100

101

102

103

D
en

si
ty

(s
am

p
le

s)

Chrome 64 Safari 11 Firefox 59

Figure 4: Cache probe latencies compared to modern
browser timing resolutions.

To answer this question, we measured the latencies of the
cache occupancy channel using a high-resolution timer while
the browser was downloading a web page. Figure 4 shows
the distribution of these latencies. The figure also uses ver-

tical lines to indicate the timer resolutions of the various
browsers. (See Table 2.) As we can see, even at the 2 ms
resolution of the Firefox 59 timer, it is possible to distinguish
between 80% of the probes which take less than 2 ms and the
remaining 20%. This is a welcome side-effect of the use of a
large buffer which is accessed at every probing step. None of
the cache probes we measured, however, took longer than the
100 ms clock period of the Tor Browser. Hence, when run-
ning within the Tor Browser, we count the number of probes
we can perform within each clock tick. (See Section 4.)

The next question is whether the information we collect
with this low resolution is sufficient for fingerprinting. In-
deed, Table 2 shows that in all of the environments we test
our classifier is significantly better than a random guess. Re-
markably, as our results show, even the highly restricted Tor
Browser can be used for mounting cache attacks, albeit with
a significantly lower accuracy than that of general-purpose
browsers.

6.1 Closed World Results
We first look at the typical closed-world scenario investi-
gated by past works. In mainstream browsers, our JavaScript
attack code is consistently able to provide classification ac-
curacies of 70–90%, well over the base rate of 1%. The Tor
Browser attack, however, achieves a lower accuracy of 47%.
If we, however, look not only at the top result output by the
classifier, but also check whether the correct website is one of
the top 5 detected websites, the accuracy of the Tor Browser
attack climbs to 72%, with a base rate of 5%. This method of
looking at the few most probable outputs of a classifier was
previously used in similar classification problems [13, 62].
With some a-priori information an attacker can deduce which
of the top 5 pages the victim has accessed.

We can compare the accuracy of our cache-based fin-
gerprinting to the one obtained by state-of-the-art network-
based methods, as reported by Rimmer et al. [73]. We see
that while there are differences between the classification ac-
curacy achieved in each case, the overall accuracy is com-
parable, assuming both attacks capture the same amount of
traces per website. As in the network-based setting, we be-
lieve that capturing more than 100 traces per website is likely
to increase the accuracy and the stability of our classifier.

6.2 Open World Results
We next turn to the more challenging open-world scenario,
in which the 100 sensitive webpages must be distinguished
from an additional set of 5,000 non-sensitive pages. As seen
in Table 2 the JavaScript-based website fingerprinting code
performs well under this scenario as well, again achieving
classification accuracy of 70–90%. We note that in most
cases the results are slightly better than the closed-world re-
sults. The reason is the larger size of the “non-sensitive”

USENIX Association 28th USENIX Security Symposium 647

Table 2: Accuracy obtained by in-browser memorygrammer— Mean (percents) and standard deviation.

Operating LLC Timer Closed World Open World
System CPU Size Browser Resolution CNN LSTM CNN LSTM

Linux i5-2500 6 MB Firefox 59 2.0 ms 78.5±1.7 80.0±0.6 86.8±0.9 87.4±1.2
Linux i5-2500 6 MB Chrome 64 0.1 ms 84.9±0.7 91.4±1.2 84.3±0.7 86.4±0.3
Windows i5-3470 6 MB Firefox 59 2.0 ms 86.8±0.7 87.7±0.8 84.3±0.6 87.7±0.3
Windows i5-3470 6 MB Chrome 64 0.1 ms 78.2±1.0 80.0±1.6 86.1±0.8 80.6±0.2
Mac OS i7-6700 8 MB Safari 11.1 1.0 ms 72.5±0.7 72.6±1.3 80.5±1.0 72.9±0.9
Linux i5-2500 6 MB Tor Browser 7.5 100.0 ms 45.4±2.7 46.7±4.1 60.5±2.2 62.9±3.3
Linux i5-2500 6 MB Tor Browser 7.5 (top 5) 100.0 ms 71.9±2.1 70.0±1.7 80.4±1.7 82.7±1.8

class. As discussed earlier, this also significantly increases
the base rate for open-world scenarios to 33.3%.

As in the case of the closed-world setting, we can evaluate
the accuracy of the Tor Browser under a top-5 assumption,
i.e. when checking for the correct website in the top five out-
puts of the classifier. Under this relaxation the Tor Browser
attack achieves a high accuracy rate of 83%, with a base rate
of 37.3%.

The classification to sensitive vs. non-sensitive site is a
binary classification problem, We can, therefore, apply stan-
dard analysis techniques to this aspect of the results. We
achieved a near perfect classification in all of the open world
settings we evaluated, achieving an area under curve (AUC)
of more than 99% in all cases.

7 Robustness Tests

Having demonstrated the effectiveness of our website finger-
printing technique, we now turn our attention to its robust-
ness and test its resilience to issues known to affect network-
based fingerprinting.

7.1 Evaluation Setup

Collection Host

Memorygrammer

Target Browser Network TracerTest Harness

Network

Figure 5: Data Collection Setup for the Robustness Tests.

To compare the results of network fingerprinting with
cache-based fingerprinting, we need to modify our data col-
lection setup. The setup, illustrated in Figure 5, consists

of two data collection hosts. The memorygram collection
host, which simulates the victim’s machine, runs both the
target browser and the memorygrammer software. The net-
work tracer sits on-path between the memorygram collection
hosts and the Internet, and collects a record of the network
traffic. A test harness written in Perl and Python invokes the
memorygrammer, the network tracer and the target browser
at the same time, then saves a correlated data record consist-
ing of the memorygram, the network trace in pcap format,
and a screenshot of the target web page for monitoring pur-
poses. For data collection, we use HP Elite 8300 desktop
computers featuring Intel Core i5-2500 CPUs at 3.30 GHz,
with a 6 MB last-level cache, running CentOS 7.2.1511 and
either Firefox 59 or Tor Browser 7.5.

For the robustness tests we use a native-code memory-
grammer, which is based on the Prime+Probe implemen-
tation of Mastik, a side-channel toolkit released under the
GNU Public License [95]. We apply two modifications to
the Mastik code. First, we change the Prime+Probe code
to measure cache occupancy rather than activity in specific
cache sets. Secondly, we use the processor’s performance
counters [41] to count the number of cache evictions rather
than use the high resolution timer to identify evictions. The
use of performance counters for attack purposes has already
been proposed and investigated in the past [6, 9, 52, 84].

7.2 Baseline Scenario

Our baseline scenario replicates the results of our closed
world JavaScript memorygrammer, as well as some of the
results of Rimmer et al. [73]. As we can see in Table 3, the
native-code memorygrammer gives a slightly better accuracy
than the JavaScript memorygrammer on Firefox. When at-
tacking the Tor Browser, the native code memorygrammer
achieves much better results than the in-browser JavaScript
code. We believe that the cause of the improvement is the
higher probing accuracy afforded by the native-code mem-
orygrammer. In both browsers, the results of the native-
code memorygrammer are similar to those achievable with
network-based fingerprinting.

648 28th USENIX Security Symposium USENIX Association

Table 3: Accuracy obtained in robustness tests — Mean (percents) and Standard deviation.

Firefox Network Firefox Cache Tor Network Tor Cache
Test CNN LSTM CNN LSTM CNN LSTM CNN LSTM

Baseline 86.4±1.0 93.2±0.5 94.9±0.5 94.8±0.5 77.6±1.6 90.9±0.7 72.7±0.7 80.4±0.5
Response cache enabled 56.1±1.5 70.6±1.5 92.2±0.8 92.2±0.5 55.5±1.7 65.9±1.0 86.1±0.5 86.3±0.6
Render only – – – – 1.0±0.0 1.0±0.0 63.3±1.1 63.9±1.5
Network only – – – – 77.6±1.6 90.9±0.7 19.9±1.8 51.9±2.7
Temporal drift – – – – 64.5±2.2 81.0±0.6 68.3±0.5 75.6±0.7

7.3 Enabling the Response Cache

Network-based fingerprinting methods, by definition, must
rely on network traffic to perform classification. Typically,
due to caching, many web pages are loaded with partial or
no network traffic. As specified in RFC 7234 [24], the per-
formance of web browsers is typically improved by the use
of response caches. When a web browser client requests a
remote resource from a web server, the server can specify
that a particular response is cacheable, and the web browser
can then store this response locally, either on disk or in mem-
ory. When the page is next requested, the web browser can
ask the server to send the response only if it has been mod-
ified since the last time it was accessed by the client. In
the case of a response cache hit, the server only returns a
short header instead of the complete remote resource, re-
sulting in a very short network traffic sequence. In some
cases, the client can even reuse the cached response without
querying the server for a remote copy, resulting in no net-
work traffic at all. Herrmann et al. [36] demonstrate a sig-
nificant decrease in the accuracy of web fingerprinting when
the browser uses the response cache. Indeed, deleting or dis-
abling the browser cache prior to fingerprinting attacks is a
common practice [66, 88].

We enable caching of page contents by the browser, and
measure the effect on fingerprinting accuracy. In the Firefox
browser we simply refrain from clearing the response cache
between sessions. For privacy reasons, the response cache
in the Tor Browser does not persist across session restarts.
Hence, when collecting data on the Tor Browser we “prime”
the cache before every recording by opening the web page in
another tab, allowing it to load for 15 seconds, then closing
the tab.

When we keep the browser’s response cache, the advan-
tage of cache-based website fingerprinting starts to emerge.
As Table 3 shows, the accuracy of the standard network-
based methods degrades when the response caching is en-
abled. We can see a degradation in accuracy of over 20% in
the fingerprinting accuracy.

In contrast, the cache-based methods are largely unaf-
fected by the reduction in network traffic, achieving high

accuracy rates. This result supports the conclusion that the
cache-based detection methods are not simply detecting the
CPU activity related to the handling of network traffic, mak-
ing them essentially a special case of network-based clas-
sifiers, but are rather detecting rendering activities of the
browser process.

7.4 Net-only and Render-only Results
Oren et al. [64] show that cache activity is correlated with
network activity, raising the possibility that cache-based fin-
gerprinting basically identifies the level of network activity.
To rule out this possibility and show that website rendering
also contributes to fingerprinting, we separate rendering (or
more precisely, data processing) activity from handling of
network data.

Render-Only Fingerprinting. To capture the data process-
ing activity, we neutralize the network activity by guarantee-
ing constant traffic levels. More specifically, we apply mold-
ing to the network traffic, ensuring that data flow between
the collection host and the network at a fixed bandwidth of
10 KB every 250 ms. To achieve that, we queue data trans-
mitted at a higher rate, or send dummy packets when the
transmitted data does not fill the desired bandwidth. These
dummy packets are silently dropped by the receiver. The
approach is, basically, BuFLO [22], with τ = ∞, i.e., when
the data stream continues indefinitely. This approach has a
high bandwidth overhead compared to WTF-PAD and WT,
however, it is designed to ensure that the network traffic is
constant irrespective of the contents of the website. As ex-
pected, the raw network captures in this scenario all have the
exact same size, which happens to be twice as large as the
largest network capture recorded without traffic molding.

Because all the traces are identical, the network-based
classifier assigns the same class to all of the traces, and its
accuracy is the same as a random guess. The results of cache-
based fingerprinting show a drop in accuracy compared with
unmolded traffic. However, the accuracy is still significantly
better than a random guess. This experiment demonstrates
the resilience of cache-based website fingerprinting to mit-
igation techniques aimed at network-based fingerprinting,

USENIX Association 28th USENIX Security Symposium 649

and suggests that this privacy threat should be countered us-
ing a different class of mitigation techniques, as we explore
further in Section 9.

Network-Only Fingerprinting. In a complementing ex-
periment, we aim to capture only the network traffic. To
collect this dataset, we first capture actual traffic data from
a real browsing session. We then use a mock setup, that
does not involve a browser at all. Instead, we use two
tcpreplay [1] instances, one at the collection host, and
the other at a server, to emulate the network traffic, by re-
playing the data from the pcap file.

The results for this experiment show that the cache-based
classifier is capable of classifying many pages even when
no rendering activity is taking place. However, the accuracy
is significantly lower than in the case that rendering activity
does take place. In particular, our CNN classifier only detects
the correct website in about 20% of the cases, significantly
lower than the 73% we get for the matching closed-world
scenario. (But still much better than the 1% expected for a
random guess.) The accuracy of the network-based classifier
is the same as for the baseline, simply because the network
traffic is replicated.

Combining these two experiments we therefore conclude
that cache-based fingerprinting identifies features both in the
network traffic patterns and in the actual contents of the dis-
played web pages.

7.5 Dealing with Temporal Drift

The accuracy of network-based website fingerprinting
decays over time, when the contents of the website
changes [73]. Many websites use content management sys-
tems (CMS), in which the page layout is based on a fixed
template design, and only the resources loaded into this tem-
plate vary over time. Since, as we have shown, the cache-
based fingerprints capture rendering activities as well as net-
work activities, it would seem that the rendering-related
traces recorded by the cache-based method would have a
longer lifetime, and be more resistant to drift, than the
network-related traces captured by the traditional method.

To test this hypothesis, we repeat the data collection of
the baseline experiment after a delay of 36 days (start to
start). We then measure the ability of both cache-based
and network-based classifiers to accurately classify the new
traces, after being trained on the old traces. In this setting, we
see a drop of 5–10% in the accuracy of both classifiers. We
believe that further experiments are required for accurately
assessing how cache-based and network-based fingerprint-
ing handle temporal drifts.

8 Detecting Unknown Hardware Configura-
tions

In contrast to network-based fingerprinting, which is largely
target agnostic, cache-based fingerprinting needs to be tai-
lored to the precise hardware configuration of the victim ma-
chine, specifically the set count and associativity of its last-
level cache. Using a too large or a too small buffer reduces
the effectiveness of the technique, and eventually the accu-
racy of the classifier. There are, however, not that many pop-
ular configurations. For example, four cache configurations
(4096 or 8192 sets, 12 or 16 ways) cover most of the Intel
Core processor models.

If the target hardware configuration is known beforehand
(assuming, for example, that a particular user is singled out
for attack) the attacker can customize the parameters of the
JavaScript attack code to match the target PC’s parameters.
It would be interesting, however, to see how well an attacker
can remotely determine an unknown target’s cache config-
uration using JavaScript. To investigate this, we created a
JavaScript program that allocates a 20MB array in mem-
ory and iterates over it in several patterns which should fit
in well into different configurations of cache set-counts and
associativities. We then recorded the minimum, maximum
and mean access time per element, plus the standard devi-
ation, for each of these configurations. We collected 1,350
such measurements from multiple systems with cache sizes
of 3 MB, 4 MB, 6 MB, and 8 MB. We then used MATLAB’s
classification learner tool to apply a variety of machine learn-
ing classifiers to the measured data. Using both KNN and
SVM classifiers, we were able to correctly classify the con-
figuration of the target’s last-level cache with over 99.8%
classification accuracy under 5-fold cross validation. Inter-
estingly, even a simple tree-based classifier which compared
the minimum iteration time of three different configurations
to a predefined threshold was 99.6% accurate. We ported this
simple tree-based classifier to JavaScript, creating an LLC
cache size detector which we tested and found capable of ac-
curately detecting the cache sizes of 15 different machines
with diverse browser, hardware and operating system con-
figurations, taking less than 300 ms to run in all cases. Thus
generic attacks that adapt to the specific hardware configura-
tion seem feasible.

9 Countermeasures

We now discuss potential countermeasures to our finger-
printing attack. We first describe a cache masking technique
we experimented with. We then follow with a review of other
cache attack countermeasures suggested in the literature.

650 28th USENIX Security Symposium USENIX Association

0%

5%

10%

15%

20%

p
e
rlb

e
n
ch

b
zip

2

g
cc

m
cf

g
o
b
m

k
h
m

m
e
r

sje
n
g

lib
q
u
a
n
tu

m
h
2
6
4
re

f
o
m

n
e
tp

p
a
sta

r
xa

la
n
cb

m
k

IN
T

b
w

a
ve

s
g
a
m

e
ss

m
ilc

ze
u
sm

p
g
ro

m
a
cs

ca
ctu

sA
D

M
le

slie
3
d

n
a
m

d
d
e
a
lII

so
p
le

x
p
o
vra

y
ca

lcu
lix

G
e
m

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x3
F
P

S
lo

w
d

o
w

n

Figure 6: Performance slowdown of our countermeasure on the SPEC benchmark. Error bars indicate one standard deviation.
INT and FP show the geometric mean of the SPEC integer and floating point benchmarks, respectively.

9.1 Cache Activity Masking

One well-studied mitigation method from the domain of
network-based cache fingerprinting involves creating spuri-
ous network activity to mask the actual website traffic [22].
It is possible to adapt such a masking technique to our do-
main and mask the actual website rendering activity by cre-
ating spurious activity in the cache. Our initial experiments
show that this is a promising mitigation, but further research
is needed to assess its effectiveness and its effect on perfor-
mance and on power consumption.

Masking implementation. Our countermeasure repeatedly
evicts the entire last-level. More specifically, we allocate a
cache-sized buffer and access every cache line in the buffer
in a loop. Such masking could be applied in the browser,
in the operating system, as a browser plugin, and even in-
corporated into a security-conscious website in the form of
JavaScript delivered to the client. For our initial proof of
concept implementation we chose to implement the counter-
measure as a standalone native code application, based on
a modification of the Mastik side-channel toolkit [95]. This
setting allows us to investigate the effectiveness of our coun-
termeasure while leaving deployment complexities for future
work.

Evaluation. We evaluated this countermeasure on a desk-
top computer featuring an Intel Core i5-2500, running Cen-
tos Linux version 7.6.1810. We enabled the countermea-
sure, then collected website traces both for Firefox (Linux)
and for the Tor Browser, using the same mix of traces de-
scribed in Section 4.2—10,000 traces for the closed-world
scenario, consisting of 100 traces for each of the Alexa top
100 websites, and 5,000 additional traces for the open-world
scenario, each collected for a single unique website. We split
the data set into training, testing and validation sets and ap-
plied 10-fold cross validation, as described in more detail in
Section 5.2.

Our experiments show that the countermeasure com-

pletely thwarts the attack when training is done on an unpro-
tected system—the accuracy of our classifier was at or below
the base rate of 1% for the closed-world scenario and 33%
for the open-world scenario. We also evaluated a scenario
in which the adversary is allowed to train on traces with the
countermeasure applied. In this more challenging scenario,
the countermeasure completely thwarts the attack when the
attack code is running from the Tor Browser. On Firefox,
however, we only noticed a moderate reduction in the effec-
tiveness of the attack. In the closed world scenario, the attack
achieves 73% success and in the open world the success rate
is 77%. (Down from 79% and 86%, respectively.)

Performance Impact. To understand the effect that
our countermeasure has system performance, we used the
industry-standard SPEC CPU benchmark [79], the de-facto
standard benchmark for measuring the performance of the
CPU and the memory subsystems. Figure 6 shows the re-
sults of the SPEC CPU 2006 benchmarks with our counter-
measure, relative to no countermeasure. The countermeasure
causes a slowdown of around 5% (geometric mean across
the benchmarks) with a worst case slowdown of 14% for the
bwaves benchmark. These results are from the average of
ten executions of the benchmarks for each case. With Tor
network performance being as it is, we believe that the per-
formance hit on CPU benchmarks is acceptable for this sce-
nario.

9.2 Other Countermeasures

Most of the past research into cache attacks has been done
in the context of side-channel cryptanalysis. Due to the dif-
ferent scenario, many of the countermeasures typically sug-
gested for cache-based attack are no longer effective. Tech-
niques such as constant-time programming [5] are only ap-
plicable to regular code, typically found in implementations
of cryptographic primitives. It is hard to see how such
techniques can be applied to web browsers. Similarly, as

USENIX Association 28th USENIX Security Symposium 651

this work demonstrates, timer-based defenses that reduce the
timer frequency or add jitter are not effective.

Cache randomization techniques [58, 70, 91] dissociate
victim and adversary cache sets, and prevent the adversary
from monitoring victim access to specific addresses. How-
ever, our attack measures the overall cache activity rather
than looking at specific victim accesses. As such, such tech-
niques are unlikely to be effective against our attack.

Cache partitioning, either using dedicated hardware [21,
91] or via page coloring [55], is a promising approach for
mitigating cache attacks. In a nutshell, the approach parti-
tions the cache between security domains, preventing cross-
domain contention. Web pages are often rendered within
the same browser process. A page-coloring countermeasure
will, therefore, need to adapt to the browser scenario. Alter-
natively, the current shift to strict site isolation [81] as part of
the mitigations for Spectre [48], may assist in applying page
coloring to protect against our attack. A further limitation of
page coloring is that caches support only a handful of colors.
Hence, colors need to be shared, particularly when a large
number of tabs are open. To provide protection, page color-
ing will have to be augmented with a solution that prevents
concurrent use of the same color by multiple sites.

CACHEBAR [97] limits the contention caused by each pro-
cess as a protection for the Prime+Probe attack. Like cache
partitioning, this approach works at a process resolution and
may require adaptions to work in the web browser scenario.
Furthermore, unlike past cryptographic attacks that aim to
identify specific memory accesses, our technique measures
the overall memory use of the victim. Consequently, unless
CACHEBAR is configured to partition the cache, some cross-
process contention will remain, allowing our attack to work.

10 Limitations and Future Work

While the work demonstrates the feasibility of cache-based
website fingerprinting and provides an analysis of the attack,
it does leave some areas for further study. Being the first
analysis of its kind, the scope of the work does not match
the scope of similar works on network-based website finger-
printing. In particular, our datasets are significantly smaller
than those of Rimmer et al. [73], for example. Providing
larger datasets would allow better analysis of the effective-
ness of the technique and would be a beneficial service for
the research community as a whole.

In this work we collected the memorygrams on the same
hardware configuration used by the victim PC. While we
show that we can adapt the data collection to the specific
victim hardware (Section 8), at this stage it is not clear how
much a classifier trained on data collected with one hard-
ware configuration would be effective for classifying memo-
rygrams collected on a different configuration.

In the network-based website fingerprinting scenario, lit-
tle to no traffic travels through the network unless the user

is actively fetching a webpage. In the cache-based scenario,
however, the cache is always active to a degree, even before
the browser starts to receive and render the webpage. Rec-
ognizing the start of a trace may therefore be more difficult
in the cache-based setting than in the network-based setting,
especially in the case of a real attack. Our framework im-
plicitly synchronizes the trace with the start of the down-
load. Due to varying network conditions, we see differences
of up to six seconds between trace start and render start. As
such, we believe that our technique can identify web sites
even without the synchronization. Further experimentation
is required, however, to verify this fact. We also note that if
the machine is otherwise idle, cache activity can serve as a
(slightly noisy) indicator of the start of the trace.

The work further shares many of the limitations of
network-based fingerprinting [46]. In particular, websites
tend to change over time or based on the identity of the
user or the specifications of the computer used for displaying
them. Furthermore, our work, like most previous works, as-
sumes that only one website is displayed at each time. Both
Rimmer et al. [73] and our work briefly discuss temporal as-
pects of website fingerprinting, and we also looked a bit into
the issue (Section 7.5). However, further work is required to
assess the impact of this and other variables on the efficacy
of cache-based fingerprinting.

11 Conclusions

In this work we investigate the use of cache side channels
for website fingerprinting. We implement two memorygram-
mers, which capture the cache activity of the browser, and
show how to use deep learning to identify websites based on
the cache activity that displaying them induces.

We show that cache-based website fingerprinting achieves
results comparable with the state-of-the-art network-based
fingerprinting. We further show that cache-based fingerprint-
ing outperforms network-based fingerprinting under a com-
mon operating scenario, where the browser maintains cached
objects. Finally, we demonstrate that cache-based finger-
printing is resilient to both traffic molding and to reduced
timer resolution. The former being the standard defense for
network-based website fingerprinting and the latter the cur-
rently implemented countermeasure for mobile-code-based
microarchitectural attacks. To the best of our knowledge,
this is the first cache-based side channel attack that works
with the 100 ms clock rate of the Tor Browser.

Acknowledgements

We would like to thank Vera Rimmer for her helpful com-
ments and insights. We would also like to thank Roger Din-
gledine and our shepherd Rob Jansen for reviewing and com-
menting on the final version of this paper.

652 28th USENIX Security Symposium USENIX Association

This research was supported by the ARC Centre of Excel-
lence for Mathematical & Statistical Frontiers, Intel Corpo-
ration, Israel Science Foundation grants 702/16 and 703/16,
NSF CNS-1409415, and NSF CNS-1704105.

References
[1] Tcpreplay. https://tcpreplay.appneta.com/.

[2] Kota Abe and Shigeki Goto. Fingerprinting attack on Tor anonymity
using deep learning. In Proceedings of the APAN – Research Work-
shop 2016, 2016.

[3] Onur Acıiçmez. Yet another microarchitectural attack: : exploiting
I-Cache. In CSAW, pages 11–18, 2007.

[4] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results
on instruction cache attacks. In CHES, pages 110–124, 2010.

[5] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security
impact of a new cryptographic library. In LATINCRYPT, pages 159–
176, 2012.

[6] Sarani Bhattacharya and Debdeep Mukhopadhyay. Who watches the
watchmen?: Utilizing performance monitors for compromising keys
of RSA on Intel platforms. In CHES, pages 248–266, 2015.

[7] Zack Bloom. Cloud computing without containers. https:
//blog.cloudflare.com/cloud-computing-without-
containers/, 2018.

[8] Jo M. Booth. Not so incognito: Exploiting resource-based side chan-
nels in JavaScript engines. Bachelor thesis, Harvard, April 2015.

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand
exposure: SGX cache attacks are practical. In WOOT, 2017.

[10] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touch-
ing from a distance: website fingerprinting attacks and defenses. In
ACM CCS, pages 605–616, 2012.

[11] Xiang Cai, Rishab Nithyanand, and Rob Johnson. Cs-buflo: A con-
gestion sensitive website fingerprinting defense. In WPES, pages 121–
130, 2014.

[12] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian
Goldberg. A systematic approach to developing and evaluating web-
site fingerprinting defenses. In ACM CCS, pages 227–238, 2014.

[13] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind
Narayanan, Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt.
De-anonymizing programmers via code stylometry. In USENIX Sec,
pages 255–270, 2015.

[14] Heyning Cheng and Ron Avnur. Traffic analysis of SSL encrypted
web browsing. Project paper, University of Berkeley, 1998.

[15] Giovanni Cherubin, Jamie Hayes, and Marc Juárez. Website finger-
printing defenses at the application layer. PoPETs, 2017(2):186–203,
2017.

[16] Shane S. Clark, Hossen A. Mustafa, Benjamin Ransford, Jacob Sor-
ber, Kevin Fu, and Wenyuan Xu. Current events: Identifying web-
pages by tapping the electrical outlet. In ESORICS, pages 700–717,
2013.

[17] David Cock, Qian Ge, Toby C. Murray, and Gernot Heiser. The last
mile: An empirical study of timing channels on seL4. In ACM CCS,
pages 570–581, 2014.

[18] Wei Dai. PipeNet description. Post to the cypherpunks mail-
ing list. Copy available at https://www.freehaven.net/
anonbib/cache/pipenet10.html, 1998.

[19] T. Dierks and E. Rescola. The transport layer security (TLS) proto-
col version 1.2. RFC 5246, RFC Editor, 2008. https://tools.
ietf.org/html/rfc5246.

[20] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In USENIX Security, pages 303–320,
2004.

[21] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael B. Abu-Ghazaleh,
and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks. TACO, 8(4):35:1–35:21,
2012.

[22] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas
Shrimpton. Peek-a-Boo, I still see you: Why efficient traffic analy-
sis countermeasures fail. In IEEE SP, pages 332–346, 2012.

[23] Dmitry Evtyushkin, Dmitry V. Ponomarev, and Nael B. Abu-
Ghazaleh. Jump over ASLR: attacking branch predictors to bypass
ASLR. In MICRO, pages 40:1–40:13, 2016.

[24] R. Fielding, M. Nottingham, and J. Reschke. Hypertext transfer pro-
tocol (HTTP/1.1): Caching. RFC 7234, RFC Editor, June 2014.
http://www.rfc-editor.org/rfc/rfc7234.txt.

[25] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand pwning unit: Accelerating microarchitectural attacks with the
GPU. In IEEE SP, pages 195–210, 2018.

[26] Cesar Pereida Garcı́a, Billy Bob Brumley, and Yuval Yarom. “Make
sure DSA signing exponentiations really are constant-time”. In ACM
CCS, pages 1639–1650, 2016.

[27] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contempo-
rary hardware. J. Cryptographic Engineering, 8(1):1–27, 2018.

[28] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom.
Drive-by key-extraction cache attacks from portable code. In ACNS,
2018.

[29] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil Schear. Web-
site detection using remote traffic analysis. In Privacy Enhancing
Technologies, pages 58–78, 2012.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing (Adaptive Computation and Machine Learning series). The MIT
Press, 2016. ISBN 0262035618.

[31] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU. In
NDSS, 2017.

[32] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, pages 897–912, 2015.

[33] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. In ACM CCS, pages 368–379, 2016.

[34] Berk Gülmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk
Sunar. PerfWeb: How to violate web privacy with hardware perfor-
mance events. In ESORICS (2), pages 80–97, 2017.

[35] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security, pages 1187–
1203, 2016.

[36] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website
fingerprinting: attacking popular privacy enhancing technologies with
the multinomial naı̈ve-bayes classifier. In CCSW, pages 31–42, 2009.

[37] Andrew Hintz. Fingerprinting websites using traffic analysis. In Pri-
vacy Enhancing Technologies, pages 171–178, 2002.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[39] Wei-Ming Hu. Lattice scheduling and covert channels. In IEEE SP,
pages 52–61, 1992.

[40] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cache attacks enable bulk key recovery
on the cloud. In CHES, pages 368–388, 2016.

USENIX Association 28th USENIX Security Symposium 653

https://tcpreplay.appneta.com/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://www.freehaven.net/anonbib/cache/pipenet10.html
https://www.freehaven.net/anonbib/cache/pipenet10.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc7234.txt

[41] Intel Corp. Intel 64 and IA-32 architectures software devel-
oper’s manual volume 3B, September 2016. URL https:
//www.intel.com/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-
software-developer-vol-3b-part-2-manual.pdf.

[42] Intel Corp. Intel 64 and IA-32 architectures optimiza-
tion reference manual, June 2016. URL https://www.
intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-
optimization-manual.html.

[43] Gorka Irazoqui Apecechea, Thomas Eisenbarth, and Berk Sunar. S$A:
A shared cache attack that works across cores and defies VM sandbox-
ing - and its application to AES. In IEEE SP, pages 591–604, 2015.

[44] Suman Jana and Vitaly Shmatikov. Memento: Learning secrets from
process footprints. In IEEE SP, pages 143–157, 2012.

[45] Rob Jansen, Marc Juárez, Rafa Galvez, Tariq Elahi, and Claudia Dı́az.
Inside job: Applying traffic analysis to measure Tor from within. In
NDSS, 2018.

[46] Marc Juárez, Sadia Afroz, Gunes Acar, Claudia Dı́az, and Rachel
Greenstadt. A critical evaluation of website fingerprinting attacks. In
ACM CCS, pages 263–274, 2014.

[47] Hyungsub Kim, Sangho Lee, and Jong Kim. Inferring browser activity
and status through remote monitoring of storage usage. In ACSAC,
pages 410–421, 2016.

[48] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Haburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwartz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In IEEE SP, pages 19–37, May 2019.

[49] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncer-
tain times. In USENIX Sec, pages 463–480, 2016.

[50] Nil Köskal. ‘terrifying’: How a single line of computer
code put thousands of innocent Turks in jail. http:
//www.cbc.ca/news/world/terrifying-how-a-
single-line-of-computer-code-put-thousands-
of-innocent-turks-in-jail-1.4495021, January 2018.

[51] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. Stealing
webpages rendered on your browser by exploiting GPU vulnerabili-
ties. In IEEE SP, pages 19–33, 2014.

[52] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring fine-grained control flow inside
SGX enclaves with branch shadowing. In USENIX Security, pages
557–574, 2017.

[53] Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring information
leakage in website fingerprinting attacks and defenses. In ACM CCS,
pages 1977–1992, 2018.

[54] Bin Liang, Wei You, Liangkun Liu, Wenchang Shi, and Mario Hei-
derich. Scriptless timing attacks on web browser privacy. In DSN,
pages 112–123, 2014.

[55] Jochen Liedtke, Hermann Härtig, and Michael Hohmuth. OS-
controlled cache predictability for real-time systems. In IEEE RTAS,
pages 213–224, 1997.

[56] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern, Manuel Phili-
pose, Mohit Tiwari, and Mark Silberstein. Power to peep-all: Infer-
ence attacks by malicious batteries on mobile devices. PoPETs, 2018
(4):1–1, 2018.

[57] Moritz Lipp, Michael Schwartz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Read-
ing kernel memory from user space. In USENIX Security, August
2018.

[58] Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In
MICRO, pages 203–215, 2014.

[59] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605–622, 2015.

[60] Liming Lu, Ee-Chien Chang, and Mun Choon Chan. Website finger-
printing and identification using ordered feature sequences. In ES-
ORICS, pages 199–214, 2010.

[61] Mozilla Foundation. Security advisory 2018-01. https:
//www.mozilla.org/en-US/security/advisories/
mfsa2018-01/, 2018.

[62] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John
Bethencourt, Emil Stefanov, Eui Chul Richard Shin, and Dawn Song.
On the feasibility of internet-scale author identification. In IEEE SP,
pages 300–314, 2012.

[63] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove: A bespoke
website fingerprinting defense. In WPES, pages 131–134, 2014.

[64] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. The spy in the sandbox: Practical cache attacks
in JavaScript and their implications. In ACM CCS, pages 1406–1418,
2015.

[65] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006.

[66] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas En-
gel. Website fingerprinting in onion routing based anonymization net-
works. In WPES, pages 103–114, 2011.

[67] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel,
Andreas Zinnen, Martin Henze, and Klaus Wehrle. Website finger-
printing at internet scale. In NDSS, 2016.

[68] Colin Percival. Cache missing for fun and profit. Presented at BSD-
Can. http://www.daemonology.net/hyperthreading-
considered-harmful, 2005.

[69] Filip Pizlo. What Spectre and Meltdown mean for We-
bKit. https://webkit.org/blog/8048/what-spectre-
and-meltdown-mean-for-webkit/, January 2018.

[70] Moinuddin K. Qureshi. CEASER: Mitigating conflict-based cache
attacks via encrypted-address and remapping. In MICRO, 2018.

[71] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for web
transactions. ACM Trans. Inf. Syst. Secur., 1(1):66–92, 1998.

[72] E. Rescola. HTTP over TLS. RFC 2818, RFC Editor, 2000. https:
//tools.ietf.org/html/rfc2818.

[73] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem,
and Wouter Joosen. Automated website fingerprinting through deep
learning. In NDSS, 2018.

[74] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In ACM CCS, pages 199–212, 2009.

[75] Joanna Rutkowska and Rafal Wojtczuk. Qubes OS Archi-
tecture, February 2010. URL https://www.qubes-
os.org/attachment/wiki/QubesArchitecture/arch-
spec-0.3.pdf.

[76] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. Fantastic timers and where to find them: High-resolution
microarchitectural attacks in JavaScript. In Financial Cryptography,
pages 247–267, 2017.

[77] Michael Schwarz, Moritz Lipp, and Daniel Gruss. JavaScript zero:
Real JavaScript and zero side-channel attacks. In NDSS, 2018.

[78] Spiegel Online. Documents reveal top NSA hacking unit.
http://www.spiegel.de/international/world/the-
nsa-uses-powerful-toolbox-in-effort-to-spy-
on-global-networks-a-940969-2.html, December 2013.

[79] Cloyce D. Spradling. SPEC CPU2006 benchmark tools. SIGARCH
Computer Architecture News, 35(1):130–134, 2007. doi: 10.
1145/1241601.1241625. URL https://doi.org/10.1145/
1241601.1241625.

654 28th USENIX Security Symposium USENIX Association

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.cbc.ca/news/world/terrifying-how-a-single-line-of-computer-code-put-thousands-of-innocent-turks-in-jail-1.4495021
http://www.cbc.ca/news/world/terrifying-how-a-single-line-of-computer-code-put-thousands-of-innocent-turks-in-jail-1.4495021
http://www.cbc.ca/news/world/terrifying-how-a-single-line-of-computer-code-put-thousands-of-innocent-turks-in-jail-1.4495021
http://www.cbc.ca/news/world/terrifying-how-a-single-line-of-computer-code-put-thousands-of-innocent-turks-in-jail-1.4495021
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/
https://www.mozilla.org/en-US/security/advisories/mfsa2018-01/
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
https://www.qubes-os.org/attachment/wiki/QubesArchitecture/arch-spec-0.3.pdf
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
http://www.spiegel.de/international/world/the-nsa-uses-powerful-toolbox-in-effort-to-spy-on-global-networks-a-940969-2.html
https://doi.org/10.1145/1241601.1241625
https://doi.org/10.1145/1241601.1241625

[80] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan
Mangard. Exploiting data-usage statistics for website fingerprinting
attacks on Android. In WISEC, pages 49–60, 2016.

[81] The Chromium Project. Site isolation. https://www.
chromium.org/Home/chromium-security/site-
isolation.

[82] The Tor Project, Inc. The Tor Browser. https://www.
torproject.org/projects/torbrowser.html.en.

[83] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and
Hiroshi Miyauchi. Cryptanalysis of DES implemented on computers
with cache. In CHES, pages 62–76, 2003.

[84] Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede. Exploiting
hardware performance counters. In FDTC, pages 59–67, 2008.

[85] Kenton Varda. https://news.ycombinator.com/item?
id=18280156, 2018.

[86] Pepe Vila and Boris Köpf. Loophole: Timing attacks on shared event
loops in Chrome. In USENIX Security, pages 849–864, 2017.

[87] Luke Wagner. Mitigations landing for new class of timing attack.
https://blog.mozilla.org/security/2018/01/03/
mitigations-landing-new-class-timing-attack/,
January 2018.

[88] Tao Wang and Ian Goldberg. Improved website fingerprinting on Tor.
In WPES, pages 201–212, 2013.

[89] Tao Wang and Ian Goldberg. On realistically attacking Tor with web-
site fingerprinting. PoPETs, 2016(4):21–36, 2016.

[90] Tao Wang and Ian Goldberg. Walkie-Talkie: An efficient defense
against passive website fingerprinting attacks. In USENIX Security,
pages 1375–1390, 2017.

[91] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In ISCA, pages 494–505,
2007.

[92] Zachary Weinberg, Eric Yawei Chen, Pavithra Ramesh Jayaraman,
and Collin Jackson. I still know what you visited last summer: Leak-
ing browsing history via user interaction and side channel attacks. In
IEEE SP, pages 147–161, 2011.

[93] Junhua Yan and Jasleen Kaur. Feature selection for website finger-
printing. PoPETs, 2018(4):200–219, 2018.

[94] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and Kiran S.
Balagani. On inferring browsing activity on smartphones via USB
power analysis side-channel. IEEE Trans. Information Forensics and
Security, 12(5):1056–1066, 2017.

[95] Yuval Yarom. Mastik: A micro-architectural side-channel
toolkit. http://cs.adelaide.edu.au/˜yval/Mastik/
Mastik.pdf, September 2016.

[96] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA
nonces using the FLUSH+RELOAD cache side-channel attack. Cryp-
tology ePrint Archive, Report 2014/140, 2014. URL http://
eprint.iacr.org/2014/140.

[97] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A software ap-
proach to defeating side channels in last-level caches. In ACM CCS,
pages 871–882, 2016.

A Selected Hyperparameters

Tables 4, 5, and 6 summarize the hyperparameters for the
classifiers used in this work.

Table 4: Hyperparameters for the CNN classifier
Hyperparameter Value Space

Optimizer Adam Adamax, Adam, SGD, RMSprop
Learning rate 0.001 0.001–0.002
Batch size 100 40–100
Training epoch 20–30 Early stop by accuracy
Convolution layers 3 3–4
Input units (FF) 15000 15000–25000
Input units (Tor) 25000 15000–25000
CNN activation relu relu, tanh
Kernels 256 2–512
Kernel size 16,8,4 2–31
Pool size 4 2–8

Table 5: Hyperparameters for the LSTM classifier
Hyperparameter Value Space

Optimizer Adam Adamax, Adam, SGD, RMSprop
Learning rate 0.001 0.001–0.002
Batch size 100 40–100
Training epoch 20–30 Early stop by accuracy
Convolution layers 2 1–3
Input units (FF) 15000 15000–25000
Input units (Tor) 25000 15000–25000
CNN activation relu relu, tanh
LSTM activation tanh relu,tanh
Kernels 256 2–512
Kernel size 16,8 2–32
Pool size 4 2–8
Dropout 0.2 0.1–0.2
LSTM units 32 8,32

USENIX Association 28th USENIX Security Symposium 655

https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en
https://news.ycombinator.com/item?id=18280156
https://news.ycombinator.com/item?id=18280156
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://cs.adelaide.edu.au/~yval/Mastik/Mastik.pdf
http://eprint.iacr.org/2014/140
http://eprint.iacr.org/2014/140

Table 6: Hyperparameters for the LSTM classifier for the Tor
attack

Hyperparameter Value Space

Optimizer Adam Adamax, Adam, SGD, RMSprop
Learning rate 0.001 0.001–0.002
Batch size 100 40–100
Training epoch 20–30 Early stop by accuracy
Convolution layers 1 1–3
Input units 500 500
CNN activation relu relu, tanh
LSTM activation tanh relu,tanh
Kernels 256 2–512
Kernel size 32 2–32
Pool size 3 2–8
Dropout 0.4 0.1–0.4
LSTM units 128 8,32,128

B Websites Included in Closed-World
Datasets

9gag.com abs-cbn.com
adf.ly adobe.com
aliexpress.com allegro.pl
amazon.com amazonaws.com
aol.com apple.com
archive.org askcom.me
battle.net blastingnews.com
booking.com breitbart.com
bukalapak.com businessinsider.com
conservativetribune.com dailymail.co.uk
dailymotion.com detik.com
deviantart.com dictionary.com
digikala.com doubleclick.net
doublepimp.com ebay.com
espncricinfo.com exoclick.com
extratorrent.cc facebook.com

feedly.com gamepedia.com
github.com go.com
godaddy.com goodreads.com
google.com hclips.com
hola.com hotmovs.com
imdb.com instructure.com
intuit.com kompas.com
leboncoin.fr liputan6.com
livejasmin.com livejournal.com
ltn.com.tw microsoftonline.com
mozilla.org msn.com
naver.com netflix.com
nicovideo.jp nih.gov
ntd.tv office.com
onedio.com openload.co
oracle.com ouo.io
outbrain.com pinterest.com
popads.net quora.com
researchgate.net roblox.com
rt.com rutracker.org
scribd.com skype.com
soundcloud.com sourceforge.net
spotify.com spotscenered.info
stackexchange.com stackoverflow.com
steamcommunity.com steampowered.com
t.co theguardian.com
thesaurus.com tistory.com
tokopedia.com torrentz2.eu
tribunnews.com tumblr.com
twitter.com weather.com
wikia.com wikipedia.org
wittyfeed.com xhamster.com
xvideos.com yandex.ru
yelp.com zippyshare.com

656 28th USENIX Security Symposium USENIX Association

Identifying Cache-Based Side Channels through Secret-Augmented Abstract Interpretation

Shuai Wang∗1, Yuyan Bao2, Xiao Liu2, Pei Wang∗3, Danfeng Zhang2, and Dinghao Wu2

1The Hong Kong University of Science and Technology
2The Pennsylvania State University

3Baidu X-Lab
shuaiw@cse.ust.hk, {yxb88, xvl5190}@ist.psu.edu, wangpei10@baidu.com, zhang@cse.psu.edu,

dwu@ist.psu.edu

Abstract
Cache-based side channels enable a dedicated attacker to re-
veal program secrets by measuring the cache access patterns.
Practical attacks have been shown against real-world crypto
algorithm implementations such as RSA, AES, and ElGa-
mal. By far, identifying information leaks due to cache-
based side channels, either in a static or dynamic manner, re-
mains a challenge: the existing approaches fail to offer high
precision, full coverage, and good scalability simultaneously,
thus impeding their practical use in real-world scenarios.

In this paper, we propose a novel static analysis method on
binaries to detect cache-based side channels. We use abstract
interpretation to reason on program states with respect to ab-
stract values at each program point. To make such abstract
interpretation scalable to real-world cryptosystems while of-
fering high precision and full coverage, we propose a novel
abstract domain called the Secret-Augmented Symbolic do-
main (SAS). SAS tracks program secrets and dependencies
on them for precision, while it tracks only coarse-grained
public information for scalability.

We have implemented the proposed technique into a prac-
tical tool named CacheS and evaluated it on the imple-
mentations of widely-used cryptographic algorithms in real-
world crypto libraries, including Libgcrypt, OpenSSL, and
mbedTLS. CacheS successfully confirmed a total of 154 in-
formation leaks reported by previous research and 54 leaks
that were previously unknown. We have reported our find-
ings to the developers. And they confirmed that many of
those unknown information leaks do lead to potential side
channels.
1 Introduction
Cache-based timing channels enable attackers to reveal se-
cret program information, such as private keys, by measur-
ing the runtime cache behavior of the victim program. Prac-
tical attacks have been executed with different attack scenar-
ios, such as time-based [16, 44], access-based [37, 60, 62],
and trace-based [5], each of which exploits a victim program
through either coarse-grained or fine-grained monitoring of
∗Most of this work is done while Shuai Wang and Pei Wang were work-

ing at PSU.

cache behavior. Additionally, previous research has success-
fully launched attacks on commonly used cryptographic al-
gorithm implementations, for example, AES [37, 60, 74, 16],
RSA [23, 44, 7, 62, 86], and ElGamal [90].

Pinpointing cache-based side channels from production
cryptosystems remains a challenge. Existing research em-
ploys either static or dynamic methods to detect underlying
issues [77, 32, 33, 41, 82, 22, 81]. However, the methods are
limited to low detection coverage, low precision, and poor
scalability, which impede their usage in analyzing real-world
cryptosystems in the wild.

Abstract interpretation is a well-established framework
that can be tuned to balance precision and scalability for
static analysis. It models program execution within one
or several carefully-designed abstract domains, which ab-
stract program concrete semantics by tracking certain pro-
gram states of interest in a concise representation. Usually,
the elements in an abstract domain form a complete lattice of
finite height, and the operations of the program concrete se-
mantics are mapped to the abstract transfer functions over
the abstract domain. A well-designed abstract interpreta-
tion framework can correctly approximate program execu-
tion and usually yields a terminating analysis within a fi-
nite step of computations. Nevertheless, the art is to care-
fully design an abstraction domain that fits the problem un-
der consideration, while over-approximating others to bound
the analysis to a controllable size; this enables the analysis
of non-trivial cases.

We propose a novel abstract domain named the Secret-
Augmented Symbolic domain (SAS), which is specifically
designed to perform abstract interpretation on large-scale
secret-aware software, such as real-world cryptosystems.
SAS is designed to perform fine-grained tracking of program
secrets (e.g., private keys) and dependencies on them, while
coarsely approximating non-secret information to speed up
the convergence of the analysis.

We implement the proposed technique as a practical tool
named CacheS, which models program execution within
the SAS and pinpoints cache-based side channels with con-
straint solving techniques. Like many bug finding tech-

USENIX Association 28th USENIX Security Symposium 657

niques [55, 84, 54], CacheS is soundy [53]; the implemen-
tation is unsound for speeding up analysis and optimizing
memory usage, due to its lightweight but unsound treat-
ment of memory. However, in contrast to previous studies
that analyze only small-size programs, single procedure or
single execution trace [32, 33, 77, 22, 81], CacheS is scal-
able enough to deliver whole program static analysis of real-
world cryptosystems without sacrificing much accuracy. We
have evaluated CacheS on multiple popular crypto libraries.
Although most libraries have been checked by many previ-
ous tools, CacheS is able to detect 54 unknown information
leakage sites from the implementations of RSA/ElGamal al-
gorithms in three real-world cryptosystems: Libgcrypt (ver.
1.6.3), OpenSSL (ver. 1.0.2k and 1.0.2f), and mbedTLS
(ver. 2.5.1). We show that CacheS has good scalability as
it largely outperforms previous research regarding coverage;
it is able to complete context-sensitive interprocedural anal-
ysis of over 295 K lines of instructions within 0.5 CPU hour.
In summary, we make the following contributions:
• We propose a novel abstract interpretation-based anal-

ysis to pinpoint information leakage sites that may lead
to cache-based side channels. We propose a novel ab-
stract domain named SAS, which performs fine-grained
tracking of program secrets and dependencies, while
over-approximating non-secret values to enable precise
reasoning in a scalable way.
• Enabled by the “symbolic” representation of abstract

values in SAS, we facilitate information leak check-
ing in this research with constraint solving techniques.
Compared with previous abstract interpretation-based
methods, which only reason on the information leak-
age upper-bound, our technique adequately simplifies
the process of debugging and fixing side channels.
• We implement the proposed technique into a practical

tool named CacheS and apply it to detect cache-based
side channels in real-world cryptosystems. From five
popular crypto library implementations, CacheS suc-
cessfully identified 208 information leakage sites (with
only one false positive), among which 54 are unknown
to previous research, to the best of our knowledge.

2 Background
Abstract Interpretation. Abstract interpretation is a well-
established framework to perform sound approximation of
program semantics [28]. Considering that program concrete
semantics forms a value domain C, abstract interpretation
maps C to an abstract (and usually more concise) represen-
tation, namely, an abstract domain A. The design of the ab-
straction is usually based on certain program properties of in-
terest, and (possibly infinite) sets of concrete program states
are usually represented by one abstract state in A. To ensure
termination, abstract states could form a lattice with a finite
height, and computations of program concrete semantics are
mapped into operators over the abstract elements in A.

The abstract function (α) and concretization function (γ)
need to be defined jointly with an abstract domain A. Func-

tion α lifts the elements in C to their corresponding abstract
elements in A, while γ casts an abstract value to a set of
values in C. To establish the correctness of an abstract inter-
pretation, the abstract domain and the concrete domain need
to form a Galois connection, and operators defined upon el-
ements in an abstract domain are required to form the local
and global soundness notions [28].
Cache Structure and Cache-Based Timing Channels. A
cache is a fast on-CPU data storage unit with a very limited
capacity compared to the main memory. Caches are usu-
ally organized to be set-associative, meaning that the storage
is partitioned into several disjoint sets while each set exclu-
sively stores data of a particular part of the memory space.
Each cache set can be further divided into smaller storage
units of equal size, namely cache lines. Given the size of
each cache line as 2L bytes, usually the upper N−L bits of
a N-bit memory address uniquely locate a cache line where
the data from that address will be temporally held.

When the requested data is not found in the cache, the
CPU will have to fetch them from the main memory. This
is called a cache miss and causes a significant delay in exe-
cution, compared with fetching data directly from the cache.
Therefore, an attacker may utilize the timing difference to
reveal the cache access pattern and further infer any infor-
mation on which this pattern may depend.
Threat Model. As mentioned above, some bits of a mem-
ory address can be directly mapped to cache lines being
visited, which potentially enables information leakage via
secret-dependent memory traffic. In this research, attack-
ers are assumed to share the same hardware platform with
the victim program, and therefore are able to “probe” the
shared cache state and infer cache lines being accessed by
the victim. As illustrated in Fig. 2, our threat model assumes
that the attacker can observe the address of every memory
access, expect for the low bits of addresses that distinguish
locations in the same cache line. Overall, by tracking the
secret-dependent cache access of the victim, several bits of
program secrets (w.r.t. entropy) could be leaked to the at-
tacker.

We note that this threat model indeed captures most in-
famous and practical side channel attacks [39], including
prime-and-probe [60], flush-and-reload [86], and prime-and-
abort [31], which are designed to infer the cache line access
by measuring the latency of the victim program or attacker’s
program at different scales and for different attack scenarios.
Additionally, while this threat model is aligned with many
existing side channel detection works [77, 33, 41, 82, 22],
novel techniques proposed in this work enable us to perform
scalable static analysis and reveal much more information
leaks of real-world cryptosystems.1 In addition, while this

1Consistent with this line of research, CacheS pinpoints information
leaks in cryptosystems where cache access depends on secrets. Cryptosys-
tem developers can fix the code with information provided by CacheS. Con-
trarily, the exploitability of the leaks (e.g., reconstruct the entire key by
recovering half bits of the RSA private key [19]) is beyond the scope of this
work.

658 28th USENIX Security Symposium USENIX Association

1 foo:

2 mov eax, ebx

3 add eax, 0x1

4 load ecx , esi

5 add ecx , 0x12

6 mov edx , edi

7 add eax, ecx

(a) Sample Code.

1 {ebx = {k1}}
2 {ebx = {k1}, eax = {k1}}
3 {ebx = {k1}, eax = {k1+1}}
4 {ebx = {k1}, eax = {k1+1}, ecx = {m1}}
5 {ebx = {k1}, eax = {k1+1}, ecx = {m1+12}}
6 {ebx = {k1}, eax = {k1+1}, ecx = {m1+12}, edx = {edi0}}
7 {ebx = {k1}, eax = {k1+m1+13}, ecx = {m1+12}, edx = {edi0}}

(b) Modeling program states with logic formulas l ∈ L.

1 {ebx = {s1}}
2 {ebx = {s1}, eax = {s1}}
3 {ebx = {s1}, eax = {s1 +1}}
4 {ebx = {s1}, eax = {s1 +1}, ecx = {p}}
5 {ebx = {s1}, eax = {s1 +1}, ecx = {p}}
6 {ebx = {s1}, eax = {s1 +1}, ecx = {p}, edx = {p}}
7 {ebx = {s1}, eax = {>}, ecx = {p}, edx = {p}}

(c) Modeling program states with SAS.

Figure 1: Execute assembly code with different program representations. Program secrets and all the affected registers are
marked as red in Fig. 1a. Program states at line 1 of Fig. 1b and Fig. 1c represent the initial state. Here k1 is a symbol
exhibiting one piece of program secrets (e.g., the first element in a key array), and m1 is a free symbol representing non-secret
content of unknown memory cells. edi0 is a symbol representing the initial value of register edi. Symbol s1, p, and > defined
in SAS stand for one piece of secret, entire non-secret information and all the program information, respectively (see Sec. 4).

x = A[key]

key	=	10 key	=	50

key	should	be	10 key	should	be	50

Memory cells

Cache lines

Figure 2: The threat model. Different secrets lead to the ac-
cess of different cache lines at one particular program point,
which may leak secret information to the attackers by indi-
rectly observing cache line access variants. At least one bit
information (w.r.t. entropy) could be leaked in this example.

model is relatively stronger than those based on cache sta-
tus [32], cache status at any point can be determined by ana-
lyzing the accessed cache units in execution.

3 Motivation
In general, capturing cache-based side channels requires
modeling program secret-dependent semantics (we will dis-
cuss the connection between program semantics and cache
access in Sec. 5). In this section we begin by discussing
two baseline approaches to modeling program semantics; the
limitations of both approaches naturally motivate the design
of our novel abstract domain.
Modeling Program Semantics with Logic Formulas. An
intuitive way is to represent program concrete semantics
with logic formulas (as in a typical symbolic execution ap-
proach [77]), and perform whole-program static reasoning
until a fixed point is reached. The overall workflow exhibits
a typical dataflow analysis procedure, and upon termination,
each program point maintains a program state that maps vari-
ables (i.e., registers, CPU flags, and memory cells) to sets of
formulas representing the possible values each variable may
hold regarding any execution paths and inputs. For ease of

presentation, we name the value domain formed by logic for-
mulas l as logic domain L.

An example is given in Fig. 1, where we model the execu-
tion of instructions with logic formulas (Fig. 1b). While the
overall approach will precisely model program semantics,
some tentative studies indicate its low scalability. Indeed, we
implement this approach and evaluate it with two real-world
cases: the AES and RSA implementations of OpenSSL. We
report that both tests are unable to terminate (evaluation re-
sults are given in Sec. 8). In summary, the analysis is im-
peded for the following reasons:

• Typically, more and more memory cells would be mod-
eled throughout the analysis, and for each variable, its
value set (i.e., set of formulas) would also continue to
increase. Therefore, the memory usage could become
significant to even unrealistic for real-world cases.
• Program states could be continuously updated within

loop iterations. In addition, “loops” on the call graph
(e.g., recursive calls) could exist in cryptosystems as
well and complicate the analysis.

We implement algorithms to detect loop induction vari-
ables [11] considering both registers and stack memories.
Identified induction variables are lifted into a linear function
of symbolic loop iterators; operations on induction variables
are “merged” into the linear function, thereby leading to a
stable stage. While the simpler AES case terminated when
we re-ran the test, the RSA case still yielded a “timeout” due
to the practical challenges mentioned above (see results in
Sec. 8.1).
Modeling Program Semantics with Free Symbols. An-
other “baseline” approach is to model program semantics in a
permissive way. That is, we introduce two free symbols: one
for any public information and the other for secrets. Any
secret-related computation outputs the same secret symbol,
while others preserve the same public symbol. Note that this
is comparable to static taint tracking, where each value is
either “tainted” or “untainted”. Despite its simplicity, our
tentative study reveals new hurdles as follows:

• Memory tracking becomes pointless. Every memory
address becomes (syntactically) identical because it

USENIX Association 28th USENIX Security Symposium 659

holds the same public or secret symbol. Therefore, a
memory store could overturn the entire memory space.
• Even if memory addresses are tracked in a more pre-

cise way, representing any secret value and their de-
pendencies coarsely as one free secret symbol yields
many false positives (since secret-dependent memory
accesses do not necessarily lead to vulnerable cache ac-
cesses; see our cache modeling in Sec. 5). Tentative
tests of the AES case report a false positive rate of 20%
(8 out of 40) due to such modeling. In contrast, our
novel program modeling yields no false positive when
testing this case (see Sec. 8).

Motivation of Our Approach. This paper presents a novel
abstract domain that enables abstract interpretation of large-
scale cryptosystems in the wild. Our observation is that im-
precise tracking of secrets impedes the accurate modeling
of cache behaviors (cache access modeling is discussed in
Sec. 5). Nevertheless, tracking too much information, such
as modeling whole-program semantics with logic formulas,
could face scalability issues when analyzing real-world cryp-
tosystems due to various practical challenges.

Our study of real-world cryptosystems actually reveals an
interesting and intuitive finding. That is, program secrets
and their dependencies usually exhibit at a very small por-
tion of program points, and even in such secret-carrying
points, most variables maintain only public information. It
should be noted that in common scenarios non-secret in-
formation is not critical for modeling cache-based timing
channels. Hence, based on our observation, we promote a
novel abstract domain that is particularly designed to model
the secret-dependent semantics of real-world crypto systems.
Our abstract domain delivers fine-grained tracking of pro-
gram secrets and their dependencies with different identi-
fiers for each piece of secret information, while performing
coarse-grained tracking of other public values to effectively
enhance scalability.

4 Secret-Augmented Symbolic Domain
This section presents the definition of our abstract domain
SAS. We formally define each component following conven-
tion, including the concrete semantics, the abstract domain,
and the abstract transfer functions. We also prove that the
computations specified in SAS correctly over-approximate
concrete semantics. Due to space limitations, we highlight
only certain necessary components to make the paper self-
contained. We refer readers to the extended version of this
paper for more details [76] .

4.1 Abstract Values
We start by defining abstract values f ∈ AV (soon we will
show that SAS is defined as the powerset of AV). Compa-
rable to “symbolic formulas” in symbolic execution, f com-
bines symbols and constants via operators. Elementary sym-
bols in each abstract value are defined as follows:

• p: a unique symbol representing all the program public
information.

Literal n ∈ Z
OP1 ⊕ ::= + | −
OP2 ⊗ ::= × | ÷ |% | AND | OR | XOR | SHIFT
Atom t ::= > | p | si | n
Expression exp ::= t | t⊕ exp | t⊗ exp
Formula f ::= e | exp | e⊕ exp

Figure 3: Syntax of abstract value.

• si: a symbol representing a piece of program secrets;
for instance, the i-th element of a secret array.
• e: a unique symbol representing the initial value of the

x86 stack register esp.
While only one free symbol p is used to represent any and

all unknown non-secret information (e.g., initial value edi0
of register edi in Fig. 1b), we retain finer-grained informa-
tion about program secrets. Multiple si are generated, and
are mapped to different pieces of program secrets (e.g., a
symbol s1 representing k1 in Fig. 1c). Therefore, different
si symbols are semantically different, meaning each of them
stands for different secrets.
Syntax. The syntax of a core of abstract values f ∈ AV is
defined in Fig. 3. Literal specifies that concrete data is pre-
served in AV. OP1 and OP2 explain typical operators in
AV. Atom includes symbols and literals, among which >
(top) is the abstraction of any concrete value. Expression
and Formula additionally define expressions and formulas.
Note that stack memory expands linearly in the process ad-
dress space, and stack register esp at any program point shall
hold a value which adds or subtracts an offset from the initial
value of esp (i.e., e). In the syntax definition, stack memory
offsets could be a constant or an exp.

Since the symbol {si} represents the secrets, which our
analysis intends to keep track of, the formulas that con-
tain these symbols usually need to be specially treated. We
denote this infinite set of special formulas by AVs, where
AVs = { f ∈ AV | ∃s ∈ {si} s.t. s occurs in f}.
Reduction of Abstract Formulas. We now define the oper-
ator semantics of abstract value f ∈ AV. For any operator
�∈ {⊕}∪{⊗}, we define a reduction rule T� : AV×AV→
AV such that Ja1�a2K = T�(Ja1K,Ja2K) for any a1,a2 ∈AV,
where J·K denotes the semantics. We then define T�(a1,a2)
as follows:

T�(a1,a2) =

> if a1 => or a2 =>
> else if a1 = p∧a2 ∈ AVs or

a2 = p∧a1 ∈ AVs
p else if a1 = p∧a2 /∈ AVs or

a2 = p∧a1 /∈ AVs
a1�a2 otherwise

Essentially, the first three cases perform reasonable over-
approximation on f ∈ AV with different degrees of abstrac-
tion. The last case would apply if no other case can be
matched; indeed similar to symbolic execution, most oper-
ations on f ∈ AV “concatenates” abstract values via abstract

660 28th USENIX Security Symposium USENIX Association

operators following this rule. For the implementation, we
also implement “constant folding” rules for operands of con-
crete data; such rules help the reduction of stack increment
and decrement operations.

Since abstract interpretation typically needs to process
sets of facts, we extend T� so that it can be applied to pairs
of subsets of abstract values f ∈ AV, where

∀X ,Y ∈P(AV),∀� ∈ {⊕}∪{⊗},
T�(X ,Y) = {T�(a,b) | a ∈ X ,b ∈ Y}

4.2 Abstract Domain
Naturally, each element in SAS represents the possible val-
ues that a program variable may hold; therefore each element
in SAS forms a set of abstract values. That is,

Definition 1. Let AV be the set of abstract values. Then

SAS = P(AV)

forms a domain whose elements are subsets of all valid ab-
stract values.

Claim 1. SAS forms a lattice, with the top element >SAS,
bottom element ⊥SAS and a join operator t defined over
SAS.

We specify the >, ⊥, and join operator t in Appendix A.
We bound the size of each element in SAS with a maximal
number N (therefore the lattice has a finite height) and give
corresponding evaluations in Appendix B. For further dis-
cussion, see the extended version [76].

Example. Fig. 1 explains typical computations within
SAS. We present a set of abstract values for each register
in Fig. 1c. While the computations over secret symbol si are
precisely tracked (line 3 in Fig. 1c), the computations over
p preserve this symbol (line 5 in Fig. 1c), and the computa-
tions between abstract value a ∈ AVs and p lead to > (line 7
in Fig. 1c).
5 Pinpointing Information Leakage Sites
Upon the termination of static analysis, we check abstract
memory addresses of each memory load and store instruc-
tion. When a secret-dependent address a ∈ AVs is identi-
fied, its corresponding memory access instruction is consid-
ered to be “secret-dependent.” We then translate each secret-
dependent address a into an SMT formula f for constraint
checking (this translation is discussed in Sec. 6.4).

In this research, we adopt a cache model proposed by the
existing work to check each secret-dependent memory ac-
cess [77]. Given an SMT formula f translated from a ∈ AVs
that represents a memory address, CacheS checks potential
cache line access variants by solving the satisfiability of the
following predicate:

f � L 6= f [s′i/si]� L (1)

As discussed in Sec. 2, assuming the cache has the line
size of 2L bytes, for a memory address of N bits, the up-
per N − L bits map a memory access to its corresponding

cache line access. In other words, the upper N−L bits decide
which cache line the upcoming memory access would visit.
Therefore, for an SMT formula f derived from a ∈ AVs, we
right shift f by L bits, and the result f � L indicates the
cache line being accessed. Furthermore, by replacing each si
with a fresh secret symbol s′i, we obtain f [s′i/si]� L. As a
standard setting, the cache line size is assumed to be 64 (26)
in this work; therefore, we set L as 6.

The constructed constraint checks whether different se-
crets (si and s′i) can lead to the access of different cache lines
at this memory access. Recall the threat model shown in
Fig. 2, the existence of at least one satisfiable solution re-
veals potential side channels at this point. From an attacker’s
perspective, by (indirectly) observing the access of different
cache lines, a certain number of secrets could be leaked to
adversaries. In addition, while this constraint assumes that
accesses to different offsets within cache lines are indistin-
guishable, Constraint 1 can be extended to detect related is-
sues. For example, information leaks which enable cache
bank attacks can be detected by changing L from 6 to 2 [87].

6 Design of CacheS
We now present CacheS, a tool that uses precise and scal-
able static analysis to detect cache-based timing channels
in real-world cryptosystems. Fig. 4 presents the workflow
of CacheS. Given a binary as the input, CacheS first lever-
ages a reverse engineering tool to recover the assembly code
and the control flow structures from the input. The assem-
bly instructions are further lifted into platform-independent
representations before analysis. Technical details on reverse
engineering are discussed in Sec. 7.

Given all the recovered program information, we initialize
the abstract program state at each program point. In particu-
lar, we update the initial state of certain program points with
one or several “secret” symbols to represent program secrets
(e.g., a sequence of memory cells) when the analysis starts.
We then perform abstract interpretation on the whole pro-
gram until the fixed point in SAS is reached.

Abstract interpretation reasons the program execution
within SAS (Sec. 6.1), and as mentioned, the proposed ab-
stract domain performs fine-grained tracking of program
secret-related semantics while maintaining only coarse-
grained public information for scalability. The entire anal-
ysis framework forms a standard worklist algorithm, where
each program point maintains its own program state mapping
variables to sets of abstract values (Sec. 6.1.2).

We define information flow rules to propagate secret in-
formation (Sec. 6.2) in our context-sensitive and interproce-
dural analysis (Sec. 6.3). Upon the termination of analyz-
ing one function, we identify secret-dependent memory ac-
cesses and translate corresponding memory addressing for-
mulas into SMT formulas (Sec. 6.4) and check for side chan-
nels (Sec. 5).
Application Scope. In this research we design our abstract
domain SAS to analyze assembly code: program memory
access can be accurately uncovered by analyzing assembly

USENIX Association 28th USENIX Security Symposium 661

Abstract values of
secret-dependent
memory access

Secret-augmented
abstract intrepretation

Secret-dependent
memory access

Corresponding
SMT formulas

Constraint solving
w.r.t. cache line
access model

Yes

Potential side
channel issue Safe

No

CFG

Program
Binary

Reverse
Engieering

eax = {0, 2, 4}
ecx = {s1}
!(ebx+4) = {4, 12}
…

Program state

Capture information
flow

Figure 4: The overall workflow of CacheS.

code, thus supporting a “down-to-earth” modeling of cache
behavior (see Sec. 5).

To assist the analysis of off-the-shelf cryptosystems and
capture information leaks in the wild, we designed CacheS to
directly process binary executables, including stripped exe-
cutables with no debug or relocation information. We rely on
reverse engineering tools to recover program control struc-
tures from the input binary, and further build our analysis
framework on top of that (see Sec. 7).

6.1 Abstract Interpretation
In this section, we discuss how the proposed abstract do-
main SAS is adopted in our tool, and elaborate on several
key points to deliver a practical and scalable analysis.
6.1.1 Initialization
Before the analysis, we first initialize certain program points
with {si} to represent the initial secret program information;
for the rest their corresponding initial states are naturally de-
fined as {}, or {e} for the stack register esp.

Program secrets are maintained in registers or memory
cells (e.g., on the stack) during execution. Since CacheS is
designed to directly analyze binary code, we must first rec-
ognize the location of program secrets. We reverse-engineer
the input binary and mark the location of secrets manually.
Once the locations of secrets are flagged, we update the ini-
tial value set of corresponding variables (i.e., registers or
memory cells) with a secret symbol si. Additionally, while
“manual reverse engineering” is sufficient for studies in this
research, it is always feasible to leverage automatic tech-
niques [26] to search for secrets directly from executables or
secret-aware compilers to track secret locations when source
code is available. We leave this to future work.

In addition, since program secrets may be stored in a re-
gion of sequential memory cells (e.g., in an array), we create
another identifier named u to represent the base address of
the secret memory region. While u itself is treated as pub-
lic information, we specify that memory loading from u will
obtain program secrets; that is, we introduce one si for each
memory loading via u.
6.1.2 Program State
At each program point, CacheS maintains a lookup table that
maps variables to value sets; each value set S ∈ SAS consists
of abstract values f ∈ AV representing possible values of a
variable at the current program point. While the “lookup
table” is an essential piece of any non-trivial analysis frame-
work, our study has shown that naively-designed program
state representations in CacheS could consume significant

{ 12 }

{8+k2*4}

{14+esi0*4}

 {eax0+4}

{ 14 }

{ k2 }

{ 33 }

{ p }

{ 14 }

{ s2}

{ 33 }

value

{esp0 -120} {e-120}

{ 12 }

{ p }

new value

{8+s2*4}

ebx

ecx

eax

esp

!(14+esi0*4)

!(8)

!(8+k2*4)

!(esp0-120)

new key

ebx

ecx

eax

esp

!(ebx)

!(ecx-4)

!(eax)

!(e-120)

key

Program State Lookup Table

Figure 5: A sample program state lookup table. esp0, eax0
and esi0 in the “key” and “value” entries are symbols repre-
senting the register initial values. Symbol ! means pointer
dereference, for example !(eax) means memory loading
from address stored in eax. Lookup tables at each program
point are the major factor for memory usage, and we op-
timize the design by replacing “key” and “value” columns
with “new key” and “new value” columns, respectively (see
Sec. 6.1.2). Hence, shaded boxes are eliminated in CacheS.

amounts of computing resources and impede the analysis of
non-trivial programs. Thus, at this step we seek to design a
concise and practical representation of program states. For
the rest of this section, we first explain a “baseline” imple-
mentation of the lookup table, and further discuss two refine-
ments.
The “Baseline” Approach. A sample lookup table is shown
in Fig. 5 (the “key” and “value” columns), where each table
maps registers and memory addressing formulas to their cor-
responding sets for logic formulas l ∈L. When it encounters
a memory access instruction, CacheS computes the mem-
ory addressing formula and searches for its existence in the
lookup table. (This requires some “equivalence checking”;
the details will be explained in Sec. 6.1.4). If the search
identifies an entry in the table, CacheS extracts or updates
the content of that entry accordingly. Consider the example
in Listing 1, where we first store concrete data 14 into mem-
ory via address stored in eax, and further load it out into
ebx.

Listing 1: Sample instructions.
store eax , 14

load ebx , eax

662 28th USENIX Security Symposium USENIX Association

Knowing that value set of eax is 8+k2*4 (third entry in
Fig. 5), the first instruction creates an entry from address
8+k2*4 to 14 (Fig. 5 shows program states after executing
the first instruction). Further memory loading would acquire
the value set in eax, and then reset the entry of ebx with 14
in the state lookup table of the second instruction.

Reading from unknown registers and memory locations
would introduce symbols of different credentials regarding
our information flow policy (see Sec. 6.2 for details).
Optimization of Table Values. While the precisely tracked
logic formulas l ∈ L result in notable computing resource
usage (Sec. 3), the proposed abstract domain SAS (Sec. 4)
enables succinct representation of abstract values. As shown
in Fig. 5, the “value” column of the lookup table is now re-
placed by the “new value” column. Consequently, memory
consumption is considerably reduced (details are reported in
our evaluation section).
Optimization of Table Keys. Since only abstract values are
traced in SAS, the “key” column can be updated into a com-
pact representation as well. However, using symbols such as
p as the key will result in an imprecise modeling of memory
addresses.

CacheS optimizes the “key” column in the following way.
For most memory related entries, instead of using abstract
memory addressing formulas, memory access expressions
(expressions of registers and constant offsets) are used as
keys. For example, the first instruction in Listing 1 uses
memory access expression (i.e., “eax”) instead of its abstract
value 8+ s2 ∗4 for memory lookup. Hence, when analyzing
the store instruction, CacheS creates (or updates) an entry in
the lookup table, which uses !(eax) as the key (here symbol
“!” means pointer dereference). Likewise, for memory load,
!(eax) will be used to look up the program state table. To
safely preserve lookup entries via expressions, whenever the
value set of a register is reset in the analysis, entries in the
table are deleted if their keys are memory access expressions
via the newly-updated register.

Nevertheless, since stack register esp is frequently manip-
ulated to access stack memory, we preserve abstract address-
ing formulas via e to keep track of stack memory access pre-
cisely (e.g., the last entry in the “new key” column of Fig. 5).
6.1.3 Order of Program State
When multiple program states are possible for a program
point, it is important to define the “merge” operation in ab-
stract interpretation. Such an operation can be defined based
on the least upper bound operation t of SAS (recall that SAS
forms a lattice (Sec. 4.2)).

Given lookup tables T1 and T2 representing two program
states, T1tT2 is defined as the following table, say T3:
• T3’s key set is the union of the key sets of T1 and T2;
• For each key k in T3, T3[k] = T1[k]t T2[k] (assuming

T1[k] or T2[k] is an empty set if k is not in the table).
Moreover, the least upper bound of program states entails

the partial order of any two program states: T1 tT2 = T1↔
T2 ⊆ T1.

6.1.4 Memory Model
When encountering a memory load and store operation, we
must decide which memory cell is accessed by tracing the
memory address. However, considering CacheS models pro-
gram semantics with abstract values, a memory address can
usually contain one or several symbols instead of only con-
crete data. Therefore, policies (i.e., a “memory model”) are
usually required to determine the location of an accessed
memory cell given a symbolic pointer.

When defining the abstract semantics within SAS (see our
technical report [76]), we assume the assistance of a sound
points-to analysis module as pre-knowledge. Nevertheless,
finding such a convenient tool for assembly code of large-
scale cryptosystems is quite difficult in practice. We have
tried several popular “end-to-end” binary analysis platforms
that take an executable as the input and perform various re-
verse engineering campaigns including points-to analysis;
nevertheless, so far we cannot find a practical and robust so-
lution to our scenario.

Therefore, we aim to implement a rigorous memory model
by solving the equality constraints of two abstract formu-
las. However, tentative tests show that such a memory model
may lose considerable precision in terms of reasoning sym-
bolic pointers and may also not be scalable enough. On the
other hand, since keys in the memory lookup table are for-
mulas of e (for stack pointers; recall that e represents the ini-
tial value of esp) or memory access expressions (for other
pointers), the current implementation of CacheS rigorously
reasons on the equality constraints if abstract values are com-
posed of e and concrete offsets, which is indeed often the
case in analyzing assembly code. For the rest (e.g., e and
symbolic offsets), we reason on the syntactical equivalence
of memory access expressions. This design tradeoff may
incorrectly deem equivalent symbolic pointers inequivalent
(due to the symbolic “alias” issue) but not vice versa. Ex-
periments show that this memory model is efficient enough
to handle real-world cryptosystems while being promisingly
accurate.

6.2 Information Flow
Considering that information leaks detected in this research
are derived from secret-dependent memory accesses, CacheS
keeps track of the secret program information flow through-
out the analysis. In this section we elaborate on cases where
the secret information can be propagated.
Variable-Level Information Flow. The explicit information
flow is modeled in a straightforward way. Since variables
(i.e., registers, memory cells, and CPU flags) are modeled
as abstract formulas, high credential information (exhibited
as abstract value f ∈ AVs) would naturally “flow” among
variables during the computations. Moreover, reading from
unknown variables (those with empty value sets) generates a
symbol p as a proper over-approximation.
Information Flow via Memory Loading. By knowing the
underlying memory layout, it could be feasible to infer ta-
ble lookup indexes by observing the memory load outputs,

USENIX Association 28th USENIX Security Symposium 663

hence leaking table indexes of secrets to attackers. It should
be noted that such cases are not rare in real-world cryptosys-
tems, where many precomputed data structures are deployed
in the memory to speed up computations. Thus, we define
policies to capture information flow through memory load-
ing. To do so, for a load operation, whenever the value sets of
its base address or memory offset include formula f ∈ AVs,
CacheS assigns the memory content to a fresh si, indicating
secret information could have potentially propagated to the
value being read. In contrast, when loading from unknown
memory cells (memory cells of empty value sets) via non-
secret addresses, we create a p to update the memory reader.

While most memory addressing formulas refer to specific
locations in the memory, symbols p and> represent any pro-
gram (public) information. To safely approximate memory
read access via p and >, CacheS assigns > to the mem-
ory reader. In case a memory storing is via symbol p or >,
we terminate the analysis since this would rewrite the whole
memory space. Additionally, we note that memory loading
and storing via > are considered to be information leaks as
well since > implies that a variable has certain residual se-
crets (see Sec. 6.4).

6.3 Interprocedural Analysis
Our interprocedural analysis is context-sensitive. We build
a classic function summary-based interprocedural analysis
framework, where a summary (〈 f ′, i〉,o) of a function call
towards f maps the calling context 〈 f ′, i〉 (f ′ is the caller
name and i is the input) to the function call output o. CacheS
maintains a set of summaries for each function f , and for
an upcoming call of f , its calling context is first checked
regarding the existing summaries of f . In case the context is
a subset of any recorded entries (the partial order of calling
context is derived from the order of program states defined
in Sec. 6.1.2), the analysis will be skipped and we directly
return the corresponding output.

To recover the function inputs, we inquire the employed
reverse engineering platform (details are given in Sec. 7) to
obtain the number of parameters the approaching function
has. According to the calling convention of 32-bit x86 plat-
forms, a memory stack is used to store function parameters;
thus, we construct stack memory addresses of function pa-
rameters and acquire the value set of each parameter from
the program state lookup table at the call site. If some mem-
ory cells of function parameters are absent, symbol p is used
as an over-approximation. To compute the output informa-
tion of a function, we join program states at every return in-
struction when the analysis of the target function terminates,
which over-approximates the function return states.

6.4 Translating Abstract Values into SMT
Formulas

As noted earlier (Sec. 5), cache-access side channels are
summarized into SMT constraints. Upon the termination of
analyzing each function, we identify secret-dependent mem-
ory addresses a∈AVs and build the side channel constraints.
SMT solvers are used to solve the constraint and check

whether different secrets can lead to cache line access vari-
ants. Nevertheless, while many works to date leverage sym-
bolic execution to construct SMT formulas, here we reason
on program states within SAS. Therefore, before constraint
checking, we first translate abstract formulas into SMT for-
mulas.

Each abstract formula is maintained as a symbolic “tree”
in CacheS, where tree leaves are symbols and concrete data
while other nodes are operators. At this step, we translate
each leaf on the tree into a bit vector implemented by a
widely-used SMT solver—Z3 [30]; a bit vector would be in-
stantialized with a numeric value if it was derived from a
constant. In addition, we translate abstract operators on the
tree into bit vector operations in Z3. Hence, an abstract for-
mula tree would be reduced bottom-up into an SMT formula.
Translate Secret Symbols into Unique Bit Vectors. As
noted earlier, si symbols are semantically different, each of
which represents different pieces of secrets. For the imple-
mentation, we assign a unique id for each newly-created si
symbol, which further leads to the creation of unique bit vec-
tors at this step. In contrast, p (and e) symbols are trans-
formed into identical bit vectors.
Memory Access via>. It is easy to see that> implies that a
variable has some residual secrets along with possibly public
information. Hence, in addition to checking the constructed
SMT constraints with Z3, memory accesses are flagged as
vulnerable whenever their corresponding addressing formu-
las are >.

7 Implementation
CacheS is mainly written in Scala (in 6,764 LOC; counted
by CLOC [29]). The tentative implementation (in 7,163
LOC), which models program semantics with logic formu-
las (Sec. 3), is maintained as a separate “branch” of the code
base.

Starting from an input binary code, the first step is to re-
cover the assembly program as well as control flow and call
graphs. Here we employ a popular reverse engineering tool,
IDA-Pro (version 6.9) for the reverse engineering task [1].
We use the default configurations of IDA-Pro to recover as-
sembly code and program control structures from the input
executables.
Assembly Lifting. Many existing binary analysis infrastruc-
tures have provided facilities to lift x86 assembly code into a
high-level intermediate representation. Without reinventing
the wheel, here we employ a well-developed binary analysis
platform BINNAVI [34] to transform x86 assembly code into
a platform-independent intermediate language, REIL [72].
Our analysis procedures are built on top of the recovered rep-
resentations. In addition, for a formal definition of program
concrete semantics in terms of the REIL language, please
refer to our technical report [76].

The current implementation of CacheS analyzes ELF bi-
naries on the x86 platform. Nevertheless, since REIL lan-
guage is designed as platform-independent, there is no fun-
damental limitation for CacheS to analyze binaries of other

664 28th USENIX Security Symposium USENIX Association

Table 1: Cryptosystems analyzed by CacheS.

Implementation Versions Analysis Implement
Starting Function Which Algorithm

Libgcrypt [48] 1.6.1, 1.7.3 gcry mpi powm RSA/ElGamalOpenSSL [59] 1.0.2f, 1.0.2k BN mod exp mont consttime
mbedTLS [57] 2.5.1 mbedtls mpi exp mod RSA
OpenSSL [59] 1.0.2f, 1.0.2k x86 AES decrypt compact AESmbedTLS [57] 2.5.1 mbedtls internal aes decrypt

formats or from other platforms (e.g., PE binaries on Win-
dows) as long as the assembly instructions can be translated
into REIL statements. As aforementioned, our current proto-
type focuses on 32-bit ELF binaries since the state-of-the-art
REIL lifter (BinNavi [34]) does not have an official support
for 64-bit binaries. However, the proposed technique shall
be applicable to 64-bit binaries with no additional technical
hurdles.
Recover x86 Memory Access Instructions from REIL
Statements. As noted in Sec. 6.1.2, we use memory ac-
cess expressions instead of address formulas as the key to
simplify the memory lookup. While the memory access ex-
pressions can be acquired by checking assembly instructions,
note that our analysis is launched on REIL IR; one memory
access instruction is extended into multiple IR statements.
Hence, we perform def-use analysis to “collapse” IR state-
ments belonging to the same instruction and recover the cor-
responding memory access expression.
Critical Functions. CacheS is designed to perform both in-
ter and intra-procedural analysis on any binary code compo-
nent. For the evaluations in this research, instead of start-
ing from the program entry point, analyses were launched
on critical functions of cryptosystems that have become the
target for many previous attacks. Such critical functions are
the starting points of our interprocedural analysis, and we
recursively discover all the reachable functions on the call
graph. As reported in our evaluation (see Table 2), these re-
cursively collected functions usually form a non-trivial sub-
graph on the program call graph. In addition, taking these
critical functions as the starting points of CacheS makes it
easier to compare our findings with existing work.

8 Evaluation
In contrast to many previous studies in which cache-based
side channels are detected from only simple cases, CacheS is
evaluated on several real-world cryptosystems. As reported
in Table 1, three cryptosystems are evaluated in this re-
search. OpenSSL and Libgcrypt are widely used cryptosys-
tems on multi-purpose computers, while mbedTLS is com-
monly adopted by embedded devices. Eight critical func-
tions are selected as the starting point of our analysis, which
covers major security-sensitive components in three crypto
algorithm implementations: RSA, AES, and ElGamal.

To prepare CacheS inputs, we compile test programs
shipped in each cryptosystem and link with the correspond-
ing libraries. All the crypto libraries are written in C. We
build each library and test program into a 32-bit ELF binary
on Ubuntu 12.04 with gcc compiler (version 4.6.3).

8.1 Evaluation Result Overview
Table 2 presents the evaluation result overview. In summary,
208 information leak points are reported from the real world
cryptosystems evaluated in this research. We interpret the
results as promising; most of the evaluated cryptosystems
contain information leaks due to cache-based side channels,
and CacheS helps to pinpoint these leaks with program-wide
static analysis.

It is commonly acknowledged that the table lookup im-
plementation of the AES decryption routine is vulnerable to
various real-world cache attacks. CacheS identifies 32 in-
formation leaks from the AES implementations of OpenSSL
(versions 1.0.2f and 1.0.2k), and 64 leaks from mbedTLS.
Indeed, all of these issues are lookup table queries via direct
usages of secrets, which is consistent with findings in exist-
ing research [25, 77].

Existing research has pinpointed multiple information
leaks in the modular exponentiation implementation of
OpenSSL and Libgcrypt [77, 52]; vulnerable functions are
adopted by both RSA and ElGamal for decryption. CacheS
confirmed these findings (see Sec. 8.4 for one false positive
in OpenSSL). Furthermore, CacheS successfully revealed a
much larger information leakage surface than existing trace
and static analysis based techniques, because of its scal-
able modeling of program semantics. Table 2 shows that
CacheS identifies more information leaks from Libgcrypt
and OpenSSL in addition to confirming all issues reported
by CacheD [77]. Moreover, CacheS identifies multiple infor-
mation leakage sites from the modular exponentiation imple-
mentation of mbedTLS, which, to the best of our knowledge,
is unknown to the research community.

While 40 information leakage sites are reported in
Libgcrypt (version 1.6.1), our study shows that they have
been fixed in version 1.7.3. Without secret-dependent
memory accesses, the RSA/ElGamal implementation of
Libgcrypt 1.7.3 is generally accepted as safe regarding our
threat model. Our evaluation reports consistent findings
that no leak is detected regarding our threat model on
secret-dependent cache-line accesses (but we do find secret-
dependent control flows, see Sec. 8.5).
Computing Resource. Our evaluation is launched on a ma-
chine with 2.90 GHz Intel Xeon(R) E5-2690 CPU and 128
GB memory. For each context-sensitive analysis campaign,
Table 2 presents the covered functions, contexts, and pro-
cessed IR instructions. We report that CacheS takes less than
1700 CPU seconds to process all the test cases, and on av-
erage the peak memory usage to evaluate one case is less
than 5 GB. Overall, CacheS finished all the analysis cam-
paigns with reasonable amount of computing resources, and
we interpret that the promising results demonstrate the high
scalability of CacheS in analyzing real-world cryptosystems.
Modeling Program Semantics with Logic Formulas. As
noted in Sec. 3, we tentatively implement the idea of mod-
eling program concrete semantics with logic formulas. Note
that in addition to the semantics modeling, all the design and
evaluation settings are unchanged.

USENIX Association 28th USENIX Security Symposium 665

Table 2: Evaluation result overview. We compare the identified information leakage sites by CacheS with a recent research
(CacheD [77]), and we report CacheS can identify all the leakage sites reported by CacheD. A summary of all leaks can be
found at the extended version of this paper [76].

Algorithm Implementation Information Leakage # of Analyzed # of Analyzed Processing Time # of Processed Peak Memory Information Results Reported in CacheD [77]
Sites (known/unknown) Procedures Contexts (CPU Seconds) REIL Instructions Usage (MB) Leakage Units Leakage Sites Processing Time Leakage Units

RSA/ElGamal Libgcrypt 1.6.1 22/18 60 81 228.8 50,436 7,749 11 22 14293.6 5
RSA/ElGamal Libgcrypt 1.7.3 0/0 59 59 182.2 33,386 5,823 0 0 11626.0 0
RSA/ElGamal OpenSSL 1.0.2k 2/3 71 81 179.2 83,183 6,134 2 N/A N/A N/A
RSA/ElGamal OpenSSL 1.0.2f 2/4 68 72 169.5 80,096 6,113 3 2 165.6 2

RSA mbedTLS 2.5.1 0/29 29 36 775.9 35,963 9,654 2 N/A N/A N/A
AES OpenSSL 1.0.2k 32/0 1 1 33.2 3,748 620 1 N/A N/A N/A
AES OpenSSL 1.0.2f 32/0 1 1 35.8 3,748 578 1 32 48.5 1
AES mbedTLS 2.5.1 64/0 1 1 32.8 4,803 619 1 N/A N/A N/A
Total 154/54 290 332 1,637.4 295,363 37,290 21 56 26,133.7 8

Table 3: Model program semantics in the logic formulas l ∈
L and SAS and test OpenSSL 1.0.2k. The second and third
rows report the modeling results with logic formulas, while
the last row reports results in SAS. The comparison of these
two program modelings is given in Sec. 3.

Algorithm Execution Time # of Processed # of Processed Peak Memory Detected
(CPU Second) Function Context Usage (MB) Leaks

RSA/ElGamal timeout (> 5 CPU hours) 15 28 7,283 N/A
AES timeout (> 5 CPU hours) 1 1 47,798 N/A

RSA/ElGamal timeout (> 5 CPU hours) 28 85 53,054 N/A
AES 115.8 1 1 621 32

RSA/ElGamal 179.2 71 81 6,134 5
AES 33.2 1 1 620 32

The first two rows of Table 3 give the evaluation results for
the AES and RSA/ElGamal implementations in OpenSSL
1.0.2k, both of which report a “timeout” after 5 CPU hours.
As explained in Sec. 3, we extend the prototype with loop
induction variable detection, and the third row reports the re-
sults of the re-launched tests. Still, the RSA/ElGamal case
throws a timeout (a reflection on this tentative evaluation is
given in Sec. 3). In summary, we interpret that the SAS pro-
posed in this research has largely improved the analysis scal-
ability, which serves as an indispensable component to pin-
point cache-based timing channels in real-world cryptosys-
tems.
Comparison with CacheAudit.2 Besides CacheD [77], we
also compare our results with CacheAudit [32]. CacheAudit
failed on all of our test cases for two reasons. First, two of
our cases contain some x86 instructions that are not handled
by CacheAudit. Second, CacheAudit refuses to analyze indi-
rect function calls when constructing the control flow graph.
In addition, we also describe the key differences between
CacheS and CacheAudit in Sec. 10.
Identifying Information Leakage Units. Considering some
occurrences of information leaks are on adjacent lines of a
code component (a summary of all leaks can be found at the
extended version of this paper [76]), once a leak is flagged by
CacheS, presumably any competent programmer shall spot
and remove all the related defects. Therefore, we group the
flagged information leaks to assess the utility of CacheS and
also estimate the bug fixing effort. Though it can be slightly
subjective, we propose a metric according to the source code
locations of defects: information leaks will be grouped to-

2https://github.com/cacheaudit/cacheaudit

gether as a “leakage unit” if they are within the same or ad-
jacent C statements (e.g., within the same loop or adjacent if
branches). Also, if a macro is expanded at different program
points (e.g., the macro MPN COPY which contains informa-
tion leaks in Libgcrypt 1.6.1), we count it only once.

As reported in Table 2, CacheS identified 21 units of infor-
mation leaks. We also grouped the findings of CacheD with
the same metric. We have confirmed that CacheS covered all
leakage units reported in CacheD, and further revealed new
leakage units within statements or functions not covered by
CacheD (e.g., 6 new leakage units in Libgcrypt 1.6.1). Over-
all, we interpret the evaluation results as promising; trace-
based analysis, like CacheD, is incapable of modeling the
program collecting semantics, and therefore underestimates
the attack surface.
Confirmation with Library Authors. As shown in Ta-
ble 2, we found unknown information leaks from OpenSSL
(versions 1.0.2f and 1.0.2k) and mbedTLS (version 2.5.1).
Our findings were reported and promptly confirmed by the
OpenSSL developers [4]; the latest OpenSSL has been
patched to eliminate these leaks (the leaks are discussed
shortly in Sec. 8.4). At the time of writing, we are waiting
for responses from the mbedTLS developers.
8.2 Exploring the Leaks in mbedTLS
Although mbedTLS developers have not confirmed our find-
ings, we conduct further study of the 29 flagged information
leakage sites from this library to check whether they can lead
to cache-based side channels.

As mentioned above, the constraint solver provides at least
one pair of satisfiable solutions (a pair of secrets k and k′) to
each leakage site (Sec. 5). To verify one leak, we instrument
the program source code and modify secrets with k and k′.
We then compile the instrumented programs into two bina-
ries and monitor the execution of each binary executable via
a widely-used hardware simulator (gem5 [18]). The com-
piled code is fed with test cases shipped with the cryptosys-
tems, and we use the full-system simulation mode of gem5
to monitor the execution of the instrumented program. The
full-system simulation mode uses 64-bit Ubuntu 12.04 (this
mode only supports 64-bit OS) to host the application code.
We compile the instrumented source code into 64-bit bina-
ries since executing 32-bit binaries on the 64-bit OS throws
some TLB translation exceptions (this issue is also reported
in [77]). The configuration of gem5 is reported in Table 4. At

666 28th USENIX Security Symposium USENIX Association

Table 4: gem5 configurations.

ISA x86
Processor type single core, out-of-order

L1 Cache 4-way, 32KB, 2-cycle latency
L2 Cache 8-way, 1MB, 50-cycle latency

Cache line size 64 Bytes
Cache replacement policy LRU

Table 5: Hardware simulation results.

of CacheS Detected # of Executed Cache Line Cache Status
Leakage Sites Leakage Sites Access Variants Variants

29 14 14 6

the leakage point, we intercept the cache access from CPU
to L1 Data Cache; the accessed cache line and corresponding
cache status (hit vs. miss) are recorded.

As shown in Table 5, among 29 information leakage sites
found in mbedTLS, 14 sites are covered during simulation.
We observe that different cache lines are accessed at these
leakage points, when instrumenting the program with secrets
k and k′. In other words, by observing the access of different
cache lines, attackers will be able to infer a certain amount
of secret information. In addition, we report that cache status
variants (in terms of cache hit vs. miss) are observed in sev-
eral cases. In summary, we interpret the verification results
as highly promising; we have confirmed that all the executed
information leakages are true positives since cache line ac-
cess variants are observed.

Although the employed program inputs cannot lead to the
full coverage of every leakage site, we manually checked all
the uncovered cases, and we found that these cases share the
same pattern as the covered leaks. For instance, the cov-
ered and uncovered leaks are the same inline assembly se-
quences residing within different paths. Overall, we interpret
it as convincing to conclude that all the detected information
leaks in mbedTLS are true positives.

8.3 Case Study of Leaks in mbedTLS
This section presents a thorough case study of several infor-
mation leaks identified by our tool. As presented in Table 2,
we identified 29 information leakage points in mbedTLS
2.5.1. In particular, the first four leaks were found in the
function mpi montmul (source code is given in Fig. 6(a)),
which is a major component of the modular exponentiation
implementation in mbedTLS. The value of function parame-
ter B is derived from a window size of the secret key (line 2).
In mpi montmul, B is used as a pointer to access elements
in a C struct (line 6, line 10, line 11). We envision that dif-
ferent program secrets would derive into different values of
B, which further lead to the access of different cache lines in
secret-dependent memory accesses.

The evaluation shows consistent findings. As shown in
Fig. 6(b), CacheS identifies four suspicious memory ac-
cesses in mpi montmul (two pointer dereferences at line 6
of Fig. 6(a) are optimized into one memory load at line 2
of Fig. 6(b)). By checking the constraint solver, we find a

pair of program secrets that affect the value of B and further
lead to the access of different cache lines at the first memory
access (the solution is given in Fig. 6(c)).

We then instrument the program private key with the
solver provided solutions in Fig. 6(c) and observe the run-
time cache access within gem5. This secret pair is generated
by analyzing the first leakage memory access, but since vari-
ants of B may affect the following memory traffic as well, we
report the cache status at all the suspicious memory accesses
in mpi montmul. We note that while CacheS analyzes 32-
bit binaries, at this step we compile the instrumented source
code into 64-bit binaries since the simulated OS throws some
exceptions when running 32-bit code. After compilation, the
five leakage points in the source code actually produce three
memory load instructions in the 64-bit assembly code. Cache
behaviors, including the accessed cache line and the corre-
sponding cache status, are recorded at these points. Fig. 6(d)
presents the simulation results. Due to the limited space,
we provide only the first seven records (59568 records in to-
tal). Program counters 0x40770a, 0x407744 and 0x40775d
represent the three identified memory loads of information
leaks. It is easy to see that different cache lines are accessed
at each point. Additionally, a timing window of one cache
hit vs. miss is found (this memory access represents a table
lookup in the first element of B->p).

8.4 Information Leaks in the Modular Expo-
nentiation Algorithm

Both RSA and ElGamal algorithms employ the modular ex-
ponentiation algorithm for decryption. Existing research
has reported that such an algorithm is vulnerable to cache-
based timing channel attacks [77, 52]. Here, we evaluate
the corresponding implementations in OpenSSL, Libgcrypt,
and mbedTLS. As reported in Table 2, CacheS successfully
revealed a much larger leakage surface, including 80 (54 un-
known and 26 known) information leaks, from our test cases.
Information Leaks in Libgcrypt. A large number of leak-
age points are reported from the sliding window-based mod-
ular exponentiation implementation in Libgcrypt 1.6.1. Ex-
isting research has pointed out the direct usages of (window-
size) secret keys as exploitable [52], and CacheS pinpointed
this issue. In addition to the 4 direct usages of secrets, we fur-
ther uncovered 36 leaks due to the propagation of secret in-
formation flows, as CacheS keeps track of both variable-level
and memory loading based information flows (Sec. 6.2).

While previous trace-based analysis also keeps track of
information flow propagation (i.e., CacheD [77]), CacheS
still outperforms CacheD because of its program-wide anal-
ysis. With the help of CacheD’s authors, we confirmed that
CacheS can detect all 22 leaks reported in CacheD [77], and
further reveals 18 additional points.
Information Leaks in mbedTLS. CacheS has also
identified leaks in another commonly used cryptosys-
tem, mbedTLS. Appendix E presents several leaks
found in the mbedTLS case. In general, function
mbedtls mpi exp mod implements a sliding window-

USENIX Association 28th USENIX Security Symposium 667

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

(a) Source code.

static int mpi_montmul(mbedtls mpi *A,
const mbedtls_mpi *B, const mbedtls_mpi ∗N,
mbedtls mpi_uint mm, const mbedtls mpi ∗T)
{

...
m = (B->n < n) ? B->n : n;
...
for (i = 0; i < n; i++) {

...
u1 = (d[0] + u0 * B->p[0]) * mm;
mpi_mul_hlp(m, B->p, d, u0);
...

}
...

}

mov eax, [ebp + 0xc]
mov edx, [eax + 0x4]
...
mov eax, [eax + 0x8]
mov eax, [eax]
imul eax, [ebp - 0x10]
add eax, edx
imul eax, [ebp + 0x14]
mov [ebp - 0xc], eax
mov eax, [ebp + 0xc]
mov eax, [eax + 0x8]

(b) Assembly instructions.

(c) Solution of mem load at line 2 of (b).

k = 0x40000000
k’ = 0xc0000002

1.
2.

40770a: 2199023255240 hit
407744: 2199023255240 hit
40775d: 101018 hit
407744: 2199023255240 hit
40775d: 101018 hit
407744: 2199023255240 hit
40775d: 101018 hit

40770a: 2199023255246 hit
407744: 2199023255246 hit
40775d: 101046 miss
407744: 2199023255246 hit
40775d: 101046 hit
407744: 2199023255246 hit
40775d: 101046 hit

(d) Hardware simulation results with k
(the upper part) and k’ (the lower part).Vulnerable program points and corresponding memory access instructions are backgrounded with blue. Secret-

carrying variables and registers are marked with red; B is a secret-dependent address (line 2 in figure (a)).

Mem	addr Accessed Cache	line		 Cache status

Timing
window

Figure 6: Case study of information leaks in mbedTLS. The constraint solver finds a pair of secrets (k and k’) which leads to
the access of different cache lines at line 2 of (b).

based modular exponentiation, which leads to secret-
dependent memory accesses (precomputed table lookup).
The table lookup statement (line 10) does not generate a
leak point since it only gets a pointer referring to an array
element, however, further memory dereferences on the ac-
quired pointer reveal 4 direct usages of secrets (discussed in
Sec. 8.3). We also find 25 leaks due to the propagation of
secret information flows (Sec. 6.2).

We note that mbedTLS uses RSA exponent blinding as a
countermeasure [43], which practically introduces noise and
mitigates cache side channels (but is still exploitable with
enough collisions or if the attacker can derive the exponent
from a single trace). We leave it as future work to model
the feasibility of exploitations, given the identified leaks and
also taking program randomness (e.g., exponent blinding)
into consideration.
Information Leaks in OpenSSL. Information leaks in
OpenSSL are within or derived from functions counting the
length of a secret array. Fig. 7 presents a function that
contains 4 memory accesses which engender information
leaks: BIGNUM maintains an array of 32-bit elements, and
BN num bits counts the number of bits within a given big
number. Since the last element of the array may be less than
32 bits, a lookup table is used to determine the exact bits in
the last element of the secret array (function call at line 7
in Fig. 7). By storing secrets within a big number structure,
table queries in BN num bits word could lead to secret-
dependent memory accesses.

While CacheD [77] flags only one information leak (line
26 in Fig. 7) covered by its execution trace, CacheS detects
more leaks. As shown in Fig. 7, four table queries are an-
alyzed by CacheS, and all of them are flagged as leaks. In
addition to these four direct usages of secrets, CacheS also

finds one more leak in OpenSSL 1.0.2k, and two in OpenSSL
1.0.2f, both are due to the propagation of secret information
flows.
False Positive. In addition to the issues in Appendix C that
have been confirmed and fixed by the OpenSSL developers,
we also find one false positive when analyzing OpenSSL
1.0.2f. To defeat side channel attacks against the precom-
puted table lookup, OpenSSL forces the cache access at the
table lookup point in a constant order [33]. This constant
order table lookup is demonstrated with a sample C code in
Appendix D. The base address of the lookup table is aligned
to zero the least-significant bits, and scatter and gather meth-
ods are employed to mimic the Fortran-style memory alloca-
tion to access the table in a constant order and remove timing
channels.

Ideally, with the base address being aligned, the table ac-
cess should not produce an information leak regarding the
cache line access model (but scatter-gather implementation
can also be exploited with cache bank attacks [87]. As dis-
cussed in Sec. 5, our cache access constraint can be fur-
ther extended to capture cache bank side channels). How-
ever, since public information (e.g., base address of the ta-
ble) is abstracted as a symbol p in CacheS, the alignment is
not modeled. Therefore, CacheS incorrectly flags the table
lookup as a leak point, which leads to a false positive.
8.5 Flag Secret-Dependent Control Flow
To reduce false negatives and also show the versatility of
CacheS, we extend CacheS to search for secret-dependent
branch conditions. Similar to the detection of secret-
dependent memory accesses (Sec. 5), we check each condi-
tional jump and flag secret-dependent jump conditions. The
conditional jump in REIL IR is jcc, and the value of its first
operand specifies whether the jump is taken or not. We trans-

668 28th USENIX Security Symposium USENIX Association

late each secret-dependent condition c into an SMT formula
f and solve the following constraint:

f 6= f [s′i/si] (2)

where a satisfiable solution indicates that different secrets
lead to the execution of different branches. In addition, since
REIL IR creates additional jcc statements to model certain
x86 instructions (e.g., the shift arithmetic right sar and bit
scan forward bsf), we rule out jcc statements if their cor-
responding x86 instructions are not conditional jumps. In
this research we do not take jcc into consideration if it does
not represent an x86 conditional jump, since in general the
silicon implementations of x86 instructions on mainstream
CPUs have fixed latency [2].

Table 6 presents the evaluation results, including the in-
formation leakage units produced by the same metric used in
Table 2. While secret-dependent control flow is absent in all
the AES cases, CacheS pinpoints multiple instances in every
RSA/ElGamal implementation. We further manually stud-
ied each of them, and we report that besides 4 false positives
(explained later in this section), all the other cases represent
secret-dependent branch conditions. In the example given in
Appendix F, the value of bits, which is derived from the
private key, is used to construct several conditions. Similar
patterns are also found in other cases.
False Negative. Bernstein et al. exploited the secret-
dependent control flows in Libgcrypt 1.7.6 [17], where the
leading and trailing zeros of a window-size secret are used
to compute a branch condition. While the corresponding
vulnerable branches also exist in Libgcrypt 1.7.3, they are
not detected by CacheS. In general, 32-bit x86 opcode bsr
and bsf are used to count the leading and trailing zeros of a
given operand, and both opcodes are lifted into a while loop
implemented by a jcc statement (for the definition of their
semantics, see the bsr and bsf sections of the x86 devel-
oper manual [3]). Consider a proof-of-concept pseudo-code
below:

1 t = 0;
2 while (getBit(t, src) == 0) //src could be a secret
3 {
4 t += 1;
5 }
6 return t; // the number of trailing zeros in src

where the lifted while loop entails implicit information flow,
which is not supported (see Sec. 6.2 for the information flow
policy). In addition, although we disable the checking of jcc
regarding Constraint 2 if its corresponding x86 instruction is
not a conditional jump (like the bsr and bsf cases), we re-
port that once enabling the checking of such jcc statements,
secret-dependent control flows (e.g., line 3 of the pseudo-
code) are detected for both cases.
False Positive. We find 4 false positives when analyzing
Libgcrypt 1.6.1. This is due to the imprecise modeling of
interprocedural call sites. Consider a sample pseudo-code
below:

1 foo(k, p) { // k is {>} and p is {12}
2 if (...) {

Table 6: Secret-dependent control branches. We found no
issue in the AES implementations. A summary of all leakage
points can be found at the extended version of this paper [76].

Implementation Algorithm # of Secret-dependent False Information
conditions Positive Leakage Unit

Libgcrypt 1.6.1 RSA/ElGamal 21 4 9
Libgcrypt 1.7.3 RSA/ElGamal 6 0 4
mbedTLS 2.5.1 RSA 8 0 4
OpenSSL 1.0.2f RSA/ElGamal 12 0 5
OpenSSL 1.0.2k RSA/ElGamal 12 0 5

Total 59 4 27

3 r = bar(k); // r is {>}
4 } else {
5 r = bar(p); // r is {>} since 〈 f oo,{12}〉 ⊆ 〈 f oo,{>}〉
6 if (r) // false positive
7 ...
8 }
9

10 bar(i){return i;}

where foo performs two function calls to bar with differ-
ent parameters. The summary of the first call (line 3) is
represented as (〈 f oo,{>}〉,{>}), where 〈 f oo,{>}〉 forms
the calling context (as explained in Sec. 6.3, a calling con-
text includes the caller name and the input), and the second
{>} is the function call output. Then the following function
call (line 5) with 〈 f oo,{12}〉 as the calling context will di-
rectly return {>} and cause a false positive (line 6) according
to the recorded summary, since 〈 f oo,{12}〉 ⊆ 〈 f oo,{>}〉.
Our study shows that such sound albeit imprecise modeling
caused 4 false positives when analyzing Libgcrypt 1.6.1.

9 Discussion
Soundness. Our abstraction is sound (see our technical re-
port for the proof [76]), but the CacheS implementation is
soundy [53] as it roots the same assumption as previous tech-
niques that aim to find bugs rather than performing rigorous
verification [55, 84, 54].

CacheS adopts a lightweight but unsound memory model
implementation; program state representations are optimized
to reduce the memory usage and speed up the analysis. There
is a line of research aiming to deliver a (nearly) sound mem-
ory model when analyzing x86 assembly [13, 64, 65, 21].
We leave it to future work to explore practical methods to
improve CacheS with a sound model without undermining
the strength of CacheS in terms of scalability and precision.
Reduce False Positives. Our abstract domain SAS models
public program information with free public symbols. To
further improve the analysis precision and eliminate false
positives, such as in the case discussed in Sec. 8.4, one ap-
proach is to perform a finer-grained modeling of public pro-
gram information. To this end, so-called “lazy abstraction”
can be adopted to postpone abstraction until necessary [71].
In contrast to our current approach where analyses are per-
formed directly over SAS, lazy abstraction provides a flexi-
ble abstraction strategy on demand, where different program
points can exhibit distinct levels of precision. Well-selected
program points for lazy abstraction are critical to achieve
scalability. For example, abstraction can be performed at ev-

USENIX Association 28th USENIX Security Symposium 669

ery loop merge point or whenever abstract formulas become
too large and exhaust the memory resource. We leave it to
future work to explore practical strategies for lazy abstrac-
tion.

10 Related Work
Timing Attacks. Kocher’s seminal paper [44] identifies tim-
ing attacks as a potential threat to crypto system. Later work
finds that timing information reveals the victim program’s
usage of data/instruction cache, leading to efficient timing
attacks against real world cryptography software, including
AES [37, 60, 74, 16, 20, 6], DES [75], RSA [7, 62, 86], El-
Gamal [90], and ECDSA [15]. Recent work shows that such
cache-based timing attacks are possible on emerging plat-
forms, such as cloud computing, VM environments, trusted
computing environments, and mobile platforms [66, 85, 83,
89, 52, 49, 56, 69, 24, 36].
Detect Cache-Based Timing Channels. CacheAudit lever-
ages static analysis techniques (i.e., abstract interpretation)
to reason information leakage due to cache side chan-
nels [32, 33]. CacheS outperforms CacheAudit due to our
novel abstract domain. CacheAudit uses relational and nu-
merical abstract domains to only infer the information leak-
age bound, while our abstract domain models semantics with
symbolic formulas, pinpoints information leaks with con-
straint solving, and enables the generation of counter ex-
amples to promote debugging. In addition, we propose a
principled way to improve the scalability by tracking secrets
and public information with different granularities. This
enables a context-sensitive interprocedural analysis of real-
world cryptosystems for which CacheAudit is not capable
of handling. Brotzman et al. [22] propose a static symbolic
reasoning technique that also covers multiple program paths.
However, their analysis lacks abstraction of public values,
and can analyze only small-size programs.

In contract, dynamic analysis-based approaches, such as
taint analysis or trace-based symbolic execution, are inca-
pable of analyzing the whole program [77, 82, 41, 81, 38].
CacheD [77] performs symbolic execution towards a single
trace to detect side channels. In contrast, abstract interpreta-
tion framework approximates the program collecting seman-
tics, which formalizes program abstract semantics at arbi-
trary program points regarding any path and any input. This
is fundamentally different and much more comprehensive
comparing to a path-based tool, like CacheD. Wichelmann et
al. [82] log execution traces and perform differential analy-
sis of various granularities to detect side channels. Weiser et
al. [81] detect address-based side-channels by executing test
programs under input variants and further compare traces to
detect leakages.
Countermeasure. Existing countermeasures against cache
side-channel attacks can be categorized into hardware-based
and software-based approaches. Hardware-based solutions
focus on randomizing the cache accesses with new cache
design [79, 80, 45, 78, 51, 50], or enforcing fine-grained
isolation with respect to cache usage [70, 42]. Wang et al.

propose locking the cache lines and hiding cache access pat-
terns [79], which further obfuscates cache accesses by di-
versifying the cache mappings [80]. Tiwari et al. [73] de-
vise a novel micro architecture for information-flow tracking
by design, where noninterference is deployed as the base-
line confidentiality property. Another direction at the hard-
ware level is based on contracts between software and hard-
ware [91, 47, 88], where contracts are enforced by formal
methods (e.g., type systems) on the hardware side. Further-
more, some advanced hardware extensions, like hardware
transactional memory, have also been leveraged to prevent
side channels even inside Intel SGX [35].

Analyses are also conducted on the software level to miti-
gate side channel attacks [27, 12, 63, 67, 68]. Program trans-
formation techniques are leveraged to remove control-flow
timing leaks by equalizing branches of conditionals with se-
cret guards [8], together with a binary static checker [58],
and its practicality is evaluated [27]. Constant time code de-
feats timing attacks by ensuring the control flow, memory
accesses, and execution time of individual instruction is se-
cret independent [10, 40, 61, 14, 9, 46].
11 Conclusion
In this paper, we have presented CacheS for cache-based tim-
ing channel detection. Based on a novel abstract domain
SAS, CacheS does fine-grained tracking of sensitive infor-
mation and its dependencies, while performing scalable anal-
ysis with over-approximated public information. We evalu-
ated CacheS on multiple real-world cryptosystems. CacheS
confirmed over 154 information leaks reported by previous
research and pinpointed 54 leaks not known previously.
12 Acknowledgments
We thank the Usenix Security anonymous reviewers and
Gary T. Leavens for their valuable feedback. The work was
supported in part by the National Science Foundation (NSF)
under grant CNS-1652790, and the Office of Naval Research
(ONR) under grants N00014-16-12912, N00014-16-1-2265,
and N00014-17-1-2894.

References
[1] IDAPro. https://goo.gl/snmrk3.
[2] Intel R© 64 and IA-32 architectures optimization refer-

ence manual.
[3] Intel R© 64 and IA-32 architectures software developers

manual.
[4] Patched OpenSSL vulnerabilities. https://git.io/

fj0iz, 2018.
[5] ACIICMEZ, O., AND KOC, C. K. Trace-driven cache

attacks on AES. In ICICS (2006).
[6] ACIICMEZ, O., SCHINDLER, W., AND KOC, C. K.

Cache based remote timing attack on the AES. In CT-
RSA (2006).

[7] ACIICMEZ, O., AND SEIFERT, J. Cheap hardware par-
allelism implies cheap security. In FDTC (2007).

[8] AGAT, J. Transforming out timing leaks. In POPL
(2000).

670 28th USENIX Security Symposium USENIX Association

[9] ALMEIDA, J. B., BARBOSA, M., BARTHE, G., DU-
PRESSOIR, F., AND EMMI, M. Verifying constant-time
implementations. In USENIX Sec. (2016).

[10] ALMEIDA, J. B., BARBOSA, M., PINTO, J. S., AND
VIEIRA, B. Formal verification of side-channel coun-
termeasures using self-composition. Science of Com-
puter Programming (2013).

[11] APPEL, A. W. Modern Compiler Implementation in
ML. Cambridge University Press, 2004.

[12] AVIRAM, A., HU, S., FORD, B., AND GUMMADI, R.
Determinating timing channels in compute clouds. In
CCSW (2010).

[13] BALAKRISHNAN, G., AND REPS, T. Analyzing mem-
ory accesses in x86 executables. In CC (2004).

[14] BARTHE, G., REZK, T., AND WARNIER, M. Pre-
venting timing leaks through transactional branching
instructions. Electronic Notes in Theoretical Computer
Science (2006).

[15] BENGER, N., VAN DE POL, J., SMART, N. P., AND
YAROM, Y. “Ooh aah... just a little bit” : A small
amount of side channel can go a long way. In CHES
(2014).

[16] BERNSTEIN, D. J. Cache-timing attacks on AES,
2005.

[17] BERNSTEIN, D. J., BREITNER, J., GENKIN, D.,
BRUINDERINK, L. G., HENINGER, N., LANGE, T.,
VAN VREDENDAAL, C., AND YAROM, Y. Sliding
right into disaster: Left-to-right sliding windows leak.
In CHES (2017).

[18] BINKERT, N., BECKMANN, B., BLACK, G., REIN-
HARDT, S. K., SAIDI, A., BASU, A., HESTNESS, J.,
HOWER, D. R., KRISHNA, T., SARDASHTI, S., SEN,
R., SEWELL, K., SHOAIB, M., VAISH, N., HILL,
M. D., AND WOOD, D. A. The Gem5 simulator. ACM
SIGARCH Computer Architecture News (2011).

[19] BONEH, D., DURFEE, G., AND FRANKEL, Y. An
attack on RSA given a small fraction of the private key
bits. In ASIACRYPT (1998).

[20] BONNEAU, J., AND MIRONOV, I. Cache-collision tim-
ing attacks against AES. In CHES (2006).

[21] BRADLEY, A. R., MANNA, Z., AND SIPMA, H. B.
What’s decidable about arrays? In VMCAI (2006).

[22] BROTZMAN, R., LIU, S., ZHANG, D., TAN, G., AND
KANDEMIR, M. CaSym: Cache aware symbolic ex-
ecution for side channel detection and mitigation. In
IEEE SP (2018).

[23] BRUMLEY, D., AND BONEH, D. Remote timing at-
tacks are practical. Computer Networks (2005).

[24] BULCK, V., MINKIN, M., WEISSE, O., GENKIN,
D., KASIKCI, B., PIESSENS, F., SILBERSTEIN, M.,
WENISCH, T. F., YAROM, Y., AND STRACKX, R.
Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In USENIX
Sec. (2018).

[25] C, A., GIRI, R. P., AND MENEZES, B. Highly ef-
ficient algorithms for aes key retrieval in cache access
attacks. In EuroSP (2016).

[26] CALVET, J., FERNANDEZ, J. M., AND MARION, J.-
Y. Aligot: Cryptographic function identification in ob-
fuscated binary programs. In CCS (2012).

[27] COPPENS, B., VERBAUWHEDE, I., BOSSCHERE,
K. D., AND SUTTER, B. D. Practical mitigations for
timing-based side-channel attacks on modern x86 pro-
cessors. In IEEE SP (2009).

[28] COUSOT, P., AND COUSOT, R. Abstract interpretation:
a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In POPL
(1977).

[29] DANIAL, A. CLOC. https://goo.gl/3KFACB.
[30] DE MOURA, L., AND BJØRNER, N. Z3: An efficient

SMT solver. In TACAS (2008).
[31] DISSELKOEN, C., KOHLBRENNER, D., PORTER, L.,

AND TULLSEN, D. Prime+Abort: A timer-free high-
precision L3 cache attack using Intel TSX. In USENIX
Sec. (2017).

[32] DOYCHEV, G., FELD, D., KOPF, B., MAUBORGNE,
L., AND REINEKE, J. CacheAudit: A tool for the
static analysis of cache side channels. In USENIX Sec.
(2013).

[33] DOYCHEV, G., AND KÖPF, B. Rigorous analysis of
software countermeasures against cache attacks. In
PLDI (2017).

[34] GOOGLE. BinNavi. https://github.com/google/
binnavi, 2017.

[35] GRUSS, D., LETTNER, J., SCHUSTER, F., OHRI-
MENKO, O., HALLER, I., AND COSTA, M. Strong and
efficient cache side-channel protection using hardware
transactional memory. In USENIX Sec. (2017).

[36] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND
MANGARD, S. Prefetch side-channel attacks: Bypass-
ing smap and kernel aslr. In CCS (2016).

[37] GULLASCH, D., BANGERTER, E., AND KRENN, S.
Cache games—bringing access-based cache attacks on
AES to practice. In IEEE SP (2011).

[38] GUO, S., WU, M., AND WANG, C. Adversarial sym-
bolic execution for detecting concurrency-related cache
timing leaks. In FSE (2018).

[39] HE, Z., AND LEE, R. B. How secure is your cache
against side-channel attacks? In MICRO (2017).

[40] HEDIN, D., AND SANDS, D. Timing aware informa-
tion flow security for a JavaCard-like bytecode. Elec-
tronic Notes in Theoretical Computer Science (2005).

[41] IRAZOQUI, G., CONG, K., GUO, X., KHATTRI, H.,
KANUPARTHI, A. K., EISENBARTH, T., AND SUNAR,
B. Did we learn from LLC side channel attacks? A
cache leakage detection tool for crypto libraries. CoRR
(2017).

[42] KIM, T., PEINADO, M., AND MAINAR-RUIZ, G.
Stealthmem: System-level protection against cache-

USENIX Association 28th USENIX Security Symposium 671

based side channel attacks in the cloud. In USENIX
Sec. (2012).

[43] KOCHER, P. C. Timing attacks on implementations
of Diffie–Hellman, RSA, DSS, and other systems. In
CRYPTO (1996).

[44] KOCHER, P. C. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. 1996.

[45] KONG, J., ACIICMEZ, O., SEIFERT, J. P., AND
ZHOU, H. Hardware-software integrated approaches
to defend against software cache-based side channel at-
tacks. In HPCA (2009).

[46] KÖPF, B., AND RYBALCHENKO, A. Approxima-
tion and randomization for quantitative information-
flow analysis. In CSF (2010).

[47] LI, X., KASHYAP, V., OBERG, J. K., TIWARI, M.,
RAJARATHINAM, V. R., KASTNER, R., SHERWOOD,
T., HARDEKOPF, B., AND CHONG, F. T. Sapper:
A language for hardware-level security policy enforce-
ment. In ASPLOS (2014).

[48] Libgcrypt. https://www.gnu.org/software/
libgcrypt/.

[49] LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C.,
AND MANGARD, S. Armageddon: Cache attacks on
mobile devices. In USENIX Sec. (2016).

[50] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS,
C., HEISER, G., AND LEE, R. B. Catalyst: Defeating
last-level cache side channel attacks in cloud comput-
ing. In HPCA (2016).

[51] LIU, F., AND LEE, R. B. Random fill cache architec-
ture. In MICRO (2014).

[52] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE,
R. Last-level cache side-channel attacks are practical.
In IEEE S&P (2015).

[53] LIVSHITS, B., SRIDHARAN, M., SMARAGDAKIS, Y.,
LHOTÁK, O., AMARAL, J. N., CHANG, B.-Y. E.,
GUYER, S. Z., KHEDKER, U. P., MØLLER, A., AND
VARDOULAKIS, D. In defense of soundiness: A man-
ifesto. Commun. ACM (2015).

[54] LIVSHITS, V. B., AND LAM, M. S. Tracking pointers
with path and context sensitivity for bug detection in c
programs. SIGSOFT Softw. Eng. Notes (2003).

[55] MACHIRY, A., SPENSKY, C., CORINA, J.,
STEPHENS, N., KRUEGEL, C., AND VIGNA, G.
DR. CHECKER: A soundy analysis for linux kernel
drivers. In USENIX (2017).

[56] MAURICE, C., WEBER, M., SCHWARZ, M., GINER,
L., GRUSS, D., BOANO, C. A., MANGARD, S., AND
RÖMER, K. Hello from the other side: SSH over robust
cache covert channels in the cloud. In NDSS (2017).

[57] mbedtls. https://tls.mbed.org/.
[58] MOLNAR, D., PIOTROWSKI, M., SCHULTZ, D., AND

WAGNER, D. The program counter security model:
Automatic detection and removal of control-flow side
channel attacks. In ICISC (2005).

[59] Openssl. https://www.openssl.org/.

[60] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache
attacks and countermeasures: the case of AES. CT-RSA
(2006).

[61] PASAREANU, C., PHAN, Q.-S., AND MALACARIA,
P. Multi-run side-channel analysis using symbolic ex-
ecution and Max-SMT. In CSF (2016).

[62] PERCIVAL, C. Cache missing for fun and profit. In
BSDCan (2005).

[63] RAJ, H., NATHUJI, R., SINGH, A., AND ENGLAND,
P. Resource management for isolation enhanced cloud
services. In CCSW (2009).

[64] REPS, T., AND BALAKRISHNAN, G. Improved
memory-access analysis for x86 executables. In CC
(2008).

[65] REYNOLDS, J. C. Reasoning about arrays. Commun.
ACM (1979).

[66] RISTENPART, T., TROMER, E., SHACHAM, H., AND
SAVAGE, S. Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In
CCS (2009), ACM.

[67] SCHWARZ, M., LIPP, M., AND GRUSS, D. Javascript
zero: Real javascript and zero side-channel attacks. In
NDSS (2018).

[68] SCHWARZ, M., LIPP, M., GRUSS, D., WEISER, S.,
MAURICE, C., SPREITZER, R., AND MANGARD, S.
Keydrown: Eliminating software-based keystroke tim-
ing side-channel attacks. In NDSS (2018).

[69] SCHWARZ, M., WEISER, S., GRUSS, D., MAURICE,
C., AND MANGARD, S. Malware guard extension: Us-
ing SGX to conceal cache attacks. In DIMVA (2017).

[70] SHI, J., SONG, X., CHEN, H., AND ZANG, B. Limit-
ing cache-based side-channel in multi-tenant cloud us-
ing dynamic page coloring. In DSNW (2011).

[71] THAKUR, A. V., ELDER, M., AND REPS, T. W. Bi-
lateral algorithms for symbolic abstraction. In SAS
(2012).

[72] THOMAS, D., AND PORST, S. REIL: A platform-
independent intermediate representation of disassem-
bled code for static code analysis. In CanSecWest
(2009).

[73] TIWARI, M., OBERG, J. K., LI, X., VALAMEHR, J.,
LEVIN, T., HARDEKOPF, B., KASTNER, R., CHONG,
F. T., AND SHERWOOD, T. Crafting a usable microker-
nel, processor, and I/O system with strict and provable
information flow security. In ACM SIGARCH Com-
puter Architecture News (2011), ACM.

[74] TROMER, E., OSVIK, D., AND SHAMIR, A. Efficient
cache attacks on AES, and countermeasures. Journal
of Cryptology 23, 1 (2010), 37–71.

[75] TSUNOO, Y., SAITO, T., SUZAKI, T., SHIGERI, M.,
AND MIYAUCHI, H. Cryptanalysis of DES imple-
mented on computers with cache. In CHES (2003).

[76] WANG, S., BAO, Y., LIU, X., WANG, P., ZHANG,
D., AND WU, D. Identifying cache-based side chan-

672 28th USENIX Security Symposium USENIX Association

nels through secret-agumented abstract interpretation.
In Arxiv (2019).

[77] WANG, S., WANG, P., LIU, X., ZHANG, D., AND
WU, D. CacheD: Identifying cache-based timing chan-
nels in production software. In USENIX Sec. (2017).

[78] WANG, Z., AND LEE, R. B. Covert and side channels
due to processor architecture. In ACSAC (2006).

[79] WANG, Z., AND LEE, R. B. New cache designs for
thwarting software cache-based side channel attacks. In
ISCA (2007).

[80] WANG, Z., AND LEE, R. B. A novel cache architec-
ture with enhanced performance and security. In MI-
CRO (2008).

[81] WEISER, S., ZANKL, A., SPREITZER, R., MILLER,
K., MANGARD, S., AND SIGL, G. DATA – differen-
tial address trace analysis: Finding address-based side-
channels in binaries. In USENIX Sec. (2018).

[82] WICHELMANN, J., MOGHIMI, A., EISENBARTH, T.,
AND SUNAR, B. MicroWalk: A framework for finding
side channels in binaries. In ACSAC (2018).

[83] WU, Z., XU, Z., AND WANG, H. Whispers in the
hyper-space: High-speed covert channel attacks in the
cloud. In USENIX Sec. (2012).

[84] XIE, Y., AND AIKEN, A. Scalable error detection us-
ing boolean satisfiability. In POPL (2005).

[85] XU, Y., BAILEY, M., JAHANIAN, F., JOSHI, K.,
HILTUNEN, M., AND SCHLICHTING, R. An explo-
ration of L2 cache covert channels in virtualized envi-
ronments. In CCSW (2011).

[86] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD:
A high resolution, low noise, L3 cache side-channel at-
tack. In USENIX Sec. (2014).

[87] YAROM, Y., GENKIN, D., AND HENINGER, N.
CacheBleed: A timing attack on OpenSSL constant
time RSA. Tech. rep., Cryptology ePrint Archive, Re-
port 2016/224, 2016.

[88] ZHANG, D., WANG, Y., SUH, G. E., AND MYERS,
A. C. A hardware design language for timing-sensitive
information-flow security. In ASPLOS (2015).

[89] ZHANG, Y., JUELS, A., OPREA, A., AND REITER,
M. K. HomeAlone: Co-residency detection in the
cloud via side-channel analysis. In IEEE SP (2011).

[90] ZHANG, Y., JUELS, A., REITER, M. K., AND RIS-
TENPART, T. Cross-VM side channels and their use to
extract private keys. In CCS (2012).

[91] ZHANG, Y., AND REITER, M. K. Düppel: Retrofitting
commodity operating systems to mitigate cache side
channels in the cloud. In CCS (2013).

A SAS as a Lattice
To further make SAS a lattice, we will need to specify a top
element > ∈ SAS, a bottom element ⊥ ∈ SAS, and a join
operator t over SAS.
Set Collapse and Bound. Each element in SAS is a set of
abstract values f ∈AV. Considering f with different degrees

of abstractions may exist in one set, here we define reason-
able rules to “collapse” elements in a set. The “collapse”
function COL : SAS→ SAS is given by:

COL(X) =

{>} if> ∈ X
{>} else if p ∈ X ∧AVs∩X 6=∅
{p} else if p ∈ X ∧AVs∩X =∅
X otherwise

While the first three rules introduce single symbols as a
safe and concise approximation, the last rule preserve a set
in SAS.

In addition, each set in SAS is also bounded with a maxi-
mum size of N through function BOU as follows:

BOU(X) =

{>} if |X |> N∧AVs∩X 6=∅
{p} else if |X |> N∧AVs∩X =∅
X otherwise

Hence, the abstract value set of any variable is bounded by
N during computations within SAS, which practically speed
ups the analysis convergence (N is set as 50 in this research,
see Appendix B for a discussion of different configurations).

With COL and BOU defined, we can finally complete SAS
as a lattice.

Claim 2. SAS=P(AV) forms a lattice with the top element

>SAS = {>}

bottom element
⊥SAS = {}

and the join operator

t= BOU◦COL◦∪

For further discussion of SAS, including the concrete and
abstract semantics, soundness proof, etc., please refer to the
extended version of this paper [76].
B Evaluating Different Configurations of the

BOU Function
The definition of the BOU function includes a parameter N
as the maximum size of each abstract value set. Table 7 re-
ports the evaluation results of CacheS with respect to dif-
ferent N. As expected, with the increase of the allowed
size, analyses took more time before reaching the fixed point.
Also, when the allowed size is small (i.e., N is 1 or 10), the
value set of certain registers is lifted into {p} rapidly and ter-
minates the analysis due to memory write accesses through
p (see Sec. 6.2; we terminate the analysis for memory access
of p since it rewrites the whole memory). The full evalua-
tion data in terms of different configurations is available in
the extended paper [76].

USENIX Association 28th USENIX Security Symposium 673

Table 7: Evaluating different configurations of BOU. When N
is set as 1 and 10, several analyses terminated before reach-
ing the fixed point due to memory write accesses through the
public symbol p. The full evaluation data in terms of each
configuration can be found at [76].

Value of N True Positive False Positive Processing Time (CPU Seconds)
1 N/A N/A N/A
10 167 1 584.5
25 207 1 1,446.8

50 (the default config) 207 1 1,637.4
100 207 1 3,563.46

C Unknown Information Leaks in OpenSSL
1 int BN num bits(const BIGNUM ∗a) {
2 int i = a->top − 1;
3 bn check top(a);
4
5 if (BN is zero(a))
6 return 0;
7 return ((i ∗ BN BITS2) + BN num bits word(a->d[i]));
8 }
9

10 int BN num bits word(BN ULONG l) {
11 static const char bits[256]={
12 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,
13 ...
14 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
15 };
16 if (l & 0xffff0000L) {
17 if (l & 0xff000000L)
18 return bits[l >> 24] + 24;
19 else
20 return bits[l >> 16] + 16;
21 }
22 else {
23 if (l & 0xff00L)
24 return bits[l >> 8] + 8;
25 else
26 return bits[l];
27 }
28 }

Figure 7: RSA information leaks found in OpenSSL (1.0.2f).
Program secrets and their dependencies are marked as red
and the leakage points are boldfaced.

D Scatter & Gather Methods in OpenSSL
1 char∗ align(char∗ buf) {
2 uintptr t addr = (uintptr t) buf;
3 return (char∗)(addr − (addr&(BLOCK SZ−1)) + BLOCK SZ);
4 }
5
6 void scatter(char∗ buf, char p[][16], int k) {
7 for (int i = 0; i < N; i++) {
8 buf[k+i∗spacing] = p[k][i];
9 }

10 }
11
12 void gather(char∗ r,char∗ buf,int k) {
13 for (int i = 0; i < N; i++) {
14 r[i] = buf[k+i∗spacing];
15 }
16 }

Figure 8: Simple C program demonstrating the scatter &
gather methods in OpenSSL to remove timing channels. This
program should be secure regarding our threat model, but it
would become insecure by skipping the alignment function.

E Unknown Information Leaks in mbedTLS
1 int mbedtls mpi exp mod(mbedtls mpi ∗X, mbedtls mpi ∗A,
2 mbedtls mpi ∗E, mbedtls mpi ∗N, mbedtls mpi ∗ RR)
3 {
4 ...
5 while (1) {
6 ei = (E->p[nblimbs] >> bufsize) & 1;
7 ...
8 wbits |= (ei << (wsize − nbits));
9 ...

10 mpi montmul(X, &W[wbits], N, mm, &T);
11 }
12 ...
13 }
14
15 static int mpi montmul(mbedtls mpi ∗A, mbedtls mpi ∗B,
16 mbedtls mpi ∗N, mbedtls mpi uint mm, mbedtls mpi ∗T)
17 {
18 ...
19 m = (B->n < n) ? B->n : n;
20 for(i = 0; i < n; i++)
21 {
22 u1 = (d[0] + u0 * B->p[0]) * mm;
23 mpi mul hlp(m, B->p, d, u0);
24 }
25 ...
26 }

Figure 9: RSA information leaks found in mbedTLS (2.5.1).
Program secrets and their dependencies are marked as red
and the leakage points are boldfaced.

F Secret-Dependent Branch Conditions in
OpenSSL

1 int BN mod exp mont consttime(BIGNUM ∗rr,
2 const BIGNUM ∗a, const BIGNUM ∗p,
3 const BIGNUM ∗m, BN CTX ∗ctx,
4 BN MONT CTX ∗in mont) {
5 ...
6 bits = BN num bits(p);
7 if (bits == 0)
8 ...
9

10 window = BN window bits for exponent size(bits);
11 for (wvalue = 0, i = bits%window; i>=0; i--,bits--)
12 {
13 ...
14 while (bits >= 0){
15 ...
16 }
17 }
18 ...
19 }
20
21 #define BN window bits for exponent size(b) \
22 ((b) > 671 ? 6 : \
23 (b) > 239 ? 5 : \
24 (b) > 79 ? 4 : \
25 (b) > 23 ? 3 : 1)

Figure 10: Several secret-dependent branch conditions found
in OpenSSL (1.0.2f). Program secrets and their dependen-
cies are marked as red and the information leakage condi-
tions are boldfaced. Note that the output of BN num bits
depends on the private key.

674 28th USENIX Security Symposium USENIX Association

SCATTERCACHE: Thwarting Cache Attacks via Cache Set Randomization

Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, Stefan Mangard

Graz University of Technology

Abstract
Cache side-channel attacks can be leveraged as a building
block in attacks leaking secrets even in the absence of soft-
ware bugs. Currently, there are no practical and generic miti-
gations with an acceptable performance overhead and strong
security guarantees. The underlying problem is that caches
are shared in a predictable way across security domains.

In this paper, we eliminate this problem. We present SCAT-
TERCACHE, a novel cache design to prevent cache attacks.
SCATTERCACHE eliminates fixed cache-set congruences and,
thus, makes eviction-based cache attacks unpractical. For this
purpose, SCATTERCACHE retrofits skewed associative caches
with a keyed mapping function, yielding a security-domain-
dependent cache mapping. Hence, it becomes virtually impos-
sible to find fully overlapping cache sets, rendering current
eviction-based attacks infeasible. Even theoretical statistical
attacks become unrealistic, as the attacker cannot confine con-
tention to chosen cache sets. Consequently, the attacker has
to resort to eviction of the entire cache, making deductions
over cache sets or lines impossible and fully preventing high-
frequency attacks. Our security analysis reveals that even in
the strongest possible attacker model (noise-free), the con-
struction of a reliable eviction set for PRIME+PROBE in an 8-
way SCATTERCACHE with 16384 lines requires observation
of at least 33.5 million victim memory accesses as compared
to fewer than 103 on commodity caches. SCATTERCACHE
requires hardware and software changes, yet is minimally in-
vasive on the software level and is fully backward compatible
with legacy software while still improving the security level
over state-of-the-art caches. Finally, our evaluations show that
the runtime performance of software is not curtailed and our
design even outperforms state-of-the-art caches for certain
realistic workloads.

1 Introduction

Caches are core components of today’s computing architec-
tures. They bridge the performance gap between CPU cores

and a computer’s main memory. However, in the past two
decades, caches have turned out to be the origin of a wide
range of security threats [10, 15, 27, 38, 39, 43, 44, 51, 76]. In
particular, the intrinsic timing behavior of caches that speeds
up computing systems allows for cache side-channel attacks
(cache attacks), which are able to recover secret information.

Historically, research on cache attacks focused on cryp-
tographic algorithms [10, 44, 51, 76]. More recently, how-
ever, cache attacks like PRIME+PROBE [44, 48, 51, 54, 62]
and FLUSH+RELOAD [27, 76] have also been used to attack
address-space-layout randomization [23, 25, 36], keystroke
processing and inter-keystroke timing [26, 27, 60], and gen-
eral purpose computations [81]. For shared caches on modern
multi-core processors, PRIME+PROBE and FLUSH+RELOAD
even work across cores executing code from different security
domains, e.g., processes or virtual machines.

The most simple cache attacks, however, are covert chan-
nels [46,48,72]. In contrast to a regular side-channel attack, in
a covert channel, the “victim” is colluding and actively trying
to transmit data to the attacker, e.g., running in a different
security domain. For instance, Meltdown [43], Spectre [38],
and Foreshadow [15] use cache covert channels to transfer
secrets from the transient execution domain to an attacker.
These recent examples highlight the importance of finding
practical approaches to thwart cache attacks.

To cope with cache attacks, there has been much research
on ways to identify information leaks in a software’s memory
access pattern, such as static code [19,20,41,45] and dynamic
program analysis [34, 71, 74, 77]. However, mitigating these
leaks both generically and efficiently is difficult. While there
are techniques to design software without address-based infor-
mation leaks, such as unifying control flow [17] and bitsliced
implementations of cryptography [37, 40, 58], their general
application to arbitrary software remains difficult. Hence,
protecting against cache attacks puts a significant burden on
software developers aiming to protect secrets in the view
of microarchitectural details that vary a lot across different
Instruction-Set Architecture (ISA) implementations.

A different direction to counteract cache attacks is to design

USENIX Association 28th USENIX Security Symposium 675

more resilient cache architectures. Typically, these architec-
tures modify the cache organization in order to minimize
interference between different processes, either by breaking
the trivial link between memory address and cache index [22,
55, 67, 69, 70] or by providing exclusive access to cache parti-
tions for critical code [53, 57, 69]. While cache partitioning
completely prevents cache interference, its rather static alloca-
tion suffers from scalability and performance issues. On the
other hand, randomized cache (re-)placement [69, 70] makes
mappings of memory addresses to cache indices random and
unpredictable. Yet, managing these cache mappings in lookup
tables inheres extensive changes to the cache architecture and
cost. Finally, the introduction of a keyed function [55, 67]
to pseudorandomly map the accessed memory location to
the cache-set index can counteract PRIME+PROBE attacks.
However, these solutions either suffer from a low number of
cache sets, weakly chosen functions, or cache interference for
shared memory and thus require to change the key frequently
at the cost of performance.

Hence, there is a strong need for a practical and effective
solution to thwart both cache attacks and cache covert chan-
nels. In particular, this solution should (1) make cache attacks
sufficiently hard, (2) require as little software support as pos-
sible, (3) embed flexibly into existing cache architectures, (4)
be efficiently implementable in hardware, and (5) retain or
even enhance cache performance.

Contribution. In this paper, we present SCATTERCACHE,
which achieves all these goals. SCATTERCACHE is a novel
and highly flexible cache design that prevents cache attacks
such as EVICT+RELOAD and PRIME+PROBE and severely
limits cache covert channel capacities by increasing the num-
ber of cache sets beyond the number of physically available
addresses with competitive performance and implementation
cost. Hereby, SCATTERCACHE closes the gap between previ-
ous secure cache designs and today’s cache architectures by
introducing a minimal set of cache modifications to provide
strong security guarantees.

Most prominently, SCATTERCACHE eliminates the
fixed cache-set congruences that are the cornerstone of
PRIME+PROBE attacks. For this purpose, SCATTERCACHE
builds upon two ideas. First, SCATTERCACHE uses a
keyed mapping function to translate memory addresses
and the active security domain, e.g., process, to cache set
indices. Second, similar to skewed associative caches [63],
the mapping function in SCATTERCACHE computes a
different index for each cache way. As a result, the number
of different cache sets increases exponentially with the
number of ways. While SCATTERCACHE makes finding fully
identical cache sets statistically impossible on state-of-the-art
architectures, the complexity for exploiting inevitable partial
cache-set collisions also rises heavily. The reason is in
part that the mapping of memory addresses to cache sets
in SCATTERCACHE is different for each security domain.
Hence, and as our security analysis shows, the construction

of a reliable eviction set for PRIME+PROBE in an 8-way
SCATTERCACHE with 16384 lines requires observation of at
least 33.5 million victim memory accesses as compared to
fewer than 103 on commodity caches, rendering these attacks
impractical on real systems with noise.

Additionally, SCATTERCACHE effectively prevents
FLUSH+RELOAD-based cache attacks, e.g., on shared
libraries, as well. The inclusion of security domains in
SCATTERCACHE and its mapping function preserves
shared memory in RAM, but prevents any cache lines to be
shared across security boundaries. Yet, SCATTERCACHE
supports shared memory for inter-process communication
via dedicated separate security domains. To achieve highest
flexibility, managing the security domains of SCATTER-
CACHE is done by software, e.g., the operating system.
However, SCATTERCACHE is fully backwards compatible
and already increases the effort of cache attacks even without
any software support. Nevertheless, the runtime performance
of software on SCATTERCACHE is highly competitive
and, on certain workloads, even outperforms cache designs
implemented in commodity CPUs.

SCATTERCACHE constitutes a comparably simple exten-
sion to cache and processor architectures with minimal hard-
ware cost: SCATTERCACHE essentially only adds additional
index derivation logic, i.e., a lightweight cryptographic primi-
tive, and an index decoder for each scattered cache way. More-
over, to enable efficient lookups and writebacks, SCATTER-
CACHE stores the index bits from the physical address in
addition to the tag bits, which adds < 5% storage overhead
per cache line. Finally, SCATTERCACHE consumes one bit
per page-table entry (≈ 1.5% storage overhead per page-table
entry) for the kernel to communicate with the user space.

Outline. This paper is organized as follows. In Section 2,
we provide background information on caches and cache
attacks. In Section 3, we describe the design and concept
of SCATTERCACHE. In Section 4, we analyze the security
of SCATTERCACHE against cache attacks. In Section 5, we
provide a performance evaluation. We conclude in Section 6.

2 Background

In this section, we provide background on caches, cache side-
channel attacks, and resilient cache architectures.

2.1 Caches
Modern computers have a memory hierarchy consisting of
many layers, each following the principle of locality, storing
data that is expected to be used in the future, e.g., based on
what has been accessed in the past. Modern processors have
a hierarchy of caches that keep instructions and data likely
to be used in the future near the execution core to avoid the
latency of accesses to the slow (DRAM) main memory. This
cache hierarchy typically consists of 2 to 4 layers, where the

676 28th USENIX Security Symposium USENIX Association

off
se

t

set[idx+2]

set[idx-2]

set[idx-1]

set[idx+1]

way 0 way 1 way 2 way 3

in
de

x
ta

g

Figure 1: Indexing cache sets in a 4-way set-associative cache.

lowest layer is the smallest and fastest, typically only a few
kilobytes. The last-level cache is the largest cache, typically
in the range of several megabytes. On most processors, the
last-level cache is shared among all cores. The last-level cache
is often inclusive, i.e., any cache line in a lower level cache
must also be present in the last-level cache.

Caches are typically organized into cache sets that are com-
posed of multiple cache lines or cache ways. The cache set is
determined by computing the cache index from address bits.
Figure 1 illustrates the indexing of a 4-way set-associative
cache. As the cache is small and the memory large, many
memory locations map to the same cache set (i.e., the ad-
dresses are congruent). The replacement policy (e.g., pseudo-
LRU, random) decides which way is replaced by a newly
requested cache line. Any process can observe whether data
is cached or not by observing the memory access latency
which is the basis for cache side-channel attacks.

2.2 Cache Side-Channel Attacks
Cache side-channel attacks have been studied for over the
past two decades, initially with a focus on cryptographic algo-
rithms [10, 39, 51, 52, 54, 68]. Today, a set of powerful attack
techniques enable attacks in realistic cross-core scenarios.
Based on the access latency, an attacker can deduce whether
or not a cache line is in the cache, leaking two opposite kinds
of information. (1) By continuously removing (i.e., evicting
or flushing) a cache line from the cache and measuring the ac-
cess latency, an attacker can determine whether this cache line
has been accessed by another process. (2) By continuously
filling a part of the cache with attacker-accessible data, the
attacker can measure the contention of the corresponding part,
by checking whether the attacker-accessible data remained in
the cache. Contention-based attacks work on different layers:

The Entire Cache or Cache Slices. An attacker can mea-
sure contention of the entire cache or a cache slice. Mau-
rice et al. [46] proposed a covert channel where the sender
evicts the entire cache to leak information across cores and
the victim observes the cache contention. A similar attack
could be mounted on a cache slice if the cache slice function
is known [47]. The granularity is extremely coarse, but with
statistical attacks can leak meaningful information [61].

Cache Sets. An attacker can also measure the contention
of a cache set. For this, additional knowledge may be required,

such as the mapping from virtual addresses to physical ad-
dresses, as well as the functions mapping physical addresses
to cache slices and cache sets. The attacker continuously fills
a cache set with a set of congruent memory locations. Filling
a cache set is also called cache-set eviction, as it evicts any
previously contained cache lines. Only if some other process
accessed a congruent memory location, memory locations
are evicted from a cache set. The attacker can measure this
for instance by measuring runtime variations in a so-called
EVICT+TIME attack [51]. The EVICT+TIME technique has
mostly been applied in attacks on cryptographic implemen-
tations [31, 42, 51, 65]. Instead of the runtime, the attacker
can also directly check how many of the memory locations
are still cached. This attack is called PRIME+PROBE [51].
Many PRIME+PROBE attacks on private L1 caches have been
demonstrated [3,14,51,54,80]. More recently, PRIME+PROBE
attacks on last-level caches have also been demonstrated in
various generic use cases [4, 44, 48, 50, 59, 79].

Cache Lines. At a cache line granularity, the attacker
can measure whether a memory location is cached or not.
As already indicated above, here the logic is inverted. Now
the attacker continuously evicts (or flushes) a cache line
from the cache. Later on, the attacker can measure the
latency and deduce whether another process has loaded
the cache line into the cache. This technique is called
FLUSH+RELOAD [28, 76]. FLUSH+RELOAD has been stud-
ied in a long list of different attacks [4–6,27,32,35,42,76,78,
81]. Variations of FLUSH+RELOAD are FLUSH+FLUSH [26]
and EVICT+RELOAD [27, 42].

Cache Covert Channels

Cache covert channels are one of the simplest forms of cache
attacks. Instead of an attacker process attacking a victim pro-
cess, both processes collude to covertly communicate using
the cache as transmission channel. Thus, in this scenario, the
colluding processes are referred to as sender and receiver, as
the communication is mostly unidirectional. A cache covert
channel allows bypassing all architectural restrictions regard-
ing data exchange between processes.

Cache covert channels have been shown using various
cache attacks, such as PRIME+PROBE [44, 48, 73, 75] and
FLUSH+RELOAD [26]. They achieve transmission rates of
up to 496 kB/s [26]. Besides native attacks, covert channels
have also been shown to work within virtualized environ-
ments, across virtual machines [44, 48, 75]. Even in these
restricted environments, cache-based covert channels achieve
transmission rates of up to 45 kB/s [48].

2.3 Resilient Cache Architectures

The threat of cache-based attacks sparked several novel cache
architectures designed to be resilient against these attacks.
While fixed cache partitions [53] lack flexibility, randomized

USENIX Association 28th USENIX Security Symposium 677

cache allocation appears to be more promising. The following
briefly discusses previous designs for a randomized cache.

RPCache [69] and NewCache [70] completely disrupt
the meaningful observability of interference by performing
random (re-)placement of lines in the cache. However, man-
aging the cache mappings efficiently either requires full as-
sociativity or content addressable memory. While optimized
addressing logic can lead to efficient implementations, these
designs differ significantly from conventional architectures.

Time-Secure Caches [67] is based on standard set-
associative caches that are indexed with a keyed function
that takes cache line address and Process ID (PID) as an input.
While this design destroys the obvious cache congruences
between processes to minimize cache interference, a compa-
rably weak indexing function is used. Eventually, re-keying
needs to be done quite frequently, which amounts to flushing
the cache and thus reduces practical performance. SCATTER-
CACHE can be seen as a generalization of this approach with
higher entropy in the indexing of cache lines.

CEASER [55] as well uses standard set-associative caches
with keyed indexing, which, however, does not include the
PID. Hence, inter-process cache interference is predictable
based on in-process cache collisions. As a result, CEASER
strongly relies on continuous re-keying of its index deriva-
tion to limit the time available for conducting an attack. For
efficient implementation, CEASER uses its own lightweight
cryptographic primitive designed for that specific application.

3 ScatterCache

As Section 2 showed, caches are a serious security concern in
contemporary computing systems. In this section, we hence
present SCATTERCACHE—a novel cache architecture that
counteracts cache-based side-channel attacks by skewed pseu-
dorandom cache indexing. After discussing the main idea
behind SCATTERCACHE, we discuss its building blocks and
system integration in more detail. SCATTERCACHE’s security
implications are, subsequently, analyzed in Section 4.

3.1 Targeted Properties
Even though contemporary transparent cache architectures
are certainly flawed from the security point of view, they
still feature desirable properties. In particular, for regular
computations, basically no software support is required for
cache maintenance. Also, even in the case of multitasking
and -processing, no dedicated cache resource allocation and
scheduling is needed. Finally, by selecting the cache size and
the number of associative ways, chip vendors can trade hard-
ware complexity and costs against performance as desired.

SCATTERCACHE’s design strives to preserve these features
while adding the following three security properties:

1. Between software defined security domains (e.g., differ-
ent processes or users on the same machine, different

Set 0 Set 1 Set 2 Set 3

Addr. A

Addr. B

Addr. A

Addr. B

Figure 2: Flattened visualization of mapping addresses to
cache sets in a 4-way set-associative cache with 16 cache lines.
Top: Standard cache where index bits select the cache set.
Middle: Pseudorandom mapping from addresses to cache sets.
The mapping from cache lines to sets is still static. Bottom:
Pseudorandom mapping from addresses to a set of cache lines
that dynamically form the cache set in SCATTERCACHE.

VMs, . . .), even for exactly the same physical addresses,
cache lines should only be shared if cross-context co-
herency is required (i.e., writable shared memory).

2. Finding and exploiting addresses that are congruent in
the cache should be as hard as possible (i.e., we want
to “break” the direct link between the accessed physical
address and the resulting cache set index for adversaries).

3. Controlling and measuring complete cache sets should
be hard in order to prevent eviction-based attacks.

Finally, to ease the adoption and to utilize the vast knowl-
edge on building efficient caches, the SCATTERCACHE hard-
ware should be as similar to current cache architectures as
possible.

3.2 Idea
Two main ideas influenced the design of SCATTERCACHE to
reach the desired security properties. First, addresses should
be translated to cache sets using a keyed, security-domain
aware mapping. Second, which exact nways cache lines form a
cache set in a nways-way associative cache should not be fixed,
but depend on the currently used key and security domain
too. SCATTERCACHE combines both mappings in a single
operation that associates each address, depending on the key
and security domain, with a set of up to nways cache lines.
In other words, in a generic SCATTERCACHE, any possible
combination of up to nways cache lines can form a cache set.

Figure 2 visualizes the idea and shows how it differs from
related work. Traditional caches as well as alternative designs
which pseudorandomly map addresses to cache sets statically
allocate cache lines to cache sets. Hence, as soon as a cache
set is selected based on (possibly encrypted) index bits, al-
ways the same nways cache lines are used. This means that all
addresses mapping to the same cache set are congruent and
enables PRIME+PROBE-style attacks.

In SCATTERCACHE, on the other hand, the cache set for
a particular access is a pseudorandom selection of arbitrary
nways cache lines from all available lines. As a result, there
is a much higher number of different cache sets and finding
addresses with identical cache sets becomes highly unlikely.

678 28th USENIX Security Symposium USENIX Association

IDF

cache line address

key

idx0-3

idx0 idx2 idx1 idx3

SDID offsettag index

Figure 3: Idea: For an nways associative cache, nways indices
into the cache memory are derived using a cryptographic IDF.
This IDF effectively randomizes the mapping from addresses
to cache sets as well as the composition of the cache set itself.

Instead, as shown at the bottom of Figure 2, at best, partially
overlapping cache sets can be found (cf. Section 4.3), which
makes exploitation tremendously hard in practice.

A straightforward concept for SCATTERCACHE is shown in
Figure 3. Here, the Index Derivation Function (IDF) combines
the mapping operations in a single cryptographic primitive.
In a set-associative SCATTERCACHE with set size nways, for
each input address, the IDF outputs nways indices to form the
cache set for the respective access. How exactly the mapping
is performed in SCATTERCACHE is solely determined by the
used key, the Security Domain Identifier (SDID), and the IDF.
Note that, as will be discussed in Section 3.3.1, hash-based as
well as permutation-based IDFs can be used in this context.

Theoretically, a key alone is sufficient to implement the
overall idea. However, separating concerns via the SDID
leads to a more robust and harder-to-misuse concept. The
key is managed entirely in hardware, is typically longer, and
gets switched less often than the SDID. On the other hand,
the SDID is managed solely by the software and, depend-
ing on the implemented policy, has to be updated quite fre-
quently. Importantly, as we show in Section 4, SCATTER-
CACHE alone already provides significantly improved se-
curity in PRIME+PROBE-style attack settings even without
software support (i.e., SDID is not used).

3.3 SCATTERCACHE Design
In the actual design we propose for SCATTERCACHE, the
indices (i.e., IDF output) do not address into one huge joint
cache array. Instead, as shown in Figure 4, each index ad-
dresses a separate memory, i.e., an independent cache way.

On the one hand, this change is counter-intuitive as
it decreases the number of possible cache sets from(nways·2bindices+nways−1

nways

)
to 2bindices·nways . However, this reduction

in possibilities is acceptable. For cache configurations with
up to 4 cache ways, the gap between both approaches is only
a few bits. For higher associativity, the exponential growth
ensures that sufficiently many cache sets exist.

On the other hand, the advantages gained from switching
to this design far outweigh the costs. Namely, for the original
idea, no restrictions on the generated indices exist. Therefore,
a massive nways-fold multi-port memory would be required to

off
se

t

idx0

way 3

in
de

x
ta

g

ID
F

cache line
addr.

key

idx1

idx2

idx3

way 1 way 2way 0
SDID

Figure 4: 4-way set-associative SCATTERCACHE where each
index addresses exclusively one cache way.

be able to lookup a nways-way cache-set in parallel. The de-
sign shown in Figure 4 does not suffer from this problem and
permits to instantiate SCATTERCACHE using nways instances
of simpler/smaller memory. Furthermore, this design guar-
antees that even in case the single index outputs of the IDF
collide, the generated cache always consists of exactly nways
many cache lines. This effectively precludes the introduction
of systematic biases for potentially “weak” address-key-SDID
combinations that map to fewer than nways cache lines.

In terms of cache-replacement policy, SCATTERCACHE
uses simple random replacement to ensure that no systematic
bias is introduced when writing to the cache and to simplify
the security analysis. Furthermore, and as we will show in
Section 5, the performance of SCATTERCACHE with random
replacement is competitive to regular set associative caches
with the same replacement policy. Therefore, evaluation of
alternative replacement policies has been postponed. Inde-
pendent of the replacement policy, it has to be noted that, for
some IDFs, additional tag bits have to be stored in SCATTER-
CACHE. In particular, in case of a non invertible IDF, the
original index bits need to be stored to facilitate write back of
dirty cache lines and to ensure correct cache lookups. How-
ever, compared to the amount of data that is already stored for
each cache line, the overhead of adding these few bits should
not be problematic (< 5% overhead).

In summary, the overall hardware design of SCATTER-
CACHE closely resembles a traditional set-associative archi-
tecture. The only differences to contemporary fixed-set de-
signs is the more complex IDF and the amount of required
logic which permits to address each way individually. How-
ever, both changes are well understood. As we detail in the
following section, lightweight (i.e., low area and latency) cryp-
tographic primitives are suitable building blocks for the IDF.
Similarly, duplication of addressing logic is already common
practice in current processors. Modern Intel architectures, for
example, already partition their Last-Level Cache (LLC) into
multiple smaller cache slices with individual addressing logic.

3.3.1 Suitable Index Derivation Functions

Choosing a suitable IDF is essential for both security and
performance. In terms of security, the IDF has to be an un-
predictable (but still deterministic) mapping from physical
addresses to indices. Following Kerckhoffs’s principle, even

USENIX Association 28th USENIX Security Symposium 679

for attackers which know every detail except the key, three
properties are expected from the IDF: (1) Given perfect con-
trol over the public inputs of the function (i.e., the physical
address and SDID) constructing colliding outputs (i.e., the
indices) should be hard. (2) Given colliding outputs, deter-
mining the inputs or constructing further collisions should be
hard. (3) Recovering the key should be infeasible given input
and output for the function.

Existing Building Blocks: Cryptographic primitives like
(tweakable) block ciphers, Message Authentication Codes
(MACs), and hash functions are designed to provide these
kind of security properties (e.g., indistinguishability of en-
cryptions, existential unforgeability, pre-image and collision
resistance). Furthermore, design and implementation of cryp-
tographic primitives with tight performance constraints is
already a well-established field of research which we want
to take advantage of. For example, with PRINCE [13], a
low-latency block cipher, and QARMA [8], a family of low-
latency tweakable block ciphers, exist and can be used as
building blocks for the IDF. Such tweakable block ciphers
are a flexible extension to ordinary block ciphers, which, in
addition to a secret key, also use a public, application-specific
tweak to en-/decrypt messages. Similarly, sponge-based MAC,
hash and cipher designs are a suitable basis for IDFs. These
sponge modes of operation are built entirely upon permuta-
tions, e.g., Keccak-p, which can often be implemented with
low latency [7, 11]. Using such cryptographic primitives, we
define the following two variants of building IDFs:

Hashing Variant (SCv1): The idea of SCv1 is to combine
all IDF inputs using a single cryptographic primitive with
pseudo random output. MACs (e.g., hash-based) are examples
for such functions and permit to determine the output indices
by simply selecting the appropriate number of disjunct bits
from the calculated tag. However, also other cryptographic
primitives can be used for instantiating this IDF variant.

It is, for example possible to slice the indices from the
ciphertext of a regular block cipher encryption which uses
the concatenation of cache line address and the SDID as the
plaintext. Similarly, tweakable block ciphers allow to use the
SDID as a tweak instead of connecting it to the plaintext.
Interestingly, finding cryptographic primitives for SCv1 IDFs
is comparably simple given that the block sizes do not have
to match perfectly and the output can be truncated as needed.

However, there are also disadvantages when selecting the
indices pseudo randomly, like in the case of SCv1. In par-
ticular, when many accesses with high spatial locality are
performed, index collisions get more likely. This is due to
the fact that collisions in SCv1 output have birthday-bound
complexity. Subsequently, performance can degrade when
executing many different accesses with high spatial locality.
Fortunately, this effect weakens with increasing way numbers,
i.e., an increase in associativity decreases the probability that
all index outputs of the IDF collide.

In summary, SCv1 translates the address without distin-

guishing between index and tag bits. Given a fixed key and
SDID, the indices are simply pseudo random numbers that
are derived using a single cryptographic primitive.

Permutation Variant (SCv2): The idea behind the permu-
tation variant of the IDF is to distinguish the index from the
tag bits in the cache line address during calculation of the
indices. Specifically, instead of generating pseudo random in-
dices from the cache line address, tag dependent permutations
of the input index are calculated.

The reason for preferring a permutation over pseudo ran-
dom index generation is to counteract the effect of birthday-
bound index collisions, as present in SCv1. Using a tag de-
pendent permutation of the input index mitigates this problem
by design since permutations are bijections that, for a specific
tag, cannot yield colliding mappings.

Like in the hashing variant, a tweakable block cipher can
be used to compute the permutation. Here, the concatenation
of the tag bits, the SDID and the way index constitutes the
tweak while the address’ index bits are used as the plaintext.
The resulting ciphertext corresponds to the output index for
the respective way. Note that the block size of the cipher has
to be equal to the size of the index. Additionally, in order to
generate all indices in parallel, one instance of the tweakable
block cipher is needed per cache way. However, as the block
size is comparably small, each cipher instance is also smaller
than an implementation of the hashing IDF (SCv1).

Independently of the selected IDF variant, we leave the
decision on the actually used primitive to the discretion of
the hardware designers that implement SCATTERCACHE.
They are the only ones who can make a profound decision
given that they know the exact instantiation parameters (e.g.,
SDID/key/index/tag bit widths, number of cache ways) as
well as the allocatable area, performance, and power bud-
get in their respective product. However, we are certain that,
even with the already existing and well-studied cryptographic
primitives, SCATTERCACHE implementations are feasible
for common computing platforms, ranging from Internet of
Things (IoT) devices to desktop computers and servers.

Note further that we expect that, due to the limited ob-
servability of the IDF output, weakened (i.e., round reduced)
variants of general purpose primitives are sufficient to achieve
the desired security level. This is because adversaries can only
learn very little information about the function output by ob-
serving cache collisions (i.e., no actual values). Subsequently,
many more traces have to be observed for mounting an attack.
Cryptographers can take advantage of this increase in data
complexity to either design fully custom primitives [55] or to
decrease the overhead of existing designs.

3.3.2 Key Management and Re-Keying

The key in our SCATTERCACHE design plays a central role in
the security of the entire approach. Even when the SDIDs are
known, it prevents attackers from systematically constructing

680 28th USENIX Security Symposium USENIX Association

eviction sets for specific physical addresses and thwarts the
calculation of addresses from collision information. Keeping
the key confidential is therefore of highest importance.

We ensure this confidentiality in our design by mandating
that the key of is fully managed by hardware. There must not
be any way to configure or retrieve this key in software. This
approach prevents various kinds of software-based attacks
and is only possible due to the separation of key and SDID.

The hardware for key management is comparably simple as
well. Each time the system is powered up, a new random key is
generated and used by the IDF. The simplicity of changing the
key during operation strongly depends on the configuration of
the cache. For example, in a write-through cache, changing the
key is possible at any time without causing data inconsistency.
In such a scenario, a timer or performance-counter-based re-
keying scheme is easily implementable. Note, however, that
the interval between key changes should not be too small as
each key change corresponds to a full cache flush.

On the other hand, in a cache with write-back policy, the
key has to be kept constant as long as dirty cache lines reside
in the cache. Therefore, before the key can be changed in this
scenario without data loss, all modified cache lines have to be
written back to memory first. The x86 Instruction-Set Archi-
tecture (ISA), for example, features the WBINVD instruction
that can be used for that purpose.

If desired, also more complex rekeying schemes, like way-
wise or cache-wide dynamic remapping [55], can be im-
plemented. However, it is unclear if adding the additional
hardware complexity is worthwhile. Even without changing
the key, mounting cache attacks against SCATTERCACHE is
much harder than on traditional caches (see Section 4). Sub-
sequently, performing an occasional cache flush to update the
key can be the better choice.

3.3.3 Integration into Existing Cache Architectures

SCATTERCACHE is a generic approach for building processor
caches that are hard to exploit in cache-based side channel
attacks. When hardening a system against cache attacks, inde-
pendent of SCATTERCACHE, we recommend to restrict flush
instructions to privileged software. These instruction are only
rarely used in benign userspace code and restricting them
prevents the applicability of the whole class of flush-based at-
tacks from userspace. Fortunately, recent ARM architectures
already support this restriction.

Next, SCATTERCACHES can be deployed into the system
to protect against eviction based attacks. While not inherently
limited to, SCATTERCACHES are most likely to be deployed
as LLCs in modern processor architectures. Due to their large
size and the fact that they are typically shared across multiple
processor cores, LLCs are simply the most prominent cache
attack target and require the most protection. Compared to
that, lower cache levels that typically are only accessible by a
single processor core, hold far less data and are much harder

to attack on current architectures. Still, usage of (unkeyed)
skewed [63] lower level caches is an interesting option that
has to be considered in this context.

Another promising aspect of employing a SCATTERCACHE
as LLC is that this permits to hide large parts of the IDF
latency. For example, using a fully unrolled and pipelined IDF
implementation, calculation of the required SCATTERCACHE
indices can already be started, or even performed entirely, in
parallel to the lower level cache lookups. While unneeded
results can easily be discarded, this ensures that the required
indices for the LLC lookup are available as soon as possible.

Low latency primitives like QARMA, which is also used
in recent ARM processors for pointer authentication, are
promising building blocks in this regard. The minimal la-
tency Avanzi [8] reported for one of the QARMA-64 variants
is only 2.2 ns. Considering that this number is even lower
than the time it takes to check the L1 and L2 caches on re-
cent processors (e.g., 3 ns on a 4 GHz Intel Kabylake [2], 9 ns
on an ARM Cortex-A57 in an AMD Opteron A1170 [1]),
implementing IDFs without notable latency seems feasible.

3.4 Processor Interaction and Software

Even without dedicated software support, SCATTERCACHE
increases the complexity of cache-based attacks. However, to
make full use of SCATTERCACHE, software assistance and
some processor extensions are required.

Security Domains. The SCATTERCACHE hardware per-
mits to isolate different security domains from each other
via the SDID input to the IDF. Unfortunately, depending
on the use case, the definition on what is a security domain
can largely differ. For example, a security domain can be a
chunk of the address space (e.g., SGX enclaves), a whole
process (e.g., TrustZone application), a group of processes
in a common container (e.g., Docker, LXC), or even a full
virtual machine (e.g., cloud scenario). Considering that it is
next to impossible to define a generic policy in hardware that
can capture all these possibilities, we delegate the distinction
to software that knows about the desired isolation properties,
e.g., the Operating System (OS).

SCATTERCACHE Interface. Depending on the targeted
processor architecture, different design spaces can be explored
before deciding how the current SDID gets defined and what
channels are used to communicate the identifier to the SCAT-
TERCACHE. However, at least for modern Intel and ARM
processors, binding the currently used SDID to the virtual
memory management via user defined bits in each Page Table
Entry (PTE) is a promising approach. In more detail, one or
more bits can be embedded into each PTE that select from a
list, via one level of indirection, which SDID should be used
when accessing the respective page.

Both ARM and Intel processors already support a similar
mechanism to describe memory attributes of a memory map-
ping. The x86 architecture defines so-called Page Attribute Ta-

USENIX Association 28th USENIX Security Symposium 681

bles (PATs) to define how a memory mapping can be cached.
Similarly, the ARM architecture defines Memory Attribute
Indirection Registers (MAIRs) for the same purpose. Both
PAT and MAIR define a list of 8 memory attributes which
are applied by the Memory Management Unit (MMU). The
MMU interprets a combination of 3 bits defined in the PTE as
index into the appropriate list, and applies the corresponding
memory attribute. Adding the SDID to these attribute lists
permits to use up to 8 different security domains within a sin-
gle process. The absolute number of security domains, on the
other hand, is only limited by the used IDF and them number
of bits that represent the SDID.

Such indirection has a huge advantage over encoding data
directly in a PTE. The OS can change a single entry within the
list to affect all memory mappings using the corresponding
entry. Thus, such a mechanism is beneficial for SCATTER-
CACHE, where the OS wants to change the SDID for all
mappings of a specific process.

Backwards Compatibility. Ensuring backwards compat-
ibility is a key factor for gradual deployment of SCATTER-
CACHE. By encoding the SDID via a separate list indexed by
PTE bits, all processes, as well as the OS, use the same SDID,
i.e., the SDID stored as first element of the list (assuming all
corresponding PTE bits are ‘0’ by default). Thus, if the OS is
not aware of the SCATTERCACHE, all processes—including
the OS—use the same SDID. From a software perspective,
functionally, SCATTERCACHE behaves the same as currently
deployed caches. Only if the OS specifies SDIDs in the list,
and sets the corresponding PTE bits to use a certain index,
SCATTERCACHE provides its strong security properties.

Implementation Example. In terms of capabilities, hav-
ing a single bit in each PTE, for example, is already sufficient
to implement security domains with process granularity and to
maintain a dedicated domain for the OS. In this case, SDID0
can always be used for the OS ID while SDID1 has to be
updated as part of the context switch and is always used for
the scheduled user space process. Furthermore, by reusing
the SDID of the OS, also shared memory between user space
processes can easily be implemented without security impact.

Interestingly, SCATTERCACHE fully preserves the capa-
bility of the OS to share read-only pages (i.e., libraries) also
across security domains as no cache lines will be shared. In
contrast, real shared memory has to always be accessed via
the same SDID in all processes to ensure data consistency.
In general, with SCATTERCACHE, as long as the respective
cache lines have not been flushed to RAM, data always needs
to be accessed with the same SDID the data has been written
with to ensure correctness. This is also true for the OS, which
has to ensure that no dirty cache lines reside in the cache, e.g.,
when a page gets assigned to a new security domain.

A case which has to be explicitly considered by the OS is
copying data from user space to kernel space and vice versa.
The OS can access the user space via the direct-physical map
or via the page tables of the process. Thus, the OS has to

select the correct SDID for the PTE used when copying data.
Similarly, if the OS sets up page tables, it has to use the same
SDID as the MMU uses for resolving page tables.

4 Security Evaluation

SCATTERCACHE is a novel cache design to efficiently thwart
cache-based side-channel attacks. In the following, we inves-
tigate the security of SCATTERCACHE in terms of state-of-
the-art side-channel attacks using both theoretical analysis
and simulation-based results. In particular, we elaborate on
the complexity of building the eviction sets and explore the
necessary changes to the standard PRIME+PROBE technique
to make it viable on the SCATTERCACHE architecture.

4.1 Applicability of Cache Attacks
While certain types of cache attacks, such as FLUSH+FLUSH,
FLUSH+RELOAD and EVICT+RELOAD, require a particular
cache line to be shared, attacks such as PRIME+PROBE have
less stringent constraints and only rely on the cache being
a shared resource. As sharing a cache line is the result of
shared memory, we analyze the applicability of cache attacks
on SCATTERCACHE with regard to whether the underlying
memory is shared between attacker and victim or not.

Shared, read-only memory. Read-only memory is fre-
quently shared among different processes, e.g., in case of
shared code libraries. SCATTERCACHE prevents cache at-
tacks involving shared read-only memory by introducing se-
curity domains. In particular, SCATTERCACHE maintains a
separate copy of shared read-only memory in cache for each
security domain, i.e., the cache lines belonging to the same
shared memory region are not being shared in cache across
security domains anymore. As a result, reloading data into or
flushing data out of the cache does not provide any informa-
tion on another security domain’s accesses to the respective
shared memory region. Note, however, that the cache itself is
shared, leaving attacks such as PRIME+PROBE still feasible.

Shared, writable memory. Exchanging data between pro-
cesses requires shared, writable memory. To ensure cache
coherency, writing shared memory regions must always use
the same cache line and hence the same security domain
for that particular memory region—even for different pro-
cesses. While attacks on these shared memory regions in-
volving flush instructions can easily be mitigated by mak-
ing these instructions privileged, EVICT+RELOAD remains
feasible. Still, SCATTERCACHE significantly hampers the
construction of targeted eviction sets by skewing, i.e., individ-
ually addressing, the cache ways. Moreover, its susceptibility
to EVICT+RELOAD attacks is constrained to the processes
sharing the respective memory region. Nevertheless, SCAT-
TERCACHE requires writable shared memory to be used only
as an interface for data transfer rather than sensitive computa-
tions. In addition, PRIME+PROBE attacks are still possible.

682 28th USENIX Security Symposium USENIX Association

Unshared memory. Unshared memory regions never
share the same cache line, hence making attacks such as
FLUSH+FLUSH, FLUSH+RELOAD and EVICT+RELOAD in-
feasible. However, as the cache component itself is shared,
cache attacks such as PRIME+PROBE remain possible.

As our analysis shows, SCATTERCACHE prevents a wide
range of cache attacks that exploit the sharing of cache lines
across security boundaries. While PRIME+PROBE attacks
cannot be entirely prevented as long as the cache itself is
shared, SCATTERCACHE vastly increases their complexity
in all aspects. The pseudorandom cache-set composition in
SCATTERCACHE prevents attackers from learning concrete
cache sets from memory addresses and vice versa. Even if
attackers are able to profile information about the mapping of
memory addresses to cache-sets in their own security domain,
it does not allow them infer the mapping of cache-sets to mem-
ory addresses in other security domains. To gain information
about memory being accessed in another security domain, an
attacker needs to profile the mapping of the attacker’s address
space to cache lines that are being used by the victim when
accessing the memory locations of interest. The effectiveness
of PRIME+PROBE attacks thus heavily relies on the complex-
ity of such a profiling phase. We elaborate on the complexity
of building eviction sets in Section 4.3.

4.2 Other Microarchitectural Attacks

Many other microarchitectural attacks are not fully miti-
gated but hindered by SCATTERCACHE. For instance, Melt-
down [43] and Spectre [38] attacks cannot use the cache
efficiently anymore but must resort to other covert channels.
Also, DRAM row buffer attacks and Rowhammer attacks are
negatively affected as they require to bypass the cache and
reach DRAM. While these attacks are already becoming more
difficult due to closed row policies in modern processors [24],
we propose to make flush instructions privileged, removing
the most widely used cache bypass. Cache eviction gets much
more difficult with SCATTERCACHE and additionally, spu-
rious cache misses will open DRAM rows during eviction.
These spurious DRAM row accesses make the row hit side
channel impractical and introduce a significant amount of
noise on the row conflict side channel. Hence, while these
attacks are not directly in the scope of this paper, SCATTER-
CACHE arguably has a negative effect on them.

4.3 Complexity of Building Eviction Sets

Cache skewing significantly increases the number of different
cache sets available in cache. However, many of these cache
sets will overlap partially, i.e., in 1 ≤ i < nways ways. The
complexity of building eviction sets for EVICT+RELOAD
and PRIME+PROBE in SCATTERCACHE thus depends on the
overlap of cache sets.

4.3.1 Full Cache-Set Collisions

The pseudorandom assembly of cache sets in SCATTER-
CACHE results in 2bindices·nways different compositions. For
a given target address, this results in a probability of
2−bindices·nways of finding another address that maps exactly to
the same cache lines in its assigned cache set. While dealing
with this complexity alone can be considered impractical in a
real-world scenario, note that it will commonly even exceed
the number of physical addresses available in current systems,
rendering full cache-set collisions completely infeasible. A
4-way cache, for example, with bindices = 12 index bits yields
248 different cache sets, which already exceeds the address
space of state-of-the-art systems.

4.3.2 Partial Cache-Set Collisions

While full cache-set collisions are impractical, partial colli-
sions of cache sets frequently occur in skewed caches such
as SCATTERCACHE. If the cache sets of two addresses over-
lap, two cache sets will most likely have a single cache line
in common. For this reason, we analyze the complexity of
eviction for single-way collisions in more detail.

Randomized Single-Set Eviction. Without knowledge of
the concrete mapping from memory addresses to cache sets,
the trivial approach of eviction is to access arbitrary mem-
ory locations, which will result in accesses to pseudoran-
dom cache sets in SCATTERCACHE. To elaborate on the
performance of this approach, we consider a cache with
nlines = 2bindices cache lines per way and investigate the evic-
tion probability for a single cache way, which contains a
specific cache line to be evicted. Given that SCATTERCACHE
uses a random (re-)placement policy, the probabilities of each
cache way are independent, meaning that each way has the
same probability of being chosen. Subsequently, the attack
complexity on the full SCATTERCACHE increases linearly
with the number of cache ways, i.e., the attack gets harder.

The probability of an arbitrary memory accesses to a certain
cache way hitting a specific cache line is p = n−1

lines. Perform-
ing naccesses independent accesses to this cache way increases
the odds of eviction to a certain confidence level α.

α = 1− (1−n−1
lines)

naccesses

Equivalently, to reach a certain confidence α in evicting the
specific cache line, attackers have to perform

E(naccesses) =
log(1−α)

log(1−n−1
lines)

independent accesses to this cache way, which amounts to
their attack complexity. Hence, to evict a certain cache set
from an 8-way SCATTERCACHE with 211 lines per way with
α = 99% confidence, the estimated attack complexity using
this approach is naccesses ·nways ≈ 216 independent accesses.

Randomized Multi-Set Eviction. Interestingly, eviction
of multiple cache sets using arbitrary memory accesses has

USENIX Association 28th USENIX Security Symposium 683

0 100 200 300 400

0.25

0.5

0.75

1

Eviction Set Size

Pr
ob

ab
ili

ty

4 ways 8 ways 16 ways 20 ways

Figure 5: Eviction probability depending on the size of the
eviction set and the number of ways.

similar complexity. In this regard, the coupon collector’s prob-
lem gives us a tool to estimate the number of accesses an at-
tacker has to perform to a specific cache way to evict a certain
percentage of cache lines in the respective way. In more detail,
the coupon collector’s problem provides the expected number
of accesses naccesses required to a specific cache way such that
nhit out of all nlines cache lines in the respective way are hit.

E(naccesses) = nlines · (Hnlines −Hnlines−hhit)

Hereby, Hn denotes the n-th Harmonic number, which can be
approximated using the natural logarithm. This approxima-
tion allows to determine the number of cache lines nhit that
are expected to be hit in a certain cache way when naccesses
random accesses to the specific way are performed.

E(nhit) = nlines · (1− e−
naccesses

nlines) (1)

Using nhit , we can estimate the number of independent ac-
cesses to be performed to a specific cache way such that a
portion β of the respective cache way is evicted.

E(naccesses) =−nlines · ln(1−β)

For the same 8-way SCATTERCACHE with 211 lines per way
as before, we therefore require roughly 216 independent ac-
cesses to evict β = 99% of the cache.

Profiled Eviction for PRIME+PROBE. As shown, rely-
ing on random eviction to perform cache-based attacks in-
volves significant effort and yields an overapproximation of
the eviction set. Moreover, while random eviction is suitable
for attacks such as EVICT+RELOAD, in PRIME+PROBE set-
tings random eviction fails to provide information related to
the concrete memory location that is being used by a victim.
To overcome these issues, attackers may profile a system to
construct eviction sets for specific memory addresses of the
victim, i.e., they try to find a set of addresses that map to cache
sets that partially overlap with the cache set corresponding
to the victim address. Eventually, such sets could be used to
speed up eviction and to detect accesses to specific memory
locations. In the following, we analyze the complexity of find-
ing these eviction sets. In more detail, we perform analysis
w.r.t. eviction addresses whose cache sets overlap with the
cache set of a victim address in a single cache way only.

0.25 0.5 0.75 1 1.5 2
106

107

108

109

Cache Size [MB]

V
ic

tim
A

cc
es

se
s

4 ways 8 ways 16 ways 20 ways

Figure 6: Number of required accesses to the target address
to construct a set large enough to achieve 99 % eviction
rate when no shared memory is available (cache line size:
32 bytes).

To construct a suitable eviction set for PRIME+PROBE, the
attacker needs to provoke the victim process to perform the
access of interest. In particular, the attacker tests a candidate
address for cache-set collisions by accessing it (prime), wait-
ing for the victim to access the memory location of interest,
and then measuring the time when accessing the candidate
address again (probe). In such a profiling procedure, after the
first attempt, we have to assume that the cache line belonging
to the victim access already resides in the cache. As a result,
attackers need to evict a victim’s cache line in their prime step.
Hereby, hitting the right cache way and index have probability
nways

−1 and 2−bindices , respectively. To be able to detect a col-
lision during the probe step, the victim access must then fall
into the same cache way as the candidate address, which has
a chance of nways

−1. In total, the expected number of memory
accesses required to construct an eviction set of t colliding
addresses hence is

E(naccesses) = nways
2 ·2bindices · t.

The number of memory addresses t needs to be chosen accord-
ing to the desired eviction probability for the victim address
with the given set. When the eviction set consists of addresses
that collide in the cache with the victim in exactly one way
each, the probability of evicting the victim with an eviction
set of size t is

p(Eviction) = 1−
(

1− 1
nways

) t
nways

.

Figure 5 depicts this probability for the size of the eviction set
and different numbers of cache ways. For an 8-way SCATTER-
CACHE with 211 cache lines per way, roughly 275 addresses
with single-way cache collisions are needed to evict the re-
spective cache set with 99% probability. Constructing this
eviction set, in the best case, requires profiling of approx-
imately 82 · 211 · 275 ≈ 225 (33.5 million) victim accesses.
Figure 6 shows the respective number of PRIME+PROBE
experiments needed to generate sets with 99% eviction prob-
ability for different cache configurations. We were able to
empirically confirm these numbers within a noise-free stan-
dalone simulation of SCATTERCACHE.

684 28th USENIX Security Symposium USENIX Association

For comparison, to generate an eviction set on a commodity
cache, e.g., recent Intel processors, for a specific victim mem-
ory access, an attacker needs fewer than 103 observations
of that access in a completely noise-free attacker-controlled
scenario. Hence, our cache increases the complexity for the
attacker by factor 325000. In a real-world scenario the com-
plexity is even higher.

Profiled Eviction for EVICT+RELOAD. For shared mem-
ory, such as in EVICT+RELOAD, the construction of eviction
sets, however, becomes easier, as shared memory allows the
attacker to simply access the victim address. Hence, to build
a suitable eviction set, the attacker first primes the victim ad-
dress, then accesses a candidate address, and finally probes
the victim address. In case a specific candidate address col-
lides with the victim address in the cache way the victim
access falls into , the attacker can observe this collision with
probability p = nways

−1. As a result, the expected number
of memory accesses required to build an eviction set of t
colliding addresses for EVICT+RELOAD is

E(naccesses) = nways ·2bindices · t.

For an 8-way SCATTERCACHE with 211 lines per way, con-
structing an EVICT+RELOAD eviction set of 275 addresses
(i.e., 99% eviction probability) requires profiling with roughly
8 · 211 · 275 = 222 memory addresses. Note, however, that
EVICT+RELOAD only applies to writable shared memory as
used for Inter Process Communication (IPC), whereas SCAT-
TERCACHE effectively prevents EVICT+RELOAD on shared
read-only memory by using different cache-set compositions
in each security domain. Moreover, eviction sets for both
PRIME+PROBE and EVICT+RELOAD must be freshly cre-
ated whenever the key or the SDID changes.

4.4 Complexity of PRIME+PROBE

As demonstrated, SCATTERCACHE strongly increases the
complexity of building the necessary sets of addresses for
PRIME+PROBE. However, the actual attacks utilizing these
sets are also made more complex by SCATTERCACHE.

In this section, we make the strong assumption that an
attacker has successfully profiled the victim process such that
they have found addresses which collide with the victim’s
target addresses in exactly 1 way each, have no collisions
with each other outside of these and are sorted into subsets
corresponding to the cache line they collide in.

Where in normal PRIME+PROBE an attacker can infer vic-
tim accesses (or a lack thereof) with near certainty after only 1
sequence of priming and probing, SCATTERCACHE degrades
this into a probabilistic process. At best, one PRIME+PROBE
operation on a target address can detect an access with a
probability of nways

−1. This is complicated further by the fact
that any one set of addresses is essentially single-use, as the
addresses will be cached in a non-colliding cache line with
a probability of 1−nways

−1 after only 1 access, where they

cannot be used to detect victim accesses anymore until they
themselves are evicted again.

Given the profiled address sets, we can construct general
probabilistic variants of the PRIME+PROBE attack. While
other methods are possible, we believe the 2 described in the
following represent lower bounds for either victim accesses
or memory requirement.

Variant 1: Single collision with eviction. We partition
our set of addresses, such that one PRIME+PROBE set con-
sists of nways addresses, where each collides with a different
way of the target address. To detect an access to the target,
we prime with one set, cause a target access, measure the
primed set and then evict the target address. We repeat this
process until the desired detection probability is reached. This
probability is given by p(naccesses) = 1− (1−nways

−1)naccesses .
The eviction of the target address can be achieved by either
evicting the entire cache or using preconstructed eviction sets
(see Section 4.3.2). After the use of an eviction set, a differ-
ent priming set is necessary, as the eviction sets only target
the victim address. After a full cache flush, all sets can be
reused. The amount of colliding addresses we need to find
during profiling depends on how often a full cache flush is
performed. This method requires the least amount of accesses
to the target, at the cost of either execution time (full cache
flushes) or memory and profiling time (constructing many
eviction sets).

Variant 2: Single collision without eviction. Using the
same method but without the eviction step, the detection prob-
ability can be recursively calculated as

p(nacc.) = p(nacc.−1)+(1− p(nacc.−1))(
2 ·nways −1

nways3)

with p(1) = nways
−1. This variant provides decreasing ben-

efits for additional accesses. The reason for this is that the
probability that the last step evicted the target address influ-
ences the probability to detect an access in the current step.
While this approach requires many more target accesses, it
has the advantage of a shorter profiling phase.

These two methods require different amounts of mem-
ory, profiling time and accesses to the target, but they can
also be combined to tailor the attack to the target. Which is
most useful depends on the attack scenario, but it is clear that
both come with considerable drawbacks when compared to
PRIME+PROBE in current caches. For example, achieving
a 99 % detection probability in a 2 MB Cache with 8 ways
requires 35 target accesses and 9870 profiled addresses in
308 MB of memory for variant 1 if we use an eviction set for
every probe step. Variant 2 would require 152 target accesses
and 1216 addresses in 38 MB of memory. In contrast, regular
PRIME+PROBE requires 1 target access and 8 addresses while
providing 100 % accuracy (in this ideal scenario). Detecting
non-repeating events is made essentially impossible; to mea-
sure any access with confidence requires either the knowledge
that the victim process repeats the same access pattern for
long periods of time or control of the victim in a way that

USENIX Association 28th USENIX Security Symposium 685

allows for repeated measurements. In addition to the large
memory requirements, variant 1 also heavily degrades the
temporal resolution of a classical PRIME+PROBE attack be-
cause of the necessary eviction steps. This makes trace-based
attacks like attacks on square-and-multiply in RSA [76] much
less practical. Variant 2 does not suffer from this drawback,
but requires one PRIME+PROBE set for each time step, for as
many high-resolution samples as one trace needs to contain.
This can quickly lead to an explosion in required memory
when thousands of samples are needed.

4.5 Challenges with Real-World Attacks

We failed at mounting a real-world attack (i.e., with even
the slightest amounts of noise) on SCATTERCACHE. Gener-
ally, for a PRIME+PROBE attack we need to (1) generate an
eviction set (cf. Section 4.3), and (2) use the eviction set to
monitor a victim memory access. If we assume step 1 to be
solved, we can mount a cache attack (i.e., step 2) with a com-
plexity increases by a factor of 152 (cf. Section 4.4). For some
real-world attacks this would not be a problem, in particular
if a small fast algorithm is attacked, e.g., AES with T-tables.
Gülmezoglu et al. [29] recovered the full AES key from an
AES T-tables implementation with only 30 000 encryptions
in a fully synchronized setting (that can be implemented with
PRIME+PROBE as well [26]), taking 15 seconds, i.e., 500 µs
per encryption. The same attack on SCATTERCACHE takes
4.56 · 106 encryptions, i.e., 38 minutes assuming the same
execution times, which is clearly viable.

However, the real challenge is solving step 1, which we did
not manage for any real-world example. In particular, even if
AES would only perform a single attacker-chosen memory
access (instead of 160 to the T-tables alone, plus additional
code and data accesses), which would be ideal for the attacker
in the profiling during step 1, we would need to observe 33.5
million encryptions. In addition to the runtime reported by
Gülmezoglu et al. [29] we also need a full cache flush after
each attack round (i.e., each encryption). For a 2 MB cache,
we need to iterate over a 6 MB array to have a high probability
of covering all cache lines. The time for an L3-cache access is
e.g., for Kaby Lake 9.5 ns [2]. The absolute minimum number
of cache misses here is 65536 (=4 MB), but in practice it will
be much higher. A cache miss takes around 50 ns, hence, the
full cache eviction will take at least 3.6 ms. Consequently,
with 33.5 million tests required to generate the eviction set
and a runtime of 4.1 ms per test, the total runtime to generate
the eviction set is 38 hours.

This number still only considers the theoretical setting of
a completely noise-free and idle system. The process doing
AES computations must not be restarted during these 38 hours.
The operating system must not replace any physical pages and,
most importantly, our hypothetical AES implementation only
performs a single memory access. In any realistic setting with
only the slightest amount of activity (noise) on the system, this

easily explodes to multiple weeks or months. With a second
memory access, these two memory accesses can already not
be distinguished anymore with the generated eviction set,
because the eviction set is generated for an invocation of the
entire victim computation, not for an address.

4.6 Noise Sampling

The previous analysis considered a completely noise-free
scenario, where the attacker performs PRIME+PROBE on a
single memory access executed by the victim. However, in a
real system, an attacker will typically not be able to perform
an attack on single memory accesses, but face different kinds
of noise. Namely, on real systems cache attacks will suffer
from both systematic and random noise, which reduces the
effectiveness of profiling and the actual attack.

Systematic noise is introduced, for example, by the victim
as it executes longer code sequences in between the attacker’s
prime and probe steps. The victim’s code execution intrin-
sically performs additional memory accesses to fetch code
and data that the attacker will observe in the cache deter-
ministically. In SCATTERCACHE, the mappings of memory
addresses to cache lines is unknown. Hence, without addi-
tional knowledge, the attacker is unable to distinguish the
cache collision belonging to the target memory access from
collisions due to systematic noise. Instead, the attacker can
only observe and learn both simultaneously. As a result, larger
eviction sets need to be constructed to yield the same confi-
dence level for eviction. Specifically, the size of an eviction
set must increase proportionally to the number of systematic
noise accesses to achieve the same properties. While this
significantly increases an attackers profiling effort, they may
be able to use clustering techniques to prune the eviction set
prior to performing an actual attack.

Random noise, on the other hand, stems from arbitrary
processes accessing the cache simultaneously or as they are
scheduled in between. Random noise hence causes random
cache collisions to be detected by an attacker during both pro-
filing and an actual attack, i.e., produces false positives. While
attackers cannot distinguish between such random noise and
systematic accesses in a single observation, these random
noise accesses can be filtered out statistically be repeating the
same experiment multiple times. Yet, it increases an attackers
effort significantly. For instance, when building eviction sets
an attacker can try to observe the same cache collision multi-
ple times for a specific candidate address to be certain about
its cache collision with the victim.

Random noise distributes in SCATTERCACHE according
to Equation 1 and hence quickly occupies large parts of the
cache. As a result, there is a high chance of sampling ran-
dom noise when checking a candidate address during the
construction of eviction sets. Also when probing addresses of
an eviction set in an actual attack, random noise is likely to
be sampled as attacks on SCATTERCACHE demand for large

686 28th USENIX Security Symposium USENIX Association

0 20 40 60 80 100 120

0.01

0.1

Cache Line Index

Pr
ob

ab
ili

ty

Way 0 Way 1 Way 2 Way 3

Figure 7: Example distribution of cache indices of addresses
in profiled eviction sets (nways = 4, bindices = 7).

0 2,000 4,000 6,000 8,000 10,000
0

20
40
60
80

100

Noise Accesses

N
oi

sy
Sa

m
pl

es
[%

] 4 Ways 8 Ways 16 Ways

Figure 8: Expected percentage of noisy samples in an eviction
set for a cache consisting of 212 cache lines.

eviction sets. As our analysis shows, for a single cache way the
distribution of cache line indices corresponding to the mem-
ory accesses of profiled eviction sets (cf. Section 4.3) adheres
to Figure 7. Clearly, due to profiling there is a high chance of
roughly 1/nways to access the index that collides with the vic-
tim address. However, with p = (nways −1)/nways the index
adheres to an uniformly random selection from all possible in-
dices and hence provides a large surface for sampling random
noise. Consequently, for a cache with nlines = 2bindices lines
per way and nnoise lines being occupied by noise in each way,
the probability of sampling random noise when probing an
eviction set address is

p(Noise)≈
nways −1

nways

nnoise

nlines
.

Figure 8 visualizes this effect and in particular the percentage
of noisy samples encountered in an eviction set for different
cache configurations and noise levels. While higher random
noise clearly increases an attackers effort, the actual noise
level strongly depends on the system configuration and load.

4.7 Further Remarks
In the previous analysis, the SDIDs of both attacker and victim
were assumed to be constant throughout all experiments for
statistical analysis to be applicable. Additionally, systematic
and random noise introduced during both profiling and attack
further increase the complexity of actual attacks, rendering
attacks on most real-world systems impractical.

Also note that the security analysis in this section focuses
on SCv1. In a noise-free scenario, SCv2 may allow to con-
struct eviction sets slightly more efficiently since its IDF is

a permutation. This means that, once a collision in a certain
cache way is found, there will not be any other colliding ad-
dress for that cache way in the same index range, i.e., for
the same address tag. Considering the expected time to find
the single collision in a given index range, this could give
an attacker a benefit of up to a factor of two in constructing
eviction sets. However, in practice multiple cache ways are
profiled simultaneously, which results in a high chance of
finding a collision in any of the cache ways independent of
the address index bits, i.e., the nways indices for a certain mem-
ory address will very likely be scattered over the whole index
range. Independent of that, the presence of noise significantly
hampers taking advantage of the permuting property of SCv2.

5 Performance Evaluation

SCATTERCACHE significantly increases the effort of attack-
ers to perform cache-based attacks. However, a countermea-
sure must not degrade performance to be practical as well.
This section hence analyzes the performance of SCATTER-
CACHE using the gem5 full system simulator and GAP [9],
MiBench [30], lmbench [49], and the C version of scimark2 1

as micro benchmarks. Additionally, to closer investigate the
impact of SCATTERCACHE on larger workloads, a custom
cache simulator is used for SPEC CPU 2017 benchmarks.
Our evaluations indicate that, in terms of performance, SCAT-
TERCACHE behaves basically identical to traditional set-
associative caches with the same random replacement policy.

5.1 gem5 Setup

We performed our cache evaluation using the gem5 full sys-
tem simulator [12] in 32-bit ARM mode. In particular, we
used the CPU model TimingSimpleCPU together with a cache
architecture such as commonly used in ARM Cortex-A9
CPUs: the cache line size was chosen to be 32 bytes, the 4-way
L1 data and instruction caches are each sized 32 kB, and the
8-way L2 cache is 512 kB large. We adapted the gem5 simula-
tor such as to support SCATTERCACHE for the L2 cache. This
allows to evaluate the impact of six different cache organiza-
tions. Besides SCATTERCACHE in both variants (1) SCv1 and
(2) SCv2 and standard set-associative caches with (3) LRU,
(4) BIP, and (5) random replacement, we also evaluated (6)
skewed associative caches [63] with random replacement as
we expect them to have similar performance characteristics
as SCv1 and SCv2.

On the software side, we used the Poky Linux distribution
from Yocto 2.5 (Sumo) with kernel version 4.14.67 after ap-
plying patches to run within gem5. We then evaluated the per-
formance of our micro benchmarks running on top of Linux.
In particular, we analyzed the cache statistics provided by

1https://math.nist.gov/scimark2/

USENIX Association 28th USENIX Security Symposium 687

https://math.nist.gov/scimark2/

gem5 after booting Linux and running the respective bench-
mark. Using this approach, we reliably measure the cache
performance and execution time for each single application,
i.e., without concurrent processes. Since only the L2-cache
architecture (i.e., replacement policy, skewed vs. fixed sets)
changed between the individual simulation runs, execution
performance is simply direct proportional to the resulting
cache hit rate. To enable easier comparison between the indi-
vidual benchmarks as well as with related work we therefore
mainly report L2-cache hit results.

SCATTERCACHE IDF Instantiations. Both SCATTER-
CACHE variants have been instantiated using the low-latency
tweakable block cipher QARMA-64 [8]. In particular, in the
SCv1 variant, the index bits for the individual cache ways
have been sliced from the ciphertext of encrypting the cache
line address under the secret key and SDID. On the other hand,
due to the lack of an off-the-shelf tweakable block cipher with
the correct block size, a stream cipher construction was used
in the SCv2 variant. Namely, the index is computed as the
XOR between the original index bits and the ciphertext of
the original tag encrypted using QARMA-64. Note, however,
that, although this construction for SCv2 is a proper permu-
tation and entirely sufficient for evaluating the performance
of SCv2, we do not recommend the construction as pads are
being reused for addresses having the same tag bits.

While the majority of the following results are latency
agnostic LLC hit rates, all following results are reported for
the zero cycle latency case. For QARMA-64 with 5 rounds,
ASIC implementation results with as little as 2.2 ns latency
have been reported [8]. We are therefore confident that, if
desired, hiding the latency of the IDF by computing it in
parallel to the lower level cache lookup is feasible.

However, we still also conducted simulations with la-
tency overheads between 1 and 5 cycles by increasing the
tag_latency of the cache in gem5. The acquired results
show that, even for IDFs which introduce 5 cycles of latency,
less than 2 % performance penalty are encountered on the
GAP benchmark suite. These numbers are also in line with
Qureshi’s results reported for CEASER [55].

5.2 Hardware Overhead Discussion

SCATTERCACHE is designed to be as similar to modern cache
architectures as possible in terms of hardware. Still, area and
power overheads have to be expected due to the introduction
of the IDF and the additional addressing logic. Unfortunately,
while probably easy for large processor and SoC vendors,
determining reliable overhead numbers for these two metrics
is a difficult task for academia that requires an actual ASIC
implementation of the cache. To the best of our knowledge,
even in the quite active RISC-V community, no open and
properly working LLC designs are available that can be used
as foundation. Furthermore, for merely simulating such a de-
sign with a reasonably large cache, commercial EDA tools,

access to state-of-the-art technology libraries, and large mem-
ory macros with power models are required. As the result,
secure cache designs typically fail to deliver hardware imple-
mentation results (see Table 6 in [18]).

Because of these problems, similar to related work, we can
also not provide concrete numbers for the area and power
overhead. However, due to the way we designed SCATTER-
CACHE and the use of lightweight cryptographic primitives,
we can assert that the hardware overhead is reasonable. For ex-
ample, the 8-way SCv1 SCATTERCACHE with 512 kB that is
simulated in the following section, uses two parallel instances
of QARMA-64 with 5 rounds as IDF. One fully unrolled
instance has a size of 22.6 kGE [8] resulting in an IDF size
of less then 50 kGE even in case additional pipeline registers
are added. The added latency of such an IDF is the same as
the latency of the used primitive which has been reported as
2.2 ns. However, this latency can (partially or fully) be hidden
by computing the IDF in parallel to the lower level cache
lookup. Interestingly, with similar size, also a sponge-based
SCv1 IDF (e.g., 12 rounds of Keccak[200] [11]) can be instan-
tiated. Finally, there is always the option to develop custom
IDF primitives [55] that demand even less resources.

For comparison, in the BROOM chip [16], the SRAM
macros in the 1 MB L2 cache already consume roughly 50 %
of the 4.86 mm2 chip area. Assuming an utilization of 75 %
and a raw gate density of merely 3 MGate/mm2 [21] for the
used 28 nm TSMC process, these 2.43 mm2 already corre-
spond to 5.5 MGE. Subsequently, even strong IDFs are orders
of magnitude smaller than the size of a modern LLC.

In terms of overhead for the individual addressing of the
cache ways, information is more sparse. Spjuth et al. [64]
observed a 17 % energy consumption overhead for a 2-way
skewed cache. They also report that skewed caches can be
built with lower associativity and still reach similar perfor-
mance as traditional fixed set-associative caches. Furthermore,
modern Intel architectures already feature multiple addressing
circuits in their LLC as they partition it into multiple smaller
caches (i.e., cache slices).

5.3 gem5 Results and Discussion

Figure 9 visualizes the cache hit rate of our L2 cache when
executing programs from the GAP benchmark suite. To ease
visualization, the results are plotted in percentage points (pp),
i.e., the differences between percentage numbers, using the
fixed set-associative cache with random replacement policy
as baseline. All six algorithms (i.e., bc, bfs, cc, pr, sssp, tc)
have been evaluated. Moreover, as trace sets, both syntheti-
cally generated kron (-g16 -k16) and urand (-u16 -k16)
sets have been used. As can be seen in the graph, the BIP and
LRU replacement policies outperform random replacement
on average by 4.6 pp and 4 pp respectively. Interestingly, how-
ever, all random replacement based schemes, including the
skewed variants, perform basically identical.

688 28th USENIX Security Symposium USENIX Association

bc
kro

n

bc
ura

nd

bfs
kro

n

bfs
ura

nd

cc
kro

n

cc
ura

nd

pr
kro

n

pr
ura

nd

sss
p kro

n

sss
p ura

nd

tc
kro

n

tc
ura

nd
mea

n

0

5

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2 Skewed

Figure 9: Cache hit rate, simulated with gem5, for the syn-
thetic workloads in the GAP benchmark suite with random
replacement policy as baseline.

Total iTB walker dTB walker Inst Data
0

50

100

19
.8

7

91
.6 98
.9

68
.0

9

2.
81

19
.8

2

92
.2 98
.8

2

73
.1

4

2.
75

20
.3

5

89
.6

2

98
.6

4

72
.0

9

3.
43

30
.1

4

88
.8

8

97
.7

7

68
.9

2

15
.5

630
.1

3

87
.2

2

97
.7

7

68
.8

4

15
.5

530
.2

88
.8

4

97
.9

8

69
.1

15
.5

9H
it

R
at

e
[%

]
(h

ig
he

ri
s

be
tte

r)

BIP LRU Rand SCv1 SCv2 Skewed

Figure 10: Cache hit rate, simulated with gem5, for scimark2.

The next benchmark, we visualized in Figure 10, is sci-
mark2 (-large 0.5). This benchmark shows an interesting
advantage of the skewed cache architectures over the fixed-
set architectures, independent of the replacement policy, of
approximately 10 pp for the total hit rate. This difference is
mainly caused by the 5x difference in hit rate for data accesses.
Comparing the achieved benchmark scores in Figure 11 fur-
ther reveals that the fft test within scimark2 is the reason for
the observed discrepancy in cache performance.

To investigate this effect in more detail, we measured the
memory read latency using using lat_mem_rd 8M 32 from
lmbench in all cache configurations. The respective results
in Figure 12 feature two general steps in the read latency
at 32 kB (L1-cache size) and at 512 kB (L2-cache size). No-
tably, configurations with random replacement policy feature
a smoother transition at the second step, i.e., when accesses
start to hit main memory instead of the L2 cache.

Even more intersting results, as shown in Figure 13, have
been acquired by increasing the stride size to four times the
cache line size. Skewed caches like SCATTERCACHE break
the strong alignment of addresses and cache set indices. As
a consequence, a sparse, but strongly aligned memory ac-
cess pattern such as in lat_mem_rd, which in a standard

composite fft sor monte carlo sparse
matmult

lu
0

50

100

150

58
.4

6

15

13
5.

29

45
.8

6

36
.0

6 60
.1

58
.4

5

15
.1

4

13
5.

34

45
.8

6

36
.0

8 59
.8

3

56
.9

2

14
.8

2

13
0.

46

45
.8

6

36
.0

4 57
.4

59
.7

5

20
.9

2

13
5.

75

45
.8

6

36
.0

2 60
.1

8

59
.8

20
.9

4

13
5.

9

45
.8

6

36
.0

2 60
.2

8

59
.7

20
.8

7

13
5.

51

45
.8

6

36
.0

4 60
.2

Sc
or

e
(h

ig
he

ri
s

be
tte

r)

BIP LRU Rand SCv1 SCv2 Skewed

Figure 11: Scimark2 score simulated with gem5.

0.001 0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea

d
L

at
en

cy
[n

s]
(l

ow
er

is
be

tte
r)

BIP
LRU
Rand
SCv1
SCv2

Skewed

Figure 12: Memory read latency, simulated with gem5, with
32 byte stride (i.e., one access per cache line).

set-associative caches only uses every 4th cache index, gives
high cache hit rates and low read latencies for larger memory
ranges due to less cache conflicts. This effect becomes visible
in Figure 13 as shift of the second step from 512 kB to 2 MB
for the skewed cache variants.

Finally, as last benchmark, MiBench has been evaluated
in small and large configuration. The individual results are
visualized in Figure 14 and Figure 15 respectively. On aver-
age, the achieved performance results in MiBench are very
similar to the results from the GAP benchmark suite. Again,
caches with BIP and LRU replacement policy outperform the
configurations with random replacement policy by a few per-
cent. However, in some individual benchmarks (e.g., qsort in
small, jpeg in large), skewed cache architectures like SCAT-
TERCACHE outmatch the fixed set appraoches.

In summary, our evaluations with gem5 in full system sim-
ulation mode show that the performance of SCATTERCACHE,
in terms of hit rate, is basically identical to contemporary
fixed set-associative caches with random replacement policy.
Considering that we employ the same replacement strategy,
this is an absolutely satifying result by itself. Moreover, no
tests indicated any notable performance degradation and in
some tests SCATTERCACHE even outperformed BIP and LRU
replacement policies.

USENIX Association 28th USENIX Security Symposium 689

0.001 0.01 0.1 1 10
0

50

100

Access Size [MB]

R
ea

d
L

at
en

cy
[n

s]
(l

ow
er

is
be

tte
r)

BIP
LRU
Rand
SCv1
SCv2

Skewed

Figure 13: Memory read latency, simulated with gem5, with
128 byte stride (i.e., one access in every fourth cache line).

CRC32FFT
ad

pc
m

ba
sic

math

bit
co

un
t

blo
wfish

dij
ks

trags
m

jpe
g
lam

e
mad

pa
tri

ciaqs
ort

rij
nd

ae
l

sh
a

str
ing

sea
rch

su
san

tif
f2b

w

tif
f2r

gb
a

tif
fdi

the
r

tif
fm

ed
ian

typ
ese

t
mea

n

0

2

4

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2 Skewed

Figure 14: Cache hit rate, simulated with gem5, for MiBench
in small configuration compared to random replacement.

5.4 Cache Simulation and SPEC Results

Lastly, we evaluated the performance of SCATTERCACHE
using the SPEC CPU 2017 [66] benchmark with both the
“SPECspeed 2017 Integer” and “SPECspeed 2017 Floating
Point” suites. We performed all benchmarks in these suites
with the exception of gcc, wrf and cam4, as these failed to
compile on our system. Because these benchmarks are too
large to be run in full system simulation, we created a software
cache simulator, capable of simulating different cache models
and replacement policies. Even so, the benchmarks proved
to be too large to run in full, so we opted to run segments of
250 million instructions from each, following the methodol-
ogy of Qureshi et al. [56]. We made an effort to select parts
of the benchmarks that are representative of their respective
core workloads. To be able to run the benchmarks with our
simulator, we recorded a trace of all instruction addresses
and memory accesses with the Intel PIN Tool [33]. We then
replayed this access stream for different cache configurations.
The simulator implements the set-associative replacement
policies Pseudo-LRU (Tree-PLRU), LRU (ideal), BIP as de-
scribed in [56], and random replacement, as well as the two

CRC32FFT
ad

pc
m

ba
sic

math

bit
co

un
t

blo
wfish

dij
ks

trags
m

jpe
g
lam

e
mad

pa
tri

ciaqs
ort

rij
nd

ae
l

sh
a

str
ing

sea
rch

su
san

tif
f2b

w

tif
f2r

gb
a

tif
fdi

the
r

tif
fm

ed
ian

typ
ese

t
mea

n

0

2

4

6

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2 Skewed

Figure 15: Cache hit rate, simulated with gem5, for MiBench
in large configuration compared to random replacement.

bw
av

es

ca
ctu

BSSN

de
ep

sje
ng

ex
ch

an
ge

2

fot
on

ik3
d

im
ag

ick lbm lee
la mcf na

b

om
ne

tpp

pe
rlb

en
ch

po
p2

rom
s

x2
64

xa
lan

cb
mk xz

mea
n

−4

−2

0

2

H
it

R
at

e
∆

[%
]

(h
ig

he
ri

s
be

tte
r)

BIP LRU SCv1 SCv2

Figure 16: Average cache hit rate for SPEC CPU 2017 bench-
marks compared to random replacement over 10 runs.

SCATTERCACHE variants. The number of ways per set, total
cache size, number of slices, and cache line size are fully con-
figurable. Additionally, the simulator supports multiple levels
of inclusive caches, as well as a cache that is split for data
and instructions. All simulations were run on an inclusive two
level cache, where the L1 was separated into instruction and
data caches, both of which use LRU replacement. Figure 16
shows results for the cache configuration, as described in Sec-
tion 5.1, as the difference in percentage points for last-level
hit rates when compared to random replacement. While we
can see large differences in individual tests, the mean shows
that both versions of SCATTERCACHE perform at least as
well as random replacement and very similar to LRU. Us-
ing the same cache configuration but with 64 B cache lines,
we actually observe a mean advantage of 0.23± 0.76 pp of
SCATTERCACHE over random replacement, where LRU sees
a marginally worse result of −0.21± 1.02 pp. On a larger
configuration with 64 B cache lines, 32 kB 8-way L1 and
2 MB 16-way LLC, the results show a slim improvement of
0.035±0.10 pp for SCATTERCACHE and 0.37±1.14 pp for
LRU over random replacement.

690 28th USENIX Security Symposium USENIX Association

6 Conclusion

In this paper, we presented SCATTERCACHE, a novel cache
design to eliminate cache attacks that eliminates fixed cache-
set congruences and, thus, makes eviction-based cache at-
tacks unpractical. We showed how skewed associative caches
when retrofitted with a keyed mapping function increase the
attack complexity so far that it exceeds practical scenarios
Furthermore, high-frequency attacks become infeasible. Our
evaluations show that the runtime performance of software
is not curtailed and SCATTERCACHE can even outperform
state-of-the-art caches for certain realistic workloads.

Acknowledgments

We want to thank the anonymous reviewers and especially
our shepherd, Yossi Oren, for their comments and suggestions
that substantially helped in improving the paper. This project
has received funding from the European Research Council
(ERC) under Horizon 2020 grant agreement No 681402. Ad-
ditional funding was provided by a generous gift from Intel.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References
[1] 7-cpu. ARM Cortex-A57. www.7-cpu.com/cpu/Cortex-A57.html.

[2] 7-cpu. Intel Skylake. www.7-cpu.com/cpu/Skylake.html.

[3] O. Aciiçmez, B. B. Brumley, and P. Grabher. New Results on Instruc-
tion Cache Attacks. In CHES, 2010.

[4] G. I. Apecechea, T. Eisenbarth, and B. Sunar. S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing - and Its
Application to AES. In S&P, 2015.

[5] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a Minute!
A fast, Cross-VM Attack on AES. In RAID, 2014.

[6] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. Lucky 13
Strikes Back. In CCS, 2015.

[7] V. Arribas, B. Bilgin, G. Petrides, S. Nikova, and V. Rijmen. Rhythmic
Keccak: SCA Security and Low Latency in HW. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018.

[8] R. Avanzi. The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions With Non-Involutory Central Rounds, and Search Heuristics
for Low-Latency S-Boxes. IACR Trans. Symmetric Cryptol., 2017.

[9] S. Beamer, K. Asanovic, and D. A. Patterson. The GAP Benchmark
Suite. arXiv abs/1508.03619, 2015.

[10] D. J. Bernstein. Cache-Timing Attacks on AES. Technical report,
University of Illinois at Chicago, 2005.

[11] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer. Kec-
cak implementation overview, 2012.

[12] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 simulator. SIGARCH Comp. Arch. News, 39, 2011.

[13] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin. PRINCE - A Low-Latency Block Ci-
pher for Pervasive Computing Applications - Extended Abstract. In
ASIACRYPT, 2012.

[14] B. B. Brumley and R. M. Hakala. Cache-Timing Template Attacks. In
ASIACRYPT, 2009.

[15] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In USENIX Security, 2018.

[16] C. Celio, P. Chiu, K. Asanovic, B. Nikolic, and D. A. Patterson.
BROOM: An Open-Source Out-of-Order Processor With Resilient
Low-Voltage Operation in 28-nm CMOS. MICRO, 39, 2019.

[17] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter. Prac-
tical Mitigations for Timing-Based Side-Channel Attacks on Modern
x86 Processors. In S&P, 2009.

[18] S. Deng, W. Xiong, and J. Szefer. Analysis of Secure Caches and
Timing-Based Side-Channel Attacks. ePrint 2019/167.

[19] G. Doychev, D. Feld, B. Köpf, L. Mauborgne, and J. Reineke. CacheAu-
dit: A Tool for the Static Analysis of Cache Side Channels. In USENIX
Security, 2013.

[20] G. Doychev and B. Köpf. Rigorous analysis of software countermea-
sures against cache attacks. In PLDI, 2017.

[21] Europractice. TSMC Standard cell libraries. http://www.
europractice-ic.com/libraries_TSMC.php.

[22] M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek, M. T.
Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco, S. Malik, M. Tiwari,
and T. M. Austin. Morpheus: A Vulnerability-Tolerant Secure Archi-
tecture Based on Ensembles of Moving Target Defenses with Churn.
In ASPLOS, 2019.

[23] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. ASLR on
the Line: Practical Cache Attacks on the MMU. In NDSS, 2017.

[24] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom. Another Flip in the Wall of Rowhammer
Defenses. In S&P, 2018.

[25] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In CCS,
2016.

[26] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+Flush: A
Fast and Stealthy Cache Attack. In DIMVA, 2016.

[27] D. Gruss, R. Spreitzer, and S. Mangard. Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches. In USENIX
Security, 2015.

[28] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games - Bringing
Access-Based Cache Attacks on AES to Practice. In S&P, 2011.

[29] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth, and B. Sunar.
A Faster and More Realistic Flush+Reload Attack on AES. In COSADE,
2015.

[30] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In WWC, 2001.

[31] R. Hund, C. Willems, and T. Holz. Practical Timing Side Channel
Attacks against Kernel Space ASLR. In S&P, 2013.

[32] M. S. Inci, B. Gülmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar.
Cache Attacks Enable Bulk Key Recovery on the Cloud. In CHES,
2016.

[33] Intel Corporation. Pin - A Dynamic Binary Instrumenta-
tion Tool. https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

USENIX Association 28th USENIX Security Symposium 691

https://www.7-cpu.com/cpu/Cortex-A57.html
https://www.7-cpu.com/cpu/Skylake.html
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1109/SP.2015.42
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1145/2714576.2714625
https://doi.org/10.1145/2714576.2714625
https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.13154/tches.v2018.i1.269-290
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
https://doi.org/10.13154/tosc.v2017.i1.4-44
http://arxiv.org/abs/1508.03619
http://arxiv.org/abs/1508.03619
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://keccak.noekeon.org/Keccak-implementation-3.2.pdf
http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-10366-7_39
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/MM.2019.2897782
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1109/SP.2009.19
https://eprint.iacr.org/2019/167
https://eprint.iacr.org/2019/167
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/3062341.3062388
http://www.europractice-ic.com/libraries_TSMC.php
http://www.europractice-ic.com/libraries_TSMC.php
https://doi.org/10.1145/3297858.3304037
https://doi.org/10.1145/3297858.3304037
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1109/SP.2018.00031
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1007/978-3-319-21476-4_8
https://ieeexplore.ieee.org/document/990739
https://ieeexplore.ieee.org/document/990739
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1007/978-3-662-53140-2_18
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

[34] G. Irazoqui, K. Cong, X. Guo, H. Khattri, A. K. Kanuparthi, T. Eisen-
barth, and B. Sunar. Did we learn from LLC Side Channel At-
tacks? A Cache Leakage Detection Tool for Crypto Libraries. arXiv
abs/1709.01552, 2017.

[35] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross Processor Cache At-
tacks. In CCS, 2016.

[36] Y. Jang, S. Lee, and T. Kim. Breaking Kernel Address Space Layout
Randomization with Intel TSX. In CCS, 2016.

[37] E. Käsper and P. Schwabe. Faster and Timing-Attack Resistant AES-
GCM. In CHES, 2009.

[38] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre Attacks: Exploiting Speculative Execution. In S&P, 2019.

[39] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO, 1996.

[40] R. Könighofer. A Fast and Cache-Timing Resistant Implementation of
the AES. In CT-RSA, 2008.

[41] B. Köpf, L. Mauborgne, and M. Ochoa. Automatic Quantification of
Cache Side-Channels. In CAV, 2012.

[42] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. AR-
Mageddon: Cache Attacks on Mobile Devices. In USENIX Security,
2016.

[43] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down: Reading Kernel Memory from User Space. In USENIX Security,
2018.

[44] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In S&P, 2015.

[45] H. Mantel, A. Weber, and B. Köpf. A Systematic Study of Cache Side
Channels Across AES Implementations. In ESSoS, 2017.

[46] C. Maurice, C. Neumann, O. Heen, and A. Francillon. C5: Cross-Cores
Cache Covert Channel. In DIMVA, 2015.

[47] C. Maurice, N. L. Scouarnec, C. Neumann, O. Heen, and A. Francil-
lon. Reverse Engineering Intel Last-Level Cache Complex Addressing
Using Performance Counters. In RAID, 2015.

[48] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer. Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud. In NDSS, 2017.

[49] L. W. McVoy and C. Staelin. lmbench: Portable tools for performance
analysis. In USENIX Annual Technical Conference, 1996.

[50] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and their
Implications. In CCS, 2015.

[51] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Counter-
measures: The Case of AES. In CT-RSA, 2006.

[52] D. Page. Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. ePrint 2002/169.

[53] D. Page. Partitioned Cache Architecture as a Side-Channel Defence
Mechanism. ePrint 2005/280.

[54] C. Percival. Cache missing for fun and profit. In BSDCan, 2005.

[55] M. K. Qureshi. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In MICRO, 2018.

[56] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. S. Emer. Adaptive
insertion policies for high performance caching. In ISCA, 2007.

[57] H. Raj, R. Nathuji, A. Singh, and P. England. Resource management
for isolation enhanced cloud services. In CCSW, 2009.

[58] C. Rebeiro, A. D. Selvakumar, and A. S. L. Devi. Bitslice Implementa-
tion of AES. In CANS, 2006.

[59] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In CCS, 2009.

[60] M. Schwarz, M. Lipp, D. Gruss, S. Weiser, C. Maurice, R. Spreitzer,
and S. Mangard. KeyDrown: Eliminating Software-Based Keystroke
Timing Side-Channel Attacks. In NDSS, 2018.

[61] M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss. NetSpectre: Read
Arbitrary Memory over Network. arXiv abs/1807.10535, 2018.

[62] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware
Guard Extension: Using SGX to Conceal Cache Attacks. In DIMVA,
2017.

[63] A. Seznec. A Case for Two-Way Skewed-Associative Caches. In ISCA,
1993.

[64] M. Spjuth, M. Karlsson, and E. Hagersten. Skewed caches from a
low-power perspective. In Computing Frontiers – CF, 2005.

[65] R. Spreitzer and T. Plos. Cache-Access Pattern Attack on Disaligned
AES T-Tables. In COSADE, 2013.

[66] Standard Performance Evaluation Corporation. SPEC CPU 2017.
https://www.spec.org/cpu2017/.

[67] D. Trilla, C. Hernández, J. Abella, and F. J. Cazorla. Cache side-channel
attacks and time-predictability in high-performance critical real-time
systems. In DAC, 2018.

[68] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miyauchi. Crypt-
analysis of DES Implemented on Computers with Cache. In CHES,
2003.

[69] Z. Wang and R. B. Lee. New cache designs for thwarting software
cache-based side channel attacks. In ISCA, 2007.

[70] Z. Wang and R. B. Lee. A novel cache architecture with enhanced
performance and security. In MICRO, 2008.

[71] S. Weiser, A. Zankl, R. Spreitzer, K. Miller, S. Mangard, and G. Sigl.
DATA - Differential Address Trace Analysis: Finding Address-based
Side-Channels in Binaries. In USENIX Security, 2018.

[72] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space: High-speed
Covert Channel Attacks in the Cloud. In USENIX Security, 2012.

[73] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-Space: High-
Bandwidth and Reliable Covert Channel Attacks Inside the Cloud.
IEEE/ACM Trans. Netw., 23, 2015.

[74] Y. Xiao, M. Li, S. Chen, and Y. Zhang. STACCO: Differentially Ana-
lyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in
Secure Enclaves. In CCS, 2017.

[75] Y. Xu, M. Bailey, F. Jahanian, K. R. Joshi, M. A. Hiltunen, and R. D.
Schlichting. An exploration of L2 cache covert channels in virtualized
environments. In CCSW, 2011.

[76] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security, 2014.

[77] A. Zankl, J. Heyszl, and G. Sigl. Automated Detection of Instruction
Cache Leaks in Modular Exponentiation Software. In CARDIS, 2016.

[78] X. Zhang, Y. Xiao, and Y. Zhang. Return-Oriented Flush-Reload Side
Channels on ARM and Their Implications for Android Devices. In
CCS, 2016.

[79] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone: Co-
residency Detection in the Cloud via Side-Channel Analysis. In S&P,
2011.

[80] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side
channels and their use to extract private keys. In CCS, 2012.

[81] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-Tenant
Side-Channel Attacks in PaaS Clouds. In CCS, 2014.

692 28th USENIX Security Symposium USENIX Association

http://arxiv.org/abs/1709.01552
http://arxiv.org/abs/1709.01552
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2897845.2897867
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1145/2976749.2978321
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-04138-9_1
https://spectreattack.com/spectre.pdf
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-20550-2_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://doi.org/10.1007/978-3-319-26362-5_3
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-robust-cache-covert-channels-cloud/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/hello-other-side-ssh-over-robust-cache-covert-channels-cloud/
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1145/2810103.2813708
https://doi.org/10.1007/11605805_1
https://doi.org/10.1007/11605805_1
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2002/169
http://eprint.iacr.org/2005/280
http://eprint.iacr.org/2005/280
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1145/1250662.1250709
https://doi.org/10.1145/1655008.1655019
https://doi.org/10.1145/1655008.1655019
https://doi.org/10.1007/11935070_14
https://doi.org/10.1007/11935070_14
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_04B-1_Schwarz_paper.pdf
http://arxiv.org/abs/1807.10535
http://arxiv.org/abs/1807.10535
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1145/165123.165152
https://doi.org/10.1145/1062261.1062289
https://doi.org/10.1145/1062261.1062289
https://doi.org/10.1007/978-3-642-40026-1_13
https://doi.org/10.1007/978-3-642-40026-1_13
https://www.spec.org/cpu2017/
http://doi.acm.org/10.1145/3195970.3196003
http://doi.acm.org/10.1145/3195970.3196003
http://doi.acm.org/10.1145/3195970.3196003
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/MICRO.2008.4771781
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/2046660.2046670
https://doi.org/10.1145/2046660.2046670
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1007/978-3-319-54669-8_14
https://doi.org/10.1007/978-3-319-54669-8_14
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1145/2976749.2978360
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2660267.2660356
https://doi.org/10.1145/2660267.2660356

Pythia: Remote Oracles for the Masses

Shin-Yeh Tsai
Purdue University

Mathias Payer
EPFL

Yiying Zhang
Purdue University

Abstract

Remote Direct Memory Access (RDMA) is a technology
that allows direct access from the network to a machine’s
main memory without involving its CPU. RDMA offers low-
latency, high-bandwidth performance and low CPU utilization.
While RDMA provides massive performance boosts and has
thus been adopted by several major cloud providers, security
concerns have so far been neglected.

The need for RDMA NICs to bypass CPU and directly
access memory results in them storing various metadata like
page table entries in their on-board SRAM. When the SRAM
is full, RNICs swap metadata to main memory across the PCIe
bus. We exploit the resulting timing difference to establish
side channels and demonstrate that these side channels can
leak access patterns of victim nodes to other nodes.

We design Pythia, a set of RDMA-based remote side-
channel attacks that allow an attacker on one client machine
to learn how victims on other client machines access data
a server exports as an in-memory data service. We reverse
engineer the memory architecture of the most widely used
RDMA NIC and use this knowledge to improve the efficiency
of Pythia. We further extend Pythia to build side-channel
attacks on Crail, a real RDMA-based key-value store applica-
tion. We evaluated Pythia on four different RDMA NICs both
in a laboratory and in a public cloud setting. Pythia is fast
(57 µs), accurate (97% accuracy), and can hide all its traces
from the victim or the server.

1 Introduction

Direct Memory Access (DMA) allows a machine’s peripher-
als like storage and network devices to access its main mem-
ory directly without involving CPU, vastly increasing I/O
performance and reducing CPU utilization. Inspired by DMA,
Remote Direct Memory Access, or RDMA, is a technology
that allows remote hosts to directly access (exported) mem-
ory of a node without having to go through its CPU. RDMA
enables high throughput and low latency data transfers and

largely reduces CPU utilization in clusters.
In recent years, major cloud vendors like Microsoft

Azure [73] and Alibaba Cloud [6] have adopted RDMA in
their datacenters to speed up processing and to reduce cost
of accessing large amounts of data. As the underlying proto-
cols prosper [32], more and more servers leverage the RDMA
protocol to speed up processing. The use of RDMA has rev-
olutionized data sharing in cloud environments with imple-
mentations for efficient key-value stores [24, 25, 40, 56, 57],
in-memory databases and transactional systems [19, 83, 88],
and graph processing systems [68, 85].

There is a plethora of research work on RDMA, but the
focus so far was all on performance, usability, and network
protocols. Security has been largely overlooked in RDMA
research and production1. With the rise of information leaks
through memory-based side-channels [17,26,39,41,42,86,87],
we have set out to evaluate the side-channel resistance of
existing RDMA implementations.

In a scenario where multiple nodes connect to a server that
provides remote access to its local memory through RDMA
(e.g., for a key-value store), a malicious node may want to
learn what data was accessed by benign nodes. We assume
that the server is trusted and that the attacker tries to learn
what data was accessed by the victim nodes through a remote
side channel which leaks access patterns. Figure 1 illustrates
this environment.

We discovered a new side channel that prevails across
all RDMA hardware that we know of. NICs that support
RDMA, or RNICs, cache metadata such as page table entries
in their on-board SRAM so that they can perform all opera-
tions needed to access main memory on their own without
involving CPU. However, the on-board SRAM size is limited
and the RNIC can only cache hot metadata while leaving the
rest in main memory. When an RDMA request’s metadata is
not cached, the RNIC takes extra time to fetch the metadata
from main memory to its SRAM. We observe and characterize
different side channels that can lead to this timing difference

1We made an initial exploration of security issues and opportunities in
one-sided communication in a recent workshop [77].

USENIX Association 28th USENIX Security Symposium 693

on three generations of RNIC devices.
Based on our findings, we designed Pythia, a set of side-

channel attacks that can be launched completely from the
network through RDMA. The basic idea is to issue RDMA
network requests to the server to fill its RNIC SRAM, eventu-
ally evicting the metadata of the target data. Then the attacker
reloads the target data with an RDMA request and based on
the time it takes, predict if the victim has accessed the data.

Although the basic idea is similar to the EVICT+RELOAD
CPU cache side-channel attack [30], designing Pythia
presents many new challenges. The first challenge is the diffi-
culty in achieving good eviction performance. Existing CPU-
cache based side-channel attacks leverage cache associativity
to reduce the eviction set size, thereby improving eviction
performance. However, RNICs are vendor owned and are
complete black boxes to public knowledge. To confront this
challenge, we reverse engineered the memory architecture
of the Mellanox ConnectX-4 RNIC [48], the type of RNIC
that is used in all major datacenter RDMA deployment. We
successfully discovered the internal architectural organiza-
tion of RNIC SRAM and leverage this knowledge to achieve
low-latency eviction.

The second challenge is in the reload and prediction pro-
cess. Because of our environment of being in a shared dat-
acenter network, the latency of an RDMA request can vary
with different network state. The traditional approach of using
a static threshold to differentiate cache hit from cache miss
is not a good fit for our environment. We take an adaptive
approach to dynamically train a hit/miss classifier based on
RDMA access latency at the time of attack and use the trained
classifier to statistically predict victim accesses [22, 28].

We evaluated Pythia in our lab environment and in a public
cloud [65] with four different types of RNICs. Pythia com-
pletes one EVICT+RELOAD cycle (across the network) in as
low as 57 µs with 97% accuracy2 Moreover, Pythia effectively
hides its traces from the server and victims because it per-
forms all its attack using RDMA operations from a separate
machine.

We further built three variations of Pythia to attack a real
RDMA-based system, the Apache Crail key-value store sys-
tem [7,70]. On a real application like Crail, it is more challeng-
ing to establish a strong side-channel attack because of limited
application interface and noise coming from application per-
formance overhead. After improving Pythia to accommodate
these difficulties, we successfully launched a side-channel
attack solely from a separate client machine using the unmod-
ified Crail client interface. This attack is efficient and can
accurately learn a victim’s key-value pair access patterns.

The contributions of this paper are:

1. Discovery of new side channels in RDMA-based systems
that leak client RDMA access patterns;

2The definition of accuracy throughout the paper is the percentage of
successful guesses over total guesses.

Server Machine

RDMA Network

 RNIC SRAM

 Main Memory CPU

Client Machine

Attacker

Client Machine

Victim

QP MR PTE

PCIe
PTEMRData

Figure 1: Attack Environment and RNIC Architecture.
The attacker and the victim are both clients that can access data in
the server machine’s memory throuth RDMA.

2. Reverse engineering of the most widely used RNIC hard-
ware architecture, which can be leveraged in designing
efficient side channels;

3. Design, implementation, and evaluation of a set of Pythia
side-channel attacks, which are fast, accurate, and can
be launched solely from a separate machine across the
network;

4. A case study of Pythia in a real-world setting;

5. Discussion of possible mitigations, most of which are
uniquely applicable to RDMA systems.

Pythia is the first work that explores side-channel vulnera-
bilities in RDMA and exploits the vulnerabilities to launch
attacks on RDMA-based datacenter systems. With today’s
datacenters all having robust defenses against direct sniffing
or hijacking of network traffic, side channels are more feasible
attack mechanisms and we believe that our work raises seri-
ous security concerns in a young but already widely-adopted
network technology.

We have responsibly disclosed the weaknesses to Mellanox
and Crail. Our implementation of Pythia is publicly available
at https://github.com/Wuklab/Pythia.

2 Background on RDMA

2.1 RDMA Basics
Remote Direct Memory Access, or RDMA, is a network
technology designed to offer remote low-latency, low-CPU-
utilization access to exported memory regions. RDMA sup-
ports both one-sided and two-sided communication. One-
sided RDMA operations directly access memory at a re-
mote node without involving the remote node’s CPU, simi-
lar to DMA on a single machine. Two-sided RDMA opera-
tions involve both sender and receiver processing, similar to
send/recv in traditional network messaging.

694 28th USENIX Security Symposium USENIX Association

https://github.com/Wuklab/Pythia

RDMA improves performance along several dimensions.
First, one-sided RDMA requests bypass the CPU of the re-
ceiver. Second, applications issue RDMA requests directly
from user space, bypassing kernel and avoiding kernel trap
cost. Third, RDMA avoids memory copying (a technique
called zero-copy). As a result, RDMA achieves low-latency,
high-throughput performance.

There are three implementations of RDMA: InfiniBand
(IB) [10, 11], RoCE [8, 9], and iWARP [63]. All implemen-
tations follow the standard RDMA protocol [64]. Among
them, RoCE, or RDMA over Converged Ethernet, implements
the RDMA protocol over standard Ethernet (RoCEv1) and
UDP (RoCEv2), and is the preferred technology in existing
datacenters [32].

One-sided RDMA is the key area where significant perfor-
mance and CPU utilization improvements over other network
technologies happen. Thus, we focus on one-sided RDMA. To
perform a one-sided RDMA operation, an application process
at a receiver node needs to first allocate a consecutive virtual
memory space and then use the virtual memory address range
to register a memory region, or MR, with the RNIC. An appli-
cation can register multiple MRs over the same or different
memory spaces. The RNIC will assign a pair of local and re-
mote protection keys (called lkey and rkey) to each MR. This
application then conveys the virtual address of the MR and
its rkey to processes running on other nodes. After building
connections between these other nodes (senders) and the node
that the MR-registering application runs on (receiver), these
processes can use 1) a virtual memory address that falls in the
MR’s virtual memory address range, 2) a size, and 3) the rkey
of the MR to perform one-sided RDMA read and write. In
RDMA’s term, a connection is called a Queue Pair, or QP.

2.2 RDMA NICs
RDMA NICs, or RNICs, are where most RDMA functionali-
ties are implemented. They usually contain complex hardware
logic that implements the RDMA protocol and some SRAM
to store metadata, and they are often connected to the host’s
PCIe bus (allowing the card access to main memory through
DMA). Because of the need to bypass the kernel and re-
ceiver’s CPU, most RDMA functionalities and data structures
have to be offloaded to the RNIC hardware.

An RNIC’s on-board SRAM stores three types of metadata.
First, it stores metadata for each QP in its memory. Second,
it stores lkeys, rkeys, and virtual memory addresses for all
registered MRs. Third, it caches page table entries (PTEs) for
MRs to obtain the DMA address of an RDMA request from
its virtual memory address. RNICs have a limited amount
of on-board SRAM which can only hold metadata for hot
data. When the SRAM is full, an RNIC will evict its cached
metadata to the main memory on the host machine, and on a
future access, fetch the evicted metadata from the host main
memory back through the PCIe bus. The timing difference
between an RDMA access whose metadata is in RNIC SRAM

and one that is not is what we exploit in our side-channel
attack. The SRAM architecture is vendor-specific and not
disclosed or specified in the RDMA standard. We reverse
engineer the SRAM architecture of the state-of-the-art RNIC
in Section 4.4.

2.3 RDMA-Based Applications
RDMA was originally designed for high-performance com-
puting environments, and it has been a popular choice of
network system in these environments for the past two
decades [34, 44, 54]. In recent years, major datacenters and
public clouds adopted RDMA for its low CPU utilization and
superior performance. For example, Microsoft Azure [73]
and Alibaba [6] have deployed RDMA with RoCE at large,
production scale.

Many datacenter systems and applications have been ported
to or rebuilt with RDMA. These include in-memory key-
value stores [7, 24, 25, 40, 56, 57, 70], in-memory databases
and transactional systems [19, 83, 88], graph processing sys-
tems [68, 85], distributed machine learning systems [15],
consensus implementations [60, 80], distributed non-volatile
memory systems [45,67,93], and remote swap systems [5,31].
Most of these applications use both one-sided and two-sided
RDMA operations, with some being pure one-sided [14, 88].
Our work is applicable to all RDMA-based applications that
use one-sided RDMA (but not necessary purely one-sided).

3 Threat Model

In our attack, there are three parties: the server which hosts
data in its main memory for other client machines to ac-
cess (e.g., an in-memory database or an in-memory key-value
store), the victim who accesses the server’s in-memory data
through RDMA, and the attacker who tries to infer the vic-
tim’s accesses and access patterns. The attacker and the victim
are both normal clients that can access the data store service
the server provides, and they run on separate machines. Fol-
lowing the threat models of related work that introduces and
evaluates side channels, we assume that the attacker does not
have direct control over the victim. As victim and attacker ex-
ecute on different machines and communication to the server
happens through the network, we assume that the attacker
cannot observe the victim’s network packets (as otherwise,
the attacker could directly infer the accessed addresses and
values as RDMA is currently not encrypted). This assumption
is reasonable as sniffing victim’s packets would require an
attacker to have root access on either the victim’s machine
or the server’s machine [52, 72, 74] or to launch man-in-the-
middle attack to the network, both of which are well defended
in cloud datacenters. We also assume that the server can-
not directly observe memory accesses of either the victim
or the attacker as both victim and attacker interact with the
server through one-sided RDMA operations, not involving
the server’s CPU.

USENIX Association 28th USENIX Security Symposium 695

4 Side-Channel Attacks on RDMA

RDMA exposes node-internal memory to external hosts. Due
to best practices of optimizing accesses and caching, cur-
rent RDMA hardware is vulnerable to a variety of timing
side channels. We present an overview of RDMA-based side
channels, two basic attacks, refined attacks with our reverse
engineered knowledge of RNIC internals, and evaluation re-
sults of the attacks. Unless otherwise stated, all our experi-
ments use three machines, each equipped with a Mellanox
ConnectX-4 100 Gbps network adapter [48], two Intel Xeon
E5-2620 2.40GHz CPUs, and 128 GB main memory. They
are connected with a Mellanox SB7700 100 Gbps InfiniBand
switch [50]. One machine is used as the server that serves
in-memory data through RDMA. The other two machines
are the victim client machine and the attacker client machine,
both of which can perform RDMA operations to access data
on the server. In all the experiments in this section, the vic-
tim has a 50% chance of accessing the targeted data that the
attacker tries to infer accesses on.

4.1 Attack Overview
The basic idea of our side-channel attacks is to exploit two
weaknesses in RNIC: 1) the RNIC caches metadata in its
SRAM, RDMA accesses whose metadata is not in SRAM
must wait until that data is fetched from main memory, and
2) all RDMA accesses from all applications share the RNIC
SRAM. As explained in Section 2.2, RNICs store three types
of metadata in their SRAM: QP information, MR information,
and PTEs. An RDMA access involves all three types of meta-
data: upon receiving a network request, an RNIC needs to
locate which QP the request belongs to, which MR it falls into,
and which page it is accessing. If any of these metadata is
not in the RNIC SRAM, the RNIC will fetch it from the host
memory, stalling the request until the required data arrives. By
exploiting this timing difference, we can launch side-channel
attacks to know which QP, which MR, and which PTE the
victim has accessed.

Traditional CPU-cache-based side-channel attacks take
three major forms: prime-based (e.g., PRIME+PROBE [1–4,
42,59,75,90]), flush-based (e.g., FLUSH+RELOAD [86]), and
evict-based (e.g., EVICT+RELOAD [30]). Because RNICs
do not provide any interface to flush their SRAM, all flush-
based side-channel attacks such as FLUSH+RELOAD [86] and
FLUSH+FLUSH [29] are incompatible with RDMA. All the
operations that are needed in prime-based and evict-based
attacks can be implemented through RDMA network requests
that an attacker performs over the network. Attackers can hide
their traces during the attacks, since one-sided RDMA reads
are oblivious to the server or other clients. Hardware perfor-
mance counters [35] may help servers track DMA traffic, but
it is challenging to associate traffic with RDMA accesses or
attacks. Even if the server suspects that an attack is happening,
it is still hard, in practice, to attribute an attack based on traffic

counters.
For the rest of the paper, we focus on RDMA-based

EVICT+RELOAD attacks. PRIME+PROBE attacks are also
possible on RDMA and we briefly discuss them in Section 7.

4.2 Unique Advantages and Challenges
There are three unique advantages for attackers in RDMA
systems. First, RDMA’s one-sided communication pattern
allows the attacker to hide her traces, since the receiving node
is unaware of any one-sided accesses. Second, the RDMA
network is much faster both in latency and in bandwidth
than traditional datacenter networks. The latest generation
of RDMA switches and RNICs can sustain 200 Gbps band-
width and under 0.6 µs latency [53]. RDMA’s superior perfor-
mance enables fine-grained, high-throughput, timing-based
side-channel attacks over the network. Finally, RDMA’s one-
sided communication bypasses the sender’s OS and does not
involve CPU at the receiver, both of which help reduce distur-
bance to timing-based attacks.

At the same time, attacking the RNIC presents several
novel challenges that no CPU-cache-based side-channel at-
tack experiences. First, it is hard to discover efficient side
channels in RNIC hardware. Unlike CPU caches, there is no
public knowledge of how RNICs organize or use their SRAM.
RNICs store different types of information in SRAM com-
pared to a linear layout of CPU caches. Second, we set a strict
threat model where attacks are launched from a separate ma-
chine that is different from the victim’s machine and the server
machine. This goal means that attacks have to be performed
using RDMA network requests only. Finally, since our side
channels are established over the network, noise in the net-
work could potentially increase difficulties for timing-based
attacks.

4.3 Basic Attack
Before presenting our side-channel attacks, we first discuss
the type of victim information we choose as our attack target
and the type of metadata we use to perform the eviction phase.
Notice that these two dimensions are orthogonal and both
have three options: QP, MR, and PTE.

Among these three types of information, knowing which
QP the victim accesses leaks little information about the vic-
tim and usually is not useful in real attacks. MRs and PTEs
can both leak more information. Using PTE as the attack tar-
get unit will reveal memory page (in virtual memory) accesses.
All OSes use 4 KB as the default page size. The MR size is
decided by the application that creates and registers it. For
performance reasons [55], most RDMA-based applications
choose to use large MRs. Thus, we choose PTE as the target
of our attack. However, most of our ideas and techniques can
be used to perform attacks that target MRs.

After choosing the attack target, we must decide what meta-
data to use to evict RNIC SRAM. To answer this question,
we tried to evict SRAM using the three types of metadata and

696 28th USENIX Security Symposium USENIX Association

Algorithm 1: MR-based eviction
Input : a target victim virtual memory address
Output :

if No access to sufficient amount of MRs then
start process at server to create MR_set;

else
foreach MR that the attacker has access to do

if MR 6= victim’s MR then
insert MR into MR_set;

end
end

end

foreach MR in MR_set do
perform 8-byte RDMA-read to MR;

end

reload our targeted information (i.e., PTE). We can success-
fully evict a PTE with PTEs, no matter whether or not the
PTEs we use to evict belong to the same MR as the target
PTE. We can also evict an MR with other MRs. We further
find that when an MR is evicted, PTEs of all the pages be-
longing to this MR will also be evicted. But we can only use
QPs to evict QP. This behavior implies that RNICs isolates
the SRAM used for QPs and for MRs and PTEs. We present
the evaluation results in Section 4.5. From this initial test, we
discovered that we can evict a PTE by either evicting the MR
it belongs to (using a large number of MRs) or by evicting
the PTE directly using a large number of other PTEs.

4.3.1 Eviction by MRs

We now present our attack that evicts SRAM with MRs,
PythiaMR. Algorithm 1 presents the pseudocode of
PythiaMR.

Because the MR-based attack requires the attacker to use
many MRs to evict the server’s RNIC SRAM, the attacker
requires access to a sufficient amount of MRs. If the number of
MRs is restricted, the attacker may resort to a (hypothetical)
MR gadget that allows her to register multiple MRs. One
approach is to launch a process on the server that allows her
to register multiple MRs (see Section 5.1 for details). Since
RDMA provides the functionality of registering multiple MRs
with the same memory space, the attacker process at the server
only needs to allocate a small memory space (of arbitrary
size) and register it multiple times. This process then needs to
send the rkeys corresponding to these registered MRs to the
attacker running on a client machine.

In the eviction phase, the attacker performs one-sided
RDMA reads from a client machine to the MRs it has access
to at the server (except for the MR that the victim PTE is in).
Since the server’s RNIC needs to fetch and store metadata for
each MR when the MR is accessed, its SRAM will eventually
be filled with MR metadata that the attacker accessed.

Algorithm 2: Naive PTE-based eviction
Input : a target victim virtual memory address
Output :

VictimVPN← victim_address >> 12;
generate eviction_set using VictimVPN;

foreach VPN in eviction_set do
perform 8-byte RDMA-read to address VPN << 12;

end

Algorithm 3: Reload and predict
Input : a target victim virtual memory address
Output :prediction of if the victim has accessed the target

address

determine Threshold according to network status;

start timer;
RDMA-read victim_address;
end timer;
time← elapsed_time;

if time < Threshold then
output accessed;

else
output not_accessed;

end

4.3.2 Eviction by PTEs

Alternatively, we can use PTEs to establish a side channel.
Compared to MR-based attacks, PTE-based attacks can often
be performed entirely from a client machine. Algorithm 2
presents the pseudocode of our PTE-based attack.

To perform PTE-based eviction, the attacker issues one-
sided RDMA reads to a sufficiently big memory space (1 GB
to 4 GB for the RNICs we study). Most RDMA-based appli-
cations are services that provide in-memory data storage and
use a large amount of memory, thus meeting the requirements
of PTE-based attacks.

Accessing different memory pages will cause the RNIC to
fetch PTEs to its SRAM. Because all accesses to the same
memory page will hit the same PTE, we only need to perform
one RDMA read (with the smallest RDMA operation size
of 8 bytes) in every 4 KB virtual memory address range. To
avoid loading the PTE that the victim accesses, we skip the
memory addresses that are close to the victim address.

4.3.3 Reload and Predict

After the eviction phase (either by MRs or by PTEs), the
attacker reloads the targeted victim data. If the reload time
is smaller than a threshold, the attacker determines that the
data has been accessed by the victim. Algorithm 3 presents
the pseudocode of the reload and prediction process.

The threshold used at the reload time directly affects the
result of an attack. Different from traditional CPU-cache side-

USENIX Association 28th USENIX Security Symposium 697

channel attacks, our attacks are in a distributed environment
where network status can vary with other workloads in the
datacenter. Thus, instead of a fixed threshold, we adapt the
threshold dynamically according to the network status. To
adjust the threshold, the attacker periodically measures the
latency of an RDMA operation which hits the RNIC SRAM
and the latency of one that misses the SRAM. The threshold
can be set as a value in the middle of these two latencies.

In addition to using an average threshold, other more ad-
vanced methods can also be used to determine the reload
result. In fact, we design a statistical method to determine
the reload result for our real-application attacks, as will be
presented in Section 5.

4.4 Finding PTE Eviction Sets
We call the attack that uses the eviction phase presented in Sec-
tion 4.3.2 the basic PTE-based attack, or PythiaPTEBasic. In
order to reduce the time to perform eviction and improve the
efficiency of PythiaPTEBasic, we search for a smaller eviction
set that achieves similar accuracy as PythiaPTEBasic. Specifi-
cally, we perform a set of experiments to systematically re-
verse engineer the internal organization of RNIC SRAM and
use our learned knowledge to construct a minimal PTE evic-
tion set.

Reverse engineering RNIC SRAM organization is signifi-
cantly harder than reverse engineering traditional CPU caches
because there is no public knowledge of the internal organi-
zation of any RNIC. All we know is that the RNIC caches
three types of metadata (PTEs, MRs, and QPs) in its SRAM.
Moreover, reverse engineering the RNIC involves network
operations which add noise compared to a well-isolated CPU
cache environment.

First attempt in finding index bits. We initially guess
that RNICs organize their in-SRAM PTE caches as set-
associative caches, similar to how CPUs organize their caches.
To validate this guess, we assume that the PTE cache is or-
ganized as a fixed number of sets (e.g., 2, 4, 8) and different
number of bits (e.g., 1, 2, 3) are used to calculate the index into
these sets. Since PTEs are identified by virtual page number
(VPN), we can ignore the lowest 12 bits (with page size being
4 KB). We then use the lowest K bits of VPNs to calculate the
index into one of the 2K cache sets. These K bits correspond
to the 12th to the (11+K)th bits of the full virtual memory
address (we call the lowest bit the 0th bit and count upwards
to higher bits).

We call the VPN of a victim memory address VictimVPN.
The eviction set of a VictimVPN is formed by setting the same
K bits as the VictimVPN and varying other bits in VPNs. To
put it another way, for every 2K pages, we pick one VPN to
add to the eviction set. We keep adding distinct VPNs in this
way until the number of VPNs in the set reaches an eviction
set size. Algorithm 4 presents the pseudocode of how we
form an eviction set. This is our straw-man approach and we
call the PTE-based attack that uses this approach of forming

Algorithm 4: Forming Eviction Set - Strawman
Input :VictimVPN, eviction set size, num of index bits
Output : an eviction set targeting VictimVPN

eviction_set← {};
mask = VictimVPN & (1 << num_index_bits−1);

for i = 0 to evict_set_size do
VPN ← i << num_index_bits+mask;
if VPN 6= VictimVPN then

insert VPN into eviction_set;
end

end

output eviction_set;

eviction sets PythiaPTEStraw.
Figure 2 plots the attack accuracy when we vary K from

0 to 15. We use two groups of attacks on VictimVPN 0. In
the first group (the solid line), each eviction set has 27 = 128
operations. The accuracy keeps improving until K is 13 and
then flattens out. This result hints at the possibility of the
RNIC using a set-associative cache with 213 = 8192 sets. It
is because when K is smaller than 13, part of the operations
in the eviction set will fall into a different cache set as the
VictimVPN’s set, making the eviction set too small to evict
the whole victim’s cache set.

To verify this guess, we perform a second group of attacks
(the dashed line). In this group, we double the eviction set size
every time when we decrease K by 1. For example, we set the
eviction set size to 128 when K is 13 and to 256 when K is 12.
If the RNIC uses 8192 cache sets, then when K is 13, all of
the eviction set will fall into the VictimVPN’s set, and when K
is 12, half of the eviction set will fall into the VictimVPN’s set.
These two attacks will then have the same effect in evicting
the VictimVPN. Our results confirm this assumption. When K
is less than 13, the attack accuracy is similar to when K is 13.
However, when K is larger than 14, the accuracy drops. This
is because we only use 64 and 32 eviction set size when K
is 14 and 15, and these eviction sets are not large enough to
evict a whole cache set.

From this set of experiments, we suspect that virtual mem-
ory address bits 12 to 24 are used in calculating the PTE cache
set index and that each PTE cache set has 128 entries (i.e., a
128-way cache).

Discovering prefetching behavior. Our guess above uses
13 bits as the index into the PTE cache and assumes that
the PTE cache has 8192 sets. If this guess is correct,
then an eviction set whose (VPN%8192) is different from
(VictimVPN%8192) should fall completely into a different
cache set from the victim’s. To verify this assumption, we
perform another set of attacks to the VictimVPN 0. In the
nth attack, we construct its eviction set using VPNs where
(VPN%8192 = n), and we change n from 0 to 8191.

Figure 3 plots the accuracy of the first 64 attacks (the rest of

698 28th USENIX Security Symposium USENIX Association

Number of Index Bits

0 3 6 9 12 15

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

Doubling eviction−set−size

Fixed eviction−set−size

Figure 2: Effect of Number of In-
dex Bits.

VPN Offset

0 16 32 48 64

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

VictimVPN 0

VictimVPN 20

VictimVPN 50

Figure 3: Effect of Eviction Set Off-
set. X axis represents the first VPN in
an eviction set (i.e., the “offset” of an
eviction set”).

High Index Start Bit

15 17 19 21 23 25 27 29

A
c
c
u
r
a
c
y

(
%
)

70

80

90

100

Figure 4: Effect of Secondary In-
dex. Error bars show the standard devi-
ation across 1000 VictimVPNs.

the attacks have the same pattern and we omit them from the
figure). The black solid line shows the result of VictimVPN
0. Surprisingly, not only the 0th attack (VPN%8192 = 0) has
high accuracy, but also the 1st to the 7th attacks. To further un-
derstand this effect, we perform the same set of attacks on an-
other two VictimVPNs, 20 and 50. With these VictimVPNs, the
accuracy is high from 16th to 23rd attacks and 48th to 55th at-
tacks respectively. These results imply that evicting any VPN
within an eight-VPN range of (VictimVPN−VictimVPN%8)
to (VictimVPN−VictimVPN%8+7) has the same effect.

We suspect that the RNIC prefetches eight VPNs at a time.
This finding implies that instead of using 13 bits as cache
index bits as in PythiaPTEStraw, only the higher 10 bits (bits
[15:24]) are used for index and the lower 3 bits (bits [12:14])
are used for prefetching. The RNIC cache thus only has 210 =
1024 sets.

Discovering secondary index. Our attack strategies so far
work well (> 90% accuracy) with the VictimVPNs we tested
(e.g., 0, 20, 50). However, when we test the same attack strat-
egy on some other VictimVPNs (e.g., 6195, 30950), the accu-
racy can sometimes drop to around 75%. A dropped accuracy
means that our eviction set cannot evict the VictimVPN, i.e.,
the VictimVPN is in another cache set whose index is not the
same as the index calculated using bits [15:24].

We thus suspect that there exists another 10 bits that are
used to calculate where out of the 1024 sets a VictimVPN can
fall into. To answer this question, we use a moving window
of 10 bits, from bits [15:24] to bits [29:48], in the victim’s
virtual memory address. We randomly pick 1000 VictimVPNs
and attack each of them by forming an eviction set with an
index calculated with the moving window of 10 bits and an
index calculated with bits [15:24] (64 operations under each
index). We use two indices in this experiment because our
alternative experiment of using just the index calculated by
the moving window does not yield good accuracy. Figure 4
plots the average attack accuracy across 1000 VictimVPNs
and their standard deviation (in error bars). Bits [24:33] yields
the best average accuracy and smallest deviation. Thus, we
believe that these bits are used as a second index into the PTE
cache. Note that when the moving window is bits [15:24], the
accuracy deviation is high, indicating that using bits [15:24]
alone is not good enough.

33:24 14:12 11:0

Page OffsetPrefetchLow IndexHigh Index

24:15

virtual memory address
virtual page number (VPN)

Eviction set for victim VPN
0x10000000000XXX

128 waysindex

2

0
1

…
1024

Figure 5: Reverse-Engineered PTE Cache Organization.

Complete algorithm. Figure 5 presents the final PTE
cache architecture we speculate RNICs use based on our
reverse engineering results. The PTE cache has 1024 sets and
128 ways. A PTE can be cached at one of the two cache sets.
Two groups of bits are used to calculate the index of these
two cache sets. The first group is bits [15:24], and the second
group is bits [24:33]. We call them low index bits and high
index bits. From our observation, both the high and the low
index bits can decide which cache set will be used to cache a
PTE. A PTE will be cached in either the cache set calculated
by the high index bits or the cache set indicated by the low
index bits. Every time when a PTE is accessed, its neighbor-
ing PTEs will also be fetched to the same set and bits [12:14]
determine the 8 PTEs that will be prefetched.

Based on this reverse-engineered architecture, we present
the final PTE-based EVICT+RELOAD attack, PythiaPTEFull.
We form half of the eviction set of a VictimVPN with VPNs
that have the same low index bits as the VictimVPN and an-
other half with VPNs that have the same high index bits as
the VictimVPN. Algorithm 5 presents the complete algorithm.

4.5 Evaluation Results
We now present our evaluation results with the attacks de-
scribed above.

4.5.1 Isolated Environment

We performed a set of experiments with three machines as de-
scribed in the beginning of this section in our lab environment

USENIX Association 28th USENIX Security Symposium 699

Algorithm 5: Forming Eviction Set - Full
Input :VictimVPN, eviction set size
Output : an eviction set targeting the victim virtual memory address

eviction_set← {}; prefetch_bits← 3; index_bits← 10; high_index_start← 12;
low_index← (VictimVPN >> prefetch_bits)&(1 << index_bits−1); mask_low← low_index << prefetch_bits;
high_index← (VictimVPN >> high_index_start)&(1 << index_bits−1); mask_high← high_index << prefetch_bits;

for i = 0 to evict_set_size/2 do
VPN ← i << (index_bits+prefetch_bits)+mask_low;
if VPN 6= VictimVPN then

insert VPN into eviction_set;
end

end

for i = 0 to evict_set_size/2 do
VPN ← i << (index_bits+high_index_start)+mask_high;
if VPN 6= VictimVPN then

insert VPN into eviction_set;
end

end

output eviction_set;

Latency (us)
0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

20

40

60
Hit

Miss−PTE

Miss−MR

Figure 6: Timing Differences. Each
line presents the timing differences of
each case over 1000 trials.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 7: Accuracy of Attacks. Er-
ror bars show the standard deviation
across 1000 VictimVPNs.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10
L
a
t
e
n
c
y

(
u
s
)

0

50

100

150

200

250
MR

PTE−Full

PTE−Straw

PTE−Basic

Figure 8: Latency of Attacks.

without any other network traffic.

Timing differences. Our side channels are based on timing
differences between consecutive loads of the same memory
address. To measure miss latency, we evict the RNIC SRAM
using either MRs or PTEs and then issue an RDMA operation.
To measure hit latency, we simply repeatedly issue the same
RDMA operation. The measurements in Figure 6 show a
clear timing difference between hit and miss latency. When
we use MRs to evict SRAM, both the victim’s MR and all the
PTEs under this MR will be evicted. An RDMA operation
afterwards will need to fetch both the PTE and the metadata
for the MR containing the page from host main memory
through the PCIe bus. On the other hand, using PTEs to evict
will only evict the victim’s PTE and reloading will only fetch
the PTE. This explains why the miss latency of MR-based
eviction is higher than that of PTE-based eviction.

Attack accuracy and latency. Figures 7 and 8 plot the
accuracy and latency of four attack strategies: PythiaMR,
PythiaPTEBasic, PythiaPTEStraw, and PythiaPTEFull, as we
change the eviction set size. As expected, with the same evic-
tion set size, the time to perform these four attacks is similar,

since they all use the same amount of RDMA operations.
With bigger eviction sets, all attacks become slower.

PythiaPTEFull’s accuracy is the highest: it can achieve 97%
accuracy with only 57 µs per attack (when the eviction set
size is 256). PythiaMR and PythiaPTEBasic have low accu-
racy, although we do observe PythiaMR’s accuracy improves
significantly as the eviction set size increases (PythiaMR’s
accuracy reaches 90% with 215 eviction set size). This re-
sult demonstrates the benefit of using our reverse engineering
findings.

Another observation is that the accuracy of PythiaPTEFull
peaks when the eviction set size is 256 and remains the same
when increasing the size further. This implies that the PTE
cache has 128 ways, since we construct two cache sets with
256 entries in total.

Evaluation with different RNICs. All our experiments
so far are performed with the Mellanox ConnectX-4 RNIC
(most RDMA deployments in real datacenters use ConnectX-
4 [32, 47]). We further validate our attacks on Mellanox
ConnectX-5 [49] and ConnectX-3 [46] RNICs. ConnectX-5 is
the latest generation of RNICs from Mellanox and ConnectX-

700 28th USENIX Security Symposium USENIX Association

Latency (us)
0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 9: Timing Differences in
ConnectX-5. Each line presents the
timing differences of each case over 1000
trials.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 10: Accuracy of Attacks in
ConnectX-5. Error bars show the stan-
dard dev of 1000 VictimVPNs.

Latency (us)
0 1 2 3 4 5 6

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 11: Timing Differences in
ConnectX-3. Each line presents the
timing differences of each case over 1000
trials.

Latency (us)
0 1 2 3 4 5 6 7 8

P
e
r
c
e
n
t
i
l
e

0

10

20

30

40
Hit

Miss−PTE

Miss−MR

Figure 12: Timing Differences in
CloudLab. Each line presents the tim-
ing differences of each case over 1000
trials.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

A
c
c
u
r
a
c
y

(
%
)

0

20

40

60

80

100

PTE−Full

PTE−Straw

MR

PTE−Basic

Figure 13: Accuracy of Attacks in
CloudLab. Error bars show the stan-
dard deviation across 1000 VictimVPNs.

Eviction Set Size

2 6 2 7 2 8 2 9 2 10

L
a
t
e
n
c
y

(
u
s
)

0

100

200

300

400
MR

PTE−Full

PTE−Straw

PTE−Basic

Figure 14: Latency of Attacks in
CloudLab.

3 is the previous generation of ConnectX-4.
Figure 9 plots the timing results of SRAM hits and misses

(due to eviction by MRs and by PTEs) on ConnectX-5.
ConnectX-5’s performance is better than ConnectX-4 on all
cases. A clear timing difference between misses and hits re-
mains, and misses caused by MR-based eviction are slower
than by PTE-based eviction. Figure 10 plots the accuracy of
the four types of attacks. The accuracy results are similar to
ConnectX-4. Attack latency is also similar to ConnectX-4
and we omit the latency figure. Thus, we can confirm that
ConnectX-5 uses a similar SRAM architecture as ConnectX-
4, and it has the same side channels as ConnectX-4. We can
launch the same attacks on ConnectX-5 with high accuracy
and low latency.

We then perform the same set of experiments on ConnectX-
3, see Figure 11. The hit latency with ConnectX-3 is longer
than ConnectX-4. As hardware evolves, its internal perfor-
mance often improves, which can explain why hit latency
improves over generations of Mellanox RNICs. Surprisingly,
the miss latency due to MR-based eviction is shorter on
ConnectX-3 than on ConnectX-4 and ConnectX-5. Misses in
RNIC SRAM involve the RNIC fetching metadata from the
host main memory. We suspect the reason why miss perfor-
mance drops in newer generations is because RNICs add more
metadata for each data entry in newer generations, requiring
longer time to fetch more metadata. As a result, the timing
difference between miss and hit for ConnectX-3 is small.

Comparing ConnectX-3, ConnectX-4, and ConnectX-5, the
three generations of RNICs from Mellanox, we found that as
hardware RNICs evolve, their performance improves quickly,

while the PCIe bus and host memory speed improve very
slowly. As a result, the discrepancy between hit performance
and miss performance becomes larger and we believe that this
trend will continue in the future.

4.5.2 Public Cloud Environment

CloudLab [65] is a public cloud that has close to 15,000 cores
distributed across three sites in the United States. We eval-
uated our attacks on a cluster that is connected with RoCE
switches. Each machine in this cluster equips two Mellanox
ConnectX-4 25 Gbps adapters. These RNICs are of the same
product generation as our lab’s ConnectX-4 RNICs, with the
difference that our RNICs are 100 Gbps adapters. Both types
of adapters can be configured for Ethernet (RoCE) and for
InfiniBand. We configure ours for InfiniBand, and Cloud-
Lab’s are configured for RoCE. Apart from RNIC differences,
CloudLab is used concurrently by many different users; it has
a more complex, hierarchical network topology; and it uses a
RoCE network instead of InfiniBand. At the time of our test,
129 out of 199 physical machines in the cluster were in use.

We repeat the same set of experiments as Section 4.5.1.
Similar to our lab’s experiments, we use three machines, a
server, a victim client, and an attacker client. Figure 12 plots
the timing difference of RNIC SRAM hit and misses (due
to MR-based eviction and PTE-based eviction). Similar to
our isolated environment results, misses caused by MR-based
eviction are slower than misses caused by PTE-based eviction,
and both types of misses are slower than hits. In CloudLab’s
shared network and shared machine environments, the laten-
cies of all accesses are longer than in our lab environment,

USENIX Association 28th USENIX Security Symposium 701

but the timing differences are still clear.
Figures 13 and 14 plot the accuracy and latency of the four

types of attacks in CloudLab. Similar to the results in Fig-
ures 7 and 8, With the same eviction set size (and thus similar
latency), PythiaPTEFull and PythiaPTEStraw have higher ac-
curacy than PythiaMR and PythiaPTEBasic. However, these
attacks have larger variation in accuracy compared to attacks
in our lab’s environment because of the more dynamic envi-
ronment in CloudLab.

5 Attacking Real RDMA-Based Systems

To demonstrate the feasibility of launching side-channel at-
tacks on real RDMA-based applications, we design and per-
form a set of attacks on Crail [7, 70], an open-source RDMA-
based key-value store written in Java. A Crail system consists
of several roles: a server which stores key-value pairs, a na-
menode which stores metadata and manages the control path,
and clients which issue key-value pair gets and sets to the
server via a Crail-provided API. We install each component
on a separate machine and connect all of them with RDMA.
This section presents our design and evaluation of attacks on
Crail.

5.1 Attacks
Based on the attack primitives described in Section 4, we
designed three attacks on Crail. All these attacks have the
same goal: knowing whether or not the victim Crail client
accesses a specific key-value pair.

MR-based attack (PythiaCrailMR). Our first attack uses
MR-based eviction as described in Section 4.3.1. This attack
requires three attacker processes. The first is a Crail client
process (Pc). The second and the third processes run our attack
code, with the second one running on the Crail server machine
(Ps) and the third one running on any other machine (Pa) (it
can be the same machine as the one where Pc runs). In the
preparation phase, Ps registers a large number of MRs. In
the eviction phase, Pa issues one-sided RDMA reads to these
MRs. Finally, Pc performs a Crail get operation to reload
the victim key-value pair. PythiaCrailMR requires Ps and Pa
because MR-based attacks need to access many MRs but by
default Crail only registers a small set of MRs.

PTE-based attack (PythiaCrailPTE). The second attack
uses PTE-based eviction. In this attack, we require three pro-
cesses as in the MR-based attack: Pc, Ps, and Pa. In the prepa-
ration phase, we first use Ps to allocate a big chunk of memory
and register it with an MR. In the eviction phase, Pa performs
one-sided RDMA reads to different VPNs in the allocated
memory space. Afterwards, Pc issues a Crail get request to
the victim key-value pair.

Our reverse engineering results in Section 4.4 can be lever-
aged to reduce the eviction set size in PythiaCrailPTE. How-
ever, to form the eviction set, we need to know the index of

the SRAM cache set(s), which is calculated by the virtual
memory address. Without modifying the source code of Crail
which is written in Java, it is difficult to directly know the
virtual memory address of a target key-value pair. Instead, we
use a “learning” phase before launching the actual attack to
determine the eviction set to use for a target key-value pair.
Specifically, we let Pc access the target key-value pair and let
Pa try all 1024 different cache sets for eviction. After 1024
trials, we pick the cache set that yields the best accuracy as
our attack eviction set.

Client-only attack (PythiaCrailClient). Our last attack on
Crail is launched exclusively from a regular Crail client pro-
cess and requires no other privileges or resources. The attacker
(as a normal Crail client) issues Crail get requests to different
key-value pairs during the eviction phase. After the eviction
phase, it performs a Crail get operation to the victim key-value
pair.

Our initial design of PythiaCrailClient randomly picks key-
value pairs to access during the eviction phase. However, we
soon discovered two issues with this naive approach. First, it
needs a large number of key-value pairs to effectively evict the
target key-value pair. Doing so not only makes the attack slow
but also requires the Crail system under attack to already be
storing many key-value pairs. Second, we found that the Crail
system becomes slower and unstable as the server processes
more client requests. We suspect this to be caused by Crail’s
own (memory) management overhead. Unstable access la-
tency makes our timing-based attack harder and prohibits an
accurate prediction during the reload phase. We improve our
initial design with the following optimization. We selectively
choose a small set of key-value pairs as the eviction set. We
make the assumption that key-value pairs are sequentially
allocated in chunks of memory and pick the pairs that are
likely to be in the same RNIC SRAM cache set as the victim
key-value pair. After reducing the eviction set size, our attack
runs very fast. Instead of continuously launching the attack in
loops, we add some sleep time between eviction and reloading
so that we do not issue too many Crail requests to make Crail
unstable.

Probabilistic prediction. Under real workloads and noisy
network environments, we found that a simple threshold as
used in Section 4.3 cannot accurately determine if the victim
has accessed the target data. Thus, we use a more dynamic
and adaptive approach to predict the outcome of the attack.
Similar to the approach used in TLBleed [28], we perform a
learning phase to train a classifier of operation latency with
KNN [22] before the attack. We use the trained model to
predict the probability of a reload latency implying a victim
access (i.e., a hit).

5.2 Results
We evaluated PythiaCrailMR, PythiaCrailPTE, and
PythiaCrailClient using both controlled tests and work-

702 28th USENIX Security Symposium USENIX Association

Timeline (ms)

0 30 60 90 120 150A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 15: PythiaCrailMR

Timeline (ms)

0 20 40 60 80 100 120 140A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 16: PythiaCrailPTE

Timeline (ms)

0 20 40 60 80 100 120 140A
c
c
e
s
s

P
r
o
b
a
b
i
l
i
t
y

(
%
)

0

20

40

60

80

100

Victim Attacker

Figure 17: PythiaCrailClient

loads that model real datacenter key-value stores.

5.2.1 Controlled Test

We first compare the latency of a Crail client key-value pair
get operation that hits RNIC SRAM, a client get that misses
RNIC SRAM after the eviction phase in PythiaCrailMR, in
PythiaCrailPTE, and in PythiaCrailClient. In these controlled
tests, the victim client has a 50% chance of accessing the
targeted key-value pair that the attacker tries to infer accesses
on. Figure 18 plots these four types of latencies, each per-
forming 1000 trials. All the three types of misses take longer
than hits, with the timing difference of PythiaCrailMR the
biggest and PythiaCrailClient the smallest. The timing differ-
ence implies that it is easiest to separate hits and misses with
PythiaCrailMR.

We launch the PythiaCrailMR, and PythiaCrailPTE, and
PythiaCrailClient attacks by first performing their respective
eviction phases. Next, we let victim access or not access
the target key-value pair. Finally, we measure the time to
reload the key-value pair and compare it with a threshold
we determined from the timing difference testing phase. As
expected, PythiaCrailMR gives the best accuracy. The accura-
cies of PythiaCrailMR, PythiaCrailPTE, and PythiaCrailClient
are 96%, 85%, and 79% respectively, and the time to perform
these attacks are 19ms, 0.1ms, and 0.3ms.

5.2.2 Macro-benchmark Results

Workloads. To evaluate how our attacks perform with
real datacenter key-value store workloads, we construct a
macro-benchmark with the Yahoo! Cloud Serving Bench-
mark (YCSB) [21] and statistics reported by Facebook in
their production key-value store [12]. YCSB provides key-
value get/set access pattern but no inter-arrival time between
requests. Facebook provides the inter-arrival time of requests
received at a server in its cluster, which includes requests
from all the clients to this server. We set each key-value pair
size to be 1 KB, the average key-value pair size reported by
Facebook.

Attack environment setup. In this experiment, the victim
(on a Crail client machine) executes our macro-benchmark
to access key-value pairs on a Crail server machine using
the Crail APIs. Since Facebook only provides aggregated
request inter-arrival time across clients and does not reveal

Latency (us)
3 5 7 9 11 13 15

P
e
r
c
e
n
t
i
l
e

0

3

6

9

12

15
Hit Miss−Crail

Miss−PTE

Miss−MR

Figure 18: Timing Difference in Crail. Each line presents the
timing differences of each case over 1000 trials.

how many clients there are, we use one client machine to
model the aggregated effect of all clients with the provided
inter-arrival time. We run an attacker process as a normal
Crail client on another machine. A fourth machine serves as
the Crail namenode. While the victim process executes the
macro-benchmark, we repeatedly perform PythiaCrailClient,
PythiaCrailMR, or PythiaCrailPTE to detect if the victim ac-
cesses a target key-value pair.

Results. Figures 15, 16, and 17 present the timeline of the
victim accessing the target key-value pair (red crosses) and
the attacker’s prediction (black dots with values as access
probability). All three attacks can capture most if not all vic-
tim accesses. Among them, PythiaCrailMR is the worst in
attack accuracy. This is because each attack in PythiaCrailMR
takes 19ms, which is much longer than the Facebook inter-
arrival time. As a result, PythiaCrailMR misses victim ac-
cesses that happen more frequent than its attack length. Both
PythiaCrailPTE and PythiaCrailClient run very fast and cap-
ture all victim accesses. In fact, these two attacks run so
fast that we add a sleep time of 1ms between evict and
reload to avoid issuing too many Crail requests and mak-
ing Crail’s performance unstable. Comparing PythiaCrailPTE
and PythiaCrailClient, PythiaCrailPTE’s predictions are of low
access probabilities and PythiaCrailClient has more predic-
tions of around 50% access probabilities. The attacker can
set a threshold accordingly to determine the final set of
victim accesses (e.g., those with probabilities > 60% for
PythiaCrailClient).

Overall, we believe PythiaCrailClient to be the most effec-

USENIX Association 28th USENIX Security Symposium 703

tive attack, since it predicts victim accesses with high confi-
dence and it requires the least amount of attacker resources:
PythiaCrailClient can be launched exclusively from a separate
client machine through the unmodified Crail client interface.
If attackers can run modified Crail clients, they can launch
more efficient side-channel attacks by forming the eviction
set with known virtual addresses.

6 Mitigation Techniques

Defending against RDMA-based side-channel attacks is pos-
sible and feasible. We discuss both mitigations for current
hardware as well as those for future hardware.

Huge virtual memory page or no virtual memory.
PTE-based attacks are only possible when RNICs cache
PTEs and when the attacker can form an effective eviction
set. One way to prevent PTE-based attacks is to force all
RDMA registrations and operations to directly use physical
memory addresses. When physical memory addresses are
used, RDMA does not need to access or cache PTEs, thereby
preventing PTE-based attacks. Registering physical memory
addresses is a privileged operation that RNICs allow the
kernel [76] and privileged users to perform [51]. However,
using physical memory addresses loses all the benefits of
virtual memory and introduces new security concerns.

Another method to defend against PTE-based attacks is to
use huge memory pages [24]. Using huge pages (e.g., 1 GB
pages) introduces two types of difficulties for attackers. First,
the attacker can only guess victim accesses at coarse granular-
ity (e.g., 1 GB). Second, the attacker will need to have access
to a huge memory space to form an eviction set with enough
PTEs.

Isolate server’s resource. Our experience with Crail
demonstrates that attacking Crail is difficult when the attacker
can only use Crail’s interface without the access to a large
number of PTEs or MRs and without knowing Crail’s data
layout in the virtual memory address space. Our experiments
show that for PythiaCrailMR and PythiaCrailPTE to work, an
attacker needs to run a process, Ps, on the server machine.
Otherwise, the attacker would not be able to launch those
attacks (although PythiaCrailClient still works). Thus, a server
that hosts RDMA service can prohibit normal users from
running any processes to help defend against side-channel
attacks. Various address randomization techniques can also
complicate attacks.

Separate protection domains. When we disclosed the at-
tacks in this paper to Mellanox, the Mellanox engineers stated
that separating Protection Domains (PDs) between different
clients and connections can potentially mitigate the attacks.
We evaluated this mitigation by moving the attacker to a dif-
ferent PD and found that doing so mitigates Pythia attacks.
Unfortunately, all existing RDMA applications that we are

aware of [7, 24, 83] use only one PD for higher performance.
Using multiple PDs results in low throughput and high la-
tency overhead (15% throughput reduction and 21% latency
overhead with 256 PDs in our experiments). We plan to fur-
ther investigate both attack and defense mechanisms when
separating PDs across clients.

Introduce noise. Our side channels are established on tim-
ing differences at the microsecond or sub-microsecond level.
Attacking Crail running real workloads is more difficult than
attacking raw RDMA accesses mainly because of Crail’s non-
deterministic performance overhead. Therefore, an effective
countermeasure is to introduce random latency overhead at
an RDMA-based application or in the datacenter RDMA net-
work, which, however, could impact application performance.

Detect and throttle attacker’s network traffic. Our at-
tackers can hide their attacks because one-sided RDMA op-
erations are completely hidden from the receiver CPU (the
server in our case). To detect these attacks, the server can de-
ploy traffic sniffing tools to sniff all incoming RDMA network
requests. If the sniffer detects heavy network activity from
a client, it can raise a flag that this client may be malicious.
If it further detects an access pattern that matches eviction
sets described in Section 4.4, this client is more likely to be
an attacker. This defense comes with the same drawbacks of
other heuristic-based defenses that an attacker may stay under
the detection threshold.

A further countermeasure is to throttle the maximum band-
width allowed at every client. If an attacker cannot issue
enough operations to evict RNIC SRAM, its attack accuracy
will drop significantly. However, throttling client bandwidth
can hurt normal clients’ performance.

Better hardware design. All existing RNICs share their
SRAM across all users and across all connections. Because of
this, an attacker can evict a victim’s PTE and MR even when
the attacker and the victim have different connections to the
server. If RNICs can partition their SRAM to different isolated
domains for different connections, then attackers can never
evict victim’s PTEs or MRs. However, isolation resources at
hardware level will inevitably hurt performance and increase
hardware complexity, which gives little incentive for RNIC
vendors to change their hardware design.

7 Discussion

We now briefly discuss the implications, impact, and limita-
tions of Pythia, and some other attacks on RDMA that can be
designed based on Pythia.

7.1 RDMA Vulnerabilities
We discovered new vulnerabilities in RDMA systems that
are fundamental to the design of RDMA and not specific to
just one RDMA device. RNICs cache metadata as a result

704 28th USENIX Security Symposium USENIX Association

of RDMA’s design philosophy of one-sided network commu-
nication. Because one-sided operations cannot involve host
CPUs, RNICs have to handle and serve RDMA requests on
their own, which involves accessing various types of meta-
data. With limited on-board SRAM, RNICs cannot store all
the metadata and have to move metadata between their SRAM
and the host machine’s main memory through the PCIe bus.
As a result, there exists timing difference between RDMA
operations that hit or miss SRAM, and this timing difference
keeps increasing as RNICs evolve over generations.

We demonstrated the feasibility of exploiting the above
vulnerability to launch side-channel attacks on RDMA-based
systems. Pythia attacks are fast and accurate, and they can be
performed completely from the network. Moreover, attack-
ers can hide their traces because the attack uses one-sided
network requests.

Both the RNIC side channels we discovered and our at-
tacks’ unique advantages are fundamental to one-sided net-
work communication. One-sided communication offers many
performance and cost benefits that are attractive for datacenter
systems. However, it also raises new security concerns [77],
as we demonstrate in Pythia. Our work can inspire future
security researchers in discovering and defending more vul-
nerabilities in RDMA.

7.2 Attacking Real Applications
We demonstrated that it is feasible to launch Pythia attacks
on Crail, a real RDMA-based system developed by the Crail
team. PythiaCrailClient, the attack that is launched by perform-
ing Crail-provided client APIs only, can successfully infer
victim’s access patterns under real workloads.

We believe that Pythia can similarly attack other RDMA-
based applications as well. Pythia only requires two features
from an RDMA-based application: the application uses one-
sided RDMA operations and allocates regular paged memory.
Many applications meet these requirements, such as the NAM-
DB RDMA-based in-memory database [88], the Pilaf RDMA-
based key-value store [56], and the Wukong RDMA-based
graph system [68]. Unfortunately, most of these systems are
not available publicly.

7.3 Attack Limitations
Although our side-channel attacks are fast, accurate, and can
be launched entirely from the network, they do have sev-
eral limitations. First, the granularity of Pythia attacks (and
therefore information leakage of accesses) is a memory page.
Pythia currently cannot differentiate between two victim ac-
cesses that access the same target page. Second, Pythia can
only predict if a data entity at the server has been accessed,
but not which client machine(s) accessed it. Third, our MR-
based attacks require access to a large number of MRs, and
PTE-based attacks require access to large memory spaces.
Finally, our attacks consume network bandwidth and can be
detected by sniffing the network.

7.4 Other RDMA-Based Attacks
Pythia serves as a starting point for designing other
types of RDMA-based attacks. For example, similar to
Pythia EVICT+RELOAD attacks, it is possible to launch
PRIME+PROBE attacks from the network by exploiting the
MR or the PTE side channels.

The MR and the PTE side channels we established can
also be used as covert channels. We implemented a naive
covert-channel attack of using one EVICT+RELOAD cycle to
transmit one bit and it could reach a sending rate of 20 Kbps
with PythiaPTEFull.

8 Related Work

Single-node side-channel attacks. In recent years, a host
of attacks that exploit various hardware features to estab-
lish side channels have been proposed. CPU-cache-based
side-channel attacks such as PRIME+PROBE [1–4, 42, 59, 75,
78, 90], EVICT+RELOAD [30], FLUSH+RELOAD [86], and
FLUSH+FLUSH [30,78] can leak victim’s memory access pat-
terns at fine granularity. CPU-cache-based side channels are
also the key enabling factors in attacks like Meltdown [41],
Spectre [39], and Foreshadow [17]. Other than CPU caches,
TLB [28] or port contention [13] also expose hardware-based
side channels. Side-channel attacks brought key concerns
in cloud environments where one tenant can steal informa-
tion of other tenants when they share the same physical re-
source [79, 89–91] or the same service [33]. But all these
single-node side-channel attacks require the attacker to run
on the same machine as the victim. Pythia is a remote side-
channel attack that can be launched completely from a sepa-
rate remote machine.

Remote side-channel attacks. Several remote side-
channel attacks exploit TCP sequence numbers to hijack
connections [18,61,62]. Another line of work relies on traffic
analysis to exploit sensitive information [27, 37]. Brumley
et al. perform a timing-based attack on OpenSSL’s ladder
implementation to obtain the private key of a TLS server [16].
Cock et al. present an empirical study of remote timing
channels on microkernel [20]. NetSpectre [66] presents
an access-driven remote EVICT+RELOAD cache attack.
Weinberg et al. combined CSS and JavaScript to remotely
sniff victims’ browsing patterns [84]. Different from all
previous remote side-channel attacks, Pythia targets the
RDMA network. Moreover, Pythia exploits RNIC hardware
features to establish timing-based side channels, while
previous remote side channels exploit network protocols or
software features. As far as we know, Throwhammer [71] is
the only other attack related to RDMA. However, it simply
uses RDMA network requests to launch a Rowhammer attack
and does not explore or exploit vulnerabilities in the RDMA

USENIX Association 28th USENIX Security Symposium 705

technology itself.

Mitigations to side-channel attacks. Various defense
mechanisms have been proposed to combat CPU cache side-
channel attacks in both hardware [23, 36, 58, 81, 82] and soft-
ware [38, 43, 69, 92, 94]. Unfortunately, none of the existing
defense mechanisms can be directly applied to RDMA-based
side-channel attacks. We propose a set of new mitigations that
target RDMA-based side-channel attacks.

9 Conclusion

This paper presents Pythia, the first set of side-channel attacks
on RDMA-based systems. We reverse engineer the internal
data structures of current RDMA systems and leverage this
information to improve our attack. Pythia can be launched
completely from a normal client machine to steal access pat-
terns of victims on other machines. We evaluate Pythia in
laboratory settings to showcase the capabilities of the attack,
on real software such as Crail, and on real data centers to
show real-world impact. Pythia is fast, accurate, and can hide
its trace from victims and the server.

Acknowledgments

We would like to thank the anonymous reviewers for their
tremendous feedback and comments, which have substantially
improved the content and presentation of this paper. We are
also thankful to Ahmad Atamlh, Noam Bloch, Brandon Hath-
away, Yuval Itkin, Ariel Levanon, Alex Polak, Randy Splinter,
and Patrick Stuedi for their feedback during our responsible
disclosure to Mellanox and the Crail team.

This material is based upon work supported by the National
Science Foundation under the following grant: NSF 1719215.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF or other institutions.

References

[1] Onur Aciiçmez. Yet another microarchitectural attack:
Exploiting i-cache. In Proceedings of the 2007 ACM
Workshop on Computer Security Architecture (CSAW
’07), Fairfax, VA, USA, November 2007.

[2] Onur Aciiçmez, Billy Bob Brumley, and Philipp Grabher.
New results on instruction cache attacks. In Proceedings
of the 12th International Conference on Cryptographic
Hardware and Embedded Systems (CHES ’10), Santa
Barbara, CA, USA, August 2010.

[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
On the power of simple branch prediction analysis.
In Proceedings of the 2Nd ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS ’07), Singapore, March 2007.

[4] Onur Aciiçmez and Werner Schindler. A vulnerability
in rsa implementations due to instruction cache analy-
sis and its demonstration on openssl. In Proceedings
of the 2008 The Cryptopgraphers’ Track at the RSA
Conference on Topics in Cryptology (CT-RSA ’08), San
Francisco, CA, USA, April 2008.

[5] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, Rajesh Venkatasubramanian, and Michael Wei.
Remote regions: A simple abstraction for remote mem-
ory. In Proceedings of the 2018 USENIX Conference on
Usenix Annual Technical Conference (ATC ’18), Boston,
MA, USA, July 2018.

[6] Alibaba Cloud. Super computing cluster. https://www.
alibabacloud.com/product/scc, 2018.

[7] Apache. Crail: High-performance distributed data store.
https://crail.incubator.apache.org/, 2018.

[8] InfiniBand Trade Association. InfiniBand Architec-
ture Annex A 16: RoCE. https://cw.infinibandta.org/
document/dl/7148, April 2010.

[9] InfiniBand Trade Association. InfiniBand Architec-
ture Annex A 16: RoCEv2. https://cw.infinibandta.org/
document/dl/7148, September 2014.

[10] InfiniBand Trade Association. InfiniBand Archi-
tecture Volume 1 – Architecture Specification, Re-
lease 1.3. https://cw.infinibandta.org/document/dl/7859,
March 2015.

[11] InfiniBand Trade Association. InfiniBand Architecture
Volume 2 – Architecture Specification, Release 1.3.1.
https://cw.infinibandta.org/document/dl/8125, Novem-
ber 2016.

[12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-scale Key-value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’12), London, United
Kingdom, June 2012.

[13] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. Smotherspectre: ex-
ploiting speculative execution through port contention.
https://arxiv.org/abs/1903.01843, 2018.

[14] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The End of Slow Net-
works: It’s Time for a Redesign. Proceedings of the
VLDB Endowment, 9(7):528–539, 2016.

[15] Rajarshi Biswas, Xiaoyi Lu, and Dhabaleswar Panda.
Accelerating tensorflow with adaptive rdma-based grpc.
In 25th IEEE International Conference on High Per-
formance Computing, Data, and Analytics (HiPC ’18),
Bengaluru, India, December 2018.

[16] Billy Bob Brumley and Nicola Tuveri. Remote timing

706 28th USENIX Security Symposium USENIX Association

https://www.alibabacloud.com/product/scc
https://www.alibabacloud.com/product/scc
https://crail.incubator.apache.org/
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7148
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/8125
https://arxiv.org/abs/1903.01843

attacks are still practical. In Proceedings of the 16th
European Conference on Research in Computer Security
(ESORICS ’11), Leuven, Belgium, September 2011.

[17] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In Proceed-
ings of the 27th USENIX Conference on Security Sym-
posium (SEC ’18), Baltimore, MD, USA, August 2018.

[18] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao,
Srikanth V. Krishnamurthy, and Lisa M. Marvel. Off-
path tcp exploits: Global rate limit considered dangerous.
In Proceedings of the 25th USENIX Conference on Se-
curity Symposium (SEC ’16), Austin, TX, USA, August
2016.

[19] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of the Eleventh
European Conference on Computer Systems (EUROSYS
’16), London, UK, April 2016.

[20] David Cock, Qian Ge, Toby Murray, and Gernot Heiser.
The last mile: An empirical study of timing channels
on sel4. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’14), Scottsdale, Arizona, USA, November 2014.

[21] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing (SoCC ’10), New
York, New York, June 2010.

[22] Thomas. Cover and P. Hart. Nearest neighbor pattern
classification. IEEE Transactions on Information The-
ory, 13(1):21–27, September 1967.

[23] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. Non-monopolizable
caches: Low-complexity mitigation of cache side chan-
nel attacks. ACM Transactions on Architecture and
Code Optimization, 8(4):35:1–35:21, January 2012.

[24] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation (NSDI
’14), Seattle, WA, USA, April 2014.

[25] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP
’15), Monterey, CA, USA, October 2015.

[26] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval
Yarom. Drive-by key-extraction cache attacks from
portable code. In Applied Cryptography and Network

Security - 16th International Conference (ACNS ’18),
Leuven, Belgium, July 2018.

[27] Xun Gong, Nikita Borisov, Negar Kiyavash, and Nabil
Schear. Website detection using remote traffic analysis.
In Privacy Enhancing Technologies - 12th International
Symposium (PETS ’12), Vigo, Spain, July 2012.

[28] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation leak-aside buffer: Defeating
cache side-channel protections with TLB attacks. In
Proceedings of the 27th USENIX Conference on Security
Symposium (SEC ’18), Baltimore, MD, USA, August
2018.

[29] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+flush: A fast and stealthy cache
attack. In Proceedings of the 13th International Con-
ference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA ’16), San Sebastián,
Spain, July 2016.

[30] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In Proceedings of the 24th USENIX
Conference on Security Symposium (SEC ’15), Wash-
ington, D.C., USA, August 2015.

[31] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G. Shin. Efficient memory disag-
gregation with infiniswap. In Proceedings of the 14th
USENIX Conference on Networked Systems Design and
Implementation (NSDI ’17), Boston, MA, USA, March
2017.

[32] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni,
Jianxi Ye, Jitu Padhye, and Marina Lipshteyn. Rdma
over commodity ethernet at scale. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM ’16),
Florianopolis, Brazil, August 2016.

[33] Danny Harnik, Benny Pinkas, and Alexandra Shulman-
Peleg. Side channels in cloud services: Deduplication in
cloud storage. IEEE Security and Privacy, 8(6):40–47,
November 2010.

[34] Wei Huang, Gopalakrishnan Santhanaraman, Hyun-
Wook Jin, Qi Gao, and Dhabaleswar K. Panda. De-
sign of High Performance MVAPICH2: MPI2 over In-
finiBand. In Sixth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID ’06), Rio de
Janeiro, Brazil, May 2006.

[35] Intel. Intel Performance Counter Monitor, 2012. http:
//www.intel.com/software/pcm.

[36] Intel. Improving Real-Time Performance
by Utilizing Cache Allocation Technology
, 2015. https://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.pdf.

[37] Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and
Claudia Diaz. Inside job: Applying traffic analysis to
measure tor from within. In 25th Annual Network and

USENIX Association 28th USENIX Security Symposium 707

http://www.intel.com/software/pcm
http://www.intel.com/software/pcm
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf

Distributed System Security Symposium (NDSS ’18),
San Diego, CA, USA, February 2018.

[38] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-level protection against cache-
based side channel attacks in the cloud. In Proceedings
of the 21st USENIX Conference on Security Symposium
(SEC ’12), Bellevue, WA, USA, August 2012.

[39] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 2019
IEEE Symposium on Security and Privacy (SP ’19), San
Francisco, CA, USA, May 2019.

[40] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles
(SOSP ’17), Shanghai, China, October 2017.

[41] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In Proceedings of the 27th USENIX
Conference on Security Symposium (SEC ’18), Balti-
more, MD, USA, August 2018.

[42] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan
Huang, and Elaine Shi. Oblivm: A programming frame-
work for secure computation. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (SP
’15), San Jose, CA, USA, May 2015.

[43] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA ’16),
Barcelona, Spain, March 2016.

[44] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda.
High Performance RDMA-based MPI Implementation
over infiniBand. International Journal of Parallel Pro-
gramming, 32(3):167–198, 2004.

[45] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: an rdma-enabled distributed persistent memory file
system. In 2017 USENIX Annual Technical Conference
(ATC ’17), Santa Clara, CA, USA, July 2017.

[46] Mellanox. Mellanox ConnectX-3 VPI Card,
2017. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-3_Pro_Card_VPI.pdf.

[47] Mellanox. Mellanox Network Adapters for 25G RoCE
Ethernet Cloud Deployed in Alibaba, 2017. http://www.
mellanox.com/page/press_release_item?id=1964.

[48] Mellanox. Mellanox ConnectX-4 VPI Card,
2018. http://www.mellanox.com/related-docs/prod_

adapter_cards/PB_ConnectX-4_VPI_Card.pdf.
[49] Mellanox. Mellanox ConnectX-5 VPI Card,

2018. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-5_VPI_Card.pdf.

[50] Mellanox. Mellanox InfiniBand EDR 100Gb/s Switch,
2018. http://www.mellanox.com/related-docs/prod_ib_
switch_systems/pb_sb7700.pdf.

[51] Mellanox. Physical Address Memory Region,
2018. https://community.mellanox.com/s/article/
physical-address-memory-region.

[52] Mellanox. RDMA/RoCE Solutions. https://community.
mellanox.com/s/article/rdma-roce-solutions, 2018.

[53] Mellanox. Mellanox ConnectX-6 VPI Card,
2019. http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-6_VPI_Card.pdf.

[54] Mellanox Technologies. InfiniBand Now Connecting
More than 50 Percent of the TOP500 Supercomputing
List. https://tinyurl.com/yy2ualhg, 2015.

[55] Frank Mietke, Robert Rex, Robert Baumgartl, Torsten
Mehlan, Torsten Hoefler, and Wolfgang Rehm. Analy-
sis of the memory registration process in the mellanox
infiniband software stack. In Proceedings of the 12th
International Conference on Parallel Processing (Euro-
Par ’06), Dresden, Germany, September 2006.

[56] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided rdma reads to build a fast, cpu-efficient
key-value store. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (ATC ’13),
San Jose, CA, USA, June 2013.

[57] Christopher Mitchell, Kate Montgomery, Lamont Nel-
son, Siddhartha Sen, and Jinyang Li. Balancing cpu
and network in the cell distributed b-tree store. In Pro-
ceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference (ATC ’16), Denver, CO,
USA, June 2016.

[58] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting SGX
enclaves from practical side-channel attacks. In Pro-
ceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference (ATC ’18), Boston, MA,
USA, July 2018.

[59] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of aes. In Pro-
ceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology (CT-RSA ’06),
San Jose, CA, USA, February 2006.

[60] Marius Poke and Torsten Hoefler. Dare: High-
performance state machine replication on rdma net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing (HPDC ’15), Portland, OR, USA, June 2015.

[61] Zhiyun Qian and Z. Morley Mao. Off-path tcp sequence
number inference attack - how firewall middleboxes
reduce security. In Proceedings of the 2012 IEEE Sym-

708 28th USENIX Security Symposium USENIX Association

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_VPI.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-3_Pro_Card_VPI.pdf
http://www.mellanox.com/page/press_release_item?id=1964
http://www.mellanox.com/page/press_release_item?id=1964
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/pb_sb7700.pdf
http://www.mellanox.com/related-docs/prod_ib_switch_systems/pb_sb7700.pdf
https://community.mellanox.com/s/article/physical-address-memory-region
https://community.mellanox.com/s/article/physical-address-memory-region
https://community.mellanox.com/s/article/rdma-roce-solutions
https://community.mellanox.com/s/article/rdma-roce-solutions
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-6_VPI_Card.pdf
https://tinyurl.com/yy2ualhg

posium on Security and Privacy (SP ’12), San Francisco,
CA, USA, May 2012.

[62] Zhiyun Qian, Z. Morley Mao, and Yinglian Xie. Col-
laborative tcp sequence number inference attack: How
to crack sequence number under a second. In Proceed-
ings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12), Raleigh, NC, USA,
October 2012.

[63] RDMA Consortium. iWARP, Protocol of RDMA over
IP Networks, 2009. http://www.rdmaconsortium.org/.

[64] Recio, R., Metzler, B., Culley, P., Hilland, J., and D. Gar-
cia. A Remote Direct Memory Access Protocol Specifi-
cation, 2007. https://tools.ietf.org/html/rfc5040.

[65] Robert Ricci, Eric Eide, and the CloudLab Team. Intro-
ducing cloudlab: Scientific infrastructure for advancing
cloud architectures and applications. The USENIX Mag-
azine, 39(6):36–38, December 2014.

[66] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and
Daniel Gruss. Netspectre: Read arbitrary memory over
network, 2018. http://arxiv.org/abs/1807.10535.

[67] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 8th Annual Symposium on Cloud Computing (SOCC

’17), Santa Clara, CA, USA, September 2017.
[68] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and

Feifei Li. Fast and concurrent rdf queries with rdma-
based distributed graph exploration. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’16), Savannah, GA,
USA, November 2016.

[69] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang.
Limiting cache-based side-channel in multi-tenant cloud
using dynamic page coloring. In Proceedings of the
2011 IEEE/IFIP 41st International Conference on De-
pendable Systems and Networks Workshops (DSNW

’11), Hong Kong, China, June 2011.
[70] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu

Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance i/o architecture for
distributed data processing. IEEE Bulletin of the Techni-
cal Committee on Data Engineering, 40:40–52, March
2017. Special Issue on Distributed Data Management
with RDMA.

[71] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer attacks over
the network and defenses. In Proceedings of the
2018 USENIX Annual Technical Conference (ATC ’18),
Boston, MA, USA, July 2018.

[72] Mellanox Technologies. Mellanox OFED for
Linux User Manual. http://www.mellanox.com/
related-docs/prod_software/Mellanox_OFED_Linux_
User_Manual_v3.1-1.0.0.pdf.

[73] Tejas Karmarkar. Availability of linux rdma on mi-

crosoft azure. https://azure.microsoft.com/en-us/blog/
azure-linux-rdma-hpc-available, 2015.

[74] The Tcpdump Group. tcpdump - Dump Traffic on A
Network. https://www.tcpdump.org/manpages/tcpdump.
1.html, 2018.

[75] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient
cache attacks on aes, and countermeasures. Journal of
Cryptology, 23(1):37–71, January 2010.

[76] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA
Support for Datacenter Applications. In Proceedings of
the 26th Symposium on Operating Systems Principles
(SOSP ’17), Shanghai, China, October 2017.

[77] Shin-Yeh Tsai and Yiying Zhang. A double-edged
sword: Security threats and opportunities in one-sided
network communication. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud ’19), Renton,
WA, USA, July 2019.

[78] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos,
and Kaveh Razavi. Malicious management unit: Why
stopping cache attacks in software is harder than you
think. In Proceedings of the 27th USENIX Conference
on Security Symposium (SEC ’18), Baltimore, MD, USA,
August 2018.

[79] Luis M. Vaquero, Luis Rodero-Merino, and Daniel
Morán. Locking the sky: A survey on iaas cloud se-
curity. Computing, 91(1):93–118, 2011.

[80] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and
Heming Cui. Apus: Fast and scalable paxos on rdma.
In Proceedings of the 2017 Symposium on Cloud Com-
puting (SoCC ’17), Santa Clara, CA, USA, September
2017.

[81] Zhenghong Wang and Ruby B. Lee. Covert and side
channels due to processor architecture. In Proceedings
of the 22Nd Annual Computer Security Applications
Conference (ACSAC ’06), Miami Beach, FL, USA, De-
cember 2006.

[82] Zhenghong Wang and Ruby B. Lee. A novel cache
architecture with enhanced performance and security.
In Proceedings of the 41st Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’41),
Lake Como, ITALY, November 2008.

[83] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed transac-
tions: Hybrid is better! In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’18), Carlsbad, CA, USA, October 2018.

[84] Zachary Weinberg, Eric Y. Chen, Pavithra Ramesh Ja-
yaraman, and Collin Jackson. I still know what you
visited last summer: Leaking browsing history via user
interaction and side channel attacks. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy (SP

’11), Oakland, CA, USA, May 2011.
[85] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao,

Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and

USENIX Association 28th USENIX Security Symposium 709

http://www.rdmaconsortium.org/
https://tools.ietf.org/html/rfc5040
http://arxiv.org/abs/1807.10535
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v3.1-1.0.0.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v3.1-1.0.0.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v3.1-1.0.0.pdf
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html

Lidong Zhou. Gram: Scaling graph computation to the
trillions. In Proceedings of the Sixth ACM Symposium
on Cloud Computing (SoCC ’15), Kohala Coast, HI,
USA, August 2015.

[86] Yuval Yarom and Katrina Falkner. Flush+reload: A high
resolution, low noise, l3 cache side-channel attack. In
Proceedings of the 23rd USENIX Conference on Secu-
rity Symposium (SEC ’14), San Diego, CA, USA, August
2014.

[87] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
Cachebleed: A timing attack on openssl constant time
RSA. Journal of Cryptographic Engineering, 7(2):99–
112, 2017.

[88] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The End of a Myth: Distributed Transactions
Can Scale. Proceedings of the VLDB Endowment,
10(6):685–696, 2017.

[89] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K.
Reiter. Homealone: Co-residency detection in the cloud
via side-channel analysis. In Proceedings of the 2011
IEEE Symposium on Security and Privacy (SP ’11),
Oakland, CA, USA, May 2011.

[90] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-vm side channels and their
use to extract private keys. In Proceedings of the 2012

ACM Conference on Computer and Communications
Security (CCS ’12), Raleigh, NC, USA, October 2012.

[91] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-tenant side-channel attacks in
paas clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’14), Scottsdale, Arizona, USA, November 2014.

[92] Yinqian Zhang and Michael K. Reiter. Dúppel:
retrofitting commodity operating systems to mitigate
cache side channels in the cloud. In Proceedings of
the 2013 ACM SIGSAC conference on Computer and
communications Security (CCS ’13), Berlin, Germany,
November 2013.

[93] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and
Steven Swanson. Mojim: A Reliable and Highly-
Available Non-Volatile Memory System. In Proceedings
of the 20th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’15), Istanbul, Turkey, March 2015.

[94] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A
software approach to defeating side channels in last-
level caches. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security
(CCS ’16), Vienna, Austria, October 2016.

710 28th USENIX Security Symposium USENIX Association

HideMyApp : Hiding the Presence of Sensitive Apps on Android

Anh Pham
ABB Corporate Research, Switzerland

Italo Dacosta
EPFL, Switzerland

Eleonora Losiouk
University of Padova, Italy

John Stephan
EPFL, Switzerland

Kévin Huguenin
University of Lausanne, Switzerland

Jean-Pierre Hubaux
EPFL, Switzerland

Abstract

Millions of users rely on mobile health (mHealth) apps to
manage their wellness and medical conditions. Although the
popularity of such apps continues to grow, several privacy and
security challenges can hinder their potential. In particular,
the simple fact that an mHealth app is installed on a user’s
phone can reveal sensitive information about the user’s health.
Due to Android’s open design, any app, even without per-
missions, can easily check for the presence of a specific app
or collect the entire list of installed apps on the phone. Our
analysis shows that Android apps expose a significant amount
of metadata, which facilitates fingerprinting them. Many third
parties are interested in such information: Our survey of 2917
popular apps in the Google Play Store shows that around 57%
of these apps explicitly query for the list of installed apps.
Therefore, we designed and implemented HideMyApp (HMA),
an effective and practical solution for hiding the presence
of sensitive apps from other apps. HMA does not require any
changes to the Android operating system or to apps yet still
supports their key functionalities. By using a diverse dataset
of both free and paid mHealth apps, our experimental eval-
uation shows that HMA supports the main functionalities in
most apps and introduces acceptable overheads at runtime
(i.e., several milliseconds); these findings were validated by
our user-study (N = 30). In short, we show that the practice of
collecting information about installed apps is widespread and
that our solution, HMA, provides a robust protection against
such a threat.

1 Introduction

Mobile health (mHealth), the use of technologies such as
smartphones and wearable sensors for wellness and medical
purposes, promises to improve the quality of and reduce the
costs of medical care and research. An increasing number of
people rely on mHealth apps to manage their wellness and to
prevent and manage diseases.1 For instance, more than a third
of physicians in the US recommend mHealth apps to their

patients [23], and there are around 325,000 mHealth apps
available in major mobile app stores.2

Given the sensitivity of medical data, the threats of pri-
vacy leakage are one of the main hindrances to the success of
mHealth technologies [37]. In this area, a serious and often
overlooked threat is that an adversary can infer sensitive infor-
mation simply from the presence of an app on a user’s phone.
Previous studies have shown that private information, such as
age, gender, race, and religion, can be inferred from the list of
installed apps [22, 29, 47]. With the increasing popularity of
mHealth apps, an adversary can now infer even more sensitive
information. For example, learning that a user has a diabetes
app reveals that the user probably suffers from this disease;
such information could be misused to profile, discriminate, or
blackmail the user. When inquired about this threat, 87% of
the participants in our user-study expressed concern about it
(Section 10.6).

Due to Android’s open design, a zero-permission app can
easily infer the presence of specific apps, or even collect the
full list of installed apps on the phone [55]. Our analysis
shows that Android exposes a considerable amount of static
and runtime metadata about installed apps (Section 4); this
information can be misused by a nosy app to accurately finger-
print these apps. In 2014, Twitter was criticized for collecting
the list of installed apps in order to offer targeted ads.3 But
Twitter is not the only app interested in such information. Our
static and dynamic analysis of 2917 popular apps in the US
Google Play Store shows that approximately 57% of these
apps include calls to API methods that explicitly collect the
list of installed apps (Section 5). Our analysis, corroborating
the findings of previous studies [29, 32], also shows that free
apps are more likely to query for such information and that
third-party libraries (libs) are the main requesters of the list of
installed apps. As users have on average 80 apps installed on
their phones,4 most of them being free, there is a high chance
of untrusted third-parties obtaining the list of installed apps.

Since 2015, Android has classified as potentially harmful
apps (PHA)5 the apps that collect information about other
apps without user consent [1]. To avoid this classification,

USENIX Association 28th USENIX Security Symposium 711

developers simply need to provide a privacy policy that de-
scribes how the app collects, uses, and shares user data.6

We find it interesting that only 7.7% of the evaluated apps
clearly declared that they collect the list of installed apps in
their privacy policies, and some even claim that such a list
is non-personal information (Section 5.4). Also, few users
read privacy policies [41], as our user study also confirmed
(Section 10.6).

Android does not provide mechanisms to hide the use of
sensitive apps on a phone; a few third-party tools, designed
for other purposes, can provide only partial protection to some
users (Section 6). Android announced that their security ser-
vices will display warnings on apps that collect without con-
sent users’ personal information, including the list of installed
apps.7 This is a welcomed step, but the effectiveness of secu-
rity warnings is known to be limited [30, 49] and it is unclear
how queries by third-party libraries will be handled. It is also
unclear if such an approach will be able to prevent more sub-
tle attacks, where a nosy app checks for the existence of a
specific app or a small set of sensitive apps by using more
advanced fingerprinting techniques (Section 4).

We propose HideMyApp (HMA), the first system that enables
organizations and developers to distribute sensitive apps to
their users while considerably reducing the risk of such apps
being detected by nosy apps on the same phone. Apps pro-
tected by HMA expose significantly less identifying metadata,
therefore, it is more difficult for nosy apps to detect their pres-
ence, even when the nosy apps have all Android permissions
and debugging privileges. With HMA, an organization such as a
consortium of hospitals sets up an HMA app store where autho-
rized developers collaborating with the hospitals can publish
their mHealth and other sensitive apps. Users employ a client
app called HMA Manager to anonymously (un)install, use, and
to update the apps selected from the HMA app store; an the
HMA App Store does not learn about the set of apps that a
user has installed from the store. HMA transparently works on
stock Android devices, it does not require root access, and
it preserves the app-isolation security model of the Android
operating system (OS). Still, HMA preserves the key functional-
ities of mHealth apps, e.g., connecting to external devices via
Bluetooth, sending information over the Internet, and storing
information in databases.

With HMA, users launch a sensitive app inside the context
of a container app, without requiring the sensitive app to be
installed. A container app is a dynamically generated wrapper
around the Android application package (APK) of the sensi-
tive app, and it is designed in such a way that the sensitive
app cannot be fingerprinted yet still can support inter-process
communication between the sensitive app and other installed
apps. To launch the APK from the container app, HMA relies on
techniques described in existing work: the dynamic loading of
compiled source code and app resources from the APKs and
user-level app-virtualization techniques, e.g., [24, 25]. How-
ever, note that app virtualization alone is insufficient in provid-

ing robust protection against fingerprinting attacks, as many of
the information leaks uncovered by our analysis are still pos-
sible when just app virtualization is used. Therefore, our main
contribution is the design and evaluation of mechanisms built
on top of app-virtualization in order to reduce the information
leaks that could be exploited to fingerprint sensitive apps. HMA
provides multiple tiers of protection: For baseline protection
against current threats, HMA obfuscates static meta-data of sen-
sitive apps (e.g., their package names and components). To
provide more advanced protection (e.g., against side-channel
attacks), HMA can add an additional layer of obfuscation for
sensitive apps (e.g., randomizing memory access). In some
cases, app developers might need to be involved to make
changes to the apps. Moreover, we are the first to identify the
security and functional limitations of using app virtualization
for the purpose of hiding apps.

Our evaluation of HMA on a diverse set of both free and paid
mHealth apps on the Google Play Store shows that HMA is
practical, and that it introduces reasonable operational delays
to the users. For example, in 90% of the cases, the delay
introduced by HMA to the cold start of an mHealth app by
a non-optimized proof-of-concept implementation of HMA is
less than one second. At runtime, the delay introduced is of
only several milliseconds. Moreover, our user-study (N = 30)
suggests that HMA is user-friendly and of interest to users.

Our main contributions in this work are as follows.

• Systemized knowledge: We are the first to investigate
the techniques that an app can use to fingerprint another
app.8 Also, through our static and dynamic analysis on
apps from the Google Play Store, we gain understanding
about the prevalence of the problem of apps fingerprint-
ing other installed apps.

• Design and implementation of a solution for hiding sen-
sitive apps: We present HMA, a practical system that pro-
vides robust defense against fingerprinting attacks that
target sensitive apps on Android. HMA works on stock
Android, and no firmware modification or root privilege
is required.

• Thorough evaluation of HMA: The evaluation of HMA’s
prototype on apps from the Google Play Store suggests
that HMA is practical. Also, our user study suggests that
HMA is perceived as usable. HMA’s source code is available
at https://github.com/lca1/HideMyApp.

2 Related Work

Researchers have actively investigated security and privacy
problems in the Android platform. Existing works show
that third-party libs often abuse their permissions to collect
users’ sensitive information [35, 48], and that apps have sus-
picious activities e.g., collecting call logs, phone numbers,
and browser bookmarks [29, 42]. Zhou et al. [55] show that

712 28th USENIX Security Symposium USENIX Association

https://github.com/lca1/HideMyApp

Android’s open design has made publicly available a num-
ber of seemingly innocuous phone resources, including the
list of installed apps; these resources could be used to infer
sensitive information about their users, e.g., users’ gender
and religion [40, 46]. Similarly, Chen et al. [27] show how to
fingerprint Android apps based on their power consumption
profiles. A significant research effort has been devoted to fin-
gerprinting Android apps based on their (encrypted) network
traffic patterns [28, 51, 54]. Researchers have also shown that
re-identification attacks are possible using a small subset of
installed apps [22, 33]. Demetriou et al. [29], in the same line
as our work, used static analysis to quantify the prevalence
of the collections of the list of installed apps and their meta-
data by third-party libs. We go beyond their work, however,
by systematically investigating all possible information leaks
that nosy apps can exploit to fingerprint other apps and by
performing a dynamic analysis and privacy-policy analysis.

Existing mechanisms for preventing apps from learning
about the presence of another app are not sufficient (Section 6).
As we will show in Section 8, user-level virtualization tech-
niques that enable an app (called target app) to be encapsu-
lated within the context of another app (called container app)
can be used as a building block for HMA. These techniques are
used to sandbox untrusted target apps (e.g., [24,25]) or to com-
partmentalize third-party libs from the host apps (e.g., [34]).
As they were designed for a different problem, however, they
do not directly help hide the presence of a sensitive target
app: They either require the target app to be first installed,
thus exposing them to nosy apps through public APIs, or they
run multiple target apps inside the same container app, thus
violating the Android’s app-isolation security model. They
also do not provide any insight into the possible information
leaks that can be exploited to fingerprint apps and how their
techniques can be used for hiding the presence of apps.

3 Background on Android

Android Security Model. Android requires each app to have
a unique package name defined by its developers and cannot
be changed during its installation or execution. Upon instal-
lation, the Android OS automatically assigns a unique user
ID (UID) to each app and creates a private directory where
only this UID has read and write permissions. Additionally,
each app is executed in its dedicated processes. Thus, apps
are isolated, or sandboxed, both at the process and file levels.

Apps interact with the underlying system via methods de-
fined by the Java API framework and the shell commands
defined by the Linux-layer interface. Some API methods re-
quire users to grant apps certain permissions. Android defines
three main protection levels for apps: normal, signature, and
dangerous permissions.9 Apps can have special permissions;
users are required to grant these permissions to apps through
the Settings app. Any app can execute shell commands; how-

ever, depending on its privilege, i.e., default app privilege,
debugging (adb)10 or root, the outputs of the same shell com-
mands are different.

Android Apps and APK Files. An Android app must con-
tain a set of mandatory information: a unique package name,
an icon, a label, a folder containing resources, and at least
one of the following components: activity, service, broadcast
receiver and content provider. An activity represents a screen,
and a service performs long-running operations in the back-
ground. A broadcast receiver enables an app to subscribe and
respond to specific system-wide events. A content provider
manages the sharing of data between components in the same
app or with other apps. Apps can optionally support other
features such as implicit or explicit intents, permissions, and
some customized app configurations. Apps are distributed
in the form of APK files. An APK is a signed zip archive
that contains the compiled code and resources of the app.
Each APK also includes a manifest configuration file, called
AndroidManifest.xml; this file contains a description of
the app (e.g., its package name and components).

4 Fingerprintability of Android Apps

Here, we demonstrate that an app, depending on its capabili-
ties (its granted permissions and/or privileges), can retrieve
information about other installed apps. This includes static
information (i.e., information available after apps are installed
and that typically does not change during apps’ lifetimes), and
runtime information (i.e., information generated or updated
by apps at runtime). Our analysis was conducted on Android
8.0. Its findings are summarized in Table 1.

Without Permissions. An app can easily check if a spe-
cific app is installed on the phone. This can be done
by invoking two methods getInstalledApplications()
and getInstalledPackages() (hereafter abbreviated as
getIA() and getIP(), respectively); they return the
entire list of installed apps. An app can also reg-
ister broadcast receivers (e.g., PACKAGE_INSTALLED) to
be notified when a new app is installed. It can also
use various methods of the PackageManager class
(e.g., getResourcesForApplication()) as an oracle to
check for the presence of a specific app. These methods take
a package name as a parameter and return null if the package
name does not exist on the phone.

If Android restricts access to package names of installed
apps (e.g., by requiring permissions), an app can still retrieve
other static information about installed apps for fingerprinting
attacks. This includes their mandatory information: the names
of their components, their icons, labels, resources, developers’
signatures and signing certificates. This also includes cus-
tom features used by installed apps: their permissions, apps
configurations (themes, styles, and supported SDK). Such
information can be obtained through a number of methods in

USENIX Association 28th USENIX Security Symposium 713

Without Permissions With Permissions Default App Privilege Debugging Privilege (adb)
Static Core attributes: (*) See note + Package names + Package names

Information + Package name + APK path
+ Component’s names + APK file
+ Resources
+ Icon, label
+ Developers’ signatures
Customizations:
? Permissions
? Themes
? Phone configurations

Runtime Dangerous Permissions: � UI states† ? Files in external storage
Information None ? Files in external storage � Power consumption† ? System log

� Network traffic � Memory footprints† ? System diagnostic outputs
Special Permissions: + Running processes
� Storage consumption � Network consumption
+ Running processes - Screenshots
- Layouts and their content

Table 1: Identifying information about installed apps that an app can learn, w.r.t. its permissions and privileges, through the Java
API framework and the Linux-layer kernel. Analysis was conducted on Android 8.0. Superscript † means that the information
can be learnt only in older versions of Android (e.g., Android 8.0 requires the calling app to have adb privilege). (*) Note:
Granting permissions to a zero-permission app does not enable it to obtain more static information about other installed apps.
The notations +,? and � indicate the resources that our system (HMA, see Section 8) can protect by default, by collaborating with
app developers or by randomizing runtime information of the container apps, respectively. Resources marked with the − sign
cannot be protected by HMA.

the PackageManager class, e.g., getPackageInfo(). Note
that this can be done even when apps are installed with the
forward-lock option enabled (option -l in the adb install
command). We tested this in Android 6.0; Android 8.0 threw
an exception for this -l option. A nosy app cannot retrieve
the list of intent filters declared by other apps. However, it
can learn the names of the components of installed apps that
can handle specific intent requests, by using methods such as
resolveActivity().

With Permissions. An app granted with the
READ_EXTERNAL_STORAGE permission, a frequently re-
quested dangerous-permission, can inspect for unique folders
and files in a phone’s external storage (a.k.a. SD card). Apps
with VPN capabilities (permission BIND_VPN_SERVICE)
can intercept network traffic of other apps; existing work
shows that network traffic, even encrypted, can be used to
fingerprint apps with good accuracy [50, 51, 54].

With special permissions, an app can obtain certain iden-
tifying information about other apps at their runtime. For
instance, the PACKAGE_USAGE_STATS permission permits
an app to obtain the list of running processes (method
getRunningAppProcesses()), and statistics about network
and storage consumption of all installed apps, includ-
ing their package names, during a time interval (method
queryUsageStats()). In addition, accessibility services11

(with the BIND_ACCESSIBILITY_SERVICE permission) can
have access to the layouts and the layouts’ contents of other
apps.

With Default App-Privilege. An app can retrieve the list
of all package names on the phone. This can be done by ob-

taining the set of UIDs in the /proc/uid_stat folder and
using the getNameForUid() API call to map a UID to a pack-
age name. An app can also infer the UI states (e.g., knowing
that another app is showing a login screen) [26], memory
footprints (sequences of snapshots of the app’s data resident
size) [36] and power consumption [27] of other apps. Note
that access to this information has been restricted in recent
versions of Android (e.g., Android 8.0 requires the app to
have adb privilege).

With Debugging Privilege (adb). An app can retrieve the
list of package names (command pm list packages) and
learn the path to the APK file of a specific app (command
pm path [package name]). Moreover, the adb privilege en-
ables an app to retrieve the APK files of other apps (command
pull [APK path]); the app can then use API methods such
as getPackageArchiveInfo() to extract identifying infor-
mation from the APK files. Also an app can learn about run-
time behaviors of other apps by inspecting the system logs and
diagnostic outputs (commands logcat and dumpsys). More-
over, with the adb privilege, apps can directly retrieve the list
of running processes (command ps), take screenshots [38] or
gain access to statistics about network usage of other apps
(folder /proc/uid_stat/[uid]).

Our analysis shows that Android’s open design exposes
a significant amount of information that facilitates app-
fingerprinting attacks. App developers themselves cannot
obfuscate most of the aforementioned information for the
purpose of hiding sensitive apps. For example, by design, the
package name of an app is a global identifier in the Google
Play Store. As a result, the obfuscation of apps’ package

714 28th USENIX Security Symposium USENIX Association

names has to be done per user, i.e., for each user, the same app
needs to be uploaded to the Google Play Store with a different
package name. Similarly, the names of the app’s components
also need to be obfuscated per user, hence this approach is
not practical. To mitigate app-fingerprinting attacks, Android
could follow an approach similar to iOS, i.e., to remove or
restrict API methods and OS resources that leak identifying
information of apps. However, such an approach would be
difficult to implement in Android, as most of these methods
and resources have valid use cases and are widely used by
apps. For instance, methods getIA() and getIP(), are used
by many popular apps with millions of users, e.g., launcher,
security/antivirus, and storage/memory manager apps. Re-
moving or restricting such methods would break many apps
and anger both developers and users. Such an approach would
also negatively affect the competitive advantages of Android,
i.e., its customizability and rich set of features, over iOS. In
addition, restricting API methods would not solve the problem
completely, as more subtle fingerprinting attacks would still
be possible. For example, in iOS, the canOpenURL() method
can be used to check if a particular app is on the phone. Since
iOS 9.0, in order to have an arbitrarily high number of calls to
this method, an app has to declare beforehand the set of apps
that it wants to check. Otherwise, it can only call this method
at most 50 times.12 This restriction reduces the risks of finger-
printing attacks, but negatively affects both developers and
users, e.g., apps need to be updated frequently to update the
list of apps. More importantly, even with 50 queries, a nosy
app can still check if a specific app or small set of apps are
installed on the phone.

A possibly better approach is for Android to include a new
"sensitive" flag that enables users to hide sensitive apps from
other apps in the same phone, i.e., other apps will not be able
to use Android API methods to infer the existence of apps
flagged as sensitive. Moreover, Android can include a new per-
mission that users can grant to certain apps in order to enable
these apps to detect apps flagged as sensitive. This approach,
however, requires significant modifications and testing of An-
droid’s APIs. Therefore, our goal is to design a solution that
does not require changes to Android or sensitive apps and that
can be available to users immediately.

5 Apps Inquiring about Other Apps

We analyze apps from the Google Play Store to estimate
how common it is for apps to inquiry about other installed
apps. Our analysis focuses on API calls that directly retrieve
the list of installed apps (hereafter called LIA): getIA() and
getIP(), because these two methods clearly show the intent
of developers to learn about other apps, whereas the other
methods presented in Section 4 can be used in valid use cases.
Therefore, the results presented in this section is a lower-
bound on the number of apps that fingerprint other apps.

5.1 Data Collection
We gathered the following datasets for our analysis.

APK Dataset. We collected APK files of popular free apps
in the Google Play Store (US site). For each app category in
the store (55 total), we gathered the 60 most popular apps.
After eliminating duplicate entries, default Android apps, and
brand-specific apps, we were left with 2917 apps.

Privacy-Policy Dataset. We collected privacy policies that
corresponded to the apps in our dataset. Out of 2917 apps, we
gathered 2499 privacy policies by following the links included
in the apps’ Google Play Store pages.

5.2 Static Analysis
For our static analysis, by using Apktool,13 we decompiled the
APKs to obtain their smali code, a human-readable representa-
tion of the app’s bytecode. We searched in the smali code for
occurrences of two methods getIA() and getIP().14 API
calls can be located in three parts of the decompiled code:
in the code of Android/Google libs and SDKs, in the code
of third-party libs and SDKs, or in the code of the app itself.
To differentiate among these three origins, we applied the
following heuristic. First, methods found in paths contain-
ing the “com/google”, “com/Android” or “Android/support”
substrings, are considered part of Android/Google libs and
SDKs. Second, methods found in paths containing the name
of the app are considered part of the code of the app. We
believe this is a reasonable heuristics, because package names
of Android apps follow the Java package-name conventions
with the reversed internet domain of the companies, gener-
ally two words long. If the methods do not match the first
two categories, then they are considered part of the code of
a third-party lib or SDK. Note that this approach, also used
in previous work [29], cannot precisely classify obfuscated
code or code in paths with no meaningful names. Such cases,
however, represent only a small fraction in our analysis (less
than 5%).

Table 2 shows the proportions of apps that invoke getIA()
and getIP() w.r.t. different call origins. Of the 2917 apps
evaluated, 1663 apps (57.0%) include at least one invocation
of these two methods in the code from third-party libs and the
apps. These results show a significant increase in comparison
with the results presented in 2016 by Demetriou et al. [29].
These results also show that most sensitive requests come
from third-party libs or SDKs; app developers might not be
aware of this activity, as has been the case for other sensitive
data such as location.15

Static analysis has two main limitations. First, methods
appearing in the code might never be executed by the app.
Second, it is possible that the sensitive methods do not appear
in the code included in the APK, rather in the code loaded
dynamically at runtime. To address these issues, we also per-
formed a dynamic analysis of the apps in our dataset.

USENIX Association 28th USENIX Security Symposium 715

Analysis method Call origin getIA() (%) getIP() (%) getIA() or getIP() (%)
Static Third-party libs + Apps 36.4 43.6 57.0
Static Apps only 8.1 8.4 13.9

Dynamic Third-party libs + Apps 6.5 15.0 19.2

Table 2: Proportion of free apps that invoke getIA() and getIP(), to collect LIAs w.r.t. different call origins.

5.3 Dynamic Analysis

For our dynamic analysis, by using XPrivacy16 on a phone
with Android 6.0, we intercepted the API calls from apps.
For the analysis to scale, for each app, we installed it and
granted it all the permissions requested. Next, we launched
all the runnable activities declared by the app for 10 minutes.
Although this approach has limitations, as it only has a short
period of time per app and it cannot emulate all the activities
a user could do, it is sufficient to estimate a lower-bound on
the number of apps that query for LIAs at runtime, as shown
in our results.

Our results, shown in Table 2, show that 190 apps (6.54%)
called getIA(), 436 apps (15.0%) called getIP(), and 19.2%
of the apps called at least one of these two methods. Because
XPrivacy does not provide information about the origin of
the request, we performed some additional steps. For each
app, we used the results of our static analysis and searched for
occurrences of getIA() and getIP() in the code belonging
to Google/Android libs. We found that most apps did not
include calls to these sensitive methods in the code belonging
to Google/Android libs: 181 out of 190 for getIA() and
412 out of 436 for getIP(). Hence, we conclude that these
sensitive requests came mainly from third-party libs or from
the code of the apps.

Interestingly, we found 49 apps that called at least one of
the two sensitive methods in our dynamic analysis, but not
in our static analysis. This could be because the decompiler
tool produced incorrect smali code, or because these requests
were dynamically loaded at runtime. Still, this represents only
a small number of the apps found through our analysis.

Our static and dynamic analysis shows that a significant
number of free apps actively queries for LIAs: between 19.2%
(dynamic analysis) and 57% (static analysis) of the tested
apps.17 This shows that many third parties are interested in
knowing about the installed apps on users’ phones, and that,
if Android blocked getIA() and getIP(), they would likely
attempt to use other methods (see Section 4).

5.4 Analysis of Privacy Policies

Google’s privacy-policy guidelines require apps that handle
personal or sensitive user data to comprehensively disclose
how they collect, use and share the collected data. An example
of a common violation, shown in these guidelines, is “An
app that doesn’t treat a user’s inventory of installed apps as
personal or sensitive user data".18 Next, we explain what
developers understand about the guidelines.

As mentioned in Section 5.1, out of 2917 apps in our
dataset, we found 2499 privacy policies. From the 1674 nosy
apps found in the static and dynamic analysis, 1524 apps have
privacy policies. We semi-automated the policy analysis as
follows. We built a set of keywords consisting of nouns and
verbs that might be used to construct a sentence to express
the intention of collecting LIAs: retrieve, collect, fetch, ac-
quire, gather, package, ID, installed, app, name, application,
software, and list. For each privacy policy, we extracted the
sentences that contain at least one of the keywords. From
the extracted sentences, we manually searched for specific
expressions such as “installed app", “app ID" and “installed
software". Thereafter, we read the matched sentences and the
corresponding privacy policy.

From the set of 2499 policies, we found 162 policies that
explicitly mention the collection of LIAs. Among these, 129
belong to the set of 1674 nosy apps (7.7%). Some apps have
exactly the same privacy policies, even though they are from
different companies (e.g., [20] and [6]). 33 apps mentioned
the collection of LIAs, but we did not find these apps in both
static and dynamic analyses. For these apps, we performed a
more thorough dynamic analysis: we used them as a normal
user would, while intercepting API calls. We did not capture,
however, any calls to the two sensitive methods. This might
be because developers copy the privacy policies from other
apps, or because the apps will make these calls in the future.

Besides the generic declared purposes of the collections of
LIAs by apps, e.g., for improving the service (e.g., [14, 21]),
some apps explicitly state that they collect LIAs for targeted
ads (e.g., [3, 12]), and targeted ads by third-party ad networks
(e.g., [15]). Unexpectedly, we found that of the 162 policies
that mention the collections of LIAs, 76 categorize LIAs as
non-personal, whereas Google defines this as personal infor-
mation. This shows a misunderstanding between developers
and Google’s guidelines.

6 Existing Protection Mechanisms

To the best of our knowledge, there are no existing robust
mechanisms for hiding sensitive apps. Below, we present
some mechanisms that can offer partial protection.

6.1 Mechanisms by Google

Android does not provide users with a mechanism to hide the
existence of apps from other apps. But users can repurpose
existing Android mechanisms for partially hiding apps.

716 28th USENIX Security Symposium USENIX Association

Multiple Users. Android supports multiple users on a single
phone by separating user accounts and app data.19 This fea-
ture could be used to prevent fingerprinting of sensitive apps
by installing sensitive apps in one or more secondary accounts,
thus isolating sensitive apps from nosy apps. However, a key
disadvantage of using multiple users for this purpose is that it
prevents inter-app communications (e.g., intent-based inter-
actions) among apps in different user accounts. As a result,
sensitive apps’ functionalities can be significantly reduced
because they cannot delegate tasks to other apps. For instance,
a sensitive app will not have access to a user’s calendar or
contacts (unless the user replicates them on each account)
or access to other apps for certain tasks, e.g., sending a mes-
sage or picture via Whatsapp or Facebook, accessing files in
Dropbox, sending an e-mail or SMS, and authenticating users
with Google or Facebook accounts. In section 10.5, we show
that popular mHealth apps use inter-app communications not
only for delegating tasks but also for sharing their resources
with other apps. Therefore, a solution that hides sensitive
apps and that still supports inter-app communications is more
desirable.

Multiple user accounts could also introduce new security
and privacy issues [45]. Using multiple users will signifi-
cantly affect the user experience, as users will have to switch
back and forth among accounts to access different types of
apps and data, introducing significant delays and confusion.
While the primary account is in the foreground, apps on sec-
ondary accounts are put in the background and they cannot
use Bluetooth services (important for mHealth apps). Another
important problem is that some popular phone manufacturers
(e.g., Samsung, LG, Huawei, Asus) disable multiple users in
some of their devices,20 thus affecting the availability of this
solution to many users.

We have also found experimentally that the implementa-
tion of multiple users in the latest (Android 9) and earlier
versions of Android does not effectively prevent nosy apps
from learning what other apps are installed in different user
accounts. To bypass this protection, a nosy app could do any
of the following:

• On Android 7 or earlier, including an additional param-
eter flag (MATCH_UNINSTALLED_PACKAGES) in methods
getIA() and getIP() will reveal the apps installed in
secondary user accounts.

• On Android 9 or earlier, a nosy app can
use multiple PackageManager methods, such
as getPackageUid(), getPackageGidS(),
checkPermission(), checkSignatures(), or
getApplicationEnabledSetting(), as oracles to
check if an app is installed on a secondary account or
on a work profile. The nosy app only needs to include
the package name of the targeted sensitive app as a
parameter to these methods. Android’s source code
shows that these methods check the user ID of the app

calling the method to show only information of apps in
the same user profile, but our experimental evaluation
shows that currently deployed versions of Android do
not enforce such checks. This approach was tested on
Android 9.

• A nosy app can guess the UIDs of the apps installed
on all the accounts and work profiles, by looking at the
/proc/uid directory to learn the ranges of current UIDs
in the system. It then guesses the UIDs of other apps and
uses the getNameForUid() method to learn the package
name. This method will return a package name given a
UID as a input parameter; if the app does not exist, it
returns null. As a result, it can be used as an oracle to
retrieve the list of installed apps on the device. This was
tested on Android 6, 8.1 and 9.

• A nosy app with adb privilege can easily verify if a
sensitive app is running on the device, independently of
the account or profile it was installed on, by using the
shell command: pidof <PackageName>. This approach
was tested on Android 9.

• A nosy app with adb privilege can obtain the list of in-
stalled apps, which includes apps on secondary accounts
and work profiles, by using the shell command dumpsys.
This approach was tested on Android 9.

Android for Work. Android supports an enterprise solution
called Android for Work; this solution separates work apps
from personal apps.21 Our tests, using similar methods as
with multiple users, also confirmed that, as with multiple
users accounts, it is easy to identify which apps are in the
work profile. In addition, Android for Work is only available
to enterprise users.

Recently, Android introduced a new feature called Instant
Apps;22 this feature enables users to run apps instantly with-
out installing them. Such an approach could be used to hide
sensitive apps, however, it only supports a limited subset of
permissions, and it does not support features that are crucial
for mHealth apps such as storing users’ data or connecting to
Bluetooth-enabled devices.23

Google classifies the list of installed apps as personal in-
formation hence requires apps that collect this information to
include in their privacy policies the purpose of their collec-
tion. Apps that do not follow this requirement are classified as
Potentially Harmful Apps (PHAs) or Mobile Unwanted Soft-
wares (MuWS) [1, 2]. Android security services, e.g., Google
Play Protect [10], periodically scan users’ phones and warn
users if apps behave as PHAs or MuWS. Such mechanisms,
however, do not seem to effectively protect against the unau-
thorized collection of the list of installed apps. Our analyses
show that only 7.7% of the apps declare their collections of
such information in their privacy policies, and some claim that
a list of installed app is non-personal information (Section 5).

USENIX Association 28th USENIX Security Symposium 717

Furthermore, these mechanisms might fail to detect targeted
attacks, e.g., a nosy app might want to check if a small subset
of sensitive apps exists on the phone.

6.2 Mechanisms by Third Parties
Samsung Knox24 relies on secure hardware to offer isolation
between personal and work-related apps, similar to Android
for Work. Unfortunately, we were not able to evaluate the
robustness of the protection offered by Knox w.r.t. hiding
apps, because Samsung discontinued its support for work and
personal spaces for private users; only enterprise users can use
such a feature. Nevertheless, this solution is device specific
and only hides apps from other apps in a different isolated
environment, but not from apps in the same environment (apps
in the same isolated environment can come from different,
untrusted sources). That is, a solution that provides per-app
isolation is preferable.

There are apps on the Google Play Store that help users to
hide the icons of their sensitive apps from the Android app
launcher (e.g., [16]). Even though they help hide the presence
of the sensitive apps from other human users (e.g., nosy part-
ners), these sensitive apps are still visible to other apps. Along
the line of user-level virtualization techniques, on the Google
Play Store, we found apps that use these techniques to enable
users to run in parallel multiple instances of an app on their
phones and to partially hide the app, (e.g., [11, 17, 18]). How-
ever, these solutions require the hidden app to be installed first
on the phone before protecting it, thus triggering installation
and uninstallation broadcast events that can be detected by
a nosy app. These apps provide only a single isolated space,
i.e., they do not protect apps from other apps in the same
environment. Our preliminary evaluation of these apps also
shows that their protection is limited, e.g., the names of the
hidden apps can be found in the list of running processes.

7 Our Solution: HideMyApp

We propose HideMyApp (HMA), a system for hiding the pres-
ence of sensitive apps w.r.t. to a nosy app on the same phone.
In this section, we will present our system model, adversarial
model, design goals and a high-level overview of the solution.

7.1 System Model
The scenario envisioned for HMA is as follows. A hospital or a
hospital consortium (hereafter called hospitals) sets up an app
store, called HMA App Store, where app developers working
for the hospitals publish their mHealth apps. Hospitals want
their patients to use their mHealth apps without disclosing
their use to other apps on the same phone. Note that such
organizations and their own app stores already exist, e.g., the
VA App Store set up by the U.S. Department of Veterans
Affairs.

To enable the users to manage the apps provided by
the HMA App Store, the HMA App Store provides the users
with a client app called HMA Manager. This app can be dis-
tributed through any available app stores, e.g., the Google Play
Store. To allow the HMA Manager app to install apps down-
loaded from the HMA App Store, similarly to other Google
Play Store alternatives e.g., Amazon25 and F-Droid [9], users
need to enable the “allow apps from unknown sources" set-
ting on their phones. Since Android 8.0, Google made this
option more fine-grained by turning it into the “Install un-
known apps" permission [19]. That is, users only need to
grant this permission to the HMA Manager app to enable it to
install apps from the HMA App Store.

7.2 Adversarial Model

We assume the Android OS on the user’s phone to be trusted
and secure, including its Linux kernel and its Java API
framework. We assume that the HMA App Store and the
HMA Manager app are trusted and secure, and that they follow
the prescribed protocols of the system. We discuss mecha-
nisms to relax the trust assumptions on the HMA App Store
and HMA Manager app in Section 9.2.

We assume there is a nosy app that wants to learn if
a specific app is present on the phone. The nosy app has
the default app-privilege, and it is granted all dangerous
permissions by its user – these are the typical capabilities
of apps that users often install on their phones. In Sec-
tion 9, we discuss mechanisms for preventing more ad-
vanced fingerprinting attacks by malicious apps; a mali-
cious app has more capabilities than a nosy app, i.e., it can
have special permissions (e.g., PACKAGE_USAGE_STATS or
BIND_ACCESSIBILITY_SERVICE) and the debugging privi-
lege (adb), thus it can perform more advanced attacks, such
as fingerprinting apps using their runtime information.

We assume that apps belonging to hospitals are nosy,
i.e., these apps are also curious about what other apps are
installed on the user’s device.

7.3 Design Goals

The purpose of HMA is to effectively hide the presence of
sensitive apps, yet preserve their usability and functionality.

• (G1) Privacy protection. It should be difficult for a nosy
app to identify sensitive apps on the same phone.

• (G2) No firmware modifications. The solution should
run on stock Android phones. That is, it should not re-
quire the phones to run customized versions of Android
firmware, e.g., extensions to Android’s middleware or the
Linux kernel. This also means that the solution should
not require the phones to be rooted.

718 28th USENIX Security Symposium USENIX Association

• (G3) Preserving the app-isolation security model of An-
droid. Each app should have its own private directory
and run in its own dedicated process.

• (G4) Few app modifications. For baseline protection
against nosy apps, the solution should not require app
developers to change their apps. For protection against
malicious apps, apps might need to be changed or some
features might not be supported.

• (G5) Usability. The solution should preserve the usability
and the key functionalities of sensitive apps.

7.4 HMA Overview
From a high-level point of view, HMA achieves its aforemen-
tioned design goals by enabling its users to install a container
app for each sensitive app (as illustrated in Fig. 1). Each con-
tainer app has a generic package name and obfuscated app
components. As a result, nosy apps cannot fingerprint a sen-
sitive app by using the information about its container app.
At runtime, the container app will launch the APK file of the
sensitive app within its context by relying on user-level virtu-
alization techniques. That is, the sensitive app is not registered
in the OS.

To do so, HMA requires the hospitals to bootstrap the sys-
tem by setting up the HMA App Store and distributing the
HMA Manager app to users (Section 8.1 and 8.2). Through
the HMA Manager app, users can (un)install, open, and update
sensitive apps without being discovered by the OS and other
apps. We detail these operations in Section 8.3.

8 HMA System Description

Here, we detail the components and operations of HMA.

8.1 HMA Manager App
Recall, to hide their presence, sensitive apps are not regis-
tered in the OS; instead, their container apps are registered.
Thus, if users open their default Android app launcher, they
will only see container apps with generic icons and random
names. To solve this usability issue, at installation time, the
HMA Manager app keeps track of the one-to-one mappings
between sensitive apps and their container apps. Using the
mappings, the HMA Manager app can display the container
apps to the users with the original icons and labels of their sen-
sitive apps. To provide unlinkability between users and their
sensitive apps w.r.t. the HMA App Store, the HMA Manager
app never sends any identifying information of the users to
the HMA App Store, and all the communications between the
HMA App Store and the HMA Manager are anonymous. This
is a reasonable assumption because the HMA Manager app can
be open-sourced and audited by third parties. Also, in most

cases, users do not have fixed public IP addresses; they access
the Internet via a NAT gateway offered by cellular providers.
If needed, a VPN proxy or Tor could be used to hide network
identifiers.

8.2 HMA App Store

The HMA App Store receives app-installation and app-update
requests from HMA Manager apps and returns container
apps to them. To reduce the delays introduced to the app-
installation and app-update requests, the HMA App Store de-
fines a set of P generic package names for container apps,
e.g., app-1, . . . , app-P. This set of generic names is shared
by all sensitive apps, thus there is no one-to-one mapping
between a sensitive app and a generic name or a subset of
generic names.26 For each sensitive app, the HMA App Store
can generate beforehand P container apps corresponding to
P predefined generic package names and store them in its
database. Below, we explain the procedure followed by the
HMA App Store to create a container app. Details about the
app-installation and update requests from the HMA Manager
apps are explained in Section 8.3.

HMA Container-App Generation. To generate a container
app for a sensitive APK, the HMA App Store performs the
following steps. Note that this operation cannot be performed
by the HMA Manager app, because Android does not provide
tools for apps to decompile and compile other apps.

• The HMA App Store creates an empty app with a
generic app icon, a random package name and label,
and it imports into the app the lib and the code for the
user-level virtualization, i.e., to launch the APK from
the container app. Note that the lib and the code are
independent from the APK.

• The HMA App Store extracts the permissions declared
by the sensitive app and declares them in the manifest
file of the container app.

• To enable the container app to launch the sensitive APK,
app components (activities, services, broadcast receivers,
and content providers) declared by the sensitive app need
to be declared in the manifest file of the container app.
This information, however, can be retrieved by nosy apps
to fingerprint sensitive apps (Section 4). To mitigate this
problem, the container app declares activities, services
and broadcast receivers of the sensitive app with random
names. At runtime, the container app will map these ran-
dom names to the real names. The intent filters declared
in the components of sensitive apps are also declared in
the manifest file of their sensitive apps. In Section 9, we
will discuss the case of content providers.

• The HMA App Store compiles the container app to ob-
tain its APK and signs it.

USENIX Association 28th USENIX Security Symposium 719

HMA App Store (1) Request mHealth app

(2) A container app for mHealth APK

App-3

App-1

App-2

Nosy App 2

Nosy App 1

Third-party servers

HMA Manager

Play Store
List of installed apps:

- Nosy App 1
- Nosy-App 2
- Play Store
- HMA Manager
- App-1
- App-2
- App-3

Figure 1: Overview of the HMA architecture. Nosy apps only learn the generic names of the container apps.

Note that for the sake of simplicity, here we only present
a solution that protects mandatory features of Android apps.
A malicious app might try to fingerprint sensitive apps based
on, for instance, the runtime information produced by their
container apps. We discuss this in Section 9.

HMA User-Level Virtualization. To launch the APK of a
sensitive app without installing it, its container app generates
a randomly named child-process in which the APK will run,
i.e., the APK is executed under the same UID as its container
app. Thereafter, the container app loads the APK dynamically
at runtime, and it intercepts and proxies the interactions be-
tween the sensitive app and the underlying system (the OS
and the app framework). To do so, we rely on an open-source
lib for app-virtualization called DroidPlugin [8].

8.3 HMA Operations

In this section, we detail the procedure followed by a user
when she (un)installs, updates, or uses sensitive apps.

App Installation. To install a sensitive app, the user opens
her HMA Manager app to retrieve the set of apps provided by
the HMA App Store. Once she selects a sensitive app, the
HMA Manager app sends to the HMA App Store an installa-
tion request consisting of the name of the sensitive app and
her desired generic package name for the container app. The
HMA App Store correspondingly finds in its database or cre-
ates a container app, and it sends the container app, together
with the original label and icon of the sensitive app, to the
HMA Manager. The HMA Manager prompts the user for her
confirmation about the installation. Once the user accepts, the
installation occurs as in standard app installation on Android.
Also, the HMA Manager saves, in its private directory, a record
of the package name of the container app and the package
name, the original icon and the label of the sensitive app.

App Launch. To launch a sensitive app, the user opens her
HMA Manager app to be shown with the set of container apps
installed on her phone. Using the information stored in its
database about the mappings between container apps and
sensitive apps (Section 8.3), the HMA Manager displays to
the user the container apps with the original labels and icons
of the corresponding sensitive apps. Therefore, the user can
easily identify and select her sensitive apps.

The first time a container app runs, it needs to obtain the
sensitive APK from the HMA App Store; then it stores the
APK in its private directory. This incurs some delays to the
first launch of the sensitive app. However, it is needed to
prevent the sensitive app from being fingerprinted: If the sen-
sitive APK was included in the resources or assets folders
of its container app so that the container app could copy and
store the APK in its private directory at installation time, a
nosy app would be able to obtain the sensitive APK. Recall,
any app can obtain the resources and assets of other apps (Sec-
tion 4). Also, Android does not permit apps to automatically
start their background services upon installation.

At runtime, the container app dynamically loads the sensi-
tive APK. Thereafter, it intercepts and proxies API calls and
system calls between the sensitive app and the underlying
system. If the version of the Android OS is at least 6.0, per-
missions requested by the sensitive app will be prompted by
its container app at runtime. Thus, they will be shown with
the generic package name of the container app. This, how-
ever, does not affect the comprehensibility of the permission
requests, as shown by our user study (Section 10.6). Addi-
tionally, when an app sends an implicit intent with an action
supported by the sensitive app, the operating system will show
the sensitive app as an option for the user to choose to handle
the requested action. This introduces a usability problem: the
icon of the sensitive app presented to the user is a generic
icon. This, however, can be solved by using the direct share
targets feature in Android – a feature that enable apps to show
finer-grained internal content in the chooser dialog window.27

App Update. When a sensitive app on the HMA App Store
has an update, for each predefined generic container-app
package name, the HMA App Store generates a correspond-
ing container app for the updated sensitive app. This step
is needed, because the configuration file of the container
app needs to be updated w.r.t. the updates introduced by the
sensitive app. The HMA App Store then sends a push no-
tification to all HMA Manager clients to notify them about
the update. If a user has the sensitive app on her phone, her
HMA Manager sends the package name of its existing con-
tainer app to the HMA App Store. In return, it receives the cor-
responding updated container app from the HMA App Store.
It then prompts the user to confirm the installation. Once the
user accepts, the updated container app is installed, similarly

720 28th USENIX Security Symposium USENIX Association

to the standard app-update procedure on Android.

App Uninstallation. To uninstall a sensitive app, the user
opens her HMA Manager app to be shown with the set of
her container apps. Once she selects the container app, the
HMA Manager prompts her to confirm the uninstallation.
Thereafter, the uninstallation occurs similarly to the standard
app-uninstallation procedure on Android.

9 Privacy and Security Analysis

Here, we present an analysis of HMA to show that it effectively
achieves its privacy and security goals w.r.t. different capa-
bilities of the nosy apps (i.e., their granted permissions and
privileges) as shown in Table 1.

9.1 Privacy

Nosy Apps without Permissions. HMA effectively protects,
by default, the core attributes of sensitive apps. First, a nosy
app cannot obtain the package name of a sensitive app, be-
cause the sensitive app is never registered on the system;
instead, its container app with a generic package name is in-
stalled. Second, the resources, shared libraries, developers’
signatures and developers’ signing certificates of the sensitive
app cannot be learnt by the nosy app, because they are not
declared or included in the container-app’s APK; instead they
are dynamically loaded from the sensitive APK at runtime.
Third, the nosy app cannot learn the components’ names of
the sensitive app, because these names are randomized. To
prevent fingerprinting attacks based on the number of com-
ponents declared in the container app, the HMA App Store
adds dummy random components during the generation of
the container app such that all the container apps declare the
same number of components.

A nosy app might try to fingerprint sensitive apps by using
the sets of permissions declared by their container apps. This
can be mitigated if all container apps declare a union of per-
missions requested by sensitive apps in the HMA App Store.
Note that for devices with Android 6 or later, the container
app requests at runtime only the permissions needed by its
sensitive app, and users can grant or decline these requests.
This makes it difficult for nosy apps to fingerprint a sensitive
app using the set of permissions granted to its container app.
HMA needs collaboration from app developers to prevent

fingerprinting attacks based on the customized configurations
of some sensitive apps, e.g., themes and screen settings. The
HMA App Store can define a guideline for app developers to
follow such that all apps have the same configurations. This
will affect the look and feel of the sensitive apps, but it is a
trade-off between usability and privacy. Note that the same
approach has been used in other deployed systems, e.g., in
the Tor browser where all the versions have the same default
window size and user-agent strings.28 To facilitate guideline

compliance, the HMA App Store can also provide developers
with IDE plugins to help them write guideline-compliant
code; such an approach has been proposed in existing work
(e.g., [43] and [31]).

App developers might want to use custom features, such
as custom permissions, custom actions for the intent filters of
their apps’ components. These features, however, can be used
to fingerprint their sensitive apps, hence should not be used
by app developers. An app might want to support a content
provider for sharing data between its components or for shar-
ing data with other apps. HMA can support the former case; the
container apps do not need to declare the content provider in
its manifest file, but it handles the requests from the compo-
nents of the sensitive apps internally. HMA, however, cannot
support the case of sensitive apps using content providers to
share data with other apps. This is because in order to do so,
the container apps need to declare the URIs of their content
providers in their manifest files, and these URIs can uniquely
identify apps. These are limitations of HMA, however, from
our analysis, only a small number of apps is affected by these
limitations (Section 10.5).
Nosy Apps with Permissions. A nosy app can fingerprint
sensitive apps based on their use of the external storage (SD
card), e.g., unique directories and files. To prevent this, con-
tainer apps can intercept and translate calls from sensitive
apps associated with the creation or access of files in external
storage. However, note that apps are not recommended to store
data there, especially mHealth apps. To prevent an app with
VPN capabilities from fingerprinting sensitive apps based on
the IP addresses in the header of the IP packages, the sensi-
tive apps can relay their traffic through the HMA App Store
servers; this protection is provided at the cost of additional
communication delays for the apps and it requires collabora-
tion with app developers.

A malicious app cannot fingerprint a sensitive app by using
the list of running processes, because the sensitive app runs
inside the child process of its container app with a random
name. To prevent malicious apps from abusing its special
permissions to fingerprint sensitive apps using their runtime
statistics, e.g., resources consumed by their container apps,
the container apps can randomly generate dummy data to
obfuscate the usage statistics of sensitive apps. Note that this
does not require changes to the sensitive apps. In future work,
we will evaluate techniques against these side-channel attacks
such as [52] and [26]. HMA cannot prevent malicious apps,
with permission to accessibility services, from fingerprinting
sensitive apps. Accessibility services enable access to apps’
unique layout information, and it is not practical to require
all sensitive apps to use a generic layout. However, Google
currently bans the use of accessibility services for purposes
not related to helping users with disabilities.29 Users should
grant this permission only to apps they trust.
Nosy Apps with Default App Privileges. Recall, HMA, by
default, hides the package name of the sensitive apps. To pre-

USENIX Association 28th USENIX Security Symposium 721

vent nosy apps from fingerprinting sensitive apps by using
their UI states, the container apps can also obfuscate the UI
states by overlaying transparent frames on the real screens of
the sensitive apps. Similarly to the case of other runtime statis-
tics discussed above, the container apps can also randomly
generate dummy data to obfuscate the memory footprints and
power consumptions of the sensitive apps.

Malicious Apps with the Debugging Privilege (adb). Re-
call, HMA protects the package name and the process names
of the sensitive apps by default. Also recall, the container
apps can randomize runtime statistics of the container apps.
In addition, the paths to the APK files of the container apps
do not reveal any information about the sensitive apps. Also,
the malicious app cannot retrieve the APK files of the sen-
sitive apps, because the APKs are stored inside the private
directories of their container apps.

To prevent advanced attacks by malicious apps, e.g., fin-
gerprinting sensitive apps by reading the log of the phone,
HMA requires collaboration from app developers. Developers
should not write identifying information about their sensitive
apps to the log. Apps with adb privilege can take screenshots
of the phone and infer apps’ names from the screenshots.
HMA cannot prevent this attack. However, note that this at-
tack requires the malicious app to do extra and error-prone
operations (e.g., image processing) to identify sensitive apps.

9.2 Security
By using user-level virtualization techniques to launch an

APK, HMA does not require users to modify the OS of the
phone. The Android’s app-isolation security model is also
preserved, because each APK runs inside the context of its
container app. Thus, it is executed in a process under the same
UID as its container app, and it uses the private data direc-
tory of its container app. Similarly to other third-party stores
(e.g., Amazon or F-Droid), HMA requires users to enable the
“allow apps from unknown sources" setting on their phones.
However, apps installed from these sources are still scanned
and checked by Android security services for malware [10].
Also, recently, this setting was converted to a per-app per-
mission [19]. As a result, granting the HMA Manager app the
permission to install apps from unknown sources will not give
other apps on the phone the same permission.

As on the Google Play Store, with HMA, app developers reg-
ister their public keys on the HMA App Store, and sign their
apps before they submit to the HMA App Store. Moreover,
the HMA App Store signs the container apps that it generates
to vouch for the integrity of the container apps and the sen-
sitive apps. This mechanism, however, introduces a security
issue for sensitive apps: Apps from different developers are
signed by the same private key of the HMA App Store, hence
a dishonest app developer might exploit this same-signature
property to access signature-protected components of other
apps.30 Note that requesting or declaring signature-protection

permissions will facilitate fingerprinting of sensitive apps,
hence HMA does not support this feature. As a result, this
attack is not possible in HMA. Also note that few apps use
signature-protected permissions (see Section 10.5). In future
work, we will explore mechanisms for enabling container
apps to verify the signatures of sensitive apps at runtime, in
order to prevent unauthorized access to signature-protected
components of their sensitive apps.
HMA container apps prompt users only for permissions re-

quested by sensitive apps. To relax the trust assumptions on
the HMA App Store and HMA Manager, the HMA App Store
can provide an API so that anyone can implement her own
HMA Manager app, or the HMA Manager app can be open-
source, i.e., anyone can audit the app and check if it follows
the protocols as prescribed. Therefore, assuming that the meta-
data of the network and the lower communication layers can-
not be used to identify users, e.g., by using a proxy or Tor, the
HMA App Store cannot link a set of sensitive apps to a user.

10 Evaluation

To evaluate HMA, we used a real dataset of free and paid
mHealth apps on the Google Play Store. We looked into three
evaluation criteria: (1) overhead experienced by mHealth apps,
(2) HMA runtime robustness and its compatibility with mHealth
apps, and (3) HMA usability.

10.1 Dataset

We selected 50 apps from the medical category on the Google
Play Store, of which 42 apps are free and 8 apps are not. To
have a significant and diverse dataset, we selected apps based
on their popularity (more than 1000 downloads), their medi-
cal specialization, and their supported functionality. From the
50 apps, we filtered out apps that make calls to APIs that we
did not support in our prototype implementations, including
Google Mobile Services (GMS), Google Cloud Messaging
(GCM) and Google Play Services APIs. Note that these ser-
vices could be supported, similarly to other services, at the
cost of additional engineering efforts. We also filtered out
apps that use Facebook SDKs, because such SDKs often use
custom layouts that are not yet supported by the user-level vir-
tualization lib that HMA uses. Exploring the interaction mecha-
nisms between custom layouts with the Android framework
is an avenue for future work.

After filtering, we obtained a set of 30 apps (24 free
apps and 6 paid apps, see Appendix B of our techni-
cal report at [44]) for 15 medical conditions. Also, these
apps support features that are crucial for mHealth apps,
e.g., a Bluetooth connection with external medical devices
(e.g., Beurer HealthManager app [4]) and an internet con-
nection (e.g., Cancer.Net app [5]).

722 28th USENIX Security Symposium USENIX Association

10.2 Implementation Details

Our prototype features the main components of HMA, in-
cluding the HMA App Store and the HMA Manager app. To
measure the operational delay introduced by HMA, we imple-
mented a proof-of-concept HMA App Store on a computer
(Intel Core i7, 3GHz, 16 GB RAM) with MacOS Sierra. Our
HMA App Store dynamically generated container apps from
APKs and relied on an open-source lib called DroidPlugin [8]
for user-level virtualization. Our prototype container apps dy-
namically loaded the apps’ classes and resources from the
mHealth APKs and supported the interception and proxy of
API calls commonly used by mHealth apps, e.g., APIs related
to Bluetooth connections and SQLite databases.

10.3 Performance Overhead

In this section, we present the delays introduced by HMA to
sensitive apps during app-installation and app-launch op-
erations.31 For the evaluation of delays added by the user-
level virtualization to commonly used API methods and sys-
tem calls at runtime, we refer the readers to existing work,
e.g., Boxify [24] shows that such overhead is negligible (open-
ing a camera introduces an overhead of 1.24 ms).

Results presented in this section were measured on a
Google Nexus 5X phone running Android 7.0. In our ex-
periments, the HMA App Store was connected to the phone
through a micro-USB cable, hence network delays were not
considered. Yet, compared to the standard use of apps, HMA
incurs negligible network-delay overheads, because the only
bandwidth overhead introduced by HMA is the container-app
payload whose size is only several hundreds of kilobytes.

10.3.1 App Installation

When a user wants to install an mHealth app, the
HMA App Store first creates a container app for it. Based on
our experiments, assuming the HMA App Store decompiles
the mHealth APKs beforehand, for 90% of the cases, generat-
ing a container app takes, on average, 5 s. Note that a large
part of the delay comes from the compilation of the container
app, and the measurement was performed on a laptop com-
puter. Also note that the HMA App Store can always prepare
in advance container apps for each mHealth app, as presented
in Section 8.2. The size of the container app is only several
hundreds of kilobytes, which takes less than a second for the
HMA Manager app to download using a 3G or 4G Internet
connection. As a result, the total delay overhead introduced
by HMA would be less than 5 s in the worst-case scenario, and
less than a second if container apps are generated beforehand,
which is acceptable.

10.3.2 App Launch

On Android, apps can be launched from two different states:
cold starts where apps are launched for the first time since
the phone was booted or since the system killed the apps,
and warm starts where the apps’ activities might still reside
in memory, and the system only needs to bring them to the
foreground, hence faster than cold starts.

Experiment Set-Up. For cold-start delays, we rely on An-
droid’s official launch-performance profiling method [13].
For each app, we installed its container app, copied its APK
file to its container app’s private directory, and launched the
container app through adb. We then extracted the time infor-
mation from the Displayed entry of the logcat output. To
simulate a first launch, before we launched an app, we used the
command adb shell pm clear [package-name] to bring
the app back to its initial state. To simulate a cold start, be-
fore we launched an app, we used the command adb shell
am force-stop [package-name] to kill all the foreground
activities and background processes of the app. For each app,
we collected 50 measurements per launch setting. For a base-
line, we measured the delays when the mHealth apps were
executed without HMA.

To measure warm-start delays, due to the lack of Android
supports for profiling warm starts, we have to instrument
the source code of the sensitive apps to log the time that
the app enters different stages in its lifecycle. Because apps
in our dataset are closed source, we used an open-source
app.32 To simulate a warm start, we used the command input
keyevent 187 to bring the app to the background, and then
we used the monkey command to bring the app back to the
foreground. By subtracting the time when the onResume()
method is successfully executed with the time before the
monkey command is sent, we know the warm-start delay
experienced by the app. We measured the warm-start delays
experienced by the app in both settings (w/ and w/o HMA), 50
measurements per setting.

Results. Intuitively, in HMA, the first launch of an mHealth
will experience longer delays than the subsequent cold starts,
because the container app has to process the APK and store the
information needed for user-level virtualization. Our experi-
ments show that the median of this process takes 6.5 ± 0.16 s
(as compared to 0.74 ± 0.07 s if the mHealth apps were
launched w/o HMA). Note that this occurs only once, hence it
is negligible w.r.t. the lifetime of the app.

Fig. 2 shows the bar plot of subsequent cold-start delays,
with and without HMA, experienced by mHealth apps; the
heights of the bars represent the mean values, and the er-
ror bars represent one standard deviation. It can be seen that
the average delays are at most 3.0 ± 0.5 s and 1.3 ± 0.05 s
if the apps are executed with and without HMA, respectively.
For 90% of the cases, the average delay with HMA is less than
2.0 ± 0.3 s. Note that our prototype is a proof-of-concept
hence not optimized. Still, the observed delays are under the

USENIX Association 28th USENIX Security Symposium 723

Figure 2: Cold-start delays experienced by mHealth apps when they are executed with and without HMA. Note that our HMA
implementation is a proof-of-concept, hence not-optimized. The heights of the bars represent mean values and the error bars
represent the standard deviation. For each setting, we collected 50 measurements per app. The full names of the apps can be
found in Appendix B of our technical report at [44].

delay limit of 5 s suggested by Android [13]. Also, in our user
study, 97% of participants agreed that a launch delay of 5 s is
acceptable (Section 10.6).

Regarding warm-start delays, we found that the average
delay experienced by our tested app, when it was launched
with and without HMA, was ∼0.55 s. This is intuitive, because
the app’s processes were still running and the activities still
resided in the phone’s memory. In case the garbage collector
evicts the activities from the phone’s memory, warm-start
delays can be longer, due to the overheads of activity initial-
izations. We cannot simulate this case, because Android does
not provide methods to control the garbage collector. How-
ever, in this case, the delay will still be less than cold-start
delays (i.e., at most 3 s).

10.4 HMA Robustness and Compatibility

In this section, we present the evaluation of HMA in terms of
its robustness and its compatibility with Android versions.

Runtime Robustness. Following the approach used in previ-
ous work, (e.g., [35] and [53]), we manually tested each app
in our dataset with HMA. For each mHealth app, we extracted
its APK, created a container app using HMA App Store,
and installed the container app on the phone. Thereafter,
we used the HMA Manager to launch the app. We manu-
ally used most of the functionality of the mHealth app, and
checked if it had crashed during its execution. We found
that all of the apps in our dataset worked normally, except
one app that threw an error when making an SQLite con-
nection. To determine the cause of this error, we ran an ex-
ample app33 that uses the official Android API for database
access (i.e., Android.database.sqlite) to insert and re-
trieve records from an SQLite database, and the example
app ran successfully. We suspect that the mHealth app threw
an error because it specifies the full path to the database
(i.e., /data/data/package-name/db-name). Hence, when
running the app inside of the HMA container app, the hard-
coded path is not longer valid. To avoid this problem, de-
velopers should specify the relative path to the database
(i.e., ./db-name) instead of its full path.

Compatibility. We ran HMA on a series of smartphones with
Android OS from version 5.0 to 8.0, which accounts for 89%
of the current Android version distribution [7]. We found that
HMA can be successfully deployed on mainstream commercial
Android devices. But, there are two apps (Mole Mapper and
Alzheimer’s Speed of Processing Game) that initially
failed to run on our Nexus 5X (Android 7.1.1) due to the in-
compatibility between 32-bit and 64-bit systems. We fixed the
problem by enabling the option -abi armeabi-v7a when in-
stalling them. From the list of 20 apps that we filtered out, we
found that 3 apps (Hearing Aid, What’s Up and Cardiac
diagnosis) successfully ran on Android 5.0 and 6.0, but they
failed to run in later versions of Android. We investigated the
log of the three apps and found that API methods related
to GMS services that we do not support were called in the
later versions of Android. This problem could be solved if
these services are hooked, as we discussed in Section 10.2.
Note that, with the recent release of Android 9, Google has
restricted the use of Java reflection34 – the programming in-
terface that all user-level virtualization techniques rely on.
Therefore, for HMA to work seamlessly in Android 9, new
user-level virtualization techniques need to be explored. Still,
Android 9 has only less than 1% market share [7], which
means HMA will be compatible with most Android devices
in the coming years. Alternatively, HMA could work with
rooted Android 9 devices by using dynamic customization
frameworks, e.g., Xposed.35

10.5 Inter-App Communication Support

Sharing resources with other apps via customized features
(e.g., custom permissions and custom intent-filters) and pub-
licly exposing components (e.g., activities, services and con-
tent providers) could facilitate fingerprinting attacks. HMA can
partially support inter-app communications, but it is prefer-
able to avoid such features to guarantee robust fingerprinting
protection. Avoiding inter-app communication, however, can
affect apps’ functionality and backward compatibility. To
estimate the effect of using HMA and avoiding inter-app com-
munication on existing apps, we analyzed a set of popular

724 28th USENIX Security Symposium USENIX Association

sensitive apps from the Google Play Store. Our results show
that a small number of apps use inter-app communication fea-
tures that are not supported by HMA and, in many cases, such
features are not directly related to apps’ key functionalities.

Dataset. We collected a total of 1045 APK files from the
most popular free apps in the Medical and Health&Fitness
categories in the US Google Play Store. By checking the apps’
descriptions, we found that approximately 60% directly match
HMA’s use case (i.e., health- and fitness-related apps). The rest
of the apps are less related to HMA’s use case, e.g., apps for
medical doctors and nurses, apps for managing accounts with
health providers, and apps for managing gym subscriptions.
From the APK files, we extracted the manifest file using the
apktool application.

Custom Permissions. Permissions defined by apps to con-
trol access to their components can be used to fingerprint
them (e.g., they typically include the app name), as any app
can list the permissions of other apps. Hence, custom permis-
sions should be avoided. We found that a total of 531 apps
declared custom permissions. However, most of these permis-
sion declarations are related to deprecated services (Google
Cloud Messaging and Android Maps API v2)36 and can be
replaced with newer alternatives that do not require custom
permissions. Therefore, ignoring permissions associated with
these deprecated services, we found that only 68 apps (6.5%)
declared valid custom permissions.

Signature-Level Permissions. Signature permissions37 are
a subset of custom permissions, hence they can be used to
fingerprint apps. Given that HMA container apps are all signed
by the same key, a malicious app inside a container app could
abuse signature permissions to access resources of sensitive
apps in other container apps. Therefore, HMA currently does
not declare signature permissions in the container apps. Our
analysis shows that only 113 apps (10.8%) declared signature
permissions and, as explained before, many of these permis-
sions are associated with deprecated services (e.g., Google
Cloud Messaging and Android Maps API).

Content Providers. Any app can list the content providers
of other installed apps and use this information to fingerprint
them. Therefore, HMA obfuscates this information in the con-
tainer app. This means that public content providers (used
to share data with other apps) are not currently supported
by HMA. Our analysis shows that only 84 apps (8%) declare
public content providers. From these apps, 68% declare pub-
lic content-providers associated with third-party frameworks
(e.g., Seattle Clouds) for services such as file sharing and
authentication, and approximately 23% require permission to
access the provider.

Intent Filters. Custom intent filters, i.e., intent filters with
app-specific actions, could be used to fingerprint apps. Apps
cannot list the intent filters of other apps, but they can list all
the activities of other apps that can be performed by a par-
ticular intent. Hence, developers should avoid using custom

intent filters in their apps’ activities. Our analysis shows that
this is not a problem, as only 38 apps (3.6%) have activities
with custom intent filters.

Activities and Explicit Intents. Explicit intents are currently
not supported by HMA because container apps obfuscate the
activities’ names of sensitive apps; thus, direct reference to
sensitive apps’ activities is not possible. However, it is recom-
mended to use only explicit intents to launch internal activ-
ities; not activities of other apps (implicit intents should be
used instead). Our analysis shows that 170 apps (16.2%) de-
clare activities that can be launched by other apps via explicit
intents only, i.e., no intent filters. We noticed that many apps
(67) declared this type of activities to support Google’s Fire-
base authentication services. Yet, Firebase’s official documen-
tation does not seem to mention this approach to support its
services. Hence, to be compatible with HMA, these apps could
evaluate alternative (official) approaches to support Firebase
services or rely on other services for user authentication.

Services and Explicit Intents. Explicit intents are recom-
mended to access services offered by other apps. But, as stated
before, it is not possible to use explicit intents with HMA. Our
analysis show that 367 apps (35.1%) declare public services
that require explicit intents. This is a significant number, yet
we noticed that a large number of apps (252) use services
with explicit intents to support Google Play services for au-
thentication (Google Sign-In user revocation). Hence, these
apps could use alternative user authentication services to be
compatible with HMA. We also notice that only 44 apps de-
clared services that belong to the app itself; this indicates that
most of these services are associated with third-parties and
probably are not part of apps’ main functionalities.

Broadcast Receivers. Whereas any app can list the broad-
cast receivers of other apps, HMA container apps obfuscate
the names of the receivers to defend against fingerprinting
attacks. The container app can declare the same intent filters
for receivers that the sensitive app declares (including custom
intent filters) because other apps cannot list these intent filters.
As broadcast receivers offer asynchronous communication,
nosy apps cannot use API methods to check if an app is receiv-
ing a particular broadcast intent. In short, broadcast receivers
are supported by HMA.

10.6 HMA Usability and Desirability

To evaluate the usability of HMA and the users’ interest for it,
we conducted a user study that was approved by our institu-
tional ethical committee. It involved 30 student subjects (19
males, 11 females, 22 ± 4.5 years old) from 18 areas of study.
The participants were experienced Android users: 87% of
them have used an Android phone for at least a year. Also, they
were relatively concerned about their privacy; using the stan-
dard metric for measuring privacy perception (IUIPC) [39],
we found that, on a scale from 1 to 5, 97% of participants

USENIX Association 28th USENIX Security Symposium 725

graded at least 3.0 and an average of 4.1.
We began the study with an entry survey about demo-

graphic information, privacy postures, users’ awareness and
concerns about the problem of LIA collections. Then, we pro-
vided each participant with a fresh phone and asked them to
install and use two apps: a popular public-transportation app
for our city and an mHealth app called Cancer.Net. To pre-
cisely measure the users’ perceptions of the delay introduced
by HMA, the participants were asked to use the two aforemen-
tioned apps with and without HMA; detailed instructions were
provided to them. 67% of the participants had used the trans-
portation app before, whereas only 7% of them had used the
Cancer.Net app or an mHealth app. We finished the user
study with an exit survey containing questions related to the
usability of HMA and the users’ levels of interest in HMA. The
user-study session took ∼45 minutes, and we paid each partic-
ipant ∼$25 (i.e., 25 CHF). The transcript of survey questions
and the instructions can be found at 38.

Our study shows that the participants are concerned about
the privacy of health-related data: 90% of the participants
would be at least concerned if their health-related informa-
tion were collected by apps installed on their phones and
shared with third parties, and 87% of participants would be
at least concerned if third parties learned that they had used
health-related apps. Indeed, our study confirms the findings
from previous works (e.g., [41]) that the majority of people
never read privacy policies. Therefore, the current solution of
using privacy policies by Google for LIA collections is not
satisfactory. These findings make clear the case for HMA.

Regarding the usability of HMA, only 30% of the participants
noticed a difference when the two apps ran with and without
HMA. Note that the delays that users experienced in the user
study were the first-launch delays, which are 4.2 ± 0.06 s and
5.1 ± 0.07 s for the transportation app and the Cancer.Net
app, respectively. From the open-ended question in our exit
survey, we found that the observed differences are mainly
about the launching delay of the apps and the change in the
app names in permission prompts. From the close-ended
questions, which were coded using a five-point Likert scale,
we observe the following. Almost all participants agree that
these changes and delays are acceptable (97% and 93% of the
participants, respectively). 93% of the participants also agree
that the use of an HMA Manager to install and launch apps is
at least somewhat acceptable. Also, 90% of the participants
agreed that HMA does not affect the user experience of the apps
that it protects, and that they are at least somewhat interested
in using HMA. These results suggest that HMA is usable and
desirable.

11 Conclusion

In this work, we have shown that apps can collect a significant
amount of static and runtime information about other apps,
to fingerprint them. Our analysis has shown that many third

parties are interested in learning about the apps installed on
people’s phones. Moreover, we have shown that there are no
existing mechanisms for hiding the presence of an app from
other apps. We have proposed HMA, the first solution that ad-
dresses this problem. HMA does not require any modifications
to the Android OS and preserves the key functionalities of
apps. The results of our evaluation and user study suggest that
HMA is usable and of interest to users.

Acknowledgements

We thank our anonymous reviewers and our shepherd Sven
Bugiel for their insightful comments on this work. We are
grateful to oncologist Olivier Michielin who helped us iden-
tify the problem addressed in this work. This project was
supported by the grant #2017-201 of the Strategic Focal Area
“Personalized Health and Related Technologies (PHRT)” of
the ETH Domain. The work was carried out while Anh Pham
was a PhD student at EPFL.

References

[1] Android Security 2015 Year In Review. https:
//source.android.com/security/reports/Google_
Android_Security_2015_Report_Final.pdf. Visited:
Sep. 2018.

[2] Android Security 2016 Year In Review. https:
//source.android.com/security/reports/Google_
Android_Security_2016_Report_Final.pdf. Visited:
Sep. 2018.

[3] Angry Birds. https://play.google.com/store/apps/
details?id=com.rovio.angrybirds. Visited: Sep. 2018.

[4] Beurer HealthManager. https://play.google.
com/store/apps/details?id=com.beurer.connect.
healthmanager. Visited: Sep. 2018.

[5] Cancer.Net Mobile. https://play.google.com/store/
apps/details?id=com.fueled.cancernet. Visited: Sep.
2018.

[6] DH Texas Poker - Texas Hold’em. https://play.google.
com/store/apps/details?id=com.droidhen.game.
poker. Visited: Sep. 2018.

[7] Distribution dashboard. https://developer.android.
com/about/dashboards/. Visited: Sep. 2018.

[8] DroidPlugin. https://github.com/DroidPluginTeam/
DroidPlugin. Visited: Sep. 2018.

[9] F-Droid. https://f-droid.org/en/. Visited: Sep. 2018.

[10] Help protect against harmful apps with Google Play Pro-
tect. https://support.google.com/accounts/answer/
2812853?hl=en. Visited: Sep. 2018.

[11] Hide App, Private Dating, Safe Chat - PrivacyHider.
https://play.google.com/store/apps/details?id=
com.trigtech.privateme&hl=en. Visited: Sep. 2018.

726 28th USENIX Security Symposium USENIX Association

https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.fueled.cancernet
https://play.google.com/store/apps/details?id=com.fueled.cancernet
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://github.com/DroidPluginTeam/DroidPlugin
https://github.com/DroidPluginTeam/DroidPlugin
https://f-droid.org/en/
https://support.google.com/accounts/answer/2812853?hl=en
https://support.google.com/accounts/answer/2812853?hl=en
https://play.google.com/store/apps/details?id=com.trigtech.privateme&hl=en
https://play.google.com/store/apps/details?id=com.trigtech.privateme&hl=en

[12] InstaSize Editor: Photo Filters and Collage Maker.
https://play.google.com/store/apps/details?
id=com.jsdev.instasize. Visited: Sep. 2018.

[13] Launch-Time Performance. https://developer.android.
com/topic/performance/launch-time.html. Visited:
Sep. 2018.

[14] MX Player. https://play.google.com/store/apps/
details?id=com.mxtech.videoplayer.ad. Visited: Sep.
2018.

[15] Neon Motocross. https://play.google.com/store/
apps/details?id=com.motomex.neonmotocross. Visited:
Sep. 2018.

[16] Nova Launcher. https://play.google.com/store/apps/
details?id=com.teslacoilsw.launcher&hl=en. Visited:
Sep. 2018.

[17] Parallel Space - Multiple accounts and Two face.
https://play.google.com/store/apps/details?
id=com.lbe.parallel.intl&hl=en. Visited: Sep. 2018.

[18] Private Zone - Safe Vault. https://play.google.com/
store/apps/details?id=com.leo.appmaster. Visited:
Sep. 2018.

[19] Publish Your App. https://developer.android.com/
studio/publish/index.html#publishing-unknown. Vis-
ited: Sep. 2018.

[20] Solitaire: Super Challenges. https://play.google.com/
store/apps/details?id=com.cardgame.solitaire.
full. Visited: Sep. 2018.

[21] Sweet Selfie - selfie camera, beauty cam, photo edit.
https://play.google.com/store/apps/details?id=
com.cam001.selfie. Visited: Sep. 2018.

[22] ACHARA, J. P., ACS, G., AND CASTELLUCCIA, C. On the
Unicity of Smartphone Applications. In Proc. of WPES (2015).

[23] AITKEN, M., AND LYLE, J. Patient adoption of mhealth: use,
evidence and remaining barriers to mainstream acceptance.
IMS Institute for Healthcare Informatics (2015).

[24] BACKES, M., BUGIEL, S., HAMMER, C., SCHRANZ, O., AND

VON STYP-REKOWSKY, P. Boxify: Full-fledged App Sandbox-
ing for Stock Android. In Proc. of USENIX Security (2015).

[25] BIANCHI, A., FRATANTONIO, Y., KRUEGEL, C., AND VI-
GNA, G. Njas: Sandboxing unmodified applications in non-
rooted devices running stock android. In Proc. of SPSM (2015).

[26] CHEN, Q. A., QIAN, Z., AND MAO, Z. M. Peeking into Your
App without Actually Seeing It: UI State Inference and Novel
Android Attacks. In Proc. of USENIX Security (2014).

[27] CHEN, Y., JIN, X., SUN, J., ZHANG, R., AND ZHANG, Y.
POWERFUL: Mobile app fingerprinting via power analysis.
In Proc. of IEEE INFOCOM (2017).

[28] DAI, S., TONGAONKAR, A., WANG, X., NUCCI, A., AND

SONG, D. NetworkProfiler: Towards automatic fingerprinting
of Android apps. In Proc. of IEEE INFOCOM (2013).

[29] DEMETRIOU, S., MERRILL, W., YANG, W., ZHANG, A., AND

GUNTER, C. A. Free for all! assessing user data exposure to
advertising libraries on android. In Proc. of NDSS (2016).

[30] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,
AND WAGNER, D. Android Permissions: User Attention, Com-
prehension, and Behavior. In Proc. of SOUPS (2012).

[31] FERNANDES, E., PAUPORE, J., RAHMATI, A., SIMIONATO,
D., CONTI, M., AND PRAKASH, A. FlowFence: Practical
Data Protection for Emerging IoT Application Frameworks. In
Proc. of USENIX Security (2016).

[32] GRACE, M. C., ZHOU, W., JIANG, X., AND SADEGHI, A.-R.
Unsafe exposure analysis of mobile in-app advertisements. In
Proc. of ACM WiSec (2012).

[33] GULYÁS, G. G., ACS, G., AND CASTELLUCCIA, C. Near-
Optimal Fingerprinting with Constraints. Proceedings of Pri-
vacy Enhancing Technologies Symposium (2016).

[34] HUANG, J., SCHRANZ, O., BUGIEL, S., AND BACKES, M.
The ART of App Compartmentalization: Compiler-based Li-
brary Privilege Separation on Stock Android. In Proc. of ACM
CCS (2017).

[35] JAEBAEK, S., DAEHYEOK, K., DONGHYUN, C., INSIK, S.,
AND TAESOO, K. FLEXDROID: Enforcing In-App Privilege
Separation in Android. In Proc. of NDSS (2016).

[36] JANA, S., AND SHMATIKOV, V. Memento: Learning secrets
from process footprints. In Proc. of IEEE S&P (2012).

[37] KOTZ, D., GUNTER, C. A., KUMAR, S., AND WEINER, J. P.
Privacy and Security in Mobile Health: A Research Agenda.
Computer (June 2016).

[38] LIN, C.-C., LI, H., ZHOU, X.-Y., AND WANG, X. Screen-
milker: How to Milk Your Android Screen for Secrets. In Proc.
of NDSS (2014).

[39] MALHOTRA, N. K., KIM, S. S., AND AGARWAL, J. Internet
users’ information privacy concerns (IUIPC): The construct,
the scale, and a causal model. Information systems research
(2004).

[40] MALMI, E., AND WEBER, I. You Are What Apps You Use:
Demographic Prediction Based on User’s Apps. In Proc. of
AAAI CWSM (2016).

[41] MCDONALD, A. M., REEDER, R. W., KELLEY, P. G., AND

CRANOR, L. F. A Comparative Study of Online Privacy Poli-
cies and Formats. In Privacy Enhancing Technologies (2009).

[42] NAVEED, M., ZHOU, X.-Y., DEMETRIOU, S., WANG, X.,
AND GUNTER, C. A. Inside Job: Understanding and Mitigat-
ing the Threat of External Device Mis-Binding on Android. In
Proc. of NDSS (2014).

[43] NGUYEN, D. C., WERMKE, D., ACAR, Y., BACKES, M.,
WEIR, C., AND FAHL, S. A Stitch in Time: Supporting An-
droid Developers in Writing Secure Code. In Proc. of ACM
CCS (2017).

[44] PHAM, A., DACOSTA, I., LOSIOUK, E., STEPHAN, J.,
HUGUENIN, K., AND HUBAUX, J.-P. HideMyApp : Hid-
ing the Presence of Sensitive Apps on Android. In EPFL
Infoscience (2019).

[45] RATAZZI, P., AAFER, Y., AHLAWAT, A., HAO, H., WANG,
Y., AND DU, W. A systematic security evaluation of android’s
multi-user framework. arXiv preprint arXiv:1410.7752 (2014).

USENIX Association 28th USENIX Security Symposium 727

https://play.google.com/store/apps/details?id=com.jsdev.instasize
https://play.google.com/store/apps/details?id=com.jsdev.instasize
https://developer.android.com/topic/performance/launch-time.html
https://developer.android.com/topic/performance/launch-time.html
https://play.google.com/store/apps/details?id=com.mxtech.videoplayer.ad
https://play.google.com/store/apps/details?id=com.mxtech.videoplayer.ad
https://play.google.com/store/apps/details?id=com.motomex.neonmotocross
https://play.google.com/store/apps/details?id=com.motomex.neonmotocross
https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher&hl=en
https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher&hl=en
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
https://play.google.com/store/apps/details?id=com.leo.appmaster
https://play.google.com/store/apps/details?id=com.leo.appmaster
https://developer.android.com/studio/publish/index.html#publishing-unknown
https://developer.android.com/studio/publish/index.html#publishing-unknown
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.cam001.selfie
https://play.google.com/store/apps/details?id=com.cam001.selfie

[46] SENEVIRATNE, S., SENEVIRATNE, A., MOHAPATRA, P.,
AND MAHANTI, A. Predicting User Traits from a Snapshot of
Apps Installed on a Smartphone. SIGMOBILE Mob. Comput.
Commun. Rev. 18, 2 (June 2014).

[47] SENEVIRATNE, S., SENEVIRATNE, A., MOHAPATRA, P.,
AND MAHANTI, A. Your installed apps reveal your gender
and more! SIGMOBILE Mob. Comput. Commun. Rev. (2015).

[48] SUN, M., AND TAN, G. NativeGuard: Protecting Android
Applications from Third-party Native Libraries. In Proc. of
ACM WiSec (2014).

[49] SUNSHINE, J., EGELMAN, S., ALMUHIMEDI, H., ATRI, N.,
AND CRANOR, L. F. Crying Wolf: An Empirical Study of SSL
Warning Effectiveness. In Proc. of USENIX Security (2009).

[50] TAYLOR, V. F., SPOLAOR, R., CONTI, M., AND MARTI-
NOVIC, I. Appscanner: Automatic fingerprinting of smart-
phone apps from encrypted network traffic. In Proc. of IEEE
EuroS&P (2016).

[51] TAYLOR, V. F., SPOLAOR, R., CONTI, M., AND MARTI-
NOVIC, I. Robust Smartphone App Identification via En-
crypted Network Traffic Analysis. IEEE Trans. on Inf. Foren-
sics and Security 13, 1 (Jan. 2018).

[52] WANG, T., AND GOLDBERG, I. Walkie-talkie: An efficient
defense against passive website fingerprinting attacks. In Proc.
of USENIX Security (2017).

[53] WANG, X., SUN, K., WANG, Y., AND JING, J. DeepDroid:
Dynamically Enforcing Enterprise Policy on Android Devices.
In Proc. of NDSS (2015).

[54] XU, Q., LIAO, Y., MISKOVIC, S., MAO, Z. M., BALDI, M.,
NUCCI, A., AND ANDREWS, T. Automatic generation of
mobile app signatures from traffic observations. In Proc. of
IEEE INFOCOM (2015).

[55] ZHOU, X., DEMETRIOU, S., HE, D., NAVEED, M., PAN, X.,
WANG, X., GUNTER, C. A., AND NAHRSTEDT, K. Identity,
location, disease and more: Inferring your secrets from android
public resources. In Proc. of ACM CCS (2013).

Notes
1https://liquid-state.com/mhealth-apps-market-snapshot/.

Visited: Nov. 2018.
2https://research2guidance.com/mhealth-app-market-

getting-crowded-259000-mhealth-apps-now/. Visited: Sep. 2018.
3https://www.theguardian.com/technology/2014/nov/27/

twitter-scanning-other-apps-tailored-content. Note that Twitter
recently announced that it excludes apps dealing with health, religion
and sexual orientation, https://help.twitter.com/en/safety-and-
security/app-graph. Visited: Sep. 2018.

4https://techcrunch.com/2017/05/04/report-smartphone-
owners-are-using-9-apps-per-day-30-per-month/. Visited: Sep.
2018.

5Now reclassified as Mobile Unwanted Software (MUwS) [2].
6https://play.google.com/about/developer-content-policy-

print/. Visited: Sep. 2018.
7Additional protections by Safe Browsing for Android users,

https://security.googleblog.com/2017/12/additional-
protections-by-safe-browsing.html. Visited: Sep. 2018.

8Note that, unlike previous work (e.g., [22]) that focuses on apps directly
retrieving the list of installed apps, our work focuses on the fingerprintability
of a specific app, a more general and difficult problem.

9https://developer.android.com/guide/topics/permissions/
overview. Visited: Sep. 2018.

10https://developer.android.com/studio/command-
line/adb.html. Visited: Sep. 2018.

11https://codelabs.developers.google.com/codelabs/
developing-android-a11y-service/. Visited: Apr. 2019.

12https://cromulentlabs.wordpress.com/2016/01/15/
explanation-of-canopenurl-changes-in-ios-9/. Visited: Sep.
2018.

13https://ibotpeaches.github.io/Apktool/. Visited: Sep. 2018.
14Note that we also found many occurrences of other methods presented

in Section 4, but we did not know the purposes of the calling apps.
15http://www.zdnet.com/article/accuweather-caught-

sending-geo-location-data-even-when-denied-access/. Vis-
ited: Nov. 2018.

16https://github.com/M66B/XPrivacy. Visited: Sep. 2018.
17We performed a similar analysis on a small set of paid apps, see Appendix

A of our technical report at [44].
18https://play.google.com/about/privacy-security-

deception/personal-sensitive/. Visited: Sep. 2018.
19https://source.android.com/devices/tech/admin/multi-

user. Visited: Sep. 2018.
20https://www.xda-developers.com/add-multi-user-support-

android/. Visited: Feb. 2019.
21https://www.android.com/enterprise/employees/. Visited: Sep.

2018
22https://developer.android.com/topic/instant-

apps/index.html. Visited: Sep. 2018.
23https://developer.android.com/topic/instant-

apps/reference.html#instantapps.InstantApps. Visited: Sep.
2018

24https://www.samsungknox.com/en. Visited: Sep. 2018.
25https://www.amazon.com/mobile-apps/b?ie=UTF8&node=

2350149011. Visited: Sep. 2018.
26P is defined based on the estimation about the number of sensitive apps

that users of the HMA App Store can have, because Android does not permit
duplicate package names for apps. Average users have around 80 apps on
their phones, therefore P is at most 80.

27https://developer.android.com/about/versions/
marshmallow/android-6.0#direct-share. Visited: Feb. 2019.

28https://www.torproject.org/projects/torbrowser/design/.
Visited: Sep. 2018.

29https://www.androidpolice.com/2017/11/12/google-
will-remove-play-store-apps-use-accessibility-services-
anything-except-helping-disabled-users/. Visited: Apr. 2018.

30A signature-protected permission is a permission that the system grants
only if the requesting app is signed with the same certificate as the app that
declared the permission.

31We omit the app-update operation, because app-update and app-
installation operations are similar.

32https://github.com/commonsguy/cw-omnibus/tree/master/
Activities/Lifecycle. Visited: Sep. 2018.

33SQLiteOpenHelper, https://github.com/commonsguy/cw-
omnibus/tree/master/Database/ConstantsROWID. Visited: Sep. 2018

34https://developer.android.com/about/versions/pie/
restrictions-non-sdk-interfaces. Visited: Sep. 2018.

35https://repo.xposed.info/module/de.robv.android.xposed.
installer. Visited: Sep. 2018

36https://developers.google.com/cloud-messaging/android/
android-migrate-fcm. Visited: Feb. 2019.

37A permission that the system grants only if the requesting application is
signed with the same certificate as the application that declared the permission

38https://www.dropbox.com/sh/lo273jtx6jkbf1c/
AAB1BtkBmBuNVOV13OAwDu-ha?dl=1

728 28th USENIX Security Symposium USENIX Association

https://liquid-state.com/mhealth-apps-market-snapshot/
https://research2guidance.com/mhealth-app-market-getting-crowded-259000-mhealth-apps-now/
https://research2guidance.com/mhealth-app-market-getting-crowded-259000-mhealth-apps-now/
https://www.theguardian.com/technology/2014/nov/27/twitter-scanning-other-apps-tailored-content
https://www.theguardian.com/technology/2014/nov/27/twitter-scanning-other-apps-tailored-content
https://help.twitter.com/en/safety-and-security/app-graph
https://help.twitter.com/en/safety-and-security/app-graph
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://play.google.com/about/developer-content-policy-print/
https://play.google.com/about/developer-content-policy-print/
https://security.googleblog.com/2017/12/additional-protections-by-safe-browsing.html
https://security.googleblog.com/2017/12/additional-protections-by-safe-browsing.html
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://codelabs.developers.google.com/codelabs/developing-android-a11y-service/
https://codelabs.developers.google.com/codelabs/developing-android-a11y-service/
https://cromulentlabs.wordpress.com/2016/01/15/explanation-of-canopenurl-changes-in-ios-9/
https://cromulentlabs.wordpress.com/2016/01/15/explanation-of-canopenurl-changes-in-ios-9/
https://ibotpeaches.github.io/Apktool/
http://www.zdnet.com/article/accuweather-caught-sending-geo-location-data-even-when-denied-access/
http://www.zdnet.com/article/accuweather-caught-sending-geo-location-data-even-when-denied-access/
https://github.com/M66B/XPrivacy
https://play.google.com/about/privacy-security-deception/personal-sensitive/
https://play.google.com/about/privacy-security-deception/personal-sensitive/
https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
https://www.xda-developers.com/add-multi-user-support-android/
https://www.xda-developers.com/add-multi-user-support-android/
https://www.android.com/enterprise/employees/
https://developer.android.com/topic/instant-apps/index.html
https://developer.android.com/topic/instant-apps/index.html
https://developer.android.com/topic/instant-apps/reference.html#instantapps.InstantApps
https://developer.android.com/topic/instant-apps/reference.html#instantapps.InstantApps
https://www.samsungknox.com/en
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://developer.android.com/about/versions/marshmallow/android-6.0#direct-share
https://developer.android.com/about/versions/marshmallow/android-6.0#direct-share
https://www.torproject.org/projects/torbrowser/design/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
https://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
https://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
https://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces
https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://www.dropbox.com/sh/lo273jtx6jkbf1c/AAB1BtkBmBuNVOV13OAwDu-ha?dl=1
https://www.dropbox.com/sh/lo273jtx6jkbf1c/AAB1BtkBmBuNVOV13OAwDu-ha?dl=1

TESSERACT: Eliminating Experimental Bias in Malware Classification
across Space and Time

Feargus Pendlebury∗†‡, Fabio Pierazzi∗†‡, Roberto Jordaney†‡, Johannes Kinder§, Lorenzo Cavallaro†

† King’s College London
‡ Royal Holloway, University of London

§ Bundeswehr University Munich

Abstract
Is Android malware classification a solved problem? Pub-
lished F1 scores of up to 0.99 appear to leave very little room
for improvement. In this paper, we argue that results are com-
monly inflated due to two pervasive sources of experimental
bias: spatial bias caused by distributions of training and test-
ing data that are not representative of a real-world deployment;
and temporal bias caused by incorrect time splits of training
and testing sets, leading to impossible configurations. We
propose a set of space and time constraints for experiment de-
sign that eliminates both sources of bias. We introduce a new
metric that summarizes the expected robustness of a classifier
in a real-world setting, and we present an algorithm to tune
its performance. Finally, we demonstrate how this allows us
to evaluate mitigation strategies for time decay such as active
learning. We have implemented our solutions in TESSERACT,
an open source evaluation framework for comparing mal-
ware classifiers in a realistic setting. We used TESSERACT
to evaluate three Android malware classifiers from the liter-
ature on a dataset of 129K applications spanning over three
years. Our evaluation confirms that earlier published results
are biased, while also revealing counter-intuitive performance
and showing that appropriate tuning can lead to significant
improvements.

1 Introduction
Machine learning has become a standard tool for malware re-
search in the academic security community: it has been used
in a wide range of domains including Windows malware [12,
34, 51], PDF malware [27, 32], malicious URLs [28, 48], ma-
licious JavaScript [11, 43], and Android malware [4, 22, 33].
With tantalizingly high performance figures, it seems malware
should be a problem of the past.

Malware classifiers operate in dynamic contexts. As mal-
ware evolves and new variants and families appear over time,
prediction quality decays [26]. Therefore, temporal consis-
tency matters for evaluating the effectiveness of a classifier.

*Equal contribution.

When the experimental setup allows a classifier to train on
what is effectively future knowledge, the reported results be-
come biased [2, 36].

This issue is widespread in the security community and
affects multiple security domains. In this paper, we focus on
Android malware and claim that there is an endemic issue
in that Android malware classifiers [4, 13, 18, 22, 33, 49, 56,
57] (including our own work) are not evaluated in settings
representative of real-world deployments. We choose Android
because of the availability of (a) a public, large-scale, and
timestamped dataset (AndroZoo [3]) and (b) algorithms that
are feasible to reproduce (where all [33] or part [4] of the
code has been released).

We identify experimental bias in two dimensions, space and
time. Spatial bias refers to unrealistic assumptions about the
ratio of goodware to malware in the data. The ratio of good-
ware to malware is domain-specific, but it must be enforced
consistently during the testing phase to mimic a realistic sce-
nario. For example, measurement studies on Android suggest
that most apps in the wild are goodware [21, 30], whereas
for (desktop) software download events most URLs are mali-
cious [31,41]. Temporal bias refers to temporally inconsistent
evaluations which integrate future knowledge about the test-
ing objects into the training phase [2, 36] or create unrealistic
settings. This problem is exacerbated by families of closely
related malware, where including even one variant in the train-
ing set may allow the algorithm to identify many variants in
the testing.

We believe that the pervasiveness of these issues is due to
two main reasons: first, possible sources of evaluation bias are
not common knowledge; second, accounting for time com-
plicates the evaluation and does not allow a comparison to
other approaches using headline evaluation metrics such as
the F1-Score or AUROC. We address these issues in this paper
by systematizing evaluation bias for Android malware classi-
fication and providing new constraints for sound experiment
design along with new metrics and tool support.

Prior work has investigated challenges and experimental
bias in security evaluations [2,5,36,44,47,54]. The base-rate

USENIX Association 28th USENIX Security Symposium 729

fallacy [5] describes how evaluation metrics such as TPR and
FPR are misleading in intrusion detection, due to significant
class imbalance (most traffic is benign); in contrast, we iden-
tify and address experimental settings that give misleading
results regardless of the adopted metrics—even when correct
metrics are reported. Sommer and Paxson [47], Rossow et
al. [44], and van der Kouwe et al. [54] discuss possible guide-
lines for sound security evaluations; but none of these works
identify temporal and spatial bias, nor do they quantify the
impact of errors on classifier performance. Allix et al. [2]
and Miller et al. [36] identify an initial temporal constraint in
Android malware classification, but we show that even results
of recent work following their guidelines (e.g., [33]) suffer
from other temporal and spatial bias (§4.4). To the best of
our knowledge, we are the first to identify and address these
sources of bias with novel, actionable constraints, metrics,
and tool support (§4).

This paper makes the following contributions:
• We identify temporal bias associated with incorrect train-

test splits (§3.2) and spatial bias related to unrealistic
assumptions in dataset distribution (§3.3). We experi-
mentally verify on a dataset of 129K apps (with 10% mal-
ware) that, due to bias, performance can decrease up to
50% in practice (§3.1) in two well-known Android mal-
ware classifiers, DREBIN [4] and MAMADROID [33],
which we refer to as ALG1 and ALG2, respectively.

• We propose novel building blocks for more robust eval-
uations of malware classifiers: a set of spatio-temporal
constraints to be enforced in experimental settings (§4.1);
a new metric, AUT, that captures a classifier’s robust-
ness to time decay in a single number and allows for
the fair comparison of different algorithms (§4.2); and
a novel tuning algorithm that empirically optimizes the
classification performance, when malware represents the
minority class (§4.3). We compare the performance of
ALG1 [4], ALG2 [33] and DL [22] (a deep learning-
based approach), and show how removing bias can pro-
vide counter-intuitive results on real performance (§4.4).

• We implement and publicly release the code of our
methodology (§4), TESSERACT, and we further demon-
strate how our findings can be used to evaluate
performance-cost trade-offs of solutions to mitigate time
decay such as active learning (§5).

TESSERACT can assist the research community in pro-
ducing comparable results, revealing counter-intuitive perfor-
mance, and assessing a classifier’s prediction qualities in an
industrial deployment (§6).

We believe that our methodology also creates an opportu-
nity to evaluate the extent to which spatio-temporal experi-
mental bias affects security domains other than Android mal-
ware, and we encourage the security community to embrace
its underpinning philosophy.

Use of the term “bias”: We use (experimental) bias to
refer to the details of an experimental setting that depart from

the conditions in a real-world deployment and can have a
misleading impact (bias) on evaluations. We do not intend
it to relate to the classifier bias/variance trade-off [8] from
traditional machine learning terminology.

2 Android Malware Classification
We focus on Android malware classification. In §2.1 we intro-
duce the reference approaches evaluated, in §2.2 we discuss
the domain-specific prevalence of malware, and in §2.3 we
introduce the dataset used throughout the paper.

2.1 Reference Algorithms

To assess experimental bias (§3), we consider two high-profile
machine learning-driven techniques for Android malware clas-
sification, both published recently in top-tier security confer-
ences. The first approach is ALG1 [4], a linear support vector
machine (SVM) on high-dimensional binary feature vectors
engineered with a lightweight static analysis. The second
approach is ALG2 [33], a Random Forest (RF) applied to fea-
tures engineered by modeling caller-callee relationships over
Android API methods as Markov chains. We choose ALG1
and ALG2 as they build on different types of static analy-
sis to generate feature spaces capturing Android application
characteristics at different levels of abstraction; furthermore,
they use different machine learning algorithms to learn de-
cision boundaries between benign and malicious Android
apps in the given feature space. Thus, they represent a broad
design space and support the generality of our methodology
for characterizing experimental bias. For a sound experimen-
tal baseline, we reimplemented ALG1 following the detailed
description in the paper; for ALG2, we relied on the imple-
mentation provided by its authors. We replicated the baseline
results for both approaches. After identifying and quantifying
the impact of experimental bias (§3), we propose specific con-
straints and metrics to allow fair and unbiased comparisons
(§4). Since ALG1 and ALG2 adopt traditional ML algorithms,
in §4 we also consider DL [22], a deep learning-based ap-
proach that takes as input the same features as ALG1 [4]. We
include DL because the latent feature space of deep learning
approaches can capture different representations of the input
data [19], which may affect their robustness to time decay.
We replicate the baseline results for DL reported in [22] by
re-implementing its neural network architecture and by using
the same input features as for ALG1.

It speaks to the scientific standards of these papers that
we were able to replicate the experiments; indeed, we would
like to emphasize that we do not criticize them specifically.
We use these approaches for our evaluation because they are
available and offer stable baselines.

We report details on the hyperparameters of the reimple-
mented algorithms in §A.1.

2.2 Estimating in-the-wild Malware Ratio

The proportion of malware in the dataset can greatly affect
the performance of the classifier (§3). Hence, unbiased experi-

730 28th USENIX Security Symposium USENIX Association

ments require a dataset with a realistic percentage of malware
over goodware; on an already existing dataset, one may en-
force such a ratio by, for instance, downsampling the majority
class (§3.3). Each malware domain has its own, often unique,
ratio of malware to goodware typically encountered in the
wild. First, it is important to know if malware is a minority,
majority, or an equal-size class as goodware. For example,
malware is the minority class in network traffic [5] and An-
droid [30], but it is the majority class in binary download
events [41]. On the one hand, the estimation of the percentage
of malware in the wild for a given domain is a non-trivial task.
On the other hand, measurement papers, industry telemetry,
and publicly-available reports may all be leveraged to obtain
realistic estimates.

In the Android landscape, malware represents 6%–18.8%
of all the apps, according to different sources: a key indus-
trial player1 reported the ratio as approximately 6%, whereas
the AndRadar measurement study [30] reports around 8% of
Android malware in the wild. The 2017 Google’s Android
security report [21] suggests 6–10% malware, whereas an
analysis of the metadata of the AndroZoo dataset [3] totaling
almost 8M Android apps updated regularly, reveals an inci-
dence of 18.8% of malicious apps. The data suggests that, in
the Android domain, malware is the minority class. In this
work, we decide to stabilize its percentage to 10% (a de-facto
average across the various estimates), with per-month values
between 8% and 12%. Settling on an average overall ratio of
10% Android malware also allows us to collect a dataset with
a statistically sound number of per-month malware. An ag-
gressive undersampling would have decreased the statistical
significance of the dataset, whereas oversampling goodware
would have been too resource intensive (§2.3).

2.3 Dataset

We consider samples from the public AndroZoo [3] dataset,
consisting of more than 8.5 million Android apps between
2010 and early 2019: each app is associated with a times-
tamp, and most apps include VirusTotal metadata results.
The dataset is constantly updated by crawling from differ-
ent markets (e.g., more than 4 million apps from Google Play
Store, and the remaining from markets such as Anzhi and
AppChina). We choose to refer to this dataset due to its size
and timespan, which allow us to perform realistic space- and
time-aware experiments.

Goodware and malware. AndroZoo’s metadata reports
the number p of positive anti-virus reports on VirusTotal [20]
for applications in the AndroZoo dataset. We chose p = 0 for
goodware and p≥ 4 for malware, following Miller et al.’s [36]
advice for a reliable ground-truth. About 13% of AndroZoo
apps can be called grayware as they have 0 < p < 4. We
exclude grayware from the sampling as including it as either
goodware or malware could disadvantage classifiers whose
features were designed with a different labeling threshold.

1Information obtained through confidential emails with the authors.

J F M A M J J
2014

A S O N D J F M A M J J
2015

A S O N D J F M A M J J
2016

A S O N D

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

11000

3
8
3

2
6
3

3
8
1

4
8
5

6
0
8

7
2
4 1
0
7
2

4
9
9

3
9
9

5
9
1

1
4
5

1
4
7

1
4
4

1
2
9

2
1
5

1
8
3

2
2
1

2
1
6

2
7
5

2
7
2

3
5
4

3
1
3

3
7
4

3
6
9

3
4
4

4
7
6

6
3
5

6
1
2

4
5
2

2
7
8

3
5
2 5
6
4

1
4
8

8
1

3
4
4
0

3
0
6
7 3
4
8
5 4
1
0
1

5
0
8
1

6
0
6
6

8
7
4
5

4
7
8
8

4
1
7
6

6
3
4
5

1
3
0
5

1
4
4
4

1
5
6
4

1
2
3
1 1
8
8
8

1
8
3
8

1
9
5
3

2
0
9
8 2
5
2
1

2
7
6
8

3
0
7
7

2
9
3
2

3
0
1
0

3
2
8
9

3
4
7
8 3
9
5
9

5
8
1
8 6
3
6
8

4
0
5
2

2
8
0
6

3
0
2
7

4
8
8
1

1
3
7
7

7
5
8

2
3
1
9
0

8
6
7

Training Testing
Goodware

Malware

Figure 1: Details of the dataset considered throughout this
paper. The figure reports a stack histogram with the monthly
distribution of apps we collect from AndroZoo: 129,728 An-
droid applications (with average 10% malware), spanning
from Jan 2014 to Dec 2016. The vertical dotted line denotes
the split we use in all time-aware experiments in this paper
(see §4 and §5): training on 2014, testing on 2015 and 2016.

Choosing apps. The number of objects we consider in our
study is affected by the feature extraction cost, and partly
by storage space requirements (as the full AndroZoo dataset,
at the time of writing, is more than 50TB of apps to which
one must add the space required for extracting features). Ex-
tracting features for the whole AndroZoo dataset may take
up to three years on our research infrastructure (three high-
spec Dell PowerEdge R730 nodes, each with 2 x 14 cores in
hyperthreading—in total, 168 vCPU threads, 1.2TB of RAM,
and a 100TB NAS), thus we decided to extract features from
129K apps (§2.2). We believe this represents a large dataset
with enough statistical significance. To evaluate time decay,
we decide on a granularity of one month, and we uniformly
sample 129K AndroZoo apps in the period from Jan 2014 to
Dec 2016, but also enforce an overall average of 10% mal-
ware (see §2.2)–with an allowed percentage of malware per
month between 8% and 12%, to ensure some variability. Span-
ning over three years ensures 1,000+ apps per month (except
for the last three months, where AndroZoo had crawled less
applications). We consider apps up to Dec 2016 because the
VirusTotal results for 2017 and 2018 apps were mostly un-
available from AndroZoo at the time of writing; moreover,
Miller et al. [36] empirically evaluated that antivirus detec-
tions become stable after approximately one year—choosing
Dec 2016 as the finishing time ensures good ground-truth
confidence in objects labeled as malware.

Dataset summary. The final dataset consists of 129,728
Android applications (116,993 goodware and 12,735 mal-
ware). Figure 1 reports a stack histogram showing the per-
month distribution of goodware/malware in the dataset. For
the sake of clarity, the figure also reports the number of mal-
ware and goodware in each bin. The training and testing splits

USENIX Association 28th USENIX Security Symposium 731

used in §3 are reported in Table 1; all the time-aware experi-
ments in the remainder of this paper are performed by training
on 2014 and testing on 2015 and 2016 (see the vertical dotted
line in Figure 1).

3 Sources of Experimental Bias
In this section, we motivate our discussion of bias through
experimentation with ALG1 [4] and ALG2 [33] (§3.1). We
then detail the sources of temporal (§3.2) and spatial bias
(§3.3) that affect ML-based Android malware classification.

3.1 Motivational Example

We consider a motivational example in which we vary the
sources of experimental bias to better illustrate the problem.
Table 1 reports the F1-score for ALG1 and ALG2 under vari-
ous experimental configurations; rows correspond to different
sources of temporal experimental bias, and columns corre-
spond to different sources of spatial experimental bias. On
the left-part of Table 1, we use squares (�/�) to show from
which time frame training and testing objects are taken; each
square represents six months (in the window from Jan 2014 to
Dec 2016). Black squares (�) denote that samples are taken
from that six-month time frame, whereas periods with gray
squares (�) are not used. The columns on the right part of the
table correspond to different percentages of malware in the
training set Tr and the testing set T s.

Table 1 shows that both ALG1 and ALG2 perform far worse
in realistic settings (bold values with green background in
the last row, for columns corresponding to 10% malware in
testing) than in settings similar to those presented in [4, 33]
(bold values with red background). This is due to inadvertent
experimental bias as outlined in the following.

Note. We clarify to which similar settings of [4, 33] we re-
fer to in the cells with red background in Table 1. The paper of
ALG2 [33] reports in the abstract performance “up to 99% F1”,
which (out of the many settings they evaluate) corresponds
to a scenario with 86% malware in both training and test-
ing, evaluated with 10-fold CV; here, we rounded off to 90%
malware for a cleaner presentation (we have experimentally
verified that results with 86% and 90% malware-to-benign
class ratio are similar). ALG1’s original paper [4] relies on
hold-out by performing 10 random splits (66% training and
33% testing). Since hold-out is almost equivalent to k-fold CV
and suffers from the same spatio-temporal biases, for the sake
of simplicity in this section we refer to a k-fold CV setting
for both ALG1 and ALG2.

3.2 Temporal Experimental Bias

Concept drift is a problem that occurs in machine learning
when a model becomes obsolete as the distribution of incom-
ing data at test-time differs from that of training data, i.e.,
when the assumption does not hold that data is independent
and identically distributed (i.i.d.) [26]. In the ML community,
this problem is also known as dataset shift [50]. Time decay

is the decrease in model performance over time caused by
concept drift.

Concept drift in malware combined with similarities among
malware within the same family causes k-fold cross validation
(CV) to be positively biased, artificially inflating the perfor-
mance of malware classifiers [2,36,37]. K-fold CV is likely to
include in the training set at least one sample of each malware
family in the dataset, whereas new families will be unknown
at training time in a real-world deployment. The all-black
squares in Table 1 for 10-fold CV refer to each training/testing
fold of the 10 iterations containing at least one sample from
each time frame. The use of k-fold CV is widespread in mal-
ware classification research [11,12,27,31,34,37,41,49,51,57];
while a useful mechanism to prevent overfitting [8] or esti-
mate the performance of a classifier in the absence of concept
drift when the i.i.d. assumption holds (see considerations in
§4.4), it has been unclear how it affects the real-world perfor-
mance of machine learning techniques with non-stationary
data that are affected by time decay. Here, in the first row of
Table 1, we quantify the performance impact in the Android
domain.

The second row of Table 1 reports an experiment in which
a classifier’s ability to detect past objects is evaluated [2, 33].
Although this characteristic is important, high performance
should be expected from a classifier in such a scenario: if the
classifier contains at least one variant of a past malware family,
it will likely identify similar variants. We thus believe that
experiments on the performance achieved on the detection of
past malware can be misleading; the community should focus
on building malware classifiers that are robust against time
decay.

In the third row, we identify a novel temporal bias that
occurs when goodware and malware correspond to different
time periods, often due to having originated from different
data sources (e.g., in [33]). The black and gray squares in
Table 1 show that, although malware testing objects are poste-
rior to malware training objects, the goodware/malware time
windows do not overlap; in this case, the classifier may learn
to distinguish applications from different time periods, rather
than goodware from malware—again leading to artificially
high performance. For instance, spurious features such as
new API methods may be able to strongly distinguish objects
simply because malicious applications predate that API.

The last row of Table 1 shows that the realistic setting,
where training is temporally precedent to testing, causes the
worst classifier performance in the majority of cases. We
present decay plots and a more detailed discussion in §4.

3.3 Spatial Experimental Bias

We identify two main types of spatial experimental bias based
on assumptions on percentages of malware in testing and
training sets. All experiments in this section assume temporal
consistency. The model is trained on 2014 and tested on 2015
and 2016 (last row of Table 1) to allow the analysis of spatial

732 28th USENIX Security Symposium USENIX Association

% mw in testing set Ts
10% (realistic) 90% (unrealistic)

% mw in training set Tr % mw in training set Tr
Sample dates 10% 90% 10% 90% 10% 90% 10% 90%

Experimental setting Training Testing ALG1 [4] ALG2 [33] ALG1 [4] ALG2 [33]

10-fold CV gw: ������ gw: ������ 0.56 0.83 0.32 0.94 0.98 0.85
mw: ������ mw: ������

0.91 0.97

Temporally inconsistent gw: ������ gw: ������ 0.76 0.42 0.49 0.21 0.86 0.93 0.54
mw: ������ mw: ������

0.95

Temporally inconsistent gw: ������ gw: ������ 0.77 0.70 0.65 0.56 0.79 0.94 0.65gw/mw windows mw: ������ mw: ������
0.93

Temporally consistent gw: ������ gw: ������ 0.62 0.94 0.33 0.96(realistic) mw: ������ mw: ������
0.58 0.45 0.32 0.30

Table 1: F1-Score results that show impact of spatial (in columns) and temporal (in rows) experimental bias. Values with red
backgrounds are experimental results of (unrealistic) settings similar to those considered in papers of ALG1 [4] and ALG2 [33];
values with green background (last row) are results in the realistic settings we identify. The dataset consists of three years (§2.3),
and each square on the left part of the table represents a six month time-frame: if training (resp. testing) objects are sampled from
that time frame, we use a black square (�); if not, we use a gray square (�).

bias without the interference of temporal bias.
Spatial experimental bias in testing. The percentage of

malware in the testing distribution needs to be estimated
(§2.2) and cannot be changed, if one wants results to be repre-
sentative of in-the-wild deployment of the malware classifier.
To understand why this leads to biased results, we artificially
vary the testing distribution to illustrate our point. Figure 2
reports performance (F1-Score, Precision, Recall) for increas-
ing the percentage of malware during testing on the X-axis.
We change the percentage of malware in the testing set by ran-
domly downsampling goodware, so the number of malware
remains fixed throughout the experiments.2 For completeness,
we report the two training settings from Table 1 with 10%
and 90% malware, respectively.

Let us first focus on the malware performance (dashed
lines). All plots in Figure 2 exhibit constant Recall, and in-
creasing Precision for increasing percentage of malware in
the testing. Precision for the malware (mw) class—the pos-
itive class—is defined as Pmw = T P/(T P+FP) and Recall as
Rmw = T P/(T P+FN). In this scenario, we can observe that TPs
(i.e., malware objects correctly classified as malware) and FNs
(i.e., malware objects incorrectly classified as goodware) do
not change, because the number of malware does not increase;
hence, Recall remains stable. The increase in number of FPs
(i.e., goodware objects misclassified as malware) decreases
as we reduce the number of goodware in the dataset; hence,
Precision improves. Since the F1-Score is the harmonic mean
of Precision and Recall, it goes up with Precision. We also
observe that, inversely, the Precision for the goodware (gw)
class—the negative class—Pgw = T N/(T N +FN) decreases (see
yellow solid lines in Figure 2), because we are reducing the
TNs while the FNs do not change. This example shows how
considering an unrealistic testing distribution with more mal-
ware than goodware in this context (§2.2) positively inflates
Precision and hence the F1-Score of the malware classifier.

2We choose to downsample goodware to achieve up to 90% of malware

Spatial experimental bias in training. To understand the
impact of altering malware-to-goodware ratios in training, we
now consider a motivating example with a linear SVM in a
2D feature space, with features x1 and x2. Figure 3 reports
three scenarios, all with the same 10% malware in testing, but
with 10%, 50%, and 90% malware in training.

We can observe that with an increasing percentage of mal-
ware in training, the hyperplane moves towards goodware.
More formally, it improves Recall of malware while reducing
its Precision. The opposite is true for goodware. To mini-
mize the overall error rate Err = (FP+FN)/(T P+T N +FP+FN)

(i.e., maximize Accuracy), one should train the dataset with
the same distribution that is expected in the testing. However,
in this scenario one may have more interest in finding objects
of the minority class (e.g., “more malware”) by improving
Recall subject to a constraint on maximum FPR.

Figure 4 shows the performance for ALG1 and ALG2, for
increasing percentages of malware in training on the X-axis;
just for completeness (since one cannot artificially change the
test distribution to achieve realistic evaluations), we report
results both for 10% mw in testing and for 90% malware in
testing, but we remark that in the Android setting we have
estimated 10% mw in the wild (§2.2). These plots confirm
the trend in our motivating example (Figure 3), that is, Rmw
increases but Pmw decreases. For the plots with 10% mw in

(mw) for testing because of the computational and storage resources required
to achieve such a ratio by oversampling. This does not alter the conclusions
of our analysis. Let us assume a scenario in which we keep the same number
of goodware (gw), and increase the percentage of mw in the dataset by over-
sampling mw. The precision (Pmw = T P/(T P+FP)) would increase because TPs
would increase for any mw detection, and FPs would not change—because
the number of gw remains the same; if training (resp. testing) observations
are sampled from a distribution similar to the mw in the original dataset (e.g.,
new training mw is from 2014 and new testing mw comes from 2015 and
2016), then Recall (Rmw = T P/(T P+FN)) would be stable—it would have the
same proportions of TPs and FNs because the classifier will have a similar
predictive capability for finding mw. Hence, if the number of mw in the
dataset increases, the F1-Score would increase as well, because Precision
increases while Recall remains stable.

USENIX Association 28th USENIX Security Symposium 733

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (mw)
Precision (mw)
Recall (mw)
F1 (gw)
Precision (gw)
Recall (gw)

(a) ALG1: Train with 10% mw

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) ALG1: Train with 90% mw

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) ALG2: Train with 10% mw

10% 25% 50% 75% 90%
%mw (Testing set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) ALG2: Train with 90% mw

Figure 2: Spatial experimental bias in testing. Training on 2014 and testing on 2015 and 2016. For increasing % of malware in
the testing (unrealistic setting), Precision for malware increases and Recall remains the same; overall, F1-Score increases for
increasing percentage of malware in the testing. However, having more malware than goodware in testing does not reflect the
in-the-wild distribution of 10% malware (§2.2), so the setting with more malware is unrealistic and reports biased results.

testing, we observe there is a point in which F1-Scoremw is
maximum while the error for the gw class is within 5%.

In §4.3, we propose a novel algorithm to improve the per-
formance of the malware class according to the objective
of the user (high Precision, Recall or F1-Score), subject to a
maximum tolerated error. Moreover, in §4 we introduce con-
straints and metrics to guarantee bias-free evaluations, while
revealing counter-intuitive results.

4 Space-Time Aware Evaluation
We now formalize how to perform an evaluation of an Android
malware classifier free from spatio-temporal bias. We define
a novel set of constraints that must be followed for realistic
evaluations (§4.1); we introduce a novel time-aware metric,
AUT, that captures in one number the impact of time decay
on a classifier (§4.2); we propose a novel tuning algorithm
that empirically optimizes a classifier performance, subject
to a maximum tolerated error (§4.3); finally, we introduce
TESSERACT and provide counter-intuitive results through
unbiased evaluations (§4.4). To improve readability, we report
in Appendix A.2 a table with all the major symbols used in
the remainder of this paper.

4.1 Evaluation Constraints

Let us consider D as a labeled dataset with two classes: mal-
ware (positive class) and goodware (negative class). Let us
define si ∈ D as an object (e.g., Android app) with timestamp
time(si). To evaluate the classifier, the dataset D must be split
into a training dataset Tr with a time window of size W , and
a testing dataset Ts with a time window of size S. Here, we
consider S >W in order to estimate long-term performance
and robustness to decay of the classifier. A user may consider
different time splits depending on his objectives, provided
each split has a significant number of samples. We emphasize
that, although we have the labels of objects in Ts⊆ D, all the
evaluations and tuning algorithms must assume that labels yi
of objects si ∈ Ts are unknown.

To evaluate performance over time, the test set Ts must be
split into time-slots of size ∆. For example, for a testing set
time window of size S = 2 years, we may have ∆ = 1 month.
This parameter is chosen by the user, but it is important that
the chosen granularity allows for a statistically significant
number of objects in each test window [ti, ti +∆).

We now formalize three constraints that must be enforced
when dividing D into Tr and Ts for a realistic setting that
avoids spatio-temporal experimental bias (§3). While C1 was
proposed in past work [2, 36], we are the first to propose C2
and C3—which we show to be fundamental in §4.4.

C1) Temporal training consistency. All the objects in
the training must be strictly temporally precedent to the test-
ing ones:

time(si)< time(s j),∀si ∈ Tr,∀s j ∈ Ts (1)

where si (resp. s j) is an object in the training set Tr (resp.
testing set Ts). Eq. 1 must hold; its violation inflates the
results by including future knowledge in the classifier (§3.2).

C2) Temporal gw/mw windows consistency. In every
testing slot of size ∆, all test objects must be from the same
time window:

tmin
i ≤ time(sk)≤ tmax

i , ∀sk in time slot [ti, ti +∆) (2)

where tmin
i = mink time(sk) and tmax

i = maxk time(sk). The
same should hold for the training: although violating Eq. 2
in the training data does not bias the evaluation, it may affect
the sensitivity of the classifier to unrelated artifacts. Eq. 2 has
been violated in the past when goodware and malware have
been collected from different time windows (e.g., ALG2 [33],
re-evaluated in §4.4)—if violated, the results are biased be-
cause the classifier may learn and test on artifactual behaviors
that, for example, distinguish goodware from malware just by
their different API versions.

C3) Realistic malware-to-goodware ratio in testing. Let
us define ϕ as the average percentage of malware in training

734 28th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.5

1.0

x 2

gw
mw

(a) Training 10% mw; Testing 10% mw

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.5

1.0

x 2

gw
mw

(b) Training 50% mw; Testing 10% mw

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.5

1.0

x 2

gw
mw

(c) Training 90% mw; Testing 10% mw

Figure 3: Motivating example for the intuition of spatial experimental bias in training with Linear-SVM and two features, x1 and
x2. The training changes, but the testing points are fixed: 90% gw and 10% mw. When the % of malware in the training increases,
the decision boundary moves towards the goodware class, improving Recall for malware but decreasing Precision.

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (mw)
Precision (mw)
Recall (mw)
F1 (gw)
Precision (gw)
Recall (gw)

(a) ALG1: Test with 10% mw

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) ALG1: Test with 90% mw

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) ALG2: Test with 10% mw

10% 25% 50% 75% 90%
%mw (Training set)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(d) ALG2: Test with 90% mw

Figure 4: Spatial experimental bias in training. Training on 2014 and testing on 2015 and 2016. For increasing % of malware in
the training, Precision decreases and Recall increases, for the motivations illustrated in the example of Figure 3. In §4.3, we
devise an algorithm to find the best training configuration for optimizing Precision, Recall, or F1 (depending on user needs).

data, and δ as the average percentage of malware in the testing
data. Let σ̂ be the estimated percentage of malware in the
wild. To have a realistic evaluation, the average percentage of
malware in the testing (δ) must be as close as possible to the
percentage of malware in the wild (σ̂), so that:

δ' σ̂ (3)

For example, we have estimated that in the Android scenario
goodware is predominant over malware, with σ̂≈ 0.10 (§2.2).
If C3 is violated by overestimating the percentage of malware,
the results are positively inflated (§3.3). We highlight that,
although the testing distribution δ cannot be changed (in or-
der to get realistic results), the percentage of malware in the
training ϕ may be tuned (§4.3).

4.2 Time-aware Performance Metrics

We introduce a time-aware performance metric that allows
for the comparison of different classifiers while considering
time decay. Let Θ be a classifier trained on Tr; we capture
the performance of Θ for each time frame [ti, ti +∆) of the
testing set Ts (e.g., each month). We identify two options to
represent per-month performance:

• Point estimates (pnt): The value plotted on the Y -axis
for xk = k∆ (where k is the test slot number) computes
the performance metric (e.g., F1-Score) only based on
predictions ŷi of Θ and true labels yi in the interval [W +
(k−1)∆,W + k∆).

• Cumulative estimates (cml): The value plotted on the
Y -axis for xk = k∆ (where k is the test slot number) com-
putes the performance metric (e.g., F1-Score) only based
on predictions ŷi of Θ and true labels yi in the cumulative
interval [W,W + k∆).

Point estimates are always to be preferred to represent the
real performance of an algorithm. The cumulative estimates
can be used to highlight a smoothed trend and to show overall
performance up to a certain point, but can be misleading if
reported on their own if objects are too sparsely distributed
in some test slots ∆. Hence, we report only point estimates in
the remainder of the paper (e.g., in §4.4), while an example
of cumulative estimate plots is reported in Appendix A.3.

To facilitate the comparison of different time decay plots,
we define a new metric, Area Under Time (AUT), the area
under the performance curve over time. Formally, based on the
trapezoidal rule (as in AUROC [8]), AUT is defined as follows:

AUT (f ,N) =
1

N−1

N−1

∑
k=1

[f (xk+1)+ f (xk)] · (1/N)

2
(4)

where: f (xk) is the value of the point estimate of the perfor-
mance metric f (e.g., F1) evaluated at point xk := (W + k∆);
N is the number of test slots, and 1/(N−1) is a normalization
factor so that AUT ∈ [0,1]. The perfect classifier with robust-
ness to time decay in the time window S has AUT = 1. By

USENIX Association 28th USENIX Security Symposium 735

default, AUT is computed as the area under point estimates, as
they capture the trend of the classifier over time more closely;
if the AUT is computed on cumulative estimates, it should be
explicitly marked as AUTcml. As an example, AUT(F1,12m)
is the point estimate of F1-Score considering time decay for a
period of 12 months, with a 1-month interval. We highlight
that the simplicity of computing the AUT should be seen as a
benefit rather than a drawback; it is a simple yet effective met-
ric that captures the performance of a classifier with respect
to time decay, de-facto promoting a fair comparison across
different approaches.

AUT(f ,N) is a metric that allows us to evaluate perfor-
mance f of a malware classifier against time decay over N
time units in realistic experimental settings—obtained by
enforcing C1, C2, and C3 (§4.1). The next sections lever-
age AUT for tuning classifiers and comparing different
solutions (§4.4).

4.3 Tuning Training Ratio

We propose a novel algorithm that allows for the adjustment
of the training ratio ϕ when the dataset is imbalanced, in order
to optimize a user-specified performance metric (F1, Preci-
sion, or Recall) on the minority class, subject to a maximum
tolerated error, while aiming to reduce time decay. The high-
level intuition of the impact of changing ϕ is described in §3.3.
We also observe that ML literature has shown ROC curves to
be misleading on highly imbalanced datasets [14, 25]. Choos-
ing different thresholds on ROC curves shifts the decision
boundary, but (as seen in the motivating example of Figure 3)
re-training with different ratios ϕ (as in our algorithm) also
changes the shape of the decision boundary, better represent-
ing the minority class.

Our tuning algorithm is inspired by one proposed by Weiss
and Provost [55]; they propose a progressive sampling of
training objects to collect a dataset that improves AUROC
performance of the minority class in an imbalanced dataset.
However, they did not take temporal constraints into account
(§3.2), and heuristically optimize only AUROC. Conversely,
we enforce C1, C2, C3 (§4.1), and rely on AUT to achieve
three possible targets for the malware class: higher F1-Score,
higher Precision, or higher Recall. Also, we assume that the
user already has a training dataset Tr and wants to use as many
objects from it as possible, while still achieving a good perfor-
mance trade-off; for this purpose, we perform a progressive
subsampling of the goodware class.

Algorithm 1 formally presents our methodology for tuning
the parameter ϕ to find the value ϕ∗P that optimizes P subject
to a maximum error rate Emax. The algorithm aims to solve
the following optimization problem:

maximizeϕ{P} subject to: E ≤ Emax (5)

where P is the target performance: the F1-Score (F1), Preci-
sion (Pr) or Recall (Rec) of the malware class; Emax is the

maximum tolerated error; depending on the target P, the error
rate E has a different formulation:

• if P= F1→ E= 1−Acc = (FP+FN)/(T P+T N +FP+FN)

• if P= Rec→ E= FPR = FP/(T N +FP)

• if P= Pr→ E= FNR = FN/(T P+FN)

Each of these definitions of E is targeted to limit the error
induced by the specific performance—if we want to maximize
F1 for the malware class, we need to limit both FPs and FNs;
if P= Pr, we increase FNs, so we constrain FNR.

Algorithm 1 consists of two phases: initialization (lines 1–
5) and grid search of ϕ∗P (lines 6–14). In the initialization
phase, the training set Tr is split into a proper training set
ProperTr and a validation set Val; this is split according to
the space-time evaluation constraints in §4.1, so that all the
objects in ProperTr are temporally anterior to Val, and the
malware percentage δ in Val is equal to σ̂, the in-the-wild
malware percentage. The maximum performance observed P∗

and the optimal training ratio ϕ∗P are initialized by assuming
the estimated in-the-wild malware ratio σ̂ for training; in
Android, σ̂≈ 10% (see §2.2).

The grid-search phase iterates over different values of ϕ,
with a learning rate µ (e.g., µ = 0.05), and keeps as ϕ∗P the
value leading to the best performance, subject to the error
constraint. To reduce the chance of discarding high-quality
points while downsampling goodware, we prioritize the most
uncertain points (e.g., points close to the decision boundary
in an SVM) [46]. The constraint on line 6 (σ̂≤ ϕ≤ 0.5) is to
ensure that one does not under-represent the minority class (if
ϕ < σ̂) and that one does not let it become the majority class
(if ϕ > 0.5); also, from §3.3 it is clear that if ϕ > 0.5, then the
error rate becomes too high for the goodware class. Finally,
the grid-search explores multiple values of ϕ and stores the
best ones. To capture time-aware performance, we rely on
AUT (§4.2), and the error rate is computed according to the
target P (see above). Tuning examples are in §4.4.

4.4 TESSERACT: Revealing Hidden Performance

Here, we show how our methodology can reveal hidden per-
formance of ALG1 [4], ALG2 [33], and DL [22] (§2.1), and
their robustness to time decay.

We develop TESSERACT as an open-source Python frame-
work that enforces constraints C1, C2, and C3 (§4.1), com-
putes AUT (§4.2), and can train a classifier with our tuning
algorithm (§4.3). TESSERACT operates as a traditional Python
ML library but, in addition to features matrix X and labels y,
it also takes as input the timestamp array t containing dates
for each object. Details about TESSERACT’s implementation
and generality are in §A.5.

Figure 5 reports several performance metrics of the three al-
gorithms as point estimates over time. The X-axis reports the
testing slots in months, whereas the Y -axis reports different
scores between 0 and 1. The areas highlighted in blue corre-
spond to the AUT(F1,24m). The black dash-dotted horizontal
lines represent the best F1 from the original papers [4, 22, 33],

736 28th USENIX Security Symposium USENIX Association

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

Recall (gw)
Precision (gw)
F1 (gw)
Recall (mw)
Precision (mw)
F1 (mw)
F1 (10-fold, our dataset)
F1 (original paper)

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

Figure 5: Time decay of ALG1 [4], ALG2 [33] and DL [22]—with AUT(F1,24m) of 0.58, 0.32 and 0.64, respectively. Training
and test distribution both have 10% malware. The drop in the last 3 months is also related to lower samples in the dataset.

Algorithm 1: Tuning ϕ.
Input: Training dataset Tr
Parameters :Learning rate µ, target performance P ∈ {F1,Pr,Rec},

max error rate Emax
Output: ϕ∗P, optimal percentage of mw to use in training to achieve

the best target performance P subject to E<Emax.
1 Split the training set Tr into two subsets: actual training (ProperTr)

and validation set (Val), while enforcing C1, C2, C3 (§4.1), also
implying δ = σ̂

2 Divide Val into N non-overlapped subsets, each corresponding to a
time-slot ∆, so that Valarray = [V0,V1, ...,VN]

3 Train a classifier Θ on ProperTr
4 P∗ ← AUT(P,N) on Valarray with Θ

5 ϕ∗P = σ̂

6 for (ϕ = σ̂; ϕ≤ 0.5; ϕ = ϕ+µ) do
7 Downsample gw in ProperTr so that percentage of mw is ϕ

8 Train the classifier Θϕ on ProperTr with ϕ mw
9 performance Pϕ ← AUT(P, N) on Valarray with Θϕ

10 error Eϕ ← Error rate on Valarray with Θϕ

11 if (Pϕ > P∗) and (Eϕ ≤Emax) then
12 P∗ ← Pϕ

13 ϕ∗P← ϕ

14 return ϕ∗P;

corresponding to results obtained with 10 hold-out random
splits for ALG1, 10-fold CV for ALG2, and random split for
DL; all these settings are analogous to k-fold from a tem-
poral bias perspective, and violate both C1 and C2. The red
dashed horizontal lines correspond to 10-fold F1 obtained on
our dataset, which satisfies C3.

Differences in 10-fold F1. We discuss and motivate the
differences between the horizontal lines representing origi-
nal papers’ best F1 and replicated 10-fold F1. The 10-fold F1
of ALG1 is close to the original paper [4]; the difference is
likely related to the use of a different, more recent dataset.
The 10-fold F1 of ALG2 is much lower than the one in the
paper. We verified that this is mostly caused by violating C3:
the best F1 reported in [33] is on a setting with 86% malware—
hence, spatial bias increases even 10-fold F1 of ALG2. Also
violating C2 tends to inflate the 10-fold performance as the

classifier may learn artifacts. The 10-fold F1 in DL is instead
slightly higher than in the original paper [22]; this is likely
related to a hyperparameter tuning in the original paper that
optimized Accuracy (instead of F1), which is known to be
misleading in imbalanced datasets. Details on hyperparame-
ters chosen are in §A.1. From these results, we can observe
that even if an analyst wants to estimate what the performance
of the classifier would be in the absence of concept drift (i.e.,
where objects coming from the same distribution of the train-
ing dataset are received by the classifier), she still needs to
enforce C2 and C3 while computing 10-fold CV to obtain
valid results.

Violating C1 and C2. Removing the temporal bias reveals
the real performance of each algorithm in the presence of con-
cept drift. The AUT(F1,24m) quantifies such performance:
0.58 for ALG1, 0.32 for ALG2 and 0.64 for DL. In all three
scenarios, the AUT(F1,24m) is lower than 10-fold F1 as the
latter violates constraint C1 and may violate C2 if the dataset
classes are not evenly distributed across the timeline (§4).

Best performing algorithm. TESSERACT shows a
counter-intuitive result: the algorithm that is most robust to
time decay and has the highest performance over the 2 years
testing is the DL algorithm (after removing space-time bias),
although for the first few months ALG1 outperforms DL.
Given this outcome, one may prefer to use ALG1 for the first
few months and then DL, if retraining is not possible (§5).
We observe that this strongly contradicts the performance
obtained in the presence of temporal and spatial bias. In par-
ticular, if we only looked at the best F1 reported in the original
papers, ALG2 would have been the best algorithm (because
spatial bias was present). After enforcing C3, the k-fold on
our dataset would have suggested that DL and ALG1 have
similar performance (because of temporal bias). After enforc-
ing C1, C2 and C3, the AUT reveals that DL is actually the
algorithm most robust to time decay.

Different robustness to time decay. Given a training
dataset, the robustness of different ML models against perfor-

USENIX Association 28th USENIX Security Symposium 737

mance decay over time depends on several factors. Although
more in-depth evaluations would be required to understand
the theoretical motivations behind the different robustness to
time decay of the three algorithms in our setting, we hereby
provide insights on possible reasons. The performance of
ALG2 is the fastest to decay likely because its feature engi-
neering [33] may be capturing relations in the training data
that quickly become obsolete at test time to separate good-
ware from malware. Although ALG1 and DL take as input
the same feature space, the higher robustness to time decay
of DL is likely related to feature representation in the latent
feature space automatically identified by deep learning [19],
which appears to be more robust to time decay in this specific
setting. Recent results have also shown that linear SVM tends
to overemphasize a few important features [35]—which are
the few most effective on the training data, but may become
obsolete over time. We remark that we are not claiming that
deep learning is always more robust to time decay than tradi-
tional ML algorithms. Instead, we demonstrate how, in this
specific setting, TESSERACT allowed us to highlight higher
robustness of DL [22] against time decay; however, the prices
to pay to use DL are lower explainability [23, 42] and higher
training time [19].

Tuning algorithm. We now evaluate whether our tuning
(Algorithm 1 in §4.3) improves robustness to time decay
of a malware classifier for a given target performance. We
first aim to maximize P = F1-Score of malware class, sub-
ject to Emax= 10%. After running Algorithm 1 on ALG1 [4],
ALG2 [33] and DL, we find that ϕ∗F1

= 0.25 for ALG1 and DL,
and ϕ∗F1

= 0.5 for ALG2. Figure 6 reports the improvement
on the test performance of applying ϕ∗F1

to the full training set
Tr of 1 year. We remark that the choice of ϕ∗F1

uses only train-
ing information (see Algorithm 1) and no test information is
used—the optimal value is chosen from a 4-month validation
set extracted from the 1 year of training data; this is to simu-
late a realistic deployment setting in which we have no a priori
information about testing. Figure 6 shows that our approach
for finding the best ϕ∗F1

improves the F1-Score on malware
at test time, at the cost of slightly reduced goodware perfor-
mance. Table 2 shows details of how total FPs, total FNs, and
AUT changed by training ALG1, ALG2, and DL with ϕ∗F1

,
ϕ∗Prec, and ϕ∗Rec instead of σ̂. These training ratios have been
computed subject to Emax = 5% for ϕ∗Rec, Emax = 10% for ϕ∗F1

,
and Emax = 15% for ϕ∗Prec; the difference in the maximum
tolerated errors is motivated by the class imbalance in the
dataset—which causes lower FPR and higher FNR values
(see definitions in §4.3), as there are many more goodware
than malware. As expected (§3.3), Table 2 shows that when
training with ϕ∗F1

Precision decreases (FPs increase) but Re-
call increases (because FNs decrease), and the overall AUT
increases slightly as a trade-off. A similar reasoning follows
for the other performance targets. We observe that the AUT
for Precision may slightly differ even with a similar number
of total FPs—this is because AUT(Pr,24m) is sensitive to the

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

F1 (mw, σ̂)
F1 (mw, ϕ∗)
F1 (gw, σ̂
F1 (gw, ϕ∗)

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

Figure 6: Tuning improvement obtained by applying ϕ∗F1
=

25% to ALG1 and DL, and ϕ∗F1
= 50% to ALG2. The values

of ϕ∗F1
are obtained with Algorithm 1 and one year of training

data (trained on 8 months and validated on 4 months).

Algorithm ϕ FP FN AUT(P,24m)
F1 Pr Rec

ALG1 [4]

10% (σ̂) 965 3,851 0.58 0.75 0.48
25% (ϕ∗F1

) 2,156 2,815 0.62 0.65 0.61
10% (ϕ∗Pr) 965 3,851 0.58 0.75 0.48
50% (ϕ∗Rec) 3,728 1,793 0.64 0.58 0.74

ALG2 [33]

10% (σ̂) 274 5,689 0.32 0.77 0.20
50% (ϕ∗F1

) 4,160 2,689 0.53 0.50 0.60
10% (ϕ∗Pr) 274 5,689 0.32 0.77 0.20
50% (ϕ∗Rec) 4,160 2,689 0.53 0.50 0.60

DL [22]

10% (σ̂) 968 3,291 0.64 0.78 0.53
25% (ϕ∗F1

) 2,284 2,346 0.65 0.66 0.65
10% (ϕ∗Pr) 968 3,291 0.64 0.78 0.53
25% (ϕ∗Rec) 2,284 2,346 0.65 0.66 0.65

Table 2: Testing AUTs performance over 24 months when
training with σ̂, ϕ∗F1

, ϕ∗Pr and ϕ∗Rec.

time at which FPs occur; the same observation is valid for to-
tal FNs and AUT Recall. After tuning, the F1 performance of
ALG1 and DL become similar, although DL remains higher
in terms of AUT. The tuning improves the AUT(F1,24m) of
DL only marginally, as DL is already robust to time decay
even before tuning (Figure 5).

The next section focuses on the two classifiers less robust
to time decay, ALG1 and ALG2, to evaluate with TESSER-
ACT the performance-cost trade-offs of budget-constrained
strategies for delaying time decay.

5 Delaying Time Decay
We have shown how enforcing constraints and computing
AUT with TESSERACT can reveal the real performance of
Android malware classifiers (§4.4). This baseline AUT per-
formance (without retraining) allows users to evaluate the
general robustness of an algorithm to time decay. A classifier
may be retrained to update its model. However, manual la-
beling is costly (especially in the Android malware setting),
and the ML community [6, 46] has worked extensively on
mitigation strategies—e.g., to identify a limited number of
best objects to label (active learning). While effective at post-
poning time decay, strategies like these can further complicate
the fair evaluation and comparison of classifiers.

In this section, we show how TESSERACT can be used

738 28th USENIX Security Symposium USENIX Association

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

F1 (10-fold CV)

F1 (no update)

Recall (mw)

Precision (mw)

F1 (mw)

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

Figure 7: Delaying time decay: incremental retraining.

to compare and evaluate the trade-offs of different budget-
constrained strategies to delay time decay. Since DL has
shown to be more robust to time decay (§4.4) than ALG1 and
ALG2, in this section we focus our attention these to show
performance-cost trade-offs of different mitigations.

5.1 Delay Strategies

We do not propose novel delay strategies, but instead focus on
how TESSERACT allows for the comparison of some popular
approaches to mitigating time decay. This shows researchers
how to adopt TESSERACT for the fair comparison of different
approaches when proposing novel solutions to delaying time
decay under budget constraints. We now summarize the delay
strategies we consider and show results on our dataset. For
interested readers, we include additional background knowl-
edge on these strategies in §A.4.

Incremental retraining. We first consider an approach
that represents an ideal upper bound on performance, where
all points are included in retraining every month. This is
likely unrealistic as it requires continuously labeling all the
objects. Even assuming a reliance on VirusTotal, there is still
an API usage cost associated with higher query rates and the
approach may be ill-suited in other security domains. Figure 7
shows the performance of ALG1 and ALG2 with monthly
incremental retraining.

Active learning. Active Learning (AL) strategies inves-
tigate how to select a subset of test objects (with unknown
labels) that, if manually labeled and included in the training
set, should be the most valuable for updating the classification
model [46]. Here, we consider the most popular AL query
strategy, uncertainty sampling, in which the points with the
most uncertain predictions are selected for retraining, under
the intuition that they are the most relevant to adjust decision
boundaries. Figure 8 reports the active learning results ob-
tained with uncertainty sampling, for different percentages of
objects labeled per month. We observe that even with 1% AL,
the performance already improves significantly.

Costs Performance

L Q
P : AUT(F1,24m)

Delay ϕ = σ̂ ϕ = ϕ∗F1

method ALG1 ALG2 ALG1 ALG2 ALG1 ALG2 ALG1 ALG2

No update 0 0 0 0 0.577 0.317 0.622 0.527

Rejection (σ̂) 0 0 10,283 3,595 0.717 0.280 – –
Rejection (ϕ∗F1

) 0 0 10,576 24,390 – – 0.704 0.683
AL: 1% 709 709 0 0 0.708 0.456 0.703 0.589
AL: 2.5% 1,788 1,788 0 0 0.738 0.509 0.758 0.667
AL: 5% 3,589 3,589 0 0 0.782 0.615 0.784 0.680
AL: 7.5% 5,387 5,387 0 0 0.793 0.641 0.801 0.714
AL: 10% 7,189 7,189 0 0 0.796 0.656 0.802 0.732
AL: 25% 17,989 17,989 0 0 0.821 0.674 0.823 0.732
AL: 50% 35,988 35,988 0 0 0.817 0.679 0.828 0.741
Inc. retrain 71,988 71,988 0 0 0.818 0.679 0.830 0.736

Table 3: Performance-cost comparison of delay methods.

Classification with rejection. Another mitigation strategy
involves rejecting a classifier’s decision as “low confidence”
and delaying the decision to a future date [6]. This isolates
the rejected objects to a quarantine area which will later re-
quire manual inspection. Figure 9 reports the performance of
ALG1 and ALG2 after applying a reject option based on [26].
In particular, we use the third quartile of probabilities of in-
correct predictions as the rejection threshold [26]. The gray
histograms in the background report the number of rejected
objects per month. The second year of testing has more re-
jected objects for both ALG1 and ALG2, although ALG2
overall rejects more objects.

5.2 Analysis of Delay Methods

To quantify performance-cost trade-offs of methods to de-
lay time decay without changing the algorithm, we charac-
terize the following three elements: Performance (P), the
performance measured in terms of AUT to capture robustness
against time decay (§4.2); Labeling Cost (L), the number
of testing objects (if any) that must be labeled—the labeling
must occur periodically (e.g., every month), and is particularly
costly in the malware domain as manual inspection requires
many resources (infrastructure, time, expertise, etc)—for ex-
ample, Miller et al. [36] estimated that an average company
could manually label 80 objects per day; Quarantine Cost
(Q), the number of objects (if any) rejected by the classifier—
these must be manually verified, so there is a cost for leaving
them in quarantine.

Table 3, utilizing AUT(F1,24m) while enforcing our con-
straints, reports a summary of labeling cost L, quarantine cost
Q, and two performance columns P, corresponding to training
with σ̂ and ϕ∗F1

(§4.3), respectively. In each row, we highlight
in purple cells (resp. orange) the column with the highest AUT
for ALG2 (resp. ALG1). Table 3 allows us to: (i) examine
the effectiveness of the training ratios ϕ∗F1

and σ̂; (ii) analyze
the AUT performance improvement and the corresponding
costs for delaying time decay; (iii) compare the performance
of ALG1 and ALG2 in different settings.

First, let us compare ϕ∗F1
with σ̂. The first row of Table 3

represents the scenario in which the model is trained only
once at the beginning—the scenario for which we originally

USENIX Association 28th USENIX Security Symposium 739

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

25%

10%

5%

1%

0%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

(a) F1-Score

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

25%

10%

5%

1%

0%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

(b) Precision

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg1

25%

10%

5%

1%

0%

1 4 7 10 13 16 19 22

Testing period (month)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

(c) Recall

Figure 8: Delay time decay: performance with active learning based on uncertainty sampling.

1 4 7 10 13 16 19 22

Testing period (month)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

#
Q

u
aran

tin
ed

1 4 7 10 13 16 19 22

Testing period (month)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

#
Q

u
aran

tin
ed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 (no rejection)

Recall (gw)

Precision (gw)

F1 (gw)

Recall (mw)

Precision (mw)

F1 (mw)

Alg1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Alg2

Figure 9: Delay time decay: classification with rejection.

designed Algorithm 1 (§4.3 and Figure 6). Without methods
to delay time decay, ϕ∗F1

achieves better performance than
σ̂ for both ALG1 and ALG2 at no cost. In all other config-
urations, we observe that training ϕ = ϕ∗F1

always improves
performance for ALG2, whereas for ALG1 it is slightly ad-
vantageous in most cases except for rejection and AL 1%—in
general, the performance of ALG1 trained with ϕ∗F1

and σ̂ is
consistently close. The intuition for this outcome is that ϕ∗F1
and σ̂ are also close for ALG1: when applying the AL strat-
egy, we re-apply Algorithm 1 at each step and find that the
average ϕ∗F1

≈ 15% for ALG1, which is close to 10% (i.e., σ̂).
On the other hand, for ALG2 the average ϕ∗F1

≈ 50%, which
is far from σ̂ and improves all results significantly. We can
conclude that our tuning algorithm is most effective when it
finds a ϕ∗P that differs from the estimated σ̂.

Then, we analyze the performance improvement and related
cost of using delay methods. The improvement in F1-Score
granted by our algorithm comes at no labeling or quarantine
cost. We can observe that one can improve the in-the-wild
performance of the algorithms at some cost L or Q. It is
important to observe that objects discarded or to be labeled
are not necessarily malware; they are just the objects most
uncertain according to the algorithm, which the classifier may
have likely misclassified. The labeling costs L for ALG1 and
ALG2 are identical (same dataset); in AL, the percentage of
retrained objects is user-specified and fixed.

Finally, Table 3 shows that ALG1 consistently outperforms
ALG2 on F1 for all performance-cost trade-offs. This confirms

the trend seen in the realistic settings of Table 1.
This section shows that TESSERACT is helpful to both

researchers and industrial practitioners. Practitioners need to
estimate the performance of a classifier in the wild, compare
different algorithms, and determine resources required for
L and Q. For researchers, it is useful to understand how to
reduce costs L and Q while improving classifiers performance
P through comparable, unbiased evaluations. The problem is
challenging, but we hope that releasing TESSERACT’s code
fosters further research and widespread adoption.

6 Discussion
We now discuss guidelines, our assumptions, and how we
address limitations of our work.

Actionable points on TESSERACT. It is relevant to dis-
cuss how both researchers and practitioners can benefit from
TESSERACT and our findings. A baseline AUT performance
(without classifier retraining) allows users to evaluate the
general robustness of an algorithm to performance decay
(§4.2). We demonstrate how TESSERACT can reveal true
performance and provide counter-intuitive results (§4.4). Ro-
bustness over extended time periods is practically relevant for
deployment scenarios without the financial or computational
resources to label and retrain often. Even with retraining
strategies (§5), classifiers may not perform consistently over
time. Manual labeling is costly, and the ML community has
worked on mitigation strategies to identify a limited number of
best objects to label (e.g., active learning [46]). TESSERACT
takes care of removing spatio-temporal bias from evaluations,
so that researchers can focus on the proposal of more robust
algorithms (§5). In this context, TESSERACT allows for the
creation of comparable baselines for algorithms in a time-
aware setting. Moreover, TESSERACT can be used with dif-
ferent time granularity, provided each period has a significant
number of samples. For example, if researchers are interested
in increasing robustness to decay for the upcoming 3 months,
they can use TESSERACT to produce bias-free comparisons
of their approach with prior research, while considering time
decay.

Generalization to other security domains. Although we
used TESSERACT in the Android domain, our methodology

740 28th USENIX Security Symposium USENIX Association

generalizes and can be immediately applied to any machine
learning-driven security domain to achieve an evaluation with-
out spatio-temporal bias. Our methodology, although general,
requires some domain-specific parameters that reflect realis-
tic conditions (e.g., time granularity ∆ and test time length).
This is not a weakness of our work, but rather an expected
requirement. In general, it is reasonable to expect that spatio-
temporal bias may afflict other security domains when af-
fected by concept drift and i.i.d. does not hold—however,
further experiments in other domains (e.g., Windows mal-
ware, code vulnerabilities) are required to make any scientific
conclusion. TESSERACT can be used to understand the extent
to which spatio-temporal bias affects such security domains;
however, the ability to generalize requires access to large
timestamped datasets, knowledge of realistic class ratios, and
code or sufficient details to reproduce baselines.

Domain-specific in-the-wild malware percentage σ̂. In
the Android landscape, we assume that σ̂ is around 10%
(§2.2). Correctly estimating the malware percentage in the
testing dataset is a challenging task and we encourage further
representative measurement studies [30, 53] and data sharing
to obtain realistic experimental settings.

Correct observation labels. We assume goodware and
malware labels in the dataset are correct (§2.3). Miller et
al. [36] found that AVs sometimes change their outcome over
time: some goodware may eventually be tagged as malware.
However, they also found that VirusTotal detections stabilize
after one year; since we are using observations up to Dec
2016, we consider VirusTotal’s labels as reliable. In the future,
we may integrate approaches for noisy oracles [15], which
assume some observations are mislabeled.

Timestamps in the dataset. It is important to consider
that some timestamps in a public dataset could be incorrect or
invalid. In this paper, we rely on the public AndroZoo dataset
maintained at the University of Luxembourg, and we rely on
the dex_date attribute as the approximation of an observa-
tion timestamp, as recommended by the dataset creators [3].
We further verified the reliability of the dex_date attribute
by re-downloading VirusTotal [20] reports for 25K apps3 and
verifying that the first_seen attribute always matched the
dex_date within our time span. In general, we recommend
performing some sanitization of a timestamped dataset be-
fore performing any analysis on it: if multiple timestamps
are available for each object, consider the most reliable times-
tamp you have access to (e.g., the timestamp recommended
by the dataset creators, or the VirusTotal’s first_seen at-
tribute) and discard objects with “impossible” timestamps
(e.g., with dates which are either too old or in the future),
which may be caused by incorrect parsing or invalid values
of some timestamps. To improve trustworthiness of the times-
tamps, one could verify whether a given object contains time
inconsistencies or features not yet available when the app

3We downloaded only 25K VT reports (corresponding to about 20% of
our dataset) due to restrictions on our VirusTotal API usage quota.

was released [29]. We encourage the community to promptly
notify dataset maintainers of any date inconsistencies. In the
TESSERACT’s project website (§8), we will maintain an up-
dated list of timestamped datasets publicly available for the
security community.

Choosing time granularity (∆). Choosing the length of
the time slots (i.e., time granularity) largely depends on the
sparseness of the available dataset: in general, the granularity
should be chosen to be as small as possible, while containing
a statistically significant number of samples—as a rule of
thumb, we keep the buckets large enough to have at least
1000 objects, which in our case leads to a monthly granularity.
If there are restrictions on the number of time slots that can
be considered (perhaps due to limited processing power), a
coarser granularity can be used; however if the granularity
becomes too large then the true trend might not be captured.

Resilience of malware classifiers. In our study, we ana-
lyze three recent high-profile classifiers. One could argue
that other classifiers may show consistently high performance
even with space-time bias eliminated. And this should indeed
be the goal of research on malware classification. TESSER-
ACT provides a mechanism for an unbiased evaluation that
we hope will support this kind of work.

Adversarial ML. Adversarial ML focuses on perturbing
training or testing observations to compel a classifier to make
incorrect predictions [7]. Both relate to concepts of robust-
ness and one can characterize adversarial ML as an artifi-
cially induced worst-case concept drift scenario. While the
adversarial setting remains an open problem, the experimental
bias we describe in this work—endemic in Android malware
classification—must be addressed prior to realistic evaluations
of adversarial mitigations.

7 Related Work
A common experimental bias in security is the base rate fal-
lacy [5], which states that in highly-imbalanced datasets (e.g.,
network intrusion detection, where most traffic is benign),
TPR and FPR are misleading performance metrics, because
even FPR = 1% may correspond to millions of FPs and only
thousands of TPs. In contrast, our work identifies experi-
mental settings that are misleading regardless of the adopted
metrics, and that remain incorrect even if the right metrics
are used (§4.4). Sommer and Paxson [47] discuss challenges
and guidelines in ML-based intrusion detection; Rossow et
al. [44] discuss best practices for conducting malware ex-
periments; van der Kouwe et al. [54] identify 22 common
errors in system security evaluations. While helpful, these
works [44,47,54] do not identify temporal and spatial bias, do
not focus on Android, and do not quantify the impact of errors
on classifiers performance, and their guidelines would not
prevent all sources of temporal and spatial bias we identify.
To be precise, Rossow et al. [44] evaluate the percentage of
objects—in previously adopted datasets—that are “incorrect”
(e.g., goodware labeled as malware, malfunctioning malware),

USENIX Association 28th USENIX Security Symposium 741

but without evaluating impact on classifier performance. Zhou
et al. [58] have recently shown that Hardware Performance
Counters (HPCs) are not really effective for malware classi-
fication; while interesting and in line with the spirit of our
work, their focus is very narrow, and they rely on 10-fold CV
in the evaluation.

Allix et al. [2] broke new ground by evaluating malware
classifiers in relation to time and showing how future knowl-
edge can inflate performance, but do not propose any solution
for comparable evaluations and only identify C1. As a sepa-
rate issue, Allix et al. [1] investigated the difference between
in-the-lab and in-the-wild scenarios and found that the greater
presence of goodware leads to lower performance. We sys-
tematically analyze and explain these issues and help address
them by formalizing a set of constraints (jointly considering
the impact of temporal and spatial bias), introducing AUT
as a unified performance metric for fair time-aware compar-
isons of different solutions, and offering a tuning algorithm
to leverage the effects of training data distribution. Miller et
al. [36] identified temporal sample consistency (equivalent to
our constraint C1), but not C2 or C3—which are fundamen-
tal (§4.4); moreover, they considered the test period to be a
uniform time slot, whereas we take time decay into account.
Roy et al. [45] questioned the use of recent or older malware
as training objects and the performance degradation in test-
ing real-world object ratios; however, most experiments were
designed without considering time, reducing the reliability of
their conclusions. While past work highlighted some sources
of experimental bias [1, 2, 36, 45], it also gave little considera-
tion to classifiers’ aims: different scenarios may have different
goals (not necessarily maximizing F1), hence in our work we
show the effects of different training settings on performance
goals and propose an algorithm to properly tune a classifier
accordingly (§4.3).

Other works from the ML literature investigate imbalanced
datasets and highlighted how training and testing ratios can
influence the results of an algorithm [9, 25, 55]. However, not
coming from the security domain, these studies [9, 25, 55]
focus only on some aspects of spatial bias and do not consider
temporal bias. Indeed, concept drift is less problematic in
some applications (e.g., image and text classification) than in
Android malware [26]. Fawcett [16] focuses on challenges
in spam detection, one of which resembles spatial bias; no
solution is provided, whereas we introduce C3 to this end
and demonstrate how its violation inflates performance (§4.4).
Torralba and Efros [52] discuss the problem of dataset bias
in computer vision, distinct from our security setting where
there are fewer benchmarks; moreover in images the nega-
tive class (e.g., “not cat”) can grow arbitrarily, which is less
likely in the malware context. Moreno-Torres et al. [38] sys-
tematize different drifts, and mention sample-selection bias;
while this resembles spatial bias, they do not propose any so-
lution/experiments for its impact on ML performance. Other
related work underlines the importance of choosing appropri-

ate performance metrics to avoid an incorrect interpretation
of the results (e.g., ROC curves are misleading in an imbal-
anced dataset [14, 24]). In this paper, we take imbalance into
account, and we propose actionable constraints and metrics
with tool support to evaluate performance decay of classifiers
over time.

Summary. Several studies of bias exist and have motivated
our research. However, none of them address the entire prob-
lem in the context of evolving data (where the i.i.d. assump-
tion does not hold anymore). Constraint C1, introduced by
Miller et al. [36], is by itself insufficient to eliminate bias. This
is evident from the original evaluation in MAMADROID [33],
which enforces only C1. The evaluation in §4.4 clarifies why
our novel constraints C2 and C3 are fundamental, and shows
how our AUT metric can effectively reveal the true perfor-
mance of algorithms, providing counter-intuitive results.

8 Availability
We make TESSERACT’s code and data available to the
research community to promote the adoption of a sound
and unbiased evaluation of classifiers. The TESSERACT
project website with instructions to request access is at
https://s2lab.kcl.ac.uk/projects/tesseract/. We will also main-
tain an updated list of publicly available security-related
datasets with timestamped objects.

9 Conclusions
We have identified novel temporal and spatial bias in the An-
droid domain and proposed novel constraints, metrics and
tuning to address such issues. We have built and released
TESSERACT as an open-source tool that integrates our meth-
ods. We have shown how TESSERACT can reveal the real per-
formance of malware classifiers that remain hidden in wrong
experimental settings in a non-stationary context. TESSER-
ACT is fundamental for the correct evaluation and comparison
of different solutions, in particular when considering miti-
gation strategies for time decay. We are currently working
on integrating a time-varying percentage of malware in our
framework to model still more realistic scenarios, and on how
to use the slope of the performance decay curve to better
differentiate algorithms with similar AUT.

We envision that future work on Android malware classifi-
cation will use TESSERACT to produce realistic, comparable
and unbiased results. Moreover, we also encourage the secu-
rity community to adopt TESSERACT to evaluate the impact
of temporal and spatial bias in other security domains where
concept drift still needs to be quantified.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Roya
Ensafi, for their constructive feedback, which has improved
the overall quality of this work. This research has been par-
tially sponsored by the UK EP/L022710/1 and EP/P009301/1
EPSRC research grants.

742 28th USENIX Security Symposium USENIX Association

References
[1] Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques

Klein, Radu State, and Yves Le Traon. Empirical Assessment
of Machine Learning-Based Malware Detectors for Android.
Empirical Software Engineering, 2016.

[2] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. Are Your Training Datasets Yet Relevant? In ESSoS.
Springer, 2015.

[3] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. Androzoo: Collecting Millions of Android Apps for
the Research Community. In Mining Software Repositories.
ACM, 2016.

[4] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gas-
con, and Konrad Rieck. DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket. In NDSS, 2014.

[5] Stefan Axelsson. The Base-Rate Fallacy and the Difficulty of
Intrusion Detection. ACM TISSEC, 2000.

[6] Peter L Bartlett and Marten H Wegkamp. Classification with a
reject option using a hinge loss. JMLR, 2008.

[7] Battista Biggio and Fabio Roli. Wild patterns: Ten years after
the rise of adversarial machine learning. Pattern Recognition,
2018.

[8] Christopher M Bishop. Pattern Recognition and Machine
Learning. 2006.

[9] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz.
Special Issue on Learning From Imbalanced Data Sets. ACM
SIGKDD Explorations Newsletter, 2004.

[10] François Chollet et al. Keras. https://github.com/
fchollet/keras, 2015.

[11] Charlie Curtsinger, Benjamin Livshits, Benjamin G Zorn, and
Christian Seifert. ZOZZLE: Fast and Precise In-Browser
JavaScript Malware Detection. In USENIX Security, 2011.

[12] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-
Scale Malware Classification Using Random Projections and
Neural Networks. In Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2013.

[13] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin
Khan, Kimberly Tam, Mansour Ahmadi, Johannes Kinder, and
Lorenzo Cavallaro. Droidscribe: Classifying Android Malware
Based on Runtime Behavior. In MoST-SPW. IEEE, 2016.

[14] Jesse Davis and Mark Goadrich. The Relationship Between
Precision-Recall and ROC Curves. In Proceedings of the 23rd
international conference on Machine learning, pages 233–240.
ACM, 2006.

[15] Jun Du and Charles X Ling. Active Learning with Human-Like
Noisy Oracle. In ICDM. IEEE, 2010.

[16] Tom Fawcett. In vivo spam filtering: a challenge problem for
kdd. ACM SIGKDD Explorations Newsletter, 2003.

[17] Giorgio Fumera, Ignazio Pillai, and Fabio Roli. Classification
with reject option in text categorisation systems. In Int. Conf.
Image Analysis and Processing. IEEE, 2003.

[18] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. Structural Detection of Android Malware using Embed-
ded Call Graphs. In AISec. ACM, 2013.

[19] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua
Bengio. Deep learning. MIT press Cambridge, 2016.

[20] Google. VirusTotal, 2004.

[21] Google. Android Security 2017 Year In Review.
https://source.android.com/security/reports/
Google_Android_Security_2017_Report_Final.pdf,
March 2018.

[22] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial exam-
ples for malware detection. In ESORICS. Springer, 2017.

[23] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang,
and Xinyu Xing. LEMNA: Explaining Deep Learning based
Security Applications. In CCS. ACM, 2018.

[24] David J Hand. Measuring Classifier Performance: a Coher-
ent Alternative to the Area Under the ROC Curve. Machine
Learning, 2009.

[25] Haibo He and Edwardo A Garcia. Learning From Imbalanced
Data. IEEE TKDE, 2009.

[26] Roberto Jordaney, Kumar Sharad, Santanu Kumar Dash, Zhi
Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro.
Transcend: Detecting Concept Drift in Malware Classification
Models. In USENIX Security, 2017.

[27] Pavel Laskov and Nedim Šrndić. Static Detection of Malicious
JavaScript-Bearing PDF Documents. In ACSAC. ACM, 2011.

[28] Sangho Lee and Jong Kim. WarningBird: Detecting Suspicious
URLs in Twitter Stream. In NDSS, 2012.

[29] Li Li, Tegawendé Bissyandé, and Jacques Klein. Moonlight-
Box: Mining Android API Histories for Uncovering Release-
time Inconsistencies. In Symp. on Software Reliability Engi-
neering. IEEE, 2018.

[30] Martina Lindorfer, Stamatis Volanis, Alessandro Sisto,
Matthias Neugschwandtner, Elias Athanasopoulos, Federico
Maggi, Christian Platzer, Stefano Zanero, and Sotiris Ioanni-
dis. AndRadar: Fast Discovery of Android Applications in
Alternative Markets. In DIMVA. Springer, 2014.

[31] Federico Maggi, Alessandro Frossi, Stefano Zanero, Gianluca
Stringhini, Brett Stone-Gross, Christopher Kruegel, and Gio-
vanni Vigna. Two Years of Short URLs Internet Measurement:
Security Threats and Countermeasures. In WWW. ACM, 2013.

[32] Davide Maiorca, Giorgio Giacinto, and Igino Corona. A Pattern
Recognition System for Malicious PDF Files Detection. In Intl.
Workshop on Machine Learning and Data Mining in Pattern
Recognition. Springer, 2012.

[33] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis,
Emiliano De Cristofaro, Gordon Ross, and Gianluca Stringhini.
MaMaDroid: Detecting Android Malware by Building Markov
Chains of Behavioral Models. In NDSS, 2017.

[34] Zane Markel and Michael Bilzor. Building a Machine Learning
Classifier for Malware Detection. In Anti-malware Testing
Research Workshop. IEEE, 2014.

[35] Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giac-
into, and Fabio Roli. Explaining Black-box Android Malware
Detection. EUSIPCO, 2018.

USENIX Association 28th USENIX Security Symposium 743

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf

[36] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sa-
dia Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang,
Vaishaal Shankar, Tony Wu, George Yiu, et al. Reviewer Inte-
gration and Performance Measurement for Malware Detection.
In DIMVA. Springer, 2016.

[37] Bradley Austin Miller. Scalable Platform for Malicious Con-
tent Detection Integrating Machine Learning and Manual Re-
view. University of California, Berkeley, 2015.

[38] Jose G Moreno-Torres, Troy Raeder, RocíO Alaiz-RodríGuez,
Nitesh V Chawla, and Francisco Herrera. A unifying view on
dataset shift in classification. Pattern Recognition, 2012.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-Learn: Ma-
chine Learning in Python. JMLR, 2011.

[40] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Jo-
hannes Kinder, and Lorenzo Cavallaro. POSTER: Enabling
Fair ML Evaluations for Security. In CCS. ACM, 2018.

[41] Babak Rahbarinia, Marco Balduzzi, and Roberto Perdisci. Ex-
ploring the Long Tail of (Malicious) Software Downloads. In
DSN. IEEE, 2017.

[42] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why
Should I Trust You?: Explaining the Predictions of Any Classi-
fier. In KDD. ACM, 2016.

[43] Konrad Rieck, Tammo Krueger, and Andreas Dewald. Cujo:
Efficient Detection and Prevention of Drive-By-Download At-
tacks. In ACSAC. ACM, 2010.

[44] Christian Rossow, Christian J Dietrich, Chris Grier, Christian
Kreibich, Vern Paxson, Norbert Pohlmann, Herbert Bos, and
Maarten Van Steen. Prudent Practices for Designing Malware
Experiments: Status Quo and Outlook. In Symp. S&P. IEEE,
2012.

[45] Sankardas Roy, Jordan DeLoach, Yuping Li, Nic Herndon,
Doina Caragea, Xinming Ou, Venkatesh Prasad Ranganath,
Hongmin Li, and Nicolais Guevara. Experimental Study with
Real-World Data for Android App Security Analysis Using
Machine Learning. In ACSAC. ACM, 2015.

[46] Burr Settles. Active Learning Literature Survey. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, 2012.

[47] Robin Sommer and Vern Paxson. Outside the Closed World:
On Using Machine Learning for Network Intrusion Detection.
In Symp. S&P. IEEE, 2010.

[48] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna.
Shady Paths: Leveraging Surfing Crowds to Detect Malicious
Web Pages. In CCS. ACM, 2013.

[49] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ah-
madi, Johannes Kinder, Giorgio Giacinto, and Lorenzo Caval-
laro. DroidSieve: Fast and Accurate Classification of Obfus-
cated Android Malware. In CODASPY. ACM, 2017.

[50] Masashi Sugiyama, Neil D Lawrence, Anton Schwaighofer,
et al. Dataset Shift in Machine Learning. The MIT Press,
2009.

[51] Gil Tahan, Lior Rokach, and Yuval Shahar. Mal-id: Automatic
malware detection using common segment analysis and meta-
features. JMLR, 2012.

[52] Antonio Torralba and Alexei A Efros. Unbiased look at dataset
bias. In CVPR. IEEE, 2011.

[53] Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li,
and Manos Antonakakis. Measuring and Detecting Malware
Downloads in Live Network Traffic. In ESORICS. Springer,
2013.

[54] Erik van der Kouwe, Dennis Andriesse, Herbert Bos, Cris-
tiano Giuffrida, and Gernot Heiser. Benchmarking Crimes: An
Emerging Threat in Systems Security. arXiv preprint, 2018.

[55] Gary M Weiss and Foster Provost. Learning when Training
Data Are Costly: The Effect of Class Distribution on Tree
Induction. Journal of Artificial Intelligence Research, 2003.

[56] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue.
Droid-sec: Deep learning in android malware detection. In
SIGCOMM Computer Communication Review. ACM, 2014.

[57] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-
Aware Android Malware Classification Using Weighted Con-
textual Api Dependency Graphs. In CCS. ACM, 2014.

[58] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele,
and Ajay Joshi. Hardware Performance Counters Can Detect
Malware: Myth or Fact? In ASIACCS. ACM, 2018.

A Appendix
A.1 Algorithm Hyperparameters

We hereby report the details of the hyperparameters used to
replicate ALG1, ALG2 and DL.

We replicate the settings and experiments of ALG1 [4]
(linear SVM with C=1) and ALG2 [33] (package mode and
RF with 101 trees and max depth of 64) as described in the
respective papers [4, 33], successfully reproducing the pub-
lished results. Since on our dataset the ALG1 performance
is slightly lower (around 0.91 10-fold F1), we also reproduce
the experiment on their same dataset [4], achieving their orig-
inal performance of about 0.94 10-fold F1. We have used
SCIKIT-LEARN, with sklearn.svm.LinearSVC for ALG1 and
sklearn.ensemble.RandomForestClassifier for ALG2.

We then follow the guidelines in [22] to re-implement
DL with KERAS. The features given as initial input to the
neural network are the same as ALG1. We replicated the best-
performing neural network architecture of [22], by training
with 10 epochs and batch size equal to 1,000. To perform
the training optimization, we used the stochastic gradient
descent class keras.optimizers.SGD with the following pa-
rameters: lr=0.1, momentum=0.0, decay=0.0, nesterov=False.
Some low-level details of the hyperparameter optimization
were missing from the original paper [22]; we managed to
obtain slightly higher F1 performance in 10-fold setting (§4.4)
likely because they have performed hyperparameter optimiza-
tion on the Accuracy metric [8]—which is misleading in im-
balanced datasets [5] where one class is prevalent (goodware,
in Android).

744 28th USENIX Security Symposium USENIX Association

A.2 Symbol table

Table 4 is a legend of the main symbols used throughout this
paper to improve readability.

Symbol Description

gw Short version of goodware.
mw Short version of malware.
ML Short version of Machine Learning.
D Labeled dataset with malware (mw) and goodware (gw).
Tr Training dataset.
W Size of the time window of the training set (e.g., 1 year).
Ts Testing dataset.
S Size of the time window of the testing set (e.g., 2 years).

∆
Size of the test time-slots for time-aware evaluations (e.g.,
months).

AUT(f ,N)

Area Under Time, a new metric we define to measure perfor-
mance over time decay and compare different solutions (§4.2).
It is always computed with respect to a performance function f
(e.g., F1-Score) and N is the number of time units considered
(e.g., 24 months)

σ̂ Estimated percentage of malware (mw) in the wild.
ϕ Percentage of malware (mw) in the training set.
δ Percentage of malware (mw) in the testing set.

P Performance target of the tuning algorithm in §4.3; it can be
F1-Score, Precision (Pr) or Recall (Rec).

ϕ∗P
Percentage of malware (mw) in the training set, to improve
performance P on the malware (mw) class (§4.3).

E Error rate (§4.3).
Emax Maximum error rate when searching ϕ∗P (§4.3).
Θ Model learned after training a classifier.
L Labeling cost.
Q Quarantine cost.

P Performance; depending on the context, it will refer to AUT
with F1 or Pr or Rec.

Table 4: Symbol table.

A.3 Cumulative Plots for Time Decay

Figure 10 shows the cumulative performance plot defined in
§4.2. This is the cumulative version of Figure 5.

A.4 Delay Strategies

We discuss more background details on the mitigation strate-
gies adopted in Section 5.

Incremental retraining. Incremental retraining is an ap-
proach that tends towards an “ideal” performance P∗: all test
objects are periodically labeled manually, and the new knowl-
edge introduced to the classifier via retraining. More formally,
the performance of month mi is determined from the predic-
tions of a model Θ trained on: Tr∪{m0,m1, ...,mi−1}, where
{m0,m1, ...,mi−1} are testing objects, which are manually la-
beled. The dashed gray line represents the F1-Score without
incremental retraining (i.e., stationary training). Although in-
cremental retraining generally achieves optimal performance
throughout the whole test period, it also incurs the highest
labeling cost L.

Active learning. Active learning is a field of machine learn-
ing that studies query strategies to select a small number of

testing points close to the decision boundaries, that, if in-
cluded in the training set, are the most relevant for updating
the classifier. For example, in a linear SVM the slope of the
decision boundary greatly depends on the points that are clos-
est to it, the support vectors [8]; all the points further from the
SVM decision boundary are classified with higher confidence,
hence have limited effect on the slope of the hyperplane.

We evaluate the impact of one of the most popular active
learning strategies: uncertainty sampling [36, 46]. This query
strategy selects the most points the classifier is least certain
about, and uses them for retraining; we apply it in a time-
aware scenario, and choose a percentage of objects to retrain
per month. The intuition is that the most uncertain elements
are the ones that may be indicative of concept drift, and new,
correct knowledge about them may better inform the decision
boundaries. The number of objects to label depends on the
user’s available resources for labeling.

More formally, in binary classification uncertainty sam-
pling gives a score x∗LC (where LC stands for Least Confident)
to each sample [46]; this score is defined as follows4:

x∗LC := argmaxx{1−PΘ(ŷ|x)} (6)

where ŷ := argmaxyPΘ(y|x) is the class label with the highest
posterior probability according to classifier Θ. In a binary
classification task, the maximum uncertainty for an object is
achieved when its prediction probability equal to 0.5 for both
classes (i.e., equal probability of being goodware or malware).
The test objects are sorted by descending order of uncertainty
x∗LC, and the top-n most uncertain are selected to be labeled
for retraining the classifier.

Depending on the percentage of manually labeled points,
each scenario corresponds to a different labeling cost L. The
labeling cost L is known a priori since it is user specified.

Classification with rejection. Malware evolves rapidly
over time, so if the classifier is not up to date, the decision
region may no longer be representative of new objects. An-
other approach, orthogonal to active learning, is to include a
reject option as a possible classifier outcome [17, 26]. This
discards the most uncertain predictions to a quarantine area
for manual inspection at a future date. At the cost of rejecting
some objects, the overall performance of the classifier (on the
remaining objects) increases. The intuition is that in this way
only high confidence decisions are taken into account. Again,
although performance P improves, there is a quarantine cost
Q associated with it; in this case, unlike active learning, the
cost is not known a priori because, in traditional classifica-
tion with rejection, a threshold on the classifier confidence is
applied [17, 26].

4In multi-class classification, there is a query strategy based on the entropy
of the prediction scores array; in binary classification, the entropy-based
query strategy is proven to be equivalent to the “least confident” [46].

USENIX Association 28th USENIX Security Symposium 745

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

Recall (gw)
Precision (gw)
F1 (gw)
Recall (mw)
Precision (mw)
F1 (mw)
F1 (10-fold, our dataset)
F1 (original paper)

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

Figure 10: Performance time decay with cumulative estimate for ALG1, ALG2 and DL. Testing distribution has δ = 10%
malware, and training distribution has ϕ = 10% malware.

A.5 TESSERACT Implementation

We have implemented our constraints, metrics, and algorithms
as a Python library named TESSERACT, designed to integrate
easily with common workflows. In particular, the API design
of TESSERACT is heavily inspired by and fully compatible
with SCIKIT-LEARN [39] and KERAS [10]; as a result, many of
the conventions and workflows in TESSERACT will be famil-
iar to users of these libraries. Here we present an overview of
the library’s core modules while further details of the design
can be found in [40].

temporal.py While machine learning libraries com-
monly involve working with a set of predictors X and
a set of output variables y, TESSERACT extends this
concept to include an array of datetime objects t.
This allows for operations such as the time-aware parti-
tioning of datasets (e.g., time_aware_partition() and
time_aware_train_test_split()) while respecting tem-
poral constraints C1 and C2.

spatial.py This module allows the user to alter the
proportion of the positive class in a given dataset.
downsample_set() can be used to simulate the natural class
distribution σ̂ expected during deployment or to tune the
performance of the model by over-representing a class dur-
ing training. To this end we provide an implementation of
Algorithm 1 for finding the optimal training proportion ϕ∗

(search_optimal_train_ratio()). This module can also
assert that constraint C3 (§4.1) has not been violated.

metrics.py As TESSERACT aims to encourage compara-
ble and reproducible evaluations, we include functions for
visualizing classifier assessments and deriving metrics such
as the accuracy or total errors from slices of a time-aware
evaluation. Importantly we also include aut() for computing
the AUT for a given metric (F1, Precision, AUC, etc.) over a
given time period.

evaluation.py Here we include the predict() and
fit_predict_update() functions that accept a classifier,

dataset and set of parameters (as defined in §4.1) and return
the results of a time-aware evaluation performed across the
chosen periods.

selection.py and rejection.py For extending the evalua-
tion to testing model update strategies, these modules pro-
vide hooks for novel query and reject strategies to be easily
plugged into the evaluation cycle. We already implement
many of the methods discussed in §5 and include them with
our release. We hope this modular approach lowers the bar
for follow-up research in these areas.

A.6 Summary of Datasets Evaluated by Prior Work

As a reference, Table 5 reports the composition of the dataset
used in our paper (1st row) and of the datasets used for
experimentally biased evaluations in prior work ALG1 [4],
ALG2 [33], and DL [22] (2nd and 3rd row). In this paper, we
always evaluate ALG1, ALG2 and DL with the dataset in the
first row (more details in §2.3 and Figure 1), because we have
built it to allow experiments without spatio-temporal bias by
enforcing constraints C1, C2 and C3. Details on experimental
settings that caused spatio-temporal bias in prior work are
described in §3 and §4. We never use the datasets of prior
work [4, 22, 33] in our experiments.

Work Apps Date Range # Objects Total Violations

TESSERACT
(this work)

Benign
Jan 2014 - Dec 2016

116,993 116,993
-

Malicious 12,735 12,735

[4], [22]
Benign

Aug 2010 - Oct 2012
123,453 123,453

C1
Malicious 5,560 5,560

[33]

Benign
Apr 2013 - Nov 2013 5,879

8,447

(C1)
C2
C3

Mar 2016 2,568

Malicious

Oct 2010 - Aug 2012 5,560

35,493
Jan 2013 - Jun 2013 6,228
Jun 2013 - Mar 2014 15,417
Jan 2015 - Jun 2015 5,314
Jan 2016 - May 2016 2,974

Table 5: Summary of datasets composition used by our paper
(1st row) and by prior work [4, 22, 33] (2nd and 3rd row).

746 28th USENIX Security Symposium USENIX Association

Devils in the Guidance: Predicting Logic Vulnerabilities in Payment Syndication
Services through Automated Documentation Analysis

Yi Chen1,3∗, Luyi Xing2, Yue Qin2, Xiaojing Liao2, XiaoFeng Wang2, Kai Chen1,3, Wei Zou1,3

1{CAS-KLONAT†, BKLONSPT‡, SKLOIS§},Institute of Information Engineering, CAS, 2Indiana University Bloomington,
3School of Cyber Security, University of Chinese Academy of Sciences

{luyixing, qinyue, xliao, xw7}@indiana.edu, {chenyi, chenkai, zouwei}@iie.ac.cn

Abstract
Finding logic flaws today relies on the program analysis that
leverages the functionality information reported in the pro-
gram’s documentation. Our research, however, shows that the
documentation alone may already contain information for
predicting the presence of some logic flaws, even before the
code is analyzed. Our first step on this direction focuses on
emerging syndication services that facilitate integration of
multiple payment services (e.g., Alipay, Wechat Pay, PayPal,
etc.) into merchant systems. We look at whether a syndication
service will cause some security requirements (e.g., checking
payment against price) to become unenforceable due to losing
visibility of some key parameters (e.g., payment, price) to the
parties involved in the syndication, or bring in implementation
errors when required security checks fail to be communicated
to the developer. For this purpose, we developed a suite of
Natural Language Processing techniques that enables auto-
matic inspection of the syndication developer’s guide, based
upon the payment models and security requirements from
the payment service. Our approach is found to be effective in
identifying these potential problems from the guide, and leads
to the discovery of 5 new security-critical flaws in popular
Chinese merchant systems that can cause circumvention of
payment once exploited.

1 Introduction
Logic vulnerabilities are a category of security defects caused
by faulty program logic, which have long been known to be
hard to analyze, due to their close ties to specific functionali-
ties of a system. Finding these defects relies on evaluating the
target system’s behaviors, at the code level, against a set of
invariants describing its function-related security properties
(e.g., expected authentication and authorization operations).

∗Work was done when the first author was at Indiana University Bloom-
ington.

†Key Laboratory of Network Assessment Technology, CAS.
‡Beijing Key Laboratory of Network Security and Protection Technology
§State Key Laboratory of Information Security, IIE, CAS

A great source for such invariants is the system’s documen-
tation, which states its security goals and has been leveraged
by prior research for the purposes such as model checking
on the system’s code [27]. In the meantime, the documen-
tation also provides detailed accounts of how the system is
designed to achieve the goals and how it should be used to
remain secure. Such information can be valuable for predict-
ing whether security-critical logic flaws are present in the
system or applications that use the system: for example, prior
research shows that logic vulnerabilities could be related to
low-quality documentations, such as those missing explana-
tions about implicit assumptions for secure integration of
authentication SDKs [49]; also a conflict between the sys-
tem’s operations, as described in its documentation, and its
security goals may indicate the existence of a design flaw.
However, never before has any effort been made to dig into
the details contained in a myriad of software documentations
to understand their security implications, not to mention any
attempt to exploit their full value for logic flaw detection.

Logic vulnerabilities in payment syndication. In this pa-
per, we present preliminary evidence that system documenta-
tions indeed carry abundant vulnerability-related indicators,
which can help identify logic flaws even before the code
of the system has been analyzed. Further we show that this
documentation-based approach can be automated, enabling
more effective vulnerability detection through providing guid-
ance to program analysis such as fuzzing. This first step has
been made possible by a study on syndication services that
facilitate integration of various payment services (e.g., Ali-
pay [2], WeChat Pay [17], PayPal [25]) in mobile apps. These
payment services have different APIs and SDKs, and an app
often needs to use all of them to offer its customers different
payment options. To simplify integration of these options, a
syndication service encapsulates each payment service with
a wrapper that exposes to the developer a uniform interface.
This, however, injects the syndicator as a proxy into the al-
ready complicated payment interactions among the payer (the
app user), the payee (the merchant) and the payment service
provider (e.g., Paypal). Logic flaws can therefore be induced

USENIX Association 28th USENIX Security Symposium 747

Payment Result Notification
string transaction_id
integer transaction_fee
string sub_channel_type
bool trande_success
long timestamp
string signature

Alipay SR

After you received the asynchronous
notification, you must perform these
important checks:
• Check the notify_id to verify the

notice comes from Alipay
• ……

BeeCloud Specification

Figure 1: Incosistency example.

at the design level, when the wrapper causes some security
checks hard to proceed (e.g., verification of payment against
price), or at the implementation level, when the developer
fails to perform security checks correctly, due to incomplete
instructions given by the syndicator.

These payment syndication services today become increas-
ingly popular: according to the reports [35, 36], their total
transactions in year 2018 have reached 21.1 trillion yuan (3.15
trillion dollars). Any vulnerability inside these services, once
exploited, will have significant impacts, affecting 251 million
syndication users world-wide. We believe that their documen-
tations, developer’s guide in particular, contain information
that can help predict or even detect the logic flaws in their
customers’ systems. As an example, Figure 1 demonstrates
the inconsistency discovered when comparing an Alipay’s
security requirement, which asks for inspecting notify_id,
with the payment notification issued by BeeCloud [6] (a pop-
ular service syndicating Alipay and other payment services),
which does not include this information, as discovered from
its developer’s guide; therefore, the merchant server receiving
the notification will not be able to perform the required check.
This logic problem has been confirmed in our research. A
question here is how to systematically identify such logic
vulnerabilities from documentation. Also, developer’s guides
are typically long and complicated, including a lot of irrele-
vant information (e.g., instructions for using the syndicator’s
tools like dashboard). For example, Ping++ has 1093 KB
text documents online with at least 278 KB related technical
content [12]. Inspecting all the content manually is both time-
consuming and error-prone. Automated techniques therefore
need to be developed to help vulnerability discovery.

Document analysis for flaw detection. In our research, we
developed Dilution (Documentation Inspector for Logic Vul-
nerability Prediction), a new technique that automatically
analyzes the developer’s guide of a payment syndication to
infer potential security flaws in the merchant systems inte-
grating the service. Dilution is designed to predict missing
security checks in the integration, which is caused by either
improper encapsulation of a payment service that renders its
security checks impossible to perform through the wrapper,
or failure in communicating the necessary checks to the de-
veloper through the guide. For this purpose, we utilize natural
language processing (NLP) to automatically recover semantic
information from the wrapper’s integration instructions docu-

mented by the developer’s guide and compared it against the
finite state machine (FSM) of the payment service encapsu-
lated. Note that this payment FSM was manually extracted
but considered as one-time efforts (Section 3.1). Our analysis
automatically infers the relation between the syndication pay-
ment process and the payment FSM, maps important payment
states to the related instructions in the guide and further recov-
ers the parameters for required security checks (e.g., Alipay
key for signature verification, price) at the state from the text.
By analyzing the merchant or syndicator’s visibility of the
parameters, we can determine whether these checks can still
be performed by the merchant or the syndicator. Also from
related descriptions in the guide, our approach can automati-
cally find out whether the developer is informed about these
security requirements when integrating the wrapper. Missing
such instructions indicates the possible absence of security
checks in the merchant’s code.

We implemented Diluation using a suite of NLP techniques,
including dependency parsing and word embedding, and eval-
uated it on labeled content extracted from the developer’s
guides of real-world syndication services. Our study shows
that Dilution accurately caught logic flaws and went through
182 KB text document content within 3.18 seconds, averagely.

Finding. Further, we ran Dilution on the documentations of
eight popular syndication services, including Ping++ [12],
Paymax [11], BeeCloud [6], etc., which have tens of thou-
sands of merchants each and power the apps with millions
of users. From 1,456 KB documentations, our approach au-
tomatically predicted totally 41 potential issues, including
11 highly likely to be logic flaws from five syndication ser-
vices: Fuqianla [8], BeeCloud, TrPay [15], UMF Pay [16] and
66zhifu [1]. All the issues reported were found to be accurate
by our manual inspection of the documentations. Despite the
challenges in finding the apps integrating these services, due
to the obfuscations these services suggest [20, 23, 26], we
collected 17 popular Chinese apps using two of these syndica-
tion services. Through a black-box testing on these apps and
their merchant systems, we concluded that all 5 logic flaws
related to these syndication services predicted by Dilution are
indeed present in either the syndicators’ systems or their cus-
tomers’ code. All such confirmed flaws are security-critical,
and once exploited, will have serious consequences, allowing
the adversary to shop at a lower price or even for free. We
reported our findings to the providers of the syndications and
the merchants who are affected, and they all acknowledged
the importance of the problems we discovered. Now we are
in the process of helping them fix these vulnerabilities. Video
demos of our attacks are posted online [4].

Contributions. The contributions of the paper are outlined
as follows:

• New direction. We explore the potential to predict the pres-
ence of logic vulnerabilities in a software system from its
documentation. Our preliminary study on payment syndica-

748 28th USENIX Security Symposium USENIX Association

tion services shows that this is indeed feasible. Research along
this line could bring in a new perspective to software security
analysis, enabling more effective and intelligent vulnerability
detection and helping enhance software security quality.
• New techniques. We developed Dilution, the first semantics-
based documentation analyzer, to automatically inspect the
developer’s guide and infer possible security fallacies in the
merchant’s integration of the syndication service. Our ap-
proach includes a suite of NLP techniques tuned towards
software documentation, which are found to be effective and
efficient, as demonstrated by our evaluation.
• New findings. We analyzed the developer’s guides of 8 most
popular syndication services using Dilution and discovered
potential security issues. Among these we can validate, we
confirmed that all 5 logic flaws predicted by our approach
are indeed present in syndicator or merchant systems. These
vulnerabilities, once exploited, allows the adversary to shop at
an arbitrarily low price he set or completely for free, affecting
millions of users. We are working with affected syndicators
and merchants to fix these problems.

2 Background
Payment and syndication service. A third-party payment
service (aka. a payment processor) like PayPal [25] is an In-
ternet service to help handle transactions between the buyer
(the payer) and the seller (the payee) [43]. Such a service
simplifies transaction managements on both the payer and
the payee sides and therefore plays an important role in e-
commerce. Figure 2(a) shows how the service works using
Alipay [2], the largest online payment processor with over
1 billion users around the world [47], as an example. The
buyer first places an order through the app (À) and receives
a payment-related credential from the merchant (Á), in-
cluding order ID, price, seller account and others, and then
forwards it to Alipay (Â). After the order is paid by the buyer,
Alipay issues a notification to inform the merchant the com-
pletion of the transaction (Ã). The interfaces exposed by these
payment services tend to be complicated. Figure 3(a) further
details the process the app developer (working for the mer-
chant) is supposed to do for using Alipay : the merchant server
generates an Alipay specific argument orderInfo (part of
credential) with 36 entries once the buyer places an order;
then the buyer-side app of the merchant invokes Alipay’s
payment service.

To simplify this integration process, syndication services
emerge to wrap different payment processors into a uniform
interface for the developer to conveniently incorporate them
into her app. Figure 2(b) and 3(b) shows a common syndica-
tion payment process for Alipay. Instead of asking merchant
developer to implement anything specific to Alipay, the syn-
dicator receives an order from the buyer on behalf of the mer-
chant (À), construct the credential (Á) and then invokes
Alipay payment service from the buyer’s app (Â). Note that,

Buyer Merchant

Payment
processor

① place order

② return credential

③ pay

(credential)
④ send

notification
Buyer Syndicator

Payment
processor

① place order

② return credential

③ pay

(credential)
④ send

notification
Merchant

⑤ send
notification

Buyer Merchant

Payment
processor ③ pay

(credential)

④ send

notification① place

order
② return

credential

Syndicator
⑤ send

notification

Buyer Merchant

Payment
processor

③
 pay

(credential) ④ send

notification① place

order
② return

credential

Buyer Merchant

③ invoke

payment

④ send

notification① place

order
② return

credential

Syndicator
⑤ send

notification

Buyer Merchant

③
 invoke

paym
ent

④ send

notification① place

order
② return

credential

Buyer Merchant

③ pay

(credential)

④ send

notification① place

order
② return

credential

Syndicator
⑤ send

notification

Buyer Merchant
③

 pay

(credential) ④ send

notification① place

order
② return

credential

(a) Payment process

Buyer Merchant

Payment
processor

① place order

② return credential

③ pay

(credential)
④ send

notification
Buyer Syndicator

Payment
processor

① place order

② return credential

③ pay

(credential)
④ send

notification
Merchant

⑤ send
notification

Buyer Merchant

Payment
processor ③ pay

(credential)

④ send

notification① place

order
② return

credential

Syndicator
⑤ send

notification

Buyer Merchant

Payment
processor

③
 pay

(credential) ④ send

notification① place

order
② return

credential

Buyer Merchant

③ invoke

payment

④ send

notification① place

order
② return

credential

Syndicator
⑤ send

notification

Buyer Merchant

③
 invoke

paym
ent

④ send

notification① place

order
② return

credential

Buyer Merchant

③ pay

(credential)

④ send

notification① place

order
② return

credential

Syndicator
⑤ send

notification

Buyer Merchant
③

 pay

(credential) ④ send

notification① place

order
② return

credential

(b) Syndication process

Figure 2: Examples of payment and syndication process.

FuqianLaPay pay = new FuQianLaPay

 .Builder(this)

 .orderID(“YOUR_ORDERID”)

 .amount(100)

 .subject(“YOUR_SUBJECT”)

 .body(“YOUR_BODY”)

 .notifyUrl(“YOUR_NOTIFY_URL”)

 .build();

pay.startPay(FuQianLa.ALI);

step 1: call interface at client step 1: prepare orderInfo at server
Set 36

parameters

Map <String,String> result =
 alipay.payV2(orderInfo,true);

step 2: call interface at client

Sign

orderInfo Encode

orderInfo

FuqianLaPay pay = new FuQianLaPay

 .Builder(this)

 .orderID(“YOUR_ORDERID”)

 .amount(100)

 .subject(“YOUR_SUBJECT”)

 .body(“YOUR_BODY”)

 .notifyUrl(“YOUR_NOTIFY_URL”)

 .build();

pay.startPay(FuQianLa.ALI);

step 1: invoke generic payment interface
at the buyer-side app

step 1: prepare orderInfo at server
Set 36

parameters

Map <String,String> result =
 alipay.payV2(orderInfo,true);

step 2: invoke Alipay payment at
the buyer-side app

Sign

orderInfo Encode

orderInfo

(a) To integrate Alipay

FuqianLaPay pay = new FuQianLaPay

 .Builder(this)

 .orderID(“YOUR_ORDERID”)

 .amount(100)

 .subject(“YOUR_SUBJECT”)

 .body(“YOUR_BODY”)

 .notifyUrl(“YOUR_NOTIFY_URL”)

 .build();

pay.startPay(FuQianLa.ALI);

step 1: call interface at client step 1: prepare orderInfo at server
Set 36

parameters

Map <String,String> result =
 alipay.payV2(orderInfo,true);

step 2: call interface at client

Sign

orderInfo Encode

orderInfo

FuqianLaPay pay = new FuQianLaPay

 .Builder(this)

 .orderID(“YOUR_ORDERID”)

 .amount(100)

 .subject(“YOUR_SUBJECT”)

 .body(“YOUR_BODY”)

 .notifyUrl(“YOUR_NOTIFY_URL”)

 .build();

pay.startPay(FuQianLa.ALI);

step 1: invoke generic payment interface
at the buyer-side app

step 1: prepare orderInfo at server
Set 36

parameters

Map <String,String> result =
 alipay.payV2(orderInfo,true);

step 2: invoke Alipay payment at
the buyer-side app

Sign

orderInfo Encode

orderInfo

(b) To integrate a syndicator Fuqianla

Figure 3: The implementation examples.

Â only requires the app to invoke a generic payment interface
provided by the syndicator’s SDK in the app, and the target
payment processor, i.e., Alipay in this case, will be invoked by
the syndicator’s SDK. Once the payment is done, the syndica-
tor receives the notification from the the payment processor
(Ã) and restructures the message to a uniform format before
forwarding it to the merchant server (Ä). In this way, a simple
integration of a single syndication service on both the app
end and the merchant server end will allow the merchant to
work with multiple payment processors supported by the syn-
dicator. The developer is only supposed to follow a single
set of instructions from the syndicator to ensure the secure
payment process.
Security requirements. Online payment is a security-critical
process, so it is safeguarded by various security checks per-
formed both by the payment processor and by the merchant,
as required by the payment processor on its developer’s guide.
We call these checks security requirements (SRs)1 throughout
the paper. For instance, most third-party payments ask their
merchants to verify the payment amount on the notification
against the price of the purchase, the seller account informa-
tion to ensure that the merchants are intended payees, etc. In
Section 4.2, we present more examples for common security
requirements. In the case that the payment syndication is used,
we expect that either the developer or the syndicator is still
at the position to perform these required checks, and also in
the former case, the developer should be properly informed
through the guide provided by the syndicator.
Natural language processing. In our research, we utilized
two NLP techniques to automatically analyze the documenta-
tion of the payment syndication service: dependency parsing
and word embedding, as explained below.

1All the abbreviation’s explanation are summarized in Table 5 at Ap-
pendix for convenience.

USENIX Association 28th USENIX Security Symposium 749

Table 1: Examples of the relations between linguistic units
Example sentence: She gave me a very happy smile and a hug.
Abbreviation Description Relation example

SBV Subject-verb She <- gave
VOB Verb-object gave ->smile, gave ->hug
IOB Indirect object gave ->her
ATT Attribute happy <- smile
ADV Adverbial very <- happy
COO Coordinate smile ->hug

Dependency parsing is an NLP technique to reveal the syn-
tactic structure of a sentence by analyzing the grammatical
relations between linguistic units such as words. Examples of
such relations include subject-verb(SBV), verb-object(VOB),
indirect object(IOB), attribute(ATT), adverbial(ADV), coordi-
nate(COO) and others (see detailed explanation and examples
of these relations in Table 1). The result of the dependency
parsing is represented as a rooted parsing tree. At the center
of the tree is the verb of a clause structure, which is linked,
directly or indirectly, by other linguistic units. The state-of-
the-art dependency parser (e.g., Stanford parser [31]) can
achieve a 92.2% accuracy in grammatical relation discovery
from a sentence. In our study, we leveraged the parsing tree
generated from sentences in a developer’s guide to locate
the parties involved in a payment process and the content
transmitted between them.

Word Embedding is a set of language modeling and feature
learning techniques that map text (words or phrases) from a
vocabulary to high-dimensional vectors of real numbers. Such
a mapping can be implemented in different ways. The state-
of-the-art word embedding tool, Word2vec [37], initializes
word representations by random values and uses as its input a
joint probability distribution of words’ context by applying a
continuous Bag-of-Words or a skip-gram model. This distri-
bution is then utilized during the training of a neural network,
in which word vectors are continuously updated to maximize
the joint probability. The outcome of the training ensures that
related words are given approximate vectors for their simi-
lar contexts while irrelevant words are mapped into different
vectors. In our study, we leveraged Word2vec to generate a
semantic vector for each word and measured their semantic
difference by cosine distance between vectors.
Threat model. In our research, we consider a malicious buyer
who intends to get a product for free or at a lower price by
exploiting the vulnerabilities in the payment process, particu-
larly the logic flaws caused by incorrect or inadequate security
checks on the merchant or the syndicator side. This adversary
has the capability to modify or forge the messages delivered
to both the merchant server and the syndicator.

3 Dilution: Design
3.1 Overview
We believe that a critical security goal of a payment syndi-
cation is to ensure that all the security requirements made
by the payment processor it wraps are met through proper

validation

payment

service

Documentation
Analyzer

syndication

logic flaw

FSM
SR

configuration

Logic-flaw
PredictorFSM

SR

validation

payment

processor

Documentation
Analyzer

syndication

logic flaw

FSM
SRs

configuration

Logic-flaw
PredictorFSM

SRs

Figure 4: Architecture of our approach.

security checks, either by the merchant integrating the service
or by the sydnicator itself. The purpose of Dilution, therefore,
is to identify from the developer’s guide of the syndication
indicators that some SRs may fall through the cracks.

To this end, our approach is designed to compare the infor-
mation observed by the syndicator and the merchant (includ-
ing its app) with the SRs expected at individual states of the
original payment process (e.g., that of Alipay), to determine
whether either of the syndicator or the merchant has enough
information to fulfill these requirements at the states. Also an-
alyzed is whether these SRs have been explicitly stated in the
developer’s guide provided by the syndicator, when related
checks need to be done on the merchant’s side. More specifi-
cally, we first extract an FSM from the payment process, with
some of its states associated with SRs and the parameters they
are predicated on. This FSM is then extended to include the
operations performed by the wrapper, based upon the infor-
mation automatically recovered from the guide. Further using
the text content related to each state of the extended FSM,
we evaluate whether all parameters of each SR at the state
are still visible to the merchant or the syndicator. Finally, our
approach automatically analyzes the content of the guide to
determine whether the SRs are explained to the developer.

Architecture. Figure 4 illustrates the architecture of Dilu-
tion, including a preprocessing component, Documentation
Analyzer (DoA), Logic-flaw Predictor (LfP) and a validation
component. The preprocessing step is done manually in our
current system, which involves extraction of the FSM and
label of SRs for a payment processor. Since our focus is the
syndication service, so we consider this step as a one-time
effort: for each third-party payment, the information identi-
fied can be used to automatically analyze tens of syndication
services, each with a development guide containing hundreds
of thousands of words. Such documentations are inspected by
DoA, which utilizes NLP techniques to extend the payment
FSM with the states representing the wrapper’s actions, and
further recover the description for each SR from the guide.
The extended FSM and the parameters are then analyzed by
the LfP to identify the SRs that cannot be fulfilled by the mer-
chant and the syndicator, and those that have not been properly
explained to the developer. Also, the logic flaws predicted by
LfP are validated on the merchant’s integration of the syndi-
cator (the merchant’s app and its server-side component) to
confirm the presence of these vulnerabilities.

Example. Here, we use an example to describe how our ap-
proach works. Figure 5(a) shows Alipay’s FSM, with one of

750 28th USENIX Security Symposium USENIX Association

its SRs at state m f being verification of the payment amount
against the price of an item. Analyzing the developer’s guide
from Fuqianla (a popular syndicator), DoA discovers that the
order has been sent to the syndicator, instead of the merchant
(“The merchant client sends a payment query to the Fuqianla
server”), and the notification from Alipay is delivered to the
syndicator (“The Fuqianla server will receive a payment noti-
fication from the payment service”), before it is forwarded to
the merchant . The semantics recovered from the text is then
used to replace state m1 in Figure 5(a) with state w1 and add
state w2 to the FSM, converting it to the syndication FSM as
shown in Figure 5(b). This extended FSM and all the parame-
ters it carries is then further inspected by LfP. Here let us look
at the aforementioned SR at m f . At this state, LfP concludes
that the syndicator cannot check the payment amount, as it
gets the price information from the buyer not the merchant,
which cannot be trusted. On the other hand, though the mer-
chant is at the position to make the security check, LfP cannot
find a sentence, right after the description of the last communi-
cation (from w2 to m f), informing the developer about the SR,
through a dependency analysis on all the sentences involving
terms related to the subject (the merchant), the object (price
and payment amount) and the expected action of the security
check. This leads to the conclusion that the SR may not be
communicated to the developer, and so may not be fulfilled
on the merchant side.

3.2 Preprocessing
As mentioned earlier, our approach involves a one-time pre-
processing step in which the FSMs of major payment pro-
cessors (Alipay, Wechat, PayPal, etc.) are constructed and
the SRs for different states are identified. Such information
can typically be found from these payment services’ inte-
gration guides. For example, Figure 11 at Appendix shows
the excerpts from Alipay’s documents. Its payment process
is clearly described through a diagram, which can be easily
converted into an FSM. From the figure, we can also see the
content for SRs, their parameters and the relations with the
payment process. Following we present the FSM that models
the payment process and the SRs. From such content, we
extract the payment process model and security checks, as
formally described below.

Payment model. The FSM for a payment process is de-
scribed as a 5-tuple: (S, D, E, b1, m f). Here S is a set of
payment states, in each of which an actor (buyer b, merchant m
or syndicator w) can send out a message d ∈D; E : S×D→ S
is a function that drives the transition from one payment state
to the next, given a specific message d ∈ D sent out from the
former; b1 is the initial state in which the buyer places an
order to start the whole payment transaction, and m f is the
final state that the merchant receives the last message and the
transaction is complete. For example, Figure 5(a) illustrates
such an FSM for Alipay.

bn: buyer’s state
mn: merchant’s state
pn: payment processor’s state

bn: buyer’s state
mn: merchant’s state
wn: syndicator’s state
pn: payment processor’s state

b1 order

credential

credential

notice
b2

w1

p1

mf w2notice

b1 order

credential

credential

noticeb2

m1

p1

mf

(a) The FSM of the payment processor using Alipay

bn: buyer’s state
mn: merchant’s state
pn: payment processor’s state

bn: buyer’s state
mn: merchant’s state
wn: syndicator’s state
pn: payment processor’s state

b1 order

credential

credential

notice
b2

w1

p1

mf w2notice

b1 order

credential

credential

noticeb2

m1

p1

mf

(b) The FSM of the syndication using Fuqianla

Figure 5: FSM examples of the payment processor and syndi-
cation.

Security requirement. A security requirement SR describes
a security check that needs to be performed at a certain state:
for example, at m f of Alipay’s FSM (Figure 5(a)), the mer-
chant is supposed to verify payment = price. As we can see
from the example, central to the SR are the state (m f), sub-
ject (merchant), object (payment), a verification function (the
equal function in the example) and additional parameters for
the verification (price). However, in the context of the pay-
ment FSM, each state is bound to an actor who is actually the
subject performing a security check. Further since all we care
is the feasibility of fulfilling the SR at a given state, we just
need to know whether all the inputs of the verification func-
tion (object and other parameters) are visible to the subject
at the state, not the function itself. Therefore, we can simply
model an SR as a 3-tuple: (SRstate, SRob j, SRpara), to repre-
sent its state, object and other parameters for the expected
security check. Note that the object and parameters here are
types of information, i.e., the key part of a key-value pair. This
is because all we want to know is whether the merchant at a
state can see these keys (payment and price) so as to perform
the required check; the outcome of the check, which depends
on their specific values, is not important for our purpose.

3.3 Syndication FSM Discovery
With the FSM and SRs collected from a payment processor,
we can run DoA to automatically analyze the developer’s
guides of different syndication services that wrap the proces-
sor. Most important here is to discover the syndicated payment
process through extending the payment FSM, which further
allows us to find out whether the parameters of required se-
curity checks are still visible to the new states supposed to
perform the checks, and how these security requirments are
explained to the developer (Section 3.4).
FSM extension structures. Fundamentally, a syndication
service is meant to support a merchant’s interactions with
the payment service, in terms of generating the input for the

USENIX Association 28th USENIX Security Symposium 751

service and converting its output to a unified form easy for
the merchant to interpret. This observation allows us to come
up with a set of possible extension structures, which are then
confirmed by the evidence extracted from the syndication’s
document (its developer’s guide).

Specifically, given a payment processor’s FSM, we consider
two types of states2 that the syndicator can help: m where
the merchant generates an input for the payment service, and
m f when the merchant receives the final notification from the
payment service. More specifically, the operations at the state
m can be assisted by a syndication state for input construction;
payment notification the merchant finally receives at m f can
be converted by a syndication state first. Following this line of
thinking, we can identify all possible extensions of m and m f ,
which are present in Figure 6. As we can see here, for m, the
extensions include the situations when either the merchant or
the syndicator produces the full output of m, that is, the input
for the payment service (see a.1 and a.4), and those when
they jointly create the output (see a.2, a.3, a.5 and a.6). The
latter can be further broken down into the cases when the
same party receives and issues the messages related to m (see
a.2 and a.5), or when different parties do (see a.3 and a.6).
For m f , since the payment process must end at this merchant
state, only three situations exist: no extension (see b.1), the
merchant getting the input (see b.2) and the syndicator receiv-
ing the original input (see b.3). DoA automatically inspects
every merchant state and evaluates the consistency between
each possible extension structure and the evidence discovered
from the developer’s guide through NLP, to find out how the
syndication indeed happens.

Taking the syndicator Fuqianla as an example (see Fig-
ure 5(b)), through inspecting it documentation, DoA deter-
mines that Fuqianla uses the extension structures a.4 and b.3
to wrap the payment processor. Specifically, its state w1 re-
places the original state m1 to generate credential, which is an
input for invoking the payment processor; the syndicator at
state w2 receives the payment notification from the merchant
and converts it to a unified form (across different payment
services it supports) before forwarding it to the merchant at
state m f .
Extension discovery from document. The evidence col-
lected from the syndication developer’s guide is the sentence
that describes the message transferred from a sender to a
receiver in the FSM (the buyer, the merchant, the payment
provider and the syndicator). For example, from the sentence
“the merchant client sends a payment query to the Fuqianla
server”, we know that the payment query from the buyer has
been sent to the syndication server, not the merchant, which
confirms the existence of a transition from b to w in the ex-
tension structure a.5 and a.6 (Figure 6). Our idea is to find all

2Note that we are only interested in these states because per payment
services’ guides [2,17,25], the inputs they accept are supposed to be generated
by the merchant server and the outcome of a transaction will be delivered to
the server.

m1 m1

w1

m1 w1
m2

(a.2) (a.3)(a.1)

w1 w1

m1

w1 m1
w2

(a.5) (a.6)(a.4)

w1

mf

m1 w1
mf

(b.2) (b.3)(b.1)

original extension

m1

(a)

(b)
mf

mf

mn: merchant’s state wn: syndicator’s state

Figure 6: FSM possible extension structures.

such descriptions and extract their transition-related semantic
information, in the form of (Sender, Receiver, Content), to
identify all transitions introduced by the syndication and fur-
ther determine the way merchant states have been extended.

For this purpose, we utilized a suite of NLP techniques to
first find out all sentences related to transmission activities
(e.g., including predicates like “send”, “receive”, etc.), then
performs a syntactic analysis on each sentence and further
converts detected syntactic elements to a semantic triplet de-
scribing the parties involved in a transition as well as the
message sent (Sender, Receiver, Content). The challenges
here come from the ambiguity of the descriptions and diver-
sity of sentence structures in the developer’s guide. Particu-
larly, we found that a variety of terms are used to describe
message delivery and reception: not only common synonyms
like “transmit”, “dispatch”, etc., but also those specific to the
integration domains such as “call” (a remote function) and
“invoke” (a remote client).

To identify those synonymous terms, we leverage the obser-
vation that such expressions, no matter how diverse they are,
all share the similar context. For example, from the sentences
“call the merchant API to place an order” and “send the order
to the merchant”, we know that “call” and “send” are seman-
tically close given their relations with ‘merchant’ and ‘order’.
So in our research, we trained a word embedding model [18]
over the documentations of two syndicators, Ping++ [12] and
Fuqianla [8], and two payment service providers, Alipay [2]
and Wechat Pay [17]. The model maps each word to a vector
that represents its context. So the cosine distance between the
vectors quantifies their semantic similarity. In our research
we first manually collected a small set of “seeds”, words se-
mantically related to “send” and “receive”, such as “call” and
“invoke”, and then built a synonym list for these words with
the embedding model we trained over the aforementioned
documentations, using LTP [19] to segment Chinese words.
These lists are utilized to identify sentences in a developer’s
guide involving these transmission-related terms.

On each sentence discovered, DoA needs to extract its se-
mantics – the triplet. For this purpose, we come up with a
unique technique that utilizes dependency parsing (LTP [19])
to first identify a sentence’s syntactic elements (subject, object,
etc.) and then determine their semantics (Sender, Receiver,

752 28th USENIX Security Symposium USENIX Association

verify equalsMerchant

invoke

Client sends

receives

payment_platform

need

Sentence: When Client receives payment_credential, need invoke payment_platform.
When

Client

payment_credential

SBV

VOB

COO
ADV

VOB

VOB

Sentence: Client sends payment_element to your server.

to server

payment_element

your SBV

VOB

ADV POB ATT

Sentence: Merchant need verify whether the payment amount equals the order price.

SBV

VOB

ATT

predicate
need

payment

amount

price

the

order thewhether

SRsub
SRobj
SRpara

VOB
ADV

SBV

ATT

VOB
ATT

ATT

predicate
sender
content
receiver

predicate
sender
content
receiver

Figure 7: Entities in data-transmission related sentence.

verify equalsMerchant

invoke

Client sends

receives

payment_platform

need

Sentence: When Client receives payment_credential, need invoke payment_platform.
When

Client

payment_credential

SBV

VOB

COO
ADV

VOB

VOB

Sentence: Client sends payment_element to your server.

to server

payment_element

your SBV

VOB

ADV POB ATT

Sentence: Merchant need verify whether the payment amount equals the order price.

SBV

VOB

ATT

predicate
need

payment

amount

price

the

order thewhether

SRsub
SRobj
SRpara

VOB
ADV

SBV

ATT

VOB
ATT

ATT

predicate
sender
content
receiver

predicate
sender
content
receiver

Figure 8: Entities in complex sentence.

Content). This is quite intuitive for a simple sentence. For
example, Figure 73 shows the dependency relations between
the predicate “send” and other words or phrases. As we can
see here, the subject of the predicate (“client”) is Sender,
direct object (“payment_element”) is Content (the message
delivered), and indirect object (“your server”) is the receiver.
These elements can then be mapped to a transition on the
FSM, based upon their semantic similarity with payment par-
ties, as measured by the distances between their vectors. How-
ever, the semantics of the syntactic elements become more
difficult to determine in the presence of more complicated
sentence structures. For example, Figure 8 shows a complex
sentence with multiple clauses, including both “When Client
receives payment_credential” and “(Client) needs to invoke
payment_platform”. In this case, the subject of “receives”
(“Client”) becomes Sender, the object of “invoke” (“pay-
ment_platform”) is Receiver and the Content in the sentence
is found to be the object of "receives" (“payment_credential”).
To address this challenge, we trained an SVM classifier on a
labeled dataset with transmission related sentences discovered
from payment documentations and syndication documenta-
tions. The model uses the predicates and their relations (e.g.,
order) as features to predict their subject, object and indirect
object’s semantic class labels (Sender, Receiver or Content).

Using the triplets recovered from the sentences, DoA con-
tinues to inspect each merchant state to determine whether
and how it is extended by a syndicator. Specifically, for each
transition in the extension structures described in Figure 6,
denoted by s′ = E(s,d), we try to align Sender to the name
of the actor at s (e.g., “merchant”), Receiver to the actor of s′

(e.g., “syndicator”) and Content to d (representing message
name here, such as “order”). Note that in the case any of these
entities is described by a phrase, instead of a word (e.g., “pay-
ment element”), we calculate its phase vector as the average
of its individual word vectors (e.g., those of “payment” and
“element”). We consider that an alignment succeeds when
all these elements are found to be similar to their counter-
parts on the transition. When this happens, we believe that

3Figure 7, Figure 8 and Figure 10 show Chinese grammatical relations
between words. The words shown in the figure were translated from Chinese.

this transition exists in the extended FSM. To discover more
transitions, our approach also leverages partial information
collected, when only two elements of the triplet has been
recovered. If one of these elements is Content, DoA still com-
pares them against the transitions and confirms the presence
of a transition if an alignment is found.

Based upon all the transitions discovered, our approach fur-
ther determines the extension structure used by a syndication:
the one contains all these transitions is selected. When there
are more than one such structures, we consider that all such
extensions are possible and predict the presence of potential
logic flaws if one of them is found to be problematic.

3.4 SR Information Discovery
The syndication FSM discovered tells us how a payment
transaction proceeds among the buyer, the merchant and the
payment service provider, in the presence of the syndicator.
To find out whether all security checks required by the pay-
ment service can be performed on this new FSM, we need
to take a further look at the information visible to the states
that need to fulfill these security requirements. Also to be
understood is how the SRs are presented to the developers
who are supposed to integrate these checks in merchant-side
code. All such information has been automatically recovered
from the syndication developer’s guide, as elaborated below.
API parameter discovery. At a syndication or merchant
state a security check is expected to happen (SRstate), the in-
formation required for the check (SRob j, SRpara) either comes
from the message it receives (e.g., payment_result) or is al-
ready in the possession of the syndicator or the merchant.
In the former case, the communication with the syndicator
always goes through its APIs, as integrated in the merchant’s
client or server side code. These APIs are documented in the
developer’s guide and their attributes describe the information
passed by a message. A question is how to determine which
API is used in a transition. Such an API is explicitly men-
tioned in some sentences, such as “call the Creating Charge
to invoke a payment processor”. In our research, we utilized a
SVM model for labeling syntactic elements to detect the API
names, which serve as the object of “call”.

However this approach turns out to be inadequate, since
more often than not, a transition-related sentence in the de-
veloper’s guide does not include any API name: for exam-
ple,“initiate payment”. In this case, we found that the seman-
tics of the message name (d in the transition and its corre-
sponding Content) is always highly related to the name of
the API to be used. In the above example, an API “initiate
payment” is responsible for sending the message of payment
requirement. This is understandable since the guide is sup-
posed to inform the developer how to establish communica-
tion with the syndicator. If this has not been done explicitly,
using semantically related API names is an implicit way to
do so. Our DoA automatically identifies such APIs using our

USENIX Association 28th USENIX Security Symposium 753

Alipay configuration
APP ID:

seller account:
seller private key:
Alipay public key:

HTML
<div>

<h4 style=“display:inline”>
 Alipay public key: </h4>
<input type=“text”
 id=“alipay_public_key” />

</div>

Figure 9: An excerpt of configuration HTML.

word-embedding model to compare the phrase similarity be-
tween each API name and d and Content. Again, here we
utilized LTP [19] for Chinese word segmentation and word
extraction from API names. Whenever an API is found to be
semantically similar to either d or its related Content, our ap-
proach collects all its attributes and consider that their values
have been exposed to the actor at the state receiving d.

Configuration information extraction. As mentioned ear-
lier, the information for a security check can also be provided
to the actor in a certain state before a transaction happens.
For example, the merchant has her private key for signing
a payment credential and she can also delegate this task to
the syndicator by configuring her account on the syndication
website. Such preconfigured information is documented by
the developer’s guide. However, the details are often included
in images, together with those irrelevant ones for explaining
the payment or syndication service. Content extraction from
these images using OCR [39] did not work well in our study.
So our DoA is designed to discover the configuration data
directly from the syndication website, the one from which we
collect the developer documentation.

Specifically, our approach first searches for the entry link
labeled with “Alipay configuration”, “Wechat Pay manage-
ment”, “PayPal setup”, etc., the standard names for the config-
uration page on a syndication site, using named entity recog-
nition and keywords (e.g., Alipay) together with synonyms
for “configuration”, etc. On such a page, we inspect its HTML
tags, looking for the input type – the entry item for the mer-
chant to enter her data, and its inline header, which is the key
for the data. Figure 9 shows part of the configuration page of
Ping++ [12]. From the text entry identified, we can recover its
header “Alipay public key” under the tag h4. Also as we can
see from the example, other keys that can be found from the
configuration page includes APP ID, seller account, etc. The
information is gathered for comparing with SR parameters
for a given payment service such as Alipay.

SR description recovery. Also important to logic vulnerabil-
ity discovery is to find out whether required security checks
have been properly explained to the developer. For this pur-
pose, DoA has also been made to search for the description
of the SRs for a given payment service. Such an SR is typ-
ically presented in a sentence: e.g., “The merchant should
verify whether the payment amount equals to the order price.”
From the sentence, we know that the merchant is the party
responsible for this SR, so the check is supposed to happen
on a merchant state (SRstate), payment amount is the object

verify equalsMerchant

invoke

Client sends

receives

payment_platform

need

Sentence: When Client receives payment_credential, need invoke payment_platform.
When

Client

payment_credential

SBV

VOB

COO
ADV

VOB

VOB

Sentence: Client sends payment_element to your server.

to server

payment_element

your SBV

VOB

ADV POB ATT

Sentence: Merchant need verify whether the payment amount equals the order price.

SBV

VOB

ATT

predicate
need

payment

amount

price

the

order thewhether

SRsub
SRobj
SRpara

VOB
ADV

SBV

ATT

VOB
ATT

ATT

predicate
sender
content
receiver

predicate
sender
content
receiver

Figure 10: Entities in sentences describing SR.

(SRob j) and the order price is the additional parameter for the
security check (SRpara). Our idea is to automatically discover
all SR-related sentences based upon the actions to be taken,
as we did in the FSM extension discovery (see Section 3.3),
and then perform a syntactic analysis to discover SRob j and
SRpara, before finally determining the state of the potential
check (SRstate).

Specifically, to find all SR-related sentences, our approach
first utilizes a small set of seed action terms including “check”,
“match”, “verify”, etc., and runs our word-embedding model
on the training documents (guides for syndication and pay-
ment services) to extend these seeds with their synonyms.
Then DoA inspects a given document to collect all the sen-
tences containing the term(s) on the list. Each of them is
analyzed using dependency parsing to label the subject, ob-
ject and indirect object of the action term (“verify”, “check”,
etc.), as demonstrated by the example in Figure 10. Given
the fact that the developer’s guide is meant to explain imple-
mentation details to the developer working for the merchant,
we expect that an SR-related subject should be “merchant”,
“developer”, “you”, and their synonyms (e.g, “seller”,“verdor”,
etc.). Also we consider the merchant to be the subject of all
imperative sentences, e.g., “please make sure that the payment
amount equals to the order price”. From these sentences, we
further identify the object and indirect object (if exists) of the
predicate, and label them as potential SRob j and SRpara.

Before we can report possible SR-related description, we
also need to determine the state for the potential security
check (SRstate). Our approach is to look at where the sentence
is found: intuitively a reminder of a security check should
appear under the context of state transition. For example, the
sentence “The merchant needs to verify whether the payment
amount matches the order price.” comes right after “The syn-
dicator will send a Webhook request to the merchant server.
” in Beecloud [6]. So for each potential SR-related sentence,
DoA tries to locate a transition-related sentence in the same
paragraph, before the SR sentence. Once the transition is
found, we further check whether its destination is a merchant
state, so the merchant is supposed to perform the security
inspection mentioned in the sentence. In this case, we set
SRstate to that merchant state.

The only other place where security check description can
be found is the specification of the API used for the state
transition. For example, under the API “Transaction-result-
notification” (iAppPay [9]), there is a note that reminds the
developer to inspect payment: “Please verify the transaction

754 28th USENIX Security Symposium USENIX Association

payment is the same as the product price”. So when the SR-
related sentence is discovered in such a specification, we look
at the state the API leads to, and make it SRstate if it is a
merchant state.

3.5 Logic-flaw Prediction and Validation
From the FSM and the SR information discovered from the
syndication documentation, LfP infers the possible presence
of logic flaws: the SRs expected by the payment processor
(e.g., Alipay) that cannot be fulfilled in the syndication FSM,
and those that have not been explained to the developer. Fol-
lowing we explicate how to determine the states expected to
perform the required security checks, how to evaluate whether
the checks can take place, and how to capture the SRs that
have not been properly communicated to the developer.
Security goals. Consider a syndicator W that wraps a pay-
ment service P. We believe that W needs to achieve the fol-
lowing two security goals:
• Secure Design (SD): for any security requirement SR to be
enforced at a state s of P, there exists an enforceable SR′ at
the state s′ of W such that SR and SR′ are equivalent except
their states, and s′ is a state in the extension structures for
s (Figure 6). Intuitively, this means that every payment SR
should still be fulfilled after syndication.
• Secure Implementation (SI): every SR of W is correctly
implemented by either the merchant or the syndicator.

To achieve SD, for every SR of the state s in the payment
FSM, LfP first identifies all extended states of s and then
inspects each of them s′ to determine whether the state has the
visibility of the object (SRob j) and other parameters (SRpara)
of SR. As mentioned earlier, s′ is identified by the extension
structures (Figure 6). Any state among these replacing s is
considered to be a possible location for enforcing SR. As
an example, consider b.3, which is an extension of b, and
SR = (m f , payment, price), which checks payment = price.
This inspection can happen at either m f or w, when at least
one of them can observe both payment from the payment
service (e.g., Alipay) and price from the merchant.

For SI, without looking at the code of the extended FSM,
LfP goes through the developer’s guide for the indicators that
could lead to implementation flaws. The most important one
used in our current design is the absence of the explanations
about SRs, a clear signal that the related security checks might
not be implemented by the uninformed developer. Also we
are concerned about the SRs that can only be enforced by the
syndication state, since they are out of the merchant’s control.
So in both cases, LfP will predict potential logic flaws and
suggests a code-level validation.
Design flaws identification. When none of the states in the
extension structure of a payment state can observe SRob j and
SRpara for a security requirement SR, we can conclude that
the syndication service contains a design flaw. To detect such
a flaw, LfP needs to analyze visibility of data at each exten-

sion state. As mentioned earlier, such data either comes from
the message a given state receives, whose content is described
by all the attributes of the API used for transmitting the mes-
sage (Section 3.4), or preconfigured by the merchant in her
syndication account, with all data attributes (APP ID, public
key, seller account, etc.) discovered by DoA. Our approach
directly compares these attributes with the SR information.
Note that only the data delivered through a secure channel
and from a trusted source can be used in a security check: for
example, the payment amount should be signed by the pay-
ment provider and the price should come from the merchant
(through preconfiguration, signed message or local storage).

Specifically, at a given extension state, let TA be a set
of trusted message attributes (e.g., signed by the payment
provider) as collected from related API specifications, and
when the state is controlled by the syndicator, TC be a set of
collected attributes for preconfigured merchant information.
Also, we abuse notations a little bit, using SRob j and SRpara to
represent the sets for the object and for the additional parame-
ters, respectively, of a given security requirement SR at that
state. The objective of LfP is to find out whether there exists
an extension state such that for a given SR on the correspond-
ing payment state, SRob j ∪SRpara ⊆ TA∪TC for the TA and
TC of the extension state (TC includes all the local data for
a merchant state). If none of such an extension state can be
found, LfP reports that the SR can no longer be enforced and
therefore a design flaw is detected.

For a data attribute (e.g., “price”, “public_key”, etc.) a ∈
SRob j ∪SRpara, it is nontrivial to determine whether it is also
in TA∪TC, simply because the attribute names of the SR col-
lected from a payment service (e.g., Alipay) may not match
those included in the message API and the configuration web
page. Our solution here, again, is using our word-embedding
model to product a semantic vector for a and then find whether
there is an attribute in TA∪TC whose vector is sufficiently
close to that of a. When every attribute of the SR can find its
counterpart in TA or TC, we consider that the SR is enforce-
able at the current extension state.
Implementation flaws prediction. As mentioned earlier, im-
plementation flaws can also be predicted when a required
security check has not been properly communicated to the
developer. LfP is designed to inspect the SR descriptions
recovered by DoA to identify such missing security guidance.

Specifically, for each SR enforced at the state s in the pay-
ment FSM, LfP searches across all security requirements dis-
covered from the guide by DoA for those associated with
the extension states of s. Let SR′ be such a requirement.
Our approach tries to determine whether SRob j = SR′ob j and
SRpara = SR′para. Again, here we need to deal with the incon-
sistency in attribute names during the comparisons, which
has been addressed in our implementation using our word-
embedding model and distance measurement between seman-
tic vectors. If SR′ here indeed matches SR, we have reason to
believe that the developer knows the security check required

USENIX Association 28th USENIX Security Symposium 755

by the payment provider. If such SR′ cannot be found, then
we know that such information has not been conveyed to the
developer. When the SR can only be enforced by the merchant,
LfP will raise the alarm since we doubt that an uninformed
developer can make the protection right.

Even when all the SRs are found to be enforceable on
the syndication FSM and all merchant-side SRs are properly
mentioned in the developer’s guide, we are still concerned
about the security checks that can only be performed by the
syndicator, who does not mention that this has actually been
implemented. Given the fact that the merchant essentially
loses the control of these security checks that they could do
without the syndication, we believe that these SRs should
be evaluated to ensure that they have been put in place. So
our current implementation of LfP also reports all such SRs,
which are evaluated during the validation step.
Validation. Fully automated verification of our predicted
flaws is possible but nontrivial, due to the requirements of
entering user credentials (password, fingerprint) to trigger a
payment process and handling diverse user interfaces in differ-
ent mobile apps for entering purchase information (product,
quantity, address, etc.). Although existing GUI testing tools
could be enhanced to serve this purpose and likely industry-
grade fuzzers can already support these operations, building
such techniques are outside the scope of our research. So we
manually validated all the flaws predicted by Dilution. Specif-
ically, based upon the specific security requirement that we
consider hard to enforce, we acted as a malicious buyer to ad-
just the payment parameters to find out whether the predicted
flaw can indeed be exploited. As an example, consider the
payment process in Figure 5(b). Dilution predicts an imple-
mentation flaw that the merchant does not check the payment
amount. In our research, we set a lower price in the orderInfo
given to an app. This transaction got through (Section 5.2),
which confirmed the presence of the flaw we predicted.

4 Implementation and Evaluation

4.1 Implementation
Dilution is implemented in a prototype. In the DoA, we em-
ploy Language Technology Platform (LTP) [19], for word
segmenting, POS tagging and dependency parsing to analyze
the sentences. To adopt the open domain toolkit to payment
document analysis, we craft external dictionaries containing
48 domain-specific terms (e.g., payment element and payment
credential) in the payment process to improve the perfor-
mance of word segmenting and embedding. Taking the results
of dependency parsing as features we further implement the
classifier for entity recognition with LIBSVM [30] in version
3.23. To map words into vectors we utilize the word2vec
model in Gensim library [18] in 3.7.1 version. Moreover, we
ran the crawler Scrapy [44] in version 1.6 to crawl all the
web pages of syndications’ official websites, and then utilize
the BeautifulSoup [42] in version 4.4.0 to parse webpages

and extract the developer’s guides and configuration. For the
LfP, we implement with 404 lines of Python code for inter-
ring the supposed SRs and inspecting each of them to predict
flaws. We are going to release the source code of Dilution
online [14].

4.2 Experiment Settings
Dataset. In our research, we utilized four datasets for model
training and evaluation:
• Groundtruth set. The groundtruth set was used for logic
flaw detection, entity recognition and phrase alignment.

For logic flaw detection, the groundtruth set includes two
syndication documents (Ping++ [12] and Fuqianla [8]) and
their corresponding 17 potential logic flaws. In particular, we
manually analyzed the documents and identified 11 implemen-
tation flaws in the documentations of syndication Ping++, 1
design flaw and 5 implementation flaws in the documentation
of syndication Fuqianla, as elaborated in Section 5.

The groundtruth set for entity recognition in the payment
process consists of 574 entities (148 Sender, 175 Receiver and
251 Content) from 242 sentences describing data transmis-
sion. These sentences were collected from a training corpus
including documents of two payment services Alipay and
Wechat and two syndicators Ping++ and Fuqianla. We imple-
mented a 2-fold cross validation with half of the data as the
training set each time.

We manually labelled the groundtruth set for phrase align-
ment upon the syndication documents of Ping++ and Fuqianla,
which contain 14 data-transmission sentences, 103 APIs and
1,986 parameters in total. The groundtruth set includes 63 and
203 positive pairs, and 45 and 40,866 negative pairs in tran-
sition mapping for extension discovery and API parameter
discovery, respectively.
• Unknown syndication documents. To evaluate Dilution, we
ran our prototype on the developer’s guides of six syndica-
tions, including Paymax [11], BeeCloud [6], iAppPay [9],
Trpay [15], UMF Payment [16] and 66zhifu [1]. These docu-
ments consist of 3,613 sentences and 46,098 words in total.
They are all publicly available, well-written documentations
including the description of data transmission in payment pro-
cesses, API parameter explanations, SRs and configuration
information. Note that those services are popular, serving tens
of thousands apps and millions users.
• Third-party payment documents. The third-party payment
documents we manually analyzed to extract FSMs and SRs
come from Alipay, WeChat Pay and PayPal, which are the
three most popular mobile payment services in the world [45].
We read all the related documentations about the payment
process and searched keywords related to SRs including “secu-
rity", “requirement", “check", “inspect", “compare" to collect
all the SRs. Three experts spent 2 days to finish the extrac-
tion and the SRs are validated across all three experts. The
detailed SRs are summarized in Table 2.

756 28th USENIX Security Symposium USENIX Association

Table 2: Security requirements of payment service
noti f yid : The id of a notification, sellerid : The id of a seller, txnid : The id of a transaction,

receiveremail : The account of the merchant, mcgross: The amount of a payment, mccurrency: The currency of a payment.
Payment Service No. SR description SR

Alipay

SR1 Check the signature in the notification. (m2,noti f ication,key)
SR2 Check the noti f yid to verify the message comes from Alipay. (m2,noti f yid , /0)
SR3 Check the price in the notification is the same with the amount in the order. (m2, payment, price)
SR4 Check the sellerid represents the supposed merchant. (m2,sellerid ,merchant)

WeChat Pay SR5 Verify the signature in the payment notification message. (m2,noti f ication,key)
SR6 Check the price in the notification equals the price in the order. (m2, payment, price)

PayPal

SR7 Verify the message came from PayPal. (m2,message, /0)

SR8 Check the txnid against the previous PayPal transaction that you processed
to ensure the IPN message it not duplicate. (m2, txnid , previous txnid)

SR9 Check that the receiveremail is the email address registered in your account. (m2,receiveremail ,registered email)
SR10 Check that the price carried in mcgross are correct for the item. (m2, payment, price)
SR11 Check that the currency carried in mccurrency are correct for the item. (m2,receipt currency,supposed currency)

• Payment corpora for word embedding model training. For
training the word embedding model, we built a corpus for pay-
ment service by combining two payment documentations (Ali-
pay, Wechat) and two syndication documentations (Ping++,
Fuqianla), which were crawled from the corresponding web-
sites. After word segmenting, the training corpus contains
1715.2 KB text with 23,576 sentences and 306,680 words.
Parameters. The parameters for our implementation are set
as follows:
• Entity classifier. We implemented the classifier for entity
recognition with LIBSVM [30]. The classifier was trained
with the following settings: c=8.0, g=0.5 and default settings.
•Word2vec. We utilized skip-gram with negative sampling as
the framework of the word2vec model, which was trained with
the following parameters: sg=1, size=100, sample=0.0001,
window=10, iter=5, min_count=1, negative=20 and other de-
fault settings.
• Threshold. We utilized phrase similarity to find out whether
two phrases are semantically close. For payment-related ex-
pressions (e.g.,payment_element, payment_credential), the
threshold used in transition mapping, API name matching and
parameter matching were set to 0.91, 0.91, and 0.97 respec-
tively. As for other phrases, the threshold in three tasks were
set to 0.87, 0.87, and 0.96, respectively.
Platform. All the experiments in our study were conducted
on the macOS with 2.3GHz CPU, 16GB memory and 512GB
hard drivers using a single process.

4.3 Effectiveness
We first evaluated the overall effectiveness of our prototype
in predicting potential logic flaws from documentations. Run-
ning on both the groundtruth set (Ping++ and Fuqinala) and
the unknown dataset containing six syndicators, Dilution
achieved 100% accurate predictions. More specifically, on the
six unknown documentations, our system predicted 1 design
flaw and 16 potential implementation flaws. We manually
verified each of them and found that all reports were correct
(based upon the descriptions in the documentations).

Further, we evaluated the two internal modules of DoA: en-

tity recognition and API parameter discovery. The evaluation
for entity recognition was run on the groundtruth set for entity
recognition (242 data-transmission related sentences with 574
entities including 148 Sender, 175 Receiver and 251 Content).
Under the two-fold cross validation, our model achieved a
precision of 89.38%, 93.28%, 94.57% and a recall of 96.88%,
97.72%, 96.81% when taking Sender, Receiver, Content as
the positive class, respectively. The effectiveness of our model
is acceptable since our algorithm for discovering the state ex-
tension is capable of addressing the false positives and false
negatives induced by entity recognition through alignment
with the transitions in the extension structures (Section 3.3).
As for the API parameter discovery, the experiment results on
the guides of all eight syndications show that all phrase pairs
aligned by DoA are accurate.

4.4 Performance
We ran Dilution on the developer’s guide of 8 syndications
(1,456KB) to predict the presence of logic flaws. Averagely,
our system spent merely 3,177.8 ms to go through the whole
process on one syndication. The time of the analysis ranges
from 2,743.2ms to 3,873.8 ms, with the medium being 3,099.1
ms. More specifically, DoA spent 2,738.8 ms to 3,840.0 ms
with an average of 3,166.2 ms. LfP took 2.9 ms to 33.8 ms
with an average of 11.6 ms. This result offers strong evidence
that Dilution can easily scale to the level expected for pro-
cessing a large amount of documentation.

5 Discoveries in the Wild
In this section, we report the logic flaws predicted by Dilution
from the developer’s guides of real-world syndication services
and the end-to-end exploits to validate the predictions through
popular merchant apps. We show that our document-only
predictions are indeed accurate, leading to the discovery of
security-critical vulnerabilities.

5.1 Finding from Documentations
There are more than 30 syndication services, with the number
continuing to grow. However, most of them provide devel-
oper’s guides to paid users only. Actually we found that just

USENIX Association 28th USENIX Security Symposium 757

Table 3: Summary of predictions by Dilution
(DF: design flow, IF: implementation flow, CI: cases of interest)

(a) design & implementation
Syndication Type SR No.

Fuqianla DF 1
IF 3, 6

BeeCloud DF 1
IF 11

TrPay IF 3, 6
UMF Pay IF 3, 6
66zhifu IF 3, 6

Total DF 2
IF 9

(b) cases of interest
Syndication Type SR No.
Ping++ CI 1 - 11
Fuqianla CI 2, 4, 5
Paymax CI 1 - 6
BeeCloud CI 2, 4, 5, 7, 8, 9
iAppPay CI 2
TrPay CI 2
UMF Pay CI 2
66zhifu CI 2

Total CI 30

8 of them have well-documented guides publicly available.
These syndicators are all popular, with hundreds of millions
of users. In our research, we ran Dilution on all of their guides
(over 1.4 MB), which reported its findings in a few seconds.
Landscape. Table 3 shows all the syndications we analyzed
and the logic flaws predicted. Specifically, Dilution reported
41 potential issues from all the syndications. Among them,
11 are highly likely to be logic flaws, including 2 design
flaws (in BeeCloud and Fuqianla), in which required security
checks cannot be done, and 9 likely implementation flaws,
with critical security checks missed in the guides. In addition,
the remaining 30 are “cases of interest”, since their SRs can
only be or should be fulfilled by syndicators if merchants
cannot achieve them or do not be told. Therefore they are
considered to be risky and need to be validated.
Design flaws. Among all the syndication services, BeeCloud
and Fuqianla are found to contain a design flaw each (SR1
in Table 2). Specifically, Dilution reported that these syndica-
tors receive payment notifications from Alipay on behalf of
their merchants, helping them finish the final security checks
before informing them of the completion of the transactions.
The problem is that the merchants of these services cannot
configure their Alipay’s verification keys4 to the syndicators.
As a result, the syndicators cannot check the authenticity of
the messages, nor can their merchants, since they do not get
the signed notifications. We further found that the practice of
processing payment messages for the merchants without for-
warding them the original messages is very common across
all syndications we studied. This is because the syndication
aims to unify the merchant-side interfaces with different pay-
ment services to reduce the complexity in integrating them,
which, however, makes the syndicator-side operations compli-
cated and error-prone. Although only two design flaws were
revealed by Dilution, due to the small number of syndicators
we evaluated, we believe that the practice likely brings in
design lapses to other syndication services.
Implementation flaws. Dilution predicted 9 potential imple-
mentation flaws by the merchant developers in 5 syndication
services. Specifically, our approach found that the syndica-
tors Fuqianla, TrPay, UMP Pay and 66zhifu cannot verify the

4Each merchant has a unique key-pair for verifying the messages from
Alipay.

payment amount since they do not have access to the price
of a purchase.In the meantime, they fail to remind their mer-
chant developers of enforcing the security requirements (SR3
and SR6) through verifying the amount. Similarly, BeeCloud
encapsulates PayPal but does not tell its merchant that the
currency type for a purchased item needs to be checked. As a
result, we believe that very likely the required security checks
will fall through the cracks.

5.2 Attacks on Real-World Systems
Challenges in validating predicted flaws. To find out
whether the predicted logic flaws are indeed present in syn-
dicators or the merchant-side code, we need to validate them
through merchant apps. This attempt, however, faces two chal-
lenges. First, finding the apps integrating a given syndication
is difficult. Even though these services are popular (e.g., at
least 25K apps using Ping++), with tens of millions of users
according to their websites, rarely do they provide a list of
the merchants that use their services. Actually, most syndi-
cators ask their merchant developers to obfuscate their code,
possibly for the purpose of IP protection [29]. Second, even
given an app integrating a syndication, exploiting its logic
flaws may need additional resources we do not have and some
of the flaws may not even be exploitable in the absence of
other flaws. Particularly, in 7 out of the 30 cases of interest
reported by Dilution, we need to produce Alipay’s signature
on the payment notification to confirm whether the syndica-
tor (e.g., Paymax) indeed fails to perform a security check
(e.g., on the payment amount), since the syndicator may still
verify Alipay’s signature. The exploit can only be executed
with the help of a merchant under our control: we can make a
purchase from our own merchant and use the notification to
determine whether the syndicatior indeed verifies its attributes
(e.g., payment amount). We manually analyzed our findings
and believe that if the predicted flaws are there, we can ex-
ploit them in this way. However, merchant registration (with
Alipay) is complicated, which we did not do in our research.

Despite the challenges, still we were able to find 17 apps to
confirm 5 logic flaws across 2 syndication services and their
merchants. These 17 apps were found from over 50K apps
we analyzed. Most importantly, for every merchant app that
could be analyzed, every single logic flaw or case of interest
predicted by Dilution has been confirmed. Specifically, we
randomly crawled over 50K apps from the Baidu Market, a
top Chinese app market [5], and ran Apktool [3] to reserve-
engineer them. The 17 were found because the names of their
syndication SDKs or the domains of syndication servers have
not been obfuscated. Among them, 16 use BeeCloud [6] and
1 uses TrPay [15]. Both the syndication services and the apps
are very popular. As shown in Table 4 in Appendix, BeeCloud
claims to have tens of thousands merchants, and these apps
have hundreds of millions of users. In our experiment, we
ran a proxy called Burp Suite [7] and a network API testing
tool called Postman [13] to modify or forge the messages

758 28th USENIX Security Symposium USENIX Association

delivered from the apps or our site to the merchant or the
syndicator server.
Attacks on design flaws. As mentioned earlier (Section 5.1),
Dilution reported two design flaws, one for BeeCloud and
the other for Fuqianla, in which the syndicator cannot verify
Alipay’s signature on a payment notification due to its lack
of the verification key. In our research, we could not find the
app using Fuqianla possibly due to the obfuscation it sug-
gests to its users [23]. The 16 apps using BeeCloud, however,
were predicted to all have the same logic flaw. Therefore, we
just randomly picked one of them, a Chinese education app
called Chuangyebang [21], for the validation. Specifically,
we placed an order for an online class provided by the app
without payment, then used Postman to forge an unsigned
Alipay’s notification and delivered to the BeeCloud server. As
predicted, the syndicator accepted the fake message and we
successfully got the digital product for free 5. This demon-
strates that the design flaw is real and exploitable, which has
a serious consequence given the fact that BeeCloud is serv-
ing tens of thousands of merchants [28]. Actually, the 16
apps we collected have 82.8 million downloads in total, sell-
ing products ranging from 0.1 dollars to 2,000 dollars. Even
Changyebang is reported 490,000 installs.
Attacks on implementation flaws. Also we were able to
find a Chinese tool app called OffPhone [24] (with 830,000
downloads) that integrates TrPay, another popular syndication
service [15] wrapping WeChat and Alipay payment services.
This enabled us to validate 2 potential implementation flaws
that Dilution predicted. Both problems happen at the final
state m f (one for WeChat and the other for Alipay), where the
merchant is supposed to check the payment amount, which
the developer’s guide of TrPay fails to mention. Since in both
cases, the syndicator generates the credential (including the
price of the order) for payment at WeChat or Alipay, based
upon the order issued through the app, the adversary can
control the app to provide wrong price information to mislead
TrPay into producing a credential with a lower price. If the
payment amount reported by WeChat Pay or Alipay has not
been verified by the merchant (OffPhone) at m f , the adversary
can get the item with the price she set. In our experiment, we
modified the order placed through the OffPhone app to reduce
the price of a VIP membership from 5 dollars to just 1 cent,
causing TrPay to send a credential to the payment services.
In the end, both transactions went through, which indicates
that indeed the payment amount has not been checked by the
merchant, as Dilution predicted.

Furthermore, Dilution also reported 2 “cases of interest”
in BeeCloud, where the syndicator is supposed to perform
some security checks on behalf of the merchant. Specifically,
we found that on receiving the payment notification from
Alipay, BeeCloud only passes some of the notification con-
tent to the merchant. An attribute not being forwarded is

5All the exploit video demos are post online [4].

notify_id, the merchant’s identity issued by Alipay for finding
out whether the merchant is the right recipient of the notifica-
tion. Also, although another attribute, seller_id, serving the
same purpose is indeed sent to the merchant, BeeCloud fails
to mention in its developer’s guide that the attribute should
be verified. Both attributes are required to be inspected by
Alipay [2]. Here, we tried to find out whether the checks
have been done by BeeCloud on the merchant’s behalf. For
this purpose, we randomly selected another app from the
16 apps, called Clean [22], a memory cleaner with 850,000
downloads, to find out whether the SR2 and SR4 in Table 2
have been enforced. In the experiment, we ran Postman to
fake a payment notification including a random notify_id and
seller_id, which did not prevent our payment transaction from
getting through. In the end, we got a paid version of the app
(without Ads) for free. The same attack also succeeded on
Chuangyebang. Evidently, not only does BeeCloud fail to
verify notify_id and seller_id, but Clean (the merchant) does
not check seller_id either, in line with the predictions made
by Dilution. These flaws open the door for an attack in which
one pays for her own merchant while getting product from a
different store [49]. Also note that since the merchant is not
given notify_id, remaining 15 apps and others using BeeCloud
are certain to have the same flaw.
Responsible experiment design. We carefully designed our
end-to-end attack in a responsible manner. The entire study
was conducted under the guidance of a lawyer at our Univer-
sity. We strictly followed the principles below when attacking
the real-world apps and services: (1) we performed no intru-
sion of either merchant servers and syndicator servers; (2) we
ensured that no financial damage caused by returning items,
paying the shipping costs, not getting refunded, not using
electronic products, paying for items hard to return; (3) we re-
ported all security flaws to affected apps and syndications and
did what we could to help them improve their systems. All the
flaws discovered have been acknowledged by the syndicators
and merchants, who are very grateful for our help.

6 Discussion
Limitations. Our research demonstrates that logic flaws can
be predicted from the developer’s documentation, even before
the system code is inspected. This finding can lead to new
techniques that make full use of information available for
enhancing software security. Our current design and imple-
mentation, however, are still preliminary. We only focus on
the payment syndication service with limited targets on miss-
ing security checks. More complicated flaws, such as policy
enforcement weaknesses (possibly caused by inaccurate guid-
ance), and more complicated service procedures (e.g., refund,
bonus, etc.), are all missing from the picture, not to mention
documentation-based analysis on other security-critical sys-
tems. Further, the NLP techniques underlying Dilution can
only deal with well-written documents, not those containing

USENIX Association 28th USENIX Security Symposium 759

typos, grammatical errors, ambiguous sentence structures, etc.
as observed in real-world developer’s guides. Also, our cur-
rent approach still needs human involvements: particularly,
we extracted SRs and FSMs of payment processors manually,
which has two reasons. First, the number of payment proces-
sors is small. Second, we want the extracted SRs and FSMs
to be precise, based on which we built syndicators’ FSMs
and predicted logic flaws. However, we envision it’s possible
to automate this process using open-source NER tools. All
these issues need to be addressed in the future research.
Future research. Down the road, we expect more explo-
rations on this new direction, toward the end of an intelligent,
semantics-based methodology that combine documentation-
level and code-level analysis together for more effective flaw
discovery. In addition to the direct improvement of our ap-
proach mentioned above, we envision that document-based
flaw prediction will be applied to secure other syndication
services, those for single sign-on services in particular, such
as MobSDK [10]. More importantly, we believe that with the
help of machine learning and automatic inference, other sub-
tle, semantics-dependent weaknesses only detectable by expe-
rienced analysts today will become increasingly manageable
by automatic techniques, leading to a significant improvement
in software security quality.

7 Related Work

Numerous studies have looked into logic flaw detection in var-
ious applications. For example, [49] discovered logic flaws
of the payment service. [48, 50] investigated logic flaws on
authorization. Traditional logic flaws discovery heavily relies
on domain experts [33]. Recent year witnesses the trend of au-
tomatic logic flaw detection, mainly based on model checking.
The typical approach based on model check first standardizes
a logic process, and then detects whether the application vio-
lates the predefined logic. For instance, both [41] and [32]
automatically extracted a model from a number of correct
behavioral patterns. Then, they checked the source code stati-
cally, using model checking over symbolic input to identify
violated program paths. [34] manually summarized the cor-
rect usage of OpenSSL APIs and then statically analyzed
whether an application violates the correct usage. Different
from previous researches, our approach does not touch pro-
gram code and automatically utilizes only documentation to
predict logic flaws.

The closest to our study are the works of payment logic
flaw assessment [49] [51]. [49] is the first work, which relies
on human effort, to discover serious payment logic vulnerabil-
ities and reveal their security implications. A set of follow-up
studies identified different types of payment logic flaws in
various applications. For instance, [51] extended the work
of [49] to investigate the logic flaws in mobile payment and
detected seven security rule violations to the payment in An-
droid apps. [46] detected violations of the invariant in secure

checkout processes, which revealed 11 new logic vulnerabili-
ties in web payment modules. Given these studies, a bunch
of policies and guidelines for secure online shopping were
investigated [38, 40]. In contrast to previous works, which
assessed logic flaws by manual efforts, we report the first
work towards automatic payment logic flaw discovery. Also,
we investigate a novel payment service, payment syndication,
which has never been studied before.

8 Conclusion
In this paper, we report the first step towards automatic
documentation-based logic flaw discovery. Our study on the
emerging payment syndication services shows that their de-
veloper’s guide contains abundant information that can be
leveraged to predict the presence of logic flaws in their cus-
tomers’ systems. Using a suite of NLP techniques, our ap-
proach effectively analyzed over 1.4 MB of technical docu-
mentations from real-world syndicators within seconds, and
accurately predicted 5 new security-critical flaws in the Chi-
nese merchant systems with millions of users. The research
demonstrates that software documentations can be more effec-
tively used to help find the security risks hard to automatically
detect today.

9 Acknowledgment

We would like to thank our shepherd Adam Doupé and
the anonymous reviewers for their insightful comments.
The IU authors are supported in part by NSF-1527141,
1618493, 1838083, 1801432 and 1850725, ARO W911NF-
16-1-0127 and Indiana University FRSP-SF. IIE authors are
supported in part by NSFC U1836211, U1836209, 61728209,
61602470, 61802394, National Top-notch Youth Talents Pro-
gram of China, Youth Innovation Promotion Association
CAS, Beijing Nova Program, Beijing Natural Science Foun-
dation (No.JQ18011), National Frontier Science and Tech-
nology Innovation Project (No. YJKYYQ20170070), Strate-
gic Priority Research Program of the CAS (XDC02040100,
XDC02030200, XDC02020200), National Key Research and
Development Program of China (2016QY071405) and the
Program of Beijing Municipal Science & Technology Com-
mission (NO. D181100000618004).

References

[1] 66zhifu. https://www.66zhifu.com.

[2] Alipay. https://www.alipay.com.

[3] apktool. https://ibotpeaches.github.io/
Apktool/.

[4] Attack demos. https://sites.google.com/view/
dilution/home/attack-demos.

760 28th USENIX Security Symposium USENIX Association

https://www.66zhifu.com
https://www.alipay.com
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://sites.google.com/view/dilution/home/attack-demos
https://sites.google.com/view/dilution/home/attack-demos

[5] Baidu mobile assistant. https://shouji.baidu.com.

[6] Beecloud. https://beecloud.cn.

[7] Burp suite. https://portswigger.net/burp.

[8] Fuqianla. https://fuqianla.net.

[9] iapppay. https://www.iapppay.com.

[10] Mobsdk. http://www.mob.com.

[11] Paymax. https://paymax.cc.

[12] Ping++. https://www.pingxx.com.

[13] Postman. https://www.getpostman.com.

[14] Source code of Dilution:. https://github.com/
ccy1991911/Dilution.

[15] Trpay. http://pay.trsoft.xin/front/index.
html.

[16] UMF pay. https://xy.umfintech.com.

[17] WeChat pay. https://pay.weixin.qq.com.

[18] Gensim. https://github.com/
rare-technologies/gensim, 2018.

[19] LTP. https://github.com/HIT-SCIR/pyltp, 2018.

[20] 66zhifu obfuscation guide. https://www.66zhifu.
com/show/help, 2019.

[21] Chuangyebang download link. http://m.cyzone.cn/
app/, 2019.

[22] Clean download link. https://shouji.baidu.com/
software/25240151.html, 2019.

[23] Fuqianla obfuscation guide. https://fuqianla.net/
docs.html?Android_SDK, 2019.

[24] Offphone download link. http://offphone.net,
2019.

[25] Paypal. https://www.paypal.com, 2019.

[26] Trpay obfuscation guide. http://pay.trsoft.xin/
front/documentation.html, 2019.

[27] Rajeev Alur, Costas Courcoubetis, and David Dill.
Model-checking for real-time systems. In Logic in
Computer Science, 1990. LICS’90, Proceedings., Fifth
Annual IEEE Symposium on e, pages 414–425. IEEE,
1990.

[28] BeeCloud. Beecloud news. https://beecloud.cn/
about/#honor, 2019.

[29] Chandan Kumar Behera and D Lalitha Bhaskari. Differ-
ent obfuscation techniques for code protection. Procedia
Computer Science, 70:757–763, 2015.

[30] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a li-
brary for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2011.

[31] Danqi Chen and Christopher Manning. A fast and ac-
curate dependency parser using neural networks. In
Proceedings of the 2014 conference on empirical meth-
ods in natural language processing (EMNLP), pages
740–750, 2014.

[32] Viktoria Felmetsger, Ludovico Cavedon, Christopher
Kruegel, and Giovanni Vigna. Toward automated de-
tection of logic vulnerabilities in web applications. In
USENIX Security Symposium, volume 58, 2010.

[33] OWASP Testing Guide. Testing for business logic.
https://www.owasp.org/index.php/Testing_
for_business_logic/, 2019.

[34] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen,
VN Venkatakrishnan, Runqing Yang, and Zhenrui
Zhang. Vetting ssl usage in applications with sslint.
In 2015 IEEE Symposium on Security and Privacy (SP),
pages 519–534. IEEE, 2015.

[35] Prospective Industry Research Institute. China’s syn-
dication payment industry market prospects and in-
vestment strategic planning analysis report for 2018-
2023. https://bg.qianzhan.com/report/detail/
1703301644253052.html, 2018.

[36] iyiou. China syndication payment industry development
report in 2018. https://www.iyiou.com/p/88682.
html, 2018.12.28.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S
Corrado, and Jeffrey Dean. Distributed representations
of words and phrases and their compositionality. neu-
ral information processing systems, pages 3111–3119,
2013.

[38] Chandan Kumar Giri MimansaGantayat. Security issues,
challenges and solutions for e-commerce applications
over web.

[39] Shunji Mori, Hirobumi Nishida, and Hiromitsu Yamada.
Optical character recognition. John Wiley & Sons, Inc.,
1999.

[40] M Niranjanamurthy and DR Dharmendra Chahar. The
study of e-commerce security issues and solutions. In-
ternational Journal of Advanced Research in Computer
and Communication Engineering, 2(7), 2013.

USENIX Association 28th USENIX Security Symposium 761

https://shouji.baidu.com
https://beecloud.cn
https://portswigger.net/burp
https://fuqianla.net
https://www.iapppay.com
http://www.mob.com
https://paymax.cc
https://www.pingxx.com
https://www.getpostman.com
https://github.com/ccy1991911/Dilution
https://github.com/ccy1991911/Dilution
http://pay.trsoft.xin/front/index.html
http://pay.trsoft.xin/front/index.html
https://xy.umfintech.com
https://pay.weixin.qq.com
https://github.com/rare-technologies/gensim
https://github.com/rare-technologies/gensim
https://github.com/HIT-SCIR/pyltp
https://www.66zhifu.com/show/help
https://www.66zhifu.com/show/help
http://m.cyzone.cn/app/
http://m.cyzone.cn/app/
https://shouji.baidu.com/software/25240151.html
https://shouji.baidu.com/software/25240151.html
https://fuqianla.net/docs.html?Android_SDK
https://fuqianla.net/docs.html?Android_SDK
http://offphone.net
https://www.paypal.com
http://pay.trsoft.xin/front/documentation.html
http://pay.trsoft.xin/front/documentation.html
https://beecloud.cn/about/#honor
https://beecloud.cn/about/#honor
https://www.owasp.org/index.php/Testing_for_business_logic/
https://www.owasp.org/index.php/Testing_for_business_logic/
https://bg.qianzhan.com/report/detail/1703301644253052.html
https://bg.qianzhan.com/report/detail/1703301644253052.html
https://www.iyiou.com/p/88682.html
https://www.iyiou.com/p/88682.html

[41] Giancarlo Pellegrino and Davide Balzarotti. Toward
black-box detection of logic flaws in web applications.
In NDSS, 2014.

[42] Leonard Richardson. Beautiful soup. https://www.
crummy.com/software/BeautifulSoup/, 2019.

[43] David Sacks. System and method for third-party pay-
ment processing, February 7 2002. US Patent App.
09/901,962.

[44] Scrapinghub. Scrapy. https://scrapy.org, 2019.

[45] Statista. Number of users of leading mobile
payment platforms worldwide as of august 2017.
https://www.statista.com/statistics/744944/
mobile-payment-platforms-users/, 2017.

[46] Fangqi Sun, Liang Xu, and Zhendong Su. Detecting
logic vulnerabilities in e-commerce applications. In
NDSS, 2014.

[47] TechNode. Briefing: Alipay now has over 1 billion
users worldwide. https://technode.com/2019/01/
10/alipay-1-billion-users/, 2019.

[48] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing
me onto your accounts through facebook and google: A
traffic-guided security study of commercially deployed
single-sign-on web services. In Security and Privacy
(SP), 2012 IEEE Symposium on, pages 365–379. IEEE,
2012.

[49] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz
Qadeer. How to shop for free online–security analy-
sis of cashier-as-a-service based web stores. In Security
and Privacy (SP), 2011 IEEE Symposium on, pages 465–
480. IEEE, 2011.

[50] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang,
Kai Chen, Xiaojing Liao, Shi-Min Hu, and Xinhui Han.
Cracking app isolation on apple: Unauthorized cross-
app resource access on mac os. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Com-
munications Security, pages 31–43. ACM, 2015.

[51] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Hui Liu, Qing
Wang, Yueheng Zhang, and Dawu Gu. Show me the
money! finding flawed implementations of third-party
in-app payment in android apps. In Proceedings of the
Annual Network & Distributed System Security Sympo-
sium (NDSS), 2017.

762 28th USENIX Security Symposium USENIX Association

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://scrapy.org
https://www.statista.com/statistics/744944/mobile-payment-platforms-users/
https://www.statista.com/statistics/744944/mobile-payment-platforms-users/
https://technode.com/2019/01/10/alipay-1-billion-users/
https://technode.com/2019/01/10/alipay-1-billion-users/

APPENDIX

merchant

server

mobile

app

Alipay

client

Alipay

Server

1. place order
2. place order

3. return credential
4. invoke payment

5. apply payment

11. asynchronous notice

6. finish pay
7. synchronous notice

8. synchronous notice
9. show result

IMPORTANT: After you received the asynchronous notification,
you must perform these important checks:
1. Check signature
2. Check the notify_id to verify the notice comes from Alipay
3. ……

Figure 11: An excerpt of the Alipay diagram and security
requirements.

Table 4: Collected apps

App Package name Category Syndication Downloads
Max+ com.dotamax.app Game BeeCloud 1,300,000
Zhihuiwuxi com.hoge.android.wuxiwireless Business BeeCloud 1,160,000
Zhongyizhiku com.zk120.aportal Life BeeCloud 1,100,000
Clean com.ktls.fileinfo Tool BeeCloud 850,000
Yuebanchuxing com.ynwl.yueban Social BeeCloud 770,000
Jiaoshisuishixue cn.ixunke.suishixue Education BeeCloud 660,000
Chuangyebang com.cyzone.news Education BeeCloud 490,000
Yikeweiqi com.indeed.golinks Game BeeCloud 360,000
Hediandian com.hoge.android.app.hdd Business BeeCloud 350,000
Zhihuiyancheng com.hoge.android.yancwireless Business BeeCloud 170,000
Huiyouhui com.huiuhuisc.zoj Business BeeCloud 90,000
Wuxianhuaian com.hoge.android.huaian Business BeeCloud 70,000
Zhongyiguji com.zk120.ji Health BeeCloud 50,000
Zhongyiyian com.zk120.an Health BeeCloud 10,000
Quandashi com.dream.ipm Business BeeCloud 10,000
Shuohua com.etang.talkart Art BeeCloud 10,000
OffPhone com.alion.silent Tool TrPay 830,000

USENIX Association 28th USENIX Security Symposium 763

Table 5: Abbreviation summary in alphabetical order.

Abbreviation Denote
ADV Adverbial
AT T Attribute
b,bi Buyer state (No.i)
b1 The initial state
B Buyer
COO Coordinate
d A message transmitted among a buyer, a merchant and a syndicator
D A set of messages
DoA Documentation Analyzer
E A function that drives the transition from one payment state to the next
FSM Finite state machine
LfP Logic-flaw Predictor
m, mi Merchant state (No.i)
m f The final state
M Merchant
p, pi Payment processor state (No.i)
P Payment processor
POB Preposition-object
s A state in an FSM
S A set of payment states
SBV Subject-verb
SD Secure design goal
SI Secure implementation goal
SR Security Requirement
SRi The No.i Security Requirement in Table 2
SRob j The object to check for an SR
SRpara The parameters for an SR when checking
SRstate An SR’s corresponding state
TA A set of trusted message attributes as collected from related API specifications
TC A set of collected attributes for preconfigured merchant information
VOB Verb-object
w, wi Syndicator state (No.i)
W Syndicator

764 28th USENIX Security Symposium USENIX Association

Understanding iOS-based Crowdturfing Through Hidden UI Analysis

Yeonjoon Lee1∗, Xueqiang Wang1∗, Kwangwuk Lee1, Xiaojing Liao1

XiaoFeng Wang1, Tongxin Li2, Xianghang Mi1
1Indiana University Bloomington, 2Peking University

Abstract

A new type of malicious crowdsourcing (a.k.a., crowdturfing)
clients, mobile apps with hidden crowdturfing user interface
(UI), is increasingly being utilized by miscreants to coordinate
crowdturfing workers and publish mobile-based crowdturfing
tasks (e.g., app ranking manipulation) even on the strictly con-
trolled Apple App Store. These apps hide their crowdturfing
content behind innocent-looking UIs to bypass app vetting
and infiltrate the app store. To the best of our knowledge,
little has been done so far to understand this new abusive
service, in terms of its scope, impact and techniques, not to
mention any effort to identify such stealthy crowdturfing apps
on a large scale, particularly on the Apple platform. In this
paper, we report the first measurement study on iOS apps
with hidden crowdturfing UIs. Our findings bring to light the
mobile-based crowdturfing ecosystem (e.g., app promotion
for worker recruitment, campaign identification) and the un-
derground developer’s tricks (e.g., scheme, logic bomb) for
evading app vetting.

1 Introduction

Crowdturfing is a term coined for underground crowdsourc-
ing [44], in which an illicit actor (typically a cybercriminal)
hires a large number of small-time workers to perform ques-
tionable and often malicious tasks online. Supporting such
an operation is a crowdturfing platform, the underground
counterpart of Amazon Mechanical Turk [1] that acts as an
intermediary for the cybercriminal to recruit small-time work-
ers for the hit jobs like creating fake accounts on an online
store, posting fake Yelp reviews, spreading rumors through
Twitter, etc. These attacks damage the quality of online social
media, manipulate political opinions, etc., thereby threatening
the public confidence in the cyberspace, which is the very
foundation of the open web ecosystem.

Mobile crowdturfing. With the fast growth of mobile mar-
kets today, crowdturfing is extending its reach to mobile com-
puting, serving illegal missions like inflation of an app’s rating
or mass collection of coupons or other bonus during a sales
promotion. For this purpose, a mobile client (app) needs to
be deployed to a large number of underground workers. Such
an app, however, is prohibited by both Apple and Android

∗The two lead authors contributed equally to this work.

Figure 1: A Word Game with hidden crowdturfing UIs.

app stores according to their guidelines [21, 28], and will be
taken down once detected. Although dissemination of the
crowdturfing apps is still possible in the fragmented Android
world, through less regulated third-party stores, on the Apple
platform, cybercriminals find it hard to reach out to the iPhone
users, due to the centralized app vetting and installation en-
forced by the Apple App Store. To circumvent this security
check, it has been reported [52] that crowdturfing Trojans
have been increasingly used to infiltrate the iOS App Store,
through embedding stealthy crowdturfing user interfaces (UI)
in innocent-looking iOS apps. An example is shown in Fig-
ure 1. Compared with web-based crowdturfing [37,45,46,49],
these apps are used to deliver mobile based crowdturfing tasks,
such as fake app review and app ranking manipulation. Also,
they are characterized by utilizing hidden UI techniques to by-
pass app vetting and deliver tasks for their small-time workers,
which raise the challenges for finding them. So far, little has
been done to systematically discover and analyze such hidden
crowdturfing apps, not to mention any effort to understand
the underground ecosystem behind them.

Finding crowdturfing apps. In this paper, we report the first
measurement study on iOS crowdturfing apps. The study
relies on the discovery of such malicious apps from the Ap-
ple App Store, which is challenging, due to the difficulty in
identifying their elusive hidden UIs. These UIs are under the
cover of benign ones and can only be invoked under some
specific conditions (e.g., time, commands from C2 servers).

USENIX Association 28th USENIX Security Symposium 765

Even when they indeed show up, likely they operate similarly
as the legitimate UIs: no malware downloading, no illicit use
of private APIs, etc. To capture their illegitimacy, one needs
to read their content and understand their semantics. This,
however, requires human involvement and therefore does not
scale during app vetting. The attempt to detect such UIs be-
comes even more complicated for the third party, who does
not have the source code of the related apps and therefore
needs to work on binary executables. Indeed, our research has
brought to light almost 100 such apps already published on
Apple App Store, completely bypassing its vetting protection.

To address these challenges, we come up with a new triage
methodology, Cruiser, that identifies the iOS apps likely to
contain hidden crowdturfing UIs for further manual inspection.
A key observation here is that such apps are characterized by
their conditionally triggered UIs (e.g., triggered not by user
actions but by network events), as demonstrated through UI
transitions. Also, the content of such hidden UIs is related to
crowdturfing semantically (e.g., app ranking manipulation),
which is inconsistent with their hosting app’s public descrip-
tion. These unique features make it possible to detect these
iOS apps through a combination of binary, UI layout and
content analyses. From 28,625 iOS apps covering 25 app
categories, our system reports 102 most likely involving hid-
den crowdturfing UIs; considering the large scale of Apple
App Store (2 million apps [3]) and the relatively high false
detection rate (8.8%) of our tool, we manually examined all
the 102 flagged apps, and found that 93 apps indeed contain
hidden crowdturfing UIs.

Measurement and discoveries. Looking into the apps with
hidden crowdturfing UIs reported by Cruiser, we are surprised
to find that this new threat is indeed trending, with a big im-
pact on today’s mobile ecosystem. More specifically, from the
93 apps detected, we discover 67 different mobile crowdturf-
ing platforms, which handle a variety of crowdturfing tasks,
such as app ranking manipulation, fraud account registration,
fake reviews, online blog reposting, and order scalping, etc.
Also importantly, these apps are found to bypass app vetting
several times and have a long lifetime. Such apps are popu-
lar, having been installed by a large number of users (32.4
million in total). Some of them even appear on the Apple
leaderboards, with 25 of them ranked among the top 100 in
their corresponding categories.

Also interesting is the ecosystem of mobile crowdturfing,
as discovered in our study, which includes app promotion for
worker recruitment, campaign identification, etc. In particular,
crowdturfing platform owners are found to advertise their
apps through multiple channels, including crowdturfing app
gateway sites, in-app promotion and a pyramid (or referral)
scheme that rewards the individuals for recommending crowd-
turfing apps to other users. In the crowdturfing app gateway
sites, we observe that around 50% of hidden crowdturfing
apps have been downloaded more than 18K times; there are
32.4 million downloads in total. Also, we find that the app

with hidden UIs is in high demand from the underground mar-
ket: e.g., cybercriminals are willing to pay hundreds of dollars
for developing such an app to circumvent Apple’s vetting.

Furthermore, we analyze the evasion techniques employed
by the crowdturfing apps, and bring to light new techniques
that utilize complicated conditions to trigger their malicious
behaviors: such apps not only know whether they have passed
Apple’s review so they can change their behaviors accord-
ingly, but also protect their hidden UIs with the conditions
involving user interactions or communication with a mali-
cious website. Up to our knowledge, such techniques have
not been reported to the Apple platform before, and therefore
bring new challenges to its vetting process. Further discov-
ered in our research is the way underground developers reuse
their product and work with each other: we see that different
developers inject different crowdturfing UIs to similar apps,
and the same developer hides the same UIs into her different
products. Also interestingly, almost identical apps, with both
over and cover UIs, are found to be submitted to the store
under different developer IDs. We disclosed our findings to
Apple, which acknowledged us and has removed all reported
apps from the App Store, though new attack apps of this type
continue to pop up due to Apple’s lack of effective means to
detect them; also upon Apple’s request, we provided a list of
fingerprints for eliminating the apps similar to the malicious
ones.
Contributions. The contributions of the paper are outlined
as follows:
• New methodology. We developed a novel approach that
utilizes a binary-code analysis on UI hierarchy and Natu-
ral Language Processing (NLP) analysis on UI semantics to
detect the iOS apps with hidden crowdturfing UI.
• New findings. Cruiser helps us gain new insights into the
mobile crowdturfing ecosystem and exposes the underground
developer’s new tricks for evading Apple’s app vetting. Also
importantly, our study sheds light on a new attack vector that
has long been ignored: use of hidden UIs to evade even most
restrictive app vetting to distribute illicit content.
Roadmap. The rest of the paper is organized as follows: Sec-
tion 2 provides background information for our study; Sec-
tion 3 elaborates on the design of Cruiser; Section 4 presents
our measurement study and new findings; Section 5 discusses
the limitations of our current design and potential future re-
search; Section 6 reviews related prior research and Section 7
concludes the paper

2 Background

Crowdturfing platform. As mentioned earlier, crowdturfing,
also called malicious crowdsourcing, is an illicit business
model, in which cybercriminals (i.e., intermediaries) recruit
small-time workers to carry out malicious tasks (e.g., app
ranking manipulation) for dishonest third parties (e.g., app

766 28th USENIX Security Symposium USENIX Association

Mobile
tasks

CP 1

Dishonest third party

Small-time worker

CP 2 CP 3

Online
tasks

Online
tasks

Mobile
tasks

Intermediary

Remote server

Desktop client

Mobile client

Figure 2: Overview of modern crowdturfing platforms, where
“CP” represents a crowdturfing platform.

owner). Moving from the desktop browser-based clients (e.g.,
Zhubajie [5] and Sandaha [4]) to mobile devices, crowdturf-
ing today increasingly happens through the apps deployed to
workers’ smartphones. As an example, consider a dishonest
app owner who intends to inflate the app’s installation vol-
ume and therefore seeks help from a crowdturfing platform;
through the platform, the owner can pay workers to download
and install his app so as to fake its popularity. Other hit jobs
performed by the platform include the spread of fake reviews,
defamatory rumors, etc.

Figure 2 illustrates modern crowdturfing platforms support-
ing both desktop browser-based clients and mobile clients.
Such a platform, generally created and maintained by interme-
diaries, is designed to coordinate crowdturfing tasks and orga-
nize small-time criminals (workers) to do the tasks. As shown
in the figure, a crowdturfing platform consists of servers to dis-
tribute crowdturfing tasks, and desktop browser-based clients
or mobile clients to interact with the workers (e.g., publish-
ing the tasks and checking the quality of the work). Unlike
the platforms with browser-based clients, those with mobile
clients mainly aimed at mobile-related crowdturfing (e.g., app
ranking manipulation).

However, mobile crowdturfing clients, in the form of apps,
are widely considered to be illicit by app stores, including
Apple App Store [21] and reputable Android App stores like
Google Play [28]. Especially for iOS crowdturfing clients, it is
extremely hard for such apps to get through Apple’s restrictive
vetting process. Actually, from the underground forum, we
find that some intermediaries seek experienced developers to
build apps capable of infiltrating the Apple store, by hiding
their crowdturfing UIs (Section 4.4). Also interestingly, due
to the difficulty in publishing crowdturfing apps, we find from
the Apple store that multiple servers even share one client
(Section 4).

iOS UI design. The UIs of an iOS app include view, view
controller (VC) and data: view defines the UI elements to be
displayed (e.g., button, image, and shape); data is the infor-
mation delivered through the defined UI elements; and a VC
controls both views and their data to present a UI. All the
VCs of an app and their relations, which describe the tran-
sitions between different UIs, form a VC hierarchy, with its
root (called anchor) being the initial VC of the app or the VC
launched by the iOS object AppDelegate. Implementing a
VC hierarchy can be done using either VC transition APIs
(e.g., pushViewController:animated), or storyboard [19], a
visual tool in the Xcode interface builder. In the storyboard,
a sequence of scenes are used to represent VCs, and they
are connected by segue objects, which describe transitions
between VCs. iOS employs layout files (a.k.a., nib files) to
implement UIs, which can be generated using storyboard.

Over a VC hierarchy, developers commonly define two
kinds of transitions between a pair of VCs: Modal and Push. A
modal VC does not contain any navigation bar or tab bar, and
is used when developers create outgoing connections between
two UIs. To present a modal VC, the developer can directly
use APIs (e.g., presentViewController:animated:completion:),
or define a modal segue object [20] in a storyboard. An API
needs to be called in order to dismiss such a modal VC. On the
other hand, Push uses a navigation interface for VC transitions.
Selecting an item in the VC pushes a new VC onscreen,
thereby hiding the previous VC. Tapping the back button
in the navigation bar removes the top VC and reveals the
background VC. More specifically, developers can display the
view of a VC by pushing it to the navigation stack using the
pushViewController:animated: API, or define a push segue in
a storyboard. In the meantime, tapping the back button will
pop up the top VC from the navigation stack and makes the
new top displayed.

In our research, we observe that hidden crowturfing UIs
exhibits conditionally triggered navigation patterns in an app’s
VC hierarchy, including multiple root VCs as entry UIs, entry
VC not triggered by the users nor dismissed by itself, etc.
(Section 3.2).

Natural language processing. The semantic information our
system relies on is automatically extracted from UIs using
Natural Language Processing (NLP). Below we briefly intro-
duce the key NLP techniques used in our research.

• Word embedding. Word Embedding is an NLP technique
that maps text (words or phrases) to high-dimensional vectors.
Such a mapping can be done in different ways, e.g., using
the continual bag-of-words model or the skip-gram technique
to analyze the context in which the words show up. Such a
vector representation ensures that synonyms are given similar
vectors and antonyms are mapped to different vectors. Tools
such as Word2vec [50] could be used to generate such vectors.
Word2vec takes a corpus of text (e.g., Wikipedia dataset)
as inputs, and assigns a vector to each unique word in the

USENIX Association 28th USENIX Security Symposium 767

corpus by training a neural network. In our study, we leverage
Word2vec to quantify the semantic similarity between the
words based on the cosine distance of their vectors.

• Topic model for keyword extraction. Topic model is a sta-
tistical model for finding the abstract "topics" of a document,
and topic modeling is a common text-mining tool for discov-
ering keywords from corpora. Among various topic modeling
approaches, Latent Dirichlet Allocation (LDA) [13] is one
of the most popular methods. The basic idea is that docu-
ments are represented as random mixtures over latent topics,
where a topic is characterized by a distribution over words,
and the statistically significant words are selected to represent
the topic. In our study, we leverage the LDA implementa-
tion of Stanford Topic Modeling Toolbox [48] for keyword
extraction.

Threat Model. In our research, we consider an adversary who
tries to publish iOS apps carrying hidden crowdturfing content
on Apple App Store. Examples of such crowdturfing activities
include fake review posting, app ranking manipulation and
order scalping [15], etc. For this purpose, the adversary creates
iOS apps with hidden crowdturfing UIs. These UIs are meant
for displaying the tasks assigned by a crowdturfing platform
and providing guidance on how to accomplish the tasks, so
typically they do not ask for additional capabilities (guarded
on iOS by entitlements). To publish such apps, the adversary is
supposed to be knowledgeable about Apple’s vetting process.
Use of private APIs or side-loading are the focus of Apple’s
vetting and therefore not considered in our research. Also,
in our research, we only cover native iOS apps. The cross-
platform framework (e.g., react native) based apps, which are
built using different languages (e.g., javascript), are out of the
scope of this work.

3 Methodology

Here we elaborate on the design and implementation of a new
technique for identifying apps with hidden crowturfing UIs.
We begin with an overview of the idea behind Cruiser, and
then present the design details of each component.

3.1 Overview

Architecture. Figure 3 illustrates the architecture of Cruiser,
which includes a Structure Miner and a Semantic Analyzer.
After fetching and decrypting iOS apps from App Store, Struc-
ture Miner takes as its input a set of decrypted iOS apps, and
disassemble them. The disassembled apps are then utilized
by the Structure Miner to construct a VC hierarchy for iden-
tifying the VCs with conditionally triggered UIs (e.g., two
entry UIs). Here we define checkpoint VCs as all VCs associ-
ated with conditionally triggered UIs and their corresponding
children VCs (see detail in Section 3.2). We also consider
children VC, since VCs with conditionally triggered patterns

Figure 3: Architecture of Cruiser.

Figure 4: Pseudocode and simplified LVCG with conditionally
triggered UIs.

sometimes may not contain sufficient texts for semantic anal-
ysis. On each checkpoint VC, the Semantic Analyzer further
extracts texts from it, and evaluates its content through a set
of NLP techniques to determine whether it is used for crowd-
turfing.

Example. To explain how Cruiser works, here we walk
through its workflow (Figure 3) using a Music Player app with
a hidden app ranking manipulation UI, com.sohouer.music.
Cruiser first automatically decrypts the app and disassembles
it into binary, UI layout files and resource files. Meanwhile,
we also crawl the app’s metadata (i.e., description for the
Music Player app) from the App Store as the input for the
Semantic Analyzer.

The Structure Miner processes the binary and UI layouts of
the com.sohouer.music app and creates a VC hierarchy in the
form of a labeled view controller graph (LVCG) (as shown
in Figure 4). From the LVCG, our approach extracts VCs
with conditionally triggered UIs and marks them as the check-
point VCs. More specifically, the Structure Miner identifies
VCs and VC transitions from the app binary and UI layout
files to construct the LVCG (Figure 4). From the LVCG, the
Structure Miner discovers the conditionally triggered UIs:
two root VCs of MusicListViewController and SHEMainView-
Controller, which indicate that there are two entry UIs for
the app. Depending on whether the app has received a par-
ticular scheme invocation before, different main UIs will be

768 28th USENIX Security Symposium USENIX Association

displayed when the app is launched. Therefore, these two
VCs are labeled as checkpoint VCs for the follow-up seman-
tic analysis.

Once the checkpoint VCs are found, the Seman-
tic Analyzer then processes their text data to identify
semantic features: the MusicListViewController VC
contains a series of Music Player related words, such
as {album,singer,shuffle,song,music,radio}, which are
consistent with the app’s description. On the other hand,
the topic words under SHEMainViewController are
{task,cash,earn,withdrawal, join,pay,reward}. Given the
semantic inconsistency discovered, the Semantic Analyzer
flags the app as a crowdturfing client.
Data collection. In our research, we collected 28,625 iOS
apps for discovering new hidden crowdturfing apps, which we
call unknown set. Specifically, we scanned the entire iOS app
list from iTunes Preview website [34] using an app crawler
running on an iPhone, and then selected the apps updated
after Jan. 1, 2016 to download and decrypt. This is because
apps with hidden crowdturfing UI is an emerging threat, and
recently updated apps tend to have more active users. In this
way, we collected 28,625 iOS apps, which cover 25 app cate-
gories.

3.2 Structure Miner
The Structure Miner is designed to identify the VCs with
conditionally triggered UIs from an app’s disassembled code
and UI layout files. Examples of such patterns include two
different main UIs, as discovered from com.sohouer.music,
and the UI that can only be invoked by a specific network or
other events, not directly by the user, indicating the potential
presence of evasive behaviors. To discover such patterns, we
first construct a VC hierarchy in the form of an LVCG through
analyzing the app’s binary and retrieving UIs from the UI
layout files to identify their corresponding VCs and establish
their transition relations among them. Then, from the LVCG,
we search for predefined conditionally triggered UIs and mark
those having these UIs as checkpoint VCs for further analysis.
LVCG. LVCG is a directed graph as shown in Figure 4, in
which each node is a VC and each directed edge describes a
transition from one VC (corresponding to a UI) to another.

Definition 1. An LVCG is a directed graph G = (V,E,α) over a
node label space Ω, where:

1. V is a node set, with each node being a VC;

2. Edge set E⊆ V×V is a set of transitions between VCs;

3. Node labeling function α : V → Ω marks each node with its
UI properties and text data. Each node is given four property
labels: entry, user, url, others. Table 1 shows the definition of
each property and the corresponding method names.

LVCG construction. The construction of an LVCG requires
both an app’s binary and its UI layout files. This is because
the VC of a UI is in the code and even the UI itself can be

programmed through APIs (e.g., initWithFrame: API in UIV-
iew) so becoming part of the VC, and in the meantime, all the
UIs built through storyboard can only be found in the layout
files, including the transitions between them. To address this
complexity, Cruiser builds two LVCGs, one from the binary
and the other from the layout files, before combining them
together.

Specifically, on the binary code, we look for system VC
class names (e.g., UIViewController) and method names (e.g.,
setNavigationBarHidden), which help identify individual VCs
and their properties (see Table 1). Then we track the data flows
from a VC to another to recover the transitions between the
detected VCs. For this purpose, our approach first maps the
addresses in the binary code to symbols (e.g., class name,
method name) using a binary analysis tool Capstone [7], and
then uses a set of targeted system VC class names (e.g., UIV-
iewController) and method names (e.g., setNavigationBarHid-
den) to recognize VCs and their properties (e.g., entry) from
the symbols. After that, the Structure Miner performs a data-
flow analysis using an implementation similar to the prior
techniques [18, 23], to connect the transition APIs (perform-
SegueWithIdentifier:sender:) discovered in a VC to another
one, the transition target.

To construct a LVCG on the layout files under the story-
board folder generated by Apple’s interface builder, we need
to extract VCs and VC transitions from the files. The former
can be found from the storyboard plist file that includes the
mappings from VC names to the obfuscated names of nib
files. The latter is recorded by the nib files, each of which
carries a subset of a VC’s properties, e.g., the types of some
elements (such as botton, textbox, etc.) and the transitions
between VCs.

Our approach directly recovers VCs from the plist file
and further detects each VC’s nib files from the mappings
it records. More challenging here, however, is to identify
the transitions between the VCs, since objects included in
a nib file are undocumented. To enable the Structure Miner
to interpret the file, we reverse-engineered part of its format
relevant to the transition and content extraction. Specifically,
we started from the interface builder, through which one can
define one or multiple scenes to represent a UI and a Segue
to describe a transition. Through a differential analysis, we
compared the compiled nib files with and without a specific
transition to pinpoint the nib objects corresponding to differ-
ent Segue types (e.g., push, modal, unwind), such as ClassS-
wapper. From such objects, the Structure Miner is then able to
collect the transitioning data, in the form of src, dst, type, etc..
This allows us to restore the recorded transition information
and build up the LVCG of an app.

Given the LVCGs generated from the binary and the layout
files, our approach automatically combines them together,
based on the relations between the VCs on these graphs:
particularly, when a transition is found from a VC in the
layout to the one defined in the code, two LVCGs can then

USENIX Association 28th USENIX Security Symposium 769

Table 1: LVCG node properties and their corresponding method names.

Property Definition Method/Class names
entry root VC setRootViewController:
user VC triggered by a user interaction addTarget:action:forControlEvents:
url VC rendering web content openURL:, UIWebViewController

others other properties (e.g., self-dismiss) dismissViewControllerAnimated:completion:

be linked together through this VC pair. On the combined
LVCG, further we remove the dead VCs introduced by the
part of libraries and other shared code not used by an app. To
this end, our approach performs a test to find out all the VCs
that cannot be reached from the app’s entry points (such as
AppDelegate, the initial VC of the main storyboard) and drops
them. In this way, we remove 1,053,161 dead VCs (55.4%)
from the 28,625 iOS apps we collect (see Section 3.1).

Conditionally triggered UI extraction. Given 17 apps with
hidden crowdturing UI collected from 91ssz [8] (see detail in
Section 3.4), without loss of generality, in our study, we con-
sider two types of conditionally triggered UIs on the LVCG,
as elaborated below:

•More than one root VCs. We consider an LVCG to be suspi-
cious if it has more than one root VCs, i.e., app has two entry
points, that is, two different root UIs. The root VC is the first
one launched (by AppDelegate) when an app starts running.
One evasion trick the adversary often plays is to run two root
VCs, one legitimate and the other illicit, depending on some
trigger conditions (e.g., the app’s execution environment).
For example, in the app com.sohouer.music (see Section 3.1),
besides the benign UI (i.e., MusicListViewController), the
hidden crowdturfing UI (i.e., SHEMainViewController) can
also be invoked by AppDelegate). Such a pattern can be de-
scribed as |α(v) == ‘root ′| ≥ 2. In this case, we label the two
VCs and their corresponding children VCs as checkpoint VCs
for further semantic analysis.

• VC not triggered by users. If an entry VC or intermediate VC
is not triggered by the user, but by other external events (e.g.,
network), i.e., α(v)[‘entry′] = True∧α(v)[‘user′] = False or
α(v)[‘user′] = False∧α(v)[‘url′] = True, we consider it as
suspicious, since such UI is difficult to be triggered during
app vetting. In such a case, we mark such a VC v and its
children VCs as checkpoint VCs.

Looking into all 28,625 apps, we discover 34,679 check-
point VCs using conditionally triggered UIs. These VCs are
further evaluated by the Semantic Analyzer. Our evaluation
(see Section 3.4) shows that the Structure Miner maintains a
good coverage on hidden crowdturfing UIs while filtering out
most legitimate apps.

3.3 Semantic Analyzer

The Semantic Analyzer determines whether checkpoint VCs
are crowdturfing UIs. Serving this purpose is a set of NLP

based semantic analysis techniques: we first extract UI texts
from the VCs, and then find out whether they are related to
crowdturfing by calculating the semantic distance between
the texts and crowdturfing keywords.

Text discovery. As mentioned earlier, the format of the UI
layout files (the nib files) is undocumented. However, they can
be converted into the XML form using ibtool [42]. From their
XML content, we can find plain-text strings under NSString
objects, a property of UI element objects like button, table,
textbox, font, color, etc. Some of these strings are part of the
content a UI displays, while the others are not, depending
on the type of the UI element objects. For example, UIFont
and UIColor carry strings such as “.HelveticaNeueInterface-
Regular” and “blackColor” for defining fonts and UI color,
respectively. To extract UI content from the nib files, we come
up with a blacklist of UI element objects that do not include
UI texts, and use that list to filter out irrelevant text strings.
More specifically, we randomly sampled 70 iOS apps from our
unknown set, which gives us 1,307 nib files including 28,469
NSString objects. We clustered them based on the types of
their UI element objects, and manually went over all 103 types
discovered. In this way, we constructed a blacklist with 21
patterns that cover 64 object types that do not contain any
meaningful UI texts. Table 8 in Appendix shows the blacklist.
When analyzing a given app, the Semantic Analyzer locates
all NSString objects from its checkpoint VCs and further
recovers their host UI element objects from the app’s UI
object tree (i.e., a tree built on layout files). If the element is
on the blacklist, we ignore its NSString object.

In addition to the text strings in the NSString objects, other
UI content can be embedded in images and therefore cannot
be easily extracted. To collect more semantic information for
crowdturfing UI detection, we utilize an app’s meaningful
variable names (e.g., _album_id), class names (e.g., Ticket-
DetailViewController) and method names (e.g., setSongIdsAr-
rayM), which are preserved in the binary’s symbol table by
the Object-C compiler. These human-readable symbols are
recovered by our approach from the variables, class names,
etc. output by Capstone [7] for each checkpoint VC. Also
for the VCs with Web UIs (e.g., UIWebViewController), we
include the text content collected from the URL embedded
in the VC. An example of the data gathered from both UI
layouts and a binary is presented in Table 2.

Crowdturfing UI identification. Given the UI content re-
covered from each checkpoint VC, we analyze whether such
data is semantically associated with crowdturfing: to this end,

770 28th USENIX Security Symposium USENIX Association

Table 2: Sample text data.

Object Type Text Data
UILabel “Proceed to checkout”

NSLocalizableString “start making money”

Class Name
“TaxiViewController”, “GameView”

“TicketDetailViewController”

Method Name
“setSongIdsArrayM:”,
“setBuyAllProductId:”

Instance Variables
“_album_id”, “_uploadMedia ”,

“_btnPaid”

CFString
“Select photo from photo library”

“more clear free voice calls”

URL
booking.com

“hotel” “city”, “trip”, “taxi”

we first preprocess the texts to address the issues like multi-
language, noisy words, and then identify the keywords rep-
resenting their semantics. In the meantime, we crawl a set
of popular crowdturfing websites (e.g., Zhubajie [5] and San-
daha [4]) to build a crowdturfing word list. Words on the list
are compared with the UI keywords using Word2vec [50]
to find out their semantic distances. When such a distance
becomes sufficiently small, the checkpoint VC is then flagged
as a hidden crowdturfing UI. In the following, we elaborate
on each step of this analysis.

At the preprocessing step, our approach runs Google Trans-
late [2] to convert content in other languages into English.
For the text in the languages without delimiters, Chinese in
particular, we first use open source tools [27, 30] to segment
texts into words before the translation; for the class/method
names extracted from the binary, we tokenize them using
regular expressions that cover common naming conventions
(e.g., CamelCase style). Further, we drop all common stop
words (e.g., NLTK stop words), and the frequent words from
iOS frameworks and programming languages (e.g., “UIV-
iewController”, “ignoreTouch:forEvent:” and “raiseExcep-
tion”), as well as program language and debugging related
texts (e.g., “socket”, “connection”, “memory”, “allocation”).
These words come from 74 framework-libraries of iOS 8.2.1,
and are gathered in our research from sections such as __cf-
string and __objc_methname. Selected from these documents
are 1,806 frequent words whose inverse document frequency
(IDF) values are larger than a threshold (we use log(5) in our
implementation). Also 1,031 program language and debug-
ging related words are hand-picked for Objective-C, Swift,
and Javascript.

After removing these words from a checkpoint VC, the
remaining words are then analyzed using affinity propaga-
tion [26], which clusters them based upon their semantics
(represented by the vectors computed using an embedding
technique) and reports the most significant cluster. The words
in such a cluster are then used by our approach to represent
the semantics of their hosting VC.

To collect crowdturfing keywords, we crawl 280 web pages
from the popular crowdturfing websites (i.e., Zhubajie [5] and
Shandaha [4]). From these pages, we identify their topic key-
words using the Latent Dirichlet Allocation (LDA) method.
In this way, we build a crowdturfing list of 214 words. A
problem for directly using these words is the observation that
some of the crowdturfing words may also appear in legiti-
mate apps: for example, “coupon” is certainly a meaningful
word for a shopping app, not necessarily referring to the illicit
task of bounty hunting. To address this problem, we compare
these words with the keywords extracted from an app’s de-
scription, dropping those related to the app’s publicly stated
functionality before the comparison below.

Given keywords discovered from the checkpoint VCs and
the list of crowdturfing words, we run Word2vec [50] on each
of these words, which maps the word to a vector that describes
its semantics. Using these vectors, our approach measures the
semantic relations between the UI keywords and the crowd-
turfing keywords by calculating their vectors’ cosine simi-
larities. For each UI keyword, its average similarity with all
the crowdturfing keywords is used to determine its relevance
with crowdturfing. We find that when the average relevance
score of all the keywords of a checkpoint VC reaches 0.525
or above, the VC is nearly certain to be a crowdturfing UI.

3.4 Challenges in Identification

Here we evaluate Cruiser and elaborate on the challenges in
crowdturfing app identification.
Evaluation with ground-truth set and unknown set. We
evaluated Cruiser over the following ground-truth datasets:
for the bad set, we collected the apps with hidden crowdturfing
UIs from 91ssz [8]. 91ssz is a website that hosts the apps with
the features (e.g., spam forums, earn money) violating Apple’s
guidelines. We manually examined 290 apps and confirmed
17 with hidden crowdturfing UIs (the other 273 apps do not
have hidden UIs and are only accessible through third-party
black markets). The good set were gathered from the top
paid app list found from Apple App Store charts, which are
considered to be mostly clean. We randomly sampled 17 of
them (the same size of the bad set) to build the good set. Note
that we manually examined those apps and verified that they
are indeed benign. Running on these sets, Cruiser shows a
precision of 88.9% and a recall of 94.1%.

Next we further report the results when running our ap-
proach on the unknown set, including all the apps collected
from the Apple App Store (Section 3.1), at each stage of our
analysis pipeline. We statically analyzed disassembled code
and UI layout files over the 28,625 iOS apps, and discovered
34,679 checkpoint VCs, which are related to 3,999 (14.0%)
apps using conditionally triggered UIs. Then, we executed
the Semantic Analyzer, which flagged 102 apps. We man-
ually examined all of them and found that 93 apps indeed
contain hidden crowdturfing UIs. This gives us a precision

USENIX Association 28th USENIX Security Symposium 771

of 91.2%. The 9 falsely detected apps, though not including
crowdturfing UIs, also turned out to be less legitimate. Below
we elaborate on the missed apps and the falsely detected apps.

Missed apps. On the ground-truth set, only one crowdturfing
app was missed by Cruiser. The app fell through the cracks
due to inadequate semantic content extracted from their UIs.
It is found to construct the URL for the content to be displayed
during its runtime and dynamically loads crowdturfing pages
through the URL. While Cruiser can find the suspicious view
controller, it cannot statically gather semantic content from
the crowdturfing pages and therefore fail to provide enough
semantic information for the Semantic Analyzer to make a
decision.

Determining the number of missed crowdturfing apps in
the unknown set (with 28K iOS apps) is challenging. Given
the low density of such malicious apps in the dataset, we
could not randomly sample from the set hoping to capture
ones missed by our methodology. So what we did in our study
is to lower down the threshold used by the Semantic Analyzer
for detection, which improved the recall, at the expense of
precision. With the threshold decreasing from 0.525 to 0.513,
our approach flagged 313 more apps. We manually analyzed
all these apps and found only 3 new crowdturfing apps (false
negatives), while the remaining 310 were all false positives.
Looking into these 3 missed apps, interestingly we found
that they were all web-based apps that dynamically download
crowdturfing content from the web during their runtime, as
we observed on the ground-truth set.

Falsely detected apps. All false detections reported come
from the apps indeed carrying conditionally triggered UIs.
These apps are not only structurally but also semantically
related to a true crowdturfing app. More specifically, their
hidden UIs all contain monetary content, which is one of the
semantic features for crowdturfing apps. For example, among
the 9 false detections, 7 are about “Health & Fitness” but
actually include hidden lottery UIs. The remaining two are
“Education” apps, which declare to be free but later display
a remotely controllable UI asking for payment. Note that all
these UIs are potentially unwanted, since they are undocu-
mented (in the apps’ description) and forbidden by Apple’s
guideline [21]. We consider these apps (with illicit UIs) as
false detections, just because they are not directly related to
crowdturfing.

Legitimate use of conditionally triggered UI. In Section 3,
we report the observation of 14% apps including conditionally
triggered UIs. Through a manual analysis, we found that these
apps use two entry UIs to display notifications, a tour or a
guide for the app, special events (e.g., New Year) and etc. All
their hidden UIs cannot be reached through user interactions.
This demonstrates the importance of the Semantic Analyzer,
which utilizes NLP to determine the irrelevance of these apps
to crowdturfing, thereby controlling the FDR of our approach.

3.5 Comparison to Other Approaches

NaiveCruiser: Semantic analysis on all VCs. Cruiser is
characterized by a two-step analysis (by the Structure Miner
and then the Semantic Analyzer), first filtering out the VCs
with normal navigation pattern and then analyzing the seman-
tics of suspicious VCs. This strategy is designed to minimize
the overheads incurred by the Semantic Analyzer, which is
crucial for making our system scalable for analyzing the 28K
apps in the wild. In the meantime, there is a concern whether
the performance benefit comes with an impact on the tech-
nique’s effectiveness, making it less accurate. To understand
the problem, we compared our implementation of Cruiser
with an alternative solution, called NaiveCruiser, which con-
ducts a semantic analysis on all VCs in the app. This approach
is fully tuned toward effectiveness, completely ignoring the
performance impact.

In particular, we also evaluated the NaiveCruiser over the
same ground-truth datasets we used to evaluate Cruiser. Run-
ning on these sets, NaiveCruiser shows a precision of 90.9%
and a recall of 93.2%, which is in line with Cruiser (preci-
sion of 88.9% and recall of 94.1%). This indicates that our
two-step design does not affect the effectiveness of detection.
We also show the large performance degrade of NaiveCruiser,
compared to Cruiser, in Appendix.

Crowdturfing keyword search. Simply searching for crowd-
turfing keywords is not effective. This is because the words
used in crowdturfing UI (e.g., money, withdrawal, cash) are
common, which often appear on other legitimate UIs (e.g.,
stock apps, accounting apps). Therefore, a simple keyword-
based approach would bring in a high FDR (see below). Our
approach utilizes a suite of techniques (e.g., looking for struc-
tural features of conditionally triggered UIs and correspond-
ing VCs, removing words related to app descriptions) to avoid
false reporting of legitimate UIs.

To understand how effective these techniques are, we eval-
uated the baseline – the naive keyword search on the 28K
iOS apps. Specifically, we automatically extracted keywords
from crowdturfing content collected from our ground-truth
set, and then manually crafted a list of 32 most representa-
tive keywords for crowdturfing tasks (e.g., reward, task and
installation). In the experiment, we studied the effectiveness
of these keywords by first searching for the apps contain-
ing individual words and then analyzing their combinations
(those including 2, 3, · · · , 32 words). The more keywords an
app includes, the more likely it is problematic but the fewer
such apps would be found. In the end, we did not see any
app involving more than 8 keywords. Among those carrying
no more than 8 words, the highest precision achieved was
15.38% (an FDR of 84.62%), for those with 8 words. In this
case, only 5 apps were reported. By comparison, our approach
achieved a precision of 91.2%, reporting 93 malicious apps
on the unknown set. This result demonstrates that the naive
keyword search is indeed inadequate.

772 28th USENIX Security Symposium USENIX Association

Figure 5: Overview of modern crowdturfing value chain,
which consists of hidden crowdturfing app development (Ê-
Ï) and mobile crowdturfing operations (a - d).

4 Understanding iOS-based Crowdturfing

Based on the detected crowdturfing apps, we further per-
formed a measurement study to understand the iOS-based
crowdturfing ecosystem. In this section, we first present as
an example a real value chain of modern crowdturfing (Sec-
tion 4.1), and then describe the scope and magnitude of this
malicious activity as discovered in our research (Section 4.2),
before elaborating the two key components of the value chain:
crowdturfing app development and promotion (Section 4.3)
and mobile crowdturfing operations (Section 4.4).

4.1 Mobile-Crowdturfing Value Chain

Before coming to the details of our measurement findings,
first let us summarize the mobile-crowdturfing value chain
discovered in our research.

A cybercriminal (i.e., intermediary), who owns a modern
crowdturfing platform chinazmob, intends to publish a mobile
client, which is downloadable from the App Store, to publish
crowdturfing tasks and coordinate with small-time workers.
Hence, the intermediary seeks underground app developers
to build an app with hidden crowdturfing UIs (Ê, see Sec-
tion 4.3). The hidden crowdturfing UI will only be triggered
when app users visit the website ioswall.chinazmob.com.
Once done, the app Pleasant Music (id115****781), which
disguises as a music player, passes the vetting of the App Store
and is published (Ë). Then, the intermediary promotes this
app on social networks (Ì) with links to the App Store and
the triggering website ioswall.chinazmob.com. Small-time
workers, who observe the promotion (Í) and download the
Pleasant Music app (Î), will access the mobile crowdturfing
client after triggering the hidden UI (Ï) to execute crowdturf-
ing tasks. Meanwhile, in the underground business of mobile
crowdturfing, a dishonest mobile app owner of Anjuke who
plans to inflate the app’s installation volume reported by the
App Store, pays for a crowdturfing platform chinazmob to

manage crowdsourced app downloading tasks (a). Then, the
intermediary will publish a task on its mobile client and re-
cruit small-time workers (b) to do the task. These workers
will install Anjuke and write fake reviews for the app (c).
Once done and verified by the crowdturfing platform (d), the
workers will get commissions from the platform.

In the rest of the section, we discuss the security implica-
tion introduced by these hidden UI apps, considering both
crowdturfing app development and promotion and mobile
crowdturfing operations in the value chain. As evidence for
their impacts, those apps successfully infiltrated the App Store,
even reached a high rank and bypassed the app vetting mul-
tiple times. In addition, we discovered various hidden UI
techniques and the underground services that support the de-
velopment of such apps. In particular, we revealed a set of
techniques (e.g., logic bomb, scheme) deployed by the cyber-
criminals, as well as the underground services that are willing
to pay $450 for developing such iOS apps. For app promo-
tion, we identified 40 crowdturfing app gateway sites used by
cybercriminals to promote 67.7% of such apps, which also
enabled us to estimate the volume of the users. Furthermore,
we report the findings related to mobile-based crowdturfing
and discuss their insights, which have never been done be-
fore. For example, in contrast to the web-based crowdturfing
dominated by a small number of platforms, on the mobile
side we observed a fragmented crowdturfing market and a
stealthy iOS crowdturfing ecosystem: we detected 93 hidden
crowdturfing apps related to 9 campaigns, after clustering
them based on similar app information, code structure and
network behavior. Finally, we report a case study on an app
with a hidden app ranking manipulation UI.

4.2 Landscape

Scope and magnitude. Our study reveals that apps with hid-
den crowdturfing UI are indeed trending in the Apple App
store. Altogether, Cruiser detected 93 apps with hidden crowd-
turfing UIs, which are related to 67 crowdturfing platforms.
To the best of our knowledge, this is the largest finding on
mobile crowdturfing ever reported.

Apps with hidden crowdturfing UI, as discovered in our
experiment, are found in 15 categories of the Apple App
Store. As shown in Table 3, over 77.4% of the apps are in
the categories of Music, Utilities, LifeStyle, and Entertain-
ment. These apps are often built upon existing open source
projects (see Section 4.4). Surprisingly, we found that some
crowdturfing apps are of high ranks: six apps, including the
wifi helper app (cn.qimai2014.polarbearwifi), the recorder
utility app (com.amzhushou.app), the Temple Run style app
(com.funinteract.ballgame) and several word guessing game
apps reached top 20 of the leaderboard across different coun-
tries (e.g., China, Laos), based on the ranking data available
from App Annie [6]; also, we observed that at least 14 apps
were once ranked within the top 50, and 25 apps were in the

USENIX Association 28th USENIX Security Symposium 773

Table 3: Top 5 app store categories of apps with hidden crowd-
turfing UI.

Category # apps Benign UI examples
Music 32 (34.4%) Ringtones, Piano Pieces
Utilities 15 (16.1%) Recorder, File Manager
LifeStyle 15 (16.1%) Story Teller
Entertainment 10 (10.8%) Web Browsers, Jeopardy-style Quiz
Games 5 (5.4%) Word Guess, Fruit Cutting

top 100 of their corresponding categories.

Impact of hidden crowdturfing apps. Furthermore, our
study shows that the apps with hidden crowdturfing UIs have
indeed successfully infiltrated App Store. Figure 6 illustrates
the Version distribution of the crowdturfing apps. Most of
them (73%) have only few updates, with a version number
in the range from 0 to 1.5. However, still a non-negligible
portion of apps (27% apps have Version ≥ 2.0) seem to be
capable of carrying their suspicious payloads even to their
higher versions. This is interesting since apps need to go
through Apple’s inspection for every new version submitted
to the App Store.

Then, we analyzed the trend of the infiltration performed
by the crowdturfing apps. Figure 7 shows the distribution
of the number of such apps on the Apple App store over
their release date. The trend-line based on the linear forecast
regression indicates that those apps are still on the rise and
require further attention. We observed that the newly-released
apps with hidden crowdturfing UI have increased by 150%
from Jan. 2015 to Jun. 2017.

4.3 App Development and Promotion
App development. Apparently, the development of crowd-
turfing apps is in strong demand on the underground market.
Our research shows that one could get an illicit app, with
desired hidden UIs, on the App Store for $450 [25]. Specifi-
cally, a quick search on Google yields dozens of recruitment
posts for such app development; e.g., freelancer [24,25], Code
Mart [17], witmart [51], dongcoder [22], Code4App [16]. As
shown in the task description [25], the illicit app to be devel-
oped should be capable of displaying a benign UI during app
vetting, and switching to an illicit UI once it is published on
the App Store.

Also illicit app developers tend to minimize the effort to
develop the benign UIs for covering the crowdturfing ones.
One common approach they take is to hide the crowdturfing
UIs to the app built upon an open source project ([31,35,43]).
In particular, we extracted strings from the benign VCs of the
detected crowdturfing apps, and then searched them in leading
code repositories (e.g., Github). Interestingly, we found that
the benign UIs of six crowdturfing apps come from two open
source projects: ESTMusicPlayer and LittleFrog-MusicPlayer.
Note that according to Apple’s guidelines [21] (4.3 and 4.2.6),

such template apps should have been rejected. However, we
observe that Apple seems to loosen its policy, which makes
developing such illicit apps easier. To verify the observation,
we designed a hidden crowdturfing app by utilizing one of
the open source projects, ESTMusicPlayer [35], as the benign
template. The app successfully got into the App Store in
two days (we removed the app immediately before any user
downloaded it).

UI hiding techniques: Triggers. We found that such illicit
apps utilize a spectrum of UI hiding techniques to evade app
vetting, which are described as follows:

• Logic bomb. Apparently, the adversary tends to trigger hid-
den crowdturfing UI when certain conditions are met (e.g., af-
ter app vetting). Some detected hidden crowdturfing apps con-
tain logic bombs; e.g., the app sets off the hidden crowdturfing
UI when a specified time (e.g., after “2017-01-18 00:00:00”),
location (e.g., “isCN”), or device information (e.g., connected
to cellular) conditions are met. For instance, the crowdturf-
ing UI in cn.music.s3b is only activated when the device is
connected to network and has its area/language code set to
"zh".

• C2 server. Like bots, apps with hidden crowdturfing UI
are also found to leverage command and control servers
(C2 servers) to trigger their hidden UIs. For instance,
com.catTestPlay.app retrieves a “status” code from its
web server http://[domain]/itunes_app/sound_dog to decide
whether to switch to its hidden UI.

• Scheme. Another interesting observation is that the app de-
velopers utilize extremely sophisticated triggering conditions,
which even require the user to take certain actions. An inter-
esting example is that a hidden crowdturfing UI can only be
invoked by a specific scheme. Those apps promoted them-
selves on the social networks or websites; when users down-
load those hidden crowdturfing apps from the App Store, the
promoted sites provide the users an activation link to trigger
the hidden crowdturfing UIs. More specifically, when the acti-
vation link is clicked, a scheme (e.g., babyforring://[params]),
that releases the illicit UI, is sent to the app.

• Others. Several other techniques are also used to differen-
tiate normal users’ devices and vetting environment. As an
example, we observe that a UI is hidden by the combination
of scheme and logic bomb: the app com.qianying.music will
first determine whether a user has logged into her WeChat
app on the device, and then release its illicit UI only when
receiving a scheme from a specific website.

App Clones. We observed that illicit app owners resub-
mitting clones of removed or existing illicit apps by only
changing their bundle IDs through different Apple developer
IDs; e.g., after com.cloud.NHCore was removed from App
Store, it was quickly resubmitted as com.good.jingling. De-
velopers also submitted multiple repackaged apps contain-
ing the same hidden crowdturfing UI; e.g., two apps, music

774 28th USENIX Security Symposium USENIX Association

Figure 6: Version distribution of apps with hidden crowd-
turfing UIs.

Figure 7: Release date distribution of apps with hidden
crowdturfing UIs.

Figure 8: Cumulative distribution of crowdturfing app down-
loads.

player com.yueyuemusic and eBook reader com.Qingyu app,
were found to integrate the identical crowdturfing platform
(i.e., rehulu.com). To mitigate the threat of such persistent
infiltration attempts, we provided a list of words that could
help to fingerprint such apps upon Apple’s request, and mean-
while are actively collecting resubmitted/repackaged hidden
crowdturfing apps.

App Promotion and worker recruitment. To understand
how crowdturfing platform owners disseminate such apps and
recruit workers, we searched for the apps’ names on the search
engine and manually analyzed top-10 results to identify their
promotion websites. In this way, we gathered 50 websites
advertising 78 (83.9%) hidden crowdturfing apps. We found
that the owners of these hidden crowdturfing apps promote
their apps through multiple channels: advertising on the online
communities (e.g., BBS, tieba), social networks (e.g., youtube,
weibo), and crowdturfing app gateway sites (e.g., app522.com,
i8i3.com).

Of particular interest is the crowdturfing app gateway
sites, which refer the visitors to multiple hidden crowdturf-
ing apps. We identified 40 such gateway sites that promoted
63 (67.7%) hidden crowdturfing apps. For example, the

com.cq.diaoqianyaner.pro.bookstore app was found to be pro-
moted on eight crowdturfing sites: qisw123.com, ydzapp.com,
eshiwan.com, etc. Most intriguing is the discovery that all
the apps actively promoted on those gateway websites have
been detected by Cruiser from the unknown set. Since those
websites record apps’ download volume, we were able to es-
timate the number of these apps’ users. Figure 8 illustrates
the cumulative distribution of the number of downloads per
crowdturfing app. As shown in the figures, around 50% of the
crowdturfing apps were downloaded more than 18K times,
with 32.4 million downloads in total.

Another interesting promotion channel is the referral bonus
policy, which is provided through the app: the app’s owner
pays workers (users) if they invite other workers to use this
app for crowdturfing. We found that 23% of the crowdturfing
apps are using such a channel to recruit workers.

4.4 Mobile Crowdturfing Operations

Crowdturfing tasks. Table 4 illustrates the top-6 most com-
mon illicit crowdturfing tasks found in the apps with hidden
crowdturfing UIs. As we can see here, most of them are mo-
bile based crowdturfing tasks. According to our findings, app
ranking manipulation is supported by a significant portion
(88.2%) of crowdturfing apps, followed by fraud account reg-
istration, and fake review. Figure 9 illustrates the cumulative
distribution of the task categories per app. We observe that
about 62.5% apps only provide one kind of crowdturfing tasks,
among which 86.7% are designed for iOS app ranking ma-
nipulation. Surprisingly, when analyzing apps seeking crowd-
turfing for iOS app ranking manipulation, we observe several
popular and reputable apps. Examples include a calendar app,
which ranked Top 10 in the App Store category of Utilities
across 15 countries, and a restaurant review app, which ranked
Top 10 in Lifestyle category across 49 countries.

To measure the task volume of an app (i.e., number of tasks
× number of required workers per task), we crawled five apps’
task information and the number of required workers through
their crowdturfing UIs. Table 5 presents the average daily task
volume for each app. For instance, the app ranking manip-

USENIX Association 28th USENIX Security Symposium 775

Figure 9: Distribution of the categories of crowdturfing tasks
per app.

Table 4: Top-6 most common illicit crowdturfing tasks in apps
with hidden crowdturfing UIs.

Crowdturfing tasks # apps # download (K)
Highest
ranking

App ranking
manipulation

82 32,268 5

Fraud account
registration

28 15,618 64

Fake review 13 1,218 79
Bonus scalping 11 13,990 18

Online blog
reposting

9 14,602 19

Order scalping 9 601 122

ulation app com.zhang.samusic has a daily task volume of
42,064 for manipulating 24 apps. Given an average task price
of $0.14, the revenue for all those tasks is around $5.88K.

Furthermore, we analyze network traffic of such apps to
study their servers, which distribute the tasks to the apps (see
Figure 2). Interestingly, due to the difficulty in publishing
crowdturfing apps, we find that multiple servers even share
one client. In particular, besides their own servers, six apps are
found to receive crowdturfing tasks from seven other servers
(e.g., qumi.com and domob.cn) and all these tasks are related
to app ranking manipulation.

Campaign discovery. In contrast to the web-based crowd-
turfing platforms [49], which are dominated by a few popular
websites, we observed that the iOS-based crowdturfing plat-
forms are more diverse. To study the relations among these
crowdturfing apps, we built a graph for campaign discovery
and further manually analyzed large campaigns identified. In
the graph, each app is regarded as a node, and an edge con-
necting two apps represents that they are all from the same
developer, with similar code or similar network behaviors. In
particular, we crawled apps’ developer information from the

Table 5: Task volume and price of five apps with hidden
crowdturfing UIs

App # tasks task volume
Per task

price
com.zhang.samusic 24 42,064 0.14
com.roidmi.mifm 29 29,000 0.12

com.miaolaierge.iosapp 12 7,500 0.13
com.applyape.yycuimian 15 16,715 0.11

com.jialiang.weka 8 10,000 0.14

Table 6: Top-3 campaigns with most apps with hidden crowd-
turfing UI.

Campaign # apps Remote server
uxiaowei 9 uxiaowei.com

apptyk 6
apptyk.com

laizhuan.com
diaoqianyaner.com.cn

rehulu 6 rehulu.com

iTunes Preview website [34]. Then, we checked the common
strings referenced by different apps’ hidden crowdturfing UIs.
If the strings from two different apps have more than 90%
in common, we link them together. To capture the network
behavior, we triggered all these apps by signing onto their
platforms. If two apps’ hidden crowdturfing UIs connect to
the same server, we consider them to belong to the same
campaign.

Table 6 shows top-3 campaigns with most crowdturfing
apps. The largest one includes nine apps with hidden app
ranking manipulation UIs, and all of them connect to the
server uxiaowei.com. Interestingly, we observe that seven
crowdturfing app owners (e.g., id109****906, id110****416,
id110****262, id114****820) are related to this campaign.
This campaign enjoyed a long lifetime, from May 2016 to
March 2018.

4.5 Case Study

Here we introduce a typical app with hidden crowdturfing
UI sohouermusic, which disguises as a music player, but also
receives app ranking manipulation tasks (download, install,
make up fake reviews, etc.). We observed that triggering the
illicit service is surprisingly difficult, and such triggering pro-
cess is designed to evade app vetting. Specifically, the so-
houermusic app is promoted on popular social networks (e.g.,
WeChat), which redirect users to a website (play.sohouer.com).
Only when a user visits the website on his iPhone and requires
an invitation scheme sohouermusic://invite=[serial number]
to be sent, will the app load its hidden UI. However, before
the UI is actually rendered, the sohouer app checks whether
it has passed the vetting process via its server, and the hidden
crowdturfing UI shows up only when the remote server re-

776 28th USENIX Security Symposium USENIX Association

sponds with “isreview: 0” and a scripturl. Besides acting as a
client of a crowdturfing platform, such an app also stealthily
collects user’s data ; e.g., device type, version, jailbreak status,
location. Another interesting observation is that the sohouer-
music developers are persistent: after the sohouermusic app
was removed (after we reported to Apple), the hidden crowd-
turfing UI was quickly repackaged into a sohouercamera app
and was submitted through a different developer account.

5 Discussion

Evasion. The current implementation of Cruiser is based on
identifying two types of conditionally triggered UIs for further
semantic analysis (see Section 3.2). Hence, to evade Cruiser,
the adversary may use the hidden crowdturfing UI, which is
triggered by users and also avoids the root UI. Such evasion
techniques, however, will cause the possible crowdturfing
UIs to be triggered during app vetting. This is because all
clickable elements may be triggered by Apple employee’s
manual or automatic analysis during app vetting [47]. This
defeats the purpose of hidden UI.

The adversary may play other evasion tricks, by hiding
semantic texts on the hidden crowdturfing UI to downgrade
the accuracy of the Semantic Analyzer. In particular, the ad-
versary can show crowdturfing related texts in the images, or
obfuscate class names and method names, even dynamically
fetch the crowdturfing related content. One possible solution
is to run an Optical Character Recognition (OCR) tool [36]
to extract the texts from images in the resource files, which
enables to identify enough UI semantic even when the code
is obfuscated. Considering the dynamically fetched hidden
crowdturfing content, the adversary may deliver it on runtime
using dynamic code loading (e.g., JSPatch [12]). However,
Apple regulates and carefully monitors those dynamic code
enabling techniques (e.g., hot patching frameworks) to mini-
mize the attack vector; recently, Apple even bans or rejects
any apps that use hot patch [39] from their App Store.

Limitations. Although Cruiser can already achieve a preci-
sion around 90%, still human involvement is needed to ensure
that the apps reported are indeed problematic. Therefore, in
the current form, it can only serve as a triage tool, instead
of a full-fledged detection system. Also, as mentioned ear-
lier, our current design is focused on iOS based apps, since
cybercriminals have more intentions to utilize hidden UI to
infiltrate the iOS app store than that of Android: centralized
app vetting and installation make it hard for the crowdturfing
app to reach out to the iPhone users. In the meantime, based
on our observations, such hidden crowdturfing apps exist,
though less pervasive, in the Android world. In particular, we
conducted a small-scale study to find whether our detected
apps have Android versions by searching for app names on
Google Play, third-party stores and app download portals, and
further manually examining them. We did not find any hidden

crowdturfing apps, but did observe blatant crowdturfing apps
(without hidden UIs) in less regulated third-party Android
app stores.

Moreover, besides crowdturfing, we do think that cyber-
criminals can use hidden UI techniques for other abusive
services, such as delivering unauthorized content, or even
malware. When looking into such apps (those found in our
research to carry hidden UIs but not perform crowdturfing),
we found instances such as covering a phishing UI behind
a travel app. A natural follow-up step is to investigate all
abusive services exploring hidden UI to infiltrate the iOS app
store and characterize the underground markets behind them.
We will leave this as our future work.
Ethical issue. Our research only involved analysis of pre-
existing code and app content and did not collect new data
during the study. Therefore, it is just a secondary analysis of
already published materials, which does not constitute human-
subject research. Another ethical concern comes from the
potential that Cruiser could be used to identify possible be-
nign hidden UIs; e.g., for censorship circumvention. Here
we clarify that Cruiser is just a methodology for discovery
and understanding of a new type of cybercrime, and during
our study, we did not observe any such censorship evasion
attempts. We acknowledge that any evasion detection tech-
niques, including ours, could also be used for censorship. In
the meantime, our methodology has been tailored towards
crowdturfing detection: e.g., the features used by the structure
miner are based upon the structures of real-world crowdturf-
ing apps, the Word2vec model and other NLP components are
all built on crowdturfing data. We are not sure how effective
our approach would be when applying it to detect other types
of hidden content, and how much additional effort is needed
to make it a full-fledged censorship tool.

Responsible disclosure. Since the discovery of apps with
hidden crowdturfing UI, we have been in active communica-
tion with Apple. So far, we have reported all the apps detected
in our research to Apple, who has removed all of them from
the App Store; also upon Apple’s request, we provided a list
of fingerprints for eliminating the similar apps.

6 Related Work

Study on crowdturfing. The ecosystem of web-based crowd-
turfing has been studied for long. Motoyama et al. [37] identi-
fied the labor market Freelance involved in service abuse (e.g.,
fraud account creation) and characterized how pricing and
demand evolved in supporting this activity. Wang et al. [49]
studied two Chinese online crowdturfing platforms and also
revealed the impact of the crowdturfing followers task on
those platforms to microblogging sites. Stringhini el al. [45]
investigated five Twitter follower markets to study the size
of these markets and the price distribution of their service.
Su et al. [46] studied the spamming activity of “Add To Fa-

USENIX Association 28th USENIX Security Symposium 777

vorites” by collecting the several “Add To Favorites” tasks
information from one crowdturfing platform. In our research,
to the best of our knowledge we for the first time investigate
the crowdturfing platforms on the mobile devices, and reveal
several unique characteristics; e.g., fragmented crowdturfing
markets, mobile targeted crowdturfing tasks, stealthy worker
recruitment channel, hidden crowdturfing UI techniques.

Illicit iOS app detection. Compared with Android, the Ap-
ple platforms are much less studied in terms of their security
protection. Egele et al [23] proposed PiOS, which uses con-
trol flow analysis to detect privacy leaks in iOS apps. Deng et
al [18] presented an approach to detect private API abuse by
binary instrumentation and static analysis. Chen et al. [14] de-
termines potentially harmful iOS libraries by looking for their
counterparts on Android. Bai et al. [11] and Xing et al. [53]
uncovered several zero configuration and cross-app resource
sharing vulnerabilities, and proposed the corresponding de-
tection methods. Understanding the security implications of
hidden crowdturfing UI in iOS apps has never been done
before. Also, none of the prior research provides a UI based
detection mechanism to identify illicit iOS apps with hidden
UI.

Text analysis for mobile security. Numerous studies have
looked into apps’ UI texts to detect mobile threats such as task
jacking, mobile phishing attack, ransomware, or to protect
user privacy. AsDroid [33] checks the coherence between the
semantics of the UI text (e.g., text of button) and program be-
havior associated with the UI (e.g., button) to detect malicious
behavior (e.g., sensitive API) in Android apps such as sending
short messages and making phone calls. Heldroid [10] uses a
supervised classifier to detect threatening sentences from An-
droid apps to detect ransomware. SUPOR [32], UIPicker [38]
and UiRef [9] identify sensitive user inputs within user in-
terfaces to protect user privacy. In particular, SUPOR [32]
extracts layouts by modifying the static rendering engine of
the Android Developer Tool (ADT). UIPicker [38] operates di-
rectly on the XML specification of layouts. UiRef [9] resolves
the semantics of user-input widgets by analyzing the GUIs
of Android applications. It improves the accuracy of SUPOR
by addressing ambiguity of descriptive text through word
embedding. In addition to UI texts, researchers intensively
leverage Natural Language Processing (NLP) to process app
descriptions for mobile security research. Examples include
WHYPER [40] and AutoCog [41], which check whether an
Android app properly indicates its permission usage in its
app description, CHABADA [29] applied topic modeling
technique on an app’s text description to help infer user’s
expectation of security and privacy relevant actions. Different
from previous works, our work compared the semantics of
conditionally triggered UI texts of iOS apps, crowdturfing key-
words and app descriptions to identify hidden crowdturfing
apps. Also, sensitive or private APIs are not used for detection
in our work as the illicit behavior of the app we detect are

based on UI not API. Also, different from SUPOR, UIPicker
and UiRef, we extract UI texts from UI hierarchies (LVCG)
we generated from iOS apps.

7 Conclusion

In this paper, we report our study on illicit iOS apps with hid-
den crowdturfing UIs, which introduce conditionally triggered
UIs and a large semantic gap between hidden crowdturfing
UI and other UIs in the app. Exploiting these features, our
crowdturfing UI scanner for iOS, Cruiser, utilizes iOS UI hier-
archy analysis technique and NLP techniques to automatically
generate a UI hierarchy from binary and UI layout files and
investigate conditionally triggered UI and the semantic gap
to identify such illicit apps. Our study shows that Cruiser in-
troduces a reasonable false detection rate (about 11.1%) with
over 94.1% coverage. Running on 28K iOS apps, Cruiser
automatically detects 93 apps with hidden crowdturfing UIs,
which brings to light the significant impact of such illicit apps:
they indeed successfully infiltrate App Store, even bypassing
app vetting several times. What is worse, we observed an
increasing trend of the number of such apps in App Store.
Our research further uncovers a set of unique characteristics
of iOS crowdturfing, which has never been revealed before:
for example, we observe several remote crowdturfing servers
share one iOS crowdturfing app as a client, which may be
due to the difficulty of infiltration; also, such illicit apps were
promoted by crowdturfing gateway sites to recruit workers,
etc. Moving forward, we further investigate the hidden UI
techniques providing by illicit app developers, including logic
bomb, command and control infrastructure, and scheme tech-
nique etc.

8 Acknowledgements

We are grateful to our shepherd Gianluca Stringhini and the
anonymous reviewers for their insightful comments. This
work is supported in part by NSF CNS-1801365, 1527141,
1618493, 1801432, 1838083 and ARO W911NF1610127.

References
[1] Amazon mechanical turk: Access a global, on-demand, 24x7 workforce. https:

//www.mturk.com.

[2] Google translate. https://translate.google.com.

[3] Number of apps available in leading app stores
2018. https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/.

[4] Sandaha. http://sandaha.cc.

[5] Zhubajie. https://www.zbj.com.

[6] App annie. https://www.appannie.com/en/, Mar. 2010.

[7] Capstone: The ultimate disassembler. http://www.capstone-engine.org,
Nov. 2013.

778 28th USENIX Security Symposium USENIX Association

https://www.mturk.com
https://www.mturk.com
https://translate.google.com
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://sandaha.cc
https://www.zbj.com
https://www.appannie.com/en/
http://www.capstone-engine.org

[8] 91ssz. A website that provides ios apps with illicit features. http://www.91ssz.
com/app/iphone/, Mar. 2017.

[9] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie. Uiref: analysis
of sensitive user inputs in android applications. In Proceedings of the 10th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, pages
23–34. ACM, 2017.

[10] N. Andronio. Heldroid: Fast and Efficient Linguistic-Based Ransomware Detec-
tion. PhD thesis, 2015.

[11] X. Bai, L. Xing, N. Zhang, X. Wang, X. Liao, T. Li, and S.-M. Hu. Staying
secure and unprepared: understanding and mitigating the security risks of apple
zeroconf. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 655–
674. IEEE, 2016.

[12] bang590. Jspatch: bridging objective-c and javascript using the objective-c run-
time. https://github.com/bang590/JSPatch, May 2015.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[14] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, and W. Zou. Following devil’s footprints: Cross-platform analysis
of potentially harmful libraries on android and ios. In Security and Privacy (SP),
2016 IEEE Symposium on, pages 357–376. IEEE, 2016.

[15] G. Cheng. 7 Winning Strategies For Trading Forex: Real and actionable tech-
niques for profiting from the currency markets. Harriman House Limited, 2007.

[16] Code4App. Code4app: Looking for ios chameleon app developer. http://www.
code4app.com/thread-14820-1-1.html, Sep. 2017.

[17] coding mart. Recruitement for ios chameleon app developer. https://mart.
coding.net/project/11325, Nov. 2017.

[18] Z. Deng, B. Saltaformaggio, X. Zhang, and D. Xu. iris: Vetting private api abuse
in ios applications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 44–56. ACM, 2015.

[19] A. Developer. Storyboard: Guides and sample code. https://developer.
apple.com/library/content/documentation/General/Conceptual/
Devpedia-CocoaApp/Storyboard.html, Sep. 2013.

[20] A. Developer. Using segues. https://developer.apple.com/
library/content/featuredarticles/ViewControllerPGforiPhoneOS/
UsingSegues.html, Sep. 2015.

[21] A. Developer. App store review guidelines. https://developer.apple.com/
app-store/review/guidelines/, Dec. 2017.

[22] dongcoder. In demand of chameleon for app vetting. http://www.dongcoder.
com/detail-678294.html, Sep. 2017.

[23] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks in
ios applications. In NDSS, pages 177–183, 2011.

[24] Freelancer. Freelancer: looking for developer for lottery chameleon app. https:
//www.freelancer.com/projects/php/app-edt-15321896/, Apr. 2017.

[25] Freelancer. We need to do a universal application on ios, and then display our
url through the interface. https://www.freelancer.com/projects/iphone/
need-universal-application-ios-then/, Apr. 2017.

[26] B. J. Frey and D. Dueck. Clustering by passing messages between data points.
science, 315(5814):972–976, 2007.

[27] fxsjy. Jieba chinese text segmentation. https://github.com/fxsjy/jieba,
Jul. 2013.

[28] Google. Developer policy center. https://play.google.com/about/
developer-content-policy/#!?modal_active=none, Dec. 2017.

[29] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior against
app descriptions. In Proceedings of the 36th International Conference on Soft-
ware Engineering, pages 1025–1035. ACM, 2014.

[30] T. S. N. L. P. Group. Stanford word segmenter. https://nlp.stanford.edu/
software/segmenter.shtml, May 2006.

[31] hellclq. ios app: Happy english sentences 8k. https://github.com/
helloclq/HappyEnglishSentences8000, Aug. 2013.

[32] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang. Supor: Precise
and scalable sensitive user input detection for android apps. In USENIX Security
Symposium, pages 977–992, 2015.

[33] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid: Detecting stealthy
behaviors in android applications by user interface and program behavior con-
tradiction. In Proceedings of the 36th International Conference on Software
Engineering, pages 1036–1046. ACM, 2014.

[34] A. Inc. itunes preview (app store). https://itunes.apple.com/genre/ios/
id36?mt=8, Jul. 2008.

[35] P. King. Estmusicplayer. https://github.com/Aufree/ESTMusicPlayer,
Nov. 2015.

[36] S. Mori, H. Nishida, and H. Yamada. Optical character recognition. John Wiley
& Sons, Inc., 1999.

[37] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker. Dirty
jobs: The role of freelance labor in web service abuse. In Proceedings of the 20th
USENIX conference on Security, pages 14–14. USENIX Association, 2011.

[38] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang. Uipicker: User-input
privacy identification in mobile applications. In USENIX Security Symposium,
pages 993–1008, 2015.

[39] T. C. P. N. NETWORK. Apple removes 45,000 apps in china. http://www.
asiaone.com/digital/apple-removes-45000-apps-china, Jun. 2017.

[40] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. Whyper: Towards automating
risk assessment of mobile applications. In USENIX Security Symposium, pages
527–542, 2013.

[41] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen. Autocog: Measuring
the description-to-permission fidelity in android applications. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pages 1354–1365. ACM, 2014.

[42] D. Quesada. ios interface builder utility. https://github.com/
davidquesada/ibtool.

[43] SimonLo. Hulumusic. https://github.com/SimonLo/HuluMusic, Apr.
2017.

[44] J. Song, S. Lee, and J. Kim. Crowdtarget: Target-based detection of crowdturfing
in online social networks. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 793–804. ACM, 2015.

[45] G. Stringhini, G. Wang, M. Egele, C. Kruegel, G. Vigna, H. Zheng, and B. Y.
Zhao. Follow the green: growth and dynamics in twitter follower markets. In
Proceedings of the 2013 conference on Internet measurement conference, pages
163–176. ACM, 2013.

[46] N. Su, Y. Liu, Z. Li, Y. Liu, M. Zhang, and S. Ma. Detecting crowdturfing
add to favorites activities in online shopping. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, pages 1673–1682. International World
Wide Web Conferences Steering Committee, 2018.

[47] M. Tabini. How apple is improving mobile app se-
curity. https://www.macworld.com/article/2047567/
how-apple-is-improving-mobile-app-security.html, SEP 2013.

[48] S. T. M. Toolbox. Stanford word segmenter. https://nlp.stanford.edu/
software/tmt/tmt-0.4/, May 2006.

[49] G. Wang, C. Wilson, X. Zhao, Y. Zhu, M. Mohanlal, H. Zheng, and B. Y. Zhao.
Serf and turf: crowdturfing for fun and profit. In Proceedings of the 21st interna-
tional conference on World Wide Web, pages 679–688. ACM, 2012.

[50] Wikipedia. Word2vec: a model to produce word embeddings. https://en.
wikipedia.org/wiki/Word2vec, Feb. 2018.

[51] witmart. Buy covering ios apps for 30,000 cny. http://www.witmart.com/cn/
app-software/jobs/jobid_34788.html, Oct. 2017.

[52] C. Xiao. Pirated ios app store’s client successfully evaded apple ios code review.
https://researchcenter.paloaltonetworks.com/2016/02/
pirated-ios-app-stores-client-successfully-evaded-apple-ios-c
ode-review/, Feb. 2016.

[53] L. Xing, X. Bai, T. Li, X. Wang, K. Chen, X. Liao, S.-M. Hu, and X. Han. Crack-
ing app isolation on apple: Unauthorized cross-app resource access on mac os.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 31–43. ACM, 2015.

USENIX Association 28th USENIX Security Symposium 779

http://www.91ssz.com/app/iphone/
http://www.91ssz.com/app/iphone/
https://github.com/bang590/JSPatch
http://www.code4app.com/thread-14820-1-1.html
http://www.code4app.com/thread-14820-1-1.html
https://mart.coding.net/project/11325
https://mart.coding.net/project/11325
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/library/content/featuredarticles/ViewControllerPGforiPhoneOS/UsingSegues.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
http://www.dongcoder.com/detail-678294.html
http://www.dongcoder.com/detail-678294.html
https://www.freelancer.com/projects/php/app-edt-15321896/
https://www.freelancer.com/projects/php/app-edt-15321896/
https://www.freelancer.com/projects/iphone/need-universal-application-ios-then/
https://www.freelancer.com/projects/iphone/need-universal-application-ios-then/
https://github.com/fxsjy/jieba
https://play.google.com/about/developer-content-policy/#!?modal_active=none
https://play.google.com/about/developer-content-policy/#!?modal_active=none
https://nlp.stanford.edu/software/segmenter.shtml
https://nlp.stanford.edu/software/segmenter.shtml
https://github.com/helloclq/HappyEnglishSentences8000
https://github.com/helloclq/HappyEnglishSentences8000
https://itunes.apple.com/genre/ios/id36?mt=8
https://itunes.apple.com/genre/ios/id36?mt=8
https://github.com/Aufree/ESTMusicPlayer
http://www.asiaone.com/digital/apple-removes-45000-apps-china
http://www.asiaone.com/digital/apple-removes-45000-apps-china
https://github.com/davidquesada/ibtool
https://github.com/davidquesada/ibtool
https://github.com/SimonLo/HuluMusic
https://www.macworld.com/article/2047567/how-apple-is-improving-mobile-app-security.html
https://www.macworld.com/article/2047567/how-apple-is-improving-mobile-app-security.html
https://nlp.stanford.edu/software/tmt/tmt-0.4/
https://nlp.stanford.edu/software/tmt/tmt-0.4/
https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Word2vec
http://www.witmart.com/cn/app-software/jobs/jobid_34788.html
http://www.witmart.com/cn/app-software/jobs/jobid_34788.html
https://researchcenter.paloaltonetworks.com/2016/02/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/
https://researchcenter.paloaltonetworks.com/2016/02/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/
https://researchcenter.paloaltonetworks.com/2016/02/pirated-ios-app-stores-client-successfully-evaded-apple-ios-code-review/

9 Appendix

9.1 Performance evaluation of Cruiser and
NaiveCruiser

To understand the performance of Cruiser, we measured the
time it takes to process all the apps in the unknown set, on our
Red Hat server using 14 processes. The breakdowns of the
delays observed at each stage (Structure Miner and Semantic
Analyzer) are reported in Table 7. As we can see here, on
average, 27.4 seconds were spent on each app. The results
demonstrate that Cruiser scales well and can easily process
a large number of iOS apps. Furthermore, we evaluated the
performance of NaiveCruiser (Table 7). As we can see, in the
absence of the conditionally triggered UI detection step to
first filter out legitimate VCs, the performance overhead of
the Semantic Analyzer became overwhelming: introducing
a delay at least 14 times as large as our original approach,
which makes it difficult to scale. In addition, we evaluated the

performance of app collection. On average, downloading an
app took 15 seconds and decrypting it took 10 seconds; how-
ever, the time varied greatly depending on the network speed,
program sizes and etc. In total collecting and decrypting apps
took 3 months.

Table 7: Running time at different stages, where SM means
Structure Miner and SA means Semantic Analyzer.

Cruiser
Average time

(s/app)
NaiveCruiser

Average time
(s/app)

SM 18.88 LVCG construction 16.2
SA 8.56 SA 122.95

Total 27.43 Total 139.15

9.2 UI element objects without semantic UI
texts

780 28th USENIX Security Symposium USENIX Association

Table 8: UI element objects without semantic UI texts

Pattern type UI element object Parent UI element object1

A3 NSKey *2

A UIColor *
A UIFont *
A UINibKeyValuePair *
A NS.rectval *
A UIViewContentHuggingPriority *
A UIViewContentCompressionResistancePriority *
A UIOriginalClassName *
A UINibName *
A UIDestinationViewControllerIdentifier *
A UIActionName *
A UISource *
A UIDestination *
A UIStoryboardIdentifier *
A NSLayoutIdentifier *
B4 UIProxiedObjectIdentifier UIProxyObject
B UIAction UIStoryboardUnwindSegueTemplate
B UIKeyPath _UIAttributeTraitStorage
B _UILayoutGuideIdentifier _UILayoutGuide
B UIKeyPath _UIRelationshipTraitStorage
B runtimeCollectionClassName UIRuntimeOutletCollectionConnection

1 Parent UI element object: The parent UI object of UI element object.
2 *(asterisk): Any Object.
3 Type A: The string of a UI element object will be removed regardless its parent.
4 Type B: The string of a UI element object will be removed only if its parent UI element object also

matches.

USENIX Association 28th USENIX Security Symposium 781

BITE: Bitcoin Lightweight Client Privacy using Trusted Execution

Sinisa Matetic
ETH Zurich

Karl Wüst
ETH Zurich

Moritz Schneider
ETH Zurich

Kari Kostiainen
ETH Zurich

Ghassan Karame
NEC Labs

Srdjan Capkun
ETH Zurich

Abstract

Blockchains offer attractive advantages over traditional pay-
ments such as the ability to operate without a trusted author-
ity and increased user privacy. However, the verification of
blockchain payments requires the user to download and pro-
cess the entire chain which can be infeasible for resource-
constrained devices like mobile phones. To address this
problem, most major blockchain systems support so called
lightweight clients that outsource most of the computational
and storage burden to full blockchain nodes. However, such
verification leaks critical information about clients’ transac-
tions, thus defeating user privacy that is often considered one
of the main goals of decentralized cryptocurrencies.

In this paper, we propose a new approach to protect the
privacy of light clients in Bitcoin. Our main idea is to lever-
age the trusted execution capabilities of commonly avail-
able SGX enclaves. We design and implement a system
called BITE where enclaves on full nodes serve privacy-
preserving requests from light clients. However, as we will
show, naive processing of client requests from within SGX
enclaves still leaks client’s addresses and transactions. BITE
therefore integrates several private information retrieval and
side-channel protection techniques at critical parts of the sys-
tem. We show that BITE provides significantly improved pri-
vacy protection for light clients without compromising the
performance of the assisting full nodes.

1 Introduction

Since its inception in 2008, Bitcoin has fueled considerable
interest in decentralized currencies and other blockchain ap-
plications. The main goals of blockchains include a dis-
tributed trust model and increased user privacy. Several other
blockchain platforms, such as Ethereum [4], leverage the
same open or permissionless model as Bitcoin, while plat-
forms like Hyperledger [15], Ripple [10] and R3 [9], en-
able closed or permissioned blockchains. Most blockchains
implement a decentralized time-stamping mechanism that

ensures eventual consistency of transactions by collecting
them from the underlying peer-to-peer (P2P) network, ver-
ifying their correctness, and including them in connected
blocks. This process imposes heavy requirements on band-
width, computing, and storage resources of blockchain nodes
that need to fetch all transactions and blocks issued in the
blockchain, locally index them, and verify their correctness
against all prior transactions. For instance, a typical Bitcoin
installation requires more than 200 GB of storage today, and
the sizes of popular blockchains are growing fast [12, 5].
Therefore, users operating resource-constrained clients like
mobile devices cannot afford to run their own full node.

Lightweight clients and privacy. To address such heavy
resource requirements, most open blockchain platforms sup-
port lightweight clients, targeted for devices like smart-
phones, that only download and verify a small part of the
chain. As a matter of fact, according to [24], in 73−85% of
5.8− 11.5 million active Bitcoin wallets users control keys.
Since there are ∼ 10,000 full nodes [11], estimated 4.2-9.8
million wallets are lightweight clients. For example, Bit-
coin provides the BitcoinJ [2], PicoCoin [8] and Electrum [3]
clients implementing the Simple Payment Verification (SPV)
mode [44], where the clients connect to a full node that has
access to the complete chain and assists the client in trans-
action confirmation. Transactions contain inputs and outputs
that are bound to addresses owned by users. As the full node
has to learn all transactions issued and received by the re-
questing client to confirm them, such payment verification
obviously violates user privacy.

To improve user privacy, several clients support filters
(e.g., Bitcoin’s BIP37 [31] and Ethereum’s LES [6]). The
goal of filters is to allow the client to define an anonymity set
in an attempt to hide its real addresses from the full node. For
instance, BIP37 supports Bloom filters [18] that allow the
client to define a set of transactions, with false positives, that
are requested from the full node. Essentially, this approach
presents a trade-off between communication efficiency and
privacy: a filter that returns many false positives provides a

USENIX Association 28th USENIX Security Symposium 783

larger anonymity set but requires more communication. Al-
though such filters can be configured to be efficient, recent
studies have shown that in practice they offer almost no pri-
vacy [25]. Ergo, none of the current light clients provides
adequate privacy with practical performance overhead.

Our solution. Our goal is to improve the privacy of Bitcoin
lightweight clients without compromising the performance
of the assisting full nodes. The starting point of our solution
is to leverage the commonly available trusted computing ca-
pabilities of SGX enclaves [23] on full nodes. We propose
BITE (for BItcoin lightweight client privacy using Trusted
Execution), a solution in which a potentially untrusted entity
runs a full node with an SGX enclave that serves transac-
tion confirmation requests from clients. Since SGX provides
code integrity and data confidentiality for enclaves, such a
solution can preserve privacy (confidentiality) and complete-
ness (integrity) of client requests.

Unfortunately, simple usage of trusted computing is not
sufficient to solve our problem. While SGX prevents an
adversary that controls malicious software from directly ac-
cessing enclave’s memory, secret-dependent access patterns
to external storage, such as transaction databases, can re-
veal the client’s address. SGX is also susceptible to side-
channel attacks, where malicious software on the same
platform infers secret-dependent enclave data access pat-
terns or control flow by monitoring shared resources like
caches [20, 43, 27, 50]. Thus, the simple usage of SGX
would still leak the client’s addresses to malicious full node.

Given such limitations of SGX, the primary research
problem and contribution of this paper is how to design
and implement a solution that enables private processing of
light client request in the presence of enclave leakage with-
out compromising the system’s overall performance. To ad-
dress this non-trivial challenge, we carefully select and apply
known private information retrieval (PIR) and side-channel
protection techniques and combine them into a novel solu-
tion that meets our performance requirements. We empha-
size that in our application the assisting full node needs to
process a large blockchain database to serve client requests,
and thus straightforward usage of generic SGX side-channel
protection systems, such as Raccoon [47], Cloak [28] or Ze-
roTrace [49], would result in either excessive performance
overhead or imperfect side-channel protection. Instead of us-
ing such systems directly, we pick low-level primitives and
apply them at critical points in our system to achieve more
complete protection and better performance.

We design two variants of our solution. Our first variant,
Scanning Window, is similar to the current SPV clients that
verify transactions using block headers and Merkle paths re-
ceived from the full node. To prevent leakage from file ac-
cesses and message sizes, we design a customized chain ac-
cess mechanism that hides the client’s transactions and the
relationship between the size of the response and the number

of read blocks. Our second variant, Oblivious Database, al-
lows the client to verify the amount of coins associated with
its addresses by querying a specially-crafted version of the
unspent transaction output (UTXO) database. To prevent
leakage from database accesses, we leverage a well-known
Oblivious RAM (ORAM) algorithm [52]. (Prior to us, usage
of ORAM from enclaves has been proposed in systems like
ZeroTrace [49].) This variant allows even lighter clients that
no longer need to download and verify Merkle paths.

To prevent software-based side-channels, we adopt further
protections from recent SGX research. The basic building
block for our control-flow hiding is the cmov instruction [7]
that enables building oblivious execution of branches. (We
adopt this technique from the Raccoon system [47].) To pre-
vent leakage from data access patterns we apply additional
defenses, such as iterating over the entire data structure when
an element is accessed based on the protected client address.

Results. We show that our solution provides strong privacy
protection. In both of our variants, the external data access
patterns are independent of the protected client address. The
side-channel protections in the Oblivious Database variant
also make the enclave’s memory accesses (both code and
data) independent of the address, thus preventing leakage
caused by known SGX side-channels [20, 43, 27, 50, 58, 36].
While similar protections can also be used for the Scan-
ning Window variant, they impose a high overhead, which
is why we recommend using Oblivious Database if side-
channels are a concern. Our solutions also fail gracefully:
even if the used SGX processor would be completely broken
(e.g., through a physical attack), the adversary cannot double
spend or steal users’ coins or wallets.

In terms of performance, our solution is comparable to the
SPV scheme. The Oblivious Database variant increases the
full node’s storage moderately (e.g., additional 4 GB). The
required communication is significantly lower (e.g., 12 KB
instead of 17 MB per client request). The processing cost
for incoming client requests is reduced (e.g., 0.5s instead of
1.1s), but the processing cost for new blocks is higher (79s
instead of 2s). Even compared to SPV without privacy pro-
tection, our solution adds no processing time or communi-
cation overhead (in fact, BITE’s processing is faster by 0.1s
and the response size is 2kB smaller). The full node can be
easily made responsive for incoming client request during
block updates by using two enclave instances in parallel. The
Scanning Window variant requires no additional storage and
its communication cost is lower than in SPV. The processing
cost is also comparable when full side-channel protection is
not used.

We argue that BITE emerges as the first practical solution
that provides strong privacy protection for lightweight Bit-
coin clients. Our solution can be integrated into existing full
nodes and lightweight clients with minor modifications to
the existing software. While BITE is designed for Bitcoin,

784 28th USENIX Security Symposium USENIX Association

we stress that it finds direct applicability in various other
blockchain platforms as well.

Contributions. In summary, in this paper we make the fol-
lowing contributions:
• Novel approach. We propose leveraging commonly avail-
able trusted execution capabilities of SGX enclaves for im-
proved lightweight Bitcoin client privacy.
• New system. We design and implement a system called
BITE that carefully combines a number of PIR and side-
channel protection techniques to prevent leakage.
• Evaluation. We show that BITE significantly improves
client privacy without compromising full node performance.
We argue that BITE is the first practical way to provide strong
privacy for lightweight Bitcoin clients.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our problem and Section 3 outlines our ap-
proach. Section 4 explains the details of our system BITE.
Section 5 covers security analysis and Section 6 provides
performance results. We provide discussion in Section 7,
review related work in Section 8, and conclude in Section 9.

For readers unfamiliar with SGX and ORAM, we provide
brief introductions in Appendices A and B.

2 Problem Statement

In this section, we provide background on Bitcoin
lightweight clients, explain the limitations of known ap-
proaches and define requirements for our solution.

2.1 Bitcoin Lightweight Clients
Bitcoin [44] is the first and still most popular cryptocurrency
based on blockchain technology. It enables users to per-
form payments by issuing transactions that transfer Bitcoins
(BTC) from one or more transaction inputs to one or more
outputs. Each of the outputs is bound to an address that is
derived from a user’s public key. A user that knows the cor-
responding private key is able to spend the Bitcoin contained
in the transaction output.

When a user wants to perform a payment, she creates a
transaction that contains inputs, outputs, and the signatures
that allow her to spend the inputs. Subsequently, the trans-
action is propagated to all nodes using a peer-to-peer net-
work created by the system’s participants. Miners, a special
type of nodes, collect valid transactions into blocks and solve
Proof-of-Work (PoW) puzzle to make the contained transac-
tions hard to revert. A miner that successfully finds a valid
PoW, broadcasts the block to all other nodes, who then verify
its correctness and include it in their copy of the chain.

To verify transactions, Bitcoin users, or clients, need to
store the full history of all Bitcoin transactions. This ap-
proach puts a heavy load on client implementations in terms

of network and storage, and as a consequence, makes trans-
action confirmation on mobile clients infeasible. To address
this concern, the original Bitcoin paper proposed a solution
called Simplified Payment Verification (SPV) [44]. In this
technique, light clients store only block headers, check their
PoW puzzles and then request their own transactions and the
Merkle paths that are needed to verify their presence in the
blocks from a full node that stores the entire chain.

Improvement proposal BIP 37 [31] introduced Bloom fil-
ters [18] that allow a light client to request a subset of all
transactions to preserve some privacy without needing to
download all transactions for each block. A Bloom filter [18]
is a probabilistic data structure that consists of a set of hash
functions and a bit array where each bit is set to one if one of
the hash functions hashes one of its inputs to the index of the
bit in the array. This allows checking if a value is contained
in the filter by hashing the value with each of the hash func-
tions and checking whether the corresponding bit is set. If
this is not true, the value was not an input. If it is true, how-
ever, the value might have been an input or a false positive.
The false positive rate can be set by the creator of the filter.

In Bitcoin light clients, Bloom filters are used to encode
transactions or addresses, and allow a full node to determine
which transactions to send to a lightweight client without let-
ting the full node know the exact addresses. A lightweight
client prepares a Bloom filter to which she adds all of her
addresses and sends it to the full node. The full node
then checks for incoming (or past, if requested) transactions
whether they match the Bloom filter. If they match, she sends
them to the client together with the Merkle path needed for
verification. The client can adjust the false positive rate to
increase her privacy. If the false positive rate is higher, the
client will receive more irrelevant transactions, in an attempt
to hide her true addresses with a larger anonymity set.

2.2 Limitations of Known Solutions

The use of Bloom filters to receive Bitcoin transactions from
an assisting full node inherently creates a trade off between
performance and privacy. If a client increases the false pos-
itive rate she receives more transactions which provides in-
creased privacy, as any of the matching addresses could be
her real addresses, but it also means that she needs the net-
work capacity to download all of these transactions. In the
extreme cases, the filter matches everything, i.e., the client
downloads the full blocks, or the filter only matches the
client’s addresses, i.e., she has no privacy at all.

Gervais et al. [25] have shown that using Bloom filters in
Bitcoin light clients leaks more information than was pre-
viously thought. In particular, if the Bloom filter only con-
tains a moderate number of addresses, the attacker is able
to guess addresses correctly with high probability. For ex-
ample, with 10 addresses the probability for a correct guess
is 0.99. They also show that, even with a larger number of

USENIX Association 28th USENIX Security Symposium 785

addresses, the attacker is able to correctly identify a client’s
addresses with high probability if she is in possession of two
distinct Bloom filters from the same client (e.g., due to a
client restart). Hearn [30] later expanded on why solving
these issues is hard (e.g., need for resizing). Furthermore, it
is likely that an attacker using additional de-anonymization
heuristics, such as the ones described in [16, 41], could fur-
ther increase the probability to guess correctly.

Finally, a lightweight client cannot be sure that she re-
ceives all transactions that fit her filter from a full node.
While the full node cannot include faulty transactions in the
response, as this would be detected by the client when re-
computing the Merkle root, the client cannot detect whether
she has received all requested transactions. This problem can
be solved by requesting transactions from multiple nodes,
which again imposes more network load on the client.

Another solution would be to run the SPV protocol with
Bloom filters over a network anonymity mechanism such as
Tor. While this would prevent the full node from learning
the IP address of the client, the full node could still correlate
queries from the same client based on the addresses that leak
from Bloom filters. We argue that query unlinkability is a
useful privacy property in systems like Bitcoin and can be
considered similar to the transaction unlinkability in systems
like Zcash (that provide more advanced privacy protection).

2.3 Requirements

The high-level goal of this paper is to develop a solution that
provides better privacy for lightweight clients without com-
promising the system performance. More precisely, our so-
lution should meet the following requirements:

(R1) Privacy. Lightweight clients should be able to verify
that their transactions are confirmed on the blockchain or
check the amount of coins associated with their addresses
without revealing their addresses to the potentially untrusted
entity that controls the assisting full node. The full nodes
should not be able to link queries from the same light client
that could allow them to incur additional information regard-
ing the client’s transactional pattern or behavior.
(R2) Completeness. The verification process should guar-
antee that no valid transactions have been omitted.
(R3) Performance. The performance of the system should
be comparable to or better than current light client schemes.

3 Our Approach

The main idea behind our approach is to leverage commonly
available Trusted Execution Environments (TEEs) such as
Intel’s SGX enclaves [33, 23] running within full nodes
to provide a privacy-preserving verification service to light
clients. Besides increased privacy, TEEs can enable better

Full Nodes

FN1

FN3

FNn

FN2

Lightweight Clients

LC2

LC1

LCn

…
…

…

…

secure
Enclave E

Original
full

node

BC

UTXO

enclave
UTXO

Figure 1: System model. Lightweight clients request trans-
action verification from enclaves hosted on full nodes.

performance in terms of reduced processing and bandwidth,
and guarantee completeness of received responses.

In short, SGX provides a set of security enhancements in
the processor that allow creation of small applications, called
enclaves, whose data confidentiality and code integrity is
protected from any malicious software running on the same
platform, including the privileged OS.

A simple way to leverage SGX would be a solution where
the light client sends its wallet private key to an enclave on
the assisting full node. Using that key, the enclave can per-
form any operation on behalf of the user, including transac-
tion verification. However, such simple solution has a critical
drawback. If the used enclave is compromised, the adversary
can steal all user’s coins. Such approach might give the own-
ers of full nodes an undesirable economic incentive to break
their own SGX processors, e.g., using physical attacks.

To avoid such incentives, we choose a different approach.
In our solution, when a client needs to verify a transaction
or check the amount of coins associated with the user’s ad-
dresses, the client connects to one of the full nodes that sup-
ports our service. The client performs remote attestation
and establishes a secure channel to the enclave. Then, the
lightweight client sends the addresses that the user is inter-
ested in to the enclave. The enclave obtains all the required
verification information from the locally stored blockchain
or custom unspent transactions database (UTXO) and sends
back a response to the client that can verify it. Importantly,
the client’s private key is never shared with the enclave which
enables safe adoption of our solution.

We envision two types of deployment for our system. In
the first example deployment, a well-recognized company
could provide such a verification service. In the second ex-
ample, any volunteer currently running a Bitcoin full node
could adopt our extension and start providing the service to
lightweight clients. In both cases, to incentivize deployment
by the full nodes, the service could be run in exchange for
some small renumeration (i.e., verification fees).

3.1 System Model
Figure 1 shows our system model that consists of full nodes
FN1...FNm and lightweight clients LC1...LCn. When a
lightweight client LCi wants to acquire information about its

786 28th USENIX Security Symposium USENIX Association

transactions or addresses, it can connect to any full node FN j
that supports our service and hosts an enclave E j. Full nodes
download and store the entire blockchain (BC) locally and
based on that maintain a database that contains all unspent
transaction outputs (UTXO). Our system additionally main-
tains a specially-crafted version of the UTXO, called enclave
UTXO, in an encrypted (sealed) form.

In SGX, enclave memory is limited to 128MB. Although
swapping memory pages is supported (swapping requires ex-
pensive encryption and integrity verification [17]), the com-
plete blockchain (BC) and the database of unspent transac-
tion outputs (UTXO) are significantly larger (as of Jan 2019,
200GB [12] and 2.8GB [13] or more, respectively) than the
enclave’s memory limits . Therefore, these databases are
stored on the local persistent storage.

3.2 Adversary Model
We consider an adversary who controls the OS and any other
privileged software on the full node. For example, the ad-
versary could be a malicious administrator or an external at-
tacker who has remotely compromised the OS on the full
node. Since the adversary controls the OS, she can sched-
ule and restart enclaves, start multiple instances, and block,
delay, read, or modify all messages sent by enclaves, either
to the OS itself or to other entities over the network. We as-
sume that the adversary cannot break the hardware security
enforcements of Intel SGX. That is, the adversary cannot ac-
cess processor-specific keys (e.g., attestation or sealing key)
and she cannot access enclave runtime memory that is en-
crypted and integrity-protected by the CPU. (Although we
consider SGX trusted, in Section 5 we discuss enclave com-
promise and show that our solution can handle it without
any financial loss.) Finally, we assume that common cryp-
tographic primitives like encryption or signatures are secure.

3.3 Challenges
Secure and practical realization of our approach under the
defined attacker model involves several technical challenges.

Leakage through external accesses. Since the adversary
controls the OS, she can observe access patterns to any ex-
ternal resources, such as files or databases stored on the disk.
Although externally stored data can be sealed (encrypted by
the CPU such that only the same enclave can decrypt), the
OS can infer information about the accessed element by ob-
serving access patterns to individual records, such as files
or database entries. In a simple implementation of our ap-
proach, the adversary could infer the client’s addresses by
observing which entries the enclave reads from a (sealed)
UTXO database when processing a client request.

Similarly, enclaves rely on the OS to perform communi-
cation operations which allows it to infer information about

the enclave’s communication patterns. Even if messages are
encrypted by the enclave, the message sizes, frequency and
destination can leak information. In our case, the adversary
could determine how many transactions are included to the
response by observing response sizes.

Leakage through side channels. The SGX architecture
is also susceptible to internal leakage. Numerous, recently
demonstrated side-channel attacks against SGX show that in-
ternal leakage is a relevant concern. For example, by mon-
itoring CPU caches the OS can infer secret-dependent data
and code accesses inside the enclave’s memory [20, 43, 27,
50]. The OS can also infer enclave’s secrets by monitor-
ing the memory pages that the enclave requests [58]. Re-
searchers have also demonstrated side-channel attacks using
the CPU’s branch prediction functionality [36]. In a simple
implementation of our approach, the adversary can monitor
address-dependent branching in the enclave’s control flow
and data accesses and thus determine the client’s addresses.

4 BITE System

In this section we present a system called BITE that real-
izes the above approach securely and addresses the afore-
mentioned challenges. In particular, we present two variants
of the same approach that serve slightly different purposes.

Our first variant, Scanning Window, can be seen as an ex-
tension to the current SPV verification mode, but without
reliance on bloom filters. Based on the client request, an en-
clave on the full node scans the blockchain and replies with a
set of Merkle paths that the client can use to verify its trans-
actions using downloaded block headers. This variant allows
the client to check that each of its transactions are confirmed
on the blockchain. As Bitcoin provides only eventual con-
sensus, the client may want to additionally verify that the
blocks where its transactions are placed have been extended
with a sufficient number of valid blocks (e.g., six).

Our second variant, Oblivious Database is a completely
new verification mode for lightweight clients. In this vari-
ant, the enclave on the full node maintains a specially-crafted
version of the unspent transaction outputs (UTXO) database
and when a client sends a verification request, it checks for
the presence of client’s outputs in this database using oblivi-
ous database access (ORAM [52]) and responds accordingly.
Such verification allows the client to check how many coins
are currently associated to its addresses, with significant per-
formance improvements over SPV.

In both variants, the client performs remote attestation and
establishes a TLS connection to the enclave. We note that
current light clients communicate with the full nodes without
encryption. Existing full node functionality, such as partic-
ipation in the P2P network and mining, remain unaffected.
Therefore, our system can be seen as a simple add-on to ex-

USENIX Association 28th USENIX Security Symposium 787

req(adr,my_last_block)

search through blocks for LC’s
request using Scanning Window

establish secure communication
2

information request for addresses of interest
3

P2P communication

authentication, TLS connection

5

update blockchain
unchanged full node

normal operation

co
nt

in
uo

us

Lightweight Client LCi Full Node FNj Full Node FNn…

attestation

BC
2

1
a

1

4

6

return request information about transactions
res((trx_info,merkle_path) ||

block_header)

BC
get block headers from
my_last_block

- for blocks containing client
addresses add transaction info and
the merkle tree path
- for blocks without client addresses
add block header

verify transactions, Merkle Tree paths

Enclave Ej Enclave En

acquire latest block header
from the P2P Bitcoin network b

Figure 2: Scanning Window operation. Light client creates
a secure connection to an enclave on full node and sends a
request with its address and last known block. The enclave
scans the locally stored chain and prepares a response with
the size proportional to the number of scanned blocks.

isting full nodes. For clients, payment execution remains
unchanged. Payment verification requires minor additions
(attestation and TLS) when Scanning Window is used or
slightly bigger changes with Oblivious Database variant.

4.1 Scanning Window Variant

In our first variant, we want to improve the privacy of the cur-
rent SPV verification mode. When a client needs to verify
transactions, it constructs a request that specifies the ad-
dresses of interest and the last block that it has in its inter-
nal state and sends that to the secure enclave residing on the
full node. The enclave reads the locally stored blockchain
database using a custom scanning technique that normal-
izes the relationship between response sizes and actually ac-
cessed data to hide the data/block access patterns and ensure
client privacy. Figure 2 shows the operation of this variant,
and we describe the details as follows:

Initialization and continuous operation.
(a) On initialization the Full Node FN j connects to the Bit-
coin network (a-1) and downloads the full blockchain (a-2).
Similarly, the locally stored blockchain database is updated
for each new block that is appended to the chain (i.e., as new
blocks are received over the P2P network).
(b) The lightweight client installation package includes a
checkpoint block header from a recent date. When the client

is started for the first time, it downloads all newer block
headers from the peer-to-peer network and verifies that (i)
they all have correct Proof of Work and (ii) the hash chain
of the downloaded headers leads to the checkpoint. Once
the client’s internal state it synchronized with the peer-to-
peer network, it stores a small number of the newest headers
(e.g., six blocks from the head of the chain to handle shallow
forks). The client can update its internal state by download-
ing newest block headers periodically or before each trans-
action verification request. The network and storage require-
ments of this process are minor and easily met even by clients
with severe resource constraints.1

Client request handling.
(1) The Lightweight Client LCi performs attestation with the
secure Enclave E j residing on the full node FN j.
(2) If the attestation was successful, the Lightweight Client
LCi establishes a secure communication channel to the En-
clave E j using TLS.
(3) The Lightweight Client LCi sends a request containing
the addresses of interest and a block number that specifies
how deep in the chain transactions should be searched for
verification. Typically, this number would be saved from the
previous interaction with a full node or in the case of the first
transaction verification the number could roughly match the
date when the client started using Bitcoin.
(4) The Enclave E j starts scanning its locally stored copy of
the blockchain (BC) for the requested address and range of
blocks using a scanning technique described in detail below.
(5) In preparation of the response, the Enclave E j does the
following: for blocks containing client addresses it adds the
full transaction information and the corresponding Merkle
tree path to the response, while for blocks without client ad-
dresses it only adds the block header.
(6) The Lightweight Client LCi verifies that (i) the received
block headers match its internal state and (ii) the received
transactions and Merkle Tree paths match to the block head-
ers. The client considers such received transactions as con-
firmed (assuming that they are sufficiently deep in the chain).
The client updates its internal state regarding the latest veri-
fied block number and closes the connection to the enclave.

Block scanning details. As explained in Section 3.3, en-
clave execution can leak information in various ways. For
example, if our solution would simply return each matching
transaction (and the corresponding Merkle Tree) in the spec-
ified range of blocks, based on the size of the response the
adversary could deduce how much information of interest

1For example, obtaining block headers for a checkpoint that is one month
old, would require 300 kB of downloaded data (one-time operation) and up-
dating the block headers once per day would require 10 kB of communica-
tion per day. Storing the latest six headers takes less than 1 kB of storage.

788 28th USENIX Security Symposium USENIX Association

Block x

Scan START

n

n-x blocks

y

y-x blocks

Scanning window
Size dependent
on the equation

Client request additional

…
Block Block

Figure 3: Block reading in Scanning Window. Depending
on the number of requested blocks (up to x) and the number
of matching transaction in them, we read potentially extrane-
ous blocks (up to y) to keep the ratio between the read blocks
and the response message size constant.

for the client was contained within the scanned blocks. Over
a period of time, by tracking requests and response sizes,
the adversary could gain significant information about the
client’s addresses and transactions.

We address such leakage by using a custom-made block
scanning scheme. The main goal of the scheme is to fully
hide the ratio between the response size (that indicates the
number of transactions returned to the client) and the number
of scanned blocks. When this ratio is constant, the adversary
cannot deduce any meaningful information.

Figure 3 depicts the details of our scanning scheme. The
newest block in the blockchain observed by the Bitcoin
network is n. A client’s request contains an addresses of
interest and the number block x indicating how deep the
chain should be scanned. The enclave starts scanning from
n and moves towards x. It stores intermediate responses
and when it reaches block x it performs a check. The total
size of the response, r, is divided by the threshold size, t.
The threshold indicates the maximum response size per
block such that if we are to scan n− x blocks, the maximum
response size for the client can be r = (n−x)∗ t. If the given
response size r is greater, then the enclave has to scan up
to block y (or y− x more blocks), such that r = (n− y) ∗ t.
If the response size is smaller, i.e., if after scanning n− x
blocks r ≤ (n − x) ∗ t, we pad the response size such that
r = (n− x)∗ t. The exact size of the threshold is empirically
determined in Section 6.

Side-channel protection. The scanning technique de-
scribed above prevents external leakage through response
sizes and disk accesses. However, if the adversary is able to
mount high-granularity digital side-channel attacks (e.g., one
that allows her to observe execution paths with instruction-
level granularity), she will be able to determine the transac-
tions that were accessed, and thus infer the client’s addresses.

To make our system more robust against such attacks, we
optionally add side-channel protections at the expense of per-
formance (cf. Section 6). To protect against timing leakage
we compute the Merkle path for all transactions in each of
the scanned block in contrast to only computing the path for

Block
tm

…
e.g. 20 kB

Response

1 MB

e.g. 500 kB

…

…

…
…

…
n*t

n=100
t=5 kB

Figure 4: Oblivious copying in Scanning Window. The
data is copied in an oblivious fashion from the block to a tem-
porary array, i.e., every transaction is conditionally moved
using cmov to every possible destination. The data contained
in the temporary array is then copied to the response in an
oblivious fashion, again using cmov to conditionally copy
everything to all possible locations in the response.

the transactions of client’s interest. For protection against
control-flow side channels we make use of the cmov assem-
bly instruction to hide execution paths. cmov is a conditional
move such that “If the condition specified in the opcode (cc)
is met, then the source operand is written to the destination
operand. If the source operand is a memory operand, then
regardless of the condition, the memory operand is read” [7].
We use the cmov instruction in form of a wrapper (originally
presented in [47]) that allows us to remove branches from
our code resulting in the same control flow with no leakage.

The same technique is also used in previous side-channel
protection solutions like Raccoon [47]. However, since using
such a general purpose side-channel defense system directly
would incur an extremely high performance overhead in our
particular setting (due to large amounts of accessed data),
we customize these techniques to our setting. Specifically,
we apply the following modifications, as per Figure 4:

(i) Instead of continuing to scan the chain if the size of the
response exceeds the threshold, we stop scanning after the
specified number of blocks. If not all transactions fit in the
response, the client does not receive all transactions and is in-
formed of this through a flag in the response. This allows the
allocation of a response array that does not change size dur-
ing processing. The client can request the remaining trans-
actions in a new query (potentially from a different node).
(ii) For each block, we allocate a temporary array of size tm
(see Figure 4), where tm is a threshold that specifies the max-
imum data per block, as opposed to the threshold t that spec-
ifies the average data per block. While the block is parsed,
each transaction is moved to the temporary array in an oblivi-
ous fashion, i.e., we use the cmov instruction to conditionally
move each word of each transaction to every entry in the ar-
ray. This means that for every transaction we access every
entry in the array and since the same instruction is used for
each possible copy – independent of whether the data is actu-
ally copied – even an attacker with an instruction level view
of the control flow cannot determine which data is actually
copied. After processing the block, the temporary array is
traversed and all entries are copied to the response array (see

USENIX Association 28th USENIX Security Symposium 789

Figure 4). This is again done in an oblivious fashion, i.e.,
each entry is copied conditionally using the cmov method to
every possible position in the response array.
This method of copying transactions from the block to the re-
sponse is required to efficiently keep the data accesses obliv-
ious. Specifically, for a block of size m, a temporary ar-
ray of size tm and n requested blocks, this method requires
O(m · tm + tm · n · t) instead of O(m · n · t) operations when
naively copying the data obliviously from the block to the
response. Since tm is usually much smaller than m and n · t,
this method is in practice orders of magnitude faster.

4.2 Oblivious Database Variant

In our second variant, we focus on reducing the load of
lightweight clients in terms of computation and network
while offering even better privacy preservation (namely, the
block number that specifies how deep the chain should be
searched does not leak). The main idea behind this variant
is to allow lightweight clients to send requests containing
addresses of their interest and directly receive information
regarding unspent outputs, without the need to verify block
headers and Merkle tree paths.

In order to achieve such verification, a new indexed
database of unspent transactions (denoted as enclave UTXO)
is created and searched for every client request using an
Oblivious RAM algorithm. Figure 5 shows the operation of
this variant, and we describe the details as follows:

Initialization and continuous operation.
(a) Similar to a standard full node, on initialization the full
node FN j connects to the peer-to-peer network and down-
loads and verifies the entire blockchain. After initialization,
when new blocks are available in the peer-to-peer network,
FN j downloads and verifies them.
(b) During initialization Enclave E j reads the locally stored
blockchain and verifies each block. The enclave builds its
own enclave UTXO database that is a special version of the
original structure present in standard full nodes. In partic-
ular, this UTXO set is encrypted on the disk as sealed stor-
age, indexed for easy and fast access depending on the client
request, and accessed using ORAM to prevent information
leakage through disk accesses. After initialization, the en-
clave updates this UTXO using ORAM when new blocks
are available in the locally stored blockchain.
(c) As in the Scanning Window variant, the client obtains
the latest block headers from the peer-to-peer network.

Client request handling.
(1) The Lightweight Client LCi performs an attestation with
the secure Enclave E j residing on the full node FN j.

search trough UTXO
for LC’s request using ORAM

establish secure communication
2

information request for addresses of interest
3

authentication, TLS connection

5

Lightweight Client LCi Full Node FNj Full Node FNn…

attestation

1

verify block, perform
PoW, verify Merkle Tree

UTXO create/update
using ORAM

2

3

BC

enclave
UTXO

deliver each
new block

co
nt

in
uo

us

b
secure addon for

privacy preservation

enclave generate and
updates its own

UTXO storing it in an
encrypted form

1

req(adr,trx_hash,trx_num)

4
enclave
UTXO

return request information about transactions
res(us_trx_outputs, num_trx,
max_trx, last_block_header)

6

Enclave Ej Enclave En

P2P communication

update blockchain
unchanged full node

normal operation

co
nt

in
uo

usBC
2

1
a

summarize the enclave’s response

acquire latest block header
from the P2P Bitcoin network c

Figure 5: Oblivious Database operation. Lightweight
client sends a request containing its address and the last
transaction to an enclave on full node. Enclave queries
a specially-constructed UTXO database using ORAM and
provides a response back to the client.

(2) LCi establishes a secure communication channel to the
Enclave E j using TLS.
(3) LCi sends a request containing the addresses of inter-
est, along with the hash and number of the latest transaction
known to the client. The last two parameters are needed in
case the number of unspent outputs contained by an address
is larger than the maximum size of the message. For exam-
ple, LCi receives the first response containing x transaction
outputs with an indication that there is more, and in a con-
sequent request specifies the same address as in the first re-
quest along with the x–th transaction hash and transaction
number. This gives an indication to the enclave to respond
with the second batch of outputs starting from that transac-
tion. The process repeats (possibly with a different node)
until the client is satisfied. To prevent information leakage
through the message sizes, requests are always of constant
size, i.e., the client pads shorter requests and splits up larger
queries. The size is defined to accommodate the majority
of requests. Since a lightweight client can choose any avail-
able node to connect to, she can choose to send requests to

790 28th USENIX Security Symposium USENIX Association

different nodes to hide the number of sent requests.
(4) The Enclave E j reads the enclave UTXO database to get
the unspent transaction output information in respect to the
client’s request. E j uses ORAM and the previously created
index to access the enclave UTXO in an oblivious fashion.
(5) In preparation of the response, E j includes the relevant
information as explained in step (3), which encompasses the
currently included and maximum number of unspent trans-
actions found for a specific address. When these numbers
match, the LCi knows that she has received all the unspent
outputs of a specific address. The enclave additionally in-
cludes the block hash of the last known block from the local
blockchain (longest chain). With this information the client
can deduce whether the enclave has been served with the lat-
est block and that the enclave’s database is fully updated.
Responses are always of constant size, i.e., shorter responses
are padded and if a response is too large, the client is in-
formed of missing outputs, such that she can later retrieve
the rest of the outputs (e.g., from a different node). The size
of the response is chosen such that it accommodates the ma-
jority of responses.
(6) The Lightweight Client LCi can summarize the unspent
transaction outputs received from the Enclave E j. The en-
clave guarantees completeness in terms of transaction con-
firmation and the current state of the chain, so the client does
not have to perform any additional checks by herself. Suc-
cessful update of the client’s internal state results in the con-
nection termination between the enclave and the client.

Oblivious Database details. In this variant, we use an
ORAM algorithm called Path ORAM [52] to protect data
access patterns of our enclaves. For readers unfamiliar with
this algorithm, a brief description is in Appendix B.

Database Initialization. The ORAM database is initial-
ized by creating dummy buckets on disk and filling the po-
sition map with randomized entries. The stash is also filled
with dummy chunks. After that the ORAM database is fully
initialized and can be used to add new unspent outputs from
the blockchain. To ensure that the enclave always uses the
latest version of the sealed UTXO database, SGX counters or
rollback-protection systems such as ROTE [39] can be used.

Database Update. When a new Bitcoin block is added,
the enclave first verifies the proof of work. It then extracts all
transaction inputs and outputs and bundles them by address.
For each address found in the block, the UTXO database en-
try is requested and then updated with the new information.
If too many entries are added, resulting in the chunk getting
too big, the chunk is split into two and the index is updated to
reflect the changes made to the UTXO database. All accesses
are performed using the ORAM algorithm and, therefore, do
not leak any information about the access patterns.

Database Access. Accesses to the ORAM database follow
the normal procedure described in [52] and in Appendix B.

Side-channel protection. While the usage of ORAM pro-
tects against all external leakage, side-channel attacks, and
thus, internal leakage remains a challenge. If we consider
the most powerful attacker that can perform all digital side-
channel attacks (see Section 3.3), this variant would be for-
feit due to the leakage of the code access patterns, specif-
ically, execution paths in the if statements when the stash,
indexes and the position map is being accessed. This would
leak the exact address which is used to search for the unspent
transactions in the internal database.

To remedy internal leakage, we deploy several mecha-
nisms that protect our code and execution. First, when ac-
cessing the security critical data structures, specifically, the
position map, stash, and the indexes containing information
about which chunks contain unspent transactions of a certain
Bitcoin address we pass over them entirely in the memory
to hide the memory access pattern. Second, to hide the ex-
ecution paths we remove all branching in the code that ac-
cesses these data structures and deploy the cmov assembly
instruction (see Section 4.1). Observation of the control flow
and memory access does not leak whether the operation per-
formed by the enclave was a read or a write, and since there is
a single control flow without creating multiple branches de-
pending on the condition, we effectively hide the execution
and thus protect this variant from internal leakage in full.

5 Security Analysis

In this section, we provide an informal security analysis.
First, we analyze our solution with respect to our adversary
model where SGX security enforcements cannot be broken.
In particular, we show that our solution ensures confiden-
tiality of the requested client addresses, as the attacker can-
not infer the requested address from disk access patterns, re-
sponse sizes, side-channels, or a combination thereof. Sec-
ond, we discuss implication of potential SGX compromise
and show that our solution can handle such cases gracefully.

5.1 External Leakage Protection
Scanning window. This variant scans complete blocks
from the blockchain database, instead of accessing individ-
ual transactions within them, and thus prevents direct infor-
mation leakage from disk access patterns. The constant ratio
of response size to scanned blocks prevents information leak-
age from the response size. The adversary may only infer the
number of blocks that are accessed and not which addresses
are sent by the client or how many transactions are returned.

Oblivious Database. To protect against information leak-
age attacks on the disk access, our second variant utilizes
the well-studied Path ORAM [52] algorithm. Our setting is
slightly different than the typical client-server model con-
sidered in ORAM. In our case, the enclave corresponds to

USENIX Association 28th USENIX Security Symposium 791

the client. Because the adversary can run the enclave freely,
she can use it as an oracle, i.e., she can influence the data
that is written (by delivering blocks to the enclave) and can
query for values himself. Regardless of that, due to the un-
linkability property of ORAM, the attacker learns nothing
about what is accessed and the probability to guess correctly
which ORAM block was accessed is equal to that of a ran-
dom guess, as shown in [52]. Also, the adversary learns
nothing from responses as they are of constant size.

5.2 Side-channel Protection
Most known side-channel attacks on SGX provide imperfect
data-access or control-flow traces and require many repeti-
tions to filter out noise [20, 43, 27, 50]. In BITE, queries
from legitimate clients cannot be replayed due to the authen-
ticated TLS channel and since the enclave is either stateless
across power cycles or protected against rollback. The ad-
versary can create his own client and send requests to the
enclave, but this will not result in any advantage against le-
gitimate clients. For these reasons, mounting side-channel
attacks against BITE is more challenging than performing
side-channel attacks against enclaves in general. To analyze
our solution against future adversaries that may be able to
mount more precise attacks, below we consider the worst
case scenario, i.e., side-channel attacks that obtain perfect
data access and control flow traces from enclave’s execution.

Scanning Window. To harden our Scanning Window vari-
ant against side-channels, we provide optional protections
that incur significant performance penalty. When the en-
clave scans through both the temporary array and the final
response array in their entirety, it performs cmov operations
for all possible transactions. This allows replacing branches
in our code with a few instructions resulting in the same con-
trol flow with no leakage to the attacker since all data is ac-
cessed and the same operation is executed every time.

Oblivious Database. For our Oblivious Database variant
we always include side-channel protections to our solution,
since the performance overhead is negligible. When access-
ing the security critical data structures such as stash, indexes
and the position map, we pass over them entirely to hide the
memory access pattern. Second, to hide the execution paths,
we remove all branching in the code that accesses these data
structures and replace them with cmov assembly instructions
(see Section 4.2). Observation of the control flow and mem-
ory access does not leak whether the operation performed by
the enclave was a read or a write, and since there is a single
control flow without creating multiple branches depending
on the condition, we effectively hide the execution path and
thus protect this variant from internal leakage in full.

The usage of cmov for protecting against digital side-
channel and internal leakage was previously studied in Rac-

coon [47] and with respect to protecting ORAM-based sys-
tems it was studied in other SGX-related works [49, 14].
These works show the effectiveness of cmov in protecting
against internal leakage. Our solution uses the same tech-
niques, and thus directly inherits the security guarantees that
successfully protect against the same type of attacks, i.e.,
those based on digital side-channel leakage.

5.3 Completeness
In the Scanning Window variant, the client herself performs
the verification of the block headers, Merkle paths and trans-
actions. Since the client can retrieve block headers from the
P2P network and the enclave returns all transactions from its
view of the chain, the client can ensure completeness of the
response by checking that she received data from the longest
chain. In the Oblivious Database variant, the enclave per-
forms all verifications for the client. To ensure completeness,
the client can compare the latest block hash from received re-
sponse to information from other sources.

An adversary that controls the OS of the full node server
can deliver incomplete blocks to BITE enclave or decide to
not deliver specific new blocks to the enclave. However, this
would be noticed by the light clients. Remember that light
clients are required to obtain the latest block hash from an
alternative source in order to verify the completeness of BITE
responses. (Another approach to solve this would be to use
systems such as TownCrier [59] or TLS-N [48], that enable
the enclave to get an authenticated feed that could confirm
the correctness of the blocks received from the full node.)

5.4 Implications of a Full SGX break
Our adversary model assumes that side-channel leakage
from enclave’s execution may happen, but the adversary can-
not fully break SGX, i.e., the adversary cannot read all en-
clave’s secrets and modify its control flow arbitrarily. How-
ever, SGX was never intended to provide tamper resistance
against physical attacks and recent research has demon-
strated that platform vulnerabilities like Spectre [35] and
Meltdown [38] can be adapted to extract attestation keys
from SGX processors [21, 54]. Therefore, it becomes rel-
evant to ask how BITE handles a full SGX compromise.

In the Scanning Window variant, the client only loses the
privacy protections provided by our system and all of his
funds remain secure. Since the client still performs SPV, the
security is otherwise not affected and our system provides
the same guarantees as current light clients, i.e., a node may
omit transactions, but cannot steal funds or make a client
falsely accept a payment.

In the Oblivious Database variant, a compromised enclave
could make the client accept false payments by sending in-
valid UTXOs. However, we argue that this will not be a
realistic threat since it would require the client to sell some

792 28th USENIX Security Symposium USENIX Association

System
Our implementation Libraries

Total
Bitcoin1 Network2 mbed-tls

Scanning Window 1’876 1’613 53’831 57’320
Oblivious Database 4’117 1’613 53’831 59’561

1 Processing the Bitcoin blockchain.
2 Parsing responses from the client over TLS.

Table 1: Trusted Computing Base in LOC.

goods or service to the provider of the node, i.e. this is not
a realistic issue for most users. Merchants that see a full
break of SGX as a realistic threat can instead use the Scan-
ning Window variant. Additionally, such an attack would
be easily detectable after the fact and result in loss of rep-
utation of the provider of our service and would thus likely
only be profitable for high value transactions for which most
merchants would probably run a full node.

We conclude that BITE can provide as much security and
privacy as traditional lightweight clients even given a full
break of SGX. This is in contrast to the naive solution of
storing the clients’ private keys in the enclave and using it
as a remote wallet. Lastly, we emphasize that our approach
and BITE as a solution are not limited to SGX. Our main
ideas could most likely be applied to other TEEs as well,
such as the open-source Keystone TEE [1], thus reducing
the reliance on SGX (and thereby Intel) even further.

6 Performance Evaluation

In this section, we describe our implementation and provide
performance evaluation results.

6.1 Implementation Details
The centerpiece of our system is an original blockchain
parser. For TLS connections we use the mbed-tls library
from ARM [37]. Table 1 shows the trusted computing base.

Scanning Window. The implementation of Scanning Win-
dow is very small since it only involves scanning the
blockchain and does not have to keep state. The network
code including the mbed-tls library contributes the most to
the TCB with over 96%. The same work for matching and
non-matching transactions is performed in order to keep the
scanning time per block constant for all requests.

The response size per block allows for around 5 trans-
actions. We believe this is a reasonable choice that satis-
fies common usage patterns for light clients. For n included
and N total transactions in the block, an upper bound for the
Merkle path size is n∗ log(N) and each entry is 32 bytes long.
This results in an approximate upper bound of 2.2kB for
N = 4000, the current limit in Bitcoin. As of today (Novem-
ber 2018) the average transaction size is around 500 bytes,
therefore, a response size per block of 5kB is enough to fit

around 5 transactions (5 ∗ 500B + 2200B < 5kB). If more
or larger transactions are found, following from Section 4,
the enclave scans more blocks of the blockchain until the re-
sponse can fit all requested transactions.

Oblivious Database. The implementation of Oblivious
Database is more complex than Scanning Window and the
enclave has to keep state and store a large UTXO set on disk.
At the time of writing, the UTXO size (indexed by Bitcoin
address) is around 3GB while our ORAM overhead accounts
for 2 times the original size, totaling around 6GB.

We use Path ORAM to store the UTXO set and have evalu-
ated various chunk sizes for the implementation. The chosen
chunk size accounts for 32kB, meaning a single chunk can
fill up to 32kB with outputs from one address. If an address
has more unspent outputs, the outputs are stored in multi-
ple chunks. Assuming an average output size of 100B, one
ORAM read can return up to 320 outputs for one address.
The outputs are grouped by the receiving address and then
ordered alphabetically. This is necessary in order to keep the
size of the index small enough to fit in the enclave’s memory.
In the worst case the maximum index size involves the lower
and upper limits for addresses (20B) and transaction hashes
(32B) for every ORAM block resulting in a maximum of
(8GB/32kB) · (32B∗2+20B∗2)≈ 19.5MB.

To set the response size, we analyzed the typical unspent
outputs per active address in the Bitcoin network. Our re-
sults show that 95% of all addresses have 5 or fewer unspent
outputs and 98% have fewer than 12 outputs. Based on this
data, we settled on 12 average outputs per request, resulting
in around 1.2kB.

6.2 Performance Results and Comparison

In this section, we evaluate both variants of BITE and com-
pare them to the current SPV performance using python-
bitcoinlib [53]. The focus is put on three different metrics:
processing time, communication overhead, and storage re-
quirements. Processing time encompasses both the request
handling from the client to the enclave as well as the time
needed for the enclave to update the UTXO for new blocks.
Communication overhead is evaluated through the response
size, thus directly affecting the client’s necessary bandwidth.
Lastly, we report the necessary storage requirements on the
full nodes that these system need for operation. A summary
of all reported results can be found later on in Table 3.

Note that in all our data points, the TLS handshake times
are omitted. Matetic et al. [40] report around 100ms for a
new handshake and <10ms for TLS session resumption us-
ing mbed-tls in SGX. We do not evaluate the performance of
a client since the client-side storage and network overhead
are insignificant. We tested our implementation on an Intel
i7-8700k with a Samsung 960 SSD for local storage.

USENIX Association 28th USENIX Security Symposium 793

0 50 100 150 200 250 300
Number of Blocks

0s

1s

2s

3s

4s

5s

6s
Ti

m
e

FPR 0.1%

FPR 0.0%

FPR 0.5%
FPR 5%

BITE Scanning Window
Current SPV (Bloom Filter)
BITE Oblivious Database

(a) Processing cost (client request) for Scanning Window, Oblivi-
ous Database and current SPV protocols using Bloom filters.

0 50 100 150 200 250 300
Number of Blocks

0MB

5MB

10MB

15MB

20MB

To
ta

l T
ra

ns
m

itt
ed

 B
yt

es

FPR 0.1%FPR 0.5%FPR 5%

BITE Oblivious Database
and FPR 0%

BITE Scanning Window

(b) Communication cost for Scanning Window, Oblivious
Database and current SPV protocols using bloom filters.

Figure 6: Performance evaluation of Scanning Window and Oblivious Database.

tm

5kB 10kB 20kB

B
lo

ck
s 100 0.7s (± 0.2s) 1.3s (± 0.5s) 2.7s (± 0.9s)

200 0.7s (± 0.2s) 1.4s (± 0.5s) 2.8s (± 0.9s)
300 0.7s (± 0.2s) 1.5s (± 0.5s) 3.0s (± 0.9s)

Table 2: Processing time per block with oblivious execution
for Scanning Window depending on the number of requested
blocks and the temporary size, averaged over 100 blocks.

Processing. Figure 6a shows the processing cost to filter
blocks for BITE and current SPV protocols. Note that the
measurements in Figure 6a do not account for the network
speed. For client update requests over the last 100 blocks,
the current SPV mode takes 0,62s, 1.06s, 1.06s, 1.5s, with
the false positive rates of Bloom filters set to 0.0% 0.1%,
0.5% and 5%, respectively. Note that the numbers regard-
ing standard SPV with the Bloom filter false positive rate of
0.0% actually indicates a solution with no privacy, e.g. the
light client sends only his addresses in the request without
any masquerading.

For the Scanning Window variant without side-channel
protections we report 1.9s, corresponding to an 81% over-
head compared to the SPV with FPR 0.1% and 0.5%. If the
side-channel protection is added to Scanning Window, the
oblivious execution and memory access adds a significant
overhead. Table 2 shows the time per block for various re-
quests and tm size. Higher tm allows to cope with high vari-
ance of relevant activity within the requested blocks. Note
that the blocks vary in size, and thus the time per block fluc-
tuates a lot leading to a high standard deviation. Synchro-
nizing 100 blocks with tm = 5kB takes around 73 seconds
corresponding to an overhead of approximately 40x. Note
that the oblivious Scanning Window variant is not shown in
Figure 6a due to its size.

In our Oblivious Database variant, the unspent outputs are
directly fetched from the enclave UTXO and the individual
blocks are not scanned. Thus, the performance does not de-

pend on the client’s last known block, but only on the ORAM
database access times. A request that fetches the information
regarding 10 client addresses accounts only for 0.5s and is
completely independent on the number of requested blocks,
thus making it even faster than the standard SPV mode used
without any privacy protections.

Contrary to the Scanning Window, in the Oblivious
Database variant, the enclave needs to update its UTXO set
after each new block arrives in the ORAM database which
takes 78.5s. To reach permanent availability we propose to
use 2 systems in parallel which update with an offset between
each other. If a user requests the result from a node that is
not fully up to date, the remaining blocks can be scanned by
utilizing oblivious Scanning Window. The number of clients
that can be served by a single SGX enclave can be estimated
by using around 120s (pessimistic estimate) for updating the
state and then the remaining 8 out of 10 minutes (Bitcoin
block interval) to continuously answer client requests, lead-
ing to an approximate 10000 clients per enclave.

Communication. Figure 6b shows the bandwidth compar-
ison between all discussed protocols. Our variants use sig-
nificantly smaller response sizes compared to SPV since they
do not need to hide relevant information with false posi-
tives. A device with a decent 4G connection that operates
at 100Mbit/s additionally requires around 1.4s to retrieve
100 blocks (17MB) with the current SPV protocol and a
0.5% false positive rate while Scanning Window only takes
0.04s (500kB). The Oblivious Database variant reduces the
communication overhead even more and accounts only for
0.0001s (only 12kB), which is insignificantly small since
only unspent outputs are included and not the entire transac-
tion information along with the Merkle paths. The SPV with
no privacy protections performs slight less effective than the
Oblivious Database of BITE as it was the case when the pro-
cessing performance was compared.

794 28th USENIX Security Symposium USENIX Association

Processing Communication Storage

Request
UTXO
Update Response Blockchain UTXO

Leakage
Protection

Scanning
Window1 1.9s - 500kB 200GB 0 3/74

Oblivious
SW1 73s - 500kB 200GB 0 3

Oblivious
Database3 0.5s 78.5s 12kB 50MB5 6GB 3

Stan. SPV
FPR 0.5%1 1.1s ≈2s 17MB 200GB 2.8GB 7

Stan. SPV
FPR 0.0%1,2 0.6s ≈2s 14kB 200GB 2.8GB 7

1 For 100 blocks. 2 SPV with no privacy protection. 3 For 10 addresses.
4 Protects against external leakage but not side-channels.
5 Only the block headers need to be stored.

Table 3: Performance comparison and requirements on the
full node for supporting light clients.

Storage. The SPV mode has to store both the whole
blockchain (200GB) and the UTXO set (2.8GB), while our
Scanning Window variant only needs to store the blockchain.
Moreover, our Oblivious Database variant does not need the
whole blockchain (except during initialization) but only the
block headers (50MB in total) and the special enclave UTXO
stored in the ORAM database. This database accounts to
6GB, a 100% overhead compared to the regular UTXO set,
due to the ORAM algorithm requirements. It is clear that
both our variants require less storage, and our Oblivious
Database variant’s requirements are insignificant compared
to all mentioned solutions.

Comparison of BITE variants. Table 3 shows a perfor-
mance comparison between all our variants and the stan-
dard SPV mode from the full node’s perspective. The per-
formance of Scanning Window is heavily dependent if side-
channels are a concern. The original Scanning Window of-
fers a slightly worse performance than the standard SPV
but offers increased privacy, protecting against external leak-
age, and requires significantly less bandwidth. Adding pro-
tection from side-channels greatly increases the processing
time, while the communication load stays the same. Oblivi-
ous Database, on the other hand, offers the same full privacy
guarantees as the oblivious Scanning Window, and has the
smallest footprint in both the processing time and the net-
work overhead. The enclave UTXO does require regular up-
dating affecting the uptime. However, the previously men-
tioned solution of having two parallel enclaves with opera-
tion offset effectively removes this limitation. In conclusion,
we have shown that our variants offer comparable or better
performance with increased end client’s privacy.

Comparison to side-channel protection systems. Fi-
nally, we compare the performance and security of BITE
to previous SGX side-channel protection systems. For
our comparison we use Raccoon [47] that addresses inter-
nal leakage due to secret-dependent memory accesses and

Leakage Performance
OverheadExternal Internal Response Size

Raccoon[47] 7 3 7 ∼ 100x1

Obliviate[14] 3 7 7 > 4x1

Raccoon[47] + Obliviate[14] 3 3 7 100x−400x2

BITE Scanning Window 3 3 3 3 40x
BITE Oblivious Database 3 3 3 1x

1 Based on the performance evaluation of [47] and [14].
2 Combination of the two primitives can yield an overhead in this range.
3 Fully oblivious Scanning Window variant.

Table 4: Performance overhead and security comparison be-
tween existing primitives and BITE.

Obliviate [14] that addresses external leakage due to file ac-
cesses. We note that ZeroTrace [49] also provides similar
external leakage protection as Obliviate, but since the Zero-
Trace paper does not report performance overhead numbers
suitable for comparison, we exclude it from our discussion.

Table 4 summarizes our comparison. By applying Rac-
coon to the target enclave code, the performance overhead
of the enclave’s execution can range up to 1000x depending
on the complexity of the original code that is made oblivi-
ous. In our case, the complexity of the original code matches
the examples that report the overhead of around 100x. Ap-
plying techniques from Obliviate can cause a performance
overhead of >4x. Neither Raccoon nor Obliviate alone pro-
vide full leakage protection, as Raccoon prevents only from
internal leakage and Obliviate protects only against external
leakage. Neither of these two systems protects against leak-
age from response sizes. The combination of Raccoon and
Obliviate would protect both internal and external leakage,
but still not leakage from response sizes. We estimate that
the combined overhead of these two protection tools would
amount to 100x-400x.

Our fully oblivious Scanning Window variant has a perfor-
mance overhead of 40x while the Oblivious Database vari-
ant has practically no overhead. More importantly, both of
the BITE variants protect against external leakage, internal
leakage, and leakage from the response sizes, and therefore
achieve more complete protection than any of the previous
solutions.

7 Discussion

Usage and long-term privacy. Lightweight clients can
use BITE in different ways and the chosen usage model can
have implications on the clients’ long-term privacy. For ex-
ample, in what we consider non-recommended usage, the
client (i) performs payment verification requests only when
the payment appears in the ledger, (ii) always uses the same
full node for verification, and (iii) only uses a single or few
Bitcoin address. If all of the above conditions are met, al-
though the adversary controlling the full node does not learn
the client’s address from a single verification request, he
might be able to correlate the timing of the verification re-

USENIX Association 28th USENIX Security Symposium 795

quest events and the Bitcoin addresses visible in the ledger
at roughly the same time, and thus construct a set of can-
didate addresses that may belong to the served client. We
acknowledge that our solution cannot eliminate this type of
correlation completely. However, we stress that such correla-
tion would require long-term tracking of verification requests
from the adversary and that the same limitation applies to any
light client payment verification scheme.

In recommended usage of BITE, the client (i) uses differ-
ent full nodes for payment verification, (ii) regularly uses
fresh Bitcoin addresses (e.g., using an HD wallet [57]), and
(iii) introduces unpredictability to the timing pattern of pay-
ment verification requests like a small number of extra re-
quests at random time points. Following such a usage model,
the above mentioned correlation becomes very difficult.2

Large responses. Some client requests might result in a
larger response than our defined threshold for message size.
As our performance analysis shows, the number of these re-
quests is almost negligible. However, our mechanism still al-
lows these types of request with the distinctive factor that the
client would have to request them in batches. For example,
if a client in the Scanning Window variant requests transac-
tions for 10 of his addresses from the last 300 blocks using
the full-side-channel protection, there might be more trans-
action data then the 300∗ t kB message size. In this case, the
enclave sets a flag indicating there is more information to be
delivered. After receiving the response, the client can repeat
the request with the defined flag and receive the rest of the
information. The protocol operates in the same way, thus no
distinction between these two requests can be observed by
the attacker. However, the attacker can see the repeated re-
quest and infer that the specific client has more transactions
of interest in the designated blocks. To mitigate this prob-
lem one could wait a period of time before requesting the
rest of the response, obfuscate the IP address or change to
a completely different service provider (another enclave) for
finishing the request.

Denial of service. A malicious user might attempt DoS by
asking for a very long scan window, incurring large process-
ing times for full nodes and making the service momentarily
unavailable for other clients. DoS (and spam) are common
in systems where there is no significant cost involved (e.g.,
sending 1M emails is practically free). In our setting, one
could easily remedy such denial of service attacks by ap-
plying fees based on the nature of the request. Large bal-
ance updates for lightweight clients would incur higher costs
than just frequent updates, thus limiting the attacker from

2To quantify how accurately the adversary can correlate the client’s ad-
dresses with these best practices, would be an interesting direction for future
work. As building an accurate model would require collecting significant
amount data about the behavioral patterns of light clients, we consider this
task a research project on its own and outside our scope.

performing “free” DoS attacks. On the other hand, a mali-
cious node can easily block all enclave messages or interrupt
enclave execution, thereby preventing the enclave to access
the blockchain, update its UTXO or serve client requests.
This however falls in a domain which is impossible to fully
prevent. If this would occur, the light client can just send its
request to another enclave hosted by another entity.

Unbounded enclave memory. The performance of our
system is mostly bounded by the slower disk operations.
However, if future versions of Intel SGX would allow more
enclave memory (i.e., currently the limit is 128MB without
the expensive page swapping) ranging up to the RAM limit
on the residing platform, one could keep the UTXO database
and all other security critical data in the memory and not on
the disk, similar to recently proposed SGX-based in-memory
database systems like EnclaveDB [46].

8 Related Work

Lightweight client privacy. The idea of light clients for
Bitcoin was already included in the Bitcoin paper by Satoshi
Nakamoto [44] in the form of Simple Payment Verification
(SPV). Hearn and Corallo later introduced Bloom filters [18]
in BIP 37 [31] that allow a client to probabilistically request a
subset of all transactions in a block to mask which addresses
are owned by the client. Gervais et al. later showed that
the information leaked by the use of Bloom filters in Bit-
coin can in many cases enable the identification of client
addresses [25]. Hearn later expanded on these issues and
discussed the difficulties of solving them [30].

Osuntokun et al. recently proposed modifications to Bit-
coin nodes and lightweight clients that move the application
of the filter to the client [45]. Full nodes create a filter (with
a low false positive rate) for the set of all transactions in a
block. A lightweight client then fetches the filter from one
or more full nodes and can then check whether the block con-
tains transactions that she is interested in. If that is the case,
the client will request the full block from any node.

This approach suffers from a number of shortcomings.
First, the gained privacy largely depends on the client behav-
ior and how well the client is connected to distinct entities.
If the client does not request the filter headers from multi-
ple entities and then requests the blocks from a different one,
she can be easily tricked into revealing her addresses by us-
ing forged filters: A node prepares a filter matching half of
all addresses and sends it to the client. If the client requests
the block, at least one of her addresses lies within that set,
otherwise all of her addresses lie in the other half. The node
can then further reduce the possible set using binary search
by sending modified filters for the following blocks, allowing
bitwise recovery of client addresses. Second, depending on
how often a transaction is of interest to the client, she might

796 28th USENIX Security Symposium USENIX Association

end up downloading the full blockchain after all. Since the
client always either requests the full block or nothing at all,
she will download almost every block if a large fraction of
blocks contain at least one transaction that is of interest.

Other research on Bitcoin privacy shows that using differ-
ent heuristics, large parts of the Bitcoin transaction graph can
be deanonymized [16, 41]. These techniques are orthogonal
to the problem of light client privacy and out of our scope.

Lastly, there exist alternative solutions that tackle limited
computation abilities of light clients, such as VerSum [55].
The main idea is that the complex computation is outsourced
to a set of remote servers. Even though these solutions do
not focus on privacy preservation directly, they do offer al-
ternative ways to construct support systems for light clients
that do not require the creation of UTXO type databases for
proving correctness.

SGX Leakage Protection. During the last few years, the
research community has studied information leakage from
SGX enclaves extensively and proposed a number of de-
fenses. In this section we explain why none of the existing
systems solves our problem directly and which prior systems
use similar protective primitives as our solution.

Raccoon [47] addresses both internal and external infor-
mation leakage for both code and data accesses. For control-
flow obfuscation, Raccoon uses taint analysis to determine
execution paths that should be hidden and transforms en-
clave code such that it executes extraneous decoy paths to
hide the enclave’s actual control flow. The basic building
block for such control-flow obfuscation is the cmov instruc-
tion that we use as well. Raccoon also uses Path ORAM
to hide external secret-dependent data accesses and “stream-
ing” over data structures (i.e., accessing every element) in
the internal enclave memory. The main difference between
Raccoon and our solution is that by tailoring our implemen-
tation, we avoid the need for taint analysis and extra decoy
paths enabling a more efficient solution.

Other related systems include Cloak [28] that prevents
cache leakage using hardware-based transactional memory
features in processors; ZeroTrace [49] and Obliviate [14]
that provide a library for data structures protected using
ORAM; DR.SGX [19] that randomizes and periodically re-
randomizes all data locations in enclave’s memory with
cache-line granularity; and, T-SGX [51] and Deja Vu [22]
that detect and prevent side-channel attacks based on re-
peated interrupts. The main limitation of Cloak is that
it requires hardware features that are not available on all
SGX CPUs and it only prevents cache-based leakage. Ze-
roTrace and Obliviate are limited to data access protection
and does not prevent leakage from secret-dependent control
flow. DR.SGX is also limited to data accesses and imposes
a high performance overhead when configured to prevent all
leakage. T-SGX and Deja Vu are limited to attacks that per-
form repeated interrupts (subset of known attacks).

Oblix [42] presents a new ORAM algorithm tailored to
SGX. We use Path ORAM, but our solution is agnostic to
the used ORAM algorithm and we could easily replace it.

9 Conclusion

Improved user privacy is one of the main goals of decentral-
ized currencies like Bitcoin. However, payment verification
requires downloading and processing the entire chain which
is impossible for most mobile clients. Therefore, all popu-
lar blockchains support simplified verification modes where
lightweight clients can verify transactions with the help of
full nodes. Unfortunately, such payment verification does
not preserve user privacy and thus defeats one of the main
benefits of using systems like Bitcoin. In this paper, we
have proposed a new approach to improve the privacy of
lightweight clients using trusted execution. We have shown
that our solution provides strong privacy protection and addi-
tionally improves performance of current lightweight clients.
We argue that BITE is the first practical solution to ensure
privacy for light clients, such as mobile devices, in Bitcoin.

Acknowledgments

The research work leading to these results has been sup-
ported by Zurich Information Security and Privacy Cen-
ter (ZISC). We would also like to thank our shepherd Rob
Jansen for his insightful comments.

References

[1] Keystone: Open-source Secure Hardware Enclave.

[2] BitcoinJ, 2018. https://bitcoinj.github.io/.

[3] Electrum, 2018. https://electrum.org/#home.

[4] Ethereum, 2018. https://www.ethereum.org/.

[5] Etherscan.io, 2018. https://etherscan.io.

[6] Light Ethereum Subprotocol (LES), 2018. https://

github.com/zsfelfoldi/go-ethereum/wiki/Light-

Ethereum-Subprotocol-%28LES%29.

[7] OpCodes: CMOV, 2018. http://www.rcollins.org/p6/
opcodes/CMOV.html.

[8] PicoCoin, 2018. https://github.com/jgarzik/

picocoin.

[9] R3, 2018. https://www.r3.com/.

[10] Ripple, 2018. https://ripple.com/.

[11] Bitnodes, 2019. https://bitnodes.earn.com/.

[12] Blockchain.info, 2019. https://blockchain.info.

[13] Statoshi.info, 2019. https://statoshi.info.

[14] AHMAD, A., KIM, K., SARFARAZ, M. I., AND LEE, B.
OBLIVIATE: A Data Oblivious File System for Intel SGX.
In NDSS (2018).

USENIX Association 28th USENIX Security Symposium 797

https://bitcoinj.github.io/
https://electrum.org/#home
https://www.ethereum.org/
https://etherscan.io
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
https://github.com/zsfelfoldi/go-ethereum/wiki/Light-Ethereum-Subprotocol-%28LES%29
http://www.rcollins.org/p6/opcodes/CMOV.html
http://www.rcollins.org/p6/opcodes/CMOV.html
https://github.com/jgarzik/picocoin
https://github.com/jgarzik/picocoin
https://www.r3.com/
https://ripple.com/
https://bitnodes.earn.com/
https://blockchain.info
https://statoshi.info

[15] ANDROULAKI, E., BARGER, A., BORTNIKOV, V., CACHIN,
C., CHRISTIDIS, K., DE CARO, A., ENYEART, D., FER-
RIS, C., LAVENTMAN, G., MANEVICH, Y., ET AL. Hyper-
ledger Fabric: A Distributed Operating System for Permis-
sioned Blockchains. In Proceedings of the 13th EuroSys Con-
ference (2018), ACM.

[16] ANDROULAKI, E., KARAME, G. O., ROESCHLIN, M.,
SCHERER, T., AND CAPKUN, S. Evaluating User Privacy
in Bitcoin. In International Conference on Financial Cryp-
tography and Data Security (2013), Springer.

[17] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN,
D., O’KEEFFE, D., STILLWELL, M., ET AL. SCONE: Se-
cure Linux Containers with Intel SGX. In 11th USENIX
Symposium on Operating Systems Design and Implementa-
tion (USENIX OSDI) (2016).

[18] BLOOM, B. H. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Communications of the ACM 13, 7 (1970),
422–426.

[19] BRASSER, F., CAPKUN, S., DMITRIENKO, A., FRAS-
SETTO, T., KOSTIAINEN, K., MÜLLER, U., AND SADEGHI,
A. DR.SGX: Hardening SGX Enclaves against Cache Attacks
with Data Location Randomization, 2017.

[20] BRASSER, F., MULLER, U., DMITRIENKO, A., KOSTI-
AINEN, K., CAPKUN, S., AND SADEGHI, A.-R. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical. In
11th USENIX Workshop on Offensive Technologies (WOOT)
(2017).

[21] CHEN, G., CHEN, S., XIAO, Y., ZHANG, Y., LIN, Z., AND

LAI, T. H. SgxPectre Attacks: Leaking Enclave Secrets
via Speculative Execution. Computing Research Repository
(CoRR), arXiv abs/1802.09085 (2018).

[22] CHEN, S., ZHANG, X., REITER, M. K., AND ZHANG, Y.
Detecting Privileged Side-Channel Attacks in Shielded Exe-
cution with Déjá Vu. In Proceedings of the 12th ACM ASIA
Conference on Computer and Communications Security (ASI-
ACCS) (2017).

[23] COSTAN, V., AND DEVADAS, S. Intel SGX explained. In
Cryptology ePrint Archive, Report 2016/086 (2016).

[24] FOR ALTERNATIVE FINANCE, C. C. Global Cryptocurrency
Benchmarking Study, 20187. https://goo.gl/7B99Ev.

[25] GERVAIS, A., CAPKUN, S., KARAME, G., AND GRUBER,
D. On the Privacy Provisions of Bloom Filters in Lightweight
Bitcoin Clients. In Proceedings of the 30th Annual Computer
Security Applications Conference (2014), ACM.

[26] GOLDREICH, O., AND OSTROVSKY, R. Software Protec-
tion and Simulation on Oblivious RAMs. Journal of the ACM
(JACM) 43, 3 (1996), 431–473.

[27] GÖTZFRIED, J., ECKERT, M., SCHINZEL, S., AND

MÜLLER, T. Cache Attacks on Intel SGX. In Proceedings
of the 10th European Workshop on Systems Security (2017),
ACM.

[28] GRUSS, D., LETTNER, J., SCHUSTER, F., OHRIMENKO, O.,
HALLER, I., AND COSTA, M. Strong and Efficient Cache
Side-Channel Protection using Hardware Transactional Mem-
ory. In USENIX Security (2017).

[29] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N.,
CLARKSON, W., PAUL, W., CALANDRINO, J. A., FELD-
MAN, A. J., APPELBAUM, J., AND FELTEN, E. W. Lest We
Remember: Cold-boot Attacks on Encryption Keys. Commu-
nications of the ACM 52, 5 (2009), 91–98.

[30] HEARN, M. Bloom Filter Privacy and Thoughts on a Newer
Protocol, 2015. https://groups.google.com/forum/#!

msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ.

[31] HEARN, M., AND CORALLO, M. Connection Bloom
Filtering. Bitcoin Improvement Proposal 37 (2012).
https://github.com/bitcoin/bips/blob/master/

bip-0037.mediawiki.

[32] INTEL. Intel SGX, Ref. No.: 332680-002, 2015.
https://software.intel.com/sites/default/

files/332680-002.pdf.

[33] INTEL. Intel Software Guard Extensions - Developer Zone
- Details, 2017. https://software.intel.com/en-us/

sgx/details.

[34] KAUER, B. OSLO: Improving the Security of Trusted Com-
puting. In USENIX Security (2007).

[35] KOCHER, P., HORN, J., FOGH, A., , GENKIN, D., GRUSS,
D., HAAS, W., HAMBURG, M., LIPP, M., MANGARD, S.,
PRESCHER, T., SCHWARZ, M., AND YAROM, Y. Spectre
Attacks: Exploiting Speculative Execution. In Proceedings
of the 40th IEEE Symposium on Security and Privacy (SP)
(2019).

[36] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND

PEINADO, M. Inferring fine-grained control flow inside sgx
enclaves with branch shadowing. In USENIX Security (2017).

[37] LIMITED, A. mbedTLS (formerly known as PolarSSL), 2015.
https://tls.mbed.org/.

[38] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T.,
HAAS, W., FOGH, A., HORN, J., MANGARD, S., KOCHER,
P., GENKIN, D., YAROM, Y., AND HAMBURG, M. Melt-
down: Reading Kernel Memory from User Space. In USENIX
Security (2018).

[39] MATETIC, S., AHMED, M., KOSTIAINEN, K., DHAR, A.,
SOMMER, D., GERVAIS, A., JUELS, A., AND CAPKUN,
S. ROTE: Rollback Protection for Trusted Execution. In
USENIX Security (2017).

[40] MATETIC, S., SCHNEIDER, M., MILLER, A., JUELS, A.,
AND CAPKUN, S. DELEGATEE: Brokered Delegation Using
Trusted Execution Environments. In USENIX Security (2018).

[41] MEIKLEJOHN, S., POMAROLE, M., JORDAN, G.,
LEVCHENKO, K., MCCOY, D., VOELKER, G. M.,
AND SAVAGE, S. A Fistful of Bitcoins: Characterizing
Payments among Men with No Names. In Proceedings of
the 2013 conference on Internet Measurement Conference
(2013), ACM.

[42] MISHRA, P., PODDAR, R., CHEN, J., CHIESA, A., AND

POPA, R. A. Oblix: An Efficient Oblivious Search Index.
In Proceedings of the 39th IEEE Symposium on Security and
Privacy (SP) (2018).

798 28th USENIX Security Symposium USENIX Association

https://goo.gl/7B99Ev
https://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ
https://groups.google.com/forum/#!msg/bitcoinj/Ys13qkTwcNg/9qxnhwnkeoIJ
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/en-us/sgx/details
https://software.intel.com/en-us/sgx/details
https://tls.mbed.org/

[43] MOGHIMI, A., IRAZOQUI, G., AND EISENBARTH, T.
Cachezoom: How SGX Amplifies the Power of Cache At-
tacks. In International Conference on Cryptographic Hard-
ware and Embedded Systems (2017), Springer.

[44] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash
System, 2008.

[45] OSUNTOKUN, O., AKSELROD, A., AND POSEN, J.
Client Side Block Filtering. Bitcoin Improvement Proposal
157 (2017). https://github.com/bitcoin/bips/blob/
master/bip-0157.mediawiki.

[46] PRIEBE, C., VASWANI, K., AND COSTA, M. EnclaveDB: A
Secure Database using SGX. IEEE.

[47] RANE, A., LIN, C., AND TIWARI, M. Raccoon: Clos-
ing Digital Side-channels Through Obfuscated Execution. In
USENIX Security (2015).

[48] RITZDORF, H., WÜST, K., GERVAIS, A., FELLEY, G.,
ET AL. Tls-n: Non-repudiation over tls enabling ubiquitous
content signing. In Network and Distributed System Security
Symposium (NDSS) (2018).

[49] SASY, S., GORBUNOV, S., AND FLETCHER, C. ZeroTrace:
Oblivious memory primitives from Intel SGX. In NDSS
(2017).

[50] SCHWARZ, M., WEISER, S., GRUSS, D., MAURICE, C.,
AND MANGARD, S. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In International Conference on
Detection of Intrusions and Malware, and Vulnerability As-
sessment (2017), Springer.

[51] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-
SGX: Eradicating Controlled-Channel Attacks Against En-
clave Programs. In NDSS (2017).

[52] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C.,
REN, L., YU, X., AND DEVADAS, S. Path ORAM: an ex-
tremely simple oblivious RAM protocol. In Proceedings of
the 20th ACM SIGSAC Conference on Computer and Com-
munications Security (CCS) (2013).

[53] TODD, P. python-bitcoinlib, 2018. https://github.com/

petertodd/python-bitcoinlib.

[54] VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D.,
KASIKCI, B., PIESSENS, F., SILBERSTEIN, M., WENISCH,
T. F., YAROM, Y., AND STRACKX, R. FORESHADOW:
Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security (2018).

[55] VAN DEN HOOFF, J., KAASHOEK, M. F., AND ZELDOVICH,
N. Versum: Verifiable computations over large public logs. In
Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (2014), ACM, pp. 1304–
1316.

[56] WOJTCZUK, R., AND RUTKOWSKA, J. Attacking SMM
Memory via Intel CPU Cache Poisoning. Invisible Things
Lab (2009).

[57] WUILLE, P. Hierarchical Deterministic Wallets. Bitcoin
Improvement Proposal 32 (2012). https://github.com/

bitcoin/bips/blob/master/bip-0032.mediawiki.

[58] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel
Attacks: Deterministic Side Channels for Untrusted Operat-
ing Systems. In Proceedings of the 36th IEEE Symposium on
Security and Privacy (SP) (2015).

[59] ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND

SHI, E. Town Crier: An Authenticated Data Feed for Smart
Contracts. In Proceedings of the 23rd ACM SIGSAC Con-
ference on Computer and Communications Security (CCS)
(2016).

A Intel SGX

Intel’s SGX [23, 32] entails a security enhancement for new
Intel CPUs in form of a TEE for security-critical applications
in commodity PC platforms. The SGX architecture enables
protected applications, called enclaves that are isolated from
software running outside of the enclave. This isolation pro-
tects the integrity and confidentiality of the enclave’s execu-
tion from any malicious software running on the same sys-
tem, including BIOS, OS and hypervisor, or even malicious
peripherals such as compromised network cards [56, 34, 29].
Enclave memory is handled in plaintext only inside the pro-
cessor and is encrypted by the processor whenever it leaves
the CPU (e.g., to DRAM) to ensure that neither the OS nor
malicious hardware can access it.

Even though the OS is untrusted, it is responsible for start-
ing and managing enclaves. To protect the integrity of the ex-
ecution, the CPU securely records all initialization actions to
create a measurement that records the code and initial state
of the enclave. This can be later used by a third party to
verify that the correct code is running on the system sup-
ported by SGX. This process is called remote attestation. A
system service called Quoting Enclave signs the attestation
statement – which contains the mentioned measurements –
for remote verification. Using an online attestation service
run by Intel, the verifier can check that signature. An en-
clave can attach data to the attestation statement, such as a
public key, that it sends to the verifier. This can be used to
establish a secure communication channel to an enclave.

In addition, SGX enables enclaves to store data for per-
sistent storage in an encrypted form through a process called
sealing. The processor provides a sealing key that can only
be accessed by the same enclave running on the same plat-
form, i.e. only the enclave that sealed data can later unseal it.
This provides confidentiality and integrity for the stored data,
but it does not protect from so called rollback attacks [39]
when the enclave is restarted. Finally, enclaves cannot exe-
cute system calls and do not have access to secure peripher-
als. For this reason, software using SGX has to be split into
two parts, a protected enclave and an unprotected component
that runs in normal user space and handles communication
with the OS, i.e. operations concerning networking and file
accesses. For further details, we refer the reader to [23, 32].

USENIX Association 28th USENIX Security Symposium 799

https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0157.mediawiki
https://github.com/petertodd/python-bitcoinlib
https://github.com/petertodd/python-bitcoinlib
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

1 4 2

35

1 4 2

35

2

41

35

3 2stash
leaf number L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

position
map

1 2 3 4 5
L2 L4 L3 L3 L1

1 2 3 4 5
L2 L1 L3 L3 L1

1 2 3 4 5
L1 L2 L3 L3 L1

address

leaf

address

leaf

address

leaf

a) b) c)

Figure 7: a) The client wants to access the chunk 2 that is stored in Path ORAM. b) The position map specifies that the chunk
2 is on the path to leaf 4. Therefore, the server reads all entries on the path into the stash and re-randomizes the position map
entry of the requested chunk. c) The server writes back as many chunks as possible on the previously read path.

B Oblivious RAM

Oblivious RAM (ORAM) [26], is a well-known technique
that hides access patterns to an encrypted storage medium.
A typical ORAM model is one where a trusted client wants
to store sensitive information on an untrusted server. En-
crypting each data record before storing it on the server pro-
vides confidentiality, but access patterns to stored encrypted
records can leak information, such as correlation of multiple
accesses to the same record. The intuition behind the se-
curity definition of ORAM is to prevent the adversary from
learning anything about the access pattern. In ORAM, the
adversary does not learn any information about which data
is being accessed and when, whether the same data is be-
ing repeatedly accessed (i.e., unlinkability), the pattern of
the access itself, and lastly the purpose, type of the access
(i.e., write or read). However, one should note that ORAM
techniques cannot hide access timing.

In this work, we use a popular and simple algorithm called
Path ORAM [52] that provides a good trade-off between
client side storage and bandwidth. The storage is organized
as a binary tree with buckets containing Z chunks each. The

position of each chunk is stored in a position map that maps
a database entry to a leaf in the tree, and for every access the
leaf of the accessed entry is re-randomized. A small amount
of entries is stored in a local (i.e., memory) structure – stash.

Every access involves reading all buckets of a path from
the root to a leaf into the stash and then writing back new
or old re-randomized data from the stash to the same path
resulting in an overhead of O(logN) read/write operations. If
the requested chunk is already in the stash, an entire path still
gets read and written. The summary of ORAM operations is:

(1) get leaf from position map and generate new random leaf
for the database entry. Insert it into the position map, read all
buckets along the path to the leaf and put them into the stash
(2) if access is a write, replace the specified chunk in the
stash with the new chunk
(3) write back some chunks from the stash to the path.
Chunks can only be put into the path if their leaf from the
position map allows it. Chunks are pushed down as far as
possible into the tree to minimize stash capacity.
(4) return requested chunk

800 28th USENIX Security Symposium USENIX Association

FASTKITTEN:
Practical Smart Contracts on Bitcoin

Poulami Das* Lisa Eckey* Tommaso Frassetto§ David Gens§

Kristina Hostáková* Patrick Jauernig§ Sebastian Faust* Ahmad-Reza Sadeghi§

Technische Universität Darmstadt, Germany
* first.last@cs.tu-darmstadt.de

§ first.last@trust.tu-darmstadt.de

Abstract
Smart contracts are envisioned to be one of the killer appli-
cations of decentralized cryptocurrencies. They enable self-
enforcing payments between users depending on complex
program logic. Unfortunately, Bitcoin – the largest and by far
most widely used cryptocurrency – does not offer support for
complex smart contracts. Moreover, simple contracts that can
be executed on Bitcoin are often cumbersome to design and
very costly to execute. In this work we present FASTKITTEN,
a practical framework for executing arbitrarily complex smart
contracts at low costs over decentralized cryptocurrencies
which are designed to only support simple transactions. To
this end, FASTKITTEN leverages the power of trusted comput-
ing environments (TEEs), in which contracts are run off-chain
to enable efficient contract execution at low cost. We formally
prove that FASTKITTEN satisfies strong security properties
when all but one party are malicious. Finally, we report on
a prototype implementation which supports arbitrary con-
tracts through a scripting engine, and evaluate performance
through benchmarking a provably fair online poker game. Our
implementation illustrates that FASTKITTEN is practical for
complex multi-round applications with a very small latency.
Combining these features, FASTKITTEN is the first truly prac-
tical framework for complex smart contract execution over
Bitcoin.

1 Introduction
Starting with their invention in 2008, decentralized cryptocur-
rencies such as Bitcoin [51] currently receive broad attention
both from academia and industry. Since the rise of Bitcoin,
countless new cryptocurrencies have been launched to address
some of the shortcomings of Nakamoto’s original proposal.
Examples include Zerocash [47] which improves on Bitcoin’s
limited anonymity, and Ethereum [16] which offers complex
smart contract support. Despite these developments, Bitcoin
still remains by far the most popular and intensively stud-
ied cryptocurrency, with its current market capitalization of
$109 billion which accounts for more than 50% of the total
cryptocurrency market size [2].

A particular important shortcoming of Bitcoin is its limited
support for so-called smart contracts. Smart contracts are
(partially) self-enforcing protocols that allow emitting trans-
actions based on complex program logic. Smart contracts
enable countless novel applications in, e.g., the financial in-
dustry or for the Internet of Things, and are often quoted as
a glimpse into our future [9]. The most prominent cryptocur-
rency that currently allows to run complex smart contracts is
Ethereum [16], which has been designed to support Turing
complete smart contracts. While Ethereum is continuously
gaining popularity, integrating contracts directly into a cryp-
tocurrency has several downsides as frequently mentioned
by the advocates of Bitcoin. First, designing large-scale se-
cure distributed systems is highly complex, and increasing
complexity even further by adding support for complex smart
contracts also increases the potential for introducing bugs.
Second, in Ethereum, smart contracts are directly integrated
into the consensus mechanics of the cryptocurrency, which re-
quires in particular that all nodes of the decentralized system
execute all contracts. This makes execution of contracts very
costly and limits the number and complexity of applications
that can eventually be run over such a system. Finally, many
applications for smart contracts require confidentiality, which
is currently not supported by Ethereum.

There has been significant research effort in addressing these
challenges individually. Some works aim to extend the func-
tionality of Bitcoin by showing how to build contracts over
Bitcoin by using multiparty computation (MPC) [37, 38, 40],
others focus on achieving privacy-preserving contracts (e.g.,
Hawk [35], Ekiden [19]) by combining existing cryptocur-
rencies with trusted execution environments (TEEs). How-
ever, as we elaborate in Section 2, all of these solutions suf-
fer from various deficiencies: they cannot be integrated into
existing cryptocurrencies such as Bitcoin, are highly ineffi-
cient (e.g., they use heavy cryptographic techniques such as
non-interactive zero-knowledge proofs or general MPC), do
not support money mechanics, or have significant financial
costs due to complex transactions and high collateral (money
blocked by the parties in MPC-based solutions).

USENIX Association 28th USENIX Security Symposium 801

In this work, we propose FASTKITTEN, a novel system that
leverages trusted execution environments (TEEs) utilizing
well-established cryptocurrencies, such as Bitcoin, to offer
full support for arbitrary complex smart contracts. We empha-
size that FASTKITTEN does not only address the challenges
discussed above, but is also highly efficient. It can be easily
integrated into existing cryptocurrencies and hence is ready to
use today. FASTKITTEN achieves these goals by using a TEE
to isolate the contract execution inside an enclave, shielding
it from potentially malicious users. The main challenges of
this solution, such as for instance how to load and validate
blockchain data inside the enclave or how to prevent denial
of service attacks, are discussed in Section 3.1. Moving the
contract execution into the secure enclave guarantees correct
and private evaluation of the smart contract even if it is not
running on the blockchain and verified by the decentralized
network. This approach circumvents the efficiency shortcom-
ing of cryptocurrencies like Ethereum, where contracts have
to be executed in parallel by thousands of users. Most related
to our work is the recently introduced Ekiden system [19],
which uses a TEE to support execution of multiparty compu-
tations but does support contracts that handle coins. While
Ekiden is efficient for single round contracts, it is not de-
signed for complex reactive multi-round contracts, and their
off-chain execution. The latter is one of the main goals of
FASTKITTEN.
We summarize our main goals and contributions below.

• Smart Contracts for Bitcoin: We support arbitrary
multi-round smart contracts executed amongst any fi-
nite number of participants, where our system can be run
on top of any cryptocurrency with only limited script-
ing functionality. We emphasize that Bitcoin is only one
example over which our system can be deployed today;
even cryptocurrencies that are simpler than Bitcoin can
be used for FASTKITTEN.

• Efficient Off-Chain Execution: Our protocol is de-
signed to keep the vast majority of program execution
off-chain in the standard case if all parties follow the
protocol. Since our system incentivizes honest behavior
for most practical use cases, FASTKITTEN can thus run
in real-time at low costs.

• Formal Security Analysis: We formally analyze the
security of FASTKITTEN in a strong adversarial model.
We prove that either the contract is executed correctly,
or all honest parties get their money back that they have
initially invested into the contract, while a malicious
party loses its coins. Additionally, the service provider
who runs the TEE is provably guaranteed to not lose
money if he behaves honestly.

• Implementation and benchmarking: We provide an
in-depth analysis of FASTKITTEN’s performance and
costs and evaluate our framework implementation with
respect to several system parameters by offering bench-
marks on real-world use cases. Concretely, we show that

online poker can run with an overall match latency of
45ms and costs per player are in order of magnitude of
one USD, which demonstrates FASTKITTEN’s practical-
ity.

We emphasize that FASTKITTEN requires only a single TEE
which can be owned either by one of the participants or by an
external service provider which we call the operator. In addi-
tion, smart contracts running in the FASTKITTEN execution
framework support private state and secure inputs, and thus,
offer even more powerful contracts than Ethereum. Finally,
we stress that FASTKITTEN can support contracts that may
span over multiple different cryptocurrencies where each par-
ticipant may use her favorite currency for the money handled
by the contract.

2 Related Work
Support for execution of arbitrary complex smart contracts
over decentralized cryptocurrencies was first proposed and
implemented by the Ethereum cryptocurrency. As pointed
out in Section 1, running smart contracts over decentralized
cryptocurrencies results in significant overheads due to the
replicated execution of the contract. While there are currently
huge research efforts aiming at reducing these overheads
(for instance, via second layer solutions such as state chan-
nels [24, 49], Arbitrum [34] or Plasma [55], outsourcing of
computation [58], or permissioned blockchains [46]), these so-
lutions work only over cryptocurrencies with support complex
smart contracts, e.g. over Ethereum. Another line of work,
which includes Hawk [36] and the “Ring of Gyges” [33], is
addressing the shortcoming that Ethereum smart contracts
cannot keep private state. However, also these solutions are
based on complex smart contracts and hence cannot be inte-
grated into popular legacy cryptocurrencies such as Bitcoin,
which is the main goal of FASTKITTEN.
In this section we will focus on related work, which con-
siders smart contract execution on Bitcoin. We separately
discuss multiparty computation based smart contracts and so-
lutions using a TEE. We provide a more detailed discussion on
how the above-mentioned Ethereum based solutions compare
to FASTKITTEN in Appendix A. Additionally, in Section 8
we discuss some exemplary contract use cases and compare
their execution inside FASTKITTEN with the execution over
Ethereum.
Multiparty computation for smart contracts An interest-
ing direction to realize complex contracts over Bitcoin is to
use so-called multiparty computation with penalties [38–40].
Similar to FASTKITTEN these works allow secure m-round
contract execution but they rely on the claim-or-refund func-
tionality [39]. Such a functionality can be instantiated over
Bitcoin and hence these works illustrate feasibility of generic
contracts over Bitcoin. Unfortunately, solutions supporting
generic contracts require complex (and expensive) Bitcoin
transactions and high collateral locked by the parties which
makes them impractical for most use-cases. Concretely, in

802 28th USENIX Security Symposium USENIX Association

Approach Minimal
TX Collateral Generic

Contracts
Privacy

Ethereum contracts O(m) O(n) 3 5

MPC [38–40] O(1) O
(
n2m

)
3 3

Ekiden [19] O(m) no support for money 3

FASTKITTEN O(1) O(n) 3 3

Table 1: Selected solutions for contract execution over Bitcoin
and their comparison to Ethereum smart contracts. Above, n
denotes the number of parties and m is the number of reactive
execution rounds.

all generic n-party contract solutions we are aware of, each
party needs to lock O(nm) coins, which overall results in
O(n2m) of locked collateral. In contrast, the total collateral
in FASTKITTEN is O(n), see column “Collateral” in Table 1.
It has been shown that for specific applications, concretely, a
multi-party lottery, significant improvements in the required
collateral are possible when using MPC-based solutions [48].
This however comes at the cost of an inefficient setup phase,
communication complexity of order O(2n), and O(logn) on-
chain transactions for the execution phase. Let us stress that
the approach used in [48] cannot be applied to generic con-
tracts.
Overall, while MPC-based contracts are an interesting direc-
tion for further research, we emphasize that these systems are
currently far from providing a truly practical general-purpose
platform for contract execution over Bitcoin—which is the
main goal of FASTKITTEN.

TEEs for blockchains There has recently been a large
body of work on using TEEs to improve certain features
of blockchains [10, 43, 59, 63, 64]. A prominent example is
Teechain [43], which enables off-chain payment channel sys-
tems over Bitcoin. Most of these prior works do not use the
TEE for smart contract execution. Some notable exceptions
include Hawk [36] and the “Ring of Gyges” [33], who pro-
pose privacy preserving off-chain contracts execution, but, as
already mentioned, do not work over Bitcoin.
Probably most related to our work is Ekiden [19], which
proposes a system for private off-chain smart contract ex-
ecution using TEEs. While Ekiden focuses on solutions
over Ethereum, it does not require a powerful scripting lan-
guage of the underlying blockchain technology – just like
FASTKITTEN. Despite the conceptual similarities of Ekiden
and FASTKITTEN, the goals of these systems are orthogonal.
Ekiden aims at moving heavy smart contract execution off
the chain in order to reduce the cost of executing complex
contract functions. In contrast, FASTKITTEN focuses on effi-
cient off-chain execution of multi-round contracts between a
set of parties. Importantly, we require our system to natively
handle coins of the underlying blockchain. A joint goal of
both systems is to provide state privacy of the contracts.
Ekiden considers clients (contract parties) and computing

nodes which have a similar task as FASTKITTEN’s TEE oper-
ator since they also execute contracts inside a TEE. In contrast
to FASTKITTEN, Ekiden sends the encryption of the resulting
contract state to the blockchain after every function call. If
a client requests another function call, a selected computing
node takes the state from the blockchain, decrypts it inside
its enclave and performs the contract execution. This implies
that reactive multi-round contracts are very costly even in the
standard case when all participating parties are honest (c.f.
column “Minimal # TX” in Table 1).
Ekiden relies on multiple TEEs and guarantees service avail-
ability as long as at least one TEE is controlled by an honest
computing node. We note in Section 9.2 that fault tolerance
can be integrated into FASTKITTEN in a straightforward way.
Additionally, Ekiden aims to achieve forward secrecy even if a
small fraction of TEEs gets corrupted via, e.g., a side-channel
attack. Their strategy is to secret-share a long-term secret key
between the TEEs and use it to generate a short-term secret
key every “epoch”. Hence, an attacker learning the short-term
key can only decrypt state from the current epoch. While
side-channel attacks are out of scope of this work, note that
FASTKITTEN can achieve forward secrecy of states in case
of side-channel attacks using the same mechanism as Ekiden.
An important part of the FASTKITTEN construction is the
fair distribution of coins through the enclave. Ekiden does
neither model nor discuss the handling of coins. It is not
straightforward to add this feature to their model since the
contract state is encrypted and hence the money cannot be
unlocked automatically on-chain.

3 Design
FASTKITTEN allows a set of n users P1, . . . ,Pn to execute an
arbitrary complex smart contract over a decentralized cryp-
tocurrency that only supports very simple scripts. Concretely,
FASTKITTEN considers cryptocurrencies that, in addition to
supporting simple transactions between users, offer so-called
time-locked transactions. A transaction is time-locked if it
is only processed and integrated into the blockchain after a
certain amount of time has passed. Moreover, FASTKITTEN
requires that transactions contain space for storing arbitrary
raw data. We emphasize that these are very mild require-
ments on the underlying cryptocurrency that, for instance,
are satisfied by the most prominent cryptocurrency Bitcoin.1

FASTKITTEN leverages these properties together with the
power of trusted execution environments to provide an effi-
cient general-purpose smart contract execution platform.
As discussed in the introduction, a contract is a program
that handles coins according to some—possibly complex—
program logic. In this work, we consider n-party contracts,
which are run among a group of parties P1, . . . ,Pn and have
the following structure. During the initialization phase, the
contract receives coins from the parties and some initial in-

1Bitcoin transactions can store up to 97 KB of data [44]; multiple trans-
actions can be used for bigger payloads.

USENIX Association 28th USENIX Security Symposium 803

puts. Next, it runs for m reactive rounds, where in each round
the contract can receive additional inputs from the parties Pi,
and produces an output. Finally, after the m-th round is com-
pleted the contract pays out the coins to the parties according
to its final state and terminates.
A key feature of FASTKITTEN is very low execution cost and
high performance compared to contract execution over cryp-
tocurrencies such as Ethereum. This is achieved by not exe-
cuting contracts by all parties maintaining the cryptocurrency
but instead running the contract within a TEE which could,
e.g., be owned and operated by a single service provider which
we call the operator Q. In the standard case when all parties
are honest, FASTKITTEN runs the entire contract off-chain
within the enclave and only needs to touch the blockchain dur-
ing contract initialization and finalization. More concretely,
during initialization, the parties transfer their coins to the en-
clave by time-locking coins with deposit transactions, while
at the end of finalization the enclave produces transactions
that transfer coins back to the users according to the results of
the contract execution. These transactions are called output
transactions and can be published by the users of the system
to receive their coins.

3.1 Design Challenges of FASTKITTEN

Leveraging TEEs for building a general-purpose contract
execution platform requires us to resolve the following main
challenges.

Protection against malicious operator. The operator runs
the TEE and hence controls its interaction with the environ-
ment (e.g., with other parties or the blockchain). Thus, the
operator can abort the execution of the TEE, delay and change
inputs, or drop any ingoing or outgoing message. To protect
honest users from such an operator, the enclave program run-
ning inside the TEE must identify such malicious behavior
and punish the operator. In particular, we require that even
if the TEE execution is aborted, all parties must be able to
get their coins refunded eventually. To achieve this, we let the
operator create a so-called penalty transaction: the penalty
transaction time-locks coins of the operator, which in case of
misbehavior can be used to refund the users and punish the
operator.
Note that designing such a scheme for punishment is highly
non-trivial. Consider a situation where party Pi was supposed
to send a message x to the contract. From the point of view
of the enclave that runs the contract, it is not clear whether
the operator was behaving maliciously and did not forward
a message to the enclave, or, e.g., party Pi did not send the
required message to the operator. To resolve this conflict,
we leverage a challenge-response mechanism carried out via
the blockchain. We emphasize that this challenge-response
mechanism is only required when parties are malicious, and
typically will not be executed often due to the high financial
costs for an adversary.

Verification of blockchain evidence. To ensure that a ma-
licious operator cannot make up false blockchain evidence,
we need to design a secure blockchain validation algorithm
which can efficiently be executed inside a TEE. We achieve
this by simplifying the verification process typically carried
out by full blockchain nodes by using a checkpoint block to
serve as the initial starting point for verification. This drasti-
cally reduces blockchain verification time in comparison to
verification starting from the genesis block. To further speed
up the transaction verification, we only validate correctness of
block headers. Finally, when the TEE needs to verify whether
a certain transaction was integrated into a block, we set a mini-
mum number of blocks that must confirm a transaction as part
of the security parameter within our protocol. This guarantees
that faking a valid-looking chain is computationally infea-
sible for a malicious operator. Finally, it is computationally
infeasible for a malicious operator to load a fake (but valid-
looking) chain into the enclave before the penalty transaction
is published on the blockchain.
Minimizing blockchain interaction. Since blockchain in-
teractions are expensive, FASTKITTEN only requires interac-
tion with the blockchain in the initialization and finalization
phases if all parties follow the protocol. As already discussed
above, however, in case of malicious behavior FASTKITTEN
may require additional interaction with the blockchain for con-
flict resolution. This is required to allow the TEE to attribute
malicious behavior either to the operator or to some other
participant Pi that provides input to the contract. We achieve
this through a novel challenge-response protocol, where the
TEE will ask the operator to challenge Pi via the blockchain.
The operator can then either deliver a proof that he challenged
Pi via the blockchain but did not receive a response, in which
case Pi will get punished; or the operator receives Pi’s input
and can continue with the protocol.
Of course, this challenge-response protocol adds to the worst-
case execution time of our system, and additionally will result
in fees for blockchain interaction. To address the latter, our
protocol ensures that both parties involved in the challenge-
response mechanism have to split the fees resulting from
blockchain interaction equally.2 This incentivizes honest be-
havior if parties aim to maximize their personal profits.
Preventing denial of service attacks. Complex smart con-
tracts may take a very long time to complete, and in the
worst case not terminate. Hence, a malicious party may carry
out a denial-of-service attack against the contract execution
platform, where the platform is asked to execute a contract
that never halts. It is well known that determining whether a
program terminates is undecidable. Hence, general-purpose
contract platforms, such as Ethereum, mitigate this risk by
letting users pay via fees for every step of the contract execu-
tion. This effectively limits the amount of computation that

2In the cryptocurrency community, this is often referred to as griefing
factor 1 : 1, meaning that for every coin spent by the honest users on fees the
adversary is required to also spend one coin.

804 28th USENIX Security Symposium USENIX Association

FASTKITTEN Execution Platform

Enclave

j

Smart
Contract

1

FASTKITTEN2

Crypto Interface

Participants

TEE

Scripting Engine

5

3

4

Operator

Graphene

Host Process

Initial
Config

Participant
Connection

Blockchain

B0

Block

B1

Block

Figure 1: Architecture of the FASTKITTEN Smart Contract
Execution Platform. Dashed arrows indicate interaction with
the blockchain and non-dashed arrows depict communication
between parties.

can be carried out by the contract. Since FASTKITTEN allows
multiple parties to provide input to the contract in the same
round, it might be impossible to decide which party (parties)
caused the denial of service and should pay the fee. To this
end, FASTKITTEN protects against such denial-of-service at-
tacks using a time-out mechanism. As all users of the system
(including the operator) have to agree on the contract to be ex-
ecuted, we assume that this agreement includes a limit on the
maximum amount of execution steps that can be performed
inside the enclave per one execution round. See Section 6.5
for more details.

3.2 Architecture and Protocol
To enable secure off-chain contract execution, our architecture
builds on existing TEEs, which are widely available through
commercial off-the-shelf hardware. In particular, our archi-
tecture can be implemented using Intel’s Software Guard
Extensions (SGX) [4, 29, 45] which is a prominent TEE in-
stantiation built into most recent Intel processors. SGX in-
corporates a set of new instructions to create, control and
communicate with enclaves. While enclaves are part of a
legacy host process, SGX enforces strict isolation of compu-
tation and memory between enclave and host process on the
hardware level. Another prominent instantiation of the TEE
concept is ARM TrustZone [6], which provides similar func-
tionality for mobile devices. We note that only the operator Q
is required to own TEE-enabled hardware.
As depicted in Figure 1, our FASTKITTEN Execution Facility
is run by the operator Q and consists of a host process and an
enclave. The untrusted host process takes care of setting up
the enclave with an initial config, handles the participant con-
nections, and blockchain communication over the network.
While this means that Q has complete control over these parts,
the influence of a malicious operator on a running enclave
is limited: he can interrupt enclave execution, but not tam-

per with it. Further, the enclave will sign and hash all code
and data as part of its attestation towards parties, so they
can verify correctness of the setup before placing deposits.
To support arbitrary contract functionality, FASTKITTEN in-
cludes a scripting engine inside the enclave and several helper
libraries, such as the Crypto library to generate and verify
transactions, and an Interface library to pass data between
host process and enclave. The individual contracts are loaded
into the FASTKITTEN enclave during the initialization of
our protocol by the underlying host process and participants
can verify that contracts are loaded correctly. Our protocol
then proceeds in three phases, which we call setup phase,
round computation, and finalization phase. Figure 1 depicts
the architecture of the FASTKITTEN framework.
During the setup phase (Steps 1 – 3) the contract is loaded
into the enclave. Using the TEE’s attestation functionality,
all parties P1, . . . ,Pn can verify that this step was completed
correctly. Then the operator and all parties block their coins
for the contract execution. If any party aborts in this phase, the
money is refunded to all parties that deposited money and the
protocol stops. Otherwise, all parties receive a time-locked
penalty transaction, needed in case Q aborts the protocol.
Afterwards, the round computation phase (Step 4) starts, in
which Q sends the previous round’s output to all parties. If
a party Pi receives such an output, which is correctly signed
by the enclave, it signs and sends the input for the following
round to Q. If all parties behave honestly, Q will forward
the received round inputs to the enclave, which computes the
outputs for the next round. In case that the enclave does not
receive an input from party Pi the enclave needs to determine
whether Pi failed to send its input or if Q behaved maliciously
(e.g., by dropping the message). Therefore, the enclave will
punish Q unless it can prove, that it sent the last round output
to Pi but did not receive a response. This proof is generated via
the blockchain: Q publicly challenges Pi to respond with the
input for the next round by posting the output of the previous
round to the blockchain. As soon as this challenge transaction
is confirmed, Pi needs to respond publicly by spending the
coins of the challenge transaction and include its input for
the next round. If Pi responds, Q can extract Pi’s input and
continue with the protocol execution. If Pi did not respond, Q
forwards the respective blocks as a transcript to the enclave,
to prove that Pi misbehaved.3 So, while a malicious party (or
the operator) can force this on-chain challenge-response pro-
cedure without direct punishment, posting these transactions
will also act against its own financial interests by extending
the time lock of its own coins and leading to transaction fees.
Nevertheless, such malicious behavior cannot prevent the fair
termination of our protocol.
The last phase of the protocol is the payout phase (Step 5). In

3Alternatively, we could allow the operator to spend the challenge transac-
tion after a timeout has passed. While this would result in easier verification
for the TEE, the operator would need to publish an additional transaction,
increasing both fees and the overall time for the challenge-response phase.

USENIX Association 28th USENIX Security Symposium 805

this phase the enclave returns the output transaction generated
by the Crypto library. This transaction distributes the coins
according to the terminated contract. In case of a protocol
abort, the coins initially put by the users will be refunded to
all honest parties. If any party was caught cheating, this party
will not receive back its coins. This means the money will
stay in control of the enclave and will never be spent.

4 Adversary Model
The FASTKITTEN protocol is executed n parties P1, . . . ,Pn
and an operator Q (who owns the TEE) with the goal of exe-
cuting a smart contract C. FASTKITTEN’s design depends on
a TEE to ensure its confidentiality and integrity. Our design
is TEE-agnostic, even if our implementation is based on Intel
SGX. Recent research showed that the security and privacy
guarantees of SGX can be affected by memory-corruption
vulnerabilities [11], architectural [13] and micro-architectural
side-channel attacks [60]. For the operator, we assume that Q
has full control over the machine and consequently can exe-
cute arbitrary code with supervisor privileges. While memory
corruption vulnerabilities can exist in the enclave code, a
malicious operator must exploit such vulnerabilities through
the standard interface between the host process and the en-
clave. For the enclave code, we assume a common code-
reuse defense such as control-flow integrity (CFI) [3, 15],
or fine-grained code randomization [23, 42] to be in place
and active. Architectural side-channel attacks, e.g., based on
caches, can expose access patterns [13] from SGX enclaves
(and therefore our FASTKITTEN prototype). However, this
prompted the community to develop a number of software
mitigations [12, 18, 27, 56, 57] and new hardware-based so-
lutions [22, 28, 52]. Microarchitectural side-channel attacks
like Foreshadow [60] can extract plaintext data and effec-
tively undermine the attestation process FASTKITTEN relies
on, leaking secrets and enabling the enclave to run a differ-
ent application than agreed on by the parties; however, the
vulnerability enabling Foreshadow was already patched by
Intel [32]. Since existing defenses already target SGX vul-
nerabilities and since FASTKITTEN’s design is TEE agnostic
(i.e., it can also be implemented using ARM TrustZone or
next-generation TEEs), we consider mitigating side-channel
leakage as an orthogonal problem and out of scope for this
paper.
For our protocol we consider a byzantine adversary [41],
which means that corrupted parties can behave arbitrarily.
In particular, this includes aborting the execution, dropping
messages, and changing their inputs and outputs even if it
means that they will lose money. FASTKITTEN is secure even
if n parties are corrupt (including the two cases where only
the operator is honest, and only one party is honest but the
operator is corrupt). We show that no honest party will lose
coins, a corrupt party will be penalized and that no adversary
can tamper with the result of the contract execution. While
we prove security in this very strong adversarial model, we

additionally observe that incentive-driven parties (i.e., parties
that aim at maximizing their financial profits) will behave
honestly, which significantly boosts efficiency of our scheme.
We stress that security of FASTKITTEN relies on the security
of the underlying blockchain. We require that the underlying
blockchain systems satisfies three security properties: live-
ness, consistency and immutability [26]. Liveness means that
valid transactions are guaranteed to be included within the
next δ blocks. Consistency guarantees that eventually all users
have the same view on the current state of the blockchain
(i.e., the transactions processed and their order). In addition,
blockchains also are immutable, which means that once trans-
actions end up in the blockchain they cannot be reverted. Most
blockchain based cryptocurrencies guarantee consistency and
immutability only after some time has passed, where time
is measured by so-called confirmations. A block bi is con-
firmed k-times if there exists a valid chain extending bi with
k further blocks. Once block bi has been sufficiently often
confirmed, we can assume that the transactions in bi cannot
be reverted and all honest parties agree on an order of the
chain (b0,b1,b2, . . . ,bi). For most practical purposes k can be
a small constant, i.e., in Bitcoin it is generally believed that
for k = 6 a block can be assumed final.4

5 The FASTKITTEN Protocol
In this section we give a more detailed description of our pro-
tocol, which includes the specification of the protocol run by
Q and honest parties P1, . . . ,Pn, all transactions and a descrip-
tion of the enclave program FASTKITTEN. The interaction
between Q,Pi and the blockchain is depicted in Figure 2. We
first describe the interactions with the blockchain and TEE.

5.1 Modeling the Blockchain
We will introduce some basic concepts of cryptocurrencies
that are relevant for our work before we describe our high-
level design. Cryptocurrencies are built using blockchains—a
distributed data structure that is maintained by special parties
called miners. The blockchain is comprised as a chain of
blocks (b0,b1,b2, . . .) that store the transactions of the system.
The miners create new blocks by verifying new transactions
and comprising them into new blocks that extend the tail of
the chain. New blocks are created within some period of time
t, where, for instance, in Bitcoin a new valid block is created
every 10 minutes on average.
In cryptocurrencies users are identified by addresses, where an
address is represented by a public key. To send coins from one
address to another, most cryptocurrencies rely on transactions.
If a user A with address pkA wants to send x coins to user B
with address pkB, she creates a transaction tx which states
that x coins from address pkA are transferred to pkB. Such a

4We notice that in blockchain-based cryptocurrencies there is no guaran-
teed finality, and even for very large values of k blocks can be reverted in
principle. We emphasize however that even for small values of k reverting
blocks becomes impossible in practice very quickly.

806 28th USENIX Security Symposium USENIX Association

transaction tx is represented by the following tuple:

tx := (tx.Input, tx.Output, tx.Time, tx.Data),

where tx.Input refers to a previously unspent transaction,
tx.Output denotes the address to which tx.Value are going
to be transferred to. Note that a transaction tx is unspent if
it is not referred to by any other transaction in its Input field.
Further, tx.Time ∈ N, which denotes the block counter after
which this transaction will be included by miners, i.e., tx can
be integrated into blocks bi,bi+1, ..., where i = tx.Time. Fi-
nally, tx.Data ∈ {0,1}∗ is a data field that can store arbitrary
raw data. Similar to [5], we will often represent transactions
by tables as shown exemplary in the table below, where the
first row of the table gives the name of the transaction.

Transaction tx

tx.Input: Coins from unspent input transaction

tx.Output: Coins to receiver address

tx.Time: Some timelock (optional)

tx.Data: Some data (optional)

Notice that a transaction tx only becomes valid if it is signed
with the corresponding secret key of the output address from
tx.Input. We emphasize that the properties described above
are very mild and are for instance achieved by the most promi-
nent cryptocurrency Bitcoin.
In order to model interaction with the cryptocurrency, we use
a simplified blockchain functionality BC, which maintains a
continuously growing chain of blocks. Internally it stores a
block counter c which starts initially with 0 and is increased on
average every t minutes. Every time the counter is increased,
a new block will be created and all parties are notified. To
address the uncertainty of the block creation duration we give
the adversary control over the exact time when the counter is
increased but it must not deviate more than ∆∈ [t−1] seconds
from t. Whenever any party publishes a valid transaction, it is
guaranteed to be included in any of the next δ blocks.
Parties can interact with the blockchain functionality BC us-
ing the following commands.

• BC.post(tx): If the transaction tx is valid (i.e., all inputs
refer to unspent transactions assigned to creator of tx
and the sum of all output coins is not larger than the sum
of all input coins) then tx is stored in any of the blocks
{bc+1, . . . ,bc+δ}.

• BC.getAll(i): If i < c, this function returns the latest
block count c− 1 and a list of blocks that extend bi:
b = (bi+1, . . . ,bc)

• BC.getLast(): The function getLast can be called by
any party of the protocol and returns the last (finished)
block and its counter: (c,bc).

For every cryptocurrency there must exist a validation algo-
rithm for validating consistency of the blocks and transactions

therein, which we model using the function Extends. It takes
as input, a chain of blocks b and a checkpoint block bcp and
outputs 1 if b = (bcp+1, . . . ,bcp+i) is a valid chain of blocks
extending bcp and otherwise it outputs 0. In Section 6 we
give more details on the validation algorithm, and how this
function is implemented for the Bitcoin system. Recall, that
we assume an adversary which cannot compute a chain of
blocks of length k by itself (c.f. Section 4). This guarantees
that he cannot produce a false chain such that this function
outputs 1. To make the position of some transaction tx inside
a chain of blocks explicit, we write ` := Pos(b, tx) when the
transaction is part of the `-th block of b. If the transaction is
in none of the blocks, the function returns ∞. For more details
on the transaction and block verification we refer the reader
to [7, 26, 51].

5.2 Modeling the TEE
In order to model the functionality of a TEE, we follow the
work of Pass et. al. [54]. We explain here only briefly the
simplified version of the TEE functionality whose formal
definition can be found in [54, Fig. 1]. On initialization, the
TEE generates a pair of signing keys (mpk,msk) which we
call master public key and master secret key of the TEE. The
TEE functionality has two enclave operations: install and
resume. The operation TEE.install takes as input a program
p which is then stored under an enclave identifier eid. The
program stored inside an enclave can be executed via the
second enclave operation TEE.resume which takes as input
an enclave identifier eid, a function f and the function input in.
The output of TEE.resume is the output out of the program
execution and a quote % over the tuple (eid,p,out). In the
protocol description we abstract from the details how the
users verify the quote that is generated through the enclave
attestation. Since we only consider one instance E of the
specific program p, we will simplify the resume command
[out,%] := TEE.resume(eid, f, in) and write5:

[out,%] := E.f(in)

For every attestable TEE there must exist a function
vrfyQuote(mpk,p,out,%) which on input of a correct quote %
outputs 1, if and only if out was outputted by an enclave with
master public key mpk and which indeed loaded p. Again,
we assume that the adversary cannot forge a quote such that
the function vrfyQuote() outputs 1. For more information on
how this verification of the attestation is done in practice we
refer the reader to [54].

5.3 Detailed Protocol Description
As explained in Section 3, our protocol πFASTKITTEN proceeds
in three phases. During the setup phase the contract is in-
stalled in the enclave, attested, and all parties deposit their

5Since we only need the quote of the first activation of E, we will omit
this parameter from there on.

USENIX Association 28th USENIX Security Symposium 807

PBC
i (C, Si)

Initialize

(cp, bcp) := BC.getLast()
(P, C, bcp) Q

VerfyEnclave

(mpk , pkT ,�, txp, %)
vrfyQuote(mpk , p (C,P,, bcp), (pkT ,�), %)
6= 1 Vrfy(mpk ; pkT ,�) 6= 1

setupFail
BC.post(txi)

RoundInputj

Vrfy(pkT ; (outC , j);�) 6= 1
(ini,j , Sign(sk i; ini,j)) Q

WhenChallenged

(`, b`) := BC.getLast()
txchal(i, j, outC ,�T) 2 b`
� := Sign(sk i; ini,j)
BC.post(txresp(i, j, ini,j ,�)

WhenFinal

(`, b`) := BC.getLast()
txout(J ,d, outC) 2 b`

outC

WhenTimeout

(`, b`) := BC.getLast()
` = ⌧final
BC.post(txp)
(⌧final,b) := BC.getAll(⌧1)

9 i 2 [n] txi /2 b
setupFail

abort

QBC,TEE(1)

InitEnclave

(cp, bcp) := BC.getLast()
mpk

E := TEE.install(p (C,P,, bcp))
[(pkT ,�), %] := E .genKeys()
BC.post(txQ)

txQ k
(⌧1,b) := BC.getAll(cp)
cp := ⌧1
[(txp,�), ·] := E .Qdep(b)

(mpk , pkT ,�, txp, %) Pi

LoadDepositP

LoadDepositP

⌧2
(⌧2,b) := BC.getAll(⌧1)
[(outC ,�), ·] := E .Pdep(b)

outC = txout

Finalize

(outC ,�) Pi

(ExecuteTEE1)

ExecuteTEEj

i 2 [n]
Vrfy(pk i; ini, si)) = 1

(in(i,j), si)) I

BC.post(txchal(i, j, outC))

|I| = n

txchal 2k + �
(⌧3,b) := BC.getAll(⌧2)

txresp 2 b
Vrfy(pk i; ini, si)) = 1

(in(i,j), si)) I

|I| < n
[txout, ·] := E .errorProof(b)

Finalize()

[(outC ,�), ·] := E .round(j, I)
outC = txout

Finalize()

(outC ,�) Pi

(ExecuteTEE)j+1

Finalize

BC.post(txout)

bcp

P ,C,bcp

mpk,pkT ,s,txp,%

outC ,s

ini, j ,s

cp,bcp cp,bcp

t1,b

t2,b

`,b`

t3,b

`,b`

`,b`

tfinal,b

txQ

txi

txchal

txresp

txp

txout

Figure 2: Protocol πFASTKITTEN. Direct black arrows indicate communication between the parties and Q, gray dashed arrows
indicate reading from the blockchain and gray double arrows posting on the blockchain.

808 28th USENIX Security Symposium USENIX Association

coins. Then the round execution follows for all m rounds of
the interactive contract. When the contract execution aborts
or finishes, the protocol enters the finalize phase. We now ex-
plain all phases and the detailed protocol steps for all involved
parties and the operator Q in depth. The detailed interactions
as well as the subprocedure of the parties and the operator
are displayed in Figure 2, Figure 3 describes the FASTKIT-
TEN enclave program pFK. Overall the protocol requires six
different type of transactions.

Setup phase. In the setup phase, each party Pi first runs
Initialize to generate its key pairs and gets the latest block bcp

which serves as a genesis block or checkpoint of the protocol.
Then Pi sends the set of parties P , the bcp and the contract
C to the operator Q. Upon receiving the initial values from
all n parties, Q runs the subprocedure InitEnclave to initialize
the trusted execution of the enclave program pFK(P,C,κ,bcp)
where κ is the security parameter of the scheme. This security
parameter κ also determines the values for the timeout period
t and the confirmation constant k. This ensures that all parties
and the TEE agree on these fixed values. Once pFK is installed
in the enclave, it generates key pairs for the protocol execution
and in particular the blockchain public key pkT

6. Now, Q can
make its deposit transaction txQ which assigns q coins to the
enclave public key.

Q’s Deposit Transaction txQ

tx.Input: Some unspent tx from Q

tx.Output: Assign q coins to pkT

Let block counter τ1 denote the time when this transaction
has been included and confirmed in the blockchain. Q loads
all blocks from cp to τ1 as evidence to the enclave. If this evi-
dence is correct, the execution of pFK function Qdep outputs
a penalty transaction txp, stating that after timeout τfinal (after
which the protocol must be terminated) the q coins of Q’s
deposit transaction txQ are payed out to the parties P1, . . . ,Pn.

Penalty Transaction txp

tx.Input: Q’s Deposit Transaction txQ

For all i ∈ [n]:

tx.Outputi: Assign ci coins to Pi

tx.Time: Spendable after τfinal

Q sends the penalty transaction to all parties P1, . . . ,Pn, who
run subprocedure VerfyEnclave. This transaction is used
whenever the protocol does not finish before the final time-
out τfinal, which equals (3+ 2m)× (δ+ k) blocks after the
protocol start (recall, that we use δ to bound the time until
some transaction is guaranteed to be included and it will be

6For simplicity we omit here, that the enclave might need multiple key
pairs for signing transactions and messages.

confirmed after k blocks).7 Only if participant Pi received
this penalty transaction from Q during the setup and verified
that the program pFK(P,C,κ,b0) is installed in the enclave,
it creates and publishes its deposit transaction.

Pi’s Deposit Transaction txi

tx.Input: Some unspent tx from Pi

tx.Output: Assign ci coins to TEE

After time τ2 < τ1, Q executes LoadDepositP and again pro-
vides the block evidence to the enclave execution of pFK. If all
parties published the deposit transactions, the first-round exe-
cution starts. Otherwise the enclave proceeds to the finalize
phase and outputs a refund transaction txout(T,~c) that returns
the deposit back to honest users and Q, where T ⊂ P is the
set of all parties that submitted the deposit transaction until
time τ2. Note, that the internal state of the contract execution
is maintained by the pFK program inside the enclave. This
guarantees that the contract is not executed on outdated state.

Round computation phase. When the protocol arrives to
the round computation phase, Q sends the authenticated out-
put of the enclave to every party Pi and requests input for the
next round. Each party Pi runs the round algorithm. Internally
it verifies whether the input request came from the enclave by
verifying the attached signature. Then it generates and signs
its round input and sends it to Q. While Pi waits for the next
round, Q verifies all received inputs and their signatures in
the ExecuteTEE subprocedure. If all the parties Pi responded
with correctly signed round inputs, Q triggers the execution
of the contract in the enclave. Let us emphasize that in this
simplified description of our protocol we do not focus on the
privacy aspect and hence we omit that all round inputs to the
contract could be encrypted with the public key of the enclave.
In this case the trusted enclave execution needs to decrypt
them before it evaluates the contract on them. See Section 9.3
for more details.
Note that the operator Q may be malicious and refrain from
requesting a party Pi for the input to a round computation.
Instead Q may pretend that it actually did not receive any
input from the party Pi. On the other hand, one can imagine
a scenario where Q is behaving honestly but the party Pi is
dishonest and does not send the correctly signed round input
to Q. Note, that the program pFK cannot distinguish between
these two cases without additional information. We will next
show how an honest Q can generate a proof to attribute the
malicious behavior to Pi. First, Q has to publish a challenge
transaction txchal which includes the signed output of the
previous step. txchal spends a very small amount µ of coins
from Q and assign them to party Pi

8.

7The definition of τfinal guarantees that even if the execution is delayed
in every round, an honest operator will not be penalized.

8Cryptocurrencies like Bitcoin allow transactions with very small denom-
inations (e.g. fractions of cents).

USENIX Association 28th USENIX Security Symposium 809

Challenge Transaction txchal(i, j,outC,σT)

tx.Data: Store i, j,outC,σT

tx.Input: Some unspent tx from Q

tx.Output: Assign µ coins to Pi

Once txchal is included in the blockchain, party Pi can read
the correct output information from the transaction. The party
should respond with txresp, which includes its signed round
input. txresp spends the txchal and assigns the µ coins back
to Q. The action of Pi is depicted via the WhenChallenged
subprocedure.

Response Transaction txresp(i, j, in,σi)

tx.Data: Store i, j, in,σi

tx.Input: Challenge Transaction txchal(i, j,state)

tx.Output: Assign µ coins to Q

If some party does not send the response after it was chal-
lenged, Q can prove this misbehavior to the FASTKITTEN pro-
gram, by providing the blockchain evidence of the challenge-
response transcript. If the enclave program identifies a cheat-
ing party, it proceeds to the finalize phase. Otherwise, if all
the parties’ inputs were received with authentication (possibly
after challenge-response phase), Q instructs the enclave to
execute the contract on the accumulated input.
The result of the contract execution is the output outC, the
updated state state, and a coin distribution denoted by d. If
state equals ⊥, the contract execution is finished, and the pro-
tocol proceeds to the finalize phase. Otherwise, FASTKITTEN
internally stores the state and outputs outC to Q who sends
this output to all parties and waits for next round inputs.
Finalize phase. In the finalize phase, the enclave publishes
a final output transaction txout which distributes the coins
back to all honest parties. It is parameterized by a set of par-
ties to receive coins J , a final coin distribution~e and a final
state outC. The transaction txout(J ,~e,outC), spends all de-
posit transactions txi for all i ∈ J and Q’s deposit transaction
txQ. It includes the outC in the data field and assigns q coins
back to Q and ei coins to party Pi, for every i ∈ J . Let us note
that J = [n] implies correct protocol termination. If J 6= [n],
then some party misbehaved and the protocol failed. Either
a party did not make a deposit in the setup phase (signaled
by outC = setupFail) or some party aborted in the round com-
putation phase (signaled by outC = abort). In both cases all
other parties get their initial deposits back. Note, that if a party
Pj is caught cheating by the TEE, it will lose its deposit.
Q now has to publish this transaction to get his coins before
time τfinal and by that also distributes coins and reveals outC
to honest parties. The participants need to constantly monitor
the blockchain for transactions which challenge them or indi-
cate final output. When they see a challenge transaction they
respond as described above. If they see an output transaction

Output Transaction txout(J ,~e,outC)

tx.Data: Store outC
tx.Input: Deposit Transactions txQ,{txi}i∈J

tx.Output1: q coins to Q

For all i ∈ J :

tx.Outputi+1: ei coins to Pi

they know the protocol execution ended and output the final
contract output according to subroutine WhenFinal.

6 Execution Facility
As shown in Figure 1, we leverage a TEE for smart contract ex-
ecution. For our prototype, we implemented FASTKITTEN for
the Bitcoin blockchain using Intel SGX as a TEE. We chose
Python as our scripting engine because it’s memory safe, very
well known, and widely available. To interact with the Bitcoin
blockchain data in the enclave, we implemented our Crypto
library using the open-source breadwallet-core [14], a simpli-
fied payment verification (SPV) library for Bitcoin used by the
Breadwallet mobile wallet app. To abstract from SGX’s pe-
culiarities, and thus simplify smart contract development, we
use the Graphene Library OS [17] (referred to as “Graphene”
in the rest of the paper) as a basis. Graphene enables running
arbitrary native Linux binaries in SGX enclaves while provid-
ing compatible library interfaces for networking and other OS
services. Note that the design of the FASTKITTEN protocol
does not require a trusted time source in the TEE.

6.1 The Enclave Program FASTKITTEN

An execution facility in the sense of FASTKITTEN must pro-
vide a set of abstract functionalities like key generation, trans-
action generation, smart contract execution, and error han-
dling, all executed inside the enclave. This set of procedures
is described in detail in Figure 3. We implemented each of
the procedures using equivalent Python scripts. It is parame-
terized by the set of parties P , the contract C which internally
specifies the expected deposits c, a security parameter κ and a
genesis block bcp. This does not need to be the actual genesis
block of the underlying blockchain but it can be a later block
which is used as a checkpoint. All parties must verify that this
block is indeed a block of the blockchain. The security pa-
rameter κ also determines the waiting time k which is needed
for the verification of the blocks.

6.2 Blockchain Verification
Blockchain communication is important for the setup and
the finalization phase in the protocol. Thanks to the integrity
properties of blockchains, a secure connection between the
enclave and the blockchain is not needed if verification of
received data can be done in the enclave. As it is not practical
to download a complete copy of the blockchain to the enclave,
we only concentrate on transactions caused by FASTKITTEN

810 28th USENIX Security Symposium USENIX Association

The execution of pFK is initialized with the secret key msk,
the set of parties (where every Pi ∈ P is identified by its key
pki), a contract C, a security parameter κ (which also defines
the waiting period t and confirm period k) and a checkpoint
bcp. Internally it stores the state of the contract state and the
status flag s initially set to state = /0 and s = genKeys.

procedure genKeys()
1: if s 6= genKeys then abort
2: (skT ,pkT) := Gen(1κ)
3: s :=Qdep
4: return pkT ,Sign(msk;pkT)

procedure Qdep(b)
1: if s 6= Qdep or Extends(bcp,b) 6= 1 or Pos(b,txQ) >
|b|− k then abort

2: s := Pdep
3: bcp := last block of b
4: return txp . Else, output penalty transaction

procedure Pdep(b)
1: if s 6= Pdep or Extends(bcp,b) 6= 1 then abort

2: set J := /0

3: for i ∈ P do
4: `i := Pos(b,txi)
5: if `i < δ and `i < |b|− k then add i to J
6: if J = [n] then
7: s := round1
8: bcp := b.last
9: return /0,Sign(skT ; /0,bcp)

10: else
11: s := terminated
12: return txout(J ,c,setupFail)

procedure round(j,(in1,σ1) . . . ,(inn,σn))
1: if s 6= round j or for any i∈ [n] :Vrfy(pki; ini,si) 6= 1 then

abort
2: (outC,state′,d) :=C(state,~in)
3: if state′ 6=⊥ then
4: s := round j+1
5: state := state′

6: return outC,Sign(skT ;(outC, j))
7: else
8: s := terminated
9: return txout([n],d,outC)

procedure errorProof,(j,b)
1: if s 6= round j or Extends(bcp,b) 6= 1 then abort

2: Let σ := Sign(skT ;(outC, j))
3: J := [n]
4: for i ∈ P do
5: if Pos(b,txchal(i, j,outC,σ))< |b|−δ− k then
6: if Pos(b,txresp(i, j, in,σ)> |b|− k then
7: delete i from J
8: else if Vrfy(pki; in,σ) 6= 1 then
9: delete i from J

10: s = terminated
11: if J 6= [n] then
12: return txout(J ,c,abort)

Figure 3: FASTKITTEN enclave program pFK(P,C,κ,bcp)

protocol invocation. Thus, it is sufficient to verify that these
transactions are part of a valid block—without downloading
entire blocks, which can be done efficiently using simplified
payment verification (SPV). However, SPV libraries can only
prove that a transaction is part of a block on the blockchain,
but they cannot prove that a transaction is not part of any
block. As required by the challenge-response case, we added
an alternative verification mode that fully downloads every
block that could potentially contain the transaction and checks
whether its present in any of those blocks.

6.3 Participant Communication
To place the deposits and receive them later, as well for send-
ing input, communication between participants (including the
Operator Q) is needed in the off-chain phase. We secure this
communication using TLS sockets provided by Python. This
transparently encrypts participants’ communication, and thus
ensures input integrity and confidentiality of parties’ messages
towards the operator.

6.4 Enclave Setup
In the FASTKITTEN prototype, we leverage Intel SGX as a
TEE. SGX is a TEE included in recent Intel CPUs which
introduces the concept of isolated hardware enclaves that can
be created and managed using new CPU instructions. SGX
enclaves are even shielded from the operating system; only
the CPU is trusted. To support smart contract execution in
these enclaves we provide a run-time environment based on
Graphene, which replaces the Intel SDK in both the enclave
and the host process. This allows Graphene to transparently
provide services from the untrusted OS (and check the in-
tegrity of the results). To protect the enclave application from
the host process, a manifest has to be provided at enclave
initialization. The manifest includes interfaces, services, and
respective integrity checksums, e.g., hashes of files the en-
clave requires. Accesses to these files will be checked against
hashes in the manifest to guarantee integrity.
As depicted by Figure 3, the Execution Facility incorporates
a set of functionalities. For key derivation (genKeys) we lever-
age the rdrand instruction to get high-entropy randomness
inside of the enclave. After checking that txQ (Qdep) is in the
blockchain, the derived private key skT is used to generate
the penalty transaction txp using our Crypto library. txp is
distributed to the other participants over a TLS connection.
Other participants can generate their deposit transactions txi
(Pdep) using a regular wallet. This concludes the setup phase,
and the smart contract gets executed (round).
The Graphene run-time environment enables FASTKITTEN to
support arbitrary Linux binaries, thus, can be used to imple-
ment smart contracts. However, instead of allowing binaries,
we use a scripting engine based on a Python interpreter in our
proof-of-concept implementation. First, this makes develop-
ment easier for contract developers, as they are not always
familiar with lower-level programming languages, and second,

USENIX Association 28th USENIX Security Symposium 811

this makes smart contracts less prone to memory corruption
vulnerabilities. Two use cases we implemented are presented
and evaluated in Section 8.

6.5 Denial of Service Protection
The protocol as described in Section 5 assumes instantaneous
contract execution meaning that the execution of a contract
inside a TEE takes no time. For most practical contracts, this
simplifying assumption is reasonable since executing a sim-
ple contract function inside a TEE is much faster than the
network/blockchain delay. However, this is not true when con-
sidering arbitrary contracts which might potentially contain
endless loops. Moreover, the halting problem states that it is
impossible to predict if a certain algorithm will halt within
a certain number of steps. A simple protection against end-
less loops and denial-of-service attacks, is letting the enclave
monitor the execution of the smart contract and terminate ex-
ecution if the number of execution steps exceeds a predefined
limit. If the contract execution is aborted due to an execution
timeout, the enclave signs an outputs transaction txout which
returns deposited coins back to parties and to the operator.

7 Security
In this section we present the underlying security considera-
tions of FASTKITTEN.

7.1 Protocol Security
Due to limited space, we present our novel model in the ex-
tended version of this paper, where we also formally state
the security properties, the formal statement of the theorem
as well as the proof. Here we will only briefly explain the
security properties.
In order to guarantee security for the protocol, we require
three security properties: correctness, fairness and operator
balance security.
Intuitively, correctness states that in case all parties behave
honestly (including the operator), every party Pi ∈ P outputs
the correct result and earns the amount of coins she is sup-
posed to get according to the correct contract execution. The
fairness property guarantees that if at least one party Pi ∈P is
honest, then (i) either the protocol correctly completes an exe-
cution of the contract or (ii) all honest parties output setupFail
and stay financially neutral or (iii) all honest parties output
abort, stay financially neutral, and at least one corrupt party
must have been financially punished. Finally, the operator bal-
ance security property says that in case the operator behaves
honestly, he cannot lose money.

Theorem 1 (Informal statement). The protocol πFASTKITTEN

as defined in Section 5 satisfies correctness, fairness and
operator balance security property.

The most challenging part of the proof is the fairness prop-
erty. We need to show how honest parties reach consensus
on the result of the execution and prove that coins are always

distributed between parties according to this result (even if
malicious parties collude with the operator). In order to prove
the operator balance security, we show that an honest operator
has always enough time to publish a valid output transac-
tion which pays him back his deposit, before the time-locked
penalty transaction can be posted on the blockchain.
Incentive-driven adversary If we consider only incentive-
driven adversaries, then statement (iii) of the fairness property
is never true. Hence, if the setup phase completes successfully,
then the result of the protocol is a correct contract execution.
This follows directly from the fact, that when the protocol
aborts the misbehaving parties lose coins. By definition of
incentive-driven parties, losing coins is against their interest.
This is why the only possible outcome of the protocol is
correct execution of the contract. Moreover, when we consider
fees for positing transaction on the blockchain, parties are
additionally incentivized to prevent the challenge-response
transactions. These additional incentives enforce fast and
protocol compliant behavior of the parties.

7.2 Architecture Security
The main goal of FASTKITTEN is to enable efficient execution
of general multi-round smart contracts. Hence, we analyze
the security of FASTKITTEN with regards to its system ar-
chitecture and implementation. Possible adversaries can be
malicious participants, a malicious operator, or a combination
of both.
We note that participating clients are only required to send
and receive transactions from the blockchain (e.g., to enter an
execution) and the ability to exchange protocol messages (e.g.,
to play rounds). Hence, client implementations can be based
on a diverse set of entirely different code bases in practice,
possibly using memory-safe languages such as Python, Go, or
Rust. Malicious participants are further limited to interacting
with other parties and the operator through the exchange of
messages as specified within our protocol, and hence, we
focus on the TEE-based execution facility in the following.
A malicious operator could deny execution, however, he is
incentivized to adhere to the protocol or lose money. Thus,
we assume that the goal of a malicious operator is to try
and exploit the execution facility at runtime. Since the opera-
tor already controls the host process, the main target would
be the enclave that executes the contract. Enclaves have a
well-defined interface with the rest of the system, and any
attack has to be launched using this interface. By provid-
ing fake data through this interface, the attacker could try to
exploit a memory-corruption vulnerability in the low-level
enclave code to launch (a) a code-reuse attack, e.g., by ma-
nipulating enclave stack memory, or (b) a data-only attack,
e.g., to leak information about the game state or manipulate
Bitcoin addresses in contracts. As mentioned in Section 4,
for (a) we assume a standard code-reuse defense such as
control-flow integrity [3, 15, 50, 62, 65] or fine-grained code
randomization [21,23,30,42,53,61]. The core functionality of

812 28th USENIX Security Symposium USENIX Association

FASTKITTEN additionally tackles both attack vectors by im-
plementing the main enclave code in Python, which provides
memory-safety features such as implicit bounds checking.
The only parts that are implemented in unsafe languages are
the initialization code of Graphene [17] and the Simple Pay-
ment Verification (SPV) library [14]. FASTKITTEN actually
has no strong dependency on Graphene in principle, it was
mainly used to simplify and speed up prototype implementa-
tion. Finally, SPV represents a standard library used by most
blockchain clients and an adversary that is able to construct
a data-only attack against it would be able to exploit any of
those clients connected to the Bitcoin network using the same
data-only attack.

8 FASTKITTEN Contracts
In this section we take a look at applications and performance
through a number of benchmarks.

8.1 Complexity
The FASTKITTEN protocol consists of setup, round computa-
tion and finalize phases. During the setup phase, each party Pi
deposits a constant amount of coins ci. The operator needs to
deposit an amount ∑i∈[n] ci which equals the sum of all other
deposits from P together. To post the deposit transactions txis
and txQ, a total of n+1 transactions is necessary.
During the round computation phase, in the optimistic case
FASTKITTEN can operate completely off-chain without any
blockchain interaction. Any user can force that challenge re-
sponse transactions are posted to attribute misbehavior of a
party, in any given round. If this (pessimistic) case occurs,
it can add 2 to another 2n transactions. In the worst case, a
challenge response transaction pair needs to be posted on the
blockchain for every party Pi at every round j ∈ [m] leading to
O(nm) blockchain interactions. In finalize phase, FASTKIT-
TEN requires one additional payout transaction txout to settle
money distribution among parties. Scenarios of missing de-
posit at the Setup phase or an abort by a party at the round
computation phase are dealt with by posting the refund trans-
action txout and the penalty transaction txp respectively.
Setup time In the optimistic case (which we have shown is
the standard case when considering incentive-driven parties)
the overall execution of the protocol only requires n+2 trans-
actions on the blockchain. This also indicates at what speed
the protocol can be executed in this case. If all parties agree,
the setup phase can be finished in 2 blockchain rounds and
from that point on the protocol can be played off-chain. In the
next subsection we give some indication how fast this second
part can be achieved. Running the protocol as fast as possible
is in the interest of every party since it shortens the locking
time of the deposits.

8.2 Performance Evaluation
We performed a number of performance measurements to
demonstrate the practicality of FASTKITTEN using our lab

setup, which consists of three machines: First, an SGX-
enabled machine running Ubuntu 16.04.5 LTS with an In-
tel i7-7700 CPU clocked at 3.60GHz and 8GB RAM, where
we installed FASTKITTEN’s contract execution facility to
play the role of the operator’s server. Second, a machine run-
ning Ubuntu 14.04.4 LTS on an Intel i7-6700 CPU clocked
at 3.40GHz with 32GB RAM, which provides unmodified
blockchain nodes in a local test network using Bitcoin Core
version 0.16.1. Third, a laptop machine with macOS 10.13.6
on with Intel i7-4850HQ CPU clocked at 2.30GHz and 16GB
of RAM, which takes the role of the participants in the pro-
tocol. All three machines are connected through a Gigabit
Ethernet LAN. For tests involving the real Bitcoin network
the individual machines are connected through the Internet
using our Internet connection.
Block validation In our experiments, the enclave takes ap-
proximately 5 s to validate one block from the Bitcoin main
network, thus proving that it is capable of validating real
blocks in real time.
Enclave Startup The time to setup an enclave until it is
ready is 2 s, proving that instantiating enclaves on the fly is
feasible.
End-to-end Time Assuming all parties are incentive-driven
and, thus, comply with the protocol, the total time required
by FASTKITTEN is the time of 2 blockchain interactions (see
Section 8.1), plus the computation time (a few milliseconds in
our use cases), plus the time required by the parties to choose
the next inputs.

8.3 Applications
FASTKITTEN allows to run complex smart contracts on top
of cryptocurrencies that would not natively support such con-
tracts, like Bitcoin. But in contrast to Turing-complete con-
tract execution platforms like Ethereum, a secure off-chain
execution such as FASTKITTEN puts some restrictions on the
contracts it can run:

• The number of parties interacting with the contract must
be known at the start of the protocol.

• It must be possible to estimate an upper bound on the
number of rounds and the maximum run time of any
round.

All of these restrictions make FASTKITTEN contracts differ-
ent from smart contracts running on Ethereum itself. The
restrictions above come from the fact that the contract can
be completely (and repeatedly) executed without blockchain
interactions. Other off-chain solutions (like state channels
[20,24,49]) come with similar caveats. By allowing additional
blockchain interaction we could get around those restrictions
but we would lose efficiency in the optimistic case (which is
also similar to state channel constructions).
FASTKITTEN has important features which are supported by
neither Bitcoin nor Ethereum — FASTKITTEN allows private
inputs and batched execution of user inputs. Overall, this leads
to cheaper, faster and private contract execution than what

USENIX Association 28th USENIX Security Symposium 813

is possible with on-chain contracts in Ethereum. Below, we
highlight these efficiency gains by presenting four concrete
use-cases in which FASTKITTEN outperforms contracts run
over Ethereum or in Ethereum state channels.

Lottery A lottery contract takes coins from every involved
party as input, and randomly selects one winner, who gets all
the coins. The key challenge for such a contract is to fairly
generate randomness to select the winner. In Ethereum or
Bitcoin the randomness is computed from user inputs through
an expensive commit-reveal scheme [48]. In FASTKITTEN,
all parties can immediately send their random inputs to the
enclave which will securely determine a winner. Hence, we
reduce the round complexity from O(logn) [48] to O(1).
Auctions Another interesting use-case for smart contracts
are auctions, where parties place bids on how much they are
willing to pay and the contract determines the final price. In
a straightforward auction, the bids can be public, but more
fair versions, like second bid auctions, require the users not to
learn the other bids before they place their own. The privacy
features of FASTKITTEN can be used to reduce the round
complexity for such auctions which would otherwise require
complex cryptographic protocols [25].

Rock-paper-scissors We implemented the popular two-
party game rock-paper-scissors to show the feasibility of
FASTKITTEN contracts. Again, the privacy features allow
one match to be executed in a single round, which would
have required at least 3 rounds in Ethereum. The pure exe-
cution time in the optimistic case, excluding delays due to
human reaction times, is 12ms for one round (averaged over
100 matches). This demonstrates that off-chain protocols, like
FASTKITTEN, are highly efficient when the same set of par-
ties wants to run complex contracts (like multiple matches of
a game).

Poker We also implemented a Texas Hold’em Poker game,
to prove that multi-party contracts which inherently require
multiple rounds can also be efficiently executed in FASTKIT-
TEN. In our implementation, each player starts with an equal
chip stack and participates in an initial betting round and in
additional rounds after the flop, river, and turn have been dealt
by the enclave. If more than two players remain in the game
after the final bets, the enclave reveals the winner and dis-
tributes the chips in the current pot to the winner. The game
continues until only one player remains. We measured 50
matches between 10 players resulting in an average time of
45ms per match (multiple betting rounds are included in each
match). The run time was measured starting from the moment
all deposits are committed to the blockchain.

Real-world Fees We generated examples of the transac-
tion types used in our protocol for a 10-player poker match.
In Table 2 we estimate the fees required to commit to the
blockchain our transactions, in addition to a typical deposit
transaction. Assuming all parties comply with the protocol,
each party (including Q) must pay between 0.05 USD and

Transaction Size (Bytes) Fees (BTC) Fees (USD)

Deposit (typical) 250 0.000007-0.000073 0.05-0.46

Penalty (txp) 504 0.000015-0.000148 0.09-0.93

Challenge (txchal) 293 0.000009-0.000086 0.05-0.54

Response (txresp) 266 0.000008-0.000078 0.05-0.49

Output (txout) 1986 0.000058-0.000582 0.36-3.65

Table 2: Estimated fees for a typical deposit transaction and
the FASTKITTEN transactions, using data from CoinMarket-
Cap [2] and BlockCypher [1] retrieved on Nov. 14, 2018.

0.46 USD for the deposit. Additionally, the output transaction
txout requires between 0.36 USD and 3.65 USD in fees.
Other Well-known Contracts Certain well-known con-
tracts like ERC20 token and CryptoKitties inherently need
to be publicly available on the blockchain, since they are ac-
cessed frequently by participants which are not previously
known. In contrast, contracts resembling our examples above,
which rely on private data and where a fixed set of participants
sends a large number of transactions, are highly efficient when
moved off-chain using a system like FASTKITTEN. The na-
ture of off-chain solutions like FASTKITTEN or state channels
requires advance knowledge of the participants. Open con-
tracts like ERC20 and CryptoKitties that require continuous
synchronization with the blockchain and are meant to be pub-
licly accessible would eliminate the advantages of off-chain
solutions.

9 Discussion and Extensions
In order to explain and analyze the FASTKITTEN protocol, we
presented a simplified protocol version which only includes
the building blocks required to guarantee security. Depending
on the use case one might be interested in further properties.
Possible extensions discussed in this section include the op-
tion to pay the operator for his service, protect the operator
against TEE faults, hide the contract output from through a
layer of output encryption and allow cross-currency smart
contracts. In the following, we explain how to achieve these
features and at what cost they can be added to the simplified
protocol.

9.1 Fees for the Operator
The owner of the TEE provides a service to the users who
want to run a smart contract and, naturally, he wants to be
paid for it. In addition to the costs of buying, maintaining
and running the trusted hardware, he also needs to block the
security deposit q for the duration of the protocol. While the
security of FASTKITTEN ensures that he will never lose this
money, he still cannot use it for other purposes. The goal of
the operator-fees is to make both investments attractive for Q.
We assume that the operator will be paid ξ coins for each
protocol round for each party. Since the maximum number
of rounds m is fixed at the protocol start, Q will receive ξ×

814 28th USENIX Security Symposium USENIX Association

n×m coins if the protocol succeeds (even if the contract
terminated in less than m rounds). If the operator proves to
the TEE in round x that another party did not respond to the
round challenge, he will only receive a fee for the passed x
number of rounds (namely ξ× x× n). This pay-per-round
model ensures that the operator does not have any incentive
to end the protocol too early. If the protocol setup does not
succeed or the operator cheats, he will not receive any coins.
The extended protocol with operator fees requires each party
to lock ci +m×ξ coins and the operator needs to level this
investment with qci +m×ξ coins.

9.2 Fault Tolerance
In order to ensure that the execution of the smart contract
can proceed even in the presence of software or hardware
faults, the enclave can save a snapshot of the current state in
an encrypted format, e.g., after every round of inputs. This
encrypted state would be sent to the operator and stored on
redundant storage. If the enclave fails, the operator can instan-
tiate a new enclave which will restart the computation starting
from the encrypted snapshot. If the TEE uses SGX, snapshots
would leverage SGX’s sealing functionality [31] to protect
the data from the operator while making it available to future
enclave instances.

9.3 Privacy
As mentioned in the introduction, traditional smart contracts
cannot preserve privacy of user inputs and thus always leak
internal data to the public. In contrast to common smart con-
tract technologies, the FASTKITTEN protocol supports privacy
preserving smart contracts as proposed in Hawk [36]. This
requires private contract state to hide the internal execution
of the contract and input privacy, which means that no party
(including the operator) sees any other parties’ round input
before sending its own.
It is straightforward to see that FASTKITTEN has a secret
state, since it is stored and maintained inside the enclave.
Input privacy can easily be achieved by encrypting all inputs
with the public key of the enclave. This guarantees that only
the FASTKITTEN execution facility and the party itself knows
the inputs. If required, FASTKITTEN could also be extended
to support privacy of outputs from the contract to the parties,
by letting the enclave encrypt the individual outputs with the
parties’ public keys. But this additional layer should only be
used when the contract requires it, since in the worst case this
increases the output complexity of the challenge and output
transaction.

9.4 Multi-currency Contracts
FASTKITTEN requires from the underlying blockchain tech-
nology that transactions can contain additional data and can
be timelocked. Any blockchain like Bitcoin, Ethereum, Light-
coin and many others which allow these transaction types
can be used for the FASTKITTEN protocol. With some minor

modifications FASTKITTEN can even support contracts which
can be funded via multiple different currencies. This allows
parties that own coins in different currencies to still execute
a contract (play a game) together. The main modification to
the FASTKITTEN protocol is that the operator and the enclave
need to simultaneously handle multiple blockchains in par-
allel. In particular, for each of the considered currencies, Q
needs to deposit the sum of all coins that were deposited by
parties in that currency. This is in order to guarantee that if the
operator cheats, players get back their invested coins in the
correct currency. In addition, the operator is obliged to chal-
lenge each party via its blockchain. If the execution completes
(or the operator proves to the enclave that one of the players
cheated), the enclave signs one output transaction for each
of the currencies. While this extension adds complexity to
the enclave program and leads to more transactions and thus
transaction-fees, the overall deposit amount stays identical to
the single blockchain use case.9 A complete design and proof
of correctness of a cross-ledger FASTKITTEN is left to future
work.

10 Conclusion
In this paper we have shown that efficient smart contracts
are possible using only standard transactions by combining
blockchain technology with trusted hardware. We present
FASTKITTEN, our Bitcoin-based smart contract execution
framework that can be executed off-chain. Since FASTKIT-
TEN is the first work that supports efficient multi-round con-
tracts handling coins, for the first time, this enables real-time
application scenarios, like interactive online gaming, with mil-
lisecond round latencies between participants. We formally
prove and thoroughly analyze the security of our general
framework, also extensively evaluating its performance in a
number of use cases and benchmarks.
Additionally, we discuss multiple extensions to our protocol,
such as adding output privacy or operator fees, which enrich
the set of features provided by our system.

Acknowledgments
We are grateful to our anonymous reviewers and our shepherd
Mihai Christodorescu for their constructive feedback.
This work has been supported by the German Research Foun-
dation (DFG) as part of projects HWSec, P3 and S7 within the
CRC 1119 CROSSING and the Emmy Noether Program FA
1320/1-1, by the German Federal Ministry of Education and
Research (BMBF) and the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP,
by BMBF within the iBlockchain project, by the Intel Collab-
orative Research Institute for Collaborative Autonomous &
Resilient Systems (ICRI-CARS).

9This solution assumes that any party can receive coins in any of the
considered currencies.

USENIX Association 28th USENIX Security Symposium 815

Availability
An extended version of this paper, which includes the byte-
code of our sample Bitcoin transactions, will be publicly avail-
able at the Cryptology ePrint Archive at https://eprint.
iacr.org.

References
[1] BlockCypher, Nov 2018. https://live.blockcypher.com/btc/.

[2] CoinMarketCap, Nov 14 2018. https://coinmarketcap.com.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow in-
tegrity principles, implementations, and applications. ACM Transac-
tions on Information System Security, 13, 2009.

[4] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative
Technology for CPU Based Attestation and Sealing. In Workshop on
Hardware and Architectural Support for Security and Privacy (HASP).
ACM, 2013.

[5] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek.
Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, 2014.

[6] ARM Limited. Security technology: building a secure system
using TrustZone technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2008.

[7] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a
transaction ledger: A composable treatment. In CRYPTO, 2017.

[8] J. Barbie. Why smart contracts are not feasible on plasma, Jul 2018.
https://ethresear.ch/t/why-smart-contracts-are-not-

feasible-on-plasma/2598.

[9] G. Belisle. A glimpse into the future of blockchain, 2018. Avail-
able at https://the-blockchain-journal.com/2018/03/29/a-
glimpse-into-the-future-of-blockchain/.

[10] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and
A. Juels. Tesseract: Real-time cryptocurrency exchange using trusted
hardware. IACR Cryptology ePrint Archive, 2017.

[11] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi. The
guard’s dilemma: Efficient code-reuse attacks against intel sgx. In
Proceedings of the 27th USENIX Conference on Security Symposium.
USENIX Association, 2018.

[12] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
U. Müller, and A. Sadeghi. DR.SGX: hardening SGX enclaves against
cache attacks with data location randomization. CoRR, abs/1709.09917,
2017.

[13] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi. Software grand exposure: SGX cache attacks are practical.
In USENIX Workshop on Offensive Technologies, 2017.

[14] Breadwallet. Breadwallet-core - spv bitcoin c library, 2018.

[15] N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and
M. Franz. Control-flow integrity: Precision, security, and performance.
CoRR, 2016.

[16] V. Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 2014.

[17] C. che Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library
OS for unmodified applications on SGX. In 2017 USENIX Annual
Technical Conference, 2017.

[18] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged
side-channel attacks in shielded execution with Déjá Vu. In ACM
Symposium on Information, Computer and Communications Security,
2017.

[19] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution. arXiv
preprint arXiv:1804.05141, 2018.

[20] J. Coleman, L. Horne, and L. Xuanji. Counterfactual: General-
ized state channels, Jun 2018. https://l4.ventures/papers/
statechannels.pdf.

[21] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen,
C. Liebchen, M. Perry, and A.-R. Sadeghi. Selfrando: Securing the tor
browser against de-anonymization exploits. Proceedings on Privacy
Enhancing Technologies, 2016.

[22] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal Hard-
ware Extensions for Strong Software Isolation. In USENIX Security
Symposium, 2016.

[23] L. Davi, A. Dmitrienko, S. Nürnberger, and A. Sadeghi. Gadge me if
you can: secure and efficient ad-hoc instruction-level randomization
for x86 and ARM. In 8th ACM Symposium on Information, Computer
and Communications Security, ASIACCS, 2013.

[24] S. Dziembowski, S. Faust, and K. Hostáková. General state chan-
nel networks. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, 2018.

[25] H. Galal and A. Youssef. Verifiable sealed-bid auction on the ethereum
blockchain. In International Conference on Financial Cryptography
and Data Security, Trusted Smart Contracts Workshop. Springer, 2018.

[26] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In CRYPTO. Springer, 2017.

[27] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa.
Strong and Efficient Cache Side-Channel Protection using Hardware
Transactional Memory. In 26th USENIX Security Symposium, 2017.

[28] M. Hachman. Intel’s plan to fix meltdown in silicon raises
more questions than answers. https://www.pcworld.com/
article/3251171/components- processors/intels- plan- to-
fix- meltdown- in- silicon- raises- more- questions- than-
answers.html, 2018.

[29] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.
Using Innovative Instructions to Create Trustworthy Software Solutions.
In Workshop on Hardware and Architectural Support for Security and
Privacy (HASP). ACM, 2013.

[30] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: trans-
parent code randomization for just-in-time compilers. In ACM SIGSAC
Conference on Computer and Communications Security, CCS, 2013.

[31] Intel. Intel Software Guard Extensions developer guide, 2016.
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_
SGX_Developer_Guide.pdf.

[32] Intel. Resources and Response to Side Channel L1 Terminal Fault.
https://www.intel.com/content/www/us/en/architecture-

and-technology/l1tf.html, 2018.

[33] A. Juels, A. E. Kosba, and E. Shi. The ring of gyges: Investigating
the future of criminal smart contracts. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, 2016.

[34] H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten. Arbitrum: Scalable, private smart contracts. In USENIX Security
Symposium, 2018.

[35] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016.

[36] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In IEEE Symposium on Security and Privacy, 2016.

816 28th USENIX Security Symposium USENIX Association

https://eprint.iacr.org
https://eprint.iacr.org
https://live.blockcypher.com/btc/
https://coinmarketcap.com
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://ethresear.ch/t/why-smart-contracts-are-not-feasible-on-plasma/2598
https://ethresear.ch/t/why-smart-contracts-are-not-feasible-on-plasma/2598
https://the-blockchain-journal.com/2018/03/29/a-glimpse-into-the-future-of-blockchain/
https://the-blockchain-journal.com/2018/03/29/a-glimpse-into-the-future-of-blockchain/
https://l4.ventures/papers/statechannels.pdf
https://l4.ventures/papers/statechannels.pdf
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://www.pcworld.com/article/3251171/components-processors/intels-plan-to-fix-meltdown-in-silicon-raises-more-questions-than-answers.html
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

[37] R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct
computations. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014.

[38] R. Kumaresan and I. Bentov. Amortizing secure computation with
penalties. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2016.

[39] R. Kumaresan, T. Moran, and I. Bentov. How to use bitcoin to play
decentralized poker. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2015.

[40] R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan. Improvements
to secure computation with penalties. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, 2016.

[41] L. Lamport, R. Shostak, and M. Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1982.

[42] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated
software diversity. In 35th IEEE Symposium on Security and Privacy,
S&P, 2014.

[43] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G. Sirer.
Teechain: Reducing storage costs on the blockchain with offline pay-
ment channels. In 11th ACM International Systems and Storage Con-
ference, 2018.

[44] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Müllmann,
O. Hohlfeld, and K. Wehrle. A quantitative analysis of the impact
of arbitrary blockchain content on bitcoin. In Proceedings of the 22nd
International Conference on Financial Cryptography and Data Security
(FC). Springer, 2018.

[45] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In Workshop on Hardware and
Architectural Support for Security and Privacy (HASP). ACM, 2013.

[46] Microsoft. The coco framework, 2018. GIT repository available at
https://github.com/Azure/coco-framework.

[47] I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013.

[48] A. Miller and I. Bentov. Zero-collateral lotteries in bitcoin and
ethereum. In Security and Privacy Workshops (EuroS&PW), 2017
IEEE European Symposium on. IEEE, 2017.

[49] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry. Sprites: Payment
channels that go faster than lightning. CoRR, abs/1702.05812, 2017.

[50] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
Opaque control-flow integrity. In NDSS, 2015.

[51] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,”
http://bitcoin.org/bitcoin.pdf, 2008.

[52] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. San-
cus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In 22nd USENIX Security symposium,
USENIX Sec, 2013.

[53] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization. In 33rd IEEE Symposium on Security and Privacy,
S&P, 2012.

[54] R. Pass, E. Shi, and F. Tramèr. Formal abstractions for attested execu-
tion secure processors. IACR Cryptology ePrint Archive, 2016.

[55] J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts,
Aug 2017. Plasma, https://plasma.io/plasma.pdf/.

[56] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. SGX-
Shield: Enabling address space layout randomization for SGX pro-
grams. In Annual Network and Distributed System Security Symposium,
2017.

[57] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In Annual Net-
work and Distributed System Security Symposium, 2017.

[58] J. Teutsch and C. Reitwießner. A scalable verification solution for
blockchains, Nov 2017. https://people.cs.uchicago.edu/
~teutsch/papers/truebit.pdf.

[59] F. Tramèr, F. Zhang, H. Lin, J. Hubaux, A. Juels, and E. Shi. Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge.
In 2017 IEEE European Symposium on Security and Privacy, EuroS&P,
2017.

[60] J. Van Bulck, F. Piessens, and R. Strackx. Foreshadow: Extracting the
keys to the intel sgx kingdom with transient out-of-order execution. In
27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, 2018.

[61] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
self-randomizing instruction addresses of legacy x86 binary code. In
ACM SIGSAC Conference on Computer and Communications Security,
CCS, 2012.

[62] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and random-
ization for binary executables. In 34th IEEE Symposium on Security
and Privacy, S&P, 2013.

[63] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security.
ACM, 2016.

[64] F. Zhang, P. Daian, I. Bentov, and A. Juels. Paralysis proofs: Safe access-
structure updates for cryptocurrencies and more. IACR Cryptology
ePrint Archive, 2018.

[65] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In
22nd USENIX Security Symposium, USENIX Sec, 2013.

A Further Related Work
There is a large body of work trying to improve the scalabil-
ity of blockchains by moving a major part of smart contract
executions off the blockchain (for example, via second layer
solutions [24, 34, 49, 55] or outsourcing of computation [58]).
As discussed in the main body of this paper, all of these so-
lutions run on top of blockchains with sufficiently complex
scripting language, e.g., on Ethereum. However, they cannot
be integrated into popular legacy cryptocurrencies such as
Bitcoin, which is their main difference compared to our work.
Recall that one of the main goals of FASTKITTEN is make
minimal assumption on the underlying blockchain technology
and in particular, to run over the Bitcoin blockchain.
Another motivation for off-chain contract execution might be
the goal of protecting privacy. Hawk [36] and the “Ring of
Gyges” [33] are examples of works that do keep the state,
all inputs and outputs private. It is also true for the scaling
solutions mentioned above; These techniques work only over
cryptocurrencies with support for complex smart contracts,
e.g. over Ethereum.
Below we discuss the differences between these solutions and
FASTKITTEN when run on top of Ethereum.

A.1 Second-layer Scaling Solutions
State Channels State channels [20, 24, 49] are a prominent
second layer scaling solution. They allow a set of parties

USENIX Association 28th USENIX Security Symposium 817

https://github.com/Azure/coco-framework
https://github.com/Azure/coco-framework
https://plasma.io/plasma.pdf/
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf

to execute complex smart contracts off-chain. As long as
all parties are honest and agree on the state transitions, the
blockchain is contacted only during the channel creation,
when parties lock funds in the channel, and during channel
closure, when the locked funds are distributed back to the
parties according to the result of contract execution. However,
once parties run into disagreement off-chain, they have to
resolve their dispute on-chain and perform the state transition
via the blockchain.
While in the optimistic case when all parties are honest, state
channels are very efficient, a potentially heavy computation
might need to be done on-chain in case of disagreement. This
is in contrast to the FASTKITTEN protocol which does not
require any computation to be performed on the blockchain
even in case of disputes.
Plasma Another promising second-layer scaling solution is
Plasma, first introduced by Poon and Buterin [55]. The main
idea of Plasma is to build new chains (Plasma chains) on
top of the Ethereum blockchain. Each Plasma chain has its
own operator that is responsible for validating transactions
and regularly posting a short commitment about the current
state of the Plasma chain to a smart contract on the Ethereum
blockchain. The regular commitments guarantee to the partic-
ipants of the Plasma chain that in case the operator cheats, his
misbehavior can be proven to the Ethereum smart contract
and parties can exit the Plasma chain with all their funds.
While the original goal of Plasma [55] was to support arbi-
trary complex smart contracts, to the best of our knowledge,
there is no concrete protocol that would achieve this goal
(the existing Plasma designs support only payment transac-
tions). Moreover, the plasma research community currently
conjectures that Plasma with general smart contracts might
be impossible to construct [8].

A.2 Incentive-driven Verification
Arbitrum The disadvantage of state channels, i.e., the po-
tentially heavy on-chain execution in case of dispute, is being
addressed by the work Arbitrum [34]. Every smart contract,
which Arbitrum models as a virtual machine (VM), to be
executed off-chain has a set of “manager” parties responsi-
ble for correct VM execution. As long as managers reach
consensus on the VM state transitions, execution progresses
off-chain similarly as in state channels. In case of dispute,
managers do not perform the VM state transition on-chain as
in state channel. Instead, one manager can propose the next
VM state which other managers can challenge. If the newly
posted state is challenged, the proposer and the challenger
run an interactive protocol via the blockchain, so-called “bi-
section” protocol, in which one disputable computation step
is eventually identified and whose correct execution is ver-
ified on-chain. Hence, instead of executing the entire state
transition on-chain (which might potentially require a lot of
time/space), only one computation step of the state transition

has to be performed on-chain in addition to the bisection pro-
tocol (which might requireO(log(s)) blockchain transactions,
where s is the number of computations steps in the state tran-
sition). The Arbitrum protocol works under the assumption
that at least one manager of the VM is honest and challenges
false states if they are posted by other managers. Since the
blockchain interaction during the bisection protocol is rather
expensive, Arbitrum uses monetary incentives to motivate
managers to behave honestly and follow the protocol.

TrueBit Another solution that supports off-chain execution
of smart contracts using incentive verification is TrueBit [58].
For each off-chain execution, the TrueBit system selects (us-
ing a lottery) one party, called the “Solver”, that is responsible
for performing the state transition and inform all other parties
about the new contract state. The TrueBit system incentives
parties to become so called “verifiers” and check the correct-
ness of the computation performed by the Solver. In case they
detect misbehavior, they are supposed to challenge the Solver
on the blockchain and run the “verification game” which
works similarly as the “bisection protocol” of Arbitrum. Sim-
ilar to Arbitrum, TrueBit relies on the assumption that there
is at least one honest verifier which correctly performs all
the validations and challenges malicious Solvers. In contrast
to Arbitrum, all inputs and the contract state are inherently
public even in the optimistic case when everyone is honest.
Apart from the different trust model and lower requirement
on the underlying blockchain technology, FASTKITTEN dif-
fers from Arbitrum and TrueBit by providing stronger privacy
guarantees, meaning that in both the optimistic and the pes-
simistic case, inputs of honest parties as well as the state of
the smart contract remains private.

A.3 TEEs for privacy
None of the solutions discussed above achieves privacy pre-
serving off-chain contract execution. This is tackled by the
work Hawk [36] which keeps the state, all inputs and all out-
puts private. Hawk contracts [35] achieve these properties
using Ethereum smart contracts that judge computations done
by a third party (a manager), who executes the contract on
private inputs and is trusted not to reveal any secrets. First all
parties submit their encrypted inputs to the contract, then the
manager computes the result and proves its correctness with a
zero knowledge proof. If the proof is correct, the contract pays
out money accordingly. While the authors of Hawk discuss
the possibility to use SGX for instantiating the manager and
reducing the trust assumptions in this party, it still leverages
the blockchain for every user input, and it only supports single
round protocols which is their main difference to FASTKIT-
TEN. A possible extension to multi-round protocols would be
difficult to achieve without letting the smart contract verify
the correctness of every round individually, and thus create a
large blockchain communication overhead.

818 28th USENIX Security Symposium USENIX Association

StrongChain: Transparent and Collaborative Proof-of-Work Consensus

Pawel Szalachowski1 Daniël Reijsbergen1 Ivan Homoliak1 Siwei Sun2,∗
1Singapore University of Technology and Design (SUTD)

2Institute of Information Engineering and DCS Center, Chinese Academy of Sciences

Abstract

Bitcoin is the most successful cryptocurrency so far. This
is mainly due to its novel consensus algorithm, which is
based on proof-of-work combined with a cryptographically-
protected data structure and a rewarding scheme that incen-
tivizes nodes to participate. However, despite its unprece-
dented success Bitcoin suffers from many inefficiencies. For
instance, Bitcoin’s consensus mechanism has been proved to
be incentive-incompatible, its high reward variance causes
centralization, and its hardcoded deflation raises questions
about its long-term sustainability.

In this work, we revise the Bitcoin consensus mechanism
by proposing StrongChain, a scheme that introduces trans-
parency and incentivizes participants to collaborate rather
than to compete. The core design of our protocol is to
reflect and utilize the computing power aggregated on the
blockchain which is invisible and “wasted” in Bitcoin today.
Introducing relatively easy, although important changes to
Bitcoin’s design enables us to improve many crucial aspects
of Bitcoin-like cryptocurrencies making it more secure, ef-
ficient, and profitable for participants. We thoroughly an-
alyze our approach and we present an implementation of
StrongChain. The obtained results confirm its efficiency, se-
curity, and deployability.

1 Introduction

One of the main novelties of Bitcoin [28] is Nakamoto con-
sensus. This mechanism enabled the development of a per-
missionless, anonymous, and Internet-scale consensus pro-
tocol, and combined with incentive mechanisms allowed
Bitcoin to emerge as the first decentralized cryptocurrency.
Bitcoin is successful beyond all expectations, has inspired
many other projects, and has started new research directions.
Nakamoto consensus is based on proof-of-work (PoW) [8] in
order to mitigate Sybil attacks [6]. To prevent modifications,

∗This work was done while the author was at SUTD.

a cryptographically-protected append-only list [2] is intro-
duced. This list consists of transactions grouped into blocks
and is usually referred to as a blockchain. Every active pro-
tocol participant (called a miner) collects transactions sent
by users and tries to solve a computationally-hard puzzle in
order to be able to write to the blockchain (the process of
solving the puzzle is called mining). When a valid solution
is found, it is disseminated along with the transactions that
the miner wishes to append. Other miners verify this data
and, if valid, append it to their replicated blockchains. The
miner that has found a solution is awarded by a) the system,
via a rewarding scheme programmed into the protocol, and
b) fees paid by transaction senders. All monetary transfers
in Bitcoin are expressed in its native currency (called bitcoin,
abbreviated as BTC) whose supply is limited by the protocol.

Bitcoin has started an advent of decentralized cryptocur-
rency systems and as the first proposed and deployed sys-
tem in this class is surprisingly robust. However, there
are multiple drawbacks of Bitcoin that undermine its secu-
rity promises and raise questions about its future. Bitcoin
has been proved to be incentive-incompatible [9, 11, 39, 47].
Namely, in some circumstances, the miners’ best strategy is
to not announce their found solutions immediately, but in-
stead withhold them for some time period. Another issue is
that the increasing popularity of the system tends towards its
centralization. Strong competition between miners resulted
in a high reward variance, thus to stabilize their revenue
miners started grouping their computing power by forming
mining pools. Over time, mining pools have come to domi-
nate the computing power of the system, and although they
are beneficial for miners, large mining pools are risky for
the system as they have multiple ways of abusing the pro-
tocol [9, 11, 18, 39]. Recently, researchers rigorously ana-
lyzed one of the impacts of Bitcoin’s deflation [4, 27, 47].
Their results indicate that Bitcoin may be unsustainable in
the long term, mainly due to decreasing miners’ rewards that
will eventually stop completely. Besides that, unusually for
a transaction system, Bitcoin is designed to favor availability
over consistency. This choice was motivated by its open and

USENIX Association 28th USENIX Security Symposium 819

permissionless spirit, but in the case of inconsistencies (i.e.,
forks in the blockchain) the system can be slow to converge.

Motivated by these drawbacks, we propose StrongChain, a
simple yet powerful revision of the Bitcoin consensus mech-
anism. Our main intuition is to design a system such that the
mining process is more transparent and collaborative, i.e.,
miners get better knowledge about the mining power of the
system and they are incentivized to solve puzzles together
rather than compete. In order to achieve it, in the heart of the
StrongChain’s design we employ weak solutions, i.e., puzzle
solutions with a PoW that is significant yet insufficient for a
standard solution. We design our system, such that a) weak
solutions are part of the consensus protocol, b) their find-
ers are rewarded independently, and c) miners have incen-
tives to announce own solutions and append solutions of oth-
ers immediately. We thoroughly analyze our approach and
show that with these changes, the mining process is becom-
ing more transparent, collaborative, secure, efficient, and de-
centralized. Surprisingly, we also show how our approach
can improve the freshness properties offered by Bitcoin. We
present an implementation and evaluation of our scheme.

2 Background and Problem Definition

2.1 Nakamoto Consensus and Bitcoin
The Nakamoto consensus protocol allows decentralized and
distributed network comprised of mutually distrusting par-
ticipants to reach an agreement on the state of the global dis-
tributed ledger [28]. The distributed ledger can be regarded
as a linked list of blocks, referred to as the blockchain, which
serializes and confirms “transactions”. To resolve any forks
of the blockchain the protocol specifies to always accept the
longest chain as the current one. Bitcoin is a peer-to-peer
cryptocurrency that deploys Nakamoto consensus as its core
mechanism to avoid double-spending. Transactions spend-
ing bitcoins are announced to the Bitcoin network, where
miners validate, serialize all non-included transactions, and
try to create (mine) a block of transactions with a PoW em-
bedded into the block header. A valid block must fulfill the
condition that for a cryptographic hash function H, the hash
value of the block header is less than the target T .

Brute-forcing the nonce (together with some other change-
able data fields) is virtually the only way to produce the PoW,
which costs computational resources of the miners. To in-
centivize miners, the Bitcoin protocol allows the miner who
finds a block to insert a special transaction (see below) mint-
ing a specified amount of new bitcoins and collecting trans-
action fees offered by the included transactions, which are
transferred to an account chosen by the miner. Currently,
every block mints 12.5 new bitcoins. This amount is halved
every four years, upper-bounding the number of bitcoins that
will be created to a fixed total of 21 million coins. It implies
that after around the year 2140, no new coins will be created,

and the transaction fees will be the only source of reward for
miners. Because of its design, Bitcoin is a deflationary cur-
rency.

The overall hash rate of the Bitcoin network and the dif-
ficulty of the PoW determine how long it takes to generate
a new block for the whole network (the block interval). To
stabilize the block interval at about 10 minutes for the con-
stantly changing total mining power, the Bitcoin network ad-
justs the target T every 2016 blocks (about two weeks, i.e., a
difficulty window) according to the following formula

Tnew = Told ·
Time of the last 2016 blocks

2016 ·10 minutes
. (1)

In simple terms, the difficulty increases if the network is find-
ing blocks faster than every 10 minutes, and decrease oth-
erwise. With dynamic difficulty, Nakamoto’s longest chain
rule was considered as a bug,1 as it is trivial to produce long
chains that have low difficulty. The rule was replaced by the
strongest-PoW chain rule where competing chains are mea-
sured in terms of PoW they aggregated. As long as there is
one chain with the highest PoW, this chain is chosen as the
current one.

Bitcoin introduced and uses the unspent transaction out-
put model. The validity of a Bitcoin transaction is verified
by executing a script proving that the transaction sender is
authorized to redeem unspent coins. The only exception is
the first transaction in the transaction list of a block, which
implements how the newly minted bitcoins and transaction
fees are distributed. It is called a coinbase transaction and
it contains the amount of bitcoins (the sum of newly minted
coins and the fees derived from all the transactions) and the
beneficiary (typically the creator of the block). Also, the
Bitcoin scripting language offers a mechanism (OP RETURN)
for recording data on the blockchain, which facilitates third-
party applications built-on Bitcoin.

Bitcoin proposes the simplified payment verification
(SPV) protocol, that allows resource-limited clients to ver-
ify that a transaction is indeed included in a block provided
only with the block header and a short transaction’s inclusion
proof. The key advantage of the protocol is that SPV clients
can verify the existence of a transaction without download-
ing or storing the whole block. SPV clients are provided only
with block headers and on-demand request from the network
inclusion proofs of the transactions they are interested in.

In the original white paper, Nakamoto heuristically argues
that the consensus protocol remains secure as long as a ma-
jority (> 50%) of the participants’ computing power hon-
estly follow the rule specified by the protocol, which is com-
patible with their own economic incentives.

1https://goo.gl/thhusi

820 28th USENIX Security Symposium USENIX Association

https://goo.gl/thhusi

2.2 Bitcoin Mining Issues

Despite its popularity, Nakamoto consensus and Bitcoin suf-
fer from multiple issues. Bitcoin mining is not always
incentive-compatible. By deviating from the protocol and
strategically withholding found blocks, a miner in posses-
sion of a proportion α of the total computational power may
occupy more than α portion of the blocks on the blockchain,
and therefore gain disproportionally higher payoffs with re-
spect to her share [1, 11, 39]. More specifically, an attacker
tries to create a private chain by keeping found blocks secret
as long as the chain is in an advantageous position with one
or more blocks more than the public branch. She releases her
private chain only when the public chain has almost caught
up, hence invalidating the public branch and all the efforts
made by the honest miners. This kind of attack, called self-
ish mining, can be more efficient when a well-connected self-
ish miner’s computational power exceeds a certain threshold
(around more than 30%). Thus, selfish mining does not pay
off if the mining power is sufficiently decentralized.

Unfortunately, the miners have an impulse to central-
ize their computing resources due to Bitcoin’s rewarding
scheme. In Bitcoin, rewarding is a zero-sum game and only
the lucky miner who manages to get her block accepted re-
ceives the reward, while others who indeed contributed com-
putational resources to produce the PoW are completely in-
visible and ignored. Increasing mining competition leads to
an extremely high variance of the payoffs of a miner with
a limited computational power. A solo miner may need to
wait months or years to receive any reward at all. As a
consequence, miners are motivated to group their resources
and form mining pools, that divide work among pool partici-
pants and share the rewards according to their contributions.
As of November 2018, only five largest pools account for
more than 65% of the mining power of the whole Bitcoin
network.2 Such mining pools not only undermine the de-
centralization property of the system but also raise various
in-pool or cross-pool security issues [5, 9, 22, 37].

Another seemingly harmless characteristic of Bitcoin is
its finite monetary supply. However, researchers in their re-
cent work [4, 27, 47] investigate the system dynamics when
incentives coming from transaction fees are non-negligible
compared with block rewards (in one extreme case the in-
centives come only from fees). They provide analysis and
evidence, indicating an undesired system degradation due
to the rational and self-interested participants. Firstly, such
a system incentivizes large miner coalitions, increasing the
system centralization even more. Secondly, it leads to a min-
ing gap where miners would avoid mining when the avail-
able fees are insufficient. Even worse, rational miners tend
to mine on chains that do not include available transactions
(and their fees), rather than following the block selection rule
specified by the protocol, resulting in a backlog of transac-

2https://btc.com/stats/pool?pool_mode=month

tions. Finally, in the sole transaction fee regime, selfish min-
ing attacks are efficient for miners with arbitrarily low min-
ing power, regardless of their network connection qualities.
These results suggest that making the block reward perma-
nent and accepting the monetary inflation may be a wise de-
sign choice to ensure the stability of the cryptocurrency in
the long run.

Moreover, the chain selection rule (i.e., the strongest chain
is accepted), together with the network delay, occasionally
lead to forks, where two or more blocks pointing to the
same block are created around the same time, causing the
participants to have different views of the current system
state. Such conflicting views will eventually be resolved
since with a high probability one branch will finally beat
the others (then the blocks from the “losing” chain become
stale blocks). The process of fork resolution is quite slow,
as blocks have the same PoW weight and they arrive in 10-
minutes intervals (on average).

Finally, the freshness properties provided by Bitcoin are
questionable. By design, the Bitcoin blockchain preserves
the order of blocks and transactions, however, the accurate
estimation of time of these events is challenging [43], de-
spite the fact that each block has an associated timestamp.
A block’s timestamp is accepted if a) it is greater than the
median timestamp of the previous eleven blocks, and b) it is
less than the network time plus two hours.3 This gives sig-
nificant room for manipulation — in theory, a timestamp can
differ in hours from the actual time since it is largely deter-
mined by a single block creator. In fact, as time cannot be
accurately determined from the timestamps, the capabilities
of the Bitcoin protocol as a timestamping service are limited,
which may lead to severe attacks by itself [3, 17].

2.3 Requirements
For the purpose of revising a consensus protocol of PoW
blockchains in a secure, well-incentivized, and seamless
way, we define the following respective requirements:

• Security – the scheme should improve the security of
Nakamoto consensus by mitigating known attack vec-
tors and preventing new ones. In essence, the scheme
should be incentive-compatible, such that miners bene-
fit from following the consensus rules and have no gain
from violating them.

• Reward Variance – another objective is to minimize
the variance in rewards. This requirement is crucial
for decentralization since a high reward variance is the
main motivation of individual miners to join centralized
mining pools. Centralization is undesirable as large-
enough mining pools can attack the Bitcoin protocol.

• Chain Quality – the scheme should provide a high
chain quality, which usually is described using the two
following properties.

3https://en.bitcoin.it/wiki/Block_timestamp

USENIX Association 28th USENIX Security Symposium 821

https://btc.com/stats/pool?pool_mode=month
https://en.bitcoin.it/wiki/Block_timestamp

– Mining Power Utilization – the ratio between
the mining power on the main chain and the min-
ing power of the entire blockchain network. This
property describes the performance of mining and
its ideal value is 1, which denotes that all mining
power of the system contributes to the “official” or
“canonical” chain. A high mining power utiliza-
tion implies a low stale block rate.

– Fairness – the protocol should be fair, i.e., a
miner should earn rewards proportionally to the
resources invested by her in mining. We denote
a miner with α of the global mining power as an
α-strong miner.

• Efficiency and Practicality – the scheme should not in-
troduce any significant computational, storage, or band-
width overheads. This is especially important since Bit-
coin works as a replicated state machine, therefore all
full nodes replicate data and the validation process. In
particular, the block validation time, its size, and over-
heads of SPV clients should be at least similar as to-
day. Moreover, the protocol should not introduce any
assumptions that would be misaligned with Bitcoin’s
spirit and perceived as unacceptable by the commu-
nity. In particular, the scheme should not introduce any
trusted parties and should not assume strong synchro-
nization of nodes (like global and reliable timestamps).

3 High-level Overview

3.1 Design Rationale
Our first observation is that Bitcoin mining is not transpar-
ent. It is difficult to quickly estimate the computing power
of the different participants, because the only indicator is the
found blocks. After all, blocks arrive with a low frequency,
and each block is equal in terms of its implied computational
power. Consequently, the only way of resolving forks is to
wait for a stronger chain to emerge, which can be a time-
consuming process. A related issue is block-withholding-
like attacks (e.g., selfish mining) which are based on the ob-
servation that sometimes it is profitable for an attacker to
deviate from the protocol by postponing the announcement
of new solutions. We see transparency as a helpful prop-
erty also in this context. Ideally, non-visible (hidden) so-
lutions should be penalized, however, in practice it is chal-
lenging to detect and prove that a solution was hidden. We
observe that an alternative way of mitigating these attacks
would be to promote visible solutions, such that with more
computing power aggregated around them they get stronger.
This would incentivize miners to publish their solutions im-
mediately, since keeping it secret may be too risky as other
miners could strengthen a competing potential (future) so-
lution over time. Finally, supported by recent research re-
sults [4, 11, 27, 39, 47], we envision that redesigning the Bit-

coin reward scheme is unavoidable to keep the system sus-
tainable and more secure. Beside the deflation issues (see
Section 2.2), the reward scheme in Bitcoin is a zero-sum
game rewarding only lucky miners and ignoring all effort of
other participants. That causes fierce competition between
miners and a high reward variance, which stimulates min-
ers to collaborate, but within mining pools, introducing more
risk to the system. We aim to design a system where miners
can benefit from collaboration but without introducing cen-
tralization risks.

3.2 Overview

Motivated by these observations, we see weak puzzle so-
lutions, currently invisible and “wasted” in Bitcoin, as a
promising direction. Miners exchanging them could make
the protocol more transparent as announcing them could re-
flect the current distribution of computational efforts on the
network. Furthermore, if included in consensus rules, they
could give blocks a better granularity in terms of PoW, and
incentivize miners to collaborate. In our scheme, miners
solve a puzzle as today but in addition to publishing solu-
tions, they exchange weak solutions too (i.e., almost-solved
puzzles). The lucky miner publishes her solution that em-
beds gathered weak solutions (pointing to the same previous
block) of other miners. Such a published block better reflects
the aggregated PoW of a block, which in the case of a fork
can indicate that more mining power is focused on a given
branch (i.e., actually it proves that more computing power
“believes” that the given branch is correct). Another crucial
change is to redesign the Bitcoin reward system, such that
the finders of weak solutions are also rewarded. Following
lessons learned from mining pool attacks, instead of sharing
rewards among miners, our scheme rewards weak solutions
proportionally to their PoW contributed to a given block and
all rewards are independent of other solutions of the block.
(Note, that this change requires a Bitcoin hard fork.)

There are a few intuitions behind these design choices.
First, a selfish miner finding a new block takes a high risk
by keeping this block secret. This is because blocks have
a better granularity due to honest miners exchanging partial
solutions and strengthening their prospective block, which in
the case of a fork would be stronger than the older block kept
secret (i.e., the block of the selfish miner). Secondly, min-
ers are actually incentivized to collaborate by a) exchang-
ing their weak solutions, and b) by appending weak solu-
tions submitted by other miners. For the former case, miners
are rewarded whenever their solutions are appended, hence
keeping them secret can be unprofitable for them. For the
latter case, a miner appending weak solutions of others only
increases the strength of her potential block, and moreover,
appending these solutions does not negatively influence the
miner’s potential reward. Finally, our approach comes with
another benefit. Proportional rewarding of weak solutions

822 28th USENIX Security Symposium USENIX Association

decreases the reward variance, thus miners do not have to
join large mining pools in order to stabilize their revenue.
This could lead to a higher decentralization of mining power
on the network.

In the following sections, we describe details of our sys-
tem, show its analysis, and report on its implementation.

4 StrongChain Details

4.1 Mining
As in Bitcoin, in StrongChain miners authenticate transac-
tions by collecting them into blocks whose headers are pro-
tected by a certain amount of PoW. A simplified description
of a block mining procedure in StrongChain is presented as
the mineBlock() function in Algorithm 1. Namely, every
miner tries to solve a PoW puzzle by computing the hash
function over a newly created header. The header is con-
stantly being changed by modifying its nonce field,4 until a
valid hash value is found. Whenever a miner finds a header
hdr whose hash value h = H(hdr) is smaller than the strong
target Ts, i.e., a h that satisfies the following:

h < Ts,

then the corresponding block is announced to the network
and becomes, with all its transactions and metadata, part of
the blockchain. We refer to headers of included blocks as
strong headers.

One of the main differences with Bitcoin is that our min-
ing protocol handles also headers whose hash values do not
meet the strong target Ts, but still are low enough to prove a
significant PoW. We call such a header a weak header and its
hash value h has to satisfy the following:

Ts ≤ h < Tw, (2)

where Tw > Ts and Tw is called the weak target.
Whenever a miner finds such a block header, she adds it

to her local list of weak headers (i.e., weakHdrsTmp) and
she propagates the header among all miners. Then every
miner that receives this information first validates it (see on-
RecvWeakHdr()) by checking whether

• the header points to the last strong header,
• its other fields are correct (see Section 4.2),
• and Equation 2 is satisfied.

Afterward, miners append the header to their lists of weak
headers. We do not limit the number of weak headers ap-
pended, although this number is correlated with the Tw/Ts
ratio (see Section 5).

Finally, miners continue the mining process in order to
find a strong header. In this process, a miner keeps creat-
ing candidate headers by computing hash values and check-
ing whether the strong target is met. Every candidate header

4In fact, other fields can be modified too if needed.

Algorithm 1: Pseudocode of StrongChain functions.
function mineBlock()

weakHdrsTmp← /0;
for nonce ∈ {0,1,2, ...} do

hdr← createHeader(nonce);
/* check if the header meets the strong target */
htmp← H(hdr);
if htmp < Ts then

B← createBlock(hdr,weakHdrsTmp,Txs);
broadcast(B);
return; /* signal to mine with the new block */

/* check if the header meets the weak target */
if htmp < Tw then

weakHdrsTmp.add(hdr);
broadcast(hdr);

function onRecvWeakHdr(hdr)
hw← H(hdr);
assert(Ts ≤ hw < Tw and validHeader(hdr));
assert(hdr.PrevHash == H(lastBlock.hdr)) ;
weakHdrsTmp.add(hdr);

function rewardBlock(B)
/* reward block finder with R */
reward(B.hdr.Coinbase,R+B.T xFees);
w← γ ∗Ts/Tw; /* reward weak headers proportionally */
for hdr ∈ B.weakHdrSet do

reward(hdr.Coinbase,w∗ c∗R);

function validateBlock(B)
assert(H(B.hdr)< Ts and validHeader(B.hdr));
assert(B.hdr.PrevHash == H(lastBlock.hdr)) ;
assert(validTransactions(B));
for hdr ∈ B.weakHdrSet do

assert(Ts ≤ H(hdr)< Tw and validHeader(hdr));
assert(hdr.PrevHash == H(lastBlock.hdr));

function chainPoW(chain)
sum← 0;
for B ∈ chain do

/* for each block compute its aggregated PoW */
Ts← B.hdr.Target;
sum← sum+Tmax/Ts;
for hdr ∈ B.weakHdrSet do

sum← sum+Tmax/Tw;

return sum;

function getTimestamp(B)
sumT← B.hdr.Timestamp;
sumW← 1.0;
/* average timestamp by the aggregated PoW */
w← Ts/Tw;
for hdr ∈ B.weakHdrSet do

sumT ← sumT +w∗hdr.Timestamp;
sumW ← sumW +w;

return sumT/sumW ;

USENIX Association 28th USENIX Security Symposium 823

“protects” all collected weak headers (note that all of these
weak headers point to the same previous strong header).

In order to keep the number of found weak headers close
to a constant value, StrongChain adjusts the difficulty Tw of
weak headers every 2016 blocks immediately following the
adjustment of the difficulty Ts of the strong headers accord-
ing to Equation 1, such that the ratio Tw/Ts is kept at a con-
stant (we discuss its value in Section 5).

4.2 Block Layout and Validation

A block in our scheme consists of transactions, a list of weak
headers, and a strong header that authenticates these transac-
tions and weak headers. Strong and weak headers in our
system inherit the fields from Bitcoin headers and addition-
ally enrich it by a new field. A block header consists of the
following fields:
PrevHash: is a hash of the previous block header,
Target: is the value encoding the current target defining the

difficulty of finding new blocks,
Nonce: is a nonce, used to generate PoW,
Timestamp: is a Unix timestamp,
TxRoot: is the root of the Merkle tree [24] aggregating all

transactions of the block, and
Coinbase: represents an address of the miner that will re-

ceive a reward.
As our protocol rewards finders of weak headers (see details
in Section 4.4), every weak header has to be accompanied
with the information necessary to identify its finder. Oth-
erwise, a finder of a strong block could maliciously claim
that some (or all) weak headers were found by her and get
rewards for them. For this purpose and for efficiency, we in-
troduced a new 20B-long header field named Coinbase. With
the introduction of this field, StrongChain headers are 100B
long. But on the other hand, there is no longer any need
for Bitcoin coinbase transactions (see Section 2.1), as all re-
wards are determined from headers.

In our scheme, weak headers are exchanged among nodes
as part of a block, hence it is necessary to protect the in-
tegrity of all weak headers associated with the block. To re-
alize it, we introduce a special transaction, called a binding
transaction, which contains a hash value computed over the
weak headers. This transaction is the first transaction of each
block and it protects the collected weak headers. Whenever
a strong header is found, it is announced together with all its
transactions and collected weak headers, therefore, this field
protects all associated weak headers. To encode this field we
utilize the OP RETURN operation as follows:

OP RETURN H(hdr0‖hdr1‖...‖hdrn), (3)

where hdri is a weak header pointing to the previous strong
header. Since weak headers have redundant fields (the
PrevHash, Target, and Version fields have the same values as

Nonce

PrevHash

Timestamp

TxRoot

Target

Nonce

PrevHash

Timestamp

TxRoot

Target

Nonce

PrevHash

Timestamp

TxRoot

Target

Nonce

PrevH..

Times..

TxRoot

Target

strong headers

weak headers

CoinbaseCoinbaseCoinbase

Coinb..

bt2 tx6 tx7 tx8

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

bt1 tx4 tx5

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

bt0 tx1 tx2 tx3

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

Nonce

PrevH..

Times..

TxRoot

Target

Coinb..

Figure 1: An example of a blockchain fragment with strong head-
ers, weak headers, and binding and regular transactions.

the strong header), we propose to save bandwidth and stor-
age by not including these fields into the data of a block. This
modification reduces the size of a weak header from 100B to
60B only, which is especially important for SPV clients who
keep downloading new block headers.

With our approach, a newly mined and announced block
can encompass multiple weak headers. Weak headers, in
contrast to strong headers, are not used to authenticate trans-
actions, and they are even stored and exchanged without their
corresponding transactions. Instead, the main purpose of
including weak headers it to contribute and reflect the ag-
gregated mining power concentrated on a given branch of
the blockchain. We present a fragment of a blockchain of
StrongChain in Figure 1. As depicted in the figure, each
block contains a single strong header, transactions, and a set
of weak headers aggregated via a binding transaction.

On receiving a new block, miners validate the block by
checking the following (see validateBlock() in Algorithm 1):

1. The strong header is protected by the PoW and points
to the previous strong header.

2. Header fields have correct values (i.e., the version, tar-
get, and timestamp are set correctly).

3. All included transactions are correct and protected by
the strong header. This check also includes checking
that all weak headers collected are protected by a bind-
ing transaction included in the block.

4. All included weak headers are correct: a) they meet the
targets as specified in Equation 2, b) their PrevHash
fields point to the previous strong header, and c) their
version, targets, and timestamps have correct values.

If the validation is successful, the block is accepted as part
of the blockchain.

4.3 Forks

One of the main advantages of our approach is that blocks
reflect their aggregated mining power more precisely. Each
block beside its strong header contains multiple weak head-

824 28th USENIX Security Symposium USENIX Association

…

weak header

strong header

transactions

block

Bi-2 Bi-1 Bi Bi+1

Bi’

Figure 2: An example of a forked blockchain in StrongChain.

ers that contribute to the block’s PoW. In the case of a fork,
our scheme relies on the strongest chain rule, however, the
PoW is computed differently than in Bitcoin. For every chain
its PoW is calculated as presented by the chainPoW() proce-
dure in Algorithm 1. Every chain is parsed and for each of
its blocks the PoW is calculated by adding:

1. the PoW of the strong header, computed as Tmax/Ts,
where Tmax is the maximum target value, and

2. the accumulated PoW of all associated weak headers,
counting each weak header equally as Tmax/Tw.

Then the chain’s PoW is expressed as just the sum of all its
blocks’ PoW. Such an aggregated chain’s PoW is compared
with the competing chain(s). The chain with the largest ag-
gregated PoW is determined as the current one. As diffi-
culty in our protocol changes over time, the strong target Ts
and PoW of weak headers are relative to the maximum tar-
get value Tmax. We assume that nodes of the network check
whether every difficulty window is computed correctly (we
skipped this check in our algorithms for easy description).

Including and empowering weak headers in our protocol
moves away from Bitcoin’s “binary” granularity and gives
blocks better expression of the PoW they convey. An ex-
ample is presented in Figure 2. For instance, nodes having
the blocks Bi and B′i can immediately decide to follow the
block Bi as it has more weak headers associated, thus it has
accumulated more PoW than the block B′i.

An exception to this rule is when miners solve conflicts.
Namely, on receiving a new block, miners run the algorithm
as presented, however, they also take into consideration PoW
contributions of known weak headers that point to the last
blocks. For instance, for a one-block-long fork within the
same difficulty window, if a block B includes l weak headers
and a miner knows of k weak headers pointing to B, then
that miner will select B over any competing block B′ that
includes l′ weak and has k′ known weak headers pointing to
it if l + k > l′+ k′. Note that this rule incentivizes miners to
propagate their solutions as quickly as possible as competing
blocks become “stronger” over time.

4.4 Rewarding Scheme

The rewards distribution is another crucial aspect of
StrongChain and it is presented by the rewardBlock() pro-
cedure from Algorithm 1. The miner that found the strong
header receives the full reward R. Moreover, in contrast to
Bitcoin, where only the “lucky” miner is paid the full reward,
in our scheme all miners that have contributed to the block’s
PoW (i.e., whose weak headers are included) are paid by
commensurate rewards to the provided PoW. A weak header
finder receive a fraction of R, i.e., γ ∗ c ∗R ∗Ts/Tw, as a re-
ward for its corresponding solution contributing to the total
PoW of a particular branch, where the γ parameter influences
the relative impact of weak header rewards and c is just a
scaling constant (we discuss their potential values and im-
plications in Section 5). Moreover, we do not limit weak
header rewards and miners can get multiple rewards for their
weak headers within a single block. Similar reward mech-
anisms are present in today’s mining pools (see Section 8),
but unlike them, weak header rewards in StrongChain are in-
dependent of each other. Therefore, the reward scheme is
not a zero-sum game and miners cannot increase their own
rewards by dropping weak headers of others (actually, as
we discuss in Section 5, they can only lose since their po-
tential solutions would have less PoW without others’ weak
headers). Furthermore, weak header rewards decrease signif-
icantly the mining variance as miners can get steady revenue,
making the system more decentralized and collaborative.

As mentioned before, the number of weak headers of a
block is unlimited, they are rewarded independently (i.e., do
not share any reward), and all block rewards in our system
are proportional to the PoW contributed. In such a setting,
a mechanism incentivizing miners to terminate a block cre-
ation is needed (without such a mechanism, miners could
keep creating huge blocks with weak headers only). In order
to achieve this, StrongChain always attributes block transac-
tion fees (B.T xFees) to the finder of the strong header (who
also receives the full reward R).

Note that in our rewarding scheme, the amount of newly
minted coins is always at least R, and consequently, unlike
Bitcoin or Ethereum [48], the total supply of the currency
in our protocol is not upper-bounded. This design decision
is made in accordance with recent results on the long-term
instability of deflationary cryptocurrencies [4, 27, 47].

4.5 Timestamps

In StrongChain, we follow the Bitcoin rules on constrain-
ing timestamps (see Section 2.1), however, we redefine how
block timestamps are interpreted. Instead of solely relying
on a timestamp put by the miner who mined the block, block
timestamps in our system are derived from the strong header
and all weak headers included in the corresponding block.
The algorithm to derive a block’s timestamp is presented as

USENIX Association 28th USENIX Security Symposium 825

getTimestamp() in Algorithm 1. A block’s timestamp is de-
termined as a weighted average timestamp over the strong
header’s timestamp and all timestamps of the weak head-
ers included in the block. The strong header’s timestamp
has a weight of 1, while weights of weak header timestamps
are determined as their PoW contributed (namely, a weak
header’s timestamp has a weight of the ratio between the
strong target and the weak target). Therefore, the timestamp
value is adjusted proportionally to the mining power asso-
ciated with a given block. That change reflects an average
time of the block creation and mitigates miners that inten-
tionally or misconfigured put incorrect timestamps into the
blockchain. We show the effectiveness of this approach in
Section 5.5.

4.6 SPV Clients

Our protocol supports light SPV clients. With every new
block, an SPV client is updated with the following informa-
tion:

hdr,hdr0,hdr1, ...,hdrn,BTproof , (4)

where hdr is a strong header, hdri are associated weak head-
ers, and BTproof is an inclusion proof of a binding transac-
tion that contains a hash over the weak headers (see Equa-
tion 3). Note that headers contain redundant fields, thus as
described in Section 4.2, they can be provided to SPV clients
efficiently.

With this data, the client verifies fields of all headers, com-
putes the PoW of the block (analogous, as in chainPoW()
from Algorithm 1), and validates the BTproof proof to check
whether all weak headers are correct, and whether the trans-
action is part of the blockchain (the proof is validated against
TxRoot of hdr). Afterward, the client saves the strong header
hdr and its computed PoW, while other messages (the weak
headers and the proof) can be dropped.

5 Analysis

In this section, we evaluate the requirements discussed in
Section 2.3. We start with analyzing StrongChain’s effi-
ciency and practicality. Next, we study how our design helps
with reward variance, chain quality, and security.

5.1 Efficiency and Practicality

For the efficiency, it is important to consider the main source
of additional load on the bandwidth, storage, and processing
power of the nodes: the weak headers. Hence, in the fol-
lowing section we analyze the probability distribution of the
number of weak headers. Next, we discuss the value of the
impact of the parametrization on the average block rewards.

5.1.1 Number of Weak Headers

In Bitcoin, we assume that hashes are drawn randomly be-
tween 0 and Tmax = 2256 − 1. Hence, a single hash be-
ing smaller than Tw is a Bernoulli trial with parameter
pw = Tw/2256. The number of hashes tried until a weak
header is found is therefore geometrically distributed, and
the time in seconds between two weak headers is approxi-
mately exponentially distributed with rate η pw, where η is
the total hash rate per second and pw is chosen such that
η pw ≈ 1/600. When a weak header is found, it is also a
strong block with probability ps/pw (where ps = Ts/2256),
which is again a Bernoulli trial. Hence, the probability
distribution of the number of weak headers found between
two strong blocks is that of the number of trials before the
first successful trial — as such, it also follows a geometric
distribution, but with mean pw/ps − 1.5 For example, for
Tw/Ts = 210 this means that the average number of weak
headers per block equals 1023. With 60 bytes per weak
header (see Section 4.2) and 1MB per Bitcoin block, this
would mean that the load increases by little over 6% on av-
erage with a small computational overhead introduced (see
details in Section 7). The probability of having more than
16667 headers (or 1MB) in a block would equal.6(

1− ps

pw

)16668

=
(

1−2−10
)16668

≈ 8.4603 ·10−8.

Since around 51,000 Bitcoin blocks are found per year, this
is expected to happen roughly once every 230 years.

5.1.2 Total Rewards

To ease the comparison to the Bitcoin protocol, we can en-
force the same average mining reward per block (currently
12.5 BTC). Let R denote Bitcoin’s mining reward. Since we
reward weak headers as well as strong blocks, we need to
scale all mining rewards by a constant c to ensure that the
total reward remains unchanged — this is done in the re-
wardBlock function in Algorithm 1. As argued previously,
we reward all weak headers equally by γRTs/Tw. Since
the average number of weak headers per strong block is
Tw/Ts−1, this means that the expected total reward per
block (i.e., strong block and weak header rewards) equals
cR+ cRγTs/Tw · (Tw/Ts−1). Hence, we find that

c =
1

1+ γ(Tw/Ts−1)Ts/Tw
,

5Another way to reach this conclusion is as follows: the number of
weak headers found in a fixed time interval is Poisson distributed, and it can
be shown that the number of Poisson arrivals in an interval with exponen-
tially distributed length is geometrically distributed.

6For an actual block implementation, we advice to introduce separate
spaces for weak headers and transactions. With such a design, miners do not
have incentives and trade-offs between including more transactions instead
of weak headers.

826 28th USENIX Security Symposium USENIX Association

which for large values of Tw/Ts is close to 1/(1+ γ). This
means that if γ = 1, the strong block and weak header re-
wards contribute almost equally to a miner’s total reward.

5.2 Reward Variance of Solo Mining
The tendency towards centralization in Bitcoin caused by
powerful mining pools can largely be attributed to the high
reward variance of solo mining [15, 37]. Therefore, keeping
the reward variance of a solo miner at a low level is a central
design goal.

Let RBC and RSC be the random variables representing the
per-block rewards for an α-strong solo miner in Bitcoin and
in StrongChain, respectively. For any given strong block in
both protocols, we define the random variable I as follows:

I =

{
1 the block is mined by the solo miner,
0 otherwise.

By definition, I has a Bernoulli distribution, which means
that E(I) = α and Var(I) = α(1−α), where E and Var are
the mean and variance of a random variable respectively. The
following technical lemma will aid our analysis of the reward
variances of solo miners:

Lemma 1. Let X1,X2, . . . be independent and identically dis-
tributed random variables. Let N be defined on {0,1, . . .}
and independent of X1,X2, Let N and all Xi have finite
mean and variance. Then

Var

(
N

∑
i=1

Xi

)
= E(N)Var(X)+Var(N)(E(X))2.

Proof. See [7].

Reward Variance of Solo Mining in Bitcoin. Bitcoin re-
wards the miner of a block creator with the fixed block re-
ward R and the variable (total) mining fees, which we denote
by the random variable F. Therefore, we have

RBC = I(R+F),

which implies that

Var(RBC) = R2Var(I)+Var(IF). (5)

Since IF = ∑
I
i=0 F, we can use Lemma 1 (substituting I for

N and F for X) to obtain

Var(IF) = E(I)Var(F)+Var(I)E2(F). (6)

Combining (5) and (6) gives

Var(RBC) = E(I)Var(F)+Var(I)
(
E2(F)+R2

)
= αVar(F)+α(1−α)

(
E2(F)+R2

)
.

(7)

When the fees are small compared to the mining reward, this
simplifies to α(1−α)R2. By comparison, in [37] the vari-
ance of the block rewards (without fees) earned by a solo
miner across a time period of t seconds is studied, and found
to equal αR2t/600.7 The same quantity can be obtained by
using (7), Lemma 1, and the total number of strong blocks
found (by any miner) after t seconds of mining (which has a
Poisson distribution with mean t/600).

Reward Variance of Solo Mining in StrongChain. For
RSC, we assume that the solo miner has N weak headers in-
cluded in the strong block, and that she obtains cγRTs/Tw
reward per weak header. Then the variance equals

RSC = I(cR+F)+ cγRTs/TwN,

where c is the scaling constant derived in Section 5.1.2.
Hence, by applying Lemma 1, we compute the variance of
RSC as

Var(RSC) = (cR)2Var(I)+Var(IF)

+(cγRTs/Tw)
2Var(N).

(8)

The first term, which represents the variance of the strong
block rewards, is similar to Bitcoin but multiplied by c2. If
we choose Tw/Ts = 1024 and γ = 10 (this choice is moti-
vated later in this section), c2 roughly equals 0.0083, which
is quite small. Hence, the strong block rewards have a much
smaller impact on the reward variance in our setting than in
Bitcoin. The second term, which represents the variance of
the fees, is precisely the same as for Bitcoin. The third term
represents the variance of the weak header rewards, which in
turn completely depends on Var(N).

To evaluate Var(N), we again use Lemma 1: let, for any
weak header, J equal 1 if it is found by the solo miner, and
0 otherwise. Also, let L be the total number of weak head-
ers found in the block, so including those not found by the
solo miner. Then N is the sum of L instances of J, where J
has a Bernoulli distribution with success probability α (and
therefore E(J) = α and Var(J) = α(1−α)), and L has a
geometric distribution with success probability Ts/Tw (and
therefore E(L) = Tw/Ts−1 and Var(L) = (Tw/Ts)

2−Tw/Ts.
By substituting this into (8), we obtain:

Var(N) = E(L)Var(J)+Var(L)(E(J))2

= (Tw/Ts−1)α(1−α)

+((Tw/Ts)
2−Tw/Ts)α

2

(9)

Substituting (9) for Var(N) and α(1−α) for Var(I) into (8)
then yields an expression that can be evaluated for different
values of Tw/Ts, γ , and α , as we discuss in the following.

7In particular, it is found to be htR2/(232D), where h = αη and
η/(232D)≈ 1/600.

USENIX Association 28th USENIX Security Symposium 827

10−4 10−3 10−2 10−1 100

100

101

102

α

C
o
effi

ci
en

t
of

V
ar

ia
ti

o
n

Bitcoin

Tw/Ts=2

Tw/Ts=8

Tw/Ts=64

Tw/Ts=1024

Figure 3: Coefficients of variation for the total rewards of α-strong
miners for different strong/weak header difficulty ratios (Tw/Ts = 1
corresponds to Bitcoin). The lines indicate the exact results ob-
tained using our analysis, whereas the markers indicate simulation
results. We used γ = log2(Tw/Ts). The black lines indicate that for
Tw/Ts = 1024, a 0.1%-strong miner has a coefficient of variation
that is comparable to a 9%-strong miner’s in Bitcoin.

Comparison The difference between between (7) and (8)
in practice is illustrated in Figure 3. This is done by com-
paring for a range of different values of α the block rewards’
coefficient of variation, which is the ratio of the square root
of the variance to the mean.

To empirically validate the results, we have also imple-
mented a simulator in Java that can evaluate Bitcoin as well
as StrongChain. We use two nodes, one of which controls a
share α of the hash rate, and another controls a share 1−α .
The nodes can broadcast information about blocks, although
we abstract away from most of the other network behav-
ior. We do not consider transactions (i.e., we mine empty
blocks), and we use a simplified model for the propagation
delays: delays are drawn from a Weibull distribution with
shape parameter 0.6 [31], although for Figure 3 the mean
was chosen to be negligible (more realistic values are chosen
for Table 1).

The black lines in Figure 3 demonstrate that when Tw/Ts =
1024, a miner with share 0.1% of the mining power has the
same coefficient of reward variation as a miner with stake 9%
in Bitcoin. Also note that for Tw/Ts = 1024 and α ≥ 1%, the
coefficient of variation does not substantially decrease any-
more, because nearly all of the reward variance is due to the
number of weak headers. Hence, there would be fewer rea-
sons for miners in our system to join large and cooperative
mining pools, which has a positive effect on the decentral-
ization of the system.

5.3 Chain Quality
One measure for the ‘quality’ of a blockchain is the stale
rate of blocks [16], i.e., the percentage of blocks that ap-
pear during forks and do not make it onto the main chain.
This is closely related to the notion of mining power utiliza-

tion [10], which is the fraction of mining power used for non-
stale blocks. In StrongChain, the stale rate of strong blocks
may increase due to high latency. After all, while a new
block is being propagated through the network, weak head-
ers that strengthen the previous block that are found will be
included by miners in their PoW calculation. As a result,
some miners may refuse to switch to the new block when
it arrives. However, the probability of this happening is very
low: because each weak header only contributes Ts/Tw to the
difficulty of a block, it would take on average 10 minutes to
find enough weak headers to outweigh a block. As we can
see in Table 1, the effect on the stale rate is negligible even
for very high network latencies (i.e., 53 seconds). We also
emphasize that the strong block stale rate is less important in
our setting, as the losing miner still would benefit from her
weak headers appended to the winning block.

Regarding the fairness, defined as the ratio between the
observed share of the rewards (we simulate using one 10%-
strong miner and a 90%-strong one) and the share of the min-
ing power, we see that StrongChain does slightly worse than
Bitcoin for high network latencies. The most likely cause is
that due to the delay in the network, the 10%-strong miner
keeps mining on a chain that has already been extended for
longer than necessary. This gives the miner a slight disad-
vantage compared to the 90%-strong miner.

5.4 Security

One of the main advantages of StrongChain is the added ro-
bustness to selfish mining strategies akin to those discussed
in [11] and [39]. In selfish mining, attackers aim to increase
their share of the earned rewards by tricking other nodes into
mining on top of a block that is unlikely to make it onto the
main chain, thus wasting their mining power. This may come
at a short-term cost, as the chance of the attacker’s blocks go-
ing stale is increased — however, the difficulty rescale that
occurs every 2016 blocks means that if the losses to the hon-
est nodes are structural, the difficulty will go down and the
gains of the attacker will increase.

In the following, we will consider the selfish mining strat-
egy of [11],8 described as follows:
• The attacker does not propagate a newly found block until

she finds at least a second block on top of it, and then only
if the difference in difficulty between her chain and the
strongest known alternative chain is between zero and R.

• The attacker adopts the strongest known alternative chain
if its difficulty is at least greater than her own by R.

8The ‘stubborn mining’ strategy of [39] offers mild improvements over
[11] for powerful miners, but the comparison with StrongChain is similar.
We have also modeled StrongChain using a Markov decision process, in
a way that is similar to the recently proposed framework of [51]. Due to
the state space explosion problem, we could only investigate the protocol
with a small number of expected weak headers, but we have not found any
strategies noticeably that are better than those presented.

828 28th USENIX Security Symposium USENIX Association

Latency Bitcoin

StrongChain
Tw/Ts = 2 Tw/Ts = 64 Tw/Ts = 1024

γ = 1 γ = 1 γ = 7 γ = 63 γ = 1 γ = 10 γ = 1023

low .0023 .0025 .0021 .0026 .0028 .0023 .0025 .0019
strong stale rate medium .0073 .0082 .0087 .0077 .0078 .0084 .0067 .0081

high .0243 .0297 .0242 .0263 .0247 .0274 .0249 .0263

low — .0043 .0047 .0049 .0046 .0049 .0047 .0047
weak stale rate medium — .0142 .0151 .0154 .0149 .0145 .0147 .0149

high — .0400 .0459 .0474 .0452 .0469 .0455 .0463

low .9966 .9814 .9749 .9747 .9838 .9645 .9809 .9812
fairness medium .9276 .9384 .9570 .9360 .9364 .9329 .9400 .9385

high .7951 .7640 .7978 .7820 .7757 .7756 .7766 .7775

Table 1: For several different protocols, the strong block stale rate, weak header rate, and the ‘fairness’ for an α-strong honest miner with
α = 0.1. Here, fairness is defined as the ratio between the observed share of the reward and the ‘fair’ share of the rewards (i.e, 0.1). ’Low’,
’medium’, and ’high’ latencies refer to the mean of the delay distribution in the simulator; these are roughly 0.53 seconds, 5.3 seconds, and
53 seconds respectively. The simulations are based on a time period corresponding to roughly 20 000 blocks.

In Figure 4a, we have depicted the profitability of this self-
ish mining strategy for different choices of Tw/Ts. As we
can see, for Tw/Ts = 1024 the probability of being ‘ahead’
after two strong blocks is so low that the strategy only be-
gins to pay off when the attackers’ mining power share is
close to 45% — this is an improvement over Bitcoin, where
the threshold is closer to 33%.

StrongChain does introduce new adversarial strategies
based on the mining of new weak headers. Some exam-
ples include not broadcasting any newly found weak blocks
(“reclusive” mining), refusing to include the weak headers
of other miners (“spiteful” mining), and postponing the pub-
lication of a new strong block and wasting the weak headers
found by other miners in the meantime. In the former case,
the attacker risks losing their weak blocks, whereas in both of
the latter two cases, the attacker risks their strong block go-
ing stale as other blocks and weak headers are found. Hence,
these are not cost-free strategies. Furthermore, because the
number of weak headers does not affect the difficulty rescale,
the attacker’s motive for increasing the stale rate of other
miners’ weak headers is less obvious (although in the long
run, an adversarial miner could push other miners out of the
market entirely, thus affecting the difficulty rescale).

In Figure 4b, we have displayed the relative payout (with
respect to the total rewards) of a reclusive α-strong miner —
this strategy does not pay for any α < 0.5. In Figure 4c, we
have depicted the relative payoff of a spiteful mine who does
not include other miners’ weak blocks unless necessary (i.e.,
unless others’ weak blocks together contribute more than R
to the difficulty, which would mean that any single block
found by the spiteful miner would always go stale). For low
latencies (the graphs were generated with an average latency
of 0.53 seconds), the strategy is almost risk-free, and the at-
tacker does manage to hurt other miners more than herself,
leading to an increased relative payout. However, as dis-
played in Figure 4d, there are no absolute gains, even mild

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

α

R
el

a
ti

ve
p

ay
off

of
se

lfi
sh

m
in

er Bitcoin

Tw/Ts=2

Tw/Ts=8

Tw/Ts=64

Tw/Ts=1024
Honest

(a)

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

α

R
el

a
ti

ve
p

ay
off

of
re

cl
u

si
ve

m
in

er Bitcoin

Tw/Ts=2

Tw/Ts=8

Tw/Ts=64

Tw/Ts=1024
Honest

(b)

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

α

R
el

a
ti

ve
p

ay
off

of
sp

it
ef

u
l

m
in

er Bitcoin

Tw/Ts=2

Tw/Ts=8

Tw/Ts=64

Tw/Ts=1024
Honest

(c)

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

α

A
b

so
lu

te
p

ay
off

of
sp

it
ef

u
l

m
in

er Bitcoin

Tw/Ts=2

Tw/Ts=8

Tw/Ts=64

Tw/Ts=1024
Honest

(d)

Figure 4: Payoffs of an α-strong adversarial miner for different
strategies. Figure (a): relative payoff of a selfish miner following
the strategy of [11], compared to an (1−α)-strong honest miner.
Figure (b): relative payoff of a reclusive miner who does not broad-
cast her weak blocks. Figure (c): relative payoff (with respect to
the rewards of all miners combined) of a spiteful miner, who does
not include other miners’ weak blocks unless necessary. Figure
(d): absolute payoff of a spiteful miner, with 12.5 BTC on aver-
age awarded per block. We consider Bitcoin and StrongChain with
different choices of Tw/Ts, with γ = log2(Tw/Ts).

losses. As mentioned earlier, the weak headers do not af-
fect the difficulty rescale so there is no short-term incentive
to engage in this behavior — additionally there is little gain
in computational overhead as the attacker still needs to pro-
cess her own weak headers. In Section 6.1 we will discuss
protocol updates that can mitigate these strategies regardless.

USENIX Association 28th USENIX Security Symposium 829

0 0.1 0.2 0.3 0.4 0.5
2,000

4,000

6,000

8,000

α

D
ev
ia
ti
o
n
fr
o
m

th
e
cu

rr
en
t
ti
m
e
(s
)

Bitcoin

Tw/Ts=2

Tw/Ts=8

Tw/Ts=64

Tw/Ts=1024

(a)

0 0.1 0.2 0.3 0.4 0.5
2,000

4,000

6,000

8,000

α

D
ev
ia
ti
on

fr
om

th
e
cu
rr
en
t
ti
m
e
(s
)

(b)

Figure 5: The deviation from the network time that an α-strong
adversary can introduce for its mined blocks by slowing (the left
graph) and accelerating (the right graph) timestamps.

5.5 More Reliable Timestamps

Finally, we conducted a series of simulations to investigate
how the introduced redefinition of timestamps interpretation
(see getTimestamp() in Algorithm 1 and Section 4.5) influ-
ences the timestamp reliability in an adversarial setting. We
assume that an adversary wants to deviate blockchain times-
tamps by as much as possible. There are two strategies for
such an attack, i.e., an adversary can either “slow down”
timestamps or “accelerate” them. In the former attack, the
best adversary’s strategy is to use the minimum acceptable
timestamp in every header created by the adversary. Namely,
the adversary sets its timestamps to the median value of the
last eleven blocks (a header with a lower timestamp would
not be accepted by the network – see Section 2.2). As for the
latter attack, the adversary can analogously bias timestamps
towards the future by putting the maximum acceptable value
in all her created headers. The maximum timestamp value
accepted by network nodes is two hours in the future with re-
spect to the nodes’ internal clocks (any header with a higher
timestamp would be rejected).

In our study, we assume that honest nodes maintain the
network time which the adversary tries to deviate from. We
consider the worst-case scenario, which is when the adver-
sary, who also biases all her header timestamps, mines the
strong block. We measure (over 10000 runs) how such a
malicious timestamp can be mitigated by our redefinition of
the block timestamps interpretation. We present the obtained
results in Figure 5, and as shown in the slow-down case
our protocol achieves much more precise timestamps than
Bitcoin (the difference is around 2000 seconds). Similarly,
when the adversary accelerates timestamps, our protocol can
mitigate it effectively, adjusting the adversarial timestamps
by 2000-3500 seconds towards the correct time. This ef-
fect is achieved due to the block’s timestamp calculation as a
weighted average of all block headers. The adversary could
try to remove honest participants’ weak headers in order to
give a stronger weight to its malicious timestamps, but in
Section 6.1 we discuss ways to mitigate it.

6 Discussion

6.1 Impact of the Parameter Choice

The results presented in Section 5 required several parame-
ters to be fixed. First of all, we had to choose γ , which de-
termines the relative contribution of the weak headers to the
total mining rewards. Second, there is the contribution of the
weak blocks to the chain difficulty, which in the chainPoW()
function in Algorithm 1 was set to be only Tmax/Tw. This
means that the PoW of a weak header relative to a strong
block’s PoW — we call this the difficulty factor — is fixed
to be Ts/Tw. In the following, we first discuss the relevant
trade-offs and then motivate our choice.

When both γ and the difficulty factor are low, the impact
on the reward variance of the miners (as per Figure 3) will be
mild as the strong block rewards still constitute about 50%
of the mining rewards. This reliance on the block rewards
also means that ‘spiteful’ mining as discussed in Section 5.4
is disincentivized as the risk of strong blocks going stale still
has a considerable impact on total rewards. However, selfish
mining as proposed in [11] relies on several blocks in a row
being mined in secret, and even for a low difficulty factor it
becomes much harder for the attacker’s chain to stay ‘ahead’
of the honest chain, as the latter accumulates strength from
the weak headers at a faster rate. Hence, in this setting we
only gain protection against selfish mining.

When γ is high but the difficulty factor is not (which is
the setting of Section 5), then in addition to disincentivizing
selfish mining, the reward variances become much less de-
pendent on the irregular strong block rewards. This benefits
small miners and reduces centralization, as we also discuss
in Section 6.2. However, spiteful mining will have more of
an impact as the possible downside (i.e., a latency-dependent
increase in the strong block stale rate) will have less of an ef-
fect on the total rewards.

When both γ and the difficulty factor are high, the impact
of spiteful mining is mitigated. The reason is that blocks
quickly accumulate enough weak headers to outweigh a
strong block, and in this case spiteful miners need to adopt
the other weak blocks or risk their strong block becoming
stale with certainty. The downside in this setting is that the
system-wide block stale rate is increased. For example, if
each weak header contributes γTs/Tw to the difficulty and
γ = 10, then after (on average) one minute enough weak
headers are found to outweigh a strong block, and if prop-
agation of the block takes longer than one minute then some
miners will not adopt the block, increasing the likelihood of
a fork.

In this paper, we have chosen the second of the three ap-
proaches — a moderately high γ , yet a minor difficulty fac-
tor. The reason is that the only downside (spiteful mining)
was considered less of a concern than the other downsides
(namely a low impact on reward variances and a higher block

830 28th USENIX Security Symposium USENIX Association

stale rate respectively) for two reasons: a) because spiteful
mining does not lead to clear gains for the attacker, and b)
because it only has a large impact on other miners’ profits
if the attacker controls a large share of the mining power,
whereas the emergence of large mining pools is exactly what
StrongChain discourages. The specific value of γ = 10 for
Tw/Ts = 1024 (or γ = log2(Tw/Ts) in general) was chosen
to sufficiently reduce mining reward variances, yet leaving
some incentive to discourage spiteful mining.

The protocol can be further extended to disincentivize
spiteful mining, e.g., by additionally awarding strong block
finders a reward that is proportional to the number of weak
headers included. This would make StrongChain more simi-
lar to Ethereum, where stale block (‘uncle’) rewards are paid
both to the miner of a stale block and the miner of the suc-
cessful block that included it (see Section 8 for additional
discussion of Ethereum’s protocol). However, we leave such
modifications and their consequences as future work.

6.2 StrongChain and Centralized Mining

Decentralized mining pools aim to reduce variance while
providing benefits for the system (i.e., trust minimization for
pools, and a higher number of validating nodes). However,
mining in Bitcoin is in fact dominated by centralized mining
pools whose value proposition, over decentralized pools, is
an easy setup and participation. Therefore, rational miners
motivated by their own benefit, instead of joining decentral-
ized pools prefer centralized “plug-and-play” mining. It is
still debatable whether centralized mining pools are benefi-
cial or harmful to the system. However, it has been proved
multiple times, that the concentration of significant comput-
ing power caused by centralized mining is risky and should
be avoided, as such a strong pool has multiple ways of mis-
behaving and becomes a single point of failure in the system.
One example is the pool GHash.IO, which in 2014 achieved
more than 51% of the mining power. This undermined trust
in the Bitcoin network to the extent that the pool was forced
to actively ask miners to join other pools [12].

In order to follow incentives of rational miners,
StrongChain does not require any radical changes from them
and is compatible with centralized mining pools; however, it
is specifically designed to mitigate their main security risk
(i.e., power centralization). In StrongChain such pools could
be much smaller than in Bitcoin (due to minimized vari-
ance) and to support this argument we conducted a study.
We listed the largest Bitcoin mining pools and their shares
in the global mining power (according to https://www.

blockchain.com/en/pools as for the time of writing).
Then for each pool, we calculated what would be the pool
size in StrongChain to offer the miner the same payout vari-
ance experience, and the variance reduction factor in that
case. As shown in Table 2, for the Bitcoin largest min-
ing pool with 18.1% of the global hash rate, an equivalent

Mining Pool Pool Size Size
Bitcoin StrongChain Reduction

BTC.com 18.1% 0.245% 74×
F2Pool 14.1% 0.172% 82×
AntPool 11.7% 0.135% 87×
SlushPool 9.1% 0.099% 92×
ViaBTC 7.5% 0.079% 95×
BTC.TOP 7.1% 0.074% 96×
BitClub 3.1% 0.030% 103×
DPOOL 2.6% 0.025% 104×
Bitcoin.com 1.9% 0.018% 106×
BitFury 1.7% 0.016% 106×

Table 2: Largest Bitcoin mining pools and the corresponding pool
sizes in StrongChain offering the same relative reward variance
(Tw/Ts = 1024 and γ = 10).

pool in StrongChain (to provide miners the same reward ex-
perience) could be as small as 0.245% of the hash rate –
around 74 times smaller. Even better reduction factors are
achieved for smaller pools. Therefore, our study indicates
that StrongChain makes the size of a pool almost an irrel-
evant factor for miners’ benefits (i.e., there is no objective
advantage of joining a large pool over a medium or a small
one). Therefore we envision that with StrongChain, central-
ized mining pools will naturally be much more distributed.

Limitations

As discussed, it is beneficial for the system if as many par-
ticipants as possible independently run full nodes; however,
miners join large centralized pools not only due to high re-
ward variance. Other potential reasons include the minimiza-
tion of operational expenses as running a full node is a large
overhead, higher efficiency since large pools may use high-
performance hardware and network, better ability to earn ex-
tra income from merge mining [29], better protection against
various attacks, anonymity benefits, etc. This work focuses
on removing the reward variance reason. Although we be-
lieve that StrongChain would produce a larger number of
small pools in a natural way, it does not eliminate the other
reasons, so some large centralized pools may still remain.
Luckily, our system is orthogonal to multiple concurrent so-
lutions. For instance, StrongChain could be easily combined
with non-outsourceable puzzle schemes (see Section 8) to in-
crease the number of full nodes by explicitly disincentivizing
miners from outsourcing their computing power. We leave
such a combination as interesting future work.

7 Realization in Practice

We implemented our system in order to investigate its feasi-
bility and confirm the stated properties. We implemented a
StrongChain full node with interactive client in Python, and

USENIX Association 28th USENIX Security Symposium 831

https://www.blockchain.com/en/pools
https://www.blockchain.com/en/pools

our implementation includes the complete logic from Algo-
rithm 1 and all functionalities required to have a fully opera-
tional system (communication modules, message types, val-
idation logic, etc...).9 As described before, the main changes
in our implementation to the Bitcoin’s block layout are:

• a new (20B-long) Coinbase header field,
• a new binding transaction protecting all weak headers

of the block,
• removed original coinbase transaction,

where a binding transaction has a single (32B-long) output
as presented in Equation 3.10

Weak headers introduced by our system impact the band-
width and storage overhead (when compared with Bitcoin).
Due to compressing them (see Section 4.2), the size of a sin-
gle weak header in a block is 60B. For example, with an
average number of weak headers equal 1024, the storage and
bandwidth overhead increases by about 61.5KB per block
(e.g., with 64 weak headers, the overhead is only 3.8KB).
Taking into account the average Bitcoin block size of about
1MB (the average between 15 Oct and 15 Nov 201811),
1024 weak headers constitute around 6.1% of today’s blocks,
while 64 headers only 0.4%. The same overhead is intro-
duced to SPV clients, that besides a strong header need to
obtain weak headers and a proof for their corresponding
binding transaction. Thus, an SPV update (every 10 min-
utes) would be 61.5KB or 3.8KB on average for 1024 or
64 weak headers, respectively. However, since only strong
headers authenticate transactions, SPV clients do not need
to store weak headers and after they are validated, they can
remove them (they need to just calculate and associate their
aggregated PoW with the strong header). Such an approach
would not introduce any noticeable storage overhead on SPV
clients.

Nodes validate all incoming weak headers; however, this
overhead is a single hash computation and simple sanity
checks per header. Even with our unoptimized implemen-
tation running on a commodity PC the total validation of
a single weak header takes around 50µs on average (i.e.,
51ms per 1024 headers on a single core). Given that we do
not believe this overhead can lead to more serious denial-of-
service attacks than ones already known and existing in Bit-
coin (e.g., spamming with large invalid blocks). Addition-
ally, StrongChain can adopt prevention techniques present in
Bitcoin, like blacklisting misbehaving peers.

9Our implementation is available at https://github.com/ivan-

homoliak-sutd/strongchain-demo/.
10An alternative choice is to store a hash of weak headers in a header

itself. Although simpler, that option would incur a higher overhead if the
number of weak headers is greater than several.

11https://www.blockchain.com/en/charts/avg-block-size

8 Related work

Employing weak solutions (and their variations) in Bitcoin is
an idea [36,38] circulating on Bitcoin forums for many years.
Initial proposals leverage weak solutions (i.e., weak blocks)
for faster transaction confirmations [45,46], for signaling the
current working branch of particular miners [13,14,30]. Un-
fortunately, most of these proposals come without necessary
details or lack rigorous analysis. Below, we discuss the most
related attempts that have been made to utilize weak or stale
blocks in PoW-based decentralized consensus protocols. We
compare these systems in Table 3 according to their reward
and PoW calculation schemes.
Subchains. Rizun proposes Subchains [35], where a chain
of weak blocks (a so-called subchain) bridging each pair of
subsequent strong blocks is created. The design of Subchain
puts a special focus on increasing the transaction through-
put and the double-spend security for unconfirmed transac-
tions. Rizun argues that since the (weak) block interval of
subchains is much smaller than the strong block interval, it
allows for faster (weak) transaction confirmations. Another
claimed advantage of such an approach is that during the
process of building subchains, the miners can detect forks
earlier, and take actions accordingly to avoid wasting com-
putational power. However, the design of Subchain sidesteps
a concrete security analysis at the subchain level. In detail,
by using a chaining data structure where one weak header
referencing the previous weak header in a subchain, it intro-
duces high stale rate on a subchain. More importantly, due
to applying a Bitcoin-like subchain selection policy in case
of conflicts, this approach is vulnerable to the selfish mining
attack launched on a subchain.
Flux. Based on similar ideas as Subchain, Zamyatin et al.
propose Flux [49]. In contrast to Subchain, Flux shares re-
wards (from newly minted coins and transaction fees) evenly
among the finders of weak and strong blocks according to
the computational resources they invested. This approach
reduces the reward variance of miners, and therefore miti-
gates the need for large mining pools, which is beneficial for
the system’s decentralization. In addition, simulation exper-
iments show that Flux renders selfish mining on the main
chain less profitable. However, alike Subchains, Flux em-
ploys a chain structure for weak blocks, which inevitably in-
troduces race conditions, increasing the stale rate of weak
blocks and making it more susceptible to selfish mining at-
tacks at the subchain level. The designers of Flux let both
of these issues open and discuss the potential application of
GHOST [41] to subchains. Another limitation of this work
is that the authors do not analyze the requirements on space
consumption when putting possibly a high number of over-
lapping transactions into Flux subchains, which could nega-
tively influence network, storage, and processing resources.
Remarks on Subchain and Flux. One important difference
between our approach and the above two designs is that we

832 28th USENIX Security Symposium USENIX Association

https://github.com/ivan-homoliak-sutd/strongchain-demo/
https://github.com/ivan-homoliak-sutd/strongchain-demo/
https://www.blockchain.com/en/charts/avg-block-size

Bitcoin v0.1 Bitcoin Fruitchains Flux StrongChain

Reward (strong) R+F R+F 0 (R+F)/(E +1) cR+F
Reward (weak) 0 0 (R+F)/E (R+F)/(E +1) cγRTs/Tw

Chain weight contrib. (strong) 1 Tmax/Ts Tmax/Ts Tmax/Ts Tmax/Ts
Chain weight contrib. (weak) 0 0 0 0 Tmax/Tw

Table 3: The comparison of reward and PoW computation schemes of StrongChain and the related systems. (F : block transaction fees, E:
expected number of weak headers per block. The entries for Flux are approximations for the PPLNS scheme in P2Pool, on which it is based.)

adopt a flat hierarchy for the weak blocks, which not only
eliminates the possibility of selfish mining in a set of weak
solutions, but also avoids the issue of stale rate of weak
blocks. In contrast, both Subchain and Flux employ a chain
structure for weak blocks, inevitably making them more sus-
ceptible to selfish mining attacks at the subchain level. More-
over, in our approach rewards are not shared, therefore min-
ers can only benefit from appending received weak solutions.
In addition, none of Subchain and Flux provide a concrete
implementation demonstrating their applicability.
FruitChains. Another approach to address the mining vari-
ance and selfish mining issues is the FruitChains protocol
proposed by Pass and Shi [32]. In FruitChains, instead of di-
rectly storing the records inside blocks, the records or trans-
actions are put inside “fruits” with relatively low mining dif-
ficulties. Fruits then are appended to a blockchain via blocks
which are mined with a higher difficulty. Mined fruits and
blocks yield rewards, hence, miners can be paid more often
and there is no need to form a mining pool.

However, some practical and technical details of
FruitChains lead to undesired side effects. First, the scheme
allows fruits with small difficulties to be announced and ac-
cepted by other miners. With too small difficulty it could
render high transmission overheads or even potential denial-
of-service attacks and its effects on the network are not in-
vestigated. On the other hand, too high fruit difficulty could
result in a low transaction throughput and a high reward vari-
ance. Second, duplicate fruits are discarded, even though
they might be found by different miners – this naturally im-
plies some stale fruit rate (uninvestigated in the paper). Sim-
ilarly, it is unclear would a block finder have an incentive
to treat all fruits equally and to not prioritize her mined
fruits (especially when fruits are associated with transac-
tion fees). Moreover, fruits that are not appended to the
blockchain quickly enough have to be mined and broadcast
again, rendering additional overheads. Finally, the descrip-
tion of FruitChains lacks important details (e.g., the size of
the fruits or the overheads introduced) as well as an actual
implementation.
GHOST and Ethereum. An alternative approach for de-
creasing a high reward variance of miners is to shorten the
block creation rate to the extent that does not hurt the over-
all system security – such an approach increases transac-
tion throughput as well. The Greedy Heaviest-Observed
Sub-Tree (GHOST) chain selection rule [41] makes use of

stale blocks to increase the weight of their ancestors, which
achieves a 600 fold speedup for the block generation com-
pared to Bitcoin, while preserving its security strength. De-
spite the inclusion of stale blocks in the blockchain, only the
miners of the main chain get rewards for the inclusion of the
stale blocks.

In contrast to the original GHOST, the white and yellow
papers of Ethereum [44, 48] propose to reward also miners
of stale blocks in order to further increase the security –
not wasting with the consumed resources for mining of stale
blocks. However, Ritz and Zugenmaier shows that rewarding
so called “uncle blocks” lowers the threshold at which self-
ish mining is profitable [34] – a selfish miner can built-up
the “heaviest” chain, as she can reference blocks previously
not broadcast to the honest network. Likewise, the inclu-
sive blockchain protocol [20], which increases the transac-
tion throughput, but leaves the selfish mining issue unsolved.
DAG-based Protocols. SPECTRE [40] is an example of
the protocols family that leverages a directed acyclic graph
(DAG). This family proposed more radical design changes
motivated by the observation that one essential through-
put limitation of Nakamoto consensus is the data struc-
ture leveraged which can be maintained only sequentially.
SPECTRE generalizes the Nakamoto’s blockchain into a
DAG of blocks, while allowing miners to add blocks con-
currently with a high frequency, just basing on their indi-
vidual current views of the DAG. Such a design provides
multiple advantages over chain-based protocols including
StrongChain. Frequently published blocks increase transac-
tion throughput and provide fast confirmation times while
relaxed consistency requirements allow to tolerate propaga-
tion delays. Like StrongChain, SPECTRE also aims to de-
crease mining reward variance, but achieves it again via fre-
quent blocks. However, frequent blocks have a side effect of
transaction redundancy which negatively impacts the stor-
age and transmission overheads, and this aspect was not in-
vestigated. Moreover, SPECTRE provides a weaker prop-
erty than chain-based consensus protocols as simultaneously
added transactions cannot be ordered. This and schemes fol-
lowing a similar design are payments oriented and to support
order-specific applications, like smart contracts, they need to
be enhanced with an additional ordering logic.

More recently, Sompolinsky and Zohar [42] proposed two
DAG-based protocols improving the prior work. PHAN-
TOM introduces and uses a greedy algorithm (called the

USENIX Association 28th USENIX Security Symposium 833

GHOSTDAG protocol) to determine the order of transac-
tions. This eliminates the applicability issues of SPECTRE,
but for the cost of slowing down transaction confirmation
times. Combining advantages of PHANTOM and SPECTRE
into a full system was left by the authors as a future work.
Decentralization-oriented Schemes. Mining decentraliza-
tion was a goal of multiple previous proposals. One direc-
tion is to design mining such that miners do not have incen-
tive to outsource resources or forming coalitions. Perma-
coin [25] is an early attempt to achieve it where miners in-
stead of proving their work prove that their store (fragments
of) a globally-agreed file. Permacoin is designed such that:
a) payment private keys are bound to puzzle solutions – out-
sourcing private keys is risky for miners, b) sequential and
random storage access is critical for the mining efficiency,
thus it disincentives miners from outsourcing data. If the file
is valuable, then a side-effect of Permacoin is its usefulness,
as miners replicate the file.

The notion of non-outsourceable mining was further ex-
tended and other schemes were proposed [26, 50]. Miller
et al. [26] introduces “strongly non-outsourceable puzzles”
that aim to disincentivize pool creation by requiring all pool
participants to remain honest. In short, with these puz-
zles any pool participant can steal the pool reward without
revealing its identity. The scheme relies on zero knowl-
edge proofs requiring a trusted setup and introducing sig-
nificant computational overheads. The scheme is orthogo-
nal to StrongChain and could be integrated with easily inte-
grated with StrongChain, however, after a few years of their
introduction no system of this class was actually deployed at
scale; thus, we do not have any empirical results confirming
their promised benefits.

SmartPool is a different approach that was proposed by
Luu et al. [23]. In SmartPool, the functionality of mining
pools was implemented as a smart contract. Such an ap-
proach runs natively only on smart-contract platforms but it
allows to eliminate actual mining pools and their managers
(note that SmartPool still imposes fees for running smart
contracts), while preserving most benefits of pool mining.
Rewarding Schemes for Mining Pools. Mining pools di-
vide the block reward (together with the transaction fees) in
such a way that each miner joining the pool is paid his fair
share in proportion to his contribution. Typically, the con-
tribution of an individual miner in the pool is witnessed by
showing weak solutions called shares.

There are various rewarding schemes that mining pools
employ. The simplest and most natural method is the propor-
tional scheme where the reward of a strong block is divided
in proportion to the numbers of shares submitted by the min-
ers. However, this scheme leads to pool hopping attacks [33].
To avoid this security issue, many other rewarding systems
are developed, including the Pay-per-last-N-shares (PPLNS)
scheme and its variants. We refer the reader to [37] for a
systematic analysis of different pool rewarding systems.

The reward mechanisms in StrongChain can be seen con-
ceptually as a mining pool built-in into the protocol. How-
ever, there are important differences between our design
and the mining pools. The most contrasting one is that in
StrongChain rewarding is not a zero-sum game and miners
do not share rewards. In mining pools, all rewards are shared
and this characteristic causes multiple in- and cross-pool at-
tacks that cannot be launched against our scheme. Further-
more, the miner collaboration within Bitcoin mining pools
is a “necessary evil”, while in StrongChain the collaboration
is beneficial for miners and the overall system. We discuss
StrongChain and mining pools further in Section 6.2.

9 Conclusions

In this paper, we proposed a transparent and collaborative
proof-of-work protocol. Our approach is based on Nakamoto
consensus and Bitcoin, however, we modified their core de-
signs. In particular, in contrast to them, we take advantage
of weak solutions, which although they do not finalize a
block creation positively contribute to the blockchain proper-
ties. We also proposed a rewarding scheme such that miners
can benefit from exchanging and appending weak solutions.
These modifications lead to a more secure, fair, and efficient
system. Surprisingly, we show that our approach helps with
seemingly unrelated issues like the freshness property. Fi-
nally, our implementation indicates the efficiency and de-
ployability of our approach.

Incentives-oriented analysis of consensus protocols is a
relatively new topic and in the future we would like to extend
our work by modeling our protocol with novel frameworks
and tools. Another topic worth investigating in future is how
to combine StrongChain with systems solving other draw-
backs of Nakamoto consensus [10, 19, 21], or how to mimic
the protocol in the proof-of-stake setting.

Acknowledgment

We thank the anonymous reviewers and our shepherd Joseph
Bonneau for their valuable comments and suggestions.

This work was supported in part by the National Research
Foundation (NRF), Prime Minister’s Office, Singapore, un-
der its National Cybersecurity R&D Programme (Award No.
NRF2016NCR-NCR002-028) and administered by the Na-
tional Cybersecurity R&D Directorate, and by ST Elec-
tronics and NRF under Corporate Laboratory @ University
Scheme (Programme Title: STEE Infosec - SUTD Corporate
Laboratory).

References

[1] L. Bahack. Theoretical Bitcoin attacks with less than
half of the computational power (draft). arXiv preprint

834 28th USENIX Security Symposium USENIX Association

arXiv:1312.7013, 2013.

[2] D. Bayer, S. Haber, and W. S. Stornetta. Improving the
efficiency and reliability of digital time-stamping. In
Sequences II. Springer, 1993.

[3] A. Boverman. Timejacking & Bitcoin.
https://culubas.blogspot.sg/2011/05/

timejacking-bitcoin_802.html, 2011.

[4] M. Carlsten, H. A. Kalodner, S. M. Weinberg, and
A. Narayanan. On the instability of Bitcoin without
the block reward. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communica-
tions Security, 2016.

[5] N. T. Courtois and L. Bahack. On subversive miner
strategies and block withholding attack in Bitcoin digi-
tal currency. arXiv preprint arXiv:1402.1718, 2014.

[6] J. R. Douceur. The Sybil attack. In International work-
shop on peer-to-peer systems. Springer, 2002.

[7] S. Dunbar. Random sums of random vari-
ables. http://www.math.unl.edu/~sdunbar1/

ProbabilityTheory/Lessons/Conditionals/

RandomSums/randsum.shtml.

[8] C. Dwork and M. Naor. Pricing via processing or com-
batting junk mail. In Annual International Cryptology
Conference. Springer, 1992.

[9] I. Eyal. The miner’s dilemma. In 2015 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2015.

[10] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse.
Bitcoin-NG: A scalable blockchain protocol. In Pro-
ceedings of NSDI, 2016.

[11] I. Eyal and E. G. Sirer. Majority is not enough: Bit-
coin mining is vulnerable. In International conference
on financial cryptography and data security. Springer,
2014.

[12] C. Farivar. Bitcoin pool GHash.io commits
to 40% hashrate limit after its 51% breach.
https://arstechnica.com/information-

technology/2014/07/bitcoin-pool-ghash-io-

commits-to-40-hashrate-limit-after-its-

51-breach/, 2014.

[13] Gavin Andresen. Faster blocks vs bigger blocks.
https://bitcointalk.org/index.php?topic=

673415.msg7658481#msg7658481, 2014.

[14] Gavin Andresen. Weak block thoughts. https:

//lists.linuxfoundation.org/pipermail/

bitcoin-dev/2015-September/011157.html,
2015.

[15] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and
E. G. Sirer. Decentralization in Bitcoin and Ethereum
networks. arXiv preprint arXiv:1801.03998, 2018.

[16] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis,
H. Ritzdorf, and S. Capkun. On the security and perfor-
mance of proof of work blockchains. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016.

[17] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun.
Tampering with the delivery of blocks and transactions
in Bitcoin. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity. ACM, 2015.

[18] G. O. Karame, E. Androulaki, and S. Capkun. Double-
spending fast payments in Bitcoin. In Proceedings of
the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012.

[19] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi,
L. Gasser, and B. Ford. Enhancing bitcoin security
and performance with strong consistency via collec-
tive signing. In 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[20] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive
block chain protocols. In International Conference on
Financial Cryptography and Data Security. Springer,
2015.

[21] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena. A secure sharding protocol for open
blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Secu-
rity. ACM, 2016.

[22] L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and
A. Hobor. On power splitting games in distributed com-
putation: The case of Bitcoin pooled mining. In Com-
puter Security Foundations Symposium (CSF), 2015
IEEE 28th. IEEE, 2015.

[23] L. Luu, Y. Velner, J. Teutsch, and P. Saxena. Smartpool:
Practical decentralized pooled mining. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX
Association, 2017.

[24] R. C. Merkle. A digital signature based on a conven-
tional encryption function. In Proceedings of Advances
in Cryptology, 1988.

[25] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Per-
macoin: Repurposing Bitcoin work for data preserva-
tion. In 2014 IEEE Symposium on Security and Privacy
(SP). IEEE, 2014.

USENIX Association 28th USENIX Security Symposium 835

https://culubas.blogspot.sg/2011/05/timejacking-bitcoin_802.html
https://culubas.blogspot.sg/2011/05/timejacking-bitcoin_802.html
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/Conditionals/RandomSums/randsum.shtml
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/Conditionals/RandomSums/randsum.shtml
http://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/Conditionals/RandomSums/randsum.shtml
https://arstechnica.com/information-technology/2014/07/bitcoin-pool-ghash-io-commits-to-40-hashrate-limit-after-its-51-breach/
https://arstechnica.com/information-technology/2014/07/bitcoin-pool-ghash-io-commits-to-40-hashrate-limit-after-its-51-breach/
https://arstechnica.com/information-technology/2014/07/bitcoin-pool-ghash-io-commits-to-40-hashrate-limit-after-its-51-breach/
https://arstechnica.com/information-technology/2014/07/bitcoin-pool-ghash-io-commits-to-40-hashrate-limit-after-its-51-breach/
https://bitcointalk.org/index.php?topic=673415.msg7658481#msg7658481
https://bitcointalk.org/index.php?topic=673415.msg7658481#msg7658481
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011157.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011157.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-September/011157.html

[26] A. Miller, A. Kosba, J. Katz, and E. Shi. Nonoutsource-
able scratch-off puzzles to discourage Bitcoin mining
coalitions. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity. ACM, 2015.

[27] M. Möser and R. Böhme. Trends, tips, tolls: A longi-
tudinal study of bitcoin transaction fees. In Financial
Cryptography Workshops, 2015.

[28] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008.

[29] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and
S. Goldfeder. Bitcoin and cryptocurrency technologies:
A comprehensive introduction. Princeton University
Press, 2016.

[30] T. Nolan. Distributing low POW headers. https:

//lists.linuxfoundation.org/pipermail/

bitcoin-dev/2013-July/002976.html, 2013.

[31] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and
C. Diot. Measurement and analysis of single-hop delay
on an IP backbone network. IEEE Journal on Selected
Areas in Communications, 21(6), 2003.

[32] R. Pass and E. Shi. Fruitchains: A fair blockchain. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing. ACM, 2017.

[33] Raulo. Optimal pool abuse strategy. http://

bitcoin.atspace.com/poolcheating.pdf, 2011.

[34] F. Ritz and A. Zugenmaier. The impact of uncle re-
wards on selfish mining in Ethereum. arXiv preprint
arXiv:1805.08832, 2018.

[35] P. R. Rizun. Subchains: A technique to scale Bitcoin
and improve the user experience. Ledger, 1, 2016.

[36] K. Rosenbaum. Weak Blocks – The Good And The
Bad. http://popeller.io/index.php/2016/01/

19/weak-blocks-the-good-and-the-bad/, 2016.

[37] M. Rosenfeld. Analysis of Bitcoin pooled mining re-
ward systems. arXiv preprint arXiv:1112.4980, 2011.

[38] R. Russell. Weak block simulator for Bit-
coin. https://bitcointalk.org/index.php?

topic=179598.0, 2017.

[39] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal
selfish mining strategies in Bitcoin. In International
Conference on Financial Cryptography and Data Se-
curity. Springer, 2016.

[40] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPEC-
TRE: Serialization of proof-of-work events: confirm-
ing transactions via recursive elections, 2016.

[41] Y. Sompolinsky and A. Zohar. Accelerating Bitcoin’s
transaction processing. Fast Money Grows on Trees,
Not Chains, 2013.

[42] Y. Sompolinsky and A. Zohar. PHANTOM,
GHOSTDAG: Two scalable BlockDAG protocols.
Cryptology ePrint Archive, Report 2018/104, 2018.
https://eprint.iacr.org/2018/104.

[43] P. Szalachowski. (short paper) towards more reliable
Bitcoin timestamps. In Proceedings of the Crypto Val-
ley Conference on Blockchain Technology (CVCBT),
2018.

[44] E. team. A Next-Generation Smart Contract and
Decentralized Application Platform. https:

//github.com/ethereum/wiki/wiki/White-

Paper#modified-ghost-implementation, 2018.

[45] TierNolan (Pseudonymous). Decoupling Transactions
and PoW. https://bitcointalk.org/index.

php?topic=179598.0, 2013.

[46] P. Todd. Near-block broadcasts for proof of tx
propagation. https://lists.linuxfoundation.

org/pipermail/bitcoin-dev/2013-September/

003275.html, 2013.

[47] I. Tsabary and I. Eyal. The gap game. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018.

[48] G. Wood. Ethereum: A secure decentralised gener-
alised transaction ledger. Ethereum project yellow pa-
per, 151, 2014.

[49] A. Zamyatin, N. Stifter, P. Schindler, E. Weippl, and
W. J. Knottenbelt. Flux: Revisiting near blocks for
proof-of-work blockchains. Cryptology ePrint Archive,
Report 2018/415, 2018. https://eprint.iacr.

org/2018/415/20180529:172206.

[50] G. Zeng, S. M. Yiu, J. Zhang, H. Kuzuno, and M. H.
Au. A nonoutsourceable puzzle under GHOST rule. In
2017 15th Annual Conference on Privacy, Security and
Trust (PST). IEEE, 2017.

[51] R. Zhang and B. Preneel. Lay down the common met-
rics: Evaluating proof-of-work consensus protocols’
security. In 2019 IEEE Symposium on Security and Pri-

vacy (SP). IEEE, 2019.

836 28th USENIX Security Symposium USENIX Association

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-July/002976.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-July/002976.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-July/002976.html
http://bitcoin.atspace.com/poolcheating.pdf
http://bitcoin.atspace.com/poolcheating.pdf
http://popeller.io/index.php/2016/01/19/weak-blocks-the-good-and-the-bad/
http://popeller.io/index.php/2016/01/19/weak-blocks-the-good-and-the-bad/
https://bitcointalk.org/index.php?topic=179598.0
https://bitcointalk.org/index.php?topic=179598.0
https://eprint.iacr.org/2018/104
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://bitcointalk.org/index.php?topic=179598.0
https://bitcointalk.org/index.php?topic=179598.0
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-September/003275.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-September/003275.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-September/003275.html
https://eprint.iacr.org/2018/415/20180529:172206
https://eprint.iacr.org/2018/415/20180529:172206

Tracing Transactions Across Cryptocurrency Ledgers

Haaroon Yousaf, George Kappos, and Sarah Meiklejohn
University College London

{h.yousaf,g.kappos,s.meiklejohn}@ucl.ac.uk

Abstract
One of the defining features of a cryptocurrency is that its

ledger, containing all transactions that have ever taken place,
is globally visible. As one consequence of this degree of
transparency, a long line of recent research has demonstrated
that — even in cryptocurrencies that are specifically designed
to improve anonymity — it is often possible to track money
as it changes hands, and in some cases to de-anonymize users
entirely. With the recent proliferation of alternative cryptocur-
rencies, however, it becomes relevant to ask not only whether
or not money can be traced as it moves within the ledger
of a single cryptocurrency, but if it can in fact be traced as
it moves across ledgers. This is especially pertinent given
the rise in popularity of automated trading platforms such
as ShapeShift, which make it effortless to carry out such
cross-currency trades. In this paper, we use data scraped from
ShapeShift over a thirteen-month period and the data from
eight different blockchains to explore this question. Beyond
developing new heuristics and creating new types of links
across cryptocurrency ledgers, we also identify various pat-
terns of cross-currency trades and of the general usage of these
platforms, with the ultimate goal of understanding whether
they serve a criminal or a profit-driven agenda.

1 Introduction

For the past decade, cryptocurrencies such as Bitcoin have
been touted for their transformative potential, both as a new
form of electronic cash and as a platform to “re-decentralize”
aspects of the Internet and computing in general. In terms of
their role as cash, however, it has been well established by
now that the usage of pseudonyms in Bitcoin does not achieve
meaningful levels of anonymity [1,11,17,18,21], which casts
doubt on its role as a payment mechanism. Furthermore, the
ability to track flows of coins is not limited to Bitcoin: it ex-
tends even to so-called “privacy coins” like Dash [10, 12],
Monero [4, 7, 13, 24], and Zcash [6, 16] that incorporate fea-
tures explicitly designed to improve on Bitcoin’s anonymity
guarantees.

Traditionally, criminals attempting to cash out illicit funds
would have to use exchanges; indeed, most tracking tech-
niques rely on identifying the addresses associated with these
exchanges as a way to observe when these deposits hap-
pen [11]. Nowadays, however, exchanges typically imple-
ment strict Know Your Customer/Anti-Money Laundering
(KYC/AML) policies to comply with regulatory requirements,
meaning criminals (and indeed all users) risk revealing their
real identities when using them. Users also run risks when
storing their coins in accounts at custodial exchanges, as ex-
changes may be hacked or their coins may otherwise become
inaccessible [9, 19]. As an alternative, there have emerged
in the past few years frictionless trading platforms such as
ShapeShift1 and Changelly,2 in which users are able to trade
between cryptocurrencies without having to store their coins
with the platform provider. Furthermore, while ShapeShift
now requires users to have verified accounts [22], this was
not the case before October 2018.

Part of the reason for these trading platforms to exist is the
sheer rise in the number of different cryptocurrencies: accord-
ing to the popular cryptocurrency data tracker CoinMarketCap
there were 36 cryptocurrencies in September 2013, only 7 of
which had a stated market capitalization of over 1 million
USD,3 whereas in January 2019 there were 2117 cryptocur-
rencies, of which the top 10 had a market capitalization of
over 100 million USD. Given this proliferation of new cryp-
tocurrencies and platforms that make it easy to transact across
them, it becomes important to consider not just whether or
not flows of coins can be tracked within the transaction ledger
of a given currency, but also if they can be tracked as coins
move across their respective ledgers as well. This is especially
important given that there are documented cases of criminals
attempting to use these cross-currency trades to obscure the
flow of their coins: the WannaCry ransomware operators, for
example, were observed using ShapeShift to convert their
ransomed bitcoins into Monero [3]. More generally, these

1https://shapeshift.io
2https://changelly.com
3https://coinmarketcap.com/historical/20130721/

USENIX Association 28th USENIX Security Symposium 837

https://shapeshift.io
https://changelly.com
https://coinmarketcap.com/historical/20130721/

services have the potential to offer an insight into the broader
cryptocurrency ecosystem and the thousands of currencies it
now contains.

In this paper, we initiate an exploration of the usage of these
cross-currency trading platforms, and the potential they offer
in terms of the ability to track flows of coins as they move
across different transaction ledgers. Here we rely on three
distinct sources of data: the cryptocurrency blockchains, the
data collected via our own interactions with these trading plat-
forms, and — as we describe in Section 4 — the information
offered by the platforms themselves via their public APIs.

We begin in Section 5 by identifying the specific on-chain
transactions associated with an advertised ShapeShift trans-
action, which we are able to do with a relatively high degree
of success (identifying both the deposit and withdrawal trans-
actions 81.91% of the time, on average). We then describe
in Section 6 the different transactional patterns that can be
traced by identifying the relevant on-chain transactions, focus-
ing specifically on patterns that may be indicative of trading
or money laundering, and on the ability to link addresses
across different currency ledgers. We then move in Section 7
to consider both old and new heuristics for clustering together
addresses associated with ShapeShift, with particular atten-
tion paid to our new heuristic concerning the common social
relationships revealed by the usage of ShapeShift. Finally, we
bring all the analysis together by applying it to several case
studies in Section 8. Again, our particular focus in this last sec-
tion is on the phenomenon of trading and other profit-driven
activity, and the extent to which usage of the ShapeShift plat-
form seems to be motivated by criminal activity or a more
general desire for anonymity.

2 Related Work

We are not aware of any other research exploring these cross-
currency trading platforms, but consider as related all research
that explores the level of anonymity achieved by cryptocur-
rencies. This work is complementary to our own, as the tech-
niques it develops can be combined with ours to track the
entire flow of cryptocurrencies as they move both within and
across different ledgers.

Much of the earlier research in this vein focused on Bit-
coin [1, 11, 17, 18, 21], and operates by adopting the so-called
“multi-input” heuristic, which says that all input addresses in
a transaction belong to the same entity (be it an individual or
a service such as an exchange). While the accuracy of this
heuristic has been somewhat eroded by privacy-enhancing
techniques like CoinJoin [8], new techniques have been de-
veloped to avoid such false positives [12], and as such it has
now been accepted as standard and incorporated into many
tools for Bitcoin blockchain analytics.45 Once addresses are

4https://www.chainalysis.com/
5https://www.elliptic.co/

clustered together in this manner, the entity can then further
be identified using hand-collected tags that form a ground-
truth dataset. We adopt both of these techniques in order to
analyze the clusters formed by ShapeShift and Changelly in a
variety of cryptocurrency blockchains, although as described
in Section 7 we find them to be relatively unsuccessful in this
setting.

In response to the rise of newer “privacy coins”, a recent
line of research has also worked to demonstrate that the de-
ployed versions of these cryptocurrencies have various prop-
erties that diminish the level of anonymity they achieve in
practice. This includes work targeting Dash [10, 12], Mon-
ero [4, 7, 13, 24], and Zcash [6, 16].

In terms of Dash, its main privacy feature is similar to Coin-
Join, in which different senders join forces to create a single
transaction representing their transfer to a diverse set of re-
cipients. Despite the intention for this to hide which recipient
addresses belong to which senders, research has demonstrated
that such links can in fact be created based on the value being
transacted [10, 12]. Monero, which allows senders to hide
which input belongs to them by using “mix-ins” consisting
of the keys of other users, is vulnerable to de-anonymization
attacks exploiting the (now-obsolete) case in which some
users chose not to use mix-ins, or exploiting inferences about
the age of the coins used as mix-ins [4, 7, 13, 24]. Finally,
Zcash is similar to Bitcoin, but with the addition of a privacy
feature called the shielded pool, which can be used to hide the
values and addresses of the senders and recipients involved
in a transaction. Recent research has shown that it is possi-
ble to significantly reduce the anonymity set provided by the
shielded pool, by developing simple heuristics for identifying
links between hidden and partly obscured transactions [6, 16].

3 Background

3.1 Cryptocurrencies
The first decentralized cryptocurrency, Bitcoin, was created by
Satoshi Nakamoto in 2008 [14] and deployed in January 2009.
At the most basic level, bitcoins are digital assets that can be
traded between sets of users without the need for any trusted
intermediary. Bitcoins can be thought of as being stored in a
public key, which is controlled by the entity in possession of
the associated private key. A single user can store their assets
across many public keys, which act as pseudonyms with no
inherent link to the user’s identity. In order to spend them, a
user can form and cryptographically sign a transaction that
acts to send the bitcoins to a recipient of their choice. Beyond
Bitcoin, other platforms now offer more robust functionality.
For example, Ethereum allows users to deploy smart contracts
onto the blockchain, which act as stateful programs that can be
triggered by transactions providing inputs to their functions.

In order to prevent double-spending, many cryptocurren-
cies are UTXO-based, meaning coins are associated not with

838 28th USENIX Security Symposium USENIX Association

https://www.chainalysis.com/
https://www.elliptic.co/

an address but with a uniquely identifiable UTXO (unspent
transaction output) that is created for all outputs in a given
transaction. This means that one address could be associated
with potentially many UTXOs (corresponding to each time
it has received coins), and that inputs to transactions are also
UTXOs rather than addresses. Checking for double-spending
is then just a matter of checking if an input is in the current
UTXO‘set, and removing it from the set once it spends it
contents.

3.2 Digital asset trading platforms
In contrast to a traditional (custodial) exchange, a digital
asset trading platform allows users to move between different
cryptocurrencies without storing any money in an account
with the service; in other words, users keep their own money
in their own accounts and the platform has it only at the time
that a trade is being executed. To initiate such a trade, a user
approaches the service and selects a supported input currency
curIn (i.e., the currency from which they would like to move
money) and a supported output currency curOut (the currency
that they would like to obtain). A user additionally specifies
a destination address addru in the curOut blockchain, which
is the address to which the output currency will be sent. The
service then presents the user with an exchange rate rate
and an address addrs in the curIn blockchain to which to
send money, as well as a miner fee fee that accounts for the
transaction it must form in the curOut blockchain. The user
then sends to this address addrs the amount amt in curIn they
wish to convert, and after some delay the service sends the
appropriate amount of the output currency to the specified
destination address addru. This means that an interaction with
these services results in two transactions: one on the curIn
blockchain sending amt to addrs, and one on the curOut
blockchain sending (roughly) rate ·amt− fee to addru.

This describes an interaction with an abstracted platform.
Today, the two best-known examples are ShapeShift and
Changelly. Whereas Changelly has always required account
creation, ShapeShift introduced this requirement only in Oc-
tober 2018. Each platform supports dozens of cryptocurren-
cies, ranging from better-known ones such as Bitcoin and
Ethereum to lesser-known ones such as FirstBlood and Clams.
In Section 4, we describe in more depth the operations of
these specific platforms and our own interactions with them.

4 Data Collection and Statistics

In this section, we describe our data sources, as well as
some preliminary statistics about the collected data. We be-
gin in Section 4.1 by describing our own interactions with
Changelly, a trading platform with a limited personal API.
We then describe in Section 4.2 both our own interactions
with ShapeShift, and the data we were able to scrape from
their public API, which provided us with significant insight

into their overall set of transactions. Finally, we describe in
Section 4.3 our collection of the data backing eight different
cryptocurrencies.

4.1 Changelly
Changelly offers a simple API6 that allows registered users
to carry out transactions with the service. Using this API, we
engaged in 22 transactions, using the most popular ShapeShift
currencies (Table 1) to guide our choices for curIn and
curOut.

While doing these transactions, we observed that they
would sometimes take up to an hour to complete. This is
because Changelly attempts to minimize double-spending
risk by requiring users to wait for a set number of confirma-
tions (shown to the user at the time of their transaction) in the
curIn blockchain before executing the transfer on the curOut
blockchain. We used this observation to guide our choice of
parameters in our identification of on-chain transactions in
Section 5.

4.2 ShapeShift
ShapeShift’s API7 allows users to execute their own trans-
actions, of which we did 18 in total. As with Changelly, we
were able to gain some valuable insights about the opera-
tion of the platform via these personal interactions. Whereas
ShapeShift did not disclose the number of confirmations they
waited for on the curIn blockchain, we again observed long
delays, indicating that they were also waiting for a sufficient
number.

Beyond these personal interactions, the API provides in-
formation on the operation of the service as a whole. Most
notably, it provides three separate pieces of information: (1)
the current trading rate between any pair of cryptocurrencies,
(2) a list of up to 50 of the most recent transactions that have
taken place (across all users), and (3) full details of a spe-
cific ShapeShift transaction given the address addrs in the
curIn blockchain (i.e., the address to which the user sent their
coins).

For the trading rates, ShapeShift provides the following
information for all cryptocurrency pairs (curIn,curOut): the
rate, the limit (i.e., the maximum that can be exchanged), the
minimum that can be exchanged, and the miner fee (denom-
inated in curOut). For the 50 most recent transactions, in-
formation is provided in the form: (curIn,curOut,amt, t, id),
where the first three of these are as discussed in Section 3.2,
t is a UNIX timestamp, and id is an internal identifier for
this transaction. For the transaction information, when
provided with a specific addrs ShapeShift provides the
tuple (status,address,withdraw, inCoin, inType,outCoin,
outType, tx, txURL,error). The status field is a flag that is

6https://api-docs.changelly.com/
7https://info.shapeshift.io/api

USENIX Association 28th USENIX Security Symposium 839

https://api-docs.changelly.com/
https://info.shapeshift.io/api

Figure 1: The total number of transactions per day reported via
ShapeShift’s API, and the numbers broken down by cryptocurrency
(where a transaction is attributed to a coin if it is used as either curIn
or curOut). The dotted red line indicates the BTC-USD exchange
rate, and the horizontal dotted black line indicates when KYC was
introduced into ShapeShift.

either complete, to mean the transaction was successful;
error, to mean an issue occurred with the transaction
or the queried address was not a ShapeShift address; or
no_deposits, to mean a user initiated a transaction but did
not send any coins. The error field appears when an error is
returned and gives a reason for the error. The address field is
the same address addrs used by ShapeShift, and withdraw
is the address addru (i.e., the user’s recipient address in the
curOut blockchain). inType and outType are the respective
curIn and curOut currencies and inCoin is the amt received.
outCoin is the amount sent in the curOut blockchain. Finally,
tx is the transaction hash in the curOut blockchain and
txURL is a link to this transaction in an online explorer.

Using a simple Web scraper, we downloaded the transac-
tions and rates every five seconds for close to thirteen months:
from November 27 2017 until December 23 2018. This re-
sulted in a set of 2,843,238 distinct transactions. Interestingly,
we noticed that several earlier test transactions we did with the
platform did not show up in their list of recent transactions,
which suggests that their published transactions may in fact
underestimate their overall activity.

4.2.1 ShapeShift currencies

In terms of the different cryptocurrencies used in ShapeShift
transactions, their popularity was distributed as seen in Fig-
ure 1. As this figure depicts, the overall activity of ShapeShift
is (perhaps unsurprisingly) correlated with the price of Bitcoin
in the same time period. At the same time, there is a decline
in the number of transactions after KYC was introduced that
is not clearly correlated with the price of Bitcoin (which is
largely steady and declines only several months later).

ShapeShift supports dozens of cryptocurrencies, and in our
data we observed the use of 65 different ones. The most com-
monly used coins are shown in Table 1. It is clear that Bitcoin

Currency Abbr. Total curIn curOut

Ethereum ETH 1,385,509 892,971 492,538
Bitcoin BTC 1,286,772 456,703 830,069
Litecoin LTC 720,047 459,042 261,005
Bitcoin Cash BCH 284,514 75,774 208,740
Dogecoin DOGE 245,255 119,532 125,723
Dash DASH 187,869 113,272 74,597
Ethereum Classic ETC 179,998 103,177 76,821
Zcash ZEC 154,142 111,041 43,101

Table 1: The eight most popular coins used on ShapeShift, in terms
of the total units traded, and the respective units traded with that
coin as curIn and curOut.

and Ethereum are the most heavily used currencies, which
is perhaps not surprising given the relative ease with which
they can be exchanged with fiat currencies on more traditional
exchanges, and their rank in terms of market capitalization.

4.3 Blockchain data

For the cryptocurrencies we were interested in exploring fur-
ther, it was also necessary to download and parse the respec-
tive blockchains, in order to identify the on-chain transac-
tional behavior of ShapeShift and Changelly. It was not feasi-
ble to do this for all 65 currencies used on ShapeShift (not to
mention that given the low volume of transactions for many
of them, it would likely not yield additional insights anyway),
so we chose to focus instead on just the top 8, as seen in
Table 1. Together, these account for 95.7% of all ShapeShift
transactions if only one of curIn and/or curOut is one of the
eight, and 60.5% if both are.

For each of these currencies, we ran a full node in order
to download the entire blockchain. For the ones supported
by the BlockSci tool [5] (Bitcoin, Dash and Zcash), we used
it to parse and analyze their blockchains. BlockSci does not,
however, support the remaining five currencies. For these we
thus parsed the blockchains using Python scripts, stored the
data as Apache Spark parquet files, and analyzed them using
custom scripts. In total, we ended up working with 654 GB of
raw blockchain data and 434 GB of parsed blockchain data.

5 Identifying Blockchain Transactions

In order to gain deeper insights about the way these trading
platforms are used, it is necessary to identify not just their
internal transactions but also the transactions that appear on
the blockchains of the traded currencies. This section presents
heuristics for identifying these on-chain transactions, and the
next section explores the additional insights these transactions
can offer.

Recall from Section 3.2 that an interaction with ShapeShift
results in the deposit of coins from the user to the service on
the curIn blockchain (which we refer to as “Phase 1”), and

840 28th USENIX Security Symposium USENIX Association

the withdrawal of coins from the service to the user on the
curOut blockchain (“Phase 2”). To start with Phase 1, we thus
seek to identify the deposit transaction on the input (curIn)
blockchain. Similarly to Portnoff et al. [15], we consider two
main requirements for identifying the correct on-chain trans-
action: (1) that it occurred reasonably close in time to the
point at which it was advertised via the API, and (2) that the
value it carried was identical to the advertised amount.

For this first requirement, we look for candidate transac-
tions as follows. Given a ShapeShift transaction with times-
tamp t, we first find the block b (at some height h) on the
curIn blockchain that was mined at the time closest to t. We
then look at the transactions in all blocks with height in the
range [h−δb,h+δa], where δb and δa are parameters specific
to curIn. We looked at both earlier and later blocks based
on the observation in our own interactions that the times-
tamp published by ShapeShift would sometimes be earlier
and sometimes be later than the on-chain transaction.

For each of our eight currencies, we ran this heuristic for
every ShapeShift transaction using curIn as the currency in
question, with every possible combination of δb and δa rang-
ing from 0 to 30. This resulted in a set of candidate transac-
tions with zero hits (meaning no matching transactions were
found), a single hit, or multiple hits. To rule out false posi-
tives, we initially considered as successful only ShapeShift
transactions with a single candidate on-chain transaction, al-
though we describe below an augmented heuristic that is able
to tolerate multiple hits. We then used the values of δb and
δa that maximized the number of single-hit transactions for
each currency. As seen in Table 2, the optimal choice of these
parameters varies significantly across currencies, according to
their different block rates; typically we needed to look further
before or after for currencies in which blocks were produced
more frequently.

In order to validate the results of our heuristic for Phase 1,
we use the additional capability of the ShapeShift API de-
scribed in Section 4.2. In particular, we queried the API on the
recipient address of every transaction identified by our heuris-
tic for Phase 1. If the response of the API was affirmative,
we flagged the recipient address as belonging to ShapeShift
and we identified the transaction in which it received coins as
the curIn transaction. This also provided a way to identify the
corresponding Phase 2 transaction on the curOut blockchain,
as it is just the tx field returned by the API. As we proceed
only in the case that the API returns a valid result, we gain
ground-truth data in both Phase 1 and Phase 2. In other words,
this method serves to not only validate our results in Phase 1
but also provides a way to identify Phase 2 transactions.

The heuristic described above is able to handle only single
hits; i.e., the case in which there is only a single candidate
transaction. Luckily, it is easy to augment this heuristic by
again using the API. For example, assume we examine a
BTC-ETH ShapeShift transaction and we find three candi-
date transactions in the Bitcoin blockchain after applying the

Currency Parameters Basic % Augmented %

δb δa

BTC 0 1 65.76 76.86
BCH 9 4 76.96 80.23
DASH 5 5 84.77 88.65
DOGE 1 4 76.94 81.69
ETH 5 0 72.15 81.63
ETC 5 0 76.61 78.67
LTC 1 2 71.61 76.97
ZEC 1 3 86.94 90.54

Table 2: For the selected (optimal) parameters and for a given cur-
rency used as curIn, the percentage of ShapeShift transactions for
which we found matching on-chain transactions for both the basic
(time- and value-based) and the augmented (API-based) Phase 1
heuristic. The augmented heuristic uses the API and thus also repre-
sents our success in identifying Phase 2 transactions.

basic heuristic described above. To identify which of these
transactions is the right one, we simply query the API on all
three recipient addresses and check that the status field is
affirmative (meaning ShapeShift recognizes this address) and
that the outType field is ETH. In the vast majority of cases
this uniquely identifies the correct transaction out of the can-
didate set, meaning we can use the API to both validate our
results (i.e., we use it to eliminate potential false positives, as
described above) and to augment the heuristic by being able
to tolerate multiple candidate transactions. The augmented
results for Phase 1 can be found in the last column of Ta-
ble 2 and clearly demonstrate the benefit of this extra usage
of the API. In the most dramatic example, we were able to
go from identifying the on-chain transactions for ShapeShift
transactions involving Bitcoin 65.75% of the time with the
basic heuristic to identifying them 76.86% of the time with
the augmented heuristic.

5.1 Accuracy of our heuristics
False negatives can occur for both of our heuristics when there
are either too many or too few matching transactions in the
searched block interval. These are more common for the basic
heuristic, as described above and seen in Table 2, because it
is conservative in identifying an on-chain transaction only
when there is one candidate. This rate could be improved by
increasing the searched block radius, at the expense of adding
more computation and potentially increasing the false positive
rate.

False positives can occur for both of our heuristics if some-
one sends the same amount as the ShapeShift transaction at
roughly the same time, but this transaction falls within our
searched interval whereas the ShapeShift one doesn’t. In the-
ory, this should not be an issue for our augmented heuristic,
since the API will make it clear that the candidate transaction

USENIX Association 28th USENIX Security Symposium 841

is not in fact associated with ShapeShift. In a small number
of cases (fewer than 1% of all ShapeShift transactions), how-
ever, the API returned details of a transaction with different
characteristics than the one we were attempting to identify;
e.g., it had a different pair of currencies or a different value
being sent. This happened because ShapeShift allows users to
re-use an existing deposit address, and the API returns only
the latest transaction using a given address.

If we blindly took the results of the API, then this would
lead to false positives in our augmented heuristic for both
Phase 1 and Phase 2. We thus ensured that the transaction
returned by the API had three things in common with the
ShapeShift transaction: (1) the pair of currencies, (2) the
amount being sent, and (3) the timing, within the interval
specified in Table 2. If there was any mismatch, we discarded
the transaction. For example, given a ShapeShift transaction
indicating an ETH-BTC shift carrying 1 ETH and occurring at
time t, we looked for all addresses that received 1 ETH at time
t or up to 5 blocks earlier. We then queried the API on these
addresses and kept only those transactions which reported
shifting 1 ETH to BTC. While our augmented heuristic still
might produce false positives in the case that a user quickly
makes two different transactions using the same currency pair,
value, and deposit address, we view this as unlikely, especially
given the relatively long wait times we observed ourselves
when using the service (as mentioned in Section 4.2).

5.2 Alternative Phase 2 identification

Given that our heuristic for Phase 2 involved just querying the
API for the corresponding Phase 1 transaction, it is natural
to wonder what would be possible without this feature of
the API, or indeed if there are any alternative strategies for
identifying Phase 2 transactions. Indeed, it is possible to use a
similar heuristic for identifying Phase 1 transactions, by first
looking for transactions in blocks that were mined close to
the advertised transaction time, and then looking for ones in
which the amount was close to the expected amount. Here
the amount must be estimated according to the advertised
amt, rate, and fee. In theory, the amount sent should be amt ·
rate− fee, although in practice the rate can fluctuate so it is
important to look for transactions carrying a total value within
a reasonable error rate of this amount.

When we implemented and applied this heuristic, we found
that our accuracy in identifying Phase 2 transactions de-
creased significantly, due to the larger set of transactions that
carried an amount within a wider range (as opposed to an
exact amount, as in Phase 1) and the inability of this type of
heuristic to handle multiple candidate transactions. More im-
portantly, this approach provides no ground-truth information
at all: by choosing conservative parameters it is possible to
limit the number of false positives, but this is at the expense
of the false negative rate (as, again, we observed in our own
application of this heuristic) and in general it is not guaran-

teed that the final set of transactions really are associated with
ShapeShift. As this is the exact guarantee we can get by using
the API, we continue in the rest of the paper with the results
we obtained there, but nevertheless mention this alternative
approach in case this feature of the API is discontinued or
otherwise made unavailable.

6 Tracking Cross-Currency Activity

In the previous section, we saw that it was possible in many
cases to identify the on-chain transactions, in both the curIn
and curOut blockchains, associated with the transactions ad-
vertised by ShapeShift. In this section, we take this a step
further and show how linking these transactions can be used
to identify more complex patterns of behavior.

As shown in Figure 2, we consider these for three main
types of transactions. In particular, we look at (1) pass-
through transactions, which represent the full flow of money
as it moves from one currency to the other via the deposit
and withdrawal transactions; (2) U-turns, in which a user who
has shifted into one currency immediately shifts back; and (3)
round-trip transactions, which are essentially a combination
of the first two and follow a user’s flow of money as it moves
from one currency to another and then back to the original
one. Our interest in these particular patterns of behavior is
largely based on the role they play in tracking money as it
moves across the ledgers of different cryptocurrencies. In
particular, our goal is to test the validity of the implicit as-
sumption made by criminal usage of the platform — such as
we examine further in Section 8 — that ShapeShift provides
additional anonymity beyond simply transacting in a given
currency.

In more detail, identifying pass-through transactions allows
us to create a link between the input address(es) in the deposit
on the curIn blockchain and the output address(es) in the
withdrawal on the curOut blockchain.

Identifying U-turns allows us to see when a user has in-
teracted with ShapeShift not because they are interested in
holding units of the curOut cryptocurrency, but because they
see other benefits in shifting coins back and forth. There are
several possible motivations for this: for example, traders may
quickly shift back and forth between two different cryptocur-
rencies in order to profit from differences in their price. We
investigate this possibility in Section 8.3. Similarly, people
performing money laundering or otherwise holding “dirty”
money may engage in such behavior under the belief that
once the coins are moved back into the curIn blockchain, they
are “clean” after moving through ShapeShift regardless of
what happened with the coins in the curOut blockchain.

Finally, identifying round-trip transactions allows us to cre-
ate a link between the input address(es) in the deposit on
the curIn blockchain with the output address(es) in the later
withdrawal on the curIn blockchain. Again, there are many
reasons why users might engage in such behavior, including

842 28th USENIX Security Symposium USENIX Association

ShapeShift
phase 1 phase 2

ShapeShift

phase 2

phase 1

ShapeShift

phase 2

phase 1

phase 1

phase 2

(a) Pass-through

ShapeShift
phase 1 phase 2

ShapeShift

phase 2

phase 1

ShapeShift

phase 2

phase 1

phase 1

phase 2

(b) U-turn

ShapeShift
phase 1 phase 2

ShapeShift

phase 2

phase 1

ShapeShift

phase 2

phase 1

phase 1

phase 2

(c) Round-trip

Figure 2: The different transactional patterns, according to how they interact with ShapeShift and which phases are required to identify them.

Figure 3: For each pair of currencies, the number of transactions
we identified as being a pass-through from one to the other, as a
percentage of the total number of transactions between those two
currencies.

the trading and money laundering examples given above. As
another example, if a curIn user wanted to make an anony-
mous payment to another curIn user, they might attempt to do
so via a round-trip transaction (using the address of the other
user in the second pass-through transaction), under the same
assumption that ShapeShift would sever the link between their
two addresses.

6.1 Pass-through transactions
Given a ShapeShift transaction from curIn to curOut, the
methods from Section 5 already provide a way to identify
pass-through transactions, as depicted in Figure 2a. In par-
ticular, running the augmented heuristic for Phase 1 transac-
tions identifies not only the deposit transaction in the curIn
blockchain but also the Phase 2 transaction (i.e., the with-
drawal transaction in the curOut blockchain), as this is ex-
actly what is returned by the API. As discussed above, this has
the effect on anonymity of tracing the flow of funds across
this ShapeShift transaction and linking its two endpoints;
i.e., the input address(es) in the curIn blockchain with the
output address(es) in the curOut blockchain. The results, in
terms of the percentages of all possible transactions between
a pair (curIn,curOut) for which we found the corresponding
on-chain transactions, are in Figure 3.

The figure demonstrates that our success in identifying
these types of transactions varied somewhat, and depended —
not unsurprisingly — on our success in identifying transac-

tions in the curIn blockchain. This means that we were typ-
ically least successful with curIn blockchains with higher
transaction volumes, such as Bitcoin, because we frequently
ended up with multiple hits (although here we were still able
to identify more than 74% of transactions). In contrast, the
dark stripes for Dash and Zcash demonstrate our high level
of success in identifying pass-through transactions with those
currencies as curIn, due to our high level of success in their
Phase 1 analysis in general (89% and 91% respectively). In
total, across all eight currencies we were able to identify
1,383,666 pass-through transactions.

6.2 U-turns
As depicted in Figure 2b, we consider a U-turn to be a pattern
in which a user has just sent money from curIn to curOut,
only to turn around and go immediately back to curIn. This
means linking two transactions: the Phase 2 transaction used
to send money to curOut and the Phase 1 transaction used to
send money back to curIn. In terms of timing and amount, we
require that the second transaction happens within 30 minutes
of the first, and that it carries within 1% of the value that
was generated by the first Phase 2 transaction. This value is
returned by the ShapeShift API in the outCoin field.

While the close timing and amount already give some in-
dication that these two transactions are linked, it is of course
possible that this is a coincidence and they were in fact carried
out by different users. In order to gain additional confidence
that it was the same user, we have two options. In UTXO-
based cryptocurrencies (see Section 3.1), we could see if the
input is the same UTXO that was created in the Phase 2
transaction, and thus see if a user is spending the coin imme-
diately. In cryptocurrencies based instead on accounts, such as
Ethereum, we have no choice but to look just at the addresses.
Here we thus define a U-turn as seeing if the address that was
used as the output in the Phase 2 transaction is used as the
input in the later Phase 1 transaction.

Once we identified such candidate pairs of transactions
(tx1, tx2), we then ran the augmented heuristic from Sec-
tion 5 to identify the relevant output address in the curOut
blockchain, according to tx1. We then ran the same heuristic
to identify the relevant input address in the curOut blockchain,
this time according to tx2.

In fact though, what we really identified in Phase 2 was
not just an address but, as described above, a newly created

USENIX Association 28th USENIX Security Symposium 843

Currency # (basic) # (addr) # (utxo)

BTC 36,666 565 314
BCH 2864 196 81
DASH 3234 2091 184
DOGE 546 75 75
ETH 53,518 5248 -
ETC 1397 543 -
LTC 8270 1429 244
ZEC 772 419 222

Table 3: The number of U-turns identified for each cryptocurrency,
according to our basic heuristic concerning timing and value, and
both the address-based and UTXO-based heuristics concerning iden-
tical ownership. Since Ethereum and Ethereum Classic are account-
based, the UTXO heuristic cannot be applied to them.

Figure 4: The total number of U-turns over time, as identified by our
basic heuristic.

UTXO. If the input used in tx2 was this same UTXO, then
we found a U-turn according to the first heuristic. If instead
it corresponded just to the same address, then we found a
U-turn according to the second heuristic. The results of both
of these heuristics, in addition to the basic identification of
U-turns according to the timing and amount, can be found
in Table 3, and plots showing their cumulative number over
time can be found in Figures 4 and 5. In total, we identified
107,267 U-turns according to our basic heuristic, 10,566 U-
turns according to our address-based heuristic, and 1,120 U-
turns according to our UTXO-based heuristic.

While the dominance of both Bitcoin and Ethereum should
be expected given their overall trading dominance, we also
observe that both Dash and Zcash have been used extensively
as “mixer coins” in U-turns, and are in fact more popular
for this purpose than they are overall. Despite this indica-
tion that users may prefer to use privacy coins as the mixing
intermediary, Zcash has the highest percentage of identified
UTXO-based U-turn transactions. Thus, these users not only
do not gain extra anonymity by using it, but in fact are easily
identifiable given that they did not change the address used
in 419 out of 772 (54.24%) cases, or — even worse — im-
mediately shifted back the exact same coin they received in
222 (28.75%) cases. In the case of Dash, the results suggest

Figure 5: The total number of U-turns over time, as identified by our
address-based (in red) and UTXO-based (in blue) heuristics.

something a bit different. Once more, the usage of a privacy
coin was not very successful since in 2091 out of the 3234
cases the address that received the fresh coins was the same
as the one that shifted it back. It was the exact same coin in
only 184 cases, however, which suggests that although the
user is the same, there is a local Dash transaction between the
two ShapeShift transactions. We defer a further discussion of
this asymmetry to Section 8.4, where we also discuss more
generally the use of anonymity features in both Zcash and
Dash.

Looking at Figure 5, we can see a steep rise in the number
of U-turns that used the same address in December 2017,
which is not true of the ones that used the same UTXO or
in the overall number of U-turns in Figure 4. Looking into
this further, we observed that the number of U-turns was
particularly elevated during this period for four specific pairs
of currencies: DASH-ETH, DASH-LTC, ETH-DASH, and
LTC-ETH. This thus affected primarily the address-based
heuristic due to the fact that (1) Ethereum is account-based
so the UTXO-based heuristic does not apply, and (2) Dash
has a high percentage of U-turns using the same address,
but a much smaller percentage using the same UTXO. The
amount of money shifted in these U-turns varied significantly
in terms of the units of the input currency, but all carried
between 115K and 138K in USD. Although the ShapeShift
transactions that were involved in these U-turns had hundreds
of different addresses in the curIn blockchain, they used only
a small number of addresses in the curOut blockchain: 4
addresses in Ethereum, 13 in Dash, and 9 in Litecoin. As we
discuss further in Section 7.2, the re-use of addresses and the
fact that the total amount of money (in USD) carried by the
transactions was roughly the same indicates that perhaps a
small group of people was responsible for creating this spike
in the graph.

6.3 Round-trip transactions
As depicted in Figure 2c, a round-trip transaction requires
performing two ShapeShift transactions: one out of the initial

844 28th USENIX Security Symposium USENIX Association

currency and one back into it. To identify round-trip transac-
tions, we effectively combine the results of the pass-through
and U-turn transactions; i.e., we tagged something as a round-
trip transaction if the output of a pass-through transaction
from X to Y was identified as being involved in a U-turn
transaction, which was itself linked to a later pass-through
transaction from Y to X (of roughly the same amount). As
described at the beginning of the section, this has the power-
ful effect of creating a link between the sender and recipient
within a single currency, despite the fact that money flowed
into a different currency in between.

In more detail, we looked for consecutive ShapeShift trans-
actions where for a given pair of cryptocurrencies X and Y:
(1) the first transaction was of the form X-Y; (2) the second
transaction was of the form Y-X; (3) the second transaction
happened relatively soon after the first one; and (4) the value
carried by the two transaction was approximately the same.
For the third property, we required that the second transaction
happened within 30 minutes of the first. For the fourth prop-
erty, we required that if the first transaction carried x units of
curIn then the second transaction carried within 0.5% of the
value in the (on-chain) Phase 2 transaction, according to the
outCoin field provided by the API.

As with U-turns, we considered an additional restriction
to capture the case in which the user in the curIn blockchain
stayed the same, meaning money clearly did not change hands.
Unlike with U-turns, however, this restriction is less to pro-
vide accuracy for the basic heuristic and more to isolate the
behavior of people engaged in day trading or money launder-
ing (as opposed to those meaningfully sending money to other
users). For this pattern, we identify the input addresses used in
Phase 1 for the first transaction, which represent the user who
initiated the round-trip transaction in the curIn blockchain.
We then identify the output addresses used in Phase 2 for
the second transaction, which represent the user who was the
final recipient of the funds. If the address was the same, then
it is clear that money has not changed hands. Otherwise, the
round-trip transaction acts as a heuristic for linking together
the input and output addresses.

The results of running this heuristic (with and without the
extra restriction) are in Table 4. In total, we identified 95,547
round-trip transactions according to our regular heuristic, and
identified 10,490 transactions where the input and output ad-
dresses were the same. Across different currencies, however,
there was a high level of variance in the results. While this
could be a result of the different levels of accuracy in Phase 1
for different currencies, the more likely explanation is that
users indeed engage in different patterns of behavior with
different currencies. For Bitcoin, for example, there was a
very small percentage (1.2%) of round-trip transactions that
used the same address. This suggests that either users are
aware of the general lack of anonymity in the basic Bitcoin
protocol and use ShapeShift to make anonymous payments, or
that if they do use round-trip transactions as a form of money

Currency # (regular) # (same addr)

BTC 35,019 437
BCH 1780 84
DASH 3253 2353
DOGE 378 0
ETH 45,611 4085
ETC 1122 626
LTC 6912 2733
ZEC 472 172

Table 4: The number of regular round-trip transactions identified for
each cryptocurrency, and the number that use the same initial and
final address.

laundering they are at least careful enough to change their
addresses. More simply, it may just be the case that generating
new addresses is more of a default in Bitcoin than it is in other
currencies.

In other currencies, however, such as Dash, Ethereum Clas-
sic, Litecoin, and Zcash, there were relatively high percent-
ages of round-trip transactions that used the same input and
output address: 72%, 56%, 40%, and 36% respectively. In
Ethereum Classic, this may be explained by the account-based
nature of the currency, which means that it is common for
one entity to use only one address, although the percentage
for Ethereum is much lower (9%). In Dash and Zcash, as
we have already seen in Section 6.2 and explore further in
Section 8.4, it may simply be the case that users assume they
achieve anonymity just through the use of a privacy coin, so
do not take extra measures to hide their identity.

7 Clustering Analysis

7.1 Shared ownership heuristic

As described in Sections 4.1 and 4.2, we engaged in transac-
tions with both ShapeShift and Changelly, which provided
us with some ground-truth evidence of addresses that were
owned by them. We also collected three sets of tagging data
(i.e., tags associated with addresses that describe their real-
world owner): for Bitcoin we used the data available from
WalletExplorer,8 which covers a wide variety of different
Bitcoin-based services; for Zcash we used hand-collected
data from Kappos et al. [6], which covers only exchanges;
and for Ethereum we used the data available from Etherscan,9

which covers a variety of services and contracts.
In order to understand the behavior of these trading plat-

forms and the interaction they had with other blockchain-
based services such as exchanges, our first instinct was to
combine these tags with the now-standard “multi-input” clus-

8https://www.walletexplorer.com/
9https://etherscan.io/

USENIX Association 28th USENIX Security Symposium 845

https://www.walletexplorer.com/
https://etherscan.io/

tering heuristic for cryptocurrencies [11, 17], which states
that in a transaction with multiple input addresses, all inputs
belong to the same entity. When we applied this clustering
heuristic to an earlier version of our dataset [23], however,
the results were fairly uneven. For Dogecoin, for example,
the three ShapeShift transactions we performed revealed only
three addresses, which each had done a very small number of
transactions. The three Changelly transactions we performed,
in contrast, revealed 24,893 addresses, which in total had re-
ceived over 67 trillion DOGE. These results suggest that the
trading platforms operate a number of different clusters in
each cryptocurrency, and perhaps even change their behavior
depending on the currency, which in turns makes it clear that
we did not capture a comprehensive view of the activity of
either.

More worrying, in one of our Changelly transactions, we
received coins from a Ethereum address that had been tagged
as belonging to HitBTC, a prominent exchange. This suggests
that Changelly may occasionally operate using exchange ac-
counts, which would completely invalidate the results of the
clustering heuristic, as their individually operated addresses
would end up in the same cluster as all of the ones operated
by HitBTC. We thus decided not to use this type of clustering,
and to instead focus on a new clustering heuristic geared at
identifying common social relationships.

7.2 Common relationship heuristic
As it was clear that the multi-input heuristic would not yield
meaningful information about shared ownership, we chose
to switch our focus away from the interactions ShapeShift
had on the blockchain and look instead at the relationships
between individual ShapeShift users. In particular, we defined
the following heuristic:

Heuristic 7.1. If two or more addresses send coins to the
same address in the curOut blockchain, or if two or more
addresses receive coins from the same address in the curIn
blockchain, then these addresses have some common social
relationship.

The definition of a common social relationship is (inten-
tionally) vague, and the implications of this heuristic are in-
deed less clear-cut than those of heuristics around shared
ownership. Nevertheless, we consider what it means for two
different addresses, in potentially two different blockchains,
to have sent coins to the same address; we refer to these ad-
dresses as belonging in the input cluster of the output address
(and analogously refer to the output cluster for an address
sending to multiple other addresses). In the case in which the
addresses are most closely linked, it could represent the same
user consolidating money held across different currencies into
a single one. It could also represent different users interacting
with a common service, such as an exchange. Finally, it could
simply be two users who do not know each other directly but

happen to be sending money to the same individual. What can-
not be the case, however, is that the addresses are not related
in any way.

To implement this heuristic, we parsed transactions into
a graph where we defined a node as an address and a di-
rected edge (u,v) as existing when one address u initiated a
ShapeShift transaction sending coins to v, which we identified
using the results of our pass-through analysis from Section 5.
(This means that the inputs in our graph are restricted to those
for which we ran Phase 1 to find the address, and thus that our
input clusters contain only the top 8 currencies. In the other
direction, however, we obtain the address directly from the
API, which means output clusters can contain all currencies.)
Edges are further weighted by the number of transactions sent
from u to v. For each node, the cluster centered on that ad-
dress was then defined as all nodes adjacent to it (i.e., pointing
towards it).

Performing this clustering generated a graph with
2,895,445 nodes (distinct addresses) and 2,244,459 edges.
Sorting the clusters by in-degree reveals the entities that re-
ceived the highest number of ShapeShift transactions (from
the top 8 currencies, per our caveat above). The largest cluster
had 12,868 addresses — many of them belonging to Ethereum,
Litecoin, and Dash — and was centered on a Bitcoin address
belonging to CoinPayments.net, a multi-coin payment pro-
cessing gateway. Of the ten largest clusters, three others
(one associated with Ripple and two with Bitcoin addresses)
are also connected with CoinPayments, which suggests that
ShapeShift is a popular platform amongst its users.

Sorting the individual clusters by out-degree reveals instead
the users who initiated the highest number of ShapeShift trans-
actions. Here the largest cluster (consisting of 2314 addresses)
was centered on a Litecoin address, and the second largest
cluster was centered on an Ethereum address that belonged
to Binance (a popular exchange). Of the ten largest clusters,
two others were centered on Binance-tagged addresses, and
three were centered on other exchanges (Freewallet, Gemini,
and Bittrex). While it makes sense that exchanges typically
dominate on-chain activity in many cryptocurrencies, it is
somewhat surprising to also observe that dominance here,
given that these exchanges already allow users to shift be-
tween many different cryptocurrencies. Aside from the poten-
tial for better rates or the perception of increased anonymity, it
is thus unclear why a user wanting to shift from one currency
to another would do so using ShapeShift as opposed to using
the same service with which they have already stored their
coins.

Beyond these basic statistics, we apply this heuristic to sev-
eral of the case studies we investigate in the next section. We
also revisit here the large spike in the number of U-turns that
we observed in Section 6.2. Our hypothesis then was that this
spike was caused by a small number of parties, due to the sim-
ilar USD value carried by the transactions and by the re-use of
a small number of addresses across Dash, Ethereum, and Lite-

846 28th USENIX Security Symposium USENIX Association

coin. Here we briefly investigate this further by examining
the clusters centered on these addresses.

Of the 13 Dash addresses, all but one of them formed small
input and output clusters that were comprised of addresses
solely from Litecoin and Ethereum. Of the 9 Litecoin ad-
dresses, 6 had input clusters consisting solely of Dash and
Ethereum addresses, with two of them consisting solely of
Dash addresses. Finally, of the 4 Ethereum addresses, all of
them had input clusters consisting solely of Dash and Lite-
coin addresses. One of them, however, had a diverse set of
addresses in its output cluster, belonging to Bitcoin, Bitcoin
Cash, and a number of Ethereum-based tokens. These results
thus still suggest a small number of parties, due to the tight
connection between the three currencies in the clusters, al-
though of course further investigation would be needed to get
a more complete picture.

8 Patterns of ShapeShift Usage

In this section, we examine potential applications of the anal-
ysis developed in previous sections, in terms of identifying
specific usages of ShapeShift. As before, our focus is on
anonymity, and the potential that such platforms may offer
for money laundering or other illicit purposes, as well as for
trading. To this end, we begin by looking at two case studies
associated with explicitly criminal activity and examine the
interactions these criminals had with the ShapeShift platform.
We then switch in Section 8.3 to look at non-criminal activity,
by attempting to identify trading bots that use ShapeShift and
the patterns they may create. Finally, in Section 8.4 we look at
the role that privacy coins (Monero, Zcash, and Dash) play, in
order to identify the extent to which the usage of these coins
in ShapeShift is motivated by a desire for anonymity.

8.1 Starscape Capital
In January 2018, an investment firm called Starscape Capital
raised over 2,000 ETH (worth 2.2M USD at the time) during
their Initial Coin Offering, after promising users a 50% return
in exchange for investing in their cryptocurrency arbitrage
fund. Shortly afterwards, all of their social media accounts
disappeared, and it was reported that an amount of ETH worth
517,000 USD was sent from their wallet to ShapeShift, where
it was shifted into Monero [20].

We confirmed this for ourselves by observing that the ad-
dress known to be owned by Starscape Capital participated in
192 Ethereum transactions across a three-day span (January
19-21), during which it received and sent 2,038 ETH; in total
it sent money in 133 transactions. We found that 109 of these
transactions sent money to ShapeShift, and of these 103 were
shifts to Monero conducted on January 21 (the remaining 6
were shifts to Ethereum). The total amount shifted into Mon-
ero was 465.61 ETH (1388.39 XMR), and all of the money
was shifted into only three different Monero addresses, of

which one received 70% of the resulting XMR. Using the
clusters defined in Section 7.2, we did not find evidence of
any other addresses (in any other currencies) interacting with
either the ETH or XMR addresses associated with Starscape
Capital.

8.2 Ethereum-based scams
EtherScamDB10 is a website that, based on user reports that
are manually investigated by its operators, collects and lists
Ethereum addresses that have been involved in scams. As
of January 30 2019, they had a total of 6374 scams listed,
with 1973 associated addresses. We found that 194 of these
addresses (9% of those listed) had been involved in 853 trans-
actions to ShapeShift, of which 688 had a status field of
complete. Across these successful transactions, 1797 ETH
was shifted to other currencies: 74% to Bitcoin, 19% to Mon-
ero, 3% to Bitcoin Cash, and 1% to Zcash.

The scams which successfully shifted the highest volumes
belonged to so-called trust-trading and MyEtherWallet scams.
Trust-trading is a scam based on the premise that users who
send coins prove the legitimacy of their addresses, after which
the traders “trust” their address and send back higher amounts
(whereas in fact most users send money and simply receive
nothing in return). This type of scam shifted over 918 ETH,
the majority of which was converted to Bitcoin (691 ETH,
or 75%). A MyEtherWallet scam is a phishing/typosquatting
scam where scammers operate a service with a similar name
to the popular online wallet MyEtherWallet,11 in order to trick
users into giving them their account details. These scammers
shifted the majority of the stolen ETH to Bitcoin (207 ETH)
and to Monero (151 ETH).

Given that the majority of the overall stolen coins was
shifted to Bitcoin, we next investigated whether or not these
stolen coins could be tracked further using our analysis. In
particular, we looked to see if they performed a U-turn or a
round-trip transaction, as discussed in Section 6. We identified
one address, associated with a trust-trading scam, that partici-
pated in 34 distinct round-trip transactions, all coming back
to a different address from the original one. All these trans-
actions used Bitcoin as curOut and used the same address
in Bitcoin to both receive and send coins; i.e., we identified
the U-turns in Bitcoin according to our address-based heuris-
tic. In total, more than 70 ETH were circulated across these
round-trip transactions.

8.3 Trading bots
ShapeShift, like any other cryptocurrency exchange, can be
used by traders who wish to take advantage of the volatility
in cryptocurrency prices. The potential advantages of doing
this via ShapeShift, as compared with other platforms that

10https://etherscamdb.info/
11https://www.myetherwallet.com/

USENIX Association 28th USENIX Security Symposium 847

focus more on the exchange between cryptocurrencies and
fiat currencies, are that (1) ShapeShift transactions can be
easily automated via their API, and (2) a single ShapeShift
transaction acts to both purchase desired coins and dump
unwanted ones. Such trading usually requires large volumes
of transactions and high precision on their the timing, due
to the constant fluctuation in cryptocurrency prices. We thus
looked for activity that involved large numbers of similar
transactions in a small time period, on the theory that it would
be associated primarily with trading bots.

We started by searching for sets of consecutive ShapeShift
transactions that carried approximately the same value in
curIn (with an error rate of 1%) and involved the same curren-
cies. When we did this, however, we found thousands of such
sets. We thus added the extra conditions that there must be at
least 15 transactions in the set that took place in a span of five
minutes; i.e., that within a five-minute block of ShapeShift
transactions there were at least 15 involving the same cur-
rencies and carrying the same approximate USD value. This
resulted in 107 such sets.

After obtaining our 107 trading clusters, we removed trans-
actions that we believed were false positives in that they hap-
pened to have a similar value but were clearly the odd one out.
For example, in a cluster of 20 transactions with 19 ETH-BTC
transactions and one LTC-ZEC transaction, we removed the
latter. We were thus left with clusters of either a particular
pair (e.g., ETH-BTC) or two pairs where the curOut or the
curIn was the same (e.g., ETH-BTC and ZEC-BTC), which
suggests either the purchase of a rising coin or the dump of
a declining one. We sought to further validate these clusters
by using our heuristic from Section 7.2 to see if the clusters
shared common addresses. While we typically did not find
this in UTXO-based currencies (as most entities operate using
many addresses), in account-based currencies we found that
in almost every case there was one particular address that was
involved in the trading cluster.

We summarize our results in Figure 6, in terms of the most
common pairs of currencies and the total money exchanged by
trading clusters using those currencies. It is clear that the most
common interactions are performed between the most popular
currencies overall, with the exception of Monero (XMR) and
SALT. In particular, we found six clusters consisting of 17-20
transactions that exchanged BTC for XMR, and 13 clusters
that exchanged BTC for SALT, an Ethereum-based token. The
sizes of each trading cluster varied between 16 and 33 trans-
actions and in total comprise 258 transactions, each of which
shifted exactly 0.1 BTC. In total they originated from 514 dif-
ferent Bitcoin addresses, which may make it appear as though
different people carried out these transactions. After applying
our pass-through heuristic, however, we found that across all
the transactions there were only two distinct SALT addresses
used to receive the output. It is thus instead likely that this
represents trading activity involving one or two entities.

Figure 6: Our 107 clusters of likely trading bots, categorized by the
pair of currencies they trade between and the total amount transacted
by those clusters (in USD).

8.4 Usage of anonymity tools
Given the potential usage of ShapeShift for money laundering
or other criminal activities, we sought to understand the extent
to which its users seemed motivated to hide the source of their
funds. While using ShapeShift is already one attempt at doing
this, we focus here on the combination of using ShapeShift
and so-called “privacy coins” (Dash, Monero, and Zcash) that
are designed to offer improved anonymity guarantees.

In terms of the effect of the introduction of KYC into
ShapeShift, the number of transactions using Zcash as curIn
averaged 164 per day the month before, and averaged 116 per
day the month after. We also saw a small decline with Zcash
as curOut: 69 per day before and 43 per day after. Monero
and Dash, however, saw much higher declines, and in fact
saw the largest declines across all eight cryptocurrencies. The
daily average the month before was 136 using Monero as
curIn, whereas it was 47 after. Similarly, the daily average
using it as curOut was 316 before and 62 after. For Dash, the
daily average as curIn was 128 before and 81 after, and the
daily average as curOut was 103 before and 42 after.

In terms of the blockchain data we had (according to the
most popular currencies), our analysis in what follows is re-
stricted to Dash and Zcash, although we leave an exploration
of Monero as interesting future work.

8.4.1 Zcash

The main anonymity feature in Zcash is known as the shielded
pool. Briefly, transparent Zcash transactions behave just like
Bitcoin transactions in that they reveal in the clear the sender
and recipient (according to so-called t-addresses), as well as
the value being sent. This information is hidden to various de-
grees, however, when interacting with the pool. In particular,
when putting money into the pool the recipient is specified
using a so-called z-address, which hides the recipient but still

848 28th USENIX Security Symposium USENIX Association

ShapeShift
phase 1 phase 2

ShapeShift

phase 2

phase 1

ShapeShift

phase 2

phase 1

phase 1

phase 2

ShapeShift shielded pool

Figure 7: The three types of interactions we investigated between
ShapeShift and the shielded pool in Zcash.

reveals the sender, and taking money out of the pool hides
the sender (through the use of zero-knowledge proofs [2]) but
reveals the recipient. Finally, Zcash is designed to provide
privacy mainly in the case in which users transact within the
shielded pool, which hides the sender, recipient, and the value
being sent.

We considered three possible interactions between
ShapeShift and the shielded pool, as depicted in Figure 7: (1)
a user shifts coins directly from ShapeShift into the shielded
pool, (2) a user shifts to a t-address but then uses that t-address
to put money into the pool, and (3) a user sends money directly
from the pool to ShapeShift.

For the first type of interaction, we found 29,003 transac-
tions that used ZEC as curOut. Of these, 758 had a z-address
as the output address, meaning coins were sent directly to
the shielded pool. The total value put into the pool in these
transactions was 6,707.86 ZEC, which is 4.3% of all the ZEC
received in pass-through transactions. When attempting to use
z-addresses in our own interactions with ShapeShift, however,
we consistently encountered errors or were told to contact
customer service. It is thus not clear if usage of this feature is
supported at the time of writing.

For the second type of interaction, there were 1309 where
the next transaction (i.e., the transaction in which this UTXO
spent its contents) involved putting money into the pool.
The total value put into the pool in these transactions was
12,534 ZEC, which is 8.2% of all the ZEC received in pass-
through transactions.

For the third type of interaction, we found 111,041 pass-
through transactions that used ZEC as curIn. Of these, 3808
came directly from the pool, with a total value of 22,490 ZEC
(14% of all the ZEC sent in pass-through transactions).

Thus, while the usage of the anonymity features in Zcash
was not necessarily a large fraction of the overall usage of
Zcash in ShapeShift, there is clear potential to move large
amounts of Zcash (representing over 10 million USD at the
time it was transacted) by combining ShapeShift with the
shielded pool.

8.4.2 Dash

As in Zcash, the “standard” transaction in Dash is similar to
a Bitcoin transaction in terms of the information it reveals.
Its main anonymity feature — PrivateSend transactions — are
a type of CoinJoin [8]. A CoinJoin is specifically designed

to invalidate the multi-input clustering heuristic described in
Section 7, as it allows multiple users to come together and
send coins to different sets of recipients in a single transac-
tion. If each sender sends the same number of coins to their
recipient, then it is difficult to determine which input address
corresponds to which output address, thus severing the link
between an individual sender and recipient.

In a traditional CoinJoin, users must find each other in
some offline manner (e.g., an IRC channel) and form the
transaction together over several rounds of communication.
This can be a cumbersome process, so Dash aims to sim-
plify it for users by automatically finding other users for them
and chaining multiple mixes together. In order to ensure that
users cannot accidentally de-anonymize themselves by send-
ing uniquely identifiable values, these PrivateSend transac-
tions are restricted to specific denominations: 0.01, 0.1, 1,
and 10 DASH. As observed by Kalodner et al. [5], however,
the CoinJoin denominations often contain a fee of 0.0000001
DASH, which must be factored in when searching for these
transactions. Our parameters for identifying a CoinJoin were
thus that (1) the transaction must have at least three inputs,
(2) the outputs must consist solely of values from the list of
possible denominations (modulo the fees), and (3) and all out-
put values must be the same. In fact, given how Dash operates
there is always one output with a non-standard value, so it was
further necessary to relax the second and third requirements
to allow there to be at most one address that does not carry
the specified value.

We first looked to see how often the DASH sent to
ShapeShift had originated from a CoinJoin, which meant
identifying if the inputs of a Phase 1 transaction were out-
puts from a CoinJoin. Out of 100,410 candidate transac-
tions, we found 2,068 that came from a CoinJoin, carrying
a total of 11,929 DASH in value (6.5% of the total value
across transactions with Dash as curIn). Next, we looked at
whether or not users performed a CoinJoin after receiving
coins from ShapeShift, which meant identifying if the outputs
of a Phase 2 transaction had been spent in a CoinJoin. Out
of 50,545 candidate transactions, we found only 33 CoinJoin
transactions, carrying a total of 187 DASH in value (0.1% of
the total value across transactions using Dash as curOut).

If we revisit our results concerning the use of U-turns in
Dash from Section 6.2, we recall that there was a large asym-
metry in terms of the results of our two heuristics: only 5.6%
of the U-turns used the same UTXO, but 64.6% of U-turns
used the same address. This suggests that some additional
on-chain transaction took place between the two ShapeShift
transactions, and indeed upon further inspection we identified
many cases where this transaction was a CoinJoin. There thus
appears to have been a genuine attempt to take advantage
of the privacy that Dash offers, but this was completely inef-
fective due to the use of the same address that both sent and
received the mixed coins.

USENIX Association 28th USENIX Security Symposium 849

9 Conclusions

In this study, we presented a characterization of the usage of
the ShapeShift trading platform over a thirteen-month period,
focusing on the ability to link together the ledgers of multiple
different cryptocurrencies. To accomplish this task, we looked
at these trading platforms from several different perspectives,
ranging from the correlations between the transactions they
produce in the cryptocurrency ledgers to the relationships
they reveal between seemingly distinct users. The techniques
we develop demonstrate that it is possible to capture com-
plex transactional behaviors and trace their activity even as it
moves across ledgers, which has implications for any crimi-
nals attempting to use these platforms to obscure their flow
of money.

Acknowledgments

We would like to thank Bernhard Haslhofer and Rainer Stütz
for performing the Bitcoin multi-input clustering using the
GraphSense tool, and Zooko Wilcox, the anonymous review-
ers, and our shepherd Matthew Green for their feedback. All
authors are supported by the EU H2020 TITANIUM project
under grant agreement number 740558.

References
[1] E. Androulaki, G. Karame, M. Roeschlin, T. Scherer, and S. Capkun.

Evaluating user privacy in Bitcoin. In A.-R. Sadeghi, editor, FC 2013,
volume 7859 of LNCS, pages 34–51, Okinawa, Japan, Apr. 1–5, 2013.
Springer, Heidelberg, Germany.

[2] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
459–474, Berkeley, CA, USA, May 18–21, 2014. IEEE Computer
Society Press.

[3] J. Dunietz. The Imperfect Crime: How the WannaCry Hackers Could
Get Nabbed, Aug. 2017. https:
//www.scientificamerican.com/article/the-imperfect-
crime-how-the-wannacry-hackers-could-get-nabbed/.

[4] A. Hinteregger and B. Haslhofer. Short paper: An empirical analysis
of Monero cross-chain traceability. In Proceedings of the 23rd
International Conference on Financial Cryptography and Data
Security (FC), 2019.

[5] H. Kalodner, S. Goldfeder, A. Chator, M. Möser, and A. Narayanan.
Blocksci: Design and applications of a blockchain analysis platform,
2017. https://arxiv.org/pdf/1709.02489.pdf.

[6] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. An empirical
analysis of anonymity in Zcash. In Proceedings of the USENIX
Security Symposium, 2018.

[7] A. Kumar, C. Fischer, S. Tople, and P. Saxena. A traceability analysis
of monero’s blockchain. In S. N. Foley, D. Gollmann, and
E. Snekkenes, editors, ESORICS 2017, Part II, volume 10493 of
LNCS, pages 153–173, Oslo, Norway, Sept. 11–15, 2017. Springer,
Heidelberg, Germany.

[8] G. Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on
Bitcoin forum, 2013.

[9] R. McMillan. The Inside Story of Mt. Gox, Bitcoin’s $460 Million
Disaster, Mar. 2014.
https://www.wired.com/2014/03/bitcoin-exchange/.

[10] S. Meiklejohn and C. Orlandi. Privacy-enhancing overlays in bitcoin.
In M. Brenner, N. Christin, B. Johnson, and K. Rohloff, editors, FC
2015 Workshops, volume 8976 of LNCS, pages 127–141, San Juan,
Puerto Rico, Jan. 30, 2015. Springer, Heidelberg, Germany.

[11] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage. A fistful of bitcoins: characterizing
payments among men with no names. In Proceedings of the 2013
Internet Measurement Conference, pages 127–140. ACM, 2013.

[12] M. Möser and R. Böhme. Anonymous alone? measuring Bitcoin’s
second-generation anonymization techniques. In IEEE Security &
Privacy on the Blockchain (IEEE S&B), 2017.

[13] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan, and N. Christin. An
empirical analysis of linkability in the Monero blockchain.
Proceedings on Privacy Enhancing Technologies, pages 143–163,
2018.

[14] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
bitcoin.org/bitcoin.pdf.

[15] R. S. Portnoff, D. Y. Huang, P. Doerfler, S. Afroz, and D. McCoy.
Backpage and Bitcoin: uncovering human traffickers. In Proceedings
of the ACM SIGKDD Conference, 2017.

[16] J. Quesnelle. On the linkability of Zcash transactions.
arXiv:1712.01210, 2017.
https://arxiv.org/pdf/1712.01210.pdf.

[17] F. Reid and M. Harrigan. An analysis of anonymity in the Bitcoin
system. In Security and privacy in social networks, pages 197–223.
Springer, 2013.

[18] D. Ron and A. Shamir. Quantitative analysis of the full Bitcoin
transaction graph. In A.-R. Sadeghi, editor, FC 2013, volume 7859 of
LNCS, pages 6–24, Okinawa, Japan, Apr. 1–5, 2013. Springer,
Heidelberg, Germany.

[19] D. Rushe. Cryptocurrency investors locked out of $190m after
exchange founder dies, Feb. 2019. https://www.theguardian.
com/technology/2019/feb/04/quadrigacx-canada-
cryptocurrency-exchange-locked-gerald-cotten.

[20] J. Scheck and S. Shifflett. How dirty money disappears into the black
hole of cryptocurrency, Sept. 2018. https:
//www.wsj.com/articles/how-dirty-money-disappears-
into-the-black-hole-of-cryptocurrency-1538149743.

[21] M. Spagnuolo, F. Maggi, and S. Zanero. BitIodine: Extracting
intelligence from the bitcoin network. In N. Christin and
R. Safavi-Naini, editors, FC 2014, volume 8437 of LNCS, pages
457–468, Christ Church, Barbados, Mar. 3–7, 2014. Springer,
Heidelberg, Germany.

[22] E. Voorhees. Announcing ShapeShift membership, Sept. 2018.
https://info.shapeshift.io/blog/2018/09/04/
introducing-shapeshift-membership/.

[23] H. Yousaf, G. Kappos, and S. Meiklejohn. Tracing transactions across
cryptocurrency ledgers, Oct. 2018.
https://arxiv.org/abs/1810.12786v1.

[24] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, and W. F. Lau. New empirical
traceability analysis of CryptoNote-style blockchains. In Proceedings
of the 23rd International Conference on Financial Cryptography and
Data Security (FC), 2019.

850 28th USENIX Security Symposium USENIX Association

https://www.scientificamerican.com/article/the-imperfect-crime-how-the-wannacry-hackers-could-get-nabbed/
https://www.scientificamerican.com/article/the-imperfect-crime-how-the-wannacry-hackers-could-get-nabbed/
https://www.scientificamerican.com/article/the-imperfect-crime-how-the-wannacry-hackers-could-get-nabbed/
https://arxiv.org/pdf/1709.02489.pdf
https://www.wired.com/2014/03/bitcoin-exchange/
bitcoin.org/bitcoin.pdf
https://arxiv.org/pdf/1712.01210.pdf
https://www.theguardian.com/technology/2019/feb/04/quadrigacx-canada-cryptocurrency-exchange-locked-gerald-cotten
https://www.theguardian.com/technology/2019/feb/04/quadrigacx-canada-cryptocurrency-exchange-locked-gerald-cotten
https://www.theguardian.com/technology/2019/feb/04/quadrigacx-canada-cryptocurrency-exchange-locked-gerald-cotten
https://www.wsj.com/articles/how-dirty-money-disappears-into-the-black-hole-of-cryptocurrency-1538149743
https://www.wsj.com/articles/how-dirty-money-disappears-into-the-black-hole-of-cryptocurrency-1538149743
https://www.wsj.com/articles/how-dirty-money-disappears-into-the-black-hole-of-cryptocurrency-1538149743
https://info.shapeshift.io/blog/2018/09/04/introducing-shapeshift-membership/
https://info.shapeshift.io/blog/2018/09/04/introducing-shapeshift-membership/
https://arxiv.org/abs/1810.12786v1

Reading the Tea Leaves: A Comparative Analysis of Threat Intelligence

Vector Guo Li1, Matthew Dunn2, Paul Pearce4, Damon McCoy3,
Geoffrey M. Voelker1, Stefan Savage1, Kirill Levchenko5

1 University of California, San Diego 2 Northeastern University 3 New York University
4 Georgia Institute of Technology 5 University of Illinois Urbana-Champaign

Abstract
The term “threat intelligence” has swiftly become a staple
buzzword in the computer security industry. The entirely rea-
sonable premise is that, by compiling up-to-date information
about known threats (i.e., IP addresses, domain names, file
hashes, etc.), recipients of such information may be able to
better defend their systems from future attacks. Thus, today a
wide array of public and commercial sources distribute threat
intelligence data feeds to support this purpose. However, our
understanding of this data, its characterization and the extent
to which it can meaningfully support its intended uses, is still
quite limited. In this paper, we address these gaps by formally
defining a set of metrics for characterizing threat intelligence
data feeds and using these measures to systematically charac-
terize a broad range of public and commercial sources. Fur-
ther, we ground our quantitative assessments using external
measurements to qualitatively investigate issues of coverage
and accuracy. Unfortunately, our measurement results suggest
that there are significant limitations and challenges in using
existing threat intelligence data for its purported goals.

1 Introduction
Computer security is an inherently adversarial discipline in
which each “side” seeks to exploit the assumptions and limita-
tions of the other. Attackers rely on exploiting knowledge of
vulnerabilities, configuration errors or operational lapses in or-
der to penetrate targeted systems, while defenders in turn seek
to improve their resistance to such attacks by better under-
standing the nature of contemporary threats and the technical
fingerprints left by attacker’s craft. Invariably, this means that
attackers are driven to innovate and diversify while defenders,
in response, must continually monitor for such changes and
update their operational security practices accordingly. This
dynamic is present in virtually every aspect of the operational
security landscape, from anti-virus signatures to the configu-
ration of firewalls and intrusion detection systems to incident
response and triage. Common to all such reifications, however,
is the process of monitoring for new data on attacker behavior

and using that data to update defenses and security practices.
Indeed, the extent to which a defender is able to gather and
analyze such data effectively defines a de facto window of
vulnerability—the time during which an organization is less
effective in addressing attacks due to ignorance of current
attacker behaviors.

This abstract problem has given rise to a concrete demand
for contemporary threat data sources that are frequently col-
lectively referred to as threat intelligence (TI). By far the most
common form of such data are so-called indicators of compro-
mise: simple observable behaviors that signal that a host or
network may be compromised. These include both network in-
dicators such as IP addresses (e.g., addresses known to launch
particular attacks or host command-and-control sites, etc.) and
file hashes (e.g., indicating a file or executable known to be
associated with a particular variety of malware). The presence
of such indicators is a symptom that alerts an organization
to a problem, and part of an organization’s defenses might
reasonably include monitoring its assets for such indicators
to detect and mitigate potential compromises as they occur.

While each organization naturally collects a certain amount
of threat intelligence data on its own (e.g., the attacks they
repel, the e-mail spam they filter, etc.) any single entity has a
limited footprint and few are instrumented to carefully segre-
gate crisp signals of attacks from the range of ambiguity found
in normal production network and system logs. Thus, it is now
commonly accepted that threat intelligence data procurement
is a specialized activity whereby third-party firms, and/or
collections of public groups, employ a range of monitoring
techniques to aggregate, filter and curate quality information
about current threats. Indeed, the promised operational value
of threat intelligence has created a thriving (multi-billion dol-
lar) market [43]. Established security companies with roots in
anti-virus software or network intrusion detection now offer
threat intelligence for sale, while some vendors specialize in
threat intelligence exclusively, often promising coverage of
more sophisticated threats than conventional sources.

Unfortunately, in spite of this tremendous promise, there
has been little empirical assessment of threat intelligence data

USENIX Association 28th USENIX Security Symposium 851

or even a consensus about what such an evaluation would
entail. Thus, consumers of TI products have limited means to
compare offerings or to factor the cost of such products into
any model of the benefit to operational security that might be
offered.

This issue motivates our work to provide a grounded, em-
pirical footing for addressing such questions. In particular,
this paper makes the following contributions:

v We introduce a set of basic threat intelligence metrics
and describe a methodology for measuring them, notably:
Volume, Differential Contribution, Exclusive Contri-
bution, Latency, Coverage and Accuracy.

v We analyze 47 distinct IP address TI sources covering
six categories of threats and 8 distinct malware file hash
TI sources, and report their metrics.

v We demonstrate techniques to evaluate the accuracy and
coverage of certain categories of TI sources.

v We conduct the analyses in two different time periods
two years apart, and demonstrate the strong consistency
between the findings.

From our analysis, we find that while a few TI data sources
show significant overlap, most do not. This result is consistent
with the hypothesis advanced by [42] that different kinds of
monitoring infrastructure will capture different kinds of at-
tacks, but we have demonstrated it in a much broader context.
We also reveal that underlying this issue are broader limita-
tions of TI sources in terms of coverage (most indicators are
unique) and accuracy (false positives may limit how such data
can be used operationally). Finally, we present a longitudinal
analysis suggesting that these findings are consistent over
time.

2 Overview
The threat intelligence data collected for our study was ob-
tained by subscribing to and pulling from numerous public
and private intelligence sources. These sources ranged from
simple blacklists of bad IPs/domains and file hashes, to rich
threat intelligence exchanges with well labeled and structured
data. We call each item (e.g., IP address or file hash) an in-
dicator (after indicator of compromise, the industry term for
such data items).

In this section we enumerate our threat intelligence sources,
describe each source’s structure and how we collected it, and
then define our measurement metrics for empirically measur-
ing these sources. When the source of the data is public, or
when we have an explicit agreement to identify the provider,
we have done so. However, in other cases, the data was pro-
vided on the condition of anonymity and we restrict ourself to
describing the nature of the provider, but not their identity. All
of our private data providers were appraised of the nature of
our research, its goals and the methodology that we planned
to employ.

2.1 Data Set and Collection

We use several sources of TI data for our analysis:
Facebook ThreatExchange (FB) [17]. This is a closed-
community platform that allows hundreds of companies and
organizations to share and interact with various types of la-
beled threat data. As part of an agreement with Facebook, we
collected all its data that it shared broadly. In subsequent anal-
yses, sources with prefix “FB” indicate a unique contributor
on the Facebook ThreatExchange.
Paid Feed Aggregator (PA). This is a commercial paid threat
intelligence data aggregation platform. It contains data col-
lected from over a hundred other threat intelligence sources,
public or private, together with its own threat data. In sub-
sequent analyses all data sources with prefix “PA” are from
unique data sources originating from this aggregator.
Paid IP Reputation Service. This commercial service pro-
vides an hourly-updated blacklist of known bad IP addresses
across different attack categories.
Public Blacklists and Reputation Feeds. We collected in-
dicators from public blacklists and reputation data sources,
including well-known sources such as AlienVault [3],
Badips [5], Abuse.ch [1] and Packetmail [28].

Threat Intelligence indicators include different types of
data, such as IP address, malicious file hash, Domain, URL,
etc. In this paper, we focus our analysis on sources that pro-
vide IP addresses and file hashes, as they are the most preva-
lent data types in our collection.

We collect data from all sources on an hourly basis. How-
ever, both the Facebook ThreatExchange and the Paid Feed
Aggregator change their members and contributions over time,
creating irregular collection periods for several of the sub-data
sources. Similarly, public threat feeds had varying degrees
of reliability, resulting in collection gaps. In this paper, we
use the time window from December 1, 2017 to July 20,
2018 for most of the analyses, as we have the largest number
of active sources during this period. We eliminated dupli-
cates sources (e.g., sources we collected individually and also
found in the Paid Aggregator) and sub-sources (a source that
is a branch of another source). We further break IP sources
into separate categories and treat them as individual feeds, as
shown in Section 3. This filtering leaves us with 47 IP feeds
and 8 malware file hash feeds.

The ways each TI source collects data varies, and in some
cases the methodology is unknown. For example, Packetmail
IPs and Paid IP Reputation collect threat data themselves via
honeypots, analyzing malware, etc. Other sources, such as
Badips or the Facebook ThreatExchange, collect their indica-
tors from general users or organizations—e.g., entities may be
attacked and submit the indicators to these threat intelligence
services. These services then aggregate the data and report
it to their subscribers. Through this level of aggregation the
precise collection methodologies and data providence can be
lost.

852 28th USENIX Security Symposium USENIX Association

2.2 Data Source Structure
TI sources in our corpus structure and present data in different
ways. Part of the challenge in producing cross-dataset metrics
is normalizing both the structure of the data as well as its
meaning. A major structural difference that influences our
analysis occurs between data sources that provide data in
snapshots and data sources that provide events.
Snapshot. Snapshot feeds provide periodic snapshots of a set
of indicators. More formally, a snapshot is a set of indicators
that is a function of time. It defines, for a given point in time,
the set of indicators that are members of the data source.
Snapshot feeds imply state: at any given time, there is a set
of indicators that are in the feed. A typical snapshot source is
a published list of IPs periodically updated by its maintainer.
For example, a list of command-and-control IP addresses for a
botnet may be published as a snapshot feed subject to periodic
updates.

All feeds of file hashes are snapshots and are monotonic in
the sense that indicators are only added, not removed, from
the feed. Hashes are a proxy for the file content, which does
not change (malicious file content will not change to benign
in the future).
Event. In contrast, event feeds report newly discovered indi-
cators. More formally, an event source is a set of indicators
that is a function of a time interval. For a given time inter-
val, the source provides a set of indicators that were seen or
discovered in that time interval. Subscribers of these feeds
query data by asking for new indicators added in a recent time
window. For example, a user might, once a day, request the
set of indicators that appeared in the last 24 hours.

This structural difference is a major challenge when evaluat-
ing feeds comparatively. We need to normalize the difference
to make a fair comparison, especially for IP feeds. From a TI
consumer’s perspective, an event feed does not indicate when
an indicator will expire, so it is up to the consumer to act on
the age of indicators. Put another way, the expiration dates of
indicators are decided by how users query the feed: if a user
asks for the indicators seen in the last 30 days when quering
data, then there is an implicit 30-day valid time window for
these indicators.

In this paper, we choose a 30-day valid period for all the
indicators we collected from event feeds—the same valid
period used in several snapshot feeds, and also a common
query window option offered by event feeds. We then convert
these event feeds into snapshot feeds and evaluate all of them
in a unified fashion.

2.3 Threat Intelligence Metrics
The aim of this work is to develop threat intelligence met-
rics that allow a TI consumer to compare threat intelligence
sources and reason about their fitness for a particular purpose.
To this end, we propose six concrete metrics: Volume, Differ-
ential contribution, Exclusive contribution, Latency, Accuracy
and Coverage.

G Volume. We define the volume of a feed to be the total
number of indicators appearing in a feed over the measure-
ment interval. Volume is the simplest TI metric and has an
established history in prior work [21,23,24,30,35,36,42]. It is
also useful to study the daily rate of a feed, which quantifies
the amount of data appearing in a feed on a daily basis.

Rationale: To a first approximation, volume captures how
much information a feed provides to the consumer. For a feed
without false positives (see accuracy below), and if every in-
dicator has equal value to the consumer, we would prefer a
feed of greater volume to a feed of lesser volume. Of course,
indicators do not all have the same value to consumers: know-
ing the IP address of a host probing the entire Internet for
decades-old vulnerabilities is less useful than the address of
a scanner targeting organizations in your sector looking to
exploit zero-day vulnerabilities.
G Differential contribution. The differential contribution
of one feed with respect to another is the number of in-
dicators in the first that are not in the second during the
same measurement period. We define differential contribu-
tion relative to the size of the first feed, so that the dif-
ferential contribution of feed A with respect to feed B is
DiffA,B = |A\B|/|A|. Thus, DiffA,B = 1 indicates that the two
feeds have no elements in common, and DiffA,B = 0 indicates
that every indicator in A also appears in B. It is sometimes
useful to consider the complement of differential contribu-
tion, namely the normalized intersection of A in B, given by
IntA,B = |A∩B|/|A|= 1−DiffA,B.

Rationale: For a consumer, it is often useful to know how
many additional indicators a feed offers relative to one or
more feeds that the consumer has already. Thus, if a con-
sumer already has feed A and is considering paying for feed
B, then DiffA,B indicates how many new indicators feed A will
provide.
G Exclusive contribution. The exclusive contribution of a
feed with respect to a set of other feeds is the proportion
of indicators unique to a feed, that is, the proportion of in-
dicators that occur in the feed but no others. Formally, the
exclusive contribution of feed A is defined as UniqA,B =
|A \

⋃
B6=A B|/|A|. Thus, UniqA,B = 0 means that every ele-

ment of feed A appears in some other feeds, while UniqA,B = 1
means no element of A appears in any other feed.

Rationale: Like differential contribution, exclusive contri-
bution tells a TI consumer how much of a feed is different.
However, exclusive contribution compares a feed to all other
feeds available for comparison, while differential contribution
compares a feed to just another feed. From a TI consumer’s
perspective, exclusive contribution is a general measure of a
feed’s unique value.
G Latency. For an indicator that occurs in two or more feeds,
its latency in a feed is the elapsed time between its first appear-
ance in any feed and its appearance in the feed in question. In
the feed where an indicator first appeared, its latency is zero.
For all other feeds, the latency indicates how much later the

USENIX Association 28th USENIX Security Symposium 853

same indicators appears in those feeds. Taster’s Choice [30]
referred to latency as relative first appearance time. (We find
the term latency to be more succinct without loss of clarity.)
Since latency is defined for one indicator, for a feed it makes
sense to consider statistics of the distribution of indicator
latencies, such as the median indicator latency.

Rationale: Latency characterizes how quickly a feed in-
cludes new threats: the sooner a feed includes a threat, the
more effective it is at helping consumers protect their systems.
Indeed, several studies report on the impact of feed latency
on its effectiveness at thwarting spam [10, 32].

The metrics above are defined without regard for the mean-
ing of the indicators in a feed. We can calculate the volume
of a single feed or the differential contribution of one feed
with respect to another regardless of what the feed purports
to contain. While these metrics are easy to compute, they
do little to tell us about the fitness of a feed for a particular
purpose. For this, we need to consider the meaning or purpose
of the feed data, as advertised by the feed provider. We define
the following two metrics.
G Accuracy. The accuracy of a feed is the proportion of in-
dicators in a feed that are correctly included in the feed. Feed
accuracy is analogous to precision in Information Retrieval.
This metric presumes that the description of the feed is well-
defined and describes a set of elements that should be in the
feed given perfect knowledge. In practice, we have neither
perfect knowledge nor a perfect description of what a feed
should contain. In some cases, however, we can construct a
set A− of elements that should definitely not be in a feed A.
Then AccA ≤ |A\A−|/|A|.

Rationale: The accuracy metric tells a TI consumer how
many false positives to expect when using a feed, and, there-
fore, dictates how a feed can be used. For example, if a con-
sumer automatically blocks all traffic to IP addresses appear-
ing in a feed, then false positives may cause disruption in an
enterprise by blocking traffic to legitimate sites. On the other
hand, consumers may tolerate some false positives if a feed is
only used to gain additional insight during an investigation.
G Coverage. The coverage of a feed is the proportion of
the intended indicators contained in a feed. Feed coverage is
analogous to recall in Information Retrieval. Like accuracy,
coverage presumes that the description of the feed is sufficient
to determine which elements should be in a feed, given perfect
knowledge. In some cases, it is possible to construct a set A+

of elements that should be in a feed. We can then upper-bound
the coverage CovA ≤ |A|/|A+|.

Rationale: For a feed consumer who aims to obtain com-
plete protection from a specific kind of threat, coverage is
a measure of how much protection a feed will provide. For
example, an organization that wants to protect itself from a
particular botnet will want to maximize its coverage of that
botnet’s command-and-control servers or infection vectors.

In the following two sections, we use these metrics to eval-
uate two types of TI: IP address feeds and file hash feeds.

3 IP Threat Intelligence
One of the most common forms of TI are feeds of IP addresses
considered malicious, suspicious, or otherwise untrustworthy.
This type of threat intelligence dates back at least to the early
spam and intrusion detection blacklists, many of which are
still active today such as SpamhausSBL [40], CBL [8] and
SORBS [39]. Here, we apply the metrics described above to
quantify the differences between 47 different IP address TI
feeds.

3.1 Feed Categorization
IP address TI feeds have different meanings, and, therefore,
purposes. To meaningfully compare feeds to each other, we
first group feeds into categories of feeds whose indicators
have the same intended meaning. Unfortunately, there is no
standard or widely accepted taxonomy of IP TI feeds. To
group feeds into semantic categories, we use metadata associ-
ated with the feed as well as descriptions of the feed provided
by the producer, as described below.
Metadata. Some feeds provide category information with
each indicator as metadata. More specifically, all of the Paid
Aggregator feeds, Alienvault IP Reputation and Paid IP Rep-
utation include this category metadata. In this case, we use its
pre-assigned category in the feed. Facebook ThreatExchange
feeds do not include category information in the metadata,
but instead provide a descriptive phrase with each indicator.
We then derive its category based on the description.
Feed description. For feeds without metadata, we rely on
online descriptions of each feed, where available, to deter-
mine its semantic category. For example, the website of feed
Nothink SSH [27] describes that the feed reports brute-force
login attempts on its corresponding honeypot, which indicates
the feed belongs to brute-force category.

We grouped our IP feeds into categories derived from the
information above. In this work, we analyze six of the most
prominent categories:

◦ Scan: Hosts doing port or vulnerability scans.
◦ Brute-force: Hosts making brute force login attempts.
◦ Malware: Malware C&C and distribution servers.
◦ Exploit: Hosts trying to remotely exploit vulnerabilities.
◦ Botnet: Compromised hosts belonging to a botnet.
◦ Spam: Hosts that sent spam or should not originate email.

Table 1 lists the feeds, grouped by category, used in the rest
of this section. The symbols # and4 before the feed name
indicate whether the feed is a snapshot feed or an event feed,
respectively (see Section 2.2). All data was collected during
our measurement period, December 1st, 2017 to July 20th,
2018. Note that a few feeds, like Paid IP Reputation, appear in
multiple categories. In these feeds, indicators are associated
with different categories via attached metadata. We split these
feeds into multiple virtual feeds each containing indicators
belonging to the same category.

854 28th USENIX Security Symposium USENIX Association

3.2 Volume
Volume is one of the oldest and simplest TI metrics repre-
senting how informative each data source is. Table 1 shows
the total number of unique IP addresses collected from each
feed during the measurement period, under column Volume.
Feeds are listed in order of decreasing volume, grouped by
category. The numbers we show are after the removal of in-
valid entries identified by the sources themselves. Column
Avg. Rate shows the average number of new IPs we received
per day, and Avg. Size lists the average daily working set size
of each feed, that is, the average size of the snapshot.
F Finding: Feeds vary dramatically in volume. Within every
category, big feeds can contain orders of magnitude more data
than small feeds. For example, in the scan category, we saw
over 361,004 unique IP addresses in DShield IPs but only
1,572 unique addresses in PA Analyst in the same time period.
Clearly, volume is a major differentiator for feeds.

Average daily rate represents the amount of new indicators
collected from a feed each day. Some feeds may have large
volume but low daily rates, like Feodo IP Blacklist in the mal-
ware category. This means most indicators we get from that
feed are old data present in the feed before our measurement
started. On the other hand, the average rate of a feed could be
greater than the volume would suggest, like Nothink SSH in
the brute-force category. This is due to the fact that indicators
can be added and removed multiple times in a feed. In general,
IP indicators tend to be added in a feed only once: 37 among
47 IP feeds have over 80% of their indicators appearing only
once, and 30 of them have this rate over 90%. One reason
is that some snapshot feeds maintain a valid period for each
indicator, as we found in all PA feeds where the expiration
date of each indicator is explicitly recorded. When the same
indicator is discovered again by a feed before its expiration
time, the feed will just extend its expiration date, so this oc-
currence will not be captured if we simply subtract the old
data from the newly collected data to derive what is added on
a day. For event feeds and snapshot feeds in PA where we can
precisely track every occurrence of each indicator, we further
examed data occurrence frequency and still found that the vast
majority of IPs in feeds only occurred once—an observation
that relates to the dynamics of cyber threats themselves.

Nothink SSH, as we mentioned above, is a notable ex-
ception. It has over 64% of its indicators appearing 7 times
in our data set. After investigating, we found that this feed
posts all its previous data at the end of every month, behavior
very likely due to the feed provider instead of the underlying
threats.

The working set size defines the daily average amount of
indicators users need to store in their system to use a feed
(the storage cost of using a feed). The average working set
size is largely decided by the valid period length of the indica-

1This feed is aggregated by PA from Alienvault OTX, the Alienvault
IP Reputation is the public reputation feed we collected from AlienVault
directly. They are different feeds.

Table 1. IP TI feeds used in the study. A # denotes a snapshot feed and
4 indicates an event feed (Section 2.2). Volume is the total number of IPs
collected during our measurement period. Exclusive is the exclusive contri-
bution of each feed (Section 3.4). Avg. Rate is the number of average daily
new IPs added in the feed (Section 3.6), and Avg. Size is the average working
set size of each feed (Section 3.2).

Feed Volume Exclusive Avg. Rate Avg. Size

Scan Feeds
PA AlienVault IPs1 425,967 48.6% 1,359 128,821
4 DShield IPs 361,004 31.1% 1,556 69,526
PA Packetmail ramnode 258,719 62.0% 870 78,974
4 Packetmail IPs 246,920 48.6% 942 29,751
Paid IP Reputation 204,491 75.6% 1,362 8,756
PA Lab Scan 169,078 63.1% 869 9,775
PA Snort BlockList 19,085 96.3% 56 4,000
4 FB Aggregator1 6,066 71.3% 24 693
PA Analyst 1,572 34.5% 6.3 462
Botnet Feeds
PA Analyst 180,034 99.0% 697 54,800
PA CI Army 103,281 97.1% 332 30,388
Paid IP Reputation 77,600 99.9% 567 4,278
PA Botscout IPs 23,805 93.8% 81 7,180
PA VoIP Blacklist 10,712 88.0% 40 3,633
PA Compromised IPs 7,679 87.0% 21 2,392
PA Blocklist Bots 4,179 80.7% 16 1,160
PA Project Honeypot 2,600 86.5% 8.5 812
Brute-force Feeds
4 Badips SSH 542,167 84.1% 2,379 86,677
4 Badips Badbots 91,553 70.8% 559 17,577
Paid IP Reputation 89,671 52.8% 483 3,705
PA Brute-Force 41,394 92.1% 138 14,540
4 Badips Username Notfound 37,198 54.2% 179 3662.8
4 Haley SSH 31,115 43.6% 40 1,224
4 FB Aggregator2 22,398 77.3% 74 2,086
4 Nothink SSH 20,325 62.7% 224 12,577
4 Dangerrulez Brute 10,142 4.88% 37 1,102
Malware Feeds
Paid IP Reputation 234,470 99.1% 1,113 22,569
4 FB Malicious IPs 30,728 99.9% 129 3,873
Feodo IP Blacklist 1,440 47.7% 1.3 1,159
PA Lab Malware 1,184 84.6% 3.5 366
4Malc0de IP Blacklist 865 61.0% 2.9 86.6
PA Bambenek C2 IPs 785 92.1% 3.4 97.9
PA SSL Malware IPs 676 53.9% 2.9 84.0
PA Analyst 492 79.8% 2.1 149
PA Abuse.ch Ransomware 256 7.03% 1.6 117
PA Mal-Traffic-Anal 251 60.5% 0.9 72
Zeus IP Blacklist 185 49.1% 0.5 101
Exploit Feeds
4 Badips HTTP 305,020 97.6% 1,592 22,644
4 Badips FTP 285,329 97.5% 1,313 27,601
4 Badips DNS 46,813 99.3% 231 4,758
4 Badips RFI 3,642 91.4% 16 104
4 Badips SQL 737 79.5% 4.4 99.2
Spam Feeds
Paid IP Reputation 543,583 99.9% 3,280 6,551
4 Badips Postfix 328,258 90.5% 842 27,951
4 Badips Spam 302,105 89.3% 1,454 30,197
PA Botscout IPs 14,514 89.3% 49 4,390
Alienvault IP Reputation 11,292 96.6% 48 1,328

tors, controlled either by the feed (snapshot feeds) or the user
(event feeds). The longer the valid period is, the larger the
working set will be. Different snapshoot feeds have different
choices for this valid period: PA AlienVault IPs in the scan
category sets a 90-day valid period for every indicator added
to the feed, while PA Abuse.ch Ransomware uses a 30-day
period. Although we do not know the data expiration mecha-
nism used by snapshot feeds other than PA feeds, as there is
no related information recorded, we can still roughly estimate
this by checking the durations of their indicators—the time

USENIX Association 28th USENIX Security Symposium 855

Scan Botnet Brute-force Malware Exploit Spam

S
ca
n

B
o
tn
e
t

B
ru
te
-f
o
rc
e

M
a
lw
a
re

E
x
p
lo
it

S
p
a
m

Figure 1. Feed intersection for all IP feeds. Each row/column represents a
feed, shown in the same order as Table 1. Darker (more saturated) colors
indicate greater intersection.

between an indicator being added and being removed. Four
Paid IP Reputation feeds have more than 85% of durations
shorter than 10 days, while the one in the malware category
has more than 40% that span longer than 20 days. Feodo
IP Blacklist has over 99% of its indicators valid for our en-
tire measurement period, while over 70% of durations in the
Zeus IP Blacklist are less than 6 days. We did not observe a
clear pattern regarding how each snapshot feed handles the
expiration of indicators.

3.3 Differential Contribution and Intersection
The differential contribution metric measures the number of
indicators in one feed that are not in another. Equivalently,
we can consider the intersection of two feeds, which is the
number of elements in one feed that are present in the other,
normalized by the size of the first: |A∩B|/|A|. Figure 1 shows
the intersection relationship of all feeds in the study. Each cell
in the matrix represents the number of elements in both feeds,
normalized by the size of the feed spanning the rows on the
table. That is, A, in the expression above, ranges over rows,
and B over columns of the matrix. Darker (more saturated)
colors indicate greater intersection. Comparisons of feeds
within a category are shaded red and comparisons of feeds
between different categories are shaded blue. Note that the
matrix is asymmetric, because, in general, |A∩B|/|A| 6= |A∩
B|/|B|. Elements of the matrix are in the same order as in
Table 1.
F Finding: Feeds in scan and brute-force categories have
higher pairwise intersections: Half of the pairwise intersection

rates in two categories are greater than 5%. The scan category
has 29 out of 72 pairs (excluding self comparisons) with an
intersection rate larger than 10%, and the same case occurred
in 19 out of 72 pairs in the brute-force category.

On the other side, feeds in the botnet, exploit, malware and
spam category do not share much data between each other:
all 4 categories have more than three-quarters of pairwise
intersection rates less than 1%. A few big feeds in these cate-
gories can share a significant amount of data with some small
feeds in the same category—a characteristic that appears as
a dark vertical line within its category in Figure 1. Paid IP
Reputation in the malware category, for example, shares over
30% of 6 other malware feeds. But the intersections among
the vast majority of feeds in these 4 categories are low. This
finding is consistent with prior work [26, 42], but we provide
a more comprehensive view regarding different categories.

Figure 1 also shows the relation between feeds across dif-
ferent categories. We can clearly see a relation between scan
and brute-force feeds: multiple scan feeds have non-trivial
intersection with feeds in the brute-force category. In fact,
23.1% of all 760,263 brute-force IPs we collected are also
included by scan feeds in our dataset. There are also three
botnet feeds—PA CI Army, PA VoIP Blacklist and PA Com-
promised IPs—that have over 10% of its data shared with
multiple feeds in the scan category.

3.4 Exclusive Contribution
Exclusive contribution represents the number of indicators
in a feed that are in no other feeds. We calculate each feed’s
exclusive contribution among all the feeds in the same cat-
egory, emphasizing their uniqueness regarding the scope of
data they claim to report. Each feed’s exclusive contribution
is presented in Table 1 in column Exclusive, calculated based
on its volume.
F Finding: As we already observed in Section 3.3, botnet,
exploit and spam feeds have relatively low pairwise inter-
sections. Consequently, the feeds in these four categories
have high exclusive contribution rates in general: the me-
dian exclusive contribution rates of these four categories are
90.9%, 97.5% and 90.5%, respectively. The malware cate-
gory has a low median exclusive rate, since multiple small
feeds have non-trivial intersection with the largest feed Paid
IP Reputation, but the two largest feeds in malware both have
a exclusive rate over 99%. Scan and brute-force feeds have
more intersection within its category, and their exclusive rates
are lower: 62.0% median rate in scan and 62.7% in brute-
force, and the top two largest feeds in both categories have an
exclusive rate below 85%.

If we assume a process where a feed is more likely to have
popular elements, then smaller feeds would be subsumed by
larger feeds. Yet, for some small feeds like Malc0de IP Black-
list in the malware and PA Project Honeypot in the botnet
categories, even though they are several orders of magnitude
smaller than the largest feeds in their categories, a significant

856 28th USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Latency (Days)

PA Analyst

PA Packetmail ram*

Packetmail IPs

PA Lab Scan

FB Aggregator_1

DShield IPs

PA AlienVault IPs

Paid IP Reputation

(a) Latency distribution in scan feeds

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Latency (Days)

Badips Badbots

Badips Username*

Dangerrulez Brute

Haley SSH

Nothink SSH

FB Aggregator_2

Paid IP Reputation

Badips SSH

(b) Latency distribution in brute-force feeds

Figure 2. Distribution of indicators’ latency in scan and brute-force feeds.
Each box shows the latency distribution of shared IPs in the feed calculated in
hours from 25 percentile to 75 percentile, with the middle line indicating the
median. (“Badips Username*” here is the abbreviation for feed name Badips
Username Notfound; “PA Packetmail Ram*” for PA Packetmail Ramnode)

proportion of their indicators is still unique to the feed. When
we aggregate the data in each category, 73% of all scan feed
indicators are unique to a single feed and 88% of brute force
feed indicators are unique to one feed. For other categories,
over 97% of elements in the category are unique to a single
feed. This result agrees with previous work that most data in
threat intelligence feeds is unique [26, 42].

3.5 Latency
Feed latency measures how quickly a feed reports new threat
indicators. The sooner a feed can report potential threats, the
more valuable it is for consumers. The absolute latency of
an indicator in a feed is the time from the beginning of the
corresponding event until when the indicator shows up in the
feed. However, it is difficult to know the actual time when
an event begins from the threat intelligence data. Instead, we
measure the relative latency, which is the delay of an indicator
in one feed to be the time between its appearance in that feed
and the first seen among all the feeds.

Relative latency can only be calculated for indicators that
occur in at least two feeds. As discussed in Section 3.4, the
number of common indicators in the botnet, malware, exploit
and spam feeds is very low (fewer than 3% of elements occur
in more than one feed). Relative latency calculated for these
feeds is less meaningful. For this analysis, therefore, we focus

on scan and brute-force feeds.
Another issue is the time sensitivity of IP threats. An event

that originated from an IP address, like scanning activity or
a brute-force attack, will not last forever. If one scan feed
reports an IP address today and another feed reports the same
IP three months later, it would make little sense to consider
them as one scanning event and label the second occurrence as
being three months late. Unfortunately, there is no easy way
we can clearly distinguish events from each other. Here we
use a one-month window to restrict an event, assuming that
the same attack from one source will not last for more than 30
days; although arbitrary, it provides a reasonably conservative
threshold, and experimenting with other thresholds produced
similar overall results. More specifically, we calculate relative
latency by tracking the first occurrence of IPs in all feeds
in a category, then recording the latency of the following
occurrences while excluding ones that occur after 30 days. By
just using the first appearance of each IP as the base, we avoid
the uncertainty caused by multiple occurrence of indicators
and different valid periods used among feeds.

Figures 2a and 2b show the relative latency distribution
among feeds in the scan and brute-force categories, in hours.
We focus on just those feeds that have over 10% of their data
shared with others to ensure the analysis can represent the
latency distribution of the overall feed. There is one feed
in each category (PA Snort BlockList in scan and PA Brute-
Force in brute-force) that is excluded from the figure.
F Finding: From the distribution boxes we can see that Paid
IP Reputation in scan and Badips SSH in brute-force are
the fastest feeds in their category, as they have the lowest
median and 75th percentile latencies. On the other hand, PA
Analyst in scan and Badips Badbots in brute-force are the
slowest feeds. Figure 2a shows that all scan feeds except one
have their 25th percentile latency equal to 0, indicating these
feeds, across different sizes, all reported a significant portion
of their shared data first. A similar case also happens in the
brute-force category.

One may reasonably ask whether large feeds report data
sooner than small feeds. The result shows that this is not
always the case. FB Aggregator1 is the second smallest feed
in our scan category, yet it is no slower than several other feeds
which have over 10 times of its daily rate. Badips Badbots,
on the other hand, has the second largest rate in brute-force
category, but it is slower than all the other feeds in the brute-
force category. Feeds that are small in volume can still report
a lot of their data first.

Another factor that could affect latency is whether feeds
copy data from each other. For example, 93% of Dangerrulez
Brute also appears in Badips SSH. If this is the case, we
expect Dangerrulez Brute will be faster than Badips SSH
on reporting their shared data. However, we compared the
relative latency between just two feeds and found Badips
SSH reported 88% of their shared indicators first. We further
conducted this pairwise latency comparison between all feeds

USENIX Association 28th USENIX Security Symposium 857

Table 2. IP TI feeds accuracy overview. Unrt is fraction of unroutable ad-
dresses in each feed (Section 3.6). Alexa Top is the number of IPs intersected
with top Alexa domain IP addresses, and CDNs is the number of IPs inter-
sected with top CDN provider IP addresses.

Feed Added Unrt Alexa CDNs

Scan Feeds
PA AlienVault IPs 313,175 0.0% 1 0
DShield IPs 339,805 0.03% 68 62
PA Packetmail ramnode 200,568 <0.01% 0 0
Packetmail IPs 211,081 0.0% 0 0
Paid IP Reputation 200,915 1.65% 6 21
PA Lab Scan 169,037 <0.01% 0 0
PA Snort BlockList 12,957 0.42% 1 0
FB Aggregator1 5,601 0.0% 0 0
PA Analyst 1,451 0.41% 0 0
Botnet Feeds
PA Analyst 180,034 <0.01% 0 0
PA CI Army 76,125 <0.01% 0 0
Paid IP Reputation 73,710 1.66% 6 74
PA Botscout IPs 18,638 0.09% 1 0
PA VoIP Blacklist 9,290 0.32% 0 0
PA Compromised IPs 4,883 0.0% 0 0
PA Blocklist Bots 3,594 0.0% 0 0
PA Project Honeypot 1,947 0.0% 0 0
Brute-force Feeds
Badips SSH 456,605 0.19% 217 1
Badips Badbots 91,553 1.04% 46 1,251
Paid IP Reputation 87,524 0.03% 0 10
PA Brute-Force 31,555 0.0% 0 0
Badips Username Notfound 37,198 0.53% 4 0
Haley SSH 8,784 0.03% 0 0
FB Aggregator2 17,779 0.0% 0 0
Nothink SSH 20,325 1.51% 2 0
Dangerrulez Brute 8,247 0.0% 0 0
Malware Feeds
Paid IP Reputation 217,073 0.13% 291 3,489
FB Malicious IPs 29,840 2.14% 2 0
Feodo IP Blacklist 296 0.0% 0 0
PA Lab Malware 806 2.85% 0 0
Malc0de IP Blacklist 668 0.0% 8 11
PA Bambenek C2 IPs 777 9.13% 0 0
PA SSL Malware IPs 674 0.0% 0 0
PA Analyst 486 0.0% 0 0
PA Abuse.ch Ransomware 256 3.12% 0 0
PA Mal-Traffic-Anal 193 0.51% 0 0
Zeus IP Blacklist 67 0.0% 1 0
Exploit Feeds
Badips HTTP 305,020 0.67% 16 2,590
Badips FTP 285,329 1.33% 14 2
Badips DNS 46,813 0.50% 119 244
Badips RFI 3,642 2.22% 0 0
Badips SQL 737 1.89% 0 1
Spam Feeds
Paid IP Reputation 543,546 78.7% 1 0
Badips Spam 302,105 0.02% 19 0
Badips Postfix 193,674 1.29% 18 1
PA Botscout IPs 11,358 0.06% 0 0
Alienvault IP Reputation 10,414 0.07% 63 1,040

in scan, brute-force and malware (since Paid IP Reputation
shares non-trivial amount of data with a few small feeds in the
malware category), and did not see a clear latency advantage
between any two feeds. Note that this observation does not
prove there is no data copying, since the shared data between
two feeds might partially come from copying and partially
from the feeds’ own data collection. Furthermore, our latency
analysis is at a one-hour granularity.

3.6 Accuracy
Accuracy measures the rate of false positives in a feed. A false
positive is an indicator that data is labeled with a category to
which it does not belong. For example, an IP address found
in a scan feed that has not conducted any Internet scanning is
one such false positive. As well, even if a given IP is in fact
associated with malicious activity, if it is not unambiguously
actionable (e.g., Google’s DNS at 8.8.8.8 is used by malicious
and benign software alike) then for many use cases it must also
be treated as a false positive. False positives are problematic
for a variety of reasons, but particularly because they can have
adverse operational consequences. For example, one might
reasonably desire to block all new network connections to
and from IP addresses reported as hosting malicious activity
(indeed, this use is one of the promises of threat intelligence).
False positives in such feeds, though, could lead to blocking
legitimate connections as well. Thus, the degree of accuracy
for a feed may preclude certain use cases.

Unfortunately, determining which IPs belong in a feed and
which do not can be extremely challenging. In fact, at any
reasonable scale, we are unaware of any method for unam-
biguously and comprehensively establishing “ground truth”
on this matter. Instead, in this section we report on a proxy
for accuracy that provides a conservative assessment of this
question. To wit, we assemble a whitelist of IP addresses that
either should not reasonably be included in a feed, or that, if
included, would cause significant disruption. We argue that
the presence of such IPs in a feed are clearly false positives
and thus define an upper bound on a feed’s accuracy. We
populate our list from three sources: unroutable IPs, IPs as-
sociated with top Alexa domains, and IPs of major content
distribution networks (CDNs).
Unroutable IPs. Unroutable IPs are IP addresses that were
not BGP-routable when they first appeared in a feed, as es-
tablished by contemporaneous data in the RouteViews ser-
vice [44]. While such IPs could have appeared in the source
address field of a packet (i.e., due to address spoofing), it
would not be possible to complete a TCP handshake. Feeds
that imply that such an interaction took place should not in-
clude such IPs. For example, feeds in the Brute-force category
imply that the IPs they contain were involved in brute-force
login attempts, but this could not have taken place if the IPs
are not routable. While including unroutable addresses in a
feed is not, in itself, a problem, their inclusion suggests a qual-
ity control issue with the feed, casting shade on the validity
of other indicators in the feed.

To allow for some delays in the feed, we check if an IP
was routable at any time in the seven days prior to its first
appearance in a feed, and if it had, we do not count it as
unroutable. Table 2, column Unrt, shows the fraction of IP
indicators that were not routable at any time in the seven
days prior to appearing in the feed. This analysis is only
conducted for the IPs that are added after our measurement
started. The number of such IPs is shown in column Added,

858 28th USENIX Security Symposium USENIX Association

and the unroutable fraction shown in Unrt is with respect to
this number.
Alexa. Blocking access to popular Internet sites or triggering
alarms any time such sites are accessed would be disruptive
to an enterprise. For our analysis, we periodically collected
the Alexa top 25 thousand domains (3–4 times a month)
over the course of the measurement period [2]. To address
the challenge that such lists can have significant churn [33],
we restrict our whitelist to hold the intersection of all these
top 25K lists (i.e., domains that were in the top 25K every
time we polled Alexa over our 8-month measurement period),
which left us with 12,009 domains. We then queried DNS for
the A records, NS records and MX records of each domain,
and collected the corresponding IP addresses. In total, we
collected 42,436 IP addresses associated with these domains.
We compute the intersection of these IPs with TI feeds and
show the results in column Alexa in Table 2.
CDNs. CDN providers serve hundreds of thousands of sites.
Although these CDN services can (and are) abused to conduct
malicious activities [9], their IP addresses are not actionable.
Because these are fundamentally shared services, blocking
such IP addresses will also disrupt access to benign sites
served by these IPs. We collected the IP ranges used by 5 pop-
ular CDN providers: AWS CloudFron [12], Cloudflare [11],
Fastly [18], EdgeCast [16] and MaxCDN [25]. We then check
how many IPs in TI feeds fall into these ranges. Column
CDNs in Table 2 shows the result.
F Finding: Among the 47 feeds in the table, 33 feeds have
at least one unroutable IP, and for 13 of them, over 1% of the
addresses they contain are unrouteable. Notably, the Paid IP
Reputation feed in the spam category has an unroutable rate
over 78%. Although it is not documented, a likely explanation
is that this feed may include unroutable IPs intentionally, as
this is a known practice among certain spam feeds. For exam-
ple, the Spamhaus DROP List [41] includes IP address ranges
known to be owned or operated by malicious actors, whether
currently advertised or not. Thus, for feeds that explicitly do
include unroutable IPs, their presence in the feeds should not
necessarily be interpreted as a problem with quality control.

We further checked feeds for the presence of any “reserved
IPs” which, as documented in RFC 8190, are not globally
routable (e.g., private address ranges, test networks, loopback
and multicast). Indeed, 12 feeds reported at least one reserved
IP, including four of the Paid IP Reputation feeds (excepting
the spam category), six of the Badips feeds, and the FB Mali-
cious IPs and DShield IPs feeds. Worse, the Paid IP Reputa-
tion feeds together reported over 100 reserved IPs. Since such
addresses should never appear on a public network, reporting
such IPs indicates that a feed provider fails to incorporate
some basic sanity checks on its data.

There are 21 feeds that include IPs from top Alexa do-
mains, as shown in column Alexa in Table 2. Among these
IPs there are 533 A records, 333 IPs of MX records and 63
IPs of NS records. The overlapped IPs include multiple in-

stances from notable domains. For example, the IP addresses
of www.github.com are included by Malc0de IP Blacklist.
Paid IP Reputation in the malware category contains the
IP address for www.dropbox.com. Alienvault IP Reputation
contains the MX record of groupon.com, and Badips SSH
also contains the IP addresses of popular websites such as
www.bing.com.

Most of the feeds we evaluated do not contain IPs in CDN
ranges, yet there are a few (including multiple Paid IP Repu-
tation feeds, Badips feeds and Alienvault IP Reputation) that
have significant intersection with CDN IPs. Alienvault IP Rep-
utation and Badips feeds primarily intersect with Cloudflare
CDN, while most of the overlap in the Paid IP Reputation
malware category overlaps with AWS CloudFront.

Overall, the rate of false positives in a feed is not strongly
correlated with its volume. Moreover, certain classes of false
positives (e.g., the presence of Top Alex IPs or CDN IPs)
seem to be byproducts of how distinct feeds are collected
(e.g., Badips feeds tend to contain such IPs, irrespective of
volume). Unsurprisingly, we also could find not correlation
between a feed’s latency and its accuracy.

3.7 Coverage
The coverage metric provides a quantitative measure of how
well a feed captures the intended threat. A feed with perfect
coverage would include all indicators that belong in a category.
Unfortunately, as discussed above, there is no systematic way
for evaluating the exact accuracy or coverage of a feed since
it is unrealistic to obtain ground truth of all threat activities
on the Internet.

However, there are some large-scale threat activities that
are well-collected and well-studied. One example is Inter-
net scanning. Researchers have long been using “Internet
telescopes” to observe and measure network scanning activi-
ties [6, 15, 29]. With a large telescope and well-defined scan
filtering logic, one can obtain a comprehensive view of global
scanning activities on the Internet.

To this end, we collected three months of traffic (from
January 1st to March 31st 2018) using the UCSD network
telescope [38], which monitors a largely quiescent /8 network
comprising over 16 million IP addresses. We then used the de-
fault parameters of the Bro IDS [7] to identify likely scanning
traffic, namely flows in which the same source IP address
is used to contact 25 unique destination IP addresses on the
same destination port/protocol within 5 minutes. Given the
large number of addressed being monitored, any indiscrimi-
nate scanner observed by TI feeds will likely also be seen in
our data. Indeed, by intersecting against this telescope data we
are able to partially quantify the coverage of each TI scanning
feed.

The scanners we collected from the telescope consist of
20,674,149 IP addresses. The total number of IPs in all the
scan feeds during this period is 425,286, which covers only
1.7% (363,799 shared IPs) of all the telescope scan IPs. On the

USENIX Association 28th USENIX Security Symposium 859

1K 10K 100K 1M

Scanner Size

10%

20%

30%

40%

50%

C
o
v
e
ra

g
e

PA AlienVault IPs

DShield IPs

PA Packetmail ram*

Packetmail IPs

Paid IP Reputation

PA Lab Scan

PA Snort BlockList

FB Aggregator_1

PA Analyst

Figure 3. The coverage of each feed on different sizes of scanners. Y axis is
the proportion of scanners of a given size or larger that are covered by each
feed.

other hand, telescope scanners intersect with 85% of all IPs
in scan feeds. When looking at each feed, PA AlienVault IPs,
DShield IPs Packetmail IPs, PA Lab Scan and PA Packetmail
ramnode all have over 85% of their data intersected with
telescope scanners; the other four, though, have less than 65%
of their data shared (and the rate for PA Snort BlockList is
only 8%).

To further understand how well each scan feed detects scan-
ning activities, we measure how different sizes of scanners
in the telescope are covered by each feed. Here, scanner size
means how many IPs a scanner has scanned in the telescope
within a day. Figure 3 shows the coverage rate of each feed
over different sizes of scanners, ranging from 1,000 to 1 mil-
lion. (There are 7,212,218 scanners from the telescope whose
sizes are over 1K, 271,888 that are over 100K and 17,579 are
over 1 million.)
F Finding: The union of all the scan IPs in the feeds covers
less than 2% of the scanners collected by the telescope. Even
if we only look at the scanners with sizes larger than 10,000,
the overall coverage is still around 10%, suggesting the cover-
age capability of scan feeds is very limited. The graph shows
that, as the scanner size increases, the coverage of each feed
over the datasets also increases, and large feeds cover more
percent of telescope scanners than small feeds. This trend
aligns with the intuition that scan feeds tend to capture more
extensive scanners.

It is surprising that the small scan feeds in our collection
have a smaller percentage of their IPs shared with telescope
scanners. This contradicts the idea that small feeds would
contain a larger percentage of extensive scanners (that would
most likely also be observed by the telescope).

4 File Hash Threat Intelligence
File hashes in a threat intelligence feed are indicators for ma-
licious files. It is one of the most lightweight ways to mark
files as suspicious. One can incorporate this data to block ma-
licious downloads, malicious email attachments, and malware.
Likewise, file hashes can be used to whitelist applications and

these feeds can be used to ensure malicious files do not appear
in a customer’s whitelist. In this section we present our analy-
sis on eight file hash feeds, also collected from December 1st,
2017 to July 20th, 2018. We use the same metrics defined in
Section 2.3.

The file hash feeds we collected use a range of different
hash functions to specify malicious files, including MD5,
SHA1, SHA256 and SHA512 (and some feeds provided val-
ues for multiple different hash functions to support interoper-
ability). Since most indicators in our dataset are MD5s, we
have normalized to this representation by using other feeds
and the VirusTotal service to identify hash aliases for known
malicious files (i.e., which MD5 corresponds to a particualr
SHA256 value).

4.1 Volume
File hashes, unlike IP threat data, are not transient—a file
does not change from malicious to benign—and thus a far
simpler volume analysis is appropriate. We report volume as
the number of new hashes that are added to each feed during
our measurement period.

As seen in Table 3, we examine each feed’s volume and
average daily rate. Like IP feeds, file hash feeds also vary
dramatically in volume. The majority of the hashes are con-
centrated in three feeds: FB Malware, PA Malware Indicators,
and PA Analyst, which also exhibit the highest daily rates.
The other feeds are multiple order of magnitude smaller com-
paratively.

4.2 Intersection and Exclusive Contribution
As we mentioned earlier, to conduct intersection and exclu-
sive analysis of file hash feeds, we need to convert indicators
into the same hash type. Here we convert non-MD5 hashes
into MD5s, using either metadata in the indicator itself (i.e.,
if it reports values for multiple hash functions) or by querying
the source hash from VirusTotal [45] which reports the full
suite of hashes for all files in its dataset. However, for a small
fraction of hashes we are unable to find aliases to conver
them to the MD5 representation and must exclude them from
the analysis in this section. This filtering is reflected in Ta-
ble 3, in which the Volume column represents the number of
unique hashes found in each feed and the Converted column
is the subset that we have been able to normalize to a MD5
representation.
F Finding: The intersections between hash feeds are mini-
mal, even among the feeds that have multiple orders of magni-
tude differences in size. Across all feeds, only PA Analyst has
relatively high intersections: PA Analyst shares 27% of PA
OSINT’s MD5s and 13% of PA Twitter Emotet’s MD5s. PA
Malware Indicators has a small intersection also with these
two feeds. All other intersections are around or less than 1%.
Consequently, the vast majority of MD5s are unique to one
feed, as recorded in column Exclusive in Table 3. The “lowest”
exclusivity belongs to PA Twitter Emotet and PA OSINT (still

860 28th USENIX Security Symposium USENIX Association

Table 3. File hash feeds overview. The second column group presents feed volume, average daily rate, the number of converted MD5s (Section 4.2) and exclusive
proportion. Not in VT is fraction of hashes that are not found in VirusTotal, Not det. the fraction of hashes that are found in VirusTotal but are not labeled as
malicious by any products, and Detected the fraction that are found in VirusTotal and are labeled malicious by at least one product. Column Not in SD shows
the fraction of hashes in a feed that are not in Shadowserver Bin Check. In NSRL and In AppInfo show the absolute number of hashes found in Shadowserver
(Section 4.3). Exclusive is based on the MD5-normalized hashes counted under Converted. All the other percentages in the table are based on Volume.

Feed Volume Avg. Rate Converted Exclusive Not in VT Not det. Detected Not in SD In NSRL In AppInfo

FB Malware 944,257 4,070 944,257 >99.99% 37.41% 50.50% 12.09% 99.89% 442 706
PA Malware Indicators 39,702 171 39,702 98.73% 0.02% 0.04% 99.94% >99.99% 2 0
PA Analyst 38,586 166 37,665 97.97% 4.26% 2.82% 92.92% 99.95% 8 19
PA Twitter Emotet 1,031 4.44 960 77.29% 11.74% 0.78% 87.49% 99.81% 0 2
PA OSINT 829 3.57 783 71.65% 19.06% 0.84% 80.10% 99.88% 1 0
PA Sandbox 298 1.28 115 95.65% 72.81% 0.34% 26.85% 100% 0 0
PA Abuse.ch 267 1.15 3 100% 98.88% 0.75% 0.37% 100% 0 0
PA Zeus Tracker 17 0.07 17 100% 88.24% 5.88% 5.88% 100% 0 0

77.29% and 71.65%, respectively). All other feeds showcase
an over 95% exclusive percentage, demonstrating that most
file hash feeds are distinct from each other.

Due to the different sources of malware between feeds, a
low intersection is to be expected in some cases. For exam-
ple, PA Twitter Emotet and PA Zeus Tracker should have no
intersection, since they are tracking different malware strains.
The other, more general feeds could expect some overlap, but
mostly exhibit little to no intersection. Considering the sheer
volume of the FB Malware feed, one might expect it would
encapsulate many of the smaller feeds or at least parts of them.
This is not the case, however, as FB Malware has a negligible
intersection with all other feeds.

Due to the lack of intersection among the feeds, we omit
the latency analysis of the hash feeds, as there is simply not
enough intersecting data to conclude which feeds perform
better with regards to latency.

4.3 Accuracy
Assessing the accuracy of file hash feeds presents a problem:
there is no universal ground truth to determine if a file is mali-
cious or benign. Thus, to gauge the accuracy of the feeds, we
use two metrics: a check for malicious hashes against Virus-
Total, and a check for benign hashes against Shadowserver’s
Bin Check service. Note that all the percentages discussed
below are based on the Volume of each feed.

4.3.1 VirusTotal
VirusTotal is a service that is often used when analyzing
malware to get a base of information about a suspected file.
Anyone can upload a file to be scanned. Upon submission,
these files will be scanned by more than 70 antivirus scanners,
which creates a report on how many antivirus scanners mark
it malicious, among other information. In this analysis, we
query VirusTotal for the hashes in each file hash feed and then
inspect the percent of hashes that are marked as malicious
and how many AV scanners have recorded them. Due to the
high volume of the FB Malware feed and the query rate limit
of VirusTotal, we randomly sampled 80,000 hashes from the

0 10 20 30 40 50 60

Number of VirusTotal Scanner

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e
rc

e
n
t

o
f

H
a
sh

e
s

PA Analyst

PA Zeus Tracker

PA Twitter Emotet

FB Malware

PA Malware Indicators

PA OSINT

PA Sandbox

PA Abuse.ch

Figure 4. VirusTotal detection distribution. Each point means the proportion
of indicators (Y value) in a feed that is detected by over X number of AV
scanners in VirusTotal.

feed for this analysis.
Table 3 shows a breakdown of the base detection rates

for each feed from VirusTotal. As the PA feeds decrease in
volume, the rates at which they are found in VirusTotal also
decreases. The larger PA feeds have a much higher detection
rate than their smaller counterparts. On the other hand, FB
Malware only has 37% of its data detected by antivirus scan-
ners and 50% in VirusTotal with no detection despite being
the largest feed. This could indicate that FB Malware focuses
on threats that specifically target Facebook and that are not as
relevant to most VirusTotal users, such as malicious browser
extensions [14,20,22]. This might undermine the limited cov-
erage of VirusTotal as an oracle to detect targeted threats that
are not of broader interest.

To further understand how the scanners in VirusTotal report
the feed’s data, we plot a graph of what percentage of hashes
in each feed are detected by how many VirusTotal scanners.
As seen in Figure 4, four feeds have more than 50% of their
samples detected by over 20 scanners. PA Malware Indicators
and PA Twitter Emotet did not experience a large detection
drop before 35 scanners, indicating that most indicators in the

USENIX Association 28th USENIX Security Symposium 861

two feeds are popular malicious files recognized by many AV
vendors. While PA Sandbox has a large percent of its hashes
not presented in VirusTotal, over 70% of its samples that are
detected are marked by over 20 AV scanners, showcasing a
high confidence detection.

4.3.2 Shadowserver
To more fully gauge the accuracy of the file hash feeds,
we also examined how each feed measured against Shad-
owserver’s Bin Check Service [34]. The service checks
file hashes against NIST’s National Software Registry List
(NSRL) in addition to Shadowserver’s own repository of
known software. Table 3 details how each feed compares with
Shadowserver’s Bin Check service.

It might be expected that there would be no hash found with
Shadowserver’s Bin Check service, but it is not the case. Some
of the samples from the feeds that appear in Shadowserver
are well known binaries such as versions of Microsoft Office
products, Window’s Service Packs, calc.exe, etc. In the event
malware injects itself into a running process, it remains plau-
sible that some of these well-known binaries find their way
into TI feeds from users wrongly attributing maliciousness.
While FB Malware has over one thousand hashes in Shad-
owserver, this is not a widespread issue, as all feeds have <1%
of their hashes contained within Shadowserver’s Bin Check
service. This showcases that while there are a few exceptions,
the feeds mostly do not contain well-known, benign files.
F Finding: Each PA feed has a negligible rate of occurrence
within Shadowserver regardless of their VirusTotal detection,
showing they do not contain generic false positives. Larger
feeds exhibit high VirusTotal detection rates except for FB
Malware, while small feeds have relatively low detection
rates. This suggests that small hash feeds might focus more
on specific malicious files that are not widely known. FB
Malware has a low VirusTotal occurrence despite its size and
has over one thousand hashes in Shadowserver, but its overall
low percentage of hashes within Shadowserver indicates that
it does not contain many known files and might have threats
not typically recognized by VirusTotal’s scanners.

5 Longitudinal Comparison
In addition to the measurement period considered so far (De-
cember 1, 2017 to July 20, 2018), we also analyzed data from
the same IP feeds from January 1, 2016 to August 31, 2016.
These two measurement periods, 23 months apart, allow us
to measure how these IP feeds have changed in two years.
Table 4 summarizes the differences between these two mea-
surement periods. In the table, 2018 represents the current
measurement period and 2016 the period January 1, 2016 to
August 31, 2016.
Volume. As shown in Table 4, feed volume has definitely
changed after two years. Among 43 IP feeds that overlap
both time periods, 21 have a higher daily rate compared with
2 years ago, 15 feeds have a lower rate, and 7 feeds do not

Table 4. Data changes in IP feeds compared against the ones in 2016, Avg.
Rate shows the percentage of daily rate changed over the old feeds. The two
columns under Unrt show the unroutable rates of feeds in 2016 and 2018
separately. The two columns under CDN present the number of IPs fall in
CDN IP ranges in old and new data.

Unroutable CDN

Feed Avg. Rate 2016 2018 2016 2018

Scan Feeds
PA AlienVault IPs +1,347% 0.0% 0.0% 0 0
PA Packetmail ram* +733% <0.01% <0.01% 0 0
Packetmail IPs +135% 0.0% 0.0% 0 0
Paid IP Reputation −57% 8.73% 1.65% 910 21
PA Lab Scan −1% 0.0% <0.01% 0 0
PA Snort BlockList −97% <0.01% 0.42% 1 0
FB Aggregator1 +332% 0.0% 0.0% 6 0
PA Analyst −44% 0.0% 0.41% 0 0
Botnet Feeds
PA CI Army +114% <0.01% <0.01% 0 0
Paid IP Reputation −39% 0.63% 1.66% 15 74
PA Botscout IPs +1% 0.01% 0.09% 1 0
PA VoIP Blacklist +252% 0.0% 0.32% 0 0
PA Compromised IPs −36% 0.10% 0.0% 0 0
PA Blocklist Bots −95% 0.0% 0.0% 0 0
PA Project Honeypot +63% 0.0% 0.0% 0 0
Brute-force Feeds
Badips SSH +30% 0.07% 0.19% 0 1
Badips Badbots +1,732% 0.0% 1.04% 187 1,251
Paid IP Reputation −62% 6.55% 0.03% 335 10
PA Brute-Force −72% 0.0% 0.0% 0 0
Badips Username* +3,040% 0.0% 0.53% 0 0
Haley SSH +428% 0.04% 0.03% 0 0
FB Aggregator2 +387% 0.12% 0.0% 0 0
Nothink SSH +886% 0.56% 1.51% 0 0
Dangerrulez Brute +0% 0.0% 0.0% 1 0
Malware Feeds
Paid IP Reputation −36% 0.18% 0.13% 15265 3,489
FB Malicious IPs −77% 6.81% 2.14% 264 0
Feodo IP Blacklist +0% 0.0% 0.0% 0 0
Malc0de IP Blacklist −9% 0.0% 0.0% 132 11
PA Bambenek C2 IPs +79% 0.0% 9.13% 0 0
PA SSL Malware IPs −34% 0.0% 0.0% 0 0
PA Analyst −93% 0.34% 0.0% 0 0
PA Abuse.ch* −99% 0.49% 3.12% 0 0
PA Mal-Traffic-Anal −53% 0.0% 0.51% 0 0
Zeus IP Blacklist −66% 0.0% 0.0% 6 0
Exploit Feeds
Badips HTTP +326% 0.30% 0.67% 436 2,590
Badips FTP +556% 0.01% 1.33% 0 2
Badips DNS +9,525% 0.17% 0.50% 7 244
Badips RFI +226% 0.0% 2.22% 0 0
Spam Feeds
Paid IP Reputation +133% 59.3% 78.7% 0 0
Badips Spam +12,767% 0.0% 0.02% 0 0
Badips Postfix −53% <0.01% 1.29% 0 1
PA Botscout IPs +18% 0.0% 0.06% 0 0
AlienVault IP Rep +8% 0.57% 0.07% 479 1,040

change substantially (the difference is below 20%). Volume
can change dramatically over time, such as PA AlienVault IPs
in the scan category which is 13 times larger than before. On
the other hand, a feed like PA Blocklist Bots is now over 90%
smaller.
Intersection and Exclusive Contribution. Despite the vol-
ume differences, the intersection statistics between feeds are
largely the same across two years, with feeds in scan and
brute-force having high pairwise intersections and feeds in
other categories being mostly unique. Certain specific pair-
wise relations also did not change. For example, Badips SSH
still shared over 90% of data in Dangerrulez Brute back in

862 28th USENIX Security Symposium USENIX Association

2016, and Paid IP Reputation in malware was still the only
feed that has a non-trivial intersection with multiple small
feeds. Again, most data was exclusive to each feed two years
ago: Across all six categories more than 90% of the indicators
are not shared between feeds.
Latency. The latency relationship between feeds was also
similar: timely feeds today were also timely two years ago,
and the same with tardy feeds.
Accuracy. Feeds have more unroutable IPs now than before
as shown in Table 4: In 2016, 22 of the 43 IP feeds had at
least 1 unroutable IP; four feeds had unroutable rates over
1%. When checking the intersection with popular CDNs, the
feeds that contain IPs in CDN ranges two years ago are also
the ones that have these IPs today.
Shared indicators 2016–2018. We compared the data we
collected from each feed in the two time periods, and found
that 30 out of 43 feeds in 2018 intersect with their data from
two years ago, and 9 feeds have an intersection rate over 10%.
Three feeds in malware category, namely Feodo IP Blacklist,
PA Abuse.ch Ransomware and Zeus IP Blacklist, have over
40% of their data shared with the past feed, meaning a large
percent of C&C indicators two years ago are still identified
by the feeds as threats today. Feeds in the botnet category,
however, are very distinct from the past, with all feeds having
no intersection with the past except Paid IP Reputation.

6 Absolute Latency
We defined our latency metric in this paper as relative latency
between TI sources, since it is easy to compute and allows
consumers to compare feeds to each other on this aspect.
However, it is also critical to know about the absolute latency
distribution of indicators. Absolute latency represents how
fast a feed can actually report a threat, which directly decides
the effectiveness of the data when used in a pro-active way. As
we already discussed in Section 3.5, absolute latency is hard
to measure, as we do not have ground truth of the underlying
threat.

In Section 3.7, we used an Internet telescope as our approxi-
mation for ground truth to measure the coverage of scan feeds.
In Section 4.3, we used VirusTotal as an oracle to measure
the accuracy of file hash feeds. Although these sources are
not real ground truth and it is unclear how far away they are,
these large and well-managed sources can help us, to a certain
extent, profile the performance of TI feeds. In this section,
we use these two sources again to approximate the absolute
latency of indicators in scan IP feeds and malicious file hash
feeds.

More specifically, we measure the latency of IPs in scan
feeds relative to the first occurrence time of the same IP in the
scanners collected from the telescope. Considering the mas-
sive size of the telescope, it should presumably detect scanners
much sooner after the scanning event actually happened. We
measure latency of file hashes relative to the first_seen
timestamps queried from VirusTotal. The first_seen times-

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Latency (Days)

PA Analyst

PA AlienVault IPs

DShield IPs

Packetmail IPs

PA Packetmail ram*

PA Lab Scan

FB Aggregator_1

Paid IP Reputation

(a) Latency distribution in scan feeds relative to the Internet telescope

−50 0 50 100 150 200 250 300 350 400 450

Latency (Days)

PA OSINT

PA Analyst

PA Twitter Emotet

PA Sandbox

PA Malware Indicators

FB Malware

(b) Latency distribution in file hash feeds relative to VirusTotal

Figure 5. Distribution of indicators’ latency in scan and file hash feeds. Note
that the scan feeds’ distribution are calculated in hour granularity while the
file hash feeds’ distribution are calculated in day granularity.

tamp represents the time when the corresponding file is first
uploaded to VirusTotal. VirusTotal is a very popular service
and it is a convention for many security experts to upload new
malware samples to VirusTotal once they discovered them.
Therefore, this timestamp roughly entails when the security
community first noticed the malicious file and can be a good
approximation for absolute latency.

Figure 5 show the latency distribution of each feed, using
the same plotting convention as in Section 3.5. Some feeds
are not shown in the figure as there are too little data points
in those feeds to reason about distribution.
F Finding: Comparing Figure 5a to Figure 2a, we can see
that the median latency of feeds are all larger. This is consis-
tent with our assumption that a large sensor tends to receive
indiscriminate scanners sooner. Scan feeds’ median lantecy
are one to three days relative to the Internet telescope, except
PA Analyst, whose median latency is almost nine days. The
order of median latency between feeds changed compared
with Figure 2a, but since the original relative median latencies
among scan feeds are very close, the new order here is more
likely to be statistics variances. Also, note that although the
PA AlienVault IPs seems much slower than it is in Figure 2a,
its 75 percentile latency is still the second smallest one.

On the other hand, the latency distributions of hash feeds
vary more dramatically. PA Malware Indicators, PA Sandbox
and PA Twitter Emotet are almost as fast as VirusTotal: all
three feeds have 25 percentile and median latency equal to

USENIX Association 28th USENIX Security Symposium 863

zero. PA OSINT and PA Analyst are comparatively much
slower, and PA OSINT even has a 75 percentile latency of
1680 days. This might be because of the heterogeneous nature
of malware feeds. The figure also shows that feed volumes do
not imply their latency, as PA Analyst and FB Malware are
much slower than the small hash feeds.

Figure 5 demonstrates that the Internet telescope and Virus-
Total are indeed good approximations for absolute latency
measurement, as most indicators in TI feeds are observed rel-
atively later. However, every scan feed has over 2% of its indi-
cators detected earlier than the telescope did. FB Aggregator1
and DShield IPs even have over 10% of their indicators ob-
served earlier. There is also a similar case in file hash feeds.
This aligns with our observation in Section 3.5 that small
feeds can still report a non-trivial amount of their data first.
Another interesting observation is that both Facebook feeds,
FB Aggregator1 and FB Malware, have a large percent of
their data observed earlier than the telescope or VirusTotal.
This again suggests that Facebook (and its threat intelligence
partners) might face more targeted threats, so those threats
will be first observed by Facebook.

7 Discussion
7.1 Metrics Usage
Threat intelligence has many different potential uses. For ex-
ample, analysts may consume threat data interactively during
manual incident investigations, or may use it to automate the
detection of suspicious activity and/or blacklisting. When not
itself determinative, such information may also be used to
enrich other data sources, informing investigations or aiding
in automatic algorithmic interventions. We have introduced a
set of basic threat intelligence metrics—volume, intersection,
unique contribution, latency, coverage and accuracy—that
can inform and quantify each of those uses. Depending on a
number of factors, such as the intended use case and the cost
of false positives and negatives, some of these metrics will
become more or less important when evaluating a TI source.
For example, a feed with poor accuracy but high coverage
might be ideal when an analyst is using a TI source interac-
tively during manually incident investigations (since in this
case, the analyst, as a domain expert, can provide additional
filtering of false positives). Similarly, latency might not be a
critical metric in a retrospective use case (e.g., post-discovery
breach investigation). However, if an organization is looking
for a TI source where the IPs are intended to be added to a
firewall’s blacklist then accuracy and latency should likely
be weighted over coverage, assuming that blocking benign
activity is more costly.

Another common real-world scenario is that a company
has a limited budget to purchase TI sources and has a specific
set of threats (i.e., botnet, brute-force) they are focused on
mitigating. In such cases, the metrics we have described can
be used directly in evaluating TI options, biasing twoards

sources that maximize coverage of the most relevant threats
while limiting intersection.

7.2 Data Labeling
Threat intelligence IP data carries different meanings. To
properly use this data, it is critical to know what the indicators
actually mean: whether they are Internet scanners, members
of a botnet or malicious actors who had attacked other places
before. We have attempted to group feeds by their intended
meaning in our analysis.

However, this category information, which primarily comes
from TI sources themselves, is not always available. Feeds
such as Alienvault IP Reputation and Facebook Threat Ex-
change sources contain a significant number of indicators
labeled “Malicious” or “Suspicious.” The meanings of these
indicators are unclear, making it difficult for consumers to
decide how to use the data and the possible consequences.

For feeds that provide category information, it is sometimes
too broad to be meaningful. For example, multiple feeds in
our collection simply label their indicators as “Scanner.” Net-
work scanning can represent port scanning (by sending SYN
packets), or a vulnerability scan (by probing host for known
vulnerabilities). The ambiguity here, as a result of ad-hoc data
labeling, again poses challenges for security experts when
using TI data.

Recently, standard TI formats have been proposed and de-
veloped, notably IODEF [19], CybOX [13] and STIX [37],
that try to standardize the threat intelligence presentation and
sharing. But these standards focus largely on the data for-
mat. There is room to improve these standards by designing a
standard semantics for threat intelligence data.

7.3 Limitations
There are several questions that our study does not address.
We attempted to collect data from a diverse set of sources,
including public feeds, commercial feeds and industrial ex-
change feeds, but it is inherently not comprehensive. There are
some prohibitively expensive or publication-restricted data
sources that are not available to us. More specialized measure-
ment work should be done in the future to further analyze the
performance of these expensive and exclusive data sources.

A second limitation is our visibility into how different com-
panies use threat intelligence operationally. For a company,
perhaps the most useful kind of metric measures how a threat
intelligence source affects its main performance indicators
as well as its exposure to risk. Such metrics would require
a deep integration into security workflows at enterprises to
measure the operation effect of decisions made using threat
intelligence. This would allow CIOs and CSOs to better un-
derstand exactly what a particular threat intelligence product
contributes to a company. As researchers, we do not use TI
operationally. A better understanding of operational needs
would help refine our metrics to maximize their utility for
operations-driven consumers.

864 28th USENIX Security Symposium USENIX Association

The third limitation is the lack of ground truth, a limita-
tion shared by all the similar measurement work. It is simply
very difficult to obtain the full picture of a certain category
of threat, making it very challenging to precisely determine
accuracy and coverage of feeds. In this study, we used data
from an Internet telescope and VirusTotal as a close approx-
imation. There are also a handful of cases where a security
incident has been comprehensively studied by researchers,
such as the Mirai study [4], and such efforts can be used to
evaluate certain types of TI data. But such studies are few in
number. One alternative is to try to establish the ground truth
for a specific network. For example, a company can record
all the network traffic going in and out of its own network,
and identify security incidents either through its IDS system
or manual forensic analysis. Then it can evaluate the accu-
racy and coverage of a TI feed under the context of its own
network. This can provide a customized view of TI feeds.

8 Related Work
Several studies have examined the effectiveness of blacklist-
based threat intelligence [23, 31, 32, 35, 36]. Ramachan-
dran et al. [32] showed that spam blacklists are both incom-
plete (missing 35% of the source IPs of spam emails captured
in two spam traps), and slow in responding (20% of the spam-
mers remain unlisted after 30 days). Sinha et al. [36] further
confirmed this result by showing that four major spam black-
lists have very high false negative rates, and analyzed the
possible causes of the low coverage. Sheng et al. [35] stud-
ied the effectiveness of phishing blacklists, showing the lists
are slow in reacting to highly transient phishing campaigns.
These studies focused on specific types of threat intelligence
sources, and only evaluated their operational performance
rather than producing empirical evaluation metrics for threat
intelligence data sources.

Other studies have analyzed the general attributes of threat
intelligence data. Pitsillidis et al. [30] studied the characteris-
tics of spam domain feeds, showing different perspectives of
spam feeds, and demonstrated that different feeds are suitable
for answering different questions. Thomas et al. [42] con-
structed their own threat intelligence by aggregating the abuse
traffic received from six Google services, showing a lack of
intersection and correlation among these different sources.
While focusing on broader threat intelligence uses, these stud-
ies did not focus on generalizable threat metrics that can be
extended beyond the work.

Little work exists that defines a general measurement
methodology to examine threat intelligence across a broad
set of types and categories. Metcalf et al. [26] collected and
measured IP and domain blacklists from multiple sources,
but only focused on volume and intersection analysis. In con-
trast, we formally define a set of threat intelligence metrics
and conduct a broad and comprehensive study over a rich
variety of threat intelligence data. We conducted our measure-
ment from the perspective of consumers of TI data to offer

guidance on choosing between different sources. Our study
also demonstrated the limitation of threat intelligence more
thoroughly, providing comprehensive characteristics of cyber
threat intelligence that no work had addressed previously.

9 Conclusion
This paper has focused on the simplest, yet fundamental, met-
rics about threat intelligence data. Using the proposed met-
rics, we measured a broad set of TI sources, and reported
the characteristics and limitations of TI data. In addition to
the individual findings mentioned in each section, here we
highlight the high-level lessons we learned from our study:

• TI feeds, far from containing homogeneous samples of
some underlying truth, vary tremendously in the kinds of
data they capture based on the particularities of their col-
lection approach. Unfortunately, few TI vendors explain
the mechanism and methodology by which their data
are collected and thus TI consumers must make do with
simple labels such as “scan” or “botnet”, coupled with
inferences about the likely mode of collection. Worse,
a significant amount of data does not even have a clear
definition of category, and is only labelled as “malicious”
or “suspicious”, leaving the ambiguity to consumers to
decide what action should be taken based on the data.

• There is little evidence that larger feeds contain better
data, or even that there are crisp quality distinctions be-
tween feeds across different categories or metrics (i.e.,
that a TI provider whose feed performs well on one
metric will perform well on another, or that these rank-
ings will hold across threat categories). How data is
collected also does not necessarily imply the feeds’ at-
tributes. For example, crowdsourcing-based feeds (e.g.,
Badips feeds), are not always slower in reporting data
than the self-collecting feeds (like Paid IP Reputation).

• Most IP-based TI data sources are collections of single-
tons (i.e., that each IP address appears in at most one
source) and even the higher-correlating data sources fre-
quently have intersection rates of only 10%. Moreover,
when comparing with broad sensor data in known cate-
gories with broad effect (e.g., random scanning) fewer
than 2% of observed scanner addresses appear in most
of the data sources we analyzed; indeed, even when fo-
cused on the largest and most prolific scanners, coverage
is still limited to 10%. There are similar results for file
hash-based sources with little overlap among them.

The low intersection and coverage of TI feeds could be the
result of several non-exclusive possibilities. First is that the
underlying space of indicators (both IP addresses and mali-
cious file hashes) is large and each individual data source can
at best sample a small fraction thereof. It is almost certain
that this is true to some extent. Second, different collection

USENIX Association 28th USENIX Security Symposium 865

methodologies—even for the same threat category—will se-
lect for different sub distributions of the underlying ground
truth data. Third, this last effect is likely exacerbated by the
fact that not all threats are experienced uniformly across the
Internet and, thus, different methodologies will skew to either
favor or disfavor targeted attacks.

Based on our experience analyzing TI data, we try to pro-
vide several recommendations for the security community on
this topic moving forward:

• The threat intelligence community should standardize
data labeling, with a clear definition of what the data
means and how the data is collected. Security experts
can then assess whether the data fit their need and the
type of action should be taken on this data.

• There are few rules of thumb in selecting among TI feeds,
as there is not a clear correlation between different feed
properties. Consumers need empirical metrics, such as
those we describe, to meaningfully differentiate data
sources, and to prioritize certain metrics based on their
specific need.

• Blindly using TI data—even if one could afford to ac-
quire many such sources—is unlikely to provide better
coverage and is also prone to collateral damage caused
by false positives. Customers need to be always aware of
these issues when deciding what action should be taken
on this data.

• Besides focusing on the TI data itself, future work should
investigate the operational uses of threat intelligence in
industry, as the true value of TI data can only be under-
stood in operational scenarios. Moreover, the community
should explore more potential ways of using the data,
which will extend our understanding of threat intelli-
gence and also influence how vendors are curating the
data and providing the services.

There are many ways we can use threat intelligence data. It
can be used to enrich other information (e.g., for investigating
potential explanations of a security incident), as a probabilis-
tic canary (i.e., identifying an overall site vulnerability via a
single matching indicator may have value even if other attacks
of the same kind are not detected) or in providing a useful
source of ground truth data for supervised machine learning
systems. However, even given such diverse purposes, organi-
zations still need some way to prioritize which TI sources to
invest in. Our metrics provide some direction for such choices.
For example, an analyst who expects to use TI interactively
during incident response would be better served by feeds with
higher coverage, but can accommodate poor accuracy, while
an organization trying to automatically label malicious in-
stances for training purposes (e.g., brute force attacks) will
be better served by the converse. Thus, if there is hope for
demonstrating that threat intelligence can materially impact

operational security practices, we believe it will be found
in these more complex uses cases and that is where future
research will be most productive.

10 Acknowledgment
We would like to thank our commercial threat providers who
made their data available to us and made this research possible.
In particular, we would like to thank Nektarios Leontiadis and
the Facebook ThreatExchange for providing the threat data
that helped facilitate our study. We are also very grateful to
Alberto Dainotti and Alistair King for sharing the UCSD tele-
scope data and helping us with the analysis, Gautam Akiwate
for helping us query the domain data, and Matt Jonkman. We
are also grateful to Martina Lindorfer, our shepherd, and our
anonymous reviewers for their insightful feedback and sugges-
tions. This research is a joint work from multiple institutions,
sponsored in part by DHS/AFRL award FA8750-18-2-0087,
NSF grants CNS-1237265, CNS-1406041, CNS-1629973,
CNS-1705050, and CNS-1717062.

References
[1] Abuse.ch. https://abuse.ch/.
[2] Top Alexa domains. https://www.alexa.com/

topsites/.
[3] Alienvault IP reputation. http://reputation.

alienvault.com/reputation.data.
[4] ANTONAKAKIS, M., APRIL, T., BAILEY, M., BERN-

HARD, M., BURSZTEIN, E., COCHRAN, J., DU-
RUMERIC, Z., HALDERMAN, J. A., INVERNIZZI, L.,
KALLITSIS, M., ET AL. Understanding the mirai botnet.
In USENIX Security Symposium (2017).

[5] Badips. https://www.badips.com/.
[6] BENSON, K., DAINOTTI, A., SNOEREN, A. C.,

KALLITSIS, M., ET AL. Leveraging internet back-
ground radiation for opportunistic network analysis. In
Proceedings of the 2015 Internet Measurement Confer-
ence (2015), ACM.

[7] The Bro network security monitor. https://www.bro.
org/index.html.

[8] Composite Blocking List. https://www.abuseat.
org/.

[9] Spreading the disease and selling the cure.
https://krebsonsecurity.com/2015/01/
spreading-the-disease-and-selling-the-cure/.

[10] CHACHRA, N., MCCOY, D., SAVAGE, S., AND
VOELKER, G. M. Empirically Characterizing Domain
Abuse and the Revenue Impact of Blacklisting. In
Proceedings of the Workshop on the Economics of
Information Security (WEIS) (State College, PA, 2014).

[11] Cloudflare, fast, global content delivery network. https:
//www.cloudflare.com/cdn/.

[12] AWS CloudFront, fast, highly secure and programmable
content delivery network. https://aws.amazon.com/
cloudfront/.

866 28th USENIX Security Symposium USENIX Association

https://abuse.ch/
https://www.alexa.com/topsites/
https://www.alexa.com/topsites/
http://reputation.alienvault.com/reputation.data
http://reputation.alienvault.com/reputation.data
https://www.badips.com/
https://www.bro.org/index.html
https://www.bro.org/index.html
https://www.abuseat.org/
https://www.abuseat.org/
https://krebsonsecurity.com/2015/01/spreading-the-disease-and-selling-the-cure/
https://krebsonsecurity.com/2015/01/spreading-the-disease-and-selling-the-cure/
https://www.cloudflare.com/cdn/
https://www.cloudflare.com/cdn/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/

[13] Cyber Observable eXpression. http:
//cyboxproject.github.io/documentation/.

[14] DEKOVEN, L. F., SAVAGE, S., VOELKER, G. M., AND
LEONTIADIS, N. Malicious browser extensions at scale:
Bridging the observability gap between web site and
browser. In 10th USENIX Workshop on Cyber Security
Experimentation and Test (CSET 17) (2017), USENIX.

[15] DURUMERIC, Z., BAILEY, M., AND HALDERMAN,
J. A. An internet-wide view of internet-wide scanning.
In USENIX Security Symposium (2014).

[16] Edgecast CDN, Verizon digital and media ser-
vices. https://www.verizondigitalmedia.com/
platform/edgecast-cdn/.

[17] Facebook threat exchange. https://developers.
facebook.com/programs/threatexchange.

[18] Fastly managed CDN. https://www.fastly.com/
products/fastly-managed-cdn.

[19] Incident Object Description Exchange Format. https:
//tools.ietf.org/html/rfc5070.

[20] JAGPAL, N., DINGLE, E., GRAVEL, J.-P., MAVROM-
MATIS, P., PROVOS, N., RAJAB, M. A., AND THOMAS,
K. Trends and lessons from three years fighting ma-
licious extensions. In USENIX Security Symposium
(2015).

[21] JUNG, J., AND SIT, E. An empirical study of spam
traffic and the use of dns black lists. In Proceedings of
the ACM Conference on Internet Measurement (2004).

[22] KAPRAVELOS, A., GRIER, C., CHACHRA, N.,
KRUEGEL, C., VIGNA, G., AND PAXSON, V. Hulk:
Eliciting malicious behavior in browser extensions. In
USENIX Security Symposium (2014), San Diego, CA.

[23] KÜHRER, M., ROSSOW, C., AND HOLZ, T. Paint it
black: Evaluating the effectiveness of malware black-
lists. In International Workshop on Recent Advances in
Intrusion Detection (2014), Springer.

[24] LEVCHENKO, K., PITSILLIDIS, A., CHACHRA, N., EN-
RIGHT, B., FÉLEGYHÁZI, M., GRIER, C., HALVOR-
SON, T., KANICH, C., KREIBICH, C., LIU, H., MC-
COY, D., WEAVER, N., PAXSON, V., VOELKER, G. M.,
AND SAVAGE, S. Click Trajectories: End-to-End Anal-
ysis of the Spam Value Chain. In Proceedings of the
IEEE Symposium and Security and Privacy (2011).

[25] MaxCDN. https://www.maxcdn.com/one/.
[26] METCALF, L., AND SPRING, J. M. Blacklist ecosystem

analysis: Spanning jan 2012 to jun 2014. In Proceedings
of the 2nd ACM Workshop on Information Sharing and
Collaborative Security (2015), ACM.

[27] Nothink honeypot SSH. http://www.nothink.org/
honeypot_ssh.php.

[28] Packetmail.net. https://www.packetmail.net/.
[29] PANG, R., YEGNESWARAN, V., BARFORD, P., PAX-

SON, V., AND PETERSON, L. Characteristics of internet
background radiation. In Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement (2004),

ACM.
[30] PITSILLIDIS, A., KANICH, C., VOELKER, G. M.,

LEVCHENKO, K., AND SAVAGE, S. Taster’s Choice: A
Comparative Analysis of Spam Feeds. In Proceedings
of the ACM Internet Measurement Conference (Boston,
MA, Nov. 2012), pp. 427–440.

[31] RAMACHANDRAN, A., FEAMSTER, N., DAGON, D.,
ET AL. Revealing botnet membership using dnsbl
counter-intelligence. SRUTI 6 (2006).

[32] RAMACHANDRAN, A., FEAMSTER, N., AND VEM-
PALA, S. Filtering spam with behavioral blacklisting. In
Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS) (2007).

[33] SCHEITLE, Q., HOHLFELD, O., GAMBA, J., JEL-
TEN, J., ZIMMERMANN, T., STROWES, S. D., AND
VALLINA-RODRIGUEZ, N. A long way to the top: Sig-
nificance, structure, and stability of internet top lists. In
Proceedings of the Internet Measurement Conference
(2018), ACM.

[34] Shadowserver. https://www.shadowserver.org/.
[35] SHENG, S., WARDMAN, B., WARNER, G., CRANOR,

L. F., HONG, J., AND ZHANG, C. An empirical analysis
of phishing blacklists. In Proceedings of the Conference
on Email and Anti-Spam (CEAS) (2009).

[36] SINHA, S., BAILEY, M., AND JAHANIAN, F. Shades
of grey: On the effectiveness of reputation-based “black-
lists”. In 2008 3rd International Conference on Mali-
cious and Unwanted Software (MALWARE), IEEE.

[37] Structured Threat Information eXpression. https://
stixproject.github.io/.

[38] UCSD network telescope. https://www.caida.org/
projects/network_telescope/.

[39] The spam and open relay blocking system. http://
www.sorbs.net/.

[40] The Spamhaus block list. https://www.spamhaus.
org/sbl/.

[41] The Spamhaus Don’t Route Or Peer Lists. https://
www.spamhaus.org/drop/.

[42] THOMAS, K., AMIRA, R., BEN-YOASH, A., FOLGER,
O., HARDON, A., BERGER, A., BURSZTEIN, E., AND
BAILEY, M. The abuse sharing economy: Understand-
ing the limits of threat exchanges. In International Sym-
posium on Research in Attacks, Intrusions, and Defenses
(2016), Springer.

[43] Threat intelligence market analysis by solution,
by services, by deployment, by application and
segment forecast, 2018 - 2025. https://www.
grandviewresearch.com/industry-analysis/
threat-intelligence-market.

[44] University of Oregon route views project. http://www.
routeviews.org/routeviews/.

[45] VirusTotal. https://www.virustotal.com/#/
home/upload.

USENIX Association 28th USENIX Security Symposium 867

http://cyboxproject.github.io/documentation/
http://cyboxproject.github.io/documentation/
https://www.verizondigitalmedia.com/platform/edgecast-cdn/
https://www.verizondigitalmedia.com/platform/edgecast-cdn/
https://developers.facebook.com/programs/threatexchange
https://developers.facebook.com/programs/threatexchange
https://www.fastly.com/products/fastly-managed-cdn
https://www.fastly.com/products/fastly-managed-cdn
https://tools.ietf.org/html/rfc5070
https://tools.ietf.org/html/rfc5070
https://www.maxcdn.com/one/
http://www.nothink.org/honeypot_ssh.php
http://www.nothink.org/honeypot_ssh.php
https://www.packetmail.net/
https://www.shadowserver.org/
https://stixproject.github.io/
https://stixproject.github.io/
https://www.caida.org/projects/network_telescope/
https://www.caida.org/projects/network_telescope/
http://www.sorbs.net/
http://www.sorbs.net/
https://www.spamhaus.org/sbl/
https://www.spamhaus.org/sbl/
https://www.spamhaus.org/drop/
https://www.spamhaus.org/drop/
https://www.grandviewresearch.com/industry-analysis/threat-intelligence-market
https://www.grandviewresearch.com/industry-analysis/threat-intelligence-market
https://www.grandviewresearch.com/industry-analysis/threat-intelligence-market
http://www.routeviews.org/routeviews/
http://www.routeviews.org/routeviews/
https://www.virustotal.com/#/home/upload
https://www.virustotal.com/#/home/upload

Towards the Detection of Inconsistencies in Public Security Vulnerability Reports

Ying Dong1,2 ∗, Wenbo Guo2,4, Yueqi Chen2,4,
Xinyu Xing2,4, Yuqing Zhang1, and Gang Wang3

1School of Computer Science and Technology, University of Chinese Academy of Sciences, China
2College of Information Sciences and Technology, The Pennsylvania State University, USA

3Department of Computer Science, Virginia Tech, USA
4JD Security Research Center, USA

dongying115@mails.ucas.ac.cn, {wzg13, yxc431, xxing}@ist.psu.edu
zhangyq@ucas.ac.cn, gangwang@vt.edu

Abstract
Public vulnerability databases such as the Common Vulner-
abilities and Exposures (CVE) and the National Vulnera-
bility Database (NVD) have achieved great success in pro-
moting vulnerability disclosure and mitigation. While these
databases have accumulated massive data, there is a growing
concern for their information quality and consistency.

In this paper, we propose an automated system VIEM to de-
tect inconsistent information between the fully standardized
NVD database and the unstructured CVE descriptions and
their referenced vulnerability reports. VIEM allows us, for the
first time, to quantify the information consistency at a mas-
sive scale, and provides the needed tool for the community to
keep the CVE/NVD databases up-to-date. VIEM is developed
to extract vulnerable software names and vulnerable versions
from unstructured text. We introduce customized designs to
deep-learning-based named entity recognition (NER) and re-
lation extraction (RE) so that VIEM can recognize previous
unseen software names and versions based on sentence struc-
ture and contexts. Ground-truth evaluation shows the system
is highly accurate (0.941 precision and 0.993 recall). Using
VIEM, we examine the information consistency using a large
dataset of 78,296 CVE IDs and 70,569 vulnerability reports
in the past 20 years. Our result suggests that inconsistent vul-
nerable software versions are highly prevalent. Only 59.82%
of the vulnerability reports/CVE summaries strictly match
the standardized NVD entries, and the inconsistency level
increases over time. Case studies confirm the erroneous in-
formation of NVD that either overclaims or underclaims the
vulnerable software versions.

1 Introduction

Security vulnerabilities in computer and networked systems
are posing a serious threat to users, organizations, and na-
tions at large. Unmatched vulnerabilities often lead to real-

∗This work was done when Ying Dong studied at the Pennsylvania State
University.

world attacks with examples ranging from WannaCry ran-
somware that shut down hundreds of thousands of machines
in hospitals and schools [20] to the Equifax data breach that
affected half of America’s population [21].

To these ends, a strong community effort has been estab-
lished to find and patch vulnerabilities before they are ex-
ploited by attackers. The Common Vulnerabilities and Ex-
posures (CVE) program [4] and the National Vulnerability
Database (NVD) [11] are among the most influential forces.
CVE is a global list/database that indexes publicly known
vulnerabilities by harnessing the “the power of the crowd”.
Anyone on the Internet (security vendors, developers and re-
searchers) can share the vulnerabilities they found on CVE.
NVD is a more standardized database established by the U.S.
government (i.e., NIST). NVD receives data feeds from the
CVE website and perform analysis to assign common vul-
nerability severity scores (CVSS) and other pertinent meta-
data [18]. More importantly, NVD standardizes the data for-
mat so that algorithms can directly process their data [12].
Both CVE and NVD play an important role in guiding the
vulnerability mitigation. So far, over 100,000 vulnerabili-
ties were indexed, and the CVE/NVD data stream has been
integrated with hundreds of security vendors all over the
world [10].

While the vulnerability databases are accumulating mas-
sive data, there is also a growing concern about the informa-
tion quality [28, 42, 44]. More specifically, the information
listed on CVE/NVD can be incomplete or outdated, making
it challenging for researchers to reproduce the vulnerabil-
ity [42]. Even worse, certain CVE entries contain erroneous
information which may cause major delays in developing
and deploying patches. In practice, industrial systems often
use legacy software for a long time due to the high cost of an
update. When a relevant vulnerability is disclosed, system
administrators usually look up to vulnerability databases to
determine whether their software (and which versions) need
to be patched. In addition, CVE/NVD are serving as a key
information source for security companies to assess the secu-

USENIX Association 28th USENIX Security Symposium 869

rity level of their customers. Misinformation on CVE/NVD
could have left critical systems unpatched.

In this paper, we propose a novel system to automatically
detect inconsistent information between the fully standard-
ized NVD database and the unstructured CVE descriptions
and their referenced vulnerability reports. Our system VIEM
allows us, for the first time, to quantify the information con-
sistency at a massive scale. Our study focuses on vulner-
able software versions, which is one of the most important
pieces of information for vulnerability reproduction and vul-
nerability patching. We face three main technical challenges
to build VIEM. First, due to the high diversity of software
names and versions, it is difficult to build dictionaries or reg-
ular expressions [30, 48, 59] to achieve high precision and
recall. Second, the unstructured text of vulnerability reports
and summaries often contain code, and the unique writing
styles are difficult to handle by traditional natural language
processing tools [22, 49, 50]. Third, we need to extract “vul-
nerable” software names and their versions, and effectively
exclude the distracting items (i.e., non-vulnerable versions).

Our System. To address these challenges, we build VIEM
(short for Vulnerability Information Extraction Model) with
a Named Entity Recognition (NER) model and a Relation
Extraction (RE) model. The goal is to learn the patterns
and indicators from the sentence structures to recognize the
vulnerable software names/versions. Using “contexts” infor-
mation, our model can capture previously unseen software
names and is generally applicable to different vulnerabil-
ity types. More specifically, the NER model is a recurrent
deep neural network [36, 56] which pinpoints the relevant
entities. It utilizes word and character embeddings to en-
code the text and then leverages a sequence-to-sequence bi-
directional GRU (Gated Recurrent Unit) to locate the names
and versions of the vulnerable software. The RE model is
trained to analyze the relationships between the extracted en-
tities to pair the vulnerable software names and their versions
together. Finally, to generalize our model to handle different
types of vulnerabilities, we introduce a transfer learning step
to minimize the manual annotation efforts.

Evaluation and Measurement. We collect a large
dataset from the CVE and NVD databases and 5 highly pop-
ular vulnerability reporting websites. The dataset covers
78,296 CVE IDs and 70,569 vulnerability reports across all
13 vulnerability categories in the past 20 years. For evalua-
tion, we manually annotated a sample of 5,193 CVE IDs as
the ground-truth. We show that our system is highly accurate
with a precision of 0.941 and a recall of 0.993. In addition,
our model is generalizable to all 13 vulnerability categories.

To detect inconsistencies in practice, we apply VIEM to
the full dataset. We use NVD as the standard (since it is the
last hop of the information flow), and examine the inconsis-
tencies between NVD entries and the CVE entries/external
sources. We have a number of key findings. First, the incon-

sistency level is very high. Only 59.82% of the external re-
ports/CVE summaries have exactly the same vulnerable soft-
ware versions as those of the standardized NVD entries. It’s
almost equally common for an NVD entry to “overclaim”
or “underclaim” the vulnerable versions. Second, we mea-
sure the consistency level between NVD and other sources
and discover the inconsistency level increased over the past
20 years (but started to decrease since 2016). Finally, we
select a small set of CVE IDs with highly inconsistent infor-
mation to manually verify the vulnerabilities (including 185
software versions). We confirm real cases where the offi-
cial NVD/CVE entries and/or the external reports falsely in-
cluded non-vulnerable versions and missed truly vulnerable
versions. Such information could affect systems that depend
on NVD/CVE to make critical decisions.

Applications. Detecting information inconsistency is the
first step to updating the outdated entries and mitigating er-
rors in the NVD and CVE databases. There was no exist-
ing tool that could automatically extract vulnerable software
names and versions from unstructured reports before. A key
contribution of VIEM is to enable the possibility to continu-
ously monitor different vulnerability reporting websites and
periodically generate a “diff” from the CVE/NVD entries.
This can benefit the community in various ways. For em-
ployees of CVE/NVD, VIEM can notify them whenever a new
vulnerable version is discovered for an existing vulnerability
(to accelerate the testing and entry updates). For security
companies, VIEM can help to pinpoint the potentially vul-
nerable versions of their customers’ software to drive more
proactive testing and patching. For software users and sys-
tem administrators, the “diff” will help them to make more
informed decisions on software updating. To facilitate fu-
ture research and application development, we released our
labeled dataset and the source code of VIEM1.

In summary, our paper makes three key contributions.

• First, we design and develop a novel system VIEM to ex-
tract vulnerable software names and versions from un-
structured vulnerability reports.

• Second, using a large ground-truth dataset, we show that
our system is highly accurate and generalizes well to dif-
ferent vulnerability types.

• Third, by applying VIEM, we perform the first large-scale
measurement of the information consistency for CVE
and NVD. The generated “diff” is helpful to drive more
proactive vulnerability testing and information curation.

2 Background and Challenges

We first introduce the background of security vulnerability
reporting, and describe the technical challenges of our work.

1https://github.com/pinkymm/inconsistency_detection

870 28th USENIX Security Symposium USENIX Association

2.1 Vulnerability Reporting

CVE. When people identify a new vulnerability, they
can request a unique CVE-ID number from one of the CVE
Numbering Authorities (CNAs) [5]. The MITRE Corpora-
tion is the editor and the primary CNA [19]. CNA will then
do research on the vulnerability to determine the details and
check if the vulnerability has been previously reported. If
the vulnerability is indeed new, then a CVE ID will be as-
signed and the corresponding vulnerability information will
be publicly released through the CVE list [4, 9].

The CVE list [4] is maintained by MITRE as a website on
which the CVE team publishes a summary for each of the
reported vulnerabilities. As specified in [8], when writing
a CVE summary, the CVE team will analyze (public) third-
party vulnerability reports and then include details in their
description such as the name of the affected software, the
vulnerable software versions, the vulnerability type, and the
conditions/requirements to exploit the vulnerability.

In addition to the summary, each CVE entry contains a
list of external references. The external references are links
to third-party technical reports or blog/forum posts that pro-
vide the needed information for the CVE team to craft the of-
ficial vulnerability description [1]. The information on CVE
can help software vendors and system administrators to pin-
point the versions of the vulnerable software, assess their risk
level, and perform remediation accordingly.

NVD. NVD (National Vulnerability Database) is main-
tained by a different organization (i.e., NIST) from that of
CVE [3]. NVD is built fully synchronized with the CVE
list. The goal is that any updates to CVE will appear imme-
diately in NVD. After a new CVE ID appears on the CVE
list, the NIST NVD team will first perform analysis to add
enhanced information such as the severity score before cre-
ating the NVD entries [18].

Compared with CVE, NVD provides two additional fea-
tures. First, NVD data entries are structured. The NIST
NVD team would convert the unstructured CVE information
into structured JSON or XML, where information fields such
as vulnerable software names and versions are formatted and
standardized based on the Common Weakness Enumeration
Specification (CWE) [12]. Second, data entries are contin-
uously updated. The information in NVD may be updated
(manually) after the initial vulnerability reporting. For ex-
ample, as time goes by, new vulnerable software versions
may be discovered by NIST employees or outsiders, which
will be added to the existing NVD entries [17].

2.2 Technical Challenges
CVE and NVD databases are primarily maintained by man-
ual efforts, which leads to a number of important questions.
First, given that a vulnerability may be reported and dis-
cussed in many different places, how complete is the infor-

(a) An Openwall report containing the vulnerable versions of soft-
ware (2.3.x) and non-vulnerable versions (3.0.0 and later).

(b) A CVE summary enclosing multiple entities pertaining to
vulnerable software (the vulnerable component: Windows font
library; vulnerable software: .NET Framework, Skype for
Business, Lync, Silverlight; dependent software: Windows;
software versions tied to these entities).

(c) A CVE summary in which the name and versions of vulnerable
software are not adjacent.

Figure 1: Examples of vulnerability descriptions and reports.

mation (e.g., vulnerable software names and their versions)
in the CVE/NVD database? Second, considering the con-
tinuous community effort to study a reported vulnerability,
how effective is the current manual approach to keep the
CVE/NVD entries up-to-date?

Our goal is to thoroughly understand the inconsistencies
between external vulnerability reporting websites and the
CVE/NVD data entries. According to the statistics from [6],
the CVE list has archived more than 100,000 distinct CVEs
(although certain CVE IDs were merged or withdrawn).
Each CVE ID also has 5∼30 external third-party reports. It
is infeasible to extract such information manually. The main
challenge is to automatically and accurately extract relevant
information items from the unstructured reports.

Many existing NLP tools aim to extract relevant informa-
tion from text (e.g., [22, 49, 50, 53]). However, the unique
characteristics of vulnerability reports impose significant
challenges, making existing techniques inadequate. ¶ Pre-
viously unseen software emerges: the CVE list introduces
new vulnerable software frequently, making it difficult to
use a pre-defined dictionary to identify the names of all vul-
nerable software. As such, dictionary-based method is not
suitable for this problem (e.g., [30, 48]). · Reports are un-
structured: most CVE summaries and vulnerability reports
are highly unstructured and thus simple regular-expression-
based techniques (e.g., [28, 59]) can be barely effective. ¸
Non-interested entities are prevalent: a vulnerability report
usually encloses information about both vulnerable and non-
vulnerable versions of software (see Figure 1a). Our goal is
to extract “vulnerable” software names and versions while
excluding information items related to non-vulnerable soft-
ware. Techniques that rely on pre-defined rules would hardly

USENIX Association 28th USENIX Security Symposium 871

work here (e.g., [28, 55, 59]). ¹ Multiple interested entities
exist: the vulnerable software mentioned in a report usually
refers to multiple entities (see Figure 1b) and the relation-
ships of these entities are determined by the context of the
report. This requirement eliminates techniques that lack the
capability of handling multiple entities (e.g., [28,32,59]). º
Vulnerability types are diverse: CVE covers a variety of vul-
nerability types, and each has its own characteristics in the
descriptions. As a result, we cannot simply use techniques
designed for certain vulnerability types. For example, a tool
used by [59] is designed specifically for kernel memory cor-
ruption vulnerabilities. We tested it against our ground-truth
dataset and did not receive satisfying results (the recall is be-
low 40%).

3 The Design of VIEM

To tackle the challenges mentioned above, we develop an
automated tool VIEM by combining and customizing a set
of state-of-the-art natural language processing (NLP) tech-
niques. In this section, we briefly describe the design of
VIEM and discuss the reasons behind our design. Then, we
elaborate on the NLP techniques that VIEM adopts.

3.1 Overview

To pinpoint and pair the entities of our interest, we design
VIEM to complete three individual tasks.

Named Entity Recognition Model. First, VIEM uti-
lizes a state-of-the-art Named Entity Recognition (NER)
model [36, 56] to identify the entities of our interest, i.e., the
name and versions of the vulnerable software, those of vul-
nerable components and those of underlying software sys-
tems that vulnerable software depends upon (see Figure 1b).

The reasons behind this design are twofold. First, an NER
model pinpoints entities based on the structure and semantics
of input text, which provides us with the ability to track down
software names that have never been observed in the train-
ing data. Second, an NER model can learn and distinguish
the contexts pertaining to vulnerable and non-vulnerable ver-
sions of software, which naturally allows us to eliminate non-
vulnerable versions of software and pinpoint only the entities
of our interest.

Relation Extraction Model. With the extracted entities,
the next task of VIEM is to pair identified entities accordingly.
As is shown in Figure 2, it is common that software name
and version jointly occur in a report. Therefore, one instinc-
tive reaction is to group software name and version nearby,
and then deem them as the vulnerable software and version
pairs. However, this straightforward approach is not suitable
for our problem. As is depicted in Figure 1c, the vulnera-
ble software name is not closely tied to all the vulnerable

versions. Merely applying the approach above, we might in-
evitably miss the versions of the vulnerable software.

To address this issue, VIEM first goes through all the pos-
sible combinations between versions and software names.
Then, it utilizes a Relation Extraction (RE) model [38,62] to
determine the most possible combinations and deems them
as the correct pairs of entities. The rationale behind this de-
sign is as follows. The original design of an RE model is not
for finding correct pairs among entities. Rather, it is respon-
sible for determining the property of a pair of entities. For
example, assume that an RE model is trained to assign a pair
of entities one of the following three properties – “born in”,
“employed by” and “capital of”. Given two pairs of enti-
ties P1 = (“Steve Jobs”, “Apple”) and P2 = (“Steve Jobs”,
“California”) in the text “Steve Jobs was born in California,
and was the CEO of Apple.”, an RE model would assign the
“employed by” to P1 and “born in” properties to P2.

In our model, each of the possible version-and-software
combinations can be treated as an individual pair of en-
tities. Using the idea of the relation extraction model,
VIEM assigns each pair a property, indicating the truth-
fulness of the relationship of the corresponding entities.
Then, it takes the corresponding property as the true pair-
ing. Take the case in Figure 2 for example, there are 4 en-
tities indicated by 2 software (Microsoft VBScript and
Internet Explorer) and 2 ranges of versions (5.7 and
5.8 and 9 through 11). They can be combined in 4 dif-
ferent ways. By treating the combinations as 4 different
pairs of entities, we can use an RE model to assign a bi-
nary property to each of the combinations. Assuming that
the binary property assigned indicates whether the corre-
sponding pair of the entities should be grouped as soft-
ware and its vulnerable versions, VIEM can use the prop-
erty assignment as the indicator to determine the entity pair-
ing. It should be noted that we represent paired entities
in the Common Platform Enumeration (CPE) format [2].
For example, cpe:/a:google:chrome:3.0.193.2:beta,
where google denotes the vendor, chrome denotes the prod-
uct, 3.0.193.2 denotes the version number, and beta de-
notes the software update.

Transfer Learning. Recall that we need to measure vul-
nerability reports across various vulnerability types. As men-
tioned in §2.2, the reports of different vulnerability types do
not necessarily share the same data distribution. Therefore,
it is not feasible to use a single machine learning model to
deal with all vulnerability reports, unless we could construct
and manually annotate a large training dataset that covers all
kinds of vulnerabilities. Unfortunately, there is no such la-
beled dataset available, and labeling a large dataset involves
tremendous human efforts. To address this problem, VIEM
takes the strategy of transfer learning, which learns the afore-
mentioned NER and RE models using vulnerability reports
in one primary category and then transfers their capability
into other vulnerability categories. In this way, we can re-

872 28th USENIX Security Symposium USENIX Association

W.E. P.E.

W.E. P.E.

W.E. P.E.

W.E. P.E.

Step 2

1

1

0

0

Step 3

One-hot

encoding

Index

Entity

label

Output

SN

The Microsoft VBScript 5.7 and 5.8 engines , as used in Internet Explorer 9 through 11 …

O SV SN SV SV O O O O O SN SN SV SV SV

Combination of Word and Character Embedding

Bi-directional GRU Network

2 4 3 1 10 9 8 7 6 5

2 3 2 10

Encoding Encoding Encoding Encoding

P.E. P.E. P.E. P.E.

Step 1

9 3 9 10

A
ttn. N

etw
ork

Attn. Network

Attn. Network

Attn. Network

Attn. Network

Figure 2: The RE model that pairs the entities of our interests through a three-step procedure. Here, the entities of our interest
include software (Microsoft VBScript; Internet Explorer) as well as version range (5.7 and 5.8; 9 through 11).
W.E. and P.E denote word and position embeddings, respectively.

SN

Character Embedding

… …

… …

… …

… …

O SV … … … …

… …

 Concatenation

of word and

character

embedding

SN

Word Embedding

Bi-directional GRU Network

The Microsoft VBScript 5.7 and 5.8

Figure 3: The NER model which utilizes both word and char-
acter embeddings to encode a target text and then a Bi-GRU
network to assign entity labels to each word.

duce the efforts involved in data labeling, making VIEM ef-
fective for arbitrary kinds of vulnerability reports. More de-
tails of the transfer learning are discussed in §5.

3.2 Named Entity Recognition Model

We start by extracting named entities (vulnerabile software
names and versions) from the text. We develop our system
based on a recent NER model [36,56]. On top of that, we in-
tegrate a gazetteer to improve its accuracy of extracting vul-
nerable software names. At the high level, the NER model
first encodes a text sequence into a sequence of word vectors
using the concatenation of word and character embeddings.
This embedding process is necessary since a deep neural net-
work cannot process text directly. Then taking the sequence
of the word vectors as the input, the model predicts a label for
each of the words in the sequence using a bi-directional Re-
current Neural Network. Below, we introduce the key tech-
nical details.

For word and character embeddings, the NER model first
utilizes a standard word embedding approach [40] to en-
code each word as a vector representation. Then, it utilizes
a Bi-directional Gated Recurrent United (Bi-GRU) network

to perform text encoding at the character level. As shown
in Figure 3, the NER model concatenates these two embed-
dings as a single sequence of vectors and then takes it as the
input for another Bi-GRU network.

Different from the aforementioned Bi-GRU network used
for text embedding, the second Bi-GRU network is respon-
sible for assigning labels to words. Recall that our task is
to identify the entities of our interest which pertain to vul-
nerable software. As a result, we use the Bi-GRU network
to pinpoint the words pertaining to this information. More
specifically, we train this Bi-GRU network to assign each
word with one of the following labels – ¶ SV (software ver-
sion), · SN (software name) and ¸ O (others) – indicating
the property of that word. It should be noted that we assign
the same SN label to vulnerable software, vulnerable compo-
nent and the underlying software that vulnerable software is
dependent upon. This is because this work measures version
inconsistencies of all software pertaining to a vulnerability2.

Considering that the NER model may not perfectly track
down the name of the vulnerable software, we further con-
struct a gazetteer (i.e., a dictionary consisting of 81,551 soft-
ware mentioned in [10]) to improve the recognition perfor-
mance of the NER model. To be specific, we design a heuris-
tic approach to rectify the information that the NER model
fails to identify or mistakenly tracks down. First, we per-
form a dictionary lookup on each of the vulnerability reports.
Then, we mark dictionary words in that report as the soft-
ware name, if the NER model has already identified at least
one dictionary word as a software name. In this way, we
can rectify some labels incorrectly identified. For example,
in Figure 2, assume the NER model assigns the SN labels to
words Microsoft VBScript and Explorer indicating the

2Vulnerable software names may include the names of vulnerable li-
braries or the affected operating systems. The names of vulnerable libraries
and the affected OSes are also extracted by our tool.

USENIX Association 28th USENIX Security Symposium 873

software pertaining to the vulnerability. Through dictionary
lookup, we track down software Internet Explorer in the
gazetteer. Since the gazetteer indicates neither Internet
nor Explorer has ever occurred individually as a soft-
ware name, and they are the closest to the dictionary word
Internet Explorer, we extend our label and mark the en-
tire dictionary word Internet Explorer with an SN label
and treat it as single software.

3.3 Relation Extraction Model

The relation extraction model was originally used to extract
the relationships of two entities [41]. Over the past decade,
researchers proposed various technical approaches to build
highly accurate and computationally efficient RE model. Of
all the techniques proposed, hierarchical attention neural net-
works [57] demonstrate better performance in many natural
language processing tasks. For our system, we modify an
existing hierarchical attention neural network to pair the ex-
tracted entities (i.e., pairing vulnerable software names and
their versions). More specifically, we implement a new com-
bined word-level and sentence-level attention network in the
RE model to improve the performance. In the following, we
briefly introduce this model and discuss how we apply it to
our problem. For more details about the RE model in gen-
eral, readers could refer to these research papers [38,57,62].

As is depicted in Figure 2, the RE model pinpoints
the right relationship between software name and version
through a three-step procedure. In the first step, it encodes
the occurrence of the software names as well as that of the
version information, and then yields a group of position
embeddings representing the relative distances from current
word to the two named entities (i.e., software name and ver-
sion) in the same sentence [38]. To be specific, the RE model
first indexes the sequence of the entity labels generated by
the aforementioned NER model. Then, it runs through all
the software names and versions in every possible combina-
tion, and encodes the combinations based on the indexes of
the entity labels using one-hot encoding. With the comple-
tion of one-hot encoding, the RE model further employs a
word embedding approach to convert the one-hot encoding
into two individual vectors indicating the embeddings of the
positions (see Figure 2).

In the second step, similar to the NER model, the RE
model uses the same technique to encode text and transfers
a text sequence into a sequence of vectors. Then, right be-
hind the word sequence vectors, the RE model appends each
group of the position embeddings individually. For example,
in Figure 2, the NER model pinpoints two software names
and two versions which form four distinct combinations (all
the possible ways of pairing software names and versions).
For each combination, the RE model appends the position
embedding vector to the word embedding vector to form the
input for the last step for performing classifications. In this

9000

17000

25000

CV

E
ID

HTT
P R

esp
on

se
Sp

lit
CS

RF
File

 In
clu

sio
n

Dire
cto

ry
Tra

ve
rsa

l

Gain
 Pr

ivil
eg

es

Mem
ory

 Co
rru

pti
on

By
pa

ss

Gain
 In

for
mati

on
SQ

L I
nje

cti
on XS
S

Ove
rflo

w

Den
ial

 of
 Se

rvi
ce

Co
de

 Ex
ec

uti
on

0
50

100
150

Figure 4: # of CVE IDs per vulnerability category.

example, four vectors are produced as the input, and each
represents a possible software name-version pair.

In the last step, the RE model takes each sequence of vec-
tors as the input for an attention-based neural network and
outputs a vector indicating the new representation of the se-
quence. Then, as is illustrated in Figure 2, the RE model
takes the output vectors as the input for another attention
network, through which the RE model predicts which name-
version pairing is most likely to capture the relationship be-
tween software name and its corresponding versions. Con-
tinue the example in Figure 2. The seq 1 and 4 are as-
sociated with a positive output, which indicates the legit-
imate pairing relationships of Microsoft VBScript 5.7
and 5.8 and Internet Explorer 9 through 11.

4 Dataset

To evaluate our system and detect real-world inconsistencies,
we collected a large number of public vulnerability reports
and CVE and NVD entries from the past 20 years. We sam-
ple a subset of these vulnerability reports for manual label-
ing (ground-truth) and use the labeled data to evaluate the
performance of VIEM.

CVE IDs. We first obtain a list of CVE IDs from
cvedetails.com, which divides the security vulnerabilities
indexed in CVE/NVD database into 13 categories. To collect
a representative dataset of publicly-reported vulnerabilities,
we crawled the CVE IDs from January 1999 to March 2018
(over 20 years) of each vulnerability category. A CVE ID
is the unique identifier for a publicly disclosed vulnerability.
Even though the CVE website claimed that they have over
105,000 CVE IDs [6], many of the CVE IDs are either not
publicly available yet, or have been merged or withdrawn. In
total, we obtain 78,296 CVE IDs covering all 13 categories
as shown in Figure 4. Each CVE ID corresponds to a short
summary of the vulnerability as shown in Table 1.

Vulnerability Reports. The webpage of each CVE ID
also contains a list of external references pointing to exter-
nal reports. Our study focuses on 5 representative source
websites to obtain the vulnerability reports referenced by
the CVE, including ExploitDB [7], SecurityFocus [14], Se-
curityTracker [16], Openwall [13], and SecurityFocus Fo-

874 28th USENIX Security Symposium USENIX Association

Dataset CVE IDs CVE Summaries NVD Entries Vulnerability Structured Reports Unstructured Reports
(Unstructured) (Structured) Reports SecTracker SecFocus ExploitDB Openwall SecF Forum

All 78,296 78,296 78,296 70,569 7,320 38,492 9,239 5,324 10,194
G-truth 5,193 5,193 0 1,974 0 0 785 520 669

Table 1: Dataset statistics.

rum [15]. Note that we treat SecurityFocus and SecurityFo-
cus Forum as two different websites. SecurityFocus site only
displays the “structured” information (e.g., affected OS, soft-
ware versions). SecurityFocus Forum (also called Bugtraq
Mailing List) mainly contains “unstructured” articles and
discussion threads between vulnerability reporters and soft-
ware developers. Regarding the other three websites, Secu-
rityTracker also contains well-structured information, while
Openwall and ExploitDB3 contain unstructured information.
In total, we obtain 70,569 vulnerability reports associated
with 56,642 CVE IDs. These CVE IDs cover 72.34% of all
78,296 public CVE IDs. This means 72.34% of the CVE IDs
have a vulnerability report from one of the 5 source websites,
confirming their popularity. There are 45,812 structured re-
ports from SecurityTracker and SecurityFocus, and 24,757
unstructured reports from ExploitDB, Openwall, and Securi-
tyFocus Forum.

NVD Entries. For each CVE ID, we also parse the JSON
version of the NVD entries, which contains the structured
data fields such as vulnerable software names and their ver-
sions. We obtain 78,296 NVD entries in total.

Data Extraction and Preprocessing. For structured re-
ports, we directly parse the vulnerable software name and
version information following the fixed format. For unstruc-
tured vulnerability reports and CVE summaries, we extract
the text information, remove all the web links, and tokenize
the sentences using the NLTK toolkit [24]. Note that we
did not remove any stop words or symbols from the unstruc-
tured text, considering that they are often parts of the soft-
ware names and versions.

Ground-Truth Dataset. To evaluate VIEM, we construct
a “ground-truth” dataset by manually annotating the vulner-
able software names and versions. As shown in Table 1, the
ground-truth dataset contains only unstructured reports, cov-
ering 5,193 CVE IDs (the short summaries) and 1,974 un-
structured reports. Some reports are referenced by multiple
CVE IDs. We choose to label our own ground-truth dataset
instead of using the structured data as the ground-truth, for
two reasons. First, the structured data is not necessarily cor-
rect. Second, the NER model needs labels at the sentence
level and the word level. The labels for the RE model rep-
resent the relationship between the extracted entities. The
structured data cannot provide such labels.

3ExploitDB has some structured information such as the affected OS,
but the vulnerable software version often appears in the titles of the posts
and the code comments.

The 5,193 CVE IDs are not evenly sampled from different
vulnerability categories. Instead, we sampled a large num-
ber of CVE IDs from one primary category and a smaller
number of CVE IDs from the other 12 categories to evaluate
model transferability. We choose memory corruption as the
primary category for its severity and real-world impact (e.g.,
Heartbleed, WannaCry). An analysis of the severity scores
(CVSS) also shows that memory corruption vulnerabilities
have the highest average severity score (8.46) among all the
13 categories. We intend to build a tool that at least performs
well on memory corruption cases. Considering the high costs
of manual annotation, we decide to label a large amount of
data (3,448 CVE IDs) in one category (memory corruption),
and only label a small amount of data (145 CVE IDs) for
each of the other 12 categories. With this dataset, we can
still apply transfer learning to achieve a good training result.

Given a document, we perform annotation in two steps.
First, we manually label the vulnerable software names and
vulnerable software versions. This step produces a ground-
truth dataset to evaluate our NER model. Second, we man-
ually pair the vulnerable software names with the versions.
This step produces a ground-truth mapping to evaluate the
RE model. We invited 6 lab-mates to perform the annota-
tion. All the annotators have a bachelor or higher degree in
Computer Science and an in-depth knowledge of Software
Engineering and Security. Figure 2 shows an example. For
the NER dataset, we label each word in a sentence by assign-
ing one of the three labels: vulnerable software name (SN),
vulnerable software version (SV)4, or others (O). Note that
entities that are related to non-vulnerable software will be la-
beled as O. For the RE dataset, we pair SN and SV entities
by examining all the possible pairs within the same sentence.
Through our manual annotation, we never observe a vulner-
able software name and its versions located in completely
different sentences throughout the entire document.

5 Evaluation

In this section, we use the ground-truth dataset to evaluate
the performance of VIEM. First, we use the dataset of mem-
ory corruption vulnerabilities to assess the system perfor-
mance and fine-tune the parameters. Then, we use the data of
the other 12 categories to examine the model transferability.

4For software versions, we treat keywords related to compatibility pack,
service pack, and release candidate (e.g., business, express edition) as part
of the version. For versions that are described as a “range”, we include the
conjunctions in the version labels.

USENIX Association 28th USENIX Security Symposium 875

Metric w/o Gazetteer w/ Gazetteer

Software Version Precision 0.9880 0.9880
Recall 0.9923 0.9923

Software Name Precision 0.9773 0.9782
Recall 0.9916 0.9941

Overall Accuracy 0.9969 0.9970

Table 2: NER performance on “memory corruption” dataset.

5.1 Evaluating the NER and RE Model

To evaluate the NER and RE models, we use the memory
corruption vulnerability reports and their CVE summaries
(3,448 CVE IDs).

NER Model. Given a document, the NER model extracts
the vulnerable software names and vulnerable versions. The
extraction process is first at the word level, and then the con-
secutive words with the SN or SV label will be grouped into
software names or software versions. We use three evalua-
tion metrics on the word-level extraction: (1) Precision rep-
resents the fraction of the relevant entities over the extracted
entities; (2) Recall represents the fraction of the relevant en-
tities that are extracted over the total number of relevant en-
tities; (3) Overall accuracy represents the fraction of the cor-
rect predictions over all the predictions. We compute the
precision and recall for software name extraction and ver-
sion extraction separately.

We split the ground-truth dataset with a ratio of 8:1:1 for
training, validation, and testing. We use a set of default
parameters, and later we show that our performance is not
sensitive to the parameters. Here, the dimension of the pre-
trained word embeddings is 300 (50 for character embed-
dings). To align our input sequences, we only consider the
first 200 words per sentence. Empirically, we observe that
the vast majority of sentences are shorter than 200 words.
All the layers in the NER model are trained jointly except
the word-level embedding weight W (using the FastText
method). The default batch size is 50 and the number of
epochs is 20. We use an advanced stochastic gradient de-
scent approach Adam as the optimizer, which can adaptively
adjust the learning rate to reduce the convergence time. We
also adopt dropout to prevent overfitting.

We repeat the experiments 10 times by randomly splitting
the dataset for training, validation, and testing. We show the
average precision, recall, and accuracy in Table 2. Our NER
model is highly accurate even without applying the gazetteer
(i.e., the dictionary). Both vulnerable software names and
versions can be extracted with a precision of 0.978 and a
recall of 0.991. In addition, we show that gazetteer can im-
prove the performance of software name extraction as ex-
pected. After applying the gazetteer, the overall accuracy is
as high as 0.9969. This high accuracy of NER is desirable
because any errors could propagate to the later RE model.

We also observe that our NER model indeed extracts soft-
ware names (and versions) that never appear in the train-

Metric Ground-truth Software NER Model’s Result as Input
Name/Version as Input w/o Gazetteer w/ Gazetteer

Precision 0.9955 0.9248 0.9411
Recall 0.9825 0.9931 0.9932
Accuracy 0.9916 0.9704 0.9764

Table 3: RE performance on “memory corruption” dataset.

ing dataset. For example, after applying NER to the test-
ing dataset, we extracted 205 unique software names, and 47
(22.9%) of them never appear in the training dataset. This
confirms that the NER model has learned generalizable pat-
terns and indicators to extract relevant entities, which allows
the model to extract previously unseen software names.

RE Model. We then run experiments to first examine the
performance of the RE model itself, and then evaluate the
end-to-end performance by combining NER and RE. Simi-
lar as before, we split the ground-truth dataset with an 8:1:1
ratio for training, validation, and testing. Here, we set the
dimension of the pre-trained word embeddings to 50. The
dimension of position embeddings is 10. The default batch
size is 80 and the number of epochs is 200. We set the num-
ber of bi-directional layers as 2. Like the NER model, our
RE model also uses the pre-trained word embedding weight
W . The position embedding weights (i.e., Ws and Wv) are
randomly initialized and trained together with other parame-
ters in the model.

First, we perform an experiment to evaluate the RE model
alone. More specifically, we assume the named entities are
already correctly extracted, and we only test the “pairing”
process using RE. This assumes the early NER model has a
perfect performance. As shown in Table 3, the RE model is
also highly accurate. The model has a precision of 0.9955
and a recall of 0.9825.

Second, we evaluate the end-to-end performance, and use
the NER’s output as the input of the RE model. In this
way, NER’s errors may affect the performance of RE. As
shown in Table 3, the accuracy has decreased from 0.9916 to
0.9704 (without gazetteer) and 0.9764 (with gazetteer). The
degradation mainly happens in precision. Further inspection
shows that the NER model has falsely extracted a few en-
tities that are not software names, which then become the
false input for RE and hurt the classification precision. In
addition, the benefit of gazetteer also shows up after NER
and RE are combined, bumping the precision from 0.9248
to 0.9411 (without hurting the recall). The results confirm
that our model is capable of accurately extracting vulnera-
ble software names and the corresponding versions from un-
structured text.

Baseline Comparisons. To compare the performance
of VIEM against other baselines, we apply other methods to
the same dataset. First, for the NER model, we tested Sem-
Fuzz [59]. SemFuzz uses hand-built regular expressions to
extract vulnerable software versions from vulnerability re-

876 28th USENIX Security Symposium USENIX Association

50 100 200 300
Dimension

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

NER RE

Figure 5: Word embedding
dimension vs. accuracy.

20 40 60 70 80
Batch size

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Figure 6: Batch size vs. RE
model accuracy.

1 2 3
Bi-directional layers

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Figure 7: # network layers
vs. RE model accuracy.

50 100 150 200 250
Epochs

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Figure 8: # Epochs vs. RE
model accuracy.

ports. We find that SemFuzz achieves a reasonable precision
(0.8225) but a very low recall (0.371). As a comparison, our
precision and recall are both above 0.978. Second, for the
end-to-end evaluation, we implemented a baseline system
using off-the-shelf NLP toolkits. More specifically, we use
the Conditional Random Field sequence model for extract-
ing named entities. The model uses Stanford Part-Of-Speech
tags [52] and other syntactic features. Then we feed the ex-
tracted entities to a baseline RE model that is trained with
features from Stanford Neural Dependency Parsing [29].
The end-to-end evaluation returns a precision of 0.8436 and a
recall of 0.8851. The results confirm the better performance
of VIEM, at least for our application purposes (i.e., processing
vulnerability reports).

Model Parameters. The above results are based on a
set of default parameters that have been fine-tuned based on
the validation dataset. To justify our parameter choices, we
change one parameter at a time and see its impact on the
model. We perform this test on all parameters (e.g., word
embedding dimensions, batch sizes, network layers, epochs).
The takeaway is that our model is not very sensitive to the
parameter settings.

We pre-trained our own word embedding layer on the cor-
pus built from all the unstructured reports in our dataset.
We have tested two state-of-the-art methods Word2vec [39],
and FastText [25]. We choose FastText since it gives a
slightly higher accuracy (by 1%). Figure 5 shows the overall
accuracy of FastText embeddings under different embed-
ding dimensions. The results show that the performance is
not sensitive to this parameter (as long as it is configured
within a reasonable range). When training RE and NER, we
need to set the batch size, the number of epochs, the number
of bi-directional layers and the dimension of position embed-
dings in the neural networks. Again, we swap the parameters
for RE and NER separately. For brevity, we only show the

Metric Before Transfer After Transfer
w/o Gaze w/ Gaze w/o Gaze w/ Gaze

Software Version Precision 0.8428 0.8467 0.9382 0.9414
Recall 0.9407 0.9400 0.9410 0.9403

Software Name Precision 0.8278 0.8925 0.9184 0.9557
Recall 0.8489 0.9185 0.9286 0.9536

Overall Accuracy 0.9873 0.9899 0.9942 0.9952

Table 4: Transfer learning result of NER model (average
over 12 vulnerability categories).

results for the RE model in Figure 6–Figure 8. The results for
the NER model are similar, which are shown in Appendix-A.

5.2 Evaluating Transfer Learning
Finally, we examine the generalizability of the model to
other vulnerability categories. First, to establish a baseline,
we directly apply the model trained with memory corruption
dataset to other vulnerability categories. Second, we apply
transfer learning, and retrain a dedicated model for each of
the other vulnerability categories. We refer the two experi-
ments as “before transfer” and “after transfer” respectively.

Transfer learning is helpful when there is not enough la-
beled data for each of the vulnerability categories. In this
case, we can use the memory corruption classifier as the
teacher model. By fine-tuning the last layer of the teacher
model with the data of each category, we can train a series
of category-specific classifiers. More specifically, we train a
teacher model using all the ground-truth data from the mem-
ory corruption category (3,448 CVE IDs). Then we use the
teacher model to train a new model for each of the 12 vul-
nerability categories. Given a target category (e.g., SQL In-
jection), we split its ground-truth data with a ratio of 1:1 for
training (Ttrain) and testing (Ttest). The training data (Ttrain)
will be applied to the pre-trained teacher model to fine tune
the final hidden layer. In this way, a new model that is spe-
cially tuned for “SQL Injection” reports is constructed. Fi-
nally, we apply this new model to the testing data (Ttest) to
evaluate its performance.

The results are presented in Table 4 and Table 5. We find
that the NER model is already highly generalizable before
transfer learning. Transfer learning only introduces a small
improvement in accuracy (from 0.987 to 0.994). Second, the
RE model (trained on memory corruption data) has a clear
degradation in performance when it is directly applied to
other categories. The overall accuracy is only 0.876. After
transfer learning, accuracy can be improved to 0.9044.

To confirm that transfer learning is necessary, we run an
additional experiment by using all the ground-truth dataset
from 13 categories to train a single model. We find that
the end-to-end accuracy is only 0.883 which is lower than
the transfer learning accuracy. The accuracy of certain cate-
gories clearly drops (e.g., 0.789 for CSRF). This shows that
the vulnerability reports of different categories indeed have
different characteristics, and deserve their own models.

USENIX Association 28th USENIX Security Symposium 877

Metric
Before Transfer After Transfer

G-truth NER Result as Input G-truth NER Result as Input
as Input w/o Gaze w/ Gaze as Input w/o Gaze w/ Gaze

Precis. 0.9559 0.7129 0.8105 0.9781 0.8062 0.8584
Recall 0.9521 0.9767 0.9724 0.9937 0.9964 0.9964
Accur. 0.9516 0.8215 0.8760 0.9834 0.8698 0.9044

Table 5: Transfer learning result of RE model (average over
12 vulnerability categories.)

6 Measuring Information Inconsistency

In this section, we apply VIEM to the full dataset to examine
the information consistency. In particular, we seek to exam-
ine how well the structured NVD entries are matched up with
the CVE entries and the referenced vulnerability reports. In
the following, we first define the metrics to quantify consis-
tency. Then we perform a preliminary measurement on the
ground-truth dataset to estimate the measurement errors in-
troduced by VIEM. Finally, we apply our model to the full
dataset to examine how the consistency level differs across
different vulnerability types and over time. In the next sec-
tion (§7), we will perform case studies on the detected incon-
sistent reports, and examine the causes of the inconsistency.

6.1 Measurement Methodology

NVD database, with its fully structured and standardized
data entries, makes it possible for automated information
processing and intelligent mining. However, given that NVD
entries are created and updated by manual efforts [18], we
are concerned about its data quality, in particular, its abil-
ity to keep up with the most recent discoveries of vulnerable
software and versions. To this end, we seek to measure the
consistency of NVD entries with other information sources
(including CVE summaries and external reports).

Matching Software Names. Given a CVE ID, we
first match the vulnerable software names listed in the
NVD database, and those from unstructured text. More
specifically, let C = {(N1,V1),(N2,V2), ...,(Nn,Vn)} be the
vulnerable software name-version tuples extracted from
the NVD, and C′ = {(N1,V ′1),(N2,V ′2), ...,(Nm,V ′m)} be the
name-version tuples extracted from the external text. In our
dataset, about 20% of the CVE IDs are associated with mul-
tiple software names. In this paper, we only focus on the
matched software names between the NVD and external re-
ports. Our matching method has the flexibility to handle the
slightly different format of the same software name. We con-
sider two names as a match if the number of matched words
is higher or equal to the number of unmatched words. For
example, “Microsoft Internet Explorer” and “Internet Ex-
plorer” are matched because there are more matched words
than the unmatched one.

Measuring Version Consistency. Given a software
name N1, we seek to measure the consistency of the reported

Match
Memory Corruption Avg. over 12 Other Categories

Matching Rate
Deviat.

Matching rate
Deviat.

VIEM G-truth VIEM G-truth
Loose 0.8725 0.8528 0.0194 0.9325 0.9371 -0.0046
Strict 0.4585 0.4627 -0.0042 0.6100 0.6195 -0.0095

Table 6: Strict matching and loose matching results on the
ground-truth dataset.

versions V1 and V ′1. We examine two types of matching.
First, strict matching means V1 and V ′1 exactly match each
other (V1 = V ′1). Second, loose matching means one version
is the other version’s superset (V1 ⊆ V ′1 or V1 ⊇ V ′1). Note
that the loosely matched cases contain those that are strictly
matched. Beyond loose matching, it means V1 and V ′1 each
contains some vulnerable versions that are not reported by
the other (i.e., conflicting information).

To perform the above matching procedure, we need to
convert the text format of V1 and V ′1 to a comparable for-
mat. In unstructured text, the software version is either de-
scribed as a set of discrete values (e.g., “version 1.1 and
1.4”) or a continuous range (e.g., “version 1.4 and earlier”).
For descriptions like “version 1.4 and earlier”, we first con-
vert the text representation into a mathematical range. The
conversion is based on a dictionary that we prepared before-
hand. For example, we convert “. . . and earlier” into “≤”.
This means “1.4 and earlier” will be converted into “≤ 1.4”.
Then, for “range” based version descriptions, we look up the
CPE directory maintained by NIST [2] to obtain a list of all
the available versions for a given software. This allows us
to convert the “range” description (“≤ 1.4”) into a set of dis-
crete values {1.0,1.1,1.2,1.3,1.4}. After the conversion, we
can determine if V1 and V ′1 match or not.

If a CVE ID has more than one software names (k > 1),
we take a conservative approach to calculate the matching
result. Only if all the k software version pairs are quali-
fied as strict matching will we consider the report as a “strict
match”. Similarly, only if all the pairs are qualified as loose
matching will we label the report as “loose matching” report.

6.2 Ground-truth Measurement

Following the above methodology, we first use the ground-
truth dataset to estimate the measurement error. More specif-
ically, given all the ground-truth vulnerability reports and the
CVE summaries, we use our best-performing model (with
gazetteer and transfer learning) to extract the vulnerable soft-
ware name-version tuples. Then we perform the strict and
loose matching on the extracted entries and compare the
matching rate with the ground-truth matching rate. The re-
sults are shown in Table 6.

We show that VIEM introduced a small deviation to the
actual matching rate. For memory corruption vulnerabili-
ties, our model indicates that 87.3% of the reports loosely
match the NVD entries, and only 45.9% of the reports strictly

878 28th USENIX Security Symposium USENIX Association

Mozilla Firefox up to (including) 1.5

Netscape Navigator up to (including) 8.0.40

Software Version

Overclaim

Underclaim

NVD data

CVE summary

K-Meleon up to (including) 0.9

Mozilla Firefox 1.5

Netscape 8.0.4 and 7.2

Software Version

K-Meleon before 0.9.12

Mozilla Suite up to (including) 1.7.12

Figure 9: Example of underclaimed and
overclaimed versions.

Openwall
SecFoc.

SecTrack.
Sec. Forum CVE EDB

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
ra

te

Strict matching Loose matching

Figure 10: Matching rate for different in-
formation sources.

Openwall
SecFoc.

SecTrack.
Sec. Forum CVE EDB

Union
Intersect

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f C
VE

 ID
s

Both Underclaim Overclaim

Figure 11: Breakdown of underclaimed
and overclaimed cases.

match. The results are very close to the ground-truth where
the matching rates are 85.3% and 46.3% respectively. For
the rest of the 12 vulnerability categories, our model indi-
cates that the loose matching rate is 93.3% and the strict
matching rate is 61%. Again, the results are quite simi-
lar to the ground-truth (93.7% and 62%). The deviation
from ground-truth (Rateestimated−Rategroundtruth) is bounded
within ±1.9%. The results confirm that our model is accu-
rate enough for the measurement.

6.3 Large-Scale Empirical Measurements

After the validation above, we then use the full ground-truth
dataset to train VIEM and apply the model to the rest of the
unlabeled and unstructured text (vulnerability reports and
CVE summaries). Then we calculate the matching rate be-
tween the versions of NVD and those from external informa-
tion sources (the CVE website and 5 external websites).

Result Overview. Across all 78,296 CVE IDs, we extract
in total 18,764 unique vulnerable software names. These
vulnerable software names correspond to 154,569 soft-
ware name-version pairs from the CVE summaries, 235,350
name-version pairs from the external vulnerability reports,
and 165,822 name-version pairs from NVD database. Af-
ter matching the software names between NVD and other
sources, there are 389,476 pairs left to check consistency.

At the name-version pair level, we find 305,037 strictly
matching pairs (78.32%). This means about 22% of the
name-version pairs from NVD do not match the external in-
formation sources. If we relax the matching condition, we
find 361,005 loosely matched pairs (93.49%).

We then aggregate the matching results at the report level.
Although the loose matching rate is still high (90.05%),
the strict matching rate clearly decreases. Only 59.82% of
the vulnerability reports/CVE summaries strictly match the
NVD entries. This is because strictly matched reports require
all the extracted versions to match those of NVD.

In order to understand how the level of consistency varies
across different aspects, we next break down the results for
more in-depth analyses.

Information Source Websites. Figure 10 shows the
matching rates between the NVD entries and the 5 informa-
tion websites and the CVE website. CVE has a relatively
high matching rate (about 70% strict matching rate). This is
not too surprising given that NVD is claimed to be synchro-
nized with the CVE feed. More interestingly, we find that
ExploitDB has an even higher matching rate with NVD. We
further examine the posting dates of the NVD entries and
the corresponding reports in other websites. We find that the
vast majority (95.8%) of the ExploitDB reports were posted
after the NVD entries were created. However, 81% of the
ExploitDB reports were posted earlier than the reports in the
other 4 websites, which might have helped to catch the atten-
tion of the NVD team to make an update.

Overclaims vs. Underclaims. For the loosely matched
versions, the NVD entries may have overclaimed or un-
derclaimed the vulnerable software versions with respect to
the external reports. An example is shown in Figure 9 for
CVE-2005-4134. Compared with CVE summary, NVD has
overclaimed the vulnerable version for Mozilla Firefox and
Netscape Navigator, given that NVD listed more vulnerable
versions than CVE. On the contrary, for K-Meleon, NVD has
underclaimed the vulnerable software version range.

Figure 11 shows the percentage of overclaimed and un-
derclaimed NVD entries within the loosely matched pairs.
“Strict-matched” pairs are not included in this analysis. We
are not surprised to find NVD entries might overclaim. Given
that NVD is supposed to search for different sources to keep
the entries update-to-date, it is reasonable for the NVD en-
tries to cover more vulnerable versions. Even if we take the
union of the vulnerable versions across 5 websites and CVE,
NVD is still covering more versions. The more interesting
observation is that NVD has underclaimed entries compared
to each of the external information sources. This suggests
that NVD is either suffering from delays to update the en-
tries or fails to keep track of the external information. Only
a tiny portion of NVD entries contain both overclaimed and
underclaimed versions (see the example in Figure 9).

Examples of Conflicting Cases. We then examined the
conflicted pairs, and observed that a common reason for mis-

USENIX Association 28th USENIX Security Symposium 879

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
ra

te

Slope = -0.0015
Fitting errors = 0.0323

Slope = -0.0056
Fitting errors = 0.0841

Strict matching Loose matching

Figure 12: Matching rate over time:
NVD vs. (CVE + 5 websites).

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
ra

te Slope = 0.0006
Fitting errors = 0.0397

Slope = 0.0028
Fitting errors = 0.0544

Strict matching Loose matching

Figure 13: Matching rate over time:
CVE vs. 5 websites.

Mem
. C

or.

HTTP
 Res. DoS

Over
flow

BypassCSRF

Gain
 Inf.

Gain
 Pr

i.

Code E
xe. XSS

Dir.
Tra

v.
SQLi

File
 Inc.

0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
in

g
ra

te

Strict matching Loose matching

Figure 14: Matching rate for different
vulnerability categories.

matching is typos. For example, under CVE-2008-1862,
the versions listed on CVE and ExploitDB are both 0.22
and earlier for software ExBB Italia. However, the NVD
version is slightly different “up to (including) 0.2.2”.
Another example is CVE-2010-0364 where the software
versions from NVD and CVE summary are both 0.8.6 for
Videolan VLC media player. However, the information on
SecurityFocus has a clear typo as 0.6.8.

In other cases, it is not clear whose information is correct.
For example, sometimes the referenced vulnerable reports
provide more detailed information than the CVE summary.
For example, under CVE-2012-1173, the vulnerable version
for libtiff is listed as 3.9.4 on NVD but SecurityTracker
claims the vulnerable version should be 3.9.5. Under
CVE-2000-0773, software Bajie HTTP web server is vul-
nerable for version 1.0 according to NVD. However, CVE
lists version 0.30a and SecurityFocus lists 0.90, 0.92,
0.93. There is no way to determine the correctness of the
contradicting information at the pure text level, but we argue
that the value of such measurement results is to point out the
cases that need validation and correction.

Consistency Over Time. Figure 12 shows the con-
sistency level between NVD and the other 6 information
sources (CVE and the 5 report websites) is decreasing over
time. The strict matching rate has some fluctuation over time
but still shows a decreasing trend. We perform a linear re-
gression for both matching rates and find both have a neg-
ative slope (-0.0015 and -0.0056 respectively). The result
suggests the overall consistency drops over time in the past
20 years. However, if we take a closer look at the recent
three years (2016 to 2018), the consistency level is starting
to increase, which is a good sign.

Figure 13 shows a different trend when we compare the
consistency between CVE and the 5 external websites. The
consistency level between CVE and external sites is rela-
tively stable with a slight upward trend. We perform a linear
regression for both matching rates which returns a positive
slope (0.0006 and 0.0028 respectively). This suggests that
CVE websites are getting better at summarizing the vulnera-
bility versions.

Types of Vulnerabilities. As shown in Figure 14, we
break down the results based on the vulnerability categories.
While the loose matching rates are still similar (around
90%), there are clear differences in their strict matching
rates. For example, “SQL Injection” and “File Inclusion”
have the highest strict matching rate (over 75%), but cat-
egories such as “Memory Corruption” have a much lower
strict matching rate (48%). Further manual examination sug-
gests that memory corruption vulnerabilities are typically
more complex than those under File Inclusion or SQL In-
jection, and thus require a longer time to reproduce and vali-
date. As a result, it is not uncommon for NVD to miss newly
discovered vulnerable versions over time.

Inferring the Causes of Inconsistencies. Finally, we at-
tempt to infer the causes of inconsistencies by analyzing the
NVD entry creation/update time with respect to the posting
time of the external reports. More specifically, NVD main-
tains a “change history” for each CVE ID, which allows us
to extract the entry creation time, and the time when new
software versions are added/removed. Then we can com-
pare it with the posting time of corresponding reports at the
5 websites. For this analysis, we randomly select 5,000 CVE
IDs whose vulnerable versions in NVD are inconsistent with
those of the 5 websites.

We find that 66.3% of the NVD entries have never been
updated since they were created for the first time. This
includes 5.8% NVD entries that were created before any
of the 5 websites posted their reports. For example, for
CVE-2006-6516, NVD claimed KDPics 1.16 was vulnera-
ble in 2006. Later in 2010, SecurityFocus reported that both
version 1.11 and version 1.16 were vulnerable. NVD has
not added the new version 1.11 until today. For the much
bigger portion (60.5%) of NVD entries, they were created
when at least one of the external reports were already avail-
able. An example is CVE-2016-6855 as ExploitDB claimed
Eye of Gnome 3.10.2 was vulnerable in August 2016. A
month later, the NVD entry was created which did not in-
clude version 3.10.2. No update has been made since then.

For the rest of the 33.7% of the NVD entries, they have
made at least one update to the vulnerable versions after the
entry creation. For them, we compare the latest update time

880 28th USENIX Security Symposium USENIX Association

CVE ID Software Vul. Versions Claimed by Different Sources Majority Union Ground truth Versions Manually # Newly Detected # Overclaimed
Vote Tested Versions by Us (12) Reports (15)

CVE-2004-2167 latex2rtf

NVD: 1.9.15 (1)

1.9.15 (1)

1.9.15 and

1.9.15 (1) 1.8aa - 2.3.17 (40) 0 1CVE: 1.9.15 and possibly others (40) possibly
SecurityFocus, SecurityTracker: 1.9.15 (1) others (40)
IBM Security: ≤ 1.9.15 (14)

CVE-2008-2950 poppler

NVD, CVE, SecurityTracker,

≤ 0.8.4 (34) ≤ 0.8.4 (34) 0.5.9 - 0.8.4 (16) 0.1 - 0.8.7 (37) 0 7

Security Forum, OCERT,
CXsecurity, IBM Security: ≤ 0.8.4 (34)
SecurityFocus, ExploitDB: 0.8.4 (1)
RedHat: < 0.6.2 (22)
Gentoo: < 0.6.3 (23)

CVE-2009-5018 gif2png

NVD: 0.99 - 2.5.3 (36)

≤ 2.5.3 (36) ≤ 2.5.3 (36) 2.4.2 - 2.5.6 (13) 0.7 - 2.5.8 (41) 2.5.4 - 2.5.6 (3) 4

CVE, Openwall, IBM Security,
Bugzilla: ≤ 2.5.3 (36)
SecurityFocus: 2.5.2 (1)
Gentoo: < 2.5.1 (33)
Fedora: 2.5.1 (1)

CVE-2015-7805 libsndfile

NVD, CVE, Openwall,

1.0.25 (1) ≤ 1.0.25 (30) 1.0.15 - 1.0.25 (11) 0.0.8 - 1.0.26 (31) 0 2
Fedora, nemux,
Packet Storm: 1.0.25 (1)
ExploitDB: ≤ 1.0.25 (30)
Gentoo: < 1.0.26 (30)

CVE-2016-7445 openjpeg
NVD, Gentoo: ≤ 2.1.1 (16)

2.1.1 (1) < 2.1.2 (16) 1.5 - 2.1.1 (7) ≤ 2.2.0 (18) 0 1SecurityFocus, Openwall: 2.1.1 (1)
CVE: < 2.1.2 (16)

CVE-2016-8676 libav

NVD: ≤ 11.8 (47) 11.3,

11.0 - 11.8 (9) 11.0 - 11.9 (10) 0
CVE: 11.9 (1) 11.4, 11.3, 11.4,
SecurityFocus: 11.3, 11.4, 11.5, 11.7 (4) 11.5, 11.5, 11.7, 11.0, 11.1,
Openwall: 11.8 (1) 11.7 (4) 11.8, 11.9 (6) 11.2, 11.6 (4)
agostino’s blog: 11.3 - 11.7 (5)

CVE-2016-9556 ImageMagick
NVD, CVE: 7.0.3.8 (1)

7.0.3.6
7.0.3.6,

7.0.3.1 - 7.0.3.7 (7) 7.0.3.1 - 7.0.3.8 (8) 7.0.3.1 - 7.0.3.5 (5) 0SecurityFocus, Openwall, 7.0.3.8 (2)
agostino’s blog: 7.0.3.6 (1)

Table 7: The summary of case study results. The number in parentheses denotes the total number of software versions.

and the posting time of the external reports at the 5 websites.
We find all of the NVD entries made the latest update after
the posting time of some of the external reports. Overall,
these results suggest that the NVD team did not effectively
include the vulnerable versions from the external reports, de-
spite that the reports were already available at the time of the
entry creation/update. The results in turn reflect the need
of automatically monitoring different online sources and ex-
tracting vulnerable versions for more proactive version test-
ing and entry updating.

7 Case Study

To demonstrate the real-world implications of our inconsis-
tency measurement, we perform case studies. We randomly
select 7 real-world vulnerabilities from the mismatched cases
in our dataset. Then we attempt to manually reproduce the
vulnerabilities of the related software under different ver-
sions. These vulnerabilities are associated with 7 distinct
CVE IDs, covering 47 vulnerability reports in total. Note
that for the case study, we not only included CVE sum-
maries and the reports from the 5 websites, but considered
all other source websites in the reference lists of these CVE
IDs. For the software mentioned in these reports, we exhaus-
tively gathered all the versions of these software programs
and obtained 185 versions of software in total. We list the
number of unique versions for each software in Table 7.

With the collected software, we examine the vulnerabili-
ties in each version. We form a team of 3 security researchers

to manually analyze the source code of these software pro-
grams, and dynamically verify the reported vulnerabilities
by manually crafting the PoC (proof-of-concept) input. The
185 software versions took us 4 months to fully verify.

The truly vulnerable versions are listed in the “ground-
truth” column in Table 7. In total, out of the 185 software
versions, we confirm that 64 versions are vulnerable. 12 of
the truly vulnerable versions are discovered by us for the first
time, which have never been mentioned in existing vulnera-
bility reports, or CVE/NVD entries.

Observation 1. Erroneous Information Confirmed.
By comparing with the ground-truth vulnerable versions, we
confirmed that most information sources including CVE and
NVD have either missed real vulnerable versions or falsely
included non-vulnerable versions. There are widespread and
routine overclaims and underclaims. Given that many sys-
tem administrators heavily rely on the information in vul-
nerability reports to assess the risk of their system and de-
termine whether they need to upgrade their software, it is a
big concern that the “underclaiming” problem could leave
vulnerable software systems unpatched. The overclaims, on
the other hand, could have wasted significant manual efforts
from security analysts in performing risk assessments.

Observation 2. Benefits and Limits of Majority Voting.
Given a vulnerability, if we take a majority voting among
different information sources, we can diminish the “over-
claiming” issue, which, however, amplifies the “underclaim-
ing” issue. The result suggests that system administrators

USENIX Association 28th USENIX Security Symposium 881

and security analysts cannot simply utilize a majority voting
mechanism to determine the risk of their software systems.

Observation 3. Benefits and Limits of Union. If we
take a union set of all the claimed vulnerable versions, we
can see the resulting vulnerable versions are having better
coverage of the truly vulnerable versions. This indicates
the benefit of broadly searching different online informa-
tion sources and automatically extracting newly discovered
vulnerable versions. While acknowledging the benefit, we
also observe that the union approach is not perfect. First, the
union set easily introduced overclaimed versions. Across all
the vulnerabilities in Table 7, we find 15 external reports (not
including NVD/CVE entries) where the claimed vulnerable
versions turned out to be not vulnerable based on our tests
(i.e., overclaimed reports). Second, the union set sometimes
fails to cover truly vulnerable versions. As shown in Table 7,
we confirm 12 new vulnerable versions for CVE-2009-5018,
CVE-2016-8676, and CVE-2016-9556. These vulnerable
versions are discovered for the first time by us, by exhaus-
tively testing all the available versions of the given software.
In practice, our approach (testing all versions) is not scalable
given the significant manual efforts required. To fully au-
tomate the vulnerability verification process is still an open
challenge. Overall, the union approach at least helps to nar-
row down the testing space and improve the coverage of the
truly vulnerable versions.

8 Discussion

Key Insights. The most important takeaway is NVD con-
tains highly inconsistent information from external informa-
tion sources and even the CVE list. The inconsistency in-
volves both overclaiming and underclaiming problems. The
implication is that system administers or security analysts
cannot simply rely on the NVD/CVE information to deter-
mine the vulnerable versions of the affected software. At the
very least, browsing external vulnerability reports can help
to better cover the potentially vulnerable versions.

Our system VIEM makes it possible to automatically keep
track of the information of different sources to generate a
“diff” from the NVD/CVE entries periodically. This allows
employees of NIST NVD and MITRE CVE to get notified
when new vulnerable versions are reported in external web-
sites, and helps them to focus on the most inconsistent or
outdated entries, which potentially accelerates vulnerability
testing, entry updating, and software patching. This was
not possible without VIEM. Although vulnerability testing
and verification are still largely manual efforts (automatically
verifying the correctness of the vulnerability information in
reports is not yet possible, which is an open problem), our
main contribution is that we enable the automation for the
information collection and standardization process.

Limitations. Our study has a few limitations. First, we
only focus on the 5 most popular source websites in order to
make the data collection process manageable (each website
needs its own crawler and content parser). We argue that the
5 websites are referenced by 72.34% of all CVE IDs, and the
results are representative. Future work will seek to expand
the scope of the measurements. Second, our definition of
“vulnerable software” is relatively broad, including all dif-
ferent parts that are related to (or affected by) the vulnerabil-
ity (e.g., dependent libraries, OSes, components, functions).
One way to improve our system is to further classify the dif-
ferent types of “software names” (e.g., differentiating vulner-
able applications and the affected OSes). Finally, the scale
of our case study is still limited. The 185 software versions
already cost months to manually verify, and it is difficult to
increase the scale further.

9 Related Work

NLP for Security. Natural Language Processing (NLP)
has been applied to address different security problems. For
example, researchers apply NLP to extract malware detec-
tion features from researcher papers [63] or systematically
collect cyber threat intelligence from technical blogs [27,37].
Another line of work applies text analysis to mobile apps to
study permission abuse and user input sanitization [33, 35,
43, 45, 46]. Finally, NLP has been used to analyze API doc-
umentation and infer security policies [55, 61].

A more relevant line of works has employed NLP tech-
niques to facilitate the identification and assessment of soft-
ware bugs [47, 51, 54, 58]. A recent work [59] proposed a
method to extract relevant information from CVE to facili-
tate vulnerability reproduction, with a specific focus on ker-
nel vulnerabilities. Our work is the first to build customized
NLP models to extract vulnerable software names and ver-
sions from CVE and vulnerability reports. We apply the
model to systematically measure information consistency.

Security Vulnerability Reports. CVE and vulnerability
reports have been studied in various contexts. Breu et al. [26]
showed that the interaction between software developers and
bug reporters can facilitate the remediation of software bugs.
Guo et al. [34] found that vulnerabilities reported by pro-
fessionals with high reputations usually get fixed quicker.
Bettenburg et al. [23] discovered that additional information
provided by duplicated vulnerability reports can help to re-
solve the problem more timely. Mu et al. [42] showed that
the missing information in vulnerability reports could reduce
the success rate of vulnerability reproduction. The authors
of [42] only tested if one of the versions is vulnerable, and
we need to test all the versions for a given software to obtain
the ground-truth (§7). Zhang et al. [60] used NVD data for
security risk assessment. Christey et al. [31] pointed out the
biased statistics in CVE. Nappa et al. [44] found missing and

882 28th USENIX Security Symposium USENIX Association

extraneous vulnerable versions in NVD data (for 1500 vul-
nerabilities) by comparing the NVD version with those of the
product security advisories. Our work differs from previous
works by focusing on the information consistency between
unstructured information sources and CVE/NVD entries for
a large number of vulnerabilities.

10 Conclusion

In this paper, we design and develop an automated tool
VIEM to conduct a large-scale measurement of the informa-
tion consistency between the structured NVD database and
unstructured CVE summaries and external vulnerability re-
ports. Our results demonstrate that inconsistent informa-
tion is highly prevalent. In-depth case studies confirm that
the NVD/CVE database and third-party reports have either
missed truly vulnerable software versions or falsely included
non-vulnerable versions. The erroneous information could
leave vulnerable software unpatched, or increase the manual
efforts of security analysts for risk assessment. We believe
there is an emerging need for the community to systemati-
cally rectify inaccurate claims in vulnerability reports.

Acknowledgments

We would like to thank our shepherd Giancarlo Pellegrino
and the anonymous reviewers for their helpful feedback. We
also want to thank Dongliang Mu and Jing Wang for their
insightful suggestions. This project was supported in part
by CSC scholarship, National Key Research and Develop-
ment Program of China (2016YFB0800703), Chinese Na-
tional Natural Science Foundation (U1836210), and NSF
grants (CNS-1750101, CNS-1717028, CNS-1718459). Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of any funding agencies.

References

[1] Are there references available for cve entries?
https://cve.mitre.org/about/faqs.html#
cve_entry_references.

[2] CPE dictionary. https://nvd.nist.gov/
products/cpe.

[3] CVE and NVD Relationship. https://cve.mitre.
org/about/cve_and_nvd_relationship.html.

[4] CVE List. https://cve.mitre.org/cve/.

[5] Cve numbering authorities. https://cve.mitre.
org/cve/cna.html.

[6] CVE Website. https://cve.mitre.org/.

[7] Exploitdb. https://www.exploit-db.com/.

[8] How are the cve entry descriptions created or com-
piled? https://cve.mitre.org/about/faqs.
html#cve_entry_descriptions_created.

[9] How does a vulnerability or exposure become a cve en-
try? https://cve.mitre.org/about/faqs.html#
cve_list_vulnerability_exposure.

[10] List of products. https://www.cvedetails.com/
product-list.php.

[11] Nvd. https://nvd.nist.gov/.

[12] Nvd data feeds. https://nvd.nist.gov/vuln/
data-feeds.

[13] Openwall. http://www.openwall.com/.

[14] Securityfocus. https://www.securityfocus.com/
vulnerabilities.

[15] Securityfocus forum. https://www.
securityfocus.com/archive/1.

[16] Securitytracker. https://securitytracker.com/.

[17] Vulnerability change record for cve-2014-
9662. https://nvd.nist.gov/vuln/
detail/CVE-2014-9662/change-record?
changeRecordedOn=6%2f30%2f2016+1%3a55%
3a54+PM&type=new#0.

[18] What happens after a vulnerability is identi-
fied? https://nvd.nist.gov/general/faq#
1dc13c24-565f-46eb-90da-c5cac28a1e17.

[19] What is mitre’s role in cve? https://cve.mitre.
org/about/faqs.html#MITRE_role_in_cve.

[20] A cyberattack the world isn’t ready for. The
New York Times, 2017. https://www.
nytimes.com/2017/06/22/technology/
ransomware-attack-nsa-cyberweapons.html.

[21] Giant equifax data breach: 143 million peo-
ple could be affected. CNN, 2017. https:
//money.cnn.com/2017/09/07/technology/
business/equifax-data-breach/index.html.

[22] ANGELI, G., PREMKUMAR, M. J. J., AND MAN-
NING, C. D. Leveraging linguistic structure for open
domain information extraction. In Proc. of ACL (2015).

[23] BETTENBURG, N., PREMRAJ, R., ZIMMERMANN,
T., AND KIM, S. Duplicate bug reports considered
harmful. . . really? In Proc. of ICSM (2008).

USENIX Association 28th USENIX Security Symposium 883

[24] BIRD, S., AND LOPER, E. Nltk: the natural language
toolkit. In Proc. of ACL (2004).

[25] BOJANOWSKI, P., GRAVE, E., JOULIN, A., AND
MIKOLOV, T. Enriching word vectors with subword
information. Transactions of the Association for Com-
putational Linguistics (2017).

[26] BREU, S., PREMRAJ, R., SILLITO, J., AND ZIMMER-
MANN, T. Information needs in bug reports: improving
cooperation between developers and users. In Proc. of
CSCW (2010).

[27] CATAKOGLU, O., BALDUZZI, M., AND
BALZAROTTI, D. Automatic extraction of indi-
cators of compromise for web applications. In Proc. of
WWW (2016).

[28] CHAPARRO, O., LU, J., ZAMPETTI, F., MORENO, L.,
DI PENTA, M., MARCUS, A., BAVOTA, G., AND NG,
V. Detecting missing information in bug descriptions.
In Proc. of FSE (2017).

[29] CHEN, D., AND MANNING, C. A fast and accurate de-
pendency parser using neural networks. In Proceedings
of the 2014 conference on empirical methods in natural
language processing (EMNLP) (2014), pp. 740–750.

[30] CHITICARIU, L., LI, Y., AND REISS, F. R. Rule-
based information extraction is dead! long live rule-
based information extraction systems! In Proc. of
EMNLP (2013).

[31] CHRISTEY, S., AND MARTIN, B. Buying into the bias:
Why vulnerability statistics suck. BlackHat, Las Vegas,
USA, Tech. Rep (2013).

[32] DAVIES, S., AND ROPER, M. What’s in a bug re-
port? In Proc. of ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement
(ISESE) (2014).

[33] GORLA, A., TAVECCHIA, I., GROSS, F., AND
ZELLER, A. Checking app behavior against app de-
scriptions. In Proc. of ICSE (2014).

[34] GUO, P. J., ZIMMERMANN, T., NAGAPPAN, N., AND
MURPHY, B. Characterizing and predicting which
bugs get fixed: an empirical study of microsoft win-
dows. In Proc. of ICSE (2010).

[35] HUANG, J., LI, Z., XIAO, X., WU, Z., LU, K.,
ZHANG, X., AND JIANG, G. Supor: Precise and scal-
able sensitive user input detection for android apps. In
Proc. of USENIX Security (2015).

[36] LAMPLE, G., BALLESTEROS, M., SUBRAMANIAN,
S., KAWAKAMI, K., AND DYER, C. Neural architec-
tures for named entity recognition. In Proc. of NAACL-
HLT (2016).

[37] LIAO, X., YUAN, K., WANG, X., LI, Z., XING, L.,
AND BEYAH, R. Acing the ioc game: Toward au-
tomatic discovery and analysis of open-source cyber
threat intelligence. In Proc. of CCS (2016).

[38] LIN, Y., SHEN, S., LIU, Z., LUAN, H., AND SUN, M.
Neural relation extraction with selective attention over
instances. In Proc. of ACL (2016).

[39] MIKOLOV, T., CHEN, K., CORRADO, G., AND
DEAN, J. Efficient estimation of word representations
in vector space. arXiv:1301.3781 (2013).

[40] MIKOLOV, T., SUTSKEVER, I., CHEN, K., COR-
RADO, G. S., AND DEAN, J. Distributed representa-
tions of words and phrases and their compositionality.
In Proc. of NIPS (2013).

[41] MINTZ, M., BILLS, S., SNOW, R., AND JURAFSKY,
D. Distant supervision for relation extraction without
labeled data. In Proc. of ACL (2009).

[42] MU, D., CUEVAS, A., YANG, L., HU, H., XING, X.,
MAO, B., AND WANG, G. Understanding the repro-
ducibility of crowd-reported security vulnerabilities. In
Proc. of USENIX Security (2018).

[43] NAN, Y., YANG, M., YANG, Z., ZHOU, S., GU, G.,
AND WANG, X. Uipicker: User-input privacy iden-
tification in mobile applications. In Proc. of USENIX
Security (2015).

[44] NAPPA, A., JOHNSON, R., BILGE, L., CABALLERO,
J., AND DUMITRAS, T. The attack of the clones: A
study of the impact of shared code on vulnerability
patching. In Proc. of S&P (2015).

[45] PANDITA, R., XIAO, X., YANG, W., ENCK, W., AND
XIE, T. Whyper: Towards automating risk assessment
of mobile applications. In Proc. of USENIX Security
(2013).

[46] QU, Z., RASTOGI, V., ZHANG, X., CHEN, Y.,
ZHU, T., AND CHEN, Z. Autocog: Measuring the
description-to-permission fidelity in android applica-
tions. In Proc. of CCS (2014).

[47] SAHA, R. K., LEASE, M., KHURSHID, S., AND
PERRY, D. E. Improving bug localization using struc-
tured information retrieval. In Proc. of ASE (2013).

[48] SMITH, A., AND OSBORNE, M. Using gazetteers in
discriminative information extraction. In Proc. of Com-
putational Natural Language Learning (2006).

[49] STANOVSKY, G., MICHAEL, J., ZETTLEMOYER, L.,
AND DAGAN, I. Supervised open information extrac-
tion. In Proc. of ACL (2018).

884 28th USENIX Security Symposium USENIX Association

[50] SUTSKEVER, I., VINYALS, O., AND LE, Q. V. Se-
quence to sequence learning with neural networks. In
Proc. of NIPS (2014).

[51] TAN, L., YUAN, D., KRISHNA, G., AND ZHOU, Y. /*
icomment: Bugs or bad comments?*. In ACM SIGOPS
Operating Systems Review (2007).

[52] TOUTANOVA, K., KLEIN, D., MANNING, C. D., AND
SINGER, Y. Feature-rich part-of-speech tagging with
a cyclic dependency network. In Proceedings of the
2003 Conference of the North American Chapter of
the Association for Computational Linguistics on Hu-
man Language Technology-Volume 1 (2003), Associa-
tion for Computational Linguistics, pp. 173–180.

[53] WANG, H., WANG, C., ZHAI, C., AND HAN, J.
Learning online discussion structures by conditional
random fields. In Proc. of SIGIR (2011).

[54] WONG, C.-P., XIONG, Y., ZHANG, H., HAO, D.,
ZHANG, L., AND MEI, H. Boosting bug-report-
oriented fault localization with segmentation and stack-
trace analysis. In Proc. of International Conference on
Software Maintenance and Evolution (ICSME) (2014).

[55] XIAO, X., PARADKAR, A., THUMMALAPENTA, S.,
AND XIE, T. Automated extraction of security policies
from natural-language software documents. In Proc. of
SIGSOFT (2012).

[56] YANG, Z., SALAKHUTDINOV, R., AND COHEN,
W. W. Transfer learning for sequence tagging
with hierarchical recurrent networks. arXiv preprint
arXiv:1703.06345 (2017).

[57] YANG, Z., YANG, D., DYER, C., HE, X., SMOLA,
A., AND HOVY, E. Hierarchical attention networks
for document classification. In Proc. of NAACL-HLT
(2016).

[58] YE, X., BUNESCU, R., AND LIU, C. Learning to rank
relevant files for bug reports using domain knowledge.
In Proc. of SIGSOFT (2014).

[59] YOU, W., ZONG, P., CHEN, K., WANG, X., LIAO,
X., BIAN, P., AND LIANG, B. Semfuzz: Semantics-
based automatic generation of proof-of-concept ex-
ploits. In Proc. of CCS (2017).

[60] ZHANG, S., OU, X., AND CARAGEA, D. Predict-
ing cyber risks through national vulnerability database.
Information Security Journal: A Global Perspective
(2015).

[61] ZHONG, H., ZHANG, L., XIE, T., AND MEI, H. Infer-
ring resource specifications from natural language api
documentation. In Proc. of ASE (2009).

[62] ZHOU, P., SHI, W., TIAN, J., QI, Z., LI, B., HAO,
H., AND XU, B. Attention-based bidirectional long
short-term memory networks for relation classification.
In Proc. of ACL (2016).

[63] ZHU, Z., AND DUMITRAS, T. Featuresmith: Automat-
ically engineering features for malware detection by
mining the security literature. In Proc. of CCS (2016).

Appendix

A Model Parameters

The have tested the model performance with respect to dif-
ferent parameter settings for the NER model and the RE
model. Figure 15 shows the RE model performance under
different position embedding dimensions. Figure 16 to Fig-
ure 18 show the NER model performance under different
batch sizes, the number of network layers, and the number
of epochs. The result shows that our model is not very sen-
sitive to parameter settings.

10 20 50
Dimension

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Figure 15: Position embed
dim. vs. RE accuracy.

10 20 30 40 50
Batch size

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Figure 16: Batch size vs.
NER accuracy.

1 2 3
Bi-directional layers

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Figure 17: # Bi-directional
layers vs. NER accuracy.

5 10 15 20 30
Epochs

0.90
0.92
0.94
0.96
0.98
1.00

Ac
cu

ra
cy

Figure 18: # Epochs vs. NER
accuracy.

USENIX Association 28th USENIX Security Symposium 885

Understanding and Securing Device Vulnerabilities through Automated Bug
Report Analysis

Xuan Feng1,2,5∗, Xiaojing Liao2, XiaoFeng Wang2, Haining Wang3

Qiang Li4, Kai Yang1,5, Hongsong Zhu1,5, Limin Sun1,5†

1 Beijing Key Laboratory of IoT Information Security Technology, IIE‡, CAS, China
2 Department of Computer Science, Indiana University Bloomington, USA

3 Department of Electrical and Computer Engineering, University of Delaware, USA
4 School of Computer and Information Technology, Beijing Jiaotong University, China

5 School of Cyber Security, University of Chinese Academy of Sciences , China

Abstract
Recent years have witnessed the rise of Internet-of-Things
(IoT) based cyber attacks. These attacks, as expected, are
launched from compromised IoT devices by exploiting secu-
rity flaws already known. Less clear, however, are the fun-
damental causes of the pervasiveness of IoT device vulner-
abilities and their security implications, particularly in how
they affect ongoing cybercrimes. To better understand the
problems and seek effective means to suppress the wave of
IoT-based attacks, we conduct a comprehensive study based
on a large number of real-world attack traces collected from
our honeypots, attack tools purchased from the underground,
and information collected from high-profile IoT attacks. This
study sheds new light on the device vulnerabilities of today’s
IoT systems and their security implications: ongoing cyber
attacks heavily rely on these known vulnerabilities and the
attack code released through their reports; on the other hand,
such a reliance on known vulnerabilities can actually be used
against adversaries. The same bug reports that enable the de-
velopment of an attack at an exceedingly low cost can also be
leveraged to extract vulnerability-specific features that help
stop the attack. In particular, we leverage Natural Language
Processing (NLP) to automatically collect and analyze more
than 7,500 security reports (with 12,286 security critical IoT
flaws in total) scattered across bug-reporting blogs, forums,
and mailing lists on the Internet. We show that signatures
can be automatically generated through an NLP-based report
analysis, and be used by intrusion detection or firewall sys-
tems to effectively mitigate the threats from today’s IoT-based
attacks.

1 Introduction

The pervasiveness of Internet-of-Things (IoT) systems, rang-
ing from cameras, routers, and printers to various home au-
tomation, industrial control and medical systems, also brings
∗Work was done while visiting Indiana University Bloomington.
†Corresponding author
‡Institute of Information Engineering

in new security challenges: they are more vulnerable than
conventional computing systems. IoT systems may fall into
an adversary’s grip once their vulnerabilities are exposed.
Indeed, recent years have seen a wave of high-profile IoT
related cyber attacks, with prominent examples including IoT
Reaper [25], Hajime [24], and Mirai [41]. Particularly, com-
promised IoT systems are becoming the mainstay for today’s
botnets, playing a central role in recent distributed denial-of-
service attacks and other cybercrimes [39]. An example is
Mirai, which involved hundreds of thousands of IoT devices
and generated an attack volume at 600 Gbps, overwhelming
Krebs on Security, OVH, and Dyn. It does not come as a sur-
prise that these devices are reported to be hacked all through
known vulnerabilities, including those caused by misconfig-
uration or mismanagement, just like unpatched servers and
personal computers that are routinely exploited [42]. Still
less clear, however, are the fundamental causes for this trend
of malicious activities that are disproportionately related to
IoT systems and these vulnerable devices’ impact upon the
cybercrime ecosystem.

Understanding the perilous IoT world. More specifically,
we raise the following questions: Why are IoT devices more
favorable to cybercriminals than other Internet hosts? How
important are known vulnerabilities to the ongoing attacks on
IoT systems? Is there an effective defense to mitigate ongoing
attacks? The answers to these questions are critical for seeking
an effective means to thwart the wave of malicious attacks that
increasingly rely on a large number of vulnerable IoT devices.
Finding these answers, however, is by no means trivial due to
the challenges in (1) recovering disclosed IoT vulnerabilities
from a large number of vulnerability reports scattered around
forums, mailing lists, and blogs, and (2) collecting artifacts
from the cybercrime underground to study how known flaws
are utilized and how significant they are to ongoing criminal
activities.

To understand how cybercriminals use these known vulner-
abilities, we set up honeypots to collect the data of real-world
IoT exploits and also analyzed four popular attack toolkits.
From the adversary’s end, our study shows that today’s IoT

USENIX Association 28th USENIX Security Symposium 887

attacks almost exclusively use known vulnerabilities for ex-
ploitation. Specifically, among 81 different exploit scripts
recovered from our honeypots, we found that 78 of them are
on our vulnerability list. Also, each of the four attack toolkits
we studied incorporates the exploits on at least 34 vulnera-
bilities, with all of them on our list. More importantly, we
evidence that an adversary extensively leverages the exploit
code released together with the vulnerability reports, and in
most cases, directly copies the code or slightly adjusts it. More
than 80% of the IoT-related reports come with working attack
methods. Given our observations that most of IoT vulnerabil-
ities can be exploited to attack target devices (compared with
only 5% exploitable ones in Linux kernel vulnerabilities [43]),
it is apparent that the cost for attacking IoT systems today is
exceedingly low.

Automated protection generation. On the other hand, we
show that adversaries’ indulgence in such low-hanging fruits
can actually be used against themselves. Specifically, the re-
liance on known vulnerabilities means that a large attack
surface would be closed once these problems have been fixed.
Interestingly, this turns out to be completely feasible, due
to the simplicity of the problems and the availability of the
vulnerability disclosure and attack code that carries all the
information we need to fix the reported flaws. Based on this
observation, we developed a framework, called IoTShield,
which utilizes Natural-Language Processing (NLP) to au-
tomatically evaluate the content of vulnerability reports. In
particular, IoTShield is based upon a set of automatic content
analysis techniques that accurately discover IoT-related vul-
nerability disclosures from a large number of vulnerability
reports published at different sources.

Using the approaches above, we automatically analyzed
430,000 vulnerability reports and discovered more than 7,500
IoT reports in the past 20 years. Then, IoTShield extracts
key knowledge from these reports to automatically generate
vulnerability-specific signatures, which can be used by exist-
ing intrusion detection systems (IDSes) or web application
firewalls (WAFs) to screen the traffic received by IoT de-
vices under protection. We validated the efficacy of IoTShield
over 178,778 traces harvested by our honeypots, as well as
11,602 traces of eight real devices, including both attack and
legitimate traffic. Furthermore, we evaluated the effectiveness
of IoTShield over a long-time (more than one year) traffic
captured in an industrial control system’s human machine
interface (HMI) Honeypot. The evaluation results show that
IoTShield achieves a high precision (above 97%) and a very
low false positive rate with minor performance impact.

Contributions. The major contributions of this work are out-
lined as follows:

•New discovery. Leveraging the collected traces of real-world
IoT exploits and analysis results from popular attack toolkits,
we bring to light new observations, including the adversary’s
exclusive use of known flaws and published code. These

observations demonstrate that IoT devices are indeed more
vulnerable, less patchable, and easier to attack than traditional
Internet hosts, elucidating the ongoing cybercrime trend that
heavily relies on these devices.

• New defense. More importantly, these findings also present
us with an opportunity that could lead to the immediate de-
feat of most attack vectors in today’s IoT-related attacks. We
demonstrate that from the same sources adversaries use to
build their exploits, vulnerability signatures can be automati-
cally generated using NLP, and be quickly deployed to shield
IoT devices from malicious attacks. Given the adversary’s
dependence on these known vulnerabilities, we believe that
this simple, low cost yet effective defense will significantly
raise the bar for future IoT-related attacks.

Roadmap. The rest of the paper is organized as follows. Sec-
tion 2 presents the background and our threat model. Section 3
describes our new understandings on IoT vulnerabilities and
real-world threats to IoT devices. Section 4 introduces the
automated protection generation to defend against IoT attacks.
Sections 5 and 6 present the implementation and evaluation of
our automated protection generation, respectively. Section 7
discusses the limitations of this study and mitigation. Sec-
tion 8 surveys related work, and finally, Section 9 concludes
the paper.

2 Background

IoT vulnerability life cycle. Usually, an IoT device’s vulner-
ability is a loophole in its firmware that enables an attacker to
circumvent the deployed security measures [57]. Such a vul-
nerability has a life cycle with distinct phases characterized by
its discovery, disclosure, exploitation, and patching. The first
phase starts when the vulnerability is discovered by a vendor,
a hacker, or a third-party security researcher. The security
risk becomes particularly high if it is first found by hackers.
The next phase is the public disclosure of the vulnerability
by those who discover it, and is supposed to be done through
a coordinated process [22], during which the vulnerability
information is kept confidential allowing vendors to create a
patch. However, this procedure is not always followed. Actual
real-world disclosures could happen in different ways through
sources across the Internet, including personal blogs, public
forums, and security mailing lists. Once publicly disclosed,
the information about a vulnerability is freely available to any-
one. Thus, the level of security risk further increases as the
hacker community is active in developing and releasing zero-
day exploits [40]. From our observations, about 80% of IoT
vulnerability reports are released together with exploitable
methods, which can be readily utilized by hackers.

Even worse, a vendor may not provide any security updates
or patches in response to a disclosure, even though it is sup-
posed to do so. Also, even with the patches available, it is not
uncommon that many users of the affected IoT devices do not

888 28th USENIX Security Symposium USENIX Association

install them, given the complicated procedure (for ordinary
users) to patch the firmware.

The life cycle of an IoT vulnerability ends when all IoT
users install the patch to fix the vulnerability. However, even
if an IoT device has a serious security vulnerability and ven-
dors have released the patch, some users have no capability
of updating patches in a timely manner due to their limited
knowledge. From our observations, the life cycle of some IoT
vulnerabilities lasts more than five years, during which these
problems can be exploited at any time.

Signature-based IDS. An intrusion detection system (IDS)
monitors a network or a system for malicious activities or
policy violations. These systems can be signature-based or
anomaly-based. Signature-based detection leverages known
patterns (signatures) of malicious code or operations to iden-
tify malicious activities, while anomaly-based detection cap-
tures deviations from a system’s normal profile. The focus of
our protection is to provide automatic signature generation
for the signature-based detection systems, such as Snort [37].

Signatures can be used to describe a specific attack on
a vulnerability or model the vulnerability itself. The latter,
which provides comprehensive protection against all related
attacks on the weakness, is called a vulnerability-specific sig-
nature. Such a signature is typically created through manual
analysis of a vulnerability. In our study, however, we found
that the rich information about IoT vulnerabilities from vari-
ous sources (blogs, mailing lists, and forums) can actually be
leveraged to automatically generate such a signature, using
NLP techniques.

Natural language processing. Our research utilizes various
NLP techniques to analyze the text content of various vul-
nerability reports. A spell-checking [1] is used to filter out
documents irrelevant to IoT. Regular expression based pattern
matching is utilized to identify the vulnerability reports re-
lated to IoT. Further, semantic consistency analysis is used to
examine the extracted IoT entities. To generate a vulnerability-
specific signature, in-depth understanding of the vulnerability
semantics is needed and can be achieved by using a grammat-
ical dependency parser [51], which provides a representation
of grammatical relations between words in a sentence.

Threat model. In this work, we consider an adversary who at-
tempts to exploit the security flaws disclosed in a vulnerability
report to compromise remote, Internet-connected IoT devices.
For this purpose, the adversary can compromise the remote
IoT devices and use them to launch malicious attacks. In par-
ticular, we focus on Internet-connected IoT devices (e.g., IP
cameras, routers, and printers) that expose their attack sur-
faces on the Internet. Accordingly, adversaries can exploit
those devices’ security flaws remotely, and gain unauthorized
control of those vulnerable devices (e.g., a compromised IoT
device may become a botnet node).

Forwarder

Real devices

VPS

Local Network Internet

Figure 1: The infrastructure of our real device honeypots.

3 Understanding Real-World Threats

To understand how IoT vulnerabilities are exploited by adver-
saries, we deployed honeypots, analyzed underground attack
toolkits, and studied prior attack reports. Here we elaborate
our findings.

3.1 Honeypot

Our honeypots include real IoT devices and simulated devices
for collecting real-world attack activities.

Real device honeypot. We deployed eight vulnerable IoT de-
vices (three routers and five cameras) as honeypots from May
2018 to June 2018. These devices and their corresponding
vulnerabilities are listed in Table 1. We chose these devices be-
cause they are typical IoT systems being exploited in various
real-world attacks [41].

Figure 1 illustrates our honeypot system’s infrastructure. To
increase these devices’ IP diversity, we rented Virtual Private
Servers (VPSes) across different countries as relay hosts for
each IoT device. Whenever an attacker connects to a VPS,
we redirect this request to the corresponding IoT device and
forward its response back to the attacker.

More specifically, we use the reverse SSH tunneling [33]
to bridge the gap between the IoT devices behind NAT and
VPSes. For this purpose, we set up a persistent SSH tunnel
from our device to its corresponding VPS, which is config-
ured with the SSH port forwarding command [38] to send
the traffic received from the VPS’ public IP on the HTTP
port to FORWARD_PORT (pointing to the IoT device). For
devices not supporting the SSH protocol, we set up a PC as
FORWARD_PORT, passing the received traffic to the device.

Simulated honeypot. To study the attacks on more vulnera-
ble devices, we also deployed four simulated IoT honeypots
from May 2018 to July 20181 across two countries (Canada
and the United States) and four cities (Buffalo, Los Angeles,

1The timeline for simulated honeypot data collection is not consistent
with that of the real device honeypot, due to the data loss caused by a mis-
configuration event in our real device honeypot.

USENIX Association 28th USENIX Security Symposium 889

Table 1: IoT device honeypot.

Products Vulnerabilities
Linksys Multiple XSS [10]

WVC54GCA Absolute path traversal [12]
Stored passwords/keys [13]

Directory traversal (adm/file.cgi) [11]
TP-Link Authentication bypass [19]

TL-SC3171G OS Command injection [14]
Hard-coded credentials [15]

Unauthenticated file uploads [16]
Unauthenticated firmware upgrades [17]

Dahua IPC-HF2100 Hard-coded Credentials [18]
D-Link DIR-645 Authentication Bypass [21]
TVT TD-9436T Command execution [32]

Easyn Model:10D Unreported 0-day
TP-link TL-WAR458L Remote command execution [20]
TP-Link TL-WR941N Backdoor [8]

Canyon Country, and Beauharnois), which cover more than
2,000 devices and 23 vulnerabilities.

The settings of these simulators are listed in Table 2. The
Avtech honeypot covers 14 vulnerabilities, such as authentica-
tion bypass and command injection, which affect all Avtech
devices (i.e., IP camera, NVR, and DVR) and firmware ver-
sions. The “GoAhead webs” honeypot simulates the GoAhead
IP camera using a GoAhead-webs HTTP server. The honey-
pot covers seven critical vulnerabilities, such as the backdoor
account and the pre-auth information leakage. Particularly,
the latter is found in more than 1,250 different camera mod-
els. This enables us to significantly increase the number of
vulnerable devices in our study.

Specifically, each honeypot is an HTTP server (on Apache),
whose default configurations (such as default page and HTTP
response header/body) have been modified to simulate real
devices. If a honeypot finds an IP address that attempts to
connect to our honeypot, it records the request packets from
the IP and their timestamps before sending back “200 OK”
and redirecting all HTTP requests to our main page. Note
that some attacks may first send a harmless request to identify
their target devices. In this case, returning a “200 OK” often
triggers follow-up attack behaviors. Also, all of our simulators
are indexed as real IoT devices in Shodan [59], and so they
can be discovered from the device search engine.

Analysis. From May to July in 2018, our honeypots gathered
190,380 HTTP requests from 47,089 IPs across 175 countries.
We analyzed these traffic traces as follows: first we removed
those confirmed to be legitimate, including legitimate login
attempts, the requests like “GET /”, and other ordinary HTTP
GET requests; then we scanned the traces for attack attempts
by searching the exploit code in our vulnerability dataset and
further looking for the common attack traffic patterns, such as
the presence of SQL commands and various execution com-
mands (e.g., “cmd=/usr/bin/telnetd”). In this way, we
identified nearly 2,000 IoT exploit attempts from 60 different
countries, with an average of 38 attacks per day.

Table 2: Four simulated honeypots.

Name Vulnerability Affected products
D-link SOAP [23] command injection at least 12 products

GoAhead webs [27] 7 CVEs 1,250 affected models
JAWS [30] command injection all DVR running JAWS
Avtech [4] 14 vulnerabilities all Avtech devices

Table 3: Traffic analysis of deployed honeypots.

Real devices Simulated honeypots
Malicious (Targeted) 20 ∼300

Malicious (Blind-scanned) 121 ∼1,560
Benign 11,451 176,764

Unknown 10 ∼154
Total 11,602 178,778

Table 3 presents the results in detail: for the real device
honeypot, 141 unique attacks with 26 different scripts were
captured, and 1,860 unique attacks through 81 attack scripts
were found from our simulated honeypots. About 164 un-
known requests still cannot be confirmed to be legitimate or
malicious.

Analyzing these attacks (2,001 in total), we found that
about 320 of them aimed at the honeypot (real or simulated)
devices, while about 1,681 targeted the devices whose types
are not covered in any honeypots. On one hand, this indicates
that an adversary may blindly conduct an attack without first
identifying the device type. On the other hand, this implies
that our honeypots have a wide-spectrum attack coverage, not
limited by the types of devices deployed at honeypots. More
importantly, there are only 164 unknown requests observed
by our honeypots. Even if we conservatively assume that all
unknown requests originate from individual malicious attacks
that exploit unknown security flaws, less than 10% (164 vs
2,001) of the total attacks exposed to our honeypots are such
unknown attacks. In other words, more than 90% of malicious
attacks exploit the known vulnerabilities. This observation is
consistent with our analysis of underground attack toolkits
(see Section 3.2).

Most commonly exploited vulnerabilities found in our
study include unauthenticated command injection and infor-
mation disclosure. These flaws can be easily attacked by
sending a simple HTTP request to the vulnerable device to
gain full control of the device. An intriguing observation is
that 96% of the IoT attacks use the same or similar scripts
included in the vulnerability reports we collected. For ex-
ample, an attacker compromised our device TVT TD-9436T
through a command execution vulnerability by using the ex-
act same code documented in the report [32]. In another ex-
ploit (i.e., /board.cgi?cmd=/usr/sbin/telnetd) [28] on
the same vulnerability location “board.cgi”, the only change
found in the attack code was an adjustment of a param-
eter from “/usr/sbin/telnetd” to the Linux command
“cat+/etc/passwd”.

890 28th USENIX Security Symposium USENIX Association

Table 4: Underground IoT attack tools.

Name Vulnerabilities
IPCAM exploits Pre-Auth Info Leak
Huawei Exploits Command Execution

iotNigger Netis Backdoor
Brickerbot More than 30 vulnerabilities

Table 5: Known IoT attack activities.

Name Vulnerabilities Year
IOT Reaper [25] 10 vulnerabilities 2017

Hajime [24] at least 3 vulnerabilities 2016
Satori [34] 2 vulnerabilities 2018

Brickerbot [6] 21 vulnerabilities 2017
Masuta [26] bypass & command execution 2018
Amnesia [3] remote code execution 2017

3.2 Artifacts from Other Sources

To validate the findings made from the honeypots, we fur-
ther analyzed four underground attack toolkits and six well-
documented IoT botnets, which are elaborated below.

Underground attack tools. In this work, we searched popu-
lar underground marketplaces (such as openbazaar and dream-
market) by using a set of keywords related to attack toolkits
(such as IoT malware names listed in Table 12 of Appendix),
in an attempt to find the posts selling such tools. Once the
posts were discovered, we contacted the sellers and purchased
the tools. Altogether, we obtained four such tools with their
source code (see Table 4), including Brickerbot, a variation
for the one used in the famous Brickerbot attack [6].

By analyzing their code, we again found that all vulnerabil-
ities they exploit are known ones, and their attack scripts are
all copied from the vulnerability reports with minor changes
(e.g., C&C server IP) to customize for specific attack cam-
paigns. More specifically, from these tools, we identified 99
different attack scripts related to 34 vulnerabilities. Those
vulnerabilities are all recorded in our dataset. Among the 99
attack scripts, three of them are exactly the same as those doc-
umented, while the remaining 96 all have small changes. As
an example in Table 4, the Huawei exploit on an arbitrary com-
mand execution vulnerability apparently comes from exploits-
db (https://www.exploit-db.com/exploits/43414/), with only
its Linux command (e.g., “ls”) changed to a new one (e.g.,
communicate with a specific remote server). Again, this con-
firms what we observed by analyzing our honeypot data: most
IoT attacks utilize known vulnerabilities and even the attack
code provided in the vulnerability reports, which on the other
hand could be leveraged to quickly suppress this emerging
attack wave.

Known attacks. Finally, we analyzed some well-known, well-
documented IoT botnets that were recently reported (Table 5)
to understand whether mostly known vulnerabilities and docu-

mented attack scripts were indeed used. These botnets were all
aimed at the security flaws that affect many different products
(like IoT Reaper) or those widely deployed on the Internet
(like Masuta). Some of them (IoT Reaper and Amnesia) also
focus on the vulnerabilities without patches.

Once again, we found that all the vulnerabilities exploited
in these attacks are also included in the reports gathered in our
research, and all the scripts attacking these flaws are the copies
or variations of the code in the reports. For example, IoT
Reaper attacks 37 vulnerabilities documented by 10 different
reports: 10 for remote command execution, at least 24 not on
any CVE and 7 without patches. Note that all these attacks
took place after the disclosure of related vulnerabilities. For
instance, IoT Reaper was brought to light in 2017, while the
flaw it uses, Linksys E1500/E2500 vulnerabilities, was made
public in 2013.

4 Automated Vulnerability-specific Signature
Generation

As mentioned earlier, the IoT vulnerability ecosystem has a
serious problem: the attack scripts are often publicly available
in the vulnerability reports, making those known vulnerabil-
ities easy to exploit. Such a problem has led to the spree of
large-scale IoT based attacks in recent years, which almost
exclusively exploit known flaws.

In the meantime, the adversary’s reliance on the well-
documented vulnerabilities also presents a new opportunity
for mitigating such threats. From the same vulnerability re-
ports, vulnerability-specific information can be extracted to
form a protection strategy that stops all attacks on the vul-
nerability. In our research, we developed IoTShield, an au-
tomatic tool that collects IoT vulnerability reports from the
Internet, analyzes the content of the IoT vulnerability reports,
and recovers key knowledge to generate vulnerability-specific
signatures, with their qualities determined by the compre-
hensiveness of the reports. These signatures can be easily
deployed to existing intrusion detection systems (IDSes) or
web application firewalls (WAFs) to detect exploit attempts on
the target device from the traffic it receives. In the following,
we elaborate on this approach.

4.1 Overview and Data
Collecting IoT vulnerability reports from Internet and extract-
ing vulnerability-specific knowledge from the collected IoT
vulnerability reports for signature generation is a non-trivial
task, with unique technical challenges. First, a large number
of vulnerability reports are scattered around forums, mailing
lists, and blogs with different format written by different peo-
ple. It is difficult to identify IoT vulnerability reports from
other documents. Second, such identified IoT vulnerability re-
ports describe security flaws in natural language, which makes
a large-scale discovery of vulnerability information difficult.

USENIX Association 28th USENIX Security Symposium 891

Data Collection

Preprocessor
Corpora quality

analyzer

Entity
identification

Local
dependency

IoT vulnerability recognition

IoT Vulnerability Extraction Automated Protection
Generation

Internet

Blogs
Forums
Mailing list

Structure
retrieval

Signature Generation

Semantic
retrieval

Entity
checker

Reports Cluster

Figure 2: The architecture of IoTShield.

Third, identifying critical elements for a signature requires
domain-specific knowledge to carefully distinguish between
exploit-specific information and vulnerability-specific infor-
mation. To address these challenges, in IoTShield, we use an
IoT vulnerability extractor to remove irrelevant content and
identify key information of IoT security flaws. After the col-
lection of IoT vulnerability reports, we extract the semantics
of vulnerability descriptions and other structured information
(e.g., attack scripts) from the vulnerability reports. The de-
scriptions here provide information about all circumstances
under which a vulnerability can be exploited (e.g., all related
parameters and locations), which enables us to leverage the
attack surface observed from an attack script or other struc-
tured information like traffic logs to stop other attacks. A
problem is that some of the vulnerability reports do not have
vulnerability descriptions or structured information. Later we
discuss how we handle this issue (see Section 4.3).

Architecture. Figure 2 illustrates the architecture of IoT-
Shield, which has three major components: (1) data collection,
(2) IoT vulnerability extraction, and (3) automated protection
generation. Data collection is used to gather vulnerability
reports from the Internet. The IoT vulnerability extraction
is used to extract IoT vulnerability information from a large
number of documents, including forums, blogs, and mailing
lists. More specifically, we crawled popular online sources
for bug disclosure and further ran a corpora quality analyzer
to filter out the documents that are irrelevant to vulnerability
reports. For the remaining documents, we used a recognizer
to identify IoT vulnerability reports and extracted key infor-
mation, such as their types, affected products, CVE numbers,
authors, and published dates. This information will serve as
the description for the later signature generation stage. Once
given a set of IoT vulnerability reports, IoTShield first clus-
ters the reports describing the same vulnerability together,
and then utilizes NLP to discover the vulnerability semantics
(e.g., vulnerability type, location, and parameters) from the
descriptions. Then, it extracts the structured information (e.g.,
traffic logs, scripts, and Linux commands) to create an exploit

Table 6: List of vulnerability reporting websites.

Categories Website Reports IoT reports

Personal s3cur1ty.de/advisories 28 16
Blogs pierrekim.github.io 18 13

gulftech.org 129 5
Forums seclists.org/fulldisclosure 108,647 1,219
Team coresecurity.com 390 31
Blogs vulnerabilitylab.com 2,122 39

blogs.securiteam.com 1,925 42
Mailing lists seclists.org/bugtraq 85,593 1,591

Data exploit-db.com 39,380 895
Archive packetstormsecurity.com 97,093 1,951

0day.today 30,177 834
seebug.com 56,413 690
myhack58 7,311 150

Total - 42,9795 7,514

(or PoC) template and find illegal parameters (e.g., those used
to inject commands). After that, the signature generation com-
ponent utilizes the vulnerability location and parameters to
identify all related attack surfaces, which helps to determine
all parameters for the template that can also lead to exploits.
The parameters and template here form the signature. Finally,
IoTShield automatically transforms the signature into the for-
mat used in existing IDSes or WAFs (the prototype built in our
research outputs a Snort signature [37]) for a fast deployment.

Dataset. As mentioned earlier, we ran our crawler across
the vulnerability reporting websites listed in Table 6, in-
cluding forums (seclist.org/fulldisclosure), mailing
lists (seclist.org/bugtraq), personal blogs/advisories
(pierrekim.github.io), research team advisories
(coresecurity.com), and vulnerability archive websites
(packetstromsecurity.com). These sources were col-
lected from the external references included in CVEs, among
which we selected the most frequently used ones. From these
sources, we further manually picked out those related to IoT
vulnerabilities, like seclist.org, and added them to the list,
which also includes some research groups’ websites known
to report security vulnerabilities.

892 28th USENIX Security Symposium USENIX Association

seclist.org/fulldisclosure
seclist.org/bugtraq
pierrekim.github.io
coresecurity.com
packetstromsecurity.com
seclist.org

4.2 IoT Vulnerability Extraction

Preprocessing. Over the documents collected by the crawler,
our IoT vulnerability extraction component removes the tex-
tual information irrelevant to vulnerabilities, such as advertise-
ments, pictures, dynamical scripts, and navigation bar, while
keeping the main content of each webpage with document
URLs, document titles, authors, and publication dates. Since
different websites have different templates and HTML struc-
tures, we manually analyzed each of them (13 vulnerability
reporting sites in total, see Table 6) to identify useful content.

Corpora quality analyzer. After the preprocessing, we still
need to filter out the documents irrelevant to IoT vulnerability
reports, which is done as follows:

• The percentage of dictionary words. We removed the doc-
uments whose content contains mostly (above 82% in our
research) dictionary words, which are recognized by enchant
library [1], since a real vulnerability report always includes
a significant amount of non-text information, like vulnerable
paths and functions, PoC or scripts, etc. Otherwise, the text
looks more like a survey article, white paper or notification.

• The number of hyperlinks. In general, a vulnerability re-
port, particularly for IoT, is not supposed to include too many
hyperlinks. Otherwise, it could be a summary for all the vul-
nerabilities disclosed, instead of a specific report with detailed
vulnerability information. Thus, we discarded the documents
with more than 25 hyperlinks.

•Threshold justification. The two threshold values above (i.e.,
82% and 25) are based on our empirical experience, for the
purpose of filtering out most non-IoT vulnerability reports
with little collateral damage. To justify our threshold config-
uration, we attempt to estimate the possibility of a real IoT
vulnerability report being wrongly discarded. To this end, we
randomly sampled 100 documents being discarded and then
manually examined whether there is any wrongly discarded
case (i.e., a real IoT vulnerability report but discarded as non-
IoT). What we found is that all of the sampled documents
are irrelevant to IoT vulnerability reports (neither related to
IoT vulnerability nor containing any vulnerability details).
In the other words, no real IoT case exists among these 100
randomly sampled documents that are discarded as non-IoT.
This implies that our empirical threshold configuration is very
effective to filter out non-IoT vulnerability reports.

IoT vulnerability recognition. For the remaining docu-
ments, we further ran a recognizer to discover IoT vulner-
ability reports and extract key information (i.e., device type,
vendor name, and vulnerability type). The retrieval of the
vulnerability information is modeled as a named entity recog-
nition problem [52] in NLP. More specifically, we first at-
tempted to identify four IoT vulnerability-related entities,
including device types, vendors, product names, and vulner-
ability types, and then utilize the dependency relationship
across them to confirm the presence of vulnerability-related

Table 7: Context textual terms.

Entity Context terms

Device
Type

camera, ipcam, netcam, cam, dvr, router

nvr, nvs, video server, video encoder, video recorder

diskstation, rackstation, printer, copier, scanner

switches, modem, switch, gateway, access point

Vendor 1,552 vendor names

Product
[A-Za-z]+[-]?[A-Za-z!]*[0-9]+[-]?[-]?[A-Za-z0-9]

*∧[0-9]2,4[A-Z]+

Vuln type 733 CWE, 88 abbreviations

Version
(?:version[:.]*([\w-][\w.-]+)

ve?r?s?i?o?n?s?[:.]*([\d-][\w.-]+)

CVE CVE-[0-9]{4}-[0-9]{4,}

descriptions. Given the uniqueness of the descriptions, we
adopted a set of IoT-specific recognition techniques to retrieve
them, as elaborated on below.

To identify these individual entities, we utilized keyword
and regular expression based matching. For device types, ven-
dor names, and vulnerability types, we used a set of key-
words, as illustrated in Table 7: whenever a single word
in the category (device type, vendor name, or vulnerability
type) is found, we believe that its corresponding entity exists.
These keywords are from the features of real-world devices.
Specifically, we collected all common device types, including
routers, cameras, modems, and printers, and found vendor
names from Wikipedia. We also gathered vulnerability types
from the Common Weakness Enumeration (CWE), which is a
community-developed list of common software security weak-
nesses [9]. Further, we added to the list common acronyms
of these vulnerabilities, such as CSRF and RCE. For product
names, we built regular expressions to identify each entity,
due to the large volume and difficulty of enumeration. These
expressions are listed in Table 7.

In this way, our approach can identify all IoT vulnerability-
related documents. However, given the pervasiveness of such
entities (e.g., the term “switch” also appears in the documents
unrelated to IoT flaws), using them alone could introduce
a large number of false positives. To address this issue, we
leveraged the dependency among these entities to ensure the
correct recognition of these vulnerabilities.

Intuitively, when these entities are indeed used to describe
an IoT vulnerability, they do not independently occur. Instead,
they come together to present a concept. This implies the
existence of dependency among them. In particular, the term
for the vendor entity precedes the product entity or the device-
type entity: e.g., D-Link DIR-600 or Foscam IPcamera. Also,
the document needs to contain the vulnerability type, e.g.,
command injection. Using these rules, we can piece together
these entities, linking IoT products to vulnerabilities. How-
ever, there are still several cases satisfying the rules above but
as non-IoT device entities, such as “NAI NAI-0020” and “EE

USENIX Association 28th USENIX Security Symposium 893

Thomson TWG850 Wireless Router Multiple Vulnerabilities

Foscam IP Cameras Multiple Cross Site Request Forgery Vulnerabilities

Belkin Router N150 - Path Traversal Vulnerability

Dlink DIR-601 Command injection in ping functionality

Squirrelmail 1.4.22 Remote Code Execution

New Linux kernel 2.6.8 packages fix several vulnerabilities

Cisco Ironport Appliances - Privilege Escalation Vulnerability

Figure 3: Examples of the IoT vulnerability entities (first
four) and non-IoT vulnerability entities (last three).

13EFF4”. To suppress false positives, we further investigate
the results by using an entity checker. More specifically, in
the entity checker, we search for the extracted entities (e.g.,
D-Link DIR-600) in Google, and then calculate the cosine
similarity between the extracted entities and the title of the
search results. If the similarity is extremely low (e.g., 0.08),
we regard the extracted entity as a non-IoT device.

Figure 3 shows examples of IoT vulnerabilities (the first
four) and other vulnerabilities (the last three) in vulnerability
reports. For each vulnerability extracting from the prepro-
cessing stage, we used the keyword matching to identify the
device type (e.g., router), vendor (e.g., Belkin), and vulner-
ability type (e.g., path traversal). Then, we used the regular
expression based matching to extract product information
(e.g., N150). After that, we checked if the extracted entities
are combined to present a IoT vulnerability concept via local
dependency and entity checker. For example, three entities
“Belkin”, “router”, and “N150” together describe an IoT de-
vice. As we can see from Figure 3, the first four always in-
clude the affected IoT products (e.g., D-Link DIR-600) and
the vulnerability types (e.g., command injection), while the
latter three do not. Once such a report is found, our approach
further extracts the firmware version and CVE number from
its content when such information exists, for the follow-up
analysis. The regular expressions for identifying these entities
are also listed in Table 7.

4.3 Automatic Defense Rule Generation
After the IoT vulnerability recognition, we identified the enti-
ties (i.e., device types, vendors, product names, and vulnerabil-
ity types) from the IoT vulnerability reports. These entities are
then used to cluster IoT vulnerability reports describing the
same IoT vulnerability. Then, given each cluster, we extracted
the vulnerability semantics (e.g., vulnerability location2 and
exploit parameters) and other structured information (e.g.,
attack scripts) from the vulnerability reports. This genera-
tion process, as shown in Figure 4, enables us to leverage the
attack surface to generate a vulnerability-specific signature.

2A vulnerability location is where flaws exist, such as “command injection
in PwdGrp.cgi”, “PwdGrp.cgi” is the vulnerability location.

Semantic retrieval

Vulnerability
type

Key file

Parameter
sentence

Parameters Parameter
mapping

Vulnerability
location match

Combination

Vulnera
bility

reports

scripts Traffic log

https://URL:PORT/
file.suffix?{parameters}

Structure retrieval

Signature generation

Dependency tree

Figure 4: The architecture of signature generation.

Figure 5 presents an example, showing how we generate
a signature from an extracted IoT vulnerability report. On
the top-left of the figure is the vulnerability description. The
bottom-left is the content of the structured information, which
is a traffic log for an exploit on this vulnerability. IoTShield
first locates the vulnerability semantics in the description. For
instance, the sentence “command injection in PwdGrp.cgi”
indicates that the vulnerability type is “command injection”
and the affected location is “PwdGrp.cgi”, together with the
vulnerable parameters from another sentence “the username,
password, and group parameters”. Then, IoTShield parses the
structured information (e.g., the traffic logs), and discovers the
path of the vulnerable CGI “/cgi-bin/supervisor/PwdGrp.cgi”
and the parameter used for command injection “pwd = ;re-
boot;”, from the command indicator “;” and the list of legiti-
mate commands.

Further, from the sentence about other vulnerable parame-
ters “the username, password, and group parameters” (from
the description), we can now infer that the same injection
can also happen on “usr” and “grp”, but not on the param-
eters “action” and “lifetime”. In this way, we can build a
vulnerability-specific signature for the injection flaw, and then
transform it into the Snort format (based on vulnerability type)
as presented in Figure 5. Here we elaborate on the individual
components of IoTShield.

Report clustering. There are some different blogs describ-
ing the same vulnerability, and these reports may describe
the vulnerability from different aspects. So, we need to clus-
ter these reports together to form a complete vulnerability
report before the rule generation stage. The challenge is that
although two reports describe the same vulnerability, they
may have different formats with different hash values. Our so-
lution is to use the entities (i.e., device types, vendors, product
names, and vulnerability types), which are recognized from
IoT vulnerability reports, to cluster IoT vulnerability reports
that describe the same IoT vulnerability.

Note that report clustering aims to supplement the miss-
ing information of a vulnerability report (e.g., missing script
code or missing vulnerability description). There rarely exist

894 28th USENIX Security Symposium USENIX Association

13) Authenticated command injection in PwdGrp.cgi The
PwdGrp.cgi uses the username, password and group
parameters in a new user creation or modification request in a
system command without validation or sanitization. Thus and
attacker can execute arbitrary system commands with root
privileges. We are aware that this vulnerability is being
exploited in the wild!

Traffic log:
GET cgi-bin/supervisor/PwdGrp.cgi?action=add&user=test&
pwd=;reboot;&grp=SUPERVISOR&lifetime=5%20MIN HTTP/1.1
Host: 107.xx.8.xx
Connection: keep-alive
Accept-Encoding: gzip, deflate
Accept: */*
User-Agent: python-requests/2.18.4

Vulnerability Type: command injection
Vulnerability file: PwdGrp.cgi
Vulnerability parameters: username, password, group

http://<DEVICE_IP>/cgi-bin/supervisor/PwdGrp.cgi?
action=add&user={command}&pwd={command}&grp=
{command}&lifetime=5%20MIN

Vulnerability-based signature

alert tcp any any -> any $HTTP_PORTS (content:"/cgi-
bin/supervisor /PwdGrp.cgi"; http_uri;
pcre:"/[?&](user|pwd|grp)=[^&]*?([\x60\x3b\x7c]|echo|pi
ng|cat|reboot|\x3c\x3e\x24]\x28|%60|%20|%3b|%7c|%2
6|%3c%28|%3e%28|%24%28)/iU";)

Snort format signature

Genera format: http://< DEVICE_IP >/cgi-bin/supervisor/
PwdGrp.cgi?action=add&user=test&pwd=;reboot;&grp=SUP
ERVISOR&lifetime=5%20MIN

Figure 5: Example of vulnerability-specific signature generation from a vulnerability report.

different vulnerabilities with same device type, vendor, prod-
uct name, and vulnerability type. However, even different
vulnerabilities are clustered together, we can extract signa-
tures for each vulnerability when matching the template (see
Section 4.3)

Semantic and structured information retrieval. We first
utilized NLP techniques to analyze the vulnerability descrip-
tions to find vulnerability semantics, including vulnerability
type, location, and short sentences with exploit parameters.
Our approach is based on the observation that the semantic
information of interest is presented through a relatively stable
grammatical structure. Specifically, we utilized the vulnerabil-
ity type list in Section 4.2 to determine the type of the problem
documented and the regular expressions to find the vulnera-
bility location, which should be a web content file, such as
“.htm”, “.cgi”, “.php”, “.asp”, and “.html”. When it comes to
vulnerability parameters, our approach locates the sentences
containing the keyword “parameter”, “variable”, “action”, or
“function”, and leverages the grammatical relationship among
these words and the values of the parameters to find them. For
this purpose, we constructed a dependency tree using the Stan-
ford Dependency Parser [51] to parse the whole sentence and
then extract the nouns as the targeted terms to inspect their
relationship with the keywords. These terms are considered
to be parameters if they have a non-“nmod” relation 3 with
the keyword, or have a “conj” relation 4 with an identified
parameter. An example is shown in Figure 6.

Further, we used the regular expressions (listed in Table 13
of Appendix) to locate different kinds of the structured infor-
mation, including the PoC using Linux commands (curl and
wget), PoC URL, PoC HTML scripts, and PoC traffic log, etc.
For each type of the structured information, we built a parser

3One element serves as a nominal modifier for the other.
4Two elements are connected by a coordinating conjunction.

Figure 6: The dependency tree of a sentence with vulnerabil-
ity parameters.

to transform it into a general template:

htt p : //HOST : PORT/ f ile.su f f ix?{parameters},

where HOST is the device’s IP address, port is the application
layer server port (default is 80), file.suffix is the vulnerabil-
ity location, and {parameters} is the key-value format that
includes the parameters used for the vulnerability file in the
exploits. For each item in {parameters}, IoTShield checks
whether it carries any illegal values like injected Linux com-
mand or Java scripts. Note that not all vulnerabilities need
parameters, such as some information disclosure weaknesses,
which could be exploited by simply requesting the vulnerable
location. In this way, our approach acquires the semantic and
structured information from the vulnerability reports.
Signature generation. After discovering vulnerability infor-
mation from the reports, IoTShield utilizes it to build a signa-
ture. Specifically, we first compared the vulnerability location
(recovered from the description) and “file.suffix” in the
template (from the structured information); if matched, we
believed that the semantic information (including vulnerabil-
ity types and parameters) would be about the flaw modeled
by the template (e.g., that attacked by the script). Then, based
on the vulnerability type, we decided whether to ignore the
parameter part of the template, since some vulnerabilities
do not need parameters to exploit (e.g., information disclo-

USENIX Association 28th USENIX Security Symposium 895

sure and directory traversal). For the vulnerability types that
do not need parameters to exploit (e.g., directory traversal
(“/../../etc/passwd”) in D-Link routers [CVE-2018-10822]),
we ignore the parameter part. As of all the vulnerability types
in our data, information disclosure and directory traversal are
the only two typical vulnerability types not requiring a param-
eter to exploit. For those vulnerabilities that need parameters,
IoTShield generalizes the parameter field in the template with
those collected from the description. In this way, we built
a vulnerability-specific signature. An example is shown in
Figure 5.

A problem with this simple signature generation process
is that the semantic information and the structured informa-
tion may not always match in an exact fashion. For example,
in Figure 5, the vulnerability parameters in the vulnerability
description are presented in the natural language (i.e., user-
name, password, and group) while they are abbreviated in the
structured information (i.e., user, pwd, and grp). To address
this problem, we manually collected a list mapping individual
keywords to their corresponding abbreviations used in Linux,
such as grp for group, for translating natural language terms
into parameters in a signature.

Another issue is that, as mentioned earlier, some vulnera-
bility reports do not contain both vulnerability descriptions
and structured information; or vulnerability descriptions do
not contain all vulnerability semantics. Next, we discuss how
to handle them.

• Vulnerability description only. Without structured informa-
tion, all we can get are just the vulnerability type, locations,
and parameters. The parameters, however, can be less reliable
due to the abbreviations they could have, which we cannot
see. Therefore, we can only generate signatures for some vul-
nerabilities: those in which the knowledge of the vulnerability
location alone (e.g., “PwdGrp.cgi”) is enough for protection.
Examples of such flaws include information disclosure and di-
rectory traversal, e.g., for an information disclosure problem,
a request for /QIS_wizard.htm is sufficient for signature
generation.

• Structured information only. Without vulnerability descrip-
tion, we cannot produce a generalized, vulnerability-specific
signature. However, we can still utilize the structured informa-
tion to build an exploit-specific signature to defeat the attack
script described in a vulnerability report. As found in our mea-
surement study (Section 3), today’s IoT attacks often utilize
these published scripts. These signatures can still contribute
to the detection of many ongoing attacks, though they can be
evaded once an adversary is willing to make more effort to
better understanding the flaws he attacks. It is important to
note that some level of generalization is still possible here;
for example, once a parameter recovered from an attack script
is found to contain a Linux command, we can add other com-
mands commonly used in attacks to the parameter list for
signature generation.

5 Implementation and Deployment

5.1 Implementation

We implemented a prototype system of IoTShield, which in-
cludes a set of building blocks. Here we briefly describe the
system’s nuts and bolts, and then show how they are assem-
bled into the prototype system.

Nuts and bolts. Our prototype system was built upon three
key functional components: report crawler, vulnerability ex-
tractor, and rule generator. Those components are extensively
used across the whole system, and they were implemented as
follows.
• The report crawler fetches the vulnerability reports from the
Internet using wget and the scrapy crawling framework [36].
Specifically, for some websites that are well archived (e.g.,
seclists.org/fulldisclosure), we used “wget –mirror”
to download their pages recursively (i.e., crawl the web-
sites as deep as possible). For other websites, we used the
scrapy crawling framework to crawl the whole websites.
Since websites sometimes have crawling restrictions (e.g.,
packetstorm.com has a rate limit and s3cur1ty.de re-
quires a cookie in the header of each request), our crawler
simulates browser behaviors to mitigate those restrictions. It
utilizes different user-agents for each request and sleeps for
a random period of time after sending out multiple requests;
additionally, once an access fails, a new attempt will be made
later, after all pending requests in the current waiting queue
have been delivered.
• The vulnerability extractor was implemented by 2,300 lines
of python code. The Beautiful Soup Python library [5] was
used to parse the vulnerability reports to extract main con-
tents. The NLTK [29] package was used to split sentences,
stem words, remove stop words, etc. The Aho–Corasick al-
gorithm [2] is a string-searching algorithm to speed up the
entity identification stage. A scikit-learn [35] library was used
to calculate the TF-IDF (Term Frequency-Inverse Document
Frequency) cosine similarity in the entity checker.
• The rule generator was implemented by 1,500 lines of
Python code. We used a Simhash Algorithm [31] to detect
near-duplicates, and the Stanford dependency parser [51] to
establish the dependency tree.

5.2 Deployment

IoTShield can be deployed in two modes: coarse-grained and
fine-grained. In the coarse-grained mode, all the generated
rules are used in the IDS system, regardless of device types.
All the rules are used to inspect the network traffic. This mode
is easy to deploy but may have some false positives, since
some rules can be device-specific. Also, in the coarse-grained
mode, we suggest not to use the rules generated from descrip-
tions only. This is because when ignoring device type, the
rules generated from descriptions only may lead some false

896 28th USENIX Security Symposium USENIX Association

seclists.org/fulldisclosure
packetstorm.com
s3cur1ty.de

Figure 7: Vulnerability disclosure trend.

positives. For example, for a report describing an informa-
tion disclosure vulnerability at the file of “/new/index.htm” in
Merit Lilin IP Cameras, with description only, we generate a
signature to block the traffic that attempts to extract informa-
tion from the file of “/new/index.htm”. However, such a sce-
nario (retrieving the file of “/new/index.htm”) may also occur
in normal web servers and cause false positives. In the fine-
grained mode, we take the network environments into account
and deploy rules for given device types. For example, if there
are just D-link devices in the local network, we only deploy
the rules to protect D-link vulnerabilities. More specifically,
in the fine-grained mode, IoTShield first analyzes the network
traffic or actively probes the network to identify device types
(e.g., models and brands) and their IP addresses. This step can
be achieved by using a device list in the monitored network
or using the device fingerprinting method proposed in [47].
After that, a signature selection process will be conducted to
select the corresponding signatures, given the current device
types in the network.

6 Evaluation

6.1 Effectiveness

To validate the efficacy of IoTShield, we first manually
checked the extracted IoT vulnerabilities and obtained some
basic statistics of them. Then, we used two different traffic
traces to evaluate the effectiveness of generated signatures.

Vulnerability extractor. We randomly sampled 200 reports
from those identified for manual validation and achieved a
precision of 94%. In total, we collected 7,514 IoT vulnerabil-
ity reports from 0.43 million articles (Table 6). These reports
disclose 12,286 IoT vulnerabilities, with roughly 1.6 each
on average. Figure 7 shows the average number of IoT vul-

Table 8: List of top 10 vendors and device types of affected
devices.

Device Vendor Num Device Type Num
Cisco 1,264 router 3,700

D-Link 988 switch 1,422
Linksys 539 camera 1,248
Netgear 522 firewall 1,101

HP 485 gateway 1,032
Symantec 299 modem 843
TP-Link 255 access point 478

Zyxel 229 printer 408
Huawei 195 nas 338

Asus 180 scanner 176

Table 9: List of top 10 vulnerability types.

Vulnerability type Num
1 Denial of service 975
2 CSRF 902
3 Buffer overflow 869
4 Command injection 806
5 XSS 775
6 Authentication bypass 763
7 Command execution 458
8 Information disclosure 407
9 Directory traversal 307

10 Privilege escalation 276

nerabilities disclosed per month from 1998 to 2018. We can
see that the number of disclosures has increased since 1998,
and this increasing trend has further sped up since 2012 and
slowed down since 2014, but it peaked in 2018 when about
90 IoT vulnerabilities per month were disclosed.

These IoT vulnerabilities are related to device types and
vendors. We found that the distribution of vulnerabilities
among IoT vendors follows a long-tail: nearly 60% of vulnera-
ble devices are from the top 10 vendors with the most security
flaws. Table 8 lists the vulnerability distribution over these
10 device types and vendors. As we can see here, routers,
switches, and cameras, which are perceived to be the most
common IoT devices, also have the most vulnerabilities. In
addition, the vendors responsible for the most vulnerabilities
(i.e., Cisco, D-Link, and linksys) are all reputable and have
the largest market shares.

Table 9 further lists the top 10 vulnerability types in our
dataset. The majority of them are remotely exploitable (e.g.,
buffer overflow, denial-of-service, CSRF command injection,
and authentication bypass), which could be easily used to com-
promise IoT devices. Moreover, cross-site scripting (XSS),
command injection and command execution are commonly
used by IoT malware to execute commands on a compromised
device as a botnet node.

USENIX Association 28th USENIX Security Symposium 897

Table 10: Effectiveness of IoTShield.

Dataset Precision Recall False Positive Rate
Real devices 97% 83% 0.01%

Honeypot 98% 93% 0.06%

Rule generation effectiveness. We first evaluated our IoT-
Shield prototype on 190K HTTP requests collected from IoT
devices and honeypots, using a Macbook Pro with 2.6GHz
Intel Core i7 and 16GB of memory. Again, all signatures
generated were in the Snort format.

Our HTTP requests include those gathered from real-device
honeypots and those from the simulators. In our experiments,
we labeled IoT device traffic as described in Section 3.1.
Those traces include 178,778 HTTP requests received by the
simulators, which are related to 141 attack activities generated
by 26 unique attack scripts, and the rest is benign traffic.
The remaining data come from the real-device honeypots, as
described in Section 3.1, including 11,602 HTTP requests in
1,860 attacks generated by 81 unique attack scripts.

We evaluated the effectiveness of IoTShield using preci-
sion, recall, and the false positive rate (FPR). Precision is
defined as |T P|/|FP+ T P|, recall is |T P|/|T P+FN|, and
FPR is |FP|/|FP+T N|, where TP is the number of true pos-
itives, FN is the number of false negatives, FP is the number
of false positives, and TN is the number of true negatives.
Table 10 presents the experimental results. Over the traces
received by the simulators, the precision of our automatically
generated signatures is 98%, the recall is 93%, and the FPR
is 0.06%. Over the requests gathered from the real devices,
our signatures can achieve a 97% precision, 83% recall, and
0.01% FPR.

We further used a long-time traffic captured in an indus-
trial control system’s HMI honeypot for the evaluation of
IoTSheild. The simulated industrial control system’s HMI
honeypot is used to monitor the attack traffic with a blind
scanning and attack. The duration was from October 2017
to November 2018 across from seven different cities. By
replaying the traffic, IoTShield reported 7,396 alerts of ex-
ploiting the HMI system. By manually checking the 7,396
alerts, we confirmed that about 6,705 alerts were indeed IoT
attacks. The rest of the alerts were confirmed to have at-
tacked other vulnerabilities on common web servers. For
instance, “/level/77/exec/show/config/cr”, is found in
exploit-db as a script to evade detection of HTTP attacks via
non-standard “%u” Unicode encoding of ASCII characters in
the requested URL. [7].

6.2 Performance

Signature generation. To understand the performance of IoT-
Shield, we conducted experiments to measure the time cost of

Table 11: Running time at different stages.

Stage Running time (s) Percentage
Data collection 0.386 51%

IoT vulnerability extraction 0.154 21%
Rule generation 0.210 28%

Overall 0.750 100%

processing vulnerability reports at each individual stage: data
collection, IoT vulnerability extraction, and automated rule
generation. The IoTShield prototype runs on a commercial
desktop computer (Ubuntu 18.04, 8GB of memory, 64-bit OS,
with 4-core Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz), in-
dicating that the CPU and memory requirements of IoTShield
can be easily met. The IoTShield process runs in a single
thread. Table 11 lists the average time cost of each stage of
IoTShield for one rule generation. The acquisition of vulner-
ability reports from the Internet takes 0.386 seconds (51%).
Note that this stage requires message transmissions, and the
time cost is dependent upon the network conditions. The IoT
vulnerability extraction takes 0.154 seconds (21%), while the
rule generation costs more time, 0.21 seconds (28%), due to
the fact that it needs to establish the dependency tree of the
sentence with vulnerability parameters. Overall, the time cost
of IoTShield for automatic rule generation is low in practice,
and we could further reduce the time cost by running it in
multiple threads. The results indicate that IoTShield is effi-
cient and can be easily scaled to a desirable level to handle
the massive amounts of vulnerabilities online with a timely
update of the defense rules.

Rule inspection. To further evaluate the performance of IoT-
Shield in practice, we ran it as one component of an IDS for
processing the real-world traffic captured on the edge router
of a research institution, which consists of more than 100,000
Internet devices. The amount of traffic is about 53G, and the
duration of this traffic collection is about two hours. We re-
played the traffic to Snort with and without IoTShield. For the
Snort without IoTShield, it costs 426.28 seconds to inspect
all the collected packets; for the Snort with IoTShield, it only
adds 0.13 seconds for rule inspection over the entire 53G of
data, showing that IoTShield induces little overhead to IDSes
for online data processing.

7 Discussion

Limitation. In the data collection, we crawled 13 different
websites retrieving 0.4 million reports, and we plan to keep a
periodic update in the future. However, we acknowledge that
our methods cannot exhaustively collect all IoT vulnerabili-
ties in the wild. Although we believe that we have collected
the majority of IoT vulnerabilities in public, other methods

898 28th USENIX Security Symposium USENIX Association

for data collection could also be considered to collect those
vulnerabilities recorded in less popular websites, such as per-
sonal blogs or social networking logs. For example, since IoT
vulnerabilities are usually targeted for some specific devices,
we will search product names combined with vulnerability
types as query keywords in search engines to crawl more
reports.

In addition, although we did observe that the majority
(80%) of the malicious HTTP requests are from blind scan-
nings, not targeted at specific IoT devices, we acknowledge
that the traffic logs collected by the honeypots could be biased,
due to the IoT device types in the honeypots and deployment
time periods of the honeypots. Ideally, IoTShield could be de-
ployed in ISPs for a large-scale and real-scenario evaluation.
However, we were unable to access ISP data. Alternatively,
we performed a real-scenario evaluation based on the traffic
we captured from edge routers of a research institution, whose
data size is about 114G and the duration is about 12 hours. In
this experiment, IoTShield only produced two false positive
alerts; considering the substantial data size, the FPR is close
to zero.

Since IoTShield deals with generally uncoordinated
sources of vulnerability information, it may sometimes face
incomplete source information (missing both vulnerability de-
scriptions and structured information, or vulnerability descrip-
tions not containing all vulnerability semantics), even we have
used report clustering to supplement the missing information.
As mentioned in Section 4.3, we indeed take the problem of
incomplete information into serious considerations. For struc-
tured information only (about 9% observed in our dataset),
we generate an exploit-specific signature that can contribute
to the detection of many ongoing attacks. However, we ac-
knowledge that we may miss some exploit variants, which
leads to the decrease of recall. For vulnerability description
only (about 20% observed in our dataset), we use vulnerabil-
ity location alone (e.g., “PwdGrp.cgi”) as signature for some
specific vulnerabilities, which may lead to the increase of
false positive rate. In this way, IoTShield can only generate
signatures for limited vulnerability types (e.g., information
disclosure and directory traversal). A natural follow-up step
is to investigate the missing information and explore a sys-
tematic information supplement method. We will leave this
as our future work.

Also, IoTShield cannot handle the exploits in some specific
program languages, and its processing capability is limited
to traffic logs, scripts, Linux commands, etc. This is because
IoTShield cannot easily generate the general exploit template
to identify vulnerability locations and parameters in a differ-
ent program language. In our future work, we plan to develop
a simulation system to execute these programs and generate
the attack traffic. Thus, we will be able to produce the attack
script in the traffic format (e.g., HTTP request) for whichever
program language is used. Moreover, although we did observe
a few IoT vulnerabilities in other application layer protocols,

our defense only targets HTTP vulnerabilities, which cover
most (90%) of the IoT vulnerabilities we observed in the hon-
eypots and vulnerability reports. In our future work, we plan
to cover more vulnerabilities, which exploit other applica-
tion layer protocols, by extracting vulnerability semantic and
structure information based on individual application layer
protocol’s domain knowledge.

Mitigation. Based on the results of our measurement study,
we have identified several potentially effective mitigation
strategies to restrain the fast-growing IoT-based attacks. In
our study, we observed a large number of vulnerability re-
ports in the wild, which are missed by vendors but exploited
by attackers. We also observed the heterogeneity of IoT de-
vices. IoT devices usually do not have an automatic update
mechanism and are maintained by device users who may
lack security awareness. Thus, the mitigation of an IoT-based
attack requires a collaboration among users, vendors, and
security researchers.

First, vendors should provide an official vulnerability re-
port platform, and reply to vulnerability reports in a timely
manner. In this work, we observed a relatively short duration
of public disclosure: report authors usually disclosed the bugs
after contacting vendors three times if no reply is received. In
addition, vendors are expected to provide technical support for
their discontinued products, especially those devices that are
still widely used. Since most users lack security awareness,
a vendor should increase efforts to avoid misconfiguration
and notify these users about updating their devices in a more
effective fashion (e.g., using an automatic update mechanism).
Second, the authors of vulnerability reports should follow the
guidelines for vulnerability reporting, such as a coordinated
disclosure. We observed that at least 2,000 vulnerabilities
were released before the vendors provided patches. Even
worse, some report authors released a disclosure without at-
tempting to contact the vendors or CVE. Finally, device users
should pay more attention to the device configuration (e.g.,
default password) and quickly update vulnerable firmware
when a new version becomes available.

Ethical issues. One ethical concern is the way by which the
security reports were gathered, i.e., scraping various websites.
We deployed certain mechanisms to bypass rate limiting and
authentication. However, our process follows the robot exclu-
sion protocol (robots.txt) of websites and causes no harm to
them or their users. Another ethical concern is that we pur-
chased attack tools on the black market. In our research, we
consulted with our Institutional Review Board (IRB) (though
no IRB review is required) and legal consul to ensure that the
purchase has been done within the legal and ethical bound-
aries. The purchases did not violate any law and regulation.
Also during the process, we refrained from gathering any in-
formation not supposed to collect, such as identity-related
data.

USENIX Association 28th USENIX Security Symposium 899

8 Related Work

Vulnerability-specific signature generation. Cui et
al. [46] presented a system for automatically generating
a vulnerability-specific signature (or data patch) for an
unknown vulnerability, given a zero-day attack instance.
Their system injects the softwares/real devices to generate
the variants of attack instances. However, it cannot be
easily applied for the IoT vulnerability-specific signature
generation, due to the large amount of different IoT device
vulnerabilities being covered. Wang et al. [60] proposed a
vulnerability-specific network filter, Shield, at an end-system
to prevent known vulnerability exploits. Shield requires
a manually-generated policy to describe the vulnerability.
Specially, it requires a fairly deep understanding of the
protocol over which the vulnerability is exploited. It is not
acceptable for the IoT vulnerability signature generation,
due to the significant amount of manual efforts to generate
policies for each IoT device. Brumley et al. [44] proposed
data-flow analysis techniques for automatically generating
vulnerability-specific signatures. However, it cannot be
deployed in IoT vulnerability signature generation, due to
the lack of source code. By contrast, IoTShield analyzes the
content of more than 7,500 IoT vulnerability reports and
recovers key knowledge to generate vulnerability-specific
signatures.

NLP for vulnerability assessment. Pandita et al. [54] used
NLP techniques to analyze Android APP descriptions and
API documents for determining unnecessary permissions.
Sabottke et al. [55] explored the vulnerability-related informa-
tion disseminated on Twitter and provided an early warning
for the existence of real-world exploits by tweets. Liao et
al. [50] presented a novel technique for automatic Indicator-
of-Compromise extraction from unstructured text. You et
al. [61] proposed leveraging vulnerability-related text (CVE
reports and Linux git logs) to guide Linux kernel vulnerabil-
ity fuzzing. Zhu et al. [62] mined Android documents and
security literature to generate features for detecting Android
malware. Caselli et al. [45] proposed to automatically mine pa-
rameter configuration rules of network control systems (e.g.,
BACnet-based building automation systems) from system
specifications. In contrast to these previous works, we utilize
a set of IoT vulnerability reports’ syntax features to discover
vulnerability-specific knowledge for IDS signature generation
to protect IoT from being attacked.

Vulnerability-related measurement. Shahzad et al. [58]
conducted a large-scale study on the software vulnerability
life-cycle based on public vulnerability databases. They uti-
lized association rule mining to extract the relationship be-
tween the representative exploitation behavior of hackers and
the patching behavior of vendors. Nappa et al. [53] presented
a systematic study of patch deployment in client-side vulner-
abilities, in order to analyze how users deploy patches. They

found that the patch mechanism has an important impact upon
the patch deployment rate. Li et al. [48] performed an exten-
sive study on the effectiveness of vulnerability notifications,
with the aim of illuminating which fundamental aspects of
notifications have the greatest impact. Li et al. [49] conducted
a large-scale empirical study of security patches based on
the open-source software projects. They sought to identify
the differences between security and non-security bug fixes.
Sarabi et al. [56] studied the vulnerability patching by analyz-
ing vulnerabilities across four software products. Their focus
is mainly on how individual behaviors influence the security
state of an end-host. In contrast to previous works focusing on
vulnerabilities in CVE or NVD, our work extensively studies
the IoT-related vulnerabilities that are from a large number of
vulnerability reports scattered around forums, mailing lists,
and blogs, and we further explore the effectiveness of using
such reports for IoT vulnerability defense.

9 Conclusion

To understand how cybercriminals launch IoT-related attacks,
we leveraged honeypots to collect the traces of real-world
IoT exploits and analyzed four popular attack toolkits. Our
research sheds light on a largely overlooked cause of the perva-
siveness of IoT attacks in recent years: IoT vulnerabilities are
publicly available and easy to exploit, and today’s IoT attacks
almost exclusively use known vulnerabilities for mounting
malicious attacks. More importantly, our findings lead to the
design of IoTShield, a simple yet effective IoT vulnerability-
specific signature generation system for intrusion detection.
IoTShield first collects 430,000 vulnerability reports from the
past 20 years and identifies content of 7,500 IoT vulnerability
reports. IoTShield then retrieves key knowledge to generate
vulnerability-specific signatures. These signatures can be eas-
ily deployed at existing intrusion detection systems or web
application firewalls to detect exploit attempts on a target IoT
device. Therefore, IoTShield significantly raises the bar for
future IoT attacks to succeed.

Acknowledgments

We are grateful to our shepherd Adwait Nadkarni and anony-
mous reviewers for their insightful feedback. We also want
to thank Haoran Lu and Jianzhou You for help collecting
underground attack tools and honeypot data. The IIE au-
thors are supported in part by National Key R&D Program
of China (No. 2018YFB0803402), Key Program of National
Natural Science Foundation of China (No. U1766215), and
International Cooperation Program of Institute of Information
Engineering, CAS (No. Y7Z0451104). The IU authors are
supported in part by NSF CNS-1850725, 1527141, 1618493,
1838083 and 1801432 and ARO W911NF-16-1-0127. The
support provided by China Scholarship Council (CSC) during
a visit of Xuan Feng to IU is acknowledged.

900 28th USENIX Security Symposium USENIX Association

References

[1] Abiword - Enchant. http://www.abisource.com/
projects/enchant/.

[2] Aho-corasick algorithm. https://github.com/
WojciechMula/pyahocorasick/.

[3] Amnesia. https://researchcenter.
paloaltonetworks.com/2017/04/unit42-new-
iotlinux-malware-targets-dvrs-forms-
botnet/.

[4] AVTECH IP Camera, NVR, DVR multiple vulnera-
bilities. http://seclists.org/fulldisclosure/
2016/Oct/36.

[5] Beautifulsoup. https://www.crummy.com/
software/BeautifulSoup/.

[6] BrickerBot. https://www.trustwave.com/
Resources/SpiderLabs-Blog/BrickerBot-
mod_plaintext-Analysis/.

[7] Cisco Secure IDS 2.0/3.0 / Snort 1.x / ISS RealSecure
5/6 / NFR 5.0 - Encoded IIS Detection Evasion. https:
//www.exploit-db.com/exploits/21100.

[8] CNVD-2013-20783. http://www.cnvd.org.cn/
webinfo/show/3205.

[9] Common Weakness Enumeration. https://cwe.
mitre.org/.

[10] CVE-2009-1557. https://nvd.nist.gov/vuln/
detail/CVE-2009-1557.

[11] CVE-2009-1558. https://nvd.nist.gov/vuln/
detail/CVE-2009-1558.

[12] CVE-2009-1559. https://nvd.nist.gov/vuln/
detail/CVE-2009-1559.

[13] CVE-2009-1560. https://nvd.nist.gov/vuln/
detail/CVE-2009-1560.

[14] CVE-2013-2578. https://nvd.nist.gov/vuln/
detail/CVE-2013-2578.

[15] CVE-2013-2579. https://nvd.nist.gov/vuln/
detail/CVE-2013-2579.

[16] CVE-2013-2580. https://nvd.nist.gov/vuln/
detail/CVE-2013-2580.

[17] CVE-2013-2581. https://nvd.nist.gov/vuln/
detail/CVE-2013-2581.

[18] CVE-2013-3612. https://nvd.nist.gov/vuln/
detail/CVE-2013-3612.

[19] CVE-2013-3688. https://nvd.nist.gov/vuln/
detail/CVE-2013-3688.

[20] CVE-2017-16957. https://nvd.nist.gov/vuln/
detail/CVE-2017-16957.

[21] D-Link DIR-645 Routers Remote Authentication By-
pass Vulnerability. https://www.securityfocus.
com/bid/58231.

[22] Guidelines for Security Vulnerability Reporting and
Response . https://www.symantec.com/security/
OIS_Guidelines%20for%20responsible%
20disclosure.pdf.

[23] Hacking the D-Link DIR-890L. http:
//www.devttys0.com/2015/04/hacking-the-
d-link-dir-890l/.

[24] Hajime. http://blog.netlab.360.com/hajime-
status-report-en/.

[25] IoT reaper. https://krebsonsecurity.com/2017/
10/reaper-calm-before-the-iot-security-
storm/.

[26] Masuta. https://blog.newskysecurity.
com/masuta-satori-creators-second-
botnet-weaponizes-a-new-router-exploit-
2ddc51cc52a7.

[27] Multiple vulnerabilities found in Wireless IP Camera
(P2P) WIFICAM cameras and vulnerabilities in custom
http serve. https://pierrekim.github.io/blog/
2017-03-08-camera-goahead-0day.html.

[28] Multiple Vulnerabilities in TP-Link TL-SC3171
IP Cameras. https://www.coresecurity.com/
advisories/multiple-vulnerabilities-tp-
link-tl-sc3171-ip-cameras.

[29] Natural language toolkit. http://www.nltk.org/.

[30] Pwning CCTV cameras . https://www.
pentestpartners.com/security-blog/pwning-
cctv-cameras/.

[31] A python implementation of simhash algo-
rithm. https://leons.im/posts/a-python-
implementation-of-simhash-algorithm/.

[32] Remote Code Execution in CCTV-DVR af-
fecting over 70 different vendors. http:
//www.kerneronsec.com/2016/02/remote-code-
execution-in-cctv-dvrs-of.html.

[33] Reverse SSH tunneling. https://askubuntu.com/
questions/598626/direct-ssh-tunnel-through-
a-reverse-ssh-tunnel.

USENIX Association 28th USENIX Security Symposium 901

http://www.abisource.com/projects/enchant/
http://www.abisource.com/projects/enchant/
https://github.com/WojciechMula/pyahocorasick/
https://github.com/WojciechMula/pyahocorasick/
https://researchcenter.paloaltonetworks.com/2017/04/unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/
https://researchcenter.paloaltonetworks.com/2017/04/unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/
https://researchcenter.paloaltonetworks.com/2017/04/unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/
https://researchcenter.paloaltonetworks.com/2017/04/unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/
http://seclists.org/fulldisclosure/2016/Oct/36
http://seclists.org/fulldisclosure/2016/Oct/36
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.trustwave.com/Resources/SpiderLabs-Blog/BrickerBot-mod_plaintext-Analysis/
https://www.trustwave.com/Resources/SpiderLabs-Blog/BrickerBot-mod_plaintext-Analysis/
https://www.trustwave.com/Resources/SpiderLabs-Blog/BrickerBot-mod_plaintext-Analysis/
https://www.exploit-db.com/exploits/21100
https://www.exploit-db.com/exploits/21100
http://www.cnvd.org.cn/webinfo/show/3205
http://www.cnvd.org.cn/webinfo/show/3205
https://cwe.mitre.org/
https://cwe.mitre.org/
https://nvd.nist.gov/vuln/detail/CVE-2009-1557
https://nvd.nist.gov/vuln/detail/CVE-2009-1557
https://nvd.nist.gov/vuln/detail/CVE-2009-1558
https://nvd.nist.gov/vuln/detail/CVE-2009-1558
https://nvd.nist.gov/vuln/detail/CVE-2009-1559
https://nvd.nist.gov/vuln/detail/CVE-2009-1559
https://nvd.nist.gov/vuln/detail/CVE-2009-1560
https://nvd.nist.gov/vuln/detail/CVE-2009-1560
https://nvd.nist.gov/vuln/detail/CVE-2013-2578
https://nvd.nist.gov/vuln/detail/CVE-2013-2578
https://nvd.nist.gov/vuln/detail/CVE-2013-2579
https://nvd.nist.gov/vuln/detail/CVE-2013-2579
https://nvd.nist.gov/vuln/detail/CVE-2013-2580
https://nvd.nist.gov/vuln/detail/CVE-2013-2580
https://nvd.nist.gov/vuln/detail/CVE-2013-2581
https://nvd.nist.gov/vuln/detail/CVE-2013-2581
https://nvd.nist.gov/vuln/detail/CVE-2013-3612
https://nvd.nist.gov/vuln/detail/CVE-2013-3612
https://nvd.nist.gov/vuln/detail/CVE-2013-3688
https://nvd.nist.gov/vuln/detail/CVE-2013-3688
https://nvd.nist.gov/vuln/detail/CVE-2017-16957
https://nvd.nist.gov/vuln/detail/CVE-2017-16957
https://www.securityfocus.com/bid/58231
https://www.securityfocus.com/bid/58231
https://www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disclosure.pdf
https://www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disclosure.pdf
https://www.symantec.com/security/OIS_Guidelines%20for%20responsible%20disclosure.pdf
http://www.devttys0.com/2015/04/hacking-the-d-link-dir-890l/
http://www.devttys0.com/2015/04/hacking-the-d-link-dir-890l/
http://www.devttys0.com/2015/04/hacking-the-d-link-dir-890l/
http://blog.netlab.360.com/hajime-status-report-en/
http://blog.netlab.360.com/hajime-status-report-en/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://pierrekim.github.io/blog/2017-03-08-camera-goahead-0day.html
https://pierrekim.github.io/blog/2017-03-08-camera-goahead-0day.html
https://www.coresecurity.com/advisories/multiple-vulnerabilities-tp-link-tl-sc3171-ip-cameras
https://www.coresecurity.com/advisories/multiple-vulnerabilities-tp-link-tl-sc3171-ip-cameras
https://www.coresecurity.com/advisories/multiple-vulnerabilities-tp-link-tl-sc3171-ip-cameras
http://www.nltk.org/
https://www.pentestpartners.com/security-blog/pwning-cctv-cameras/
https://www.pentestpartners.com/security-blog/pwning-cctv-cameras/
https://www.pentestpartners.com/security-blog/pwning-cctv-cameras/
https://leons.im/posts/a-python-implementation-of-simhash-algorithm/
https://leons.im/posts/a-python-implementation-of-simhash-algorithm/
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
http://www.kerneronsec.com/2016/02/remote-code-execution-in-cctv-dvrs-of.html
https://askubuntu.com/questions/598626/direct-ssh-tunnel-through-a-reverse-ssh-tunnel
https://askubuntu.com/questions/598626/direct-ssh-tunnel-through-a-reverse-ssh-tunnel
https://askubuntu.com/questions/598626/direct-ssh-tunnel-through-a-reverse-ssh-tunnel

[34] Satori. https://www.trendmicro.com/vinfo/
us/security/news/internet-of-things/
source-code-of-iot-botnet-satori-publicly-
released-on-pastebin.

[35] Scikit-learn machine learning in python. http://
scikit-learn.org/stable/index.html.

[36] Scrapy: A fast and powerful scraping and web crawling
framework. https://scrapy.org.

[37] Snort - Network Intrusion Detection & Prevention Sys-
tem. https://www.snort.org/.

[38] SSH Port forwarding. https://help.ubuntu.com/
community/SSH/OpenSSH/PortForwarding.

[39] The Internet of Things Will Be Even More Vulnerable
to Cyber Attacks. https://www.chathamhouse.
org/expert/comment/internet-things-will-be-
even-more-vulnerable-cyber-attacks.

[40] Ross Anderson. Security in open versus closed sys-
tems—the dance of boltzmann, coase and moore. Tech-
nical report, Cambridge University, England, 2002.

[41] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sulli-
van, Kurt Thomas, and Yi Zhou. Understanding the
mirai botnet. In Proceedings of the USENIX Security
Symposium, pages 1093–1110, 2017.

[42] William A Arbaugh, William L Fithen, and John
McHugh. Windows of vulnerability: A case study anal-
ysis. Computer, 33(12):52–59, 2000.

[43] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert,
Edward J Schwartz, Maverick Woo, and David Brumley.
Automatic exploit generation. Communications of the
ACM, 57(2):74–84, 2014.

[44] David Brumley, James Newsome, Dawn Song, Hao
Wang, and Somesh Jha. Towards automatic generation
of vulnerability-based signatures. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 2–16,
2006.

[45] Marco Caselli, Emmanuele Zambon, Johanna Amann,
Robin Sommer, and Frank Kargl. Specification mining
for intrusion detection in networked control systems. In
Proceedings of the USENIX Security Symposium, pages
791–806, 2016.

[46] Weidong Cui, Marcus Peinado, Helen J Wang, and
Michael E Locasto. Shieldgen: Automatic data patch

generation for unknown vulnerabilities with informed
probing. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 252–266, 2007.

[47] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun.
Acquisitional rule-based engine for discovering internet-
of-thing devices. In Proceedings of the USENIX Security
Symposium, pages 327–341, 2018.

[48] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad
Karami, Michael Bailey, Damon McCoy, Stefan Savage,
and Vern Paxson. You’ve got vulnerability: Exploring
effective vulnerability notifications. In Proceedings
of the USENIX Security Symposium, pages 1033–1050,
2016.

[49] Frank Li and Vern Paxson. A large-scale empirical study
of security patches. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
pages 2201–2215, 2017.

[50] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li,
Luyi Xing, and Raheem Beyah. Acing the ioc game:
Toward automatic discovery and analysis of open-source
cyber threat intelligence. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security, pages 755–766, 2016.

[51] Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
The Stanford CoreNLP natural language processing
toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55–60, 2014.

[52] David Nadeau and Satoshi Sekine. A survey of named
entity recognition and classification. Lingvisticae Inves-
tigationes, 30(1):3–26, 2007.

[53] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Ca-
ballero, and Tudor Dumitras. The attack of the clones:
A study of the impact of shared code on vulnerability
patching. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 692–708, 2015.

[54] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck,
and Tao Xie. Whyper: Towards automating risk as-
sessment of mobile applications. In Proceedings of the
USENIX Security Symposium, pages 527–542, 2013.

[55] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vul-
nerability disclosure in the age of social media: Ex-
ploiting twitter for predicting real-world exploits. In
Proceedings of the USENIX Security Symposium, pages
1041–1056, 2015.

[56] Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu,
and Tudor Dumitraş. Patch me if you can: A study on
the effects of individual user behavior on the end-host

902 28th USENIX Security Symposium USENIX Association

https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/source-code-of-iot-botnet-satori-publicly-released-on-pastebin
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/source-code-of-iot-botnet-satori-publicly-released-on-pastebin
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/source-code-of-iot-botnet-satori-publicly-released-on-pastebin
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/source-code-of-iot-botnet-satori-publicly-released-on-pastebin
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
https://scrapy.org
https://www.snort.org/
https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding
https://help.ubuntu.com/community/SSH/OpenSSH/PortForwarding
https://www.chathamhouse.org/expert/comment/internet-things-will-be-even-more-vulnerable-cyber-attacks
https://www.chathamhouse.org/expert/comment/internet-things-will-be-even-more-vulnerable-cyber-attacks
https://www.chathamhouse.org/expert/comment/internet-things-will-be-even-more-vulnerable-cyber-attacks

vulnerability state. In Proceedings of the International
Conference on Passive and Active Network Measure-
ment, pages 113–125. Springer, 2017.

[57] E Eugene Schultz Jr, David S Brown, and Thomas A
Longstaff. Responding to computer security incidents:
Guidelines for incident handling. Technical report,
Lawrence Livermore National Lab., CA (USA), 1990.

[58] Muhammad Shahzad, Muhammad Zubair Shafiq, and
Alex X Liu. A large scale exploratory analysis of soft-
ware vulnerability life cycles. In Proceedings of the
IEEE International Conference on Software Engineer-
ing, pages 771–781, 2012.

[59] Shodan. The search engine for Internet-connected de-
vices. https://www.shodan.io/.

[60] Helen J Wang, Chuanxiong Guo, Daniel R Simon, and
Alf Zugenmaier. Shield: Vulnerability-driven network
filters for preventing known vulnerability exploits. In
Proceedings of the ACM SIGCOMM Computer Commu-
nication Review, pages 193–204, 2004.

[61] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Semfuzz:
Semantics-based automatic generation of proof-of-
concept exploits. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security,
pages 2139–2154, 2017.

[62] Ziyun Zhu and Tudor Dumitras. Featuresmith: Auto-
matically engineering features for malware detection by
mining the security literature. In Proceedings of the
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 767–778, 2016.

A Keywords and Regular Expressions

Table 12: Keywords used in finding attack tools.

Keywords

Amnesia, next-gen Mirai botnets , Mirai Okiru, IoTroop

Satori IoT botnets, Brickerbot IoT botnets, Masuta,

Tsunami, Reaper, Hajime, IoT Mine Bitcoin, IoT hacking tool,

Persirai Botnet, Bashlite, Gafgyt, Qbot, Remaiten, Torlus,

DoubleDoor IoT botnet, JenX, IP Cameras GoAhead

Table 13: Regular expressions of structured information.

Regular expressions

Linux
command

curl [\w\W]+?\n\n

wget [\w\W]+?\n\n

wget [\w\W]+?\n

curl [\w\W]+?\n)

Traffic
log

POST [\w\W]+?\n\n

GET[\n][\w\W]+?\n\n

PUT [\w\W]+?\n\n

POST [\w\W]+?\n\n [\w\W]+?\n

Exploit
URL

((https?)://?[-A-Za-z0-9+&@#/%?\

*=_̃&$\\‘’\" \[\]() <>\]|!:,.;]+[-A-Za-z0-9 +

\[\]&’\" ()\]*<># \\/%= _])

Timeline timeline[\w\W]+? \n\n[\-_]?

time line[\w\W]+? \n\n[\-_]?

USENIX Association 28th USENIX Security Symposium 903

https://www.shodan.io/

ATTACK2VEC: Leveraging Temporal Word Embeddings to
Understand the Evolution of Cyberattacks

Yun Shen
Symantec Research Labs
yun_shen@symantec.com

Gianluca Stringhini
Boston University
gian@bu.edu

Abstract
Despite the fact that cyberattacks are constantly growing in

complexity, the research community still lacks effective tools
to easily monitor and understand them. In particular, there is a
need for techniques that are able to not only track how promi-
nently certain malicious actions, such as the exploitation of
specific vulnerabilities, are exploited in the wild, but also (and
more importantly) how these malicious actions factor in as
attack steps in more complex cyberattacks. In this paper we
present ATTACK2VEC, a system that uses temporal word em-
beddings to model how attack steps are exploited in the wild,
and track how they evolve. We test ATTACK2VEC on a dataset
of billions of security events collected from the customers of a
commercial Intrusion Prevention System over a period of two
years, and show that our approach is effective in monitoring
the emergence of new attack strategies in the wild and in flag-
ging which attack steps are often used together by attackers
(e.g., vulnerabilities that are frequently exploited together).
ATTACK2VEC provides a useful tool for researchers and prac-
titioners to better understand cyberattacks and their evolution,
and use this knowledge to improve situational awareness and
develop proactive defenses.

1 Introduction

Modern cyberattacks have reached high levels of complexity.
An attacker who is trying to compromise a computer sys-
tem has to perform a number of attack steps to achieve her
goal [16], including reconnaissance (i.e., identifying weak-
nesses on the victim machine), the actual exploitation, and
installing mechanisms to ensure persistence (e.g., installing a
remote access trojan (RAT) on the machine [10]). Moreover,
getting access to the victim machine might not be enough
for attackers to achieve what they want, therefore they might
have to perform additional attack steps (e.g., exploiting an-
other vulnerability to escalate privileges [36]). Additionally,
for each of the attack steps that compose the attack, attack-
ers have a choice of executing a variety of malicious actions

(e.g., exploiting different known vulnerabilities on the victim
system), depending on the exploits that they have available,
on the software configuration of the victim machine, and on
its security hygiene (i.e., which known vulnerabilities on it
have not been patched).

Previous research studied how attack steps (e.g., specific
Common Vulnerabilities and Exposures (CVEs) being ex-
ploited) evolve and are used in isolation [5, 33, 39]. While
doing so is useful to understand how prominently certain
attack steps are exploited in the wild, it does not tell us any-
thing on how these attack steps are used as part of complex
cyberattacks. Instead, looking at attack steps in relation to
each other can provide researchers and practitioners with
invaluable insights into the modus operandi of attackers, high-
lighting important trends in the way attacks are conducted.
In this paper, we define the sequence of attack steps that are
commonly performed together with an attack step of interest
as its context.

Understanding the context in which a vulnerability is ex-
ploited in the wild as well as detecting when this context
suddenly changes can be very useful for researchers, to bet-
ter understand the modus operandi of attackers, to improve
situational awareness in organizations, and to develop more
proactive defenses. For example, when a new CVE is pub-
lished, attackers will start attempting to exploit it, and in this
process they will first try a number of strategies. Eventually,
once an attacker will succeed in developing an attack that
reliably compromises machines, we will observe this strategy
being consistently exploited in the wild, potentially because
this consolidated attack was commoditized and added to an
exploit kit for multiple attackers to use [12]. This information
is useful for defenders, since it allows to design better miti-
gation strategies that take into account the entire attack, and
it can possibly also be used for attack attribution, since the
same attacker often uses similar strategies to carry out their
attacks [38].

However, attack strategies are not stable over time, because
new defenses might be deployed that make them ineffective
(e.g., vulnerabilities getting patched), or simply because the

USENIX Association 28th USENIX Security Symposium 905

attackers might develop more efficient strategies. Looking
at the context of an attack step (e.g., a particular CVE) can
help identifying these sudden changes in the way attacks are
performed, and prompt proactive defenses. For example, a
number of systems have been proposed that use supervised
learning to detect attacks [4, 13, 14, 41]. These systems typi-
cally need periodic retraining due to the fact that the evolution
of attacks over time makes the model that the system was
trained on obsolete [18]. Having a system able to track sig-
nificant changes in the context associated to a security event
could be used to perform a timely retraining of such systems.

To model the context of an attack step, in this paper we
adapt techniques that have been proposed in the area of natural
language processing. Word embeddings [30, 35] are a power-
ful tool for modeling relationships between words. This tech-
nique represents words with low-dimensional vectors based
on the surrounding words that appear in the same sentence
(i.e., the context). These vectors are able to capture the con-
text of a word and its relationship with the other words, allow-
ing researchers to understand the way in which words are used
in various types of language (e.g., on social media [8]). In a
similar way, we can calculate the embedding of an attack step
by considering the entire attack sequence as a sentence, and
each step as a word. Upon encoding the relationship between
attack steps within the vector space, we can quantitatively
study the attack steps appearing in similar contexts in the
latent space and understand them in a more meaningful and
measurable way.

As a proxy for the attack steps performed by attackers in
the wild, we use the security alerts generated by a commercial
Intrusion Prevention System (IPS), collected over a period of
two years. Throughout this observation period, we collect 102
snapshots on a weekly basis. Each snapshot contains over 190
million alerts collected from tens of millions unique machines.
Each alert is indicative of the attack step that is performed
by an attacker, and our dataset contains over 8k possible alert
types, spanning from port scans to exploits for specific CVEs.
Similar data was used in our previous work, which showed
that, although a proxy (e.g., they can only monitor attacks
for which a detection signature exists), these alerts are useful
to study the behavior of attackers in the wild [40]. In the
remainder of the paper, we define each alert generated by the
IPS a security event.

We implement our approach in a system, ATTACK2VEC.
Our system takes a stream of security events and computes
their context by using temporal word embeddings. By running
ATTACK2VEC on our data, we show that our approach is able
to effectively monitor how security events are exploited in the
wild. For example, we can identify when a certain CVE starts
getting exploited, when its exploitation becomes stable, and
when attackers change strategy in exploiting it. By leveraging
the similarity between the context of different security events,
we can infer which events are often used as part of the same
malicious campaign, and this allows us to identify emerging

attacks in a more timely manner than the state of the art. For
example, we were able to identify a variant of the Mirai botnet
that was scanning the Internet attempting to exploit a CVE
relative to Apache Struts, together with IoT-related exploits
over 72 weeks before this variant was officially identified.
These findings show that ATTACK2VEC can be an effective
tool for researchers and practitioners who need to understand
how security events are exploited in the wild and react to
sudden changes.

In summary, this paper makes the following contributions:

• We show that temporal word embeddings are an effective
way to study how attack steps are exploited in the wild
and how they evolve.

• We show how ATTACK2VEC can be used to understand
the emergence, the evolution, and the characteristics of
attack steps in relation to the wider context in which they
are exploited.

• We discuss how ATTACK2VEC can be effectively used
to identify emerging attack campaigns several weeks
before they are publicly disclosed.

2 Motivation

This paper presents the first approach to characterize not only
single security events, but the context in which they are used
in the wild. The problem of characterizing the evolution of
security events, however, is a complex one and presents mul-
tiple challenges. To illustrate its complexity, consider the
real-world example in Figure 1, showing several machines un-
dergoing two coordinated attacks across time, C1 and C2. Both
attacks leverage the attack step e11, “CVE-2018-7602 Drupal
core RCE.” C1: {e4, e10, e11, e12} mainly functions as a recon-
naissance attack including “Joomla JCE security bypass and
XSS vulnerabilities” (e4), “Wordpress RevSlider/ShowBiz
security byPass” (e10) and “Symposium plugin shell upload”
(e12), together with e11. C2: {e7, e5, e11, e6}, is an attack tar-
geted at the Drupal ecosystem, consisting of “phpMyAdmin
RFI CVE-2018-12613” (e7), “Drupal SQL Injection CVE-
2014-3704” (e5), and “Apache Flex BlazeDS RCE CVE-2017-
3066” (e6), and the aforementioned e11. Our goal is to develop
a system that allows to automatically analyze the context in
which e11 is exploited, and identify changing trends.

The first challenge that we can immediately notice from
Figure 1 is that even though the machines at a certain times-
tamp are going through the same type of attack (e.g., C1 at
ti), there are no obvious event relationships reflected in the
telemetry recorded by the IPS due to noise (e.g., other secu-
rity events not related to the coordinated attack observed, or
certain events relating to the coordinated attack being not ob-
served). If we take the IPS data recorded at timestamp ti, it is
not trivial to understand how e11 is leveraged by the attackers
by directly inspecting the security events, what attack vectors

906 28th USENIX Security Symposium USENIX Association

ti tj
time

tk

e4 e27 e10 e28 e11e12 e21

e30

Te
lem

et
ry

 le
ve

l

e14 e15 e10

e20

e11 e10 e4 e10

s1

e4 e41 e21e7 e12s3 e19e23

s2

e6 e27 e10 e28e11 e7e71 e5 e21

e30e15 e1

e20

e11 e6 e71 e5 e12

s1

e41 e41 e5 e21e7 e11s4 e19e23

s2

e24 e31

e4

e4e10 e11e12
e4e10 e11e12

e6e11e7 e5
e6e11e7e5

e4 e27 e10 e28e11 e12 e21

e30e14 e15 e10 e11 e12 e4 e5 e12

s1

s9

e24 e31

e30e15 e1 e11 e6 e71 e5 e12s7 e4

previous
campaigns

transition
period

new
campaigns

At
ta

ck
s

C1
C1 C2C2

e19

e21

Figure 1: A real-world example of security event evolution. Over time, e11 evolves from being an “add-on” reconnaissance vector
to part of a targeted attack on the Drupal ecosystem.

are used together with e11, etc. Additionally, it is worth noting
that not all security events may be observed in a given obser-
vation period. For example, e7 is not observed until timestamp
t j.

The second challenge is that attacks change over time, con-
sequently, the context of a security event and its relationship
with other attack steps may drift. It is possible that C1 and C2
can be operated by the same attackers, and that at some point
they changed their attack scripts to leverage newly disclosed
vulnerabilities (i.e., , phpMyAdmin RFI CVE-2018-12613
(e7)). As we can see in Figure 1, from timestamp ti to t j attack
C1 gradually migrated to or was replaced by attack C2. How-
ever, it is difficult to determine if these new relationships (e.g.,
e11 starting to appear in close proximity of e5) at timestamp
tk with respect to those of timestamp ti are due to noise or
are actually indicators of a change in the way e11 is being
used in the wild. Considering all these temporal factors, it is
desirable to have a model that is able to understand the con-
text of a security event and its changes over time, and whose
output can be quantitatively measured and studied. This is
what ATTACK2VEC aims to do.

Problem formulation. We formalize our temporal security
event evolution approach as follows. A security event ei ∈ E

is a timestamped observation recorded at timestamp i, where
E denotes the set of all unique events and |E| denotes the
size of E. A security event sequence observed in an endpoint
s j is a sequence of events ordered by their observation time,
s j = {e

(j)
1 ,e(j)

2 , ...,e(j)
l }. Let St = {st

1, ...,s
t
i, ...,s

t
z} denote the

set of the security events from z endpoints during the t-th
observation period. Finally we denote S= {S1, ...,St , ...,ST},
t = 1, ...,T , as the total security events over time T . It is
worth noting that not all security events may be observed in a
given St . For example, security events associated with CVEs
reported in 2018 are not present in the set of security events
collected in 2017. Our goal is to find a mapping function
M(ei,S,T)→{ηt

ei
}, where t = 1, ...,T and ηt

ei
∈Rd , d�|E|

denotes a d-dimensional vector representation of the security

101 103 105 107 109

Event observation count

100

101

102

of

 e
ve

nt
s

Figure 2: The distribution of events in our IPS security event
dataset follows a power-law, much like the distribution of
words in natural language, confirming the appropriateness of
word embeddings to study the evolution of the use of security
events over time.

event ei at timestamp t. In the next section, we describe the
data used in this paper in more detail. Then, in Section 4 we
describe the methodology used by ATTACK2VEC.

3 Dataset

Data origin. As a proxy for the attack steps performed by mis-
creants in the wild, we use security event data collected from
Symantec’s intrusion prevention system (IPS). The company
offers end users to explicitly opt in to its data sharing program
to help improving its detection capabilities. To preserve the
anonymity of users, endpoint identifiers are anonymized and
it is not possible to link the collected data back to the users
that originated it. Meta-information associated with a security
event is recorded when the product detects network-level or
system-level activity that matches a predefined signature (i.e.,
a security event).
Data collection. To thoroughly investigate security event evo-
lution, we collected 102 days (one observation day per week
for 102 consecutive weeks) of data between December 1,
2016 and November 08, 2018. From this data we extract the

USENIX Association 28th USENIX Security Symposium 907

following information: anonymized machine ID, timestamp,
security event ID, event description, system actions, etc. On
average, we collect 190 million security events collected from
tens of millions unique machines per day. These security
events were then reconstructed on a per machine basis and
sorted chronologically. Note that for privacy reasons we use
the anonymized endpoint ID to reconstruct a series of security
events detected in a given mahcine and discard it after the
reconstruction process is done. In total, the monitored ma-
chines generated 8,087 unique security events over the 102
observation days.
Data Limitations. It is important to note that the security
event data is collected passively. That is, these security events
are recorded only when corresponding attack signatures are
triggered. Any events preemptively blocked by other security
products cannot be observed. Additionally, any events that
did not match the predefined signatures are also not observed.
Hence the findings in this paper reflect security event evo-
lution observed by Symantec’s IPS, and the data can only
be considered as a proxy for the actual attacker behavior
in the wild. For example, we are unable to trace how zero
day attacks are exploited in the wild [5]. However, as we
show in Section 5 this data still allows ATTACK2VEC to iden-
tify meaningful trends in how security events are used and
evolve. Additionally, ATTACK2VEC could be applied to any
dataset with similar characteristics (i.e., a sequence of secu-
rity events). Another limitation is that our dataset is composed
of weekly snapshots, and we are therefore unable to charac-
terize the evolution of security events that are faster than that.
While this could prevent us from detecting quick anomalies
in the way security events are used (i.e., those that go back to
“normal” in a matter of a few days), this data is still represen-
tative enough to identify long term trends. We provide a more
detailed discussion on the limitations of our data in Section 6.
Appropriateness for word embeddings. As we mentioned,
the word embedding techniques used by ATTACK2VEC come
from the natural language processing field. Word frequency
in natural language follows a power-law distribution, and
techniques from language modeling account for this distri-
butional behavior. For these techniques to be appropriate to
our data, therefore, it is ideal that our security events follow
a similar distribution. Figure 2 shows that the events in our
dataset indeed follows a power-law distribution. This similar-
ity forms a solid theoretical foundation for us to use word em-
bedding techniques to encode latent forms of security events,
by considering sequences of security events in the IPS logs
as short sentences and phrases in a special language. In the
next section, we describe how ATTACK2VEC builds temporal
embeddings from a sequence of security events in detail.

4 Methodology

In this section we first define the context window used in
this work. We then formalize the techniques used to generate

Te
lem

et
ry

time

context

ei-c ei+c

e6 e27 e10 e28e11 e7e71 e5 e21

e30e15 e1

e20

e11e6 e71 e5 e12

s1

e41 e41 e5 e21e7 e11s4 e19e23

s2 e4

e6e11e7 e5C2

At
ta
ck

Figure 3: Illustration of context window (c = 4).

vector embeddings of security events. Finally, we describe
ATTACK2VEC’s architecture.

4.1 Context Window

Previous research made several interesting observations that
different attack vectors are often packed together by attackers
for a given period of time. For example, Kwon et al. [21]
observed that silent delivery campaigns exhibit synchronized
activity among a group of downloaders or domains and access
the same set of domains to retrieve payloads within a short
bounded time period. Shen et al. [40] pointed out that some
machines may potentially observe different attacks from var-
ious adversary groups happening at the same time, and one
coordinated attack may be observed by different machines.
On the defense side (i.e., IPS telemetry), we consequently
observe that related security events co-occur within a context
(i.e., the sequence of attack steps that are commonly per-
formed together with an attack step of interest). Note that this
context can be defined as a time window [21] or a rollback
window [40].

In this paper, we define the context as a sliding window,
denoted as c, centering around a given security event ei (see
Figure 3). The purpose of using this symmetric context win-
dow is to deal with the noise incurred by concurrency at the
telemetry level (see Section 2). For example, given a real-
world coordinated attack e7,e5,e11,e6 (highlighted in bold in
Figure 3), each endpoint may observe the attack vectors in dif-
ferent order (e.g., e7 and e5 may switch orders), attack vectors
might be diluted by other unrelated security events (e.g., e71
observed between e6 and e5 in s2), or certain security events
are not observed, for example because they have been blocked
by other security products before the IPS was able to log them
(e.g., e6 not observed in s4). The proposed context window
mechanism is able to capture the events surrounding a given
security event (i.e., before and after), minimizing the impact
of noise incurred by concurrency.

908 28th USENIX Security Symposium USENIX Association

4.2 Temporal Security Event Embedding

The proposed temporal security event embedding is adapted
from dynamic word embeddings by Yao et al. [48]. We use
pointwise mutual information (PMI), a popular measure for
word associations, to calculate weights between two security
events given a contextual window c and an observation period
t. PMI measures the extent to which the events co-occur more
than by chance or are independent. The assumption is that if
two events co-occur more than expected under independence
there must be some kind of relationship between them. For
each t-th observation period, we build a |E|× |E| PMI matrix,
where a PMI value between ei and e j is defined as follows.

PMIt(ei,e j,c,S) = max(log
(

pt(ei,e j)

pt(ei)p(e j)

)
,0),

pt(ei,e j) =
W (ei,e j)

|St |
,

pt(ei) =
W (ei)

|St |
, (1)

where W (ei) and W (e j) respectively count the occurrences
of security events ei and e j in St , and W (ei,e j) counts the
number of times ei and e j co-occur within a context window
(see Figure 3, Section 4.1) in St . Note that when W (ei,e j), the
number of times ei and e j co-occurring in a given contextual

window is small, log
(

pt (ei,e j)

pt (ei)p(e j)

)
can be negative and affects

the numerical stability. Therefore, we only keep the positive
values in Eq 1 (see [22]).

Following the definition of PMIt , the security event embed-
ding H(t), e.g., ηt

ei
∈H(t), at t-th observation time is defined

as a factorization of PMIt(c,S),

H(t)H(t)T ≈ PMIt(c,S). (2)

The denser representation H(t) reduces the noise [37] and
is able to capture events with high-order co-occurrence (i.e.,
that appear in similar contexts) [30, 35]. These characteristics
enable us to use word embedding techniques to encode latent
forms of security events, and interpret the security event evo-
lution in a meaningful and measurable way. Note that Li et
al. [25] and Levy et al. [22] have theoretically proven that the
skip-gram negative sampling (SGNS) used by the word2vec
model can be viewed as explicitly (implicitly) factorizing a
word co-occurrence matrix. We refer interested readers to
[22, 25] for theoretical proofs.

Across time T , we also require that ηt
ei
≈ ηt+1

ei
. This means

that the same security event should be placed in the same
latent space so that their changes across time can be reliably
studied. This requirement roots upon a practical implication.
For example, a security event was observed after its associated
CVE was disclosed. Its embeddings must therefore approxi-
mately stay the same before the disclosure date. Otherwise,

we would observe unwanted embedding changes and inval-
idate the findings. To this end, Yao et al. [48] identified the
solution of the following joint optimization problem as the
temporal embedding results. Note that throughout this section,
‖.‖ denotes squared Frobenius norm of a vector.

min
H(1),...,H(T)

1
2

T

∑
t=1
‖PMIt(c,S)−H(t)H(t)T‖2

+
α

2

T

∑
t=1
‖H(t)‖2 +

β

2

T

∑
t=1
‖H(t−1)−H(t)‖2,

(3)

where α and β are parameters respectively regularizing H(t),
and making sure that H(t−1) and H(t) are aligned (i.e., em-
beddings should be close if their associated contexts don’t
change between subsequent times.). In this way, all embed-
dings across time T are taken into consideration. At the same
time, this method can accommodate extreme cases such as the
one in which security event ei is not observed in (S)t since the
optimization is applied across all time slices in Eq 3. We refer
interested readers to [48] for theoretical proofs and empirical
comparison studies with other state-of-the-art embedding ap-
proaches. Following [48], we use grid search to identify the
best parameters and experimentally set α = 10, β = 40, c = 8,
d = 50 and run 5 epochs for all the evaluations throughout
our paper.

4.3 ATTACK2VEC Architecture

The architecture and workflow of ATTACK2VEC is depicted
in Figure 4. Its operation consists of three phases: ¶ data
collection and preprocessing, · temporal event embedding,
and ¸ event tracking and monitoring.
Data collection and preprocessing (¶). ATTACK2VEC takes
the security event stream generated by endpoints (e.g., com-
puters that installed an IPS). The goal of the data collection
and preprocessing module is to prepare the data for the tem-
poral event embedding method detailed in Section 4.2. AT-
TACK2VEC then consumes this timestamped security event
data generated from millions of machines that send back their
activity reports. The collection and preprocessing module re-
constructs the security events observed on a given machine s j
as a sequence of events ordered by timestamps, in the format
of s j = {e

(j)
1 ,e(j)

2 , ...,e(j)
l }. The output of the data collection

and preprocessing module is St = {st
1, ...,s

t
i, ...,s

t
z} where z

denotes the number of machines.
Temporal event embedding (·). The core operation of AT-
TACK2VEC is embedding these security events into a low
dimensional space over time. This phase takes S as input and
encodes latent forms of security events, by considering se-
quences of security events in the IPS logs as short sentences
and phrases in a special language. In this way, each security

USENIX Association 28th USENIX Security Symposium 909

e6 e27 … e11

e15

e20

e11

s1

e41 e41s4

s2 e4 …

…

Temporal
Event

Embedding

e6

e11

e20

…

time

m
ac

hi
ne

s

η

η

η

(0)

(0)

(0)

Trend
Identification

Change
Detection

Evolution
Evaluation

Temporal
embeddings

Detection and tracking

Data Collection
and

preprocessing

S7t6 e8

S1t7 e11

S4t1 e0

Data processing

e6

e11

e20

…

η

η

η

(t)

(t)

(t)

…

…

…

Figure 4: ATTACK2VEC’s Architecture.

event, at a timestamp t, is represented by a d-dimensional
vector representation ηt

ei
, and later aligned across time.

Detection and monitoring (¸). Once the security events
are encoded in low-dimensional space, ATTACK2VEC is able
to use various metrics (Section 5.1) to detect changes (Sec-
tion 5.2), identify event trends (Section 5.3), and monitor how
security events are exploited in the wild (Section 5.4) in a
measurable and quantifiable way.

5 Evaluation

In this section, we provide a thorough evaluation of temporal
event embeddings and ATTACK2VEC. We designed a number
of experiments that allow us to answer the following ques-
tions:

• Can we use the temporal embeddings calculated by AT-
TACK2VEC to identify changes in how a security event is
used in the wild (see Section 5.2)? To this end, we need
our temporal embeddings to present high fidelity over
time. The rationale behind this question is that the same
security event should be placed in the same latent space
by the proposed temporal event embedding method (see
Section 4). Their changes across time can be reliably
studied (see Section 5.6).

• Can we leverage temporal embeddings to identify trends
in the use of security events (see Section 5.3)? The ra-
tionale behind this evaluation is that embedding vector
norms across time should be more robust to the changes
than word frequency which is static (i.e., calculated at a
specific point of time) and sporadic.

• Can we leverage temporal embeddings to meaningfully
understand the evolution of security events, and mon-
itor how security events are exploited in the wild (see
Section 5.4)?

In the following, we first define the metrics used by our eval-
uation. We then proceed to show that ATTACK2VEC is effec-
tive in answering these three research questions, and discuss
the performance of our approach, showing that ATTACK2VEC
is able to process a day of data within minutes. Finally, we

present further evaluation of ATTACK2VEC, showing an end-
to-end case on how our system can be used to assess the
evolution in the use of a specific vulnerability in the wild.

5.1 Evaluation Metric
We use cosine similarity as the distance metric to quantify the
temporal embedding changes at time t in the latent space. That
is, for any two embeddings (i.e., η

(t)
ei and η

(t)
e j), the similarity

is measured as

similarity(η(t)
ei ,η

(t)
e j) =

η
(t)
ei

T
η
(t)
e j

‖η(t)
ei ‖2‖η

(t)
e j ‖2

. (4)

Note that in this paper the cosine similarity is used in positive
space, where the outcome is bounded in [0, 1]. That is, two
vectors with the same orientation have a cosine similarity of
1 (most similar), two vectors oriented at 90◦ relative to each
other have a similarity of 0 (not similar).

Following Eq 4, we denote the neighborhood of a security
event embedding e(t)i as N(e(t)i), and accordingly defined as

N(e(t)i) = argsort
e(t)j

(similarity(e(t)i ,e(t)j)). (5)

N(e(t)i) enables us to use temporal embeddings to discover
and analyze how different security events are used together
with ei. We use Nk(e

(t)
i) to denote the top k closest neighbors

of ei. As we show in Section 5.4, this can be used to identify
security events that are frequently used together as part of a
multi-step attack.

We also use a weighted drift metric to measure a security
event relative changes. This metric is defined in Eq 6 as

weighted_dri f t(ei) = argsortt

(
‖η(t−1)

ei ,η
(t)
ei ‖

∑e∈E ‖η
(t−1)
e ,η

(t)
e ‖

)
.

(6)
Eq 6 normalizes a security event’s embedding change by
the sum of all security event changes within that observation
period. This metric enables us to measure how a security
event changes comparing to the other security events within a
given observation point.

910 28th USENIX Security Symposium USENIX Association

July 10 2017

(a) CVE-2017-9791 disclosure date: July 10 2017

June 21 2018

(b) CVE-2018-12613 disclosure date: June 21 2018

August 22 2018

(c) CVE-2018-11776 disclosure date: August 22 2018

Figure 5: Temporal embedding results of “Apache Struts
Showcase App CVE-2017-9791” (5a), “phpMyAdmin RFI
CVE-2018-12613” (5b), and “Apache Struts RCE CVE-2018-
11776” (5c). The cosine similarities of the CVE embeddings
are stable before they are publicly disclosed, and decline
swiftly after the disclosure.

5.2 Change Detection

One of the key practical questions when evaluating the tem-
poral security event embeddings built by ATTACK2VEC is
determining the fidelity of the embedding results over time.
In this paper, fidelity refers to the condition that the same se-
curity event should be placed in the same latent space. That is,
if the frequency and the contexts of a security event between
subsequent time slices don’t change, its latent embedding
should stay the same. This consistency allows the change
to be reliably detected. This requirement lays the founda-
tion to quantitatively study their changes. The concept of
fidelity is different from the stability term used in previous
research approaches in which stability was used to evaluate
how classifiers perform after certain period of time. Bearing
this difference in mind, we use the following two criteria to
evaluate the fidelity of temporal embeddings and show how
ATTACK2VEC can faithfully capture both single event usage

change and global changes:

• criterion a. The cosine similarity of the event embed-
dings must be stable when an event usage does not
change between subsequent time slices.

• criterion b. The cosine similarity of these embeddings
should change swiftly if these events are used in different
attacks or emerge as a new attack vector.

It is important to note that while these criteria are helpful
in demonstrating the power of word embeddings extracted by
ATTACK2VEC, they are self-referential and not in themselves
sufficient to validate the effectiveness of our approach.
Single event change detection. To evaluate whether our two
criteria hold for our dataset, we use three CVEs, “Apache
Struts Showcase App CVE-2017-9791” (Figure 5a), “php-
MyAdmin RFI CVE-2018-12613” (Figure 5b), and “Apache
Struts RCE CVE-2018-11776” (Figure 5c). These CVEs were
disclosed between 2017 and 2018. Regarding the aforemen-
tioned two evaluation criteria, these vulnerabilities were not
disclosed in 2016, and therefore they did not have a matching
signature in the IPS from which we collected our data. Thus,
they form a good baseline for temporal fidelity evaluation. We
therefore expect the following properties to hold:

response to a. Before a vulnerability was disclosed, its cor-
responding signature does not exist hence its non-
existent context should stay the same until timestamp
t. That is, if the vulnerability’s disclosure date is t,
similarity(η(0)

ei ,η
(z)
ei), where z ∈ (0, t], should be stable.

response to b. After the disclosure date, the cosine similar-
ity values of its embeddings should change swiftly. The
justification is obvious. If attackers start exploiting a vul-
nerability, its corresponding security event moves away
from its non-existent context and such drift leads to em-
bedding changes.

For each CVE, we calculate the cosine similarity between
each event’s current representation (i.e., at timestamp
t) and its original representation (i.e., at timestamp 0,
on December 1 2016) over our observation period (i.e.,
similarity(η(0)

ei ,η
(t)
ei), where t = 1...T . See Eq 4). The results

are shown in Figure 5. As we can observe, the temporal
embeddings of CVE-2017-9791, CVE-2018-12613 and CVE-
2018-11776 are stable across time and their cosine similarity
values are above 0.9 before their respective disclosure dates
(see criterion a). The way to interpret criterion a is that be-
fore a vulnerability is disclosed, its corresponding signature
does not exist, and therefore its context is non-existing. As
such, this context should remain constant until the vulner-
ability starts being exploited in the wild. Figure 5a shows
that the cosine similarity between the embeddings of CVE-
2017-9791 calculated daily and the original one recorded on

USENIX Association 28th USENIX Security Symposium 911

day 0 is stable and above 0.95 before July 10 2017, which is
when the vulnerability was disclosed. Note that the similarity
is not strictly 1.0 because of marginal deviation incurred by
joint optimization across time slices (see Eq 3). Neverthe-
less, the high similarity before the disclosure date shows that
ATTACK2VEC obtains correct temporal embeddings. After
their public disclosure of each CVE, on the other hand, we
expect the context in which each vulnerability is exploited to
quickly change. This can be measured by ATTACK2VEC with
the fact that the cosine similarity values of CVE-2017-9791,
CVE-2018-12613, and CVE-2018-11776 decline quickly and
move away from the original non-existing context built for
those CVEs (see criterion b). This phenomenon exempli-
fies that the temporal embeddings capture the changes in the
context in which a security event is used.

It is also worth noting that the temporal embeddings of
CVE-2018-11776 show an immediate change after disclo-
sure, while those of CVE-2018-12613 are slightly delayed
for a couple of weeks (i.e., CVE-2018-12613 was officially
published on June 21 2018 and the embedding starts to drift
on July 12 2018). This phenomenon, i.e., the gap between
public disclosure dates and real world exploits was well dis-
cussed in Sabottke et al. [39], and ATTACK2VEC allows to
easily observe it.

The temporal embeddings generated by ATTACK2VEC not
only allow us to identify when a vulnerability starts being
exploited in the wild, but also how these event embeddings
change after the disclosure date. To monitor and evaluate
these changes, instead of comparing the context of a secu-
rity event with the one extracted from the first day of ob-
servation, we compare the cosine similarity of the contexts
extracted on subsequent time slices – between each event’s
current representation (i.e., at timestamp t) and its previous
representation (i.e., at timestamp t−1). In short, we calcu-
late similarity(η(t)

ei ,η
(t−1)
ei) (see Eq 4), which enables us to

capture how the context of each event evolves between two
subsequent observations. If the use of an event remains stable,
the cosine similarity between η

(t)
ei and η

(t−1)
ei will remain high.

If, on the other hand, the event experiences a sudden change
in the way it is used in the wild, then its context will also sig-
nificantly change and the cosine similarity with the previous
observation will suddenly decrease, allowing an analyst to
identify the point in time in which this change happened. To
demonstrate this, we reuse the security event “Apache Struts
Showcase App CVE-2017-9791” from earlier in this section.
We calculate the cosine similarity between subsequent snap-
shots, where t0 starts from July 10 2017 (the public disclosure
date). This evolution is depicted in Figure 6.

We can observe the following: ¶ The cosine similarity
values decline for the first three weeks. This phenomenon im-
plies that CVE-2017-9791 started being exploited in different
attacks after its disclosure date, with attackers trying different
strategies to reliably exploit this vulnerability. · the cosine
similarity increases between the 3rd week and the 10th week.

This phenomenon implies that CVE-2017-9791 became being
exploited in less diversified attacks, indicating that attackers
were converging towards a stable way to exploit the CVE. ¸
The cosine similarity stabilizes after the 10th week, which
means that CVE-2017-9791 started being exploited in a sta-
ble context. This could indicate that attackers weaponized the
CVE into a reliable attack, and possibly developed methods
to exploit it at scale (e.g., by including it in an exploit kit).
Later in the timeline, we can see other changes in the way in
which attacks are exploited, but after each sudden change we
observe a stabilization in how the CVE is exploited, indicat-
ing that attackers keep the same modus operandi over long
periods of time.

A possible concern is that the changes in context identified
by ATTACK2VEC might be due to noise and not representa-
tive of actual changes in the modus operandi of attackers. To
demonstrate that this is not the case, we use the event co-
occurrence matrix PMIt(c,S) as defined in Section 4. This
matrix captures the co-occurrence of any two events within
the context window. For each observation time t, we select
the top events that co-occurred with CVE-2017-9791 to better
understand the phenomenon. If the changes in the use of a
CVE identified by ATTACK2VEC are meaningful, we expect
the co-occurrence matrix on that day to suddenly change, but
to later stabilize and remain similar over time. For the first
three weeks after disclosure in Figure 6 (¶), CVE-2017-9791
was used in conjunction with known attack vectors such as
Apache Struts RCE CVE-2013-2251, HTTP Apache Tomcat
UTF-8 dir traversal CVE-2008-2938, and malicious OGNL
expression upload. By the third week, while some attack
vectors were still associated with CVE-2017-9791, the vul-
nerability gradually started being used together with more
recent server attack vectors (e.g., Apache Struts RCE CVE-
2016-3087) and application vulnerabilities (e.g., WebNMS
RCE CVE-2016-6603 and Web CMS Think PHP RCE). After
·, CVE-2017-9791 started being used consistently with the
aforementioned attack vectors and with several additional at-
tack vectors (e.g., Apache Struts dynamic method invocation
RCE CVE-2016-3081, Drupal PHP RCE, and generic PHP
REC) Once CVE-2017-9791 reached ¸, its usage patterns
became reasonably stable. Note that small fluctuations still
happen when new Apache Struts related vectors were dis-
closed and exploited (e.g., . Apache Struts CVE-2017-9805
(week 11), CVE-2017-12611 (week 15) and CVE-2017-12617
(week 21), and temporary withdrawn of CVE-2017-12617
(around week 45) in the attacks. These changes are reliably
detected by ATTACK2VEC.

In summary, our method is able to capture changes in the
security event embeddings with high fidelity.
Global change detection. Recall that temporal event embed-
dings are the solution of a joint optimization problem across
all time slices (see Section 4). Therefore, such embeddings
not only encode their respective usage and context in a given
time slice, but also its history across all time slices. In this

912 28th USENIX Security Symposium USENIX Association

Rank
(by changes) Mar. 9 2017 Jan. 4 2018 Oct. 15 2018

1 ZyNOS Information Disclosure Rig Exploit Kit Website Unwanted Extension or Scam Sites Redirection

2
WordPress Mobile-Detector
Arbitrary File Upload Malicious Javascript Website Fake Tech Support Website

3
Netgear Router Remote Command
Execute Fake Tech Support Website Drupal Core RCE

4 Wordpress Arbitrary File Download Malicious Redirection Fake Browser History Injection
5 Fake Flash Player Download JSCoinminer Download Mass Injection Website

Table 1: Top 5 events with most usage changes in selective dates.

Figure 6: Temporal embedding result of Apache Struts Show-
case App CVE-2017-9791. Cosine similarity values for each
plot is calculated as similarity(η(t−1)

ei ,η
(t)
ei) (i.e., cosine sim-

ilarity between subsequent time slices), where t starts from
July 10 2017 (the public disclosure date).

section, we show how to leverage the temporal embeddings
generated by ATTACK2VEC to find times where we observe
an anomalous high number of changes in the use of multiple
security events.

ATTACK2VEC computes a list of changes for each secu-
rity event ei in all time slices using the weighted drift metric
(see Eq 6). We use this to identify the observation periods
in which many security events exhibit most usage changes.
These points are interesting candidates for scrutiny for se-
curity analysts, since multiple changes in word embeddings
might indicate the emergence of new pervasive attacks. Note
that we remove all the security events with less than 100
observations in 2 years time (see Section 6 for a rationale
for this). Figure 7 shows a histogram of the time slices in
which security event usage changes most. As we can see,
we observe 34 security events with most usage changes be-
tween October 11 and October 18 2018. We selectively list
the top 5 events with most usage changes in different dates
(see Table 1). These changes demonstrate how security event
evolve over the time. For example, at the beginning of 2017,
we can observe many changes relating to exploits affecting
routers. This can be an indicator of a large attack campaign
targeting such devices unfolding. Across time, more attacks
change over fake tech support websites, coinminer and con-
tent management systems. This context information is usually
for analysts to improve situational awareness and be promptly
warned about emerging attacks.

Oct. 18 2018

Figure 7: Summary of the security event changes between
December 1 2016 and November 15 2018.

5.3 Trend Identification
One de facto method used in empirical studies [5, 24, 32, 46]
to analyze temporal usage changes is leveraging frequencies
to reveal patterns. That is, previous approaches often start
by determining the occurrence frequency of events across
the data, and using the event frequency time series as a cri-
terion to reveal the significance of these events. Despite its
straightforwardness in analyzing and visualizing temporal
data, one drawback of this approach is that frequencies are
prone to noise because they are only counted at a specific
timestamp. Another drawback of using temporal frequency,
especially in practical analysis, is that it is more difficult to
compare two time series when they are both trending but at
a different magnitude, and a sudden spike in the occurrence
of one security event might make it difficult to identify other
important events that are not happening as frequently. To
demonstrate this problem, we use four popular remote Web
server attack vectors (see Figure 8a). We can observe in Fig-
ure 8a (inset ¶) , that Apache Struts CVE-2017-5638 (blue
line) was overwhelmingly exploited by attackers after it was
disclosed. Its preponderant usage overshadows (see the zoom
region inset ¶ in Figure 8a) the other popular remote Web
server attack vectors (e.g., HTTP Apache Tomcat UTF-8 Dir

USENIX Association 28th USENIX Security Symposium 913

(a)

(b)

Figure 8: Event frequencies (8a) and event embedding vec-
tor norms (8b). We select four CVEs relating to different
Web services to demonstrate the robustness of temporal event
embedding in trend changes (CVE-2008-2938 in green line,
CVE-2017-5638 in blue line, CVE-2017-10271 in red line,
and CVE-2017-7269 in orange line). The dashed box high-
lights the observation period discussed in Section 5.3.

Traversal CVE-2008-2938) when using event frequency time
series to comparatively study attack vector popularity.

In the rest of this section, we demonstrate that the word
embeddings calculated by ATTACK2VEC are more robust than
temporal frequencies to reveal trend changes. Recall the def-
inition of PMIt(c,S) (defined in Section 4). It contains in-
formation from W (ei,e j), the number of times ei and e j co-
occurring in a given contextual window, and W (ei) and W (e j)
respectively count the occurrences of security events ei and
e j. The norms of word embeddings ηei , as a consequence of
matrix factorization of PMIt(c,S), grow with word frequency
and are averaged by their contexts. Therefore, we can lever-
age these norms to identify event usage trends. We compare
temporal frequencies (Figure 8a) to the embedding vector
norm (Figure 8b) in the context of trend identification. It is
straightforward to see that the security event “Apache Struts
CVE-2017-5638” was predominantly leveraged by the attack-
ers for a short period of time. As we said, such sudden spike
makes other trendy CVEs used at that same period of time less
detectable (Figure 8a). However, we can see that the temporal
event embeddings (Figure 8b) reveal the real patterns behind
the frequencies, and are able to capture trends more reliably.
For example, we can clearly see in Figure 8b that CVE-2008-
2938 (“HTTP Apache Tomcat UTF-8 Dir Traversal,” green

0 10 20 30 40 50 60

Weeks
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

1e3
CVE-2017-7269
CVE-2017-10271

(a)

0 10 20 30 40 50 60

Weeks

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ve
c.

 N
or

m
.

CVE-2017-7269
CVE-2017-10271

(b)

Figure 9: Comparison study of CVE-2017-7269 (orange line)
and CVE-2017-10271 (red line). ATTACK2VEC can trace the
emerging popularity of CVE-2017-7269 even though it is
barely observable in Figure 8.

line in Figure 8a) is a persistent vector used by the attackers.
This was not observable in Figure 8a because CVE-2017-
5638 dominates during that period of time. Nevertheless, it is
worth noting that we study the independent popularity of these
attack vectors and reveal their underlying usage trend beneath
the event frequency time series. Hence in this paper we do not
intend to study how such attack vectors influence each other.
It is coincidental that the red (CVE-2017-10271) and green
(CVE-2008-2938) lines show a similar vector norm shift. In
fact, these vector norm shifts were incurred by their similar
usage changes (e.g., dropping close to zero) during the same
period (see inset ·, Figure 8a). ATTACK2VEC still preserves
the trends of red (CVE-2017-10271) and green (CVE-2008-
2938) lines (i.e., larger than zero) in this extreme case and
their respective vector norms become stable immediately af-
ter.

Our temporal embedding can also capture how two CVEs,
CVE-2017-10271 (“Oracle WebLogic RCE,” red line in Fig-
ure 8a) and CVE-2017-7269 (“Buffer overflow in the ScStor-
agePathFromUrl function in the WebDAV service in IIS 6.0,”
orange line in Figure 8a) gradually emerge as a trendy attack
vector over time. That is, both CVE-2017-10271 (red line)
and CVE-2017-7269 (orange line), before their disclosure
dates (May 27, 2017 and Oct 17, 2017), are flat. This proves
that ATTACK2VEC faithfully captures their non-existent trend.
After their disclosure, ATTACK2VEC is able to correctly keep
track of their trends. For example, in Figure 9 we show that

914 28th USENIX Security Symposium USENIX Association

Drupal core RCE (CVE-2018-7602)
May 15 2018 Nov. 08 2018

Joomla JCE Vulnerability phpMyAdmin RFI (CVE-2018-12613)
Wordpress RevSlider/ShowBiz Bypass
(CVE-2014-9735)

Drupal SQL Injection
(CVE-2014-3704)

WordPress Symposium Plugin Shell Upload Adobe Flex BlazeDS RCE (CVE-2017-3066)

Table 2: Top 3 security events associated with CVE-2018-
7602 at the beginning (May 15 2018) and the end (November
18 2018) of our time span.

our approach can reliably trace the trends of CVE-2017-7269
(orange line) from approximately week 19 in the figure. Al-
though its usage (e.g., frequency) is less observable than CVE-
2008-2938 and CVE-2017-5638 during the same period of
time (see Figure 8), its emerging trend is still recognized
by the increase in vector norm as we can see in Figure 9b.
Additionally, despite the five times of frequency difference
between it initial disclosure (week 19 in Figure 9a) and later
weeks (after week 51 in Figure 9a), ATTACK2VEC captures
the trend changes with a small fluctuation of less than 0.6.
ATTACK2VEC also reliably captures CVE-2017-10271 (red
line) non-existent trend before its public disclosure.

5.4 Event Evolution
Another useful functionality for which ATTACK2VEC can be
used is understanding how attacks evolve in the wild, and in
particular monitoring which attack steps are often performed
together by attackers. In a nutshell, security events that are
often used together will have similar contexts. Identifying
events with such similar contexts could help detecting emerg-
ing threats such as new botnets scanning for specific vulnera-
bilities (e.g., Mirai or WannaCry) or new exploit kits that are
probing for specific weaknesses in victim systems [3, 33].

To evaluate ATTACK2VEC’s capability of tracking the evo-
lution of security event contexts over time in relation to each
other we use the same CVE from Section 2, “Drupal core
RCE (CVE-2018-7602).” This CVE is for a highly critical
remote code execution (RCE) vulnerability that exists within
multiple subsystems of Drupal 7.x and 8.x, enabling attackers
to compromise a machine running a Drupal website. This
vulnerability was first disclosed on April 23 2018, and we ob-
serve its activities in the our data starting from May 15 2018.
Due to its high severity, it is interesting to see how such a crit-
ical vulnerability was exploited in different contexts across
time.

We use Eq 5 to identify the top 3 security events associated
with CVE-2018-7602 at the beginning and the end of our time
span. These events are the ones that have the closest context to
CVE-2018-7602, and are therefore used in association with it.
Table 2 shows a detailed description of these events. It is inter-
esting to note that the top 3 attack vectors used together with
CVE-2018-7602 at the beginning resemble a reconnaissance
attack aiming at all three major content management systems
- Joomla, Wordpress, and Drupal. Toward the end of the time

span, however, we notice that CVE-2018-7602 migrates to be
part of a more specific multi-step attack, aiming at the ecosys-
tem surrounding the Drupal CMS - php (phpMyAdmin), SQL
(Drupal SQL Injection), and Flex (BlazeDS RCE).

Leveraging Eq 4, we show in Figure 10a that the tem-
poral security event embedding computed by ATTACK2VEC
can meaningfully capture the aforementioned usage changes
across time. “Joomla JCE Vulnerability,” CVE-2014-9735,
CVE-2014-10021 (blue dashed lines), and CVE-2018-12613,
CVE-2017-3066, CVE-2014-3704 (red solid lines) respec-
tively are the top three closest security events associated with
“Drupal core RCE (CVE-2018-7602)” at the beginning (end)
of the observation span (starting from May 15 2018). We can
clearly see that the red lines are rising (i.e., these security
events are used more closely with CVE-2018-7602), and the
blue lines are moving away from CVE-2018-7602. In general,
we can see that the attackers change their modus operandi,
using CVE-2018-7602 as part of a more targeted attack on
Drupal, 8 weeks after its initial observation in the teleme-
try data. This can be indicative of the old reconnaissance
campaign fading and of the new one more targeted towards
Drupal emerging, or of an attacker changing their behavior.
Note that such usage changes can be automatically detected
using various change point detection algorithms [2].
Trajectory visualization. The trajectory of a security event
in the embedded latent space can assist security analysts to
understand its context changes over time. To show this, we
collect the top k security events associated with CVE-2018-
7602 using Eq 5 in each time slice to form our trajectory
data Dei = {Nk(e

(t)
i)},where t starts from May 15, 2018. We

accordingly plot the 2-D t-SNE projection of the temporal
embeddings of CVE-2018-7602 (and the aforementioned se-
curity events) in Figure 10b to visualize its context change
over time. In Figure 10b, each blue dot represents the 2-D
location in the latent space at a given timestamp. We can
observe a considerable drift in Figure 10b between the fourth
and the fifth blue dot. This is correlated to the trend we ob-
served in Figure 10a. The top 3 security events associated
with CVE-2018-7602 at the beginning and the end of our time
span are closer to the respectively locations in Figure 10b.
Note that such changes in Figure 10b can be quantitatively
detected as these locations are bounded in a Euclidean space.

5.5 System Performance
ATTACK2VEC is implemented in Python 3.7.3 and tested on
a server with dual Xeon E5-2630 CPUs and 256GB memory
running Ubuntu Linux 14.04. In this setup, ATTACK2VEC
takes 859.86 seconds to construct the PPMI matrices for
all 102 snapshots. Once the PPMI matrices are constructed,
ATTACK2VEC takes 3014.18 seconds per epoch to optimize
the temporal embeddings (see Section 4). We empirically
run 5 epochs for ATTACK2VEC to reach the optimum em-
bedding results. This leads to approximately 4.18 hours for

USENIX Association 28th USENIX Security Symposium 915

0 5 10 15 20 25

Weeks (Starting from May 15 2018)

0.0

0.2

0.4

0.6

0.8

1.0

Co
s.

Si
m

.

CVE-2018-12613
CVE-2017-3066
CVE-2014-3704
Joomla JCE Vulnerability
CVE-2014-9735
CVE-2014-10021

(a) Joomla JCE Vulnerability, CVE-2014-9735, CVE-
2014-10021 (blue dashed lines) and CVE-2018-12613,
CVE-2017-3066, CVE-2014-3704 (red solid lines) re-
spectively are the top three closest security events asso-
ciated with Drupal core RCE (CVE-2018-7602) at the
beginning (end) of the observation span (starting from
May 15 2018).

CVE-2018-7602 (May 15 2018)

CVE-2014-10021

CVE-2015-1397

Joomla JCE security bypass and XSS

CVE-2018-7602 (Nov 08 2018)

CVE-2018-12613

CVE-2017-3066

CVE-2014-3704

Significant location shift
Between two time slices

(b) Temporal t-SNE trajectory of Drupal core RCE (CVE-
2018-7602). The significant shift in this figure can be
indicative of the old reconnaissance campaign fading and
of the new one more targeted towards Drupal emerging,
or of an attacker changing their behavior.

Figure 10: Drupal core RCE (CVE-2018-7602) Evolution between May 15 2018 and November 8 2018.

Apache Struts Jakarta Multipart parser RCE (CVE-2017-5638)
Mar. 23 2017 Nov. 08 2018

WifiCam Authentication Bypass Malicious OGNL Expression Upload
CCTV-DVR Remote Code Execution Apache Struts CVE-2017-12611
ZyNOS Information Disclosure Malicious Serialized Object Upload

Table 3: Top 3 security events associated with CVE-2017-
5638 at the beginning (March 9 2017) and the end (November
8 2018) of our time span.

ATTACK2VEC to generate final temporal embeddings for all
8,087 security events across 102 snapshots. This enables us to
deploy ATTACK2VEC to understand the long term evolution
of different security events at scale by security analysts.

5.6 End-to-end Evaluation of ATTACK2VEC

In the previous sections we evaluated the ability of AT-
TACK2VEC to study various aspects of how a security event is
exploited in the wild. We envision that ATTACK2VEC could
be used by security analysts to understand the evolution of
the use of a security event (e.g., a vulnerability) over time. In
this section we provide an end-to-end example to show how
an analyst could be using our tool to better understanding
the context surrounding a security vulnerability and its evolu-
tion. To this end, we study the evolution of the security event
“Apache Struts Jakarta Content-Type RCE (CVE-2017-5638),”
a remote code execution vulnerability targeting Apache Struts.
This vulnerability is classified by NVD as a critical bug with
CVSS score 10.0, and was the culprit of the Equifax data

breach [11].

Figure 11a shows that CVE-2017-5638 experienced a
change in the way it is being exploited between April 5,
2017 and April 13, 2017. ATTACK2VEC is able to identify
this change in the way the vulnerability is exploited, and an
analyst could easily identify this. We then want to understand
what these two contexts looked like, and evaluate whether
this information can help us understand the types of attacks
that CVE-2017-5638 was used in. To this end we perform the
analysis described in Section 5.4, whose results are shown in
Figure 11b. In particular, we trace the top three security events
with the closest context to CVE-2017-5638 at the beginning
and at the end of our analysis period (see Table 3 for a detailed
description of these events). The top 3 security events tightly
associated with CVE-2017-5638 at the beginning of our obser-
vation span are IoT specific attack vectors. Figure 11b shows
that these three IoT attack vectors maintain similar contexts to
CVE-2017-5638 for approximately 10 weeks, indicating that
the four vulnerabilities were frequently exploited together in
the wild as part of a multi-step attack. Later in the analysis
period (starting from May 8, 2017) we see that this attack is
substituted by another attack that is targeted at the Apache
Struts ecosystem, consisting of Malicious OGNL expression
upload, CVE-2017-12611 and Malicious Serialized Object
Upload. Figure 11c shows a similar pattern, with CVE-2017-
5638 migrating from being close to the IoT security events to
the Apache Struts related ones. This information could inform
an analyst about the change in which CVE-2017-5638 was

916 28th USENIX Security Symposium USENIX Association

0 20 40 60 80

Weeks

0.85

0.90

0.95

1.00

Co
s.

Si
m

.
 Apache Struts CVE-2017-5638

(a) Temporal embedding result of Apache Struts Jakarta Multi-
part parser RCE (CVE-2017-5638). Cosine similarity values
for each plot is calculated as similarity(η(t−1)

ei ,η
(t)
ei), where t

starts from March 9 2017.

0 20 40 60 80

Weeks (Starting from March 9 2017)

0.0

0.2

0.4

0.6

0.8

1.0

Co
s.

Si
m

.

malicious. OGNL expr.
CVE-2017-12611
malicious ser. obj. upload
WifiCam auth bypass
CCTV-DVR RCE
ZyNOS info. dis.

(b) WifiCam Authentication Bypass, CCTV-DVR Re-
mote Code Execution, ZyNOS Information Disclosure
(blue dashed lines) and Malicious OGNL expression
upload, CVE-2017-12611 and Malicious Serialized
Object Upload (red solid lines) are the top three closest
security events associated with CVE-2017-5638 at the
beginning (end) of the observation span (starting from
March 9 2017), respectively.

CVE-2017-5638
(Mar. 23 2017)

CVE-2017-5638
(Nov. 08 2018)

WifiCam auth bypass

ZyNOS info. dis.
CCTV-DVR RCE

CVE-2017-12611

malicious. OGNL expr.

malicious ser. obj. upload

Significant location shift
Between two time slices

(c) Temporal t-SNE trajectory of Apache Struts Jakarta
Multipart parser RCE (CVE-2017-5638).

Figure 11: Apache Struts Jakarta Multi- part parser RCE
(CVE-2017-5638) evolution between March 9 2017 and
November 8 2018.

exploited in the wild, switching from an attack step as part
of an IoT-centered attack to part of an attack centered around
Apache Struts.

To further evaluate the accuracy of the embeddings calcu-
lated by ATTACK2VEC, and the meaningfulness of our anal-
ysis, we further investigate the contexts calculated at the be-
ginning of our analysis period, when CVE-2017-5638 was
exploited in conjunction with IoT-related vulnerabilities.To
this end, we retrieve the remote IP addresses from which the
security events originated on selected dates. We find that in
many cases these four (including CVE-2017-5638) security
events were generated from connections originating from the
same IP addresses (for example, 701 unique IP addresses on
March 23 2018), indicating that the relation depicted by the
context is not an artifact of ATTACK2VEC, but it is indeed a
large scale attack performed by the same malicious actors.
These IP addresses were often located in residential ISPs,
indicating a potential botnet infection.

We later found confirmation that a variant of the Mirai
IoT malware was active during that period and was explicitly
exploiting CVE-2017-5638, “WifiCam auth bypass,” “CCTV-
DVR RCE,” and “ZyNOS information disclosure,” the same
vulnerabilities picked up by ATTACK2VEC as being related
(see Table 3) [1]. This shows that ATTACK2VEC can help
identifying complex attacks in an effective way. An additional
advantage of our approach is that our system was able to flag
this attack as emerging in the wild 72 weeks before it was
actually discussed by security researchers, highlighting the
potential of the use of temporal embeddings for early warning
and situational awareness.

6 Limitations and Discussion

Rare events. The temporal security event embedding used
in this paper builds on top of event frequency and event co-
occurrence (see Section 4). By design the learned temporal
event embeddings are biased towards word frequency per
observation time. When analyzing the security events us-
ing the proposed method, we need to pay attention to the
events that appear less frequently. Broadly speaking, these
rare events can be grouped into two categories - i) the new se-
curity events associated with recently disclosed vulnerabilities
and ii) those rarely observed in the IPS. For the new events,
their corresponding disclosure dates are good indicators when
interpreting the embedding results. For the events that rarely
observed, frequency and popularity are two good reference
points when interpreting the embedding results. Take “CVE-
2018-0101 (Cisco Adaptive Security Appliance (ASA) RCE
vulnerability)” for example (see Figure 12). ATTACK2VEC
faithfully identifies its changes over time (see Figure 12a).
However, when referring to event frequency (see Figure 12b),
we can see that these changes do not represent that the attack-
ers are changing their attack campaign strategy. Moreover,
it is important to notice that our proposed system is robust

USENIX Association 28th USENIX Security Symposium 917

0 20 40 60 80 100

Weeks

0.0

0.2

0.4

0.6

0.8

1.0

Co
s.

Si
m

.
 CISCO ASA RCE CVE-2018-0101

(a)

0 20 40 60 80 100

Weeks
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

CVE-2018-0101

(b)

0 20 40 60 80 100

Weeks

0.04

0.02

0.00

0.02

0.04

Ve
c.

 N
or

m
.

CVE-2018-0101

(c)

Figure 12: Rare event CVE-2018-0101 (Cisco Adaptive Security Appliance (ASA) RCE vulnerability).

and can correctly indicate that such event is not actively be-
ing exploited by attackers (see Figure 12c), and therefore the
changes flagged at the previous steps are spurious.
Distraction from attackers. Our proposed temporal event
embedding may be subject to distraction from malicious at-
tackers, leading to inaccurate insights. For example, attackers
could generate large amounts of fake events by targeting a
considerable number of machines (e.g., hundreds of thou-
sands) over a certain period of time (e.g., weeks). However,
we argue that this would make the attackers more visible
to the security companies who could track such malicious
activities and block them accordingly. Additionally, such dis-
traction operations would not bring financial incentive to the
attackers. Note that once they switch back to real campaigns,
our method would faithfully capture the new trend.
Limitations. ATTACK2VEC relies on a dataset of pre-labeled
security events to generate insights and understand their evo-
lution. An inherent limitation of this type of data is that an
event can be detected only if it belongs to a known attack
vector. If, for example, a new zero-day vulnerability started
being exploited in the wild, this would not be reflected in the
data until its signature is created. Our method is data-driven
hence it can not deduce insights before an event was detected.
However, such delay can be reduced since security companies
typically use threat intelligence systems and employ human
specialists to analyze intrusion data identifying new attack
trends. We refer interested readers to Bilge et al. [5] for a
detailed study on zero-day vulnerabilities.

7 Related Work

7.1 Embedding Applications in Security
Xu et al. [47] proposed to use network-based graph embed-
ding to accomplish cross-platform binary code similarity de-
tection task. The authors adopted the structure2vec approach
to effectively compute embedding vectors for the control flow
graph of binary functions. This allows for efficient similarity
detection by comparing the embeddings for two functions.
Song et al. [42] propose DeepMem, a graph-based deep learn-
ing approach to automatically generate abstract representa-
tions for kernel objects and recognize these objects from raw
memory dumps. The key idea is building a memory graph and
embed the graph nodes into a low-dimensional vector space

using a node’s actual content and the embeddings of its four
kinds of neighboring nodes. These embeddings are then used
as features for classification. Ding et al. [9] developed an as-
sembly code representation learning model called Asm2Vec.
The key idea is to encode assembly code syntax and con-
trol flow graph into a feature vector. At the query/estimation
stage, the previously unknown assembly code is encoded into
a lower-dimensional vector and compared using cosine sim-
ilarity. Li et al. [23] introduced a data poisoning attack on
matrix factorization. The authors demonstrated that, with the
full knowledge of the learner, several attacks can be achieved.

7.2 Other Related Work

Concept drift. Concept drift refers to the phenomenon that
the statistical properties of the target variable change over
time. Such causes less accurate predictions across time.
Within the context of security research, Maggi et al. [27]
addressed concept drift in Web application security, while
Kantchelian et al. [20] discussed adversarial drift. In recent
years, Jordaney et al. [18] proposed Transcend, a statistical
framework to identify aging classification models. The au-
thors used a statistical comparison of samples seen during
deployment with those used to train the model, thereby build-
ing metrics for prediction quality. They then combine both
decision assessment (i.e., the robustness of the prediction
results) and alpha assessment (i.e., the quality of the non-
conformity measure) to detect concept drift.
Empirical studies on cyberattacks. Bilge et al. [5] con-
ducted a systematic study of the characteristics of zero-day
attacks through the data collected from 11 million endpoints.
Nappa et al. [32] conducted a systematic analysis of the patch-
ing process of 1,593 vulnerabilities in 10 client-side appli-
cations over 5 year time, especially on measuring the patch-
ing delay and several patch deployment milestones for each
vulnerability. Nayak et al. [33] carried an empirical study
on vulnerability using field data and proposed several count-
based metrics for attack surface evaluation. Vervier et al. [46]
analyzed 18 months of data collected by an infrastructure
specifically built to address BGP hijacks. The author charac-
terized the BGP hijacks in this longitudinal study and provide
a thorough investigation and validation of the candidate ma-
licious BGP hijacks. Li et al. [24] conducted a large-scale
empirical study of security patches that affected 862 open-

918 28th USENIX Security Symposium USENIX Association

source projects.
Vulnerability prediction. Vulnerability prediction tech-
niques learn the attack history from previous events (e.g.,
historical compromise data) and use the acquired knowledge
to predict future ones. What learned in the history can offer
insights to evolution and is therefore relevant to our work.
Sabottke et al. [39] conducted a quantitative and qualitative
exploration of the vulnerability-related information dissem-
inated on Twitter. The authors built a twitter-based exploit
detector, which was capable of providing early warnings for
the existence of real-world exploits. Similarly, Bozorgi et
al. [6] showed how to train linear support vector machines
(SVMs) that predict whether and how soon a vulnerability is
likely to be exploited (i.e., predict time to exploit). Recently,
Shen et al. [40] demonstrated that recurrent neural networks
(RNNs) can be leveraged to predict the specific steps (i.e.,
vulnerability that may be exploited) that would be taken by an
adversary when performing an attack. Liu et al. [26] explored
the effectiveness of forecasting security incidents. This study
collected 258 externally measurable features about an orga-
nization’s network covering two main categories: misman-
agement symptoms (e.g., misconfigured DNS) and malicious
activities (e.g., spam, scanning activities originated from this
organization’s network). Based on the data, the study trained
and tested a Random Forest classifier on these features, and
are able to achieve with 90% True Positive (TP) rate, 10%
False Positive (FP) rate and an overall accuracy of 90% in
forecasting security incidents. In summary, these approaches
learn the attack history from previous events (e.g., historical
compromise data) and use the acquired knowledge to predict
future ones. They don’t provide thorough investigations on
how security events evolve over time.
Alert correlation. Alert correlation [7, 45] refers to a pro-
cess that analyzes the alert logs produced by IDS and forms
higher-level information on attempted intrusions. Once alerts
are correlated among multiple monitors, the results can pro-
vide IDS a holistic view of the network monitored. A lot of
work has been done in this areas such CRIM [7], DIDMA [19],
ACARM [44], INDRA [17], etc. Vasilomanolakis et al. [45]
summarized the current state of the art in the area of dis-
tributed and collaborative intrusion detection. In contrast to
this previous work, this paper focuses on understanding the
emergence, the evolution, and the characteristics of attack
steps in relation to the wider context in which they are ex-
ploited.
Automated causality analysis. Causality is an orthogo-
nal but interesting problem relating to ATTACK2VEC. Her-
cule [34] uses tainted path s from t to model the causality.
SteamSpot [28] uses a new similarity function to compare
graphs and builds information flow graph clusters to detect
anomalies. NoDoze [15] builds provenance graph of a given
event and use a novel diffusion algorithm to efficiently prop-
agate and aggregate the anomalous scores. HOLMES [31]
also leverages provenance graph and identify APT attacks

via information flow graphs. Conversely, our goal is to pro-
vide a reliable new method for analyzing attack trends than
frequency analysis.
Closest work. One of the closest work to this paper is Dark-
Embed [43]. It used paragraph vector to learn low dimen-
sional distributed representations, i.e., embeddings, of dark-
web/deepweb discussions. These embeddings effectively cap-
tured the meaning of these discussions and their other charac-
teristics, such as language, and indicator words. DarkEmbed
then trained a classifier to recognize posts discussing vul-
nerabilities that would be exploited in the wild. DarkEmbed
is essentially a NLP analysis. Different from DarkEmbed,
our work focuses on using representation vectors to param-
eterize the conditional probabilities of security events in the
context of other events, and study how these security events
evolve from a temporal perspective. Another closest work
is [29]. The authors carried out a longitudinal analysis of
a large corpus of cyber threat descriptions. It quantifies the
severity and types (e.g., worms, viruses and trojans) of 12,400
threats detected by Symantec’s AV and 2,700 attacks detected
by Symantec’s IPS. Different from [29], our work focuses
on how the security events evolve and monitor how security
events are exploited in the wild from real-world intrusion
prevention data.

8 Conclusion

In this paper, we showed that techniques that were devel-
oped in the area of natural language processing can be used
to effectively model and monitor the evolution of cyberat-
tacks. To demonstrate this, we developed ATTACK2VEC, a
tool that leverages word embeddings to understand the con-
text in which attack steps are exploited. We showed that AT-
TACK2VEC is effective in flagging changes in the way attacks
unfold. In future work we plan to investigate how the use of
ATTACK2VEC could make the work of security analysts easier
in studying emerging attacks.

Acknowledgments

We wish to thank the anonymous reviewers for their feedback
and our shepherd Brad Reaves for his help in improving this
paper.

References

[1] Unit 42. Multi-exploit iot/linux botnets mi-
rai and gafgyt target apache struts, sonicwall.
https://unit42.paloaltonetworks.com/unit42-multi-
exploit-iotlinux-botnets-mirai-gafgyt-target-apache-
struts-sonicwall/, 2018.

USENIX Association 28th USENIX Security Symposium 919

[2] Samaneh Aminikhanghahi and Diane J Cook. A survey
of methods for time series change point detection. KIS,
51(2), 2017.

[3] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In
USENIX Security Symposium, 2017.

[4] Leyla Bilge, Davide Balzarotti, William Robertson, En-
gin Kirda, and Christopher Kruegel. Disclosure: de-
tecting botnet command and control servers through
large-scale netflow analysis. In ACSAC, 2012.

[5] Leyla Bilge and Tudor Dumitras. Before we knew it: an
empirical study of zero-day attacks in the real world. In
ACM CCS, 2012.

[6] Mehran Bozorgi, Lawrence K Saul, Stefan Savage, and
Geoffrey M Voelker. Beyond heuristics: learning to
classify vulnerabilities and predict exploits. In KDD,
2010.

[7] Frédéric Cuppens and Alexandre Miege. Alert correla-
tion in a cooperative intrusion detection framework. In
IEEE S&P, 2002.

[8] Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. Tweet2vec:
Character-based distributed representations for social
media. arXiv preprint arXiv:1605.03481, 2016.

[9] Steven HH Ding, Benjamin CM Fung, and Philippe
Charland. Asm2vec: Boosting static representation ro-
bustness for binary clone search against code obfusca-
tion and compiler optimization. In IEEE S&P, 2019.

[10] Brown Farinholt, Mohammad Rezaeirad, Paul Pearce,
Hitesh Dharmdasani, Haikuo Yin, Stevens Le Blond,
Damon McCoy, and Kirill Levchenko. To catch a rat-
ter: Monitoring the behavior of amateur darkcomet rat
operators in the wild. In IEEE S&P, 2017.

[11] Apache Software Foundation. The apache software
foundation confirms equifax data breach due to fail-
ure to install patches provided for apache struts ex-
ploit. https://blogs.apache.org/foundation/entry/media-
alert-the-apache-software, 2017.

[12] Chris Grier, Lucas Ballard, Juan Caballero, Neha
Chachra, Christian J Dietrich, Kirill Levchenko, Panayi-
otis Mavrommatis, Damon McCoy, Antonio Nappa, An-
dreas Pitsillidis, et al. Manufacturing compromise: the
emergence of exploit-as-a-service. In ACM CCS, 2012.

[13] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke
Lee. Botminer: Clustering analysis of network traffic

for protocol-and structure-independent botnet detection.
In USENIX Security Symposium, 2008.

[14] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Mar-
tin W Fong, and Wenke Lee. Bothunter: Detecting
malware infection through ids-driven dialog correlation.
In USENIX Security Symposium, 2007.

[15] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang
Chen, Kangkook Jee, Zhichun Li, and Adam Bates.
Nodoze: Combatting threat alert fatigue with automated
provenance triage. In NDSS, 2019.

[16] Eric M Hutchins, Michael J Cloppert, and Rohan M
Amin. Intelligence-driven computer network defense
informed by analysis of adversary campaigns and intru-
sion kill chains. Leading Issues in Information Warfare
& Security Research, 2011.

[17] Ramaprabhu Janakiraman, Marcel Waldvogel, and
Qi Zhang. Indra: A peer-to-peer approach to network
intrusion detection and prevention. In WET ICE, 2003.

[18] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi
Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo
Cavallaro. Transcend: Detecting concept drift in mal-
ware classification models. In USENIX Security Sympo-
sium, 2017.

[19] Pradeep Kannadiga and Mohammad Zulkernine. Didma:
A distributed intrusion detection system using mobile
agents. In SNPD-SAWN, 2005.

[20] Alex Kantchelian, Sadia Afroz, Ling Huang,
Aylin Caliskan Islam, Brad Miller, Michael Carl
Tschantz, Rachel Greenstadt, Anthony D Joseph, and
JD Tygar. Approaches to adversarial drift. In AIsec,
2013.

[21] Bum Jun Kwon, Virinchi Srinivas, Amol Deshpande,
and Tudor Dumitraş. Catching worms, trojan horses and
pups: Unsupervised detection of silent delivery cam-
paigns. In NDSS, 2017.

[22] Omer Levy and Yoav Goldberg. Neural word embedding
as implicit matrix factorization. In NIPS, 2014.

[23] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorob-
eychik. Data poisoning attacks on factorization-based
collaborative filtering. In NIPS, 2016.

[24] Frank Li and Vern Paxson. A large-scale empirical study
of security patches. In ACM CCS, 2017.

[25] Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei
Zhong, and Enhong Chen. Word embedding revisited:
A new representation learning and explicit matrix fac-
torization perspective. In AAAI, 2015.

920 28th USENIX Security Symposium USENIX Association

[26] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz
Naghizadeh, Manish Karir, Michael Bailey, and
Mingyan Liu. Cloudy with a chance of breach:
Forecasting cyber security incidents. In USENIX
Security Symposium, 2015.

[27] Federico Maggi, William Robertson, Christopher
Kruegel, and Giovanni Vigna. Protecting a moving
target: Addressing web application concept drift. In
RAID, 2009.

[28] Emaad Manzoor, Sadegh M Milajerdi, and Leman
Akoglu. Fast memory-efficient anomaly detection in
streaming heterogeneous graphs. In KDD, pages 1035–
1044. ACM, 2016.

[29] Ghita Mezzour, L Richard Carley, and Kathleen M Car-
ley. Longitudinal analysis of a large corpus of cyber
threat descriptions. J Comput Virol Hack Tech, 12(1),
2016.

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In NIPS,
2013.

[31] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete,
R Sekar, and VN Venkatakrishnan. Holmes: real-time
apt detection through correlation of suspicious informa-
tion flows. In IEEE S&P, 2019.

[32] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Ca-
ballero, and Tudor Dumitras. The attack of the clones:
A study of the impact of shared code on vulnerability
patching. In IEEE S&P, 2015.

[33] Kartik Nayak, Daniel Marino, Petros Efstathopoulos,
and Tudor Dumitraş. Some vulnerabilities are different
than others. In RAID, 2014.

[34] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio,
Shiqing Ma, Fei Wang, Zhiwei Zhang, Luo Si, Xiangyu
Zhang, and Dongyan Xu. Hercule: Attack story recon-
struction via community discovery on correlated log
graph. In ACSAC. ACM, 2016.

[35] Jeffrey Pennington, Richard Socher, and Christopher
Manning. Glove: Global vectors for word representation.
In EMNLP, 2014.

[36] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting privilege escalation. In USENIX Security Sym-
posium, 2003.

[37] Reinhard Rapp. Word sense discovery based on sense
descriptor dissimilarity. In MT Summit, 2003.

[38] Thomas Rid and Ben Buchanan. Attributing cyber at-
tacks. Journal of Strategic Studies, 2015.

[39] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vul-
nerability disclosure in the age of social media: Exploit-
ing twitter for predicting real-world exploits. In USENIX
Security Symposium, 2015.

[40] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and
Gianluca Stringhini. Tiresias: Predicting security events
through deep learning. In ACM CCS, 2018.

[41] Robin Sommer and Vern Paxson. Outside the closed
world: On using machine learning for network intrusion
detection. In IEEE S&P, 2010.

[42] Wei Song, Heng Yin, Chang Liu, and Dawn Song. Deep-
mem: Learning graph neural network models for fast
and robust memory forensic analysis. In ACM CCS,
2018.

[43] Nazgol Tavabi, Palash Goyal, Mohammed Almukaynizi,
Paulo Shakarian, and Kristina Lerman. Darkembed:
Exploit prediction with neural language models. In
IAAI, 2018.

[44] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel,
and Richard A Kemmerer. Comprehensive approach to
intrusion detection alert correlation. IEEE Transactions
on dependable and secure computing, 1(3), 2004.

[45] Emmanouil Vasilomanolakis, Shankar Karuppayah,
Max Mühlhäuser, and Mathias Fischer. Taxonomy and
survey of collaborative intrusion detection. ACM CSUR,
47(4):55, 2015.

[46] Pierre-Antoine Vervier, Olivier Thonnard, and Marc
Dacier. Mind your blocks: On the stealthiness of mali-
cious bgp hijacks. In NDSS, 2015.

[47] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,
and Dawn Song. Neural network-based graph embed-
ding for cross-platform binary code similarity detection.
In ACM CCS, 2017.

[48] Zijun Yao, Yifan Sun, Weicong Ding, Nikhil Rao, and
Hui Xiong. Dynamic word embeddings for evolving
semantic discovery. In WSDM, 2018.

USENIX Association 28th USENIX Security Symposium 921

Leaky Images: Targeted Privacy Attacks in the Web

Cristian-Alexandru Staicu
Department of Computer Science

TU Darmstadt

Michael Pradel
Department of Computer Science

TU Darmstadt

Abstract
Sharing files with specific users is a popular service pro-
vided by various widely used websites, e.g., Facebook, Twit-
ter, Google, and Dropbox. A common way to ensure that a
shared file can only be accessed by a specific user is to au-
thenticate the user upon a request for the file. This paper
shows a novel way of abusing shared image files for targeted
privacy attacks. In our attack, called leaky images, an im-
age shared with a particular user reveals whether the user is
visiting a specific website. The basic idea is simple yet ef-
fective: an attacker-controlled website requests a privately
shared image, which will succeed only for the targeted user
whose browser is logged into the website through which the
image was shared. In addition to targeted privacy attacks
aimed at single users, we discuss variants of the attack that
allow an attacker to track a group of users and to link user
identities across different sites. Leaky images require nei-
ther JavaScript nor CSS, exposing even privacy-aware users,
who disable scripts in their browser, to the leak. Studying the
most popular websites shows that the privacy leak affects at
least eight of the 30 most popular websites that allow sharing
of images between users, including the three most popular of
all sites. We disclosed the problem to the affected sites, and
most of them have been fixing the privacy leak in reaction
to our reports. In particular, the two most popular affected
sites, Facebook and Twitter, have already fixed the leaky im-
ages problem. To avoid leaky images, we discuss potential
mitigation techniques that address the problem at the level of
the browser and of the image sharing website.

1 Introduction

Many popular websites allow users to privately share images
with each other. For example, email services allow attach-
ments to emails, most social networks support photo sharing,
and instant messaging systems allow files to be sent as part
of a conversation. We call websites that allow users to share
images with each other image sharing services.

This paper presents a targeted privacy attack that abuses a
vulnerability we find to be common in popular image shar-
ing services. The basic idea is simple yet effective: An at-
tacker can determine whether a specific person is visiting an
attacker-controlled website by checking whether the browser
can access an image shared with this person. We call this
attack leaky images, because a shared image leaks the pri-
vate information about the victim’s identity, which otherwise
would not be available to the attacker. To launch a leaky im-
ages attack, the attacker privately shares an image with the
victim through an image sharing service where both the at-
tacker and the victim are registered as users. Then, the at-
tacker includes a request for the image into the website for
which the attacker wants to determine whether the victim is
visiting it. Since only the victim, but no other user, is al-
lowed to successfully request the image, the attacker knows
with 100% certainty whether the victim has visited the site.

Beyond the basic idea of leaky images, we describe three
further attacks. First, we describe a targeted attack against
groups of users, which addresses the scalability issues of
the single-victim attack. Second, we show a pseudonym
linking attack that exploits leaky images shared via differ-
ent image sharing services to determine which user accounts
across these services belong to the same individual. Third,
we present a scriptless version of the attack, which uses
only HTML, and hence, works even for users who disable
JavaScript in their browsers.

Leaky images can be (ab)used for targeted attacks in var-
ious privacy-sensitive scenarios. For example, law enforce-
ment could use the attack to gather evidence that a suspect is
visiting particular websites. Similarly but perhaps less noble,
a governmental agency might use the attack to deanonymize
a political dissident. As an example of an attack against a
group, consider deanonymizing reviewers of a conference.
In this scenario, the attacker would gather the email ad-
dresses of all committee members and then share leaky im-
ages with each reviewer through some of the various web-
sites providing that service. Next, the attacker would embed
a link to an external website into a paper under review, e.g.,

USENIX Association 28th USENIX Security Symposium 923

Table 1: Leaky images vs. related web attacks. All techniques assume that the victim visits an attacker-controlled website.

Threat Who can attack? What does the attacker achieve? Usage scenario

Tracking pixels Widely used ad providers and web
tracking services

Learn that user visiting site A is the
same as user visiting site B

Large-scale creation of low-entropy user
profiles

Social media
fingerprinting

Arbitrary website provider Learn into which sites the victim is
logged in

Large-scale creation of low-entropy user
profiles

Cross-site
request forgery

Arbitrary website provider Perform side effects on a target site
into which the victim is logged in

Abuse the victim’s authorization by act-
ing on her behalf

Leaky images Arbitrary website provider Precisely identify the victim Targeted, fine-grained deanonymization

a link to a website with additional material. If and when
a reviewer visits that page, while being logged into one of
the image sharing services, the leaky image will reveal to
the attacker who is reviewing the paper. The prerequisite
for all these attacks is that the victim has an account at a
vulnerable image sharing service and that the attacker is al-
lowed to share an image with the victim. We found at least
three highly popular services (Google, Microsoft Live, and
Dropbox) that allow sharing images with any registered user,
making it straightforward to implement the above scenarios.

The leak is possible because images are exempted from
the same-origin policy, and because image sharing services
authenticate users through cookies. When the browser makes
a third-party image request, it attaches the user’s cookie of
the image sharing website to it. If the decision of whether
to authorize the image request is cookie-dependent, then the
attacker can infer the user’s identity by observing the success
of the image request. Related work discusses the dangers of
exempting JavaScript from the same-origin policy [24], but
to the best of our knowledge, there is no work discussing the
privacy implications of observing the result of cross-origin
requests to privately shared images.

Leaky images differ from previously known threats by
enabling arbitrary website providers to precisely identify a
victim (Table 1). One related technique are tracking pix-
els, which enable tracking services to determine whether
two visitors of different sites are the same user. Most third-
party tracking is done by a few major players [13], allowing
for regulating the way these trackers handle sensitive data.
In contrast, our attack enables arbitrary attackers and small
websites to perform targeted privacy attacks. Another related
technique is social media fingerprinting, where the attacker
learns whether a user is currently logged into a specific web-
site.1 In contrast, leaky images reveal not only whether a user
is logged in, but precisely which user is logged in. Leaky im-
ages resemble cross-site request forgery (CSRF) [33], where
a malicious website performs a request to a target site on be-
half of the user. CSRF attacks typically cause side effects
on the server, whereas our attack simply retrieves an image.

1See https://robinlinus.github.io/
socialmedia-leak/ or https://browserleaks.com/
social.

We discuss in Section 5 under what conditions defenses pro-
posed against CSRF, as well as other mitigation techniques,
can reduce the risk of privacy leaks due to leaky images.

To understand how widespread the leaky images problem
is, we study 30 out of the 250 most popular websites. We
create multiple user accounts on these websites and check
whether one user can share a leaky image with another user.
The attack is possible if the shared image can be accessed
through a link known to all users sharing the image, and if
access to the image is granted only to certain users. We find
that at least eight of the 30 studied sites are affected by the
leaky images privacy leak, including some of the most pop-
ular sites, such as Facebook, Google, Twitter, and Dropbox.
We carefully documented the steps for creating leaky images
and reported them as privacy violations to the security teams
of the vulnerable websites. In total, we informed eight web-
sites about the problem, and so far, six of the reports have
been confirmed, and for three of them we have been awarded
bug bounties. Most of the affected websites are in the pro-
cess of fixing the leaky images problem, and some of them,
e.g., Facebook and Twitter, have already deployed a fix.

In summary, this paper makes the following contributions:

• We present leaky images, a novel targeted privacy at-
tack that abuses image sharing services to determine
whether a victim visits an attacker-controlled website.

• We discuss variants of the attack that aim at individual
users, groups of users, that allow an attacker to link user
identities across image sharing services, and that do not
require any JavaScript.

• We show that eight popular websites, including Face-
book, Twitter, Google, and Microsoft Live are affected
by leaky images, exposing their users to be identified on
third-party websites.

• We propose several ways to mitigate the problem and
discuss their benefits and weaknesses.

2 Image Sharing in the Web

Many popular websites, including Dropbox, Google Drive,
Twitter, and Facebook, enable users to upload images and to

924 28th USENIX Security Symposium USENIX Association

share these images with a well-defined set of other users of
the same site. Let i be an image, U be the set of users of an
image sharing service, and let ui

owner ∈U be the owner of i.
By default, i is not accessible to any other users than ui

owner.
However, an owner of an image can share the image with a
selected subset of other users U i

shared ⊆U , which we define
to include the owner itself. As a result, all users u ∈U i

shared ,
but no other users of the service and no other web users, have
read access to i, i.e., can download the image via a browser.

Secret URLs To control which users can access an image,
there are several implementation strategies. One strategy is
to create a secret URL for each shared image, and to provide
this URL only to users allowed to download the image. In
this scenario, there is a set of URLs Li (L stands for “links”)
that point to a shared image i. Any user who knows a URL
li ∈ Li can download i through it. To share an image i with
multiple users, i.e., |U i

shared | > 1, there are two variants of
implementing secret URLs. On the one hand, each user u
may obtain a personal secret URL li

u for the shared image,
which is known only to u and not supposed to be shared with
anyone. On the other hand, all users may share the same
secret URL, i.e., Li = {li

shared}. A variant of secret URLs
are URLs that expire after a given amount of time or after a
given number of uses. We call these URLs session URLs.

Authentication Another strategy to control who accesses
an image is to authenticate users. In this scenario, the image
sharing service checks for each request to i whether the re-
quest comes from a user in U i

shared . Authentication may be
used in combination with secret URLs. In this case, a user
u may access an image i only if she knows a secret URL li

and if she is authenticated as u ∈U i
shared . The most common

way to implement authentication in image sharing services
are cookies. Once a user logs into the website of an im-
age sharing service, the website stores a cookie in the user’s
browser. When the browser requests an image, the cookie
is sent along with the request to the image sharing service,
enabling the server-side of the website to identify the user.

Image Sharing in Practice Different real-world image
sharing services implement different strategies for control-
ling who may access which image. For example, Facebook
mostly uses secret URLs, which initially created confusion
among users due to the apparent lack of access control2.
Gmail relies on a combination of secret URLs and authen-
tication to access images attached to emails. Deciding how
to implement image sharing is a tradeoff between several
design goals, including security, usability, and performance.
The main advantage of using secret URLs only is that third-
party content delivery networks may deliver images, without

2https://news.ycombinator.com/item?id=13204283

any cross-domain access control checks. A drawback of se-
cret URLs is that they should not be used over non-secret
channels, such as HTTP, since these channels are unable to
protect the secrecy of requested URLs. The main advantage
of authentication is to not require links to be secret, enabling
them to be sent over insecure channels. On the downside,
authentication-based access control makes using third-party
content delivery networks harder, because cookie-based au-
thentication does not work across domains.

Same-Origin Policy The same-origin policy regulates to
what extent client-side scripts of a website can access the
document object model (DOM) of the website. As a default
policy, any script loaded from one origin is not allowed to
access parts of the DOM loaded from another origin. Ori-
gin here means the URI scheme (e.g., http), the host name
(e.g., facebook.com), and the port number (e.g., 80). For ex-
ample, the default policy implies that a website evil.com that
embeds an iframe from facebook.com cannot access those
parts of the DOM that have been loaded from facebook.com.
There are some exceptions to the default policy described
above. One of them, which is crucial for the leaky images
attack, are images loaded from third parties. In contrast to
other DOM elements, a script loaded from one origin can ac-
cess images loaded from another origin, including whether
the image has been loaded at all. For the above example,
evil.com is allowed to check whether an image requested
from facebook.com has been successfully downloaded.

3 Privacy Attacks via Leaky Images

This section presents a series of attacks that can be mounted
using leaky images. At first, we describe the conditions
under which the attack is possible (Section 3.1). Then,
we present a basic attack that targets individual users (Sec-
tion 3.2), a variant of the attack that targets groups of users
(Section 3.3), and an attack that links identities of an indi-
vidual registered at different websites (Section 3.4). Next,
we show that the attack relies neither on JavaScript nor CSS,
but can be performed by a purely HTML-based website (Sec-
tion 3.5). Finally, we discuss how leaky images compare to
previous privacy-related issues, such as web tracking (Sec-
tion 3.6).

3.1 Attack Surface
Our attack model is that an attacker wants to determine
whether a specific victim is visiting an attacker-controlled
website. This information is important from a privacy point
of view and usually not available to operators of a web-
site. An operator of a website may be able to obtain some
information about clients visiting the website, e.g., the IP
and the browser version of the client. However, this in-
formation is limited, e.g., due to multiple clients sharing

USENIX Association 28th USENIX Security Symposium 925

Table 2: Conditions that enable leaky image attacks.
URL of image

Authenti-
cation (e.g.,
cookies)

Publicly known Secret URL
shared among
users

Per-user
secret
URL

Yes (1) Leaky image (2) Leaky image (3) Secure
No (4) Irrelevant (5) Secure (6) Secure

the same IP or the same browser version, and often insuf-
ficient to identify a particular user with high confidence.
Moreover, privacy-aware clients may further obfuscate their
traces, e.g., by using the Tor browser, which hides the IP and
other details about the client. Popular tracking services, such
as Google Analytics, also obtain partial knowledge about
which users are visiting which websites. However, the use of
this information is legally regulated, available to only a few
tracking services, and shared with website operators only in
anonymized form. In contrast, the attack considered here en-
ables an arbitrary operator of a website to determine whether
a specific person is visiting the website.

Leaky image attacks are possible whenever all of the fol-
lowing four conditions hold. First, we assume that the at-
tacker and the victim are both users of the same image shar-
ing service. Since many image sharing services provide pop-
ular services beyond image sharing, such as email or a social
network, their user bases often cover a significant portion of
all web users. For example, Facebook announced that it has
more than 2 billion registered users3, while Google reported
to have more than 1 billion active Gmail users each month4.
Moreover, an attacker targeting a specific victim can simply
register at an image sharing service where the victim is reg-
istered. Second, we assume that the attacker can share an
image with the victim. For many image sharing services,
this step involves nothing more than knowing the email ad-
dress or user name of the victim, as we discuss in more de-
tail in Section 4. Third, we assume that the victim visits
the attacker-controlled website while the victim’s browser is
logged into the image sharing service. Given the popularity
of some image sharing services and the convenience of being
logged in at all times, we believe that many users fulfill this
condition for at least one image sharing service. In particular,
in Google Chrome and the Android operating system, users
are encouraged immediately after installation to login with
their Google account and to remain logged in at all times.

The fourth and final condition for leaky images concerns
the way an image sharing service determines whether a re-
quest for an image is from a user supposed to view that im-
age. Table 2 shows a two-dimensional matrix of possible

3https://techcrunch.com/2017/06/27/
facebook-2-billion-users/

4https://www.businessinsider.de/
gmail-has-1-billion-monthly-active-users-2016-2

implementation strategies, based on the description of secret
URLs and authentication-based access control in Section 2.
In one dimension, a website can either rely on authentication
or not. In the other dimension, the site can make an im-
age available through a publicly known URL, a secret URL
shared among the users allowed to access the image, or a
per-user secret URL. Out of the six cases created by these
two dimensions, five are relevant in practice. The sixth case,
sharing an image via a publicly known URL without any
authentication, would make the image available to all web
users, and therefore is out of the scope of this work. The
leaky image attack works in two of the five possible cases
in Table 2, cases 1 and 2. Specifically, leaky images are en-
abled by sites that protect shared images through authenti-
cation and that either do not use secret URLs at all or that
use a single secret URL per shared image. Section 4 shows
that these cases occur in practice, and that they affect some
of today’s most popular websites.

3.2 Targeting a Single User

After introducing the prerequisites for leaky images, we now
describe several privacy attacks based on them. We start with
a basic version of the attack, which targets a single victim
and determines whether the victim is visiting an attacker-
controlled website. To this end, the attacker uploads an im-
age i to the image sharing service and therefore becomes the
owner of the image, i.e., uattacker = ui

owner. Next, the attacker
configures the image sharing service to share i with the vic-
tim user uvictim. As a result, the set of users allowed to ac-
cess the image is U i

shared = {uattacker,uvictim}. Then, the at-
tacker embeds a request for i into the website s for which
the attacker wants to determine whether the victim is visit-
ing the site. Because images are exempted from the same-
origin policy (Section 2), the attacker-controlled parts of s
can determine whether the image gets loaded successfully
and report this information back to the attacker. Once the
victim visits s, the image request will succeed and the at-
tacker knows that the victim has visited s. If any other client
visits s, though, the image request fails because s cannot au-
thenticate the client as a user in U i

shared . We assume that the
attacker does not visit s, as this might mislead the attacker to
believe that the victim is visiting s.

Because the authentication mechanism of the image shar-
ing service ensures that only the attacker and the victim can
access the image, a leaky image attack can determine with
100% accuracy whether the targeted victim has visited the
site. At the same time, the victim may not notice that she
was tracked, because the image can be loaded in the back-
ground.

For example, Figure 1 shows a simple piece of HTML
code with embedded JavaScript. The code requests a leaky
image, checks whether the image is successfully loaded, and
sends this information back to the attacker-controlled web

926 28th USENIX Security Symposium USENIX Association

1 <script>
2 window.onload = function() {
3 var img = document.getElementById("myPic");
4 img.src = "https://imgsharing.com/leakyImg.png";
5 img.onload = function() {
6 httpReq("evil.com", "is the target");
7 }
8 img.onerror = function() {
9 httpReq("evil.com", "not the target");

10 }
11 }
12 </script>
13

Figure 1: Tracking code included in the attacker’s website.

server via another HTTP request. We assume httpReq is a
method that performs such a request using standard browser
features such as XMLHttpRequest or innerHTML to
send the value of the second argument to the domain passed
as first argument. Alternatively to using onload to detect
whether the image has been loaded, there are several varia-
tions, which, e.g., checking the width or height of the loaded
image. As we show below (Section 3.5), the attack is also
possible within a purely HTML-based website, i.e., without
JavaScript.

The described attack works because the same-origin pol-
icy does not apply to images. That is, the attacker can in-
clude a leaky image through a cross-origin request into a
website and observe whether the image is accessible or not.
In contrast, requesting an HTML document does not cause a
similar privacy leak, since browsers implement a strict sep-
aration of HTML coming from different origins. A second
culprit for the attack’s success is that today’s browsers au-
tomatically include the victim’s cookie in third-party image
requests. As a result, the request passes the authentication
of the image sharing service, leaking the fact that the request
comes from the victim’s browser.

3.3 Targeting a Group of Users

The following describes a variant of the leaky images at-
tack that targets a group of users instead of a single user.
In this scenario, the attacker considers a group of n victims
and wants to determine which of these victims is visiting a
particular website.

As an example, consider a medium-scale spear phishing
campaign against the employees of a company. After prepar-
ing the actual phishing payload, e.g., personalized emails
or cloned websites, the attacker may include a set of leaky
images to better understand which victims interact with the
payload and in which way. In this scenario, leaky images
provide a user experience analysis tool for the attacker.

A naive approach would be to share one image ik (1 ≤
k ≤ n) with each of the n victims. However, this naive ap-

Request i1

Request i2 Request i2

Request i3 Request i3 Request i3 Request i3

u1 u2 u3 u4 u5 u6 u7 Other user

3 7

3 7 3 7

3 7 3 7 3 7 3 7

Figure 2: Binary search to identify individuals in a group of
users u1 to u7 through requests to leaky images i1 to i3.

proach does not scale well to larger sets of users: To track a
group of 10,000 users, the attacker needs 10,000 shared im-
ages and 10,000 image requests per visit of the website. In
other words, this naive attack has O(n) complexity, both in
the number of leaky images and in the number of requests.
For the above example, this naive way of performing the at-
tack might raise suspicion due to the degraded performance
of the phishing site and the increase in the number of net-
work requests.

To efficiently attack a group of users, an attacker can use
the fact that image sharing services allow sharing a single
image with multiple users. The basic idea is to encode each
victim with a bit vector and to associate each bit with one
shared image. By requesting the images associated with each
bit, the website can compute the bit vector of a user and de-
termine if the user is among the victims, and if yes, which
victim it is. This approach enables a binary search on the
group of users, as illustrated in Figure 2 for a group of seven
users. The website includes code that requests images i1, i2,
and i3, and then determines based on the availability of the
images which user among the targeted victims has visited
the website. If none of the images is available, then the user
is not among the targeted victims. In contrast to the naive
approach, the attack requires only O(log(n)) shared images
and only O(log(n)) image requests, enabling the attack on
larger groups of users.

In practice, launching a leaky image attack against a group
of users requires sharing a set of images with different sub-
sets of the targeted users. This process can be automated,
either through APIs provided by image sharing services or
through UI-level web automation scripts. However, this pro-
cess will most likely be website-specific which makes it ex-
pensive for attacking multiple websites at once.

3.4 Linking User Identities
The third attack based on leaky images aims at linking mul-
tiple identities that a single individual has at different image
sharing services. Let siteA and siteB be two image sharing
services, and let usiteA and usiteB be two user accounts, reg-
istered at the two image sharing services, respectively. The

USENIX Association 28th USENIX Security Symposium 927

1 <!-- Three users (u1, u2, u3) have access to two
2 images (i1, i2) as follows: u1 to (i1);
3 u2 to (i2); u3 to (i1, i2) -->
4 <object data="leaky-domain.com/i1.png">
5 <object data="evil.com?info=not_i1?sid=2342"/>
6 </object>
7 <object data="leaky-domain.com/i2.png">
8 <object data="evil.com?info=not_i2?sid=2342"/>
9 </object>

10
11 <object data="leaky-domain.com/invalidImg.png">
12 <object data="leaky-domain.com/invalidImg2.png">
13 <object data="leaky-domain.com/invalidImg3.png">
14 <object data="evil.com?info=loaded?sid=2342"/>
15 </object>
16 </object>
17 </object>

Figure 3: HTML-only variant of the leaky image group at-
tack. All the object tags should have the type property
set to image/png.

attacker wants to determine whether usiteA and usiteB belong
to the same individual. For example, this attack might be
performed by law enforcement entities to check whether a
user account that is involved in criminal activities matches
another user account that is known to belong to a suspect.

To link two user identities, the attacker essentially per-
forms two leaky image attacks in parallel, one for each image
sharing service. Specifically, the attacker shares an image
isiteA with usiteA through one image sharing service and an
image isiteB with usiteB through the other image sharing ser-
vice. The attacker-controlled website requests both isiteA and
isiteB. Once the targeted individual visits this site, both re-
quests will succeed and establish the fact that the users usiteA
and usiteB correspond to the same individual. For any other
visitors of the site, at least one request will fail because the
two requests only succeed if the browser is logged into both
user accounts usiteA and usiteB.

The basic idea of linking user accounts generalizes to
more than two image sharing services and to user accounts of
more than a single individual. For example, by performing
two attacks on groups of users, as described in Section 3.3,
in parallel, an attacker can establish pairwise relationships
between the two groups of users.

3.5 HTML-only Attack

The leaky image attack is based on the ability of a client-
side website to request an image and to report back to the
attacker-controlled server-side whether the request was suc-
cessful or not. One way to implement it is using client-side
JavaScript code, as shown in Figure 1. However, privacy-
aware users may disable JavaScript completely or use a se-
curity mechanism that prevents JavaScript code from reading
details about images loaded from different domains.

We present a variant of the leaky image attack imple-
mented using only HTML code, i.e., without any JavaScript
or CSS. The idea is to use the object HTML tag, which
allows a website to specify fallback content to be loaded if
there is an error in loading some previously specified con-
tent.5 When nesting such object elements, the browser
first requests the resource specified in the outer element, and
in case it fails, it performs a request to the inner element
instead. Essentially, this behavior corresponds to a logical
if-not instruction in pure HTML which an attacker may use
to implement the leaky image attack.

Figure 3 shows an example of this attack variant. We
assume that there are three users u1, u2, and u3 in the tar-
get group and that the attacker can share leaky images from
leaky-domain.com with each of them. The comment at the
beginning of Figure 3 specifies the exact sharing configu-
ration. We again need log(n) images to track n users, as
for the JavaScript-based attack against a group of users (Sec-
tion 3.3). We assume that the server-side generates the attack
code upon receiving the request, and that the generated code
contains a session ID as part of the reporting links point-
ing to evil.com. In the example, the session ID is 2342. Its
purpose is to enable the server-side code to link multiple re-
quests coming from the same client.

The main insight of this attack variant is to place a re-
quest to the attacker’s domain as fallbacks for leaky image
requests. For example, if the request to the leaky image i1
at line 4 fails, a request is made to evil.com for an alterna-
tive resource in line 5. This request leaks the information
that the current user cannot access i1, i.e., info=not i1.
By performing similar requests for all the leaky images, the
attacker leaks enough information for precisely identifying
individual users. For example, if in a given session, evil.com
receives not i1, but not not i1, the attacker can conclude
that the user is u2. Because the server-side infers the user
from the absence of requests, it is important to ensure that
the current tracking session is successfully completed before
drawing any conclusions. Specifically, we must ensure that
the user or the browser did not stop the page load before all
the nested object tags were evaluated. One way to ensure
this property is to add a sufficiently high number of nested
requests to non-existent images in lines 11 to 13 followed by
a request that informs the attacker that the tracking is com-
pleted, in line 14. The server discards every session that does
not contain this last message.

As a proof of concept, we tested the example attack and
several variants of it in the newest Firefox and Chrome
browsers and find the HTML-only attack to work as ex-
pected.

5https://html.spec.whatwg.org/multipage/
iframe-embed-object.html#the-object-element

928 28th USENIX Security Symposium USENIX Association

3.6 Discussion

Tracking pixels Leaky images are related to the widely
used tracking pixels, also called web beacons [14, 8, 47],
but both differ regarding who learns about a user’s iden-
tity. A tracking pixel is a small image that a website s loads
from a tracker website strack. The image request contains
the user’s cookie for strack, enabling the tracker to recognize
users across different page visits. As a result, the tracking
service can analyze which pages of s users visit and show
this information in aggregated form to the provider of s. If
the tracker also operates services where users register, it can
learn which user visits which site. In contrast, leaky images
enable the operator of a site s to learn that a target user is vis-
iting s, without relying on a tracker to share this information,
but by abusing an image sharing service. As for tracking pix-
els, an attacker can deploy leaky image attacks with images
of 1x1 pixel size to reduce its impact on page loading time.

Fingerprinting Web fingerprinting techniques [12, 29, 10,
22, 1, 2, 30] use high-entropy properties of web browsers,
such as the set of installed fonts or the size of the browser
window, to heuristically recognize users. Like fingerprint-
ing, leaky images aim at undermining the privacy of users.
Unlike fingerprinting, the attacks presented here enable an
attacker to determine specific user accounts, instead of rec-
ognizing that one visitor is likely to be the same as another
visitor. Furthermore, leaky images can determine a visitor’s
identity with 100% certainty, whereas fingerprinting heuris-
tically relies on the entropy of browser properties.

Targeted attacks versus large-scale tracking Leaky im-
ages are well suited for targeted attacks [37, 6, 26, 16], but
not for large-scale tracking of millions of users. One reason
is that leaky images require the attacker to share an image
with each victim, which is unlikely to scale beyond several
hundreds users. Another reason is that the number of image
requests that a website needs to perform increases logarith-
mically with the number of targeted users, as discussed in
Section 3.3. Hence, instead of aiming at large-scale tracking
in the spirit of tracking pixels or fingerprinting, leaky images
are better suited to target (sets of) individuals. However, this
type of targeted attacks is reported to be increasingly popu-
lar, especially when dealing with high-value victims [37].

4 Leaky Images in Popular Websites

The attacks presented in the previous section make several
assumptions. In particular, leaky images depend on how
real-world image sharing services implement access control
for shared images. To understand to what extent popular
websites are affected by the privacy problem discussed in
this paper, we systematically study the prevalence of leaky

images. The following presents our methodology (Sec-
tion 4.1), our main findings (Section 4.2), and discusses our
ongoing efforts toward disclosing the detected problems in a
responsible way (Section 4.3).

4.1 Methodology

Selection of websites To select popular image sharing ser-
vices to study, we examined the top 500 most popular web-
sites, according to the “Top Moz 500” list6. We focus on
websites that enable users to share data with each other. We
exclude sites that do not offer an English language interface
and websites that do not offer the possibility to create user
accounts. This selection yields a list of 30 websites, which
we study in more detail. Table 3 shows the studied websites,
along with their popularity rank. The list contains all of the
six most popular websites, and nine of the ten most popu-
lar websites. Many of the analyzed sites are social media
platforms, services for sharing some kind of data, and com-
munication platforms.

Image sharing One condition for our attacks is that an at-
tacker can share an image with a victim. We carefully ana-
lyze the 30 sites in Table 3 to check whether a site provides
an image sharing service. To this end, we create multiple
accounts on each site and attempt to share images between
these accounts using different channels, e.g., chat windows
or social media shares. Once an image is shared between two
accounts, we check if the two accounts indeed have access to
the image. If this requirement is met, we check that a third
account cannot access the image.

Access control mechanism For websites that act as image
sharing services, we check whether the access control of a
shared image is implemented in a way that causes leaky im-
ages, as presented in Table 2. Specifically, we check whether
the access to a shared image is protected by authentication
and whether both users access the image through a common
link, i.e., a link known to the attacker. A site that fulfills also
this condition exposes its users to leaky image attacks.

4.2 Prevalence of Leaky Images in the Wild

Among the 30 studied websites, we identify a total of eight
websites that suffer from leaky images. As shown in Table 3
(column “Leaky images”), the affected sites include the three
most popular sites, Facebook, Twitter, and Google, and rep-
resent over 25% of all sites that we study. The following
discusses each of the vulnerable sites in detail and explains
how an attacker can establish a leaky image with a target
user. Table 4 summarizes the discussion in a concise way.

6https://moz.com/top500

USENIX Association 28th USENIX Security Symposium 929

Table 3: List of analyzed websites, whether they suffer from
leaky images, and how the respective security teams have
reacted to our notifications about the privacy leak.
Rank Domain Leaky Confirmed Fix Bug

images bounty

1 facebook.com yes yes yes yes
2 twitter.com yes yes yes yes
3 google.com yes yes planned no
4 youtube.com no
5 instagram.com no
6 linkedin.com no
8 pinterest.com no
9 wikipedia.org no

10 wordpress.com yes no no no
15 tumblr.com no
18 vimeo.com no
19 flickr.com no
25 vk.com no
26 reddit.com no
33 blogger.com no
35 github.com yes no no no
39 myspace.com no
54 stumbleupon.com no
65 dropbox.com yes yes planned yes
71 msn.com no
72 slideshare.net no
91 typepad.com no

126 live.com yes yes planned no
152 spotify.com no
160 goodreads.com no
161 scribd.com no
163 imgur.com no
166 photobucket.com no
170 deviantart.com no
217 skype.com yes yes planned no

Facebook Images hosted on Facebook are in general de-
livered by content delivery networks not hosted at the face-
book.com domain, but, e.g., at fbcdn.net. Hence, the fact
that facebook.com cookie is not sent along with requests
to shared images disables the leaky image attacks. How-
ever, we identified an exception to this rule, where a leaky
image can be placed at https://m.facebook.com/
photo/view_full_size/?fbid=xxx. The fbid
is a unique identifier that is associated with each picture on
Facebook, and it is easy to retrieve this identifier from the
address bar of an image page. The attacker must gather this
identifier and concatenate it with the leaky image URL given
above. By tweaking the picture’s privacy settings, the at-
tacker can control the subset of friends that are authorized to
access the image, opening the door for individual and group
attacks. A prerequisite of creating a leaky image on Face-
book is that the victim is a “friend” of the attacker.

Twitter Every image sent in a private chat on Twitter is a
leaky image. The victim and the attacker can exchange mes-
sages on private chats, and hence send images, if one of them
checked “Receive direct messages from anyone” in their set-
tings or if one is a follower of the other. An image sent on
a private chat can only be accessed by the two participants,
based on their login state, i.e., these images are leaky images.
The attacker can easily retrieve the leaky image URL from
the conversation and include it in another page. A limitation
of the attack via Twitter is that we are currently not aware of
a way of sharing an image with multiple users at once.

Google We identified two leaky image channels on
Google’s domains: one in the thumbnails of Google Drive
documents and one in Google Hangouts conversations. To
share documents with the victim, an attacker only needs the
email address of the victim, while in order to send Hangouts
messages, the victim needs to accept the chat invitation from
the attacker. The thumbnail-based attack is more powerful
since it allows to easily add and remove users to the group
of users that have access to an image. Moreover, by unse-
lecting the “Notify people” option when sharing, the victim
users are not even aware of this operation. An advantage
of the Hangouts channel, though, is that the victim has no
way to revoke its rights to the leaky image, once the image
has been received in a chat, as opposed to Drive, where the
victim can remove a shared document from her cloud.

Wordpress To create a leaky image via Wordpress, the at-
tacker needs to convince the victim to become a reader of
his blog, or the other way around. Once this connection is
established, every image posted on the shared private blog is
a leaky image between the two users. Fulfilling this strong
prerequisite may require non-trivial social engineering.

GitHub Private repositories on GitHub enable
leaky images. Once the victim and the attacker
share such a repository, every committed image
can be accessed through a link in the web inter-
face, e.g., https://github.com/johndoe/
my-awesome-project/raw/master/car.jpg.
Only users logged into GitHub who were granted access to
the repository my-awesome-project can access the image.
To control the number of users that have access to the image,
the attacker can remove or add contributors to the project.

Dropbox Every image uploaded on Dropbox can be ac-
cessed through a leaky image endpoint by appending the
HTTP parameter dl=1 to a shared image URL. Dropbox
allows the attacker to share such images with arbitrary email
addresses and to fine-tune the permissions to access the im-
age by including and excluding users at any time. Once the
image is shared, our attack can be successfully deployed,

930 28th USENIX Security Symposium USENIX Association

Table 4: Leaky images in popular websites, the attack’s preconditions, the image sharing channel and the implemented authen-
tication mechanism as introduced in Table 2
Domain Prerequisites Image sharing channel Authentication mechanism

facebook.com Victim and attacker are ”friends” Image sharing (5), (2)
twitter.com Victim and attacker can exchange messages Private message (2)
google.com None Google Drive document (3), (2)

Private message
wordpress.com Victim is a viewer of the attacker’s private blog Posts on private blogs (2)
github.com Victim and attacker share a private repository Private repository (3), (2)
dropbox.com None Image sharing (3), (6), (2)
live.com None Shared folder on OneDrive (3), (2)
skype.com Victim and attacker can exchange messages Private message (2)

without requiring the victim to accept the shared image.
However, the victim can revoke its rights to access an image
by removing it from the “Sharing” section of her account.

Live.com Setting up a leaky image on One Drive, a cloud
storage platform available on a live.com subdomain, is very
similar to the other two file sharing services that we study,
Google Drive and Dropbox. The attacker can share images
with arbitrary email addresses and the victim does not need
to acknowledge the sharing. Moreover, the attacker can eas-
ily deploy a group attack due to the ease in changing the
group of users that have access to a particular image.

Skype In the Skype web interface, every image sent in a
chat is a leaky image. Note that most of the users probably
access the service through a desktop or mobile standalone
client, hence the impact of this attack is limited to the web
users. Moreover, Skype automatically logs out the user from
time to time, limiting the time window for the attack.

Our study of leaky images in real-world sites enables several
observations.

Leaky images are prevalent The first and perhaps most
important observation is that many of the most popular web-
sites allow an attacker to create leaky images. From an at-
tacker’s point of view, a single leaky image is sufficient to
track a user. If a victim is registered as a user with at least
one of the affected image sharing services, then the attacker
can create a user account at that service and share a leaky
image with the victim.

Victims may not notice sharing a leaky image Several
of the affected image sharing services enable an attacker to
share an image with a specific user without any notice given
to the user. For example, if the attacker posts an image on
her Facebook profile and tweaks the privacy settings so that
only the victim can access it, then the victim is not informed
in any way. Another example is Google Drive, which allows
sharing files with arbitrary email addresses while instructing
the website to not send an email that informs the other user.

Victims cannot “unshare” a leaky image For some ser-
vices, the victim gets informed in some way that a connec-
tion to the attacker has been established. For example, to set
up a leaky image on Twitter, the attacker needs to send a pri-
vate message to the victim, which may make the victim sus-
picious. However, even if the victim knows about the shared
image, for most websites, there is no way for a user to re-
voke its right to access the image. Specifically, let’s assume
the victim receives a cute cat picture from a Google Hang-
outs contact. Let us now assume that the victim is aware of
the leaky image attack and that she suspects the sender of the
image tracking her. We are not aware of any way in which
the victim can revoke the right to access the received image.

Image sharing services use a diverse mix of implemen-
tation strategies Secret URLs and per-user authenticated
URLs are widely implemented techniques that protects
against our attack. However, many websites use multiple
such strategies and hence, it is enough if one of the API end-
points uses leaky images. Identifying this endpoint is often
a hard task: for example, in the case of Facebook, most of
the website rigorously implements secret URLs, but one API
endpoint belonging to a mobile subdomain exposes leaky im-
ages. After identifying this endpoint we realized that it can
be accessed without any problem from a desktop browser as
well, enabling all the attacks we describe in Section 3.

The attack surface varies from site to site Some but not
all image sharing services require a trust relation between the
attacker and the victim before a leaky image can be shared.
For example, an attacker must first befriend a victim on Face-
book before sharing an image with the victim, whereas no
such requirement exists on Dropbox or Google Drive. How-
ever, considering that most users have hundreds of friends on
social networks, there is a good chance that a trust channel is
established before the attack starts. In the case of Wordpress
the prerequisite that the ”victim is a viewer of the attacker’s
private blog” appears harder to meet and may require ad-
vanced social engineering. Nonetheless, we believe that such
leaky images may still be relevant in certain targeted attacks.

USENIX Association 28th USENIX Security Symposium 931

Moreover, three of the eight vulnerable sites allow attackers
to share images with arbitrary users, without any prerequi-
sites (Table 4).

Since our study of the prevalence of leaky images is mostly
manual, we cannot guarantee that the 22 sites for which we
could not create a leaky image are not affected by the prob-
lem. For some sites, though, we are confident that they
are not affected, as these sites do not allow users to upload
images. A more detailed analysis would require in-depth
knowledge of the implementation of the studied sites, and
ideally also access to the server-side source code. We hope
that our results will spur future work on more automated
analyses that identify leaky images.

4.3 Responsible Disclosure and Feedback
from Image Sharing Services

After identifying image sharing services that suffer from
leaky images, we contacted their security teams to disclose
the problem in a responsible way. Between March 26 and
March 29, 2018, we sent a detailed description of the gen-
eral problem, how the specific website can be abused to cre-
ate leaky images, and how it may affect the privacy of users
of the site. Most security teams we contacted were very re-
sponsive and eager to collaborate upon fixing the issue.

Confirmed reports The last three columns of Table 3 sum-
marize how the security teams of the contacted companies
reacted to our reports. For most of the websites, the security
teams confirmed that the reported vulnerability is worth fix-
ing, and at least six of the sites have already fixed the prob-
lem or have decided to fix it. In particular, the top three
websites all confirmed the reported issue and all have been
working on fixing it. Given the huge user bases of these
sites and the privacy implications of leaky images for their
users, this reaction is perhaps unsurprising. As another sign
of appreciation of our reports, the authors have received bug
bounties from (so far) three of the eight affected sites.

Dismissed reports Two of our reports were flagged as
false positives. The security teams of the corresponding web-
sites replied by saying that leaky images are a “desired be-
havior” or that the impact on privacy of their user is limited.
Comparing Table 3 with Table 4 shows that the sites that dis-
miss our report are those where the prerequisites for creating
a leaky image are harder to fulfill than for the other sites:
Creating a leaky image on GitHub requires the attacker and
the victim to share a private repository, and Wordpress re-
quires that the victim is a viewer of the attacker’s private
blog. While we agree that the attack surface is relatively
small for these two sites, leaky images may nevertheless
cause surprising privacy leaks. For example, an employee

might track her colleagues or even her boss if their company
uses private GitHub repositories.

Case study: Fix by Facebook To illustrate how image
sharing services may fix a leaky images problem, we de-
scribe how Facebook addressed the problem in reaction to
our report. As mentioned earlier, Facebook employs mostly
secret URLs and uses content delivery networks to serve im-
ages. However, we were able to identify a mobile API end-
point that uses leaky images and redirects the user to the cor-
responding content delivery network link. This endpoint is
used in the mobile user interface for enabling users to down-
load the full resolution version of an image. The redirec-
tion was performed at HTTP level, hence it resulted in a suc-
cessful image request when inserted in a third-party website
using the <a> HTML tag. The fix deployed by Facebook
was to perform a redirection at JavaScript level, i.e. load an
intermediate HTML that contains a JavaScript snippet that
rewrites document.location.href. This fix enables a
benign user to still successfully download the full resolution
image through a browser request, but disables third-party im-
age inclusions. However, we believe that such a fix does not
generalize and cannot be deployed to the other identified vul-
nerabilities. Hence, we describe alternative ways to protect
against a leaky image attacks in Section 5.

Case study: Fix by Twitter A second case study of how
websites can move away from leaky images comes from
Twitter that changed its API7 in response to our report8.
First, they disabled cookie-based authentication for images.
Second, they changed the API in a way that image URLs are
only delivered on secure channels, i.e., only authenticated
HTTPS requests. Last, Twitter also changed the user inter-
face to only render images from strangers when explicit con-
sent is given. Essentially, Twitter moved from implementa-
tion strategy (2) to (5) in Table 2 in response to our report.

Overall, we conclude from our experience of disclosing
leaky images that popular websites consider it to be a serious
privacy problem, and that they are interested in detecting and
avoiding leaky images.

5 Mitigation Techniques

In this section, we describe several techniques to defend
against leaky image attacks. The mitigations range from
server-side fixes that websites can deploy, over improved pri-
vacy settings that empower users to control what is shared
with them, to browser-based mitigations.

7https://twitter.com/TwitterAPI/status/
1039631353141112832

8https://hackerone.com/reports/329957

932 28th USENIX Security Symposium USENIX Association

5.1 Server-Side Mitigations

The perhaps easiest way to defend against the attack pre-
sented in this paper is to modify the server-side implemen-
tation of an image sharing service, so that it is not possible
anymore to create leaky images. There are multiple courses
of actions to approach this issue.

First, a controversial fix to the problem is to disable au-
thenticated image requests altogether. Instead of relying on,
e.g., cookies to control who can access an image, an image
sharing service could deliver secret links only to those users
that should access an image. Once a user knows the link
she can freely get the image through the link, independent
of whether she is logged into the image sharing service or
not. This strategy corresponds to case 5 in Table 2. Multiple
websites we report about in Table 3 implement such an image
sharing strategy. The most notable examples are Facebook,
which employs this technique in most parts of their website,
and Dropbox, which implements this technique as part of
their link sharing functionality. The drawback of this fix is
that the link’s secrecy might be compromised in several ways
outside of the control of the image sharing service: by using
insecure channels, such as HTTP, through side-channel at-
tacks in the browser, such as cache attacks [20], or simply by
having the users handle the links in an insecure way because
they are not aware of the secrecy requirements.

Second, an alternative fix is to enforce an even stricter
cookie-based access control on the server-side. In this case,
the image sharing service enforces that each user accesses a
shared image through a secret, user-specific link that is not
shared between users. As a result, the attacker does not know
which link the victim could use to access a shared image, and
therefore the attacker cannot embed such a link in any web-
site. This implementation strategy corresponds to case 3 in
Table 2. On the downside, implementing this defense may
prove challenging due to the additional requirement of guar-
anteeing the mapping between users and URLs, especially
when content delivery networks are involved. Additionally,
it may cause a slowdown for each image request due to the
added access control mechanism.

Third, one may deploy mitigations against CSRF.9 One of
them is to use the origin HTTP header to ensure that the
given image can only be embedded on specific websites. The
origin HTTP header is sent automatically by the browser
with every request, and it precisely identifies the page that
requests a resource. The server-side can check the request’s
origin and refuse to respond with an authenticated image
to unknown third-party request. For example, facebook.com
could refuse to respond with a valid image to an HTTP re-
quest with the origin set to evil.com. However, this mit-
igation cannot defend against tracking code injected into a
trusted domain. For example, until recently Facebook al-

9https://www.owasp.org/index.php/Cross-Site_
Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

lowed users to post custom HTML code on their profile page.
If a user decides to insert leaky image-based tracking code on
the profile page, to be notified when a target user visits the
profile page, then the CSRF-style mitigation does not pre-
vent the attack. The reason for this is that the request’s ori-
gin would be set to facebook.com, and hence the server-side
code will trust the page and serve the image.

Similarly, the server-side can set the
Cross-Origin-Resource-Policy response header
on authenticated image requests and thus limit which
websites can include a specific image. Browsers will only
render images for which the origin of the request matches
the origin of the embedding website or if they correspond
to the same site. This solution is more coarse-grained than
the previously discussed origin checking since it does not
allow for cross-origin integration of authenticated images,
but it is easier to deploy since it only requires a header set
instead of a header check. The From-Origin header
was proposed for allowing a more fine-grained integration
policy, but to this date there is no interest from browser
vendors side to implement such a feature.

Another applicable CSRF mitigation is the SameSite
cookie attribute. When set to “strict” for a cookie, the at-
tribute prevents the browser from sending the cookie along
with cross-site requests, which effectively prevents leaky im-
ages. However, the “strict” setting may be too strict for most
image sharing services, because it affects all links to the ser-
vice’s website. For example, a link in a corporate email to a
private GitHub project or to a private Google Doc would not
work anymore, because when clicking the link, the session
cookie is not sent along with the request. The less restric-
tive “lax” setting of the SameSite attribute does not suffer
from these problems, but it also does not prevent leaky im-
ages attacks, as it does not affect GET requests.

A challenge with all the described server-side defenses is
that they require the developers to be aware of the vulner-
ability in the first place. From our experience, a complex
website may allow sharing images in several ways, possibly
spanning different UI-level user interactions and different
API endpoints supported by the image sharing service. Since
rigorously inspecting all possible ways to share an image is
non-trivial, we see a need for future work on automatically
identifying leaky images. At least parts of the methodology
we propose could be automated with limited effort. To check
whether an image request requires authentication, one can
perform the request in one browser where the user is logged
in, and then try the same request in another instance of the
browser in “private” or “incognito” mode, i.e., without being
logged in. Comparing the success of the two requests reveals
whether the image request relies in any form of authentica-
tion, such as cookies. Automating the rest of our method-
ology requires some support by image sharing services. In
particular, automatically checking that a leaky image is ac-
cessible only by a subset of a website’s users, requires APIs

USENIX Association 28th USENIX Security Symposium 933

to handle user accounts and to share images between users.
Despite the challenges in identifying leaky images, we

believe that server-side mitigations are the most straightfor-
ward solution, at least in the short term. In the long term,
a more complete solution would be desirable, such as those
described in the following.

5.2 Browser Mitigations
The current HTTP standard does not specify a policy for
third-party cookies10, but it encourages browser vendors to
experiment with different such policies. More precisely, the
current standard lets the browser decide whether to automat-
ically attach the user’s cookie to third-party requests. Most
browsers decide to attach third-party cookies, but there are
certain counter-examples, such as the Tor browser. In Tor,
cookies are sent only to the domain typed by the user in the
address bar.

Considering the possible privacy implications of leaky im-
ages and other previously reported tracking techniques [8],
one possible mitigation would be that browsers specify as
default behavior to not send cookies with third-party (image)
requests. If this behavior is overwritten, possibly using a spe-
cial HTTP header or tag, the user should be informed through
a transparent mechanism. Moreover, the user should be of-
fered the possibility to prevent the website from overwriting
the default behavior. We believe this measure would be in
the spirit of the newly adopted European Union’s General
Data Protection Regulation which requires data protection
by design and by default. However, such an extreme move
may impact certain players in the web ecosystem, such as the
advertisement ecosystem. To address this issue, advertisers
may decide to move towards safer distribution mechanisms,
such as the one popularized by the Brave browser.

An alternative to the previously discussed policy is to al-
low authenticated image requests, but only render them if the
browser is confident that there are no observable differences
between an authenticated request and a non-authenticated
one. To this end, the browser could perform two image re-
quests instead of one: one request with third-party cookies
and one request without. If the browser receives two equiv-
alent responses, it can safely render the content, since no
sensitive information is leaked about the authenticated user.
This solution would still allow most of the usages of third-
party cookies, e.g. tracking pixels, but prevent the leaky im-
age attack described here. A possible downside might be the
false positives due to strategy (3) in Table 2, but we hypoth-
esize that requests to such images rarely appear in benign
third-party image requests. A second possible drawback of
this solution may be the increase in web traffic and the po-
tential performance penalties. Future work should test the
benefits of this defense and the cost imposed by the addi-
tional image request.

10https://tools.ietf.org/html/rfc6265#page-28

To reduce the cost imposed by an additional image re-
quest, a hybrid mechanism could disable authenticated im-
age requests by default, and allow them only for the re-
sources specified by a CSP directive. For the allowed au-
thenticated images, the browser deploys the double image
requests mechanism described earlier. We advocate this as
our preferred browser-level defense since it can also defend
against other privacy attacks, e.g. reading third-party image
pixels through a side channel [21], while still permitting be-
nign uses.

Similarly to ShareMeNot [32], one can also implement a
browser mechanism in which all third-party image requests
are blocked unless the user authorizes them by providing ex-
plicit consent. To release the burden from the user, a hybrid
mechanism can be deployed in which the website requires
authenticated requests only for a subset of images for which
the user needs to provide consent.

Another solution for when third-party cookies are allowed
is for browsers to implement some form of information flow
control to ensure that the fact whether a third-party request
was successfully loaded or not, cannot be sent outside of
the browser. A similar approach is deployed in tainted can-
vas11, which disallows pixel reads after a third-party image
is painted on the canvas. Implementing such an information
flow control for third-party images may, however, be chal-
lenging in practice, since the fact whether an image has suc-
cessfully loaded or not can be retrieved through multiple side
channels, such as the object tag or by reading the size of
the contained div.

The mechanisms described in this section vary both in
terms of implementation effort required for deploying them
and in terms of their possible impact on the existing state of
the web, i.e., incompatibility with existing websites. There-
fore, to aid the browser vendors to take an informed decision,
future work should perform an in-depth analysis of all these
defenses in terms of usability, compatibility and deployment
cost, in the style of Calzavara et al. [9], and possibly propose
additional solutions.

5.3 Better Privacy Control for Users
A worrisome finding of our prevalence study is that a user
has little control over the image sharing process. For exam-
ple, for some image sharing services, the user does not have
any option to restrict which other users can privately share an
image with her. In others, there is no way for a user to revoke
her right to access a specific image. Moreover, in most of the
websites we analyzed, it is difficult to even obtain a complete
list of images privately shared with the current account. For
example, a motivated user who wants to obtain this list must
check all the conversations in a messaging platform, or all
the images of all friends on a social network.

11https://html.spec.whatwg.org/multipage/canvas.
html#security-with-canvas-elements

934 28th USENIX Security Symposium USENIX Association

We believe that image sharing services should provide
users more control over image sharing policies, to enable
privacy-aware users to protect their privacy. Specifically, a
user should be allowed to decide who has the right to share
an image with her and she should be granted the right to re-
voke her access to a given image. Ideally, websites would
also offer the user a list of all the images shared with her and
a transparent notification mechanism that announces the user
when certain changes are made to this list. Empowering the
users with these tools may help mitigate some of the leaky
image attacks by attracting user’s attention to suspicious im-
age sharing, allowing users to revoke access to leaky images.

The privacy controls for web users presented in this sec-
tion will be useful mostly for advanced users, while the ma-
jority of the users are unlikely to take advantage of such fine-
grained controls. Therefore, we believe that the most effec-
tive mitigations against leaky images are at the server side or
browser level.

6 Related Work

Previous work shows risks associated with images on
the web, such as malicious JavaScript code embedded in
SVGs [17], image-based fingerprinting of browser exten-
sions [35], and leaking sensitive information, such as the
gender or the location of a user uploading an image [11].
This work introduces a new risk: privacy leaks due to shared
images. Lekies et al. [24] describe privacy leaks resulting
from dynamically generated JavaScript. The source of this
problem is the same as for leaky images: both JavaScript
code and images are excepted from the same-origin policy.
While privacy leaks in dynamic JavaScript reveal confiden-
tial information about the user, such as credentials, leaky im-
ages allow for tracking specific users on third-party websites.
Heiderich et al. [18] introduce a scriptless, CSS-based web
attacks. The HTML-only variant of leaky images does not
rely on CSS and also differ in the kinds of leaked informa-
tion: While the attack by Heiderich et al. leaks content of the
current website, our attacks leak the identity of the user.

Wondracek et al. [46] present a privacy leak in social net-
works related to our group attack. In their work, the attacker
neither has control over the group structure nor can she easily
track individuals. A more recent attack [41] deanonymizes
social media users by correlating links on their profiles with
browsing histories. In contrast, our attack does not require
such histories. Another recent attack [44] retrieves sensi-
tive information of social media accounts using the adver-
tisement API provided by a social network. However, their
attack cannot be used to track users on third-party websites.

Cross-Site Request Forgery (CSRF) is similar in spirit to
leaky image attacks: both rely on the fact that browsers send
cookies with third-party requests. For CSRF, this behav-
ior results in an unauthorized action on a third-party web-
site, whereas for leaky images, it results in deanonymizing

the user. Existing techniques for defending [5] and detect-
ing [31] CSRF partially address but do not fully solve the
problem of leaky images (Section 5).

Browser fingerprinting is a widely deployed [1, 2, 30] per-
sistent tracking mechanism. Various APIs have been pro-
posed for fingerprinting: user agent and fonts [12], can-
vas [29, 10], ad blocker usage, and WebGL Renderer [22].
Empirical studies [12, 22] suggest that these technique have
enough entropy to identify most of the users, or at least, to
place a user in a small set of possible users, sometimes even
across browsers [10]. The leaky image attack is complemen-
tary to fingerprinting, as discussed in detail in Section 3.6.

Another web tracking mechanism is through third-party
requests, such as tracking pixels. Mayer and Mitchell [27]
describe the tracking ecosystem and the privacy costs as-
sociated with these practices. Lerner et al. [25] show how
tracking in popular websites evolves over time. Several other
studies [42, 47, 13, 32, 8, 14] present a snapshot of the third-
party tracking on the web at various moments in time. One
of the recurring conclusion of these studies was that few big
players can track most of the traffic on the Internet. We
present the first image-based attack that allows a less pow-
erful attacker to deanonymize visitors of a website.

Targeted attacks or advanced persistent threats are an in-
creasingly popular class of cybersecurity incidents [37, 26].
Known attacks include spear phishing attacks [6] and tar-
geted malware campaigns [26, 16]. Leaky images adds a
privacy-related attack to the set of existing targeted attacks.

Several empirical studies analyze different security and
privacy aspects of websites in production: postMes-
sages [36], cookie stealing [4, 34], credentials theft [3],
cross-site scripting [28, 23], browser fingerprinting [30, 1],
deployment of CSP policies [45], and ReDoS vulnerabili-
ties [38]. User privacy can also be impacted by security
issues in browsers, such as JavaScript bindings bugs [7],
micro-architectural bugs [20], and insufficient isolation of
web content [19]. Neither of these studies explores privacy
leaks caused by authenticated cross-origin image requests.

Van Goethem et al. [43] propose the use of timing chan-
nels for estimating the file size of a cross-origin resource.
One could combine leaky images with such a channel to
check if a privately shared image is accessible for a particu-
lar user, enabling the use of leaky images even if the browser
would block cross-origin image requests. One difference
between our attack and theirs is that leaky images provide
100% certainty that a victim has visited a website, which a a
probabilistic timing channel cannot provide.

Several researchers document the difficulty of notifying
the maintainers of websites or open-source projects about se-
curity bugs in software [24, 40, 39]. We experienced quick
and helpful responses by all websites we contacted, with an
initial response within less than a week. One reason for this
difference may be that we used the bug bounty channels pro-
vided by the websites to report the problems [15, 48].

USENIX Association 28th USENIX Security Symposium 935

7 Conclusions

This paper presents leaky images, a targeted deanonymiza-
tion attack that leverages specific access control practices
employed in popular websites. The main insight of the at-
tack is a simple yet effective observation: Privately shared
resources that are exempted from the same origin policy can
be exploited to reveal whether a specific user is visiting an
attacker-controlled website. We describe several flavors of
this attack: targeted tracking of single users, group tracking,
pseudonym linking, and an HTML-only attack.

We show that some of the most popular websites suffer
from leaky images, and that the problem often affects any
registered users of these websites. We reported all the identi-
fied vulnerabilities to the security teams of the affected web-
sites. Most of them acknowledge the problem and some
already proceeded to fixing it. This feedback shows that
the problem we identified is important to practitioners. Our
paper helps raising awareness among developers and re-
searchers to avoid this privacy issue in the future.

Acknowledgments
Thanks to Stefano Calzavara and the anonymous reviewers for their
feedback on this paper. This work was supported by the German
Federal Ministry of Education and Research and by the Hessian
Ministry of Science and the Arts within CRISP, by the German Re-
search Foundation within the ConcSys and Perf4JS projects, and
by the Hessian LOEWE initiative within the Software-Factory 4.0
project.

References

[1] G. Acar, C. Eubank, S. Englehardt, M. Juárez,
A. Narayanan, and C. Dı́az, “The web never forgets:
Persistent tracking mechanisms in the wild,” in
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, 2014, pp. 674–
689. [Online]. Available: http://doi.acm.org/10.1145/
2660267.2660347

[2] G. Acar, M. Juárez, N. Nikiforakis, C. Dı́az, S. F.
Gürses, F. Piessens, and B. Preneel, “Fpdetective:
dusting the web for fingerprinters,” in 2013 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS’13, Berlin, Germany, November
4-8, 2013, 2013, pp. 1129–1140. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516674

[3] S. V. Acker, D. Hausknecht, and A. Sabelfeld,
“Measuring login webpage security,” in Proceedings
of the Symposium on Applied Computing, SAC 2017,
Marrakech, Morocco, April 3-7, 2017, 2017, pp.
1753–1760. [Online]. Available: http://doi.acm.org/10.
1145/3019612.3019798

[4] D. J. andZhaoGL15 Ranjit Jhala, S. Lerner, and
H. Shacham, “An empirical study of privacy-violating
information flows in javascript web applications,” in
Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, Chicago,
Illinois, USA, October 4-8, 2010, 2010, pp. 270–
283. [Online]. Available: http://doi.acm.org/10.1145/
1866307.1866339

[5] A. Barth, C. Jackson, and J. C. Mitchell, “Robust
defenses for cross-site request forgery,” in Proceedings
of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria,
Virginia, USA, October 27-31, 2008, 2008, pp. 75–
88. [Online]. Available: http://doi.acm.org/10.1145/
1455770.1455782

[6] S. L. Blond, A. Uritesc, C. Gilbert, Z. L.
Chua, P. Saxena, and E. Kirda, “A look at
targeted attacks through the lense of an NGO,”
in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22,
2014., 2014, pp. 543–558. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/le-blond

[7] F. Brown, S. Narayan, R. S. Wahby, D. R. Engler,
R. Jhala, and D. Stefan, “Finding and preventing
bugs in javascript bindings,” in 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, 2017, pp. 559–578. [Online].
Available: https://doi.org/10.1109/SP.2017.68

[8] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan,
“An empirical study of web cookies,” in Proceedings
of the 25th International Conference on World Wide
Web, WWW 2016, Montreal, Canada, April 11 -
15, 2016, 2016, pp. 891–901. [Online]. Available:
http://doi.acm.org/10.1145/2872427.2882991

[9] S. Calzavara, R. Focardi, M. Squarcina, and M. Tem-
pesta, “Surviving the web: A journey into web
session security,” ACM Comput. Surv., vol. 50,
no. 1, pp. 13:1–13:34, 2017. [Online]. Available:
https://doi.org/10.1145/3038923

[10] Y. Cao, S. Li, and E. Wijmans, “(cross-)browser
fingerprinting via OS and hardware level features,” in
24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017, 2017. [On-
line]. Available: https://www.ndss-symposium.
org/ndss2017/ndss-2017-programme/
cross-browser-fingerprinting-os-and-hardware-level-features/

[11] M. Cheung and J. She, “Evaluating the privacy risk
of user-shared images,” ACM Transactions on Multi-

936 28th USENIX Security Symposium USENIX Association

media Computing, Communications, and Applications
(TOMM), vol. 12, no. 4s, p. 58, 2016.

[12] P. Eckersley, “How unique is your web browser?” in
Privacy Enhancing Technologies, 10th International
Symposium, PETS 2010, Berlin, Germany, July 21-23,
2010. Proceedings, 2010, pp. 1–18. [Online]. Avail-
able: https://doi.org/10.1007/978-3-642-14527-8 1

[13] S. Englehardt and A. Narayanan, “Online tracking:
A 1-million-site measurement and analysis,” in
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, 2016, pp. 1388–
1401. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978313

[14] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,
J. Mayer, A. Narayanan, and E. W. Felten, “Cookies
that give you away: The surveillance implications
of web tracking,” in Proceedings of the 24th
International Conference on World Wide Web, WWW
2015, Florence, Italy, May 18-22, 2015, 2015, pp.
289–299. [Online]. Available: http://doi.acm.org/10.
1145/2736277.2741679

[15] M. Finifter, D. Akhawe, and D. A. Wagner, “An
empirical study of vulnerability rewards programs,”
in Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16,
2013, 2013, pp. 273–288. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/finifter

[16] S. Hardy, M. Crete-Nishihata, K. Kleemola,
A. Senft, B. Sonne, G. Wiseman, P. Gill, and R. J.
Deibert, “Targeted threat index: Characterizing and
quantifying politically-motivated targeted malware,”
in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22,
2014., 2014, pp. 527–541. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/hardy

[17] M. Heiderich, T. Frosch, M. Jensen, and T. Holz,
“Crouching tiger - hidden payload: security risks of
scalable vectors graphics,” in Proceedings of the 18th
ACM Conference on Computer and Communications
Security, CCS 2011, Chicago, Illinois, USA, October
17-21, 2011, 2011, pp. 239–250. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046735

[18] M. Heiderich, M. Niemietz, F. Schuster, T. Holz,
and J. Schwenk, “Scriptless attacks: Stealing more
pie without touching the sill,” Journal of Computer
Security, vol. 22, no. 4, pp. 567–599, 2014. [Online].
Available: https://doi.org/10.3233/JCS-130494

[19] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and
Z. Liang, “”the web/local” boundary is fuzzy: A
security study of chrome’s process-based sandboxing,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, 2016, pp. 791–
804. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978414

[20] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” arXiv preprint arXiv:1801.01203, 2018.

[21] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson,
“Cross-origin pixel stealing: timing attacks using
CSS filters,” in 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, A. Sadeghi,
V. D. Gligor, and M. Yung, Eds. ACM, 2013, pp.
1055–1062. [Online]. Available: http://doi.acm.org/10.
1145/2508859.2516712

[22] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty
and the beast: Diverting modern web browsers to build
unique browser fingerprints,” in IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, 2016, pp. 878–894. [Online].
Available: https://doi.org/10.1109/SP.2016.57

[23] S. Lekies, B. Stock, and M. Johns, “25 million flows
later: large-scale detection of dom-based XSS,” in 2013
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’13, Berlin, Germany, November
4-8, 2013, 2013, pp. 1193–1204. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516703

[24] S. Lekies, B. Stock, M. Wentzel, and M. Johns,
“The unexpected dangers of dynamic javascript,”
in 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14,
2015., 2015, pp. 723–735. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/lekies

[25] A. Lerner, A. K. Simpson, T. Kohno, and
F. Roesner, “Internet jones and the raiders of the lost
trackers: An archaeological study of web tracking
from 1996 to 2016,” in 25th USENIX Security
Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., 2016. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/lerner

[26] W. R. Marczak, J. Scott-Railton, M. Marquis-
Boire, and V. Paxson, “When governments hack
opponents: A look at actors and technology,”

USENIX Association 28th USENIX Security Symposium 937

in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22,
2014., 2014, pp. 511–525. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/marczak

[27] J. R. Mayer and J. C. Mitchell, “Third-party
web tracking: Policy and technology,” in IEEE
Symposium on Security and Privacy, SP 2012, 21-
23 May 2012, San Francisco, California, USA,
2012, pp. 413–427. [Online]. Available: https:
//doi.org/10.1109/SP.2012.47

[28] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia,
“Riding out domsday: Toward detecting and preventing
dom cross-site scripting,” 2018.

[29] K. Mowery and H. Shacham, “Pixel perfect: Finger-
printing canvas in html5,” Proceedings of W2SP, pp.
1–12, 2012.

[30] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna, “Cookieless monster:
Exploring the ecosystem of web-based device fin-
gerprinting,” in 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, 2013, pp. 541–555. [Online]. Available:
https://doi.org/10.1109/SP.2013.43

[31] G. Pellegrino, M. Johns, S. Koch, M. Backes, and
C. Rossow, “Deemon: Detecting CSRF with dynamic
analysis and property graphs,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, 2017, pp.
1757–1771. [Online]. Available: http://doi.acm.org/10.
1145/3133956.3133959

[32] F. Roesner, T. Kohno, and D. Wetherall, “De-
tecting and defending against third-party tracking
on the web,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Im-
plementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, 2012, pp. 155–168. [Online].
Available: https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/roesner

[33] C. Shiflett, “Cross-site request forgeries,” http://shiflett.
org/articles/cross-site-request-forgeries.

[34] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The
cracked cookie jar: HTTP cookie hijacking and the
exposure of private information,” in IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22-26, 2016, 2016, pp. 724–742. [Online].
Available: https://doi.org/10.1109/SP.2016.49

[35] A. Sjösten, S. V. Acker, and A. Sabelfeld, “Discovering
browser extensions via web accessible resources,” in
Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy,
CODASPY 2017, Scottsdale, AZ, USA, March 22-
24, 2017, 2017, pp. 329–336. [Online]. Available:
http://doi.acm.org/10.1145/3029806.3029820

[36] S. Son and V. Shmatikov, “The postman always
rings twice: Attacking and defending postmessage
in HTML5 websites,” in 20th Annual Network and
Distributed System Security Symposium, NDSS 2013,
San Diego, California, USA, February 24-27, 2013,
2013. [Online]. Available: https://www.cs.utexas.edu/
∼shmat/shmat ndss13postman.pdf

[37] A. K. Sood and R. J. Enbody, “Targeted cyberattacks:
A superset of advanced persistent threats,” IEEE
Security & Privacy, vol. 11, no. 1, pp. 54–61,
2013. [Online]. Available: https://doi.org/10.1109/
MSP.2012.90

[38] C. Staicu and M. Pradel, “Freezing the web: A
study of ReDoS vulnerabilities in JavaScript-based web
servers,” in USENIX Security Symposium, 2018, pp.
361–376.

[39] C.-A. Staicu, M. Pradel, and B. Livshits, “Understand-
ing and automatically preventing injection attacks on
Node.js,” in 25th Annual Network and Distributed Sys-
tem Security Symposium, NDSS, 2018.

[40] B. Stock, G. Pellegrino, C. Rossow, M. Johns,
and M. Backes, “Hey, you have a problem:
On the feasibility of large-scale web vulnerabil-
ity notification,” in 25th USENIX Security Sym-
posium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., 2016, pp. 1015–1032. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/stock

[41] J. Su, A. Shukla, S. Goel, and A. Narayanan, “De-
anonymizing web browsing data with social networks,”
in Proceedings of the 26th International Conference on
World Wide Web, WWW 2017, Perth, Australia, April
3-7, 2017, 2017, pp. 1261–1269. [Online]. Available:
http://doi.acm.org/10.1145/3038912.3052714

[42] M. Tran, X. Dong, Z. Liang, and X. Jiang,
“Tracking the trackers: Fast and scalable dynamic
analysis of web content for privacy violations,” in
Applied Cryptography and Network Security - 10th
International Conference, ACNS 2012, Singapore,
June 26-29, 2012. Proceedings, 2012, pp. 418–
435. [Online]. Available: https://doi.org/10.1007/
978-3-642-31284-7 25

938 28th USENIX Security Symposium USENIX Association

[43] T. van Goethem, W. Joosen, and N. Nikiforakis,
“The clock is still ticking: Timing attacks in the
modern web,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, October 12-6,
2015, 2015, pp. 1382–1393. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813632

[44] G. Venkatadri, A. Andreou, Y. Liu, A. Mislove, K. P.
Gummadi, P. Loiseau, and O. Goga, “Privacy risks with
Facebook’s pii-based targeting: Auditing a data Bro-
ker’s advertising interface,” 2018.

[45] L. Weichselbaum, M. Spagnuolo, S. Lekies, and
A. Janc, “CSP is dead, long live csp! on the insecurity
of whitelists and the future of content security policy,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, 2016, pp. 1376–
1387. [Online]. Available: http://doi.acm.org/10.1145/
2976749.2978363

[46] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A
practical attack to de-anonymize social network users,”
in 31st IEEE Symposium on Security and Privacy,
S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA, 2010, pp. 223–238. [Online].
Available: https://doi.org/10.1109/SP.2010.21

[47] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol,
“Tracking the trackers,” in Proceedings of the
25th International Conference on World Wide Web,
WWW 2016, Montreal, Canada, April 11 - 15,
2016, 2016, pp. 121–132. [Online]. Available: http:
//doi.acm.org/10.1145/2872427.2883028

[48] M. Zhao, J. Grossklags, and P. Liu, “An empirical
study of web vulnerability discovery ecosystems,” in
Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015, 2015, pp. 1105–
1117. [Online]. Available: http://doi.acm.org/10.1145/
2810103.2813704

USENIX Association 28th USENIX Security Symposium 939

All Your Clicks Belong to Me: Investigating Click Interception on the Web

Mingxue Zhang
Chinese University of Hong Kong

Wei Meng
Chinese University of Hong Kong

Sangho Lee
Microsoft Research

Byoungyoung Lee
Seoul National University

Purdue University

Xinyu Xing
Pennsylvania State University

Abstract
Click is the prominent way that users interact with web appli-
cations. For example, we click hyperlinks to navigate among
different pages on the Web, click form submission buttons
to send data to websites, and click player controls to tune
video playback. Clicks are also critical in online advertising,
which fuels the revenue of billions of websites. Because of
the critical role of clicks in the Web ecosystem, attackers aim
to intercept genuine user clicks to either send malicious com-
mands to another application on behalf of the user or fabricate
realistic ad click traffic. However, existing studies mainly
consider one type of click interceptions in the cross-origin
settings via iframes, i.e., clickjacking. This does not compre-
hensively represent various types of click interceptions that
can be launched by malicious third-party JavaScript code.

In this paper, we therefore systematically investigate the
click interception practices on the Web. We developed a
browser-based analysis framework, OBSERVER, to collect
and analyze click related behaviors. Using OBSERVER, we
identified three different techniques to intercept user clicks
on the Alexa top 250K websites, and detected 437 third-party
scripts that intercepted user clicks on 613 websites, which in
total receive around 43 million visits on a daily basis.

We revealed that some websites collude with third-party
scripts to hijack user clicks for monetization. In particular,
our analysis demonstrated that more than 36% of the 3,251
unique click interception URLs were related to online adver-
tising, which is the primary monetization approach on the
Web. Further, we discovered that users can be exposed to ma-
licious contents such as scamware through click interceptions.
Our research demonstrated that click interception has become
an emerging threat to web users.

1 Introduction

Clicking an HTML element is the primary way that users in-
teract with web applications. We click hyperlinks to navigate
among different documents that are interconnected through

the hyperlinks on the Web. We click form submission buttons
(e.g., the Facebook like button and the Twitter tweet button)
to share data with websites and other people on the Internet.
We click custom user interface components (e.g., the video or
audio player controls) to command various web applications.

Since clicks are important in modern web applications,
attackers have launched UI redressing attacks, namely Click-
jacking [26], to hijack user clicks. In particular, malicious
websites trick a user into clicking components (e.g., a Face-
book like button) different from what the user perceives to
click, in order to send commands on behalf of the user to
the different application they secretly embed (typically in
an iframe tag). To defend against Clickjacking, a rich col-
lection of works has been proposed, which has shown great
performance [1, 3, 10, 15, 29, 30].

Clicks are also critical in one pervasive application—online
display advertising, which powers billions of websites on the
Internet. The publisher websites earn a commission when a
user clicks an advertisement they embed from an online adver-
tising network (ad network in short). However, the ad click-
through rate is usually very low, e.g., around 2% in business-
to-consumer banner ads [18]. To increase revenue that can be
made through ad clicks, malicious websites have used bots
to automatically and massively send fake click traffic to the
ad networks, which is known as ad click fraud [5, 22, 27].
To combat against click frauds, ad networks have developed
advanced techniques to determine the authenticity of click
traffic [2, 6, 9, 38]. Consequently, traditional bot-based ad
click fraud has then become less effective.

Instead of relying on click bots, attackers recently started
to intercept and redirect clicks or page visits from real users
to fabricate realistic ad clicks. First, they infect a victim user’s
computer with malware to either force or trick a user into
submitting an ad click. For example, some “browser redirect
viruses” modify a user’s default search engine to a malicious
one, redirecting the user to an advertiser’s page when the
user clicks a search result [19]. Second, malicious third-party
iframes can automatically redirect users to an ad page. Sim-
ilarly, a user’s current tab may be automatically redirected

USENIX Association 28th USENIX Security Symposium 941

to unintended destinations when a script opens a new tab
upon click. Google recently released a new version of the
Chrome browser to automatically prevent these two types
of automatic redirects [8]. Nevertheless, Chrome still cannot
detect and prevent other possible ways to intercept user clicks,
including but not limited to links modified by third-party
scripts, third-party contents disguised as first-party contents,
and transparent overlays.

A systematic study on click interceptions is necessary to
deeply understand this emerging threat to web users. We aim
to develop a system to automatically detect such practices
on the Web, and investigate what kinds of techniques are ex-
ploited and who are involved in. We first design and develop
a system to detect various techniques employed by JavaScript
to intercept user clicks. Using this system, we then perform
a large-scale measurement with the goal of finding out those
practitioners that hijack links and deceive user clicks. Finally,
we analyze our measurement results, and explore the intents
and consequences hidden behind the click interception prac-
tices.

However, it is challenging to perform the aforementioned
systematic study because of the dynamic and event-driven
characteristics of web applications. First, JavaScript code can
be dynamically loaded. Statically analyzing the HTML source
code is insufficient to cover all scripts that can intercept user
clicks. Second, hyperlinks can be dynamically created and
modified by any scripts. To pinpoint the scripts truly account-
able for the interception, we need to re-engineer a browser to
differentiate the actions of different scripts in runtime. Third,
JavaScript can dynamically bind a URL to user click on an
arbitrary HTML element through event listeners (handlers).
Monitoring hyperlink creation and modification is insufficient
to catch all the click interception practices. Last but not least,
a web page may contain a large number of event handlers that
respond to user clicks. To perform a large-scale comprehen-
sive study, we have to efficiently interact with all those event
handlers.

To tackle the challenges mentioned above, we design our
analysis framework by customizing an open-sourced Web
browser. We first mediate all JavaScript accesses to hyper-
links in a web page in the browser’s renderer. In this way,
we can identify the initiator of the URL associated with each
hyperlink. Second, we monitor the creation and execution
of JavaScript objects so that we can track down the prove-
nance of dynamic inline JavaScript code. Third, we monitor
all event handlers registered on every HTML element and
hook navigation-related JavaScript APIs. With this design,
we can develop an automated approach to monitor the event
handlers accordingly, and determine if an event handler might
be used to hijack user clicks. Last but not least, we derive the
navigation URL without really firing the navigation that is
initiated by a user click. This allows us to interact with all
the click event handlers in an efficient way. It also helps us
understand the reason why a particular user click is of the

interest of a script.
In this work, we developed OBSERVER, a prototype of the

aforementioned analysis framework by customizing and ex-
tending the Chromium browser. Using this framework, we
performed a large-scale data crawling on the Alexa top 250K
websites. We discovered that 437 third-party scripts exhibited
the activities of intercepting user clicks on 613 websites. They
combined receive 43 million visits on a daily basis. In partic-
ular, we observed that some scripts tricked users into clicking
their carefully crafted contents, which were usually disguised
as first-party contents, or intentionally implemented as barely
visible elements covering first-party elements. In addition, we
revealed that these third-party scripts intercepted user clicks
in order to monetize user clicks, which is a new practice we
observe as committing ad click frauds. It is worth noting that
we will make our implementation publicly available.

In summary, this paper makes the following contributions.
• We design and develop OBSERVER, a framework for

studying click interception practices. This facilitates our
capability in automatically detecting a wide range of
click interception cases on various websites.

• We perform a large-scale measurement study to explore
and understand how attackers manipulate web pages in
the wild and thus intercept user clicks.

• We characterize the activities of click interceptions on
top Alexa websites and discover the intents and conse-
quences hidden behind the activities of click intercep-
tion.

2 Related Work

In this section, we introduce existing studies about how at-
tackers intercept user clicks or generate fake clicks, and how
to detect and prevent such attempts. We also explain other
studies analyzing how JavaScript libraries are included and
what their behaviors are.
Clickjacking. Clickjacking, also known as UI redressing, is
a popular attack designed to trick a victim into doing some
tasks on another website the user has logged in, bypassing
the same-origin policy. It is one type of inter-page click in-
terception in which a malicious first-party website tricks a
victim into clicking components in another website loaded
in an iframe. For example, a malicious website could load
a specific page of a target website via an invisible iframe,
and place it on top of a crafted object that looks benign and
independent to the target page. The malicious website then
can trick a victim into unintentionally clicking the target page
via the crafted object to activate some operations defined in
that page. Framebusting [29–31] is a well-known defense
to prevent clickjacking by disallowing untrusted websites to
load specified pages via an iframe. However, framebusting
is incompatible with third-party mashup or other techniques
that demand cross-origin framing [15]. Rather, other studies

942 28th USENIX Security Symposium USENIX Association

including ClickIDS [3] and InContext [10] rely on human
perception to verify whether a click was intended by a user.
Akhawe et al. [1], however, identified that such mechanisms
are not comprehensive or suffer from an unacceptable usabil-
ity cost.

Our research complements these studies by investigating
new practices of intra-page click interception by third-party
scripts, which intercept a victim’s clicks on components (in-
cluding iframes) within the same page/frame. Further, we
demonstrate that the scripts can use hyperlinks, event listen-
ers, and visual deceptions, to intercept user clicks.

Link Hijacking. Link hijacking is an attack to modify the
destination of links on websites. Nikiforakis et al. [24] inves-
tigated ad-based URL shortening services and discovered link
hijacking by an embedded third-party iframe on a “waiting
page” through automatic tab redirects, which the new Chrome
browser can prevent [8]. Our research demonstrates a new
form of link hijacking that modifies all first-party hyperlinks
before the user even clicks them, and shows our system can
automatically detect them.

Visual Deception. Prior works have studied how visual de-
ceptive contents can be used to intercept user clicks. Duman et
al. [7] studied trick banners (e.g., download buttons) that look
similar to first-party contents, and further proposed a defense
based on a supervised classifier. Rafique et al. [28] discov-
ered overlay ads and invisible banners in free live-streaming
services. Note that our research does not focus on a specific
category of visual deceptive contents or services. Moreover,
OBSERVER is able to distinguish deceptive contents created
by different scripts because of its provenance tracking capa-
bility, allowing us to detect the real culprits.

Click Fraud and Click Spam. Click fraud and click spam
are attempts to raise revenue by submitting fake ad clicks to an
ad network. In traditional click fraud, attackers usually operate
a botnet to fabricate a large number of ad clicks automatically
to an ad network. For example, Pearce et al. [27] estimated
that the ZeroAccess click-fraud botnet incurred advertising
losses on the order of $100,000 per day. In click spam, unethi-
cal content publishers or ad injection attackers [32, 37] either
trick the users into clicking ads, or use malware to click ads on
behalf of the users. Click spams could even lead victim users
to malicious ads [16, 37, 39]. Defenses against click fraud
and click spam mostly aim to distinguish fake clicks from real
clicks by analyzing their patterns [5, 6, 12, 17, 21, 22, 38].
Thus, attackers try to make their click traffic look as benign
as possible. For example, some attacks hijack real human
clicks through rogue DNS servers and redirect them to ad net-
works [2]. We discover that the click interception techniques
we identify have already been used by attackers for generating
realistic click traffic in the wild.

JavaScript Inclusion and Behavior Analysis. Numer-
ous researchers have analyzed the behavior of third-party
JavaScript libraries and how they are included. Nikiforakis et

al. [23] investigated the Alexa Top 10K websites to dis-
cover how many remote JavaScript libraries they include and
from which library hosting servers they include the scripts.
They also assessed the security of those hosting servers to
infer whether they could serve malicious JavaScript code.
Lauinger et al. [14] and Retire.js [25] studied the seman-
tics of JavaScript libraries, by considering whether hosted
JavaScript libraries are outdated or have known vulnerabilities.
Systems like EvilSeed [11] and Revolver [13] focus on detect-
ing malicious web pages using content or code similarities.
Also, ScriptInspector [40] inspects API calls from third-party
scripts to study how they interact with critical resources, such
as the DOM, local storage and network. It is able to detect
suspicious third-party scripts that violate some access poli-
cies. These studies, however, rely on the origin of a JavaScript
script to determine whether it is a first-party or third-party
script. This implies that they cannot properly handle the situa-
tion where a website includes JavaScript libraries from their
subdomains or other domains, and from other CDNs (§4.2).
Furthermore, unlike ScriptInspector, OBSERVER can track the
dynamic creation of JavaScript objects and DOM elements
such that it can accurately attribute hyperlink modifications
and event listener registrations.

3 Overview of OBSERVER

In this section, we present OBSERVER, an analysis framework
that is designed to comprehensively log all potential click-
interception-related events performed by JavaScript code in a
best-effort manner. OBSERVER focuses on three fundamental
actions that JavaScript code might rely on to intercept clicks:
1) modifying an existing hyperlink in a page; 2) creating a new
hyperlink in a page; and 3) registering an event handler to an
HTML element to hook a user click. Whenever OBSERVER
identifies any of such actions, it tags the corresponding ele-
ment with the unique identifier of the script that initiates the
action. Further, OBSERVER logs the reaction (i.e., navigation)
of a page after it intentionally clicks a hyperlink or an element
associated with an event handler in the page, to know the
URLs to which a click interceptor aims to lead a user.

In the following, we first demonstrate our threat model
(§3.1). We then describe how OBSERVER monitors the
JavaScript accesses to HTML anchor elements (§3.2), and
how it tracks the dynamic creation of HTML anchor elements
and HTML script elements (§3.3). Further, we show how
OBSERVER hooks several APIs to catch navigation-related
JavaScript event listeners (§3.4). Finally, we detail our proto-
type implementation based on the Chromium browser (§3.5).

3.1 Threat Model
In our threat model, we consider only click interception activ-
ities performed by third-party scripts as malicious. Although
first-party websites might exhibit similar activities to intercept

USENIX Association 28th USENIX Security Symposium 943

user clicks, we do not consider them as malicious, because
they have the full privilege to control their own applications.
Nevertheless, OBSERVER can comprehensively collect all
data related to click interception.

3.2 Recording Accesses to HTML Anchor El-
ements

Modifying a hyperlink in a web page is one of the most
explicit methods to intercept and navigate a user click into a
different URL rather than the original one. OBSERVER aims
to record any accesses to all hyperlinks in a web page to
detect any such attempts. In HTML, a hyperlink is defined
with an anchor element (i.e., an <a> tag), and its href attribute
specifies the associated destination URL. Thus, by monitoring
and recording which script modifies the href attribute of an
<a> tag, OBSERVER is able to recognize a script’s potential
click interception.

JavaScript can modify the href attribute through DOM
APIs in several ways. We use the keyword a to represent an
HTML Anchor Element object and the keyword url to repre-
sent a URL string in the following examples. First, a script can
directly assign a new value to the attribute as in a.href = url
;, or in a.attributes["href"] = url;. Second, it may also
call the setAttribute() API as in a.setAttribute("href"
, url) to perform a similar operation. Note that developers
may leverage APIs defined in some third-party JavaScript
libraries, e.g., jQuery, to change the attribute. OBSERVER can
cover all these wrapper libraries because they would still need
to call the above APIs defined in the DOM standard, which is
implemented by all browsers to ensure cross-browser compat-
ibility.

OBSERVER hooks all these DOM APIs to monitor modifi-
cations to the href attribute of <a> tags in the DOM. Specifi-
cally, it intercepts any call to such an API. Once intercepted,
it inspects the current JavaScript call stack to reason about
the origin of API invocation. It locates the bottom JavaScript
frame in the call stack to find the JavaScript function that
initiates the API call.
Script Identification. To attribute the API access to a spe-
cific script, we need to obtain the identity of the accessing
JavaScript code. OBSERVER assigns a scriptID to each
script object to uniquely identify it in the JavaScript run-
time. In HTML, JavaScript code is usually enclosed between
<script> and </script> tags as an inline script, or stored in
an external JavaScript file and loaded with <script> tags as
an external script. Each <script> tag is compiled into an in-
dividual JavaScript object in the JavaScript engine. There
are also other types of inline JavaScript code. For example,
JavaScript code can be written as the on-event listener at-
tributes of HTML elements. This kind of inline scripts that
are not wrapped within a <script> tag are also compiled into
separate JavaScript objects, which are identified by the unique
scriptIDs.

OBSERVER associates the scriptID of a script with its
sourceURL, which is the URL the browser uses to load the
remote JavaScript code. The sourceURL of an inline script,
however, is empty. Instead, we use the URL of the embedding
frame, i.e., the URL that the browser uses to load the HTML
document into the embedding frame, as the sourceURL of
static inline scripts. However, inline scripts can also be created
on-the-fly by JavaScript. We will discuss how we attribute
a DOM access to a dynamic inline script in §3.3.2. Besides
the scriptID, we also record the row number, column number,
and name of the function in the accessing script in a shadow
data store associated with the element. It is worth noting that
JavaScript code cannot modify the shadow data store because
it is a C++ data structure that is not writable on the JavaScript
side.

3.3 Tracking Dynamic Element Creation
Dynamically creating a new hyperlink in a web page is an-
other method to intercept a user click. In short, OBSERVER
considers direct and indirect approaches that a script can ex-
ploit to achieve this goal: 1) creating a hyperlink and 2) creat-
ing a script that creates a hyperlink.

3.3.1 HTML Anchor Elements

JavaScript code can dynamically create any HTML elements,
including an anchor element, in a web page. Specifically,
JavaScript can insert a new <a> tag into the DOM tree of a
web page through APIs such as document.write("<a>...</
a>") and document.createElement("a"). A script can even
replace the entire element with a new element by changing the
outerHTML attribute of it, e.g., a.outerHTML = '<a href="'
+ url + '">...'. These techniques could be exploited

by scripts as another way to intercept user clicks instead of
modifying existing hyperlinks. Thus, OBSERVER needs to
track the dynamic creation of <a> tags in the browser.

OBSERVER attaches a shadow initiator attribute to each
anchor element in the DOM tree to represent the creator
of the object. The initiator attribute is the scriptID of the
script that creates the corresponding element. OBSERVER as-
signs a special initiator value—0, which represents the owner
of a document—to all static elements that are built by the
browser parser. The static <a> tags are the first-party hyper-
links. OBSERVER intercepts all the element creation APIs
in the web browser to find the initiating JavaScript frame in
the call stack. The scriptID of the initiating script is used as
the initiator of the dynamically created elements (hyperlinks).
OBSERVER would also record any accesses to the href at-
tribute of the dynamically created anchor elements.

3.3.2 JavaScript

JavaScript code can also be dynamically generated in web ap-
plications, just like HTML elements. Specifically, as one class

944 28th USENIX Security Symposium USENIX Association

of HTML elements, new <script> elements can be dynami-
cally created by JavaScript using the same APIs for creating
elements. OBSERVER aims to assign unique identifies to all
of such dynamically created scripts. If an external script file is
loaded from a remote host into a dynamically inserted <script>
element, getting its identity is not different from getting the
sourceURL of one static <script> element. Some strings can
also be dynamically parsed as inline JavaScript code if they
are defined as inline event handlers or passed in the call of
APIs like window.eval("...").

However, it is not straightforward to tell the identity of a
dynamically generated inline script because its sourceURL
is blank. To overcome this difficulty, OBSERVER hooks the
APIs that are used to generate dynamic scripts. It saves the
sourceURL of the JavaScript code that calls the script gen-
eration API as the sourceURL of the newly generated inline
script. To distinguish the dynamically generated script, or the
child script (either an inline script or an external script), from
the generating script, or the parent script (the one that gener-
ates the script), OBSERVER records the scriptID of the parent
script as the parentScriptID attribute of the child script.
The parentScriptID of all scripts that are initially statically
embedded by the document owner is set to 0. This allows us
to construct a script dependency graph in the analysis.

OBSERVER also logs all accesses to any inline on-event
handlers of any DOM object as it does with the href attribute
of <a> elements. It finds the last script that sets an inline on-
event handler as its parent script and derives the sourceURL
from it. If no such an entry can be found, OBSERVER sets the
script that creates the receiver object as its parent script.

3.4 Monitoring JavaScript Event Listeners

Instead of modifying or creating hyperlinks, a script can reg-
ister an event listener or handler to an HTML element. The
event handler is asynchronously executed whenever there is
a user click on the element. In particular, a script may open
an arbitrary URL in a new browser window/tab, or send an
HTTP request in the background, when a user clicks any el-
ement it listens for. Therefore, OBSERVER aims to monitor
all event listeners registered by JavaScript code in a page to
identify whether they will navigate a user to a different URL
according to a user click.

OBSERVER first monitors event listener registration by
hooking the addEventListener() API and monitoring ac-
cesses to the on-event listeners, to identify the scripts that
are interested in user interactions. It then intercepts any click-
related user events (e.g., click and mousedown) when they
are fired in the web browser and detects the event target el-
ement in the DOM tree. Since a script may not necessarily
initiate a page navigation in its event handler (e.g., an analytic
script), OBSERVER filters those scripts by hooking several
APIs that can be used for starting a navigation, e.g., window.
open('...'), window.location = '...';, etc. OBSERVER

detects the bottom frame in the JavaScript call stack and fur-
ther constructs and logs the navigation URL in these APIs in
the shadow data store of the target element.

One challenge we met in our design is that one event
handler can be activated multiple times. In the DOM, the
events are propagated in three phases: capturing, target, and
bubbling. For example, in the capturing phase, an event
is propagated from the root node in the DOM tree—the
<html> node, then through any intermediate parent nodes,
before finally reaching the target node. An event handler
registered in the capturing phase at the <html> tag will al-
ways be triggered whenever any of its child elements is
clicked1. To avoid activating such event listeners multiple
times, OBSERVER would skip calling an event listener at a
node if the Event.currentTarget object (i.e., the current
node) is different from the Event.target object in event
propagation. We further set a flag in OBSERVER to abort all
page navigations, including those caused by clicking the <a>
tags, after the navigation URLs are saved in the logs. This
enables us to efficiently interact with all elements in a web
page without really visiting the linked URLs.

3.5 Implementation

We implement a prototype of OBSERVER in the Chromium
browser (version 64.0.3282.186). We will release our pro-
totype implementation as an open source software. We im-
plement OBSERVER in a full-fledged browser to escape any
artificial result that might be caused by using a simpler and
uncommon user agent. We add several custom attributes (e.g.,
initiator, accessLog, scriptID, parentScriptID, sourceURL)
to the Node2 objects to save the monitoring data. All these
custom attributes can be read but not written by JavaScript
for further analysis. For performance concerns, we imple-
ment a lazy update mechanism for setting the above attributes.
The values of these attributes are kept in the hidden attribute
members of the modified C++ classes. They are updated in
the DOM tree only when the attributes are first accessed by
JavaScript.

We hook the above DOM APIs by inserting custom mon-
itoring code in the C++ implementation of the V8 binding
layer between the V8 JavaScript engine and the DOM imple-
mentation in WebKit. The custom monitoring code identifies
the JavaScript caller by fetching the scriptID of the bottom
frame in the JavaScript call stack. It appends the logs of ac-
cesses to the href attribute and the inline on-event handlers to
the hidden accessLog attribute of the corresponding DOM
object. The code sets the initiator attribute of an anchor
element when it is created by either JavaScript code or the
browser parser. Furthermore, the sourceURL and parentScrip-

1An event handler registered in the bubbling phase at a parent node may
not be activated because the event propagation can be stopped by some other
event handler registered at its child node.

2Node is the base class of HTML elements in WebKit.

USENIX Association 28th USENIX Security Symposium 945

tID of all scripts are stored with a <script> object. We further
store the scriptID in the sourceURL dictionary at the global
Document object.

The prototype of OBSERVER can comprehensively log
all click-interception-related events. In the browser, a click-
driven navigation can be started by the built-in default event
handler of anchor elements (hyperlinks) and the developer-
defined event handlers, which we have introduced in §3.2
and §3.4. OBSERVER ensures complete mediation of element
accesses and event handler registrations in the C++ imple-
mentation of the corresponding DOM APIs (including the
built-in default event handler), which cannot be bypassed by
any JavaScript code. In other words, the browser must go
through the underlying C++ APIs and our monitoring code
when JavaScript code accesses any hyperlink or registers an
EventListener to any HTML element.

4 Methodology

In order to study the click interception problems in the wild,
we perform a large-scale data crawling of the Alexa top 250K
websites. We describe our data collection method in §4.1, how
we determine the owner and privilege of JavaScript code as
well as HTML elements in §4.2, and finally how we detect
three classes of click interception in §4.3.

4.1 Data Collection
We use the OBSERVER prototype to collect data for investi-
gating the click interception problem. In particular, we aim to
identify all hyperlinks and scripts that react on user clicks, and
the destination URLs that the browser would visit after the
clicks. We leverage the Selenium WebDriver Python binding
to automatically drive OBSERVER and interact with the web
page it renders. To this end, we run our analysis framework on
a 64 core CPU Linux server and collect data from the Alexa
top 250K websites.

We collect data in two phases for each web page: 1) collect-
ing default data right after page rendering; and 2) collecting
reaction data by interacting with a rendered page. In each
page navigation, we first asks OBSERVER to wait for a page
to be completely rendered by the browser for up to 45 sec-
onds. After that, we insert a script into the page to traverse
the DOM tree in pre-order to collect all the data OBSERVER
has logged with each element. In addition, we log for each el-
ement several display properties (e.g., width, height, position,
opacity, etc.) to study additional tricks that may be used to
intercept user clicks (e.g., some third-party contents overlap
with or appear similar to first-party contents). We then save a
snapshot of the current DOM tree into an external HTML file
as well as a full-page screenshot for further analysis.

Next, we interact with a rendered page to collect data about
how the page reacts to our clicks, such as navigation and DOM
modification. We disable the navigation flag in OBSERVER

to deactivate real navigations that may be caused by event
handlers or hyperlinks. We then automatically click all ele-
ments in the DOM tree through Selenium to trigger the click
event listeners and hyperlink navigations to collect navigation
logs. For each navigation triggered by a click, we log the in-
formation regarding the navigation URL, the clicked element,
and, if exist, the corresponding event listeners and scripts that
initiate the navigation. In addition, we traverse the DOM tree
again, as we do in the first phase, to identify whether scripts
update the DOM elements due to user clicks.

4.2 Third-party Content Detection

In this section, we explain our techniques to distinguish first-
party scripts/contents from third-party scripts/contents, which
is necessary to detect click interceptions driven by third-party
scripts. A naïve technique that merely relies on the exact
origin of scripts is not enough because a website frequently
loads its own scripts from its subdomains, its different do-
mains, and domains operated by others such as content deliv-
ery network (CDN) services. For example, the main page of
https://www.google.com/ includes scripts from its subdomain
apis.google.com and its CDN domain gstatic.com. If we use
only origin information, we may misidentify these scripts
as third-party scripts. We aim to solve this problem using
domain substring matching and DNS record matching.

Domain substring matching is a heuristic technique to infer
that a remote script is a first-party script if the remote script’s
domain name is similar to the current page’s domain name.
It first checks whether the main domain names of a remote
script and the current page are the same while excluding
domain suffixes. For example, a script loaded from https://
apis.google.com/ on https://www.google.co.jp/ is determined as a
first-party script because its main domain name excluding the
suffix com is google, which is identical to that of the current
page excluding the suffix co.jp. Second, it tests whether the
proper subdomain name of a remote script consists of the
main domain name of the current page without suffixes, to
come up with CDN practices that maintain custom subdomain
names for individual websites. For example, a script loaded
from https://static-global-s-msn-com.akamaized.net/ on https://
www.msn.com/ are inferred as a first-party script because the
proper subdomain name static-global-s-msn-com contains the
main domain name msn. We do realize that our technique has
limitations, which we will discuss in §6.

DNS record matching leverages several DNS records to
decide whether two distinct domains are operated by the same
organization. Specifically, we inspect the DNS SOA records
[36] and the DNS NS records [34] of the two hostnames
(domain names). An SOA record includes the email address
used to register the domain. Many organizations would use the
same email address to register multiple domains. For instance,
the SOA email addresses of google.com and gstatic.com are both
dns-admin@google.com. However, there are also exceptions.

946 28th USENIX Security Symposium USENIX Association

https://www.google.com/
apis.google.com
gstatic.com
https://apis.google.com/
https://apis.google.com/
https://www.google.co.jp/
https://static-global-s-msn-com.akamaized.net/
https://www.msn.com/
https://www.msn.com/
google.com
gstatic.com

Different organizations may use the same Managed DNS
providers [35] to register domains. Accordingly, their SOA
same email addresses are identical. For example, both dropbox.
com and bitbucket.org use awsdns-hostmaster@amazon.com
as their SOA email address.

We address this limitation by further examining if the name
server (NS) records of a script/URL and the first-party web
page have an intersection. Specifically, we use the domain
name instead of the full hostname of a NS, because one do-
main may use several NSs from a large pool. If the first-party
domain name is found in a common NS, we mark the external
script as a first-party script. For instance, both gstatic.com and
google.com use NSs nsX.google.com, where X is a numeric
value. Therefore, we determine the two domains belong to
the same organization because they have a common NS do-
main name—google.com, and an identical SOA email address.
Note that we exclude all common NSs that are operated by
any known managed or dynamic DNS providers.

Dynamic Element. Recognizing the sources of dynamic
elements is also important to identify cross-party accesses.
We classify dynamic elements into two groups based on which
parties their initiating scripts belong to. This allows us to
distinguish first-party contents from third-party contents.

4.3 Click Interception Detection

Normally, a user may explicitly click a hyperlink to navi-
gate to another web page, or click some components such as
images or buttons to interact with the current web page. How-
ever, some scripts may deliberately intercept a user’s clicks
to override the default action that the user may expect. Fur-
thermore, a user could also be fooled by a script into clicking
some components she/he would not click. We designate such
undesired click manipulation caused by privilege abuse as
click interception in web applications. As discussed earlier,
we do not consider click interceptions exhibited by first-party
scripts as malicious.

Based on how a user click could be manipulated, we cate-
gorize click interception into three classes—interception by
hyperlinks, interception by event handlers, and interception by
visual deception. In particular, a script can intercept user click
by 1) using an existing hyperlink or creating a new hyperlink;
2) registering a click event handler with an element; and 3)
manipulating the UI to deceive a user into clicking elements
controlled by the script.

In the following, we explain the methods to detect the three
classes of click interception. Specifically, we leverage the
navigation URL and the navigation APIs3 (§3.4), and the
display properties of the element (§4.1).

3The default event handler of <a> tags is also considered as one API.

4.3.1 Interception by Hyperlinks

In general, a script can intercept user clicks with hyperlinks
in two ways: modifying one existing (first-party) hyperlink,
and adding one hyperlink to a huge element.
Modifying Existing Hyperlinks. A third-party script can
intercept a user’s click through a first-party hyperlink by over-
writing the href attribute. A third-party script might also
employ a similar approach to intercept a user’s click on an-
other third-party hyperlink. Therefore, we search in the href
attribute log of an anchor element the last script that modifies
its value. If a (different4) third-party script is found, the script
is marked as one click interception script. We use the tech-
nique in §4.2 to determine if the script and the anchor element
belong to the same organization. A third-party script might
also intercept a user’s click through attaching an event listener
to a first-party hyperlink, which we discuss in the following
section. Note that although a first-party script may modify a
third-party hyperlink, we think this is legitimate because the
first party as the owner of the web page is entitled to include
or remove any third-party contents.
Creating Huge Hyperlinks. A script can trick users into
clicking its hyperlink by enclosing a huge clickable element.
In particular, it can enclose a significant part of its web page
within one <a> tag such that a click on any of the enclosed
contents would result in a page navigation that is controlled
by it. Therefore, we also check the size of an anchor element
relative to the browser window5. Specifically, we use 75% as
the threshold to detect the suspicious huge hyperlinks that
can be used to intercept user clicks. According to our knowl-
edge, most (but not all) links on the web are relatively small
compared to the browser window. Therefore, we think 75%
is a reasonably large threshold to help quickly identify the
suspicious ones. Further, we exclude any hyperlinks pointing
to a first party navigation URL, because the first party has the
right to use huge hyperlinks in its own pages.

4.3.2 Interception by Event Handlers

The event handlers are the second technique that a script can
use to intercept user clicks. However, a script listening for
user click may not necessarily navigate the user to another
URL. For instance, an analytic script may observe user clicks
to determine and log only user engagement within the current
page. We leverage the navigation-related APIs to solve this
problem.

To start a new navigation, a developer needs to either call
the window.open()API or change the location of the current
frame. The two JavaScript DOM APIs are implemented by
the C++ methods LocalDOMWindow::open() and Location::
SetLocation() in WebKit, respectively. For each element, we

4We use the term a different script to represent a script of a different
organization in the rest of the paper.

5We used 1024px x 768px as the browser window size in our experiments.

USENIX Association 28th USENIX Security Symposium 947

dropbox.com
dropbox.com
bitbucket.org
gstatic.com
google.com

examine if the two C++ methods are (indirectly) called upon
a click on the element. We then extract the navigation URLs
from the associated logs.
Third-party Interception Scripts using Event Handlers.
We determine a third-party script as a click interception script
if it (indirectly) calls either one of the above two C++ methods
in its click event listener that is added to a first-party element.
We name such a click event listener as a navigation event
listener. Similarly, if such a navigation event handler is added
to a third-party element created by the script of a different
organization, the third-party script implementing the event
handler is also determined as a click interception script.
Intercepting Huge Elements with Event Handlers. We
use the same 75% relative size threshold to detect suspicious
huge elements that are registered with a third-party navigation
event handler and can be used to intercept user clicks. We
also filter the elements that are associated with a first-party
navigation URL.

4.3.3 Interception by Visual Deception

Third party scripts can also intercept a user’s clicks through
visual implementation tricks to deceive a user. In particular,
the third-party contents are designed in some way such that a
user is likely to click. We do not consider first-party contents
with similar characteristics malicious because the first-party
websites have the complete freedom to design their contents.

This last click interception category could be controversial
in our opinion, as some third-party developers may argue that
they do not intend to deceive the end users. Nevertheless,
we still classify such practices as click interception (but not
necessarily malicious) because the users can be deceived
through the visual tricks.

We have identified two possible visual deceptions—
mimicry, and transparent overlay. We detect these visual de-
ceptive tricks for each group of third-party elements, which
are the largest sub DOM tree that consists of only elements
of the same third-party script (organization).
Mimicry. Some third-party script would deliberately dec-
orate its elements such that they are almost visually indis-
tinguishable from first-party contents. A user might conse-
quently click these mimic elements. However, the imitating
elements are usually not exact copies of some first-party ele-
ments. As a result, we cannot use pixel-wise comparison to
detect such mimic elements.

We utilize the structural information as well as the display
properties of a third-party element group to detect mimicry.
Specifically, we compute the relative size of media contents,
e.g., images, videos, and iframes, in a group of third-party
elements, as well as the size of the largest container of them.
We then compute the same metrics for any group of first-party
elements whose root node is a sibling (neighbor) to that of
the third-party element group. Next, we calculate a similarity
score between the two groups of elements using: 1) the CSS

class names of the two root nodes, which are primarily used to
describe the representations of HTML elements; 2) the num-
bers of each kind of media tags, which indicate how media
contents are implemented; and 3) the relative sizes of media
contents in two groups and the sizes of the largest container
nodes, which represent the visual layout of an element group.

We set a threshold learned from our training phase to keep
only third-party element groups that are very similar to some
first-party element groups. Note that we compute the similar-
ity scores using the display property data before we click the
elements to find the elements whose default representation
is likely to fool a user. We do acknowledge that there are
other features (e.g., the DOM tree structure, color histogram)
that may better determine the similarity. However, we find
the ones that we select work well in our manual test over a
small set of samples. We plan to leverage more sophisticated
techniques (e.g., image classification [7]) in our future work.
Transparent Overlay. A third-party script can inject con-
tents that partially overlap with or completely cover first-party
contents. In the case that some first-party contents are com-
pletely covered, the user might not notice their existence and
treat the covering third-party contents as first-party ones. Fur-
ther, a script can make some of its elements barely visible
by setting a small value to their opacity style property. Sub-
sequently, a user’s click could be delivered to these “hidden”
elements when the user is intending to click some other ele-
ments beneath them. We detect transparent overlay third-party
contents in the following two steps.

First, for each group of third-party elements, we compute
the minimum portion of a first-party element that it overlaps
with. Specifically, we scroll the browser window virtually to
compute all the possible overlapped regions with each first-
party element. If the covered portion of a first-party element
is always greater than a pre-defined threshold (e.g., 25%), we
label this group of third-party elements as overlay elements.
Since some third-party scripts may implement components
allowing a user to cancel out the overlay elements, we further
exclude those that no longer significantly overlap with any
first-party element after our automatic clicks, which must
include a click on one of such cancel-out buttons if there are
any. However, this method may not work well in some cases.
For example, the covering elements could first be hidden by a
click on a cross button, and later be revealed by another click
on another button. We consider it as a limitation and plan to
leverage knowledge in computer vision to develop a better
automated testing method in our future work.

Next, we detect third-party transparent overlay element
groups by comparing the opacity value collected in the display
properties with a small threshold (e.g., 0.1). A zero opacity
value indicates complete transparency. We do not consider
elements whose style is visibility: hidden or display: none
because user clicks are not passed to these invisible elements.
In addition, we keep only the transparent third-party element
groups that are big enough to be easily clickable, i.e., the

948 28th USENIX Security Symposium USENIX Association

container size is greater than 1% of the browser window size.

5 Click Interception in the Wild

In this section, we first present our analysis on data collected
in our web crawl (§5.1), then characterize click interception by
demonstrating how different techniques (§5.2) are employed
by which scripts (§5.3) to intercept user clicks, and finally
explain why they do it and its consequences (§5.4).

5.1 Dataset
We crawled data from the main pages of Alexa top 250K
websites in May 2018. Excluding those that timed out or
crashed in our data collection process, we were able to gather
valid data of 228,614 (91.45%) websites. We identified third-
party navigation URLs (the first URL the browser would visit
upon a user click) collected in a web page using the method
described in §4.2. We obtained 2,065,977 unique third-party
navigation URLs, which corresponded to 427,659 unique
domains. On average, a web page contains 9.04 third-party
navigation URLs, pointing to 1.87 domains.

We visited each of the 2M navigation URLs and recorded
both the intermediate redirect URLs and the landing URL. We
could not visit 39 URLs in our experiment because of various
errors (e.g., HTTP 404 status code, too many redirects, etc.).
We managed to obtain 1,982,613 unique landing URLs.

We collected 413,075 intermediate redirect URLs (exclud-
ing the navigation URLs and the landing URLs) in this pro-
cess. Specifically, we observed no redirection for 1,263,754
(61.17%) navigation URLs. We encountered at most 29 inter-
mediate hops before we reached a final landing URL.

We detected 2,001,081 distinct third-party scripts that were
loaded from 1,170,582 different domains. On each page, there
are on average 8.75 third-party scripts.

5.2 Click Interception Techniques
In this section, we demonstrate how the different techniques
that we identify in §4.3 are employed for click interception.

5.2.1 Interception by Hyperlinks

We identify three possible ways that a third-party script can
intercept user clicks through hyperlinks (§4.3.1). In total,
we observe that 4,178 hyperlinks on 221 websites were in-
tercepted, which can lead a user to 2,695 distinct third-party
URLs. We present in Table 1 the breakdown of the 4,178 links
and the total number of daily visits to the affected websites6.
Hyperlink Modifications. Surprisingly, the href attribute of
4,027 first-party <a> tags on 100 websites were directly tam-
pered by a third-party script. For instance, the ad URL shorten-
ing script https://cdn.adf.ly/js/link-converter.js modified the href

6We get the statistics using the SimilarWeb API.

Table 1: Categorization of Click Interception Techniques

Technique #Cases #Websites %Cases #Visits/day

Hyperlinks 4,178 221 89.52 12,686,591
Modifying 1st-party links 4,027 100 86.29 2,496,620
Modifying 3rd-party links 31 2 0.66 638,247
Inserting huge 3rd-party links 120 119 2.57 9,551,724
Event Handlers 203 172 4.35 5,455,821
On 1st-party nodes 189 161 4.05 4,636,145
On 3rd-party nodes 14 12 0.30 819,676
On huge 3rd-party nodes 0 0 0 0
Visual Deceptions 286 231 6.13 25,269,314
Mimicry 140 87 3.00 16,604,258
Transparent Overlay 146 144 3.13 8,665,056

attribute of one anchor element to http://ay.gy/2155800/... on the
website http://magazinweb.net/. Similarly, the third-party script
https://cpm4link.com/js/full-page-script.js modified hyperlinks
on the website https://www.lnmta.com/ to https://cpm4link.com/
full/?api=.... They are obviously privilege abuses. In addition,
we find that 31 third-party hyperlinks on 2 websites were mod-
ified by a different third-party script. For example, the script
https://s7.addthis.com/js/300/addthis_widget.js modified 11 third-
party hyperlinks on the website https://www.crazy-net.com/ to
https://plus.google.com/110631064773293614230; the script http:
//media1.admicro.vn/core/log_cafef.js modified 20 third-party
hyperlinks on the website http://cafef.vn/ to http://lg1.logging.
admicro.vn/nd?nid=.... This indicates that those third-party
scripts indiscriminately modify anchor elements to intercept
user clicks.

Huge Hyperlinks. We observe 120 huge third-party <a>
tags on 119 websites. These anchor elements enclose contents
whose size is at least 75% of the browser window size. As a
result, a visitor has a very high chance to click such an anchor
element. For example, on the website http://torrents73.ru/, the
third-party script http://gynax.com/js/MjgxMw==.js created a
large anchor, which encloses a huge background image. Users
would be directed to another page https://wheel.grand-casino48.
com/ upon a click. We also identify that 135 websites used
148 huge first-party <a> tags, which we currently consider as
legitimate as we discussed in §3.1.

5.2.2 Interception by Event Handlers

We analyze how event handlers are exploited to intercept user
clicks. Overall, we find 203 elements across 172 websites
were attached with navigation event handlers, which would
drive a user to a third-party URL upon click.

We observe that 189 first-party elements of 161 websites
were added at least one third-party navigation event han-
dler. For example, the third-party script https://smashseek.com/
rq/4949 intercepted user clicks on the website https://www1.
mydownloadtube.com by adding a navigation event listener to
the <html> element. The user’s browser would open a new
URL (the specific URL changes upon each user click) when

USENIX Association 28th USENIX Security Symposium 949

https://cdn.adf.ly/js/link-converter.js
http://ay.gy/2155800/...
http://magazinweb.net/
https://cpm4link.com/js/full-page-script.js
https://www.lnmta.com/
https://cpm4link.com/full/?api=...
https://cpm4link.com/full/?api=...
https://s7.addthis.com/js/300/addthis_widget.js
https://www.crazy-net.com/
https://plus.google.com/110631064773293614230
http://media1.admicro.vn/core/log_cafef.js
http://media1.admicro.vn/core/log_cafef.js
http://cafef.vn/
http://lg1.logging.admicro.vn/nd?nid=...
http://lg1.logging.admicro.vn/nd?nid=...
http://torrents73.ru/
http://gynax.com/js/MjgxMw==.js
https://wheel.grand-casino48.com/
https://wheel.grand-casino48.com/
https://smashseek.com/rq/4949
https://smashseek.com/rq/4949
https://www1.mydownloadtube.com
https://www1.mydownloadtube.com

a user clicks any element on this page7. Another example
is detected on the page http://azasianow.com/, where the third-
party script http://fullspeeddownload.com/rq/4297 registered an
event handler on the <body> element. We also consider such
practices as a type of privilege abuse, as they force a user
to visit a URL when the user interacts only with first-party
contents. What is worse, even an experienced user with some
technical background cannot easily find out that the naviga-
tion is actually controlled by a third-party script rather than
the website she/he directly visits.

Interestingly, we find on 12 websites that 14 third-party ele-
ments were attached with navigation event handlers by a third-
party script of a different organization. For example, the web-
site https://www.mlbstream.io/ included the third-party script
https://amadagasca.com/rgCQwi5INUm04AxMu/5457, which reg-
istered an event handler on an element. The user would
be directed to https://jackettrain.com/imp/5457/?scontext_r=...
upon clicking on that image and finally land at a random
website. One possible reason is that the attaching scripts were
loaded after the other third-party scripts had inserted those
elements, so that they mistakenly attached event handlers to
the other third-party elements.

We do not find any third-party script intercepting user clicks
by registering navigation event handlers with huge third-party
elements. On the other hand, we discover 2 websites added
navigation event handlers to their own huge elements. In
particular, the websites http://www.force-download.net/ and http:
//www.force-download.es/ both registered a navigation event
handler to the <html> node to intercept user clicks, just as the
above-mentioned third-party scripts. Nevertheless, we do not
consider them as malicious.

5.2.3 Interception by Visual Deception

We analyze how the two visual deception techniques, mimicry
and transparent overlay (§4.3.3) are used in the wild.
Mimicry. We discover 140 mimic third-party element groups
on 87 websites. These third-party contents are carefully de-
signed to resemble nearby first-party contents. Hence, unwary
users are very likely to be fooled and consequently click them.

Figure 1(a) shows an example of such a mimicry trick
that we detect on the website https://www.bintang.com. The
contents enclosed within the yellow rectangle were inserted by
the third-party script https://securepubads.g.doubleclick.net/gpt/
pubads_impl_207.js, whereas those in the red rectangles were
the organic first-party contents. Without scrutiny, they just
look like each other. The only visual hint for discriminating
them is the text Sponsored, which was displayed in a very
small font size just as the first-party sub captions in the red
rectangles. Even though a user may notice this small text,
she/he may still decide to click the third-party elements as they
appear to be provided directly by the first-party website which

7This is not true for elements with other click event listeners that stop the
event propagation.

(a) Mimicry.

(b) Transparent overlay.

Figure 1: Examples of visual deceptive third-party contents.

she/he trusts. However, such trust would be abused in this case
because those contents were generated solely by a third-party
script the user does not know. In particular, the navigation
URL was under the full control of this unknown third-party
script and could take the user to any (potentially unsafe) page.
We will discuss more about the security implication in §5.4.
Transparent Overlay. We detect 146 transparent overlay
third-party element groups on 144 websites. Specially, they
covered a significant portion (at least 25%) of first-party ele-
ments regardless of mouse scroll. We could not cancel them
out by automatically clicking elements in those websites. Fur-
ther, they were either completely transparent or translucent
with a very low opacity style value. What is worse, many
of them contained NO user-perceivable content (e.g., texts
or images), hence being transparent. As a result, they were
almost—if not absolutely—invisible and thus difficult to be
noticed.

Figure 1(b) demonstrates an example of such a visual trick
that we identify on the website http://jgsdf.ucoz.com. The yel-
low rectangle includes the third-party contents that over-
lapped with the underlying first-party contents, which are
enclosed by the cyan rectangles. The script that created these
third-party contents is http://pl14318198.puserving.com/a2/49/
14/a2491467a19ffc3f9fe0dbe66e54bae0.js. Although the overlay
third-party contents were not visible in this case, they con-
stantly covered about 50% of the first-party contents in the
cyan rectangles no matter how a user scrolled this page. As
a result, this script could intercept any click on the covered
first-party elements, because the click would be first passed to
the overlay third-party elements. When a user clicked within
the area of yellow rectangle, an ad link was opened in a new
window.

Although third-party scripts can deceive a user with differ-
ent tricks, the effectiveness can vary dramatically depending
on their implementation and the end user’s technical back-
ground. In general, we think they are less effective compared
with the other two direct techniques we have discussed above.
In particular, whether the mimic contents are deceptive is re-
ally subjective. We leave it for our future work to examine

950 28th USENIX Security Symposium USENIX Association

http://azasianow.com/
http://fullspeeddownload.com/rq/4297
https://www.mlbstream.io/
https://amadagasca.com/rgCQwi5INUm04AxMu/5457
https://jackettrain.com/imp/5457/?scontext_r=...
http://www.force-download.net/
http://www.force-download.es/
http://www.force-download.es/
https://www.bintang.com
https://securepubads.g.doubleclick.net/gpt/pubads_impl_207.js
https://securepubads.g.doubleclick.net/gpt/pubads_impl_207.js
http://jgsdf.ucoz.com
http://pl14318198.puserving.com/a2/49/14/a2491467a19ffc3f9fe0dbe66e54bae0.js
http://pl14318198.puserving.com/a2/49/14/a2491467a19ffc3f9fe0dbe66e54bae0.js

how effective the visual deceptions are on real users.

5.2.4 Evasion of Detection

We also detect a few cases that third-party scripts selectively
intercepted user clicks. In particular, they would limit the rate
at which they intercept the clicks to avoid a user’s suspicion.
For instance, some scripts would activate the page navigation
code in their event handlers only when a user first visits a
page. This can be easily implemented by dropping a cookie
in a user’s browser. They might clear this flag after some time
(e.g., a day) to reactivate the click interception code. However,
we do not have enough data to learn the timeouts they use.
We discuss next such a detection evasion example.

The script https://pndelfast.com/riYfAyTH5nYD/4869—
included by the website https://torrentcounter.to/—selectively
intercepted the user clicks on the background of the website.
We observed the interception only when we visited the
page with a clean cookie, which suggests the script used
a cookie to log click interception status. Interestingly, we
find the script was obfuscated to prevent a normal user from
analyzing it. We deobfuscate the script (Listing 1), and
search for the keyword cookie. As expected, we find several
functions that are used to control the rate of click interception.
Lines 8, 13, and 16 define the functions "setCookie",
"removeCookie", and "getCookie", respectively. Line 6
defines the "timeout" variable that we suspect to control
the interception timeout or interval. It sets the cookie in
Line 28, if the return value of the function init defined in
Line 20 is not true. The cookie is deleted in Line 33. This
script also defines several variables, e.g., "certain_click
", "every_x_click", "delay_before_start_clicks",
"click_num", "interval_between_ads_clicks", which we
believe to be used to control click interception. As is limited
by the space, we do not discuss in more details how the script
works. It would be an interesting research topic to investigate
how these scripts cloak their malicious activities to avoid
detection.

Summary. We confirm that various click interception tech-
niques have been used in the wild. Third-party scripts
intentionally intercepted user clicks using event listeners,
and manipulate user clicks through visual deceptions. They
also leveraged huge anchor elements to deliberately inter-
cept user clicks. Further, many third-party scripts even
modified first-party hyperlinks to intercept user clicks.

5.3 Click Interception Scripts

In this section, we characterize click interception based on
the third-party scripts that intercept user clicks. Further, we
investigate how they were embedded to intercept user clicks.

1 var _0x3e0d = ["...", "certain_click", "every_x_click"
, "delay_before_start_clicks", "click_num", "
interval_between_ads_clicks", "has_adblock", "...
"];

2 var build = function() {
3 var target = {
4 "data" : {
5 "key" : "cookie",
6 "value" : "timeout"
7 },
8 "setCookie" : function(value, name, path, headers)

{
9 var cookie = name + "=" + path;
10 headers["cookie"] = cookie;
11 },
12 "removeCookie" : function() {
13 return "dev";
14 },
15 "getCookie" : function(match, href) {
16 var v = match(new RegExp("(?:^|;)" + href["

replace"](/([.$?*|{}()[]\/+^])/g, "$1") + "
=([^;]*)"));

17 return v ? decodeURIComponent(v[1]) : undefined;
18 }
19 };
20 var init = function() {
21 var test = new RegExp("\\w+ *\\(\\) *{\\w+

*['|\"].+['|\"];? *}");
22 return test["test"](target["removeCookie"]["

toString"]());
23 };
24 target["updateCookie"] = init;
25 var array = "";
26 var _0x418128 = target["updateCookie"]();
27 if (!_0x418128) {
28 target["setCookie"](["*"], "counter", 1);
29 } else {
30 if (_0x418128) {
31 array = target["getCookie"](null, "counter");
32 } else {
33 target["removeCookie"]();
34 }
35 }
36 };

Listing 1: A simplified click interception script from https:
//pndelfast.com.

5.3.1 Third-party Scripts Characterization

Our results in §5.2 demonstrate that third-party scripts lever-
age all the three techniques to intercept user clicks. We present
the statistics of these scripts—the unique number of script
URLs, origins, and domains in Table 2.

Huge Hyperlinks. We detect 86 unique third-party scripts
that injected huge <a> tags into their embedding pages. We
show the top 5 origins of such scripts in Table 3. The notice-
able scripts are those loaded from http://gynax.com. They were
found to create one huge <a> element on each of 47 web-
sites they were included. Each <a> tag was enclosed within a
<noindex> element, which further contained a full-page image.
All the hyperlinks would finally reach https://wheel.28grand-
casino.com/, which is an online gambling game website.

Hyperlink Modifications. We detect 57 unique third-party
scripts that directly intercepted user clicks by modifying first-
party hyperlinks. We show the top 10 origins of such scripts
in Table 4. The top script https://cdn.adf.ly/js/link-converter.js

USENIX Association 28th USENIX Security Symposium 951

https://pndelfast.com/riYfAyTH5nYD/4869
https://torrentcounter.to/
https://pndelfast.com
https://pndelfast.com
http://gynax.com
https://wheel.28grand-casino.com/
https://wheel.28grand-casino.com/
https://cdn.adf.ly/js/link-converter.js

Table 2: Statistics of unique click interception scripts.

Technique #URLs #Origins #Domains

Hyperlinks 145 76 63
Modifying 1st-party links 57 41 35
Modifying 3rd-party links 2 2 2
Inserting huge 3rd-party links 86 33 26
Event Handlers 106 72 58
On 1st-party nodes 103 69 55
On 3rd-party nodes 7 7 7
On huge 3rd-party nodes 0 0 0
Visual Deceptions 197 173 95
Mimicry 78 60 54
Transparent Overlay 119 114 42

Table 3: Top 3rd-party script origins injecting huge anchors.

Script #Websites #Elements

http://gynax.com 47 47
https://securepubads.g.doubleclick.net 7 7
https://yastatic.net 7 7
http://bgrndi.com 6 6
http://js883.guangzizai.com 5 5

was found on 18 websites. Adf.ly is a short URL service that
helps websites monetize their links. As its name suggests, this
script converts every first-party hyperlinks to a third-party
hyperlink. If a user clicks any converted hyperlink, the user
would be taken to an intermediary page of adf.ly hosted on
http://clearload.bid/. This page displayed an advertisement as
shown in Figure 2. The user can click the SKIP AD button
on the right top corner to continue to visit the original first-
party hyperlink. Many other top scripts in Table 4, e.g., https:
//linkshrink.net/fp.js, https://api.getsurl.com/js/get_auto.js and https:
//adshort.co/js/full-page-script.js, worked in a very similar way.
This is definitely very distracting to users. However, as we will
demonstrate next in §5.4, the first-party websites explicitly
included these click interception scripts to monetize their
websites.
Event Handlers and Visual Deceptions. We find 103
unique third-party scripts which listened for clicks on first-
party elements to intercept user clicks. We also discover 78
and 119 unique third-party scripts that injected mimic and
transparent overlay contents, respectively, into the embedding
websites. We discuss next that how these click interception
third-party scripts were included in those “victim” websites.

5.3.2 Click Interception Script Inclusion

While we discover that third-party scripts deliberately inter-
cepted clicks via several tricks, it is not clear if they were
intentionally included by the first-party websites. To this end,
we analyze the script dependency data to figure out the inclu-
sion relationship between third-party scripts and first-party
websites. In particular, we aim to determine if a click inter-
ception third-party script was directly included by the website

Table 4: Top 3rd-party script origins modifying first-party links.

Script #Websites #Elements

https://cdn.adf.ly 18 583
https://cdn.shopify.com 11 245
https://static.v2.paysites.czechcash.com 9 640
https://www.sc.pages02.net 7 82
https://linkshrink.net 7 190
https://api.getsurl.com 5 384
https://static-js.sixshop.co.kr 4 59
http://cdn.adf.ly 2 190
http://shinkme.com 2 38
https://adshort.co 2 28

Figure 2: A drive-by download page visited via click interception.

itself, or indirectly included by another third-party script.
We categorize how a remote third-party script can be in-

cluded into three classes. First, a third-party script is stati-
cally included by the first-party website, if the corresponding
<script> tag is statically defined in the original web page
HTML source. Next, a third-party script is dynamically in-
cluded by the first-party website, if it is loaded through a
<script> tag that is dynamically created by a first-party script,
including those first-party scripts hosted on a different do-
main. Finally, a third-party script is dynamically included by
another third-party script, if it is loaded through a <script>
tag that is dynamically created by another third-party script.
We summarize the results in Table 5.

Static Inclusion. We find that the majority of these third-
party scripts, i.e., 280 unique scripts (64.07%) out of 437 third-
party click interception scripts, were statically included by
397 websites. This indicates that these websites deliberately
included the click interception scripts, even though they may
not intercept user clicks by themselves. In particular, the short
URL monetization script https://cdn.adf.ly/js/link-converter.js
was found to be statically included by those 18 websites.
The script https://wchat.freshchat.com/js/widget.js was statically
included by 17 websites. These websites explicitly allowed
such scripts to intercept their users’ clicks in exchange for
payments.

Dynamic Inclusion. We discover that 103 unique third-party
scripts (23.57%) were dynamically included by first-party

952 28th USENIX Security Symposium USENIX Association

http://clearload.bid/
https://linkshrink.net/fp.js
https://linkshrink.net/fp.js
https://api.getsurl.com/js/get_auto.js
https://adshort.co/js/full-page-script.js
https://adshort.co/js/full-page-script.js
https://cdn.adf.ly/js/link-converter.js
https://wchat.freshchat.com/js/widget.js

Table 5: How third-party click interception scripts are included.

Inclusion Type #Websites #Scripts

Statically included by 1st-party website 397 280
Dynamically included by 1st-party website 112 103
Included by another 3rd-party script 104 63

websites. For instance, the scripts script=http://gynax.com/j/
w.php and http://bgrndi.com/js/NTQw.js were dynamically in-
cluded by 5 and 4 first-party websites, respectively. In other
words, these websites used JavaScript to dynamically create
<script> tags to include those scripts. Such websites would
be responsible for the privilege abuses by those click inter-
ception scripts even if they do not intercept user clicks. They
either did not scrutinize the scripts before including them, or
deliberately allowed them to intercept user clicks.

Indirect Inclusion. On the other hand, we discover that only
63 third-party click interception scripts (14.42%) were in-
directly included by other third-party scripts. One such a
top script is https://tags.bkrtx.com/js/bk-coretag.js, which was
included by other third-party scripts on 6 websites. For
example, it was included by the script https://s.accesstrade.
net/js/atd/bluekai/atd_bluekai.js?id=... on the website https://
haken-mikata.com. The latter script was also indirectly in-
cluded by another script https://s.accesstrade.net/js/atd/satd.js?
pt=824F2E4C4077D97ECC014C7A3DE07136725853, which was
statically included by the first-party website. In such cases,
we cannot blame the first-party websites for indulging those
suspicious scripts. Click interception caused by these scripts
could be prevented if the websites configure a proper Content
Security Policy (CSP) [33] that disallows the browser to load
scripts from unknown sources. However, in practice it is diffi-
cult and even infeasible to use CSP because many websites
need to allow dynamic inclusion of advertising scripts that
may be loaded from arbitrary sources due to ad syndication.
Therefore, a finer-grained security policy that limits the privi-
lege of included scripts would be more desirable in preventing
such privilege abuses.

Summary. We discover that 437 third-party scripts at-
tempted to intercept user clicks on a total of 613 websites.
Several top third-party scripts deliberately intercepted user
clicks on all their embedding websites. Surprisingly, many
of them were included directly by the first-party websites,
to monetize the hyperlinks, or more accurately, the user
clicks, of those websites.

5.4 Click Interception Reasons and Conse-
quences

We have demonstrated that some third-party scripts inter-
cepted user clicks through various tricks. In this section, we
seek to understand the motivations and consequences of such
undesired activities.

Table 6: Advertising click interception navigation URLs.

Technique #URLs #Ad URLs %Ad URLs

Hyperlinks 2,695 1,088 40.37
Event Handlers 186 21 11.29
Visual Deceptions 380 74 19.47

5.4.1 Monetization

As we have demonstrated in §5.3.1, many third-party scripts
offer monetization services by converting first-party hyper-
links into third-party ad links. They force a user to view an
advertisement before navigating to the original destination
page when the user clicks any hijacked link. As a result, both
the third-party click interception script and the first-party
website can earn some commission from those participating
advertisers. Similarly, we find many other cases where a click
was intercepted by a third-party script to visit an advertiser’s
landing page.
Identifying Advertising URLs. To understand if moneti-
zation via advertising is really a common reason for click
interception, we compare the navigation URLs in the click
interception cases with all the other navigation URLs in our
dataset. Specifically, we leveraged the Ghostery extension to
determine if one navigation URL is advertising-related by
testing if it matches the URL pattern of any known advertis-
ing company. A navigation URL is marked as an advertising
URL, if a positive match is found for any of its intermedi-
ate redirect URLs (if any) and the landing URL. We also
manually labeled the URLs generated by those short URL
monetization scripts as ad URLs because they are not known
to the extension.

Surprisingly, we find that 1,183 (36.39%) out of the 3,251
unique click interception navigation URLs are advertising
URLs (Table 6), which is a 18.7 times higher rate than that
of normal third-party navigation URLs8. In total, only 40,278
(1.95%) out of the 2,065,977 third-party navigation URLs are
identified as advertising URLs.
Potential Click Fraud. These click interception websites
and scripts have a “good” reason to trick users into click-
ing those advertising URLs. In online display advertising,
the publishers and the ad networks are paid by an advertiser
when a user clicks the advertiser’s ad under the pay-per-click
billing mode. Although they can also earn some commission
for an ad impression in the pay-per-view billing mode, the
money is much less than what they can get paid when the
ad is clicked. However, the ad click-through rate is usually
very low—around 2% (in a business-to-consumer banner ad
case [18]). To boost ad revenue, the straightforward and effec-
tive approach is to leverage real user clicks, as modern ad net-
works can accurately detect bot-based click frauds [2, 6, 9, 38].
On the other hand, the third-party scripts also have the incen-

8We exclude all first-party navigation URLs in our analysis.

USENIX Association 28th USENIX Security Symposium 953

script=http://gynax.com/j/w.php
script=http://gynax.com/j/w.php
http://bgrndi.com/js/NTQw.js
https://tags.bkrtx.com/js/bk-coretag.js
https://s.accesstrade.net/js/atd/bluekai/atd_bluekai.js?id=...
https://s.accesstrade.net/js/atd/bluekai/atd_bluekai.js?id=...
https://haken-mikata.com
https://haken-mikata.com
https://s.accesstrade.net/js/atd/satd.js?pt=824F2E4C4077D97ECC014C7A3DE07136725853
https://s.accesstrade.net/js/atd/satd.js?pt=824F2E4C4077D97ECC014C7A3DE07136725853

tive to cheat advertisers for higher income because many of
them are also ad networks. This well explains why the short
URL monetization scripts, which also operate as ad networks,
have been helping websites intercept user clicks.

In our research, we observe that third-party scripts have
leveraged various click interception techniques to monetize
user clicks. Further, our results demonstrate that click inter-
ception has become an emerging way for generating realistic
click traffic to commit ad click fraud.

5.4.2 Distributing Malicious Content

Besides monetization, we find that click interception can lead
a user to visit malicious contents. In particular, we were di-
rected to some fake anti-virus (AV) software and drive-by
download pages when we manually examined some of the
click interception URLs.

For instance, we were forced to visit an ad click URL by
the script https://pndelfast.com/riYfAyTH5nYD/4869 on the web-
site https://torrentcounter.to/. Since the navigation URL is an
ad click URL, the landing URL is random each time we visit.
Nonetheless, one landing URL we visited is a fake AV web-
site, as shown in Figure 3(a). This website showed some fake
warnings about virus infection with alarm to fool the user
into clicking the Scan Now button. After that, it displayed
some scanning animation and finally generated a fake scan
report to trick the user into installing the fake AV software, as
shown in Figure 3(b). The Google search results of the domain
1bcde.com also suggest it is a malicious redirect website.

We also find that the script http://cdn.adf.ly/js/link-converter.js
converted one link of the website http://magazinweb.net/ into
http://ay.gy/2155800/..., which is an advertising link. It once
took our browser to a drive-by download page, as shown in
Figure 2. When we visited the page, our browser automati-
cally started downloading the MacKeeper installer, which is
considered as scamware [20]. The page even shows detailed
instruction to trick the user into installing this scamware.

These are just two of many malicious examples we have
encountered in our manual investigation. We think that there
were much more malicious cases that we have yet to discover.
Unfortunately, manually verifying all the 2 million URLs in
our dataset is infeasible. We plan to leverage automated URL
scanning techniques to automatically detect the malicious
URLs associated with click interception in the future.

Summary. We identify that many third-party scripts in-
tercept user clicks to monetize user clicks. In particular,
they intercept real user clicks to fabricate ad clicks as a
new form of committing ad click fraud. Further, the land-
ing URLs that they trick the users into visiting can be
malicious.

(a)

(b)

Figure 3: A fake AV website visited because of click interception.

6 Discussion and Future Work

We discuss the limitations of our work, the possible mitigation
of the click interception threat, and our future work.

Third-party Script Detection. Our methodology for distin-
guishing first-party scripts from third-party scripts is not 100%
accurate. First, the domain substring matching can be prob-
lematic if an adversary can create victim-specific subdomains.
For example, a third-party can intentionally generate a sub-
domain xyz.third-party.org by adding a new entry in its name
server. Our technique would mislabel this subdomain as a first-
party URL if it is included by xyz.com. Second, an organiza-
tion may use distinct email addresses for its subsidiaries. For
instance, the SOA email address of https://www.instagram.com/
is awsdns-hostmaster@amazon.com, whereas that of https:
//www.facebook.net/ is dns@facebook.com. We classify scripts
loaded directly from Facebook on Instagram as third-party
scripts even though Instagram is owned by Facebook. Al-
though our approach to determining the relationship between
two hosts is not complete, it is good enough for achieving
our goal and provides better results compared with a similar
approach using only whois records [4].

Measurement Scope. We visited only the main pages of
Alexa top 250K websites, so we could miss scripts that are
loaded only in their sub pages. However, our goal is to have a
preliminary understanding of the click interception problem.
We do not intend to and are not able to cover all pages and
scripts that can be found on these websites. In the future, we

954 28th USENIX Security Symposium USENIX Association

https://pndelfast.com/riYfAyTH5nYD/4869
https://torrentcounter.to/
http://cdn.adf.ly/js/link-converter.js
http://magazinweb.net/
http://ay.gy/2155800/...
xyz.third-party.org
xyz.com
https://www.instagram.com/
https://www.facebook.net/
https://www.facebook.net/

will consider sub pages of these websites to investigate the
differences between the main pages and the sub pages.
Artificial Interaction with Web Pages. OBSERVER applies
an artificial way to interact with websites, i.e., using a script
to click all the elements on a page, in order to automate the
analysis. This could be different from the normal behavior
of a real human being. Nevertheless, our goal is to collect as
much click-related data as possible in each page visit. It would
be an interesting research topic to study if developers would
write code to distinguish authentic clicks from automatically
generated ones9.
Generating Security Warnings. Click interception can di-
rect a user to an unknown URL by modifying first-party hy-
perlinks or hijacking user clicks on first-party elements. It
exploits the fact that the user cannot determine the provenance
of the URL that he or she is about to visit (unintentionally).
To protect a user from visiting potentially attacker-controlled
URLs, a possible defense is to provide the user the prove-
nance information regarding each hyperlink and click. In
particular, the browser can display a message alongside each
hyperlink about its provenance, e.g., if the associated URL
is provided by the first-party website or a third party. The
additional message needs to be unforgeable and tamper-proof
from JavaScript code, such that the adversary cannot manipu-
late such security-related data. One potential implementation
is to utilize the browser UI that is usually not accessible to
JavaScript. For example, we can display the message in the
status bar when the user hovers the mouse over a link. Sim-
ilarly, to defend against event-listener interception, we can
display an unforgeable warning message if the user hovers
over an element that is potentially intercepted by a third-party
script. However, this may cause a lot of false positives as an
event handler may not necessarily initiate a navigation upon
user click. Therefore, it might be better to show such warning
when the user actually performs the click, as [10] does. Ac-
cording to our experiment, OBSERVER introduces negligible
performance overhead on navigation. It is thus suitable to be
extended as a real-time detection tool for the end users. We
plan to extend OBSERVER by incorporating these defenses,
and conduct a user study to evaluate their effectiveness.
Ensuring Link and Click Integrity. The above defenses
require a user to make security decisions, which might not be
very effective in practice. Alternatively, we can let the browser
automatically enforce integrity policies for hyperlinks and
click event handlers. For example, an integrity policy can
specify that all first-party hyperlinks shall not be modifiable by
third-party JavaScript code. One may further specify that third-
party scripts are not allowed to control frame navigations,
although listening for user click is still permitted. Enforcing
all such policies would effectively prevent click-interception
by hyperlinks and event handlers. However, it might also

9The clicks in our experiment were generated through Selenium and are
different from those generated using JavaScript, which can be easily detected.

break the functionalities of some third-party components. To
give the user and the website administrator better control, the
polices can specify the permissions for each script, matched
by an absolute URL, a domain name, a wild card, or a secret
token, mimicking the Content Security Policy [33]. We plan to
develop and evaluate such an integrity protection mechanism
as our future work.

7 Conclusion

We have investigated the click interception problem on the
Web with a custom analysis framework developed based on
the Chromium browser. We collected data from the Alexa
top 250K websites and identified several techniques that can
be employed to intercept user clicks. We detected that 437
third-party scripts intercepted user clicks using hyperlinks,
event handlers and visual deceptions on 613 websites. We
further revealed that many third-party scripts intercept user
clicks for monetization via committing ad click fraud. In
addition, we demonstrated that click interception can lead
victim users to malicious contents. Our research sheds light
on an emerging client side threat, and highlights the need to
restrict the privilege of third-party JavaScript code.

8 Acknowledgments

The authors thank the anonymous reviewers and our shepherd,
Franziska Roesner, for their helpful suggestions and feedback
to improve the paper. This material is based on research sup-
ported by CUHK under grant 4055081. The views, findings,
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily represent the
views of CUHK.

References

[1] Devdatta Akhawe, Warren He, Zhiwei Li, Reza
Moazzezi, and Dawn Song. Clickjacking Revisited:
A Perceptual View of UI Security. In Proceedings of
the 6th USENIX Workshop on Offensive Technologies
(WOOT), 2014.

[2] Sumayah Alrwais, Christopher Dunn, Minaxi Gupta,
Alexandre Gerber, Oliver Spatscheck, and Eric Oster-
weil. Dissecting Ghost Clicks: A Tale of Ad Fraud Via
Misdirected Human Clicks. In Proceedings of the An-
nual Computer Security Applications Conference (AC-
SAC), 2012.

USENIX Association 28th USENIX Security Symposium 955

[3] Marco Balduzzi, Manuel Egele, Engin Kirda, Davide
Balzarotti, and Christopher Kruegel. A Solution for
the Automated Detection of Clickjacking Attacks. In
Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Beijing, China, April 2010.

[4] Frank Cangialosi, Taejoong Chung, David Choffnes,
Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. Measurement and Analysis of Private
Key Sharing in the HTTPS Ecosystem. In Proceedings
of the 23rd ACM Conference on Computer and Com-
munications Security (CCS), Vienna, Austria, October
2016.

[5] Vacha Dave, Saikat Guha, and Yin Zhang. Measuring
and Fingerprinting Click-Spam in Ad Networks. In
Proceedings of the 2012 ACM SIGCOMM, Helsinki,
Finland, August 2012.

[6] Vacha Dave, Saikat Guha, and Yin Zhang. Viceroi:
Catching Click-spam in Search Ad Networks. In Pro-
ceedings of the 20th ACM Conference on Computer
and Communications Security (CCS), Berlin, Germany,
October 2013.

[7] Sevtap Duman, Kaan Onarlioglu, Ali Osman Ulusoy,
William Robertson, and Engin Kirda. TrueClick: Auto-
matically Distinguishing Trick Banners from Genuine
Download Links. In Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC), 2014.

[8] Google. Expanding user protections on the
web. https://blog.chromium.org/2017/11/expanding-user-
protections-on-web.html.

[9] Google. Google Ad Traffic Quality. https://www.google.
com/ads/adtrafficquality/.

[10] Lin-Shung Huang, Alexander Moshchuk, Helen J Wang,
Stuart Schecter, and Collin Jackson. Clickjacking: At-
tacks and Defenses. In Proceedings of the 21st USENIX
Security Symposium (Security), Bellevue, WA, August
2012.

[11] Luca Invernizzi, Stefano Benvenuti, Marco Cova,
Paolo Milani Comparetti, Christopher Kruegel, and Gio-
vanni Vigna. EvilSeed: A Guided Approach to Finding
Malicious Web Pages. In Proceedings of the 33rd IEEE
Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2012.

[12] Ari Juels, Sid Stamm, and Markus Jakobsson. Com-
bating Click Fraud via Premium Clicks. In Proceed-
ings of the 16th USENIX Security Symposium (Security),
Boston, MA, August 2007.

[13] Alexandros Kapravelos, Yan Shoshitaishvili, Marco
Cova, Christopher Kruegel, and Giovanni Vigna. Re-
volver: An Automated Approach to the Detection of
Evasive Web-based Malware. In Proceedings of the
22nd USENIX Security Symposium (Security), Washing-
ton, DC, August 2013.

[14] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,
William Robertson, Christo Wilson, and Engin Kirda.
Thou Shalt Not Depend on Me: Analysing the Use of
Outdated JavaScript Libraries on the Web. In Proceed-
ings of the 2017 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February–
March 2017.

[15] Sebastian Lekies, Mario Heiderich, Dennis Appelt,
Thorsten Holz, and Martin Johns. On the Fragility and
Limitations of Current Browser-Provided Clickjacking
Protection Schemes. In Proceedings of the 6th USENIX
Workshop on Offensive Technologies (WOOT), 2012.

[16] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and
XiaoFeng Wang. Knowing Your Enemy: Understanding
and Detecting Malicious Web Advertising. In Proceed-
ings of the 19th ACM Conference on Computer and
Communications Security (CCS), Raleigh, NC, October
2012.

[17] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu.
DECAF: Detecting and Characterizing Ad Fraud in Mo-
bile Apps. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), Seattle, WA, March 2014.

[18] Ritu Lohtia, Naveen Donthu, and Edmund K Hersh-
berger. The Impact of Content and Design Elements
on Banner Advertising Click-through Rates. Journal of
Advertising Research, 43(4):410–418, 2003.

[19] Malwaretips. How to remove Web Browser Redirect
Virus (Windows Help Guide). https://malwaretips.com/
blogs/remove-browser-redirect-virus/.

[20] Mike Matthews. What MacKeeper is and why you
should remove it from your Mac, 2018. https://www.
imore.com/removing-mackeeper-your-mac.

[21] Ahmed Metwally, Divyakant Agrawal, and Amr El Ab-
badi. DETECTIVES: DETEcting Coalition hiT Infla-
tion attacks in adVertising nEtworks Streams. In Pro-
ceedings of the 16th International Conference on World
Wide Web (WWW), 2007.

[22] Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich,
and Vern Paxson. What’s Clicking What? Techniques
and Innovations of Today’s Clickbots. In International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA), 2011.

956 28th USENIX Security Symposium USENIX Association

https://blog.chromium.org/2017/11/expanding-user-protections-on-web.html
https://blog.chromium.org/2017/11/expanding-user-protections-on-web.html
https://www.google.com/ads/adtrafficquality/
https://www.google.com/ads/adtrafficquality/
https://malwaretips.com/blogs/remove-browser-redirect-virus/
https://malwaretips.com/blogs/remove-browser-redirect-virus/
https://www.imore.com/removing-mackeeper-your-mac
https://www.imore.com/removing-mackeeper-your-mac

[23] Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You Are
What You Include: Large-scale Evaluation of Remote
JavaScript Inclusions. In Proceedings of the 19th ACM
Conference on Computer and Communications Security
(CCS), Raleigh, NC, October 2012.

[24] Nick Nikiforakis, Federico Maggi, Gianluca Stringhini,
M Zubair Rafique, Wouter Joosen, Christopher Kruegel,
Frank Piessens, Giovanni Vigna, and Stefano Zanero.
Stranger Danger: Exploring the Ecosystem of Ad-based
URL Shortening Services. In Proceedings of the 21st In-
ternational World Wide Web Conference (WWW), Seoul,
Korea, April 2011.

[25] Erlend Oftedal. Retire.js: What your require you must
also retire. https://retirejs.github.io/retire.js/.

[26] OWASP. Clickjacking. https://www.owasp.org/index.php/
Clickjacking.

[27] Paul Pearce, Vacha Dave, Chris Grier, Kirill Levchenko,
Saikat Guha, Damon McCoy, Vern Paxson, Stefan Sav-
age, and Geoffrey M. Voelker. Characterizing Large-
Scale Click Fraud in ZeroAccess. In Proceedings of
the 21st ACM Conference on Computer and Communi-
cations Security (CCS), Scottsdale, Arizona, November
2014.

[28] M. Zubair Rafique, Tom Van Goethem, Wouter Joosen,
Christophe Huygens, and Nick Nikiforakis. It’s Free
for a Reason: Exploring the Ecosystem of Free Live
Streaming Services. In Proceedings of the 2016 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, February 2016.

[29] David Ross and Tobias Gondrom. HTTP Header Field
X-Frame-Options. Technical report, 2013.

[30] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin
Jackson. Busting Frame Busting: a Study of Clickjack-
ing Vulnerabilities at Popular Sites. In Proceedings of
the IEEE Web 2.0 Security and Privacy (W2SP), 2010.

[31] Sid Stamm, Brandon Sterne, and Gervase Markham.
Reining in the Web with Content Security Policy. In
Proceedings of the 19th International World Wide Web
Conference (WWW), Raleigh, NC, April 2010.

[32] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav
Jagpal, Alexandros Kapravelos, Damon McCoy, Anto-
nio Nappa, Vern Paxson, Paul Pearce, Niels Provos, and
Moheeb Abu Rajab. Ad Injection at Scale: Assessing
Deceptive Advertisement Modifications. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

[33] W3C. Content Security Policy Level 3. https://www.w3.
org/TR/CSP3/.

[34] Wikipedia. List of DNS record types. https://en.wikipedia.
org/wiki/List_of_DNS_record_types#NS.

[35] Wikipedia. List of managed DNS providers. https://en.
wikipedia.org/wiki/List_of_managed_DNS_providers.

[36] Wikipedia. SOA record. https://en.wikipedia.org/wiki/
SOA_record.

[37] Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weins-
berg, Anmol Sheth, Roberto Perdisci, and Wenke Lee.
Understanding Malvertising Through Ad-Injecting
Browser Extensions. In Proceedings of the 24th Interna-
tional World Wide Web Conference (WWW), Florence,
Italy, May 2015.

[38] Haitao Xu, Daiping Liu, Aaron Koehl, Haining Wang,
and Angelos Stavrou. Click Fraud Detection on the Ad-
vertiser Side. In Proceedings of the 19th European Sym-
posium on Research in Computer Security (ESORICS),
Wroclaw, Poland, September 2014.

[39] Apostolis Zarras, Alexandros Kapravelos, Gianluca
Stringhini, Thorsten Holz, Christopher Kruegel, and Gio-
vanni Vigna. The Dark Alleys of Madison Avenue:
Understanding Malicious Advertisements. In Proceed-
ings of the 2014 Conference on Internet Measurement
Conference (IMC), 2014.

[40] Yuchen Zhou and David Evans. Understanding and
Monitoring Embedded Web Scripts. In Proceedings
of the 36th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2015.

USENIX Association 28th USENIX Security Symposium 957

https://retirejs.github.io/retire.js/
https://www.owasp.org/index.php/Clickjacking
https://www.owasp.org/index.php/Clickjacking
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/
https://en.wikipedia.org/wiki/List_of_DNS_record_types#NS
https://en.wikipedia.org/wiki/List_of_DNS_record_types#NS
https://en.wikipedia.org/wiki/List_of_managed_DNS_providers
https://en.wikipedia.org/wiki/List_of_managed_DNS_providers
https://en.wikipedia.org/wiki/SOA_record
https://en.wikipedia.org/wiki/SOA_record

What Are You Searching For?
A Remote Keylogging Attack on Search Engine Autocomplete

John V. Monaco
Naval Postgraduate School, Monterey, CA

Abstract
Many search engines have an autocomplete feature that
presents a list of suggested queries to the user as they type.
Autocomplete induces network traffic from the client upon
changes to the query in a web page. We describe a remote
keylogging attack on search engine autocomplete. The attack
integrates information leaked by three independent sources:
the timing of keystrokes manifested in packet inter-arrival
times, percent-encoded Space characters in a URL, and the
static Huffman code used in HTTP2 header compression.
While each source is a relatively weak predictor in its own
right, combined, and by leveraging the relatively low entropy
of English language, up to 15% of search queries are identi-
fied among a list of 50 hypothesis queries generated from a
dictionary with over 12k words. The attack succeeds despite
network traffic being encrypted. We demonstrate the attack
on two popular search engines and discuss some countermea-
sures to mitigate attack success.

1 Introduction

Search queries contain sensitive information about individ-
uals, such as political preferences, medical conditions, and
personally identifiable information [7, 25]. They can reveal
user demographics, hobbies, and interests, and are routinely
used for targeted advertising [4, 24]. To protect user privacy,
all major search engines now encrypt search query traffic.

Autocomplete is a feature that provides suggested queries
to the user as they type based on the partially completed query,
trending topics, and the user’s search history [2]. Intended
to enable the user to find information faster, autocomplete
requires the user’s client to communicate with the server as
keyboard input events are detected. As a result, the user’s
keystrokes manifest in network traffic.

We present a remote keylogging attack on websites that
implement autocomplete. The attack detects keystrokes in en-
crypted network traffic and identifies search queries using in-
formation from three independent sources: keystroke timings

manifested in packet inter-arrival times, percent-encoding of
Space characters in a URL, and the static Huffman code used
in HTTP2 header compression.

The attack we developed, called KREEP (Keystroke Recog-
nition and Entropy Elimination Program), consists of five
stages: keystroke detection, which separates packets that cor-
respond to keystrokes from background traffic; tokenization
to delineate words in the packet sequence; dictionary pruning,
which uses an HTTP2 header compression side channel to
eliminate words from a large dictionary; word identification,
performed by a neural network that predicts word probabili-
ties from packet inter-arrival times; and a beam search, which
generates hypothesis queries using a language model. KREEP
is a remote passive attack that operates entirely on encrypted
network traffic.

Autocomplete has been incorporated into almost every ma-
jor search engine. We demonstrate our attack on two popular
search engines and evaluate its performing using a collected
dataset of 16k search queries. Using a dictionary with over
12k words, KREEP identifies 15% of queries and recovers
up to 60% of the query text among a list of 50 hypothesis
queries. The attack is robust to packet delay variation (PDV).
We simulate up to ±32ms of network noise and find relatively
little loss in performance with moderate levels of PDV. How-
ever, the attack is not robust to padding and we propose a
simple padding defense that mitigates both the HTTP2 header
compression side channel and ability to delineate words.

To summarize, the main contributions of this work include:
1) A method to detect packets induced by autocomplete

and delineate words in a query. The pattern of autocomplete
packet sizes from each search engine is characterized by a de-
terministic finite automaton (DFA). We generalize the longest
increasing subsequence problem, which has an efficient dy-
namic programming solution, to that of finding the longest
subsequence accepted by the DFA. This approach can detect
keystrokes in network traffic with near-perfect accuracy and
delineate words with greater than 90% accuracy.

2) A side channel attack that leverages the static Huffman
code used in HPACK, the HTTP2 header compression for-

USENIX Association 28th USENIX Security Symposium 959

mat. Previously, it was shown that HPACK leaked relatively
little information through compressed size [50]. However,
with autocomplete, a search query is built up incrementally
one character at a time and then recompressed. Due to this
incremental compression, the information leaked is more than
previously thought. We describe a method to leverage this
information leakage to prune a dictionary, which increases
the accuracy of our remote keylogging attack.

3) A neural network that identifies words from keystroke
timings. We define a neural network architecture that takes
into account the preceding and succeeding context of each
observed timing and a method to identify words from a dictio-
nary containing over 12k entries. The network is trained on
keystrokes recorded from 83k typists, and words are correctly
identified with 19% accuracy.

4) The integration of a language model and keystroke tim-
ing attack to leverage the relatively low entropy of English
language. Previous keystroke timing attacks have noted the
relatively low entropy of natural language compared to pass-
word input [47]. We introduce a method that combines a
keystroke timing attack with a language model to generate
hypothesis search queries. The use of a language model sig-
nificantly improves performance.

In the next section, we provide background information on
keylogging side channels and autocomplete. The attack work-
flow and threat model are described in Section 3, followed by
keystroke detection and tokenization in Section 4. Dictionary
pruning and the HTTP2 header compression side channel are
described in Section 5. Word identification from timings and
the language model are described in Section 6. Sections 7 and
8 contain results and discussion, respectively, and Section 9
concludes.

2 Background

2.1 Keylogging side channels
A keylogging side channel attack aims to recover the
keystrokes of a victim through unintended information leak-
age. Such attacks have been demonstrated for a wide range of
modalities such as acoustics [5], seismic activity [31], hand
motion [54], and spikes in CPU load [46]. These generally
fall into two different categories: spatial attacks, which utilize
a channel that leaks spatial information about where a key is
located on the keyboard, and temporal attacks, which utilize a
channel that leaks only the timing of the keyboard events [34].
Our attack leverages both spatial and temporal information
leaked through network traffic generated by a website with
autocomplete.

Temporal keylogging attacks attempt to recognize which
keys a user typed based only on the key press and release
timings. This is possible because different key sequences can
result in characteristic time intervals, such as typing the key
sequence “th” quicker than “aq”. Consequently, the exposure

of keyboard event timings is a threat to user privacy. Remote
keystroke timing attacks may target applications in which a
keystroke induces network traffic from the victim’s host, such
as SSH [47] or a search engine with autocomplete functional-
ity [51]. Packet inter-arrival times, when observed remotely,
reveal the time between successive keystrokes. Keyboard in-
put events can also be detected from within a sandboxed
environment on the host [46] or on a multi-user system [59].

Keylogging attacks can be characterized by the type of
input that occurs. For password input, an attack may assume
that each key has an equal probability of occurrence, i.e.,
maximum entropy, whereas for natural language it is often
assumed that the user typed a word contained in a dictionary
[29]. For the purpose of identifying search queries, we assume
natural language input which enables KREEP to leverage a
language model in generating hypothesis queries.

Two main problems arise when trying to determine
keystrokes from timings. The first is keystroke detection:
given a sequence of events, such as network packets, spikes
in CPU load, or memory accesses, determine which events
correspond to keystrokes and which do not. This is a binary
classification problem. In our attack, we consider a sequence
of network packets emitted by the victim which includes
background traffic in addition to the HTTP requests induced
by autocomplete. The second problem is key identification:
given that a key press has occurred, the attacker must deter-
mine which key it was. This is a multi-class classification
problem. In our attack, we assume that each key is either an
English alphabetic character (A-Z) or the Space key, for a
total of 27 keys.

We address the problems of keystroke detection and key
identification separately. KREEP detects keystrokes by find-
ing a subsequence of packet sizes that are characteristic of
autocomplete requests. For key identification, KREEP lever-
ages both packet size and packet inter-arrival timings, which
faithfully preserve key-press latency.

2.2 Web search autocomplete

Many websites have autocomplete functionality. With this
feature, a list of suggested search queries is presented to the
user as they enter text into a search form. The list of sug-
gested queries is determined by an algorithm based on the
user’s search history, current trending topics, and geographic
location [2]. Because the suggestions are automated, this can
sometimes result in unfavorable associations implied between
search terms which has made autocomplete the focus of sev-
eral legal disputes [27].

As changes to the query are detected, the client sends an
HTTP GET request to the server and the server responds
with a list of suggested search queries [26]. This results in a
series of HTTP requests following keyboard events, such as
those shown in Figure 1. The request contains the partially
completed query in addition to other parameters, such as an

960 28th USENIX Security Symposium USENIX Association

G
oo

gl
e

Size URL
163 ?q=t&cp=1&...
164 ?q=th&cp=2&...
164 ?q=the&cp=3&...
166 ?q=the%20&cp=4&...
167 ?q=the%20l&cp=5&...
168 ?q=the%20la&cp=6&...
169 ?q=the%20laz&cp=7&...
170 ?q=the%20lazy&cp=8&...
172 ?q=the%20lazy%20&cp=9&...
173 ?q=the%20lazy%20d&cp=10&...
173 ?q=the%20lazy%20do&cp=11&...
174 ?q=the%20lazy%20dog&cp=12&...

B
ai

du

Size URL
661 ?wd=t&csor=1&...
668 ?wd=th&csor=2&pwd=t&...
670 ?wd=the&csor=3&pwd=th&...
674 ?wd=the%20&csor=4&pwd=the&...
678 ?wd=the%20l&csor=5&pwd=the%20&...
680 ?wd=the%20la&csor=6&pwd=the%20l&...
682 ?wd=the%20laz&csor=7&pwd=the%20la&...
684 ?wd=the%20lazy&csor=8&pwd=the%20laz&...
688 ?wd=the%20lazy%20&csor=9&pwd=the%20lazy&...
693 ?wd=the%20lazy%20d&csor=10&pwd=the%20lazy%20&...
695 ?wd=the%20lazy%20do&csor=11&pwd=the%20lazy%20d&...
697 ?wd=the%20lazy%20dog&csor=12&pwd=the%20lazy%20do&...

Figure 1: Autocomplete requests for the query “the lazy dog” in Google (left) and Baidu (right). After each key press, the client
sends an HTTP GET request that contains the partially completed query in the URL (shown in bold). Packet size is in bytes.

authentication token and page load options, which generally
do not change between successive requests. As a result, each
request changes by only a single character, and the size of
each packet increases by about 1 byte over the previous.

There are primarily two methods to implement autocom-
plete [35]. The first is a polling model in which a web page
periodically checks the contents of the query input field at
fixed intervals. When a change is detected, an autocomplete
request is sent to the server to retrieve the query suggestions.
Depending on the polling rate and the speed of the typist,
an autocomplete request may not immediately follow every
keystroke. If two keystrokes occur before the polling timer
expires, then they will both be included in the next autocom-
plete request. In this situation when the typing rate exceeds
the polling rate, the keyboard input event times are not faith-
fully preserved in packet inter-arrival times due to multiple
keys being merged into a single request.

The second method of implementing autocomplete is a
callback model in which the requests are triggered by HTML
DOM keydown or keyup input events. In this approach, each
autocomplete request immediately follows each input event
such that the packet inter-arrival times faithfully preserve the
time between keyboard events. Non-printable characters, such
as Shift, Ctrl, and Alt, are ignored since these alone do not
result in visible changes to the query.

We focus only on search engines that implement auto-
complete requests triggered by keydown events. This results
in packet inter-arrival times that are highly correlated with
key-press latencies, i.e., time between successive keydown
events. Previously, we determined that Bing implements
a polling model with 100 ms timer, DuckDuckGo imple-
ments a callback model triggered by keyup events, and Baidu,
Google, and Yandex implement a callback model triggered
by keydown events [35]. Because Yandex is not vulnerable to
the method of tokenization described in Section 4, we con-
sider only search engines Google and Baidu. As of January,

2019, Google search comprises over 90% of worldwide mar-
ket share [49], and Baidu comprises over 70% of the market
share within China [48].

3 Attack overview

In this section, we define the threat model and describe the
attack workflow. We then summarize the performance metrics
used to evaluate each component of KREEP separately as
well as overall attack success.

3.1 Threat model

We assume a remote passive adversary who can capture en-
crypted network traffic emitted by a victim using a search
engine with autocomplete. We do not make any assumptions
about background traffic or the ability to detect when a web
page loaded; KREEP is able to isolate the subsequence of
packets that contain autocomplete requests.

We assume the victim types only alphabetic keys and the
Space key (27 keys total) to form a query made of lower-
case English words with each word separated by a Space.
This excludes queries that were copied and pasted, the use of
Backspace and Delete keys, and any other input that might
cause the cursor to change position, such as arrow keys. The
victim might select an autocomplete suggestion before typing
a complete query; KREEP can identify the query up to the
point a selection was made.

The query must contain words in a large English dictio-
nary known to the attacker. We use a dictionary of over 12k
words comprised of the 10k most common English words [32]
together with English words that appear in the Enron email
corpus and English gigaword newswire corpus [19] (used to
simulate search queries, see Section 7.1 for dataset details).
KREEP does not require any labeled data from the victim for
the keystroke timing attack; the neural network that performs

USENIX Association 28th USENIX Security Symposium 961

Keystroke detection

(Packet trace)

Tokenization

Dictionary pruning

Word identification

Beam search

and
are
the
...

lazy
onto
that
...

cat
dog
fox
...

the lazy dog
the lazy fox
and that dog

0.2

P(w|τ)τ))
0.1
0.4

0.1

P(w|τ)τ))0.3 P(w|τ)τ))
0.3
0.2

Figure 2: Attack workflow. Input to KREEP is a packet trace
containing autocomplete and background traffic; output is a
list of hypothesis search queries. Each component provides
input to the next. See text for component definitions.

word identification is trained on an independent dataset. We
assume that the attacker has access to this dataset.

3.2 Workflow
Our attack consists of five stages applied in a pipeline archi-
tecture shown in Figure 2 and summarized below.

Keystroke detection: packets that correspond to keyboard
events are first detected from the full packet trace. This is a
binary classification problem where each packet is labeled as
either key-press or non-key-press. Each autocomplete request
contains the query typed up to that point, so the sequence
of autocomplete packet sizes has approximate linear growth
over time. This makes it possible to separate keystrokes from
background traffic, described in Section 4.2.

Tokenization: from the detected subsequence of packets,
words are delineated based on packet size differences. Tok-
enization is also a binary classification problem where each
packet is labeled as either Space or non-Space. Space charac-
ters in a URL are encoded by a three-byte escape sequence
whereas other characters occupy a single byte. This behavior
enables tokenization, described in Section 4.3.

Dictionary pruning: packet size differences are compared
to a dictionary to eliminate words that could not have resulted
in the observed sequence. This effectively prunes the hypoth-
esis query search space. Dictionary pruning is possible due to
the static Huffman code in HTTP2 header compression. This
side channel is described in Section 5.

Word identification: the probability of each word remain-
ing in the dictionary is determined from the observed packet
inter-arrival times, which faithfully preserve key-press laten-
cies. Word identification is performed by a neural network
described in Section 6.1.

Beam search: word probabilities are combined with a
language model in a beam search that generates hypothe-
sis queries. The number of hypothesis queries is controlled by

the beam width. The beam search is described in Section 6.2.

3.3 Performance metrics
We measure the performance of each component of the attack
separately as well as overall attack success.

Both keystroke detection and tokenization are binary clas-
sification problems. For keystroke detection, a false positive
occurs when a packet is incorrectly labeled as an autocomplete
request, and a false negative occurs when an autocomplete
request packet is missed. Likewise, a tokenization false posi-
tive occurs when a letter is incorrectly labeled as a Space, and
false negative occurs when a Space is missed. Let fp, fn be the
number of false positives and false negatives, and let tn, tp be
the number of true negatives and true positives, respectively.
We measure the performance of both keystroke detection and
tokenization by the F-score,

F1 = 2× Precision×Recall
Precision+Recall

(1)

where

Precision =
tp

tp+fp
, Recall =

tp
tp+fn

. (2)

The F-score varies between 0, for missing all positives, and 1,
for perfect precision and recall. Both keystroke detection and
tokenization provide input to later stages of the attack, the
success of which critically depends on performing well at both
these tasks. As demonstrated in Section 7.2, making these
tasks more difficult significantly reduces overall performance.

The utility of dictionary pruning is measured by the infor-
mation gain due to incremental HTTP2 header compression.
We compare this to the information gain in a classical com-
pression side channel where only the total compressed size of
the query is known.

For word identification, we report the word classification
accuracy from packet timings, assuming perfect detection and
tokenization. This evaluates word identification separately
from the other components.

We consider two metrics to measure overall attack success.
First is the rate at which a query is correctly identified among
the list of hypothesis queries. Using a beam width of 50, this
corresponds to a top-50 classification accuracy. Since the
hypotheses may contain queries that are close, but do not ex-
actly match, the true query, we also consider the Levenshtein
edit distance between the true and hypothesis queries. Edit
distance is used instead of character or word classification
accuracy since failures in keystroke detection can result in a
predicted query that is either shorter or longer than the origi-
nal query. This metric is thought to better reflect the overall
performance of a keylogging attack in such cases [16]. We
report the minimum edit distance among the hypotheses to
the true query, which roughly corresponds to the maximum
proportion of keys that are correctly identified.

962 28th USENIX Security Symposium USENIX Association

4 Keystroke detection and tokenization

In this section, we characterize the network traffic emitted
by autocomplete in two different search engines. We then de-
scribe the first two stages of attack: a method to detect packets
that contain autocomplete requests and a method to delineate
words in the query. Both stages leverage characteristics of
autocomplete packet sizes.

4.1 Autocomplete packet sizes

The problem of keystroke detection involves deciding whether
each captured packet was induced by a keyboard event or not.
As the user types a query into a search engine with autocom-
plete, the client emits HTTP requests that contain the partially
completed query, such as those shown in Figure 1. However,
these are mixed together with requests to load page assets,
such as HTML and CSS files, AJAX requests supporting dy-
namic web content, and other background traffic. We found
that typing a query with 12 characters on Google search in-
duces 95 outgoing packets with payload greater than 0 bytes
(436 packets including those with empty payloads), only 12
of which correspond to autocomplete requests.

Each autocomplete request contains a new character ap-
pended to the URL path. As a result, the sequence of packet
sizes is monotonically increasing, shown in Figure 1. We
perform keystroke detection by isolating a subsequence of
packets that exhibit this pattern, taking into account the par-
ticular behavior of each search engine described below.

The behavior of each search engine is characterized by the
sequence of size differences between successive autocom-
plete request packets. That is, let si be the size in bytes of the
ith autocomplete request and s0 the size of the first request.
Packet size differences are given by di = si− si−1 for i > 0.
This sequence reflects packet size growth as a function of
query length, invariant to the size of other parameters con-
tained in the request which vary across hosts due to different
sized identifiers, authentication tokens, and page load options.
However, these parameters typically remained unchanged in
successive autocomplete requests from a single host.

Figure 3 shows the distribution of di as a function of query
length for both Google and Baidu. From this figure and a
manual inspection of several HTTP request packets, we make
several observations about the behavior of each search engine.
We then use these observations to build a DFA that accepts a
sequence of autocomplete packet size differences.

Google autocomplete emits packets that typically increase
by between 0 and 3 bytes. As each new character is appended
to the “q=” parameter of the URL, the size increases by about
a byte. The 2 and 3 byte increases correspond to the addition
of percent-encoded characters in the URL, described in Sec-
tion 4.3. The 0 byte increases are an artifact of HTTP2 header
compression, described in Section 5.1. A larger increase of
approximately 20 bytes occurs after about 12 requests. At

Figure 3: Density of packet size difference between successive
autocomplete requests for Google (left) and Baidu (right).

this point, an additional “gs_mss” parameter with the partially
completed query is added to the URL. This results in a sudden
increase of about 20 bytes: 8 bytes for “&gs_mss=” and 12
bytes for the query. The request then continues to increase by
about 1 byte per character thereafter.

The autocomplete packet sizes of Baidu typically increase
by either 2 or 4 bytes per character, with a larger increase
of 7 or 9 bytes at the beginning of the sequence. After the
first request, an additional parameter “pwd=” referring to the
previous query is appended to the URL. For example, if the
user types “th”, the first request will contain “wd=t” followed
by “wd=th&pwd=t”, resulting in a 7 byte increase (6 bytes for
“&pwd=t” and 1 byte for “h”). A 4 byte increase corresponds
to the addition of escaped characters in the URL, which oc-
cupy 3 bytes. Baidu requests also occasionally include a new
cookie not present in previous requests, resulting in a larger
increase of either 11 or 13 bytes.

Both search engines include a parameter that keeps track
of the request number. In Google, this parameter is “cp=”,
where “cp” increments with each request (see Figure 1), and
Baidu uses the “csor=” parameter. On the 10th request, “cp=9”
becomes “cp=10”, resulting in an additional 1 byte increase.

4.2 Keystroke detection

Since autocomplete request size is monotonically increasing,
keystroke detection could be performed by finding the longest
increasing subsequence (LIS) of packet sizes which has an
efficient solution through dynamic programming [44]. How-
ever, the LIS fails to capture the fact that packets typically
increase by a fixed amount and that two successive packets
may be the same size due to HTTP2 header compression. To
that end, we generalize the LIS problem to that of finding the
longest subsequence accepted by a sequence detector DFA
based on observations in the previous section.

We define a DFA that accepts a sequence of packet size
differences generated by the autocomplete of each search
engine. The DFA for Google autocomplete packets is shown
in Figure 4, where edges denote a constraint on d that must be
met to traverse to the next state. States a and b correspond to

USENIX Association 28th USENIX Security Symposium 963

a b c d

d= 0 d> 3 d= 0

1≤ d≤ 3

1≤ d≤ 3
1≤ d≤ 3

d> 3

1≤ d≤ 3

Figure 4: DFA that accepts a sequence of packet size differ-
ences generated by autocomplete in Google search.

increases of between 0 and 3 bytes prior to the large increase
from the addition of the “gs_mss” parameter, and states c
and d are reached after the large increase. The absence of
a recurrent connection on states b and d indicate that two
consecutive non-increases cannot occur. This DFA takes as
input a sequence of packet size differences, and if at any point
an unreachable state is met, it rejects the sequence.

Let the longest automaton subsequence (LAS) be the
longest subsequence accepted by the DFA. Keystrokes are de-
tected by finding the LAS in the sequence of packet sizes. The
LAS is determined efficiently through dynamic programming
in a similar manner to that of the LIS problem. Let F be an
acceptor DFA and Li the longest subsequence accepted by F
ending in the ith packet. Assume the LAS ending in element
Li must necessarily be part of the solution if it contains Li
(optimal substructure). Then Li need only be computed once
and may be considered as the prefix to any other subsequence
L j where j > i (overlapping subproblems). We then need only
check if the DFA that accepted the sequence ending in packet
i can transition to packet j. Note that in general, these as-
sumptions may not hold and thus the dynamic programming
solution might be suboptimal; however, we found this method
to work well in practice and leave for future work a formal
treatment of the LAS problem.

4.3 Tokenization
Tokenization is the process of delineating words in the se-
quence of autocomplete requests. Since we assume the search
query to be made of English words separated by a Space, this
enables the following stages of attack (dictionary pruning,
word identification, and beam search) to be conducted at the
word level. Like detection, tokenization is a binary classifi-
cation problem since each packet may be labeled as either a
delimiter or part of a word. We consider the Space character
as the only delimiter between words.

Percent-encoding is an escape sequence used to represent a
character in a URL that is outside the set of allowable charac-
ters [8]. A percent-encoded sequence consists of three ASCII
characters, “%” followed by two hexadecimal digits. The
Space character (ASCII=32) in a URL has percent-encoding
“%20”. When the user types a Space into the search query
field, this escape sequence is appended to the URL causing
the uncompressed request packet to increase by 3 bytes.

Google autocomplete packets increase by 2 bytes when the

10000011100100001111001100100011

d o g (Padding)(Byte length)(H) s

Figure 5: Huffman encoded string literal “dogs” in HPACK.

Space key is pressed as a result of HTTP2 header compression.
The Huffman code for characters “%”, “2”, and “0” have
bit lengths 6, 5, and 5 respectively, and the sequence “%20”
has a total compressed bit length of 16 bits. Tokenization is
performed by marking packets that increase by 2 bytes as
word boundaries.

Baidu does not use HTTP2, so the escape sequence “%20”
occupies 3 bytes. However, since the previous query is in-
cluded in each request, when a Space is pressed the packet
size increases by 4 bytes: 1 for the new character appended
to the “pwd” parameter, and 3 for “%20” appended to the
“wd” parameter. This also occurs twice in a row since when
another letter key is pressed following the Space, “%20” is
then appended to the “pwd” parameter. For example, see the
URL and sizes of the third and fourth packets in Figure 1
(right), which demonstrate two consecutive 4 byte increases.
Tokenization of Baidu queries is achieved by detecting the
first of any two consecutive 4 byte increases.

5 Dictionary pruning

We describe a side channel that leverages the static Huffman
code used in HTTP2 header compression. This enables prun-
ing the dictionary, but is only applicable to Google which
supports HTTP2. Baidu does not currently support HTTP2.

5.1 Incremental compression side channel

HPACK is the HTTP2 header compression format, which
uses a static Huffman code to encode string literals [39]. A
Huffman code is a near-optimal lossless compression scheme.
Symbols are encoded by bit string with length based on the
frequency of the symbol. Huffman codes are prefix-free, such
that the code for a symbol is not the prefix to any other. The
encoded string becomes the concatenation of all encoded
symbols, avoiding the need for symbol delimiters. In HPACK,
the encoded string is padded with between 0 and 7 bits to
align with the nearest octet boundary.

The static Huffman code in HPACK was determined using
a large sample of HTTP headers, and all HPACK implemen-
tations must use the same Huffman code defined in the speci-
fication [39]. The sizes of lowercase letters range from 5 bits
for frequently used characters, such as “e” and “t”, to 7 bits
for infrequent characters, such as “j” and “z”. As an example,
the compressed string literal “dogs” is shown in Figure 5. The
encoded symbols occupy 6+5+6+5=22 bits, which is then
padded with 2 bits for a total size of 3 bytes.

964 28th USENIX Security Symposium USENIX Association

It was previously determined that size alone does not leak
a considerable amount of information in HPACK [50]. Let
hi be the bit length of the ith symbol in a string as specified
by the static Huffman code and b = ∑hi the total bit length
of the compressed string. The size b reveals only that the
string must be some linear combination of encoded symbols
to achieve the same compressed size. For example, the string
“fish” has compressed length 6+5+5+6=22 bits, exactly the
same compressed size as “dogs” in Figure 5.

Less than 0.05 bits per character are revealed in this way,
making an HTTP2 compression side channel impractical [50].
This estimate is actually an upper bound since compressed
string literals in HPACK are padded to the nearest octet. In-
stead of b, an adversary observes byte size B = p+∑hi

8 where
0 ≤ p ≤ 7 is an unknown amount of padding to align the
compressed bit string with the nearest octet.

However, the query in a sequence of autocomplete requests
grows incrementally. Each request contains a single new char-
acter appended to the URL path, which then passes through
header compression before being sent to the server. We refer
to this as incremental compression. As a result, instead of
total size B, an adversary observes the sequence of cumula-
tive byte sizes B1, . . . ,Bn of the compressed query after each
new character is appended. Due to differences in the size of
each symbol, different words grow at different rates and the
cumulative byte size sequence can reveal the query.

To leverage the information leaked through incremental
compression, we compare the observed sequence of cumu-
lative byte sizes to the cumulative sizes of every word con-
tained in the dictionary. The sizes of words in the dictionary
are precomputed for each possible amount of padding, which
is unknown to the attacker. Words for which the observed
sequence never occurs can be eliminated from the dictionary.

Let di be the observed size increase in bytes of the ith
request packet and let B j = ∑i≤ j di for 1 ≤ j ≤ n be the ob-
served cumulative size up to the nth request. The sequence
B1, . . . ,Bn characterizes the size growth of a word after un-
dergoing incremental compression. The cumulative byte size
sequence Bw,p0

1 , . . . ,Bw,p0
n is computed for each word w in the

dictionary, given by

Bw,p0
j =

⌊ p0 +∑i≤ j hi

8

⌋
(3)

where 0≤ p0≤ 7 is an unknown amount of padding applied to
the compressed URL prior to the request containing the first
character of the word. The observed size sequence B1, . . . ,Bn
is compared to every sequence Bw,p0

1 , . . . ,Bw,p0
n in the dictio-

nary to discover potential matches and eliminate words that
could not have been typed by the user.

An example is shown in Figure 6 where the user typed a
4 letter word with cumulative byte size [1,2,3,3]. Compar-
ing this sequence to the dictionary, there are two potential
matches: the observed sequence [1,2,3,3] appears for the
word “dogs” with padding p0 = 0 and for the word “guns”

Observed packet sizes

Dictionary

Figure 6: Dictionary pruning. The dictionary contains every
possible sequence of cumulative packet size, determined for
each word in the dictionary under each unknown prior padding
amount (0 to 7 bytes). The cumulative size of an observed
query is compared to each sequence in the dictionary. Words
that don’t have any matches to the observed sequence are
eliminated. The observed sequence [1,2,3,3] matches “dogs”
with no padding and “guns” with 0 or 1 byte padding; “cats”
has no matches and can be safely eliminated.

with p0 = 0 or p0 = 1. It’s therefore possible that the query
contains either the word “dogs” or “guns”. However, the
user definitely did not search for “cats” since the sequence
[1,2,3,3] is not attainable for the word “cats” under any
padding p0. The total size alone does not reveal this much
information since all words in the dictionary could have the
same total compressed size as the query (3 bytes) given some
unknown amount of padding.

Note that in general, if hi ≤ pi−1, then di = 0, where pi
is the padding applied after the ith character. That is, when
the bit length of a new character is equal to or less than the
previous amount of padding used, the packet size will remain
the same. Since the lengths of lowercase ASCII characters
range from 5 to 7 bits, an increase of at least 1 byte is guaran-
teed when pi−1 < 5. It is also never the case that di = 0 and
di+1 = 0, i.e., every two consecutive requests must increase
by at least one byte.

USENIX Association 28th USENIX Security Symposium 965

2 4 6 8 10 12 14
Word length

0

2

4

6

8

10

In
fo

rm
at

io
n

(b
its

)

Marginal entropy
Info gain (cumulative size)
Info gain (total size)

Figure 7: Information gain from an incremental compression
side channel, where the cumulative size of a string is exposed,
compared to a conventional compression side channel, where
only the total size is exposed.

5.2 Pruning and information gain
To measure the impact of this side channel, we determined the
expected information gain using a dictionary of 12k common
English words and compare this to the information gained
from total size alone. Given observed cumulative byte size
sequence B = B1, . . . ,Bn, the probability of each word in the
dictionary may be computed by Bayes’ formula,

P(w|B) = P(B|w)P(w)
P(B)

(4)

where P(B|w) is the probability of sequence B given word w,
P(w) is the marginal probability of word w, and P(B) is the
marginal probability the sequence B. Note that multiple byte
size sequences could be observed for a particular word depend-
ing on the amount of padding used. For example in Figure
6, P([1,2,3,3] |"guns") = 2

8 since the sequence [1,2,3,3] is
possible for the word “guns” with paddings of 0 and 1 out of 8
possible padding amounts. In the same example, the marginal
P([1,2,3,3]) = 3

24 since the sequence [1,2,3,3] appears 3
times in the dictionary with 24 precomputed sequences (3
words × 8 padding amounts). Words for which P(w|B)> 0
are retained in the dictionary in the later stages of the attack
and words for which P(w|B) = 0 are eliminated.

From P(w|B), the conditional entropy H (wn|B) is deter-
mined for words of length n. Information gain is given by
I (wn;B) = H (wn)−H (wn|B), where H (wn) is the marginal
entropy of words of length n. We assume each word has an
equal probability of occurrence, i.e., H (wn) has maximum
entropy. The information gain is shown in Figure 7. Note
that information gain from total byte size B is negligible
as previously reported [50]. However, the information gain
from cumulative size increases for longer words due to the
“uniqueness” of the cumulative byte sizes revealed through
incremental compression. These gains lead to more accurate
query identification.

k2

τ0

k1

τ1Input:

Backward RNN:

Forward RNN:

Output:

τ2

1D Convolution:

Figure 8: Neural network architecture that predicts n keys
from n+1 packet inter-arrival times.

6 Word identification and beam search

In the last stages of KREEP, packet inter-arrival timings are
used to predict which words the user typed. Word probabilities
are determined for the remaining words in the dictionary after
pruning, and these probabilities are combined with a language
model in a beam search to generate hypothesis queries.

6.1 Word identification from timings
Since each autocomplete request is triggered by a key-press
event, packet inter-arrival times faithfully preserve key-press
latencies. These latencies are used to predict which keys the
user pressed. Unlike previous work which considered either
each latency in isolation [47], or words in a limited dictio-
nary [29], we define a model that predicts key probabilities
considering their surrounding context and also able to recog-
nize words not seen during training.

We use a three-layer neural network to predict key prob-
abilities. Generally, each word of length n has n+1 packet
inter-arrival times since a Space precedes the first character
and follows the last character. The model takes as input the
sequence of latencies τi for 0≤ i≤ n and predicts P(ki), the
probability of each key ki for 1≤ i≤ n.

The first layer of the network is a bidirectional recurrent
neural network (RNN) with gated recurrent units (GRU) that
takes as input the sequence of n+1 time intervals. The second
layer is a 1-dimensional convolutional layer with kernel size
2 and no padding. The convolutional layer reduces the size
of the output from n+1 to n. The last layer is a dense layer
with softmax activation that predicts the probability of each
key (26 classes) at each time step. This architecture is shown
in Figure 8.

The network architecture was motivated by several factors.
The use of a bidirectional RNN ensures that the predictions at
key i are made within the context of latencies preceding and
following i. The convolutional layer with kernel size 2 com-
bines the latency immediately before and after key i, reducing
the size of the sequence from n+1 (number of latencies) to n
(number of keys). Note that while generally a word of length
n has n+1 latencies, the first and last words in the query each
have n latencies due to missing the leading Space and trailing

966 28th USENIX Security Symposium USENIX Association

Space, respectively. We augment the missing intervals with
the mean latency obtained over the entire training dataset.

Word probabilities are determined from the sequence of
key probabilities output by the network. The probability of
word w is the joint probability of all keys in that word,

P(w|τ) = ∏
ki∈w

P(ki) (5)

where τ is the sequence of observed latencies. Making predic-
tions at the key-level and then calculating word probability
by the joint key probability has several advantages. First,
the number of output classes in the network remains small
(26 keys) compared to the number of possible words (over
12k). Second, the probability of any word can be determined
whether or not it was contained in the dataset used to train the
model. In this way, the dictionary used to generate hypothesis
queries is independent of the key identification model.

Finally, learned features may be shared across words. For
example, if a particular pattern of latencies is indicative of
the sequence “th”, the model can learn to recognize “th” in
different words such as “the”, “there”, “beneath”, and so on. If
instead predictions were made at the word level, these features
would have to be learned separately for each word.

6.2 Language model and beam search
In the last stage, word probabilities are combined with a lan-
guage model to generate hypothesis queries in a beam search.

We assume the query to be a sequence of N words wi for
1≤ i≤ N and take advantage of the fact that some words are
more likely to follow others in natural language. As an exam-
ple, consider trying to predict an 8-letter word that follows
the sequence “recovering from a _”. The probability of words
such as “sprained” and “fractured” should be relatively higher
than other words such as “purchase” and “position”.

The use of a language model enables constraints of English
language to be leveraged in conjunction with word probabil-
ities from packet timings. A language model estimates the
probability of a word given the words that preceded it, de-
noted by P(wi|w1 . . .wi−1). We combine the language model
with the keystroke timing model to determine the probability
of an entire query w = [w1, . . . ,wN], given by

P(w) = ∏
wi∈w

P(wi|τ)P(wi|w1 . . .wi−1)
α (6)

where α is a parameter that controls the weight of the language
model. Smaller α places more weight in the packet inter-
arrival timings, while larger α places more weight on the
language model. In this work, we found α in the range of 0.2
to 0.5 work well and we use α = 0.2. The language model is
a 5-gram model with Kneser-Ney smoothing [21] trained on
the Billion Word corpus [11].

Determining the sequence with maximum a posterior prob-
ability (MAP) is NP-hard due to the exponential growth of the

search space. It is also unlikely that the MAP sequence itself
exactly matches the true query. Instead, KREEP generates a
list of hypothesis queries using a beam search. Beam search is
a breadth-first greedy search algorithm that maintains a list of
top candidates (the “beam”) as it progresses the search tree.

For each token, all the words in the dictionary are appended
to each hypothesis in the beam, which starts with the empty
string. This results in a list of W ×D candidates, where W
is the beam width and D is the size of the dictionary. The
W sequences with highest likelihood are retained, and the
rest discarded. This repeats until the last token is reached, at
which point the search returns a list of W hypothesis queries.
We use a beam width of 50. To measure the performance of
KREEP, we determine the rate at which the query is correctly
identified among the 50 hypotheses as well as the minimum
edit distance in the list of 50 hypotheses to the true query.

7 Results

In this section, we describe our data collection setup and eval-
uate attack performance. KREEP is first tested under ideal
conditions. We then evaluate performance with increasing lev-
els of simulated network noise and propose a simple padding
defense to mitigate attack success.

7.1 Data collection

We built a system that captures network traffic while a query
is typed into a search engine with autocomplete. The mea-
surement setup consists of a keystroke dataset previously
collected from human subjects, browser automation with Se-
lenium WebDriver, and a process to replay keystrokes by
writing keyboard events to /dev/uinput in real time.

To train the neural network, we used a subset of a publicly
available keystroke dataset collected from over 100k users
typing excerpts from the Enron email corpus and English gi-
gaword newswire corpus [15]. From this dataset, we retained
83k users with US English locale on either desktop or laptop
keyboards and QWERTY keyboard layout.

To simulate search queries, we randomly selected 4k
phrases between 1 and 20 words in length containing only let-
ters and the Space key. This selection contains a wide variety
of typing speeds, ranging from 1.5 to 22 keys per second. Of
the 4k phrases, 3k are unique. They contain a total of 1717
unique words ranging from 1 to 14 characters with an average
word size of 6 characters. None of the users in the evaluation
data appeared in the dataset used to train the neural network.

Each capture proceeded as follows. The web browser was
opened and cookies cleared before starting the capture pro-
cess (tshark). One second after the capture began, the website
was loaded using Selenium. There was then a two second de-
lay before replaying the keystrokes. The keystroke sequence
was replayed by writing the sequence of key events to the

USENIX Association 28th USENIX Security Symposium 967

Google Baidu
Chrome Firefox Chrome Firefox

Detect F-score 99.99 99.96 99.62 99.98
Perfect detect rate 99.72 98.70 96.35 99.52

Token F-score 97.26 95.45 96.85 97.33
Perfect token rate 81.12 74.89 86.70 88.30

Table 1: Keystroke detection and tokenization F-scores (%)
and rates (%) of achieving perfect accuracy (F-score=100%).

uinput device with delays between each event that corre-
spond to the original keystroke sequence. The data collection
was performed on an Ubuntu Linux desktop machine with
kernel version 4.15 compiled with the CONFIG_NO_HZ=y
option, which omits scheduling clock ticks when the CPU is
idle [1]. This ensures keyboard event times are replayed with
high fidelity and not quantized due to the presence of a global
system timer.

We captured 4k unique queries on search engines Google
and Baidu, both of which default to an HTTPS connection and
generate autocomplete requests upon key-press events. All
results were obtained on the encrypted traffic: TLSv1.3 for
Google and TLSv1.2 for Baidu. Both sites leak information
through the size of the TLS records, which includes the size
of the payload plus a fixed amount for the authentication code
(GMAC). Thus, TLS preserves differences in payload length,
although TLSv1.3 does contain a provision for record padding
to hide length [40].

To understand how the browser itself might affect network
timings, the data collect was performed in both Chrome (v.71,
with QUIC disabled) and Firefox (v.64). The captured dataset
contains a total of 16k queries (4k queries × 2 search en-
gines× 2 web browsers), obtained over approximately 7 days.
During this time, we did not experience any rate limiting.
However, a small number of captures did miss some of the
outgoing traffic (< 1%). The unsuccessful captures were re-
peated until success.

7.2 Attack performance

The first step of the attack is to detect keystrokes. Keystroke
detection accuracy is reported separately for each website
in each browser in Table 1. In both websites and browsers,
keystrokes are detected with near perfect accuracy with a high
rate of achieving perfect detection. Tokenization F-scores
are also shown in Table 1. The rates of achieving perfect
tokenization are strictly lower than that of detection since
tokenization is applied after detection.

We examined the cases in which tokenization failed. We
found that false positives in Google were due mainly to
rollover of the String Length field in the HPACK header,
which specifies the size in bytes of a compressed string. In
HPACK, the string length starts as a 7-bit integer (see Figure

Google Google (no prune) Baidu
Chrome Firefox Chrome Firefox Chrome Firefox

15.83 15.13 14.20 13.55 12.85 12.63

Table 2: Top-50 classification accuracy: % of queries that are
correctly identified among the 50 hypothesis queries.

5). When the number of compressed bytes exceeds 27− 1,
an additional byte is allocated for the string length, resulting
in an overall increase of 2 bytes (+1 from the String Length
increase and +1 from the new character in the query). Since it
is generally not known where this rollover occurs, we cannot
distinguish whether the 2 byte increase was due to String
Length rollover or the addition of a percent-encoded Space.

False negatives in both Google and Baidu were due mainly
to larger changes in packet size coinciding with a Space. In
Google, this occurs when the “gs_mss” parameter is added
to the query in the same request as a Space, and in Baidu,
from the inclusion of a cookie that was not previously present.
These larger changes (> 10 bytes) mask the change in size
due to the Space key (2 or 4 bytes).

Following detection and tokenization, the dictionary is
pruned, word probabilities from packet inter-arrival timings
are determined, and hypothesis phrases are generated in a
beam search. Attack success critically depends on accurate
keystroke detection and tokenization. This is because the
later stages of the attack assume that word lengths have been
correctly identified. If the wrong word lengths have been de-
termined, due either to a failure in detection or tokenization,
then the correct query cannot be identified.

This behavior is shown qualitatively in Figure 9. In this
example, perfect detection and tokenization result in hypoth-
esis queries that have the correct word lengths and low edit
distance to the true query. When either a false negative or
false positive detection error occurs, the hypothesis queries
will have a different length than the true query. In Figure 9
(middle), the 7th packet (containing the 1st “r” in “recover-
ing”) is incorrectly labeled as non-keystroke. As a result, the
third word in the hypothesis has 9 letters instead of 10. This
results in sequences that have relatively high edit distance to
the true query. Tokenization errors have a similar effect in
that word lengths in the hypothesis will not match the query.
In Figure 9 (right) the 11th packet (containing the 2nd “e” in
“recovering”) is incorrectly labeled as a Space. The hypothesis
queries have the same total length as the true query but differ
in word lengths, resulting in relatively high edit distance.

The proportion of attacks in which the true query is iden-
tified among the hypotheses queries, analogous to a top-50
classification accuracy, is shown Table 2. We also determined
the minimum edit distance for each search engine as a func-
tion of query length and compare this to a baseline attack
in which the timing and language model probabilities are ig-
nored. Baseline performance is obtained by generating 50 ran-

968 28th USENIX Security Symposium USENIX Association

Perfect detection/tokenization Keystroke detection false negative Tokenization false positive
he is recovering from a sprained 0 to be president from a position 18 is to learn from such a position 23
he is recovering from a strained 1 to be president from a business 17 is to learn from such a purchase 23
he is recovering from a fracture 7 to be president just a fraction 22 is to learn more from a position 20
he is recovering from a position 7 to be president from a possible 18 is to learn from such a pressing 22
he is recovering from a possible 7 to be president from a southern 18 is to learn from such a practice 21

Figure 9: Query hypotheses in three different scenarios: perfect detection and tokenization (left), false negative keystroke
detection (center, the 7th packet is missed), and false positive tokenization (right, the 11th packet is labeled as a Space). The edit
distance to the true query “he is recovering from a sprained”, is shown to the right of each hypothesis.

2 4 6 8 10 12
Query length (words)

0.2

0.3

0.4

0.5

0.6

Ed
it

di
st

an
ce

Baseline
Baidu
Google

Figure 10: Minimum edit distance (the closest query among
50 hypotheses to the true query) vs query length.

dom hypotheses, choosing dictionary words the same length
as the detected tokens. Note that this baseline still uses infor-
mation gained through keystroke detection and tokenization.
These results are shown in Figure 10.

Generally, the difficulty in identifying the query increases
with query length. The hypotheses have an average minimum
edit distance of 0.37 to the true query. Note that edit distance
reduces to Hamming distance for strings of equal length, and
perfect detection (F-score of 100%) is achieved in about 98%
of queries. Therefore, 0.37 edit distance is roughly a 63% key
identification accuracy. We did not find any significant differ-
ence in performance across browsers, but did achieve overall
higher query identification rates on Google due information
leaked through incremental compression.

We found the example in Figure 9 to be representative of
attack success which generally had polarized outcomes: the
hypotheses were either very similar to or very different from
the true query. This behavior is revealed in the distribution of
minimum edit distances shown in Figure 11, which has two
modes: one occurring near the baseline (0.55, achieved by
guessing random words) and the other at 0.

7.3 Information sources
To better understand the relative contribution of each com-
ponent, we evaluate attack performance ignoring the packet
timings, language model probabilities, or header compression.

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance

0

2

4

6

De
ns

ity

Figure 11: Minimum edit distance distribution. Two modes
indicate that KREEP either exactly identifies a query (0 edit
distance) or performs near the baseline (0.55 edit distance).

Considering only queries in Google (Baidu does not support
HTTP2), performance is evaluated for three scenarios: using
only the packet timings (TM only), using timings and the
language model (TM+LM), and using both with dictionary
pruning applied (TM+LM+Pruning).

These results are shown in Figure 12 with baseline per-
formance as described in the previous section. The largest
gains are achieved with the use of packet timings and lan-
guage model. The neural network alone identifies words with
19.1% accuracy. Incremental gains are then achieved when
the dictionary is pruned.

7.4 Effects of network noise

We tested the robustness of the attack to network noise. Since
key identification uses packet inter-arrival times, packet delay
variation (PDV) can potentially reduce attack success. PDV
corresponds to changes in network latency, which can obfus-
cate the key-press timings in packet inter-arrival times. In
this regard, variations in routing delay potentially provide a
natural defense to remote keystroke timing attack.

The Laplace distribution has previously been proposed as
a model for PDV [60]. We simulate PDV by drawing sam-
ples from a Laplace distribution parameterized by the mean
absolute deviation (MAD). The simulated PDV is added to

USENIX Association 28th USENIX Security Symposium 969

2 4 6 8 10 12
Query length (words)

0.2

0.3

0.4

0.5

0.6

Ed
it

di
st

an
ce

None
TM only
TM+LM
TM+LM+Prune

Figure 12: Performance with/without the use of the timing
model (TM), language model (LM) and dictionary pruning.

012 4 8 16 32
PDV (ms)

0.2

0.3

0.4

0.5

0.6

Ed
it

di
st

an
ce

Baseline
Baidu
Google

Figure 13: Effects of packet delay variation. Baseline ignores
packet timing, uses only packet size to generate hypotheses.

the captured packet times before attempting to identify the
query with KREEP. Performance as a function of increasing
PDV is shown in Figure 13. The attack is relatively robust
to PDV less then 8 ms, but approaches baseline performance
with PDV in excess of 32 ms.

7.5 Effects of padding
With the attack being robust to low levels of network noise,
we explored other means of mitigating attack success. Query
identification critically depends on accurate detection and
tokenization, and chances of attack success can be greatly
reduced with a simple padding scheme.

We simulate random padding by modifying the captured
packet sizes. The size of each autocomplete packet is in-
creased by 1 byte with probability 0.5. The sizes of other

Detect F-score Token F-score Min edit distance
Original Padded Original Padded Original Padded

99.89 94.46 96.72 51.23 37.76 61.32

Table 3: Effects of randomly padding packets with 0 or 1 byte.

packets in the trace remain unchanged such that the padding
defense could be implemented entirely in the client side auto-
complete logic.

The effects of this defense nearly double the minimum edit
distance, shown in Table 3. While this scheme does not greatly
reduce the ability to detect keystrokes, it makes tokenization
difficult which poisons later stages of the attack. Note that
tokenization could also be made more difficult by encoding
the Space key as a single character, such as “+” instead of the
3 byte sequence “%20”. Search engines Yandex and Duck-
DuckGo both use this strategy. However, this does not exclude
the possibility of tokenization through other means such as
timings, an item we leave for future work.

8 Discussion

Search engines with autocomplete are part of a larger class of
applications in which the manifestation of human-computer
interactions in network traffic can lead to a remote side chan-
nel attack. This includes VoIP: as utterances are compressed
and transmitted in real time, spoken phrases can be identified
in encrypted network traffic [55, 56]; SSH: single characters
are transmitted to and echoed back by the server, exposing the
timing of key presses [47]; HTTP: unencrypted network traces
contain a user’s web browsing activity [36, 57]; and HTTPS:
in dynamic web applications, server response size can reveal
interactions with specific elements on a web page [12].

8.1 Related work
Keystroke timing attacks Keystroke timing attacks were
introduced in [47], which considered the identification of key
pairs (bigrams) from key-press latencies to aid in password
inference. Such an attack is generally possible because of
the non-zero mutual information between keys and keystroke
timings, e.g., keys far apart are usually pressed in quicker suc-
cession than keys that are close together [43]. This behavior
generalizes across subjects, similar to other phenomena in
human-computer interaction (HCI) such as Fitts’ Law [17].
There has been some debate whether a remote keystroke tim-
ing attack poses a credible threat [3, 22]. Evidence suggests
that while information gain is generally possible, attack suc-
cess is user-dependent with some users being more vulnerable
than others [33, 34].

In [47], a hidden Markov model and generalization of the
Viterbi algorithm were used to generate candidate passwords
from timings. The key-press latencies used to train the model
were recorded in isolation, wherein subjects pressed a key
pair as opposed to typing a full password. In addition, the
keystrokes were recorded on the host under the assumption
that the key-press latencies would be faithfully preserved in
the network traffic. Our work confirms that assumption by
using timings obtained from actual network traffic and users
typing complete phrases instead of isolated bigrams.

970 28th USENIX Security Symposium USENIX Association

There have been numerous works focused on the detec-
tion of keyboard events (which enables a timing attack), such
as through spikes in CPU load [45], cache and memory us-
age [41], and the proc filesystem [23]. Few works have con-
sidered remote keylogging attacks [12,58]. In [51], the authors
examine the extent to which autocomplete exposes key-press
latencies in network traffic and found that multiple observa-
tions were required to recover the true latency. In a recent
work, we characterized the autocomplete network traffic of
five major search engines and measured the correlation be-
tween key-press latencies on the host and packet inter-arrival
times observed remotely [35], finding search engines Google
and Baidu to leak the most information. The findings in [35]
partly motivated the development of KREEP.

Since the work [47], several studies have examined timing
attacks on password [6, 59] and PIN [29, 30] input. We de-
part from prior work, which has focused on sequences with
maximum prior entropy, by targeting natural language input,
which is more susceptible to keystroke timing attack due to a
relatively lower prior entropy (roughly 1 bit per char, as noted
in [47]). We introduced a method to combine language model
probabilities with information leaked through keystroke tim-
ings, inspired by the use of language models in conjunction
with acoustic models in automatic speech recognition [20]. In
addition, our attack combines multiple independent sources
of information leakage beyond keystroke timings, including
URL escape sequences and HTTP2 header compression.

Compression side channels A compression side channel
leverages information leaked through the compression of a
plaintext prior to encryption [28]. Because different strings
compress to different sizes, compressed size can reveal infor-
mation about the plaintext. HTTPS exposes the length of an
encrypted payload, making it vulnerable to attack when the
payload is compressed. There have been several attacks on
HTTPS based on this principle.

The CRIME attack exploits compression in TLS and in
the now deprecated SPDY protocol [42]. This attack requires
a man-in-the-middle vantage in which an attacker inserts a
guess for a secret, e.g., an HTTP cookie or a CSRF token, into
a message and observes the compressed size. The DEFLATE
compression algorithm in SPDY uses redundancy to com-
press a string [14] such that the compressed size of a packet
containing the correct guess will be smaller than an incorrect
guess. The BREACH attack leveraged a similar principle for
server responses, targeting compression at the HTTP level
(e.g., gzip) [18], and the TIME attack used server response
time as a proxy to measure response size [9].

HEIST lowered the bar for attack, enabling CRIME-like
attacks to be deployed remotely within a victim’s web browser
[52]. The size of a compressed server response is determined
at the application level by examining whether the response
time spans multiple round trips, an indication that the entire
response exceeded the TCP congestion window. This general

technique can be used in a variety of side channel attacks
beside guessing secrets, such as determining whether a user
is logged into a particular site [52].

DEFLATE, the compression algorithm used in gzip, uses
a combination of LZ77 and Huffman coding [14]. To date,
all compression attacks against HTTPS have exploited the
LZ77 component of DEFLATE, which builds a dictionary
from the redundant parts of a string. The Huffman code in
DEFLATE has been treated as noise, typically dealt with by
making guesses in pairs. For example, to find out whether a
secret starts with “p”, an attacker guesses “secret=p_” and
“secret=_p”: if the sizes are the same, then only Huffman
coding is used and the guess is wrong; otherwise, if the sizes
are different, the LZ77 component was invoked based on
redundancy between the first guess and the secret, and only
Huffman coding was invoked in the second guess.

HPACK, the header compression format in HTTP2, was
designed to be resistant to CRIME-like attacks targeting LZ77
compression, although HTTP2 borrowed many concepts from
SPDY [39]. Commonly used header fields are compressed
with a dictionary lookup, and string literals are compressed us-
ing a static Huffman code, which was previously determined
to leak relatively little information [50]. But unlike previous
attacks, KREEP leverages the static Huffman code in HPACK
rather than an LZ77 dictionary. We found considerably more
information is leaked due to several contributing factors:

1. HTTPS exposes payload size. HTTPS was previously
shown to leak information by exposing the length of an en-
crypted payload. The HTTPS Bicycle attack uses the size
differences between HTTP requests to infer the size of an
unknown secret [53]. An attacker simply subtracts the size
of all known parts of the request, leaving only the size of
the secret. Our attack relies on a similar principle, taking the
difference in size between successive autocomplete requests.

2. Characters are independently compressed. The size dif-
ference between two compressed payloads that differ only
by the insertion of a single character reveals the compressed
size of that character. However, Huffman encoded strings
in HPACK are padded to the nearest octet, mitigating the
amount of information that would otherwise be leaked with-
out padding. Since byte, and not bit, size differences are ob-
served, the symbol size is known only to within a margin of
error that depends on an unknown amount of padding.

3) The Huffman code is standard. Every HPACK implemen-
tation uses the same Huffman code, which is publicly avail-
able [39]. An attacker needs only to map dictionary words
to their cumulative compressed sizes, taking into account the
unknown amount of padding applied beforehand. Potential
matches to a secret are revealed by comparing its cumulative
compressed size to every word in the dictionary.

Search query identification Previous work on identifying
search queries has utilized features obtained primarily through
traffic analysis. In [37], keywords in search queries are identi-

USENIX Association 28th USENIX Security Symposium 971

fied over Tor using both inbound and outbound autocomplete
traffic. Keystrokes were replayed in a data collection setup
similar to ours described in Section 7.1. Packet inter-arrival
times were not considered since the replayed keystrokes used
random, and not human, timings. Instead, each search query
is characterized by packet counts and sizes, inbound and out-
bound Tor cell counts, and other features specific to Tor traffic.
The work of [37] did not attempt keystroke detection but in-
stead focused on the identification of queries that contain a
particular keyword from a set of target keywords. With this
approach, a query containing any one of 300 target keywords
could be identified with 85% accuracy, and individual key-
words with 48% accuracy.

We instead aim to reconstruct an entire query rather than
identify the presence of some target words, and we leverage in-
formation leaked through packet size, which is obfuscated by
cell size in Tor traffic. While keystroke detection may be pos-
sible in traffic over Tor, for example by detecting traffic that
has “keystroke-like” packet inter-arrival times, tokenization
and dictionary pruning cannot be applied since the autocom-
plete packet sizes are masked behind Tor cell sizes. An attack
that uses only packet inter-arrival times might be feasible in
Tor, but would require a different approach than our attack.

While previous work has shown HTTP response size to
leak a considerable amount of information about a user’s
query when autocomplete suggestions are provided [12], we
chose to focus only on HTTP requests. In [12], an attacker
guesses a victim’s query one letter at a time by trying all
combinations and matching the server response size. This
assumes the attacker can submit queries that induce the same
suggestions as the victim received. In practice, this is difficult
because autocomplete suggestions depend on the victim’s
search history and location, among other factors [2]. To our
knowledge, KREEP is the first attack targeting autocomplete
traffic from the client independent of these factors, relying
only on packet inter-arrival times and packet size differences.

8.2 Countermeasures
Keylogging attacks require successful keystroke detection
and key identification. Therefore, it is sufficient to prevent
keystroke detection or key identification to counter the attack.
We consider the tradeoffs of several countermeasures and how
they affect each source of information leakage.

Padding Padding could be applied in two different ways:
pad each request by a random amount, or pad to ensure all
requests are the same size. To increase keystroke detection
false negatives, the pad amounts must be sufficiently large to
disguise autocomplete traffic with other background traffic,
the size of which is generally not known a priori. Therefore,
padding may not be effective to mitigate keystroke detection
and does not provide any protection against a timing attack.
However, we have confirmed that padding by a small random

amount (1 byte with probability 0.5) does effectively mitigate
tokenization and incremental compression. Note that padding
in this way should be applied only to alphabetic characters
and not to the addition of a Space; otherwise, some packets
with a Space will increase by 3 bytes (2 bytes + 1 padding
byte), while all other packets increase by no more than 2 bytes.
The pad amounts should be chosen such that the observed
packet size differences closely follow a uniform distribution.

Dummy traffic While padding aims to increase detection
false negatives, generating dummy traffic aims to increase
false positives. A false positive occurs when background traf-
fic is labeled as a keystroke. Generating dummy autocomplete
requests with approximately the same size as the actual re-
quest would make keystroke detection a difficult task. With
each autocomplete request, the client could send a burst of
several packets with similar size (within several bytes), ran-
domly ordering the actual request within the dummy request.
While an attacker might still be able to perform detection with
a low false negative rate, this comes at a cost of an increased
false positive rate. This method mitigates tokenization, com-
pression, and timing attacks. The background traffic would
overwhelm the actual requests, similar to the generation of
dummy keyboard events in KeyDrown [45]. This approach
has the cost of increased bandwidth, a tradeoff reminiscent of
the anonymity trilemma [13], and requires some cooperation
from the server to ignore the dummy requests.

Merge requests Most search engines make an autocom-
plete request immediately following each new character ap-
pended to the input field [35]. Instead, combining multiple
characters into a single request would mitigate our attack in
two different ways. First, with multiple characters merged into
a single request, the number of false negative detection errors
must increase since a packet contains multiple keystrokes.
This conceals the timing information of all but the last char-
acter in the merged request, reducing information leakage
through a keystroke timing attack.

Additionally, merged requests effectively eliminate the in-
cremental compression side channel since the increase in
packet size corresponds not to a single character but to multi-
ple characters. The compressed size of the merged characters
must be some linear combination of symbols in the Huffman
code, and as string length increases, the number of combina-
tions grows exponentially [50].

Combining requests could be achieved in several ways: 1)
update the list of autocomplete suggestions after every other,
or every nth, key (similar to Nagle’s algorithm, except at the
application level); 2) use a polling model with polling rate
slower than the user’s typing speed (Bing performs polling
with 100ms interval, making this attack impractical for fast
typists); or 3) trigger callbacks on keyup events instead of
keydown events (DuckDuckGo does this), which merges re-
quests when consecutive keystrokes overlap [35], a typing

972 28th USENIX Security Symposium USENIX Association

phenomenon referred to as rollover [15]. The drawback in all
cases is that merging requests could adversely affect usability
since the suggested queries are delayed to the user.

8.3 Limitations and future work
We point out several limitations of our attack, emphasizing
the conditions under which it succeeds, and identify ways in
which KREEP could be extended or improved.

Other websites In this work, KREEP has only been tested
on search engines Google and Baidu. Keystroke detection
and tokenization are both application-specific, based on the
packet size pattern each search engine emits. Extensions to
other search engines or websites would require modification to
these components. For websites that aren’t vulnerable to tok-
enization, delimiters might be identified based on packet inter-
arrival times (e.g., larger intervals indicate Space, smaller
intervals indicate letters).

Other modalities Since autocomplete requests are induced
by keyboard events, KREEP is applicable only up to the point
when a user stops typing or selects a suggested query. We
assumed that no deletions or corrections were made and that
the user did not press any non-printable keys, e.g., arrow keys,
that cause the caret to change position. However, selecting a
query from the provided suggestions does not preclude the
possibility of other attacks that incorporate the timing of both
autocomplete requests and server responses. It may be the
case that the way the user interacts with the autocomplete
suggestions also leaks course-grained information, such as
user identity or the type of query (navigational, informational,
or transactional) [10]. One might also consider the timing of
mouse clicks that induce network traffic as a source of infor-
mation leakage by leveraging a general model that governs
click behavior, such as Fitts’ Law [17].

Targeted attacks Finally, while we made an effort to eval-
uate our attack on phrases that are representative of natural
language, the content of actual search queries is quite differ-
ent and varies between users as evidenced by the AOL search
dataset [7, 38]. Some strings that have a low probability of
occurrence in natural language, such as “www”, tend to occur
frequently in search queries. This affects the prior probability
of each symbol, which must be properly accounted for in the
language model. We verified this difference by comparing
the frequency of characters in the AOL search dataset to the
keystroke dataset we used to evaluate KREEP (which itself
borrowed phrases from the Enron email corpus [15]). These
are shown in Figure 14. Notably, the frequencies of “w” and
“c” in search queries are about twice that of natural language,
likely due to the presence of navigational queries to a specific
URL, such as “www.example.com”. Likewise, Space charac-
ters in search are about half as frequent compared to natural

_ a b c d e f g h i j k l m n o p q r s t u v w x y z
0.00

0.05

0.10

0.15

De
ns

ity

Natural language
Search query

Figure 14: Character frequency in natural language (Enron
corpus) compared to search queries (AOL search dataset).

language. In a targeted attack, the language model in KREEP
could be tailored towards a particular victim, leveraging in-
formation such as the victim’s native language, geographic
location, and public blog entries.

9 Conclusion

KREEP leverages multiple independent sources of leaked
information to identify search queries in encrypted network
traffic. Autocomplete request packets are detected based on
packet size; queries are tokenized by detecting the presence of
URL-escaped characters; keys are identified based on packet
inter-arrival times; and impossible words are eliminated from
a dictionary based on incremental compression. Despite many
moving pieces, the attack obtains a reasonable success rate,
recovering more than half the characters in a query on average.
But more importantly, the pieces that contribute to this attack
present some starting points for future research.

The static Huffman code used in HTTP2 header compres-
sion leaks more information than previously thought [50]
when incremental changes are made to a string in the header.
This kind of attack is not limited to search engines with auto-
complete but could apply to any website with dynamic con-
tent that updates incrementally. It will be beneficial to identify
other web applications that exhibit incremental compression.
Besides websites that provide search suggestions, this could
include mapping services, which modify the geographic coor-
dinates in a URL as the user drags the map center location, or
websites that autosave the contents of a text field.

Likewise, websites that generate network traffic in response
to user input events may be vulnerable to timing attack. Sites
that support remote document editing, such as Google Docs,
frequently transmit the document state from the client to
the server. When this process is event driven, i.e., triggered
by keydown events, the network traffic can leak information
about the user’s actions or document content. Similarly, chat
applications that aim to provide real-time updates about a con-
versation partner’s activity, e.g., by displaying a notification
that “X is typing”, also risk exposing keystroke timings in
network traffic if those notifications are directly driven by the
conversation partner’s keystrokes.

USENIX Association 28th USENIX Security Symposium 973

Availability

KREEP is available at https://github.com/vmonaco/
kreep. The keystroke dataset is publicly available [15].

Acknowledgements

We thank the anonymous reviewers and our shepherd for valu-
able feedback during the review process. The manuscript
was much improved based on insightful discussions with col-
leagues Justin Rohrer and Robert Beverly, who also provided
comments on an early draft.

References

[1] NO_HZ: Reducing Scheduling-Clock Ticks.
http://web.archive.org/web/20190208124417/https://
www.kernel.org/doc/Documentation/timers/NO_HZ.txt.
Accessed: 2019-02-08.

[2] Search using autocomplete. http://web.archive.org/
web/20190209193857/https://support.google.com/web
search/answer/106230?hl=en. Accessed: 2019-02-09.

[3] Timing analysis is not a real-life threat to ssh secure shell
users. http://web.archive.org/web/20010831024537/
http://www.ssh.com/products/ssh/timing_analysis.cfm.
Accessed: 2019-02-09.

[4] Eytan Adar. User 4xxxxx9: Anonymizing query logs.
In Proc of Query Log Analysis Workshop, International
Conference on World Wide Web, 2007.

[5] Dmitri Asonov and Rakesh Agrawal. Keyboard acoustic
emanations. In Proc. IEEE Symp. on Security & Privacy
(SP), pages 3–11. IEEE, 2004.

[6] Kiran S. Balagani, Mauro Conti, Paolo Gasti, Martin
Georgiev, Tristan Gurtler, Daniele Lain, Charissa Miller,
Kendall Molas, Nikita Samarin, Eugen Saraci, Gene
Tsudik, and Lynn Wu. SILK-TV: Secret information
leakage from keystroke timing videos. In Computer
Security, pages 263–280. Springer International Publish-
ing, 2018.

[7] Michael Barbaro, Tom Zeller, and Saul Hansell. A face
is exposed for aol searcher no. 4417749. New York
Times, 9(2008):8, 2006.

[8] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
resource identifier (URI): Generic syntax. Technical
report, jan 2005.

[9] Tal Be’ery and Amichai Shulman. A perfect crime?
only time will tell. Black Hat Europe, 2013, 2013.

[10] Andrei Broder. A taxonomy of web search. In ACM
Sigir forum, volume 36, pages 3–10. ACM, 2002.

[11] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
One billion word benchmark for measuring progress
in statistical language modeling. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

[12] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. Side-channel leaks in web applications: A reality
today, a challenge tomorrow. In Proc. IEEE Symp. on
Security & Privacy (SP), pages 191–206. IEEE, 2010.

[13] Debajyoti Das, Sebastian Meiser, Esfandiar Moham-
madi, and Aniket Kate. Anonymity trilemma: Strong
anonymity, low bandwidth overhead, low latencychoose
two. In Proc. IEEE Symp. on Security & Privacy (SP).
IEEE, 2018.

[14] P. Deutsch. DEFLATE compressed data format specifi-
cation version 1.3. Technical report, may 1996.

[15] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson,
and Antti Oulasvirta. Observations on typing from 136
million keystrokes. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems -
CHI 18. ACM Press, 2018.

[16] Tobias Fiebig, Janis Danisevskis, and Marta Piekarska.
A metric for the evaluation and comparison of keylog-
ger performance. In Proc. 7th Usenix Conf. on Cyber
Security Experimentation and Test, pages 7–7. USENIX
Association, 2014.

[17] Paul M Fitts. The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of experimental psychology, 47(6):381, 1954.

[18] Yoel Gluck, Neal Harris, and Angelo Prado. Breach:
reviving the crime attack. 2013.

[19] David Graff, Junbo Kong, Ke Chen, and Kazuaki
Maeda. English gigaword. Linguistic Data Consor-
tium, Philadelphia, 4(1):34, 2003.

[20] Alex Graves and Navdeep Jaitly. Towards end-to-end
speech recognition with recurrent neural networks. In
International conference on machine learning, pages
1764–1772, 2014.

[21] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,
and Philipp Koehn. Scalable modified Kneser-Ney lan-
guage model estimation. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Lin-
guistics, pages 690–696, Sofia, Bulgaria, August 2013.

974 28th USENIX Security Symposium USENIX Association

https://github.com/vmonaco/kreep
https://github.com/vmonaco/kreep

[22] Michael Augustus Hogye, Christopher Thaddeus
Hughes, Joshua Michael Sarfaty, and Joseph David Wolf.
Analysis of the feasibility of keystroke timing attacks
over ssh connections. Research Project at University of
Virginia, 2001.

[23] Suman Jana and Vitaly Shmatikov. Memento: Learning
secrets from process footprints. In Proc. IEEE Symp. on
Security & Privacy (SP), pages 143–157. IEEE, 2012.

[24] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic.
Real life, real users, and real needs: a study and analysis
of user queries on the web. Information Processing &
Management, 36(2):207–227, mar 2000.

[25] Rosie Jones, Ravi Kumar, Bo Pang, Andrew Tomkins,
Andrew Tomkins, and Andrew Tomkins. I know what
you did last summer: query logs and user privacy. In
Proceedings of the sixteenth ACM conference on Confer-
ence on information and knowledge management, pages
909–914. ACM, 2007.

[26] Sepandar D Kamvar et al. Anticipated query generation
and processing in a search engine, 2004.

[27] Stavroula Karapapa and Maurizio Borghi. Search en-
gine liability for autocomplete suggestions: personality,
privacy and the power of the algorithm. International
Journal of Law and Information Technology, 23(3):261–
289, jul 2015.

[28] John Kelsey. Compression and information leakage of
plaintext. In Fast Software Encryption, pages 263–276.
Springer Berlin Heidelberg, 2002.

[29] Moritz Lipp, Daniel Gruss, Michael Schwarz, David
Bidner, Clémentine Maurice, and Stefan Mangard. Prac-
tical keystroke timing attacks in sandboxed javascript.
In Proc. 22nd European Symp. on Research in Computer
Security, 2017.

[30] Ximing Liu, Yingjiu Li, Robert H. Deng, Shujun Li, and
Bing Chang. When human cognitive modeling meets
PINs: User-independent inter-keystroke timing attacks.
Computers & Security, sep 2018.

[31] Philip Marquardt, Arunabh Verma, Henry Carter, and
Patrick Traynor. (sp) iphone: Decoding vibrations from
nearby keyboards using mobile phone accelerometers.
In Proc. 18th ACM Conf. on Computer and Communi-
cations Security (CCS), pages 551–562. ACM, 2011.

[32] Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K Gray, Joseph P Pickett,
Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant,
et al. Quantitative analysis of culture using millions of
digitized books. science, 331(6014):176–182, 2011.

[33] John V Monaco. Poster: The side channel menagerie.
In Proc. IEEE Symp. on Security & Privacy (SP). IEEE,
2018.

[34] John V Monaco. Sok: Keylogging side channels. In
Proc. IEEE Symp. on Security & Privacy (SP). IEEE,
2018.

[35] John V Monaco. Feasibility of a keystroke timing at-
tackon search engines with autocomplete. In 2019 IEEE
Security and Privacy Workshops (SPW). IEEE, 2019.

[36] Christopher Neasbitt, Roberto Perdisci, Kang Li, and
Terry Nelms. ClickMiner. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security - CCS '14. ACM Press, 2014.

[37] Se Eun Oh, Shuai Li, and Nicholas Hopper. Fingerprint-
ing keywords in search queries over tor. Proceedings on
Privacy Enhancing Technologies, 2017(4):251–270, oct
2017.

[38] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A
picture of search. In InfoScale, volume 152, page 1,
2006.

[39] R. Peon and H. Ruellan. HPACK: Header compression
for HTTP/2. Technical report, may 2015.

[40] E. Rescorla. The transport layer security (tls) protocol
version 1.3. Technical report, aug 2018.

[41] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proc. 16th ACM Conf. on Computer and Communica-
tions Security (CCS), pages 199–212. ACM, 2009.

[42] Juliano Rizzo and Thai Duong. The crime attack. In
Ekoparty Security Conference, 2012.

[43] Timothy A Salthouse. Perceptual, cognitive, and motoric
aspects of transcription typing. Psychological bulletin,
99(3):303, 1986.

[44] C. Schensted. Longest increasing and decreasing sub-
sequences. Canadian Journal of Mathematics, 13:179–
191, 1961.

[45] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel
Weiser, Clémentine Maurice, Raphael Spreitzer, and Ste-
fan Mangard. Keydrown: Eliminating keystroke timing
side-channel attacks. In Proc. Network and Distributed
System Security Symp (NDSS), 2018.

[46] Michael Schwarz, Clémentine Maurice, Daniel Gruss,
and Stefan Mangard. Fantastic timers and where to
find them: High-resolution microarchitectural attacks
in javascript. In Proc. 21st Intl. Conf. on Financial

USENIX Association 28th USENIX Security Symposium 975

Cryptography and Data Security (FC), page 11. IFCA,
2017.

[47] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing analysis of keystrokes and timing attacks on ssh.
In Proc. Usenix Security Symp., 2001.

[48] Statcounter. Search engine market share china.
http://web.archive.org/web/20190209193125/
http://gs.statcounter.com/search-engine-market-
share/all/china. Accessed: 2019-02-09.

[49] Statcounter. Search engine market share world-
wide. http://web.archive.org/web/20190209193145/
http://gs.statcounter.com/search-engine-market-share.
Accessed: 2019-02-09.

[50] Jiaqi Tan and Jayvardhan Nahata. Petal: Preset encoding
table information leakage. Technical report, 2013.

[51] Chee Meng Tey, Payas Gupta, Debin Gao, and Yan
Zhang. Keystroke timing analysis of on-the-fly web
apps. In Proc. Intl. Conf. on Applied Cryptography and
Network Security, pages 405–413. Springer, 2013.

[52] Mathy Vanhoef and Tom Van Goethem. Heist: Http en-
crypted information can be stolen through tcp-windows.
Black Hat USA 2016, page 1, 2016.

[53] Guido Vranken. Https bicycle attack. Technical report,
dec 2015. Accessed: 2019-05-10.

[54] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury.
Mole: Motion leaks through smartwatch sensors. In
Proc. 21st Annual Intl. Conf. on Mobile Computing and
Networking (MobiCom), pages 155–166. ACM, 2015.

[55] Andrew M. White, Austin R. Matthews, Kevin Z. Snow,
and Fabian Monrose. Phonotactic reconstruction of
encrypted VoIP conversations: Hookt on fon-iks. In
2011 IEEE Symposium on Security and Privacy. IEEE,
may 2011.

[56] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian
Monrose, and Gerald M. Masson. Spot me if you can:
Uncovering spoken phrases in encrypted VoIP conversa-
tions. In 2008 IEEE Symposium on Security and Privacy
(sp 2008). IEEE, may 2008.

[57] Guowu Xie, Marios Iliofotou, Thomas Karagiannis,
Michalis Faloutsos, and Yaohui Jin. Resurf: Recon-
structing web-surfing activity from network traffic. In
IFIP Networking Conference, 2013, pages 1–9. IEEE,
2013.

[58] Ge Zhang and Simone Fischer-Hübner. Timing attacks
on pin input in voip networks (short paper). In Proc. Intl.
Conf. on Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 75–84. Springer, 2011.

[59] Kehuan Zhang and XiaoFeng Wang. Peeping tom in the
neighborhood: Keystroke eavesdropping on multi-user
systems. analysis, 20:23, 2009.

[60] Li Zheng, Liren Zhang, and Dong Xu. Characteristics
of network delay and delay jitter and its effect on voice
over IP (VoIP). In ICC 2001. IEEE International Con-
ference on Communications. Conference Record (Cat.
No.01CH37240). IEEE.

976 28th USENIX Security Symposium USENIX Association

Iframes/Popups Are Dangerous in Mobile WebView:
Studying and Mitigating Differential Context Vulnerabilities

GuangLiang Yang, Jeff Huang, Guofei Gu
Texas A&M University

{ygl, jeffhuang, guofei}@tamu.edu

Abstract
In this paper, we present a novel class of Android Web-

View vulnerabilities (called Differential Context Vulnerabili-
ties or DCVs) associated with web iframe/popup behaviors.
To demonstrate the security implications of DCVs, we de-
vise several novel concrete attacks. We show an untrusted
web iframe/popup inside WebView becomes dangerous that
it can launch these attacks to open holes on existing defense
solutions, and obtain risky privileges and abilities, such as
breaking web messaging integrity, stealthily accessing sensi-
tive mobile functionalities, and performing phishing attacks.

Then, we study and assess the security impacts of DCVs
on real-world apps. For this purpose, we develop a novel tech-
nique, DCV-Hunter, that can automatically vet Android apps
against DCVs. By applying DCV-Hunter on a large number
of most popular apps, we find DCVs are prevalent. Many high-
profile apps are verified to be impacted, such as Facebook,
Instagram, Facebook Messenger, Google News, Skype, Uber,
Yelp, and U.S. Bank. To mitigate DCVs, we design a multi-
level solution that enhances the security of WebView. Our
evaluation on real-world apps shows the mitigation solution
is effective and scalable, with negligible overhead.

1 Introduction
Nowadays, mobile app developers enjoy the benefits of the
amalgamation of web and mobile techniques. They can easily
and smoothly integrate all sorts of web services in their apps
(hybrid apps) by embedding the browser-like UI component
“WebView”. WebView is as powerful as regular web browsers
(e.g., desktop browsers), and well supports web features, in-
cluding the utilization of iframes/popups.

In the web platform, iframes/popups are frequently used,
but also often the root cause of several critical security is-
sues (e.g., frame hijacking [11] and clickjacking [23, 43]).
In past years, in regular browsers, their behaviors have been
well studied, and a variety of mature iframe/popup protec-
tion solutions (e.g., Same Origin Policy (SOP) [6], HTML5
iframe sandbox [4], and navigation policies [11]) have been
deployed.

Inconsistencies Between Browsers and WebView. How-
ever, in WebView, a totally different working environment
is provided for iframes/popups, due to WebView’s own pro-
gramming and UI features. Although these features improve
app performance and user experience, they extensively impact
iframe/popup behaviors and introduce security concerns. In
particular, WebView enables several programming APIs (Fig-
ure 1) to help developers customize iframe/popup behaviors.
For example, the setting APIs allow developers to configure
their WebView instances. In the customized web environment
(WebView), it is unclear whether existing iframe/popup pro-
tection solutions are still effective.

Furthermore, WebView UI is designed in a simple style
(Figure 2) that only one UI area for rendering web content is
provided. Due to the lack of the address bar, it is difficult for
users to learn what web content is being loaded; due to the
lack of the tab bar, it is unknown how multiple WebView UI
instances (WUIs) are managed. Therefore, if an iframe/popup
has abilities to secretly navigate the main frame (the top
frame) or put their own WUI to the foremost position for
overlaying the original WUI, phishing attacks occur and may
cause serious consequences. Consider the scenario shown in
Figure 3 and 4. The Huntington banking app (one million+
downloads) uses WebView to help users reset passwords (Fig-
ure 3-a,b). Inside WebView, the main frame contains an iframe
for isolatedly loading untrusted third-party tracking content
(Figure 4). However, if the untrusted web content inside the
iframe obtains the ability of stealthily redirecting the main
frame to a fake website (Figure 3-c), serious security risks are
posed. For example, users’ personal (e.g., SSN info and Tax
ID) and bank account information may be stolen, and further
financial losses may also be caused.

Differential Context Vulnerability (DCV). Motivated by
above security concerns, we conduct the first security study of
iframe/popup behaviors in the context of Android WebView.
In this paper, we use the term “context” to refer to a web
environment that includes GUI elements (e.g., the address
and tab bars), corresponding web management APIs (e.g., the
setting APIs in WebView), and security policies (e.g., SOP

USENIX Association 28th USENIX Security Symposium 977

Table 1: A Summary of Differential Context Vulnerabilities (DCVs)
Critical Features

& Behaviors
Different Contexts Attacks Explanations ConsequencesBrowsers WebView

Main-Frame
Creation

Address
Bar Java APIs Origin Hiding Attack Special common origins

(e.g., null) Of Main-Frame

Sensitive functionalities behind postMessage
and JavaScript Bridges can be leveraged,
which may cause the leakage of sensitive
information (e.g., location), and risky access
on Hardware (e.g., camera and microphone)

Management of
new popups

Tab Bar Android
Frameworks

WUI overlap attack No protection on the WUI
rendering sequence

Phishing attacks

WUI closure attack

Main-Frame
Navigation

Address
Bar

Java APIs

Traditional navigation
based attack

Permissive navigation
policies

Privileged navigation
attack

Harmful conflict between
WebView Customizations
and web APIs

and navigation policies).
As a consequence, our study uncovers a novel class of

vulnerabilities and design flaws in WebView. These vulner-
abilities are rooted in the inconsistencies between different
contexts of regular browsers and WebView. As summarized in
Table 1, several critical web features and behaviors (i.e., main-
frame creation, popup creation, and main-frame navigation)
are involved (see more details in Section 3). These features
and behaviors are harmless or even safe in the context of
regular browsers, but become risky and dangerous in the con-
text of WebView. To demonstrate their security implications,
we devise several concrete attacks. We show through these
attacks, remote adversaries (e.g., web or network attackers
on iframes/popups) can obtain several unexpected and risky
privileges and abilities:
1) Origin-Hiding: hiding the origin when

• breaking the integrity of web messaging (i.e., postMes-
sage) [8], which allows the communication between
mutually distrusted web frames; and

• secretly accessing web-mobile bridges [21], which link
the web layer with the mobile or native layer (e.g., Java
for Android) (Figure 1);

Existing work has shown that postMessage’s message
receivers [44, 47] and web-mobile bridges [21, 49, 53]
often carry sensitive functionalities. Thus, these function-
alities can be further stealthily accessed by the untrusted
iframe/popup through the attack. As a result, sensitive
information (e.g., GPS location) may be stolen, and impor-
tant hardware (e.g., microphone) may be unauthorizedly
accessed.

2) WebView UI Redressing: performing phishing attacks by
overlapping the foremost benign WUI with an untrusted
WUI;

3) (Privileged) Main-Frame Navigation: freely redirecting
the main frame to a fake website.

Moreover, we examine the effectiveness of existing protec-
tion solutions, which include not only the solutions designed
for regular browsers (inherited by WebView), but also the
solutions proposed for Android UI and WebView. We find
that these solutions are ineffective to defend against the above
attacks:

Figure 1: WebView Programming Features

1) For origin-hiding attacks, existing defense solutions for
postMessage [11, 44, 47, 52] and web-mobile bridges
[18, 21, 38, 45, 49] usually provide security enforcement
relying on origin validation. However, unfortunately, the
key origin information of the untrusted iframe/popup can
be hidden during attacks, which leads to the bypass of the
security enforcement.

2) For WUI redressing attacks, they are similar to Android
UI redressing attacks [15, 20, 35]. However, the associ-
ated Android UI protection solutions (e.g., [13, 41]) are
circumscribed to prevent WUI addressing attacks. This is
mainly because that these protections work by monitoring
exceptional Android UI state changes between different
apps, while the WUI state change occurs within an app
during attacks.

3) For main-frame navigation attacks, one related solution is
the iframe sandbox security mechanism, which can effec-
tively limit the navigation capability of an arbitrary iframe.
However, through DCV attacks, an untrusted iframe can
still break the above limitation and cause privilege escala-
tion.

More details about the vulnerabilities and the weakness of
existing defense solutions are presented in Section 3. For
convenience, considering the root reason of this new type of
vulnerability (i.e., the inconsistencies between the contexts of
regular browsers and WebView), we refer to the vulnerabili-
ties as Differential Context Vulnerabilities or DCVs, and the
associated attacks as DCV attacks.

DCV-Hunter & Findings. We next study and assess the se-
curity impact of DCVs on real-world hybrid apps. To achieve
the goal, we develop a novel static vulnerability detection tech-
nique, DCV-Hunter, to automatically vet given apps against

978 28th USENIX Security Symposium USENIX Association

Figure 2: UI Comparison

Figure 3: Attacking the Huntington Bank App

DCVs. Then, by applying DCV-Hunter on a number of most
popular apps, we show that DCVs are prevalent. More specif-
ically, we find 38.4% of 11,341 hybrid apps are potentially
vulnerable, including 13,384 potentially vulnerable WebView
instances and 27,754 potential vulnerabilities. Up to now, the
potentially impacted apps have been downloaded more than
19.5 Billion times in total. Furthermore, our evaluation shows
DCV-Hunter is scalable and effective, and has relatively low
false positives (~1.5%).

We also manually verify that many high-profile apps are
vulnerable (a list of video demos of our attacks can be found
online [2]), including Facebook, Instagram, Facebook Messen-
ger, Google News, Skype, Uber, Yelp, WeChat, Kayak, ESPN,
McDonald’s, Kakao Talk, and Samsung Mobile Print. Several
popular third-party development libraries, such as Facebook
Mobile Browser and Facebook React Native, are also vul-
nerable and they influence hundreds of apps. Several special
sensitive categories of apps are affected including leading
password management apps (such as dashlane, lastpass, and
1password), and popular banking apps (such as U.S. bank,
Huntington bank, and Chime mobile bank).

In our analysis, we also find that some apps implement their
own URL address and title bars, which reduce the inconsisten-
cies between regular browsers and WebView. However, these
home-brewed URL bars hardly eliminate DCVs due to several
limitations. One major limitation is that their implementation
is often error-prone. For example, Facebook Messenger (Fig-
ure 5, one billion+ downloads) is equipped with the library
“Facebook Mobile Browser” to handle URLs contained in
messages (e.g., SMS). The browser library implements its
own address bar (Figure 5-b) to reflect the change of web
content (Figure 5-c) and mitigate DCV attacks (e.g., the WUI
overlap attack). However, this address bar contains a design
flaw (race condition). By combining a couple of DCV attacks,
untrusted iframes/popups can still launch phishing attacks
(Figure 5-d). Due to the inclusion of the vulnerable library,
many high-profile apps are impacted, such as Facebook and

Figure 4: Attack Scenario

Figure 5: Attacking Facebook Messenger

Instagram. In addition to the vulnerable library, we find this
design flaw is shared by many other popular apps that are not
equipped with that library, such as Kakao Talk (100 million+
downloads).

We have reported our findings to the Android security team
and many app developers. Up to now, a number of them (e.g.,
the Android and Facebook security teams) have confirmed
our findings.

DCV Mitigation. DCVs are not caused by programming mis-
takes. It is extremely difficult for developers to eliminate the
DCV security issues, especially considering the existence of
the limitations in WebView (Section 3.6). To mitigate the
problem, we propose a multi-level protection solution by
enhancing the security of WebView programming and UI
features. Our defense solution is implemented by instrument-
ing WebView’s independent library, but without touching the
source code of Android frameworks. Our solution is easy
to use, and can simply work after developers involve our
instrumented library, and provide a list of trusted domains.
Our evaluation on real-world apps shows that our solution
is effective and scalable, and introduces negligible overhead.
Furthermore, considering the Android version fragmentation
issue, we also test the compatibility of our solution. The re-
sult shows our solution is available in many major popular
Android versions (5.0+), and covers almost 90% of Android
devices in use.

Contributions. In sum, we make the following contributions:

• We investigate the security of iframe/popup in Android
WebView, and discover several novel and fundamental
design flaws and vulnerabilities in WebView (i.e., DCVs).

• We design a novel automatic vulnerability detection tool
“DCV-Hunter” to quantify the prevalence of DCVs.

• We apply DCV-Hunter on a set of popular apps, and con-
firm that DCVs have severe security impacts.

• We further propose a multi-level solution to mitigate DCV
attacks.

USENIX Association 28th USENIX Security Symposium 979

2 Background and Threat Model
Before we dive into our study of iframe/popup security, we
first introduce necessary background information and our
threat model.

2.1 Iframes/Popups and Related Protections
Iframes/popups are frequently used in web apps, for example,
to view files in various formats (e.g., images, videos and
PDFs), or load third-party untrusted web content (e.g., ads).
They are easy to use. To create an iframe, developers can 1)
either use the HTML element <iframe>; 2) or run JavaScript
code to dynamically build an iframe DOM node.

Furthermore, to enable a popup, developers can use the
following HTML code to generate a link:

<a href="URL" target="_blank|_top|frame_name|...".

When users click the link, “URL” will be opened in the frame
that is determined by the “target” attribute. If target is “_-
blank”, a new popup window will be opened to show “URL”.
Moreover, if target is “_top” or a specific frame name, “URL”
will be loaded in the main frame or the specific frame deter-
mined by “frame_name”. Developers can also use JavaScript
code to open or close a web window:

window.open(URL, <target>, ...) or window.close().

Similar to the usage of the HTML element <a>, “win-
dow.open()” can also determine where to open popup content.
Related Protections. Up to now, several practical protection
solutions were designed and deployed in regular browsers:
• Same origin policy (SOP): SOP isolates web frames whose

origins are different. Note that SOP causes side effects that
different origins are not allowed to communicate with each
other. To mitigate the problem, the postMessage mecha-
nism is designed in HTML5.

• Built-in security policies: Several built-in policies are
available. For example, remote web code is not allowed
to create a new sub-frame for loading local files, and the
main frame is not allowed to load the data scheme URL.

• HTML5 iframe sandbox: The iframe sandbox mechanism
can limit iframes’ abilities, mainly including the enable-
ment of JavaScript, main-frame navigation (“<a>” or “win-
dow.open()”), and popup-creation. Since the security of
the popup behavior is one of our research objectives, we
assume the popup-creation ability is allowed in iframe
sandbox. Thus, in this paper, we mainly consider the abili-
ties related to JavaScript enablement and main-frame nav-
igation.

• Navigation policies: As studied in existing work [11], in
regular browsers, the main frame is often exempt from
strict navigation policies, which means any sub-frame can
directly navigate the main frame by using “<a>” or “win-
dow.open()”. There are several reasons for such a design.
First, this type of navigation is frequently used by benign
web apps, for example, for preventing framing attacks [43].
Second, even though the main frame is navigated, the con-
sequence is quite limited in consideration of the stealth-

iness: any navigation can be explicitly reflected by URL
indicators (e.g., the URL address bar).

2.2 WebView and Related Protections
WebView is an embedded, browser-like UI component. An-
droid WebView is equipped with the newest kernel of the
regular browser “Chrome/Chromium”, and performs as pow-
erful as regular browsers.

As discussed in Section 1, there are several inconsistencies
between regular browsers and WebView. First, WebView UI
is like a small and compacted version of a regular browser. It
does not contain several common UI elements, including the
address, tab, title and status bars.

Second, WebView UI is a case of view group, a collection
of multiple Android UI components. More than that, it can
also be added to an existing view group. A view group may
consist of a set of WUIs with the same size. It manages mul-
tiple WUIs with a rendering queue, and only rendering the
foremost WUI to users.

Third, the manners of initializing web content are different.
Compared to regular browsers, which allow users to manu-
ally type the address of a website, WebView initializes web
content through programming APIs (Figure 1), including
• loadUrl(URL/file/JS): loading content in the main frame;
• loadData(HTML, ...): loading code with the “null” origin;
• loadDataWithBaseURL(origin,HTML,...): loading HTML

code with a specified origin.
Last, as shown in Figure 1, developers can customize a We-

bView instance through several programming features, such
as settings, and web-mobile bridges. Settings can manage
WebView configurations, while Web-mobile bridges can link
the web and mobile layers together. Generally, the bridges
include 1) event handlers, which let mobile code handle web
events that occur inside WebView; and 2) JavaScript bridges,
which can allow JavaScript code to directly access mobile
methods.

Furthermore, as shown in Table 2, several programming
features can impact iframe/popup behaviors. To enable the cre-
ation of a popup, the setting SupportMultipleWindows should
be set as true, and the event handler onCreateWindow() is
also required to be implemented and return true. This event
handler should create or open a WUI for rendering this popup,
and also return the WUI to Android. Otherwise, the popup-
creation operation will be ignored. This also means that dif-
ferent popup windows are rendered by different WUIs at one
time. Besides, to support the closure of a WUI, the event
handler onCloseWindow() should be also implemented. Note
that when any web frame, including the main frame, loads
content, the content should be approved by the event handler

“shouldOverrideUrlLoading()”.
Summary of Related Protections. In past years, WebView
security, especially the security of web-mobile bridges, has
drawn more and more attention [12, 16, 21, 27, 30, 33, 34,
50, 53–55]. Several defense solutions [18, 21, 38, 45, 49, 50]

980 28th USENIX Security Symposium USENIX Association

Table 2: Iframe/Popup-Related Programming Features
Features Content Explanation

Settings
OpenWindowsAutomatically Enable “window.open()”

SupportMultipleWindows
Enable the event handler
“onCreateWindow()”

Event
Handlers

onCreateWindow() Handle window-creation
onCloseWindow() Handle window-closure
shouldOverrideUrlLoading() Handle URL-loading

were proposed to enhance the security of WebView by provid-
ing the security enforcement and access control mechanisms.
However, we find they are ineffective against our new attacks.
Section 7 provides a review of these existing work.

2.3 Threat Model
In this paper, we mainly focus on the hybrid app whose We-
bView contains an untrusted sub-frame. In our threat model,
we assume the native or mobile code (e.g., Java code), and
the main frame loaded in its WebView are secure and trusted.
The main frame usually loads web content from the first-party
benign domains (e.g., developer.com). For the embedded un-
trusted sub-frames, we mainly consider two possible attack
scenarios:
Network attacks. When the sub-frames use HTTP network,
attackers may perform man-in-the-middle (MITM) attacks
to inject attack code into the sub-frames, and then launch
DCV attacks. Although HTTPS have been widely adopted
in modern web apps, there is still much legacy code using
HTTP.

This scenario is feasible, especially considering many pub-
lic unsafe WiFi hotspots are available [24]. Consider a pos-
sible scenario: attackers may set up a free WiFi hotspot in a
crowded place. Nearby smartphone users may use this WiFi.
If these users open vulnerable apps (e.g.,Facebook and skype)
and click web links, apps’ WebView may load these links. If
the loaded web content embeds iframes/popups using unsafe
network channels (e.g., HTTP), attackers may inject malicious
code into the iframes/popups and launch attacks.
Web attacks. The inclusion of third-party content usually
introduces security implications [26, 36]. Hence, we assume
web attackers may be the owner of a third-party domain
(e.g., ads.com) severing an embedded untrusted iframe/popup.
Our empirical study on a set of popular hybrid apps and mo-
bile websites shows iframes/popups are frequently used to
load third-party content, especially third-party advertising
and tracking content. Existing work has demonstrated that
third-party advertising [28,56] and tracking [14,32,37,42,46]
services often causes serious security concerns. More than
that, as figured out by existing work [39, 48], a third-party
iframe may even directly work as a malicious entry point for
malware.

This scenario is also possible in practice. For example, as
demonstrated in prior work (e.g., [36]), some domains may
expire, which still commonly occurs in recent years. Attackers
may register and get the control of these domains. If these
domains are embedded by some websites in iframes/popups,

attackers may broadcast these websites to lure users to access
them using corresponding vulnerable apps (e.g., Facebook
or Facebook Messenger). In the vulnerable apps, WebView
may be started, and also access the domains controlled by
attackers. Thus, attackers obtain chances to inject malicious
code and launch attacks.

Furthermore, as discussed in Section 2.1, considering the se-
curity of the popup behavior is one of our research objectives,
we assume the popup-creation ability of an iframe/popup is
enabled in its sandbox attribute.

3 Differential Context Vulnerabilities
In this section, we mainly focus on DCVs, and also explain
why existing defense solutions are ineffective to prevent DCV
attacks. We first show the overview of our security study, and
then present the details of each vulnerability. Last, we discuss
the advantages of DCV attacks over existing attacks, also with
the analysis of the root causes of DCVs.

3.1 Study Overview
Guided by the inconsistencies between regular browsers and
WebView (Section 2.2), our security study of iframe/popup
behaviors is mainly concerned with the following three di-
mensions:

The application of common origins. As introduced in Sec-
tion 2.2, WebView content initialization APIs may create the
main frame with common origins, such as “file://” and “null”.
For example, the invocation

WebView.loadurl(’file:///android_asset/index.html’)

can load a local file with the origin “file://”, while Web-
View.loadData() and WebView.loadDataWithBaseURL() may
create a main frame to load web data with the “null” origin.

However, these common origins are not unique for the main
frame, and may be reproduced by untrusted iframes/popups
in their inside sub-frames for launching attacks. More specif-
ically, if an untrusted sub-frame can generate a new nested
sub-frame “Fnested” with above common origins, the untrusted
sub-frame may place its essential attack code inside Fnested to
make risky operations, which are aimed to attack all potential
objectives, including the main frame, other sub-frames, or We-
bView itself. In the attack process, the victims may validate
the operations by checking the corresponding origins. How-
ever, the origin information they can obtain is Fnested’s origin,
rather than the real origin (i.e., the origin of the untrusted
sub-frame). Considering Fnested have the same origin as the
main frame, the origin validation process fails. Finally, the
victims may treat untrusted operations as benign operations
and handled them as usual.

Our study confirms that a sub-frame is not allowed to gen-
erate a new sub-frame with the “file://” origin, due to built-in
security policies (Section 2.1). However, a nested sub-frame
with a “null” origin can still be generated by using the data
scheme URL (e.g., <iframe src="data://..."), which is fre-
quently used to load simple HTML code (such as images)

USENIX Association 28th USENIX Security Symposium 981

in the web platform. Although SOP can prevent cross-frame
scripting between two “null” origins (e.g., the main frame
and Fnested), untrusted sub-frames can still leverage the “null”
origin to make several nefarious actions (Section 3.2).

Concise WebView UI design. As discussed in Section 1,
WebView’s UI design causes security risks that untrusted
iframes/popups may perform phishing attacks, if they have
the abilities of 1) manipulating the rendering order of multiple
WUIs; 2) navigating the main frame. To verify the former
potential ability, we first conduct an empirical study on a set
of popular hybrid apps. This study is aimed to understand
how WUIs are managed in practice. We find Android takes
the responsibility of managing multiple WUIs. Our study also
shows when a popup is created, Android place its WUI behind
current WUI at default.

This WUI management strategy seems safe. However, it
does not meet app development requirements. Instead, some
apps manage WUIs by themselves, which is yet error-prone
due to the design flaws of the WebView event handler system
(Section 3.6). As a result, the crucial ability of manipulating
the WUI rendering order is exposed (Section 3.3.1). Thus,
an untrusted iframe/popup can get the ability of overlapping
begin WUIs with its own WUI. Our study also shows that
even when Android’s default WUI management strategy is
adopted, it is still possible for untrusted iframes/popups to
change the WUI rendering order by combining WUI creation
and closure operations (Section 3.3.2).

Second, to confirm the latter potential navigation abil-
ity, we study the navigation policies of WebView. We
find WebView inherits permissive navigation policies from
Chrome/Chromium. These navigation policies have been well
investigated in the context of regular browsers (Section 2.1),
but rarely scrutinized in the context of WebView. These navi-
gation policies allow an untrusted sub-frame to navigate the
main frame. Due to the lack of the address bar, the navigation
based attack is stealthier and more powerful in the context of
WebView (Section 3.4.1).

Note that the above navigation can be disabled by iframe
sandbox (Section 2.1). But considering iframe sandbox is
hardly used in practice, the attack is still prevalent and has
negative security impacts in real-world hybrid apps. This is
also verified in our evaluation (Section 5.2).

WebView programming features. As discussed in Section
1, WebView’s programming features may impact the effective-
ness of existing defense solutions. To verify it, we extensively
test these protection solutions’ performance, when different
programming features are enabled. Consequently, we identify
a critical conflict between WebView programming features
and web popup-creation manners. By leveraging this conflict,
untrusted iframes/popups can perform privileged main-frame
navigation attacks, even when this sub-frame’s navigation ca-
pability is disabled by iframe sandbox (Section 3.4.2).

DCVs and DCV attacks are summarized in Table 1. More

details are discussed below.

3.2 Origin Hiding Attacks
As introduced in Section 3.1, in the context of WebView, se-
curity risks are introduced that untrusted iframes/popups may
leverage the “null” origin (created through the data scheme
URL) to hide their own origins while making stealthy risky
actions. In this section, we introduce two extended attacks: at-
tacking web messaging integrity (Section 3.2.1) and stealthily
accessing web-mobile bridges (Section 3.2.2).

Figure 6: Attacking Web Messaging

3.2.1 Attacking Web Messaging

Figure 6 shows an attack scenario for web messaging. Assume
the main frame whose origin is “null” sends web messages to
a benign victim sub-frame. Meanwhile, the main frame also
contains an untrusted sub-frame. If the untrusted sub-frame
spawns a new nested sub-frame Fnested with the “null” origin,
and let Fnested send a fake message to the victim sub-frame,
the victim sub-frame may be fooled.

As shown in Listing 1, the victim sub-frame may validate
the origin of the received message to ensure the message is
from an authorized frame. However, this may not still recog-
nize the fake message because the fake message has the same
origin as the main frame. As a result, the victim sub-frame
may handle the message as normal. If the victim sub-frame
carries sensitive functionalities, these functionalities may be
leveraged, and serious consequences may be caused.

1 // Message Handler
2 onmessage = function (e) {
3 // Validating the message source origin
4 if (e.origin == "null") { // From main frame?
5 // Making sensitive actions here
6 }

Listing 1: Validating the Message Origin in the Victim Sub-frame

In addition to the above origin validation based protection,
the above attack cannot also be prevented by other defense
solutions, such as [11,44,47,52], because it is challenging for
them to distinguish between the main frame and Fnested.

3.2.2 Accessing Web-Mobile Bridges

Figure 7: Freely Accessing Web-Mobile Bridges
As shown in Figure 7, the security risks are also posed

that untrusted iframes/popups can also secretly access web-
mobile bridges by leveraging the “null” origin (Listing 2), but

982 28th USENIX Security Symposium USENIX Association

without being blocked by existing defense solutions. This is
because existing defense solutions are coarse-grained, and the
origin they can obtain is Fnested’s (i.e., “null”), rather than the
origin of the untrusted iframes/popups. Hence, they would
approve the untrusted operation.

To verify the attacks, we develop two proof-of-concept
(POC) apps that can launch the attacks. Then, we test their
performance when the-state-of-the-art protection solution
“NoFrak” [21] and “Draco” [49] are enforced respectively.
NoFrak extends SOP to the mobile layer of a third-party de-
velopment framework, while Draco implements the access
control in WebView. In the first POC app, we integrate the
popular third-party hybrid development framework “Apache
Cordova” and instrument its plugin manager to implement
NoFrak. In the second POC app, we use our instrumented
WebView library, which implements Draco’s prototype sys-
tem [49]. In both POC apps, we find that untrusted accesses
by DCV attacks on web-mobile bridges, especially JavaScript
bridges, cannot be prevented.

1 // Creating a nested sub-frame with the data scheme URL
2 var ifrm = document.createElement(’iframe’);
3 // Triggering onJsAlert()
4 ifrm.setAttribute(’src’, ’data:text/html;charset=UTF-8,<

html>...<script>alert(\I am the main frame\’, \’*\’)</
’ + ’script>’...

5 document.body.appendChild(ifrm);

Listing 2: Accessing the Event Handler onJsAlert() in the
Untrusted Iframe/Popup

3.3 WebView UI Redressing Attacks
The root cause of the attacks is that there is no protection on
the WUI rendering order and WebView UI integrity. Hence,
the security risks exist that untrusted iframes/popups can
freely manipulate it and perform phishing attacks. In this
section, we illustrate two extended attacks: the WUI overlap
attack (Figure 8-a), and the WUI closure attack (Figure 8-b).
We next describe them in detail.

Figure 8: WebView UI Redressing Attacks

3.3.1 WebView UI Overlap Attack

1 // Customizing onCreateWindow() to enable popup-creation
2 boolean onCreateWindow(WebView view, ...) {
3 // Creating a new WebView UI
4 WebView myNewWebView = new WebView(getContext());
5 // Initializing the new WebView UI
6
7 // Putting the new WebView UI before current WebView UI
8 view.addView(myNewWebView);
9

10 // Providing the new WebView UI to Android
11 ...

Listing 3: Vulnerable onCreateWindow()
Listing 3 shows a representative but vulnerable implemen-

tation of the event handler “onCreateWindow()”. When a

popup is created, the event handler is triggered and may select
to put the new WUI in the front of current benign WUI by
calling “ViewGroup.addView(new WebView)” (Line 8). Thus,
the new WUI is presented to users. However, this ability of
changing the WUI rendering order can also be obtained by
untrusted web code. This is mainly because the event handler
onCreateWindow() cannot distinguish between benign and
untrusted requests, due to its design flaws (Section 3.6).

As a result, untrusted iframes/popups obtain the ability of
performing phishing attacks by simply triggering a popup-
creation event, and letting the created WUI load fake web
content and overlap the benign WUI. Due to the lack of the
address and tab bars, this risky popup-creation operation may
be hardly noticed by users. As shown in Listing 4, the overlap
attack can be easily set up in practice.

1 // Using HTML Code
2 <a href="https://attacker.com" target="_blank" ...
3 // or Calling JavaScript code
4 window.open("https://attacker.com", "_blank" ...)

Listing 4: Exploit Code of the WUI overlap attack and the
privileged navigation attack

We note that the key API name “addView” also appears in
existing work on Android UI redressing attacks such as [35].
However, these APIs are totally different. In existing work,
“addView” means “WindowManager.addView()”, which is
used to change UI layout between different apps. In this paper,
“addView” means “ViewGroup.addView()”, which is used to
change a specific UI layout inside an app. To our knowledge,
we are the first to discuss the security risk of the latter API.

3.3.2 WebView UI Closure Attack

When apps use the default Android WUI management strat-
egy, it is still possible for an untrusted iframe/popup to change
the WUI rendering order (Section 3.1). As shown in Fig-
ure 8-b, the untrusted iframe/popup may first create a new
popup window, whose corresponding WUI is placed behind
current benign WUI. Then, the untrusted code triggers the
window-closure event, which is handled by the event handler
“onCloseWindow()”. If the event handler is vulnerable and
removes the foremost benign WUI (Line 8 in Listing 5) from
the WUI rendering order, the former untrusted WUI appears
instead and phishing attacks may occur. Similar to the WUI
overlap attack, due to the lack of the address and tab bars, such
attacks are stealthy, and can be easily launched in practice
(e.g., using the code in Listing 6).

1 // Customizing onCloseWindow() to enable WebView UI closure
2 public void onCloseWindow(WebView window) {
3 super.onCloseWindow(window);
4 // Destroying the WebView UI being closed
5 ...
6
7 // Removing the WebView UI being closed from current

view layout
8 myRootWebViewLayout.removeView(window);
9 }

Listing 5: Vulnerable onCloseWindow()

1 // Creating a new WebView UI
2 window.open("https://attacker.com", "_blank" ...)
3 // Closing current WebView UI
4 window.close()

Listing 6: Exploit Code of the WUI Closure Attack

USENIX Association 28th USENIX Security Symposium 983

We note that as introduced in Section 1, WebView UI re-
dressing attacks cannot be defended by existing Android UI
protection solutions. These two UI redressing attacks are dif-
ferent. Android UI redressing is performed between different
apps, while WebView UI redressing occurs within one app.

3.4 Main-Frame Navigation Attacks
3.4.1 Traditional Navigation Attack

Untrusted iframes/popups can leverage traditional navigation
policies (Section 2.1) to launch phishing attacks (e.g., using
the code in Listing 7 to perform phishing attacks), when their
navigation capabilities are not disabled. Due to the lack of
URL indicators (e.g., the address bar), the attack is stealthier
and may be hardly noticed by users.

1 // Using HTML Code
2 <a href="https://attacker.com" target="_top" ...
3 // Or Calling JavaScript code
4 window.open("https://attacker.com", _top, ...

Listing 7: Leveraging Traditional Navigation Policies

3.4.2 Privileged Navigation Attack

Even when the navigation capability is disabled by iframe
sandbox (which prevents the above traditional navigation-
based attack directly), it is still possible for untrusted
iframes/popups to launch privilege escalation attacks and
obtain the ability of performing navigation attacks. This
is mainly caused by the inconsistencies between the Web-
View programming features and web regular navigation ac-
tions. When web popup creation code (e.g., <a> and win-
dow.open()) is executed in a sub-frame, Android always tries
to select a WUI to show the popup content. Note that the
WUI selection always occurs, even when popup-creation is
disabled in the mobile layer (e.g., the setting SupportMulti-
pleWindows is false). However, when popup-creation is not
allowed, there is not a new WUI for rendering. Instead, An-
droid selects current WUI for showing the popup content,
which means the main frame is navigated to the popup. Thus,
phishing attacks may occur.

In practice, the privileged navigation attack can be easily
launched by using the exploit code shown in Listing 4. Note
that this code is also used for launching the WUI overlap
attack. When popup-creation is disabled (by default), the
code may launch the navigation attack. Otherwise, the WUI
redressing attack may be available.

3.5 Advantages of DCV Attacks
Compared to existing Android attacks (such as Trojan at-
tacks [5]), DCV attacks do not require declaring permissions,
or carrying payload. Compared to other WebView-based
attacks (e.g., [21, 25, 30, 51]), which require JavaScript or
JavaScript-bridges to be enabled, DCV attacks do not have
these requirements and limitations. More importantly, DCV
attacks are more powerful that attackers may obtain abili-
ties to not only access web-mobile bridges, but also directly
leverage critical web features.

Furthermore, different from existing MITM attacks on a
sub-frame inside WebView, DCV attacks cannot be prevented
by existing web protections (e.g., SOP). Unlike existing touch
hijacking in WebView [31], DCV attacks do not need to con-
trol the mobile code, and craft the placement of multiple We-
bView components in Activity layout XML.

In addition, DCVs can be leveraged to boost other attacks.
For example, event-oriented attacks [53] rely on triggering
WebView event handlers, but it is difficult to trigger several
critical event handlers (e.g., onPageStarted() and onPageFin-
ished()). This problem can be well solved through exploit-
ing DCVs, such as the privileged navigation attack (Section
3.4.2).

3.6 Root Causes of DCVs
DCVs are rooted in the inconsistencies between WebView
and regular browsers in terms of UI and programming fea-
tures (Section 1 and 3.1). We demonstrate several critical and
frequently used web features and behaviors are harmless and
safe in the context of regular browsers, but they become risky
in the context of WebView.

In addition, we also find the design of the event handler
features is also flawed. In theory, through event handlers,
developers have chances to reject DCV attacks. However,
unfortunately, the design flaws of event handlers make it ex-
tremely difficult to achieve the goal. For example, when the
WUI overlap attack is performed, the event handler ‘‘onC
reateWindow(view,isDialog,isUserGesture,resultMsg)’’ is
always triggered. If the event handler could deny the creation
of an untrusted WUI, attackers would fail to launch the WUI
redressing attack. However, this is very difficult because the
event handler onCreateWindow() does not provide the victim
app any origin information about who is creating a popup and
what content is being loaded in the popup. Thus, the victim
app has to blindly allow or deny all popup-creation opera-
tions, no matter whether the operations are made by benign or
untrusted code. In addition to onCreateWindow(), other event
handlers such as onCloseWindow() face similar problems.

Another event handler shouldOverrideUrlLoad-
ing(view,request) (as introduced in Section 2.2) is always
triggered when a URL loading event occurs. This event
handler provides the information of the URL that is being
accessed, which may be used as a complement of other event
handlers to prevent DCV attacks (e.g., allow the victim
app to deny untrusted URLs). However, the combination is
hardly used in practice. Even when the associated URL is
identified and denied, the new WUI is already created and
still in the control of untrusted iframes/popups. Untrusted
iframes/popups may still use the new WUI to consume the
resources (such as CPU and memory) of the victim devices in
background. Hence, to avoid this, it is required for the victim
app to always explicitly destroy the new WUI.

In addition, shouldOverrideUrlLoading() often has its own
implementation problems in origin validation. For example,
our empirical study shows some hybrid apps do not even per-

984 28th USENIX Security Symposium USENIX Association

form any check, and some of them only check the domain of
the URL but ignore the scheme (e.g., “HTTP” or “HTTPS”).

4 DCV-Hunter
There are several tools for analyzing hybrid apps [22, 53, 55],
however, it is challenging to directly apply these tools to
detect DCVs. On the one hand, existing static analysis tools
are not designed for the analysis of iframe/popup behavior
(e.g., [22, 55]), and they are often coarse-grained (e.g. [33]).
More specifically, they can hardly extract and reconstruct
the context information of each WebView instance. When
there are multiple WebView instances in a hybrid app, which
is common in practice, these tools can produce high false
positives. On the other hand, existing dynamic analysis tools
(e.g., [53]) have high false negatives, as it is very difficult
to trigger a WebView instance at runtime. For example, as
shown in Figure 5, to trigger WebView inside the Facebook
Messenger app, the analysis tools need to automatically log
in and open a URL link.

We propose a novel static detection tool, DCV-Hunter, that
utilizes program analysis to automatically vet apps. As shown
in Figure 9, DCV-Hunter’s approach is four-fold. Given an
app, DCV-Hunter first generates its complete call graph (CG).
Next, DCV-Hunter leverages CG to reconstruct the context
of each WebView instance. Then, DCV-Hunter verifies if
untrusted sub-frames exists. Finally, DCV-Hunter determines
if the given app is potentially vulnerable or not.

4.1 Complete Call Graph Construction
We leverage FlowDroid [10] to generate call graphs (CG) of
the target app. However, we find FlowDroid faces challenges
to analyze WebView related function invocations. This is
mainly due to the missing of type information and semantics
related to WebView (e.g., the semantics of WebView event
handlers). To mitigate this issue, we patch the target app
during CG construction by inserting extra instructions, which
provide necessary type and semantic information of WebView.
Thus, FlowDroid can generate necessary edges and construct
complete CG.

4.2 WebView Context Reconstruction
In this phase, DCV-Hunter re-constructs the whole context for
each WebView instance. First, DCV-Hunter identifies all Web-
View instances from CG. Then, DCV-Hunter separately recon-
structs each WebView instance’s own context, which includes
1) the URL or HTML code to be loaded; 2) settings (e.g., the
enablement of popup creation); 3) implementation of event
handlers (e.g., “onCreateWindow()” and “onCloseWindow()”).
To reconstruct the WebView context, points-to analysis is ap-
plied [33]. For example, when an event handler class that
contains the implementation of event handlers is configured
through the API “setWebChromeClient(...)”, DCV-Hunter can
check the points-to information of the API’s parameter, and
retrieve the parameter’s actual class name.

However, points-to analysis does not scale well, especially
when the target app is complex. To mitigate the problem, we
also apply the data flow tracking technique (also provided by
FlowDroid) as a complement. For example, when an event
handler class is instantiated, the corresponding instance is
treated as source. Then, the event handler configuration APIs
(e.g., “setWebChromeClient(...)”) are treated as sink. Finally,
if there is a flow between above source and sink, the event han-
dler class should be a part of the context of the corresponding
WebView instance.

In addition to an event handler class, several context-related
objects (e.g., URL strings, WebView settings) can also be
analyzed using data flow tracking. These objects and their cor-
responding APIs are treated as source and sink, respectively.
More details are shown in Table 3. Note that different from
WebView settings and event handlers, which are often class
instances, the URL source may have several different formats,
such as 1) HTML code or URL string; 2) Intent messages
(inter-component communication in Android). Both formats
are often used in real-world apps. For example, as shown in
Figure 5, in Facebook Messenger, when a link is clicked, an
Intent message that includes the link is sent out to an activity
(Andrioid UI) to start WebView and show that link.

Table 3: Source and Sink APIs
Source Sink
URLs WebView content loading APIs

Settings WebView Setting APIs

Event Handlers setWebViewClient()
setWebChromeClient()

WebView
WebView content loading APIs
WebView Setting config APIs
Event handler registration APIs

4.3 Untrusted Iframe/Popup Detection
In this phase, given a WebView instance, DCV-Hunter checks
whether an untrusted iframe/popup is included in its loaded
content. To achieve the goal, DCV-Hunter first extracts the
URLs of the untrusted iframe/popup, and then examine the
event handler “shouldOverrideUrlLoading()” (Section 2.2)
through path constraint analysis to determine whether ex-
tracted URLs are approved.

4.3.1 Untrusted URL Extraction

Given a WebView instance, the web content loaded in Web-
View is analyzed based on its formats:
• HTML code: This format is usually used by the con-

tent loading APIs “loadData()” and “loadDataWith-
BaseURL()” (for origin-hiding attacks). Based on the pat-
terns of iframes/popups (Section 2.1), all internal asso-
ciated links can be extracted and then checked. On the
one hand, if a link is unsafe, such as using HTTP, code
injection surface should exist, and the link is untrusted.
On the other hand, if a link uses HTTPS, it is difficult to
determine if the link is third-party, considering the main
frame does not have an explicit domain (i.e., the “null”

USENIX Association 28th USENIX Security Symposium 985

Figure 9: The Overview of DCV-Hunter

origin).
To mitigate the problem (i.e., determine the first-party
URLs), we leverage several heuristics: 1) inside the target
app, WebView class name and its internal package names
are usually related with developers’ website. Hence, we
reverse them as first-party URLs. Please also note that
the reversed class and package names should not be re-
lated to third-party URLs (e.g., [3]). 2) We also check the
app information that is provided by developers in Google
Play. This information includes the links of developers’
home page, email and “privacy policy”. Finally, these links
are also treated as first-party URLs, since they are likely
trusted by developers.

• URL links: DCV-Hunter handles URL links, based on their
formats. If a URL is a network link, we build a crawler
based on Selenium [7] to automatically collect the web-
pages (the mobile version) that can be navigated to from
the URL within three depth levels. For each collected web
page, its sub-frame is checked based on our threat model
(Section 2.3).
If URL is a local file link (e.g., “file://...”), DCV-Hunter
first dumps the corresponding local file from the target
app, and then handles it like above regular HTML code.
This is mainly because the file scheme link is similar with
the null origin and does not provide any first-party domain
information.

• Intent: Our empirical study on a set of popular hybrid
apps shows that the values of the links saved in an intent
message may be arbitrary. Hence, to avoid potential false
negatives, DCV-Hunter assumes that this format of web
content contains untrusted iframes/popups.

4.3.2 URL Approval Analysis

To determine whether an extracted untrusted URL is approved
by the event handler “shouldOverrideUrlLoading()” or not, we
perform a path-sensitive constraint analysis on the event han-
dler code. The key observation behind the idea is that based
on the specification of the event handler [9], when untrusted
iframes/popups are opened or created, the event handler is
triggered, and should return false (Please note returning true
is usually used for denying the link or other purposes [53]).

Below is our solution. We construct the conditions (con-
straints over strings) of the paths to “returning false”, and
check whether the extracted URL can satisfy the conditions.
More specifically, based on the CG and control-flow graph of
the event handler, we first find all the possible paths to the key
instruction “returning false”. Then, starting from each key in-
struction, we perform a fast backward slicing along each path

Table 4: APIs for the Analysis of WUI redressing problems
Attacks Sensitive APIs
Overlap ViewGroup.addView()

Closure
ViewGroup.RemoveView()
WebView.setVisibility()
...

to construct the path constraints. The unknown variables in
the constraints are all over the string parameters (i.e., URL or
request) of “shouldOverrideUrlLoading()”. After that, based
on our threat model and the content of extracted URLs, we
add more constraints to the collected constraints, including

1) <parameter>.scheme == "HTTP"
or 2) <extracted_URL>.domain == <parameter>.domain.

The first constraint is aimed to check if attackers can freely
inject code into the sub-frame through MITM attacks. The sec-
ond constraint is used to verify if the domain of the extracted
URL is approved. Finally, we use an SMT solver (i.e., z3 [19])
to solve all constraints. If path constraints can be satisfied, it
indicates that the extracted URL should be approved.

Our path constraint analysis is implemented by embedding
and extending the symbolic execution module of our previous
work “EOEDroid” [53]. Please also note we model several fre-
quently used Java classes (e.g., WebResourceRequest, URL,
and String) to support the related operations.

4.4 Vulnerability Analysis
To determine each vulnerability, DCV-Hunter checks its con-
ditions respectively:
• Origin-hiding: DCV-Hunter first verifies whether the ori-

gin of the main frame is “null”. This is done by checking
the corresponding WebView content loading APIs and
their associated parameters. Then, for convenience, the
valuable attack targets are also checked, such as web mes-
saging or web-mobile bridges.

• WUI redressing: DCV-Hunter first verifies WebView’s
settings and event handlers to check whether WUI cre-
ation and closure are enabled. Then, DCV-Hunter checks
whether the corresponding event handlers onCreateWin-
dow() or onCloseWindow() are vulnerable or not. This is
done by checking the existence of the sensitive APIs listed
in Table 4. Based on the analysis of the design flaws of
these event handlers (Section 3.6), which have to blindly
approve or deny all requests, these simple checks can ob-
tain high accuracy.

• Main-frame navigation: For the traditional navigation
based problem, iframe sandbox is checked. If iframe sand-
box is used, DCV-Hunter then verifies if the navigation
capability is disabled. For the privileged navigation attack,

986 28th USENIX Security Symposium USENIX Association

DCV-Hunter checks whether multiple window mode is
disabled, which is done by directly checking associated
settings.

5 Security Impact Assessment
To assess DCVs’s security impacts on real-world popular
apps, we collected 17K most popular free apps from Google
Play. They are gathered from 32 categories, and each category
contains 540 most popular apps. By applying DCV-Hunter on
these collected apps, we found 11,341 apps contained at least
one path from their entry points to WebView content loading
APIs. Among them, 4,358 apps (38.4%) were potentially
vulnerable, including 13,384 potentially vulnerable WebView
instances and 27,754 potential vulnerabilities (Table 5). This
indicates DCVs widely impact real-world apps.

We evaluated the accuracy of DCV-Hunter by measuring
its false positives. We randomly selected 400 apps from the
apps flagged as “potentially vulnerable” by DCV-Hunter, and
manually checked them (see more details in Section 5.1). We
find 6 of them (1.5%) are false positives. Our further inspec-
tion revealed in four of these apps, during the reconstruction
of the URL loaded by WebView (Section 4.2), some unrelated
URLs were accounted, due to the imprecise taint analysis (i.e.,
overtaint). For the remaining two apps, “URL Approval Anal-
ysis” (Section 4.3.2) on untrusted iframe/popup links faced
difficulty in handling constraints that contained string regular
expressions. We leave addressing these weaknesses as our
future work.

All experiments were run on a high-performance computer.
We ran DCV-Hunter with 100 processes in parallel and each
process was assigned with limited resources (two regular
computing cores and 8GB memory). Our time cost showed
each process needed 144 seconds for each app.

5.1 Manual Verification
To manually verify target apps, we firstly modify Android
source code (version 6) to let it print necessary WebView
related information. Next, we install the modified Android
system in a real device (Nexus 5). Then, we test target apps.
For each app, when internal WebView instances are started,
we inject attack code to target iframes/popups. Last, based on
the web content shown in WebView and the logs printed by
Android, we determine if the attack code works and the app
is vulnerable.

Please note that different from prior work, we do not use
proxy for code injection. We find proxy has several short-
comings. For example, it is time consuming and inefficient to
locate the target iframes/popups for code injection. Instead,
we leverage Chrome’s USB debug interfaces to ease our test.
Since we run test in a real device, we connect the device with
PC using USB. Then, we open Chrome in PC to inject code
to target WebView instances. For example, we select a We-
bView instance and then open console (in Chrome) to run
extra attack code for code injection. But please always keep in
mind that before executing any code, we must select a (target)

Table 5: Potential Vulnerability Details
Potential
Attacks

Impacted
WebView

Impacted
Apps App Downloads

Origin-Hiding 1,737 1,238 3.5 Billion
WUI Overlap 138 89 8 Billion
WUI Closure 5 5 13 Million

Traditional Navigation 13,384 4,358 19.5 Billion
Privileged Navigation 12,490 4,161 17.8 Billion

Total 13,384 4,358 19.5 Billion

sub-frame as the code execution environment in console.

5.2 Findings
Many high-profile apps are impacted by DCVs. DCVs
widely exist in hybrid apps. Up to now, the potentially vul-
nerable apps have been downloaded more than 19.5 Billion
times (the fourth column of Table 5). Furthermore, these also
include many manually verified popular apps (some examples
are shown in Table 6) such as Facebook, Instagram, Facebook
Messenger, Google News, Skype, Uber, Yelp, U.S. Bank.

Almost all categories of apps are affected. Figure 10 shows
the related distribution data. The light blue line and the bars
respectively represent the distribution of potentially vulner-
able apps and each potential vulnerability in each category.
Almost all categories of apps are impacted, including several
sensitive categories (e.g., password management and banking
apps). This indicates DCVs are common.

We observe some categories are more subject to DCV at-
tacks than others, such as news, dating, and food-drink. We
manually analyze a set of apps in these categories, and find
these categories of apps use WebView more often to load
third-party untrusted content in iframes/popups. For example,
the Google News app (one billion+ downloads) provides the
news collections to users. It allows any website to be loaded in
its WebView. We manually check several news links and find
it is common for these news web pages to embed third-party
content, especially ads and tracking services.

We also find in some apps, their loaded web pages are safe,
and do not include any untrusted content. However, after the
web pages are fully loaded, these apps run extra JavaScript
code through the API “WebView.evaluateJavascript()” to cre-
ated and embedded new iframes/popups for loading ads con-
tent, which introduces security risks.

Furthermore, we find the events and news apps are more
likely to suffer from WUI redressing attacks. This is mainly
because these apps tend to manage WUIs by themselves. For
example, in some news apps, when a user scrolls down to
the bottom of the web page, the apps will directly append
and show more content, without letting the user click a “next
page” button. When the user clicks a concrete news link, a
new WUI is created and placed in the front of current WUI
to show that link. When the user finishes that web page, de-
velopers can close current WUI and show previous WUI. In
this way, the state of previous WUI is not changed, and the
dynamically appended content is also kept. This rendering

USENIX Association 28th USENIX Security Symposium 987

Table 6: Summary of Example (Manually Verified) Vulnerable Apps/Libraries
(* can be any domain, while OH, WO, WC, TN, PN, and BA respectively mean Origin-Hiding, WUI Overlap, WUI Closure,

Traditional Navigation, Privileged Navigation, and Blended attacks.)

Apps/Libraries Possible Attack Scenarios Vulnerabilities DownloadsMain-Frame Untrusted Sub-frame OH WO WC TN PN BA
Facebook * * 3 3 3 1 Billion+
Instagram * * 3 3 3 1 Billion+

Facebook Messenger * * 3 3 3 1 Billion+
Kakao Talk * * 3 3 3 1 Billion+

Google News * * 3 3 1 Billion+
Skype * * 3 3 1 Billion+

WeChat * * 3 3 100 Million+
Yelp * * 3 3 10 Million+

Kayak * * 3 3 10 Million+
Uber uber.com third-party tracking 3 3 100 Million+
ESPN espn.com third-party tracking 3 3 10 Million+

McDonald’s mcdonalds.com third-party tracking 3 3 10 Million+
Samsung Mobile Print * * 3 3 5 Million+

lastpass * * 3 5 Million+
dashlane * * 3 3 1 Million+

1password * * 3 3 1 Million+

U.S. bank * * 3 3 1 Million+
Huntington bank huntington.com third-party tracking 3 3 1 Million+

Chime mobile bank * * 3 3 1 Million+

Facebook Mobile Browser Library * * 3 3 3

Facebook React Native Library * * 3 3

strategy improves user experience. However, as described
in Section 3.6, due to the design flaws of the event handler
system, such a WUI management strategy is also exposed to
untrusted iframes/popups, and cause security issues.

Traditional and privileged navigation attacks impact
more apps than other DCV attacks. As summarized in the
second and third columns of Table 5, navigation based attacks
are more popular than the other vulnerabilities. It is mainly
because the security assumptions of these two attacks are
more easily satisfied. For example, many WebView instances
prefer using the default configuration (e.g., disabling popup-
creation), and suffer from privileged navigation attacks.

The traditional navigation based attack causes more se-
rious consequences in the context of WebView. This type
attack almost affects all potentially vulnerable apps. One im-
portant reason is that the effective defense solution “iframe
sandbox” is hardly used in practice. There are several rea-
sons. First, it may be difficult to add the sandbox attribute to
an iframe, especially considering developers have to find the
corresponding web code of that frame from a large amount
of web files and code. Second, it is difficult to manage the
sandbox configurations for each iframe. Each iframe has
its own specific security configurations, including disabling
JavaScript or navigation. When the iframe number rapidly
rises, the configuration management may become quite diffi-
cult. Third, iframe sandbox is not flexible. Its configurations
are often bound with iframes, rather than origins. If an iframe
is navigated to a different origin, it is hard for developers to

update the sandbox restriction policies.

5.3 Case Studies
We have successfully manually launched DCV attacks in
many popular apps (some examples are shown in Table 6).
Readers can find also several video demos at [2] (the website
is anonymized). In this section, we present two example apps
(Skype and Kayak) in detail, and also briefly discuss other
examples listed in Table 6.

5.3.1 Skype

This is a very popular communication app (one billion+ down-
loads). Our study shows it suffers from traditional and privi-
leged main-frame navigation attacks. A possible attack sce-
nario is shown in Figure 11. An attacker sends the victim
user a message containing a benign but vulnerable link (e.g.,
ebay.com). When the user clicks the link, a WebView in-
stance is started to render that link (Figure 11-b). However,
the loaded web page includes third-party untrusted tracking
web content (e.g., double-click) in iframes. The embedded
untrusted content has the ability to secretly navigate the main
frame through traditional or privileged navigation attacks,
which may result in stealthy phishing attacks (Figure 11-d).

We also observe when a web page is opened, its URL (e.g.,
ebay.com) is shown in the top of the app. This is relatively
helpful to mitigate DCV attacks. However, after the web con-
tent is fully loaded by WebView (Figure 11-c), we find the
URL is replaced by the title of the loaded web page. After
that, the URL will not be shown again, even when a naviga-

988 28th USENIX Security Symposium USENIX Association

Figure 10: Distribution of Potentially Vulnerable Apps and Potential Vulnerabilities

Figure 11: Attacking Skype

Figure 12: Attacking Kayak

tion event occurs. Hence, when the phishing attack occurs,
the victim user may hardly be aware of it.

5.3.2 Kayak

It is a leading app (ten million+ downloads) for providing
traveling-relevant searching services, which are aimed to help
users find better prices of flights, hotels, rental cars, and so
on. However, as shown in Figure 12, it suffers from WebView
UI redressing attacks, which may cause account information
leakage and financial losses. Consider a possible scenario
that a user is searching a flight. The user clicks one of the
searching results (Figure 12-a), such as the AA flight, and then
clicks the "View" button to get more details (Figure 12-b).

Next, a customized WebView instance is triggered to show
more flight details from “aa.com” (Figure 12-c). However,
in the AA web page, an extra iframe is embedded to load
third-party tracking content (tag management). In the Kayak

app, the untrusted iframe obtains the ability of performing
phishing attacks by leveraging the WUI overlap issue (Figure
12-d).

In addition, similar with the Skype app, the Kayak app also
provides a title bar to reduce the UI inconsistencies. However,
this is limited to defend against DCV attacks, since the opened
fake web pages often have the same title content.

5.3.3 More Examples

In addition to Skype and Kayak, more examples listed in
Table 6 are discussed below.
• Facebook Mobile Browser, Facebook, Instagram, and

Facebook Messenger: The Facebook Mobile Browser li-
brary is frequently used in Android apps, such as Face-
book, Instagram, and Facebook Messenger. In our study,
the traditional navigation and WUI overlap vulnerabilities
exist. As shown in Section 1 and Figure 5, an address bar
is provided in the library and is helpful to mitigate DCV
attacks. However, as discussed in Section 5.4, the address
bar may face pixel and race condition flaws. By leverag-
ing these flaws, untrusted sub-frames can still obtain the
ability of launching phishing attacks.

• Kakao Talk: Kakao Talk is a popular instant messaging
app. Although Kakao Talk is not equipped with the Face-
book Mobile Browser library, it is also impacted by the
above race condition flaw (Section 5.4).

• Google News: As introduced in Section 5.2, the Google
News app can show any news websites. When there is
an untrusted sub-frame in the rendered news web page,
which is common in practice, the untrusted sub-frame can
perform traditional or privileged navigation attacks.

• WeChat: WeChat is another popular instant messaging app.
Similar with Skype (Section 5.3.1), WeChat also faces
traditional and privileged navigation vulnerabilities.

• Yelp: The Yelp app are also impacted by traditional and
privileged navigation vulnerabilities. Different with Skype
and WeChat, Yelp’s WebView is triggered by clicking the

USENIX Association 28th USENIX Security Symposium 989

homepage link of a restaurant or a store. When the opened
“homepage” web page contains an untrusted sub-frame, the
untrusted sub-frame can launch traditional or privileged
navigation attacks.

• Uber: Uber’s WebView can be started to show “Terms and
Conditions” from its own website by sequentially clicking
the buttons “menu”, “legal” and “terms&conditions”. Our
analysis shows the term and condition webpage contains
an untrusted iframe for loading third-party tracking con-
tent (market analyst). The untrusted iframe can launch
traditional or privileged navigation attacks.

• ESPN: The ESPN app shows news from its own website.
However, its web pages load third-party tracking content
from Google in an iframe. Hence, the untrusted sub-frame
can also do phishing attacks by leveraging traditional nav-
igation and WUI overlap vulnerabilities.

• McDonald’s: In the app, several events are listed. When
an event link (such as “trick n’ treat”) is clicked, WebView
is started to show more details from its own website. How-
ever, an untrusted sub-frame is also contained that it may
exploit traditional or privileged navigation vulnerabilities.

• Samsung Mobile Print, lastpass, dashlane: These apps
provide an internal web browser to improve user expe-
rience. These internal browsers suffer from main-frame
navigation attacks. Although they also offer address bars,
unfortunately, the length of their address bars is much
short than the average length “29 letters” (Section 5.4.
For example, in the same environment (Nexus 5), Sam-
sung Mobile Print only shows 23 letters, and lastpass only
display 18 letters.

• 1password: DCV-Hunter finds several paths to WebView
content loading APIs. Because we do not have an account
to login, this app is not fully tested. However, when we
click its discount link, we still find a vulnerable WebView
instance is launched. The WebView instance can show any
content, and suffers from traditional or privileged naviga-
tion attacks.

• The U.S., Huntington and Chime Mobile Bank apps: These
bank apps provide WebView to load content from their
websites. Note that some of their WebView can be nav-
igated to any websites. The loaded content can include
third-party (tracking) content, which can launch traditional
or privileged navigation attacks.

• The Facebook React Native library: This library is de-
signed to help JavaScript developers implement cross-
platform mobile apps. In its WebView, the related default
configurations are applied. It suffers from traditional and
privileged navigation vulnerabilities.

5.4 Security Impacts of Home-Brewed URL
Address Bars

Our study shows that some hybrid apps implement their own
URL address and title bars (such as those in our case studies),
which could reduce the UI inconsistencies between WebView

and regular browsers. To better evaluate the security impacts,
we conducted an empirical study of 100 apps that contain
home-brewed address bars. These apps are collected by fil-
tering the DCV-Hunter analysis results (by checking if there
is a path or flow from WebView’s real-time URLs (such as
the API “WebView.getUrl()” and the second parameter of the
event handler “onPageFinished(view, url)”) to UI components’
updating APIs such as “TextView.setText()”).

We find that the home-brewed address bars are ineffective
to prevent DCV attacks, for two main reasons: limited address
bar lengths, and implementation errors.

Limited Address Bar Lengths. In our study on a real phone
(Nexus 5), which has the representative screen width, we find
that typical address bars averagely show 29 letters. When
domains, including sub-domains, being accessed exceed that
length, security risks could be caused, even when some ex-
isting solutions such as showing the rightmost/leftmost of
origin/URL are in use (e.g., Chrome/Chromium). This is also
partially verified by existing work (e.g., [29]).

Implementation Errors. Some apps/libraries, such as "Face-
book Mobile Browser", use very small fonts to show origins
(Figure 5). This mitigates the above length limitation problem.
As Figure 5-c shows, this address bar can effectively mitigate
a DCV attack, such as the WUI overlap attack, since the ad-
dress bar can show the origin of the fake web page in real
time. However, it also has several flaws. First, due to the small
font, it faces the pixel problem. Attackers may build a fake
and confusing URL by replacing few letters of the benign
URL with confusing letters (such as replacing the letter “O”
with the number “0”). The fake URL may still spoof users.

Moreover, in these apps, our analysis finds a race condition
flaw, which can be utilized to show fake web content in Web-
View, while still presenting the benign URL (e.g., ebay.com)
in the address bar (Figure 5-d). This issue is rooted in the
design flaw that several WUIs share only one address bar,
while all these WUIs have abilities to update the content of
the address bar. Hence, attackers can still perform phishing
attacks by combining a couple of DCV attacks. For exam-
ple, in the Facebook Mobile Browser library, which suffers
from the WUI overlap attack, attackers may open a WUI
to load fake content, and then immediately update the over-
lapped benign WUI in background. As a result, the address
bar only show attackers’ URL in a very short time and is
quickly updated to display the benign URL. In our test, we
find sometimes the bad URL may not even appear (see our
online demo [2]). This indicates the blended attack is stealthy.
In practice, the blended attack can be easily launched by using
the code shown in Listing 8.

1 // Opening a fake web page (WUI overlap attack)
2 window.open("https://attacker.com", "_blank")
3 // Refreshing the address bar (Traditional navigation attack)
4 window.open("https://eaby.com", "_top")

Listing 8: Exploit Code of Blended Attacks

990 28th USENIX Security Symposium USENIX Association

6 Vulnerability Mitigation
6.1 Mitigation Solution
To mitigate DCV attacks, we propose a multi-level solution
that enhances the security of WebView. First, we enhance the
security of event handlers by addressing their design flaws
(Section 3.6). For example, in onCreateWindow(), necessary
information is provided, including the operator origin who is
creating a popup, and the URL the created popup is going to
load. Thus, based on the provided information, developers can
reject an unauthorized request. To ease the deployment of our
solution, we also provide security enforcement. If developers
provide the list of trusted URLs in a configuration file inside
their apps (located in the app folder “assets”), the untrusted
requests can be automatically denied.

Second, we also mitigate the UI inconsistencies by pro-
viding floating URL indicators. For example, when the main
frame is navigated to a different domain by an iframe/popup,
the URL indicator can provide users an alert. Furthermore,
when users longly press a WebView instance, the origin of
the main frame being loaded by the WebView instance is
presented.

Note this URL indicator is locally bound with a WUI,
which is helpful to avoid the race condition flaw (Section
5.4). When there are multiple WUIs available, only the fore-
most WUI’s URL indicator is visible.

Third, to mitigate origin-hiding attacks, in critical opera-
tions (e.g., accessing web-mobile bridges), we replace the
“null” origin with the origin who creates the “null” origin.
This makes existing defense solutions effective again, since
they can enforce security checks or policies on the new origin.

Fourth, to counter the WebView UI redressing problem,
changes of the WUI rendering order are monitored. When a
change is performed by an iframe/popup, an alert is offered.
Last, to limit the navigation based attacks, we introduce same
origin restrictions into navigation, and also fix the conflict.

6.2 Mitigation Solution Implementation
Our implementation is mainly done by instrumenting the We-
bView library, without modifying the source code of Android
frameworks.

6.2.1 Enhanced Event Handlers

To achieve the goal, event handlers related implementation is
instrumented. Take the event handler onCreateWindow() as
the example. To obtain the origin who is creating a popup, the
call site is scanned to locate the last popup-creation operation.
Next, the corresponding operator’s web frame information
(e.g., origin) is retrieved. However, if the web frame’s origin is
“null”, DCV-Hunter checks the web frame tree to get the real
frame who create the “null” frame. Then, to learn the URL the
created popup is going to load, the parameter of the related
API (e.g., window.open()) is also extracted. Furthermore, to
implement the security enforcement of denying untrusted
requests, the default implement of onCreateWindow() is also

instrumented. When the configuration file (providing the list
of trusted domains) exists, the trusted URLs are extracted
and also used to match the URLs that trigger popup-creation
requests.

6.2.2 URL Indicators

To present current origin loaded in a WebView instance, the
long-click event of the WebView instance is handled. When
the event occurs, the origin of the main frame is presented as
a notification. However, the long-click event may also be used
by developers. To avoid potential conflicts, we create an event
handler wrapper, which first shows the origin information, and
then calls the essential event handler registered by developers.

To monitor the main-frame navigation, the event handler
“shouldOverrideUrlLoading()” is leveraged. When the event
handler is triggered, the URL is checked. If the main frame
is redirected to a different domain by a sub-frame, an alert
can be given. Furthermore, considering WebView is also a
view group (Section 2.2), we make the indicator local: we
temporary add a text view to WebView as the indicator.

6.2.3 Replacing the “null” Origin

Since the “null” origin is meaningless, we replace it with
the origin who creates the “null” origin. To achieve the goal,
we scan the frame tree from bottom to top, and get the root
frame, or the last frame whose origin is not “null”. Then, the
corresponding origin O is extracted for the replacement.

Next, to replace the “null” origin with O in postMessage,
we instrument the associated methods of the class “Web-
DOMMessageEvent” and “MessageEvent”. If the source ori-
gin is specified as “null”, it will be replaced. Then, the security
of web-mobile bridges is enhanced as follows. Take the event
handler onJsAlert(view, url, ...) as the example. We instrument
the event handler’s relevant caller (i.e., “AwJavaScriptDialog-
Manager::RunJavaScriptDialog”) inside WebView. In the
caller, if url is the data scheme URL, it will be replaced by O.

6.2.4 Popup Indicator

To mitigate the WebView UI redressing problem, all associ-
ated key APIs are monitored, such as addView(). When the
WUI rendering order is changing by a sub-frame, an alert will
be offered (implemented in the associated enhanced event
handlers).

6.2.5 Safe Navigation

To avoid traditional navigation problem, we narrow down
the navigation policy that navigation occurs only when two
frames have the same origins. To achieve the goal, we instru-
ment the key method “LocalDOMWindow::open()” to add
the origin checks.

Furthermore, to fix privileged navigation problem, the con-
flict between WebView features and web APIs is handled.
More specifically, in the key method “RenderFrameHost
Impl::CreateNewWindow”, we add more security restric-
tions. When the setting “SupportMultipleWindows” is false,

USENIX Association 28th USENIX Security Symposium 991

the popup behavior will be ignored.

6.3 Mitigation Evaluation
In our evaluation, we first test the usability of our defense
solution, especially about how easy to deploy and apply our
solution in practice. To do that, we select 10 real-world vul-
nerable apps for testing. We find our solution can simply
work, if developers involve our own WebView header files,
including the declarations of new function prototypes (e.g.,
onCreateWindow()), and also provide the configuration file
with the list of third-party domains. Please note that because
these real apps lack source code, we repackage them to in-
volve necessary files.

Next, we verify the correctness of our mitigation solution
by testing above ten apps. We test them in stock (vulnerable)
WebView and the WebView that implements our mitigation
solution, respectively. We find that 1) there are no errors
introduced by our mitigation solution. Apps work well as
usual; 2) DCV attacks are mitigated.

Then, we measure the overhead to check if our mitigation
solution impacts user experience. We create a vulnerable app
for testing. In the app, we call the WebView API loadUrl() to
run associate HTML/JavaScript code to trigger all vulnerabili-
ties. Meanwhile, all time costs are recorded. Similarly, we run
the app in stock (vulnerable) WebView and the WebView that
implements our mitigation solution. By comparing time costs,
we find our mitigation solution only introduces tiny overhead:
2ms on average.

Last, considering the Android version fragmentation issue,
we also test the compatibility of our mitigation solution by
installing our own WebView library and running above the
created app in major Android versions. The result shows our
solution is available in many major popular Android versions
(5.0+), and covers 89.3% of Android devices in use (based on
the Android version distribution data of May 2019 [1]).

7 Related Work
Iframe/popup Security. In web apps, iframes/popups are of-
ten the cause of security issues, such as frame hijacking [11],
clickjacking [43], and double-click clickjacking [23]. In past
years, in the context of regular browsers, iframe/popup be-
haviors and these security issues were well studied. Many
defense solutions were proposed. For example, the HTTP
header “X-Frame-Options” and the frame busting [43] solu-
tion can prevent being framed. In this work, we mainly focus
on the exploration of the abilities of untrusted iframes/pop-
ups. The more related security mechanisms, such as SOP, and
navigation policies, are discussed in Section 2.1. As shown
in Section 1 and 3, existing solutions are circumscribed to
prevent DCV attacks.

WebView security. WebView security has attracted more
and more attention. [17,30,33] generically studied WebView
security. [21, 25, 27, 40, 49, 53] explored the security of web-
mobile bridges, and also discovered several extended attacks.

In Section 3.5, we compare DCV attacks with several related
attacks, and show DCV attacks may have a set of advantages.

Several static analysis based approaches [22, 55] were pro-
posed to vet hybrid apps. However, they were limited to an-
alyze iframe/popup behaviors and event handlers (also see
our discussion in Section 4). Several defense solutions were
designed to provide protection for WebView and web-mobile
bridges, such as NoFrak [21], Draco [49], MobileIFC [45],
WIREframe [18], and HybridGuard [38]. NoFrak and Mo-
bileIFC extended SOP into the mobile layer, while other solu-
tions provided security enforcement on web-mobile bridges.
However, as discussed in Section 1 and 3, they were quite
limited to prevent DCV attacks.

In addition, many solutions [13, 41] are also designed to
mitigate the Android UI deception problems [15,20,35]. How-
ever, as discussed in Section 1 and 3.3, they cannot monitor
the state change of WebView UI, and circumscribed to prevent
WUI redressing attacks.

8 Discussion

Research scope. In this work, we mainly focus on Android,
which is currently the most popular mobile OS. However,
there are also other WebView formats in other platforms (e.g.,
WKWebView for iOS). The research on other platforms would
be complementary to our work, and we leave this as our future
work.

False negatives. DCV-Hunter faces false negatives in some
situations. For example, in mobile apps, some URLs loaded in
WebView are encrypted, some URL related data goes through
implicit flows, and some WebView related code is dynami-
cally loaded. Some of these issues can be simply partially
mitigated. For example, apps can be dynamically tested for
collecting and downloading dynamically loaded code. We
leave the improvement of our tool to reduce all false negatives
as our future work.

9 Conclusion

Iframes/popups are often the root cause of several critical
web security issues, and have been well studied in regular
browsers. However, their behaviors are rarely understood and
scrutinized in WebView, which has a totally new working
environment. In this paper, we fill the gap and identify several
fundamental design flaws and vulnerabilities, named differen-
tial context vulnerabilities (DCVs). We find that by exploiting
DCVs, an untrusted iframe/popup becomes very dangerous in
Android WebView. We have designed a novel detection tech-
nique, DCV-Hunter, to assess the security impacts of DCVs
on real-world apps. Our measurement on a large number of
popular apps shows that DCVs are prevalent. We have also
presented a multi-level protection solution to mitigate DCVs,
which is shown to be scalable and effective.

992 28th USENIX Security Symposium USENIX Association

Acknowledgments
We want to thank our shepherd Yinzhi Cao and the anony-
mous reviewers for their valuable comments. This material is
based upon work supported in part by the National Science
Foundation (NSF) under Grant no. 1642129 and 1700544.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF. We also thank Cong
Zheng and Yuchen Zhou for the helpful discussions about our
threat model and the design of DCV-Hunter.

References
[1] Android version distribution dashboard. https://

developer.android.com/about/dashboards.

[2] Dcv-attacks. https://sites.google.com/view/
dcv-attacks.

[3] Easyprivacy tracking protection list. https:
//easylist.to/tag/tracking-protection-
lists.html.

[4] iframe - html standard. https://html.spec.
whatwg.org/dev/iframe-embed-object.html#
attr-iframe-sandbox.

[5] Mcafee mobile threat report. https://www.mcafee.
com/us/resources/reports/rp-mobile-
threat-report-2016.pdf.

[6] Same origin policy. https://en.wikipedia.org/
wiki/Same-origin_policy.

[7] Selenium - web browser automation. https://www.
seleniumhq.org.

[8] Web messaging standard. https://html.spec.
whatwg.org/multipage/web-messaging.html.

[9] Webview client. https://developer.
android.com/reference/android/webkit/
WebViewClient.html.

[10] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In PLDI,
2014.

[11] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. In USENIX Security, 2009.

[12] A. B. Bhavani. Cross-site Scripting Attacks on Android
WebView. IJCSN International Journal of Computer
Science and Network, 2(2):1–5, 2013.

[13] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the app is that? decep-
tion and countermeasures in the android user interface.
In IEEE Symposium on Security and Privacy, 2015.

[14] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and
P. Barlet-Ros. A survey on web tracking: Mechanisms,

implications, and defenses. Proceedings of the IEEE,
2017.

[15] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your
app without actually seeing it: Ui state inference and
novel android attacks. In USENIX Security, 2014.

[16] E. Chin and D. Wagner. Bifocals: Analyzing webview
vulnerabilities in android applications. In International
Workshop on Information Security Applications, 2013.

[17] E. Chin and D. Wagner. Bifocals: Analyzing webview
vulnerabilities in android applications. In WISA. 2013.

[18] D. Davidson, Y. Chen, F. George, L. Lu, and S. Jha.
Secure integration of web content and applications on
commodity mobile operating systems. In ASIA CCS,
2017.

[19] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS/ETAPS, pages 337–340. Springer-Verlag, 2008.

[20] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee. Cloak
and dagger: from two permissions to complete control
of the ui feedback loop. In IEEE Symposium on Security
and Privacy, 2017.

[21] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and
fixing origin-based access control in hybrid web/mobile
application frameworks. In NDSS, 2014.

[22] B. Hassanshahi, Y. Jia, R. H. C. Yap, P. Saxena, and
Z. Liang. Web-to-application injection attacks on an-
droid: Characterization and detection. In ESORICS,
2015.

[23] L. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and
C. Jackson. Clickjacking: Attacks and defenses. In
USENIX Security, 2012.

[24] InfoSecurity. Public wifi hotspots ripe for mitm attacks.
https://www.infosecurity-magazine.com/
news/public-wifi-hotspots-ripe-for-mitm-
attacks/.

[25] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri.
Code injection attacks on html5-based mobile apps:
Characterization, detection and mitigation. In CCS,
2014.

[26] A. Lerner, T. Kohno, and F. Roesner. Rewriting history:
Changing the archived web from the present. CCS,
2017.

[27] T. Li, X. Wang, M. Zha, K. Chen, X. Wang, L. Xing,
X. Bai, N. Zhang, and X. Han. Unleashing the walking
dead: Understanding cross-app remote infections on
mobile webviews. In CCS, 2017.

[28] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing
your enemy: Understanding and detecting malicious
web advertising. In CCS, 2012.

USENIX Association 28th USENIX Security Symposium 993

https://developer.android.com/about/dashboards
https://developer.android.com/about/dashboards
https://sites.google.com/view/dcv-attacks
https://sites.google.com/view/dcv-attacks
https://easylist.to/tag/tracking-protection-lists.html
https://easylist.to/tag/tracking-protection-lists.html
https://easylist.to/tag/tracking-protection-lists.html
https://html.spec.whatwg.org/dev/iframe-embed-object.html#attr-iframe-sandbox
https://html.spec.whatwg.org/dev/iframe-embed-object.html#attr-iframe-sandbox
https://html.spec.whatwg.org/dev/iframe-embed-object.html#attr-iframe-sandbox
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://en.wikipedia.org/wiki/Same-origin_policy
https://en.wikipedia.org/wiki/Same-origin_policy
https://www.seleniumhq.org
https://www.seleniumhq.org
https://html.spec.whatwg.org/multipage/web-messaging.html
https://html.spec.whatwg.org/multipage/web-messaging.html
https://developer.android.com/reference/android/webkit/WebViewClient.html
https://developer.android.com/reference/android/webkit/WebViewClient.html
https://developer.android.com/reference/android/webkit/WebViewClient.html
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/
https://www.infosecurity-magazine.com/news/public-wifi-hotspots-ripe-for-mitm-attacks/

[29] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis.
Hindsight: Understanding the evolution of ui vulnerabil-
ities in mobile browsers. CCS, 2017.

[30] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks
on webview in the android system. In ACSAC, 2011.

[31] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du. Touch-
jacking attacks on web in android, iOS, and windows
phone. In Foundations and Practice of Security. 2013.

[32] J. R. Mayer and J. C. Mitchell. Third-party web tracking:
Policy and technology. In IEEE Symposium on Security
and Privacy, 2012.

[33] P. Mutchler, A. DoupÃ, J. Mitchell, C. Kruegel, G. Vi-
gna, A. Doup, J. Mitchell, C. Kruegel, and G. Vigna.
A Large-Scale Study of Mobile Web App Security. In
MoST, 2015.

[34] M. Neugschwandtner, M. Lindorfer, and C. Platzer. A
view to a kill: Webview exploitation. In LEET, 2013.

[35] M. Niemietz and J. Schwenk. Ui redressing attacks on
android devices. Black Hat, 2012.

[36] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You are what you include: Large-scale
evaluation of remote javascript inclusions. CCS, 2012.

[37] X. Pan, Y. Cao, and Y. Chen. I do not know what you
visited last summer - protecting users from third-party
web tracking with trackingfree browser. In NDSS, 2015.

[38] P. H. Phung, A. Mohanty, R. Rachapalli, and M. Sridhar.
Hybridguard: A principal-based permission and fine-
grained policy enforcement framework for web-based
mobile applications. In MoST, 2017.

[39] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Mon-
rose. All your iframes point to us. Usenix Security,
2008.

[40] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. Ri-
ley. Are these Ads Safe: Detecting Hidden Attacks
through the Mobile App-Web Interfaces. NDSS, 2016.

[41] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu. Towards
discovering and understanding task hijacking in android.
In USENIX Security, 2015.

[42] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
defending against third-party tracking on the web. In
NSDI), 2012.

[43] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking vulner-

abilities at popular sites. In IEEE Oakland Web 2.0
Security and Privacy, 2010.

[44] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax:
Systematic discovery of client-side validation vulnera-
bilities in rich web applications. In NDSS, 2010.

[45] K. Singh. Practical context-aware permission control
for hybrid mobile applications. In RAID. 2013.

[46] D. F. Somé, N. Bielova, and T. Rezk. Control what you
include! - server-side protection against third party web
tracking. In Engineering Secure Software and Systems,
2017.

[47] S. Son and V. Shmatikov. The postman always rings
twice: Attacking and defending postmessage in html5
websites. In NDSS, 2013.

[48] K. Tian, Z. Li, K. D Bowers, and D. Yao. Framehanger:
Evaluating and classifying iframe injection at large scale.
In SecureComm, 2018.

[49] G. S. Tuncay, S. Demetriou, and C. A. Gunter. Draco:
A system for uniform and fine-grained access control
for web code on android. In CCS, 2016.

[50] R. Wang, L. Xing, X. Wang, and S. Chen. Unautho-
rized origin crossing on mobile platforms: Threats and
mitigation. In CCS, 2013.

[51] T. Wei, Y. Zhang, H. Xue, M. Zheng, C. Ren, and
D. Song. Sidewinder targeted attack against android
in the golden age of ad libraries. In Black Hat. 2014.

[52] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel,
and G. Vigna. Zigzag: Automatically hardening web
applications against client-side validation vulnerabilities.
In USENIX Security, 2015.

[53] G. Yang, J. Huang, and G. Gu. Automated generation
of event-oriented exploits in android hybrid apps. In
NDSS, 2018.

[54] G. Yang, J. Huang, G. Gu, and A. Mendoza. Study and
mitigation of origin stripping vulnerabilities in hybrid-
postmessage enabled mobile applications. In IEEE Sym-
posium on Security and Privacy, 2018.

[55] G. Yang, A. Mendoza, J. Zhang, and G. Gu. Precisely
and scalably vetting javascript bridge in android hybrid
apps. In RAID, 2017.

[56] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz,
C. Kruegel, and G. Vigna. The dark alleys of madi-
son avenue: Understanding malicious advertisements.

In IMC, 2014.

994 28th USENIX Security Symposium USENIX Association

Small World with High Risks:
A Study of Security Threats in the npm Ecosystem

Markus Zimmermann
Department of Computer Science

TU Darmstadt

Cristian-Alexandru Staicu
Department of Computer Science

TU Darmstadt

Cam Tenny
r2c

Michael Pradel
Department of Computer Science

TU Darmstadt

Abstract
The popularity of JavaScript has lead to a large ecosystem
of third-party packages available via the npm software pack-
age registry. The open nature of npm has boosted its growth,
providing over 800,000 free and reusable software packages.
Unfortunately, this open nature also causes security risks, as
evidenced by recent incidents of single packages that broke
or attacked software running on millions of computers. This
paper studies security risks for users of npm by systematically
analyzing dependencies between packages, the maintainers
responsible for these packages, and publicly reported secu-
rity issues. Studying the potential for running vulnerable or
malicious code due to third-party dependencies, we find that
individual packages could impact large parts of the entire
ecosystem. Moreover, a very small number of maintainer ac-
counts could be used to inject malicious code into the majority
of all packages, a problem that has been increasing over time.
Studying the potential for accidentally using vulnerable code,
we find that lack of maintenance causes many packages to de-
pend on vulnerable code, even years after a vulnerability has
become public. Our results provide evidence that npm suffers
from single points of failure and that unmaintained pack-
ages threaten large code bases. We discuss several mitigation
techniques, such as trusted maintainers and total first-party
security, and analyze their potential effectiveness.

1 Introduction

JavaScript has become one of the most widely used program-
ming languages. To support JavaScript developers with third-
party code, the node package manager, or short npm, provides
hundreds of thousands of free and reusable code packages.
The npm platform consists of an online database for search-
ing packages suitable for given tasks and a package manager,
which resolves and automatically installs dependencies. Since
its inception in 2010, npm has steadily grown into a collection
of over 800,000 packages, as of February 2019, and will likely
grow beyond this number. As the primary source of third-party

JavaScript packages for the client-side, server-side, and other
platforms, npm is the centerpiece of a large and important
software ecosystem.

The npm ecosystem is open by design, allowing arbitrary
users to freely share and reuse code. Reusing a package is as
simple as invoking a single command, which will download
and install the package and all its transitive dependencies.
Sharing a package with the community is similarly easy, mak-
ing code available to all others without any restrictions or
checks. The openness of npm has enabled its growth, provid-
ing packages for any situation imaginable, ranging from small
utility packages to complex web server frameworks and user
interface libraries.

Perhaps unsurprisingly, npm’s openness comes with secu-
rity risks, as evidenced by several recent incidents that broke
or attacked software running on millions of computers. In
March 2016, the removal of a small utility package called
left-pad caused a large percentage of all packages to become
unavailable because they directly or indirectly depended on
left-pad.1 In July 2018, compromising the credentials of the
maintainer of the popular eslint-scope package enabled an
attacker to release a malicious version of the package, which
tried to send local files to a remote server.2

Are these incidents unfortunate individual cases or first
evidence of a more general problem? Given the popularity
of npm, better understanding its weak points is an important
step toward securing this software ecosystem. In this paper,
we systematically study security risks in the npm ecosystem
by analyzing package dependencies, maintainers of packages,
and publicly reported security issues. In particular, we study
the potential of individual packages and maintainers to impact
the security of large parts of the ecosystem, as well as the
ability of the ecosystem to handle security issues. Our analysis
is based on a set of metrics defined on the package dependency
graph and its evolution over time. Overall, our study involves
5,386,239 versions of packages, 199,327 maintainers, and

1https://www.infoworld.com/article/3047177/javascript/
how-one-yanked-javascript-package-wreaked-havoc.html

2https://github.com/eslint/eslint-scope/issues/39

USENIX Association 28th USENIX Security Symposium 995

https://www.infoworld.com/article/3047177/javascript/how-one-yanked-javascript-package-wreaked-havoc.html
https://www.infoworld.com/article/3047177/javascript/how-one-yanked-javascript-package-wreaked-havoc.html
https://github.com/eslint/eslint-scope/issues/39

609 publicly known security issues.
The overall finding is that the densely connected nature of

the npm ecosystem introduces several weak spots. Specifi-
cally, our results include:

• Installing an average npm package introduces an implicit
trust on 79 third-party packages and 39 maintainers, cre-
ating a surprisingly large attack surface.

• Highly popular packages directly or indirectly influence
many other packages (often more than 100,000) and are
thus potential targets for injecting malware.

• Some maintainers have an impact on hundreds of thou-
sands of packages. As a result, a very small number
of compromised maintainer accounts suffices to inject
malware into the majority of all packages.

• The influence of individual packages and maintainers
has been continuously growing over the past few years,
aggravating the risk of malware injection attacks.

• A significant percentage (up to 40%) of all packages
depend on code with at least one publicly known vulner-
ability.

Overall, these findings are a call-to-arms for mitigating se-
curity risks on the npm ecosystem. As a first step, we discuss
several mitigation strategies and analyze their potential effec-
tiveness. One strategy would be a vetting process that yields
trusted maintainers. We show that about 140 of such maintain-
ers (out of a total of more than 150,000) could halve the risk
imposed by compromised maintainers. Another strategy we
discuss is to vet the code of new releases of certain packages.
We show that this strategy reduces the security risk slightly
slower than trusting the involved maintainers, but it still scales
reasonably well, i.e., trusting the top 300 packages reduces
the risk by half. If a given package passes the vetting process
for maintainers and code, we say it has “perfect first-party
security”. If all its transitive dependencies pass the vetting
processes we say that it has “perfect third-party security”.
If both conditions are met, we consider it a “fully secured
package”. While achieving this property for all the packages
in the ecosystem is infeasible, packages that are very often
downloaded or that have several dependents should aim to
achieve it.

2 Security Risks in the npm Ecosystem

To set the stage for our study, we describe some security-
relevant particularities of the npm ecosystem and introduce
several threat models.

2.1 Particularities of npm
Locked Dependencies In npm, dependencies are declared
in a configuration file called package.json, which specifies

the name of the dependent package and a version constraint.
The version constraint either gives a specific version, i.e., the
dependency is locked, or specifies a range of compatible ver-
sions, e.g., newer than version X. Each time an npm package
is installed, all its dependencies are resolved to a specific
version, which is automatically downloaded and installed.

Therefore, the same package installed on two different ma-
chines or at two different times may download different ver-
sions of a dependency. To solve this problem, npm introduced
package-lock.json, which developers can use to lock their tran-
sitive dependencies to a specific version until a new lock file
is generated. That is, each package in the dependency tree is
locked to a specific version. In this way, users ensure uniform
installation of their packages and coarse grained update of
their dependencies. However, a major shortcoming of this ap-
proach is that if a vulnerability is fixed for a given dependency,
the patched version is not installed until the package-lock.json
file is regenerated. In other words, developers have a choice
between uniform distribution of their code and up-to-date
dependencies. Often they choose the later, which leads to a
technical lag [12] between the latest available version of a
package and the one used by dependents.

Heavy Reuse Recent work [11, 18] provides preliminary
evidence that code reuse in npm differs significantly from
other ecosystems. One of the main characteristic of the npm
ecosystem is the high number of transitive dependencies. For
example, when using the core of the popular Spring web
framework in Java, a developer transitively depends on ten
other packages. In contrast, the Express.js web framework
transitively depends on 47 other packages.

Micropackages Related to the reuse culture, another inter-
esting characteristic of npm is the heavy reliance on packages
that consist of only few lines of source code, which we call
micropackages. Related work documents this trend and warns
about its dangers [1, 19]. These packages are an important
part of the ecosystem, yet they increase the surface for certain
attacks as much as functionality heavy packages. This exces-
sive fragmentation of the npm codebase can thus lead to very
high number of dependencies.

No Privilege Separation In contrast to, e.g., the Java se-
curity model in which a SecurityManager3 can restrict the
access to sensitive APIs, JavaScript does not provide any kind
of privilege separation between code loaded from different
packages. That is, any third-party package has the full privi-
leges of the entire application. This situation is compounded
by the fact that many npm packages run outside of a browser,
in particular on the Node.js platform, which does not provide
any kind of sandbox. Instead, any third-party package can
access, e.g., the file system and the network.

3https://docs.oracle.com/javase/6/docs/api/java/lang/
SecurityManager.html

996 28th USENIX Security Symposium USENIX Association

https://docs.oracle.com/javase/6/docs/api/java/lang/SecurityManager.html
https://docs.oracle.com/javase/6/docs/api/java/lang/SecurityManager.html

No Systematic Vetting The process of discovering vulner-
abilities in npm packages is still in its infancy. There currently
is no systematic vetting process for code published on npm.
Instead, known vulnerabilities are mostly reported by indi-
viduals, who find them through manual analysis or in recent
research work, e.g., injection vulnerabilities [30], regular ex-
pression denial of service [9,29], path traversals [16], binding
layer bugs [6].

Publishing Model In order to publish a package, a devel-
oper needs to first create an account on the npm website. Once
this prerequisite is met, adding a new package to the repos-
itory is as simple as running the “npm publish” command
in a folder containing a package.json file. The user who first
published the package is automatically added to the main-
tainers set and hence she can release future versions of that
package. She can also decide to add additional npm users as
maintainers. What is interesting to notice about this model
is that it does not require a link to a public version control
system, e.g., GitHub, hosting the code of the package. Nor
does it require that persons who develop the code on such
external repositories also have publishing rights on npm. This
disconnect between the two platforms has led to confusion4

in the past and to stealthy attacks that target npm accounts
without changes to the versioning system.

2.2 Threat Models
The idiosyncratic security properties of npm, as described
above, enable several scenarios for attacking users of npm
packages. The following discusses threat models that either
correspond to attacks that have already occurred or that we
consider to be possible in the future.

Malicious Packages (TM-mal) Adversaries may publish
packages containing malicious code on npm and hence trick
other users into installing or depending on such packages. In
2018, the eslint-scope incident mentioned earlier has been
an example of this threat. The package deployed its payload
at installation time through an automatically executed post-
installation script. Other, perhaps more stealthy methods for
hiding the malicious behavior could be envisioned, such as
downloading and executing payloads only at runtime under
certain conditions.

Strongly related to malicious packages are packages that
violate the user’s privacy by sending usage data to third par-
ties, e.g., insight5 or analytics-node6. While these libraries
are legitimate under specific conditions, some users may not
want to be tracked in this way. Even though the creators of
these packages clearly document the tracking functionality,
transitive dependents may not be aware that one of their de-
pendencies deploys tracking code.

4http://www.cs.tufts.edu/comp/116/archive/spring2018/
etolhurst.pdf

5https://www.npmjs.com/package/insight
6https://www.npmjs.com/package/analytics-node

Exploiting Unmaintained Legacy Code (TM-leg) As
with any larger code base, npm contains vulnerable code,
some of which is documented in public vulnerability
databases such as npm security advisories7 or Snyk vulnerabil-
ity DB8. As long as a vulnerable package remains unfixed, an
attacker can exploit it in applications that transitively depend
on the vulnerable code. Because packages may become aban-
doned due to developers inactivity [8] and because npm does
not offer a forking mechanism, some packages may never be
fixed. Even worse, the common practice of locking dependen-
cies may prevent applications from using fixed versions even
when they are available.

Package Takeover (TM-pkg) An adversary may convince
the current maintainers of a package to add her as a maintainer.
For example, in the recent event-stream incident9, the attacker
employed social engineering to obtain publishing rights on
the target package. The attacker then removed the original
maintainer and hence became the sole owner of the package.
A variant of this attack is when an attacker injects code into
the source base of the target package. For example, such code
injection may happen through a pull request, via compromised
development tools, or even due to the fact that the attacker
has commit rights on the repository of the package, but not
npm publishing rights. Once vulnerable or malicious code is
injected, the legitimate maintainer would publish the package
on npm, unaware of its security problems. Another takeover-
like attack is typosquatting, where an adversary publishes
malicious code under a package name similar to the name of
a legitimate, popular package. Whenever a user accidentally
mistypes a package name during installation, or a developer
mistypes the name of a package to depend on, the malicious
code will be installed. Previous work shows that typosquatting
attacks are easy to deploy and effective in practice [31].

Account Takeover (TM-acc) The security of a package
depends on the security of its maintainer accounts. An attacker
may compromise the credentials of a maintainer to deploy
insecure code under the maintainer’s name. At least one recent
incident (eslint-scope) is based on account takeover. While
we are not aware of how the account was hijacked in this
case, there are various paths toward account takeover, e.g.,
weak passwords, social engineering, reuse of compromised
passwords, and data breaches on npm.

Collusion Attack (TM-coll) The above scenarios all as-
sume a single point of failure. In addition, the npm ecosystem
may get attacked via multiple instances of the above threats.
Such a collusion attack may happen when multiple main-
tainers decide to conspire and to cause intentional harm, or
when multiple packages or maintainers are taken over by an
attacker.

7https://www.npmjs.com/advisories
8https://snyk.io/vuln/?type=npm
9https://github.com/dominictarr/event-stream/issues/116

USENIX Association 28th USENIX Security Symposium 997

http://www.cs.tufts.edu/comp/116/archive/spring2018/etolhurst.pdf
http://www.cs.tufts.edu/comp/116/archive/spring2018/etolhurst.pdf
https://www.npmjs.com/package/insight
https://www.npmjs.com/package/analytics-node
https://www.npmjs.com/advisories
https://snyk.io/vuln/?type=npm
https://github.com/dominictarr/event-stream/issues/116

3 Methodology

To analyze how realistic the above threats are, we systemati-
cally study package dependencies, maintainers, and known
security vulnerabilities in npm. The following explains the
data and metrics we use for this study.

3.1 Data Used for the Study
Packages and Their Dependencies To understand the im-
pact of security problems across the ecosystem, we analyze
the dependencies between packages and their evolution.

Definition 3.1 Let t be a specific point in time, Pt be a set of
npm package names, and Et = {(pi, p j)|pi 6= p j ∈ Pt} a set
of directed edges between packages, where pi has a regular
dependency on p j. We call Gt = (Pt ,Et) the npm dependency
graph at a given time t.

We denote the universe of all packages ever published on
npm with P . By aggregating the meta information about pack-
ages, we can easily construct the dependency graph without
the need to download or install every package. Npm offers
an API endpoint for downloading this metadata for all the
releases of all packages ever published. In total we consider
676,539 nodes and 4,543,473 edges.

To analyze the evolution of packages we gather data about
all their releases. As a convention, for any time interval t,
such as years or months, we denote with t the snapshot at the
beginning of that time interval. For example, G2015 refers to
the dependency graph at the beginning of the year 2015. In
total we analyze 5,386,239 releases, therefore an average of
almost eight versions per package. Our observation period
ends in April 2018.

Maintainers Every package has one or more developers
responsible for publishing updates to the package.

Definition 3.2 For every p ∈ Pt , the set of maintainers M(p)
contains all users that have publishing rights for p.

Note that a specific user may appear as the maintainer of
multiple packages and that the union of all maintainers in the
ecosystem is denoted with M .

Vulnerabilities The npm community issues advisories or
public reports about vulnerabilities in specific npm packages.
These advisories specify if there is a patch available and which
releases of the package are affected by the vulnerability.

Definition 3.3 We say that a given package p ∈ P is vul-
nerable at a moment t if there exists a public advisory for
that package and if no patch was released for the described
vulnerability at an earlier moment t ′ < t.

We denote the set of vulnerable packages with V ⊂ P . In
total, we consider 609 advisories affecting 600 packages. We
extract the data from the publicly available npm advisories10.

10https://www.npmjs.com/advisories

3.2 Metrics

We introduce a set of metrics for studying the risk of attacks
on the npm ecosystem.

Packages and Their Dependencies The following mea-
sures the influence of a given package on other packages in
the ecosystem.

Definition 3.4 For every p ∈ Pt , the package reach PR(p)
represents the set of all the packages that have a transitive
dependency on p in Gt .

Note that the package itself is not included in this set. The
reach PR(p) contains names of packages in the ecosystem.
Therefore, the size of the set is bounded by the following
values 0≤ |PR(p)|< |Pt |.

Since |PR(p)| does not account for the ecosystem changes,
the metric may grow simply because the ecosystem grows.
To address this, we also consider the average package reach:

PRt =
∑∀p∈Pt |PR(p)|

|Pt |
(1)

Using the bounds discussed before for PR(p), we can calcu-
late the ones for its average 0≤ PRt < |Pt |. The upper limit is
obtained for a fully connected graph in which all packages can
reach all the other packages and hence |PR(p)|= |Pt |−1,∀p.
If PRt grows monotonously, we say that the ecosystem is get-
ting more dense, and hence the average package influences
an increasingly large number of packages.

The inverse of package reach is a metric to quantify how
many packages are implicitly trusted when installing a partic-
ular package.

Definition 3.5 For every p ∈ Pt , the set of implicitly trusted
packages ITP(p) contains all the packages pi for which
p ∈ PR(pi).

Similarly to the previous case, we also consider the size of
the set |ITP(p)| and the average number of implicitly trusted
package ITPt , having the same bounds as their package reach
counterpart.

Even though the average metrics ITPt and PRt are equiv-
alent for a given graph, the distinction between their non-
averaged counterparts is very important from a security point
of view. To see why, consider the example in Figure 1. The
average PR = IT P is 5/6 = 0.83 both on the right and on the
left. However, on the left, a popular package p1 is dependent
upon by many others. Hence, the package reach of p1 is five,
and the number of implicitly trusted packages is one for each
of the other packages. On the right, though, the number of
implicitly trusted packages for p4 is three, as users of p4
implicitly trust packages p1, p2, and p3.

998 28th USENIX Security Symposium USENIX Association

https://www.npmjs.com/advisories

p1

p3p2 p4 p5

p6

(a) Wide distribution of trust:
max(PR)= 5,max(ITP)= 1

p1

p2 p3

p4

p5p6

(b) Narrow distribution of trust:
max(PR) = 3,max(ITP) = 3

Figure 1: Dependency graphs with different maximum pack-
age reaches (PR) and different maximum numbers of trusted
packages (ITP).

Maintainers The number of implicitly trusted packages or
the package reach are important metrics for reasoning about
TM-pkg, but not about TM-acc. That is because users may de-
cide to split their functionality across multiple micropackages
for which they are the sole maintainers. To put it differently,
a large attack surface for TM-pkg does not imply one for
TM-acc.

Therefore, we define maintainer reach MRt(m) and implic-
itly trusted maintainers ITMt(p) for showing the influence of
maintainers.

Definition 3.6 Let m be an npm maintainer. The maintainer
reach MR(m) is the combined reach of all the maintainer’s
packages, MR(m) = ∪m∈M(p)PR(p)

Definition 3.7 For every p ∈ Pt , the set of implicitly trusted
maintainers ITM(p) contains all the maintainers that have
publishing rights on at least one implicitly trusted package,
ITM(p) = ∪pi∈ITP(p)M(pi).

The above metrics have the same bounds as their packages
counterparts. Once again, the distinction between the package
and the maintainer-level metrics is for shedding light on the
security relevance of human actors in the ecosystem.

Furthermore, to approximate the maximum damage that
colluding maintainers can incur on the ecosystem (TM-coll),
we define an order in which the colluding maintainers are
selected:

Definition 3.8 We call an ordered set of main-
tainers L ⊂ M a desirable collusion strat-
egy iff ∀mi ∈ L there is no mk 6= mi for which
∪ j<iMR(m j)∪MR(mi)< ∪ j<iMR(m j)∪MR(mk).

Therefore, the desirable collusion strategy is a hill climbing
algorithm in which at each step we choose the maintainer that
provides the highest local increase in package reach at that
point. We note that the problem of finding the set of n main-
tainers that cover the most packages is an NP-hard problem
called maximum coverage problem. Hence, we believe that
the proposed solution is a good enough approximation that
shows how vulnerable the ecosystem is to a collusion attack,
but that does not necessary yield the optimal solution.

Figure 2: Evolution of number of packages and maintainers.

Vulnerabilities For reasoning about TM-leg, we need to
estimate how much of the ecosystem depends on vulnerable
code:

Definition 3.9 Given all vulnerable packages pi ∈ Vt at
time t, we define the reach of vulnerable code at time t as
VRt = ∪pi∈Vt PR(pi).

Of course the actual reach of vulnerable code can not
be fully calculated since it would rely on all vulnerabilities
present in npm modules, not only on the published ones. How-
ever, since in TM-leg we are interested in publicly known
vulnerabilities, we define our metric according to this sce-
nario. In these conditions, the speed at which vulnerabilities
are reported is an important factor to consider:

Definition 3.10 Given all vulnerable packages pi ∈ Vt at
time t, we define the vulnerability reporting rate VRRt at
time t as VRRt =

|Vt |
|Pt | .

4 Results

We start by reporting the results on the nature of package level
dependencies and their evolution over time (corresponding
to TM-mal and TM-pkg). We then discuss the influence that
maintainers have in the ecosystem (related to TM-acc and
TM-coll). Finally, we explore the dangers of depending on
unpatched security vulnerabilities (addressing TM-leg).

4.1 Dependencies in the Ecosystem
To set the stage for a thorough analysis of security risks en-
tailed by the structure of the npm ecosystem, we start with
a general analysis of npm and its evolution. Since its incep-
tion in 2010, the npm ecosystem has grown from a small
collection of packages maintained by a few people to the
world’s largest software ecosystem. Figure 2 shows the evo-
lution of the number of packages available on npm and the

USENIX Association 28th USENIX Security Symposium 999

Figure 3: Evolution of direct package dependencies and its
impact on transitive dependencies. Note the logarithmic scale
on the y-axis.

number of maintainers responsible for these packages. Both
numbers have been increasing super-linearly over the past
eight years. At the end of our measurement range, there is
a total of 676,539 packages, a number likely to exceed one
million in the near future. These packages are taken care of
by a total of 199,327 maintainers. The ratio of packages to
maintainers is stable across our observation period (ranging
between 2.81 and 3.51).

In many ways, this growth is good news for the JavaScript
community, as it increases the code available for reuse. How-
ever, the availability of many packages may also cause devel-
opers to depend on more and more third-party code, which
increases the attack surface for TM-pkg by giving individual
packages the ability to impact the security of many other pack-
ages. The following analyzes how the direct and transitive de-
pendencies of packages are evolving over time (Section 4.1.1)
and how many other packages individual packages reach via
dependencies (Section 4.1.2).

4.1.1 Direct and Transitive Dependencies

Figure 3 shows how many other packages an average npm
package depends on directly and transitively. The number
of direct dependencies has been increasing slightly from 1.3
in 2011 to 2.8 in 2018, which is perhaps unsurprising given
the availability of an increasing code base to reuse. The less
obvious observation is that a small, linear increase in direct
dependencies leads to a significant, super-linear increase in
transitive dependencies. As shown by the upper line in Fig-
ure 3, the number of transitive dependencies of an average
package has increased to a staggering 80 in 2018 (note the
logarithmic scale).

From a security perspective, it is important to note that each
directly or transitively depended on package becomes part of
the implicitly trusted code base. When installing a package,

each depended upon package runs its post-installation scripts
on the user’s machine – code executed with the user’s operat-
ing system-level permissions. When using the package, calls
into third-party modules may execute any of the code shipped
with the depended upon packages.

When installing an average npm package, a user implic-
itly trusts around 80 other packages due to transitive
dependencies.

One can observe in Figure 3 a chilling effect on the number
of dependencies around the year 2016 which will become
more apparent in the following graphs. Decan et al. [14]
hypothesize that this effect is due to the left-pad incident. In
order to confirm that this is not simply due to removal of more
than a hundred packages belonging to the left-pad’s owner, we
remove all the packages owned by this maintainer. We see no
significant difference for the trend in Figure 3 when removing
these packages, hence we conclude that indeed there is a
significant change in the structure of transitive dependencies
in the ecosystem around 2016.

4.1.2 Package Reach

The above analysis focuses on depended upon packages. We
now study the inverse phenomenon: packages impacted by in-
dividual packages, i.e., package reach as defined in Section 3.
Figure 4 shows how many other packages a single package
reaches via direct or indirect dependencies. The graph at the
top is for an average package, showing that it impacts about
230 other packages in 2018, a number that has been growing
since the creation of npm. The graph at the bottom shows the
package reach of the top-5 packages (top in terms of their
package reach, as of 2018). In 2018, these packages each
reach between 134,774 and 166,086 other packages, making
them an extremely attractive target for attackers.

To better understand how the reach of packages evolves
over time, Figure 5 shows the distribution of reached pack-
ages for multiple years. For example, the red line shows that
in 2018, about 24,500 packages have reached at least 10 other
packages, whereas only about 9,500 packages were so in-
fluential in 2015. Overall, the figure shows that more and
more packages are reaching a significant number of other
packages, increasing the attractiveness of attacks that rely on
dependencies.

Some highly popular packages reach more than 100,000
other packages, making them a prime target for attacks.
This problem has been aggravating over the past few
years.

The high reach of a package amplifies the effect of both
vulnerabilities (TM-leg) and of malicious code (TM-mal).
As an example for the latter, consider the event-stream inci-
dent discussed when introducing TM-acc in Section 2.2. By

1000 28th USENIX Security Symposium USENIX Association

Figure 4: Evolution of package reach for an average package
(top) and the top-5 packages (bottom).

Figure 5: Distribution of package reach by individual pack-
ages, and how it changes over time. Note the log scale on the
vertical axis.

computing event-stream’s reach and comparing it with other
packages, we see that this package is just one of many possible
targets. As of April 1, 2018 (the end of our measurement pe-
riod), event-stream has a reach of 5,466. That is, the targeted
package is relatively popular, but still far from being the top-
most attractive package to compromise. In fact, 1,165 other
packages have a greater or equal reach than event-stream.

Variants of the event-stream attack could easily be re-
peated with other packages.

In order to perform a similar analysis for the eslint-scope
security incident, we need to use a slightly modified version
of package reach. This attack targeted a development tool,
namely eslint, hence, to fully estimate the attack surface we
need to consider dev dependencies in our definition of reach.
We do not normally consider this type of dependencies in our
measurements because they are not automatically installed
with a package, unlike regular dependencies. They are instead
used only by the developers of the packages. Therefore the
modified version of package reach considers both transitive
regular dependencies and direct dev dependencies.

We observe that eslint-scope has a modified reach of more
than 100,000 packages at the last observation point in the data
set. However, there are 347 other packages that have a higher
reach, showing that even more serious attacks may occur in
the future.

The attack on eslint-scope has targeted a package with
an influence not larger than that of hundreds of other
packages. It is likely that similar, or perhaps even worse,
attacks will happen and succeed in the future.

4.2 Analysis of Maintainers

We remind the reader that there is a significant difference
between npm maintainers and repository contributors, as dis-
cussed in Section 2.1. Even though contributors also have a
lot of control over the code that will eventually end up in an
npm package, they can not release a new version on npm, only
the maintainers have this capability. Hence, the discussion
that follows, about the security risks associated with maintain-
ers, should be considered a lower bound for the overall attack
surface.

Attacks corresponding to TM-acc in which maintainers are
targeted are not purely hypothetical as the infamous eslint-
scope incident discussed earlier shows. In this attack, a mali-
cious actor hijacked the account of an influential maintainer
and then published a version of eslint-scope containing ma-
licious code. This incident is a warning for how vulnerable
the ecosystem is to targeted attacks and how maintainers in-
fluence can be used to deploy malware at scale. We further
discuss the relation between packages and maintainers.

USENIX Association 28th USENIX Security Symposium 1001

Figure 6: Evolution of maintainers sorted by package count
per year.

4.2.1 Packages per Maintainer

Even though the ecosystem grows super-linearly as discussed
in Section 4.1, one would expect that this is caused mainly by
new developers joining the ecosystem. However, we observe
that the number of packages per maintainer also grows sug-
gesting that the current members of the platform are actively
publishing new packages. The average number of packages
controlled by a maintainer raises from 2.5 in 2012 to 3.5 in
2013 and almost 4.5 in 2018. Conversely, there are on aver-
age 1.35 maintainers in the lifetime of a package. The top
5,000 most popular packages have an average number of 2.83
maintainers. This is not unexpected, since multiple people are
involved in developing the most popular packages, while for
the majority of new packages there is only one developer.

Next, we study in more detail the evolution of the number
of packages a maintainer controls. Figure 6 shows the main-
tainer package count plotted versus the number of maintainers
having such a package count. Every line represents a year.
The scale is logarithmic to base 10. It shows that the majority
of maintainers maintain few packages, yet some maintain-
ers maintain over 100 packages. Over the years, the package
count for the maintainers increased consistently. In 2015, only
slightly more than 25,000 maintainers maintained more than
one package, whereas this number has more than tripled by
2018.

We further analyze five different maintainers in top 20
according to number of packages and plot the evolution of
their package count over the years in Figure 7. types is the
largest maintainer of type definitions for TypeScript, most
likely a username shared by multiple developers at Microsoft,
ehsalazar maintains many security placeholder packages, jon-
schlinkert and sindresorhus are maintaining many micropack-
ages and isaacs is the npm founder. From Figure 7 we can
see that for two of these maintainers the increase is super-
linear or even near exponential: types and kylemathews have

Figure 7: Evolution of package count for six popular main-
tainers.

sudden spikes where they added many packages in a short
time. We explain this by the tremendous increase in popular-
ity for TypeScript in the recent years and by the community
effort to prevent typosquatting attacks by reserving multiple
placeholder. The graph of the other maintainers is more linear,
but surprisingly it shows a continuous growth for all the six
maintainers.

The number of packages that both the influential and
the average maintainers control increased continuously
over the years.

4.2.2 Implicitly Trusted Maintainers

One may argue that the fact that maintainers publish new
packages is a sign of a healthy ecosystem and that it only
mimics its overall growth. However, we show that while that
may be true, we also see an increase in the general influence
of maintainers. That is, on average every package tends to
transitively rely on more and more maintainers over time.

In Figure 8 we show the evolution of IT Mt , the average
number of implicitly trusted maintainers. As can be seen,
IT Mt almost doubled in the last three years for the average
npm package, despite the plateau of the curve reached in 2016
which we again speculate it is caused by the left-pad incident.
This is a worrisome development since compromising any
of the maintainer accounts a package trusts may seriously
impact the security of that package, as discussed in TM-acc.
The positive aspect of the data in Figure 8 is that the growth
in the number of implicitly trusted maintainers seems to be
less steep for the top 10,000 packages compared to the whole
ecosystem. We hypothesize that the developers of popular
packages are aware of this problem and actively try to limit
the IT Mt . However, a value over 20 for the average popular
package is still high enough to be problematic.

1002 28th USENIX Security Symposium USENIX Association

Figure 8: Evolution of average number of implicitly trusted
maintainers over years in all packages and in the most popular
ones.

Figure 9: Number of implicitly trusted maintainers for top
10,000 most popular packages.

The average npm package transitively relies on code
published by 40 maintainers. Popular packages rely on
only 20.

When breaking the average IT Mt discussed earlier into in-
dividual points in Figure 9, one can observe that the majority
of these packages can be influenced by more than one main-
tainer. This is surprising since most of the popular packages
are micropackages such as "inherits" or "left-pad" or libraries
with no dependencies like "moment" or "lodash". However,
only around 30% of these top packages have a maintainer cost
higher than 10. Out of these, though, there are 643 packages
influenced by more than a hundred maintainers.

More than 600 highly popular npm packages rely on
code published by at least 100 maintainers.

Figure 10: Distribution of maintainers reach in different years.

4.2.3 Maintainers Reach

In Figure 10, we plot the reach MRt of the maintainers in the
npm ecosystem. The reach has increased over the years at all
levels. For example, in 2015 there were 2,152 maintainers
that could affect more than 10 packages, and this number
increased to 4,041 in 2016, 6,680 in 2017 and finally reaching
an astonishingly high 10,534 in 2018. At the other end of
the distribution, there were 59 maintainers that could affect
more than 10,000 packages in 2015, 163 in 2016, 249 in
2017 and finally 391 in 2018. The speed of growth for MRt
is worrisome, showing that more and more developers have
control over thousands of packages. If an attacker manages
to compromise the account of any of the 391 most influential
maintainers, the community will experience a serious security
incident, reaching twice as many packages as in the event-
stream attack.

391 highly influential maintainers affect more than
10,000 packages, making them prime targets for attacks.
The problem has been aggravating over the past years.

Finally, we look at the scenario in which multiple popular
maintainers collude, according to the desirable collusion strat-
egy introduced in Section 3.2, to perform a large-scale attack
on the ecosystem, i.e., TM-col. In Figure 11 we show that
20 maintainers can reach more than half of the ecosystem.
Past that point every new maintainer joining does not increase
significantly the attack’s performance.

4.3 Security Advisories Evolution
Next, we study how often vulnerabilities are reported and
fixed in the npm ecosystem (TM-leg). Figure 13 shows
the number of reported vulnerabilities in the lifetime of the
ecosystem. The curve seems to resemble the evolution of
number of packages presented in Figure 2, with a steep in-
crease in the last two years. To explore this relation further
we plot in Figure 14 the evolution of the number of advisories

USENIX Association 28th USENIX Security Symposium 1003

Figure 11: Combined reach of 100 influential maintainers.

Figure 12: Total reach of packages for which there is at least
one unpatched advisory (vulnerability reach VRt).

Figure 13: Evolution of the total and unpatched number of
advisories.

Figure 14: Evolution of VRRt , the rate of published vulnera-
bilities per 10,000 packages.

reported per 10,000 packages and we observe that it grows
from two in 2013 to almost eight in 2018. This is a sign of a
healthy security community that reports vulnerabilities at a
very good pace, keeping up with the growth of the ecosystem.

When analyzing the type of reported vulnerabilities in de-
tails, we observe that almost half of the advisories come from
two large-scale campaigns and not a broader community ef-
fort: First, there are 141 advisories published in January 2017
involving npm packages that download resources over HTTP,
instead of HTTPs. Second, there are 120 directory traver-
sal vulnerabilities reported as part of the research efforts of
Liang Gong [16]. Nevertheless, this shows the feasibility of
large-scale vulnerability detection and reporting on npm.

Publishing an advisory helps raise awareness of a security
problem in an npm package, but in order to keep the users
secure, there needs to be a patch available for a given advi-
sory. In Figure 13 we show the evolution of the number of
unpatched security vulnerabilities in npm, as defined in Sec-
tion 3. This trend is alarming, suggesting that two out of three
advisories are still unpatched, leaving the users at risk. When
manually inspecting some of the unpatched advisories we
notice that a large percentage of unpatched vulnerabilities are
actually advisories against malicious typosquatting packages
for which no fix can be available.

To better understand the real impact of the unpatched vul-
nerabilities we analyze how much of the ecosystem they im-
pact, i.e., vulnerability reach as introduced in Section 3.2. To
that end, we compute the reach of unpatched packages at
every point in time in Figure 12. At a first sight, this data
shows a much less grim picture than expected, suggesting
that the reach of vulnerable packages is dropping over time.
However, we notice that the effect of vulnerabilities tends
to be retroactive. That is, a vulnerability published in 2015
affects multiple versions of a package released prior to that
date, hence influencing the data points corresponding to the
years 2011-2014 in Figure 12. Therefore, the vulnerabilities

1004 28th USENIX Security Symposium USENIX Association

Figure 15: Correlation between number of vulnerabilities and
number of dependencies.

that will be reported in the next couple of years may correct
for the downwards trend we see on the graph. Independent
of the downwards trend, the fact that for the majority of the
time the reach of vulnerable unpatched code is between 30%
and 40% is alarming.

Up to 40% of all packages rely on code known to be
vulnerable.

5 Potential Mitigations

The following section discusses ideas for mitigating some of
the security threats in the npm ecosystem. We here do not
provide fully developed solutions, but instead outline ideas
for future research, along with an initial assessment of their
potential and challenges involved in implementing them.

5.1 Raising Developer Awareness
One line of defense against the attacks described in this paper
is to make developers who use third-party packages more
aware of the risks entailed by depending on a particular pack-
age. Currently, npm shows for each package the number of
downloads, dependencies, dependents, and open issues in the
associated repository. However, the site does not show any
information about the transitive dependencies or about the
number of maintainers that may influence a package, i.e., our
ITP and ITM metrics. As initial evidence that including such
metrics indeed predicts the risk of security issues, Figure 15
shows the number of implicitly trusted packages versus the
number of vulnerabilities a package is affected by. We find
that the two values are correlated (Pearson correlation coeffi-
cient of 0.495), which is not totally unexpected since adding
more dependencies increases the chance of depending on vul-
nerable code. Showing such information, e.g., the ITP metric,
could help developers make more informed decisions about
which third-party packages to rely on.

Figure 16: Decrease in average number of implicitly trusted
maintainers and packages as the set of trusted maintainers or
packages increases.

5.2 Warning about Vulnerable Packages
To warn developers about unpatched vulnerabilities in their de-
pendencies, the npm audit tool has been introduced. It com-
pares all directly depended upon packages against a database
of known vulnerabilities, and warns a developer when depend-
ing upon a vulnerable version of a package. While being a
valuable step forward, the tool currently suffers from at least
three limitations. First, it only considers direct dependencies
but ignores any vulnerabilities in transitive dependencies. Sec-
ond, the tool is limited to known vulnerabilities, and hence its
effectiveness depends on how fast advisories are published.
Finally, this defense is insufficient against malware attacks.

5.3 Code Vetting
A proactive way of defending against both vulnerable and
malicious code is code vetting. Similar to other ecosystems,
such as mobile app stores, whenever a new release of a vetted
package is published, npm could analyze its code. If and only
if the analysis validates the new release, it is made available to
users. Since the vetting process may involve semi-automatic
or even manual steps, we believe that it is realistic to assume
that it will be deployed step by step in the ecosystem, starting
with the most popular packages. Figure 16 (orange curve)
illustrates the effect that such code vetting could have on
the ecosystem. The figure shows how the average number of
implicitly trusted packages, ITP, reduces with an increasing
number of vetted and therefore trusted packages. For exam-
ple, vetting the most dependent upon 1,500 packages would
reduce the ITP ten fold, and vetting 4,000 packages would
reduce it by a factor of 25.

An obvious question is how to implement such large-scale
code vetting, in particular, given that new versions of pack-
ages are released regularly. To estimate the cost of vetting new
releases, Figure 17 shows the average number of lines of code

USENIX Association 28th USENIX Security Symposium 1005

Figure 17: Number of lines of code that need to be vetted for
achieving a certain number of trusted packages.

that are changed per release of a package, and would need to
be vetted to maintain a specific number of trusted packages.
For example, vetting the changes made in a single new release
of the top 400 most popular packages requires to analyze over
100,000 changed lines of code. One way to scale code vet-
ting to this amount of code could be automated code analysis
tools. Recently, there have been several efforts for improving
the state of the art of security auditing for npm, both from
academia, e.g., Synode [30], BreakApp [32], NodeSec [16],
NoRegrets [25], Node.cure [10], and from industry practi-
tioners, e.g., Semmle11, r2c12, and DeepScan13. Orthogonal
to automated code analysis tools, the npm community could
establish crowd-sourced package vetting, e.g., in a hierarchi-
cally organized code distribution model similar to the Debian
ecosystem.

Another challenge for code vetting is that npm packages, in
contrast to apps in mobile app stores, are used across different
platforms with different security models. For example, XSS
vulnerabilities are relevant only when a package is used on the
client-side, whereas command injection via the exec API [30]
is a concern only on the server-side. A code vetting process
could address this challenge by assigned platform-specific
labels, e.g., “vetted for client-side” and ”vetted for server-
side”, depending on which potential problems the vetting
reveals.

5.4 Training and Vetting Maintainers
Another line of proactive defense could be to systematically
train and vet highly influential maintainers. For example, this
process could validate the identity of maintainers, support
maintainers in understanding basic security principles, and
ensure that their accounts are protected by state-of-the-art
techniques, such as two-factor authentication. To assess the

11https://semmle.com/
12https://r2c.dev/
13https://deepscan.io/

effect that such a process would have, we simulate how train-
ing and vetting a particular number of trusted maintainers in-
fluences the average number of implicitly trusted maintainers,
ITM. The simulation assumes that the most influential main-
tainers are vetted first, and that once a maintainer is vetted
she is ignored in the computation of the ITM. The results of
this simulation (Figure 16) show a similar effect as for vetting
packages: Because some maintainers are highly influential,
vetting a relatively small number of maintainers can signifi-
cantly reduce security risks. For example, vetting around 140
maintainers cuts down the ITM in half, and vetting around
600 could even reduce ITM to less than five. These results
show that this mechanism scales reasonably well, but that hun-
dreds of maintainers need to be vetted to bring the average
number of implicitly trusted maintainers to a reasonable level.
Moreover, two-factor authentication has its own risks, e.g.,
when developers handle authentication tokens in an insecure
way14 or when attackers attempt to steal such tokens, as in
the eslint-scope incident.

6 Related Work

In this section we discuss the closest related work contained
mainly in two distinct research areas: JavaScript security and
software ecosystem studies. While some of this work studies
the npm ecosystem, to the best of our knowledge, we are
the first to analyze in depth the role maintainers play in the
ecosystem and the impact of different types of attacks, as well
as the potential impact of vetting code.

Server-side JavaScript Security There are many studies
that investigate problems with dependency management for
the JavaScript or other ecosystems. Abdalkareem et al. [2] in-
vestigate reasons why developers would use trivial packages.
They find that developers think that these packages are well
implemented and tested and that they increase productivity as
the developer does not need to implement such small features
herself. Another empirical study on micropackages by Kula
et al. [19] has similar results. They show that micropackages
have long dependency chains, something we also discovered
in some case studies of package reach. We also show that
these packages have a high potential of being a target of an
attack as they are dependent on by a lot of packages. Another
previously studied topic is breaking changes introduced by
dependencies. Bogart et al. [5] perform a case study inter-
viewing developers about breaking changes in three different
ecosystems. They find that npm’s community values a fast ap-
proach to new releases compared to the other ecosystems. De-
velopers of npm are more willing to adopt breaking changes
to fight technical debt. Furthermore, they find that the seman-
tic versioning rules are enforced more overtime than in the
beginning. Similarly, Decan et al. [11] analyze three package

14https://blog.npmjs.org/post/182015409750/
automated-token-revocation-for-when-you

1006 28th USENIX Security Symposium USENIX Association

https://semmle.com/
https://r2c.dev/
https://deepscan.io/
https://blog.npmjs.org/post/182015409750/automated-token-revocation-for-when-you
https://blog.npmjs.org/post/182015409750/automated-token-revocation-for-when-you

ecosystems, including npm, and evaluate whether dependency
constraints and semantic versioning are effective measures
for avoiding breaking changes. They find that both these mea-
sures are not perfect and that there is a need for better tooling.
One such tool can be the testing technique by Mezzetti et
al. [25] which automatically detects whether an update of a
package contains a breaking change in the API. With this
method, they can identify type-related breaking changes be-
tween two versions. They identify 26 breaking changes in 167
updates of important npm packages. Pfretzschner et al. [27]
describe four possible dependency-based attacks that exploit
weaknesses such as global variables or monkeypatching in
Node.js. They implement a detection of such attacks, but they
do not find any real-world exploits. One way to mitigate these
attacks is implemented by Vasilakis et al. [32] in BreakApp, a
tool that creates automatic compartments for each dependency
to enforce security policies. This increases security when us-
ing untrusted third-party packages. Furthermore, third-party
packages can have security vulnerabilities that can impact
all the dependents. Davis et al. [9] and Staicu et al. [29] find
denial of service vulnerabilities in regular expressions in the
npm ecosystem. In another study, Staicu et al. [30] find sev-
eral injection vulnerabilities due to the child_process module
or the eval function. Brown et al. [6] discuss bugs in the
binding layers of both server-side and client-side JavaScript
platforms, while Wang et al. [33] analyze concurrency bugs
in Node.js Finally, Gong [16] presents a dynamic analysis
system for identifying vulnerable and malicious code in npm.
He reports more than 300 previously unknown vulnerabilities,
some of which are clearly visible on the figures in Section 4.3.
Furthermore, there are studies that look at how frequent se-
curity vulnerabilities are in the npm ecosystem, how fast
packages fix these and how fast dependent packages upgrade
to a non-vulnerable version. Chatzidimitriou et al. [7] build
an infrastructure to measure the quality of the npm ecosystem
and to detect publicly disclosed vulnerabilities in package de-
pendencies. Decan et al. [13] perform a similar study but they
investigate the evolution of vulnerabilities over time. They
find that more than half of the dependent packages are still af-
fected by a vulnerability after the fix is released. However, we
show that the problem is even more serious because for more
than half of the npm packages there is no available patch.

Client-Side (JavaScript) Security Client-side security is a
vast and mature research area and it is out scope to extensively
survey it here. Instead, we focus on those studies that ana-
lyze dependencies in client-side code. Nikiforakis et al. [26]
present a study of remote inclusion of JavaScript libraries
in the most popular 10,000 websites. They show that an av-
erage website in their data set adds between 1.5 and 2 new
dependencies per year. Similar to our work, they then discuss
several threat models and attacks that can occur in this tightly
connected ecosystem. Lauinger et al. [20] study the inclusion
of libraries with known vulnerabilities in both popular and
average websites. They show that 37% of the websites in their

data set include at least one vulnerable library. This number
is suprisingly close to the reach we observe in npm for the
vulnerable code. However, one should take both these results
with a grain of salt since inclusion of vulnerable libraries does
not necessary lead to a security problem if the library is used
in a safe way. Libert et al. [22] perform a HTTP-level analysis
of third-party resource inclusions, i.e., dependencies. They
conclude that nine in ten websites leak data to third-parties
and that six in ten spwan third-party cookies.

Studies of Software Ecosystems Software ecosystem re-
search has been rapidly growing in the last year. Manikas [23]
surveys the related work and observes a maturing field at the
intersection of multiple other research areas. Nevertheless,
he identifies a set of challenges, for example, the problem
of generalizing specific ecosystem research to other ecosys-
tems or the lack of theories specific to software ecosystems.
Serebrenik et al. [28] perform a meta-analysis of the diffi-
cult tasks in software ecosystem research and identify six
types of challenges. For example, how to scale the analysis
to the massive amount of data, how to research the quality
and evolution of the ecosystem and how to dedicate more
attention to comparative studies. Mens [24] further looks at
the socio-technical view on software maintenance and evo-
lution. He argues that future research needs to study both
the technical and the social dimension of the ecosystem. Our
study follows this recommendation as it not only looks at the
influence of a package on the npm ecosystem, but also at the
influence of the maintainers. Several related work advocates
metrics borrowed from other fields. For example, Lertwit-
tayatrai et al. [21] use network analysis techniques to study
the topology of the JavaScript package ecosystem and to ex-
tract insights about dependencies and their relations. Another
study by Kabbedijk et al. [17] looks at the social aspect of
the Ruby software ecosystem by identifying different roles
maintainers have in the ecosystem, depending on the number
of developers they cooperate with and on the popularity of
their packages. Overall, the research field is rising with a lot
of studied software ecosystems in addition to the very popular
ones such as JavaScript which is the focus of our study.

Ecosystem Evolution Studying the evolution of an ecosys-
tem shows how fast it grows and whether developers still
contribute to it. Wittern et al. [34] study the whole JavaScript
ecosystem, including GitHub and npm until September 2015.
They focus on dependencies, the popularity of packages and
version numbering. They find that the ecosystem is steadily
growing and exhibiting a similar effect to a power law dis-
tribution as only a quarter of packages is dependent upon.
Comparing these numbers with our results, we see a con-
tinuous near-exponential growth in the number of released
packages and that only 20% of all packages are dependent
upon. A similar study that includes the JavaScript ecosystem
by Kikas et al. [18] collects data until May 2016 and focuses
on the evolution of dependencies and the vulnerability of the

USENIX Association 28th USENIX Security Symposium 1007

dependency network. They confirm the same general growth
as the previous study. Furthermore, they find packages that
have a high impact with up to 30% of other packages and ap-
plications affected. Our study gives an update on these studies
and additionally looks at the evolution of maintainers as they
are a possible vulnerability in the ecosystem. The dependency
network evolution was also studied for other ecosystems. De-
can et al. [14] compare the evolution of seven different pack-
age managers focusing on the dependency network. Npm is
the largest ecosystem in their comparison and they discover
that dependencies are frequently used in all these ecosystems
with similar connectedness between packages. Bloemen et
al. [4] look at software package dependencies of the Linux
distribution Gentoo where they use cluster analysis to explore
different categories of software. German et al. [15] study the
dependency network of the R language and the community
around its user-contributed packages. Bavota et al. [3] an-
alyze the large Apache ecosystem of Java libraries where
they find that while the number of projects grows linearly, the
number of dependencies between them grows exponentially.
Comparing this to the npm ecosystem, we find the number of
packages to grow super-linearly while the average number of
dependencies between them grows linearly.

7 Conclusions

We present a large-scale study of security threats resulting
from the densely connected structure of npm packages and
maintainers. The overall conclusion is that npm is a small
world with high risks. It is “small” in the sense that packages
are densely connected via dependencies. The security risk are
“high” in the sense that vulnerable or malicious code in a sin-
gle package may affect thousands of others, and that a single
misbehaving maintainer, e.g., due to a compromised account,
may have a huge negative impact. These findings show that
recent security incidents in the npm ecosystem are likely to
be the first signs of a larger problem, and not only unfortunate
individual cases. To mitigate the risks imposed by the current
situation, we analyze the potential effectiveness of several
mitigation strategies. We find that trusted maintainers and a
code vetting process for selected packages could significantly
reduce current risks.

Acknowledgments
This work was supported by the German Federal Ministry of Educa-
tion and Research and by the Hessian Ministry of Science and the
Arts within CRISP, by the German Research Foundation within the
ConcSys and Perf4JS projects. The authors would also like to thank
the team at r2c for their engineering support in obtaining the data
for this work.

References

[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi,
Suhaib Mujahid, and Emad Shihab. Why do developers
use trivial packages? an empirical case study on npm.
In FSE, 2017.

[2] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi,
Suhaib Mujahid, and Emad Shihab. Why do develop-
ers use trivial packages? an empirical case study on
npm. In Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, pages
385–395, 2017.

[3] Gabriele Bavota, Gerardo Canfora, Massimiliano Di
Penta, Rocco Oliveto, and Sebastiano Panichella. The
evolution of project inter-dependencies in a software
ecosystem: The case of apache. In 2013 IEEE Interna-
tional Conference on Software Maintenance, Eindhoven,
The Netherlands, September 22-28, 2013, pages 280–
289, 2013.

[4] Remco Bloemen, Chintan Amrit, Stefan Kuhlmann, and
Gonzalo Ordóñez-Matamoros. Gentoo package depen-
dencies over time. In 11th Working Conference on Min-
ing Software Repositories, MSR 2014, Proceedings, May
31 - June 1, 2014, Hyderabad, India, pages 404–407,
2014.

[5] Christopher Bogart, Christian Kästner, James D. Herb-
sleb, and Ferdian Thung. How to break an API: cost
negotiation and community values in three software
ecosystems. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, pages 109–120, 2016.

[6] Fraser Brown, Shravan Narayan, Riad S. Wahby, Daw-
son R. Engler, Ranjit Jhala, and Deian Stefan. Finding
and preventing bugs in javascript bindings. In 2017
IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 559–578,
2017.

[7] Kyriakos C. Chatzidimitriou, Michail D. Papamichail,
Themistoklis G. Diamantopoulos, Michail Tsapanos,
and Andreas L. Symeonidis. npm-miner: an infrastruc-
ture for measuring the quality of the npm registry. In
Proceedings of the 15th International Conference on
Mining Software Repositories, MSR 2018, Gothenburg,
Sweden, May 28-29, 2018, pages 42–45, 2018.

[8] Eleni Constantinou and Tom Mens. An empirical com-
parison of developer retention in the rubygems and npm
software ecosystems. ISSE, 13(2-3):101–115, 2017.

1008 28th USENIX Security Symposium USENIX Association

[9] James C. Davis, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. The impact of regular expression
denial of service (redos) in practice: an empirical study
at the ecosystem scale. In Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018, pages 246–256,
2018.

[10] James C. Davis, Eric R. Williamson, and Dongyoon
Lee. A sense of time for javascript and node.js: First-
class timeouts as a cure for event handler poisoning. In
27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018., pages
343–359, 2018.

[11] Alexandre Decan, Tom Mens, and Maëlick Claes. An
empirical comparison of dependency issues in OSS
packaging ecosystems. In IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineer-
ing, SANER 2017, Klagenfurt, Austria, February 20-24,
2017, pages 2–12, 2017.

[12] Alexandre Decan, Tom Mens, and Eleni Constantinou.
On the evolution of technical lag in the npm package
dependency network. In 2018 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME
2018, Madrid, Spain, September 23-29, 2018, pages 404–
414, 2018.

[13] Alexandre Decan, Tom Mens, and Eleni Constanti-
nou. On the impact of security vulnerabilities in the
npm package dependency network. In Proceedings of
the 15th International Conference on Mining Software
Repositories, MSR 2018, Gothenburg, Sweden, May 28-
29, 2018, pages 181–191, 2018.

[14] Alexandre Decan, Tom Mens, and Philippe Grosjean.
An empirical comparison of dependency network evo-
lution in seven software packaging ecosystems. CoRR,
abs/1710.04936, 2017.

[15] Daniel M. Germán, Bram Adams, and Ahmed E. Hassan.
The evolution of the R software ecosystem. In 17th
European Conference on Software Maintenance and
Reengineering, CSMR 2013, Genova, Italy, March 5-8,
2013, pages 243–252, 2013.

[16] Liang Gong. Dynamic Analysis for JavaScript Code.
PhD thesis, University of California, Berkeley, 2018.

[17] Jaap Kabbedijk and Slinger Jansen. Steering insight:
An exploration of the ruby software ecosystem. In Soft-
ware Business - Second International Conference, IC-
SOB 2011, Brussels, Belgium, June 8-10, 2011. Proceed-
ings, pages 44–55, 2011.

[18] Riivo Kikas, Georgios Gousios, Marlon Dumas, and
Dietmar Pfahl. Structure and evolution of package de-
pendency networks. In Proceedings of the 14th Inter-
national Conference on Mining Software Repositories,
MSR 2017, Buenos Aires, Argentina, May 20-28, 2017,
pages 102–112, 2017.

[19] Raula Gaikovina Kula, Ali Ouni, Daniel M. Germán,
and Katsuro Inoue. On the impact of micro-packages:
An empirical study of the npm javascript ecosystem.
CoRR, abs/1709.04638, 2017.

[20] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,
William Robertson, Christo Wilson, and Engin Kirda.
Thou shalt not depend on me: Analysing the use of
outdated javascript libraries on the web. In NDSS, 2017.

[21] Nuttapon Lertwittayatrai, Raula Gaikovina Kula, Saya
Onoue, Hideaki Hata, Arnon Rungsawang, Pattara Lee-
laprute, and Kenichi Matsumoto. Extracting insights
from the topology of the javascript package ecosys-
tem. In 24th Asia-Pacific Software Engineering Con-
ference, APSEC 2017, Nanjing, China, December 4-8,
2017, pages 298–307, 2017.

[22] Timothy Libert. Exposing the hidden web: An analysis
of third-party HTTP requests on 1 million websites.
CoRR, abs/1511.00619, 2015.

[23] Konstantinos Manikas. Revisiting software ecosystems
research: A longitudinal literature study. Journal of
Systems and Software, 117:84–103, 2016.

[24] Tom Mens. An ecosystemic and socio-technical view
on software maintenance and evolution. In 2016 IEEE
International Conference on Software Maintenance and
Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7,
2016, pages 1–8, 2016.

[25] Gianluca Mezzetti, Anders Møller, and Martin Toldam
Torp. Type regression testing to detect breaking changes
in node.js libraries. In 32nd European Conference on
Object-Oriented Programming, ECOOP 2018, July 16-
21, 2018, Amsterdam, The Netherlands, pages 7:1–7:24,
2018.

[26] Nick Nikiforakis, Luca Invernizzi, Alexandros Kaprav-
elos, Steven Van Acker, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. You
are what you include: large-scale evaluation of remote
JavaScript inclusions. In CCS, pages 736–747, 2012.

[27] Brian Pfretzschner and Lotfi Ben Othmane. Identifica-
tion of dependency-based attacks on node.js. In Proceed-
ings of the 12th International Conference on Availability,
Reliability and Security, Reggio Calabria, Italy, August
29 - September 01, 2017, pages 68:1–68:6, 2017.

USENIX Association 28th USENIX Security Symposium 1009

[28] Alexander Serebrenik and Tom Mens. Challenges in
software ecosystems research. In Proceedings of the
2015 European Conference on Software Architecture
Workshops, Dubrovnik/Cavtat, Croatia, September 7-11,
2015, pages 40:1–40:6, 2015.

[29] Cristian-Alexandru Staicu and Michael Pradel. Freezing
the web: A study of redos vulnerabilities in javascript-
based web servers. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018., pages 361–376, 2018.

[30] Cristian-Alexandru Staicu, Michael Pradel, and Ben-
jamin Livshits. SYNODE: understanding and automat-
ically preventing injection attacks on NODE.JS. In
25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018, 2018.

[31] Nikolai Philipp Tschacher. Typosquatting in program-
ming language package managers. PhD thesis, Univer-
sität Hamburg, Fachbereich Informatik, 2016.

[32] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M. Smith.
Breakapp: Automated, flexible application compartmen-
talization. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018, 2018.

[33] Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng
Qin, Kang Yin, and Jun Wei. A comprehensive study on
real world concurrency bugs in node.js. In Proceedings
of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana,
IL, USA, October 30 - November 03, 2017, pages 520–
531, 2017.

[34] Erik Wittern, Philippe Suter, and Shriram Rajagopalan.
A look at the dynamics of the javascript package ecosys-
tem. In Proceedings of the 13th International Con-
ference on Mining Software Repositories, MSR 2016,
Austin, TX, USA, May 14-22, 2016, pages 351–361,

2016.

1010 28th USENIX Security Symposium USENIX Association

“Johnny, you are fired!” – Spoofing OpenPGP and S/MIME Signatures in Emails

Jens Müller1, Marcus Brinkmann1, Damian Poddebniak2, Hanno Böck, Sebastian Schinzel2,
Juraj Somorovsky1, and Jörg Schwenk1

1Ruhr University Bochum
2Münster University of Applied Sciences

Abstract
OpenPGP and S/MIME are the two major standards to en-
crypt and digitally sign emails. Digital signatures are sup-
posed to guarantee authenticity and integrity of messages. In
this work we show practical forgery attacks against various
implementations of OpenPGP and S/MIME email signature
verification in five attack classes: (1) We analyze edge cases
in S/MIME’s container format. (2) We exploit in-band sig-
naling in the GnuPG API, the most widely used OpenPGP
implementation. (3) We apply MIME wrapping attacks that
abuse the email clients’ handling of partially signed mes-
sages. (4) We analyze weaknesses in the binding of signed
messages to the sender identity. (5) We systematically test
email clients for UI redressing attacks.

Our attacks allow the spoofing of digital signatures for ar-
bitrary messages in 14 out of 20 tested OpenPGP-capable
email clients and 15 out of 22 email clients supporting
S/MIME signatures. While the attacks do not target the un-
derlying cryptographic primitives of digital signatures, they
raise concerns about the actual security of OpenPGP and
S/MIME email applications. Finally, we propose mitigation
strategies to counter these attacks.

1 Introduction

Email is still the most important communication medium on
the Internet and predates the World Wide Web by roughly
one decade. At that time, message authenticity was not a ma-
jor concern, so the early SMTP and email [1, 2] standards did
not address confidentiality or the authenticity of messages.

Email Authenticity As the ARPANET evolved into the In-
ternet, email usage changed. Email is now used for sensitive
communication in business environments, by the military,
politicians and journalists. While technologies such as SPF,
DKIM, and DMARC can be used to authenticate the domain
of the sending SMTP server, these are merely helpful in mit-
igating spam and phishing attacks [3]. These technologoies,

however, do not extend to authenticating the sending person,
which is necessary to provide message authenticity.

Two competing email security standards, OpenPGP [4]
and S/MIME [5], offer end-to-end authenticity of messages
by digital signatures and are supported by many email clients
since the late 1990s. Digital signatures provide assurance
that a message was written by a specific person (i.e., au-
thentication and non-repudiation) and that it was not changed
since then (i.e., integrity of messages). Adoption is still low1

due to severe usability issues, but both technologies have
a large footprint either in the industry (S/MIME) or with
high-risk roles such as journalists, lawyers, and freedom ac-
tivists (OpenPGP). One example: Debian (a volunteer group
with over 1000 members) relies on the authenticity of signed
emails for voting on project leaders and proposals. We thus
ask: Is it possible to spoof a signed email such that it is in-
distinguishable from a valid one even by an attentive user?

Figure 1: Screenshot of a spoofed PGP signature in Apple Mail,
based on wrapping a signed email published by Phil Zimmermann.

Spoofing Valid Signatures Signature verification in the
context of email is complex. For example, emails can be
signed by an entity other than the sender or signed emails
may be forwarded (resulting in partly signed messages).

1We examined OpenPGP keyservers and measured over 20k key uploads
per month consistently over the last 4 years. We also found that Thunderbird
reports 150k daily users (on work days) for the PGP-plugin Enigmail.

USENIX Association 28th USENIX Security Symposium 1011

Also, signatures are an optional feature of email and there-
fore generally not enforced. Most importantly, the result of
the verification must be presented to the user such that there
is no room for misinterpretation. Any failure to do so may
lead to a signature spoofing attack as shown in Figure 1. This
paper describes the results of our analysis of the most widely
used email clients supporting PGP or S/MIME signatures.

Attack Classes Our attacks do not break the cryptography
in digital signatures, but rather exploit weaknesses in the way
PGP and S/MIME signatures are verified by email clients,
and how the verification outcome is presented to the user.

We define the following five attack classes:

1. CMS attacks. Cryptographic Message Syntax (CMS)
is a versatile standard for signed and encrypted mes-
sages within the X.509 public-key infrastructure. We
found flaws in the handling of emails with contradicting
or unusual data structures (such as multiple signers) and
in the presentation of issues in the X.509 trust chain.

2. GPG API attacks. GnuPG is the most widely used
OpenPGP implementation, but it only offers a very re-
stricted command line interface for validating signa-
tures. This interface is vulnerable to injection attacks.

3. MIME attacks. The body of an email is conceptu-
ally a MIME tree, but typically the tree has only one
leaf which is signed. We construct non-standard MIME
trees that trick clients into showing an unsigned text
while verifying an unrelated signature in another part.

4. ID attacks. The goal of this attack class is to display a
valid signature from the identity (ID) of a trusted com-
munication partner located in the mail header, although
the crafted email is actually signed by the attacker.

5. UI attacks. Email clients indicate a valid signature by
showing some security indicators in the user interface
(UI), for example, a letter with a seal. However, several
clients allow the mimicking of important UI elements
by using HTML, CSS, and other embedded content.

Contributions We make the following contributions:

• We present the results of our structured analysis of
OpenPGP and S/MIME signature verification in 25
widely used email clients.

• We present three new attack classes: attacks based on
CMS evaluation, on the syntax of the GnuPG machine
interface, and on wrapping signed content within invis-
ible subtrees of the MIME tree.

• We adapt two attack classes of web security to the email
context, namely UI redressing and ID spoofing.

• We show that our attacks bypass signature validation in
about 70% of the tested email clients, including Out-
look, Thunderbird, Apple Mail, and iOS Mail.

Coordinated Disclosure We reported all our attacks and
additional findings to the affected vendors and gave advice
on appropriate countermeasures.

2 Background

2.1 End-to-End Email Authenticity
The digital signature parts of the OpenPGP and S/MIME
standards provide end-to-end authenticity for email mes-
sages. First and foremost, both technologies are configured
on the endpoints and technically-versed users can therefore
choose to use them independently of the email server config-
uration. In both standards, the keys are bound to users and
thus authenticate users independently of the transport.

OpenPGP Email Signing Phil Zimmerman invented PGP
(Pretty Good Privacy) in 1991 and due to its popularity,
PGP was standardized as OpenPGP by the IETF [6]. The
most popular implementation is GnuPG.2 There are two
common ways to use OpenPGP in emails. With Inline
PGP, the email body directly contains the OpenPGP data.
The MIME multipart standard is not used and the MIME
type is text/plain. With PGP/MIME, the email has
a multipart/signed MIME structure, where the signed
message is the first part and the detached signature is the
second part. Some email clients support PGP natively, but
most (in particular Thunderbird, Apple Mail, and Outlook)
need a plugin, which provides an intermediate layer between
the mail client and a PGP implementation like GnuPG.

S/MIME Email Signing In 1999, the IETF published
S/MIME (Secure/Multipurpose Internet Mail Extension)
version 3 as an extension to the MIME standard with
certificate-based cryptography [5]. S/MIME is the result of
a long history of secure email protocols and can be seen as
the first Internet standards-based framework to digitally sign,
authenticate, or encrypt emails. S/MIME uses the Crypto-
graphic Message Syntax (CMS) as its underlying container
format. The signatures themselves are always CMS encoded,
but the signed message can either be included in the CMS
(opaque signature) or be transmitted as the first part of a
multipart/signed message (detached signature).

2.2 Trust and Validity
Verifying the cryptographic integrity of a signature is often
not sufficient. In addition to this verification, the public key

2W. Koch, GNU Privacy Guard, https://gnupg.org/.

1012 28th USENIX Security Symposium USENIX Association

https://gnupg.org/

that generated the signature must be connected to some ac-
tual person or entity, such as an email address, by a certifi-
cate. S/MIME certificates are issued by certificate authorities
which are trusted by the email clients. It is easy for users to
order S/MIME certificates and sign messages which are ac-
cepted by all clients. PGP as a product of the cypherpunk
movement distrusts central authorities, so user IDs in PGP
are only self-signed by default. This does not provide any
protection against spoofing and puts responsibility for trust
management into the hands of users and applications. In fact,
no version of the OpenPGP standard defines a trust model
for user ID binding signatures. Historically, users of PGP
were encouraged to participate in the Web of Trust, a de-
centralized network of peers signing each other’s user IDs,
paired with a scoring system to establish trust paths between
two peers that want to communicate. Signatures and keys
are exchanged through a network of public keyservers. This
approach has been found difficult to use, privacy invasive,
and hard to scale, so some email clients implement their own
trust model (e.g., OpenKeychain, R2Mail2, and Horde/IMP).

3 Attacker Model and Methodology

In our scenario we assume two trustworthy communication
partners, Alice and Bob, who have securely exchanged their
public PGP keys or S/MIME certificates. The goal of our
attacker Eve is to create and send an email with arbitrary
content to Bob whose email client falsely indicates that the
email has been digitally signed by Alice.

Attacker Model We assume that Eve is able to create and
send arbitrary emails to Bob. The email’s sender is spoofed
to Alice’s address, for example, by spoofing the FROM header,
a known impersonation technique which should be prevented
by digital signatures. This is our default attacker model with
the weakest prerequisites. It is sufficient for the UI attack
class, and some CMS and GPG API attacks.

For the MIME attack class and some CMS attacks, we
also assume that the attacker has a single valid S/MIME or
OpenPGP signature from Alice which may have been ob-
tained from previous email correspondence, public mailing
lists, signed software packages, signed GitHub commits, or
other sources. This is a weak requirement as well, because
digital signatures are usually not kept secret. In fact, in
many cases digital signatures are used explicitly to give pub-
lic proof that some content was created by the signer.

For the ID attack class and one attack in the GPG API
class, we assume that Bob trusts Eve’s signatures. For
S/MIME this condition always holds because Eve can eas-
ily obtain a valid certificate from a trusted CA for her own
email address. For OpenPGP, Bob must import Eve’s public
key and mark it as valid. This is a stronger condition, but
holds if Eve is a legitimate communication partner of Bob.

An overview of the attack classes and attacker models is
given in Table 1. Each attack class is described in section 4
and the subscript identifies the specific attack, i.e., M1 iden-
tifies attack 1 in the MIME attack class.

Attacker Model

Attack class Mail only Need signature Key trusted

CMS (4.1) C3, C4 C1, C2 –
GPG (4.2) G1 – G2
MIME (4.3) – M1, M2, M3, M4 –
ID (4.4) – – I1, I2, I3
UI (4.5) U1 – –

Table 1: Attacker’s capabilities for all test cases in each attack class.

Our attacker model does not include any form of social engi-
neering. The user opens and reads received emails as always,
so awareness training does not help to mitigate the attacks.

Methodology We define that the authenticity of a signed
email is broken in the context of an email client UA if the pre-
sentation of a crafted email in UA is indistinguishable from
the presentation of a “valid” signed email (either as perfect
or partial forgery). Furthermore, we document cases where
we could forge some, but not all GUI elements required for
indistinguishability (i.e., a weak forgery).

• Perfect forgery () If a presentation is identical at
any number of user interactions, regardless of any addi-
tional actions the user takes within the application, we
call the forgery “perfect” (e.g., Figure 1).

• Partial forgery (G#) If a presentation is only identical at
the first user interaction (i.e., when an email is opened
and the standard GUI features are visible), we call the
forgery “partial” (e.g., Figure 14).

• Weak forgery (#) If a presentation contains contra-
dicting GUI elements at the first user interaction, with
some but not all elements indicating a valid signature,
we call this forgery “weak” (e.g., Figure 15).

We suspect that partial forgeries already go unnoticed by
unwitting users, so we classify perfect and partial forgeries
as successful attacks. Weak forgeries show signs of spoofing
at the first glance. As part of our evaluation, we provide
screenshots of interesting cases to illustrate the differences.

Selection of the Clients We evaluate our attacks against
25 widely-used email clients given in Table 2 and Table 3.
Of these, 20 support PGP and 22 are capable of S/MIME
signature verification. They were selected from a compre-
hensive list of over 50 email clients assembled from public
software directories for all major platforms (i.e., Windows,
Linux, macOS, Android, iOS, and web). Email clients were

USENIX Association 28th USENIX Security Symposium 1013

excluded when they did not support PGP or S/MIME signa-
tures, were not updated for several years, or the cost to ob-
tain them would be prohibitive (e.g., appliances). All clients
were tested in the default settings with an additional PGP or
S/MIME plugin installed, where required.

4 Attacks

4.1 CMS Attack Class

The Cryptographic Message Syntax (CMS, the container for-
mat used by S/MIME) is a versatile standard for signed
and encrypted emails. It not only supports a broad range
of use cases (e.g., multiple signers), but also copes with
legacy problems like lack of software support and misbehav-
ing gateways. This made the standard more complex; several
values in a CMS object are optional, or may contain zero or
more values.3 Furthermore, two different signature formats
are defined. This makes it difficult for developers to test all
possible combinations (either plausible or implausible).

Opaque and Detached Signatures The CMS and
S/MIME standards define two forms of signed messages:
opaque and detached signatures [7] (also called embedded
and external signatures). The signature is always a CMS ob-
ject, but the corresponding message can either be embedded
into this object or transmitted by other means.

When signing in opaque mode, the to-be-signed content
(i.e., “the message text”) is embedded into the binary CMS
signature object via a so called eContent (or “embedded
content”) field (see Figure 2a).

In detached signatures, the eContent must be absent in
order to signal that the content will be provided by other
means. This is what the multipart/signed structure does; the
email is split into two MIME parts, the first one is the con-
tent and the second one is the CMS signature without the
eContent field (see Figure 2b).

eContent Confusion (C1) A confusing situation arises
when the eContent field is present even though the mul-
tipart/signed mechanism is used. In this case, the client can
choose which of the two contents (i.e., either the opaque or
detached contents) to verify and which of the two contents
to display. Clearly, it is a security issue when the verified
content is not equal to the content which is displayed.

The “eContent Confusion” allows perfect forgeries of ar-
bitrary signed emails for a person from which we already
have a signed email. Because opaque signatures can be trans-
formed into detached signatures and vice versa, any signed
email will work for the attack.

3Here optional means potentially absent, which is different from present
but empty.

1From: Alice
2To: Bob
3Subject: Opaque signature
4Content-Type: application/pkcs7-mime; smime-type=signed-data
5Content-Transfer-Encoding: base64
6

7<base64-encoded CMS object with eContent>

(a) A message with an opaque signature. The message is embedded
in the CMS object and is not directly readable by a human.

1From: Alice
2To: Bob
3Subject: Detached signature
4Content-Type: multipart/signed; protocol="application/pkcs7-

signature"; boundary="XXX"
5

6--XXX
7Content-Type: text/plain
8

9Hello, World! This text is signed.
10--XXX
11Content-Type: application/pkcs7-signature;
12Content-Transfer-Encoding: base64
13

14<base64-encoded CMS object without eContent>
15--XXX--

(b) A message with a detached signature. The message is in the
first MIME part and directly readable by a human. Legacy software
tended to damage line endings or encoding in such emails, which
broke the signature verification.

Figure 2: Opaque and detached signatures as used in S/MIME.

Attack Refinement. Although the eContent is not shown in
the email client, it is easily revealed under forensic analysis
that an old email was reused for this attack. Interestingly, the
attack can be refined to remove the original content entirely
without affecting the outcome of the signature verification.

Similarly to opaque and detached signatures, where an ab-
sent eContent signals that the content is provided some-
where else, CMS supports so called “signed attributes”,
whose absence or presence signals what was signed. If a
signedAttrs field is present, the signature covers the exact
byte sequence of the signedAttrs field and not the content
per se. If naively implemented, this would of course leave the
content unauthenticated. Therefore, the signedAttrs field
must contain a hash of the content [7]. If the signedAttrs
field is absent, the signature covers the eContent directly.

This indirect signing allows the replacement of the
original content with the exact byte sequence of the
signedAttrs field without affecting the signature verifi-
cation outcome. An email modified in this way will ap-
pear “empty” or contain seemingly “garbage” (because the
signedAttrs is interpreted as ASCII). In either case, this
can be used to hide where the old signature originated from.
We consider this a noteworthy curiosity.

Multiple Signers (C2) S/MIME and CMS allow multiple
signers in parallel to sign the same content [7]. Obviously,
the outcome of the verification may differ for each signer

1014 28th USENIX Security Symposium USENIX Association

and the user interface should make that clear. However, it
is reasonable to show a simplified version. We consider it a
forgery if an invalid signature is marked as “valid” due to the
presence of an unrelated valid signature.

No Signers (C3) A CMS signature object may contain zero
or more signers. Although RFC 5652 gives limited advice
regarding zero signers, it does not state explicitly what to do
with “signed messages” without a signer.

Trust Issues (C4) In contrast to OpenPGP, S/MIME is built
upon trust hierarchies. Certificates are authentic as long as
they can be traced back to a valid root certificate. In practice,
this means that most S/MIME certificates (in the Internet
PKI) are indirectly trusted. However, clients must check the
validity of the certificate chain. We consider it a forgery if a
client accepts invalid certificates, such as self-signed certifi-
cates or otherwise untrusted or non-conforming certificates.

4.2 GPG API Attack Class

GnuPG, a stand-alone OpenPGP implementation, provides
a stateful text-based command-line interface with approxi-
mately 380 options and commands. The complexity of the
API and the need for consumers to parse GnuPG’s string
messages provides a rich attack surface.

GnuPG Status Lines GnuPG provides a machine-
readable interface by emitting status lines in a simple text-
based format (see Figure 3), via the --status-fd option.
Each status line starts with [GNUPG:] and one of approxi-
mately 100 possible keywords (such as GOODSIG), followed
by additional text specific to the keyword.

Although some documentation exists, it does not cover all
possible sequences of status lines and their significance for
any given operation. In fact, due to streaming processing,
the complexity of the API reflects the overall complexity of
the OpenPGP message format. In particular, we note the
following risk factors:

• The API contains text under the attacker’s control (e.g.,
the <user-id> in GOODSIG), which must be escaped to
prevent injection attacks.

• The number and order of status lines depend on the
OpenPGP packet sequence, which is under the at-
tacker’s control. Applications must handle all combi-
nations correctly that are allowed by GnuPG.

• The API is stateful, i.e., the semantics of a status line
can depend on its position in the sequence. For ex-
ample, the validity indicated by a TRUST_* line applies
only to the signature started by the previous NEWSIG.

1 $ gpg --status-fd 2 --verify
2 [GNUPG:] NEWSIG
3 [GNUPG:] GOODSIG 88B08D5A57B62140 <alice@good.com>
4 [GNUPG:] VALIDSIG 3CB0E84416AD52F7E186541888B08D5A57B62140

2018-07-05 1530779689 0 4 0 1 8 00 3
CB0E84416AD52F7E186541888B08D5A57B62140

5 [GNUPG:] TRUST_FULLY 0 classic

(a) Example output for a single trusted signature (excerpt).

1 NEWSIG [<signers-user-id>]
2 GOODSIG <key-id> <user-id>
3 BADSIG <key-id> <user-id>
4 VALIDSIG <fingerprint> <date> <create-timestamp> <expire-

timestamp> <version> <reserved> <public-key-algorithm> <
hash-algorithm> <signature-class> [<primary-key-
fingerprint>]

5 TRUST_NEVER <error-token>
6 TRUST_FULLY [0 [<validation-model>]]
7 PLAINTEXT <format> <timestamp> <filename>
8 PLAINTEXT_LENGTH <length>

(b) Important status lines for signature verification from GnuPG.

Figure 3: Status lines output by GnuPG as a side-effect of streaming
message processing.

• The use of the API requires a good understanding of
OpenPGP and trust models as implemented in GnuPG.
The GOODSIG, VALIDSIG and TRUST_* lines have very
specific technical meaning that is not always apparent
from the inconsistent terminology in the interface.

• By default, GnuPG runs in the context of the user’s
home directory, using their configuration files and
keyrings, which can influence the output of GnuPG
within, and outside of, the status line API.

We focus our work on injection attacks and applications
parsing the interface. First, we review the source code of
GnuPG to identify places where an attacker could inject un-
trusted data at trusted positions in the API. Then we review
all open source mail clients to identify exploitable mistakes
in the API parser.

In-band Injection Attacks (G1) There are various places
in the GnuPG status line API that contain untrusted data un-
der the attacker’s control. For example, the <user-id> in a
GOODSIG status line is an arbitrary string from the public key
that can be crafted by an attacker. A naive idea is to append a
newline character followed by a spoofed status line into the
user ID of a public key. Normally, GnuPG protects against
this naive attack by properly escaping special characters.

In addition to the status line API, we also review the log-
ging messages for injection attacks. This is due to a common
pattern, where applications using GnuPG conflate the status
API and the logging messages by specifying the same data
channel stdout for both (using the command line option
--status-fd 2). Best practice requires separate channels
to be used, but technical limitations can make this difficult
for some plugins and cross-platform applications.

USENIX Association 28th USENIX Security Symposium 1015

Thunderbird Enigmail GnuPG

[GNUPG:] PLAINTEXT…

gpg: filename is '

[GNUPG:] GOODSIG…

'

[SessionKeyPacket]

[EncryptedDataPacket

 [CompressedDataPacket

 [LiteralDataPacket

 filename:

 "\n[GNUPG:] GOODSIG…\n"

 data:

 "Johnny, You are fired!"

]

]

]

signed=true

LOG

STATUS

FROM: Manager

TO: Johnny

--BEGIN PGP--

hQIMA1B0...

=xDrQ

--END PGP--

--BEGIN PGP--

hQIMA1B0...

=xDrQ

--END PGP--

Figure 4: In-band injection of GnuPG status lines via log messages.

If an injection attack is successful, it can be very pow-
erful, as the attacker can spoof the status lines entirely and
provide arbitrary data to the application. Such spoofed status
lines can include forged indications of a successful signature
validation for arbitrary public keys. A valid PGP message
containing the injection payload is showed in Figure 4.

Attacks on Email Clients Using GPG (G2) The GnuPG
interface provides only limited functionality; for example, it
is not possible to validate a signature against a single public
key in the keyring, but only against all public keys contained
therein. Since this is insufficient for validating the sender of
an email, GnuPG returns a string containing the user ID and
the result of the validation. By manipulating this string, mail
clients can be tricked into giving false validation results.

Applications using the GnuPG status line API have to
parse the status lines and direct a state machine, keeping
track of verification and decryption results under a wide
range of different inputs, user configurations and GnuPG
versions. Thus, application developers often use a common
design pattern to deal with the complexity, such as: Iterat-
ing over all status line messages, parsing the details of those
status lines that have information relevant to the task the ap-
plication is interested in, and ignoring all other unknown or
unsupported messages. This can lead to a number of serious
vulnerabilities. For example, if an application is unprepared
to handle multiple signatures, it might not reset the signa-
ture verification state at the NEWSIG status line, conflating the
verification result of multiple signatures into a single result
state. This might allow an attacker to add more signatures
to an existing message to influence the result. Another ex-
ample is the use of regular expressions that are not properly
anchored to the status line API data format, thereby allowing
an attacker to inject data that, although it is properly escaped
by GnuPG, is then misinterpreted by the application.

4.3 MIME Attack Class

In this section we discuss attacks on how email clients handle
partially signed messages in the case that the signed part is

wrapped within the MIME tree of a multipart message. For
this class of attacks, the attacker is already in possession of at
least one message and a corresponding valid signature from
the entity to be impersonated. The obtained message can be
in Inline PGP, PGP/MIME, or S/MIME as all formats can be
embedded as sub-parts within a multipart message.

Prepending Attacker’s Text (M1) Email clients may dis-
play a valid signature verification status even if only a single
MIME part is correctly signed. In such a scenario of par-
tially signed emails, the attacker can obfuscate the existence
of the correctly signed original message within a multipart
email. For example, this can be achieved by prepending the
attacker’s message to the originally signed part, separated by
a lot of newlines, resulting in a weak forgery.

Hiding Signed Part with HTML (M2) Another option is
to completely hide the original part with HTML and/or CSS,
resulting in a perfect forgery. There are several ways to do
this. One way occurs if the email client renders the out-
put of multiple MIME-parts within a single HTML docu-
ment presented to the user, then the signed part can simply
be commented out, for example, using HTML comments.
Furthermore, it can be embedded in (and therefore hidden
within) HTML tags, or wrapped into CSS properties like
display:none. An example for such a MIME-wrapping
attack based on a hidden signed part is shown in Figure 5.

1From: manager@work.com
2To: johnny@work.com
3Subject: Signed part hidden with CSS/HTML
4Content-Type: multipart/mixed; boundary="XXX"
5

6--XXX
7Content-Type: text/html
8

9Johnny, you are fired!
10<div style="display:none"><plaintext>
11

12--XXX
13––-BEGIN PGP SIGNED MESSAGE––-
14Hash: SHA512
15

16Congratulations, you have been promoted!
17––-BEGIN PGP SIGNATURE––-
18iQE/BAEBAgApBQJbW1tqIhxCcnVjZSBXYXluZSA8YnJ1Y2V3YXluZTQ1...
19––-END PGP SIGNATURE––-
20

21--XXX--

Figure 5: Signature spoofing attack based on MIME wrapping. The
signed part is hidden by HTML/CSS, while the message “Johnny,
You are fired!” is displayed by the email client.

Hiding Signed Part in Related Content (M3) Even if
there is a strict isolation between multiple MIME parts, it can
be broken using cid: references (see RFC 2392). This can
be achieved by constructing a multipart/related mes-
sage consisting of two parts. The first MIME part contains

1016 28th USENIX Security Symposium USENIX Association

1 From: Philip R. Zimmermann <prz@pgp.com>
2 To: johnny@work.com
3 Subject: PGP signed message
4 Content-Type: multipart/related; boundary="XXX"
5

6 --XXX
7 Content-Type: text/html
8

9 Johnny, You are fired!
10
11

12 --XXX
13 Content-ID: signed-part
14

15 ––-BEGIN PGP SIGNED MESSAGE––-
16 A note to PGP users: ...
17 ––-BEGIN PGP SIGNATURE––-
18 iQA/AwUBOpDtWmPLaR3669X8EQLv0gCgs6zaYetj4JwkCiDSzQJZ1ugM...
19 ––-END PGP SIGNATURE––-
20

21 --XXX--

Figure 6: Multipart email with a cid: reference to the signed part.

an attacker-controlled text and a cid: reference to the origi-
nal signed part, which is placed into the second MIME part.
An example email to demonstrate such an attack is given in
Figure 6. It contains an HTML message part and a signed
text which was written and published by Phil Zimmermann
back in 2001.4 The cid: reference enforces the signed (but
invisible) part to be parsed by the mail client, which indicates
a valid signature for the shown message (from the first part).
This allows us to impersonate Phil Zimmermann5 for arbi-
trary messages. A corresponding screenshot of Apple Mail
(GPG Suite) is given in Figure 1 on the first page.

Hiding Signed Part in an Attachment (M4) Even without
using HTML, the originally signed part can be hidden by
defining it as an attachment. This can be done by placing it
into a sub-part with the additional header line shown below:

Content-Disposition: attachment; filename=signature.asc

4.4 ID Attack Class
In this section we discuss attacks on how email clients match
a signed message to a sender’s identity. These attacks are less
powerful than those previously discussed, because indistin-
guishability is rarely given at all levels of user interaction,
i.e., many clients allow the user to check the signature de-
tails, which may reveal signs of manipulation.

Not Checking If Sender= Signer (I1) When dealing with
digital signatures, the question Signed by whom? is impor-
tant. If Bob’s email client simply displayed “valid signature”
for any PGP or S/MIME signed message, Eve could sign her

4P. Zimmermann, A (Inline PGP signed) note to PGP users,
https://philzimmermann.com/text/PRZ_leaves_NAI.txt

5PGP key ID 17AFBAAF21064E513F037E6E63CB691DFAEBD5FC

From: Alice <eve@evil.com>

(a) Display name and email address in FROM header.

From: alice@good.com <eve@evil.com>

(b) Display name set to email address FROM header.

From: alice@good.com
From: eve@evil.com

(c) Multiple FROM header.

Sender: alice@good.com
From: eve@evil.com

(d) SENDER and FROM headers.

Figure 7: Examples how to fool signature verification logic if the
PGP user ID or the Internet mail address in the signer’s S/MIME
certificate is compared to sender address in the email header.

message and send it to Bob with Alice set as the sender. This
is due to a lack of binding between the user ID from the sig-
nature and the address given in the FROM header.

Display Name Shown as Signer (I2) There are two op-
tions to handle this problem. First, a mail client can ex-
plicitly display the signer’s identity somewhere in the UI
and let the user compare it to the sender address. Second,
the email client can check whether the signer’s identity (i.e.,
email address) equals the sender’s address, and show a warn-
ing if this is not the case. The second option gives a lot of
room for attacks; RFC 2632 for S/MIME signed messages
states that “receiving agents must check that the address in
the From or Sender header of a mail message matches an
Internet mail address in the signer’s certificate”. However,
in practice email clients can only check if the FROM header
contains the signer’s email address because RFC 5322 al-
lows additional display names to be associated with a mail-
box (e.g., Name <foo@bar>). If an email client only shows
the display name to the user, Eve can simply set Alice as dis-
play name for her own sender address (see Figure 7a). Also,
in such a scenario the display name itself could be set to an
email address such as alice@good.com that is presented to
the user, see Figure 7b.

An example screenshot for Outlook, which required ad-
ditional effort, is given in Figure 8a. The source code of
this mail can be found in Figure 8b. While Outlook always
shows the full sender address (eve@evil.com), it can simply
be “pushed out of the display” by appending a lot of whites-
paces to the display name (manager@work.com).

From/Sender Header Confusion (I3) Another problem is
how email clients deal with multiple FROM fields in the mail
header—especially if PGP or S/MIME support is not imple-
mented directly by the email client, but offered through a

USENIX Association 28th USENIX Security Symposium 1017

https://philzimmermann.com/text/PRZ_leaves_NAI.txt

(a) Screenshot of a spoofed PGP signed message in Outlook which
was actually signed by the attacker (eve@evil.com).

1 From: manager@work.com [whitespaces] x <eve@evil.com>
2 To: johnny@work.com
3 Reply-to: manager@work.com
4 Subject: Signed by whom?
5 Content-Type: multipart/signed; boundary="XXX";
6 protocol="application/pgp-signature"
7

8 --XXX
9

10 Johnny, you are fired!
11

12 --XXX
13 Content-Type: application/pgp-signature
14

15 [valid signature by eve@evil.com]
16 --XXX--

(b) Proof-of-concept email source code to forge PGP signatures.

Figure 8: PGP signature spoofing attack against Outlook/GpgOL,
based on the RFC 5322 display name shown as the signer’s identity.

third-party plugin—as there may be different implementa-
tions on how to obtain the sender address of an email. For ex-
ample, the email client could display the email address given
in the first FROM header while the plugin would perform its
checks against any occurrence of this header field (see Fig-
ure 7c). Also, the plugin could respect the SENDER header in
its checks which “specifies the mailbox of the agent respon-
sible for the actual transmission of the message” [8] while
the mail client would display the email address taken from
the FROM email header (see Figure 7d). Note that if Eve sets
an additional Reply-to: alice@good.com header, which
instructs the email client to reply to Alice, such attacks go
unnoticed by Bob when replying to the email. They can,
however, be detected in most clients by reviewing the signa-
ture details and spotting Eve as the real signer.

4.5 UI Attack Class (U1)

In this section, we discuss UI redressing attacks that exploit
the presentation of signature verification results to the user.
The attacks are successful if the spoofed message is indistin-
guishable from a message with a real valid signature.

This attack class exploits that various email clients dis-
play the status of the signature within the email content it-
self. This part of the UI is under the control of the attacker.

With HTML, CSS, or inline images it is easy to reproduce
security-critical UI elements displaying a “valid signature”.

Figure 9a shows a signed and a spoofed email in Round-
cube. The spoofed email is based on displaying a valid sig-
nature indicator with HTML and CSS (an example of UI re-
dressing). The HTML code is provided in Figure 9b.

(a) Two emails with visually indistinguishable signature indicators.
One is PGP-signed, the other is a specially crafted HTML email.

1From: manager@work.com
2To: johnny@work.com
3Subject: UI redressing
4Content-Type: text/html
5

6<div class="message-part">
7<div id="enigma-message1" class="enigma-notice1" style="margin-

left: -0.25em; margin-bottom: 5px; padding: 6px 12px 6px
30px; font-weight: bold; background: url(enigma_icons.png
) 3px -171px no-repeat #c9e6d3; border: 1px solid #008a2e
; color: #008a2e">

8Verified signature from Manager <manager@work.com>.
9</div><div class="pre">Johnny, You are fired!</div></div>

(b) Forging a PGP signature in Roundcube with UI redressing.

Figure 9: Security indicators in Roundcube. The indicator is in the
attacker-controlled HTML area, which allows trivial spoofing.

5 Evaluation

Of the tested 20 clients with PGP support, 15 use GnuPG to
verify signatures and call it either directly, or through some
kind of plugin such as Enigmail6 or GPG Suite,7 or by us-
ing the GPGME8 wrapper library. The remaining clients use
OpenPGP.js,9 OpenKeychain,10 or a proprietary solution. Of
the tested 22 clients with S/MIME support, only five require
third party plugins. The results of signature spoofing attacks
tested on the various email clients are shown in Table 2 for
OpenPGP and in Table 3 for S/MIME.

The results of our evaluation show a poor performance of
the overall PGP and S/MIME ecosystems when it comes to
trustworthiness of digital signatures; for ten OpenPGP capa-
ble clients and seven clients supporting S/MIME we could
spoof visually indistinguishable signatures on all UI levels
(resulting in perfect forgeries). On four additional OpenPGP

6P. Brunschwig, Enigmail, https://enigmail.net/
7L. Pitschl GPG Suite, https://gpgtools.org/
8W. Koch, GPGME, https://github.com/gpg/gpgme
9ProtonMail, OpenPGP.js https://openpgpjs.org/

10Cotech, OpenKeychain, https://openkeychain.org/

1018 28th USENIX Security Symposium USENIX Association

https://enigmail.net/
https://gpgtools.org/
https://github.com/gpg/gpgme
https://openpgpjs.org/
https://openkeychain.org/

capable clients and eight clients supporting S/MIME, we
could spoof visually indistinguishable signatures on the first
UI level (resulting in partial forgeries). While none of the at-
tacks directly target the underlying cryptographic primitives,
the high success rate raises concerns about the practical se-
curity of email applications. We discuss the results for each
class of attack in this section. We also published proof-of-
concept attack emails and screenshots of partial and weak
forgeries in a public repository.11

5.1 CMS Attack Class
eContent Confusion (C1) We found that Thunderbird,
Postbox, MailMate, and iOS Mail are vulnerable to eCon-
tent confusion. Given a valid S/MIME signature for a spe-
cific user, this allows a perfect forgery for any message of
this user. Note that opaque signed emails can be transformed
into detached signed emails and vice versa. Thus, having
any signed email from a target is enough to forge an arbi-
trary number of new messages. Mozilla assigned CVE-2018-
18509 to this issue.

Multiple Signers (C2) Evolution coerces multiple signers
into one “valid signature” UI element (see Figure 10). How-
ever, the UI reveals the erroneous signature upon further in-
spection of the UI. By definition, this is a partial forgery.

Figure 10: This email has two signers. The first signer did not
sign this email. Evolution coerced both signers into one security
indicator showing “valid signature”. (Minor details were removed
from the screenshot to make it smaller.)

No Signers (C3) In the case of no signers, three email
clients, namely Outlook, Mutt, and MailDroid, show some
UI elements suggesting a valid signature and some UI ele-
ments doing the opposite. We consider this a weak forgery,
because there is no clear indication that signature validation
has succeeded/failed. In Outlook an otherwise very promi-
nent red error bar is not shown and a seal indicates a valid
signature (although it should show a warning sign), see Fig-
ure 11. Interestingly, clicking through the UI in Outlook may
strengthen the illusion of a validly signed message because
of the wording in the subdialogs.

11https://github.com/RUB-NDS/Johnny-You-Are-Fired

Figure 11: “Signed email” in Outlook with no signers at all.

Trust Issues (C4) Although none of the clients accepted
“extended certificates”, i.e., certificates re-signed by a leaf
certificate with no CA=true flag, we observed that Trojitá
and Claws display conflicting UI elements on untrusted cer-
tificates (i.e., “success: bad signature”). Nine and MailDroid
do not display information about the origin of a certificate on
the first level of the UI. This means that, although there are
security indicators suggesting a signed email, the origin may
be completely untrustworthy, resulting in partial forgery.

5.2 GPG API Attack Class
We found an injection attack for the “embedded filename”
log message in GnuPG, as well as several issues in Enig-
mail’s status line parser and state machine.

Status Line Injection through Embedded Filename (G1).
OpenPGP Literal Data Packets, which contain the actual
plaintext of a message, contain some metadata, in particu-
lar an embedded filename that is usually set by the sender
to the original filename of a signed or encrypted file. We
found that GnuPG’s logging message for the embedded file-
name does not escape newline and other special characters.
If an application combines the logging messages with the
status line API in a single data channel, an attacker can use
the embedded filename to inject arbitrary status lines (up to
255 bytes, which can be sufficient to spoof the GOODSIG,
VALIDSIG and TRUST_FULLY lines for a single signature).
Figure 12b shows the injected text highlighted. The success-
ful attack is shown in Figure 12a.

Using this attack, we were able to spoof arbitrary signature
verification results in Enigmail, GPG Suite, and Mailpile.12

The attack only assumes our weakest attacker model, as all
relevant status lines can be injected into the embedded file-
name. In fact, the message does not even need to be signed
at all; the attack, however, has the additional requirement

12Manual signature verification using GnuPG on the command line is
also affected; the embedded filename can contain arbitrary terminal escape
sequences, allowing the attacker to overwrite any part of the terminal.

USENIX Association 28th USENIX Security Symposium 1019

https://github.com/RUB-NDS/Johnny-You-Are-Fired

(a) Screenshot of a spoofed PGP signature in Thunderbird.

1 $ gpg --status-fd=2 --verbose message.gpg
2 gpg: original file name=’’
3 [GNUPG:] GOODSIG 88B08D5A57B62140 Manager <manager@work.com>
4 [GNUPG:] VALIDSIG 3CB0E84416AD52F7E186541888B08D5A57B62140

2018-07-05 1530779689 0 4 0 1 8 00
3CB0E84416AD52F7E186541888B08D5A57B62140

5 [GNUPG:] TRUST_FULLY 0 classic
6 gpg: ’’
7 [GNUPG:] PLAINTEXT 62 1528297411 ’%0A[GNUPG:]%20GOODSIG[...]
8 [GNUPG:] PLAINTEXT_LENGTH 56

(b) Example output for GnuPG status line injection (excerpt).

Figure 12: Status line injection attack on GnuPG.

that the user has enabled the verbose configuration option.
This option is not enabled by default, but it is often used by
experts and part of several recommended GnuPG settings.

The vulnerability is present in all versions of GnuPG until
2.2.8. Our finding is documented as CVE-2018-12020. Due
to the severity of the attack, we also reviewed non-email ap-
plications for similar vulnerabilities, see subsection 7.5.

State Confusion and Regular Expressions in Enigmail
(G2). We found two flaws in the way Enigmail handles sta-
tus messages for multiple signatures:

• If the status of the last signature is GOODSIG,
EXPKEYSIG, or REVKEYSIG, Enigmail will overwrite
the signature details (e.g., fingerprint, creation time, al-
gorithms) with those from the first VALIDSIG, confus-
ing the metadata of two signatures. The attacker can
change the state of a signature to good, expired, or re-
voked by adding a corresponding second signature.

• If any of the signatures is TRUST_FULLY or
TRUST_ULTIMATE, and the last signature is good,
expired, or revoked, then Enigmail will display the
information from the first VALIDSIG as trusted.

We also found regular expressions that were not anchored
to the beginning of status lines. This allows for injection of
fake VALIDSIG and other status lines in malicious user ID
strings. Combining this with the above, this allows an at-
tacker to control the signature details completely. The attack
involves two signatures on a single message, which Enig-
mail combines in a complex way to a single signature that is
shown to the user. We assume that the attacker is trusted, and
further assume that the attacker can poison the user’s keyring
with arbitrary untrusted keys. This is not a strong assumption

because in PGP the local keyring is just an insecure cache of
public keys. For example, the attacker might rely on auto-
matic key retrieval from public keyservers or include the key
as extra payload when sending her regular public key to Bob.

The first signature in the attack is by a key with a mali-
cious user ID, crafted by the attacker, that injects a spoofed
VALIDSIG status line. Because Enigmail processes this line
twice using different parsers, some information needs to be
duplicated to make the attack work. The second signature
is a regular valid signature over the same message by the
trusted attacker’s key. This signature sets the global flag
in Enigmail indicating that a signature is made by a trusted
key, but otherwise it is completely ignored. Figure 13 shows
which data in the attack is used by Enigmail. The fingerprint
will be used to resolve further details such as the user ID of
the (spoofed) signing key. The vulnerability is present in all
versions of Enigmail until 2.0.7, affecting Thunderbird and
Postbox. Our finding is documented as CVE-2018-12019.

1[GNUPG:] NEWSIG
2[GNUPG:] GOODSIG 8DA07D5E58B3A622 x 1527763815 x x x 1 10 x

4F9F89F5505AC1D1A260631CDB1187B9DD5F693B VALIDSIG x x 0 4
F9F89F5505AC1D1A260631CDB1187B9DD5F693B

3[GNUPG:] TRUST_UNDEFINED
4[GNUPG:] NEWSIG
5[GNUPG:] GOODSIG 88B08D5A57B62140 <eve@evil.com>
6[GNUPG:] TRUST_FULLY

Figure 13: The status line API as seen by Enigmail (abbreviated).

5.3 MIME Attack Class
On five PGP email clients, including popular products such
as Thunderbird and Apple Mail, we could completely hide
the original signed part (resulting in perfect forgeries) us-
ing multiple techniques, such as wrapping it into attacker-
controlled HTML/CSS (M1), referencing it as an “image”
(M2), or hiding it as an “attachment” (M3). On another three
clients we could only obfuscate the original signed message
part (resulting in weak forgeries) by appending it and us-
ing a multitude of newlines to cover its existence (M4). Our
findings are documented as CVE-2017-17848, CVE-2018-
15586, CVE-2018-15587, and CVE-2018-15588.

Our evaluation shows that S/MIME is less vulnerable to
signature wrapping attacks by design; all but one tested
email clients only show a valid signature verification if the
whole email including all sub-parts is correctly signed (i.e.,
Content-Type: multipart/signed is the root element
in the MIME tree). Unfortunately, it seems hard to get rid
of partially signed emails or mark them as suspicious, as can
be done for partially encrypted messages – a countermeasure
Enigmail applied to the EFAIL attacks [9] – because in the
PGP world, partially signed is quite common (e.g., mailing
lists, forwards, etc.). There seems to be a different philoso-
phy in the S/MIME world; for example, S/MIME forwarding

1020 28th USENIX Security Symposium USENIX Association

Figure 14: Partial forgery in the Windows 10 mail app. The email is
actually signed by Eve which is only visible in the signature details.

intentionally breaks the signature because the forwarding en-
tity should re-sign the message.

5.4 ID Class
Eleven PGP email clients and twelve S/MIME clients explic-
itly show the signer’s identity (i.e., PGP user ID or Internet
mail address in the signer’s S/MIME certificate) when re-
ceiving a signed email. This can be considered safe because
a user gets direct feedback regarding the signed by whom?
question. The other clients do not show the signer’s iden-
tity on the first level of the UI. Of those, two PGP email and
three S/MIME mail clients, such as the Windows 10 mail app
(see Figure 14), do not perform any correlation between the
sender address and the signer’s identity at all. They only
show “signed” with no further information, making them
easy targets for ID attacks (resulting in partial forgeries).
The other seven PGP email clients and eight S/MIME clients
compare the sender’s address to the email address found in
the public key or certificate matching the signature. This
process is error-prone. For four PGP email clients, including
GpgOL for Outlook, and eight S/MIME email clients, the
correlation could be fully bypassed using the various tech-
niques described in subsection 4.4. If Bob does not manu-
ally view the signature details, there is no indicator that the
email was signed by Eve instead of Alice (resulting in par-
tial forgery). For two of these clients (GpgOL for Outlook
and Airmail) no signature details were available, resulting in
perfect forgery.

5.5 UI Attack Class
Five tested PGP email clients and four S/MIME clients dis-
play the status of signatures within the email body, which is
a UI component controlled by the attacker. This allowed us
to create fake text or graphics implying a valid signature us-
ing HTML, CSS and inline images visually indistinguishable
from a real signed message. Only further investigation of the
email, such as viewing signature details, could reveal the at-
tack (resulting in partial forgery). Three of these clients do
not not even have an option for further signature details, re-

sulting in perfect forgery. Spoofing signatures was especially
easy for clients where the PGP or S/MIME plugin simply in-
jects HTML code into the email body. We could just copy
the original HTML snippet of a valid signature and re-send
it within the body of our spoofed email.

Another seven PGP clients and nine S/MIME clients show
the results of signature verification in, or very close to, the
email body and could be attacked with limitations (causing
weak forgeries). Some of these clients have additional indi-
cators in other parts of the UI pointing out that the email is
actually signed, but those indicators are missing in the case
of spoofed signatures based on UI redressing (see Figure 15).
Furthermore, in some of these clients the spoofed signature
was not 100% visually indistinguishable.

6 Countermeasures

Similarly to other RFC documents, S/MIME [10] and
OpenPGP [6] contain a section on security considerations.
While these sections discuss cryptographic best practices
(e.g., key sizes and cryptographic algorithms), they do not
discuss how to design secure validation routines and inter-
faces. In this section, we discuss several possible counter-
measures against the presented attacks in order to give guid-
ance for implementing secure email clients.

6.1 CMS Attack Class

eContent Confusion (C1) Both S/MIME signing variants
are commonly used13 and standard compliant clients are ex-
pected to support them. Thus, special care must be taken to
only display the content which was subject to verification.

The relevant standards, RFC 5652 (CMS) and RFC 5751
(S/MIME), do not give any advice on how to handle the case
were both variants are present. We recommend to display
neither of them and show an error instead. In fact, Claws
reports a “conflicting use”.

13Outlook 2016 sends opaque signed messages by default and Thunder-
bird sends detached messages by default.

Figure 15: “Weak” forgery in KMail. The check mark UI indicatior
in the upper right cannot be spoofed using simple UI redressing.

USENIX Association 28th USENIX Security Symposium 1021

OS Client Plugin GPG MIME ID UI Weaknesses
W

in
do

w
s Thunderbird (52.5.2) Enigmail (1.9.8) – # G1, G2, M2, M3, U1

Outlook (16.0.4266) GpgOL (2.0.1) – – # I2, U1
The Bat! (8.2.0) GnuPG (2.1.18) – # # – M1, I1
eM Client (7.1.31849) native – – – G# U1
Postbox (5.0.20) Enigmail 1.2.3 – – – G1, G2

L
in

ux

KMail (5.2.3) GPGME (1.2.0) – – – # U1
Evolution (3.22.6) GnuPG (2.1.18) – – # M4, U1
Trojitá (0.7-278) GPGME (1.2.0) – – G# I2, I3, U1
Claws (3.14.1) GPG plugin (3.14.1) – # – – M1
Mutt (1.7.2) GPGME (1.2.0) – – – # U1

m
ac

O
S Apple Mail (11.2) GPG Suite (2018.1) – # G1, M1, M2, M3, U1

MailMate (1.10) GPG Suite (2018.1) – # M1, M2, M3, I2, U1
Airmail (3.5.3) GPG-PGP (1.0-4) – – M3, I2

A
nd

ro
id K-9 Mail (5.403) OpenKeychain (5.2) – – G# – I2

R2Mail2 (2.30) native – – G# # I1, U1
MailDroid (4.81) Flipdog (1.07) – # – G# M1, U1

W
eb

Roundcube (1.3.4) Enigma (git:48417c5) – – – U1
Horde/IMP (7.7.9) GnuPG (2.1.18) – – – – –
Mailpile (1.0.0rc2) GnuPG (2.1.18) – G# – G1, I1
Mailfence (2.6.007) OpenPGP.js (2.5.3) – – – – –

 Indistinguishable signature on all UI levels (perfect forgery) # Signature can be spoofed with limitations (weak forgery)
G# Indistinguishable signature on first UI level (partial forgery) – No vulnerabilities found

Table 2: Out of 20 tested email clients 14 were vulnerable to our OpenPGP signature spoofing attacks (perfect or partial forgery).

Disallow Multiple Signers (C2) It is difficult to give good
advice on the presentation of multiple signers, as different
clients may implement different UI concepts. Furthermore,
introducing UI elements might worsen the usability or intro-
duce security problems on its own (e.g., UI redressing).

However, a simple solution is to not implement multiple
signer support at all. Many up-to-date clients do not support
multiple signers, e.g., Thunderbird and Outlook 2016. Ad-
ditionally, we know of no client which is able to produce a
message with multiple signers. Thus, it seems reasonable to
us to not support this feature.

Error Out If No Signers (C3) Messages with no signer
should be treated as errorneous or as not signed. In either
case there should be no UI element indicating a signed mes-
sage. We recommend to not show the message and show
an error instead. This is due to the possible application of
signature stripping attacks as demonstrated by [11] and [9].

Redesign Trust Management and Workflow (C4) Clients
must validate the complete certification path and fail the sig-
nature verification on trust issues. Furthermore, certificates
should be checked automatically. Clients must not accept
self-signed certificates. If needed, a separate trust chain
should be configured on the device or in the application.

6.2 GPG API Attack Class

GnuPG developers can improve the documentation and the
API, but they have to consider backwards compatibility and
extensibility. GnuPG must track attacker controlled data
and always escape newlines and other special characters in
all outputs. GnuPG should also validate the structure of
OpenPGP messages and provide clear guidelines on how to
achieve common tasks such as certificate pinning.

Frontend developers can harden the invocation of the
backend (e.g. by using dedicated channels for log and status
lines or adding --no-verbose to disable logging), their sta-
tus line parsers (e.g., by anchoring all regular expressions),
and the state machine aggregating the results (e.g., by keep-
ing track of multiple signatures, as indicated by NEWSIG).
However, applications that are too strict risk incompatibil-
ities with future backend upgrades or unconventional user
configurations.

The OpenPGP standard should be updated to provide a
strict grammar for valid message composition, as the present
flexibility (such as arbitrary nesting of encrypted, signed,
and compressed messages) is unjustified in practice and puts
the burden on implementations to define reasonable limits.
Specifically, the OpenPGP standard should only allow one
optional encryption layer, one optional compression layer,
and one possibly signed literal data packet. More complex
message composition (e.g., sign+encrypt+sign to allow for

1022 28th USENIX Security Symposium USENIX Association

OS Client Plugin CMS MIME ID UI Weaknesses
W

in
do

w
s

Thunderbird (52.5.2) native – # – C1, I3
Outlook (16.0.4266) native # – – # C3, U1
Win. 10 Mail (17.8730.21865) native – – G# # I1, U1
Win. Live Mail (16.4.3528) native – – G# # I2, U1
The Bat! (8.2.0) native – – G# – I1
eM Client (7.1.31849) native – – – G# U1
Postbox (5.0.20) native – G# – C1, I3

L
in

ux

KMail (5.2.3) native – – – # U1
Evolution (3.22.6) native G# – – # C2, U1
Trojitá (0.7-278) native # – G# C4, I2, I3, U1
Claws (3.14.1) GnuPG (gpgsm) (2.1.18) # – – – C4
Mutt (1.7.2) native # – – # C3, U1

m
ac

O
S Apple Mail (11.2) native – – – # U1

MailMate (1.10) native # # C1, M1, M2, M3, I2, U1
Airmail (3.5.3) S/MIME (1.0-10) – – – I2

A
nd

ro
id R2Mail2 (2.30) native – – G# # I2, I3, U1

MailDroid (4.81) FlipDog (1.07) G# – – G# C3, C4, U1
Nine (4.1.3a) native G# – G# # C4, I1, U1

iOS Mail App (12.01) native – – – C1

W
eb

Roundcube (1.3.4) rc_smime (git:f294cde) – – – U1
Horde/IMP (6.2.21) native – – – – –
Exchange/OWA (15.1.1034.32) Control (4.0500.15.1) – – – # U1

 Indistinguishable signature on all UI levels (perfect forgery) # Signature can be spoofed with limitations (weak forgery)
G# Indistinguishable signature on first UI level (partial forgery) – No vulnerabilities found

Table 3: Out of 22 tested email clients 15 were vulnerable to our S/MIME signature spoofing attacks (perfect or partial forgery). Some clients
with weak forgery, conflicting UI elements or unusual workflows are documented in more detail in the appendix.

early spam mitigation) may be desirable for certain applica-
tions in the future. These should then be covered in future
standard revisions to ensure that they can be supported with-
out introducing new risk factors. Until then, they can be sup-
ported either by nesting several distinct messages explicitly
or as non-standard extensions that are disabled by default in
compliant implementations.

6.3 MIME Attack Class

There are two approaches to counter signature spoofing at-
tacks on partially signed messages which are hidden in the
MIME tree. Either email clients should show exactly which
part of the message was signed, for example, by using a
green frame. However, note that this is hard to implement in
a secure way because all edge cases and potential bypasses,
such as internal cid: references, need to be considered, and
it must be made sure that the frame cannot be drawn by the
attacker using HTML/CSS. Or email clients should be con-
servative and only show a message as correctly signed if the
whole message (i.e., the MIME root) was correctly signed.
While this will break digital signatures in some mailing lists
and in forwarded emails, such an all-or-nothing approach

can be considered as more secure and is preferred by the au-
thors of this paper. Furthermore, if the signature contains a
timestamp, it should be shown to the user to draw suspicion
on re-used and wrapped old signatures. For incoming new
messages the timestamp could be compared to the current
system time and an alert could be given if the signature con-
tains a timestamp older than a certain threshold. This can
also protect from attacks such as non-realtime surreptitious
forwarding.

6.4 ID Attack Class

Approaches to encrypted and digitally signed email headers
like Memory Hole [12] (a non-standard OpenPGP extension)
or RFC 7508 (Securing Header Fields with S/MIME) aim to
guarantee a cryptographic binding between the signature and
the sender address. However, few email clients support these
standards. Furthermore, clients supporting Memory Hole
(Thunderbird/Enigmail, R2Mail2) still accept signed emails
without header protection for backwards compatibility.

Even worse, Enigmail did not guarantee consistency be-
tween unprotected email headers and headers protected by
Memory Hole in our tests. Clients remain vulnerable to ID

USENIX Association 28th USENIX Security Symposium 1023

attacks unless further mitigations are applied. Hence, it can
be considered a good practice to explicitly show the signer
user IDs when displaying a PGP signed message. A com-
parison to the FROM or SENDER header fields may not be suf-
ficient because—as our evaluation shows—that approach is
error prone and hard to implement in a secure way.

6.5 UI Attack Class
The results of signature verification should not be shown in
attacker-controlled parts of the UI, such as the message con-
tent itself, which may contain arbitrary graphics. In the con-
text of webmail and native email clients using HTML5 for
their UI, such as Electron14 or XUL,15 it must be ensured
that there is a strict isolation (e.g., separate DOM) between
the message content and the rest of the UI. Otherwise, it may
be possible to influence the appearance of the UI, for ex-
ample by injecting CSS properties into the message content.
Following the example of browsers with regard to HTTPS,
the trend is to avoid positive UI indicators and only show
indicators if something is wrong. These systems aim to be
secure by default. However, this is obviously infeasible for
email signatures as long as most emails are unsigned.

7 Additional Findings

7.1 Crashes
We discovered multiple crashes during testing. For example,
we found a nullpointer dereference in Mozilla’s NSS library,
which is also used in Evolution and Postbox. Although the
security impact is rather low, sending a specifically crafted
email does lead to a permanent denial of service, as email
clients will cache this email and crash upon startup. We ex-
perienced a similar issue with iOS Mail, but did not evaluate
the origin of the crash. Additionally, we observed crashes
in MailMate, R2Mail2, Maildroid (Exception), Roundcube,
and Windows 10 Mail.

7.2 Airmail Accepts Invalid PGP Signatures
We found that the Airmail GPG-PGP plugin does not prop-
erly validate OpenPGP signatures, accepting even invalid
ones, irregardless of their status. This makes signature spoof-
ing attacks trivial.

Also, Airmail does not correctly verify the validity of the
signing key even for good signatures, allowing imperson-
ation attacks by injecting public keys into the user’s keyring
with the email address that should be spoofed.

The vulnerability is present in all versions of Airmail
GPG-PGP until "1.0 (9)". Our finding is documented as
CVE-2019-8338.

14GitHub Inc., Electron, https://electronjs.org/
15Mozilla Foundation, XUL, https://developer.mozilla.org/XUL

7.3 OpenPGP Message Composition Attacks

OpenPGP messages and keys are sequences of (possibly
nested) packets (see Fig. 16). This structure is under control
of the attacker, so it must be validated by the implementation.
According to the OpenPGP standard, any arbitrary nesting
of encryption, compression, and signatures is allowed with-
out restrictions. This flexibility is unjustified, and seems to
be an oversight in the specification, as only a small num-
ber of combinations are actually meaningful in practice. It
also opens PGP up to vulnerabilities such as decompression
attacks [13]. In practice, implementations must enforce ad-
ditional limits; for example, GnuPG allows up to 32 levels of
nesting.

[SessionKeyPacket]
[EncryptedDataPacket
[CompressedDataPacket
[OnePassSignaturePacket]
[LiteralDataPacket]
[SignaturePacket]
]
]

(a) Example structure of an OpenPGP message that is signed with
one signing key, compressed, and encrypted to one recipient key.

message :- encrypted | signed | compressed | literal.
encrypted :- SessionKeyPacket*, EncryptedDataPacket(message).
signed :- OnePassSignaturePacket, message, SignaturePacket.
compressed :- CompressedDataPacket(message).
literal :- LiteralDataPacket.

(b) Grammar for OpenPGP message composition from RFC 4880
(simplified excerpt). This grammar does not include rules for com-
patibility with older PGP versions.

Figure 16: Valid OpenPGP message and its grammar specification.

Status lines are emitted by GnuPG as packets are pro-
cessed recursively. However, the status lines do not repre-
sent packet boundaries nor the depth of nesting. As a conse-
quence, the status interface is a flat projection of the nested
structure, and some information is lost in the process.

Message Composition Attacks GnuPG outputs status
lines as a side-effect of recursive processing of packets in
OpenPGP messages. This has led to signature spoofing at-
tacks in the past, where an attacker can prepend or append
additional unsigned plaintext to a message [14]. We veri-
fied that current versions of GnuPG handle this correctly, and
could not find any similar issues for signature verification.

Encryption Spoofing Some attacks to spoof signature ver-
ification can also be used to spoof decryption results, caus-
ing the email client to indicate an encrypted message where
in fact the plaintext was transmitted in the clear. Although
by itself this is not a security violation, it is concerning and
might be a precursor or building stone for other attacks.

1024 28th USENIX Security Symposium USENIX Association

https://electronjs.org/
https://developer.mozilla.org/XUL

Besides the obvious adaptation of our UI redressing and
status line injection attacks, we found a flaw in the mes-
sage composition verification of GnuPG. Since 2006 [14],
GnuPG only allows at most one plaintext (i.e., one Literal
Data Packet) in a message. However, GnuPG does not verify
that the plaintext of an encrypted (non-conforming) message
is actually contained within the encrypted part of the mes-
sage. By replacing the plaintext in an Encrypted Data Packet
with a dummy packet ignored by GnuPG (the OpenPGP
standard makes a provision for private/experimental packet
types), and prepending or appending the (unencrypted) Lit-
eral Data Packet, we can cause GnuPG to output the same
status lines as for a properly encrypted message, excluding
the order. The following output shows the result for a prop-
erly encrypted message (differences in red and bold):

1 [GNUPG:] BEGIN_DECRYPTION
2 [GNUPG:] PLAINTEXT 62 0
3 [GNUPG:] DECRYPTION_OKAY
4 [GNUPG:] END_DECRYPTION

The next output shows the result for an empty Encrypted
Data Packet, followed by a Literal Data Packet in the clear:

1 [GNUPG:] BEGIN_DECRYPTION
2 [GNUPG:] DECRYPTION_OKAY
3 [GNUPG:] END_DECRYPTION
4 [GNUPG:] PLAINTEXT 62 0

Both messages are displayed identically (resulting in a
perfect forgery) in Thunderbird, Evolution, Mutt, and Out-
look, revealing the flexibility of the PGP message format,
GnuPG’s parser, and the GnuPG status line parsers in email
client applications.

7.4 Short Key PGP IDs
Short key IDs of 32 bit (the least significant 4 bytes of the
fingerprint) were used in the PGP user interface, on business
cards, by key servers, and other PGP-related utilities in the
past until pre-image collisions were demonstrated to be effi-
cient in practice [15]. Unfortunately, the Horde/IMP email
client still uses short key IDs internally to identify public
keys and automatically downloads them from key servers to
cache them in internal data structures. Our attempts to ex-
ploit these collisions for ID attacks were inconsistent due to
caching effects, which is why we did not include these at-
tacks in the evaluation. Horde/IMP should mitigate these at-
tacks by using full-length fingerprints to identify PGP keys.

7.5 GPG API Attacks Beyond Email
Based on source code searches on GitHub16 and Debian,17

we looked for software applications or libraries other than
email clients which might be susceptible to API signature
spoofing attacks. Candidates were programs that invoke

16GitHub Code Search, https://github.com/search
17Debian Code Search, https://codesearch.debian.net/

GnuPG with --status-fd 2, thereby conflating the log-
ging messages with the status line API, and programs that
do not correctly anchor regular expressions for status lines
(involving [GNUPG:]). We identified three broad classes of
programs using the GnuPG status line API: (1) Wrapper li-
braries that provide an abstraction layer to GnuPG, usually
for particular programming languages. (2) Applications us-
ing certificate pinning to verify the integrity of files when
stored under external control (cloud storage), including ver-
sion control systems like Git. (3) Package managers that use
GnuPG for integrity protection of software packages.

We found vulnerable software in all three categories, but
due to the large number of libraries and applications using
GnuPG, we could not yet perform an extensive review. Also,
we found that the available code search engines are not a
good match for the task of identifying applications calling an
external application through a shell interface. We therefore
fear that there may still be a significant number of vulnerable
applications using GnuPG out there.

Python-GnuPG Python-gnupg18 is a library interface to
GnuPG for the Python language. It uses the status line inter-
face and conflates it with the logging messages, making 717
applications using it19 potentially susceptible to the embed-
ded filename injection attack described above, depending on
how and in which context they use the Python library.

Bitcoin Source Code Repository Integrity The Bitcoin
project uses the Git version control system, which supports
signatures on individual software patches to verify the in-
tegrity of the whole repository as it changes over time. A
shell script using GnuPG to verify the integrity of all com-
mits is included in the distribution.20 This script uses the
status line API and does not anchor the regular expressions,
making it susceptible to the malicious user ID injection at-
tack described above. An attacker who can inject arbitrary
keys into the keyring of the user can simply re-sign modified
source code commits and thus bypass the verification script.

The Bitcoin source code is frequently used as the basis for
other crypto-currencies,21 and thus this error may propagate
to many other similar projects such as Litecoin.

Signature Bypass in Simple Password Store Pass22, a
popular password manager for UNIX, uses the GnuPG status
line API to encrypt password files and digitally sign config-
uration files and extension plugins. It does not anchor the
regular expressions, making it susceptible to the malicious

18V. Sajip, python-gnupg – A Python wrapper for GnuPG,
https://pythonhosted.org/python-gnupg/

19According to libraries.io, https://libraries.io/pypi/python-gnupg/usage
20Bitcoin Source Code, https://github.com/bitcoin/bitcoin/

blob/master/contrib/verify-commits/gpg.sh
21According to GitHub the Bitcoin code has 21379 forks as of Nov. 2018
22J. A. Donenfeld, pass, https://www.passwordstore.org/

USENIX Association 28th USENIX Security Symposium 1025

https://github.com/search
https://codesearch.debian.net/
https://pythonhosted.org/python-gnupg/
https://github.com/bitcoin/bitcoin/blob/master/contrib/verify-commits/gpg.sh
https://github.com/bitcoin/bitcoin/blob/master/contrib/verify-commits/gpg.sh
https://www.passwordstore.org/

user ID injection attack described above. If pass is used to
synchronize passwords over untrusted cloud storage, an at-
tacker with control over that storage can add their public key
to the configuration, which causes pass to transparently re-
encrypt the passwords to the attackers key (in addition to the
user’s key) over time. Also, if extension plugins are enabled,
the attacker can get remote code execution. This finding is
documented as CVE-2018-12356.

Yarn Package Manager Yarn is a package manager by
Facebook for the JavaScript runtime Node.js. The Yarn in-
staller script23 primarily relies on TLS to secure the integrity
of the installation package itself. However, it also attempts to
use GnuPG signature verification, presumably to secure the
integrity of the installer from the build server to the down-
load server, which can be different from the server that hosts
the installer script (e.g., for nightly builds).

Unfortunately, Yarn fails to do any form of certificate pin-
ning or trust management, and will accept any valid signature
by any key in the local keyring, even by untrusted keys. If
the attacker can inject a public key into the user’s keyring,
and perform a MiTM attack against one of Yarn’s download
servers, the attacker can replace the installation package with
one containing a backdoor, thereby gaining remote code ex-
ecution on the user’s machine. This finding is documented
as CVE-2018-12556.

7.6 Unsuccessful Cryptograpic Attacks

We analyzed 19 of 20 OpenPGP email clients from Table 2
(all but Airmail, which we could not test, see subsection 7.2)
and all 22 email clients supporting S/MIME signatures from
Table 3 if they are vulnerable to well-known attacks on the
PKCS#1v1.5 signature scheme for RSA with exponent e= 3.
Specifically, we checked for mistakes in the handling of the
padding [16] and ASN.1 structures [17]. All tested clients
resisted our attempts.

8 Related Work

The OpenPGP standard [6] only defines how to sign the
email body. Critical headers such as SUBJECT and FROM are
not signed if no further extensions, such as Memory Hole
[12], Secure Header Fields [18] or XML-based techniques
as described in [19], are applied. Levi et al. [20] developed a
GUI for users to better understand the limitations of S/MIME
digital signatures for emails, i.e., showing which parts of the
email are actually signed by whom. Usability papers such
as [21] discuss the difficulties that inexperienced users have
to manually verify the validity of a signature and understand
the different PGP trust levels.

23Yarn installer script, https://yarnpkg.com/install.sh

It is well known that messages signed by a certain en-
tity can be reused in another context. For example, a ma-
licious former employer in possession of a signed “I quit
my job” message by Alice can simply re-send this mes-
sage to Alice’s new employer. Such attacks have been re-
ferred to as “surreptitious forwarding” in 2001 by Davis [22]
who also showed how to strip signatures in various encryp-
tion schemes. Gillmor [23] touches upon the problems of
partially-signed Inline PGP messages as well as non-signed
attachments and the UI challenge such constructs present for
MUAs. Furthermore, he demonstrates a message tampering
attack through header substitution: by changing the encod-
ing, a signed message with the content e13/week can be pre-
sented as £13/week, while the signature remains valid.

Recently, Poddebniak et al. [9] described two attacks to
directly exfiltrate the plaintext of OpenPGP encrypted mes-
sages. One works by wrapping the ciphertexts into attacker-
controlled MIME parts. This is related to our MIME wrap-
ping attacks on signatures, as both techniques exploit miss-
ing isolation between multiple MIME parts. However, we
present attacks which do not require mail clients to put
trusted and untrusted input into the same DOM, using ad-
vanced approaches such as cid: URI scheme references.

GnuPG had signature spoofing bugs in the past. In 2006,
it was shown that arbitrary unsigned data can be injected into
signed messages [14]. Until 2007, GnuPG returned a valid
signature status for a message with arbitrary text prepended
or appended to an Inline PGP signature, allowing an attacker
to forge the contents of a message without detection [24].

In 2014, Klafter et al. [15] showed practical collisions in
32-bit PGP key IDs, named the “Evil 32” attack, which can
be dangerous in case a client requests a PGP key from a key-
server using the 32-bit ID. Collisions with 64-bit IDs are also
feasible but require more computing power, therefore only
full 160-bit fingerprints should be used.

“Mailsploit” [25] enables attackers to send spoofed
emails, even if additional protection mechanism like DKIM
are applied, by abusing techniques to encode non-ASCII
chars inside email headers as described in RFC 1342. In
2017, Ribeiro [26] demonstrated that CSS rules included in
HTML emails can be loaded from a remote source, leading
to changes in the appearance of—potentially signed—emails
after delivery.

Our partial (G#) and weak (#) forgery attacks can poten-
tially be detected by carefully inspecting the GUI or manu-
ally clicking to receive more signature details. A user study
analyzing user behavior would be necessary to reveal the real
impact of such inconsistencies. Lausch et al. [27] reviewed
existing cryptographic indicators used in email clients and
performed a usability study. With their 164 “privacy-aware”
participants they were able to select the most important in-
dicators. They argue that further research with participants
with general skills should be performed in the future work.
It would be intersting to extend this user study with specific

1026 28th USENIX Security Symposium USENIX Association

https://yarnpkg.com/install.sh

corner cases from our paper. Similar studies were performed
to analyze the usage of TLS indicators in web browsers.
Schechter et al. performed laboratory experiments where
they analyzed user behavior in respect to different browser
warnings [28]. For example, they found out that all 63 tested
users used their banking credentials on banking websites de-
livered over pure HTTP. Sunshine et al. [29] performed a
study on SSL warning effectiveness. Their conclusion is that
blocking unsafe connections and minimizing TLS warnings
would improve the warning effectiveness and user security.
Felt et al. studied TLS indicators in different browsers, in-
cluding Chrome, Firefox, Edge, and Safari [30]. They per-
formed a user study with 1329 participants to select the most
appropriate indicators reporting positive as well as negative
TLS status. The selected indicators have then been adopted
by Google Chrome. Other researchers concentrated on spe-
cial cases like the evaluation of Extended Validation certifi-
cates [31] or TLS indicators in mobile browsers [32].

9 Future Work

User Study On most clients the evaluation results were ob-
vious. In the case of perfect or partial forgery, little to no
discussion is needed because it should be clear that a user
can not distinguish between a valid and a spoofed signature.
However, some clients displayed conflicting information, for
example, an erroneous seal and a success dialog. Other
clients expect a more elaborate workflow from the user, such
as clicking through the UI.

We currently classify a weak forgery as "not vulnerable"
because the user has at least a chance to detect it and we did
not measure if users actually detected it. A user study could
clarify whether our weak forgery findings (e.g., conflicting
security indicators) would convince email users, and answer
the following research questions: Do users pay attention to
email security indicators in general? Do users examine digi-
tal signature details (in particular for partial forgeries)? How
do users react once they detect broken signatures?

We believe that such a study would help to understand the
current email security ecosystem and our paper lays the foun-
dations for such a study.

S/MIME Signatures in AS2 Applicability Statement 2
(AS2) as described in RFC 4130 is an industry standard for
secure Electronic Data Interchange (EDI) over the Internet.
It relies on HTTP(S) for data transport and S/MIME to guar-
antee the authenticity and integrity of exchanged messages.
As critical sectors such as the energy industry heavily rely
on AS2 for their business processes, it would be interesting
to evaluate if our attacks (e.g., in the CMS class) can be ap-
plied to AS2. Unfortunately, we did not have the opportunity
to test commercial AS2 gateways yet.

Email Security Fuzzing As described in subsection 7.1,
our tests with different attack vectors led to unintentional
crashes in several email applications. More rigorous test-
ing and systematic fuzzing with MIME, S/MIME and PGP
structures could uncover further vulnerabilities.

10 Conclusion

We demonstrated practical email signature spoofing attacks
against many OpenPGP and S/MIME capable email clients
and libraries. Our results show that email signature checking
and correctly communicating the result to the user is sur-
prisingly hard and currently most clients do not withstand a
rigorous security analysis. While none of the attacks directly
target the OpenPGP or S/MIME standards, or the underlying
cryptographic primitives, they raise concerns about the prac-
tical security of email applications and show that when deal-
ing with applied cryptography, even if the cryptosystem itself
is considered secure, the overall system needs to be looked
at and carefully analyzed for vulnerabilities. Implementing
countermeasures against these vulnerabilities is very chal-
lenging and, thus, we recommend that OpenPGP, MIME,
and S/MIME offer more concrete implementation advices
and security best practices for developing secure applications
in the future.

Acknowledgements

The authors would like to thank Kai Michaelis and Benny
Kjær Nielsen for insightful discussions about GnuPG and its
secure integration into the email ecosystem, and our anony-
mous reviewers for many insightful comments.

Juraj Somorovsky was supported through the Horizon
2020 program under project number 700542 (FutureTrust).
Jens Müller was supported by the research training group
‘Human Centered System Security’ sponsored by the state
of North-Rhine Westfalia.

References

[1] J. Postel, “Simple Mail Transfer Protocol,” August
1982. RFC0821.

[2] D. Crocker, “Standard for the format of ARPA internet
text messages,” August 1982. RFC0822.

[3] H. Hu and G. Wang, “End-to-end measurements of
email spoofing attacks,” in 27th USENIX Security
Symposium (USENIX Security 18), (Baltimore, MD),
pp. 1095–1112, USENIX Association, 2018.

[4] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer,
“OpenPGP message format,” November 1998.
RFC2440.

USENIX Association 28th USENIX Security Symposium 1027

[5] B. Ramsdell, “S/MIME version 3 message specifica-
tion,” June 1999. RFC2633.

[6] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer, “OpenPGP message format,” November
2007. RFC4880.

[7] R. Housley, “Cryptographic Message Syntax (CMS),”
September 2009. RFC5652.

[8] P. Resnick, “Internet message format,” October 2008.
RFC5322.

[9] D. Poddebniak, C. Dresen, J. Müller, F. Ising,
S. Schinzel, S. Friedberger, J. Somorovsky, and
J. Schwenk, “Efail: Breaking S/MIME and OpenPGP
email encryption using exfiltration channels,” in 27th
USENIX Security Symposium (USENIX Security 18),
(Baltimore, MD), pp. 549–566, USENIX Association,
2018.

[10] B. Ramsdell and S. Turner, “Secure/Multipurpose In-
ternet Mail Extensions (S/MIME) version 3.2 message
specification,” January 2010. RFC5751.

[11] F. Strenzke, “Improved message takeover at-
tacks against S/MIME,” Feb. 2016. https:
//cryptosource.de/posts/smime_mta_
improved_en.html.

[12] D. K. Gillmor, “Memory Hole spec and docu-
mentation.” https://github.com/autocrypt/
memoryhole, 2014.

[13] “CVE-2013-4402.” Available from MITRE, 2013.

[14] “CVE-2006-0049.” Available from MITRE, 2006.

[15] R. Klafter and E. Swanson, “Evil 32: Check your GPG
fingerprints.” https://evil32.com/, 2014.

[16] D. Bleichenbacher, “Forging some RSA signatures
with pencil and paper.” Presentation in the rump Ses-
sion CRYPTO 2006, Aug. 2006.

[17] A. Furtak, Y. Bulygin, O. Bazhaniuk, J. Loucaides,
A. Matrosov, and M. Gorobets, “BERserk: New RSA
signature forgery attack.” Presentation at Ekoparty 10,
2014.

[18] B. Ramsdell, “S/MIME version 3 certificate handling,”
June 1999. RFC2632.

[19] L. Liao, Secure Email Communication with XML-
based Technologies. Europ. Univ.-Verlag, 2009.

[20] A. Levi and C. B. Güder, “Understanding the limita-
tions of S/MIME digital signatures for e-mails: A GUI
based approach,” computers & security, vol. 28, no. 3-
4, pp. 105–120, 2009.

[21] A. Whitten and J. D. Tygar, “Why Johnny can’t en-
crypt: A usability evaluation of PGP 5.0,” in Proceed-
ings of the 8th Conference on USENIX Security Sym-
posium - Volume 8, SSYM’99, (Berkeley, CA, USA),
pp. 14–14, USENIX Association, 1999.

[22] D. Davis, “Defective sign & encrypt in S/MIME,
PKCS#7, MOSS, PEM, PGP, and XML,” in Proceed-
ings of the General Track: 2001 USENIX Annual Tech-
nical Conference, (Berkeley, CA, USA), pp. 65–78,
USENIX Association, 2001.

[23] D. K. Gillmor, “Inline PGP signatures consid-
ered harmful.” https://dkg.fifthhorseman.net/
notes/inline-pgp-harmful/, 2014.

[24] “CVE-2007-1263.” Available from MITRE, 2007.

[25] S. Haddouche, “Mailsploit.” https://mailsploit.
com/, 2017.

[26] F. Ribeiro, “The ROPEMAKER email exploit,” 2017.

[27] J. Lausch, O. Wiese, and V. Roth, “What is a secure
email?,” in European Workshop on Usable Security
(EuroUSEC), 2017.

[28] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer,
“The emperor’s new security indicators,” in 2007 IEEE
Symposium on Security and Privacy (SP ’07), pp. 51–
65, May 2007.

[29] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor, “Crying wolf: An empirical study of SSL
warning effectiveness,” in Proceedings of the 18th Con-
ference on USENIX Security Symposium, SSYM’09,
(Berkeley, CA, USA), pp. 399–416, USENIX Associa-
tion, 2009.

[30] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris,
M. Walker, C. Thompson, M. E. Acer, E. Morant,
and S. Consolvo, “Rethinking connection security in-
dicators,” in Twelfth Symposium on Usable Privacy
and Security (SOUPS 2016), (Denver, CO), pp. 1–14,
USENIX Association, 2016.

[31] R. Biddle, P. C. van Oorschot, A. S. Patrick, J. Sobey,
and T. Whalen, “Browser interfaces and extended val-
idation SSL certificates: An empirical study,” in Pro-
ceedings of the 2009 ACM Workshop on Cloud Com-
puting Security, CCSW ’09, (New York, NY, USA),
pp. 19–30, ACM, 2009.

[32] C. Amrutkar, P. Traynor, and P. C. van Oorschot, “Mea-
suring SSL indicators on mobile browsers: Extended
life, or end of the road?,” in Information Security
(D. Gollmann and F. C. Freiling, eds.), (Berlin, Heidel-
berg), pp. 86–103, Springer Berlin Heidelberg, 2012.

1028 28th USENIX Security Symposium USENIX Association

https://cryptosource.de/posts/smime_mta_improved_en.html
https://cryptosource.de/posts/smime_mta_improved_en.html
https://cryptosource.de/posts/smime_mta_improved_en.html
https://github.com/autocrypt/memoryhole
https://github.com/autocrypt/memoryhole
https://evil32.com/
https://dkg.fifthhorseman.net/notes/inline-pgp-harmful/
https://dkg.fifthhorseman.net/notes/inline-pgp-harmful/
https://mailsploit.com/
https://mailsploit.com/

Scalable Scanning and Automatic Classification of TLS Padding Oracle
Vulnerabilities

Robert Merget1, Juraj Somorovsky1, Nimrod Aviram2, Craig Young3, Janis Fliegenschmidt1, Jörg
Schwenk1, and Yuval Shavitt2

1Ruhr University Bochum
2Department of Electrical Engineering, Tel Aviv University

3Tripwire VERT

Abstract

The TLS protocol provides encryption, data integrity, and
authentication on the modern Internet. Despite the protocol’s
importance, currently-deployed TLS versions use obsolete
cryptographic algorithms which have been broken using var-
ious attacks. One prominent class of such attacks is CBC
padding oracle attacks. These attacks allow an adversary to
decrypt TLS traffic by observing different server behaviors
which depend on the validity of CBC padding.

We present the first large-scale scan for CBC padding
oracle vulnerabilities in TLS implementations on the mod-
ern Internet. Our scan revealed vulnerabilities in 1.83% of
the Alexa Top Million websites, detecting nearly 100 differ-
ent vulnerabilities. Our scanner observes subtle differences
in server behavior, such as responding with different TLS
alerts, or with different TCP header flags.

We used a novel scanning methodology consisting of three
steps. First, we created a large set of probes that detect vul-
nerabilities at a considerable scanning cost. We then reduced
the number of probes using a preliminary scan, such that a
smaller set of probes has the same detection rate but is small
enough to be used in large-scale scans. Finally, we used the
reduced set to scan at scale, and clustered our findings with
a novel approach using graph drawing algorithms.

Contrary to common wisdom, exploiting CBC padding or-
acles does not necessarily require performing precise timing
measurements. We detected vulnerabilities that can be ex-
ploited simply by observing the content of different server
responses. These vulnerabilities pose a significantly larger
threat in practice than previously assumed.

1 Introduction

In 2002, Vaudenay presented an attack which targets mes-
sages encrypted with the Cipher Block Chaining (CBC)
mode of operation [39]. The attack exploits the malleability
of the CBC mode, which allows altering the ciphertext such
that specific cleartext bits are flipped, without knowledge of

the encryption key. The attack requires a server that decrypts
a message and responds with 1 or 0 based on the message va-
lidity. This behavior essentially provides the attacker with a
cryptographic oracle which can be used to mount an adaptive
chosen-ciphertext attack. The attacker exploits this behavior
to decrypt messages by executing adaptive queries.Vaudenay
exploited a specific form of vulnerable behavior, where im-
plementations validate the CBC padding structure and re-
spond with 1 or 0 accordingly.

This class of attacks has been termed padding oracle
attacks. Different forms of padding oracle attacks were
demonstrated to break cryptographic hardware [6], XML
Encryption [23], or web technologies like Java Server
Faces [33] and ASP.NET web applications [15]. Rizzo and
Duong used a padding oracle attack to steal secrets and forge
authentication tokens, gaining access to sensitive data [15].
In all of these works, the attacker was able to use a direct side
channel – different error messages – to instantiate a padding
oracle and decrypt confidential data.

Transport Layer Security (TLS) employs CBC mode in a
MAC-then-Pad-then-Encrypt scheme which makes it poten-
tially vulnerable to these attacks. Indeed, different types of
CBC padding oracles have been used to break confidential-
ity TLS connections [39, 4, 3, 20]. All these attacks require
the attacker to perform precise timing measurements. This
requirement stems from the properties of the TLS protocol;
after establishing a TLS connection, all TLS error messages
are sent encrypted and are of the same length. Therefore,
even if an attacker is able to cause the server to send differ-
ent error messages, the attacker is generally unable to distin-
guish between the different encrypted responses.

Since most previous analyses have only analyzed padding
oracle attacks based on timing side channels, they required
testing an implementation in a local environment. These
evaluations uncovered many new vulnerabilities [4, 3, 20].
However, implementing a proper countermeasure to these
vulnerabilities is very challenging and requires complex
constant-time implementations. It is not surprising that the
implementation of such countermeasures could introduce

USENIX Association 28th USENIX Security Symposium 1029

new attacks. For example, in an attempt to fix the Lucky
13 padding oracle, the OpenSSL cryptographic library intro-
duced a different vulnerability where OpenSSL responded
with different TLS alert messages [37]. Analysis of imple-
mentations in lab settings therefore requires laborious test-
ing for each new version of different implementations. This
is obviously unrealistic, and therefore this type of analysis is
performed sporadically.

Given the complexity of constant-time TLS padding veri-
fication, we expect that vulnerabilities similar to the one in-
troduced by OpenSSL [37] could have been introduced in
other implementations as well. Therefore, this work moves
away from the above method of lab analyses and evaluates
CBC padding oracles using large-scale Internet scans. We
attempt to answer the two following questions: How preva-
lent are padding oracle vulnerabilities? Are these attacks
only exploitable by using timing side-channels?

Contributions. In our work, we employ a novel scan-
ning methodology that is capable of scanning for TLS CBC
padding oracles at scale. We use this methodology to find
new padding oracle vulnerabilities and perform responsi-
ble disclosures. We identify nearly 100 different padding
oracles. We show that some of them can be exploitable
without subtle timing side channels and thus pose a signif-
icantly larger threat in practice compared to most recently-
discovered padding oracles.

New large-scale scanning methodology. Scanning at
scale for padding oracles is challenging. Such scans detect
vulnerabilities by sending different malformed inputs and
observing server behavior. As shown by Böck et al. [9], in
some cases these inputs only trigger vulnerabilities when us-
ing specific TLS versions or cipher suites. Scanning with
all possible combinations of protocol versions, cipher suites
and malformed inputs is not feasible since it would require
an enormous number of connections to each scanned host.

We overcome this limitation by carefully selecting a set
of probes, which allows for effective scans at scale. We sys-
tematically analyzed padding oracles previously described in
the literature [39, 4, 3, 20, 37, 27, 25, 10, 29, 28]. We then
carefully selected 25 inputs exhibiting padding oracle mal-
formities, which we refer to as malformed records. These
TLS records exhibit different combinations of valid and in-
valid padding and MAC, and are generated using the TLS-
Attacker framework [37].

Even with only 25 malformed records, scanning with ev-
ery combination of malformed record, TLS version and ci-
pher suite would be impractical. We refer to these combi-
nations as test vectors. We performed a preliminary scan
on 50,000 random TLS hosts with all test vectors. We then
reduced our test vector set, such that all vulnerabilities de-
tected in the preliminary scan are still triggered by the re-
duced set. We were able to scan the Alexa Top 1 Million

websites with this reduced test vector set within three days.
Our scanner observes different server responses, not only in
the TLS layer, but also in the TCP layer, similar to [9]. Our
results indicate that about 1.83% of TLS servers are vulner-
able to CBC padding oracle attacks.

Minimizing false positives. When a host first displays vul-
nerable behavior, we rescan it to make sure the behavior is
not a scanning artifact. We only consider a host to be vulner-
able if it responds identically in three separate scans to each
of our test vectors. It is unlikely that hosts will be mislabeled
as vulnerable under this criterion. We therefore believe our
statistics for vulnerability are a conservative lower estimate.

Nearly 100 different padding oracle vulnerabilities. The
detected vulnerabilities have to be clustered in order to notify
different vendors. Until now, this was done manually [9].
To achieve this automatically, we re-scan vulnerable hosts
against a larger set of test vectors. We refer to the set of the
host responses to all test vectors as the host’s response map.
This response map is essentially a fingerprint of the host’s
vulnerability. We then cluster the scanned hosts according
to their response maps. This process identified 93 different
response maps, i.e., 93 different vulnerabilities. These vul-
nerabilities include different behaviors, ranging from typical
padding oracles with different TLS alert messages [39], to
TCP connection timeouts triggered by specific invalid MAC
bytes, or closed connections observed when using invalid
padding values.

We treat distinct response maps as distinct vulnerabilities.
We argue that this is the natural way to count vulnerabilities
since it captures the case of the same vulnerability occurring
in similar, yet different implementations. Consider two hosts
that respond identically to all test vectors. These hosts likely
share an identical or very similar part of the implementation
that causes the vulnerability to manifest with identical re-
sponse maps. However, they do not necessarily share the ex-
act same code. They may use different versions of the same
TLS library, or two different libraries with a shared compo-
nent.

Effective clustering of vulnerable hosts. Before we re-
sponsibly disclosed our findings to the affected parties, we
grouped the vulnerable hosts by their response maps. To fur-
ther refine our grouped servers, we used a novel approach
based on a two-dimensional force-directed graph drawing
ForceAtlas2 algorithm [21]. This algorithm allowed us to
create a graph of vulnerable server hosts and thus, efficiently
handle our responsible disclosure process.

New vulnerabilities that are realistic to exploit. For
padding vulnerabilities to be exploitable, the attacker needs

1030 28th USENIX Security Symposium USENIX Association

to distinguish between different responses to correct and in-
correct padding. This is usually not the case in TLS: Even
if a server sends two different alert messages, the messages
are encrypted, and the attacker cannot observe the difference.
For this reason, most previous padding oracle attacks against
TLS relied on timing measurements to distinguish between
different error cases [4, 3, 20].

However, we show that many TLS implementations ex-
hibit observable differences between correct and incorrect
padding. For example, a server may gracefully close the TCP
connection in one error case and ungracefully close it in a
different case. Similarly, some servers send a different num-
ber of alert messages depending on specific padding errors.
Both behaviors are easily observable.

Responsible disclosure and ethical considerations. In
collaboration with affected website owners, we responsibly
disclosed our findings to several vulnerable vendors. As a
result of a successful attack, the attacker is able to decrypt
secret values repeatedly transmitted in the TLS connection.
By performing our scans, we were not able to reconstruct
server private keys or other confidential data. We performed
our scans with dummy data and never attempted to decrypt
real user traffic.

We responsibly disclosed our findings among others to
the following vendors and affected parties: IBM, Amazon,
Slack, Cisco, Citrix, Oracle, Heroku, Netflix, Sonicwall,
Venmo and Vine.

2 Background

The TLS protocol provides confidentiality, integrity, and au-
thentication on the modern Internet. The latest version of the
protocol is TLS 1.3 [31]. This version is gradually being de-
ployed as of this writing. Until TLS 1.3 is fully deployed,
the latest version in widespread use is TLS 1.2 [14]. Modern
clients and servers typically also support two previous ver-
sions, TLS 1.0 and 1.1 [12, 13]. In the rest of the paper, we
discuss only versions 1.0 to 1.2, which are commonly used
today and share a similar structure.

The TLS protocol consists of two phases. In the first
phase, called the handshake, the client and server choose the
cryptographic algorithms that will be used for the session and
establish session keys. In the second phase, the peers can se-
curely send and receive application data, which is encrypted
and authenticated using the keys and algorithms established
in the previous phase.

The aforementioned choice of cryptographic algorithms is
called a TLS cipher suite [14]. More precisely, a cipher suite
is a concrete selection of algorithms for all of the required
cryptographic tasks. Cipher suites are named by concate-
nating their choices for these algorithms. For example, the
cipher suite TLS_RSA_WITH_AES_128_CBC_SHA uses RSA
public-key encryption in order to establish a shared session

key in the first phase, and also uses symmetric AES-CBC
encryption with a 128-bit key and SHA-1-based HMACs in
order to encrypt and authenticate data in the second phase.

2.1 The TLS Handshake
The client initiates the TLS handshake with a ClientHello
message. This message advertises the TLS versions and ci-
pher suites supported by the client. The server then responds
with a ServerHello message specifying the selected ci-
pher suite. It also sends its certificate in the Certificate
message and indicates the end of transmission with the
ServerHelloDone message. The client then generates a
secret value called the premaster secret, encrypts it un-
der the server’s RSA key, and sends the encrypted cipher-
text in a ClientKeyExchange message. Having shared
knowledge of the premaster secret, both parties now de-
rive symmetric encryption and MAC keys to be used in the
session, based on the premaster secret. Finally, both par-
ties send the ChangeCipherSpec and Finished messages.
The ChangeCipherSpec message notifies the receiving peer
that subsequent messages will be encrypted and authenti-
cated under the session keys, and using the symmetric en-
cryption and HMAC algorithms specified in the cipher suite.
The Finished message contains an HMAC computed over
all the previous handshake messages based on a key derived
from the premaster secret. As this message is sent after the
ChangeCipherSpec message, it is the first message in the
session which is encrypted and authenticated using symmet-
ric encryption and MAC. If the Finished message correctly
decrypts and verifies on both sides, both parties can now se-
curely exchange application data.

2.2 CBC Mode
There are many possible encryption algorithms in TLS, but
we focus on the CBC encryption mode in this work. In CBC
mode, each plaintext block is XOR’ed to the previous ci-
phertext block before being encrypted by the block cipher.
Formally, if we denote plaintext blocks by pi, i = 0, . . ., ci-
phertext blocks by ci and the encryption with a block cipher
under key k as Enck(·), then ci = Enck(pi⊕ ci−1), i = 1,
The above holds for all blocks except the first one, where
there is no previous ciphertext block – instead, that block is
XOR’ed with an initialization vector (IV) before encryption:
c0 = Enck(p0⊕ IV).

CBC mode malleability. The CBC mode allows an at-
tacker to perform meaningful plaintext modifications with-
out knowing the symmetric key. Concretely, assume the at-
tacker knows some block of the original plaintext pi, and
wants to alter the ciphertext such that block i instead de-
crypts to p′i. The attacker can change the previous ciphertext
block ci−1 to c′i−1 = ci−1⊕ pi⊕ p′i. This comes at the cost of

USENIX Association 28th USENIX Security Symposium 1031

corrupting the previous block, which now decrypts to some
value that the attacker, in general, cannot predict.

Furthermore, the attacker can change the order of blocks
while using this technique. If the attacker knows the plain-
text block pi and replaces ciphertext block c j with ci, then
block j will now decrypt to p′j = pi⊕ ci−1⊕ c j−1.

This “malleability” property of CBC mode has been used
in many cryptographic attacks, and is also a cornerstone of
the attacks presented here.

2.3 TLS Record Layer
The TLS record layer encapsulates protocol messages. In
essence, the record layer wraps the protocol message with
a header containing the message length, message type, and
protocol version. Once ChangeCipherSpec messages are
exchanged, subsequent TLS records will encapsulate mes-
sages which are encrypted.

In our work, we focus on cipher suites using the CBC
mode of operation. These cipher suites use a Message Au-
thentication Code (MAC) to protect the authenticity of TLS
records and encrypt application data using a block cipher
in CBC mode (e.g., AES or 3DES). The TLS specification
prescribes the MAC-then-Pad-then-Encrypt mechanism [14].
The encryptor first computes a MAC over the plaintext, con-
catenates the MAC to the plaintext, pads the message such
that its length is a multiple of the block length, and finally
encrypts the MAC’ed and padded plaintext using a block ci-
pher in CBC mode.

TLS specifies the exact value of the padding bytes. The
last byte of the padded plaintext specifies how many padding
bytes are used, excluding that last byte. The value of the rest
of the padding bytes is identical to the value of the last byte.
For example, if 4 padding bytes are used including the last
byte, then the value of all four bytes will be 0x03.

To demonstrate the full process, if the en-
cryptor encrypts five bytes of data with the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite, he
uses HMAC-SHA (whose output is 20 bytes long) and
AES-CBC. After applying HMAC-SHA to the original
plaintext, the concatenation is 25 bytes in length, which fits
into two AES 16-byte blocks. The encryptor will typically
select the minimum viable amount of padding, which would
be 7 bytes in this case. The first block contains the data and
the first 11 HMAC bytes. The second block contains the
remaining 9 HMAC bytes and 7 bytes of padding 0x06, see
Figure 1. Note that the encryptor can also choose longer
padding and append 23, 39, ...or 247 padding bytes (while
setting the value of the padding bytes accordingly).

3 A Brief History of Padding Oracle Attacks

One of the main design failures in SSLv3 and TLS is the
specification of the MAC-then-Pad-then-Encrypt scheme in

0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c 0c

43 4441 42 45 M M M M M M M M M M M

M M M M MM M M M M 0606 06 06 06 06 06

Figure 1: When processing five plaintext bytes with AES-
CBC and HMAC-SHA, the encryptor needs to append 20
bytes of the HMAC-SHA output and seven bytes of padding.

CBC cipher suites. This scheme was responsible for a series
of attacks on TLS implementations named padding oracle at-
tacks. Even though the countermeasures are explicitly sum-
marized in the TLS specification [14, Section 6.2.3.2], their
correct implementation is challenging.1

3.1 Vaudenay’s Padding Oracles

In 2002, Vaudenay showed that the MAC-then-Pad-then-
Encrypt scheme introduces potential vulnerabilities in secu-
rity protocols, in the form of so-called padding oracles [39].
The attacks leveraging these vulnerabilities are based on the
malleability of the CBC mode of operation. We focus on the
case of TLS.

Consider the TLS record layer when using CBC mode.
After decryption, the decrypting party needs to verify the
padding bytes and the MAC bytes. The natural way to im-
plement these two checks is first to verify the padding bytes
and, if they verify correctly, then verify the MAC bytes. If
the padding bytes are invalid, it is natural for an implemen-
tation to emit an error message, without checking the MAC
bytes. On the other hand, if the padding bytes are valid but
the MAC is invalid, it is then natural to emit a (potentially
different) error message.

Assume a decryptor that indeed emits two different error
messages in these cases. The attacker can decrypt the last
byte of any message block pi as follows. He sets the last ci-
phertext block to ci and replaces the last byte of the previous
block ci−1 with a value between 0 and 255. If the last cleart-
ext byte is 0x00, then the padding will be valid (other forms
of valid padding are much less likely). When the padding
byte correctly verifies, the attacker detects this by observ-
ing that the decryptor emitted an “invalid MAC" error, rather
than an “invalid padding" error. The attacker learns the value
of the last byte of pi after sending at most 255 ciphertexts to
the decryptor.

Using his knowledge of the last plaintext byte, the attacker
can proceed to decrypt the second-to-last byte of pi. By do-
ing so, he aims to create valid padding of length 2. More
generally, using this technique, the attacker can iteratively
decrypt every byte in pi. We omit the formal description of
the rest of the attack and refer the reader to [39].

1We note that the countermeasures summarized in [14] do not protect
from timing-based attacks [4].

1032 28th USENIX Security Symposium USENIX Association

Note that the above attack relies on the ability to distin-
guish between ciphertexts decrypting to valid and invalid
padding. It would therefore appear trivial for TLS imple-
mentations to prevent this attack by making sure they always
emit the same error message. Indeed, Vaudenay was unaware
of a way for an attacker to directly distinguish between these
two cases in the context of TLS. The reason is that even if
the TLS error messages differ, their distinction is impossible
since they are encrypted with TLS session keys. This is one
of the challenges we address in our work.

3.2 BEAST Attack Model
One question left open in Vaudenay’s paper is how to exploit
what he terms an “exploding oracle” – an oracle that is usable
only until it first returns a negative answer. This models the
problem where a TLS implementation will abort the session
as soon as a message doesn’t decrypt correctly. Hence, an
attacker that relies on changing messages in a TLS session
would not be able to continue the attack as soon as the first
decryption error arises.

Canvel et al. used a model where the client repeatedly
connects to the server [11], observing that this occurs due to
polling behavior of email clients at the time, and exfiltrating
an authentication password. The BEAST attack [34] essen-
tially used the same model, but rather relied on the behavior
of modern web browsers. In the simplest form of the BEAST
model, a victim is tricked into visiting a malicious website
controlled by the attacker. That website contains javascript
which causes the victim browser to repeatedly connect to
the victim website. Every website request then contains the
user authentication cookie, which is automatically sent by
the browser. This behavior allows the attacker to force the
victim to repeatedly send encrypted values to the server.

Our attacks work in this model. We assume that the at-
tacker can cause the victim client to repeatedly connect to a
victim server while retransmitting the same sensitive infor-
mation. We also assume the attacker is a man in the middle
(MitM) and can change messages in transit. This model has
now become standard in literature for modern attacks.

3.3 POODLE
The predecessor to TLS, SSLv3, uses a similar MAC-then-
Pad-then-Encrypt scheme. However, unlike TLS, the value
of the padding bytes in SSLv3 is under-specified. The last
byte of the plaintext denotes how many padding bytes are
present, but the rest of the padding bytes can take any value.

Consider a message with one full block of 16 padding
bytes. The last block of plaintext will have a last byte of
0x0F, and the first 15 bytes can take any value. Therefore,
an attacker can use the techniques described in Section 3.1
to replace the last block with any block whose last byte de-
crypts to 0x0F, and obtain a validly padded message. This

property of SSLv3 led to a devastating attack called “POO-
DLE”. See [27] for a full description of the attack.

Although POODLE relies on the under-specification of
the padding bytes in SSLv3, it surprisingly also affects TLS
implementations. In essence, there is nothing forcing a care-
less TLS developer to verify the (specified) padding bytes af-
ter decryption; a TLS implementation will interoperate just
fine even if it does not check the padding bytes at all. In fact,
it is easier for the developer to reuse the same code that han-
dles SSLv3 padding in a TLS implementation. This has led
to a variant of the POODLE attack that affects TLS imple-
mentations [25]. Even after these two high-profile discover-
ies, variants of POODLE continued emerging [10, 29, 28].
These works detected different TLS record processing vul-
nerabilities; some TLS implementations only verified the
first MAC byte, the others skipped validation of specific
padding bytes.

3.4 Lucky 13 and Other Timing Attacks

In 2013, AlFardan and Paterson [4] used a similar technique
to break TLS confidentiality and dubbed their attack “Lucky
13”. The attack relies on an important observation: Common
HMAC functions require different processing times when
processing inputs of different lengths. By performing clever
padding byte manipulations, the attacker can force the server
to execute HMAC computations on plaintexts of different
lengths. This is because the padding length determines the
amount of data used as input into the HMAC function. The
attacker can then measure the different processing times and
learn information about the padding byte. We refer the reader
to [4] for the full attack description.

The fix to Lucky 13 was to change the MAC verification
code in TLS implementations to be constant-time, regardless
of the number of processed cleartext blocks. This is possible,
but writing and maintaining such code is hard, even for ex-
perts. In 2016, Somorovsky identified a bug in the patched
code of OpenSSL [37]. The bug introduced a similar and
even more severe vulnerability which allowed an attacker to
distinguish between two alert messages. A different message
could be triggered if the decrypted message only contained
two or more valid padding blocks.

Amazon’s s2n TLS library was released in 2015 [24], af-
ter the Lucky 13 attack was published. s2n’s developers were
aware of Lucky 13 and introduced specific countermeasures
that seemed to render the code constant-time, thereby pre-
venting the attack. They also introduced randomized timing
delays to make the attack more difficult, in the unexpected
case that the code turned out to be vulnerable. Despite all
these efforts, s2n was still vulnerable to variants of Lucky
13 [3, 35]. All vulnerabilities were found despite the code
having been formally verified.

USENIX Association 28th USENIX Security Symposium 1033

3.5 Bleichenbacher’s Attack and its Variants

Bleichenbacher’s attack [8] is also a form of a padding oracle
attack. Rather than targeting symmetric encryption, it targets
a padding scheme used in RSA encryption, called PKCS#1
v1.5. It also similarly exploits a malleability property of
RSA encryption and relies on a decryptor (i.e., a server)
emitting error messages in case of invalidly-padded cleart-
exts. The standard countermeasure is similar to that of CBC
padding oracles; the server must not behave differently when
encountering error states in RSA decryption. This counter-
measure has become part of the TLS standard.

However, implementing the countermeasure correctly is
challenging. Böck et al. scanned for vulnerable TLS servers
vulnerable to Bleichenbacher’s attack [9]. They found vul-
nerabilities in servers used by high-profile websites such
as Facebook and Paypal. Interestingly, their vulnerabilities
could be triggered by using different TLS protocol flows
or exploiting TCP connection states (TCP resets or time-
outs). As with CBC padding oracles, Bleichenbacher’s at-
tack shows a similar sequence of an attack variant being dis-
covered every few years in different contexts [26, 22, 6].

4 Scanning and Evaluation Methodology

The ultimate goal of our research is to estimate the number
and the impact of padding oracle vulnerabilities and report
our findings to the responsible vendors. To accomplish this,
we proceed in three steps. We first define a list of test vectors
potentially triggering observable differences which result in
padding oracles. We then reduce this test vector list and per-
form a large-scale scan. Finally, we analyze the identified
vulnerabilities and responsible vendors.

4.1 Test Vector Generation

In order to detect padding oracles in implementations, we
connect and send various malformed records. These records
contain different malformities in regards to the padding,
MAC, and application data. We then observe if there are
any differences in responses, in the TLS layer, or in lower
layers. An implementation that responds differently to two
malformed records may be vulnerable.

It is infeasible to test with all possible malformed records.
For example, a vulnerable implementation could correctly
check all padding bytes unless the padding bytes are exactly
16 bytes long, in which case the implementation does not
check a specific bit in the padding.2 Since there could be
up to 256 padding bytes, testing the correct validation of
each bit for all possible padding lengths would require test-
ing with ∑

256
i=1 8i = 263,168 different records. These records

2The above behavior may sound contrived, but similar behaviors have
been found in the wild, see e.g. [29, 28, 37].

need to be tested with different cipher suites or protocol ver-
sions which makes such a comprehensive test infeasible. We
therefore carefully selected a set of malformed records which
are motivated by previous research.

We concede this way of selecting the set of malformed
records means we can only detect vulnerabilities that are
similar to known ones. However, this approach is cost-
effective and well-suited to large-scale scans. Since only a
limited number of messages can be sent to individual servers
during large-scale scans, automatic approaches for the test
vector generation, like fuzzing, are usually infeasible.

4.1.1 Malformed Records

Our malformed records are all 80 bytes in length. Equal
lengths ensure that differences in responses are likely caused
by a padding oracle vulnerability and are not false positives
triggered by different record lengths. Unusual record lengths
may lead to errors that are unrelated to decryption; for exam-
ple, recent OpenSSL versions respond with a different error
message if the encrypted TLS record is shorter than the MAC
length. We decided to use 80 bytes to have enough room for
an HMAC output combined with two full padding blocks.
This allows us to construct records protected by SHA-384,
whose output is 48 bytes in length. We summarize our 25
malformed records in the following paragraphs. See also Ta-
ble 1 for a summary of these malformed records for the case
of TLS_RSA_WITH_AES_128_CBC_SHA.

Flipped MAC bits. We start with a valid record containing
application data, a MAC, and four padding bytes. We then
create three malformed records based on this record: One by
flipping the most significant bit in the first MAC byte, one
by flipping a middle bit in the middle of the MAC bytes,
and one by flipping the least significant bit of the last MAC
byte. We chose these malformed records to detect imple-
mentations where the MAC is not completely checked. The
specific bit flipping positions are motivated by the recent
OpenSSL vulnerability [1], where OpenSSL only checked
the least significant bit of each byte on some platforms, and
by further vulnerabilities caused by incomplete MAC valida-
tions [29, 28].

Missing One MAC byte. We start with a valid record con-
taining empty application data, but with valid MAC and
padding. We then modify it to create two malformed records:
One where we delete the first MAC byte, and one where we
delete the last MAC byte. We then add another padding byte
in both messages. These malformed records could also trig-
ger vulnerabilities caused by incomplete MAC validations
and are indirectly motivated by [28].

Missing MAC. Motivated by [37], we created two mal-
formed records which only contain padding and do not con-

1034 28th USENIX Security Symposium USENIX Association

Nr. MAC Padding

Len Pos Modification Len Pos Modification

1 20 20 ⊕ 0x01 56 – –
2 20 11 ⊕ 0x08 56 – –
3 20 1 ⊕ 0x80 56 – –
4 19 1 DEL 56 – –
5 19 20 DEL 56 – –
6 0 – – 80 ALL 0x4F
7 0 – – 80 ALL 0xFF
8 20 – – 60 1 ⊕ 0x80
9 20 – – 60 31 ⊕ 0x08

10 20 – – 60 60 ⊕ 0x01
11 20 1 ⊕ 0x80 60 – –
12 20 9 ⊕ 0x08 60 – –
13 20 16 ⊕ 0x01 60 – –
14 20 1 ⊕ 0x01 60 1 ⊕ 0x80
15 20 1 ⊕ 0x01 60 31 ⊕ 0x08
16 20 1 ⊕ 0x01 60 60 ⊕ 0x01
17 20 – – 6 1 ⊕ 0x80
18 20 – – 6 3 ⊕ 0x08
19 20 – – 6 6 ⊕ 0x01
20 20 1 ⊕ 0x80 6 – –
21 20 9 ⊕ 0x08 6 – –
22 20 16 ⊕ 0x01 6 – –
23 20 1 ⊕ 0x01 6 1 ⊕ 0x80
24 20 1 ⊕ 0x01 6 3 ⊕ 0x08
25 20 1 ⊕ 0x01 6 6 ⊕ 0x01

Table 1: A summary of our malformed records, as
constructed for TLS_RSA_WITH_AES_128_CBC_SHA. The
columns indicate length, position, and modification for MAC
and padding bytes, respectively. ⊕ denotes XOR’ing the
listed value in the listed position. DEL denotes deleting one
byte in the listed position.

tain a MAC at all: One where we supply exactly 80 bytes
of valid padding (0x4F), and one where we supply 80 bytes
of incomplete padding of value 0xFF. The latter is not only
missing the MAC but also contains invalid padding since
if the value of the last byte is 0xFF, there should be 256
padding bytes.

Combining valid and invalid MAC and padding. The
last group of malformed records contains messages with
combinations of valid and invalid MAC and padding of three
types: valid MAC and invalid padding, invalid MAC and in-
valid padding, and invalid MAC and valid padding. For each
of these three types, we create three sub-types, depending
on which bit positions we flip; we flip either the most sig-
nificant, middle, or least significant bit in the first, middle,
or 16th byte, respectively. For each of these nine sub-types,
we create one version which contains application data, and
one without. The length of the application data is chosen
such that the padding bytes are contained within one plain-
text block, while the malformed records without application
data contain more than one block of padding. This aims to
detect implementations which check only the last block of
padding bytes.

4.1.2 Combining Malformed Records with Protocol
Versions and Cipher Suites

We use each malformed record with several TLS protocol
versions and cipher suites. As previously stated, we use the
term test vector to refer to the combination of a malformed
record, protocol version, and cipher suite. As we later show,
testing each malformed record with different protocol ver-
sions and cipher suites is necessary; some vulnerabilities
are only triggered with such specific combinations. At first
glance this is surprising, but this actually follows the find-
ings of [9]. We conjecture that implementations may use
completely different code stacks depending on the negoti-
ated version and cipher suite, and some vulnerabilities are
only present in a subset of those code stacks.

4.2 Empirical Test Vector Reduction
Depending on the configuration of the server, the above set
of test vectors is quite large. Assuming a server supporting
TLS 1.0 and TLS 1.1 with 10 CBC cipher suites, there would
be 10 · 2 · 25 = 500 test vectors. Note that every test vector
requires establishing a new TLS connection and performing
an expensive handshake. This large number of test vectors
would not allow us to perform large-scale scans. On the other
hand, removing test vectors could lead to false negatives and
missing vulnerabilities. To reduce the number of test vectors
without lowering the detection rate, we propose an empirical
test vector reduction approach. We sample 50,000 random
hosts which respond on port 443. We then perform a full
scan on these hosts with the aforementioned 25 malformed
records and all supported cipher suites and TLS version com-
binations. We can then analyze our test vector combina-
tions and create the smallest set of test vectors detecting all
padding oracle vulnerabilities. These empirical steps ensure
that 1) with high probability we do not miss vulnerabilities,
and 2) we can use the reduced set for large-scale analyses.

4.3 Clustering Vulnerabilities
Once we reduce the number of test vectors we can perform
our full scan. For this purpose, we use one of the Internet
top lists which typically contain a good mixture of up-to-date
server implementations. Among Internet top lists, the Alexa
Top 1 Million dataset contains the most significant number
of hosts responding to TLS connections (about 75%) and is
recommended for TLS scans [36].

After performing the TLS scan with a reduced vector set,
we create a list of vulnerable hosts. We re-scan these hosts
with our full test vector list. For every host, we store its re-
sponse map. The response map describes the complete host
behavior when responding to our test vectors. The response
map consists of cipher suite fingerprints. A cipher suite fin-
gerprint describes the server response behavior for a specific
cipher suite and TLS version.

USENIX Association 28th USENIX Security Symposium 1035

One of our major goals is to notify vulnerable vendors.
For this purpose, it is necessary to group vulnerable hosts
using the resulting response maps and contact their admin-
istrators to find out the vulnerable implementation version.
Böck et al. performed this step manually and were able to
approach the most important vendors [9]. However, such an
approach is laborious and error-prone. We aim to group vul-
nerable implementations automatically.

Although grouping vulnerable hosts appears to be easy
given all response maps, response maps differ even if they
use the same vulnerable implementation version. TLS
servers running identical implementations can use differ-
ent configurations, enabling different cipher suites and TLS
versions. For example, server A may be vulnerable to a
padding oracle attack and has only one TLS cipher suite
enabled: TLS_RSA_WITH_AES_128_CBC_SHA256. Server B
is vulnerable using the same cipher suite fingerprint. How-
ever, server B is configured to use additional cipher suites
as well which are not vulnerable to the attack. Are these
two servers using the same implementation or just a sim-
ilar one? To estimate this, we devised a novel approach
based on a two-dimensional force-directed graph drawing al-
gorithm [21]. These algorithms embed a network of nodes
on a plane that allows for spatially interpreting the network.
They do so by creating a two-dimensional graph which con-
tains as few crossing edges as possible. In our approach we
use the ForceAtlas2 algorithm [21]: ForceAtlas2 simulates a
physical system in order to spatialize a network. Nodes re-
pulse each other like charged particles, while edges attract
their nodes, like springs. These forces create a movement
that converges to a balanced state. This final configuration
is expected to help the interpretation of the data [21].

We represent the scanning results as a graph as follows:
Each node in the graph represents a host. Each pair of hosts
is connected by an edge if their response maps do not include
different cipher suite fingerprints for the same cipher suite.

This approach works well on our dataset, and servers ex-
hibiting similar vulnerabilities are grouped closely. We aug-
ment the graph by coloring nodes according to their degree
(i.e., their number of edges). The resulting visualization in-
deed allows identifying similar implementations. We show
the concrete results in Section 8.

5 Large Scale TLS Scanning

We developed our padding oracle test vectors with TLS-
Attacker [37], a framework for systematic analyses of TLS
implementations. TLS-Attacker supports creating malicious
TLS workflows and message malformities. TLS-Attacker
has already been used for detecting padding oracle attacks,
but only against specific implementations in lab conditions,
not at scale. Our approach of creating an optimized set of
test vectors was not previously included in this framework.

Figure 2: Our TLS scanning infrastructure is based on well-
established components for data persistence and on TLS-
Attacker for performing TLS evaluations.

5.1 TLS-Crawler

In order to scan a large number of hosts, we developed
a framework which scans multiple servers in parallel and
writes the results to a database. This allows us to parallelize
the scan by using multiple machines. The database provides
a querying interface for the scan data, which allows for easier
analysis of the large result datasets. We call our framework
TLS-Crawler.

TLS-Crawler is split into a director instance and poten-
tially multiple worker instances. The worker instances per-
form the actual TLS host scans. Each worker instance imple-
ments a thread pool which distributes scanning work across
available threads. The instance then bundles the results and
coordinates parallelized database access. A director instance
coordinates the worker instances. The director instance con-
tains an orchestration provider responsible for the coordi-
nation and distribution of scanning tasks across workers.
The results are persisted in a database using a persistence
provider. We use MongoDB3 as the persistence provider, and
orchestrate instances via a Redis queue.4 Figure 2 visualizes
the TLS-Crawler architecture.

5.2 Performing the TLS Scans

Before scanning each host with test vectors, we perform a
brief scan in order to learn the CBC cipher suites and TLS
protocol versions supported by the host. We excluded export
and anonymous cipher suites from these tests since they are
already trivially broken by a MitM attacker. We then perform
our scan using our set of test vectors for each CBC cipher

3https://www.mongodb.com
4https://redis.io

1036 28th USENIX Security Symposium USENIX Association

suite and its supported protocol version.
Previous large-scale TLS scans have mostly focused on

vulnerabilities in the TLS handshake [9, 2], certificates [19],
or vulnerabilities which could be triggered before the TLS
handshake succeeds [17]. These previous scans only require
performing a successful handshake once, usually with a com-
monly supported cipher suite. In contrast, in order to test for
padding oracle vulnerabilities, it is necessary to perform a
full TLS handshake for each tested cipher suite. This is com-
plicated by TLS implementations exhibiting intolerances [7]
which might prevent a server from completing the TLS hand-
shake, or even responding to the initial ClientHello mes-
sage. We tried to minimize the effect of these intolerances on
our scans, but 20% of servers exhibited enough intolerances
that we could not effectively scan them.

Even completing a TLS handshake does not guarantee we
can effectively scan a host. For example, in some tests, the
target hosts temporarily stopped responding for a few sec-
onds. This is likely because the servers crashed or blocked
our requests as part of a Denial-of-Service defense. In order
to avoid false negatives from such scans, we scan multiple
hosts in parallel (up to 2000) such that no host is overloaded
by our requests. Additionally, we wait at least 10 seconds
between scanning a host with two cipher suite/version pairs,
further limiting the load on scanned hosts.

When performing these scans it is critical to select an ap-
propriate timeout. If the timeout is too low, we might miss
responses due to high server load. Conversely, a high time-
out value would decrease the scanning performance. Set-
ting a high timeout value also means we no longer distin-
guish between a server immediately closing the connection,
and requiring a noticeable time to recover and close the con-
nection. Additionally, the server’s answers may span mul-
tiple TCP packets, so there is no simple way to ascertain
the scanner has received the server’s answer in full at any
point in time. (Some responses do not include a TCP RST
or FIN packet.) We empirically determined that a timeout
of one second works well in practice, and mostly guarantees
that the server did have enough time to process our record
and respond. However, even when using this timeout value,
we found servers that responded non-deterministically due
to high load or various bugs.

To work around non-deterministic responses, we re-
scanned each suspected vulnerability in order to avoid false
positives. We only consider a server as vulnerable if it re-
sponds identically in three separate scans to each of our test
vectors.

6 Evaluation

For the scans, we used a machine with 2 Xeon E5-2683v5
CPUs (with a total of 64 cores) and 48 GB of RAM. The scan
used an average of 5Mbit/s of upstream data and 15Mbit/s of
downstream data.

6.1 Pre-Scanning with All Malformed
Records

We performed a preliminary scan of 50,000 random TLS
hosts, aimed at reducing the set of malformed records. The
scan took place in October 2018 and required three days.
The results confirmed that the choice of key exchange algo-
rithm and protocol version indeed affects whether a given
host exhibits CBC padding oracle vulnerabilities. We then
reduced the set of malformed records. To do this, we first
identified all vulnerable hosts, i.e. hosts that would be iden-
tified when scanning with the full set of malformed records.
We then examined subsets of malformed records of increas-
ing sizes, and for each subset, examined the number of hosts
that would be identified when scanning only with this sub-
set of malformed records. This process was stopped when
a subset of four malformed records identified all vulnerable
hosts. That is, all hosts that would be identified when scan-
ning with the full set of malformed records, would also be
identified when scanning with the reduced set of malformed
records. This reduced set includes the following malformed
records (all of these records are 80 bytes in length):

1. A record with missing MAC and correct padding (of
value 0x4F).

2. A record with missing MAC and incorrect padding (of
value 0xFF).

3. An empty record with no application data, with invalid
padding and valid MAC. The highest bit in the first
padding byte is flipped.

4. An empty record with no application data, with valid
padding and invalid MAC. The lowest bit in the first
MAC byte is flipped.

Please note that we still test every TLS host with all of its
supported cipher suites and TLS protocol versions.

Is the malformed record set reduction lossy? The re-
duced malformed record set detects all vulnerabilities de-
tected by the larger, original malformed record set, on the
sample data of the preliminary scan. It is natural to ask
whether there are hosts that are vulnerable to a malformed
record from the original set, but not to a malformed record
from the reduced set. There are obviously no such hosts in
the sample data, but there could be such hosts outside of the
sample. If there is a large number of such hosts on the In-
ternet, then the malformed record reduction process would
be lossy, i.e. by using fewer malformed records, we detect
fewer vulnerabilities in the full scan. As we now explain, this
source of scanning inaccuracy is likely small enough to not
materially affect our results. Put another way, the reduced
set of malformed records likely detects most vulnerabilities

USENIX Association 28th USENIX Security Symposium 1037

triggered by the full set of malformed records, not just on the
sample data.

Indeed, let p denote the percentage of hosts, out of all
TLS-speaking hosts, that are vulnerable to one malformed
record from the full set of malformed records, but not to any
malformed records from the reduced set. I.e., p describes the
percentage of hosts that the reduction misses; we will now
show it is rather small. In the random sample of N = 50000
hosts used for the preliminary scan, we did not encounter
any such hosts. In order to compute the 99% confidence in-
terval, we require (1− p)N = 0.01. Solving for p, we obtain
p = 0.0092%. We therefore determine with 99% confidence
that there are at most 0.0092% additional vulnerable hosts
that our scans miss due to the malformed record reduction.

We provide an intuitive explanation of the above, for the
reader’s convenience. As per the above calculation, we esti-
mate the percentage of vulnerable hosts on the Internet that
would be missed because we scan with the reduced set of
malformed records is 0.0092%. Censys [16] estimates there
are about 42.4 million hosts which serve TLS on port 443
as of February 2019. Therefore, our estimate is that the re-
duction misses at most 42400000 · 0.0092% = 3900 hosts.
Intuitively, the term "99% confidence interval" means there
is roughly a 1% chance that this estimate is wrong, i.e. that
there are more than 3900 such hosts on the Internet.

6.2 Alexa Top Million Scan

We used the reduced set of malformed records to scan the
Alexa Top Million websites. Among the top lists, Alexa Top
1 Million provides the highest percentage of hosts supporting
TLS [36] and is thus suitable for large-scale TLS scans. The
list likely includes most high-profile TLS implementations.

The scan required approximately 72 hours. Of the initial
one million hosts, 785,295 responded on port 443. We were
able to perform TLS handshakes with CBC cipher suites
with 627,493 hosts. We excluded all other hosts from the
evaluation. We discovered a total of 18,257 Alexa Top Mil-
lion hosts (1.83%) which are vulnerable to padding oracle
attacks.

The data supports our conjecture that implementations
may be vulnerable on a cipher suite with one protocol ver-
sion, but not vulnerable on the same cipher suite with a dif-
ferent protocol version. A total of 649 servers were only
vulnerable in either TLS 1.0 or TLS 1.1/1.2 although the vul-
nerable cipher suite was supported in the other version. Sim-
ilarly, in some cases, the negotiated key exchange algorithm
affects whether implementations exhibit a CBC vulnerabil-
ity. 601 hosts were vulnerable on one cipher suite, but not on
another cipher suite with a different key exchange algorithm
but the same symmetric cipher and HMAC function. A total
of 3,247 hosts were vulnerable on all CBC cipher suites they
supported.

After identifying vulnerable hosts, we rescanned them

with the full set of test vectors to get their full response maps.
As noted above, to label a host as vulnerable we require the
response maps to be consistent across three different scans.

6.3 Results of Our Clustering Approach

Analyzing each vulnerable host manually is infeasible. We
therefore clustered the vulnerable hosts, such that hosts ex-
hibiting the same cipher suite fingerprints are clustered to-
gether. This minimizes the manual work required to iden-
tify the vendor (or vendors) responsible for each vulnerable
behavior. We reiterate that this clustering is not trivial, as
explained in Section 4.3.

We identified 93 different cipher suite fingerprints. Table 2
summarizes the 40 most common cipher suite fingerprints.
Using the first row as an example, 7297 hosts responded with
BAD_RECORD_MAC and CLOSE_NOTIFY TLS alerts and timed
out the connection for malformed records 11 and 12 (U).
For all other malformed records these hosts closed the TCP
connection (þ) after sending the same TLS alerts.

We also identified four groups exhibiting behavior similar
to the CVE-2016-2107 vulnerability in OpenSSL [37] (ci-
pher suite fingerprints #41, #75, #14, and #54 in Table 2).
They respond to malformed records 6 and 7 (see Table 1)
with a RECORD_OVERFLOW TLS alert. To all other mal-
formed records they respond with BAD_RECORD_MAC. These
are likely unpatched OpenSSL implementations, or security
appliances running older OpenSSL versions.

For vulnerable cipher suites on the same host, cipher suite
fingerprints are largely consistent. Of hosts exhibiting at
least one vulnerable cipher suite, 99.6% have an identical
cipher suite fingerprint on all vulnerable cipher suites. We
removed the remaining 0.4% of hosts to make clustering eas-
ier. However, hosts sharing the same cipher suite fingerprint
on vulnerable cipher suites don’t necessarily share the same
implementation. As an example, consider two hosts, A and
B, with two cipher suites supported by both hosts, 1 and 2.
A is vulnerable on cipher suite 1 with cipher suite fingerprint
X, but is not vulnerable on cipher suite 2. B is not vulnera-
ble on cipher suite 1, but is vulnerable on cipher suite 2 with
the same cipher suite fingerprint X. This difference indicates
the hosts don’t share the same implementation, as we would
expect the shared implementation to have a consistent set of
vulnerable cipher suites. (We concede that it is possible the
hosts exhibit different behavior because of different configu-
ration flags despite sharing the same implementation, but we
consider this unlikely).

We denote the above situation (in its general form) as
“contradictory response maps”; two hosts exhibiting the
same cipher suite fingerprint on vulnerable cipher suites, but
where there exists a cipher suite supported by both hosts such
that one host is vulnerable on that cipher suite and the other
host is not. We refer to the complement situation as “com-
patible response maps”.

1038 28th USENIX Security Symposium USENIX Association

Nr. Cipher suite fingerprint Strength Count

1,2,3,20,21 4,5 6 7 8,9 10,16,19,22–25 11,12 13,14,15 17,18 R1 R2

15 F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ U F20Wµ þ F20Wµ þ Y S 7297
41 F20µ þ F20µ þ F22µ þ F22µ þ F20µ þ F20µ þ F20µ þ F20µ þ F20µ þ X W 4387
84 � � � � U � � � F20µ � Y P 2313
75 F20Wµ þ F20Wµ þ F22Wµ þ F22Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ X W 940
21 F80µ þ F80µ þ F20µ þ F20µ þ F80µ þ F80µ þ F80µ þ F80µ þ F80µ þ X W 687
23 F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20µ U F20Wµ þ F20Wµ þ Y W 458
68 þ þ þ þ U þ þ þ U Y P 248

0 � � � � U � � � A þ Y P 194
79 þ þ þ þ þ þ F20Wµ U þ þ Y W 151
10 F40µ þ F40µ þ F20µ þ F20µ þ F40µ þ F40µ þ F40µ þ F40µ þ F40µ þ X W 98
85 þ þ þ þ U þ þ þ A þ Y P 83

2 � � U F20µ U F20µ U F20µ U U F20µ U F20µ U Y S 76
61 F20µ þ F20µ þ F20µ þ � � � F20µ þ � � X S 54

6 � � � � F40µ þ � � � F40µ þ Y P 52
62 U U U F20µ U F20µ U F20µ U U F20µ U F20µ U Y S 47
33 � � � � U � � � U Y P 43
31 þ þ þ þ U U þ U U Y P 36
76 F20µ þ F20µ þ F20µ þ F20µ þ U F20µ þ F20µ þ F20µ þ U Y P 34
77 F20Wµ þ F50Wµ þ F50Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ þ X S 28
14 F20µ � F20µ � F22µ � F22µ � F20µ � F20µ � F20µ � F20µ � F20µ � X W 24
24 F20Wµ � F20Wµ � F20Wµ � F20Wµ � F20Wµ � F20Wµ � F20Wµ U F20Wµ � F20Wµ � Y W 21
38 F80µ þ F80µ þ F80µ þ � � � F80µ þ � � Y S 19

4 � � � � U � � � F20µ U Y P 15
54 F20µ U F20µ U F22µ U F22µ U F20µ U F20µ U F20µ U F20µ U F20µ U X W 12
74 F20Wµ þ F20Wµ U F20Wµ U F20Wµ þ F20Wµ þ F20Wµ þ F20Wµ U F20Wµ þ F20Wµ þ Y W 9

7 � � � � þ � � � þ Y P 8
37 F20µ þ F50µ þ F50µ þ F20µ þ F20µ þ F20µ þ F20µ þ F20µ þ F20µ þ X W 7
51 þ þ þ þ U þ þ þ þ Y W 7
59 A þ � � � � � U � � Y S 7
66 � � U � U � U U � Y W 7
70 A þ A þ U F20µ U F20µ U F20µ U U F20µ U F20µ U Y S 7
11 F20µ þ U U U U U F20µ þ U U Y P 5
42 F20µ þ F21µ þ F21µ þ F21µ þ F21µ þ F21µ þ F20µ þ F21µ þ F21µ þ X S 5
89 � � U þ þ þ U þ þ Y S 5
3 U F20µ þ F20µ þ F20µ þ F20µ þ F20µ þ U F20µ þ F20µ þ Y S 4

26 F20µ þ F20µ þ F20µ þ F10µ þ F20µ þ F20µ þ F20µ þ F20µ þ F20µ þ X W 4
28 F20µ þ F20µ þ F20µ þ F20µ þ U F20µ þ F20µ þ F20µ þ AWµ þ Y P 4
35 � � � � F20Wµ þ � � � F20Wµ þ Y P 4
73 þ F80µ þ F80µ þ þ þ þ þ þ þ Y W 4
9 F20µ U F20µ U F20µ U F20µ U F20µ U F20µ U F20µ þ F20µ U F20µ U Y W 3

Table 2: Analysis of the 40 most common cipher suite fingerprints, each consisting of responses to 25 malformed records.
For ease of reading, we group together malformed records for which responses are identical within each cipher suite finger-
prints. We use the following notation: Application message (A), Fatal Alert with error code k (Fk), Warning Alert (W),
connection closed (þ), TCP reset (�), timeout (U). We use the following TLS Alert codes: UNEXPECTED_MESSAGE (10),
BAD_RECORD_MAC (20), DECRYPTION_FAILED_RESERVED (21), RECORD_OVERFLOW (22), DECOMPRESSION_FAILURE (30),
HANDSHAKE_FAILURE (40), ILLEGAL_PARAMETER (47), DECODE_ERROR (50), DECRYPT_ERROR (51), INTERNAL_ERROR (80).
Alerts with code CLOSE_NOTIFY always used the warning level. µ denotes an encrypted response. The oracle strength defi-
nition is provided in Section 7; observable differences are depicted with Y, unobservable differences with X. We use W and S
for weak and strong padding oracles, respectively (a strong and observable oracle is exploitable). P represents behavior similar
to POODLE (which is also exploitable if it is observable).

USENIX Association 28th USENIX Security Symposium 1039

We then use a graph algorithm in order to further split
host groups. For each group of hosts with an identical ci-
pher suite fingerprint, we construct a graph where each node
represents a host. We draw an edge between two hosts if
and only if their response maps are compatible. We then em-
bed the graph in a two-dimensional plane using the ForceAt-
las2 algorithm, as implemented in the Gephi software.5 The
ForceAtlas2 algorithm clusters together nodes connected by
an edge, so nodes with compatible response maps are clus-
tered together. Identically configured servers which behave
identically will be connected to the same nodes and will
therefore have the same degree. Since these servers are con-
nected to the same nodes, ForceAtlas2 will draw them close
to one another. By coloring the nodes by their degree it be-
comes easy to manually spot similarly configured and iden-
tically behaving implementations in the graph. These sub-
groups can then be examined for candidates for manual anal-
ysis and responsible disclosure. 6

Example for one vulnerability group. An exam-
ple of this visualization is provided in Figure 3. The
figure clearly shows two distinct sub-groups which
do not share edges (meaning their response maps
are contradictory and they likely do not share the
same implementation). Hosts shown in green are
vulnerable on TLS_RSA_WITH_AES_128_CBC_SHA
and TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
while servers shown in pink are only vulnerable to
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA and not on
TLS_RSA_WITH_AES_128_CBC_SHA. Interestingly the hosts
in the middle of the graph (mostly in teal) do not support
TLS_RSA_WITH_AES_128_CBC_SHA (they are vulnerable
on TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA). They may
share their implementation with either the green or pink
group and therefore share edges with the members of both
groups. Hosts in red are very similar to the pink group but
do not share edges with the teal group. This means that
either a third group exists, or the teal group actually belongs
to the green group and the red group belongs to the pink
group. Individual nodes are likely rare configurations of one
of the implementations of the bigger groups. We performed
a DNS lookup and determined both groups are operated by
a Czech hosting company.

This approach allowed us to also contact other prominent
websites in each group and ask what TLS implementation
they use.

5https://github.com/gephi/gephi
6We note that further grouping by the server agent string could provide

more insights into the different groups. However, it is also very likely that it
would also falsify our results. In many cases, TLS is terminated in reverse
proxies or firewalls, and the server agent string is generated on a different
machine handling HTTP traffic.

Figure 3: Visualisation of group #23 from Table 2.

Breakdown of response maps. Figure 4 visualizes the
prevalence of the various cipher suite fingerprints. A few
very common vulnerabilities account for the majority of vul-
nerable hosts. The newly-discovered vulnerabilities in Ama-
zon/OpenSSL and Citrix account for slightly more than half
of all vulnerable hosts. These are listed as #15 and #84 and
described in more detail in Section 8.2. In addition, response
maps #41 and #75, which likely stem from implementations
based on unpatched OpenSSL versions, account for roughly
a third of vulnerable hosts. Response map #23 is found in
the above-mentioned Czech hosting company.

7 Realistically Exploitable Padding Oracles

Not all of the oracles we identified enable effective decryp-
tion attacks. The rest of this section explains exploitation in
more detail.

The padding oracles we discovered are based on direct
message side channels, i.e. on TLS implementations where
two error states trigger different error responses from the
TLS server. They may be exploitable in the BEAST attacker
model, which relies on two assumptions: (a) the victim client
visits a website under the attacker’s control, which triggers
HTTPS requests to the victim server, and (b) the attacker is
a MitM and can observe the session and modify transmitted
ciphertexts. In addition to those standard assumptions, an or-
acle is exploitable if it satisfies two additional requirements:
(R1) Observability and (R2) Perfect padding distinguishabil-
ity.

7.1 (R1) Observability
Unlike timing side channels, little attention has been paid to
direct message side channels in the case of TLS, and com-
mon wisdom seems to assume they are unobservable to the

1040 28th USENIX Security Symposium USENIX Association

41.9%

25.2%

13.3%

5.4%

3.9%

2.6%

7.6%

#15 Amazon / OpenSSL

#41 Unpatched OpenSSL 1

#84 Citrix

#75 Unpatched OpenSSL 2

#21 (unidentified implementation as of this writing)

#23 (unidentified implementation, disclosure ongoing)

Other

Figure 4: A visualization of the prevalence of cipher suite
fingerprints. A few widely-prevalent vulnerabilities account
for the majority of vulnerable hosts. Out of the above cipher
suite fingerprints, #84 and #15 are exploitable. They are de-
scribed in more detail in Section 8.2.

attacker. Indeed, this is true for implementations which send
a single alert in all error cases and the behavior is identical
except perhaps for the content of the alert message. Such
behavior cannot be exploited by the attacker to create a side
channel because the alert message is encrypted. However,
we identified many cases where implementations do exhibit
an observable difference in behavior. These observable dif-
ferences can roughly be divided into two classes:

• TCP layer. We found implementations which leak in-
formation about the padding validity in the TCP layer.
For example, in the case of Amazon, most test vectors
with invalid padding caused the server to immediately
close the TCP connection. However, specific, carefully
crafted test vectors caused the server to abort the TLS
session while keeping the TCP connection open.

• Number of TLS records. We observed TLS servers
that responded with a different number of records based
on the padding validity. While the attacker cannot de-
crypt these records, he is able to observe the total ci-
phertext length. For example, the servers from group
23 (see Table 2) responded with one TLS alert in the
case of valid padding, while for invalid padding they
responded with two TLS alerts.

Client Server

!

!
TLS

modify last
ciphertext blocksend

HTTPS
requests

observe differences
in ciphertext length

TLS

TLS

Figure 5: Exploiting observable error-based padding oracles
in a BEAST scenario. Differences in total ciphertext length
result from different numbers of TLS alerts being sent.

Consider an attacker A who can distinguish between the
two cases of valid_padding and invalid_padding based
on the validity of the last padding byte (see Figure 6). The
attacker decrypts an HTTPS session cookie as follows:7

1. A lures the victim client to load a web page he controls.
This web page contains JavaScript code which sends
HTTPS requests to the victim server, with a URL of
A ’s’ choice.

2. A observes the first TLS handshake and determines if
the negotiated cipher suite is vulnerable to padding or-
acle attacks. If not, he aborts.

3. If a vulnerable cipher suite is used, A instructs the
client to send another HTTPS request, modifying the
URL such that the first character of the session cookie
is the last byte in cipher block ci.

4. As a MitM, A intercepts the ciphertext (c1, ...,ci, ...,cn)
and modifies it such that ci becomes the last ciphertext
block, for example by replacing cn with ci.

5. Decryption of this last block ci is a pseudorandom trans-
form, so the padding will likely be invalid, triggering an
observable invalid_padding error event.

6. In about 1 out of 256 requests, the padding will ran-
domly be valid. When the padding is valid, it is most
likely to be one byte in length, as depicted in Figure 6.
The preceding bytes will be parsed by the TLS server as
MAC data, and will be invalid with overwhelming prob-
ability. In this case, A observes a valid_padding er-
ror event, and computes the first character of the HTTPS

7We present here a more general form of the attack, which is also appli-
cable to POODLE-style oracles. This form requires 256 sessions on average
in order to decrypt one plaintext byte [27]. For oracles which completely
disregard the MAC, there is a faster form which requires 128 sessions on
average to decrypt one plaintext byte.

USENIX Association 28th USENIX Security Symposium 1041

M M M M MM M M M M 00M M M M MM M M M M

Incorrect MAC Correct Padding

Figure 6: Our attacks rely on a vulnerable server that delivers
different responses based on the validity of the last padding
byte.

session cookie as cn−1[−1]⊕ ci−1[−1], where the [−1]
operator denotes taking the last byte of a block.

7. A then prepares another HTTPS URL where the sec-
ond character of the session cookie is shifted to the last
byte of ci, and starts again with step 3.

7.2 (R2) Perfect Padding Distinguishability
In the above example, we considered a simple oracle
that allows for distinguishing between valid_padding and
invalid_padding based on the validity of the last padding
byte. However, even when providing different responses, im-
plementations do not necessarily expose such simple oracles.
For example, an older OpenSSL version responds with a dif-
ferent alert message only in the specific case of an empty
record containing at least two full valid padding blocks [37].
We identified vulnerable implementations that only respond
differently to ciphertexts containing several valid padding or
MAC bytes. Such vulnerabilities are less likely to be ex-
ploitable since using the algorithm above, the attacker would
need to perform far more than 256 oracle queries to de-
crypt each byte. The attacker may be able to overcome this
limitation by inserting bytes of his choice directly after the
cookie value. Due to the malleability property of CBC, it is
only possible to insert one block of successive chosen data.
Therefore, CBC allows for the creation of practical exploits
if the number of chosen padding bytes is smaller than the
block size.8

Therefore, in our impact estimation, we take a con-
servative approach. To consider a vulnerable implemen-
tation as exploitable, we require that it responds with
valid_padding to ciphertexts with at most one block of
valid padding. We call such oracles strong and refer to other
oracles as weak. In addition to these two oracles, we con-
sider oracles which do not correctly validate the complete
CBC padding and only validate the MAC. We refer to such
oracles as POODLE oracles. These oracles could also be
exploited by applying attacks similar to POODLE.

Column R2 in Table 2 identifies the oracle strength. For
example, servers with the second most prevalent cipher suite

8Decrypting parts of the cookies with weak oracles or exploiting weak
oracles could also be possible with extended techniques. We do not analyze
the exploitability of these more complex oracles. Such an analysis would
likely need to be done manually for each oracle and would need to consider
specific browser behaviors.

fingerprint (#41) respond to malformed records #6 and #7
from Table 1 with a RECORD_OVERFLOW. In all other cases,
the servers send the BAD_RECORD_MAC alerts. We con-
sider this group to be weak since the attacker needs to
send more than one block of valid padding to trigger the
RECORD_OVERFLOW alert with a malformed record #6 or #7.

We consider servers with cipher suite fingerprint #2 to be
strong oracles. The servers from this group respond with a
TCP connection reset (�) if they receive a malformed record
with a valid padding (see malformed records #20 and #21).
There are also several groups with behavior similar to POO-
DLE. These groups ignore modifications in the MAC bytes
and respond differently to malformed records #8, #9, #17,
and #18.

7.3 Exploitability

We consider observable POODLE and observable strong or-
acles as exploitable. We consider all other oracles as non-
exploitable. However, note that weak oracles may be ex-
ploitable using more advanced techniques. Our estimate of
the number of exploitable hosts is, therefore, a conservative
lower estimate.

Estimation of exploitable hosts. Our scan identified
18,257 hosts vulnerable to padding oracle attacks. Of those,
11,225 (61.4%) exhibit observable vulnerabilities that allow
an attacker to distinguish between two malformed records.
See also column R1 in Table 2. At least 10,688 hosts pro-
vided strong or POODLE-styled oracles, which is 58% of
vulnerable hosts. See also column R2 in Table 2. In total,
10,501 hosts are practically exploitable, i.e. they meet both
requirements.

Are CBC cipher suites negotiated? Most modern
browsers support AEAD cipher suites. If a vulnerable server
prefers AEAD cipher suites, they would likely be negotiated,
and this precludes CBC attacks. 31,651 hosts or 4.03% only
support RC4 or CBC cipher suites. Most modern browsers
have disabled support for RC4 cipher suites due to [30], so
modern browsers would likely negotiate CBC cipher suites
with these hosts. Of those hosts, 1,400 were vulnerable to
padding oracle attacks.

8 Findings

In this section we review our assumptions and present no-
table vulnerabilities we found in different implementations.

8.1 Do our Initial Assumptions Hold?

We performed our scans under the assumption that scanning
with different cipher suites and protocol version is necessary

1042 28th USENIX Security Symposium USENIX Association

in order to detect vulnerable hosts. As explained below, our
findings confirm this assumption.

Is scanning with different protocol versions necessary?
Böck et al. found that some servers exhibit RSA padding
oracle vulnerabilities only on some of the protocol versions
they support [9]. As noted in Section 3.5, we suspected the
same holds for CBC padding vulnerabilities. Our findings
confirm this assumption: We identified at least 744 hosts that
support the same cipher suite in both TLS 1.0 and 1.2, but are
vulnerable when using that cipher suite only in one of those
versions. In some cases the vulnerable protocol version is the
newer version, and in other cases, the older one. As an exam-
ple of the former case, vine.co was vulnerable using TLS 1.2
with the TLS_RSA_WITH_3DES_EDE_CBC_SHA cipher suite,
but was not vulnerable when using the same cipher suite in
TLS 1.0.

Surprisingly, when only one protocol version is vulnerable
with the same cipher suite, there are more cases where the
newer version is vulnerable. Out of those 744 hosts, 120
hosts are vulnerable in TLS 1.0 but not in TLS 1.2, and 624
are vulnerable in TLS 1.2 but not in TLS 1.0.

Is scanning with different cipher suites necessary?
Böck et al. also found that scanning with different cipher
suites is necessary to detect as many vulnerabilities as possi-
ble [9]. In the above work, this finding held even when scan-
ning with cipher suites using different symmetric ciphers,
while the vulnerability was in the (theoretically unrelated)
RSA implementation.

We find similar behavior in our results. We identified
at least 601 hosts with two cipher suites, one vulnerable
and one secure, where the only difference between the two
cipher suites is the key exchange algorithm. This finding is
unintuitive, as one would expect an implementation to be
uniformly vulnerable or secure on all cipher suites with the
same symmetric cipher. To give one example, one website is
secure when using TLS_RSA_WITH_AES_256_CBC_SHA256
with TLS 1.2, but is vulnerable when using
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256, also with
TLS 1.2.

Rationale behind the server behaviors. Both behaviors
may seem unintuitive but are actually expected. Many im-
plementations take completely different code paths depend-
ing on the negotiated cipher suite or protocol version. These
code paths may, for example, rely on hardware acceleration
or use an optimized assembly implementation when possi-
ble. It is therefore likely (and, as we see, common) to find
implementations that exhibit vulnerabilities only in some of
the supported cipher suites and protocol versions, even when
the same symmetric cipher is used.

ENC [Plaintext MACvalid 04 04 04 04 3F 2D... E2 14]

ENC [Plaintext MACvalid 04 04 04 04 FF 98... 01 3B]

RST

BAD RECORD MAC, RST

Vulnerable Server

Figure 7: Behavior of Citrix implementations with cipher
suite fingerprint #84.

8.2 Notable Vulnerabilities

In our scans we identified multiple devices from Cisco, two
different IBM servers, and multiple devices from Sonicwall
and Oracle. In the following, we describe specific vulner-
abilities we identified and responsibly disclosed in Citrix,
OpenSSL, and IBM servers.

Our disclosure is still an ongoing process. Our recent find-
ings and the current state of countermeasures implemented
by affected vendors are summarized on https://github.
com/RUB-NDS/TLS-Padding-Oracles.

Amazon/OpenSSL. With the help of the Amazon secu-
rity team, we identified a vulnerability (cipher suite fin-
gerprint #15) which was mostly found on Amazon servers
and Amazon Web Services (AWS). Hosts affected by this
vulnerability immediately respond to most records with
BAD_RECORD_MAC and CLOSE_NOTIFY alerts, and then close
the connection. However, if the hosts encounter a zero-
length record with valid padding and a MAC present, they do
not immediately close the TCP connection, regardless of the
validity of the MAC. Instead, they keep the connection alive
for more than 4 seconds after sending the CLOSE_NOTIFY
alert. This difference in behavior is easily observable over
the network. Note that the MAC value does not need to be
correct for triggering this timeout, it is sufficient to create
valid padding which causes the decrypted data to be of zero
length. Therefore, we classify this as a strong oracle which
is also exploitable.

Further investigations revealed that the Amazon servers
were running an implementation which uses the OpenSSL
1.0.2 API. In some cases, the function calls to the API re-
turn different error codes depending on whether a MAC or
padding error occurred. The Amazon application then takes
different code paths based on these error codes, and the dif-
ferent paths result in an observable difference in the TCP
layer. The vulnerable behavior only occurs when AES-NI is
not used.

We had in fact previously tested the vulnerable OpenSSL
code manually, in lab settings, but had not identified this vul-
nerability. This is because the vulnerability only manifests

USENIX Association 28th USENIX Security Symposium 1043

under a combination of specific conditions: subtle interac-
tions between OpenSSL and external code, and only when
AES-NI is not used, which is rare nowadays. We view this
as an illustrative example of the usefulness of large-scale
scans in detecting vulnerabilities that lab tests may some-
times miss.

We suspect this OpenSSL behavior underlies a number
of similar vulnerabilities we identified, not only vulnerabil-
ity #15. Therefore, we hope that once OpenSSL releases a
patch, other vulnerabilities will be fixed as a result. The issue
was assigned CVE-2019-1559.

The IBM vulnerabilities. We found multiple vulnerabili-
ties in servers hosted by IBM. One of the vulnerabilities is
described by cipher suite fingerprint #77 in Table 2. Af-
fected servers respond with a BAD_RECORD_MAC alert if ei-
ther the MAC or the padding is incorrect. If the padding is
correct and the MAC is incomplete or not present, the server
responds with a DECODE_ERROR alert. The latter behavior
occurs even if the records are too short to contain a MAC, as
long as the record contains at least two blocks of ciphertext,
independently of the used MAC algorithm. An attacker can
send only two blocks with an IV, which guarantees there is
not enough room for a MAC. This provides the attacker with
a classic CBC padding oracle. We therefore consider this a
strong oracle. Since the alerts are encrypted, we classify this
vulnerability as unobservable, and the oracle is therefore not
exploitable.

The IBM security team decided to disable CBC cipher
suites on the affected servers and to only support AES-GCM.

Citrix. The described vulnerability is identified by cipher
suite fingerprint #84 in Table 2. The vulnerable implemen-
tation first checks the last padding byte and then verifies the
MAC. If the MAC is invalid, the server closes the connec-
tion. This is done with either a connection timeout or an
RST, depending on the validity of the remaining padding
bytes. However, if the MAC is valid, the server checks if
all other remaining padding bytes are correct. If they are
not, the server responds with a BAD_RECORD_MAC and an
RST (if they are valid, the record is well-formed and is ac-
cepted). We visualize this behavior in Figure 7. This be-
havior can be exploited with an attack similar to POODLE.
Since the oracle is also observable, we consider this group
as exploitable. We first detected this vulnerability in Ama-
zon Web Services. In cooperation with the Amazon security
team, we determined that Citrix Application Delivery Con-
troller (ADC) and NetScaler Gateway are responsible for this
behavior. The vulnerability was assigned CVE-2019-6485.

9 Related Work

We now highlight past work that focused on large-scale scans
for vulnerabilities on the modern Internet. For a survey of re-

lated work on padding oracle attacks, we refer the reader to
Section 3. ZMap [18] is a network scanner capable of reach-
ing high scanning speeds. Durumeric et al. [17] used ZMap
to scan the IPv4 address space to quantify the impact of the
Heartbleed vulnerability [32]. Heninger et al. [19] scanned
TLS and SSH for weak keys generated using insufficient en-
tropy. Adrian et al. [2] introduced the Logjam vulnerability
and used Internet-wide scanning to quantify its effects, de-
pending on attacker computational resources. Aviram et al.
[5] introduced the DROWN vulnerability and similarly used
Internet-wide scanning to quantify its effects. Böck et al.
[9] performed large-scale scans for Bleichenbacher’s vulner-
ability, while also observing side channels such as changes
in the TCP connection state, as we do here. Valenta et al.
[38] scanned for known vulnerabilities in elliptic curve im-
plementations, searching for a combination that could enable
a powerful attack named CurveSwap.

10 Conclusions and Future Work

This work demonstrates that padding oracle vulnerabilities
still exist on the modern Internet and will likely continue to
threaten users’ security. These vulnerabilities are often hard
to detect: they may rely on subtle side channels or require
specifically-crafted inputs in order to trigger.

In the past, major new TLS attacks had positive effects on
the ecosystem. For example, the work by Adrian et al. [2]
resulted in an “enforcement” effort, where major browsers
changed their behavior and refused to connect to servers with
weak DH parameters. It is an interesting open question how
the security community can better help server operators de-
tect and remediate more subtle kind of vulnerabilities (CBC
oracles in particular, and other classes of vulnerabilities in
general).

One solution in the context of CBC oracles would be
to disallow CBC cipher suites altogether. Recently, major
browser vendors have declared their intention to remove sup-
port for the old 1.0 and 1.1 TLS versions. This forces many
server operators to upgrade their implementations or change
configuration. Indeed, a case could be made that browser
vendors can also remove support for CBC cipher suites, forc-
ing again server operators to upgrade. These changes are
not without their costs; they usually require notice of months
in advance, may require coordination between browser ven-
dors, and obviously, create additional work for server opera-
tors.

Our results again confirm that large-scale scans make it
feasible to uncover a large variety of security vulnerabilities,
previously not detected by lab testing. We believe that our
approach is of general interest when performing large-scale
scans, not only in the context of TLS. One open question
is how to identify vulnerable implementation versions and
their vendors. In the SSH and IPsec protocols, these data
are typically transmitted as message fields in the protocol.

1044 28th USENIX Security Symposium USENIX Association

Transmitting such data in TLS would make disclosure easier,
but on the other hand would lead to privacy issues and easier
fingerprinting.

Acknowledgments

We would like to thank Dennis Felsch who assisted us with
our hardware and network infrastructure, and our anony-
mous reviewers for many insightful comments. Additionally,
we would like to thank the Amazon, Citrix and OpenSSL
teams for their professional responses and help with disclo-
sure.

Nimrod Aviram was supported by a scholarship from The
Israeli Ministry of Science and Technology, a scholarship
from The Check Point Institute for Information Security, and
a scholarship from The Yitzhak and Chaya Weinstein Re-
search Institute for Signal Processing. Juraj Somorovsky
was supported by the European Commission through the
FutureTrust project (grant 700542-Future-Trust-H2020-DS-
2015-1). Robert Merget was supported by the German Fed-
eral Ministry for Economic Affairs and Energy with initia-
tive "IT-Sicherheit in der Wirtschaft", through the SIWECOS
project.

References

[1] Openssl security advisory. CVE-2018-0733.

[2] ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY,
P., GREEN, M., HALDERMAN, J. A., HENINGER, N.,
SPRINGALL, D., THOMÉ, E., VALENTA, L., ET AL. Imper-
fect forward secrecy: How diffie-hellman fails in practice. In
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (2015), ACM, pp. 5–17.

[3] ALBRECHT, M. R., AND PATERSON, K. G. Lucky microsec-
onds: A timing attack on amazon’s s2n implementation of
TLS. In Advances in Cryptology - EUROCRYPT 2016 - 35th
Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part I (2016), pp. 622–643.

[4] ALFARDAN, N. J., AND PATERSON, K. G. Lucky Thir-
teen: Breaking the TLS and DTLS Record Protocols. 2013
IEEE Symposium on Security and Privacy 0 (2013), 526–540.
http://www.isg.rhul.ac.uk/tls/TLStiming.pdf.

[5] AVIRAM, N., SCHINZEL, S., SOMOROVSKY, J.,
HENINGER, N., DANKEL, M., STEUBE, J., VALENTA,
L., ADRIAN, D., HALDERMAN, J. A., DUKHOVNI, V.,
KÄSPER, E., COHNEY, S., ENGELS, S., PAAR, C., AND

SHAVITT, Y. DROWN: Breaking TLS Using SSLv2. In 25th
USENIX Security Symposium (USENIX Security 16) (Austin,
TX, Aug. 2016), pp. 689–706.

[6] BARDOU, R., FOCARDI, R., KAWAMOTO, Y., STEEL, G.,
AND TSAY, J.-K. Efficient Padding Oracle Attacks on Cryp-
tographic Hardware. In Advances in Cryptology – CRYPTO
(2012), Canetti and R. Safavi-Naini, Eds.

[7] BENJAMIN, D. Tls ecosystem woes, Jan. 2018. Real World
Crypto Symposium.

[8] BLEICHENBACHER, D. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS #1.
In Advances in Cryptology — CRYPTO ’98, vol. 1462 of Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg,
1998.

[9] BÖCK, H., SOMOROVSKY, J., AND YOUNG, C. Return of
bleichenbacher’s oracle threat (ROBOT). In 27th USENIX
Security Symposium (USENIX Security 18) (Baltimore, MD,
2018), USENIX Association, pp. 817–849.

[10] BÖCK, H. A little POODLE left in GnuTLS (old ver-
sions), Nov. 2015. https://blog.hboeck.de/archives/
877-A-little-POODLE-left-in-GnuTLS-old-versions.
html.

[11] CANVEL, B., HILTGEN, A., VAUDENAY, S., AND VUAG-
NOUX, M. Password Interception in a SSL/TLS Channel. In
Advances in Cryptology - CRYPTO 2003, vol. 2729 of Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg,
Aug. 2003.

[12] DIERKS, T., AND ALLEN, C. The TLS Protocol Version 1.0.
RFC 2246 (Proposed Standard), Jan. 1999. Obsoleted by RFC
4346, updated by RFCs 3546, 5746, 6176, 7465, 7507.

[13] DIERKS, T., AND RESCORLA, E. The Transport Layer Secu-
rity (TLS) Protocol Version 1.1. RFC 4346 (Proposed Stan-
dard), Apr. 2006. Obsoleted by RFC 5246, updated by RFCs
4366, 4680, 4681, 5746, 6176, 7465, 7507.

[14] DIERKS, T., AND RESCORLA, E. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246 (Proposed Stan-
dard), Aug. 2008. Updated by RFCs 5746, 5878, 6176, 7465,
7507, 7568, 7627, 7685.

[15] DUONG, T., AND RIZZO, J. Cryptography in the web: The
case of cryptographic design flaws in ASP.NET. In IEEE Sym-
posium on Security and Privacy (2011).

[16] DURUMERIC, Z., ADRIAN, D., MIRIAN, A., BAILEY, M.,
AND HALDERMAN, J. A. A search engine backed by
Internet-wide scanning. In 22nd ACM Conference on Com-
puter and Communications Security (Oct. 2015).

[17] DURUMERIC, Z., LI, F., KASTEN, J., AMANN, J., BEEK-
MAN, J., PAYER, M., WEAVER, N., ADRIAN, D., PAXSON,
V., BAILEY, M., ET AL. The matter of heartbleed. In Pro-
ceedings of the 2014 conference on internet measurement con-
ference (2014), ACM, pp. 475–488.

[18] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A.
Zmap: Fast internet-wide scanning and its security applica-
tions.

[19] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND

HALDERMAN, J. A. Mining your ps and qs: Detection of
widespread weak keys in network devices.

[20] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR,
B. Lucky 13 strikes back. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications
Security (New York, NY, USA, 2015), ASIA CCS ’15, ACM,
pp. 85–96.

[21] JACOMY, M., VENTURINI, T., HEYMANN, S., AND BAS-
TIAN, M. Forceatlas2, a continuous graph layout algorithm
for handy network visualization designed for the gephi soft-
ware. PLOS ONE 9, 6 (06 2014), 1–12.

USENIX Association 28th USENIX Security Symposium 1045

[22] JAGER, T., SCHINZEL, S., AND SOMOROVSKY, J. Bleichen-
bacher’s attack strikes again: breaking PKCS#1 v1.5 in XML
Encryption. In Computer Security - ESORICS 2012 - 17th Eu-
ropean Symposium on Research in Computer Security, Pisa,
Italy, September 10-14, 2012. Proceedings (2012), S. Foresti
and M. Yung, Eds., LNCS, Springer.

[23] JAGER, T., AND SOMOROVSKY, J. How To Break XML
Encryption. In The 18th ACM Conference on Computer and
Communications Security (CCS) (Oct. 2011).

[24] LABS, A. W. S. s2n: An implementation of the tls/ssl proto-
cols.

[25] LANGLEY, A. The POODLE bites again, Nov. 2014.
https://www.imperialviolet.org/2014/12/08/
poodleagain.html.

[26] MEYER, C., SOMOROVSKY, J., WEISS, E., SCHWENK, J.,
SCHINZEL, S., AND TEWS, E. Revisiting SSL/TLS Imple-
mentations: New Bleichenbacher Side Channels and Attacks.
In 23rd USENIX Security Symposium, San Diego, USA (Au-
gust 2014).

[27] MÖLLER, B., DUONG, T., AND KOTOWICZ, K. This POO-
DLE bites: exploiting the SSL 3.0 fallback, 2014.

[28] PETTERSSEN, Y. The POODLE has friends.

[29] PETTERSSEN, Y. There are more POODLEs in the forest.

[30] POPOV, A. Prohibiting RC4 Cipher Suites. RFC 7465 (Pro-
posed Standard), Feb. 2015.

[31] RESCORLA, E. The Transport Layer Security (TLS) Protocol
Version 1.3. RFC 8446, 2018.

[32] RIKU, ANTTI, MATTI, AND MEHTA. Heartbleed, cve-2014-
0160, 2015. http://heartbleed.com/.

[33] RIZZO, J., AND DUONG, T. Practical padding oracle at-
tacks. In Proceedings of the 4th USENIX conference on Of-
fensive technologies (Berkeley, CA, USA, 2010), WOOT’10,
USENIX Association, pp. 1–8.

[34] RIZZO, J., AND DUONG, T. Here Come The XOR Ninjas,
May 2011.

[35] RONEN, E., PATERSON, K. G., AND SHAMIR, A. Pseudo
constant time implementations of tls are only pseudo se-
cure. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (2018), ACM,
pp. 1397–1414.

[36] SCHEITLE, Q., HOHLFELD, O., GAMBA, J., JELTEN,
J., ZIMMERMANN, T., STROWES, S. D., AND VALLINA-
RODRIGUEZ, N. A Long Way to the Top: Significance, Struc-
ture, and Stability of Internet Top Lists. In Internet Measure-
ment Conference (IMC’18), IMC’18 Community Contribution
Award (Boston, USA, Nov. 2018), ACM, pp. 478–493.

[37] SOMOROVSKY, J. Systematic fuzzing and testing of tls li-
braries. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (2016), ACM,
pp. 1492–1504.

[38] VALENTA, L., SULLIVAN, N., SANSO, A., AND

HENINGER, N. In search of curveswap: Measuring ellip-
tic curve implementations in the wild. In 2018 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P) (2018),
IEEE, pp. 384–398.

[39] VAUDENAY, S. Security Flaws Induced by CBC Padding —
Applications to SSL, IPSEC, WTLS... In Advances in Cryp-
tology — EUROCRYPT 2002, vol. 2332 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, Apr. 2002.

1046 28th USENIX Security Symposium USENIX Association

The KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR

Daniele Antonioli
Singapore University of
Technology and Design

daniele antonioli@mymail.sutd.edu.sg

Nils Ole Tippenhauer
CISPA Helmholtz Center
for Information Security
tippenhauer@cispa.saarland

Kasper Rasmussen
Department of Computer Science

University of Oxford
kasper.rasmussen@cs.ox.ac.uk

Abstract

We present an attack on the encryption key negotiation pro-
tocol of Bluetooth BR/EDR. The attack allows a third party,
without knowledge of any secret material (such as link and
encryption keys), to make two (or more) victims agree on an
encryption key with only 1 byte (8 bits) of entropy. Such low
entropy enables the attacker to easily brute force the nego-
tiated encryption keys, decrypt the eavesdropped ciphertext,
and inject valid encrypted messages (in real-time). The attack
is stealthy because the encryption key negotiation is transpar-
ent to the Bluetooth users. The attack is standard-compliant
because all Bluetooth BR/EDR versions require to support en-
cryption keys with entropy between 1 and 16 bytes and do not
secure the key negotiation protocol. As a result, the attacker
completely breaks Bluetooth BR/EDR security without being
detected. We call our attack Key Negotiation Of Bluetooth
(KNOB) attack.

The attack targets the firmware of the Bluetooth chip be-
cause the firmware (Bluetooth controller) implements all
the security features of Bluetooth BR/EDR. As a standard-
compliant attack, it is expected to be effective on any firmware
that follows the specification and on any device using a vul-
nerable firmware. We describe how to perform the KNOB
attack, and we implement it. We evaluate our implementation
on more than 14 Bluetooth chips from popular manufactur-
ers such as Intel, Broadcom, Apple, and Qualcomm. Our
results demonstrate that all tested devices are vulnerable to
the KNOB attack. We discuss countermeasures to fix the
Bluetooth specification and its implementation.

1 Introduction

Bluetooth BR/EDR (referred for the rest of this paper as
Bluetooth), is a short-range wireless technology widely used
by many products such as mobile devices, laptops, IoT and
industrial devices. Bluetooth provides security mechanisms
to achieve authentication, confidentiality and data integrity at
the link layer [6, p. 1646].

The security and privacy of Bluetooth has been attacked
and fixed several times, going all the way back to Blue-
tooth v1.0. [15, 32]. Several successful attacks on the (secure
simple) pairing phase [28, 13, 4] have resulted in substantial
revisions of the standard. Attacks on Android, iOS, Windows
and Linux implementations of Bluetooth were also discussed
in [2]. However, little attention has been given to the security
of the encryption key negotiation protocol, e.g., the Bluetooth
security overview in the latest Bluetooth core specification
(v5.0) does not mention it [6, p. 240].

The encryption key negotiation protocol is used by two
Bluetooth devices to agree on the entropy of the link layer
encryption key. Entropy negotiation was introduced in the
specification of Bluetooth to cope with international encryp-
tion regulations and to facilitate security upgrades [6, p. 1650].
To the best of our knowledge, all versions of the Bluetooth
standard (including the latest v5.0 [6]) require to use entropy
values between 1 and 16 bytes. The specification of Blue-
tooth states this requirement as follows: “For the encryption
algorithm, the key size may vary between 1 and 16 octets (8 -
128 bits)” [6, p. 1650]. Our interpretation of this requirement
is that any device to be standard-compliant has to support
encryption keys with entropy varying from one to sixteen
bytes. The attack that we present in this work confirms our
interpretation.

The encryption key negotiation protocol is conducted be-
tween two parties as follows: the initiator proposes an entropy
value N that is an integer between 1 and 16, the other party
either accepts it or proposes a lower value or aborts the pro-
tocol. If the other party proposes a lower value, e.g., N−1,
then the initiator either accepts it or proposes a lower value or
it aborts the protocol. At the end of a successful negotiation
the two parties have agreed on the entropy value of the Blue-
tooth encryption key. The entropy negotiation is performed
over the Link Manager Protocol (LMP), it is not encrypted
and not authenticated, and it is transparent to the Bluetooth
users because LMP packets are managed by the firmware of
the Bluetooth chips and they are not propagated to higher
layers [6, p. 508].

USENIX Association 28th USENIX Security Symposium 1047

In this paper we describe, implement and evaluate an attack
capable of making two (or more) victims using a Bluetooth
encryption key with 1 byte of entropy without noticing it. The
attacker then can easily brute force the encryption key, eaves-
drop and decrypt the ciphertext and inject valid ciphertext
without affecting the status of the target Bluetooth piconet.
In other words, the attacker completely breaks Bluetooth
BR/EDR security without being detected. We call this attack
the Key Negotiation Of Bluetooth (KNOB) attack.

The KNOB attack can be conducted remotely or by mali-
ciously modifying few bytes in one of the victim’s Bluetooth
firmware. Being a standard-compliant attack it is expected
to be effective on any firmware implementing the Bluetooth
specification, regardless of the Bluetooth version. The at-
tacker is not required to posses any (pre-shared) secret ma-
terial and he does not have to observe the pairing process of
the victims. The attack is effective even when the victims
use the strongest security mode of Bluetooth (Secure Connec-
tions). The attack is stealthy because the application using
Bluetooth and even the operating systems of the victims can-
not access or control the encryption key negotiation protocol
(see Section 3.2 for the details).

After explaining the attack in detail, we implement it lever-
aging our development of several Bluetooth security proce-
dures to generate valid link and encryption keys, and the
InternalBlue toolkit [21]. Our implementation allows a man-
in-the-middle attacker to intercept, manipulate, and drop LMP
packets in real-time and to brute force low-entropy encryp-
tion keys, without knowing any (pre-shared) secret. We have
disclosed our findings about the KNOB attack with CERT
and the Bluetooth SIG, and following that, we plan to re-
lease our tools as open-source at https://github.com/
francozappa/knob. This will enable other Bluetooth re-
searchers to take advantage of our work.

We summarize our main contributions as follows:

• We develop an attack on the encryption key negotiation
protocol of Bluetooth BR/EDR that allows to let two
unaware victims negotiate a link-layer encryption key
with 1 byte of entropy. The attacker then is able to brute
force the low entropy key, decrypt all traffic and inject
arbitrary ciphertext. The attacker does not have to know
any secret material and he can target multiple nodes and
piconets at the same time.

• We demonstrate the practical feasibility of the attack by
implementing it. Our implementation involves a man-
in-the-middle attacker capable of manipulating the en-
cryption key negotiation protocol, brute forcing the key
and decrypting the traffic exchanged by two (or more)
unaware victims.

• All standard-compliant devices should be vulnerable
to our attack, including the ones using the strongest
Bluetooth security mode. In order to demonstrate that

this problem has not somehow been fixed in practice, we
test more than 14 different Bluetooth chips and find all
of them to be vulnerable.

• We discuss what changes should be made, both to the
Bluetooth standard and its implementation, in order to
counter this attack.

Our work is organized as follows: in Section 2 we intro-
duce the Bluetooth BR/EDR stack. In Section 3 we present
the Key Negotiation Of Bluetooth (KNOB) attack. An imple-
mentation of the attack is discussed in Section 4. We evaluate
the impact of our attack in Section 5 and we discuss the at-
tack and our proposed countermeasures in Section 6. We
present the related work in Section 7. We conclude the paper
in Section 8.

2 Background

2.1 Bluetooth Basic Rate/Extended Data Rate
Bluetooth Basic Rate/Extended Data Rate (BR/EDR), also
known as Bluetooth Classic, is a widely used wireless technol-
ogy for low-power short-range communications maintained
by the Bluetooth Special Interest Group(SIG) [6]. Its physical
layer uses the same 2.4 GHz frequency spectrum of WiFi and
(adaptive) frequency hopping to mitigate RF interference. A
Bluetooth network is called a piconet and it uses a master-
slave medium access protocol. There is always one master
device per piconet at a time. The devices are synchronized by
maintaining a reference clock signal, defined as CLK. Each
device has a Bluetooth address (BTADD) consisting of a se-
quence of six bytes. From left to right, the first two bytes are
defined as non-significant address part (NAP), the third byte
as upper address part (UAP) and the last three bytes as lower
address part (LAP).

To establish a secure Bluetooth connection two devices
first have to pair. This procedure results in the establishment
of a long-term shared secret defined as link key, indicated
with KL. There are four types of link key: initialization, unit,
combination and master. A initialization key is always gener-
ated for each new pairing procedure. A unit key is generated
from a device and utilized to pair with every other device,
and its usage is not recommended because it is insecure. A
combination key is generated using Elliptic Curve Diffie Hell-
man (ECDH) on the P-256 elliptic curve. This procedure
is defined as Secure Simple Pairing (SSP) and it provides
optional authentication of the link key. Combination keys are
the most secure and widely used. A master key is generated
only for broadcast encryption and it has limited usage. The
master key is temporary, while the others are semi-permanent.
A semi-permanent key can persist until a new link key is re-
quested (link key is bonded) or it can change within the same
session (link key is not bonded). In this paper we deal with
combination link keys generated using authenticated SSP.

1048 28th USENIX Security Symposium USENIX Association

The specification of Bluetooth defines custom security pro-
cedures to achieve confidentiality, integrity and authentication.
In the specification their names are prefixed with the letter E.
In particular, a combination link key KL is mutually authenti-
cated by the E1 procedure. This procedure uses a public nonce
(AU RAND) and the slave’s Bluetooth address (BTADDS) to
generate two values: the Signed Response (SRES) and the
Authenticated Ciphering Offset (ACO). SRES is used over
the air to verify that two devices actually own the same KL.

The symmetric encryption key KC is generated using the
E3 procedure. When the link key is a combination key E3
uses ACO (computed by E1) as its Ciphering Offset Num-
ber (COF) parameter, together with KL and a public nonce
(EN RAND). E1 and E3 use a custom hash function defined
in the specification of Bluetooth with H. The hash function is
based on SAFER+, a block cipher that was submitted as an
AES candidate in 1998 [22].

Once the encryption key KC is generated there are two pos-
sible ways to encrypt the link-layer traffic. If both devices
support Secure Connections, then encryption is performed
using a modified version of AES CCM. AES CCM is an
authenticate-then encrypt cipher that combines Counter mode
with CBC-MAC and it is defined in the IETF RFC 3610 [14].
As a side note, the specification of Bluetooth defines a mes-
sage authentication codes (MAC) with the term message in-
tegrity check (MIC). If Secure Connections is not supported
then the devices use the E0 stream cipher for encryption. The
cipher is derived from the Massey-Rueppel algorithm and it
is described in the specification of Bluetooth [6, p. 1662]. E0
requires synchronization between the master and the slaves
of the piconet, this is achieved using the Bluetooth’s clock
value (CLK).

Modern implementations of Bluetooth provides the Host
Controller Interface (HCI). This interface allows to separate
the Bluetooth stack into two components: the host and the
controller. Each component has specific responsibilities, i.e.,
the controller manages low-level radio and baseband opera-
tions and the host manages high-level application layer pro-
files. Typically, the host is implemented in the operating
system and the controller in the firmware of the Bluetooth
chip. For example BlueZ and Bluedroid implement the HCI
host on Linux and Android, and the firmware of a Qualcomm
or Broadcom Bluetooth chip implements the HCI controller.
The host and the controller communicate using the Host Con-
troller Interface (HCI) protocol. This protocol is based on
commands and events, i.e., the host sends (acknowledged)
commands to the controller, and the controller uses events to
notify the host.

The Link Manager Protocol (LMP) is used over the air by
two controllers to perform link set-up and control for Blue-
tooth BR/EDR. LMP is neither encrypted nor authenticated.
The LMP packets do not propagate to higher protocol layers,
hence, the hosts (OSes) are not aware about the LMP packets
exchanged between the Bluetooth controllers.

Figure 1: High level stages of a KNOB attack.

3 Exploiting Low Entropy in the Encryption
Key Negotiation Of Bluetooth BR/EDR

In this section we describe the Key Negotiation Of Bluetooth
(KNOB) attack. The attack allows Charlie (the attacker) to
reduce the entropy of the encryption key of any Bluetooth
BR/EDR (referred as Bluetooth) connection to 1 byte, without
being detected by the victims (Alice and Bob). The attacker
can brute force the encryption key without having to know
any (pre-shared) secret material and without having to ob-
serve the Secure Simple Pairing protocol. As a result, the
attacker can eavesdrop and decrypt all the traffic and inject
arbitrary packets in the target Bluetooth network (piconet).
The attack works regardless the usage of Secure Connections
(the strongest security mode of Bluetooth). The KNOB attack
high level stages are shown in Figure 1 and they are described
in detail in the rest of this section.

3.1 System and Attacker Model
We assume a system composed of two or more legitimate
devices that communicate using Bluetooth (as described in
Section 2). One device is the master and the others are slaves.
Without loss of generality, we focus on a piconet with one
master and one slave (Alice and Bob). We indicate their
Bluetooth addresses with BTADDM and BTADDS, and the
Bluetooth clock with CLK. The clock is used for synchro-
nization and it does not provide any security guarantee. The
victims are capable of using Secure Simple Pairing and Secure
Connections. This combination enables the highest security
level of Bluetooth and should protect against eavesdropping
and active man in the middle attacks. For example, if both
devices have a display their users have to confirm that they
see the same numeric sequence to mutually authenticate.

The attacker (Charlie) wants to decrypt all messages ex-
changed between Alice and Bob and inject valid encrypted
messages, without being detected. The attacker has no access

USENIX Association 28th USENIX Security Symposium 1049

Figure 2: Generation and usage of the Bluetooth link layer
encryption key (K′C). Firstly, KC is generated from KL and
other public parameters. KC has 16 bytes of entropy, and
it is not directly used as the encryption key. K′C, the actual
encryption key, is computed by reducing the entropy of KC
to N bytes. N is an integer between 1 and 16 and it is the
result of the encryption key negotiation protocol. The N byte
entropy K′C is then used for link layer encryption by either the
E0 or the AES-CCM cipher.

to any (pre-shared) secret material. i.e., the link key KL and
the encryption key KC. Charlie can observe the public nonces
(EN RAND and AU RAND), the Bluetooth clock and the
packets exchanged between Alice and Bob.

We define two attacker models: a remote attacker and a
firmware attacker. A remote attacker controls a device that
is in Bluetooth range with Alice and Bob. He is able to
passively capture encrypted messages, actively manipulate
unencrypted communication, and to drop packets using tech-
niques such as network man-in-the-middle and manipulation
of physical-layer signals [31, 26]. The firmware attacker is
able to compromise the firmware of the Bluetooth chip of a
single victim using techniques such as backdoors [7], supply-
chain implants [12], and rogue chip manufacturers [27]. The
firmware attacker requires no access to the Bluetooth host
(OS) and applications used by the victims.

3.2 Negotiate a Low Entropy Encryption Key

Every time a Bluetooth connection requires link-layer encryp-
tion, Alice and Bob compute an encryption key KC based on
KL, BTADDS, AU RAND, and EN RAND (see top part of
Figure 2). KL is the link key established during secure simple
pairing and the others parameters are public. Assuming ideal
random number generation, the entropy of KC is always 16
bytes.

KC is not directly used as the encryption key for the cur-
rent session. The actual encryption key, indicated with K′C, is
computed by reducing the entropy of KC to N bytes. N is the
outcome of the Bluetooth encryption key negotiation protocol
(Entropy Negotiation in Figure 2). The protocol is part of the
Bluetooth specification since version v1.0, and it was intro-
duced to cope with international encryption regulations and

Alice (controller)

A

Bob (controller)

B

LMP: AU RAND

LMP: SRES

LMP encryption mode req: 1

LMP accept

Negot’n

LMP K
′

C
entropy: 16

LMP K
′

C
entropy: 1

LMP accept

LMP start encryption: EN RAND

LMP accept

Encryption key K
′

C
has 1 byte of entropy

Figure 3: Alice and Bob negotiate 1 byte of entropy for the
encryption key (K′C). The protocol is run by Alice and Bob
controllers (implemented in their Bluetooth chip) over the air
using LMP.

to facilitate security upgrades [6, p. 1650]. The specification
of the Bluetooth encryption key negotiation protocol contains
three significant problems:

1. It allows to negotiate entropy values as low as 1 byte,
regardless the Bluetooth security level.

2. It is neither encrypted nor authenticated.

3. It is implemented in the Bluetooth controller (firmware)
and it is transparent to the Bluetooth host (OS) and to
the user of a Bluetooth application.

Hence, an attacker (Charlie) can convince any two victims
(Alice and Bob) to negotiate N equal to 1, the lowest possible,
yet standard-compliant, entropy value. As a result the victims
compute and use a Bluetooth encryption key (K′C) with one
byte of entropy. The victims (and their OSes) are not aware
about the entropy reduction of K′C because the negotiation
happens between the victims’ Bluetooth controller (firmware)
and the packets do not propagate to the victims’ Bluetooth
host (OS).

To understand how an attacker can set N equal to 1 (or
to any other standard-compliant value), we have to look at
the details of the encryption key negotiation protocol. The
protocol is run between the Bluetooth chip of Alice and Bob.
In the following, we provide an example where Alice (the
master) proposes 16 bytes of entropy, and Bob (the slave) is
only able to support 1 byte of entropy (see Figure 3). The
standard enables to set the minimum and maximum entropy

1050 28th USENIX Security Symposium USENIX Association

Alice (host)

Ahost

Alice (controller)

Actrl

Charlie (attacker)

C

Bob (controller)

Bctrl

Bob (host)

Bhost

HCI set encryption

HCI accept

LMP K
′

C
entropy: 16

LMP K
′

C
entropy: 1

LMP accept

LMP K
′

C
entropy: 1

LMP accept

HCI encryption on HCI encryption on

Alice and Bob use an encryption key K
′

C
with 1 byte of entropy

Figure 4: The KNOB attack sets the entropy of the encryption key (K′C) to 1 byte. Alice requests Bob to activate encryption and
starts the encryption key negotiation protocol. The attacker (Charlie) changes the entropy suggested by Alice from 16 to 1 byte.
Bob accepts Alice’s proposal and Charlie changes Bob’s acceptance to a proposal of 1 byte. Alice, who originally proposed 16
bytes of entropy and she is asked to use 1 byte accepts the (standard-compliant) proposal. Charlie drops Alice’s acceptance
message because Bob already accepted Alice’s proposal (modified by Charlie). Charlie does not know any pre-shared secret and
does not observe SSP.

values by setting two parameters defined as Lmin and Lmax.
These values can be set and read only by the Bluetooth chip
(firmware). Indeed, our scenario describes a situation where
Alice’s Bluetooth firmware declares Lmax = 16 and Lmin = 1,
and Bob’s Bluetooth firmware declares Lmax = Lmin = 1.

The encryption key negotiation protocol is carried over
the Link Manager Protocol (LMP). The first two messages
in Figure 3 allow Alice to authenticate that Bob possesses
the correct KL. Then, with the next two messages, Alice
requests to initiate Bluetooth link layer encryption and Bob
accepts. Now, the negotiation of N takes place (Negot’n in
Figure 3). Alice proposes 16 bytes of entropy. Bob can
either propose a smaller value or accept the proposed one or
abort the negotiation. In our example, Bob proposes 1 byte
of entropy because it is the only value that he supports and
Alice accepts it. Then, Alice requests to activate link-layer
encryption and Bob accepts. Finally, Alice and Bob compute
the same encryption key (K′C) that has 1 byte of entropy. Note
that, the Bluetooth hosts of Alice and Bob do not have access
to KC and K′C, they are only informed about the outcome of
the negotiation. The key negotiation procedure can also be
initiated by the Bob (the slave), resulting in the same outcome.

Figure 4 describes how the attacker (Charlie) manages to
let Alice and Bob agree on a K′C with 1 byte of entropy when
both Alice and Bob declare Lmax = 16 and Lmin = 1. In this
Figure we also show the local interactions between hosts and
controllers to emphasize that at the end of the negotiation the
hosts are not informed about N and K′C.

The attack is performed as follows: Alice’s Bluetooth host

requests to activate (set) encryption. Alice’s Bluetooth con-
troller accepts the local requests and starts the encryption key
negotiation procedure with Bob’s Bluetooth controller over
the air. The attacker intercepts Alice’s proposed key entropy
and substitutes 16 with 1. This simple substitution works
because LMP is neither encrypted nor integrity protected.
Bob’s controller accepts 1 byte. The attacker intercepts Bob’s
acceptance message and change it to an entropy proposal of
1 byte. Alice thinks that Bob does not support 16 bytes of
entropy and accepts 1 byte. The attacker intercepts Alice’
acceptance message and drops it. Finally, the controllers of
Alice and Bob compute the same K′C with one byte of entropy
and notify their respective hosts that link-layer encryption
is on.

It is reasonable to think that the victim could prevent or
detect this attack using a proper value for Lmin. However, the
standard does not state how to explicitly take advantage of
it, e.g., deprecate Lmin values that are too low. The standard
states the following: “The possibility of a failure in setting
up a secure link is an unavoidable consequence of letting the
application decide whether to accept or reject a suggested
key size.” [6, p. 1663]. This statement is ambiguous because
it is not clear what the definition of “application” is in that
sentence. As we show in Section 5, this ambiguity results in
no-one being responsible for terminating connections with
low entropy keys in practice. In particular, the entity who
decides whether to accept or reject the entropy proposal is
the firmware of the Bluetooth chip by setting Lmin and Lmax
and participating in the entropy negotiation protocol. The

USENIX Association 28th USENIX Security Symposium 1051

“application” (intended as the Bluetooth application running
on the OS using the firmware as a service) cannot check and
set Lmin and Lmax, and it is not directly involved in the en-
tropy acceptance/rejection choice (that is performed by the
firmware). The application can interact with the firmware
using the HCI protocol. In particular, it can use the HCI Read
Encryption Key Size request, to check the amount of nego-
tiated entropy after the Bluetooth connection is established
and theoretically abort the connection. This check is neither
required nor recommended by the standard as part of the key
negotiation protocol.

The low entropy negotiation presented in Figure 4 can be
performed by both attacker models presented in Section 3.1.
The remote attacker has the capabilities of dropping and inject-
ing valid plaintext (the encryption key negotiation protocol is
neither encrypted nor authenticated). The firmware attacker
can modify few bytes in the Bluetooth firmware of a victim
to always negotiate 1 byte of entropy. Furthermore, the nego-
tiation is effective regardless of who initiates the protocol and
the roles (master or slave) of the victims in the piconet.

3.3 Brute forcing the Encryption Key

Bluetooth has two link layer encryption schemes one is based
on the E0 cipher (legacy) and the other on the AES-CCM ci-
pher (Secure Connections). Our KNOB attack works in both
cases. If the negotiated entropy for the encryption key (K′C) is
1 byte, then the attacker can trivially brute force it trying (in
parallel) the 256 K′C’s candidates against one or more cipher
texts. The attacker does not have to know what type of ap-
plication layer traffic is exchanged, because a valid plaintext
contains well known Bluetooth fields, such as L2CAP and
RFCOMM headers, that the attacker can use as oracles.

We now describe how to compute all 1 byte entropy keys
when E0 and AES-CCM are in use. Each encryption mode
involves a specific entropy reduction procedure that takes N
and KC as inputs and produces K′C as output (Entropy Reduc-
tion in Figure 2). The specification of Bluetooth calls this
procedure Encryption Key Size Reduction [6].

K′C = g(N)
2 ⊗

(
KC mod g(N)

1

)
(Es)

In case of E0, K′C is computed using Equation (Es), where
N is an integer between 1 and 16 resulted from the encryption
key negotiation protocol (see Section 3.2). g(N)

1 is a polyno-
mial of degree 8N used to reduce the entropy of KC to N
bytes. The result of the reduction is encoded with a block
code g(N)

2 , a polynomial of degree less or equal to 128−8N.
The values of these polynomials depend on N and they are
tabulated in [6, p. 1668]. If N = 1, then we can compute
the 256 candidate K′C by multiplying all the possible 1 byte
reductions KC mod g(1)1 (the set 0x00. . .0xff) with g(1)2 (that
equals to 0x00e275a0abd218d4cf928b9bbf6cb08f).

In case of AES-CCM the entropy reduction procedure
is simpler than the one of E0. In particular, the 16− N
least significant bytes of KC are set to zero. For example,
when N = 1 the 256 K′C candidates for AES-CCM are the set
0x00. . .0xff.

In the implementation of our KNOB attack brute force
logic, we pre-compute the 512 keys with 1 byte of entropy
and we store them in a look-up table to speed-up comparisons.
Table 4 in Appendix A shows the first twenty K′C with 1 byte
of entropy for E0 and AES-CCM. More details about the brute
force implementation are discussed in Section 4.

3.4 KNOB Attack Implications

The Key Negotiation Of Bluetooth (KNOB) attack exploits
a vulnerability at the architectural level of Bluetooth. The
vulnerable encryption key negotiation protocol endangers po-
tentially all standard compliant Bluetooth devices, regardless
their Bluetooth version number and implementation details.
We believe that the encryption key negotiation protocol has to
be fixed as soon as possible.

In particular the KNOB attack has serious implications
related to its effectiveness, stealthiness, and cost. The attack
is effective because it exploits a weakness in the specification
of Bluetooth. The Bluetooth security mode does not matter,
i.e., the attack works even with Secure Connections. The
implementation details do not matter, e.g., whether Bluetooth
is implemented in hardware or in software. The time con-
straints imposed by the Bluetooth protocols do not matter
because the attacker can eavesdrop the traffic and brute force
the low-entropy key offline. The type of connection does
not matter, e.g., the attack works with long-lived and short-
lived connections. In a long-lived connection, e.g.,victims
are a laptop and a Bluetooth keyboard, the attacker has to
negotiate and brute force a single low-entropy K′C. In a short-
lived connection, e.g.,victims are two devices transferring
files over Bluetooth, the attacker has to negotiate and brute
force multiple low-entropy K′C over time re-using the same
attack technique without incurring in significant runtime and
computational overheads.

The attack is stealthy because only the Bluetooth con-
trollers (implemented in the victims’ Bluetooth chip) are
aware of N and K′C. By design, the controllers are not notify-
ing the Bluetooth hosts (implemented in the OSes) about N,
but only about the outcome of the entropy negotiation. The
users and the Bluetooth application developers are unaware of
this problem because they use Bluetooth link-layer encryption
as a trusted service.

The attack is cheap because it does not require a strong
attacker model and expensive resources to be conducted. We
expect that a remote attacker with commercial-off-the-shelf
devices such as a software defined radio, GNU Radio and a
laptop can conduct the attack.

1052 28th USENIX Security Symposium USENIX Association

3.5 KNOB Attack Root Causes
The root causes of the KNOB attack are shared between the
specification and the implementation of Bluetooth BR/EDR
confidentially mechanisms. On one side the specification
is defining a vulnerable encryption key negotiation protocol
that allows devices to negotiate low entropy values. On the
implementation side (see Section 5), the Bluetooth applica-
tions that we tested are failing to check the negotiated entropy
in practice. This is understandable because they are imple-
menting a specification that is not mandating or explicitly
recommending an entropy check.

We do not see any reason to include the encryption key ne-
gotiation protocol in the specification of Bluetooth. From our
experiments (presented in Section 5) we observe that if two
devices are not attacked they always use it in the same way (a
device proposes 16 bytes of entropy and the other accepts).
Furthermore, the entropy reduction does not improve runtime
performances because the size of the encryption key is fixed
to 16 bytes even when its entropy is reduced.

4 Implementation

We now discuss how we implemented the KNOB attack using
a reference attack scenario. In particular, we explain how
we manipulate the key negotiation protocol, brute force the
encryption key (K′C) using eavesdropped traffic, and validate
K′C by computing it from KL as a legitimate device (as in
Figure 2). In our attack scenario, the attacker is able to decrypt
the content of a link-layer encrypted file sent from a Nexus 5
to a Motorola G3 using the Bluetooth OBject EXchange
(OBEX) profile. A Bluetooth profile is the equivalent of an
application layer protocol in the TCP/IP stack.

Our implementation required significant efforts mainly due
to the lack of low-cost Bluetooth protocol analyzers and soft-
ware libraries implementing the custom Bluetooth security
primitives (such as the modified SAFER+ block cipher). Us-
ing our implementation we conducted successful KNOB at-
tacks on more than 14 different Bluetooth chips, the attacks
are evaluated in Section 5.

4.1 Attack Scenario
To describe our implementation we use an attack scenario
with two victims a Nexus 5 and a Motorola G3, Table 1
lists their relevant specifications. The Nexus 5 is used also
as a man-in-the-middle attacker by adding extra code to its
Bluetooth firmware. This setup allows us to simulate a remote
man-in-the-middle attacker (more details in Section 4.2). To
perform eavesdropping, we use an Ubertooth One [24] with
firmware version 2017-03-R2 (API:1.02). To the best of our
knowledge, Ubertooth One does not capture all Bluetooth
BR/EDR packets, but it is the only open-source, low-cost,
and practical eavesdropping solution for Bluetooth that we

Figure 5: Transmission and reception of an E0 encrypted
payload. The concatenation of the payload and its CRC (PT x)
is encrypted, whitened, encoded and then transmitted. On the
receiver side the steps are applied in the opposite order. RF is
the radio frequency wireless channel.

know about. To brute force K′C and decrypt the ciphertext we
use a ThinkPad X1 laptop running a Linux based OS.

The victims use the following security procedures: Secure
Simple Pairing to generate KL (the link key) and authenticate
the users, the entropy reduction function from Equation (Es),
and E0 legacy encryption. The victims use legacy encryption
because the Nexus 5 does not support Secure Connections.
Nevertheless, the KNOB attack works also with Secure Con-
nections.

Every E0-encrypted packet that contains data is transmitted
and received as in Figure 5. A cyclic redundancy checksum
(CRC) is computed and appended to the payload (PayT x).
The resulting bytes (PT x) are encrypted with E0 using K′C.
The ciphertext is whitened, encoded, and transmitted over
the air. On the receiver side the following steps are applied
in sequence: decoding, de-whitening, decryption, and CRC
check. The encryption and decryption procedures are the
same because E0 is a stream cipher, i.e., the same keystream is
XORed with the plaintext and the ciphertext. Whitening and
encoding procedures do not add any security guarantee and
the Ubertooth One is capable of performing both procedures.

4.2 Manipulation of the Entropy Negotiation

We implement the manipulation of the encryption key nego-
tiation protocol (presented in Section 3.2) by extending the
functionalities of InternalBlue [21] and using it to patch the
Bluetooth chip firmware of the Nexus 5. Our InternalBlue
modifications allow to manipulate all incoming LMP mes-
sages before they are processed by the entropy negotiation
logic, and all outgoing LMP messages after they’ve been
processed by the entropy negotiation logic. The entropy ne-
gotiation logic is the code in the Nexus 5 Bluetooth firmware
that manages the encryption key negotiation protocol, and
we do not modify it. As a result, we can use a Nexus 5 (or
any other device supported by InternalBlue) as a victim and
a remote KNOB attacker without having to deal with the
practical issues related with wireless attacks over-the-air.

InternalBlue is an open-source toolkit capable of interfac-
ing with the firmware of the BCM4339 Bluetooth chip in

USENIX Association 28th USENIX Security Symposium 1053

Bluetooth

Phone OS Version MAC SC Chip

Nexus 5 Android 6.0.1 4.1 48:59:29:01:AD:6F No Broadcom BCM4339
Motorola G3 Android 6.0.1 4.1 24:DA:9B:66:9F:83 Yes Qualcomm Snapdragon 410

Table 1: Relevant technical specifications of Nexus 5 and Motorola G3 devices used to describe our attack implementation. The
SC column indicates if a device supports Secure Connections.

Nexus 5 phones. To use it, one has to root the target Nexus 5
and compile and install the Android Bluetooth stack with
debugging features enabled. InternalBlue allows to patch the
firmware in real-time (e.g., start LMP monitoring) and read
the ROM and the RAM of firmware at runtime. Internal-
Blue provides a way to hook and execute arbitrary code in
the Bluetooth firmware. At the time of writing, InternalBlue
is not capable of hooking directly the key negotiation logic.
However, we managed to extend it to enable two victims (one
is always the Nexus 5) to negotiate one (or more) byte of
entropy.

Our manipulation of the entropy negotiation works regard-
less the role of the Nexus 5 in the piconet and it does not
require to capture any information about the Secure Simple
Pairing process. Assuming that the victims are already paired,
we test if two victims are vulnerable to the KNOB attack as
follows:

1. We connect over USB the Nexus 5 with the X1 laptop,
we run our version of InternalBlue, and we activate LMP
and HCI monitoring.

2. We connect and start the Ubertooth One capture over the
air focusing only on the Nexus 5 piconet (using UAP
and LAP flags).

3. We request a connection from the Nexus 5 to the victim
(or vice versa) to trigger the encryption key negotiation
protocol over LMP.

4. Our InternalBlue patch changes the LMP packets as
Charlie does in Figure 4.

5. If the victims successfully complete the protocol, then
they are vulnerable to the KNOB attack and we can
decrypt the ciphertext captured with the Ubertooth One.

We now describe how we extended InternalBlue to perform
the fourth step of the list. In this context, the most important
file of InternalBlue is internalblue/fw 5.py. This file
contains all the information about the BCM4339 firmware,
and it provides two hooks into the firmware, defined by Mantz
(the main author of InternalBlue) as LMP send packet and
LMP dispatcher. The former hook allows to execute code
every time an LMP packet is about to be sent and the latter

whenever an LMP packet is received. The hooks are intended
for LMP monitoring, and we upgraded them to be used also
for LMP manipulation.

Listing 1 shows three ARM assembly code blocks that we
added to fw 5.py to let the Nexus 5 and the Motorola G3
negotiate 1 byte of entropy. In this case the Nexus 5 is the
master and it initiates the encryption key negotiation protocol.
The first block translates to: if the Nexus 5 is sending an
LMP K′C entropy proposal then change it to 1 byte. This
block is executed when the Nexus 5 starts an encryption key
negotiation protocol. The code allows to propose any entropy
value by moving a different constant into r2 in line 5.

The second block from Listing 1 translates to: if the
Nexus 5 is receiving an LMP accept (entropy proposal), then
change it to an LMP K′C entropy proposal of 1 byte. This
code is used to let the Nexus 5 firmware believe that the other
victim proposed 1 byte, while she already accepted 1 byte (as-
suming that she is vulnerable). The third blocks translates to:
if the Nexus 5 is sending an LMP accept (entropy proposal),
then change it to an LMP preferred rate. This allows to obtain
the same result of dropping an LMP accept packet because
the LMP preferred rate packet does not affect the state of the
encryption key negotiation protocols. We developed and used
similar patches to cover the other attack cases: Nexus 5 is the
master and does not initiate the connection, Nexus 5 is the
slave and initiates the connection and Nexus 5 is the slave
and does not initiate the connection.

4.3 Brute Forcing the Encryption Key

Once the attacker is able to reduce the entropy of the en-
cryption key (K′C) to 1 byte, he has to brute force the key
value (key space is 256). In this section we explain how we
brute forced and validated a E0 encryption key with 1 byte
of entropy. The key was used in one of our KNOB attacks
to decrypt the content of a file transferred over a link layer
encrypted Bluetooth connection.

The details about the E0 encryption scheme are presented
in Figure 6, we describe them backwards starting from the E0
cipher. E0 takes three inputs: BTADDM , CLK26-1 and K′C.
CLK26-1 are the 26 bits of CLK in the interval CLK[25:1]
(assuming that CLK stores its least significant bit at CLK[0]).
The BTADDM is the Bluetooth address of the master and it

1054 28th USENIX Security Symposium USENIX Association

Listing 1 We add three ARM assembly code blocks to
internalblue/fw 5.py to negotiate K′C with 1 byte of en-
tropy. In this case the Nexus 5 is the master and it initiates
the encryption key negotiation protocol.
1 # Send LMP Kc' entropy 1 rather than 16

2 ldrb r2, [r1]

3 cmp r2, #0x20

4 bne skip_sent_ksr

5 mov r2, #0x01

6 strb r2, [r1, #1]

7 skip_sent_ksr:

8

9 # Recv LMP Kc' entropy 1 rather than LMP accept

10 ldrb r2, [r1]

11 cmp r2, #0x06

12 bne skip_recv_aksr

13 ldrb r2, [r1, #1]

14 cmp r2, #0x10

15 bne skip_recv_aksr

16 mov r2, #0x20

17 strb r2, [r1]

18 mov r2, #0x01

19 strb r2, [r1, #1]

20 skip_recv_aksr:

21

22 # Send LMP_preferred rate rather than LMP accept

23 # Simulate an attacker dropping LMP accept

24 ldrb r2, [r1]

25 cmp r2, #0x06

26 bne skip_send_aksr

27 ldrb r2, [r1, #1]

28 cmp r2, #0x10

29 bne skip_send_aksr

30 mov r2, #0x48

31 strb r2, [r1]

32 mov r2, #0x70

33 strb r2, [r1, #1]

34 skip_send_aksr:

is a public parameter. We did not have to implement the E0
cipher because we found an open-source implementation [8]
which we verified against the specification of Bluetooth. To
provide valid K′C candidates to E0 we had to implement the Es
entropy reduction procedure. This procedure takes an input
with 16 bytes of entropy (KC) and computes an output with N
bytes of entropy (K′C). Es involves modular arithmetic over
polynomials in Galois fields and we use the BitVector [16]
Python module to perform such computations.

Our Python brute force script takes a ciphertext (captured
over the air using Ubertooth One) and tries to decrypt it
by using the E0 cipher with all possible values of K′C. We
validate our script by decrypting the content of a file sent from
the Nexus 5 to the Motorola G3 using the OBEX Bluetooth
profile after the negotiation of 1 byte of entropy. The content
of the file (in ASCII) is aaaabbbbccccdddd. We discuss
several brute forcing practical issues in Section 6.3.

Once we found the matching plaintext we wanted to verify
that the brute forced key was effectively the one in use by the
victims. To do that we had to implement E1 and E3, the former

Figure 6: Implementation of the KNOB attack on the E0
cipher. The attacker makes the victims agree on a K′C with
one byte of entropy (N = 1) and then brute force K′C, without
knowing KL and KC.

is used to compute the Ciphering Offset Number (COF), the
latter to compute KC (see Figure 6). Both procedures use a
custom hash function defined in the specification of Bluetooth
with H. We write E1 and E3 equations and label them with
their respective names as follows:

SRES‖ACO = H(KL,AU RAND,BTADDS,6) (E1)
KC = H(KL,EN RAND,COF,12) (E3)

Figure 7 shows how E3 uses the H hash function, H inter-
nally uses SAFER+, a block cipher that was submitted as an
AES candidate in 1998 [22]. SAFER+ is used with 128 bit
block size (8 rounds), in ECB mode, and only for encryption.
SAFER+’ (SAFER+ prime) is a modified version of SAFER+
such that the input of the first round is added to the input
of the third round. This modification was introduced in the
specification of Bluetooth to avoid SAFER+’ being used for
encryption [6, p. 1677].

We implemented in Python both SAFER+ and SAFER+’
including the round computations and the key scheduling
algorithm. We tested the two against the specification of Blue-
tooth (where they are indicated with Ar and Ar’ [6, p. 1676]).
We also implemented the E and O blocks from Figure 7. The
E block is an extension block that transforms the 12 byte COF
into a 16 byte sequence using modular arithmetic. The same
block is applied to the 6 byte BTADDS in E1. The O block
is offsetting KL using algebraic (modular) operations and the
largest primes below 257 for which 10 is a primitive root. We
implement the E and O blocks in Python and we tested them
against the specification of Bluetooth. Then, we were able to
implement H and to use it to implement and test E3 and E1.

We validate the brute forced K′C by using the necessary pa-
rameters from Figure 6 to compute K′C from KL. We captured
the parameters using the Bluetooth logging capabilities of-
fered by Android. Table 2 shows an example of actual public
and private values used during one of our KNOB attacks. We

USENIX Association 28th USENIX Security Symposium 1055

Figure 7: Bluetooth defines H a custom hash function based
on SAFER+. H is used to compute KC from KL, EN RAND,
and COF (see Equation E3).

Name Value

Public
BTADDM 0xccfa0070dcb6

BTADDS 0x829f669bda24

AU RAND 0x722e6ecd32ed43b7f3cdbdc2100ff6e0

EN RAND 0xd72fb4217dcdc3145056ba488bea9076

SRES 0xb0a3f41f

N 0x1

Secret
KL 0xd5f20744c05d08601d28fa1dd79cdc27

COF=ACO 0x1ce4f9426dc2bc110472d68e

KC 0xa3fccef22ad2232c7acb01e9b9ed6727

K′C 0x7fffffffffffffffffffffffffffffff

Table 2: Public and secret values (in hexadecimal representa-
tion) collected during a KNOB attack involving authenticated
SSP and E0 encryption. The encryption key (K′C) has 1 byte
of entropy.

plan to release our code implementing Es, E1 and E3 as open-
source to help researchers interested in Bluetooth’s security,
after we complete the responsible disclosure of our findings1.

4.4 Implementation for Secure Connections

The specification of Bluetooth allows to perform the KNOB
attack even when the victims are using Secure Connections.
We already implemented the entropy reduction function of the
brute force script over AES–CCM. However, at the time of
writing, InternalBlue is not capable of patching the firmware
of a Bluetooth chip that supports Secure Connections, indeed
we are not able to implement the low entropy negotiation part
of the attack using InternalBlue.

1See https://github.com/francozappa/knob

5 Evaluation

Our implementation of the KNOB attack (presented in Sec-
tion 4) allows to test if any device accepts an encryption key
with 1 byte of entropy (N = Lmin = 1). We focus our discus-
sion on the attack best case (1 byte of entropy) while arguably
any entropy value lower than 14 bytes could be considered
not secure for symmetric encryption [3].

After successfully conducting the KNOB attack on a
Nexus 5 and a Motorola G3 we conducted other KNOB at-
tacks on more than 14 unique Bluetooth chips (by attacking
21 different devices). Each attack is easy to reproduce and
testing if a device is vulnerable is a matter of seconds.

Based on our experiments, we concluded that there are
no differences between the specification and the implemen-
tation of both the Bluetooth controller (implemented in the
firmware) and the Bluetooth host (implemented in the OS
and usable as an interface by a Bluetooth application). In the
former case the specification is not enforcing any minimum
Lmin and it is not protecting the entropy negotiation protocol.
The firmware’s implementers (to provide standard-compliant
products) are allowing the negotiation of 1 byte of entropy
with an insecure protocol. The only exception is the Apple
W1 chip where an attacker can only reduce the entropy to 7
bytes. In the latter case, the Bluetooth specification is provid-
ing an HCI Read Encryption size API but it is not mandating
or recommending its usage, e.g., a mandatory check at the
end of the LMP entropy negotiation. The host’s implementers
are providing this API and the applications that we tested are
not using it.

5.1 Evaluation Setup
To perform our evaluation we collected as many devices as
possible containing different Bluetooth chips. At the time
of writing, we were able to test chips from Broadcom, Qual-
comm, Apple, Intel, and Chicony manufacturers. For each
chip we conducted the KNOB attack following the same
five steps presented in Section 4.2. As explained earlier, the
Nexus 5 is used as a (remote) attacker and a victim. For each
test we recorded the manipulated encryption key negotiation
protocol over LMP in a pcapng file and we manually verified
the protocol’s outcome with Wireshark.

Our evaluation setup is not hard to reproduce and easy
to extend because it does not require expensive hardware
and uses open-source software. We would like to see other
researchers evaluating more Bluetooth chips and devices that
currently we do not posses, e.g., Apple Watches.

5.2 Evaluation Results
Table 3 shows our evaluation results. Overall, we tested more
than 14 Bluetooth chips and 21 devices. The first column
contains the Bluetooth chip names. We fill the entries of this

1056 28th USENIX Security Symposium USENIX Association

Bluetooth chip Device(s) Vuln?

Bluetooth Version 5.0
Snapdragon 845 Galaxy S9 X
Snapdragon 835 Pixel 2, OnePlus 5 X
Apple/USI 339S00428 MacBookPro 2018 X
Apple A1865 iPhone X X

Bluetooth Version 4.2
Intel 8265 ThinkPad X1 6th X
Intel 7265 ThinkPad X1 3rd X
Unknown Sennheiser PXC 550 X
Apple/USI 339S00045 iPad Pro 2 X
BCM43438 RPi 3B, RPi 3B+ X
BCM43602 iMac MMQA2LL/A X

Bluetooth Version 4.1
BCM4339 (CYW4339) Nexus 5, iPhone 6 X
Snapdragon 410 Motorola G3 X

Bluetooth Version ≤ 4.0
Snapdragon 800 LG G2 X
Intel Centrino 6205 ThinkPad X230 X
Chicony Unknown ThinkPad KT-1255 X
Broadcom Unknown ThinkPad 41U5008 X
Broadcom Unknown Anker A7721 X
Apple W1 AirPods *

Table 3: List of Bluetooth chips and devices tested against
the KNOB attack. Xindicates that a chip accepts one byte of
entropy. * indicates that a chip accepts at least seven bytes
of entropy. We note that, all chips and devices implementing
any specification of Bluetooth are expected to be vulnerable
to the KNOB attack because the entropy reduction feature is
standard-compliant.

column with Unknown when we are not able to find informa-
tion about the chip manufacturer and/or model number. The
second column lists the devices that we tested grouped by
chip, e.g., the Snapdragon 835 is used both by the Pixel 2
and the OnePlus 5. The third column contains a X if the
Bluetooth chip accepts 1 byte of entropy and a * if it accepts
at least 7 bytes. The table’s rows are grouped by Bluetooth
version in four blocks: version 5.0, version 4.2, version 4,1
and version lower or equal than 4.0.

From the third column of Table 3 we see that all the chips
accept 1 byte of entropy (X) except the Apple W1 chip (*)
that requires at least 7 bytes of entropy. Apple W1 and its
successors are used in devices such as AirPods, and Apple
Watches. Seven bytes of entropy are better than one, but
not enough to prevent brute force attacks. For example, the
Data Encryption Standard (DES) uses the same amount of
entropy and DES keys were brute forced multiple times with
increasing efficacy [19].

Table 3 also demonstrates that the vulnerability spans

across different Bluetooth versions including the latest ones
such as 5.0 and 4.2. This fact confirms that the KNOB attack
is a significant threat for all Bluetooth users and we believe
that the specification of Bluetooth has to be fixed as soon as
possible.

6 Discussion

6.1 Attacking Other Bluetooth Profiles
Cable replacement wireless technologies such as Bluetooth
are widely used for all sorts of applications including desktop,
mobile, IoT, industrial and medical devices. Bluetooth defines
its set of application layer services as profiles. In Section 4
we describe an attack on the OBject EXchange (OBEX) Blue-
tooth profile, where the attacker breaks Bluetooth security by
decrypting the content of an encrypted file without having
access to any (pre-shared) secret. Here we describe three
KNOB attacks targeting other popular Bluetooth profiles. As
in the OBEX case, the attacks have serious implications in
terms of security and privacy of the victims. To the best of
our knowledge, all the profiles that we discuss in this section
rely only on the link-layer for their security guarantees and
they are widely used across different vendors. Our list of
attacks is not exhaustive and an attacker might exploit the
vulnerable encryption key negotiation protocol of Bluetooth
in other creative ways.

HID profile The attacker could perform a remote keylog-
ging attack on any device that uses the Human Interface
Device (HID) profile. This profile is used by input-output de-
vices such as keyboards, mice and joysticks. As a result, the
attacker can sniff sensitive information including passwords,
credit card numbers, and emails regardless if these informa-
tion are then encrypted on the (wired or wireless) Ethernet
link.

Bluetooth tethering The attacker could mount a remote
man-in-the-middle attack when the victim uses Bluetooth
for tethering. Tethering is used by a device, acting as an
hotspot, to share Internet connectivity with other devices
in range. Bluetooth transports Ethernet over the Bluetooth
Network Encapsulation Protocol (BNEP) [5]. This protocol
encapsulates Ethernet frames and transports them over (link-
layer encrypted) L2CAP. As a result, the attacker can sniff all
Internet traffic of the victims using a Bluetooth hotspot.

A2DP profile The attacker could record and inject audio
signals when the victim uses the Advanced Audio Distribution
Profile (A2DP) profile. As a result, the attacker is able to
record phone and Voice over IP (VoIP) calls even if the call
is encrypted (e.g., 4G and Skype). The attacker can also
tamper with voice commands sent to a personal assistant, e.g.,

USENIX Association 28th USENIX Security Symposium 1057

Siri and Google Assistant. Recent mobile devices, such as
smartphone and tablets, are particularly vulnerable to this
threat because Bluetooth is a convenient solution to the lack
of an analog audio connector (audio jack).

6.2 Attacking Multiple Nodes and Piconets

In our paper we describe the implementation of KNOB at-
tacks targeting two victims. If a Bluetooth piconet contains
more than two devices, then (in the worst case for the attacker)
each master-slave pair uses a dedicated set of keys. In this
scenario the KNOB attack still works because it can be par-
allelized with minimal effort. For example, the attacker may
run the same attack script on different computing units, such
as processes or machines, and let each computing unit target
a master-slave pair. Each parallel instance of the attack nego-
tiates an encryption key with one byte of entropy, captures
the exchanged ciphertext, and brute forces the encryption key.
For example, an attacker is able to decrypt all the traffic from
a victim using multiple Bluetooth I/O devices to interact with
his device e.g., a laptop connected with a keyboard, a mouse
and an headset.

The KNOB attack is effective even if the attacker wants
to target multiple piconets (Bluetooth networks) at the same
time. In this case the attacker has to follow and use a different
Bluetooth clock (CLK) value for each piconet to compute
the correct encryption key. This is not a problem because the
attacker can use parallel KNOB attack instances, where each
instance follows a pair of devices in a target piconet.

6.3 Practical Implementation Issues

We spent considerable time to fine tune our brute force script.
One main reason is that Ubertooth One, used to sniff Blue-
tooth BR/EDR packets over the air, does not reliably capture
all packets and clock values (CLK). This is true even if we
limit our capture to a specific piconet by setting the UAP and
LAP parameters. As a result, we had to include extra logic in
our brute force script to iterate over different CLK values and
E0 keystream offsets. Our basic brute force logic only iterates
over the encryption key space (256 iterations). The extra
logic can be removed if we get access to a commercial-grade
Bluetooth protocol analyzer such as Ellisys [10] or similar.
Unfortunately, these devices are very expensive.

We implemented our attack by simulating a remote attacker
using InternalBlue. Alternatively, we could have conducted
the attacks over the air using signal manipulation [26] and
(reactive) jamming [31]. However, the InternalBlue setup is
simpler, more reliable, cheaper, and easier to reproduce than
the over-the-air setup and it affects the victims in the same
way as a remote attacker.

6.4 Countermeasures

In this section we propose several countermeasures to the
KNOB attack. We divide them into two classes: legacy com-
pliant and non legacy compliant. The former type of coun-
termeasure does not require a change to the specification of
Bluetooth while the latter does. We already proposed these
countermeasures to the Bluetooth SIG and CERT during our
responsible disclosure.

Legacy compliant. Our first proposed legacy compliant
countermeasure is to require a minimum and maximum
amount of negotiable entropy that cannot be easily brute
forced, e.g., require 16 bytes of entropy. This means fixing
Lmin and Lmax in the Bluetooth controller (firmware) and re-
sults in the negotiation of proper encryption keys. Another
possible countermeasure is to automatically have the Blue-
tooth host (OS) check the amount of negotiated entropy each
time link layer encryption is activated and abort the connec-
tion if the entropy does not meet a minimum requirement.
The entropy value can be obtained by the host using the HCI
Read Encryption Key Size Command. This solution requires
to modify the Bluetooth host and it might be suboptimal be-
cause it acts on a connection that is already established (and
possibly in use), not as part of the entropy negotiation proto-
col. A third solution is to distrust the link layer and provide
the security guarantees at the application layer. Some vendors
have done so by adding a custom application layer security
mechanism on top of Bluetooth (which, in case of Google
Nearby Connections, was also found to be vulnerable [1]).

Non legacy compliant. A non legacy compliant counter-
measure is to modify the encryption key negotiation protocol
by securing it using the link key. The link key is a shared (and
possibly authenticated) secret that should be always available
before starting the entropy negotiation protocol. The new pro-
tocol should provide message integrity and might also provide
confidentiality. Preferably, the specification should get rid of
the entropy negotiation protocol and always use encryption
keys with a fixed amount of entropy, e.g., 16 bytes. The im-
plementation of these solutions only requires the modification
of the Bluetooth controller (firmware).

7 Related Work

The security and privacy guarantees of Bluetooth were studied
since Bluetooth v1.0 [15, 32]. Particular attention was given
to Secure Simple Pairing (SSP), a mechanisms that Bluetooth
uses to generate and share a long term secret (defined as the
link key). Several attacks on the SSP protocol were proposed
[28, 13, 4]. The Key Negotiation Of Bluetooth (KNOB)
attack works regardless of security guarantees provided by
SSP (such as mutual user authentication).

1058 28th USENIX Security Symposium USENIX Association

The most up to date survey about Bluetooth security was
provided by NIST in 2017 [25]. This survey recommends to
use 128 bit keys (16 bytes of entropy). It also describes the
key negotiation protocol, and considers it as a security issue
when one of the connected devices is malicious (and not a
third party). Prior surveys do not consider the problem of
encryption key negotiation at all [9] or superficially discuss
it [29].

The various implementation of Bluetooth were also ana-
lyzed and several attacks were presented on Android, iOS,
Windows and Linux implementations [2]. Our attack works
regardless of the implementation details of the target platform,
because if any implementation is standard-compliant then it
is vulnerable to the KNOB attack.

The security of the ciphers used by Bluetooth has been
extensively discussed by cryptographers. The SAFER+ ci-
pher used by Bluetooth for authentication purposes was ana-
lyzed [17]. The E0 cipher used by Bluetooth for encryption
was also analyzed [11]. Our attack works even with per-
fectly secure ciphers. For our implementation of the custom
Bluetooth security procedures (presented in Section 4) we
used as main references the specification of Bluetooth [6] and
third-party hardware [18] and software [20] implementations.

Third-party manipulations of key negotiation protocols
were also discussed in the context of WiFi, for example key
reuse in [30]. Compared to those attacks, our attack exploits
not only implementation issues, but a standard-compliant
vulnerability of the specification of Bluetooth.

Protocol downgrade attacks were discussed in the context
of TLS[23], where the two parties are negotiating the cipher
suite to use. We note that in contrast to our scenario, for TLS
the application developers have commonly direct control over
the cipher suites that will be offered by their applications.
Therefore, avoiding a fallback to legacy encryption standards
can be prevented by the developers. To the best of our knowl-
edge, this is not the case for Bluetooth, as the protocols does
not enforce any mandatory checks on the encryption key’s
entropy.

8 Conclusion

In this paper we present the Key Negotiation Of Bluetooth
(KNOB) attack. Our attack is capable of reducing the entropy
of the encryption key of any Bluetooth BR/EDR connection
to 1 byte (8 bits). The attack is standard-compliant because
the specification of Bluetooth includes an insecure encryption
key negotiation protocol that supports entropy values between
1 and 16 bytes. As a main consequence, an attacker can easily
negotiate an encryption key with low entropy and then brute
force it. The attacker is effectively breaking the security
guarantees of Bluetooth without having to posses any (pre-
shared) secret material. The attack is stealthy because the
vulnerable entropy negotiation protocol is run by the victims’
Bluetooth controller and this protocol is transparent to the

Bluetooth host (OS) and the Bluetooth application used by
the victims. We expect that the attack could be run in parallel
to target multiple devices and piconets at the same time.

We demonstrate that the KNOB attack can be performed
in practice by implementing it to attack a Nexus 5 and a Mo-
torola G3. In our attack we decrypt a file transmitted over
an authenticated and link-layer encrypted Bluetooth connec-
tion. Brute-forcing a key with 1 byte of entropy introduces
a negligible overhead enabling an attacker to decrypt all the
ciphertext and to introduce valid ciphertext even in real-time.

We evaluate the KNOB attack on more than 14 Bluetooth
chips from different vendors such as Broadcom, Qualcomm
and Intel. All the chips accept 1 byte of entropy except the Ap-
ple W1 chip that accepts (at least) 7 bytes of entropy. Frankly,
we were expecting to find more non standard-compliant chips
like the Apple W1. Before submitting the paper, we reported
our findings to the Computer Emergency Response Team
(CERT) and the Bluetooth Special Interest Group (SIG). Both
organizations acknowledged the problem and we are collabo-
rating with them to solve it. After our responsible disclosure,
we plan to release the tools that we developed to implement
the attacks as open-source.

The KNOB attack is a serious threat to the security and
privacy of all Bluetooth users. We were surprised to discover
such fundamental issues in a widely used and 20 years old
standard. We attribute the identified issues in part to am-
biguous phrasing in the standard, as it is not clear who is
responsible for enforcing the entropy of the encryption keys,
and as a result no-one seems to be responsible in practice.
We urge the Bluetooth SIG to update the specification of
Bluetooth according to our findings. Until the specification
is not fixed, we do not recommend to trust any link-layer en-
crypted Bluetooth BR/EDR link. In Section 6.4 we propose
legacy and non legacy compliant countermeasures that would
make the KNOB attack impractical. We also recommend
the Bluetooth SIG to create a dedicated procedure enabling
researchers to securely submit new potential vulnerabilities,
similarly to what other companies, such as Google, Microsoft
and Facebook, are offering.

References

[1] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper
Rasmussen. Nearby Threats: Reversing, Analyzing, and
Attacking Google’s “Nearby Connections” on Android.
In Network and Distributed System Security Symposium
(NDSS), February 2019.

[2] Armis Inc. The Attack Vector BlueBorne Exposes Al-
most Every Connected Device. https://armis.com/
blueborne/, Accessed: 2018-01-26.

[3] Elaine Barker, William Barker, William Burr, William
Polk, and Miles Smid. Recommendation for key man-

USENIX Association 28th USENIX Security Symposium 1059

agement part 1: General (revision 3). NIST special
publication, 800(57):1–147, 2012.

[4] Eli Biham and Lior Neumann. Breaking the blue-
tooth pairing–fixed coordinate invalid curve attack.
http://www.cs.technion.ac.il/~biham/BT/bt-

fixed-coordinate-invalid-curve-attack.pdf,
Accessed: 2018-10-30.

[5] Bluetooth SIG. Bluetooth Network Encapsulation Proto-
col. http://grouper.ieee.org/groups/802/15/

Bluetooth/BNEP.pdf, Accessed: 2018-10-28, 2001.

[6] Bluetooth SIG. Bluetooth Core Specification
v5.0. https://www.bluetooth.org/DocMan/

handlers/DownloadDoc.ashx?doc_id=421043,
Accessed: 2018-10-28, 2016.

[7] Bob Cromwell. The Problem With Government-
Imposed Backdoors. https://cromwell-intl.com/
cybersecurity/backdoors.html, Accessed: 2019-
2-4.

[8] Arnaud Delmas. A C implementation of the Bluetooth
stream cipher E0. https://github.com/adelmas/

e0, Accessed: 2018-10-28.

[9] John Dunning. Taming the blue beast: A survey of blue-
tooth based threats. IEEE Security & Privacy, 8(2):20–
27, 2010.

[10] Ellisys. Ellisys protocol test solutions. https://www.
ellisys.com/, Accessed: 2018-10-28.

[11] Scott Fluhrer and Stefan Lucks. Analysis of the E0 en-
cryption system. In International Workshop on Selected
Areas in Cryptography, pages 38–48. Springer, 2001.

[12] Glenn Greenwald. No place to hide: Edward Snowden,
the NSA, and the US surveillance state. Metropolitan
Books, 2014.

[13] Keijo Haataja and Pekka Toivanen. Two practical man-
in-the-middle attacks on bluetooth secure simple pairing
and countermeasures. IEEE Transactions on Wireless
Communications, 9(1), 2010.

[14] IETF. Counter with CBC-MAC (CCM). https://

www.ietf.org/rfc/rfc3610.txt, Accessed: 2018-
10-28.

[15] Markus Jakobsson and Susanne Wetzel. Security weak-
nesses in Bluetooth. In Cryptographers’ Track at the
RSA Conference, pages 176–191. Springer, 2001.

[16] Avinash Kak. BitVector.py. https://engineering.
purdue.edu/kak/dist/BitVector-3.4.8.html,
Accessed: 2018-10-28.

[17] John Kelsey, Bruce Schneier, and David Wagner. Key
schedule weaknesses in SAFER+. In The Second Ad-
vanced Encryption Standard Candidate Conference,
pages 155–167, 1999.

[18] Paraskevas Kitsos, Nicolas Sklavos, Kyriakos Papado-
manolakis, and Odysseas Koufopavlou. Hardware im-
plementation of Bluetooth security. IEEE Pervasive
Computing, (1):21–29, 2003.

[19] Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeif-
fer, and Manfred Schimmler. Breaking ciphers with
copacobana–a cost-optimized parallel code breaker. In
International Workshop on Cryptographic Hardware
and Embedded Systems, pages 101–118. Springer, 2006.

[20] Musaria K Mahmood, Lujain S Abdulla, Ahmed H
Mohsin, and Hamza A Abdullah. MATLAB Imple-
mentation of 128-key length SAFER+ Cipher System.

[21] Dennis Mantz. Internalblue. https://github.com/
seemoo-lab/internalblue, Accessed: 2018-10-30.

[22] James L Massey, Gurgen H Khachatrian, and Melsik K
Kuregian. Nomination of SAFER+ as candidate algo-
rithm for the Advanced Encryption Standard (AES).
NIST AES Proposal, 1998.

[23] Bodo Möller, Thai Duong, and Krzysztof Kotow-
icz. This POODLE bites: exploiting the SSL 3.0
fallback. https://www.openssl.org/~bodo/ssl-

poodle.pdf, Accessed: 2019-02-04, 2014.

[24] Michael Ossmann. Project Ubertooth. https://

github.com/greatscottgadgets/ubertooth, Ac-
cessed: 2018-11-01.

[25] John Padgette. Guide to bluetooth security. NIST Special
Publication, 800:121, 2017.

[26] Christina Pöpper, Nils Ole Tippenhauer, Boris Danev,
and Srdjan Čapkun. Investigation of signal and message
manipulations on the wireless channel. In Proceedings
of the European Symposium on Research in Computer
Security (ESORICS), December 2011.

[27] Jordan Robertson and Michael Riley. The Big
Hack: How China Used a Tiny Chip to Infiltrate
U.S. Companies. https://www.bloomberg.com/

news/features/2018-10-04/the-big-hack-

how-china-used-a-tiny-chip-to-infiltrate-

america-s-top-companies, Accessed: 2018-10-30.

[28] Yaniv Shaked and Avishai Wool. Cracking the Blue-
tooth PIN. In Proceedings of the conference on Mobile
systems, applications, and services (MobiSys), pages
39–50. ACM, 2005.

1060 28th USENIX Security Symposium USENIX Association

[29] Juha T Vainio. Bluetooth security. In Proceedings of
Helsinki University of Technology, Telecommunications
Software and Multimedia Laboratory, Seminar on In-
ternetworking: Ad Hoc Networking, Spring, volume 5,
2000.

[30] Mathy Vanhoef and Frank Piessens. Key reinstallation
attacks: Forcing nonce reuse in WPA2. In Proceedings
of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 1313–1328. ACM,
2017.

[31] Matthias Wilhelm, Ivan Martinovic, Jens B Schmitt,
and Vincent Lenders. Short paper: reactive jamming
in wireless networks: how realistic is the threat? In
Proceedings of the fourth ACM conference on Wireless
network security, pages 47–52. ACM, 2011.

[32] Ford-Long Wong and Frank Stajano. Location privacy
in Bluetooth. In European Workshop on Security in
Ad-hoc and Sensor Networks, pages 176–188. Springer,
2005.

A Appendix

The Key Negotiation Of Bluetooth (KNOB) attack reduces
the entropy of the encryption key (K′C) to 1 byte (key space
has 256 elements). Table 4 shows twenty encryption keys
with one byte of entropy both for E0 and AES-CCM.

E0 K′C in hex, MSB on the left AES-CCM K′C in hex, MSB on the left

0x00000000000000000000000000000000 0x00000000000000000000000000000000

0x00e275a0abd218d4cf928b9bbf6cb08f 0x01000000000000000000000000000000

0x01c4eb4157a431a99f2517377ed9611e 0x02000000000000000000000000000000

0x01269ee1fc76297d50b79cacc1b5d191 0x03000000000000000000000000000000

0x0389d682af4863533e4a2e6efdb2c23c 0x04000000000000000000000000000000

0x036ba322049a7b87f1d8a5f542de72b3 0x05000000000000000000000000000000

0x024d3dc3f8ec52faa16f3959836ba322 0x06000000000000000000000000000000

0x02af4863533e4a2e6efdb2c23c0713ad 0x07000000000000000000000000000000

0x0713ad055e90c6a67c945cddfb658478 0x08000000000000000000000000000000

0x07f1d8a5f542de72b306d746440934f7 0x09000000000000000000000000000000

0x06d746440934f70fe3b14bea85bce566 0x0a000000000000000000000000000000

0x063533e4a2e6efdb2c23c0713ad055e9 0x0b000000000000000000000000000000

0x049a7b87f1d8a5f542de72b306d74644 0x0c000000000000000000000000000000

0x04780e275a0abd218d4cf928b9bbf6cb 0x0d000000000000000000000000000000

0x055e90c6a67c945cddfb6584780e275a 0x0e000000000000000000000000000000

0x05bce5660dae8c881269ee1fc76297d5 0x0f000000000000000000000000000000

0x0e275a0abd218d4cf928b9bbf6cb08f0 0x10000000000000000000000000000000

0x0ec52faa16f3959836ba322049a7b87f 0x11000000000000000000000000000000

0x0fe3b14bea85bce5660dae8c881269ee 0x12000000000000000000000000000000

0x0f01c4eb4157a431a99f2517377ed961 0x13000000000000000000000000000000

Table 4: List of twenty K′C used by E0 (left column) and
AES-CCM (right column) when N = 1 (key space is 256).

USENIX Association 28th USENIX Security Symposium 1061

From IP ID to Device ID and KASLR Bypass∗

Amit Klein
Bar-Ilan University

Benny Pinkas
Bar-Ilan University

Abstract
IP headers include a 16-bit ID field. Our work examines the
generation of this field in Windows (versions 8 and higher),
Linux and Android, and shows that the IP ID field enables re-
mote servers to assign a unique ID to each device and thus be
able to identify subsequent transmissions sent from that de-
vice. This identification works across all browsers and over
network changes. In modern Linux and Android versions,
this field leaks a kernel address, thus we also break KASLR.

Our work includes reverse-engineering of the Windows IP
ID generation code, and a cryptanalysis of this code and of
the Linux kernel IP ID generation code. It provides practical
techniques to partially extract the key used by each of these
algorithms, overcoming different implementation issues, and
observing that this key can identify individual devices. We
deployed a demo (for Windows) showing that key extraction
and machine fingerprinting works in the wild, and tested it
from networks around the world.

1 Introduction

Online browser-based user tracking is prevalent. Tracking is
used to identify users and track them across many sessions
and websites on the Internet. Tracking is often performed in
order to personalize advertisements or for surveillance pur-
poses. It can either be done by sites that are visited by users,
or by third-party companies which track users across multi-
ple web sites and applications. [2] specifically lists motiva-
tions for web-based fingerprinting as “fraud detection, pro-
tection against account hijacking, anti-bot and anti-scraping
services, enterprise security management, protection against
DDOS attacks, real-time targeted marketing, campaign mea-
surement, reaching customers across devices, and limiting
number of access to services”.
Tracking methods Existing tracking mechanisms are usu-
ally based on either tagging or fingerprinting. With tagging,
the tracking party stores at the user’s device some informa-
tion, such as a cookie, which can later be tracked. Modern
web standards and norms, however, enable users to opt-out
from tagging. Furthermore, tagging is often specific for one
application or browser, and therefore a tag that was stored in
one browser cannot be identified when the user is using a dif-
ferent browser on the same machine, or when the user uses
∗An extended version of this paper can be found at http://www.

securitygalore.com/site3/usenix2019.

the private browsing feature of the browser. Fingerprinting
is implemented by having the tracking party measure fea-
tures of the user’s machine (for example the set of installed
fonts). Corporates, however, often install a single “golden
image” (standard set of software packages) on many iden-
tical (hardware-wise) machines, and therefore it is hard to
obtain fingerprints that distinguish among such machines.

In this work we present a new tracking mechanism which
is based on extracting data used by the IP ID generator (see
Section 1.1). It is the first tracking technique that is able to
simultaneously (a) cross the private browsing boundary (i.e.
compute the same tracking ID for a private mode tab/window
of a browser as for a regular tab/window of the browser);
(b) work across different browsers; (c) address the “golden
image” problem; and (d) work across multiple networks; all
this while maintaining a very good coverage of the platforms
involved. To our knowledge, no other tracking method (or
a combination of several tracking techniques) achieves all
these goals simultaneously. Moreover, the Windows variant
of this technique also survives Windows shutdown+startup
(but not restart).

Our techniques are realistic: for Windows we only need
to have control over 8-30 IP addresses (in 3-13 class B net-
works), and for Linux/Android, we only need to control 300-
400 IP addresses (can be in a single class B network). The
Windows technique was successfully tested in the wild.

1.1 Introduction to IP ID
The IP ID field is a 16 bit IP header field, defined in RFC
791 [11]. It is used to facilitate de-fragmentation, by mark-
ing IP fragments that belong to the same IP datagram. The
IP protocol assembles fragments into a datagram based on
the fragment source IP, destination IP, protocol (e.g. TCP or
UDP) and IP ID. Thus, it is desirable to ensure that given the
same source address, destination address and protocol, the
IP ID does not repeat itself in short time intervals. Simulta-
neously, the IP ID should not be predictable (across different
destination IP addresses) since “[IP ID] predictability allows
traffic analysis, idle scanning, and even packet injection in
specific cases” [30].

Designing an IP ID generation algorithm that meets both
requirements is not straightforward. Since IPv4 was stan-
dardized, several schemes have emerged:
• Global counter – This approach was used in the early

IPv4 days due to its simplicity and its non-repetition

USENIX Association 28th USENIX Security Symposium 1063

http://www.securitygalore.com/site3/usenix2019
http://www.securitygalore.com/site3/usenix2019

period of 65536 global packets. However it is extremely
predictable and thus insecure, hence abandoned.
• Counter/bucket based algorithms – This family of al-

gorithms, suggested by RFC 7739 [7, Section 5.3], is
the focus of our work. It uses a table of counters, and
a hash function that maps a combination of a source
IP address, destination IP address, key and sometimes
other elements into an index of an entry in the table. IP
ID is generated by choosing the counter pointed to by
the hash function, possibly adding to it an offset (which
may depend on the IP endpoints, key, etc.), and finally
incrementing the counter. The non-repetition period in
this family is 65536 global packets, and at the same time
knowing IP ID values for one pair of source and desti-
nation IP addresses does not reveal anything about the
IP IDs of pairs in other buckets.
• Searchable queue-based algorithm – This algorithm

maintains a queue of the last several thousand IP IDs
that were used. The algorithm draws random IDs un-
til one is found that is not in the queue. Then this ID
is used as the next IP ID, pushed to the queue, and
the least-recently used value is popped from the queue.
This algorithm ensures high unpredictability, and guar-
antees a non-repetition period as long as the queue.

Windows (version 8 and later) and Linux/Android imple-
ment variants of the counter-based algorithm. MacOS and
iOS implement a searchable queue algorithm.

1.2 Introduction to KASLR
KASLR (Kernel Address Space Layout Randomization) is
a security mechanism designed to defeat attack techniques
such as ROP (Return-Oriented Programming [27]) that rely
on the predictability of kernel code addresses. KASLR-
enabled kernels randomize the kernel image load address
during boot, so that kernel code addresses become unpre-
dictable. While, e.g. in the Linux x64 kernel, the entropy
of the load address is 9 bits, a brute force attack is deemed
irrelevant since each failure usually ends in a system freeze
(“kernel panic”). A typical KASLR bypass enables the at-
tacker to obtain a kernel address (from which, addresses to
useful kernel code gadgets can be calculated as offsets) with-
out de-stabilizing the system.

1.3 Our Approach
The IP ID generation mechanisms in Windows and in Linux
(UDP only) both compute the IP ID as a function of the
source IP address, the destination IP address, and a key K
which is generated when the source machine is restarted and
is never changed afterwards. We run a cryptanalysis attack
which analyzes the IP ID values that are sent by a device and
extracts the key K. This key can then be used to identify

the source device, because subsequent attacks will yield the
same key value (until the device is restarted).

In more detail, IP ID generation in both systems maintains
a table of counters and uses a hash function to choose which
counter is used for each connection. It seems hard to deploy
an attack based on the value of the counter, since each IP ID
might depend on a different counter. Instead, our attack tech-
niques rely on identifying and exploiting collisions which
map two destination IP addresses to the same counter. This
enables us to extract information about the key that caused
the hash values to collide (Linux), or (in Windows) extract
information about the offset of the IP ID from the counter.
These values depend on K and therefore enable us to learn K
and identify the machine.

Our approach does not rely on an a-priori knowledge of
the counter values. Moreover, after we reconstruct K, we
can reconstruct the current counter values (in full or in part)
by sending traffic to specially chosen IP addresses, obtaining
their IP ID values and with the knowledge of K, work back
the counter values that were used to generate them.
Linux/Android KASLR bypass Support for network
namespaces (part of container technology) was introduced in
Linux kernel 4.1. With this change, the key K was extended
to include 32 bits of a kernel address (the address of the net
structure for the current namespace). Thus, reconstructing
K also reveals 32 bits of a kernel address, which suffices to
reconstruct the full address and be able to bypass KASLR.1

Conclusion In general, our work demonstrates that the us-
age of a non-cryptographic algorithm for the generation of
attacker observable values such as IP ID, may be a security
vulnerability even if the values themselves are not security-
sensitive. This is due to an attacker’s ability to extract the
key used by the algorithm generating the values, and use this
key to track or attack the system.

1.4 Advantages of our Technique
Tracking machines based on the key that is used for generat-
ing the IP ID has multiple advantages:

Browser Privacy Mode: Since our technique exploits the
behavior of the IP packet generator, it is not affected if the
browser runs in privacy mode.

Cross-Browser: Since our technique exploits the behav-
ior of the IP packet generator, it yields the same device
ID regardless of the browser used. It should be noted that
browsers (like Tor browser) that relay transport protocols
through other servers are not affected by our technique.

Network change: Tracking works across different net-
works since our technique uses bits of K as a device ID, and
K does not depend on the device’s IP address or network.

1Through our IP ID attack we were also able to achieve partial KASLR
bypass, and a partial list of loaded drivers, with regards to Windows 10
RedStone 4. This attack was based on an additional initialization bug in
Windows. However, that bug was repaired in the October 2018 security
update and the corresponding KASLR bypass is not effective anymore.

1064 28th USENIX Security Symposium USENIX Association

The “Golden Image” Challenge: Since each device gen-
erates its own key K in a random fashion at O/S restart, even
devices with identical software and hardware will most likely
have different K values and thus different device IDs.

Not easily turned off: IP ID generation is built into the
kernel, and cannot be modified or switched off by the user.
Furthermore, the Windows attack can use simple HTTP traf-
fic. The Linux/Android attack requires WebRTC which can-
not be turned off for mobile Chrome and Firefox.

VPN resistant: The device ID remains the same when the
device uses an IP-layer VPN.

Windows shutdown+startup vs. restart: The Fast
Startup feature of Windows 8 and later,2 which is enabled
by default, saves the kernel to disk on shutdown, and reloads
it from disk on system startup. Therefore, K is not re-
initialized on startup, and keeps its pre-shutdown value. This
means that the tracking technique for Windows survives sys-
tem shutdown+startup. On restart, in contrast, the kernel is
initialized from scratch, and a new value for K is generated,
i.e. the old device ID is no longer in effect.

Scalability: Our technique can support billions of devices
(Windows, Linux, newer Androids), as the device ID is
random, and thus ID collisions are only expected due to the
birthday paradox. Thus the probability of a single device not
to have a unique ID is very low.

It should be noted that in the Linux/Android case, due
to the use of 300-400 IP addresses, the need to “dwell” on
the page for 8-9 seconds, and (in newer Android devices)
the excessive attack time, there are use cases in which the
technique may be considered invasive and/or inapplicable.

Additional Contributions: In addition to the cross-
browser tracking technique for Windows and Linux, and
the KASLR bypass with respect to Linux, we also provide
the first full public documentation of the IP ID generation
algorithm in Windows 8 and later versions, obtained via
reverse-engineering of the relevant parts of Windows kernel
tcpip.sys driver, and a cryptanalysis of said algorithm. We
also show a demo implementation of the Windows tracking
technique and provide results from an extensive in-the-wild
experiment spanning 75 networks in 18 countries, demon-
strating the applicability of the attack.

We disclosed the vulnerabilities to Microsoft and Linux.
Microsoft fixed the issue in Windows April 2019 Secu-
rity Update (CVE-2019-0688).3 Linux fixed the kernel ad-
dress disclosure (CVE-2019-10639) together with partially
addressing the key-based tracking technique (by extending
the key to 64 bits) in a patch4 applied to Linux kernel ver-

2https://blogs.msdn.microsoft.com/olivnie/2012/12/14/
windows-8-fast-boot

3https://portal.msrc.microsoft.com/en-US/
security-guidance/advisory/CVE-2019-0688

4“netns: provide pure entropy for net_hash_mix()”
(https://github.com/torvalds/linux/commit/

sions 5.1-rc4, 5.0.8, 4.19.35, 4.14.112, 4.9.169 and 4.4.179.
For 3.18.139 and 3.16.67, Linux applied a patch5 we devel-
oped, that extends the key to 64 bits. The key-based tracking
technique (CVE-2019-10638) is fully addressed in a patch,6

part of kernel version 5.2-rc1, and will be back-ported to ker-
nel versions 5.1.7, 5.0.21, 4.19.48 and 4.14.124.

Note: many non-essential details of the attack, as well as
proofs for false positive bounds for Windows, are deferred to
the extended version of the paper.

2 The Setting

We assume that device tracking is carried out over the web,
using an HTML snippet (which can be embedded by a 3rd

party site/page). The snippet forces the browser to send TCP
or UDP traffic (one packet per destination IP suffices) to
multiple IP addresses under the tracker’s control (8-30 ad-
dresses for Windows, 300-400 for Linux/Android). Ideally,
such transmission would be rapid. In our experiments, this
can be done in few seconds or less.

For the Windows attack, the tracker needs to choose the IP
addresses according to some trivial constraints (the Linux IP
addresses are not subject to any constraints). A discussion of
the exact constraints and their trade-offs can be found in the
extended paper. At the server side, the tracker collects the IP
ID values sent by the client to each of the IPs, and computes
a device ID consisting of bits of the key in the device’s kernel
data that is used to calculate the IP ID.

Additional scenarios (KASLR bypass and internal IP dis-
closure) for Linux/Android attacks are described in the ex-
tended paper.

3 Related Work

Many tracking techniques were suggested in prior research.
At large, proposals can be categorized by their passive/active
nature. We use the terminology defined in [31]:
• A fingerprinting technique measures properties already

existing in the browser or operating system, collecting a
combination of data that ideally uniquely identifies the
browser/device without altering its state.
• A tagging technique, in contrast, stores data in the

browser/device, which uniquely identifies it. Further
access to the browser can “read” the data and identify
the device.

355b98553789b646ed97ad801a619ff898471b92)
5“inet: update the IP ID generation algorithm to

higher standards” (https://git.kernel.org/pub/scm/
linux/kernel/git/stable/linux.git/commit/?id=
55f0fc7a02de8f12757f4937143d8d5091b2e40b)

6“inet: switch IP ID generator to siphash” (https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=df453700e8d81b1bdafdf684365ee2b9431fb702)

USENIX Association 28th USENIX Security Symposium 1065

https://blogs.msdn.microsoft.com/olivnie/2012/12/14/windows-8-fast-boot
https://blogs.msdn.microsoft.com/olivnie/2012/12/14/windows-8-fast-boot
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0688
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0688
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://github.com/torvalds/linux/commit/355b98553789b646ed97ad801a619ff898471b92
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=55f0fc7a02de8f12757f4937143d8d5091b2e40b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=55f0fc7a02de8f12757f4937143d8d5091b2e40b
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=55f0fc7a02de8f12757f4937143d8d5091b2e40b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df453700e8d81b1bdafdf684365ee2b9431fb702
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df453700e8d81b1bdafdf684365ee2b9431fb702
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=df453700e8d81b1bdafdf684365ee2b9431fb702

As described in Section 1, fingerprinting techniques typically
cannot guarantee the uniqueness of the device ID, in partic-
ular with respect to corporate machines cloned from “golden
images”. Tagging techniques store data on the device, and
as such they are more easily monitored and evaded. A com-
prehensive discussion of tracking methods can be found in
Google Chromium’s web page “Technical analysis of client
identification mechanisms” [12].

3.1 IP ID Research

Device tracking via IP ID: Using IP ID is proposed in [5]
(2002) to detect multiple devices behind a NAT, assuming an
IP ID implementation using a global counter. But nowadays
none of the modern operating systems implements IP ID as
a global counter. A similar concept is presented by [25] for
a single destination IP (the DNS resolver) which theoreti-
cally works for devices that have per-IP counter (Windows,
to some extent). However, this technique does not scale be-
yond a few dozen devices, due to IP ID collisions (the IP ID
field provides at most 216 values), and requires ongoing ac-
cess to the traffic arriving at the DNS resolver.
Predictable IP ID: The predictability of IP ID may theo-
retically be used in some conditions to track devices. [6]
describes a technique to predict the IP ID of a target, but re-
quires the adversary to have a fully controlled device along-
side it behind the same NAT. Also this technique only han-
dles sequential increments (e.g. not time-based). As such,
it is inapplicable to the more general scenarios handled in
this paper. This technique is then used in [9] to poison DNS
records.
OS Fingerprinting: [32] suggests using IPID = 0 as a fin-
gerprint for some operating systems.
Measuring traffic: [29] samples IP ID values from servers
whose IP ID is a global counter, to estimate their outbound
traffic.
IP ID Algorithm Categorization: [28] provides practical
classification of IP ID generation algorithms and measure-
ments in the wild.
Fragmentation attacks: While not directly related to the
properties of the IP ID field, it should be noted that attack
techniques abusing fragmentation are known. RFC 1858
[26] lists several such attacks, e.g. the “tiny frgament” at-
tack and the “overlapping fragement” attack.

Windows IP ID research: In parallel to our research, Ran
Menscher published on Twitter his research on Windows IP
ID [23]. That research reverse-engineered part of the Win-
dows IP ID generation algorithm (without revealing how the
index to the counter array is calculated). The analysis of this
algorithm is based on two assumptions: (1) that the tech-
nique is applied shortly after restart, when the relevant mem-
ory buffer contains zeroes in a large part of its cells; and
(2) that the attacker controls or monitors traffic to pairs of IP
addresses which differ in single, specific bit position (includ-

ing positions in the left half of the address). Based on these
extreme assumptions, the attacker can extract the key eas-
ily, and use it to expose kernel 31-bit data quantities (though
without learning where in the array this data resides).

The uninitialized memory issue exploited by this attack
was fixed in Microsoft’s October 2018 Security Update [24],
which invalidated assumption (1), rendering Menscher’s at-
tack completely ineffective. Our attack and our demo, on the
other hand, still work against systems that were patched with
this update. Our work has multiple contributions over Men-
scher’s attack: (1) We provide the full details of the IP ID al-
gorithm. (2) Our analysis does not rely on the array data, and
is thus still in effect after applying the October 2018 Security
Update which initializes the array with random data. (3) Our
analysis does not require the extreme requirements on the re-
lations between the addresses of the controlled/monitored IP
addresses. (4) Our kernel data exposure provides positions
of the data, not just data quantities (though our kernel expo-
sure technique, too, was eliminated with the October 2018
Security Update). (5) It should also be noted that unlike our
attack, Menscher’s technique could not be used for tracking,
since as the cell arrays become non-zero when they are in-
cremented, the attack becomes ineffective.

3.2 PRNG seed/key extraction

Our approach involves breaking the random number gen-
erator algorithm used by operating systems to generate the
IP ID value and obtain the seed/key used by the algorithm.
Similar strategies were used to different ends. For example,
[17] broke the PRNG of the Witty worm to obtain the seed,
from which they learned the infection time of the Internet
nodes. [14] broke the Javascript Math.Random() PRNG of
several browsers, obtained the seed and used it as a browser
instance tracking ID. [15] broke the Math.Random() PRNG
of Adobe Flash, obtained the seed and used it to extract the
machine clock speed.

4 Tracking Windows 8 (and Later) Devices

In this section we first present the algorithm that is used for
generating the IP ID in Windows 8 (and later) devices. The
input to this algorithm includes a key which is generated at
system restart. We then describe how a remote server can
identify 45 bits of this key. This data enables to remotely
and uniquely identify machines.

4.1 IP ID Generation

IP ID prior to Windows 8 In versions of Microsoft Win-
dows up to and including Windows 7, the IP ID was gener-
ated sequentially and globally. That is, for each outgoing IP
packet, a global counter would be incremented by 1 and the

1066 28th USENIX Security Symposium USENIX Association

result (truncated to 16 bits) would be used [25]. These older
Windows versions are out of scope for this paper.

The source code of the algorithm that is used for gener-
ating IP ID values in Windows is not public. However, we
recovered the exact algorithm using reverse engineering, and
verified its correctness by comparing its output to IP ID val-
ues generated by live Windows systems.
Technical details The algorithm was obtained by reverse-
engineering parts of the tcpip.sys driver of 64-bit Win-
dows 10 RedStone 4 (April 2018 Update, Build 1803). Ap-
parently this algorithm is in use starting with Windows 8 and
Windows Server 2012. Notice that the code is not specific
to IPv4, and can be used with IPv6, which is why the key K
is defined as 320 bits - more than required to support IPv4.7

For IPv4 pre RedStone 5, only 106 key bits are used.
Toeplitz hash The IP ID generation is based on the
Toeplitz hash function defined in [10]. Let us first define
the Toeplitz hash, T (K, I), which is a bilinear transformation
from a binary vector K in GF(2)320, and an input which is a
binary string I (where |I| ≤ 289) to the output space GF(2)32.
For a binary vector V , denote by Vi the i-th bit in the vector,
with bit numbering starting from 0. The i-th bit of T (K, I)
(0 ≤ i ≤ 31) is defined as the inner product between I and a
substring of K starting in location i. Namely

T (K, I)i =

|I|−1⊕
j=0

I j ·Ki+ j (1)

IP ID generation The IP ID generation algorithm itself
uses keys K (tcpip!TcpToeplitzHashKey) which is a 320
bit vector, and K1 and K2 which are 32 bits each. All these
keys are generated once during Windows kernel initialization
(using SystemPrng and BCryptGenRandom).

In addition to these constant keys, the algorithm uses a
dynamic array of M counters, denoted β [0], . . . ,β [M− 1],
where M is a power of 2, and is specifically set to M = 8192.

Algorithm 1 describes how Windows 8 (and later) gener-
ates an IP ID for a packet delivered from IPSRC to IPDST ,
while updating a counter in β .

The algorithm uses the keys, and the source and destina-
tion IP addresses, to pick a random index i for a counter in β ,
and an offset. The algorithm outputs the sum of the counter
β [i] and the offset, and increments the counter.
Notation We use the notation Num(a0,a1, . . . ,a31) for the
number represented in binary by the bits ai, namely the num-
ber ∑

31
i=0 ai · 231−i. (Network byte order is used throughout

the paper for representing IP addresses as bit vectors, e.g.
127.0.0.1 is 01111111.00000000.00000000.00000001.)
Properties of the Toeplitz hash Our attack uses the fol-
lowing properties of T , which follow from the linearity of
this transformation:

T (K, I||(0,0, . . . ,0)) = T (K, I) (2)
7 Our tracking technique can be probably adapted to IPv6, but since IPv6

is out of scope for this paper, we did not test this.

Therefore the trailing zeros in the input of T in the compu-
tation of v on line 3 of Algorithm 1, have no effect on the
output. Also,

T (K, I1||I2) = T (K, I1)⊕T (K,0|I1|||I2) (3)

Therefore it is possible to decompose the second input of T
to two parts, and rephrase the computation as the XOR of
two separate expressions.

4.2 Reconstructing the Key K
To reconstruct the key, the device needs to be measured. The
measurements only take a few seconds, and are thus assumed
to take place from the same network. I.e., the device’s source
IP address, IPSRC, is fixed (though possibly unknown). A
first set of measurements directs the client device to J IP ad-
dresses from the same class B network. A second set of mea-
surements directs the client device to G pairs of IP addresses,
each pair in the same class B network, with G different class
B network pairs in the set.

Once the device is measured, the attack proceeds in two
phases. The first phase of the attack recovers 30 bits of the
key using the first set of measurements. The second phase
of the attack reveals additional 15 bits of the key using the
second set of measurements. Overall, the measurements re-
veal 45 bits of the key, which suffices to uniquely identify
machines from a large population, with high probability.

Section 4.5 describes how to optimally choose the param-
eters J and G given limits on the number of IP addresses that
are available (L) and the processing time that is allowed (T).
For L= 30 IP addresses (typical low budget limit), and attack
run time limit of T = 1 seconds on a single Azure B1s ma-
chine (α = 0.001 from Section 5.2), the optimal parameter
values are J = 6,G = 12.

4.3 Extracting Bits of K - Phase 1
Denote by IPg, j, IPIDg, j and β [ig]g, j the values of the des-
tination IP address, the IP ID and β [i] (prior to increment)
respectively, with respect to the j-th packet in the g-th class
B network that is used in the attack (j and g are counted
0-based). The first phase of the attack uses only a single
class B network, and therefore g is set to 0 in this phase.
We thus use the following shorthand notation: IP j = IP0, j,
IPID j = IPID0, j and βg = β [ig]g,0.

A major observation is that only the first half of IPDST is
used to calculate i in Algorithm 1. Therefore packets that are
sent to different IP addresses in the same class B network,
have an identical index i into the counter table, and use the
same counter β [i]. Denote the value of i for the g-th class B
network as ig.

If these packets are sent in rapid succession (i.e. when no
other packet is sent in-between with i = ig), then β [ig]g, j =
βg + j mod 232, and therefore the output in line 5 of the

USENIX Association 28th USENIX Security Symposium 1067

Algorithm 1 Windows 8 (and later) IP ID Generation
1: procedure GENERATE-IPID
2: i← Num(K2⊕T (K,(IPDST)0,..., |IPDST |

2 −1
)⊕T (K, IPSRC)) mod M

3: v← β [i]+Num(K1⊕T (K, IPDST ||IPSRC||032)) mod 232

4: β [i]← (β [i]+1) mod 232

5: return v mod 215 . v mod 216 for Windows 10 RedStone 5

algorithm is calculated with β [ig]g, j = βg + j mod 215 (for
simplicity, in Windows 10 RedStone 5, we discard the most
significant bit of the IP ID).

We focus in this phase on the first class B network, b0,
with J destination IP addresses in it. Note that the offset that
is calculated in line 3 is the difference between the IPID and
the counter β [i0] prior to its increment.

The attack enumerates over the values of the β0 mod 215

counter. For each possible value it calculates the differences
between the observed J IPIDs and the corresponding values
of the counter, arriving at the offsets calculated in line 3. By
observing pairs of IPIDs, it is possible to identify the correct
value of β0 mod 215 as well as 30 bits of the key.

In more detail, for each possible value of β0 mod 215 the
attack calculates the difference

IPID j− (β0 + j mod 215) mod 215

which, for the right value of the counter should be equal to
the offset that is calculated in line 3. Namely to

Num(K1⊕T (K, IP j||IPSRC||032)) mod 215

This value can be expressed as (K1 ⊕
T (K, IP j||IPSRC||032))17,...,31. Applying eq. (2) and
eq. (3), this expression is simplified into:

(K1⊕T (K, IP j)⊕T (K,032||IPSRC))17,...,31

.
The attack takes two different j values and computes the

XOR of the two corresponding such quantities. This results
in the following expression (where we denote by Vec a rep-
resentation of a number in [0,232) as a vector in GF(2)32):

(Vec(IPID j− (β0 + j) mod 215)⊕

Vec(IPID j′ − (β0 + j′) mod 215))17,...,31 =

T (K, IP j⊕ IP j′)17,...,31

This yields 15 linear equations (i = 17, . . . ,31) on K since
(from eq. (1)):

T (K, IP j⊕ IP j′)i =
31⊕

m=0

(IP j⊕ IP j′)m ·Ki+m

Since all IP j belong to the same class B network, IP j⊕ IP j′

always has 0 for its first 16 bits, and therefore m can start at

16. Due to obvious linear dependencies, only J− 1 sets of
such equations are useful (e.g. all pairs with j′ = 0), with a
total of 15(J−1) linear equations for bits K33, . . . ,K62. That
is, for j = 1, . . . ,J−1 and i = 17, . . . ,31, the equations are:

31⊕
m=16

(IP j⊕ IP0)m ·Ki+m =

(Vec(IPID j− (β0 + j) mod 215)⊕
Vec(IPID0− (β0) mod 215))i (4)

Speeding up the computation using preprocessing The
coefficients of K in eq. (4) are controlled by the server and
are known at setup time. Therefore it is possible to prepro-
cess the computation of Gaussian elimination. Namely, com-
pute a matrix Z that, when multiplied by the observed values,
reveals bits of the key. This preprocessing is only important
for efficiency, therefore we defer the details to the extended
paper.

Attack summary
1. The tracker needs to control J IP addresses in the same

class B network.
2. During setup time, the tracker calculates, using Gaus-

sian elimination, a matrix Z ∈ GF(2)15(J−1)×15(J−1),
based on the values of these IP addresses.

3. In real time, the tracker gets IP ID values from the de-
vice, from packets sent to the J destination IP addresses
under the tracker’s control.

4. The tracker then guesses 14 bits (β0 mod 214 - the
most significant bit of β0 mod 215 cancels itself in
eq. (4)) of the counter that is used for these IP addresses,
calculates vectors D j (j = 1, . . . ,J − 1), where D j =
(Vec(IPID j − (β0 + j) mod 215)⊕ Vec(IPID0 − (β0)
mod 215))17,...,31, and performs a matrix-by-vector mul-
tiplication of Z and the vector (D0, . . . ,DJ−1).

For the correct value of β0 mod 214 this computation
results in a vector of 15(J− 1) bits, whose first 30 bits
are K33, . . . ,K62 and the remaining bits are zero.

5. The attacker identifies the right value of the counter by
comparing to zero the 15(J−1)−30 bits starting at po-
sition 31: if 15(J− 1)− 30� 14, this verification sta-
tistically guarantees the correctness of the solution (up
to a flipped most significant bit in β0 mod 214, see the
extended paper.)

1068 28th USENIX Security Symposium USENIX Association

Overall this process reveals 30 bits of the key as well as
the value (β0 mod 214).

The attack takes 214 · (15(J−1))2 bit operations (for enu-
meration over the possible key values and for the matrix-by-
vector and (15(J−1))2 memory bits (for Z). As explained in
Section 4.5, we set J = 6 and therefore this overhead is very
small.

The tracker obtains the (correct) value β0 mod 214, which
will be used in the next phase. While it is guaranteed that
the correct K and β0 mod 214 will be found, the algorithm
may emit additional candidates (with incorrect β0 mod 214).
The false positive probability of both phases of the attack is
analyzed in the extended paper.8

4.4 Extracting Bits of K - Phase 2
Given 30 bits of K (K33, . . . ,K62) and the value (β0
mod 214), recovered in Phase 1, the attack can be extended
to learn a total of up to 45 key bits (K18, . . . ,K62). This is
done in the following way. The offset for IPID0 computed in
line 3 of Algorithm 1 is:

Num(K1⊕T (K, IP0)⊕T (K,032||IPSRC)) mod 215 =

(IPID0−β0) mod 215

The following equation follows from the previous one:

(K1⊕T (K,032||IPSRC))17,...,31 = T (K, IP0)17,...,31⊕

Vec(IPID0−β0 mod 215)17,...,31

The tracker looks at pairs of IP addresses in the remaining
B classes (b1, . . . ,bG), each pair in a different class B net-
work. Denote each such pair as (IPg,0, IPg,1), with the order
inside the pair conforming to the order of packet transmis-
sion, and the packets being transmitted in rapid succession.
Substituting the above into the definition of IPID yields:

IPIDg, j = βg + j+Num(T (K, IP0)17,...,31

⊕ Vec(IPID0−β0 mod 215)17,...,31

⊕ T (K, IPg, j)17,...,31) mod 215

Using the linearity of T , this is simplified into:

IPIDg, j = βg + j+Num (T (K, IP0⊕ IPg, j)17,...,31 ⊕
Vec(IPID0−β0 mod 215)17,...,31) mod 215

Let us use the notation

Sg, j = Num (T (K, IP0⊕ IPg, j)17,...,31 ⊕
Vec(IPID0−β0 mod 215)17,...,31) mod 215

8Note: Throughout the paper, we assume that rank(C) = 30. This re-
sults in a single key vector per guessed β0 mod 214. We discuss the con-
ditions on IP0, . . . , IPJ−1 to meet this assumption in the extended paper. If
rank(ker(C))> 0, then each guess of β0 mod 214 yields 2rank(ker(C)) possi-
ble keys. Thus small values of rank(ker(C)) are acceptable.

Then this equation becomes

IPIDg, j = βg + j+Sg, j mod 215

Subtracting the IPIDs of the two consecutive packets in
the same B class (with j = 0 and j = 1) cancels the value of
the counter βg, and yields:

(IPIDg,1− IPIDg,0) mod 215 = 1+Sg,1−Sg,0 mod 215

(5)
The left side of the equation is observed by the tracker.

The right side can be computed based on β0 mod 215 and
K17, . . . ,K62. The tracker already knows these values except
for K18, . . . ,K33, and therefore only needs to enumerate over
the 215 possible values of K18, . . . ,K32 and eliminate all val-
ues which do not agree with the equation. We discuss this
procedure in depth in the extended paper.

Attack summary:
1. The tracker needs to control additional G pairs of IPs

(each pair in its own class B network).
2. Given IP IDs for these pairs, the tracker enumerates

over additional 15 key bits, and then, for each pair of
IP addresses, calculates both sides of eq. (5) and com-
pares them. For this calculation the tracker can choose
K17 and the leftmost bit of β0 mod 215 arbitrarily, as
they will both cancel themselves.

3. In theory, each IP pair should yield a 215 elimination
power for identifying the right key, but see the extended
paper for a more accurate analysis.

4. In the calculation, the leading term (in terms of run
time) is computing T (K, I)17,...,31 (where |I| = 32),
which takes 14|I| bit operations, and is used twice.
Thus, the run-time is roughly 215 · 2 · 14 · 32 bit opera-
tions (there is no multiplication by G since the first pair
is likely to eliminate almost all false guesses).

At the end of Phase 2, the tracker obtains:
• A partial key vector (or some candidates) K18, . . . ,K62

(45 bits), which is specific to the device since it was
set during kernel initialization, and does not depend on
IPSRC. These bits serve as a device ID.
• The value

(K1⊕T (K,032||IPSRC))18,...,31 = T (K, IP0)18,...,31

⊕Vec(IPID0−β0 mod 214)18,...,31

This value allows the tracker to calculate (assuming
K18, . . . K62 are known) the value of the counter β [i]
mod 214 for any destination IP address whose IP ID is
known (provided the source IP is IPSRC).9

9This is useful for reconstructing the table β of counters – this table is
not correctly initialized (pre October 2018 Security Update), and therefore is
populated with kernel data that happens to be (in build 1803) data structures
containing kernel address pointers.

USENIX Association 28th USENIX Security Symposium 1069

4.5 Choosing Optimal G and J

For Windows, we assume budget-oriented constraints,
namely L available IP addresses and T CPU time per mea-
surement. We need to set the number J of IP addresses from
the same class B network to which the client is directed in
the first set of measurements, and the number G of pairs of
IP addresses, each pair in the same class B network, used in
the second set of measurements.

Our goal is to optimize for minimum false positives. The
first constraint can be expressed as J + 2G ≤ L. As for the
second constraint, the leading term of the time of the attack
run is α ·(J!) (Appendix A.1.2), where α expresses the com-
puting platform’s strength. Therefore, we can approximate
the second constraint as α · (J!) ≤ T . Additionally, there
are inherent constraints: J− 1 ≥ 3 to let Phase 1 suggest a
single key candidate to Phase 2 (most of the time), and G≥ 2
to let Phase 2 provide a single final key (most of the time).

Given these constraints, we want to minimize the leading
term in false positives, 2 · 2−G+J−1

2 (Appendix A.2), i.e. we
need to maximize G+ J. Since we “pay” two IP addresses
for each increment of G and only one IP address for each
increment of J, we should make J as large as possible (as
long as G is valid), so the solution is:

J = min(max({J | αJ!≤T }),L−4)

(As stated in Section 4.2, for L = 30, T = 1 sec., and
α = 0.001, the optimal combination is J = 6,G = 12.)

4.6 Practical Considerations
We discuss in Appendix A.1 different issues that appear
when deploying the attack. These issues include ways to
emit the needed traffic from the browser, handling packet
loss and out-of-order packet transmission, handling interfer-
ing packets, and limiting the false-positive and false-negative
error probabilities.

The run time of the key extraction attack is less than a
second even on a very modest machine. The dwell time
(time duration in which the page needs to be loaded in the
browser) is 1-2 seconds for a WebSocket implementation. It
is possible to minimize the dwell time by moving to We-
bRTC (STUN).

Longevity: the device ID is valid until the machine restarts
(mere shutdown+start does not invalidate the device ID due
to Windows’ Fast Start feature). A typical user needs to
restart his/her Windows machine only for some Windows up-
dates, i.e. with a frequency of less than once per month.

The attack is scalable: with 41 bits, the probability of a
device to have a unique ID is very high, even for a billion
device population; false positives are also rare (2.1× 10−6

– Table 3), and false negatives can be made negligible (Ap-
pendix A.1.4). From resource perspective, the attack uses a
fixed number of servers, RAM/disk and (L = 30) IPs. The

required CPU power is linear in the number of devices mea-
sured per time unit, and in the Windows case is negligible.
Network consumption per test is also negligible (assuming
WebRTC/STUN implementation – 1.5KB at the IP layer.)

4.7 Attack Improvements and Variants
A fast-track identification of already-seen keys can be ob-
tained in the following way: Once bits of a key K are ex-
tracted, they will be stored for comparison against future
connections. When a device is to be measured, the tracker
first goes through all stored K bit strings, and tests the mea-
sured data for compatibility with each one of them. This
amounts to guessing the bits of β0 one by one, starting
from the least significant, and eliminating via eq. (5), using
mod 2n where n is the number of β0 bits guessed so far. The
CPU work per key is thus almost negligible.

The original attack can also be sped up using incremental
evaluation. The details are in the extended paper.

4.8 Environment Factors
We demonstrate here that the tracking attack can be deployed
in almost every setting that can be reasonably expected.

HTTPS: In essence, there should be no problem in hav-
ing the snippet use WebSocket over HTTPS (wss:// URL
scheme) for TCP packets.

NAT: Typically NAT (Network Address Translator) de-
vices do not alter IP IDs, and thus do not affect the attack.

Transparent HTTP Proxy / Web Gateway: Such de-
vices may terminate the TCP connection and establish their
own connections (with IP ID from their own network stack)
and thus render our technique completely ineffective. How-
ever, typically these devices do not interfere with HTTPS
(TCP port 443) traffic, and UDP traffic, so these alternatives
can be used by the tracker.

Forward HTTP proxy: When a browser is configured to
use a forward proxy server, even HTTPS traffic is routed to
it by the browser. However, it may still be the case that UDP
traffic (which is not handled by HTTP forward proxies) can
be used by the technique.

Tor-based browsers and similar browsers: Browsers
that forward TCP traffic to proxy servers (and disallow or
forward UDP requests) are incompatible with the tracking
technique as they do not expose IP header data generated on
the device. Since “Tor transports TCP streams, not IP pack-
ets”,10 this applies to all Tor-based products, such as the Tor
browser and Brave’s “Private Tabs with Tor” and therefore
they are not covered by our technique.

Windows Defender Application Guard (WDAG): This
new technology in Windows 10 enables the user to launch the
Edge browser in a virtual environment. While the device ID

10https://www.torproject.org/docs/faq.html.en#
RemotePhysicalDeviceFingerprinting

1070 28th USENIX Security Symposium USENIX Association

https://www.torproject.org/docs/faq.html.en#RemotePhysicalDeviceFingerprinting
https://www.torproject.org/docs/faq.html.en#RemotePhysicalDeviceFingerprinting

in this virtual environment is independent of the device ID of
the main operating system, it is consistent among all WDAG
Edge instances. Furthermore, unlike the “main” Windows
device ID, the WDAG device ID does not change with oper-
ating system restart, hence the WDAG device ID lives longer
than the main Windows device ID. It should be noted that
WDAG is only available for Edge browser in Windows 10
Enterprise/Pro edition, and requires high-end hardware.

IP-Level VPN: We experimented with F-Secure Free-
Dome (www.f-secure.com/en/web/home_global/
freedome) and PureVPN (www.purevpn.com/). Both
VPNs supported our technique.

IPv6 and IPsec: We do not know whether IPv6 or IPsec
packets use the same IP ID generation mechanism. This re-
quires further research.

Javascript disabled: Tracking can also work when
Javascript (or any client side scripting) is not available, e.g.
with the NoScript browser extension [20]. We discuss this in
the extended paper.

4.9 Possible Countermeasures
We list here some obvious ways of modifying Algorithm 1
and their impact:
• Increasing M (the size of the table of counters) – sur-

prisingly, this has very little effect on the basic tracking
technique, since no assumptions were made on M in the
first place. It does affect the β reconstruction technique.
• Changing T into a cryptographically strong keyed-hash

function – while this change eliminates the original at-
tack, it is still possible to mount a weaker attack that
only tracks a device while its IPSRC does not change. In
fact, this applies to the entire abstract scheme proposed
in [7, Section 5.3]. See the extended paper for details.
• Changing the algorithm altogether (this is our recom-

mendation). A robust algorithm relies on industrial-
strength cryptography, large enough key space, and
strong entropy source for the key, and uses them to gen-
erate IP IDs which (a) have guaranteed non-repetition
period; (b) are difficult to predict; and (c) do not leak
useful data. The algorithm used in macOS/iOS [30] is a
good example. This eliminates the attack altogether.

5 Field Experiment – Attacking Windows
Machines in the Wild

We set up a fully operational system to test the IP ID behav-
ior in the wild, as well as to verify that the technique for ex-
tracting device IDs for Windows machine works as expected.

5.1 Setup
As explained in Appendix A.1.3, in order to avoid false posi-
tives (which almost always happen due to false keys that dif-

fer from the true key in a few most significant bits), we need
to trim the most significant bits from the key – i.e. use the
key’s tail. For the full production setup (30 IP addresses),
we calculated that a tail of 41 bits will suffice. Due to lo-
gistic and budgetary constraints, in our experiment we used
only 15 IP addresses (rather than 30) for the key extraction
(and 2 more IPs for verification), with J = 5,G = 5,Q = 1.
Thus we lowered the tail length to 40, and used the 40 bits
K23, . . . ,K62 as a device ID. That is, for this experiment, we
traded the device ID space size for a smaller probability of
false positives.

We then used WebSocket traffic to the additional pair of
IP addresses (from a class B network that is different than
those in the initial set of 15 IPs) to verify the correctness of
the key bits extracted. In this experiment, since we do not
extract K17,...,22 we can only compute the least significant 9
bits of the IPID, adapting eq. (5) into:

IPIDg,1 mod 29 = IPIDg,0±1+Sg,1−Sg,0 mod 29

(We need to use±1 since we cannot know the order of packet
generation. Thus given knowledge of IPIDg,0 we have two
candidates for IPIDg,1, out of a space of 29 = 512 values.)
A random choice of two values yields a success rate of 1/256.
We deem our algorithm to be valid if it consistently yields
the correct value (in one of the candidates) in all tests.

We asked “Friends and Family” to browse to the demo site
using Windows 8 or later, from various networks.

5.2 Results
Network distribution The experiment was conducted
from July 22nd, 2018 to October 20th, 2018. We collected
data on 75 different class B networks. The networks are well
dispersed across 18 countries and 4 continents. The networks
are also usage-diverse (home networks, SMB networks, cor-
porate networks, university networks, public hotspots and
cellular networks). We asked the users who connected to
our demo site to use multiple regular browsers and networks,
and connect at different times, and verified that the device ID
remained the same in all these connections.
Failures to extract a key – IP ID modification In only 6
networks out of 75 (8%) we could not extract the key and
therefore concluded that the IP ID was not preserved by the
network. These six networks did not include any major ISP
and seem to be used by relatively few users: they included an
airport WiFi network, a government office, and a Windows
machine connecting through one cellular hotspot (hotspots
that we tested in other cellular networks did not change the
IP ID). Of those six networks, in 3 networks we had clear
indication that a transparent proxy or a web security gate-
way was in path. In such cases, moving to WebSocket over
HTTPS, or to UDP would probably have addressed the issue.
Another case was a forward proxy (moving to UDP would
have possibly addressed it). In the two final cases, the exact

USENIX Association 28th USENIX Security Symposium 1071

www.f-secure.com/en/web/home_global/freedome
www.f-secure.com/en/web/home_global/freedome
www.purevpn.com/

nature of interference was not identified. We can say then
that optimistically, only 2 networks out of 75 (2.7%) are in-
compatible with the tracking technique, maybe even less (as
it is still quite possible these two TCP gateways are actually
transparent proxies).
Positive results In the remaining 69 networks, for 4 net-
works we did not keep traffic for the additional two IPs, thus
we could not verify the key extraction. For the rest 65 net-
works, our algorithm extracted a single 40-bit key, and cor-
rectly predicted the least significant 9 bits of the IPID of the
second IP in the last pair (i.e. the correct value was one of
the two candidates computed by the algorithm). This verifies
the correctness of the algorithm and the key bits it extracts.
Lab verification We tested a machine in the lab with
the above test setup to obtain 40 bits of K. Then,
using WinDbg in local kernel mode, we obtained
tcpip!TcpToeplitzHashKey, extracted the 40 bits from
it and compared to the 40 bits calculated by the snippet – as
expected, they came out identical.
Actual run time We estimate the overall runtime for J =
6,G = 12 on a single Azure B1s machine to be 0.73 seconds.
Packet loss and false negatives We analyzed 79 valid tests
and found only 3 cases wherein the analysis logic failed to
provide a device ID (additional test from the same devices
succeeded in extracting a key). In all such cases a man-
ual analysis indicates that this is due to packet loss. Ap-
pendix A.1.4 describes additional logic that can be used to
reduce false negatives to a negligible level.

6 Linux and Android

The scope of our research is Linux kernel 3.0 and above.
Also, we only investigated the x64 (typical desktop Linux)
and ARM64 (Android) CPU architectures, although almost
all of the analysis is not architecture-specific.

6.1 Attack Outline
In order to track a Linux/Android device, the tracker needs
to control several hundred IP addresses. The tracking snip-
pet forces the browser to rapidly emit UDP packets to each
such IP (using WebRTC and specifically the STUN proto-
col, which enables sending bursts of packets closely spaced
in time to controlled destination addresses). It also collects
the device’s source IP address (using WebRTC as well or a
different approach described in the extended paper.)

The tracker collects IP IDs from all IP addresses, and iden-
tifies bucket collisions by looking for IP pairs whose IP IDs
are in close proximity. Recall that the choice of the bucket
is a function of the source and destination IP addresses, and
a device key. The tracker enumerates over the key space to
find the (correct) key which generates collisions for the same
pairs for which collisions were observed. The key that is
found is the device ID.

6.2 IP ID Generation in Linux

The Linux kernel implementation of IP ID differs between
TCP and UDP [16]. The TCP implementation always used
a counter per TCP connection (initialized with a hash of the
connection endpoints and a secret key, combined with a high
resolution timer) and as such, is not interesting to us (col-
lisions are meaningless). The implementation of IP ID for
stateless over-IP protocols (e.g. UDP) has gone through an
interesting evolution process. We focus on short datagrams,
i.e. datagrams shorter than MTU (maximum transmission
unit), that do not undergo fragmentation. We designate the
IP ID generation algorithms as A0,A1,A2 and A3, in their or-
der of evolution.

A0: In early Linux kernels, the IP ID for short datagrams
was simply set to 0.

A1 and A2: In Linux kernel 3.16.0 (released August 2014),
IP ID for short datagrams became dynamic (just like it has al-
ways been for long UDP datagrams).11 This was back-ported
to various active Linux 3.x branches (see Table 2). The gen-
eration algorithm in general has an array of M = 2048 buck-
ets, each containing a value 0 ≤ β < 216 and a time-stamp
τ of the last time this bucket was used. The bucket array is
initialized at boot time with random data (using a PRNG).
The algorithm also uses the following parameters
• key – a 32-bit key (ip_idents_hashrnd) which is ini-

tialized upon first IP transmission with random data.

• h – a hash function. Older and newer versions of Linux
used different hash functions (A1 and A2, resp.) The de-
tails of the hash functions are described in the extended
paper since they not important for understanding the at-
tack.

• protocol – the IP “next level” protocol number (for
UDP, this value is 17). Nominally 8-bit field, extended
to 32-bit by zero-filling the most significant bits.

• RANDOM(x),x > 0 – a PRNG (a 96/128 bit Tausworthe
Generator) which receives x as a parameter and pro-
vides a random integer in the range [0,x). (We define
RANDOM(0) = 0). Note that RANDOM(1) = 0.

The IP ID generation algorithm is defined in Algorithm 2.
The procedure picks an index to a counter as a function of the
source and destination IP address, the protocol and the key.
It picks a random value which is smaller than or equal to the
time that passed (measured in ticks, with tick frequency of f
per second) since the last usage of this counter, increments
the counter by this value, and outputs the result.

A3: Starting with Linux 4.1, the net namespace of the
kernel context, net (a 64-bit pointer in kernel space) is in-
cluded in the hash calculation, conditional on a compilation
flag CONFIG_NET_NS (which is on by default for Linux 4.1

11See function __ip_select_ident in https://elixir.bootlin.
com/linux/v3.16/source/net/ipv4/route.c.

1072 28th USENIX Security Symposium USENIX Association

https://elixir.bootlin.com/linux/v3.16/source/net/ipv4/route.c
https://elixir.bootlin.com/linux/v3.16/source/net/ipv4/route.c

Algorithm 2 Linux IP ID Generation (A1/A2)
1: procedure GENERATE-IPID
2: i← h(IPDST , IPSRC, protocol,key) mod M
3: hop← 1+ RANDOM(tnow− τ[i])
4: β [i]← (β [i]+hop) mod 216

5: τ[i]← tnow
6: return β [i]

and later, and for Android kernel 4.4 and later). The modifi-
cation is for step 2, which now reads:

i← h(IPDST , IPSRC, protocol⊕g(net),key) mod M

where g(x) is a right-shift (by ρ bits) and a truncation func-
tion that returns 32 bits from x. We designate this algorithm
as A3.

To summarize, there are four flavors of IP ID generation
(for short stateless protocol datagrams) in Linux:

1. A0 - IP ID is always 0 (in ancient kernel versions)
2. A1 / A2 - Both versions use Algorithm 2, with the dif-

ferent implementations of h.
3. A3 - Algorithm 2, adding net namespace to the calcula-

tion.

Of interest to us are algorithms A1 to A3. We focus mostly
on UDP, as this is a stateless protocol which can be emitted
by browsers.

The resolution f of the timer t in the algorithm is deter-
mined by the kernel compile-time constant CONFIG_HZ. A
common value for older Android Linux kernels is 100(Hz).
Newer Android Linux kernels (4.4 and above) use 300 or
100 (or rarely, 250). The default for Linux is f = 250.12 In
general, for tracking purposes, a lower value of f is better.

Note that key and net are generated during the operating
system initialization, which, unlike Windows, happens dur-
ing restart and during (shutdown+)start.

6.3 Setting the Stage
Our technique for tracking Android (and Linux) devices uses
HTML5’s WebRTC[1] both to discover the internal IP ad-
dress of the device and to send multiple UDP packets. It
works best when the WebRTC STUN [21] traffic is bursty. In
order to analyze the effectiveness of the technique we inves-
tigated the following features, focusing on Android devices.

Android Versions and Linux Kernel Versions The An-
droid operating system is based on the Linux kernel. How-
ever, Android versions do not map 1:1 to Linux kernel ver-
sions. The same Android version may be built with different
Linux kernel versions by different vendors, and sometimes

12https://elixir.bootlin.com/linux/v4.19/source/kernel/
Kconfig.hz

by the same vendor. Moreover, when an Android device up-
dates its Android operating system, typically its Linux kernel
remains on the same branch (e.g. 3.18.x). Android vendors
also typically use somewhat old Linux kernels. Therefore,
many Android devices in the wild still have Linux 3.x ker-
nels, i.e. use algorithm A1 or A2.

Sending Short UDP Datagrams to Arbitrary Destina-
tions, or “Set Your Browsers to STUN” The technique
requires sending UDP datagrams from the browser to mul-
tiple destinations. The content of the datagrams is immate-
rial, as the tracker is interested only in the IP ID field. We
use WebRTC (specifically – STUN) to send short UDP data-
grams (with no control over their content) to arbitrary hosts.
The RTCPeerConnection interface can be used to instruct
the browser’s WebRTC engine to use a list of presumably
STUN servers, and even allows setting the UDP destination
port per each host. The browser then sends STUN “Binding
Request” (UDP short datagram) to the destination host and
port.

To send STUN requests to multiple servers (in
Javascript), create an array A of strings in the
form stun:host:port, then invoke the constructor
RTCPeerConnection({iceServers: A}, ...) in
a regular WebRTC flow e.g. [13] (applying the fix from [8]).

Another option (specific to Google Chrome) is to send
requests over gQUIC (Google QUIC) protocol, which uses
UDP as its transport. This is less ideal since the traffic is less
bursty, its transmission order isn’t deterministic, and there is
an overhead in HTTPS requests and in gQUIC packets.

Browser Distribution in Android We want to estimate
the browser market share of “supportive” browsers (Chrome-
like and Firefox) in the Android OS. Based on April
2018 figures for operating systems,13 combined with mo-
bile browsers distribution in April 2018,14 we conclude that
the Chrome-like browsers (Google Chrome, Opera Mini,
Baidu, Opera) comprise 90% of the browser usage in An-
droid. Adding Firefox (even though its STUN traffic is less
bursty, Firefox can still be tracked at least for f = 100) gets
this figure up to 92%.

Chrome’s STUN Traffic Shape Chrome sends the STUN
requests to the list of supposedly STUN servers, in bursts. A
single burst may contain the full list of the requested STUN
servers (in ascending order of destination IP address), or a
subset of the ordered list (typically with a missing range of
destination hosts). We measured 1014 bursts (to L = 400
destination IP addresses) emitted by a Google Pixel 2 mo-
bile phone (Android 8.1.0, kernel 4.4.88), running Google

13https://netmarketshare.com/operating-system-market-share.
aspx

14https://netmarketshare.com/browser-market-share.aspx

USENIX Association 28th USENIX Security Symposium 1073

https://elixir.bootlin.com/linux/v4.19/source/kernel/Kconfig.hz
https://elixir.bootlin.com/linux/v4.19/source/kernel/Kconfig.hz
https://netmarketshare.com/operating-system-market-share.aspx
https://netmarketshare.com/operating-system-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx

Chrome 67 browser. The vast majority of bursts last between
0.1 seconds to 0.2 seconds, and the maximal burst duration
was 0.548 seconds. Thus we use an upper bound of δL = 0.6
seconds for a single burst duration.

Chrome emits up to 9 bursts with increasing time delays,
at the following times (in seconds, where t = 0 is the first
burst): 0, 0.25, 0.75, 1.75, 3.75, 7.75, 15.75, 23.75, 31.75.15

We label these bursts B0, . . . ,B8 respectively, and we will be
interested in B4 and B5, as they’re sufficiently far from their
neighbors. Thus, we are only interested in the first 8-9 sec-
onds of the STUN traffic.

UDP Latency Distribution While WebRTC traffic is
emitted by the browser in well defined, ordered bursts, one
cannot assume the traffic will retain this “shape” when ar-
riving to the destination servers. Indeed, even order among
packets within a burst is not guaranteed at the destination.
Understanding the latency distribution in UDP short data-
grams is therefore needed in order to simulate the in-the-wild
behavior, and consequently the efficacy of various track-
ing techniques. The latency of UDP datagrams is gamma-
distributed according to [18] and [19]. However, for sim-
plicity, we use normal distribution to approximate the in-the-
wild latency distribution. On May 1st-6th 2018, we measured
the latency of connections to a server in Microsoft Azure
“East-US” location (in Virgina, USA) from 8 different net-
works located in Israel, almost 10,000km away. The max-
imum standard deviation was 0.081 seconds. Hereinafter,
we will use a standard deviation value σ = 0.1 seconds as a
worst case scenario for UDP jitter.

Packet Loss We identified two different packet loss sce-
narios:
• Packet loss during generation: the WebRTC packet

stream (in Chrome-like browsers) is bursty in nature. In
some bursts, we noticed large chunks of missing pack-
ets. These are quite rare (in the STUN traffic mea-
surement experiment we got 29 such cases out of 1014
– 2.9%, though they are more common in Androids
whose kernel is 4.x and have f = 100) and easily iden-
tified. We can safely ignore them because the tracker
can detect a burst with a lot of missing packets, reject
the sample and run the sampling logic again, or use
a more sophisticated logic incorporating information
from more than two bursts. Additionally, with f = 100
there are far less false pairs, which helps the analysis.
• Network packet loss: the UDP protocol does not guar-

antee delivery, and indeed packets get lost over the In-
ternet. The loss rate is not high, however, and we esti-
mate it to be ≤ 1%. This is also backed by research.16

15See https://chromium.googlesource.com/external/webrtc/
+/master/p2p/base/stunrequest.cc).

16See http://www.verizonenterprise.com/about/network/
latency/, and [4].

6.4 The Tracking Technique
The technique that we use is different than prior art tech-
niques in focusing on bucket collisions. That is, in cases
wherein UDP datagrams for two different destination IP ad-
dresses end up with IPID generated using the same counter.

The tracker needs to control L Internet IPv4 addresses,
such that the IP-level traffic to these addresses (and partic-
ularly, the IP ID field) is available to the tracker. Ideally the
IPs are all in the same network, so that they are all subject
to the same jitter distribution. The tracker should be able to
monitor the traffic to these IP addresses with time synchro-
nization resolution of about 10 milliseconds (or less) - e.g.
by having all the IPs bound to a single host.

With L different destination IP addresses and M buckets
(M = 2048 in Algorithm 2), there are (L

2)/M expected colli-
sions, assuming no packet loss. In reality, the tracker can
only obtain an approximation of this set. The goal is to re-
duce those false negatives and false positives to levels which
allow assigning meaningful tracking IDs.

The basic property that enables the attacker to construct
the approximate list is that in an IP ID generation the counter
is updated by a random number which is smaller than 1 plus
the multiplication of the timer frequency f and the time that
passed since the last usage of that counter. Therefore for a
true pair (IPi, IP j) where the IP ID generation for IPi and
IP j used the same bucket (counter), the following inequality
almost always holds:

0 < (IPID j− IPIDi) mod 216 < f ∆t +10

(We use f ∆t +10 instead of f ∆t +1 to support up to 10 IPs
colliding into the same bucket, as each collision may incre-
ment the counter by≤ 1+ f ∆t where ∆t is from the previous
collision. So the counter can end up incrementing no more
than f ∆t + 10 where ∆t is the sum of the time difference
between collisions, i.e. the time duration between the first
collision and the last collision in the burst.)

Since we are looking at datagrams from the same burst we
have an upper bound δL such that ∆t < δL, and therefore:

0 < (IPID j− IPIDi) mod 216 < f δL +10

For two IP addresses which are not mapped to the same
counter, the likelihood of this inequality to hold is only
(f δL+10)−1

216 which is� 1 when f δL � 216. The key extrac-
tion algorithm (Section 6.6) will examine IP ID values in two
different communication bursts, and this will further reduce
the likelihood of a false positive. Note that the probability
of a false positive pair in a given burst to survive into the
next burst is roughly f δL+10

f ∆t ≈ δL
∆t where ∆t is the time be-

tween the consecutive bursts, whereas a true pair will occur
in all bursts. Thus for the intersection of 2 consecutive bursts
∆t = 4 seconds apart, the amount of false positives (in both
bursts) will be ≈ 0.15 of their amount in a single burst.

1074 28th USENIX Security Symposium USENIX Association

https://chromium.googlesource.com/external/webrtc/+/master/p2p/base/stunrequest.cc
https://chromium.googlesource.com/external/webrtc/+/master/p2p/base/stunrequest.cc
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/

6.5 Attack Phase 1 – Collecting Collisions

The tracking snippet needs to be rendered for at least 8.5 sec-
onds, enough time for the browser to send the first 6 STUN
bursts (B0, . . . ,B5) – see Section 6.3. The tracking server
splits the STUN traffic to bursts, based on the datagrams’
time of arrival, and on the expected burst time offsets (see
Section 6.3). For simplicity and ease of analysis, we hence-
forth only use traffic from bursts B4 and B5, which can be
easily and unambiguously determined (since they are well
separated in time from other bursts). We note that in some
cases, requests in B4 or in B5 may be unsent, and in such
cases we may need to resort to using e.g. B3 and B5 or sim-
ilar combinations, but as long as these are “late” bursts (i.e.
separated from their neighboring bursts by a enough σ units,
where σ is the UDP jitter, see above), they can be separated
without errors (or almost without errors) and the following
analysis remains valid. If there are too many missing re-
quests in a burst, the Tracking Server communicates with
the Tracking Snippet, instructing it to retest the device.

Assuming no (or few) missing requests in B4 and B5, the
Tracking Server starts analyzing the data per burst (in B4 and
B5). For each burst the Tracking Server calculates a set of
pair candidates by collecting pairs of IP addresses (IPi, IP j)
for which IPi < IP j and 0 < (IPID j− IPIDi) mod 216 < λL
where λL = f δL + 10. It then identifies pairs which appear
in the candidate sets of both bursts, and adds them to a set U
of full candidates. This set forms a single measurement of a
device. The tracker calculates the tracking ID based on U in
Phase 2.

6.6 Attack Phase 2 – Exhaustive Key Search

In the second phase the tracking server runs an exhaustive
search on the key space W where the key is 32 bits long for
algorithms A1 and A2, 41 bits long for algorithm A3 (Linux)
and 48 bits for A3 (Android). For each candidate key, the
algorithm counts how many IP pairs in U are predicted by
the candidate key. It is expected that only in one (the correct)
key, this number will exceed a threshold ν , and in such case,
this will be returned as the correct key (and the device ID).
See Algorithm 3 for details (the algorithm uses the notation
h′(...,k) = h(..., protocol⊕ g(net),key) where k is split into
g(net),key).

We assume here knowledge of the version of the algorithm
(A) used – A1, A2 or A3. For A1 and A2, the key space size is
|W | = 232, and for A3, it is 241 for the x64 architecture and
248 for the ARM64 architecture (see Section 6.7.)

As explained in Section 6.11, false positives (|X |> 1) are
very rare – they can be handled but as this complicates the
analysis logic, it is left out of the paper.

Attack run time Where |U |= P pairs, the run time of Al-
gorithm 3 is proportional to |W |P. P’s distribution depends
on f ; Table 1 summarizes the expectancy and standard devi-

Algorithm 3 Exhaustive key search
1: procedure GENERATE-ID(U, IPsrc) . U is defined in

Section 6.5
2: if |U |< ν then
3: return ERROR
4: X ← /0
5: for all 0≤ k <W do
6: Y ← {(IPi, IP j) ∈ U | h′(IPi, IPSRC,k) =

h′(IP j, IPSRC,k)}
7: if |Y | ≥ ν then
8: X ← X ∪{k}
9: if |X |> 0 then

10: return X . Needs special treatment if |X |> 1
11: else
12: return ERROR

Table 1: Approximated P distribution

f [Hz] E(P) σ(P) σ(P)/E(P)

100 50.59 7.39 0.146
250 65.47 8.60 0.131
300 70.45 8.79 0.125

ation for common f values. These were approximated by a
computer simulation (100 million iterations.)

Time/memory optimization When the number of devices
to measure is much smaller than |W | it is possible to opti-
mize the technique for repeat visits. The optimization simply
amounts to keeping a list Λ of already encountered key val-
ues (or (g(net),key) values), and trying them first. If a match
is found (i.e., this is a repeat visit), there is clearly no need to
continue searching the rest of the key space. Otherwise, the
algorithm needs to go through the remaining key space.

Targeted tracking Even if the key space W is too large to
make it economically efficient to run large scale device track-
ing, it is still possible to use it for targeted tracking. The use
case is the following: The tracking snippet is invoked for a
specific target (device), e.g. when a suspect browses to a
honeypot website. At this point, the tracker (e.g. law en-
forcement body) extracts the key, possibly using a very ex-
pensive array of processors, and not necessarily in real time.
Once the tracker has the target’s key, it is easy to test any
invocation of the tracking snippet against this particular key
and determine whether the connecting device is the targeted
device. Moreover, if the attacker targets a single device (or
very few devices), it is possible to reduce the number of IP
addresses used for re-identifying the device, by using only IP
addresses which are part of pairs that collide (into the same
counter bucket) under the known device key. Thus we can
use a single burst with as few as 5 IP pairs per device to
re-identify the device. The dwell time in this case drops to

USENIX Association 28th USENIX Security Symposium 1075

near-zero.

6.7 The Effective Key Space in Attacking Al-
gorithm A3

In Algorithm A3, 32 bits of the net namespace are extracted
by a function we denote as g(), and are added to the calcu-
lation of the hash value. The attack depends on the effective
keyspace size |W |= |{key}|× |{g(net)}|= 232 · |{g(net)}|.

We analyzed the source code of Linux kernel versions 4.8
and above on x64, and 4.6 and above on ARM64, and found
that if KASLR is turned off then the effective key space size
is 32 bits in both x64 and ARM64. If KASLR is turned on,
then the effective key space size is 41 bits in x64 and 48 bits
in ARM64.

6.8 KASLR Bypass for Algorithm A3

By obtaining g(net) as part of Attack Phase 2 (Section 6.6),
the attacker gains 32 bits of the address of the net structure.
In single-container systems such as desktops and mobile de-
vices, this net structure resides in the .data segment of the
kernel image, and thus has a fixed offset from the kernel im-
age load address. In default x64 and ARM64 configurations,
the 32 bits of g(net) completely reveal the random KASLR
displacement of net. This suffices to reconstruct the kernel
image load address and thus fully bypass KASLR.

6.9 Optimal Selection of L

Since IP addresses are at premium, we choose a minimal
integer number L of IP addresses such that at the point
ν where Prob(FN) + Prob(FP) is minimal, Prob(FP) +
Prob(FN) ≤ 10−6. We assume f = 300 (worst case sce-
nario). For simplicity, at this stage we neglect packet loss,
and assume that δL = L

400 δ400 (we assume δL ∝ L, and we
measured δ400). For false negatives, we use the Poisson
approximation of birthday collisions [3] with λ =

(L
2

)
/M.

Therefore:

Prob(FN)≈
ν−1

∑
i=0

λ ie−λ

i!

For false positives, we also assume that a burst contains
the average number of false pairs and true pairs A =

b f δL+10
f ∆t

(L
2

) f δL+10
216 +

(L
2)
M c. We note that the probability for

a single false key to match exactly k pairs is
(A

k

)
(1

M)k(1−
1
M)A−k. The probability of |W |− 1 false keys to generate at
least one false positive key is therefore:

Prob(FP)≈ 1−
(ν−1

∑
i=0

(
A
i

)
(

1
M
)i(1− 1

M
)A−i

)|W |−1

Assuming |W |= 248 (worst case – Android), we enumerated
over all ν values for each L in {200,250, . . . ,500} to find the

optimal ν (per L). We found that L= 400 (with ν = 11) is the
minimal “round” L satisfying Prob(FP)+Prob(FN)≤ 10−6

at its optimal ν .

6.10 A More Accurate Treatment for L = 400

Using a computer simulation, we approximated the distribu-
tions of all collisions pA(n) (using 108 simulation runs), and
of true collisions pT (n) (using 109 simulation runs). The
simulations took into account 1% packet loss. With these,
we can calculate more accurate approximations:

Prob(FN)≈
ν−1

∑
i=0

pT (i)

Prob(FP)≈ 1−∑
n

pA(n)
(ν−1

∑
i=0

(
n
i

)
(

1
M
)i(1− 1

M
)n−i

)|W |−1

(We use the convention
(n

k

)
= 0 where k > n.) We enumer-

ated over values 1≤ ν ≤ 20 for L= 400 and |W |= 248 (worst
case – Android.) The minimal Prob(FP)+Prob(FN) is at
ν = 11, where Prob(FP) = 6.2× 10−10 and Prob(FN) =
4.2×10−8. We get the same optimal ν value for L = 400 as
we got in Section 6.9, which means that the approximation
steps we took there are reasonable.

6.11 Practical Considerations
Controlling packets from the browser As explained in
Section 6.3, it is possible to emit UDP traffic to arbitrary
hosts and ports using WebRTC. The packet payload is not
controlled. The tracker can use the UDP destination port in
order to associate STUN traffic to the same measurement.
Synchronization and packet transmission/arrival order
Unlike the Windows technique, in the Linux/Android track-
ing technique there is no need to know the exact transmission
order of the packets within a single burst.
False positives and false negatives Using a computer sim-
ulation with L = 400 destination IP addresses, a burst length
of δL = 0.6 seconds, and packet loss rate of 0.01, we cal-
culated an approximation of for the false negative rate of
4.2× 10−8 for ν = 11, and an approximation for the false
positive rate of 6.2× 10−10. These approximations were
computed assuming |W | = 248 (worst case – Android). See
Section 6.10 for more details.
Device ID collisions The expected number of pairs of de-
vices with colliding IDs, due to the birthday paradox, and
given R devices and a key space of size |W |, is (R

2)/|W |. For
Algorithms A1 and A2 the key space size is |W | = 232, and
will cause device ID collisions once there are several tens of
thousands of devices. For R = 106 this will affect 0.00023 of
the population (2 out of every 10,000 devices). For Alg. A3,
the key space size (with KASLR) is≥ 241, so collisions start
showing up with R in the millions. Even for R = 128 · 106,
collisions affect only 0.00006 of the population.

1076 28th USENIX Security Symposium USENIX Association

Dwell time In order to record B5, the snippet page needs to
be loaded in the browser for 8-9 seconds. Navigating away
from the page will immediately terminate the STUN traffic.
Environment factors All the UDP-related topics in Sec-
tion 4.8 are applicable as environment factors on the
Linux/Android tracking technique.
Longevity The device ID remains valid as long as the de-
vice is not shutdown or restarted. Mobile devices are rarely
shut down, and are typically restarted only on updates, which
happen once every several months, or even less frequently.
Scalability The attack is scalable. Device ID collisions
are rare even with many millions of devices (see above).
False positives and false negatives are also rare (less than
4.3× 10−8 combined). From a resource perspective, the at-
tack uses a fixed number of IPs and servers, and a fixed-size
RAM/disk. The required CPU power is proportional to the
number of devices measured per time unit. Network con-
sumption per test is negligible – approx. 13.5KB/s (at the IP
level) during measurement.

6.12 Possible Countermeasures
Increasing M Changing the algorithm to use a larger num-
ber M of counters, will reduce the likelihood of pairs of IP
addresses using the same counter. In response to such a
change the tracker can increase the number L of IP addresses
that is uses. The expected number of collisions is (L

2)/M, and
therefore increasing M by a factor of c requires the attacker
to increase L by only a factor of

√
c.

On the other hand, δL also grows (probably linearly in L),
and when f δL ≥ 216 no information is practically revealed to
the tracker. It is probably safe to assume that the tracker can
handle an increase of L by a factor of×10, which means that
in order to stop the attacker the IP ID generation algorithm
must increase M by more than ×100, making it too memory
expensive to be practical.
Increasing the key size (W) This can be an effective
counter-measure for the exhaustive search phase, though the
pair collection phase is unaffected by it. Yet some choices of
the hash function h might still allow fast cryptanalysis.
Strengthening h Our analysis does not rely on any prop-
erty of the hash function h, except that it is more-or-less uni-
form. Thus, changing h will not affect our results.
Replacing the algorithm See the last item in Section 4.9.

7 Experiment – Attacking Linux and Android
Devices in the Lab

In order to verify that we can extract the key used by Linux
and Android devices, we need to control hundreds of IP ad-
dresses. Controlling such a magnitude of Internet-routable
IP addresses was logistically out of scope for this research.
Therefore we had to settle for an in-the-lab setup, which nat-
urally limited the number of devices we could test.

7.1 Setup

We connected the tested devices to our own WiFi ac-
cess point, which advertised our laptop as a network gate-
way. Then we launched a Chrome-like browser inside the
Linux/Android device, and navigated to a page containing
a tracking snippet. The tracking snippet used WebRTC to
force UDP traffic to a list of L = 400 hosts, and this traffic
passed through our laptop (as a gateway) and was recorded.

We then ran the collision collection logic (Phase 1), and
fed its output (IP pairs whose IP IDs collide) to the exhaus-
tive key search logic (Phase 2). For KASLR-enabled de-
vices, we also provided the algorithm with the offset (relative
to the kernel image) of init_net, which we extracted from
the kernel image file given the build ID (can be inferred e.g.
from the User-Agent HTTP request header). We expected
that the algorithm will output a single key, which will match
a large part of the collisions.

7.2 Results

We tested 2 Linux laptops and 6 Android devices, together
covering the vast majority of operating system and hardware
parameters that regulate the IP ID generation. The results
from all tests were positive - our technique extracted a sin-
gle key and a kernel address of init_net where applicable
(which was identical to the address in /proc/kallsyms).
Note that due to hardware availability constraints, for the
Pixel 2XL case (|W |= 248), we provided the algorithm with
the correct 16 bit kernel displacement to reduce the key
search to 232. Table 2 provides information about the com-
mon kernel versions, their parameter combinations and the
tested devices.

The Attack time column is the extrapolated attack time in
seconds with 10,000 Azure B1s machines, based on E(Pf)
from Table 1, i.e. the average attack time is r · |W | ·E(Pf)
where r is the time it takes a single B1s machine to test a sin-
gle key with a single pair, divided by 10,000. The standard
deviation of the attack time for a given f is r · |W | ·σ(Pf),
which is σ(Pf)/E(Pf) in Table 1 times the average attack run
time in Table 2. From a calibration run (single B1s machine,
10 pairs, 232 keys, 294.83 seconds run time) we calculated
r = 6.8645×10−13, and populated the Attack Time column
in Table 1 with r · |W | ·E(Pf).

Applicability in-the-wild While our tests were carried out
in the lab, we argue that the results are representative of an
in-the-wild experiment with the same devices. We list the
following potential differences between in-the-lab and in-
the-wild experiment, and for each difference, we note why
our experiment can be projected to an in-the-wild scenario.
• Packet loss: our technique is not sensitive to packet

loss. We ran false positive/negative computer simula-
tions (assuming 1% packet loss) supporting this fact.

USENIX Association 28th USENIX Security Symposium 1077

Table 2: Common Linux/Android Kernels and Their Parameter Combinations

O/S
Kernel
Version Alg. f [Hz] KASLR NET_NS ρ log2 |W | Tested System

Attack
Time [s]

Linux (x64) 4.19+ A3 250 Yes Yes 12 41
Dell Latitude
E7450 laptop 99

Linux (x64) 4.8-4.18.x A3 250 Yes Yes 6 41
Dell Latitude
E7450 laptop 99

Android
(ARM64)

4.4.56+,
4.9, 4.14 A3

300/
100 Yes Yes 6/7 48 Pixel 2XL (ρ = 6)

13,612/
9,775

Android
(ARM64)

3.18.17+
3.4.109+ A2 100 No No

Don’t
care 32

Redmi Note 4
Xiaomi Mi4 0.15

Android
(ARM64)

3.18.0-3.18.6
3.10.53+
3.4.103-3.4.108

A1 100 No No
Don’t
care 32

Samsung J7 prime
Samsung S7
Meizu M2 Note

0.15

• Network latency: our technique is not sensitive to net-
work latency (which is just a constant time-shift, from
our perspective).
• UDP jitter: this only affects correctly splitting the traffic

into bursts. Our technique uses the “late” bursts, thus
assuring that the bursts are well separated time-wise and
that a jitter of σ = 0.1s does not affect tracking.
• Network interference (IPID modification): this issue

was already evaluated in-the-wild in the Windows ex-
periment, and the Windows results can be applied to
the Linux/Android use case.
• Packet reordering (within a burst): Our technique does

not rely on packet order within a burst.

Thus we conclude that our results (and henceforth, the prac-
ticality of our technique) are applicable in-the-wild.

8 Conclusions

Our work demonstrates that using non-cryptographic ran-
dom number generation of attacker-observable values (even
if the values themselves are not security sensitive), may be
a security vulnerability in itself, due to an attacker’s ability
to extract the key/seed used by the algorithm, and use it as a
fingerprint of the system.

We stress that any replacement cryptographic algorithm
must not be hampered by using a key that is too short, in
order to avoid a key enumeration attack. Also, as a security
measure, we strongly recommend generating unique keys for
such cryptographic usage, without resorting to using secret
data that is used for other purposes (which – in case of a
cryptographic weakness in the algorithm – can leak out).

9 Acknowledgements

This work was supported by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction

with the Israel National Cyber Directorate in the Prime Min-
ister’s Office.

We would like to thank the anonymous reviewers for their
feedback, Assi Barak for his help to the project, as well as
Avi Rosen, Sharon Oz, Oshri Asher and the Kaymera Team
for their help with obtaining a rooted Android device.

References

[1] B. Aboba, D. Burnett, T. Brandstetter, C. Jennings,
A. Narayanan, J.-I. Bruaroey, and A. Bergkvist.
WebRTC 1.0: Real-time communication between
browsers. Candidate recommendation, W3C, June
2018. https://www.w3.org/TR/2018/CR-webrtc-
20180621/.

[2] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: dusting the
web for fingerprinters. In ACM CCS ’13, pages 1129–
1140, 2013.

[3] R. Arratia, L. Goldstein, and L. Gordon. Two mo-
ments suffice for poisson approximations: The chen-
stein method. Ann. Probab., 17(1):9–25, 01 1989.

[4] D. Baltrunas, A. Elmokashfi, A. Kvalbein, and Ö. Alay.
Investigating packet loss in mobile broadband networks
under mobility. In 2016 IFIP Networking Conference
and Workshops, pages 225–233, 2016.

[5] S. M. Bellovin. A technique for counting Natted hosts.
In 2nd SIGCOMM Workshop on Internet Measurement,
pages 267–272, 2002.

[6] Y. Gilad and A. Herzberg. Fragmentation considered
vulnerable. ACM Trans. Inf. Syst. Secur., 15(4):16:1–
16:31, Apr. 2013.

[7] F. Gont. Security Implications of Predictable Fragment
Identification Values. RFC 7739, Feb. 2016.

1078 28th USENIX Security Symposium USENIX Association

[8] Google. Issue 928273: unified plan breaks rtp dat-
achannels with empty datachannel label, Feb. 2019.

[9] A. Herzberg and H. Shulman. Fragmentation consid-
ered poisonous. CoRR, abs/1205.4011, 2012.

[10] T. Hudek and D. MacMichael. RSS hashing functions.

[11] Information Sciences Institute (University of Southern
California). Internet Protocol. RFC 791, Sept. 1981.

[12] A. Janc and M. Zalewski. Technical analysis
of client identification mechanisms. https://
www.chromium.org/Home/chromium-security/
client-identification-mechanisms.

[13] M. Khan. RTCDataChannel for beginners.
https://www.webrtc-experiment.com/docs/
rtc-datachannel-for-beginners.html, 2013.

[14] A. Klein. Predictable javascript math.random
and http multipart boundary string. http:
//www.securitygalore.com/site3/math_
random_and_multipart_boundary.

[15] A. Klein. Detecting operation of a virtual machine (US
patent 9384034), July 2016.

[16] J. Knockel and J. R. Crandall. Counting packets sent
between arbitrary internet hosts. In 4th USENIX Work-
shop on Free and Open Communications on the Inter-
net (FOCI 14), 2014.

[17] A. Kumar, V. Paxson, and N. Weaver. Exploiting
underlying structure for detailed reconstruction of an
internet-scale event. In 5th ACM SIGCOMM Conf. on
Internet Measurement, IMC ’05, pages 33–33, 2005.

[18] H. Li and L. Mason. Estimation and simulation of net-
work delay traces for voip in service overlay network.
2007 International Symposium on Signals, Systems and
Electronics, pages 423–425, 2007.

[19] S. Maheshwari, K. Vasu, S. Mahapatra, and C. S. Ku-
mar. Measurement and analysis of UDP traffic over
wi-fi and GPRS. CoRR, abs/1707.08539, 2017.

[20] G. Maone. NoScript. https://noscript.net/.

[21] P. Matthews, J. Rosenberg, D. Wing, and R. Mahy. Ses-
sion Traversal Utilities for NAT (STUN). RFC 5389,
Oct. 2008.

[22] A. Melnikov and I. Fette. The WebSocket Protocol.
RFC 6455, Dec. 2011.

[23] R. Menscher. Exploiting Windows’ IP ID random-
ization bug to leak kernel data and more (CVE-
2018-8493). https://menschers.com/2018/10/
30/what-is-cve-2018-8493/, November 2018.

[24] Microsoft. CVE-2018-8493 | windows
TCP/IP information disclosure vulnerability.
https://portal.msrc.microsoft.com/en-US/
security-guidance/advisory/CVE-2018-8493.

[25] L. Orevi, A. Herzberg, and H. Zlatokrilov. DNS-DNS:
DNS-based de-nat scheme. In Cryptology and Network
Security CANS, pages 69–88, 2018.

[26] D. Reed, P. S. Traina, and P. Ziemba. Security Con-
siderations for IP Fragment Filtering. RFC 1858, Oct.
1995.

[27] R. Roemer, E. Buchanan, H. Shacham, and S. Sav-
age. Return-oriented programming: Systems, lan-
guages, and applications. ACM Trans. Inf. Syst. Secur.,
15(1):2:1–2:34, Mar. 2012.

[28] F. Salutari, D. Cicalese, and D. Rossi. A closer look at
ip-id behavior in the wild. In International Conference
on Passive and Active Network Measurement (PAM),
Berlin, Germany, Mar. 2018.

[29] H. Shulman. Pretty bad privacy: Pitfalls of DNS en-
cryption. In 13th Workshop on Privacy in the Elec-
tronic Society, WPES ’14, pages 191–200, 2014.

[30] M. J. Silbersack. darwin-xnu/bsd/netinet/ip_id.c.
https://opensource.apple.com/source/xnu/
xnu-4570.41.2/bsd/netinet/ip_id.c.

[31] H. Wramner. Tracking users on the world wide web.
http://www.nada.kth.se/utbildning/grukth/
exjobb/rapportlistor/2011/rapporter11/
wramner_henrik_11041.pdf, 2011.

[32] M. Zalewski. Silence on the Wire. No Starch Press,
2005.

A Details of the Attack on Windows

A.1 Practical Considerations
A.1.1 Controlling Packets from the Browser

UDP: As explained in Section 6.3, it is possible to emit UDP
traffic to arbitrary hosts and ports using WebRTC. The packet
payload is not controlled. The tracker can use the UDP des-
tination port in order to associate STUN traffic to the same
measurement.
TCP: WebSocket [22] emits TCP traffic in a controlled fash-
ion once a circuit is established, thus can be used by the snip-
pet to fully control packet transmission. The downside of
using TCP-based protocols is the TCP-level retransmission,
which can introduce loss of synchronization between the de-
vice and the server side, regarding how many packets were
sent. The tracker can use the packet payload to mark packets
that belong to the same measurement.

USENIX Association 28th USENIX Security Symposium 1079

https://www.chromium.org/Home/chromium-security/client-identification-mechanisms
https://www.chromium.org/Home/chromium-security/client-identification-mechanisms
https://www.chromium.org/Home/chromium-security/client-identification-mechanisms
https://www.webrtc-experiment.com/docs/rtc-datachannel-for-beginners.html
https://www.webrtc-experiment.com/docs/rtc-datachannel-for-beginners.html
http://www.securitygalore.com/site3/math_random_and_multipart_boundary
http://www.securitygalore.com/site3/math_random_and_multipart_boundary
http://www.securitygalore.com/site3/math_random_and_multipart_boundary
https://noscript.net/
https://menschers.com/2018/10/30/what-is-cve-2018-8493/
https://menschers.com/2018/10/30/what-is-cve-2018-8493/
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8493
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2018-8493
https://opensource.apple.com/source/xnu/xnu-4570.41.2/bsd/netinet/ip_id.c
https://opensource.apple.com/source/xnu/xnu-4570.41.2/bsd/netinet/ip_id.c
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/wramner_henrik_11041.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/wramner_henrik_11041.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2011/rapporter11/wramner_henrik_11041.pdf

Table 3: Common tail length probability - measured with
1000 randomly chosen sets of 30 IPs (J = 6,G = 12,Q = 3),
10,000 tests each (107 tests altogether).

Common
tail [bits] Prob.

Common
tail [bits] Prob.

45 0.9937579 42 2.6×10−5

44 0.0058328 41 2.9×10−6

43 0.0003783 ≤ 40 2.1×10−6

A.1.2 Packet Transmission Order

We encountered cases in the wild where the packet payload
generation order is not identical to packet transmission or-
der. Specifically, Microsoft IE and Edge are prone to this
behavior. This is only relevant in the same class B network
(since there the original extraction algorithm makes an as-
sumption on the order of the packets). Therefore, the tracker
should try all possible permutations of packet order (per class
B network IPs). In Phase 1, this means enumerating over all
π ∈ SJ (J! permutations). For each permutation, use the fol-
lowing definition of D j (instead of the original one):

D j = (Vec(IPID j− (β0 +π(j)) mod 215)⊕

Vec(IPID0− (β0 +π(0)) mod 215))17,...,31

It follows that enumerating over all possible orders will in-
crease the run time of Phase 1 by a factor of J!. In Phase 2,
for each pair of IP addresses, there are only 2! permutations,
and since the elimination is so powerful, this will only affect
the run time due to the first pair, i.e. will double the run time.

A.1.3 Handling False Positives

The issue of false positive keys is covered in the extended
paper. As mentioned there, the vast majority of false positive
keys only differ from the correct key by a few leftmost bits.
Table 3 demonstrates that with an optimal choice of 30 IP
addresses, if the tracker keeps only 41 bits of the key tail,
he/she will get multiple keys with probability 2.1× 10−6,
which is sufficiently small even for a large scale deployment.

In the case where multiple keys are emitted by the al-
gorithm (even after truncation, e.g. to 41 bits), two strate-
gies can be applied: either (a) determining that this partic-
ular device cannot be assigned an ID (at the price of losing
2.1× 10−6 of the devices); or (b) assigning multiple IDs to
the device (which makes tracking the device more compli-
cated and more prone to ID collisions).

A.1.4 Handling False Negatives and Interference

It is important to note that while there may be false positives,
there are no algorithmic false negatives, i.e. the algorithm
always emits the correct key (possibly along with incorrect

keys), given the correct data. However, it is possible for the
algorithm to receive incorrect data, in the sense that IP IDs
are provided which are not (even after re-ordering) derived
from an incrementing counter – i.e. there are “gaps” in the
counter values associated with the IP IDs. This can happen
either due to packet loss or due to interference.
Packet loss: In TCP, when a packet from the client to the
server is lost, the client will note a missing ACK and will
eventually retransmit the original data (with incremented IP
ID). This will cause a gap in the counter values, which can
be enumerated by the analysis logic (our analysis logic does
not currently implement this). Another packet loss scenario
is wherein the ACK packet from the server to the client is
lost, and the client retransmits the original data. The server
however receives two such packets, and can simply discard
the one with incremented IP ID. Thus the “problematic” sce-
nario is the one wherein the original data packet is lost.
Interference: Theoretically, an unrelated packet sent by the
Windows device in between measurement packets may inter-
fere with the measurement. However, this is very unlikely.
First, the interfering packet must fall into the same counter
bucket as that of the measurement packets – this happens
with probability of 1/8192 for a given bucket. Second, the
timing is delicate – the interfering packet should be sent be-
tween the first and the last measurement packet. This time
window is below 1 second, so overall the likelihood for in-
terference is very low. When such an interference happens,
it creates a gap in the IP ID values, which can be addressed
as explained below.
Addressing “gaps”: The analysis logic can compensate for
up to l lost packets in the first class B network (g = 0) by
enumerating over all possible ∑

l
d=0
(J−2+d

J−2

)
gap configura-

tions (each addendum counts all weak compositions of d
into J− 1 parts). In our experiment, we measured l = 4 for
some “difficult” networks, so for J = 6 there are 126 gap
configurations, thus a ×126 factor in the runtime. Note that
a gap in the transmissions for g > 0 is much easier to han-
dle, as (IPIDg,1 − IPIDg,0) in eq (5) may now take values
in {1, . . . , l + 1}, so there is no runtime factor for this case.
When the total gap space is larger than l, the algorithm will
yield no key. In such a case, the server can instruct the snip-
pet to run another test. Therefore the actual false negative
probability can be reduced to as small as necessary.

A.2 Optimizing the IP Set for Minimum False
Positives

Since (from Table 3) keys with flipped K18 are the source
of most false positives, the tracker should choose a set of IP
addresses that minimizes (over Q) this false positive proba-
bility, 2−(J−1)−Q +2−(G−Q) (this calculation can be found in
the extended paper.) The said minimum is at Q = G−(J−1)/2,
and yields false positive leading term of 2 · 2−G+J−1

2 . For
G = 12, J = 6, the optimum is at Q = 3 or Q = 4.

1080 28th USENIX Security Symposium USENIX Association

When the Signal is in the Noise:
Exploiting Diffix’s Sticky Noise

Andrea Gadotti*a, Florimond Houssiau*a, Luc Rocher*a,b, Benjamin Livshitsa, and Yves-Alexandre de
Montjoye†a

aDepartment of Computing and Data Science Institute, Imperial College London
bICTEAM, Université catholique de Louvain

Abstract

Anonymized data is highly valuable to both businesses and
researchers. A large body of research has however shown the
strong limits of the de-identification release-and-forget model,
where data is anonymized and shared. This has led to the de-
velopment of privacy-preserving query-based systems. Based
on the idea of “sticky noise”, Diffix has been recently pro-
posed as a novel query-based mechanism satisfying alone the
EU Article 29 Working Party’s definition of anonymization.
According to its authors, Diffix adds less noise to answers
than solutions based on differential privacy while allowing
for an unlimited number of queries.

This paper presents a new class of noise-exploitation at-
tacks, exploiting the noise added by the system to infer private
information about individuals in the dataset. Our first differen-
tial attack uses samples extracted from Diffix in a likelihood
ratio test to discriminate between two probability distributions.
We show that using this attack against a synthetic best-case
dataset allows us to infer private information with 89.4% ac-
curacy using only 5 attributes. Our second cloning attack uses
dummy conditions that conditionally strongly affect the out-
put of the query depending on the value of the private attribute.
Using this attack on four real-world datasets, we show that
we can infer private attributes of at least 93% of the users in
the dataset with accuracy between 93.3% and 97.1%, issuing
a median of 304 queries per user. We show how to optimize
this attack, targeting 55.4% of the users and achieving 91.7%
accuracy, using a maximum of only 32 queries per user.

Our attacks demonstrate that adding data-dependent noise,
as done by Diffix, is not sufficient to prevent inference of
private attributes. We furthermore argue that Diffix alone fails
to satisfy Art. 29 WP’s definition of anonymization. We con-
clude by discussing how non-provable privacy-preserving sys-

†Email: deMontjoye@imperial.ac.uk; Corresponding author.
We acknowledge the support from Agence Française de Développement. The
opinions expressed in this article are the authors’ own and do not reflect the
view of the Agence Française de Développement.
Luc Rocher is the recipient of a doctoral fellowship from the Belgian National
Fund for Scientific Research (F.R.S.-FNRS).

tems can be combined with fundamental security principles
such as defense-in-depth and auditability to build practically
useful anonymization systems without relying on differential
privacy.

1 Introduction

Personal data holds a significant potential for researchers
and organizations alike, yet its large-scale collection and use
raise serious privacy concerns. While scientists have com-
pared the impact of modern large-scale datasets of human
behaviors to the invention of the microscope [1], numerous
scandals, such as the recent Cambridge Analytica debacle [2]
highlight the importance of privacy and data protection for
the general public and modern societies.

Historically, the balance between using personal data and
preserving people’s privacy has relied, both practically and
legally, on the concept of data anonymization. Anonymization,
also called de-identification, is the process of transforming
personal data to mask the identity of participants, e.g. by
removing identifiers, coarsening data, or adding noise. The
recent European General Data Protection Regulation (GDPR)
defines anonymous information as “information which does
not relate to an identified or identifiable natural person or
to personal data rendered anonymous in such a manner that
the data subject is not or no longer identifiable” [3]. Similar
definitions exist in other protection laws around the world,
such as the HIPAA privacy rule for medical data in the US
and the ePrivacy regulation. These all state that anonymized
data does not require consent from participants to be shared
widely, as it cannot be traced back and potentially used against
them.

While de-identification algorithms are widely used in in-
dustry and academia to transform and release anonymous
datasets, a large body of research has shown that these prac-
tices are not resistant to a wide range of re-identification
attacks [4–9]. Exposure of the limits of de-identification have
led to less than happy conclusions by policy makers: for
instance, the [US] President’s Council of Advisors on Sci-

USENIX Association 28th USENIX Security Symposium 1081

ence and Technology concluded that data anonymization “is
not robust against near-term future re-identification methods.
PCAST do not see it as being a useful basis for policy” [10].

Query-based systems. In response to the limits of de-
identification, privacy researchers and companies have pro-
posed query-based systems as an alternative. Such systems
typically offer data analysts a remote interface to ask ques-
tions that return data aggregated from several, potentially
many, records. Granting access to the data only through
queries, without releasing the underlying raw data, mitigates
the risk of typical re-identification attacks. Yet a malicious
analyst can often submit a series of seemingly innocuous
queries whose outputs, when combined, will allow them to
infer private information about participants in the dataset.

Differential privacy. Privacy research has been increasingly
focused on providing provable privacy guarantees to defend
query-based systems against such attacks. Differential pri-
vacy [11] is the main privacy guarantee considered by re-
searchers. Intuitively, a randomized algorithm is differentially
private if the output does not depend on any single individual’s
record in the dataset. It has been shown that algorithms that
satisfy differential privacy are robust to a very large class of
attacks [12]. Yet, efficient differential privacy mechanisms are
generally very use case-specific and, even if a large range of
differentially private mechanisms have been proposed, there
is still no practical widely deployed differential privacy so-
lution for general-purpose data analytics [13]. To achieve
strong privacy guarantees, practitioners must often sharply
limit the data utility by adding large amounts of noise and
restrict the total number of requests that the system is al-
lowed to answer [14]. Moreover, while differential privacy is
a strong guarantee, the risk of data breaches because of im-
plementation issues remains, exposing systems to attacks that
differential privacy should in theory rule out [15, 16]. Overall,
with some rare exceptions, the complexity of correctly imple-
menting differential privacy and choosing the right privacy
budget often prevents practitioners from using it.

Alternatives to differential privacy. Diffix, a patented com-
mercial solution that acts as an SQL proxy between an analyst
and a protected database [17, 18], has recently been proposed
by researchers affiliated with Aircloak and the Max Planck
Institute for Software Systems as a practical alternative to
differential privacy, based on the [EU] Article 29 Working
Party (Art. 29 WP)’s definition of anonymous data. It defines
a dataset as anonymous if the anonymization mechanism used
protects against singling out (identify one user), linkability
(match users across datasets), and inference (learn partici-
pants’ records) attacks [18, 19]. Diffix relies on a novel noise
addition framework called “sticky noise”, which aims to give
analysts a rich query syntax, minimal noise addition, and an
infinite number of queries, all while satisfying the WP29 defi-
nition of anonymous.

The authors claim that data produced by Diffix (i) falls

outside of the scope of the new European GDPR regulation;
(ii) has been determined by the French National Commission
on Informatics and Liberty (CNIL) to offer “GDPR-level
anonymization” for all cases; and (iii) has been certified by
TÜViT as fulfilling “all requirements for data collection and
anonymized reporting” [20, 21]. Diffix is used in production
and Aircloak reports working with partners such as Telefonica,
DZ Bank and Cisco.

Exploiting Diffix’s noise. In this paper we present a new
class of attacks, called noise-exploitation attacks. The attacks
work in three parts: (i) canceling out part of the sticky noise
using multiple queries, (ii) exploiting the noise Diffix adds to
one query in order to learn information about the query set
associated to this query, and (iii) using logical equivalence
between queries to obtain independent noise samples for the
same query. We develop two noise-exploitation attacks that
take advantage of the structure of Diffix’s sticky noise to
infer private (also called secret) attributes of individuals in the
dataset, violating the inference requirement from the Article
29 WP definition of anonymization [19]. Our first attack, the
differential attack, uses samples obtained by the difference
between two queries’ outputs, to discriminate between two
distributions, depending on the value of the private attribute.
We show that, under specific conditions, this attack potentially
allows an attacker to infer private information of unique users
with up to 96.8% accuracy knowing only 5 pieces of auxiliary
information we call attributes.

Our second noise-exploitation attack, the cloning attack,
uses dummy conditions that affect the output of queries condi-
tionally to the value of the private attribute. This attack relies
on weaker assumptions and automatically validates them with
high accuracy, without the need for an oracle. It proceeds
in two steps: (i) a validation step, searching for subsets of
known attributes to use for the attack, that will satisfy the
assumptions required for its success, and (ii) an inference
step that uses the attributes found to predict users’ private at-
tribute’s value. We perform the attack against four real-world
datasets, and show that it can infer the private attributes of
between 87.0% and 97.0% of all records across datasets. We
then present an optimized cloning attack that targets 55.4%
of the users and achieves the same accuracy using as little as
32 queries. This proves that introducing limits for the number
of allowed queries would not protect against our attacks.

Contributions. This paper makes the following contribu-
tions:

• By developing and implementing two attacks, we demon-
strate that Diffix alone does not currently satisfy the in-
ference requirements of the Art. 29 WP. We make the
datasets and code for the attacks and experiments avail-
able to other researchers.

• We show, using a collection of four previously published
datasets that the assumptions made by our attacks are
realistic. We establish that, across all datasets, between

1082 28th USENIX Security Symposium USENIX Association

93% and 100% of all users are value-unique (i.e. all
records sharing the same set of attributes have the same
private attribute).

• We make a range of defense-in-depth proposals, which
can be used to improve the practical privacy guarantees
of both Diffix and other non-differentially private data
anonymization tools. While these measures will not re-
sult in differential privacy guarantees, they might provide
adequate practical solution in many settings.

• We show, using the Diffix mechanism as our primary ex-
ample, that anonymization mechanisms that do not rely
on differential privacy might not be GDPR-compliant
alone, and that naive data-dependent noise can lead to
powerful attacks.

Paper organization. The rest of the paper is organized as
follows. Section 2 describes the Diffix mechanism. Section 3
presents two attacks exploiting the noise added by the sys-
tem to infer private attributes of individuals in the dataset.
Section 4 shows, on real-world datasets, how an attacker can
accurately attack the Diffix mechanism. Section 5 discusses
the assumptions of the attacks and potential solutions for
Diffix to thwart noise-exploitation attacks moving forward.
Sections 6 and 7 summarize related work and provide our con-
clusions to build practically useful anonymization systems.
Appendix A provides some details for the statistical tests used
by the attack. Appendix B describes how to optimize the
cloning attack to reduce the number of queries.

2 Summary of the Diffix framework

Here we summarize the Diffix framework as described
in [18] and introduce notations for our attack. Diffix acts as
an SQL proxy between an analyst and a protected database D
where each row is an individual record and each column one
attribute. The analyst can send SQL queries to Diffix, which
will process the queries and then output a noisy answer.

We denote with AD the set of attributes in the database
D. For instance, AD could contain 4 attributes AD =
{gender,age,zip,HIV} with HIV a binary attribute (0 or 1).
A record x is a row of D with values for the attributes in
AD. For example, with AD as above, we could have x =
(M,27,55416,1). We assume, for simplicity, that there is one
and only one record for every user in D.

While Diffix can process a large part of the SQL syntax,
we here focus on simple count queries:

SELECT count(∗)
FROM table

WHERE condition1 AND condition2 [AND . . .]

where every condition is an expression of the form
“attribute � value” with � being =, 6=, ≤, <, ≥, or >.

Figure 1: Diffix privacy-preserving architecture

For simplicity, we use a shorter notation for queries using “∧”
for the logical AND:

Q≡ count(condition1∧ condition2∧ . . .).

The following query would, for example, count the number
of individuals in the database who are male, 37 years old, and
live in the area with ZIP code 48828:

Q≡ count(gender = M∧age = 37∧ zip = 48828)

Diffix’s privacy-preserving mechanism. Diffix protects pri-
vacy through sticky noise addition (static and dynamic noise)
and bucket suppression (see Fig. 1). Let Q≡ count(C1∧ . . .∧
Ch), and denote by Q(D) the true result of Q evaluated on D
(without noise). Diffix’s output for Q on D (without bucket
suppression, see below) is:

Q̃(D) = Q(D)+
h

∑
i=1

static[Ci]+
h

∑
i=1

dynamicQ[Ci] (1)

with static[Ci] the static noise for condition Ci, dynamicQ[Ci]
the dynamic noise for condition Ci in Q.
Static noise. Let C be a condition, for example age = 34.
The static noise static[C] associated to C is a random number
drawn from a normal distributionN (0,1). The value is gener-
ated by a pseudo-random number generator (PRNG), whose
seed is a salted hash of the string literal C:

static_seedC = XOR(hash(C),salt)

This ensures that the static noise associated with C is always
the same independently of the query where C appears. The
noise is “sticky” thereby preventing an attacker to send the
same query multiple times, average out the results, and obtain
a precise estimate of the private value (averaging attack) [18].
Dynamic noise. In the Diffix framework, every record in D
is associated with a user ID, a unique string for that user.

USENIX Association 28th USENIX Security Symposium 1083

These pseudonyms are used to compute the dynamic noise.
Let Q≡ count(C1∧ . . .∧Ch) be a query and C any condition
Ci. The dynamic noise depends not only on C, but also on
the query set of Q in the dataset D, i.e. the set of users which
satisfies all conditions C1, . . . ,Ch. More precisely, if the query
set for Q on D is S= {uid1,uid2, . . . ,uidm}, the dynamic noise
for C (dynamicQ[C]) is generated from a normal distribution
N (0,1) by the PRNG seeded with:

dynamic_seed = XOR(static_seedC,

hash(uid1), . . . , hash(uidm))

Note that we don’t include D in the notation dynamicQ[C], as
the dataset is usually fixed and clear from the context.

The output Q̃(D) is therefore the realization of a random
variable distributed as a normal distribution N (µ,σ2), with
mean µ = Q(D) and variance σ2 = 2h.
Example. Consider again the query

Q≡ count(gender = M∧age = 37∧ zip = 48828).

Diffix’s output for Q on the database D is

Q̃(D) = Q(D)

+static[gender = M]+dynamicQ[gender = M]

+static[age = 37]+dynamicQ[age = 37]

+static[zip = 48828]+dynamicQ[zip = 48828]

where Q̃(D) is a random value drawn from a normal distribu-
tion N (Q(D),6).

Static and dynamic noise layers are both needed to prevent
intersection attacks [17, 18], a class of attacks that combine
multiple queries to infer private attributes of records.
Bucket suppression. In addition to static and dynamic noise,
Diffix implements another security measure called bucket
suppression, similar to the classic query set size restriction. If
the size of the query set is smaller than a certain threshold, the
bucket suppression rejects the query. Previous research has
shown that a fixed threshold constitutes a risk for privacy [22].
Diffix addresses this issue by using a noisy (and sticky to the
query set) threshold. Specifically, suppose Diffix processes a
query Q≡ count(C1∧ . . .∧Ch). If Q(D)≤ 2, then the query
gets suppressed. If Q(D)> 1, then Diffix computes a noisy
threshold T ∼N (4,1/2), using the seed:

threshold_seed = XOR(salt,hash(uid1), . . . ,hash(uidm))

If Q(D)< T , the query is suppressed; otherwise, the noisy
output Q̃(D) is computed and sent to the analyst. In the origi-
nal Diffix mechanism [17], the queries are said to be “silently
suppressed” when censored by bucket suppression. This could
mean that (1) a value of 0 is returned as result, (2) a random
value is returned or (3) Diffix displays an error message. In
this paper, we assume that a bucket-suppressed query will

return a value of zero. This gives less information to a po-
tential attacker than an error message, as a value of zero can
be the result of either noise addition or bucket suppression.
We consider that returning a random result affects utility too
significantly to be applied in practice.

3 Noise-exploitation attacks
Our noise-exploitation attacks, which we call differential

and cloning, are both based on three observations. First, since
the noise is sticky, it is possible to cancel out part of it us-
ing multiple queries. Second, since the noise depends on the
query set, the noise itself leaks information about the query set.
Third, exploiting logical equivalence between some queries,
it is possible to circumvent the “stickiness” of the noise by
repeating (almost) the same query and consequently obtain in-
dependent noise samples. Our differential attack uses samples
in a likelihood ratio test to discriminate between two proba-
bility distributions depending on the value of the private (also
called secret) attribute. Our cloning attack relies on dummy
conditions that conditionally strongly affect the output of the
query depending on the value of the secret attribute.

3.1 Differential noise-exploitation attack
We first define further notations: with A ⊆ AD a set

of attributes, x(A) is the restriction of the record x to
A, i.e. the vector one obtains after removing from x ev-
ery entry for attributes that are not in A. For example, if
AD = {gender,age,zip,HIV}, x = (M,27,55416,1) and A =
{gender,age,HIV}, then x(A) = (M,27,1). If A contains a
single attribute a, we simply write x(a). So, for example,
x(gender) = M.

For this attack, we make the following assumptions:

H1 The attacker wants to find out some information about
Bob, the victim. The attacker knows that Bob’s record is
in the dataset. We denote Bob’s record by x. The attacker
has access to the protected dataset only through Diffix.

H2 The attacker knows all of Bob’s attributes for some set
of attributes A. Our background knowledge (also called
auxiliary information in the literature) is the restricted
record x(A). This is a standard assumption in the literature
on re-identification attacks [23, 24].

H3 The attacker wants to infer a secret attribute s about Bob,
the victim. That is, she wants to infer the value of x(s),
where s 6∈ A. For simplicity of notation, s is a binary
attribute, i.e. x(s) ∈ {0,1}. This means that the attack can
be seen as a classifier, with the output of the attack being
negative if the algorithm returns x(s) = 0 and positive if
it returns x(s) = 1.
While we here focus on the binary case, our results fairly
easily extend to non-binary cases.

H4 There exists an oracle Unique that takes as input any
restricted record z(R) and outputs whether z(R) is unique.

1084 28th USENIX Security Symposium USENIX Association

Unique(z(R)) = True if and only if there is no other
record y in D such that z(R) = y(R).

For the attack to succeed, we first need to ensure that the
background knowledge x(A) uniquely identifies Bob. This is
given to us by the oracle Unique(x(A)). In this attack, we only
attempt to infer secret attributes of records that are unique in
the dataset. The cloning attack, presented later, extends this
by requiring a weaker notion of uniqueness, which we call
value-uniqueness.

While the existence of such an oracle is a strong assump-
tion, it is weaker than Diffix’s claims to protect against an
“analyst [that] has full access to the inference dataset” [18],
where the inference dataset is the original dataset with only
the secret attribute x(s) removed. If the attacker has access to
every record, she can easily verify that no other record shares
the same restricted record x(A).

Firstly, the attack needs to bypass bucket suppression. For
example, an attacker could ask how many records have both
the background knowledge x(A) and the private attribute s = 0:

Q≡ count(a1 = x1∧ . . .∧ak = xk ∧ s = 0). (2)

with A = {a1, . . . ,ak} and x(A) = (x1, . . . ,xk).
While an accurate answer to Q would immediately disclose

the value of x(s), since Q(D) can be either 0 (if x(s) = 1) or
1 (if x(s) = 0), this query will always be blocked by bucket
suppression since the query set is either empty or {Bob}.

Intersection attacks have been proposed in the literature
to circumvent similar kinds of restrictions [25]. Picking an
attribute, e.g. a1, we can define the following queries:

Q1 ≡ count(a2 = x2∧ . . .∧ak = xk ∧ s = 0) (3)
Q′1 ≡ count(a1 6= x1∧a2 = x2∧ . . .

. . .∧ak = xk ∧ s = 0)
(4)

As the record x is unique, by assumption, it is the only record
that can differ between Q1 and Q′1. This allows us to directly
compute Q(D):

Q(D) = Q1(D)−Q′1(D) =

{
0 if x(s) = 1
1 if x(s) = 0

(5)

To prevent this vulnerability1, Diffix adds static and dy-
namic noises:

Q̃1(D) = Q1(D)

+
k

∑
i=2

static[ai = xi]+ static[s = 0]

+
k

∑
i=2

dynamicQ1
[ai = xi]+dynamicQ1

[s = 0]

1For the intersection attack to be successful, both Q1 and Q′1 need to be
large enough to not trigger the bucket suppression. We discuss this assump-
tion later on.

and

Q̃′1(D) = Q′1(D)

+static[a1 6= x1]+dynamicQ′1
[a1 6= x1]

+
k

∑
i=2

static[ai = xi]+ static[s = 0]

+
k

∑
i=2

dynamicQ′1
[ai = xi]+dynamicQ′1

[s = 0].

The first part of our attack relies on noticing that k−1 static
noise layers cancel out. Let

q1 = Q̃1(D)− Q̃′1(D).

Then:

q1 = Q1(D)−Q′1(D)

−static[a1 6= x1]−dynamicQ′1
[a1 6= x1] (fixed)

+
k

∑
i=2

dynamicQ1
[ai = xi]+dynamicQ1

[s = 0]

(dynamicQ1
)

−
k

∑
i=2

dynamicQ′1
[ai = xi]−dynamicQ′1

[s = 0]

(dynamicQ′1
)

leaving us with 2k + 2 noise layers: fixed ∼ N (0,2),
dynamicQ1

∼N (0,k), and dynamicQ′1
∼N (0,k).

The second part of the attack relies on the fact that
both dynamicQ1

[ai = xi] and dynamicQ′1
[ai = xi] (resp.

dynamicQ1
[s = 0] and dynamicQ′1

[s = 0]) relate to the same
condition “ai = xi” (resp. “s = 0”). This means that the noise
values for Q1 and Q′1 will cancel out if Q1 and Q′1 have the
same query set. Therefore either Q1(D)−Q′1(D) = 0, and the
2k dynamic noise layers cancel out, or Q1(D)−Q′1(D) = 1,
and no dynamic noise layer is canceled out:

q1 ∼
{
N (0,2) if x(s) = 1
N (1,2k+2) if x(s) = 0

(6)

Using this result, an attacker can run a likelihood ratio test
(see Appendix A) to estimate whether q1 is distributed as
N (0,2) or N (1,2k + 2) and predict the value of x(s). The
larger k is, the easier it becomes to discriminate between the
two distributions. This alone already allows the attacker to
infer Bob’s secret, x(s), with better than random accuracy.

The third part of the attack allows us to strongly improve
the accuracy of our inference. While the stickiness of the noise
prevents us from running the same query again to collect more
sample, we circumvent it by using different pairs of queries
for which equation (6) is still true. Specifically, instead of
removing (resp. negating) the condition a1 = x1, we remove

USENIX Association 28th USENIX Security Symposium 1085

(resp. negate) other conditions a j = x j for j ≤ k, obtaining
queries Q j (resp. Q′j) for j ≤ k. In our notation:

Q j ≡ count

 k∧
i=1
i 6= j

ai = xi∧ s = 0

 (7)

Q′j ≡ count

 k∧
i=1
i6= j

ai = xi∧a j 6= x j ∧ s = 0

 (8)

Running all queries {(Q j,Q′j)} j≤k, the attacker collects a vec-
tor of realizations {q j} j≤k where q j = Q̃ j(D)−Q̃′j(D). All q j
values are computed from different queries, which generate
different noises. Hence, the noises all have different values
(with probability 1). Nevertheless, the equation (6) is still true
for each q j, so we can combine them as k different samples
from the same distribution, and estimate the value of Q(D).

Finally, replacing the “s = 0” condition with “s = 1” in ev-
ery pair (Q j,Q′j) defines k new pairs of queries {(R j,R′j)} j≤k.
This allows us to obtain k more samples {r j} j≤k (with differ-
ent noises and inverted results in equation (6)). This gives us a
total of 2k samples before bucket suppression (see Appendix
A), generated by issuing 4k queries.

On a technical note, observe that in principle we cannot be
certain that the q j’s (resp. r j’s) are all independent samples,
because two different queries Q j and Ql (resp. R j and Rl) with
j 6= l might have the same query set. In that case, the dynamic
noise layers associated to the same conditions would have the
same values, and hence the total dynamic noises of the two
queries would be heavily correlated. While this affects the
accuracy of the likelihood ratio test, the impact is negligible
in practice. Hereafter, we always assume that the samples are
independent.
Full differential attack. For larger values of k, the queries
used by the differential attack contain many conditions, and
hence potentially select a low number of records. Dependend-
ing on the dataset, this might result in a large fraction of
queries being bucket suppressed, leaving the attacker with
few or no samples for the likelihood ratio test. To counter-
act this effect, we integrate the attack with a subset explo-
ration step to obtain a full differential attack. Assume that
the attacker knows a set A∗ of the correct attributes for the
victim with |A∗|= k∗, i.e. the background knowledge is x(A

∗).
The full attack proceeds as follows. The algorithm selects
random subsets of A∗ until it finds a subset A ⊆ A∗ such
that Unique(x(A)) returns True. It then performs the differ-
ential attack using x(A) as background knowledge. For the
likelihood ratio test, the attack considers only query pairs
(Q̃ j(D), Q̃′j(D)) or (R̃ j(D), R̃′j(D)) which have outputs larger
than zero in both entries. If no such pair exists, the algorithm
samples a new subset A and iterates the procedure. If no fea-
sible subset is found, the algorithm outputs NonAttackable.
The subsets of A∗ are sampled by decreasing size, as bucket

suppression is less likely for lower values of k (but on the
other hand the likelihood ratio test is less accurate).

The procedure FullDifferentialAttack presents in detail the
algorithm outlined above.

Procedure DifferentialAttack(A,x(A),s)

Input: known attributes (names A and values x(A)),
secret s

Output: True if x(s) = 1, False if x(s) = 0, NoSamples if
x(A) does not yield any positive sample

1 k← |A|, Q← /0, R← /0

2 for j← 1 to k do
3 I←{i ∈ [1,k] | i 6= j}
4 Q̃← count(

∧
i∈I ai = xi∧ s = 0)

5 Q̃′← count(
∧

i∈I ai = xi∧a j 6= x j ∧ s = 0)
6 if Q̃ > 0 and Q̃′ > 0 then
7 q j← Q̃− Q̃′

8 Q←Q∪{q j}
9 end if

10 end for
11 for j← 1 to k do
12 I←{i ∈ [1,k] | i 6= j}
13 R̃← count(

∧
i∈I ai = xi∧ s = 1)

14 R̃′← count(
∧

i∈I ai = xi∧a j 6= x j ∧ s = 1)
15 if R̃ > 0 and R̃′ > 0 then
16 r j← R̃− R̃′

17 R←R∪{r j}
18 end if
19 end for
20 if Q= /0 andR= /0 then
21 return NoSamples
22 end if
23 f ← PDF of N (0,2), g← PDF of N (1,2k+2)

24 L←∏q∈Q
f (q)
g(q) ∏r∈R

g(r)
f (r)

25 return L≥ 1

3.2 Cloning noise-exploitation attack
In this section, we present an extension of the differential

noise-exploitation attack, which we call cloning attack. This
attack adds dummy conditions, that don’t affect the query set,
to queries, in such a way that several queries with different
dummy conditions will have either identical or very different
results conditional to the secret attribute’s value.

We first introduce some new notations and definitions. De-
noting by x the victim’s entire record, the attacker’s back-
ground information is now x(A) = (x(A

′),x(u)) with A = A′∪
{u} and |A| = k. We use the shorthand (A′,u) for A′ ∪{u}.
We also define a restricted record z(A) to be value-unique for
the attribute s in D if y(A) = z(A) implies y(s) = z(s). That is,

1086 28th USENIX Security Symposium USENIX Association

Procedure FullDifferentialAttack(A∗,x(A
∗),s)

Input: known attributes (names A∗ and values x(A
∗)),

secret s
Output: True if x(s) = 1, False if x(s) = 0,

NonAttackable if x(A
∗) is not attackable

1 for k← |A∗| to 1 do
2 for iter← 1 to 100 do
3 A← RandomSubsetOfSize(A∗,k)
4 if Unique(x(A)) and

DifferentialAttack(A,x(A),s) 6= NoSamples
then

5 return DifferentialAttack(A,x(A),s)
6 end if
7 end for
8 end for
9 return NonAttackable

every record that shares the same attributes of the restricted
record z(A) holds the same value for the secret attribute s. To
simplify the notation, we write A′ = x(A

′) to indicate the con-
dition that all attributes in A′ must match the ones in x(A

′), i.e.
∧a∈A′a = x(a)

The attack addresses several limitations of the differential
attack, making it much stronger in practice.

First, the cloning attack does not require an oracle to con-
firm that the background information uniquely identifies a
user. Instead, it replaces the oracle with a heuristic to auto-
matically validate the assumptions.

Second, the differential attack has to ignore any pair
(Q̃ j(D), Q̃′j(D)) where at least one of the entries is not pos-
itive, as it cannot tell whether the null output comes from
noise addition or from bucket suppression. This significantly
reduces the total number of samples used. Our cloning attack
instead uses “dummy conditions” that do not impact the user
set. As queries now only differ in the dummy conditions, the
corresponding query sets will always be identical. This allows
us to rule out bucket suppression in case at least one output is
greater than zero.

Third, while the differential attack requires records to be
unique, the cloning attack only requires records to be value-
unique. This is a weaker condition and makes the cloning
attacks effective on a larger set of users.

Fourth, the cloning attack only requires that the set of users
who share all attributes in x(A

′) is “large enough” to not be
bucket suppressed. This is a weaker assumption than for the
differential attack, where this needed to hold for a large num-
ber of subsets of A with one attribute removed. Furthermore,
the cloning attack validates this automatically (and thus pre-
vents bucket suppression) with high confidence.

While much stronger, the attack relies on the attacker
being able to produce a set of distinct dummy conditions

∆ = {∆ j}1≤ j≤|∆|, where each ∆ j is an SQL statement such
that the set of users matching A′ = x(A

′) is the same as the
set of users matching A′ = x(A

′)∧∆ j. In section 5, we discuss
how dummy conditions are easy to obtain, slow to detect,
and how automatically filtering them might introduce new
vulnerabilities.
Description of the attack. For each dummy condition ∆ j,
we define the two queries:

Q j ≡ count
(

A′ = x(A
′)∧∆ j ∧ s = 0

)
(9)

Q′j ≡ count
(

A′ = x(A
′)∧∆ j ∧u 6= x(u)∧ s = 0

)
(10)

With q j = Q̃ j(D)− Q̃′j(D), we have:

q j = Q j(D)−Q′j(D)

−static[u 6= x(u)] −dynamicQ j
[u 6= x(u)]

+ ∑
i∈A′

dynamicQ j
[a(i) = x(i)]+dynamicQ j

[s = 0]

−∑
i∈A′

dynamicQ′j
[a(i) = x(i)]−dynamicQ′j

[s = 0]

+
(
dynamicQ j

[∆ j]−dynamicQ′j
[∆ j]
)

By the same argument we presented for the differential
attack, if x(s) = 1 then Q j(D) = Q′j(D) and most dynamic
and static noises cancel out, giving:

q j =−static[u 6= x(u)]−dynamicQ j
[u 6= x(u)] (11)

As this value does not depend on the dummy condition
used, we have that q1 = q2 = · · ·= q|∆|.

On the contrary, if x(s) = 0, then the noise layers do not
cancel out with probability 1. As the noise values given by
dynamicQ j

[∆ j] and dynamicQ′j
[∆ j] depend on ∆ j, the proba-

bility that all (or any) q j are equal is zero.
We can therefore complete the attack by inferring that

x(s) = 1 if q1 = · · ·= q|∆|, and x(s) = 0 otherwise. Under the
current assumptions, the attack always infers the correct value
with 100% confidence (up to pseudo-random collisions in
Diffix’s noise addition mechanism).
Robustness against rounding. In the previous section, we
follow the Diffix papers [17, 18] and assume that Q̃(D) is re-
turned directly without any rounding, admitting also negative
values. We now consider the case where results are rounded
to the nearest nonnegative integer, and propose a simple mod-
ification of our attack that accounts for this.

When the results of the queries Q j and Q′j are rounded, the
corresponding q j might not be identical if x(s) = 0. However,
the q js will vary less if x(s) = 1 than if x(s) = 0. Hence, instead
of checking if q1 = . . .= q|∆|, we check if the q j values are
“similar” to one another. While for high values of k this is
easy to detect, the total variance of the noise for low values

USENIX Association 28th USENIX Security Symposium 1087

of k is small, making it harder to distinguish between the two
hypotheses (i.e. whether the q j values are “similar” or not).
To overcome this issue, we “amplify” the noise for each query:
instead of adding a single dummy condition ∆ j to the queries
for Q j and Q′j, we add the conjunction ∧l 6= j∆l :

Q j ≡ count

(
A′ = x(A

′)∧
∧
l 6= j

∆l ∧ s = 0

)
(12)

Q′j ≡ count

(
A′ = x(A

′)∧
∧
l 6= j

∆l ∧u 6= x(u)∧ s = 0

)
(13)

This increases the total variance of the noise in q j in the
x(s) = 0 case, making it easy to distinguish between the two
hypotheses: all the q j values will be very similar if x(s)= 1 and
fluctuate heavily if x(s) = 0. Measuring the sample variance S2

of {q j}1≤ j≤|∆|, we infer that x(s) = 1 if S2 ≤ σ∗, and x(s) = 0
otherwise with a cutoff threshold σ∗ chosen by the attacker.
We include an empirical analysis of σ∗ in the full version of
this manuscript. The cloning attack is described in detail in
the procedure CloningAttack.

Procedure CloningAttack(A′,u,x(A
′,u),∆,s,v)

Input: known attributes (names A′,u and values x(A
′,u)),

dummy conditions ∆, secret s and target value v
Output: True if x(s) = v, False if x(s) 6= v

1 for j← 1 to |∆| do
2 ϕ← A′ = x(A

′)∧∧l 6= j ∆l

3 Q̃← count(ϕ∧ s 6= v)

4 Q̃′← count
(

ϕ∧u 6= x(u)∧ s 6= v
)

5 q j← Q̃− Q̃′

6 end for
7 r← 1

|∆| ∑
|∆|
j=1 q j, S2← 1

|∆|−1 ∑
|∆|
j=1(q j− r)2

8 return S2 ≤ σ∗

Automated validation of the assumption. The cloning at-
tack relies on two assumptions on the attacker’s background
knowledge x(A

′,u):

1. The queries {Q j}1≤ j≤|∆| and {Q′j}1≤ j≤|∆| in equations
(12) and (13) are not bucket suppressed.

2. The user is value-unique in the dataset according to
(A′,u) for the secret attribute s.

We here propose procedures for an attacker to determine
whether (A′,u) satisfies the two assumptions with high proba-
bility.

Validating the first assumption can be done easily by sub-
mitting queries {Q j}1≤ j≤|∆| and {Q′j}1≤ j≤|∆| to Diffix. Re-
call that the threshold for bucket suppression for a query de-
pends only on the corresponding query set. All the queries in

{Q j}1≤ j≤|∆| have the same query set, and the same applies for
{Q′j}1≤ j≤|∆|. Hence, if any query Q j is bucket suppressed (i.e.
has output zero), then all queries in {Q j}1≤ j≤|∆| must have
output zero, and similarly for {Q′j}1≤ j≤|∆|. Thus, if any query
Q j and any query Q′j have output higher than zero, we are sure
that no query was bucket suppressed, and hence all q j’s are
valid samples. The test is considered passed in this case, and
failed otherwise. See the algorithm NoBucketSuppression for
an implementation example.

Validating the second assumption relies on a heuristic. We
run the query:

count(A′ = x(A
′)∧u = x(u))

and consider the assumption validated if the output is zero, and
not otherwise. The idea is that if the output is larger than zero,
then the query was not bucket suppressed, and many users are
likely share the same attributes x(A

′,u), meaning that x(A
′,u) is

unlikely to be value-unique. Experiments in section 4 show
that this heuristic works very well on real-world datasets.

Procedure NoBucketSuppression(A′,u,x(A
′,u),∆,s,v)

Input: known attributes (names A′,u and values x(A
′,u)),

dummy conditions ∆, secret s and target value v
Output: True if (A′,u) passes the tests and is deemed to

satisfy assumption 1, False otherwise
1 okQ← 0, okQ′ ← 0
2 for j← 1 to |∆| do
3 ϕ← A′ = x(A

′)∧∧l 6= j ∆l

4 Q̃← count(ϕ∧ s 6= v)

5 Q̃′← count
(

ϕ∧u 6= x(u)∧ s 6= v
)

6 if Q̃ > 0 then
7 okQ← 1
8 end if
9 if Q̃′ > 0 then

10 okQ′ ← 1
11 end if
12 end for
13 return okQ = 1 & okQ′ = 1

Procedure ValueUnique(A′,u,x(A
′,u))

Input: known attributes (names A′,u and values x(A
′,u))

Output: True if (A′,u) passes the tests and is deemed to
satisfy assumption 2, False otherwise

1 Q̃← count(A′ = x(A
′)∧u = x(u))

2 return Q̃ = 0

The procedures CloningAttack and NoBucketSuppression
both issue (the same) 2|∆| queries, while ValueUnique uses

1088 28th USENIX Security Symposium USENIX Association

only one query. Validating the assumptions and performing
the attack thus requires only 2|∆|+1 queries, for a given set
of attributes (A′,u). We empirically obtain accuracy above
93.3% with |∆| as low as 10 (see section 4 and Appendix B).
Full cloning attack. Combining procedures CloningAttack,
NoBucketSuppression and ValueUnique, we design a fully
fledged procedure FullCloningAttack that performs the entire
attack under the following assumptions:

H1 The attacker knows that the victim’s record x is in the
dataset.

H2 The attacker knows a set A∗ of the correct attributes for
the victim with |A∗|= k∗, i.e. the background knowledge
is x(A

∗).
H3 The secret attribute x(s) is a binary attribute.

The full cloning attack includes a subset exploration step
similar to the one used in the full differential attack. The
algorithm selects random subsets A′ of A∗ (and an element
u from A∗ \A′ at random) by decreasing size until it finds a
subset that passes both tests, upon which it then performs the
attack using x(A

′,u) as background knowledge. If no feasible
subset is found, the algorithm outputs NonAttackable.

Procedure FullCloningAttack(A∗,x(A
∗),∆,s,v)

Input: known attributes (names A∗ and values x(A
∗)),

dummy conditions ∆, secret s and target value v
Output: True if x(s) = v, False if x(s) 6= v

1 for k← |A∗| to 1 do
2 for iter← 1 to 100 do
3 A′← RandomSubsetOfSize(A∗,k−1)
4 u← RandomElement(A∗ \A′)
5 if NoBucketSuppression(A′,u,x(A),∆,s,v) and

ValueUnique(A′,u,x(A
∗)) then

6 return CloningAttack(A′,u,x(A),∆,s,v)
7 end if
8 end for
9 end for

10 return NonAttackable

Reducing the number of queries. While Diffix allows each
analyst to send arbitrarily many queries, we study how many
queries are required to perform the cloning attack in practice.
In Appendix B we present a heuristic that reduces the median
number of queries by a factor of 100. Using this heuristic,
the attack targets 55.4% of the users in the dataset, achieving
91.7% accuracy with a maximum of 32 queries per user in
our experiments.

4 Experiments
In order to assess the effectiveness of our attacks, we imple-

mented Diffix’s mechanism for counting queries as described

in the original paper [18]. The implementation outputs zero
when queries are bucket-suppressed and results are rounded
to the nearest nonnegative integer. We apply our attacks to
four datasets and an additional synthetic dataset on which the
assumptions of the differential attack are always validated.

4.1 Description of the datasets
In our experiments, we use the following datasets:

1. ADULT: U.S. Census dataset with 30,162 records and
11 attributes, incl. salary class as secret attribute [26].

2. CREDIT: credit card application dataset with 690
records and 16 attributes, incl. accepted credit as secret
attribute [27].

3. CENSUS: U.S. Census dataset with 199,523 records and
42 attributes, incl. total personal income (digitized, null
income as negative condition) as secret attribute [28].

4. CDR: synthetic collection of phone metadata with
2,000,000 records generated using real-world data for
human behaviour and the geography of the UK for the lo-
cation of antennas. Every user is a record of 11,674,870
binary attributes (an attribute being whether a user was
geographically present at a certain place and time, and
placed a call or received a text message). As the vast
majority of the attributes in a record are null, the dis-
tribution of values for a random attribute is heavily
skewed towards zero. To obtain a balanced experiment,
for 50% of runs we select as the secret attribute a pair
(location, time) where the user was present, and for the
other 50% we select a pair where the user was absent.

4.2 Differential noise-exploitation attack

Evaluation of the attack alone. We first test the differen-
tial attack on a synthetic dataset where all users satisfy the
uniqueness assumption.

In the Completek dataset, every user is unique according
to k attributes (excluding the secret attribute), whereas k−1
attributes always identify a larger set of users. This ensures
that (i) every user is vulnerable to the attack and (ii) bucket
suppression is unlikely to be triggered by the attack queries.
To create the dataset, we fix an integer B and generate every
possible k−tuple whose values are in {1, . . . ,B}. We then
append to each tuple a random value of either 0 or 1 for
the secret attribute. Completek contains Bk records, one for
each combination of k attributes. For our experiments, we
set B = 12, to ensure that close to no bucket suppression
occurs. For computational reasons, as the size of the dataset
in memory grows as Bk, the maximum k we can use is limited
to 6.

Fig. 2 compares the accuracy acc(k) of the attack, knowing
k attributes, on Completek with the theoretical accuracy. The
procedure we use here is DifferentialAttack, which does not
include subset exploration and has no access to the oracle.

USENIX Association 28th USENIX Security Symposium 1089

Hence, this experiment simulates a realistic attacker. We re-
port the empirical fraction of users whose secret attribute is
correctly predicted, estimated by performing the differential
attack on a sample of 1000 users. We also report the theoreti-
cal distribution of accuracy, (i) without rounding (closed-form
expression, see Appendix A) and (ii) with rounding (numeri-
cal simulation, see Appendix A). For the Completek dataset,
the accuracy reaches 92.6% for 5 points. Even knowing only
k = 2 attributes, the accuracy is above 66% both theoretically
and empirically. While rounding has close to no effect on the
theoretical accuracy of the attack, comparing the Completek
with the Theoretical (rounding) curves shows that bucket sup-
pression and potential correlations between the samples in
empirical experiments noticeably decrease the accuracy.

Evaluation on real-world datasets. We now evaluate the
accuracy of the differential attack on 1,000 users selected
at random in each of the four datasets. Contrary to the syn-
thetic experiment, bucket suppression is more prevalent on
real-world datasets. Therefore, we run the FullDifferentialAt-
tack algorithm, knowing k∗ attributes A∗ that are selected at
random for each record. If the attack outputs NonAttackable,
the secret attribute is predicted at random (uniformly).

Fig. 3 shows, for each dataset and knowing k∗ attributes,
the percentage of unique individuals and the percentage of
individuals, in each dataset, for which the secret is correctly
inferred. The latter divided by the the former gives us the
accuracy of our attack. Our attack realizes an accuracy of
68.4% for ADULT with k∗ = 10, 64.0% for CREDIT with
k∗ = 15, 68.8% for CENSUS with k∗ = 40, and 68.8% for
CDR with k∗ = 6.

Observe that the fraction of correctly inferred attributes

1 2 3 4 5 6 7 8 9 10

Known attributes (k)

0.0

0.2

0.4

0.6

0.8

1.0

A
tta

ck
ac

cu
ra

cy

Theoretical (no rounding)
Theoretical (rounding)
Completek

Baseline

Figure 2: Accuracy of the differential attack when the unique-
ness assumption is always validated and with balanced truth
values. The baseline accuracy is 0.5 and represents the ex-
pected success rate when randomly predicting the secret at-
tribute using a uniform prior.

Dataset A
tt

ri
bu

te
s(

k∗
)

Va
lu

e-
un

iq
ue

Pr
ed

ic
te

d
at

ta
ck

ab
le

ac
cu

ra
cy

pa

ac
cu

ra
cy

al
l

ADULT 10 93.0% 96.8% 93.3% 87.0%

CREDIT 15 100.0% 100.0% 97.0% 97.0%

CENSUS 40 99.7% 94.6% 97.1% 91.6%

CDR 6 100.0% 100.0% 91.3% 91.3%

Table 1: Empirical results of the cloning attack on four real-
world datasets.

plateaus with larger k∗ for the CREDIT, CENSUS and CDR
datasets. The reason is that, on these datasets, most users are
unique for larger values of k∗. As explained in section 3, this
makes bucket suppression more prevalent and reduces the
total number of samples for the likelihood ratio test, which is
a limitation of the differential attack.

4.3 Cloning noise-exploitation attack
We implement the attack as described by algorithm Full-

CloningAttack. As before, for each value of k∗ we select
1,000 users at random, and for each user a random subset A∗

of their attributes of size k∗. A∗ represents the total number of
attributes known to the attacker about the victim.

We set a threshold σ∗ = 0.7 for the variance cutoff (see full
version). We generate |∆|= 10 dummy conditions for x1 = a1
of the form x1 6= b j for j ≤ |∆|, with b j being some plausible
values for x1 different from a1. We present the results when
the attacker knows enough attributes (k∗) to identify every
user, or up to all available attributes in the dataset.

Table 1 shows the proportion of records that are value-
unique (third column) and fraction of the value-unique records
that are predicted as attackable by procedures NoBucketSup-
pression and ValueUnique (fourth column). We then perform
the cloning attack on all records that are predicted as attack-
able and report accuracypa, the fraction of predicted attack-
able records whose secret attribute was successfully inferred
(fifth column). For completeness, we also report accuracyall,
the fraction of all records in the datasets (including the ones
deemed NonAttackable) whose secret attribute was success-
fully inferred (last column).

Table 1 shows that the cloning attack—including the as-
sumption validation step—performs really well on all datasets
considered, between 87.0 and 97.0% of secret attributes and
97.0% on the CREDIT dataset when knowing 15 attributes.

Fig. 4 shows, knowing k∗ attributes, the fraction of all
records that are value-unique, predicted attackable, and cor-
rectly inferred. The curves for value-unique users and for
predicted attackable users are always very close, suggesting

1090 28th USENIX Security Symposium USENIX Association

2 3 4 5 6 7 8 9 10

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
al

lr
ec

or
ds

A

2 3 4 5 6 7 8 9 101112131415

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0B

5 10 15 20 25 30 35 40

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0C

2 3 4 5 6

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0D

Unique Correctly inferred

Figure 3: Results of the differential attack for the (A) ADULT, (B) CREDIT, (C) CENSUS, and (D) CDR datasets.

that the assumption validation step is effective. Out of all
records predicted as attackable, most of them are correctly in-
ferred, demonstrating that the attack works on targeted records
across all k. For the CREDIT dataset, with only six attributes,
the attack reaches the inference step for 95% of the users in
the dataset, and correctly infers the secret attribute for 93%
of the total records.

5 Discussion

5.1 Value-uniqueness and attribute predictability

Value-uniqueness plays an important role in the cloning
attack. As Fig. 4 shows, it is a valid assumption for real-world
datasets.

Value-uniqueness means that a group of people who share
the same attributes also share the same secret attribute. If
this group were to be large enough, the noise added by Diffix
might not be enough to hide the secret attribute, which could
then be revealed by using a simple count query. While this
might be true for some datasets, it is not the case for any of
the datasets we considered. For instance, the average size
of the value-unique class (i.e. the set of value-unique users
sharing the same restricted record) in the ADULT dataset is
1.44, with no class containing more than 4 users and similar
numbers for the other datasets. This means that, most of the
times, value-unique users are simply unique.

If secret attributes are predictable from the other attributes,
a trained machine learning classifier could predict them with
potentially high accuracy2. Despite our datasets coming from
the machine learning literature, our attack does not rely at all
on the predictability of secret attributes and performs equally
well if no correlation at all exists between attributes and the
secret attribute. We run our attack on a modified version of the
ADULT dataset where sensitive attributes have been randomly
sampled, thereby theoretically destroying any correlation. Our
attacks perform as well on this modified dataset as on the

2Whether this would constitute a privacy attack is debated [29].

original dataset. These results are included in the full version
of this manuscript.

5.2 Producing and detecting dummy conditions
The cloning attack requires the attacker to provide a set

of dummy conditions that affect the noise addition without
affecting the query set. These conditions can be syntactic (e.g.,
age ≥ 15 for the query age = 23), semantic (e.g., status 6=
retired for age = 23), or pragmatic (e.g., age 6= 15 against a
database containing only adult individuals).

When the language is rich enough, detecting redundant
clauses is not a trivial task. At the same time, the richer the
syntax is, the more utility an analyst gets out of the system.
Diffix offers a fairly rich syntax including boolean expression,
GROUP BY, JOIN, seven aggregation functions, set mem-
bership, fourteen string functions, and ten maths functions.
In this context, automatically detecting dummy conditions
would likely require iterating recursively through every condi-
tion and evaluating the query with and without them, a costly
operation. Moreover, if dummy conditions are detected by
evaluating them on the dataset, filtering them might not be
safe. Removing semantic and pragmatic dummy conditions
from a query would indeed reduce the total variance of the
added noise and leak information about the dataset itself (e.g.,
only adult individuals are present if the condition age 6= 15 is
always removed).

5.3 Improving the attacks
The cloning attack can be modified to run a double NoBuck-

etSuppression test: once with v = 0 and once with v = 1. If
both pass and the ValueUnique test is passed as well, the attack
proceeds with the actual inference procedure CloningAttack
for both v = 0 and v = 1. The attack then makes a guess only
if both inferences return the same value, and continues with
the subset exploration otherwise (deeming the user NonAt-
tackable if no working set of attributes is found).

We found that this modified attack improves the accuracypa
figure on all datasets (e.g. from 93.3% to 97.3% for ADULT,

USENIX Association 28th USENIX Security Symposium 1091

2 3 4 5 6 7 8 9 10

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
al

lr
ec

or
ds

A

2 3 4 5 6 7 8 9 101112131415

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0B

5 10 15 20 25 30 35 40

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0C

2 3 4 5 6

Known attributes (k∗)

0.0

0.2

0.4

0.6

0.8

1.0D

Value-unique Predicted attackable Correctly inferred

Figure 4: Results of the cloning attack for the (A) ADULT, (B) CREDIT, (C) CENSUS, and (D) CDR datasets.

all results available in the full version). However, double tests
are more likely to fail, meaning that less users are predicted
as attackable (from 96.8% to 87% in ADULT). Because
of bucket suppression, this effect is particularly strong for
datasets where the overall distribution of the secret attribute
is very skewed, such as the CDR dataset where the number of
predicted attackable users goes from 100% to 8.5%. Depend-
ing on the aims of the attacker (precision versus coverage),
she might prefer the original or the double version of the
cloning attack.

Other improvements. To properly quantify the strength of
our attacks, none of them use prior knowledge on the distri-
bution of the secret attribute. In practice, an attacker might
want to use this information, e.g. obtaining it by querying
Diffix. We discuss this in the full version of the manuscript.
We also discuss how to generate more samples for the dif-
ferential attack and outline how to generalize both attacks to
infer non-binary attributes.

5.4 Defenses

In this section, we briefly outline some of the approaches
that may be used to mitigate the effects of our noise-
exploitations attacks – and other attacks – against Diffix and
other privacy-preserving query-based systems. Overall, it is
our belief that practical secure design principles apply here
just as they do in many other contents. Specifically, privacy-
preserving query-based system such as Diffix (regardless of
whether they have provable guarantees or not) would benefit
from a defense-in-depth approach, by monitoring the query
stream for queries that are likely to lead to exploitation.

Intrusion detection. The set of queries generated by our at-
tacks follow a specific template. Learning this pattern may
help prevent noise-exploitation attacks, as well as potentially
related attacks. A more sophisticated attacker might however
vary the shape of the queries and interleave them with other
more natural-looking queries, including over long periods of
time.

Auditability. If the user of such a system is authenticated,
then a suspicious-looking query stream can lead to temporary
account suspension and further investigations of their activity,
including after the fact, as new attacks are being uncovered.

Increased friction. Another strategy involves imposing time
delays or financial charges on queries, for instance by charging
by the number of queries, instead of using a subscription-
based model. This strategy can be refined to, for instance,
charge more or create longer delays for suspicious queries.
This would make it more difficult to automate the inference
process at scale.

Limited expressiveness. Instead of a rich syntax, the mecha-
nism could allow only for a small set of conditions that are
easier to validate. This could also include a limit to the number
of conditions per query, or to the total number of conditions
that may be used by the authenticated system user during a
specific interval of time. This involves a compromise between
rough data summarization and fine-grained queries, and limits
the utility of the system in practice.

5.5 Disclosure

After we discovered and prototyped our differential attack,
we reached out to the authors of Diffix and shared with them
our manuscript, which subsequently appeared on ArXiv.org. A
week later, the authors of Diffix published a blog post on their
website [30] discussing our results. While they acknowledge
our attack, they claim that it is not practical as the necessary
assumptions are rarely met in the datasets they analyzed.

We disagree with this claim. First, the existence of the at-
tack, independently of the dataset, contradicts both the spirit
and the letter of GDPR’s Art. 29 WP. Second, we showed that,
albeit correct, the authors’ analysis was insufficient. In this
paper, we give an example of a dataset on which the differen-
tial attack is very effective, even without an oracle. Moreover,
we demonstrate that there exist real-world datasets on which
the necessary assumptions are met for a significant fraction
of users. Third, the cloning attack, which we developed after-

1092 28th USENIX Security Symposium USENIX Association

wards, is able to validate its assumptions automatically and
performs very well on a large range of real-world datasets.

The code of our differential and cloning attacks, as well
as the experiments performed in this paper, are available at
https://cpg.doc.ic.ac.uk/signal-in-the-noise.

6 Related work

Attacks on query-based systems. Diffix is an example of
query-based system: the individual-level (often pseudony-
mous) data is stored on the data curator’s server. Users access
the data exclusively by sending queries that only return in-
formation aggregated from several records. While this setup
prevents traditional re-identification attacks [4–9], a large
range of attacks on query-based systems have been developed
since the late 70’s [25, 31]. Most of these attacks show how
to circumvent privacy safeguards (for instance, query set size
restriction and noise addition) in specific setups. In 2003,
Dinur et al. [32] proposed the first example of an attack that
works on a large class of query-based systems. In what they
called a reconstruction attack, they showed that if the noise
added to every query is at most o(

√
n), where n is the size of

the dataset, then an attacker can reconstruct almost the entire
dataset using only polynomially many queries. Sankararaman
et al. [33] realized the first formal study of tracing attacks,
introducing a theoretical attack model based on hypothesis
testing. While reconstruction attacks aim at inferring one
or more attributes of some record in the dataset (violating
the inference requirement of the Art. 29 WP), the goal of
tracing attacks is only to determine whether the data about
a certain individual (more precisely, their record) is present
in the dataset. Numerous reconstruction and tracing attacks
have been proposed in the literature. These attacks address
different limitations of previous ones, particularly the com-
putational time required to perform them. A recent survey
from Dwork et al. [34] gives a detailed overview of attacks
on query-based systems.
Attacks on differential privacy. Differential privacy is a pri-
vacy guarantee that can be enforced by query-based systems.
Differential privacy has been mathematically proven to be
robust against a very large class of attacks [12] when used
with an appropriate privacy budget ε. However, research has
shown that attacks on implementations of differentially pri-
vate systems exist. We give an overview in the full version.
Differential privacy for general-purpose analytics. Diffix
was specifically created as an alternative to differential privacy
to provide a better privacy/utility tradeoff for general-purpose
analytics [35, 36]. Specifically, Diffix allows for infinitely
many queries with little noise added to outputs.

General-purpose analytics usually refers to systems that
allow analysts to send many queries of different type, and ide-
ally permit to join different datasets. Some solutions based on
differential privacy have been proposed, the main ones being
PINQ [37], wPINQ [38], Airavat [39], and GUPT [40]. All

of these systems however present limitations, e.g. simplicity
of use and support for various operators that join different
datasets [13]. In 2017, Johnson et al. [13] proposed a new
framework for general-purpose analytics, called FLEX, devel-
oped in collaboration with Uber. FLEX enforces differential
privacy for SQL queries without requiring any knowledge
about differential privacy from the analyst. However, the ac-
tual utility achieved – level of noise added – by the current
implementation of FLEX has been questioned [41].

Attacks on data-dependent noise. Values of Diffix’s dy-
namic noise for a query depend on the query set (i.e. the
set of users selected by the query), and hence on the data.
This is what allows for our noise-exploitation attack to work.
Data-dependent noise, also called instance-based noise, has
been shown to provide significantly better accuracy than data-
independent noise [42]. However, naive implementations of
data-dependent noise can leak information about the data,
a result Nissim et al. theorized as a potential way to attack
the system [42]. To the best of our knowledge, our noise-
exploitation attack is the first instance of an attack exploiting
specifically data-dependent noise on deployed systems.

6.1 Other attacks on Diffix
We published the first version of our paper on ArXiv.org

in April 2018, describing the differential attack. We updated
it with a cloning attack in July 2018. Two months later, in
October 2018, two other attacks on Diffix were disclosed. A
membership attack by Pyrgelis et al. [43], based on a pre-
vious paper [44], and a reconstruction attack by Cohen and
Nissim [45], based on previous work by Dinur et al. [32] and
Dwork et al. [46]. These attacks are very different from ours
and require a large number of queries in a typical setting,
while our cloning attack can work with only 32 queries (see
Appendix B). These are, to the best of our knowledge, the
only three attacks specifically targeting Diffix.

Membership attack on location data. The attack by Pyrge-
lis et al. [43] is as follows: the attacker trains a machine
learning algorithm on a linkability dataset (the attacker’s
background knowledge) to infer the presence of a user in
a protected dataset (accessible only through queries on Dif-
fix). Both datasets contain the full trajectories of users and
half of the users are present in both datasets. The classifier
is trained on the linkability dataset and queries on Diffix that
count the number of people transiting in a certain area at a
given time. The experimental results focus on the top 100
users with the highest number of reported locations in the
linkability dataset. Out of 62 users present in both datasets,
the classifier correctly infers the presence for 50 of them.

This attack presents three limitations. First, it is a mem-
bership attack and only allows an attacker to infer whether a
person is in the protected dataset or not. Second, it assumes a
strong adversary who has access to the full trajectory of a user
exactly as it exists in the protected dataset, for a large number

USENIX Association 28th USENIX Security Symposium 1093

https://cpg.doc.ic.ac.uk/signal-in-the-noise

of users. Third, the attack requires about 32,000 queries to as-
sess the presence of a user. Membership attacks are however
very useful when combined with inference attacks like ours,
allowing an adversary to effectively verify our assumption
that the victim is in the dataset.

Linear program reconstruction attack. The attack by Co-
hen et al. [45] focuses on reconstructing the dataset. In its
simplest form, the attack assumes that the dataset contains n
records, and each user i ∈ [n] has a binary attribute si. The at-
tack then selects random subsets of users and, for each subset
I ⊆ [n], queries Diffix for the result of ∑i∈I si. This allows the
attacker to produce a noisy linear system that can be solved
using linear programming techniques to reconstruct the entire
set of secret attributes {s1, . . . ,sn} with perfect accuracy in
polynomial time.

While this attack can successfully reconstruct the entire
dataset, it presents two limitations compared to our attack.

First, it requires that the system allows queries of the type
∑i∈I si, i.e. queries that select any analyst-defined set of users
I ⊆ [n], the “row-naming problem”. The authors here exploit
SQL functions supported by Diffix to define hash functions
which they then use to select “random enough” sets of users.
Following the disclosure, Aircloak restricted the available
SQL functions to prevent the attack [47].

Second, to target a specific user, the attack would require
a number of queries proportional to the number of records.
Since the attacker does not know which name i ∈ [n] corre-
sponds to the victim’s record, it is necessary to fully recon-
struct at least a few columns entirely. The attacker would then
perform a uniqueness attack on the reconstructed dataset to
infer the secret attribute of the victim.

On the contrary, the number of queries used by our attacks
is independent of the number of records in the dataset.

7 Conclusion

The Diffix mechanism has recently been proposed as an
alternative to data anonymization methods and differential
privacy, and is currently used in production. The mechanism
is claimed to allow an analyst to submit an unbounded num-
ber of queries, while thwarting inference attacks, as defined
by EU’s Art. 29 WP. In this paper, we show that Diffix’s
anonymization mechanism is vulnerable to a new class of
attacks, which we call noise-exploitation attacks. Our attacks
leverage design flaws in Diffix’s data-dependent noise to infer
private attributes of an individual in the dataset, solely from
prior knowledge about other attributes of this individual. In
our opinion, Diffix alone and in its present state likely fails to
satisfy the EU’s Art. 29 WP requirements for data anonymiza-
tion. Furthermore, our results show that naive data-dependent
noise leads to highly vulnerable systems.

Our differential noise-exploitation attack, given little auxil-
iary information about the victim, combines specific queries
and estimates how the noise is distributed to infer the value

of the private attribute. In a synthetic best-case dataset, the
attacker can predict with 92.6% accuracy private attributes,
using only 5 attributes.

Our cloning noise-exploitation attack extends the first one
by adding “dummy” conditions that do not change the se-
lected query set. It relies on weaker assumptions, that are
automatically validated with high accuracy by our algorithm.
We evaluate its performances on four real-world datasets and
find that it infers private attributes of between 87.0% and
97.0% of all records across datasets.

We finally recommend four defense-in-depth principles to
defeat the de-anonymization attacks we describe.

References

[1] David Lazer, Alex Sandy Pentland, Lada Adamic, Sinan
Aral, Albert Laszlo Barabasi, Devon Brewer, Nicholas
Christakis, Noshir Contractor, James Fowler, Myron
Gutmann, and Others. Life in the network: the com-
ing age of computational social science. Science,
323(5915):721, 2009.

[2] Carole Cadwalladr and Emma Graham-Harrison. Re-
vealed: 50 million facebook profiles harvested for cam-
bridge analytica in major data breach. The Guardian,
17, 2018.

[3] Council of European Union. Regulation (EU) 2016/679.
OJ, L 119:1–88, May 2016.

[4] L Sweeney. Weaving technology and policy together
to maintain confidentiality. J. Law Med. Ethics, 25(2-
3):98–110, 82, 1997.

[5] A Narayanan and V Shmatikov. Robust de-
anonymization of large sparse datasets. In 2008 IEEE
Symposium on Security and Privacy (sp 2008), pages
111–125. ieeexplore.ieee.org, May 2008.

[6] Yves-Alexandre de Montjoye, César A Hidalgo, Michel
Verleysen, and Vincent D Blondel. Unique in the crowd:
The privacy bounds of human mobility. Sci. Rep.,
3:1376, 2013.

[7] Yves-Alexandre de Montjoye, Laura Radaelli, Vivek Ku-
mar Singh, and Alex “sandy” Pentland. Unique in the
shopping mall: On the reidentifiability of credit card
metadata. Science, 347(6221):536–539, January 2015.

[8] Chris Culnane, Benjamin I P Rubinstein, and Vanessa
Teague. Health data in an open world. ArXiv e-prints,
December 2017.

[9] P Ohm. Broken promises of privacy: Responding to the
surprising failure of anonymization. UCLA Law Rev.,
2010.

1094 28th USENIX Security Symposium USENIX Association

[10] President’s Council of Advisors on Science and Technol-
ogy. Big data and privacy: a technological perspective.
Technical report, White House, January 2014.

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating Noise to Sensitivity in Pri-
vate Data Analysis, page 265–284. Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, Mar
2006.

[12] Shiva P Kasiviswanathan and Adam Smith. On the ’se-
mantics’ of differential privacy: A bayesian formulation.
1, 6(1), June 2014.

[13] Noah Johnson, Joseph P. Near, and Dawn Song. Towards
practical differential privacy for sql queries. ArXiv e-
prints, Jun 2017. arXiv: 1706.09479.

[14] Jun Tang, Aleksandra Korolova, Xiaolong Bai, Xue-
qiang Wang, and Xiaofeng Wang. Privacy loss in apple’s
implementation of differential privacy on macos 10.12.
ArXiv e-prints, September 2017.

[15] Ilya Mironov. On significance of the least significant bits
for differential privacy. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
CCS ’12, pages 650–661, New York, NY, USA, 2012.
ACM.

[16] Andreas Haeberlen, Benjamin C Pierce, and Arjun
Narayan. Differential privacy under fire. In USENIX
Security Symposium, 2011.

[17] Paul Francis, Sebastian Probst Eide, and Reinhard Munz.
Diffix: High-Utility database anonymization. In Privacy
Technologies and Policy, pages 141–158. Springer Inter-
national Publishing, 2017.

[18] P. Francis, S. Probst-Eide, P. Obrok, C. Berneanu, S. Ju-
ric, and R. Munz. Extended Diffix. ArXiv e-prints, June
2018.

[19] Article 29 Data Protection Working Party. Opinion
05/2014 on anonymisation techniques. April 2014.

[20] Aircloak. Announcing our seed investment. https:
//web.archive.org/web/20180426131132/https:
//blog.aircloak.com/announcing-our-seed-
investment-26f392f1068a, October 2017.

[21] Aircloak. Building trust. https://web.archive.org/
web/20180426104935/https://blog.aircloak.
com/building-trust-35c74424efc6, July 2017.

[22] William Stallings, Lawrie Brown, Michael D Bauer, and
Arup Kumar Bhattacharjee. Computer Security: Princi-
ples and Practice. Pearson Education, 2012.

[23] Nabil R. Adam and John C. Worthmann. Security-
control Methods for Statistical Databases: A Compar-
ative Study. ACM Comput. Surv., 21(4):515–556, De-
cember 1989.

[24] Pierangela Samarati and Latanya Sweeney. Protect-
ing privacy when disclosing information: K-anonymity
and its enforcement through generalization and suppres-
sion. Technical report, technical report, SRI Interna-
tional, 1998.

[25] Leland L. Beck. A security machanism for statistical
database. ACM Trans. Database Syst., 5(3):316–3338,
Sep 1980.

[26] Center for Machine Learning and Intelligent Systems.
Adult dataset. https://archive.ics.uci.edu/ml/
datasets/adult.

[27] Center for Machine Learning and Intelligent Systems.
Credit dataset. https://archive.ics.uci.edu/ml/
datasets/Credit+Approval.

[28] Center for Machine Learning and Intelligent Systems.
Census dataset. https://archive.ics.uci.edu/
ml/datasets/Census-Income+(KDD).

[29] Frank McSherry. Statistical inference considered harm-
ful. https://github.com/frankmcsherry/blog/
blob/master/posts/2016-06-14.md, 2016.

[30] Aircloak. Report on the diffix vulnerability an-
nounced by imperial college london and cu lou-
vain. https://aircloak.com/report-on-the-
diffix-vulnerability-announced-by-imperial-
college-london-and-cu-louvain, April 2018.

[31] Dorothy E Denning. Are statistical data bases secure.
In Proc. AFIPS, volume 2978, pages 525–530, 1978.

[32] Irit Dinur and Kobbi Nissim. Revealing information
while preserving privacy. In Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, page 202–210. ACM,
2003.

[33] Sriram Sankararaman, Guillaume Obozinski, Michael I
Jordan, and Eran Halperin. Genomic privacy and lim-
its of individual detection in a pool. Nature Genetics,
41(9):965–967, Sep 2009.

[34] Cynthia Dwork, Adam Smith, Thomas Steinke, and
Jonathan Ullman. Exposed! a survey of attacks on
private data. Annual Review of Statistics and Its Ap-
plication, 4(1):61–84, Mar 2017.

[35] Paul Francis. Mydata 2017 workshop abstract: Techni-
cal issues and approaches in personal data management.

USENIX Association 28th USENIX Security Symposium 1095

https://web.archive.org/web/20180426131132/https://blog.aircloak.com/announcing-our-seed-investment-26f392f1068a
https://web.archive.org/web/20180426131132/https://blog.aircloak.com/announcing-our-seed-investment-26f392f1068a
https://web.archive.org/web/20180426131132/https://blog.aircloak.com/announcing-our-seed-investment-26f392f1068a
https://web.archive.org/web/20180426131132/https://blog.aircloak.com/announcing-our-seed-investment-26f392f1068a
https://web.archive.org/web/20180426104935/https://blog.aircloak.com/building-trust-35c74424efc6
https://web.archive.org/web/20180426104935/https://blog.aircloak.com/building-trust-35c74424efc6
https://web.archive.org/web/20180426104935/https://blog.aircloak.com/building-trust-35c74424efc6
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/Credit+Approval
https://archive.ics.uci.edu/ml/datasets/Credit+Approval
https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://aircloak.com/report-on-the-diffix-vulnerability-announced-by-imperial-college-london-and-cu-louvain
https://aircloak.com/report-on-the-diffix-vulnerability-announced-by-imperial-college-london-and-cu-louvain
https://aircloak.com/report-on-the-diffix-vulnerability-announced-by-imperial-college-london-and-cu-louvain

https://aircloak.com/mydata-2017-workshop-
abstract-technical-issues-and-approaches-
in-personal-data-management, 2017.

[36] Paul Francis. Diffix: Enabling (aggregate) data markets
with anonymization. https://aircloak.com/wp-
content/uploads/mydata-market-aug17.pdf,
2017.

[37] Frank D McSherry. Privacy integrated queries: An ex-
tensible platform for privacy-preserving data analysis.
In Proceedings of the 2009 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’09, pages 19–30, New York, NY, USA, 2009. ACM.

[38] Davide Proserpio, Sharon Goldberg, and Frank McSh-
erry. Calibrating data to sensitivity in private data anal-
ysis: A platform for differentially-private analysis of
weighted datasets. Proceedings VLDB Endowment,
7(8):637–648, April 2014.

[39] Indrajit Roy, Srinath T V Setty, Ann Kilzer, Vitaly
Shmatikov, and Emmett Witchel. Airavat: Security and
privacy for MapReduce. In NSDI, volume 10, pages
297–312, 2010.

[40] Prashanth Mohan, Abhradeep Thakurta, Elaine Shi,
Dawn Song, and David Culler. GUPT: Privacy pre-
serving data analysis made easy. In Proceedings of the
2012 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’12, pages 349–360, New
York, NY, USA, 2012. ACM.

[41] Frank McSherry. Uber’s differential privacy .. probably
isn’t. https://github.com/frankmcsherry/blog/
blob/master/posts/2018-02-25.md, 2018.

[42] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analysis.
In Proceedings of the Thirty-ninth Annual ACM Sympo-
sium on Theory of Computing, STOC ’07, pages 75–84,
New York, NY, USA, 2007. ACM.

[43] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano
De Cristofaro. On location, time, and membership:
Studying how aggregate location data can harm
users’ privacy. https://www.benthamsgaze.org/
2018/10/02/on-location-time-and-membership-
studying-how-aggregate-location-data-can-
harm-users-privacy/, October 2018.

[44] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De
Cristofaro. Knock Knock, Who’s There? Membership
Inference on Aggregate Location Data. In Proceedings
2018 Network and Distributed System Security Sympo-
sium, San Diego, CA, 2018. Internet Society.

[45] Aloni Cohen and Kobbi Nissim. Linear Program Recon-
struction in Practice. TPDP 2018, October 2018.

[46] Cynthia Dwork, Frank McSherry, and Kunal Talwar. The
Price of Privacy and the Limits of LP Decoding. In Pro-
ceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, STOC ’07, pages 85–94, New
York, NY, USA, 2007. ACM.

[47] Aircloak. Fix for the mit/georgetown univ attack on
diffix. https://aircloak.com/fix-for-the-mit-
georgetown-univ-attack-on-diffix, October
2018.

[48] G. A Young and Richard L Smith. Essentials of sta-
tistical inference: G.A. Young, R.L. Smith. Cambridge
University Press, 2005.

[49] Munuswamy Sankaran. Approximations to the
non-central chi-square distribution. Biometrika,
50(1–2):199–204, Jun 1963.

A Likelihood ratio test
Let X and Y be independent random variables. Suppose

that we have two hypotheses about the distributions of X and:

H0 : X ∼N (µ0,σ
2
0) and Y ∼N (µ1,σ

2
1)

H1 : X ∼N (µ1,σ
2
1) and Y ∼N (µ0,σ

2
0)

where µ0,µ1,σ0,σ1 are known and fixed values such that µ0 <
µ1 and σ2

0 < σ2
1.N (µ,σ2) denotes the the normal distribution

with mean µ and variance σ2.
Suppose we have a vector of n realizations x = (x1, . . . ,xn)

of X and a vector of n realizations y = (y1, . . . ,yn) of Y . We
assume that all the 2n realizations are mutually independent.
The standard frequentist way to accept the preferred hypothe-
sis H0 or refute it (in favor of H1) would use a likelihood ratio
test with a pre-defined confidence level from which to derive
critical regions [48]. In our case we do not have a preferred
hypothesis, and hence we define a slightly different test.

Let f and g denote the probability density functions of
N (µ0,σ

2
0) and N (µ1,σ

2
1) respectively. We define the likeli-

hood ratio function Λ as follows:

Λ(x,y) =
n

∏
j=1

f (x j)

g(x j)

n

∏
j=1

g(y j)

f (y j)
.

We accept H0 if Λ(x,y)≥ 1, and we accept H1 if Λ(x,y)< 1.
Theoretical accuracy of the test. The test will sometimes
yield the wrong result. It is possible to determine what is the
probability that this happens. Such probability depends on
mean and variance of the two specific normal distributions.

Fact. Let perr0 = Pr[Λ(x,y) < 1 | H0] and perr1 =
Pr[Λ(x,y)≥ 1 | H1]. Then

perr0 = perr1 = Pr[α0Z0−α1Z1 < 0]

1096 28th USENIX Security Symposium USENIX Association

https://aircloak.com/mydata-2017-workshop-abstract-technical-issues-and-approaches-in-personal-data-management
https://aircloak.com/mydata-2017-workshop-abstract-technical-issues-and-approaches-in-personal-data-management
https://aircloak.com/mydata-2017-workshop-abstract-technical-issues-and-approaches-in-personal-data-management
https://aircloak.com/wp-content/uploads/mydata-market-aug17.pdf
https://aircloak.com/wp-content/uploads/mydata-market-aug17.pdf
https://github.com/frankmcsherry/blog/blob/master/posts/2018-02-25.md
https://github.com/frankmcsherry/blog/blob/master/posts/2018-02-25.md
https://www.benthamsgaze.org/2018/10/02/on-location-time-and-membership-studying-how-aggregate-location-data-can-harm-users-privacy/
https://www.benthamsgaze.org/2018/10/02/on-location-time-and-membership-studying-how-aggregate-location-data-can-harm-users-privacy/
https://www.benthamsgaze.org/2018/10/02/on-location-time-and-membership-studying-how-aggregate-location-data-can-harm-users-privacy/
https://www.benthamsgaze.org/2018/10/02/on-location-time-and-membership-studying-how-aggregate-location-data-can-harm-users-privacy/
https://aircloak.com/fix-for-the-mit-georgetown-univ-attack-on-diffix
https://aircloak.com/fix-for-the-mit-georgetown-univ-attack-on-diffix

where, for i = 0,1, Zi is a noncentral chi-squared distribution
with n degrees of freedom and noncentrality parameter

λi = n
(

µi

σi
+

µ0σ2
1−µ1σ2

0

σi(σ
2
0−σ2

1)

)2

and

αi =
σ2

0−σ2
1

2σ2
1−i

.

To prove the fact, one considers the log-likelihood ratio func-
tion logΛ(x,y) and applies elementary algebra to the obtained
expression to derive a linear combination of noncentral chi-
squared distributions. We omit the details.

Since perr0 = perr1 , we refer to this quantity simply as perr.
The accuracy of the test is acc = 1− perr.

We now show how to apply the fact to our differential noise-
exploitation attack. For simplicity, we suppose that Diffix’s
outputs are not rounded to the nearest nonnegative integer
and bucket suppression is never triggered for the queries in
the attack, so that every pair of queries (Q̃ j, Q̃′j) and (R̃ j, R̃′j)
yields a valid sample. Thus, for k known attributes, we have
two vectors of samples q = (q1, . . . ,qk) and r = (r1, . . . ,rk)
and for every j ≤ k:

q j ∼
{
N (0,2) if x(s) = 1
N (1,2k+2) if x(s) = 0

r j ∼
{
N (1,2k+2) if x(s) = 1
N (0,2) if x(s) = 0

We assume that the 2k samples in q and r are mutually inde-
pendent. As discussed in section 3, this is not always guar-
anteed to be true, but it has close to no effect on the actual
accuracy of the test. Let

H0 : x(s) = 1

H1 : x(s) = 0.

Let f and g denote the probability density functions of
N (0,2) andN (1,2k+2) respectively. Observe that H0 holds
if and only if every q j ∼ f and every r j ∼ g. Similarly, H1
holds if and only if every q j ∼ g and every r j ∼ f . Then we
can apply the test defined above. Define

Λ(q,r) =
k

∏
j=1

f (q j)

g(q j)

k

∏
j=1

g(r j)

f (r j)
.

Our test concludes that x(s) = 1 if Λ(q,r)≥ 1, and x(s) = 0 if
Λ(q,r)< 1.

To measure the theoretical accuracy of the attack for k
known attributes, we can apply the fact to Λ(q,r) with
µ0 = 0,σ2

0 = 2,µ1 = 1,σ2
1 = 2k + 2 and n = k, and finally

find acc(k) = 1− perr(k).

Fig. 2 shows the values of acc(k) for increasing values of
k. Computing the value of perr requires an approximation of
the cumulative distribution function of a linear combination
of noncentral chi-squared distributions, for which an exact
closed-form expression is not known [49]. We compute these
values using the R package sadists3 version 0.2.3.

Numerical simulation with rounding. If we suppose that
Diffix’s outputs are rounded to the nearest nonnegative integer,
no simple expression can be determined for the error rate. To
estimate the accuracy in this case, we numerically simulate the
values of Q̃ j(D) and Q̃′j(D) that would result from querying
Diffix (without bucket suppression), for different values of
the secret attribute x(s). We then obtain each sample as the
difference of the rounded results:

q j = round(Q̃ j(D))− round(Q̃′j(D)).

Finally, we perform the likelihood ratio test as for the contin-
uous case (considering also null outputs) and check whether
the result is correct. We use balanced truth values for x(s),
and perform 1000 experiments (on different queries) for each
value of x(s). The results are shown in Fig. 2.

B Reducing the number of queries
One of the main features of Diffix is that it allows analysts

to send an unlimited amount of queries. Many privacy attacks
work by issuing a relatively large number of queries (see
also 6.1). Limiting the number of queries allowed by Diffix
would thwart or significantly affect these attacks. While our
actual attack procedures require a small number of queries
(2|∆|+1 for the cloning attack), the subset exploration step
can sometimes explore many sets of attributes before finding
an exploitable one. To minimize the number of queries, we
replace the iterative exploration with a greedy heuristic that
selects only one subset which is likely to work. We focus only
on the cloning attack, as it does not require an oracle and
achieves much better accuracy.

The cloning attack requires a set of attributes (A′,u), where
the restricted record x(A

′,u) uniquely identifies the victim, but
the vector x(A

′) is shared across a larger population (to avoid
bucket suppression). The FullCloningAttack starts with a
larger set of attributes A∗ and iteratively explores subsets of
A∗ to find a candidate (A′,u). We replace this iterative process
with a single deterministic step.

Intuitively, we want u to be as discriminative as possible,
while for the attributes in A′ to select as many users as possible.
This is what the procedure GreedySelectSubset does. First,
it computes the (approximate) fraction of users that share
the same value x(a), for each attribute a ∈ A∗. Then it selects
as u the attribute associated with the lowest fraction. Now
suppose that N is the estimated total number of users in the
dataset. The set A′ is selected as the smallest set of attributes

3https://github.com/shabbychef/sadists

USENIX Association 28th USENIX Security Symposium 1097

https://github.com/shabbychef/sadists

associated with the highest fraction, additionally requiring
that the product of all the fractions for (A′,u) is smaller than
1/N. This ensures that, with high probability, the victim is
uniquely identified by x(A

′,u).

Procedure GreedySelectSubset(A∗,x(A
∗),s,v)

Input: known attributes (names A∗ and values x(A
∗)),

secret s and target value v
Output: a set of attributes (A′,u)⊆ A∗

1 N← count() // approx. tot. number of users
2 foreach a ∈ A∗ do
3 Ca← count(a = x(a)∧ s 6= v)
4 ρa← Ca

N
5 end foreach
6 {ρ1, . . . ,ρ|A∗|}← SortDescendingOrder({ρa}a∈A∗)

7 u← a|A∗|
8 i← 1, A′← /0

9 while ρu ∏ai∈A′ ρai >
1
N do

10 A′← A′∪{ai}
11 i← i+1
12 end while
13 return (A′,u)

We can modify the FullDifferentialAttack replacing the
subset exploration with this heuristic. The modified full attack
is described in the GreedyFullCloningAttack procedure.

Procedure GreedyFullCloningAttack(A∗,x(A
∗),∆,s,v)

Input: known attributes (names A∗ and values x(A
∗)),

dummy conditions ∆, secret s and target value v
Output: True if x(s) = v, False if x(s) 6= v

1 (A′,u)← GreedySelectSubset(A∗,x(A
∗),s,v)

2 if NoBucketSuppression(A′,u,x(A),∆,s,v) and
ValueUnique(A′,u,x(A

∗)) then
3 return CloningAttack(A′,u,x(A),∆,s,v)
4 end if
5 return NonAttackable

Observe that the GreedySelectSubset procedure issues ex-

Subset
selection M

ed
ia

n
n.

qu
er

ie
s

M
ax

n.
qu

er
ie

s

Pr
ed

ic
te

d
at

ta
ck

ab
le

ac
cu

ra
cy

pa

Iterative 304 5310 96.8% 93.3%

Heuristic 32 32 55.4% 91.7%

Table 2: Empirical results of the cloning attack with iterative
subset exploration and with the heuristic subset selection.

actly |A∗|+ 1 queries. The differential attack with the as-
sumption validation step issues at most 2|∆|+ 1 queries.
So, the GreedyFullCloningAttack algorithm requires at most
|A∗|+2|∆|+2 queries.

We compared the performances of the FullCloningAttack
and GreedyFullCloningAttack on the ADULT dataset, with
the salary class as secret attribute and the other 10 attributes
as A∗. As in section 4, we used |∆|= 10 dummy conditions
and ran the attack on 1000 random users. The results are
summarized in Table 2.

The maximum (and median) number of queries used by
GreedyFullCloningAttack for a single user is 10+2×10+
2 = 32. The median number of queries used by GreedyFull-
CloningAttack is about 10 times higher, and the maximum is
100 times higher.

GreedyFullCloningAttack effectively attacks more than
half of the users, as opposed to 96.8% of the users for the
FullCloningAttack. This is due to the fact that the first attack
tries a single subset of attributes per user. However, this figure
is still remarkably high, given the huge reduction of required
queries. Finally, the accuracy of the inference for the attacked
users is almost the same.

We believe that these results give additional evidence
of the power, extendability and practicability of our noise-
exploitation attacks. Introducing additional optimizations, the
accuracy could be improved and the number of queries could
be further reduced (see full version).

1098 28th USENIX Security Symposium USENIX Association

FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware
via Augmented Process Emulation

Yaowen Zheng1,2,3∗, Ali Davanian2, Heng Yin2, Chengyu Song2, Hongsong Zhu1,3, and Limin Sun1,3†

1 Beijing Key Laboratory of IoT Information Security Technology,
Institute of Information Engineering, CAS, China

2 University of California, Riverside, USA
3 School of Cyber Security, University of Chinese Academy of Sciences, China

{zhengyaowen,zhuhongsong,sunlimin}@iie.ac.cn, adava003@ucr.edu, {heng,csong}@cs.ucr.edu

Abstract

Cyber attacks against IoT devices are a severe threat. These

attacks exploit software vulnerabilities in IoT firmware.

Fuzzing is an effective software testing technique for vul-

nerability discovery. In this work, we present FIRM-AFL, the

first high-throughput greybox fuzzer for IoT firmware. FIRM-

AFL addresses two fundamental problems in IoT fuzzing.

First, it addresses compatibility issues by enabling fuzzing for

POSIX-compatible firmware that can be emulated in a system

emulator. Second, it addresses the performance bottleneck

caused by system-mode emulation with a novel technique

called augmented process emulation. By combining system-

mode emulation and user-mode emulation in a novel way,

augmented process emulation provides high compatibility as

system-mode emulation and high throughput as user-mode

emulation. Our evaluation results show that (1) FIRM-AFL is

fully functional and capable of finding real-world vulnerabili-

ties in IoT programs; (2) the throughput of FIRM-AFL is on

average 8.2 times higher than system-mode emulation based

fuzzing; and (3) FIRM-AFL is able to find 1-day vulnerabili-

ties much faster than system-mode emulation based fuzzing,

and is able to find 0-day vulnerabilities.

1 Introduction

The security impact of IoT devices on our life is tremendous.

By 2020, the number of connected IoT devices will exceed the

number of people [10]. This creates an unprecedented attack

surface leaving almost everybody at danger. Even currently,

the hackers leverage the lack of security in IoT devices to

create large botnets (e.g., Mirai, VPNFilter and Prowli). These

malware attacks exploit the vulnerabilities in IoT firmware

to penetrate into the IoT devices. As a result, it is crucial for

defenders to discover vulnerabilities in IoT firmware and fix

them before attackers.

∗The work was done while visiting University of California, Riverside
†Corresponding author

Fuzzing, a software testing technique that feeds a program

with random inputs, has approved to be very effective in

finding vulnerabilities in real-world programs. In particular,

AFL [34], a coverage-guided greybox fuzzing tool, has been

used widely in both industry and academia. For instance, most

of the finalists in DARPA Cyber Grand Challenge used AFL

as the primary vulnerability discovery component [2].

Challenges in IoT firmware fuzzing. Despite the effec-

tiveness of fuzzing for programs on general-purpose plat-

forms, it is generally not feasible to directly apply fuzzing

on IoT firmware, due to its strong dependency on the actual

hardware configuration. For instance, simply extracting a user-

level program from a Linux-based firmware and fuzzing this

program with AFL would not work in most cases.

To this end, recent researches propose a series of solu-

tions, ranging from directly fuzzing the IoT devices (e.g.,

IoTFuzzer [14]), a hybrid solution that combines hardware

and software emulation (e.g., AVATAR [33]), to a full sys-

tem emulation (e.g., Firmadyne [13]). As a recent study by

Muench et al. [28] points out, full system emulation yields

the highest throughput, because IoT devices are much slower

than a desktop workstation or a server.

Throughput is a key factor for the effectiveness of fuzzing.

However, even for full system emulation, its performance is

far from being ideal. According to our evaluation (§5), full

system emulation is about 10 times slower than user-mode

emulation (which is used by AFL). 10 times slowdown means

approximately 10 times more computing resources are needed

to find a vulnerability in an IoT program than its desktop

counterpart. According to our analysis (§2.4), part of the enor-

mous runtime overhead of full-system emulation comes from

software implementation of memory management unit (i.e.,

SoftMMU) that is used to translate a guest virtual address into

a host virtual address for every single memory access hap-

pening in the virtual machine. The other part of the overhead

comes from the system calls emulation overhead.

USENIX Association 28th USENIX Security Symposium 1099

Our solution: greybox fuzzing via augmented process em-
ulation. In this work, we present, to the best of our knowl-

edge, the first greybox fuzzer for IoT firmware, that achieves

two design goals simultaneously: (1) transparency that is no

modification should be needed for the program in firmware to

be fuzzed, and (2) efficiency that is the fuzzing throughput of

the overall system should come close to that of the user-mode

emulation. Our key insight is to find a novel combination of

full-system emulation and user-mode emulation to achieve

the best of two worlds: generality from full-system emulation

and efficiency from user-mode emulation.

More specifically, we propose a new technique called “aug-

mented process emulation”. As the name suggests, its main

idea is to augment process (or user-mode) emulation with

full system emulation. The program to be fuzzed is mainly

run in user-mode emulation to achieve high efficiency, and

switches to full system emulation only when necessary to

ensure correct program execution, thus achieving generality.

To evaluate the feasibility of this technique, we implement

a prototype system called FIRM-AFL, on top of AFL [34]

and Firmadyne [13]. From a user’s perspective, using FIRM-

AFL, we can conduct coverage-guided greybox fuzzing on

a user-specified program from an IoT firmware, the same as

fuzzing a normal user-level program using AFL. Under the

hood, FIRM-AFL occasionally switches to the full system

emulation mode in Firmadyne, to ensure the given program

can be correctly emulated.

We have evaluated FIRM-AFL with standard benchmarks

and a set of real-world IoT firmware images. The evaluation

results showed that (1) FIRM-AFL can faithfully emulate

the target programs as if they were running in full-system

emulation; (2) compared to a full-system emulation based

fuzzer (TriforceAFL [29] with lightweight snapshot enabled),

the throughput of FIRM-AFL is 8.2 times higher on average

and (3) FIRM-AFL can find 1-day vulnerabilities 3 to 13

times faster than full-system emulation based fuzzer, and was

able to find two 0-day vulnerabilities within 8 hours on a

single machine.

Contributions. In summary, we make the following contri-

butions in this paper:

• We point out that full system emulation exerts significant

runtime overhead, and is far from ideal to serve as the

base for IoT firmware fuzzing. We further investigate

the root cause of this runtime overhead.

• We propose a novel technique called “augmented process

emulation”, to reconcile the contradictory characteris-

tics of full-system emulation (high generality and low

efficiency) and user-mode emulation (low generality and

high efficiency).

• We design and implement the first coverage-guided grey-

box fuzzing platform for IoT firmware, FIRM-AFL.

• We extensively evaluate our system and show the over-

head for each part of our system. Our improvements lead

to 8.2 times speedup on average. As a result, FIRM-AFL

could find 1-day vulnerabilities 3 to 13 times faster than

full-system emulation, and was able to find two new

vulnerabilities within 8 hours on a single machine.

• The current implementation of FIRM-AFL supports

three CPU architectures, including mipsel, mipseb and

armel, which cover 90.2% firmware images in the Firma-

dyne datasheet [4]. The source code of FIRM-AFL can

be found at https://github.com/zyw-200/FirmAFL.

2 Background and Motivation

2.1 Fuzzing

Fuzzing is a software testing technique that aims to find bugs

by executing the target program with random inputs and look-

ing for interesting program behaviors such as the crashes.

Based on how much information is collected and used from

the execution, fuzzers can be categorized into blackbox, white-

box and greybox. A blackbox fuzzer treats the target program

as a blackbox and does not utilize any feedback from the

execution to guide the generation of random inputs. This ap-

proach was originally used to test Linux utilities [26]. On the

other hand, a whitebox fuzzer selects the inputs based on a

deep insight into the target program. This is usually achieved

through expensive program analysis techniques like dynamic

taint analysis and symbolic execution [22]. Finally, a greybox

fuzzer improves the testing by utilizing limited information

collected with lightweight monitoring techniques (e.g., code

coverage).

The most popular greybox fuzzers are coverage-guided

fuzzers. These fuzzers instrument the target program to col-

lect code coverage information. The collected information

is then used to guide the input generation—inputs that ex-

plore new execution paths will be used as seeds to generate

new inputs while inputs that did not yield new coverage will

be discarded. This simple strategy is extremely effective in

practice. In fact, greybox fuzzers can even outperform white-

box fuzzers when targeting real-world applications. Their

secret is speed, the lightweight instrumentation allows grey-

box fuzzers to execute hundreds or thousands times more

inputs than whitebox fuzzers [32]. In other words, throughput

is paramount for greybox fuzzers.

AFL [34] is a well-known greybox fuzzer. It can instrument

the program either statically or dynamically. Static instrumen-

tation is preferred when the source code is available. When the

source code is not available, e.g., when fuzzing commercial

off-the-shelf (COTS) programs, AFL utilizes a binary trans-

lator (i.e., user-mode emulation provided by QEMU [12]) to

perform the instrumentation. For most IoT devices, because

source code and design documents are often proprietary and

1100 28th USENIX Security Symposium USENIX Association

only firmware image might be available, dynamic instrumen-

tation is the only viable option. As a matter of fact, even

extracting the binary from the firmware is not always straight-

forward [14].

2.2 QEMU
QEMU [12] is a fast processor emulator based on dynamic bi-

nary translation. Unlike traditional emulators that interpret the

target program instruction-by-instruction, QEMU translates

several basic blocks at a time. More importantly, it caches

translated blocks and uses block chaining to link them to-

gether. This allows the execution to remain inside the code

cache (i.e., the logic of the target program) for the most of the

time thus minimizes the overhead of the translation. Dynamic

instrumentation can be performed during the translation to

introduce new functionalities, such as branch monitoring [34]

and taint propagation [19, 23].

Besides the translation of instructions, the next most im-

portant task is address space translation. The translation is

done very differently based on the execution mode. In system

mode, QEMU implements a software Memory Management

Unit (MMU) to handle memory accesses. The software MMU

maps Guest Virtual Addresses (GVAs) to the Host Virtual Ad-

dresses (HVA). This mapping process is transparent to the

guest operating system (OS) meaning that QEMU still allows

the guest OS to set up the GVA to Guest Physical Address

(GPA) mapping through the interface of page tables and to

handle page faults. Under the hood, QEMU inserts a GVA to

GPA translation logic for every memory access. To speed up

the translation, QEMU uses a software Translation Lookaside

Buffer (TLB) to cache the translation results. Moreover, to

avoid invalidating the code cache and block chaining when-

ever the address translation changes, all translated blocks are

indexed using GPA and the block chaining is only performed

when the two basic blocks are within the same physical page.

GPA to HVA mapping is done using a linear mapping (i.e.,

HVA = GPA + OFFSET).

In contrast to system-mode emulation, in user-mode emu-

lation, the Host Virtual Address (HVA) is calculated as the

Guest Virtual Address (GVA) plus a constant offset. So this

translation is much faster than the one in system-mode emu-

lation.

2.3 Testing IoT Firmware
As IoT devices become a popular attack target, testing IoT pro-

grams to find vulnerabilities also becomes important. There

are two main challenges in testing IoT programs. The first

challenge is compatibility: many IoT programs depend on

special hardware components of the device thus cannot be

tested without proper support. The second challenge is code

coverage: blackbox fuzzers are known to have low code cov-

erage while whitebox fuzzers cannot scale to slightly larger

code base [20]. Table 1 compares some representative efforts

on IoT firmware testing using these two metrics.

Avatar [33] aims to enable dynamic program analysis for

embedded firmware by providing better hardware component

support. It achieves this goal through constructing a hybrid

execution environment consists of both a processor emulator

(QEMU) and real hardware where Avatar acts as a software

proxy between the emulator and the real hardware. This al-

lows Avatar to utilize the emulator to execute and analysis the

instructions while channeling the I/O operations to the physi-

cal hardware. As a demonstration, the authors have applied

S2E [15], a whitebox fuzzing tool to find vulnerabilities in

the Redwire Econotag Zigbee sensor. Due to the involvement

of whitebox fuzzing and slow hardware, the throughput of

Avatar is expected to be very low.

IoTFuzzer [14] performs blackbox fuzzing directly on

the real device. Its main advantage over previous blackbox

fuzzing based approaches is that it performs the fuzzing

through the companion mobile app of the target device. By

automatically analyzing the data flow in the companion app

to better understand the communication protocol, IoTFuzzer

can generate better test cases that are more likely to trigger

a bug. That said, based on its evaluation, IoTFuzzer never

exceeds a throughput of 1 test case per second, which is slow

(based on Table III in [14]).

Although it does not perform fuzzing, Firmadyne [13]

adds hardware support for IoT firmware to the system mode

QEMU. It provides support for both ARM and MIPS archi-

tectures that are popular among the IoT manufacturers. For

hardware support, Firmadyne fully emulates the system by

modifying the kernel and drivers to handle the IoT excep-

tions due to the lack of actual hardware. Compared to the

former two solutions, this solution is easier to adapt to new

IoT firmware and programs. The throughput of full-system

emulation is usually better than the native execution [28].

Muench et al. [28] compare the throughput of a blackbox

fuzzer [24] under different configurations, including native

execution (directly sending inputs to the hardware), partial

emulation (redirecting only hardware requests to the hard-

ware), and full emulation. Their emulation is based on image

replaying capability provided by PANDA [19]. They con-

cluded that full emulation (FE) has the highest throughput

mainly because the IoT processors are much slower than desk-

top processors. However, even in the best case, the throughput

did not exceed 15 test cases per second 1.

AFL [34] is a well-known greybox fuzzer that can sup-

port binary-only fuzzing through user-mode QEMU. Unfortu-

nately, lacking special hardware support, user-mode QEMU

can not successfully emulate most IoT programs. For exam-

ple, AFL with user-mode QEMU failed on all the programs

used in our evaluation (Table 3). Moreover, simply adopting

a full system emulator (e.g., Firmadyne) does not fully solve

1They reported 53390 cases/hour which is equal to 15 cases/second

USENIX Association 28th USENIX Security Symposium 1101

Avatar [33] IoTFuzzer [14] Firmadyne [13] Muench et al. [28] AFL [34]

Technique Whitebox fuzzing Blackbox fuzzing PoC Blackbox fuzzing Greybox fuzzing

Compatibility High High High High Low

Hardware Support Hybrid Real Emulation Mixed None

Code Coverage Medium Low N/A Low High

Throughput Very Low Low Medium Low to Medium High

Zero-day Detection Yes Yes No Yes Yes

Table 1: Comparison of IoT firmware testing tools.

the problem because the throughput is low.

In summary, existing IoT firmware testing tools do not

provide satisfying code coverage yet sate-of-the-art fuzzers

(e.g., AFL) cannot be easily applied to test IoT programs. So

far, there is no greybox IoT fuzzer, not to mention a greybox

IoT fuzzer with good throughput.

2.4 Motivations

Given the unsatisfying status-quo of IoT firmware testing

tools, we aim to enable high-throughput greybox fuzzing for

IoT programs. To this end, we decide to build the fuzzer based

on emulation. This choice is based on two reasons. First, grey-

box fuzzing requires collecting execution information (e.g.,

branch coverage) to guide test case generation. As mentioned

in §2.1, this is usually done through lightweight instrumenta-

tion. Since most IoT programs are only distributed in binary

format, emulator-based instrumentation is the best available

option. The second reason is performance. Although it might

be possible to run instrumented binaries directly on the de-

vice, Muench et al. [28] have shown that full-emulation-based

approach is actually faster than the real device, because the

desktop processors are much faster.

Unfortunately, simply adopting a full system emulator (e.g.,

Firmadyne [13]) does not fully solve the problem because

the throughput is not enough. For example, even with the

full-emulation configuration, the fuzzer used in [28] never

exceeded 15 test cases per second. To understand the bottle-

neck, we profiled the execution time of two networking tools

(basename and uptime) under full-system emulation (with

lightweight snapshot) and user-mode emulation. The results

are shown in Table 2. Based on this measurement, we can see

that the throughput of fuzzing can be significantly boosted

if we can apply user-mode emulation to the target program.

There are several bottlenecks that contribute to the execution

time difference.

• B1. Memory address translation. In full-system emula-

tion, QEMU uses a software MMU to perform address

translation for every memory access. In contrast, in user-

mode emulation, the address translation is much simpler.

So even if we just consider time spent in user-mode

execution, user-mode emulation uses much less time.

• B2. Dynamic code translation. The code translation pro-

cess in user-mode emulation is faster than the full-system

mode. In full-system mode, block chaining is limited to

basic blocks in the same physical page, which means

the translator is invoked more often than in user-mode

emulation.

• B3. Syscall emulation. In user-mode emulation, system

calls are handled directly by the host OS and hardware.

Therefore, it is significantly faster than full-system em-

ulation where the OS also runs in the emulator and the

hardware devices are also emulated. Although hardware

emulation is necessary to allow the target program to run

correctly, not all system calls would rely on the special

hardware. In other words, not all system calls require

emulation.

In this work, we address all three bottlenecks to improve

the throughput of IoT program fuzzing.

3 Augmented Process Emulation

3.1 Overview
The goal of this work is to enable high-throughput greybox

fuzzing for IoT programs. As discussed in §2, to achieve this

goal, we need to overcome two challenges: compatibility and

performance. The first challenge can be solved through full-

system emulation but this would result in poor performance.

The second challenge can be solved through user-mode emu-

lation but would result in poor compatibility. In this section,

we present augmented process emulation, a new approach that

brings the best of both full-system emulation and user-mode

emulation.

Problem statement. Generally speaking, the goal of aug-

mented process emulation is to correctly execute a program of

an IoT firmware in a user-mode emulator, given the following

requirements are satisfied:

(1) The firmware can be correctly emulated in a system emu-

lator (e.g., system-mode QEMU). Fortunately, with the

help of Firmadyne [13], a large portion of IoT firmware

images are able to meet this requirement.

1102 28th USENIX Security Symposium USENIX Association

system mode (ms) user mode (ms)

program overall sys exec sys code trans user exec user code trans overall sys exec user exec user code trans

basename 4.08 1.79 0.53 1.41 0.35 0.34 0.02 0.11 0.22

uptime 7.48 2.39 0.76 2.79 1.55 0.89 0.04 0.31 0.54

Table 2: Runtime performance of system mode and user mode emulation

Host OS
Kernel

User-Mode Emulation

Guest OS Kernel

Emulated IoT Hardware

RAM
File

System-Mode Emulation

Syscall Redirection
Page Table Sync

Figure 1: Overview of Augmented Process Emulation

(2) The firmware runs a POSIX-compatible operating system

(OS). Fortunately, many IoT firmware images use Linux

as the OS hence satisfy this requirement.

With augmented process emulation, we aim to achieve the

following design goals:

• Transparency. The user-level program running in the

augmented process emulation should behave as if it were

run in the system-mode emulation.

• High efficiency. Since throughput is a dominating factor

for fuzzing, the augmented process emulation needs to

be as efficient as possible. Ideally, it should approximate

the performance of pure user-mode emulation.

Solution overview. To achieve the design goals mentioned

above, we resort to combine user-mode emulation with

system-mode emulation in a novel manner. Figure 1 illus-

trates the overview of our solution.

At first, the IoT firmware boots up in the system-mode

emulator and the user-level programs (including the one to be

fuzzed) are launched properly inside the emulator. After the

program to be fuzzed has reached at a predetermined point

(e.g., the entry point of main function, or after receiving the

first network packet), the process execution is then migrated

to the user-mode emulation in order to gain high execution

speed. Only at rare occasions, the execution is migrated back

to the system-mode execution to ensure the correctness of

execution.

To minimize the migration cost, the memory state is shared

between these two emulation modes. More concretely, the

physical memory of the virtual machine for the system-mode

emulation is allocated as a memory-mapped file, called RAM

file. This RAM file is also mapped into the address space of

the user-mode emulation. Note that system-mode emulation

and user-mode emulation access this RAM file in different

ways. System-mode emulation treats the RAM file as physi-

cal memory, and thus accesses it by physical address, while

user-mode emulation accesses the shared memory by virtual

address. Therefore, the physical pages in the RAM file need

to be mapped into the address space of user-mode emulation

by their virtual addresses at a page granularity. As a result,

when a page mapping is not established in the user-mode

emulation, the process execution needs to be migrated to the

system-mode emulation to establish this mapping. We will

discuss more details about the memory mapping in §3.2.

With a proper memory mapping, the process should be

able to execute correctly in the user-mode emulation, until

it reaches a system call. Directly executing the system call

locally on the host OS would not work in general, because

the host OS and the OS in IoT firmware are different and

the underneath hardware layers are also different. To ensure

transparency, we need to migrate the execution to the system-

mode emulation to process this system call. When the system

call returns, we migrate the execution back to the user-mode

emulation. More details will be discussed in §3.3.

3.2 Memory Mapping

Bootstrapping. When fuzzing a program with AFL, the

program executes to a predetermined point, and then the fork

server of AFL will repeatedly fork a new program instance

on this point (which is referred to as fork point) and feed

random inputs. Similarly, in this setting, we will boot up the

IoT firmware in system-mode emulation and further launch

the specified IoT program. Using Virtual Machine Introspec-

tion (VMI) provided by DECAF [23] (a system emulation

based dynamic analysis platform), we are able to monitor the

execution of the specified IoT program and get notified when

the execution reaches to the predetermined fork point.

At this moment, we will walk the page table of the specified

process and collect the virtual to physical page mapping infor-

mation and send it over to the user-mode emulation side. Then

for each mapping of virtual address (va) to physical address

(pa), the user-mode emulation side establishes a mapping by

calling mmap as below:

mmap(va, 4096, prot, MAP_FILE, ram_fd, pa);

USENIX Association 28th USENIX Security Symposium 1103

The code above is self-explanatory. Essentially, we map a

page of the RAM file with the physical address as offset into

a specified virtual address. The argument prot is determined

by the protection bits from the corresponding page table entry.

From this point onward, the execution in system-mode

emulation is paused, the CPU state is sent over to user-mode

emulation, and the execution resumes there.

Page fault handing. During the process execution in user-

mode emulation, if the accessed memory addresses have al-

ready been mapped in this address space, the execution should

proceed successfully. Otherwise, the host processor will raise

a page fault. We register a signal handler for page fault in user-

mode emulation, so the host OS will pass along the page fault

event to the user-mode emulation. On receiving this signal,

the user-mode emulation records the CPU state at the faulting

instruction, pauses the execution, and passes the CPU state

to the system-mode emulation side, expecting that the page

fault can be handled in the system-mode emulation and a new

mapping for the faulting virtual address can be established.

When the system-mode emulation receives the CPU state

and resumes execution, the emulated processor will raise a

page fault, since the page is not present. The page fault han-

dler in the OS of the IoT firmware will respond to this page

fault and attempt to establish the mapping. Most likely, this

mapping will be established by the OS sooner or later (de-

pending on the scheduling of numerous kernel threads and

interrupt handlers) and the instruction that causes the page

fault will be re-executed. In very rare cases, if the OS can-

not establish a mapping for various reasons, it will kill the

process.

A key question here is to determine when the page mapping

has been established or an error occurs, so we can switch back

to the user-mode emulation to maximize execution speed. The

answer to this question is in fact non-trivial, because the OS is

handling multiple tasks simultaneously and enormous amount

of context switches may happen in the meantime.

To capture the right moment when a mapping is established,

we instrument the end of each basic block. If the execution is

currently within the specified process (or thread), it means the

execution has returned from the kernel to the user space to

resume the faulting instruction. The mapping must be present

in the software TLB. So we can just directly find the mapping

there. At this moment, we pass the mapping information and

the CPU state back to the user-mode emulation, which will

create this new mapping by calling mmap and resume the

execution.

If for some reasons, an error occurs and the process gets

killed, we can rely on the VMI (Virtual Machine Introspec-

tion) capability provided by DECAF [23] to get notified, and

then the whole execution on both sides get terminated.

Preload page mapping. Modern operating systems load

memory pages in a lazy manner. Although when a new pro-

cess starts, all code pages are assigned into its address space,

a mapping from each virtual page to its physical page is not

really established until a page fault caused by the first memory

access to it.

This lazy design has adverse effect on fuzzing performance.

As we will discuss in §4.1, a child process is repeatedly forked

from the parent process for each fuzzing iteration, and thus

there are always a series of page faults caused by un-mapped

code pages. This is especially harmful for our system, because

the overhead of page fault handling is much more expensive

than handling it locally on the host OS.

To solve this problem, we decide to preload the code pages

of the given process in the physical memory and perform

the mapping between the two modes. This helps us avoid

repeatedly loading the code pages at every fuzzing iteration,

and hence speed up the fuzzing throughput. To do that, we

simulate the access to each program code page in the system-

mode emulation during the bootstrap, to force the OS to map

each page into the process’ address space. As a result, we can

reduce the number of page faults caused by these pre-loaded

pages.

3.3 System Call Redirection

System calls and their implementation in IoT programs are

different because of the underlying IoT hardware, firmware

and requirements. Consequently, user-mode emulation of an

IoT program will likely fail if the exceptions caused by the

system calls are not properly handled (see §2). For exam-

ple, most IoT devices have network interfaces that are not

available on a local emulator. When an IoT program in the

user-mode emulation executes a system call that needs to

interact with a specific network interface in the IoT system,

there will be a fault that needs to be handled. Another exam-

ple is a system call that accesses NVRAM that is undefined

for a desktop computer.

Therefore, to ensure execution correctness, we must redi-

rect the system calls from the user-mode emulation to the

system-mode emulation. More specifically, when the user-

mode emulation encounters a system call, it pauses the ex-

ecution, saves the current CPU state, and sends it over to

the system-mode emulation. The system-mode emulation re-

ceives the CPU state and resumes execution. This will cause a

mode switch into the kernel mode in the guest system to pro-

cess the corresponding system call. Again, since the guest OS

kernel is multi-tasking, there might be many context switches

happening before the system call returns. So similar to how

we handle page faults, we will instrument the end of each

basic block. If the current basic block is in the kernel space,

but next program counter is in the user level, and the current

execution context is for the thread that makes the system call,

we detect the moment when the system call returns. Then at

this moment, we pause the execution in the system-mode em-

ulation, save the CPU state, and pass it back to the user-mode

1104 28th USENIX Security Symposium USENIX Association

emulation, which will then resume the execution.

Optimizing filesystem-related system calls. While exam-

ining the system calls made by a set of IoT programs, we

realize that many system calls are related to the file system.

The IoT programs either attempt to access files or directories

that already exist in the firmware or are newly created for

only temporary uses. We propose an optimization for this set

of system calls. We map the file system from the firmware

image, and mount it as a directory in the host OS, such that the

user-mode emulation can directly access it. In this way, the

user-mode emulation can directly pass through the file-system

related system calls to the host OS, instead of redirecting them

to the system-mode emulation.

As shown in §5.3, filesystem-related system calls take a

significant portion among all system calls, and thus this opti-

mization makes a significant contribution for the final perfor-

mance.

4 Firm-AFL Design and Implementation

Leveraging the technique described in §3, we design and im-

plement FIRM-AFL, an enhancement of AFL [34] for fuzzing

IoT firmware. In §4.1, we first describe the workflow of AFL,

and then in §4.2, we present how we integrate augmented

process emulation into the workflow of AFL.

4.1 Workflow of AFL

AFL is a coverage-guided greybox fuzzer. It maintains a seed

queue that stores all the seeds, including the initial seeds

chosen by the user as well as the ones that are mutated from

the existing seeds and cause the program to reach unique code

coverage.

The main program that drives the fuzzing process is

afl-fuzz. It picks a seed from the seed queue, performs

a random mutation, generates an input, and feeds this input

to the target program (assuming it is a binary executable).

In order to collect the code coverage information from the

execution of the target program, AFL starts the program using

the user-mode QEMU, and instruments the branch transitions

of the target program, and the code coverage information is

encoded and stored in a bitmap.

Since during fuzzing we need to execute the target program

repeatedly, AFL utilizes “fork” as a mechanism to speed up

this process. It first runs the target program up to a certain

point (e.g., the entry point of the main function) such that the

program’s code and data have been properly initialized, and

then repeatedly forks a child process from it. In this way, the

initial setup of a new process is skipped. For this reason, the

parent process is called fork-server. Then the input is fed

into the forked child process, and the coverage information

is collected and stored in the bitmap, which is shared among

seed
queue

fork server

Augmented
Process Emulation

coverage
bitmap

coverage
bitmap

child instance

Augmented
Process Emulation

coverage
bitmap

fork

feed input

afl-fuzz

seed
mutation

seed
scheduling

seed
selection

Figure 2: Overview of FIRM-AFL

all three processes (afl-fuzz, fork-server, and the child

instance). afl-fuzz will compare the bitmap from the child

instance and the accumulative bitmap from all past executions

to determine if this mutated input should be kept as a new

seed and stored in the seed queue.

4.2 AFL with Augmented Process Emulation
We would like to keep the workflow of AFL intact, but allow

AFL to fuzz a target program in an IoT firmware image. To do

so, we replace the user-mode QEMU with augmented process

emulation, and the rest of the components remain unchanged.

The new workflow is illustrated in Figure 2.

Bootstrapping. To fuzz a program in the IoT firmware im-

age, we need to boot up the firmware image and launch the

program after the system boots up. This is done in the system-

mode emulation within fork-server.

We leverage Firmadyne [13] to correctly emulate a

firmware image. We further integrate DECAF [23] with Fir-

madyne to make use of its VMI (Virtual Machine Introspec-

tion) capability. In this way, we are able to capture the precise

moment when the target program is started or terminated. We

can also know when the execution of the target program has

reached the pre-determined fork point.

Forking. The default fork point chosen by AFL is the en-

try point of the main function. In our case, we are interested

in finding vulnerabilities in the IoT programs that are trig-

gered through the network interface. Therefore, we hook the

network-related system calls. And the first invocation of any

of these system calls becomes the fork point.

In the standard workflow of AFL, we can simply leverage

the fork system call to fork a child process and start the

next fuzzing instance. In our case, we not only need to fork a

child process for the user-mode emulation, but also “fork” a

new virtual machine instance for the system-mode emulation,

because two modes must synchronize with each other.

Actually forking a new virtual machine would be too expen-

sive. Instead, we can make a snapshot of the virtual machine

USENIX Association 28th USENIX Security Symposium 1105

at the fork point, and when one fuzzing execution is finished,

we can restore the snapshot. System-mode QEMU offers

save_snapshot function that saves all the CPU registers and

the memory space to a specific file. However, file write/read

operations would still be very slow.

In our system, we implement a lightweight snapshot mecha-

nism based on the Copy-on-Write principle. More concretely,

we first mark the RAM file mapped into the system-mode

QEMU as read-only. Then a memory write will cause a page

fault. We make a copy of the page, and then mark this page

as write-able. As such, we record all memory pages that have

been modified during one fuzzing execution. When restor-

ing the snapshot, we only need to write these recorded pages

back.

Feeding input. The inputs are fed through instrumenting

system calls. For the IoT programs that are receiving input

from network interface, we instrument the network-related

system calls in the user-mode emulation directly, so we don’t

need to redirect these system calls to the system-mode emula-

tion.

Collecting coverage information. Since most of execution

happens in the user-mode emulation and system-mode emula-

tion is only needed for handling page faults and some system

calls, we can simply instrument the branch transitions in user-

mode QEMU to compute the coverage bitmap, just like how

the original AFL does it in user-mode QEMU.

5 Evaluation

In this section, we evaluate the prototype implementation of

our fuzzer FIRM-AFL. The purpose of this section is to test

whether our approach has resolved the performance bottle-

necks and achieved the two design goals. In short, we would

like to answer following questions:

• Transparency. Can FIRM-AFL fuzz programs extracted

from IoT firmware as if they are running inside a full-

system emulator?

• High efficiency. How close is FIRM-AFL’s throughput

(executions/sec) to the throughput of a pure user-mode

emulation based fuzzer?

• Effectiveness of optimization. Do our optimization tech-

niques successfully resolved the performance bottle-

necks we identified?

• Effectiveness in vulnerability discovery. How effective

is FIRM-AFL in finding real vulnerabilities in IoT

firmware?

Experiments setup. We used three sets of programs in our

evaluation. The first set of programs are two standard bench-

marks: nbench [9] and lmbench [7]. They are used to access

the correctness of the emulation and the overhead of the em-

ulation. The second set of programs consist of seven IoT

programs from four different vendors (Table 3). We selected

these program since they are the key service programs that

handle network requests thus are good targets for remote at-

tacks. They are used to access the performance of greybox

fuzzing. The third dataset is the Firmadyne dataset which

includes firmwares whose HTTP and uPnP services are re-

lated to 15 1-day exploits (Table 6). We collected them to

evaluate the transparency and effectiveness of FIRM-AFL in

vulnerability discovery.

Experiments (except the ones in §5.4) are conducted on a 8-

core Intel(R) Core(TM) i7-3940XM 3.00GHz CPU machine

with 23.5GB of RAM 1TB hard disk . The operating system is

Ubuntu 16.04.5 LTS. The version of QEMU and AFL is 2.10.1

and 2.06b. We obtain each measurement value after every ten

iterations. Our final reported numbers are the average value of

20 measurements. By default, we set fork point at the position

after the network data received, and feed the random input

provided by AFL engine.

5.1 Transparency

To evaluate the transparency of our augmented process emula-

tion, we first evaluated our emulator with the nbench test suite.

After generating the output, the benchmark will compare the

outputs with expected outputs. If the generated outputs are

wrong, then it implies the emulation is not correct. The results

showed that our system can finish all the benchmarks without

errors.

We also empirically evaluated the transparency of FIRM-

AFL using the Firmadyne dataset [4]. We collected 120

firmware images with HTTP services and unique device mod-

els. We first tried to run HTTP service programs in them

directly using user-mode QEMU. We extracted the file sys-

tems from the firmware images and used chroot to mount

the file systems. However, all these programs crashed at the

very beginning due to the lack of expected system environ-

ment. Then we tried to run them with normal inputs (the

initial seeds) under full-system emulation, as well as under

augmented process emulation. We observed that in both set-

tings, all the programs could run properly. For each program,

we further compared the system call sequences generated

under full-system emulation as well as augmented process

emulation, and confirmed that the system call sequences were

identical.

Finally, we evaluated a set of exploits targeting known vul-

nerabilities listed in Table 6. For each vulnerability, we fed a

proof-of-concept (PoC) exploit in both full-system emulation

and augmented process emulation and compared the execu-

tion traces. We confirmed that the collected two traces are

1106 28th USENIX Security Symposium USENIX Association

Program Size (KB) Description Vendor Devices Model Version CPU Arch

cgibin 129.4 CGI binary program DLINK Router DIR-815 1.01 MIPSEL

httpd 90.2 Embedded HTTP server

dnsmasq 162.3 Embedded DNS server

dropbear 307.3 Embedded SSH server TPLINK Router TL-WR940N V4_160617 MIPSEB

httpd 1692 Embedded HTTP server

jjhttpd 103.3 Embedded HTTP server Trendnet Router TEW-813DRU v1(1.00B23) MIPSEB

lighttpd 327.3 Embedded HTTP server Netgear Router WNAP320 3.0.5.0 MIPSEB

Table 3: IoT programs used for evaluation

identical.

In summary, this evaluation showed that FIRM-AFL can

provide transparent emulation as if the program is executing

in full-system emulation.

5.2 Efficiency

Benchmark Augmented mode User mode Slowdown

Numeric sort 679.12 686.56 1.08%

String sort 78.36 79.54 1.48%

Bitfield 3.47E+08 3.45E+08 0.00%

FP emulation 163.85 161.72 0.00%

Fourier 1383.6 1,384.00 0.00%

Assignment 20.45 20.75 1.40%

IDEA 4,864.10 4,854.10 0.00%

Huffman 1,749.00 1,743.10 0.00%

Neural Net 1.93 1.95 0.60%

LU Decomp 61.26 61.92 1.00%

Table 4: nbench results, the unit is iterations/second. The last

column shows the slowdown of augmented mode.

Syscall Augmented mode User mode Overhead

null 0.48 0.48 0.00%

read 0.62 0.60 3.33%

write 0.57 0.52 9.62%

stat 1.31 1.24 5.64%

fstat 0.63 0.61 3.28%

open 2.61 2.50 4.40%

select file 3.52 3.48 1.15%

select tcp 32.74 12.64 159%

pipe(latency) 6.73 6.57 2.44%

Table 5: lmbench syscall testing results, the unit is microsec-

ond. The last column shows the overhead of augmented mode.

Standard benchmarks. We evaluated the efficiency of our

approach from two angles. First, we evaluated the perfor-

mance overhead of augmented process emulation using stan-

dard performance benchmarks. The result of nbench is shown

in Table 4. nbench is a CPU-bound benchmark suite. On

this benchmark, the augmented mode did not impose much

overhead, largely due to the fact that these benchmarks are

relatively simple, so they do not require many memory syn-

chronization operations and syscall redirection. To evaluate

the overhead of syscall redirection, we used the lmbench. The

result is shown in Table 5. As we can see, for syscalls that

are executed locally (e.g., file related syscalls), the overhead

is almost negligible. For syscalls that still require redirection

(e.g., TCP related), the overhead is much higher.

Fuzzing throughput. In the second performance evalua-

tion, we measured the throughput of FIRM-AFL, under dif-

ferent optimization levels:

(a) Baseline: we used TriforceAFL [29] as the baseline. Tri-

forceAFL uses full-system emulation to support fuzzing

IoT programs. To avoid rebooting the virtual machine, in

this configuration, we added support for QEMU’s stock

snapshot mechanism (qemu_savevm and qemu_loadvm)

to TriforceAFL. We also use VMI provided by DE-

CAF [23] to capture the precise moment when program

is started and terminated.

(b) Lightweight snapshot: in this configuration, we changed

the snapshot mechanism to our lightweight snapshot (§4).

(c) Augmented process emulation: in this configuration, we

switched the emulation mode from full-system mode to

our augmented process emulation mode (§3).

(d) Full: in this configuration, we applied all optimization

techniques, including selective syscall redirection.

Figure 3 shows the throughput improvement. Overall,

lightweight snapshot boosted the throughput for about 9.3

times (b vs. a). Augmented process emulation boosted the

throughput for about 3 times on average (c vs. b). With selec-

tive syscall redirection, the throughput had another boost for

about 2.9 times on average (d vs. c). So compared with the

best result on full-system emulation based fuzzing (b), FIRM-

AFL (d) provided an average improvement of 8.2 times.

5.3 Effectiveness of Optimization
In §2.4, we identified three major bottlenecks of full-system

emulation: memory address translation, dynamic code trans-

USENIX Association 28th USENIX Security Symposium 1107

Figure 3: Fuzzing throughput of FIRM-AFL under differ-

ent optimization level. The x-axis is the optimization level:

(a) baseline, (b) w/ lightweight snapshot, (c) w/ augmented

process emulation, and (d) w/ selective syscall redirection.

Fuzzing throughput for each program is shown in a different

color.

lation, and syscall. In this section, we evaluated whether our

optimization techniques successfully addressed these bottle-

necks. For this purpose, we break down the total execution

time into five parts:

• User execution time: the total time spent in executing the

logic of the target program, this includes the time spent

on software address translation.

• Memory synchronization time: in augmented emulation

mode, time spent on setup the memory mapping between

the user-mode emulator and the full-system emulator.

• Code translation time: total time spent on translating the

target program.

• Syscall execution time: total time spent on system calls

in an iteration of execution.

• Syscall redirection time: in augmented emulation mode,

time spent on redirecting the system call to the full-

system emulator.

• Snapshot time: the total time spent on storing and restor-

ing memory and CPU states in an iteration of fuzzing.

Note that different snapshot mechanisms have different

time overhead values. We record the starting and ending

time for each page store and restore operations.

Lightweight snapshot. Snapshot overhead only exists for

the system-mode emulator. In augmented process emulation,

a synchronization mechanism is required to ensure the consis-

tency of snapshot between system and user mode. For these

Figure 4: Execution time breakdown: system-mode emulation

w/o and w/ lightweight snapshot.

Figure 5: Execution time breakdown: augmented process

emulation vs. full-system emulation.

experiments, we measure the snapshot synchronization cost

and add it to the snapshot overhead. When comparing the

snapshot overhead in Figure 4 and Figure 5, we can see that

the lightweight snapshot mechanism leads to more than 100x

reduction in the snapshot overhead.

Augmented process emulation. Figure 5 shows the execu-

tion time breakdown of full-system emulation and augmented

process emulation for the seven IoT programs. The total ex-

ecution time on average reduces more than 50% except for

dnsmasq. When analyzing breakdown of execution time, we

can see huge reduction on user execution time and code trans-

lation time. On average, the user execution time (green bar)

was reduced by about 9 times. This is mostly due to the elimi-

nation of software address translation. Even if we combine

1108 28th USENIX Security Symposium USENIX Association

Figure 6: Execution time breakdown: augmented process

emulation w/o and w/ selective syscall redirection.

the memory synchronization time (purple bar), the execution

time was still reduced by about 5 times.

Another huge reduction is the code translation time. As

briefly mentioned in §2, this is due to two optimization tech-

niques. First, when running in full-system mode, QEMU only

performs block chaining for basic blocks within the same

physical page. This means the emulator has to be invoked

to resolve control transfer between pages. In augmented pro-

cess emulation, QEMU can link any basic blocks as long as

they are translated. Second, when using full-system mode for

fuzzing, the fuzzer (Triforce) will reset the virtual machine

after processing each input. Although we have optimized this

step with lightweight snapshot, the code cache will be reset

during the restore. This means the same basic block could be

translated repeatedly for every fuzzing iteration. In augmented

process emulation, we can utilize the code cache pooling tech-

nique from AFL to avoid this re-translation. As a result, the

amortized code translation time became very small.

Unfortunately, the reduction on user execution time and

code translation time is at the cost of increase in overall

syscall time, i.e., the combination of syscall execution time

and syscall redirection time. In general, the more syscalls the

target program issues, the higher the redirection overhead.

This is why dnsmasq spent significantly more time on syscall

redirection than the other programs: it issued more than one

thousand system calls which caused more than two thousand

state transitions between system mode and user mode. This

highlights the necessity of selective syscall redirection.

Selective syscall redirection. Figure 6 shows the execution

time breakdown with and without selective syscall redirec-

tion. Recall that the goal of redirecting system calls to the

full-system emulator is to ensure correct emulation. However,

not all system calls require special kernel or hardware sup-

port. Therefore, by locally executing system calls that can be

fully supported by the host system (e.g., file system related

syscalls), we reduce most of the syscall time without jeopar-

dizing correctness. As shown in the figure, after applying this

optimization, we observed a huge reduction in system call

execution time, because many system calls are now executed

by the host OS without address/code translation and device

emulation. At the same time, we also observed reduction in

syscall redirection time, which has a great impact on programs

that issue many syscalls, like dnsmasq. A majority of syscalls

issued by dnsmasq were file operations which can be handled

locally by mounting the IoT firmware file system in the host

OS. By doing so, the total execution time of dnsmasq can be

reduced by another 14 times.

To summarize, this evaluation showed that our solutions

(augmented process emulation and selective syscall redirec-

tion) have successfully addressed the three bottlenecks we

identified in §2.4.

5.4 Vulnerability Discovery

In this section, we aim to evaluate how effective FIRM-AFL is

in finding vulnerabilities in real-world IoT firmware images.

Data collection. We started with the Firmadyne dataset [4].

We collected these firmware images and tested the emula-

tion condition and network reachability, and then checked the

liveness of HTTP and uPnP services by probing their ports.

Eventually, we obtained 288 firmware images with active

HTTP and uPnP services. We then used getsploit [1] to col-

lect exploits targeting HTTP and UPnP services from online

resources, such as exploit-db [3], metasploit [8], and Packet

Storm [6]. Then we fed these exploits into the 288 images,

and eventually identified 15 exploits that can be launched

successfully against 51 firmware images. Table 6 lists these

15 exploits.

We further ran the programs related to these 15 exploits

in user-mode QEMU, and observed that only one program

tcapi that is related to the last five exploits can continue to

work in user-mode QEMU. This result once again confirms

the necessity of augmented process emulation.

Experiment setup. As our focus in this case study is on

fuzzing HTTP and uPnP services, which have well-structured

protocol formats. To expedite fuzzing, we made use of the

dictionary option “-x” in AFL. We collected keywords for

HTTP (from honggfuzz [5]), uPnP and HTTP CGI services

(extracted directly from binary programs) respectively. For

each service, we then provided a normal service request as

the initial seed .

Moreover, to avoid underestimating the performance of full-

system emulation with its default snapshot implementation,

we enabled lightweight snapshot in it.

USENIX Association 28th USENIX Security Symposium 1109

Exploit ID Vendor Model Version Device Program
Full-System

Time to crash

FIRM-AFL

Time to crash

CVE-2018-19242 Trendnet TEW-632BRP 1.010B32 Router httpd 21h43min 6h2min

CVE-2013-0230 Trendnet TEW-632BRP 1.010B32 Router miniupnpd >24h 9h16min

CVE-2018-19241 Trendnet TV-IP110WN V.1.2.2 Camera video.cgi 19h13min 4h55min

CVE-2018-19240 Trendnet TV-IP110WN V.1.2.2 Camera network.cgi 12h0min 2h21min

CVE-2017-3193 DLink DIR-850L 1.03 Router hnap 21h3min 2h54min

CVE-2017-13772 TPLink WR940N V4 Router httpd >24h >24h

EDB-ID-24926 DLink DIR-815 1.01 Router hedwig.cgi 16h38min 1h22min

EDB-ID-38720 DLink DIR-817LW 1.00B05 Router hnap 4h26min 1h29min

EDB-ID-38718 DLink DIR-825 2.02 Router httpd >24h 22h3min

CVE-2016-1558 DLink DAP-2695 1.11.RC044 Router httpd 16h24min 2h32min

CVE-2018-10749 DLink DSL-3782 1.01 Router tcapi 247s 20s

CVE-2018-10748 DLink DSL-3782 1.01 Router tcapi 252s 22s

CVE-2018-10747 DLink DSL-3782 1.01 Router tcapi 249s 20s

CVE-2018-10745 DLink DSL-3782 1.01 Router tcapi 236s 25s

CVE-2018-8941 DLink DSL-3782 1.01 Router tcapi 281s 24s

Table 6: 1-day exploits

The experiments were conducted on a server with 40-core

Intel Xeon(R) E5-2687W(v3) 3.10GHz CPU and 125GB of

RAM.

Finally, to ensure our evaluation results on fuzzing perfor-

mance are statistically significant, as suggested by Klees et

al. [25], we ran each fuzzing experiment ten instances in paral-

lel for 24 hours. In addition to FIRM-AFL, we also evaluated

full system emulation with lightweight snapshot support. We

report cumulative number of unique crashes found over time,

using plot_data in AFL output files.

Evaluation results. We calculate the median time to first

crash in full-system emulation and augmented process emu-

lation respectively and record them in the last two columns

of Table 6. We can see that FIRM-AFL can find a crash at

least 3.6 times faster than full-system emulation, and in many

cases more than 10 times faster.

We also plot cumulative number of unique crashes found

over time by FIRM-AFL (blue), and fuzzing with full emula-

tion (red) in Figure 7. In each plot, the solid line represents the

median result from 10 rounds while the dashed lines represent

the lower and upper bounds of 95% confidence intervals for

a median. Since last five cases in Table 6 are related to the

same program and the results are similar, we just plot the case

for CVE-2018-10749 as the representative.

From the result, we can see that in spite of large variations

across fuzzing runs, FIRM-AFL was able to find significantly

more unique crashes and find them multiple times faster than

full emulation. We further investigated these crashes and con-

firmed that most of these crashes were caused by the same

known vulnerabilities. We indeed found two new vulnerabili-

ties, which we will describe next.

0-day vulnerabilities. We discovered two 0-day vulnera-

bilities using FIRM-AFL, after 7.5 hours and 6 hours respec-

tively. We also tried fuzzing these two programs with full-

system emulation using the same initial seeds, and no crash

was found within 24 hours. we reported them to IoT manufac-

turers and MITRE corporation. The details about these two

vulnerabilities are described as below.

• CVE-2019-11417: Buffer overflow in Trendnet TV-

IP110WN (firmware version: v.1.2.2 build 68). Attackers

can exploit the device by using ‘languse’ parameter in

system.cgi.

• CVE-2019-11418: Buffer overflow in Trendnet TEW-

632BRP (firmware version: v.1.010B32). Attackers can

exploit the device by crafting the soapaction HNAP

interface.

6 Discussion

In this section, we discuss the limitations in our system and

shed some light for future work.

Limitation on supported CPU architectures. The current

implementation of FIRM-AFL supports the following CPU ar-

chitectures: mipsel, mipseb and armel, which already account

for 90.2% images in the Firmadyne dataset. We expect that

supporting more CPU architectures is relatively easy, because

the majority of the emulation logic in QEMU is implemented

in an architecture-independent manner.

Limitation on supported IoT firmware. Even after more

CPU architectures are supported, FIRM-AFL can only fuzz a

1110 28th USENIX Security Symposium USENIX Association

Figure 7: Crashes found over time

program in a firmware image that can be properly emulated

by Firmadyne and runs a POSIX-compatible OS (e.g., Linux).

This limitation stems deeply from the design of FIRM-AFL,

and thus there is no simple solution. An improvement on IoT

firmware emulation is orthogonal to this paper. We will leave

it for future work. Supporting a non-POSIX program would

require a virtualization layer, such that they can run properly

within a POSIX process. We are not aware of an existing

solution for this. Thus, it can be an interesting future work.

7 Related Work

With the increasing number of IoT devices and their security

issues, several techniques are proposed to find the IoT devices

vulnerabilities in an automatic manner. These techniques can

be categorized into static or dynamic analysis. Lacking the

source code of the IoT firmware, static analysis often relies

on the binary image and reverse engineering techniques.

Static analysis. Costin et al. presented a large scale analy-

sis of IoT firmware by coarse-grained comparison of files and

modules [17]. Their approach is able to find a lot of known

bugs within the common third-party projects used by different

vendors. Cojocar et al. proposed another approach to heuris-

tically identify parsers and complex processing logics from

IoT firmware, and they find several vulnerabilities [16]. That

said, these approaches suffer from high false positives and

cannot find completely new vulnerabilities. Feng et al. pre-

sented a cross-platform bug search technique for firmware

images [21]. The technique is based on high-level numeric

features comparison, and only takes 0.1 second on average

to finish all 154 vulnerabilities searching. Xu et al. further

proposed a novel neural network-based approach to detect

cross-platform binary code similarity [31]. It can significantly

reduce training time and feature vector generation time, as

well as improve search accuracy.

Firmalice is another IoT binary analysis framework that

employs static analysis techniques [30]. Firmalice utilizes

symbolic execution on the firmware binary and uses backward

slicing to make the vulnerability analysis tractable. Firmalice

focuses only on one slice of the program based on an analyst’s

specification. The specification provides a clue about the

privileged program code. Isolating the potential vulnerable

code, Firmalice makes the analysis scalable while also capable

of finding new vulnerabilities. That said, Firmalice can only

find the authentication vulnerabilities and relies on manual

analysis for the slice specification.

Dynamic analysis. On the other hand, dynamic analysis

techniques for IoT firmware require either the real devices

or an emulation of some sort. Black-box fuzzing is a com-

mon approach to discover vulnerabilities by directly inter-

acting with devices. Recently, several works have developed

dynamic emulators for IoT devices. For example, Zaddach

et al. developed a dynamic analysis framework for IoT de-

vices by redirecting hardware requests from the emulator to

USENIX Association 28th USENIX Security Symposium 1111

the actual hardware [33]. Based on it, Marius et al. devel-

oped a dynamic multi-target orchestration framework that

can enable interoperability between different dynamic binary

analysis framework, debuggers, emulators and real physical

devices [27]. However, the large number of hardware limits

its scalability, and also imposes a large overhead.

Chen et al. proposed a robust software-based full system

emulation. Their emulation is based on kernel instrumenta-

tion [13]. Their goal is to perform automatic vulnerability

verification that has no ability to find unknown vulnerabilities.

Both Avatar and Firmadyne do not use techniques such as

fuzzing that are capable of finding completely new vulnera-

bilities in real applications. Anderi et al. conducted dynamic

analysis to achieve automated vulnerability discovery within

embedded firmware images [18]. The tool aims at discovering

web-interface related vulnerabilities by using web pentesting

tools. However, it cannot find vulnerabilities of other modules

in IoT firmware.

IoT fuzzing. For IoT fuzzing, and closest to our work,

Muench et al. developed six live analysis heuristics including

call stack tracing and call frame tacking [28]. Muench et al.

built their system on top of Avatar [33] and PANDA [19], and

their system can effectively detect memory corruption for IoT

devices. However, this system takes target systems as black-

box and feeds input from outside which imposes overhead

on the devices startup and rebooting for each fuzzing session.

Further, unlike greybox fuzzing, the input space exploration is

very blind, and hence the chance of finding a bug is very low.

In our work, we utilize greybox fuzzing, and aim to minimize

each fuzzing iteration overhead so that the fuzzer can test

more test cases in the same unit of time. In addition, Alimi

et al. proposed to use fuzzing techniques and specific simu-

lators (JCOP) to discover vulnerabilities in programs hosted

into smart cards [11]. The methodology does not scale due to

emulation problems of various kinds of IoT firmware.

8 Conclusion

Coverage-based greybox fuzzing has proven to be an effec-

tive way to find vulnerabilities in real-world programs. Yet,

applying greybox fuzzing to IoT firmware has not been re-

alized due to two main challenges. Firstly, state-of-the-art

greybox fuzzers like AFL fail to run many IoT programs due

to specific hardware dependencies. Secondly, solutions that

can tackle the first challenge (e.g., by employing full-system

emulation) yield very low throughput. We proposed a novel

technique, augmented process emulation to address both chal-

lenges at the same time. With augmented process emulation,

we achieve high throughput fuzzing by running the target

program in a user-mode emulator and switch to a full-system

emulator when the target program invokes a system call that

has specific hardware dependencies.

We evaluated the transparency and the efficiency of FIRM-

AFL, our prototype implementation of greybox IoT fuzzing

based on the augmented process emulation. The results

showed that our system is transparent and its throughput out-

performs all the state-of-the-art IoT firmware fuzzers by one

order of magnitude. Our case study further showed that FIRM-

AFL could indeed find both 1-day vulnerabilities much faster

than full-system emulation and was able to find two new

vulnerabilities within only two hours on a single machine.

Acknowledgement

We thank our shepherd Dr. Yongdae Kim and the anony-

mous reviewers for their insightful comments on our work.

This work is partly supported by Key Program of Na-

tional Natural Science Foundation of China under Grant

No. U1766215, National key R&D Program of China un-

der Grant No. 2016YFB0800202, Strategic Priority Research

Program of Chinese Academy of Sciences under Grant No.

XDC02020500, International Cooperation Program of In-

stitute of Information Engineering, CAS under Grant No.

Y7Z0451104, National Science Foundation under Grant No.

1664315, Office of Naval Research under Award No. N00014-

17-1-2893, Guangdong Province Key Area R&D Program of

China under Grant No. 2019B010137004. We also thank the

support provided by China Scholarship Council (CSC) for

Yaowen Zheng’s visiting to UCR. Any opinions, findings, and

conclusions or recommendations expressed in this paper are

those of the authors and do not necessarily reflect the views

of the funding agencies.

References

[1] Command line utility for searching and download-

ing exploits. https://github.com/vulnersCom/
getsploit.

[2] The cyber grand challenge. http://blogs.
grammatech.com/the-cyber-grand-challenge.

[3] Exploit database - exploits for penetration testers, re-

searchers, and ethical hackers. https://www.exploit-
db.com/.

[4] Firmadyne datasheet. https://cmu.app.boxcn.net/
s/hnpvf1n72uccnhyfe307rc2nb9rfxmjp/folder/
6601681737.

[5] honggfuzz. a security oriented, feedback-driven, evo-

lutionary, easy-to-use fuzzer with interesting analysis

options. http://honggfuzz.com/.

[6] Information security services, news, files, tools, ex-

ploits, advisories and whitepapers. https://
packetstormsecurity.com.

1112 28th USENIX Security Symposium USENIX Association

[7] LMbench - tools for performance analysis. http://
www.bitmover.com/lmbench/.

[8] Metasploit | penetration testing software, pen testing

security. https://www.metasploit.com.

[9] nbench. https://www.math.utah.edu/~mayer/
linux/bmark.html.

[10] Gartner says 8.4 billion connected "things" will

be in use in 2017, up 31 percent from 2016, gart-

ner. http://www.gartner.com/en/newsroom/
press-releases/2017-02-07-gartner-says-8-
billion-connected-things-will-be-in-use-
in-2017-up-31-percent-from-2016, February

2017.

[11] V. Alimi, S. Vernois, and C. Rosenberger. Analysis

of embedded applications by evolutionary fuzzing. In

2014 International Conference on High Performance
Computing Simulation (HPCS), pages 551–557, July

2014.

[12] Fabrice Bellard. QEMU, a fast and portable dynamic

translator. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATC ’05, pages

41–41, Berkeley, CA, USA, 2005. USENIX Association.

[13] Daming D. Chen, Maverick Woo, David Brumley, and

Manuel Egele. Towards automated dynamic analysis for

Linux-based embedded firmware. In Network and Dis-
tributed System Security Symposium, NDSS, February

2016.

[14] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun

Zuo, Zhiqiang Lin, XiaoFeng Wang, Wing Cheong Lau,

Menghan Sun, Ronghai Yang, and Kehuan Zhang. IoT-

Fuzzer: Discovering memory corruptions in iot through

app-based fuzzing. In Networked and Distributed Sys-
tem Security Symposium (NDSS’18), February 2018.

[15] Vitaly Chipounov, Volodymyr Kuznetsov, and George

Candea. S2E: A platform for in-vivo multi-path anal-

ysis of software systems. In Intl. Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011.

[16] Lucian Cojocar, Jonas Zaddach, Roel Verdult, Herbert

Bos, Aurélien Francillon, and Davide Balzarotti. PIE:

Parser identification in embedded systems. In An-
nual Computer Security Applications Conference (AC-
SAC’15), December 2015.

[17] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and

Davide Balzarotti. A large-scale analysis of the security

of embedded firmwares. In USENIX Security Sympo-
sium, August 2014.

[18] Andrei Costin, Apostolis Zarras, and Aurélien Francil-

lon. Automated dynamic firmware analysis at scale: A

case study on embedded web interfaces. In ACM Asia
Conference on Computer and Communications Security
(ASIACCS), May 2016.

[19] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim

Leek, and Ryan Whelan. Repeatable reverse engineer-

ing with panda. In Proceedings of the 5th Program Pro-
tection and Reverse Engineering Workshop, PPREW-5,

2015.

[20] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim

Leek, Andrea Mambretti, Wil Robertson, Frederick Ul-

rich, and Ryan Whelan. Lava: Large-scale automated

vulnerability addition. In IEEE Symposium on Security
and Privacy, May 2016.

[21] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng,

Brian Testa, and Heng Yin. Scalable graph-based bug

search for firmware images. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 480–491, 2016.

[22] Patrice Godefroid, Michael Y. Levin, and David Mol-

nar. Automated whitebox fuzz testing. In Network
and Distributed System Security Symposium (NDSS’08),
February 2008.

[23] Andrew Henderson, Aravind Prakash, Lok Kwong Yan,

Xunchao Hu, Xujiewen Wang, Rundong Zhou, and Heng

Yin. Make it work, make it right, make it fast: Building

a platform-neutral whole-system dynamic binary analy-

sis platform. In International Symposium on Software
Testing and Analysis (ISSTA’14), July 2014.

[24] Pereyda J. boofuzz. https://github.com/
jtpereyda/boofuzz, 2016.

[25] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,

and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS’18), October 2018.

[26] Barton P. Miller, Louis Fredriksen, and Bryan So. An

empirical study of the reliability of UNIX utilities. Com-
munications of the ACM, 33(12):32–44, December 1990.

[27] Marius Muench, Aurélien Francillon, and Davide

Balzarotti. Avatar2: A multi-target orchestration plat-

form. In Workshop on Binary Analysis Research
(BAR’18), February 2018.

[28] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien

Francillon, and Davide Balzarotti. What you corrupt is

not what you crash: Challenges in fuzzing embedded

devices. In Network and Distributed System Security
Symposium (NDSS’18), February 2018.

USENIX Association 28th USENIX Security Symposium 1113

[29] NCC-Group. TriforceAFL. https://github.com/
nccgroup/TriforceAFL, 2017.

[30] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,

Christopher Kruegel, and Giovanni Vigna. Firmalice -

automatic detection of authentication bypass vulnera-

bilities in binary firmware. In Network and Distributed
System Security Symposium (NDSS’15), February 2015.

[31] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song,

and Dawn Song. Neural network-based graph embed-

ding for cross-platform binary code similarity detection.

In Proceedings of the 24th ACM Conference on Com-
puter and Communications Security (CCS’17), October

2017.

[32] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and

Taesoo Kim. QSYM: A practical concolic execution

engine tailored for hybrid fuzzing. In USENIX Security
Symposium, August 2018.

[33] Jonas Zaddach, Luca Bruno, Aurelien Francillon, and

Davide Balzarotti. AVATAR: A framework to sup-

port dynamic security analysis of embedded systems’

firmwares. In Network and Distributed System Security
Symposium (NDSS’14), February 2014.

[34] M. Zalewski. American fuzzy lop. http://lcamtuf.
coredump.cx/afl/.

1114 28th USENIX Security Symposium USENIX Association

Not Everything is Dark and Gloomy:
Power Grid Protections Against IoT Demand Attacks

Bing Huang
The University of Texas at Austin

binghuang@utexas.edu

Alvaro A. Cardenas
University of California, Santa Cruz

alvaro.cardenas@ucsc.edu

Ross Baldick
The University of Texas at Austin

baldick@ece.utexas.edu

Abstract
Devices with high energy consumption such as air condi-

tioners, water heaters, and electric vehicles are increasingly
becoming Internet-connected. This new connectivity exposes
the control of new electric loads to attackers in what is known
as Manipulation of demand via IoT (MadIoT) attacks. In this
paper we investigate the impact of MadIoT attacks on power
transmission grids. Our analysis leverages a novel cascading
outage analysis tool that focuses on how the protection equip-
ment in the power grid as well as how protection algorithms
react to cascading events that can lead to a power blackout.
In particular, we apply our tool to a large North American
regional transmission interconnection system consisting of
more than 5,000 buses, and study how MadIoT attacks can
affect this power system. To help assess the effects of such
cyber attacks, we develop numerical experiments and define
new and stronger types of IoT demand attacks to study cas-
cading failures on transmission lines and their effects on the
system frequency. Our results show that MadIoT attacks can
cause a partition of the bulk power system, and can also result
in controlled load shedding, but the protections embedded in
the operation of the transmission grid can allow the system to
withstand a large variety of MadIoT attacks and can avoid a
system blackout.

1 Introduction

The vulnerability of Internet of Things (IoT) devices is a
well-known problem [11, 25, 46]. Previous work has demon-
strated that devices from cameras to door locks can be com-
promised directly or through their designated smart phone
applications [29, 43]. A large-scale compromise of these de-
vices can enable attackers to affect network infrastructures,
as exemplified by the Distributed Denial of Service (DDoS)
attacks by the Mirai botnet—which consisted of more than
six hundred thousand IoT devices [13].

The collective effect of compromised IoT devices can go
beyond traditional computer network infrastructures. Recent

work proposed a novel form of attack called Manipulation
of demand via IoT (MadIoT) [47], and showed that if an at-
tacker compromised hundreds of thousands of high-energy
IoT devices (such as water heaters and air conditioners), the
attacker could cause various problems to the power grid, in-
cluding (i) frequency instabilities, (ii) line failures, and (iii)
increased operating costs. These attacks paint a dire picture
of the security of the power grid as they show that a 30% in-
crease in demand can trip all the generators in the US Western
interconnection causing a complete system blackout, and a
1% increase of demand in the Polish grid results in a cascade
of 263 transmission line failures, affecting 86% of the load in
the system.

In this paper we re-evaluate the potential impact of MadIoT
attacks by modeling in detail the protection equipment and
the operational responses to sudden load changes in the power
grid. Our analysis leverages a novel cascading outage analysis
tool that focuses on how the protection equipment already em-
bedded the power grid reacts during cascading events, where
multiple protection equipment is activated one after the other.

Our analysis shows that while MadIoT attacks can create
negative consequences on the power grid, the negative impact
on the grid will not be as dire as originally thought. In par-
ticular, while the most powerful MadIoT attacks (assuming
the attacker compromises more than 8 million air condition-
ers) might cause the power system to partition and operate
as separate islands, or can also cause some controlled load
shedding, our results show that creating a system blackout—
which would require a black start period of several days to
restart the grid— or even a blackout of a large percentage of
the bulk power grid will be very difficult.

This paper is organized as follows. Section 2 introduces the
background necessary to understand power systems and how
our tool compares to state-of-the-art practices for cascading
analysis. Section 3 presents the details of our simulations and
models. Section 4 illustrates why our cascade analysis tool
has advantages over competing alternatives in a simplified
model used in previous work. Our main results focusing on
the analysis of a large-scale North American interconnec-

USENIX Association 28th USENIX Security Symposium 1115

tion undergoing MadIoT attacks are presented in Section 5.
Section 7 summarizes related work and Section 8 provides
conclusions, limitations, and future work.

2 Power Systems Background

Figure 1: Generation and Transmission form the Bulk of the
Power Grid. Transmission systems are redundant and have to
satisfy the N-1 operation criterion, while Distribution systems
are radial systems (non redundant) and affect a very small
percentage of the system.

The objective of engineers and researchers in the power
system industry is to deliver increasing amounts of electrical
energy in a safe, clean, and economical manner [31]. The
power grid has three major parts: (1) generation, (2) transmis-
sion, and (3) distribution. Electric power is generated wher-
ever it is convenient and economical, and then it is transmitted
at high voltages (100kV-500kV) in order to minimize energy
losses—electrical power is equal to voltage times electrical
current (P = V I), and given a constant power, high voltage
lines have less electrical current, and therefore there is less
energy lost as heat as the current moves through the transmis-

sion lines. Geographically, a distribution system is located in
a smaller region thereby energy losses are less of a concern
while safety (preventing accidents, fires, electrocutions, etc.)
is more important, therefore they are operated at lower volt-
ages. Figure 1 illustrates these three main parts of the grid. A
distribution system is connected to a transmission system in a
substation and the conductor that completes the connections
is usually represented in electrical diagrams by nodes called
buses.

Operators have to keep the nominal frequency (e.g., 60Hz
in the Americas) and the transmission lines at their operat-
ing range (at a fixed voltage like 500kV, and with currents
below a safety threshold) in order to ensure reliable opera-
tion of the grid. If there is a sudden increase in the demand
of electricity, the frequency of the power grid tends to slow
down, and automatic controls ramp up generation of electric-
ity to take the frequency back to 60Hz. If there is a sudden
decrease in the demand of electrical power, then the frequency
of the grid tends to increase, and automatic controls then de-
crease generation of electrical power to reduce the frequency
to the nominal level. Similarly sudden changes in electricity
consumption might overload transmission lines and activate
protection equipment (relays that prevent the flow of electric-
ity through the line), and if this happens, the power is then
distributed to other transmission lines.

2.1 Transmission vs. Distribution Outages

Large generation plants and the transmission network are
usually referred to as the Bulk Power System, and this bulk
power system is responsible for the reliable delivery of elec-
tricity to large areas. The bulk power system is an intercon-
nected, redundant network that spans large regions—usually
one country, but in North America there are three bulk sys-
tems: the Eastern Interconnection, the Western Interconnec-
tion, and Texas. In contrast, distribution systems are geo-
graphically smaller and their networks are mostly radial (i.e.,
non-redundant).

The bulk power system is designed and operated to satisfy
the N-1 security criterion, which means that the system can
lose any one of its N components (such as generators or
transmission lines) and continue operating safely and serving
the power supply to the customers in the large area. This
operating criterion is mandatory and enforced by government
entities, and therefore bulk power system operators have the
incentives to make sure that their systems satisfy the N-1
criterion at any point in time, otherwise they get massive
sanctions. In contrast, since distribution systems are usually
non-redundant and serve customers in a regional area, they
do not have to meet the same operating criterion.

The reason distribution systems do not have to meet the N-1
criterion is the scale of a system failure. A disruption in the
bulk power grid will be the topic of national news headlines
because it causes a blackout in a large part of the country

1116 28th USENIX Security Symposium USENIX Association

(sometimes even the whole country), while a disruption in the
distribution system will usually only cause a localized outage
(e.g., a neighborhood will be without electricity). Electric
power in the distribution grid can also be more easily restored,
while a system blackout of the bulk power system will require
days of coordination in what is called black start period.

While distribution systems are not required to follow the
N-1 criterion, there are separate criteria applied to them. For
example, the hours of successful power supply to consumers
as percentage of the total hours in a year is required to meet
certain standard e.g. 99.999%. Other details of the distribution
system will not be discussed as they go beyond the scope of
this paper.

As we will show later in the paper, one of the protections
embedded in the power system to prevent a bulk power outage
is called Under Frequency Load Shedding (UFLS), which
is a mechanism where predetermined blocks of customers in
the distribution system are automatically dropped from the
system. This is a carefully selected procedure where electric-
ity is not cut to safety-critical loads like Hospitals. We will
show that some of the most severe MadIoT attacks will acti-
vate this protection and therefore can cause some controlled
outages, but at the same time, these small outages are done
in order to prevent that the bulk system goes into a cascading
failure resulting in a system blackout.

2.2 Failure Analysis in the Bulk Power Grid

The power grid analysis tool we use in this paper was devel-
oped to address the limitations for modeling and analyzing
cascading failures identified by the task force from the IEEE
Power Engineering Society [14,15]. As stated in these reports,
most of the research in cascading failure analysis focuses on
independent phenomenons, but these interactions are often
ignored. In our recent work on cascading failures [33, 53–56]
we have been developing a tool that captures the time interde-
pendencies of all relevant protection equipment and stability
studies in the power grid when multiple simultaneous (or
quasi-simultaneous) contingencies occur. In this paper we
adapt our tool to model MadIoT attacks. Before we discuss
our approach in more detail, we now present related work in
the analysis of failures in the power grid and discuss how our
system compares to these approaches.

Cascading failure analysis has attracted a lot of attention
from the research community [14,44,52]. There are two main
approaches for studying cascading failures: stochastic models,
and fine-grained simulations.

Stochastic models are used to evaluate the likelihood of
a cascading event by giving us the probability of having in-
correct settings for protection equipment in a given power
system [26, 45]. To build these estimates, stochastic models
perform a forensic analysis of previous cascading failures by
looking at the properties of power systems just before they
experienced a system blackout. Although these models pro-

vide a probabilistic insight of cascading events, they cannot
be used to model the operation of a power system undergoing
a cascade, which is particularly important when we want to
understand how the system reacts to incidents in general (and
cyber-attacks in particular). To understand the operation of
the power system undergoing cascading failures we need to
turn to detailed simulation models.

2.2.1 Power System Simulations

There are two main behaviors that we need to study when a
system undergoes a failure:

1. Transient Analysis finds the behavior of the frequency
in the power grid in the immediate aftermath of the inci-
dent. If the frequency deviates too far from 60Hz, some
protection equipment will be activated. There are two
options for transient analysis.

(a) No System Dynamics: This is a very fast compu-
tational method where the behavior of all genera-
tors is simplified to only one generation machine.
This allows us to evaluate how the frequency of
the system behaves with big changes in electricity
consumption. Several cascading studies use this
method [35,41]. This simplification cannot capture
the frequency at every bus in the system (therefore
it cannot model if a power system is partitioned
into islands), nor model how each generator will
react differently to cascading incidents (therefore
it cannot model how the protection mechanism in
each generator will activate).

(b) System Dynamics: In this type of transient anal-
ysis we model all generators in the power system
and all the frequencies in all the buses of the system.
This is in line with one of the main objectives of a
transient stability study—to determine whether the
resulting angular separation between the machines
in the system remains within certain bounds so
that the system maintains synchronism [36]. Cas-
cading analysis models with system dynamics are
considered in [28, 34, 40].

2. Steady-State Analysis finds the voltages and currents
of the system after all frequency equipment has tripped
and can help us understand if the system ends up in a
configuration where voltage protection or overcurrent
protection equipment will activate. To compute these
values, a power flow program uses Kirchhoff’s physical
laws to obtain the voltage magnitudes and phase angles
at each bus of a power system. As a by-product of this
calculation we can also compute real and reactive power
flows in equipment such as transmission lines and trans-
formers, as well as equipment losses [31]. There are two
ways to perform steady state analysis:

USENIX Association 28th USENIX Security Symposium 1117

(a) DC Power Flow: Direct Current (DC) Power Flow
is a very fast way to compute voltages and phase
angles. There are several cascading analysis studies
that use DC Power Flow models [22, 27, 57]. DC
power flow models however are approximations to
AC models, and they do not show the variations on
voltages that might trigger protection equipment,
therefore DC methods are only valid when voltages
are close to their nominal values, which rules out
their use for modeling large-scale events such as
MadIoT attacks.

(b) AC Power Flow: Alternating Current (AC) Power
Flow is a more accurate (but computationally more
expensive) way to analyze the steady state behav-
ior of the power system. The only way to model
voltage protection systems is with the use of AC
power flow. Cascading analysis with AC power
flow methods include [35, 41].

2.2.2 Power System Protections

In the previous subsection we have argued that the best prac-
tices for an accurate portrayal of power system behavior under
large-scale events (i.e., events where voltages go beyond nom-
inal values, and where individual generators might go beyond
safety limits) is to use (1) System Dynamics for transient
analysis, and (2) AC Power flow for steady-state analysis.
In this section we describe how the results of our transient
and steady-state simulations are used to evaluate how protec-
tion equipment in the power grid will react to changes in the
operation of the system.

In particular, we model four protection mechanisms that
are relevant for cascading analysis studies:

1. Protection of Generators: when the frequency of the
system is too low or too high, the generator will be auto-
matically disconnected from the power grid to prevent
permanent damages to the generator.

2. Under Frequency Load Shedding (UFLS): if the fre-
quency of the power grid is too low, controlled load
shedding will be activated. As discussed before, this dis-
connection of portions of the distribution system is done
in a controlled manner, while avoiding outages in safety-
critical loads like hospitals. UFLS is activated in an effort
to increase the frequency of the power grid, and prevent
generators from being disconnected (as discussed in the
point above).

3. Overcurrent Protection: if the current in a transmis-
sion line is too high, a protection relay will be triggered
after time T . This activation time is based on an equa-
tion for current relays [10]. We will discuss in detail this
equation when we describe our cascade outage analysis
model.

4. Over/Under Voltage Protection: if the voltage of a bus
is too low or too high, a voltage relay will be triggered
after time T . This activation time depends on an equa-
tion modeling configuration thresholds and over/under
voltage relay pick-up values [2].

2.2.3 Industry Practices

For day-to-day operations related to power grid failures,
power operators focus on satisfying the N-1 criterion as this
is the most important failure condition that is regulated and
enforced by most electric regulatory agencies. Large-scale
events such as a massive natural disaster, a terrorist attack,
or a cyber-attack have not been a major priority for industry
practices because the likelihood of these events is very small,
and investment in preparing for these events has higher costs
than responding to them when they happen [49].

Figure 2: Analysis of Cascading Outages.

Therefore most of the industry efforts on cascading stud-
ies focus on smaller-scale events that initiate a cascade, and
where the transient dynamics do not affect the cascade analy-
sis too much. These efforts include the Transmission Reliabil-
ity Evaluation of Large-Scale Systems (TRELSS) [32,39] and
the Oak Ridge-PSERC-Alaska (OPA) [18]. Similar problems
have been studied by system operators like ERCOT [3]. Our
tool on the other hand is designed for the study of the large
disruptions in the operation of a power system like a delib-
erate cyber attack which can take hundreds of lines out in a
short time, and therefore transient analysis has to be coupled
with steady-state analysis.

The integration of (1) System dynamics, (2) AC power
flow, and (3) the timing of protection equipment gives our
tool a level of fidelity that goes beyond the current state-of-
the-art practices [22, 27, 28, 34, 35, 35, 40, 41, 41, 57]. These
three analysis techniques and their relationship are shown in
Figure 2.

2.3 Contributions
Our contributions to the study of a MadIoT attacks compared
to recent work [24, 47] include the following:

1118 28th USENIX Security Symposium USENIX Association

First, previous work considered transient and steady state
simulation as separate use-cases (and in different inconsistent
power systems), and as a result, the transient impacts on gen-
erators and system frequencies are not present in the power
flow simulations. Therefore the predictions of cascading out-
ages can differ between the two simulations. As we explain
in Section 4.1, without the transient effect, the power flow
solution will indicate a system blackout, while in reality Un-
der Frequency Load Shedding will activate before generators
start tripping and will prevent a system blackout.

Second, including the exact timing for the activation of a
protection relay captures the realistic behavior of equipment
in the power grid. Previous works on IoT attacks to the power
grid [28, 34] do not represent the delay characteristic of pro-
tection equipment, but rather use models that appear to be
based only on the immediate removal of an element after any
amount of overload. Such a model violates NERC criteria for
overload protection [1]. Our model is instead a discrete event
simulator that does not assume that all relays will trip at the
same time. In particular, we model equipment under stress,
such as current overloads of 50-100% of the line rating. This
model is based on the curves from manufacturers [2, 10] that
relate the overload of the device to the time until it trips—e.g.,
if the overload of the line increases significantly, the trip time
would be much shorter.

Third, we also perform the first large-scale transient anal-
ysis of MadIoT attacks on a real-world North American re-
gional system with over 5,000 buses. This large-scale analysis
shows that the most powerful MadIoT attacks can partition
the bulk power system into three or more isolated islands. The
power grid does not go into a system blackout, but each island
will be more vulnerable to future contingencies. This is a new
effect that has not been considered before.

Because by repeating the same attack conditions from pre-
vious work did not cause any blackout in our system, we
introduce new variations of the MadIoT attacks where for ex-
ample, the attacker systematically tries to create oscillations
of demand in order to drive the system into a more vulnerable
state before launching the second stage of the attack.

Finally, all our simulations are done in PowerWorld [4],
which is an industry-standard transient and AC steady-state
solver, as its basic building block, so the basic physics of the
system are represented with industry-accepted fidelity.

These contributions are summarized in Table 1.

3 Cascading Outage Analyzer

This section summarizes our Cascading Outage Analyzer
(COA) tool. The COA model considers both steady-state
and transient stability analysis in different time scales but
coordinated so the transition of system stability from one
steady-state operating point to another is present. The basic
model checks for conditions that would trigger protective
relays, and assesses the time when relays will be triggered.

Table 1: Contributions
Contributions Our Work Previous Work [24, 47]

Simulations
Transient PowerWorld PowerWorld

Steady-state PowerWorld Matlab
Combined

transient and
steady-state

analysis

Yes No

Transient
Analysis

Under
Frequency
Protection

Yes No [47]

Frequency in
all buses Yes No [24]

Steady-state
Analysis

Power Flow AC Not Specified
Time for

Over Current
Protection

Yes No

Time for
Voltage

Protection
Yes No

New MadIoT
Attacks

IoT Demand
Increase and

Decrease
Yes No

IoT Repeat Yes No

Scale
of Analysis

Case used in
Transient

Simulation

A North American
regional system

with over 5,000 buses

Up to WSCC
9-bus system

Case used in
Steady-state
Simulation

A North American
regional system

with over 5,000 buses

Polish
system with
3,120 Buses

The framework of the COA is described in Figure 3. The
simulation has both transient and steady state parts. For each
contingency, a transient simulation is run using the Power-
World transient simulation tool. If the system reaches a stable
state, then simulation results are sent to the steady state simu-
lation as initial values, where an AC power flow is run. Based
on the resulting line flows and voltage magnitudes, the timing
for activating protection equipment is then computed.

If there are any new protection equipment activated from
this steady state simulation, the new outage will be mod-
eled and the next iteration of simulation will start using the
PowerWorld transient simulation tool. This multi-time scale
process continues until no outage occurs in both the transient
and steady-state parts of the simulation, or until the transient
simulation is unable to solve the problem, in which case an
“algorithmic non-convergence” is declared to have occurred
as a proxy to a system blackout.

We now describe how each of the four protection systems
we consider are modeled.

3.1 Protection of Generators

If a mismatch between generation and load occurs, there will
be a frequency deviation from the desired nominal value (if
there is more load than generation, the frequency of the sys-
tem will decrease, and if there is more generation than load,
the frequency of the system will increase). A big frequency
deviation may trigger generator under- and over frequency-
protections.

Transient stability or rotor angle stability is the ability of

USENIX Association 28th USENIX Security Symposium 1119

Figure 3: Overview of our Cascading Outage Analysis Tool.

the power system to remain in synchronism when subjected
to large transient disturbances [37]. We choose to use time-
domain simulation because the time-domain simulation takes
into account the full system dynamic model and constantly
checks that inter-machine rotor angle deviations lie within a
specific range of values.

We use the PowerWorld transient stability solver to numer-
ically calculate the system response after a fault. If the rotor
angle deviation of a generator is bigger than a certain thresh-
old, e.g., 100 degrees, the generator will be automatically
tripped and removed from the power grid to prevent perma-
nent damages. The disconnection of the generator won’t be
immediate after crossing a threshold, but it will be dependent
on the amount of time that it remains in the unsafe region.
We will discuss the exact configuration parameters for discon-
necting a generator later in the paper.

3.2 Preventing the Tripping of Generators

When the system loses a generator or when there is a sud-
den increase in the load, the frequency of the power grid
decreases rapidly. A countermeasure to prevent the activation
of (more) under-frequency generator protections is a mecha-
nism called Under Frequency Load Shedding (UFLS). The
predominant system condition addressed by IEEE C37.117
involves the use of protective relays for under frequency shed-
ding of connected load in the event of insufficient generation
or transmission capacity within a power system. Therefore,
we include UFLS along with over/under frequency generator
tripping as frequency outage checkers in the COA model. Tak-
ing into consideration these protections embedded in power
systems is one of the reasons we obtain different results when
compared to previous work.

3.3 Overcurrent Protection

Disconnecting transmission lines because of a thermal limit
violation is one of the most common events in cascading
outages [53]. We trigger overcurrent protections based on the
results from our steady-state results. The status and dispatch
set points of units at the end of the PowerWorld transient
analysis are used as starting points for the PowerWorld AC
power flow simulator. An inverse-time overcurrent equation
described in the Siemens SIPRO-TEC 5 Current Relay [10]
is implemented in our model. The time when the over current
relay trips the element is determined by equation (1),

T =
0.14

(I
Ith
)0.02−1

Tp[s], (1)

where Ith is the current threshold value of the relay, and Tp
is the setting value of the relay. Both values are set by the
relay operator. I is the current on the monitored component
such as a transmission line or a transformer. The value of T
in (1) determines when the protection will be activated. It
is important to understand that overloading the line past its
nominal rating does not immediately result in a transmission
outage. Simplified models that do not account for the detailed
behavior of protection equipment are likely to consider that a
line gets out of service when in reality it keeps operating (it
just sags). This is another of the reasons we obtain different
results from previous work.

3.4 Over/Under Voltage Protection

Another typical pattern associated with cascading outages
is an under (or over) voltage problem. When the system is
highly stressed, the voltage profiles of power systems may
decline. Even if the AC power flow calculation converges, if
a bus voltage stays below the lower limit in our simulations,
a load-shedding protection mechanism will be triggered in
order to return the bus voltages to their limits [53].

The bus voltages are required to be on a range for the safe
operation of the connected generators. A generator may also
be disconnected if the voltage of the connected bus goes out
of limits for too long.

We implement in our simulator a standard inverse time
characteristic equation described in ABB RXEDK 2H time
over/under voltage relay [2] to find the timing for the acti-
vation of voltage protection equipment. The time duration
until the under or over voltage relay trips is determined in
equations (2) and (3),

T =
k

(U
Uth

)−1
[s], (2)

T =
k

1− (U
Uth

)
[s], (3)

1120 28th USENIX Security Symposium USENIX Association

where k is the inverse time constant, Uth is the over/under
voltage relay pick-up value, and U is the user defined relay
operating value. The values of T in equations (2) and (3) de-
termine when the protection will activate. As with the line
overload model, over/under voltages do not immediately re-
sult in a bus outage.

4 Considerations for Modeling the Impact of
IoT Attacks

This section will demonstrate the contribution of applying
our cascading outage analyzer in the study of IoT demand
attacks and in particular, this section will compare our results
with previous work in order to show why we obtain different
results. We will start our analysis with a relatively simple
but standard Western System Coordinating Council (WSCC)
model with 9 buses and 9 lines, as this is a model that has
been used in previous work. We will also discuss in more
detail some of our considerations for modeling the impact
of IoT attacks. In the next section we will provide a detailed
study on a model of a real-world North American system.

In this section we use the over/under frequency generation
protection and Under-frequency load shedding parameters
from Table 2 and Table 3. In the next section we will explain
in more detail these parameters.

4.1 The Need for Combining Transient and
Steady-State Simulations

Since the operation of a power system after a disturbance
is a continuous process over a long time frame, a closed-
loop structure of the cascading outage analyzer can better
approximate the operations of the power system over various
time scales after a disturbance. As previously discussed, the
results and states of the system after the transient simulation
are stored and set as the starting point of the steady-state
simulations. The cascading outage generated from steady
state simulations, if there is any, is then used as the initial
condition in the transient simulation for the next loop.

Previous work considered transient and steady-state sim-
ulations as separate, and as a result, the transient impacts
on generators and system frequencies are not present in the
power flow simulations. Therefore the predictions of cascad-
ing outages can differ when compared to our work. Let us
look at an example to see a possible inconsistency, while em-
phasizing the importance of a combined transient/steady-state
simulation for the analysis of cascading outages caused by
IoT demand attacks.

Figure 4 shows the WSCC 9-bus system considered by
Soltan et al. [47]. Consider an IoT demand attack that in-
creases all loads by 15% in the system. Now let us see what
happens if a transmission line is removed if the power flow
is over its rated capacity [20]. If the transient impacts of this

Figure 4: PowerWorld 9-bus system.

attack are not considered, the results from the steady-state
power flow would indicate a line outage between bus 7 and
bus 8, as highlighted with a red circle (shows the percentage
of the rated capacity) in the top left corner in Figure 5.

Figure 5: Power flow results of 15% of load increase.

However, because of the sudden load increase caused by
the MadIoT attack, load and generation are not balanced and
the frequency of the system will be affected. A frequency pro-
tection relay would disconnect a generator from the system
if the frequency of the system stays lower or higher than the
generator’s threshold values for too long in order to prevent
permanent damage to the generator. Figure 6 shows the fre-
quency responses to the 15% load increase. We can see that
the system frequency starts to decline after the attack starts
(the attack starts after one second). The frequency relays then
disconnect all the generators in the system two seconds after
the frequency drops below the threshold of 58 Hz (table 2).
Therefore, this results in a blackout in the transient simulation
of the IoT demand attack. These transient stability results
are different from the steady state stability study, which iden-
tifyied only one cascading line outage as discussed in the
previous paragraph.

This is a motivating reason to include transient and steady
state analysis together in a single simulation. Because tran-
sient and steady-state simulations are connected in a closed

USENIX Association 28th USENIX Security Symposium 1121

Figure 6: Frequency responses to the 15% of load increase in
the transient simulation.

loop in our model, the transient solution at the end of the
simulation time will be used as an initial condition for the
steady-state power flow simulation. In this example, if the
under frequency load shedding is not considered, which will
be discussed in Section 4.2, the transient solution would in-
clude the fact that all three generators were disconnected from
the system. Thus, the power flow solution would indicate a
system blackout.

4.2 Under Frequency Load Shedding

Under Frequency Load Shedding (UFLS) is a countermeasure
applied by bulk power system operators [5] to reduce the
incidence of generator under-frequency tripping, which is a
great danger to the reliable operation of the power systems.
UFLS is a coordinated disconnection of small and non-critical
(e.g., no Hospitals are ever disconnected) loads to prevent a
large blackout.

To illustrate why it is important to consider UFLS in the
simulation of IoT demand attacks, let us first take a second
look at Figure 6. As observed, after the 15% load increase
attack, the system frequency starts to decrease. Because there
is no action that could relieve the imbalance between the in-
creased load and unchanged generation, the system frequency
declines fast until it drops below the thresholds of frequency
protections at generators. Because the frequency stays below
the thresholds for longer than the delay time set at the fre-
quency protections, the generators are disconnected and there
is a system blackout.

Now, let us compare the simulation results when we incor-
porate UFLS as defined by the parameters in Table 3. Figure
7 shows the frequency response to the 15% system demand
increase attack on the WSCC 9-bus system. The system fre-
quency declines after the IoT load increase attack starts at one
second of the simulation time. The frequency of the system
then reaches the first UFLS threshold at 59.3 Hz, and as a
result, 5% of the system load is disconnected. However, this
is not enough and the system frequency keeps declining until
it reaches the second threshold: 58.9 Hz, and at that time a
total of 15% of the system demand is disconnected and the

frequency stops decreasing and starts to stabilize to its desired
state. The system frequency reaches a new stable state and
there are no generator disconnections from the system.

Figure 7: Frequency responses with Under Frequency Load
Shedding to the 15% of load increase in the transient simula-
tion.

Figure 8: Power flow on the transmission line connected be-
tween bus 7 and bus 8 in the transient simulation

What is more, because of UFLS, the system load is re-
duced to a level where no transmission line is overloaded,
and therefore there are no cascading outages. In Figure 8, we
can see that the transmission line between bus 7 and bus 8 in
Figure 4 is overloaded after the IoT demand increase attack
begins at one second. However, the power flow on the line
soon decreases following the load shedding event caused by
UFLS and remains below its rated capacity at the end of the
transient simulation. As discussed in Section 4.1, a power
flow steady state simulation starts based on the solution of
the transient simulation; the results of this new steady state
stability analysis are shown in Figure 9. We can see that no
line is overloaded and the combined transient and steady-state
simulations end.

The example in this subsection shows that the simulation
results will be significantly affected if UFLS protections are
considered. In fact, by including UFLS, the closed-loop tran-
sient and steady state simulations used in this work generates
a result suggesting that the system would shed some demand,
but all the system transmission lines and generators will re-
main in operation. This result is different from the cascading
line outage suggested by our steady-state simulation illus-
trated in Figure 5 and the complete system blackout suggested
by previous work.

1122 28th USENIX Security Symposium USENIX Association

Figure 9: Power flow results after the transient simulation
with UFLS.

4.3 Frequency Response Model

UFLS protections are indeed considered in some previous
work [24]. However, the simplified frequency response model
used by the authors is not a good fit to analyze IoT demand
attacks. The system frequency responses used by Dabrowki
et. al [24] model the power grid as a single large machine that
represents an “aggregation” of all the synchronous generators
in the system.

A synchronous machine is associated with a rotating mag-
netic field winding that induces alternating voltages in a ar-
mature windings of the stator. The frequency of the induced
alternating voltages and of the resulting currents that flow in
the stator windings when a load is connected depends on the
speed of the rotor. The frequency of the stator electrical quan-
tities is thus synchronized with the rotor mechanical speed,
hence the designation “synchronous machine” [37]. When
two or more synchronous machines are interconnected, the
stator voltages and currents of all the machines must have
the same frequency and the rotor mechanical speed of each
is synchronized to this frequency. Therefore, the rotors of all
interconnected synchronous machines must be in “synchro-
nism” [37].

In contrast, the assumption of Dabrowski et. al [24] is that
every generator in the system will respond to a disturbance ex-
actly the same. In other words, the implicit assumption of this
model is that all the generators in the system will always keep
synchronism and respond identically. However, when the sys-
tem is under a significant disturbance, generators will respond
differently to the disturbance and the system will have the risk
of losing synchronism in a short time after the disturbance.
In some scenarios, the frequency protections will contribute
to a lack of synchronism, and therefore, the frequencies at
different buses will diverge from synchronism. All of this
frequency diversity can not be reflected in the single machine
mode [24]. A detailed discussion of why this phenomenon is
important will be demonstrated in subsection 5.4, where we
show how different parts of the grid start operating at different

frequencies and therefore the system becomes a set of islands
operating semi-independently.

4.4 Line Overloads
The line overload outage models also play an important role
in understanding the impact of MadIoT attacks. Previous
work [47] relied on the criteria described by Cetinay et al. [20],
where a line will be removed from the system if the steady-
state results indicate that the power flow on the line is greater
than its rated capacity. When a transmission line is overloaded,
the heat generated from the extra power flow on the line will
sag the transmission line. Although it exposes the line to a
possible outage from faults associated with ground element or
vegetation, it does not necessarily cause any immediate real
danger to the system. In fact, under an emergency, the system
operator is allowed to use overloaded transmission lines for
additional transmission capacity [6]. Therefore, instead of im-
mediately removing the overloaded lines, we utilize a model
that calculates the time of tripping given the overload level.
The details are described in Section 3.3. The time inverse
calculation in the outage protection mechanism will result in
a quick tripping time for the lines that are heavily overloaded.
In this way, we approximate the different actions taken at
different levels of overload on transmission lines.

4.5 IoT Demand Attacks
In addition to fixed demand increase (or decrease) attacks,
we also consider attacks that increase and then decrease the
load. The intuition for this attack is that the first part of the
attack will force automatic responses from the grid (such as
UFLS) and therefore when the system starts operating with
a reduced load, a reversal in the load (a big decrease) can
drive the system to a potentially unstable state. After initial
attack increasing the demand, the attackers will decrease the
demand when they think the system frequency reverses due
to UFLS and intend to overshoot the system frequency over
the thresholds of generator frequency protections in the hopes
of causing a generator disconnection.

This demand increase and decrease attack was studied by
Dabrowski et al. [24]. However, our results will differ because
of their simplification of the frequency model, as discussed in
Section 4.3. In addition, if the attacker can cyclically increase
and then decrease demand, it is reasonable to assume that the
attacker is capable of repeating this attack. The simulation
results and detailed discussions of the experiments are shown
in Section 5.

5 Simulation Results in a Large Power System

The study case we use to analyze the impact of the IoT de-
mand attacks is a large North American regional system with
more than 5,000 buses, and as such it is the largest study

USENIX Association 28th USENIX Security Symposium 1123

Table 2: Over/Under Frequency Generator Tripping. Source:
Section 2.6.1 of [5].

Over
Frequency
Threshold

Time
Delay

Under
Frequency
Threshold

Time
Delay

60.6 Hz 9 min 59.4 Hz 9 min
61.6 Hz 30 sec 58.4 Hz 30 sec

61.8 Hz or above 0 sec 58.0 Hz 2 sec
57.5 Hz 0 sec

done on the impact of IoT attacks on power systems. Unfor-
tunately, because our close collaboration with the operator of
this power systems we are required to maintain the confiden-
tiality of this system and we are not allowed to share the name
of the system or details of their network topology. Before we
describe our simulation results we clarify our assumptions.

5.1 Assumptions
We state three main assumptions about an IoT demand attack:

1. IoT attackers have full and unlimited ability to control
the compromised portion of loads;

2. The actions of attackers to increase or decrease the com-
promised loads are simultaneous;

3. The portion of the system demand compromised by the
cyber attackers are evenly distributed at each demand
connection point in the transmission system.

The third assumption is a speculation about the scalability
of an IoT attack. For example, if the adversary is able to com-
promise one brand of air conditioner, they can systematically
apply the attack to as many air conditioners as possible in the
target system. Thus, if the total energy capacity of all such
air conditioners is 10% of the system demand, this 10% of
demand is likely to be spread to every demand connection
point in the transmission system.

5.1.1 Parameters Used for Protection Equipment

There are two protections implemented in the transient sim-
ulation, namely Over/Under Frequency Generator Tripping
(O/UFGT) and Under Frequency Load Shedding (UFLS). If
the frequency at a bus deviates from a predefined threshold
for more than a specific time period, the generator connected
to that bus will be tripped, and a certain percentage of load
connected to the bus will be shed. The details of O/UFGT and
UFLS are shown in Table 2 and Table 3 specifically.

Since the current and voltage responses in the system are
normally slower than frequency responses, the Time Inverse
Overload, Time Inverse Under Voltage Load Shedding, and
Time Inverse Over Voltage Generator Tripping are modeled

Table 3: Under Frequency Load Shedding. Source: Section
2.6.1 of [5].

Frequency
Threshold

System Load
Relief

Time
Delay

59.3 Hz 5 % 0 sec
58.9 Hz 15 % 0 sec
58.3 Hz 25 % 0 sec

in the steady state simulation. Each protection checker will
calculate tripping times once the current flow on branches
or the voltage at buses exceed the thresholds. The element
(branch, generator, or load) with the shortest tripping time
will be tripped as the initial conditions for the next iteration
of transient simulation. The parameters of the steady state
protection models described in equations (1-3) are listed in
Table 4.

Table 4: Steady State Protections. Source: [53]

Over Load Over/Under Voltage
over under

Threshold
Ith = 2 ×line
limit [amps] Uth = 1.3 [pu] Uth = 0.8 [pu]

Parameters Tp = 0.05 k = 0.5 k = 0.5

5.2 Demand Increase Attacks
The most intuitive MadIoT attack against the power grid is a
sudden increase of demand. This will attempt to overload the
transmission lines and potentially cause cascading failures.

5.2.1 1% Demand Increase Attack

Previous work showed that a 1% increase attack against the
Polish power grid in 2008 caused cascading failures. In their
system, a 1% load increase corresponded to 210MW, requir-
ing the adversary to compromise about 210,000 air condition-
ers. In our system, one percent of the load is equivalent to
822.7 MW, which would require the attacker to compromise
approximately 822,000 air conditioners.

Figure 10 shows the bus frequency responses after 1% of
load increase at second 1 and Figure 11 shows the power flow
on branches as a percent of the branch rated capacity. We can
observe that the bus frequencies shown in Figure 10, decline
after the attack at second 1 except for very few buses that are
connected to the region outside of the system with DC tie
lines (the ones that remain at 60Hz on top of the diagram) and
thereby remain less affected.

The rest of the frequencies decline from 60 Hz to 59.875
Hz in about 9 seconds and settle to a new stable state towards
the end of the transient simulation. As indicated in table 2 and
table 3, the system frequency doesn’t violate any thresholds of

1124 28th USENIX Security Symposium USENIX Association

Figure 10: Frequency Response to 1% System Load Increase.

frequency protections on generators and loads. Notice that we
focus our study in a short time window, since 30 seconds of
transient simulation is enough to display the moving trends of
the frequency in this case. In short, we can see the how the fre-
quency is affected after the attack; however, as long as the bus
frequency converges to a stable level, driving the frequency
back to 60Hz can be accomplished either automatically or
manually over a longer time scale.

Figure 11: Branch Flow after 1% System Load Increase.

In Figure 11, we can see that the power flow of some
branches slightly increases after the attack at second 1. How-
ever, no transmission line is overloaded resulting from the
IoT 1% load increase attack. Note that some branches are ini-
tially overloaded before the simulation and remain unchanged
during the simulation and the overload outage checker is not
activated on those lines under the assumption that protection
in the actual system would not have been activated under
these conditions.

In summary, a 1% load increase attack does not affect our
system and there is no need to activate any protection equip-
ment as the transmission lines remain operating in their nom-
inal values and the frequency of the system does not reach
thresholds to activate any protection.

In contrast to our results, Soltan et al. [47] find that with a
1% increase in load there could be cascading outages in the
summer peak of the Polish grid. We are surprised that a sudden
1% increase in load can lead to cascades in a power system.
The reason for our surprise is the N-1 security criterion.

The N-1 criterion requires that electricity systems be op-
erated to be able to withstand sudden step changes in the
supply-demand balance due to outages of generation. The
NERC disturbance control performance standard [8] requires
any system to be able to withstand “the most severe single
contingency” which may include certain common-model dou-
ble outages. For ERCOT, for example, (the Power Grid of
Texas) this amounts to always having 2700 MW or more of
reserves to cope with a simultaneous outage of nuclear units
having total production of around 2700 MW. To put that in
perspective, peak load in ERCOT is around 70GW, and 1% of
70GW is 700MW, which is much smaller than the 2700MW
of reserves carried in ERCOT to satisfy the N-1 criterion.

While an increase by 700MW in load due to an IoT attack
(and the reaction by generation reserves) would result in some-
what different changes in transmission flows compared to the
effect of a 700MW decrease in generation (and the reaction
by generation reserves), we believe that it is unlikely that an
increase in load of 1% would result in any unacceptably ad-
verse conditions on the transmission system. This is because
load is geographically distributed around the system, so that
it is unlikely for there to be a more than a 1% increase in most
transmission flows, and it is unlikely that the system is oper-
ating such that a 1% increase in current would immediately
trigger the overload protection.

In the Eastern and Western Interconnections of North Amer-
ica, the total load is much larger (several hundred GW) but
even 1% of this would only amount to slightly more than the
double outage of a nuclear unit (plus it would require millions
of compromised IoT devices). To summarize, the results of
the Polish power grid reported by Soltan et al. [47] suggest
that the system being modeled is not N-1 secure.

5.2.2 10% Demand Increase Attack

Ten percent of system load in our case study is equivalent to
8,227.3 MW, which would be equivalent to an adversary con-
trolling over eight million air conditioners. Figure 12 shows
the bus frequency responses after a 10% load increase attack
at 1s and Figure 13 shows the power flow on branches as a
percent of the branch rated capacity.

To better understand the variations of power flow depicted
in Figure 13, let’s first take a look at Figure 12. From Figure
12, we can observe that the bus frequencies plummet after the

USENIX Association 28th USENIX Security Symposium 1125

Figure 12: Frequency Response to 10% System Load In-
crease.

attack begins (1s). The only lines that are not affected are the
few buses that connected our power grid to another region
outside the system with DC tie lines (the frequencies at the
top of the figure).

In contrast to the previous 1% attack, with a 10% demand
increase the power system needs to activate protection algo-
rithms; in particular, 5% UFLS is activated at 3.5 seconds by
shedding 5% of the system load. Again, as long as the bus
frequency converges to a stable level, the differences between
the converged value and its initial value of 60 Hz can be fixed
either automatically or manually over a longer time scale.

Although the under frequency shedding has no deliberate
time delay as indicated in Table 3, a 0.02 second of relay
operation time is included in the simulation. Therefore, the
load shedding occurs 0.02 seconds after the time frequency
falls below the first UFLS threshold of 59.3 Hz.

In Figure 13, we can see that the power flows of some
branches increase after the attack starts (1 sec.). However, the
power flows of those branches drop to or gradually decrease
to roughly their initial values after the under frequency load
shedding protection is activated at 3.5 seconds. Therefore,
at the end of the simulation there is no additional transmis-
sion line overloaded. Note that some branches are initially
overloaded before the simulation and remain unchanged dur-
ing the simulation and so, as in the previous example, the
protection mechanisms for these transmission lines are not
activated.

Even with the assumption of millions of compromised IoT
devices to affect 10% of our load, our results show that the
power grid protections to prevent generators from disconnect-
ing from the system are effective in mitigating any further
problem. The amount of UFLS is intended to reflect ERCOT
standards. The Eastern and Western Interconnections may

Figure 13: Branch Flow after a 10% System Load Increase.

have overall lower levels of UFLS than ERCOT; however,
they have much larger levels of inertia than ERCOT.

5.3 Increase and Decrease Attack

One of the characteristics of IoT attacks, is that they are highly
distributed they are hard to detect. Once the load is compro-
mised, the compromised devices are unlikely to be removed
from the grid (or the Internet) in a short time after they launch
the first attack. Therefore attackers can launch a sequence
of attacks, the first as an attempt to drive the system to a
vulnerable state, and the second to exploit that vulnerability.

In the last attack we saw how under frequency load shed-
ding successfully prevented a cascading failure of transmis-
sion lines from a single 10% load increase attack. However, a
sophisticated attacker can identify when the system frequency
starts rebounding after the initial drop, and can attempt to
make this trend continue by immediately decreasing electric-
ity consumption. This can cause a frequency overshoot that
may trigger the action of over-frequency protection relays
on the generators and disconnect them from the power grid;
creating another cycle of frequency decrease along with new
load shedding etc.

A straightforward approach in this experiment is to increase
the load at the first attack and decrease the same amount of
load at the second attack. However, we investigate a poten-
tially worse scenario where in the second attack, we decrease
by twice the amount of the load increase in the first attack (mi-
nus the percentage of the load that the attacker loses control
of after the under frequency load shedding implementation).

The result in Figure 14 shows that the frequency does over-
shoot after the loads decrease at second 20, however the sys-
tem frequency tends to stabilize at 61.7 Hz, which happens
about 10 seconds later. From Table 2, we can observe that

1126 28th USENIX Security Symposium USENIX Association

Figure 14: Frequency Response to a Cycle of Load Increase
and Decrease

61.7 Hz will not cause an immediate generation trip by the
frequency protections at the generators.

As mentioned in Section 5.2, a 10% system load compro-
mised by the adversary is already a pessimistic assumption.
We take this even further to 20% of the system load in this
simulation to see if the IoT attack can cause a cascading result.
However, we still do not observe an immediate generation
trip after this demand increase and decrease attack in a system
that is intended to reflect ERCOT standards for UFLS.

5.3.1 Under Frequency Load Shedding in a Repeated
IoT Attack

We have explored the results of an attack “cycle” of load
increase and decrease. The adversary could continue repeating
this attack cycle of increasing and reducing the compromised
load as long as their capabilities are not disabled by the load
shedding mechanism.

The under frequency load shedding would disconnect some
amount of demand each time when the IoT attack causes
the frequency drop below any thresholds. Once the load is
disconnected by Under-Frequency Load Shedding (UFLS)
systems, the restoration of shed load is coordinated between
the Independent System Operator (ISO), Transmission Ser-
vice Providers (TSPs) and Distribution Service Providers
(DSPs) [5]. It is fair to assume that such restoration, which
requires coordination between different entities may take a
relatively long time to complete. Therefore, a potential nega-
tive effect of such repeated attacks is that they can deplete the
under frequency load shedding resources before they are re-
stored, which might eventually lead to having no more UFLS
protections against the attacks and will eventually cause a
generator to trip.

The result in Figure 12 shows that although the system

frequency needs additional measures to be brought back to its
initial frequency of 60 Hz, the frequency decline caused by
10% of system load increase can be stopped by only 5% of
system load shedding. In Table 3 we can see that in ERCOT,
25% of the system load is contracted as UFLS. Under this
condition, the adversary needs to apply the attack at least five
times to deplete the UFLS resources. What is more, additional
under-frequency relays may be installed on transmission fa-
cilities with the approval of the ISO provided the relays are
set at 58.0 Hz or below in the real system [5]. That means,
in reality, the adversary may need to apply the attack even
more times to deplete the UFLS and cause a possible system
failure.

Therefore, it may take many cycles of IoT demand increase
and decrease attacks to deplete the UFLS resources, and these
cycles will not only deplete the resources from a defensive
stand point, but also the resources available to the adversary
as each activation of UFLS will remove loads controlled by
the attacker. Therefore, the efficiency, even the feasibility of
the approach of using up the UFLS by such repeated IoT
demand attack remains unclear.

5.4 Bifurcations, and Generator Tripping

5.4.1 30% Load Increase Attack

In Section 5.3, we briefly discussed the potential threats of
generator disconnections caused by over frequency protec-
tions. In this section, we extend this discussion to IoT attacks
that specifically target disturbing frequency and causing gen-
erator disconnections by frequency protection. In order to
observe the response of frequency protection at generators,
we study the impact of a MadIoT attack consisting of a load
increase or decrease by 30%.

In previous work [47], this 30% load change attack was
able to disconnect all generators of the (simplified) North
American Western Interconnection, causing a complete sys-
tem blackout. In our system, a 30% load increase attack would
require the attacker to compromise about 24 million air con-
ditioners.

Figure 15 shows the frequency response of our system
to a MadIoT attack that increases the system load by 30%.
First, we can observe that due to the sudden load increase, the
bus frequencies decline dramatically and some of them drop
quickly below the first UFLS threshold of 59.3 Hz. At this
point 5% of the system load is disconnected by UFLS.

We notice that the frequency in some buses decline at
a slower rate than others and they do not reach any UFLS
thresholds. For convenience, we name this set of buses Group
1. The buses with DC tie lines are again less affected, and
we call this set of buses Group 2. The group of buses whose
frequencies decline faster and drop below UFLS thresholds
are named Group 3. The group names are indicated in Figure
15.

USENIX Association 28th USENIX Security Symposium 1127

Figure 15: Frequency Response to 30% Load Increase.

Notice that, even within a group, the frequency responses
are not exactly the same. Because of the first UFLS action,
the frequency deviation between buses increases. After the
5% load shed, the frequency of Group 1 starts to increase–
potentially this group has more generators in their region—
while the frequency of Group 3 keeps declining–indicating
that this region of the grid has insufficient generation of elec-
trical power.

Shortly afterwards, the frequency of Group 3 declines to
the point where the second and third UFLS thresholds, 58.9Hz
and 58.3Hz, need to be activated (at around 2.6 seconds and
5.6 seconds respectively). An additional 10% of system load
is disconnected in each occasion. The frequency deviation
between Group 1 and Group 3 gets larger after the two UFLSs.
What is more, the frequency deviation between buses in a
group, especially in Group 1, increases after the actions of
UFLS.

After the three activations of UFLSs for group 3, which
disconnect a total 25% of system load, the frequency decline
at Group 3 is stopped. Because there is no additional load
shedding, the frequency at Group 1 stops increasing as well.
Thus, although the bus frequencies have not converged at the
end of the simulation, they stop diverging and there is no need
to activate frequency protections to disconnect generators.

5.4.2 30% Load Decrease Attack

We now study what happens if instead of increasing the load
by 30%, we decrease the load by 30%. In this case we ex-
pect the frequencies in all buses to increase dramatically;
furthermore, because UFLS can only be activated when the
frequency is decreasing, then we know that there are no im-
mediate protections to prevent a generator from disconnecting
from the grid because of its over-frequency protections.

Figure 16: Frequency Response to 30% Load Decrease.

Figure 16 shows the system frequency response to a Ma-
dIoT attack that decreases the system load by 30%. We can
see that the bus frequencies increase after the attack and a few
of them go above the threshold of immediate over frequency
protections at generators, which is 61.8 Hz within 5 seconds.
The over frequency protections then disconnect generators,
resulting in a 25% reduction of system generation. After the
tripping of generators, the bus frequencies reduce and con-
verge to a value close to 60 Hz and no more protection actions
or failures are observed.

Because we model the time in which each generator is
disconnected, we can see that not all of them are disconnected
synchronously, as suggested in prior work, but at different
times, depending on their configuration settings. When some
generators are disconnected, then the frequency drops and is
stabilized by the remaining generators.

Compared to the system frequency response to an IoT
attack that increases the system load, we find that the bus
frequencies react differently to the IoT attack that decreases
the system load. In Figure 16, although the frequencies of
some buses increase faster than those in some other buses,
the frequencies gradually converge after 25% of the system
generation is tripped. One of the conclusions we can draw
from this comparison is that a quick protection reaction in big
scales like the generation tripping in Figure 16 performs better
than the gradual protection actions like the load shedding in
Figure 15 in terms of the system frequency restoration.

We also find that the tripped generations in this simulation
consist of a significant amount of wind generation. The ben-
efit of disconnecting the wind generation or any generation
that doesn’t provide inertia in this condition is that the system
loses less inertia after the over frequency protection action.
Therefore, the system doesn’t become weaker in terms of

1128 28th USENIX Security Symposium USENIX Association

maintaining frequency stability. This phenomenon suggests
that generation that doesn’t provide inertia could be included
in the over frequency protection to protect the system against
any following attacks targeted at disturbing the system fre-
quency after an IoT attack.

6 Limitations

Our results also assume that all grid operators satisfy the N-1
security criterion. This is the general practice and should be
expected as operators can get massive fines if they are found
to be in violation of this criterion. Having said that, some
blackouts have occurred because operators believe they are
satisfying the N-1 criterion but a misconfigured protection
device that should have been activated during an event was
not activated, and this created an unanticipated N-2 event that
initiated a cascading failure. As discussed in our summary
of related work on cascading analysis, stochastic models can
complement our approach by establishing the risk or like-
lihood that one of our protection devices does not work as
expected and causes a series of cascading events.

We believe the type of protections considered in this study
is the subset of the protections in power systems that would
contribute to a cascading outage the most after a disturbance
in the system. However, future work can be done to ex-
plore the impacts from other protections that are commonly
equipped in the power systems e.g. differential and distance
protections on buses [31]. In addition, in this study, we con-
sidered only an IoT demand attack that is evenly distributed
across all the load points in the system. However, in future
work, we will consider how feasible it is to compromise a
large-scale set of high wattage IoT devices in a specific geo-
graphical area such that that target only a part of the system.

7 Related Work

The importance of stronger cyber security requirements in
SCADA systems is highlighted by recent experiences in
Ukraine. On December 23rd 2015, a third party illegally
accessed the computer and Supervisory Control and Data
Acquisition (SCADA) systems of three regional electricity
distribution companies in Ukraine. Investigations revealed
that a malware named BlackEnergy had infected the SCADA
systems after successful spear phishing attacks. Seven 110
kV and twenty-three 35 kV substations were disconnected
for three hours resulting in several outages that caused ap-
proximately 225,000 customers to lose power across various
areas [19]. The following year, on December 17th 2016, a
second power outage occurred in Ukraine and deprived part
of its capital, Kiev, of power for over an hour. An assessment
was made that a more advanced form of malware called “In-
dustroyer”, was used in the second cyber attack against the
power grid in Ukraine [23].

While both security researchers and industry practitioners
have worked on the security of the power grid for a decade,
their focus has been on understanding and preventing attacks
to devices in the bulk of the power grid [7, 17, 38, 48, 51],
i.e., the components controlling the operation of the electrical
transmission system in large geographical areas and the Su-
pervisory Control and Data Acquisitions (SCADA) systems.

While in the U.S. the bulk power system is regulated to
maintain a minimal set of cybersecurity standards [7], there
is a growing push to start improving the security of systems
in the distribution network. On October 19th 2017, the Fed-
eral Energy Regulatory Commission (FERC) proposed new
mandatory cybersecurity controls to address the risk posed by,
for example, smaller grid control centers that are typically less
critical than major control centers, but which are nonetheless
vulnerable to attacks [9].

Load-altering attacks have been previously studied in
demand-response systems [12, 16, 21, 30, 42, 50]. Demand-
response programs provide a new mechanism for control-
ling the demand of electricity to improve power grid stability
and energy efficiency. In their basic form, demand-response
programs provide incentives (e.g., via dynamic pricing) for
consumers to reduce electricity consumption during peak
hours. Currently, these programs are mostly used by large
commercial consumers and government agencies managing
large campuses and buildings, and their operation is based on
informal incentive signals via as phone calls by the utility or
by the demand-response provider (e.g., a company such as
Enel X) asking the consumer to lower their energy consump-
tion during the peak times. As these programs become more
widespread (targetting residential consumers) and automated
(giving utilities or demand-response companies the ability
to directly control the load of their customers remotely) the
attack surface for load altering attacks will increase.

8 Conclusions

This paper presents a study of the impacts of IoT demand
attacks on power systems using the cascading outage analysis
in a North American Regional Interconnection System.

From the simulation results, we show that, 1% of load
increase attack does not interrupt any generator, load, or trans-
mission line in the system. We also find that, thanks to under
frequency load shedding protections, a 10% of sudden IoT
load increase does not cause a cascading failure on the trans-
mission lines.

A “frequency swing attack” is defined as a cycle of load
increase and decrease attacks with the aim to push the fre-
quency outside the safety limits of the generators. However,
the frequency swing attack doesn’t show an ability to cause
an immediate disconnection of generators. We also discussed
a possible repeated frequency swing attack and the potential
impact of depleting the UFLS resources. Our analysis shows
that the effectiveness of such attack would be impacted by

USENIX Association 28th USENIX Security Symposium 1129

any additional frequency protection measures in the system,
and by the diminishing resources that the adversary would
have to continue the attacks.

We also considered high-impact attacks with control of
30% of the system load. The simulation results show that
under a sudden IoT attack increasing 30% of the system de-
mand, load shedding by UFLS would split the frequencies
of the buses into islands of different operating regions of the
grid. In contrast, a 30% decrease of the load would cause the
frequency of the system to increase above the thresholds for
over-frequency protections, and will result in the disconnec-
tion of some (but not all) generators. Our results show that the
actions of UFLS and over frequency protection are sufficient
to prevent an immediate system failure over a short time after
the attack. Additional actions may be needed over a longer
time scale to restore the stable operation of the system, but
the main point is that a system blackout will likely not occur
in this situation. In addition, we discover that including gen-
erations that are not providing inertia in the over-frequency
protections would benefit the system in case of following IoT
attacks targeted at disturbing the system frequency.

Our results show a different perspective on the risks of IoT
attacks to the power grid and will hopefully serve as a starting
point for new discussions to assess this threat. We show that
while immediate cascading failures or a total system blackout
will be very hard to achieve, the power system will still suffer
negative consequences. First, UFLS will disconnect various
consumers from the power grid. This is done to prevent further
damage to the grid, but several consumers will be affected.
Second, our attacks show that with millions of high-energy
IoT devices, the attacker can potentially cause a bifurcation of
the frequency in the power grid, forcing the grid to operated
as separate islands and driving it to a more vulnerable state.

Acknowledgments

This work is supported by NSF CRISP awards CMMI-
1541159 and CMMI-1925524, by a grant from the University
of Texas National Security Network, and by a Defense Threat
Reduction Agency award HDTRA1-14-1-0021.

References

[1] NERC Standard PRC-023-4. https://www.nerc.
com/pa/Stand/Reliability%20Standards/
PRC-023-4.pdf, 2015.

[2] Time over/under voltage relay and protection assemblies
model rxedk 2h and raedk user manual. www.abb.com/
product/us/9AAC30405217.aspx, ABB Inc, 2004.

[3] 2018 regional transmission plan scope and pro-
cess. http://www.ercot.com/content/wcm/key_

documents_lists/108892/2018_RTP_Scope_and_
Process_draft_clean.pdf, Accessed, 2018.

[4] Powerworld simulator 20. https://www.powerworld.
com/, Accessed, 2019.

[5] ERCOT nodal operating guides section 2
system operations and control requirements.
www.ercot.com/content/wcm/current_guides/
53525/02_030116.doc, ERCOT, 2016.

[6] ERCOT nodal operating guides section 4 emergency
operations. http://www.ercot.com/content/wcm/
libraries/147359/February_1__2018_Nodal_
Operating_Guide.pdf, ERCOT, 2018.

[7] Cyber risk preparedness assessment table-top exercise
2012 report. May, 2013.

[8] NERC Standard BAL-002-1a. https://www.nerc.
com/files/bal-002-1a.pdf, NERC, 2012.

[9] FERC sets rules to protect grid from malware spread
through laptops. Washington Examiner, October,2017.

[10] Siprotec 5 distance protection and line differential pro-
tection and overcurrent protection for 3-pole tripping
7sa84, 7sd84, 7sa86, 7sd86, 7sl86, 7sj86 technical data.
www.energy.siemens.com, Siemens AG, 2012.

[11] Omar Alrawi, Chaz Lever, Manos Antonakakis, and
Fabian Monrose. Sok: Security evaluation of home-
based iot deployments. In SoK: Security Evaluation of
Home-Based IoT Deployments, page 0. IEEE.

[12] Sajjad Amini, Fabio Pasqualetti, and Hamed Mohsenian-
Rad. Dynamic load altering attacks against power sys-
tem stability: Attack models and protection schemes.
IEEE Transactions on Smart Grid, 9(4):2862–2872,
2018.

[13] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In
USENIX Security Symposium, pages 1092–1110, 2017.

[14] Ross Baldick, Badrul Chowdhury, Ian Dobson,
Zhaoyang Dong, Bei Gou, David Hawkins, Henry
Huang, Manho Joung, Daniel Kirschen, Fangxing Li,
et al. Initial review of methods for cascading failure
analysis in electric power transmission systems ieee pes
cams task force on understanding, prediction, mitigation
and restoration of cascading failures. In 2008 IEEE
Power and Energy Society General Meeting-Conversion
and Delivery of Electrical Energy in the 21st Century,
pages 1–8. IEEE, 2008.

1130 28th USENIX Security Symposium USENIX Association

https://www.nerc.com/pa/Stand/Reliability%20Standards/PRC-023-4.pdf
https://www.nerc.com/pa/Stand/Reliability%20Standards/PRC-023-4.pdf
https://www.nerc.com/pa/Stand/Reliability%20Standards/PRC-023-4.pdf
www.abb.com/product/us/9AAC30405217.aspx
www.abb.com/product/us/9AAC30405217.aspx
http://www.ercot.com/content/wcm/key_documents_lists/108892/2018_RTP_Scope_and_Process_draft_clean.pdf
http://www.ercot.com/content/wcm/key_documents_lists/108892/2018_RTP_Scope_and_Process_draft_clean.pdf
http://www.ercot.com/content/wcm/key_documents_lists/108892/2018_RTP_Scope_and_Process_draft_clean.pdf
https://www.powerworld.com/
https://www.powerworld.com/
www.ercot.com/content/wcm/current_guides/53525/02_030116.doc
www.ercot.com/content/wcm/current_guides/53525/02_030116.doc
http://www.ercot.com/content/wcm/libraries/147359/February_1__2018_Nodal_Operating_Guide.pdf
http://www.ercot.com/content/wcm/libraries/147359/February_1__2018_Nodal_Operating_Guide.pdf
http://www.ercot.com/content/wcm/libraries/147359/February_1__2018_Nodal_Operating_Guide.pdf
https://www.nerc.com/files/bal-002-1a.pdf
https://www.nerc.com/files/bal-002-1a.pdf
www.energy.siemens.com

[15] Ross Baldick, Badrul Chowdhury, Ian Dobson,
Zhaoyang Dong, Bei Gou, David Hawkins, Zhenyu
Huang, Manho Joung, Janghoon Kim, Daniel Kirschen,
et al. Vulnerability assessment for cascading failures
in electric power systems. In 2009 IEEE/PES Power
Systems Conference and Exposition, pages 1–9. IEEE,
2009.

[16] Carlos Barreto, Alvaro A Cárdenas, Nicanor Quijano,
and Eduardo Mojica-Nava. Cps: Market analysis of
attacks against demand response in the smart grid. In
Proceedings of the 30th Annual Computer Security Ap-
plications Conference, pages 136–145. ACM, 2014.

[17] Carlos Barreto, Jairo Giraldo, Alvaro A Cardenas, Ed-
uardo Mojica-Nava, and Nicanor Quijano. Control sys-
tems for the power grid and their resiliency to attacks.
IEEE Security & Privacy, 12(6):15–23, 2014.

[18] Benjamin A Carreras, Vickie E Lynch, Ian Dobson, and
David E Newman. Critical points and transitions in an
electric power transmission model for cascading fail-
ure blackouts. Chaos: An interdisciplinary journal of
nonlinear science, 12(4):985–994, 2002.

[19] Defense Use Case. Analysis of the cyber attack on the
ukrainian power grid. Electricity Information Sharing
and Analysis Center (E-ISAC), 2016.

[20] Hale Cetinay, Saleh Soltan, Fernando A Kuipers, Gil
Zussman, and Piet Van Mieghem. Analyzing cascading
failures in power grids under the ac and dc power flow
models. SIGMETRICS Performance Evaluation Review,
45(3):198–203, 2017.

[21] Bo Chen, Nishant Pattanaik, Ana Goulart, Karen L
Butler-Purry, and Deepa Kundur. Implementing attacks
for modbus/tcp protocol in a real-time cyber physical
system test bed. In Communications Quality and Relia-
bility (CQR), 2015 IEEE International Workshop Tech-
nical Committee on, pages 1–6. IEEE, 2015.

[22] Jie Chen, James S Thorp, and Ian Dobson. Cascad-
ing dynamics and mitigation assessment in power sys-
tem disturbances via a hidden failure model. Interna-
tional Journal of Electrical Power & Energy Systems,
27(4):318–326, 2005.

[23] Anton Cherepanov. Win32/industroyer, a new threat for
industrial control systems. White paper, ESET (June
2017), 2017.

[24] Adrian Dabrowski, Johanna Ullrich, and Edgar R
Weippl. Grid shock: Coordinated load-changing attacks
on power grids: The non-smart power grid is vulnerable
to cyber attacks as well. In Proceedings of the 33rd An-
nual Computer Security Applications Conference, pages
303–314. ACM, 2017.

[25] Tamara Denning, Tadayoshi Kohno, and Henry M Levy.
Computer security and the modern home. Communica-
tions of the ACM, 56(1):94–103, 2013.

[26] I. Dobson. Estimating the extent of cascading trans-
mission line outages using standard utility data and a
branching process. In 2011 IEEE Power and Energy
Society General Meeting, pages 1–3, July 2011.

[27] Margaret J Eppstein and Paul DH Hines. A “random
chemistry” algorithm for identifying collections of mul-
tiple contingencies that initiate cascading failure. IEEE
Transactions on Power Systems, 27(3):1698–1705, 2012.

[28] D. Fabozzi and T. Van Cutsem. Simplified time-domain
simulation of detailed long-term dynamic models. In
2009 IEEE Power Energy Society General Meeting,
pages 1–8, July 2009.

[29] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash.
Security analysis of emerging smart home applications.
In 2016 IEEE Symposium on Security and Privacy (SP),
pages 636–654. IEEE, 2016.

[30] Jairo Giraldo, Alvaro Cárdenas, and Nicanor Quijano.
Integrity attacks on real-time pricing in smart grids:
impact and countermeasures. IEEE Transactions on
Smart Grid, 8(5):2249–2257, 2016.

[31] J Duncan Glover, Mulukutla S Sarma, and Thomas Over-
bye. Power System Analysis & Design, SI Version. Cen-
gage Learning, 2012.

[32] R. C. Hardiman, M. Kumbale, and Y. V. Makarov. Mul-
tiscenario cascading failure analysis using trelss. In CI-
GRE/IEEE PES International Symposium Quality and
Security of Electric Power Delivery Systems, 2003. CI-
GRE/PES 2003., pages 176–180, Oct 2003.

[33] Bing Huang, Mohammad Majidi, and Ross Baldick.
Case study of power system cyber attack using cascad-
ing outage analysis model. IEEE PES GM, Portland
OR, 2018.

[34] S. K. Khaitan, Chuan Fu, and J. McCalley. Fast paral-
lelized algorithms for on-line extended-term dynamic
cascading analysis. In 2009 IEEE/PES Power Systems
Conference and Exposition, pages 1–7, March 2009.

[35] Daniel S Kirschen, Dilan Jayaweera, Dusko P Nedic,
and Ron N Allan. A probabilistic indicator of sys-
tem stress. IEEE Transactions on Power Systems,
19(3):1650–1657, 2004.

[36] Prabha Kundur, Neal J Balu, and Mark G Lauby. Power
system stability and control, volume 7. McGraw-hill
New York, 1994.

USENIX Association 28th USENIX Security Symposium 1131

[37] Prabha Kundur, John Paserba, Venkat Ajjarapu, Göran
Andersson, Anjan Bose, Claudio Canizares, Nikos
Hatziargyriou, David Hill, Alex Stankovic, Carson Tay-
lor, et al. Definition and classification of power sys-
tem stability. IEEE transactions on Power Systems,
19(2):1387–1401, 2004.

[38] Yao Liu, Peng Ning, and Michael K. Reiter. False
data injection attacks against state estimation in electric
power grids. In Proceedings of the 16th ACM Confer-
ence on Computer and Communications Security, CCS
’09, pages 21–32, New York, NY, USA, 2009. ACM.

[39] F. Xia M. Kumbale, T. Rusodimos and R. adapa. Trelss:
A computer program for transmission reliability evalua-
tion of large-scale systems. User’s Referecne Manual,
2, 1997.

[40] Hong Tao Ma and Badrul H Chowdhury. Dynamic sim-
ulations of cascading failures. In 2006 38th North Amer-
ican Power Symposium, pages 619–623. IEEE, 2006.

[41] Shengwei Mei, Yixin Ni, Gang Wang, and Shengyu Wu.
A study of self-organized criticality of power system
under cascading failures based on ac-opf with voltage
stability margin. IEEE Transactions on Power Systems,
23(4):1719–1726, 2008.

[42] Amir-Hamed Mohsenian-Rad and Alberto Leon-Garcia.
Distributed internet-based load altering attacks against
smart power grids. IEEE Transactions on Smart Grid,
2(4):667–674, 2011.

[43] Muhammad Naveed, Xiao-yong Zhou, Soteris
Demetriou, XiaoFeng Wang, and Carl A Gunter. Inside
job: Understanding and mitigating the threat of external
device mis-binding on android. In NDSS, 2014.

[44] Milorad Papic, Keith Bell, Yousu Chen, Ian Dobson,
Louis Fonte, Enamul Haq, Paul Hines, Daniel Kirschen,
Xiaochuan Luo, Stephen S Miller, et al. Survey of tools
for risk assessment of cascading outages. In 2011 IEEE
Power and Energy Society General Meeting, pages 1–9.
IEEE, 2011.

[45] M. Rahnamay-Naeini, Z. Wang, N. Ghani, A. Mammoli,
and M. M. Hayat. Stochastic analysis of cascading-
failure dynamics in power grids. IEEE Transactions on
Power Systems, 29(4):1767–1779, July 2014.

[46] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin
O’Flynn. Iot goes nuclear: Creating a zigbee chain reac-
tion. In Security and Privacy (SP), 2017 IEEE Sympo-
sium on, pages 195–212. IEEE, 2017.

[47] Saleh Soltan, Prateek Mittal, and H Vincent Poor. Black-
iot: Iot botnet of high wattage devices can disrupt the
power grid. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 15–32, 2018.

[48] Siddharth Sridhar, Adam Hahn, and Manimaran Govin-
darasu. Cyber–physical system security for the electric
power grid. Proceedings of the IEEE, 100(1):210–224,
2011.

[49] Nassim Nicholas Taleb. The black swan: The impact of
the highly improbable, volume 2. Random house, 2007.

[50] Rui Tan, Varun Badrinath Krishna, David KY Yau, and
Zbigniew Kalbarczyk. Impact of integrity attacks on
real-time pricing in smart grids. In Proceedings of the
2013 ACM SIGSAC conference on Computer & commu-
nications security, pages 439–450. ACM, 2013.

[51] Chee-Wooi Ten, Chen-Ching Liu, and Govindarasu
Manimaran. Vulnerability assessment of cybersecu-
rity for scada systems. IEEE Transactions on Power
Systems, 23(4):1836–1846, 2008.

[52] Marianna Vaiman, Keith Bell, Yousu Chen, Badrul
Chowdhury, Ian Dobson, Paul Hines, Milorad Papic,
Stephen Miller, and Pei Zhang. Risk assessment of cas-
cading outages: Methodologies and challenges. IEEE
Transactions on Power Systems, 27(2):631, 2012.

[53] Yezhou Wang and Ross Baldick. Cascading outage
analysis using sequential outage checkers. Modeling,
Simulation, And Optimization for the 21st Century Elec-
tric Power Grid, 2013.

[54] Yezhou Wang and Ross Baldick. Case study of an im-
proved cascading outage analysis model using outage
checkers. In Power and Energy Society General Meeting
(PES), 2013 IEEE, pages 1–5. IEEE, 2013.

[55] Yezhou Wang and Ross Baldick. Interdiction analysis of
electric grids combining cascading outage and medium-
term impacts. IEEE Transactions on Power Systems,
29(5):2160–2168, 2014.

[56] Yezhou Wang, Chen Chen, Jianhui Wang, and Ross
Baldick. Research on resilience of power systems un-
der natural disasters—a review. IEEE Transactions on
Power Systems, 31(2):1604–1613, 2015.

[57] Jun Yan, Yufei Tang, Haibo He, and Yan Sun. Cascading
failure analysis with dc power flow model and transient
stability analysis. IEEE Transactions on Power Systems,
30(1):285–297, 2015.

1132 28th USENIX Security Symposium USENIX Association

Discovering and Understanding the Security Hazards in the Interactions between
IoT Devices, Mobile Apps, and Clouds on Smart Home Platforms

Wei Zhou1, Yan Jia2,1, Yao Yao2,1, Lipeng Zhu2,1,
Le Guan3, Yuhang Mao2,1, Peng Liu4 and Yuqing Zhang1,2,5∗

1National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China
2School of Cyber Engineering, Xidian University, China

3Department of Computer Science, University of Georgia, USA
4College of Information Sciences and Technology, The Pennsylvania State University, USA

5State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, China

Abstract
A smart home connects tens of home devices to the Inter-
net, where an IoT cloud runs various home automation ap-
plications. While bringing unprecedented convenience and
accessibility, it also introduces various security hazards to
users. Prior research studied smart home security from sev-
eral aspects. However, we found that the complexity of the
interactions among the participating entities (i.e., devices,
IoT clouds, and mobile apps) has not yet been systematically
investigated. In this work, we conducted an in-depth analy-
sis of five widely-used smart home platforms. Combining
firmware analysis, network traffic interception, and black-
box testing, we reverse-engineered the details of the interac-
tions among the participating entities. Based on the details,
we inferred three legitimate state transition diagrams for the
three entities, respectively. Using these state machines as a
reference model, we identified a set of unexpected state tran-
sitions. To confirm and trigger the unexpected state transi-
tions, we implemented a set of phantom devices to mimic a
real device. By instructing the phantom devices to intervene
in the normal entity-entity interactions, we have discovered
several new vulnerabilities and a spectrum of attacks against
real-world smart home platforms.

1 Introduction
With the development of the Internet of Things (IoT), smart
home technology has become widely used in many applica-
tions including safety and security [33], home appliances [5],
home healthcare [13], etc. According to Statista research,
more than 45 million smart home devices were installed in
2018, and the annual growth rate of home automation is
22% [51]. To manage the ever-increasing number of diverse
smart home devices in a consolidated way, many companies
have proposed their smart home platforms (e.g., Samsung
SmartThings [52]). With IoT clouds playing a central role in
building smart homes, real-world smart home platforms es-
sentially engage three (kinds of) entities that interact with
∗Corresponding author: zhangyq@nipc.org.cn

each other: an IoT cloud, smart home devices and a mo-
bile app. Briefly speaking, the mobile app provides users
with an interface to facilitate the initial setup of devices in-
cluding WiFi provision. After getting Internet access, each
device negotiates its login credential(s) with the IoT cloud.
In this way, it can build a connection with the IoT cloud to
routinely report its status and execute the received remote
control commands, which are usually generated by certain
home automation applications running in the IoT cloud. At
the same time, the mobile app is able to monitor and control
each device through the IoT cloud.

While bringing substantial convenience to our lives, smart
home technology also introduces potential security hazards.
Since smart home devices directly process user-generated
data, once compromised, they could introduce serious conse-
quences. For example, user privacy can be harmed [28, 42];
property can be destructed [22, 38]; life safety and psycho-
logical health are also threatened [26, 54]. Imagine a smart
home which is programmed in such a way that whenever the
home temperature rises to a given threshold, the windows
will be automatically opened. If an attacker obtains access
to a smart heater, he could easily break into the home by
keeping the heater at the highest temperature [21].

Although an increasing number of research studies have
focused on smart home security, we found that existing re-
search on the insecurity of interactions (e.g. inter-operations)
in smart home platforms is still quite limited. First, the exist-
ing studies usually focus on individual parts of smart home
platforms. For instance, there are studies disclosing the se-
curity problems with device firmware [44, 41, 28], commu-
nication protocols [14, 50, 27], and home automation appli-
cations [23, 40, 16]. Focusing on individual parts, the re-
vealed vulnerabilities have little to do with the interactions
among the three entities engaged in a smart home platform.
Second, the existing studies seem to pay most attention to
classic security issues such as privacy protection [24, 57],
authentication [44, 41] and permission models [25, 23, 40],
and leave the potential risks of the entity-entity interactions
largely uninvestigated.

USENIX Association 28th USENIX Security Symposium 1133

Third, one kind of interaction in the Samsung Smart-
Things platform has recently been studied in [17, 16], find-
ing that the interaction between multiple home automation
applications (i.e. IoT apps) can lead to unsafe device states.
While this finding is inspiring, other essential kinds of in-
teractions in smart home platforms have not yet been (sys-
tematically) studied in the literature. In this paper, when
we use the word “interactions”, we are specifically referring
to the inter-operations involved among the aforementioned
three entities, with a focus on high-level pairing of devices,
handshaking between IoT clouds and devices, etc.

To systematically discover and understand the security
hazards in the interactions involved in smart home plat-
forms, we have analyzed several widely-used smart home
platforms and conducted the following investigations in this
work. First, because all the communications among the
three entities are encrypted, we combined several tech-
niques including firmware reverse-engineering and man-in-
the-middle (MITM) monitoring (to break SSL) to work out
the details of the interactions among the three entities. Sec-
ond, based on the interactions among the three entities, we
inferred three legitimate state transition diagrams for the
three entities, respectively. Using the inferred state machines
as a reference model, we identified unexpected state transi-
tions in several widely-used smart home platforms. Finally,
to confirm and trigger unexpected state transitions, we im-
plemented a phantom device that mimics a real device. A
phantom device is essentially a computer program. By in-
structing the phantom device to intervene in the normal in-
teractions among legitimate smart home devices, IoT clouds,
and a mobile app, we have identified several new vulnerabil-
ities and attacks in major smart home platforms.

In summary, the main contributions are as follows:

New insights are provided: (a) Real-world smart home
platforms do not strictly guard the validity of the involved
state transitions. For example, we found that an IoT cloud
can accept some device requests without checking whether
such a request should be allowed or not in its current state.
(b) The three entities can sometimes stay in unexpected state
combinations, which brings potential risk. (c) IoT clouds
do not always perform adequate authorization checks on in-
teraction requests. We found that an IoT cloud sometimes
simply accepts and executes sensitive device-side commands
without any permission checking. (d) By carefully construct-
ing attacks that exploit a particular combination of the above
security flaws, we showed that serious new security hazards
can occur. This new finding proves that high risk attacks are
rarely caused by a single factor. Accordingly, stake holders
should conduct integrated insecurity analysis on interactions
among the three entities.

New hazards are discovered: (a) An adversary can re-
motely replace a victim’s real device with a non-existing
phantom device under his control. As a result, all the con-

trol commands from the victim user are exposed to the phan-
tom device and further to the adversary, leading to privacy
breaches. The adversary can also leverage the phantom de-
vice to manipulate the data to be sent to the victim user, thus
deceiving or misleading the victim user. (b) An adversary
can remotely take over a device. As a result, he can harvest
the sensor readings to monitor the victim’s home or even
manipulate the smart home devices, causing data breaches
and endangering the victim. (c) An adversary can remotely
unbind an authorised user through a phantom device. As a
result, the user can no longer control the device with his ac-
count. (d) An adversary can leverage a phantom device to
mislead an IoT cloud and occupy the identity of a real device
before the device is sold. When a consumer buys the device,
he cannot bind the device with his account. (e) An adversary
can utilize a phantom device to automatically send update re-
quests to an IoT cloud to steal various proprietary firmware
on a large scale.

The newly discovered hazards have significantly enlarged
the previously-known attack surface of smart home plat-
forms; they also provide essential new understandings about
the security and privacy hazards in smart homes.

Responsible Disclosure. All the vulnerabilities described
in this paper have been reported to the corresponding ven-
dors, and they have confirmed our disclosures. We have
shared the technical details with the vendors. And most of
the vulnerabilities have been fixed by them.

2 Background

2.1 Terminology

To make the presentation more clear, we first define several
key terminologies.

Device ID. The Device ID of an IoT device uniquely identi-
fies the device. Since device IDs are used to authenticate a
device, they should be kept secret at all time. The attacks dis-
covered in this study create fake IoT devices by occupying
the device ID of a real victim device.

Identity Information. By “identity information,” we mean
the information items whose values are used to generate (i.e.
calculate) a device ID. A typical use case of identity infor-
mation is as follows: a device first provides the IoT cloud
it belongs to with its identity information, then the cloud
generates and returns the corresponding device ID to the de-
vice. Frequently used identity information includes MAC
address and device model. Since device IDs should be kept
secret, identity information should also be kept secret. Un-
fortunately, we found that this rarely holds in practice and
attackers can easily obtain device identity information.

Legitimacy Information. By “legitimacy information,” we
mean the information items whose values are used to conduct
certain legitimacy checking of a device, but are not used to

1134 28th USENIX Security Symposium USENIX Association

Hub/
Gateway

Mobile
App

IoT
Cloud

Home
Automation

Device
Control

Device Identify
Management

Hub-connected
Devices

Cloud-connected
Devices

Figure 1: Smart Home Platform Architecture

generate any device IDs. We found that such information can
also be easily acquired by hackers.

Phantom Devices. A phantom device is used by us to ana-
lyze the smart home interactions and to launch attacks. It is
essentially a computer program that is instructed to intervene
in the normal interactions among legitimate smart home de-
vices, IoT clouds, and mobile apps.

2.2 Overview of Smart Home Platforms
The architecture shown in Figure 1 is widely adopted by ma-
jor cloud-based smart home platforms. There are three key
entities interacting with each other on a smart home plat-
form: the IoT devices, the mobile app, and the IoT cloud.

The IoT cloud is the brain of a smart home platform. It
is usually responsible for three kinds of services, denoted
as Device Identify Management, Device Control, and Home
Automation as shown in Figure 1. First, in order to ensure
that only the device owner and delegated users have access
to a device, the device identify management service needs to
maintain a one-to-one mapping between the owner’s account
and the device. This binding happens at the time when the
device is firstly deployed. As soon as the device is unde-
ployed, the binding relationship should be revoked. Second,
in order to allow authorized users to remotely control a de-
vice, the device control service serves as a “proxy” when
users send remote commands to the device. Lastly, most
smart home platforms provide home automation services, in
which users can customize automation rules that define the
interoperability behaviors of smart home devices. For exam-
ple, a home owner can craft an automation rule that turns
on the air conditioner if the indoor temperature goes above
70◦F. When a thermometer detects that the temperature ex-
ceeds the specified threshold, it sends the event to an in-cloud
home automation application, which then sends a command
to turn on the air conditioner.

The second type of entities in a smart home platform are
IoT devices. IoT devices are equipped with embedded sen-
sors and actuators that interact with the physical world and
send sensor readings to an IoT cloud. There are two typi-
cal mechanisms for devices to connect to an IoT cloud. (a)

Table 1: Two Types of Smart Home Platforms and Their Dif-
ferences

Platform Device Registration Device Binding/Unbinding

Type I Platform Alink, Joylink
Device ID

Generated by Cloud
Authorization Checking

Performed by Cloud

Type II Platform SmartThings
KASA, MIJIA Skipped

Authorization Checking
Performed by Device

WiFi-enabled devices can connect to the Internet and thus
directly communicate with the IoT cloud. We call these
devices cloud-connected devices. (b) Energy-economic de-
vices are not equipped with a WiFi interface to directly inter-
act with the IoT cloud. Instead, they first connect to a hub/-
gateway using energy-efficient protocols such as Z-Wave and
ZigBee. Then the hub connects to the IoT cloud on behalf of
the IoT devices. We call the devices connected to a hub as
hub-connected devices. It is worth noting that the hub itself
is one kind of cloud-connected device. Some platforms sup-
port both cloud-connected and hub-connected devices, while
some only support one kind. The third kind of entities on a
smart home platform are mobile apps. They provide users
with an interface for device management (e.g., binding a de-
vice with its owner’s account) and customization of the in-
cloud home automation services.

Deployment. To standardize and simplify the deployment
of IoT services, smart home platform providers often pro-
vide collaborating partners with software development kits
(SDKs). With SDKs, the adopting manufacturers only need
to focus on device-specific initialization procedures and core
application logic. Features such as over-the-air (OTA) up-
date are also integrated in the SDKs.

2.3 Overview of the Interactions on Smart
Home Platforms

In this section, we depict the interactions among the three
entities during the life-cycle of a smart home device from
the viewpoint of a consumer (rather than a manufacturer,
supplier or retailer). To make the description more clear,
the description focuses on cloud-connected devices. Hub-
connected devices follow a similar model except that they
use a hub as an intermediate node.

Type I vs. Type II: Depending on how the device ID of
a device is generated, we classify the smart home platforms
investigated in this work into two types. How a device ID
is generated further influences device registration and device
binding/unbinding. In Table 1, we list the investigated plat-
forms for each type and the key differences between the two
types. These differences lead to different attack precondi-
tions in attacking a smart home platform.

In the following, we try to abstract an interaction model
for Type I and Type II smart home platforms. When there is
a difference between the two types, we also explicitly report
it. In Appendix C, the complete interaction diagrams for all

USENIX Association 28th USENIX Security Symposium 1135

1.Waiting for
Device

Registration

4.Running
3.Waiting for
Device Login

2.Waiting for
Binding

 Cloud receives device registration.

 Cloud receives binding request from
 app or device.

 Cloud receives unbinding request
 from app or device.

 Cloud receives device login request.

 Device disconnects with cloud.

 Device uploads its status to cloud.

States Description

Waiting for
Device

Registration

The cloud is in the initial state and
waits for device registration request.

Waiting for
Binding

The cloud waits for binding request
from the mobile app or device.

Waiting for
Device Login

After binding the device with user,
the cloud waits for device login
request.

Running
The cloud handles user’s requests
and syncs the device status.

(a) State Machine of an IoT Cloud

1.Waiting for
WiFi

Connection

4.Running
3.Waiting for
Connection

2.Waiting for
Device ID/

Binding

 App sends WiFi credential to device.

 Cloud replies with the device ID.

 Cloud accepts device binding request.

 Cloud accepts device login request.

 Cloud loses connection with device.

 User pushes the reset button.

 Cloud sends control commands to
 device.

States Description

Waiting for
WiFi

Connection

The device waits for discovery
message and WiFi credential from
app.

Waiting for
Device ID/

Binding

The device sends register request/
binding request to the cloud, and
waits for cloud response.

Waiting for
Connection

Device keeps sending login request
to get connection from cloud.

Running
Device keeps a connection with
cloud and waits for new commands.

(b) State Machine of a Device

1.Searching
for Device

4.Running
3.Waiting for
Device Online

2. Waiting for
Binding

 Device replies with its basic information.

 Cloud binds the device with user.

 Cloud synchronizes device login status.

 Cloud synchronizes device disconnect
 status.

 Cloud revokes the binding relationship
 between device and user.

 Cloud synchronizes device status.

States Description

Searching for
Device

The mobile app keeps broadcasting
discovery message to search for
available device.

Waiting for
Binding

The mobile app sends binding
request to cloud or device, and
waits for binding confirmation.

Waiting for
Device Online

The mobile app waits for cloud to
build connection with device.

Running
After device logs into the cloud, the
mobile app receives user's
instructions to the device via UI.

(c) State Machine of a Mobile App

Note: The states and transitions specific to Type I platforms are shown in red; the states and transitions specific to Type II platforms are shown in blue; and the
shared states/transitions are in black.

Figure 2: High-Level State Machines of the Three Entities

the studied platforms are given.

1. Device Discovery: The life-cycle of a newly bought smart
home device starts with device discovery. After the home
owner (i.e. the customer) clicks the “Add Device” button
on the designated mobile app, the app establishes a local
connection with the device through broadcasting a discov-
ery message or through the device’s access point. Then, the
device reports its basic information, such as its MAC address
and device model, to the mobile app.

2. WiFi Provisioning: To access the Internet, the IoT device
needs to join the same LAN as the mobile app. To obtain
WiFi credentials, there are several mechanisms such as Ac-
cess Point Mode [18], WiFi direct [4] and SmartConfig [29].

3. Device Registration: After device registration, the IoT
device is given a unique device ID. Different types of plat-
forms provide device IDs in different ways. For Type I plat-
forms, the device sends its device identity information to the
IoT cloud it belongs to. The cloud then generates a device
ID and returns it to the device. The device then writes the
device ID to its persistent storage. The cloud also keeps a
record of the device ID for future authentication. For Type II
platforms, the device’s device ID is generated by the device’s
platform beforehand and hard-coded into the device during
fabrication. Therefore, device registration is skipped.

4. Device Binding: The IoT cloud binds the device’s device
ID with the user account of the home owner. As a result, only
authorized users can access the device via the cloud. The two
types of smart home platforms adopt different device binding
methods. For Type I platforms, the binding request is directly
sent by the mobile app to the IoT cloud, which is responsible
for maintaining the binding information and performing the
permission checks (i.e., whether a user account should have
access to a device). For Type II platforms, the mobile app
first sends the account information to the device. The device,
having the device ID and the user account, issues the binding
request to the IoT cloud. It is worth noting that here the
cloud unconditionally accepts the binding request from the
device. This design is based on the natural assumption that
the customer who physically owns a device should have full
control over it.

5. Device Login: The device uses its device ID to log into
the IoT cloud. Then it establishes a connection with the
cloud to keep the status updated and ready itself to execute
remote commands. In addition, when a device loses con-
nection with the cloud for a long time, it tries to re-login
automatically.

6. Device in Use: After successful registration and login, the
device performs designed functions. Specifically, the home
owner can monitor the real-time status of the device and ex-

1136 28th USENIX Security Symposium USENIX Association

plicitly control the device locally or remotely via the “control
panel” on the mobile app.

7. Device Unbinding & Device Reset: When the home
owner no longer uses the device, she can unbind or reset it.
When the user requests for unbinding, for Type I platforms,
the cloud directly erases the binding information. For Type
II platforms, however, since the binding information is also
stored on the device locally, one additional command is sent
from the cloud to the device to erase the binding information.

In the life-cycle of an IoT device, although most of the
time is spent in the sixth phase, i.e., the device-in-use phase,
the interactions that occur during the other phases are the
most complex and critical. Any oversight in these phases
could lead to serious security problems and harm the normal
use of devices.

2.4 State Transitions
In this subsection, we describe the state transitions inferred
from our analysis of five widely-used smart home platforms
(i.e., Samsung SmartThings [52], TP-LINK KASA [53], Xi-
aoMi MIJIA [56], Ali Alink [2], and JD Joylink [31]). A
smart home platform is a special kind of distributed system.
In this viewpoint, the aforementioned interactions among
IoT devices, mobile apps, and IoT clouds unavoidably cause
state transitions. Based on our analysis of the aforemen-
tioned five platforms, we infer three state transition diagrams
for the three entities, respectively. The three state machines
are shown in Figure 2. In each sub-figure, an interaction with
other entities (denoted by an edge) causes a state transition.
The definitions for each state and each transition are anno-
tated in the corresponding sub-figure. Note that Type I and
Type II platforms behave slightly differently and we high-
light the differences using different colors. Specifically, the
states and transitions specific to Type I platforms are shown
in red while the states and transitions specific to Type II plat-
forms are shown in blue. The shared states and transitions
are shown in black. In addition, since Type II platforms use
hard-coded device ID, state 1 is absent in the state machine
of an IoT cloud.

State Correlation. The three state machines are closely re-
lated to one another. Whenever an interaction takes place,
the three entities as a whole may transfer from one 3-tuple
state combination (i.e., the current state of the IoT cloud, the
current state of the device, and the current state of the mo-
bile app) to another 3-tuple. We identify all the legitimate
3-tuple state combinations and show them in the table pre-
sented in Appendix A. If a 3-tuple does not appear in the ta-
ble, the corresponding state combination is illegal and might
be exploited. To avoid the potential attacks, the three entities
should always stay in a legitimate state combination. Unfor-
tunately, we found that none of the investigated smart home
platforms strictly maintain a three-entity state machine.

2.5 Scope of Empirical Vulnerability Analysis
Real-world cloud-based smart home platforms can be classi-
fied into two categories. The first category is the platforms
dedicated to building a smart home (e.g., Samsung Smart-
Things [52]). The second category is general-purpose IoT
platforms (e.g., Amazon Web Services IoT [6]) which could
be customized for smart home usage. Since smart home plat-
forms of the second category usually differ from each other
in terms of device management and interaction, we leave
studying common security issues with them as our future
work. In addition, smart home platforms that are not cloud-
based, such as HomeKit [8] and HomeAssistant [10], are out
of the scope of this study, although we will discuss the im-
plications of our research findings to platforms that are not
cloud-based in Section 7.2.

In this work, we focus on five leading cloud-based smart
home platforms. As mentioned earlier, they are Smart-
Things, KASA, MIJIA, Alink, and Joylink. To attract
more cooperative manufacturers, some smart home platform
providers such as Samsung, JD, and Ali make their plat-
forms open and even open-source the corresponding device-
side SDKs. Thus, the collaborative manufacturers can eas-
ily follow the documentation and assemble platform com-
pliant devices through proper use of the SDKs. Over 200
well-known smart home device manufacturers (e.g., Philips,
ECOVACS, and Media) are actually fabricating products
running on these platforms [3, 30].

Some other cloud-based smart home platform providers,
including TP-LINK and XiaoMi, adopt a closed “ecosys-
tem”. They fabricate smart home devices by themselves.
On North America and Europe markets, TP-LINK’s smart
home devices, such as smart WiFi plugs and smart LED
bulbs, rank in the top 10 in the category of home improve-
ment on Amazon [19]. XiaoMi is the world’s largest intelli-
gent smart home device manufacturer. More than 85 million
smart home devices have been sold under the brand of Xi-
aoMi all over the world [34], especially in Asia-Pacific [43].

3 Threat Model and Feasibility Assessment
3.1 Threat Model
In contrast to network-based exploits (e.g., MITM) and
firmware-based reverse-engineering, the adversary in our
threat model seeks to exploit the design flaws in the interac-
tions among the three entities. Therefore, we do not assume
any forms of software bugs or protocol vulnerabilities. The
targets of the attack are cloud-connected devices which di-
rectly communicate with IoT clouds. The adversary’s goal
is to take control of the device or to monitor/manipulate the
data collected/generated by the device.

We do assume that the adversary has the capability to col-
lect necessary information, including device identity infor-
mation and legitimacy information. For different platforms,
the difficulty levels of collecting these information items dif-

USENIX Association 28th USENIX Security Symposium 1137

Table 2: Device Identity/Legitimacy Information

Platform Identity Info Legitimacy Info

Type I Platform Alink
MAC (G), CID (P),
Device Model (P) Key (P), Sign (P)

Joylink
MAC (G), SN (H),
Device Model (P) NULL

Type II Platform
SmartThings Device ID (H) NULL

KASA Device ID (H) MAC (G), hwID (P)
MIJIA Device ID (H) TagKey (H)

P: Public information G: Guessable information H: Hard-coded information

fer. For example, for Type II platforms, we assume the ad-
versary has local access to the victim device beforehand,
whereas for Type I platforms, we do not have such an as-
sumption. As a result, the discovered exploits may exhibit
different levels of feasibility depending on which type of
platform is being attacked, who is the platform provider, etc.

In the following, for both types of platforms, we analyze
the feasibility of obtaining these information items case by
case. The reason is that different platforms may designate
and use individual information items in different ways. Cor-
respondingly, the adversary faces different challenges in col-
lecting them.

3.2 Prerequisites and Feasibility Assessment
In this subsection, we describe the specific identity and le-
gitimacy information items the adversary has to obtain, and
evaluate the feasibility of obtaining them in practice.

As mentioned earlier, a device is identified by a unique
device ID. In essence, the discovered exploits fake a phan-
tom device by using the victim device’s device ID. Thus, the
adversary needs to get the device ID of the victim device.
For Type I platforms, given that the device ID is determined
solely by the victim device’s identity information, the adver-
sary only needs to collect all the identity information.

For Type II platforms, the device ID is hard-coded in the
victim device. So the adversary has to have local access to
the victim device (e.g., connect to the same LAN or physi-
cally possess the device) to obtain the device ID. Although
this seems to be a strong assumption, we note that once the
hard-coded information is leaked, the victim device becomes
remotely vulnerable forever.

Furthermore, some platforms use pre-configured legiti-
macy information (e.g., a key) as additional authentication
requirements.

Depending on the way to obtain a particular identity/legit-
imacy information item, we classify these information items
into three categories: public information (P), guessable in-
formation (G) and hard-coded information (H). For each
platform investigated in this study, we list the needed identi-
ty/legitimacy information items plus their categories in Ta-
ble 2. Note that the same information item may be used
differently. For example, MAC addresses are used by Alink
devices as identity information, but are used by KASA de-

vices as legitimacy information.

Public information is the easiest to obtain. Information
items in this category are often publicly available or can be
easily inferred. For example, device model and device chip
id (CID) are public information. Moreover, legitimacy in-
formation items in this category are sometimes not uniquely
bound with a device but shared by multiple devices. For ex-
ample, in the Alink platform, the legitimacy information is a
tuple which consists of two “confidential” numerical strings,
namely Key and Sign. We found that obtaining the tuple is
extremely easy – a bunch of such credentials are available
in the official GitHub repositories of both the Ali company1

and the cooperative manufacturers2.

Guessable information is the information which can be
guessed by brute-force. MAC addresses are a typical kind of
guessable information, because the first three bytes in a MAC
address are usually fixed for a manufacturer [32]. Moreover,
manufacturers often allocate a block of consecutive MAC ad-
dresses to the products of the same device model. Thus, there
remains only two or three bytes for the attacker to brute-
force. We detail an experiment on Alink devices in Sec-
tion 6.1, in which we successfully guessed more than 7,181
valid MAC addresses. Moreover, if the adversary can be in
the WiFi-range of a victim device, he can simply eavesdrop
the MAC address of the device by sniffing wireless probe re-
quests [37]. Note that this is a fundamental drawback of the
WiFi protocol.

Hard-coded information is unpredictable, immutable, and
inherent to a device. For example, a long device ID embed-
ded in the device hardware is a typical kind of hard-coded in-
formation for Type II platforms. In addition, for some Type
I platforms, hard-coded information (e.g., a serial number
(SN)) is also incorporated in the generation of a device ID.
Although hard-coded information cannot be obtained easily,
it is immutable. Once this information is leaked, the victim
device becomes vulnerable forever.

To get this information, the adversary needs local access to
the victim device. For example, the adversary can get the de-
vice’s hard-coded device ID by sniffing the device-app traffic
in the device’s LAN during the device discovery phase (Sec-
tion 2.3). In case the adversary is using the device on behalf
of the home owner, he can find the hard-coded device ID in
a log maintained by the mobile app.

We now discuss the feasibility of physically accessing a
victim device and the adversary’s incentive to employ the
discovered exploits. First, the ownership of a device can be
changed if the device gets resold or decommissioned [36].
For example, increasingly popular smart home manufactur-
ers such as Samsung and Apple provide certified refurbished
devices on the on-line outlet stores or through Amazon. The

1 https://github.com/alibaba/AliOS-Things
2 https://github.com/espressif/esp8266-alink-v1.0

1138 28th USENIX Security Symposium USENIX Association

https://github.com/alibaba/AliOS-Things
https://github.com/espressif/esp8266-alink-v1.0

previous owner can easily extract the hard-coded credentials
before re-selling the device. We have successfully obtained
the device ID of a Samsung POWERbot R7040 Robot Vac-
uum in our experiments. If we resell or return this device,
we can control this device remotely even after it is sold to
another user.

Second, a recent study shows that 60% of guests would ac-
tually pay more for a vacation rental home with smart home
features [15]. Thus, vacation rentals and hospitality service
providers like Airbnb.com and Ziroom.com have been col-
laborating with smart home providers to equip an increasing
number of smart home devices (e.g., smart locks, cameras
and TVs) in their apartments and hotels [7]. For instance,
JD has worked with Ziroom to deploy Joylink smart home
devices in Ziroom rental rooms [47]. If the adversary “legit-
imately” rents a vacation home for one night and extracts the
device ID of the home’s smart lock, he could remotely open
the lock at will in the future. This poses a serious threat to
the safety of other tenants. We have successfully conducted
such a remote hijacking attack against an Alink device (i.e.,
a KAADAS smart lock with model KDSLOCK001) in lab
environment.

4 Analysis Methodology
The discovered exploits leverage a set of design flaws in the
interactions among the three entities. This section elaborates
the vulnerability analysis methodology we used to identify
these design flaws.

4.1 Deciphering Communication
To protect user privacy, smart home platforms usually en-
crypt the communication among IoT devices, mobile apps,
and IoT clouds. We must decrypt the communication traf-
fic before we can study the interactions. This imposes sig-
nificant challenge for us because some platforms are close-
sourced (e.g., XiaoMi and TP-LINK).

Cloud-App Communication. A simple network sniffer
confirms that most platforms adopt TLS, and mobile apps
are required to verify the validity of the cloud (server) cer-
tificate. The MITM attack on the mobile app side is an obvi-
ous choice in deciphering the communication. However, to
launch a MITM attack, we must replace the cloud certificate
with one controlled by us. After analyzing a number of mo-
bile apps, we found that a mobile app usually hard-codes the
cloud certificate in its APK file without relying on the trust
store provided by Android [39] (a.k.a. certificate pinning). If
we replace the hard-coded certificate in an APK, the corre-
sponding app would fail to run due to integrity checking. We
have addressed this problem by rooting our test smartphone
and installing an Xposed module3. This Xposed module is
able to hook the certificate checking function so that we can

3 https://github.com/Fuzion24/JustTrustMe

dynamically manipulate the certificate without compromis-
ing the app integrity.

Device-App Communication. We have analyzed the APK
files of a number of mobile apps and found that some plat-
forms such as Joylink and MIJIA use a symmetric encryp-
tion algorithm to protect device-app communication. Thus,
we can easily extract the communication keys by analyzing
the APK files. Other platforms such as SmartThings adopt
TLS for device-app communication. To deal with TLS, we
have used the same method as used for deciphering cloud-
app communication.

Device-Cloud Communication. Again, device-cloud com-
munication is protected by TLS. However, we cannot easily
replace the cloud certificate embedded in the firmware on a
device to launch a MITM attack as is done in mobile apps.
We had to perform static analysis on the device firmware. In
particular, we have physically dumped the firmware images
of the target devices4. We have manually followed the data
and control flows of the cryptographic functions, and were
able to locate the hard-coded certificates in the firmware im-
ages. We then replaced the hard-coded certificates with a
set of certificates forged by us. However, we found that the
devices enforce firmware integrity verification which denies
executing any manipulated firmware. Fortunately, simple re-
verse engineering confirms that most devices only use the
simple cyclic redundancy check (CRC) algorithm to check
integrity. Therefore, we updated the CRC values to match the
manipulated firmware and successfully booted the firmware
images with the forged certificates. As a result, we were able
to launch the MITM attack to decrypt the communication.

1 {"system": {
2 "alink": "1.0", "jsonrpc": "2.0", "lang": "en",
3 "sign": "3 a07945eb6f453e6c0a4032c1184cc87",
4 "key": "5 gPFl8G4GyFZ1fPWk20m", "time": ""
5 },
6 "request": {
7 "cid": "000000000000000010671484", "uuid": ""
8 },
9 "method": "registerDevice",

10 "params": {
11 "model": "JIKONG_LIVING_OUTLET_00003",
12 "mac": "60:01:94:A2:D5:7C","
13 "version": "0.0.0; APP2 .0; OTA1 .0"
14 },
15 "id": 100
16 }

Code Listing 1: JSON Representation of Alink Device
Registration Message

1 {"result": {
2 "code": 1000, "msg": "success",
3 "data": {
4 "uuid": "D66FCB11A731CA2683A6C0DED6CD326D"
5 }
6 },
7 "id": 100
8 }

Code Listing 2: JSON Representation of Cloud-Side
Response to Alink Device Registration Message

4 https://www.youtube.com/watch?v=KlV3_HaBpbs

USENIX Association 28th USENIX Security Symposium 1139

https://github.com/Fuzion24/JustTrustMe
https://www.youtube.com/watch?v=KlV3_HaBpbs

4.2 Understanding the Interacting Messages
Using the aforementioned approaches, we were able to re-
veal plain-text network traffic among IoT devices, mobile
apps, and clouds. This greatly simplified our analysis. Al-
though different platforms adopt different communication
protocols, it is a common practice that messages are encoded
using the JSON (JavaScript Object Notation) format, which
is quite self-explanatory. For instance, we show a message
sent from a device to the cloud of the Alink platform in List-
ing 1. As indicated by the method field, this message is used
to register the device. The device legitimacy information be-
ing sent includes Sign and Key. The device identity informa-
tion being sent includes CID, model, and MAC. The respond
message is shown in Listing 2. As we can see, the device ID
is returned in the uuid field.

4.3 Phantom Devices
We investigated the interactions from three aspects. First,
we tested whether each entity strictly maintains its state ma-
chine, which means an entity should only accept interact-
ing requests acceptable in its current state. For example, as
shown in Figure 2a, when an IoT cloud is working in state
4, it should deny the request from a device to bind itself to
another user account. Second, we tested whether the three
entities always stay in a legitimate 3-tuple state combination
(see Appendix A). Third, we adjusted the parameters, espe-
cially those used in authentication, of the normal interacting
requests and observed the responses. Our goals is to discover
whether the receiving entity of each request conducts proper
authorization checking.

To make this happen, we need to be able to craft JSON
messages and send them to the receiving entities. However,
we cannot arbitrarily change the requests of a real device.
To cross this barrier, we created and ran a phantom device
(program) that mimics a real device to assist our analysis.
A phantom device is constructed as follows. Some smart
home platform providers like Samsung, JD and Ali open-
source their device-side SDKs and demo programs, which
include the same communication logic as a real product. We
simply reused them to build our phantom devices. On the
other hand, XiaoMi and TP-LINK use proprietary SDKs, and
we had to reverse-engineer the firmware we obtained from
real devices, and implement programs to imitate the original
communication functions.

With the help of phantom devices, we could arbitrarily
adjust the parameters of request messages. In this way, we
could trigger unexpected state transitions and manipulate/re-
move the authentication fields of a request to perform black-
box testing against an IoT cloud. We shortly report our find-
ings in Section 5.

The phantom devices not only facilitated interaction anal-
ysis, but also helped us figure out the relevant internal logic

Table 3: Device Identity/Legitimacy Information

Platform Identified Flaws Exploited Flaws Applicable Attacks

Type I
Platform

Alink
F1.1, F1.3
F2, F3, F4

F1.1, F1.3, F2, F3, F4
F1.1, F1.3, F3

F1.1, F1.3, F3, F4
F1.1

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

Joylink∗
F1.1, F1.3

F2, F3
F1.1, F1.3 F3

F1.1
Remote Device Substitution
Illegal Device Occupation

Type II
Platform

KASA F1.2, F1.3, F3
F1.2, F3
F1.3, F3

F1.2

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS

MIJIA F1.2, F1.3, F3
F1.2, F3
F1.3, F3

F1.2

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
SmartThings† F1.2, F1.3 F1.2 Remote Device DoS

*: Joylink platform does not support device-side unbinding request.
†: SmartThings cloud performs authorization checking on device login request.

of an IoT cloud, which was completely opaque to us. For in-
stance, we used a phantom device to test and confirm which
device identity information is used in the generation of a de-
vice ID. Specifically, for the Alink platform, we changed the
value of each field appeared in Listing 1 and recorded the
corresponding returned device IDs from cloud. Finally, we
compared the received device IDs to infer which fields influ-
ence the generation of a device ID. We concluded that the
fields model, MAC and CID uniquely determine a device ID.
In other words, there is a one-to-one mapping between the
(model, MAC, and CID) tuples and device IDs in the Alink
platform. We used a similar method to test all the studied
platforms and the results are summarized in Table 2.

5 Identified Design Flaws
Using the analysis methodology presented in Section 4, we
have discovered four kinds of design flaws, and we have
shared them with the providers of the five platforms we in-
vestigate. These design flaws are summarized in Table 3.

F1: Insufficient State Guard. We found that none of the
three entities correctly guard their state machines. This could
lead to severe consequences. Since IoT clouds are responsi-
ble for security-critical services such as device identify man-
agement, IoT clouds can be most affected. In the state ma-
chine of an IoT cloud (Figure 2a), when the cloud is working
in state 4 (running), ideally it should only accept status up-
load requests (edge 6) or device unbinding requests (edge
3). Unfortunately, we found that the IoT cloud also accepts
other requests. Depending on which request is accepted in-
correctly when the IoT cloud is in state 4, we break down
flaw F1 into three sub-flaws.

F1.1: This flaw is specific to Type I platforms. An at-
tacker, having all the device identify information, can use a
phantom device to send a registration request to the cloud,
which is fooled to return the corresponding device ID to the
attacker (Figure 3F1.1).

F1.2: This flaw is specific to Type II platforms. An at-
tacker can use a phantom device to send a binding request
that links the device (identified by device ID) with the at-
tacker’s account (Figure 3F1.2). Note that in Type II plat-

1140 28th USENIX Security Symposium USENIX Association

IoT Cloud

Real
Device A

Phantom
Device A

Re-register deviceA

Device A: Alice

F1.1: Insufficient State Guard
(Device Registration)

IoT Cloud

Real
Device A

Phantom
Device A

 Bind device A with Attacker

Mobile
App

Device A: Alice

Attacker
Account

Information

Device A: Attacker

F1.2: Insufficient State Guard
(Device Binding)

Device A: Alice
Device B: nullIoT Cloud

Device A
Dangling
Device B

F2: Illegal States Combination

IoT Cloud

Real
Device A

Phantom
Device A

Build Connection

Device A: Alice

Phantom
Device A: Alice

F3: Unauthorized Device
Login

IoT Cloud

Real
Device A

Phantom
Device A

Unbind

Device A: Alice

Device A: Null

F4: Unauthorized Device
Unbinding

Figure 3: Identified Design Flaws

forms, the binding request is sent from the device and the
cloud unconditionally accepts the binding request (see Sec-
tion 2.3). As a result, the phantom device can bind the at-
tacker’s account to the victim device.

F1.3: The IoT cloud accepts device login requests even if
it is in state 4. This flaw is a pre-condition of flaw F3 which
we will describe shortly.

F2: Illegal State Combination. We found that the three
entities sometimes stay in unexpected and illegal state com-
binations. One root cause is flawed synchronization among
them. When an illegal state combination is exploited, secu-
rity can be violated. For instance, ideally, when a user retires
a smart home device, he should reset and unbind the device,
making all of the three entities go back to their initial states
(i.e., state combination (S1, S1, S1)). However, for Type I
platforms, if the user unbinds the device without firstly re-
setting it, a connection with the cloud is still retained and the
state combination actually switches to (S1, S4, S1), which is
illegal based on our table in Appendix A. Since the device
is in this illegal state combination, we call it a dangling de-
vice (Figure 3F2). Now, since the IoT cloud is in state 1, if
the attacker remotely issues a request to register this device,
the request is allowed and the cloud transfers to state 2. For
the same reason, if the attacker continues to send a request
to bind the device, the cloud accepts the request and trans-
fers to state 4 (state 3 is skipped because a connection is still
maintained with the victim device). At this time, if the at-
tacker sends a control command to the device, the cloud will
mistakenly forward the command to the retired device. This
essentially causes a device hijacking attack.

F3: Unauthorized Device Login. A connection is main-
tained between the device and the IoT cloud after device lo-
gin. Ideally, the cloud should only allow a login request if the
request is issued from the device that is bound with the owner
account. However, we found that the IoT cloud does not per-
form any account-based authorization check during device
login. In other words, the connection is decoupled from the
user account. Consequently, when the attacker uses a phan-
tom device to login with the device ID of the victim device,
the cloud is fooled into establishing a connection with the
phantom device (Figure 3F3). As a necessary condition of
this flaw, the cloud must accept device login requests in state
4, which is exactly what Flaw f1.3 states.

F4: Unauthorized Device Unbinding. Ideally, only the

user who holds an account currently bound to a device has
the privilege to unbind the device. This is true if unbinding
operations are conducted on mobile apps, which indeed in-
clude user credentials in unbinding messages. Unfortunately,
for Type I platforms, device unbinding can also be achieved
on the device side. Based on our analysis, device-side un-
binding commands do not included any user credentials. As
a consequence, an attacker can build a phantom device to
forge an unbinding request using device-side API. The bind-
ing relationship between victim user’s account and the device
is then revoked without the user’s awareness (Figure 3F4).

6 Flaw Exploitation
Exploiting various combinations of the identified design
flaws, an attacker can launch a spectrum of attacks, including
remote device substitution, remote device hijacking, remote
device DoS, illegal device occupation, and firmware theft. In
the following, we first describe the experimental setup. Then
we detail two most severe attacks revealed in this paper –
how to remotely substitute and hijack a victim device, re-
spectively. We also discuss the other attacks. In Table 3, we
summarize the set of particular attacks, as well as the design
flaws exploited by each attack. To visually demonstrate some
of the discovered exploits, we also recorded two videos56.

6.1 Experimental Setup
All the PoC (Proof of Concept) attacks were conducted
within lab environment without influencing legitimate users.
The tested devices include smart plugs, IP cameras, WiFi
bulbs, cleaning robots and smart gateways, covering all the
studied platforms. These devices are shown in Figure 4 and
we also list them in Appendix B.

Obtaining Device Identity and Legitimate Information.
We need device identity and legitimacy information listed in
Table 2 to forge a phantom device. As mentioned earlier,
the difficulty of obtaining an information item differs. In the
following, we use an Alink device (Philips smart plug with
model SPS9011A) and a TP-LINK device (WiFi Bulb with
model LB110) to represent Type I and Type II devices, re-
spectively. We describe how to obtain their identity and legit-
imacy information. For other platforms, similar approaches
can be adopted.

5 https://youtu.be/MayExk_PKhs
6 https://youtu.be/fufEAtQq2_g

USENIX Association 28th USENIX Security Symposium 1141

https://youtu.be/MayExk_PKhs
https://youtu.be/fufEAtQq2_g

Figure 4: Smart Home Devices Used in Our Experiments

For the Alink device, we collected its legitimacy informa-
tion (Key and Sign) very easily through the public repos-
itories mentioned in Section 3.2. The Alink device uses
model, MAC, and CID as its identity information. For model
and CID, which are fixed for a specific device type, we
extracted them from a log maintained by the correspond-
ing mobile app. For the MAC address, we obtained it by
brute-force attack. Specifically, we bought two test devices
(Philips smart-plugs) and recorded the MAC address of the
first one (“3C:2C:94:0B:56:69”) manually. The first device
served as the attacker’s device in our experimental setting.
Then we tried to guess the MAC address of the other device,
which played the “victim device” role in our experiments.
After 21,692 mutations to “3C:2C:94:0B:56:69”, we “hit”
the victim device’s MAC address, which turned out to be
“3C:2C:94:0B:AB:25”.

To further demonstrate that collecting MAC addresses of
real devices is not very difficult, we mutated the lower two
bytes of “3C:2C:94:0B:56:69” to get 65,536 different MAC
addresses. Then we used these MAC addresses with other
fixed identity/legitimacy information to register the victim
device. Every registration request returned us a device ID.
We further wrote a probing script running on the mobile to
automatically bind the returned device IDs to our test user
account. If a device ID has already been bound to an ac-
count, the cloud will refuse the corresponding binding re-
quest with an error message. We found that 7,181 device
IDs had already been taken by real users. It means the cor-
responding 7,181 MAC addresses were actively being used
by real devices and they could potentially become victims in
our attacks.

Ethical Consideration. In order to prevent potential influ-
ence on legitimate users, before we ran the script that tests
active MAC addresses, we first evaluated the impact on a
test device in lab environment. Specifically, we first simu-
lated a legitimate user by normally binding a tested device to
an account. Then we used a phantom device with the same
identity and legitimacy information as the test device and got
the same device ID from the cloud. We then used another
account to try to bind the device as was done by the prob-

ing script. During this process, we found that the test device
could still be operated normally and was not unbound.

For the TP-LINK device, since its identity information
(i.e., device ID) and legitimacy information (i.e., hwid and
MAC address) are hard-coded, we had to physically ex-
tract them. Specifically, we collected device IDs, hwid and
MAC address by launching a MITM attack that intercepts
the device-app communication.

Building Phantom Devices. With all the required infor-
mation available, we implemented phantom devices using
Python. As discussed in Section 4.3, when the device-side
SDK is available (e.g., on platforms provided by Samsung,
JD and Ali), we directly incorporated them into our pro-
gram. Otherwise, our Python program mimics the behavior
of a device. The behavior knowledge is obtained by reverse-
engineering the firmware extracted from real devices (Xi-
aoMi and TP-LINK). In total, we implemented five kinds of
phantom devices for Samsung, Joylink, Alink, XiaoMi and
TP-LINK, respectively. They were implemented by 22, 17,
14, 61 and 72 lines of code (excluding SDK functions if any),
respectively.

Network Configuration. We placed the target devices and
the phantom devices in two separate LANs behind NAT-
enabled routers. As a result, the target devices and the phan-
tom devices cannot communicate with each other directly.
This setting resembles real-world scenarios where a remote
attacker does not have access to the LAN of the victim.

6.2 Remote Device Substitution
In this subsection, we showcase how an attacker can re-
motely replace the victim’s device with a phantom device
under his control. To simplify the presentation, in the fol-
lowing, we use Alice to denote the victim/legitimate user and
Trudy to denote the attacker. We use sequence diagrams to
represent the interactions among the three entities. An attack
happens when Trudy interferes with the normal interaction
diagrams. In Appendix C, we show the normal interaction
diagrams for all the studied platforms.

Attack Workflow (Type I). On the top of Figure 5 (above
the highest dashed red line), we show the normal workflow
of how Alice uses her IoT device on a Type I platform. Af-
ter Alice provisions the device with a WiFi credential, the
device sends its legitimacy credential and device identity in-
formation to the cloud to get registered (Step A.1). Based on
the device identity information, the cloud registers the de-
vice with a device IDA and binds it to Alice’s account (Step
A.2). After the device logs in (Step A.3), Alice can control
the device with her account.

Then, the attacker, Trudy, kicks in as shown in the middle
of the figure (between the two dashed red lines). She first lets
the phantom device send the same device registration request
as used in step A.2 to the cloud (Step T.1). Due to F1.1, the
cloud accepts this request and registers the phantom device

1142 28th USENIX Security Symposium USENIX Association

with the same device IDA, but still keeps device IDA bound
with Alice. At this moment, Alice actually binds the phantom
device and real device at the same time. Then Trudy could
leverage the flaw F1.3 and F3 to log in a phantom device
without Alice’s account information (Step T.2). Since the
phantom device has the same device ID as the real device,
the cloud disconnects the original connection with the real
device and establishes a new connection with the phantom
device. However, when the real device does not receive the
heartbeat message for a while, it automatically logs into the
cloud again and puts the phantom device offline. Now, the
real device and the phantom device are in fact competing for
connection with the cloud. To win the competition, Trudy
configures the phantom device to login very frequently. As a
result, the phantom device always wins. Alice now still ap-
pears to “control” a device through her mobile app, although
this device has actually been replaced by the phantom device
under the control of Trudy.

Attack Workflow (Type II). Similarly, the top part of Fig-
ure 6 (above the highest dashed red line) shows the normal
workflow of how Alice uses her device on a Type II plat-
form. After her mobile app sends her account information to
the device (Step A.1), the device sends the binding request
with device ID and legitimacy information, as well as the ac-
count information to the cloud (Step A.2). The cloud binds
the device ID A to Alice’s account. After the device logs in
the cloud (Step A.3), Alice can control/monitor the device
with her mobile app.

In the middle of the figure (between the two dashed red
lines), Trudy launches the remote device substitution attack.
Enabled by flaws F1.3 and F3, she lets the phantom device
successfully log into the cloud with the same device ID (Step
T.1). At this time, the device ID A is still bound to Alice’s
account. Like in the Type I platform, the phantom device
maintains a connection with the cloud by periodically log-
ging in. In this way, the attacker secretly substitutes Alice’s
device with a phantom device under her own control.

Attack Consequence: Privacy Breaches. In normal opera-
tions, when Alice uses her mobile app to send a remote con-
trol command to the cloud, the cloud forwards the command
to the “device”. Unfortunately, in the remote substitution at-
tack, the real device has been replaced by a phantom device
controlled by the attacker. As a result, all the control com-
mands from Alice are exposed to the phantom device and
further to Trudy, leading to a privacy breach. For example,
if Trudy substitutes a smart plug, he could know when Alice
turns on/off the smart plug. This information could be used
to infer whether Alice is at home.

Attack Consequence: Falsified Data. In normal opera-
tions, the real device updates its sensor readings to the cloud
and the result is reflected in Alice’s mobile app. Unfortu-
nately, in the remote substitution attack, the sensor readings
are sent from the phantom device. This gives Trudy an op-

IoT
Cloud

Unbind device ID
Ą with Alice

Bind device ID Ą
with Alice

Bind device ID Ą
with Trudy

Step A.1 Device Registration

Step T.1 Phantom Device Registration

Step T.2 Phantom Device Frequently Logging in

Register Device
with device ID Ą

Alice Trudy

Register
Phantom Device
with device ID Ą

Step T.4 Device Binding

Step T.5 Remotely Hijacking the Victim Device

Phantom
Device

Real
Device

Step A.3 Device Logging in

Eavesdropping Remote Control Commands

Uploading Fake Device Status

Step T.3 Phantom Device Unbinding

Step A.2 Device Binding

F2

F1.1

F1.3
F3

F4

Normal Device Operation

Figure 5: Remote Attacks on Type I Platforms

portunity to manipulate the sensor readings sent to Alice,
thus deceiving or misleading Alice. For example, we tested
a XiaoMi smoke alarm (model: Fire Alarm Detector) and a
Alink smart lock (model: KAADAS KDSLOCK001). If the
smoke alarm detects a thick smoke in the room, the smart
lock will be unlocked automatically to open the window/-
door. We used remote device substitution attack to manip-
ulate the sensor readings of smoke alarm and successfully
unlocked the smart lock. This leads to serious consequence
because Trudy can enter Alice’s room at will.

Our attack can also serve as a trigger for the flaws men-
tioned in previous works [17, 35]. Once a less-protected de-
vice is substituted by a phantom device and the device is
in the chain of a “routine”, the phantom device can further
influence other data sensitive devices. For example, as men-
tioned in [35], the Nest Cam monitor in a house will automat-
ically switch off when the global “away/home” state changes
from “away” to “home”. Trudy can take advantage of the
substitution attack to change this state variable to disable the
camera and burglarize the house without being recorded.

Stealthiness Analysis. Remote device substitution attack is
highly stealthy. This is because Alice always sees the de-
vice to be online in her smartphone (although it is a phan-
tom device). However, if Trudy feeds the phantom device
with sensor readings that excessively deviate from normal,
Alice (if she is security-savvy) might become suspicious of
the dramatic change.

6.3 Remote Device Hijacking
Trudy can further remotely control Alice’s device by exploit-
ing more flaws. We call this remote device hijacking attack.

USENIX Association 28th USENIX Security Symposium 1143

IoT
Cloud

Bind device ID
Ą with Alice

Step T.1 Phantom Device Frequently Logging in

Eavesdropping Remote Control Commands

Uploading Fake Device Status

Alice Trudy Phantom
Device

Real
Device

Step A.2 Device Binding

Step A.1 Account Info: Alice

Normal Device Operation

F1.3
F3

Step R.2 Phantom Device Binding

Step R.1 Account Info: Trudy

Step A.3 Device Login

Bind device ID
Ą with Trudy

F1.2

Device Re-login F3

Step R.3 Remotely Hijacking the Victim Device

Figure 6: Remote Attacks on Type II Platforms

Attack Workflow (Type I). Continuing from Step T.2, de-
vice hijacking attack is depicted at the bottom of Figure 5
(below the lowest dashed red line). At this moment, the
phantom device has already logged in the cloud. Due to flaw
4, Trudy is able to send a device-side unbinding request via
her phantom device to the cloud (Step T.3), which puts the
real device in dangling status (due to F2). Finally, Trudy
binds the device with her account (Step T.4). As a conse-
quence, Alice’s device is connected with the cloud whereas
Trudy is able to control the device on her smartphone.

Attack Workflow (Type II). Unlike Type I platforms, to
carry out a hijacking attack against Type II platforms, Trudy
does not need to continue from the success of a remote sub-
stitution attack. Instead, she starts attacking from scratch,
as depicted at the bottom part of Figure 6 (below the low-
est dashed red line). Trudy starts by using her mobile app
to send her account information to the phantom device (Step
R.1). Next, the phantom device, which has Alice’s device
and other legitimacy information, will send a binding request
with Trudy’s account information (Step R.2) to the cloud.
Due to F1.2, the cloud is fooled into accepting the binding
request. Now, the ownership of the device has changed to
Trudy from the view point of the cloud. The cloud then
terminates the connection from the real device. However,
the real device has re-connecting mechanism that contin-
uously restores lost connection to the cloud. Due to F3,
the cloud does not verify whether the account information
(Alice) matches the current device owner (Trudy) or not.
Therefore, the re-connecting request from the real device can
be successful. At this point, Trudy could completely control
Alice’s device (Step R.3).

Attack Consequence. The remote device hijacking attack
allows Trudy to bind her account to Alice’s device. As a re-

sult, she can harvest the sensor readings in Alice’s home. She
can also send remote commands to control Alice’s device. In
our experiment, we successfully hijacked a Alink IP cam-
era (model: RIWYTH RW-821S-ALY). As a result, we can
view the victim’s IP video feeds secretly, greatly threatening
victim’s privacy.

Stealthiness Analysis. Since Alice’s device has been hi-
jacked, she can no longer talk to her device. It could raise
an alert for Alice if she is security-savvy. Average Joe may
simply regard it as a service failure and rebind his user ac-
count. It is worth mentioning that even for security-savvy
users, it is not easy to trace back to the attacker. Only the
IoT cloud has some clues to trace back to the attack origin.

6.4 Other Security Hazards
6.4.1 Remote Device DoS

As a basic security measure, IoT clouds only allows autho-
rized users to control a device. If an attacker can unbind a
target device from its legitimate user, the target device can-
not be operated anymore, essentially leading to device denial
of service (DoS) attack. To launch this attack, the attacker
does not need to exploit many flaws. In particular, for Type I
platforms, after the attacker sends the device-side unbinding
command (Step T.3), as shown in Figure 5, the cloud directly
revokes the binding relationship between the victim user and
the device. For Type II platforms, as shown in Figure 6, af-
ter the attacker leverages flaw F1.2 to bind a phantom device
with his account (Step R.2), the target device is unbound.

Note that since remote device DoS attacks require less
flaws, the attack is applicable to more platforms. For in-
stance, the Samsung SmartThings platform, which is im-
mune to remote device substitution/hijacking attacks, is vul-
nerable to remote device DoS attacks. This is because the
SmartThings platform is not subject to F3 which is essential
for remote device substitution/hijacking attacks. However,
F3 is not required in remote device DoS attacks. We will ex-
plain why SmartThings is not subject to F3 in Section 7.4.2.

6.4.2 Illegal Device Occupation

Although a device may be shared with multiple users, only
one user account is allowed to be bound to a smart home
device. If the attacker can predict the device IDs of unsold
devices and use phantom devices to bind them with valid
user accounts, these devices cannot be bound again after be-
ing sold. We call this attack illegal device occupation. In
essence, this attack makes new devices unavailable to legit-
imate consumers. Note that this attack only applies to Type
I platforms since attackers can predict device identity infor-
mation. In Type II platforms, long and unpredictable device
IDs are hard-coded in devices. Attacks can no longer learn
anything about device IDs until the device is sold.

1144 28th USENIX Security Symposium USENIX Association

6.4.3 Firmware Theft
To protect intellectual property (IP), most IoT manufacturers
employ certain tamper-resistant techniques to protect their
products, including enforcing read-only property on flash
chips that store proprietary firmware. However, with leaked-
out firmware, the attacker can reverse-engineer it, causing
IP theft and harming the corresponding manufacturers. By
exploiting OTA updates available on most IoT devices, our
firmware theft attack is able to bypass the aforementioned
protections. By forging different kinds of phantom devices,
the attacker can issue OTA update requests in bulk, and thus
he can harvest hundreds of firmware images in seconds.

In the experiments, we created phantom devices to “em-
ulate” 1,355 kinds of Alink devices, 543 kinds of Joylink
devices, 118 kinds of XiaoMi devices, 23 kinds of Smart-
Things devices, and 18 kinds of TP-LINK devices. Eventu-
ally, we were able to collect 63 firmware images from the
Alink platform, 37 from the Joylink platform, 89 from the
MIJIA platform, and 16 from the KASA platform.

7 Discussion
Although we only studied five popular cloud-based smart
home platforms, our findings can be generalized to other
smart home devices (e.g., hub-connected devices), and have
implications to platforms that are non-cloud-based. We also
discuss the root causes of the identified vulnerabilities, and
suggest several potential defensive approaches to mitigating
the discovered exploits. Finally, we discuss the impact of the
discovered exploits on commercial competitions.

7.1 Impact on Hub-Connected Devices
In this paper, we focus on cloud-connected devices. How-
ever, the discovered exploits are also applicable to hub-
connected devices due to two reasons.

First, the attacker can leverage an already exploited hub
to control hub-connected devices. For example, a XiaoMi
smart gateway is a hub for MIJIA products. After hijacking
the gateway, the attacker can further control all its connected
devices. Note that Samsung SmartThings is not vulnerable to
this attack because a SmartThings hub unbinds all the con-
nected devices when the ownership of the hub is changed,
which is inevitable in this attack.

Second, by forging a phantom hub-connected device, it is
possible to launch firmware theft and illegal device occupa-
tion attacks. However, since the target devices are behind a
hub, it is impossible to remotely hijack or substitute them.

7.2 Implications to Cloud-Free Smart Home
Platforms

HomeKit. HomeKit [8] is Apple’s proprietary smart home
platform. Compatible devices run the HomeKit accessory
protocol to directly talk to mobile apps via WiFi or Blue-
tooth. Moreover, using the mobile app, users can access

home devices indirectly through a hub device (Apple TV,
HomePod or even iPad). In this case, the cloud relays com-
mands from the mobile app to the Apple TV or HomePod.
Then the Apple TV or HomePod issue commands to home
devices locally. Note outside the home LAN, there is no di-
rect link to home devices [49]. As a result, our attacks are
not applicable to HomeKit devices.

DIY Platforms. DIY smart home platforms such as Home
Assistant [10] and OpenHAB [48] are open-source projects
that focus on building local home automation. Due to con-
trollable privacy and low cost (as low as the price of a Rasp-
berry Pi), they are becoming more and more popular among
DIY enthusiasts. In essence, they build private hubs that in-
teract with different home devices. To support as many de-
vices as possible, these platforms can be extended with com-
ponents, which implement device specific logic [12]. While
some devices can work by connecting to the hub locally
(e.g., Philips Hue), others cannot work without relying their
own cloud backends. To this end, Home Assistant classifies
the smart devices into two types: devices that interact with
third-party clouds, and devices that respond to events that
happen within Home Assistant. For the former type, the hub
serves as a proxy of other third-party clouds. For example, if
a user wants to use a SmartThings device through Home As-
sistant, he first registers and binds the device with the Smart-
Things cloud. Then he needs to install a SmartThings plugin
for Home Assistant to connect the device to the hub [11].
The plugin stores the user’s SmartThings account token and
delegates all the device requests to the SmartThings cloud.

For smart home devices relying on their own cloud back-
ends, Home Assistant is actually transparent to the devices
and thus all the exploits discovered in this paper can be ap-
plied to them. However, our attacks cannot influence devices
that only work locally.

7.3 Root Cause Analysis
Some of the vulnerabilities revealed in this paper are asso-
ciated with inherent design flaws of smart home platforms.
Some are themselves caused by design challenges of smart
homes. Therefore, some of security flaws cannot be reme-
died in a straightforward way.

Ownership Transfer. A natural assumption that smart home
manufacturers make is that a user who physically owns a de-
vice should have full control over it. Thus, in Type II plat-
forms, each device takes charge of authorization checking
and sending device binding requests. This allows a legiti-
mate user to rebind a device with another account by phys-
ically resetting it. Note that the rebind operation unbinds
the previous account automatically and happens regardless
of whether the device has already been unbound or not. This
design directly leads to flaw F1.2, allowing an attacker to use
a phantom device to remotely unbind the original user.

Device Reconnection. Network congestion may cause ran-

USENIX Association 28th USENIX Security Symposium 1145

dom connection loss between a device and an IoT cloud.
The IoT cloud mitigates the problem by allowing the de-
vice to re-login itself automatically. However, at the time
of re-login, the cloud does not do any account-based authen-
tication checking on all the platforms we have investigated
except for SmartThings. This design gives raise to F3 which
allows an attacker to remotely control the device without user
awareness.

Cloud-Device State Inconsistency. To avoid problematic
state transitions, an IoT cloud should be aware of the status
of the devices it manages. Unfortunately, this is very hard
to achieve in practice. In the previous work, it has shown
that 22 of 24 studied devices suffer from design flaws that
lead to state inconsistency [45]. For one thing, intermittent
network conditions make it very difficult to keep the state of
a device and the state of the IoT cloud synchronized at all
time. For another, a user may reset a device by pushing the
physical reset button when the device’s Internet connection
is lost. As a result, the device binding information is cleared
on the device but not in the cloud. In all cases, the synchro-
nization between the cloud and the device is broken. This
causes flaws F1.1, F1.2, F1.3, and F2.

7.4 Mitigation
In this section, we propose several defensive design sugges-
tions to secure smart home platforms in the first place. It
should be noticed that adopting only a subset of our sug-
gestions is not enough, because the flaws involved in the in-
teractions are multi-faceted and tangled together (e.g., F1.3
and F3). Platform providers should consider all the potential
security issues introduced by the interactions, including au-
thentication, authorization and validity of working state ma-
chines.

7.4.1 Strict Device Authentication
We have clearly shown that existing authentication is not ad-
equate. By violating authentication, a phantom device is in-
distinguishable from a victim device. To ensure that every
device an IoT cloud talks to is a genuine device, we sug-
gest that the manufacturers embed a unique client certificate
into each device for high-end devices powered by Intel or
ARM Cortex-A processors. In addition, the IoT cloud should
always examine the client certificate before accepting any
device request. For resource-restricted devices powered by
a microcontroller, the manufacturers should embed a read-
only random number into each device. On the cloud side,
the cloud should always check whether the random number
matches the other identity or legitimacy information.

Because device IDs are used by IoT clouds to identify a
device, we also suggest that platform providers retrofit the
device ID provisioning mechanism so that the attacker can-
not easily obtain a valid device ID. Hard coding the device
IDs is a bad practice because once a device ID is leaked, the
corresponding device becomes vulnerable forever. The de-

vice ID of a device should be generated by the IoT cloud
during registration, and the generation algorithm should use
harder-to-guess information, such as user ID/passwords, ran-
dom numbers, etc.

7.4.2 Comprehensive Authorization Checking
Compared with mobile-side commands, we found that most
IoT clouds do not enforce strict authorization checking of
device-side commands and baselessly trust arbitrarily con-
nected devices. For Type I platforms, when a device talks to
an IoT cloud, the user account information is absent on the
device. Thus, the IoT cloud directly accepts unauthorized lo-
gins (F3) or unbind (F4) commands. For Type II platforms,
because the device takes charge of checking the binding re-
lationship, the cloud skips performing further authorization
checking on the requests from the device.

We suggest that both the device and the IoT cloud store
and maintain the binding relationship as well as perform
authorization checking. Moreover, on the cloud side, the
account-based authentication should be performed on every
device-side request, especially for critical operations such as
device login. Samsung SmartThings follows this practice
and thus is not vulnerable to flaw F3. In SmartThings, de-
vices must explicitly include user credentials for every login
request. This additional credential checking prevents the tar-
get device from reconnecting to the cloud.

7.4.3 Enforcing the Validity of State Transitions
As revealed by our findings, all the tested platforms failed to
enforce the validity of the involved state transitions. In order
to prevent the attacker from exploiting unexpected state tran-
sitions, smart home platforms should identify and formulate
every legitimate interaction request as a 3-tuple in the form
of (sender entity & its state, the request message, receiver
entity & its state). In addition to checking every request, the
sender entity should also verify if its current state allows the
request to be sent out; and the receiver entity should verify
if its current state is allowed to receive the request. For in-
stance, the IoT cloud shown in Figure 2 should only accept
a device registration request when it stays in state 1. Fur-
thermore, in order to prevent the three entities from staying
out of the set of legitimate state combinations, the three enti-
ties should formally define and maintain their own state ma-
chines. In the meantime, the IoT cloud of a platform should
synchronize the three entities so that they stay in a legitimate
state combination. Finally, if an unrecoverable system error
occurs, the three entities should roll back to their initial states
immediately.

7.5 Malignant Commercial Competitions
The discovered exploits could also be leveraged by un-
scrupulous merchants in commercial competitions.

IP Theft. As mentioned in Section 6.4.3, a company can
steal a rival’s firmware and reverse-engineer it to steal pro-

1146 28th USENIX Security Symposium USENIX Association

prietary IP. This kind of behavior harms fair competition and
hinders technology advancement.

Statistics Manipulation. By churning out hundreds of thou-
sands of phantom devices, a malicious company could rig
the number of active devices in the market. This has two im-
plications. First, by increasing the market share of its own
products, the company can present an eye-catching year-end
report. Second, by increasing the number of activated de-
vices of its rival, its rival could be overcharged by the plat-
form provider. This is because some platform providers bill
cooperative manufacturers based on the number of activated
devices connected to their clouds. A unscrupulous manu-
facturer can use phantom devices to register a large number
of non-existing devices under the name of its rivals, causing
financial loss to them.

User Experience Disruption. Leveraging the illegal device
occupation attack, a unscrupulous manufacturer can poten-
tially take over a large number of its rival’s in-stock prod-
ucts. When these products are sold, the consumers will have
a terrible user experience.

8 Related Work
We review the related work on smart home security from
three perspectives: device security, communication security
and IoT application security.

Device Security. Device security research emphasizes the
vulnerabilities of individual devices. Ling et al. [41] stud-
ied a smart plug system and revealed a weak authentication
vulnerability. After dissecting the behavior of several IoT
devices such as Phillips Hue light bulbs and Nest smoke de-
tectors, Notra et al. [44] revealed that basic security mecha-
nisms such as encryption, authentication and integrity check-
ing are absent in these devices. Several currently available
smart hubs were investigated in [20] and [55], and numerous
security flaws were identified. In contrast to analyzing indi-
vidual devices, our study analyzes the complex interactions
among the three entities engaged in a smart home platform.

Communication Security. Communication security re-
search emphasizes the security and privacy issues in smart
home communication protocols such as BLE, ZigBee, and
Z-Wave [14, 1, 50, 27]. Agosta et al. [1] approached the se-
curity and privacy problems involved in the key derivation
algorithm adopted by the widespread Z-Wave home automa-
tion protocol. Ronen et al. [50] described a worm attack
which has the potential of massive spread by exploiting an
implementation bug in the ZigBee Light Link protocol. Re-
searchers also demonstrated that attackers can infer private
in-home activities by analyzing encrypted traffic from smart
home devices [9] or by extracting features of connection-
oriented application data unit exchanges [46]. Instead of fo-
cusing on a particular algorithm or protocol, this study con-
ducts comprehensive platform-wide vulnerability analysis.

IoT Application Security. Recently, increasing numbers
of researchers have paid their attention to smart home plat-
forms, but they usually focus only on in-cloud IoT applica-
tions (i.e. home automation applications). For instance, Fer-
nandes et al. [23] revealed that the capabilities implemented
in the SmartThings IoT application programming framework
are too coarse-grained, which allows malicious third-party
IoT applications to compromise the SmartThings platform.
Celik et al. [16] proposed SAINT, a static taint analysis tool
to find sensitive data flows in IoT applications. The same
authors further studied whether an IoT application and its
environment adhere to functional safety properties. They
found that 9 out of 65 SmartThings apps violate 10 out of 35
properties [17]. Kafle et al. [35] revealed the feasibility and
severity (e.g., privilege escalation) of misuse of smart home
routines. Moreover, Ding et al. [21] presented a tool named
IoTMon to discover risky interaction chains among IoT ap-
plications. Our work focuses on the interactions between the
participating entities engaged in a smart home platform, in-
stead of between home automation applications.

9 Conclusions
Smart home technology is playing a more and more im-
portant role in our digital lives. To seize a greater market
share, smart home platform providers shorten the time-to-
market by reusing existing architectures and incorporating
open-source projects without rigorous review (of the poten-
tial security and privacy issues). In this work, we conducted
an in-depth analysis of five widely-used smart home plat-
forms, and found that the complex interactions among the
participating entities (i.e., devices, IoT clouds, and mobile
apps), though not being systematically investigated in the
literature, are vulnerable to a spectrum of new attacks, in-
cluding remote device substitution, remote device hijacking,
remote device DoS, illegal device occupation, and firmware
theft. The discovered vulnerabilities are applicable to mul-
tiple major smart home platforms, and cannot be amended
via simple security patches. Accordingly, we propose several
defensive design suggestions to secure smart home platforms
in the first place.

Acknowledgments
We would like to thank our shepherd William Enck and the
anonymous reviewers for their helpful feedback. Wei Zhou
and Yuqing Zhang was support by National Key R&D Pro-
gram China (2016YFB0800700), National Natural Science
Foundation of China (No.U1836210, No.61572460), Open
Project Program of the State Key Laboratory of Informa-
tion Security (2017-ZD-01) and in part by CSC scholar-
ship. Peng Liu was supported by ARO W911NF-13-1-0421
(MURI), NSF CNS-1505664, NSF CNS-1814679, and ARO
W911NF-15-1-0576. Le Guan was partially supported by
JFSG from the University of Georgia Research Foundation,
Inc.

USENIX Association 28th USENIX Security Symposium 1147

References
[1] Giovanni Agosta, Alessio Antonini, Alessandro Barenghi, Dario Ga-

leri, and Gerardo Pelosi. Cyber-security analysis and evaluation for
smart home management solutions. In International Carnahan Con-
ference on Security Technology, pages 1–6, 2016.

[2] Alibaba. Alink. https://open.aliplus.com/docs/open/,
2018.

[3] Alibaba. Aliyun IoT. https://iot.aliyun.com/, 2018.

[4] Wi-Fi Alliance. Portable Wi-Fi that goes with you anywhere. http
s://www.wi-fi.org/discover-wi-fi/wi-fi-direct, 2013.

[5] Amazon. 17 Top New Smart Home Appliances. https://www.am
azon.com/slp/smart-home-appliances/ygn94ga658qv4k8,
2018.

[6] Amazon. AWS IoT Core. https://aws.amazon.com/iot-cor
e/?nc1=h_ls, 2018.

[7] Ambient. Smart Hosting: The dos and don’ts of the ultimate Airbnb
smart home. https://www.the-ambient.com/guides/host-s
mart-airbnb-home-tech-217, 2018.

[8] Apple. Apple HomeKit Developer Documentation. https://deve
loper.apple.com/documentation/homekit, 2018.

[9] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind
Narayanan, and Nick Feamster. Spying on the Smart Home: Pri-
vacy Attacks and Defenses on Encrypted IoT Traffic. arXiv preprint
arXiv:1708.05044, 2017.

[10] Home Assistant. https://www.home-assistant.io/, 2018.

[11] Home Assistant. Components – SmartThings. https://www.home
-assistant.io/components/smartthings/, 2018.

[12] Home Assistant. Components. https://www.home-assistant
.io/components/, 2019.

[13] Mesko Bertalan. Healthcare Is Coming Home With Sensors and Algo-
rithms. http://medicalfuturist.com/healthcare-is-com
ing-home/, 2018.

[14] B.Fouladi and S.Ghanoun. Honey, I’m Home!!, Hacking ZWave
Home Automation Systems. In Black Hat USA, 2013.

[15] BusinessWire. Smart Home Technology Can Increase Your Earn-
ing Potential. https://www.businesswire.com/news/home
/20160802005777/en/60-Percent-Guests-Pay-Vacation-R
ental-Smart, 2016.

[16] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu,
Gang Tan, Patrick McDaniel, and A Selcuk Uluagac. Sensitive infor-
mation tracking in commodity IoT. In Proceedings of Usenix Security
Symposium, pages 1687–1704, 2018.

[17] Z Berkay Celik, Patrick McDaniel, and Gang Tan. SOTERIA: Auto-
mated IoT safety and security analysis. In 2018 Usenix Annual Tech-
nical Conference, pages 147–158, 2018.

[18] Chih Yung Chang, Chin Hwa Kuo, Jian Cheng Chen, and Tzu Chia
Wang. Design and Implementation of an IoT Access Point for Smart
Home. Applied Sciences, 5(4):1882–1903, 2015.

[19] Low Cherlynn. Router maker TP-LINK turns its attention to smart
homes. https://www.engadget.com/2016/08/23/tp-link-u
s-rebrand/, 2016.

[20] Steven A. Christiaens. Evaluating the Security of Smart Home Hubs.
Master’s thesis, Brigham Young University, 2015. https://scho
larsarchive.byu.edu/etd/5631.

[21] Wenbo Ding and Hongxin Hu. On the Safety of IoT Device Physical
Interaction Control. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 832–846.
ACM, 2018.

[22] Hossein Fereidooni, Jiska Classen, Tom Spink, Paul Patras, Markus
Miettinen, Ahmad Reza Sadeghi, Matthias Hollick, and Mauro Conti.
Breaking Fitness Records Without Moving: Reverse Engineering and
Spoofing Fitbit. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 48–69, 2017.

[23] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security anal-
ysis of emerging smart home applications. In Security and Privacy,
pages 636–654, 2016.

[24] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simion-
ato, Mauro Conti, and Atul Prakash. FlowFence: Practical Data Pro-
tection for Emerging IoT Application Frameworks. In Proceedings of
Usenix Security Symposium, pages 531–548, 2016.

[25] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash.
Decentralized Action Integrity for Trigger-Action IoT Platforms. In
Proc. of NDSS, pages 18–21, 2018.

[26] Marc Goodman. Hacking the Human Heart. http://bigthink.c
om/future-crimes/hacking-the-human-heart, 2017.

[27] Rohit Goyal, Nicola Dragoni, and Angelo Spognardi. Mind the tracker
you wear: a security analysis of wearable health trackers. In ACM
Symposium on Applied Computing, pages 131–136, 2016.

[28] Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin.
Smart Nest Thermostat: A Smart Spy in Your Home. In Black Hat
USA, 2014.

[29] Texas Instruments. SimpleLink Wi-Fi SmartConfig Technology. ht
tp://www.ti.com/tool/SMARTCONFIG, 2013.

[30] JD. JD Alpha. https://alphadev.jd.com/, 2018.

[31] JD. Joylink. http://smartdev.jd.com/, 2018.

[32] Arul John. MAC address and OUI lookup. http://aruljohn.com
/mac.pl, 2018.

[33] Delaney John R and Colon Alex. The Best Smart Home Security Sys-
tems of 2018. https://www.pcmag.com/article2/0,2817,
2498510,00.asp, 2018.

[34] Tour Joney. Xiaomi - the World’s Largest IoT Platform.
https://xiaomi-mi.com/news-and-actions/xiaomi-the
-worlds-largest-iot-platform/, 2018.

[35] Kaushal Kafle, Kevin Moran, Sunil Manandhar, Adwait Nadkarni, and
Denys Poshyvanyk. A Study of Data Store-based Home Automation.
arXiv preprint arXiv: 1812.01597, 2018.

[36] Minhaj Ahmad Khan and Khaled Salah. IoT security: Review,
blockchain solutions, and open challenges. Future Generation Com-
puter Systems, 82:395 – 411, 2018.

[37] KODY. Track Wi-Fi Devices & Connect to Them Using Probequest.
https://null-byte.wonderhowto.com/how-to/track-w

i-fi-devices-connect-them-using-probequest-0186137/,
2018.

[38] Mohit Kumar. Ransomware Hijacks Hotel Smart Keys to Lock Guests
Out of their Rooms. https://thehackernews.com/2017/01/ra
nsomware-hotel-smart-lock.html, 2017.

[39] Ivan Kust. Securing mobile banking on Android with SSL certificate
pinning. https://infinum.co/the-capsized-eight/secur
ing-mobile-banking-on-android-with-ssl-certificate
-pinning, 2018.

[40] Sanghak Lee, Jiwon Choi, Jihun Kim, Beumjin Cho, Sangho Lee,
Hanjun Kim, and Jong Kim. FACT: Functionality-centric access con-
trol system for IoT programming frameworks. In Proceedings of the
22nd ACM on Symposium on Access Control Models and Technolo-
gies, pages 43–54. ACM, 2017.

[41] Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, and Xinwen
Fu. Security Vulnerabilities of Internet of Things: A Case Study of
the Smart Plug System. IEEE Internet of Things Journal, PP(99):1–1,
2017.

1148 28th USENIX Security Symposium USENIX Association

https://open.aliplus.com/docs/open/
https://iot.aliyun.com/
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.amazon.com/slp/smart-home-appliances/ygn94ga658qv4k8
https://www.amazon.com/slp/smart-home-appliances/ygn94ga658qv4k8
https://aws.amazon.com/iot-core/?nc1=h_ls
https://aws.amazon.com/iot-core/?nc1=h_ls
https://www.the-ambient.com/guides/host-smart-airbnb-home-tech-217
https://www.the-ambient.com/guides/host-smart-airbnb-home-tech-217
https://developer.apple.com/documentation/homekit
https://developer.apple.com/documentation/homekit
https://www.home-assistant.io/
https://www.home-assistant.io/components/smartthings/
https://www.home-assistant.io/components/smartthings/
https://www.home-assistant.io/components/
https://www.home-assistant.io/components/
http://medicalfuturist.com/healthcare-is-coming-home/
http://medicalfuturist.com/healthcare-is-coming-home/
https://www.businesswire.com/news/home/20160802005777/en/60-Percent-Guests-Pay-Vacation-Rental-Smart
https://www.businesswire.com/news/home/20160802005777/en/60-Percent-Guests-Pay-Vacation-Rental-Smart
https://www.businesswire.com/news/home/20160802005777/en/60-Percent-Guests-Pay-Vacation-Rental-Smart
https://www.engadget.com/2016/08/23/tp-link-us-rebrand/
https://www.engadget.com/2016/08/23/tp-link-us-rebrand/
https://scholarsarchive.byu.edu/etd/5631
https://scholarsarchive.byu.edu/etd/5631
http://bigthink.com/future-crimes/hacking-the-human-heart
http://bigthink.com/future-crimes/hacking-the-human-heart
http://www.ti.com/tool/SMARTCONFIG
http://www.ti.com/tool/SMARTCONFIG
https://alphadev.jd.com/
http://smartdev.jd.com/
http://aruljohn.com/mac.pl
http://aruljohn.com/mac.pl
https://www.pcmag.com/article2/0,2817,2498510,00.asp
https://www.pcmag.com/article2/0,2817,2498510,00.asp
https://xiaomi-mi.com/news-and-actions/xiaomi-the-worlds-largest-iot-platform/
https://xiaomi-mi.com/news-and-actions/xiaomi-the-worlds-largest-iot-platform/
https://xiaomi-mi.com/news-and-actions/xiaomi-the-worlds-largest-iot-platform/
https://null-byte.wonderhowto.com/how-to/track-wi-fi-devices-connect-them-using-probequest-0186137/
https://null-byte.wonderhowto.com/how-to/track-wi-fi-devices-connect-them-using-probequest-0186137/
https://thehackernews.com/2017/01/ransomware-hotel-smart-lock.html
https://thehackernews.com/2017/01/ransomware-hotel-smart-lock.html
https://infinum.co/the-capsized-eight/securing-mobile-banking-on-android-with-ssl-certificate-pinning
https://infinum.co/the-capsized-eight/securing-mobile-banking-on-android-with-ssl-certificate-pinning
https://infinum.co/the-capsized-eight/securing-mobile-banking-on-android-with-ssl-certificate-pinning

[42] Lily Hay Newman. Turning an Echo Into a Spy Device Only Took
Some Clever Coding. https://www.wired.com/story/amazon
-echo-alexa-skill-spying, 2018.

[43] AP News. Strategy Analytics: Global Smart Home Market to Hit
$155 Billion by 2023. https://www.apnews.com/e7466a4bc2b
d4243a8bcb3915bde8731, 2018.

[44] S Notra, M Siddiqi, H. H Gharakheili, and V Sivaraman. An exper-
imental study of security and privacy risks with emerging household
appliances. In Communications and Network Security, pages 79–84,
2014.

[45] TJ OConnor, William Enck, and Bradley Reaves. Blinded and Con-
fused: Uncovering Systemic Flaws in Device Telemetry for Smart-
home Internet of Things. WiSec, pages 140–150, 2019.

[46] TJ OConnor, Reham Mohamed, Markus Miettinen, William Enck,
Bradley Reaves, and Ahmad-Reza Sadeghi. HomeSnitch: Behavior
Transparency and Control for Smart Home IoT Devices. WiSec, pages
128–138, 2019.

[47] OFweek. JD has teamed up with Ziroom to create an smart
life for tenants. https://smarthome.ofweek.com/2016-06/AR
T-91008-8120-29106961.html, 2016.

[48] OpenHAB. OpenHAB empowering the smart home. https://ww
w.openhab.org/, 2018.

[49] Pocket-lint. Apple HomeKit and Home app: What are they and how
do they work? https://www.pocket-lint.com/smart-hom
e/news/apple/129922-apple-homekit-and-home-app-wha
t-are-they-and-how-do-they-work, 2018.

[50] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin OâĂŹFlynn.
IoT goes nuclear: Creating a ZigBee chain reaction. In 2017 IEEE
Symposium on Security and Privacy, pages 195–212. IEEE, 2017.

[51] Statista. Smart Home Market. https://www.statista.com/out
look/279/109/smart-home/united-states, 2019.

[52] Sumsung. SmartThings Developers Documentation. https://sm
artthings.developer.samsung.com/docs/index.html, 2018.

[53] TP-LINK. KASA. https://www.tp-link.com/us/kasa-sma
rt/kasa.html, 2018.

[54] Junia Valente and Alvaro A. Cardenas. Security & privacy in smart
toys. In Proceedings of the 2017 Workshop on Internet of Things Se-
curity and Privacy, pages 19–24, 2017.

[55] Veracode. Veracode Study Reveals the Internet of Things Poses Cy-
bersecurity Risk. https://www.veracode.com/veracode-stu
dy-reveals-internet-things-poses-cybersecurity-risk,
2015.

[56] XiaoMi. MIJIA. https://iot.mi.com/index.html, 2018.

[57] Hyunwoo Yu, Jaemin Lim, Kiyeon Kim, and Suk-Bok Lee. Pinto:
Enabling Video Privacy for Commodity IoT Cameras. In CCS, pages
1089–1101. ACM, 2018.

A Legitimate 3-tuple State Combinations

State of an IoT Cloud State of a Device State of a Mobile App

Type I
Platform

S1 S1 or S2 S1 or S2
S2 S3 S2
S3 S3 S3
S4 S4 S4

Type II
Platform

S2 S1 or S2 S1 or S2
S3 S3 S3
S4 S4 S4

B Tested Devices and Applicable Attacks

Tested Device Device Model Platform Applicable Attacks

Type I
Platform

Mobile Remote
HD Monitor

RIWYTH
RW-821S-ALY Alink

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

WiFi Smart Adapter
Philips

SPS9011A/93 Alink

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

Security
Smart Lock

KAADAS
KDSLOCK001 Alink

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS
Illegal Device Occupation

WiFi Smart Plug
BULL

GN-Y2011 Joylink
Remote Device Substitution
Illegal Device Occupation

Smart Weighing Scale ZK321J Joylink
Remote Device Substitution
Illegal Device Occupation

Type II
Platform

WiFi Plug
TP-Link
HS100 KASA

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS

WiFi LED Bulb
TP-Link
LB110 KASA

Remote Device Hijacking
Remote Device Substitution

Remote Device DoS

Smart Gateway
XiaoMi

Multifunctional Gateway MIJIA
Remote Device Hijacking

Remote Device Substitution
Remote Device DoS

Smoke Alarm
XiaoMi

Fire Alarm Detector MIJIA
Remote Device Hijacking

Remote Device Substitution
Remote Device DoS

Cleaning Robot
Samsung

POWERbot R7040 SmartThings Remote Device DoS

Hub
Samsung

Hub 3rd Generation SmartThings Remote Device DoS

Table 1: Tested devices and applicable attacks

C Sequence Diagrams
We show the complete sequence diagram of interactions with
concrete parameters for each of the studied platforms. Note
that some essential steps are omitted because they are irrele-
vant to our attack. In each figure, a box corresponds to one
phrase in the life-cycle of a device (Section 6.2).

Device

App

Server

ServerDevice

App

Load broadcast"method":"get DevInfo"

Plain(version, model, sn, mac)

Load broadcast {password,ssid}Discovery

/gw/mtop.alink.app.core.user.unbinddevice{uuid}

{"Success",errorcode}

{"Success",errorcode}

alink.tcp.aliyun.com{Sign,key,cid,uuid,"method":"unregisterDevice",
model,sn,mac}

Unbind

/gw/mtop.openalink.app.core.device.register.byuser{model,mac,sn,cid}

{errorcode,uuid}

/gw/mtop.alink.app.core.user.binddevice{uuid}

{"Success",errorcode}

Bind

{"Success",errorcode}

alink.tcp.aliyun.com{Sign,key,cid,uuid,"method":"loginDevice", sdkversion}

Login

alink.tcp.aliyun.com{Sign,key,cid,uuid(empty),
"method":"registerDevice",model,sn,mac}

errorcode,uuid

Register

Note: “uuid” is device ID in Alink platform.

Figure 1: Sequence Diagram of the Alink Platform

USENIX Association 28th USENIX Security Symposium 1149

https://www.wired.com/story/amazon-echo-alexa-skill-spying
https://www.wired.com/story/amazon-echo-alexa-skill-spying
https://www.apnews.com/e7466a4bc2bd4243a8bcb3915bde8731
https://www.apnews.com/e7466a4bc2bd4243a8bcb3915bde8731
https://smarthome.ofweek.com/2016-06/ART-91008-8120-29106961.html
https://smarthome.ofweek.com/2016-06/ART-91008-8120-29106961.html
https://www.openhab.org/
https://www.openhab.org/
https://www.pocket-lint.com/smart-home/news/apple/129922-apple-homekit-and-home-app-what-are-they-and-how-do-they-work
https://www.pocket-lint.com/smart-home/news/apple/129922-apple-homekit-and-home-app-what-are-they-and-how-do-they-work
https://www.pocket-lint.com/smart-home/news/apple/129922-apple-homekit-and-home-app-what-are-they-and-how-do-they-work
https://www.statista.com/outlook/279/109/smart-home/united-states
https://www.statista.com/outlook/279/109/smart-home/united-states
https://smartthings.developer.samsung.com/docs/index.html
https://smartthings.developer.samsung.com/docs/index.html
https://www.tp-link.com/us/kasa-smart/kasa.html
https://www.tp-link.com/us/kasa-smart/kasa.html
https://www.veracode.com/veracode-study-reveals-internet-things-poses-cybersecurity-risk
https://www.veracode.com/veracode-study-reveals-internet-things-poses-cybersecurity-risk
https://iot.mi.com/index.html

Device

App

Server

ServerDevice

App

/f/service/unbindDevice {feedid}

{errorcode}

Unbind

AES_enc ({timestamp,firmware version}, sessionkey)

AES_enc({timestamp,rand,seessionkey},accesskey)

AES_enc({timestamp,rand},accesskey+Plaintext(feedid,rand)

AES_enc ({timestamp,errorcode},sessionkey)

AES _enc({timestamp,device_status},sessionkey)

AES_enc ({timestamp,errorcode},sessionkey)

Login

/f/service/bind{feedid,pid,accesskey}

{devicename,feedid,status=0,pin(user account)}

Bind

/f/service/activiateSig(pid,mac,dev_rand)

{feedid,accesskey,dev_rand_sig}

errorcode

Plaintext (app_pub) +AES({accesskey,localkey,feedid},secret)

Register

plaintext(mac,uuid,dev_pub,dev_rand)

Local broadcast Plaintext(pid)
Discovery

Note: “feeeid” is device ID in Joylink platform.

Figure 2: Sequence Diagram of the Joylink Platform

App ServerDevice

App ServerDevice

coap GET: oic/res?rt=x.com.samsung.provisioninginfo

di(deivceid), links

coap GET: /oic/sec/doxm Query bound relationship

oxms,oxmsel,owned,deviceuuid,devowneruuid,rowneruuid,rt,i
f

Discovery

coaps+tcp DELETE /oic/account?di=XXXXXXXXX; accesstoken=Ct3cLTWrbey9zwng3cTJ4kM1s

Successfully removed

send close notify message

coaps+tcp POST /oic/account/session uid, di,
accesstoken, login, coreversion, verticalversion

Unbind

coaps+tcp POST
//18.218.32.104:443/oic/account/session (uid, di,

accesstoken, login, coreversion, verticalversion)

expiresin, refreshtoken_expiresin

coaps+tcp POST /oic/rd?rt=oic.wk.rdpub (di, name,
x.model, resources)

SUCCESS

Login

dtlsv1.2+coap POST /oic/sec/doxm
(oxmsel,owned,devowneruuid,rowneruuid,rt)

changed response
coaps+tcp POST ocfconnect-shard-na03-

useast2.samsungiotcloud.com/oic/account (di, AuthCode,
Accesstoken, Uid, AuthProvider, clientID, timeout_cnt)

accesstoken, refreshtoken, tokentype, uid, expiresin,
refreshtoken_expiresin, redirecturi, certificate, sid,

defaultgroup

Bind

Note: “di” is device ID in SmartThings platform.

Figure 3: Sequence Diagram of the SmartThings Platform

Device

App

Server

ServerDevice

App

XOR ("method":"bind", password, username)

XOR(err_code)

wap.tplinkcloud.com, {{"method":" unbindDevice", cloudUserName, deviceId}

{error_code}

devs.tplinkcloud.com{"method":"unbindDevice", accountId,
isNewDomain, productLineCategory, deviceId, cloudUserName, id}

{error_code}

Unbind

devs.tplinkcloud.com{"method":" bindDevice", deviceId,
cloudUserName, cloudPassword, id}

{error_code, msg}

devs.tplinkcloud.com{"method":"helloCloud", deviceId,
cloudUserName, deviceName, mac, model, hwId, fwId, oemId, id}

{error_code, msg, result, illegalType, tcspStatus}

Login

Bind

Load broadcast XOR("method":"get_sysinfo")

XOR(model, mac, hwId, fwId, deviceId, oemId, err_code)

Discover
Note: “deviceId” is device ID in KASA platform.

Figure 4: Sequence Diagram of the KASA Platform

Device

App

Server

ServerDevice

App

Note: “did” is device ID in MIJIA platform.

ot.io.mi.com,{did, stamp}

{did, stamp}

ot.io.mi.com,{did, stamp, AES(("method":"_otc.login", id), key)

{did, stamp, AES((result), key)}

Login

api.io.mi.com, {"method":"del_owner_device_batch", devList, did, pid}

ot.io.mi.com,{did, stamp, AES(("method":"restore", id, from), key)

{did, stamp, AES((result, id), key)}

{code, message, result}

Unbind

Load broadcast plaintext(0xff)

plaintext(did, mac, counter, token)

Discovery

ot.io.mi.com,{did, stamp, AES(("method":"props", id), key)

{did, stamp, AES((result), key)}

ot.io.mi.com,{did, stamp, AES(("method":"_otc.info", token, mac, uid,
ver, model), key)

{did, stamp, AES((otc_list, otc_test: ip, port, interval, firsttest), key)}

Bind

AES (("method":"config_router", ssid, passwd, uid), token)

AES((result), token)

Figure 5: Sequence Diagram of the MIJIA Platform

1150 28th USENIX Security Symposium USENIX Association

Looking from the Mirror: Evaluating IoT Device
Security through Mobile Companion Apps

Xueqiang Wang
Indiana University Bloomington

Yuqiong Sun
Symantec Research Labs

Susanta Nanda
Symantec Research Labs

XiaoFeng Wang
Indiana University Bloomington

Abstract

Smart home IoT devices have increasingly become a fa-
vorite target for the cybercriminals due to their weak security
designs. To identify these vulnerable devices, existing ap-
proaches rely on the analysis of either real devices or their
firmware images. These approaches, unfortunately, are diffi-
cult to scale in the highly fragmented IoT market due to the
unavailability of firmware images and the high cost involved
in acquiring real-world devices for security analysis.

In this paper, we present a platform that accelerates vul-
nerable device discovery and analysis, without requiring the
presence of actual devices or firmware. Our approach is based
on two key observations: First, IoT devices tend to reuse and
customize others’ components (e.g., software, hardware, pro-
tocol, and services), so vulnerabilities found in one device
are often present in others. Second, reused components can
be indirectly inferred from the mobile companion apps of
the devices; so a cross analysis of mobile companion apps
may allow us to approximate the similarity between devices.
Using a suite of program analysis techniques, our platform
analyzes mobile companion apps of smart home IoT devices
on market and automatically discovers potentially vulnerable
ones, allowing us to perform a large-scale analysis involving
over 4,700 devices. Our study brings to light the sharing of
vulnerable components across the smart home IoT devices
(e.g., shared vulnerable protocol, backend services, device
rebranding), and leads to the discovery of 324 devices from
73 different vendors that are likely to be vulnerable to a set of
security issues.

1 Introduction

Smart home IoT devices have become favored targets for at-
tackers [41] as much for the lack of user awareness [35] as for
their poor security design [46]. As the motivation for attackers
grows (e.g. IoT botnets, personal data theft), security incidents
for smart home devices are only expected to increase. Secur-
ing these devices is challenging on several fronts. First, a good

fraction of vendors in this space are small and medium-sized
businesses that lack the budget for software quality control
and security best practices, resulting in numerous insecure
devices in the market. Second, many of these devices are rel-
atively inexpensive (often less than $100) and cannot afford
to have support for expensive security infrastructure, such as
monitoring agents, encryption and authentication hardware,
etc. Consequently, when a device is found vulnerable, there is
very little incentive and capability for the vendor to release a
fix. Third, high vendor fragmentation makes it hard to manage
and distribute software/firmware patches.

One way to address this issue is to identify vulnerable
devices before they get deployed and take appropriate mea-
sures to protect the device. Examples of such measures
may include upgrading the device firmware, identifying and
blocking traffic that can exploit the vulnerability, or quar-
antining the device completely. To identify the vulnera-
ble devices beforehand, multiple approaches have been pro-
posed [10, 14, 16, 17, 19, 20, 24, 25, 27, 34, 42, 47, 49, 58]. One
line of research [19, 27] focused on launching an Internet-
scale scan to detect trivially vulnerable devices (e.g., de-
vices with weak passwords, certificates, and keys) that are
publicly accessible. However, these approaches often can-
not help identify devices with more sophisticated vulnera-
bilities or devices hidden behind NAT. Another line of re-
search [10, 14, 16, 17, 20, 24, 25, 34, 42, 47, 49, 58] focused on
statically and/or dynamically analyzing an IoT device or its
firmware to evaluate its security. Although these approaches
tend to yield more comprehensive and accurate results for
individual devices, they do not scale well for a large-scale
analysis. First, getting physical access to all the devices on the
market is not a viable option because of restricted availabil-
ity of devices in certain geographies and their prohibitively
high acquisition cost. Similarly, device firmware is not always
available due to the highly fragmented market that involves
a lot of small integration and distribution vendors 1. Second,

1Integration vendors are the ones that integrate components, tools, and
SDKs, provided by OEMs. Distribution vendors simply acquire the device
from an OEM and re-brand with their own before selling in the market.

USENIX Association 28th USENIX Security Symposium 1151

even with a device or its firmware, the analysis itself is often
tedious, error-prone and difficult, especially considering the
“device shell” that is often put in place by the device vendors
(e.g., packing, obfuscation and encryption). As a result, the
market would benefit from an approach where vulnerable
devices can be quickly identified at scale and the scope of
analysis can be narrowed down.

Approach. In this paper, we present a platform that acceler-
ates vulnerable device discovery and analysis without requir-
ing access to a physical device or its firmware. Our approach
is based on two observations. First, smart home IoT device
vendors, especially small and medium-sized ones, often rely
on same components (e.g., software built from open source
projects, hardware components from common suppliers) to
build their devices. Consequently, the same vulnerabilities or
bad security practices often transfer from one IoT device to
another. We can thus propagate vulnerability information to
an unknown device by evaluating its similarity with devices
known to be vulnerable. Second, similarities of devices are
often reflected in their mobile companion apps, which are
widely accessible. Combining these two observations enables
us to build a platform that identifies vulnerable devices in
a scalable way without requiring the physical devices them-
selves or their firmware images.

In our platform, we try to expedite the process of identify-
ing vulnerable devices by providing two functions: (1) app
analysis: find the characteristics of a device by analyzing its
companion app, and (2) cross-app analysis: find device fami-
lies, i.e. cluster of devices, that have similarity in some of the
characteristics found in app analysis by analyzing multiple
apps. Clustering helps identify apps that have a similar set of
vulnerabilities based on shared components [8].

Results Overview. For our experiments, we crawled Google
Play Store [3] to search for potential IoT companion apps and
downloaded 3,094 of them. After filtering out some noise,
we were left with a dataset of 2,081 apps (see Section 2.2 for
more details). These apps were then analyzed by our platform.

First, we found the device clusters, i.e., device families,
containing devices that are similar in various aspects such
as software or hardware components, back-end services, and
network protocols. For instance, in our analysis, we found 19
device families covering 139 apps from 122 different vendors
where devices in a family shared similar software components.
As another example, we found 48 different families covering
460 devices that shared similar back-end services.

Second, we tried to identify devices that are impacted by a
given vulnerability using the device families already identi-
fied. In one case, we were able to discover devices from four
different vendors (apps of which is estimated to be installed
by more than 215,000 users) that were previously not known
to be vulnerable to a software vulnerability and independently
confirm the existence of the vulnerability on 45 devices from
four different vendors that were previously confirmed by other

sources. In another case, we were able to identify 67 devices
from 16 different vendors that are impacted by a hardware
security issue. In total, our platform has identified 324 poten-
tially vulnerable devices from 73 different vendors. During
the process of validation, we could reach a decision (confirm
or disapprove) about 179 devices from 43 vendors, among
which 164 (91.6%) are confirmed to be vulnerable.

Contributions. This paper makes the following contribu-
tions:

• It demonstrates how companion mobile apps for IoT de-
vices can provide insights into the security of the devices
themselves.

• It shows the effectiveness by using this approach to as-
sess the security posture of IoT devices when neither the
physical devices nor their firmware images are available.

• It proposes a platform to perform mobile app collec-
tion, filtering, analysis, and clustering at a large scale. It
demonstrates its use by analyzing more than 2000 apps
and clustering them in multiple dimensions.

• It reports the discovery of 324 devices from 73 distinct
vendors that are likely to be vulnerable to a set of security
issues.

2 System Design

2.1 Overview
Figure 1 presents an overview of our platform. The first com-
ponent of our platform is the IoT App Database, which stores
the companion apps of smart home IoT devices crawled from
the Google Play Store [3]. The database is extended con-
stantly by fetching more apps (e.g., when new IoT devices
are on market or old apps get updated).

The apps stored in IoT App Database are then analyzed
by the App Analysis Engine. The goal of the App Analysis
Engine is to estimate the profile of an IoT device (i.e., what
the device is like) based on code analysis. Specifically, the
App Analysis Engine computes three things: the network
interfaces of a device, the unique strings (called imprints) that
a device may include, and code signature of the companion
app. The results of App Analysis Engine are stored in the App
Analysis Database.

A Cross-App Analysis Engine queries the App Analysis
Database and identifies correlations across different devices
in order to build a device family. A device family groups
together different devices from different vendors based on
their similarity. The similarity can be in terms of different
dimensions (e.g., similar software, similar hardware, similar
protocols, and similar cloud back-end services). The device
family allows propagation of vulnerability information among
similar devices. Specifically, it allows evaluation of IoT device

1152 28th USENIX Security Symposium USENIX Association

Figure 1: An overview of the platform

security from the perspective of either a device or a threat: 1)
for a specific device, the similarity allows to quickly assess
whether or not the device is vulnerable and if so to which
vulnerabilities, and 2) for a specific vulnerability, find the
set of devices on the market that might be affected by the
vulnerability.

To facilitate vulnerability confirmation, our platform con-
tains an additional component called Device Firmware Col-
lector. It leverages the code analysis results output by the App
Analysis Engine (e.g., Firmware URLs) as well as Internet
search results to download firmware images into a Device
Firmware Database. These firmware images later enable us
to further confirm the vulnerabilities found by the Cross-App
Analysis Engine. Note that the Device Firmware Collector
is not an essential or required component of our platform.
Rather, it is utilized as one of several means to help confirm
the findings from the platform (See Section 3.2 for more
details).

In the remainder of this section, we describe each compo-
nent of our platform in detail.

2.2 App Collection

The first step of our platform is to gather mobile companion
apps of smart home IoT devices for analysis. To achieve this
goal, we crawled Google Play Store2. In total, we downloaded
3,094 Android apps, out of which 2,081 were included in the
final dataset and analyzed by our platform.

The challenge during app collection is to identify apps that
are mobile companion apps of IoT devices. To address this
problem, we initialized the crawler with 281 seed apps manu-
ally selected from the online smart home products database
SmartHomeDB [5], and used snowball sampling to collect
more apps via the connections between the seed apps and
other apps on Google Play (e.g., keywords, suggestions and
categories). As a result, 3,094 candidate apps are initially
downloaded. However, we observed that snowball sampling
may sometimes introduce noise. For example, apps that man-
age phone camera are confused with the apps that manage

2We based our analysis primarily on Android but most IoT device vendors
provide mobile companion apps in both iOS and Android.

home security cameras. Apps that lock phone’s screen are con-
fused with smart home locks. To eliminate such noise from
the dataset, we performed filtering. The filtering is based on
a clustering model (Affinity Propagation [26]) that clusters
apps based on the permissions that the apps request on in-
stallation and the sensitive Android APIs that the apps may
invoke at runtime. We deploy the filtering on apps that are
nominated by the same seed sample and remain the largest
cluster. This approach turns out to be effective: a random
manual inspection of 200 apps after filtering shows that 98.5%
of them are real mobile IoT companion apps. After further
deduplication, 2,081 apps are left in the dataset and fed into
the App Analysis Engine for analysis. Note at the first phase
of the research, we worked with a relatively small dataset and
focused more on validating the approach. Our platform is
constantly running to collect more apps for future analysis at
a larger scale.

2.3 App Analysis Engine
The App Analysis Engine analyzes mobile companion apps
collected in order to build a device profile for individual de-
vices. Unlike previous works [12, 32, 48, 60] that focused on
apps themselves, the goal here is to compute what the de-
vice is like, indirectly from the app. We achieved this goal
by independently applying three methods: a device interface
analysis that computes the network interfaces of a device, an
imprint analysis that computes unique strings a device might
be related to, and a fuzzy hash analysis that computes code
signature of a mobile companion app. In practice, we found
that the first method is more comprehensive and informative.
Nevertheless, the rest two methods are still useful in filling in
gaps where the first method cannot easily apply.

2.3.1 Device Interface Analysis

The device interfaces are often a good reflection of what the
device is like, e.g., the protocol that the device speaks, the ser-
vice that the device runs, the function that the device supports,
and sometimes the hardware components in use by the device.
Without directly examining a device or its firmware, we es-
timate the device interfaces based on analysis of its mobile

USENIX Association 28th USENIX Security Symposium 1153

companion app, as the app and the device complement each
other in their network interfaces. A peer-to-peer connection
between the app and the device can benefit this estimation,
as the app interfaces, in this case, are direct reflections of the
device interfaces; however, this is not a necessary condition.
For devices where a cloud or backend service is involved,
popular backend services like Microsoft Azure IoT Hub [40]
are often generic: they tend to relay the connection between
the app and the device without much meddling. Such devices
also work well with our approach since their app interfaces
still closely reflect that of the devices. We performed a study
over the online IoT device database (SmartHomeDB), and
found that majority of the devices (76.3%) produced by small
and medium-sized vendors support a peer-to-peer connection
between the app and the device. Even large vendors like TP-
Link support both cloud and peer-to-peer mode for network
outage and privacy reasons. This enables us to have a good es-
timation of the device interfaces for many of the IoT devices,
especially vulnerable ones, that are sold on the market.

We used a backward approach to compute the network
interfaces of an app, starting from the network response mes-
sages that the app may receive, as these messages are informa-
tion output by the device. We first identify message handling
functions in the app and statically decide what the response
message may look like. We then identify the request that may
trigger the response. Finally, we partially instantiate and exe-
cute the app code to reconstruct the request [12, 56]. Figure 2
shows an example of the request and response extracted from
the mobile companion app com.Zengge.LEDWifiMagicColor
of Zengge Wi-Fi Bulb. With many different pairs of requests
and responses (e.g., with UDP/48899, TCP/5577 of the bulb
and also the cloud server *.magichue.net), we obtain a good
estimation of the device interfaces.

Figure 2: Interfaces of Zengge Wi-Fi Bulb

Response Extraction. We rely on symbolic execution [33]
to estimate what the response messages from a device may
look like, without actually running the device. We first
built a Control Dependency Graph (CDG) and Data De-
pendency Graph (DDG) of a mobile companion app using
Soot [51]. We then start from standard network receiving
functions in Android (e.g., <java.net.DatagramSocket: void

receive(java.net.DatagramPacket)>) and forward execute the
mobile companion app symbolically. Whenever we encounter
a branch that is dependent on the content of a response mes-
sage (e.g., fields of the response are checked against a value),
we capture the check as a symbolic constraint and fork the
execution. After all executions terminate, the conjunction of
the symbolic constraints is stored as a “description” of the
response message. In order for response messages from two
devices to be similar, they have to satisfy the same set of
symbolic constraints.

One practical issue is to decide when to terminate a sym-
bolic execution. In our experience, we found that a valid
response from the device (i.e., the response passes checks
performed by the app) often triggers state changes of the app.
Such state changes could be either UI element changes (e.g.,
updating device status displayed to the user) or modifications
to the local registry (e.g., storing device information to con-
figuration files, shared preferences or databases). To confirm
this heuristic, we randomly sampled 200 response handling
procedures that exist in 179 apps from our app set and eval-
uated manually the impact of valid responses. Among these
responses, 162 of them had an influence on UI elements, and
76 of them resulted in modifications to the local registry (with
some overlapping cases where responses changed both); only
eight of them would not trigger such changes, but the app
stored response content (e.g., login token) in global variables.
This study shows that state changes can be a good approxima-
tion for the termination of valid response handling. We thus
mark such state changes as the point where we terminate the
symbolic execution and produce the conjunction of the sym-
bolic constraints. In addition, we supplement this method with
the observation that invalid responses are discarded quickly
by the apps (i.e., within few lines of code). We thus also set
a threshold on the number of procedures to execute before
we terminate the execution. Utilizing these two heuristics,
we could produce a small but meaningful set of constraints
that closely describe a valid response that an IoT device may
produce.

Pairing Request and Responses. The next step is to identify
the request sent by the app that will trigger the response from
the device. In many cases, the request is straightforward to
identify: it co-locates with the response message handling
functions. In other cases, however, it is trickier as the request
can be located in a different procedure or class, especially
when the communication between app and device is asyn-
chronous. In these cases, static code analysis can be limited
in identifying the matching request.

Fortunately, we observe that a matching pair of request
and response often share a large code base of their handling
functions (i.e., classes and methods used to process the re-
quest and response). Such similarities are reflected in the
stack at runtime. To confirm this observation, we examined
the paired requests and responses for the same set of 200

1154 28th USENIX Security Symposium USENIX Association

Figure 3: Cumulative Distribution Function (CDF) of request
and response similarity

response handling procedures, and evaluated the similarities
between stack traces of the responses and the requests. Fig-
ure 3 shows the Cumulative Distribution Function (CDF) of
the Jaccard Similarity: 81% pairs of request and response
share over 61% of their stack frames, and more than half
(53%) of the request-response pairs have over 88% frames in
common. For unpaired requests and responses, the similarity
reduces to almost zero. Thus, by recording and comparing the
execution stack of the app when the app is making requests
(i.e., via concrete execution) and processing responses (i.e.,
via program dependence graph), we can pinpoint with good
accuracy, among multiple request sending functions, the one
that most likely will trigger the target response. As an exam-
ple, Figure 4 shows the stack traces of a request and response
that are used by Chuango Wi-Fi alarm system. The request
and response are matched based on the common stack frames
(e.g., those triggered by the same user click) despite being
located in different classes that run in different threads.

Figure 4: A matching asynchronous request and response in
cn.chuango.e5_wifi

Request Reconstruction. After identifying a matching pair
of request and response, the next step is to reconstruct the
request string. Unlike responses, requests are produced by
the app. Therefore, we may reconstruct a complete request
string as compared to a set of symbolic constraints for re-
sponses. A number of techniques have been developed for

reconstructing program values via program slicing and exe-
cution [12, 29, 48, 56]. We adopted the Instantiated Partial
Execution (IPE) technique developed in Tiger [12] in our
platform. The advantage of using IPE is that it evaluates and
instantiates variables to concrete values if they are found to be
irrelevant to the request string thereby dramatically reducing
the number of paths need to be explored. In addition, IPE
also caches outputs of code slices and reuses the results if
applicable, further reducing the analysis complexity. By using
IPE, we were able to reduce the time needed to reconstruct a
request to under a minute.

The result produced by device interface analysis is a set
of request and response pairs. The requests are fully or par-
tially3 reconstructed request strings and responses are sets
of symbolic constraints. A device is said to have a similar
interface as another device if they both accept similar requests
and output similar responses.

2.3.2 Imprints Analysis

Device imprints (i.e., unique strings) found in an app can
help correlate different devices. We are particularly interested
in imprints that show up in the communication between the
app and the device, as they are indicative of the uniqueness
of the device. In contrast, there are also app imprints, such as
app developer emails or special class names, that identify an
app or library. However, they are less indicative of the device.

Table 1: Examples of device imprints
Type Imprints Device

device keywords

“20140930073702357” Homeboy Wi-Fi
(dir. name in firmawre) Security Camera
“0622707c-da97-4286-cafe-”* SensingTEK
(UUID of the device family) Cameras

cert and comm. keys “Ztwy518518puy518” Zhongteng Smart
(AES key) Home Devices

user & pwd “P0rtal@123!” (account pwd) Pro1 Thermostats

special URLs “qjg7ec”.internetofthings Max Smart
.ibmcloud.com (MQTT orgID) Home Devices

Inspired by previous work done by Costin et al. [16] that di-
rectly extracts imprints from embedded firmware images, we
also focus on four types of device imprints: device (backdoor)
keywords, certificates and keys, non-trivial usernames and
passwords, and special URLs. The method we used to iden-
tify imprints is simple: we build a Data Dependence Graph
of an app and check backward from network APIs to find
constant strings in the app that affect parameters of those
APIs. Note that these APIs are used to communicate with
the device. In other words, we only use unique strings as
imprints if they are related to the device (i.e., they are part
of either requests to or responses from the device). A parser
later decides which category the constant strings fall into and

3Certain requests require user input (e.g., login request). In these cases, we
partially reconstruct the request with <NONE> string replacing the missing
user input.

USENIX Association 28th USENIX Security Symposium 1155

whether or not they are commonly seen (e.g., admin for both
username and password is ignored). Table 1 shows an ex-
ample of a few imprints we collected in our dataset. When
two apps have the same imprints (and both imprints affect the
communication with devices), it serves as a strong indicator of
the similarity between devices. For instance, by using imprint
"OBJ-000165-PBKMW", we were able to correlate VStarcam
and OUSKI IP Cameras (the latter is later confirmed to be a
rebranding of the former).

Although imprints can serve as strong evidence of cor-
relation, imprint analysis as a method is less applicable
in general since many times imprints of a device do not
manifest themselves in the app. For example, we were not
able to spot the existence of any magic keyword, like the
"xmlset_roodkcableoj28840ybtide" (i.e., edit by 04882 joel
backdoor in reverse) keyword used by a number of devices
for debugging purposes reported by Constin et al. [16].
This makes sense since the magic keyword is built into the
firmware images for debugging purposes, and device debug-
ging is generally not a critical functionality required for cus-
tomer facing apps. However, it highlights the limitation of
imprint analysis, and the reason why we need a fully fledged
device interface analysis.

2.3.3 Fuzzy Hash Analysis

Another method we used is to assess code similarity via fuzzy
hash. Similar mobile companion apps often indicate simi-
lar devices. We thus compute ssdeep of objects found in an
app, including classes, libraries, and other types of resources
(e.g., texts), and compare the results across apps. The ben-
efit of using fuzzy hash as compared to traditional hashing
algorithm (e.g., SHA1) is that we can relate objects that are
similar but are not exactly the same. Through this way, we
were able to identify a few similar devices. For example, the
companion apps of CHITCO and EDUP smart switches are
found to have 50.7% objects matched with 80/100 similarity,
and these two devices are later confirmed to share similar
software. Note, however, similarities between devices do not
necessarily mean similarities in the apps. We observed in
many cases that similar devices have different apps (e.g., apps
are developed independently), and therefore cause failures
to fuzzy hash analysis. Code similarity is more useful for
identifying obvious correlations as well as for cases where
other analysis methods have some difficulties to apply (e.g.,
for native libraries).

2.3.4 Modularity

A special consideration we made while building the App
Analysis Engine is the modularity of the analysis. The reason
we took this extra step as compared with generating analy-
sis result per app is to accommodate the modular similarity
that often appear across IoT devices. It is common that IoT

device vendors, especially smaller ones, comprise their prod-
ucts from a number of existing modules on market, such as
hardware components from common suppliers, software built
from open source projects, binary driver code for protocols
and etc. For example, the HiFlying Wi-Fi module is used by
a number of vendors to manage Wi-Fi connectivity for their
devices. Thus it is important for our analysis to be modular
as well, in order to track device similarities and detect vulner-
ability propagation at a finer granularity of individual device
components (Refer to Section 2.4 and Section 3.3 for more
details of the components that we can track).

We based our design on the observation that device compo-
nents are often managed by different code modules in the app
(e.g., class, package). Taking the previous HiFlying Wi-Fi
module as an example, devices such as BeSMART thermo-
stat that uses the module often have two separate classes,
com.hiflying.smartlink.v3.SnifferSmartLinkerSendAction and
com.besmart.thermostat.MyHttp, for handling Wi-Fi connec-
tion and user interaction over HTTP, respectively. We thus
infer such modularity from the app (e.g., based on class hi-
erarchy and invocation stack) and apply the above analysis
method on individual modules.

2.4 Cross-App Analysis Engine

The analysis results output by the App Analysis Engine are
stored into the App Analysis Database, which is then queried
by the Cross-App Analysis Engine. The Cross-App Analysis
Engine is designed to detect modular similarities between
different devices. In particular, the comparison is made to
detect four types of similarities: similar software components,
similar hardware components, similar protocol, and similar
backend services.

Similar Software Components. Similar device interfaces,
especially application interfaces, are indicative of strong con-
nections between software components of different devices.
For example, we were able to correlate 72 different smart
home IoT devices from 16 distinct vendors that might have
used the same version of GoAhead web server4. Such cor-
relation is powerful, as in many times security weaknesses
manifest them in software and security weakness found in one
device can directly impact the security of others. For example,
we were able to identify seven previously unreported devices
that are vulnerable to a known vulnerability, as detailed in
Section 3.3.

Another interesting phenomenon detected is device re-
branding. In the smart home IoT industry, smaller vendors
sometimes do not develop their own products. Instead, they
customize IoT devices from OEMs and resell with their own
branding. As reflected in the app analysis results, rebranded
devices have almost identical device interfaces across multi-

4GoAhead is a simple web server specifically designed for embedded
devices.

1156 28th USENIX Security Symposium USENIX Association

ple modules as the original OEM devices. Although device
rebranding itself is not an issue, it complicates the security
practices in firmware update and patching. In some cases, for
example as shown in Section 3.3, a vulnerability is inherited
by the rebranded devices from the OEM but the security patch
that fixes the vulnerability is not.

Similar Hardware Component. Smart home IoT devices
may be built upon similar hardware (e.g., Wi-Fi module).
Such similarities in hardware components are sometimes re-
flected in device companion apps due to the need for the app
to configure or interact with the hardware component. Due to
the specialty of the hardware, such device-app interfaces can
be unique, allowing a strong correlation of different devices
using the same hardware. For example, we found that two
Wi-Fi modules with a known security weakness of credential
leakage are potentially being used by 166 devices from 35
different device vendors. The total downloads of these apps
together are over 278,000 times.

Similar Protocol and Backend Service. A specific protocol
often has its own request and response format. Similarly, a spe-
cific backend service often exposes standard APIs. Cross-App
Analysis Engine can detect similarities in network interfaces
and thus correlate devices that speak the same protocol or
speak with the same backend service, even if such protocols
or backend services are not documented. For example, we
found that 39 different devices from 11 vendors are very likely
to speak the SSDP protocol, which was known to be vulnera-
ble as a reflector for DDoS attacks. As another example, we
found that 32 devices from 10 vendors relied on the same
cloud service to manage their devices, and the cloud service
has a reported security weakness that allows attackers to take
full control of the IoT devices by device ID and password
enumeration.

Future Work. There are additional dimensions that secu-
rity evaluation of an IoT device can benefit from similarity
analysis. For example, previous works [16, 28] have shown
that same developers or sub-contractor may follow a similar
way of coding thus having the same set of bad security prac-
tices or vulnerabilities built into their devices. Similarly, the
same development toolchain (e.g., compiler) may transform
code in a similar way that leads to the same set of security
issues [7, 52, 54]. As a future work, we plan to extend our
analysis to cover more dimensions of similarities in order
to obtain a more accurate and complete evaluation of smart
home IoT devices.

2.5 Device Firmware Collector
Our platform features an additional component called De-
vice Firmware Collector which enriches the Device Firmware
Database through downloading firmware images of devices
corresponding to the apps being analyzed. The purpose of the
firmware images is to help us confirm the findings from the

cross-app analysis phase. In our current platform, we collect
device firmware in two ways. First, we utilize the firmware
downloading links that are embedded in the mobile com-
panion apps. As IoT devices are usually headless (i.e., no
keyboard or screen for user interaction), they often deploy
firmware updates via the companion apps. As a result, links
are sometimes built into the app by the vendor. Such links are
often special URLs that can be extracted through imprint anal-
ysis. Second, we follow the app pages on Google Play, which
often direct to device vendors, to crawl potential firmware
files. Specifically, we used Google Custom Search API to pro-
grammatically search through vendor websites for firmware
image files.

For the files collected, we filter out non-firmware files by
checking their format using Binwalk [2]. Binwalk is a well-
known firmware unpacking tool which extracts various data
from a binary blob through pattern matching. Once a file is
decided to be a firmware, a special effort is made to correlate
firmware version with app version. As we will discuss in Sec-
tion 3.3, this helps us to decide at which version a particular
vulnerability is fixed and whether or not that fix has an impact
on the app.

Note that not all device firmware could be downloaded.
Even for the ones that we collected, there is still a considerable
amount of firmware encrypted or obfuscated that renders the
analysis difficult. This is a limitation yet to overcome in
vulnerability confirmation, as discussed in Section 4.2.

3 Dataset and Results

3.1 Dataset and Platform Statistics

Dataset. In total, our dataset comprises of 2,081 apps col-
lected through the method described in Section 2.2. The aver-
age size of the apps is 13MB (Min. 23KB and Max. 142MB).
These apps spread globally (271 languages) and have a total
download exceeding 1.2 billion. The apps cover 1,345 differ-
ent device vendors and, by our estimate, about 4,720 different
device models. We note that this dataset is still incomplete:
by comparing certain types of devices in our dataset (e.g., IP
camera) against online lists of devices [13,21–23] of the same
type, we estimate the dataset to cover ∼5-20% of the total
IoT companion apps.

Testbed and App Processing. Our app analysis platform ran
on a 4 Core, 3.33GHz Ubuntu 16.04 server with 16 GB RAM
and 1TB hard drive. The Android emulator is compiled from
Android Open Source Project, AOSP 4.4.4.

In total, our platform needed ∼68.3 hours to process the
2,081 apps, with an average processing time of 118.2 seconds
per app. In our experiment, we set the maximum processing
time to 10 minutes and the majority of the apps are processed
successfully within this time frame. The platform was not
able to fully analyze 73 (3.5%) apps within the timeout win-

USENIX Association 28th USENIX Security Symposium 1157

dow and therefore only partial analysis results are available
for them. In addition, 43 (2.1%) apps were not analyzed by
the platform because the tool we used (i.e., Soot) to build
CDG and DDG failed to handle the app bytecode during in-
terpretation. Overall, about 98% of the apps were either fully
or partially analyzed.

One practical concern is the obfuscation of the app and
its impact on the analysis. As reported in previous study, the
majority (85.8%) of the device companion apps are produced
by the standard tool in Android SDK (i.e., Proguard) [53],
which mangles the apps by renaming classes, methods and
fields. While Proguard introduces skews to the fuzzy hash
analysis, it does not affect our main analysis method (i.e., net-
work interface analysis) since it does not obfuscate network
APIs, data-flow and control-flow. Another concern is the pack-
ing of the app—some developers use packers to encrypt their
code, which would also have an impact on the network inter-
face analysis. However, consistent with observations made by
prior research [53], packers are often seen in malware, and
less adopted by benign apps. In our dataset, only a handful of
apps used commercial packers. Currently, we did not apply
any special processing to these apps. There is an orthogonal
line of research on developing better unpacking tools(e.g.,
DexHunter [59] and PackerGrind [57]) and our platform can
be supplemented by these tools.

Table 2: IoT device families
Type Number Covered Covered

of Families Apps Vendors
Software 19 139 122

Rebranding 28 156 104
Hardware 14 61 51
Protocol 40 271 210
Backend 48 460 422

Device Family. Table 2 shows all the device families de-
tected via our cross-app analysis. For example, we were able
to identify 19 distinct device families covering 122 different
vendors and 139 apps that were using similar software within
the family. As another example, we were able to detect 14
distinct device families covering 51 different vendors that
were using similar hardware components within the family.
Note that these families are not mutually exclusive; a device
might share software components with one device and hard-
ware components with another. The largest device family we
identified includes 31 device vendors and the smallest device
family includes only 2 device vendors. Figure 5 shows a more
intuitive illustration of the device family map.

3.2 Results Validation
Our platform is solely based on code analysis of mobile com-
panion apps, without requiring the physical devices or their
firmware images. This is the key to a large-scale security
analysis of smart home IoT devices. However, the drawback

Figure 5: Device family map. Circle size indicates the number
of device vendors in the family (the largest circle covers 31
vendors, while the smallest covers two).

of such approach is the accuracy of the result: the output from
this analysis (e.g., a family of devices impacted by a particular
vulnerability) is a conjecture that points to potential security
issues that need to be validated with real devices.

In this paper, we validate and report some of the results we
obtained from our analysis to demonstrate the value of the
approach. We took a hybrid validation route, taking into con-
sideration practical limitations such as the budget. First, we
try to acquire the real device and test it in a local environment
(Figure 6 shows the devices we purchased for validation).
Second, if we do not have the device, we try to simulate, or in
some cases statically analyze, device firmware stored in the
Device Firmware Database (built from the method discussed
in Section 2.5). Third, if neither of the first two methods
applies, we search through online reports including vendor
manuals and websites, bug reporting forums, IoT hacking
communities and so on. Fourth, we work with the vendor
and request their help in validating the results. We primarily
used the second and third method, as the first method is very
expensive and the fourth method is often a black hole (i.e., no
responses from vendor). Upon confirming our findings, we
also try to estimate the impact of the finding by searching the
online presence of the device on Shodan [4].

Ethics. Testing vulnerabilities and scanning real-world de-
vices often bring up serious ethical concerns. In our study, we
pay special attention to not cross legal and ethical boundaries.
For both real and simulated devices, we evaluate the device in
a local network that only allows outbound connections. The
device is brought offline immediately after the experiment
to avoid being exploited and used as a bot. To evaluate the
impact of a particular security issue, we collect data from
existing results of Shodan, instead of scanning vulnerable

1158 28th USENIX Security Symposium USENIX Association

Figure 6: Smart home IoT devices for vulnerability validation

devices directly. In this way, we don’t introduce extra net-
work scans. Most importantly, we release our findings to all
affected vendors, and refrain from including the real name of
any device that is still un-patched or under investigation.

3.3 Results Overview
We present our findings from the perspective of threats, by
showing how many smart home IoT devices are potentially
impacted by a given vulnerability or security weakness. How-
ever, it is also possible to look at the findings from a device’s
perspective, i.e., for a specific device, what kind of vulnera-
bility or security weakness it may suffer from. The results
are encouraging: we identified 324 device models from 73
vendors that are potentially vulnerable to a number of security
issues. For the devices that we can confirm or disapprove,
about 91% are confirmed to be vulnerable. The total number
of users of these devices is estimated to be over 11.1 million.

3.3.1 Vulnerable Software

To demonstrate how software vulnerabilities propagate across
devices, we applied our analysis to five high profile vulner-
abilities (shown in Table 3) that were reported in GoAhead
web server which many smart home IoT devices utilize to
provide a web-based interface. These vulnerabilities range
from authentication bypass to backdoor account to remote
code execution. We started from mobile companion app ob-
ject.liouzx.client of NEO Coolcam IP Camera, which was
known to be vulnerable to these vulnerabilities, and utilized
the cross-app analysis to identify devices that might be similar
in their software. Since these are relatively old vulnerabili-
ties (reported in 2017), we expected fewer results. However,
in total we still identified 72 device models belonging to 16
distinct vendors that share similar software as the vulnerable
device. To validate the results, we utilized the methodology
discussed in Section 3.2. We were able to confirm through
online reports that 45 device models from four vendors are

indeed vulnerable. Since these results are already publicly
disclosed, we included them in Table 3. Additionally, we
confirmed through manual firmware analysis that six device
models from three IP camera vendors, Vendor A, Vendor B
and Vendor C, are also impacted by these vulnerabilities. We
have informed those vendors about the vulnerabilities but no
patch is released yet. Furthermore, we confirmed through real
device that one baby monitor device from Vendor D is also
impacted by the vulnerabilities. Vendor D has asked us to
refrain from including their names until further investigation
is done on their side. In total, we confirmed the existence of
the vulnerabilities on 52 device models from eight different
device vendors, with seven device models from four vendors
newly discovered.

While validating the results, we also encountered one case
where our platform mistakenly flagged a device as vulner-
able. The analysis results output by the platform show that
three device models produced by KGUARD have very sim-
ilar interfaces with other vulnerable devices. However, our
manual validation on the real device as well as emulated
firmware shows that the KGUARD devices are not vulnera-
ble. We inspected the firmware, and found that the software
configuration of KGUARD is indeed very similar to the vul-
nerable devices. Specifically, we found that 26 out of 31 CGI
programs and web pages are in common. But the vulnerable
code was removed. Our hypothesis is that since these devices
are relatively new on market (i.e., after the vulnerability was
reported), KGUARD may have customized the software con-
figuration and patched the vulnerability before releasing the
product to the market.

We also want to highlight two observations we made during
the process of results validation. First, although the vulner-
abilities are old, we are still seeing a large set of devices to
be potentially vulnerable. A Shodan search shows that there
are potentially 58,456 devices running in the wild still being
vulnerable and the total number of app downloads is more
than 282,000 times. This is the result of a dataset with merely
∼2K apps. With a large-scale analysis covering more device
models and vendors, the problem can be even worse. This
demonstrates a common issue in the smart home IoT market:
the market is highly fragmented and many smaller vendors
never bother taking care of the device after selling the device.

Another observation to highlight is the difficulty to validate
the results, or rather the general challenge of evaluating the
security of an IoT device. We were not able to validate find-
ings on 17 device models from seven out of the 16 vendors,
despite that the cross-app analysis tells us they might also be
vulnerable. The validation was not successful for a number
of reasons: some devices are not targeting U.S. market there-
fore we could not easily acquire, some devices do not provide
firmware download therefore we could not evaluate, for de-
vices that we could download firmware the encryption and
packing render analysis difficult. In addition, the collabora-
tion with device vendors have been very difficult. Many times,

USENIX Association 28th USENIX Security Symposium 1159

Table 3: IoT devices impacted by vulnerable software and device rebanding

CVE Impacted Vendor Device Validation Mobile App App Confirmation
Models Method Downloads Status

CVE-2017-8221
CVE-2017-8222
CVE-2017-8223
CVE-2017-8224
CVE-2017-8225

IP Camera Vendor A 4 Firmware App A 100,000+
Newly

Discovered
IP Camera Vendor B 1 Firmware App B 5,000+
IP Camera Vendor C 1 Firmware App C 100,000+

Baby Monitor Vendor D 1 Device App D 10,000+
Instar 2 Reports camviewer.mobi.for_instar 1,000+

Independently
Reconfirmed

VStarcam 35 Reports vstc.GENIUS.client 1,000+

Sricam 6 Reports object.shazx1.client.yi
object.smartmom.client 55,000+

Conceptronic 2 Reports/Firmware camviewer.p2pwificam.client 10,000+
KGUARD 3 Device object.kguard.client 10,000+ FP
7 Vendors 17 N/A 7 apps 146,000+ Pending Confirmation

our email request about potential security issues went into a
black hole (i.e., no responses ever received from the vendor).
We believe this is also an artifact of market fragmentation as
smaller vendors tend to care less about the security of their
products.

3.3.2 Device Rebranding

Investigation of a more recent vulnerability, CVE-2018-11560,
leads to another interesting finding of device rebranding. This
vulnerability was initially reported in Insteon IP Camera 2864-
222 (firmware 1.4.1.9), where the embedded web server on
the device had a missing bounds check when parsing CGI
parameters, resulting in a stack buffer overflow. We used the
companion app of Insteon IP camera as the input to our Cross-
App Analysis Engine to detect if any other devices might
be vulnerable to the same vulnerability. To our surprise, we
found that almost identical device interfaces are provided by a
major IP camera vendor, Foscam. We initially suspected that
the same web server might be used by both vendors, but later
through research we found that Insteon IP camera 2864-222 is
actually a rebranded version of Foscam IP Camera FI8918W—
it is based on the exact same hardware and software but with
a different brand name. Not surprisingly, early versions of
Foscam IP camera also suffer from the same vulnerability,
but no one has reported that.

The interesting part, however, is that Foscam actually
patched the vulnerability before the vulnerability was reported
in Insteon IP camera. We examined the firmware history of
Foscam IP camera and found that the vulnerable code was
shipped in over eight Foscam firmware versions before Jul.
2017, impacting at least 15 Foscam models. In firmware up-
dates (2.x.1.120) of Jul. 2017, the vulnerability was patched.
However, this patch never made it to the Insteon IP camera
until the vulnerability was reported in 2018. We contacted
Foscam about this issue, but their response neither confirmed
nor denied the finding. Instead, we were advised to update
to the newest version of firmware. This highlights another
interesting issue about smart home IoT devices. Due to the
fragmented market, smaller IoT vendors sometimes do not
develop their own products. Instead, they customize IoT de-
vices from OEMs and resell with their own branding. This

complicates the security management of the product and puts
customers in danger, as vulnerabilities in upstream vendors
tend to propagate to a broader set of downstream vendors but
security patches are not. Indeed, a Shodan search with the
IP camera fingerprints (e.g., server type, time stamps) shows
that although Foscam released patches as early as Jul. 2017,
there are still 30.7% (10,210 out of 33,230) devices that are
not patched to the secure version.

Additionally, our analysis shows that re-branding is indeed
not uncommon. With a dataset of ∼2K apps, we identified
27 other re-branded device families not including Foscam
example. Examples of these devices include smart plugs from
Bayit and Orvibo, Wi-Fi sockets from CHITCO and EDUP
and so on. Further validation is needed to confirm if these
devices inherit any vulnerabilities from upstream vendors.

3.3.3 Vulnerable Hardware

Different IoT device vendors may rely on a common hard-
ware module (e.g., Wi-Fi, Bluetooth), which, if vulnerable,
could impact multiple devices. The challenge, however, is
that IoT device vendors often do not publicize the hardware
components in use. As a result, it is often difficult to decide if
a device is vulnerable due to a vulnerable hardware compo-
nent without tearing apart the physical device or unpacking
the firmware to examine the driver code.

Through cross-app analysis, we identified a total of 166
devices belonging to 35 different vendors that are poten-
tially impacted by two recent security weaknesses found in
hardware. In one example, a recent study [36] demonstrated
that Hi-Flying Wi-Fi module (HF-LPB100, HF-LPT100, HF-
LPB200) can be leveraged by an adversary to steal home
network Wi-Fi credentials. The Hi-Flying Wi-Fi module is
a self-contained 802.11b/g/n module used by a number of
IoT devices to provide wireless interfaces. As an important
feature, the module supports credential (e.g., SSID, password)
provisioning from device companion app to IoT device via
SmartLink. As reported by the study [36], the provisioning
process may leak Wi-Fi credentials: an adversary could pas-
sively listen to the traffic and gather the home Wi-Fi network
credentials without much effort. Through our cross-app anal-
ysis, we identified that 26 apps, covering 108 devices from 21

1160 28th USENIX Security Symposium USENIX Association

vendors are potentially impacted by this security weakness.
These apps have been downloaded more than 158,000 times.
In another example, ESP8622, a low-cost Wi-Fi microchip
that appears in many cheap IoT devices (e.g., Wi-Fi controller,
smart plug), was reported to have a similar vulnerability in its
ESP-Touch provisioning protocol. In our analysis, we identi-
fied that 21 apps covering 58 devices from 14 distinct vendors
are potentially impacted by the security weakness. In total,
these apps have been downloaded more than 120,000 times.

Among the devices flagged by the platform, we were able
to confirm that 67 devices from 16 vendors are indeed im-
pacted by the security weaknesses (43 devices from eight
vendors are confirmed through vendor response. 24 devices
from eight vendors are confirmed through firmware emula-
tion, real device or online reports.). Through vendor response,
we were also able to identify that seven devices from two ven-
dors were mistakenly flagged by the platform as vulnerable
(i.e., ∼9% false positive rate). We manually examined the
two apps to analyze the reason for the false positive. For one
case, 14 devices supported by the Revogi app were flagged by
the platform as potentially vulnerable. However, four of them
(Power Plug SOW324, Power Strip SOW321 and SOW323,
and Smart Light LTW311) were not actually using the vul-
nerable hardware. The issue was due to the imprecision of
the static analysis performed by the platform. Since the app
supports multiple devices from the same vendor, the code
modules that control individual devices are not clearly dis-
tinguishable (i.e., some modules are shared across devices
but others are independent). As a result, the platform was not
able to attribute the network interfaces that correspond to the
vulnerable hardware to a specific device. Instead, the platform
outputs all the devices supported by the app as potentially
vulnerable. For another case, three devices supported by the
smanos app were flagged by the platform by mistake. The
devices were found not to be using the vulnerable hardware,
but the code module and the corresponding network inter-
faces that control the hardware was included in the app. This
may be due to that the app developer built the app upon some
open source templates that contain the hardware module, or
maybe the device vendor changed their hardware configura-
tion during the device development process, but the app code
was never cleaned up. Nevertheless, the IPE method used by
the platform is guided by static analysis to construct network
interfaces as long as a code snippet is reachable from an An-
droid activity, even though that activity may never be actually
triggered by the real device.

3.3.4 Vulnerable Protocol

Similar to hardware components, IoT device vendors often
do not publicize the protocols that a device speaks. These
protocols range from more open and standard ones such as
UPnP, mDNS and SSDP to proprietary ones such as TDDP5

5TDDP stands for TP-Link Device Debug Protocol.

used for debugging, penetrating private networks and various
other purposes. Not knowing which protocol a device can
speak creates a great security challenge of managing the de-
vice, especially when the protocols are found to be vulnerable
or can be leveraged by an adversary to launch attacks.

Through cross-app analysis, we can identify devices that
speak the same protocol, thus may suffer from similar secu-
rity problems. For example, previous research [37] showed
that SSDP protocol can be abused by adversaries in order to
launch DDoS attacks. SSDP queries such as "ssdp:all" and
"upnp:rootdevice" may result in a response size orders of
magnitude larger, thus if openly accessible to the Internet may
serve as a reflector to amplify requests sent by the attacker.
Through cross-app analysis, we identified 39 devices from 11
different vendors that speak SSDP, despite that few of them
clearly documented the protocol that their devices speak. As
a result, once these devices are activated in the environment
where a firewall is not configured to block incoming queries,
they may act as reflectors for DDoS attacks. It’s difficult to tell
the exact number of devices that are exposed and vulnerable,
but the total app downloads (over 10.2 million) indicate that
a massive number of devices could possibly be harnessed by
attackers.

We validated the results output by the platform. In total,
we were able to confirm that 18 devices from six vendors are
indeed speaking the SSDP protocol. One device, Bixi gesture
controller, was mistakenly flagged by the platform. The case
with Bixi gesture controller is interesting: the device itself
does not speak SSDP, but its companion app does, therefore
causing false positive for the platform. The reason is that the
gesture controller is a device that allows users to control other
devices via gesture. It does not speak SSDP but relies on its
companion app to use SSDP to discover subsidiary devices
for it to control. In this case, the network interface of the app
is not an exact mirror of the device interface, causing false
positives in the platform.

3.3.5 Vulnerable Backend Service

IoT devices may rely on the same IoT cloud backend ser-
vice to relay command and control (e.g., to penetrate private
home networks). When the backend service contains a secu-
rity weakness, multiple IoT devices using the same service
are impacted at the same time. However, without detailed
knowledge of the registered customers of the cloud service,
many of these impacted devices are left vulnerable until the
problems are independently discovered.

Our cross-app analysis can help address this issue. In a
particular case, the security weakness was initially reported
on DeepSec 2017 [38], where an IoT cloud backend service is
found to be using very short device IDs (i.e., only six digits)
to register IoT devices. Consequently, any IoT device that is
using the service to relay commands and control is vulnerable
to device ID and password enumeration attacks. A successful

USENIX Association 28th USENIX Security Symposium 1161

attack may enable attackers to authenticate to the device and
abuse the device as a bot. We used the vulnerable device re-
ported in DeepSec, Yoosee, as the seed for cross-app analysis
and found 32 devices from 10 different vendors also rely on
the same vulnerable backend to relay command and control.
While it is hard to estimate the actual number of devices in
the wild that are vulnerable, the total amount of downloads
of these apps is over 226,000 times.

Among the 32 devices flagged by the platform, we were
able to confirm that 12 devices from seven vendors are in-
deed sending requests to the specific backend server, and the
device IDs are indeed enumerable (i.e., 6-digits). We also
found that four devices from one vendor, namely secrui, were
mistakenly flagged by the platform. The reason is similar to
the "dead code" issue we encountered while validating results
for devices with vulnerable hardware: we found that secrui
app embedded a self-contained app com/jwkj that talks to
the problematic backend server and thus the app interfaces
exhibit similarity with those that are vulnerable. However, the
embedded app was never actually executed nor did the de-
vices supported by secrui app actually talk to the problematic
backend server.

3.4 Accuracy of Results

In total, the platform flagged 324 devices from 73 vendors as
potentially vulnerable, and we were able to confirm that 164
devices from 38 vendors are indeed vulnerable. This accounts
for roughly 50.6% of all the devices flagged by the platform.
During the process of validation, we were also able to iden-
tify that 15 devices from 5 vendors were mistakenly flagged
by the platform as vulnerable. This accounts for 8.4% of all
the devices that we could either confirm or disapprove (i.e.,
false positives). Table 4 enumerates the reasons for the false
positives and the number of instances of each reason. The
first reason for the false positive is the existence of the patch.
After vulnerabilities were disclosed, vendors may patch the
device. In this case, the app-device interface may stay largely
the same, but the device is no longer vulnerable. This is a
fundamental limitation of the approach, as the platform is
designed to only extract information from the app, not the
device. Thus, if the patch does not have any impact on the app,
the approach cannot differentiate a vulnerable device from a
patched one. The second reason for false positive is the “dead
code” inside of the apps. Sometimes the apps may contain
code that was not actually being used by the device (legacy
code, code adopted from elsewhere without cleaning and etc.).
Statically, it is difficult to decide if the code will ever be trig-
gered and executed at runtime. Our platform currently may
mistakenly include analysis results from such "dead code"
if the "dead code" exhibit similarities with other vulnerable
devices, thus causing false positives. The third reason for the
false positive is the imprecision of the static analysis. Cur-
rently, the static analysis techniques used by the platform are

not precise enough to attribute network interfaces to individ-
ual devices if a single app supports multiple devices and these
devices share much common control logic inside of the app.
This issue, as well as the “dead code” issue listed above, are
not a fundamental problem with the approach. Rather, they
are an artifact of the static analysis techniques we used to
analyze the apps in the platform. We are currently working
on improvements to the techniques to improve the accuracy
and precision of the static analysis. Finally, we encountered
an exception case to our approach where the app interface is
not an exact reflection of the device interface (i.e., the Bixi
gesture controller). However, due to the nature of the device
(i.e., a device that controls other devices), it is uncommon
among the IoT devices. We are exploring the Google Play
store to identify if there are any more devices of the similar
kind.

Table 4: Reasons for the false positives

Reason # of
Devices

of
Vendors

Existence of the patch 3 1
Dead code inside of the apps 7 2

Fail to attribute interfaces to individual devices 4 1
Difference in device and app interface 1 1

4 Discussion

4.1 Miscellaneous Findings

During the process of analyzing the interfaces between apps
and devices, we have some interesting observations, which
are presented here.

Confusing Trust Model. We observed that IoT device devel-
opers sometimes have a confusing, if not conflicting, trust
assumption regarding the local environment that their devices
will run in. On one hand, they seem to assume that the local
environment (i.e., consumer’s home network) is not trustwor-
thy. They apply encryption and authentication to protect the
communication between the app and the device. On the other
hand, they place an excessive amount of trust on the app, e.g.
they would embed the encryption keys and authentication cre-
dentials into the app. In such a scenario, an adversary within
the local environment can easily bypass the protections that
the device developer built, as long as the adversary has access
to the Google Play Store and has a basic knowledge of re-
verse engineering an app. As an example, TP-Link Smart Plug
(HS110) accepts commands from its mobile companion app
(and potentially anywhere else from within the LAN) without
authentication. The vendor seems to be concerned about local
threats to this design and, therefore, encrypts the communi-
cation. However, the encryption key in use (i.e., integer 171
XOR message) is simple and static, and most importantly built
into the app. Anyone with access to the app can thus forge the

1162 28th USENIX Security Symposium USENIX Association

communication easily. This problem is also reported by [50].
Another example is the D-Link water sensor. D-Link water
sensor requires authentication from its mobile companion app.
However, the credentials used to authenticate the app is fixed
(i.e., not configurable by user) and built into the app. These
examples highlight the confusing mindset of many IoT device
developers and the lack of general understanding of security.
While in this paper we do not intend to give solutions to the
problem, we believe a more standard architecture developed
with security in mind can help limit the freedom offered to
developers thus improving the security.

“Convenient” Provisioning. Smart home IoT devices are of-
ten headless—they do not provide direct user interfaces (e.g.,
touch screen, keyboard). As a result, they often rely on mo-
bile companion apps to provision the credentials of home
Wi-Fi network, in order for them to join the network. Our
observation through studying the device interfaces is that the
provisioning method is evolving from more user interactive
approaches (e.g., AP Mode, WPS and out-of-band channels
such as Bluetooth) to a more automated and hands-off ap-
proach where users do not need to do anything except provid-
ing the credentials. This presumably provides convenience,
but many times at the cost of security. These newer methods
such as Smart Config [30] and Sound Wave6 often artificially
create a side channel between the app and the device, and rely
on these channels to transfer Wi-Fi credentials. Unfortunately,
these side channels are publicly observable therefore allow-
ing the credentials to be leaked. In addition, even without
considering the openness of side channels, securing a side
channel can often be much more difficult than normal means
of communication. This highlights the long-lasting problem
of balancing usability with security.

4.2 Limitations and Future Work
The major limitation of the approach discussed in this pa-
per is the accuracy of the analysis results. As we based our
analysis solely on mobile companion apps, we are inherently
limited to the information we can obtain from the app, and
sometimes the information we can obtain may not be an ac-
curate reflection of the device. For example, a device may
have patched a vulnerability and the patch did not change
the device interfaces at all. In this case, our analysis will still
output the device as potentially vulnerable since our platform
would have no clue about the existence of the patch by just
inspecting the app. This, however, is a trade-off we have to
make in order to study IoT device security at scale. We believe
a multi-stage solution can help address this limitation where
the first stage (i.e., our platform) narrows down the scope
of analysis by identifying the potentially vulnerable devices,
and the second stage automates the vulnerability confirmation

6Wi-Fi credentials are encoded in the sound wave and sent out directly by
the phone. This method is being used by devices such as 360 and Securenet
IP Cameras.

with more targeted but rigorous analysis, e.g., dynamic/static
analysis of firmware, device fuzzing.

Another limitation of the approach is that the network inter-
face analysis can be rendered less effective in scenarios where
IoT backend servers or cloud significantly decouple device
interfaces from app interfaces. An example is the Google
and Amazon devices where much of the management is done
through the cloud. In this case, our approach can glean less
information about the device software. However, information
such as the Wi-Fi credential provisioning module and the
backend services in-use are still available in the app, which
allows the platform to predict security issues of these compo-
nents.

This work could also benefit greatly from an automatic
vulnerability collection system. Currently, this is a manual
process: we manually collect the vulnerabilities and impacted
devices that were reported publicly. We then propagate the
vulnerability information to more devices through our plat-
form. An automatic vulnerability collection system can help
label the initial seed devices as well as evaluating security
from a device’s perspective (i.e., to find the set of security
issues that a given device may have).

Another aspect to improve on is the dimension and granu-
larity of the similarity analysis, as mentioned in Section 2.4.
Further improvements to the App Analysis Engine may allow
the platform to detect similarities in finer components of a
device software stack (e.g., web server, PHP interpreter, web
application, OS, driver) as well as other dimensions (e.g., sim-
ilar developer, similar development toolchain). This would
enable us to track vulnerability propagation more compre-
hensively and accurately. We leave the refinement of the App
Analysis Engine for future work.

The general methodology, i.e., utilizing companion app
analysis to study the device, also enables a number of in-
teresting applications that we plan to explore for the future
work. For example, from app analysis, we could potentially
tell what types of sensors are on a device and what types of
network traffic a device may produce. This would allow a
home security gateway, which is shipped as a default com-
ponent of many Wi-Fi routers on the market, to enforce an
accurate protection profile and detect anomalous behaviors
of IoT devices in real time. As another example, instead of
similarities, the Cross-App Analysis Engine in our platform
can detect differences between devices. Such differences may
enable a more accurate fingerprinting method of the device.

5 Related Work

IoT device vulnerabilities. IoT devices are affecting increas-
ing number of users in every aspect of their life. Meanwhile,
various studies revealed that firmware of many devices is
filled with vulnerabilities. For instance, Paleari [44, 45] re-
ported that D-Link DIR-645 routers expose critical web pages
to unauthenticated remote attackers, allowing them to extract

USENIX Association 28th USENIX Security Symposium 1163

root credentials and take full control of the device; also multi-
ple web interfaces are affected by stack-buffer overflow that
leads to remote code execution. Cui et al. [18] found that
attackers may inject malicious firmware modifications to a
device while it’s updated. With the vulnerabilities and the
huge amount of insecure devices [31], there arise a series of
large-scale attacks, such as Mirai [35], BASHLITE [1], etc. To
better understand the events, researchers have conducted com-
prehensive study on both features of the known vulnerabilities
(and malware) [15] and their propagation [6, 39].

Various analysis approaches have been proposed to identify
vulnerable IoT devices. For instance, with a network scanner
(i.e., nmap), Cui et al. [19] found that over 13% devices are
publicly accessible by default credentials. Similarly, using an
Internet-wide scanning, Heninger et al. [27] showed that a
large amount of TLS and SSH servers on embedded devices
are affected by weak certificates and keys. Online services,
Shodan [4] for example, allow security researchers to identify
vulnerable online web services and devices. Such works are
effective to find devices with known vulnerabilities and eval-
uate their impacts, but in many cases fail to catch problems
that also appear in other devices.

Further, researchers are utilizing different techniques [16,
20,24,25,47,49,55] to statically identify vulnerabilities in the
device firmware. A majority of the approaches fall into the
broader category of vulnerability search: derive signatures
from known vulnerabilities, and then use them to search in
other firmware images. To name a few, Costin et al. [16] con-
ducted a large-scale study by scanning 32k firmware images
with simple signatures (e.g., certificates, unique keyword),
which is difficult to cover vulnerabilities that are not bound to
specific strings. To address the problem, following works that
collect robust features from such as I/O behavior of the image
binary [47] and control flow graphs [24, 25] were proposed.
Instead of extracting signatures from firmware image, Xiao
et al. [55] presented an approach that discovers unknown vul-
nerabilities based on the study of existing security patches.
In addition, Davidson et al. [20] built a symbolic execution
framework on top of KLEE [9] for detecting vulnerabilities
in MSP430 microcontroller family, which is difficult to scale
as it needs to customize for specific architectural features of
an IoT device. Similarly, Shoshitaishvili et al. [49] showed
how symbolic execution and other techniques (e.g., program
slicing) work to find authentication bypass vulnerabilities in
a firmware image. Corteggiani et al. [14] improved symbolic
execution of firmware by incorporating source code seman-
tics, etc. While these approaches are effective, they rely on
the static analysis of the firmware images, and therefore are
limited in cases where the images are not publicly available or
cannot be unpacked. In contrast, our work focuses on finding
potential vulnerabilities using analysis of the IoT companion
apps, which turns to be scalable, especially for IoT devices of
smaller companies.

Another effective approach is dynamic firmware analy-

sis [10, 17, 42, 58]. Zaddach et al. [58] performed dynamic
analysis by forwarding I/O access from an emulator to the ac-
tual hardware, and further, Muench et al. [42] presented how to
orchestrate execution between multiple testing environments.
Koscher et al. [34] used an FPGA bridge to allow the emu-
lator full and real-time access to the hardware. While these
approaches are accurate, they are not applicable to large-scale
analysis because of the lack of budget to obtain the device,
and the required effort to figure out the hardware interfaces.
To address the problem, Costin et al. [17] built a QEMU-based
emulation framework to discover vulnerabilities in web inter-
faces of an IoT device; Chen et. al [10] presented a full system
emulation tool, FIRMADYNE, for Linux-based firmware in
order to identify vulnerabilities. These works, however, also
rely on feasibility of the firmware, and tend to be affected by
the heterogeneous architectures of the firmware. Given the
difficulty of fuzzing IoT devices directly [43], Chen et al. [11]
proposed a testing method to detect memory corruptions in
the device with the assistance from app analysis. Similarly,
it requires presence of the physical device, and also fuzzing
each individual device is time-consuming. Again, our work is
more scalable since it is only based on static analysis of the
companion apps, and leverages cross-app similarities as an
indicator to find other potentially vulnerable devices.
Mobile app analysis. Dozens of static and dynamic tech-
niques have been presented to analyze mobile apps. Among
them, most related to our work are those [12, 32, 48, 60] pro-
posed to collect runtime values in an Android app. These
techniques may serve different purposes, e.g., collecting devel-
oper credentials [60], harvesting obfuscated/encrypted values
for malware detection [48], extracting application imprints
from network request [12] and reconstructing format of a
protocol [32]. However, they have a basic idea in common:
extracting parts of the application code (i.e., slices) that are
related to the target (e.g., APIs, variables), and generating
target value by only executing the slices. In this study, we
designed the request construction with a similar Instantiated
Partial Execution (IPE) as in [12]. Another related work is Au-
toprobe [56], which collects request probes from the malware,
and then using the probes to fingerprint a remote malware
server. Autoprobe is not applicable in our settings for several
unique challenges. For instance, requests of an IoT device
would not be triggered automatically because of the absence
of the device; mobile companion apps often serve multiple
devices, and thus it’s difficult to pair the request and response
and collect telemetry for each individual device. In our work,
the interface analysis engine leverages several techniques that
not only triggered the request, but also conducted a modularity
analysis after locating the request/response pair.

6 Conclusion

In this paper, we present a platform to accelerate vulnerable
device discovery in smart home IoT device market. Different

1164 28th USENIX Security Symposium USENIX Association

from previous approaches that examine real IoT devices or
firmware images, our platform analyzes mobile companion
apps of devices to indirectly detect device similarity and vul-
nerability propagation across devices, thus making it practical
for large-scale analyses. By analyzing 2,081 mobile compan-
ion apps, our platform was able to discover 324 devices from
73 vendors that are potentially vulnerable to a number of se-
curity issues, out of which 164 devices from 38 vendors are
confirmed to be indeed vulnerable.

Acknowledgments

We are grateful to the anonymous reviewers for their insightful
comments that greatly helped us improve the paper. In par-
ticular, we want to thank our shepherd, Adwait Nadkarni, for
his guidance and constructive feedback about this paper. This
work is supported in part by NSF CNS-1527141, 1618493,
1801432, 1838083 and ARO W911NF1610127.

References

[1] Bashlite. https://github.com/anthonygtellez/
BASHLITE.

[2] Binwalk: Firmware analysis tool. https://github.
com/ReFirmLabs/binwalk.

[3] Google play. https://play.google.com/store/
apps?hl=en.

[4] Shodan: the search engine for the internet of things.
https://www.shodan.io.

[5] Smarthomedb. https://www.smarthomedb.com.

[6] ANTONAKAKIS, M., APRIL, T., BAILEY, M., BERN-
HARD, M., BURSZTEIN, E., COCHRAN, J., DU-
RUMERIC, Z., HALDERMAN, J. A., INVERNIZZI, L.,
KALLITSIS, M., ET AL. Understanding the mirai botnet.
In USENIX Security Symposium (2017), pp. 1092–1110.

[7] BAPTISTE, D. Vulnerability in compiler leads to back-
door in software. https://2018.zeronights.ru/wp-
content/uploads/materials/04-Vulnerability-
in-compiler-leads-to-stealth-backdoor-in-
software.pdf, 2018.

[8] BAYER, U., COMPARETTI, P. M., HLAUSCHEK, C.,
KRUEGEL, C., AND KIRDA, E. Scalable, behavior-
based malware clustering. In NDSS (2009), vol. 9, Cite-
seer, pp. 8–11.

[9] CADAR, C., DUNBAR, D., ENGLER, D. R., ET AL.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI
(2008), vol. 8, pp. 209–224.

[10] CHEN, D. D., WOO, M., BRUMLEY, D., AND EGELE,
M. Towards automated dynamic analysis for linux-
based embedded firmware. In NDSS (2016).

[11] CHEN, J., DIAO, W., ZHAO, Q., ZUO, C., LIN, Z.,
WANG, X., LAU, W. C., SUN, M., YANG, R., AND
ZHANG, K. Iotfuzzer: Discovering memory corruptions
in iot through app-based fuzzing. Proc. 2018 NDSS, San
Diego, CA (2018).

[12] CHEN, Y., YOU, W., LEE, Y., CHEN, K., WANG, X.,
AND ZOU, W. Mass discovery of android traffic imprints
through instantiated partial execution. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (2017), ACM, pp. 815–828.

[13] CORPORATION, T. R. Thermostat manufactur-
ers. https://www.thermostat-recycle.org/
thermostat_manufacturers.

[14] CORTEGGIANI, N., CAMURATI, G., AND FRANCIL-
LON, A. Inception: system-wide security testing of real-
world embedded systems software. In 27th {USENIX}
Security Symposium ({USENIX} Security 18) (2018),
pp. 309–326.

[15] COSTIN, A., AND ZADDACH, J. Iot malware: Com-
prehensive survey, analysis framework and case studies.
BlackHat USA (2018).

[16] COSTIN, A., ZADDACH, J., FRANCILLON, A.,
BALZAROTTI, D., AND ANTIPOLIS, S. A large-scale
analysis of the security of embedded firmwares. In
USENIX Security Symposium (2014), pp. 95–110.

[17] COSTIN, A., ZARRAS, A., AND FRANCILLON, A. Au-
tomated dynamic firmware analysis at scale: a case study
on embedded web interfaces. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communi-
cations Security (2016), ACM, pp. 437–448.

[18] CUI, A., COSTELLO, M., AND STOLFO, S. When
firmware modifications attack: A case study of embed-
ded exploitation. Proc. 2018 NDSS, San Diego, CA
(2013).

[19] CUI, A., AND STOLFO, S. J. A quantitative analysis of
the insecurity of embedded network devices: results of a
wide-area scan. In Proceedings of the 26th Annual Com-
puter Security Applications Conference (2010), ACM,
pp. 97–106.

[20] DAVIDSON, D., MOENCH, B., RISTENPART, T., AND
JHA, S. Fie on firmware: Finding vulnerabilities in em-
bedded systems using symbolic execution. In USENIX
Security Symposium (2013), pp. 463–478.

USENIX Association 28th USENIX Security Symposium 1165

https://github.com/anthonygtellez/BASHLITE
https://github.com/anthonygtellez/BASHLITE
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://play.google.com/store/apps?hl=en
https://play.google.com/store/apps?hl=en
https://www.shodan.io
https://www.smarthomedb.com
https://2018.zeronights.ru/wp-content/uploads/materials/04-Vulnerability-in-compiler-leads-to-stealth-backdoor-in-software.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/04-Vulnerability-in-compiler-leads-to-stealth-backdoor-in-software.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/04-Vulnerability-in-compiler-leads-to-stealth-backdoor-in-software.pdf
https://2018.zeronights.ru/wp-content/uploads/materials/04-Vulnerability-in-compiler-leads-to-stealth-backdoor-in-software.pdf
https://www.thermostat-recycle.org/thermostat_manufacturers
https://www.thermostat-recycle.org/thermostat_manufacturers

[21] DIRECTORY, I. G. Ip cameras. https://directory.
ifsecglobal.com/ip-cameras-code004823.html.

[22] EBAY. Smart bulbs. https://www.ebay.com/b/
Smart-Bulbs/20706/bn_72322334.

[23] EBAY. Wi-fi smart plugs. https://www.ebay.com/b/
Wi-Fi-Smart-Plugs/185061/bn_118504145.

[24] ESCHWEILER, S., YAKDAN, K., AND GERHARDS-
PADILLA, E. discovre: Efficient cross-architecture iden-
tification of bugs in binary code. In NDSS (2016).

[25] FENG, Q., ZHOU, R., XU, C., CHENG, Y., TESTA, B.,
AND YIN, H. Scalable graph-based bug search for
firmware images. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security (2016), ACM, pp. 480–491.

[26] FREY, B. J., AND DUECK, D. Clustering by passing
messages between data points. science 315, 5814 (2007),
972–976.

[27] HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND
HALDERMAN, J. A. Mining your ps and qs: Detec-
tion of widespread weak keys in network devices. In
USENIX Security Symposium (2012), vol. 8, p. 1.

[28] HOLCOMBE, J. Soho network equipment. https:
//www.securityevaluators.com/wp-content/
uploads/2017/07/soho_techreport.pdf, 2017.

[29] HU, G., YUAN, X., TANG, Y., AND YANG, J. Effi-
ciently, effectively detecting mobile app bugs with app-
doctor. In Proceedings of the Ninth European Confer-
ence on Computer Systems (2014), ACM, p. 18.

[30] INSTRUMENTS, T. Simplelink wi-fi smartcon-
fig. http://www.ti.com/sitesearch/docs/
universalsearch.tsp?searchTerm=SmartConfig.

[31] INTERNET CENSUS. Port scanning /0 using inse-
cure embedded devices. https://seclists.org/
fulldisclosure/2013/Mar/166.

[32] KIM, J., CHOI, H., NAMKUNG, H., CHOI, W., CHOI,
B., HONG, H., KIM, Y., LEE, J., AND HAN, D. En-
abling automatic protocol behavior analysis for android
applications. In Proceedings of the 12th International
on Conference on emerging Networking EXperiments
and Technologies (2016), ACM, pp. 281–295.

[33] KING, J. C. Symbolic execution and program testing.
Communications of the ACM 19, 7 (1976), 385–394.

[34] KOSCHER, K., KOHNO, T., AND MOLNAR, D.
{SURROGATES}: Enabling near-real-time dynamic
analyses of embedded systems. In 9th {USENIX}
Workshop on Offensive Technologies ({WOOT} 15)
(2015).

[35] KREBSONSECURITY. New mirai worm knocks
900k germans offline. https://krebsonsecurity.
com/2016/11/new-mirai-worm-knocks-900k-
germans-offline/.

[36] LI, C., CAI, Q., LI, J., LIU, H., ZHANG, Y., GU, D.,
AND YU, Y. Passwords in the air: Harvesting wi-fi
credentials from smartcfg provisioning. In Proceedings
of the 11th ACM Conference on Security & Privacy in
Wireless and Mobile Networks (2018), ACM, pp. 1–11.

[37] MAJKOWSKI, M. Stupidly simple ddos protocol (ssdp)
generates 100 gbps ddos. https://blog.cloudflare.
com/ssdp-100gbps/, Jun. 2017.

[38] MARTIN, B., AND BRAUNLEIN, F. Deepsec 2017
talk: Next-gen mirai botnet – balthasar martin & fabian
braunlein. https://blog.deepsec.net/deepsec-
2017-talk-next-gen-mirai-botnet-balthasar-
martin-fabian-braunlein/, Sep. 2017.

[39] MARZANO, A., ALEXANDER, D., FONSECA, O.,
FAZZION, E., HOEPERS, C., STEDING-JESSEN, K.,
CHAVES, M. H., CUNHA, Í., GUEDES, D., AND
MEIRA, W. The evolution of bashlite and mirai iot bot-
nets. In 2018 IEEE Symposium on Computers and Com-
munications (ISCC) (2018), IEEE, pp. 00813–00818.

[40] MICROSOFT. Azure iot hub. https://azure.
microsoft.com/en-us/services/iot-hub/.

[41] MIKHAIL KUZIN, YAROSLAV SHMELEV,
V. K. New trends in the world of iot threats.
https://securelist.com/new-trends-in-the-
world-of-iot-threats/87991/.

[42] MUENCH, M., NISI, D., FRANCILLON, A., AND
BALZAROTTI, D. Avatar 2: A multi-target orches-
tration platform. In Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.) (2018), vol. 18, pp. 1–11.

[43] MUENCH, M., STIJOHANN, J., KARGL, F., FRANCIL-
LON, A., AND BALZAROTTI, D. What you corrupt is
not what you crash: Challenges in fuzzing embedded de-
vices. In NDSS 2018, Network and Distributed Systems
Security Symposium, 18-21 February 2018, San Diego,
CA, USA (2018).

[44] PALEARI, R. Multiple vulnerabilities on d-link
dir-645 devices. http://roberto.greyhats.it/
advisories/20130801-dlink-dir645.txt.

[45] PALEARI, R. Unauthenticated remote access to d-
link dir-645 devices. http://roberto.greyhats.it/
advisories/20130227-dlink-dir.txt.

[46] PASCU, L. The iot threat landscape and
top smart home vulnerabilities in 2018.

1166 28th USENIX Security Symposium USENIX Association

https://directory.ifsecglobal.com/ip-cameras-code004823.html
https://directory.ifsecglobal.com/ip-cameras-code004823.html
https://www.ebay.com/b/Smart-Bulbs/20706/bn_72322334
https://www.ebay.com/b/Smart-Bulbs/20706/bn_72322334
https://www.ebay.com/b/Wi-Fi-Smart-Plugs/185061/bn_118504145
https://www.ebay.com/b/Wi-Fi-Smart-Plugs/185061/bn_118504145
https://www.securityevaluators.com/wp-content/uploads/2017/07/soho_techreport.pdf
https://www.securityevaluators.com/wp-content/uploads/2017/07/soho_techreport.pdf
https://www.securityevaluators.com/wp-content/uploads/2017/07/soho_techreport.pdf
http://www.ti.com/sitesearch/docs/universalsearch.tsp?searchTerm=SmartConfig
http://www.ti.com/sitesearch/docs/universalsearch.tsp?searchTerm=SmartConfig
https://seclists.org/fulldisclosure/2013/Mar/166
https://seclists.org/fulldisclosure/2013/Mar/166
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://blog.cloudflare.com/ssdp-100gbps/
https://blog.cloudflare.com/ssdp-100gbps/
https://blog.deepsec.net/deepsec-2017-talk-next-gen-mirai-botnet-balthasar-martin-fabian-braunlein/
https://blog.deepsec.net/deepsec-2017-talk-next-gen-mirai-botnet-balthasar-martin-fabian-braunlein/
https://blog.deepsec.net/deepsec-2017-talk-next-gen-mirai-botnet-balthasar-martin-fabian-braunlein/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/
http://roberto.greyhats.it/advisories/20130801-dlink-dir645.txt
http://roberto.greyhats.it/advisories/20130801-dlink-dir645.txt
http://roberto.greyhats.it/advisories/20130227-dlink-dir.txt
http://roberto.greyhats.it/advisories/20130227-dlink-dir.txt

https://www.bitdefender.com/files/
News/CaseStudies/study/229/Bitdefender-
Whitepaper-The-IoT-Threat-Landscape-and-
Top-Smart-Home-Vulnerabilities-in-2018.pdf.

[47] PEWNY, J., GARMANY, B., GAWLIK, R., ROSSOW, C.,
AND HOLZ, T. Cross-architecture bug search in binary
executables. In Security and Privacy (SP), 2015 IEEE
Symposium on (2015), IEEE, pp. 709–724.

[48] RASTHOFER, S., ARZT, S., MILTENBERGER, M., AND
BODDEN, E. Harvesting runtime values in android
applications that feature anti-analysis techniques. In
NDSS (2016).

[49] SHOSHITAISHVILI, Y., WANG, R., HAUSER, C.,
KRUEGEL, C., AND VIGNA, G. Firmalice-automatic
detection of authentication bypass vulnerabilities in
binary firmware. In NDSS (2015).

[50] STROETMANN, L. Reverse engineering the tp-
link hs110. https://www.softscheck.com/en/
reverse-engineering-tp-link-hs110/.

[51] VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L.,
LAM, P., AND SUNDARESAN, V. Soot: A java bytecode
optimization framework. In CASCON First Decade
High Impact Papers (2010), IBM Corp., pp. 214–224.

[52] WANG, X., ZELDOVICH, N., KAASHOEK, M. F., AND
SOLAR-LEZAMA, A. Towards optimization-safe sys-
tems: Analyzing the impact of undefined behavior. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, ACM, pp. 260–275.

[53] WERMKE, D., HUAMAN, N., ACAR, Y., REAVES, B.,
TRAYNOR, P., AND FAHL, S. A large scale investiga-
tion of obfuscation use in google play. In Proceedings
of the 34th Annual Computer Security Applications Con-
ference (2018), ACM, pp. 222–235.

[54] XIAO, C. Malware xcodeghost infects 39 ios apps,
including wechat, affecting hundreds of millions of
users. https://unit42.paloaltonetworks.com/
malware-xcodeghost-infects-39-ios-apps-
including-wechat-affecting-hundreds-of-
millions-of-users/.

[55] XIAO, F., SHA, L.-T., YUAN, Z.-P., AND WANG, R.-
C. Vulhunter: a discovery for unknown bugs based on
analysis for known patches in industry internet of things.
IEEE Transactions on Emerging Topics in Computing
(2017).

[56] XU, Z., NAPPA, A., BAYKOV, R., YANG, G., CA-
BALLERO, J., AND GU, G. Autoprobe: Towards auto-
matic active malicious server probing using dynamic bi-
nary analysis. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security
(2014), ACM, pp. 179–190.

[57] XUE, L., LUO, X., YU, L., WANG, S., AND WU,
D. Adaptive unpacking of android apps. In 2017
IEEE/ACM 39th International Conference on Software
Engineering (ICSE) (2017), IEEE, pp. 358–369.

[58] ZADDACH, J., BRUNO, L., FRANCILLON, A.,
BALZAROTTI, D., ET AL. Avatar: A framework
to support dynamic security analysis of embedded
systems’ firmwares. In NDSS (2014).

[59] ZHANG, Y., LUO, X., AND YIN, H. Dexhunter: to-
ward extracting hidden code from packed android ap-
plications. In European Symposium on Research in
Computer Security (2015), Springer, pp. 293–311.

[60] ZHOU, Y., WU, L., WANG, Z., AND JIANG, X. Harvest-
ing developer credentials in android apps. In Proceed-
ings of the 8th ACM Conference on Security & Privacy
in Wireless and Mobile Networks (2015), ACM, p. 23.

USENIX Association 28th USENIX Security Symposium 1167

https://www.bitdefender.com/files/News/CaseStudies/study/229/Bitdefender-Whitepaper-The-IoT-Threat-Landscape-and-Top-Smart-Home-Vulnerabilities-in-2018.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/229/Bitdefender-Whitepaper-The-IoT-Threat-Landscape-and-Top-Smart-Home-Vulnerabilities-in-2018.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/229/Bitdefender-Whitepaper-The-IoT-Threat-Landscape-and-Top-Smart-Home-Vulnerabilities-in-2018.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/229/Bitdefender-Whitepaper-The-IoT-Threat-Landscape-and-Top-Smart-Home-Vulnerabilities-in-2018.pdf
https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/
https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/
https://unit42.paloaltonetworks.com/malware-xcodeghost-infects-39-ios-apps-including-wechat-affecting-hundreds-of-millions-of-users/
https://unit42.paloaltonetworks.com/malware-xcodeghost-infects-39-ios-apps-including-wechat-affecting-hundreds-of-millions-of-users/
https://unit42.paloaltonetworks.com/malware-xcodeghost-infects-39-ios-apps-including-wechat-affecting-hundreds-of-millions-of-users/
https://unit42.paloaltonetworks.com/malware-xcodeghost-infects-39-ios-apps-including-wechat-affecting-hundreds-of-millions-of-users/

All Things Considered: An Analysis of IoT Devices on Home Networks

Deepak Kumar‡ Kelly Shen† Benton Case† Deepali Garg/

Galina Alperovich/ Dmitry Kuznetsov/ Rajarshi Gupta/ Zakir Durumeric†

†Stanford University /Avast Software ‡University of Illinois Urbana-Champaign

Abstract
In this paper, we provide the first large-scale empirical anal-
ysis of IoT devices in real-world homes by leveraging data
collected from user-initiated network scans of 83M devices
in 16M households. We find that IoT adoption is widespread:
on several continents, more than half of households already
have at least one IoT device. Device types and manufac-
turer popularity vary dramatically across regions. For ex-
ample, while nearly half of North American homes have an
Internet-connected television or streaming device, less than
three percent do in South Asia where the majority of devices
are surveillance cameras. We investigate the security posture
of devices, detailing their open services, weak default cre-
dentials, and vulnerability to known attacks. Device security
similarly varies geographically, even for specific manufac-
turers. For example, while less than 17% of TP-Link home
routers in North America have guessable passwords, nearly
half do in Eastern Europe and Central Asia. We argue that
IoT devices are here, but for most homes, the types of devices
adopted are not the ones actively discussed. We hope that
by shedding light on this complex ecosystem, we help the
security community develop solutions that are applicable to
today’s homes.

1 Introduction

The weak security posture of many popular IoT devices
has enabled attackers to launch record-breaking DDoS at-
tacks [4], compromise local networks [43, 57], and break into
homes [22, 41]. However, despite much attention to IoT in
the security community [22, 23, 29, 33, 55], there has been
little investigation into what devices consumers are adopting
and how they are configured in practice. In this work, we
provide a large-scale empirical analysis of 83M IoT devices
in 16M real-world homes. We partner with Avast Software,
a popular antivirus company, whose consumer security soft-
ware lets customers scan their local network for IoT devices
that support weak authentication or have remotely exploitable

vulnerabilities. Leveraging data collected from user-initiated
network scans in 16M households that have agreed to share
data for research and development purposes, we describe the
current landscape of IoT devices and their security posture.

IoT devices are widespread. More than half of households
have at least one IoT device in three global regions and in
North America more than 70% of homes have a network-
connected device. Media devices like smart televisions are
most common in seven of eleven global regions, but there
is significant variance otherwise. For example, surveillance
cameras are most popular in South and Southeast Asia, while
work appliances prevail in East Asia and Sub-Saharan Africa.
Home assistants are present in more than 10% of homes in
North America but have yet to see significant adoption in
other markets. There is a long tail of 14K total manufacturers,
but surprisingly we find that 90% of devices worldwide are
produced by only 100 vendors. A handful of companies
like Apple, HP, and Samsung dominate globally, but there
also exist a set of smaller vendors with significant regional
adoption. For example, Vestel, a Turkish manufacturer, is the
third largest media vendor in North Africa and the Middle
East, but has negligible broader adoption.

A surprising number of devices still support FTP and Telnet
with weak credentials. In Sub-Saharan Africa, North Africa,
the Middle East, and Southeast Asia, around half of devices
support FTP and in Central Asia, nearly 40% of home routers
use Telnet. Similar to the regional differences in device type
and manufacturer popularity, there are dramatic differences
in the use of weak credentials. For example, while less than
15% of devices with FTP allow weak authentication in Eu-
rope and Oceania, more than half do in Southeast Asia and
Sub-Saharan Africa. Interestingly, this is not entirely due to
manufacturer preference. While less than 20% of TP-Link
home routers allow access to their administration interface
with a weak password in North America, nearly half do in
Eastern Europe, Central Asia, and Southeast Asia. About 3%
of homes in our dataset are externally visible and more than
half of those have a known vulnerability or weak password.

Our results indicate that IoT is not a security concern of the

USENIX Association 28th USENIX Security Symposium 1169

(a) Data Sharing Consent (b) WiFi Inspector Drawer (c) WiFi Inspector Initiation

Figure 1: WiFi Inspector—WiFi Inspector allows users to scan their local network for insecure IoT devices. Data sharing back
to Avast for research purposes is an explicit part of the installation process, and presented to the user in plain English. For ease of
reading, we duplicate the text shown in panel (a) in Appendix A.

future, but rather one of today. We argue that there already
exists a complex ecosystem of Internet-connected embedded
devices in homes worldwide, but that these devices are of
different than the ones considered by most recent work. We
hope that by shedding light on the types of devices consumers
are purchasing, we enable the security community to develop
solutions that are applicable to today’s homes.

2 Methodology and Dataset

Our study leverages several network vantage points, including
data collected from Avast, a passive network telescope, and
active Internet-wide scans. In this section, we discuss these
datasets and the role they play in our analysis.

2.1 WiFi Inspector
Avast Software is a security software company that provides
a suite of popular antivirus and consumer security software
products like Avast Free Antivirus. Avast software is sold on
a freemium model: the company provides a free basic version
of their product and charges for more advanced versions.
Avast estimates that their software runs on 160 M Windows
and 3 M Mac OS computers, and makes up approximately
12% of the antivirus market share [45].

As of 2015, all antivirus products from Avast include a
tool called WiFi Inspector that helps users secure IoT devices
and other computers on their home networks. WiFi Inspector
runs locally on the user’s personal computer and performs
network scans of the local subnet to check for devices
that accept weak credentials or have remotely exploitable
vulnerabilities. Scans can also be manually initiated by the
end user. WiFi Inspector alerts users to security problems
it finds during these scans and additionally provides an
inventory of labeled IoT devices and vulnerabilities in the
product’s main interface (Figure 1). We next describe how
WiFi Inspector operates:

Network Scanning To inventory the local network, WiFi
Inspector first generates a list of scan candidates from entries
in the local ARP table as well through active ARP, SSDP, and
mDNS scans. It then probes targets in increasing IP order
over ICMP and common TCP/UDP ports to detect listening
services.1 Scans terminate after the local network has been
scanned or a timeout occurs. After the discovery process
completes, the scanner attempts to gather application layer
data (e.g., HTTP root page, UPnP root device description,
and Telnet banner) from listening services.

Detecting Device Types To provide users with a human-
readable list of hosts on their network, WiFi Inspector runs a
classification algorithm against the application-and transport-
layer data collected in the scan. This algorithm buckets de-
vices into one of fourteen categories:

1. Computer
2. Network Node (e.g., home router)
3. Mobile Device (e.g., iPhone or Android)

4. Wearable (e.g., Fitbit, Apple Watch)
5. Game Console (e.g., XBox)
6. Home Automation (e.g., Nest Thermostat)
7. Storage (e.g., home NAS)
8. Surveillance (e.g., IP camera)
9. Work Appliance (e.g., printer or scanner)

10. Home Voice Assistant (e.g., Alexa)
11. Vehicle (e.g., Tesla)
12. Media/TV (e.g., Roku)
13. Home Appliance (e.g., smart fridge)
14. Generic IoT (e.g., toothbrush)

1WiFi Inspector scans several groups of TCP/UDP ports: common TCP
ports (e.g., 80, 443, 139, 445); TCP ports associated with security problems
(e.g., 111, 135, 161); common UDP ports (e.g., 53, 67, 69); and ports
associated with services that provide data for device labeling (e.g., 20, 21,
22). When hosts are timely in responding, the scanner will additionally probe
a second set of less common ports (e.g., 81–85, 9971). In total, the scanner
will target up to 200 ports depending on host performance. The scanner will
identify devices so long as they are connected to the network.

1170 28th USENIX Security Symposium USENIX Association

Protocol Field Search Pattern Device Type Label Confidence

DHCP Class ID (?i)SAMSUNG[- :_]Network[- :_]Printer Printer 0.90
UPnP Device Type .*hub2.* IoT Hub 0.90
HTTP Title (?i)Polycom - (?:SoundPoint IP)?(?:SoundStation IP)? IP Phone 0.85
mDNS Name (?i)_nanoleaf(?:api|ms)?\._tcp\.local\. Lighting 0.90

Table 1: Example Device Classification Rules—Our device labeling algorithm combines a collection of 1,000 expert rules and
a supervised classifier, both of which utilize network and application layer data. Here, we show a few examples of these expert
rules, which provide 60% coverage of devices in a random sample of 1,000 devices.

We consider devices in the latter eleven categories to be IoT
devices for the remainder of this work. Because the classi-
fier greatly affects the results of this work, we describe the
algorithm in detail in Section 2.2.

Manufacturer Labeling To generate a full device label,
WiFi Inspector combines device type with the device’s man-
ufacturer (e.g., Nintendo Game Console). Avast determines
manufacturer by looking up the first 24 bits of each device’s
MAC address in the public IEEE Organizationally Unique
Identifier (OUI) registry [32]. We note that at times, the ven-
dor associated with a MAC address is the manufacturer of
the network interface rather than the device. For example,
MAC addresses associated with some Sony Playstations be-
long to either FoxConn or AzureWave, two major electronic
component manufacturers, rather than Sony. In this work,
we manually resolve and document any cases that required
grouping manufacturers together.

Checking Weak Credentials WiFi Inspector checks for
devices that allow authentication using weak credentials by
performing a dictionary-based attack against FTP and Telnet
services as well as web interfaces that use HTTP basic authen-
tication. When possible, WiFi Inspector will also try to log
into HTTP-based administration interfaces that it recognizes.
The scanner attempts to log in with around 200 credentials
composed of known defaults (e.g., admin/admin) and com-
monly used strings (e.g., user, 1234, love) from password
popularity lists, leaks, vendor and ISP default lists, and pass-
words checked by IoT malware. WiFi Inspector immediately
notifies users about devices with guessable logins.

Checking Common Vulnerabilities In addition to check-
ing for weak credentials, WiFi Inspector checks devices for
vulnerability to around 50 recent exploits that can be verified
without harming target devices (e.g., CVE-2018-10561, CVE-
2017-14413, EDB-ID-40500, ZSL-2014-5208, and NON-
2015-0211). Because there is bias towards more popular
manufacturers in these scans, we do not provide ecosystem-
level comparisons between different vulnerabilities.

2.2 Device Identification Algorithm

A significant portion of our work is based on identifying the
manufacturers and types of IoT devices in homes. We de-

scribe the algorithm that Avast has developed in this section:

Classifier WiFi Inspector labels device type (e.g., com-
puter, phone, game console) through a set of expert rules
and a supervised classification algorithm, both of which run
against network and application layer data. Classification is
typically possible because manufacturers often include model
information in web administration interfaces as well as in FTP
and Telnet banners [4]. Additionally, devices broadcast de-
vice details over UPnP and mDNS [14]. WiFi Inspector uses
expert rules—regular expressions that parse out simple fields
(e.g., telnet banner or HTML title)— to label hosts that follow
informal standard practices for announcing their manufacturer
and model. This approach, while not comprehensive, reliably
identifies common devices [4, 21]. WiFi Inspector contains
approximately 1,000 expert rules that are able to identify de-
vices from around 200 manufacturers. We show a sample of
these rules in Table 1. However, these rules only identify 60%
of devices from a random sample of 1,000 manually-labeled
devices. To categorize the remaining devices, WiFi Inspector
leverages an ensemble of four supervised learning classifiers
that individually classify devices using network layer-data,
UPnP responses, mDNS responses, and HTTP data. There-
fore, when identifying a device, WiFi Inspector first tries the
expert rules, and in the case of no match, next applies the
ensemble of four supervised classifiers.

The network classifier is built using a random forest, which
aggregates the following network features of a device:

1. MAC address
2. Local IP address
3. Listening services (i.e., port and protocol)
4. Application-layer responses on each port
5. DHCP class_id and hostname

The UPnP, mDNS and HTTP classifiers leverage raw text
responses. The classifier treats each response as a bag-of-
words representation, and uses TF-IDF to weight words across
all responses. This representation is fed as input to a Naïve
Bayes classifier.

Training and Evaluation To train the supervised algo-
rithm, Avast collected data on approximately 500K random
devices from real-world scans. 200K of these were manu-
ally classified through an iterative clustering/labeling process,
where experts clustered devices based on network properties

USENIX Association 28th USENIX Security Symposium 1171

Classifier Coverage Accuracy Macro F1

Supervised Ensemble 0.91 0.95 0.78
Network 0.89 0.96 0.79
UPnP 0.27 0.91 0.37
mDNS 0.05 0.94 0.25
HTTP 0.14 0.98 0.23

Final Classifier 0.92 0.96 0.80

Table 2: Device Classifier Performance—Our final classi-
fier combines the supervised classifier and expert rules, and
achieves 92% coverage and 96% accuracy against a manually
labeled set of 1,000 devices.

Region Homes Devices

North America 1.24 M (8.0%) 9.2 M (11.1%)
South America 3.2 M (20.9%) 18 M (21.6%)
Eastern Europe 4.2 M (27.2%) 18.8 M (22.6%)
Western Europe 2.9 M (19.1%) 15 M (18.0%)
East Asia 543 K (3.5%) 3 M (3.7%)
Central Asia 107 K (0.7%) 500 K (0.6%)
Southeast Asia 813 K (5.3%) 3.6 M (4.3%)
South Asia 824 K (5.3%) 6.6 M (7.7%)
N. Africa, Middle East 1.2 M (7.5%) 6.1 M (7.3%)
Oceania 124 K (0.8%) 680 K (0.8%)
Sub-Saharan Africa 266 K (1.7%) 1.8 M (2.2%)

Table 3: Regional Distribution of Homes—The
15.5M homes and 83M devices in our dataset are from
geographically diverse regions. Because this breakdown
is representative of Avast market share rather than organic
density of homes and devices, we limit our analysis to within
individual regions.

and labeled large clusters, winnowing and re-clustering until
all devices were labeled. The remaining 300K devices were
labeled using the expert rules. To tune model parameters,
we performed five-fold cross-validation across the original
training set. However, because the initial clustering was used
to help identify devices in the clustering/labeling step, the
dataset is not used for validation. Instead, Avast curated a
validation set of 1,000 manually labeled devices, whose la-
bels were never used for training. The final classifier achieves
96% accuracy and 92% coverage with a 0.80 macro average
F1 score (Table 2). We mark devices we cannot classify as
“unknown”.

2.3 Avast Dataset

Avast collects aggregate data about devices, vulnerabilities,
and weak credentials from WiFi Inspector installations of con-
senting users for research and development purposes. Users
are informed about this data collection in simple English
when they install the product (Figure 1) and can opt out at any

time. We worked with Avast to analyze aggregate data about
the types of devices in each region. No individual records
or personally identifiable information was shared with our
team. Although WiFi Inspector supports automatic vulnera-
bility scans, we only use data from user-initiated scans in this
paper so that we can guarantee that users knowingly scanned
their networks. In addition, we exclude scans of public net-
works by only analyzing networks that were marked as home
networks in Windows during network setup. We detail the
ethical considerations and our safeguards in Section 2.6.

We specifically analyze data about devices found in scans
run between December 1–31, 2018 on Windows installations.
This dataset consists of data about 83 M devices from 15.5 M
homes spanning 241 countries and territories, and 14.3 K
unique manufacturers. For installations with multiple scans
during this time period, we use the latest scan that found the
maximum number of devices. We aggregate each country
into 11 regions, defined by ISO 3166-2 [56]. As shown in
Table 3, WiFi Inspector is more popular in Europe and South
America than in North America. Because of this market share,
as well as significant regional differences in IoT deployment,
we discuss regions separately.

Threats to Validity While WiFi Inspector is installed in a
significant number of homes, the dataset is likely colored by
several biases. First, the data is predicated on users installing
antivirus software on their computers. There is little work that
indicates whether users with antivirus software have more or
less secure practices. Second, we only analyzed data from in-
stallations on Windows machines due to differences between
Mac and Windows versions of the software. This may skew
the households we study to different socioeconomic groups
or introduce other biases. Third, WiFi Inspector actively no-
tifies users about problems it finds. As a result, users may
have patched vulnerable hosts, changed default passwords, or
returned devices to their place of purchase. This may skew
our results to indicate that homes included in this study are
more secure than in practice.

2.4 Network Telescope
While WiFi Inspector scans can identify the types of devices
present in home networks, the data does not provide any
insight into whether devices have been compromised. To
understand whether devices are infected and scanning to com-
promise other devices (e.g., as was seen for Mirai [4]), we
consider the IP addresses scanning in a large network tele-
scope composed of approximately 4.7 million IP addresses.
We specifically analyze the traffic for a 24 hour period on
January 1, 2019 for scan activity using the methodology dis-
cussed by Durumeric et al. [17]: we consider an IP address to
be scanning if it contacts at least 25 unique addresses in our
telescope on the same port within a 480 second window. In
total, we observe 1.7 M scans from a total of 529 K unique IP
addresses from 1.4 billion packets during our measurement

1172 28th USENIX Security Symposium USENIX Association

period. Of the 500,716 homes scanned by WiFi Inspector on
this day, 1,865 (0.37%) were found scanning on the network
telescope.

2.5 Internet-Wide Scanning

We further augment the WiFi Inspector data with data col-
lected from Internet-wide scans performed by Censys [16] to
understand whether the vulnerabilities present on gateways
(i.e., home routers) could be remotely exploitable. Similarly
to our network telescope data, we investigate the intersec-
tion between Censys and Avast data for a 24-hour period on
January 30, 2019 to control for potential DHCP churn. We
also check whether devices that accept weak credentials for
authentication present login interfaces on public IP addresses.
We discuss the results in Section 4.

2.6 Ethical Considerations

WiFi Inspector collects data from inside users’ homes. To
ensure that this data is collected in line with user expecta-
tions, we only collect statistics about homes where the user
explicitly agreed to share data for research purposes. This
data sharing agreement is not hidden in a EULA, but out-
lined in simple English. We show the dialogue where users
acknowledge this in Figure 1. We note that this is an explicit
opt-out process. The data sharing agreement is the last mes-
sage shown to the user before the main menu, meaning users
do not need to wait and remember to turn off data collection
at a later time.

In order to keep up to date information on the devices
in a home, WiFi Inspector runs periodic, automated scans
of the local network. Automated scans do not perform any
vulnerability testing or password weakness checks; they only
identify devices through banners and MAC addresses. We
limit our analysis to homes where a user explicitly manually
initiated a network scan.

To protect user privacy and minimize risk to users, Avast
only shared aggregate data with our team. This data was
aggregated by device manufacturer, region, and device type.
The smallest region contained over 100,000 homes. We never
had access to data about individual homes or users; no person-
ally identifiable information was ever shared with us. Avast
did not collect any additional data for this work, nor did they
change the retention period of any raw data. No data beyond
the aggregates in this paper will be stored long term.

Internally, Avast adheres to a strict privacy policy: all data
is anonymized and no personally identifiable information is
ever shared with external researchers. All handling of WiFi
Inspector data satisfies personal data protection laws, such
as GDPR, and extends to data beyond its territorial scope
(i.e., outside of the European Union). Specific identifiers like
IP addresses are deleted in accordance with GDPR and only

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

C
D

F
Fr

ac
tio

n
H

om
es

Number of Hosts in Home

Central and South America
Central Asia

Eastern and Southern Europe
Eastern Asia

North Africa and Middle East
Northern America

Oceania
Southeastern Asia

Southern Asia
Sub-Saharan Africa

Western and Northern Europe

Figure 2: Devices per Region—There is significant variance
in device usage across regions. The largest presence is in
North America, where homes have a median seven hosts.
Conversely, homes in South Asia have a median two hosts.
The number of devices per home starts at two as all homes
require at least one computer and one router to be included.

collected when explicitly necessary for the security function
of the product.

3 IoT in Homes

It is vital that the security community understands the types
of IoT devices that consumers install and their respective
regional distributions given their increasing security and pri-
vacy implications. In this section, we provide one of first
large-scale analyses of these devices based on scans from
15.5 M homes.

The presence of IoT devices varies by region. For example,
while more than 70% of homes in North America have an
IoT device, fewer than 10% of homes in South Asia do (Fig-
ure 2). Media devices (i.e., smart TVs and streaming devices)
are the most common type of device in seven of the eleven
regions, in terms of both presence in homes (2.5%–42.8%)
and total number of devices (16.6%–59.0%). Four regions
differ: surveillance devices are most common in South and
Southeast Asia, while work appliances are most common in
East Asia and Sub-Saharan Africa. We show the most popular
devices in each region in Table 4.

Despite differences in IoT popularity across regions, there
are strong correlations between regions for the types of de-
vices that are popular.2 In other words, the most popular types
of devices are similar across regions. Still, certain pairs of
regions differ. For example, homes in all Asian regions are
least similar to homes in North America. On the other hand,
homes in geographically similar regions (e.g., South Asia and
Southeastern Asia) are highly correlated, even when they dif-
fer from the global distribution. The fact that distinct regions

2To quantify the preference for difference types of devices across regions,
we leverage a Spearman’s rank correlation test across each pairwise region,
taking the rank ordered list of device types for each region as input (Table 5).
Per Cohen’s guidelines, we find all regions rank ordered distributions are
strongly correlated (>0.7 coefficient) with p-values < 0.05 [11], indicating
little change in the rank order of device type distributions across regions.

USENIX Association 28th USENIX Security Symposium 1173

IoT Media/TV Work Appl Gaming Voice Asst. Surveil. Storage Automat. Wearable Other IoT

Region Homes Homes Devices H D H D H D H D H D H D H D H D

North America 71% 42.8 44.9 32.7 28.0 16.0 12.0 9.5 7.5 3.9 3.7 2.7 1.7 2.3 1.9 0.2 0.1 0.4 0.2
South America 34.4% 20.5 51.7 7.5 24.0 4.3 9.8 0.1 0.3 4.6 13.3 0.3 0.6 0.0 0.1 0.0 0.1 0.1 0.2
Eastern Europe 25.7% 16.8 50.2 6.0 23.6 2.7 7.6 0.2 0.6 2.5 14.0 1.2 3.4 0.1 0.4 0.0 0.1 0.0 0.0
Western Europe 57.2% 40.2 59.0 14.0 18.9 7.5 9.2 1.8 2.3 3.8 5.6 2.5 3.2 1.3 1.6 0.0 0.0 0.0 0.0
East Asia 30.8% 12.2 25.8 14.9 44.5 6.3 12.1 0.9 1.6 2.2 9.1 3.1 6.5 0.1 0.2 0.1 0.2 0.0 0.1
Central Asia 17.3% 13.5 54.2 1.6 12.0 0.6 2.4 0.0 0.2 2.4 30.3 0.2 0.8 0.0 0.0 0.0 0.1 0.0 0.0
Southeast Asia 21.7% 9.0 25.4 7.5 31.2 1.0 2.7 0.2 0.5 7.8 37.0 0.9 2.7 0.1 0.2 0.1 0.3 0.0 0.0
South Asia 8.7% 2.5 16.6 2.7 24.2 0.4 2.4 0.1 0.8 4.1 54.5 0.2 1.1 0.0 0.2 0.0 0.2 0.0 0.0
N. Africa, M. East 19.1% 9.4 35.7 5.1 26.2 1.8 6.4 0.1 0.3 5.2 28.5 0.7 2.4 0.0 0.2 0.0 0.2 0.0 0.1
Oceania 49.2% 30.7 46.6 19.8 25.9 10.1 12.7 3.2 4.2 3.0 5.3 3.5 4.3 0.7 0.9 0.1 0.2 0.0 0.0
Sub-Saharan Africa 19.7% 6.9 21.7 10.9 49.9 2.5 7.1 0.1 0.4 2.8 18.0 0.8 2.3 0.1 0.3 0.1 0.3 0.0 0.1

Table 4: IoT in Homes—We show the percent of households that have one or more of each type of IoT device and the percent of
devices (in gray) in each region that are of a certain type. For example, 42.8% of homes in North America have at least one
media device and 44.9% of North American IoT devices are media devices. For the presence of any IoT device, we only report
the percent of homes with an IoT device.

 0

 20

 40

 60

 80

 100

N America

C + S America

E Europe

W + N Europe

E Asia
C Asia

SE Asia

S Asia
N Africa and Mid East

Oceania

Sub-Saharan Africa

Fr
ac

tio
n

Io
T

Ty
pe

Game Console
Home Appliance

Home Automation

Generic IoT
Media

Surveillance

Work Appliance
Storage

Voice Assistant

Wearable

Figure 3: IoT Device Distribution by Region—IoT device
type distributions vary between different geographic regions.
For example, Surveillance devices are most prevalent in Asia,
whereas Home Automation devices only appear in North
America and Europe.

have unique preferences for device types points to deeper
differences between regions, making it harder to reason about
IoT in aggregate and more challenging to generalize findings
from one region to others.

We also considered the relative popularity of types of de-
vices within each region. Even in areas with similar rank
order popularity, the proportion of device types in those re-
gions varies (Figure 3). We compute a pairwise proportion
test across each region to quantify the differences between
regions and find that nearly all regions have varying propor-
tions of IoT device types, except when a device type accounts
for fewer than 1% of devices. We discuss each region below.

N
.A

m
er

ic
a

S.
A

m
er

ic
a

E
.E

ur
op

e

W
.E

ur
op

e

E
as

tA
si

a

C
en

tr
al

A
si

a

SE
A

si
a

So
ut

h
A

si
a

N
.A

fr
ic

a,
M

E

O
ce

an
ia

S-
S

A
fr

ic
a

North America – 81 88 92 88 76 77 81 87 93 86
South America 81 – 87 85 90 85 88 87 90 90 92

E. Europe 88 87 – 95 95 93 93 94 98 98 96
W. Europe 92 85 95 – 90 88 83 87 92 95 89
East Asia 88 90 95 90 – 90 93 92 93 98 99

Central Asia 76 85 93 88 90 – 93 90 94 90 93
Southeast Asia 77 88 93 83 93 93 – 99 95 96 95

South Asia 81 87 94 87 92 90 99 – 97 92 95
N. Africa, Middle East 87 90 98 92 93 94 95 97 – 96 95

Oceania 93 90 98 95 98 90 96 92 96 – 96
Sub-Saharan Africa 86 92 96 89 99 93 95 95 95 96 –

Table 5: Regional Similarities—We calculate the similarity
regions by computing the Spearman’s rank correlation test
over each region’s rank order list of most popular types of
devices. We show the most similar region (green) and least
similar region (red) by row. Correlation coefficients presented
are out of 100. In all cases, p-values were < 0.05.

3.1 North America

North America has the highest density of IoT devices of any
region: 71.8% of homes have an IoT device compared to
the global median of 40.2%. Similar to other regions, me-
dia devices (e.g., TVs and streaming boxes) and work appli-
ances account for the most devices in North American homes.
Nearly half of homes have one media device and one third
have a work appliance (Table 4). Media devices are also the
most prolific, accounting for 44.9% of IoT devices in North
America. In contrast, work appliances only account for 28%
of devices (Table 4). There is a long tail of manufacturers
that produce media devices in the U.S., and the most popu-
lar vendor, Roku, only accounts for 17.4% of media devices
(Table 11). Second most popular is Amazon (10.2%). In

1174 28th USENIX Security Symposium USENIX Association

contrast, there are only a handful of popular work appliance
vendors—HP is the most common and accounts for 38.7% of
work appliances in North America.

Though popular in every region, a considerably higher
number of homes in North America contain a game console.
This is one of the reasons that a smaller fraction of IoT de-
vices are media-related than in Western and Northern Europe.
There are three major vendors of game consoles: Microsoft
(39%), Sony (30%),3 and Nintendo (20%).

North America is the only region to see significant deploy-
ment of home voice assistants like Amazon Echo [3] and
Google Home [25]. Nearly 10% of homes now have a voice
assistant and the device class accounts for 7.5% of IoT de-
vices in the region. Two thirds of home assistants are Amazon
produced, the remaining one third are Google devices. North
America is also one of the only region to see automation de-
vices, which are present in 2.5% of homes. There are four
major manufacturers in this space, Nest4 (44.2%), Belkin
(15.1%), Philips (14.4%), and Ecobee (9.8%). These vendors
sell products such as the Nest Thermostat [42], Wemo smart
plug [5], Philips Hue Smart Lights [46], and the Ecobee Smart
Thermostat [19].

The relative ranking of IoT device type popularity generally
does not change as more IoT devices are added to North
American homes. To quantify this, we calculate the Spearman
rank correlation for each pairwise set of homes based on the
number of devices and observe only slight deviations from
the overall regional distribution. As more devices are added
to the network, the correlation coefficients for North America
hover between 0.98–1.0, indicating minimal change. Despite
minimal change in the relative ranking of IoT device types,
we note that the fraction of each device type does vary as more
IoT devices are added to the home. For example, for homes
with one IoT device, voice assistants make up only 3.9% of all
devices, down from 7.3% across all homes. Game consoles
are also more popular in homes with only one IoT device, up
from 13.9% to 16.5%.

3.2 Central and South America

South American homes are the least similar to North America
of any region (Table 5). While the most common types of
IoT devices in both regions are media devices (51.7% vs
44.9%) and work appliances (24% vs 28%), significantly
fewer South American homes have an IoT device (34% vs
71%) and there are significantly more surveillance devices:
13.3% vs 3.7% of devices (Table 4). Prior research uncovered
that there is an increased reliance on surveillance devices
in Brazil and surrounding regions to deter violence [27, 34],

3Sony PlayStation devices are split across three vendors in this distribu-
tion primarily due to their network cards being manufactured by two third
party vendors, Azurewave (11.6%) and Foxconn (9%).

4A classification error misclassifies Nest products as mobile devices. We
manually correct this in our analysis since Nest does not sell mobile devices.

which may offer one explanation. The only other device type
we commonly see are game consoles (9.8% of devices). No
other class appears in more than a fraction of a percent of
homes.

The vendor distribution of media devices in Central and
South America differs from the global distribution. Two ven-
dors appear in the top 5 for this region that do not appear in
any other region. First is Arcadyan, a Taiwanese company
that primarily manufactures cable boxes in this category, and
is often found in LG Smart TVs. The second is Intelbras, a
Brazilian company that manufactures DVRs and smart video
players. Intelbras accounts for 11% of the surveillance cam-
eras in the region, though they are third to Hikvision and
Dahua.

3.3 Europe
Eastern and Western Europe are both most similar to Oceania,
primarily due to the three regions sharing a similar fraction of
storage devices (Table 4). Still, the regions vary in terms of
their IoT usage: 57.2% of Western European homes have at
least one IoT device, compared to 25.7% in Eastern European
homes.

Manufacturers in Western Europe are similar to the global
distribution with a handful of exceptions. Sagemcom and
Free, two French companies that sell media boxes and IP
cameras, are the first and third largest media vendors in West-
ern Europe, accounting for 15.7% and 9.3% of all devices
compared to 5.7% and 3.2% globally. The markets of both
companies are highly localized, as 99% of their devices in
our dataset are located in Western and Northern Europe. In
other device categories, such as work appliances, game con-
soles, and home automation, there is limited variance from
the global distribution. Outside of North America and Ocea-
nia, Western Europe is the only other region where more than
1% of homes have a home automation device.

There are significantly more surveillance devices in Eastern
Europe than Western Europe (14% versus 5.6% of devices).
Eastern Europe is also unlike most other regions in that its
rank ordered device type distribution changes as more IoT
devices are added over time. For homes with one IoT device,
surveillance devices only make up 5.3% of all IoT devices,
but this changes drastically for homes with 3 IoT devices,
where the number of surveillance devices shoots up to 13.8%.
The fraction of surveillance devices continually increases as
more IoT devices are added to Eastern European homes. In
homes with 10 IoT devices, surveillance devices are the most
popular device, accounting for 42.7% of all devices.

3.4 Asia
We analyze the four regions (East, Central, South, and South-
east) of Asia separately as they have different IoT profiles.
For example, surveillance devices make up 54.5%, 37%, and

USENIX Association 28th USENIX Security Symposium 1175

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 D

ev
ic

es

Vendor by Rank

Central and South America
Central Asia

Eastern and Southern Europe
Eastern Asia

North Africa and Middle East
Northern America

Oceania
Southeastern Asia

Southern Asia
Sub-Saharan Africa

Western and Northern Europe

(a) Vendors per Region

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 D

ev
ic

es

Vendor by Rank

Media
Home Appliance

Game Console
Home Automation

Generic IoT
Surveillance

Work Appliance
Storage

Voice Assistant
Wearable

(b) Vendors per Device Type

Figure 4: IoT Vendors per Region and Device Type—There is a long tail of IoT manufacturers worldwide. However, in all
regions, 100 vendors account for more than 90% of devices and 400 vendors account for 99%. In contrast, some device types are
almost entirely dominated by one or two vendors. For example, Amazon and Google produce 91.9% of voice assistants and
Hikvision produces 18.6% of surveillance devices.

30.3% of devices in South, Southeast, and Central Asia (Fig-
ure 3), whereas only 9.1% of devices are surveillance related
in East Asia. This is not due to a large number of homes
with cameras, but rather that other types of IoT devices are
sparse. For example, only 9% of S.E. Asian Homes and
2.5% of South Asian homes contain a media device whereas
more than 40% homes in North America and Western Europe
do. Similar to other regions, Hikvision is the most prevalent
vendor of surveillance devices in S.E. Asia and South Asia,
making up 25.8% and 34.7% of surveillance devices in each
region respectively. Unlike other regions, a private5 vendor
accounts for 15.5% of all surveillance devices in Southern
Asia.

East and Central Asia are more similar to Eastern Europe
and Africa than they are to South and Southeast Asia. East
Asia, for example, is most similar to Sub-Saharan Africa
because its largest device type is work appliances, which
make up 44.5% of the devices in the region. Central Asia
more closely follows Eastern Europe with media devices
accounting for 54.2% of devices. All Asian regions do have
one thing in common: they are all the least similar to North
American homes, indicating fundamental differences in IoT
device usage between the Asian countries and North America.

3.5 Africa and Middle East

The North Africa, Middle East (combined) region is most
similar to Eastern Europe. Media devices are the most preva-
lent, appearing in 9.4% of homes and accounting for 35.7%
of devices. Again, we observe a local media vendor with
a large presence: Vestel, a Turkish TV manufacturer, is the
third largest media vendor after Samsung and LG. Surveil-
lance devices make up 28.5% of their overall devices, and
appear in 5.2% of homes. Sub-Saharan Africa is distinct in

5Private vendors are ones that have paid an additional fee to IEEE to keep
their MAC address mapping off of the public OUI list.

that work appliances are most popular (50% of devices). 11%
homes in the region have at least one work appliance. The
most popular vendor is HP (33.6%), followed by a long tail
of other manufacturers.

3.6 Oceania
Oceania ranks third to North America and Western Europe in
terms of fraction of homes that contain an IoT device (49.2%
of homes). Similar to other regions, the most popular device
type in the region are media devices, which are found in
30.7% of homes. This is followed by work appliances (19.8%
of homes) and gaming consoles (10.1% of homes). Oceania
is one of the only regions that contains home automation
devices, appearing in 0.7% of homes in our dataset. Similar to
North America and Western Europe, Oceania has a moderate
number of voice assistant devices, which appear in 3.2% of
homes and account for 4.2% of all devices. Unlike North
America and Western Europe, homes in Oceania contain
many networked storage devices. They account for 4.3% of
all devices, which is most similar to homes in Eastern Europe
and East Asia.

3.7 IoT Device Vendors
While we find devices from 14.3K unique vendors, 90% of
all devices globally are manufactured by 100 vendors (Fig-
ure 4a). Globally, there are 4,157 vendors (29%) that only
appear in one home. Unlike device type distributions, which
are consistent across region, vendor distributions vary heavily
across device type (Figure 4b). Some device types are domi-
nated by a small handful of vendors. For example, Amazon
and Google account for over 90% of voice assistant devices
globally. Other device types like media devices and surveil-
lance devices are split across many vendors. Media devices
are the most heterogeneous by vendor: the top 10 vendors
only account for 60% of devices.

1176 28th USENIX Security Symposium USENIX Association

Device Type Mean Correlation
Top-10

Mean Correlation

Game Console 0.43 0.49
Voice Assistant 0.23 0.26
Home Automation 0.98 0.98
Surveillance 0.07 0.28
Work Appliance 0.04 0.22
Storage 0.05 -0.03
Media 0.04 0.09
Router 0.01 0.02
Mobile Device 0.01 0.03

Table 6: Vendor Correlation by Device Type—We show
the mean correlation in rank ordered vendor distributions per
device type across every pair of regions across all vendors as
well as the top 10 vendors in each category. The correlations
in bold are statistically significant, and indicate consistency
in vendors for these device types across all regions in our
dataset.

Regional differences in vendor preferences may cause the
observed variance in vendor distributions across device types.
To measure this, we compute the pairwise Spearman’s corre-
lation for each vendor distribution across every pair of regions
(e.g. vendor distribution for voice assistants in North America
vs. East Asia). We then aggregate6over device type by taking
the average correlation across each pair of regions (Table 6).

We observe that device types dominated by a handful of
vendors globally (Figure 4b) show moderate to strong cor-
relations across all regions, indicating stability in popular
vendors across geographic areas. For example, game con-
soles are dominated by three major players (Microsoft, Sony,
Nintendo) in almost every region across the world. In con-
trast, there are a number of device types, such as media and
storage devices, for which there are no correlations across
region, even when looking only at the top 10 vendors. This
indicates that for these device types, regions have differing
vendor preferences. This result aligns with our investigation
of individual regions, where we observed many regions pre-
fer local media vendors that are less prevalent in the global
distribution.

4 Home Security

Beyond understanding the landscape of IoT devices, we in-
vestigate the security profile of devices in homes, including
devices that allow weak authentication, the security profile of

6We note that correlation coefficients are not additive, so to aggregate
we convert the respective correlation r-values to z-values using a Fisher’s
Z transform [13], take the average of the Z values, and convert back to an
r-value. In addition, we could only compare rank order for vendors who
appeared in all 11 regions in the dataset. There were three device categories
(wearables, home appliances, generic IoT) for which no vendors appeared in
all regions; we could not compute correlations in these cases.

Port Service Devices

1900 UPnP 46.2%
80 HTTP 45.7%
5353 mDNS 39.2%
8080 HTTP Alt. 26.9%
443 HTTPS 21.1%
9100 JetDirect 19.5%
515 LPR 16.5%
631 IPP 11.8%
554 RTSP 11.8%
8008 HTTP Alt. 11.1%

Port Service Devices

139 SMB 10.6%
8443 HTTPS Alt. 9.5%
8009 HTTP Alt. 9.3%
445 SMB 8.7%
7676 Custom 8.2%
49152 – 7.9%
21 FTP 7.8%
5000 UPnP 7.8%
23 Telnet 7.1%

Table 7: Popular IoT Services—We show the common open
ports in IoT devices in our dataset. The most popular pro-
tocols are related to device discovery (UPnP, mDNS) and
device administration (HTTP, HTTPS).

Credential %

admin/admin 88.3%
admin/ 5.9%
Administrator/ 1.4%
sysadm/sysadm 0.9%
root/ 0.7%
root/root 0.4%
user/ 0.4%
meo/meo 0.3%
admin/password 0.3%
admin/ttnet 0.3%
other 1.0%

(a) Weak FTP Credentials

Credential %

admin/admin 35.6%
root/xc3511 16.0%
vodafone/vodafone 10.4%
guest/guest 7.8%
admin/1234 7.5%
root/hslwificam 3.9%
root/vizxv 3.7%
root/oelinux123 2.2%
admin/4321 1.8%

1.6%
other 9.5%

(b) Weak Telnet Credentials

Table 8: Most Popular Weak FTP and Telnet Creden-
tials—admin/admin accounts for the 88.3% and 35.6% of
the weak FTP and Telnet credentials.

home routers, and the presence of homes that exhibit scanning
behavior on a large darknet.

Many IoT devices act as embedded servers: 67.5% of de-
vices provide at least one TCP- or UDP-based service. Many
of these services are not surprising—network printers nec-
essarily run services like IPP. However, we also note that
devices commonly support older protocols like Telnet (7.1%
of IoT devices) and FTP (7.8%). The most common proto-
col is Universal Plug and Play (UPnP), which is prevalent
on 46.2% of devices. We also observe HTTP and mDNS on
nearly half of devices. We show the top protocols in Table 7.

4.1 Weak Device Credentials
WiFi Inspector identifies devices that allow authentication
with weak default credentials by attempting to log in to FTP
and Telnet services with a small dictionary of common default
credentials (Section 2). We find that 7.1% of IoT devices and
14.6% of home routers support one of these two protocols.

USENIX Association 28th USENIX Security Symposium 1177

FTP Telnet HTTP

Region All IoT Work Appl. Surveillance Router Storage All IoT Surveillance Router TP-Link

Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln Sup Vuln

North America 20.8 5.4 23.4 16.7 6.4 4.6 5.0 4.6 3.2 27.0 0.5 4.8 5.8 9.9 1.3 5.3 16.8
South America 39.0 7.4 42.0 27.8 13.1 2.9 11.9 9.3 4.8 25.9 4.9 8.6 18.9 16.6 1.6 13.2 42.3
Eastern Europe 31.6 9.9 40.7 30.9 9.8 5.8 16.2 12.6 6.6 31.2 3.0 8.9 9.3 19.4 2.3 20.9 48.9
Western Europe 14.7 6.5 23.6 19.9 7.2 5.1 4.4 7.4 5.5 26.4 1.0 4.2 8.1 7.5 2.1 3.3 23.6
East Asia 36.0 17.3 41.5 32.0 6.9 5.5 4.4 7.5 12.2 36.7 0.4 13.8 4.7 13.0 0.9 19.9 23.8
Central Asia 29.5 3.0 64.2 10.2 9.9 2.7 53.9 15.7 3.8 35.1 4.9 6.7 6.4 16.1 7.3 37.6 47.3
Southeast Asia 50.4 7.4 59.5 25.4 7.4 1.4 21.0 14.8 5.8 37.7 3.6 12.1 6.3 12.4 2.0 18.1 43.7
South Asia 33.7 13.4 38.6 36.6 5.4 2.4 6.8 11.1 4.2 35.4 2.9 14.6 7.6 13.7 0.9 19.3 21.4
Oceania 14.7 9.2 16.2 29.9 5.0 4.2 28.2 13.4 6.7 25.0 0.7 7.8 5.7 14.8 0.9 17.1 19.9
N. Africa, M. East 44.6 9.8 53.4 30.4 7.5 2.6 33.7 23.9 8.2 25.9 4.8 11.1 10.5 17.3 1.7 26.6 24.0
Sub-Saharan Africa 55.3 15.4 61.5 27.2 10.8 5.1 23.6 12.5 10.1 35.4 1.1 12.0 5.2 14.1 1.6 20.9 25.4

Table 9: Weak Default Credentials by Region and Device Type—We show the weak FTP and Telnet device population by
region and device type, highlighting both the fraction of devices that support (Sup) each protocol as well as the fraction that are
vulnerable with weak default credentials (Vuln). Some regions have a higher fraction of devices with weak credentials—in the
largest case, 50% of FTP devices in Southeast Asia and 4.9% of all Telnet devices in Central Asia are weak. We further observe
that the likelihood of having weak FTP credentials is correlated to weak Telnet credentials, indicating that the presence of weak
credentials may be linked to weaker security posture in the region overall.

Of those, 17.4% exhibit weak FTP passwords and 2.1% have
weak Telnet passwords. In both cases, admin/admin is most
common and accounts for 88% of weak FTP and 36% of
weak Telnet credentials (Table 8). The credential is used by
FTP devices from 571 vendors and from 160 Telnet vendors.

Regions vary in terms of vulnerable IoT device populations.
In the smallest case, 14.7% of FTP devices in Western Europe
support weak default credentials while more than 55% of
FTP devices in Sub-Saharan Africa that are weak. A similar,
though not as drastic range exists for Telnet. North Amer-
ica has the smallest vulnerable population of Telnet devices
(0.5%), Central Asia and South America share the largest
vulnerable Telnet population (4.9% of all IoT Telnet devices),
primarily because of their reliance on surveillance devices,
which have the weakest Telnet profile of all IoT devices.

Nearly all of the IoT devices that support FTP are work
appliances (76%), storage (9.1%), media (7.6%), and surveil-
lance devices (5.1%). Media and surveillance devices appear
in the list due to their global popularity—unlike storage and
work appliances where 29% and 23% of devices support FTP
respectively, only 1% of media devices and 4% of surveil-
lance devices support FTP. This aligns with the business need
for work and storage devices to facilitate user file transfer,
and also explains why there is little variance in the types of
devices that support FTP across regions.

Storage devices are the device type most likely to support
FTP, though only a small fraction of them use weak creden-
tials. There are two regional exceptions—East Asia and Sub-
Saharan Africa (Table 9), which exhibit 12.2% and 10.1%
of storage devices with weak credentials respectively. We
observe this is primarily due to one vendor, ICP Electronics,
which has a large market presence in the two regions: 12.1%
and 10.1% of storage devices in East Asia and Sub-Saharan

Africa respectively. 74% of ICP storage devices exhibit weak
default credentials.

A surprising number of home routers also support FTP
(10.2%). TP-Link is responsible for the most routers with
weak FTP credentials (Table 10)—regions that rely on TP-
Link routers thus have a higher rate of devices with weak
FTP credentials. Of all TP-Link devices across all regions,
9.3% offer an open FTP port, and 62.8% of those devices are
protected by weak credentials.

Unlike FTP, there is little reason for any IoT devices to
support Telnet in 2019. Yet, we find both that surveillance
devices and routers consistently support the protocol. Surveil-
lance devices have the weakest Telnet profile, with 10.7%
of surveillance devices that support Telnet exhibiting weak
credentials. This aligns with anecdotal evidence that suggests
that these kinds of devices are easy to hack [4].

4.2 Home Routers

Nearly every home in our dataset has a home router. Similar
to most types of IoT devices, there are regional differences
and a long tail of vendors globally (Table 9). In total,
we see home routers from 4.8 K vendors. TP-Link is
the most popular manufacturer globally (15% of routers)
and is the top provider in five regions: South America,
Central Asia, Eastern Europe, South Asia, and Southeast
Asia. Arris is the most popular router vendor in North
America (16.4%)—likely because popular ISPs like Comcast
supply Arris routers to customers. Huawei is the most
popular vendor in Sub-Saharan and North Africa, accounting
for 19.8% and 25.6% of all routers respectively.

1178 28th USENIX Security Symposium USENIX Association

Vendor % Open % Weak % of Weak

Ricoh 92.1% 71.2% 29.8%
Kyocera 91.7% 97.1% 26%
HP 7.3% 92.4% 24.5%
Sharp 89.4% 94.2% 6.4%
Canon 2.7% 79.3% 2.1%

(a) Work Appliance (FTP)

Vendor % Open % Weak % of Weak

TP-Link 9.3% 62.8% 55.9%
Technicolor 22.9% 20.4% 9.6%
ZTE 9.9% 37.5% 9.5%
MicroTik 46.9% 13.0% 5.3%
D-Link 16.2% 10.9% 3.9%

(b) Router (FTP)

Vendor % Open % Weak % of Weak

D-Link 38.9% 6.1% 33.0%
Huawei 13.6% 4.8% 18.7%
TP-Link 15.0% 1.4% 12.6%
Zyxel 53.5% 2.9% 12.1%
Intelbras 12.7% 26.4% 7.1%

(c) Router (Telnet)

Table 10: Weak Vendors by Device Type—We show the vendors that exhibit weak default credentials across each device type
in our dataset sorted by the fraction of weak devices they contribute to their respective device types. For example, 71.2% of
Ricoh printers that support FTP also support weak default credentials, and these make up 29.8% of all weak work appliances.

Weak FTP/Telnet Credentials More than 93% of routers
have HTTP administration interfaces on port 80. We also find
that many routers support DNS over UDP (66.5%), UPnP
(63.4%), DNS over TCP (42.1%), HTTPS (42.2%), SSH
(19.7%), FTP (10.8%), and Telnet (14.6%). Of the devices
that support FTP and/or Telnet, 12% have weak FTP and 1.6%
have weak Telnet credentials. 1.2% of all routers exhibit a
weak FTP credential and 0.2% exhibit of all routers have a
weak Telnet credential. For FTP, TP-Link routers had the
weakest profile: 55.3% of their routers with an open FTP port
exhibited a weak credential. For Telnet, D-Link routers were
the weakest—6% of all open routers had a weak credential,
and 35.3% of all D-Link routers had an open Telnet port. We
show a breakdown by region in Table 10.

Weak HTTP Administration Credentials WiFi Inspec-
tor attempts to login to the HTTP interfaces for devices from
a small number of common vendors, including TP-Link—
the most common router manufacturer. In our dataset, there
are 3.8 M TP-Link home routers, of which 82% have an
HTTP port open to the local network. WiFi Inspector was
able to check for weak default credentials on 2.5 M (66%)
of the devices with HTTP. Overall, 1.2 M (30%) of TP-Link
routers exhibit weak HTTP credentials. Nearly all (99.6%)
use admin/admin. The number of TP-Link routers with
guessable passwords varies greatly across regions (Table 9).
For example, only 6% of TP-Link routers in North America
have weak passwords while around 45% do in South and
Central Asia, and East and South Europe.

External Exposure To understand whether routers with
weak default credentials are also exposed on the public Inter-
net, we joined the WiFi Inspector dataset with Internet-wide
scan data from Censys [16] for devices on a single day—
January 30, 2019.7 A small number of home routers host
publicly accessible services: 3.4% expose HTTP, 0.8% FTP,
0.7% Telnet, and 0.8% SSH. Open gateways are primarily
located in three regions—Central America (29.3%), Eastern
Europe (20.6%), and Southeast Asia (17.2%). Of routers
that are externally exposed, we find that 51.2% of them are

7We perform this analysis for January because of GDPR restrictions on
Avast data.

exposed with a vulnerability—far higher than the fraction non-
externally available routers in our dataset with a weakness
or vulnerability (25.8%). The most popular router vendor in
these regions is TP-Link, which is also the vendor responsible
for the most externally exposed routers (19.7%). We note
this is not simply because TP-Link is the largest vendor—a
proportion test across regions shows that TP-Link routers
appear in the set of externally exposed routers at a higher rate
than that of non-externally exposed routers.

4.3 Scanning Homes
While scan data can provide insight into the vulnerability
of hosts, it typically does not indicate whether hosts have
been compromised. We analyzed the homes from WiFi In-
spector that were seen performing vulnerability scans in a
large network telescope (Section 2) on January 1, 2019 to
better understand infected devices. Of the 500.7 K homes that
WiFi Inspector collected data from that day, 1,865 (0.37%)
homes were found to be scanning for vulnerabilities. Scans
most frequently target TCP/445 (SMB, 26.7% homes) fol-
lowed by TCP/23 (Telnet, 11.3%), TCP/80 (HTTP, 10.7%),
and TCP/8080 (HTTP, 9.4%). In addition to checking cre-
dentials, WiFi Inspector also checks devices for a handful
of recent, known vulnerabilities (CVEs, EDBs, and oth-
ers). 1,156 (62%) of scanning homes contained at least one
known vulnerability—conversely, 7.2 M (46.8%) non scan-
ning homes in our dataset contain at least one known vulnera-
bility. To test the differences between these populations, we
used a proportions t-test at a confidence interval of 95%. We
observe that the two sets are statistically significantly different
(p-value: 2.31∗10−39), indicating that scanning homes have
a higher vulnerability profile than homes globally. This trend
also holds for the number of vulnerable devices in scanning
homes (9.7%) compared to homes globally (5.7%). Unfor-
tunately, we were unable to determine why homes without
known vulnerabilities were seen scanning. This is likely due
to devices being compromised through means outside of our
measurement vantage point, for example, vulnerabilities that
we do not test for.

Although the overall vulnerability profile of devices in
scanning homes is higher, this is not true of all specific vul-

USENIX Association 28th USENIX Security Symposium 1179

nerabilities. Of the 25 vulnerabilities observed in scanning
homes, 17 appeared at a ratio that was not statistically signifi-
cantly different than devices globally. The remaining eight
vulnerabilities were statistically significantly different, though
six appear at a smaller rate in scanning homes than globally.
The two vulnerabilities that appeared at a higher rate in scan-
ning homes were both related to EternalBlue—a leaked NSA
exploit targeting SMB on Windows that was primarily respon-
sible for the WannaCry outbreak that impacted millions of
Windows devices in 2017 [44]. Specifically, we identify 5.2%
of devices within scanning homes that are vulnerable to Eter-
nalBlue, and further, 1.3% of devices in scanning homes are
already compromised, and communicating through a back-
door. This additionally explains some fraction of the SMB
scanning we observed on the darknet, as machines compro-
mised via EternalBlue often scan for other hosts running
vulnerable SMB servers. We note that although these homes
contain vulnerable devices, we cannot claim that they are
scanning as a result of these devices—for one, we do not
have full vulnerability coverage, and two, it is an outstanding
challenge to attribute device behavior from our vantage point.
Still, the presence of any scanning homes in general indi-
cates a threat landscape larger than simply publicly accessible
devices, and one that should be considered by the security
community.

5 Discussion

Recent security research has focused on new home IoT de-
vices, such as smart locks and home automation. Our results
suggest that while these devices are growing in importance
in western regions, they are far from the most common IoT
devices around the world. Instead, home IoT is better char-
acterized by smart TVs, printers, game consoles, and surveil-
lance devices—devices that have been connected to our home
networks for more than a decade. Furthermore, these are the
kinds of devices that still support weak credentials for old pro-
tocols: work appliances are the device type with the highest
fraction of weak FTP credentials; surveillance devices are the
worst for telnet credentials. Improving the security posture
of these devices remains just as important as ensuring that
new technologies are secure—our home networks are only as
secure as their weakest link.

There are some immediate next steps. As outlined in Sec-
tion 4, much of the devices that support weak credentials
are manufactured by a handful of popular vendors across all
regions (Table 10). The security community can start address-
ing these challenges by encouraging the largest offending
vendors to adopt better security practices. On the policy end,
law enforcement and legal entities have started to provide
legal disincentives for weak security practices. In light of
the Mirai attacks, the U.S. Federal Trade Commission has
prompted legal action against D-Link [12] for putting U.S.
consumers at risk.

A larger question remains on how to address the long tail of
vendors. As described in Section 3, regions often have vastly
different preferences for vendors across device types. As a
result, working to improve the security of devices based solely
on the global distribution may inadvertently leave smaller
regions with divergent preferences less secure.

Finally, it is not immediately clear how to measure the
impact of compromise on home security. In our work, we
measured the prevalence of scanning, though this is just one
indication of compromise. Furthermore, we only observed
0.37% of homes scanning; amounting to only 1.8 K homes
on a single day. In spite of all the data collected within
homes in this paper, we could not effectively identify why
certain homes were compromised. Researchers have proposed
systems to enable auditing of home IoT setups [55, 58], but
there is still more work to be done.

6 Related Work

Our work build on research from a number of areas, primarily
in home network measurement and IoT security.

Home Network Measurement Early research in home
network measurement primarily focused on debugging
networks—projects like Netalyzer [35] were conceived to en-
able users to debug their home Internet connectivity [9,15,49].
A number of follow on papers leveraged Netalyzer-like scans
to investigate the state of devices in homes [1, 9, 14], as well
to try and understand the implications of a connected home
on user behavior [10].

Most similar to our work is presented by Grover et al. who
installed home routers with custom firmware in 100 homes
across 21 countries to measure the availability, infrastructure,
and usage of home networks [26, 53]. Their work focuses
on the network properties of home networks on aggregate,
and also is able to measure networks continuously based on
their position in the network. Our work instead focuses on the
devices behind the NAT in their ubiquity and their security
properties, with particular attention spent on IoT devices.

Recent work has built off of network scanning to enable
rich device identification. Feng et al. built a system that lever-
ages application layer responses to perform device identifi-
cation without machine learning, similar to our hand curated
expert rules [21]. This work has built off a number of papers
that leverage banners and other host information to charac-
terize hosts [6, 20, 39, 50, 51]. Other rule based engines have
been used in other work on active, public scan data based on
probing for application banners [4, 16].

Home IoT Security Home IoT security has been of recent
interest to researchers in light of its growing security and
privacy implications, from the systems level up through the
application layer. Ma et al. investigated the rise of the Mi-
rai botnet [4], which was largely composed of IoT devices
compromised due to weak credentials and used to launch

1180 28th USENIX Security Symposium USENIX Association

massive DDoS attacks. This is not isolated to only attackers—
researchers have been breaking the home IoT devices since
their conception [8, 31, 38, 47, 59]. Notably, Fernandes et al.
outlined a number of challenges in Samsung SmartThings
devices, from their access control policy to their third-party
developer integration [22]. In response, researchers have built
systems to enable security properties in home IoT, such as
information flow tracking and sandboxing [23,33], improving
device authentication [54], and enabling auditing informa-
tion [55, 58]. Most recently, Alrawi et al. synthesized the
security of home IoT devices into a SoK, where they present
a systematization of attacks and defense on home IoT and
outline how to reason about home IoT risk [2].

Internet-Wide IoT Scanning There has been a wealth of
recent work that has used Internet-wide scanning for security
analysis, including analyzing embedded systems on the public
Internet (e.g., [4, 7, 18, 24, 28, 30, 36, 37, 40, 48, 52, 60]). In
contrast to these works, we focus on devices inside of homes
that are not visible through Internet-wide scanning.

7 Conclusion

In this paper, we conducted the first large-scale empirical anal-
ysis of IoT devices on real-world home networks. Leveraging
internal network scans of 83M IoT devices in 16M homes
worldwide, we find that IoT devices are widespread. In sev-
eral regions, the majority of homes now have at least one
networked IoT device. We analyzed the types and vendors
of commonly purchased devices and provided a landscape
of the global IoT ecosystem. We further analyzed the secu-
rity profile of these devices and networks and showed that a
significant fraction of devices use weak passwords on FTP
and Telnet, are vulnerable to known attacks, and use default
HTTP administration passwords that are left unchanged by
users. We hope our analysis will help the security community
develop solutions that are applicable to IoT devices already
in today’s homes.

8 Acknowledgements

The authors thank Avast’s WiFi Inspector team and the back-
end data team for their support and insight. The authors also
thank Renata Teixeira and David Adrian.

References
[1] B. Agarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and

G. M. Voelker. Netprints: Diagnosing home network misconfigurations
using shared knowledge. In 9th USENIX Networked Systems Design
and Implementation Conference, 2009.

[2] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. SoK: security
evaluation of home-based iot deployments. In 40th IEEE Symposium
on Security and Privacy, 2019.

[3] Amazon. All things alexa. https://www.amazon.com/Amazon-Echo-
And-Alexa-Devices.

[4] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallit-
sis, et al. Understanding the Mirai botnet. In 26th USENIX Security
Symposium, 2017.

[5] Belkin. WeMo smart plug. https://www.belkin.com/us/p/P-F7C063/.

[6] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray, and I. Ray.
Behavioral fingerprinting of iot devices. In 2nd ACM Workshop on
Attacks and Solutions in Hardware Security, 2018.

[7] A. Bonkoski, R. Bielawski, and J. A. Halderman. Illuminating the
security issues surrounding lights-out server management. In 7th
USENIX Workshop on Offensive Technologies, 2013.

[8] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang. Iotfuzzer: Discovering memory corruptions
in iot through app-based fuzzing. In 25th Networking and Distributed
Systems Security Symposium, 2018.

[9] M. Chetty, D. Haslem, A. Baird, U. Ofoha, B. Sumner, and R. Grinter.
Why is my internet slow?: making network speeds visible. In 29th
SIGCHI Conference on human factors in computing systems, 2011.

[10] M. Chetty, J.-Y. Sung, and R. E. Grinter. How smart homes learn: The
evolution of the networked home and household. In 9th International
Conference on Ubiquitous Computing, 2007.

[11] J. Cohen. Statistical power analysis for the behavioral sciences, 1998.

[12] F. T. Commission. FTC charges D-Link put consumers’ privacy
at risk due to the inadequate security of its computer routers and
cameras. https://www.ftc.gov/news-events/press-releases/2017/01/
ftc-charges-d-link-put-consumers-privacy-risk-due-inadequate.

[13] D. M. Corey, W. P. Dunlap, and M. J. Burke. Averaging correlations:
Expected values and bias in combined pearson rs and fisher’s z trans-
formations. The Journal of general psychology, 125(3), 1998.

[14] L. DiCioccio, R. Teixeira, M. May, and C. Kreibich. Probe and pray:
Using UPnP for home network measurements. In 13th International
Conference on Passive and Active Network Measurement, 2012.

[15] L. DiCioccio, R. Teixeira, and C. Rosenberg. Measuring home net-
works with homenet profiler. In 14th International Conference on
Passive and Active Network Measurement, 2013.

[16] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman.
A search engine backed by Internet-wide scanning. In 22nd ACM
Conference on Computer and Communications Security, 2015.

[17] Z. Durumeric, M. Bailey, and J. A. Halderman. An Internet-wide view
of Internet-wide scanning. In 23rd USENIX Security Symposium, 2014.

[18] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide scanning and its security applications. In 22nd USENIX Security
Symposium, 2013.

[19] Ecobee. Ecobee 4. https://www.ecobee.com/ecobee4/.

[20] X. Feng, Q. Li, Q. Han, H. Zhu, Y. Liu, J. Cui, and L. Sun. Active
profiling of physical devices at internet scale. In 25th International
Conference on Computer Communication and Networks, 2016.

[21] X. Feng, Q. Li, H. Wang, and L. Sun. Acquisitional rule-based engine
for discovering internet-of-things devices. In 27th USENIX Security
Symposium, 2018.

[22] E. Fernandes, J. Jung, and A. Prakash. Security analysis of emerging
smart home applications. In 37th IEEE Symposium on Security and
Privacy, 2016.

[23] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash. Flowfence: Practical data protection for emerging iot
application frameworks. In 25th USENIX Security Symposium, 2016.

[24] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, and J. A. Halderman.
Green lights forever: Analyzing the security of traffic infrastructure. In
8th USENIX Workshop on Offensive Technologies, 2014.

USENIX Association 28th USENIX Security Symposium 1181

https://www.amazon.com/Amazon-Echo-And-Alexa-Devices
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices
https://www.belkin.com/us/p/P-F7C063/
https://www.ftc.gov/news-events/press-releases/2017/01/ftc-charges-d-link-put-consumers-privacy-risk-due-inadequate
https://www.ftc.gov/news-events/press-releases/2017/01/ftc-charges-d-link-put-consumers-privacy-risk-due-inadequate
https://www.ecobee.com/ecobee4/

[25] Google. Google home. https://store.google.com/au/product/google_
home.

[26] S. Grover, M. S. Park, S. Sundaresan, S. Burnett, H. Kim, B. Ravi, and
N. Feamster. Peeking behind the NAT: an empirical study of home
networks. In 13th ACM Internet Measurement Conference, 2013.

[27] F. HALAIS. Spectacle and surveillance in brazil. https://
www.opendemocracy.net/opensecurity/flavie-halais/spectacle-and-
surveillance-in-brazil.

[28] M. Hastings, J. Fried, and N. Heninger. Weak keys remain widespread
in network devices. In ACM Internet Measurement Conference, 2016.

[29] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and
B. Ur. Rethinking access control and authentication for the home
internet of things. In 27th USENIX Security Symposium, 2018.

[30] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining
your Ps and Qs: Detection of widespread weak keys in network devices.
In 21st USENIX Security Symposium, 2012.

[31] G. Hernandez, O. Arias, D. Buentello, and Y. Jin. Smart nest thermostat:
A smart spy in your home. Black Hat USA, 2014.

[32] IEEE. Registration authority. https://standards.ieee.org/products-
services/regauth/oui/index.html.

[33] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity. Contexlot: Towards providing
contextual integrity to appified iot platforms. In 24th Network and
Distributed Systems Security Symposium, 2017.

[34] M. M. Kanashiro. Surveillance cameras in brazil: exclusion, mobility
regulation, and the new meanings of security. Surveillance & Society,
2008.

[35] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson. Netalyzr: illumi-
nating the edge network. In 10th Internet Measurement Conference,
2010.

[36] M. Kührer, T. Hupperich, J. Bushart, C. Rossow, and T. Holz. Going
wild: Large-scale classification of open DNS resolvers. In 15th ACM
Internet Measurement Conference, 2015.

[37] M. Kührer, T. Hupperich, C. Rossow, and T. Holz. Exit from hell?
reducing the impact of amplification ddos attacks. In 23rd USENIX
Security Symposium, 2014.

[38] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason,
A. Bates, and M. Bailey. Skill squatting attacks on Amazon Alexa. In
27th USENIX Security Symposium, 2018.

[39] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma. Iot sentinel: Automated device-type identification for secu-
rity enforcement in iot. In 37th International Conference on Distributed
Computing Systems (ICDCS), 2017.

[40] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit, T. Yardley,
R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman, et al. An
internet-wide view of ics devices. In 14th Annual Conference on
Privacy, Security and Trust (PST). IEEE, 2016.

[41] A. Muravitsky, V. Dashchenko, and R. Sako. Iot hack: how to break
a smart home again. https://securelist.com/iot-hack-how-to-break-a-
smart-home-again/84092/.

[42] Nest Labs. Nest thermostat. https://nest.com/thermostats/.

[43] L. H. Newman. An elaborate hack shows how much damage iot bugs
can do. https://www.wired.com/story/elaborate-hack-shows-damage-
iot-bugs-can-do/.

[44] L. H. Newman. The ransomware meltdown experts warned about is
here. https://www.wired.com/2017/05/ransomware-meltdown-experts-
warned/.

[45] OPSWAT. Windows anti-malware market share report. https://
metadefender.opswat.com/reports/anti-malware-market-share.

[46] Philips. Philips hue. https://www2.meethue.com/en-us.
[47] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn. IoT goes

nuclear: Creating a ZigBee chain reaction. In 38th IEEE Symposium
on Security and Privacy (SP), 2017.

[48] N. Samarasinghe and M. Mannan. Tls ecosystems in networked devices
vs. web servers. In International Conference on Financial Cryptogra-
phy and Data Security, 2017.

[49] M. A. Sánchez, J. S. Otto, Z. S. Bischof, and F. E. Bustamante. Trying
broadband characterization at home. In 14th International Conference
on Passive and Active Network Measurement, 2013.

[50] A. Sarabi and M. Liu. Characterizing the internet host population using
deep learning: A universal and lightweight numerical embedding. In
18th ACM Internet Measurement Conference, 2018.

[51] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov. Hershel:
single-packet os fingerprinting. In 6th ACM SIGMETRICS Conference,
2014.

[52] D. Springall, Z. Durumeric, and J. A. Halderman. FTP: The forgot-
ten cloud. In 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2016.

[53] S. Sundaresan, S. Burnett, N. Feamster, and W. De Donato. Bismark:
A testbed for deploying measurements and applications in broadband
access networks. In 19th USENIX Annual Technical Conference, 2014.

[54] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague.
Smartauth: User-centered authorization for the Internet of things. In
26th USENIX Security Symposium, 2017.

[55] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter. Fear and logging
in the internet of things. In 25th Networking and Distributed Systems
Symposium, 2018.

[56] Wikipedia. ISO-3166-2. https://en.wikipedia.org/wiki/ISO_3166-2.

[57] O. Williams-Grut. Hackers stole a casino’s database through a
thermometer in the lobby fish tank. https://www.businessinsider.com/
hackers-stole-a-casinos-database-through-a-thermometer-in-the-
lobby-fish-tank-2018-4.

[58] J. Wilson, R. S. Wahby, H. Corrigan-Gibbs, D. Boneh, P. Levis, and
K. Winstein. Trust but verify: Auditing the secure Internet of things. In
15th Annual International Conference on Mobile Systems, Applications,
and Services, 2017.

[59] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. Dolphinattack:
Inaudible voice commands. In 24th ACM Conference on Computer
and Communications Security, 2017.

[60] J. Zhang, Z. Durumeric, M. Bailey, M. Liu, and M. Karir. On the
mismanagement and maliciousness of networks. In Network and Dis-
tributed System Security Symposium, 2014.

1182 28th USENIX Security Symposium USENIX Association

https://store.google.com/au/product/google_home
https://store.google.com/au/product/google_home
https://www.opendemocracy.net/opensecurity/flavie-halais/spectacle-and-surveillance-in-brazil
https://www.opendemocracy.net/opensecurity/flavie-halais/spectacle-and-surveillance-in-brazil
https://www.opendemocracy.net/opensecurity/flavie-halais/spectacle-and-surveillance-in-brazil
https://standards.ieee.org/products-services/regauth/oui/index.html
https://standards.ieee.org/products-services/regauth/oui/index.html
https://securelist.com/iot-hack-how-to-break-a-smart-home-again/84092/
https://securelist.com/iot-hack-how-to-break-a-smart-home-again/84092/
https://nest.com/thermostats/
https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/
https://www.wired.com/story/elaborate-hack-shows-damage-iot-bugs-can-do/
https://www.wired.com/2017/05/ransomware-meltdown-experts-warned/
https://www.wired.com/2017/05/ransomware-meltdown-experts-warned/
https://metadefender.opswat.com/reports/anti-malware-market-share
https://metadefender.opswat.com/reports/anti-malware-market-share
https://www2.meethue.com/en-us
https://en.wikipedia.org/wiki/ISO_3166-2
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4
https://www.businessinsider.com/hackers-stole-a-casinos-database-through-a-thermometer-in-the-lobby-fish-tank-2018-4

A Data Sharing Policy

The first panel in Figure 1 presents users with a text blurb about WiFi Inspector’s data sharing policy. For ease of reading, we
have copied that text below here:

Nearly every software product you use collects information about you. Search engines, games, everything. We do the
same. This allows us to provide better products and services for you. But we promise to respect your privacy. We also
promise that we will never publish or share any of your personal information outside Avast, nor allow anyone else to
use it to contact you for marketing purposes without your consent.

We do use the information that we collect to help us understand new and interesting trends. We may share this
information with third parties outside Avast. However, before we do that, we will remove anything that identifies you
personally. For more information, read our Privacy Policy.

If after installing this product, you’d prefer not to participate in data sharing with Avast and third parties, you can
opt-out at any time by unchecking the “participate in data-sharing” box in the settings.

USENIX Association 28th USENIX Security Symposium 1183

B Device Landscape

Routers Gaming Automation Storage Surveillance Work Assistant Media

N
.A

m
er

ic
a 16.4 Arris 39.2 Microsoft 44.2 Nest 24.9 W Digital 12.1 Hikvision 38.8 HP 63.2 Amazon 17.4 Roku

8.1 Cisco 19.7 Nintendo 15.1 Belkin 14.1 Synology 7.3 Dahua 10.3 FoxConn 32.0 Google 10.2 Amazon
5.2 Sagemcom 11.6 Azurewave 14.4 Phillips 5.9 Seagate 6.3 D-Link 8.4 Amazon 1.7 Unknown 9.9 Samsung
4.6 Actiontec 9.4 Sony 9.8 ecobee 3.9 ICP 5.8 Suga 8.0 Epson 0.8 StreamUnlimited 5.9 Apple
4.3 TP-Link 9.0 FoxConn 2.7 Enphase 3.0 WD 5.3 Flir 7.5 Canon 0.4 Apple 5.8 Google

S.
A

m
er

ic
a 22.2 TP-Link 43.7 Microsoft 33.5 Philips 25.0 W Digital 20.8 Hikvision 29.2 HP 39.1 Google 26.0 Samsung

7.7 Arris 13.6 Sony 13.0 Belkin 14.7 Sagemcom 16.3 Dahua 18.0 Epson 27.5 Amazon 13.6 Arcadyan
7.0 Technicolor 10.7 Azurewave 12.1 – 13.1 Synology 8.4 – 9.0 FoxConn 6.2 – 7.5 Google
6.5 Huawei 9.6 FoxConn 5.9 SMA 9.7 D-Link 8.2 Intelbras 7.1 Brother 3.7 TI 6.3 LG
4.6 Mitrastar 6.6 Nintendo 4.7 Enphase 8.5 Seagate 4.0 Cisco 5.7 Samsung 3.2 Dell 5.0 Intelbras

E
as

tA
si

a 12.9 NEC 45.9 Nintendo 49.0 Philips 37.2 Synology 28.5 Hikvision 13.4 Canon 56.2 Google 8.6 Panasonic
11.9 Buffalo 21.9 Sony 7.0 Belkin 13.4 Buffalo 10.5 Dahua 11.1 Epson 32.6 Amazon 7.5 Amazon
8.4 TP-Link 8.9 FoxConn 4.8 Belkin 12.1 ICP 8.6 Dahua 10.6 Moimstone 2.1 Xiaomi 6.9 FoxConn
5.5 EFM 8.0 Azurewave 4.2 Gongjin Elec 8.8 I-OData 5.0 Panasonic 9.3 FoxConn 0.7 TCL 6.3 Google
4.4 Huawei 4.9 Microsoft 4.2 SMA 8.2 QNAP 2.4 Bilian 9.2 HP 0.7 Onkyo 5.9 Sony

C
en

tr
al

A
si

a 49.5 TP-Link 22.8 Microsoft 11.1 Fn-Link 37.4 Synology 43.2 Hikvision 23.7 HP 21.3 Amazon 37.2 Samsung
16.6 Huawei 20.9 FoxConn 11.1 Cambridge 14.0 D-Link 16.2 Dahua 10.0 Yealink 17.0 Amazon 28.6 LG
6.4 Cambridge 17.7 Azurewave 11.1 TP-Link 13.5 W Digital 11.0 Cisco 9.4 Canon 6.4 D-Link 6.9 FoxConn
5.3 D-Link 12.5 Sony – – 7.7 ICP 6.2 Cisco 7.5 Epson 4.3 M-Cube – –
3.0 ZTE 10.0 Liteon – – 4.1 QNAP 3.2 ICP 6.9 XEROX 4.3 TI – –

E
as

tE
ur

op
e 23.9 TP-Link 37.3 Microsoft 40.3 Philips 26.7 Synology 20.6 Hikvision 27.7 HP 44.9 Google 30.8 Samsung

7.3 ZTE 14.7 Sony 25.1 Philips 15.9 W Digital 18.7 Dahua 10.8 FoxConn 23.7 Amazon 17.0 LG
7.1 Huawei 13.2 FoxConn 5.4 SMA 14.0 Sagemcom 12.0 Cisco 7.1 Canon 7.6 Amazon 5.4 FoxConn
6.6 D-Link 11.0 Azurewave 3.2 eQ-3 9.7 ICP 4.3 Cisco 5.6 Epson 2.4 TI 4.7 Google
3.8 Asus 9.5 Nintendo 3.2 Murata 7.6 QNAP 3.4 ICP 4.9 Samsung 2.3 Telemedia 3.3 Neweb

W
es

tE
ur

op
e 18.0 Sagemcom 30.6 Microsoft 33.1 Philips 38.7 Synology 37.1 Free 39.0 HP 48.6 Amazon 15.7 Sagemcom

16.1 Free 22.5 Nintendo 17.7 Alertme.com 17.7 W Digital 8.0 Hikvision 11.6 Canon 37.2 Google 14.1 Samsung
5.7 AVM 14.9 Sony 6.1 eQ-3 7.2 ICP 7.0 Hikvision 9.2 FoxConn 6.4 Apple 9.3 Free
5.2 Huawei 11.5 FoxConn 5.7 Hager 5.7 Technicolor 6.3 Dahua 9.0 Epson 0.7 Apple 8.4 Google
3.8 TP-Link 8.3 Azurewave 4.8 SMA 4.5 QNAP 5.1 D-Link 4.1 Brother 0.6 Telemedia 6.2 Google

So
ut

h
A

si
a 24.2 TP-Link 64.9 Microsoft 26.3 Philips 20.1 W Digital 34.3 Hikvision 33.1 HP 44.8 Google 17.1 FoxConn

7.4 Huawei 8.7 FoxConn 24.1 SMA 14.5 Synology 18.4 Dahua 16.6 Canon 33.8 Amazon 16.9 Samsung
7.4 D-Link 5.7 Azurewave 14.0 Matrix 14.5 Synology 18.4 Dahua 8.1 FoxConn 2.7 HP 8.3 LG
7.3 Tenda 3.6 Sony 1.3 Espressif 10.6 Seagate 3.0 Cisco 6.0 Epson 2.5 Dell 6.1 Google
2.7 Haier 2.0 Nintendo 1.3 Xiaomi 10.3 WD 2.1 ICP 3.6 Ricoh 1.8 Intel 5.5 Neweb

S.
E

.A
si

a 18.9 TP-Link 44.6 Microsoft 34.7 Inspur 36.4 Synology 24.7 Hikvision 15.4 HP 49.1 Google 19.7 Samsung
14.3 Huawei 11.6 Nintendo 18.9 Philips 19.4 W Digital 17.2 Dahua 13.9 FoxConn 21.7 Amazon 10.8 FoxConn
12.0 ZTE 11.5 FoxConn 18.6 Rf-Link 8.6 ICP 4.8 Cisco 9.7 Epson 2.7 TI 10.6 ZTE
5.3 Fiberhome 10.2 Azurewave 8.2 SMA 7.5 QNAP 4.0 ICP 9.5 Canon 2.6 HP 10.5 LG
4.3 Mikrotic 6.5 Sony 2.0 Belkin 6.6 D-Link 3.8 PLUS 7.3 Ricoh 2.3 Dell 4.1 Neweb

O
ce

an
ia

19.3 Technicolor 43.7 Microsoft 30.3 Philips 21.0 Synology 16.8 Hikvision 23.5 HP 85.3 Google 17.7 Google
15.4 Huawei 15.0 Nintendo 20.3 Belkin 15.9 HyBroad 13.9 Dahua 19.3 FoxConn 8.0 Amazon 12.2 Roku
12.1 Sagemcom 11.1 FoxConn 16.4 Lifi 13.1 W Digital 3.7 D-Link 14.1 Epson 1.3 Apple 10.0 Apple
7.6 TP-Link 10.3 Azurewave 10.1 Enphase 9.5 ICP 3.4 Baichuan 10.2 Canon 1.3 Apple 8.6 Samsung
4.7 Netcomm 9.3 Sony 6.2 SMA 6.5 Seagate 3.0 Yealink 6.5 Brother 0.6 Liteon 6.8 Sonos

N
.A

fr
ic

a,
M

E 25.6 Huawei 26.0 Microsoft 27.3 Philips 29.1 Askey 19.5 Hikvision 29.4 HP 27.6 Google 20.9 Samsung
23.2 TP-Link 18.7 FoxConn 10.6 SMA 19.2 W Digital 15.3 Dahua 9.7 FoxConn 21.3 Amazon 17.2 LG
8.4 ZTE 16.6 Sony 8.1 Lifi 9.7 ICP 5.4 Cisco 7.2 Canon 1.9 Dell 5.4 Vestel
6.1 D-Link 12.2 Azurewave 3.2 Sercomm 9.1 Synology 4.3 Topwell 4.3 Samsung 1.9 Apple 3.8 Sagemcom
4.7 Zyxel 7.7 Liteon 2.7 ZTE 7.7 VTech 4.0 ICP 3.9 Konika 1.8 HP 2.7 Apple

S-
S

A
fr

ic
a 19.7 Huawei 40.7 Microsoft 21.1 SMA 24.7 Synology 39.0 Hikvision 33.6 HP 33.8 Google 24.1 Samsung

12.0 TP-Link 14.5 FoxConn 17.6 TI 19.2 W Digital 16.3 Dahua 8.5 Canon 28.8 Amazon 7.4 LG
8.1 Ubiquiti 13.9 Sony 10.8 Philips 10.1 ICP 2.8 Cisco 8.4 Yealink 7.3 HP 7.4 LG
6.7 Mikrotic 9.7 Azurewave 3.9 HP 9.3 QNAP 2.2 ICP 6.3 FoxConn 2.9 Dell 5.8 Apple
6.5 D-Link 8.4 Nintendo 2.9 Hager 7.8 Seagate 1.7 PLUS 5.3 Ricoh 2.2 Apple 5.2 Sagemcom

Table 11: Most Popular Vendor per Region per Device Type—We show the five most popular vendors per device type across
the eleven regions in our dataset. We excluded two device types, wearable and home appliances, as they were barely present in
our dataset and splitting up their vendor distribution by region provided only a handful of devices in each region.

1184 28th USENIX Security Symposium USENIX Association

FTP Telnet

Region Work Appliance Storage Surveillance Home Router Surveillance Home Router

N
.A

m
er

ic
a 35.3 HP 40.1 ICP 49.8 Axis 63.8 TP-Link 42.9 Dahua 45.2 TP-Link

13.9 Ricoh 25.2 W Digital 13.4 Vivotek 9.6 ZTE 22.7 PLUS 40.5 Zyxel
9.3 FoxConn 10.0 QNAP 7.9 Trendnet 8.0 Mikrotic 9.3 Metrohm 4.4 –
8.4 Kyocera 6.7 TP-Link 4.6 D-link 4.3 – 4.8 – 4.1 Belkin
7.9 Sharp 5.5 WD 2.9 Creston 2.0 T&W 3.7 Cisco 0.7 Intelbras

S.
A

m
er

ic
a 39.6 Ricoh 24.2 W Digital 43.3 Vivotek 40.3 Technicolor 51.4 PLUS 44.5 Intelbras

25.3 HP 20.2 ICP 30.6 Axis 28.5 TP-Link 10.3 Cisco 21.6 Huawei
22.8 Kyocera 12.9 QNAP 6.9 Level One 11.1 D-Link 9.8 Metrohm 12.0 BluCastle
3.3 Sharp 8.1 Cisco 6.5 D-Link 7.4 Mikrotic 8.8 Dahua 5.9 TP-Link
1.2 Xerox 7.3 La Cie 2.2 Trendnet 4.7 Cameo 3.3 Ralink 5.7 Loopcomm

E
as

tA
si

a 39.9 Ricoh 49.0 I-O 44.3 Vivotek 62.4 TP-Link 43.8 PLUS 45.8 NEC
17.6 Sharp 25.4 ICP 27.8 Axis 14.1 I-O 11.9 Metrohm 18.6 Hitron
8.6 HP 7.9 QNAP 8.7 Logitec 6.9 DrayTek 10.8 Dahua 15.6 Huawei
7.4 Kyocera 7.7 EFM 4.3 Imi 2.9 corega 9.2 ICP 4.9 Buffalo
5.6 Xerox 1.7 inXtron 3.5 Buffalo 1.8 Mikrotic 4.3 Cisco 4.7 TP-Link

C
en

tr
al

A
si

a 66.4 HP 66.7 ICP 39.1 Axis 92.6 TP-Link 36.0 PLUS 52.3 D-Link
9.3 FoxConn 33.3 QNAP 17.4 Zhongxi 1.9 Huawei 16.9 Dahua 35.2 Huawei

11.5 Kyocera – – 13.0 Ezvis 1.5 ZTE 11.2 – 8.8 Cambridge
3.5 Ricoh – – 13.0 Vivotek 1.5 Mikrotic 10.1 Metrohm 2.4 TP-Link
3.1 Xerox – – 8.7 – 1.1 Asus 5.6 iStor 0.6 Eltex

E
as

tE
ur

op
e 42.4 Kyocera 53.1 ICP 31.6 Axis 45.8 TP-Link 35.0 PLUS 60.5 D-Link

25.9 Ricoh 18.2 QNAP 20.3 Ezvis 14.6 ZTE 26.5 Dahua 18.9 Huawei
23.6 HP 12.5 W Digital 12.5 Vivotek 11.6 Technicolor 12.3 Metrohm 8.6 TP-Link
3.7 Sharp 3.0 WD 9.0 Zhongxi 8.3 Mikrotic 5.0 Cisco 2.8 Zyxel
2.4 FoxConn 1.7 La Cie 4.3 D-Link 7.5 Sagemcom 2.5 iStor 1.8 ZTE

W
es

tE
ur

op
e 27.9 Kyocera 49.2 ICP 49.7 Axis 40.8 TP-Link 35.5 PLUS 65.6 Zyxel

22.2 HP 17.1 W Digital 11.0 Vivotek 20.6 Arcadyan 20.9 Dahua 15.1 TP-Link
18.8 Ricoh 8.5 QNAP 10.8 Advance Vision 12.4 Technicolor 14.0 Metrohm 13.2 ZTE
9.5 Sharp 4.1 WD 4.7 D-Link 6.9 AVM 5.8 iStor 0.9 –
3.5 FoxConn 3.8 Synology 3.9 Hikvision 4.7 Mikrotic 5.0 – 0.8 Winstars

So
ut

h
A

si
a 51.4 HP 32.4 W Digital 61.5 Matrix 34.7 ZTE 42.1 PLUS 40.3 Smartlink

19.6 Ricoh 17.6 QNAP 11.5 Axis 26.4 TP-Link 18.4 Dahua 34.7 D-Link
10.5 Canon 14.7 WD 10.3 D-Link 12.4 D-Link 11.3 Metrohm 5.4 Huawei
5.6 Kyocera 14.7 ICP 3.8 3DSP 6.8 Fiberhome 8.8 – 2.9 Fida
4.2 FoxConn 8.8 – 2.6 CardioMEMS 3.0 Binatone 4.6 Cisco 2.6 Zyxel

S.
E

.A
si

a 46.6 Ricoh 39.9 ICP 45.1 Vivotek 62.3 TP-Link 45.7 PLUS 36.6 Huawei
19.5 HP 25.4 QNAP 39.6 Axis 16.6 Mikrotic 16.2 Metrohm 24.6 Zyxel
6.3 Sharp 11.6 W Digital 3.0 – 7.6 DrayTek 12.6 Dahua 12.3 TP-Link
6.3 Kyocera 6.5 WD 2.4 Matrix 3.3 Sagemcom 5.3 Cisco 7.5 ZTE
4.4 Xerox 4.3 I-O 1.2 Level One 1.8 D-Link 5.1 – 5.0 RicherLink

O
ce

an
ia

21.1 Kyocera 65.1 ICP 30.8 Axis 57.6 TP-Link 35.8 PLUS 91.4 TP-Link
18.3 HP 15.1 W Digital 30.8 – 32.4 NetComm 18.9 Dahua 2.7 D-Link
17.9 Ricoh 11.6 QNAP 30.8 Ezvis 3.6 D-Link 13.2 Metrohm 1.4 ZTE

14.3 Xeros 2.3 – 7.7 Adaptive
Recognition 1.8 Billion 9.4 – 0.9 NetComm

8.7 Sharp 2.3 Cisco 0.0 UTC F&S 1.8 Billion 1.1 – 0.9 –

N
.A

fr
ic

a,
M

E 35.1 Kyocera 58.7 ICP 34.8 Axis 81.9 TP-Link 48.7 PLUS 38.9 TP-Link
24.1 HP 18.5 QNAP 19.1 Vivotek 5.7 ZTE 16.3 Metrohm 34.2 Zyxel
23.7 Ricoh 11.4 W Digital 10.3 D-Link 4.8 Askey 11.8 Dahua 19.0 Huawei
5.6 Sharp 4.9 WD 3.4 Level One 1.7 Boca 4.9 iStor 2.6 D-Link
5.0 FoxConn 1.6 Xerox 2.9 SMD 0.8 Cameo 3.6 Cisco 1.1 AirTies

S-
S

A
fr

ic
a 32.1 HP 43.5 ICP 72.5 Axis 30.7 TP-Link 43.4 PLUS 60.0 Zyxel

28.7 Kyocera 16.5 QNAP 16.7 Vivotek 28.0 D-Link 16.9 Dahua 17.4 Huawei
26 Ricoh 11.8 W Digital 2.9 Hikvision 22.3 Mikrotic 14.0 Metrohm 7.3 TP-Link
4.0 FoxConn 7.1 Xerox 2.0 Netcore 6.6 ZTE 5.9 – 4.9 Fida
3.0 Sharp 5.9 Seagate 2.0 Bosch 4.2 Billion 4.4 iStor 2.2 ZTE

Table 12: Vendors with Weak FTP and Telnet Credentials by Region—We show the top five vendors in each device type by
region that exhibit weak FTP or Telnet credentials. In most cases, a small handful of vendors are responsible for most of the
weak devices.

USENIX Association 28th USENIX Security Symposium 1185

KEPLER: Facilitating Control-flow Hijacking Primitive Evaluation
for Linux Kernel Vulnerabilities

Wei Wu1,2,3?, Yueqi Chen2, Xinyu Xing2, and Wei Zou1,3

1{CAS-KLONAT†, BKLONSPT‡}, Institute of Information Engineering, Chinese Academy of Sciences, China
2College of Information Sciences and Technology, Pennsylvania State University, USA

3School of Cyber Security, University of Chinese Academy of Sciences, China
{wuwei, zouwei}@iie.ac.cn, {yxc431, xxing}@ist.psu.edu

Abstract
Automatic exploit generation is a challenging problem.

A challenging part of the task is to connect an identified
exploitable state (exploit primitive) to triggering execution
of code-reuse (e.g., ROP) payload. A control-flow hijacking
primitive is one of the most common capabilities for exploita-
tion. However, due to the challenges of widely deployed ex-
ploit mitigations, pitfalls along an exploit path, and ill-suited
primitives, it is difficult to even manually craft an exploit with
a control-flow hijacking primitive for an off-the-shelf modern
Linux kernel. We propose KEPLER to facilitate exploit gener-
ation by automatically generating a “single-shot” exploitation
chain. KEPLER accepts as input a control-flow hijacking prim-
itive and bootstraps any kernel ROP payload by symbolically
stitching an exploitation chain taking advantage of prevalent
kernel coding style and corresponding gadgets. Comparisons
with previous automatic exploit generation techniques and
previous kernel exploit techniques show KEPLER effectively
facilitates evaluation of control-flow hijacking primitives in
the Linux kernel.

1 Introduction

Software bugs may have extremely serious consequences,
especially for the OS kernel, where they could be fatal to
the reliability and security of the entire OS because of the
higher privilege that the kernel resides in and the abundance
of hardware resources that the kernel has direct control of.
Kernel bugs can lead to data leakage, privilege escalation
and even persistant attacks [33]. One straightforward solution
to minimize consequences of kernel bugs is to immediately
patch all of the kernel bugs reported via mail lists and kernel
fuzzers [72] [58] [52] [37]. In practice, considering the lack
of manpower to patch all bugs timely, vendors typically prior-
itize their efforts to patch the bugs with more severe security

?The main part of the work was done while studying at Pennsylvania
State University.

†Key Laboratory of Network Assessment Technology, CAS
‡Beijing Key Laboratory of Network Security and Protection Technology

implications after assessing their exploitability. With the de-
ployment of various kernel mitigations, the exploitability of
bugs has been obviously weakened but still hard to decide.
Despite the undecidability of the general exploitability prob-
lem, sometimes a carefully crafted exploit could serve as a
constructive proof of exploitability.

Capable of proving exploitability by generating working
exploits from a vulnerability Proof-of-Concepts (PoC), auto-
matic exploit generation is a preferred choice for exploitability
assessment because its soundness and efficiency [7] [3] [9]
[64] [5] [55] [30] [75]. More importantly, automatically gen-
erating concrete exploits could not only help exploitability
evaluation, but also let a user to gain advantages in adversarial
settings (e.g. Capture-The-Flag competitions) by scoring fast.
Last but not least, these generated exploits could potentially
help defender-side to evaluate the effectiveness of proposals
of new kernel mitigation.

The common workflow of automatic exploit generation
systems are similar. In general we can divide them into the
following two steps: ¶exploit primitive identification and
·exploit primitive evaluation. In the first step, they search
for pre-defined exploit primitive (“exploitable” states) based
on the crashing path triggered by a PoC input. In the sec-
ond step, after pinpointing an exploit primitive, they add ex-
ploit constraints and perform constraint solving to generate
a concrete input to exercise a predefined exploit technique
(e.g., ret2libc attack).

However, in order to generate working exploit for a control-
flow hijacking primitive, there remains to be the following
three challenges in the process of exploit primitive evaluation
which limits the capability of automatic exploit generation
techniques to target a complex real-world system such as the
Linux kernel.

Challenge 1, exploit mitigation. Exploit mitigations are
designed and introduced to reduce attack surface and raise
the bar of exploitation. For a modern Linux kernel, many
new hardware features [38] [11], compiler-assisted instrumen-
tation [22] [40], sensitive data objects protection [12] [65]
[21] [13] and virtualization-based hypervisor [49] [51] have

USENIX Association 28th USENIX Security Symposium 1187

been introduced as exploit mitigations. As a consequence,
many kernel exploit techniques are no longer effective [36]
[61] [41] [39] [77], despite the fact that heavier enforcement
such as control-flow integrity (CFI) [2] [16] [79] [78] is still
not widely-adopted by major Linux releases perhaps due to
performance concerns.

Challenge 2, exploit path pitfall. Side effects of exploit
primitives could terminate exploitation in middle. Memory
corruption, occurred along with an exploit primitive, can frus-
trate the attempt to trigger the primitive the second time, be-
cause an exploit path could unavoidably contain instructions
triggering an unexpected termination of exploitation. Such
termination can be a kernel panic of invalid memory access
or an infinite loop in a kernel thread.

Challenge 3, ill-suited exploit primitive. Lack of stack piv-
oting gadget [54] which is a vital step to perform ROP attack
and insufficient control over general registers can make an
exploit primitive ill-suited. Although some strong primitives
have been proven exploitable and even Turing complete [35],
there is still a gap between ill-suited exploit primitive and the
requirement of mounting a certain exploit technique.

Considering the three challenges, it could be quite diffi-
cult to even manually craft an exploit with a control flow
hijack primitive. To address the above challenges, we propose
KEPLER, an exploit primitive evaluation framework for real-
world Linux kernel vulnerabilities. KEPLER employs a novel
exploit technique designed for Linux kernel which reduces ex-
ploitation of a control-flow hijacking primitive to constructing
a classical overflow in kernel stack. The exploit technique ex-
poses less constraints over the quality of an exploit primitive
and availability of stack pivoting gadget than previous exploit
techniques and could still bypass currently widely deployed
kernel mitigations while previous approches could not. Start-
ing from a possibly ill-suited control-flow hijacking primitive
(CFHP), KEPLER overcomes the lack of stack pivoting gadget
and manages to build a "single-shot" exploitation chain to
bootstrap existing Turing complete exploit techniques such
as return oriented programming (ROP) [56], with the ability
to bypass mainstream kernel mitigations as well as detouring
exploit path pitfalls.

To achieve this, KEPLER leverages a carefully designed
code-reuse template for control-flow hijacking primitives to
bypass widely-deployed mitigations in Linux kernel. KE-
PLER first enhances an exploit primitive to satisfy a minimal
requirement of controlling dual registers (e.g., rip and rdi
for x86-64) at the same time. Starting from the primitive,
KEPLER generates an exploit which sequentially executes a
chain of five gadgets. The design of the code-reuse template
involves several insights about Linux kernel coding style.
Specifically, KEPLER reuses those stack-based invocations of
kernel I/O channel functions to leak and smash kernel stack of
current process and execute arbitrary user-supplied ROP pay-
load. KEPLER leverages blooming gadget to enhance control
over necessary registers for a control-flow hijacking primitive.

KEPLER uses a bridging gadget to combine the practice of
leaking kernel stack canary and smashing kernel stack into a
single shot and thus prevent unexpected kernel panic.

To generate exploits for each CFHP against arbitrary kernel
binary, KEPLER operates in the following two phase: first, KE-
PLER statically analyzes the kernel binary for five categories
of candidate gadgets. Then KEPLER starts kernel symbolic
execution from the CFHP, and performs a Depth First Search
(DFS) based gadget stitching algorithm over candidate gad-
gets.

Our evaluation of KEPLER shows that it is powerful for
exploit primitive evaluation. To highlight the effectiveness
of KEPLER, we compare KEPLER with existing exploit hard-
ening/generation tools (e.g., Q [60], fuze [75]) and KEPLER
outperforms all of them in terms of generating effective kernel
exploits under modern mitigation settings in Linux kernel.

This research work makes the following contribution:

• Kernel single-shot exploitation. We present a code-
reuse exploit technique which converts a single ill-suited
control-flow hijacking primitive into arbitrary ROP pay-
load execution under various constraints posed by mod-
ern Linux kernel mitigations and the primitive itself.
The proposed technique exploits prevalent kernel cod-
ing style and corresponding gadgets and thus is hard to
defeat. Our approach to calculate exploitation chain is
automatable because the gadget stitching problem could
be cast as a search problem over a search space of rea-
sonable size. In addition, the "single-shot"1 nature of this
technique makes it suitable for the vulnerabilities prone
to unexpected termination because it avoids stressing a
control-flow hijacking primitive for multiple times.

• Semi-automatic exploit generator for Linux kernel.
We implement KEPLER using a set of tools including
IDA SDK, QEMU/KVM and angr. Starting from a user-
supplied control flow hijack primitive, KEPLER analyzes
the Linux kernel binary, tracks down useful kernel gad-
gets, and automatically generates many gadget chains
for launching "single-shot" exploitation and bypassing
kernel mitigations. It requires no kernel source code
and can be applied to stripped kernel images. KEPLER
applies to modern Linux kernels; our evaluation uses
version 4.15.0 which was the latest as of the time of our
evaluation.

• Practical impacts. We systematically evaluate the effec-
tiveness and efficiency of KEPLER using 16 real-world
kernel vulnerabilities and 3 recently-released CTF chal-
lenges. Given a kernel control-flow hijacking primitive,
we show that KEPLER generally could generate tens of

1The proposed exploit technique requires a lot of analysis effort, but with
respect to the precondition for launching the attack, it requires only a single
control-flow hijacking primitive.

1188 28th USENIX Security Symposium USENIX Association

thousands of distinct exploitation chains with the abil-
ity to bypass kernel mitigations and perform successful
exploitation. We show that KEPLER can output the first
working exploit for a kernel vulnerability in less than
about 50 wall-clock minutes.

2 Background and Related Work

Exploit primitives [6] [47] [55] are machine states that violate
security policies at various level and indicate an attacker could
get extra capabilities beyond the normal functionality pro-
vided by the original program. A control-flow hijacking
primitive (CFHP) is a machine state that potentially deviates
from the legal control-flow graph. In the context of sym-
bolic analysis, a control-flow hijacking primitive is usually
identified by applying a heuristic which queries the backend
constraint solver to check whether the number of possible
control flow jump target is beyond a threshold when the con-
trol flow jump target contains symbolic bytes. An arbitrary
memory write primitive is a machine state that an attacker
could modify arbitrary kernel memory on his will. Similarly,
an arbitrary memory leak primitive is a machine state which
allows an attacker to dump data content at arbitrary kernel
address. Sometimes the primitive does not allow an attacker
to modify/leak data at arbitray kernel address (e.g., a stack
info leak which only dump several bytes on kernel stack [68]),
they are referred as restricted memory write/leak primitive.

As is described above, this research work mainly focuses
on two aspects – ¶ facilitating exploit primitive evaluation
for even ill-suited exploit primitives and bypassing widely-
deployed kernel mitigation mechanisms by designing a new
exploit technique. · developing a tool to automate the newly
proposed kernel exploitation approach. As a result, the works
most relevant to ours include those pertaining to exploit prim-
itive identification, exploit primitive evaluation and kernel
exploit techniques/mitigations. In the following, we describe
the existing works in these three directions and discuss their
difference from ours.

2.1 Exploit Primitive Identification
To assist the process of finding a useful exploit primitive
(e.g., control-flow hijacking primitive and memory write/leak
primitive), there is a rich collection of research works. For ex-
ample, using preconditioned symbolic execution and concolic
execution techniques, Brumley et al. develop AEG as well as
mayhem to identify control-flow hijacking primitives for fur-
ther exploitation. [3] [9] [7]. Shoshitaishvili et al. develop a
cyber reasoning system Mechanical Phish [62]. It is built
on angr [64] [69] [63] and performs fuzzing and symbolic trac-
ing for the PoC to identify exploit primitives. To efficiently
explore state space for exploit primitives in Linux kernel,
Wu et al. propose an automatic technique that utilizes under-
context fuzzing along with partial symbolic execution to ex-

plore CFHP and memory write primitive for UAF bugs [75].
To construct better exploit primitives with the capability of
out-of-bound access, Heelan et al. utilize regression tests to
obtain the knowledge of how to perform heap layout ma-
nipulation [30]. To obtain better exploit primitives for stack
Use-Before-Initialization vulnerabilities, Lu et al. propose a
deterministic stack spraying approach as well as an exhaustive
memory spraying technique [46].

In this work, we do not focus on facilitating primitive iden-
tification. Rather, we assume an exploit primitive is already
identified and our research endeavor centers around subse-
quent primitive evaluation phase.

2.2 Exploit Primitive Evaluation

In the primitive evaluation phase, a security analyst or an au-
tomatic exploit generation system tries suitable exploit tech-
niques for the seemingly exploitable states identified before.

Initially, without considering Data Execution Preven-
tion, such systems use straightforward techniques such as
ret2stack-shellcode and ret2libc with a CFHP [3] [9]
[62]. Taking W ⊕ X into account, Schwartz et al. propose
Q [60] to facilitate exploitation with a CFHP by automatically
constructing a ROP chain. Our work addresses the problem
of ROP bootstrapping without stack pivoting gadget and is
orthogonal to automatic ROP chaining techniques [33] [60]
[66] [24] [57] because we do not tackle the problem of ROP
payload construction.

With the facilitation of forward and backward taint anal-
ysis, Mothe et al. devise a technical approach to craft work-
ing exploits for simple vulnerabilities in user-mode applica-
tions [48]. Utilizing symbolic execution, Repel et al. craft ex-
ploits with single memory write primitive (e.g., unsafe unlink
and lookaside list corruption) for those heap overflow vulnera-
bilities residing in the userland applications [55]. To facilitate
primitive evaluation of kernel Use-After-Free exploitation,
Xu et al. propose two memory collision mechanisms [77] to
unleash CFHPs.

Recently, some research works take CFI into considera-
tion for primitive evaluation [29] [8] [59] [23] [31] [32] [35].
For example, Ispoglou et al. propose block oriented program-
ming (BOP) [35] to facilitate evaluation of repeatable arbitrary
memory write primitives by proving the Turing completeness
under CFI along with common userspace mitigations. BOP
assumes the existence of a dispatcher gadget. BOP also auto-
mates exploit generation. As a repeatable arbitrary memory
write primitive is almost "god-mode" of kernel exploitation,
our work facilitates primitive evaluation for those weaker ex-
ploit primitives (e.g., non-repeatable and ill-suited CFHP) in
real-world .

In this work, we also develop a tool for facilitating primi-
tive evaluation. However, this research work is fundamentally
different from the aforementioned works in at least one of
the following aspects. First, without assuming a perfect ex-

USENIX Association 28th USENIX Security Symposium 1189

ploit primitive (e.g., unlimited number of invocations of an
arbitrary memory write primitive), we can faciliate exploit
primitive evaluation for those usually ignored exploit primi-
tive (e.g., ill-suited primitives and primitive that can only be
triggered once). Second, rather than dealing with applications
in the user space, our tool targets the Linux kernel where
exploitation typically involves complicated operations and
sophisticated security mitigation mechanisms are generally
enabled. Third, rather than generating one single exploit for
a target vulnerability, our tool automatically explores many
possible exploitation chains and output various working ex-
ploits.

2.3 Kernel Exploit Techniques/mitigations

Initially, a CFHP in the kernel can directly execute shellcode
in user-space because there is no isolation between user and
kernel space (e.g., ret2usr). Supervisor Mode Execution Pre-
vention (SMEP) [38] prevents kernel from executing userspace
code. An attacker can use code-reuse attack. To set stack
pointer to controlled payload, she uses the prevalent "pivot-
to-userspace" gadget to pivot stack to userspace [44]. With
adoption of Supervisor Mode Access Prevention (SMAP [11]),
an attacker can no longer rely on a fake stack in userspace
because userspace memory access is forbidden except during
I/O channel functions. Because there is usually none intra-
kernel stack pivoting gadget for a Linux kernel, an attacker
usually chooses to disable SMAP by flipping corresponding
bits in the cr4 register [41]. However, the "cr4-flipping" at-
tack typically rely on double CFHPs [41] and not suitable for a
none re-triggerable CFHP. In addition, a virtualization-based
hypervisor can detect cr4 register modification by inspect-
ing a vmexit and thus mitigate such exploitation [49] [51].
Ret2dir [39] attack sprays the physmap region by calling
syscall mmap, as the direct mapped physical memory is marked
as executable previously, diverting a CFHP to land on physmap
led to arbitary shellcode exectuion. However, with a kernel
patch applied, these physmap pages are no longer executable.

To enforce CFI policy for the kernel, several kernel CFI
solutions [16] [70] [26] have been proposed, however, these
mitigations are not broadly adopted by major Linux release
version such as CentOS, Ubuntu and Debian.

Data-only kernel exploit techniques directly use a memory
write primitive to modify sensitive kernel data objects such as
process credentials, page tables and virtual dynamic shared
object (vdso) [36]. However, mitigations have been proposed
[17] [67] and deployed [40] to prevent these low-hanging
fruits.

Note some memory write primitive can be transformed to a
control-flow hijacking primitive by overwriting and invoking
a code pointer in kernel’s data section or in the heap [19].

Kernel address space layout randomization (KASLR) is
widely deployed in order to present the attacker an unpre-
dictable attack surface. However, due to its lack of timely

re-randomization and coarse-grained nature (only randomiz-
ing section base address), an attacker does not even need an
arbitrary read primitive [45] [71] to bypass KASLR. With a
hardware side channel [34] [28], he can infer the coarse mem-
ory layout without leaking any kernel memory content. De-
spite kernel Page Table Isolation (KPTI [13]) removes some
side channels with extra overhead, he can also uses a restricted
memory leak primitive to infer the coarse memory layout [68].
In the default setting of Linux kernel, knowing coarse memory
layout is enough for various exploit techniques. (Kernel) Code
diversification/randomization [14] [15] [27] [74] [42] [53]
could significantly raise the bar of code-reuse exploitation by
thwarting an attacker from locating useful gadget.

3 Assumptions and Threat Model

Our threat model consists of a modern Linux kernel protected
by widely-deployed mitigations with a known vulnerability.

Mitigation setting. Similar to recent major Linux release
versions, we make the following assumptions of kernel mit-
igations. A kernel has enabled SMEP and SMAP [11] protec-
tion to prevent direct userspace access in kernel execution.
A kernel has enabled stack canary to protect return address
over stack for all functions containing local variable [22].
A kernel has enabled protection to prevent direct modifi-
cation of sensitive kernel data objects including process
credential [40] and page table [17]. A kernel has enabled
KASLR. A kernel has enabled KPTI [13] protection. A kernel
has been protected by virtualization-based hypervisor which
prevents unauthorized modification of cr4 regsiter [49]. A
kernel has set physmap pages as non-executable. A kernel
has enabled STATIC_USERMODEHELPER. The option routes all
call_usermodehelper() calls through a guard binary that can
properly filter the requested userland programs to be run by
the kernel [43]. However, A kernel does not enable a CFI en-
forcement such as RAP [70] because of performance concerns.
Available Exploit Primitives. We assume there is a PoC
which triggers the vulnerability and leads to a control-flow hi-
jacking primitive (CFHP). We assume the CFHP is already iden-
tified with the PoC through either manual analysis or dynamic
analysis such as symbolic tracing, thus finding exploit primi-
tives is orthogonal to our work and we can focus on evaluating
the CFHP. We assume a restricted memory leak primitive to
help infer coarse kernel memory layout (e.g., getting the base
address of code section .text and physmap region). We do
not assume the existence of an arbitrary memory write prim-
itive which could write to arbitrary kernel memory address.
We do not assume the existence of an arbitrary memory leak
primitive that can dump arbitrary kernel memory content. Un-
der the threat model, the content in arbitrary memory address
such as the stack canary value of arbitrary kernel thread usu-
ally remains secret because the coarse kernel memory layout
information does not reveal the stack canary value of a kernel
stack. We also assume the location of current kernel stack

1190 28th USENIX Security Symposium USENIX Association

remains secret although a restricted memory leak primitive
might help leak a pointer to current stack under some specific
vulnerability context.

4 Motivating Example

1 struct ip_mc_socklist {
2 struct ip_mc_socklist *next_rcu;
3 struct ip_mreqn multi;
4 unsigned int sfmode;
5 struct ip_sf_socklist *sflist;
6 struct rcu_head rcu;
7 };

(a) Definition of struct ip_mc_socklist. Its first member next_rcu
is unmanageable because the PoC uses a heap spray technique which
does not allow us to control first QWORD of struct ip_mc_socklist.

1 void ip_mc_drop_socket(struct sock *sk){
2 struct inet_sock *inet = inet_sk(sk);
3 struct ip_mc_socklist *iml;
4 // inet->mc_list is a dangling pointer
5 while ((iml = inet->mc_list) != NULL) {
6 // iml is alias of the dangling pointer
7 inet->mc_list = iml->next_rcu;
8 // queuing a rcu_head for execution in

the future
9 kfree_rcu(iml, rcu);

10 }
11 }
12 void rcu_reclaim(struct rcu_head *head){
13 head->func(head); // control-flow hijack
14 }
15 void rcu_do_batch(...){
16 struct rcu_head *next, *list;
17 while (list) {
18 next = list->next; // next rcu is

unmanageable
19 rcu_reclaim(list);
20 list = next;
21 }
22 }

(b) Tailored source code pertaining to the CFHP. function
ip_mc_drop_socket repeat invoking kfree_rcu() which queues a
rcu task for asynchronous execution until inet->mc_list is NULL.
The site pertaining to the CFHP is in function rcu_reclaim.

Table 1: A control-flow hijacking primitive in kernel UAF
vulnerability CVE-2017-8890.

We illustrate the challenges in evaluating a CFHP on x86-64
with CVE-2017-8890 [50], a recent vulnerability in the Linux
kernel.

4.1 Vulnerability and Exploit Primitive
The root cause of the bug is an Use-After-Free over an object
ip_mc_socklist defined in Table 1a. As is shown in Table 1b,
the UAF bug results in a dangling pointer inet->mc_list and

*iml become an alias of the dangling pointer in line 5. In line
7, there is an UAF access by dereferencing iml->next_rcu. In
line 9, kfree_rcu(iml) queues a callback denoted by iml->rcu.
Function rcu_do_batch handles the previously queued callback
when the CPU gets a chance to process the rcu callback list,
thus triggers another UAF access to the ip_mc_socklist object
in rcu_reclaim(). The loop from line 5 to line 10 will continue
and add another callback if iml->next_rcu is not NULL.

The CFHP is due to an asynchronous kfree_rcu call over
the dangling pointer *iml. To be specific, by manipulating
the value in iml->rcu_head through a proper heap spray,
a security analyst can get a CFHP later in rcu_reclaim()
because function kfree_rcu() (line 9) is designed to
queue a rcu callback denoted by iml->rcu_head. Function
rcu_do_batch will be executed in the future, it will iterate
over a list of rcu_head added by kfree_rcu(). The state-
ment pertaining to the CFHP (line 13) allows the attacker to
control rip (head->func) through heap spraying. At the time
of the control-flow hijacking, register rdi (head) points to a
controllable memory region.

4.2 Challenges of Crafting Working Exploit

However, developing an exploit with the aforementioned CFHP
is quite difficult because of the following challenges.

4.2.1 Challenge 1: Exploit Mitigations

Widely deployed kernel mitigations frustrate a large amount
of straight forward exploit techniques. With the presence
of SMEP/SMAP protection, it is impossible to directly launch
a traditional ret2user/pivot2usr attack. The ret2dir at-
tack [39] is also not suitable because the physmap region is
no longer executable [10]. With the write-protection over sen-
sitive data such as process credential and page table , it is not
possible to direct overwrite these data to escalate priviledge
by converting the CFHP into a memory write primitive.

A security analyst may think of the "cr4-flipping" attack
which usually requires two CFHPs: one for flipping the cr4
register and the other to launch ret2user/pivot2usr. How-
ever, this is often infeasible because virtualization based hy-
pervisor could easily detect the behavior of flipping cr4 reg-
ister by inspecting a vmexit [49] [51]. Even if there is not
protection over cr4 register, leveraging the "cr4-flipping"
attack or a similar exploit technique relying multiple CFHP
with this CFHP still faces the following challenge.

4.2.2 Challenge 2: Exploit Path Pitfall

Attempting to leverage the "cr4-flipping" exploit tech-
nique, a security analyst would expect two CFHPs to disable
SMEP/SMAP and pivoting to userspace respectively. However,
such a exploit technique could be imfeasible because of the
exploit path pitfall after the first CFHP.

USENIX Association 28th USENIX Security Symposium 1191

rcu_reclaim()

rcu_reclaim(head)

mov cr4, rdi CFHP

rcu_do_batch()

head->func(head)

native_write_cr4()

�
� �

retret

rcu_reclaim(head’) head’->func(head’)

�

Invalid Memory Access
(Kernel Panic)

�

�

� �

Figure 1: Demonstration of an exploit path pitfall in the mo-
tivating example. After applying the first CFHP to overwrite
cr4 register with native_write_cr4(), rcu_reclaim(head’) is in-
voked but head’ is unmanageable and panics the kernel.

As is shown in Figure 1, after using the CFHP in rcu_reclaim

to disable SMAP protection by invoking the function
native_write_cr4() to zero the corresponding bits in cr4 reg-
ister, an attacker encounters an unexpected termination: in
previous execution, the loop from line 5 to line 10 in Table 1b
queues another rcu callback denoted by head’ (iml->next_rcu
->rcu) which is not under our control and causes a kernel
panic.

This kernel panic attributes to an invalid memory access.
The heap spray technique used by the PoC does not allow
an attacker to control first QWORD of iml (an ip_mc_socklist ob-
ject) because the first QWORD of an freed chunk becomes heap-
metadata, thus iml->next_rcu becomes unmanageable.

A straight-forward solution to tackle the invalid memory
access is adding extra constraints to ensure all related memory
accesses are valid. However, constraint solving for complex
program usually incurs high cost (both cpu time and memory)
[4] and could fail because of constraint conflicts [5]. Instead
of devoting extra resource to handle these pitfalls, an ideal
exploit path should effectively detour them. As a result of
lacking control of iml->next_rcu, the exploit path pitfall can
not be simply prevented by techniques like adding constraints
over the sprayed data and thus unavoidably panic the kernel.
Although it is possible to tackle the problem by further tuning
the PoC [55] [75] and obtain a better exploit primitive, the
showcased exploit path pitfall already hinders the evaluation
of the CFHP.

In addition, an exploit path pitfall could also be attributed
to un-successful heap spray. Due to the undeterminacy of
kernel execution, there is not any heap spray technique with
100% success ratio. To get multiple CFHPs for a UAF vulner-
ability, an attacker may need to do multiple rounds of heap
spraying and trigger a vulnerability multiple times, which
could dramastically decrease the success ratio of the entire
exploitation.

Even if two control-flow hijack primitive is available to the
attacker, it could still be very difficult for him to bypass the

mitigation combination of SMAP as well as virtualization-
based hypervisor, because the attempt to modify cr4 register
(in order to turn off SMAP and pivot kernel stack to userspace)
could be easily prevented.

4.2.3 Challenge 3: Ill-suited Exploit Primitive

Facing the infeasibility of popular kernel exploit techniques,
it is nature for a security analyst to use generic code-reuse
technique such as ROP [56] as a second resort.

Stack pivoting is a vital step [54] for a ROP attack especially
when an attacker does not control the contents on the stack
(e.g., the CFHP does not result from a stack overflow). In
userspace, many heap exploits relying on a stack pivoting
gadget (e.g., function swapcontext() and setcontext() in libc)
to bootstrap a ROP attack.

It is however difficult in the target kernel to pivot stack
pointer to a memory region under our control with this CFHP.
The reason behind is two-fold. First, as is mentioned before,
we can not simply pivot to a userspace with a traditional gad-
get such as xchg eax,esp; ret because of SMAP. Second, there
is not a suitable stack pivoting gadget in a Linux kernel binary
for this CFHP. Considering register rdi points to controllable
area with this primitive, it would be great to have a gadget
to overwrite rsp with a controllable memory address, such as
gadget with form xchg r**,rsp; ret, mov rsp,[r**]; jmp rxx

and mov rsp,r**; ret for consecutive payload [39]. Unfortu-
nately, similar traditional stack-pivoting gadget does not exist
or contains unavoidable exploit path pitfall (e.g., gadget xchg
rsp, r14 ; jmp rsp could successfully pivot the stack pointer

but inevitably panics the kernel) in our investigation across
various modern linux kernel images.

Although previous works have demonstrated the power of
code-reuse attack, mounting a traditional ROP attack for the
CFHP seems surprisingly difficult because of the lack of stack
pivoting gadget.

Without the capability of performing ROP attack, one may
think of reusing other kernel functions. Unfortunately, there
is also a problem of insufficient control over general registers
because only rdi points to a memory region under control
and other registers are not in control initially. We need to
enhance this CFHP by controlling more general registers and
perform subsequent exploitation.

5 Overview

To tackle the three challenges exposed by the motivating
example, a security analyst needs to design a new exploit
technique to turn a CFHP into a more exploit-friendly machine
state based on the vulnerability context and his prior experi-
ence. Due to the lack of a ready-to-use exploit technique, he
could expect a lot of debugging and manual efforts to explore
possible exploit paths and improve his prototype exploit dur-
ing the exploit development process and such practice could

1192 28th USENIX Security Symposium USENIX Association

be extremely time-consuming and even fruitless.
In the following, we discuss the considerations that go into

the design of KEPLER as well as the high level design of this
framework to facilitate CFHP evaluation.

5.1 Requirements for Design

To support evaluation of a CFHP with working exploits, KE-
PLER should receive as input a state representing a CFHP and
it should be able to find an exploit path towards priviledge
escalation and output corresponding exploit. To achieve the
above ultimate goal, KEPLER should adopt an exploit tech-
nique which satisfies the following requirements.

First, an exploit technique is able to bypass all the widely-
deployed mitigations enabled in the threat model. Second,
taking potential exploit path pitfalls into consideration, an
exploit technique should depend on only one control-flow
hijacking primitive and detour these pitfalls to prevent an
unexpected termination and make exploitation more reliable.
The form of an exploit technique would be ideally similar
to a “magic gadget2” which is previously mentioned in user-
space exploitation [18], especially in the context of adversarial
scenarios like Capture-The-Flag cyber competition. Third,
an exploit technique should benefit from time-tested exploit
technique such as ROP by efficiently bootstrapping traditional
code-reuse attack in absence of stack pivoting gadget with an
ill-suited CFHP. Last but not least, an exploit technique should
be suitable for the automation framework. On one hand, it
should be hard-to-defeat and not depend on any special code
or feature which could be easily eliminated. On the other
hand, the exploit generation phase should be easily automated
- it should be a well-defined search problem over a search
space of reasonable size.

5.2 High Level Design

CFHP
RIP: 0xdeadbeef RSP: x
 x : ?????????? ??????????
x + 8: ?????????? ??????????
…

KEPLER

Gadget Stitching

Input

CFHP
Constructing
Kernel Stack-

Overflow

Candidate Gadgets

“single-shot”
exploit

Arbitrary ROP
payload

Enhancing CFHP

Performing Static
analysis

Kernel Binary
Image

CFHP’
RIP: 0xdeadbeef RSP: x
 x : 0x41414141 0x41414141
x + 8: 0x41414141 0x41414141
…

Bootstrapping
any ROP chain

Figure 2: Overall of KEPLER’s design.

2The term “magic gadget” means given a CFHP, one can instantly succeed
in exploitation (e.g., getting a shell) by diverting control-flow to such gadget,
thus boost exploit development and gain advantages in a game.

To satisfy the requirements mentioned above, we design
KEPLER to facilitate exploit primitive evaluation. KEPLER
automatically generates an exploitation chain to bootstrap
any kernel ROP chain with a single CFHP through “single-shot”
exploitation.

Figure 2 shows how KEPLER automates the analysis task
necessary to leverage a CFHP to produce an exploit in the
presence of aforementioned challenges. Given a kernel state
snapshot representing the CFHP, KEPLER enhances its power
to construct a kernel stack-overflow by symbolically stitching
several types of candidate gadget identified by static analysis
on the kernel binary image.

As is mentioned before, our basic idea is to bootstrap a
traditional ROP attack with a CFHP in Linux kernel. At the high
level, we achieve this by a "single-shot" exploitation chain
which transforms a function pointer corruption based primi-
tive (CFHP) into a stack-overflow based primitive (CFHP’) as
is shown in Figure 2.

userspace
sysc

all()

pitfall

sysc
all()

trigger
vul.

CFHP

kernel

CFHP

trigger
vul.

(a) Exploitation by envoking
a control-flow hijacking prim-
itive twice.

pitfall

userspace
sysc

all()

smash
stack
exec
ROP
chain

kernel

CFHP

trigger
vul.

(b) Exploitation with a single
control flow hijack primitive.

Figure 3: A comparison of two exploitation approaches; a
known approach triggers a vulnerability twice but blocked by
an exploit path pitfall and the other triggers the vulnerability
only once.

Although there is not any gadget in Linux kernel which
allows an attacker to directly escalate priviledge, The pro-
posed “single-shot” exploitation is similar to “magic gadget”
mentioned above in a sense that it only requires a single CFHP
and could reliably achieve the goal of arbitrary code execu-
tion in kernel context. To be specific, as is shown in Figure
3b, the "single-shot" exploitation chain could finish exploita-
tion with a single CFHP and thus is able to circumvent an
exploit path pitfall after the return of CFHP which could cause
an unexpected termination otherwise. We can benefit from
a stack-overflow based CFHP because it allows us to place
arbitrary ROP payload on current kernel stack without any
stack pivoting gadget. Given the scarcity (or non-existence)
of intra-kernel stack pivoting gadget, we argue that construct-
ing a kernel stack overflow is the most generic approach to
perform a kernel ROP attack.

USENIX Association 28th USENIX Security Symposium 1193

canary

rsp

stack

N bytes

copy N bytes to
userspace through

copy_to_user()

stack

ROP chain

canary

ROP chain

canary

smash kernel stack
with M bytes

payload through
copy_from_user()

canary

prepare payload with
disclosed canary

M bytes

Userspace

Kernel

rsp

Figure 4: An overview of “single-shot” exploitation which
discloses kernel stack canary and then smashes the kernel
stack with arbitrary user-supplied ROP payload.

6 Design

In this section, we describe the exploit technique adopted by
KEPLER and the insights behind the exploit tehcnique. As is
mentioned before, KEPLER uses a CFHP to construct a stack
overflow and bootstraps arbitrary ROP payload.

Our "single-shot" exploitation technique builds on two key
ideas of breaking isolation with I/O functions and improving
exploit success ratio with a single CFHP.

First, we can break isolation between kernel-space and
user-space by abusing kernel I/O functions. The insight be-
hind is such data channels are born to bypass SMAP which
prohibits user-space access because SMAP is explicitly and
temporarily disabled during execution of these functions. Fig-
ure 4 illustates a practice of reusing I/O functions to con-
struct kernel stack overflow by first leaking kernel stack ca-
nary with copy_to_user and then smashing kernel stack with
copy_from_user.

Second, “single-shot” exploitation can be achieved through
stitching various kernel function gadgets. We can enhance
register control for a CFHP with blooming gadget - a prevalent
family of function gadgets in Linux kernel. We can detour
exploit path pitfalls with a bridging gadget.

6.1 Constructing Stack Overflow
There is a family of prevalent stack smashing gadgets inside
Linux kernel, we observe they could greatly aid constructing
stack-overflow via taking intrinsic short return path triggered
by a page fault. However, such gadgets can not be directly
used because initial CFHP does not have enough register con-
trol and the presence of a stack canary. We address the two
problem in Section 6.2 and 6.3.

6.1.1 Looking into Stack-Smashing Gadget

We present stack-smashing gadgets which relies on functions
that serve as data channel between user-space and kernel-

1 static long bsg_ioctl(struct file *file, unsigned
int cmd, unsigned long arg){

2 struct sg_io_v4 hdr;
3 ...
4 if (copy_from_user(&hdr, uarg, sizeof(hdr)))
5 return -EFAULT; // short return
6 ...
7 }

(a) Source code.

1 ...
2 mov rdi,rsp
3 call <_copy_from_user>
4 test rax,rax
5 je 0xffffffff813d6ce4
6 mov rax,0xfffffffffffffff2
7 jmp <epilogue>
8 ...
9 <epilogue>:

10 mov rcx,QWORD PTR [rsp+0xa0]
11 xor rcx,QWORD PTR gs:0x28
12 jne <__stack_chk_fail>
13 add rsp,0xa8
14 pop rbx
15 ret

(b) Assembly code.

Table 2: The kernel code fragment of an stack-smashing gad-
get that could smash kernel stack with carefully crafted pay-
load.

space. The gadget could aid exploitation by transporting pay-
load of arbitrary length from user-space to kernel stack, with-
out assuming the stack location is already known.

As is named after, copy_from_user(void* dst, void* src,

unsigned long length)3 is a heavily used I/O kernel function
which migrates data from the user to kernel space. Recall that
SMAP prevents kernel code from accessing user-space address,
and to temporarily bypass the restriction, copy_from_user uses
a special instruction STAC to set AC flag in EFLAGS register before
accessing user-space memory, thus allows the subsequent
instructions to explicitly access user-space memory. Once
the copy is finished, instruction CLAC is executed to re-enable
SMAP.

As is specified in Linux kernel implementation, the function
copy_from_user() takes as input three arguments - dst, src and
length - which indicate the destination, source and length of
the data that need to be copied from the user to kernel space.

From the perspective of an attacker, a kernel stack overflow
could be caused if he lets the CFHP jump to the site right be-
fore the invocation of copy_from_user (line 2 in Table 2b) and
the machine state satisfies the following three requirements:

3The security of copy_from_user has been improved by adding extra
checks during the development of Linux Kernel. For example, upon failure
during copy, set the dst memory region after the successfully copied bytes
to zero to prevent uninitialized use.

1194 28th USENIX Security Symposium USENIX Association

¶ parameter dst (e.g., rdi) points to current kernel stack, ·
parameter src (e.g., rsi) points to any user-space address so
that its content is controllable by an attacker, ¸ parameter
length (e.g., rdx) is greater than the size of current stack frame
to cause a kernel stack overflow.

An interesting observation is that most (91% in Linux 4.15)
invocations of this function set destination dst to address of
a variable on kernel stack and thus will copy user data into a
kernel stack. If control-flow is hijacked to a invoking site of
this function (e.g., line 2 in Table 2b), an attacker could abuse
such coding style to satisfy the requirement ¶ above because
the code snippet help set rdi to current stack frame. However
requirements · and ¸ are still waiting to be satisfied given
the initial CFHP does not imply any control over register rdi

and register rsi. We will address this issue with blooming
gadget in Section 6.3.

6.1.2 Choosing Short Return Path

The prevalent error handling code which is introduced to make
kernel code more robust also provides a short return path for
an attacker. An attacker could benefit from such a short return
path after overflowing current stack frame.

As is depicted in line 4-5 in Table 2a, function bsg_ioctl

will directly return if return value of copy_from_user is not
zero. Our statistic indicates the function copy_from_user() has
been invoked at 671 sites in Linux 4.15. Among all these
invocation sites, more than 99% contain the fault handling
implementation.

The insight of prioritizing short return path after stack
smash is to prevent un-expected kernel panic as well as avoid
the complexity of resolving extra data dependency in an error-
prone and long normal return path of the function containing
tens of basic blocks.

To take a short return path, copy_from_user must return a
non-zero value as is shown in Table 2a. Reviewing the source
code of kernel function copy_from_user, we have identified 3
different situations which will force the function to return a
non-zero value, 1) incurring an integer overflow when cal-
culating src+length, 2) neither src+length nor src residing in
user-space, 3) encountering an unresolvable page fault during
copy. For the first two situations, the function copy_from_user

() performs sanity check and returns a non-zero value without
actually copying data to the kernel. For the last situation, the
function migrates data to the kernel and pads with zeros the
bytes failing to be copied.

6.1.3 Triggering Page Fault during copy_from_user

To force copy_from_user returning a non-zero value as well
as successfully copying the ROP payload from user-space
to kernel stack, we trigger page fault after copying enough
payload according to the last condition described above.

We illustrate a representative example in Figure 5. We
map two adjacent pages (p1 and p2) in the user-space and

pagefault

userspace kernelP1

P2

n

rsp (=rdi=dst)
stack canary

rsi (=src)

unmapped
page

data successfully
migrated

data failing to
copy

ROP payload
stack canary

ROP payload

n+1

Figure 5: An example where copy_from_user triggers a page
fault when copying user data to kernel stack.

then unmap the second one. We fill the end of the page p1
with the actual payload including a stack canary and a ROP
chain. We will discuss how to leak stack canary in Section 6.2.
Through the technical approaches mentioned in Section 6.3,
assume we have already obtained the control over registers
rsi and rdx pertaining to the second and third parameters
of copy_from_user respectively. Leveraging the control over
registers, we manipulate the values in these registers. More
specifically, we set rsi and rdx to p1+PAGE_SIZE−n and
n+1 respectively, with n representing the length of payload
actual copied. When the function attempts to copy the last
byte, it failes to access the content at p2 and triggers a page
fault because the page p2 is not mapped into the memory.
Eventually copy_from_user returns a positive number 1 because
one byte is not successfully copied.

6.2 Bypassing Stack Canary

As is mentioned earlier, to prepare a working payload for
stack smash, an attacker has to know the value of kernel stack
canary which remains secret in our threat model. We consider
the presence of a strong kernel stack canary setting where
stack canary is enabled for all functions containing a local
variable.

We will first introduce two kinds of prevalent gadgets, then
we discuss how to pair them to dump kernel stack memory.

6.2.1 Exposing Stack-disclosure Gadget and Auxiliary
Function

To leak stack canary, an intuitive way is to construct an info
leak of its value to user-space through an official data channel
such that SMAP is not violated. In the following we introduce
stack-disclosure gadget which is twin gadget of stack-smash
gadget as well as auxiliary function prologue gadget.

Stack-disclosure gadget. Function copy_to_user() is
widely used in the Linux kernel codebase to copy kernel
memory into user-space. In Linux kernel 4.15, our statistic
indicates this function has been invoked at 594 sites. Of all
these invocations, 82% are used for copying data from kernel

USENIX Association 28th USENIX Security Symposium 1195

 lea rsi, [rbp-60h]
 call _copy_to_user
 test rax, rax
 jnz <fail>
 ...
<fail>:
 mov rbx, FFFFFFF2h
 jmp <exit>
 ...

<exit>:
 mov rcx, [rbp-30h]
 xor rcx, gs:0x28
 jnz panic
 add rsp, 60h
 pop rbx
 ...
 ret

push rbp
mov rbp, rsp
push r12
...
sub rsp, 58h
mov rax, gs:0x28
mov [rbp-30h], rdi
mov rax, [rdi]
call rax
...

Auxiliary function Canary disclosure gadget

�

�
�

stack right before “call rax“

local variables
rsp

rbp

rbp-0x30
rsp+0x58

return addr

local variables

rsp

rbp

rbp-0x30
rsp+0x60

return addr

stack right after “call rax“

return addr

return address pushed
by previous exploit

gadget

control flow jump
stack canary stack canary

Figure 6: An example of canary disclosure gadget and its
corresponding auxiliary gadget.

stack to user-space. Since this naturally establish a channel to
migrate data from kernel stack to user-space, we could exploit
the characteristic of this kernel function to disclose the canary
on kernel stack.

Auxiliary function. To successfully return from a stack-
disclosure gadget and continue exploitation, we use auxiliary
function to create a similar stack frame as the stack-disclosure
gadget and transfer the control-flow to stack-disclosure gadget
with an indirect call after the function prologue.

Auxiliary function should have stack canary protection
and contain a controllable indirect call after its own function
prologue which establishes a stack frame. Its layout of stack
frame could be paired with a stack-disclosure gadget to form
a “complete” stack frame and pass the stack canary check by
putting a valid stack canary on the stack.

6.2.2 Disclosing Canary on Kernel Stack

By diverting the control-flow to a call site of copy_to_user(),
we are closer to successfully disclose stack contents by satis-
fying the following four requirements. ¶, the registers should
be set properly as parameters for copy_to_user, ·, the kernel
should not panic during the path caller function returns, ¸,
the caller function of copy_to_user checks stack canary before
return, ¹, the return address on stack must be set properly to
continue the rest of the exploitation.

To tackle the first requirement, we leverage blooming gad-
get described in Section 6.3. For the second requirement, we
could trigger a page fault and take a short return path similar
to the technique described in Section 6.1.2. For the last two
requirements, we pair stack-disclosure gadget with auxiliary
function to generate a valid stack frame.

The key insight behind using auxiliary function to pair with
stack-disclosure gadget is reusing the canary generated by the
prologue of auxiliary function. A pair of them should have
the same number of saved registers, the same canary location
and stack size of 8 bytes difference.

1 static void aliasing_gtt_unbind_vma(struct
i915_vma *vma) {

2 ...
3 vma->vm->clear_range(vma->vm, vma->node.start,

vma->size);
4 ...
5 }

Table 3: The kernel code fragment (a blooming gadget) that
could enhance the control over multiple general registers.

To elucidate the rationale behind the pairing, we take for
example the routine of canary disclosure in Figure 6. We
re-direct a CFHP to auxiliary function, After the prologue of
auxiliary function which saves registers and establishes a
stack frame, the target of indirect call call rax is set to the
stack disclosure gadget in ¬. Then content of current stack
frame is copied to user-space by copy_to_user, a page fault is
triggered to force non-zero return value of copy_to_user, as
result short return path is taken in . Before the function
returns, stack canary sanity check is performed ®, because
the auxiliary function put a valid stack canary in current stack
frame, the canary check is successfully passed and return to
the caller of auxiliary function.

6.3 Putting them together: "Single-shot" Ex-
ploitation

It remains challenging to use an ill-suited CFHP to first dis-
close stack canary and then smashing kernel stack. The reason
behind is a CFHP in practice may have limitations in the fol-
lowing two aspects. First, difficulty in combining aforemen-
tioned two building blocks with a single CFHP, second, lack
of register control. "Single-shot" exploitation uses a blooming
gadget to amplify control over other registers and a bridging
gadget to combine the two actions sequentially.

6.3.1 Augmenting CFHP with Blooming Gadget

To enhance a CFHP with the ability to control more registers,
we introduce a family of blooming gadgets. The use of bloom-
ing gadget is inspired by COOP [59] which exploits a series
of type confusions C++ program. Although Linux is writ-
ten in C, its code heavily exhibits feature of object-oriented
programming. The “self” object is usually passed as the first
argument of function through rdi. And oftentimes the func-
tion contains‘’ indirect call using function pointer that resides
in the object passed as parameter. We could let the CFHP to
land at these functions to abuse type confusion.

We illustrate one such blooming gadget in Table 3. Ker-
nel function aliasing_gtt_unbind_vma() contains an indirect
call with three parameters calculated by dereferencing the
function’s first parameter *vma. Assume we have a CFHP with

1196 28th USENIX Security Symposium USENIX Association

1 void regcache_mark_dirty(struct regmap *map) {
2 map->lock(map->lock_arg); // the 1st

control-flow hijack
3 map->cache_dirty = true;
4 map->no_sync_defaults = true;
5 map->unlock(map->lock_arg); // the 2nd

control-flow hijack
6 }

Table 4: The source code of a bridging gadget – the kernel
code fragment that could spawn multiple CFHPs.

physmap page
under our control

A B

lock unlock

Layout of struct “regmap”

rdi

overflow gadget auxiliary &
disclosure gadget

Figure 7: Memory layout after using physmap spray [39] to
allocate physmap pages with data under our control.

control over rdi, we can get an augmented CFHP which con-
trols rdi, rsi, and rdx at the same time at line 3 in Table 3.

Note a blooming gadget works only if rdi is controllable
at beginning. We found this requirement is easy to fullfil in
practice. Our insight is that a CFHP usually has one register
potentially controllable - either the register is fully control-
lable or the register points to a heap area under control. Such
primitive can be turned into a CFHP with rdi control easily
through a single gadget which ends with an indirect call. A
worst case happens where a CFHP implies none of potentially
controllable registers. Fortunately, we are still able to lever-
age uninitialized or controllable data on kernel stack as well
as a common ROP gadget. For example, we could use the
gadget add rsp, 0x68; pop rdi; ret to gain control over rdi if
rsp+0x68 and rsp+0x70 is under our control.

6.3.2 Spawning Multiple CFHPs with Bridging Gadget

As is demonstrated in the motivating example in Section 4, an
exploitation practice depending on re-triggerable CFHP is not
reliable because of exploit path pitfalls. We use bridging gad-
get - a family of kernel functions with multiple controllable
indirect calls - to spawns two CFHPs and combine canary leak
and stack smash into a single shot.

For example, function regcache_mark_dirty shown in Ta-
ble 4 is such a bridging gadget which contains two indirect
calls, map->lock in line 2 and map->unlock in line 5.

As we can observe from the kernel gadget shown in Ta-
ble 4, the function pointers tied to these two indirect calls
are enclosed in a data object referred by the first argument

ɦ
ɥ

ɤ

ɣ ɢ

ɡ

ɠ

…

indirect jmp/call

Blooming

…

Bridging

indirect jmp/call

…

indirect jmp/call

…
indirect call

Auxiliary
…
ret

Disclosure

…
ret

Overflow ROP chain
gadget 1
gadget 2

…

CFHP

Figure 8: An illustration of how KEPLER stitches various
kernel gadgets for ultimate exploitation.

of the function regcache_mark_dirty(). Recall that the first ar-
gument of a function is specified by the general register rdi,
and we can usually obtain the control over that register using
technique described in Section 6.3.1. As a result, in order to
obtain control over both function pointers, we could first em-
ploy ret2dir [39] to allocate physmap pages and carefully
crafted a data object accordingly. Then, we could refer the
register rdi to a proper spot and set rip to the entry site of the
gadget shown in Table 4. As is shown in Figure 7, assume the
data carefully crafted in the spots of A and B represent the ad-
dress of the auxiliary gadget together with a disclosure gadget
responsible for leaking stack canary as well as the entry ad-
dress of the gadget pertaining to stack smashing respectively.
Then, by executing the bridging gadget shown in Table 4,
we could first leak canary using the first indirect call. After
the return of the call to copy_to_user(), there is no operations
between the consecutive indirect calls that impose additional
constraint to the second function pointer. Therefore, we could
perform the stack smashing using the second function pointer
without involving unexpected termination.

7 Implementation

Using IDA Pro SDK [20] and angr [64], we implemented
KEPLER with about 8,000 lines of Python code. KEPLER
is an automated tool that tracks down the aforementioned
exploitation gadgets and chains them for exploitability assess-
ment. Figure 8 depicts how these gadgets are concatenated.
While previous sections have discussed the basic building
blocks to perform an "single-shot" exploitation, the exploita-
tion chain could not be determined once and for all with static
analysis because uniqueness of each CFHP and different gad-
get combinations bring about the variation of the exploitation
context. For example, the consecutive exploitation gadgets
might no longer obtain the control over related registers with
a different initial CFHP.

To address this problem, we developed our tool to assess
each of the gadget chains potentially useful for kernel ex-
ploitation. More specifically, we follow the guidance of the
exploitation chain construction shown in Figure 8, and de-
sign our tool to perform a depth-first exhaustive search which
explores all the possible combinations of exploitation gad-

USENIX Association 28th USENIX Security Symposium 1197

gets. When performing the depth-first search: starting from
the rip hijack site, KEPLER symbolically executes the gad-
get chain that the search algorithm explores. To determine
whether a gadget chain is useful for exploitation, our tool
checks the memory access and deems a gadget chain useless
if that exploitation chain attempts to access the user space
or an unmapped kernel memory region. In addition, KEPLER
examines the control over the registers at two critical sites
– one at the entry of the disclosure gadget and the other at
the entry of the overflow gadget. We implemented KEPLER
to deem a gadget chain useless and terminate symbolic ex-
ecution earlier if it has no control over the registers rdi and
rdx at the first checking site or has no control over rsi and
rdx at the second checking site. The reason behind this im-
plementation is that, after executing bridging and auxiliary
gadgets, we might lose the control over the registers needed
for disclosure and overflow gadgets. With the check right be-
fore symbolically executing the two gadgets, we can quickly
determine the usefulness of the gadget chain in exploitation,
terminate unnecessary symbolic execution and thus save the
computation resources.

In the process of the assessment of the exploitation chain,
KEPLER symbolically executes each exploitation gadget. For
some of them, they might carry a large number of basic blocks
and even infinite loops. This could significantly influence the
efficiency our tool and even incur the state explosion problem.
To avoid these issues, for each path in an exploitation gadget,
we set KEPLER to explore at most 20 basic blocks. In addition,
we developed KEPLER to concretize each symbolic address.
To be more specific, we set up a kernel page under our control
in the physmap region and then concretize each symbolic
address with a non-overlapping address of that memory page.
In this work, we implemented this concretization mechanism
by simply extending ControlledData – one of the symbolic
address concretization strategies of angr.

For each gadget chain that passes the assessment, KEPLER
further performs constraint solving to generate payload ac-
cordingly. Technically, this can be easily done by using angr.
However, the Z3 solver used in angr consumes memory ex-
haustively and generally does not release the memory used
for constraint solving even after the completion of compu-
tation. To address this problem, KEPLER partitions symbolic
execution and constraint solving into two different processes.
In this way, KEPLER could terminate the memory-intensive
process every time the constraint solving is completed and
thus free the memory for consecutive computation.

As is described in Section 6.1, the payload smashed to
the stack contains the stack canary disclosed as well as a se-
quence of addresses indicating an ROP chain that performs
actual exploitation. With respect to the stack canary, we em-
ploy a separated thread in the user-space to rapidly retrieve the
canary – whenever it is disclosed to the user-space – and then
make it ready for stack smashing. Regarding the ROP chain
used in this work, we simply choose the ROP payload com-

monly used for privilege escalation. In Appendix, we specify
the ROP payload used in this work. It invokes kernel functions
commit_creds() and prepare_kernel_cred() to obtain the root
privilege. Note that the construction of an ROP payload is out
of scope of this paper. There are many commonly-adopted
ROP payloads, which can be naturally hooked with our new
kernel exploitation technique.

8 Case Study and Evaluation

In this section, we demonstrate our new exploit technique
and evaluate our automated tool KEPLER using real-world
kernel vulnerabilities and some recently-released CTF chal-
lenges. To be specific, we compare KEPLER with various
kernel exploitation techniques to show it is an effective ex-
ploit technique, we also compare KEPLER with automatic
exploit generation systems to highlight its power in evalu-
ating exploitability with a CFHP. In addition, we show the
efficacy and efficiency of KEPLER in facilitating exploitation
chain construction.

8.1 Setup

We first randomly selected 3 recently released CTF challenges
as well as 16 real-world kernel vulnerabilities archived be-
tween 2016 and 2017. Then, we successfully assembled these
vulnerabilities in a mainline Linux kernel 4.15.0 by inserting
them into the kernel code or reverting their patch accord-
ingly. In this work, we evaluate our tool KEPLER by using
this single Linux kernel, and demonstrate the effectiveness of
“single-shot” exploitation by launching exploitations against
the inserted vulnerabilities.

As is summarized in Table 5, the vulnerabilities inserted
cover various types such as Use-After-Free and Out-Of-
Bound (OOB) read/write etc. It should be noted that the CVEs
selected are a little bit unbalanced – with more in 2017 and
less in 2016. On the one hand, this is because there are more
than 2× of kernel vulnerabilities reported in 2017 than those
in 2016 [1]. On the other hand, this is because some compo-
nents in Linux kernel experience significant overhaul since
2016 and we have difficulty of re-enabling the corresponding
vulnerabilities in a new kernel image.

In order to run and evaluate KEPLER, we also assembled
and configured a testbed which has a 32-core Intel(R) Xeon(R)
Platinum 8124M CPU and 256GB of memory. For each vul-
nerability, we then used this testbed to run 28 concurrent
workers which symbolically explore the kernel code space
and track down useful exploitation chains in parallel.

8.2 Effectiveness of “single-shot” exploitation

By searching the Internet, we gathered 10 exploits pertaining
to the vulnerabilities inserted. As is shown in Table 5, these

1198 28th USENIX Security Symposium USENIX Association

ID Vulnerability type Public
exploit Q FUZE KEPLER G1 G2 G3 G4

First
chain
(min)

Total
time

(hour)

Total # of
exploitation

chains
CVE-2017-16995 OOB readwrite X† 7 7 X 41 114 27 201 45 37 29788
CVE-2017-15649 use-after-free X 7 X X 29 79 25 280 16 28 60207
CVE-2017-10661 use-after-free 7 7 7 X 28 78 30 301 17 25 49070
CVE-2017-8890 use-after-free 7 7 7 X 21 88 23 304 17 18 50471
CVE-2017-8824 use-after-free X 7 X X 63 101 35 306 50 70 164898
CVE-2017-7308 heap overflow X 7 7 X 31 91 30 241 14 47 110176
CVE-2017-7184 heap overflow X 7 7 X 31 95 31 254 24 37 93752
CVE-2017-6074 double-free X 7 7 X 18 79 31 308 16 15 31436
CVE-2017-5123 OOB write X† 7 7 X 40 86 27 311 14 39 113466
CVE-2017-2636 double-free 7 7 7 X 18 89 29 289 29 19 26372

CVE-2016-10150 use-after-free 7 7 7 X 34 84 25 293 52 34 88499
CVE-2016-8655 use-after-free X† 7 X† X 18 109 32 260 15 17 47413
CVE-2016-6187 heap overflow 7 7 7 X 22 85 32 301 17 21 51954
CVE-2016-4557 use-after-free 7 7 7 X 21 80 21 295 16 37 40889

CVE-2017-17053 use-after-free 7 7 7 7 - - - - - - -
CVE-2016-9793 integer overflow 7 7 7 7 - - - - - - -

TCTF-credjar use-after-free X† 7 7 X 35 89 25 292 25 14 82913
0CTF-knote uninitialized use 7 7 7 X 21 89 33 318 17 36 40923

CSAW-stringIPC OOB read&write X† 7 7 X 35 88 25 289 17 33 84414

Table 5: The comparison of exploitability as well as performance of KEPLER. G1, G2, G3 and G4 represent the blooming gadget,
bridging gadget, auxiliary and disclosure gadget pair, and stack-smash gadget. The “first chain” column indicates the time spent
on pinpointing the first exploitation chain. The “total time” column specifies the total amount of time spent on finding all useful
exploitation chains. † symbol represents the cases where the exploits could only bypass major mitigations (e.g., SMAP and SMEP)
and fail to bypass others under our threat model. Xand 7 symbols indicate the existence and non-existence of a working exploit.

publicly available exploits perform exploitation through vari-
ous approaches and therefore demonstrate different capability
in bypassing kernel mitigations. Among these exploits, we
found there are only 5 of them demonstrating the ability to
perform exploitation under our aforementioned threat model.
In comparison with the working exploits generated by KE-
PLER, publicly available exploits demonstrate much weaker
exploitability (with 5 vs 17 cases). To some extent, this im-
plies existing exploitation approaches highly rely upon the
quality of the target vulnerability and corresponding CFHP,
whereas our approach KEPLER could utilize prevalent kernel
function and gadgets to explore exploitable machine states
and thus escalate the exploitability for a CFHP. However, pre-
vious exploit technique Q [60] could not generate working
exploit because Q rely on a stack pivoting gadget while its
gadget discovery phase return none of working pivoting gad-
get4. FUZE could only generate exploit for 3 cases because
it evaluate exploitability of a CFHP simply with two straight
forward exploit technique: pivot-2-usr and “cr4-flipping”.
The former does not bypass SMAP and the latter only works
when at least two CHFPs is available.

Even for the vulnerabilities against which both public ex-
ploits and ours demonstrate the same capabilities in bypassing
mitigations, we argue that our approach still exhibits stronger
exploitability. This is because the public exploits circumvent
mitigations by manipulating control registers with two CFHPs,

4The result related to Q in our evaluation is based on inference of its
design instead of running its tool because we were not able to get the source
code of Q.

as is discussed in Section 2.3, this practice can be easily
restricted by virtualization extension. For the two vulnera-
bilities CVE-2017-17053 and CVE-2016-9793 for which our
approach fails to derive working exploits, we manually exam-
ine their execution traces leading to the kernel panic. We find
that the failure results from the following fact. In order to take
the control over rip prior to exploitation, both of these vulner-
abilities require an exploit to access the data in the user space.
This violates the protection of SMAP. KEPLER restricts any
operations that violate our threat model and output a failure if
none of the exploitation chains could avoid such violation.

8.3 Effectiveness and Efficiency of Our Tool
Our experiment utilizes KEPLER to explore the aforemen-
tioned kernel image with the vulnerabilities inserted. In this
process, we exhaustively search gadget chains useful for ex-
ploitation and mitigation circumvention. In Table 5, we show
the total number of useful exploitation chains identified as
well as the total amount of time spent on finding these gadget
chains. As we can observe, KEPLER could automatically pin-
point tens of thousands of unique kernel gadget chains to per-
form exploitation without triggering kernel protections. Since
we implement KEPLER to perform gadget chain exploration
in parallel, we also discover that these gadget chains could
typically be identified within 50 hours. These observations
together imply that KEPLER could diversify the ways of per-
forming kernel exploitation in an efficient fashion. Given that
some commercial security products pinpoint kernel exploita-

USENIX Association 28th USENIX Security Symposium 1199

tion by using the patterns of exploits, the ability to diversify
exploitation has the potential to assist an adversary to bypass
the detection of commercial security products.

From Table 5, we also observe that, for different vulnera-
bilities, KEPLER generates different number of gadget chains
useful for exploitation. This can be attributed to the follow-
ing fact. In the process of gadget chain identification and
assessment, KEPLER starts gadget assessment from different
machine states and contexts. For some vulnerabilities, the
machine states and contexts do not provide us with sufficient
control over some registers and memory regions. Under this
circumstance, the availability of useful kernel gadgets would
vary and thus influence the total number of generated exploits.

In Table 5, we also depict the time spent on finding the first
kernel gadget chain useful for exploitation. As we can observe,
KEPLER could quickly output an useful exploitation chain in
less than about 50 wall-clock minutes (and the corresponding
CPU-core time is roughly 1400 minutes given the prototype
system uses 28 concurrent workers). This implies KEPLER
has the potential to be used as a tool to quickly derive a
working exploit without too many human efforts. Last but not
least, Table 5 also shows the total number kernel gadgets in
different categories. As we can observe, there are typically
tens of gadgets in each categories. This means that one cannot
simply block our exploitation approach by eliminating a small
number of kernel gadgets. In Section 9, we will further discuss
the defense of our exploitation approach.

9 Discussion and Future Research

In this section, we discuss some plausible defence mecha-
nisms against our “single-shot” exploitation chain. Also, we
elaborate why they are not effective nor suitable for preventing
the proposed attack. Following our discussion and analysis,
we then provide some suggestions for the future research.
Plausible Defense Mechanisms. To defend against the ex-
ploit chain mentioned above, one straightforward reaction is to
eliminate the gadgets that must be used in kernel exploitation.
However, as we have already demonstrated and discussed in
Section 8, the tool we develop could enrich the choices of the
gadgets needed for exploitation. This means that, following
this potential solution, Linux developers would inevitably in-
troduce significant amount of kernel code changes and it is
difficult to guarantee these changes would not bring about neg-
ative influence upon Linux kernel execution. Other security
mitigation could also be used as potential defense mecha-
nisms. For example, there have already been a rich collection
of research works on control and data flow integrity protection
(e.g. [2] [78] [79] [25] [16] [26]). In addition, randomizing
stack canary per-function call [73] could idealy prevent our
exploit technique because it discourage the effort to fake stack
frame and leak stack canary with copy_to_user. Integrating and
enabling them in Linux kernel, they could easily fail the attack
mentioned above. Unfortunately, these techniques usually in-

cur unacceptable overhead (e.g., [16] has an average overhead
of 13%) or sometimes rely upon hardware features to reduce
their overhead (e.g., [25]). As a result, they are barely used as
a practical, general defense solution in popular release version
of Linux kernel.
Possible Future Research. Looking ahead, we suggest the
future research could be conducted from two aspects. From
the perspective of automatic exploit primitive evaluation, we
believe there is an emerging need to invent technique to sys-
tematically evaluate various exploit primitives, expecially for
those weak exploit primitives. In practice, theory and tech-
niques should be proposed to facilitate deriving better exploit
primitive with a initially weak exploit primitive. From the
perspective of defense, on one hand, we believe there remains
the need to design lightweight control-flow enforcements for
Linux kernel. On the other hand, instead of manually over-
hauling kernel code, one could augment GCC with the ability
to eliminate the exploitation gadgets at compilation time.

10 Conclusion

We show it is generally challenging to generate exploits with
a control-flow hijacking primitive in the Linux kernel under
a realistic threat model, while there are a lot of research ef-
forts in identifying exploit primitives and facilitating exploit
generation with various exploit primitives. We propose KE-
PLER, a framework to facilitate evaluation of control-flow
hijacking primitives which leverages a novel “single-shot” ex-
ploitation to convert a control-flow hijacking primitive into
a classic stack overflow and thus bootstrap traditional code-
reuse attack against modern Linux kernel. In comparison with
previous automatic exploit generation and exploit hardening
techniques, we show that KEPLER outperforms other exploit
techniques and is able to generate thousands of exploit chains
for a control-flow hijacking primitive in Linux kernel despite
the challenges of widely-deployed security mitigations, ex-
ploit path pitfalls and ill-suited exploit primitives. Following
the experimental results, we safely conclude that KEPLER
can significantly facilitate evaluating control-flow hijacking
primitive in the Linux kernel.

11 Availability

We release the source code of KEPLER, a kernel embeded
with vulnerabilities and generated gadget chains for research
and education purposes [76].

12 Acknowledgements

We would like to thank our shepherd Stephen McCamant
and anonymous reviewers for their help and comments.
The IIE authors were partially supported by the Stategic
Priority Research Program of the CAS (XDC02040100,

1200 28th USENIX Security Symposium USENIX Association

XDC02030200, XDC02020200), the National Key Research
and Development Program of China (2016YFB0801004,
2016QY071405, 2018YFB0803602, 2016QY06X1204), the
Key Foundation of Beijing Committee of Science and Tech-
nology (Z181100002718002), the Key Laboratory of Network
Assessment Technology of Chinese Academy of Sciences and
Beijing Key Laboratory of Network Security and Protection
Technology. The PSU authors were partially supported by
IST seed grant. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements.

References

[1] Linux kernel vulnerability statistics, 2018. https:
//www.cvedetails.com/product/47/Linux-Linux-
Kernel.html?vendor_id=33.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. In Proceedings of the 12nd ACM conference on
Computer and communications security (CCS), 2005.

[3] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley. Automatic exploit generation. Communications
of the ACM, 57, 2014.

[4] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and
I. Finocchi. A survey of symbolic execution techniques. ACM
Comput. Surv., 51(3), 2018.

[5] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley. Your
exploit is mine: Automatic shellcode transplant for remote
exploits. In Proceedings of the 38th IEEE Symposium on
Security and Privacy (S&P), 2017.

[6] S. Bratus, M. Locasto, M. Patterson, L. Sassaman, and A. Shu-
bina. Exploit programming: From buffer overflows to weird
machines and theory of computation. {USENIX; login:}, 2011.

[7] D. Brumley, P. Poosankam, D. X. Song, and J. Zheng. Auto-
matic patch-based exploit generation is possible: Techniques
and implications. In Proceedings of the 29th IEEE Symposium
on Security and Privacy (S&P), 2008.

[8] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-flow bending: On the effectiveness of control-flow
integrity. In Proceedings of the 24th USENIX Security Sympo-
sium (USENIX Security), 2015.

[9] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Un-
leashing mayhem on binary code. In Proceedings of IEEE
Symposium on Security and Privacy (SP), 2012, 2012.

[10] K. Cook. x86/mm: Always enable con-
fig_debug_rodata and remove the kconfig option,
2016. https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
9ccaf77cf05915f51231d158abfd5448aedde758.

[11] J. Corbet. Supervisor mode access prevention, 2012. https:
//lwn.net/Articles/517475/.

[12] J. Corbet. Post-init read-only memory, 2015. https://lwn.
net/Articles/666550/.

[13] J. Corbet. A page-table isolation update, 2018. https://lwn.
net/Articles/752621/.

[14] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R.
Sadeghi, S. Brunthaler, and M. Franz. Readactor: Practical
code randomization resilient to memory disclosure. In Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy
(S&P), 2015.

[15] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz.
It’s a trap: Table randomization and protection against function-
reuse attacks. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, 2015.

[16] J. Criswell, N. Dautenhahn, and V. Adve. Kcofi: Complete
control-flow integrity for commodity operating system kernels.
In Proceedings of the 35th IEEE Symposium on Security and
Privacy (S&P), 2014.

[17] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi. Pt-rand:
Practical mitigation of data-only attacks against page tables.
In Proceedings of the 2017 Network and Distributed System
Security Symposium (NDSS), 2017.

[18] david942j. The one-gadget in glibc, 2018. https:
//david942j.blogspot.com/2017/02/project-one-
gadget-in-glibc.html.

[19] dong-hoon you. New reliable android kernel root exploita-
tion techniques, 2016. http://powerofcommunity.net/
poc2016/x82.pdf.

[20] C. Eagle. The IDA Pro Book (Second edition). no starch press,
2011.

[21] J. Edge. Extending the use of ro and nx, 2011. https://lwn.
net/Articles/422487/.

[22] J. Edge. "strong" stack protection for gcc, 2014. https:
//lwn.net/Articles/584225/.

[23] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos. Control jujutsu: On
the weaknesses of fine-grained control flow integrity. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security.

[24] A. Follner, A. Bartel, H. Peng, Y.-C. Chang, K. Ispoglou,
M. Payer, and E. Bodden. Pshape: Automatically combin-
ing gadgets for arbitrary method execution. In International
Workshop on Security and Trust Management, 2016.

[25] X. Ge, W. Cui, and T. Jaeger. Griffin: Guarding control flows
using intel processor trace. ACM SIGOPS Operating Systems
Review, 51(2), 2017.

[26] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-
flow integrity for kernel software. In Proceedings of 2016
IEEE European Symposium on Security and Privacy (Euro
S&P), 2016.

[27] J. Gionta, W. Enck, and P. Larsen. Preventing kernel code-reuse
attacks through disclosure resistant code diversification. In
Proceedings of the 2016 IEEE Conference on Communications
and Network Security (CNS), 2016.

[28] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard.
Prefetch side-channel attacks: Bypassing SMAP and kernel

USENIX Association 28th USENIX Security Symposium 1201

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9ccaf77cf05915f51231d158abfd5448aedde758
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9ccaf77cf05915f51231d158abfd5448aedde758
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=9ccaf77cf05915f51231d158abfd5448aedde758
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/666550/
https://lwn.net/Articles/666550/
https://lwn.net/Articles/752621/
https://lwn.net/Articles/752621/
https://david942j.blogspot.com/2017/02/project-one-gadget-in-glibc.html
https://david942j.blogspot.com/2017/02/project-one-gadget-in-glibc.html
https://david942j.blogspot.com/2017/02/project-one-gadget-in-glibc.html
http://powerofcommunity.net/poc2016/x82.pdf
http://powerofcommunity.net/poc2016/x82.pdf
https://lwn.net/Articles/422487/
https://lwn.net/Articles/422487/
https://lwn.net/Articles/584225/
https://lwn.net/Articles/584225/

ASLR. In Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2016.

[29] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out
of control: Overcoming control-flow integrity. In Proceedings
of the 35th IEEE Symposium on Security and Privacy (S&P),
2014.

[30] S. Heelan, T. Melham, and D. Kroening. Automatic heap
layout manipulation for exploitation. In Proceedings of the
27th USENIX Security Symposium (USENIX Security), 2018.

[31] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Au-
tomatic generation of data-oriented exploits. In Proceedings
of the 24nd USENIX Security Symposium (USENIX Security),
2015.

[32] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang. Data-oriented programming: On the expressive-
ness of non-control data attacks. In Proceedings of the 37th
IEEE Symposium on Security and Privacy (S&P), 2016.

[33] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In Pro-
ceedings of the 18th USENIX Security Symposium (USENIX
Security), 2009.

[34] R. Hund, C. Willems, and T. Holz. Practical timing side chan-
nel attacks against kernel space aslr. In Proceedings of the 34th
IEEE Symposium on Security and Privacy (S&P), 2013.

[35] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer. Block
oriented programming: Automating data-only attacks. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, 2018.

[36] itsZN. Bypassing smep using vdso overwrites, 2015. https:
//itszn.com/blog/?p=21.

[37] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin.
Razzer: Finding kernel race bugs through fuzzing. In Pro-
ceedings of the 40th IEEE Symposium on Security and Privacy
(S&P), 2019.

[38] M. Jurczyk and G. Coldwind. SMEP: What is it, and how to
beat it on windows, 2011. http://j00ru.vexillium.org/
?p=783.

[39] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis. ret2dir:
Rethinking kernel isolation. In Proceedings of the 23rd
USENIX Security Symposium (USENIX Security), 2014.

[40] S. Knox. Real-time kernel protection(rkp), 2016.
https://www.samsungknox.com/en/blog/real-time-
kernel-protection-rkp.

[41] A. Konovalov. Exploiting the linux kernel via packet sock-
ets, 2017. https://googleprojectzero.blogspot.com/
2017/05/exploiting-linux-kernel-via-packet.html.

[42] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis.
Compiler-assisted code randomization. In Proceedings of the
39th IEEE Symposium on Security and Privacy (S&P), 2018.

[43] G. Kroah-Hartman. Introduce static_usermodehelper to
mediate call_usermodehelper, 2017. https://patchwork.
kernel.org/patch/9519063/.

[44] Lexfo. Cve-2017-11176: A step-by-step linux kernel exploita-
tion, 2018. https://blog.lexfo.fr/cve-2017-11176-
linux-kernel-exploitation-part4.html#stack-
pivoting.

[45] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down: Reading kernel memory from user space. In Procced-
ings of 27th USENIX Security Symposium (USENIX Security),
2018.

[46] K. Lu, M. Walter, D. Pfaff, and S. Nürnberger and Wenke
Lee and Michael Backes. Unleashing use-before-initialization
vulnerabilities in the linux kernel using targeted stack spraying.
In Proceedings of the 2017 Network and Distributed System
Security Symposium (NDSS), 2017.

[47] M. Miller. Modeling the exploitation and mitigation of memory
safety vulnerabilities. In Breakpoint, 2012.

[48] R. Mothe and R. R. Branco. Dptrace: Dual purpose trace for
exploitability analysis of program crashes. In Black Hat USA
Briefings, 2016.

[49] J. Nakajima and S. Grandhi. Kernel protection using hardware
based virtualization. In The Linux Foundation events, 2017.

[50] National Vulnerability Database. Cve-2017-8890 detail, 2017.
https://nvd.nist.gov/vuln/detail/CVE-2017-8890.

[51] M. Oh. Detecting and mitigating elevation-of-privilege exploit
for cve-2017-0005, 2017. https://cloudblogs.microsoft.
com/microsoftsecure/2017/03/27/detecting-and-
mitigating-elevation-of-privilege-exploit-for-
cve-2017-0005/.

[52] S. Pailoor, A. Aday, and S. Jana. Moonshine: Optimizing os
fuzzer seed selection with trace distillation. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security),
2018.

[53] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis,
and V. P. Kemerlis. Kernel protection against just-in-time code
reuse. ACM Transactions on Privacy and Security (TOPS),
22(1), 2019.

[54] A. Prakash and H. Yin. Defeating rop through denial of stack
pivot. In Proceedings of the 31st Annual Computer Security
Applications Conference, pages 111–120, 2015.

[55] D. Repel, J. Kinder, and L. Cavallaro. Modular synthesis of
heap exploits. In ACM SIGSAC Workshop on Programming
Languages and Analysis for Security (PLAS), 2017.

[56] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
oriented programming: Systems, languages, and applications.
ACM Transactions on Information and System Security (TIS-
SEC), 15(1):2, 2012.

[57] J. Salwan. Ropgadget, 2012. https://github.com/
JonathanSalwan/ROPgadget.

[58] S. Schumilo, C. Aschermann, and R. Gawlik. kafl: Hardware-
assisted feedback fuzzing for os kernels. In Proceedings of the
25th USENIX Security Symposium (USENIX Security), 2017.

[59] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in c++ applications.

1202 28th USENIX Security Symposium USENIX Association

https://itszn.com/blog/?p=21
https://itszn.com/blog/?p=21
http://j00ru.vexillium.org/?p=783
http://j00ru.vexillium.org/?p=783
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://patchwork.kernel.org/patch/9519063/
https://patchwork.kernel.org/patch/9519063/
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://nvd.nist.gov/vuln/detail/CVE-2017-8890
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://cloudblogs.microsoft.com/microsoftsecure/2017/03/27/detecting-and-mitigating-elevation-of-privilege-exploit-for-cve-2017-0005/
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget

In In Proceedings of the 2015 IEEE Symposium on Security
and Privacy (S&P), 2015.

[60] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit
hardening made easy. In Proceedings of the 20th USENIX
Security Symposium (USENIX Security), 2011.

[61] M. Seaborn and T. Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges, 2015.
https://googleprojectzero.blogspot.com/2015/
03/exploiting-dram-rowhammer-bug-to-gain.html.

[62] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama, J. Cor-
betta, F. Disperati, A. Dutcher, J. Grosen, P. Grosen, A. Machiry,
et al. Mechanical phish: Resilient autonomous hacking. IEEE
Security & Privacy, 16(2):12–22, 2018.

[63] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vi-
gna. Firmalice - automatic detection of authentication bypass
vulnerabilities in binary firmware. In Proceedings of the 2015
Network and Distributed System Security Symposium (NDSS),
2015.

[64] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and
G. Vigna. SoK:(state of) the art of war: Offensive techniques
in binary analysis. In Proceedings of the 37th IEEE Symposium
on Security and Privacy (S&P), 2016.

[65] K. A. Shutemov. pagemap: do not leak phys-
ical addresses to non-privileged userspace, 2015.
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce.

[66] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi. Just-in-time code reuse: On the effec-
tiveness of fine-grained address space layout randomization.
In Proceedings of the 34 IEEE Symposium on Security and
Privacy (S&P), 2013.

[67] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee. En-
forcing kernel security invariants with data flow integrity. In
Proceedings of the 2016 Network and Distributed System Se-
curity Symposium (NDSS), 2016.

[68] spender. wait for kaslr to be effective, 2017.
https://grsecurity.net/~spender/exploits/wait_
for_kaslr_to_be_effective.c.

[69] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Cor-
betta, Y. Shoshitaishvili, C. Kruegel, and G. Vigna. Driller:
Augmenting fuzzing through selective symbolic execution. In
Proceedings of the 2016 Network and Distributed System Se-
curity Symposium (NDSS), 2016.

[70] P. Team. Rap: Rip rop, 2015. https://pax.grsecurity.
net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf.

[71] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the intel sgx
kingdom with transient out-of-order execution. In Proceedings
of the 27th USENIX Security Symposium (USENIX Security),
2018.

[72] D. Vyukov. Syzkaller, 2015. https://github.com/google/
syzkaller.

1 int i=0;
2 unsigned long *p=(unsigned long*)PAYLOAD_START;
3 p[i++]=0; // padding
4 p[i++]=0; // canary location
5 p[i++]=0; // padding for saved registers
6 ...
7 // priviledge escalation
8 p[i++]=POPRDI; // pop rdi ; ret
9 p[i++]=0;

10 p[i++]=PREPARE_KERNEL_CREDS;
11 p[i++]=POPRDXRET; // pop rdx ; ret
12 p[i++]=COMMIT_CREDS;
13 p[i++]=MOV_RDI_RAX_JMP_RDX; // mov rdi, rax ;

jmp rdx
14 // sleep for 60 minutes
15 p[i++]=POPRDI; // pop rdi ; ret
16 p[i++]=1000 * 60 * 60;
17 p[i++]=MSLEEP;

Table 6: The kernel ROP payload that performs privilege
escalation.

[73] Z. Wang, X. Ding, C. Pang, J. Guo, J. Zhu, and B. Mao. To
detect stack buffer overflow with polymorphic canaries. In
2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 243–254.
IEEE, 2018.

[74] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and
W. Aiello. Shuffler: Fast and deployable continuous code
re-randomization. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
16), 2016.

[75] W. Wu, Y. Chen, J. Xu, X. Xing, W. Zou, and X. Gong. Fuze:
Towards facilitating exploit generation for kernel use-after-free
vulnerabilities. In Proceedings of the 27th USENIX Security
Symposium (USENIX Security), 2018.

[76] ww9210. kepler-cfhp, 2018. https://github.com/ww9210/
kepler-cfhp.

[77] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu.
From collision to exploitation: Unleashing use-after-free vul-
nerabilities in linux kernel. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Secu-
rity (CCS), 2015.

[78] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and
randomization for binary executables. In Proceedings of the
34th IEEE Symposium on Security and Privacy (S&P), 2013.

[79] M. Zhang and R. Sekar. Control flow integrity for cots bina-
ries. In Proceedings of the 22nd USENIX Security Symposium
(USENIX Security), 2013.

Appendix

As is discussed in Section 6, we utilize a series of kernel gadgets to
bypass kernel mitigations. After that, we redirect the control flow of
the Linux kernel to a universal ROP payload. By using that payload,

USENIX Association 28th USENIX Security Symposium 1203

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab676b7d6fbf4b294bf198fb27ade5b0e865c7ce
https://grsecurity.net/~spender/exploits/wait_for_kaslr_to_be_effective.c
https://grsecurity.net/~spender/exploits/wait_for_kaslr_to_be_effective.c
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/ww9210/kepler-cfhp
https://github.com/ww9210/kepler-cfhp

1 // copy more payloads to the kernel stack
2 // prepare auguments for copy_from_user()
3 p[i++]=POPRAX; // pop rax ; ret
4 p[i++]=POPRSI; // pop rsi ; ret
5 p[i++]=0xffffffff81254a99; // mov rdi, rsp ;

call rax
6 p[i++]=POPRAX;
7 p[i++]=0x1000;
8 p[i++]=0xffffffff81a04201; // sub rdi, rax ;

mov rax, rdi ; ret
9 p[i++]=POPRSI;

10 p[i++]=STAGE_TWO_ROP_PAYLOAD;
11 p[i++]=POPRDX; // pop rds ; ret
12 p[i++]=0x1040;
13 p[i++]=COPY_FROM_USER; // copy_from_user()
14
15 // substract rsp to the first gadget
16 p[i++]=POPRAX;
17 p[i++]=0x1040;
18 p[i++]=0xffffffff81a04201; // sub rdi, rax ;

mov rax, rdi ; ret
19 p[i++]=POPR12; // pop r12 ; ret
20 p[i++]=0xffffffff810001cc; // ret
21 p[i++]=0xffffffff81c01688; // mov rsp, rax ;

push r12 ; ret

Table 7: The kernel ROP payload that copies an ROP payload
to the current stack frame and then subtracts the stack pointer
to execute the ROP payload.

we demonstrate the exploitability of a kernel vulnerability. In Table 6,
we show an ROP payload used in this work. As is specified, it first
performs privilege escalation. Then, it sets the Linux kernel to fall
into asleep for a long time by using the kernel function msleep().

Considering Linux kernel might perform inline permission checks
and we need to execute an ROP payload with an arbitrary length,
we further utilize the ROP payload like the one shown in Table 7 to
address this payload length issue.

1204 28th USENIX Security Symposium USENIX Association

PeX: A Permission Check Analysis Framework for Linux Kernel

Tong Zhang*

Virginia Tech
Wenbo Shen†

Zhejiang University
Dongyoon Lee

Stony Brook University
Changhee Jung

Purdue University

Ahmed M. Azab‡

Samsung Research America
Ruowen Wang‡

Samsung Research America

Abstract
Permission checks play an essential role in operating system
security by providing access control to privileged functionali-
ties. However, it is particularly challenging for kernel develop-
ers to correctly apply new permission checks and to scalably
verify the soundness of existing checks due to the large code
base and complexity of the kernel. In fact, Linux kernel con-
tains millions of lines of code with hundreds of permission
checks, and even worse its complexity is fast-growing.

This paper presents PeX, a static Permission check error
detector for LinuX, which takes as input a kernel source code
and reports any missing, inconsistent, and redundant permis-
sion checks. PeX uses KIRIN (Kernel InteRface based In-
direct call aNalysis), a novel, precise, and scalable indirect
call analysis technique, leveraging the common programming
paradigm used in kernel abstraction interfaces. Over the inter-
procedural control flow graph built by KIRIN, PeX automati-
cally identifies all permission checks and infers the mappings
between permission checks and privileged functions. For each
privileged function, PeX examines all possible paths to the
function to check if necessary permission checks are correctly
enforced before it is called.

We evaluated PeX on the latest stable Linux kernel v4.18.5
for three types of permission checks: Discretionary Access
Controls (DAC), Capabilities, and Linux Security Modules
(LSM). PeX reported 36 new permission check errors, 14 of
which have been confirmed by the kernel developers.

1 Introduction
Access control [38] is an essential security enforcement
scheme in operating systems. They assign users (or processes)
different access rights, called permissions, and enforce that
only those who have appropriate permissions can access criti-
cal resources (e.g., files, sockets). In the kernel, access control

*This work was started when Tong Zhang interned at Samsung Research
America, mentored by Wenbo Shen and Ahmed M. Azab.
†Corresponding author.
‡Now at Google.

is often implemented in the form of permission checks before
the use of privileged functions accessing the critical resources.

Over the course of its evolution, Linux kernel has employed
three different access control models: Discretionary Access
Controls (DAC), Capabilities, and Linux Security Modules
(LSM). DAC distinguishes privileged users (a.k.a., root) from
unprivileged ones. The unprivileged users are subject to vari-
ous permission checks, while the root bypasses them all [4].
Linux kernel v2.2 divided the root privilege into small units
and introduced Capabilities to allow more fine-grained access
control. From kernel v2.6, Linux adopted LSM in which vari-
ous security hooks are defined and placed on critical paths of
privileged operations. These security hooks can be instanti-
ated with custom checks, facilitating different security model
implementations as in SELinux [41] and AppArmor [3].

Unfortunately, for a new feature or vulnerability found,
these access controls have been applied to the Linux kernel
code in an ad-hoc manner, leading to missing, inconsistent, or
redundant permission checks. Given the ever-growing com-
plexity of the kernel code, it is becoming harder to manually
reason about the mapping between permission checks and
privileged functions. In reality, kernel developers rely on their
own judgment to decide which checks to use, often leading
to over-approximation issues. For instance, Capabilities were
originally introduced to solve the “super” root problem, but
it turns out that more than 38% of Capabilities indeed check
CAP_SYS_ADMIN, rendering it yet another root [5].

Even worse, there is no systematic, sound, and scalable way
to examine whether all privileged functions (via all possible
paths) are indeed protected by correct permission checks. The
lack of tools for checking the soundness of existing or new
permission checks can jeopardize the kernel security putting
the privileged functions at risk. For example, DAC, CAP and
LSM introduce hundreds of security checks scattered over
millions of lines of the kernel code, and it is an open problem
to verify if all code paths to a privileged function encounter its
corresponding permission check before reaching the function.
Given the distributed nature of kernel development and the
significant amount of daily updates, chances are that some

USENIX Association 28th USENIX Security Symposium 1205

parts of the code may miss checks on some paths or introduce
the inconsistency between checks, weakening the operating
system security.

This paper presents PeX, a static permission check analysis
framework for Linux kernel. PeX makes it possible to soundly
and scalably detect any missing, inconsistent and redundant
permission checks in the kernel code. At a high level, PeX
statically explores all possible program paths from user-entry
points (e.g., system calls) to privileged functions and detects
permission check errors therein. Suppose PeX finds a path in
which a privileged function, say PF, is protected (preceded)
by a check, say Chk in one code. If it is found that any other
paths to PF bypass Chk, then it is a strong indication of a
missing check. Similarly, PeX can detect inconsistent and
redundant permission checks. While conceptually simple, it
is very challenging to realize a sound and precise permission
check error detection at the scale of Linux kernel.

In particular, there are two daunting challenges that PeX
should address. First, Linux kernel uses indirect calls very
frequently, yet its static call graph analysis is notoriously
difficult. The latest Linux kernel (v4.18.5) contains 15.8M
LOC, 247K functions, and 115K indirect callsites, rendering
existing precise solutions (e.g., SVF [43]) unscalable. Only
workaround available to date is either to apply the solutions
unsoundly (e.g., only on a small code partition as with K-
Miner [22]) or to rely on naive imprecise solutions (e.g., type-
based analysis). Either way leads to undesirable results, i.e.,
false negatives (K-Miner) or positives (type-based one).

For a precise and scalable indirect call analysis, we intro-
duce a novel solution called KIRIN (Kernel InteRface based
Indirect call aNalysis), which leverages kernel abstraction in-
terfaces to enable precise yet scalable indirect call analysis.
Our experiment with Linux v4.18.5 shows that KIRIN allows
PeX to detect many previously unknown permission check
bugs, while other existing solutions either miss many of them
or introduce too many false warnings.

Second, unlike Android which has been designed with the
permission-based security model in mind [2], Linux kernel
does not document the mapping between a permission check
and a privileged function. More importantly, the huge Linux
kernel code base makes it practically impossible to review
them all manually for the permission check verification.

To tackle this problem, PeX presents a new technique which
takes as input a small set of known permission checks and
automatically identifies all other permission checks includ-
ing their wrappers. Moreover, PeX’s dominator analysis [31]
automates the process of identifying mappings between per-
mission checks and their potentially privileged functions as
well. Our experiment with Linux kernel v4.18.5 shows that
starting from a small set of well-known 3 DAC, 3 Capacities,
and 190 LSM checks, PeX automatically (1) identifies 19, 16,
and 53 additional checks, respectively, and (2) derives 9243
pairs of permission checks and privileged functions.

The contributions of this paper are summarized as follows:

Table 1: Commonly used permission checks in Linux.

Type Total # Permission Checks
DAC 3 generic_permission, sb_permission, inode_permission
Capabilities 3 capable, ns_capable, avc_has_perm_noaudit
LSM 190 security_inode_readlinkat, security_file_ioctl, etc..

• New Techniques: We proposed and implemented PeX, a
static permission check analysis framework for Linux ker-
nel. We also developed new techniques that can perform
scalable indirect call analysis and automate the process of
identifying permission checks and privileged functions.

• Practical Impacts: We analyzed DAC, Capabilities, and
LSM permission checks in the latest Linux kernel v4.18.5
using PeX, and discovered 36 new permission check bugs,
14 of which have been confirmed by kernel developers.

• Community Contributions: We will release PeX as an
open source project, along with the identified mapping be-
tween permission checks and privileged functions. This
will allow kernel developers to validate their codes with
PeX, and to contribute to PeX by refining the mappings
with their own domain knowledge.

2 Background: Permission Checks in Linux
This section introduces DAC, Capabilities, and LSM in Linux
kernel. Table 1 lists practically-known permission checks in
Linux. Unfortunately, the full set is not well-documented.

2.1 Discretionary Access Control (DAC)
DAC restricts the accesses to critical resources based on the
identity of subjects or the group to which they belong [36,46].
In Linux, each user is assigned a user identifier (uid) and a
group identifier (gid). Correspondingly, each file has prop-
erties including the owner, the group, the rwx (read, write,
and execute) permission bits for the owner, the group, and
all other users. When a process wants to access a file, DAC
grants the access permissions based on the process’s uid,
gid as well as the file’s permission bits. For example in
Linux, inode_permission (as listed in Table 1) is often used
to check the permissions of the current process on a given
inode. More precisely speaking, however, it is a wrapper of
posix_acl_permission, which performs the actual check.

In a sense, DAC is a coarse-grained access control model.
Under the Linux DAC design, the “root” bypasses all per-
mission checks. This motivates fine-grained access control
scheme—such as Capabilities—to reduce the attack surface.

2.2 Capabilities
Capabilities, since Linux kernel v2.2 (1999), enable a fine-
grained access control by dividing the root privilege into small
sets. As an example, for users with the CAP_NET_ADMIN ca-
pability, kernel allows them to use ping, without the need
to grant the full root privilege. Currently, Linux kernel
v4.18.5 supports 38 Capabilities including CAP_NET_ADMIN,

1206 28th USENIX Security Symposium USENIX Association

CAP_SYS_ADMIN, and so on. Functions capable and ns_capable

are the most commonly used permission checks for Capabili-
ties (as listed in Table 1). Both determine whether a process
has a particular capability or not, while ns_capable performs
an additional check against a given user namespace. They in-
ternally use security_capable as the basic permission check.

Capabilities are supposed to be fine-grained and distinct [4].
However, due to the lack of clear scope definitions, the choice
of specific Capability for protecting a privileged function
has been made based on kernel developers’ own understand-
ing in practice. Unfortunately, this leads to frequent use of
CAP_SYS_ADMIN (451 out of 1167, more than 38%), and it is
just treated as yet another root [5]; grsecurity points out that
19 Capabilities are indeed equivalent to the full root [1].

2.3 Linux Security Module (LSM)
LSM [51], introduced in kernel v2.6 (2003), provides a set
of fine-grained pluggable hooks that are placed at various
security-critical points across the kernel. System administra-
tors can register customized permission checking callbacks to
the LSM hooks so as to enforce diverse security policies. The
latest Linux kernel v4.18.5 defines 190 LSM hooks. One com-
mon use of LSM is to implement Mandatory Access Control
(MAC) [8] in Linux (e.g., SELinux [40, 41], AppArmor [3]).
MAC enforces more strict and non-overridable access control
policies, controlled by system administrators. For example,
when a process tries to read the file path of a symbolic link,
security_inode_readlink is invoked to check whether the
process has read permission to the symlink file. The SELinux
callback of this hook checks if a policy rule can grant this
permission (e.g., allow domain_a type_b:lnk_file read). It
is worth noting that the effectiveness of LSM and its MAC
mechanisms highly depend on whether the hooks are placed
correctly and soundly at all security-critical points. If a hook
is missing at any critical point, there is no way for MAC to
enforce a permission check.

3 Examples of Permission Check Errors
This section illustrates different kinds of permission check
errors, found by PeX and confirmed by the Linux kernel de-
velopers. We refer to those functions, that validate whether a
process (a user or a group) has proper permission to do certain
operations, as permission checks. Similarly, we define privi-
leged functions to be those functions which only a privileged
process can access and thus require permission checks.

3.1 Capability Permission Check Errors
Figure 1 shows real code snippets of Capability permission
check errors in Linux kernel v4.18.5. Figure 1a shows the
kernel function scsi_ioctl, in which sg_scsi_ioctl (Line
7) is safeguarded by two Capability checks, CAP_SYS_ADMIN
and CAP_SYS_RAWIO (Line 5). To the contrary, scsi_cmd_ioctl
in Figure 1b calls the same function sg_scsi_ioctl (Line

1 int scsi_ioctl(struct scsi_device *sdev, int cmd,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 if (!capable(CAP_SYS_ADMIN) ||

!capable(CAP_SYS_RAWIO))↪→
6 return -EACCES;
7 return sg_scsi_ioctl(sdev->request_queue, NULL,

0, arg);↪→
8 ...
9 }

(a) sg_scsi_ioctl (Line 7) is called with CAP_SYS_ADMIN and
CAP_SYS_RAWIO capability checks (Line 5). arg is user space con-
trollable.

1 int scsi_cmd_ioctl(struct request_queue *q, ...,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 ...
6 if (!arg)
7 break;
8 err = sg_scsi_ioctl(q, bd_disk, mode, arg);
9 break;

10 ...
11 return err;
12 }

(b) sg_scsi_ioctl (Line 8) is called without capability checks.
arg is user space controllable.

1 int sg_scsi_ioctl(struct request_queue *q, struct
gendisk *disk, fmode_t mode, struct
scsi_ioctl_command __user *sic)

↪→
↪→

2 {
3 ...
4 err = blk_verify_command(req->cmd, mode);
5 ...
6 return err;
7 }
8
9 int blk_verify_command(unsigned char *cmd, fmode_t

mode)↪→
10 {
11 ...
12 if (capable(CAP_SYS_RAWIO))
13 return 0;
14 ...
15 return -EPERM;
16 }

(c) sg_scsi_ioctl calls blk_verify_command, which checks
CAP_SYS_RAWIO capability.

Figure 1: Capability check errors discovered by PeX.

8) without any Capability check. These two functions
share three similarities. First, both of them are reachable
from the userspace by ioctl system call. Second, both
call sg_scsi_ioctl with a userspace parameter, void __user

*arg. Last, there is no preceding Capability check on all possi-
ble paths to them (though scsi_ioctl performs two checks).

The kernel is supposed to sanitize userspace inputs and
check permissions to ensure that only users with appropriate
permissions can conduct certain privileged operations. As
SCSI (Small Computer System Interface) functions manipu-
late the hardware, they should be protected by Capabilities.
At first glance, scsi_ioctl seems to be correctly protected
(while scsi_cmd_ioctl misses two Capability checks).

However, delving into sg_scsi_ioctl ends up with a differ-
ent conclusion. As shown in Figure 1c, sg_scsi_ioctl calls
blk_verify_command, which in turn checks CAP_SYS_RAWIO.
Considering all together, scsi_ioctl checks CAP_SYS_ADMIN

once but CAP_SYS_RAWIO “twice”, leading to a redundant per-
mission check. On the other hand, scsi_cmd_ioctl checks

USENIX Association 28th USENIX Security Symposium 1207

1 static int do_readlinkat(int dfd, const char __user
*pathname, char __user *buf, int bufsiz)↪→

2 {
3 ...
4 error = security_inode_readlink(path.dentry);
5 if (!error) {
6 touch_atime(&path);
7 error = vfs_readlink(path.dentry, buf, bufsiz);
8 }
9 ...

10 }

(a) Kernel LSM usage in system call readlinkat.
vfs_readlink (Line 7) is protected by
security_inode_readlink (Line 4). Both pathname
and buf (Line 1 and Line 7) are user controllable.
1 int ksys_ioctl(unsigned int fd, unsigned int cmd,

unsigned long arg)↪→
2 {
3 ...
4 error = security_file_ioctl(f.file, cmd, arg);
5 if (!error)
6 error = do_vfs_ioctl(f.file, fd, cmd, arg);
7 ...
8 }
9

10 int xfs_readlink_by_handle(struct file *parfilp,
xfs_fsop_handlereq_t *hreq)↪→

11 {
12 ...
13 error = vfs_readlink(dentry, hreq->ohandle, olen);
14 ...
15 }

(b) Kernel LSM usage in system call ioctl. It calls
security_file_ioctl (Line 4) to protect do_vfs_ioctl
(Line 6). hreq->ohandle and olen are also user controllable.

Figure 2: LSM check errors discovered by PeX.

only CAP_SYS_RAWIO, resulting in a missing permission check
for CAP_SYS_ADMIN. In particular, PeX detects this bug as an
inconsistent permission check because the two paths disagree
with each other, and further investigation shows that one is
redundant and the other is missing.

3.2 LSM Permission Check Errors

The example of LSM permission check errors is related to
how LSM hooks are instrumented for two different system
calls readlinkat and ioctl.

Figure 2a shows the LSM usage in the readlinkat system
call. On its call path, vfs_readlink (Line 7) is protected by
the LSM hook security_inode_readlink (Line 4) so that a
LSM-based MAC mechanism, such as SELinux or AppArmor,
can be realized to allow or deny the vfs_readlink operation.

Figure 2b presents two sub-functions for the system call
ioctl. Similar to the above case, ioctl calls ksys_ioctl,
which includes its own LSM hook security_file_ioctl

(Line 4) before do_vfs_ioctl (Line 6). This is proper design,
and there is no problem so far. However, it turns out that there
is a path from do_vfs_ioctl to xfs_readlink_by_handle

(Line 10), which eventually calls the same privileged func-
tion vfs_readlink (see Line 7 in Figure 2a and Line 13
in Figure 2b). While this function is protected by the
security_inode_readlink LSM hook in readlinkat, that
is not the case for the path to the function going through
xfs_readlink_by_handle. The problem is that SELinux main-
tains separate ‘allow’ rules for read and ioctl. With the miss-
ing LSM security_inode_readlink check, a user only with

1 struct file_operations {
2 ...
3 ssize_t (*read_iter) (struct kiocb *, struct

iov_iter *);,!
4 ssize_t (*write_iter) (struct kiocb *, struct

iov_iter *);,!
5 ...
6 }

(a) The Virtual File System (VFS) kernel interface.

const struct file_operations ext4_file_operations
{

. . .

.read_iter = ext4_file_read_iter,

.write_iter = ext4_file_write_iter,

. . .
}

syscall(1, fd, buffer, count)

write(fd, buffer, count)

SyS_write(fd, buffer, count)
vfs_write(fd.file, buffer, count, fd.pos)

file->f_op->write_iter(kio, iter);

User space

Kernel space syscall dispatcher

const struct file_operations nfs_file_operations
{

. . .

.read_iter = nfs_file_read,

.write_iter = nfs_file_write,

. . .
}

(b) VFS indirect calls in Linux kernel.
Figure 3: Indirect call examples via the VFS kernel interface.

the ‘ioctl allow rule’ may exploit the ioctl system call to
trigger the vfs_readlink operation, which should only be
permitted by the different ‘read allow rule’.

The above two Capability and LSM examples show how
challenging it is to ensure correct permission checks. There
are no tools available for kernel developers to rely on to
figure out whether a particular function should be protected
by a permission check; and, (if so) which permission checks
should be used.

4 Challenges
This section discusses two critical challenges in designing
static analysis for detecting permission errors in Linux kernel.

4.1 Indirect Call Analysis in Kernel
The first challenge lies in the frequent use of indirect calls in
Linux kernel and the difficulties in statically analyzing them
in a scalable and precise manner. To achieve a modular de-
sign, the kernel proposes a diverse set of abstraction layers
that specify the common interfaces to different concrete im-
plementations. For example, Virtual File System (VFS) [12]
abstracts a file system, thereby providing a unified and trans-
parent way to access local (e.g., ext4) and network (e.g., nfs)
storage devices. Under this kernel programming paradigm,
an abstraction layer defines an interface as a set of indirect
function pointers while a concrete module initializes these
pointers with its own implementations. For example, as shown
in Figure 3a, VFS abstracts all file system operations in a ker-

1208 28th USENIX Security Symposium USENIX Association

nel interface struct file_operations that contains a set of
function pointers for different file operations. When a file
system is initialized, it initializes the VFS interface with the
concrete function addresses of its own. For instance, Figure 3b
shows that ext4 file system sets the write_iter function
pointer to ext4_file_write_iter, while nfs sets the pointer
to nfs_file_write.

However, kernel’s large code base challenges the resolution
of these numerous function pointers within kernel interfaces.
For example, the kernel used in our evaluation (v4.18.5) in-
cludes 15.8M LOC, 247K functions, and 115K indirect call-
sites. This huge code base makes existing precise pointer
analysis techniques [23–25, 35, 43] unscalable. In fact, Static
Value Flow (SVF) [43], i.e., the state-of-the-art analysis that
uses flow- and context-sensitive value flow for high preci-
sion, failed to scale to the huge Linux kernel. That is because
SVF is essentially a whole program analysis, and its indirect
call resolution thus requires tracking all objects such as func-
tions, variables, and so on, making the value flow analysis
unscalable to the large-size Linux kernel. In our experiment
of running SVF for the kernel on a machine with 256GB
memory, SVF was crashed due to an out of memory error1.

Alternatively, one may opt for a simple “type-based” func-
tion pointer analysis, which would scale to Linux kernel. How-
ever, the type-based indirect call analysis would suffer from
serious imprecision with too many false targets, because func-
tion pointers in the kernel often share the same type. For
example, in Figure 3a, two function pointers read_iter and
write_iter share the same function type. Type based pointer
analysis will even link write_iter to ext4_file_read_iter

falsely, which may lead to false permission check warnings.
PeX addresses this problem with a new kernel-interface

aware indirect call analysis technique, detailed in §5.

4.2 The Lack of Full Permission Checks, Priv-
ileged Functions, and Their Mappings

The second challenge lies in soundly enumerating a set of
permission checks and inferring correct mappings between
permission checks and privileged functions in Linux kernel.

Though some commonly used permission checks for
DAC, Capabilities, and LSM are known (Table 1), kernel
developers often devise custom permission checks (wrap-
pers) that internally use basic permission checks. Unfor-
tunately, the complete list of such permission checks has
never been documented. For example, ns_capable is a com-
monly used permission check for Capabilities, but it calls
ns_capable_common and security_capable in sequence. It is
the last security_capable that performs the actual capability
check. In other words, all the others are “wrappers” of the
“basic” permission check security_capable. This example

1SVF internally uses LLVM SparseVectors to save memory overhead by
only storing the set bits. However, it still blows up both the memory and the
computation time due to the expensive insert, expand and merge operations.

shows how hard it is for a permission check analysis tool to
keep up with all permission checks.

To make matters worse, Linux kernel has no explicit docu-
mentation that specifies which privileged function should
be protected by which permission checks. This is differ-
ent from Android [2], which has been designed with the
permission-based security model in mind from the begin-
ning. Take the Android LocationManager class as an example;
for the getLastKnownLocation method, the API document
states explicitly that permission ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION is required [7].

Unfortunately, existing static permission error checking
techniques are not readily applicable in order to address these
problems. Automated LSM hook verification [44] works only
with clearly defined LSM hooks, which would miss many
wrappers in the kernel setting. Many other tools require heavy
manual efforts such as user-provided security rules [20, 56],
authorization constraints [33], annotation on sensitive ob-
jects [21]. These manual processes are particularly error-
prone when applied to huge Linux code base. Alternatively,
some works such as [18, 32] rely on dynamic analysis. How-
ever, such run-time approaches may significantly limit the
code coverage being analyzed, thereby missing real bugs.

Moreover, all of above existing works cannot detect permis-
sion checks soundly. Their inability to recognize permission
checks or wrappers leads to missing privileged functions or
false warnings for those that are indeed protected by wrappers.
Since the huge Linux kernel code base makes it practically
impossible to review them all manually, reasoning about the
mapping is considered to be a daunting challenge.

In light of this, PeX presents a novel static analysis tech-
nique that takes as input a small set of known permission
checks to identify their basic permission checks and leverages
them as a basis for finding other permission check wrappers
(§6.2). In addition, PeX proposes a dominator analysis based
solution to automatically infer the mappings between permis-
sion checks and privileged functions (§6.3).

5 KIRIN Indirect Call Analysis

PeX proposes a precise and scalable indirect call analysis
technique, called KIRIN (Kernel InteRface based Indirect
call aNalysis), on top of the LLVM [27] framework. KIRIN
is inspired by two key observations: (1) almost all (95%)
indirect calls in the Linux kernel are originated from ker-
nel interfaces (§4.1) and (2) the type of a kernel interface
is preserved both at its initialization site (where a function
pointer is defined) and at the indirect callsite (where a func-
tion pointer is used) in LLVM IR. For example in Figure 3b,
the kernel interface object ext4_file_operations of the
type struct file_operations is statically initialized where
ext4_file_write_iter is assigned to the field of write_iter.
For the indirect call site file→f_op→write_iter, one can
identify that f_op is of the type struct file_operations and

USENIX Association 28th USENIX Security Symposium 1209

1 @ext4_file_operations = dso_local local_unnamed_addr
constant %struct.file_operations {,!

2 %struct.module* null,
3 i64 (%struct.file*, i64, i32)* @ext4_llseek,
4 i64 (%struct.file*, i8*, i64, i64*)* null,
5 i64 (%struct.file*, i8*, i64, i64*)* null,
6 i64 (%struct.kiocb*, %struct.iov_iter*)*

@ext4_file_read_iter,,!
7 i64 (%struct.kiocb*, %struct.iov_iter*)*

@ext4_file_write_iter,,!

(a) LLVM IR of ext4_file_operations initialization.

1 %25 = load %struct.file_operations*,
%struct.file_operations** %f_op, align 8,!

2 %write_iter.i.i = getelementptr inbounds
%struct.file_operations,
%struct.file_operations* %25, i64 0, i32 5

,!
,!

3 %26 = load i64 (%struct.kiocb*, %struct.iov_iter*)*,
i64 (%struct.kiocb*, %struct.iov_iter*)**
%write_iter.i.i, align 8

,!
,!

4 %call.i.i = call i64 %26(%struct.kiocb* nonnull
%kiocb.i, %struct.iov_iter* nonnull %iter.i) #10,!

(b) LLVM IR of callsite file→f_op→write_iter in vfs_write.

Figure 4: Indirect callsite resolution for vfs_write.

infer that ext4_file_write_iter is one of potential call tar-
gets. Based on this observation, PeX first collects indirect call
targets at kernel interface initialization sites (§5.1) and then
resolves them at indirect callsites (§5.2).

5.1 Indirect Call Target Collection

In Linux kernel, a kernel interface is often defined in
a C struct comprised of function pointers (§4.1): e.g.,
struct file_operations in Figure 3a. Many kernel inter-
faces (C structs) are statically allocated and initialized
as with ext4_file_operations and nfs_file_operations in
Figure 3b. Some interfaces may be dynamically allocated and
initialized at run time for reconfiguration.

For the former, KIRIN scans all Linux kernel code linearly
to find all statically allocated and initialized struct objects
with function pointer fields. Then, for each struct object,
KIRIN keep tracks of which function address is assigned to
which function pointers field using an offset as a key for the
field. For instance, Figure 4a shows the LLVM IR of statically
initialized ext4_file_operations. KIRIN finds that the ker-
nel interface type is struct file_operations (Line 1), and
ext4_file_write_iter is assigned to the 5th field write_iter

(Line 7). Therefore, KIRIN figures out that write_iter may
point to ext4_file_write_iter, not ext4_file_read_iter

(even though they have the same function type).

For the rest dynamically initialized kernel interfaces,
KIRIN performs a data flow analysis to collect any assign-
ment of a function address to the function pointer inside a
kernel interface. KIRIN’s field-sensitive analysis allows the
collected targets to be associated with the individual field of
a kernel interface.

1 struct usb_driver* driver =
container_of(intf->dev.driver, struct
usb_driver, drvwrap.driver);

,!
,!

2 retval = driver->unlocked_ioctl(intf,
ctl->ioctl_code, buf);,!

(a) C code of a container_of usage, followed by an indirect call.

1 #define container_of(ptr, type, member) ({
2 void *__mptr = (void *)(ptr);
3 ((type *)(__mptr - offsetof(type, member))); })

\\
4 %unlocked_ioctl = getelementptr inbounds i8*, i8**

%add.ptr76, i64 3,!

(b) Original container_of and the LLVM IR for the callsite.

1 #define container_of(ptr, type, member) ({
2 type* __res;
3 void* __mptr = ((void *)((void*)(ptr) -

offsetof(type, member)));,!
4 memcpy(&__res, &__mptr, sizeof(void*));
5 (__res);})

\\\
\\

6 %unlocked_ioctl = getelementptr inbounds
%struct.usb_driver, %struct.usb_driver* %20, i64
0, i32 3

,!
,!

(c) Modified container_of and the LLVM IR for the callsite.

Figure 5: Fixing container_of missing struct type problem.

5.2 Indirect Callsite Resolution
KIRIN stores the result of the above first pass in a key-value
map data structure in which the key is a pair of kernel interface
type and an offset (a field), and the value is a set of call
targets. At each indirect callsite, KIRIN retrieves the type of
a kernel interface and the offset from LLVM IR, looks up
the map using them as a key, and figures out the matched
call targets. For example, Figure 4b shows the LLVM IR
snippet in which an indirect call file→f_op→write_iter is
made inside of vfs_write. When an indirect call is made
(Line 4), KIRIN finds that the kernel interface type is struct
file_operations (Line 1) and the offset is 5 (Line 2). In this
way, KIRIN reports that ext4_file_write_iter (assigned at
Line 7 in Figure 4a) is one of potential call targets that are
indirectly called by dereferencing write_iter.

When applying KIRIN to Linux kernel, we found in cer-
tain callsites, the kernel interface type is not presented in the
LLVM IR, making their resolution impossible. For example,
the macro container_of is commonly used in order to get
the starting address of a struct object by using a pointer to
its own member field. Figure 5a shows an example of using
container_of (Line 1). It calculates the starting address of
usb_driver through its own member drvwrap.driver. Based
on the address, the code at Line 2 makes an indirect call by us-
ing a function pointer unlocked_ioctl that is another member
of the struct usb_driver object.

Figure 5b shows the original macro container_of (Lines
1-3) and resulting LLVM IR (Line 4). The problem of this
macro is that it involves a pointer manipulation, the LLVM
IR of which voids the struct type information, i.e., the sec-
ond argument of the macro. To solve this problem, KIRIN
redefines container_of in a way that the struct type is pre-
served in the LLVM IR (on which KIRIN works), as in Fig-
ure 5c (Lines 1-5). This adds back the kernel interface type

1210 28th USENIX Security Symposium USENIX Association

struct.usb_driver in the LLVM IR (Line 6), thereby en-
abling KIRIN to infer the correct type of driver and resolve
the targets for unlocked_ioctl.

Our experiment (§7.2) shows that KIRIN resolves 92%
of total indirect callsites for allyesconfig. PeX constructs a
more sound (less missing edges) and precise (less false edges)
call graph than other existing workarounds (e.g., [22]).

6 Design of PeX
Figure 6 shows the architecture of PeX. It takes as input
kernel source code (in the LLVM bitcode format) and com-
mon permission checks (Table 1), analyzes and reports all
detected permission check errors, including missing, incon-
sistent, and redundant permission checks. In addition, PeX
produces the mapping of permission checks and privileged
functions, which has not been formally documented.

At a high-level, PeX first resolves indirect calls with our
new technique called KIRIN (§5). Next, PeX builds an aug-
mented call graph—in which indirect callsites are connected
to possible targets—and cuts out only the portion reachable
from user space (§6.1). Based on the partitioned call graph,
PeX then generates the interprocedural control flow graph
(ICFG) where each callsite is connected to the entry and the
exit of the callee [17]. Then, starting from a small set of (user-
provided) permission checks, PeX automatically detects their
wrappers (§6.2). After that, for a given permission check,
PeX identifies its potentially privileged functions on top of
the ICFG (§6.3), followed by a heuristic-based filter to prune
obviously non-privileged functions (§6.4). Finally, for each
privileged function, PeX examines all user space reachable
paths to it to detect any permission checks error on the paths
(§6.5). The following section describes these steps in detail.

6.1 Call Graph Generation and Partition
PeX generates the call graph leveraging the result of KIRIN
(§5), and then partitions it into two groups.

User Space Reachable Functions: Starting from func-
tions with the common prefix SyS_ (indicating system call
entry points), PeX traverses the call graph, marks all visited
functions, and treats them as user space reachable functions.
The user reachable functions in this partition are investigated
for possible permission check errors.

Kernel Initialization Functions: Functions that are used
only during booting are collected to detect redundant checks.
The Linux kernel boots from the start_kernel function,
and calls a list of functions with the common prefix __init.
PeX performs multiple call graph traversals starting from
start_kernel and each of the __init functions to collect
them.

Other functions such as IRQ handlers and kernel thread
functions are not used in later analysis since they cannot be
directly called from user space. The partitioned call graph
serves as a basis for building an interprocedural control flow

graph (ICFG) [31] used in the inference of the mapping be-
tween permission checks and privileged functions (§6.3).

6.2 Permission Check Wrapper Detection
Sound and precise detection of permission check errors re-
quires a complete list of permission checks, but they are not
readily available (§4.2). One may name some commonly used
permission checks, as in Table 1. However, they are often the
wrapper of basic permission checks, which actually perform
the low-level access control, and even worse there could be
other wrappers of the wrapper.

PeX solves this by automating the process of identifying
all permission checks including wrappers. PeX takes an in-
complete list of user-provided permission checks as input.
Starting from them, PeX detects basic permission checks, by
performing the forward call graph slicing [26, 37, 45] over
the augmented call graph. For a given permission check func-
tion, PeX searches all call instructions inside the function for
the one that passes an argument of the function to the callee.
In other words, PeX identifies the callees of the permission
check function which take its actual parameter as their own
formal parameter. Similarly, PeX then conducts backward
call graph slicing [26, 37, 45] from these basic permission
checks to detect the list of their wrappers. PeX refers to only
those callers that pass permission parameters as wrappers,
excluding other callers just using the permission checks.

Figure 7 shows an example of the permission check wrap-
per detection. Given a known permission check ns_capable

(Lines 10-13), PeX first finds security_capable (Line 4) as
a basic permission check, and then based on it, PeX detects
another permission check wrapper has_ns_capability (Lines
14-20). Note that the parameter cap is passed from both the
parents ns_capable_common and has_ns_capability to the
child security_capable; and the result of security_capable
is returned to them. Our evaluation (§7.3) shows that based on
196 permission checks in Table 1, PeX detects 88 wrappers.

6.3 Privileged Function Detection
It is important to understand the mappings between permis-
sion checks and privileged functions for effective detection
of any permission check errors therein. However, the lack of
clear mapping in Linux kernel complicates the detection of
permission check errors (§4.2).

To address this problem, PeX leverages an interprocedural
dominator analysis [31] that can automatically identify the
privileged functions protected by a given permission check.
PeX conservatively treats all targets (callees) of those call
instructions, that are dominated by each permission check
(§6.2) on top of the ICFG (§6.1), as its potential privileged
functions. The rationale behind the dominator analysis is
based on the following observation: since there is no single
path that allows the dominated call instruction to be reached
without visiting the dominator (i.e., the permission check),

USENIX Association 28th USENIX Security Symposium 1211

KIRIN
Indirect Call

Pointer Analysis
(§5)

Call Graph
Generation &
Partitioning

(§6.1)

Privileged
Function
Detection

(§6.3)

Permission
Check Wrapper

Detection
(§6.2)

Non-privileged
Function

Filter
(§6.4)

Permission
Check Error

Detection
(§6.5)

Permission
Checks

(Table 1)

Kernel
Source

(IR)

ICFG

all permission checks

potential
privileged
functions

privileged
functions

pointer
targets Permission

Check
Errors

Privileged
Functions

Permission
Checks

Figure 6: PeX static analysis architecture. PeX takes as input kernel source code and permission checks, and reports as output
permission check errors. PeX also produces mappings between identified permission checks and privileged functions as output.

1 static bool ns_capable_common(struct user_namespace
*ns, int cap, bool audit),!

2 {
3
4 capable = audit ?

security_capable(current_cred(), ns, cap) :,!
5 security_capable_noaudit(current_cred(), ns,

cap);,!
6 if (capable == 0)
7 return true;
8 return false;
9 }

10 bool ns_capable(struct user_namespace *ns, int cap)
11 {
12 return ns_capable_common(ns, cap, true);
13 }
14 bool has_ns_capability(struct task_struct *t,
15 struct user_namespace *ns, int cap)
16 {
17 ...
18 ret = security_capable(__task_cred(t), ns, cap);
19 ...
20 }

Figure 7: Permission check wrapper examples.

Algorithm 1 Privileged Function Detection
INPUT:

pc f uncs - all permission checking functions
OUTPUT:

pv f uncs - privileged functions
1: procedure PRIVILEGED FUNCTION DETECTION
2: for f ← pc f uncs do
3: for u←User(f) do
4: CallInst←CallInstDominatedBy(u) . Inter-procedural analysis, for

full program path
5: callee← getCallee(CallInst)
6: pv f uncs.insert(callee)
7: end for
8: end for
9: return pv f uncs

10: end procedure

the callee is likely to be the one that should be protected by
the check on all paths 2.

Algorithm 1 shows how PeX uses the dominator analysis
to find potential privileged functions pvfuncs for a given list
of permission check functions pcfuncs. For each permission
check function f (Line 2), PeX finds all users of f, i.e., the
callsite invoking f (Line 3). For each user (callsite) u, PeX
performs interprocedural dominator analysis over the ICFG to
find all dominated call instructions (Line 4). All their callees
are then added to pvfuncs (Lines 5-6).

Note that the call graph generated by KIRIN (§5) has
resolved most of the indirect calls, which allows PeX to

2This does not necessarily mean that the permission check dominates all
call instructions of ICFG which invoke the resulting privileged function. As
long as some call instructions are dominated by the check, their callees are
treated as privileged functions.

perform—on top of the resulting ICFG—more sound privi-
leged function detection. For example, our experiment (§7.3)
shows that KIRIN can identify ecryptfs_setxattr (reachable
via indirect calls over the ICFG) as a privileged function and
detect its missing permission check bug (Table 6, LSM-17).
Note that if some other unsound workaround such as [22] had
been used, this bug could not have been detected.

6.4 Non-privileged Function Filter
The conservative approach in §6.3 may lead to too many po-
tential privileged functions. In this step, PeX applies heuristic-
based filters to prune out false privileged functions. In the
current prototype, the filter contains a set of kernel library
functions which are not privileged functions, e.g., kmalloc,
strcmp, kstrtoint. Though PeX is currently designed to
avoid false negatives (and thus leverages a small set of library
filters only), one can add more aggressive filters to purge more
false privileged functions. With releasing PeX, we expect a
good opportunity for the kernel development community to
contribute to the design of non-privileged function filters
where domain knowledge is helpful.

6.5 Permission Check Error Detection
This last step is validating the use of privileged functions to
detect any potential permission check errors. For a given map-
ping between a permission check and a privileged function,
PeX performs a backward traversal of the ICFG, starting from
the privileged functions with the corresponding permission
check in mind. Note that PeX validates every possible path to
each privileged function of interest.

Algorithm 2 shows PeX’s permission check error detec-
tion algorithm. Recall that PeX treats user reachable kernel
functions and kernel initialization functions separately and
detects different forms of errors (§6.1). Lines 2-12 shows how
PeX detects missing, redundant, and inconsistent checks in
user reachable kernel functions. For each privileged function
f (Line 5) in a mapping, PeX finds all possible paths allpath
from user entry points to that privileged function f over the
ICFG (Line 6). Line 7-18 checks each path p for the preceding
permission check function, the lack of which should be re-
ported as a bug. If the call to the privileged function (pvcall)
is not preceded by the corresponding permission check func-

1212 28th USENIX Security Symposium USENIX Association

Algorithm 2 Permission Check Error Detection
INPUT:

pc− pv - permission check function to privileged function mapping
pc f uncs - all permission check functions
kinit f uncs - kernel init functions

1: procedure PERMISSION CHECK ERROR DETECTION
2: for pair← pc− pv do
3: pv f uncs← pair.pv . privileged functions
4: pc f unc← pair.pc . permission check functions
5: for f ← pv f uncs do
6: all path← getAllPathUseFunc(f) . get all user reachable paths that

call the privileged function f
7: for p← all path do
8: pvcall← PrivilegeFunctionCallInPath(p)
9: if pvcall not Preceded by pc f unc then

10: if pvcall not Preceded by any pc f uncs then
11: report(p) . Report missing checks
12: else
13: report(p) . Report inconsistent check
14: end if
15: else if pvcall Preceded by multiple same pc f unc then
16: report(p) . Report redundant checks
17: end if
18: end for
19: end for
20: end for
21: for f ← kinit f uncs do
22: if f uses any pc f uncs then
23: report(f) . Report unnecessary checks during kernel boot
24: end if
25: end for
26: end procedure

tion (pcfunc) and any other check functions (those in pcfuncs)
over a given path p, then PeX reports a missing check (Lines
6-7). And if pvcall is preceded not by the corresponding
check (pcfunc) but other check in pcfuncs, PeX reports an
inconsistent check. Finally, if PeX discovers that pvcall is
indeed preceded by pcfunc checks but multiple times, then it
reports a redundant check (Lines 15-17). Besides, Lines 21-25
shows how PeX detects redundant checks in kernel initial-
ization functions. As kinitfuncs includes a conservative list
of functions that can only be executed during booting (thus
obviating the need of any checks), all detected permission
checks are marked as redundant (Lines 22-24).

7 Implementation and Evaluation

PeX was implemented using LLVM [27]/Clang-6.0. It con-
tains about 7K lines of C/C++ code. Clang was modified to
preserve the kernel interface type at allocation/initialization
sites by using an identified struct type instead of using un-
named literal struct type. We also automated the generation of
the single-file whole vmlinux LLVM bitcode vmlinux.bc us-
ing wllvm [13]. This avoids building each kernel module sep-
arately or changing kernel build infrastructures, as observed
in prior kernel static analysis works [22, 49]. We evaluated
PeX on the latest stable Linux kernel v4.18.5. In summary,
KIRIN resolves 86%–92% of indirect callsites depending on
its compilation configurations. PeX reported 36 permission
check errors warnings to the Linux community, 14 of which
have been confirmed as real bugs.

Table 2: Input Statistics for Kernel v4.18.5.

defconfig allyesconfig
of yes(=y) config 1284 9939
of compiled LOC 2,414,772 15,881,692
vmlinux size 481 MB 3.8 GB
vmlinux.bc size 387 MB 3.3 GB
of total functions 42,264 247,465
of syscall entries 857 1,027
of init functions 1,570 9,301
of indirect callsites (ICS) 20,338 115,537

Table 3: Indirect Call Pointer Analysis.

defconfig allyesconfig
KIRIN TYPE KM KIRIN TYPE KM

% of ICS resolved 86 100 1 92 100 na
of avg target 3.6 10K 3.6 6.2 81K na
analysis time (min) 1 1 9,869 6.6 1 na

7.1 Evaluation Methodology
We evaluated PeX with two different kernel configurations: (1)
defconfig, the (commonly-used) default configuration, and
(2) allyesconfig with all non-conflict configuration options
enabled. The use of allyesconfig not only stress-tests PeX
(including KIRIN) with a larger code base than defconfig,
but also covers the majority of kernel code, allowing PeX to
detect more bugs. In addition, we used 3 DAC, 3 Capabilities,
and 190 LSM permission checks(Table 1) as input permission
checks, from which PeX finds other wrappers. For the non-
privileged function filter, we collected 1827 library functions
from lib directory in the kernel source code. All experiments
were carried out on a machine running Ubuntu 16.04 with
two Intel Xeon E5-2650 2.20GHz CPU and 256GB DRAM.

7.2 Evaluation of KIRIN
We compared the effectiveness and efficiency of KIRIN with
type-based approach and SVF-based K-Miner approach.

K-Miner [22] works around the scalability problem in SVF
by analyzing the kernel on a per system call basis, rather than
taking the entire kernel code for analysis. K-Miner generates
a (small-size) partition of kernel code which can be reached
from a given system call, and (unsoundly) applies SVF for that
partition. For comparison, we took K-Miner’s implementation
from the github [6] and added the logic to count the number of
resolved indirect callsites and the average number of targets
per callsite. As K-Miner was originally built on LLVM/Clang-
3.8.1, we recompiled the same kernel v4.18.5 using wllvm

with the same kernel configurations.
Table 3 summaries evaluation results of KIRIN, compar-

ing it to the type-based approach and K-Miner approach in
terms of the percentage of indirect callsite (ICS) resolved, the
average number of targets per ICS, and the total analysis time.

7.2.1 Resolution Rate

For K-Miner, we observe somewhat surprising results: it re-
solves only 1% of all indirect callsites. After further inves-

USENIX Association 28th USENIX Security Symposium 1213

tigation, we noticed that SVF runs on each partition whose
code base is smaller than the whole kernel, its analysis scope
is significantly limited and unable to resolve function pointers
in other partitions, leading to the poor resolution rate.

Besides, we found out that K-Miner does not work for
allyesconfig which contains a much larger code base than
defconfig. Note that K-Miner evaluated its approach only for
defconfig in the original paper [22]. The K-Miner approach
turns out to be not scalable to handle allyesconfig which
ends up encountering out of memory error even for analyzing
a single system call.

7.2.2 Resolved Average Targets

For KIRIN, the number of average indirect call targets per
resolved indirect callsite is much smaller than that of the
type-based approach as shown in the second row of Table 3.
The reason is that the type-based approach classifies all func-
tions (not only address-taken functions) into different sets
based on the function type. This implies that all functions in
the set are regarded as possible call targets of that function
pointer. For example, as shown in Figure 3a, two functions
ext4_file_read_iter and ext4_file_write_iter share the
same type. As a result, the type-based approach incorrectly
identifies both functions as possible call targets of the function
pointer f_ops→write_iter.

7.2.3 Analysis Time

The total analysis times of each ICS resolution approach
are shown in the last row of Table 3. As expected, the type-
based approach is the fastest, finishing analysis in 1 minute
for both configurations. KIRIN runs slower than the type-
based approach. However, the analysis time of KIRIN (≈1
minute) is comparable to that of the type-based approach for
defconfig, while KIRIN takes 6.6 minutes for allyesconfig.

For a fair comparison with K-Miner, care must be taken
when we collect its indirect call analysis time. For a given
system call, we measured K-Miner’s running time from the
beginning until it produces the SVF point-to result, which
does not include the later bug detection time. To obtain the
total analysis time of K-Miner, we summed up the running
times of all system calls. The result shows that SVF based K-
Miner takes about 9,869 minutes to finish analyzing all system
calls of defconfig, which is much slower than KIRIN’s.

7.3 PeX Result
Table 4 summarizes PeX’s intermediate program analyses.
As allyesconfig subsumes defconfig in static analysis, we
focus on discussing allyesconfig results here. Overall, PeX
finishes all analyses within a few hours and reports about
two thousand groups of warnings, which are classified by
privileged functions. One may implement a multi-threaded
version of PeX to further reduce the analysis time.

Given the small number of input DAC, CAP, and LSM per-
mission checks (3, 3, and 190 each), PeX’s permission check

Table 4: PeX Results.

defconfig allyesconfig
DAC CAP LSM DAC CAP LSM

of input checks 3 3 190 3 3 190
of detected wrappers 11 13 34 19 16 53
of priv func detected 174 869 2030 631 3770 10915
of priv func after filter 116 582 1635 537 3245 10260
of warnings grouped
by priv func 72 210 853 221 850 1017

total time (min) 6 8 11 83 247 169

Table 5: Comparison of PeX warnings when used with differ-
ent indirect call analyses.

defconfig allyesconfig
DAC CAP LSM Bugs DAC CAP LSM Bugs

KIRIN 72 210 853 21 221 850 1017 36
TYPE 218 348 1319 21 164 964 4364 19 (PeX Timeout)
KM 54 196 241 6 na na na na (SVF Timeout)

detection (§6.2) was able to identify 19, 16 and 53 permission
check wrappers. For example, PeX detects wrappers such as
nfs_permission and may_open for DAC; sk_net_capable and
netlink_capable for Capabilities; and key_task_permission

and __ptrace_may_access for LSM.
Table 4 also shows the number of potentially privileged

functions detected by PeX (§6.3) and the number of remain-
ing privileged functions after kernel library filtering (§6.4).
We found that there are typically 1-to-1 or 2-to-1 mapping
between permission checks and privileged functions. Over-
all, PeX reports 221, 850, and 1017 warnings (grouped by
privileged functions) for DAC, CAP, and LSM, respectively.

Table 6 shows the list of 36 bugs we reported, 14 of which
have been confirmed by Linux kernel developers. Kernel de-
velopers ignored some bugs and decided not to make changes
because they believe that the bugs are not exploitable. We
discuss them in detail in §7.5.

Comparison. To highlight the effectiveness of KIRIN,
we repeated the end-to-end PeX analysis using type-based
(PeX+TYPE) and K-Miner-style (PeX+KM) indirect call anal-
yses. Table 5 shows the resulting number of warnings and
detected bugs when the 36 bugs— shown in Table 6—are
used as an oracle for false negative comparison.

For allyesconfig, PeX+TYPE and PeX+KM could not
complete the analysis within the 12-hour experiment limit.
PeX+TYPE generated too many (false) edges in ICFG and
suffered from path explosion during the last phase of PeX
analysis; only 19 bugs were reported before the timeout. In the
mean time, PeX+KM timed out on an earlier pointer analysis
phase, thereby failing to report any bug.

When defconfig is used for comparison, PeX+TYPE and
PeX+KM were able to complete the analysis. In this setting,
PeX+KIRIN (original) and PeX+TYPE both report 21 bugs
(a subset of 36 bugs detected with allyesconfig). Though
PeX+TYPE can capture them all (as type-based analysis is

1214 28th USENIX Security Symposium USENIX Association

sound yet imprecise), it generates up to 3x more warnings,
placing a high burden on the users side for their manual review.
On the other hand, as an unsound solution, PeX+KM produces
a limited number of warnings, resulting in the detection of
only 6 bugs missing the rest.

7.4 Manual Review of Warnings
The manual review process of reported warnings is to deter-
mine whether a privileged function identified by PeX (§6.3)
is a true privileged function or not. As long as one can con-
firm that a function is indeed privileged, reported warnings
regarding its missing, inconsistent, and redundant permission
checks should be true positives from PeX’s point of view.

Though kernel developers with domain knowledge may be
able to discern them with no complication, we (as a third-
party) try to understand whether a given function can be used
to access critical resources (e.g., device, file system, etc.). As
a result, we conservatively reported 36 bug warnings to the
community; we suspect that there could be more true warn-
ings missed due to our lack of domain knowledge. We plan
to release PeX and the list of potential privileged functions,
hoping kernel developers will contribute to identify privileged
functions and fix more true permission errors.

Certain static paths reported by PeX may not be feasible
dynamically during program execution, resulting in false pos-
itives. One may devise a solution solving path constraints as
in symbolic execution engines [16] to address this problem,
PeX currently does not do so.

7.5 Discussion of Security Bug Findings
7.5.1 Missing Check

Figure 2b is one of the confirmed missing LSM checks (LSM-
21). We discuss two more confirmed cases.

The CAP-4 missing check in kernel random device driver
is particularly critical and triggered active discussion in the
kernel developer community (including Torvalds). Random
number generator serves as the foundation of many cryp-
tography libraries including OpenSSL, and thus the quality
of the random number is very critical. This security bug al-
lows attackers to manipulate entropy pool, which can poten-
tially corrupt many applications using cryptography libraries.
Specifically, a problematic path starts from evdev_write and
reaches the privileged function credit_entropy_bits, which
can control the entropy in the entropy pool, while bypassing
the required CAP_SYS_ADMIN permission check.

The LSM-21 missing check in xfs_file_ioctl led to an-
other interesting discussion among kernel developers [9].
With this interface, a userspace program may perform low-
level file system operations, but security_inode_read_link
LSM hook was missing. An adversary could exploit this
interface and gain access to the whole file system that is
not allowed by LSM policy. Interestingly, however, the privi-
leged function performed CAP_SYS_ADMIN Capability permis-

sion check. This created disagreement between kernel devel-
opers: one group argues that the LSM hook is necessary, while
another thinks that CAP_SYS_ADMIN is sufficient. We agree with
the former because LSM is designed to limit the damage of
a compromised process to the system, even the ones of root
user [40]. We believe that LSM permission checks should
still be enforced as always for better security even when the
current user is root.

Kernel developers decided not to fix 9 of our reports be-
cause they believe these bugs are not exploitable. As discussed
earlier, PeX in the current form neither validates if a suspi-
cious static path is dynamically reachable, nor generates a
concrete exploit to demonstrate the security issue; we be-
lieve both are good future works. Nonetheless, we have one
complaint to share.

For the LSM-19 and LSM-20 cases, PeX found
that the LSM hooks security_kernel_read_file and
security_kernel_post_read_file were used to pro-
tect the privileged functions kernel_read_file and
kernel_post_read_file in some program paths. We
reported missing LSM hooks in load_elf_binary and
load_elf_library for these privileged functions. However,
the kernel developers responded that those hooks are used
to monitor loading firmware/kernel modules only (not other
files), and thus no patch is required. Here, the implication we
found is three-fold. First, the permission check names are
ambiguous and misleading. Second, we were not able to find
any documentation of such LSM specification regarding the
protection of firmware/kernel modules. Last, PeX actually
found a counter-example in IMA where the same checks are
indeed used for loading other files (neither firmware nor
kernel modules). Consequently, we suggest changing the
function name and documenting the clear intention to avoid
any confusion and to prevent system administrators from
creating an LSM policy that does not work.

7.5.2 Inconsistent Check

The CAP-13 inconsistent check has been discussed in Fig-
ure 1. One program path in Figures 1a and 1c has two
CAP_SYS_RAWIO checks and one CAP_SYS_ADMIN check, while
another path in Figures 1b and 1c has only one CAP_SYS_ADMIN

check. PeX detects this bug as an inconsistent check, but
from the viewpoint of correction, which requires adding
CAP_SYS_RAWIO, this may also be viewed as a missing check.
There is a separate redundant check error in CAP_SYS_RAWIO.

Upon further investigation, we were interested in learn-
ing the practices in using multiple capabilities together.
scsi_ioctl in Figure 1a checks both CAP_SYS_ADMIN and
CAP_SYS_RAWIO. However, in a different network subsys-
tem (not shown), we found that too_many_unix_fds per-
forms a weaker permission check with the CAP_SYS_ADMIN or
CAP_SYS_RAWIO condition. We believe this OR-based weaker
check is not a good practice because this in effect makes
CAP_SYS_ADMIN too powerful (like root), diminishing the ben-

USENIX Association 28th USENIX Security Symposium 1215

Table 6: Bugs Reported By PeX. Confirmed or Ignored.

Type-# File Function Description Status
DAC-1 fs/btrfs/send.c btrfs_send missing DAC check when traversing a snapshot C
DAC-2 fs/ecryptfs/inode.c ecryptfs_removexattr(),_setxattr() missing xattr_permission() C
DAC-3 fs/ecryptfs/inode.c ecryptfs_listxattr() missing xattr_permission() C
CAP-4 drivers/char/random.c write_pool(), credit_entropy_bits() missing CAP_SYS_ADMIN C
CAP-5 drivers/scsi/sg.c sg_scsi_ioctl() missing CAP_SYS_ADMIN or CAP_RAW_IO I
CAP-6 drivers/block/pktcdvd.c add_store(), remove_store() missing CAP_SYS_ADMIN I
CAP-7 drivers/char/nvram.c nvram_write() missing CAP_SYS_ADMIN I
CAP-8 drivers/firmware/efi/efivars.c efivar_entry_set() missing CAP_SYS_ADMIN C
CAP-9 net/rfkill/core.c rfkill_set_block(), rfkill_fop_write() missing CAP_NET_ADMIN C
CAP-10 block/scsi_ioctl.c mmc_rpmb_ioctl() missing verify_command or CAP_SYS_ADMIN I
CAP-11 drivers/platform/x86/thinkpad_acpi.c acpi_evalf() missing CAP_SYS_ADMIN I
CAP-12 drivers/md/dm.c dm_blk_ioctl() missing CAP_RAW_IO I
CAP-13 block/bsg.c bsg_ioctl inconsistent/missing CAP_SYS_ADMIN C
CAP-14 kernel/sys.c prctl_set_mm_exe_file inconsistent capability check I
CAP-15 kernel/sys.c prctl_set_mm_exe_file inconsistent capability and namespace check I
CAP-16 block/scsi_ioctl.c blk_verify_command redundant check CAP_SYS_RAWIO I
LSM-17 fs/ecryptfs/inode.c ecryptfs_removexattr(), _setxattr() missing security_inode_removexattr() C
LSM-18 mm/mmap.c remap_file_pages missing security_mmap_file() I
LSM-19 fs/binfmt_elf.c load_elf_binary() missing security_kernel_read_file I
LSM-20 fs/binfmt_elf.c load_elf_library() missing security_kernel_read_file I
LSM-21 fs/xfs/xfs_ioctl.c xfs_file_ioctl() missing security_inode_readlink() C
LSM-22 kernel/workqueue.c wq_nice_store() missing security_task_setnice() C
LSM-23 fs/ecryptfs/inode.c ecryptfs_listxattr() missing security_inode_listxattr C
LSM-24 include/linux/sched.h comm_write() missing security_task_prctl() C
LSM-25 fs/binfmt_misc.c load_elf_binary() missing security_bprm_set_creds() I
LSM-26 drivers/android/binder.c binder_set_nice missing security_task_setnice() I
LSM-27 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_bind I
LSM-28 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_listen I
LSM-29 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_bind I
LSM-30 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_listen I
LSM-31 fs/dlm/lowcomms.c sctp_listen_for_all missing security_socket_listen I
LSM-32 net/socket.c kernel_bind missing security_socket_bind I
LSM-33 net/socket.c kernel_listen missing security_socket_listen I
LSM-34 net/socket.c kernel_connect missing security_socket_connect I
LSM-35 fs/ocfs2/cluster/tcp.c o2net_start_listening() redundant security_socket_create C
LSM-36 fs/ocfs2/cluster/tcp.c o2net_open_listening_sock() redundant security_socket_create C

efit of fine-grained capability-based access control.
The CAP-14 and CAP-15 inconsistent error reports were

acknowledged but ignored by the kernel developers for
the following reason. For the same privileged function
prctl_set_mm_exe_file, which is used to set an executable
file, PeX discovered one case requiring CAP_SYS_RESOURCE in
user namespace, and another case checking CAP_SYS_ADMIN in
init namespace. Kernel developers responded that each case
is fine by design for that specific context. PeX does not con-
sider the precise context in which prctl_set_mm_exe_file is
used (similar to aforementioned security_kernel_read_file

used for loading kernel modules), leading to an imprecise
report, but we believe that both CAP-14 and CAP-15 are
worthwhile for further investigation.

7.5.3 Redundant Check

A redundant check occurs in two forms. First, for user-
reachable functions, it happens when a privileged function is
covered by the same permission checks multiple times. We
reported three cases. The CAP-16 case was discussed in Fig-
ures 1a and 1c with two CAP_SYS_RAWIO checks, which was
ignored by kernel developers. On the other hand, for the LSM-
35 and LSM-36 cases found in the ocfs2 file system, the other
kernel developer group confirmed and promised to fix the
bugs. Second, any permission check in kernel-initialization

functions is marked as redundant because the boot thread is
executed under root. PeX detected tens of such cases, but we
did not report them as they are less critical.

8 Related Work

8.1 Hook Verification and Placement

There is a series of studies on checking kernel LSM hooks.
Automated LSM hook verification work [56] verifies the com-
plete mediation of LSM hooks relying manually specified
security rules. While [20] automates LSM hook placements
utilizing manually written specification of security sensitive
operations. However, required manual processes are error-
prone when applied to huge Linux code base. Edwards et
al. [18] proposed to use dynamic analysis to detect LSM
hook inconsistencies. While PeX is using static analysis, can
achieve better code coverage.

AutoISES [44] is the most closely related work to PeX.
AutoISES regards data structures, such as the structure fields
and global variables, as privileged, applies static analysis to
extract security check usage patterns, and validates the pro-
tections to these data structures. The difference between Au-
toISES and PeX is three-fold. First, PeX is privileged function
oriented while AutoISES is more like data structure oriented.

1216 28th USENIX Security Symposium USENIX Association

Second, AutoISES is designed for LSM only, whose permis-
sion checks (hooks) are clearly defined, and therefore it is
not applicable to DAC and Capabilities due to their various
permission check wrappers. In contrast, PeX works for all
three types of permission checks. Third, AutoISES uses type-
based pointer analysis to resolve indirect calls, while PeX
uses KIRIN to resolve indirect calls in a more precise manner.

There are also works [21, 32, 33] that extend authorization
hook analysis to user space programs, including X server and
postgresql. However, their approaches canot be applied to the
huge kernel scale. Moreover, all of above works either do not
analyze indirect calls at all, or apply over approximate indirect
call analysis techniques, such as type-based approach or field
insensitive approach. To the contrary, PeX uses KIRIN, a
precise and scalable indirect call analysis technique, which
can also benefit these works by finding more accurate indirect
call targets.

8.2 Kernel Static Analysis Tools

Coccinelle [34] is a tool that detects a bug of pre-defined
pattern based on text pattern matching on the symbolic rep-
resentation of bug cases. This is basically intra-procedural
analysis. Building upon Coccinelle, Wang et al. proposed
another pattern matching based static tool which detects po-
tential double-fetch vulnerabilities in the Linux kernel [48].

Sparse [11] is designed to detect the problematic use of
pointers belonging to different address space (kernel space
or userspace). Later, Sparse was used to build a static anal-
ysis framework called Smatch [10] for detecting different
sorts of kernel bugs. However, Smatch is also based on intra-
procedural analysis, thus it can only find shallow bugs.

Double-Fetch [52], Check-it-again [49] focus on detect-
ing time of check to time of use (TOCTTOU) bugs. Dr.
Checker [29] is designed for analyzing Linux kernel drivers.
It adopts the modular design, allowing new bug detectors to
be plug-in easily. KINT [50] applies taint analysis to detect
integer errors in Linux kernel while UniSan [28] leverages
the same analysis to detect uninitialized kernel memory leak-
ages to the userspace. Chucky [53] also uses a taint analysis
to analyze missing checks in different sources in userspace
programs and Linux kernel. However, Chucky can handle
only kernel file system code due to the lack of pointer analy-
sis. Note that to resolve indirect call targets, all these works
leverage a type-based approach, which is not as accurate as
KIRIN, thus suffering from false positives.

MECA [54] is an annotation based static analysis frame-
work, and it can detect security rule violations in Linux.
APISan [55] aims at finding API misuse. It figures out the
right API usage through the analysis of existing code base and
performs intra-procedural analysis to find bugs. To achieve the
former, APISan relies on relaxed symbolic execution which
is complementary to the techniques used in PeX.

8.3 Permission Check Analysis Tools
Engler et al. propose to use programmer beliefs to automati-
cally extract checking information from the source code. They
apply the checking information to detect missing checks [19].
RoleCast [42] leverages software engineering patterns to de-
tect missing security checks in web applications. TESLA [14]
implements temporal assertions based on LLVM instrument,
in which the FreeBSD hooks are checked by inserted asser-
tions dynamically. Different from TESLA, PeX uses KIRIN
to analyze jump targets of all kernel function pointers stat-
ically, achieving better resolution rate and code coverage.
JIGSAW [47] is a system that can automatically derive pro-
grammer expectations on resources access and enforce it on
the deployment. It is designed for analyzing userspace pro-
grams, cannot be applied to kernel directly.

JUXTA [30] is a tool designed for detecting semantic
bugs in filesystem while PScout [15] is a static analysis
tool for validating Android permission checking mechanisms.
Kratos [39] is a static security check framework designed for
the Android framework. It builds a call graph using LLVM
and tries to discover inconsistent check paths in the frame-
work. However, Android has well-documented permission
check specifications [2], i.e., privileged functions and the per-
mission required for them are both clearly defined. In contrast,
the Linux kernel has no such documentation, which makes
it impossible to apply PScout and Kratos to Linux kernel
permission checks.

9 Conclusion
This paper presents PeX, a static permission check analysis
framework for Linux kernel, which can automatically infer
mappings between permission checks and privileged func-
tions as well as detect missing, inconsistent, and redundant
permission checks for any privileged functions. PeX relies on
KIRIN, our novel call graph analysis based on kernel inter-
faces, to resolve indirect calls precisely and efficiently.

We evaluated both KIRIN and PeX for the latest stable
Linux kernel v4.18.5. The experiments show that KIRIN can
resolve 86%-92% of all indirect callsites in the kernel within
7 minutes. In particular, PeX reported 36 permission check
bugs of DAC, Capabilities, and LSM, 14 of which have al-
ready been confirmed by the kernel developers. PeX source
code is available at https://github.com/lzto/pex, along with
the identified mapping between permission checks and privi-
leged functions. We believe that such a mapping allows kernel
developers to validate their code with PeX and encourages
them to contribute to PeX by refining the mapping with their
domain knowledge.

Acknowledgments
The authors would like to thank anonymous reviewers for their
insightful comments. This research is partially supported by
the NSF under Grant No. CSR-1814430 and CSR-1750503.

USENIX Association 28th USENIX Security Symposium 1217

References
[1] alse boundaries and arbitrary code execution.

https://forums.grsecurity.net/viewtopic.
php?f=7&t=2522.

[2] Android Permission Overview. https:
//developer.android.com/guide/topics/
permissions/overview.

[3] Apparmor. https://gitlab.com/apparmor/
apparmor/wikis/home/.

[4] capabilities - overview of linux capabilities.
http://man7.org/linux/man-pages/man7/
capabilities.7.html.

[5] CAP_SYS_ADMIN: the new root. https://lwn.net/
Articles/486306/.

[6] K-miner: Data-flow analysis for the linux kernel. https:
//github.com/ssl-tud/k-miner.

[7] Locationmanager. https://developer.
android.com/reference/android/location/
LocationManager#getLastKnownLocation(java.
lang.String).

[8] Mandatory access control. https://en.wikipedia.
org/wiki/Mandatory_access_control.

[9] Re: Leaking path in xfs’s ioctl interface(missing lsm
check) by stephen smalley. https://lkml.org/lkml/
2018/9/26/668.

[10] Smatch: pluggable static analysis for c. https://lwn.
net/Articles/691882/.

[11] Sparse. https://www.kernel.org/doc/html/v4.
14/dev-tools/sparse.html.

[12] Virtual file system. https://en.wikipedia.org/
wiki/Virtual_file_system.

[13] Whole Program LLVM: a wrapper script to build whole-
program llvm bitcode files. https://github.com/
travitch/whole-program-llvm.

[14] Jonathan Anderson, Robert NM Watson, David Chis-
nall, Khilan Gudka, Ilias Marinos, and Brooks Davis.
Tesla: temporally enhanced system logic assertions. In
Proceedings of the Ninth European Conference on Com-
puter Systems, page 19. ACM, 2014.

[15] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. Pscout: analyzing the android permission
specification. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
217–228. ACM, 2012.

[16] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[17] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa.
Demand-driven computation of interprocedural data
flow. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 37–48. ACM, 1995.

[18] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. Run-
time verification of authorization hook placement for
the linux security modules framework. In Proceedings
of the 9th ACM Conference on Computer and Commu-
nications Security, pages 225–234. ACM, 2002.

[19] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behavior:
A general approach to inferring errors in systems code.
In ACM SIGOPS Operating Systems Review, volume 35,
pages 57–72. ACM, 2001.

[20] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Au-
tomatic placement of authorization hooks in the linux
security modules framework. In Proceedings of the 12th
ACM conference on Computer and communications se-
curity, pages 330–339. ACM, 2005.

[21] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. To-
wards automated authorization policy enforcement. In
Proceedings of Second Annual Security Enhanced Linux
Symposium. Citeseer, 2006.

[22] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-
Reza Sadeghi. K-miner: Uncovering memory corruption
in linux. In Proceedings of the 2018 Annual Network
and Distributed System Security Symposium (NDSS),
San Diego, CA, 2018.

[23] Ben Hardekopf and Calvin Lin. The ant and the
grasshopper: fast and accurate pointer analysis for mil-
lions of lines of code. In ACM SIGPLAN Notices, vol-
ume 42, pages 290–299. ACM, 2007.

[24] Ben Hardekopf and Calvin Lin. Exploiting pointer and
location equivalence to optimize pointer analysis. pages
265–280, 2007.

[25] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer
analysis for millions of lines of code. In Proceedings
of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 289–298.
IEEE Computer Society, 2011.

[26] Bogdan Korel and Juergen Rilling. Program slicing
in understanding of large programs. In Program Com-
prehension, 1998. IWPC’98. Proceedings., 6th Interna-
tional Workshop on, pages 145–152. IEEE, 1998.

1218 28th USENIX Security Symposium USENIX Association

https://forums.grsecurity.net/viewtopic.php?f=7&t=2522
https://forums.grsecurity.net/viewtopic.php?f=7&t=2522
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://gitlab.com/apparmor/apparmor/wikis/home/
https://gitlab.com/apparmor/apparmor/wikis/home/
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://lwn.net/Articles/486306/
https://lwn.net/Articles/486306/
https://github.com/ssl-tud/k-miner
https://github.com/ssl-tud/k-miner
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Mandatory_access_control
https://lkml.org/lkml/2018/9/26/668
https://lkml.org/lkml/2018/9/26/668
https://lwn.net/Articles/691882/
https://lwn.net/Articles/691882/
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://en.wikipedia.org/wiki/Virtual_file_system
https://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

[27] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, pages 75–, 2004.

[28] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke
Lee. Unisan: Proactive kernel memory initialization to
eliminate data leakages. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 920–932. ACM, 2016.

[29] Aravind Machiry, Chad Spensky, Jake Corina, Nick
Stephens, Christopher Kruegel, and Giovanni Vigna. Dr.
checker: A soundy analysis for linux kernel drivers. In
26th {USENIX} Security Symposium ({USENIX} Secu-
rity 17), pages 1007–1024. USENIX Association, 2017.

[30] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee,
Chengyu Song, and Taesoo Kim. Cross-checking se-
mantic correctness: The case of finding file system bugs.
In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 361–377. ACM, 2015.

[31] S.S. Muchnick. Advanced Compiler Design Implemen-
tation. Morgan Kaufmann Publishers, 1997.

[32] Divya Muthukumaran, Trent Jaeger, and Vinod Ganapa-
thy. Leveraging choice to automate authorization hook
placement. In Proceedings of the 2012 ACM confer-
ence on Computer and communications security, pages
145–156. ACM, 2012.

[33] Divya Muthukumaran, Nirupama Talele, Trent Jaeger,
and Gang Tan. Producing hook placements to enforce
expected access control policies. In International Sym-
posium on Engineering Secure Software and Systems,
pages 178–195. Springer, 2015.

[34] Yoann Padioleau, Julia Lawall, René Rydhof Hansen,
and Gilles Muller. Documenting and automating collat-
eral evolutions in linux device drivers. In Acm sigops
operating systems review, volume 42, pages 247–260.
ACM, 2008.

[35] Fernando Magno Quintao Pereira and Daniel Berlin.
Wave propagation and deep propagation for pointer
analysis. In Code Generation and Optimization, 2009.
CGO 2009. International Symposium on, pages 126–
135. IEEE, 2009.

[36] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and
Han Ratul Mahajan. Trusted computer system eval-
uation criteria. In National Computer Security Center.
Citeseer, 1985.

[37] Sanjay Rawat, Laurent Mounier, and Marie-Laure Potet.
Listt: An investigation into unsound-incomplete yet
practical result yielding static taintflow analysis. In
Availability, Reliability and Security (ARES), 2014 Ninth
International Conference on, pages 498–505. IEEE,
2014.

[38] Ravi S Sandhu and Pierangela Samarati. Access control:
principle and practice. IEEE communications magazine,
32(9):40–48, 1994.

[39] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao,
Jason Ott, and Zhiyun Qian. Kratos: Discovering in-
consistent security policy enforcement in the android
framework. In NDSS, 2016.

[40] Stephen Smalley and Robert Craig. Security enhanced
(se) android: Bringing flexible mac to android. In NDSS,
volume 310, pages 20–38, 2013.

[41] Stephen Smalley, Chris Vance, and Wayne Salamon. Im-
plementing selinux as a linux security module. NAI
Labs Report, 1(43):139, 2001.

[42] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov.
Rolecast: finding missing security checks when you do
not know what checks are. In ACM SIGPLAN Notices,
volume 46, pages 1069–1084. ACM, 2011.

[43] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the 25th
International Conference on Compiler Construction,
pages 265–266. ACM, 2016.

[44] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and
Yuanyuan Zhou. Autoises: Automatically inferring se-
curity specification and detecting violations. In USENIX
Security Symposium, pages 379–394, 2008.

[45] Frank Tip. A survey of program slicing techniques. Cen-
trum voor Wiskunde en Informatica, 1994.

[46] National Computer Security Center (US). A guide to
understanding discretionary access control in trusted
systems, volume 3. National Computer Security Center,
1987.

[47] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer,
and Trent Jaeger. Jigsaw: Protecting resource access by
inferring programmer expectations. In USENIX Security
Symposium, pages 973–988, 2014.

[48] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve
Dodier-Lazaro. How double-fetch situations turn into
double-fetch vulnerabilities: A study of double fetches
in the linux kernel. In USENIX Security Symposium,
2017.

USENIX Association 28th USENIX Security Symposium 1219

[49] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check
it again: Detecting lacking-recheck bugs in os kernels.
In Proceedings of ACM conference on Computer and
communications security. ACM, 2018.

[50] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M Frans Kaashoek. Improving integer secu-
rity for systems with kint. In OSDI, volume 12, pages
163–177, 2012.

[51] Chris Wright, Crispin Cowan, James Morris, Stephen
Smalley, and Greg Kroah-Hartman. Linux security mod-
ule framework. In Ottawa Linux Symposium, volume
8032, pages 6–16, 2002.

[52] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael
Backes, and Taesoo Kim. Precise and scalable detection
of double-fetch bugs in os kernels. 2018.

[53] Fabian Yamaguchi, Christian Wressnegger, Hugo Gas-
con, and Konrad Rieck. Chucky: Exposing missing
checks in source code for vulnerability discovery. In

Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 499–510.
ACM, 2013.

[54] Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson
Engler. Meca: an extensible, expressive system and
language for statically checking security properties. In
Proceedings of the 10th ACM conference on Computer
and communications security, pages 321–334. ACM,
2003.

[55] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Tae-
soo Kim, and Mayur Naik. Apisan: Sanitizing api usages
through semantic cross-checking. In USENIX Security
Symposium, pages 363–378, 2016.

[56] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Us-
ing cqual for static analysis of authorization hook place-
ment. In USENIX Security Symposium, pages 33–48,

2002.

1220 28th USENIX Security Symposium USENIX Association

ERIM: Secure, Efficient In-process Isolation with Protection Keys (MPK)

Anjo Vahldiek-Oberwagner Eslam Elnikety Nuno O. Duarte
Michael Sammler Peter Druschel Deepak Garg

Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus

Abstract
Isolating sensitive state and data can increase the security
and robustness of many applications. Examples include pro-
tecting cryptographic keys against exploits like OpenSSL’s
Heartbleed bug or protecting a language runtime from na-
tive libraries written in unsafe languages. When runtime
references across isolation boundaries occur relatively in-
frequently, then conventional page-based hardware isola-
tion can be used, because the cost of kernel- or hypervisor-
mediated domain switching is tolerable. However, some
applications, such as the isolation of cryptographic session
keys in network-facing services, require very frequent do-
main switching. In such applications, the overhead of kernel-
or hypervisor-mediated domain switching is prohibitive.

In this paper, we present ERIM, a novel technique that
provides hardware-enforced isolation with low overhead on
x86 CPUs, even at high switching rates (ERIM’s measured
overhead is less than 1% for 100,000 switches per second).
The key idea is to combine protection keys (MPKs), a feature
recently added to x86 that allows protection domain switches
in userspace, with binary inspection to prevent circumven-
tion. We show that ERIM can be applied with little effort
to new and existing applications, doesn’t require compiler
changes, can run on a stock Linux kernel, and has low run-
time overhead even at high domain switching rates.

1 Introduction

It is good software security practice to partition sensitive data
and code into isolated components, thereby limiting the ef-
fects of bugs and vulnerabilities in a component to the con-
fidentiality and integrity of that component’s data. For in-
stance, isolating cryptographic keys in a network-facing ser-
vice can thwart vulnerabilities like the OpenSSL Heartbleed
bug [37]; isolating a managed language’s runtime can pro-
tect its security invariants from bugs and vulnerabilities in
co-linked native libraries; and, isolating jump tables can pre-
vent attacks on an application’s control flow.

Isolation prevents an untrusted component from directly
accessing the private memory of other components. Broadly
speaking, isolation can be enforced using one of two ap-
proaches. First, in software fault isolation (SFI) [47],
one instruments the code of untrusted components with
bounds checks on indirect memory accesses, to prevent ac-
cess to other components’ memory. The bounds checks
can be added by the compiler or through binary rewrit-
ing. Bounds checks impose overhead on the execution of
all untrusted components; additional overhead is required to

prevent control-flow hijacks [30], which could circumvent
the bounds checks. On x86-64, pointer masking-based SFI
techniques like Native Client [42] incur overheads of up to
42% on the execution of untrusted code [30]. Even with
hardware-supported bounds checks, like those supported by
the Intel MPX ISA extension [26], the overhead is up to 30%,
as shown in by Koning et al. [30] and later in Section 6.5.

Another approach is to use hardware page protection for
memory isolation [9, 10, 13, 32, 33, 34]. Here, access checks
are performed in hardware as part of the address translation
with no additional overhead on execution within a compo-
nent. However, transferring control between components
requires a switch to kernel or hypervisor mode in order to
change the (extended) page table base. Recent work such as
Wedge, Shreds, SeCage, SMVs, and light-weight contexts
(lwCs) [10, 13, 24, 33, 34] have reduced the overhead of
such switching, but the cost is still substantial. For instance,
Litton et al. [33] report a switching cost of about 1us per
switch for lwCs, which use kernel-managed page tables for
in-process isolation. This amounts to an overhead of nearly
10% for an application that switches 100,000 times a second
and, in our experiments, an overhead of up to 65% on the
throughput of the web server NGINX when lwCs are used
to isolate session keys (Section 6.5). Techniques based on
Intel VT-x extended page tables with VMFUNC [34] have
less overhead, but the overhead is still high—up to 14.4% on
NGINX’s throughput in our experiments (Section 6.5).

In this paper, we present ERIM, the first isolation tech-
nique for x86 that combines near-zero overhead on in-
component execution with very low cost switching among
components. ERIM relies on a recent x86 ISA extension
called protection keys (MPK) [28]. With MPK, each virtual
page can be tagged with a 4-bit domain id, thus partitioning
a process’s address space into up to 16 disjoint domains. A
special register, PKRU, that is local to each logical core de-
termines which domains the core can read or write. Switch-
ing domain permissions requires writing the PKRU register
in userspace, which takes only 11–260 cycles on current In-
tel CPUs, corresponding to an overhead of 0.07% to 1.0%
per 100,000 switches/s on a 2.6 GHz CPU. This amounts to
an overhead of at most 4.8% on the throughput of NGINX
when isolating all session keys, which is up to 6.3x, 13.5x
and 3x lower than the overhead of similar protection using
SFI (with Intel MPX), lwCs and Intel VT-x, respectively.

However, MPK by itself does not provide strong security
because a compromised or malicious component can sim-

USENIX Association 28th USENIX Security Symposium 1221

ply write to the PKRU register and grant itself permission
to access any component. ERIM relies on binary inspection

to ensure that all occurrences of instructions that update the
PKRU in the binary are safe, i.e., they cannot be exploited
to gain unauthorized access. With this, ERIM provides iso-
lation without requiring control-flow integrity in untrusted
code, and therefore avoids the runtime overhead of ensuring
control-flow integrity in unsafe languages.

While ERIM’s binary inspection enforces the safety of
its MPK-based isolation, it creates a potential usability is-
sue: What to do if a binary has unintentional occurrences
of PKRU-updating instructions? Since x86 does not require
instruction alignment, such occurrences could arise within a
longer instruction, or spanning the bytes of two or more adja-
cent instructions. Any such sequence could be exploited by a
control-flow hijack attack and must be rejected by the binary
inspection mechanism. To handle such cases, we describe
a novel procedure to rewrite any instruction sequence con-
taining an unaligned PKRU-updating instruction to a func-
tionally equivalent sequence without the instruction. This
rewriting procedure can be integrated with a compiler or our
binary inspection.

ERIM is the first technique that enables efficient isolation
in applications that require very high domain switching rates
(~105/s or more) and also spend significant time executing
inside untrusted components. We evaluate our ERIM proto-
type on three such applications: 1) Isolating the frequently
accessed session keys in a web server (NGINX), 2) isolat-
ing a managed language runtime from native libraries written
in unsafe languages, and 3) efficiently isolating the safe re-
gion in code-pointer integrity [31]. In all cases, we observe
switching rates of order 105 or more per second per core.
ERIM provides strong, hardware-based isolation in all these
cases, with overheads that are considerably lower than those
of existing techniques. Moreover, ERIM does not require
compiler support and can run on stock Linux.

In summary, this paper makes the following contributions.
1) We present ERIM, an efficient memory isolation tech-
nique that relies on a combination of Intel’s MPK ISA ex-
tension and binary inspection, but does not require or assume
control-flow integrity. 2) We describe a complete rewriting
procedure to ensure binaries cannot be exploited to circum-
vent ERIM. 3) We show that ERIM can protect applications
with high inter-component switching rates with low over-
head, unlike techniques based on hardware (extended) page
tables and SFI (even with hardware support).

2 Background and related work

In this section, we survey background and related work. En-
forcing relevant security or correctness invariants while trust-
ing only a small portion of an application’s code generally
requires data encapsulation. Encapsulation itself requires
isolating sensitive data so it cannot be accessed by untrusted
code, and facilitating switches to trusted code that has access

to the isolated state. We survey techniques for isolation and
switching provided by operating systems, hypervisors, com-
pilers, language runtimes, and binary rewriting, as well as
other work that uses MPK for memory isolation.

OS-based techniques Isolation can be easily achieved by
placing application components in separate OS processes.
However, this method has high overhead even with a mod-
erate rate of cross-component invocation. Novel kernel
abstractions like light-weight contexts (lwCs) [33], secure
memory views (SMVs) [24] and nested kernels [14], com-
bined with additional compiler support as in Shreds [13] or
runtime analysis tools as in Wedge [10], have reduced the
cost of such data encapsulation to the point where isolating
long-term signing keys in a web server is feasible with little
overhead [33]. Settings that require more frequent switches
like isolating session keys or the safe region in CPI [31], how-
ever, remain beyond the reach of OS-based techniques.

Mimosa [20] relies on the Intel TSX hardware transac-
tional memory support to protect private cryptographic keys
from software vulnerabilities and cold-boot attacks. Mi-
mosa restricts cleartext keys to exist only within uncom-
mitted transactions, and TSX ensures that an uncommitted
transaction’s data is never written to the DRAM or other
cores. Unlike ERIM, which is a general-purpose isolation
technique, Mimosa specifically targets cryptographic keys,
and is constrained by hardware capacity limits of TSX.

Virtualization-based techniques In-process data encap-
sulation can be provided by a hypervisor. Dune [9] en-
ables user-level processes to implement isolated compart-
ments by leveraging the Intel VT-x x86 virtualization ISA
extensions [28]. Koning et al. [30] sketch how to use the VT-
x VMFUNC instruction to switch extended page tables in
order to achieve in-process data isolation. SeCage [34] sim-
ilarly relies on VMFUNC to switch between isolated com-
partments. SeCage also provides static and dynamic pro-
gram analysis based techniques to automatically partition
monolithic software into compartments, which is orthogo-
nal to our work. TrustVisor [36] uses a thin hypervisor and
nested page tables to support isolation and additionally sup-
ports code attestation. SIM [44] relies on VT-x to isolate
a security monitor within an untrusted guest VM, where it
can access guest memory with native speed. In addition to
the overhead of the VMFUNC calls during switching, these
techniques incur overheads on TLB misses and syscalls due
to the use of extended page tables and hypercalls, respec-
tively. Overall, the overheads of virtualization-based encap-
sulation are much higher than those of ERIM.

Nexen [45] decomposes the Xen hypervisor into isolated
components and a security monitor, using page-based pro-
tection within the hypervisor’s privilege ring 0. Control of
the MMU is restricted to the monitor; compartments are
de-privileged by scanning and removing exploitable MMU-
modifying instructions. The goal of Nexen is quite different

1222 28th USENIX Security Symposium USENIX Association

from ERIM’s: Nexen aims to isolate co-hosted VMs and the
hypervisor’s components from each other, while ERIM iso-
lates components of a user process. Like ERIM Nexen scans
for and removes exploitable instructions.

Language and runtime techniques Memory isolation can
be provided as part of a memory-safe programming lan-
guage. This encapsulation is efficient if most of the checks
can be done statically. However, such isolation is language-
specific, relies on the compiler and runtime, and can be un-
dermined by co-linked libraries written in unsafe languages.

Software fault isolation (SFI) [47] provides memory iso-
lation in unsafe languages using runtime memory access
checks inserted by the compiler or by rewriting binaries. SFI
imposes a continuous overhead on the execution of untrusted
code. Additionally, SFI by itself does not protect against at-
tacks that hijack control flow (to possibly bypass the mem-
ory access checks). To get strong security, SFI must be cou-
pled with an additional technique for control-flow integrity
(CFI) [6]. However, existing CFI solutions have nontrivial
overhead. For example, code-pointer integrity (CPI), one of
the cheapest reasonably strong CFI defenses, has a runtime
overhead of at least 15% on the throughput of a moderately
performant web server (Apache) [31, Section 5.3]. In con-
trast, ERIM does not rely on CFI for data encapsulation and
has much lower overhead. Concretely, we show in Section 6
that ERIM’s overhead on the throughput of a much more per-
formant web server (NGINX) is no more than 5%.

The Intel MPX ISA extension [28] provides architectural
support for bounds checking needed by SFI. A compiler can
use up to four bounds registers, and each register can store a
pair of 64-bit starting and ending addresses. Specialized in-
structions check a given address and raise an exception if the
bounds are violated. However, even with MPX support, the
overhead of bounds checks is of the order of tens of percent
points in many applications (Section 6.5 and [12, 30, 40]).

Hardware-based trusted execution environments Intel’s
SGX [27] and ARM’s TrustZone [8] ISA extensions al-
low (components of) applications to execute with hardware-
enforced isolation. JITGuard [17], for instance, uses SGX to
protect the internal data structures of a just-in-time compiler
from untrusted code, thus preventing code-injection attacks.
While SGX and TrustZone can isolate data even from the
operating system, switching overheads are similar to other
hardware-based isolation mechanisms [30].

IMIX [18] and MicroStach [38] propose minimal exten-
sions to the x86 ISA, adding load and store instructions to
access secrets in a safe region. The extended ISA can provide
data encapsulation. Both systems provide compilers that au-
tomatically partition secrets. However, for data encapsula-
tion in the face of control-flow hijack attacks, both systems
require CFI. As mentioned, CFI techniques have nontrivial
overhead. ERIM, on the other hand, provides strong isola-
tion without relying on CFI and has lower overhead.

ASLR Address space layout randomization (ASLR) is
widely used to mitigate code-reuse exploits such as those
based on buffer overflow attacks [43, 23]. ASLR has also
been used for data encapsulation by randomizing data lay-
out. For example, as one of the isolation techniques used in
CPI [31, 46], a region of sensitive data is allocated at a ran-
dom address within the 48-bit x86-64 address space and its
base address is stored in a segment descriptor. All pointers
stored in memory are offsets into the region and do not reveal
its actual address. However, all forms of ASLR are vulnera-
ble to attacks like thread spraying [43, 25, 16, 19, 39]. Con-
sequently, ASLR is not viable for strong memory isolation,
despite proposals such as [35] to harden it.

ARM memory domains ARM memory domains [7] are
similar to Intel MPK, the x86 feature that ERIM relies on.
However, unlike in MPK, changing domains is a kernel op-
eration in ARM. Therefore, unlike MPK, ARM’s memory
domains do not support low-cost user-mode switching.

MPK-based techniques Koning et al. [30] present Mem-
Sentry, a general framework for data encapsulation, imple-
mented as a pass in the LLVM compiler toolchain. They
instantiate the framework with several different memory iso-
lation techniques, including many described above and one
based on MPK domains. However, MemSentry’s MPK in-
stance is secure only with a separate defense against control-
flow hijack/code-reuse attacks to prevent adversarial misuse
of PKRU-updating instructions in the binary. Such defenses
have significant overhead of their own. As a result, the over-
all overhead of MemSentry’s MPK instance is significantly
higher than that of ERIM, which does not rely on a defense
against control-flow hijacks.

In concurrent work [22], Hedayati et al. describe how to
isolate userspace libraries using VMFUNC or Intel MPK.
The MPK-based method is similar to ERIM, but does not ad-
dress the challenge of ensuring that there are no exploitable
occurrences of PKRU-modifying instructions. Rewriting bi-
naries in this manner is a key contribution of our work (Sec-
tion 4). Finally, Hedayati et al. rely on kernel changes while
ERIM can run safely on a stock Linux kernel.

libmpk [41] virtualizes MPK memory domains beyond the
16 supported in hardware. It also addresses potential security
issues in the API of Linux’s MPK support. libmpk addresses
concerns orthogonal to ERIM because neither limitation is
relevant to ERIM’s use of MPK. libmpk could be combined
with ERIM in applications that require more than 16 compo-
nents, but the integration remains as future work.

In recent work, Burow et al. [11] survey implementation
techniques for shadow stacks. In particular, they examine the
use of MPK for protecting the integrity of shadow stacks.
Burow et al.’s measurements of MPK overheads (Fig. 10
in [11]) are consistent with ours. Their use of MPK could
be a specific use-case for ERIM, which is a more general
framework for memory isolation.

USENIX Association 28th USENIX Security Symposium 1223

3 Design

Goals ERIM enables efficient data isolation within a user-
space process. Like prior work, it enables a (trusted) appli-
cation component to isolate its sensitive data from untrusted
components. Unlike prior work, ERIM supports such iso-
lation with low overhead even at high switching rates be-
tween components without requiring control-flow integrity.
In the following, we focus on the case of two components
that are isolated from each other within a single-threaded
process. Later, we describe generalizations to multi-threaded
processes, more than two components per process, and read-
only sharing among components.

We use the letter T to denote a trusted component and U
to denote the remaining, untrusted application component.
ERIM’s key primitive is memory isolation: it reserves a re-
gion of the address space and makes it accessible exclusively
from the trusted component T. This reserved region is de-
noted MT and can be used by T to store sensitive data. The
rest of the address space, denoted MU, holds the applica-
tion’s regular heap and stack and is accessible from both U
and T. ERIM enforces the following invariants:
(1) While control is in U, access to MT remains disabled.
(2) Access to MT is enabled atomically with a control trans-
fer to a designated entry point in T and disabled when T
transfers control back to U.
The first invariant provides isolation of MT from U, while the
second invariant prevents U from confusing T into accessing
MT improperly by jumping into the middle of MT’s code.

Background: Intel MPK To realize its goals, ERIM uses
the recent MPK extension to the x86 ISA [28]. With MPK,
each virtual page of a process can be associated with one of
16 protection keys, thus partitioning the address space into
up to 16 domains. A new register, PKRU, that is local to
each logical core, determines the current access permissions
(read, write, neither or both) on each domain for the code
running on that core. Access checks against the PKRU are
implemented in hardware and impose no overhead on pro-
gram execution.

Changing access privileges requires writing new permis-
sions to the PKRU register with a user-mode instruction,
WRPKRU. This instruction is relatively fast (11–260 cycles
on current Intel CPUs), does not require a syscall, changes
to page tables, a TLB flush, or inter-core synchronization.

The PKRU register can also be modified by the XRSTOR
instruction by setting a specific bit in the eax register prior
to the instruction (XRSTOR is used to restore the CPU’s
previously-saved extended state during a context switch).

For strong security, ERIM must ensure that untrusted code
cannot exploit WRPKRU or XRSTOR instructions in exe-
cutable pages to elevate privileges. To this end, ERIM com-
bines MPK with binary inspection to ensure that all exe-
cutable occurrences of WRPKRU or XRSTOR are safe, i.e.,
they cannot be exploited to improperly elevate privilege.

Background: Linux support for MPK As of version 4.6,
the mainstream Linux kernel supports MPK. Page-table en-
tries are tagged with MPK domains, there are additional
syscall options to associate pages with specific domains,
and the PKRU register is saved and restored during context
switches. Since hardware PKRU checks are disabled in ker-
nel mode, the kernel checks PKRU permissions explicitly
before dereferencing any userspace pointer. To avoid execut-
ing a signal handler with inappropriate privileges, the kernel
updates the PKRU register to its initial set of privileges (ac-
cess only to domain 0) before delivering a signal to a process.

3.1 High-level design overview

ERIM can be configured to provide either complete isola-
tion of MT from U (confidentiality and integrity), or only
write protection (only integrity). We describe the design for
complete isolation first. Section 3.7 explains a slight design
re-configuration that provides only write protection.

ERIM’s isolation mechanism is conceptually simple: It
maps T’s reserved memory, MT, and the application’s gen-
eral memory, MU, to two different MPK domains. It man-
ages MPK permissions (the PKRU registers) to ensure that
MU is always accessible, while only MU is accessible when
control is in U. It allows U to securely transfer control to T
and back via call gates. A call gate enables access to MT us-
ing the WRPKRU instruction and immediately transfers con-
trol to a specified entry point of T, which may be an explicit
or inlined function. When T is done executing, the call gate
disables access to MT and returns control to U. This enforces
ERIM’s two invariants (1) and (2) from Section 3. Call gates
operate entirely in user-mode (they don’t use syscalls) and
are described in Section 3.3.

Preventing exploitation A key difficulty in ERIM’s de-
sign is preventing the untrusted U from exploiting occur-
rences of the WRPKRU or XRSTOR instruction sequence
on executable pages to elevate its privileges. For instance,
if the sequence appeared at any byte address on an exe-
cutable page, it could be exploited using control-flow hijack
attacks. To prevent such exploits, ERIM relies on binary

inspection to enforce the invariant that only safe WRPKRU
and XRSTOR occurrences appear on executable pages.

A WRPKRU occurrence is safe if it is immediately fol-
lowed by one of the following: (A) a pre-designated entry
point of T, or (B) a specific sequence of instructions that
checks that the permissions set by WRPKRU do not include
access to MT and terminates the program otherwise. A safe
WRPKRU occurrence cannot be exploited to access MT in-
appropriately. If the occurrence satisfies (A), then it does not
give control to U at all; instead, it enters T at a designated
entry point. If the occurrence satisfies (B), then it would ter-
minate the program immediately when exploited to enable
access to MT.

A XRSTOR is safe if it is immediately followed by a spe-
cific sequence of instructions to check that the eax bit that

1224 28th USENIX Security Symposium USENIX Association

causes XRSTOR to load the PKRU register is not set. Such
a XRSTOR cannot be used to change privilege and continue
execution.1

ERIM’s call gates use only safe WRPKRU occurrences
(and do not use XRSTOR at all). So, they pass the binary
inspection. Section 3.4 describes ERIM’s binary inspection.

Creating safe binaries An important question is how to
construct binaries that do not have unsafe WRPKRUs and
XRSTORs. On x86, these instructions may arise inadver-
tently spanning the bytes of adjacent instructions or as a sub-
sequence in a longer instruction. To eliminate such inad-
vertent occurrences, we describe a binary rewriting mecha-
nism that rewrites any sequence of instructions containing
a WRPKRU or XRSTOR to a functionally equivalent se-
quence without any WRPKRUs and XRSTORs. The mech-
anism can be deployed as a compiler pass or integrated with
our binary inspection, as explained in Section 4.

3.2 Threat model

ERIM makes no assumptions about the untrusted component
(U) of an application. U may behave arbitrarily and may
contain memory corruption and control-flow hijack vulnera-
bilities that may be exploited during its execution.

However, ERIM assumes that the trusted component T’s
binary does not have such vulnerabilities and does not com-
promise sensitive data through explicit information leaks, by
calling back into U while access to MT is enabled, or by map-
ping executable pages with unsafe/exploitable occurrences
of the WRPKRU or XRSTOR instruction.

The hardware, the OS kernel, and a small library added
by ERIM to each process that uses ERIM are trusted to
be secure. We also assume that the kernel enforces stan-
dard DEP—an executable page must not be simultaneously
mapped with write permissions. ERIM relies on a list of le-
gitimate entry points into T provided either by the program-
mer or the compiler, and this list is assumed to be correct
(see Section 3.4). The OS’s dynamic program loader/linker
is trusted to invoke ERIM’s initialization function before any
other code in a new process.

Side-channel and rowhammer attacks, and microachitec-
tural leaks, although important, are beyond the scope of this
work. However, ERIM is compatible with existing defenses.
Our current prototype of ERIM is incompatible with appli-
cations that simultaneously use MPK for other purposes, but
this is not fundamental to ERIM’s design. Such incompat-
ibilities can be resolved as long as the application does not
re-use the MPK domain that ERIM reserves for T.

3.3 Call gates

A call gate transfers control from U to T by enabling access
to MT and executing from a designated entry point of T, and

1We know of only one user-mode Linux application – the dynamic
linker, ld, that legitimately uses XRSTOR. However, ld categorically does
not restore PKRU through XRSTOR, so this safe check can be added to it.

1xor ecx, ecx

2xor edx, edx

3mov PKRU_ALLOW_TRUSTED, eax

4WRPKRU // copies eax to PKRU

6// Execute trusted component’s code

8xor ecx, ecx

9xor edx, edx

10mov PKRU_DISALLOW_TRUSTED, eax

11WRPKRU // copies eax to PKRU

12cmp PKRU_DISALLOW_TRUSTED, eax

13je continue

14syscall exit // terminate program

15continue:

16// control returns to the untrusted

application here

Listing 1: Call gate in assembly. The code of the trusted
component’s entry point may be inlined by the compiler on
line 6, or there may be an explicit direct call to it.

later returns control to U after disabling access to MT. This
requires two WRPKRUs. The primary challenge in design-
ing the call gate is ensuring that both these WRPKRUs are
safe in the sense explained in Section 3.1.

Listing 1 shows the assembly code of a call gate. WRP-
KRU expects the new PKRU value in the eax register and
requires ecx and edx to be 0. The call gate works as follows.
First, it sets PKRU to enable access to MT (lines 1–4). The
macro PKRU_ALLOW_TRUSTED is a constant that allows
access to MT and MU.2 Next, the call gate transfers control
to the designated entry point of T (line 6). T’s code may be
invoked either by a direct call, or it may be inlined.

After T has finished, the call gate sets PKRU
to disable access to MT (lines 8–11). The macro
PKRU_DISALLOW_TRUSTED is a constant that al-
lows access to MU but not MT. Next, the call
gate checks that the PKRU was actually loaded with
PKRU_DISALLOW_TRUSTED (line 12). If this is not the
case, it terminates the program (line 14), else it returns con-
trol to U (lines 15–16). The check on line 12 may seem re-
dundant since eax is set to PKRU_DISALLOW_TRUSTED
on line 10. However, the check prevents exploitation of the
WRPKRU on line 11 by a control-flow hijack attack (ex-
plained next).

Safety Both occurrences of WRPKRU in the call gate are
safe. Neither can be exploited by a control flow hijack to get
unauthorized access to MT. The first occurrence of WRP-
KRU (line 4) is immediately followed by (a direct control
transfer to) a designated entry point of T. This instance can-

2To grant read (resp. write) access to domain i, bit 2i (resp. 2i+1) must
be set in the PKRU. PKRU_ALLOW_TRUSTED sets the 4 least significant
bits to grant read and write access to domains 0 (MU) and 1 (MT).

USENIX Association 28th USENIX Security Symposium 1225

not be exploited to transfer control to anywhere else. The
second occurrence of WRPKRU (line 11) is followed by a
check that terminates the program if the new permissions
include access to MT. If, as part of an attack, the execu-
tion jumped directly to line 11 with any value other than
PKRU_DISALLOW_TRUSTED in eax, the program would
be terminated on line 14.

Efficiency A call gate’s overhead on a roundtrip from U to
T is two WRPKRUs, a few very fast, standard register oper-
ations and one conditional branch instruction. This overhead
is very low compared to other hardware isolation techniques
that rely on pages tables and syscalls or hypervisor trampo-
lines to change privileges (see also Section 6.5).

Use considerations ERIM’s call gate omits features that
readers may expect. These features have been omitted to
avoid having to pay their overhead when they are not needed.
First, the call gate does not include support to pass parame-
ters from U to T or to pass a result from T to U. These
can be passed via a designated shared buffer in MU (both U
and T have access to MU). Second, the call gate does not
scrub registers when switching from T to U. So, if T uses
confidential data, it should scrub any secrets from registers
before returning to U. Further, because T and U share the
call stack, T must also scrub secrets from the stack prior to
returning. Alternatively, T can allocate a private stack for
itself in MT, and T’s entry point can switch to that stack im-
mediately upon entry. This prevents T’s secrets from being
written to U’s stack in the first place. (A private stack is also
necessary for multi-threaded applications; see Section 3.7).

3.4 Binary inspection

Next, we describe ERIM’s binary inspection. The inspection
prevents U from mapping any executable pages with unsafe
WRPKRU and XRSTOR occurrences and consists of two
parts: (i) an inspection function that verifies that a sequence
of pages does not contain unsafe occurrences; and, (ii) an
interception mechanism that prevents U from mapping exe-
cutable pages without inspection.

Inspection function The inspection function scans a se-
quence of pages for instances of WRPKRU and XRSTOR.
It also inspects any adjacent executable pages in the address
space for instances that cross a page boundary.

For every WRPKRU, it checks that the WRPKRU is safe,
i.e., either condition (A) or (B) from Section 3.1 holds. To
check for condition (A), ERIM needs a list of designated en-
try points of T. The source of this list depends on the nature
of T and is trusted. If T consists of library functions, then
the programmer marks these functions, e.g., by including a
unique character sequence in their names. If the functions
are not inlined by the compiler, their names will appear in
the symbol table. If T’s functions are subject to inlining or
if they are generated by a compiler pass, then the compiler
must be directed to add their entry locations to the symbol

table with the unique character sequence. In all cases, ERIM
can identify designated entry points by looking at the symbol
table and make them available to the inspection function.

Condition (B) is checked easily by verifying that the
WRPKRU is immediately followed by exactly the instruc-
tions on lines 12–15 of Listing 1. These instructions ensure
that the WRPKRU cannot be used to enable access to MT
and continue execution.

For every XRSTOR, the inspection function checks that
the XRSTOR is followed immediately by the following in-
structions, which check that the eax bit that causes XRSTOR
to load PKRU (bit 9) is not set: bt eax, 0x9; jnc

.safe; EXIT; .safe:.... Here, EXIT is a macro
that exits the program. Trivially, such a XRSTOR cannot
be used to enable access to MT and continue execution.

Interception On recent (≥ 4.6) versions of Linux, inter-
ception can be implemented without kernel changes. We in-
stall a seccomp-bpf filter [29] that catches mmap, mprotect,
and pkey_mprotect syscalls which attempt to map a region
of memory as executable (mode argument PROT_EXEC).
Since the bpf filtering language currently has no provisions
for reading the PKRU register, we rely on seccomp-bpf’s
SECCOMP_RET_TRACE option to notify a ptrace()-based
tracer process. The tracer inspects the tracee and allows the
syscall if it was invoked from T and denies it otherwise. The
tracer process is configured so that it traces any child of the
tracee process as well. While ptrace() interception is expen-
sive, note that it is required only when a program maps pages
as executable, which is normally an infrequent operation.

If programs map executable pages frequently, a more ef-
ficient interception can be implemented with a simple Linux
Security Module (LSM) [50], which allows mmap, mpro-
tect and pkey_mprotect system calls only from T. (Whether
such a call is made by U or T is easily determined by ex-
amining the PKRU register value at the time of the syscall.)
Our prototype uses this implementation of interception. An-
other approach is to implement a small (8 LoC) change to
seccomp-bpf in the Linux kernel, which allows a bpf filter to
inspect the value of the PKRU register. With this change in
place, we can install a bpf filter that allows certain syscalls
only from T, similar to the LSM module.

With either interception approach in place, U must go
through T to map executable pages. T maps the pages only
after they have passed the inspection function. Regardless
of the interception method, pages can be inspected upfront
when T attempts to map them as executable, or on demand
when they are executed for the first time.

On-demand inspection is preferable when a program maps
a large executable segment but eventually executes only a
small number of pages. With on-demand inspection, when
the process maps a region as executable, T instead maps the
region read-only but records that the pages are pending in-
spection. When control transfers to such a page, a fault oc-
curs. The fault traps to a dedicated signal handler, which

1226 28th USENIX Security Symposium USENIX Association

ERIM installs when it initializes (the LSM or the tracer pre-
vents U from overriding this signal handler). This signal
handler calls a T function that checks whether the faulting
page is pending inspection and, if so, inspects the page. If
the inspection passes, then the handler remaps the page with
the execute permission and resumes execution of the faulting
instruction, which will now succeed. If not, the program is
terminated.

The interception and binary inspection has very low over-
head in practice because it scans an executable page at most
once. It is also fully transparent to U’s code if all WRPKRUs
and XRSTORs in the binary are already safe.

Security We briefly summarize how ERIM attains secu-
rity. The binary inspection mechanism prevents U from
mapping any executable page with an unsafe WRPKRU or
XRSTOR. T does not contain any executable unsafe WRP-
KRU or XRSTOR by assumption. Consequently, only safe
WRPKRUs and XRSTORs are executable in the entire ad-
dress space at any point. Safe WRPKRUs and XRSTORs
preserve ERIM’s two security invariants (1) and (2) by de-
sign. Thus MT is accessible only while T executes starting
from legitimate T entry points.

3.5 Lifecycle of an ERIM process

As part of a process’s initialization, before control is trans-
ferred to main(), ERIM creates a second MPK memory do-
main for MT in addition to the process’s default MPK do-
main, which is used for MU. ERIM maps a memory pool
for a dynamic memory allocator to be used in MT and hooks
dynamic memory allocation functions so that invocations are
transparently redirected to the appropriate pool based on the
value of the PKRU register. This redirection provides pro-
grammer convenience but is not required for security. If
U were to call T’s allocator, it would be unable to access
MT’s memory pool and generate a page fault. Next, ERIM
scans MU’s executable memory for unsafe WRPKRUs and
XRSTORs, and installs one of the interception mechanisms
described in Section 3.4. Finally, depending on whether
main() is in U or T, ERIM initializes the PKRU register ap-
propriately and transfers control to main(). After main() has
control, the program executes as usual. It can map, unmap
and access data memory in MU freely. However, to access
MT, it must invoke a call gate.

3.6 Developing ERIM applications

We describe here three methods of developing applications
or modifying existing applications to use ERIM.

The binary-only approach requires that either U or T con-
sist of a set of functions in a dynamic link library. In this
case, the library and the remaining program can be used
in unmodified binary form. An additional ERIM dynamic
wrapper library is added using LD_PRELOAD, which wraps
the entry points with stub functions that implement the call
gates and have names that indicate to the ERIM runtime the

1typedef struct secret {

2int number; } secret;

3secret* initSecret() {

4ERIM_SWITCH_T;

5secret * s = malloc(sizeof(secret));

6s->number = random();

7ERIM_SWITCH_U;

8return s;

9}

10int compute(secret* s, int m) {

11int ret = 0;

12ERIM_SWITCH_T;

13ret = f(s->number, m);

14ERIM_SWITCH_U;

15return ret;

16}

Listing 2: C component isolated with ERIM

valid entry points. We have used this approach to isolate
SQLite within the Node.js runtime (Section 5).

The source approach requires that either U or T consist of
a set of functions that are not necessarily in a separate compi-
lation unit or library. In this case, the source code is modified
to wrap these functions with stubs that implement the call
gates, and choose names that indicate valid entry points. We
used this approach to isolate the crypto functions and session
keys in OpenSSL (Section 5).

The compiler approach requires modifications to the com-
piler to insert call gates at appropriate points in the exe-
cutable and generate appropriate symbols that indicate valid
entry points. This approach is the most flexible because it
allows arbitrary inlining of U and T code. We used this ap-
proach to isolate the metadata in CPI (Section 5).

Next, we give a simple example describing the process
of developing a new C application using the source ap-
proach. ERIM provides a C library and header files to in-
sert call gates, initialize ERIM, and support dynamic mem-
ory allocation. Listing 2 demonstrates an example C pro-
gram that isolates a data structure called secret (lines
1–2). The structure contains an integer value. Two func-
tions, initSecret and compute, access secrets and
bracket their respective accesses with call gates using the
macros ERIM_SWITCH_T and ERIM_SWITCH_U. ERIM
isolates secret such that only code that appears between
ERIM_SWITCH_T and ERIM_SWITCH_U, i.e., code in T,
may access secret. initSecret allocates an instance
of secretwhile executing inside T by first allocating mem-
ory in MT and then initializing the secret value. compute
computes a function f of the secret inside T.

3.7 Extensions

Next, we discuss extensions to ERIM’s basic design.

USENIX Association 28th USENIX Security Symposium 1227

Multi-threaded processes ERIM’s basic design works as-
is with multi-threaded applications. Threads are created as
usual, e.g. using libpthread. The PKRU register is saved and
restored by the kernel during context switches. However,
multi-threading imposes an additional requirement on T (not
on ERIM): In a multi-threaded application, it is essential that
T allocate a private stack in MT (not MU) for each thread
and execute its code on these stacks. This is easy to imple-
ment by switching stacks at T’s entry points. Not doing so
and executing T on standard stacks in MU runs the risk that,
while a thread is executing in T, another thread executing in
U may corrupt or read the first thread’s stack frames. This
can potentially destroy T’s integrity, leak its secrets and hi-
jack control while access to MT is enabled. By executing T’s
code on stacks in MT, such attacks are prevented.

More than two components per process Our description
of ERIM so far has been limited to two components (T and
U) per process. However, ERIM generalizes easily to sup-
port as many components as the number of domains Linux’s
MPK support can provide (this could be less than 16 because
the kernel may reserve a few domains for specific purposes).
Components can have arbitrary pairwise trust relations with
each other, as long as the trust relations are transitive. A sim-
ple setting could have a default domain that trusts all other
domains (analogous to U) and any number of additional do-
mains that do not trust any others. ERIM’s initialization code
creates a private heap for each component, and ERIM’s cus-
tom allocator allocates from the heap of the currently execut-
ing component. Each component can also (in its own code)
allocate a per-thread stack, to protect stack-allocated sensi-
tive data when calling into other untrusted domains. Stacks
can be mandatorily switched by ERIM’s call gates.

ERIM for integrity only Some applications care only
about the integrity of protected data, but not its confidential-
ity. Examples include CPI, which needs to protect only the
integrity of code pointers. In such applications, efficiency
can be improved by allowing U to read MT directly, thus
avoiding the need to invoke a call gate for reading MT. The
ERIM design we have described so far can be easily modi-
fied to support this case. Only the definition of the constant
PKRU_DISALLOW_TRUSTED in Listing 1 has to change
to also allow read-only access to MT. With this change, read
access to MT is always enabled.

Just-in-time (jit) compilers with ERIM ERIM works
with jit compilers that follow standard DEP and do not allow
code pages that are writable and executable at the same time.
Such jit compilers write new executable code into newly al-
located, non-executable pages and change these pages’ per-
missions to non-writable and executable once the compila-
tion finishes. ERIM’s mprotect interception defers enabling
execute permissions until after a binary inspection, as de-
scribed in Section 3.4. When a newly compiled page is
executed for the first time, ERIM handles the page exe-

cute permission fault, scans the new page for unsafe WRP-
KRUs/XRSTORs and enables the execute permission if no
unsafe occurrences exist. This mechanism is safe, but may
lead to program crashes if the jit compiler accidentally emits
an unsafe WRPKRU or XRSTOR. ERIM-aware jit compil-
ers can emit WRPKRU- and XRSTOR-free binary code by
relying on the rewrite strategy described in Section 4, and
inserting call gates when necessary.

OS privilege separation The design described so far pro-
vides memory isolation. Some applications, however, re-
quire privilege separation between T and U with respect to
OS resources. For instance, an application might need to re-
strict the filesystem name space accessible to U or restrict the
system calls available to U.

ERIM can be easily extended to support privilege sepa-
ration with respect to OS resources, using one of the tech-
niques described in Section 3.4 for intercepting systems calls
that map executable pages. In fact, intercepting and dis-
allowing these system calls when invoked from U is just
a special case of privilege separation. During process ini-
tialization, ERIM can instruct the kernel to restrict U’s ac-
cess rights. After this, the kernel refuses to grant access
to restricted resources whenever the value of the PKRU is
not PKRU_ALLOW_TRUSTED, indicating that the syscall
does not originate from T. To access restricted resources, U
must invoke T, which can filter syscalls.

4 Rewriting program binaries

The binary inspection described in Section 3.4 guarantees
that executable pages do not contain unsafe instances of the
WRPKRU and XRSTOR instructions. This is sufficient for
ERIM’s safety. In this section, we show how to generate or
modify program binaries to not contain unsafe WRPKRUs
and XRSTORs, so that they pass the binary inspection.

Intentional occurrences of WRPKRU that are not imme-
diately followed by a transfer to T and all occurrences of
XRSTOR, whether they are generated by a compiler or writ-
ten manually in assembly, can be made safe by inserting
the checks described in Section 3.4 after the instances. In-
advertent occurrences—those that arise unintentionally as
part of a longer x86 instruction and operand, or spanning
two consecutive x86 instructions/operands—are more inter-
esting. We describe a rewrite strategy to eliminate such oc-
currences and how the strategy can be applied by a compiler
or a binary rewriting tool. The strategy can rewrite any se-
quence of x86 instructions and operands containing an inad-
vertent WRPKRU or XRSTOR to a functionally equivalent
sequence without either. In the following we describe the
strategy, briefly argue why it is complete, and summarize an
empirical evaluation of its effectiveness.

Rewrite strategy WRPKRU is a 3 byte instruction,
0x0F01EF. XRSTOR is also always a 3-byte instruction, but
it has more variants, fully described by the regular expres-

1228 28th USENIX Security Symposium USENIX Association

Overlap with Cases Rewrite strategy ID Example
Opcode Opcode =

WRPKRU/
XRSTOR

Insert safety check after instruction 1

Mod R/M Mod R/M =
0x0F

Change to unused register + move command 2 add ecx, [ebx + 0x01EF0000] → mov eax,
ebx; add ecx, [eax + 0x01EF0000];

Push/Pop used register + move command 3 add ecx, [ebx + 0x01EF0000] → push eax;
mov eax, ebx; add ecx, [eax + 0x01EF0000];
pop eax;

Displacement Full/Partial
sequence

Change mode to use register 4 add eax, 0x0F01EF00 → (push ebx;) mov ebx,
0x0F010000; add ebx, 0x0000EA00; add eax,
ebx; (pop ebx;)

Jump-like
instruction

Move code segment to alter constant used in
address

5 call [rip + 0x0F01EF00] → call [rip +
0x0FA0EEFF]

Immediate Full/Partial
sequence

Change mode to use register 6 add eax, 0x0F01EF → (push ebx;) mov ebx,
0x0F01EE00; add ebx, 0x00000100; add eax,
ebx; (pop ebx;)

Associative
opcode

Apply instruction twice with different imme-
diates to get equivalent effect

7 add ebx, 0x0F01EF00 → add ebx,
0x0E01EF00; add ebx, 0x01000000

Table 1: Rewrite strategy for intra-instruction occurrences of WRPKRU and XRSTOR

sion 0x0FAE[2|6|A][8-F]. There are two cases to consider.
First, a WRPKRU or XRSTOR sequence can span two or
more x86 instructions. Such sequences can be “broken” by
inserting a 1-byte nop like 0x90 between the two consecutive
instructions. 0x90 does not coincide with any individual byte
of WRPKRU or XRSTOR, so this insertion cannot generate
a new occurrence.

Second, a WRPKRU or XRSTOR may appear entirely
within a longer instruction including any immediate operand.
Such cases can be rewritten by replacing them with a se-
mantically equivalent instruction or sequence of instructions.
Doing so systematically requires an understanding of x86 in-
struction coding. An x86 instruction contains: (i) an opcode
field possibly with prefix, (ii) a MOD R/M field that deter-
mines the addressing mode and includes a register operand,
(iii) an optional SIB field that specifies registers for indirect
memory addressing, and (iv) optional displacement and/or
immediate fields that specify constant offsets for memory
operations and other constant operands.

The strategy for rewriting an instruction depends on the
fields with which the WRPKRU or XRSTOR subsequence
overlaps. Table 1 shows the complete strategy.

An opcode field is at most 3-bytes long. If the WRPKRU
(XRSTOR) starts at the first byte, the instruction is WRP-
KRU (XRSTOR). In this case, we make the instruction safe
by inserting the corresponding check from Section 3.4 after
it. If the WRPKRU or XRSTOR starts after the first byte of
the opcode, it must also overlap with a later field. In this
case, we rewrite according to the rule for that field below.

If the sequence overlaps with the MOD R/M field, we
change the register in the MOD R/M field. This requires
a free register. If one does not exist, we rewrite to push an
existing register to the stack, use it in the instruction, and pop

it back. (See lines 2 and 3 in Table 1.)
If the sequence overlaps with the displacement or the im-

mediate field, we change the mode of the instruction to use
a register instead of a constant. The constant is computed
in the register before the instruction (lines 4 and 6). If a
free register is unavailable, we push and pop one. Two
instruction-specific optimizations are possible. First, for
jump-like instructions, the jump target can be relocated in
the binary; this changes the displacement in the instruction,
obviating the need a free register (line 5). Second, associa-
tive operations like addition can be performed in two incre-
ments without an extra register (line 7). Rewriting the SIB
field is never required because any WRPKRU or XRSTOR
must overlap with at least one non-SIB field (the SIB field is
1 byte long while these instructions are 3 bytes long).

Compilers and well-written assembly programs normally
do not mix data like constants, jump tables, etc. with the
instruction stream and instead place such data in a non-
executable data segment. If so, WRPKRU or XRSTOR se-
quences that occur in such data can be ignored.

Compiler support For binaries that can be recompiled
from source, rewriting can be added to the codegen phase of
the compiler, which converts the intermediate representation
(IR) to machine instructions. Whenever codegen outputs an
inadvertent WRPKRU or XRSTOR, the surrounding instruc-
tions in the IR can be replaced with equivalent instructions
as described above, and codegen can be run again.

Runtime binary rewriting For binaries that cannot be re-
compiled, binary rewriting can be integrated with the inter-
ception and inspection mechanism (Section 3.4). When the
inspection discovers an unsafe WRPKRU or XRSTOR on an
executable page during its scan, it overwrites the page with

USENIX Association 28th USENIX Security Symposium 1229

1-byte traps, makes it executable, and stores the original page
in reserve without enabling it for execution. Later, if there is
a jump into the executable page, a trap occurs and the trap
handler discovers an entry point into the page.

The rewriter then disassembles the reserved page from
that entry point on, rewriting any discovered WRPKRU or
XRSTOR occurrences, and copies the rewritten instruction
sequences back to the executable page. To prevent other
threads from executing partially overwritten instruction se-
quences, we actually rewrite a fresh copy of the executable
page with the new sequences, and then swap this rewritten
copy for the executable page. This technique is transparent
to the application, has an overhead proportional to the num-
ber of entry points in offending pages (it disassembles from
every entry point only once) and maintains the invariant that
only safe pages are executable.

A rewritten instruction sequence is typically longer than
the original sequence and therefore cannot be rewritten in-
place. In this case, binary rewriting tools place the rewrit-
ten sequence on a new page, replace the first instruction in
the original sequence with a direct jump to the rewritten se-
quence, and insert a direct jump back to the instruction fol-
lowing the original sequence after the rewritten sequence.
Both pages are then enabled for execution.

Implementation and testing The rewrite strategy is ar-
guably complete. We have implemented the strategy as a
library, which can be used either with the inspection mecha-
nism as explained above or with a static binary rewrite tool,
as described here. To gain confidence in our implementation,
we examined all binaries of five large Linux distributions (a
total of 204,370 binaries). Across all binaries, we found a
total of 1213 WRPKRU/XRSTOR occurrences in code seg-
ments. We then used a standard tool, Dyninst [15], to try
to disassemble and rewrite these occurrences. Dyninst was
able to disassemble 1023 occurrences and, as expected, our
rewriter rewrote all instances successfully. Next, we wanted
to run these 1023 rewritten instances. However, this was
infeasible since we did not know what inputs to the bina-
ries would cause control to reach the rewritten instances.
Hence, we constructed two hand-crafted binaries with WRP-
KRUs/XRSTORs similar to the 1023 occurrences, rewrote
those WRPKRUs/XRSTORs with Dyninst and checked that
those rewritten instances ran correctly. Based on these exper-
iments, we are confident that our implementation of WRP-
KRU/XRSTOR rewriting is robust.

5 Use Cases

ERIM goes beyond prior work by providing efficient isola-
tion with very high component switch rates of the order of
105 or 106 times a second. We describe three such use cases
here, and report ERIM’s overhead on them in Section 6.

Isolating cryptographic keys in web servers Isolating
long-term SSL keys to protect from web server vulnerabil-

ities such as the Heartbleed bug [37] is well-studied [33,
34]. However, long-term keys are accessed relatively infre-
quently, typically only a few times per user session. Session

keys, on the other hand, are accessed far more frequently—
over 106 times a second per core in a high throughput web
server like NGINX. Isolating sessions keys is relevant be-
cause these keys protect the confidentiality of individual
users. With its low-cost switching, ERIM can be used to
isolate session keys efficiently. To verify this, we partitioned
OpenSSL’s low-level crypto library (libcrypto) to isolate the
session keys and basic crypto routines, which run as T, from
the rest of the web server, which runs as U.

Native libraries in managed runtimes Managed runtimes
such as a Java or JavaScript VM often rely on third-party na-
tive libraries written in unsafe languages for performance.
ERIM can isolate the runtime from bugs and vulnerabilities
in a native library by mapping the managed runtime to T and
the native libraries to U. This use case leverages the “in-
tegrity only” version of ERIM (Section 3.7). We isolated
Node.js from a native SQLite plugin. Node.js is a state-of-
the-art managed runtime for JavaScript and SQLite is a state-
of-the-art database library written in C [1, 2]. The approach
generalizes to isolating several mutually distrusting libraries
from each other by leveraging ERIM’s multi-component ex-
tension from Section 3.7.

CPI/CPS Code-pointer integrity (CPI) [31] prevents
control-flow hijacks by isolating sensitive objects—code
pointers and objects that can lead to code pointers—in a safe

region that cannot be written without bounds checks. CPS
is a lighter, less-secure variant of CPI that isolates only code
pointers. A key challenge is to isolate the safe region effi-
ciently, as CPI can require switching rates on the order of
106 or more switches/s on standard benchmarks. We show
that ERIM can provide strong isolation for the safe region
at low cost. To do this, we override the CPI/CPS-enabled
compiler’s intrinsic function for writing the sensitive region
to use a call gate around an inlined sequence of T code that
performs a bounds check before the write. (MemSentry [30]
also proposes using MPK for isolating the safe region, but
does not actually implement it.)

6 Evaluation

We have implemented two versions of an ERIM prototype
for Linux.3 One version relies on a 77 line Linux Secu-
rity Module (LSM) that intercepts all mmap and mprotect
calls to prevent U from mapping pages in executable mode,
and prevents U from overriding the binary inspection han-
dler. We additionally added 26 LoC for kernel hooks to
Linux v4.9.110, which were needed by the LSM. We also
implemented ERIM on an unmodified Linux kernel using
the ptrace-based technique described in Section 3.4. In the

3Available online at https://gitlab.mpi-sws.org/

vahldiek/erim.

1230 28th USENIX Security Symposium USENIX Association

following, we show results obtained with the modified ker-
nel. The performance of ERIM on the stock Linux kernel
is similar, except that the costs of mmap, mprotect, and
pkey_mprotect syscalls that enable execute permissions
are about 10x higher. Since the evaluated applications use
these operations infrequently, the impact on their overall per-
formance is negligible.

Our implementation also includes the ERIM runtime li-
brary, which provides a memory allocator over MT, call
gates, the ERIM initialization code, and binary inspection.
These comprise 569 LoC. Separately, we have implemented
the rewriting logic to eliminate inadvertent WRPKRU oc-
currences (about 2250 LoC). While we have not yet inte-
grated the logic into either a compiler or our inspection han-
dler, the binaries used in our performance evaluation exper-
iments do not have any unsafe WRPKRU occurrences and
do not load any libraries at runtime. However, the binaries
did have two legitimate occurrences of XRSTOR (in the dy-
namic linker library ld.so), which we made safe as de-
scribed in Section 3.4. Two other inadvertent XRSTOR oc-
curred in data-only pages of executable segments in libm,
which is used by the SPEC benchmarks. We made these safe
by re-mapping the pages read-only. Hence, the results we
report are on completely safe binaries.

We evaluate the ERIM prototype on microbenchmarks and
on the three applications mentioned in Section 5. Unless
otherwise mentioned, we perform our experiments on Dell
PowerEdge R640 machines with 16-core MPK-enabled In-
tel Xeon Gold 6142 2.6GHz CPUs (with the latest firmware;
Turbo Boost and SpeedStep were disabled), 384GB mem-
ory, 10Gbps Ethernet links, running Debian 8, Linux kernel
v4.9.60. For the OpenSSL/webserver experiments in Sec-
tions 6.2 and 6.5, we use NGINX v1.12.1, OpenSSL v1.1.1
and the ECDHE-RSA-AES128-GCM-SHA256 cipher. For
the managed language runtime experiment (Section 6.3), we
use Node.js v9.11.1 and SQLite v3.22.0. For the CPI exper-
iment (Section 6.4), we use the Levee prototype v0.2 avail-
able from http://dslab.epfl.ch/proj/cpi/ and
Clang v3.3.1 including its CPI compile pass, runtime library
extensions and link-time optimization.

6.1 Microbenchmarks

Switch cost We performed a microbenchmark to measure
the overhead of invoking a function with and without a
switch to a trusted component. The function adds a con-
stant to an integer argument and returns the result. Table 2
shows the cost of invoking the function, in cycles, as an in-
lined function (I), as a directly called function (DC), and as
a function called via a function pointer (FP). For reference,
the table also includes the cost of a simple syscall (getpid),
the cost of a switch on lwCs, a recent isolation mechanism
based on kernel page table protections [33], and the cost of a
VMFUNC (Intel VT-x)-based extended page table switch.

In our microbenchmark, calls with an ERIM switch are be-

Call type Cost (cycles)
Inlined call (no switch) 5
Direct call (no switch) 8

Indirect call (no switch) 19

Inlined call + switch 60
Direct call + switch 69

Indirect call + switch 99

getpid system call 152
Call + VMFUNC EPT switch 332

lwC switch [33] (Skylake CPU) 6050

Table 2: Cycle counts for basic call and return

tween 55 and 80 cycles more expensive than their no-switch
counterparts. The most expensive indirect call costs less than
the simplest system call (getpid). ERIM switches are up to
3-5x faster than VMFUNC switches and up to 100x faster
than lwC switches.

Because the CPU must not reorder loads and stores with
respect to a WRPKRU instruction, the overhead of an ERIM
switch depends on the CPU pipeline state at the time the
WRPKRUs are executed. In experiments described later in
this section, we observed average overheads ranging from 11
to 260 cycles per switch. At a clock rate of 2.6GHz, this cor-
responds to overheads between 0.04% and 1.0% for 100,000
switches per second, which is significantly lower than the
overhead of any kernel- or hypervisor-based isolation.

Binary inspection To determine the cost of ERIM’s bi-
nary inspection, we measured the cost of scanning the bina-
ries of all 18 applications in the CINT/FLOAT SPEC 2006
CPU benchmark. These range in size from 9 to 3918 4KB
pages, contain between 35 and 63765 intentional WRPKRU
instructions when compiled with CPI (see Section 6.4), no
unintended WRPKRU and no XRSTOR instructions. The
overhead is largely independent of the number of WRPKRU
instructions and ranges between 3.5 and 6.2 microseconds
per page. Even for the largest binary, the scan takes only
17.7ms, a tiny fraction of a typical process’ runtime.

6.2 Protecting session keys in NGINX

Next, we use ERIM to isolate SSL session keys in a high
performance web server, NGINX. We configured NGINX to
use only the ECDHE-RSA-AES128-GCM-SHA256 cipher
and AES encryption for sessions. We modified OpenSSL’s
libcrypto to isolate all session keys and the functions for AES
key allocation and encryption/decryption into ERIM’s T, and
use ERIM call gates to invoke these functions.

To measure ERIM’s overhead on the peak throughput, we
configure a single NGINX worker pinned to a CPU core,
and connect to it remotely over HTTPS with keep-alive from
4 concurrent ApacheBench (ab) [3] instances each simulat-
ing 75 concurrent clients. The clients all request the same
file, whose size we vary from 0 to 128KB across experi-

USENIX Association 28th USENIX Security Symposium 1231

File
size
(KB)

1 worker 3 workers 5 workers 10 workers
Native
(req/s)

ERIM
rel. (%)

Native
(req/s)

ERIM
rel. (%)

Native
(req/s)

ERIM
rel. (%)

Native
(req/s)

ERIM
rel. (%)

0 95,761 95.8 276,736 96.1 466,419 95.7 823,471 96.4
1 87,022 95.2 250,565 94.5 421,656 96.1 746,278 95.5
2 82,137 95.4 235,820 95.1 388,926 96.6 497,778 100.0
4 76,562 95.3 217,602 94.9 263,719 100.0
8 67,855 96.0 142,680 100.0

Table 3: Nginx throughput with multiple workers. The standard deviation is below 1.5% in all cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

bN
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

File size

Native ERIM

Figure 1: Throughput of NGINX with one worker, normal-
ized to native (no protection), with varying request sizes.
Standard deviations were all below 1.1%.

File
size
(KB)

Throughput
Switches/s

CPU load
native
(%)

Native
(req/s)

ERIM
rel. (%)

0 95,761 95.8 1,342,605 100.0
1 87,022 95.2 1,220,266 100.0
2 82,137 95.4 1,151,877 100.0
4 76,562 95.3 1,073,843 100.0
8 67,855 96.0 974,780 100.0

16 45,483 97.1 820,534 100.0
32 32,381 97.3 779,141 100.0
64 17,827 100.0 679,371 96.7

128 8,937 100.0 556,152 86.4

Table 4: Nginx throughput with a single worker. The stan-
dard deviation is below 1.1% in all cases.

ments.4 Figure 1 shows the average throughput of 10 runs of
an ERIM-protected NGINX relative to native NGINX with-
out any protection for different file sizes, measured after an
initial warm-up period.

ERIM-protected NGINX provides a throughput within
95.18% of the unprotected server for all request sizes. To
explain the overhead further, we list the number of ERIM
switches per second in the NGINX worker and the worker’s
CPU utilization in Table 4 for request sizes up to 128KB.
The overhead shows a general trend up to requests of size 32

4Since NGINX only serves static files in this experiment, its support for
Lua and JavaScript is not used. As a result, this experiment does not rely on
any support for Jit, which we have not yet implemented.

KB: The worker’s core remains saturated but as the request
size increases, the number of ERIM switches per second de-
crease, and so does ERIM’s relative overhead. The observa-
tions are consistent with an overhead of about 0.31%–0.44%
for 100,000 switches per second. For request sizes 64KB
and higher, the 10Gbps network saturates and the worker
does not utilize its CPU core completely in the baseline. The
free CPU cycles absorb ERIM’s CPU overhead, so ERIM’s
throughput matches that of the baseline.

Note that this is an extreme test case, as the web server
does almost nothing and serves the same cached file repeat-
edly. To get a more realistic assessment, we set up NGINX to
serve from main memory static HTML pages from a 571 MB
(15,520 pages) Wikipedia snapshot of 2006 [48]. File sizes
vary from 417 bytes to 522 KB (average size 37.7 KB). 75
keep-alive clients request random pages (selected based on
pageviews on Wikipedia [49]). The average throughput with
a single NGINX worker was 22,415 requests/s in the base-
line and 21,802 requests/s with ERIM (std. dev. below 0.6%
in both cases). On average, there were 615,000 switches a
second. This corresponds to a total overhead of 2.7%, or
about 0.43% for 100,000 switches a second.

Scaling with multiple workers To verify that ERIM
scales with core parallelism, we re-ran the first experiment
above with 3, 5 and 10 NGINX workers pinned to separate
cores, and sufficient numbers of concurrent clients to satu-
rate all the workers. Table 3 shows the relative overheads
with different number of workers. (For requests larger than
those shown in the table, the network saturates, and the spare
CPU cycles absorb ERIM’s overhead completely.) The over-
heads were independent of the number of workers (cores),
indicating that ERIM adds no additional synchronization and
scales perfectly with core parallelism. This result is expected
as updates to the per-core PKRU do not affect other cores.

6.3 Isolating managed runtimes

Next, we use ERIM to isolate a managed language runtime
from an untrusted native library. Specifically, we link the
widely-used C database library, SQLite, to Node.js, a state-
of-the-art JavaScript runtime and map Node.js’s runtime to
T and SQLite to U. We modified SQLite’s entry points to
invoke call gates. To isolate Node.js’s stack from SQLite,
we run Node.js on a separate stack in MT, and switch to the

1232 28th USENIX Security Symposium USENIX Association

Test # Switches/s ERIM overhead (%)
100 11,183,281 12.73%
110 8,329,914 12.18%
400 8,161,584 15.42%
120 7,190,766 13.81%
142 7,074,553 9.41%
500 6,419,008 12.13%
510 5,868,395 5.60%
410 5,091,212 3.64%
240 2,358,524 3.74%
280 2,303,516 3.22%
170 1,264,366 4.22%
310 1,133,364 2.92%
161 1,019,138 2.81%
160 1,014,829 2.73%
230 670,196 2.04%
270 560,257 2.28%

Table 5: Overhead relative to native execution for SQLite
speedtest1 tests with more than 100,000 switches/s. Standard
deviations were below 5.6%.

standard stack (in MU) prior to calling a SQLite function.
Finally, SQLite uses the libc function memmove, which ac-
cesses libc constants that are in MT, so we implemented a
separate memmove for SQLite. In total, we added 437 LoC.

We measure overheads on the speedtest1 benchmark that
comes with SQLite and emulates a typical database work-
load [4]. The benchmark performs 32 short tests that stress
different database functions like selects, joins, inserts and
deletes. We increased the iterations in each test by a factor
of four to make the tests longer. Our baseline for compar-
ison is native SQLite linked to Node.js without any protec-
tion. We configure the benchmark to store the database in
memory and report averages of 20 runs.

The geometric mean of ERIM’s runtime overhead across
all tests is 4.3%. The overhead is below 6.7% on all tests
except those with more than 106 switches per second. This
suggests that ERIM can be used for isolating native libraries
from managed language runtimes with low overheads up to
a switching cost of the order of 106 per second. Beyond that
the overhead is noticeable. Table 5 shows the relative over-
heads for tests with switching rates of at least 100,000/s. The
numbers are consistent with an average overhead between
0.07% and 0.41% for 100,000 switches/s. The actual switch
cost measured from direct CPU cycle counts varies from 73
to 260 cycles across all tests. It exceeds 100 cycles only
when the switch rate is less than 2,000 times/s. We verified
that these are due to i-cache misses—at low switch rates, the
call gate instructions are evicted between switches.

6.4 Protecting sensitive data in CPI/CPS

Next, we use ERIM to isolate the safe region of CPI and
CPS [31] in a separate domain. We modified CPI/CPS’s

0% 100% 200% 300%

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

CPS

ERIM-CPS

CPI

ERIM-CPI

Figure 2: Percentage overhead relative to no protection.

LLVM compiler pass to emit additional ERIM switches,
which bracket any code that modifies the safe region. The
switch code, as well as the instructions modifying the safe
region, are inlined with the application code. In addition, we
implemented simple optimizations to safely reduce the fre-
quency of ERIM domain switches. For instance, the original
implementation sets sensitive code pointers to zero during
initialization. Rather than generate a domain switch for each
pointer initialization, we generate loops of pointer set oper-
ations that are bracketed by a single pair of ERIM domain
switches. This is safe because the loop relies on direct jumps
and the code to set a pointer is inlined in the loop’s body. In
all, we modified 300 LoC in LLVM’s CPI/CPS pass.

Like the original CPI/CPS paper [31], we compare the
overhead of the original and our ERIM-protected CPI/CPS
system on the SPEC CPU 2006 CINT/FLOAT benchmarks,
relative to a baseline compiled with Clang without any pro-
tection. The original CPI/CPS system is configured to use
ASLR for isolation, the default technique used on x86-64 in
the original paper. ASLR imposes almost no switching over-
head, but also provides no security [43, 25, 16, 19, 39].

Figure 2 shows the average runtime overhead of 10 runs of
the original CPI/CPS (lines “CPI/CPS”) and CPI/CPS over
ERIM (lines “ERIM-CPI/CPS”). All overheads are normal-
ized to the unprotected SPEC benchmark. We could not
obtain results for 400.perlbench for CPI and 453.povray for
both CPS and CPI. 400.perlbench does not halt when com-
piled with CPI and SPEC’s result verification for 453.povray
fails due to unexpected output. These problems exist in
the code generated by the Levee CPI/CPS prototype with
CPI/CPS enabled (-fcps/-fcpi), not our modifications.

USENIX Association 28th USENIX Security Symposium 1233

Benchmark Switches/sec
ERIM-CPI overhead

relative to orig. CPI in %
403.gcc 16,454,595 22.30%
445.gobmk 1,074,716 1.77%
447.dealII 1,277,645 0.56%
450.soplex 410,649 0.60%
464.h264ref 1,705,131 1.22%
471.omnetpp 89,260,024 144.02%
482.sphinx3 1,158,495 0.84%
483.xalancbmk 32,650,497 52.22%

Table 6: Domain switch rates of selected SPEC CPU bench-
marks and overheads for ERIM-CPI without binary inspec-
tion, relative to the original CPI with ASLR.

CPI: The geometric means of the overheads (relative to
no protection) of the original CPI and ERIM-CPI across all
benchmarks are 4.7% and 5.3%, respectively. The relative
overheads of ERIM-CPI are low on all individual bench-
marks except gcc, omnetpp, and xalancbmk.

To understand this better, we examined switching rates
across benchmarks. Table 6 shows the switching rates
for benchmarks that require more than 100,000 switches/s.
From the table, we see that the high overheads on gcc, om-
netpp and xalancbmk are due to extremely high switching
rates on these three benchmarks (between 1.6 × 107 and
8.9× 107 per second). Further profiling indicated that the
reason for the high switch rate is tight loops with pointer
updates (each pointer update incurs a switch). An optimiza-
tion pass could hoist the domain switches out of the loops
safely using only direct control flow instructions and enforc-
ing store instructions to be bound to the application memory,
but we have not implemented it yet.

Table 6 also shows the overhead of ERIM-CPI excluding
binary inspection, relative to the original CPI over ASLR
(not relative to an unprotected baseline as in Figure 2). This
relative overhead is exactly the cost of ERIM’s switching.
Depending on the benchmark, it varies from 0.03% to 0.16%
for 100,000 switches per second or, equivalently, 7.8 to 41.6
cycles per switch. These results again indicate that ERIM
can support inlined reference monitors with switching rates
of up to 106 times a second with low overhead. Beyond this
rate, the overhead becomes noticeable.

CPS: The results for CPS are similar to those for CPI, but
the overheads are generally lower. Relative to the baseline
without protection, the geometric means of the overheads of
the original CPS and ERIM-CPS are 1.1% and 2.4%, respec-
tively. ERIM-CPS’s overhead relative to the original CPS
is within 2.5% on all benchmarks, except except perlbench,
omnetpp and xalancbmk, where it ranges up to 17.9%.

6.5 Comparison to existing techniques

In this section, we compare ERIM to isolation using SFI
(with Intel MPX), extended page tables (with Intel VT-

x/VMFUNC), kernel page tables (with lwCs), and instru-
mentation of untrusted code for full memory safety (with
WebAssembly). In each case, our primary goal is a quan-

titative comparison of the technique’s overhead to that of
ERIM. As we show below, ERIM’s overheads are substan-
tially lower than those of the other techniques. But before
presenting these results, we provide a brief qualitative com-
parison of the techniques in terms of their threat models.

Qualitative comparison of techniques Isolation using
standard kernel page tables affords a threat model similar
to ERIM’s. In particular, like ERIM, the OS kernel must be
trusted. In principle, isolation using a hypervisor’s extended
page tables (VMFUNC) can afford a stronger threat model,
in which the OS kernel need not be trusted [34].

Isolation using SFI, with or without Intel MPX, affords
a threat model weaker than ERIM’s since one must addi-
tionally trust the transform that adds bounds checks to the
untrusted code. For full protection, a control-flow integrity
(CFI) mechanism is also needed to prevent circumvention of
bounds checks. This further increases both the trusted com-
puting base (TCB) and the overheads. In the experiments
below, we omit the CFI defense, thus underestimating SFI
overheads for protection comparable to ERIM’s.

Instrumenting untrusted code for full memory safety, i.e.,
bounds-checking at the granularity of individual memory
allocations, implicitly affords the protection that SFI pro-
vides. Additionally, such instrumentation also protects the
untrusted code’s data from other outside threats, a use case
that the other techniques here (including ERIM) do not han-
dle. However, as for SFI, the mechanism used to instrument
the untrusted code must be trusted. In our experiments be-
low, we enforce memory safety by compiling untrusted code
to WebAssembly, and this compiler must be trusted.

Next, we quantitatively compare the overheads of these
techniques to those of ERIM.

SFI using MPX We start by comparing the cost of ERIM’s
isolation to that of isolation based on SFI using MPX. For
this, we follow the NGINX experiment of Section 6.2. We
place OpenSSL (trusted) in a designated memory region,
and use MemSentry [30] to compile all of NGINX (un-
trusted) with MPX-based memory-bounds checks that pre-
vent it from accessing the OpenSSL region directly.5 To
get comparable measurements on the (no protection) base-
line and ERIM, we recompile NGINX with Clang version
3.8, which is the version that MemSentry supports. We then
re-run the single worker experiments of Section 6.2.

Figure 3a shows the overheads of MPX and ERIM on
NGINX’s throughput, relative to a no-protection baseline.
The MPX-based instrumentation reduces the throughput of
NGINX by 15-30% until the experiment is no longer CPU-

5This setup reduces the overheads of MPX as compared to the setup
of Section 6.2, which isolates only small parts of OpenSSL. It is also less
secure. Hence, the MPX overheads reported here are conservative.

1234 28th USENIX Security Symposium USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

bN
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

File size

ERIM MPX

(a) ERIM vs. SFI using MPX (averages of 3 runs, std. devs.
below 1.9%)

 0

 0.2

 0.4

 0.6

 0.8

 1

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

bN
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

File size

ERIM emulation VMFUNC

(b) Emulated ERIM vs. VMFUNC (averages of 3 runs, std. devs.
below 0.9%)

 0

 0.2

 0.4

 0.6

 0.8

 1

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

b

25
6k

b

51
2k

b

1m
bN

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

File size

ERIM emulation LwC

(c) Emulated ERIM vs. LwC (averages of 5 runs, std. devs. be-
low 1.1%)

Figure 3: Comparison of NGINX throughput with ERIM and
alternative isolation techniques

bound (file sizes ≥ 64kb). In contrast, ERIM reduces over-
heads by no more than 3.5%. Across all file sizes, MPX
overheads are 4.2-8.5x those of ERIM.

MPX (more generally, SFI) and ERIM impose overhead
in different ways. MPX imposes an overhead during the ex-
ecution of NGINX (the untrusted component), while ERIM
imposes an overhead on component switches. Consequently,
one could argue that, as the switch rate increases, ERIM must

eventually become more expensive than MPX. While this is
theoretically true, in this experiment, we already observe ex-
tremely high switch rates of 1.2M/s (for file size 0kb) and,
even then, MPX’s overhead is 8.4x that of ERIM’s overhead.

Further, as explained earlier, for strong security, SFI must
be supported by control-flow integrity, which would induce

additional overheads that are not included here.

Extended page tables (VMFUNC) Next, we compare
ERIM to isolation based on extended page tables (EPTs) us-
ing Intel VT-x and VMFUNC. To get access to EPTs, we
use Dune [9] and a patch from MemSentry. We create two
page tables—one maps the trusted region that contains ses-
sion keys, and the other maps the untrusted region that con-
tains all the remaining state of NGINX and OpenSSL. Ac-
cess to the first table is efficiently switched on or off using
the VMFUNC EPT switch call provided by the MemSentry
patch. This call is faster than an OS process switch since it
does not switch the process context or registers. Since we
use Dune, the OS kernel runs in hypervisor mode. It has the
switch overheads of hypervisor-based isolation using VM-
FUNC but includes the OS kernel in the TCB.

Unfortunately, MemSentry’s patch works only on old
Linux kernels which do not have the page table support
needed for MPKs and, hence, cannot support ERIM. Con-
sequently, for this comparison, we rely on an emulation of
ERIM’s switch overhead using standard x86 instructions.
This emulation is described later in this section, and we val-
idate that it is accurate to within 2% of ERIM’s actual over-
heads on a variety of programs. So we believe that the com-
parative results presented here are quite accurate.

Figure 3b shows the throughput of NGINX protected with
VMFUNC and emulated ERIM, relative to a baseline with
no protection for different file sizes (we use Linux kernel
v3.16). Briefly, VMFUNC induces an overhead of 7-15%,
while the corresponding overhead of emulated ERIM is 2.1-
5.3%. Because both VMFUNC and ERIM incur overhead
on switches, overheads of both reduce as the switching rate
reduces, which happens as the file size increases. (The use
of Dune and extended page tables also induces an overhead
on all syscalls and page walks in the VMFUNC isolation.)

To directly compare VMFUNC’s overheads to actual

ERIM’s, we calculated VMFUNC’s overhead as a func-
tion of switch rate. Across different file sizes, this varies
from 1.4%-1.87% for 100,000 switches/s. In contrast, actual
ERIM’s overhead in the similar experiment of Section 6.2
never exceeds 0.44% for 100,000 switches/s. This difference
is consistent with the microbenchmark results in Table 2.

Kernel page tables (lwCs) Next, we compare ERIM’s
overhead to that of lwCs [33], a recent system for in-process
isolation based on kernel page-table protections. LwCs map
each isolated component to a separate address space in the
same process. A switch between components requires ker-
nel mediation to change page tables, but does not require a
process context switch. To measure lwC overheads, we re-
run the NGINX experiment of Section 6.2, using two lwC
contexts, one for the session keys and encryption/decryption
functions and the other for NGINX and the rest of OpenSSL.
Unfortunately, lwCs were prototyped in FreeBSD, which
does not support MPK, so we again use our emulation of

USENIX Association 28th USENIX Security Symposium 1235

ERIM’s switch overhead to compare. All experiments re-
ported here were run on Dell OptiPlex 7040 machines with
4-core Intel Skylake i5-6500 CPUs clocked at 3.2 GHz, 16
GB memory, 10 Gbps Ethernet cards, and FreeBSD 11.

Figure 3c shows the throughput of NGINX running with
lwCs and emulated ERIM, relative to a baseline without any
protection. With lwCs, the throughput is never above 80%
of the baseline, and for small files, where the switch rate is
high, the throughput is below 50%. In contrast, the through-
put with emulated ERIM is within 95% of the baseline for all
file sizes. In terms of switch rates, lwCs incur a cost of 10.5-
18.3% for 100,000 switches/s across different file sizes. Ac-

tual ERIM’s switch overhead during the similar experiment
of Section 6.2 is no more than 0.44% across all file sizes,
which is two orders of magnitude lower than that of lwCs.

Memory safety (WebAssembly) Finally, we compare
ERIM’s overheads to those of full memory safety on un-
trusted code. Specifically, we compare to compilation of
untrusted code through WebAssembly [21], a memory-safe,
low-level language that is now supported natively by all ma-
jor web browsers and expected to replace existing SFI tech-
niques like Native Client in the Chrome web browser. We
compare to ERIM using the experiment of Section 6.3. We
re-compile the (untrusted) SQLite library to WebAssembly
via emscripten v1.37.37’s WebAssembly backend [5], and
run the WebAssembly within Node.js, which supports the
language. Accross tests of Table 5, the overhead of using
WebAssembly varies from 81% to 193%, which is one to
two orders of magnitude higher than ERIM’s overhead.

Emulating ERIM’s switch cost We describe how we em-
ulate ERIM’s switch cost when comparing to VMFUNC and
lwCs above. Specifically, we need to emulate the cost of a
WRPKRU instruction, which isn’t natively supported in the
environments of those experiments. We do this using xor in-
structions to consume the appropriate number of CPU cycles,
followed by RDTSCP, which causes a pipeline stall and pre-
vents instruction re-ordering. Specifically, we execute a loop
five times, with xor eax,ecx; xor ecx,eax; xor

eax,ecx, followed by a single RDTSCP after the loop.
To validate the emulation we re-ran the SPEC CPU 2006

benchmark with CPI/CPS (Section 6.4) after swapping ac-
tual WRPKRU instructions with the emulation sequence
shown above and compared the resulting overheads. In each
individual test, the difference in overhead between actual
ERIM and the emulation is below 2%. We note that a per-
fectly precise emulation is impossible since emulation can-
not exactly reproduce the effects of WRPKRU on the exe-
cution pipeline. (WRPKRU must prevent the reordering of
loads and stores with respect to itself.) Depending on the
specific benchmark, our emulation slightly over- or under-
estimates the actual performance impact of WRPKRU. We
also observed that emulations of WRPKRU using LFENCE
or MFENCE (the latter was suggested by [30]) in place of

RDTSCP incur too little or too much overhead, respectively.

7 Conclusion

Relying on the recent Intel MPK ISA extension and simple
binary inspection, ERIM provides hardware-enforced isola-
tion with an overhead of less than 1% for every 100,000
switches/s between components on current Intel CPUs,
and almost no overhead on execution within a component.
ERIM’s switch cost is up to two orders of magnitude lower
than that of kernel page-table based isolation, and up to
3-5x lower than that of VMFUNC-based isolation. For
VMFUNC, virtualization can cause additional overhead on
syscalls and page table walks. ERIM’s overall overhead
is lower than that of isolation based on memory-bounds
checks (with Intel MPX), even at switch rates of the order
of 106/s. Additionally, such techniques require control-flow
integrity to provide strong security, which has its own over-
head. ERIM’s comparative advantage prominently stands
out on applications that switch very rapidly and spend a non-
trivial fraction of time in untrusted code.

Acknowledgements We thank the anonymous reviewers,
our shepherd Tom Ritter, Bobby Bhattacharjee, and Mathias
Payer for their feedback, which helped improve this paper.
This work was supported in part by the European Research
Council (ERC Synergy imPACT 610150) and the German
Science Foundation (DFG CRC 1223).

References

[1] https://www.sqlite.org.

[2] https://nodejs.org.

[3] https://httpd.apache.org/docs/2.4/

programs/ab.html.

[4] https://www.sqlite.org/testing.html.

[5] https://github.com/kripken/

emscripten.

[6] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity. In Proceedings of ACM

SIGSAC Conference on Computer and Communica-

tions Security (CCS), 2005.

[7] ARM Limited. Developer guide: ARM memory do-
mains. http://infocenter.arm.com/help/,
2001.

[8] ARM Limited. ARM Security Technology. http://
infocenter.arm.com/help/topic/

com.arm.doc.prd29-genc-009492c/

PRD29-GENC-009492C_trustzone_

security_whitepaper.pdf, 2009.

[9] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mezières, and Christos Kozyrakis. Dune:

1236 28th USENIX Security Symposium USENIX Association

Safe user-level access to privileged CPU features. In
Proceedings of USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), 2012.

[10] Andrea Bittau and Petr Marchenko. Wedge: Splitting
applications into reduced-privilege compartments. In
Proceedings of Networked System Design and Imple-

mentation (NSDI), 2008.

[11] Nathan Burow, Xinping Zhang, and Mathias Payer.
SoK: Shining Light On Shadow Stacks. In Proceed-

ings of IEEE Symposium on Security and Privacy (Oak-

land), 2019.

[12] Scott A. Carr and Mathias Payer. Datashield: Config-
urable data confidentiality and integrity. In Proceedings

of ACM ASIA Conference on Computer and Communi-

cations Security (AsiaCCS), 2017.

[13] Yaohui Chen, Sebassujeen Reymondjohnson,
Zhichuang Sun, and Long Lu. Shreds: Fine-
Grained Execution Units with Private Memory. In
Proceedings of IEEE Symposium on Security and

Privacy (Oakland), 2016.

[14] Nathan Dautenhahn, Theodoros Kasampalis, Will Di-
etz, John Criswell, and Vikram Adve. Nested kernel:
An operating system architecture for intra-kernel priv-
ilege separation. In Proceedings of ACM Conference

on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2015.

[15] Dyninst. Dyninst: An application program interface
(API) for runtime code generation. http://www.

dyninst.org.

[16] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziiba-
yar Otgonbaatar, Tiffany Tang, Howard Shrobe, Ste-
lios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. Missing the point(er): On the effectiveness
of code pointer integrity. In Proceedings of IEEE Sym-

posium on Security and Privacy (Oakland), 2015.

[17] Tommaso Frassetto, David Gens, Christopher
Liebchen, and Ahmad-Reza Sadeghi. JITGuard:
Hardening just-in-time compilers with SGX. In Pro-

ceedings of ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2017.

[18] Tommaso Frassetto, Patrick Jauernig, Christopher
Liebchen, and Ahmad-Reza Sadeghi. IMIX: In-
process memory isolation extension. In Proceedings

of USENIX Security Symposium, 2018.

[19] Enes Göktas, Robert Gawlik, Benjamin Kollenda,
Elias Athanasopoulos, Georgios Portokalidis, Cristiano
Giuffrida, and Herbert Bos. Undermining Information
Hiding (and What to Do about It). In Proceedings of

USENIX Security Symposium, 2016.

[20] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and Jing
Wang. Protecting private keys against memory disclo-
sure attacks using hardware transactional memory. In
Proceedings of IEEE Symposium on Security and Pri-

vacy (Oakland), 2015.

[21] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and J. F. Bastien. Bringing the
web up to speed with WebAssembly. In Proceedings

of ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI), 2017.

[22] Mohammad Hedayati, Spyridoula Gravani, Ethan
Johnson, John Criswell, Michael Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In Proceedings of

USENIX Annual Technical Conference (ATC), 2019.

[23] Andrei Homescu, Stefan Brunthaler, Per Larsen, and
Michael Franz. librando: Transparent Code Random-
ization for Just-in-Time Compilers. In Proceedings of

ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS), 2013.

[24] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eug-
ster, and Mathias Payer. Enforcing least privilege mem-
ory views for multithreaded applications. In Proceed-

ings of ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2016.

[25] Ralf Hund, Carsten Willems, and Thorsten Holz. Prac-
tical timing side channel attacks against kernel space
ASLR. In Proceedings of IEEE Symposium on Secu-

rity and Privacy (Oakland), 2013.

[26] Intel Corporation. Memory Protection Extensions
(Intel MPX). https://software.intel.com/
en-us/isa-extensions/intel-mpx.

[27] Intel Corporation. Software Guard Extensions Pro-
gramming Reference. https://software.

intel.com/sites/default/files/

managed/48/88/329298-002.pdf, 2014.

[28] Intel Corporation. Intel(R) 64 and IA-32 Architectures
Software Developer’s Manual, 2016. https://

software.intel.com/en-us/articles/

intel-sdm.

[29] Kernel.org. SECure COMPuting with fil-
ters. https://www.kernel.org/doc/

Documentation/prctl/seccomp_filter.

txt, 2017.

[30] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No Need to Hide:
Protecting Safe Regions on Commodity Hardware. In

USENIX Association 28th USENIX Security Symposium 1237

Proceedings of ACM European Conference on Com-

puter Systems (EuroSys), 2017.

[31] Volodymyr Kuznetsov, László Szekeres, and Math-
ias Payer. Code-pointer integrity. In Proceedings of

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2014.

[32] Hojoon Lee, Chihyun Song, and Brent Byunghoon
Kang. Lord of the x86 rings: A portable user mode
privilege separation architecture on x86. In Proceed-

ings of ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2018.

[33] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In Proceedings of USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI), 2016.

[34] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Effi-
cient Hypervisor-enforced Intra-domain Isolation. In
Proceedings of ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2015.

[35] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Si-
mon P. Chung, Taesoo Kim, and Wenke Lee. ASLR-
Guard: Stopping Address Space Leakage for Code
Reuse Attacks. In Proceedings of ACM SIGSAC Con-

ference on Computer and Communications Security

(CCS), 2015.

[36] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei
Zhou, Anupam Datta, Virgil Gligor, and Adrian Perrig.
Trustvisor: Efficient TCB reduction and attestation. In
Proceedings of IEEE Symposium on Security and Pri-

vacy (Oakland), 2010.

[37] MITRE. CVE-2014-0160. https://nvd.nist.

gov/vuln/detail/CVE-2014-0160, 2014.

[38] Lucian Mogosanu, Ashay Rane, and Nathan Dauten-
hahn. MicroStache: A Lightweight Execution Context
for In-Process Safe Region Isolation. In Proceedings

of International Symposium on Research in Attacks, In-

trusions, and Defenses (RAID), 2018.

[39] Angelos Oikonomopoulos, Elias Athanasopoulos, Her-
bert Bos, and Cristiano Giuffrida. Poking Holes in In-
formation Hiding. In Proceedings of USENIX Security

Symposium, 2016.

[40] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhato-
tia, Pascal Felber, and Christof Fetzer. Intel MPX Ex-
plained: A Cross-layer Analysis of the Intel MPX Sys-
tem Stack. In Proceedings of ACM SIGMETRICS Con-

ference on Measurement and Analysis of Computing

Systems (ACM Sigmetrics), 2018.

[41] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software abstraction for Intel
Memory Protection Keys (Intel MPK). In Proceedings

of USENIX Annual Technical Conference (ATC), 2019.

[42] David Sehr, Robert Muth, Cliff Biffle, Victor Khi-
menko, Egor Pasko, Karl Schimpf, Bennet Yee, and
Brad Chen. Adapting software fault isolation to
contemporary CPU architectures. In Proceedings of

USENIX Security Symposium, 2010.

[43] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin
Goh, Nagendra Modadugu, and Dan Boneh. On the
effectiveness of address-space randomization. In Pro-

ceedings of ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2004.

[44] Monirul I. Sharif, Wenke Lee, Weidong Cui, and An-
drea Lanzi. Secure in-VM monitoring using hard-
ware virtualization. In Proceedings of ACM SIGSAC

Conference on Computer and Communications Secu-

rity (CCS), 2009.

[45] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn,
Haibo Chen, Binyu Zang, Haibing Guan, and Jinming
Li. Deconstructing Xen. In Proceedings of Network

and Distributed System Security Symposium (NDSS),
2017.

[46] The Clang Team. Clang 5 documentation: Safes-
tack. http://clang.llvm.org/docs/

SafeStack.html, 2017.

[47] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient software-based fault
isolation. In Proceedings of ACM Symposium on Oper-

ating Systems Principles (SOSP), 1993.

[48] Wikimedia Foundation. Static HTML dump.
http://dumps.wikimedia.org/, 2008.

[49] Wikimedia Foundation. Page view statistics April
2012. http://dumps.wikimedia.org/

other/pagecounts-raw/2012/2012-04/,
2012.

[50] Chris Wright, Crispin Cowan, Stephen Smalley, James
Morris, and Greg Kroah-Hartman. Linux security mod-
ules: General security support for the linux kernel. In
Proceedings of USENIX Security Symposium, 2002.

1238 28th USENIX Security Symposium USENIX Association

SafeHidden: An Efficient and Secure Information Hiding Technique
Using Re-randomization

Zhe Wang1,2, Chenggang Wu1,2∗, Yinqian Zhang3, Bowen Tang1,2, Pen-Chung Yew4,

Mengyao Xie1,2, Yuanming Lai1,2, Yan Kang1,2, Yueqiang Cheng5, and Zhiping Shi6

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences,
2University of Chinese Academy of Sciences, 3The Ohio State University,

4University of Minnesota at Twin-Cities, 5Baidu USA, 6The Capital Normal University

Abstract

Information hiding (IH) is an important building block for
many defenses against code reuse attacks, such as code-
pointer integrity (CPI), control-flow integrity (CFI) and fine-
grained code (re-)randomization, because of its effectiveness
and performance. It employs randomization to probabilisti-
cally “hide” sensitive memory areas, called safe areas, from
attackers and ensures their addresses are not leaked by any
pointers directly. These defenses used safe areas to protect
their critical data, such as jump targets and randomization
secrets. However, recent works have shown that IH is vul-
nerable to various attacks.

In this paper, we propose a new IH technique called Safe-
Hidden. It continuously re-randomizes the locations of safe
areas and thus prevents the attackers from probing and in-
ferring the memory layout to find its location. A new thread-
private memory mechanism is proposed to isolate the thread-
local safe areas and prevent adversaries from reducing the
randomization entropy. It also randomizes the safe areas af-
ter the TLB misses to prevent attackers from inferring the
address of safe areas using cache side-channels. Existing
IH-based defenses can utilize SafeHidden directly without
any change. Our experiments show that SafeHidden not only
prevents existing attacks effectively but also incurs low per-
formance overhead.

1 Introduction

Information hiding (IH) is a software-based security tech-
nique, which hides a memory block (called “safe area”) by
randomly placing it into a very large virtual address space,
so that memory hijacking attacks relying on the data inside
the safe area cannot be performed. As all memory point-
ers pointing to this area are ensured to be concealed, at-
tackers could not reuse existing pointers to access the safe
area. Moreover, because the virtual address space is huge

∗To whom correspondence should be addressed.

and mostly inaccessible by attackers, the high randomiza-
tion entropy makes brute-force probing attacks [45, 47] very
difficult to succeed without crashing the program. Due to its
effectiveness and efficiency, IH technique has become an im-
portant building block for many defenses against code reuse
attacks. Many prominent defense methods, such as code-
pointer integrity (CPI), control-flow integrity (CFI) and fine-
grained code (re-)randomization, rely on IH to protect their
critical data. For example, O-CFI [40] uses IH to protect
all targets of indirect control transfer instructions; CPI [30]
uses IH to protect all sensitive pointers; RERANZ [57],
Shuffler [59], Oxymoron [4], Isomeron [15] and ALSR-
Guard [36] use IH to protect the randomization secrets.

For a long time, IH was considered very effective. How-
ever, recent advances of software attacks [20, 35, 19, 43, 22]
have made it vulnerable again. Some of these attacks use
special system features to avoid system crashes when scan-
ning the memory space [19, 35]; some propose new tech-
niques to gauge the unmapped regions and infer the location
of a safe area [43]; some exploit the thread-local implemen-
tation of safe areas, and propose to duplicate safe areas by
using a thread spraying technique to increase the probability
of successful probes [20]; others suggest that cache-based
side-channel attacks can be used to infer the location of safe
areas [22]. These attacks have fundamentally questioned the
security promises offered by IH, and severely threatened the
security defenses that rely on IH techniques.

To counter these attacks, this paper proposes a new infor-
mation hiding technique, which we call SafeHidden. Our
key observation is as follows: The security of IH techniques
relies on (1) a high entropy of the location of the safe ar-
eas, and (2) the assumption that no attacks can reduce the
entropy without being detected. Prior IH techniques have
failed because they solely rely on the program crashes to de-
tect attacks, but recent attacks have devised novel methods
to reduce entropy without crashing the programs.

SafeHidden avoids these design pitfalls. It mediates all
types of probes that may leak the locations of the safe areas,
triggers a re-randomization of the safe areas upon detecting

USENIX Association 28th USENIX Security Symposium 1239

legal but suspicious probes, isolates the thread-local safe ar-
eas to maintain the high entropy, and raises security alarms
when illegal probes are detected. To differentiate acciden-
tal accesses to unmapped memory areas and illegal probing
of safe areas, SafeHidden converts safe areas into trap areas
after each re-randomization, creating a number of trap areas
after a sequence of re-randomization operations. Accesses
to any of these trap areas are captured and flagged by Safe-
Hidden. SafeHidden is secure because it guarantees that any
attempt to reduce the entropy of the safe areas’ locations ei-
ther lead to a re-randomization (restoring the randomness)
or a security alarm (detecting the attack).

SafeHidden is designed as a loadable kernel module,
which is self-contained and can be transparently integrated
with existing software defense methods (e.g., CPI and CFI).
The design and implementation of SafeHidden entail sev-
eral unconventional techniques: First, to mediate all system
events that may potentially lead to the disclosure of safe area
locations, SafeHidden needs to intercept all system call inter-
faces, memory access instructions, and TLB miss events that
may be exploited by attackers to learn the virtual addresses
of the safe areas. Particularly interesting is how SafeHidden
traps TLB miss events: It sets the reserved bits of the page
table entries (PTE) of the safe area so that all relevant TLB
miss events are trapped into the page fault handler. However,
because randomizing safe areas also invalidates the corre-
sponding TLB entries, subsequent benign safe area accesses
will incur TLB misses, which may trigger another random-
ization. To address this challenge, after re-randomizing the
safe areas, SafeHidden utilizes hardware transactional mem-
ory (i.e., Intel TSX [2]) to determine which TLB entries were
loaded before re-randomization and preload these entries to
avoid future TLB misses.

Detecting TLB misses is further complicated by a new
kernel feature called kernel page table isolation (KPTI) [1].
Because KPTI separates kernel page tables from user-space
page tables, TLB entries preloaded in the kernel cannot be
used by the user-space code. To address this challenge, Safe-
Hidden proposes a novel method to temporarily use user-
mode PCIDs in the kernel mode. To prevent the Meltdown
attack (the reason that KPTI is used), it also flushes all kernel
mappings of newly introduced pages from TLBs.

Second, SafeHidden proposes to isolate the thread-local
safe area (by placing it in the thread-private memory) to pre-
vent the attackers from reducing its randomization entropy.
Unlike conventional approaches to achieve thread-private
memory, SafeHidden leverages hardware-assisted extended
page table (EPT) [2]. It assigns an EPT to each thread; the
physical pages in other threads’ thread-local safe area are
configured not accessible in current thread’s EPT. Compared
to existing methods, this method does not need any modifi-
cation of kernel source code, thus facilitating adoption.

To summarize, this paper makes the following contribu-
tions to software security:

• It proposes the re-randomization based IH technique to
protect the safe areas against all known attacks.

• It introduces the use of thread-private memory to iso-
late thread-local safe areas. The construction of thread-
private memory using hardware-assisted extended page
tables is also proposed for the first time.

• It devises a new technique to detect TLB misses, which
is the key trait of cache side-channel attacks against the
locations of the safe areas.

• It develops a novel technique to integrate SafeHidden
with KPTI, which may be of independent interest to sys-
tem researchers.

• It implements and evaluates a prototype of SafeHidden,
and demonstrates its effectiveness and efficiency through
extensive experiments.

The rest of the paper is organized as follows. Section 2
reviews information hiding techniques and existing attacks.
Section 3 explains the threat model. Section 4 presents the
core design of SafeHidden. Section 5 details the implemen-
tation of SafeHidden. Section 6 provides the security and
the performance evaluation. Discussion, related work, and
conclusion are provided in Section 7, 8 and 9.

2 Background and Motivation

2.1 Information Hiding
Information hiding (IH) technique is a simple and efficient
isolation defense to protect the data stored in a safe area. It
places the safe area at a random location in a very large vir-
tual address space. It makes sure that no pointer pointing to
the safe area exists in the regular memory space, hence, mak-
ing it unlikely for attackers to find the locations of the safe
areas through pointers. Instead, normal accesses to the safe
area are all done through an offset from a dedicated register.

Table 1 lists some of the defenses using the IH technique.
The column “TL” shows whether the safe area is used only
by its own thread or by all threads. The column “AF” shows
how frequent the code accesses the safe area. Because most
accesses to the safe area are through indirect/direct control
transfer instructions, their frequencies are usually quite high.
The column “Content in protected objects” shows the critical
data tried to protect in safe areas. The column “Reg” shows
the designated register used to store the (original) base ad-
dress of the safe area. Some of them use the x86 segmen-
tation register %fs/%gs. Others use the stack pointer reg-
ister on X86 64, %rsp, that originally points to the top of
the stack. They access a safe area via an offset from those
registers. For the %gs register, they often use the follow-
ing formats: %gs:0x10, %gs:(%rax), %gs:0x10(%rax), etc.
For the %rsp register, they often use the following formats:
0x10(%rsp), (%rsp, %rax, 0x8), pushq %rax 1, etc.

1It still conforms to the access model. The designated register is %rsp,

1240 28th USENIX Security Symposium USENIX Association

Defense Protected Objects Reg Content in Protected Objects AF TL
O-CFI [40] Bounds Lookup Table %gs The address boundaries of basic blocks targeted by an indirect branch instruction. High No
RERANZ [57] Real Return Address Table %gs The table that contains the return addresses pushed by call instructions. High Yes
Isomeron [15] Execution diversifier data %gs The mapping from the randomized code to the original code. Hign No

ASLR-Guard[36] AG-Stack %rsp Dynamic code locators stored on the stack, such as return addresses. High Yes
Safe-stack %gs ELF section remapping information and the key of code locator encryption. High No

Oxymoron [4]
Randomization-agnostic
translation table %fs

The translation table that contains the assigned indexes that are used to replace
all references to code and data. High No

Shuffler [59] Code pointer table %gs
The table that contains all indexes that are transformed from all function pointers
at their initialization points. High No

CFCI [61] Protected Memory %gs File name and descriptors, and the mapping between file names and file descriptors. Low No

CPI [30]
Safe Stack %rsp

Return address, spilled register, and objects accessed within the function
through the stack pointer register with a constant offset. High Yes

Safe Pointer Store %gs Sensitive pointers and the bounds of target objects pointed by these pointers. High No

Table 1: The list of defenses using information hiding (IH) techniques. AF is short for Access Frequency. TL is short for Thread Local.

A safe area is usually designed to be very small. For ex-
ample, the size of a safe area shown in Table 1 is usually lim-
ited to be within 8 MB in practice. On today’s mainstream
X86 64 CPUs, the randomization entropy of an 8 MB safe
area is 224. Such a high randomization entropy makes brute
force probing attacks [45, 47] hard to guess its location suc-
cessfully. A failed guess will result in a crash and detected
by administrators.

2.2 Attacks against Information Hiding
Recent researches have shown that the IH technique is vul-
nerable to attacks. To locate a safe area, attackers may either
improve the memory scanning technique to avoid crashes, or
trigger the defense’s legal access to the safe area and infer its
virtual address using side-channels.

2.2.1 Memory Scanning

The attackers could avoid crashes during their brute-force
probing. For example, some adversaries have discovered that
some daemon web servers have such features. The daemon
servers can fork worker processes that inherit the memory
layout. If a worker process crashes, a new worker process
will be forked. This enables the so-called clone-probing at-
tacks where an adversary repeatedly probes different clones
in order to scan the target memory regions [35]. CROP [19]
chooses to use the exception handling mechanism to avoid
crashes. During the probing, an access violation will occur
when an inadmissible address is accessed. But, it can be cap-
tured by an exception handler instead of crashing the system.

Attackers could also use memory management APIs to in-
fer the memory allocation information, and then locate the
safe area. In [43], it leverages the allocation oracles to ob-
tain the location of a safe area. In a user’s memory space,
there are many unmapped areas that are separated by code
and data areas. To gauge the size of the largest unmapped

and the offset is equal to 0. The only difference is that it will change the
value of the designated register.

area, it uses a binary search method to find the exact size
by allocating and freeing a memory region repeatedly. Af-
ter getting the exact size, it will allocate the memory in this
area through the persistent allocation oracle. It then uses the
same method to gauge the second largest unmapped area.
Because a safe area is mostly placed in an unmapped area,
an attacker can probe its surrounding areas to find its location
without causing exceptions or crashes.

All probing attacks need to use such covert techniques to
probe the memory many times without causing crashes be-
cause the size of a user’s memory space is very large. In
[20], it finds the safe area in many defenses is thread local
(see Table 1). So, it proposes to leverage the thread “spray-
ing” technique to “spray” a large number of safe areas to
reduce the number of probings. After spraying, the attackers
only need very few probes to locate the safe area.

2.2.2 Cache-based Side-Channel Attacks

To translate a virtual address to a physical address, the MMU
initiates a page table (PT) walk that visits each level of the
page table sequentially in the memory. To reduce the la-
tency, most-recently accessed page table entries are stored in
a special hardware cache, called translation lookaside buffer
(TLB). Because of the large virtual address space in 64-bit
architectures, a hierarchy of cache memories has been used
to support different levels of page-table lookup. They are
called the page table caches, or paging-structure caches by
Intel [2]. In addition, the accessed PT entries are also fetched
into the last level cache (LLC) during the page-table walk.

It has been demonstrated that cache-based side-channels
can break coarse-grained address space layout randomiza-
tion [22]. The location of the safe area can be deter-
mined through the following attack method: First, the at-
tacker triggers the defense system’s access to the safe area.
To ensure this memory access invokes a PT walk, the at-
tacker cleanses the corresponding TLB entries for the safe
area’s virtual address beforehand. Second, the attacker con-
ducts a Prime+Probe or Evict+Time cache side-channel

USENIX Association 28th USENIX Security Symposium 1241

attack [44] to monitor which cache sets are used during the
PT walk. As only certain virtual addresses map to a specific
cache set, the virtual address of the safe area can be inferred
using cache side-channel analysis.

However, it is worth mentioning that to successfully de-
termine the virtual address of one memory area, hundreds of
such Prime+Probe or Evict+Time tests are needed. It is also
imperative that the addresses of the PTEs corresponding to
this memory area are not changed during these tests. That
is, the cache entries mapped by these PTEs are not changed.
Our defense effectively invalidates such assumptions.

3 Threat Model

We consider an IH-based defense that protects a vulnerable
application against code reuse attacks. This application ei-
ther stands as a server that accepts and handles remote re-
quests (e.g., through a web interface), or executes a sand-
boxed scripting code such as JavaScript as done in a mod-
ern web browsers. Accordingly, we assume the attacker has
the permission to send malicious remote requests to the web
servers or lure the web browsers to visit attacker-controlled
websites and download malicious JavaScript code.

This IH-based defense has a safe area hidden in the vic-
tim process’s memory space. We assume the design of the
defense is not flawed: That is, before launching code reuse
attacks, the attacker must circumvent the defense by reveal-
ing the locations of the safe areas (e.g., using one of many
available techniques discussed in Section 2.2). We also as-
sume the implementation of defense system itself is not vul-
nerable, and it uses IH correctly. We assume the underlying
operating system is trusted and secured.

We assume the existence of some vulnerabilities in the ap-
plication that allows the attacker to (a) read and write arbi-
trary memory locations; (b) allocate or free arbitrary mem-
ory areas (e.g., by interacting with the application’s web in-
terface or executing script directly); (c) create any number of
threads (e.g., as a JavaScript program). These capabilities al-
ready represent the strongest possible adversary given in the
application scenarios. Given these capabilities, all known at-
tacks against IH can be performed.

3.1 Attack Vectors
Particularly, we consider the following attack vectors. All
known attacks employ one of the four vectors listed below to
disclose the locations of the safe areas.

• Vector-1: Gathering memory layout information to help
to locate safe areas, by probing memory regions to infer
if they are mapped (or allocated);
• Vector-2: Creating opportunities to probe safe areas

without crashing the system, e.g., by leveraging resum-
able exceptions;

safe area

trap area

code/data

unmapped area

move safe area
and leave a trap

probe 1

initial

probe 2

probe n

Figure 1: The high-level overview of the proposed re-
randomization with the dispersed trap areas.

• Vector-3: Reducing the entropy of the randomized safe
area locations to increase the success probability of
probes, by decreasing the size of unmapped areas or in-
creasing the size of safe areas;
• Vector-4: Monitoring page-table access patterns using

cache side-channels to infer the addresses of safe areas,
while triggering legal accesses to safe areas.

4 SafeHidden Design

We proposed SafeHidden, an IH technique that leverages re-
randomization to prevent the attackers from locating the safe
areas. It protects safe areas in both single-threaded programs
and multi-threaded programs. It is designed primarily for
Linux/X86 64 platform, as most of the defenses leveraging
IH are developed on this platform.

At runtime, SafeHidden detects all potential memory
probes. To avoid overly frequent re-randomization, it mi-
grates the safe area to a new randomized location only af-
ter the detection of a suspicious probing. It then leaves a
trap area of the same size behind. Figure 1 illustrates the
high-level overview of the re-randomization method. In the
figure, the memory layout is changed as the location of the
safe area is being moved continuously, and the unmapped
memory space becomes more fragmented by trap areas. The
ever-changing memory layout could block Vector-1.

As the attackers continue to probe, new trap areas will be
created. Gradually, it becomes more likely for probes to
stumble into trap areas. If the attacker touches a trap area
through any type of accesses, SafeHidden will trigger a se-
curity alarm and capture the attack. The design of trap areas
mitigates the attacks from Vector-2, and significantly lim-
its the attackers’ ability to probe the memory persistently.
While the attackers are still able to locate a safe area before
accessing the trap areas, the probability is proven to be very
small (see Section 4.4).

To block Vector-3, SafeHidden prevents unlimited shrink
of unmapped areas and unrestricted growth of safe areas:
(1) Unmapped areas. Because IH assumes that safe areas
are hidden in a very large unmapped area, SafeHidden must
prevent extremely large mapped areas. In our design, the

1242 28th USENIX Security Symposium USENIX Association

Events Interception Points Responses in SafeHidden
SA UA TA OA

memory management syscalls mmap, munmap, mremap, mprotect, brk, ... Alarm Rand Alarm –
syscalls that could return EFAULT read, write, access, send, ... Alarm Rand Alarm –
cloning memory space clone, fork, vfork Rand Rand Rand Rand
memory access instructions page fault exception – Rand Alarm –

Table 2: Summary of potential stealthy probings and SafeHidden’s responses. “SA”: safe areas, “UA”: unmapped areas, “TA”: trap areas,
“OA”: other areas. “Alarm”: triggering a security alarm. “Rand”: triggering re-randomization. “–”: do nothing.

maximum size of the mapped area allowed by SafeHidden
is 64 TB, which is half of the entire virtual address space
in the user space. Rarely do applications consume terabytes
of memory; even big data applications only use gigabytes
of virtual memory space; (2) Safe areas. Although safe ar-
eas in IH techniques are typically small and do not expand
at runtime, attackers could create a large number of threads
to increase the total size of the thread-local safe areas. To
defeat such attacks, SafeHidden uses thread-private mem-
ory space to store thread-local safe areas. It maintains strict
isolation among threads. When the thread-local safe area is
protected using such a scheme, the entropy will not be re-
duced by thread spraying because any thread sprayed by an
attacker can only access its own local safe area.

To mitigate Vector-4, SafeHidden also monitors legal ac-
cesses to the safe area that may be triggered by the attacker.
Once such a legal access is detected, SafeHidden randomizes
the location of the safe area. As the virtual address of the safe
area is changed during re-randomization, the corresponding
PTEs and their cache entries that are used by the attacker to
make inferences no longer reflects the real virtual address of
the safe area. Thus, Vector-4 is blocked. It is worth noting
that unlike the cases of detecting illegal accesses to the safe
area, no trap area is created after the re-randomization.

In the following subsections, we will detail how SafeHid-
den recognizes and responds to the stealthy memory probes
(see Section 4.1), how SafeHidden achieves the thread-
private memory (see Section 4.2) and how SafeHidden de-
feats cache-based side-channel analysis (see Section 4.3).

4.1 Stealthy Memory Probes

In order to detect potential stealthy memory probes, we list
all memory operations in the user space that can potentially
be used as probings from the attackers (see Table 2).

The first row of Table 2 lists system calls that are related
to memory management. The attackers could directly use
them to gauge the layout of the memory space by allocat-
ing/deallocating/moving the memory or changing the per-
mission to detect whether the target memory area is mapped
or not. The second row lists the system calls that could return
an EFAULT (bad address) error, such as “ssize t write

(int fd, void * buf, size t count)”. These system
calls have a parameter pointing to a memory address. If

the target memory is not mapped, the system call will fail
without causing a crash, and the error code will be set to
EFAULT. These system calls can be used to probe the mem-
ory layout without resulting in a crash. The third row lists
the system calls that can clone a memory space. The at-
tackers could use them to reason about the memory layout
of the parent process from a child process. The fourth row
lists memory access instructions that can trigger a page fault
exception when the access permission is violated. The at-
tackers could register or reuse the signal handler to avoid a
crash when probing an invalid address.

Four types of memory regions are considered separately:
safe areas, unmapped areas, trap areas, and other areas. Un-
mapped areas are areas in the address space that are not
mapped; trap areas are areas that were once safe areas; other
areas store process code and data. As shown in Table 2,
SafeHidden intercepts different types of memory accesses to
these areas and applies different security policy accordingly:

• If the event is an access to an unmapped area, SafeHid-
den will randomize the location of all safe areas. The
original location of a safe area become a trap area.

• If the event is a memory cloning, it will perform ran-
domization in the parent process after creating a child
process, in order to make the locations of their safe ar-
eas different.

• If the event is an access to safe areas through memory
management system calls or system calls with EFAULT
return value, SafeHidden will trigger a security alarm.

• If the event is an access to trap areas through memory
access instructions, memory management system calls,
or system calls with EFAULT return value, it will trig-
ger a security alarm.

• SafeHidden does not react to memory accesses to other
areas. Since they do not have pointers pointing to the
safe areas, probing other areas do not leak the locations.

To avoid excessive use of the virtual memory space, Safe-
Hidden sets an upper limit on the total size of all trap areas
(the default is 1 TB). Once the size of trap areas reaches the
upper limit, SafeHidden will remove some randomly chosen
trap area in each randomization round.

USENIX Association 28th USENIX Security Symposium 1243

The design of such a security policy is worth further dis-
cussion here. Trap areas are previous locations of safe areas,
which should be protected from illegal accesses in the same
way as safe areas. As normal application behaviors never
access safe areas and trap areas in an illegal way, accesses
to them should raise alarms. For accesses to unmapped ar-
eas, an immediate alarm may cause false positives because
the application may also issue memory management system
calls, system calls with an EFAULT return value, or a mem-
ory access that touches unmapped memory areas. Therefore,
accesses to unmapped areas only trigger re-randomization of
the safe area to restore the randomness (that could invali-
date the knowledge of previous probes), but no alarm will be
raised. An alternative design would be counting the num-
ber of accesses to unmapped areas and raising a security
alarm when the count exceeds a threshold. However, setting
a proper threshold is very difficult because different probing
algorithms could have different probing times. Therefore,
monitoring critical subsets of the unmapped areas—the safe
areas and trap areas—appears a better design choice.

4.2 Thread-private Memory
Thread-private memory technique was usually used in multi-
threaded record-and-replay techniques [25, 7, 31]. We pro-
pose to use thread-private memory to protect safe areas.
Conventional methods to implement thread-private memory
is to make use of thread-private page tables in the OS ker-
nel. As a separate page table is maintained for each thread,
a reference page table for the entire process is required to
keep track of the state of each page. The modification of
the kernel is too complex, which cannot be implemented as
a loadable kernel module: For example, to be compatible
with kswapd, the reference page table must be synchronized
with the private page tables of each thread, which requires
tracking of CPU accesses of each PTE (especially the setting
of the accessed and dirty bits2 by CPU). The need for ker-
nel source code modification and recompilation restricts the
practical deployment of this approach.

To address this limitation, we propose a new approach to
implement thread-private memory using the hardware vir-
tualization support. Currently, a memory access in a guest
VM needs to go through two levels of address translation: a
guest virtual address is first translated into a guest physical
address through the guest page table (GPT), which is then
translated to its host physical address through a hypervisor
maintained table, e.g., the extended page table (EPT) [38]
in Intel processors, or the nested page table (NPT) [56] in
AMD processors. Using Intel’s EPT as an example, multiple
virtual CPUs (VCPU) within a guest VM will share the same
EPT. For instance, when the two VCPUs of a guest VM run

2These flags are provided for use by memory-management software to
manage the transfer of pages into and out of physical memory. CPU is
responsible for setting these bits via the physical address directly.

The view of Thread0’s Memory Space

Guest
Page Table

Guest
Hypervisor

P
1

Machine Memory

P
1

P
2

EPT0
P
3

EPT1

EPTP
CR3

Core 0
EPTP
CR3

Core 1

Guest Physical Memory

P
0

P
0

The view of Thread1’s Memory Space

Figure 2: An example of the thread-private memory mechanism.
P0 and P1 is thread-private memory page of Thread0 and Thread1,
respectively.

two threads of the same program, both the virtual CR3 reg-
isters point to the page table of the program, and both EPT
pointers (EPTPs) of VCPUs are pointing to a shared EPT.

To implement a thread-private memory, we can instead
make each EPTP to point to a separate EPT to maintain its
own thread-private memory. In such a scheme, each thread
will have its own private EPT. The physical pages mapped
in a thread’s private memory in other threads’ private EPTs
will be made inaccessible. Figure 2 depicts an example of
our thread-private memory scheme. When Thread1 tries to
access its thread-private memory page P1, the hardware will
walk both GPT and EPT1 to get the P3 successfully. But
when Thread0 tries to access P1, it will trigger an EPT vi-
olation exception when the hardware walking EPT0 and be
captured by the hypervisor.

In such a scheme, when a thread is scheduled on a VCPU,
the hypervisor will set EPTP to point to its own EPT. In ad-
dition, SafeHidden synchronizes the EPTs by tracking the
updates of the entries for the thread-local safe areas. For
example, when mapping a guest physical page, SafeHidden
needs to add the protection of all threads’ EPTs for this page.

The thread-private memory defeats Vector-3 completely.
When thread-local safe areas are stored in such thread-
private memory, spraying thread-local safe areas is no
longer useful for the attackers because it will spray many
prohibited areas that are similar to trap areas, called shielded
areas (e.g., P1 is Thread0’s shielded area in Figure 2), and
be captured more easily.

4.3 Thwarting Cache Side-Channel Attacks
As discussed in Section 2.2.2, a key step in the cache side-
channel attack by Gras et al. [22] is to force a PT walk when
an access to the safe area is triggered. Therefore, a necessary
condition for such an attack is to allow the attacker to induce
TLB misses in a safe area. SafeHidden mitigates such at-
tacks by intercepting TLB misses when accessing safe areas.

To only intercept the TLB miss occurred in safe areas,

1244 28th USENIX Security Symposium USENIX Association

SafeHidden leverages a reserved bit in a PTE on X86 64 pro-
cessors. When the reserved bit is set, a page fault exception
with a specific error code will be triggered when the PTE
is missing in TLB. Using this mechanism, a TLB miss can
be intercepted and handled by the page fault handler. Safe-
Hidden sets the reserved bit in all of the PTEs for the safe
areas. Thus, when a TLB miss occurs, it is trapped into the
page fault handler and triggers the following actions: (1) It
performs one round of randomization for the safe area; (2) It
clears the reserved bit in the PTE of the faulting page; (3) It
loads the PTE (after re-randomization) of the faulting page
into the TLB; (4) It then sets the reserved bit of the PTE
again. It is worth noting that loading the TLB entry of the
faulting page is a key step. Without this step, the program’s
subsequent accesses to the safe area will cause TLB misses
again, which will trigger another randomization.

The re-randomization upon TLB miss effectively defeats
cache-based side-channel analysis. As mentioned in Section
2.2.2, a successful side-channel attack requires hundreds of
Prime+Probe or Evict+Time tests. However, as each test
triggers a TLB miss, the safe area is re-randomized after ev-
ery test. The PTEs used to translate the safe areas in each PT
levels are re-randomized. Thus, the cache entries mapped by
these PTEs are also re-randomized that completely defeating
cache-based side-channels [22].

Nevertheless, two issues may arise: First, the PTEs of a
safe area could be updated by OS (e.g., during a page mi-
gration or a reclamation), and thus clearing the reserved bits.
To avoid these unintended changes to the safe areas’ PTEs,
SafeHidden traps all updates to the corresponding PTEs to
maintain the correct values of the reserved bits. Second, as
the location of a safe area is changed after a randomization, it
will cause many TLB misses when the safe area is accessed
at the new location, which may trigger many false alarms
and re-randomizations. To address this problem, SafeHid-
den reloads the safe area’s PTEs that were already loaded in
the TLB back to the TLB after re-randomization. This, how-
ever, requires SafeHidden to know which PTEs were loaded
in the TLB before the re-randomization. To do so, Safe-
Hidden exploits an additional feature in Intel transactional
synchronization extensions (TSX), which is Intel’s imple-
mentation of hardware transactional memory [2]. During a
re-randomization, SafeHidden touches each page in the safe
area from inside of a TSX transaction. If there is a TLB
miss, a page fault exception will occur because the reserved
bit of its PTE is set. But this exception will be suppressed by
a TSX transaction and handled by its abort handler. There-
fore, SafeHidden can quickly find out all loaded PTEs before
the re-randomization and reload them for the new location in
the TLB without triggering any page fault exception.

Integrating SafeHidden with kernel page table isolation
(KPTI) [1] introduces additional challenges. KPTI is a de-
fault feature used in the most recent Linux kernels. It sep-
arates the kernel page tables from user-space page tables,

which renders the pre-loaded TLB entries of the safe areas
in kernel unusable by the user-space application. We will
detail our solution in section 5.

4.4 Security Analysis
SafeHidden by design completely blocks attacks through
Vector-1, Vector-3, and Vector-4. However, it only prob-
abilistically prevents attacks through Vector-2. As such, in
this section, we outline an analysis of SafeHidden’s security
guarantee. Specifically, we consider a defense system with
only one safe area hidden in the unmapped memory space.
We abstract the attackers’ behavior as a sequence of memory
probes, each of which triggers one re-randomization of the
safe area and creates a new trap area.

Pc ith =

(i ·Pt) ·

i−1
∏
j=1

(1−Ph− j ·Pt) i f i≤M

(M ·Pt) · (
M
∏
j=1

(1−Ph− j ·Pt)) · (1−Ph−M ·Pt)
i−1−M

i f i > M
(1)

The probability of detecting probes. Let the probability
of detecting the attacks within N probes be Pc n. Then the
cumulative probability Pc n = ∑

n
i=1 Pc ith, where Pc ith repre-

sents the probability that an attacker escapes all i−1 probes,
but is captured in the ith probe when it hits a trap area. An
escape means that the attacker’s probe is unsuccessful but re-
mains undetected. Pc ith is calculated in Equation (1), where
i denotes the number of probes, j denotes the number of ex-
isting trap areas, Ph denotes the probability that the attacker
hits the safe area in a probe, Pt represents the probability that
the attacker hits one of the trap areas in a probe, M denotes
the maximum number of trap areas. As an escape results in
one re-randomization and the creation of a trap area, we ap-
proximate the number of existing trap areas with the number
of escapes. But the number only increases up to M. So we
consider if i reaches M separately. In the equation, (i ·Pt)
or (M ·Pt) represents the probability that the probes are de-
tected in the ith probe and (1−Ph− j ·Pt) or (1−Ph−M ·Pt)
represents the probability of escaping the ith probe.

The attacker’s success probability. We denote the prob-
ability of the attacker’s successfully locating the safe area
within N probes as Ps n. Ps n = ∑

n
i=1 Ps ith, where Ps ith rep-

resents the probability that the attacker escapes in the first
i− 1 probes, but succeed in the ith probe. Ps ith is provided
in Equation (2).

Ps ith =

Ph ·

i−1
∏
j=1

(1−Ph− j ·Pt) i f i≤M

Ph · (
M
∏
j=1

(1−Ph− j ·Pt)) · (1−Ph−M ·Pt)
i−1−M

i f i > M
(2)

USENIX Association 28th USENIX Security Symposium 1245

0 5000 10000 15000 20000
Time of probings

0.0

0.2

0.4

0.6

0.8

1.0

p c
n

0.11

0.38

0.66

0.85
0.950.99

(a) The curve of pc n

0 5000 10000 15000 20000
Time of probings

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

p s
n

×10−4

0.0001

0.0002

0.0003
0.0003 0.0003

(b) The curve of ps n

Figure 3: The probability of being captured by SafeHidden within
N probes (a) and the probability of locating the safe areas within N
probes successfully (b).

Discussion. When the size of the safe area is set to 8 MB,
and the maximum size of all trap areas is set to 1 TB, as
shown in Figure 3(a), Pc n increases as the number of probes
grows. When the number of probes reaches 15K, SafeHid-
den detects the attack with a probability of 99.9%; Pc n ap-
proaches 100% as the number of probes reaches 20K. Fig-
ure 3(b) suggests the value of Ps n increases as the number
of probes increases, too. But even if the attacker can es-
cape in 15K probes (which is very unlikely given Figure
3(a)), the probability of successfully locating the safe area
is still only 0.03% (shown in Figure 3(b)), which is the max-
imum that could ever be achieved by the attacker. Notice
that our abstract model favors the attackers, for example: (1)
no shielded areas are considered in the analysis; (2) ran-
domization triggered by applications’ normal activities and
TLB misses is ignored in the analysis. Obviously, in the
real world situation, the attacker’s success probability will
be even lower, and the attack will be caught much sooner.

5 System Implementation

SafeHidden is designed as a loadable kernel module. Users
could deploy SafeHidden by simply loading the kernel mod-
ule, and specifying, by passing parameters to the module,
which application needs to be protected and which registers
point to the safe area. No modification of the existing de-
fenses or re-compiling the OS kernel is needed.

5.1 Architecture Overview of SafeHidden

As described in Section 4.2, SafeHidden needs the hardware
virtualization support. It can be implemented within a Vir-
tual Machine Monitor (VMM), such as Xen or KVM. How-
ever, the need for virtualization does not preclude its appli-
cation in non-virtualized systems. To demonstrate this, we
integrated a thin hypervisor into the kernel module for a non-
virtualized OS. The thin hypervisor virtualizes the running
OS as the guest without rebooting the system. The other
components inside the kernel module are collectively called
GuestKM, which runs in the guest kernel.

Hardware Hypervisor

OS Kernel

Protected
APP’s thread0

Other
Applications

Protected
APP’s thread1

Process
Sched

Randomizer

Syscall Interceptor

#0

#511
. . .
. . .

Page Tables

#0

#511
. . .
. . .

Extended page tables

EPT
Violation
Handler

Hypercall Handlers

Checker

Kernel Module

#PF Interceptor vmcall

Linux
Notifier

SafeHidden

Function
Module

Switch
EPT

Sync
EPT

Intercept
Events

Inject
Interrupt

Figure 4: Architecture overview of SafeHidden.

After loading the SafeHidden module, it first starts the
hypervisor and then triggers the initialization of GuestKM
to install hooks during the Initialization Phase. Figure 4
shows an overview of SafeHidden’s architecture. We can see
that SafeHidden is composed of two parts: the hypervisor
and the GuestKM. In the initialization phase, GuestKM in-
stalls hooks to intercept three kinds of guest events: context
switching, page fault exceptions, and certain system calls.

SafeHidden then starts to protect the safe areas by random-
izing their locations and isolating the thread-local safe ar-
eas during the Runtime Monitoring Phase. In the GuestKM,
the Syscall Interceptor and the #PF Interceptor modules
are used to intercept system calls and page fault exceptions.
When these two types of events are intercepted, they will re-
quest the Checker module to determine if SafeHidden needs
to raise a security alarm, or if it needs to notify the Random-
izer module to perform randomization. Meanwhile, Safe-
Hidden needs to maintain the thread-private EPT to isolate
the thread-local safe areas. The sync EPT module is used
to synchronize the protected threads’ page tables with their
EPTs. The switch EPT module will switch EPTs when a
protected thread is scheduled. Because both modules need
to operate EPTs, they are coordinated by the Hypercall Han-
dlers module. The EPT Violation Handler module is used to
monitor illegal accesses to the thread-local safe areas.

5.2 Initialization Phase

Task-1: starting hypervisor. When the kernel module is
launched, the hypervisor starts immediately. It configures
the EPT paging structures, enables virtualization mode, and
places the execution of the non-virtualized OS into the vir-
tualized guest mode (non-root VMX mode). At this time, it
only needs to create a default EPT for guest. Because the
guest is a mirror of the current running system, the default
EPT stores a one-to-one mapping that maps each guest phys-
ical address to the same host physical address.

1246 28th USENIX Security Symposium USENIX Association

Task-2: installing hooks in guest kernel. When the guest
starts to run, GuestKM will be triggered to install hooks
to intercept three kinds of events: 1) To intercept the sys-
tem calls, GuestKM modifies the system call table’s
entries and installs an alternative handler for each of
them; 2) To intercept the page fault exception, GuestKM
uses the ftrace framework in Linux kernel to hook the
do page fault function; 3) To intercept context switches,
GuestKM uses the standard preemption notifier in Linux,
preempt notifier register, to install hooks. It can be
notified through two callbacks, the sched in() and the
sched out(), when a context switch occurs.

5.3 Runtime Monitoring Phase

Recognizing safe areas. GuestKM intercepts the execve()
system call to monitor the startup of the protected process.
Based on the user-specified dedicated register, GuestKM can
monitor the event of setting this register to obtain the value.
In Linux kernel, the memory layout of a process is stored in a
list structure, called vm area struct. GuestKM can obtain
the safe area by searching the link using this value. Accord-
ing to Table 1, there are two kinds of registers that store the
pointer of a safe area: 1) The 64-bit Linux kernel only al-
lows a user process to set the %gs or %fs segmentation regis-
ters through the arch prctl() system call 3. So, GuestKM
intercepts this system call to obtain the values of these reg-
isters; 2) All existing methods listed in Table 1 use %rsp

pointed safe area to protect the stack. So, GuestKM analyzes
the execution result of the execve() and the clone() sys-
tem calls to obtain the location of the safe area, i.e., the stack,
of the created thread or process. Once a safe area is recog-
nized, its PTEs will be set invalid by setting the reserved bits.

To determine whether a safe area is thread-local or not,
GuestKM monitors the event of setting the dedicated register
in child threads. If the register is set to point to a different
memory area, it means that the child thread has created its
thread-local safe area, and the original safe area belongs to
the parent. Until the child thread modifies the register to
point to a different memory area, it shares the same safe area
with its parent.

Randomizing safe areas. As described in Section 4.1 and
4.3, when GuestKM needs to perform randomization, it in-
vokes the customized implementation of do mremap() func-
tion in the kernel with a randomly generated address (by
masking the output of the rdrand instruction with The
0x7ffffffff000) to change the locations of the safe ar-
eas. If the generated address has been taken, the process
is repeated until a usable address is obtained. It is worth
noting that GuestKM only changes the virtual address of

3Recent CPUs supporting the WRGSBASE/WRFSBASE instructions allow
setting the %gs and %fs base directly, but they are restricted by the Linux
kernel to use in user mode.

CR3[12] = 0

User Space

Kernel Space

User Space

Kernel Space

Kernel Mode User Mode

PGD
Kernel

PGD
User

… … … …

kPCID

uPCID

- 0x1000

+ 0x800

CR3[11] = 1

physical
memory

Figure 5: Overview of kernel page-table isolation.

the safe area, the physical pages are not changed. After
migrating each safe area (not triggered by the TLB miss
event), GuestKM will invoke do mmap() with the protec-
tion flag PROT NONE to set the original safe area to be a trap
area. For multi-threaded programs, when the execution of
a thread triggers a randomization (not triggered by the TLB
miss event), the safe areas of all threads need to be random-
ized. To ensure the correctness, GuestKM needs to block all
threads before randomizing all (or thread-shared) safe areas.

Although all safe areas used in existing defenses in Table
1 are position-independent, we do not rule out the possibility
that future defenses may store some position-dependent data
in the safe area. However, as any data related to an absolute
address can be converted to the form of a base address with
an offset, they can be made position independent. Therefore,
after randomizing all safe areas, SafeHidden just needs to
modify the values of the dedicated registers to point to the
new locations of the safe areas.

Loading TLB entries under KPTI. The kernel page table
isolation (KPTI) feature [1] was introduced into the main-
stream Linux kernels to mitigate the Meltdown attack [32].
For each procecss, it splits the page table into a user-mode
page table and a kernel-mode page table (as shown in Figure
5). The kernel-mode page table includes both kernel-space
and user-space addresses, but it is only used when the sys-
tem is running in the kernel mode. The user-mode page table
used in the user mode contains all user-space address map-
pings and a minimal set of kernel-space mappings for serv-
ing system calls, handling interrupts and exceptions. When-
ever entering or exiting the kernel mode, the kernel needs to
switch between the two page tables by setting the CR3 reg-
ister. To accelerate the page table switching, the roots of the
page tables (i.e., PGD kernel and PGD user in Figure 5) are
placed skillfully in the physical memory so that the kernel
only needs to set or clear the bit 12 of CR3.

Moreover, to avoid flushing TLB entries when switching
page tables, the kernel leverages the Process Context Identi-
fier (PCID) feature [2]. When PCID is enabled, the first 12
bits (bit 0 to bit 11) of the CR3 register represents the PCID
of the process which is used by the processor to identify the

USENIX Association 28th USENIX Security Symposium 1247

owner of a TLB entry. The kernel assigns different PCIDs to
the user and kernel modes (i.e., kPCID and uPCID in the fig-
ure). When entering or exiting the kernel mode, the kernel
needs to switch between kPCID and uPCID. To accelerate
this procedure, kPCID and uPCID of the same process only
differ in one bit. Therefore, the kernel only needs to set or
clear the bit 11 of CR3.

1 // .S file

2 .globl asm_load_pte_irqs_off

3 .align 0x1000

4 asm_load_pte_irqs_off:

5 /* 1. Get CR3 (kernel-mode page table with kPCID) */

6 mov %cr3, %r11

7 /* 2. Switch to kernel-mode page table with uPCID */

8 bts 63, %r11 // set noflush bit

9 bts 11, %r11 // set uPCID bit

10 mov %r11, %cr3 // set CR3

11 /* 3. Access user-mode pages to load pte into TLB */

12 stac // Allow user-mode pages accesses

13 movb (%rdi), %al // Read a byte from user-mode page

14 clac // Disallow user-mode pages accesses

15 /* 4. Get uPCID value */

16 mov %r11, %rax

17 and $0xfff, %rax

18 /* 5. Switch to kernel-mode page table with kPCID */

19 bts 63, %r11 // set noflush bit

20 btc 11, %r11 // clear uPCID bit

21 mov %r11, %cr3 //set CR3

22 retq //return uPCID

23 // .c file

24 void load_pte_into_TLB(unsigned long addr) {

25 unsigned long flags, uPCID;

26 // disable preemption and interrupts

27 get_cpu(); local_irq_save(flags);

28 uPCID = asm_load_pte_irqs_off(addr);

29 // flush the TLB entries for a given pcid and addr

30 invpcid_flush_one(uPCID, asm_load_pte_irqs_off);

31 // enable preemption and interrupts

32 local_irq_restore(flags); put_cpu();

33 }

Listing 1: The code snippet to load the TLB entries under KPTI.

As mentioned in Section 4.3, SafeHidden needs to load
PTEs of the safe areas into the TLB every time it randomizes
the safe areas. However, it is challenging to make SafeHid-
den compatible with KPTI. This is because SafeHidden only
runs in the kernel mode—it uses the kernel-mode page table
with kPCID, but the TLB entries of the safe areas must be
loaded from the user-mode page table using uPCID.

An intuitive solution is to map SafeHidden into the kernel
space portion of the user-mode page tables. Then the PTE
loading is performed with uPCID. However, this method in-
troduces more pages into the user-mode page tables and thus
increases the attack surface of the Meltdown attack.

We propose the following alternative solution: SafeHid-
den still runs in the kernel mode using the kernel-mode page
table. Before loading the TLB entries of the safe areas, it
switches from kPCID to uPCID temporarily. Then without
switching to the user-mode page table, it accesses the safe
area pages to load the target PTEs into the TLB with uPCID.

There is no need to switch to the user-mode page table for
two reasons: (1) TLB entries are only tagged with PCIDs
and virtual addresses; (2) the user-space addresses are also
mapped in the kernel-mode page table. After the PTE load-
ing, SafeHidden switches back to kPCID and then flushes
the TLBs of the instruction/data pages related to the loading
operation. This is to avoid these TLB entries (tagged with
uPCID) to be exploited by the Meltdown attack.

Listing 1 illustrates the details of how to load user PTEs
into the TLB from the kernel mode code under KPTI. Line
24 shows the function definition of this loading operation.
Line 27 disables interrupts and preemptions to avoid unin-
tended context switches. Line 28 invokes the assembly code
for the loading operation. Line 6 reads the current CR3 regis-
ter which contains the root of the kernel-mode page table and
the kPCID. Line 8-10 switch to use uPCID (but keeping the
kernel-mode page table unchanged). Line 8 sets the noflush
bit to avoid flushing the target PCID’s TLB entries when set-
ting the CR3 register. Line 12 enables data access to user
pages by disabling SMAP temporarily. Line 13-14 load the
target PTE into TLB with uPCID by reading a byte from this
page. Line 16-21 switch back to kPCID. Because line 12-21
code runs under the kernel-mode page table with uPCID, this
code page mapping will be loaded into the TLB that can be
accessed by user-mode code later. This page content could
be leaked from the malicious process using the Meltdown
attack. So line 30 flushes the mapping from the TLB.

Reloading TLB entries after randomization. SafeHidden
uses Intel TSX to test which PTEs of the safe areas are
loaded in the TLB. The implementation is very similar to
the method of loading the user-mode TLB entries. The only
difference is that SafeHidden encloses the code of line 13
(Listing 1) into a transaction (between xbegin and xend in-
structions). In fact, not all PTEs of the safe area need to be
tested. SafeHidden only tests the PTEs that were reloaded in
the last re-randomization.

Tracking GPT updates. The GPT entries of safe areas
will be updated dynamically. In order to track such up-
dates efficiently, we choose to integrate the Linux MMU
notifier mmu notifier register in GuestKM. The MMU
notifier provides a collection of callback functions to notify
two kinds of page table updates: invalidation of a physical
page and migration of a physical page. But it does not issue
a callback when OS maps a physical page to a virtual page.
To address this problem, we handle it in a lazy way by inter-
cepting the page fault exception to track this update. Once
GuestKM is notified about these updates, GuestKM makes
the modified entry invalid or valid, and then issues a hyper-
call to notify the hypervisor to synchronize all EPTs.

Creating and destructing thread-private EPT. If a thread
has no thread-local safe area, it shares its parent’s EPT. If
it is the main thread, it will be configured to use the default
EPT. If a thread has a thread-local safe area, GuestKM will

1248 28th USENIX Security Symposium USENIX Association

issue a hypercall to notify the hypervisor to initialize an EPT
for this thread. When initializing an EPT, SafeHidden will
configure the entries based on other threads’ local safe areas
by walking the GPT to find all physical pages in the safe ar-
eas. Meanwhile, SafeHidden will also modify the entries of
other thread’s EPT to make all thread-local safe areas iso-
lated from each other. Whenever SafeHidden changes other
thread’s EPT, it will block the other threads first. GuestKM
also intercepts the exit() system call to monitor a thread’s
destruction. Once a thread with a private EPT is killed,
GuestKM notifies the hypervisor to recycle its EPT.

Monitoring context switches. When a thread is switched
out, GuestKM will be notified through the sched out() and
it will switch to the default EPT assigned to the correspond-
ing VCPU. When GuestKM knows a new thread is switched
in through the sched in(), it will check whether the thread
has a private EPT or not, and switches to its EPT in if it does.

Monitoring illegal accesses. GuestKM intercepts all system
calls in Table 2 and checks their access areas by analyzing
their arguments. If there is an overlap between their access
areas with any of the trap areas, the safe areas, or the shielded
areas, GuestKM will trigger a security alarm. Because there
is no physical memory allocated to the trap areas, any mem-
ory access to those areas will be captured by intercepting the
page fault exception. With the isolation of the thread-local
safe area, any memory access to the shielded areas will trig-
ger an EPT violation exception, which will be captured by
the hypervisor (that notifies GuestKM). GuestKM triggers a
security alarm in cases of any of these events.

Handling security alarms. How these security alarms are
handled depends on the applications. For example, when
SafeHidden is applied in browsers to prevent exploitation us-
ing JS code, it could mark the website from which the JS
code is downloaded as malicious and prevent the users from
visiting the websites. When SafeHidden is used to protect
web servers, alarms can be integrated with application fire-
walls to block the intrusion attempts.

6 Evaluation

We implemented SafeHidden on Ubuntu 18.04 (Kernel
4.20.3 with KPTI enabled by default) that runs on a 3.4GHZ
Intel(R) Core(TM) i7-6700 CPU with 4 cores and 16GB
RAM. To evaluate the security and performance of SafeHid-
den, we implemented by ourselves two defenses that use safe
areas, OCFI and SS. OCFI is a prototype implementation of
O-CFI [40], which uses thread-shared safe areas (Table 1).
OCFI first randomizes the locations of all basic blocks and
then instruments all indirect control transfer instructions that
access the safe areas, i.e., indirect calls, indirect jumps, and
returns. Each indirect control transfer instruction has an en-
try in the safe areas, which contains the boundaries of possi-
ble targets. For each instrumented instruction, OCFI obtains

Figure 6: The distribution of probing times before being captured
(10,000 probes launched).

its jump target and checks if it is within the legal range.
SS is our implementation of a shadow stack, which is an

example of the thread-local safe areas (see Table 1). Shadow
stacks are used in Safe Stack [30], ASLR-Guard [36], and
RERANZ [57]. SS adopts a compact shadow stack scheme
[41] (in contrast to a parallel shadow stack scheme). In our
implementation, the pointer (i.e., offset) to the stack top is
stored at the bottom of the shadow stack. To be compatible
with uninstrumented libraries, SS instruments function pro-
logues and epilogues to access the shadow stacks (i.e., the
safe areas). Listing 2 shows the function prologue for oper-
ating shadow stacks. The epilogue is similar but in an inverse
order. The epilogue additionally checks if the return address
has been modified.

In both cases, the size of the safe area is set to be 8 MB. To
use SafeHidden with SS and OCFI, one only needs to specify
in SafeHidden that the %gs register points to the safe areas.
No other changes are needed.

1 mov (%rsp), %rax //get the return address

2 mov %gs:0x0, %r10 //get the shadow stack (ss) pointer

3 mov %rax, %gs:(%r10) //push the return address into ss

4 mov %rsp, %gs:0x8(%r10) //push the stack frame into ss

5 add $0x10, %gs:0x0//increment the shadow stack pointer

Listing 2: The shadow stack prologue.

6.1 Security Evaluation
We evaluated SafeHidden in four experiments. Each experi-
ment evaluates its defense against one attack vector.

In the first experiment, we emulated an attack that uses
the allocation oracles [43] to probe Firefox browsers un-
der OCFI’s protection. The prerequisite of this attack is the
ability to accurately gauge the size of the unmapped areas
around the safe areas. To emulate this attack, we inserted
a shared library into Firefox to gauge the size of the un-
mapped areas. When SafeHidden is not deployed, the at-
tack can quickly locate the safe area with only 104 attempts.
Then we performed 10,000 trials of this attack on Firefox
protected by OCFI and SafeHidden. The result shows that
all the 10,000 trials failed, but in two different scenarios:
In the first scenario (9,217 out of 10,000 trials), the attacks
failed to gauge the size of the unmapped areas even when the
powerful binary search method is used. The prerequisite of a

USENIX Association 28th USENIX Security Symposium 1249

Figure 7: Performance overhead of SPEC and Parsec-2.1 benchmarks brought by SafeHidden when applied to the SS and OCFI defenses.

binary search is that the location of the target object does not
change. However, SafeHidden’s re-randomization confuses
the binary search because the safe area moves continuously.
In the second scenario, even though the attacks can gauge
the exact size of an unmapped area, they always stumble into
one of the trap areas when accessing the surroundings of the
unmapped area, which triggers security alarms.

In the second experiment, we launched 10,000 trials of
CROP attacks [19] to probe a Firefox protected by OCFI.
The result shows that the attacks always successfully iden-
tified the location of the safe area when SafeHidden is not
deployed. The time required is less than 17 minutes with no
more than 81,472,151 probes. However, the attacks always
fail when SafeHidden is deployed. Figure 6 (a) shows the
distribution of the number of probes before an attack is de-
tected by hitting a trap area. We can see that the distribution
is concentrated in the range between [2000, 9000]. This ex-
periment shows that SafeHidden can prevent the continuous
probing attacks effectively.

In the third experiment, we launched 10,000 trials of the
CROP attack using thread spraying to probe Firefox pro-
tected by SS. We sprayed 214 (=16,384) threads with more
than 16,384 thread-local safe areas, and then scanned the
Firefox process with a CROP attack. The result shows that
when SafeHidden is not deployed, the attacks can probe the
locations of the safe areas successfully. The time taken is
0.16s, with only 2,310 probes. With SafeHidden deployed,
all probes are captured before succeeding. Figure 6 (b)
shows the distribution of the number of probes before be-
ing captured. The distribution is concentrated in the range
between [50, 300], which is much lower than those in the
second experiment. There are two reasons for that: 1) The
other threads’ local safe areas become the current thread’s
shielded areas, which increases the probability of the probes
being captured; 2) All safe areas will be randomized after
each probe, which increases the number of trap areas quickly.

In the fourth experiment, we emulated a cache side-
channel attack against page tables using Revanc [54], which
is a tool based on [46]. This tool allocates a memory buffer
and then measures the access time of different pages in this
buffer repeatedly. It could infer the base address of this

buffer. To utilize this attack method against IH, we kept this
memory buffer in a safe area by modifying the source code
to force any access to this memory buffer through an offset
from the %gs register. When SafeHidden is not deployed,
this attack can obtain the correct base address of this buffer.
The attack fails when SafeHidden is deployed.

6.2 Performance Evaluation
We evaluated SafeHidden’s impact on the application’s per-
formance in terms of CPU computation, network I/O, and
disk I/O, respectively. For the experiment of CPU compu-
tation, we ran SPEC CPU2006 benchmarks with ref input
and multi-threaded Parsec-2.1 benchmarks using native in-
put with 8 threads; For the experiment of network I/O, We
chose the Apache web server httpd-2.4.38 and Nginx-1.14.2
web server. Apache was configured to work in mpm-worker
mode, running in one worker process with 8 threads. Ng-
inx was configured to work with 4 worker processes; For
the experiment of disk I/O, we chose benchmark tool Bon-
nie++ (version 1.03e). For each benchmark, we prepared
two versions of the benchmark: (1) protected by SS, and (2)
protected by OCFI. We evaluated both the performance over-
head of protecting these benchmarks using SS and OCFI de-
fenses and the additional overhead of deploying SafeHidden
to enhance the SS and OCFI defenses.

6.2.1 CPU Intensive Performance Evaluation

Figure 7 shows the performance overhead of the OCFI and
SS defenses, and also the performance overhead of SafeHid-
den when applied to enhance the OCFI and SS defenses. For
SPEC benchmarks, we can see that the geometric mean per-
formance overhead incurred by OCFI and SS is 4.94% and
5.79%, respectively. For Parsec benchmarks, the geomet-
ric mean performance overhead incurred by OCFI and SS is
7.23% and 6.24%. The overhead of some applications (e.g.,
perlbench, povray, Xalancbmk and blacksholes) is higher be-
cause these applications frequently execute direct function
calls and indirect control transfer instructions, which trigger
accesses to safe areas. Note these overheads were caused by

1250 28th USENIX Security Symposium USENIX Association

Program
#randomization Details of #randomization

Program
#randomization Details of #randomization

SS OCFI #brk() #mmap() #tlb miss SS OCFI #brk() #mmap() #tlb miss
SS OCFI SS OCFI

SPEC CPU2006 benchmark

bzip2 3,260 4,816 36 100 3,124 4,680 calculix 40,914 37,319 32,095 139 8,680 5,085
gcc 150,550 148,649 6,816 194 143,540 141,639 hmmer 2,851 2,430 13 25 2,813 2,392
bwaves 757 764 701 45 11 18 sjeng 207,559 196,562 3 10 207,546 196,549
gamess 192 311 27 30 135 254 GemsFDTD 184 205 11 160 13 14
mcf 435,637 424,266 3 11 435,623 424,252 libquantum 373,904 201,652 14 39 373,851 201,599
milc 685,788 576,056 2,687 44 683,057 573,325 h264ref 6,650 2,496 545 60 6,045 1,891
zeusmp 108 425 3 10 95 412 tonto 327 335 298 20 9 17
gromacs 287 134 44 36 207 54 lbm 6,110 5,822 3 11 6,096 5,808
cactusADM 11,884 11,826 8,997 66 2,821 2,763 omnetpp 320,474 223,832 1,245 56 319,173 222,531
leslie3d 60 94 5 27 28 62 astar 872,397 667,817 3,928 46 868,423 663,843
namd 474 630 100 31 343 499 wrf 53,018 49,230 419 253 52,346 48,558
gobmk 10,062 64,491 59 594 9,409 63,838 sphinx3 3,572 2,790 144 146 3,282 2,500
dealII 53,113 53,618 40,103 53 12,957 13,462 xalancbmk 921,406 781,973 3,099 94 918,213 778,780
soplex 168,463 186,807 168 49 168,246 186,590 average 151,131 129,452 3,778 85 147,268 125,588
Parsec-2.1 benchmark

blackscholes 156,968 114,375 3 22 156,943 114,350 fluidanimate 168,896 175,816 231 23 168,642 175,562
bodytrack 11,205 10,426 2,486 6,558 2,161 1,382 vips 2,375 1,961 4 115 2,256 1,842
facesim 41,775 22,813 359 69 41,347 22,385 x264 5,768 8,055 42 162 5,564 7,851
ferret 93,815 62,870 222 39,032 54,561 23,616 canneal 244,669 251,238 5,917 24 238,728 245,297
freqmine 3,729 2,386 499 64 3,166 1,823 dedup 58,868 33,631 1,571 715 56,582 31,345
raytrace 27,510 22,859 1,279 57 26,174 21,523 streamcluster 273,684 219,572 7 23 273,654 219,542
swaptions 6,477 5,127 3 22 6,452 5,102 average 84,288 71,625 971 3,607 79,710 67,048
Table 3: Statistical data of SafeHidden when applied to the SS and OCFI defenses to protect SPEC CPU2006 and Parsec-2.1 benchmarks.

the adoption of OCFI and SS, but not SafeHidden.
For SPEC benchmarks, we can see that the geometric

mean performance overhead incurred by SafeHidden when
protecting OCFI and SS is 2.75% and 2.76%, respectively.
For Parsec benchmarks, the geometric mean performance
overhead incurred by SafeHidden is 5.78% and 6.44%, re-
spectively. It shows that SafeHidden is very efficient in pro-
tecting safe areas. Based on the experimental results, we
can also see that SafeHidden is more efficient in protect-
ing single-threaded applications. This is due to two rea-
sons: (1) All threads need to be blocked when randomizing
the thread-shared safe areas or the thread-local safe areas
(when not triggered by a TLB miss); (2) When protecting the
thread-local safe areas, SafeHidden needs to synchronize the
thread-private EPTs with the guest page table, which could
introduce VM-Exit events.

Table 3 details some statistical data of SafeHidden when
applied to the OCFI and SS defenses to protect SPEC and
Parsec benchmarks. The column “#randomization” shows
the number of re-randomization to safe areas. On SPEC and
Parsec benchmarks, there are three operations that can trig-
ger a re-randomization: (1) Using brk() to move the top of
the heap; (2) Using mmap() to allocate a memory chunk; (3)
TLB misses occurred in safe areas. Because OCFI and SS
did not introduce extra invocation of system calls, the num-
bers of brk() and mmap() are the same. Combined with Fig-
ure 7, we can see that for most of SPEC benchmarks (except
mcf, soplex, GemsFDTD and omnetpp), the performance
overhead is related to the total number of re-randomization.
The reason why those four benchmarks had different per-
formance overhead is the virtualization overhead incurred

by the hypervisor. For example, the hypervisor introduced
7.18% performance overhead for GemsFDTD. Except x264
using SS, canneal and streamcluster, the overhead of most
Parsec benchmarks is also related to the total number of re-
randomization. For canneal and streamcluster, most of per-
formance overhead is introduced by the virtualization. For
x264, it spawns child threads more frequently than other
benchmarks, which causes SafeHidden to frequently create
and initialize thread-private EPTs.

6.2.2 Network I/O Performance Evaluation

Figure 8 shows the performance degradation of Apache and
Nginx servers under the protection of SS and OCFI with and
without SafeHidden. We use ApacheBench (ab) to simulate
100 concurrent clients constantly sending 10,000 requests,
each request asks the server to transfer a file. We also var-
ied the size of the requested file, i.e., {1K, 5K, 20K, 100K,
200K, 500K}, to represent different configurations. From
the figure, we can see that SS only incurs 1.60% and 1.98%
overhead on average when protecting Apache and Nginx.
OCFI only incurs 1.45% and 2.13% overhead on average
when protecting Apache and Nginx. We can also see that
SafeHidden incurs 12.18% and 12.07% on average when ap-
plied to SS and OCFI to protect Apache. But SafeHidden
incurs only 5.51% and 5.35% on average when applied to SS
and OCFI to protect Nginx. So SafeHidden is more efficient
in protecting Nginx than Apache. This is due to two reasons:
(1) For each request to Nginx, Nginx will invoke several I/O
system calls, such as recvfrom(), write(), writev(),
etc., which only access the allocated memory space in the

USENIX Association 28th USENIX Security Symposium 1251

0%

5%

10%

15%

20%

25%

30%

0

5

10

15

20

25

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
SS latency
SS+SH latency
SS overhead
SH overhead

0%

5%

10%

15%

20%

25%

30%

0

5

10

15

20

25

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
OCFI latency
OCFI+SH latency
OCFI overhead
SH overhead

0%

5%

10%

15%

20%

25%

30%

0

2

4

6

8

10

12

14

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
SS latency
SS+SH latency
SS overhead
SH overhead

0%

5%

10%

15%

20%

25%

30%

0

2

4

6

8

10

12

14

File Size

O
ve

rh
ea

d
(%

)

La
te

nc
y

(m
s/

re
q)

baseline latency
OCFI latency
OCFI+SH latency
OCFI overhead
SH overhead

(a) Apache + SS + SafeHidden (b) Apache + OCFI + SafeHidden (c) Nginx + SS + SafeHidden (d) Nginx + OCFI + SafeHidden
Figure 8: Network I/O Performance overhead brought by SafeHidden (short for SH) when applied to the SS and OCFI defenses.

Nginx process. The system calls in Nginx will not trig-
ger randomization of the safe area. But for each request to
Apache, Apache will invoke the mmap() system call to map
the requested file into the virtual memory space which could
trigger the extra randomization of all safe areas compared
with Nginx; (2) Apache is a multi-threaded program. Safe-
Hidden needs to block all threads when performing random-
ization of safe areas triggered by the mmap() system call.

6.2.3 Disk I/O Performance Evaluation

-2%
0%
2%
4%
6%
8%

10%

O
ve

rh
ea

d
(%

)

SafeHidden when applied to OCFI
OCFI
SafeHidden when applied to SS
SS

Per Char Block Rewrite Per Char Block
Sequential Output Sequential Input

Random
Seeks

Figure 9: Disk I/O Performance overhead brought by SafeHidden
when applied to the SS and OCFI defenses.

The Bonnie++ sequentially reads/writes data from/to a
particular file in different ways. The read/write granularity
varies from a character to a block (i.e., 8192 Bytes). Fur-
thermore, we also test the time cost of the random seeking.
Figure 9 shows the disk I/O measurement results: SS and
OCFI defenses incur low performance overhead, i.e., 2.18%
overhead on average for SS and 1.76% overhead on average
for OCFI. SafeHidden brings only 1.58% overhead on aver-
age for SS and 3.08% overhead on average for OCFI. Com-
pared with SPEC and Parsec benchmarks, this tool invokes
the write() and read() system calls to write and read a very
large file frequently. But these system calls only access the
allocated memory space that does not trigger randomization
of safe areas.

7 Discussion

TLBleed attack. TLBleed [21] exploits the shared TLBs
between the hyper-threads on the same core to infer vic-

tim programs’ memory access patterns. Potentially, it could
be used to reduce the entropy of ASLR by triggering TLB
misses and observing into which TLB set the target object
is mapped. When TLBleed is used against SafeHidden, by
triggering only L1 DTLB misses without L2 TLB misses,
TLBleed may reduce the entropy of the safe area location
by 4 bits (in the case of a 16-set L1 DTLB), which leads
to roughly 20 bits entropy remaining for 8 MB safe area.
However, attempts to further reduce the entropy will trigger
re-randomization of safe areas with high probability. So, TL-
Bleed is not able to defeat SafeHidden.

Spectre attack. The Spectre attack [28] leverages specula-
tive execution and side-channels to read the restricted virtual
memory space. As the memory protection related exceptions
are suppressed in the speculatively executed code, SafeHid-
den could not detect Spectre attacks.

Resilience to attacks. SafeHidden is resilient to all known
attacks against safe areas. Variants of existing attacks would
also be prevented: (1) The attacker may try to fill up the
address space quickly by using the persistent allocation or-
acle [43] to avoid SafeHidden from creating too many trap
areas. But as SafeHidden sets an upper limit for the total
mapped memory regions, such attacks are prevented; (2) The
attacker could exploit the paging-structure caches to conduct
the side-channel analysis. However such attacks will also
trigger TLB misses, which will be detected by SafeHidden.
Although it is difficult to prove SafeHidden has eliminated
all potential threats, we believe it has considerably raised the
cost of attacks in this arms race.

The impact of NMI on the solution of integrating KPTI.
During the execution of the assembly code in listing 1, the
interrupts are disabled to avoid unintended context switches.
But the non-maskable interrupt (NMI) could break this pro-
tection. If a NMI occurs when the code is running, the NMI
handler will run on the kernel-mode page table with the uP-
CID. So the memory pages accessed in the NMI handler
could be leaked via the Meltdown attack. To avoid this, the
entry of the NMI handler could be instrumented (by rewrit-
ing the NMI entry in IDT) to switch back to the kPCID.

1252 28th USENIX Security Symposium USENIX Association

8 Related Work

Protecting safe areas. MemSentry [29], IMIX [16], Mi-
croStache [39], and ERIM [52] are the closest to our work.
MemSentry adopts a software-fault isolation (SFI) approach
to protecting frequently accessed safe areas by leveraging In-
tel’s memory protection extensions (MPX) technology. It
restricts the addresses of all memory accesses that can not
access the safe area. But it is still not practical because it
significantly increases the performance overhead [16]. The
main disadvantage of MemSentry is the SFI approach is not
safe, i.e., un-instrumented instructions can still access the
safe region [16]. By modifying the Intel’s simulation, IMIX
extends the x86 ISA with a new memory-access permission
to mark safe areas as security sensitive and allows accesses
to safe areas only using a newly introduced instruction. Sim-
ilarly, MicroStache achieves it by modifying the Gem5 simu-
lator. However, IMIX and MicroStache are not yet supported
by commodity hardware. ERIM protects safe areas by turn-
ing on access permission only when accesses are requested.
To quickly switch the access permission on and off, it adopts
the newly released Intel hardware feature memory protection
keys (MPK) [2]. But it is still not suitable to protect the fre-
quently accessed safe areas. For example, it incurs >1X per-
formance overhead when protecting the shadow stack [29].
Different from SafeHidden, all these methods require modi-
fication of the source code of both the defense and the pro-
tected applications. Please note that most defenses listed in
Table 1 (except two) work on COTS binaries. In particu-
lar, Shuffler [59] mentioned that defeats probing attacks by
moving the location of its code pointer table (i.e., the safe
area) continuously. But this method only blocks attacks from
Vector-1. For example, using Vector-2, persistent attacks
could always succeed. Different from Shuffler, SafeHidden
blocks all existing attack vectors against IH.

Protecting CFI metadata. CFI is an important defense
against code reuse attacks [3]. A CFI mechanism stores
control-flow restrictions in its metadata. Like other types
of safe areas, the metadata of CFI mechanisms needs to be
protected. However, many CFI metadata only needs write
protection without concerning about its secrecy. Therefore,
these CFI mechanisms do not need IH. In contrast, some
CFI metadata is writable, as it needs to be dynamically up-
dated [8, 41, 42, 37], and others need to be kept as se-
crets [40, 61, 53, 60]. These CFI mechanisms must protect
their metadata either by memory isolation [8, 53, 42, 41, 37]
or IH [40, 60, 61]. SafeHidden can be applied to improve the
security of IH for these CFI mechanisms.

Intra-process isolation. SFI is commonly used to re-
strict intra-process memory accesses [55]. However, both
software-only and hardware-assisted SFIs incur high perfor-
mance overhead [20, 43]. SeCage uses double-EPT to pro-
tect sensitive data, e.g., the session key and the private key

[34]. Shreds [11] utilizes the domain-based isolation sup-
port provided by the ARM platform to protect the thread-
sensitive data. Intel software guard extension (SGX) [2] pro-
tects the sensitive data using a secure enclave inside the ap-
plication which cannot be accessed by any code outside the
enclave. However, none of the approaches mentioned above
can be used to protect frequently accessed safe areas because
of their high switching overhead.

Tracking TLB misses. Intel performance monitoring units
(PMU) [2] can be used to profile the TLB miss, but it is not
precise enough. In contrast, setting reserved bits in PTE can
help to track the TLB miss precisely. Some works had used
this feature for performance optimization [17, 6, 5]. Safe-
Hidden extends this method to detect side-channel attacks
against the safe areas, which is the first time to our best
knowledge such a feature is used in security.

Trap areas as security defenses. Booby-traps [12] first pro-
poses to defeat code reuse attacks by inserting the trap gad-
gets in applications. CodeArmor [10] inserts the trap gad-
gets into the virtual (original loaded) code space. To protect
the secret table’s content against probing attacks, Readac-
tor++ [14] inserts trap entries into the PLT and vtable, and
Shuffler [59] inserts the trap entries into its code pointer ta-
ble. To defeat the JIT-ROP [49] attacks, Heisenbyte [51] and
NEAR [58] propose to trap the code after being read. Dif-
ferent from these works, SafeHidden uses the trap to capture
the probing attacks against IH.

TSX for Security. The TSX is proposed to improve the per-
formance of multi-threaded programs, but many studies have
utilized TSX to improve system security. For example, Mi-
mosa [23] uses TSX to protect private keys from memory
disclosure attacks. TxIntro leverages the strong atomicity to
ensure consistent and concurrent virtual machine introspec-
tion (VMI) [33]. In addition, TSX has been used to perform
or detect the side-channel attacks against the Kernel ASLR
[27] or the enclave in SGX [48, 9]. Different from these
works, SafeHidden uses the TSX to identify TLB entries.

EPT for Security. The EPT has been used to isolate
VMs [26], to protect processes from the malicious OS and/or
other processes [18, 50, 24], and to protect sensitive code/-
data within a process [34]. The EPT also supports more re-
strict memory permission check (i.e., the execute-only per-
mission), which has been used to prevent the JIT-ROP [49]
attacks [51, 13, 58]. Different from prior works, SafeHidden
uses the EPT to achieve the thread-private memory.

9 Conclusion

This paper presented a new IH technique, called SafeHidden,
which is transparent to existing defenses. It re-randomizes
the locations of safe areas at runtime to prevent attackers
from persistently probing and inferring the memory layout to

USENIX Association 28th USENIX Security Symposium 1253

locate the safe areas. A new thread-private memory mech-
anism is proposed to isolate the thread-local safe areas and
prevent the adversaries from reducing the randomization en-
tropy via thread spraying. It also randomizes the safe areas
after the TLB miss event to prevent the cache-based side-
channel attacks. The experimental results show that our pro-
totype not only prevents all existing attacks successfully but
also incurs low performance overhead.

Acknowledgments

We are grateful to our shepherd Mathias Payer for guiding
us in the final version of this paper. We would like to thank
the anonymous reviewers for their insightful suggestions and
comments. This research is supported by the National High
Technology Research and Development Program of China
under grant 2016QY07X1406 and the National Natural Sci-
ence Foundation of China (NSFC) under grant U1736208.
Pen-Chung Yew is supported by the National Science Foun-
dation under the grant CNS-1514444. Yinqian Zhang is sup-
ported in part by gifts from Intel and DFINITY foundation.

References

[1] Kernel page-table isolation.
https://www.kernel.org/doc/html/latest/x86/pti.html.

[2] Intel corporation. intel 64 and ia-32 architectures soft-
ware developer’s manual.

[3] ABADI, M., BUDIU, M., ERLINGSSON, U., AND
LIGATTI, J. Control-flow integrity. In Proceedings of
the 12th ACM Conference on Computer and Communi-
cations Security (2005), CCS ’05, ACM.

[4] BACKES, M., AND NÜRNBERGER, S. Oxymoron:
Making fine-grained memory randomization practical
by allowing code sharing. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA,
August 20-22, 2014.

[5] BASU, A., GANDHI, J., CHANG, J., HILL, M. D.,
AND SWIFT, M. M. Efficient virtual memory for
big memory servers. SIGARCH Comput. Archit. News
(2013).

[6] BHATTACHARJEE, A. Large-reach memory manage-
ment unit caches. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchi-
tecture (2013), MICRO-46.

[7] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND
KARP, B. Wedge: Splitting applications into reduced-
privilege compartments. In the 5th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (2008).

[8] BUROW, N., MCKEE, D., A. CARR, S., AND PAYER,
M. Cfixx: Object type integrity for c++. In NDSSS
2018.

[9] CHEN, S., ZHANG, X., REITER, M. K., AND
ZHANG, Y. Detecting privileged side-channel attacks
in shielded execution with déjà vu. In Proceedings of
the 2017 ACM on Asia Conference on Computer and
Communications Security (2017), ASIA CCS ’17.

[10] CHEN, X., BOS, H., AND GIUFFRIDA, C. CodeAr-
mor: Virtualizing the Code Space to Counter Disclo-
sure Attacks. In 2017 IEEE European Symposium on
Security and Privacy (2017).

[11] CHEN, Y., REYMONDJOHNSON, S., SUN, Z., AND
LU, L. Shreds: Fine-grained execution units with pri-
vate memory. In IEEE Symposium on Security and Pri-
vacy (2016).

[12] CRANE, S., LARSEN, P., BRUNTHALER, S., AND
FRANZ, M. Booby trapping software. In NSPW
(2013), ACM, pp. 95–106.

[13] CRANE, S., LIEBCHEN, C., HOMESCU, A., DAVI,
L., LARSEN, P., SADEGHI, A. R., BRUNTHALER, S.,
AND FRANZ, M. Readactor: Practical code random-
ization resilient to memory disclosure. In 2015 IEEE
Symposium on Security and Privacy (2015).

[14] CRANE, S. J., VOLCKAERT, S., SCHUSTER, F.,
LIEBCHEN, C., LARSEN, P., DAVI, L., SADEGHI,
A.-R., HOLZ, T., DE SUTTER, B., AND FRANZ, M.
It’s a trap: Table randomization and protection against
function-reuse attacks. In ACM SIGSAC Conference on
Computer and Communications Security (2015).

[15] DAVI, L., LIEBCHEN, C., SADEGHI, A., SNOW,
K. Z., AND MONROSE, F. Isomeron: Code random-
ization resilient to (just-in-time) return-oriented pro-
gramming. In 22nd Annual Network and Distributed
System Security Symposium, NDSS (2015).

[16] FRASSETTO, T., JAUERNIG, P., LIEBCHEN, C., AND
SADEGHI, A.-R. IMIX: In-process memory isolation
extension. In 27th USENIX Security Symposium.

[17] GANDHI, J., BASU, A., HILL, M. D., AND SWIFT,
M. M. Badgertrap: A tool to instrument x86-64 tlb
misses. SIGARCH Comput. Archit. News (2014).

[18] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM,
M., AND BONEH, D. Terra: A virtual machine-based
platform for trusted computing. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems
Principles (2003), SOSP ’03.

1254 28th USENIX Security Symposium USENIX Association

[19] GAWLIK, R., KOLLENDA, B., KOPPE, P., GAR-
MANY, B., AND HOLZ, T. Enabling client-side crash-
resistance to overcome diversification and information
hiding. In 23nd Annual Network and Distributed Sys-
tem Security Symposium, NDSS (2016).

[20] GÖKTAS, E., GAWLIK, R., KOLLENDA, B.,
ATHANASOPOULOS, E., PORTOKALIDIS, G., GIUF-
FRIDA, C., AND BOS, H. Undermining information
hiding (and what to do about it). In 25th USENIX Se-
curity Symposium.

[21] GRAS, B., RAZAVI, K., BOS, H., AND GIUFFRIDA,
C. Translation leak-aside buffer: Defeating cache side-
channel protections with TLB attacks. In 27th USENIX
Security Symposium (USENIX Security 18).

[22] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND
GIUFFRIDA, C. Aslr on the line: Practical cache at-
tacks on the mmu. In NDSS (2017).

[23] GUAN, L., LIN, J., LUO, B., JING, J., AND WANG,
J. Protecting private keys against memory disclosure
attacks using hardware transactional memory. In 2015
IEEE Symposium on Security and Privacy (2015).

[24] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE,
M. Z., AND WITCHEL, E. Inktag: Secure applica-
tions on an untrusted operating system. In Conference
on Architectural Support for Programming Languages
and Operating Systems (2013).

[25] HSU, T. C.-H., HOFFMAN, K., EUGSTER, P., AND
PAYER, M. Enforcing least privilege memory views
for multithreaded applications. In the 2016 ACM Con-
ference on Computer and Communications Security.

[26] JAMES E. SMITH AND RAVI NAIR. Virtual machines -
versatile platforms for systems and processes. Elsevier,
2005.

[27] JANG, Y., LEE, S., AND KIM, T. Breaking kernel
address space layout randomization with intel tsx. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016).

[28] KOCHER, P., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S.,
PRESCHER, T., SCHWARZ, M., AND YAROM, Y.
Spectre attacks: Exploiting speculative execution.
CoRR abs/1801.01203 (2018).

[29] KONING, K., CHEN, X., BOS, H., GIUFFRIDA, C.,
AND ATHANASOPOULOS, E. No need to hide: Protect-
ing safe regions on commodity hardware. In the Twelfth
European Conference on Computer Systems (2017).

[30] KUZNETSOV, V., SZEKERES, L., PAYER, M., CAN-
DEA, G., SEKAR, R., AND SONG, D. Code-pointer
integrity. In the 11th USENIX Conference on Operat-
ing Systems Design and Implementation (2014).

[31] LAADAN, O., VIENNOT, N., AND NIEH, J. Transpar-
ent, lightweight application execution replay on com-
modity multiprocessor operating systems. In Proceed-
ings of the ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Sys-
tems (2010), SIGMETRICS ’10.

[32] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER,
T., HAAS, W., FOGH, A., HORN, J., MANGARD,
S., KOCHER, P., GENKIN, D., YAROM, Y., AND
HAMBURG, M. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium
(USENIX Security 18) (2018).

[33] LIU, Y., XIA, Y., GUAN, H., ZANG, B., AND CHEN,
H. Concurrent and consistent virtual machine intro-
spection with hardware transactional memory. In IEEE
20th International Symposium on High Performance
Computer Architecture (HPCA’14) (2014).

[34] LIU, Y., ZHOU, T., CHEN, K., CHEN, H., AND
XIA, Y. Thwarting memory disclosure with effi-
cient hypervisor-enforced intra-domain isolation. In
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security (2015).

[35] LU, K., LEE, W., NÜRNBERGER, S., AND BACKES,
M. How to make ASLR win the clone wars: Runtime
re-randomization. In 23nd Annual Network and Dis-
tributed System Security Symposium, NDSS 2016.

[36] LU, K., SONG, C., LEE, B., CHUNG, S. P., KIM,
T., AND LEE, W. Aslr-guard: Stopping address space
leakage for code reuse attacks. In Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and
Communications Security (2015), CCS ’15.

[37] MASHTIZADEH, A. J., BITTAU, A., BONEH, D., AND
MAZIÈRES, D. CCFI: cryptographically enforced con-
trol flow integrity. In ACM Conference on Computer
and Communications Security (2015), ACM.

[38] MERRIFIELD, T., AND TAHERI, H. R. Performance
implications of extended page tables on virtualized
x86 processors. In Proceedings of the12th ACM SIG-
PLAN/SIGOPS International Conference on Virtual
Execution Environments (2016), VEE ’16.

[39] MOGOSANU, L., RANE, A., AND DAUTENHAHN, N.
Microstache: A lightweight execution context for in-
process safe region isolation. In RAID (2018).

USENIX Association 28th USENIX Security Symposium 1255

[40] MOHAN, V., LARSEN, P., BRUNTHALER, S.,
HAMLEN, K. W., AND FRANZ, M. Opaque control-
flow integrity. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015.

[41] NATHAN BUROW, X. Z., AND PAYER, M. Shining
light on shadow stacks. In 2019 IEEE Symposium on
Security and Privacy (2019).

[42] NIU, B., AND TAN, G. Per-input control-flow in-
tegrity. In the 22Nd ACM SIGSAC Conference on Com-
puter and Communications Security (2015).

[43] OIKONOMOPOULOS, A., ATHANASOPOULOS, E.,
BOS, H., AND GIUFFRIDA, C. Poking holes in infor-
mation hiding. In 25th USENIX Security Symposium.

[44] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache
attacks and countermeasures: the case of AES. In 6th
Cryptographers’ Track at the RSA conference on Topics
in Cryptology (2006).

[45] ROGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND
BRUSCHI, D. Surgically Returning to Randomized
lib(c). In ACSAC (2009).

[46] SCHAIK, S. V., RAZAVI, K., GRAS, B., BOS, H.,
AND GIUFFRIDA, C. Revanc: A framework for reverse
engineering hardware page table caches. In European
Workshop on Systems Security (2017).

[47] SHACHAM, H., PAGE, M., PFAFF, B., GOH, E.-J.,
MODADUGU, N., AND BONEH, D. On the Effec-
tiveness of Address-space Randomization. In the 11th
ACM Conference on Computer and Communications
Security (2004).

[48] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M.
T-sgx: Eradicating controlled-channel attacks against
enclave programs. In NDSS (2017).

[49] SNOW, K. Z., MONROSE, F., DAVI, L.,
DMITRIENKO, A., LIEBCHEN, C., AND SADEGHI,
A. R. Just-In-Time Code Reuse: On the Effec-
tiveness of Fine-Grained Address Space Layout
Randomization. In Security and Privacy 2013 (2013).

[50] TA-MIN, R., LITTY, L., AND LIE, D. Splitting inter-
faces: Making trust between applications and operating
systems configurable. In the 7th Symposium on Oper-
ating Systems Design and Implementation (2006).

[51] TANG, A., SETHUMADHAVAN, S., AND STOLFO,
S. J. Heisenbyte: Thwarting memory disclosure at-
tacks using destructive code reads. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015).

[52] VAHLDIEK-OBERWAGNER, A., ELNIKETY, E.,
DUARTE, N. O., GARG, D., AND DRUSCHEL, P.
ERIM: Secure and Efficient In-process Isolation with
Memory Protection Keys. ArXiv e-prints (2018).

[53] VAN DER VEEN, V., ANDRIESSE, D., GÖKTAŞ, E.,
GRAS, B., SAMBUC, L., SLOWINSKA, A., BOS, H.,
AND GIUFFRIDA, C. Practical Context-Sensitive CFI.
In Proceedings of the 22nd Conference on Computer
and Communications Security (CCS’15).

[54] VUSEC. Reverse engineering page table caches in your
processor, 2017. https://github.com/vusec/revanc.

[55] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND
GRAHAM, S. L. Efficient software-based fault isola-
tion. In Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles (1993).

[56] WANG, X., ZANG, J., WANG, Z., LUO, Y., AND LI,
X. Selective hardware/software memory virtualization.
In the 7th ACM Conference on Virtual Execution Envi-
ronments (2011).

[57] WANG, Z., WU, C., LI, J., LAI, Y., ZHANG, X.,
HSU, W.-C., AND CHENG, Y. Reranz: A light-weight
virtual machine to mitigate memory disclosure attacks.
In the 13th ACM Conference on Virtual Execution En-
vironments (2017).

[58] WERNER, J., BALTAS, G., DALLARA, R., OTTER-
NESS, N., SNOW, K. Z., MONROSE, F., AND POLY-
CHRONAKIS, M. No-execute-after-read: Preventing
code disclosure in commodity software. In Proceed-
ings of the 11th ACM on Asia Conference on Computer
and Communications Security (2016), ASIA CCS ’16.

[59] WILLIAMS-KING, D., GOBIESKI, G., WILLIAMS-
KING, K., BLAKE, J. P., YUAN, X., COLP, P.,
ZHENG, M., KEMERLIS, V. P., YANG, J., AND
AIELLO, W. Shuffler: Fast and deployable continuous
code re-randomization. In 12th USENIX Conference on
Operating Systems Design and Implementation.

[60] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEK-
ERES, L., MCCAMANT, S., SONG, D., AND ZOU, W.
Practical control flow integrity and randomization for
binary executables. In IEEE Symposium on Security
and Privacy (2013).

[61] ZHANG, M., AND SEKAR, R. Control flow and code
integrity for cots binaries: An effective defense against
real-world rop attacks. In the 31st Annual Computer
Security Applications Conference (2015).

1256 28th USENIX Security Symposium USENIX Association

Exploiting Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization

Mengyuan Li
The Ohio State University

Yinqian Zhang
The Ohio State University

Zhiqiang Lin
The Ohio State University

Yan Solihin
University of Central Florida

Abstract
AMD’s Secure Encrypted Virtualization (SEV) is an emerg-
ing technology to secure virtual machines (VM) even in the
presence of malicious hypervisors. However, the lack of trust
in the privileged software also introduces an assortment of
new attack vectors to SEV-enabled VMs that were mostly
unexplored in the literature. This paper studies the insecurity
of SEV from the perspective of the unprotected I/O operations
in the SEV-enabled VMs. The results are alerting: not only
have we discovered attacks that breach the confidentiality
and integrity of these I/O operations—which we find very
difficult to mitigate by existing approaches—but more signifi-
cantly we demonstrate the construction of two attack primi-
tives against SEV’s memory encryption schemes, namely a
memory decryption oracle and a memory encryption oracle,
which enables an adversary to decrypt and encrypt arbitrary
messages using the memory encryption keys of the VMs. We
evaluate the proposed attacks and discuss potential solutions
to the underlying problems.

1 Introduction

Secure Encrypted Virtualization (SEV) is an emerging proces-
sor feature available in recent AMD processors that encrypts
the entire memory of virtual machines (VM) transparently.
Memory encryption is performed by a hardware memory en-
cryption engine (MEE) embedded in the memory controller
that encrypts memory traffic on the fly, with a key unique to
each of the VMs. As the encryption keys are generated from
random sources at the time of VM launches and are securely
protected inside the secure processor in their lifetime, privi-
leged software, including the hypervisor, is not able to extract
the keys and use them to decrypt the VMs’ memory content.
Therefore, SEV enables a stronger threat model, where the hy-
pervisor is removed from the trusted computing base (TCB).
It is explicitly stated in AMD’s SEV whitepaper [20] that
“SEV technology is built around a threat model where an at-
tacker is assumed to have access to not only execute user level

privileged code on the target machine, but can potentially exe-
cute malware at the higher privileged hypervisor level as well.”
Hence, SEV provides a trusted execution environment (TEE)
for (mostly) unmodified VMs to perform confidential compu-
tation that is shielded from strong adversaries that control the
entire privileged software stack.

The lack of trust in the hypervisor, unfortunately, increases
considerably the attack surface that a VM has to guard against.
As the hypervisor controls the VMs’ access to hardware re-
sources including CPU, physical memory, I/O devices, the
VM’s CPU scheduling, memory management, and I/O oper-
ations must be mediated by untrusted software. As a result,
new attack vectors have emerged as researchers explore the
security properties of this new hardware feature. For instance,
Hetzelt and Buhren [17] demonstrated attacks against SEV-
enabled VMs by exploiting unencrypted virtual machine con-
trol block (VMCB) at the time of VMExit. They show that a
malicious hypervisor may learn the machine state of the guest
VM by reading register values stored in the VMCB and alter
these register values before returning to the VM. The lack
of integrity of the encrypted memory has been identified by
several prior studies [9, 12, 17, 25], which enables a malicious
hypervisor to perform a variety of attacks.

This paper studies a previously unexplored problem under
SEV’s trust model—the unprotected I/O operations of SEV-
enabled VMs. While the entire memory of the VMs can be
encrypted using keys that are not known to the hypervisor,
direct memory access (DMA) from the virtualized I/O devices
must operate on unencrypted memory or memory shared with
the hypervisor. As a result, neither the confidentiality nor the
integrity of the I/O operations can be guaranteed under SEV’s
trust models.

More importantly, this paper goes beyond the investigation
of I/O insecurity itself. In particular, we further demonstrate
that these unprotected I/O operations can be leveraged by the
adversary to construct (1) an encryption oracle to encrypt ar-
bitrary memory blocks using the guest VM’s memory encryp-
tion key, and (2) a decryption oracle to decrypt any memory
pages of the guest. We demonstrate in the paper that these

USENIX Association 28th USENIX Security Symposium 1257

two powerful attack primitives can be constructed in a very
stealthy manner—the oracles can be queried by the adversary
repeatedly and frequently without crashing the attacked VMs.

In addition, as a by-product of the study, this paper also
reveals a severe side-channel vulnerability of SEV: As the
adversary is able to manipulate the nested page tables, it could
alter the present bit or reserve bit of the nested page table
entries to force guest VM’s memory accesses to the corre-
sponding pages to trigger page faults. While this page-fault
side channel has been previously studied in the context of Intel
SGX [36] and even used in previous attacks against SEV [17],
it is also reported that page faults from SEV-enabled guest
VMs leak the entire faulting addresses (and error code) to the
hypervisor (unlike in SGX where the page offset is masked).
This fine-grained page-fault attack enables fine-grained trac-
ing of the encrypted VM’s memory access patterns, and par-
ticularly in this paper is used to facilitate the construction of
the memory decryption oracle.

Contribution. This paper contributes to the study of TEE
security in the following aspects:

• The paper studies a previously unexplored security issue
of AMD SEV—the unprotected I/O operations of SEV-
enabled guest VMs. The root cause of the problem is the
incompatibility between AMD-V’s I/O virtualization with
SEV’s memory encryption scheme.
• The paper demonstrates that the unprotected I/O opera-

tions could also be exploited to construct powerful attack
primitives, enabling the adversary to perform arbitrary
memory encryption and decryption.
• The paper reports the lack of page-offset masking of the

faulting addresses during SEV’s page faults handling,
which leads to fine-grained side-channel leakage. The pa-
per also demonstrates the use of both fine-grained and
coarse-grained side channels in its I/O attacks.
• The paper empirically evaluates the fidelity of the attacks

and discusses both hardware and software approaches to
mitigating the I/O security issues.

Responsible disclosure. We have reported our findings to
AMD and disclosed the technical details with AMD re-
searchers. While we were confirmed that the presented attacks
work on current release of SEV processors, AMD researchers
suggested future generations of SEV chipsets are likely to be
immune from these attacks. Some of the technical feedback
we obtained from AMD has been integrated into the paper.

Roadmap. Section 2 presents the overview of AMD’s SEV
and explains the root causes of the exploited I/O operations in
this paper. Section 3 describes several attacks exploiting the
unprotected I/Os. Section 4 presents an evaluation of the fi-
delity of the attacks. Section 5 discusses potential solutions to
securing SEV’s I/O operations. Section 6 summarizes related
work and Section 7 concludes the paper.

2 Overview of AMD SEV

2.1 Overview
AMD Secure Encrypted Virtualization (SEV) is a security
extension for AMD Virtualization (AMD-V) architecture [2].
AMD-V is designed as a virtualization substrate for cloud
computing services, which allows one physical server to run
multiple isolated guest virtual machines (VM) concurrently.
AMD’s SEV is designed atop its Secure Memory Encryption
(SME) technology.

Secure Memory Encryption. SME [20] is AMD’s technol-
ogy for real-time memory encryption, which aims at providing
strong protection against memory snooping and cold boot at-
tacks. An Advanced Encryption Standard (AES) engine is
embedded in the on-die memory controller that encrypts/de-
crypts memory traffic when it is transferred out of or into the
processor. A single ephemeral encryption key is generated for
the entire machine from a random source every time system
resets. The key is managed by a 32-bit ARM Cortex-A5 Se-
cure Processor (AMD-SP). When SME is enabled, physical
address bit 47 (also called the C-bit) in the page table entry
(PTE) is used to mark whether the memory page is encrypted,
thus enabling page-granularity encryption. Transparent SME,
or TSME, is a mode of operating of SME, which allows en-
cryption of the entire memory regardless of the C-bit. Thus
TSME allows unmodified operating system to use the memory
encryption technology.

Secure Encrypted Virtualization. AMD’s SEV combines
the AMD-V architecture and the SME technology to support
encrypted virtual machines [20]. SEV aims to protect the
security of guest VMs even in the presence of a malicious
hypervisor, by using two isolation techniques: First, the data
of guest VMs inside the processor is protected by an access
control mechanism using Address Space Identifier (ASID).
Specifically, the data in the CPU cache is tagged with ASID
of each VM; thus it is prevented from being accessed by
other VMs or the hypervisor. Second, the guest VM’s data
outside the processor (e.g., in the DRAM) is protected via
memory encryption. Rather than using a single AES key
for the whole machine as in the case of SME, SEV allows
each VM to use a distinct ephemeral key, thus preventing the
hypervisor from reading the encrypted memory of each VM.
Because memory encryption keys are managed by the secure
co-processor, privileged software layers are not allowed to
access or manipulate these keys.

Beside confidentiality, authenticity of the platform and in-
tegrity of the guest VMs are also provided by SEV. An identi-
fication key embedded in the firmware is signed by both AMD
and the owner of the machine to demonstrate that the platform
is an authentic AMD platform with SEV capabilities, which
is administered by the machine owner. The initial contents
of memory, along with a set of metadata of the VM, can be
signed by the firmware so that the users of the guest VMs

1258 28th USENIX Security Symposium USENIX Association

Table 1: Effects of C-bits in guest page tables (gPT) and nested
page tables (nPT). M is the plaintext; Ek() is the encryption function
under a memory encryption key k; kg and kh represent the guest VM
and the hypervisor’s memory encryption keys, respectively.

gPT nPT
C-bit=0 C-bit=1

C-bit=0 M Ekh(M)

C-bit=1 Ekg(M) Ekg(M)

may verify the identity and the initial states of the launched
VMs through remote attestation.

2.2 Memory Encryption

ASID and memory encryption. The encryption keys used
for memory encryption are generated from random sources
when the VMs are launched. They are securely stored inside
the secure processor for their entire life-cycle. Each VM has
its own unique memory encryption key Kvek, which is indexed
by the ASID of the VM. When the VM accesses a memory
page that is mapped to its address space with its C-bit set, the
memory will be first decrypted using the VM’s Kvek before
loaded into the CPU caches. Data in the caches are stored
in plaintext; each cache line, in addition to the regular cache
tags, is also tagged by the ASID of the VM. As such, the
same physical memory may have multiple copies cached in
the hardware caches. AMD does not maintain the consistency
of the cache copies with different ASID tags [20].

Encryption with nested paging. AMD-V utilizes nested
paging structures [1] to facilitate memory isolation between
guest VMs. When the virtual address used by the guest VM
(gVA) is to be translated into physical address, it is first trans-
lated into a guest physical addressing (gPA) using the guest
page table (gPT), and the gPA is then translated into the host
physical address (hPA) using the nested page table (nPT).
While gPT is located in guest VM’s address space, nPT is
controlled directly by the host.

With AMD’s SME technology, bit 47 of a PTE is called
the C-bit, which is used to indicate whether or not the cor-
responding page is encrypted. When the C-bit of a page is
set (i.e., 1), the page is encrypted. As both the gPT and the
nPT has C-bits, the encryption state of a page is controlled
by the combination of the two C-bits in its PTEs in the gPT
and nPT. The effect of C-bits in the gPT and nPT is shown
in Table 1. To summarize, whenever the C-bit of gPT is set
to 1, the memory page is encrypted with the guest VM’s en-
cryption key kg; when the C-bit of gPT is cleared, the C-bit
of nPT determines the encryption state of the page: the page
is encrypted under the hypervisor’s key kg when C-bit is 1;
otherwise the page is not encrypted.

To share memory pages between a guest VM and the hy-
pervisor while preventing physical attacks, it is required to

Figure 1: An example of a disk I/O operation by an SEV-
enabled VM.

have the memory page’s C-bit set to 0 in its gPT and the C-bit
set to 1 in its nPT, so that the page is encrypted under the
hypervisor’s encryption key.

Encryption modes of operation. SEV uses AES as its en-
cryption algorithm. The memory encryption engine encrypts
data with a 128-bit key using the Electronic Codebook (ECB)
mode of operation [12]. Therefore, each 16-byte aligned mem-
ory block is encrypted independently. A physical address-
based tweak function T () is utilized to make the cipher-
text dependent of not only the plaintext but also its physical
address [20]. Specifically, the tweak function is defined as
T (x) =⊕xi=1ti, where xi is the ith bit of host physical address
x,⊕ is the bitwise exclusive-or (i.e., XOR) and ti (1≤ i≤ 128)
is a 128-bit constant vector. The tweak function takes a phys-
ical address as an input and outputs a 128-bit value T (x).
Therefore, the ciphertext c of a plaintext m at address Pm is
c = EK(m⊕ T (Pm)). The tweak function prevents attacker
from inferring plaintext by comparing the ciphertext of two
16-byte memory blocks. However, as the constant vectors tis
remain the same for all VMs (and the hypervisor) on the ma-
chine, they can be easily reverse engineered by an adversary.

Known issues with SME memory encryption. One root
problem exploited in prior studies on SEV’s insecurity is the
lack of integrity of its encrypted memory [9, 12, 17, 25].

2.3 Virtualized I/O Operations

Similar to other virtualization technologies, SEV-enabled
VMs interact with I/O devices through virtual hardware using
Quick Emulator (QEMU). Common methods for VMs to per-
form I/O operations are programmed I/O, memory-mapped
I/O, and direct memory access (DMA). Among these meth-
ods, DMA is most frequently used method for SEV-enabled
VMs to do I/O accesses.

USENIX Association 28th USENIX Security Symposium 1259

Direct Memory Access in SEV. With the assistance of DMA
chips, programmable peripheral devices can transfer data to
and from the main memory without involving the proces-
sor. With virtualization, a common way to support DMA
is through IOMMU, which is a hardware memory manage-
ment unit that maps the DMA-capable I/O buses to the main
memory. However, unique to SEV is that the memory is
encrypted. While the MMU supports memory encryption
with multiple ASIDs, IOMMU only supports one ASID (i.e.,
ASID=0). Therefore, in SEV-enabled VMs, DMA operations
are performed on memory pages that are shared between the
guest and the hypervisor (encrypted with the hypervisor’s
Kh). A bounce buffer, called Software I/O Translation Buffer
(SWIOTLB), is allocated on these memory pages.

To illustrate the DMA operation from the guest, a disk I/O
read is shown in Figure 1. When a guest application needs to
read data from file, it first checks whether the file is already
stored in its page cache. A miss in the guest page cache
will trigger read from virtual disks, which is emulated by
QEMU-KVM. The data is actually read from the physical
disk by QEMU-KVM’s DMA operation into SWIOTLB and
then copied to the disk device driver’s I/O buffer by the guest
VM itself. The disk write operation is the inverse of this
process, in which the data is first copied from the guest into
SWIOTLB and then processed by QEMU.

3 Security Issues

In this section, we explore the security issues of the lack
of protection for SEV’s I/O operations. We start of our
exploration with the most straightforward consequence of
vulnerability—the insecurity of I/O operations itself—and
present an attack example that breaches the integrity of I/O
operations. To comprehensively study the attack surface, we
also enumerate the I/O operations from a guest VM that are
vulnerable to such attacks and discuss the challenges of im-
plementing effective countermeasures. Next, we show that
I/O insecurity leads to a complete compromise of the memory
encryption scheme of SEV, by constructing powerful attack
primitives that leverage the unprotected I/O operations to en-
able the adversary to encrypt or decrypt arbitrary messages
with the guest VM’s memory encryption key, kvek.

3.1 Threat Model

We consider a scenario in which the VMs’ memory are en-
crypted and protected by AMD SEV technology. The hyper-
visor run on a machine controlled by a third-party service
provider. Under the threat model we consider, the third-party
service is not trusted to respect the integrity or confidentiality
of the computation inside the VMs. This could happen when
the service provider is dishonest or when the hypervisor has
been compromised.

The goal of the attacks is either to compromise the I/O
operations themselves or the memory encryption of SEV. Out
of scope in this paper are denial-of-service (DoS) attacks, in
which the service provider simply refuses to run the VM. SEV
is not designed to prevent DoS attacks.

3.2 I/O Security
In this section, we explore the direct consequences of unpro-
tected I/O operations from SEV-enabled guests.

3.2.1 Case Study: Integrity Breaches of Disk I/O

We first present a case study to show how SEV’s guest VMs’
unprotected I/O operations can be exploited to breach I/O
security in practice. In this case study, we show that a ma-
licious hypervisor is able to gain control of the guest VMs
through an OpenSSH server without passwords by exploiting
unprotected disk I/O. Therefore, we assume the disk is not
encrypted with disk encryption key in this example. However,
we note it is recommended by AMD to only use encrypted
storage. As such, this case study only serves the purpose
of proof-of-concept, rather than a practical attack. We will
discuss its security implications in Section 3.2.2.

Specifically, the adversary controls the entire host and
launches the SEV-enabled VM using the standard proce-
dure [3]. During the system bootup, the binary code of
sshd that performs user authentication is loaded into the
memory. To monitor the disk I/O streams, whenever the
QEMU performs a DMA operation for the guest, the adver-
sary checks the memory buffer used for this DMA operation
(i.e., SWIOTLB) and search for the binary code of sshd. In
our implementation, we used a 32-byte memory content (i.e.,
0xff85 0xc041 0x89c4 0x8905 0x4e05 0x2900 0x0f85 0x1b01
0x0000 0x488b 0x3d49 0x0529 0x0089 0xeee8 0xc2bf 0xfdff)
as the signature of the sshd binary and no false detection
was observed. Once the DMA operation for sshd is identi-
fied, the adversary modifies the binary code inside SWIOTLB,
before the QEMU commits the DMA operation. In partic-
ular, this is done by replacing the crucial code used in au-
thentication that corresponds to callq pam_authenticate,
which is a five-byte binary string 0xe8 0xc2 0xbf 0xfd 0xff, to
mov $0 %eax (a binary string of 0xb8 0x00 0x00 0x00 0x00).
pam_authenticate() is used to perform user authentica-
tion; only when it returns 0 will the authentication succeed.
Therefore, by moving 0 to the register %eax (the register used
to store return value of a function call) directly, the adver-
sary can successfully bypass the user authentication without
knowing the password. To validate the attack, we empirically
conducted the attack three times and all were successful.

Performance degradation due to I/O monitoring. We also
conducted experiments to measure the performance degrada-
tion due to the hypervisor’s monitoring of disk I/O streams.
We used the dd command to write 1GB of data to the local

1260 28th USENIX Security Symposium USENIX Association

Original Moinitored
102.5

105.0

107.5

110.0

112.5

115.0

M
B/
s

(a) I/O write

Original Moinitored

700

750

800

850

M
B/
s

(b) I/O read

Figure 2: Read/write performance overhead due to I/O moni-
toring.

disk to measure the I/O write speed. The dsync flag of set to
make sure the data is written to the disk directly, bypassing the
page caches. To measure the read speed, we cleaned the page
caches in the memory by setting vm.drop_caches=3 before
reading 1GB of data from local disk. In both the read and write
experiments, we measured the performance with and without
I/O stream monitoring and repeated the measurements 200
times. The results show the performance degradation of I/O
read and write is 11.8% and 7.9% respectively (see Figure 2).

3.2.2 Estimating The Attack Surface

As shown in the above example, I/O operations that are not
encrypted by the software can be intercepted by the malicious
hypervisor and manipulated to compromise the SEV-enabled
guests. This vulnerability exists in all emulated I/O devices
that are commonly used in cloud VMs, such as disk I/O, net-
work I/O, and display I/O, etc. While a straightforward so-
lution is to encrypt I/O streams by software, however, this
simple method has many practical limitations in practice:

Network I/O. Network traffic can only be partially encrypted,
as headers of IP or TCP cannot be encrypted. The adversary
is still able to modify the network traffic to forge the IP ad-
dresses, port numbers, and encrypted metadata of the network
packets. This is true for both TLS traffic and VPN traffic. As
we will show in Section 3.3, encrypted traffic like SSH can
still be exploited to construct memory decryption oracles.

Display I/O. Encrypting I/O traffic cannot be applied when
the I/O devices cannot decrypt the I/O stream by themselves.
Display I/O is one such example. For instance, Virtual Net-
work Computing (VNC) is a graphical desktop sharing pro-
tocol that allows VMs to be remotely controlled. In KVM,
the QEMU redirects the VGA display from the guest to the
VNC protocol, which is not encrypted. Therefore, if the user
of the guest VM uses VNC to control the VM, keystroke and
mouse clicking will be learned and manipulated by the adver-
sary. To protect display I/O operations, the guest VM must be
modified to encrypt all display I/O traffic and the remote user
interface must be modified accordingly to decrypt the traffic.

Disk I/O. For disk I/O operations, the method recommended
by SEV [4] is for each SEV-enabled VMs to use encrypted

disk filesystems. To use encrypted disks, however, the owner
needs to first provision the disk encryption key into the pro-
tected VMs by using the Launch_Secret [3] command. This
command first decrypts a packet sent by the VM owner (that
contains the disk encryption key) encrypted using Ktek (Trans-
port Encryption Key), atomically re-encrypts it using the
memory encryption Kvek, and then injects it into the guest
physical address specified by GUEST_PADDR (a parameter of
the Launch_Secret command). As the address of the disk
encryption key is known, if memory confidentiality is com-
promised (using methods to be described in Section 3.3), the
disk encryption key can be learned and used to decrypt the
entire image. Therefore, disk I/O is not secure, either.

3.3 Decryption Oracles

In this section, we show that the DMA operations under SEV’s
memory encryption technology can be exploited to construct
a decryption oracle, which allows the adversary to decrypt
any memory block encrypted with the guest VMs’ memory
encryption key Kvek. The oracle can be frequently and repeat-
edly queried and thus can be exploited as an attack primitive
for more advanced attacks against SEV-enabled guests.

As mentioned in Section 2.3, the DMA operation from
the SEV-enabled VM is conducted with the help of memory
pages shared with the hypervisor. When DMA operates in the
DMA_TO_DEVICE mode, data is transferred by the IOMMU
hardware to the shared memory, and then copied by CPU
in the SEV-enabled VM to its private memory; when DMA
operates in the DMA_BIDIRECTIONAL mode, the SEV-enabled
VM first copies the data from encrypted memory to the shared
memory, and then the DMA reads or writes are performed on
the shared memory.

Both these modes of operations provide the adversary an
opportunity to observe the transfer of data blocks from mem-
ory pages encrypted by Kvek to memory pages that is not
encrypted (from the hypervisor’s perspective). Therefore, if
the adversary alters the ciphertext of the data blocks in the
encrypted memory page before they are copied by the guest
VM, after the memory copy, the corresponding plaintext can
be learned from the shared memory directly.

The construction of such a decryption oracle is shown in
Figure 3. The decryption oracle can be constructed in three
steps: pattern matching, ciphertext replacement, and packets
recovery. We use network I/O as an example. The adversary
exploits the network traffic in Secure Shell (SSH) to construct
the decryption oracle. But we stress that any I/O traffic can be
exploited in similar manners. In the following experiments,
we configured the guest VM to use OpenSSH_7.6p1 with
OpenSSL 1.0.2n, which is default on Ubuntu 18.04.

USENIX Association 28th USENIX Security Symposium 1261

Figure 3: A decryption oracle. Step À, the hypervisor con-
ducts pattern matching using page-fault side channels to de-
termine the address of Bp. Step Á, the hypervisor replaces a
ciphertext block in Bp with the target memory block, which
will be decrypted when copied to Bs. Step Â, QEMU recovers
the network packet headers.

3.3.1 SSH and Network Stacks

To control the SEV-enabled guest remotely, the owner of the
VM typically uses SSH protocol to remotely login into the
VM and controls its activities. To copy data to and from
the VM, protocols like SCP, which is built on top of SSH, is
commonly used. Particularly, we consider the SSH traffic after
the remote owner has already authenticated with sshd and a
secure communication channel has been established. Because
the SSH handshake protocol is performed in plaintext, the
adversary who controls the hypervisor and QEMU can act as
a man-in-the-middle attacker and recognize the established
the secure channel by its IP addresses and TCP port number.
Once the secure channel is established, SSH command and
output data will be transferred using encrypted SSH packets
that are transmitted in interactive mode [31].

In the interactive mode, each individual keystroke guest
owner types will generate a packet that is sent to the SEV-
enabled VM, which will be transferred by DMA to a mem-
ory buffer shared between the guest and the hypervisor. The
packet is then copied by the guest to a private memory page
encrypted using Kvek. Then the data is handled by the net-
work stack in the guest OS kernel. The headers of the packet
are then removed and the payload data is forwarded to the
user-space application. Then the SSH server processes the
keystroke and responds with an acknowledgement packet.
The acknowledgement packet is copied back to the kernel
space, wrapped by the corresponding header information, and
then copied to the shared memory buffer. The last memory
copying also decrypts the memory using the guest VM’s Kvek.

Therefore, our attack primitives target this process. As a re-
sult, every network packet generated by the guest VM can
be exploited as a decryption oracle that helps the adversary
decrypt one or multiple memory blocks.

3.3.2 Pattern Matching Using Fine-grained Page-fault
Side Channels

Let us denote the private memory buffer as Bp, whose gPA
is Ppriv, and the shared memory buffer as Bs, whose gPA is
Pshare. The primary challenge in this attack is to identify the
Ppriv. As this address is never directly leaked, the adversary
needs to perform a page-fault side-channel analysis.

Fine-grained page-fault side channels in SEV. The page
fault side channel was first studied by Xu et al. in the context
of Intel SGX [36]. As an SGX attacker controls the entire
operating system, he or she can manipulate the page table
entries (PTE) and set the present bit of the PTEs of pages
that are mapped to the targeted enclave. By doing so, once the
enclave program accesses the corresponding memory pages,
the control flow will be trapped into the OS kernel through a
page fault exception. On x86 processors, the faulting address
will be stored in a control register, CR2 so that the page-fault
handler could learn the entire faulting address. To provide
secrecy, SGX masks the page offset of the faulting address
and leaves only the virtual page number in CR2.

Similarly, on the AMD platform, the adversary that com-
promises the hypervisor could also exploit the page-fault side
channels to track the execution of the SEV-enabled VMs. Al-
though the mapping between the guest VM’s guest virtual
address (gVA) to gPA is maintained by the guest VM’s page
table and is encrypted by Kvek, the hypervisor could manipu-
late the nested page tables (NPT) to trap the translation from
gPAs to host physical addresss (hPA). Unlike SGX, SEV does
not mask the page offset, providing more fine-grained obser-
vation to the adversary.

Moreover, the page-fault error code returned in the
EXITINTINFO field of VMCB can also be exploited in the
SEV page-fault side-channel analysis. Specifically, the page-
fault error code is a 5-bit value, revealing the information of
the page fault. For example, when bit 0 is cleared, the page
fault is caused by non-present pages; when bit 1 is set, the
page fault is caused by a memory write; when bit 2 is cleared,
the page fault takes place in the kernel mode; when bit 3 is set,
the fault is generated form a reserved bit; when bit 4 is set,
the fault is generated by an instruction fetch. The error code
provides detailed information regarding the reasons of the
page fault, which can be leveraged in side-channel analysis.

Pattern matching. With such a fine-grained side channel, the
adversary could monitor the memory access pattern of the
guest when it receives an SSH packet. Particularly, after deliv-
ering an SSH packet to the SEV-enabled VM, the adversary
immediately initiates the monitoring process and marks all of

1262 28th USENIX Security Symposium USENIX Association

the guest VM’s memory pages inaccessible by clearing the
present bit of the PTEs. Every time a memory page is ac-
cessed by the guest, a page fault takes place and the adversary
is able to learn the entire faulting address Pi. Note here the
faulting address in the guest VM refers to the guest physi-
cal address as the guest virtual address is not observable by
the hypervisor. After the page fault, the adversary resets the
present bit in the PTE to allow future accesses to the page.
Therefore, with the fine-grained page fault side channel, one
only needs to collect information regarding the first access to
a memory page. The monitoring procedure stops when the
acknowledgement packet is copied into Bs. At this point, the
adversary has collected a sequence of faulting addresses <P1,
P2, · · · , Pm >.

Internally in the guest VM, when sshd is sending a packet,
the encrypted data is first copied to the buffer of the transport
layer, then the buffer of the network layer, and then the buffer
of the data link layer. In each layer, new packet headers are
added. Eventually, the entire network packet is stored in a
data structure called sk_buff. Finally, the kernel will call
dev->hard_start_xmit to transfer the data in sk_buff to
the device driver, where Bp is located.

Both Ppriv and the address of sk_buff, Psk, should be found
in the faulting addresses sequence <P1, P2, · · · , Pm >. It is
because the memory pages that store the private memory
buffer Bp and sk_buff are not otherwise used during the
process of sending network packets. The adversary could
combine page offsets, page frame numbers, the page-fault
error code, and the number of page faults between the two
page faults of Bp and sk_buff to create a signature, which
can be used to find Ppriv. For example, the page-fault error
code of Bp is 0b110 and the page-fault error code of sk_buff
is 0b100; the page offset of Ppriv is usually 0x0fa or 0x8fa and
the offset of sk_buff usually ends with 0xe8 or 0x00; and the
number of page faults between Bp and sk_buff is roughly 20.
With these signatures, the adversary can identify Ppriv from
the sequence of faulting addresses. Of course, the signature
may change from one OS version to another, or change with
different OS kernel. However, because the adversary controls
the hypervisor, such information can be re-trained offline,
before performing the attacks.

It was indicated by AMD researchers (during an offline
discussion) that SEV-ES should mask the page offset infor-
mation when there is a VMEXIT. However, we were not able
to find related public documentation. Moreover, as the KVM
patch for SEV-ES support is not yet available at the time of
writing, we were not able to validate the claim or estimate
the remaining leakage (e.g., error code, page offset) after the
patch. However, regardless of the hardware changes, a coarse-
grained page-fault side channel in which the page frame num-
ber of the faulting address is leaked must remain. To show
that the demonstrated attack still works, we conducted experi-
ments to perform pattern matching without page fault offsets
and error code information. Specifically, we performed pat-

Figure 4: Format of an SSH packet.

tern matching using only the faulting page numbers, with
the guest VM running different Ubuntu versions (e.g., 18.04,
18.04.1 and 19.04) and different kernel versions (4.15.0-20-
generic, 4.15.0-48-generic and 5.0.0-13-generic). The results
show that after training in one virtual machine, the pattern
matching rules can work well even in different virtual ma-
chines with the same Ubuntu version and kernel version—the
attacker is still able to successfully identify the page frame
number of Ppriv. To determine the complete address of Ppriv,
the attacker could determine the offset by scanning the en-
tire memory page and looking for content changes (e.g., in a
90-byte buffer).

3.3.3 Replacing Ciphertext

After determining Ppriv, the adversary replaces aligned SSH
header in Bp with the ciphertext he or she chooses to decrypt.
As shown in Figure 4, the packet headers include a 6-byte
destination address, a 6-byte source address, a 2-byte IP type
(e.g., IPv4 or IPv6), 1-byte IP version and IP header length,
1-byte of differentiated services field, 2-byte packet length,
2-byte identification, 2-byte of IP flags, 1-byte time-to-live,
1-byte protocol type, 2-byte checksum, and 4-byte source IP
address and 4-byte destination address, and 20-bytes TCP
headers (start with 2-byte source port and 2-byte destination
port).

As shown in Figure 4, Ppriv has the offset address ending
with 0xfa. Because SEV encrypts data in 16-byte aligned
blocks, only part of the TCP/IP header (i.e., header in gray
blocks in Figure 4) can be used to decrypt ciphertext. Addi-
tional constraints apply if the packet needs to be recovered
later. Before replacing the packet header with the chosen
ciphertext, the adversary performs a WBINVD instruction to
flush the guest VM’s cached copy of Bp back to memory. It
is because cache coherence is not maintained by the hard-
ware between cache lines with different ASIDs. To make sure
the guest VM’s copy does not overwrite our changes to the
memory, WBINVD instruction needs to be called first.

The ciphertext replacement takes place before memcpy, af-
ter Bp is accessed and before Bs is accessed. Bs is located
inside the SWIOTLB pool, which is the next available address
within SWIOTLB that can be used by the guest. After replacing
a few blocks in Bp, another WBINVD instruction is performed
to ensure the guest VM reads and decrypts up-to-date cipher-

USENIX Association 28th USENIX Security Symposium 1263

text in memory. All replacement operation is achieved by
IOremap instead of Kmap, since Kmap decrypts data with the
hypervisor’s key first and IOremap directly operates data in
the memory without decryption.

We use the following example to illustrate the attack. Let
the ciphertext c be a 16-byte aligned memory block with
the gPA of Pc. The function which can translate gPA to hPA
is called hPA(). The goal of the attack is to decrypt c. The
adversary replaces a 16-byte data in the SSH header that
begins with address (Ppriv + 16)/16 ∗ 16 with c. After the
data in Bp is copied to Bs, the adversary could read the de-
crypted SSH packet and extract the plaintext of decrypted
memory block, d, from the corresponding location of the
packet. However, d is not the plaintext of c yet, as SEV’s mem-
ory encryption involves a tweak function T (). That is, c =
EKvek(m⊕ T (hPA(Pc))) but d = DKvek(c)⊕ T (hPA((Ppriv +
16))/16∗16). Therefore, the plaintext message m of cipher-
text c can be calculated by m = d⊕T (hPA((Ppriv+16))/16∗
16)⊕T (hPA(Pc)).

3.3.4 Packets Recovery

To make the attack stealthy, the adversary needs to recover
the network packet with decrypted data before those packets
are passed to the physical NIC device. As shown in Figure 4,
the SSH header also contains metadata of the packet. When
the malicious hypervisor injects chosen ciphertext into the
memory block with offset = 0x100, the adversary only needs
to be concerned about a portion of the source IP address, IP
protocol type, IP tags, TCP header length, and the identifica-
tion of the packet. Majority of the fields are determined. The
identification of the IP packet increases by 1 every time SSH
server replies a packet. So when hypervisor tries to recovery
the (plaintext) packet from the QEMU side, it only need to
correct the packet length, increase identification by 1 and copy
the remaining portion from previous packet such as source
address, header length, time to live and protocol number.

3.4 Encryption Oracle

We next show the construction of a memory encryption ora-
cle using unprotected I/O operations. The encryption oracle
stealthily encrypts a chosen plaintext message using a guest
VM’s memory encryption key Kvek. Similar to the construc-
tion of the decryption oracle, during the DMA operation of
the guest that transfers data from the device to the encrypted
memory, the adversary changes the message m in the shared
memory buffer Bs, waits until it is copied to the private buffer
Bp in the encrypted page, and then extracts the corresponding
ciphertext Ekg(m) from Bp.

To determine the gPA address of Bp and retrieve the cipher-
text of the plaintext message at address Pt , the steps shown in
Figure 5 are taken. Again, we leverage the fine-grained page-
fault side channel we used in the previous section. Specifically,

Figure 5: An encryption oracle. Step À, QEMU forwards an
incoming packet to the guest. Step Á, QEMU passes the ad-
dress of Bs to the hypervisor. Step Â, a page fault immediately
after the fault at Bs is captured by the page fault handler. Step
Ã, message m′ is placed in Bp. Step Ä, page fault handler
returns the control to the guest.

we modified all memory pages’ PTEs right after the QEMU
finishes writing the packet into SWIOTLB and before the
QEMU notifying guest VM about the DMA write. Then, when
the guest VM performs a memcpy operation to copy the data,
the adversary will observe a sequence of page faults: <...Pshare,
Ppriv...>, where Pshare is the address of Bs and Ppriv is the ad-
dress of Bp. The page fault at Ppriv will take place right after
the page fault at Pshare. When the hypervisor handles the page
fault at Ppriv, it replaces the 16-byte aligned data block with
the message m′, where m′=m⊕T (hPA(Ppriv))⊕T (hPA(Pt)),
where Pt is the gPA of the target address to which the adver-
sary wishes to copy m. The corresponding ciphertext will be
c = Ekg(m⊕T (hPA(Pt))), which can be used to replace the
ciphertext at address Pt .

The encryption oracle can be typically exploited to inject
code or data into the SEV-enabled VM’s encrypted memory,
or it can be used to make guesses of the memory content
by providing a probable plaintext. We note that to use the
encryption oracle, the adversary may simply generate mean-
ingless packets and send them to the guest VM, which will
be discarded. But the oracle can still be constructed and used.
The only downside of this approach is that the guest VM will
observe large volume of meaningless network traffic and may
become suspicious of attacks.

4 Evaluation

We implemented our attacks on a blade server with an 8-
Core AMD EPYC 7251 Processor, which has SEV enabled
on the chipset. The host OS runs Ubuntu 64-bit 18.04 with

1264 28th USENIX Security Symposium USENIX Association

Linux kernel v4.17 (KVM hardware-assisted virtualization
supported since v4.16) and the guest OS also runs Ubuntu
64-bit 18.04 with Linux kernel v4.15 (SEV supported since
v4.15). The QEMU version used was QEMU 2.12. The SEV-
enabled guest VMs were configured with 1 virtual CPU, 30GB
disk storage, and 2GB DRAM. The OpenSSH server was
installed from the default package archives.

4.1 Pattern Matching

We first evaluate the pattern matching algorithm’s accuracy of
determining Ppriv. To obtain the ground truth, we modified the
guest kernel to log the gPA address of sk_buff, the source
gPA and destination gPA of memcpy, as well as the size of
each DMA read or write. All the data was recorded in the
kernel debug information, which can be retrieved using a
Linux command dmesg.

The experiments were conducted as follows: We ran a
software program AnJian [13] (an automated keystroke gener-
ation tool) on a remote machine, which opened a terminal that
was remotely connected to the SEV-enable VM through an
SSH communication channel. AnJian automatically typed on
the SSH terminal two Linux commands cat security.txt
|grep sev and dmesg at the rate of 10 keystrokes per second.
This was used to simulate the remote owner controlling the
SEV-enabled VM through SSH. The adversary would make
use of the generated SSH packets to perform memory decryp-
tion. The dmesg command also retrieved the kernel debug
message that recorded the ground truth.

At the same time, the pattern matching was performed by
the adversary on the hypervisor side. The page-fault side-
channel analysis was conducted upon receiving every incom-
ing SSH packet to guess the address Ppriv. There were three
outcomes of the guesses: a correct guess, an incorrect guess,
and unable to make a guess. Because there were 33 keystrokes
generated by AnJian, the adversary was allowed to guess Ppriv
for 33 times in each experiment. The experiments were con-
ducted 20 times.

Figure 6 shows the precision and recall of these 20 rounds
of experiments. Precision is defined as the ratio of the number
of correct guesses and the number of times that a guess can be
made. Recall is defined as the ratio of the number of correct
guesses and the number of total SSH packets. The average
precision is 0.956, the average recall is 0.847 and the average
F1 Score is 0.897.

4.2 Persistent Bp

According to our experiments, the Bp will remain unchanged
and reused for multiple network packets. This greatly helps
the adversary, either by performing pattern matching once
and reusing the same Bp directly in subsequent packets, or by
improving the accuracy of the guesses.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Round

0.0

0.2

0.4

0.6

0.8

1.0

Recall
Precision

Figure 6: The precision and recall of determining Ppriv in 20
rounds or experiments.

1 packet 2 packets 3 packets
0

1

2

3

4

N
u
m
b
e
r
o
f
W
ro
n
g
 G
u
e
ss
e
s

Round 20

Round 6

Round 11

Figure 7: Reduction of incorrect guesses using the N-Streak
strategy.

Improving attack fidelity using persistent Bp. The persis-
tent Bp can be used to reduce the number of incorrect guesses.
During a real-world attack, when Ppriv is incorrectly guessed,
the ciphertext replacement may crash the guest VM (although
we have not experienced any crashes in our experiments). As
such, a safer strategy of when to perform ciphertext replace-
ment is only after correctly guessing Ppriv N times in a streak,
which we call the N-streak strategy. We then applied this
strategy to Round 20, 6 and 11, which have the highest FPR
(i.e., 0.167, 0.133, 0.103, respectively). As shown in Figure 7,
when by increasing N (i.e., 1, 2, 3), the number of incorrectly
performed ciphertext replacement is reduced.

Packet rate vs. Bp persistence. We further evaluated the ef-
fect of Bp persistence when the rate of SSH packets varies.
Again, on the remote machine, we used AnJian to generate
keystrokes at a fixed rate, ranging from 0.5 keystrokes per
second, to 20 keystrokes per second. The rate of SSH ac-
knowledgement packets is close to the keystroke rate. For
each keystroke rate, 500 keystrokes were generated and the
number of different Bps were reported in Figure 8. We can
see that as the packet rate increases, fewer number of Bps will
be used to send SSH packets. We repeated this experiment
and collected over 200 different Bps after generating 5000
keystrokes with rates ranging from 0.5 to 20 per second. The
statistics of the repeated use of Bps are shown in Figure 9.

4.3 I/O Performance Degradation
Conducting page-fault based side-channel analysis to guess
Ppriv and performing ciphertext replacement will slow down

USENIX Association 28th USENIX Security Symposium 1265

0 200 400 600 800 1000 1200
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

Ppriv[3]

Ppriv[4]

Ppriv[5]

Ppriv[6]

Ppriv[7]

(a) 0.5pps

0 100 200 300 400 500 600
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

Ppriv[3]

(b) 1pps

0 50 100 150 200 250 300
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

Ppriv[3]

(c) 2pps

0 20 40 60 80 100 120 140
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

(d) 5pps

0 10 20 30 40 50 60 70 80
Time (s)

Ppriv[0]

Ppriv[1]

(e) 10pps

0 10 20 30 40 50 60
Time (s)

Ppriv[0]

Ppriv[1]

(f) 20pps

Figure 8: The number of different Bps used with various rates of packets (pps).

M <105.3%

10<= M <20
3.1%

20<= M <50
13.0%

50<= M <100
22.1%

M >=100

56.5%

Figure 9: Statistics of repeated Bps.

the I/O operations of the guest VM. To evaluate the degree of
performance degradation, we evaluate the SSH response time
on the server side during the attacks. The SSH response time
measures the time interval between the QEMU receives an
incoming SSH packet to the time that an SSH response packet
is sent to QEMU. Note the measurements do not include
network latency.

Figure 10 shows the SSH response time under three con-
ditions: Original (not under attack), Bp Persistent (assuming
Bp does not change) , and Guess Every Time (assuming Bp
changes and making guesses every time). The keystroke rate
used in the experiments were 10 keystrokes per second, and

in total 1,000 keystrokes were generated during the tests. We
can see from the figure, the average SSH response latency
without attack is 2.5ms and the median is 0.99ms. The aver-
age latency for SSH connection under a Bp-persistent strategy
is 6.81ms and the median is 2.4ms. The average latency for
SSH connection under a guess-every-time strategy is 8.0ms
and the median is 8.7ms. Because the typical network latency
of cloud servers are 40-60ms within US and more than 100ms
worldwide [5], it is very difficult for the VM owners to detect
the latency caused by the attacks.

4.4 An End-to-End Attack

We conducted an end-to-end attack in which the adversary
decrypts a 4KB memory page that is encrypted with the guest
VM’s Kvek. The attack assumes a network traffic with the rate
of 10 pps, which is simulated using the same method used in
the previous sections. Table 2 shows the number of packets
and time used to complete the attack, when one or two 16-byte
aligned blocks were exploited for the data decryption. We can
see that in the four trials we conducted, roughly 300 packets
are needed to decrypt the 4KB page, which takes about 40
seconds. The speed of the attack doubles if the first two blocks
of the packets were used to decrypt data.

1266 28th USENIX Security Symposium USENIX Association

Table 2: End-to-end attack performance.

Round 1 Block 2 Blocks
Packets used Time(s) Packets used Time(s)

1 292 43.56 148 21.29
2 329 40.78 177 20.04
3 326 39.21 154 18.99
4 299 33.58 154 16.95

Original Bp
 Persistent

Guess
Every time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
illi
se
co
nd

SSH Response Time

Figure 10: I/O performance degradation evaluated using SSH
response time (network latency excluded).

5 A Path Towards I/O Security in SEV

The root cause of the problem is the incompatibility between
AMD-V’s I/O virtualization with SEV’s memory encryption
scheme. Specifically, the primary reason of the attacks de-
scribed in Section 3 is that existing IOMMU hardware only
supports memory encryption with ASID = 0 and the operated
memory is encrypted with the hypervisor’s memory encryp-
tion key. Therefore, every I/O operation from the guest VM
must go through a shared memory page with the hypervisor.
To address this limitation, IOMMU must allow DMA oper-
ations to be performed under the ASIDs of other contexts.
Meanwhile, it must prevent the privileged software from abus-
ing such IOMMU operations. This design, however, will be
very challenging to implement in practice. According to our
discussion with AMD researchers, future releases of SEV
CPUs are unlikely to address this issue. Therefore, alternative
solutions must be identified.

In addition to this fundamental issue, the decryption oracle
is also enabled by two other vulnerabilities of SEV: (1) no
integrity protection of the encrypted memory, and (2) knowl-
edge of the tweak function T (). AMD researchers suggested
that future SEV CPUs will disable the encryption oracle by
providing memory integrity and altering the implementation
of the tweak function T (). While authenticated memory en-
cryption disables all known attacks against SEV, details of its
implementation are yet to be disclosed. We discuss some of

Data MT

Root on chip

MT allocated
in Mem

67% 33%

Data Hash

78.6% 20%

Ctr BMT

1% 0.4%

Root on chip

(a) (b)

Figure 11: Merkle Tree (a) and Bonsai Merkle Tree used in
conjunction with split counter mode encryption (b).

the potential considerations in Section 5.1. Future versions of
the tweak function will be implemented as T (k,a), where a
is the physical address and k is a random input that changes
after every system reboot. We leave the investigation of these
vulnerabilities to future work when the technical details are
published. In Section 5.2, we present a temporary software
fix that works on existing AMD processors (Section 5.2).

It is worth noting that AMD researchers suggested that
SEV-ES masks the page offset during page fault. However,
we could not find relevant documentation or validate the claim
on our testbed. Nevertheless, our analysis (see Section 3.3.2)
suggests that the attack is still effective when the page offset
information is unavailable. Specifically, we empirically evalu-
ated the attack method that does not rely on page offsets by
repeating the experiments in Section 4.1: the mean precision
is 0.900, the mean recall is 0.730 and the mean F1 score is
0.800, which is only slightly lower.

5.1 Authenticated Encryption

Authenticated encryption must be adopted to prevent replay
attacks and replacement attacks of the encrypted ciphertext.
Merkle Tree (MT) [14] has been proposed for detecting re-
play and replacement attacks for protecting memory integrity.
MT can be built and maintained over any region of memory,
and hence it can be used to protect the entire memory or only
memory allocated to a VM, or any portion of it. There are two
types of MT that can be used, depending on the encryption
mode. For direct encryption mode, the MT covers data. For
counter-mode encryption, it was shown that replay was only
possible if the attacker replays data, its hash, and its counter
simultaneously. Hence, protecting counter freshness is suf-
ficient to protect against replay [26]. MT over counters is
referred to as Bonsai Merkle Tree (BMT), a variant of which
was chosen for implementation in Intel SGX MEE [18].

A fundamental trade off exits between the choice of en-
cryption mode and the overheads of MT. When 128-bit hash
is used for MT, MT (and hashes) over data incur memory
capacity overhead of 33% (i.e. data-to-MT nodes ratio of
2:1), as illustrated in Figure 11. On the other hand, BMT
incurs an overhead of 20% for hashes, plus 0.4% for BMT
nodes. Hashes are needed for both encryption modes to pro-

USENIX Association 28th USENIX Security Symposium 1267

AES-
CTR

Page
ID

Page
Offset

Major
Counter

Minor
Counter PaddingIV

Key

Fetched Block
(from off-chip Mem)

Ciphertext
(to off-chip Mem)

Pad

Counter
Cache

Last Level Cache (LLC)

GF
Mult

Hash

XOR XOR

Figure 12: Counter mode encryption with split counters using
Galois Counter Mode authentication.

tect against non-replay tampering of memory data. In addition,
counter-mode encryption requires additional storage for coun-
ters, which depends on the type of counters. 64-bit monolithic
counters take up 9% overheads, but split-counters [37] take up
only 1%. Taken together, protection against replay incurs 13%
memory capacity with direct encryption but only 1.4% with
counter mode encryption (Figure 11). For a 1 TB memory,
the difference amounts to a substantial 116 GB.

Counter mode encryption is illustrated in Figure 12. Coun-
ters are cached on chip, either in regular caches, or in a special
“counter cach”. With split counters, each page (4KB) of data
has its own major counter, and each block (64B) in a page has
its own minor counter. When there is a last level cache (LLC)
miss, the counter values (major and minor) are concatenated
with the page ID and block address of the page (i.e. page off-
set of the block) to produce a spatially and temporally unique
initial vector (IV) [37]. The IV is then encrypted to produce
a pad, which will be XOR-ed with ciphertext of data fetched
from memory to yield data plaintext. With Galois Counter
Mode, the hash of data is obtained a few clock cycles later.
Counter mode encryption is more secure than direct mode en-
cryption due to spatial and temporal uniqueness of ciphertexts
even for a single plaintext value. Furthermore, as illustrated
in the figure, decryption latency is largely overlapped with
LLC miss latency; the only exposed latency is 1-cycle XOR
of pad and data ciphertext. In contrast, direct memory mode
fully exposes decryption latency in the critical path of mem-
ory fetch. Therefore, in terms of security protection against
replay, memory capacity costs, and performance, AMD SEV
can benefit from counter mode encryption and BMT.

A MT/BMT protects the memory from replay or tampering
at all time. It is also possible to selectively protect memory
region integrity only at times in which they are “expected”
to be vulnerable. For example, the time window in which
IOMMU buffer is vulnerable is between the time it is writ-
ten by the DMA until it is read/consumed by the VM. One
could take a hash of the memory region at DMA write and
verify it when the VM reads the region. Any tampering or

replay attempts will be detected. Selective integrity protec-
tion may obviate the need for full MT/BMT for attacks that
occur within the vulnerable window, but leaves the memory
integrity unprotected at other time.

5.2 A Temporary Software Solution

In this section, we present a software solution that can tem-
porarily solve the I/O insecurity issues discussed in this paper.
The key idea is to make sure the hypervisor never observe any
unencrypted I/O data to/from the SEV-enabled VM. This can
be achieved using SEV’s platform management APIs [3] and
the transport encryption key of the VM Ktek.

Ktek is a shared Diffie-Hellman (DH) key between the VM
owner and the SEV firmware. Particularly, to launch an SEV-
enabled VM on an SEV platform, the owner of the VM first re-
quests the Diffie-Hellman (DH) certificate from the platform,
which contains the platform’s DH public key. The correspond-
ing private key is kept inside the SEV firmware, which cannot
be extracted by the system administrator or the hypervisor.
The VM owner then sends her DH public key to SEV platform,
so that she establishes a shared transport encryption key Ktek
with the SEV firmware. Ktek is only known by the VM owner
and the SEV firmware, but not known to the VM itself or hy-
pervisor. SEND_UPDATE_DATA and RECEIVE_UPDATE_DATA
are two commands (among many others) implemented by
SEV to assist the hypervisor to launch and manage SEV-
enabled VMs [3]. After the VM is launched, the hypervisor
may use SEV’s SEND_UPDATE_DATA command to atomically
decrypt a piece of memory with Kvek and re-encrypt with
Ktek or use RECEIVE_UPDATE_DATA command to decrypt the
memory with Ktek and re-encrypt with Kvek.

Our proposed solution retrofits these APIs and Ktek to pro-
tect I/O operations. Particularly, the guest VM kernel and the
QEMU can be modified so that the guest VM never copies
data between the encrypted memory and the unencrypted
memory. Instead, to perform any I/O operation to the SEV-
enabled VM, the hypervisor issues the SEND_UPDATE_DATA
and RECEIVE_UPDATE_DATA commands to atomically de-
crypt and re-encrypt data using the two keys Kvek and Ktek. As
both keys are protected inside the SEV firmware, the hypervi-
sor is not able to learn the plaintext during the I/O operations.
The SEV firmware serves as a trusted relay of the I/O paths.

However, this solution is only a temporary fix of the issue.
This is because the I/O traffic is encrypted with Ktek, which
is only known to the owner of the VM. Therefore, all I/O
operations, including network I/O, disk I/O, and display I/O
must be forwarded to a trusted server that is controlled by the
VM owner (as shown in Figure 13). Acting as an I/O proxy,
the trusted server may limit the application scenarios of SEV
and greatly reduce the I/O performance.

1268 28th USENIX Security Symposium USENIX Association

Figure 13: An illustration of the temporary software solution.

6 Related Work

6.1 Existing Security Studies on SEV

The security issues of AMD’s SEV have been placed under
the spotlight since its debut. Demonstrated security attacks
mainly targets SEV’s unencrypted VMCB [17] and SME’s
unauthenticated memory encryption [9, 12, 17, 25]. The for-
mer issue has been fixed using SEV-ES [19] and the latter
could be addressed with integrity protection of the encrypted
memory. An implementation bug in the firmware of AMD
secure processors have also been reported [11]. But since the
issue was not related to a design failure, we leave it as out of
scope of the paper. We detail these related work as follows:

Unencrypted VMCB. Hetzelt and Buhren analyzed the se-
curity of SEV from the perspective of unencrypted virtual
machine control block (VMCB) [17]. VMCB is a data struc-
ture in memory shared by the hypervisor and the guest VM,
which stores the values of guest’s general purpose registers
and control bits for handling virtual interrupts. At the time
of VMExit, a malicious hypervisor may learn the machine
state of the guest VM by reading register values stored in the
VMCB and subsequently alter their values before VMRun to
control the registers of the guest VM. Hetzelt and Buhren [17]
exploit unencrypted VMCB using code gadgets in the guest
memory (similar to return-oriented programming (ROP) [29])
to arbitrarily read and write encrypted memory in the guest
VM. The security issue caused by unencrypted VMCB, how-
ever, has been mitigated by SEV-ES [19], which adds another
indirection layer during VMExit that allows the guest VM to
be notified before Non-Automatic Exits (NAE)—exits requir-
ing hypervisor emulation—and prepares a new data structure
called Guest Hypervisor Communication Block—a subset of
VMCB—to communicate with the hypervisor. The machine
states stored in the VMCB are instead encrypted with authen-
tication, such that they are inaccessible from the hypervisor.

Unauthenticated memory encryption. Because SME does
not use authenticated encryption schemes, the integrity of

the encrypted memory is not protected. As such, malicious
hypervisors may alter the ciphertext of the encrypted memory
without triggering errors in the decryption process of the guest
VMs. Prior studies have demonstrated a variety of approaches
to exploit such unauthenticated memory encryption:

• Chosen plaintext attacks. Du et al. discovered that SME
uses Electronic Codebook (ECB) mode of operation in
its memory encryption [12], which implies that the same
plaintext always leads to the same ciphertext after encryp-
tion. As the only security measure is a physical address
based tweak function XORed with the plaintext before en-
cryption, knowledge of the tweak function will enable the
adversary to deduce the relationship between the plaintext
of two memory blocks (i.e., of 16 bytes) if their ciphertext
are the same. Du et al. exploit this weakness by construct-
ing a chosen plaintext attack (via an HTTP server installed
on the guest VM) and then replace the ciphertext of an
sshd program with the ciphertext of instructions specified
by the adversary (after applying the tweak functions).
• Fault injection attacks. Buhren et al. studied fault injec-

tion attacks on a simulated SME implementation [9]. Their
work considers a different threat model, which assumes
that the adversary is able to conduct physical DMA at-
tacks [6] and also run an unprivileged process on the target
OS. The unprivileged process performs Prime+Probe side-
channel attacks to trace the execution of the SME protected
application and, at the proper moment of a cryptographic
operation, utilizes DMA attacks to inject memory faults to
infer secret keys (or key components). We believe Buhren
et al.’s attack against SME can be migrated to SEV as
well, which is even easier to conduct as the hypervisor can
be assumed to be malicious.
• Page table manipulation. Remapping guest pages in

the nested paging structures to replay previously cap-
tured memory pages was first studied by Hetzelt and
Buhren [17]. A similar idea was later demonstrated by
Morbitzer et al. in SEVered, an attack that by manipulat-
ing the nested page table alters the virtual memory of the
guest VMs to breach the confidentiality of the memory en-
cryption [25]. More specifically, SEVered is carried out in
the following steps: First, the malicious hypervisor sends
network requests to the guest’s network-facing application,
e.g., an HTTP server, which allows the attacker to down-
load files larger than one memory page. Second, using a
coarse-grained page-level side channel, the attacker deter-
mines which of the encrypted guest VM’s memory pages
are used to store the response data. Third, after locating
these pages, the malicious hypervisor changes the page
mappings in the nested page table so that these virtual
pages used by the guest are mapped to different physical
pages. As a result, memory content of these pages can be
leaked through the responses of the network applications.
The same authors further extend SEVered to perform more

USENIX Association 28th USENIX Security Symposium 1269

realistic attacks [24], by extracting secret keys in real-
world protocols and applications such as TLS, SSH, full
disk encryption (FDE). Their attack makes use of the same
side channels to identify the set of memory pages that
are likely to contain those secrets and scans those pages
(roughly 100 pages) until the secrets are found. Both these
works only present decryption oracles but not encryption
oracles.

While the security issues of SEV’s I/O operations are or-
thogonal to the problems of unauthenticated memory encryp-
tion, the decryption oracle presented in this paper does rely
on the lack of integrity protection for the ciphertext blocks.
However, compared to previous memory decryption attacks
against SEV [24, 25], our work differs primarily in three as-
pects. First, Morbitzer et al. [24, 25] manipulate unprotected
nested page tables to decouple the mapping between the gVAs
and the memory contents, while our decryption oracle directly
replaces memory blocks used in the I/O buffer. The hardware
mechanisms to defend against these two attacks may differ.
Our attack highlights the necessity of mitigating both threats.
Second, instead of exploiting a network-facing application
executed in the guest VM to accept attacker-controlled data,
our attack could make use of any I/O traffic, which is more
general. Our paper suggests that application-specific defenses,
such pruning secrets after use [24], may not work. Third, the
attack in Morbitzer et al. requires the attacker to actively
generate network traffic to the guest VM, which makes it eas-
ily detectable. In contrast, our decryption oracle can make
use of existing I/O traffic, which can be very stealthy. More-
over, while the memory integrity issues are expected to be
addressed in the next release of SEV CPUs, the fundamen-
tal I/O security problem studied in this paper will remain.
The encryption oracle will not be mitigated unless the tweak
function is completely secured.

Other studies. Mofrad et al. [23] compare Intel SGX and
AMD SEV, in terms of their functionality, use scenarios, secu-
rity, and performance implications. The study suggests SEV
is more vulnerable than SGX as it lacks memory integrity
and has a bloated trust computing base (TCB). Moreover, the
performance comparison suggests AMD SEV technology per-
forms better than Intel SGX. Wu et al. proposes Fidelius [35],
a system that leverages a sibing-based protection mechanism
to partition an untrusted hypervisor into two components, one
for resource management and the other for security protec-
tion. The security of guest VMs is enhanced by the “trusted”
security protection component, which, while interesting and
effective, unfortunately contradicts with SEV’s original in-
tention of eliminating the hypervisor from the TCB. Fidelius
mentioned a method to protect disk I/O that is similar to our
temporary fix (see Section 5.2) but implies that the disk im-
age is shipped to the SEV platform. Thus it requires using the
same Ktek every time the disk image is used. Our proxy-style
solutions in Section 5.2 is a generalization of their approach.

6.2 Security Threats of Intel TEEs

Intel TME and MKTME. Intel’s counterparts of AMD’s
SME and SEV are Total Memory Encryption (TME) and
Multi-Key Total Memory Encryption (MKTME) [18]. The
concept of TME is almost the same as AMD SME: an AES-
XTS encryption engine sits between a direct data path and ex-
ternal memory buses to encrypt data when leaving the proces-
sor and decrypt it when entering the processor. TME supports
a single ephemeral encryption key for the entire processor.
In contrast, MKTME supports multiple keys; it labels each
page table entry with a KeyID to select one of the ephemeral
AES keys generated in the encryption engine. Different from
AMD SEV, guest VMs in MKTME may have more than one
AES key. KeyID0 is used for guest VM to share pages with
hyperviosr. KeyIDN is assigned to guest the Nth VM by hy-
pervisor for guest’s private page. However, the guest VM is
able to obtain other KeyIDs to share memory with another
guest VMs. As we were not able to purchase a machine with
TME and MKTME on the market at the time of writing, we
leave the analysis of these Intel’s technologies to future work.

Intel SGX. Intel Software Guard eXtension (SGX) is an
instruction set architecture extension that supports isola-
tion of memory regions of userspace processes. Through a
microcode-extended memory management unit, memory ac-
cesses to the protected memory regions, dubbed enclaves,
are mediated so that only instructions belonging to the same
enclave are permitted. Software attacks from all privileged
software layers, including operating systems, hypervisors,
system management software, are prevented by SGX. A hard-
ware Memory Encryption Engine sits between the processor
and the memory to encryption memory traffic on the fly, so
that confidentiality of the enclave memory is guaranteed even
with physical attackers. Remote attestation is supported in
SGX to guard the integrity of the enclave code.

Similar to AMD’s SEV, SGX constructs TEE on Intel pro-
cessors. However, it differs from SEV as it only isolates por-
tions of the user processes’ memory space, whereas SEV
encrypts the memory of the entire virtual machine. Develop-
ers of SEV do not need to rewrite the software when using
AMD’s TEE; but SGX developers have to manually partition
applications into trusted and untrusted components, and re-
compile the source code with the SDKs provided by Intel.
SGX machines have been available on market since late 2015.
So far, two major types of attacks have been demonstrated to
SGX applications.

• Side-channel attacks. Prior studies have demonstrated
that enclave secrets in SGX can be exfiltrated through
side channels on the CPU caches [8, 15, 16, 27], branch
target buffers [22], DRAM’s row buffer contention [34],
page-table entries [33, 34], and page-fault exception han-
dlers [30, 36]. More recently, side-channel attacks ex-
ploiting speculative and out-of-order execution have been

1270 28th USENIX Security Symposium USENIX Association

shown on SGX as well [10, 32]. Similar to SGX, SEV
is not designed to thwart side-channel attacks. Therefore,
we expect similar attacks can be carried out on AMD’s
SEV as well. Because the attacks demonstrated in this pa-
per already completely breaks the confidentiality of SEV-
protected VMs, there is no need to rely on side channels to
extract secrets. However, in some of the attacks we demon-
strate, side channels do facilitate the attacks. We leave the
discussion on side-channel surface of SEV to future work.
• Memory hijacking attacks. SGX does not guard memory

safety inside the enclaves. Studies [7, 21] have shown
that attackers could exploit vulnerabilities in enclave pro-
grams and perform return-oriented programming (ROP)
attacks [29]. Randomization-based security defenses have
been proposed to mitigate ROP attacks [28]. However,
as pointed out by Biondo et al. [7], SGX runtimes inher-
ently contains memory regions that are hard to randomize,
and thus completely eliminating the threats of memory
hijacking attacks requires eradicating vulnerabilities from
the enclave code. As neither SGX nor SEV is designed
to provide memory safety, memory hijacking attacks are
feasible on SEV as well. We will not further discuss these
attacks on SEV in this paper.

AMD SEV is also vulnerable to these attacks. In this paper,
we have explored a fine-grained page-fault side channel
to locate the memory buffers used in the I/O operations.
We leave a comprehensive study of SEV side-channel and
memory-hijacking attacks to future work.

7 Conclusion

In this paper, we have reported our study of the insecurity of
SEV from the perspective of the unprotected I/O operations in
SEV-enabled VMs. The results of our study are two fold: First,
I/O operations from SEV guests are not secure; second, I/O
operations can be used by the adversary to construct memory
encryption and decryption oracles. The concrete attacks have
been demonstrated in the paper, along with discussion of
potential solutions to the underlying problems.

Acknowledgments. We would like to thank our shepherd
Dave Tan and also the anonymous reviewers for the helpful
comments. The work was supported in part by the NSF grants
1750809, 1718084, 1834213, and 1834216, and research gifts
from Intel and DFINITY foundation to Yinqian Zhang. Yan
Solihin is supported in part by UCF.

References

[1] AMD. AMD-V nested paging. http:
//developer.amd.com/wordpress/media/2012/
10/NPT-WP-1%201-final-TM.pdf, 2008.

[2] AMD. Amd64 architecture programmer’s manual vol-
ume 2: System programming, 2017.

[3] AMD. Secure encrypted virtualization api version 0.17,
2018.

[4] AMD. Solving the cloud trust problem with WinMagic
and AMD EPYC hardware memory encryption. White
paper, 2018.

[5] Amazon AWS. Optimizing latency and bandwidth for
AWS traffic, 2016.

[6] Michael Becher, Maximillian Dornseif, and Christian N.
Klein. FireWire: all your memory are belong to us. In
CanSecWest, 2005.

[7] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The guard’s
dilemma: Efficient code-reuse attacks against intel SGX.
In 27th USENIX Security Symposium, pages 1213–1227.
USENIX Association, 2018.

[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive
Technologies, 2017.

[9] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre
Seifert, and Julian Vetter. Fault attacks on encrypted
general purpose compute platforms. In 7th ACM on Con-
ference on Data and Application Security and Privacy.
ACM, 2017.

[10] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H. Lai. Sgxpectre attacks:
Stealing intel secrets from sgx enclaves via speculative
execution. In 4th IEEE European Symposium on Secu-
rity and Privacy. IEEE, 2019.

[11] CTS. Severe security advisory on AMD pro-
cessors. https://safefirmware.com/amdflaws_
whitepaper.pdf, 2017.

[12] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai,
Phoebe Wang, Jesse Liu, and Jesse Fang. Secure
encrypted virtualization is unsecure. arXiv preprint
arXiv:1712.05090, 2017.

[13] Fujian Chuang YI Jia He Digital Inc. Anjian v1.1.0.
www.anjian.com, 2019.

[14] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten
van Dijk, and Srinivas Devadas. Caches and hash trees
for efficient memory integrity verification. In 9th Inter-
national Symposium on High-Performance Computer
Architecture, 2003.

USENIX Association 28th USENIX Security Symposium 1271

http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
https://safefirmware.com/amdflaws_whitepaper.pdf
https://safefirmware.com/amdflaws_whitepaper.pdf
www.anjian.com

[15] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on intel sgx. In EU-
ROSEC, 2017.

[16] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In USENIX Annual Technical Conference,
2017.

[17] Felicitas Hetzelt and Robert Buhren. Security analy-
sis of encrypted virtual machines. In ACM SIGPLAN
Notices. ACM, 2017.

[18] Intel. Intel architecture: Memory encryption technolo-
gies specification, 2017.

[19] David Kaplan. Protecting VM register state with SEV-
ES. White paper, 2017.

[20] David Kaplan, Jeremy Powell, and Tom Woller. AMD
memory encryption. White paper, 2016.

[21] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun
Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Mar-
cus Peinado, and Brent ByungHoon Kang. Hacking in
darkness: Return-oriented programming against secure
enclaves. In 26th USENIX Security Symposium, 2017.

[22] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium, 2017.

[23] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Wei-
dong Shi. A comparison study of intel SGX and AMD
memory encryption technology. In 7th International
Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, 2018.

[24] Mathias Morbitzer, Manuel Huber, and Julian Horsch.
Extracting secrets from encrypted virtual machines. In
9th ACM Conference on Data and Application Security
and Privacy. ACM, 2019.

[25] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s virtual
machine encryption. In 11th European Workshop on
Systems Security. ACM, 2018.

[26] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and
Yan Solihin. Using address independent seed encryption
and bonsai Merkle trees to make secure processors os-
and performance-friendly. In 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007.

[27] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware
Guard Extension: Using SGX to Conceal Cache Attacks.
Springer International Publishing, 2017.

[28] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-
Wei Shih, Insik Shin, Dongsu Han, and Taesoo Kim.
Sgx-shield: Enabling address space layout randomiza-
tion for SGX programs. In 24th Annual Network and
Distributed System Security Symposium, 2017.

[29] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In 14th ACM Conference on Computer and
Communications Security. ACM, 2007.

[30] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan,
and Prateek Saxena. Preventing page faults from telling
your secrets. In 11th ACM on Asia Conference on Com-
puter and Communications Security, 2016.

[31] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing analysis of keystrokes and timing attacks on ssh.
In USENIX Security Symposium, 2001.

[32] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In 27th
USENIX Security Symposium, 2018.

[33] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In 26th USENIX Security Sympo-
sium. USENIX Association, 2017.

[34] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
sgx. In ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[35] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu
Zang, and Haibing Guan. Comprehensive VM pro-
tection against untrusted hypervisor through retrofitted
AMD memory encryption. In International Symposium
on High Performance Computer Architecture, 2018.

[36] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In IEEE Symposium
on Security and Privacy. IEEE, 2015.

[37] Chenyu Yan, B. Rogers, D. Englender, D. Solihin, and
M. Prvulovic. Improving cost, performance, and security
of memory encryption and authentication. In 33rd Inter-

national Symposium on Computer Architecture, 2006.

1272 28th USENIX Security Symposium USENIX Association

Detecting and Characterizing Lateral Phishing at Scale

Grant Ho†◦ Asaf Cidon◦ψ Lior Gavish◦ Marco Schweighauser◦

Vern Paxson†
∮

Stefan Savage? Geoffrey M. Voelker? David Wagner†

◦
Barracuda Networks

†
UC Berkeley

?
UC San Diego

ψ
Columbia University

∮
International Computer Science Institute

Abstract
We present the first large-scale characterization of lateral

phishing attacks, based on a dataset of 113 million employee-
sent emails from 92 enterprise organizations. In a lateral
phishing attack, adversaries leverage a compromised enter-
prise account to send phishing emails to other users, benefit-
ting from both the implicit trust and the information in the
hijacked user’s account. We develop a classifier that finds hun-
dreds of real-world lateral phishing emails, while generating
under four false positives per every one-million employee-
sent emails. Drawing on the attacks we detect, as well as a
corpus of user-reported incidents, we quantify the scale of lat-
eral phishing, identify several thematic content and recipient
targeting strategies that attackers follow, illuminate two types
of sophisticated behaviors that attackers exhibit, and estimate
the success rate of these attacks. Collectively, these results
expand our mental models of the ‘enterprise attacker’ and
shed light on the current state of enterprise phishing attacks.

1 Introduction

For over a decade, the security community has explored a
myriad of defenses against phishing attacks. Yet despite this
long line of work, modern-day attackers routinely and suc-
cessfully use phishing attacks to compromise government
systems, political figures, and companies spanning every eco-
nomic sector. Growing in prominence each year, this genre
of attacks has risen to the level of government attention, with
the FBI estimating $12.5 billion in financial losses worldwide
from 78,617 reported incidents between October 2013 to May
2018 [12], and the US Secretary of Homeland Security declar-
ing that phishing represents “the most devastating attacks by
the most sophisticated attackers” [39].

By and large, the high-profile coverage around targeted
spearphishing attacks against major entities, such as Google,
RSA, and the Democratic National Committee, has captured
and shaped our mental models of enterprise phishing at-
tacks [35, 43, 46]. In these newsworthy instances, as well
as many of the targeted spearphishing incidents discussed in
the academic literature [25, 26, 28], the attacks come from
external accounts, created by nation-state adversaries who
cleverly craft or spoof the phishing account’s name and email
address to resemble a known and legitimate user. However,
in recent years, work from both industry [7, 24, 36] and
academia [6, 18, 32, 41] has pointed to the emergence and

growth of lateral phishing attacks: a new form of phishing
that targets a diverse range of organizations and has already
incurred billions of dollars in financial harm [12]. In a lateral
phishing attack, an adversary uses a compromised enterprise
account to send phishing emails to a new set of recipients.
This attack proves particularly insidious because the attacker
automatically benefits from the implicit trust in the hijacked
account: trust from both human recipients and conventional
email protection systems.

Although recent work [10, 15, 18, 19, 41] presents several
ideas for detecting lateral phishing, these prior methods either
require that organizations possess sophisticated network mon-
itoring infrastructure, or they produce too many false positives
for practical usage. Moreover, no prior work has characterized
this attack at a large, generalizable scale. For example, one
of the most comprehensive related work uses a multi-year
dataset from one organization, which only contains two lat-
eral phishing attacks [18]. This state of affairs leaves many
important questions unanswered: How should we think about
this class of phishing with respect to its scale, sophistication,
and success? Do attackers follow thematic strategies, and
can these common behaviors fuel new or improved defenses?
How are attackers capitalizing on the information within the
hijacked accounts, and what does their behavior say about the
state and trajectory of enterprise phishing attacks?

In this joint work between academia and Barracuda Net-
works we take a first step towards answering these open ques-
tions and understanding lateral phishing at scale. This paper
seeks to both explore avenues for practical defenses against
this burgeoning threat and develop accurate mental models
for the state of these phishing attacks in the wild.

First, we present a new classifier for detecting URL-based
lateral phishing emails and evaluate our approach on a dataset
of 113 million emails, spanning 92 enterprise organizations.
While the dynamic churn and dissimilarity in content across
phishing emails proves challenging, our approach can detect
87.3% of attacks in our dataset, while generating less than 4
false positives per every 1,000,000 employee-sent emails.

Second, combining the attacks we detect with a corpus of
user-reported lateral phishing attacks, we conduct the first
large-scale characterization of lateral phishing in real-world
organizations. Our analysis shows that this attack is potent
and widespread: dozens of organizations, ranging from ones
with fewer than 100 employees to ones with over 1,000 em-
ployees, experience lateral phishing attacks within the span

USENIX Association 28th USENIX Security Symposium 1273

of several months; in total, 14% of a set of randomly sam-
pled organizations experienced at least one lateral phishing
incident within a seven-month timespan. Furthermore, we
estimate that over 11% of attackers successfully compromise
at least one additional employee. Even though our ground
truth sources and detector face limitations that restrict their
ability to uncover stealthy or narrowly targeted attacks, our re-
sults nonetheless illuminate a prominent threat that currently
affects many real-world organizations.

Examining the behavior of lateral phishers, we explore and
quantify the popularity of four recipient (victim) selection
strategies. Although our dataset’s attackers target dozens to
hundreds of recipients, these recipients often include a sub-
set of users with some relationship to the hijacked account
(e.g., fellow employees or recent contacts). Additionally, we
develop a categorization for the different levels of content
tailoring displayed by our dataset’s phishing messages. Our
categorization shows that while 7% of attacks deploy targeted
messages, most attacks opt for generic content that a phisher
could easily reuse across multiple organizations. In particular,
we observe that lateral phishers rely predominantly on two
common lures: a pretext of a shared document and a fake
warning message about a problem with the recipient’s ac-
count. Despite the popularity of non-targeted content, nearly
one-third of our dataset’s attackers invest additional time and
effort to make their attacks more convincing and/or to evade
detection; and, over 80% of attacks occur during the normal
working hours of the hijacked account.

Ultimately, this work yields two contributions that ex-
pand our understanding of enterprise phishing and potential
defenses against it. First, we present a novel detector that
achieves an order-of-magnitude better performance than prior
work, while operating on a minimal data requirement (only
leveraging historical emails). Second, through the first large-
scale characterization of lateral phishing, we uncover the scale
and success of this emerging class of attacks and shed light on
common strategies that lateral phishers employ. Our analysis
illuminates a prevalent class of enterprise attackers whose
behavior does not fully match the tactics of targeted nation-
state attacks or industrial espionage. Nonetheless, these lateral
phishers still achieve success in the absence of new defenses,
and many of our dataset’s attackers do exhibit some signs of
sophistication and focused effort.

2 Background

In a lateral phishing attack, attackers use a compromised,
but legitimate, email account to send a phishing email to
their victim(s). The attacker’s goals and choice of malicious
payload can take a number of different forms, from a malware-
infected attachment, to a phishing URL, to a fake payment
request. Our work focuses on lateral phishing attacks that
employ a malicious URL embedded in the email, which is the
most common exploit method identified in our dataset.

Listing 1: An anonymized example of a lateral phishing message
that uses the lure of a fake contract document.

From: "Alice" <alice@company.com>
To: "Bob" <bob@company.com>
Subject: Company X (New Contract)

New Contract

View Document [this text linked to a phishing website]

Regards,
Alice [signature]

Listing 1 shows an anonymized example of a lateral phish-
ing attack from our study. In this attack, the phisher tried to
lure the recipient into clicking on a link under the false pre-
tense of a new contract. Additionally, the attacker also tried to
make the deception more credible by responding to recipients
who inquired about the email’s authenticity; and they also
actively hid their presence in the compromised user’s mailbox
by deleting all traces of their phishing email.

Lateral phishing represents a dangerous but understudied
attack at the intersection of phishing and account hijacking.
Phishing attacks, broadly construed, involve an attacker craft-
ing a deceptive email from any account (compromised or
spoofed) to trick their victim into performing some action.
Account hijacking, also known as account takeover (ATO)
in industry parlance, involves the use of a compromised ac-
count for any kind of malicious means (e.g., including spam).
While prior work primarily examines each of these attacks at a
smaller scale and with respect to personal accounts, our work
studies the intersection of both of these at a large scale and
from the perspective of enterprise organizations. In doing so,
we expand our understanding of important enterprise threats,
avenues for defending against them, and strategies used by
the attackers who perpetrate them.

2.1 Related Work

Detection: An extensive body of prior literature proposes
numerous techniques for detecting traditional phishing at-
tacks [1,3,13,14,44], as well as more sophisticated spearphish-
ing attacks [8, 10, 23, 41, 47]. Hu et al. studied how to use
social graph metrics to detect malicious emails sent from
compromised accounts [19]. Their approach detects hijacked
accounts with false positive rates between 20–40%. Unfortu-
nately, in practice, many organizations handle tens of thou-
sands of employee-sent emails per day, so a false positive
rate of 20% would lead to thousands of false alerts each day.
IdentityMailer, proposed by Stringhini et al. [41], detects lat-
eral phishing attacks by training behavior models based on
timing patterns, metadata, and stylometry for each user. If a
new email deviates from an employee’s behavioral model,

1274 28th USENIX Security Symposium USENIX Association

their system flags it as an attack. While promising, their ap-
proach produces false positive rates in the range of 1–10%,
which is untenable in practice given the high volume of benign
emails and low base rate of phishing. Additionally, their sys-
tem requires training a behavioral model for each employee,
incurring expensive technical debt to operate at scale.

Ho et al. developed methods for detecting lateral
spearphishing by applying a novel anomaly detection algo-
rithm on a set of features derived from historical user login
data and enterprise network traffic logs [18]. Their approach
detects both known and newly discovered attacks, with a false
positive rate of 0.004%. However, organizations with less
technical expertise often lack the infrastructure to compre-
hensively capture the enterprise’s network traffic, which this
prior approach requires. This technical prerequisite begs the
question, can we practically detect lateral phishing attacks
with a more minimalist dataset: only the enterprise’s historical
emails? Furthermore, their dataset reflects a single enterprise
that experienced only two lateral phishing attacks across a
3.5-year timespan, which prevents them from characterizing
the nature of lateral phishing at a general scale.

Characterization: While prior work shows that attackers
frequently use phishing to compromise accounts, and that
attackers occasionally conduct (lateral) phishing from these
hijacked accounts, few efforts have studied the nature of lat-
eral phishing in depth and at scale. Examining a sample of
phishing emails, webpages, and compromised accounts from
Google data sources, one prior study of account hijacking
discovered that attackers often use these accounts to send
phishing emails to the account’s contacts [6]. However, they
concluded that automatically detecting such attacks proves
challenging. Onaolapo et al. studied what attackers do with
hijacked accounts [32], but they did not examine lateral phish-
ing. Separate from email accounts, a study of compromised
Twitter accounts found that infections appear to spread later-
ally through the social network. However their dataset did not
allow direct observation of the lateral attack vector itself [42],
nor did it provide insights into the domain of compromised
enterprise accounts (given the nature of social media).

Open Questions and Challenges: Prior work makes clear
that account compromise poses a significant and widespread
problem. This literature also presents promising defenses for
enterprises that have sophisticated monitoring in place. Yet
despite these advances, several key questions remain unre-
solved. Do organizations without comprehensive monitoring
and technical expertise have a practical way to defend against
lateral phishing attacks? What common strategies and trade-
craft do lateral phishers employ? How are lateral phishers
capitalizing on their control of legitimate accounts, and what
does their tactical sophistication say about the state of enter-
prise phishing? This paper takes a step towards answering
these open questions by presenting a new detection strategy
and a large-scale characterization of lateral phishing attacks.

ag
ric

ul
tu

re

co
ns

um
er

ed
uc

at
io

n

en
er

gy

en
te

rta
in

m
en

t

fin
an

cia
l

fo
od

go
ve

rn
m

en
t

he
al

th

in
du

st
ria

ls

no
n-

pr
of

it

pe
op

le
 se

rv
ice

s

re
al

-e
st

at
e

te
ch

no
lo

gy

to
ur

ism

tra
ns

po
rta

tio
n0

2

4

6

8

10

12

14

of

 o
rg

an
iza

tio
ns

Exploratory orgs
Test orgs

Figure 1: Breakdown of the economic sectors across our dataset’s
52 exploratory organizations versus the 40 test organizations.

2.2 Ethics

In this work, our team, consisting of researchers from
academia and a large security company, developed detection
techniques using a dataset of historical emails and reported
incidents from 92 organizations who are active customers of
Barracuda Networks. These organizations granted Barracuda
permission to access their Office 365 employee mailboxes for
the purpose of researching and developing defenses against
lateral phishing. Per Barracuda’s policies, all fetched emails
are stored encrypted, and customers have the option of revok-
ing access to their data at any time.

Due to the sensitivity of the data, only authorized em-
ployees at Barracuda were allowed to access the data (un-
der standard, strict access control policies). No personally
identifying information or sensitive data was shared with any
non-employee of Barracuda. Our project also received legal
approval from Barracuda, who had permission from their
customers to analyze and operate on the data.

Once Barracuda deployed a set of lateral phishing detectors
to production, any detected attacks were reported to customers
in real time to prevent financial loss and harm.

3 Data

Our dataset consists of employee-sent emails from 92 English-
language organizations; 23 organizations came from ran-
domly sampling enterprises that had reports of lateral phish-
ing, and 69 were randomly sampled from all organizations.
Across these enterprises, 25 organizations have 100 or fewer
user accounts, 34 have between 101–1000 accounts, and 33
have over 1000 accounts. Real-estate, technology, and edu-
cation constitute the three most common industries in our
dataset, with 15, 13, and 13 enterprises respectively; Figures 1
and 2 show the distribution of the economic sectors and sizes
of our dataset’s organizations, broken down by exploratory
organizations versus test organizations (§ 3.2).

USENIX Association 28th USENIX Security Symposium 1275

<= 100 mailboxes 101 - 1,000 mailboxes >= 1,001 mailboxes0

5

10

15

20

25

30

35

of

 o
rg

an
iza

tio
ns

Exploratory Orgs
Test orgs

Figure 2: Breakdown of the organization sizes across our dataset’s
52 exploratory organizations versus the 40 test organizations.

3.1 Schema

The organizations in our dataset use Office 365 as their email
provider. At a high level, each email object contains: a unique
Office 365 identifier; the email’s metadata (SMTP header
information), which describes properties such as the email’s
sent timestamp, recipients, purported sender, and subject; and
the email’s body, the contents of the email message in full
HTML formatting. Office 365’s documentation describes the
full schema of each email object [29]. Additionally, for each
organization, we have a set of verified domains: domains
which the organization has declared that it owns.

3.2 Dataset Size

Our dataset consists of 113,083,695 unique, employee-sent
emails. To ensure our detection techniques generalized (Sec-
tion 5.1), we split our data into a training dataset of emails
from 52 ‘exploratory organizations’ during April–June 2018,
and a test dataset covering July–October 2018 from 92 or-
ganizations. Our test dataset consists of emails from the 52
exploratory organizations (but from a later, disjoint time pe-
riod than our training dataset), plus data from an additional,
held-out set of 40 ‘test organizations’. We selected the 40 test
organizations via a random sample that we performed prior
to analyzing any data. Our training dataset has 25,670,264
emails, and our test dataset has 87,413,431 emails. Both sets
of organizations cover a diverse range of industries and sizes
as shown in Figures 1 and 2. The exploratory organizations
span a total of 89,267 user mailboxes that sent or received
email, and the test organizations have 138,752 mailboxes
(based on the data from October 2018).1

3.3 Ground truth

Our set of lateral phishing emails comes from two sources:
(1) attack emails reported to Barracuda by an organization’s
security administrators, as well as attacks reported by users
to their organization or directly to Barracuda, and (2) emails

1The number of mailboxes is an upper bound on the number of employees
due to the use of mailing lists and aliases.

Figure 3: An anonymized screenshot of the web page that a phishing
URL in a lateral phishing email led to.

flagged by our detector (§4), which we manually reviewed
and labeled before including.

At a high-level, to manually label an email as phishing, or
not, we examined its message content, Office 365 metadata,
and Internet Message Headers [33] to determine whether the
email contained phishing content, and whether the email came
from a compromised account (versus an external account,
which we do not treat as lateral phishing). For example, if the
Office 365 metadata showed that a copy of the email resided
in the employee’s Sent Items folder, or if its headers showed
that the email passed the corresponding SPF or DKIM [9]
checks, then we considered the email to be lateral phishing.
Appendix §A.1 describes our labeling procedure in detail.

Additionally, for a small sample of URLs in these lateral
phishing emails, employees at Barracuda accessed the phish-
ing URL in a VM-contained browser to better understand
the end goals of the attack. To minimize potential harm and
side effects, these employees only visited phishing URLs
which contained no unique identifiers (i.e., no random strings
or user/organization information in the URL path). To han-
dle any phishing URLs that resided on URL-shortening do-
mains, we used one of Barracuda’s URL-expansion APIs
that their production services already apply to email URLs,
and only visited suspected phishing links that expanded to a
non-side-effect URL. Most phishing URLs we explored led
to a SafeBrowsing interstitial webpage, likely reflecting our
use of historical emails, rather than what users would have
encountered contemporaneously. However, more recent mali-
cious URLs consistently led to credential phishing websites
designed to look like a legitimate Office 365 login page (the
email service provider used by our study’s organizations); Fig-
ure 3 shows an anonymized example of one phishing website.

In total, our dataset contains 1,902 lateral phishing emails
(unique by subject, sender, and sent-time), sent by 154 hi-
jacked employee accounts from 33 organizations. 1,694 of
these emails were reported by users, with the remainder found
solely by our detector (§ 4); our detector also finds many of the

1276 28th USENIX Security Symposium USENIX Association

user-reported attacks as well (§ 5). Among the user-reported
attacks, 40 emails (from 12 hijacked accounts) contained a
fake wire transfer or malicious attachment, while the remain-
ing 1,862 emails used a malicious URL.

We focus our detection strategy on URL-based phishing,
given the prevalence of this attack vector. This focus means
that our analysis and detection techniques do not reflect the
full space of lateral phishing attacks. Despite this limitation,
our dataset’s attacks span dozens of organizations, enabling
us to study a prevalent class of enterprise phishing that poses
an important threat in its own right.

4 Detecting Lateral Phishing

Adopting the lateral attacker threat model defined by Ho et
al. [18], we focus on phishing emails sent by a compromised
employee account, where the attack embeds a malicious URL
as the exploit (e.g., leading the user to a phishing webpage).

We explored three strategies for detecting lateral phishing
attacks, but ultimately found that one of the strategies detected
nearly all of the attacks identified by all three approaches. At
a high level, the two less fruitful strategies detected attacks
by looking for emails that contained (1) a rare URL and (2)
a message whose text seemed likely to be used for phishing
(e.g., similar text to a known phishing attack). Because our
primary detection strategy detected all-but-two of the attacks
found by the other strategies, while finding over ten times as
many attacks, we defer discussion of the two less successful
approaches to our extended technical report [17]; below, we
focus on exploring the more effective strategy in detail. In our
evaluation, we include the two additional attacks found by the
alternative approaches as false negatives for our detector.

Overview: We examined the user-reported lateral phishing
incidents in our training dataset (April–June 2018) to iden-
tify widespread themes and behaviors that we could leverage
in our detector. Grouping this set of attacks by the hijacked
account (ATO) that sent them, we found that 95% of these
ATOs sent phishing emails to 25 or more distinct recipients.2

This prevalent behavior, along with additional feature ideas
inspired by the lure-exploit detection framework [18], pro-
vide the basis for our detection strategy. In the remainder of
this section, we describe the features our detector uses, the
intuition behind these features, and our detector’s machine
learning procedure for classifying emails.

Our techniques provide neither an all-encompassing ap-
proach to finding every attack, nor guaranteed robustness
against motivated adversaries trying to evade detection. How-
ever, we show in Section 5 that our approach finds hundreds
of lateral phishing emails across dozens of real-world organi-
zations, while incurring a low volume of false positives.

2To assess the generalizability of our approach, our evaluation uses a
withheld dataset, from a later timeframe and with new organizations (§ 5).

Features: Our detector extracts three sets of features. The first
set consists of two features that target the popular behavior we
observed earlier: contacting many recipients. Given an email,
we first extract the number of unique recipients across the
email’s To, CC, and BCC headers. Additionally, we compute
the Jaccard similarity of this email’s recipient set to the closest
set of historical recipients seen in any employee-sent email
from the preceding month. We refer to this latter (similarity)
feature as the email’s recipient likelihood score.

The next two sets of features draw upon the lure-exploit
phishing framework proposed by Ho et al. [18]. This frame-
work posits that phishing emails contain two necessary com-
ponents: a ‘lure’, which convinces the victim to believe the
phishing email and perform some action; and an ‘exploit’: the
malicious action the victim should execute. Their work finds
that using features that target both of these two components
significantly improves a detector’s performance.

To characterize whether a new email contains a poten-
tial phishing lure, our detector extracts a single, lightweight
boolean feature based on the email’s text. Specifically, Bar-
racuda provided us with a set of roughly 150 keywords and
phrases that frequently occur in phishing attacks. They de-
veloped this set of ‘phishy’ keywords by extracting the link
text from several hundred real-world phishing emails (both
external and lateral phishing) and selecting the (normalized)
text that occurred most frequently among these attacks. The-
matically, these suspicious keywords convey a call to action
that entices the recipient to click a link. For our ‘lure’ feature,
we extract a boolean value that indicates whether an email
contains any of these phishy keywords.

Finally, we complete our detector’s feature set by extracting
two features that capture whether an email might contain an
exploit. Since our work focuses on URL-based attacks, this
set of features reflects whether the email contains a potentially
dangerous URL.

First, for each email, we extract a global URL reputation
feature that quantifies the rarest URL an email contains. Given
an email, we extract all URLs from the email’s body and ig-
nore URLs if they fall under two categories: we exclude all
URLs whose domain is listed on the organization’s verified
domain list (§ 3.1), and we also exclude all URLs whose
displayed, hyperlinked text exactly matches the URL of the
hyperlink’s underlying destination. For example, in Listing 1’s
attack, the displayed text of the phishing hyperlink was “Click
Here”, which does not match the hyperlink’s destination (the
phishing site), so our procedure would keep this URL. In
contrast, Alice’s signature from Listing 1 might contain a
link to her personal website, e.g., www.alice.com; our pro-
cedure would ignore this URL, since the displayed text of
www.alice.com matches the hyperlink’s destination.

This latter filtering criteria makes the assumption that a
phishing URL will attempt to obfuscate itself, and will not
display the true underlying destination directly to the user.
After these filtering steps, we extract a numerical feature by

USENIX Association 28th USENIX Security Symposium 1277

mapping each remaining URL to its registered domain, and
then looking up each domain’s ranking on the Cisco Um-
brella Top 1 Million sites [20];3 for any unlisted domain, we
assign it a default ranking of 10 million. We treat two spe-
cial cases differently. For URLs on shortener domains, our
detector attempts to recursively resolve the shortlink to its
final destination. If this resolution succeeds, we use the global
ranking of the final URL’s domain; otherwise, we treat the
URL as coming from an unranked domain (10 million). For
URLs on content hosting sites (e.g., Google Drive or Share-
point), we have no good way to determine its suspiciousness
without fetching the content and analyzing it (an action that
has several practical hurdles). As a result, we treat all URLs
on content hosting sites as if they reside on unranked domains.

After ranking each URL’s domain, we set the email’s global
URL reputation feature to be the worst (highest) domain rank-
ing among its URLs. Intuitively, we expect that phishers will
rarely host phishing pages on popular sites, so a higher global
URL reputation indicates a more suspicious email. In prin-
ciple a motivated adversary could evade this feature; e.g., if
an adversary can compromise one of the organization’s ver-
ified domains, they can host their phishing URL from this
compromised site and avoid an accurate ranking. However,
we found no such instances in our set of user-reported lateral
phishing. Additionally, since the goal of this paper is to begin
exploring practical detection techniques, and develop a large
set of lateral phishing incidents for our analysis, this feature
suffices for our needs.

In addition to this global reputation metric, we extract a
local metric that characterizes the rareness of a URL with
respect to the domains of URLs that an organization’s em-
ployees typically send. Given a set of URLs embedded within
an email, we map each URL to its fully-qualified domain
name (FQDN) and count the number of days from the preced-
ing month where at least one employee-sent email included a
URL on the FQDN. We then take the minimum value across
all of an email’s URLs; we call this minimum value the lo-
cal URL reputation feature. Intuitively, suspicious URLs will
have both a low global reputation and a low local reputation.
However, our evaluation (§ 5.2) finds that this local URL
reputation feature adds little value: URLs with a low local
URL reputation value almost always have a low global URL
reputation value, and vice versa.

Classification: To label an email as phishing or not, we
trained a Random Forest classifier [45] with the aforemen-
tioned features. To train our classifier, we take all user-
reported lateral phishing emails in our training dataset, and
combine them with a set of likely-benign emails. We generate
this set of “benign” emails by randomly sampling a subset
of the training window’s emails that have not been reported
as phishing; we sample 200 of these benign emails for each

3We use a list fetched in early March 2018 for our feature extraction, but
in practice, one could use a continuously updated list.

attack email to form our set of benign emails for training. Fol-
lowing standard machine learning practices, we selected both
the hyperparameters for our classifier and the exact downsam-
pling ratio (200:1) using cross-validation on this training data.
Appendix A.2 describes our training procedure in more detail.

Once we have a trained classifier, given a new email, our
detector extracts its features, feeds the features into this clas-
sifier, and outputs the classifier’s decision.

5 Evaluation

In this section we evaluate our lateral phishing detector. We
first describe our testing methodology, and then show how
well the detector performs on millions of emails from over 90
organizations. Overall, our detector has a high detection rate,
generates few false positives, and detects many new attacks.

5.1 Methodology

Establishing Generalizability: As described earlier in Sec-
tion 3.2, we split our dataset into two disjoint segments: a
training dataset consisting of emails from the 52 exploratory
organizations during April–June 2018 and a test dataset from
92 enterprises during July–October 2018; in § 5.2, we show
that our detector’s performance remains the same if our test
dataset contains only the emails from the 40 withheld test
organizations. Given these two datasets, we first trained our
classifier and tuned its hyperparameters via cross validation
on our training dataset (Appendix A.2). Next, to compute our
evaluation results, we ran our detector on each month of the
held-out test dataset. To simulate a classifier in production,
we followed standard machine learning practices and used
a continuous learning procedure to update our detector each
month [38]. Namely, at the end of each month, we aggregated
the user-reported and detector-discovered phishing emails
from all previous months into a new set of phishing ‘training’
data; and, we aggregated our original set of randomly sampled
benign emails with our detector’s false positives from all pre-
vious months to form a new benign ‘training’ dataset. We then
trained a new model on this aggregated training dataset and
used this updated model to classify the subsequent month’s
data. However, to ensure that any tuning or knowledge we
derived from the training dataset did not bias or overfit our
classifier, we did not alter any of the model’s hyperparameters
or features during our evaluation on the test dataset.

Our evaluation’s temporal-split between the training and
test datasets, along with the introduction of new data from
randomly withheld organizations into the test dataset, follows
best practices that recommend this approach over a random-
ized cross-validation evaluation [2, 31, 34]. A completely ran-
domized evaluation (e.g., cross-validation) risks training on
data from the future and testing on the past, which might lead
us to overestimate the detector’s effectiveness. In contrast,

1278 28th USENIX Security Symposium USENIX Association

Training Testing
Metric April – June 2018 July – October 2018

Organizations 52 Exploratory 52 Exploratory
+ 40 Test

Detected Known Attacks 34 47
Detected New Attacks 28 49
Missed Attacks (FN) 8 14
Detection Rate 88.6% 87.3%

Total Emails 25,670,264 87,413,431
False Positives (FP) 136 316
False Positive Rate 0.00053% 0.00036%
Precision 31.3% 23.3%

Table 1: Evaluation results of our detector. ‘Detected Known At-
tacks’ shows the number of incidents that our detector identified, and
were also reported by an employee at an organization. ‘Detected New
Attacks’ shows the number of incidents that our detector identified,
but were not reported by anyone. ‘Missed Attacks (FN)’ shows all
incidents either reported by a user or found by any of our detection
strategies, but our detector marked it as benign (false negative). Of
the 22 incidents our detector misses, 12 are attachment-based attacks,
a threat model which our detector explicitly does not target but which
we include in our FN and Detection Rate results for completeness.

our methodology evaluates our detector with fresh data from
a “future” time period and introduces 40 new organizations,
neither of which our detector saw during training time; this
also reflects how a detector operates in practice.

Alert Metric (Incidents): We have several choices for mod-
eling our detector’s alert generation process (i.e., how we
count distinct attacks). For example, we could evaluate our
detector’s performance in terms of how many unique emails
it correctly labels. Or, we could measure our detector’s per-
formance in terms of how many distinct employee accounts it
marks as compromised (modeling a detector that generates
one alert per account and suppresses the rest). Ultimately, we
select a notion commonly used in practice, that of an incident,
which corresponds to a unique (subject, sender email address)
pair. At this granularity, our detector’s alert generation model
produces a single alert per unique (subject, sender) pair. This
metric avoids biased evaluation numbers that overemphasize
compromise incidents that generate many identical emails
during a single attack. For example, if there are two incidents,
one which generates one hundred emails to one recipient each,
and another which generates one email to 100 recipients, a
detector’s performance on the hundred-email incident will
dominate the result if we count attacks at the email level.

In total, our training dataset contains 40 lateral phishing
incidents from our user-reported ground truth sources, and our
test dataset contains 61 user-reported incidents. Our detector
finds an additional 77 unreported incidents (row 2 of Table 1).

5.2 Detection Results
Table 1 summarizes the performance metrics for our detector.
We use the term Detection Rate to refer to the percentage of

lateral phishing incidents that our detector finds, divided by all
known attack incidents in our dataset (i.e., any user-reported
incident and any incident found by any detection technique
we tried). For completeness, we include the 12 attachment-
based incidents in our False Negative and Detection Rate
computations, which our detector obviously misses since we
designed it to catch URL-based lateral phishing. Additionally,
we also include, as false negatives, 2 training incidents that our
less successful detectors identified [17]; these two alternative
strategies did not find any new attacks in the test dataset.
Thus, the Detection Rate reflects a best-effort assessment
that potentially overestimates the true positive rate of our
detector, since we have an imperfect ground truth that cannot
account for narrowly targeted attacks that go unreported by
users. Precision equals the percent of attack alerts (incidents)
produced by our detector divided by the total number of alerts
our detector generated (attacks plus false positives).

Training and Tuning: On the training dataset, our detector
correctly identified 62 out of 70 lateral phishing incidents
(88.6%), while generating a total of 62 false positives (on
25.7 million employee-sent emails).

Our PySpark Random Forest classifier exposes a built-in
estimate of each feature’s relative importance [40], where each
feature receives a score between 0.0–1.0 and the sum of all
the scores adds up to 1.0. Based on these feature weights, our
model places the most emphasis on the global URL reputation
feature, giving it a weight of 0.42, and the email’s ‘number of
recipients’ feature (0.34). In contrast, our model essentially
ignores our local URL reputation, assigning it a score of 0.01,
likely because most globally rare domains tend to also be
locally rare. Of the remaining features, the recipient likelihood
feature has a weight of 0.17 and the ‘phishy’ keyword feature
has a weight of 0.06.

Test Dataset: Our detector correctly identified 96 lateral
phishing incidents out of the 110 test incidents (87.3%) across
our ground truth dataset. Additionally, our detector discov-
ered 49 incidents that, according to our ground truth, were not
reported by a user as phishing. With respect to its cost, our de-
tector generated 312 total false positives across the entire test
dataset (a false positive rate of less than 0.00035%, assuming
that emails not identified as an attack by our ground truth are
benign). Across our test dataset, 82 out of the 92 organiza-
tions accumulated 10 or fewer false positives across the entire
four month window, with 44 organizations encountering zero
false positives across this timespan. In contrast, only three
organizations had more than 40 total false positives across
all four months (encountering 44, 66, and 83 false positives,
respectively). Our detector achieves similar results if we eval-
uate on just the data from our 40 withheld test organizations,
with a Detection Rate of 91.0%, a precision of 23.1%, and a
false positive rate of 0.00038%.

Bias and Evasion: We base our evaluation numbers on the
best ground truth we have: a combination of all user-reported

USENIX Association 28th USENIX Security Symposium 1279

lateral phishing incidents (including some attacks outside our
threat model), and all incidents discovered by any detection
technique we tried (which includes two approaches orthogo-
nal to our detector’s strategy). This ground truth suffers from
a bias towards phishing emails that contact many potential
victims, and attacks that users can more easily recognize. Ad-
ditionally, since our detector focuses on URL-based exploits,
our dataset of attacks likely underestimates the prevalence of
non-URL-based phishing attacks, which come solely from
user-reported instances in our dataset. As a result, our work
does not capture the full space of lateral phishing attacks,
such as ones where the attacker targets a narrow, select set of
victims with stealthily deceptive content. Rather, given that
our detector identifies many known and unreported attacks,
while generating only a few false positives per month, we pro-
vide a starting point for practical detection that future work
can extend. Moreover, even if our detector does not capture
every possible attack, the fact that the attacks in our dataset
span dozens of different organizations, across a multi-month
timeframe, allows us to illuminate a class of understudied
attacks that many enterprises currently face.

Aside from obtaining more comprehensive ground truth,
more work is needed to explore defenses against potential
evasion attacks. Attackers could attempt to evade our detector
by targeting different features we draw upon, such as the com-
position or number of recipients they target. Against many of
these evasion attacks, future work could leverage additional
features and data, such as the actions a user takes within an
email account (e.g., reconnaissance actions, such as unusual
searches, that indicate an attacker mining the account for
targeted recipients to attack) or information from the user’s
account log-on (e.g., the detector proposed by Ho et al. used
an account’s login IP address [18] to detect lateral phishing).
At the same time, future work should study which evasion
attacks remain economically feasible for attackers to conduct.
For example, an attacker could choose to only target a small
number of users in the hopes of evading our detector; but
even if this evasion succeeded, the conversion rate of fooling
a recipient might be so low that the attack ultimately fails
to compromise an economically viable number of victims.
Indeed, as we explore in the following section (§ 6), the at-
tackers captured in our dataset already engage in a range of
different behaviors, including a few forms of sophisticated,
manual effort to increase the success of their attacks.

6 Characterizing Lateral Phishing

In this section, we conduct an analysis of real-world lateral
phishing using all known attacks across our entire dataset
(both training and test). During the seven month timespan, a
total of 33 organizations experienced lateral phishing attacks,
with the majority of these compromised organizations experi-
encing multiple incidents. Examining the thematic message
content and recipient targeting strategies of the attacks, our

Scale and Success

distinct phishing emails 1,902
incidents 180
ATOs 154
organizations w/ 1+ incident 33
phishing recipients 101,276
% successful ATOs 11%
employee recip (average) for compromise 542

Table 2: Summary of the scale and success of the lateral phishing
attacks in our dataset (§ 6.1).

analysis suggests that most lateral phishers in our dataset do
not actively mine a hijacked account’s emails to craft person-
alized spearphishing attacks. Rather, these attackers operate
in an opportunistic fashion and rely on commonplace phish-
ing content. This finding suggests that the space of enterprise
phishing has expanded beyond its historical association with
sophisticated APTs and nation-state adversaries.

At the same time, these attacks nonetheless succeed, and a
significant fraction of attackers do exhibit some signs of so-
phistication and attention to detail. As an estimate of the suc-
cess of lateral phishing attacks, at least 11% of our dataset’s at-
tackers successfully compromise at least one other employee
account. In terms of more refined tactics, 31% of lateral phish-
ers invest some manual effort in evading detection or increas-
ing their attack’s success rate. Additionally, over 80% of the
attacks in our dataset occur during the normal working hours
of the hijacked account. Taken together, our results suggest
that lateral phishing attacks pose a prevalent enterprise threat
that still has room to grow in sophistication.

In addition to exploring attacks at the incident granularity
(as done in § 5), this section also explores attacks at the gran-
ularity of a lateral phisher (hijacked account) when studying
different attacker behaviors. As described in Section 2, in-
dustry practitioners often refer to such hijacked accounts as
ATOs, and throughout this section, we use the terms hijacked
account, lateral phisher, and ATO synonymously.

6.1 Scale and Success of Lateral Phishing

Scale: Our dataset contains 1,902 distinct lateral phishing
emails sent by 154 hijacked accounts.4 A total of 33 organi-
zations in our dataset experience at least one lateral phishing
incident: 23 of these organizations came from sampling the
set of enterprises with known lateral phishing incidents (§ 3),
while the remaining 10 came from the 69 organizations we
sampled from the general population. Assuming our random
sample reflects the broader population of enterprises, over
14% of organizations experience at least one lateral phish-
ing incident within a 7 month timespan. Furthermore, based

4Distinct emails are defined by having a fully unique tuple of (sender,
subject, timestamp, and recipients).

1280 28th USENIX Security Symposium USENIX Association

0 5 10 15 20 25 30 35
of hijacked accounts (ATOs) per org

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 3

3
or

gs
 w

/ A
TO

Figure 4: Fraction of organizations with x hijacked accounts that
sent at least one lateral phishing email. 13 organizations had only 1
ATO; the remaining 20 saw lateral phishing from 2+ ATOs (§ 6.1).

on Figure 4, over 60% of the compromised organizations in
our dataset experienced lateral phishing attacks from at least
two hijacked employee accounts. Given that our set of attacks
likely contains false negatives (thus underestimating the preva-
lence of attacks), these numbers illustrate that lateral phishing
attacks are widespread across enterprise organizations.

Successful Attacks: Given our dataset, we do not definitively
know whether an attack succeeded. However, we conserva-
tively (under)estimate the success rate of lateral phishing
using the methodology below. Based on this procedure, we
estimate that at least 11% of lateral phishers successfully
compromise at least one new enterprise account.

Let Alice and Bob represent two different ATOs at the same
organization, where PA and PB represent one of Alice’s and
Bob’s phishing emails respectively, and ReplyB represents a
reply from Bob to a lateral phishing email he received from
Alice. Intuitively, our methodology concludes that Alice suc-
cessfully compromised Bob if (1) Bob received a phishing
email from Alice, (2) shortly after receiving Alice’s phish,
Bob then subsequently sent his own phish, and (3) we have
strong evidence that the two employees’ phishing emails are
related (reflected in criteria 3 and 4 below).

Formally, we say that PA succeeded in compromising Bob’s
account if all of the following conditions are true:

1. Bob was a recipient of PA

2. After receiving PA, Bob subsequently sent his own lateral
phishing emails (PB)

3. Either of the following two conditions are met:

(a) PB and PA used similar phishing content: if the
two attacks used identical subjects or if both of
the phishing URLs they used belonged to the same
fully-qualified domain

(b) Bob sent a reply (ReplyB) to PA, where his reply
suggests he fell for Alice’s attack and where Bob
sent ReplyB prior to his own attack (PB)

4. Either of the following two conditions are met:

(a) PB was sent within two days after Bob received PA

(b) PB and PA used identical phishing mes-
sages or their phishing URLs’ paths fol-
lowed nearly identical structures (e.g.,
‘http://X.com/z/office365/index.html’ vs.
‘http://Y.com/z/office365/index.html’)

Unpacking the final criteria (#4), in the first case (4.a), we
settled on a two-day interarrival threshold based on prior lit-
erature [21, 22], which suggests that 50% of users respond
to an email within 2 days and roughly 75% of users who
click on a spam email do so within 2 days. Assuming that
phishing follows similar time constants for how long it takes
a recipient to take action, 2 days represented a conservative
threshold to establish a link between PA and PB. At the same
time, both prior works show there exists a long tail of users
who take weeks to read and act on an email. The second part
(4.b) attempts to address this long tail by raising the similarity
requirements between Alice and Bob’s attacks before con-
cluding that former caused the latter. For successful attackers
labeled by heuristic 4.b, the longest observed time gap be-
tween PA and PB is 17 days, which falls within a plausible
timescale based on the aforementioned literature.

From this methodology, we conclude that 17 ATOs suc-
cessfully compromised at least 23 future ATOs. While our
procedure might erroneously identify cases where an attacker
has concurrently compromised both Alice and Bob (rather
than compromising Bob’s account via Alice’s), the first two
criteria (requiring Bob to be a recent recipient of Alice’s
phishing email) help reduce this error. Our procedure likely
underestimates the general success rate of lateral phishing
attacks, since it does not identify successful attacks where
the attacker does not subsequently use Bob’s account to send
phishing emails, nor does it account for false negatives in our
dataset or attacks outside of our visibility (e.g., compromise
of recipients at external organizations).

6.2 Recipient Targeting
In this section, we estimate the conversion rate of our dataset’s
lateral phishing attacks, and discuss four recipient targeting
strategies that reflect the behavior of most attackers in our
dataset.

Recipient Volume and Estimated Conversation Rate: Cu-
mulatively, the lateral phishers in our dataset contact 101,276
unique recipients, where 41,740 belong to the same organi-
zation as the ATO. As shown in Figure 5, more than 94%
of the attackers send their phishing emails to over 100 re-
cipients; with respect to the general population of all lateral
phishers, this percentage likely overestimates the prevalence
of high “recipient-volume” attackers, since our detector draws
on recipient-related features.

Targeting hundreds of people gives attackers a larger pool
of potential victims, but it also incurs a risk that a recipient
will detect and flag the attack either to their security team or

USENIX Association 28th USENIX Security Symposium 1281

1 10 100 1000 10000
of unique recipients contacted per hijacked account (ATO)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 1
54

 A
TO

s

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of (employee recip / all recip) contacted per ATO

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 1

54
 A

TO
s

Figure 5: The left CDF shows the distribution of the total number of phishing recipients per ATO. The right CDF shows the fraction of ATOs
where x% of their total recipient set consists of fellow employees.

their fellow recipients (e.g., via Reply-All). To isolate their
victims and minimize the ability for fellow recipients to warn
each other, we found that attackers frequently contact their
recipients via a mass BCC or through many individual emails.
Aside from this containment strategy, we also estimate that
our dataset’s lateral phishing attacks have a difficult time fool-
ing an individual employee, and thus might require targeting
many recipients to hijack a new account. Earlier in Section 6.1,
we found that 17 ATOs successfully compromised 23 new
accounts. Looking at the number of accounts they success-
fully hijacked divided by the number of fellow employees
they targeted, the median conversation rate for our attackers
was one newly hijacked account per 542 fellow employees;
the attacker with the best conversation rate contacted an aver-
age of 26 employees per successful compromise. We caution
that our method for determining whether an attack succeeded
(§ 6.1) does not cover all cases, so our conversation rate might
also underestimate the success of these attacks in practice.
But if our estimated conversion rate accurately approximates
the true rate, it would explain why these attackers contact so
many recipients, despite the increased risk of detection.

Recipient Targeting Strategies: Anecdotally, we know that
some lateral phishers select their set of victims by leveraging
information in the hijacked account to target familiar users;
for example, sending their attack to a subset of the account’s
“Contact Book”. Unfortunately our dataset does not include
information about any reconnaissance actions that an attacker
performed to select their phishing recipients (e.g., explicitly
searching through a user’s contact book or recent recipients).

Instead, we empirically explore the recipient sets across
our dataset’s attackers to identify plausible strategies for how
these attackers might have chosen their set of victims. Four re-
cipient targeting strategies, summarized in Table 3 (explained
below), reflect the behavior of all but six attackers in our
dataset. To help assess whether a recipient and the ATO share
a meaningful relationship, we compute each ATO’s recent
contacts: the set of all email addresses whom the ATO sent
at least one email to in the 30 days preceding the ATO’s
phishing emails. While some attackers (28.6%) specifically

Recipient Targeting Strategy # ATOs

Account-agnostic 63
Organization-wide 39
Lateral-organization 2
Targeted-recipient 44
Inconclusive 6

Table 3: Summary of recipient targeting strategies per ATO (§ 6.2).

target many of an account’s recent contacts, the majority of
lateral phishers appear more interested in either contacting
many arbitrary recipients or sending phishing emails to a large
fraction of the hijacked account’s organization.

Account-agnostic Attackers: Starting with the least-targeted
behavior, 63 ATOs in our dataset sent their attacks to a wide
range of recipients, most of whom do not appear closely re-
lated to the hijacked account. We call this group Account-
agnostic attackers, and identify them using two heuristics.

First, we categorize an attacker as Account-agnostic if
less than 1% of the recipients belong to the same organi-
zation as the ATO, and further exploration of their recipients
does not reveal a strong connection with the account. Ex-
amining the right-hand graph in Figure 5, 37 ATOs target
recipient sets where less than 1% of the recipients belong
to the same organization as the ATO. To rule out the possi-
bility that these attackers’ recipients are nonetheless related
to the account, we computed the fraction of recipients who
appeared in each ATO’s recent contacts; for all of the 37 pos-
sible Account-agnostic ATOs, less than 17% of their attack’s
total recipients appeared in their recent contacts. Among these
37 candidate Account-agnostic ATOs, 33 of them contact re-
cipients at 10 or more organizations (unique recipient email
domains), 2 of them exclusively target either Gmail or Hot-
mail accounts, and the remaining 2 ATOs are best described
as Lateral-organization attackers (below).5 Excluding the 2
Lateral-organization attackers, the 35 ATOs identified by this

5Our extended technical report provides the distribution of recipient do-
mains contacted by all ATOs [17].

1282 28th USENIX Security Symposium USENIX Association

first criteria sent their attacks to predominantly external re-
cipients, belonging to either many different organizations or
exclusively to personal email hosting services (e.g., Gmail
and Hotmail), and only a small percentage of these recipients
appeared in the ATO’s recent contacts; as such, we label these
35 attackers as Account-agnostic.

Second, we expand our search for Account-agnostic attack-
ers by searching for attackers where less than 50% of the
ATO’s total recipients also belong to the ATO’s organization,
and where the ATO contacts recipients at many different or-
ganizations; specifically, where the ATO’s phishing recipients
belonged to over twice as many unique domains as all of the
email addresses in ATO’s recent contacts. This search identi-
fied 63 ATOs. To filter out attackers in this set who may have
drawn on the hijacked account’s recent contacts, we exclude
any ATO where over 17% of their attack’s total recipients
also appeared in the ATO’s recent contacts (17% was the
maximum percentage among ATOs from the first Account-
agnostic heuristic). After applying this last condition, our
second heuristic identifies 54 Account-agnostic attackers.

Combining and deduplicating the ATOs from both criteria
results in a total of 63 Account-agnostic attackers (40.9%):
lateral phishers who predominantly target recipients without
close relationships to the hijacked account or its organization.

Lateral-organization Attackers: During our exploration
of potential Account-agnostic ATOs, we uncovered 2 at-
tackers whom we label under a different category: Lateral-
organization attackers. In both these cases, less than 1% of
the attacker’s recipients belonged to the same organization as
the ATO, but each attacker’s recipients did belong to organi-
zations within the same industry as the ATO’s organization.
This thematic characteristic among the recipients suggests
a deliberate strategy to spread across organizations within
the targeted industries, so accordingly, we categorize them as
Lateral-organization attackers.

Organization-wide Attackers: Office 365 provides a
“Groups” feature that lists the different groups that an account
belongs to [30]. For some enterprises, this feature enumerates
most, if not all, employees at the organization. Thus, lateral
phishers who wish to cast a wide phishing net might adopt a
simple strategy of sending their attack to everyone at the or-
ganization. We call these ATOs Organization-wide attackers
and identify them through two ways.

First, we search for any attackers where at least half of their
phishing recipients belong to the ATO’s organization, and
where at least 50% of the organization’s employees received
the phishing email (i.e., the majority of a phisher’s victims
were employees and the attacker targeted a majority of the en-
terprise); this search yielded a total of 16 ATOs. We estimate
the list of an organization’s employees by building a set of all
employee email addresses who sent or received email from

0 20 40 60 80 100
% of ATO's recent contacts who received phish

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 A

TO
s (

al
l v

s.
ca

nd
id

at
e

re
cip

-ta
rg

et
in

g)

All ATOs
ATOs w/ potential recip-targeting

Figure 6: CDF: the x-axis displays what % of the ATO’s recent
contacts received a lateral phishing email (§ 6.2). The bottom teal
graph filters the ATOs to exclude any ATO identified as Account-
agnostic, Lateral-organization, and Organization-wide attackers; at
the vertical black line, 88% of these filtered ATOs send phishing
emails to at least x = 33% of addresses from their recent contacts.

anyone during the entire month of the phishing incident.6 For
all of these 16 ATOs, less than 11% of the recipients they
target also appear in their recent contacts. Coupled with the
fact that each of these ATOs contacts over 1,300 recipients,
their behavior suggests that their initial goal focuses on phish-
ing as many of the enterprise’s recipients as possible, rather
than targeting users particularly close to the hijacked account.
Accordingly, we categorize them as Organization-wide attack-
ers.

Our second heuristic looks for attackers whose recipient set
consists nearly entirely of fellow employees, but where the ma-
jority of the organization does not necessarily receive a phish-
ing email. Revisiting Figure 5, 36 candidate Organization-
wide ATOs sent over 95% of their phishing emails to fellow
employee recipients. However, we again need to exclude and
account for ATOs who leverage their hijacked account’s recent
contacts. From the first Organization-wide heuristic discussed
previously, we saw that less than 11% of the recipients of
that heuristic’s Organization-wide attackers came from the
ATO’s recent contacts. Using this value as a final threshold
for this second candidate set of Organization-wide attackers,
we identify 29 Organization-wide attackers where over 95%
of their recipients belong to the ATO’s organization but less
than 11% of the recipients came from the ATO’s recent con-
tacts; a combination that suggests the attacker seeks primarily
to compromise other employees, but who do not necessarily
have a personal connection with the hijacked account.

Aggregating and deduplicating the two sets of lateral phish-
ers from above produces a total of 39 Organization-wide
attackers (25.3%), who take advantage of the information in
a hijacked account to target many fellow employees.

6This collection likely overestimates the actual set of employees because
of service addresses, mailing list aliases, and personnel churn.

USENIX Association 28th USENIX Security Symposium 1283

Targeted-recipient Attackers: For the remaining, uncatego-
rized 50 ATOs, we cannot conclusively determine the attack-
ers’ recipient targeting strategies because our dataset does
not provide us with the full set of information and actions
available to the attacker. Nonetheless, Figure 6 presents some
evidence that 44 of these remaining attackers do draw upon
the hijacked account’s prior relationships. Specifically, 44
attackers sent their attacks to at least 33% of the addresses in
the ATO’s recent contacts.7 Since these ATOs sent attacks to
at least 1 out of every 3 of the ATO’s recently contacted recipi-
ents, these attackers appear interested in targeting a substantial
fraction of users with known ties to the hijacked account. As
such, we label these 44 ATOs as Targeted-recipient attackers.

6.3 Message Content: Tailoring and Themes
Since lateral phishers control a legitimate employee account,
these attackers could easily mine recent emails to craft per-
sonalized spearphishing messages. To understand how much
attackers do leverage their privileged access in their phishing
attacks, this section characterizes the level of tailoring we
see among lateral phishing messages. Overall, only 7% of
our dataset’s incidents contain targeted content within their
messages. Across the phishing emails that used non-targeted
content, the attackers in our dataset relied on two predomi-
nant narratives (deceptive pretexts) to lure their victim into
performing a malicious action. The combination of these two
results suggests that, for the present moment, these attackers
(across dozens of organizations) see more value in opportunis-
tically phishing as many recipients as possible, rather than
investing time to mine the hijacked accounts for personalized
spearphishing fodder.

Content Tailoring: When analyzing the phishing messages
in our dataset, we found that two dimensions aptly character-
ized the different levels of content tailoring and customization.
The first dimension, “Topic tailoring”, describes how person-
alized the topic or main idea of the email is to the victim
or organization. The second dimension, “Name tailoring”,
describes how specifically the attacker addresses the victim
(e.g., “Dear user” vs. “Dear Bob”). For each of these two
dimensions, we enumerate three different levels of tailoring
and provide an anonymized message snippet below; we use
Bob to refer to one of the attack’s recipients and FooCorp for
the company that Bob works at.

1. Topic tailoring: the uniqueness and relevancy of the mes-
sage’s topic to the victim or organization:

7When examining and applying thresholds for the Account-agnostic and
Organization-wide Attackers, we used a slightly different fraction: how many
of the ATO’s phishing recipients also appeared in their recent contacts?
Here, we seek to capture attackers who make a specific effort to target a
considerable number of familiar recipients. Accordingly, we look at the
fraction of the ATO’s recent contacts that received phishing emails, where
the denominator reflects the number of users in the ATO’s recent contacts,
rather than the ATO’s total number of phishing recipients.

Generic Enterprise Targeted

No naming 90 35 9
Organization named 23 16 4
Recipient named 0 3 0

Table 4: Distribution of the number of incidents per message tailor-
ing category (§ 6.3). The columns correspond to how unique and
specific the message’s topic pertains to the victim or organization.
The rows correspond to whether the phishing email explicitly names
the recipient or organization.

(a) Generic phishing topic: an unspecific message that
could be sent to any user (“You have a new shared
document available.”)

(b) Broadly enterprise related topic: a message that ap-
pears targeted to enterprise environments, but one
that would also make sense if the attacker used it at
many other organizations (“Updated work sched-
ule. Please distribute to your teams.”)

(c) Targeted topic: a message where the topic clearly
relies on specific details about the recipient or or-
ganization (“Please see the attached announcement
about FooCorp’s 25th year anniversary.”, where
FooCorp has existed for exactly 25 years.)

2. Name tailoring: whether the phishing message specifi-
cally uses the recipient or organization’s name:

(a) Non-personalized naming: the attack does not men-
tion the organization or recipient by name (“Dear
user, we have detected an error in your mailbox
settings...”)

(b) Organization specifically named: the attack men-
tions just the organization, but not the recipient
(“New secure email message from FooCorp...”)

(c) Recipient specifically named: the attack specifi-
cally uses the victim’s name in the email (“Bob,
please review the attached purchase order...”)

Taken together, this taxonomy divides phishing content
into nine different classes of tailoring; Table 4 shows how
many of our dataset’s 180 incidents fall into each category.
From this categorization, two interesting observations emerge.
First, only 3 incidents (1.7%) actually address their recipients
by name. Since most ATOs (94%) in our dataset email at least
100 recipients, attackers would need to leverage some form
of automation to both send hundreds of individual emails and
customize the naming in each one. Based on our results, it
appears these attackers did not view that as a worthwhile in-
vestment. For example, they might fear that sending many
individual emails might trigger an anti-spam or anti-phishing
mechanism, which we observed in the case of one ATO who
attempted to send hundreds of individual emails. Second,

1284 28th USENIX Security Symposium USENIX Association

Word # Incidents Word # Incidents

document 89 sent 44
view 76 review 43
attach 56 share 37
click 55 account 36
sign 50 access 34

Table 5: Top 10 most common words across all 180 lateral phishing
incidents.

looking at the last column of Table 4, only 13 incidents (7%)
use targeted content in their messages. The overwhelming
majority (92.7%) of incidents opt for more generic messages
that an attacker could deploy at a large number of organiza-
tions with minimal changes (e.g., by only changing the name
of the victim organization).

While our attack dataset captures a limited view of all lat-
eral phishing attacks, it nonetheless reflects all known lateral
phishing incidents across 33 organizations over a 7-month
timeframe. Thus, despite the data’s limitations, our results
show that a substantial fraction of lateral phishers do not fully
draw upon their compromised account’s resources (i.e., his-
torical emails) to craft personalized spearphishing messages.
This finding suggests these attackers act more like an oppor-
tunistic cybercriminal, rather than an indomitable APT or
nation-state. However, given the arms-race and evolutionary
nature of security, these lateral phishers could in the future
increase the sophistication and potency of their attacks by
drawing upon the account’s prior emails to craft more tar-
geted content.

Thematic Content (Lures): When labeling each phishing
incident with a level of tailoring, we noticed that the phish-
ing messages in our dataset overwhelmingly relied on one
of two deceptive pretexts (lures): (1) an alarming message
that asserts some problem with the recipient’s account (and
urges them to follow a link to remediate the issue); and (2)
a message that notifies the recipient of a new / updated /
shared document. For the latter ‘document’ lure, the nature
and specificity of the document varied with the level of con-
tent tailoring. For example, whereas an attack with generic
topic tailoring will just mention a vague document, attacks
that use enterprise-related tailoring will switch the terminol-
ogy to an invoice, purchase order, or some other generic but
work-related document.

To characterize this behavior further, we computed the most
frequently occurring words across our dataset’s phishing mes-
sages. First, we selected one phishing email per incident, to
prevent incidents with many identical emails from biasing
(inflating) the popularity of their lures. Next, we normalized
the text of each email: we removed auto-generated text (e.g.,
user signatures), lowercased all words, removed punctuation,
and discarded all non-common English words; all of these
can be done with open source libraries such as Talon [27] and

Mon Tue Wed Thu Fri Sat Sun0
5

10
15
20
25
30
35
40
45

ph

ish
in

g
in

cid
en

ts

Figure 7: Number of lateral phishing incidents per day of week.

NLTK [5]. Finally, we built a set of all words that occurred
in any phishing email across our incidents and counted how
many incidents each word appeared in.

Interestingly, our dataset’s phishing messages draw on a
relatively small pool of words: there are just 444 distinct, com-
mon English words across the texts of every phishing message
in our dataset (i.e., every phishing email’s text consists of an
arrangement from this set of 444 words). In contrast, a ran-
dom sample of 1,000 emails from our dataset contained a
total of 2,516 distinct words, and only 176 of these emails
consisted entirely of words from the phishing term set.

Beyond this small set of total words across lateral phishing
emails, all but one incident contained at least one of the top
20 words, illustrating the reliance on the two major lures we
identified. Our extended technical report shows the occur-
rence distribution of each word [17]. Focusing on just the top
ten words and the number incidents that use them (Table 5),
the dominance of these two thematic lures becomes apparent.
Words indicative of the “shared document” lure, such as ‘doc-
ument’, ‘view’, ‘attach’, and ‘review’, each occur in over 23%
of incidents, with the most popular (document) occurring in
nearly half of all incidents. Similarly, we also see many words
from the account-related lure in the top ten: ‘access’, ‘sign’
(from ‘sign on’), and ‘account’.

Overall, while our dataset contains several instances of
targeted phishing messages, the majority of the lateral phish-
ing emails we observe rely on more mundane lures that an
attacker can reuse across multiple organizations with little ef-
fort. The fact that we see this behavior recur across dozens of
different organizations suggests either the emergence of a new,
yet accessible, form of enterprise phishing, or an evolution in
the way “ordinary” cybercriminals execute phishing attacks
(moving from external accounts that use clever spoofing to
compromised, yet legitimate accounts).

6.4 Temporal Aspects of Lateral Phishing

Because attackers might not live or operate in the same geo-
graphic region as the hijacked account, prior work has sug-
gested using features that capture unusual timing properties
inherent in phishing emails [11, 15, 41]. Contrary to this in-
tuition, in our dataset most lateral phishing attacks occur at
“normal” times of the day and week. First, for 98% of lateral
phishing incidents, the attacker sent the phishing email dur-

USENIX Association 28th USENIX Security Symposium 1285

0 20 40 60 80 100
Attack hour's percentile among ATO's historical emails

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

cid
en

ts
 fr

om
 a

ct
iv

e
AT

Os

Figure 8: CDF of the fraction of incidents from active ATOs where
the time (hour) of day fell within the x’th percentile of the hours at
which the ATO’s benign emails in the preceding 30 days were sent.
Active ATOs are hijacked accounts that sent at least 1 non-phishing
email within the 30 days preceding their lateral phishing email.

ing a weekday. Additionally, the majority of attackers in our
dataset send their phishing emails during the true account’s
normal working hours.

Day of the Week: From Figure 7, all but three lateral phish-
ing incidents occurred during a work day (Monday–Friday).
This pattern suggests that attackers send their phishing emails
on the same days when employees typically send their benign
emails, and that the day of the week will provide an ineffec-
tive or weak detection signal. Moreover, 67% of incidents
occur in the first half of the week (Mon–Wed), indicating that
the lateral phishers in our dataset do not follow the folklore
strategy where attackers favor launching their attacks on Fri-
day (hoping to capitalize on reduced security team operations
over the coming weekend) [37].

Time (Hour) of Day: In addition to operating during the
usual work week, most attackers tend to send their lateral
phishing emails during the typical working hours of their hi-
jacked accounts. To assess the (ab)normality of an attack’s
sent-time, for each ATO, we gathered all of the emails that the
account sent in the 30 days prior to their first lateral phishing
email. We then mapped the sent-time of each of these histori-
cal (and presumably benign) emails to the hour-of-day on a 24
hour scale, thus forming a distribution of the typical hour-of-
day in which each hijacked account usually sent their emails.
Finally, for each lateral phishing incident, we computed the
percentile for the phishing email’s hour-of-day relative to the
hour-of-day distribution for the ATO’s historical emails. For
example, phishing incidents with a percentile of 0 or 100 were
sent at an earlier or later hour-of-day than any email that the
true account’s owner sent in the preceding 30 days.

Across all lateral phishing incidents sent by an active ATO,
Figure 8 shows what hour-of-day percentile the phishing inci-

dent’s first email occurred at, relative to the hijacked account’s
historical emails. Out of the 180 incidents, 15 incidents were
sent by an “inactive” (quiescent) ATO that sent zero emails
across all 30 days preceding their lateral phishing emails; Fig-
ure 8 excludes these incidents. Of the remaining 165 incidents
sent by an active ATO, 18 incidents fall completely outside of
the hijacked account’s historical operating hours, which sug-
gests that a feature looking for emails sent at atypical times
for a user could help detect these attacks. However, for the
remaining 147 incidents, the phishing emails’ hour-of-day
evenly cover the full percentile range. As shown in Figure 8,
the percentile distribution of phishing hours closely resem-
bles the CDF of a uniformly random distribution (a straight
y = x line); i.e., the phishing email’s hour-of-day appears to
be randomly drawn from the true account’s historical hour-
of-day distribution. This result indicates that for the majority
of incidents in our dataset (147 out of 180), the time of day
when the ATO sent the attack will not provide a significant
signal, since their sent-times mirror the timing distribution of
the true user’s historical email activity.

Thus, based on the attacks in our dataset, we find that two
weak timing-related features exist: searching for quiescent
accounts that suddenly begin to send suspicious emails (15 in-
cidents), and searching for suspicious emails sent completely
outside of an account’s historically active time window (18
incidents). Beyond these two features and the small fraction
of phishing attacks they reflect, neither the day of the week
nor the time of day provide significant signals for detection.

6.5 Attacker Sophistication
Since most of our dataset’s lateral phishers do not mine the
hijacked account’s mailbox to craft targeted messages, one
might naturally conclude that these attackers are lazy or unso-
phisticated. However, in this subsection, we identify two kinds
of sophisticated behavior that required some investment of
additional time and manual effort: attackers who continually
engage with their attack’s recipients in an effort to increase
the attack’s success rate, and attackers who actively “clean
up” traces of their phishing activity in an attempt to hide their
presence from the account’s legitimate owner. In contrast to
the small number of attackers who invested time in crafting
tailored phishing messages to a personalized set of recipients,
nearly one-third (31%) of attackers engage in at least one of
these two sophisticated behaviors.

Interaction with potential victims: Upon receiving a phish-
ing message, some recipients naturally question the email’s
validity and send a reply asking for more information or as-
surances. While a lazy attacker might ignore these recipients’
replies, 27 ATOs across 15 organizations actively engaged
with these potential victims by sending follow-up messages
assuring the victim of the phishing email’s legitimacy. For ex-
ample, at one organization, an attacker consistently sent brief
follow-up messages such as “Yes I sent it to you” or “Yes,

1286 28th USENIX Security Symposium USENIX Association

have you checked it yet?”. In other cases, attackers replied
with significantly more elaborate ruses: e.g., “Hi [Bob], its
a document about [X]. It’s safe to open. You can view it by
logging in with your email address and password.”

To find instances where a phisher actively followed-up
with their attack’s potential victims, we gathered all of the
messages in every lateral phishing email thread and checked to
see if the attacker ever received and responded to a recipient’s
reply (inquiry).8 In total, we found that 107 ATOs received
at least one reply from a recipient. Of these reply-receiving
attackers, 27 ATOs (25%) sent a deceptive follow-up response
to one or more of their recipients’ inquiries.

Stealthiness: Separate from interacting with their potential
victims, attackers might expend manual effort to hide their
presence from the account’s true owner by removing any
traces of their phishing emails, particularly since lateral phish-
ers appear to operate during the hijacked account’s normal
working hours (§ 6.4). To estimate the number of these ATOs,
we searched for whether any of the following emails ended
up in the hijacked account’s Trash folder, and were deleted
within 30 seconds of being sent or received: any phishing
emails, replies to phishing emails, or follow-up emails sent by
the attacker. The 30 second threshold distinguishes stealthy
behavior from deletion resulting from remediation of the com-
promised account. In total, 30 attackers across 16 organiza-
tions engage in this kind of evasive clean-up behavior.

Of the 27 ATOs who interactively responded to inquiries
about their attack, only 9 also exhibited this stealthy clean-up
behavior. Thus, counting the number of attackers across both
sets, 48 ATOs engaged in at least one of these behaviors.

The sizeable fraction of attackers who engage in a sophisti-
cated behavior creates a more complex picture of the attacks
in our dataset. Given that these attackers do invest dedicated
and (often) manual effort in enhancing the success of their
attacks, why do so many of them (over 90% in our dataset)
use non-targeted phishing content and target dozens to hun-
dreds of recipients? One plausible reason for this generic
behavior is that the simple methods they currently use work
well enough under their economic model: investing additional
time to develop more tailored phishing emails just does not
provide enough economic value. Another reason might be
that growth of lateral phishing attacks reflects an evolution
in the space of phishing, where previously “simple” exter-
nal phishers have moved to sending their attacks via lateral
phishing because attacks from (spoofed) external accounts
have become too difficult, due to user awareness and/or better
technical mitigations against external phishing. Ultimately,
based on our work’s dataset, we cannot soundly answer why
so many lateral phishers employ simple attacks, and leave it
as an interesting question for future work to explore.

8Office 365 includes a ConversationID field, and all emails in the same
thread (the original email and all replies) get assigned the same Conversa-
tionID value.

7 Summary

In this work we presented the first large-scale characteriza-
tion of lateral phishing attacks across more than 100 million
employee-sent emails from 92 enterprise organizations. We
also developed and evaluated a new detector that found many
known lateral phishing attacks, as well as dozens of unre-
ported attacks, while generating a low volume of false posi-
tives. Through a detailed analysis of the attacks in our dataset,
we uncovered a number of important findings that inform
our mental models of the threats enterprises face, and illu-
minate directions for future defenses. Our work showed that
14% of our randomly sampled organizations, ranging from
small to large, experienced lateral phishing attacks within
a seven-month time period, and that attackers succeeded in
compromising new accounts at least 11% of the time. We
uncovered and quantified several thematic recipient targeting
strategies and deceptive content narratives; while some at-
tackers engage in targeted attacks, most follow strategies that
employ non-personalized phishing attacks that can be readily
used across different organizations. Despite this apparent lack
of sophistication in tailoring and targeting their attacks, 31%
of our dataset’s lateral phishers engaged in some form of so-
phisticated behavior designed to increase their success rate or
mask their presence from the hijacked account’s true owner.
Additionally, over 80% of attacks occurred during a typical
working day and hour, relative to the legitimate account’s
historical emailing behavior; this suggests that these attackers
either reside within a similar timezone as the accounts they
hijack or make a concerted effort to operate during their vic-
tim’s normal hours. Ultimately, our work provides the first
large-scale insights into an emerging, widespread form of
enterprise phishing attacks, and illuminates techniques and
future ideas for defending against this potent threat.

Acknowledgements

We thank Itay Bleier, the anonymous reviewers, and our shep-
herd Gianluca Stringhini for their valuable feedback. This
work was supported in part by the Hewlett Foundation through
the Center for Long-Term Cybersecurity, NSF grants CNS-
1237265 and CNS-1705050, an NSF GRFP Fellowship, the
Irwin Mark and Joan Klein Jacobs Chair in Information and
Computer Science (UCSD), by generous gifts from Google
and Facebook, a Facebook Fellowship, and operational sup-
port from the UCSD Center for Networked Systems.

References

[1] Saeed Abu-Nimeh, Dario Nappa, Xinlei Wang, and Suku
Nair. A Comparison of Machine Learning Techniques
for Phishing Detection. In Proc. of 2nd ACM eCrime,
2007.

USENIX Association 28th USENIX Security Symposium 1287

[2] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein,
and Yves Le Traon. Are Your Training Datasets Yet
Relevant? In Proc. of 7th Springer ESSoS, 2015.

[3] Andre Bergholz, Jeong Ho Chang, Gerhard Paaß, Frank
Reichartz, and Siehyun Strobel. Improved Phishing
Detection using Model-Based Features. In Proc. of 5th
CEAS, 2008.

[4] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. JMLR, 13(Feb), 2012.

[5] Steven Bird, Edward Loper, and Ewan Klein. Natural
Language Toolkit. https://www.nltk.org/, 2019.

[6] Elie Bursztein, Borbala Benko, Daniel Margolis, Tadek
Pietraszek, Andy Archer, Allan Aquino, Andreas Pitsil-
lidis, and Stefan Savage. Handcrafted Fraud and Extor-
tion: Manual Account Hijacking in the Wild. In Proc.
of 14th ACM IMC, 2014.

[7] Asaf Cidon. Threat Spotlight: Office 365 Account
Takeover — the New “Insider Threat”. https:
//blog.barracuda.com/2017/08/30/threat-
spotlight-office-365-account-compromise-
the-new-insider-threat/, Aug 2017.

[8] Asaf Cidon, Lior Gavish, Itay Bleier, Nadia Korshun,
Marco Schweighauser, and Alexey Tsitkin. High Preci-
sion Detection of Business Email Compromise. In Proc.
of 28th Usenix Security, 2019.

[9] DomainKeys Identified Mail. https://en.
wikipedia.org/wiki/DomainKeys_Identified_
Mail. Accessed: 2018-11-01.

[10] Sevtap Duman, Kubra Kalkan-Cakmakci, Manuel Egele,
William Robertson, and Engin Kirda. EmailProfiler:
Spearphishing Filtering with Header and Stylometric
Features of Emails. In Proc. of 40th IEEE COMPSAC,
2016.

[11] Manuel Egele, Gianluca Stringhini, Christopher Kruegel,
and Giovanni Vigna. COMPA: Detecting Compromised
Accounts on Social Networks. In Proc. of 20th ISOC
NDSS, 2013.

[12] FBI. BUSINESS E-MAIL COMPROMISE THE 12
BILLION DOLLAR SCAM, Jul 2018. https://www.
ic3.gov/media/2018/180712.aspx.

[13] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learn-
ing to Detect Phishing Emails. In Proc. of 16th ACM
WWW, 2007.

[14] Sujata Garera, Niels Provos, Monica Chew, and Aviel D
Rubin. A Framework for Detection and Measurement
of Phishing Attacks. In Proc. of 5th ACM WORM, 2007.

[15] Hugo Gascon, Steffen Ullrich, Benjamin Stritter, and
Konrad Rieck. Reading Between the Lines: Content-
Agnostic Detection of Spear-Phishing Emails. In Proc.
of 21st Springer RAID, 2018.

[16] Google. Classification: ROC and AUC.
https://developers.google.com/machine-
learning/crash-course/classification/roc-
and-auc, 2019.

[17] Grant Ho, Asaf Cidon, Lior Gavish, Marco
Schweighauser, Vern Paxson, Stefan Savage, Ge-
offrey M. Voelker, and David Wagner. Detecting and
Characterizing Lateral Phishing at Scale (Extended
Report). In arxiv, 2019.

[18] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson,
and David Wagner. Detecting Credential Spearphishing
Attacks in Enterprise Settings. In Proc. of 26th USENIX
Security, 2017.

[19] Xuan Hu, Banghuai Li, Yang Zhang, Changling Zhou,
and Hao Ma. Detecting Compromised Email Accounts
from the Perspective of Graph Topology. In Proc. of
11th ACM CFI, 2016.

[20] Dan Hubbard. Cisco Umbrella 1 Million. https:
//umbrella.cisco.com/blog/2016/12/14/cisco-
umbrella-1-million/, Dec 2016.

[21] Chris Kanich, Christian Kreibich, Kirill Levchenko,
Brandon Enright, Geoffrey M Voelker, Vern Paxson,
and Stefan Savage. Spamalytics: An Empirical Analysis
of Spam Marketing Conversion. In Proc. of 15th ACM
CCS, 2008.

[22] Thomas Karagiannis and Milan Vojnovic. Email infor-
mation flow in large-scale enterprises. Technical report,
Microsoft Research, 2008.

[23] Mahmoud Khonji, Youssef Iraqi, and Andrew Jones.
Mitigation of spear phishing attacks: A content-based
authorship identification framework. In Proc. of 6th
IEEE ICITST, 2011.

[24] FT Labs. A sobering day. https://labs.ft.com/
2013/05/a-sobering-day/?mhq5j=e6, May 2013.

[25] Stevens Le Blond, Cédric Gilbert, Utkarsh Upadhyay,
Manuel Gomez Rodriguez, and David Choffnes. A
Broad View of the Ecosystem of Socially Engineered
Exploit Documents. In Proc. of 24th ISOC NDSS, 2017.

[26] Stevens Le Blond, Adina Uritesc, Cédric Gilbert,
Zheng Leong Chua, Prateek Saxena, and Engin Kirda.
A Look at Targeted Attacks Through the Lense of an
NGO. In Proc. of 23rd USENIX Security, 2014.

1288 28th USENIX Security Symposium USENIX Association

https://www.nltk.org/
https://blog.barracuda.com/2017/08/30/threat-spotlight-office-365-account-compromise-the-new-insider-threat/
https://blog.barracuda.com/2017/08/30/threat-spotlight-office-365-account-compromise-the-new-insider-threat/
https://blog.barracuda.com/2017/08/30/threat-spotlight-office-365-account-compromise-the-new-insider-threat/
https://blog.barracuda.com/2017/08/30/threat-spotlight-office-365-account-compromise-the-new-insider-threat/
https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail
https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail
https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail
https://www.ic3.gov/media/2018/180712.aspx
https://www.ic3.gov/media/2018/180712.aspx
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
https://labs.ft.com/2013/05/a-sobering-day/?mhq5j=e6
https://labs.ft.com/2013/05/a-sobering-day/?mhq5j=e6

[27] Mailgun Team. Talon. https://github.com/
mailgun/talon, 2018.

[28] William R Marczak, John Scott-Railton, Morgan
Marquis-Boire, and Vern Paxson. When Governments
Hack Opponents: A Look at Actors and Technology. In
Proc. of 23rd USENIX Security, 2014.

[29] Microsoft Graph: message resource type. https:
//developer.microsoft.com/en-us/graph/
docs/api-reference/v1.0/resources/message.
Accessed: 2018-11-01.

[30] Microsoft. People overview - Outlook Web
App. https://support.office.com/en-
us/article/people-overview-outlook-web-
app-5fe173cf-e620-4f62-9bf6-da5041f651bf.
Accessed: 2018-11-01.

[31] Brad Miller, Alex Kantchelian, Michael Carl Tschantz,
Sadia Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling
Huang, Vaishaal Shankar, Tony Wu, George Yiu, et al.
Reviewer Integration and Performance Measurement for
Malware Detection. In Proc. of 13th Springer DIMVA,
2016.

[32] Jeremiah Onaolapo, Enrico Mariconti, and Gianluca
Stringhini. What Happens After You Are Pwnd: Under-
standing the Use of Leaked Webmail Credentials in the
Wild. In Proc. of 16th ACM IMC, 2016.

[33] J. Palme. Common Internet Message Headers. https:
//tools.ietf.org/html/rfc2076.

[34] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney,
Johannes Kinder, and Lorenzo Cavallaro. Tesseract:
Eliminating experimental bias in malware classification
across space and time. In Proc. of 28th Usenix Security,
2019.

[35] Kevin Poulsen. Google disrupts chinese spear-phishing
attack on senior u.s. officials. https://www.wired.
com/2011/06/gmail-hack/, Jul 2011.

[36] Steve Ragan. Office 365 phishing attacks cre-
ate a sustained insider nightmare for it. https:
//www.csoonline.com/article/3225469/office-
365-phishing-attacks-create-a-sustained-
insider-nightmare-for-it.html, Sep 2017.

[37] Fahmida Y. Rashid. Don’t like Mondays? Neither do
attackers. https://www.csoonline.com/article/
3199997/don-t-like-mondays-neither-do-
attackers.html, Aug 2017.

[38] Retraining models on new data. https://docs.
aws.amazon.com/machine-learning/latest/dg/
retraining-models-on-new-data.html, 2019.

[39] Jeff John Roberts. Homeland Security Chief Cites Phish-
ing as Top Hacking Threat. http://fortune.com/
2016/11/20/jeh-johnson-phishing/, Nov 2016.

[40] Apache Spark. PySpark DecisionTreeClassifi-
cationModel v2.1.0. http://spark.apache.
org/docs/2.1.0/api/python/pyspark.
ml.html?highlight=featureimportance#
pyspark.ml.classification.
DecisionTreeClassificationModel.
featureImportances.

[41] Gianluca Stringhini and Olivier Thonnard. That Ain’t
You: Blocking Spearphishing Through Behavioral Mod-
elling. In Proc. of 12th Springer DIMVA, 2015.

[42] Kurt Thomas, Frank Li, Chris Grier, and Vern Paxson.
Consequences of Connectivity: Characterizing Account
Hijacking on Twitter. In Proc. of 21st ACM CCS, 2014.

[43] Lisa Vaas. How hackers broke into John Podesta, DNC
Gmail accounts. https://nakedsecurity.sophos.
com/2016/10/25/how-hackers-broke-into-john-
podesta-dnc-gmail-accounts/, Oct 2016.

[44] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-
Scale Automatic Classification of Phishing Pages. In
Proc. of 17th ISOC NDSS, 2010.

[45] Wikipedia. Random forest. https://en.wikipedia.
org/wiki/Random_forest, 2019.

[46] Kim Zetter. Researchers uncover rsa phishing attack,
hiding in plain sight. https://www.wired.com/2011/
08/how-rsa-got-hacked/, Aug 2011.

[47] Mengchen Zhao, Bo An, and Christopher Kiekintveld.
Optimizing Personalized Email Filtering Thresholds to
Mitigate Sequential Spear Phishing Attacks. In Proc. of
13th AAAI, 2016.

A Detector Implementation and Evaluation
Details

A.1 Labeling Phishing Emails

Labeling an email as phishing or benign: When manually
labeling an email, we started by examining five pieces of in-
formation whether the email was a reported phishing incident,
the message content, the suspicious URL flagged and if its
domain made sense in context, the email’s recipients, and
the sender. With the exception of a few incidents, we could
easily identify a phishing email from the above steps. For
example: an email about a “shared Office 365 document” sent
to hundreds of unrelated recipients and whose document link
pointed to a bit.ly shortened [non-Microsoft] domain; or an

USENIX Association 28th USENIX Security Symposium 1289

https://github.com/mailgun/talon
https://github.com/mailgun/talon
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/message
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/message
https://developer.microsoft.com/en-us/graph/docs/api-reference/v1.0/resources/message
https://support.office.com/en-us/article/people-overview-outlook-web-app-5fe173cf-e620-4f62-9bf6-da5041f651bf
https://support.office.com/en-us/article/people-overview-outlook-web-app-5fe173cf-e620-4f62-9bf6-da5041f651bf
https://support.office.com/en-us/article/people-overview-outlook-web-app-5fe173cf-e620-4f62-9bf6-da5041f651bf
https://tools.ietf.org/html/rfc2076
https://tools.ietf.org/html/rfc2076
https://www.wired.com/2011/06/gmail-hack/
https://www.wired.com/2011/06/gmail-hack/
https://www.csoonline.com/article/3225469/office-365-phishing-attacks-create-a-sustained-insider-nightmare-for-it.html
https://www.csoonline.com/article/3225469/office-365-phishing-attacks-create-a-sustained-insider-nightmare-for-it.html
https://www.csoonline.com/article/3225469/office-365-phishing-attacks-create-a-sustained-insider-nightmare-for-it.html
https://www.csoonline.com/article/3225469/office-365-phishing-attacks-create-a-sustained-insider-nightmare-for-it.html
https://www.csoonline.com/article/3199997/don-t-like-mondays-neither-do-attackers.html
https://www.csoonline.com/article/3199997/don-t-like-mondays-neither-do-attackers.html
https://www.csoonline.com/article/3199997/don-t-like-mondays-neither-do-attackers.html
https://docs.aws.amazon.com/machine-learning/latest/dg/retraining-models-on-new-data.html
https://docs.aws.amazon.com/machine-learning/latest/dg/retraining-models-on-new-data.html
https://docs.aws.amazon.com/machine-learning/latest/dg/retraining-models-on-new-data.html
http://fortune.com/2016/11/20/jeh-johnson-phishing/
http://fortune.com/2016/11/20/jeh-johnson-phishing/
http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html?highlight=featureimportance#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html?highlight=featureimportance#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html?highlight=featureimportance#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html?highlight=featureimportance#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html?highlight=featureimportance#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
http://spark.apache.org/docs/2.1.0/api/python/pyspark.ml.html?highlight=featureimportance#pyspark.ml.classification.DecisionTreeClassificationModel.featureImportances
https://nakedsecurity.sophos.com/2016/10/25/how-hackers-broke-into-john-podesta-dnc-gmail-accounts/
https://nakedsecurity.sophos.com/2016/10/25/how-hackers-broke-into-john-podesta-dnc-gmail-accounts/
https://nakedsecurity.sophos.com/2016/10/25/how-hackers-broke-into-john-podesta-dnc-gmail-accounts/
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
https://www.wired.com/2011/08/how-rsa-got-hacked/
https://www.wired.com/2011/08/how-rsa-got-hacked/

email describing an “account security problem” sent by a non-
IT employee, where the “account reset” URL pointed to an
unrelated domain. For the more difficult cases, we analyzed
all replies and forwards in the email chain, and labeled the
email as phishing if it either received multiple replies / for-
wards that expressed alarm or suspicious, or if the hijacked
account eventually sent a reply saying that they did not send
the phishing email. Finally, as described in Section 3.3 we
visited the non-side-effect, suspicious URLs from a sample of
the labeled phishing emails; All of the URLs we visited led to
either an interstitial warning page (e.g.,, Google SafeBrows-
ing), or a spoofed log-on page. For the emails flagged by our
detector, but which appeared benign based on examining all
the above information, we conservatively labeled them as
false positives. In many cases, false positives were readily
apparent; e.g., emails where the “suspicious URL” flagged by
our detector occurred in the sender’s signature and linked to
their personal website.

Training exercises vs. actual phishing emails: In addition
to distinguishing between a false positive and an attack, we
checked to ensure that our lateral phishing incidents repre-
sented actual attacks, and not training exercises. First, based
on the lateral phishing emails’ headers, we verified that all
of the sending accounts were legitimate enterprise accounts.
Second, all but five of the attack accounts sent one or more
unrelated-to-phishing emails in the preceding month. These
two points gave us confidence that the phishing emails came
from existing, legitimate accounts, and thus represented ac-
tual attacks; i.e., training exercises will not hijack an existing
account, due to the potential reputational harm this could in-
cur (and enterprise security teams we’ve previously engaged
with do not do this). Furthermore, none of our dataset’s lateral
phishing incidents are training exercises known to Barracuda,
and none of the lateral phishing URLs used domains of known
security companies.

A.2 Model Tuning and Hyperparameters
Most machine learning models, including Random Forest, re-
quire the user to set various (hyper)parameters that govern the
model’s training process. To determine the optimal set of hy-
perparameters for our classifier, we followed machine learning
best practices by conducting a three-fold cross-validation grid
search over all combinations of the hyperparameters listed
below [4].

1. Number of trees: 50–500, in steps of 50 (i.e., 50, 100,
150, . . . , 450, 500)

2. Maximum tree depth: 10–100, in steps of 10

3. Minimum leaf size: 1, 2, 4, 8

4. Downsampling ratio of (benign / attack) emails: 10, 50,
100, 200

Because our training dataset contained only a few dozen in-
cidents, we used three folds to ensure that each fold in the
cross-validation contained several attack instances. Our ex-
periments used a Random Forest model with 64 trees, a max-
imum depth of 8, a minimum leaf size of 4 elements, and a
downsampling of 200 benign emails per 1 attack email, since
this configuration produced the the highest AUC score [16].
But we note that many of the hyperparameter combinations
yielded similar results.

1290 28th USENIX Security Symposium USENIX Association

High Precision Detection of Business Email Compromise

Asaf Cidon1,2 and Lior Gavish, Itay Bleier, Nadia Korshun, Marco Schweighauser and Alexey Tsitkin1

1Barracuda Networks, 2Columbia University

Abstract

Business email compromise (BEC) and employee imper-
sonation have become one of the most costly cyber-security
threats, causing over $12 billion in reported losses. Imperson-
ation emails take several forms: for example, some ask for
a wire transfer to the attacker’s account, while others lead
the recipient to following a link, which compromises their
credentials. Email security systems are not effective in detect-
ing these attacks, because the attacks do not contain a clearly
malicious payload, and are personalized to the recipient.

We present BEC-Guard, a detector used at Barracuda Net-
works that prevents business email compromise attacks in
real-time using supervised learning. BEC-Guard has been
in production since July 2017, and is part of the Barracuda
Sentinel email security product. BEC-Guard detects attacks
by relying on statistics about the historical email patterns that
can be accessed via cloud email provider APIs. The two main
challenges when designing BEC-Guard are the need to label
millions of emails to train its classifiers, and to properly train
the classifiers when the occurrence of employee imperson-
ation emails is very rare, which can bias the classification. Our
key insight is to split the classification problem into two parts,
one analyzing the header of the email, and the second apply-
ing natural language processing to detect phrases associated
with BEC or suspicious links in the email body. BEC-Guard
utilizes the public APIs of cloud email providers both to au-
tomatically learn the historical communication patterns of
each organization, and to quarantine emails in real-time. We
evaluated BEC-Guard on a commercial dataset containing
more than 4,000 attacks, and show it achieves a precision of
98.2% and a false positive rate of less than one in five million
emails.

1 Introduction
In recent years, email-borne employee impersonation, termed
by the FBI “Business Email Compromise” (BEC), has be-
come a major security threat. According to the FBI, US or-
ganizations have lost $2.7 billion in 2018 and cumulatively

$12 billion since 2013 [13]. Numerous well-known enter-
prises have fallen prey to such attacks, including Facebook,
Google [41], and Ubiquiti [44]. Studies have shown that BEC
is the cause of much higher direct financial loss than other
common cyberattacks, such as ransomware [11, 13]. BEC
attacks have also ensnared operators of critical government in-
frastructure [39]. Even consumers have become the targets of
employee impersonation. For example, attackers have imper-
sonated employees of real-estate firms to trick home buyers
to wire down payments to the wrong bank account [1, 7, 17].

BEC takes several forms: some emails ask the recipient
to wire transfer money to the attacker’s account, others ask
for W-2 forms that contain social security numbers, and some
lead the recipient to follow a phishing link, in order to steal
their credentials. The common theme is the impersonation
of a manager or colleague of the target [12]. In this work,
we focus on attacks where the attacker is external to the or-
ganization, and is trying to impersonate an employee. In §6
we discuss other scenarios, such as where the attacker uses a
compromised internal email account to impersonate employ-
ees [18, 19].

Most email security systems are not effective in detecting
BEC. When analyzing an incoming email, email security sys-
tems broadly look for two types of attributes: malicious and
volumetric. Examples of malicious attributes are an attach-
ment that contains malware, a link pointing to a compromised
website, or an email that is sent from a domain with a low
reputation. There are various well-known techniques to detect
malicious attributes, including sandboxing [49], and domain
reputation [2,48]. Volumetric attributes are detected when the
same email format is sent to hundreds of recipients or more.
Examples include the same text or sender email (e.g., spam),
and the same URL (e.g., mass phishing campaigns). However,
employee impersonation emails do not contain malicious or
volumetric attributes: they typically do not contain malware,
are not sent from well-known malicious IPs, often do not con-
tain a link, and are sent to a small number of recipients (with
the explicit intent of evading volumetric filters). When em-
ployee impersonation attacks do contain a link, it is typically

USENIX Association 28th USENIX Security Symposium 1291

a link to a fake sign up page on a legitimate website that was
compromised, which does not appear on any IP black lists. In
addition, the text of the attacks is tailored to the recipient, and
is typically not caught by volume-based filters.

Our design goal is to detect and quarantine BEC attacks in
real-time, at a low false positive rate (1 in a million emails)
and high precision (95%). We make the observations that
popular cloud email systems, such as Office 365 and Gmail,
provide APIs that enable account administrators to allow ex-
ternal applications to access historical emails. Therefore, we
design a system that detects BEC by relying on historical
emails available through these APIs.

Prior work on detecting impersonation has been conducted
either on very small datasets [10, 14, 20, 45]), or focused on
stopping a subset of BEC attacks (domain spoofing [14] or
emails with links [20]). In addition, most prior work suffers
from very low precision (only 1 in 500 alerts is an attack [20])
or very high false positive rates [10, 45]), which makes prior
work unsuitable for detecting BEC in real-time.

The main challenge in designing a system that can detect
BEC at a low false positive rate is that BEC emails are very
rare as a percentage of all emails. In fact, in our dataset, less
than one out of 50,000 emails is a BEC attack. Therefore, in
order to achieve low false positives, we design a system using
supervised learning, which relies on a large training set of
BEC emails. However, bootstrapping a supervised learning
systems presents two practical challenges. First, it is difficult
to label a sufficiently large training dataset that includes mil-
lions of emails. Second, it is challenging to train a classifier on
an imbalanced dataset, in which the training dataset contains
almost five orders of magnitude fewer positive samples (i.e.,
BEC attacks) than negative samples (i.e., innocent emails).

In this paper, we present how we initially trained BEC-
Guard, a security system that automatically detects and quar-
antines BEC attacks in real-time using historical emails. BEC-
Guard is part of a commercial product, Barracuda Sentinel,
used by thousands of corporate customers of Barracuda Net-
works to prevent BEC, account takeover, spear phishing and
other targeted attacks. BEC-Guard does not require an ana-
lyst to review the detected emails, but rather relies on offline
and infrequent re-training of classifiers. The key insight of
BEC-Guard is to split the training and classification into two
parts: header and body.

Instead of directly classifying BEC attacks, the imperson-
ation classifier detects impersonation attempts, by determin-
ing if an attacker is impersonating an employee in the com-
pany by inspecting the header of the email. It utilizes features
that include information about which email addresses em-
ployees typically utilize, how popular their name is, and char-
acteristics of the sender domain. The content classifiers are
only run on emails that were categorized as impersonation at-
tempts, and inspects the body of the email for BEC. For emails
that do not contain links, we use a k-nearest neighbors [43]
(KNN) classifier that weighs words using term frequency-

inverse document frequency [28, 42] (TFIDF). For emails
with links, we train a random forest classifier that relies on the
popularity as well as the position of the link in the text. Both
of the content classifiers can be retrained frequently using
customer feedback.

To create the initial classifiers, we individually label and
train each type of classifier: the labels of the impersonation
classifier are generated using scripts we ran on the training
dataset, while the content classifiers are trained over a manu-
ally labeled training dataset. Since we run the content classi-
fication only on emails that were detected as impersonation
attempts, we need to manually label a much smaller subset of
the training dataset. In addition, to ensure the impersonation
classifier is trained successfully over the imbalanced dataset,
we develop an under-sampling technique for legitimate emails
using Gaussian Mixture Models, an unsupervised clustering
algorithm. The classifiers are typically re-trained every few
weeks. The dataset available for initial training consists of
a year worth of historical emails from 1500 customers, with
an aggregate dataset of 2 million mailboxes and 2.5 billion
emails. Since training the initial classifiers, our dataset has
been expanded to include tens of millions of mailboxes.

BEC-Guard uses the APIs of cloud-based email systems
(e.g., Office 365 and Gmail), both to automatically learn the
historical communication patterns of each organization within
hours, and to quarantine emails in real-time. BEC-Guard sub-
scribes to API calls, which automatically alert BEC-Guard
whenever a new email enters the organization’s mailbox. Once
notified by the API call, BEC-Guard classifies the email for
BEC. If the email is determined to be BEC, BEC-Guard uses
the APIs to move the email from the inbox folder to a dedi-
cated quarantine folder on the end-user’s account.

To evaluate the effectiveness of our approach, we measured
BEC-Guard’s performance on a dataset of emails taken from
several hundred organizations. Within this labeled dataset,
BEC-Guard achieves a a precision of 98.2%, a false positive
rate of only one in 5.3 million. To summarize, we make the
following contributions:

• First real-time system for preventing BEC that achieves
high precision and low false positive rates.

• BEC-Guard’s novel design relies on cloud email provider
APIs both to learn the historical communication patterns
of each organization, and to detect attacks in real-time.

• To cope with labeling millions of emails, we split the
detection problem into two sets of classifiers run sequen-
tially.

• We use different types of classifiers for the header and
text of the email. The headers are classified using a ran-
dom forest, while the text classification relies primarily
on a KNN model that is not dependent on any hard-coded
features, and can be easily re-trained.

• To train the impersonation classifier on an imbalanced
dataset, we utilize a sampling technique for the legiti-
mate emails using a clustering algorithm.

1292 28th USENIX Security Symposium USENIX Association

BEC Objective Link? Percentage

Wire transfer No 46.9%
Click Link Yes 40.1%
Establish Rapport No 12.2%
Steal PII No 0.8%

Table 1: The objective of BEC attacks as a percentage of 3,000
randomly chosen attacks. 59.9% of attacks do not involve a phishing
link.

Role Recipient % Impersonated %

CEO 2.2% 42.9%
CFO 16.9% 2.2%
C-level 10.2% 4.5%
Finance/HR 16.9% 2.2%
Other 53.7% 48.1%

Table 2: The roles of recipients and impersonated employees from
a sample of BEC attacks chosen from 50 random companies. C-
level includes all executives that are not the CEO and CFO, and
Finance/HR does not include executives.

2 Background
Business email compromise, also known as employee im-
personation, CEO fraud, and whaling,1 is a class of email
attacks where an attacker impersonates an employee of the
company (e.g., the CEO, a manager in HR or finance), and
crafts a personalized email to a specific employee. The intent
of this email is typically to trick the target to wire money,
send sensitive information (e.g., HR or medical records), or
lead the employee to follow a phishing link in order to steal
their credentials or download malware to their endpoint.

BEC has become one of the most damaging email-borne
attacks in recent years, equaling or surpassing other types of
attacks, such as spam and ransomware. Due to the severity of
BEC attacks, the FBI started compiling annual reports based
on US-based organizations that have reported their fraudulent
wire transfers to the FBI. Based on the FBI data, between
2013 and 2018, $12 billion have been lost [13]. To put this in
perspective, a Google study estimates that the total amount of
ransomware payments in 2016 was only $25 million [11].

In this section, we review common examples of BEC, and
provide intuition on how their unique characteristics can be
exploited for supervised learning classification.

2.1 Statistics
To better understand the goals and methodology of BEC at-
tacks, we compiled statistics for 3,000 randomly selected
BEC attacks in our dataset (for more information about our
dataset, see §4.2). Table 1 summarizes the objectives of the
attacks. The results show that the most common BEC in the
sampled attacks is try to deceive the recipient to perform a
wire transfer to a bank account owned by the attacker, while
about 0.8% of the attacks ask the recipient to send the attacker

1We refer to this attack throughout the paper as BEC.

personal identifiable information (PII), typically in the form
of W-2 forms that contain social security numbers. About
40% of attacks ask the recipient to click on a link. 12% of
attacks try to establish rapport with the target by starting a
conversation with the recipient (e.g., the attacker will ask the
recipient whether they are available for an urgent task). For
the “rapport” emails, in the vast majority of cases, after the
initial email is responded to the attacker will ask to perform a
wire transfer.

An important observation is that about 60% of BEC attacks
do not involve a link: the attack is simply a plain text email
that fools the recipient to commit a wire transfer or send
sensitive information. These plain text emails are especially
difficult for existing email security systems, as well as prior
academic work to detect [20], because they are often sent
from legitimate email accounts, tailored to each recipient, and
do not contain any suspicious links.

We also sampled attacks from 50 random companies in
our dataset, and classified the roles of the recipient of the
attack, as well as the impersonated sender. Table 2 presents
the results. Based on the results, the term “CEO fraud” used
to describe BEC is indeed justified: about 43% of the imper-
sonated senders were the CEO or founder. The targets of the
attacks are spread much more equally across different roles.
However, even for impersonated senders, the majority (about
57%) are not the CEO. Almost half of the impersonated roles
and more than half of targets are not of “sensitive” positions,
such as executives, finance or HR. Therefore, simply protect-
ing employees in sensitive departments in not sufficient to
protect against BEC.

2.2 Common Types of BEC
To guide the discussion, we describe the three most common
examples of BEC attacks within our dataset: wire transfer,
rapport, and impersonation phishing. In §6 we will discuss
other attacks that are not covered by this paper. All three
examples we present are real BEC attacks from within our
dataset, in which the names, companies, email addresses and
links have been anonymized.

Example 1: Wire transfer example

From: "Jane Smith" <jsmith@acrne.com>
To: "Joe Barnes" <jbarnes@acme.com>
Subject: Vendor Payment

Hey Joe,

Are you around? I need to send a wire
transfer ASAP to a vendor.

Jane

In Example 1, the attacker asks to execute a wire transfer.
Other similar requests include asking for W-2 forms, medical
information or passwords. In the example the attacker spoofs
the name of an employee, but uses an email address that

USENIX Association 28th USENIX Security Symposium 1293

Example 2: Rapport example

From: "Jane Smith" <jsmith@acme.com>
Reply -to: "Jane Smith" <ceo.executive@outlook.com>
To: "Joe Barnes" <jbarnes@acme.com>
Subject: At desk?

Joe, are you available for something urgent?

Example 3: Spoofed Name with Phishing Link

From: "Jane Smith" <greyowl1234@comcast.net>
To: "Joe Barnes" <jbarnes@acme.com>
Subject: Invoice due number 381202214

I tried to reach you by phone today but I
couldn ’t get through. Please get back to me
with the status of the invoice below.

Invoice due number 381202214:
[http://firetruck4u.net/past-due-invoice/]

does not belong to the organization’s domain. Some attackers
even use a domain that looks similar to the target organiza-
tion’s domain (e.g., instead of acme.com, the attacker would
use acrne.com). Since many email clients do not display the
sender email address, some recipients will be deceived even
if the attacker uses an unrelated email address.

Example 2 tries to create a sense of urgency. After the recip-
ient responds to the email, the attacker will typically ask for a
wire transfer. The email has the from address of the employee,
while the reply-to address will relay the response back to the
attacker. Email authentication technologies such as DMARC,
SPF and DKIM can help stop spoofed emails. However, the
vast majority of organizations do not enforce email authenti-
cation [25], because it can be difficult to implement correctly
and often causes legitimate emails to be blocked.2 Therefore,
our goal is to detect these attacks without relying on DMARC,
SPF and DKIM.

Example 3 uses a spoofed name, and tries to get the re-
cipient to follow a phishing link. Such phishing links are
typically not detected by existing solutions, because the link
is unique to the recipient (“zero-day”) and will not appear
in any black lists. In addition, attackers often compromise
relatively reputable websites (e.g., small business websites)
for phishing links, which are often classified as high repu-
tation links by email security systems. The link within the
email will typically lead the recipient to a website, where they
will be prompted to log in a web service (e.g., an invoicing
application) or download malware.

3 Intuition: Exploiting the Unique Attributes
of Each Attack

The three examples all contain unique characteristics, which
set them apart from innocent email messages. We first de-

2Many organizations have legitimate systems that send emails on their
behalf, for example, marketing automation systems, which can be erroneously
blocked if email authentication is not setup properly.

scribe the unique attributes in the header of each example,
and then discuss the attributes of the email body and how they
can be used to construct the features of a machine learning
classifier. We also discuss legitimate corner cases of these
attributes that might fool a classifier and cause false positives.
Header attributes. In Example 1 and 3, the attacker im-
personates the name of a person, but uses a different email
address than the corporate email address. Therefore, if an
email contains a name of an employee, but uses an email
address that is not the typical email address of that employee,
there is a higher probability that the sender is an imposter.

However, there are legitimate use cases of non-corporate
emails by employees. First, an employee might use a personal
email address to send or forward information to themselves
or other employees in the company. Ideally, a machine learn-
ing classifier should be able to learn all the email addresses
that belong to a certain individual, including corporate and
personal email addresses. Second, if an external sender has
the same name as an internal employee, it might seem like an
impersonation.

In Example 2, the attacker spoofs the legitimate email ad-
dress of the sender, but the reply-to email address is different
than the sender address, which is unusual (we will also dis-
cuss the case where the attacker sends a message from the
legitimate address of the sender without changing the reply-to
field in §6). However, such a pattern has legitimate corner
cases as well. Some web services and IT systems, such as
LinkedIn, Salesforce, and other support and HR applications,
“legitimately impersonate” employees to send notifications,
and change the reply-to field to make sure the response to the
message is recorded by their system.

Other header attributes might aid in the detection of BEC
attacks. For example, if an email is sent at an abnormal time of
day, or from an abnormal IP or from a foreign country. How-
ever, many BEC attacks are designed to seem legitimate, and
are sent in normal times of day and from seemingly legitimate
email addresses.
Body attributes. The body of Example 1 contains two
unique semantic attributes. First, it discusses sensitive in-
formation (a wire transfer). Second, it is asking for a special,
immediate request. Similarly, the text of Example 2 is ask-
ing whether the recipient is available for an urgent request.
Such an urgent request for sensitive information or availabil-
ity might be legitimate in certain circumstances (for example,
in an urgent communication within the finance team).

The unique attribute in the body of Example 3 is the link
itself. The link is pointing to a website that does not have
anything to do with the company: it does not belong to a web
service the company typically uses, and it is not related to the
company’s domain.

Finally, all three examples contain certain textual and visual
elements that are unique to the identity of the sender. For
example, Example 1 contains the signature of the CEO and
all of the emails contain a particular grammar and writing

1294 28th USENIX Security Symposium USENIX Association

style. If any of these elements deviate from the style of a
normal email from a particular sender, they can be exploited
to detect an impersonation. Since in many BEC emails the
attackers take great care in making the email appear legitimate,
we cannot overly-depend on detecting stylistic aberrations.

As shown above, each of the examples has unique anoma-
lous attributes that can be used to categorize it as a BEC attack.
However, as we will show in §7, none of these attributes on
its own is sufficient to classify an email with a satisfactory
false positive rate.

Leveraging historical emails. Much of prior work in de-
tecting email-borne threats relies on detecting malicious sig-
nals in the email, such as sender and link domain reputa-
tion [2, 48], malicious attachments [49], as well as relying on
link click logs and IP logins [20]. However, as Table 1 and
the examples we surveyed demonstrate, most BEC attacks
do not contain any obviously malicious attachments or links.
Intuitively, access to the historical emails of an organization
would enable a supervised learning system to identify the
common types of BEC attacks by identifying anomalies in
the header and body attributes. We make the observation that
popular cloud-based email providers, such as Office 365 and
Gmail, enable their customers to allow third party applications
to access their account with certain permissions via public
APIs. In particular, these APIs can enable third-party applica-
tions to access historical emails. This allows us to design a
system that uses historical emails to identify BEC attacks.

4 Classifier and Feature Design
In this section, we describe BEC-Guard’s design goals, and its
training dataset. We then describe the initial set of classifiers
we used in BEC-Guard, and present our approach to training
and labeling.

4.1 Design Goals
The goal of BEC-Guard is to detect BEC attacks in real-time,
without requiring the users of the system to utilize security
analysts to manually sift through suspected attacks. To meet
this goal, we need to optimize two metrics: the false positive
rate, and the precision. The false positive rate is the rate of
false positives as a percentage of total received emails. If we
assume an average user receives over 100 emails a day, in
an organization with 10,000 employees, our goal is that it
will be infrequent to encounter a false positive (e.g., once a
day for the entire organization). Therefore, our target false
positive rate is less than one in a million. The precision is the
rate of true positives (correctly detected BEC attacks) as a
percentage of attacks detected by the system, while the false
positive rate is a percentage of false positives of all emails
(not just emails detected by the system). If the precision is not
high, users of BEC-Guard will lose confidence in the validity
of its predictions. In addition to these two metrics, we need
to ensure high coverage, i.e., that the system catches the vast

majority of BEC attacks.

4.2 Dataset and Privacy
We developed the initial version of BEC-Guard using a dataset
of corporate emails from 1,500 organizations, which are ac-
tively paying customers of Barracuda Networks. The organi-
zations in our dataset vary widely in their type and size. The
organizations include companies from different industries
(healthcare, energy, finance, transportation, media, education,
etc.). The size of the organization varies from 10 mailboxes to
more than 100,000. Overall, to train BEC-Guard, we labeled
over 7,000 examples of BEC attacks, randomly selected from
the 1,500 organizations.

To access the data, these organizations granted us permis-
sion to access to the APIs of their Office 365 email environ-
ments. The APIs provide access to all historical corporate
emails. This includes emails sent internally within the orga-
nization, and from all folders (inbox, sent, junk, etc.). The
API also allows us to determine which domains are owned by
each organization, and even whether an email was read.

Ethical and privacy considerations. BEC-Guard is part
of a commercial product, and the 1,500 customers that partic-
ipate in the dataset provided their legal consent to Barracuda
Networks to access their historical corporate emails for the
purpose identifying BEC. Customers also have the option of
revoking access to BEC-Guard at any time.

Due to the sensitivity of the dataset, it was only exposed to
the five researchers who developed BEC-Guard, under strict
access control policies. The research team only accessed his-
torical emails for the purposes of labeling data to develop
BEC-Guard’s classifiers. Once the classifiers were developed,
we permanently deleted all of the emails that are not actively
used for training the classifiers. The emails used for classifi-
cation are stored encrypted, and access to them is limited to
the research team.

4.3 Dividing the Classification into Two Parts
The relative rare occurrence of BEC attacks influenced several
of our design choices. Our first design choice was to rule out
unsupervised learning. Unsupervised learning typically uses
clustering algorithms (e.g., k-means [15]) to group email cat-
egories, such as BEC emails. However, a clustering algorithm
would typically categorize many common categories (e.g.,
social emails, marketing emails), but since BEC is so rare, it
results in low precision and many false positives. Therefore,
supervised learning algorithms are more suitable for detecting
BEC at a high precision. However, using supervised learning
presents its own set of challenges.

In particular, BEC is an extreme case of imbalanced data.
When sampled uniformly, in our dataset, “legitimate” emails
are 50,000× more likely to appear than the BEC emails. This
presents two challenges. First, in order to label a modest
number of BEC emails (e.g., 1,000), we need to label a corpus

USENIX Association 28th USENIX Security Symposium 1295

on the order of 50 million legitimate emails. Second, even
with a large number of labeled emails, training a supervised
classifier over imbalanced datasets is known to cause various
problems, including biasing the classifier to prefer the larger
class (i.e., legitimate emails) [24,26,47,51]. To deal with this
extreme case of imbalanced data, we divided the classification
and labeling problem into two parts. The first classifier looks
only at the metadata of the email, while the second classifier
only examines the body and subject of the email.

The first classifier looks for impersonation emails. We de-
fine an impersonation as an email that is sent with the name of
a person, but was not actually sent by that person. Imperson-
ation emails include malicious BEC attacks, and they also in-
clude emails that legitimately impersonate an employee, such
as internal systems that send automated emails on behalf of
an employee. The impersonation classifier only analyzes the
metadata of the email (i.e., sender, receiver, CC, BCC fields).
The impersonation classifier detects both spoofed name (Ex-
ample 1 and 3) and spoofed emails (Example 2). The second
set of classifiers, the content classifiers, only classify emails
that were detected as impersonation emails, by examining
the email’s subject and body to look for anomalies. We use
two different content classifiers that each look for different
types of BEC attacks.3 The two content classifiers are: the
text classifier, which relies on natural language processing to
analyze the text of the email, and the link classifier, which
classifies any links that might appear in the email.

All of our classifiers are trained globally on the same
dataset. However, to compute some of the features (e.g., the
number of time the sender name and email address appeared
together), we rely on statistics that are unique to each organi-
zation.

4.4 Impersonation Classifier
Table 3 includes the main features used by the impersonation
classifier. The features describe the number of times specific
email addresses and names have appeared before in the sender
and reply-to fields, as well as statistics about the sender’s
identity.

To demonstrate why it is helpful to maintain historical
statistics of a particular organization, consider Figure 1. The
figure depicts the number of email addresses that were used
by each sender in an organization with 44,000 mailboxes
over three months. 82% of the users had emails sent from
only one address, and the rest had emails that were sent from
more than one address. The reason that some of the senders
used a large number of email addresses, is that they were
repeatedly impersonated in BEC attacks. For instance, the
CEO is a common target for impersonation. and is often
targeted dozens of times. However, this signal alone is not

3There is no inherent advantage in using multiple content classifiers in
terms of the false positive rate or precision. We decided to use two different
content classifiers, because it made it easier for us debug and maintain them
separately.

Feature Description

Sender has corp domain? Is sender address from corp domain?

Reply-to != sender ad-
dress?

Reply-to and sender addresses different?

Num times sender and
email

Number of times sender name and email
address appeared

Num times reply-to ad-
dress

Number of times reply-to address ap-
peared

Known reply-to service? Is reply-to from known web service (e.g.,
LinkedIn)?

Sender name popularity How popular is sender name

Table 3: Main features used by the impersonation classifier, which
looks for impersonation attempts, including spoofed names and
emails.

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Sender Emails Addresses

Pe
rc

en
ta

ge
 o

f U
se

rs

Figure 1: Number of unique emails addresses that were observed
for each user in an organization with 44,400 mailboxes. The X
axis is the number of unique email addresses that were observed,
as a percentage (in the Y axis) of the total number of users of the
organization.

sufficient to detect impersonation,. For example, some of the
senders that have a large number of email addresses represent
shared mailboxes (e.g., “IT” or “HR”), and are legitimate.

Hence, several of the features in the impersonation clas-
sifier rely on the historical communication patterns of the
organization. This influenced BEC-Guard’s architecture. In
addition, we maintain a list of known web services that “legit-
imately” send emails with reply-to addresses that are different
than the sender address (e.g., LinkedIn, Salesforce), in order
to capture the response. The original list of commonly-used
services was populated from a list of the domains of the major
web services. We then augmented this list with additional ser-
vices when we encountered them during the labeling process
(in §6 we discuss possible evasion techniques related to this
list of legitimate reply-to senders). The sender name popu-
larity score is computed offline by maintaining a list of how
frequently names appear across different organizations in our
dataset. The more popular a name, the higher the likelihood
that a name with an email address the employee typically
does not use is another person (a name collision).

Name and nickname matching. In order to detect name
spoofing, the impersonation classifier needs to match the

1296 28th USENIX Security Symposium USENIX Association

sender name with a name of an employee. However, names
can be written in various forms. For example: “Jane Smith”
can be written as: “Smith, Jane”, “Jane J. Smith” or “Jane
Jones Smith”. In addition, we need to deal with special char-
acters that might appear in names, such as ì or ä.

To address these problems, BEC-Guard normalizes names.
It stores employee name as <first name, last name> tuples, and
checks all the variants of the sender name to see if it matches
a name of an employee with a corporate email address. These
variants include stripping the middle name or initial, reversing
order of the first name and surname, and stripping suffixes.
Suffixes include examples like “Jr.” or when the email address
is sent as part of the sender name. In addition, we match the
first name against a publicly available list of nicknames [36],
to catch cases for example when the attacker sends an email
as “Bill Clinton”, and the name of the employee is stored as
“William Clinton”.

Content classifiers. Our system uses two content classi-
fiers: the text classifier and link classifier. The text classifier
catches attacks similar to Example 1 and 2, and the link classi-
fier stops attacks that are similar to Example 3. By design, the
content classifiers are meant to be updated more frequently
than the impersonation classifier, and should be easily re-
trained based on false negatives and false positives reported
by users.

Text classifier. In BEC attacks similar to Example 1 and 2,
the body contains words that are indicative of a sensitive or
special request, such as “wire transfer” or “urgent”. Therefore,
our first iteration of the text classifier was designed to look for
specific words that might imply a special request or a financial
or HR transaction. The features of the classifiers described
the position in the text of a list of sensitive words and phrases.
However, over time, we noticed this approach suffered from
several problems. First, a classifier that relies on hard-coded
keywords can miss attacks when attackers slightly vary a
specific word or phrase. Second, to successfully retrain the
classifier, we had to modify the lists of keywords that it looks
for, which required manually updating the keyword list on a
daily basis.

Instead, we developed a text classifier that learns expres-
sions that are indicative of BEC on its own. The first step is to
pre-process the text. BEC-Guard removes information from
the subject and body of the email that would not be useful for
classifying the email. It removes regular expression patterns
that include salutations (“Dear”, “Hi”), pre-canned headers,
as well as footers (“Best,”) and signatures. It also removes all
English stopwords, as well as any names that may appear in
the email.

The second step is to compute the frequency-inverse docu-
ment frequency [42] (TFIDF) score of each word in the email.
TFIDF represents how important each word is in an email,
and is defined as:

T F(w) =
num times w appears in email

num words in email

IDF(w) =
log(num emails)

num emails with w

Where w is a given word in an email. T F(w) · IDF(w)
gives a higher score to a word that appears frequently in a
specific email, but which is relatively rare in the whole email
corpus. The intuition is that in BEC emails, words for example
that denote urgency or a special request would have a high
TFIDF score, because they appear frequently in BEC emails
but less so in legitimate emails.

When training the text classifier, we compute the TFIDF
score of each word in each email of the training set. We also
compute the TFIDF for pairs of words (bigrams). We store
the global statistics of the IDF as a dictionary, which con-
tains number of emails in the training set that contain unique
phrases encountered in the training of the text classifier. We
limit the dictionary size to 10,000 of the top ranked words (we
evaluate how the size of the dictionary impacts classification
precision in §7.2).

The feature vector of each email is equal to the the number
of words in the dictionary, and each number represents the
TFIDF of each one of the words in the dictionary. Words
that do not appear in the email, or that do not appear in the
dictionary have a TFIDF of zero. The last step is to run a
classifier based on these features. Table 4 presents the top
10 phrases (unigram and bigram) in the BEC emails in our
dataset. Note that the top phrases all indicate some form of
urgency.

Top phrases in BEC emails by TFIDF

1. got moment 6. need complete

2. response 7. ASAP

3. moment need 8. urgent response

4. moment 9. urgent

5. need 10. complete task

Table 4: The top 10 phrases of BEC emails, sorted by their TFIDF
ranking from our evaluation dataset (for more information on evalu-
ation dataset see §7.1). The TFIDF was computed for each word in
all of the BEC emails in our evaluation dataset.

Link classifier. The link classifier detects attacks similar
to Example 3. In these attacks, the attacker tries to get the
recipient to follow a phishing link. As we described earlier,
these personalized phishing links are typically not detected by
IP blacklists, and are usually unique to the recipient. In this
case, since the content classifier only classifies emails that
were already classified as impersonation emails, it can mark
links as “suspicious”, even if they would have a high false
positive rate otherwise. For example, a link that points to a

USENIX Association 28th USENIX Security Symposium 1297

small website, or one that was recently registered, combined
with an impersonation attempt would have a high probability
of being a BEC email.

Feature Description

Domain popularity How popular is the link’s least popular
domain

URL field length Length of least popular URL (long URLs
are more suspicious)

Domain registration date Date of domain registration of least popu-
lar domain (new domains are suspicious)

Table 5: Main features used by the link request classifier, which
stops attacks like in Example 3.

Table 5 describes the main features used by the link request
classifier. The domain popularity is calculated by measur-
ing the Alexa score of the domain. In order to deal with link
shorteners or link redirections, BEC-Guard expands the URLs
before computing their features for the link classifier. In addi-
tion, several of the URL characteristics require determining
information about the domain (popularity and score). For the
domain popularity feature, we cache a list of the top popular
domains, and update it offline. To determine the domain reg-
istration date, BEC-Guard does a real-time WHOIS lookup.
Note that unlike the impersonation classifier, which needs to
map the distribution of email address per sender name, none
of the features of the text and link classifier are organization-
specific. This allows us to easily retrain them based on user
reported emails.

4.5 Classifier Algorithm
The impersonation and link classifiers use random forest [5]
classification. Random forests are comprised of randomly
formed decision trees [40], where each tree contributes a
vote, and the decision is determined by the majority of the
trees. Our system uses random forests rather than individual
decision trees, since we found they provide better precision,
but for offline debugging and analysis we often visualize
individual decision trees. We decided to use KNN for the text
classifier, because it had slightly better coverage than random
forests. However, we found that since the text classifier uses a
very large number of features (a dictionary of 10,000 phrases),
its efficacy was similar across different classifiers. In §7.2 we
evaluate the performance of the different classifier algorithms.

In addition, we have explored deep-learning based tech-
niques, such as word2vec [34] and sense2vec [46], which
expand each word to a vector that represents its different mean-
ings. We currently do not use such deep-learning techniques,
because they are computationally heavy both for training and
online classification.

Detecting impersonation of new employees. When a new
employee joins the organization, the impersonation classi-
fier will not have sufficient historical information about that

employee, since they will not have any historical emails. As
that employee receives more emails, BEC-Guard will be start
compiling statistics for the employee. A similar problem may
also arise in organizations that periodically purge their old
emails. In practice, we found that the classifier performs well
after only one month of data.

4.6 Labeling
In order to label the initial training set, we made several as-
sumptions about the BEC attack model. First we assumed
attackers impersonate employees using their name (under a
set of allowed variations, as explained above). Second, we as-
sumed the impersonation does not occur more than 100 times
using the same email address. Third, we assumed the attacker
uses an email address that is different than the corporate ad-
dress, either as the from address or the reply-to address. We
discuss other types of attacks that do not fit these assumptions,
as well as how attackers may evade these assumptions in §6.
Under these constraints, we fully covered all of the possible
attacks and manually labeled them. In addition, we incorpo-
rated missed attacks reported from customers (we discuss this
process in §7.3).

The reason we assumed a BEC email does not impersonate
an employee using the same email address more than 100
times is that BEC-Guard is designed with the assumption
that the organization is already using at a spam filter, which
provides protection against volume-based attacks (e.g., the
default spam protection of Office 365 or Gmail). Therefore, an
attacker that would send an email from an unknown address
more than 100 times to the same recipient would likely be
blocked by the spam filter. In fact, in our entire dataset, which
is only composed of post spam-filtered emails, we have never
witnessed an attacker using the email address to impersonate
an employee more than 20 times. Note that we only used
this assumption for labeling the original training set, and do
not use it for ongoing retraining (since retraining is based on
customer reported attacks).

Impersonation classifier. In order to label training data for
the impersonation classifier, we ran queries on the headers of
the raw emails to uncover all emails that might contain BEC
attacks under our labeling assumptions (see above). We then
labeled the results of all the queried emails as impersonation
emails, and all the emails that were not found by the queries
as legitimate emails.

Content classifiers. The training dataset for the content
classifiers is constructed by running a trained impersonation
classifier on a fresh dataset, which is then labeled manually.
The initial training set we used for the content classifiers in-
cluded 300,000 impersonation emails from randomly selected
organizations over a year of data. Even within this training
data set, we were able significantly further limit the number
of emails that needed to be manually labeled. This is due to
the fact that the vast majority of these emails were obviously

1298 28th USENIX Security Symposium USENIX Association

not BEC attacks, because they were due to a legitimate web
services that impersonates a large number of employees (e.g.,
a helpdesk system sending emails on behalf of the IT staff).

After constructing the initial dataset, training content clas-
sifiers is very straightforward, since we continuously collect
false negative and false positive emails from users and add
them into the training set. Note that we still manually review
these samples before retraining as a measure of quality con-
trol, to ensure that adversaries do not “poison” our training
set, as well as to make sure that users did not label emails
erroneously.

Sampling the dataset. Naïvely training a classifier over an
imbalanced dataset typically biases the classifier to prefer the
majority class. Specifically, it can result in a classifier that
will simply always choose to predict the majority class, i.e.,
legitimate emails, and will thus achieve very high accuracy
(i.e., accuracy = (t p+ tn)/(t p+ tn+ f p+ f n), where t p is
true positives, tn is true negatives, f p is false positives, and
f n is false negatives). Since BEC is so rare in our dataset,
a classifier that always predicts that an email is legitimate
would achieve a high accuracy. This problem is especially
acute in the case of our impersonation classifier, which needs
to do the initial filtering between legitimate and BEC emails.
In the case of content classifiers, we did not have to sample the
dataset, because it deals with a much smaller training dataset.

There are various methods of dealing with imbalanced
datasets, including over-sampling the minority class and
under-sampling the majority class [6,24,27,29,30], as well as
assigning higher costs to incorrectly predicting the minority
class [9, 38].

Our second major design choice was to under-sample the
majority class (the legitimate emails). We made this decision
for two reasons. First, if we decided to over-sample the BEC
attacks, we would need to do so by a large factor. This might
overfit our classifier and bias the results based on a relatively
small number of positive samples. Second, over-sampling
makes training more expensive computationally.

A naïve way to under-sample would be to uniformly sam-
ple the legitimate emails. However, this results in a classifier
with a low precision, because the different categories of legiti-
mate emails are not well represented. For example, uniformly
sampling emails might miss emails from web services that
legitimately impersonate employees. The impersonation clas-
sifier will flag these emails as BEC attacks, because they are
relatively rare in the training dataset.

The main challenge in under-sampling the majority class
is how to represent the entire universe of legitimate emails
with a relatively small number of samples (i.e., comparable
or equal to the number of BEC email samples). To do so, we
cluster the legitimate emails using an unsupervised learning
algorithm, Gaussian Mixture Models (GMM). The cluster-
ing algorithm splits the samples into clusters, each of which
is represented by a Normal distribution, projected onto the
impersonation classifier feature space. Figure 2 illustrates an

0 1 2 3

2

1

0

Feature 1

Fe
at

ur
e

2

Cluster 1
Cluster 2

Cluster 3

Figure 2: Depiction of running clustering algorithm on a set legiti-
mate emails in a two-dimensional feature space with three clusters.
After clustering the legitimate emails, we choose the number of
samples from each cluster in proportion to the size of the cluster.

example with two features and 14 legitimate email samples.
In this example, the samples are split into three clusters. To
choose a representative sample of legitimate emails, we ran-
domly pick a certain number of samples from each cluster,
proportional to the number of legitimate emails that belong
to each cluster. If for example our goal is to use a total of 7
samples, we would choose 4 samples from the first cluster,
2 samples from the second cluster, and 1 sample from the
third cluster, because the original number of samples in each
cluster is 8, 4, and 2, respectively.

We chose the number of clusters that guarantee a minimal
representation for each major “category” of legitimate email.
We found that using 85 clusters was sufficient for capturing
the legitimate emails in our dataset. When we tried using
more than 85 clusters, the clusters beyond the 85th one would
be nearly or entirely empty. Even after several iterations of
retraining the impersonation classifier, we have have found
that 85 clusters are sufficient to represent our dataset.

5 System Design
BEC-Guard consists of two key stages: an online classifica-
tion stage and an offline training stage. Offline training is
conducted periodically (every few days). When a new email
arrives, BEC-Guard combines the impersonation and con-
tent classifiers to determine whether the email is BEC or not.
These classifiers are trained ahead of time in the offline train-
ing stage. We describe the key components of our system
design in more detail below.

Traditionally, commercial email security solutions have a
gateway architecture, or in other words, they sit in the data
path of inbound emails and filter malicious emails. As de-
scribed above, some of BEC-Guard’s impersonation classifier
features rely on historical statistics of internal communica-
tions. The gateway architecture imposes constraints on detect-
ing BEC attacks for two reasons. First, a gateway typically
cannot observe internal communications. Second, the gateway
usually does not have access to historical communications, so
it would require several months or more of observing the com-
munication patterns before the system would be able to detect

USENIX Association 28th USENIX Security Symposium 1299

Learn past
communication

patterns,
Quarantine emails

Mail
flow

Mail
flow

Filter emails
from mail flow

Gateway Architecture API Architecture

Figure 3: Comparison between the architecture of traditional email
security systems, which sit as a gateway that filters emails before
they arrive in the mail system, and BEC-Guard’s architecture, which
relies on APIs for learning the historical communication patterns of
each organization, and detecting attacks in real-time.

incoming BEC attacks. Fortunately, cloud-based email ser-
vices, such as Office 365 and Gmail, provide APIs that enable
access to historical communications, as well as to monitor and
move emails in real-time. BEC-Guard leverages these APIs
both to gain access to historical communication, and also to
do near real-time BEC detection. Figure 3 compares the gate-
way architecture with BEC-Guard’s API based architecture.
We describe BEC-Guard’s design and implementation using
the Office 365 APIs.
Warmup phase. We name the process of analyzing each
organization’s historical communications, the warmup phase.
In order to start the warmup, the organization enables BEC-
Guard to get access to its Office 365 account with an authen-
tication token using OAuth with an Office 365 administrator
account. This allows BEC-Guard to access the APIs for all
the users associated with the account. Once authenticated,
BEC-Guard starts collecting statistics necessary for the imper-
sonation classifier (e.g., number of times a certain user sent an
email from a certain email address). The statistics collected
by BEC-Guard go back one year. We found that the classifier
performs well with as little as one month of historical data.
Online classification. After the warmup phase, BEC-
Guard is ready to detect incoming BEC attacks in real-time.
To do so, BEC-Guard waits for a webhook API call from any
of the users in the organization’s Office 365 account. The
webhook API calls BEC-Guard anytime there is any new
activity for a specific user. When the webhook is triggered,
BEC-Guard checks if there is a new received email. If so,
BEC-Guard retrieves the email, and classifies it, first using
the impersonation classifier, using a database that contains the
historical communication statistics unique to each organiza-
tion. Then, only if it was classified as an impersonation email,
BEC-Guard classifies the email using the content classifiers.

If at least one of the content classifiers classifies the email
as a BEC attack, BEC-Guard quarantines the email. This is
performed by removing the email from the folder where it
was received by the user (typically the inbox folder), and
moving it into a designated quarantine folder in the end user’s

mailbox. Since the email is quarantined on the server side,
when the user’s email clients synchronize the email it will
also get quarantined on the user’s email clients. In addition,
the vast majority of emails get quarantined by BEC-Guard
before they are synchronized to the user’s email client.

6 Evasion
In this section we discuss attacks that are currently not stopped
by BEC-Guard, and evasion techniques that can be used by at-
tackers to bypass BEC-Guard and how they can be addressed.

BEC-Guard is a live service in production, and has evolved
rapidly since it was first launched in 2017. We have deployed
additional classifiers to augment the ones described in this
paper in response to some of the evasion techniques presented
below, and the existing classifiers have been retrained multiple
times. Another benefit of the API-based architecture is that if
we find some attacks were missed by an evasion we can go
back in time and find them, and update the system accordingly.
The email threat landscape is rapidly changing, and while
it is important that the detectors maintain high precision, it
is equally important that the security system can be easily
adapted and retrained.

6.1 Stopping Other Attacks
BEC-Guard focuses on stopping BEC attacks, in which an
external attacker impersonates an employee. However, there
are other types of BEC that are not covered by BEC-Guard.

Account takeover. When attackers steal the credentials of
an employee, they can login remotely to send BEC emails to
other employees. We term this use case “account takeover”.
There are several approaches to detecting account takeover,
including monitoring internal emails for anomalies (e.g., an
employee suddenly sending many emails to other employees
they typically do not communicate with), monitoring suspi-
cious IP logins, and monitoring suspicious inbox rule changes
(e.g., an employee suddenly creates a rule to delete outbound
emails) [18–20]. This scenario is not the focus of BEC-Guard,
but is covered by our commercial product.

Impersonating both sender name and email without
changing reply-to address. It is possible that external at-
tackers could send emails that impersonate both the sender’s
name and email address, without using a different reply-to
address. We have not observed such attacks in our dataset,
but they are possible, especially in the case where the attacker
asks the recipient to follow a link to steal their credentials.
Similar to account takeover, such attacks can be detected by
looking for abnormal email patterns. Another possible ap-
proach, used by Gascon et al., is to look for anomalies in the
actual MIME header [14].

Impersonation of external people. BEC-Guard’s imper-
sonation classifier currently relies on having access to the
historical inbound email of employees. In order to detect im-
personation of external people that frequently communicate

1300 28th USENIX Security Symposium USENIX Association

with the organization, BEC-Guard can incorporate emails that
are sent from external people to the company.

Text classification in any language. BEC-Guard is cur-
rently optimized to catch BEC in languages that appear fre-
quently in our dataset. Both the impersonation classifier and
the link classifier are not language-dependent, but the text
classifier relies on the TFIDF dictionary is dependent on the
language of the labeled dataset. There are a few possible ways
to make BEC-Guard’s text classifier completely language ag-
nostic. One is to deliberately collect sufficient samples in a
variety of languages (either based on user reports or generate
them synthetically), and label and train on those emails. An-
other potentially more scalable approach is to translate the
labeled emails (e.g., using Google Translate or a similar tool).

Generic sender names. BEC-Guard explicitly tries to de-
tect impersonations of employee names. However, attackers
may impersonate more generic names, such as “HR team” or
“IT”. This attack is beyond the scope of this paper, but we
address it using a similar approach to BEC-Guard in order to
detect these attacks: we combine our content classifiers with
a new impersonation classifier, which looks for sender names
that commonly occur across different organizations, but are
sent from a non-corporate email address or have a different
reply-to address.

Brand impersonation. Similar to the “generic sender” at-
tack, attackers often impersonate popular online services (e.g.,
Google Drive or Docusign). These types of attacks are out of
the scope for this paper, but we detect them using a similar
methodology of combining content classifier, with an imper-
sonation classifier that looks for an anomalous sender (e.g.,
the sender name has “Docusign”, but the sender domain has
no relation to Docusign).

6.2 Evading detection
Beyond BEC attacks that BEC-Guard is not designed to detect
(as noted above), there are other several ways attackers can
try to evade BEC-Guard. We discuss these below and discuss
how we have adapted BEC-Guard to address them.

Legitimizing the sender email address. Any system that
uses signals based on anomaly detection is vulnerable to at-
tackers that invest extra effort in not appearing “anomalous”.
For example, when labeling our dataset, we assume that the
impersonated employee was not impersonated by the same
sender email address more than 100 times. While this thresh-
old is not hard coded into the impersonation classifier, it was
a threshold we used to filter emails for the initial training
set, and therefore may bias the classifier. Note that we have
never observed an attacker impersonating an employee with
the same email more than 20 times.

We believe this assumption is valid since BEC-Guard as-
sumes that the organization is already using a volume-based
security filter (e.g., the default spam protection of O365 or

Gmail or another spam filter), which would pick up a “volu-
metric” attack. Typically these systems would flag an email
that was sent at once from an unknown address to more than
100 employees as spam.

However, a sophisticated attacker may try to bypass these
filters by sending a large number of legitimate emails from the
impersonated email address to a particular organization, and
only after sending hundreds of legitimate emails they would
send a BEC using that address. Of course the downside of this
approach is that it would require more investment from the
attacker, and increase the economic cost of executing a suc-
cessful BEC campaign. One way to overcome such an attack,
is to add artificial samples to the impersonation classifier that
have higher thresholds, in order to remove the bias. Of course
this may reduce the overall precision of BEC-Guard.

Using infrequent synonyms. Another evasion technique is
to send emails that contain text that is different or has a lower
TFIDF than the labeled emails used to train our text classifier.
For example, the word “bank” has a higher TFIDF, than the
word “fund”. As mentioned before, one way to overcome
these types of attacks is to cover synonyms using a technique,
such as word2vec [34].

Manipulating fonts. Attackers have employed various font
manipulations to avoid text-based detectors. For example, one
technique is to use fonts with a size of zero [35], which are
not displayed to the end user, but can be used to obfuscate
the impersonation or meaning of the text. Another technique
is to use non-Latin letters, such as letters in Cyrillic, which
appear similar to the Latin letters to the end user, but are not
interpreted as Latin by the text-based detector [16].

In order to deal with these types of techniques, we always
normalize any text before feeding it to BEC-Guard’s clas-
sifiers. For example, we ignore any text with a font size of
zero. If we encounter Cyrillic or Greek in conjunction with
Latin text, we normalize the non-Latin letters to match the
Latin letter that is closest in appearance to it. While these
techniques are heuristic based, they have proved effective in
stopping the common forms of font-based evasion.

Hiding text in an image. Instead of using text within the
email, attackers can hide the text within an embedded image.
We have observed this use case very rarely in practice, most
likely because these attacks are probably less effective. Many
email clients do not display images by default and even when
they do, the email may seem odd to the recipient. Therefore,
we currently do not address this use case, but a straightforward
way to address it would be to use OCR to extract the text
within the image.

Using a legitimate reply-to address. As mentioned in §4.4
BEC-Guard relies on a list of legitimate reply-to domains to
reduce false positives. This list could potentially be exploited.
For example, attackers could craft a LinkedIn or Salesforce
profile with the same name of the employee being imper-
sonated and send an impersonation email from that service.

USENIX Association 28th USENIX Security Symposium 1301

Precision FP Recall

BEC-Guard 98.2% 0.000019% 96.9%
(Combined) (1 in 5,260,000)
Impersonation Only 11.7% 0.016% 100%

(1 in 6,300)

Table 6: Precision, false positive rate, and recall of BEC-Guard
compared to the impersonation classifier alone.

While this is indeed a potential evasion technique, these third
party services often have their own anti-fraud mechanisms
to stop impersonation. In addition, we believe an imperson-
ation attempt is less likely to succeed if it going through a
third-party service, since it would probably seem much less
natural than simply sending an email from the email account
of the employee. Regardless, we have never seen this evasion
technique being used by attackers.

7 Evaluation
In this section, we evaluate the efficacy of BEC-Guard. We
first analyze the end-to-end performance of BEC-Guard, using
a combination of the impersonation and content classifiers.
We then break down the performance of each set of classifiers,
and analyze the performance of different classifier algorithms.
We also try to estimate the extent of unknown attacks that
are not caught by BEC-Guard, by comparing the number of
reported missed attacks by customers to the number of true
positives.

7.1 End-to-end Evaluation
For the end-to-end evaluation, we randomly sampled emails
that were processed by BEC-Guard in June 2018. We manu-
ally labeled the emails, and evaluated BEC-Guard’s classifiers
on the labeled data. We labeled the emails for the evalua-
tion dataset similar to the way we labeled the training data
for BEC-Guard’s classifiers (see §4.6). We first ran a set of
queries that uncover all the BEC attacks that we could find
under our labeling assumptions. We then manually labeled
the resulting emails, and found 4,221 BEC emails. The entire
process took about a week of work for one person. The emails
that were not labeled as BEC attacks were assumed to be
innocent (In §7.3 we discuss emails that might have been
missed by our labeling process).

To evaluate the classifiers, we randomly split the evaluation
dataset in half: we used half of the emails for training, and the
rest to test the classifiers. The dataset includes 200 million
emails from several hundred organizations.

To test the end-to-end efficacy of BEC-Guard, we ran the
content classifiers only on the emails that were detected as
impersonation emails by the impersonation classifier. Table 6
summarizes the efficacy results. The recall of BEC-Guard is
high within the emails we labeled: 96.9% of the BEC emails
we labeled were successfully classified by the impersonation
classifier as well as one of the content classifiers. The com-
bined false positive rate is only one in 5.3 million emails are

Text classifier

Algorithm Precision FP Recall

Logistic Regression 97.1% 6.1·10−5% 98.4%
Linear SVM 98.3% 3.6·10−5% 98.7%
Decision Tree 96.0% 8.5·10−5% 97.1%
Random Forest 99.2% 1.7·10−5% 96.4%
KNN 98.9% 2.3·10−5% 97.5%

Table 7: Text classifier algorithm efficacy using a dictionary of
10,000 words. There is very little difference between the efficacy of
the algorithms for the text classifier.

Link classifier

Algorithm Precision FP Recall

Logistic Regression 33.3% 85.7·10−5% 96.0%
Linear SVM 92.3% 3.2·10−5% 90.8%
Decision Tree 94.9% 2.3·10−5% 96.3%
Random Forest 97.1% 1.3·10−5% 96.0%
KNN 92.5% 3.3·10−5% 93.5%

Table 8: Link classifier algorithm efficacy. Random forest provides
superior results over the other algorithms.

falsely detected, which is above our design goal of 1 in a
million email. The precision is 98.2%.

The false positives of the combined classifiers were due
to unlikely incidents where the impersonation classifier de-
tected the email (e.g., due to a personal email address) that
also contained anomalous content (e.g., an employee uses a
personal email to forward links with low popularity domains
to a colleague). Another common false positive occurs when
employees leave the organization, and request W-2 forms for
tax purposes or other personal information. We plan on ad-
dressing such false positives by incorporating features that
would indicate whether a sender is no longer an employee
of the organization (e.g., if they have stopped sending emails
from their corporate address). The false negatives are mostly
due to instances where the URL is not deemed suspicious,
because it belongs to a domain that got compromised that
had a relatively high domain popularity, or because the text
of the email is not classified as suspicious. The latter case is
typically because the attacker did not use phrases that were
similar to any of the BEC attacks that were used to train the
text classifier. For example, one of the false negatives asked
the recipient for gift card information, which was not a request
that was used in any prior attacks.

We also ran the impersonation classifier on the evaluation
dataset. Its precision is 11.7%, and its false positive rate is
0.016%. Organizations that are only concerned about recall
and have the ability to tolerate a relatively large number of
false alerts can run the impersonation classifier on its own.
The vast majority of false positives of the impersonation clas-
sifier are due to employees using their personal or university
(alumni) email addresses.

1302 28th USENIX Security Symposium USENIX Association

Figure 4: ROC curve of text classifier with different algorithms. All
four algorithms perform very similarly, and reach a precision cliff at
about 99% recall.

Figure 5: ROC curve of text classifier using KNN with different
dictionary sizes. A dictionary size of 1,000 already provides most of
the benefit.

7.2 Classifier Algorithms
Table 7 compares the results of the text classifier using dif-
ferent classifier algorithms. As the results show, there is a
very small difference between the different classifiers. This
is primarily due to the fact that we use a dictionary with a
large number of features (10,000). Table 8 shows the results
for the link classifier. In the case of the link classifier, random
forest more clearly provides superior results than the other
classifiers, including KNN. The link classifier is more sensi-
tive to the classification algorithm, because it uses a smaller
number of features. Figure 4 presents the ROC curve for four
of the classifier algorithms that have a probabilistic output.
The ROC curve shows the how each classifier can be tweaked
to trade-off precision for recall. All four algorithms behave
almost identically: they provide a high level of precision, until
a recall level close to 99% where their precision drops. Note
that to generate the ROC curves we ran the text classifier
only on the emails that were already classified as imperson-
ations. Therefore, its minimum precision in the ROC curve is
equal to about 11.7%, which is equal to the precision of the

Org TPs FNs Reason

A 31 1 Generic Sender Name
B 4 1 Misclassified Content
C 12 1 External Impersonation
D 8 1 External Impersonation
E 5 1 Misclassified Content

Total 60 5

Table 9: True positives (TPs) and reported false negatives (FNs)
among five organizations, where the administrator has reported at
least one false negative.

impersonation classifier.
To analyze the effect of the dictionary size on the classifi-

cation, Figure 5 plots the efficacy of the text classifier using
KNN with different dictionary sizes. The graph shows that
most of the marginal benefit is achieved with a dictionary size
of 1,000. We observed no noticeable difference in efficacy
when using a dictionary larger than 10,000.

7.3 Evaluating Missed Attacks
A general limitation of evaluating imbalanced datasets is that
it is difficult to accurately estimate the true false negative
rate. In our evaluation dataset, we can only estimate the false
negative rate in relation to the data that we labeled. If we
missed an attack during labeling, and it was not detected by
the classifiers, we would not count it as a false negative.

To deal with “unknown” attacks, our production system
allows users to report attacks that it did not detect. We es-
timate the number of missed attacks among organizations
that have reported missed attacks. We selected five random
organizations that reported missed attacks, and analyzed their
detections in the month during which they reported missed
attacks. Table 9 provides the number of true and missed de-
tections among these five organizations, as well as the reason
for each false negative.

In organization A the attack was missed because the email
did not impersonate an employee name, but rather the sender
name had a generic title (e.g., “Accountant”). BEC-Guard
only detects the impersonation of an employee’s name. As we
explained in our labeling assumptions (see §4.6), BEC-Guard
is only designed to detect attacks that explicitly imperson-
ate an employee name. We speculate that this type of email
would be less successful, because the recipient might find it
unusual to get an email from a sender name with a generic
title, which is not normally used in their company. Neverthe-
less, our commercial product utilizes other detectors that find
“generic titles” as well (see §6). In organization B and E the
impersonation classifier successfully detected an imperson-
ation, but the text classifier did not deem the text of the email
as suspicious. In both instances, we have since retrained BEC-
Guard’s text classifiers using the reported emails. In the case
of organization C and D, the reported missed email was due
to the impersonation of an external colleague (e.g., a vendor
the company works with that got impersonated). In §6 we

USENIX Association 28th USENIX Security Symposium 1303

discuss how to extend BEC-Guard to detect such attacks.

8 Related Work
The growing threat of BEC is widely known and has been
described in many in industry and government reports [13,22,
23]. However, the existing academic work uses very small or
synthetic datasets, and suffers from high false positives. In ad-
dition, since existing related work is based on limited datasets,
it fails to address many of the real-world issues discussed in
our paper, such as dealing with the imbalanced dataset, the us-
age of personal email addresses by employees or “legitimate”
impersonations. We believe the reason for the small body of
related work is that BEC primarily affects corporate users
(not consumers), and it is generally difficult for academic
researchers to obtain access to corporate email data.

EmailProfiler [10] builds a behavioral model on incoming
emails in order to stop BEC. However, it is based on only 20
mailboxes, has no examples of real-world attacks and does
not report false positive rates. In addition, there is prior work
on systems that detect emails, which compromise employee
credentials with a phishing link [20,45]. There is some overlap
between BEC attacks and emails that compromise credentials:
in our dataset, 40% of BEC attacks try to phish employee
credentials with links. However, the remaining BEC attacks
do not contain a phishing link that compromises credentials,
and cannot be detected by these systems.

Gascon et al. [14] design a model to stop emails that
spoof the domain of the receiver. Similar to BEC-Guard, they
base their model on the historical communication patterns
of senders. However, in our dataset, spoofing emails repre-
sent only about 1% of BEC attacks. Therefore, their model
would not catch the other 99% of BEC attacks. The reason
domain spoofing represents a small percentage of our dataset,
is our dataset only contains emails that were already filtered
by an existing spam filter (e.g., Office 365’s default filter). Do-
main spoofing emails contain a mismatch between the sender
and reply-to domains, or between the sender domain and the
from email envelope. For this reason, traditional spam filters
already stop a large number of spoofing emails [33]. In addi-
tion, their model is based on a dataset of only 92 mailboxes.

DAS [20] uses unsupervised learning techniques to identify
that result in credential theft, which are a subset of BEC at-
tacks. However, it cannot detect attacks that contain only plain
text, and is based on a dataset from a single organization with
only 19 known attacks. It also suffers from a 0.2% precision,
and a much higher false positive rate than BEC-Guard. Simi-
larly, IdentityMailer [45] tries to prevent employee credential
compromise by modeling employee behavior, and detecting
anomalies in outbound emails. Once an anomaly is detected,
the employee is asked to re-authenticate with two-factor au-
thentication. However, their technique suffers from very high
false positive rates (1%-8%, compared with 1 in millions of
emails in BEC-Guard), and the analysis is based on a small
corpus of emails.

Another contemporaneous study done at Barracuda Net-
works by Ho et al. [18,19] examines the behavior of attackers
using compromised accounts and possible ways to detect ac-
count takeover incidents. The techniques presented in this
paper are complimentary with the other study, and focus on a
different type of attack.

Finally, there is a large body of work on adverserial learn-
ing in the context of spam detection [3, 4, 8, 21, 31, 32, 37, 50]
that is relevant to our work. In the future, we plan to incorpo-
rate some of the evasion techniques introduced in past work,
including randomization and the use of honey pots to trick
adversaries.

9 Conclusions
BEC is a significant cyber security threat that results in bil-
lions of dollars of losses a year. We present the first system
that detects a wide variety of BEC attacks at a high precision
and false positives, and is used by thousands of organizations.
BEC-Guard prevents these attacks in real-time using a novel
API-based architecture combined with supervised learning.

One of the main lessons we have learned in developing
and deploying BEC-Guard, is that attackers constantly adapt
their tactics and approaches. While our supervised learning
approach does require continuously retraining our classifiers,
and is not fully generalizable, we have found the general
approach of using historical email patterns via an API-based
architecture has been very useful in quickly developing new
classifiers for evolving threats. We have employed a similar
approach to the one described in this paper in other contexts,
such as detecting brand impersonation, generic sender names
and account takeover.

Acknowledgments
We thank Grant Ho, our shepherd, Devdatta Akhawe, and the
anonymous reviewers for their thoughtful feedback.

References
[1] R Anglen. First-time phoenix homebuyer

duped out of $73k in real-estate scam, 2017.
https://www.azcentral.com/story/news/local/
arizona-investigations/2017/12/05/first-
time-phoenix-homebuyer-duped-out-73-k-
real-estate-scam/667391001/.

[2] Manos Antonakakis, Roberto Perdisci, David Dagon,
Wenke Lee, and Nick Feamster. Building a dynamic
reputation system for DNS. In Proceedings of the 19th
USENIX Conference on Security, USENIX Security’10,
pages 18–18, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[3] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and
J. D. Tygar. The security of machine learning. Machine
Learning, 81(2):121–148, Nov 2010.

1304 28th USENIX Security Symposium USENIX Association

https://www.azcentral.com/story/news/local/arizona-investigations/2017/12/05/first-time-phoenix-homebuyer-duped-out-73-k-real-estate-scam/667391001/
https://www.azcentral.com/story/news/local/arizona-investigations/2017/12/05/first-time-phoenix-homebuyer-duped-out-73-k-real-estate-scam/667391001/
https://www.azcentral.com/story/news/local/arizona-investigations/2017/12/05/first-time-phoenix-homebuyer-duped-out-73-k-real-estate-scam/667391001/
https://www.azcentral.com/story/news/local/arizona-investigations/2017/12/05/first-time-phoenix-homebuyer-duped-out-73-k-real-estate-scam/667391001/

[4] Marco Barreno, Blaine Nelson, Russell Sears, An-
thony D. Joseph, and J. D. Tygar. Can machine learning
be secure? In Proceedings of the 2006 ACM Symposium
on Information, Computer and Communications Secu-
rity, ASIACCS ’06, pages 16–25, New York, NY, USA,
2006. ACM.

[5] Leo Breiman. Random forests. Machine Learning,
45(1):5–32, Oct 2001.

[6] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall,
and W. Philip Kegelmeyer. Smote: Synthetic minority
over-sampling technique. J. Artif. Int. Res., 16(1):321–
357, June 2002.

[7] A. Cidon. Threat spotlight: Spear phish-
ing for mortgages. hooking a big one., 2017.
https://blog.barracuda.com/2017/07/31/
threat-spotlight-spear-phishing-for-
mortgages-hooking-a-big-one/.

[8] Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sang-
hai, and Deepak Verma. Adversarial classification. In
Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’04, pages 99–108, New York, NY, USA, 2004.
ACM.

[9] Pedro Domingos. Metacost: A general method for mak-
ing classifiers cost-sensitive. In Proceedings of the fifth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 155–164. ACM, 1999.

[10] Sevtap Duman, Kubra Kalkan-Cakmakci, Manuel Egele,
William Robertson, and Engin Kirda. EmailProfiler:
Spearphishing filtering with header and stylometric fea-
tures of emails. In Computer Software and Applications
Conference (COMPSAC), 2016 IEEE 40th Annual, vol-
ume 1, pages 408–416. IEEE, 2016.

[11] Luca Invernizzi Elie Bursztein, Kylie McRoberts.
Tracking desktop ransomware payments
end to end. Black Hat USA 2017, 2017.
https://www.elie.net/talk/tracking-desktop-
ransomware-payments-end-to-end.

[12] FBI. Cyber-enabled financial fraud on the rise glob-
ally, 2017. https://www.fbi.gov/news/stories/
business-e-mail-compromise-on-the-rise.

[13] FBI. Business email compromise, the 12 billion dol-
lar scam, 2018. https://www.ic3.gov/media/2018/
180712.aspx.

[14] Hugo Gascon, Steffen Ullrich, Benjamin Stritter, and
Konrad Rieck. Reading between the lines: Content-
agnostic detection of spear-phishing emails. In Michael
Bailey, Thorsten Holz, Manolis Stamatogiannakis, and

Sotiris Ioannidis, editors, Research in Attacks, Intrusions,
and Defenses, pages 69–91, Cham, 2018. Springer In-
ternational Publishing.

[15] John A Hartigan and Manchek A Wong. Algorithm AS
136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[16] Alex Hern. Unicode trick lets hackers hide phishing
URLs, 2017. https://www.theguardian.com/
technology/2017/apr/19/phishing-url-trick-
hackers.

[17] L Hernandez. Homebuyers lose life savings during wire
fraud transaction, sue Wells Fargo, realtor and title com-
pany, 2017. https://www.thedenverchannel.com/
money/consumer/homebuyers-lose-life-
savings-during-wire-fraud-transaction-
sue-wells-fargo-realtor-title-company.

[18] Grant Ho, Asaf Cidon, Lior Gavish, Marco
Schweighauser, Vern Paxson, Stefan Savage, Ge-
offrey M. Voelker, and David Wagner. Detecting and
characterizing lateral phishing at scale. In 26th USENIX
Security Symposium (USENIX Security 19). USENIX
Association, 2019.

[19] Grant Ho, Asaf Cidon, Lior Gavish, Marco
Schweighauser, Vern Paxson, Stefan Savage, Ge-
offrey M. Voelker, and David Wagner. Detecting and
Characterizing Lateral Phishing at Scale (Extended
Report). In arxiv, 2019.

[20] Grant Ho, Aashish Sharma, Mobin Javed, Vern Paxson,
and David Wagner. Detecting credential spearphishing
in enterprise settings. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 469–485, Vancouver,
BC, 2017. USENIX Association.

[21] Ling Huang, Anthony D. Joseph, Blaine Nelson, Ben-
jamin I. P. Rubinstein, and J. Doug Tygar. Adversarial
machine learning. In AISec, 2011.

[22] Infosec Institute. Phishing data – attack statistics,
2016. http://resources.infosecinstitute.com/
category/enterprise/phishing/the-phishing-
landscape/phishing-data-attack-statistics/.

[23] SANS Institute. From the trenches: Sans 2016
survey on security and risk in the financial sector,
2016. https://www.sans.org/reading-room/
whitepapers/analyst/trenches-2016-survey-
security-risk-financial-sector-37337.

[24] Nathalie Japkowicz. The class imbalance problem: Sig-
nificance and strategies. In Proc. of the Int‘l Conf. on
Artificial Intelligence, 2000.

USENIX Association 28th USENIX Security Symposium 1305

https://blog.barracuda.com/2017/07/31/threat-spotlight-spear-phishing-for-mortgages-hooking-a-big-one/
https://blog.barracuda.com/2017/07/31/threat-spotlight-spear-phishing-for-mortgages-hooking-a-big-one/
https://blog.barracuda.com/2017/07/31/threat-spotlight-spear-phishing-for-mortgages-hooking-a-big-one/
https://www.elie.net/talk/tracking-desktop-ransomware-payments-end-to-end
https://www.elie.net/talk/tracking-desktop-ransomware-payments-end-to-end
https://www.fbi.gov/news/stories/business-e-mail-compromise-on-the-rise
https://www.fbi.gov/news/stories/business-e-mail-compromise-on-the-rise
https://www.ic3.gov/media/2018/180712.aspx
https://www.ic3.gov/media/2018/180712.aspx
https://www.theguardian.com/technology/2017/apr/19/phishing-url-trick-hackers
https://www.theguardian.com/technology/2017/apr/19/phishing-url-trick-hackers
https://www.theguardian.com/technology/2017/apr/19/phishing-url-trick-hackers
https://www.thedenverchannel.com/money/consumer/homebuyers-lose-life-savings-during-wire-fraud-transaction-sue-wells-fargo-realtor-title-company
https://www.thedenverchannel.com/money/consumer/homebuyers-lose-life-savings-during-wire-fraud-transaction-sue-wells-fargo-realtor-title-company
https://www.thedenverchannel.com/money/consumer/homebuyers-lose-life-savings-during-wire-fraud-transaction-sue-wells-fargo-realtor-title-company
https://www.thedenverchannel.com/money/consumer/homebuyers-lose-life-savings-during-wire-fraud-transaction-sue-wells-fargo-realtor-title-company
http://resources.infosecinstitute.com/category/enterprise/phishing/the-phishing-landscape/phishing-data-attack-statistics/
http://resources.infosecinstitute.com/category/enterprise/phishing/the-phishing-landscape/phishing-data-attack-statistics/
http://resources.infosecinstitute.com/category/enterprise/phishing/the-phishing-landscape/phishing-data-attack-statistics/
https://www.sans.org/reading-room/whitepapers/analyst/trenches-2016-survey-security-risk-financial-sector-37337
https://www.sans.org/reading-room/whitepapers/analyst/trenches-2016-survey-security-risk-financial-sector-37337
https://www.sans.org/reading-room/whitepapers/analyst/trenches-2016-survey-security-risk-financial-sector-37337

[25] M. Korolov. Report: Only 6% of businesses use
DMARC email authentication, and only 1.5% enforce
it, 2016. https://www.csoonline.com/article/
3145712/security/.

[26] Miroslav Kubat, Robert C Holte, and Stan Matwin. Ma-
chine learning for the detection of oil spills in satel-
lite radar images. Machine learning, 30(2-3):195–215,
1998.

[27] Miroslav Kubat, Stan Matwin, et al. Addressing the
curse of imbalanced training sets: one-sided selection.
In ICML, volume 97, pages 179–186. Nashville, USA,
1997.

[28] M. Lan, C. L. Tan, J. Su, and Y. Lu. Supervised and
traditional term weighting methods for automatic text
categorization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(4):721–735, April 2009.

[29] David D Lewis and Jason Catlett. Heterogeneous uncer-
tainty sampling for supervised learning. In Proceedings
of the eleventh international conference on machine
learning, pages 148–156, 1994.

[30] Charles X Ling and Chenghui Li. Data mining for direct
marketing: Problems and solutions. In KDD, volume 98,
pages 73–79, 1998.

[31] Daniel Lowd. Good word attacks on statistical spam
filters. In Proceedings of the Second Conference on
Email and Anti-Spam (CEAS, 2005.

[32] Daniel Lowd and Christopher Meek. Adversarial learn-
ing. In Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in
Data Mining, KDD ’05, pages 641–647, New York, NY,
USA, 2005. ACM.

[33] Microsoft. Anti-spoofing protection in Office 365,
2019. https://docs.microsoft.com/en-us/
office365/securitycompliance/anti-spoofing-
protection.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 26, pages 3111–3119. Curran Asso-
ciates, Inc., 2013.

[35] Yoav Nathaniel. ZeroFont phishing: Manipu-
lating font size to get past Office 365 secu-
rity, 2018. https://www.avanan.com/resources/
zerofont-phishing-attack.

[36] C Northern. Nickname and diminutive names lookup,
2017. https://github.com/carltonnorthern/
nickname-and-diminutive-names-lookup.

[37] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami. The limitations of deep learning
in adversarial settings. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS P), pages 372–387,
March 2016.

[38] Michael Pazzani, Christopher Merz, Patrick Murphy, Ka-
mal Ali, Timothy Hume, and Clifford Brunk. Reducing
misclassification costs. In Proceedings of the Eleventh
International Conference on Machine Learning, pages
217–225, 1994.

[39] N. Perlroth. Hackers are targeting nuclear fa-
cilities, Homeland Security Dept. and F.B.I. say,
2017. https://www.nytimes.com/2017/07/06/
technology/nuclear-plant-hack-report.html.

[40] J. Ross Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1993.

[41] J.J. Roberts. Facebook and Google were victims of
$100m payment scam, 2017. http://fortune.com/
2017/04/27/facebook-google-rimasauskas/.

[42] G. Salton and M. J. Mcgill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., New York,
NY, USA, 1986.

[43] Z. Song and N. Roussopoulos. K-nearest neighbor
search for moving query point. pages 79–96, 2001.

[44] United States Securities and Exchange Commission.
Form 8-k, 2015. https://www.sec.gov/Archives/
edgar/data/1511737/000157104915006288/
t1501817_8k.htm.

[45] Gianluca Stringhini and Olivier Thonnard. That ain’t
you: Blocking spearphishing through behavioral mod-
elling. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 78–97. Springer, 2015.

[46] Andrew Trask, Phil Michalak, and John Liu. sense2vec
- A fast and accurate method for word sense disambigua-
tion in neural word embeddings. CoRR, abs/1511.06388,
2015.

[47] Gary M Weiss and Haym Hirsh. Learning to predict
rare events in event sequences. In KDD, pages 359–363,
1998.

[48] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-
scale automatic classification of phishing pages. In
NDSS ’10, 2010.

1306 28th USENIX Security Symposium USENIX Association

https://www.csoonline.com/article/3145712/security/
https://www.csoonline.com/article/3145712/security/
https://docs.microsoft.com/en-us/office365/securitycompliance/anti-spoofing-protection
https://docs.microsoft.com/en-us/office365/securitycompliance/anti-spoofing-protection
https://docs.microsoft.com/en-us/office365/securitycompliance/anti-spoofing-protection
https://www.avanan.com/resources/zerofont-phishing-attack
https://www.avanan.com/resources/zerofont-phishing-attack
https://github.com/carltonnorthern/nickname-and-diminutive-names-lookup
https://github.com/carltonnorthern/nickname-and-diminutive-names-lookup
https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html
https://www.nytimes.com/2017/07/06/technology/nuclear-plant-hack-report.html
http://fortune.com/2017/04/27/facebook-google-rimasauskas/
http://fortune.com/2017/04/27/facebook-google-rimasauskas/
https://www.sec.gov/Archives/edgar/data/1511737/000157104915006288/t1501817_8k.htm
https://www.sec.gov/Archives/edgar/data/1511737/000157104915006288/t1501817_8k.htm
https://www.sec.gov/Archives/edgar/data/1511737/000157104915006288/t1501817_8k.htm

[49] C. Willems, T. Holz, and F. Freiling. Toward automated
dynamic malware analysis using CWSandbox. IEEE
Security Privacy, 5(2):32–39, March 2007.

[50] Gregory L. Wittel and S. Felix Wu. On attacking statis-
tical spam filters. In Proceedings of the Conference on

Email and Anti-Spam (CEAS), 2004.

[51] Gang Wu and Edward Y Chang. Class-boundary align-
ment for imbalanced dataset learning. In ICML 2003
workshop on learning from imbalanced data sets II,

Washington, DC, pages 49–56, 2003.

USENIX Association 28th USENIX Security Symposium 1307

Cognitive Triaging of Phishing Attacks

Amber van der Heijden
a.v.d.heijden@student.tue.nl

Eindhoven University of Technology

Luca Allodi
l.allodi@tue.nl

Eindhoven University of Technology

Abstract
In this paper we employ quantitative measurements of cog-
nitive vulnerability triggers in phishing emails to predict the
degree of success of an attack. To achieve this we rely on
the cognitive psychology literature and develop an automated
and fully quantitative method based on machine learning and
econometrics to construct a triaging mechanism built around
the cognitive features of a phishing email; we showcase our
approach relying on data from the anti-phishing division of a
large financial organization in Europe. Our evaluation shows
empirically that an effective triaging mechanism for phishing
success can be put in place by response teams to effectively
prioritize remediation efforts (e.g. domain takedowns), by
first acting on those attacks that are more likely to collect
high response rates from potential victims.

1 Introduction

Phishing attacks represent a significant threat to organizations
and their customers [36]. The problem of phishing detection
has been addressed multiple times in the literature [16,18,32],
yet classification is only part of the issue. A timely and effi-
cient reaction to phishing attempts (e.g. performing takedown
actions on phishing domains, blacklisting, or notifying cus-
tomers) could save hundreds or thousands of customers from
fraud or theft, and associated costs for all involved stakehold-
ers. For this reason, most ‘large enough’ organizations operate
a phishing-response team whose task is to promptly inves-
tigate potential impacts, identify rogue domains and attack
vectors, and act to contain or neutralize the attack [8]. The
size of this effort often requires the full time operation of
several experts within the response team [46].

Unfortunately, these teams currently lack of an objective
and quantitative way of prioritizing response activities, which
can lead to large inefficiencies in the response process. Tech-
nical mechanisms are often in place to a-posteriori quantify
the success of a phishing attack, but these are technically lim-
ited to attacks ‘in scope’ of the measuring mechanism (e.g.

evaluating the requests for internal resources received by the
organization’s servers and originating from remote domains)
and, importantly, cannot predict how successful the attack is
likely to be if no immediate mitigation is put in place.

Key to predicting phishing success is the likelihood that a
human will comply with whatever instruction is in the phish-
ing email. Cialdini pioneered the definition of ‘principles
of influence’, namely Reciprocity, Consistency, Social
Proof, Authority, Liking, and Scarcity as ‘cognitive trig-
gers’ that, once engaged, can greatly impact the likelihood of
a human’s decision to comply with what he or she is being
requested to do [6]. These principles have been used as a
theoretical framework to investigate persuasion in different
domains, such as sales and marketing [7], organizational be-
haviour [41], and wellbeing [51], as well as being linked to
phishing effectiveness [53, 54] in (synthetic) experimental
settings [55]; however no means to automatically measure
the cognitive features of a phishing email, and estimate their
relation to phishing success ‘in the wild’, currently exists.

In this paper we employ techniques from natural language
processing and econometrics to build a method and estima-
tion process to measure cognitive triggers in phishing emails,
and to build a cognitive triaging model of how successful an
attack can be expected to be. We demonstrate empirically
that the resulting estimations can be used to efficiently priori-
tize phishing response actions, by addressing first the (few)
attacks that are likely to be highly successful. To do this,
we extensively analyze more than eighty thousand phishing
emails received by the anti-phishing division of a very large
European financial organization, quantify the ‘cognitive vul-
nerability triggers’ embedded in the attacks, and relate them
to the number of accesses to the remote phish domain that the
anti-phishing division measured. This allows us to empirically
derive a triaging model that, only based on cognitive features
of the incoming phishing email, can predict how many ‘clicks’
it can be expected to generate.
Scope and contribution of this work. With this work we
aim at building a principled analysis that explains why one can
expect a certain phishing email to be successful, as opposed to

USENIX Association 28th USENIX Security Symposium 1309

building a method that ‘blindly’ maps mail bodies to success
of attack. Importantly, with this work we do not aim to build
a classifier to distinguish phishing from non-phishing emails;
instead, we propose a method to predict to what extent a
known phishing attack can be expected to lure users in falling
for it. Our contributions can be summarized as follows:

• we provide the first empirical analysis of cognitive vul-
nerabilities as exploited in the wild by attackers launch-
ing phishing attacks;

• we employ a robust measurement methodology to iden-
tify cognitive vulnerability triggers in phishing emails,
using supervised Latent Dirichlet Allocation, and a set
of bootstrapped econometric simulations to build robust
estimations of model coefficients and predictions;

• we show empirically the correlation between exploited
cognitive factors and spoofed From: addresses with an
objective evaluation of phishing success;

• we quantitatively show that triaging phishing emails to
prioritize remediation action is possible and effective in
an operational setting.

This paper proceeds as follows: Section 2 sets the back-
ground for this work in both the cognitive psychology and
information security literature; Section 3 details the employed
data and methodology, and Section 4 reports the exploratory
and cognitive analysis of the data. The cognitive model and
predictions are presented in Section 5. Section 6 provides a
discussion of our results, and Section 7 concludes the paper.

2 Background and Related Work

The general objective of a phishing attack is to convince a
target to comply with a request, such as clicking a link to
a phishing domain, downloading malware, or providing per-
sonal credentials. The effectiveness of these attacks signifi-
cantly relies on how quickly the message can generate the
desired response [55]. Moreover, both cognitive [54, 56] and
technical [27, 30, 42] features are employed to lure users into
falling for the phish and are known to be relevant to explain
phishing effectiveness.

2.1 Cognitive characterizations
Believability. Phishers apply several techniques to increase
believability of their phishing messages. For example, they
may craft their phishing messages to resemble communica-
tions of the impersonated organizations as closely as possi-
ble [56]. This is commonly done by duplicating the look and
feel of these communications by including logos and other
branded graphics extracted from their legitimate counterparts,
and by adopting a formal writing style [15]. Furthermore, the
context of phishing messages is generally highly personalized
to appeal to the targeted population [55]. These practices are
enhanced by more technical measures, such as spoofing of

the phishing source address, and the use of shortened URLs
to hide the destination of the embedded phishing link [24].

Persuasiveness. Persuasiveness is associated with the text
content of the email. These techniques work by exploiting fun-
damental vulnerabilities of human cognition [31] that can be
explained by ‘shortcuts’ in human cognitive processes that de-
termine decisions on the basis of previous experiences, biases,
or beliefs [48]. Despite the clear benefits of these mental-
shortcuts, they can result in irrational decision-making as
well [52]. Cialdini [6] identified several principles that explain
how these mental shortcuts can be exploited for the persuasion
of others (e.g. for marketing purposes). Indeed, these prin-
ciples are applied regularly in multiple domains, including
marketing (e.g. to purchase a product or solution) [7], organi-
zational behaviour (e.g. to comply to policies) [41], and health
and wellbeing (e.g. to adopt healthy lifestyles) [51]. As these
are foundational to human decision-making processes [33],
these principles may not be effectively applied to distinguish
legitimate from illegitimate resources (e.g. a website, email,
or conversation): any activity aiming at ‘influencing’ one’s
behaviour (that being through spam or organization policies,
phishing or advertisement) will employ some variation of
these principles. On the other hand, these provide a solid
foundation to evaluate how effective an attempt at convincing
a human can be expected to be. Table 1 provides examples
and definitions of these principles.

Cialdini’s principles of persuasion are strongly related to
the successfulness of face-to-face social engineering efforts
in the real world [44] as well. Akbar [2] performed a quan-
titative analysis on 207 unique phishing emails to identify
the application of Cialdini’s persuasion principles in phish-
ing emails. The results show the Authority, Scarcity and
Liking principles to be most popular. A similar study was
performed by Ferreira et al. [12], who found the Liking prin-
ciple to be most popularly used, followed distantly by the
principles of Scarcity and Authority. Differences can be
explained by different experimental settings and application
domains. Several other studies [3, 13, 55] have addressed the
prevalence and efficacy of Cialdini’s principles in phishing
attacks. Others have evaluated phishing campaigns against
specific users [23], discussing some of the techniques used by
phishers to lure their victims. Unlike these works, we integrate
quantitative measures of cognitive attacks and measures of
phishing success to predict attack effectiveness in operational
settings.

2.2 Phishing effectiveness
Previous work considered the inclusion of forged quality
marks, images, and logos from trusted organizations as well as
other signals of credibility as means to increase the effective-
ness of a phishing attack [9]. Other more technical measures
are employed to enhance the credibility of phishing as well,
for example spoofing of the source email address, adoption

1310 28th USENIX Security Symposium USENIX Association

Table 1: Definitions and examples of Cialdini’s principles of influence in phishing emails
Principle Definition [6] Phishing text example 2

Reciprocity Tendency to feel obliged to repay favours from others.“I do something for you,
you do something for me."

“While we work hard to keep our network secure, we’re
asking you to help us keep your account safe.”

Consistency Tendency to behave in a way consistent with past decisions and behaviours. After
committing to a certain view, company or product, people will act in accordance
with those commitments.

“You agreed to the terms and conditions before using our
service, so we ask you to stop all activities that violate them.
Click here to unflag your account for suspension.”

Social
Proof

Tendency to reference the behaviour of others, by using the majority behaviour to
guide their own actions.

“We are introducing new security features to our services.
All customers must get their accounts verified again.”

Authority Tendency to obey people in authoritative positions, following from the possibility
of punishment for not complying with the authoritative requests.

“Best regards,
Executive Vice President of <company name>”

Liking Preference for saying “yes” to the requests of people they know and like. People
are programmed to like others who like them back and who are similar to them.

“We care for our customers and their online security. Con-
firm your identity .. so we can continue protecting you."

Scarcity Tendency to assign more value to items and opportunities when their availability
is limited, not to waste the opportunity.

“If your account information is not updated within 48 hours
then your ability to access your account will be restricted."

2 Examples drawn from anti-phishing database at http://www.millersmiles.co.uk.

of HTTPS instead of HTTP to convince the user the webpage
is ‘safe’ [36], or cloning of the original webpage. Several
works have considered such visual similarities between phish-
ing landing pages and their legitimate counterparts based on
different features, including DOM tree structures [42], CSS
styling [27, 30], content signatures [1, 17], and pixel and/or
image properties [5,10]. Whereas these technical features con-
stitute additional relevant information for the identification
of a phishing attack, in this study we focus on the cogni-
tive attacks embedded in an email text (as opposed to the
visual clues included in a landing webpage) that affect the hu-
man decision making. Additionally, a number of user-studies
has been conducted on the impact of client-side detection-
assistance tools [20, 57] and how people evaluate phishing
web pages [9]. Various phishing detection mechanisms have
been proposed based on technical features such as signatures
of user email behaviour [49], email-header properties [16], im-
personation limitations of attackers [28], search engine rank-
ings [25], and botnet effects [35]. Additionally, [29] presents
a set of research guidelines for design and evaluation of such
detection systems. These works have predominantly focused
on the detection of phishing domains and emails by means
of technical traces in order to prevent phishing attacks from
happening in the first place. Unlike these studies, we focus
on the evaluation of the potential of those attacks that, despite
the countermeasures in place, make it through and must be
timely addressed.

On the cognitive-side we can consider the impact of user
demographics. Oliveira et al. [34] found age to be an impor-
tant feature, finding younger adults to be more susceptible
to Scarcity, whereas older adults were more susceptible to
Reciprocity. Other results of this study indicate the rele-
vance of gender by finding older women to be most suscep-
tible of all of the studied user groups. Furthermore, Wash
and Cooper [53] demonstrated the impact of message presen-
tation by showing how phishing training methods based on

giving facts-and-advice were more effective when presented
by an expert figure (Authority), whereas methods based on
personal stories benefited more from presentation by people
perceived as similar to the user (Liking). In the context of so-
cial media, user activity, consumption behaviour, and clicking
norms in the social network were found to be important fac-
tors for phishing success [40]. As opposed to focusing on the
characteristics of the individuals that receive the phishing (as
this information for the population of customers is generally
unknown to organizations, or may be impossible to collect
due to legal and ethical challenges), in this work we consider
the expected aggregate responses of the phishing recipients
as a function of the phishing emails.

3 Methodology and Data collection

Our analysis relies on a unique dataset from a large phishing
email database provided by Org, a large financial organization
in Europe with more than 8 million customers and a multi-
billion Euro turnover. Org customers that suspect they have
received a phishing email in their personal email accounts
are instructed by the organization to forward these emails to
an internal Org functional mailbox. In parallel, Org’s phish-
ing response team runs a service to detect phishing domains
(not necessarily linked with the received phishing emails) by
means of internal heuristics and limited to external domains
requesting resources internal to Org (e.g. images, forms, lo-
gos, CSS files/javascript, etc.). This data is generated by a
third party service hired by Org that monitors all requests
generated towards Org’s resources. Through this mechanism
Org can detect the number of visits to the detected domains
by accounting for the unique sessions opened between the
(rogue) external and the (legitimate) internal services. Access
to this data allows us to perform a rich analysis of the arrival
of phishing emails, their characteristics, and to evaluate how
often users have accessed malicious domains as a proxy mea-

USENIX Association 28th USENIX Security Symposium 1311

Victim

ORG Phishing
Abuse Inbox

Phishing

Web Page

< report email >

< click link >

< request resources >
Official ORG

Web Page

SOC

Operator

Malicious Activity

Event Alert

< analyse content > < analyse >

< redirect to >

Automated action

Human action

Malicious Domain

< start takedown procedure>

1a

1b

3a

1c

2a

3b

4

Click

Database

< analyse >

User Session

Monitoring System
2b

< store click data >

2b

< trigger >

SOC Operators collect evidence on the maliciousness of the web
domain under investigation such that an external party can perform
the notice and take-down requests for the malicious domains.

Figure 1: Overview of phishing-related activities at Org

sure of ‘phishing success’. Figure 1 depicts Org’s internal
process to handle suspect phishing emails.

Overall, we extracted 115,698 reported emails and 11,936
alerts for malicious links between February 1st, 2018 and
15 December 2018, with the exception of the period August-
September 2018 due to infrastructural limitations at Org. For
this same reason, our sample only includes data for ‘clicks’
collected from end of July onwards.

Data limitations and ethical aspects. From the data struc-
ture, the link between a clicked URL and the specific email
from which that click originated is not explicit and can only
be reconstructed by exact match of the destination URL. This
has the effect of limiting the scope of this study to the com-
parison of the effectiveness of cognitive influence techniques
between phishing emails that are likely to have generated
the click (as we cannot fully reproduce the process generat-
ing the detection of URLs that could have been clicked, but
have not). This also limits the number of matches between
URLs reported in event alerts and URLs linked in emails.
Further, the results of this work are limited to the emails that
have been reported (and therefore identified at least once) by
Org’s customers. Despite the large number of active report-
ing customers, particularly well-crafted emails may not be
represented in our dataset. Further, we can only observe data
captured by the User Session Monitoring System, i.e. related
to emails pointing to domains that ‘call back’ to Org’s sys-
tems. This may represent a limitation if emails that do not
‘call back’ also exploit different ‘cognitive vulnerabilities’,
or with different distributions. However, an analysis on the
available data does not show apparent biases between emails

for which a ‘click’ has been recorded, and those for which
we do not know of any (ref. Figure 10). These limitations
are akin to those outlined by Pitsillidis et al. [37]. Aware of
these, we compensate by means of the analysis methodology
that explicitly accounts for the potential biases in the data.
Finally, the collected data did not contain sensitive subject
information and all data handling has been performed within
allowance from Org and within the scope of work previously
approved by the department IRB.

3.1 Data sanitization and processing
As our email dataset contains messages forwarded by users,
we first sanitize the data by removing mobile text messages
(n = 18,817) that likely result from erroneous forwards to the
functional mailbox from a related banking service; as they
are irrelevant in our setting, we discarded them. Further, users
may have reported emails that target financial organizations
different from Org. To capture this, we identify targeted or-
ganizations in our dataset by a string search operation within
email bodies for the names of the most prominent financial
organizations in the country where Org is located, and remove
all records that do not belong to Org (n = 15,623). To identify
phishing email subjects, dates, and recipient/sender informa-
tion, we recursively searched through each raw email message
to find header matches of the first original email arrived in
the user’s inbox,1 and extract information on From, To, Date,
and Subject values. Table 2 reports summary statistics of
the final dataset.2

3.1.1 Identification of suspicious and landing URLs

Suspicious URLs. We check emails for the presence of sus-
picious URLs that point to any domain that does not belong
to Org, as these would not normally appear in a legitimate
email originated by the organization. We exclude from the
heuristic general-purpose domains with no direct phishing
correlation (e.g. youtube.com). Based on this classification
we flag emails that contain at least one suspicious URL as
Suspicious, whereas the remaining ones are considered un-
interesting within our scope (as we can neither count nor
estimate clicks for URLs that do not exist).
Landing URLs. These are landing URLs that load resources
internal to Org, as detected and reported by the User Session
Monitoring System (ref. Fig.1). Whereas they are related to a
click on a suspicious URL, this relation is not immediate in
the data and needs to be reconstructed.

1This is necessary as emails can be forwarded multiple times (e.g. if
originally forwarded by the customer to an Org employee) before ending up
in the phishing inbox.

2 We notice that the upper 2.5% of the distribution of email length is
disproportionally long w.r.t. the remainder of the distribution, suggesting a
few outliers in the data. Manual inspection reveals malformed email corpora
(e.g. with HTML tags embedded in the body); as no obvious ‘upper limit’
for email length is apparent, we keep these in the dataset for the sake of
transparency.

1312 28th USENIX Security Symposium USENIX Association

Table 2: Descriptive statistics of the collected dataset
The column type indicates whether the variable is a factor (f) or numeric (n). The column n reports number of levels for factors, and number of records with
at least one observation for numerical variables. We do not report summary statistics for factors. The standard deviation for variable Date is reported in days.
All dates are in 2018 and in format %m�%d.

Feb-Jul 2018 Oct-Dec 2018

Variable type n Min 0.025q Median 0.975q Max n Min 0.025q Median 0.975q Max

Language f 3 2
To f 38760 2239
From f 1641 330
Date n 69800 02-02 03-07 05-30 07-28 07-31 11458 10-01 10-01 11-29 12-11 12-11
Length n 69800 160 446 1068 3973 67246 11458 173 329 1320 5480 15685

V
ul

n.
tri

gg
er

s Reciprocity n 69800 0 0 3 67 149 11458 0 0 2 37 153
Consistency n 69800 0 0 13 84 132 11458 0 0 19 88 176
Social Proof n 69800 0 0 2 17 52 11458 0 0 0 17 90
Authority n 69800 0 0 5 55 121 11458 0 0 5 27 83
Liking n 69800 0 0 0 7 504 11458 0 0 0 8 198
Scarcity n 69800 0 1 40 107 157 11458 0 0 11 91 189
Spoof dist. n 61911 0 0 7 14 23 10604 0 0 6 14 24
Clicks n 4 9 9 28.5 78 78 35 1 1 37 220 220

Em
ai

ls

Reported f 69800 11458
of which susp. f 61079 9419

Unique f 1293 424
of which susp. f 952 329

3.1.2 Landing URL extraction

To reconstruct the association between Landing URLs and
Suspicious URLs we adopt the following method:

1. First, we traverse the suspicious URL embedded in the
phishing email (suspiciousURL) multiple times by vis-
iting all URLs arriving to Org’s inbox. These typically
generate a number of redirections (generally HTTP 3xx)
that lead to a landing webpage, where the actual phish-
ing resource is located. We record the association h
suspiciousURL, landingUrl i for all visited URLs,
and for all emails; if the redirection mechanism is not
deterministic, we obtain a 1 to n association between
suspiciousURL and a set of landingURLs. As we can-
not know how many ‘redirection chains’ exist from a
single suspiciousURL, we traverse the URL opportunis-
tically every time it appears in Org’s inbox. To minimize
confoundings in the redirection, each visit session is in-
dependent from the previous. Figure 2 shows that the
number of different redirections stops growing quickly
regardless of how many time we traverse a given URL,
suggesting that the dataset of collected landingURLs
does not suffer from systematic censoring problems.

2. When landingURL is visited, a third party contractor
of Org records a ‘click’ for landingURL (see Fig 1 and
discussion in data limitations), and reports it to Org.

3. We link clicked landingURLs with the original email
body by matching them with the landingURLs we found
by traversing the suspiciousURLs in the mail corpus;
if there are multiple clicked landingURLs for a single
suspiciousURL, we keep record of all matches.

1
2
3
4
5
6
7
8
9

10
11
12

0 50 100 150 200

Number of times originalURL is observed

N
um

be
r o

f d
iff

er
en

t r
ed

ire
ct

s

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00
Unique redirections per originalURL occurrence (occ.>1)

de
ns

ity

The redirection count for all observed suspiciousURLs (left) shows
that new landingURLs stop appearing after only few suspiciousURL
visits. The density plot on the right shows ratio of unique landingURL
per suspiciousURL for suspiciousURLs visited more than once, and
confirms that new redirects stop appearing regardless of number of visits.

Figure 2: Redirection count (left) and density ratio (right)
from observed suspiciousURLs.

4. To aggregate clicks to a single suspiciousURL, we con-
sidered: average, sum, and max no. of clicks across all
landingURLs for a given suspiciousURL. We ran our
experiments using all aggregation strategies, and ob-
tained qualitatively identical results. In this paper we
report average clicks as it is the most conservative choice
to make (e.g. summing landingURL clicks is more sus-
ceptible to over-reporting multiple clicks by the same
user).

Figure 3 provides a bird’s eye view of the data generation
process for the landing URL extraction.

3.1.3 Duplicate detection

One complexity of our unstructured dataset is the possible oc-
currence of multiple duplicates of the same suspect phishing
email. In this paper we consider ‘similar’ emails received by

USENIX Association 28th USENIX Security Symposium 1313

Phishing
inbox

Redirection chain(s)
(attacker controlled)

LandURL1 --> x clicks

LandURLk --> y clicks

Art A --> LandURL1

Art A --> LandURLk

Mail
(artefact A)

Aggregation
function Art A --> f(x,w,y) clicks

LandURL.. --> w clicks

Art A --> LandURL..

cl
ic

k
on

 p
hi

sh
in

g
U

R
L

tra
ve

rs
e

U
R

L

User 1

User n

report email

Clicked

Landing URLs

Landing URLs

Data generation process for an example email leading to k distinct clicked landingURLs. Users may click on the suspiciousURL link in the
email and, usually through a series of redirections, reach the phishing domain hosted at one of the landingURLs. Through the dynamics described
in Figure 1, an association between each distinct landingURL and recorded number of clicks is reported. The same email can also be reported to
Org’s phishing inbox. When it arrives, we opportunistically traverse the redirection chain and record the association between the original email
and the final landingURL(s). To reconstruct the association between suspiciousURLs and clicked landingURLs, we aggregate the two datasets.

Figure 3: Data generation process for matched URLs and click data aggregation

users over long periods of time as belonging to the same ‘cam-
paign’.3 Although the overall textual content of these dupli-
cate emails is similar, they can still contain slight differences,
for instance because of the presence of a recipient’s name in
the salutation of an email or other minor syntactic features. In
order to detect, and subsequently remove, as many of these
duplicate emails as possible, we used a fuzzy string matching
approach to determine the pairwise similarity for each of the
emails in our dataset. We employ a bag-of-words model to
calculate, for each document, the frequency of each unique
word in the document. We build the word-by-document ma-
trix of our email corpora for the term frequency values for all
emails in our dataset. As an additional pre-processing step all
input was cleaned by removing special characters, urls, email
addresses and line breaks from the text. We use L2 normaliza-
tion to the term frequencies to limit the impact of differences
in email lengths [47].

To evaluate email similarity we employ a measure of cosine
similarity. This similarity measure expresses the similarity be-
tween two vectors in terms of the cosine of the angle between
the two vectors; the evaluation results in a score between [0,1],
where 0 constitutes low similarity, and 1 constitutes high sim-
ilarity. To define the cutoff threshold for similar emails we
manually marked 300 randomly sampled emails from the
dataset and assigned them to ‘similarity IDs’ to track which
emails were replicas of which others. We then performed a
bootstrapped (n = 100,000) sensitivity analysis of the thresh-
old level to determine the optimal level for the cutoff. This
procedure tunes the categorization to very satisfactory sensi-
tivity and specificity levels higher than 90%. Full details on
procedure and results are reported in the Appendix.

The duplicate detection procedure identifies 1,293 and 424

3This is only based on the email text, and we use it as a term to group
together emails that are likely to have a common denominator (e.g. a phishing
tool, a specific market/phishing pool, or actual attacker).

Table 3: Topic model performance results
We perform LLDA using Gibbs sampling iterations for parameter
estimation and inference initialised with hyper parameters a = 1.0,
b = 0.001, klabels = 6 and Niterations = 1000.

Macro (sd) Micro (sd)

Sensitivity 0.709 (±0.016) 0.807 (±0.016)
Specificity 0.714 (±0.042) 0.813 (±0.038)
Precision 0.718 (±0.025) 0.755 (±0.024)
F1 0.725 (±0.020) 0.760 (±0.020)

unique emails in the data collection of Feb-Jul 2018 and Oct-
Dec 2018 respectively (ref. Table 2). Of these 952 and 329
respectively are classified as ‘suspicious’.4

3.2 Cognitive evaluation
To identify the presence of cognitive vulnerabilities in email
bodies and the intensity of the employed cognitive attacks,
we construct a supervised topic model based on Labeled
LDA [39] (LLDA). LLDA models each input document as
a mixture of topics inferred from labeled input data and out-
puts probabilistic estimates of label-document distributions,
i.e P(labelt |documentm), and word counts of label-specific
triggers for each input document. In our application the labels
correspond to Cialdini’s principles of influence, detailed in
Table 1, whereas documents correspond to the emails.

For model training, we randomly sampled 99 emails (38
with clicks and 61 suspicious) out of the set of unique and
suspicious emails in the dataset (n = 1,281),5 and manually

4Note that otherwise identical emails may lead to different phishing
domains.

5To have an indication of the effect of sample size on model performance,
we first ran the training on 70 emails and added 29 (+40%) at a second time,
obtaining virtually identical results. To rule out sampling issues, we also
performed a cross-validation procedure (reported) which suggested stable

1314 28th USENIX Security Symposium USENIX Association

labelled them for presence of cognitive vulnerabilities. Due to
language restrictions, we adopted a mixed approach whereby
one author performed the labelling on the original data, and
the second author blindly re-performed the labelling on an
automatically-translated random sample (20 emails) of the
labelled data. To assess model performance we performed a 5
times repeated 5-fold cross validation over the data. Numer-
ous approaches exist to evaluate the performance of multilabel
classification problems like ours. Following [43], we consider
our problem as a label-pivoted binary classification problem,
where the aim is to generate for each label strict yes/no predic-
tions based on the document ranking for that label. For each
label, we sort on the per document prediction values, and use
the PROPORTIONAL method [14, 43] to define a rank-cutoff
value that determines the top N ranked items that will receive
a positive prediction. For each label, we set TOPNi equal to
the expected number of positive predictions based on training-
data frequencies: For label li, TOPNi = ceil

⇣
Nd

test
Nd

train
⇤Ntrain

i

⌘

where Nd
train and Nd

test refer to the total number of training
and testing documents and Ntrain

i is the number of training
documents assigned label li.

We have aggregated the performance results of our topic
model using the PROPORTIONAL rank-cutoff method in Ta-
ble 3. Unlike other rank-cutoff methods, this approach relies
solely on labeling information from the training set, which
makes it appropriate for use in real-world production settings
as well. We report both macro scores (averages computed
over each result of the cross-validation procedure), and micro
scores (computed over the aggregate of all cross-validation
results). The obtained scores indicate a satisfactory fit over
both projections. A manual analysis on randomly sampled
emails confirms that the procedure appropriately assigns ‘top-
ics’ to emails. The final model is trained on the complete set
of 99 labeled training documents that were previously used in
cross-validation, and then applied to the unseen and unlabeled
remainder of the full dataset. Standard text cleaning proce-
dures have been applied for removal of special characters and
stop-words, sentence tokenization, and word stemming.

In this paper we refer to the ‘topics’ assigned by LLDA
to an email as the cognitive vulnerabilities exploited in that
text, and to the words associated with that topic and present
in the text as the vulnerability triggers for that cognitive
vulnerability. With this we aim at distinguishing the presence
of a cognitive attack from its intensity in the email text.

Example of training results We report below an example
of a phishing email (translated to English) and its associa-
tion with different cognitive vulnerabilities. We have indi-
cated the relevant vulnerability triggers in italics and refer
to (1) Liking, (2) Consistency, (3) Authority, (4) Social
Proof, (5) Reciprocity and (6) Scarcity:

results. Finally, manual checks on a random sample from the dataset of
predicted labels found no obvious miscategorization.

Table 4: Example of extracted keywords for each topic
Reciprocity Consistency Social Proof

Word p Word p Word p

free 0.024 update 0.026 all 0.035
participate 0.016 improve 0.024 customer 0.011
program 0.011 recycle 0.018 current 0.005
request 0.010 renew 0.015 require 0.004

Authority Liking Scarcity

Word p Word p Word p

safety 0.017 valued 0.022 after 0.031
regulate 0.013 friendly 0.012 charge 0.027
european 0.010 strive 0.008 direct 0.020
must 0.007 environment 0.005 debit 0.019

(1) As a valued customer of Org we always want to inform
you of the latest updates and innovations in our system.
We have recently switched to a new system that requires
(4) all current customers to replace their (2) current debit
cards by our newly-produced ones.

In connection with the new changes to the (3) European
Safety Regulations, Org wishes to alert all its customers to
the availability of the new and improved debit cards that
adhere to all (3) environmental and safety regulations.

(1) Org strives to be environmentally friendly. Therefore,
our service team will recycle all current debit cards by
mounting your (2) current AES Encryption Chip on your
renewed biological RFID payment card. For this reason,
all current payment cards must be replaced. (5) By partici-
pating in our recycling program, the new debit card can
be requested free of charge. (6) After October 19th, 2018,
a direct debit will be charged.

From the example we can observe that the different cogni-
tive vulnerabilities often appear alongside each other, and that
a single vulnerability can even occur multiple times within
an email body. Table 4 reports an excerpt of the classifica-
tion results for the above message, and the learned keywords
(translated in English) for each topic.6

4 Exploratory analysis

In this section we provide an exploratory analysis of the
obtained email data set reported in Table 2.

We first give a look at the time of suspicious email arrivals
in victims’ inboxes. Figure 4 reports the CDF distribution of
email arrivals to Org’s phishing inbox. We observe a steady
arrival rate through April and the first cutoff date in July
2018, suggesting that email arrival is approximately constant
and uniformly distributed in time. As per the time of day of
their arrival (not depicted here for brevity) we observe that
few suspicious emails arrive in the users’ inboxes during the

6As the original text is not in English, to provide an accurate translation
we report keyword matches for an example.

USENIX Association 28th USENIX Security Symposium 1315

0.00

0.25

0.50

0.75

1.00

Apr Jul Oct
Date

Fr
ac

tio
n

of
 c

ol
le

ct
ed

 e
m

ai
ls

Figure 4: Arrival of notified emails to Org’s inbox

0.00

0.25

0.50

0.75

1.00

0 1 2
log10 number of reported emails

No suspicious link Suspicious link(s)

Figure 5: CDF of emails reported by victim addresses

weekend, with most phishing activity happening during the
working days. This may suggest a strategic aspect of these
campaigns aimed at increasing the credibility of the email
source. On this same line, we find that most emails arrive
between 9am and 5pm (business hours), and most arriving
between 9am and 11am. Interestingly, these findings are all in
line with optimal email send days and times for newsletters
as reported by analyses from multiple popular online email
marketing services [4, 26, 38, 45], and is an indication that
attackers may follow similar strategies.

4.1 Spoofing and victimization
Figure 5 depicts the distribution of suspicious and non sus-
picious reported emails. The CDF is on a log scale to better
represent the distribution’s log tail. The vast majority of users
report only one email, with almost all reporting less than 10
emails. This suggests that the distribution of phishing emails
is uniform across victims, as is generally the case with un-
targeted phishing attacks [23, 36]. Only 122 addresses out of
about 40 thousand report more than 10 emails, and only nine
report more than 100 emails.

Figure 6 reports the distribution of spoofed and non-
spoofed From: domains for reported emails with and with-
out a suspicious URL in the body. An email is classified as
spoofed based on the Levenshtein distance of the (spoofed)
From: domain the original attack was sent to, w.r.t. the actual
name of the organization. This captures exact string matches
as well as small variations that may remain undetected by
the user [50]. We find attacks employing a range of domains
resembling Org’s: from less similar (e.g. org-safety.com,

No suspicious link Suspicious link(s)

0 1 2 3 4 0 1 2 3 4
0.00

0.25

0.50

0.75

1.00

log10 number of reported emails

Not spoofed Spoofed

Figure 6: CDF of spoofed and non-spoofed From: domains

1
5

10

15
16
17
18

19

20

21

22

23

24

25

26

27

28
29
30
31

1 5 10 151617 18 19 20 21 22 23 24 25 26 27 28 293031

Week number

W
ee

k
nu

m
be

r

0.00
0.25
0.50
0.75
1.00

For visualization purposes we report random samples per week of
10% of the emails received in that week. Red represent high sim-
ilaries above the threshold. We do not observe specific cycles of
similar emails, suggesting that any sufficiently long period of time
(3-4 weeks) would cover a diverse set of phishing attacks.

Figure 7: Pair-wise cosine similarity between email samples

org-customersupport.com), to more closely spoofed do-
main variations (e.g. theorg.com, 0rg.com). We observe a
clear differentiation, whereby emails with no suspicious URL
are approximately as likely to have a spoofed From: address
as a non-spoofed one. On the other hand, emails with suspi-
cious URLs are more likely to be delivered from non-spoofed
than from spoofed addresses, as can observed from the areas
under the two curves. This is compatible with a model of a
relatively unsophisticated attacker. Here it is also relevant to
consider that the pool of ‘spoofed’ addresses is much smaller
than the pool of ‘non-spoofed’ addresses (as there are many
fewer viable choices similar to Org than otherwise), suggest-
ing that as spoofed domains get blacklisted, attackers may be
forced to move to less well-spoofed From: addresses.

4.2 Phishing campaigns
Figure 7 reports a visualization of the similarity scores be-
tween emails received during the observation period. Dark red
indicates high similarity.7 We do not observe specific and sys-

7For details on the identification of similar emails see the Appendix.

1316 28th USENIX Security Symposium USENIX Association

0.00

0.25

0.50

0.75

1.00

0 60 120
Duration of campaign (days)

Figure 8: Duration of a phishing campaign

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.0

2.5

5.0

7.5

10.0

0 5 10 15 20 25
Weeks since start of campaign

M
ea

n
Le

ve
ns

ht
ei

n
di

st
an

ce

As phishing campaigns progress, the spoofed From: domains appear
to be more dissimilar w.r.t. the original domain.

Figure 9: Average weekly decrease in similarity between
spoofed domains and name of target organization

tematic cycles of campaigns emerging with repeating patterns
across several weeks. This also suggests that any sufficiently
long observation period (in the order of 3-4 weeks) may suf-
fice to collect a diverse set of attacks for analysis. A first
look suggests that some attacks seem to re-appear after a few
weeks in slightly different forms, perhaps to increase chances
of passing updated spam filters (see for example emails from
week 21 reappearing slightly modified in week 26, or those
from week 18 reappearing in week 24). To evaluate this, Fig-
ure 8 reports the distribution of suspicious emails that likely
belong to the same campaign. Most campaigns are relatively
long, with approximately 50% of similar emails arriving more
than 120 days apart, and 25% of emails arriving more than
150 days apart with a relatively long left tail. From the dis-
tribution it appears that single-day campaigns are relatively
common, whereas long campaigns extend for more than 100
days. Mid-range campaigns lasting between 2 and 100 days
are by comparison only few, suggesting that attacks may ei-
ther be extremely quick and disappear the next day, or last for
long periods. Table 5 reports summary statistics of suspected
phishing campaigns. We identify 38 distinct campaigns last-
ing on average 150 days (approx 5 months) and up to 175
days in the observation period.

To investigate how address spoofing evolves during cam-
paigns, Figure 9 reports the weekly average similarity be-
tween the domain of the attacker From: address and the do-
main of the victim organization (measured as their Leven-
shtein distance) for LONG campaigns. Lower scores indicate

more closely spoofed domains. We observe an average in-
crease in dissimilarity between spoofed From: addresses and
organization domain, which suggests an overall deteriora-
tion of a phishing campaign as it progresses or is replicated
by phishers (cor = 0.31, p = 0.08). This is in line with the
intuition that spoofed domains are limited in number, and
attackers may therefore run out of options as domains get
blacklisted as the campaign progresses.

4.3 Cognitive effects
Figure 10 reports the distribution of triggered cognitive vul-
nerabilities in each unique email (left) and the corresponding
vulnerability triggers identified in the corpus (right). We ob-
serve a clear relation between the two plots: the most common
vulnerabilities and triggers in emails appear to be linked to
the Consistency and Scarcity vulnerabilities, regardless
of whether a ‘click’ has been recorded for that link or not.
Liking and Social proof triggers appear to be particularly
rare on the average, with most emails targeting none.8 This
is consistent with the intuition that in one-shot interactions
(as opposed to prolonged or repeated exchanges as in spear-
phishing attacks [23]) cognitive attacks linked to the target’s
social context and personal preferences (ref. Table 1) are rare.
By contrast, exploiting Consistency may only require refer-
ence to previous actions that the group of potential victims
will have likely performed, such as buying an insurance or
receiving a debit card from the organization. Authority ap-
pears to be a relatively common trigger in our sample, albeit
not for all emails. Common triggers here refer to European
and national-level legislation and often come together with
the threat of a punishment if certain actions are not completed.
Overall, we find that few cognitive triggers are present in
the median email, suggesting that the median reported attack
may not be highly effective, whereas few emails embed more
‘intense’ cognitive attacks.

Effect of cognitive vulnerablities on phishing success.
To evaluate the effect of the cognitive features of the email(s)
embedding the ‘clicked’ URL links, we first report in Fig-
ure 11 the distribution of average clicks generated by emails
for which at least one click has been recorded (n = 40). Most
emails generate fewer than 150 clicks, with two emails gen-
erating more than 200 clicks (min = 1, median = 37, max =
220, sd = 51.9). Figure 12 displays the relation between trig-
gered cognitive vulnerabilities and generated clicks, for which
we observe a clear positive relation.9 Following common prac-

8The descriptive statistics reported in Table 2 also suggest stable distribu-
tions between the collection periods; for Liking we observe more extreme
values (upper 97.5% = 7, max = 504 in the Feb-Jul data collection); this is
caused by the outliers in the email corpora for which we measure dispropor-
tionate email lengths.

9A possibility is that some emails may be distributed to substantially
more users than other emails, generating greater aggregate click counts. As
we have no access to the victim’s inboxes, we cannot directly measure this.

USENIX Association 28th USENIX Security Symposium 1317

Table 5: Descriptive statistics of duration and intensity of phishing campaigns
SINGLE-DAY campaigns last up to one day; SHORT campaigns up to 100 days; LONG campaigns more than 100 days. Most phishing campaigns
are either very short (one day) or long, with only a handful lasting more than one day but less than 100.

Phishing samples (#reported emails) Campaign duration (days)

Type n Min 1stQ Mean Med 3rdQ Max sd Min 1stQ Mean Med 3rdQ Max sd

SING. 10 1 1.0 1.3 1.0 1.0 3 0.7 0.0 0.0 0.1 0.0 0.0 1.0 0.3
SHORT 4 2 2.0 36.0 3.0 37.0 136 66.7 18.1 18.2 53.3 52.1 87.2 90.8 40.6
LONG 24 46 86.2 783.4 226.5 929.5 4827 1207.5 116.1 145.2 150.9 150.6 164.2 175.6 17.3

0

300

600

900

1200

Recip. Cons. Soc. Proof Auth. Liking Scarcity

C
ou

nt

●

●

●●

●

●

●

●

●

●

●

●0

2

4

Recip. Cons. Soc. Proof Auth. Liking Scarcity

#V
ul

n.
 tr

ig
ge

rs
 (l

og
)

Clicked Unk

Most phishing attempts trigger Scarcity, Consistency, and Reciprocity vulnerabilities. Social Proof, Authority, and
Liking are the least common. Relative frequency of cognitive vulnerabilities is reflected in the distribution of vulnerability
triggers identified in the emails. We do not identify specific biases in presence of vulnerability triggers between emails for which
a ‘click’ has been registerd, and emails for which it has not (i.e. that received an unknown number of clicks).

Figure 10: Distribution of triggered cognitive vulns. (left), and of vuln. triggers (right) for emails

Average clicks per email

Fr
eq

ue
nc

y

0 50 100 150 200 250

0
5

10
20

Figure 11: Histogram distribution of clicks per email

tice [21], to avoid dispersion we here only consider URLs
clicked at least ten times, removing six emails. A simple Pois-
son regression of the form log(clicksi) = a+ b(cogvulnsi)
reveals a strong positive correlation between the variables
(b = 0.12, p < 0.001). This suggests that the more cognitive
vulnerabilities are exploited in an email body, the more that
email can be expected to generate compliant user behaviour,
even when not considering the type of cognitive attack, or its
intensity.

However, the data does not show specific biases in the likelihood of users
reporting emails (Figure 5), suggesting that major skews are not realistic.
This is consistent with previous findings in the literature [36, 58]. Further,
due to the very low click-through rates of spam and phishing campaigns [19],
this difference should be of several orders of magnitude to have a visible
effect (as opposed to be undetectable noise in the data generation process).
Regardless, in the Appendix we build a data generation model to evaluate
the effect this bias would have in the data if present; our analysis finds no
evidence.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3

4

5

2 4 6
Number of cognitive vulnerabilities

(lo
g)

 c
lic

ks

We observe a clear relation between the presence of exploited
cognitive vulnerabilities and the clicks generated by the embed-
ded URL(s). The shifted position of points in the pictures is to
clear overlaps and is only presentational.

Figure 12: Relation between number of cognitive vulnerabili-
ties in an email and average clicks (log10)

Effect of vulnerability triggers. We now consider the rela-
tion of the intensity of each cognitive attack (i.e. measured by
the presence of vulnerability triggers) with the measured ‘suc-
cess’ of the phishing email. Figure 13 reports the results. The
data reports a clear positive relation between Consistency,
and Scarcity vulnerability triggers with the expected (log)
number of clicks. Reciprocity shows a negative relation-
ship. Additionally Social proof, Liking and Authority
show no evident effect, whereby the majority of emails have
relatively small counts of associated vulnerability triggers
(see also Figure 10). On the other hand, looking at the right
extreme of the scale, the few available data points are always
related to highly-clicked emails; this may indicate that trig-
gering these vulnerabilities (in this application domain) may
be particularly difficult, for example as decisions related to

1318 28th USENIX Security Symposium USENIX Association

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Reciprocity Consistency Social Proof Authority Liking Scarcity

−1 0 1 2 −1 0 1 2 0 1 2 3 4 0 1 2 3 4 0 1 2 3 −1 0 1 2 3

3

4

5

3

4

5

3

4

5

3

4

5

3

4

5

3

4

5

Density of vulnerability triggers in email body (standardized)

(lo
g)

 c
lic

ks

The data shows the effect of different cognitive vulnerability triggers on expected number of clicks. Consistency and Scarcity have a clear
positive association with the expected number of clicks they generate. Social proof, Authority and Liking do not show any evident trend.
Interestingly, we find that Reciprocity appears to be counterproductive.

Figure 13: Correlation between vulnerability triggers and observed clicks

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

3

4

5

0 5 10 15
Levenshtein distance

(lo
g)

 c
lic

ks

We identify a negative relation between the dissimilarity of the
spoofed From: domain in an email against the original one, and
the expected number of clicks the email entices.

Figure 14: Relation between spoofing dissimilarity and aver-
age clicks (log10)

personal finance may have a smaller attached ‘social’ com-
ponent, or as adding additional ‘authoritative’ effects in the
banking domain may be challenging for an attacker.

Effect of spoofing distance. Apart from the cognitive vul-
nerabilities exploited in the text, a second relevant factor could
be the similarity between the From: address displayed to
a user and Org’s legitimate one. Figure 14 reports the re-
lation between Levenshtein distance of the spoofed From:
domain and the expected number of clicks. We find an in-
verse relation between the two variables, suggesting that the
greater the dissimilarity between the spoofed and the original
domain, the lower the average number of generated clicks
(b = �0.13, p < 0.001). This suggests that both cognitive
attacks and the degree of spoofing in an email may have an
effect on the relative success of a phishing email and could
be considered to build a triaging model for phishing emails.

5 Modelling phishing success

We now evaluate the relative impact of each cognitive variable
in the collected dataset. We estimate coefficients for a Poisson
process of the (aggregate) form:

log(clicksi) = a+b1cogvulnsi +b2spoo f disti + ei (1)

whereby, for each email i, clicks represents the number of
measured clicks, cogvulns is the array of counts of the vul-
nerability triggers identified in the email body, and spoo f dist
indicates the degree of (dis-)similarity between the spoofed
From: address and the original Org domain. ei is the error
term. To monitor and account for overfitting problems related
to the few available datapoints, we combine a step analysis of
each model (M1..M7) with regression bootstrapping to gener-
ate robust confidence intervals for the coefficient estimations.
For model selection we report coefficients, 95% confidence
intervals, residual deviance, and Adjusted McFadden Pseudo-
R2, to reduce the statistical bias in the performance metrics
for model selection.10 Results are reported in Table 6.

All models have relatively stable coefficient estimations
showing no evident interaction effects between the regressors
(correlation matrix presented in Table 9 in the Appendix).
Coefficients should be interpreted relative to each other as
opposed to in absolute terms. Because of the relatively small
sample size, we refrain from drawing direct conclusions on
the model coefficients. For this reason statistical significance
is better served in the analysis reported in Figure 13 and is
only detailed in Table 6 for the reader’s reference. Within our
sample, model coefficients can be interpreted as the relative
change in number of clicks for every additional vulnerability
trigger of that type in an email. For example, the M7 coef-
ficient for Scarcity (0.02) indicates an increase of 2% in
the number of expected clicks for every new trigger of that
category. Likewise, an increase in one point on the Leven-
shtein distance scale is related to a decrease in clicks of
10%. A first informal look at the McFadden’s Pseudo�R2s,
Reciprocity, Consistency, and Spoof dist. appear to
have the strongest effect in increasing the explanatory power

10Importantly, with this procedure we do not aim at identifying a defini-
tive model and coefficients to forecast phishing success: regardless of the
amount of observations in the dataset, that would not be possible because the
‘click generation process’ generating the observations necessarily varies from
domain to domain (e.g. finance vs health), from organization to organization
(e.g. national vs international), and from customer base to customer base
(e.g. sensibility of application domain). Therefore, coefficient estimations
out of this type of models cannot be ‘plug-and-play’ across organizations
and domains and will require tuning before being applied in-house.

USENIX Association 28th USENIX Security Symposium 1319

Table 6: Regression results for Eq. 1
All model coefficients estimations are relatively stable across the seven models. Coefficients for the Poisson models are presented with
95% confidence intervals in parentheses. Social proof and Spoof distance of From: addresses appear to have the largest effects on
predicted number of clicks. Higher spoof distances (i.e. higher dissimilarity between From: domain and original domain) result in a lower
number of expected clicks. We only report coefficient significance (indicated by a ? for significance at the 0.1% level) for the reader’s
reference; however due to the relatively small sample size coefficient estimations should only be interpreted relative to each other as opposed
to in absolute terms. Model power w.r.t. the baseline model is reported by the adjusted McFadden Pseudo-R2; a c2 test is employed for
model comparison (? : p 0.001; † : 0.001 < p 0.01). Standard model checks do not reveal issues or biases in the model fit.

M1 M2 M3 M4 M5 M6 M7

a 4.38? 3.89? 3.79? 3.63? 3.37? 3.37? 4.22?
(4.33, 4.42) (3.81, 3.97) (3.71, 3.87) (3.54, 3.73) (3.17, 3.44) (3.23, 3.51) (4.02, 4.42)

Reciprocity -0.02? -0.01? -0.02? -0.02? -0.02 -0.02? -0.02?
(-0.02, -0.02) (-0.02, -0.01) (-0.03, -0.02) (-0.02, -0.01) (-0.02, -0.01) (-0.02, -0.01) (-0.02, -0.01)

Consistency 0.02? 0.02? 0.02? 0.03? 0.03? 0.01?
(0.02, 0.02) (0.02, 0.02) (0.02, 0.02) (0.02, 0.03) (0.02, 0.03) (0.01, 0.02)

Social proof 0.14? 0.11? 0.04 0.04 0.10?
(0.11, 0.16) (0.08, 0.14) (0.01, 0.08) (0.01, 0.07) (0.06, 0.13)

Authority 0.01? 0.02? 0.02? 0.00
(0.01, 0.02) (0.02, 0.03) (0.02, 0.02) (0.00, 0.01)

Scarcity 0.02? 0.02? 0.02?
(0.02, 0.03) (0.02, 0.03) (0.01, 0.02)

Liking -0.02? 0.04?
(-0.04, -0.01) (0.02, 0.06)

Spoof dist. -0.10?
(-0.12, -0.08)

Adj. Pseudo-R2 0.09 0.23 0.28 0.30 0.33 0.33 0.41
Res. Dev. 1390? 1136? 1054? 1012? 958? 951† 814?
N 38 38 38 38 38 38 38

of the model. Scarcity appears to contribute modestly,
whereas Liking appears to have the smallest effect on the
model. The negative effect of Reciprocity as shown in Fig-
ure 13 is confirmed in the model as well.

5.1 Cognitive triaging of phishing success

We now extend the model evaluation to estimate the amount
of clicks generated by other emails for which Org has detected
no click (e.g. because no call-back to Org resources has origi-
nated from the phishing website, remaining therefore invisible
to Org’s detection infrastructure, ref. Fig 1). Recall however
that our model estimates are likely subject to overfitting issues
due to the inevitably small sample size. This only means that
predicted outcomes could be unreliable over arbitrarily di-
verse email corpora (i.e. not represented in the training data);
on the other hand, predictions over similar emails to those
provided to the fitted models will not suffer from unmodelled
biases and will generate reliable estimations. For this reason
we only limit our analysis to emails with a distribution of
vulnerability triggers within plus or minus one standard devi-
ation from the mean for that trigger in the model’s respective
training set.

To choose the model for the prediction we perform a set
of ANOVA tests (c2), which indicate all factors add signifi-
cant information to the model, albeit Liking only marginally.
However, due to the statistical limitations of estimations in our

Table 7: Bootstrapped regression coefficients
PM1 PM2

0.025q Med 0.975q 0.025q Med 0.975q

a 3.37 4.35 4.90 2.84 4.22 5.17
Recip. -0.05 -0.01 0.00 -0.08 -0.02 0.00
Cons. 0.00 0.01 0.04 0.00 0.01 0.05
Soc.Pr. -0.18 0.10 0.37
Auth -0.03 0.00 0.05
Scar. 0.00 0.02 0.04 -0.03 0.02 0.05
Liking -0.02 0.04 0.05
Sp.dist. -0.17 -0.09 0.03 -0.12 -0.10 0.18

dataset, we also consider a second model that considers only
isolated factors for which we observe a clear effect as reported
in Figure 13. Based on these observations we consider two dif-
ferent prediction models (PM), each with different regressors,
namely: PM1: Reciprocity, Consistency, Scarcity and
Spoofing distance; PM2 all six cognitive vulnerabilities
+ Spoofing distance (i.e. equal to M7 as suggested by the
ANOVA tests). This leaves us with n = 334 and n = 189 sus-
picious emails on which to run the predictions for PM1 and
PM2 respectively. To build robust confidence intervals around
the estimations, we run a bootstrap simulation (n = 5,000).
Table 7 reports median coefficients and 95% confidence inter-
vals of the estimations. Notice that the estimated coefficients
remain largely similar to those of the original models for most
coefficients. PM1 shows much tighter confidence intervals

1320 28th USENIX Security Symposium USENIX Association

Table 8: Descriptive statistics of average predicted clicks
Estimations are generated from 50,000 simulations run on the boot-
strapped model coefficients (Table 7).

PM1
Min. 1st Qu. Median Mean 3rd Qu. Max.

30 48 54 56 62 99

PM2
Min. 1st Qu. Median Mean 3rd Qu. Max.

26 43 50 53 60 129

for the estimated coefficients in comparison with PM2, sug-
gesting more reliable predictions. Notice that the distribution
of the coefficient estimations in PM1 tends to remain on the
same side of zero, again suggesting statistically robust re-
sults for this model. This suggests the exclusion of Liking,
Authority and Social proof in PM1 may lead to more
realistic estimations.

We simulate model predictions for the undetected clicks
by randomly sampling (n = 50,000) model coefficients from
the two distributions and report aggregate statistics (Table
8) of the estimated number of generated clicks. Figure 15
reports the results. The simulation results indicate that the
average ‘undetected’ email has potentially generated 50 -
55 clicks, with a long tail of (few) emails generating up to
100 clicks.11 This suggests that prioritization efforts based
on the cognitive characteristics of a phishing email could
help in more efficiently addressing attacks (e.g. by means
of takedown actions), by targeting first attacker resources
that are likely to generate more impact on the organization’s
customer base: by targeting first the emails that are most
likely to engage users in compliant behaviour, organizations
can effectively triage the stream of incoming phishing attacks
to minimize the impact on their customer base.

6 Discussion

The previous sections have demonstrated how quantitative
measurements of cognitive vulnerabilities employed in phish-
ing attacks can be used to develop a model to make predictions
about the expected efficacy of these attacks. This character-
ization allows one to assess the threat of these attacks in an
automated way such that instant prioritization of phishing in-
cident responses becomes possible. This paper’s contributions
go beyond the scope of earlier works on cognitive factors for
phishing by providing an empirical estimation and operable
implementation to estimate phishing success.

11Notice that additional organization-specific features of the email (e.g.
presence of the company logo), may also have an effect on the number of
clicks. Whereas this is out of the scope of this paper, which only looks at the
cognitive effects, a fully-operative model within an organization can easily
integrate other factors in the prediction.

In this work we identified several correlations between dif-
ferent cognitive vulnerabilities and the average number of
clicks an email can be expected to generate. In line with the
hypothesis that the presence of any individual cognitive vul-
nerability increases user response to the phish, we found that
Consistency and Scarcity exercise a clear positive effect
on the number of generated clicks. We find no evident ef-
fect from Social proof and Liking, whereas Authority
appears to have a positive effect albeit driven by only a few
non-zero data points. Interestingly, Reciprocity even shows
a counterproductive effect, albeit only marginal. This differ-
ence may well be explained by the specific application do-
main, as corporate customers subject to financial threats from
phishing can generally be expected to have different sensitiv-
ity to specific principles of influence than other groups [22].
Although this suggests that full generalizability can not be
expected for any one set of results, conclusions similar to
ours could be drawn for specific contexts close in nature to
the one in which Org operates. In particular, our finding of
the reduced effect of Authority in the banking domain is
in contrast with results from Wash and Cooper [53], who
found Authority to be the most effective strategy for the
presentation of certain phishing education materials. This dif-
ference may illustrate the context-dependency of the relative
efficacy of these influence tactics, and indicates a need for
careful consideration of such differences across domains. For
example, the effect of Authority can be mediated here by
the already relatively high authoritive position a bank has on
its customers; this suggests that, on one side, depending on
the domain it may be more difficult for an attacker to devise
effective attacks adding to baseline cognitive effects; on the
other, this also suggest that a relevant metric to evaluate could
be the relative increase (or decrease) in the cognitive effect
w.r.t. the baseline. A similar consideration could be drawn for
Reciprocity, whereby we observe a negative effect on the
generated ‘clicks’. An explanation could be that these type of
triggers rise a red flag in the context of banking operations,
for example as a bank’s ‘environmental friendliness’ may not
be a convincing-enough reason to act on a request (e.g. to
renew one’s debit card).

These observations also provide useful input to training
campaigns regularly run by medium and large organizations
in an attempt to increase their customers and employee’s
awareness of the social engineering threat. Replications of
this study in specific domains could reveal which principles
of influence the ‘average’ customer of an organization is more
vulnerable to; awareness campaigns run by the organization
could then target those specific traits by providing specific ex-
amples or information material built ad-hoc for the consumer
base (or targeting sections of it). For example, consumers
particularly vulnerable to Scarcity may benefit from know-
ing the organization’s policies in terms of change deadlines
and processes, such that an email stating unrealistic and short
cutoff dates to react lose credibility.

USENIX Association 28th USENIX Security Symposium 1321

Top 50% Top 10%

0

10

20

30

40 60 80 100

PM1

0

10

20

30

25 50 75 100 125

PM2

Predicted clicks per email

Fr
eq

ue
nc

y

Figure 15: Distribution of predicted average clicks

Operationally, the presented procedure could be applied
both client and server side to automate the risk evaluation
of potential phishing emails for the enforcement of security
policies; for example, mail client plugins or server-side pro-
cesses could automatically divert or forward high-risk emails
to phishing investigation and response teams for further eval-
uation, while delaying the delivery of messages waiting for
a diagnosis. Furthermore, we have described how these ob-
served effects can be used in the construction of a prediction
model for the triaging of incoming phishing attacks. By en-
abling the triaging of incoming phishing attacks, our results
will enable incident response teams to focus on the most
prominent threats immediately, without having to manually
filter out the noise from the bulk of low priority emails in
their phishing abuse inbox, thereby minimizing reaction costs
and increasing response effectiveness. The practicality of this
is evidenced in Figure 15, where by addressing the small
fraction of emails associated with the highest expected click
counts one can mitigate a large fraction of potential attacks.
This is critical to minimize overall victimization rates, as the
short-lived nature of phishing domains stresses a need for
prompt identification of which domains are most likely to
be reached by customers falling for the phish. By contrast,
addressing attacks in no particular order would most likely
result in wasting valuable time and resources by addressing
first the vast majority of attacks that are likely to generate few
clicks only (ref. Figure 15 and Table 8).

Finally, our method opens up new opportunities in terms of
automated incident handling and security orchestration, e.g.
by enabling incident handlers to apply automated follow up
procedures to incoming phishing attacks that fall within a
certain threat range; for example, reported measures on the
vulnerability triggers could be used to implement dynamic
risk-based access control policies to limit immediate follow-
up actions. Similarly, CSIRTs (Computer Security Incident
Response Team) could implement automated network-level
containment procedures based on the profile of incoming
emails, and avoid additional (and unnecessary) victimization
by delaying follow-up actions by the users until the risk is
cleared.

7 Conclusions

In this work we presented an empirical method and evaluation
of the effect of cognitive vulnerability triggers in phishing
emails on the expected ‘success’ of an attack. We employed
a unique dataset from a large European financial organiza-
tion with data from their phishing response division. Our
results indicate that response teams’ operations, such as take-
down actions against rogue phishing domains, could largely
benefit from a (fully automated) cognitive assessment of the
email body to predict relative success of the attack, given the
relevant user base. Our findings and method could also be
employed to deploy more effective training and awareness
campaigns in response to the more prominent threats suffered
by the potential victims. Future work could explore automated
response strategies to contain potential attacks and/or delay
user response where needed.

References

[1] Sadia Afroz and Rachel Greenstadt. PhishZoo: Detect-
ing phishing websites by looking at them. In Proc. of
ICSC, pages 368–375. IEEE, 2011.

[2] Nurul Akbar. Analysing Persuasion Principles in Phish-
ing Emails. PhD thesis, 2014.

[3] Marcus Butavicius, Kathryn Parsons, Malcolm Pattin-
son, and Agata McCormac. Breaching the Human Fire-
wall: Social engineering in Phishing and Spear-Phishing
Emails. In Proc. of ACIS, pages 1–11, 2015.

[4] Campaign Monitor. What Our Data Told Us about the
Best Time to Send Email Campaigns, 2014.

[5] Kuan-Ta Chen, Jau-Yuan Chen, Chun-Rong Huang, and
Chu-Song Chen. Fighting Phishing with Discriminative
Keypoint Features. IEEE Internet Comput., pages 1–6,
2007.

[6] R Cialdini. Influence: The Psychology of Persuasion.
1984.

1322 28th USENIX Security Symposium USENIX Association

[7] R Cialdini and N Goldstein. The science and practise of
persuasion. Cornell Hosp. Q., 43(2):40–50, 2002.

[8] Paul Cichonski, Tom Millar, Tim Grance, and Karen
Scarfone. Computer security incident handling guide.
NIST Special Publication, 800(61):1–147, 2012.

[9] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why
phishing works. In Proc. of CHI, page 581, 2006.

[10] Matthew Dunlop, Stephen Groat, and David Shelly.
GoldPhish: Using images for content-based phishing
analysis. In Proc. of ICIMP, pages 123–128. IEEE,
2010.

[11] Bradley Efron and Robert J. Tibshirani. Introduction to
the Bootstrap. 1993.

[12] Ana Ferreira, Lynne Coventry, and Gabriele Lenzini.
Principles of persuasion in social engineering and their
use in phishing. In Lecture Notes in Computer Science,
volume 9190, pages 36–47. 2015.

[13] Ana Ferreira and Gabriele Lenzini. An analysis of social
engineering principles in effective phishing. In Proc. of
STAST, pages 9–16, 2015.

[14] Johannes Fürnkranz, Klaus Brinker, Eneldo Loza
Mencía, and Eyke Hüllermeier. Multilabel Classification
via Calibrated Label Ranking. Mach. Learn., 73(2):1–
23, 2008.

[15] Matthew L. Hale, Rose F. Gamble, and Philip Gamble.
CyberPhishing: A game-based platform for phishing
awareness testing. In Proc. of HICSS, pages 5260–5269.
IEEE, 2015.

[16] Grant Ho, Aashish Sharma Mobin Javed, Vern Paxson,
and David Wagner. Detecting Credential Spearphishing
Attacks in Enterprise Settings. In Proc. of USENIX-
Security, pages 469–485, 2017.

[17] Chun Ying Huang, Shang Pin Ma, Wei Lin Yeh, Chia Yi
Lin, and Chien Tsung Liu. Mitigate web phishing using
site signatures. In Proc. of TENCON, pages 803–808.
IEEE, 2010.

[18] Ankit Kumar Jain and B. B. Gupta. Phishing detection:
Analysis of visual similarity based approaches. Secur.
Commun. Netw., 2017, 2017.

[19] Chris Kanich, Christian Kreibich, Kirill Levchenko,
Brandon Enright, Geoffrey M Voelker, Vern Paxson,
and Stefan Savage. Spamalytics: an empirical analysis
of spam marketing conversion. In Proc. of CCS, pages
3–14, 2008.

[20] Ponnurangam Kumaraguru, Justin Cranshaw, Alessan-
dro Acquisti, Lorrie Cranor, Jason Hong, Mary Ann
Blair, and Theodore Pham. School of phish: a real-
world evaluation of anti-phishing training. In Proc. of
SOUPS, page 3, 2009.

[21] Jerald Franklin Lawless. Regression methods for Pois-
son process data. J. of the Am. Stat. Assoc., 82(399):808–
815, 1987.

[22] Patrick Lawson, Olga Zielinska, Carl Pearson, and
Christopher B. Mayhorn. Interaction of personality and
persuasion tactics in email phishing attacks. In Proc. of
HFES, volume 61, pages 1331–1333, 2017.

[23] Stevens Le Blond, Adina Uritesc, Cédric Gilbert,
Zheng Leong Chua, Prateek Saxena, and Engin Kirda.
A Look at Targeted Attacks Through the Lense of an
NGO. In Proc. of USENIX-Security, pages 543–558,
2014.

[24] Sophie Le Page, Guy Vincent Jourdan, Gregor V.
Bochmann, Jason Flood, and Iosif Viorel Onut. Us-
ing URL shorteners to compare phishing and malware
attacks. In Proc. of eCrime, pages 1–13, 2018.

[25] Gang Liu, Bite Qiu, and Liu Wenyin. Automatic detec-
tion of phishing target from phishing webpage. In Proc.
of ICPR, pages 4153–4156, 2010.

[26] Mailchimp. Insights from Mailchimp’s Send Time Op-
timization System, 2014.

[27] Jian Mao, Pei Li, Kun Li, Tao Wei, and Zhenkai Liang.
BaitAlarm: Detecting phishing sites using similarity in
fundamental visual features. In Proc. of INCoS, pages
790–795. IEEE, 2013.

[28] Samuel Marchal, Giovanni Armano, Tommi Gröndahl,
Kalle Saari, Nidhi Singh, and N Asokan. Off-the-Hook:
an efficient and usable client-side phishing prevention
application. IEEE Trans. Comput., 66(10):1717–1733,
2017.

[29] Samuel Marchal and N Asokan. On Designing and
Evaluating Phishing Webpage Detection Techniques for
the Real World. In Proc. of USENIX-Security, 2018.

[30] A Mishr and B B Gupta. Hybrid Solution to Detect and
Filter Zero-day Phishing Attacks. In Proc. of ERCICA,
pages 373–379, 2014.

[31] Kevin D. Mitnick and William L. Simon. The Art of
Deception: Controlling the Human Element in Security.
2002.

[32] Mahmood Moghimi and Ali Yazdian Varjani. New rule-
based phishing detection method. Expert Syst. Appl.,
53:231–242, 2016.

USENIX Association 28th USENIX Security Symposium 1323

[33] Daniel J O’Keefe. Elaboration likelihood model. The
International Encyclopedia of Communication, 2008.

[34] Daniela Oliveira, Harold Rocha, Huizi Yang, Donovan
Ellis, Sandeep Dommaraju, Melis Muradoglu, D H Weir,
and N C Ebner. Dissecting Spear Phishing Emails for
Older vs Young Adults: On the Interplay of Weapons of
Influence and Life Domains in Predicting Susceptibility
to Phishing. In Proc. of CHI, pages 1–13, 2017.

[35] P. Pearce, V. Dave, C. Grier, K. Levchenko, S. Guha,
D. McCoy, V. Paxson, S. Savage, and G. M. Voelker.
Characterizing large-scale click fraud in zeroaccess. In
Proc. of CCS, pages 141–152, 2014.

[36] PhishLabs. Phishing Trends & Intelligence Report:
Hacking the Human. Technical report, 2018.

[37] A. Pitsillidis, C. Kanich, G. M. Voelker, K. Levchenko,
and S. Savage. Taster’s choice: A comparative analysis
of spam feeds. In Proc. of IMC, pages 427–440, 2012.

[38] Propeller. The 2017 Email Marketing Field Guide: The
Best Times and Days to Send Your Message and Get It
Read, 2017.

[39] Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. Labeled LDA. In Proc. of
EMNLP, volume 1, page 248, 2009.

[40] Elissa M Redmiles, Neha Chachra, and Brian Wais-
meyer. Examining the Demand for Spam: Who Clicks?
In Proc. of CHI, pages 1–10, 2018.

[41] Jennifer L Robertson and Julian Barling. Greening or-
ganizations through leaders influence on employees pro-
environmental behaviors. J. of Organ. Behav., 34(2):176–
194, 2013.

[42] Angelo P.E. Rosiello, Engin Kirda, Christopher Kruegel,
and Fabrizio Ferrandi. A layout-similarity-based ap-
proach for detecting phishing pages. In Proc. of Se-
cureComm, pages 454–463, 2007.

[43] Timothy N. Rubin, America Chambers, Padhraic Smyth,
and Mark Steyvers. Statistical topic models for multi-
label document classification. Mach. Learn., 88(1-
2):157–208, 2012.

[44] Brad J. Sagarin and Kevin D. Mitnick. The Path of
Least Resistance. In Six Degrees Of Social Influence:
Science, Application, and the Psychology of Robert Cial-
dini, chapter 3. 2012.

[45] SendInBlue. Best Time to Send an Email: User Data
Study by Industry, 2017.

[46] Ankit Shah, Rajesh Ganesan, Sushil Jajodia, and Hasan
Cam. Understanding tradeoffs between throughput,
quality, and cost of alert analysis in a csoc. IEEE
Transactions on Information Forensics and Security,
14(5):1155–1170, 2019.

[47] Amit Singhal, Chris Buckley, and Mandar Mitra. Pivoted
Document Length Normalization. ACM SIGIR Forum,
51(2):21–29, 2011.

[48] K E Stanovich and R F West. Individual differences
in reasoning: Implications for the ratinality debates?
Behav. Brain Sci., 23:645–726, 2000.

[49] Gianluca Stringhini and Olivier Thonnard. That ain’t
you: Blocking spearphishing through behavioral mod-
elling. In Proc. of DIMVA, pages 78–97, 2015.

[50] Janos Szurdi, Balazs Kocso, Gabor Cseh, Mark Felegy-
hazi, and Chris Kanich. The Long Taile of Typosquat-
ting Domain Names. In Proc. of USENIX-Security,
pages 191–206, 2014.

[51] Louis Tay, Kenneth Tan, Ed Diener, and Elizabeth Gon-
zalez. Social Relations, Health Behaviors, and Health
Outcomes: A Survey and Synthesis. Appl. Psychol.
Health Well-Being, 5(1):28–78, 2013.

[52] Amos Tversky and Daniel Kahneman. Judgment
under Uncertainty: Heuristics and Biases. Science,
185(4157):141–162, 1974.

[53] Rick Wash and Molly M Cooper. Who Provides Phish-
ing Training? Facts, Stories, and People Like Me. In
Proc. of CHI, pages 1–12, 2018.

[54] Michael Workman. Wisecrackers: A Theory-Grounded
Investigation of Phishing and Pretext Social Engineering
Threats to Information Security. J. of Am. Soc. Inf. Sci.,
59(4):1–12, 2008.

[55] Ryan T. Wright, Matthew L. Jensen, Jason Bennett
Thatcher, Michael Dinger, and Kent Marett. Influence
techniques in phishing attacks: An examination of vul-
nerability and resistance. Inf. Syst. Res., 25(2):385–400,
2014.

[56] Ryan T. Wright and Kent Marett. The Influence of
Experiential and Dispositional Factors in Phishing: An
Empirical Investigation of the Deceived. J. of Manag.
Inf. Syst., 27(1):273–303, 2010.

[57] Min Wu, Robert C. Miller, and Simson L. Garfinkel. Do
security toolbars actually prevent phishing attacks? In
Proc. of CHI, page 601, 2006.

[58] Michael Yip, Nigel Shadbolt, and Craig Webber. Why
forums? An empirical analysis into the facilitating fac-
tors of carding forums. In Proc. of WebSci, 2013.

1324 28th USENIX Security Symposium USENIX Association

Appendix

Table 9: Correlations between regression variables
We find no evident correlations between regressors. Only Scarcity
and Social proof, and Liking and Spoof dist. show a higher than
average correlation of 0.50 and 0.57 respectively, which is unlikely to
affect estimation results.

(1) (2) (3) (4) (5) (6) (7)

(1) Reciprocity 1.00 -0.19 0.13 -0.06 -0.11 -0.09 -0.17
(2) Consistency 1.00 -0.08 -0.24 0.10 -0.09 -0.41
(3) Social proof 1.00 0.25 -0.04 0.50 0.13
(4) Authority 1.00 0.06 -0.08 -0.10
(5) Liking 1.00 0.09 0.57
(6) Scarcity 1.00 0.24
(7) Spoof dist. 1.00

Bootstrap analysis for similar email detection

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

Sensitivity
Specificity

The optimal threshold was found at 0.91 based on the intersection of the
mean sensitivity and specificity metrics at all decimal thresholds in [0,1]
across 10,000 bootstrap simulations with sample size 300.

Figure 16: Simulated optimal cosine similarity threshold for
duplicate detection

After computation of the full pairwise similarity matrix for all
suspect emails in our dataset, a threshold value was used to
determine the lower-bound for the similarity score of emails
we consider to be duplicates. In order to determine the most
optimal threshold value for our specific dataset we performed
a bootstrap analysis [11]. A bootstrap analysis generally in-
volves repeatedly running simulations on samples drawn with
replacement from an original sample set in order to estimate
statistics on a larger population. This is a fitting solution for
problems concerning dataset of large sizes like ours, which
do not generally allow for efficient derivation of the full set
of results that qualify as “ground-truth”.

We started our bootstrap analysis with a random sample
of 300 suspect phishing emails for which we made a manual
assessment of all pairwise similarities to test the performance
of our cosine similarity algorithm across different thresholds.
Then, we repeatedly (n = 10,000) drew samples with replace-
ment of size 300 from our manually classified sample and
computed the pairwise cosine similarity matrix for all deci-
mal thresholds in the interval [0,1]. For each combination of
bootstrap sample and threshold value we computed the perfor-
mance using the sensitivity (true positive rate) and specificity

metrics (true negative rate). A high sensitivity score refers
to a high probability of duplicate detection, measured by the
proportion of actual duplicates that are correctly identified
as being similar, whereas a high specificity score refers to a
high probability of non-duplicate rejection, measured by the
proportion of actual non-duplicates that are correctly identi-
fied as not being similar. The intersections of the mean results
for these two performance measures indicate that 0.91 is the
optimal threshold value for our dataset, as is visualized more
elaborately in Figure 16.

We use this threshold to calculate the pairwise similarity
matrix for all emails in our dataset and assign emails that are
found to be similar the same duplicate ID to allow us to filter
for unique emails.

Distribution of phishing emails by user
We perform a robustness check to evaluate the robustness of
our results against large biases in the distribution of phish-
ing emails across potential victims (whereby higher reported
clicks may relate to higher email delivery volumes). We base
the following on the sole assumption that attackers “sample”
victims from the same pool (i.e. Org customers). As we of
course cannot measure email delivery rates in user inboxes,
our aim is to ask how would the dataset look like if large
sample biases were present, and look for evidence in the data.

We developed the following data generation model to for-
malize and test this: a phishing email e 2 E can reach a user
u 2U with probability Pe(u). A suspicious email will be de-
tected by a user with a certain probability Pdet

u,e = Pu(DET |e).
Notice that this depends on the email and the specific user
that receives it, as different users may have different sensibili-
ties to emails with different characteristics. The probability
of remaining undetected is simply the complement, and is
defined as Pund

u,e = 1�Pu(DET |e).
Further, each user has a certain probability

Pu(noti f y|DET,e) and Pu(click|¬DET,e) of, respec-
tively, notifying a detected email, and clicking on a link if the
email is not detected. Hence, the probability of an email being
reported by a user is Pe(u) ·Pu(DET |e) ·Pu(noti f y|DET,e).
Conversely, Pe(u) · (1 � Pu(DET |e)) · Pu(click|¬DET,e) is
the probability of a click for each e 2 E and u 2U .

Let C be the set of clicked emails, and D the set of reported
emails, we’d then have:

|C| = |E| Â
8e2E

Â
8u2U

Pe(u) ·Pund
u,e ·Pu(click|¬DET,e)(2)

|D| = |E| Â
8e2E

Â
8u2U

Pe(u) ·Pdet
u,e ·Pu(noti f y|DET,e) (3)

|D| corresponds to the whole set of suspicious emails re-
ported in the organization’s phishing inbox. |C| corresponds
to the set of emails clicked (of which we observe C0 = D\C).

USENIX Association 28th USENIX Security Symposium 1325

0.0

2.5

5.0

7.5

0.00 0.05 0.10 0.15 0.20
Ratio of successful phishing emails and similar, reported emails

de
ns

ity

0

10

20

30

40

0.00 0.05 0.10 0.15 0.20 0.25
Ratio of successful phishing emails and reported emails with the same cognitive attacks

de
ns

ity

The distribution is calculated over similar emails (as per their cosine similarity, left), and over emails that share the same cognitive attacks
(right). We observe a stable ratio across all emails, suggesting no significant skew in the probability of an email reaching a user’s inbox.

Figure 17: Estimation of rates of arrival of phishing emails to users

Log_10 of potential phishing emails notified by a user

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5

0
10

00
0

25
00

0

Figure 18: Number of users reporting |Du| emails (log10)

Notice that Pe(u) (i.e. the probability of an email arriv-
ing to a user’s inbox) is the only variable that is outside of
the direct influence of the user. On the contrary, Pdet

u,e , Pund
u,e ,

Pu(noti f y|DET,e) and Pu(click|¬DET,e) directly depend on
the characteristics of the user and of the email. Hence, we
would expect them to be approximately constant as long as
within the comparison the users are the same, and the emails
are similar to each other. As we can control for ‘similar’
emails (Section 3.1.3) and users are all pooled from the set of
Org’s clients, we can isolate large effects on |C0| and |D| as
being caused by large fluctuations in Pe(u).

Specifically, we would expect |C0
similar|/|Dsimilar| ⇡

constant iff also Pe(u) ⇡ constant 8e 2 Esimilar as all other
terms in the two equations will remain approximately the

same for similar emails and the users sampled from the same
pool. Hence, we measure the ratio of |C0

similar|/|Dsimilar| as a
proxy to estimate how much Pe(u) can be expected to vary
across emails. This holds under the sole assumption that
emails in D\C are indistinguishable (from the perspective of
the user) from those in D\C =C0; this is uncontroversial as
the detection mechanism for the inclusion of an email in C0

only depends on the phishing webpage and not on the email
per se.

Figure 17 reports the ratio distribution calculated over
emails with cosine similarity above the defined threshold
(left), and over emails employing the same cognitive attacks
(right). The ratios are small (i.e. only a small fraction of re-
ported emails of a certain type can be expected to generate
at least one click). This is qualitatively and quantitatively in
line with previous findings in the literature [19]. Importantly,
we observe that under both measures of similarity the rate is
essentially constant and settles around 1-5% for all emails.
This observation is incompatible with a significantly skewed
distribution of emails per user. Breaking down the figure by
users receiving the phishing email does not reveal any addi-
tional pattern as most users report only a few emails each (ref
Figure 5 and Figure 18).

This is in line with previous literature on phishing at-
tacks [9, 16] suggesting that no specific pre-selection of users
charcterizes untargeted phishing attacks. We therefore do not
expect significant biases in the analysis to emerge by the oth-
erwise unmeasurable distribution of emails in users’ inboxes.

1326 28th USENIX Security Symposium USENIX Association

Users Really Do Answer Telephone Scams

Huahong Tu1, Adam Doupé2, Ziming Zhao3, and Gail-Joon Ahn2,4

1University of Maryland, hh2@umd.edu
2Arizona State University, {doupe, gahn}@asu.edu
3Rochester Institute of Technology, zxzics@rit.edu

4Samsung Research

Abstract
As telephone scams become increasingly prevalent, it is cru-
cial to understand what causes recipients to fall victim to
these scams. Armed with this knowledge, effective counter-
measures can be developed to challenge the key foundations
of successful telephone phishing attacks.

In this paper, we present the methodology, design, execu-
tion, results, and evaluation of an ethical telephone phishing
scam. The study performed 10 telephone phishing experi-
ments on 3,000 university participants without prior aware-
ness over the course of a workweek. Overall, we were able to
identify at least one key factor—spoofed Caller ID—that had
a significant effect in tricking the victims into revealing their
Social Security number.

1 Introduction

The rise of telephone spam, scams, fraud, phishing, or vish-
ing, is a significant and growing problem. According to FTC
reports for 2018, phone impersonation scams have increased
significantly in the recent years. The national Do-Not-Call
Registry received more than 5.78 million unwanted call com-
plaints [1], with fraud and imposer scam in the top spots and
more than 69% of all reported frauds were attempted over the
phone [2].

With the growing dissatisfaction of telephone scams, how-
ever, little research has been done to study why people fall for
telephone scams and how to combat the problem. In this paper,
inspired by the work of Tischer et al. [3] on USB drives, we
present the results of an empirical telephone phishing study,
designed to systematically measure different attributes in re-
lation to the success rate of telephone scams. Although the
current understanding of telephone scams might be accepted
as conventional wisdom, no prior work has specifically vali-
dated such claims with a systematic study. From this study,
we hope to dispel some myths about what is “scammy” and
what is not. With the understanding of the key attributes that
make a scam convincing, the research community can focus

on developing prevention methods to challenge the fundamen-
tals of telephone phishing attacks. The key takeaway from
this study is that caller ID spoofing is an incredibly effective
feature in telephone scams, and, therefore, authenticated caller
ID [4, 5] is likely to be an important countermeasure.

The main contributions of this paper are the following:
• We describe a systematic approach to test the signifi-

cance of various telephone phishing scam attributes and
conduct an empirical study.

• We present our evaluation of the phishing study and pro-
vide our recommendations for combating the telephone
phishing problem.

2 Background

With the emergence of distribution technology, decreasing
economic cost, high reachability, and automation, the tele-
phone has become an attractive medium for disseminating
unsolicited information. As with any form of spam, there are
three key ingredients: the recipient list, the content, and the
distribution channel [6]. Telephone scams rely on distributing
deceitful voice content, whereas telephone spam or telemar-
keting primarily distributes marketing and advertising content.
In telephone scams, fraud, phishing, or vishing, the goal of
the voice content is to trick the human victim into performing
harmful actions for the benefit of the attacker (while other
types of fraud are possible on telephone networks [7–9]).

Compared to other forms of phishing, such as email and
website phishing [10–15], telephone phishing differs by hav-
ing the potential to make the scam more convincing by falsify-
ing both visual and auditory perceptions to induce the victims
into falling for the scam. Visually, the scam can be made
more convincing by altering the caller ID, such as by spoofing
the caller ID, manipulating the area code (e.g., in “neighbor
spoofing” attacks [16]), and impersonating a familiar contact
name. Once the recipient has answered the call, the attacker
then switches to using deceitful voice content to exploit the
human recipient [17,18]. Within the voice content, an attacker
can spoof or duplicate the speech from a known organization

USENIX Association 28th USENIX Security Symposium 1327

or a familiar personal contact. To provide a motivation for the
recipient to divulge confidential or personal information, the
scammer can present a demanding scenario that forces the
victim to divulge sensitive information.

By looking at telephone phishing from a perspective that
can be characterized by the visual and voice attributes which
it embodies, a systematic approach can be used to study and
understand why some scams work better than others. Under-
standing why telephone phishing works can help us design
solutions that challenge the core foundations of telephone
scams.

3 Study Design

The goal of the study is to design a systematic approach that
can reveal the effective factors in telephone scams by con-
ducting our own telephone phishing scam. Our approach to
designing the study is to first identify the attributes that could
lead to an effective telephone phishing scam. After that, we
design a set of experiments and procedures that allow compar-
ison of different variations of an attribute. Each experiment
followed a standardized procedure that was conducted on
each group simultaneously (all calls were distributed in a
randomized order throughout the experiment). Finally, we
provide a discussion on what could be learned from the anal-
ysis and provide our recommended solutions for combating
the telephone phishing problem. The study was conducted
with significant ethical consideration and with IRB approval
(see Section 3.5 for an in-depth discussion of ethics).

3.1 Attributes
To identify the telephone scam attributes, we gathered and
reviewed more than 150 existing real-world telephone scam
samples from various Internet sources, including the FTC
website, IRS website, news websites, YouTube, SoundCloud,
user comments, and industry surveys. While reviewing the
scams, we identified the following attributes used in telephone
scams:
Area Code: In North America, the area code is the first three
digits on the caller ID. The area code specifies the geographic
location associated with the caller’s phone number, e.g., 202 is
associated with Washington, DC. In addition, a toll-free phone
number is also identified by the three-digit prefix similar to a
geographic area code, e.g., 800, 888, 877, etc. According to
reports of real-world IRS impersonation scams [19,20], many
scammers appeared to have either spoofed or obtained a 202
area code or toll-free area code on their caller IDs to make
it appear as if the IRS is calling. To test the hypothesis that
the area code could effect telephone phishing success, in our
experiments we varied the caller ID area code between: 202
(Washington, DC), 800 (Toll-free), and 480 (local area code
of the university location).

Caller Name: Today, most telephone terminals have the ca-
pability of associating a name with a telephone number. With
a stored contact, an incoming call from the stored contact
would show the name associated with the caller ID. To per-
form a spear phishing attack [21,22], a malicious caller could
spoof the caller ID of a known stored contact. A known stored
contact can be identified for an organization by studying the
publicly available phone numbers or for an individual by man-
ually analyzing social network information. For legal, ethical,
and IRB approval reasons, we did not actually spoof a known
caller name. Instead, we asked our telephone service depart-
ment to temporarily create a new contact in the university’s
internal phone directory and associated a legitimate sounding
name with the telephone number. We used that telephone
number in our scam experiments to produce a similar effect
to caller name spoofing.
Voice Production: According to reports of real-world tele-
phone scams, some used a robotic (synthesized) voice, while
others used a pre-recorded human voice [20, 23]. To test the
effect of synthesized voices vs. human voices, we recreated
known scams using a text-to-speech synthesizer to generate
a speech similar to the real-world scams. To mimic the hu-
man voice version of the scams, we recorded human voices
speaking the exact same announcement message.
Gender: From listening to recordings of actual telephone
scams, some used a male voice, and some used a female voice.
To test if the vocal gender of the voice could have an effect
on the telephone scam, we varied the voice gender between
male and female in the text-to-speech synthesizer.
Accent: From the reports of telephone scams, some spoke
with an Indian accent, and some others spoke with an Ameri-
can accent. It seems possible that recipients would be more
wary of scams that speak in a foreign accent, and would be
less suspicious of scams that speak in an American accent. To
test if this could have an effect on the telephone scam, we var-
ied the recorded voice accent between Indian and American
in our experiments.
Entity: From gathering real-world telephone scams, two
types of scams stood out in terms of the number of re-
ports: IRS impersonation scams [24] and HR impersonation
scams [25]. In these scams, the scammer claimed to be from
the IRS or the company’s HR department. While the IRS
scams can affect any taxpayer in the US, the HR scams are
usually targeted toward people in a specific company. In-
tuitively, it seems that a more targeted attack would have
more success. Thus, we varied the impersonated entity of
our scams between the IRS and ASU’s HR department1. To
simulate the real-world HR scams as closely as possible, we
initially wanted to impersonate our university’s HR depart-
ment. However, our HR department had strong objections
about using their name to conduct the scam experiments. As
a compromise, our experiments claimed to be from a fake

1ASU is the university acronym for Arizona State University

1328 28th USENIX Security Symposium USENIX Association

but legitimate-sounding HR-like department called the “W-2
Administration”2.
Scenario: Real-world telephone scams create various scenar-
ios to motivate their victims to fall for the scam, such as tax
lawsuits, payroll issues, or credit card verification. The type
of motivation are generally either fear-based or reward-based.
In our study, we crafted a fear-based and a reward-based sce-
nario related to each entity. These scenarios were inspired
by real-world IRS scams and HR scams. To test each type
of scenario, our message announcements varied between Tax
Lawsuit (IRS fear-based), Unclaimed Tax Return (IRS reward-
based), Payroll Withheld (HR fear-based), and Bonus Issued
(HR reward-based).

3.2 Experiments
To test these attributes, we designed the experiments such that
variations of each attribute can be compared under similar en-
vironmental conditions. When performing experiments under
the same environmental conditions, one of the design issues
is to decide whether to counterbalance the environmental con-
ditions such that all variations of background attributes are
tested. This would theoretically avoid possible interference
due to a specific set of background conditions.

However, performing a counterbalanced measures design
does not come without costs. Counterbalancing the conditions
is performed by splitting the experiments into groups of every
possible order of attribute conditions. Given the large number
of attributes that we have identified, and of each attribute with
2–4 variations that we have identified, would require us to
create 384 separate groups of experiments. This is unfeasi-
ble for an empirical study with real-world time and resource
constraints.

As a solution to this problem, instead of experimenting
with a large number of background conditions, we compare
variations of each attribute under a specific set of background
conditions that seem to be the most popular in the real world.
We decided on a standard background condition: a phishing
scam with area code 202, with no caller name, speaking in a
synthesized, male voice, in an American accent, impersonat-
ing the IRS, motivating the recipient with a tax lawsuit. The
set of 10 experiments and the variations of each attribute are
listed in Table 1.

3.3 Population
To comply with legal requirements [26], our own ethical con-
siderations, and our IRB (Section 3.5), we conducted exper-
iments on our university’s internal population (rather than
the general population). This population was unaware of our
study (and we discuss the ethical implications of this decep-
tive non-consent study in Section 3.5). The population of the

2The W-2 is the income tax form currently used in the United States, so
this name has associations with payroll and taxes.

study were work telephone numbers that are associated with
university staff and faculty. We decided on a population of
3,000 recipients (300 per experiment) for the study. To com-
pile the list of telephone numbers, we wrote a custom tool
to download the university’s internal phone directory. For a
real-world scammer, our university’s phone directory is also
publicly available for crawling.

To minimize selection bias, the telephone numbers were
randomly chosen from the university telephone directory, and
then the chosen contacts were randomly put into one of the
10 experiment groups. The sample selection procedure was
as follows: (1) Compile the list of work telephone numbers
associated with university staff and faculty, (2) remove tele-
phone numbers of people already aware of the study, and (3)
randomly assign 300 numbers to each of the 10 experiments.

3.4 Procedure

Ring and show
visual attribute properties

Answer?

Scenario announcement
with voice attribute properties

 True

Press 1?

Follow up announcement
and request last 4 SSN digits

 True

Press any digit?

Debriefing announcement
and request survey participation

 True

Press 1?

Survey questions

 True

Reearcher contact info
and IRB statement

 False

Disconnect call

Figure 1: Procedure of each experiment.

Several considerations went into the design of the proce-
dure. First, we need to ensure that the procedure is standard-
ized across all experiments, such that the results are directly
comparable to each other. Second, we need to ensure that
the process minimizes false positives and false negatives,
otherwise, the study results could be unreliable. Finally, the

USENIX Association 28th USENIX Security Symposium 1329

No. Caller ID Area Code Location Caller Name Voice Production Gender Accent Entity Scenario
E1 202-869-XXX5 Washington, DC N/A Synthesizer Male American IRS Tax Lawsuit
E2 800-614-XXX9 Toll-free N/A Synthesizer Male American IRS Tax Lawsuit
E3 480-939-XXX6 University Location N/A Synthesizer Male American IRS Tax Lawsuit
E4 202-869-XXX0 Washington, DC N/A Synthesizer Female American IRS Tax Lawsuit
E5 202-869-XXX2 Washington, DC N/A Synthesizer Male American IRS Unclaimed Tax Return
E6 202-849-XXX7 Washington, DC N/A Human Male American IRS Tax Lawsuit
E7 202-869-XXX4 Washington, DC N/A Human Male Indian IRS Tax Lawsuit
E8 480-462-XXX3 University Location N/A Synthesizer Male American ASU Payroll Withheld
E9 480-462-XXX5 University Location W-2 Administration Synthesizer Male American ASU Payroll Withheld
E10 480-462-XXX7 University Location N/A Synthesizer Male American ASU Bonus Issued

Table 1: Table of all experiments and their attributes.

procedure also must be carried out ethically and minimize
potential harm to the participants.

To ensure that the procedure is standardized, we used an au-
todialer to automate the process of sending out the telephone
calls and collecting the recipients’ responses.

Every experiment followed a standard procedure that is
summarized in Figure 1. The procedure has several steps that
require inputs from the recipient. The purpose of this action
is to reduce the likelihood of recipients making random input
actions without hearing the announcement. The action also
helps to filter out answers from answering machines. Note
that a recipient could break off from the procedure at any
point by simply disconnecting the phone, hence not every
recipient follows the procedure until the end.

The procedure first begins with a ring on the recipient’s
work phone (the recipient does not expect the call). When the
phone is ringing, the incoming call screen shows the caller
ID and, in experiment E9, the caller name. An example of
the incoming call screen is shown in Figure 2a. In all of our
experiments, the caller ID showed up as 91XXXXXXXXXX,
where XXXXXXXXXX is the caller ID used in the respective
experiment. Our university’s work phone adds a 91 prefix to
every incoming phone call from an external source as all of
the calls were distributed from an external telephone service
provider, similar to what a real-world scammer would do.

For Experiment 9, the incoming call screen also shows
a caller name as shown in Figure 2b. This experiment was
designed to simulate a scammer spoofing a known caller
name. For legal and ethical reasons, we did not actually spoof
a phone number. Instead, we asked our telephone service
department to temporarily create a new contact in the uni-
versity’s internal phone directory and associated a legitimate
sounding HR department name “W-2 Administration” with
the telephone number. In a normal external call, there is no
caller ID displayed, however, IT was able to help us create
the caller ID shown in Figure 2b. While a scammer would not
be able to create a new name, they can spoof the caller ID of
a known caller with a targeted spearphishing scam.

If the call is answered, it starts by playing a prerecorded
scenario announcement message (which is different for each
scenario). The prerecorded scenario announcement message
incorporates the voice attribute properties of each particu-
lar experiment. We crafted the four different announcement

messages to mimic what a real-world scammer would say by
using words and sentences from our collected scam samples.

In the Tax Lawsuit scenario, we claimed to be the IRS and
presented a scenario where the recipient had to act because
of a tax lawsuit. The transcript of the announcement message
is in Appendix A.1. In the Unclaimed Tax Return scenario,
we claimed to be the IRS and presented a scenario where the
recipient had to act because of an unclaimed tax return. The
transcript of the announcement message is in Appendix A.2.
In the Payroll Withheld scenario, we claimed to be ASU “HR”
department and presented a scenario where the recipient had
to act because pay would be withheld. Our university has a
publicly available payroll calendar on the HR department’s
website3, hence a real-world scammer could also use this in-
formation to craft an announcement message based on the
payroll information. The transcript of the announcement mes-
sage is in Appendix A.3. In the Bonus Issued scenario, we
claimed to be ASU “HR” department and presented a scenario
where the recipient had to act because a performance bonus
was issued. The transcript of the announcement message is in
Appendix A.4.

Every scenario announcement message requests the recip-
ient to enter 1 to continue to the next step for a follow-up
message (same for every participant). After pressing 1, the
follow-up message asks the recipient to enter the last four
digits of their Social Security number and mimics the process
of connecting the phone call to a live agent. The transcript of
the follow-up announcement message is in Appendix B.

In the real world, the last four digits of the Social Secu-
rity number can be used to perpetrate financial and identity
fraud [27]. Other parts of the Social Security number can
also be inferred from the recipient’s phone number [28]. To
minimize potential risk to the recipient (with cooperation
and consultation with our IRB), we did not record which dig-
its were pressed, we instead recorded only if any digit was
pressed.

This then led to a debriefing announcement and a request
to participate in our phone survey. The transcript of the de-
briefing message is in Appendix C. To emphasize the fact
that whatever they listened to was not a real scam, the de-
briefing announcement and survey questions were recorded
with the researcher’s real voice. The post-debriefing survey

3https://cfo.asu.edu/payroll-calendars

1330 28th USENIX Security Symposium USENIX Association

(a) All experiments except experiment E9 (b) Experiment E9 with caller name displayed

Figure 2: Incoming call screen of different experiments.

consisted of two questions: (1) a survey question that asked
whether the recipient was convinced by the scam (transcript
in Appendix D.1) and, depending on how they responded, (2)
asked what factor convinced them of the scam (Appendix D.2)
or convinced them not to believe the scam (Appendix D.3).
We recorded the participant’s voice recording for the second
question. After the second survey question, the autodialer sys-
tem plays an ending message stating the researcher’s contact
information (transcript in Appendix E).

In summary, during each step of the procedure, the autodi-
aler was configured to collect the following inputs from the
recipient: Continued, Entered SSN, Convinced, Unconvinced,
and Recording.

3.5 Ethics
These experiments were a deceptive study on involuntary
participants, and therefore we deeply considered the ethical
issues. To address the ethical issues inherent in our experi-
ments, we carefully designed the experiments and worked
with our university’s IRB, to not simply obtain approval but
to conduct the study minimizing harm. This is important be-
cause, to have scientifically valid results, we could not obtain
informed consent (this would bias the results of the study) and
we must deceive the participants (they would need to believe
that the call was an actual scam call). To protect our partici-
pants, we implemented several safeguards in the experimental
design.

The nature of this experiment, studying telephone phishing
attacks, involves deception as well as involuntary participa-
tion. Both aspects are critical to receiving scientifically valid
results—informing the participants of the study would sig-
nificantly bias the results. However, the use of deception can
harm the recipients, by wasting their time, confusing them, or
leading them to believe they fell victim to a scam. Therefore,
our debriefing served to not only inform the participants of
the study, but to also educate recipients about the dangers of
telephone scams. In addition, we only called each participant

once throughout the entire study duration (to minimize the
disruption).

Before proceeding with the study, we also worked with
our university’s IT security group to provide them with in-
formation that would help to alleviate the concerns of our
participants. This IT security group at ASU is responsible
for the security of all aspects of the university. We shared
with the security group the experiment contact list, the exper-
imental design, and the incoming phone numbers (that we
used to send the calls) so that the help desk personnel could
be prepared to handle any requests and reports. In this way,
our participants who reported the scam calls to IT would be
assured that it was part of a study.

In recording the results, we also strove to do so ethically
and in accordance with established IRB protocols. One of
the major safeguards is that we did not record the Social
Security number. While a spammer would typically want the
Social Security number, all that we record is the fact that
they pressed any digit. In fact, we did not even ask for the
full Social Security number, and we performed no analysis
to see if they provided nonsensical last four Social Security
numbers. This has the drawback of decreasing the validity of
our data—participants may have felt safe to input only the
last four of their Social Security number (when they would
not input the full number) or they input fake last four digits of
their Social Security number. Although these measures may
diminish the strength of our data, we believe ethics is a more
important aspect of designing a telephone phishing study.

3.6 Dissemination
We ran the previously described procedure using the 10 de-
scribed experiments during a workweek in the late March of
2017, during core working hours of 10:00am–5:00pm each
day. We used an Internet-hosted autodialer4 to automate the
process of sending out the telephone calls to the 3,000 recipi-
ents. Each experiment’s calls were simultaneously distributed

4https://www.callfire.com/

USENIX Association 28th USENIX Security Symposium 1331

during the experiment period at a rate of 1–3 live calls per
experiment.

We associated each experiment with a unique caller ID. In
all experiments, the vast majority of the outbound calls did
not reach a live recipient and were answered by a voicemail
answering machine. If a recipient could not answer the phone,
the recipient could use the caller ID in their call history to call
us back. As each experiment had a unique caller ID, the return
call would be directed to that particular experiment’s proce-
dure. When a recipient called back, the same procedure was
administered where a prerecorded scenario announcement
message is first played.

While disseminating the phone calls, several unexpected
events impacted our study.

The ASU school of journalism and mass communication
identified the scam call incidents only 2 hours and 45 minutes
from the launch of the experiments on the first day. Instead of
reporting it to the university help desk (who were prepared
and aware of our study), the school sent out a mass email
warning all journalism staff and faculty at 4 hours 28 minutes
from launch. However, we did not notice a significant dip in
the number of recipients that continued with our scam calls
as the portion of work phones at the journalism department
represents less than 2% of our sample population.

At 4 hours and 22 minutes from the launch of the experi-
ments, our university’s telephone service office also started
blocking some of our phone calls as they were receiving sys-
tem alerts of too many incoming phone calls exhausting the
telephone trunk routes. We worked with the telephone service
office to get our calls unblocked within the next 4 hours as
we decreased the simultaneous call rate of our phone calls to
one per experiment.

The IRB office also received some complaints (we were not
told exactly how many) regarding the scam call experiments,
which resulted in our experiments being paused for roughly
12 hours (start to finish) starting on day 2, as we waited for the
IRB committee to review the complaints. The IRB examined
our procedures and decided that, as our study was originally
designed, the beneficence outweighed the harm (as evidenced
by the complaints) and allowed the study to proceed.

A summary showing how these events affected our calls
is shown in Figure 3. In the end, despite the unexpected
events, we finished sending out the telephone calls to the
3,000 recipients as planned before the end of the workweek.

4 Results and Analysis

The input data collected from the 3,000 recipients are pre-
sented in Table 2. Across all 10 experiments of 3,000 to-
tal recipients, 8.53% (256/3000) of all recipients continued
after listening to the scam scenario announcement, 3.73%
(112/3000) of all recipients called back after receiving the
initial call from us, 4.93% (148/3000) of all recipients entered
at least a digit when requested to enter the last four digits of

Figure 3: No. of recipients pressed 1 to continue the received calls
over the experiment time.

their Social Security number, 1.17% (35/3000) of all recipi-
ents explicitly stated that they were convinced by the scam,
and 1.23% (27/3000) of all recipients explicitly stated that
they were not convinced by the scam.

Before presenting our analysis of the experiments, we first
discuss our methodology to systematically analyze their rel-
ative effectiveness. The first step of performing the analysis
is to decide on metric(s) that will be used as the standard of
measurement. To chose an ideal metric, we believe a good
metric should not only be quantifiable but also be a proxy
for what ultimately matters. From the telephone scammers’
perspective, the ultimate goal is to collect as many Social
Security numbers as possible for the purpose of conducting
identity fraud.

We could use the metric of Entered SSN, which is the num-
ber of participants that entered any value for their Social Se-
curity number (SSN). However, as discussed in Section 3.5,
we did not collect the SSNs input by the user. Although this
seems to be an ideal metric to estimate the number of SSNs
collected, there is still the possibility that the recipient may
have tried to enter a fake Social Security number. In fact, in
some of the recordings, a few recipients stated that they did
not enter their real Social Security number information.

Therefore, we need to derive a metric that could provide a
reasonable estimate of the actual number of real SSNs given to
us in each experiment. Convinced is the metric of the number
of recipients that explicitly stated that they were convinced
by the scam after the first survey question. This metric is the
most conservative for estimating attack success. However,
with the low number of responses, participants rarely made it
to that step. Using this metric would exclude a large number
of recipients that fell for the scam but declined to participate
in the phone survey after the debriefing announcement.

Because we cannot assume that all SSNs entered were real,
to reduce these types of false positives, we could create a new
metric and remove the participants that entered their SSNs
and then subsequently stated that they were unconvinced by

1332 28th USENIX Security Symposium USENIX Association

No. Continued Callbacks Entered SSN Convinced Recordings Unconvinced Recordings
E1 12 4.00% 7 2.33% 6 2.00% 0 0.00% 0 0.00% 4 1.33% 2 0.67%
E2 19 6.33% 7 2.33% 15 5.00% 3 1.00% 0 0.00% 3 1.00% 3 1.00%
E3 13 4.33% 6 2.00% 8 2.67% 1 0.33% 1 0.33% 2 0.67% 1 0.33%
E4 23 7.67% 14 4.67% 13 4.33% 2 0.67% 0 0.00% 3 1.00% 2 0.67%
E5 9 3.00% 3 1.00% 2 0.67% 1 0.33% 0 0.00% 1 0.33% 1 0.33%
E6 9 3.00% 7 2.33% 8 2.67% 2 0.67% 2 0.67% 2 0.67% 1 0.33%
E7 13 4.33% 8 2.67% 9 3.00% 3 1.00% 1 0.33% 5 1.67% 4 1.33%
E8 53 17.67% 22 7.33% 30 10.00% 8 2.67% 3 1.00% 9 3.00% 8 2.67%
E9 60 20.00% 15 5.00% 35 11.67% 7 2.33% 3 1.00% 4 1.33% 3 1.00%
E10 45 15.00% 25 8.33% 22 7.33% 8 2.67% 7 2.33% 4 1.33% 2 0.67%
Total 256 8.53% 112 3.73% 148 4.93% 35 1.17% 17 0.57% 37 1.23% 27 0.90%

Table 2: Summary of recipient inputs from all experiments.

the scam during the survey process. This metric, which we
call Possibly Tricked, provides a reasonable estimate of the
actual number of recipients that fell for the scam by entering
the last four digits of their Social Security number. Compared
to the previous metrics, this metric provides a good balance
of conservativeness and sample size, and, therefore, we use
this metric for our analysis.

No. Entered SSN Unconvinced Possibly Tricked
E9 35 4 31 10.33%
E8 30 9 21 7.00%
E10 22 4 18 6.00%
E2 15 3 12 4.00%
E4 13 3 10 3.33%
E3 8 2 6 2.00%
E6 8 2 6 2.00%
E7 9 6 3 1.00%
E1 6 4 2 0.67%
E5 2 1 1 0.33%
Total 148 37 111 3.70%

Table 3: Estimating the number of recipients possibly tricked into
entering their real SSN information

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

E9 E8 E10 E2 E4 E3 E6 E7 E10 E5

Possibly Tricked %

Figure 4: Recipients possibly tricked into entering their real SSN
information.

Figure 4 presents a view of the number of possibly tricked
recipients for each experiment, ranked from most successful to
least successful. The tabulated data is in Table 3. Comparing
the possibly tricked result between experiments, experiment
E9 (spoofed caller ID) had the highest possibly tricked rate
among all experiments, with an estimate of 10.33% (31/300)
of recipients possibly tricked into entering the last four digits

of their Social Security number. Experiment 5 (202 area code,
unclaimed tax return) had the lowest success rate among all
experiments, with an estimate of only 0.33% (1/300) of recip-
ients possibly tricked into entering the last four digits of their
Social Security number.

Attribute Property Linear Regression Coefficient
Area Code Washington, DC -2.22

Toll Free 7.78
Local 1.78

Caller Name Unknown -1.32
Known 8.68

Voice Production Synthetic 1.68
Human 5.68

Gender Male -0.32
Female 7.68

Accent American 5.18
Indian 2.18

Entity IRS -0.99
ASU 8.34

Scenario Tax Lawsuit 0.00
Unclaimed Tax Return -1.00
Payroll Withheld 5.67
Bonus Issued 2.67

Table 4: Linear regression coefficients of all attribute properties
overfitted on possibly tricked.

-4

-2

0

2

4

6

8

10

L
o

c
a
l

T
o

ll
 F

re
e

W
a
sh

in
g

to
n

,
D

C

U
n

k
n

o
w

n

K
n

o
w

n

S
y
n

th
e
ti

c

H
u

m
a
n

M
a
le

F
e
m

a
le

A
m

e
ri

ca
n

In
d

ia
n

IR
S

A
S
U

T
a
x

L
a
w

su
it

U
n

cl
a
im

e
d

 T
a
x

R
e
tu

rn

P
a
y
ro

ll
 W

it
h

h
e
ld

B
o

n
u

s
Is

su
e
d

Area Code Caller Name Voice Production Gender Accent Entity Scenario

Linear Regression Coefficients

Figure 5: Linear regression coefficients of all attribute properties
overfitted on possibly tricked.

The next step is to decide on an appropriate method of data
analysis on the chosen metric. With a myriad of possible data
analysis methods, we decided to use both linear regression
and statistical hypothesis testing analysis. Linear regression
is a model-based analysis can produce a model that can fit
an optimal mapping of attribute properties to the results (i.e.
possibly tricked). However, such method tend to overfit the
spurious correlations that occur in training data since it is a

USENIX Association 28th USENIX Security Symposium 1333

Small Data problem [29]. Furthermore, the attribute properties
used in our experiments are also not conditionally indepen-
dent. Nonetheless, the results of linear regression analysis are
shown in Table 4 and Figure 5.

Alternatively, we used a statistical hypothesis testing ap-
proach for analysis. Before doing statistical hypothesis testing,
we asked, “what are the hypothesis questions that our data
can provide an answer for?” We will provide a discussion
on the hypothesis questions we decided to ask and how we
applied a data analysis method to provide a contextual answer
to the hypothesis questions. Because we are testing several
hypotheses, we perform the Holm-Bonferroni step-down cor-
rection [30] on the significance tests. The results are shown
in Table 5 sorted by the individual p-value.
Can manipulating the area code have a significant effect
on the attack success of a telephone scam?

In the real world, we observed that telephone scammers
used area code manipulation in many instances (in particular
in Neighbor Spoofing scams [16]). To provide an answer
to this question, we can compare the number of possibly
tricked between similar experiments that used different area
codes, i.e., E1, E2, and E3. We see that E1 had 0.67% possibly
tricked, E2 had 4% possibly tricked, and E3 had 2% possibly
tricked.

In our question concerning the significance of area code,
since E1 and E2 have the greatest difference in the number
of possibly tricked recipients, we test if using a toll-free area
code is significantly more effective than Washington, DC area
code in the context of the IRS scam example. So we perform a
right-tailed p-value hypothesis testing approach on the chosen
experiment groups (E1 vs. E2) using the adjusted p-value
corrected with Holm-Bonferroni’s step-down method [30].

The use of right-tailed p-value statistical hypothesis testing
approach is a method to answer if it is "likely" or "unlikely"
to observe the improved alternative hypothesis (i.e. E2 pos-
sibly tricked) – assuming that the null hypothesis is true (i.e.
probability distribution of E1 possibly tricked).

With regards to the choice of using Bayesian vs. Frequentist
methods, since we are aware of no similar prior experiments,
we can only use Frequentist methods to calculate the statistical
significance on the underlying truths using only data from the
current experiment.

In addition, not only do we want to know if the improve-
ment to attack success is significant, it is also important to
know the magnitude of improvement. To avoid making state-
ments such as “E2 is 5 times more effective than E1”, instead
of measuring the relative difference, we calculated Cohen’s
d to measure the effect size for comparison between the two
groups.

Using the right-tailed p-value approach, we have a χ2 statis-
tic of 7.314 and an adjusted p-value of 0.00684. Using an
arbitrary confidence level of 95%, it is very likely that using
a toll-free area code can result in a more successful attack
than using a Washington, DC area code in the context of the

IRS scam example. The two groups also have a Cohen’s d of
0.222, which suggests it has a small effect according to Co-
hen [31] and has a somewhat educationally significant effect
according to Wolf [32]. Therefore, we could say that the area
code can have a statistically significant yet somewhat minor
effect on the attack success of telephone phishing scam.
Can manipulating the type of voice production have a sig-
nificant effect on the attack success of a telephone scam?

To provide an answer to this question, we can compare the
number of possibly tricked between similar experiments that
used different types of voice production, i.e., E1 and E6. In
our question concerning the significance of voice production,
we test if using a recorded human voice is significantly more
effective than using synthesized voice in the context of the
IRS scam example.

Using the same right-tailed p-value approach, we have a
χ2 statistic of 2.027 and an adjusted p-value of 0.155. Using
an arbitrary confidence level of 95%, we cannot conclude that
using a recorded human voice can result in a more successful
attack than using synthesized voice in the context of the IRS
scam example. The two groups have a Cohen’s d of 0.117,
which also suggests the effect size is very small and not edu-
cationally significant. Therefore, we are not able to conclude
at this time if the type of voice production has a significant
effect on the attack success of a telephone phishing scam.
Can manipulating the voice gender have a significant ef-
fect on the attack success of a telephone scam?

For the telephone scammer, the voice gender of the voice
synthesizer can be easily changed with a simple option click
in the autodialer. To provide an answer to this question, we
compare the number of possibly tricked between similar ex-
periments that used different voice genders, i.e., E1 and E4. In
our question concerning the significance of voice gender, we
test if using a female synthesized voice is significantly more
effective than using male synthesized voice in the context of
the IRS scam example.

Using the same right-tailed p-value approach, we have a
χ2 statistic of 5.442 and an adjusted p-value of 0.0197. Using
an arbitrary confidence level of 95%, it is unlikely that using
a female synthesized voice can result in a more successful
attack than using a male synthesized voice in the context
of the IRS scam example. The two groups have a Cohen’s
d of 0.192, which suggests the effect size is small and not
educationally significant. Therefore, it is difficult for us to
conclude at this time if the voice gender has a significant
effect on the attack success of a telephone phishing scam.
Can manipulating the voice accent have a significant ef-
fect on the attack success of a telephone scam?

To provide an answer to this question, we compare the num-
ber of possibly tricked between similar experiments that used
different accents, i.e., E6 and E7. In our question concerning
the significance of voice accent, we test if speaking with an
American accent is significantly more effective than speaking
with an Indian accent in the context of the IRS scam example.

1334 28th USENIX Security Symposium USENIX Association

Hypothesis Group A Possibly
Tricked Group B Possibly

Tricked p-value Adjusted
p-value1 Significant1 Cohen’s d Effect Size2 Conclusive

Entity Scenario
(IRS vs. HR) E1 + E5 3/600 E8 + E9 39/600 1.56E-8 1.09E-7 Yes 0.331 Small & educationally significant Yes

Area Code
(202 vs. 800) E1 2/300 E2 12/300 0.00684 0.0410 Yes 0.222 Small & somewhat educationally significant Somewhat

Voice Gender
(Male vs. Female) E1 2/300 E4 10/300 0.0197 0.0985 No 0.192 Small & not educationally significant No

Caller Name
(Unknown vs. Known) E8 21/300 E9 31/300 0.147 0.588 No 0.119 Very small & not educationally significant No

Voice Production
(Synthetic vs. Human) E1 2/300 E6 6/300 0.155 0.465 No 0.117 Very small & not educationally significant No

Voice Accent
(Indian vs. American) E7 3/300 E6 6/300 0.314 0.628 No 0.082 Very small & not significant No

Motivation
(Reward vs. Fear) E5 + E10 19/600 E1 + E8 23/600 0.530 0.530 No 0.036 Very small & not significant No

Table 5: Summary of statistical hypothesis testing results ordered individual p-value.
1Using p-values corrected with Holm-Bonferroni’s step-down method [30].

2Using effect size descriptors by Cohen [31] & Wolf [32]

Using the same right-tailed p-value approach, we have a
χ2 statistic of 1.015 and an adjusted p-value of 0.314. Using
an arbitrary confidence level of 95%, we cannot conclude
that speaking with an American accent can result in a more
successful attack than speaking with an Indian accent in the
context of the IRS scam example. The two groups also have
a Cohen’s d of 0.082, which suggests the effect size is very
small and not educationally significant. Therefore, we are
not able to conclude at this time if the voice accent has a
significant effect on the attack success of a telephone phishing
scam.
Can spoofing a known caller name have a significant ef-
fect on the attack success of a telephone scam?

To provide an answer to this question, we compare the num-
ber of possibly tricked between similar experiments that show
a difference in the display of a caller name, i.e., E8 and E9.
In our question concerning the significance of spoofing caller
name, we test if displaying a HR-department caller name “W-
2 Administration” is more effective than not displaying a
caller name in the context of the HR scam example.

Using the same right-tailed p-value approach, we have a
χ2 statistic of 2.106 and an adjusted p-value of 0.147. Using
an arbitrary confidence level of 95%, we cannot conclude that
displaying a HR-department caller name can result in a more
successful attack than displaying a caller name in the context
of the HR scam example. The two groups also have a Cohen’s
d of 0.119, which suggests the effect size is very small and
not educationally significant. Therefore, we are not able to
conclude at this time if spoofing a known caller name has a
significant effect on the attack success of a telephone phishing
scam.
Can manipulating the entity scenario have a significant
effect on the attack success of a telephone scam?

Any form of spear phishing involves impersonating an inter-
nal entity that the recipient is familiar with. The scammer has
to create a spoofed caller ID and devise a scenario that is tai-
lored to the entity, as the “Entity” cannot be set independently
from “Scenario”. To provide an answer to the hypothesis

question, we compare the number of possibly tricked between
similar experiments that used different entity-scenarios, i.e.
comparing E1 and E5 with E8 and E10. In our question con-
cerning the significance of impersonating an internal entity,
we test if impersonating an internal entity is more effective
than impersonating the IRS with the context of the scenarios
tested.

Using the same right-tailed p-value approach, we have a χ2

statistic of 31.976 and an adjusted p-value of 1.56E-8. Using
an arbitrary confidence level of 95%, it is likely that imperson-
ating an internal entity can result in a more successful attack
than impersonating the IRS with the context of the scenarios
tested. The two groups also have a Cohen’s d of 0.331, which
suggests the effect size is small and educationally significant.
Therefore, we could say that impersonating an internal entity
had a significant effect on the attack success of a telephone
phishing scam.
Can manipulating the type of motivation have a signifi-
cant effect on the attack success of a telephone scam?

To motivate the recipient into taking some harmful action,
the scammer could either use fear or reward. To provide an
answer to the hypothesis question, we compare the number
of possibly tricked between similar experiments that used
different types of motivation, i.e., comparing E1 and E8 with
E5 and E10. In our question concerning the significance of
the type of motivation, we test if fear-based scenarios are
more effective than reward-based scenarios the context of the
entities tested.

Using the same right-tailed p-value approach, we have a
χ2 statistic of 0.395 and an adjusted p-value of 0.530. Using
an arbitrary confidence level of 95%, we cannot conclude that
fear-based scenarios can result in a more successful attack
than reward-based scenarios with the context of the entities
tested. The two groups also have a Cohen’s d of 0.036, which
suggests the effect size is very small and not educationally
significant. Therefore, we are not able to conclude at this time
if manipulating the type of motivation has a significant effect
on the attack success of a telephone phishing scam.

USENIX Association 28th USENIX Security Symposium 1335

Summary

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Entity Scenario

(IRS vs. HR)

Area Code

(202 vs. 800)

Voice Gender

(Male vs. Female)

Voice Production

(Synthetic vs. Human)

Motivation

(Reward vs. Fear)

Caller Name

(Unknown vs. Known)

Voice Accent

(Indian vs. American)

Conclusive Somewhat Not Conclusive

Adjusted p-Value Effect Size

Figure 6: Summary of statistical hypothesis testing results.

The summary of our statistical hypothesis testing results is
shown in Figure 6. Based on the statistical hypothesis results,
we found that impersonating an internal entity had the most
significant effect on the attack success of a telephone phishing
scam. We also found that manipulating the area code (using a
toll-free vs. a 202 area code) can have a somewhat significant
effect.

On the contrary, manipulating the type of motivation, voice
production, voice accent, and caller name, individually had
an insignificant effect on the attack success. It is also difficult
for us to conclude whether manipulating the voice gender
has a significant effect even though the result was statistically
significant.

5 Survey Responses

In this section, we highlight the recorded survey responses
that asked the participants for the reasons they were convinced
or unconvinced to enter the last four digits of their Social Se-
curity number. We listened to all 44 recorded voice responses
and tabulated their responses in Table 6.

Based on the voice responses from the survey respondents,
no one provided an explicit voice response on why they were
convinced by the IRS scams. The four recordings we received
were either silent or contained no useful information. We
believe that participants were less willing to report the rea-
sons why they were convinced by the scam after they were
explicitly told that they had fallen victim to an attack.

On why the IRS scams were unconvincing, most of the
survey respondents stated that they already knew that the IRS
would not make a call like this or that they were already vig-
ilant about IRS scam calls. This is understandable because
there are numerous media reports about the IRS scams, and
the IRS posted many public warnings not to trust these types

of scams. This further supports the hypothesis that the im-
personated identity and the corresponding scenario was the
most significant factor. In experiment E7, two respondents
also mentioned that the Indian accent was one of the reasons
they were unconvinced.

On why the ASU imposer scams convinced them, most
of the survey respondents described something related to the
scam scenario, which means that the impersonated entity and
the scenario were the key factors. Three respondents also
believe that the caller ID was from ASU and stated caller ID
was one of the reasons they believed in the scam, even though
none of the caller IDs were actually from ASU.

On why the ASU scams did not convince them, most of
the survey respondents stated that they were quite certain that
ASU would not make a call like this or they were already
vigilant about giving their SSN information over an incoming
call. Two respondents in experiment E9 mentioned that the
scenario only asked for the last four digits of their SSN, and
should have asked for their complete SSN if it was really
payroll related, which quite possibly meant that those two
might have given out their complete SSNs if the phishing
scam had asked for it. The external caller ID and synthetic
voice were also mentioned as factors that made the survey
respondents suspicious.

6 Limitations

The experiments were conducted in a university setting where
the recipients are university staff and faculty. The demograph-
ics of the recipients in our study are not representative of the
general population of telephone users in the US.

The experiments only sent out calls to a specific brand of
work phones. The type of phone in our study is not represen-
tative of the entire population of telephones in the US. The
vast majority of telephones in the US are mobile phones [33],
and it is possible that these have different actual tricked rates
than work phones. In addition, the participants had to be in
their office when receiving the phone call (or to return our call
if they listened to the voicemail), which is a different usage
behavior compared to mobile phones.

The experiments requested only partial SSN information
without storing it. The experiments had several safeguards,
and the process was carefully designed and tightly regulated
to ensure risks and harm to the human research subjects were
minimized. This prevented us from collecting any actual So-
cial Security numbers from the recipients. Collecting actual
Social Security numbers might have changed the results of
the study: more people might be willing to give out their full
Social Security numbers, or more people could be skeptical
of providing their full Social Security number.

As we did not collect the Social Security numbers directly,
we derived a metric called “possibly tricked.” While the goal
is to provide an estimate of the number of Social Security
numbers that a real scammer would collect, this metric may

1336 28th USENIX Security Symposium USENIX Association

No. Reasons Convinced Reasons Unconvinced
E1 Would never enter SSN on incoming call; No name mentioned for the charge
E2 IRS won’t make a call like this (x2); Already aware of scams like this
E3 IRS won’t make a call like this
E4 IRS won’t make a call like this; Didn’t sound legitimate
E5 IRS won’t make a call like this
E6 IRS won’t make a call like this; Already aware of scams like this
E7 IRS won’t make a call like this (x4); Indian accent (x2)

E8 To get paid (x2); Sounded legitimate; Trusted work phone; Only asked for
last 4 SSN; Caller ID showed local ASU number

ASU won’t make a call like this (x5); Not from ASU number (x2); Synthetic
voice;

E9 Sounded legitimate; Only asked for last 4 digits of SSN; Caller ID showed
ASU W-2

Should have asked for complete SSN (x2); Would never enter SSN on incom-
ing call

E10 To get bonus (x2); Trusted work phone; From ASU number; Asked to do so ASU won’t make a call like this; Not ASU number

Table 6: Summary of recorded survey responses.

be under or overestimating the number of real collected Social
Security numbers. With the data presented in this paper (Ta-
ble 2), others can choose to use different metrics to calculate
significance. These new metrics and hypotheses should be
corrected to prevent p-hacking.

7 Discussion

Our results show that automated telephone phishing attacks
can be effective. One experiment, E9, which simulated a tar-
geted phishing attack with caller name spoofing, achieved a
10.33% possibly tricked rate, where recipients possibly di-
vulged the last four digits of their Social Security numbers.

We have also validated some potential key attributes that
can have a significant effect on the scam effectiveness: imper-
sonating an internal entity and announcing a relevant scenario.
Manipulating the caller ID to a toll-free area code may also
somewhat improve the scam effectiveness for certain scams.
Other attribute properties such as human voice, female voice,
American accent, caller name spoofing, and fear-based sce-
nario also improved the scam effectiveness in our empirical
study, however, at this time we are not able to conclusively
demonstrate that they have a significant effect. Nonetheless,
given how easy it is for a scammer to manipulate all these
attributes, a scammer would seek to incorporate all attribute
properties that made an improvement to the attack success,
i.e. a phishing scam with toll-free area code, spoofing known
a caller name, speaking in a recorded human, female voice, in
American accent, impersonating an internal entity, motivating
the recipient with a relevant fear-based scenario.

To prevent falling victim to these types of phishing scams,
we believe that the key is to target and prevent impersonation.
Our statistical results have shown that impersonating an in-
ternal entity had a significant effect on the scam. To address
the impersonation issue, feedback from our survey partici-
pants suggests that vigilance was an important reason for not
falling for a scam. Many surveyed subjects expressed distrust
towards our scam calls when they were already vigilant about
the scam scenario. Therefore, we recommend education and
awareness of telephone phishing as a countermeasure.

On technical solutions, we recommend a similar approach
to help the subjects stay vigilant against phishing calls. There

are solutions that can provide early warnings against imper-
sonated calls, such as, caller ID authentication [4, 34, 35],
which has strong safeguards against caller ID impersonation
and could help to warn the users against malicious calls with
a reputation system.

8 Related Work

To our knowledge, there have been no prior empirical user
studies on telephone phishing. The most similar work we
found was by Aburrous et al. [36], who performed a phone
phishing experiment on a group of 50 employees contacted by
female colleagues assigned to lure them into giving away their
personal e-banking usernames and passwords. They were able
to deceive 32% of the employees to give out their e-banking
credentials. In the experiment, the 50 employees already knew
the female colleagues that contacted them, which suggests an
insider attack rather than an impersonation attack.

Other related work studied phishing using different chan-
nels. Dhamija et al. performed a website phishing study on 22
university participants and their best phishing site was able
to fool more than 90% of participants [37]. Egelman et al.
performed an email and website phishing experiment on 60
in-person participants to test the effectiveness of various web
browser phishing warnings at that time, and it was found that
79% of Internet Explorer 7.0 participants heeded the active
phishing warnings and only 13% of them obeyed the passive
warnings [38]. Jagatic et al. performed a social media spear
phishing study on 481 targeted Indiana University student
emails obtained by crawling social network websites and it
had a 72% success rate of recipients authenticating themselves
on a redirected website [13]. Vidas et al. performed a QR code
phishing study where the experiment distributed 139 posters
containing QR codes at various locations at Carnegie Mellon
University and the city of Pittsburgh, the experiment was able
to trick 225 individuals to visit the associated website in four
weeks [39].

9 Conclusion

This paper presented the methodology, design, execution, re-
sults, analysis, and evaluation of a study exploring why tele-

USENIX Association 28th USENIX Security Symposium 1337

phone phishing works and how to defend against it. The
study was executed using 10 experiments simulating tele-
phone phishing attacks, administered to 3,000 work phones
of university staff and faculty over the course of a workweek.
The results were collected from the inputs and survey re-
sponses of the phone recipients. We analyzed the results by
performing linear regression and statistical hypothesis testing
methods on a chosen metric derived from the inputs, and we
were able to identify at least one attribute that had a significant
effect. We provided a discussion on how to effectively prevent
such types of telephone phishing scams, and we believe that
the best countermeasures should target impersonation and
instill vigilance.

References

[1] Federal Trade Commission, “National Do Not Call Registry
Data Book for Fiscal Year 2018,” 2018.

[2] Federal Trade Commission, “Consumer Sentinel Network Data
Book for January - December 2018,” 2019.

[3] M. Tischer, Z. Durumeric, S. Foster, S. Duan, A. Mori,
E. Bursztein, and M. Bailey, “Users Really Do Plug in USB
Drives They Find,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2016.

[4] H. Tu, A. Doupé, Z. Zhao, and G.-J. Ahn, “Toward Authen-
ticated Caller ID Transmission: The Need for a Standardized
Authentication Scheme in Q.731.3 Calling Line Identification
Presentation,” in ITU Kaleidoscope 2016 - ICTs for a Sus-
tainable World, ITU Telecommunication Standardization Sec-
tor (ITU-T), Institute of Electrical and Electronics Engineers
(IEEE), Nov. 2016.

[5] I. S. working group, “Secure telephone identity revisited (stir).”
https://datatracker.ietf.org/wg/stir/about/. (Ac-
cessed on 04/30/2019).

[6] H. Tu, A. Doupé, Z. Zhao, and G.-J. Ahn, “SoK: Everyone
Hates Robocalls: A Survey of Techniques against Telephony
Spam,” in Proceedings of the 37th IEEE Symposium on Secu-
rity and Privacy, IEEE, 2016.

[7] M. Sahin, A. Francillon, P. Gupta, and M. Ahamad, “SOK:
Fraud in telephony networks,” in Proceedings of the 2nd IEEE
European Symposium on Security and Privacy (EuroS&P’17),
EuroS&P, vol. 17, 2017.

[8] C. Peeters, H. Abdullah, N. Scaife, J. Bowers, P. Traynor,
B. Reaves, and K. Butler, “Sonar: Detecting SS7 Redirection
Attacks Via Call Audio-Based Distance Bounding,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy,
2018.

[9] B. Reaves, L. Blue, D. Tian, P. Traynor, and K. R. Butler, “De-
tecting SMS Spam in the Age of Legitimate Bulk Messaging,”
in Proceedings of the 9th ACM Conference on Security & Pri-
vacy in Wireless and Mobile Networks, pp. 165–170, ACM,
2016.

[10] A. Oest, Y. Safaei, A. Doupé, G.-J. Ahn, B. Wardman, and
G. Warner, “Inside a Phisher’s Mind: Understanding the Anti-
phishing Ecosystem Through Phishing Kit Analysis,” in Pro-
ceedings of the Symposium on Electronic Crime Research
(eCrime), May 2018.

[11] R. C. Dodge Jr, C. Carver, and A. J. Ferguson, “Phishing for
user security awareness,” Computers & Security, vol. 26, no. 1,
pp. 73–80, 2007.

[12] P. Kumaraguru, Y. Rhee, A. Acquisti, L. F. Cranor, J. Hong, and
E. Nunge, “Protecting people from phishing: the design and
evaluation of an embedded training email system,” in Proceed-
ings of the SIGCHI conference on Human factors in computing
systems, pp. 905–914, ACM, 2007.

[13] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer,
“Social phishing,” Communications of the ACM, vol. 50, no. 10,
pp. 94–100, 2007.

[14] P. Kumaraguru, S. Sheng, A. Acquisti, L. F. Cranor, and
J. Hong, “Teaching johnny not to fall for phish,” ACM Trans-
actions on Internet Technology (TOIT), vol. 10, no. 2, p. 7,
2010.

[15] N. Miramirkhani, O. Starov, and N. Nikiforakis, “Dial one for
scam: A large-scale analysis of technical support scams,” in
Proceedings of the Symposium on Network and Distributed
System Security (NDSS), 2017.

[16] E. Fletcher, “That’s not your neighbor calling.”
https://www.consumer.ftc.gov/blog/2018/01/thats-
not-your-neighbor-calling, Jan. 2018.

[17] V. B. Payas Gupta, Bharat Srinivasan and M. Ahamad,
“Phoneypot: Data-driven Understanding of Telephony Threats,”
in Proceedings of the Symposium on Network and Distributed
System Security (NDSS), 2015.

[18] A. Marzuoli, H. A. Kingravi, D. Dewey, A. Dallas, T. Calhoun,
T. Nelms, and R. Pienta, “Call me: Gathering threat intelligence
on telephony scams to detect fraud,” Black Hat, 2016.

[19] I. R. Service, “Irs repeats warning about phone scams.”
https://www.irs.gov/uac/newsroom/irs-repeats-
warning-about-phone-scams, 8 2014. (Accessed on
04/20/2017).

[20] Andrew Johnson, Division of Consumer and Business
Education, FTC, “Voicemail from an irs imposter? |
consumer information.” https://www.consumer.ftc.gov/
blog/voicemail-irs-imposter, 9 2016. (Accessed on
04/20/2017).

[21] G. Stringhini and O. Thonnard, “That ain’t you: Blocking
spearphishing through behavioral modelling,” in International
Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, pp. 78–97, Springer, 2015.

[22] J. Hong, “The state of phishing attacks,” Communications of
the ACM, vol. 55, no. 1, pp. 74–81, 2012.

[23] J. Pavia, “Sadly, irs phone scams are very successful ’busi-
nesses’.” http://www.cnbc.com/2016/10/18/sadly-irs-
phone-scams-are-very-successful-businesses.html,
10 2016. (Accessed on 04/20/2017).

[24] I. R. Service, “Irs warns of pervasive telephone scam.”
https://www.irs.gov/uac/newsroom/irs-warns-of-
pervasive-telephone-scam, 10 2013. (Accessed on
04/17/2017).

1338 28th USENIX Security Symposium USENIX Association

https://datatracker.ietf.org/wg/stir/about/
https://www.consumer.ftc.gov/blog/2018/01/thats-not-your-neighbor-calling
https://www.consumer.ftc.gov/blog/2018/01/thats-not-your-neighbor-calling
https://www.irs.gov/uac/newsroom/irs-repeats-warning-about-phone-scams
https://www.irs.gov/uac/newsroom/irs-repeats-warning-about-phone-scams
https://www.consumer.ftc.gov/blog/voicemail-irs-imposter
https://www.consumer.ftc.gov/blog/voicemail-irs-imposter
http://www.cnbc.com/2016/10/18/sadly-irs-phone-scams-are-very-successful-businesses.html
http://www.cnbc.com/2016/10/18/sadly-irs-phone-scams-are-very-successful-businesses.html
https://www.irs.gov/uac/newsroom/irs-warns-of-pervasive-telephone-scam
https://www.irs.gov/uac/newsroom/irs-warns-of-pervasive-telephone-scam

[25] I. R. Service, “IRS Alerts Payroll and HR Pro-
fessionals to Phishing Scheme Involving W-2s.”
https://www.irs.gov/uac/newsroom/irs-alerts-
payroll-and-hr-professionals-to-phishing-
scheme-involving-w2s, 3 2016. (Accessed on 04/17/2017).

[26] Federal Communications Commission, “Telephone Consumer
Protection Act 47 U.S.C. § 227,” 1991.

[27] K. Queen, “Guard the last 4 digits of your so-
cial security number: they’re all id thieves need.”
http://blogs.creditcards.com/2015/11/social-
security-last-4-digits.php, 19 2015. (Accessed on
08/30/2017).

[28] A. Acquisti and R. Gross, “Predicting social security numbers
from public data,” Proceedings of the National academy of
sciences, vol. 106, no. 27, pp. 10975–10980, 2009.

[29] A. E. Deeb, “What to do with "small" data? rants on
machine learning.” https://medium.com/rants-on-
machine-learning/what-to-do-with-small-data-
d253254d1a89, 5 2015. (Accessed on 09/25/2017).

[30] S. Holm, “A simple sequentially rejective multiple test proce-
dure,” Scandinavian journal of statistics, pp. 65–70, 1979.

[31] J. Cohen, “Statistical power analysis for the behavioral sciences
(revised ed.),” 1977.

[32] F. M. Wolf, Meta-analysis: Quantitative methods for research
synthesis, vol. 59. Sage, 1986.

[33] “CTIA - The State of Wireless 2018.” https://www.ctia.
org/news/the-state-of-wireless-2018. (Accessed on
05/02/2019).

[34] C. Jennings, J. Peterson, and E. Rescorla, “Authenticated Iden-
tity Management in the Session Initiation Protocol (SIP),”
IETF, 2016.

[35] B. Reaves, L. Blue, and P. Traynor, “AuthLoop: End-to-End
Cryptographic Authentication for Telephony over Voice Chan-
nels,” in Proceedings of the USENIX Security Symposium
(USENIX), 2016.

[36] M. Aburrous, M. A. Hossain, K. Dahal, and F. Thabtah, “Exper-
imental case studies for investigating e-banking phishing tech-
niques and attack strategies,” Cognitive Computation, vol. 2,
no. 3, pp. 242–253, 2010.

[37] R. Dhamija, J. D. Tygar, and M. Hearst, “Why Phishing Works,”
in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 581–590, ACM, 2006.

[38] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned:
an empirical study of the effectiveness of web browser phish-
ing warnings,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 1065–1074, ACM,
2008.

[39] T. Vidas, E. Owusu, S. Wang, C. Zeng, L. F. Cranor, and
N. Christin, “Qrishing: The susceptibility of smartphone users
to qr code phishing attacks,” in International Conference on Fi-
nancial Cryptography and Data Security, pp. 52–69, Springer,
2013.

Appendix

A Announcement Messages

A.1 Tax Lawsuit scenario
This is an urgent notice! This is a final notice from
the IRS. The reason for this call is to inform you
that the IRS is filing a lawsuit against you. Your
action is required immediately, or a penalty will be
assessed. To speak to an IRS agent and get more
information about this case, please press 1 on your
phone now.

A.2 Unclaimed Tax Return scenario
This is an urgent notice! This is a final notice from
the IRS. The reason for this call is to inform you
that the IRS has an unclaimed tax return for you
that is due to expire within three days. Your action
is required immediately. To speak to an IRS agent
and get more information about claiming your tax
refund, please press 1 on your phone now.

A.3 Payroll Withheld scenario
Dear ASU employee. This is an urgent notice! This
is a final notice from the ASU W-2 administration
office. The reason for this call is to inform you
that to process your next Friday payroll, you are
required to update your 2017 tax information im-
mediately. To speak to a staff agent and get more
information, please press 1 on your phone now.

A.4 Bonus Issued scenario
Dear ASU employee. This is an urgent notice! This
is a final notice from the ASU W-2 administration
office. The reason for this call is to inform you a
performance bonus has been issued to your account.
Your action is required immediately. To speak to a
staff agent and get more information, please press
1 on your phone now.

B Follow-up Message

Please wait for the next available agent. Thank you
for holding. Your call will be connected shortly.
Please enter the last four digits of your Social Se-
curity number on your phone now.

USENIX Association 28th USENIX Security Symposium 1339

https://www.irs.gov/uac/newsroom/irs-alerts-payroll-and-hr-professionals-to-phishing-scheme-involving-w2s
https://www.irs.gov/uac/newsroom/irs-alerts-payroll-and-hr-professionals-to-phishing-scheme-involving-w2s
https://www.irs.gov/uac/newsroom/irs-alerts-payroll-and-hr-professionals-to-phishing-scheme-involving-w2s
http://blogs.creditcards.com/2015/11/social-security-last-4-digits.php
http://blogs.creditcards.com/2015/11/social-security-last-4-digits.php
https://medium.com/rants-on-machine-learning/what-to-do-with-small-data-d253254d1a89
https://medium.com/rants-on-machine-learning/what-to-do-with-small-data-d253254d1a89
https://medium.com/rants-on-machine-learning/what-to-do-with-small-data-d253254d1a89
https://www.ctia.org/news/the-state-of-wireless-2018
https://www.ctia.org/news/the-state-of-wireless-2018

C Debriefing Message

Hi, I am [redacted for anonymity] in the Department
of Computer Science at Arizona State University.
I am conducting a research study to measure the
effectiveness of telephone phishing. The reason you
are receiving this message is because I would like to
inform you that what you just did could potentially
lead you becoming exploited in a real telephone
scam. However, I would like to assure you that this
is not an actual scam, none of your social security
information was actually collected.

We would like to invite you to participate in our
phone survey, to help us better understand your
thoughts about the scam. You will be able to lis-
ten to the survey questions right after this message.
Your participation in this survey is voluntary. There
are no foreseeable risks for your participation. If
you choose not to participate or to withdraw from
the survey at any time, there will be no penalty.
Your responses will be anonymous. The results of
this study may be used in reports, presentations,
or publications but your identity will not be used.
Please press 1 to listen to the survey questions or
participate in the phone survey.

D Survey Questions

D.1 Did the scam convince you
Thank you. Could you please help us understand
if the scam was able to convince you to enter your
Social Security number? Please use the number on
your keypad to answer this question. If "yes", please
press 1. If "no" please press 0.

D.2 What factor made the scam convincing
Thank you. Could you please help us understand
what was the most important factor that made the
scam convincing? We will record your voice re-
sponse for this question. At the tone, please state
briefly what you thought was the most important
factor. When you are finished, please press the
pound key to end recording.

D.3 What reason made the scam unconvinc-
ing

Thank you. Could you please help us understand
what was the most important reason you did not
believe in the scam? We will record your voice
response for this question. At the tone, please state
briefly what you thought was the most important
reason. When you are finished, please press the
pound key to end recording.

E Ending Message

Thank you. This is the end of the research exper-
iment. If you have any questions concerning the
research study, please contact the research team at
[redacted for anonymity]. If you have any questions
about your rights as a participant in this research,
or if you feel you have been placed at risk, you can
contact the Chair of the Human Subjects Institu-
tional Review Board, through the ASU [redacted
for anonymity], at [redacted for anonymity]. Thank
you for your participation. Goodbye.

1340 28th USENIX Security Symposium USENIX Association

Platforms in Everything: Analyzing Ground-Truth Data on the Anatomy and
Economics of Bullet-Proof Hosting

Arman Noroozian1 B, Jan Koenders2, Eelco van Veldhuizen2,

Carlos H. Ganan1, Sumayah Alrwais3, Damon McCoy4 and Michel van Eeten1

(1) Delft University of Technology, (2) Dutch National High-Tech Crime Unit,
(3) King Saud University and International Computer Science Institute, (4) New York University

Abstract

This paper presents the first empirical study based on ground-
truth data of a major Bullet-Proof Hosting (BPH) provider,
a company called MaxiDed. BPH allows miscreants to host
criminal activities in support of various cybercrime business
models such as phishing, botnets, DDoS, spam, and coun-
terfeit pharmaceutical websites. MaxiDed was legally taken
down by law enforcement and its backend servers were seized.
We analyze data extracted from its backend databases and
connect it to various external data sources to characterize
MaxiDed’s business model, supply chain, customers and fi-
nances. We reason about what the “inside” view reveals
about potential chokepoints for disrupting BPH providers. We
demonstrate the BPH landscape to have further shifted from
agile resellers towards marketplace platforms with an over-
supply of resources originating from hundreds of legitimate
upstream hosting providers. We find the BPH provider to have
few choke points in the supply chain amendable to interven-
tion, though profit margins are very slim, so even a marginal
increase in operating costs might already have repercussions
that render the business unsustainable. The other intervention
option would be to take down the platform itself.

1 Introduction

“Bullet-proof” hosting (BPH) is a part of the hosting market
where its operators knowingly enable miscreants to serve abu-
sive content and actively assist in its persistence. BPH enables
criminals to host some of their most valuable resources, such
as botnet command-and-control (C&C) assets, exploit-kits,
phishing websites, drop sites, or even host child sexual abuse
material [1–5]. The name refers to the fact that BPH provides
“body armor” to protect miscreants against interventions and
takedown efforts by defenders and law enforcement.

Much of the prior work in this area has focused on how to
identify such malicious providers. Initially, BPH providers
served miscreants directly from their own networks, even
though this associated them with high levels of abuse. Famous
examples of such providers include McColo Corp. [6], the
Russian Business Network (RBN) [7], Troyak [3] and
Freedom Hosting [8]. This operational model enabled AS-

reputation based defenses, such as Fire [9], BGP Ranking [10]
and ASwatch [11]. These defenses would identify networks
with unusually high concentrations of abuse as evidence for
the complicity of the network owner, and thus of BPH.

AS-reputation defenses became largely ineffective when
a more “agile” form of BPH emerged. In this new form,
providers would rent and resell infrastructure from various
legitimate upstream providers, rather than operate their own
“monolithic” network. Concentrations of abuse were diluted
beyond detection thresholds by mixing it with the legitimate
traffic from the ASes of the upstream providers.

In response, researchers developed a new detection ap-
proach, which searched for concentrations of abuse in sub-
allocated IP blocks of legitimate providers [4, 5]. This ap-
proach assumes that honest upstream providers update their
WHOIS records when they delegate a network block to re-
sellers. It also assumes that the BPH operator functions as a
reseller of the upstream providers.

A key limitation of this prior work is that it is based on
external measurements. This means that we have little in-
side knowledge of how BPH operations are actually run and
whether assumptions behind the most recent detection ap-
proaches are valid. A second, and related, limitation is the
lack of ground-truth data on the actions of the provider. There
are minor exceptions, but even those studies contain highly
sparse and partial ground-truth data [2, 5].

This paper presents the first empirical study of BPH based
on comprehensive internal ground-truth data. The data per-
tains to a provider called MaxiDed, a significant player in
the BPH market. It unearths a further, and previously un-
known, evolution in the provisioning of BPH, namely a shift
towards platforms. Rather than MaxiDed renting and reselling
upstream resources on its own, it offered a platform where
external merchants could offer, for a fee, servers of upstream
providers to MaxiDed customers, while explicitly indicating
what kinds of abuse were allowed. By operating as a plat-
form, MaxiDed externalizes to the merchants the cost and risk
of acquiring and abusing infrastructure from legitimate up-
stream providers. The merchants, in turn, externalize the risk
of customer acquisition, contact and payment handling to the
marketplace. This new BPH model is capable of evading the
state-of-the-art detection methods. Our analysis shows that

USENIX Association 28th USENIX Security Symposium 1341

in most cases, there are no sub-allocations visible in WHOIS
that can be used to detect abuse concentrations, rendering the
most recent detection method [5] much less effective.

Before we can develop better detection and mitigation
strategies, we need an in-depth empirical understanding of
how this type of provider operates and what potential choke-
points it has. To this end, we analyze a unique dataset captured
during the takedown of MaxiDed by Dutch and Thai law en-
forcement agencies in May 2018 [12]. The confiscated data
includes over seven years of records (Jan 2011 – May 2018)
on server packages on offer, transactions with customers, pro-
visioned servers, customer tickets, pricing, and payment in-
struments. In addition to the confiscated systems, two men
were arrested: allegedly the owner and admin of MaxiDed.

The central question of this paper is: how can we character-
ize the anatomy and economics of an agile BPH provider and
what are its potential chokepoints for disruption? We first de-
scribe how the supply chain is set up. Then, we characterize
and quantify the supply, demand, revenue, payment instru-
ments and profits of the BPH services offered by MaxiDed.
All of this will be analyzed longitudinally over seven years.
We also explore what MaxiDed’s customers used servers for.

Our main contributions may be summarized as follows:

• We provide the first detailed empirical study of the
anatomy and economics of an agile BPH provider based
on ground-truth data.

• We map the supply of BPH services and find a highly
diversified ecosystem of 394 abused upstream providers.

• Contrary to conventional wisdom, we find that the
provider’s BP services are not expensive and priced at a
40-54 % markup to technically similar non-BP offers.

• We quantify demand for BPH services and find it result-
ing in a revenue of 3.4M USD over 7 years. We conclude
the market to be constrained by demand, not by supply,
i.e. demand for this type of agile BPH seems limited.

• We estimate profits to amount to significantly less than
280K USD over 7 years. This belies the conventional
wisdom of BPH being a very lucrative business.

• We find disruptable pressure points to be limited. Pay-
ment instruments were sensitive to disruption, but a re-
cent shift to crypto-currencies limits this option. We
identified 2 merchants and a set of 15 abused upstream
hosting providers as pressure points though their iden-
tifcation would have been difficult based on external
measurements. The only remaining viable options are
raising operational costs and taking down the provider’s
platform.

We should note that the “bullet-proof” metaphor seems
less suited for this new model of BPH provider that we study.
Commonly, BPH is understood to include two aspects: (i)
intentionally enabling abuse, and (ii) providing resilience

against takedowns. The BP metaphor directs attention to the
resilience. This new business model, however, primarily fo-
cuses on the agile enabling of abuse at low cost. MaxiDed and
its external merchants provide servers for abuse at close to the
market price for legitimate servers. Customers then prepay the
rent for these servers. This means that the risk of takedown, in
terms of a prepaid server being prematurely shut down by the
upstream provider, is borne by the customer. Most customers
manage this risk by opting for short lease times and treating
servers as disposable and cheaply replaceable resources. They
take care of the resilience of their services themselves, using
these disposable resources. Some forms of resilience – e.g.,
reinstalling an OS and moving files to a new server – are
provided by the BPH provider as a premium service for an
additional fee. The ’bullet-proof’ metaphor is less suitable for
this business model. A more fitting alternative may be “agile
abuse enabler”. That being said, in this paper we retain the
existing term. The market of intentionally provisioning host-
ing services for criminals is still widely referred to as BPH
and we want to maintain the connection with prior work.

The remainder of this paper is structured as follows. First,
we provide a high-level overview of MaxiDed ’s business (S.2).
We then discuss the ethical issues related to our study (S.3).
Next, we describe our datasets (S.4) and the integrity checks
we performed to ensure the validity of our analysis (S.5). We
then outline MaxiDed’s anatomy and business model (S.6).
Next, we turn to the substantive findings and analyze the
supply and demand around MaxiDed’s platform, with a spe-
cific focus on identifying choke points (S.7). We also ana-
lyze MaxiDed’s customer population (S.8). We then take a
look at longitudinal patterns in terms of use and abuse of BP
servers by customers (S.9). The final part of the analysis is
on MaxiDed’s revenue, costs and profits (S.10). We conclude
by locating our study within the related work(S.11) and by
discussing its implications for the problem of BPH (S.13).
Additional material are provided in Appendices (S.14)

2 Background
MaxiDed Ltd. was a hosting company legally registered in the
Commonwealth of Dominica, an island state in the West In-
dies that is also known for its offshore banking and payments
processing companies. MaxiDed’s operators publicly adver-
tised the fact that customers were allowed to conduct certain
abusive activities upon purchasing its hosting solutions. While
WHOIS information of the MaxiDed domain shows that it has
existed since 2008, web archive data suggest that initially it
was just a small hosting provider with no mention of allow-
ing illicit activities. It underwent a major transformation in
2011 towards becoming an agile BPH service. MaxiDed does
not have its own Autonomous System, nor does it have any
IP address ranges assigned to it by RIRs, according to our
analysis of WHOIS data at the time of its disruption. This im-
plies that IP addresses are provisioned to customer servers by
upstream providers, rather than by MaxiDed. This underlines

1342 28th USENIX Security Symposium USENIX Association

Advertised BPH Services

Dedicated VPS Shared Total
BPH Servers Hosting

66host 0 0 3 3
outlawservers 1 6 4 11
abusehosting 47 5 3 55
bpw 5 4 0 9
bulletproof-web 7 9 0 16

MaxiDed 1,855 1,066 0 2,921

Table 1: MaxiDed in comparison with previously studied BPH by
Alrwais et al.[5] that appear to be still operational

MaxiDed’s agile nature, i.e., its reliance on reselling upstream
infrastructure. Table 1 compares MaxiDed with several pre-
viously studied agile BPH providers in terms of the quantity
and types of services they offered. It highlights that its scale
of operations is around two orders of magnitude larger. It
is reasonable to view the provider as a major player in this
market which others have similarly pointed to [13].

3 Ethics
Our data is similar in nature to that used in prior studies
of criminal backends [14–16]. It originates from legal law
enforcement procedures to seize infrastructure. Using such
data raises ethical issues. We operated in compliance with
and under the approval of our institution’s IRB. We discuss
further issues using the principles identified in the Menlo
Report [17].

(Respect for persons.) The data contains personally iden-
tifiable information (PII) on customers, merchants and em-
ployees. Access has been controlled and limited to authorized
personnel within the investigative team, and later granted to
several of the co-authors. Since ‘participation‘ in this study is
not voluntary and cannot be based on informed consent, we
took great care not to analyze PII on customers, because they
form the most vulnerable party involved and not all of them
may have used servers for illicit purposes. We only compiled
aggregate statistics. For merchants, we have masked identi-
ties using pseudonyms to prevent identifiability. We did not
analyze the data in terms of MaxiDed employee names.

(Beneficence.) We believe that our analysis does not create
further harm. We did not purchase services from the provider
and thus did not contribute to any criminal revenue. The au-
thors and police investigators believe the benefits of a better
understanding of BPH operations, most notably in terms of
better countermeasures, outweigh the potential cost of making
this kind of knowledge more widely known, as the model of
agile BPH itself is already well-documented in prior work.

(Justice.) The benefits of the work are distributed to the
wider public, in terms of helping to reduce crime. It especially
helps to protect persons who are more vulnerable to being
victimized. We see no impact to persons from being included
in the study itself.

(Respect for law and public interest.) This study has
been conducted with the approval of, and in collaboration
with, the investigative team and public prosecutors. It is im-

portant to note, that while captured information may point to
certain illegal conduct, establishing legal proof of criminal
conduct is not the purpose of this study.

4 Data
From the servers seized during the takedown, the Dutch in-
vestigative team has been able to resurrect MaxiDed’s admin-
istrative backend (CRM and database). They have granted us
access to the data and corresponding source code. We ana-
lyzed the source code to ensure correct interpretation of the
stored data. We observed how various resurrected administra-
tive pages queried specific records to display information.

The revived single-instance Postgres database contains
longitudinal information on several key aspects of MaxiDed’s
operations. On the supply side, it includes data on what server
packages were on offer, which merchants were offering these
packages, and the internal and externally-advertised prices of
each package. On the demand side, there is customer contact
information, order placements, rented servers, server assigned
IP addresses, financial transactions, and type of payment in-
struments used and available over time.

Communications between MaxiDed operators, customers,
merchants, and upstream providers were captured as CRM
system tickets. Ticket contents and email communications
also include instances of abuse complaint emails that MaxiDed
administrators received and forwarded to their customers. We
should note that the operators also operated a live-chat chan-
nel for customers on the site. They were also known to use
ICQ, Jabber and Skype contact channels at some point in
time. These communications were not stored on the seized
servers, if they were stored at all. Communications data, often
the most sensitive, have not been analyzed in favor of the
ethical principles that we followed.

Overall, the retrieved data represents information over the
course of MaxiDed’s life span from Jan.- 2011 to May-2018,
when its operation was disrupted. High level statistics and
descriptions of the ground-truth data is presented in Table 2.

To enrich the ground-truth data, we deployed several addi-
tional data sources. Domain-based resources operating from
the customer IPs, were identified using historical passive DNS
data collected via Farsight Security’s (DNSDB [18]). To iden-
tify upstream providers of servers and IPs, we used historical
WHOIS IP allocation data from Maxmind [19]. A set of do-
main and IP-based blacklists have been used to gain further
insights into abuse emanating from customer servers.

5 Data Integrity
Since we did not gather the information ourselves, we need
to evaluate its accuracy and authenticity: how do we know
that MaxiDed admins did not manipulate data, for reasons of
operational security or otherwise?

Our data resulted from the legal seizure of servers, in close
coordination with apprehension of two individuals who had

USENIX Association 28th USENIX Security Symposium 1343

Data on Description Total Nr.

Suppliers 60 directly listed upstream hosters and 14 listed merchants supplying server packages 74
Server Packages Customizable server packages on offer during 2011-2018 56113
Payment Instruments Supported payment instruments/methods 23
Orders Customer placed orders for various server packages and other administrative services 66886
Users Number of registered users 308396
Transactions Financial transactions including 30938 received payments and 33124 payments made to other entities 64602
Tickets CRM system tickets capturing communications between various entities 26562

Table 2: High-level statistics of MaxiDed backend data

administrative control over these systems. This ensured that
the data was not manipulated during or after the seizure. To en-
sure that data was not manipulated in the course of MaxiDed’s
operation, we have examined data integrity in several ways.
We first discuss the correspondence of the seized data with
external (third-party) data. Next, we analyze the internal con-
sistency of the seized data itself.

The strongest indicator of integrity is that the seized server
data was consistent with the data that was collected via legal
intercept prior to the takedown. A wiretap had been running
for over two years on the backend CRM server.

We also compared the data to snapshots of MaxiDed’s web-
shop archives on Internet Archive between 2015-2018. We
extracted all server package IDs that were on offer. All these
IDs were present in our back-end data as well.

For a sample of over 50 server packages on sale in April
2018, we compared the internally recorded price with the
prices of the entities listed as the upstream providers. These
included packages from a Dutch and a German upstream
hosting provider. For each package, we visited the supplier’s
website, customized a server package to match, and found its
price to be correctly reflected by the internal price.

For the payment data, we were able to compare the
WebMoney transactions logged in the database with data that
was subpoenaed by Dutch law enforcement from WebMoney
on transactions during a period of 10 days involving one par-
ticular WebMoney wallet address. Of 31 internally recorded
transactions during this period via WebMoney, 17 were
matched with the external data.

Together, these external checks provide confidence that the
internal data has not been manipulated. Multiple internal data
consistency checks were also carried out. We cross referenced
customer order placements against server package data, to
determine if all order placements consistently point to an
existing package. Of the 14,702 customer orders for servers,
we found 431 referencing package IDs that were not listed,
indicating a 2.9% proportion of inconsistent order placement
records. These references point to a set of 306 unique server
packages (a 0.5% proportion of all server packages).

We also cross referenced MaxiDed operators’ payments to
their merchants, against server package data. These indirectly
referenced specific server packages, thereby indicating what
each payment is for. Of the 33,124 outgoing payments, we
found 345 referencing packages that were not listed among
the set of offered server packages (a 1.0% proportion of in-
consistent payment records). Cross referencing the same pay-
ment data against customer orders, we found 474 outgoing

payments referencing servers that were not listed among the
orders of customers (a 1.5% of inconsistent payment records).

The timestamps of order placement and transactions were
also analyzed, to check for suspicious gaps in the timeline.
The longest gap was observed to be 76 days from 2011-03-
31 to 2011-06-15. All remaining gaps (37) were at most 2
days long. Approximately an average number of 26 order
placements per day were observed. For payment events, the
longest timeline gap was observed to be 135 days pertaining
to the data from the period between 2011-01-29 and 2011-06-
13. The remaining gaps (5) were no longer than 1 day. An
average number of 24 transactions per day were observed in
the payment data.

The minor inconsistencies and timeline gaps for the most
part relate to records from 2011 and 2012, a period cor-
responding to the initial set up and early growth phase of
MaxiDed. A certain amount of inconsistency in database
records is to be expected, but more so during the initial set up
and growth phase of any organization. All in all, the internal
and external consistency of the data merits confidence in its
validity for the purposes of characterizing the overall anatomy
and economics of MaxiDed ’s BPH operation.

6 Anatomy of MaxiDed ’s business

Merchants

Upstream
Hosting
Providers

Marketplace

Customers

Server +
Network Infra.

operators Payment

Supply

Resell

Malicious
Server

+$$
(Marketplace Fee)

Figure 1: MaxiDed in a glance.

Figure 1 provides a high-level overview of MaxiDed ’s
anatomy and business model. We take a close look at each of
its components.

6.1 Hosting Business Components
(Marketplace) MaxiDed was a marketplace which connected
merchants offering server packages that allowed abuse, with

1344 28th USENIX Security Symposium USENIX Association

customers looking for an abuse-tolerant provider. It captured
a fixed 20% fee from each sale between a merchant and a
customer. Customers did not see the merchants’ identities or
even that an offer came from a separate entity. All they knew
was that they contracted with MaxiDed. The merchants adver-
tised server packages from legitimate upstream providers and
put these on the MaxiDed market with a markup. Server pack-
ages specified default server configurations that were further
customizable by customers. In addition to the technical spec-
ification, each package indicated what type of abuse, if any,
was allowed. The majority of the packages explicitly allowed
certain forms of abuse. MaxiDed itself also put server pack-
ages from certain upstream providers for sale in the webshop,
de facto operating as merchant on its own platform. For its
own packages, profits varied between 0 to 40% of the cost of
packages at the upstream providers. What’s more, MaxiDed
also operated as a customer on its own platform, acquiring of-
fers from merchants for its side business, a highly permissive
and lucrative file sharing service called DepFile. This file
sharing service was a major hub for distributing child sexual
abuse material.

The platform approach means MaxiDed can externalize the
cost and risks of acquiring and supplying upstream server
infrastructure to third-party merchants. As such it is decou-
pled from the upstreams. The advantage for merchants, on
the other hand, was that they could externalize the responsi-
bility and risks of acquiring customers and processing their
payments. Beside the fee that MaxiDed charged on top of the
merchant’s price, it also charged customers for performing
additional administrative tasks, like re-installing servers af-
ter a takedown by the upstream provider. From these fees, it
needed to recoup the cost of its staff and backend systems.

The main components of the marketplace were a fron-
tend webshop, a backend Customer Relationship Manage-
ment (CRM) system, accounts for merchants who could offer
server packages on in the webshop, and payment handling
of customers paying to MaxiDed and, in turn, MaxiDed pay-
ing the merchants when their offers resulted in a sale. The
CRM, a series of webpages implemented in PHP, was used
by both MaxiDed and merchants to create the server pack-
ages displayed on the webshop. It was also used to facilitate
communications between customers and merchants through
customer tickets. Merchants were responsible for handling
customer tickets of their own server packages. Communi-
cations also took place through multiple MaxiDed support
email addresses which were automatically imported into the
backend database and live-chat functionality which was not
retrievable from our data.

Different payment options have been supported over time
by MaxiDed; 23 in total. Some from third-party payment
providers like Paypal and WebMoney to cryptocurrencies
such as Bitcoin and Zcash.

(Merchants) Third-party merchants supplied server pack-
ages that were re-branded and sold, with a mark-up, un-

der MaxiDed’s name. Many offered packages were directly
scraped by the merchants from retail auction sites run by
certain upstream providers. As far as we could tell, most
merchants had no established reseller relationship with the up-
stream provider and no delegation was visible in IP WHOIS.
(We explore this more systematically in S.7.3.) This inval-
idates a key assumption in prior work, i.e., that agile BPH
providers operate on the basis of established reseller relation-
ships that are visible in sub-allocations. In some cases, mer-
chants did establish reseller relationships with an upstream
provider. This allowed them to hook into an API and automate
the importing and advertising process of upstream packages,
rather than having to manually scrape other hosting provider’s
websites, in addition to receive certain discounts.

(Upstream Providers) These are legitimate hosting com-
panies that offer server packages, via retail channels, auctions
or reseller programs, which are put into the MaxiDed market-
place by the merchants. Once sold, the merchant acquires
the package from the upstream provider. In S.7.3, we use
WHOIS IP allocation information to infer from which up-
stream providers the merchants bought their packages.

(Customers) Customers were elicited for their preferences
and guided towards server packages upon visiting MaxiDed’s
webshop. This occurred via standard search filters or via live
chat with administrators. Customers were able to request more
powerful hardware, additional IP addresses, pre-installation
of a specific OS, and decide on the physical location of the
servers. Figure 15 (see S.14 Appendix-A) provides an excerpt
of a live chat conducted by one of the authors with MaxiDed
operators prior to its takedown demonstrating this process.

Customers would first deposit funds into a USD denomi-
nated “wallet” and then use these wallet funds to pay for the
invoices that MaxiDed issued to them. In other words, pur-
chases were prepaid. This structure allows merchants to place
orders only after receiving payments and to shift the risks
of premature contract termination to customers as they have
received payments in full. Customers were not reimbursed for
lost server-day usage due to premature service suspension at
the upstream.

6.2 Side Business
MaxiDed’s administrators also operated a file sharing plat-
form, known as DepFile [13, 20], run on servers which
they rented through the MaxiDed marketplace. Some of these
servers were also seized during the law enforcement action.
Data shows that DepFile infrastructure was acquired using
a single MaxiDed customer account which never paid its in-
voices. Over time, the account accrued approximately 400,000
USD in debt. DepFile allowed its customers to host and
access content, some of which included child sexual abuse
material, on a monthly subscription basis. Our separate anal-
ysis of internal DepFile data, suggest that it resembled a so
called “affiliate program” [15, 21, 22] with affiliates bring-
ing in new subscribers. The profits from subsequent sign-ups

USENIX Association 28th USENIX Security Symposium 1345

Per mont

Features

Location: Saudi Arabia

Data center:

Speed Test Files: Private Network - more freedom of content and speech

Delivery time: Unix/Linux-based OS – 24 hours. Windows-based OS – 48 hours.

Allowed: adult, erotic, movies, doorways, dating, vpn, blogs

Allowed: Xrumer, Zennoposter and etc. Use without proxy

Not Allowed: CP, Zoo, anti-government sites

Base price

Configure Intel Xeon E5650, Saudi Arabia
Easily add hardware & software upgrades to server

(a)

Customer B: Server is not responding !

Provider: IP was null-routed. Assigned ALT IP. Don’t
abuse

Customer B: The server I have allows ‘..., xrumer, ...’
(See ‘allowed’ in Figure 2a)

Provider: What were you running ?

Customer B: xrumer ...

Provider: OK. Proceed.

Customer B: Reinstall OS please. I had C&C and XOR DDoS
on it. Possibly causing complaints.

Provider: Done ... should be up in a few minutes

(b)

Customer C: Server is down !

Provider: It was suspended due to abuse complaints

Customer C: You were informed of what it is used for!
Shouldn’t have suspended !

Provider: Pay “abuse fee” and server will be re-enabled

Customer C: how much ?

Provider: $300

Provider: ... Invoice sent ...

Customer C: That’s a steep price!

(c)
Figure 2: Examples of MaxiDed’s bullet-proof behavior. (a) screenshot of server publicly advertised to customers. (b) and (c) are excerpts of a
conversation between customer and administrator (edited for readability).

were shared between DepFile (a.k.a. MaxiDed) and the affili-
ates. As an aside: these profits were much higher than those
of MaxiDed. One could argue that the MaxiDed was more
valuable to its owners as a way to acquire cheap and risk-free
server infrastructure than as its own profit model.

6.3 Examples of Bullet-Proof Behavior

Figure 2a shows a screenshot of one of MaxiDed’s publicly
advertised server packages along with descriptions of its loca-
tion, network/IP-address information, price, in addition to ex-
plicit descriptions of abusive activities that were (dis-)allowed
upon purchasing. Figure 2b illustrates a conversation (lightly
edited for spelling) that took place between an admin and a
customer in the context of a CRM ticket. XRumer is a tool
aimed at boosting search engine rankings by auto-registering
accounts and posting link spam. It demonstrates that MaxiDed
operators were not only explicitly tolerating abuse, but that
they were informed about the abusive activities of their cus-
tomers and actively supported them. This is also the case for
DepFile. It knows the file sharing service is supporting illegal
content, including child sexual abuse material. The customer
interaction also shows the admin ignoring abuse complaints,
then assisting the customer by migrating resources to a dif-
ferent network location. Figure 2c is another example of a
(lightly-edited) conversation excerpt, demonstrating that cer-
tain customers were asked to pay an ‘abuse fee’ to continue
accessing their rented server upon receiving abuse complaints.

7 Supply and Demand for BPH

MaxiDed’s operations deviate from certain assumptions un-
derlying recent detection techniques. This warrants a more
detailed analysis of its characteristics to understand if this
new form of agile BPH exhibits chokepoints that allow for
disruption. Most disruption strategies rely either on taking
down the provider as a whole or on cutting off the supply of
resources that it needs: servers, connectivity, payment instru-
ments, customers. In MaxiDed’s case, the former occurred.
These kinds of takedowns however, are rare and hard to scale.
This section explores the alternative strategy: squeezing po-
tential chokepoints in the supply chain.

7.1 Merchants
In a period of seven years, merchants offered 56,113 different
server packages. Around a quarter of all packages (14,931)
explicitly allowed certain kinds of abuse. We refer to these as
bullet-proof (BP) packages. Note that non-BP packages were
also abused, as we learned from customer tickets when servers
were suspended. Admins frowned on this practice. Not be-
cause of the abuse itself, but because these customers should
have purchased a more expensive abuse-allowing package.
MaxiDed admins listed offers as well in the role of a merchant
on their own platform. We label MaxiDed as merchant zero
(mc0) and 14 third-party merchants as mc1...14, identified by
connecting MaxiDed’s user and supplier database tables.

0 5000 10000 15000 20000 25000
Nr. Package Offerings

mc0

mc13

mc4

mc14

other

M
er

ch
an

t P
se

ud
on

ym

Available on 2018-05
Expired Offer

0 2000 4000 6000 8000 10000
Nr. Illicit Package Offerings

mc0

mc13

mc4

mc14

other

M
er

ch
an

t P
se

ud
on

ym

Available on 2018-05
Expired Offer

Figure 3: Merchant Package Offerings. (left) All packages; (right)
Subset of illicit packages

Figure 3 (left) illustrates the total number of server pack-
ages offered by the top 4 merchants, which accounted for 98%
of all packages. At the moment of takedown (May 2018), there
were 3,957 available packages. Of these, 2,921 (74%) explic-
itly allowed abuse. Packages expired when corresponding
upstream provider packages expired or when operators no
longer maintained relationships with the upstreams.

Figure 3 (right) shows the subset of server packages that
allowed abuse, from the same top four merchants. This figure
highlights that two merchants, mc4 and mc14 were responsible
for 89% of all the BP packages offered on MaxiDed’s plat-
form and 94% of the BP packages available at the moment
of the takedown. Interestingly, MaxiDed itself (mc0) supplied
only 29 BP packages (1%), relying almost exclusively on its
merchants to supply BP infrastructure. This fits with our inter-
pretation that moving to a platform model allowed MaxiDed
to externalize the risk and cost of managing the relationships
with upstream providers around abusive practices.

Of the 14,931 BP packages on offer, only 3,066 (20%)

1346 28th USENIX Security Symposium USENIX Association

were ever sold. There were 9,439 customer orders for these.
This indicates that there was an oversupply of BP packages
on MaxiDed. Sales followed a similar distribution to supply,
with mc4 and mc14 accounting for 70% of all sales. (Of the
packages that did not explicitly allow abuse, 2,006 were sold
4,832 times.)

In sum, only around 20% of offers were ever sold, show-
ing that the market for BPH is, unfortunately, not supply-
constrained. MaxiDed externalized the supply of BP pack-
ages to merchants and two of these were dominant, in terms
of supply and sales. Merchants mc4 and mc14 would have
been viable candidates for disrupting the supply chain of
the marketplace as a whole, had they been identified prior
to MaxiDed’s takedown. This might be feasible if, as prior
work assumed, they are resellers of upstream providers and
WHOIS records are updated to show which network blocks
are delegated to them. We later discuss evidence that, in most
cases, there is no such delegation. The takedown of MaxiDed
itself is unlikely to have disrupted these merchants. They may
have taken some losses from outstanding due payments from
MaxiDed. Except for these losses, merchants could migrate
to other marketplaces, resulting in a game of whack-a-mole.
This demonstrates the advantages of merchants externalizing
part of their risks to the MaxiDed platform.

7.2 BP Package Categories

BP packages were differentiated in terms of what types of
abuse was allowed. The platform pre-defined 12 categories of
abusive activities. Merchants could tick the boxes of whatever
categories they were comfortable with for their packages. The
activities ranged from the distribution of pornographic con-
tent or copyrighted material, to Internet-wide scanning, run-
ning counterfeit pharmacies, running automated spamming
software such as Xrumer, and doing IP spoofing, typically
to conduct amplification DDoS attacks. Table 3 lists these
activities along with associated category labels C1..12.

We suspect merchant choices for certain types of abuse to
have been partly driven by what they could handle in terms
of their relationship with the upstream provider of a package.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c11c12
Abuse Category 'X'

c12

c11

c10

c9

c8

c7

c6

c5

c4

c3

c2

c1

Ab
us

e
Ca

te
go

ry
 'Y

'

G1

G2

G3

G4 G5

0.15

0.30

0.45

0.60

0.75

0.90

Pr
ob

 ('
Y'

 is
 a

llo
we

d
| '

X'
 is

 a
lre

ad
y

al
lo

we
d)

Figure 4: Correlation of abuse cate-
gories. (See Table 3 for ci labels).

Some forms of abuse
trigger more backlash
than others. Plus, cer-
tain upstreams might be
less vigilant regarding
certain forms of abuse,
depending on jurisdic-
tion or other factors.

To analyze the rela-
tionships among the al-
lowed forms of abuse,
we calculate the corre-
lations between all cat-
egories. In other words,

if category ’cX ’ is allowed, what is the probability that cate-
gory ’cY ’ is also allowed? The results are plotted in Figure 4.
Five groups of server packages can be identified, each with
a different type of abuse profile, which roughly corresponds
to a certain risk profile. At the top end of the risk profile
is "spoofing" (x = c12). Where this was allowed, everything
else was also allowed with high probability (i.e., all values
along the y-axis indicate high probability for x = c12). As
such a highest risk group label G5 was assigned to packages
that allow "spoofing". One step down are packages that allow
"scanning" (x = c11): everything else is typically allowed,
except "spoofing" (x = c11,y = c12), which has a lower prob-
ability. This is group G4. Next, G3 was assigned to a group
composed of 4 categories, C7..10 which were allowed in con-
junction with a high probability, and disallowed the higher
risk c11..12 categories with a high probability. The remaining
groups were created using a similar logic.

Cat. Description All Avail. before Risk Avail.
packages takedown Group per-group

C1 File Sharing 12,344 2,724
C2 Content Streaming 11,891 2,629 G1 404
C3 WAREZ 11,856 2,615
C4 Adult Content 10,732 2,557

C5 Double VPN 10,099 1,529 G2 630C6 Seedbox 8,835 1,298

C7 Gambling 2,663 1,862
C8 Xrumer 3,120 1,849 G3 1,279
C9 DMCA ignore 2,978 1,841
C10 Pharma 2,620 1,821

C11 Scanning 629 565 G4 254

C12 Spoofing 396 354 G5 354

Table 3: Statistics on packages allowing each category of illicit
activity and associated risk groups

For each risk group, Table 3 lists the abuse types and the
number of packages that allowed it, over the whole period of
MaxiDed (’all packages’) or at the moment of the takedown
(’Avail. before takedown’). Note that packages are counted
multiple times, as they often allowed multiple forms of abuse.
The last column, ’Avail. per group’, counts each package as
belonging uniquely to one group, namely the group with the
highest risk profile – e.g., if a package allows spoofing, it will
be counted in G5, but not in others, even though it likely also
allows those types of activities. We can see that MaxiDed had
a significant amount of supply in each category, with a clear
peak in group 3.

A side note: the tickets and live chats clearly showed that
other types of abuse were also allowed, such as running botnet
C&C servers. The admins did not wish to list these forms of
abuse publicly (see Figure 15 in S.14 Appendix-A).

7.3 Merchant Upstream Providers
To understand how MaxiDed’s supply of BP infrastructure was
distributed over legitimate upstream providers, we narrowed
our analysis to 5 merchants, namely mc0, mc4, mc10, mc12,

USENIX Association 28th USENIX Security Symposium 1347

and mc14, who jointly had 94% of the BP package sales.
Merchant mc14 sold most of the servers associated with

risk groups G3 or higher, the others sold mostly packages of
group G3 and below. So mc14 appears to have specialized in
higher risk packages.

0 130

227
0

7

1

87

1

1

1

3212
0

2

0
00

2
0 00

5

0

0

0

3

0

1

0

mc0

mc4

mc14

mc10mc12

Figure 5: Upstream Overlaps

We determined each
merchant’s set of upstream
providers by first extracting
from the data the IP addresses
provisioned once the server
was sold. Maxmind‘s histor-
ical IP WHOIS data was then
used to lookup organizations
to which these IP address
belonged. This way, we could see how each merchant’s
supply chain was composed of multiple upstream providers.
The variance was significant. The two dominant merchants
(mc10 and mc14) abused 134 and 276 upstream providers,
respectively. The others connected with 4 to 26 upstreams.
Overall, MaxiDed’s supply chain comprised of servers at 394
upstream providers.

Figure 5 show how much, or rather how little, the supply
chains of merchants overlapped in terms of upstreams. Fig-
ure 6 shows a CDF of how each merchant’s sold BP servers
were distributed across its own set of upstream providers.
Across all merchants, 15 upstream hosted 50% of all sold BP
servers and 57 account for 80% of all sold servers.

0 100 200
Upstream Providers

0.2

0.4

0.6

0.8

1.0

So
ld

 B
P

Se
rv

er
 P

er
ce

nt
ile

mc0
mc4
mc14
mc10
mc12

Figure 6: BP Server Distribu-
tion over Upstream Providers

At first glance, the con-
centration in 15 upstream
providers suggests a choke-
point that could be leveraged,
but the long tail of available
upstreams makes this strat-
egy not very promising. Mer-
chants could shift supply to
those hundreds of alternatives.
The 15 top ones might have
certain advantages in terms of
location, price and quality, but
only 5 of them are shared between the two top merchants,
so there does not seem to be a unique advantage to these
providers.

Recent BPH detection approaches [5] have relied on up-
stream providers updating WHOIS records when they dele-
gate network blocks to resellers. As stated, our data suggested
that merchants often do not enter into reseller agreements
with upstream. That would seriously undermine the effec-
tiveness of these detection methods. To test this more sys-
tematically, we looked at the set of upstream providers that
hosted 80% of the BP servers (57). In this set, we found 22
which are reputable upstream providers and more likely to
reflect sub-allocations to their clients in WHOIS. We ran-
domly sampled 10 BP servers for each of these 22 providers
and manually inspected their IP WHOIS information. In only

24% of the cases did the WHOIS information reflect sub-
allocation to downstream entities. Note that these downstream
entities might also be legitimate resellers who sold to the mer-
chants, rather than being the merchants themselves. Also,
none of the records pointed to MaxiDed. This means that in
76% of the cases, the BP activities could not be associated
with a sub-allocation, thus evading the current best detection
method. Abuse on these addresses would be counted against
the upstream provider, typically diluting the detectable con-
centration of abuse. Establishing a relationship between the
upstream provider, their downstream customers, merchants
and, ultimately, MaxiDed, would have been impossible with
this kind of data.

20
15

-0
4

20
15

-0
8

20
15

-1
2

20
16

-0
4

20
16

-0
8

20
16

-1
2

20
17

-0
4

20
17

-0
8

20
17

-1
2

20
18

-0
4

mcup2414

mcup514

mcup1414

mcup2514

mcup1214

mcup2014

mcup4714

mcup2214

mcup5414
mcup2814

20
15

-0
4

20
15

-0
8

20
15

-1
2

20
16

-0
4

20
16

-0
8

20
16

-1
2

20
17

-0
4

20
17

-0
8

20
17

-1
2

20
18

-0
4

mcup1214

mcup514

mcup2814

mcup2014

mcup1614

mcup1414

mcup2414

mcup2514

mcup4314
mcup3814

Figure 7: 10 most misused upstream providers via which mc14
provisioned BP servers of risk group G4 (allowing “scanning” - left)
and G5 (“spoofing’ - right’), plotted against server lifespans at each
provider. Each colored line represents the lifespan of one server.

We next examined the distribution of each merchants’ sold
BP servers and server life spans across their corresponding
upstream providers longitudinally. We visualize some of the
results for mc14, who was specialized in selling higher risk BP
servers. Figure 7 plots the lifespan of mc14’s sold BP servers
that allowed "scanning" (left) and "spoofing" (right) for its 10
most misused upstream providers.

Figure 7 demonstrates that the merchant’s BP customer
servers were spatially as well as temporally spread across
multiple upstream providers. It also shows that at no point
in time, was there a shortage in the supply of servers even
for the higher risk server packages. We observe no timeline
gap during which servers of a particular group were not pro-
visioned and active. We clearly observe a supply chain that
was diversified, yet proportionally concentrated on a limited
set of upstream providers. This approach of the merchant
seems to be driven by a combination of efficiency in working
with a limited set of upstreams and the flexibility of migrating
from one upstream to the next, once the cost of working with
that provider went up, perhaps because of mounting abuse
complaints.

1348 28th USENIX Security Symposium USENIX Association

7.4 Payment Instruments

Next, we analyze the various payment instruments to iden-
tify potential chokepoints. From analyzing the source code
of the webshop and the transactions in the database, we
know that MaxiDed accepted payments via 23 different instru-
ments. Three of these were actually never used by customers:
Bitcoin Gold, Electroneum and Kubera Coin. Eight pay-
ment options were provided for a limited time and then discon-
tinued by MaxiDed. At the moment of its takedown, 12 pay-
ment options were available. Some of these instruments, e.g.,
Paypal, were later restricted to specific groups of customers.
Payments through Yandex Money were generally restricted
to clients from Russia.

Figure 8 reconstructs transaction volumes over
time for 20 payment instruments based on times-
tamps of financial transactions in the data. It plots
a logscale of the number of transactions in each
month. The Y-axes are the same for all instruments.

WebMoney
BitCoin
PayPal

PerfectMoney
EPESE
Ecoin

Omise
Manual Corr.

QIWI
Ethereum
Interkassa

Litecoin
Dash

Bitcoin Cash
Monero

ePayService
Yandex Money

Dogecoin
Zcash

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

date

Ripple

Status
on 2018-05

Enabled
Disabled

Figure 8: Payment instrument monthly
transaction volume

First, we see that
WebMoney has
been a consistent
and reliable pay-
ment provider for
MaxiDed, basically
from the start. Other
instruments from
that period proved
more problematic.
For example, Paypal
became much more
difficult to use in
the course of 2015
and was abandoned
completely in early
2018. We can see
the operators deploy-
ing new ones and also abandoning some of them again.
This process seems to suggest responding to potential or
manifest disruptions via payment providers. Consistent with
this interpretation is the increase in options to pay with
cryptocurrencies. We first see a major shift to bitcoin at
the end of 2013. Then, around the end of 2017, MaxiDed
added 8 new cryptocurrencies. A preference to move to
cryptocurrencies was also observed in backend data, where
MaxiDed’s operators maintained an explicit preference order
for the different payment methods.

Figure 9 plots the cumulative generated revenue for the top
5 most popular payment instruments. While WebMoney had
brought in the most revenue, the total amount of bitcoin
payments was growing rapidly and poised to overtake the
leading position, until the takedown happened.

All in all, MaxiDed’s revenue was generated through
a small set of payment methods. The bulk of their cus-

tomers used only one payment method. Disruption of
MaxiDed’s payment flow via WebMoney would have been a
viable chokepoint in earlier phases. The self-imposed lim-
its on using Paypal probably reflect the fact that those
payments were vulnerable to countermeasures by Paypal.

2011 2012 2013 2014 2015 2016 2017 2018
Timeline

0.00
200.00K
400.00K
600.00K
800.00K

1.00M
1.20M
1.40M

Cu
m

ul
at

iv
e

Re
ve

nu
e

(in
 U

SD
)

Payment Instrument
BitCoin
EPESE
PayPal
PerfectMoney
WebMoney

Figure 9: Revenue

The shift towards
cryptocurrency pay-
ments demonstrates
that MaxiDed rec-
ognized this depen-
dency, as well as il-
lustrates how it was
attempting to reme-
diate it. It is clear
that this shift makes
disruption more difficult, though it is hard to gauge how re-
silient the bitcoin payment option actually was. This would
require a study of the blockchain and the role of currency ex-
changes, which is out of scope for this study. That being said,
the proliferation of cryptocurrency options might counteract
the vulnerabilities associated with each specific instrument.

7.5 Package Pricing

BPH businesses are typically understood as charging cus-
tomers high markup prices for allowing illicit activities and
offering protection against takedowns. There is anecdotal
evidence (e.g., [2, 5]) that suggests prices are well above
those for bonafide services. Our data, however, questions this
widely-held understanding.

We first distinguished VPS packages from physical dedi-
cated servers. In each category, we then compared the distri-
bution of the monthly lease price of packages that allowed
abuse versus those that did not. The results are plotted in Fig-
ure 10a. We observe that indeed abuse-enabling servers cost
more, but the difference are modest across most of the dis-
tribution. For dedicated servers, the median price was 95.00
USD for non-BP packages and 146.00 USD for BP packages.
For virtual servers, the median prices were 25.00 USD versus
35.00 USD. These numbers suggest that customers payed a
median markup ranging from 40% to 54% for being allowed
to abuse. This includes both the fee of MaxiDed as well as
the margin of the merchant. The rest goes to the upstream
provider.

0.0 0.2 0.4 0.6 0.8 1.0
Percentile of Packages

0

200

400

600

800

1000

M
on

th
ly

 L
ea

se
 P

ric
e

(in
 U

SD
)

Dedicated Server (No Abuse)
Dedicated Server (Abuse Allowed)
VPS (No abuse)
VPS (Abuse Allowed)

(a) Price per package type

No Abuse G1 G2 G3 G4 G5
Package Abuse Groups

0

200

400

600

800

1000

M
on

th
ly

 L
ea

se
 P

ric
e

(in
 U

SD
)

50.0 67.0 54.9
107.5

164.2 174.0

(b) Price per risk group
Figure 10: Package pricing (See Table 3 for risk group labels).

We also compared package prices based on associated risk

USENIX Association 28th USENIX Security Symposium 1349

groups of their packages. Figure 10b illustrates the results
with median group prices indicated in the plot. Here, we
observe larger prices differences. The median price of the
highest risk packages are 3.5 times higher than those for the
non-abuse packages.

The limited markup seen in the lower risk packages might
reflect the fact that the platform has an oversupply of BP
packages. Many packages never got sold. The platform also
sets up the merchants to compete with each other. All of
this might push prices down, towards the cost of the upstream
package. Relatively low markup might also reflect less cost on
the side of the merchant and marketplace because of takedown.
Low prices may also be the result of MaxiDed’s business
model which pushes takedown risks to customers by requiring
prepayment.

8 Customers

Law enforcement takedowns of online anonymous markets
(a.k.a., dark markets) have targeted the platforms, the sup-
ply chains, but also the customers on these platforms, in an
attempt to disrupt the demand side. The most ambitious op-
eration was the coordinated Alphabay-Hansa market action,
which de-anonymized many merchants and buyers [23]. As
of yet, it is unclear if these actions will have any impact on
the demand for these services. Nevertheless, we will take a
closer look at the population of MaxiDed customers to under-
stand how demand has evolved over time and whether it offers
starting points for disruption.
MaxiDed’s registration data shows that 308,396 unique

users signed up to its platform. Figure 11 plots the cumulative
number of registered, active and paying users over time. We
find three outlier events, during which a large number of users
appear to have been artificially created, that distort the num-
bers. Only 6,782 of the user population ever purchased server
packages. Of these, 4,498 users were active in the sense that
they logged into the platform’s CRM at least once after having
signed up. On average, the platform saw a daily growth of 3
user sign ups, excluding the three outlier events.

Cross referencing the user data, customer orders, and server
package data, we find that the majority of the customers were
interested in and may have engaged in abusive activities.

2012 2013 2014 2015 2016 2017 2018
Timeline (in days)

0
100

101

102

103

104

105

Co
un

t

Total Registered: 308396

Outlier events

Avg. Daily New: 3
 (without outliers)

Total Active: 4498

Total Paying: 6782

New Users
Registered Users (Cum.)
Active Users (Cum.)
Paying Users (Cum.)

Figure 11: User number over time

This is observable
in Figure 12 (left)
which plots the
cumulative number
of customers, sep-
arating out those
that eventually
ended up purchas-
ing BP servers. In
the earlier stage
of MaxiDed ’s
evolution, they still had a significant number of customers

who never bought BP packages. A few years in, they attract
an increasing number of users that do buy BP packages.
At the time of its disruption, 66% of all customers ever to
register had purchased BP packages. The remaining 34% was
a mix of bonafide customers and customers who may have
undertaken abusive activities on non-BP packages.

2012 2013 2014 2015 2016 2017 2018
Timeline (in days)

0
1000
2000
3000
4000
5000
6000
7000

Co
un

t

Paying Users (Cum.)
Purchased Server Allowing Abuse
Never Purchased Server Allowing Abuse

XX US RU NL DE FR UA RO SE CA CH PL IT ES AU CN LU HK BG LV

Country

0

200

400

600

800

1000

Cu
st

om
er

s

Purchased Srv. Allowing Abuse
Never Purchased Srv. Allowing Abuse

Figure 12: (left) Customer types; (right) Customer locations (XX =
Location not specified)

Customers could specify language preferences in their pro-
file: 5,085 selected English and 1,697 selected Russian. They
were also asked to supply location information. Assuming
that user-specified locations are correct, a crude assumption,
then most users came from 3 countries, namely RU, US and
NL (see Figure 12 - right), followed by a long tail of other
countries.

9 Use and Abuse

Next, we explore server use and abuse by customers. We
examine how customers manage takedown risks transferred
to them by MaxiDed and look at the measure of last-resort,
namely blacklisting BP servers once they are detected.

9.1 In Demand Abuse Categories
Our data contains timestamps of when servers were provi-
sioned and when they were taken offline. Servers were deac-
tivated when their lease expired or when abuse complaints
caused the upstream provider to terminate the lease early.

2011 2012 2013 2014 2015 2016 2017 2018
Timeline (in days)

0

100

200

300

400

500

Nr
. A

ct
iv

e
Se

rv
er

s

No Abuse
G1
G2
G3
G4
G5

Figure 13: Active servers

Figure 13 plots the
number of active
servers across var-
ious risk profiles.
It shows what
customers mostly
sought to purchase.

After a start as a
legitimate provider,
BP servers become
dominant over time (see Figure 13). Initially, customers were
interested in spamming, operating phishing domains (which
triggered DMCA complaints), running counterfeit pharma
and gambling sites (risk profile G3). Then we see a steady
growth in demand for G1: file sharing, streaming, adult con-
tent, and WAREZ forums. The rapid growth of MaxiDed, start-
ing around the end of 2014, saw a diversification of the abuse
and an increase of VPNs and seedboxes for file sharing (G2),

1350 28th USENIX Security Symposium USENIX Association

scanning (G4), and spoofing (G5). These shifts reflect a wider
trend towards commoditization of cybercrime services, such
as the provisioning of DDoS-as-a-Service [1]. At its peak,
MaxiDed administered 1,620 active BP and non-BP servers.

9.2 Abusive Server Uptime

MaxiDed and its merchants shifted the risk of takedown to
their customers. They required prepayment, offered no reim-
bursements, and provided minimal resilience support with
considerable attached “abuse fees”.

Risk Payment Premature Expired Extended Lost Usage Total
Profile Cycle Termination (Median

(days) (%) (%) (%) # days) (# servers)

No Abuse 91.0 15.69 38.77 45.54 10 4,831
G1 92.0 18.23 47.39 34.38 23 1,437
G2 90.0 23.04 52.22 24.74 28 2,834
G3 61.0 19.59 45.86 34.55 13 3,792
G4 46.0 15.41 48.39 36.20 3 558
G5 31.0 19.15 54.73 26.12 6 804

Table 4: Server lifespan statistics

How do customers deal with this risk? In essence: by choos-
ing shorter lease periods for more risky activities. Table 4 lists
the median lease periods that customers opt for across var-
ious risk groups. The more risky the abuse, i.e., the higher
the probability of a takedown, the shorter the lease time. The
table also provides statistics on the proportions of BP servers
that were prematurely terminated due to abuse complaints,
proportions of lease expirations, extensions, in addition to the
number of usage days that customers lost from termination of
their lease. Customers with the most risky activities manage
to mitigate the cost of takedown to a median of 6 lost days.

We also see that at most 23% of the BP servers were prema-
turely taken down. Most BP server ran uninterrupted for their
entire lease period. This speaks to the low rate of blacklisting,
questioning the effectiveness of this practices in disincentiviz-
ing abuse. An interesting pattern is that customers also abused
servers that did not allow abuse. 15% of these servers were
also taken down.

Overall 2,656 servers were deactivated prior to the expiry
of their lease plan. Another 6,483 active servers were deac-
tivated when they reached their normal expiry term. 5,117
servers remained active beyond their initial lease plan.

9.3 Detected Abusive Resources

We next explore a final chokepoint: blocking the BP servers
and abusive content hosted on them once they are discovered.

We triangulated these results by looking directly at several
blacklists. We used three years of passive DNS data from Far-
sight Security’s DNSDB to identify domain based resources
on MaxiDed’s IP addresses: fully qualified domain names
(FQDNs) and 2nd-level domains (2LDs). Table 5 lists the
quantities of resources associated with MaxiDed from 2016
to 2018. This period corresponds to when MaxiDed had the

highest number of active servers. We examined the intersec-
tion between these resources and those flagged or blocked
by several leading industry abuse feeds. The feeds capture
a mix of spam, phishing, malware and botnet C&C abuse.
Detailed information on these feeds is provided in Table 5.
The quantities of flagged MaxiDed customer resources within
each of these abuse feeds are also listed in the table. When
no historical feed data was available, we left the cell empty.

While coverage of blacklists is known to be limited, it is
quite disappointing to see the small fraction of the abuse that
gets picked up by the feeds. This confirms, with ground truth,
the observation in prior work that blacklisting is generally
ineffective in disrupting abuse.

10 Marketplace Finances

Disruption of BPH is also determined by how profitable the
business is. Lower margins mean that the provider is more
vulnerable to raised operating costs in the supply chain. In
this section, we analyze MaxiDed’s revenue, costs and profits.
To get a sense of the company as a whole, we include both
BP and non-BP services.

(Revenue.) From the 23 different payment instruments em-
ployed by MaxiDed, most of its revenue was received via
WebMoney payments (1,493,876 USD) followed by direct
BitCoin payments (1,324,449 USD, MaxiDed itself logged
these in USD). Around 577,118 USD was received through
the remaining payment instruments. The total amount of rev-
enue from 2011 up to May 2018, adds up to 3.4M USD.

(Operating Costs.) We have no data on personnel cost
at MaxiDed. Here, we analyze the outgoing payments to
merchants, upstreams and outstanding debts recorded in the
database.

i) Payments to Merchants. A main component of MaxiDed’s
cost structure consists of payments to merchants. Merchant
payments were exclusively deposited on WebMoney and
Epayments wallets. After MaxiDed took their 20% fee, the
remaining 80% went to the merchants. Analyzing outgoing
MaxiDed payments show 11 of the 14 operating merchants
to have received payments, adding up to 1,588,810 USD.

0 200K 400K 600K 800K
Earnings (USD)

mc.14
mc.04
mc.10
mc.13
mc.12
mc.02
mc.11
mc.09
mc.08
mc.07
mc.01

M
er

ch
an

t P
se

ud
on

ym

Figure 14: Payments to
merchants.

Figure 14 illustrates the distribu-
tion of payments made to each mer-
chant. The two largest suppliers of
server packages, mc4 and mc14, re-
ceived the bulk of the earnings. Most
of the merchants were completely
unsuccessful. The lowest earners,
combined, generated less than 190K
USD over all years.

ii) Payments to Upstreams. We
cannot see the payments of third-party merchants to their
upstreams, only the payments where MaxiDed is itself a mer-
chant on the platform (mc0). Data shows that mc0 payments to
their upstreams add up to 1,526,015 USD, paid via WebMoney

USENIX Association 28th USENIX Security Symposium 1351

Hosted resources Number flagged resource in abuse feed

IPs FQDN 2LD PHTK1 APWG2 SBW3 GSB4 DBL5 CMX6

Year (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD) (IP) (FQDN) (2LD)

2016 985 9,902 3,378 2 1 32 29 45 75 12 10 23 85 185 201
2017 906 15,494 3,573 5 2 18 1 4 23 . . . 4 63 71 40 644 696 22 20 51
2018 145 416 280 0 0 2 0 0 5 . . . 0 0 4 20 23 22 . . .

Sources:PHTK: Phishtank[24], APWG: Anti-Phishing Working Group[25], SBW: StopBadware[26], GSB: Google Safe Browsing[26], DBL: Spamhaus[27], CMX: Clean-MX[28].
Notes: (1) Phishing; (2) Phishing; (3, 4) Malware drive-by; (5) SPAM, Malware, Phishing, botnet C&C; (6) Malware and Phishing.

Table 5: Statistics on flagged or blocked MaxiDed customer resources

and PayPal. Note that 99% of these payments were not for
BP servers, as those were almost exclusively provided by the
third-party merchants.

iii) Debtors. The final component of MaxiDed’s costs struc-
ture is that of outstanding debts due from its customers.
The operators have vigilantly banned customers with out-
standing debts. One customer was the exception to this
rule. Actually, this was not a real customer, but a customer
account through which MaxiDed operators themselves pur-
chased servers from merchants on their platform. These were
used to host DepFile, their large file-sharing platform side-
business. This customer entity accumulated debts amounting
to 399,123 USD.

(Profits.) Table 6 details MaxiDed’s yearly finances, along-
side finances of their side business DepFile. Despite the
common understanding of BPH services being lucrative, we
clearly observe MaxiDed’s earnings to be modest and de-
clining. In total, over seven years, MaxiDed made just over
280K USD in profit. If we take out the debt incurred for the
DepFile side-business (399,123+280,618), then the profit
would have been 679,741 USD. This is still an underwhelm-
ing figure for 7 years of operating a BPH platform. Recall that
the cost of personnel, office space, and equipment also has to
be taken from this amount. These combined costs would have
to be substantially lower than 100K USD per year to leave
even a tiny profit on the balance sheet.

MaxiDed DepFile

Year Revenue Costs Profmx Revenue Costs Profd p (Σ Prof.i)

2011 79,987 1,312 78,675 . . . 78,675
2012 345,213 72,418 272,794 . . . 272,794
2013 458,028 17,9761 278,266 334,540 248,307 86,233 364,499
2014 419,739 328,757 90,981 1,646,568 712,442 934,125 1,025,106
2015 615,046 570,895 44,150 2,205,687 1,396,820 808,867 853,017
2016 733,151 726,040 7,111 3,153,553 2,188,634 964,919 972,030
2017 566,471 872,520 -306,048 3,998,244 2,841,322 1,156,922 850,874
2018 177,806 363,118 -185,312 1,547,078 1,129,586 417,492 232,180

Total 3,395,444 3,114,825 280,618 12,885,673 8,517,113 4,368,560 4,649,178
Note: (mx: MaxiDed) (d p: DepFile)

Table 6: Yearly finances

The side-business DepFile, on the other hand, generated
much better margins. We could even speculate that MaxiDed
was more valuable to its owners as a way to acquire cheap and
risk-free server infrastructure than as its own profit model.

11 Related Work

(Underground Ecosystems.) Several ecosystems and mar-
ketplaces of a malicious nature have been studied in the lit-
erature via captured datasets. Stone-Gross et al. analyzed
credential stealing malware [29] and spam botnets [14] by
taking over part of the botnet infrastructure to understand
their inner workings. Wang et al. studied SEO campaigns to
sell counterfeit luxury goods and the effectiveness of various
interventions to combat such activities [30]. Alrwais et al.[34]
investigate illicit activities in the domain parking industry
by interacting with the services to collect ground truth data.
Christin [31] analyzed the Silk Road marketplace by running
daily crawls of its webservices for 6 months to understand
merchants, customers, and what was being sold. A followup
study by Soska and Christin [32] examined 16 anonymous
market places also by periodically crawling their webservices
and found that marketplace takedowns may be less effec-
tive than pursuing key merchants that may migrate to others.
Another followup study by Wegberg et al. [33] augments pre-
vious studies by examining evidence for commoditization of
entire cybercrime value-chains in underground marketplaces
and finds that only niche value-chain components are on offer.

Datasets on the underground can also be leaked by crimi-
nal competitors. McCoy et al. used leaked databases of three
affiliate programs to study pharmaceutical affiliate programs
[15]. More recently, Brunt et al.[35] analyzed data from a
DDoS-for-hire service and found that disrupting their reg-
ulated payment channel reduced their profitability but that
they were still profitable by switching to unregulated cryp-
tocurrency payments. Hao et al. [16] analyzed a combination
of leaked and legally seized data to understand the ecosys-
tem for monetizing stolen credit cards. Our dataset resulted
from the aftermath of the legal takedown of the BPH provider
MaxiDed. To the best of our knowledge, there has been no
prior academic work on BPH using such ground-truth data.
Our study uniquely provides a comprehensive picture of the
supply, demand and finances of the entire BPH operation.

(Bulletproof hosting.) Earlier efforts on detecting BPH
have relied heavily on identifying autonomous systems.
Fire [9] was one of the first systems for detecting BP ASes by
temporally and spatially aggregating information from mul-
tiple blacklists in order to detect elevated concentrations of
persistent abuse within an AS’s IP blocks. Shue et al. [36]
noted that BP ASes often fast-flux their BGP routing informa-
tion to evade detection. ASwatch [11] leveraged fast-fluxing

1352 28th USENIX Security Symposium USENIX Association

BGP routing as strong indicator of a BP AS to build a clas-
sifier and detect BP ASes before they appear on blacklists.
Others have developed security metrics to compare concen-
trations of abuse on various hosting networks and to identify
negligent providers that may be suspected of operating BPH
services [37, 38], while Tajalizadehkhoob et al. developed
techniques to analyze abuse concentration on the hosting mar-
ket as a whole by identifying providers from their WHOIS
information rather than BGP data [39]. BPH however, has
evolved over time. Alrwais, et al.[5] studied a recent approach
of BPH abusing legitimate hosting providers through reseller
packages to provide a more agile BP infrastructure. Our work
complements this work by providing a unique perspective
into to the the ecosystem of BPH. Based on our analysis, we
can better reason about which mitigation techniques might
be effective and which are likely ineffective for undermining
modern agile BPH marketplaces.

12 Limitations and Future Work

In comparison to other underground marketplaces studied pre-
viously (cf. [32, 33]), MaxiDed may be seen as a specialized
marketplace for provisioning BP servers. While comparisons
with other underground markets may be drawn, direct com-
parisons are difficult due to differences in how MaxiDed’s
marketplace operated. For example its customers were not
aware that merchants were involved in supplying the market-
place with resources. This also explains why in comparison
no reputation mechanisms were in place for customers to
differentiate packages based on their quality (or differentiate
good/bad merchants).

Despite such differences, we do still observe patterns simi-
lar to what other studies of criminal endeavors have reported.
For example, we have observed a concentrated supply pattern
around a handful of merchants in MaxiDed’s case, which is a
similar to what other studies of underground market places
have observed ([32, 33]). We have also observed demand to
gravitate towards the resources supplied by successful mer-
chants. The number of successful merchants being limited,
also agrees with studies of other criminal operations, e.g. in
studying spam botmasters and their operations [14].

Given that this study has focused on an in-depth analysis
of the anatomy and economics of MaxiDed, future work may
draw more systematic comparisons to better understand the
implications of what we has been reported here. Furthermore,
MaxiDed’s prominence within the ecosystem has also not
been systematically explored in our study, albeit the limited
comparisons with other BPH providers in addition to anecdo-
tal evidence [4, 13] suggest that MaxiDed may be reasonably
considered as a major provider within the ecosystem. Nev-
ertheless, some of our findings, particularly those relating to
the economics and profitability of BPH services may require
further research to better understand the BPH ecosystem as a
whole.

13 Discussion and Implications

(Discussion.) We found MaxiDed to have developed a new
agile model in response to detection and disruption strategies.
Its operations had matured to the point of a new innovation,
namely operating a marketplace-like platform for selling BPH
services. This model transfers the risks of acquiring the BP
server infrastructure from upstream providers to merchants.
MaxiDed ’s main role was to take on the risks of acquiring
customers, communicating with them and processing their
payments. The 14 merchants on the platform (over)-supplied
the market with more than 50K different server packages,
many of which expired without being purchased. They abused
a total of set 394 different upstream providers, thus allowing
merchants to spread out and rotate abuse across many different
legitimate networks.

We see some concentration in this supply chain, with 15
upstreams providing infrastructure for over 50% of the BP
servers sold. Most of these upstream resources are not shown
to be delegated in WHOIS, drastically curtailing the effective-
ness of the most recent detection approaches. Another point of
concentration is in the merchant pool: two merchants offered
89% of all BP servers and made 94% of the BP packages sales.
Most other MaxiDed merchants failed to generate any mean-
ingful sales. The platform deployed 23 different instruments
to transact with customers over various periods. Revenue was
initially largely processed by one payment settlement system:
WebMoney. We also saw an increased volume of BitCoin
payments and the adoption of other cryptocurrencies in re-
sponse to disruptions in other instruments, such as PayPal.
A lack of product differentiation on the market is likely to
have created a fierce price competition across the merchants
which in turn has led a great proportion of merchants to fail.
This competition also decreases the profits of not only the
merchants, but also of MaxiDed itself. Its profits, over seven
years, amounted to a mere 280K USD (or 680K USD if we
ignore cross subsidies to their other business, DepFile). The
actual profits are even lower, as this amount also has to cover
the cost of personnel, office space and equipment, on which
we had no data.

(Implications.) Bullet-proof hosting (BPH) companies re-
main a difficult problem as their operators adapt to evade
detection and disruption. Prior work in this area has largely
relied on external measurements and generally lacks ground-
truth data on the internal operations of such providers. Recent
detection techniques rely on certain assumptions, namely that
agile BPH operates under reseller relationships, and that up-
stream providers accurately reflect such relationships in their
WHOIS information. We found MaxiDed to deviate from both
assumptions, thus rendering detection less effective.

Prior BPH instances were mainly disrupted by pressur-
ing upstream providers to sever ties with downstream BPH
providers. Given the number of available substitute upstream
providers of MaxiDed, this is unlikely to be an effective choke-

USENIX Association 28th USENIX Security Symposium 1353

point. Drawing parallels with other underground markets sug-
gest that, other than taking down the platform itself, disruption
may also be achieved by pressuring other chokepoints: mer-
chants, revenue and demand. MaxiDed’s dominant merchants
would have been a viable chokepoint, yet, identifying them
most likely required internal operational knowledge as their
existence and identities were not externally visible. As for
disrupting payment channels, the transition to mostly unregu-
lated cryptocurrencies payments suggest that this is no longer
a straightforward option. Surprisingly, MaxiDed’s low profits
indicate that an increase in transaction or operating costs may
be viable a pressure point to disrupt revenue and demand.
Future work could explore how to raise these costs. Being
aware of the threat of criminal prosecution might, ironically,
be one way.

The final remaining pressure point would be to take down
the platform. Such takedowns however are hard to replicate,
let alone scale. That being said, MaxiDed explicitly marketed
bullet proof services on the clear web. Even in cases when
criminal prosecution itself is not feasible, if the threat can be
made plausible, it might force the company to operate within
higher op sec requirements, raising the cost of doing business.
This suggests that what appears the more difficult strategy
might actually be the best option in light of the supply chain
becoming even more agile and evasive. Our hope is that by
further studying and understanding of these emerging agile
BPH services we can inform new and potentially more effec-
tive directions for mitigating this threat. To orient future work
in this area, researchers might be better off deprecating the
increasingly misleading metaphor of “bullet-proof” hosting
in favor of a term like “agile abuse enablers”.

Acknowledgments The authors would like to thank the anonymous reviewers of
our study for their feedback and suggestions to improve the quality of our manuscript.
We greatly appreciate the data sharing efforts of Farsight Security, and other organi-
zations including Phishtank, APWG, Stopbadware, Spamhaus and CleanMX that have
provided us with passive DNS and the abuse data on which parts of this study are based.
We would like to thank the Dutch National High-Tech Crime Police unit for making
this study possible as well as the Dutch Ministry of Economic Affairs and SIDN for
supporting our research. Finally, we acknowledge funding support under NSF award
number 1717062, DHS S&T FA8750-19-2-0009, and gifts from Comcast and Google.

References

[1] Kurt Thomas, Danny Yuxing, Huang David, Thomas J Holt,
Christopher Kruegel, Damon Mccoy, Elie Bursztein, Chris
Grier, Stefan Savage, and Giovanni Vigna. “Framing Depen-
dencies Introduced by Underground Commoditization”. In:
WEIS. 2015.

[2] Brian Krebs. Inside the Gozi Bulletproof Hosting Facility.
2013. URL: https://krebsonsecurity.com/2013/01/
inside-the-gozi-bulletproof-hosting-facility/.

[3] Danny Bradbury. “Testing the defences of bulletproof hosting
companies”. In: Network Security 2014.6 (2014), pp. 8–12.

[4] Dhia Mahjoub and Sarah Brown. Behaviors and Patterns of
Bulletproof and Anonymous Hosting Providers. 2017. URL:
https://www.usenix.org/conference/enigma2017/
conference-program/presentation/mahjoub.

[5] Sumayah Alrwais, Xiaojing Liao, Xianghang Mi, Peng Wang,
XiaoFeng Wang, Feng Qian, Raheem Beyah, and Damon
McCoy. “Under the Shadow of Sunshine : Understanding
and Detecting Bulletproof Hosting on Legitimate Service
Provider Networks”. In: Proc. of IEEE S&P (Oakland). 2017.

[6] Brian Krebs. Host of Internet Spam Groups Is Cut Off. 2008.
URL: http : / / www . washingtonpost . com / wp - dyn /
content / article / 2008 / 11 / 12 / AR2008111200658 .
html.

[7] Brian Krebs. Shadowy Russian Firm Seen as Conduit for
Cybercrime. 2007. URL: http://www.washingtonpost.
com / wp - dyn / content / article / 2007 / 10 / 12 /
AR2007101202461.html.

[8] Patrick Howell O’Neill. An in-depth guide to Freedom Host-
ing, the engine of the Dark Net. 2013. URL: https://www.
dailydot.com/news/eric- marques- tor- freedom-
hosting-child-porn-arrest/.

[9] Brett Stone-Gross, Christopher Kruegel, Kevin Almeroth,
Andreas Moser, and Engin Kirda. “FIRE: FInding Rogue
nEtworks”. In: ACSAC. 2009, pp. 231–240.

[10] C. Wagner, J. François, R. State, A. Dulaunoy, T. Engel, and
G. Massen. “ASMATRA: Ranking ASs providing transit
service to malware hosters”. In: Integrated Network Manage-
ment. 2013, pp. 260–268.

[11] Maria Konte, Roberto Perdisci, and Nick Feamster.
“ASwatch: An AS Reputation System to Expose Bulletproof
Hosting ASes”. In: Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication -
SIGCOMM ’15. ACM Press, 2015, pp. 625–638.

[12] Dutch-Police. Nederlandse en Thaise politie pakken bul-
letproof hoster aan. URL: https://www.politie.nl/
nieuws/2018/mei/16/11-nederlandse-en-thaise-
politie-pakken-bulletproof-hoster-aan.html.

[13] Catalin Cimpanu. Police Seize Servers of Bulletproof
Provider Known For Hosting Malware Ops. URL: https://
www.bleepingcomputer.com/news/security/police-
seize- servers- of- bulletproof- provider- known-
for-hosting-malware-ops/ (visited on 05/28/2019).

[14] Brett Stone-gross, Thorsten Holz, Gianluca Stringhini, and
Giovanni Vigna. “The Underground Economy of Spam: A
Botmaster’s Perspective of Coordinating Large-Scale Spam
Campaigns”. In: USENIX LEET. 2011.

[15] Damon McCoy, A Pitsillidis, G Jordan, N Weaver, C
Kreibich, B Krebs, G M Voelker, S Savage, and K Levchenko.
“PharmaLeaks: Understanding the Business of Online Phar-
maceutical Affiliate Programs”. In: USENIX Security 2012
(2012), pp. 1–16.

1354 28th USENIX Security Symposium USENIX Association

https://krebsonsecurity.com/2013/01/inside-the-gozi-bulletproof-hosting-facility/
https://krebsonsecurity.com/2013/01/inside-the-gozi-bulletproof-hosting-facility/
https://www.usenix.org/conference/enigma2017/conference-program/presentation/mahjoub
https://www.usenix.org/conference/enigma2017/conference-program/presentation/mahjoub
http://www.washingtonpost.com/wp-dyn/content/article/2008/11/12/AR2008111200658.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/11/12/AR2008111200658.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/11/12/AR2008111200658.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/10/12/AR2007101202461.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/10/12/AR2007101202461.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/10/12/AR2007101202461.html
https://www.dailydot.com/news/eric-marques-tor-freedom-hosting-child-porn-arrest/
https://www.dailydot.com/news/eric-marques-tor-freedom-hosting-child-porn-arrest/
https://www.dailydot.com/news/eric-marques-tor-freedom-hosting-child-porn-arrest/
https://www.politie.nl/nieuws/2018/mei/16/11-nederlandse-en-thaise-politie-pakken-bulletproof-hoster-aan.html
https://www.politie.nl/nieuws/2018/mei/16/11-nederlandse-en-thaise-politie-pakken-bulletproof-hoster-aan.html
https://www.politie.nl/nieuws/2018/mei/16/11-nederlandse-en-thaise-politie-pakken-bulletproof-hoster-aan.html
https://www.bleepingcomputer.com/news/security/police-seize-servers-of-bulletproof-provider-known-for-hosting-malware-ops/
https://www.bleepingcomputer.com/news/security/police-seize-servers-of-bulletproof-provider-known-for-hosting-malware-ops/
https://www.bleepingcomputer.com/news/security/police-seize-servers-of-bulletproof-provider-known-for-hosting-malware-ops/
https://www.bleepingcomputer.com/news/security/police-seize-servers-of-bulletproof-provider-known-for-hosting-malware-ops/

[16] Shuang Hao, Kevin Borgolte, Nick Nikiforakis, Gianluca
Stringhini, Manuel Egele, Michael Eubanks, Brian Krebs,
and Giovanni Vigna. “Drops for Stuff: An Analysis of Re-
shipping Mule Scams”. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Se-
curity - CCS ’15 (2015), pp. 1081–1092.

[17] Michael Bailey, David Dittrich, Erin Kenneally, and Doug
Maughan. “The Menlo report”. In: IEEE Security and Pri-
vacy 10.2 (2012), pp. 71–75.

[18] DNSDB. URL: https://www.dnsdb.info.

[19] Maxmind GeoIP2 DB. URL: https://www.maxmind.com/
en/geoip2-isp-database.

[20] Annelie Langerak. Groot pedonetwerk opgerold. 2018. URL:
https://www.telegraaf.nl/nieuws/2043709/groot-
pedonetwerk-opgerold.

[21] K. Levchenko, A. Pitsillidis, N. Chachra, B. Enright, M. Fel-
egyhazi, C. Grier, T. Halvorson, C. Kanich, C. Kreibich, D.
McCoy, N. Weaver, V. Paxson, G. M. Voelker, and S. Savage.
“Click Trajectories: End-to-End Analysis of the Spam Value
Chain”. English. In: 2011 IEEE Symposium on Security and
Privacy. IEEE, 2011, pp. 431–446.

[22] Damon Mccoy, Hitesh Dharmdasani, Christian Kreibich, Ge-
offrey M Voelker, and Stefan Savage. “Priceless : The Role
of Payments in Abuse-advertised Goods”. In: Proceedings of
the 2012 ACM conference on Computer and communications
security (2012), pp. 845–856.

[23] Andy Greenberg. Operation Bayonet: Inside the Sting That
Hijacked an Entire Dark Web Drug Market. URL: https://
www.wired.com/story/hansa-dutch-police-sting-
operation/ (visited on 11/01/2018).

[24] Phishtank. URL: https://www.phishtank.com/index.
php.

[25] APWG. URL: https://www.antiphishing.org/.

[26] StopBadware. URL: https://www.stopbadware.org/
data-sharing.

[27] SpamHaus DBL. URL: https://www.spamhaus.org/
dbl/.

[28] CleanMX. URL: https://support.clean-mx.com.

[29] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob
Gilbert, Martin Szydlowski, Richard Kemmerer, Christopher
Kruegel, and Giovanni Vigna. “Your botnet is my botnet”. In:
Proceedings of the 16th ACM conference on Computer and
communications security - CCS ’09. New York, New York,
USA: ACM Press, 2009, p. 635.

[30] David Y Wang, Matthew Der Mohammad, Lawrence Saul,
Damon Mccoy, Stefan Savage, and Geoffrey M Voelker.
“Search + Seizure : The Effectiveness of Interventions on
SEO Campaigns”. In: IMC. 2014, pp. 359–372.

[31] Nicolas Christin. “Traveling the silk road”. In: Proceedings
of the 22nd international conference on World Wide Web -
WWW ’13. New York, New York, USA: ACM Press, 2013,
pp. 213–224.

[32] Kyle Soska and Nicolas Christin. “Measuring the Longi-
tudinal Evolution of the Online Anonymous Marketplace
Ecosystem”. In: Usenix Sec. 2015, pp. 33–48.

[33] Rolf van Wegberg, Samaneh Tajalizadehkhoob, Kyle Soska,
Ugur Akyazi, Carlos Hernandez Ganan, Bram Klievink, Nico-
las Christin, and Michel van Eeten. “Plug and Prey? Measur-
ing the Commoditization of Cybercrime via Online Anony-
mous Markets”. In: 27th {USENIX} Security Symposium
({USENIX} Security 18). 2018, pp. 1009–1026.

[34] Sumayah Alrwais, Kan Yuan, Eihal Alowaisheq, Zhou Li,
and Xiaofeng Wang. “Understanding the Dark Side of
Domain Parking”. In: 23rd USENIX Security Symposium
(USENIX Security ’14). 2014.

[35] Ryan Brunt, Prakhar Pandey, and Damon McCoy. “Booted:
An Analysis of a Payment Intervention on a DDoS-for-Hire
Service”. In: Workshop on the Economics of Information
Security (WEIS) (2017).

[36] Craig A. Shue, Andrew J. Kalafut, and Minaxi Gupta. “Ab-
normally Malicious Autonomous Systems and Their Internet
Connectivity”. In: IEEE/ACM TON 20.1 (2012), pp. 220–
230.

[37] Arman Noroozian, Maciej Korczynski, Samaneh Tajal-
izadehkhoob, and Michel van Eeten. “Developing Security
Reputation Metrics for Hosting Providers”. In: USENIX
CSET. 2015.

[38] Arman Noroozian, Michael Ciere, Maciej Korczynski,
Samaneh Tajalizadehkhoob, and Michel Van Eeten. “Infer-
ring the Security Performance of Providers from Noisy and
Heterogenous Abuse Datasets”. In: WEIS. 2017.

[39] Samaneh Tajalizadehkhoob, Maciej Korczynski, Arman
Noroozian, Carlos Ganan, and Michel van Eeten. “Apples,
oranges and hosting providers: Heterogeneity and security in
the hosting market”. In: Proc. of NOMS. IEEE, 2016.

14 Appendices

A - Customer Preference Elicitation
Customer : Some servers don’t specify what is allowed. does this mean everything is OK?

Provider: What are you looking for?

Customer : I’m looking for malware, spam and botnet C2 hosting , VPS or physical server
are both fine

Provider: We allow this here for example ... [provides link to server package
configurator]

Customer : That says xrumer, warez, adult, ...not what I asked for

Provider: We don’t mention what you want on the public list

Customer : Can you send me a large private list to choose from?

Provider: [provides link to dedicated servers located in a country]

Provider: Dedicated server prices are above 100

Customer : All of these are in one country, anything in US or EU?

Provider: [provides several links to other server package configs]

Figure 15: Chat excerpt illustrating customer preference elicitation.

Figure 15 illustrates an excerpt of a live chat (edited for
readability) conducted by one of the authors with MaxiDed

USENIX Association 28th USENIX Security Symposium 1355

https://www.dnsdb.info
https://www.maxmind.com/en/geoip2-isp-database
https://www.maxmind.com/en/geoip2-isp-database
https://www.telegraaf.nl/nieuws/2043709/groot-pedonetwerk-opgerold
https://www.telegraaf.nl/nieuws/2043709/groot-pedonetwerk-opgerold
https://www.wired.com/story/hansa-dutch-police-sting-operation/
https://www.wired.com/story/hansa-dutch-police-sting-operation/
https://www.wired.com/story/hansa-dutch-police-sting-operation/
https://www.phishtank.com/index.php
https://www.phishtank.com/index.php
https://www.antiphishing.org/
https://www.stopbadware.org/data-sharing
https://www.stopbadware.org/data-sharing
https://www.spamhaus.org/dbl/
https://www.spamhaus.org/dbl/
https://support.clean-mx.com

operators prior to its takedown. It shows the process of pref-
erence elicitation by MaxiDed operators.

The conversation was conducted using the live-chat func-
tionality on their webshop. It demonstrates that MaxiDed op-
erators may have also allowed other forms of abuse which
they did not publicly mention on their webshop along side the
various BP server packages that the platform advertised.

B - Geographical distribution of Customer Servers
In analyzing MaxiDed’s platform, we also examined where

its customer servers were located. We used Maxmind’s com-
mercial historical geo-location data for this purpose. This
data is available on a weekly basis. For each customer server
we first found the closest matching Maxmind IP geoloca-
tion database with the timespan during which the server was
active. We then determined were each server was located
based on its IP address and Maxmind’s datasets. Figure 16

plots the top-20 locations for MaxiDed’s customer servers.

M
D RU US UA NL FR CH DE LT AU RS GB SG CZ HK CA BG JP PL SE

Country

0

500

1000

1500

2000

2500

Nr
. S

er
ve

rs
 in

 C
ou

nt
ry

Abuse Allowed
No Abuse

Figure 16: Top-20 locations for
MaxiDed customer servers

We found that
the majority of
the BP servers
geolocated to
Moldova followed
by Russia, the
US, Ukraine, the
Netherlands and
a long tail of
other countries.
Figure 16 also
displays the number of non-BP servers in each of these top-20
locations. We observed that the Netherlands in particular
hosted a substantial number of the non-BP servers.

1356 28th USENIX Security Symposium USENIX Association

Protecting Cloud Virtual Machines
from Commodity Hypervisor and Host Operating System Exploits

Shih-Wei Li John S. Koh Jason Nieh
Department of Computer Science

Columbia University
{shihwei,koh,nieh}@cs.columbia.edu

Abstract
Hypervisors are widely deployed by cloud computing

providers to support virtual machines, but their growing com-
plexity poses a security risk as large codebases contain many
vulnerabilities. We have created HypSec, a new hypervisor
design for retrofitting an existing commodity hypervisor using
microkernel principles to reduce its trusted computing base
while protecting the confidentiality and integrity of virtual ma-
chines. HypSec partitions the hypervisor into an untrusted host
that performs most complex hypervisor functionality without
access to virtual machine data, and a trusted core that provides
access control to virtual machine data and performs basic CPU
and memory virtualization. Hardware virtualization support
is used to isolate and protect the trusted core and execute it
at a higher privilege level so it can mediate virtual machine
exceptions and protect VM data in CPU and memory. HypSec
takes an end-to-end approach to securing I/O to simplify its
design, with applications increasingly using secure network
connections in the cloud. We have used HypSec to retrofit
KVM, showing how our approach can support a widely-used
full-featured hypervisor integrated with a commodity oper-
ating system. The implementation has a trusted computing
base of only a few thousand lines of code, many orders of
magnitude less than KVM. We show that HypSec protects
the confidentiality and integrity of virtual machines running
unmodified guest operating systems while only incurring
modest performance overhead for real application workloads.

1 Introduction

The availability of cost-effective, commodity cloud providers
has pushed increasing numbers of companies and users to
move their data and computation off site into virtual machines
(VMs) running on hosts in the cloud. The hypervisor provides
the VM abstraction and has full control of the hardware
resources. Modern hypervisors are often integrated with
a host operating system (OS) kernel to leverage existing
kernel functionality to simplify their implementation and

maintenance effort. For example, KVM [44] is integrated with
Linux and Hyper-V [56] is integrated with Windows. The
result is a huge potential attack surface with access to VM
data in CPU registers, memory, I/O data, and boot images.
The surge in outsourcing of computational resources to the
cloud and away from privately-owned data centers further
exacerbates this security risk of relying on the trustworthiness
of complex and potentially vulnerable hypervisor and host OS
infrastructure. Attackers that successfully exploit hypervisor
vulnerabilities can gain unfettered access to VM data, and
compromise the privacy and integrity of all VMs—an
undesirable outcome for both cloud providers and users.

Recent trends in application design and hardware virtual-
ization support provide an opportunity to revisit hypervisor
design requirements to address this crucial security problem.
First, modern hardware includes virtualization support to
protect and run the hypervisor at a higher privilege level
than VMs, potentially providing new opportunities to
redesign the hypervisor to improve security. Second, due
to greater security awareness because of the Snowden leaks
revealing secret surveillance of large portions of the network
infrastructure [49], applications are increasingly designed to
use end-to-end encryption for I/O channels, including secure
network connections [29, 50] and disk encryption [14]. This is
decreasing the need for hypervisors to themselves secure I/O
channels since applications can do a better job of providing
an end-to-end I/O security solution [68].

Based on these trends, we have created HypSec, a new
hypervisor design for retrofitting commodity hypervisors to
significantly reduce the code size of their trusted computing
base (TCB) while maintaining their full functionality. The
design employs microkernel principles, but instead of
requiring a clean-slate rewrite from scratch—a difficult task
that limits both functionality and deployment—applies them to
restructure an existing hypervisor with modest modifications.
HypSec partitions a monolithic hypervisor into a small trusted
core, the corevisor, and a large untrusted host, the hostvisor.
HypSec leverages hardware virtualization support to isolate
and protect the corevisor and execute it at a higher privilege

USENIX Association 28th USENIX Security Symposium 1357

level than the hostvisor. The corevisor enforces access control
to protect data in CPU and memory, but relies on VMs or
applications to use end-to-end encrypted I/O to protect I/O
data, simplifying the corevisor design.

The corevisor has full access to hardware resources, pro-
vides basic CPU and memory virtualization, and mediates all
exceptions and interrupts, ensuring that only a VM and the core-
visor can access the VM’s data in CPU and memory. More com-
plex operations including I/O and interrupt virtualization, and
resource management such as CPU scheduling, memory man-
agement, and device management are delegated to the hostvi-
sor, which can also leverage a host OS. The hostvisor may im-
port or export encrypted VM data from the system to boot VM
images or support hypervisor features such as snapshots and
migration, but otherwise has no access to VM data. HypSec re-
designs the hypervisor to improve security but does not strip it
of functionality. We expect that HypSec can be used to restruc-
ture existing hypervisors by encapsulating much of their code-
base in a hostvisor and augmenting security with a corevisor.

We have implemented a HypSec prototype by retrofitting
KVM. Our approach works with existing ARM hardware
virtualization extensions to provide VM confidentiality and
integrity in a full-featured commodity hypervisor with its own
integrated host OS kernel. Our implementation requires only
modest modifications to Linux and has a TCB of only a few
thousand lines of code (LOC), many orders of magnitude less
than KVM and other commodity hypervisors. HypSec signif-
icantly reduces the TCB of an existing widely-used hypervisor
and improves its security while retaining the same hypervisor
functionality, including multiprocessor, full device I/O, multi-
VM, VM management, and broad ARM hardware support. We
also show that HypSec provides strong security for VMs run-
ning unmodified guest operating systems while only incurring
modest performance overhead for real application workloads.

2 Assumptions and Threat Model

Assumptions. We assume VMs use end-to-end encrypted
channels to protect their I/O data. We assume hardware
virtualization support and an IOMMU similar to what is
available on x86 and ARM servers in the cloud. We assume
a Trusted Execution Environment (TEE) provided by secure
mode architectures such as ARM TrustZone [7] or a Trusted
Platform Module (TPM) [38] is available for trusted persistent
storage. We assume the hardware, including a hardware
security module if applicable, is bug-free and trustworthy. We
assume the HypSec TCB, the corevisor, does not have any
vulnerabilities and can thus be trusted. Given the corevisor’s
modest size as shown in Section 6.3, it may be possible to
formally verify the codebase. We assume it is computationally
infeasible to perform brute-force attacks on any encrypted VM
data, and any encrypted communication protocols are assumed
to be designed to defend against replay attacks. We assume
the system is initially benign, allowing signatures and keys

to be sealed in the TEE before a compromise of the system.
Threat Model. We consider an attacker with remote access

to a hypervisor and its VMs, including administrators without
physical access to the machine. The attacker’s goal is to com-
promise the confidentiality and integrity of VM data, which
includes: the VM boot image containing the guest kernel bi-
nary, data residing in memory addresses belonging to guests,
guest memory copied to hardware buffers, data on VM disks
or file systems, and data stored in VM CPU registers. VM
data does not include generic virtual hardware configuration
information, such as the CPU power management status or the
interrupt level being raised. An attacker could exploit bugs in
the hostvisor or control the VM management interface to access
VM data. For example, an attacker could exploit bugs in the
hostvisor to execute arbitrary code or access VM memory from
the VM or hypervisor host. Attackers may also control periph-
erals to perform malicious memory access via direct memory
access (DMA). We consider it out of scope if the entire cloud
provider, who provides the VM infrastructure, is malicious.

A remote attacker does not have physical access to the hard-
ware, so the following attacks are out of scope: physical tam-
pering with the hardware platform, cold boot attacks [31],
memory bus snooping, and physical memory access. These
threats are better handled with on-site security and tamper-
resistant hardware; cloud providers such as Google go to great
lengths to ensure the physical security of their data centers
and restrict physical access even for administrators [28]. We
also do not defend against side-channel attacks in virtualized
environments [39,53,65,93,94], or based on network I/O [10].
This is not unique to HypSec and it is the kernel’s responsibility
to obfuscate such patterns with defenses orthogonal to HypSec.

We assume a VM does not voluntarily reveal its own
sensitive data whether on purpose or by accident. A VM
can be compromised by a remote attacker that exploits
vulnerabilities in the VM. We do not provide security features
to prevent or detect VM vulnerabilities, so a compromised
VM that involuntarily reveals its own data is out of scope.
However, attackers may try to attack other hosted VMs from
a compromised VM for which we provide protection.

3 Design

HypSec introduces a new hypervisor design that reduces the
TCB necessary to protect VM confidentiality and integrity
while retaining full-fledged hypervisor functionality. We
observe that many hypervisor functions can be supported
without any access to VM data. For example, VM CPU
register data is unnecessary for CPU scheduling. Based on this
observation, HypSec leverages microkernel design principles
to split a monolithic hypervisor into two parts, as depicted in
Figure 1: a trusted and privileged corevisor with full access
to VM data, and an untrusted and deprivileged hostvisor
delegated with most hypervisor functionality. Unlike previous
microkernel approaches [1, 13, 51], HypSec is designed

1358 28th USENIX Security Symposium USENIX Association

Hardware TEE Secure Persistent Storage

Exception Vectors

1. VM CREATE 4. IOMMU OPS
2. VM BOOT 5. GET VM STATE
3. VM ENTER

Hostvisor

Corevisor

Host OS Kernel

VM Exits/Interrupts

HypSec API

Intermediate
State

VCPU State

VM

File
Storage

Cloud Services
Key

Management

VM Protection

MemoryCPU BootHost State

VM GPR Parameters

Figure 1: HypSec Architecture

specifically to restructure existing hypervisors with modest
modifications as opposed to requiring a clean-slate redesign.
Splitting the hypervisor this way results in a significantly
smaller TCB that is still flexible enough to implement modern
hypervisor features, as discussed in Section 4.

The corevisor is kept small by only performing VM data
access control and hypervisor functions that require full access
to VM data: secure VM boot, CPU virtualization, and page ta-
ble management. With applications increasingly using secure
communication channels to protect I/O data, HypSec takes an
end-to-end approach to simplify its TCB and allows the hostvi-
sor to provide I/O and interrupt virtualization. The hostvisor
also handles other complex functions which do not need ac-
cess to VM data, including resource management such as CPU
scheduling and memory allocation. The hostvisor may even
incorporate a full existing OS kernel to support its features.

HypSec leverages modern hardware virtualization support
in a new way to enforce the hypervisor partitioning. HypSec
runs the corevisor in a higher privileged CPU mode designed
for running hypervisors, giving it full control of hardware, in-
cluding virtualization hardware mechanisms such as nested
page tables (NPTs).1 The corevisor deprivileges the hostvisor
and VM kernel by running them in a less privileged CPU mode.
For example, in HypSec’s implementation using ARM Virtual-
ization Extensions (VE) shown in Figure 3, the corevisor runs
in hypervisor (EL2) mode while the hostvisor and VM kernel
run in a less privileged kernel (EL1) mode. The corevisor inter-
poses on all exceptions and interrupts, enabling it to provide ac-
cess control mechanisms that prevent the hostvisor from access-
ing VM CPU and memory data. For example, the corevisor has
its own memory and uses NPTs to enforce memory isolation be-
tween the hostvisor, VMs, and itself. A compromised hostvisor
or VM can neither control hardware virtualization mechanisms
nor access corevisor memory and thus cannot disable HypSec.

HypSec Interface. As shown in Figure 1, the corevisor
1Intel’s Extended Page Tables or ARM’s stage 2 page tables.

exposes a simple API to the hostvisor and interposes on all
hostvisor and VM interactions to ensure secure VM execution
throughout the lifecycle of a VM. The life of a VM begins when
the hostvisor calls the corevisor’s VM CREATE and VM BOOT
calls to safely bootstrap it with a verified VM image. The
hostvisor is deprivileged and cannot execute VMs. It must call
VM ENTER to request the corevisor to execute a VM. When the
VM exits execution because an interrupt or exception occurs, it
traps to the corevisor, which examines the cause of the exit and
if needed, will return to the hostvisor. The corevisor provides
the IOMMU OPS API to device drivers in the hostvisor for
managing the IOMMU, as discussed in Section 3.3. While
the hostvisor has no access to VM data in CPU or memory,
it may request the corevisor to provide an encrypted copy of
VM data via the GET VM STATE hypercall API. The hostvisor
can use the API to support virtualization features that require
exporting VM data to disk or across the network, such as
swapping VM memory to disk or VM management functions
like VM snapshot and migration. The corevisor only uses
encryption to export VM data. It never uses encryption, only
access control, to protect VM data in CPU or memory.

3.1 Boot and Initialization

Corevisor Boot. HypSec ensures that the trusted corevisor
binary is booted and the bootstrapping code itself is secure.
To ensure only the trusted corevisor binary is booted, HypSec
relies on Unified Extensible Firmware Interface (UEFI)
firmware and its signing infrastructure with a hardware root
of trust. The hostvisor and corevisor are linked as a single
HypSec binary which is cryptographically (“digitally”) signed
by the cloud provider, similar to how OS binaries are signed
by vendors like Red Hat or Microsoft. The HypSec binary
is verified using keys in secure storage provided by the TEE,
guaranteeing that only the signed binary can be loaded.

To ensure the bootstrapping code is secure, HypSec could
implement it in the trusted corevisor, but does not. Bare-metal
hypervisors implement bootstrapping, but this imposes a signif-
icant implementation and maintenance burden. The code must
be manually ported to each different device, making it more
difficult to support a wide range of systems. Instead, HypSec
relies on the hostvisor bootstrapping code to install the corevi-
sor securely at boot time since the hostvisor is initially benign.
At boot time, the hostvisor initially has full control of the sys-
tem to initialize hardware. The hostvisor installs the corevisor
before entering user space; network and serial input services
are not yet available, so remote attackers cannot compromise
the corevisor’s installation. After its installation, the corevisor
gains full control of the hardware and subsequently deprivi-
leges the hostvisor, ensuring the hostvisor can never control the
hardware or access the corevisor’s memory to disable HypSec.
Using information provided at boot time, the corevisor is self-
contained and can operate without any external data structures.

VM Boot. HypSec also guarantees the confidentiality and in-

USENIX Association 28th USENIX Security Symposium 1359

tegrity of VM data during VM boot and initialization. HypSec
keeps its TCB small by delegating complicated boot processes
to the untrusted hostvisor, and verifying any loaded VM images
in the corevsor before they are run. As shown in Figure 1, when
a new VM is created, the hostvisor participates with the corevi-
sor in a verified boot process. The hostvisor calls VM CREATE
to request the corevisor to allocate VM state in corevisor
memory, including an NPT and VCPU state, a per virtual CPU
(VCPU) data structure. It then calls VM BOOT to request the
corevisor to authenticate the loaded VM images. If successful,
the hostvisor can then call VM ENTER to execute the VM. In
other words, the hostvisor stores VM images and loads them
to memory, avoiding implementing this complex procedure
in the corevisor. The corevisor verifies the cryptographic
signatures of VM images using public key cryptography,
avoiding any shared secret between the user and HypSec.

Both the public keys and VM image signatures are stored
in TEE secure storage prior to any attack, as shown in Figure 1.
If the VM kernel binary is detached and can be mapped
separately to memory, the hostvisor calls the corevisor to
verify the image. If the VM kernel binary is in the VM
disk image’s boot partition, HypSec-aware virtual firmware
bootstraps the VM. The firmware is signed and verified like
VM boot images. The firmware then loads the signed kernel
binary or a signed bootloader such as GRUB from the cleartext
VM disk partition. The firmware then calls the corevisor to
verify the VM kernel binary or bootloader. In the latter case,
the bootloader verifies VM kernel binaries using the signatures
on the virtual disk; GRUB already supports this. GRUB can
also use public keys in the signed GRUB binary. The corevisor
ensures only images it verified, either a kernel binary, virtual
firmware, or a bootloader binary, can be mapped to VM
memory. Finally, the corevisor sets the VM program counter
to the entry point of the VM image to securely boot the VM.

As discussed in Section 3.5, HypSec expects that VM disk
images are encrypted as part of an end-to-end encryption
approach. HypSec ensures that any password or secret used to
decrypt the VM disk is not exposed to the hostvisor. Common
encrypted disk formats [6, 57] use user-provided passwords
to protect the decryption keys. HypSec can store the encrypted
key files locally or remotely using a cloud provider’s key
management service (KMS) [5, 58]. The KMS maintains a
secret key which is preloaded by administrators into hosts’
TEE secure storage. The corevisor decrypts the encrypted key
file using the secret key, and maps the resulting password to
VM memory, allowing VMs to obtain the password without
exposing it to the hostvisor. The same key scheme is used for
VM migration; HypSec encrypts and decrypts the VM state
using the secret key from the KMS.

3.2 CPU

Hypervisors provide CPU virtualization by performing four
main functions: handling traps from the VM; emulating

privileged CPU instructions executed by the guest OS to
ensure the hypervisor retains control of CPU hardware; saving
and restoring VM CPU state, including GPRs and system
registers such as page table base registers, as needed when
switching among VMs and between a VM and the hypervisor;
and scheduling VCPUs on physical CPUs. Hypervisors
typically have full access to VM CPU state when performing
any of these four functions, which can pose a problem for VM
security if the hypervisor is compromised.

HypSec protects VM CPU state from the hostvisor while
keeping its TCB small by restricting access to VM CPU state
to the corevisor while delegating complex CPU functions that
can be done without access to VM CPU state to the hostvisor.
This is done by having the corevisor handle all traps from the
VM, instruction emulation, and world switches between VMs
and the hostvisor, all of which require access to VM CPU state.
VCPU scheduling is delegated to the hostvisor as it can be done
without access to VM CPU state.

The corevisor configures the hardware to route all traps
from the VM, as well as interrupts as discussed in Section 3.4,
to go to the corevisor, ensuring that it retains full hardware
control. It also deprivileges the hostvisor to ensure that the
hostvisor has no access to corevisor state. Since all traps
from the VM go to the corevisor, the corevisor can trap and
emulate CPU instructions on behalf of the VM. The corevisor
multiplexes the CPU execution context between the hostvisor
and VMs on the hardware. The corevisor maintains VCPU
execution context in the VCPU state in-memory data structure
allocated on VM CREATE, and maintains the hostvisor’s CPU
context in a similar Host state data structure; both states are
only accessible to the corevisor. On VM exits, the corevisor
first saves the VM execution context from CPU hardware
registers to VCPU state, then restores the hostvisor’s execution
context from Host state to the CPU hardware registers. When
the hostvisor calls to the corevisor to re-enter the VM, the
corevisor first saves its execution context to Host state, then
restores the VM execution context from VCPU state to the
hardware. All saving and restoring of VM CPU state is done
by the corevisor, and only the corevisor can run a VM.

The hostvisor handles VCPU scheduling, which can
involve complex scheduling mechanisms especially for
multiprocessors. For example, the Linux scheduler code alone
is over 20K LOC, excluding kernel function dependencies
and data structures shared with the rest of the kernel. VCPU
scheduling requires no access to VM CPU state, as it simply
involves mapping VCPUs to physical CPUs. The hostvisor
schedules a VCPU to a physical CPU and calls to the corevisor
to run the VCPU. The corevisor then loads the VCPU state
to the hardware.

HypSec by default ensures that the hostvisor has no access to
any VM CPU state, but sometimes a VM may execute instruc-
tions that requiring sharing values with the hostvisor that may
be stored in general purpose registers (GPRs). For example, if
the VM executes a hypercall that includes some parameters and

1360 28th USENIX Security Symposium USENIX Association

the hypercall is handled by the hostvisor, it will be necessary to
pass the parameters to the hostvisor, and those parameters may
be stored in GPRs. In these cases, the instruction will trap to the
corevisor. The corevisor will identify the values that need to be
passed to the hostvisor, then copy the values from the GPRs to
an in-memory per VCPU intermediate VM state structure that
is accessible to the hostvisor. Similarly, hostvisor updates to the
intermediate VM state structure can be copied back to GPRs by
the corevisor to pass values back to the VM. Only values from
the GPRs explicitly identified by the corevisor for parameter
passing are copied to and from intermediate VM state; values
in other CPU registers are not accessible to the hostvisor.

The corevisor determines if and when to copy values from
GPRs, and the GPRs from which to copy, based on the specific
CPU instructions executed. The set of instructions are those
used to execute hypercalls and special instructions provided by
the architecture to access virtual hardware via model-specific
registers (MSRs), control registers in the x86 instruction set, or
memory-mapped I/O (MMIO). There are typically only a few
specific CPU instructions that involve parameter passing to
the hostvisor via GPRs, but the specific cases are architecture
dependent.

For example, on ARM, HypSec copies selected GPRs
to and from intermediate VM state for power management
hypercalls to the virtual firmware interface and selected
MMIO accesses to virtual hardware. For power management
hypercalls, the guest kernel passes input parameters in GPRs,
and the corevisor copies only those GPRs to intermediate VM
state to make the parameters available to the hostvisor. Upon
returning to the VM, the hostvisor provides output data as
return values to the power management hypercalls, which the
corevisor copies from intermediate VM state back to GPRs to
make them available to the VM. As discussed in Sections 3.4
and 3.5, values stored and loaded in GPRs on MMIO accesses
to the virtual interrupt controller interface or I/O devices are
also copied between the selected GPRs and the intermediate
VM state to make them available to the hostvisor.

3.3 Memory

Hypervisors provide memory virtualization by performing
three main functions: memory protection to ensure VMs can-
not access unauthorized physical memory, memory allocation
to provide physical memory to VMs, and memory reclamation
to reclaim physical memory from VMs. Other advanced
memory management features may also be performed that
build on these functions. All of these functions rely on NPTs.
A guest OS manages the traditional page tables to map guest
virtual memory addresses (gVA) to guest physical memory
addresses (gPA). The hypervisor manages the NPTs to map
from gPAs to host physical memory addresses (hPA) so it can
virtualize and restrict a VM’s access to physical memory. The
hypervisor has full access to physical memory so it can manage
VM memory either directly [11] or via a host OS kernel’s [23]

gVA

gPA

Hostvisor VM

Corevisor

sNPT

VM
PT

hPA

hVA

vhPA

hNPT

Host
PT

hPA

vNPT

NPT Base
Register

Shadow
①

②

③

④

⑤

⑥

Figure 2: HypSec Memory Virtualization

memory management APIs. A compromised hypervisor or
host OS kernel thus has unfettered access to VM memory and
can read and write any data stored by VMs in memory.

HypSec protects VM memory from the hostvisor while
keeping its TCB small by restricting access to VM memory
to the corevisor while delegating complex memory manage-
ment functions that can be done without access to actual VM
data in memory to the hostvisor. The corevisor is responsible
for memory protection, including configuring NPT hardware,
while memory allocation and reclamation is largely delegated
to the hostvisor. HypSec memory protection imposes an addi-
tional requirement, which is to also protect corevisor and VM
memory from the hostvisor.

Memory Protection. The corevisor uses the NPT hardware
in the same way as modern hypervisors to virtualize and restrict
a VM’s access to physical memory, but in addition leverages
NPTs to isolate hostvisor memory access. The corevisor config-
ures NPT hardware as shown in Figure 2. The hostvisor is only
allowed to manage its own page tables (Host PT) and can only
translate from host virtual memory addresses (hVAs) to what
we call virtualized host physical memory addresses (vhPAs).
vhPAs are then in turn translated to hPAs by the Host Nested
Page Table (hNPT) maintained by the corevisor. The corevisor
adopts a flat address space mapping; each vhPA is mapped to an
identical hPA. The hostvisor, if granted access, is given essen-
tially the same view of physical memory as the corevisor. The
corevisor prevents the hostvisor from accessing corevisor and
VM memory by simply unmapping the memory from the hNPT
to make the physical memory inaccessible to the hostvisor. Any
hostvisor accesses to corevisor or VM memory will trap to the
corevisor, enabling the corevisor to intercept unauthorized ac-
cesses. Physical memory is statically partitioned between the
hostvisor and corevisor, but dynamically allocated between the
hostvisor and VMs as discussed below. The corevisor allocates
NPTs from its own memory pool which is not accessible to the
hostvisor. All VCPU state is also stored in corevisor memory.

The corevisor also protects corevisor and VM memory
against DMA attacks [75] by retaining control of the IOMMU.
The corevisor allocates IOMMU page tables from its memory
and exports the IOMMU OPS API to device drivers in the

USENIX Association 28th USENIX Security Symposium 1361

hostvisor to update page table mappings. The corevisor
validates requests and ensures that attackers cannot control
the IOMMU to access memory owned by itself or the VMs.

Memory Allocation. Memory allocation for VMs is
largely done by the hostvisor, which can reuse memory
allocation functions available in an integrated host OS kernel
to dynamically allocate memory from its memory pool to
VMs. Traditional hypervisors simply manage one NPT
per VM. However, HypSec’s memory model disallows the
hostvisor from managing VM memory and therefore NPTs.
The hostvisor instead manages an analogous Virtual NPT
(vNPT) for each VM, and HypSec introduces a Shadow
Nested Page Table (sNPT) managed by the corevisor for each
VM as shown in Figure 2. The sNPT is used to manage the
hardware by shadowing the vNPT. The corevisor multiplexes
the hardware NPT Base Register between hNPT and sNPT
when switching between the hostvisor and a VM.

Figure 2 also depicts the steps in HypSec’s memory
virtualization strategy. When a guest OS tries to map a gVA
to an unmapped gPA, a nested page fault occurs which traps to
the corevisor (step 1). If the corevisor finds that the faulted gPA
falls within a valid VM memory region, it then points the NPT
Base Register to hNPT (step 2) and switches to the hostvisor
to allocate a physical page for the gPA (step 3). The hostvisor
allocates a virtualized physical page identified by a vhPA and
updates the entry in its vNPT corresponding to the faulting gPA
with the allocated vhPA. Because the vhPA is mapped to an
identical hPA, the hostvisor is able to implicitly manage host
physical memory. The hostvisor then traps to the corevisor
(step 4), which determines the faulting gPA and identifies the
updates made by the hostvisor to the vNPT. The corevisor
verifies the resulting vhPA is not owned by itself or other VMs,
the latter by tracking ownership of physical memory using a
unique VM identifier (VMID), and copies those updates to
its sNPT. The corevisor unmaps the vhPA from the hNPT, so
that the hostvisor no longer has access to the memory being
allocated to the VM. The corevisor updates the NPT Base
Register to point to the sNPT (step 5) and returns to the VM
(step 6) so that the VM has access to the allocated memory
identified by the hPA that is identical to the vhPA. Although
possible, HypSec does not scrub pages allocated to VMs by the
hostvisor. Guest OSes already scrub memory allocated from
their free list before use for security reasons, so the hostvisor
cannot allocate pages that contain malicious content to VMs.

HypSec’s use of shadow page tables differs significantly
from previous applications of it to collapse multi-level
page tables down into what is supported by hardware
[2, 11, 16, 52, 82]. In contrast, HypSec uses shadowing
to protect hardware page tables, not virtualize them. The
corevisor does not shadow guest OS updates in its page tables;
it only shadows hostvisor updates to the vNPT. HypSec
does not introduce additional traps from the VM for page
table synchronization. Overshadow [16] maintains multiple
shadow page tables for a given VM that provide different

views (plaintext/encrypted) of physical memory to protect
applications from an untrusted guest OS. In contrast, HypSec
manages one shadow page table for each VM that provides
a plaintext view of gPA to hPA. The shadowing mechanism in
HypSec is also orthogonal to recent work [19] that uses shadow
page tables to isolate kernel space memory from user space.

Memory Reclamation. HypSec supports VM memory
reclamation in the hostvisor while preserving the privacy and
integrity of VM data in memory in the corevisor. When a VM
voluntarily releases memory pages, such as on VM termina-
tion, the corevisor returns the pages to the hostvisor by first
scrubbing them to ensure the reclaimed memory does not leak
VM data, then mapping them back to the hNPT so they are
accessible to the hostvisor. To allow the hostvisor to reclaim
VM memory pages without accessing VM data in memory,
HypSec takes advantage of ballooning [82]. Ballooning is
widely supported in common hypervisors, so only modest ef-
fort is required in HypSec to support this approach. A paravir-
tual “balloon” device is installed in the VM. When the host is
low on free memory, the hostvisor requests the balloon device
to inflate. The balloon driver inflates by getting pages from the
free list, thereby increasing the VM’s memory pressure. The
guest OS may therefore start to reclaim pages or swap its pages
to the virtual disk. The balloon driver notifies the corevisor
about the pages in its balloon that are ready to be reclaimed.
The corevisor then unmaps these pages from the VM’s sNPT,
scrubs the reclaimed pages to ensure they do not leak VM data,
and assigns the pages to the hostvisor, which can then treat
them as free memory. Deflating the balloon releases memory
pressure in the guest, allowing the guest to reclaim pages.

HypSec also safely allows the hostvisor to swap VM
memory to disk when it feels memory pressure. The hostvisor
uses GET VM STATE to get access to the encrypted VM page
before swapping it out. Later, when the VM page is swapped
in, the corevisor unmaps the swapped-in page from hNPT,
decrypts the page, and maps it back to the VM’s sNPT.

Advanced VM Memory Management. HypSec by
default ensures that the hostvisor has no access to any VM
memory, but sometimes a VM may want to share its memory,
after encrypting it, with the hostvisor. HypSec provides the
GRANT_MEM and REVOKE_MEM hypercalls which can be explic-
itly used by a guest OS to share its memory with the hostvisor.
As described in Section 3.5, this can be used to support paravir-
tualized I/O of encrypted data in which a memory region owned
by the VM has to be shared between the VM and hostvisor
for communication and efficient data copying. The VM passes
the start of a guest physical frame number (GFN), the size of
the memory region, and the specified access permission to the
corevisor via the two hypercalls. The corevisor enforces the
access control policy by controlling the memory region’s map-
ping in hNPT. Only VMs can use these two hypercalls, so the
hostvisor cannot use it to request access to arbitrary VM pages.

HypSec can support advanced memory virtualization
features such as merging similar memory pages, KSM [46]

1362 28th USENIX Security Symposium USENIX Association

in Linux, by splitting the work into the simple corevisor
functions which require direct access to VM data, and the more
complicated hostvisor functions which do not require access
to VM data. For example, to support KSM, the hostvisor
requests the corevisor for the hash values of a VM’s memory
pages and maintains the data structure in its address space to
support the merging algorithm. The corevisor validates the
hostvisor’s decision for the pages to be merged, updates the
corresponding VM’s sNPT, and scrubs the freed page before
granting the hostvisor access. While KSM does not provide
the hostvisor or other VMs direct access to a VM’s memory
pages, it can be used to leak some information such as whether
the contents of memory pages are the same across different
VMs. To avoid this kind of information leakage, HypSec
disables KSM support by default.

3.4 Interrupts

Hypervisors trap and handle physical interrupts to retain full
control of the hardware while virtualizing interrupts for VMs.
Accesses to the interrupt controller interface can by done
via MSRs or MMIO. Hypervisors provide a virtual interrupt
controller interface and trap and emulate VM access to the
interface. Virtual devices in the hypervisors can also raise
interrupts to the interface. However, giving hypervisors full
control of hardware poses a problem for VM security if the
hypervisor is compromised.

To protect against a compromised hostvisor, the corevisor
configures the hardware to route all physical interrupts and trap
all accesses to the interrupt controller to the corevisor, ensuring
that it retains full hardware control. However, to simplify its
TCB, HypSec delegates almost all interrupt functionality to the
hostvisor, including handling physical interrupts and providing
the virtual interrupt controller interface. Before entering the
hostvisor to handle interrupts, the corevisor protects all VM
CPU and memory state, as discussed in Sections 3.2 and 3.3.

The hostvisor has no access to and requires no VM data
to handle physical interrupts. However, VM accesses to
the virtual interrupt controller interface involve passing
parameters between the VM and the hostvisor since the
hostvisor provides the interface. On ARM, this is done using
only MMIO via the intermediate state structure discussed
in Section 3.2. On an MMIO write to interrupt controller
interface, the VM passes the value to be stored in a GPR. The
write traps to the corevisor, which identifies the instruction and
memory address as corresponding to the interrupt controller
interface. The corevisor copies the value to be written from the
GPR to the intermediate VM state to make the value available
to the hostvisor. For example, when the guest OS in the VM
sends an IPI to a destination VCPU by doing an MMIO write
to the virtual interrupt controller interface, the identifier of the
destination VCPU is passed to the hostvisor by copying the
value from the respective GPR to the intermediate VM state.
Similarly, on an MMIO read from the interrupt controller

interface, the read traps to the corevisor, which identifies
the instruction and memory address as corresponding to the
interrupt controller interface. The corevisor copies the value
from the intermediate VM state updated by the hostvisor to the
GPR the VM is using to retrieve the value, updates the PC of
the VM to skip the faulting instruction, and returns to the VM.

3.5 Input/Output

To ease the burden of supporting a wide range of virtual devices,
modern hypervisors often rely on an OS kernel and its existing
device drivers to support I/O virtualization, which significantly
increase the hypervisor TCB. Similar to previous work [16,33],
HypSec assumes an end-to-end I/O security approach, relying
on VMs for I/O protection. VMs can leverage secure communi-
cation channels such as TLS/SSL for network communications
and full disk encryption for storage. This allows the corevi-
sor to relax its I/O protection requirements, simplifying the
TCB. HypSec offloads the support of I/O virtualization to the
untrusted hostvisor. Since I/O data is already encrypted by
VMs, a compromised hostvisor would at most gain access to
encrypted I/O data which would not reveal VM data.

HypSec, like other modern hypervisors, supports all
three classes of I/O devices: emulated, paravirtualized, and
passthrough devices; the latter two provide better I/O perfor-
mance. Emulated I/O devices are typically supported by hyper-
visors using trap-and-emulate to handle both port-mapped I/O
(PIO) and MMIO operations. In both cases, HypSec configures
the hardware to trap the operations to the corevisor which
hides all VM data other than actual I/O data and then allows
the hostvisor to emulate the operation. For example, to support
MMIO, the corevisor zeroes out the mappings for addresses in
the VM’s sNPT corresponds to virtual device I/O regions. Any
subsequent MMIO accesses from the VM result in a memory
access fault that traps to the corevisor. The corevisor then
securely supports MMIO accesses as discussed in Section 3.4.
We assume security aware users disable the use of emulated
devices such as the serial port, keyboard, or mouse to avoid
leaking private information to a compromised hostvisor.

Paravirtualized devices require that a front-end driver in
the VM coordinate with a back-end driver in the hypervisor;
the two drivers communicate through shared memory asyn-
chronously. HypSec allows back-end drivers to be installed as
part of the untrusted hostvisor. To support shared memory com-
munication, the front-end driver is modified to use GRANT_MEM
and REVOKE_MEM hypercalls to identify the shared data
structure and I/O memory buffers as accessible to the hostvisor
back-end driver. Since the I/O data is encrypted, hostvisor
access to the I/O memory buffers does not risk VM data.

Passthrough devices are assigned to a VM and managed by
the guest OS. To support passthrough I/O, HypSec configures
the hardware to trap sensitive operations such as Message
Signaled Interrupt (MSI) configuration in BAR to trap to
the corevisor for secure emulation, while granting VMs

USENIX Association 28th USENIX Security Symposium 1363

Xen KVM
Hyp

Sec

Boot and Initialization
Secure Boot ◦ ◦ ◦

Secure VM Boot 	 	 ◦
CPU
VM Symmetric Multiprocessing (SMP) ◦ ◦ ◦

VCPU Scheduling ◦ ◦ ◦
Memory

Dynamic Allocation ◦ ◦ ◦
Memory Reclamation - Ballooning ◦ ◦ ◦
Memory Reclamation - Swapping ◦ ◦ �

DMA ◦ ◦ ◦
Same Page Merging ◦ ◦ �

Interrupts Virtualization
Hardware Assisted ◦ ◦ ◦

I/O
Device Emulation ◦ ◦ ◦

Paravirtualized (PV) ◦ ◦ ◦
Device Passthrough ◦ ◦ ◦

VM Management
Multi-VM ◦ ◦ ◦

VM Snapshot ◦ ◦ ◦
VM Restore ◦ ◦ ◦

VM Migration ◦ ◦ ◦

Table 1: Supported features comparison. (◦ = Supported, 	 =
Not applicable, � = Not implemented.)

direct access to the non-sensitive device memory region.
The corevisor controls the IOMMU to enforce inter-device
isolation, and ensures the passthrough device can only access
the VM’s own I/O buffer. Since we assume the hardware is not
malicious, passthrough I/O can be done securely on HypSec.

4 Implementation

We demonstrate how HypSec can improve the security of ex-
isting commodity hypervisors by applying our approach to the
mainline Linux KVM/ARM [22,23] hypervisor, given ARM’s
increasing popularity in server systems [4, 63, 87]. Table 1
compares commodity hypervisors with the current HypSec im-
plementation, showing that this security improvement comes
without compromising on hypervisor features. Since KVM
is a hosted hypervisor tightly integrated with a host OS kernel,
retrofitting KVM also demonstrates the viability of HypSec
in supporting an entire OS kernel as part of the hostvisor.

HypSec requires a higher-privileged CPU mode, nested
page tables for memory virtualization, and an IOMMU for
DMA protection. These requirements are satisfied by the
ARM architecture. ARM VE provides Hyp (EL2) mode for
hypervisors that is strictly more privileged than user (EL0)
and kernel (EL1) modes. EL2 has its own execution context
defined by register and control state, and can therefore switch
the execution context of both EL0 and EL1 in software. Thus,
the hypervisor can run in an address space that is isolated
from EL0 and EL1. ARM VE provides stage 2 page tables

VM
Kernel

Host UserQEMU VM UserEL0

EL1

EL2

EL3

TEE Kernel

TA

SMC
TEE Firmware

SMC

Normal World Secure World (TEE)

CPU
Protection

Host OS Kernel

Highvisor

Memory
Protection

Boot
Protection

Lowvisor

TA

Hostvisor

Corevisor

KVM

Figure 3: HypSec on KVM/ARM

which are nested level page tables configured in EL2 that affect
software in EL0 and EL1. ARM provides the System Memory
Management Unit (SMMU) [8] to protect DMA.

HypSec’s corevisor is initialized at machine bootup and
runs in EL2 to fully control the hardware. HypSec’s code is
embedded in the Linux kernel binary, which is verified and
loaded via UEFI. The kernel boots in EL2 and installs a trap
handler to later return to EL2. The kernel then enters EL1 so the
hostvisor can bootstrap the machine. The hostvisor allocates
resources and configures the hardware for the corevisor. The
hostvisor then makes a hypercall to the corevisor in EL2 to
enable HypSec.

The HypSec ARM implementation leverages KVM/ARM’s
split into an EL2 lowvisor and an EL1 highvisor to support the
ARM virtualization architecture. This is done because EL2
is necessary for controlling hardware virtualization features,
but Linux and KVM are designed to run in kernel mode, EL1.
Thus, the lowvisor manages hardware virtualization features
and VM-hypervisor switches, while the highvisor contains
the rest of the hypervisor and Linux. However, the lowvisor
cannot protect VM data if any other part of Linux or KVM are
compromised; with KVM/ARM, the Linux host has unfettered
access to all VM data.

As shown in Figure 3, the corevisor encapsulates the KVM
lowvisor and runs in EL2. The hostvisor, including the KVM
highvisor and its integrated Linux OS kernel, runs in EL1. The
hostvisor has no access to EL2 registers and cannot compro-
mise the corevisor or disable VM protection. HypSec leverages
ARM VE to force VM operations that need hypervisor inter-
vention to trap into EL2. The corevisor either handles the trap
directly to protect VM data or world switches the hardware to
EL1 to run the hostvisor if more complex handling is necessary.
When the hostvisor finishes its work, it makes a hypercall to
trap to EL2 so the corevisor can securely restore the VM state
to hardware. The corevisor interposes on every switch between
the VM and hostvisor, thus protecting the VM’s execution
context. Our implementation ensures that the hostvisor cannot
invoke arbitrary corevisor functions via hypercalls.

1364 28th USENIX Security Symposium USENIX Association

HypSec leverages ARM VE’s stage 2 memory translation
support to virtualize VM memory and prevent accesses to pro-
tected physical memory. The corevisor routes stage 2 page
faults to EL2 and rejects illegal hostvisor and VM memory ac-
cesses. The corevisor allocates hNPTs and VMs’ sNPTs from
its protected physical memory and manages the page tables.

To secure DMA, the corevisor uses trap-and-emulate on
hostvisor accesses to the SMMU. HypSec ensures only the
corevisor has access to the SMMU hardware. The corevisor
manages the SMMU page tables in its protected memory to en-
sure hostvisor devices cannot access corevisor or VM memory,
and devices assigned to the VM can only access VM memory.

HypSec leverages the hardware features from VGIC
and KVM/ARM’s existing support to virtualize interrupts.
Our implementation supports ARM GIC 2.0. HypSec
relies on QEMU and KVM’s virtual device support for
I/O virtualization. Our implementation supports emulated
devices via MMIO, paravirtualized devices via virtio [67], and
passthrough devices. For virtio, we modified front-end drivers
to use GRANT/REVOKE_MEM hypercalls to share memory with
the hostvisor back-end drivers. To support passthrough
devices, HypSec configures the hardware to grant VMs direct
access to them. We modified the front-end virtio-balloon
driver to notify the corevisor about the pages allocated for
the balloon device. The corevisor scrubs and assigns these
pages to the hostvisor, allowing it to safely reclaim memory
as needed. Our current implementation does not support page
swapping and KSM, which are both left as future work.

HypSec supports secure VM boot using ARM TrustZone-
based TEE frameworks such as OP-TEE [61] to store the
signatures and keys securely. HypSec tasks QEMU to load the
VM boot images to VM memory, but the corevisor requires
QEMU to participate with its verified boot process. The corevi-
sor retrieves the VM boot image signatures and the user public
key from TrustZone for verifying the VM images remapped
to its address space. The corevisor uses Ed25519 [62] to
verify the boot images. HypSec builds the VM’s stage 2 page
table with mappings to the verified VM boot image. If the
verification fails, HypSec stops the VM boot process. The
same scheme can also verify VM firmware and other binaries.
HypSec also retrieves the encrypted password which protects
the VM’s encrypted disk from either TrustZone or from the
cloud provider’s key management service. A small AES imple-
mentation [45] ported to run in EL2 performs the decryption.
We include only two small yet sufficient crypto libraries in EL2
to keep the TCB small. This limits the number of crypto al-
gorithms, but avoids including comprehensive but excessively
large crypto libraries such as OpenSSL. HypSec leverages
AES to support encrypted VM migration and snapshot, and
ensures only encrypted VM data is exposed to the hostvisor.

HypSec’s hardware requirements can also be satisfied on
Intel’s x86 architecture by using Virtual Machine Extensions
(VMX) [35] and the IOMMU. Existing x86 hypervisors can be
retrofitted to run the corevisor in VMX root operation which

allows control of virtualization features for deprivileging the
hostvisor. The hostvisor runs in VMX non-root operation to
provide resource management and virtual I/O. The corevisor
protects VM execution state by managing a Virtual-Machine
Control Structure (VMCS) per CPU, and VM memory by using
Extended Page Tables (EPT) and controlling the IOMMU.

5 Security Analysis

We present five properties of the HypSec architecture, then
discuss how their combination provides a set of security
properties regarding HypSec’s ability to protect the integrity
and confidentiality of VM data.

Property 1. HypSec’s corevisor is trusted during the system’s
lifetime against remote attackers.

HypSec leverages hardware secure boot to ensure only the
signed and trusted HypSec binary can be booted. This prevents
an attacker from trying to boot or reboot the system to force it to
load a malicious corevisor. The hostvisor securely installs the
corevisor during the boot process before network access and
serial input service are available. Thus, remote attackers can-
not compromise the hostvisor prior to or during the installation
of the corevisor. The corevisor protects itself after initializa-
tion. It runs in a privileged CPU mode using a separate address
space from the hostvisor and the VMs. The corevisor has full
control of the hardware including the virtualization features
that prevent attackers from disabling its VM protection. The
corevisor also protects its page tables so an attacker cannot
map executable memory to the corevisor’s address space.

Property 2. HypSec ensures only trusted VM images can be
booted on VMs.

Based on Property 1, the trusted corevisor verifies the signa-
tures of the VM images loaded to VM memory before they are
booted. The public keys and signatures are stored using TEE
APIs for persistent secure storage. A compromised hostvisor
therefore cannot replace a verified VM with a malicious one.

Property 3. HypSec isolates a given VM’s memory from all
other VMs and the hostvisor.

Based on Property 1, HypSec prevents the hostvisor and
a given VM from accessing memory owned by other VMs.
The corevisor tracks ownership of physical pages and enforces
inter-VM memory isolation using nested paging hardware. A
compromised hostvisor could control a DMA capable device
to attempt to access VM memory or compromise the corevisor.
However, the corevisor controls the IOMMU and its page
tables, so the hostvisor cannot access corevisor or VM memory
via DMA. VM pages reclaimed by the hostvisor are scrubbed
by the corevisor, so they do not leak VM data. HypSec also
protects the integrity of VM nested page tables. The corevisor
manages shadow page tables for VMs. The MMU can only
walk the shadow page tables residing in a protected memory
region only accessible to the corevisor. The corevisor manages

USENIX Association 28th USENIX Security Symposium 1365

and verifies updates to the shadow page tables to protect VM
memory mappings.
Property 4. HypSec protects a given VM’s CPU registers
from the hostvisor and all other VMs.

HypSec protects VM CPU registers by only granting
the trusted corevisor (Property 1) full access to them. The
hostvisor cannot access VM registers without permission.
Attackers cannot compromise VM execution flow since only
the corevisor can update VM registers including program
counter (PC), link register (LR), and TTBR.
Property 5. HypSec protects the confidentiality of a given
VM’s I/O data against the hostvisor and all other VMs assum-
ing the VM employs an end-to-end approach to secure I/O.

Based on Properties 3 and 4, HypSec protects any I/O en-
cryption keys loaded to VM CPU registers or memory, so a
compromised hostvisor cannot steal these keys to decrypt en-
crypted I/O data. The same protection holds against other VMs.
Property 6. HypSec protects the confidentiality and integrity
of a given VM’s I/O data against the hostvisor and all other
VMs assuming the VM employs an end-to-end approach to
secure I/O and the I/O can be verified before it permanently
modifies the VM’s I/O data.

Using the reasoning in Property 5 with the additional
assumption that I/O can be verified before it permanently
modifies I/O data, HypSec also protects the integrity of VM
I/O data, as any tampered data will be detected and can be
discarded. For example, a network endpoint receiving I/O
from a VM over an encrypted channel with authentication can
detect modifications of the I/O data by any intermediary such
as the hostvisor. If verification is not possible, then HypSec
cannot prevent compromises of data availability that result in
destruction of I/O data, which can affect data integrity. As an
example, HypSec cannot prevent an attacker from arbitrarily
destroying a VM’s I/O data by blindly overwriting all or parts
of a VM’s local disk image; both the VM’s availability and
integrity are compromised since the data is destroyed. Secure
disk backups can protect against permanent data loss.
Property 7. Assuming a VM takes an end-to-end approach
for securing its I/O, HypSec protects the confidentiality of all
of the VM’s data against a remote attacker, including if the
attacker compromises any other VMs or the hostvisor itself.

Based on Properties 1, 3, and 4, a remote attacker cannot
compromise the corevisor, and any compromise of the
hostvisor or another VM cannot allow the attacker to access
VM data stored in CPU registers or memory. This combined
with Property 5 allows HypSec to ensure the confidentiality
of all of the VM’s data.
Property 8. Under the assumption that a VM takes an
end-to-end approach for securing its I/O and I/O can be
verified before it permanently modifies any VM data, HypSec
protects the integrity of all of the VM’s data against a remote
attacker, including if the attacker compromises any other VMs
or the hostvisor itself.

Based on Properties 1, 3, and 4, HypSec ensures a remote
attacker cannot compromise the corevisor, and that any
compromise of the hostvisor or another VM cannot allow the
attacker to access VM data stored in CPU registers or memory,
thereby preserving VM CPU and memory data integrity.
This combined with Property 6 allows HypSec to ensure the
integrity of all of the VM’s data.
Property 9. If the hypervisor is benign and responsible for
handling I/O, HypSec protects the confidentiality and integrity
of all of the VM’s data against any compromises of other VMs.

If both the hostvisor and corevisor are not compromised
and the hostvisor is responsible for handling I/O, then the
confidentiality and integrity of a VM’s I/O data will be
protected against other VMs. This combined with Properties 3
and 4 allows HypSec to ensure the confidentiality and integrity
of all of the VM’s data. This guarantee is equivalent to what
is provided by a traditional hypervisor such as KVM.

6 Experimental Results

We quantify the performance and TCB of HypSec compared to
other approaches, and demonstrate HypSec’s ability to protect
VM confidentiality and integrity. All of our experiments were
run on ARM server hardware with VE support, specifically
a 64-bit ARMv8 AMD Seattle (Rev.B0) server with 8
Cortex-A57 CPU cores, 16 GB of RAM, a 512 GB SATA3
HDD for storage, an AMD 10 GbE (AMD XGBE) NIC device,
and an IOMMU (SMMU-401) to support control over DMA
devices and direct device assignment. The hardware did not
support ARM Virtualization Host Extensions [20, 21]. For
client-server experiments, the clients ran on an x86 machine
with 24 Intel Xeon CPU 2.20 GHz cores and 96 GB RAM. The
clients and the server communicated via a 10 GbE unsaturated
network connection.

To provide comparable measurements across the ap-
proaches, we kept the software environments across all
platforms as uniform as possible. We compared KVM with
our HypSec modifications versus standard KVM, both in
Linux 4.18 with QEMU 2.3.50. In both cases, KVM was
configured with its standard VHOST virtio network, and with
cache=none for its virtual block storage devices [30, 47, 77].
All hosts and VMs used Ubuntu 16.04 with the same Linux
4.18 kernel, except for HypSec changes. All VMs used par-
avirtualized I/O, typical of cloud infrastructure deployments
such as Amazon EC2.

We ran benchmarks both natively on the hardware and in
VMs. Each physical or VM instance was configured as a 4-way
SMP with 12 GB of RAM to provide a common basis for com-
parison. This involved two configurations: (1) native Linux
capped at 4 cores and 12 GB RAM, and (2) a VM using KVM
with 8 cores and 16 GB RAM with the VM capped at 4 virtual
CPUs (VCPUs) and 12 GB RAM. We measure multi-core con-
figurations to reflect real-world server deployments. For VMs,

1366 28th USENIX Security Symposium USENIX Association

Name Description
Hypercall Transition from the VM to the hypervisor and

return to the VM without doing any work in the
hypervisor. Measures bidirectional base transition
cost of hypervisor operations.

I/O Kernel Trap from the VM to the emulated interrupt controller
in the hypervisor OS kernel, and then return to
the VM. Measures a frequent operation for many
device drivers and baseline for accessing I/O devices
supported by the hypervisor OS kernel.

I/O User Trap from the VM to the emulated UART in QEMU
and then return to the VM. Measures base cost of
operations that access I/O devices emulated in the
hypervisor OS user space.

Virtual IPI Issue a virtual IPI from a VCPU to another VCPU
running on a different PCPU, both PCPUs executing
VM code. Measures time between sending the
virtual IPI until the receiving VCPU handles it, a
frequent operation in multi-core OSes.

Table 2: Microbenchmarks

we pinned each VCPU to a specific physical CPU (PCPU) and
ensured that no other work was scheduled on that PCPU. All
of the host’s device interrupts and processes were assigned to
run on other PCPUs. For client-server benchmarks, the clients
ran natively on Linux and used the full hardware available.

6.1 Microbenchmark Results

We first ran microbenchmarks to quantify the cost of
low-level hypervisor operations. We used the KVM unit
test framework [48] listed in Table 2 to measure the cost of
transitioning between the VM and the hypervisor, initiating
a VM-to-hypervisor OS kernel I/O request, emulating user
space I/O with QEMU, and sending virtual IPIs. We slightly
modified the test framework to measure the cost of virtual IPIs
and to obtain cycle counts on ARM to ensure detailed results
by configuring the VM with direct access to the cycle counter.

Microbenchmark KVM HypSec
Hypercall 2,896 3,202
I/O Kernel 3,831 4,563
I/O User 9,288 10,704
Virtual IPI 8,816 10,047

Table 3: Microbenchmark Measurements (cycles)

Table 3 shows the microbenchmarks measured in cycles
for both standard KVM and HypSec. HypSec introduces
roughly 5% to 19% overhead over KVM. HypSec does not
increase the number of traps in the operations we measured.
The corevisor interposes on exisiting traps to add additional
logic to protect VM data, so the cost is relatively small. The
I/O Kernel, I/O User, and Virtual IPI measurements show
relatively higher overhead than Hypercall on HypSec because
of the cost involved to secure data transfers between the VM
and hostvisor for I/O and interrupt virtualization.

Name Description
Kernbench Compilation of the Linux 4.9 kernel using

allnoconfig for ARM with GCC 5.4.0.
Hackbench hackbench [66] using Unix domain sockets and 100

process groups running in 500 loops.
Netperf netperf v2.6.0 [41] running netserver on the

server and the client with its default parameters in
three modes: TCP_STREAM (throughput), TCP_-
MAERTS (throughput), and TCP_RR (latency).

Apache Apache v2.4.18 Web server running
ApacheBench [80] v2.3 on the remote client,
which measures number of handled requests per
second when serving the 41 KB index.html file of
the GCC 4.4 manual using 100 concurrent requests.

Memcached memcached v1.4.25 using the memtier benchmark
v1.2.3 with its default parameters.

MySQL MySQL v14.14 (distrib 5.7.24) running SysBench
v.0.4.12 using the default configuration with 200
parallel transactions.

Table 4: Application Benchmarks

6.2 Application Workload Results

Next we ran real application workloads to evaluate HypSec
compared to standard KVM. Table 4 lists the workloads which
are a mix of widely-used CPU and I/O intensive benchmarks.
To evaluate VM performance with end-to-end I/O protection,
we used five configurations: (1) Native unmodified Linux host
kernel without Full Disk Encryption, (2) Unmodified KVM
and guest kernel without FDE (KVM), (3) Unmodified KVM
and guest kernel with FDE (KVM-FDE), (4) HypSec and par-
avirtualized guest kernel without FDE (HypSec), (5) HypSec
and paravirtualized guest kernel with FDE (HypSec-FDE).
For FDE, we use dm-crypt to create a LUKS-encrypted root
partition of the VM filesystem. We measure with and without
FDE to separately quantify its extra costs. We leveraged the
TLS/SSL support in Apache and MySQL and evaluated VM
performance on HypSec with end-to-end network encryption.

Figure 4 shows the relative overhead of executing in a VM
in our four VM configurations compared to natively. We
normalize the results so that a value of 1.00 means the same
performance as native hardware. Lower numbers mean less
overhead. The performance on real application workloads
shows modest overhead overall for HypSec compared to
standard KVM. The overhead for HypSec in many cases is
less than 10%, even with FDE enabled.

The worst overhead for HypSec occurs for some of the net-
work workloads. Our current implementation of the front-end
network virtio driver applies grant/revoke hypercalls on a per
transaction basis to make data available to the back-end driver
in the hostvisor. Therefore, HypSec’s performance is sub-
optimal in workloads where the virtio driver can batch multiple
transactions without trapping to the hypervisor, most notably
in TCP_MAERTS. TCP_MAERTS measures the bandwidth
of a VM sending packets to a client. The virtio driver batches
multiple sends to avoid traps to hypervisor, while in the imple-
mentation measured in the paper, the driver traps additionally

USENIX Association 28th USENIX Security Symposium 1367

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
KVM KVM-FDE HypSec HypSec-FDE

Figure 4: Application Benchmark Performance

on sending network data, resulting in higher overhead. Note
that other network workloads such as TCP_STREAM have neg-
ligible overhead as the granularity at which the additional traps
happen is large enough that the performance impact is negligi-
ble. To avoid extra traps to the hypervisor, our implementation
can be optimized by batching the effect of the grant/revoke
calls at the same level of granularity as used by the virtio driver
to batch multiple transactions. This is an area of future work.

6.3 TCB Implementation Complexity
We ran cloc [24] against our implementation’s corevisor to
measure the TCB, as shown in Table 5. The total is roughly
8.5K LOC of which just under 4.5K LOC is from the Ed25519
and AES crypto libraries. The rest of the HypSec TCB is less
than 4.1K LOC, consisting of mostly CPU/memory protection
and existing KVM lowvisor code. Overall, we modified or
added a total of 8,695 LOC in the mainline Linux kernel v4.18
across both the corevisor and hostvisor. More than 1.3K LOC
were in existing Linux files, and around 7.3K LOC were in
new files for HypSec, including around 4.5K LOC in the
crypto libraries and slightly less than 2.8K LOC for corevisor
functions. Finally, less than 70 LOC were added to QEMU
to support secure boot and VM migration. These results
demonstrate that HypSec can retrofit existing hypervisors with
modest implementation effort.

For comparison purposes, we also used cloc to measure
KVM’s TCB in Linux v4.18 and Xen v4.9 for ARM64 support
when running Linux v4.18 on Dom0, shown in Table 6. For
KVM, we counted its LOC for the specific Linux v4.18 code-
base running on the ARM64 server used in our experiments.
KVM’s massive TCB with access to VM data consists of
more than 1.8M LOC and includes QEMU, the KVM module,
core Linux functions such as CPU scheduling, ARM64
architectural support, and the device drivers used on the server.

To provide a fair comparison, we assumed the same threat
model for each system and that VMs encrypt their I/O. Even un-
der this assumption, KVM, including its I/O kernel code, must
be entirely trusted to protect VM data since a compromised
KVM can steal encryption keys from VM CPU and memory

Components LOC
Ed25519 library 4,074
AES library 403
CPU protection 1,883
Memory protection 1,727
Secure boot 232
Helper 247
HypSec TCB 8,566

Table 5: HypSec TCB

Hypervisor LOC
HypSec 8,566
KVM 1,857,575
Xen 71,604
Xen + Dom0 2,054,756

Table 6: TCB size comparison
with KVM and Xen

state. By retrofitting KVM with HypSec to protect VM CPU
and memory against the rest of the KVM codebase, we show
that the TCB of KVM can be reduced by more than 200 times.

Using the same assumption, Xen’s TCB should include both
its hypervisor code and Dom0, a special privileged VM used
to reuse existing Linux drivers to support I/O for user VMs.
Although Dom0 is not part of the hypervisor, Xen provides it
with a management interface that can request the hypervisor to
dump entire VM state, thereby giving a compromised Dom0
full access to encryption keys. Xen’s resulting TCB including
Dom0, which has a full copy of Linux, is therefore larger
than KVM and hundreds of times larger than HypSec. If we
conservatively assume features in Xen’s management stack
that expose VM state such as VM dump and migration are
disabled, so that we can exclude Dom0 from Xen’s TCB and
only count Xen ARM hypervisor code in EL2, Xen’s TCB is
then 71K LOC as listed in Table 6. This is roughly an order of
magnitude larger than HypSec because Xen still has to do its
own bootstrapping, CPU and memory resource management,
and completely support memory and interrupt virtualization.

We estimated HypSec’s TCB for an equivalent x86
implementation, assuming HypSec is also applied to KVM
Linux v4.18 for x86 hardware with VMX support. We ran
cloc against the C files that encapsulate the KVM functions
for CPU and memory virtualization to conservatively measure
HypSec’s TCB size. The total is less than 27K LOC. Although
the TCB size for HypSec on x86 would be larger than HypSec
on ARM, we believe the resulting TCB on x86 would still
result in a substantial reduction as KVM’s TCB on x86 is
also larger than on ARM, at roughly 10M LOC including x86
device drivers; this is an area of future work.

6.4 Evaluation of Practical Attacks

We evaluated HypSec’s effectiveness against a compromised
hostvisor by analyzing CVEs and identifying the cases where
HypSec protects VM data despite any compromise, assuming
an equivalent implementation of HypSec for x86 platforms.
We analyzed CVEs related to Linux/KVM, which are listed in
Tables 7 and 8. The CVEs consider two cases: a malicious VM
who exploits KVM functions supported by the hostvisor, and
an unprivileged host user who exploits bugs in Linux/KVM.
Among the selected CVEs, 16 of them are x86-specific, one
is specific to ARM, while the rest are independent of archi-
tecture. An attacker’s goal is to exploit these CVEs to obtain

1368 28th USENIX Security Symposium USENIX Association

Bug Description KVM HypSec
CVE-2015-4036 Memory Corruption: Array index error in hostvisor. No Yes
CVE-2013-0311 Privilege Escalation: Improper handling of descriptors in vhost driver. No Yes
CVE-2017-17741 Info Leakage: Stack out-of-bounds read in hostvisor. No Yes
CVE-2010-0297 Code Execution: Buffer overflow in I/O virtualization code. No Yes
CVE-2014-0049 Code Execution: Buffer overflow in I/O virtualization code. No Yes
CVE-2013-1798 Info Leakage: Improper handling of invalid combination of operations for virtual IOAPIC. No Yes
CVE-2016-4440 Code Execution: Mishandling of virtual APIC state. No Yes
CVE-2016-9777 Privilege Escalation: Out-of-bounds array access using VCPU index in interrupt virtualization code. No Yes
CVE-2015-3456 Code Execution: Memory corruption in virtual floppy driver allows VM user to execute arbitrary code in hostvisor. No Yes
CVE-2011-2212 Privilege Escalation: Buffer overflow in the virtio subsystem allows guest to gain privileges to the host. No Yes
CVE-2011-1750 Privilege Escalation: Buffer overflow in the virtio subsystem allows guest to gain privileges to the host. No Yes
CVE-2015-3214 Code Execution: Out-of-bound memory access in QEMU leads to memory corruption. No Yes
CVE-2012-0029 Code Execution: Buffer overflow allows VM users to execute arbitrary code in QEMU No Yes
CVE-2017-1000407 Denial-of-Service: VMs crash hostvisor by flooding the I/O port with write requests. No No
CVE-2017-1000252 Denial-of-Service: Out-of-bounds value causes assertion failure and hypervisor crash. No No
CVE-2014-7842 Denial-of-Service: Bug in KVM allows guest users to crash its own OS. No No
CVE-2018-1087 Privilege Escalation: Improper handling of exception allows guest users to escalate their privileges to its own OS. No No

Table 7: Selected Set of Analyzed CVEs - from VM

Bug Description KVM HypSec
CVE-2009-3234 Privilege Escalation: Kernel stack buffer overflow resulting in ret2usr [43]. No Yes
CVE-2010-2959 Code Execution: Integer overflow resulting in function pointer overwrite. No Yes
CVE-2010-4258 Privilege Escalation: Improper handling of get_fs value resulting in kernel memory overwrite. No Yes
CVE-2009-3640 Privilege Escalation: Improper handling of APIC state in hostvisor. No Yes
CVE-2009-4004 Privilege Escalation: Buffer overflow in hostvisor. No Yes
CVE-2013-1943 Privilege Escalation, Info Leakage: Mishandling of memory slot allocation allows host users to access hostvisor memory. No Yes
CVE-2016-10150 Privilege Escalation: Use-after-free in hostvisor. No Yes
CVE-2013-4587 Privilege Escalation: Array index error in hostvisor. No Yes
CVE-2018-18021 Privilege Escalation: Mishandling of VM register state allows host users to redirect hostvisor execution. No Yes
CVE-2016-9756 Info Leakage: Improper initialization in code segment resulting in information leakage in hostvisor stack. No Yes
CVE-2013-6368 Privilege Escalation: Mishandling of APIC state in hostvisor. No Yes
CVE-2015-4692 Memory Corruption: Mishandling of APIC state in hostvisor. No Yes
CVE-2013-4592 Denial-of-Service: Host users cause memory leak in hostvisor. No No

Table 8: Selected Set of Analyzed CVEs - from host user

hostvisor privileges and compromise VM data. The CVEs
related to our threat model could result in information leakage,
privilege escalation, code execution, and memory corruption
in Linux/KVM. While KVM does not protect VM data against
any of these compromises, HypSec protects against all of them.
HypSec does not guarantee availability and cannot protect
against CVEs that allow VMs or host users to cause denial of
service in the hostvisor. Vulnerabilities that allow unprivileged
guest users to attack their own VMs like CVE-2014-7842 and
CVE-2018-1087 are unrelated to HypSec’s threat model; pro-
tection against CVEs of these types is an area of future work.

We also executed attacks representative of information
leakage to show that HypSec protects VM data even if an
attacker has full control of the hostvisor. First, we simulated
an attacker trying to read or modify VMs’ memory pages. We
added a hook to KVM which modifies a page that a targeted
gVA maps to. As expected, the compromised KVM (without
HypSec) successfully modified the VM page. Using HypSec,
the same attack causes a trap to the corevisor which rejects
the invalid memory access.

Second, we simulated a host that tries to tamper with a VM’s
nested page table by redirecting a gPA’s NPT mapping to host-

owned pages. This is in contrast to the prior attack of modifying
VM pages, but shares the same goal of accessing VM data in
memory. We added a hook to the nested page fault handler in
KVM; the hook allocates a new zero page in the host OS’s ad-
dress space, which in a real attack could contain arbitrary code
data. The hook associates a range of a VM’s gPAs with this
zero page. As expected, this attack succeeds in KVM but fails
in HypSec. First, the attacker has no access to the sNPT walked
by the MMU. Second, the corevisor synchronizes the vNPT
to sNPT mapping on the gPA’s initial fault during VM boot, so
malicious vNPT modifications do not propagate to sNPT.

7 Related Work

The idea of retrofitting a commodity hypervisor with a smaller
core was inspired by KVM/ARM’s split-mode virtualiza-
tion [22, 23], which introduced a thin software layer to enable
Linux KVM to make use of ARM hardware virtualization
extensions without significant changes to Linux, but did
nothing to reduce the hypervisor TCB. HypSec builds on this
work to leverage ARM hardware virtualization support to run
the corevisor with special hardware privileges to protect VM

USENIX Association 28th USENIX Security Symposium 1369

data against a compromised hostvisor. More recently, Nested
Kernel [25] used the idea of retrofitting a small TCB into a
commodity OS kernel, FreeBSD, to intercept MMU updates to
enforce kernel code integrity. Both HypSec and Nested Kernel
retrofit commodity system software with a small TCB that
mediates accesses to critical hardware resources and strength-
ens system security guarantees with modest implementation
and performance costs. Nested Kernel focuses on a different
threat model and does not protect against vulnerabilities
in existing kernel code in part because both its TCB and
untrusted components run at the highest hardware privilege
level. In contrast, HypSec deprivileges the hostvisor and uses
its TCB to provide data confidentiality and integrity even in
the presence of hypervisor vulnerabilities in the hostvisor.

Bare-metal hypervisors often claim a smaller TCB as
an advantage over hosted hypervisors, but in practice, the
aggregate TCB of the widely-used Xen [11] bare-metal
hypervisor includes Dom0 [18, 92] and therefore can be no
smaller than hosted hypervisors like KVM. Some work thus
focuses on reducing Xen’s attack surface by redesigning
Dom0 [15, 18, 59]. Unlike HypSec, these approaches cannot
protect a VM against a compromised Xen or Dom0. We
believe Xen can be restructured using HypSec by moving
resource management, interrupt virtualization, and other
hardware-specific dependencies, along with Dom0, into a
hostvisor to further reduce Xen’s TCB to protect VM data.

Microhypervisors [32, 74] take a microkernel approach
to build clean-slate hypervisors from scratch to reduce the
hypervisor TCB. For example, NOVA [74] moves various
aspects of virtualization such as CPU and I/O virtualization
to user space services. The virtualization services are trusted
but instantiated per VM so that compromising them only
affects the given VM. Others simplify the hypervisor to reduce
its TCB by removing [72] or disabling [60] virtual device
I/O support in hypervisors, or partitioning VM resources
statically [42, 73]. Although a key motivation for both
microhypervisors and HypSec is to reduce the size of the TCB,
HypSec does not require a clean-slate redesign, and supports
existing full-featured commodity hypervisors without remov-
ing important hypervisor features such as I/O support and
dynamic resource allocation while preserving confidentiality
and integrity of VM data even if the hostvisor is compromised.

HyperLock [86], DeHype [88], and Nexen [70] focus on
deconstructing existing monolithic hypervisors by segregating
hypervisor functions to per VM instances. While this can
isolate an exploit of hypervisor functions to a given VM
instance, if a vulnerability is exploitable in one VM instance,
it is likely to be exploitable in another as well. Nexen builds on
Nested Kernel to retrofit Xen in this manner, though it does not
protect against vulnerabilities in its shared hypervisor services.
In contrast to HypSec, these systems focus on availability and
do not fully protect the confidentiality and integrity of VM
data against a compromised hypervisor or host OS.

CloudVisor [92] uses a small, specialized host hypervisor to

support nested virtualization and protect user VMs against an
untrusted Xen guest hypervisor, though Xen modifications are
required. CloudVisor encrypts VM I/O and memory but does
not fully protect CPU state, contrary to its claims of “providing
both secrecy and integrity to a VM’s states, including CPU
states.” For example, the VM program counter is exposed
to Xen to support I/O. As with any nested virtualization
approach, performance overhead on application workloads is
a problem. Furthermore, CloudVisor does not support widely
used paravirtual I/O. CloudVisor has a smaller TCB by not
supporting public key cryptography, making key management
problematic. In contrast, HypSec protects both CPU and
memory state via access control, not encryption, making
it possible to support full-featured hypervisor functionality
such as paravirtual I/O. HypSec also does not require nested
virtualization, avoiding its performance overhead.

To protect user data in virtualization systems, others enable
and require VM support for specialized hardware such as Intel
SGX [36] or ARM TrustZone. Haven [12] and S-NFV [71]
use Intel SGX to protect application data but unlike HypSec,
cannot protect the whole VM including the guest OS and ap-
plications against an untrusted hypervisor. Although HypSec
relies on a TEE to support key management, it fundamentally
differs from other approaches which extensively use TEEs for
much more than storing keys. Others [34, 96] run a security
monitor in ARM TrustZone and rely on ARM IP features
such as TrustZone Address Space Controller to protect VMs.
vTZ [34] virtualizes TrustZone and protects the guest TEE
against an untrusted hypervisor, but does not protect the
normal world VM. HA-VMSI [96] protects the normal
world VM against a compromised hypervisor but supports
limited virtualization features. In contrast, HypSec protects
the entire normal world VM against an untrusted hypervisor
without requiring VMs to use specialized hardware. HypSec
leverages ARM VE to trap VM exceptions to EL2 while
retaining hypervisor functionality. Others [40, 78, 90] propose
hardware-based approaches to protect VM data in CPU and
memory against an untrusted hypervisor. However, without
actual hardware implementations, these works implement
the proposed changes by modifying either Xen [40] or
QEMU [90], or on a simulator [78]. Some of them [40, 78]
do not support commodity hypervisors. In contrast, HypSec
leverages existing hardware features to protect virtual machine
data and supports KVM on ARM server hardware.

Recent architectural extensions [3, 37] proposed hardware
support on x86 for encrypted virtual machines. Fidelius [89]
leverages AMD’s SEV (Secure Encrypted Virtualization) [3]
to protect VMs. Unlike these encryption-based approaches,
HypSec primarily uses access control mechanisms.

Some projects focus on hardening the hypervisor to prevent
exploitation. They improve hypervisor security by either
enforcing control flow integrity [84] or measuring runtime
hypervisor integrity [9, 26]. These approaches can be applied
to HypSec to further strengthen VM security. XMHF [81]

1370 28th USENIX Security Symposium USENIX Association

verifies the memory integrity of its hypervisor codebase
but supports single VM with limited virtualization features.
Verification of HypSec’s TCB is an area of future work.

Various projects extend a trusted hypervisor to protect soft-
ware within VMs, including protecting applications running
on an untrusted guest OS in the VM [16, 17, 33, 55, 91], ensur-
ing kernel integrity and protecting against rootkits and code
injection attacks or to isolate I/O channels [64, 69, 83, 85, 95],
and dividing applications and system components in VMs
then relying on the hypervisor to safeguard interactions
among secure and insecure components [27, 54, 76, 79].
Overshadow [16] and Inktag [33] have some similarities with
HypSec in that they use a more trusted hypervisor component
to protect against untrusted kernel software. Overshadow and
Inktag also assume applications use end-to-end encrypted
network I/O, though they protect file I/O by replacing it with
memory-mapped I/O to encrypted memory. HypSec has three
key differences with these approaches. First, instead of mem-
ory encryption, HypSec primarily uses access control, which is
more lightweight and avoids the need to emulate functions that
are problematic when memory is encrypted. Second, instead
of instrumenting or emulating complex system calls, HypSec
relies on hardware virtualization mechanisms to interpose
on hardware events of interest. Finally, instead of protecting
against guest OS exploits, HypSec protects against hypervisor
and host OS exploits, which none of the other approaches do.

8 Conclusions

We have created HypSec, a new approach to hypervisor design
that reduces the TCB necessary to protect virtual machines.
HypSec decomposes a monolithic hypervisor into a small,
trusted corevisor and untrusted hostvisor, the latter containing
the vast majority of hypervisor functionality including an
entire host operating system kernel. The corevisor leverages
hardware virtualization support to execute at a higher privilege
level and provide access control mechanisms to restrict
hostvisor access to VM data. It can be simple because it
only needs to perform basic CPU and memory virtualization.
When VMs use secure I/O channels, HypSec can protect
the confidentiality and integrity of all VM data. We have
demonstrated that HypSec can support existing commodity
hypervisors by retrofitting KVM/ARM. The resulting TCB
is orders of magnitude less than the original KVM/ARM.
HypSec provides strong security guarantees to VMs with only
modest performance overhead for real application workloads.

Acknowledgments

Steve Bellovin, Christoffer Dall, and Nathan Dautenhahn
provided helpful comments on earlier drafts of this paper. This
work was supported in part by NSF grants CNS-1717801 and
CNS-1563555.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. In Proceedings of the Summer
USENIX Conference (USENIX Summer 1986), pages 93–112,
Atlanta, GA, June 1986.

[2] K. Adams and O. Agesen. A Comparison of Software and
Hardware Techniques for x86 Virtualization. In Proceedings
of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
2006), pages 2–13, San Jose, CA, Oct. 2006.

[3] Advanced Micro Devices. Secure Encrypted Virtualization
API Version 0.16. https://support.amd.com/TechDocs/
55766_SEV-KM%20API_Spec.pdf, Feb. 2018.

[4] Amazon Web Services, Inc. Introducing Amazon EC2 A1
Instances Powered By New Arm-based AWS Graviton Proces-
sors. https://aws.amazon.com/about-aws/whats-new/
2018/11/introducing-amazon-ec2-a1-instances/,
Nov. 2018.

[5] Amazon Web Services, Inc. AWS Key Management Service
(KMS). https://aws.amazon.com/kms/, May 2019.

[6] ArchWiki. dm-crypt. https://wiki.archlinux.org/
index.php/dm-crypt, Apr. 2018.

[7] ARM Ltd. ARM Security Technology - Build-
ing a Secure System using TrustZone Technology.
http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf, Apr. 2009.

[8] ARM Ltd. ARM System Memory Management Unit
Architecture Specification - SMMU architecture ver-
sion 2.0. http://infocenter.arm.com/help/topic/
com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_
architecture_specification.pdf, June 2016.

[9] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. C. Skalsky. HyperSentry: Enabling Stealthy In-context
Measurement of Hypervisor Integrity. In Proceedings of the
17th ACM Conference on Computer and Communications
Security (CCS 2010), pages 38–49, Chicago, IL, Oct. 2010.

[10] M. Backes, G. Doychev, and B. Kopf. Preventing Side-Channel
Leaks in Web Traffic: A Formal Approach. In 20th Annual
Network and Distributed System Security Symposium (NDSS
2013), San Diego, CA, Feb. 2013.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP 2003), pages 164–177,
Bolton Landing, NY, Oct. 2003.

[12] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications
from an Untrusted Cloud with Haven. In Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation (OSDI 2014), pages 267–283, Broomfield,
CO, Oct. 2014.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Exten-
sibility Safety and Performance in the SPIN Operating System.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP 1995), pages 267–283, Copper

USENIX Association 28th USENIX Security Symposium 1371

https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances/
https://aws.amazon.com/about-aws/whats-new/2018/11/introducing-amazon-ec2-a1-instances/
https://aws.amazon.com/kms/
https://wiki.archlinux.org/index.php/dm-crypt
https://wiki.archlinux.org/index.php/dm-crypt
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062d.c/IHI0062D_c_system_mmu_architecture_specification.pdf

Mountain, CO, Dec. 1995.
[14] Business Wire. Research and Markets: Global Encryption

Software Market (Usage, Vertical and Geography) - Size,
Global Trends, Company Profiles, Segmentation and Forecast,
2013 - 2020. https://www.businesswire.com/news/
home/20150211006369/en/Research-Markets-Global-
Encryption-Software-Market-Usage, Feb. 2015.

[15] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy.
Self-service Cloud Computing. In Proceedings of the 2012
ACM Conference on Computer and Communications Security
(CCS 2012), pages 253–264, Raleigh, NC, Oct. 2012.

[16] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: A Virtualization-based Approach to Retrofitting
Protection in Commodity Operating Systems. In Proceedings
of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
2008), pages 2–13, Seattle, WA, Mar. 2008.

[17] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Se-
cureME: A Hardware-software Approach to Full System
Security. In Proceedings of the 25th International Conference
on Supercomputing (ICS 2011), pages 108–119, Tucson, AZ,
May 2011.

[18] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield. Breaking Up is Hard to Do:
Security and Functionality in a Commodity Hypervisor. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP 2011), pages 189–202, Cascais,
Portugal, Oct. 2011.

[19] J. Corbet. KAISER: hiding the kernel from user space.
https://lwn.net/Articles/738975/, Nov. 2017.

[20] C. Dall, S.-W. Li, J. Lim, J. Nieh, and G. Koloventzos. ARM
Virtualization: Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA 2016), pages 304–316, Seoul, South Korea,
June 2016.

[21] C. Dall, S.-W. Li, and J. Nieh. Optimizing the Design and
Implementation of the Linux ARM Hypervisor. In Proceedings
of the 2017 USENIX Annual Technical Conference (USENIX
ATC 2017), pages 221–234, Santa Clara, CA, July 2017.

[22] C. Dall and J. Nieh. KVM/ARM: Experiences Building the
Linux ARM Hypervisor. Technical Report CUCS-010-13,
Department of Computer Science, Columbia University, June
2013.

[23] C. Dall and J. Nieh. KVM/ARM: The Design and Implemen-
tation of the Linux ARM Hypervisor. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2014), pages 333–347, Salt Lake City, UT, Mar. 2014.

[24] A. Danial. cloc: Count Lines of Code. https:
//github.com/AlDanial/cloc, May 2019.

[25] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and
V. Adve. Nested Kernel: An Operating System Architecture
for Intra-Kernel Privilege Separation. In Proceedings of the
20th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2015), pages 191–206, Istanbul, Turkey, Mar. 2015.

[26] L. Deng, P. Liu, J. Xu, P. Chen, and Q. Zeng. Dancing with

Wolves: Towards Practical Event-driven VMM Monitoring. In
Proceedings of the 13th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2017),
pages 83–96, Xi’an, China, Apr. 2017.

[27] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A Virtual Machine-based Platform for Trusted Com-
puting. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (SOSP 2003), pages 193–206,
Bolton Landing, NY, Oct. 2003.

[28] Google. Google Cloud Security and Compli-
ance Whitepaper - How Google protects your data.
https://static.googleusercontent.com/media/
gsuite.google.com/en//files/google-apps-
security-and-compliance-whitepaper.pdf, Sept. 2017.

[29] Google. HTTPS encryption on the web – Google Transparency
Report. https://transparencyreport.google.com/
https/overview, Apr. 2018.

[30] S. Hajnoczi. An Updated Overview of the QEMU Storage
Stack. https://events.linuxfoundation.org/slides/
2011/linuxcon-japan/lcj2011_hajnoczi.pdf, June
2011.

[31] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and
E. W. Felten. Lest We Remember: Cold Boot Attacks on
Encryption Keys. In Proceedings of the 17th USENIX Security
Symposium (USENIX Security 2008), pages 45–60, San Jose,
CA, July 2008.

[32] G. Heiser and B. Leslie. The OKL4 Microvisor: Convergence
Point of Microkernels and Hypervisors. In Proceedings of
the 1st ACM Asia-pacific Workshop on Workshop on Systems
(APSys 2010), pages 19–24, New Delhi, India, Aug. 2010.

[33] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel.
InkTag: Secure Applications on an Untrusted Operating
System. In Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2013), pages 265–278, Houston,
TX, Mar. 2013.

[34] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and Haibing. vTZ:
Virtualizing ARM Trustzone. In Proceedings of the 26th
USENIX Security Symposium (USENIX Security 2017), pages
541–556, Vancouver, BC, Canada, Aug. 2017.

[35] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, 325462-044US, Aug. 2012.

[36] Intel Corporation. Intel Software Guard Extensions Program-
ming Reference. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf, Oct.
2014.

[37] Intel Corporation. Intel Architecture Memory Encryption
Technologies Specification. https://software.intel.
com/sites/default/files/managed/a5/16/Multi-Key-
Total-Memory-Encryption-Spec.pdf, Dec. 2017.

[38] International Organization for Standardization and Interna-
tional Electrotechnical Commission. ISO/IEC 11889-1:2015
- Information technology – Trusted platform module library.
https://www.iso.org/standard/66510.html, Sept.
2016.

[39] G. Irazoqui, T. Eisenbarth, and B. Sunar. S$A: A Shared Cache
Attack That Works Across Cores and Defies VM Sandboxing

1372 28th USENIX Security Symposium USENIX Association

https://www.businesswire.com/news/home/20150211006369/en/Research-Markets-Global-Encryption-Software-Market-Usage
https://www.businesswire.com/news/home/20150211006369/en/Research-Markets-Global-Encryption-Software-Market-Usage
https://www.businesswire.com/news/home/20150211006369/en/Research-Markets-Global-Encryption-Software-Market-Usage
https://lwn.net/Articles/738975/
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://static.googleusercontent.com/media/gsuite.google.com/en//files/google-apps-security-and-compliance-whitepaper.pdf
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://events.linuxfoundation.org/slides/2011/linuxcon-japan/lcj2011_hajnoczi.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://www.iso.org/standard/66510.html

– and Its Application to AES. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy (SP 2015), pages 591–604,
San Jose, CA, May 2015.

[40] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural Support
for Secure Virtualization Under a Vulnerable Hypervisor. In
Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-44), pages 272–283,
Porto Alegre, Brazil, Dec. 2011.

[41] R. Jones. Netperf. https://github.com/
HewlettPackard/netperf, June 2018.

[42] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
Virtualized Cloud Infrastructure Without the Virtualization.
In Proceedings of the 37th Annual International Symposium
on Computer Architecture (ISCA 2010), pages 350–361,
Saint-Malo, France, June 2010.

[43] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard:
Lightweight Kernel Protection against Return-to-User Attacks.
In Proceedings of the 21st USENIX Security Symposium
(USENIX Security 2012), pages 459–474, Bellevue, WA, Aug.
2012.

[44] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM:
the Linux Virtual Machine Monitor. In In Proceedings of
the 2007 Ottawa Linux Symposium (OLS 2007), Ottawa, ON,
Canada, June 2007.

[45] kokke. kokke/tiny-aes-c: Small portable aes128/192/256 in
c. https://github.com/kokke/tiny-AES-c, 2018.

[46] KVM Contributors. Kernel Samepage Merging.
https://www.linux-kvm.org/page/KSM, July 2015.

[47] KVM Contributors. Tuning KVM. http://www.linux-
kvm.org/page/Tuning_KVM, May 2015.

[48] KVM Contributors. KVM Unit Tests. http://www.linux-
kvm.org/page/KVM-unit-tests, May 2019.

[49] S. Landau. Making Sense from Snowden: What’s Significant
in the NSA Surveillance Revelations. IEEE Security and
Privacy, 11(4):54–63, July 2013.

[50] Let’s Encrypt. Let’s encrypt stats - let’s encrypt.
https://letsencrypt.org/stats/, Apr. 2018.

[51] J. Liedtke. On Micro-kernel Construction. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles
(SOSP 1995), pages 237–250, Copper Mountain, CO, Dec.
1995.

[52] J. Lim, C. Dall, S.-W. Li, J. Nieh, and M. Zyngier. NEVE:
Nested Virtualization Extensions for ARM. In Proceedings
of the 26th ACM Symposium on Operating Systems Principles
(SOSP 2017), pages 201–217, Shanghai, China, Oct. 2017.

[53] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level
Cache Side-Channel Attacks Are Practical. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy (SP 2015),
pages 605–622, San Jose, CA, May 2015.

[54] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting
Memory Disclosure with Efficient Hypervisor-enforced
Intra-domain Isolation. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS
2015), pages 1607–1619, Denver, CO, Oct. 2015.

[55] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig. TrustVisor: Efficient TCB Reduction and Attestation.
In Proceedings of the 2010 IEEE Symposium on Security and

Privacy (SP 2010), pages 143–158, Oakland, CA, May 2010.
[56] Microsoft. Hyper-V Technology Overview. https:

//docs.microsoft.com/en-us/windows-server/
virtualization/hyper-v/hyper-v-technology-
overview, Nov. 2016.

[57] Microsoft. BitLocker. https://docs.microsoft.com/en-
us/windows/security/information-protection/
bitlocker/bitlocker-overview, Jan. 2018.

[58] Microsoft Azure. Key Vault - Microsoft Azure. https:
//azure.microsoft.com/en-in/services/key-vault/,
May 2019.

[59] D. G. Murray, G. Milos, and S. Hand. Improving Xen
Security Through Disaggregation. In Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2008), pages 151–160, Seattle,
WA, Mar. 2008.

[60] A. Nguyen, H. Raj, S. Rayanchu, S. Saroiu, and A. Wolman.
Delusional Boot: Securing Hypervisors Without Massive
Re-engineering. In Proceedings of the 7th ACM European
Conference on Computer Systems (EuroSys 2012), pages
141–154, Bern, Switzerland, Apr. 2012.

[61] OP-TEE. Open Portable Trusted Execution Environment.
https://www.op-tee.org/, 2017.

[62] orlp. Ed25519. https://github.com/orlp/ed25519,
2017.

[63] Reuters. Cloud companies consider Intel rivals after the
discovery of microchip security flaws. https://www.cnbc.
com/2018/01/10/cloud-companies-consider-intel-
rivals-after-security-flaws-found.html, Jan. 2018.

[64] R. Riley, X. Jiang, and D. Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing. In
Proceedings of the 11th International Symposium on Recent
Advances in Intrusion Detection (RAID 2008), pages 1–20,
Cambridge, MA, Sept. 2008.

[65] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get off of My Cloud: Exploring Information Leakage
in Third-party Compute Clouds. In Proceedings of the 16th
ACM Conference on Computer and Communications Security
(CCS 2009), pages 199–212, Chicago, IL, Nov. 2009.

[66] R. Russell. Hackbench. http://people.redhat.com/
mingo/cfs-scheduler/tools/hackbench.c, Jan. 2008.

[67] R. Russell. virtio: Towards a De-Facto Standard for Virtual I/O
Devices. SIGOPS Operating Systems Review, 42(5):95–103,
July 2008.

[68] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
Arguments in System Design. ACM Transactions on Computer
Systems (TOCS), 2(4):277–288, Nov. 1984.

[69] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
Tiny Hypervisor to Provide Lifetime Kernel Code Integrity
for Commodity OSes. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles (SOSP 2007),
pages 335–350, Stevenson, WA, Oct. 2007.

[70] L. Shi, Y. Wu, Y. Xia, N. Dautenhahn, H. Chen, B. Zang, and
J. Li. Deconstructing Xen. In 24th Annual Network and
Distributed System Security Symposium (NDSS 2017), San
Diego, CA, Feb. 2017.

[71] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-NFV:

USENIX Association 28th USENIX Security Symposium 1373

https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
https://github.com/kokke/tiny-AES-c
https://www.linux-kvm.org/page/KSM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/KVM-unit-tests
http://www.linux-kvm.org/page/KVM-unit-tests
https://letsencrypt.org/stats/
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-technology-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://azure.microsoft.com/en-in/services/key-vault/
https://azure.microsoft.com/en-in/services/key-vault/
https://www.op-tee.org/
https://github.com/orlp/ed25519
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
https://www.cnbc.com/2018/01/10/cloud-companies-consider-intel-rivals-after-security-flaws-found.html
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

Securing NFV States by Using SGX. In Proceedings of the
2016 ACM International Workshop on Security in Software De-
fined Networks & Network Function Virtualization (SDN-NFV
Security 2016), pages 45–48, New Orleans, LA, Mar. 2016.

[72] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono,
S. Chiba, Y. Shinjo, and K. Kato. BitVisor: A Thin Hypervisor
for Enforcing I/O Device Security. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE 2009), pages 121–130,
Washington, DC, Mar. 2009.

[73] Siemens. jailhouse - Linux-based partitioning hypervisor.
https://github.com/siemens/jailhouse, May 2019.

[74] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-based
Secure Virtualization Architecture. In Proceedings of the 5th
European Conference on Computer Systems (EuroSys 2010),
pages 209–222, Paris, France, Apr. 2010.

[75] P. Stewin and I. Bystrov. Understanding DMA Malware. In
Proceedings of the 9th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA
2012), pages 21–41, Heraklion, Crete, Greece, July 2013.

[76] R. Strackx and F. Piessens. Fides: Selectively Hardening
Software Application Components Against Kernel-level or
Process-level Malware. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS
2012), pages 2–13, Raleigh, NC, Oct. 2012.

[77] SUSE. Performance Implications of Cache Modes.
https://www.suse.com/documentation/sles11/book_
kvm/data/sect1_3_chapter_book_kvm.html, Sept. 2016.

[78] J. Szefer and R. B. Lee. Architectural Support for Hypervisor-
secure Virtualization. In Proceedings of the 17th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2012), pages
437–450, London, England, UK, Mar. 2012.

[79] R. Ta-Min, L. Litty, and D. Lie. Splitting Interfaces: Making
Trust Between Applications and Operating Systems Config-
urable. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages
279–292, Seattle, WA, Nov. 2006.

[80] The Apache Software Foundation. ab - Apache HTTP server
benchmarking tool. http://httpd.apache.org/docs/2.
4/programs/ab.html, Apr. 2015.

[81] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and
A. Datta. Design, Implementation and Verification of an eXten-
sible and Modular Hypervisor Framework. In Proceedings of
the 2013 IEEE Symposium on Security and Privacy (SP 2013),
pages 430–444, San Francisco, CA, May 2013.

[82] C. A. Waldspurger. Memory Resource Management in
VMware ESX Server. In Proceedings of the 5th Symposium on
Operating Systems Design and Implementation (OSDI 2002),
pages 181–194, Boston, MA, Dec. 2002.

[83] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou. Secpod: A
Framework for Virtualization-based Security Systems. In
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC 2015), pages 347–360, Santa Clara, CA, July
2015.

[84] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach
to Provide Lifetime Hypervisor Control-Flow Integrity. In

Proceedings of the 2010 IEEE Symposium on Security and
Privacy (SP 2010), pages 380–395, Oakland, CA, May 2010.

[85] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering Kernel
Rootkits with Lightweight Hook Protection. In Proceedings of
the 16th ACM Conference on Computer and Communications
Security (CCS 2009), pages 545–554, Chicago, IL, Nov. 2009.

[86] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating Commodity
Hosted Hypervisors with HyperLock. In Proceedings of the
7th ACM European Conference on Computer Systems (EuroSys
2012), pages 127–140, Bern, Switzerland, Apr. 2012.

[87] C. Williams. Microsoft: Can’t wait for ARM to power
MOST of our cloud data centers! Take that, Intel! Ha!
Ha! https://www.theregister.co.uk/2017/03/09/
microsoft_arm_server_followup/, Mar. 2017.

[88] C. Wu, Z. Wang, and X. Jiang. Taming Hosted Hypervisors
with (Mostly) Deprivileged Execution. In 20th Annual
Network and Distributed System Security Symposium (NDSS
2013), San Diego, CA, Feb. 2013.

[89] Y. Wu, Y. Liu, R. Liu, H. Chen, B. Zang, and H. Guan. Compre-
hensive VM Protection Against Untrusted Hypervisor Through
Retrofitted AMD Memory Encryption. In 2018 IEEE Interna-
tional Symposium on High Performance Computer Architecture
(HPCA 2018), pages 441–453, Vienna, Austria, Feb. 2018.

[90] Y. Xia, Y. Liu, and H. Chen. Architecture Support for
Guest-transparent VM Protection from Untrusted Hypervisor
and Physical Attacks. In Proceedings of the 2013 IEEE 19th
International Symposium on High Performance Computer
Architecture (HPCA 2013), pages 246–257, Shenzhen, China,
Feb. 2013.

[91] J. Yang and K. G. Shin. Using Hypervisor to Provide Data
Secrecy for User Applications on a Per-page Basis. In
Proceedings of the 4th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2008),
pages 71–80, Seattle, WA, Mar. 2008.

[92] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles (SOSP
2011), pages 203–216, Cascais, Portugal, Oct. 2011.

[93] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM
Side Channels and Their Use to Extract Private Keys. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security (CCS 2012), pages 305–316,
Raleigh, NC, Oct. 2012.

[94] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-
Tenant Side-Channel Attacks in Paas Clouds. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS 2014), pages 990–1003, Nov. 2014.

[95] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with Giants:
Wimpy Kernels for On-Demand Isolated I/O. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy (SP
2014), pages 308–323, San Jose, CA, May 2014.

[96] M. Zhu, B. Tu, W. Wei, and D. Meng. HA-VMSI: A
Lightweight Virtual Machine Isolation Approach with
Commodity Hardware for ARM. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE 2017), pages 242–256, Xi’an,
China, Apr. 2017.

1374 28th USENIX Security Symposium USENIX Association

https://github.com/siemens/jailhouse
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html
https://www.suse.com/documentation/sles11/book_kvm/data/sect1_3_chapter_book_kvm.html
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup/
https://www.theregister.co.uk/2017/03/09/microsoft_arm_server_followup/

WAVE: A Decentralized Authorization Framework with Transitive Delegation
Michael P Andersen, Sam Kumar, Moustafa AbdelBaky

Gabe Fierro, John Kolb, Hyung-Sin Kim, David E. Culler, Raluca Ada Popa
University of California, Berkeley

Abstract
Most deployed authorization systems rely on a central
trusted service whose compromise can lead to the breach
of millions of user accounts and permissions. We present
WAVE, an authorization framework offering decentralized
trust: no central services can modify or see permissions and
any participant can delegate a portion of their permissions
autonomously. To achieve this goal, WAVE adopts an ex-
pressive authorization model, enforces it cryptographically,
protects permissions via a novel encryption protocol while
enabling discovery of permissions, and stores them in an un-
trusted scalable storage solution. WAVE provides competi-
tive performance to traditional authorization systems relying
on central trust. It is an open-source artifact and has been
used for two years for controlling 800 IoT devices.

1 Introduction
Authorization and authentication are fundamental compo-
nents of many systems. Most authorization systems today
rely on centralized services such as centralized credential
stores (e.g., [15, 19, 56]), Access Control Lists (ACLs), Ac-
tive Directory, and OAuth [4]. For example, in a calendar
application, a central service stores which users have access
to what calendars, and users authenticate to it, e.g. via user-
name and password. In these systems, delegation is critical:
for instance, allowing an assistant to edit your calendar, and
letting the assistant further delegate restrictive view access to
an event organizer. These forms of delegation are typically
implemented as changes to a centralized ACL.

However, this approach presents two fundamental prob-
lems. First, a centralized service is a central point of attack:
a single attack can simultaneously compromise many user
accounts and permissions. There have been numerous such
breaches [39], and attackers even managed to log in as the
victim users. Second, the operator of the central server has
a complete view of the private permission data for all users
(thus seeing users’ social relationships [54]), and can modify
permissions [2].

Responding to the weaknesses of centralized systems, re-
cent security systems are increasingly avoiding a trusted
central service. This approach has been adopted by end-
to-end encryption systems [25], such as WhatsApp and
Signal, blockchains (e.g., Bitcoin, Ethereum, Zcash), or
ledgers (e.g., IBM’s Hyperledger [17], Certificate Trans-
parency [41], Key Transparency [32]). Our goal is to build a
scalable decentralized authorization system, permitting del-
egation under a similar threat model.

We propose a decentralized authorization system that
does not rely on a trusted service, WAVE (“WAVE is an
Authorization Verification Engine”). WAVE offers de-
centralized trust: each user’s WAVE client manages the
permissions of that user and can delegate access to other
users. WAVE enforces delegation cryptographically, not via
a trusted service. It aims to capture a wide range of autho-
rization policies and to provide an alternative to traditional
systems, such as OAuth [4] and Active Directory.

Importantly, in providing decentralized transitive delega-
tion, WAVE facilitates applications that span multiple trust
domains. For example, IoT orchestration applications like
If This Then That (IFTTT) [3] tie together multiple ven-
dors and users, but IFTTT’s design relies on several central
points of attack: the vendor OAuth servers and the IFTTT
token storage servers. The compromise of any one of these
servers may affect hundreds of thousands of users. Us-
ing WAVE, greater cross-administrative-domain orchestra-
tion can be achieved with no central authorization servers,
reducing the trust that each domain must place in the others.

1.1 Usage Scenarios
While authorization plays a key role in the security of al-
most any system today, the benefits of decentralized au-
thorization are most pronounced in systems that are inher-
ently distributed, where the prevailing centralized authoriza-
tion schemes undermine what would otherwise be a resilient
system. Our deployment of WAVE over the past two years
has focused on securing distributed IoT devices and services
used to monitor and control over twenty small to medium-
sized commercial and residential buildings; hence, we will
use smart buildings as a running example.

Consider a set of campuses, each owned by a property
manager. Each campus is composed of multiple buildings,
with portions of each building leased out to tenants by the
property manager. The property manager within each cam-
pus is the authority for the cyberphysical resources associ-
ated with the buildings in the campus, but they must delegate
permission to the individual building managers who must
further delegate permissions to the tenants, allowing them
to control the portions of the buildings that they rent. Any of
these principals may then further delegate permissions to IoT
devices, long-running analytics or control services operating
on their behalf, perhaps provided by the utility. The building
manager and/or tenant will also grant ephemeral permissions
on subsets of the building infrastructure to contractors (like
HVAC commissioning teams) and, especially in our case, to

USENIX Association 28th USENIX Security Symposium 1375

researchers.
A similar structure occurs in small residential buildings

where a homeowner installs smart devices such as lights and
thermostats and needs to delegate permission on those de-
vices to their partner, guest, nanny, or children.

Cross-administrative-domain delegation is present in both
examples. In larger buildings, we see the boundary between
the property owner and the tenants. In residential build-
ings, this is most evident when using orchestration tools like
IFTTT, where an organization, distinct from the owner of the
devices, runs the controller service and needs to obtain per-
mission from the owner.

WAVE is not limited to IoT. It provides general purpose
delegable authorization and can, for example, be used in
place of OAuth to remove the risk of the centralized token-
issuing server and allow for richer delegation semantics.

1.2 High-Level Security Goal & Threat Model
At a high level, our objective is to design a system where the
compromise of an authorization server does not compromise
all the users’ permissions. Namely, even if an adversary has
compromised any authorization servers and users, it should
not be able to:
1. Grant permissions on behalf of uncompromised users.
2. See permissions granted in the system, beyond those po-

tentially relevant to the compromised users. See §4 and
§B for our definition of relevant.

3. Undetectably modify the permissions received/grant-
ed/revoked by uncompromised users from uncom-
promised users, or undetectably prevent uncompro-
mised users from granting/receiving/revoking permis-
sions to/from uncompromised users.

1.3 Failure Of Existing Systems
Existing authorization systems fall short in two general ar-
eas: they do not meet our Security Goals or they do not pro-
vide the features required for IoT usage scenarios. More con-
cretely, we summarize the following six requirements that
are not simultaneously met by any existing system (as illus-
trated in Table 4):
No reliance on central trust. For example, in the smart
buildings scenario, the status quo has certain devices (e.g
LiFx light bulbs) perform their authorization on the vendor’s
server in the cloud. If that server is compromised, all of those
devices in all of the customer buildings are compromised. In
this case, the adversary can violate all three Security Goals.
Transitive delegation. The smart building scenario illus-
trates the necessity for transitive delegation and revocation
where, for example, a tenant can further delegate their per-
missions to a control service or guest and have those permis-
sions predicated on the tenant’s permissions. If the tenant
moves out, all of the permissions they granted should be au-
tomatically revoked, even if the building manager is unaware
of the grants the tenant has made. This form of transitive del-
egation is not found in widely-deployed systems like LDAP

or OAuth: where delegation exists, it does not have this tran-
sitive predication property. In contrast, this property is well
developed in academic work [49, 13, 43, 45, 29, 14, 51, 11].

Protected permissions. Parties should be able to see only
the permissions that are potentially relevant to them. Even
though the property manager is the authority for all the build-
ings, they must not be able to see the permissions that the
tenants grant (Security Goal #2). Existing systems do not
offer a solution to this requirement: in many centralized sys-
tems, for example, whoever operates the server can see all
the permissions. We elaborate further in §9.

Decentralized verification. Some existing decentralized
systems (e.g. SDSI/SPKI [49] and Macaroons [12]) allow
only the authority to verify that an action is authorized. This
is adequate in the centralized service case where the author-
ity is the service provider, but it does not work in the IoT case
where the root authority (the property manager) has nothing
to do with the devices needing to verify an action is autho-
rized (for example a thermostat). Any participant must be
able to verify that an action is authorized.

No ordering constraints. Delegations must be able to be
instantiated in any chronological order. For example, a par-
ticipant can delegate permissions in anticipation of being
granted sufficient ones for the delegation to be useful. We
have found this to be critical in our deployments. As a fur-
ther example, when the building manager’s key needed to be
replaced (e.g. it expired or was compromised), they created a
new key and the property manager had to grant replacement
permissions to this new key. In many existing systems (e.g.
Macaroons [12]), this necessitates every tenant re-creating
their entire permission trees, as all grants must happen in se-
quence, following the grants to the replacement key. This
is not tractable in practice as it requires the coordination of
many people and hundreds of devices, leading to extended
downtime. Furthermore, when we had such ordering con-
straints in our prior deployments we observed users choos-
ing insecure long expiry times or broad permissions to avoid
this re-issue. As a result, we require that the system enables
permission grants to occur out of order, so that permissions
grants can be modified (revoked / re-issued) or any key can
be “replaced” without re-issuing subsequent delegations. We
have also found that this capability leads to safer user prac-
tices as “mistakes” like overly narrow permissions and short
expiry times are easy to correct.

Offline participants. Not all participants have a persistent
online presence. A device may be offline at the time that
it is granted permissions (e.g. during installation) and it
must be able to discover that it received permissions when
it comes online. This is trivial to solve with a centralized
authorization system, but is not solved in existing decen-
tralized systems (e.g SDSI/SPKI [49], Macaroons [12] and
[13, 43, 45, 29, 27, 44, 59, 18, 57, 50]).

While many existing systems meet some of these require-

1376 28th USENIX Security Symposium USENIX Association

ments, no existing work meets all of the requirements con-
currently, as shown in §9.

1.4 Challenges and Approach
Compatible authorization model. The first challenge is
identifying a model for authorization that is compatible with
these requirements. We examined many authorization mod-
els [12, 49, 24, 13, 43, 45, 29, 27, 58, 37, 30, 48, 19, 15,
56, 44, 59, 18, 57, 50], but most of them cannot be en-
forced without a centralized authority or are incompatible
with the other requirements. Nevertheless, we found that
representing the authorization model as a graph, such as in
SDSI/SPKI [49, 24] where a proof of authorization is a path
through a graph, is compatible with our requirements, even
though the existing systems implementing it fall short.

Consequently, WAVE maintains a global graph of delega-
tions between entities (Fig. 1a), which are associated with
participants. An entity is a collection of public and private
key pairs and can correspond to a user, service, or group. An
edge indicates that an entity grants another entity access ac-
cording to a policy, which is one or more permissions along
with a description of the resources for which the permissions
are granted, and the expiry of the grant. This enables fine-
grained transitive delegation with revocation and expiry.

To enforce the policy cryptographically, each edge, from
issuer to subject entity, is a signed certificate recording the
delegation of permissions, which we call an attestation. A
path from an entity to another entity grants access equal to
the intersection of the policies on that path. The graph en-
ables entities to prove they have some permission P by re-
vealing a path through the graph from an authority entity to
themselves where all the edges of the path grant a superset of
P. This path is called a proof. The graph construction allows
permissions to be granted in any order, including delegation
of permissions one does not yet possess but expects to re-
ceive in the future.

While WAVE’s authorization graph and proofs are struc-
turally similar to SDSI/SPKI, WAVE differs in three impor-
tant aspects: (1) while in SDSI/SPKI only a central authority
(holding an ACL) can verify a proof, in WAVE anyone can
independently (with no communication) verify a proof yield-
ing an authorization policy. (2) WAVE provides a trustwor-
thy, scalable storage solution for attestations that enables dis-
coverability with offline participants and out of order grants,
which is out of scope for SDSI/SPKI. (3) Attestations are
encrypted in WAVE whereas they are visible in SDSI/SPKI.
These differences enable meeting the requirements in §1.3.

Scalable untrusted storage. To support granting permis-
sions to offline participants, we use a storage system that
enables participants to discover attestations when they later
come online. To meet the requirements above, the storage
must be able to prove its integrity cryptographically, so as
not to compromise Security Goal #3.

Our first design of WAVE [9] was built on Ethereum,

which has these properties. Unfortunately, our experiments
showed that a blockchain-based system will not scale to a
global size, even though changing permissions is far less
common than accessing data.

We present a new type of transparency log, the Unequiv-
ocable Log Derived Map (ULDM). Unlike Certificate Trans-
parency [41], which cannot form a proof of nonexistance
needed for revocations, or Key Transparency [32], which re-
quires users to audit every object at every epoch, a ULDM
is both capable of handling revocations and is efficiently
auditable. The ULDM forms the foundation of a horizon-
tally scalable storage tier with cryptographically proven in-
tegrity, which could also be useful outside of WAVE. Our
current design, described in §5, allows for a shared-nothing
architecture of storage servers with independent auditors that
need only communicate periodically (e.g., once a day) with
clients to verify the correct operation of the storage. The re-
sulting architecture is arbitrarily horizontally scalable with
each node having a higher capacity and lower latency than a
blockchain, as we show in §8.
Confidentiality of permissions. To meet the requirement of
protected permissions and Security Goal #2 despite the pub-
lic ULDM storage tier, there must be a mechanism to prevent
the storage servers or the general public from seeing the per-
missions, while ensuring that parties forming and verifying
proofs can see the necessary permissions. The challenge lies
in preserving confidentiality while enabling out of order del-
egation and offline participants. We overcome this challenge
with a novel technique called reverse-discoverable encryp-
tion (RDE, §4) used to encrypt attestations. RDE allows en-
tities to efficiently discover and decrypt the attestations that
they can use in a valid proof while using policy-aware en-
cryption to hide most other attestations. Importantly, RDE
does not introduce additional constraints on the ordering of
delegations or liveness of participants.

Our implementation of WAVE is a real-world open-source
artifact [7]. We have deployed and operated various versions
of WAVE over the past two years. During this time, WAVE
has been used to control more than 20 buildings containing
more than 800 IoT devices. We discuss lessons from our de-
ployment in §8.4; in particular, this has allowed us to confirm
that the authorization and delegation model presented here is
useful in practice. Further, WAVE has offered performance
comparable to traditional authorization systems, validating
real proofs in 1–4 ms, depending on the depth of delegation.

2 WAVE Overview
WAVE runs as a service that can be logically divided into
three layers (Fig. 1a) each providing an API (Fig. 1b).

2.1 Global Authorization Graph
Recall that the global authorization graph consists of enti-
ties, which are bundles of public and private keys, and at-
testations, which are the permission grants between them.
The client (representing a user, device, or service) inter-

USENIX Association 28th USENIX Security Symposium 1377

WAVE overview - Untitled(1)

Root

Global authorization graph (§2)

Proof path

Prover

Reverse-discoverable encryption (§4)

Decrypt
Grant

Scalable untrusted storage (§5)

lo
g

m
ap lo
g

lo
g

m
ap lo
g

lo
g

m
ap lo
g

Applications

Application API

Encryption API

Storage API

(a) The WAVE stack

Subsystem API

Application

CreateEntity() =⇒ (privEnt, pubEnt)
Delegate(issuer:privEnt, subject:pubEnt, policy) =⇒ attestation
CreateProof(subject:privEnt, policy) =⇒ (proof)
VerifyProof(proof) =⇒ (subject:pubEnt, policy)
NewName(issuer: privEnt, subject:pubEnt, name) =⇒ (nameDecl)
ResolveName(resolver: privEnt, name) =⇒ (nameDecl)
Revoke(issuer:privEnt, object:attestation/pubEnt)

Encryption EncryptAttest(attestation, partition) =⇒ attCiphertext
DecryptAttest(perspective:privEnt, attCiphertext) =⇒ attestation

Storage

Put(object, server) =⇒ hash
Get(hash, server) =⇒ object
Enqueue(list:hash, entry:hash, server)
IterQueue(list:hash, cursor) =⇒ (entry:hash, newCursor)

(b) The API provided by WAVE’s stack.

Figure 1: An overview of WAVE

acts through the WAVE service with the global authorization
graph. Clients can create new entities (e.g., for a service they
are deploying).

To grant permissions to other entities, clients use the
WAVE service to construct an attestation signed by the grant-
ing entity containing a policy describing the permissions. An
attestation A consists of:
• A.issuer: the entity that wishes to grant permissions to

another entity,
• A.subject: the entity receiving the permissions,
• A.policy: an expression of permissions, for example,

RTree described in §2.4, and
• a revocation commitment described in §6.1
• signature(s) from the issuer.
When accessing a service or controlling a device, clients

request a proof from the WAVE service; the WAVE service
will search for a path through the global authorization graph
from the authority for the service or device in question to the
client’s entity, where each edge grants a superset of the re-
quired permissions. The representation of this path is a self-
standing proof of authorization that can be verified without
communication with the proving entity. The receiving ser-
vice or device can use the WAVE service to validate a proof,
yielding the authorization policy it permits.

The WAVE service also allows for mapping human read-
able names to entity public keys to make the system more
usable, as we elaborate in §6.2.

2.2 Reverse-Discoverable Encryption (RDE)
To ensure the privacy of permissions, the WAVE service uses
our protocol, Reverse-Discoverable Encryption (described in
§4) to encrypt the attestations. The encryption layer is trans-
parent to clients: the WAVE service will discover and de-
crypt the portion of the global graph that concerns the client
automatically. The only time a client interacts with the en-
cryption layer is when they use RDE to encrypt messages for

application-level end-to-end encryption, which is beyond the
scope of this paper.

2.3 Scalable Untrusted Storage
When the client instructs the WAVE service to create an en-
tity or an attestation, the WAVE service will place the public
keys (for entities) or RDE ciphertext (for attestations) into
the scalable untrusted storage (§5). As with RDE, the place-
ment into storage is transparent to clients: clients operate
only at the level of granting permissions, creating proofs
and verifying proofs. The WAVE client will interact with
the storage to discover and decrypt the portion of the global
graph necessary for performing those actions without the
client manually publishing or retrieving objects.

2.4 Resource Tree Authorization Policy
Although WAVE’s design is agnostic to the specific mecha-
nism used for expressing the authorization policy (i.e., it is
compatible with existing policy languages such as [10, 12]),
in our IoT deployments we use a simple yet widely appli-
cable model: a resource tree (RTree) modelled roughly after
SPKI’s pkpfs tags [24].

An RTree policy manages permissions on a hierarchically
organized set of resources. A resource is denoted by a URI
pattern such as company-entity/building/device or
user-entity/albums/holiday/*. The first element of
a URI (e.g. company-entity) is called the namespace au-
thority or just namespace, which specifies the entity who is
the root of authorization for that resource (the entity who has
permission on that policy without having received permis-
sion from someone else). The global authorization graph has
many different RTrees with namespace authorities, ideally
with one per intrinsic authority, e.g. homeowner or company.
This lets the system be as decentralized as the naturally oc-
curring authority structure, unlike the single-authority-per-
vendor model, used in most systems today, which forces cen-
tralization. Depending on the structure of a given resource

1378 28th USENIX Security Symposium USENIX Association

hierarchy, there may be a minimum length for the resource
URI. This often occurs where the first few elements are used
to capture boundaries that exist naturally, such as a depart-
ment, building or project. These elements that can be relied
upon to exist, if present for a given RTree, are called the re-
source prefix. An RTree policy consists of:
• A set of permissions (strings such as “schema::read”)
• A URI pattern describing a set of resources
• A time range describing when the grant is valid
• An indirections field, which limits re-delegation
For example, a building manager entity might grant hvac::
actuate on bldgnamespace/floor4/* over a time range
corresponding with the lease terms, allowing further delega-
tion, to a tenant entity.

2.5 How WAVE Meets the Requirements
WAVE’s global authorization graph, RDE, and storage layer
allow it to achieve the requirements established in §1.3:
No reliance on central trust. WAVE achieves decentral-
ization via three design features. First, the permission dele-
gations are cryptographically enforced without a verifying
authority. Secondly, any participant can create an RTree
namespace, mimicking the natural ownership of resources.
Finally, our Unequivocable Log Derived Map §5 allows par-
ticipants to detect if the untrusted storage servers violate in-
tegrity. Although the storage server is centralized for avail-
ability, it is not a point of central trust as its behavior is cryp-
tographically enforced.
Transitive Delegation. The graph-based authorization
model efficiently captures transitive delegation. To delegate
permissions, any entity can create an attestation that cap-
tures which subset of their permissions they wish to delegate.
Since a proof is represented by a path through the graph, if
an entity higher up in the delegation tree is revoked, all en-
tities beneath it will no longer be able to prove they have
permissions, even though the party revoking the entity may
have been unaware of the delegations lower in the tree. This
gives us the transitive delegation property.
Protected permissions. Through the Reverse-Discoverable
Encryption scheme in §4, no party can decrypt attestations
that are not potentially relevant to them. In our example, the
property manager cannot decrypt attestations that the tenant
makes, and the party running the storage servers cannot read
any of the attestations.
Decentralized verification. WAVE proofs can be verified
by anyone, unlike in SDSI/SPKI [49] or Macaroons [12].
This enables an IoT device to verify all messages it receives
without communicating with an external service (with the
exception of revocation checks, as detailed in §6.1).
No ordering constraints. An entity can grant any permis-
sions at any time, including those that it has not yet received
(although the recipient won’t be able to form a proof yet).
Consequently, attestations can be replaced anywhere in the
hierarchy without requiring re-issue of subsequent delega-

tions. Furthermore, our privacy mechanism preserves this
property because an attestation can be encrypted under a
policy-specific key before the issuer has been granted the
permissions corresponding to the policy.
Offline participants. Attestations are disseminated through
the ULDM storage tier (§5) which allows for entities to dis-
cover permissions they have been granted while they were
offline and removes the need for any out-of-band online com-
munication between entities.

3 Security Guarantees and Roadmap
WAVE must fulfill three security goals (§1.2). Regarding
Security Goal #1, WAVE guarantees the following:
Guarantee 1. An attacker Adv can form a proof of autho-
rization on a policy if and only if the authority for that pol-
icy is compromised or has delegated access, directly or indi-
rectly, to a compromised entity.

This guarantee follows directly from the fact that each
attestation is signed by its issuer. A WAVE proof can be
thought of as a certificate chain. Given that existing systems
like SDSI/SPKI [49] use a similar construction, we do not
explore this further.

To achieve the other two security goals, WAVE introduces
two new techniques: Reverse-Discoverable Encryption (§4)
to satisfy Security Goal #2, and Unequivocable Log-Derived
Maps (§5) to satisfy Security Goal #3. The following sec-
tions introduce these techniques and state formal security
guarantees.

4 Encrypting Attestations
We encrypt attestations such that entities can decrypt attes-
tations they can use in a valid proof. Entities cannot learn
the policy (i.e., what permissions are granted) or the issuer
(i.e., who created the attestation) of most other attestations.
Our technique, reverse-discoverable encryption (RDE), does
not require out-of-band communication between entities and
works even if attestations are created out of order.

We present our solution incrementally: §4.1 formalizes the
problem that RDE solves. §4.2 presents a simplified design
of RDE, based on traditional public-key encryption, that pro-
vides a weak but useful security guarantee called “structural
security.” §4.3 augments the simplified RDE with policy-
aware encryption to provide a significantly stronger notion
of security, at the expense of making discoverability of at-
testations inefficient. §4.4 presents our final protocol, which
provides both efficient discovery of attestations and a signif-
icantly stronger guarantee than structural security.

For all the security guarantees stated in this section, we as-
sume that the attacker Adv is computationally-bounded, and
that standard cryptographic assumptions hold.

4.1 Graph-based Formalization
We formalize the problem in terms of the global authoriza-
tion graph; an example is shown in Fig. 2. For correctness,
we require that each entity can decrypt all attestations that

USENIX Association 28th USENIX Security Symposium 1379

NS A C D

B

#1:file1
#2:file

1

#4:file1

#5:file2

#3:file1

Figure 2: The number to the left of each colon indicates
when the attestation was created. The string to the right de-
notes the resource on which it grants permission.

it can use to form a valid proof where it is the subject. In
Fig. 2, entity D should be able to see attestations #1, #4, and
#3. Correctness does not require D to be able to see attes-
tation #2, as there is no path from B to D granting access to
file1. Similarly, correctness does not require D to be able
to see attestation #5, as there is no path from C to D granting
access to file2. For security, we would like each entity to
see as few additional attestations as possible.

4.2 Structural RDE
This section explains a simplified (yet weaker) version of
RDE that is helpful to understand the main idea behind our
technique. For this version alone, assume there are no re-
voked/expired attestations.

Each entity has an additional public-private keypair used
only for encrypting/decrypting attestations, separate from
the keys used to sign attestations. This keypair is governed
by two rules: when an entity grants an attestation, it (1) at-
taches its private key to the attestation, and (2) encrypts the
attestation, including the attached private key, using the pub-
lic key of the attestation’s subject (recipient). For example,
in Fig. 2, #3 contains skC and is encrypted under pkD (i.e.,
Enc(pkD;#3||skC)).

This meets the correctness goal; D can decrypt #3 as #3 is
encrypted under pkD. In decrypting #3, it obtains skC, which
it can use to decrypt #4. This works even though attestation
#4 was issued after #3. In decrypting #4, it obtains skA,
which it can use to decrypt #1. Essentially, each entity can
see the attestations it can use in a proof by decrypting them
in the reverse order as they would appear in a proof.

This achieves a simple security guarantee called struc-
tural security, which allows an entity e to see any attestation
A for which there exists a path from A.subject to e. We call it
“structural” security because only the structure of the graph,
not the policies in attestations, affects whether A is visible to
e. While structural RDE uses traditional public-key encryp-
tion, it differs from systems like PGP in that entities include
their long-lived private keys in the attestations they encrypt.

4.3 Policy-Aware RDE
Structural security only takes into account the structure of the
graph, not the policy of each attestation (i.e., the resources
and the expiry). For example, structural RDE allows D to
decrypt #5, though this is not necessary to meet the correct-
ness goal; D cannot form a valid proof containing #5 because

its policy differs from #4’s (they delegate access to different
files). With policy-aware RDE, we achieve a stronger notion
of security that prevents D from decrypting #5 by making
two high-level changes to structural RDE.

First, whereas structural RDE encrypts each attestation
A according to only A.subject, policy-aware RDE encrypts
each attestation A according to both A.subject and A.policy.
Second, whereas structural RDE includes a key in A that can
decrypt all attestations immediately upstream of A, policy-
aware RDE includes a key in A that can only decrypt up-
stream attestations with policies compatible with A.policy.
Choosing a suitable encryption scheme. Because the pol-
icy of an attestation determines how it is encrypted, the en-
cryption scheme must be policy-aware. In particular, tradi-
tional public-key encryption is insufficient for policy-aware
encryption (except for a boolean policy). We use the RTree
policy type to explain our policy-aware RDE, although the
technique applies to other policy types.

We identify Wildcard Identity-Based Encryption
(WIBE) [5] as a suitable policy-aware encryption scheme
to implement RDE for the RTree policy type. Typically,
IBE [16] (or an IBE variant such as WIBE) is instantiated
with a single centralized Private Key Generator (PKG) that
issues private keys to all participants. This does not meet
the goals of WAVE, because the PKG is a central trusted
party. In RDE, however, our insight is to instantiate a WIBE
system for every entity, so there is no central PKG.

A WIBE system consists of a master secret and pub-
lic key pair (WIBE.msk,WIBE.mpk). A message m
is encrypted using the master public key WIBE.mpk
and a fixed-length vector of strings, called an ID:
WIBE.Enc(WIBE.mpk, ID;m). Using msk, one can gener-
ate a secret key for a set of IDs. This set is expressed as an
ID with some components replaced by wildcards, denoted
ID∗. The secret key skID∗ can decrypt an encrypted mes-
sage, WIBE.Enc(WIBE.mpk, ID;m), if ID∗ and ID match in
all non-wildcard components.

Every policy p has an associated WIBE ID called a
partition. The partition corresponding to policy p is de-
noted P(p). When issuing an attestation A, an entity
encrypts it using P(A.policy), in the WIBE system of
A.subject: WIBE.Enc(WIBE.mpkA.subject,P(A.policy);A).
Furthermore, the issuing entity generates secret keys in
its own WIBE system, suitable to decrypt messages en-
crypted under P(A.policy), and includes them in the at-
testation. Let Q(A.policy) = {ID∗i}i represent the set of
IDs suitable for decrypting attestations encrypted under
P(p) for p compatible with A.policy, then A includes W =
{WIBE.KeyGen(WIBE.mskIssuer; ID∗i)}ID∗i∈Q(A.policy). Be-
low, we develop the partition map for RTree, which derives
a partition from an RTree policy (i.e., functions P and Q).
Partition map for RTree. To define P, consider that an
RTree policy consists of a resource prefix as defined in §2.4
(matching multiple resources) and a time range during which

1380 28th USENIX Security Symposium USENIX Association

the permission is valid. To express the start and end of this
range as a WIBE ID, we define a time-partitioning tree of
depth k over the entire supported time range; now any time
in the supported time range can be represented as a vector
representing a path in the tree from root to leaf. A WIBE ID
is a length-n vector: to represent attestations with a certain
time range, we choose k of those n components to encode
the valid-after time, and another k components to encode
the valid-before time. The remaining n−2k components are
used for the resource prefix. When granting an attestation for
an RTree policy, the issuer encrypts the attestation contents
under the resulting WIBE ID = P(A.policy). Note that for a
time tree of depth k, and a resource prefix of length `, WIBE
must be instantiated with at least n = 2k+ `.

The issuer must also include the policy-specific WIBE
keys from their own system in the attestations, generated
with ID∗s Q(A.policy), so that upstream attestations with
compatible policies can be discovered. We define Q for
RTree as: let E be a set of subtrees, each represented as a pre-
fix of a time vector (i.e., a vector where unused components
are wildcards), that covers the time range from the earliest
possible encryption start time to the end of the time range of
the attestation’s validity. Let S be a set of subtrees that covers
the time range from the start of the attestation’s time range to
the latest possible encryption time. Attestations have a max-
imum validity of three years so this limits how long the start
and end ranges need to be. Q returns ID∗s corresponding
to the Cartesian product S×E with each ID∗ also contain-
ing the policy’s resource prefix. This allows any upstream
attestation with an overlapping time range and compatible
resource prefix to be decrypted by one of the secret keys in
this attestation.

4.4 Efficient Discoverability
In the scheme above, attestations are encrypted under the
partition in the subject’s WIBE system. Unfortunately, it is
subject to two major shortcomings. First, a WIBE ciphertext
hides the message that was encrypted, but not the ID used to
encrypt it; an attacker who guesses the ID of a ciphertext can
efficiently verify that guess. Thus, every encrypted attesta-
tion leaks its partition. The second and more serious problem
is that attestations are not efficiently discoverable. To un-
derstand this, suppose that Bob has issued many attestations
A1, . . . ,An for Alice, with different policies. After this, an
attestation B is granted to Bob. Alice might be able to form
a proof using B and one of the Ai, but she does not know
which of the Ai has a policy that intersects with B.policy. As
a result, she does not know which private key to use to de-
crypt B, and has to try all of the private keys conveyed by the
Ai. This is infeasible if n is large, and becomes a vector for
denial of service attacks.

If Alice knows B’s partition, then the problem is solved—
Alice can locally index the private keys she has from Bob’s
system, and efficiently look up a key that can decrypt B.

However, B cannot include its own partition in plaintext, be-
cause it may leak part of B.policy.

We solve this by encrypting the partition and storing it
in the attestation. For this outer layer of encryption we
use a more standard identity-based encryption (denoted IBE)
that does not permit extracting the identity from the cipher-
text [46, 42] because we do not need wildcards. As with the
WIBE scheme, every entity has its own system, removing
the centralized PKG. The ID used to encrypt the partition is
called the partition label, and is denoted L(A.policy). For
the RTree policy type, it is the RTree namespace of A.policy.
We expect users to have far fewer unique keys for this outer
layer, so they can feasibly try all the keys they have.

We also move the WIBE ciphertext under this IBE encryp-
tion so that the partition cannot be extracted. Finally, we in-
clude IBE keys from the issuer’s IBE system, to allow the
subject to discover the partition of upstream attestations. We
denote the ID∗s corresponding to these keys as M(A.policy).
Because the partition label is simpler in structure than the
partition, defining M(A.policy)= {L(A.policy)} is sufficient.
So far, what gets stored in the attestation is:

IBE.Enc(IBE.mpkA.subject,L(A.policy);P(A.policy)||
WIBE.Enc(WIBE.mpkA.subject,P(A.policy);W ||I))

(1)

where W is defined as above, and

I = IBE.KeyGen(IBE.mskIssuer;L(A.policy))

denotes the IBE secret key from the issuer’s system.

4.5 Security Guarantees
We explain here at a high level how the policy-aware RDE
restricts the visibility of attestations when used with RTree.
Formal guarantees are given in Appendix B. In summary, for
each attestation A granting permission on a namespace: en-
tities who have not been granted permissions in that names-
pace in a path from A.subject can only see the subject and re-
vocation commitment. Entities who have been granted some
permissions in the namespace in a path from A.subject can
see the partition (in essence the identifier of the key required
to decrypt it). An entity e can decrypt an attestation A and
use it in a proof if there exists a path, from A.subject to e
where adjacent attestations (including A) have intersecting
partitions. Issuers can encrypt under IDs before the corre-
sponding private keys exist, so we introduce no ordering re-
quirements and no interactivity requirements.

Thus, even though policy-aware RDE permits some enti-
ties to see more attestations than strictly needed to create a
proof of authorization, it still provides a significant reduc-
tion in visibility when compared to structural security. We
formalize the security guarantees of RDE in Appendix B.

A number of potential side channels are out of scope for
WAVE, and can be addressed via complementary methods.
Our storage layer does not provide any additional confiden-
tiality, so compromised storage servers can see the time of
each operation (e.g., when encrypted attestations are stored),

USENIX Association 28th USENIX Security Symposium 1381

which encrypted attestations are fetched, as well as network-
ing information of the packets arriving at the storage servers
(which could be protected via Tor [1], a proxy, or other
anonymous/secure messaging methods [21]).
Revocation. Although revoked attestations cannot be used in
a proof due to the commitment revocation scheme described
in §6.1, they still confer the ability to decrypt upstream attes-
tations. Therefore we consider them part of the graph in the
formal guarantees (Appendix B). This can be mitigated by
keeping expiry times short and reissuing the attestations. As
there are no ordering or interactivity requirements, short ex-
piries are easy to implement. For example, if attestation #1
in Fig. 2 were to expire and be reissued, it would not require
the reissue of any other attestation.
Integrity. Finally, to maintain integrity, the issuer signs
the attestation with a single-use ephemeral key (pke,ske):
s1 = Sign(ske;A \ s1), where A \ s1 denotes the entire attes-
tation except for s1. Then, the issuer includes s1 in the at-
testation in plaintext. The use of an ephemeral key ensures
the signature does not reveal the issuer’s public key. The is-
suer includes the outer signature in the plaintext header of
the attestation. The issuer signs the ephemeral key pke with
their entity private key, s2 = Sign(skIssuer;pke)), creating a
short signature chain that ensures the attestation cannot be
modified or forged. The issuer includes s2 in the attestation
encrypted, to avoid revealing the issuer’s public key. In form-
ing a proof, the verifier is allowed to decrypt s2, allowing the
verifier to verify s2 and then s1.

4.6 Reducing Leakage in Proofs
The methods discussed above ensure that a prover is able
to decrypt all the attestations that it requires to build a proof.
However, if a participant simply assembles a list of decrypted
attestations into a proof and gives those attestations to a ver-
ifier, the verifier learns not only the attestations in that proof,
but also the WIBE keys in those attestations, which it can
use to decrypt other attestations not in the proof. To solve
this, we split the attestation information into two compart-
ments, one for the prover (that includes keys it needs to de-
crypt other attestations) and one for both the prover and the
verifier (that includes the policy, issuer, expiry, etc.). We en-
crypt the prover compartment with kprover and the prover/ver-
ifier compartment with kverifier, both symmetric keys freshly
sampled for each attestation. kprover and kverifier are encrypted
with WIBE. This allows the prover to reveal to the verifier
the necessary parts of an attestation by sending it the AES
verifier key, without allowing the verifier to decrypt other at-
testations. The final structure of the attestation is in Fig. 3.

4.7 Discovering an Attestation
Each user’s WAVE client maintains a perspective subgraph
with respect to the user’s entity, which is the portion of the
global authorization graph visible to it. For each vertex (en-
tity) in the perspective subgraph, the client “listens” for new
attestations whose subject is that vertex (entity), using the

Prover and
Verifier information

Policy, Issuer, Expiry
Signed EphemeralKey

Prover information Delegated keys

 IBE: Partition Label

Prover Keys:
AES_{PROVER,VERIFIER} WIBE: Partition

Plaintext Header
Subject, revocation commitment
Signature by EphemeralKey
Public EphemeralKey

Partition

WAVE Attestation:

Outer layer

AES_VERIFIER

 AES_PROVER

Figure 3: Encrypted WAVE attestation structure. The locks
indicate the key used to encrypt the content.

Get and IterQueue API calls to the storage layer. For every
attestation A received, the WAVE client does the following:
1. The client adds edge A to the perspective subgraph.
2. The client searches its local index for IBE keys received

via attestations from A.subject, and tries to decrypt A’s
outer layer using each key. If none of the keys work, it
marks A as interesting and stops processing it.

3. Having decrypted the outer layer in the previous step,
the client can see A.partition. It searches its index for
a WIBE key received via attestations from A.subject that
are at least as general as A.partition. Unlike the previous
step, this lookup is indexed. If the client does not have
a suitable key, it marks A as partition-known and stops
processing A.

4. Having completed the previous step, the client marks A
as useful and can now see all fields in A. The client adds
WIBE and IBE keys delegated via A to its index, as keys
in the systems of A.issuer.

5. If the vertex A.issuer is not part of the perspective sub-
graph, then the client adds it and requests the storage layer
for all attestations whose subject is A.issuer. They are
processed by recursively invoking this algorithm, starting
at Step 1 above.

6. If A.issuer is already in the perspective subgraph:
• For each IBE key included in A, the client searches its

local index for interesting attestations whose subject is
A.issuer, and processes them starting at Step 2 above.

• For each WIBE key, the client searches its local index
for matching partition-known attestations whose sub-
ject is A.issuer, and processes them starting at Step 3.

This constitutes a depth-first traversal to discover newly vis-
ible parts of the authorization graph revealed by A.

4.8 Extensions
Our RDE construction for RTree is performant but allows
an entity to see attestations not required for correctness
(i.e. partition-compatible attestations that are not usable in
a proof, as defined in Appendix B). This can be marginally
improved by including an additional set of WIBE keys in the
attestations to allow for the full resource (not just the pre-
fix) to be captured by P and Q but this increases the number

1382 28th USENIX Security Symposium USENIX Association

of included keys by a factor of `. Additionally, using KP-
ABE [35] instead of WIBE would result in smaller attesta-
tions, but higher decryption times.

Aside from different encryption schemes, the RDE tech-
nique also generalizes beyond the RTree policy described
above. Careful selection of P and Q, coupled with the use of
a more expressive encryption scheme such as KP-ABE [35]
allows for the realization of a more expressive policy (e.g.
those discussed in §9) at the cost of decreased performance.
While we have not found this trade-off warranted in our set-
ting, this extension is straightforward and still meets our se-
curity goals. The formalism in Appendix B largely general-
izes to other policy types, but the semantics of compatibility
(Note 1) will change depending on the encryption schemes
used and on the choice of P, Q, L, and M.

5 Scalable Untrusted Storage
To avoid centralized trust when storing attestations, we con-
tribute a storage tier that enforces integrity cryptographically.
This tier is physically decentralized: it is spread over multi-
ple servers owned by different parties. Importantly, these
individual servers are trusted to maintain availability, but not
integrity (in the spirit of Certificate Transparency [41]) or
privacy (achieved by RDE, §4). Thus, users and services can
interact with storage servers that anybody operates, without
trusting the servers’ operators, except for availability.

The storage API (Fig. 1b) consists of four functions: Get
and Put are used for placing/retrieving entities, attestations,
name declarations (§6.2) and revocation secrets (§6.1) in
storage; Enqueue places an object hash at the end of a named
queue, and IterQueue allows retrieval from a queue. The
queue functions facilitate discovery, allowing an entity to no-
tify another entity that a new attestation has been granted to
them or a new name declaration has been published.

A blockchain is a natural candidate for such a storage
tier. Multiple servers are responsible for maintaining a
blockchain, and, due to the underlying Merkle tree data
structure, any one server can prove the integrity of its re-
sponses to state queries according to a specific Merkle tree
root hash, meeting the requirements.

Prior versions of WAVE used an Ethereum blockchain, but
extended use and experimentation revealed this solution to
be inadequate for three reasons: (1) A blockchain introduces
significant latency when adding objects to storage (up to a
minute for a confirmed addition in Ethereum). (2) Participat-
ing in a blockchain requires constant network bandwidth and
CPU time. (3) The blockchain does not scale past a few tens
of transactions per second [22], so it could not store attesta-
tions for a global authorization system permitting thousands
of delegations per second.

Although this problem appears solvable with existing
transparency logs such as Certificate Transparency (CT) [41]
or Key Transparency (KT) [32], neither of those is appropri-
ate. CT cannot efficiently prove an object does not exist,

Map
Root 1

Map
Root 2

Map
Root 3

Map
Root 4

1 3 5 Nil 2 Nil Nil 4

Root

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Obj 6 Obj 7

Pending CommitCommitted to Map

Operation
Log

Object
Map

Map Root
Log

Figure 4: An Unequivocable Log Derived Map (ULDM)
built from two Merkle tree logs and a Merkle tree map

needed for revocations, and KT is not efficiently auditable in
our context (§9).

Instead, we propose an Unequivocable Log Derived Map
(ULDM), a transparency log based on the Verifiable Log
Backed Map (VLBM) [23]. A VLBM allows the storage
server to form proofs of integrity. The VLBM whitepaper
is brief and incomplete: it does not discuss auditing, such
as which proofs are exchanged or how they are published,
so it is unclear how the VLBM prevents equivocation (i.e.,
presenting different internally consistent views to different
clients). To our knowledge, there is no complete open-source
VLBM implementation (the code in the repository [34] only
implements a subset of the paper, omitting the log of map
roots), so we could not build upon the VLBM or infer its
scheme from the code. The ULDM is our approach to filling
in the missing pieces, such as an auditing scheme to prevent
equivocation and secure batching to increase performance.

A ULDM is constructed using three Merkle trees, each
serving a different purpose, as shown in Fig. 4. The first tree
is the Operation Log, which stores every Put and Enqueue
operation and can prove the log is append-only. These oper-
ations are then processed in batches into the second tree, the
Object Map. This is used to satisfy queries and prove that
objects exist or do not exist within the map. The ULDM Ob-
ject Map is different from [23] as it only stores the hashes of
the objects. Finally, every map root created when a batch is
processed is inserted into the third Merkle tree, the Map Root
Log. This makes the data structure efficiently auditable, as
we discuss in §5.4.

In what follows, for every reply that the storage server pro-
vides, the storage server provides a signature on the reply
along with the relevant version of the Map Root Log.

5.1 Inserting Values
To insert a value, the ULDM server: (1) Inserts the value
into the Operation Log. (2) Creates a new version of the
Object Map that includes the hashes of the new entries. (3)
Inserts the new map root into the Map Root Log. Step 1 is
batched (multiple values are inserted into the Operation Log
together) as is Step 2 (multiple values are inserted into the

USENIX Association 28th USENIX Security Symposium 1383

Object Map together). Step 3 is synchronous with Step 2.

5.2 Merge Promises
Inserts would ideally be performed synchronously, allowing
the server to return inclusion proofs for all three trees in re-
sponse to the insert. Unfortunately, this results in a severe
performance penalty as the ratio of new data to overhead (in-
ternal nodes in the trees) is poor. This is the same conclusion
that Certificate Transparency reaches, and we use a similar
solution: batching with promises. When inserting a value,
a client receives a merge promise (called Signed Certificate
Timestamp in CT) which states that the inserted value will be
present by a certain point in time. In addition to the absolute
timestamp used in CT, ULDM merge promises include the
version of the root log as this allows a proof of misbehav-
ior without a trusted source of time. Uncompromised clients
must check the value has been merged later. To prove mis-
behavior when a value is not inserted on time, a client can
present a merge promise along with a signed Map Root Log
head where the corresponding Object Map does not contain
the value and where the version of the head is greater than
that in the promise; i.e., a server would need to stop operat-
ing completely if it wishes to both avoid merging an object
and revealing it is compromised.

5.3 Retrieving Values
To retrieve a value, the client sends the storage server the
Map Root Log version that it received in a previous request,
along with the object identifier it is retrieving (e.g., the hash
of an attestation or revocation commitment). If the object
exists but has not yet been merged, the merge promise will
be returned. There is no guarantee that the storage server
will return a value before its merge promise deadline. If the
object has been merged or doesn’t exist, the server responds
with: (1) the object or nil, (2) a proof that the object existed
or did not exist in the Object Map at the latest map root, (3)
a proof that the latest map root exists in the Map Root Log at
the current Map Root Log head, and (4) a consistency proof
that the current Map Root Log head is an append-only ex-
tension of the version the client passed in its request. This
mechanism allows the client to verify that every map satisfy-
ing their queries is contained in the Map Root Log, and that
the Map Root Log is consistent. Notably, it does not allow
the client to verify that the map was correctly derived from
the Operation Log. This task is performed by the auditors.

5.4 Auditing
An auditor is a party that connects to a storage server and
replays the Operation Log to construct replicas of the Object
Map and check the Map Root Log. Each client reports the
latest Map Root Log head it obtains from the server (signed
by the server along with a version number) to the auditors
with some frequency. As the entries in the ULDM object
map are the hashes of the objects, not the objects themselves,
the map constructed by the auditor is several orders of mag-

nitude smaller than the sum of stored objects. For every entry
in the Map Root Log, the auditor will read the incremental
additions to the map from the Operation Log and apply them
to its own copy. It then ensures the hash of the replica Ob-
ject Map root matches the hash stored in the Map Root Log,
proving that the map is correctly derived from the operation
log (no objects were modified or removed).

The strength of the ULDM auditing scheme is that a client
can report a single value to an auditor (the client’s Map Root
Log head) and this is sufficient to catch any dishonesty that
might have occurred at any point in the client’s history. With-
out the Map Root Log (such as in [34]), any auditing scheme
would need to make the client report every Object Map root
to the auditor or take the risk that some dishonesty might re-
main undiscovered. To see how this might occur, imagine
that a storage server removes a revocation from the map, an-
swers a query and then re-adds the revocation. Without the
Map Root Log, if the client only reports the final map root to
an auditor, it would conclude it is valid. In the ULDM case,
the client would report the Map Root Log head which covers
all prior map versions, enabling the auditor to discover that
the previous query was satisfied from an invalid map.

Detecting dishonesty with a single infrequently-reported
value has important scalability implications: as we expect
there to be many clients, it is important that the load placed
on auditors is much less than the query load generated by the
clients, otherwise, only large companies could afford to be
auditors. In the ULDM model, it is sufficient for a client to
contact an auditor rarely (perhaps once a day) to ensure any
prior equivocation is discovered.

We expect clients to periodically check in with a random
auditor from a public list of auditors. This ensures that the
storage server cannot maintain different states for different
auditors as it will be discovered when auditor receives a Map
Root Log head from a client that is inconsistent with the one
received from the storage server directly.

5.5 Security Guarantee
We formalize the security guarantee of a ULDM, as follows.
By honest client, we denote a client that is neither faulty nor
compromised.
Guarantee 2 (ULDM). Let C be a set of honest clients and
S be a ULDM server. Observe that the Merge Promises fol-
lowing insert requests by these clients and Map Root Log
heads sent with retrieval requests by these clients define a
partial ordering L over all requests received by S. Suppose
that there exists a nonempty set R of requests made by clients
in C, such that there exists no possible history of requests
made to S that is consistent with both L and all of S’s re-
sponses to requests in R. If there exists an auditor A such
that each client in C has sent A a Map Root Log head it re-
ceived from S at least as recent as the one it received for its
latest request in R, then one of the following holds:

1. One or more clients in C will be able to detect the in-

1384 28th USENIX Security Symposium USENIX Association

consistency by inspecting the responses it received to
requests that it made to S.

2. The auditor A will be able to detect the inconsistency
by inspecting the Map Root Log heads it received from
clients in C and from S.

We provide a proof sketch in Appendix A.

6 Revocation and Naming
With the functionality of RDE and ULDM’s, we can eas-
ily construct a revocation scheme and a PKI-replacing entity
naming scheme.

6.1 Commitment-Based Revocation
When a user creates an attestation, it derives a random re-
vocation secret s from a seed stored with the entity private
keys and includes a cryptographic hash of s, hash(s), called
the revocation commitment, in the attestation. The user then
inserts the attestation into ULDM storage. Later on, the user
can revoke the attestation by publishing the revocation secret
s to the same storage. Revocation of entities works similarly.
An entity must have their private key to perform revocation;
mechanisms such as [53] can be used to ensure this.

When verifying a proof, the WAVE service ensures that
no attestations in the proof have been revoked. To do so, it
queries the storage tier for an object matching the revocation
commitment hash(s) in the attestation. If such an object ex-
ists, the verifier knows that the attestation has been revoked.
If such an object does not exist, the verifier receives a proof
of nonexistence for that hash from the storage tier. WAVE
ensures revocation only after the Merge promise deadline.
The security of this procedure relies on the guarantees of our
ULDM transparency log (§5). Alternatively, the entity form-
ing the proof can include proofs of nonexistence, signed by
the storage tier with a timestamp, with the attestations, so
that the verifier does not have to perform this lookup.

6.2 Secure Lookup of Public Keys
To facilitate looking up entity public keys (to be used as
the subject in an attestation, and for RDE), without relying
on an external PKI, WAVE implements a naming scheme
that extends the proposal in SDSI [49]. The base func-
tionality (shared by WAVE and SDSI) allows an entity to
name another entity by creating a signed name declaration.
These name declarations form a web-of-trust global graph,
similar to that formed by attestations. By traversing this
graph, an entity can resolve hierarchical names. For exam-
ple, consider when an entity representing a company ACME
names an entity representing a department Marketing,
which in turn names an entity held by an employee Alice.
Then, by verifying the identity of a single entity out of
band (the company), an entity can resolve the names of
all employees within the company’s departments, such as
Alice.Marketing.ACME, without having to manually
establish the validity of individual employee entities.

The functionality above, proposed by SDSI, does not

ULDM storageULDM storage

 IBE/WIBE
key storage

Indexed decrypted
graph

Attestation state
storage

Perspective StorageAttestation state machine
(per perspective entity)

Compartment
decryption

Storage Abstraction

Storage multiplexer

Storage DriverStorage driver ULDM storageStorage Driver

Expiry/Revocation

Proof building

Proof verify

Create/revoke
entities/attestations

External API

Attestation lookup &
verify

Figure 5: Overview of WAVE’s implementation.

provide a distribution mechanism for entities to discover
the name declarations required to perform resolution, nor
a mechanism to ensure the privacy of declarations so that
only authorized parties may read them. WAVE solves both
of these problems. Firstly, WAVE stores name declara-
tions in the ULDM storage tier (§5) to ensure name decla-
rations are discoverable without compromising on the goals
of the system (especially without requiring on-line partic-
ipants). Secondly, WAVE uses a variation of the encryp-
tion scheme described in §4 to encrypt the name declara-
tions in storage. When creating a name declaration, it is
associated with a resource in a namespace (for example,
acme/directory/marketing) and an entity must be
explicitly granted permission on that resource in order to
gain the keys required to decrypt the name declaration. In
other words, the same attestations that are used to form a
proof of authorization are also used to govern which enti-
ties can read name declarations, without relying on a central
directory server. Resolution of names is done from each en-
tity’s cache of decrypted name declarations, stored alongside
decrypted attestations.

7 Implementation
WAVE is implemented in Go and released as open source [7].
It runs as a background service and applications connect via
IPC. The service is composed of four logical parts (Fig. 5).
The storage abstraction permits multiple distinct storage
providers operating in parallel. As long as the provider im-
plements the API discussed in §5, WAVE can use it. Each
storage driver is responsible for ensuring the storage is trust-
worthy, e.g. for a ULDM-based storage it must verify the
proofs given by the remote storage server. Attestations can
span storage media, i.e., an entity residing on one server can
grant permissions to an entity on a different server. We im-
plemented the ULDMs using Merkle trees in Trillian [33]
backed by MySQL.
The perspective storage keeps track of the decrypted attes-
tations that form the perspective graph. This is the portion
of the global graph visible from the perspective of the prov-
ing entity. WAVE indexes it to allow efficient key retrieval

USENIX Association 28th USENIX Security Symposium 1385

Operation AMD64 ARMv8
Create attestation1 43.7 445
Create entity 8.9 88.5
Decrypt attestation as verifier 0.48 4.44
Decrypt attestation as subject 3.87 44.0
Decrypt delegated attestation 6.22 67.9

Table 1: Object operation times [ms].

based on a new attestation and efficient attestation retrieval
based on a new key. The index also allows for efficient proof
building: finding attestations granted from a given issuer that
match specific permissions.
The state machine is responsible for transitioning the attes-
tation through the states of decryption following the discov-
ery process described in §4.7.
The external API is a GRPC [31] API that listens for con-
nections from applications and allows them to use the appli-
cation API functions given in Fig. 1b. GRPC can generate
bindings for multiple languages, so we expect that applica-
tions can be written in any language.
The proof builder, when asked to build a proof, begins at
the namespace authority (the entity that created the RTree
namespace) for the resource that permissions are being
proved on, and then performs a shortest path discovery
through the perspective graph terminating at the proving en-
tity. Note that this is the opposite direction that attestations
are traversed during discovery. Only edges granting a super-
set of the required permissions are traversed and the maxi-
mum depth of traversal is limited by the indirections parame-
ter in the traversed attestations. These two filters make proof
building fast for common cases (see §8.1).

8 Evaluation
Despite relying on cryptography for its security guarantees,
WAVE remains performant, competitive to traditional au-
thentication and authorization systems.

8.1 Microbenchmarks
WAVE’s performance is dominated by the cost of the core
cryptographic operations, shown in Table 1. These are the
times measured by a client using the GRPC application API.
The measurement is on an Intel i7-8650U AMD64 CPU rep-
resentative of a standard modern laptop, and on a Raspberry
Pi 3, indicative of a low-cost IoT-class ARMv8 platform.

The verifier does not perform any WIBE decryption, as it
has the AES verifier key. The subject entity (the direct re-
cipient of the attestation) can skip the IBE decryption of the
partition, but must still perform WIBE decryption. Any other
entity that is interested in the attestation because it lies fur-
ther up the delegation chain must perform IBE decryption,
WIBE decryption, and then AES decryption. These decryp-
tion operations take place only once—when an attestation is
added to the perspective graph—so are a one-off cost of re-

1Create attestation uses multiple cores

2 4 6 8 10 12 14
Newly Discovered Attestations

250
500
750

1000

Ti
m

e
(m

s)

Persp. Graph Build

(a) Perspective graph update/build time

2 5 10 15
Proof Length (Attestations)

10
20
30
40

Ti
m

e
(m

s)

Build
Verify

(b) Proof build/verification time
Figure 6: Single core timings for proof operations. Vertical
line in Fig. 6b is the expected maximum proof length for
common applications.

System Authentication Authorization
LDAP+MySQL 6.3ms 0.8ms
OAuth2 JWT 0.3ms
WAVE 1 attest. 1.2ms
WAVE 3 attest. 3.6ms

Table 2: Latency of LDAP+MySQL, OAuth2 vs. WAVE.

ceiving permissions. The verifier decryption happens once
per unique proof; after that, it is cached so that subsequent
verifications complete in negligible time.

When decrypting attestations and building the perspective
graph, we also need to index all the obtained keys and store
them on disk. We can see the cost of decryption combined
with indexing by measuring the time taken to update a per-
spective graph, for different sizes of changes to the graph,
as shown in Fig. 6a. This includes the time taken to retrieve
the encrypted ciphertexts from ULDM-based storage. The
dashed vertical line is likely the maximum number of attes-
tations that will be found in a proof as more than five dele-
gations, although supported, is rare in all our deployments.

8.2 Traditional Authorization Flow
To compare WAVE against a traditional authorization sys-
tem, we benchmark the time taken by a representative back-
end to turn a username and password into an authorization
policy using an OpenLDAP server (which authenticates the
user and yields the groups they are part of) and a MySQL
database (which turns the groups into policy). We also add
the time taken to verify an OAuth2 JWT token containing the
authorization policy in the form of scopes.

The results are shown in Table 2. For a WAVE proof
mirroring the single-delegation structure present in the
LDAP/OAuth2 case, the proof verifies in a sixth of the time
taken by the traditional LDAP flow. For a case where transi-
tive delegation has been used three times and the proof con-

1386 28th USENIX Security Symposium USENIX Association

PUT
2KB

GET
2KB

En-
Queue

Iter-
Queue

Latency [ms] 10.7 10.4 10.1 10.0
Table 3: Average storage operation time (ms/op) under 4 uni-
form loads (≈ 100 requests per second), measured over 30
seconds (≈ 3k requests per type).

sists of three attestations, the WAVE verification is about half
the time of the single-delegation LDAP flow.

As in WAVE, OAuth2 offers a bearer token that can be val-
idated without communicating with the server. In this case,
validating a JSON Web Token with a 2048-bit RSA signature
takes 0.3ms. WAVE is roughly 4x slower, but completely re-
moves the centralized token-issuing server, leaving the user
as the only authority in the system. In OAuth a compro-
mised token issuing server can generate valid tokens without
the user’s knowledge.

Note that although OAuth2 has added a form of delega-
tion [36], it requires the OAuth2 server to issue a new token,
so is identical to the single-delegation scenario tested here.

This example shows that using WAVE as a replacement for
common authorization flows will likely not reduce perfor-
mance, despite providing transitive delegation and removing
all central authorities.

8.3 Storage Evaluation
Since an entity in WAVE does not communicate with any
other entity, except via the storage, WAVE’s scalability de-
pends on the performance of the global storage. As men-
tioned in §5, a blockchain is a natural solution, but not scal-
able enough.

In contrast, the ULDM-based system is shared-nothing
and horizontally scalable: the performance of one node does
not limit the performance of the overall system. For com-
pleteness, we include single-system performance metrics
here. Table 3 shows the average latency of the ULDM stor-
age performing single operations at a time (i.e. just GETs or
just PUTs). The times for the ULDM-based storage include
both the generation of the proofs server-side and the verifi-
cation of the proofs client-side. Every operation concerns a
unique object, so there is no caching.

This ULDM storage was constructed using Trillian backed
by MySQL. Fig. 7 shows the limits of a single node, where
performance for PUTs degrades at approximately 110 re-
quests per second and performance for GETs degrades at ap-
proximately 200 requests per second. We expect that perfor-
mance could be increased if Trillian were deployed on Span-
ner [20] as the designers intended, but defer this to future
work. Note that in this evaluation, every operation concerns
a unique object, so as to benchmark the underlying cost of
forming proofs, rather than the cache. Real workloads would
likely have more cache hits.

Although our storage implementation is unoptimized and
built using an off-the-shelf Merkle tree database, single
nodes handle insert loads an order of magnitude higher than

0 50 100 150 200
session time [s]

10

20

30

PU
T

la
te

nc
y

95
 %

ile
 [m

s]

0

50

100

150

re
qu

es
ts

 p
er

 se
co

ndLatency
Req. /s

(a) 95th %ile PUT

0 100 200 300 400
session time [s]

15

20

25

30

35

GE
T

la
te

nc
y

95
 %

ile
 [m

s]

0

50

100

150

200

250

Re
qu

es
ts

 p
er

 se
co

ndLatency
Req. /s

(b) 95th %ile GET
Figure 7: Latencies for ULDM PUT/GET as the throughput
is ramped up to the single-node maximum.

possible on a blockchain system [22]. In addition, every
added node scales the capacity of the system linearly. We
envision that multiple storage providers, potentially operated
by distinct parties, would operate in parallel, similar to Cer-
tificate Transparency [41].

8.4 Deployment Experiences
WAVE is a real-world artifact and is open source [7]. We
operated various versions of WAVE for roughly two years in
over 20 buildings, controlling more than 800 devices (ther-
mostats, control processes, motion sensors, and others with
little to no existing authorization capabilities) comprising
363 entities, 27 namespaces and 529 attestations (both valid
and expired). The global authorization graph in our deploy-
ment is visualized in Fig. 8. The median number of delega-
tions in a path is 4 (the maximum is 9). This deployment
has given us the opportunity to refine and validate the per-
formance, usability, and expressiveness of WAVE’s autho-
rization model in practice. Applying WAVE to legacy de-
vices whose firmware cannot be modified is done by using
an adaptation layer microservice and ensuring all communi-
cation with the legacy device flows through that service [8].
Performance. In the deployment, most proofs build in un-
der 20ms and validate in under 10ms (as in Fig. 6b). The
performance impact of WAVE is imperceptible during nor-
mal operation: proofs are cached after processing, accelerat-
ing subsequent generation and validation. As mentioned, we
built an earlier version of WAVE on top of a blockchain in-
stead of our current ULDM. We conducted extensive bench-

USENIX Association 28th USENIX Security Symposium 1387

Work
Transitive
delegation

Discov-
erability

No order
constraints

Offline
participants

No trusted
central storage

Protected
permissions

Auth. languages
[12, 49, 13, 43, 45, 29, 27] Yes No Unknown: no mechanism given

Hidden credentials
[58, 37, 30, 48] Yes No Unknown: no mechanism given

Centralized authorization
[19, 15, 56, 28] Yes Yes Yes Yes No No

Distributed authorization
[44, 59, 18, 57, 50] Yes Yes Yes No Yes No

WAVE Yes Yes Yes Yes Yes Yes
Table 4: Related work on decentralized authorization compared to WAVE. We elaborate on these categories in §9.

marks of that version and concluded that it cannot scale past
a load roughly equivalent to a city (≈ 1 million buildings). It
also incurs significant CPU and bandwidth costs, even when
only storing permissions (not data).
Usability. In addition to our experience with the deploy-
ment, we have also held multiple tutorials with 200+ users.
User feedback indicated that WAVE improved most aspects
of management (especially administrators having autonomy
to grant and revoke permissions). Some aspects of WAVE are
harder to manage: no user can enumerate all delegations in
the system, which reduces auditability. We were able to mit-
igate unfamiliarity with WAVE’s authorization model with
careful user interface design (which provides secure defaults
such as short expiry times) and with teaching users through
familiar analogies (e.g., comparing RTree to file paths).
Expressiveness. We found that WAVE was able to capture
exactly the authorization patterns required in typical cyber-
physical usage scenarios. The transitive delegation capabil-
ity was invaluable in lowering the administrative overhead of
deployments. Rather than requiring the building manager to
be a part of every commissioning workflow (to create cre-
dentials for each new device), permission is granted to the
person heading the deployment effort, who then acts with au-
tonomy. For permanent installations, the installing entity can
be removed from the permission flow afterwards by granting
“around” them directly from the building manager to the de-
vices. For temporary installations, keeping the installing en-
tity in the flow simplifies revocation when the study is over.

9 Related Work
Table 4, compares prior authorization and trust management
systems with WAVE. Here, we provide additional details.

9.1 Trust Management and Authorization
Trust Management (TM) literature over the past two decades
has thoroughly researched techniques for transitively dele-
gable authorization. Overviews of TM systems are provided
in [14, 51, 11, 6].

Languages used to express authorization policies are sum-
marized in the first row of Table 4 [12, 49, 13, 43, 10, 27].
For example Macaroons [12] provides a mechanism for ex-

Figure 8: The permission graph for the multi-building de-
ployment. “Bolded” nodes are namespace authorities. Most
nodes with a high degree are entities that administer a set of
namespaces. Leaf nodes correspond to devices and services
that do not perform any delegation.

pressing authorization policy with delegation and context-
specific third-party caveats. The goals are quite different,
e.g. the authorization is verifiable by the authority only and
permissions can only be granted in-order. The system does
not specify how cookies are stored and discovered or how
it would work with offline participants. In general, autho-
rization language work is complementary to WAVE, as we
focus on the layers of the system that lie below the language
(how the pieces of policy are stored, disseminated, and dis-
covered). In our deployments we use RTree, based on SPKI’s
pkpfs [24], but mechanisms like third-party caveats could be
introduced with no changes to the underlying layers.

Hidden credentials (row 2 in Table 4) [58, 37, 30, 48] ad-
dress a different privacy problem: allowing a prover and ver-
ifier to hide their credentials from each other. WAVE solves
an orthogonal problem: the privacy of credentials in storage
and during discovery.

The remaining literature can be categorized as relying on
a centralized credential store for discovery [19, 15, 56], or a
distributed credential store [44, 59, 18, 57, 50]. Centralized
discovery mechanisms put all credentials in one place which
makes discovery simple but, as constructed in work thus
far, requires this central storage to be trusted. Blockchain
work [55, 26] avoids this problem but does not scale, and

1388 28th USENIX Security Symposium USENIX Association

thus far has focused on identity, not authorization. Work
such as [28] decreases centralization by reducing the trust
in cross-administrative-domain applications, such as IFTTT,
but still places trust in the central authorization servers be-
longing to each vendor. In contrast, distributed discovery
mechanisms store each credential with its issuer and/or sub-
ject, avoiding the need to trust a central storage system. The
resulting discovery mechanisms are more complex and can-
not operate if any credential holder is offline. Both the cen-
tralized and decentralized credential discovery work thus far
have overlooked the privacy of credentials at rest (in the cen-
tralized case) or during discovery (in the distributed case); in
both cases, there are parties who can read credentials that do
not grant them permissions even indirectly.

A concurrent work, Droplet [52], presents a distributed au-
thorization system, but it does not meet the requirements of a
general purpose authorization system in §1: Droplet does not
provide transitive delegation, it only handles authorization
for time series data streams as opposed to the more general
policies of WAVE, and it induces a blockchain transaction
for every change to an ACL, which scales poorly.

WAVEs attestations and RDE can be used as the key ex-
change protocol for an end-to-end encryption scheme such
as JEDI [38]. JEDI provides resource-oriented message en-
cryption on a tree of resources, which interfaces well with
WAVEs RTree authorization policy.

9.2 Storage
WAVE’s Map Log Root is similar to the approach used by
CONIKS [47] and Key Transparency (KT) [32]. There are
several differences between a ULDM and the CONIKS/KT
data structures. As a ULDM does not need to prevent it-
eration of the contents, it can be log derived, allowing an
efficient verification that it is append-only. In contrast,
CONIKS/KT requires every user to check every epoch of
the map to ensure the values stored match expectations. This
approach would not work for our use case as we expect every
user to create hundreds or thousands of objects, and requir-
ing every user to check each of these objects at every map
epoch is intractable. The ULDM approach 1) reduces the
amount of work as it scales with the number of additions to
the map rather than the size of the map, as in CONIKS, and
2) places the majority of the burden on auditors, rather than
users who may be offline.

Revocation Transparency [40] is also similar to a ULDM.
It was posted as an informal short note, and to our knowl-
edge, it was never fully developed. It lacks the Operation
Log, which requires the client/auditor to request a consis-
tency proof between two versions of the map without know-
ing the contents (as it cannot construct a replica). We are
not aware of any Merkle tree map databases that support this
operation. A ULDM is built on simpler operations and can
be constructed using an off-the-shelf database, such as Tril-
lian [33], with full auditability.

10 Conclusion
WAVE is a decentralized authorization framework leverag-
ing an improved graph-based authorization model. It intro-
duces an encryption technique, RDE, for hiding attestation
contents, while still allowing efficient discovery of permis-
sions granted out of order to offline participants. WAVE
introduces a storage mechanism, the ULDM, that is effi-
ciently auditable. This enables untrusted, horizontally scal-
able, servers to store the attestations without compromising
on the security of the system as a whole.

We used WAVE to manage IoT deployments in 20 build-
ings for two years, during which we identified six require-
ments that are critical for IoT deployments. In meeting these
requirements, WAVE (1) has no reliance on central trust,
(2) provides transitive fine-grained delegation and revoca-
tion, (3) protects permissions during discovery and at rest,
(4) allows for any party to verify a proof of authorization,
(5) allows delegations to occur in any order with no commu-
nication between granter and receiver, and finally (6) allows
for granting permissions to offline participants. No existing
work meets these requirements simultaneously. Our open-
source implementation of WAVE offers similar performance
to traditional centralized systems while providing stronger
security guarantees.

Acknowledgements
We thank our anonymous reviewers and our shepherd for
their invaluable feedback. This research was supported
by Intel/NSF CPS-Security #1505773 and #20153754, DoE
#DE-EE000768, NSF CISE Expeditions #CCF-1730628,
NSF GRFP #DGE-1752814, and gifts from the Sloan Foun-
dation, Hellman Fellows Fund, Alibaba, Amazon, Ant Fi-
nancial, Arm, Capital One, Ericsson, Facebook, Google, In-
tel, Microsoft, Scotiabank, Splunk and VMware.

References
[1] Tor project: Anonymity online. https://www.

torproject.org/.
[2] Facebook permission bug. https://money.cnn.

com/2018/06/07/technology/facebook-
public-post-error/index.html, 2018.

[3] If This Then That. https://ifttt.com/, 2018.
[4] OAuth 2.0. https://oauth.net/2/, 2018.
[5] Michel Abdalla et al. Identity-based encryption gone

wild. In ICALP, 2006.
[6] A Ahadipour and M Schanzenbach. A survey on au-

thorization in distributed systems: Information storage,
data retrieval and trust evaluation. In Trustcom, 2017.

[7] Michael Andersen and Sam Kumar. Source for WAVE.
https://github.com/immesys/wave.

[8] Michael P Andersen, John Kolb, Kaifei Chen, Gabe
Fierro, David E Culler, and Randy Katz. Democratiz-
ing authority in the built environment. TOSN, 2018.

USENIX Association 28th USENIX Security Symposium 1389

[9] Michael P Andersen, John Kolb, Kaifei Chen, Gabriel
Fierro, David E Culler, and Raluca Ada Popa. WAVE:
A decentralized authorization system for IoT via
blockchain smart contracts. UC Berkeley Tech. Rep.
UCB/EECS-2017-234, 2017.

[10] Moritz Becker et al. SecPAL: Design and semantics of
a decentralized authorization language. JCS, 2010.

[11] Elisa Bertino, Elena Ferrari, and Anna Squicciarini.
Trust negotiations: concepts, systems, and languages.
Computing in science & engineering, 6(4), 2004.

[12] Arnar Birgisson, Joe Gibbs Politz, Ulfar Erlingsson,
Ankur Taly, Michael Vrable, and Mark Lentczner.
Macaroons: Cookies with contextual caveats for decen-
tralized authorization in the cloud. In NDSS, 2014.

[13] Matt Blaze et al. Keynote: Trust management for
public-key infrastructures. In SWP, 1998.

[14] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decen-
tralized trust management. In IEEE S & P, 1996.

[15] Matt Blaze, Joan Feigenbaum, and Martin Strauss.
Compliance checking in the policymaker trust manage-
ment system. In FC, 1998.

[16] D. Boneh and M. Franklin. Identity-based encryption
from the weil pairing. In SIAM J Comput, 2003.

[17] Christian Cachin. Architecture of the hyperledger
blockchain fabric. 2016.

[18] Ke Chen, Kai Hwang, and Gang Chen. Heuristic dis-
covery of role-based trust chains in peer-to-peer net-
works. IEEE TPDS, 20(1):83–96, 2009.

[19] Dwaine Clarke et al. Certificate chain discovery in SP-
KI/SDSI. Journal of Computer Security, 2001.

[20] James C Corbett et al. Spanner: Google’s globally dis-
tributed database. ACM TOCS, 31(3):8, 2013.

[21] Henry Corrigan-Gibbs, Dan Boneh, and David
Mazières. Riposte: An anonymous messaging system
handling millions of users. In IEEE S&P, 2015.

[22] Kyle Croman et al. On scaling decentralized
blockchains. In FC, 2016.

[23] Adam Eijdenberg, Ben Laurie, and Al Cutter. Ver-
ifiable data structures. https://github.com/
google/trillian/blob/master/docs/
VerifiableDataStructures.pdf.

[24] Carl M Ellison, Bill Frantz, Butler Lampson, Ron
Rivest, Brian M Thomas, and Tatu Ylonen. SPKI ex-
amples, 1998.

[25] Ksenia Ermoshina, Francesca Musiani, and Harry
Halpin. End-to-end encrypted messaging protocols:
An overview. In INRIA, 2017.

[26] Evernym Inc. Everynm: Self-sovereign identity with
verifiable claims, 2018.

[27] A. Felkner and A. Kozakiewicz. Practical extensions
of trust management credentials. In iNetSApp. 2017.

[28] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and
Atul Prakash. Decentralized action integrity for trigger-
action IoT platforms. In NDSS, 2018.

[29] Philip WL Fong. Relationship-based access control:
protection model and policy language. In CODASPY,
2011.

[30] Keith Frikken et al. Attribute-based access control with
hidden policies and hidden credentials. IEEE TC, 2006.

[31] Google. GRPC, a high performance, open-source uni-
versal RPC framework. https://grpc.io/.

[32] Google. Key transparency. https://github.
com/google/keytransparency/blob/
master/docs/design.md.

[33] Google. Trillian. https://github.com/
google/trillian.

[34] Google. VLBM implementation. https:
//github.com/google/trillian/tree/
master/examples/ct/ctmapper.

[35] V. Goyal, O. Pandey, A. Sahai, and B. Waters.
Attribute-based encryption for fine-grained access con-
trol of encrypted data. In CCS, 2006.

[36] OAuth Working Group. Oauth 2 token exchange.
https://tools.ietf.org/html/draft-
ietf-oauth-token-exchange-15, 2018.

[37] Jason E Holt et al. Hidden credentials. In ACM work-
shop on privacy in the electronic society, 2003.

[38] Sam Kumar, Yuncong Hu, Michael P Andersen,
Raluca Ada Popa, and David E. Culler. JEDI: Many-
to-many end-to-end encryption and key delegation for
iot. In USENIX Security, 2019.

[39] Selena Larson. Every single yahoo account was hacked
- 3 billion in all, October 2017. Online.

[40] Ben Laurie. Revocation Transparency.
https://www.links.org/files/
RevocationTransparency.pdf, 2018.

[41] Ben Laurie, A. Langley, and E. Kasper. Certificate
transparency (rfc 6992), 2013.

[42] David Lazar. Open-source IBE implementation.
https://github.com/vuvuzela/crypto.

[43] Ninghui Li et al. Design of a role-based trust-
management framework. In IEEE S & P, 2002.

[44] Ninghui Li et al. Distributed credential chain discovery
in trust management. J. CS, IOS Press, 2003.

[45] Ninghui Li and John C. Mitchell. Datalog with con-
straints: A foundation for trust management languages.
In PADL, 2003.

[46] Benoı̂t Libert and Jean-Jacques Quisquater. Identity
based encryption without redundancy. In ACNS, 2005.

[47] Marcela S. Melara et al. CONIKS: Bringing key trans-
parency to end users. In USENIX Security, 2015.

1390 28th USENIX Security Symposium USENIX Association

[48] Sascha Müller and Stefan Katzenbeisser. Hiding the
policy in cryptographic access control. In STM, 2011.

[49] Ronald Rivest and Butler Lampson. SDSI-a simple dis-
tributed security infrastructure. CRYPTO, 1996.

[50] Martin Schanzenbach et al. Practical decentralized
attribute-based delegation using secure name systems.
arXiv:1805.06398, 2018.

[51] Kent E. Seamons et al. Requirements for policy lan-
guages for trust negotiation. In POLICY. IEEE, 2002.

[52] Hossein Shafagh, Lukas Burkhalter, Simon Duquen-
noy, Anwar Hithnawi, and Sylvia Ratnasamy. Droplet:
Decentralized authorization for iot data streams, 2018.

[53] Adi Shamir. How to share a secret. Comm. ACM, 1979.
[54] Mudhakar Srivatsa and Mike Hicks. Deanonymiz-

ing mobility traces: Using social network as a side-
channel. In ACM CCS, 2012.

[55] The Sovrin Foundation. A protocol and token for self-
sovereign identity and decentralized trust, 2018.

[56] Vamsi Thummala and Jeff Chase. SAFE: A declarative
trust management system with linked credentials. arXiv
preprint arXiv:1510.04629, 2015.

[57] Daniel Trivellato et al. GEM: A distributed goal evalu-
ation algorithm for trust management. TPLP, 2014.

[58] Marianne Winslett, Ting Yu, Kent E Seamons, Adam
Hess, Jared Jacobson, Ryan Jarvis, Bryan Smith, and
Lina Yu. Negotiating trust in the web. IEEE IC, 2002.

[59] Xian Zhu et al. Distributed credential chain discov-
ery in trust-management with parameterized roles. In
CANS, 2005.

A Proof of ULDM Security Guarantee
We provide a proof sketch for Guarantee 2.
Proof Sketch for Guarantee 2. We show that if neither
clients in C nor the auditor A detect an attack, then there ex-
ists a possible history H of requests consistent with L and all
responses to requests in R. Concretely, we show that the Op-
eration Log that the storage server tells the auditor A is such
a valid history H. Because A did not detect an inconsistency,
we know that, for each client c ∈ C, (1) its Map Root Log
head, at some point after its last request in R, is consistent
with H. Because c did not detect an inconsistency, we know
that (2) c’s sequence of Map Root Log heads is append-only,
(3) for each request, the returned object did (or did not, if
no object was returned) exist in the Object Map, and (4) for
each request, the Map Root Log at the time of the request
contains the object map used in (3).

Together, (1) and (2) indicate that (5) the client’s entire
sequence of Map Root Log heads is consistent with H. To-
gether, (3) and (4) indicate that (6) the response received for
each request in R is consistent with the current Map Root Log
head at the time of the request. Putting together (5) and (6),
we can conclude that the response that each client receives to

each request in R is consistent with H. Putting together (2)
and (6), we can conclude that H is consistent with the partial
ordering imposed by Map Root Log heads for each client c.
Because clients make requests to the server to validate ev-
ery Merge Promise, this also guarantees that H is consistent
with the partial ordering imposed by Merge Promises. Thus,
H fulfills all desired properties.

B RDE Security Guarantee
Below, we develop definitions to precisely describe the
global authorization graph, and then we use them to formal-
ize RDE’s security guarantee.
Definition 1 (Path). Let x and y be entities. (A1, . . . ,An)
is a path from x to y if either n > 0 and A1.issuer = x,
An.subject = y, and Ai.subject = Ai+1.issuer for all i ∈
{1, . . .n−1}, or n = 0 and x = y.
Definition 2 (Compatibility). Let A and B be attestations
such that A.subject = B.issuer. We write A B and say
“A is partition-compatible with B” if a key corresponding to
one of the ID∗s in Q(A.policy) can decrypt a WIBE cipher-
text with the ID P(B.policy). We analogously write A� B
and say “A is partition-label-compatible with B” if a key
corresponding to one of the ID∗s in M(A.policy) can decrypt
an IBE ciphertext with the ID L(B.policy). We extend this to
paths as follows. A path (A1, . . . ,An) is partition-compatible
if either n = 0, or Ai Ai+1 for all i ∈ {1, . . . ,n−1}. A path
(A1, . . . ,An) is partition-label-compatible if either n = 0, or
A1� A2 and (A2, . . . ,An) is partition-compatible.

Based on our definitions of P, Q, L, and M in §4.3 and
§4.4, we can attach semantic meaning to compatibility:
Note 1 (Compatibility Semantics for RTree). A B means
that A.policy and B.policy have overlapping time ranges,
URIs with the same namespace, and the same permission
string. A� B means that A.policy and B.policy have URIs
with the same namespace.

Now, we formally define the states attached to an attes-
tations during the discovery process (§4.7) so we can later
express the leakage of an attestation in each state.
Definition 3 (Attestation State Machine). Let A be an at-
testation. If there exists a partition-compatible path p =
(A,P1, . . . ,Pn) to an entity compromised by Adv, then we say
that A is useful with respect to Adv.

Otherwise, if there exists a partition-label-compatible
path p = (A,P1, . . . ,Pn) to an entity compromised by Adv,
then we say that A is partition-known with respect to Adv.

Otherwise, if there exists a partition-compatible path from
A.subject to an entity compromised by Adv, then we say that
A is interesting with respect to Adv.

Otherwise, we say that A is unknown with respect to Adv.
From D’s perspective in Fig. 2, for example, #1, #4, and

#3 are useful, #5 is partition-known, and #2 is unknown.
The components of an RTree policy are described in §2.4.

USENIX Association 28th USENIX Security Symposium 1391

Based on Definition 3, we can now informally state the
security guarantee of RDE. Let A be an attestation such
that there does not exist a partition-compatible path from
A.subject to a partition-compatible cycle in the global autho-
rization graph. If A is unknown or interesting with respect
to Adv, then Adv learns nothing about A except A.subject
and A’s revocation commitment. If A is partition-known
with respect to Adv, then Adv learns nothing about A except
(1) A.subject, and (2) P(A.policy). If A is useful with respect
to Adv, then Adv can decrypt A and see all of its fields.

We now formalize the security guarantee of RDE as a
game played by a challenger Chl and an adversary Adv.
Guarantee 3 (RDE). Let λ denote the security parameter.
Consider any list of entities in the system, represented as
names in {0,1}∗, any subset of these entities compromised
by Adv, and any two authorization graphs G0 and G1 each
described as a list of attestations in terms of the entity names,
subject to the constraints below:
1. |G0|= |G1| and attestations at position i in the lists of G0

and G1 must have the same length. We say that these two
attestations correspond.

2. Corresponding attestations must have the same state
unknown/interesting/partition-known/useful w.r.t. Adv.

3. If corresponding attestations are useful to Adv, or if ei-
ther has a partition-compatible path from its subject to a
partition-compatible cycle, then they must be identical.

4. If corresponding attestations A0 and A1 are partition-
known to Adv, or if there exists a partition-label-
compatible path from A0.subject (or A1.subject) to a
partition-compatible cycle in G0 (or G1), they must have
the same subject and revocation commitment and satisfy
P(A0) = P(A1), but may otherwise differ arbitrarily.

5. If corresponding attestations are unknown or interesting
to Adv (and if there is no partition-label-compatible path
from the subject to a partition-compatible cycle) then they
must have the same subject and revocation commitment,
but may otherwise differ arbitrarily.

Each attestation in the graph is described in terms of the
information in §2.1, not RDE ciphertexts. RDE guarantees
that Adv’s advantage in the following game is negligible in
the security parameter λ :
Initialization. Chl generates each entity’s keypairs. It sends
to Adv the public keys (verification key and WIBE/IBE public
parameters) corresponding to each entity. For entities cor-
responding to malicious users, Chl also provides the secret
keys (signing key and WIBE/IBE master keys). Furthermore,
Chl chooses a random bit b ∈ {0,1}, computes the RDE ci-
phertext for each attestation in Gb, and gives them to Adv.
Guess. Adv outputs a bit b′ ∈ {0,1}. The adversary’s ad-
vantage in the game is defined as

∣∣Pr[b = b′]− 1
2

∣∣.
The constraints on cycles in Conditions #3, #4, and #5

are due to the lack of KDM-security for the WIBE and IBE
used. It may be possible to remove these constraints with
KDM-secure variants.

Proof Sketch for Guarantee 3. We define a new game in
which Adv has no advantage and prove via a hybrid argu-
ment that Adv’s advantage in the real game differs from its
advantage in this new game by at most a negligible amount.

In the hybrid argument, each hybrid represents a game. In
the sequence of hybrids, the encrypted graph provided by the
challenger if b = 0 is identical to the encrypted graph in the
previous hybrid, except that either (1) one of the WIBE or
IBE ciphertexts generated by Chl in the Challenge phase is
replaced with an encryption of a different string of correct
length, or (2) the ID used for IBE encryption is changed to
a different ID. Adv cannot distinguish between adjacent hy-
brids due to CPA-security of WIBE and IBE in case (1), and
due to the anonymity of IBE in case (2). Because adjacent
hybrids are indistinguishable to Adv, the difference in its ad-
vantage in adjacent hybrids is negligible. The first game is
the real game (Guarantee 3). In the final game, Adv’s ad-
vantage is 0. By the hybrid argument, we can conclude that
Adv’s advantage in the real game is negligible.

The order in which ciphertexts are replaced must be cho-
sen carefully. This is because a ciphertext cannot be replaced
with an encryption of zero if a secret key to decrypt the ci-
phertext exists in the graph. We now describe the hybrids.

We identify attestations in the graph in Conditions #4
and #5. Observe that the “partition-compatible” relation de-
fines a directed graph over these attestations in each G0 and
G1, where each attestation is a vertex and edges indicate
partition-compatibility. We denote these new graphs S0 and
S1. Both S0 and S1 are directed acyclic graphs, due to the
stipulations in Conditions #4 and #5 regarding cycles. Thus,
S0 and S1 can be linearized. Via a sequence of hybrids, we
first replace ciphertexts provided by Chl when it chooses
b = 0 with encryptions of a dummy “zero string,” follow-
ing the reverse order of S0’s linearization. For attestations
in Condition #4, we replace the WIBE ciphertexts in the at-
testations with encryptions of zero, in a single hybrid game
for each attestation. For each attestation in Condition #5, we
make two hybrid games; the first replaces its IBE ciphertext
with an encryption of zeros, and the second replaces the ID
used to encrypt with IBE for that ciphertext with a dummy
ID. At the end of this hybrid sequence, the challenger pro-
vides a graph containing encryptions of zero in non-useful
attestations if b = 0, and a proper encryption of G1 if b = 1.

This is followed by another sequence of hybrids where we
similarly transform the encryptions of zero provided by the
challenger if b= 0 to proper encryptions of the attestations in
G1. This is done by transforming attestations in the forward
order of S1’s linearization. In the final game, the challenger
provides a graph containing a proper encryption of G1, re-
gardless of the chosen bit b, so Adv’s advantage is 0. This
completes the proof sketch.

1392 28th USENIX Security Symposium USENIX Association

in-toto: Providing farm-to-table guarantees for bits and bytes
Santiago Torres-Arias†, Hammad Afzali‡, Trishank Karthik Kuppusamy∗ , Reza Curtmola‡ , Justin Cappos†

santiago@nyu.edu ha285@njit.edu trishank@datadog.com crix@njit.edu jcappos@nyu.edu

†New York University, Tandon School of Engineering
∗Datadog

‡Department of Computer Science, New Jersey Institute of Technology

Abstract
The software development process is quite complex

and involves a number of independent actors. Developers
check source code into a version control system, the code
is compiled into software at a build farm, and CI/CD systems
run multiple tests to ensure the software’s quality among a
myriad of other operations. Finally, the software is packaged
for distribution into a delivered product, to be consumed by
end users. An attacker that is able to compromise any single
step in the process can maliciously modify the software and
harm any of the software’s users.

To address these issues, we designed in-toto, a frame-
work that cryptographically ensures the integrity of the
software supply chain. in-toto grants the end user the
ability to verify the software’s supply chain from the project’s
inception to its deployment. We demonstrate in-toto’s
effectiveness on 30 software supply chain compromises
that affected hundreds of million of users and showcase
in-toto’s usage over cloud-native, hybrid-cloud and cloud-
agnostic applications. in-toto is integrated into products and
open source projects that are used by millions of people daily.
The project website is available at: https://in-toto.io.

1 Introduction
Modern software is built through a complex series of steps
called a software supply chain. These steps are performed
as the software is written, tested, built, packaged, localized,
obfuscated, optimized, and distributed. In a typical software
supply chain, these steps are “chained” together to transform
(e.g., compilation) or verify the state (e.g., the code quality)
of the project in order to drive it into a delivered product,
i.e., the finished software that will be installed on a device.
Usually, the software supply chain starts with the inclusion
of code and other assets (icons, documentation, etc.) in a
version control system. The software supply chain ends with
the creation, testing and distribution of a delivered product.

Securing the supply chain is crucial to the overall security
of a software product. An attacker who is able to control
any step in this chain may be able to modify its output for
malicious reasons that can range from introducing backdoors
in the source code to including vulnerable libraries in the
delivered product. Hence, attacks on the software supply
chain are an impactful mechanism for an attacker to affect
many users at once. Moreover, attacks against steps of the
software supply chain are difficult to identify, as they misuse
processes that are normally trusted.

Unfortunately, such attacks are common occurrences,
have high impact, and have experienced a spike in recent

years [60, 129]. Attackers have been able to infiltrate
version control systems, including getting commit access
to the Linux kernel [58] and Gentoo Linux [76], stealing
Google’s search engine code [22], and putting a backdoor
in Juniper routers [48, 96]. Popular build systems, such as
Fedora, have been breached when attackers were able to sign
backdoored versions of security packages on two different
occasions [75, 123]. In another prominent example, attackers
infiltrated the build environment of the free computer-cleanup
tool CCleaner, and inserted a backdoor into a build that
was downloaded over 2 million times [126]. Furthermore,
attackers have used software updaters to launch attacks, with
Microsoft [108], Adobe [95], Google [50,74,140], and Linux
distributions [46, 143] all showing significant vulnerabilities.
Perhaps most troubling are several attacks in which nation
states have used software supply chain compromises to target
their own citizens and political enemies [35,55,82,92,93,108,
127,128,138]. There are dozens of other publicly disclosed in-
stances of such attacks [8,33,38,39,41,52,53,65,70,76,79,80,
83,95,107,113,115,118,119,122,130–132,134,139,141,146].

Currently, supply chain security strategies are limited to se-
curing each individual step within it. For example, Git commit
signing controls which developers can modify a reposi-
tory [78], reproducible builds enables multiple parties to
build software from source and verify they received the same
result [25], and there are a myriad of security systems that
protect software delivery [2, 20, 28, 100, 102]. These building
blocks help to secure an individual step in the process.

Although the security of each individual step is critical,
such efforts can be undone if attackers can modify the output
of a step before it is fed to the next one in the chain [22, 47].
These piecemeal measures by themselves can not stop
malicious actors because there is no mechanism to verify
that: 1) the correct steps were followed and 2) that tampering
did not occur in between steps. For example a web server
compromise was enough to allow hackers to redirect user
downloads to a modified Linux Mint disk image, even
though every single package in the image was signed and
the image checksums on the site did not match. Though
this was a trivial compromise, it allowed attackers to build
a hundred-host botnet in a couple of hours [146] due to the
lack of verification on the tampered image.

In this paper we introduce in-toto, Latin for “as a whole,”
the first framework that holistically enforces the integrity
of a software supply chain by gathering cryptographically
verifiable information about the chain itself. To achieve
this, in-toto requires a project owner to declare and sign a

USENIX Association 28th USENIX Security Symposium 1393

layout of how the supply chain’s steps need to be carried out,
and by whom. When these steps are performed, the involved
parties will record their actions and create a cryptographically
signed statement — called link metadata — for the step they
performed. The link metadata recorded from each step can be
verified to ensure that all steps were carried out appropriately
and by the correct party in the manner specified by the layout.

The layout and collection of link metadata tightly connect
the inputs and outputs of the steps in such a chain, which
ensures that tampering can not occur between steps. The lay-
out file also defines requirements (e.g., Twistlock [30] must
not indicate that any included libraries have high severity
CVEs) that will be enforced to ensure the quality of the end
product. These additions can take the form of either distinct
commands that must be executed, or limitations on which
files can be altered during that step (e.g., a step that localizes
the software’s documentation for Mexican Spanish must not
alter the source code). Collectively, these requirements can
minimize the impact of a malicious actor, drastically limiting
the scope and range of actions such an attacker can perform,
even if steps in the chain are compromised.

We have built a series of production-ready implementations
of in-toto that have now been integrated across several
vendors. This includes integration into cloud vendors such
as Datadog and Control Plane, to protect more than 8,000
cloud deployments. Outside of the cloud, in-toto is used
in Debian to verify packages were not tampered with as part
of the reproducible builds project [25]. These deployments
have helped us to refine and validate the flexibility and
effectiveness of in-toto.

Finally, as shown by our security analysis of three in-toto
deployments, in-toto is not a “lose-one, lose-all” solution,
in that its security properties only partially degrade with
a key compromise. Depending on which key the attacker
has accessed, in-toto’s security properties will vary.
Our in-toto deployments could be used to address most
(between 83% - 100%) historical supply chain attacks.

2 Definitions and Threat Model

This section defines the terms we use to discuss the software
supply chain and details the specific threat model in-toto
was designed to defend against.

2.1 Definitions

The software supply chain refers to the series of steps
performed in order to create and distribute a delivered
product. A step is an operation within this chain that takes in
materials (e.g., source code, icons, documentation, binaries,
etc.) and and creates one or more products (e.g., libraries,
software packages, file system images, installers, etc.). We
refer to both materials and products generically as artifacts.

It is common to have the products of one step be used
as materials in another step, but this does not mean that a
supply chain is a sequential series of operations in practice.
Depending on the specifics of a supply chain’s workflow,
steps may be executed in sequence, in parallel, or as a
combination of both. Furthermore, steps may be carried out

by any number of hosts, and many hosts can perform the
same step (e.g., to test a step’s reproducibility).

In addition to the materials and products, a step in the
supply chain produces another key piece of information,
byproducts. The step’s byproducts are things like the STDOUT,
STDERR, and return value that indicate whether a step was
successful or had any problems. For example, a step that runs
unit tests may return a non-zero code if one of the unit tests
fails. Validating byproducts is key to ensuring that steps of
the supply chain indicate that the software is ready to use.

As each step executes, information called link metadata
that describes what occured, is generated. This contains
the materials, products, and byproducts for the step. This
information is signed by a key used by the party who
performs the action, which we call a functionary. Regardless
of whether the functionary commits code, builds software,
performs QA, localizes documentation, etc., the same link
metadata structure is followed. Sometimes a functionary’s
participation involves repeated human action, such as a
developer making a signed git commit for their latest code
changes. In other cases, a functionary may participate in
the supply chain in a nearly autonomous manner after setup,
such as a CI/CD system. Further, many functionaries can be
tasked to perform the same step for the sake of redundancy
and a minimum threshold of them may be required to agree
on the result of a step they all carried out.

To tie all of the pieces together, the project owner sets
up the rules for the steps that should be performed in a
software supply chain. In essence, the project owner serves
as the foundation of trust, stating which steps should be
performed by which functionaries, along with specifying
rules for products, byproducts, and materials in a file called
the layout. The layout enables a client that retrieves the
software to cryptographically validate that all actions were
performed correctly. In order to make this validation possible,
a client is given the delivered product, which contains the
software, layout, and link metadata. The layout also contains
any additional actions besides the standard verification
of the artifact rules to be performed by the client. These
actions, called inspections, are used to validate software
by further performing operations on the artifacts inside the
delivered product (e.g., verifying no extraneous files are
inside a zip file). This way, through standard verification
and inspections, a client can assure that the software went
through the appropriate software supply chain processes.

2.2 Threat Model
The goal of in-toto is to minimize the impact of a party
that attempts to tamper with the software supply chain. More
specifically, the goal is to retain the maximum amount of
security that is practical, in any of the following scenarios:

Interpose between two existing elements of the supply
chain to change the input of a step. For example, an
attacker may ask a hardware security module to sign
a malicious copy of a package before it is added to the
repository and signed repository metadata is created to
index it [27, 44, 51, 76, 107, 120, 120, 147].

1394 28th USENIX Security Symposium USENIX Association

Act as a step (e.g., compilation), perhaps by compro-
mising or coercing the party that usually performs that
step [27, 57, 62, 64, 76, 81, 99, 112, 125]. For example,
a hacked compiler could insert malicious code into
binaries it produces [126, 136].
Provide a delivered product for which not all steps have
been performed. Note that this can also be a result of an
honest mistake [37, 49, 56, 68, 73, 97, 142].
Include outdated or vulnerable elements in the supply
chain [59,61,91,94,117]. For example, an attacker could
bundle an outdated compression library that has many
known exploits.
Provide a counterfeit version of the delivered product
to users [8, 35, 66, 70, 71, 95, 118, 134, 135, 146]. This
software product can come from any source and be
signed by any keys. While in-toto will not mandate
how trust is bootstrapped, Section 6 will show how other
protocols such as TUF [28], as well as popular package
managers [2] can be used to bootstrap project owner keys.

Key Compromise. We assume that the public keys of
project owners are known to the verifiers and that the attacker
is not able to compromise the corresponding secret key. In ad-
dition, private keys of developers, CI systems and other infras-
tructure public keys are known to a project owner and their cor-
responding secret keys are not known to the attacker. In sec-
tion 5.2, we explore additional threat models that result from
different degrees of attacker access to the supply chain, includ-
ing access to infrastructure and keys (both online and offline).

2.3 Security Goals
To build a secure software supply chain that can combat
the aforementioned threats, we envision that the following
security goals would need to be achieved:

supply chain layout integrity: All of the steps defined
in a supply chain are performed in the specified order.
This means that no steps can be added or removed, and
no steps can be reordered.
artifact flow integrity: All of the artifacts created, trans-
formed, and used by steps must not be altered in-between
steps. This means that if step A creates a file foo.txt
and step B uses it as a material, step B must use the ex-
act file foo.txt created by step A. It must not use, for
example, an earlier version of the file created in a prior
run.
step authentication: Steps can only be performed by the
intended parties. No party can perform a step unless it is
given explicit permission to do so. Further, no delivered
products can be released unless all steps have been per-
formed by the right party (e.g., no releases can be made
without a signoff by a release engineer, which would stop
accidental development releases [68]).
implementation transparency: in-toto should not re-
quire existing supply chains to change their practices in
order to secure them. However, in-toto can be used
to represent the existing supply chain configuration and
reason about its security practices.

graceful degradation of security properties: in-toto
should not lose all security properties in the event of
key compromise. That is, even if certain supply chain
steps are compromised, the security of the system is not
completely undermined.

In addition to these security goals, in-toto is also geared
towards practicality and, as such, it should maintain minimal
operational, storage and network overheads.

3 System overview

The current landscape of software supply chain security is
focused on point-solutions that ensure that an individual
step’s actions have not been tampered with. This limitation
usually leads to attackers compromising a weaker step in
the chain (e.g., breaking into a buildfarm [115]), removing
steps from the chain [68] or tampering with artifacts while
in transit (i.e., adding steps to the chain [66]). As such, we
identify two fundamental limitations of current approaches
to secure the software supply chain:
1. Point solutions designed to secure individual supply

chain steps cannot guarantee the security of the entire
chain as a whole.

2. Despite the widespread use of unit testing tools and
analysis tools, like fuzzers and static analyzers, software
rarely (if ever) includes information about what tools
were run or their results. So point solutions, even if used,
provide limited protection because information about
these tools is not appropriately utilized or even shown
to clients who can make decisions about the state of the
product they are about to utilize.

We designed in-toto to address these limitations by
ensuring that all individual measures are applied, and by the
right party in a cryptographically verifiable fashion.

In concrete terms, in-toto is a framework to gather and
verify metadata about different stages of the supply chain,
from the first step (e.g., checking-in code on a version control
system) to delivered product (e.g., a .deb installable package).
If used within a software supply chain, in-toto ensures that
the aforementioned security goals are achieved.

3.1 in-toto parties and their roles

Similar to other modern security systems [101, 102, 121],
in-toto uses security concepts like delegations and roles
to limit the scope of key compromise and provide a graceful
degradation of its security properties.

In the context of in-toto, a role is a set of duties and
actions that an actor must perform. The use of delegations
and roles not only provides an important security function
(limiting the impact of compromise and providing separation
of privilege), but it also helps the system remain flexible
and usable so that behaviors like key sharing are not needed.
Given that every project uses a very specific set of tools and
practices, flexibility is a necessary requirement for in-toto.
There are three roles in the framework:

Project Owner: The project owner is the party in charge
of defining the software supply chain layout (i.e., define

USENIX Association 28th USENIX Security Symposium 1395

Figure 1: Graphical depiction of the software supply chain within-toto ele-
ments added. The project owner creates a layout with three steps, each of which
will be performed by a functionary. Notice how the tag step creates foo.c and
a localization file foo.po, which are fed to different steps down the chain.

which steps must be performed and by who). In practice,
this would be the maintainer of an open-source project
or the dev-ops engineers of a project.
Functionaries: Functionaries are the parties that perform
the steps within the supply chain, and provide an
authenticated record of the artifacts used as materials
and the resulting products. Functionaries can be humans
carrying out a step (e.g., signing off a security audit) or
an automated system (e.g., a build farm).
Client: (e.g., end user): The client is the party that will
inspect and afterwards utilize a delivered product.

We will now elaborate on how these three parties interact
with the components of in-toto.

3.2 in-toto components

in-toto secures the software supply chain by using three dif-
ferent types of information: the software supply chain layout
(or layout, for short), link metadata, and the delivered product.
Each of these has a unique function within in-toto.

3.2.1 The supply chain layout

Laying out the structure of the supply chain allows the devel-
opers and maintainers of a project to define requirements for
steps involved in source code writing, testing, and distribution
within a software product’s lifecycle. In the abstract sense,
this supply chain layout is a recipe that identifies which steps
will be performed, by whom, and in what order.

The supply chain layout defines a series of steps in the
supply chain. These definitions are used to enforce measures
on what artifacts should be used as materials. To ensure that
only the intended parties execute the right steps, a public key
is associated with each step. In order to ensure that the layout
was created by the project owner, it is cryptographically
signed with the project owner’s private key.

The project owner will define this supply chain layout by
setting different requirements for the project’s steps. These
requirements take the form of types of artifacts that can be pro-
duced (e.g., a localization step can only produce .po files), the
expected return values, the type of host that can carry out this
step and so forth. When consuming the delivered product, the
client (end user) verifies that these requirements are satisfied.

In addition to defining supply chain steps, the layout will
also specify a series of inspection steps (or inspections). These

inspections will be performed by the verifier on the delivered
product to draw further insight about its correctness. This is
useful for complex supply chains in which the basic semantics
of in-toto cannot describe their specific requirements. For
example, an inspection step can be used to namespace restrict
certain VCS-specific operations to specific functionaries such
as making sure that only a QA team member merges code
into the develop branch and that all commits are signed.

For example, as seen in Figure 1, a project owner can de-
fine a supply chain consisting of three steps: a tag, a build
and a package step. With these definitions, the project owner
also defines how the artifacts will flow through the supply
chain (e.g., foo.c is used by build, yet foo.po is packaged
directly from tag). Afterwards, the project owner can assign
functionaries to carry out each of these steps and define an in-
spection so the end user can verify that foo was indeed created
during build and that foo.po came from the tagged release.

Layout creation tool. We provide a web-based layout
creation tool [12] to help project owners create in-toto
layouts. The tool uses an intuitive, graphical interface to
define: (1) the steps of the software supply chain (i.e., how
is the source code managed? how is the software’s quality
verified? how is the software built? how is the software
packaged?), (2) the actors (functionaries) who are allowed
to perform different steps of the software supply chain. An
in-toto layout is generated based on this information. In
addition, the in-toto website [13, 15] provides several
examples of layouts, which can serve as starting templates
for project owners seeking to integrate in-toto.

3.2.2 Link metadata

Verifying the actions carried out in the supply chain, requires
information about all steps performed in creating the
delivered product. Like a chain in real life, an in-toto
supply chain consists of conjoined links, with each link
serving as a statement that a given step was carried out.

Functionaries in charge of executing a step within the
supply chain must share information about these links.
Sharing such information as what materials were fed to
the step, and what product(s) were created, can ensure no
artifacts are altered in transit. To ensure that only the right
functionaries performed this step, the piece of link metadata
must be signed with the private key that corresponds to this
functionary’s key (as defined in the supply chain layout).

There is a one-to-one relationship between the step defini-
tions in the supply chain layout and the link metadata. That is,
each piece of link metadata gathered during each step within
the supply chain must match what the requirements prescribe
for that step. In order to ensure that the link metadata is gener-
ated by the intended entity, it must be cryptographically signed
with one (or more, if there is a threshold higher than one de-
fined) of the keys indicated in the requirements for that link.

When all the link metadata has been collected, and the
supply chain has been properly defined, the supply chain
layout and all the links can be shipped, along with the
delivered product, to the end user for verification. We show

1396 28th USENIX Security Symposium USENIX Association

a minimal software supply chain, along with a graphical
representation of an in-toto layout in Figure 1.

3.2.3 The delivered product
The delivered product is the piece of software that the end
user wants to install. In order to verify the delivered product,
the end user (or client) will utilize the supply chain layout
and its corresponding pieces of link metadata. The end user
will use the link metadata to verify that the software provided
has not been tampered with, and that all the steps were
performed as the project owner intended. In Figure 1 the
delivered product consists of the foo.pkg file.

3.3 in-toto usage lifecycle
The in-toto usage lifecycle encompasses the following
overarching operations:
1. The project owner defines a supply-chain layout.
2. Each step is carried out as specified, and functionaries

gather and sign link metadata.
3. A delivered product is shipped to the client, who verifies

it upon installation by:
ensuring the layout provided was signed by the
project owner and is not expired.
checking that all the steps defined have enough
pieces of link metadata; that such links were signed
by the indicated functionaries; and that all artifacts
recorded flowed properly between the steps as
indicated in the layout.
carrying out any inspection steps contained in the
layout and making sure that all artifacts recorded
match the flow described in the layout.

As seen in Figure 1 a project owner creates the layout to
describe an overarching structure of the supply chain that the
client can use to verify. Later, functionaries carry out their
operations as usual, and submit link metadata to attest for
the result of their operation. Finally, a client uses a delivered
product, metadata links and a layout to verify the integrity
of the delivered product and of the entire chain.

By following the chain of attestations in the link metadata,
the client can reconstruct the operations described in Figure 1.
Afterwards, the client can verify these attestations against the
layout and execute any inspections to make sure everything
is in order before consuming the delivered product.

4 in-toto internals
In order to avoid tampered, incomplete or counterfeit
software, in-toto ensures the integrity and accuracy of all
software supply chain operations. in-toto ensures supply
chain integrity by the verifying the collected link metadata
against a software supply chain layout file. This ensures that
all operations were carried out, by the intended party and as
the legitimate project owner intended.

Understanding how the system’s metadata helps to ensure
the integrity of the supply chain is critical to a deeper
appreciation of how in-toto works. In this section, we will
explore the specifics of the link metadata and the layout file
to understand how in-toto operates.

For the context of this section, we will demonstrate the
different features of in-toto using Figure 1 as an example.
The project owner Diana will create a layout that describes
three steps and three functionaries for each step. The first
step, tag, will produce a file foo.c to be input into the build
step, as well as a foo.po localization file. The second step,
build, will use the foo.c file from the tag step and produce a
foo binary. Finally, the package step will take the foo.po and
foo files and produce a package installable by the end user.

For a more complete and thorough description of all the
fields, signature schemes, implementations, a layout editing
tool and more, refer to the resources on the project website:
https://in-toto.io.

4.1 The supply chain layout

The supply chain layout explicitly defines the expected layout
of the software supply chain. This way, end users can ensure
that its integrity is not violated upon verification. To do this,
the layout contains the following fields:

1 { " _ t y p e " : " l a y o u t " ,
2 " e x p i r e s " : "<EXPIRES>" ,
3 " readme " : "<README>" ,
4 " keys " : { "<KEYID>" : "<PUBKEY_OBJECT>" . . . } ,
5 " s t e p s " : ["<STEP>" , " . . . "] ,
6 " i n s p e c t i o n s " : ["<INSPECTION>" , " . . . "]
7 }

Listing 1: The supply chain layout structure

The overarching architecture of the layout definition
includes the following relevant fields:

An expiration date: this will ensure that the supply chain
information is still fresh, and that old delivered products
can not be replayed to users.
A readme field: this is intended to provide a human-
readable description of the supply chain.
A list of public keys: these keys belong to each
functionary in the supply chain and will be assigned to
different steps to ensure that only the right functionary
performs a particular step in the supply chain.
A list of steps: these are the steps to be performed in
the supply chain and by who. Step definitions, described
in depth in Section 4.1.1, will contain a series of
requirements that limit the types of changes that can be
done in the pipeline and what functionary can sign link
metadata to attest for its existence.
A list of inspections: these are the inspections to be
performed in the supply chain. As described in depth
in section 4.1.2, inspections are verification steps to
be performed on the delivered product by the client to
further probe into its completeness and accuracy.

Though its structure is quite simple, the layout actually
provides a detailed description of the supply chain topology.
It characterizes each of the steps, and defines any possible
requirements for every step. Likewise, it contains instructions
for local inspection routines (e.g., verify that every file in a
tar archive was created by the right party in the supply chain),
which further ensure the delivered product has not been

USENIX Association 28th USENIX Security Symposium 1397

tampered with. As such the layout allows the project owner to
construct the necessary framework for a secure supply chain.

For our example supply chain, Diana would have to list the
public keys as described on Listing 2, as well as all the steps.

1 { " _ t y p e " : " l a y o u t " ,
2 " e x p i r e s " : "<EXPIRES>" ,
3 " readme " : " foo . pkg s u p p l y c h a i n " ,
4 " keys " : { "<BOBS_KEYID>" : "<PUBKEY>" ,
5 "<ALICES_KEYID" : "<PUBKEY>" ,
6 "<CLARAS_KEYID" : "<PUBKEY>" } ,
7 " s t e p s " : [{ " name " : " t a g " , " . . . " } ,
8 { " name " : " b u i l d " , " . . . " } ,
9 { " name " : " package " , " . . . " }] ,

10 " i n s p e c t i o n s " : [" { " name " : " i n s p e c t " , " . . . " }]
11 }

Listing 2: The supply chain for our example

As described, the layout file already limits all actions to
trusted parties (by means of their public keys), defines the
steps that are carried out (to limit the scope of any step) and
specifies verification routines that are used to dive into the
specifics of a particular supply chain. We will describe the
latter two fields in depth now.

4.1.1 Step definition

1 { " _name " : "<NAME>" ,
2 " t h r e s h o l d " : "<THRESHOLD>" ,
3 " e x p e c t e d _ m a t e r i a l s " : [["<ARTIFACT_RULE>"] , " . . . "] ,
4 " e x p e c t e d _ p r o d u c t s " : [["<ARTIFACT_RULE>"] , " . . . "] ,
5 " pubkeys " : ["<KEYID>" , " . . . "] ,
6 " expected_command " : "<COMMAND>"
7 }

Listing 3: A supply chain step in the supply chain layout

Every step of the supply chain contains the following fields:
name: A unique identifier that describes a step. This
identifier will be used to match this definition with the
corresponding pieces of link metadata.
expected_materials: The materials expected as input
ARTIFACT_RULES as described in Section 4.1.3. It serves
as a master reference for all the artifacts used in a step.
expected_products: Given the step’s output information,
or evidence, what should be expected from it? The ex-
pected products also contains a list of ARTIFACT_RULES
as described in section 4.1.3.
expected_command: The command to execute and any
flags that may be passed to it.
threshold: The minimum number of pieces of signed
link metadata that must be provided to verify this step.
This field is intended for steps that require a higher de-
gree of trust, so multiple functionaries must perform the
operation and report the same results. For example, if the
threshold is set to k, then at least k pieces of signed link
metadata need to be present during verification.
a list of public keys id’s: The id’s of the keys that can be
used to sign the link metadata for this step.

The fields within this definition list will indicate re-
quirements for the step identified with that name. To
verify these requirements, these fields will be matched
against the link metadata associated with the step. The

expected_materials and expected_products fields will
be used to compare against the materials and products
reported in the link metadata. This ensures that no disallowed
artifacts are included, that no required artifacts are missing,
and the artifacts used are from allowed steps who created
them as products. Listing 4 contains the step definition for
the build step for our example Layout above.

1 { " _name " : " b u i l d " ,
2 " t h r e s h o l d " : " 1 " ,
3 " e x p e c t e d _ m a t e r i a l s " : [
4 ["MATCH" , " foo . c " , "WITH" ,
5 "PRODUCTS" , "FROM" , " t a g "]
6] ,
7 " e x p e c t e d _ p r o d u c t s " : [["CREATE" , " foo "]] ,
8 " pubkeys " : ["<BOBS_PUBKEY>"] ,
9 " expected_command " : " gcc foo . c −o foo "

10 }
Listing 4: The build step in our example layout

4.1.2 Inspection definition

Inspection definitions are nearly identical to step definitions.
However, since an inspection causes the verifier on the client
device to run a command (which can also generate artifacts),
there cannot be a threshold of actions. The other fields are
identical to the link metadata generated by a step.

4.1.3 Artifact rules

Artifact rules are central to describing the topology of the
supply chain by means of its artifacts. These rules behave
like firewall rules and describe whether an artifact should be
consumed down the chain, or if an artifact can be created or
modified at a specific step. As such, they serve two primary
roles: to limit the types of artifacts that a step can create and
consume; and to describe the flow of artifacts between steps.

For the former, a series of rules describes the operation
within the step. A rule, such as CREATE, indicates that a
material must not exist before the step is carried out and
must be reported as a product. Other rules, such as MODIFY,
DELETE, ALLOW and DISALLOW are used to further limit
what a step can register as artifacts within the supply chain.
These rules are described in Grammar 5 (full definition in
Appendix A). An example of a simple CREATE rule can be
seen on the step definition in Listing 4.
[CREATE|DELETE|MODIFY|ALLOW|DISALLOW] artifact_pattern

Grammar 5: Grammar for operations within a step. artifact_pattern is a
regular expression for the paths to artifacts.

For the latter, the MATCH rule is used by project owners
to describe the flow of artifacts between steps. With it, a
project owner can mandate that, e.g., a buildfarm must only
use the sources that were created during a tag-release step
or that only the right localization files are included during
a localization step. Compared to the rules above, the MATCH
rule has a richer syntax, as it needs to account for artifacts
relocated during steps (e.g,. a packaging step moving .py
files to /usr/lib/pythonX.X/site-packages/ or a build
step moving artifacts to a build directory) using the IN
clause. Grammar 6 describes this rule and the Match function

1398 28th USENIX Security Symposium USENIX Association

describes the algorithm for processing it during verification.
An example of a MATCH rule used to match the foo.c source
from tag into the build step is shown in Listing 4.
MATCH source_pattern [IN prefix]

WITH <MATERIALS|PRODUCTS> [IN prefix] FROM step_name

Grammar 6: The match rule grammar. The IN clauses are optional and
source_pattern is a regular expression

function MATCH
Input: source_artifacts; destination_artifacts, rule
Output: result: (SUCCESS/FAIL)

1: // Filter source and destination materials using the rule’s patterns
2: source_artifacts_filtered = filter(rule.source_prefix + rule.source_pattern,

source_artifacts)
3: destination_artifacts_filtered = filter(rule.destination_prefix +

rule.destination_pattern, destination_artifacts)
4: // Apply the IN clauses, to the paths, if any
5: for artifact in source_artifacts_filtered do
6: artifact.path -= rule.source_in_clause
7: for artifact in destination_artifacts_filtered do
8: artifact.path -= rule.destination_in_clause
9: // compare both sets

10: for artifact in source_artifacts_filtered do
11: destination_artifact = find_artifact_by_path(destination_artifacts,

artifact.path)
12: // the artifact with this path does not exist?
13: if destination_artifact == NULL then
14: return FAIL
15: // are the files not the same?
16: if destination_artifact.hash != artifact.hash then
17: return FAIL
18: // all of the files filtered by the source materials exist
19: return SUCCESS

4.2 Link metadata files
Link metadata serves as a record that the steps prescribed in
the layout actually took place. Its fields show evidence that is
used for verification by the client. For example, the materials
and products fields of the metadata are used to ensure that
no intermediate products were altered in transit before being
used in a step.

In order to determine if the executed step complies with its
corresponding metadata, several types of information need to
be gathered as evidence. A link includes the following fields:

1 { " _ t y p e " : " l i n k " ,
2 " _name " : "<NAME>" ,
3 " command " : "<COMMAND>" ,
4 " m a t e r i a l s " : { "<PATH>" : "<HASH>" , " . . . " : " . . . " } ,
5 " p r o d u c t s " : { "<PATH>" : "<HASH>" , " . . . " : " . . . " } ,
6 " b y p r o d u c t s " : { " s t d i n " : " " , " s t d o u t " : " " ,
7 " r e t u r n −v a l u e " : " " } ,
8 " e n v i r o n m e n t " : { " v a r i a b l e s " : "<ENV>" ,
9 " f i l e s y s t e m " : "<FS>" , . . . }

10 }
Listing 7: Link metadata format

Name: This will be used to identify the step and to match
it with its corresponding definition inside the layout.
Material(s): Input file(s) that were used in this step, along
with their cryptographic hashes to verify their integrity.
Command: The command run, along with its arguments.

Product(s): The output(s) produced and its corresponding
cryptographic hash.
Byproduct(s): Reported information about the step.
Elements like the standard error buffer and standard
output buffer will be used.
Signature: A cryptographic signature over the metadata.

Of these fields, the name, materials, and products
fields are the counterpart of the fields within the layout
definition. This, along with a cryptographic signature used
to authenticate the functionary who carried out the step can
be used to provide a baseline verification of the supply chain
topology (i.e., the steps performed and how do they interrelate
via their materials and products). For example, the build step
metadata described in Listing 8 shows the file foo.c used
as a material and the product foo as created in the build step.

The byproducts field is used to include other meaningful
information about a step’s execution to further introspect into
the specifics of the step that was carried out. Common fields
included as byproducts are the standard output, standard error
buffers and a return value. For example, if a command exited
with non-zero status, then the byproduct field be populated
with a value such as return-value: "126". In this case,
inspections can be set up to ensure that the return value of
this specific command must be 0.

1 { " _ t y p e " : " l i n k " ,
2 " name " : " b u i l d " ,
3 " command " : [" gcc " , " foo . c " , "−o " , " foo "] ,
4 " m a t e r i a l s " : { " foo . c " : { " sha256 " : " b f f 9 5 e . . . " }} ,
5 " p r o d u c t s " : { " foo " : { " sha256 " : " 25 c696 . . . " }}
6 " b y p r o d u c t s " : { " r e t u r n −v a l u e " : 0 ,
7 " s t d e r r " : " " , " s t d o u t " : " " } ,
8 " e n v i r o n m e n t " : {} ,
9 }

Listing 8: The link for the build step

Having a software supply chain layout along with the
matching pieces of link metadata and the delivered product
are all the parts needed to perform verification. We will
describe verification next.

4.3 Verifying the delivered product
Verification occurs when the link metadata and the lay-
out are received by the client and upon installing the
delivered product. A standalone or operating-system tool
will perform the verification, as described in the function
Verify_Final_Product. To do this, the user will need an initial
public key that corresponds to the supply chain layout, as
distributed by a trusted channel or as part of the operating
system’s installation [106].

The end user starts the verification by ensuring that the
supply chain layout provided was signed with a trusted key
(lines 2-3) and by checking the layout expiration date to make
sure the layout is still valid (lines 5-6). If these checks pass,
the public keys of all the functionaries are loaded from the
layout (line 8). With the keys loaded, the verification routine
will start iterating over all the steps defined in the layout and
make sure there are enough pieces of link metadata signed
by the right functionaries to match the threshold specified
for that role (lines 10-20). If enough pieces of link metadata

USENIX Association 28th USENIX Security Symposium 1399

function VERIFY_FINAL_PRODUCT
Input: layout; links; project_owner_key
Output: result: (SUCCESS/FAIL)
1: // verify that the supply chain layout was properly signed
2: if not verify_signature(layout, project_owner_key) then
3: return FAIL

4: // Check that the layout has not expired
5: if layout.expiration < TODAY then
6: return FAIL
7: // Load the functionary public keys from the layout
8: functionary_pubkeys = layout.keys

9: // verify link metadata
10: for step in layout.steps do
11: // Obtain the functionary keys relevant to this step and its corresponding

metadata
12: step_links = get_links_for_step(step, links)
13: step_keys = get_keys_for_step(step, functionary_pubkeys)
14: // Remove all links with invalid signatures
15: for link in step_links do
16: if not verify_signature(link, step_keys) then
17: step_links.remove(link)
18: // Check there are enough properly-signed links to meet the threshold
19: if length(step_links) < step.threshold then
20: return error("Link metadata is missing!")
21: // Apply artifact rules between all steps
22: if apply_artifact_rules(steps, links) == FAIL then
23: return FAIL
24: // Execute inspections
25: for inspection in layout.inspections do
26: inspections.add(Run(inspection))
27: // Verify inspections
28: if apply_artifact_rules(steps + inspections, links) == FAIL then
29: return FAIL
30: return SUCCESS

could be loaded for each of the steps and their signatures
pass verification, then the verification routine will apply the
artifact rules and build a graph of the supply chain using
the artifacts recorded in the link metadata (lines 22-23). If
no extraneous artifacts were found and all the MATCH rules
pass, then inspections will be executed1 (line 25-26). Finally,
once all inspections were executed successfully, artifact
rules are re-applied to the resulting graph to check that rules
on inspection steps match after inspections are executed,
because inspections may produce new artifacts or re-create
existing artifacts (lines 28-29). If all verifications pass, the
function will return SUCCESS.

With this verification in place, the user is sure that the
integrity of the supply chain is not violated, and that all
requirements made by the project’s maintainers were met.

4.4 Layout and Key Management
A layout can be revoked in one of two ways, the choice being
up to the project owner. One is by revoking the key that was
used to sign the layout, the other is by superseding/updating
the layout with a newer one. To update a layout, the project
owner needs to replace an existing layout with a newer layout.
This can be used to deal with situations when a public key

1Inspections are executed only after all the steps are verified to avoid
executing an inspection on an artifact that a functionary did not create.

of a misbehaving functionary needs to be changed/revoked,
because when the project owner publishes a newer layout
without that public key, any metadata from such misbehaving
functionary is automatically revoked. Updating a layout
can also be used to address an improperly designed initial
layout. The right expiration date for a layout depends on the
operational security practices of the integrator.

5 Security Analysis
in-toto was designed to protect the software supply chain as
a whole by leveraging existing security mechanisms, ensuring
that they are properly set up and relaying this information to
a client upon verification. This allows the client to make sure
that all the operations were properly performed and that no
malicious actors tampered with the delivered product.

To analyze the security properties of in-toto, we need to
revisit the goals described in Section 2. Of these, the relevant
goals to consider are supply chain layout integrity, artifact flow
integrity, and step authentication. In this section, we explore
how these properties hold, and how during partial key compro-
mise the security properties of in-toto degrade gracefully.
in-toto’s security properties are strictly dependent on an

attacker’s level of access to a threshold of signing keys for
any role. These security properties degrade depending on the
type of key compromise and the supply chain configuration.

5.1 Security properties with no key compromise
When an attacker is able to compromise infrastructure or
communication channels but not functionary keys, in-toto’s
security properties ensure that the integrity of the supply
chain is not violated. Considering our threat model in
Section 2, and contrasting it to in-toto’s design which
stipulates that the supply chain layout and link metadata are
signed, we can assert the following:

An attacker cannot interpose between two consecutive
steps of the supply chain because, during verification, the
hash on the products field of the link for the first step will
not match the hash on the materials field of the link for the
subsequent step. Further, a completely counterfeit version
of the delivered product will fail validation because its
hash will not match the one contained in the correspond-
ing link metadata. Thus, artifact flow integrity holds.
An attacker cannot provide a product that is missing
steps or has its steps reordered because the corresponding
links will be missing or will not be in the correct order.
The user knows exactly which steps and in what order
they need to be performed to receive the delivered
product. As such, supply chain layout integrity holds.
Finally, an attacker cannot provide link metadata for
which he does not have permission to provide (i.e., their
key is not listed as one that can sign link metadata for
a certain step). Thus, step authentication holds.

However, it is important to underline that this threat
model requires that the developer’s host systems are not
compromised. Likewise, it assumes that there are no rogue
developers wishing to subvert the supply chain. For practical
purposes, we consider a rogue functionary to be equivalent

1400 28th USENIX Security Symposium USENIX Association

to a functionary key compromise. Hence this section frames
attacks from the standpoint of a key compromise, even when
the issue may be executed as a confused deputy problem or
a similar issue with equivalent impact.

5.2 Security properties if there is a key compromise
in-toto is not a “lose-one, lose-all” solution, in that its secu-
rity properties only partially degrade with a key compromise.
Depending on which key the attacker has accessed, in-toto’s
security properties will vary. To further explore the conse-
quences of key compromise, we outline the following types
of attacks in the supply chain:

Fake-check: a malicious party can provide evidence of
a step taking place, but that step generates no products
(it can still, however, generate byproducts). For example,
an attacker could forge the results of a test suite being
executed in order to trick other functionaries into
releasing a delivered product with failing tests.
Product Modification: a malicious party is able to
provide a tampered artifact in a step to be used as
material in subsequent steps. For example, an attacker
could take over a buildfarm and create a backdoored
binary that will be packaged into the delivered product.
Unintended Retention: a malicious party does not destroy
artifacts that were intended to be destroyed in a step. For
example, an attacker that compromises a cleanup step
before packaging can retain exploitable libraries that
will be shipped along with the delivered product.
Arbitrary Supply Chain Control: a malicious party is
able to provide a tampered or counterfeit delivered
product, effectively creating an alternate supply chain.

5.2.1 Functionary compromise
A compromise on a threshold of keys held for any functionary
role will only affect a specific step in the supply chain to
which that functionary is assigned to. When this happens,
the artifact flow integrity and step authentication security
properties may be violated. In this case, the attacker can
arbitrarily forge link metadata that corresponds to that step.

The impact of this may vary depending on the specific
link compromised. For example, an attacker can fabricate an
attestation for a step that does not produce artifacts (i.e., a
fake-check), or create malicious products (i.e., a product mod-
ification), or pass along artifacts that should have been deleted
(i.e., an unintended retention). When an attacker creates
malicious products or fails to remove artifacts, the impact is
limited by the usage of such products in subsequent steps of
the chain. Table 1 describes the impact of these in detail from
rows 2 to 5 (row 1 captures the case when the attacker does
not compromise enough keys to meet the threshold defined
for a step). As a recommended best practice, we assume there
is a “DISALLOW *” rule at the end of the rule list for each step.

It is of note from Table 1 that an attacker who is able
to compromise crucial steps (e.g., a build step) will have a
greater impact on the client than one which, for example,
can only alter localization files. Further, a compromise in
functionary keys that do not create a product is restricted

Type of Key
Compromise

Compromised Step
Rule

Subsequent Step
Rule Impact

Under
threshold Regardless of rule Regardless of rule None

Step None Regardless of rule Fake-check

Step ALLOW pattern1
DELETE pattern2

MATCH pattern*
Unintended
Retention

Step [ALLOW | CREATE |
MODIFY] pattern

MATCH pattern
Product
Modification

Layout N/A N/A Arbitrary Supply
Chain Control

Table 1: Key compromise and impact based on the layout characteristics.

to a fake check attack (row two). To trigger an unintended
retention, the first step must also have rules that allow for
some artifacts before the DELETE rule (e.g., the ALLOW rule
with a similar artifact pattern). This is because rules behave
like artifact rules, and the attacker can leverage the ambiguity
of the wildcard patterns to register an artifact that was
meant to be deleted. Lastly, note that the effect of product
modification and unintended retention is limited by the
namespace on such rules (i.e., the artifact_pattern).

Mitigating risk. As discussed earlier, the bar can be raised
against an attacker if a role is required to have a higher
threshold. For example, two parties could be in charge of
signing the tag for a release, which would require the attacker
to compromise two keys to successfully subvert the step.

Finally, further steps and inspections can be added to
the supply chain with the intention of limiting the possible
transformations on any step. For example, as shown in
Section 6, an inspection can be used to dive into a Python’s
wheel and ensure that only Python sources in the tag release
are contained in the package.

5.2.2 Project owner compromise

A compromise of a threshold of keys belonging to the project
owner role allows the attacker to redefine the layout, and
thereby subvert the supply chain completely. However, like
with step-level compromises, an increased threshold setting
can be used to ensure an attacker needs to compromise many
keys at once. Further, given the way in-toto is designed,
the layout key is designed to be used rarely, and thus it should
be kept offline.

5.3 User actions in response to in-toto failures

Detecting a failure to validate in-toto metadata involves
making a decision about whether verification succeeded or
whether it failed and, if so, why. The user’s device and the
reason for failure are likely to be paramount in the user’s
decision about how to respond. If the user is installing in an
ephemeral environment on a testing VM, they may choose
to ignore the warning and install the package regardless. If
the user is installing in a production environment processing
PCI data, the failure to validate in-toto metadata will be
a serious concern. So, we expect users of in-toto will
respond in much the same way as administrators do today
for a package that is not properly signed.

USENIX Association 28th USENIX Security Symposium 1401

Figure 2: The rebuilder setup.

6 Deployment

in-toto has about a dozen different integrations that protect
software supply chains for millions of end users. This section
uses three such integrations to examine how threshold signing,
metadata generation, and end-to-end verification function in
practical deployments of in-toto.

6.1 Debian rebuilder constellation

Debian is one of the biggest stakeholders in the reproducible
builds project [26], an initiative to ensure bit-by-bit determin-
istic builds of a source package. One of the main motivations
behind reproducible builds is to avoid backdooring compil-
ers [136] or compromised toolchains in the Debian build
infrastructure. in-toto helps Debian achieve this goal via
its step-thresholding mechanism.

The apt-transport [16] for in-toto verifies the trusted
rebuilder metadata upon installing any Debian package.
Meanwhile, various institutions (that range from private to
non-profit and educational) run rebuilder infrastructure to re-
build Debian packages independently and produce attestations
of the resulting builds using in-toto link metadata. This way,
it is possible to cryptographically assert that a Debian package
has been reproducibly built by a set of k out of n rebuilders.
Figure 2 shows a graphical description of this setup.

By using the in-toto verifiable transport, users can make
sure that no package was tampered with unless an attacker is
also able to compromise at least k rebuilders and the Debian
buildfarm. Throughout this deployment, we were able to
test the thresholding mechanism, as well as practical ways
to bootstrap project owner signatures through the existing
package manager trust infrastructure [32, 34].

Deployment insight. Through our interaction with repro-
ducible builds, we were able to better understand how the
thresholding mechanism can be used to represent concepts
such as a build’s reproducibility and how to build in-toto
into operating-system tools to facilitate adoption.

6.2 Cloud native builds with Jenkins and Kubernetes

“Cloud native” is used to refer to container-based environ-
ments [3]. Cloud native ecosystems are characterized by
rapid changes and constant re-deployment of the internal
components. They are generally distributed systems, and
often managed by container orchestration systems such as
Kubernetes [23] or Docker Swarm [6]. Thus, their pipelines
are mostly automated using pipeline managers such as

Figure 3: The kubesec supply chain.

Jenkins [18] or Travis [137]. In this type of ecosystems, a
host- and infrastructure-agnostic, automated way to collect
supply-chain metadata is necessary not only for security,
but also for auditing and analyzing the execution of build
processes that led to the creation of the delivered product.

In the context of cloud native applications, in-toto is
used by Control Plane to track the build and quality-assurance
steps on kubesec [19], a Kubernetes resource and configu-
ration static analyzer. In order to secure the kubesec supply
chain, we developed two in-toto components: a Jenkins
plugin [11] and a Kubernetes admission controller [7, 17].
These two components allow us to track all operations
within a distributed system, both of containers and aggregate
in-toto link metadata, to verify any container image before
it is provisioned. Figure 3 shows a (simplified) graphical
depiction of their supply chain.

This deployment exemplifies an architecture for the supply
chains of cloud native applications, in which new container
images, serverless functions and many types of deployments
are quickly updated using highly-automated pipelines. In this
case, a pipeline serves as a coordinator, scheduling steps to
worker nodes that serve as functionaries. These functionaries
then submit their metadata to an in-toto metadata store.
Once a new artifact is ready to be promoted to a cloud
environment, a container orchestration system queries an
in-toto admission controller. This admission controller en-
sures that every operation on this delivered product has been
performed by allowed nodes and that all the artifacts were
acted on according to the specification in the in-toto layout.

Deployment insight. Our interaction with kubesec forced
us to investigate other artifact identifiers such as container
images (in addition to files). While in-toto can be used
today to track container images, the ability to point to an
OCIv2 [21] image manifest can provide a more succinct link
metadata representation and will be part of future work.

6.3 Datadog: E2E verification of Python packages

Datadog is a monitoring service for cloud-scale applications,
providing monitoring of servers, databases, tools, and
services, through a software-as-a-service-based data analytics
platform [5]. It supports multiple cloud service providers,
including Amazon Web Services (AWS), Microsoft Azure,

1402 28th USENIX Security Symposium USENIX Association

tag wheels-
builder

wheels-
signer unzip

Developers Users
(via Agent)CI/CD

tag.link wheels-
builder.link

wheels-
signer.link unzip.link

dd-check/
setup.py: 0xA

dd-check/
setup.py: 0xA

dd_check.whl:
0xB

dd_check.whl:
0xB

dd_check.whl:
0xB

dd-check/
setup.py: 0xA

Figure 4: The simplified Datadog agent integrations supply chain. There
are three steps (tag step, wheels-builder step, wheels-signer step), and
one inspection. Arrows denote MATCH rules, the tag step is signed using a
hardware dongle whereas the CI system uses online keys.

Google Cloud Platform, and Red Hat OpenShift. At the time
of writing, it has over 8,000 customers, and collects trillions
of monitoring record points per day.

The Datadog agent is software that runs on hosts. It
collects events and metrics from hosts and sends them to
Datadog, where customers can analyze their monitoring and
performance data. The agent integrations are plug-ins that
collect metrics from services running on customer infrastruc-
ture. Presently, there are more than one hundred integrations
that come installed out-of-the-box with the Agent.

Datadog developers wanted an ability to automatically
build and publish new or updated integrations independently
of agent releases. This is so interested users can try new
or updated integrations as they become available, and test
whether they are applicable to their needs.

This section will cover how Datadog built the first
tamper-evident pipeline using in-toto and how it leveraged
TUF to safely bootstrap key distribution and provide replay-
protection and freshness guarantees to in-toto metadata.

End-to-end verification with in-toto. The Datadog agent
integrations supply chain, shown in Figure 4, has three steps:
1. The first tag step outputs Python source code as products.

Every integration consists of Python source code and
several YAML [133] configuration files. The link for this
step is signed using a Yubikey hardware dongle [29]

2. In the second wheels-builder step, the pipeline must
receive the same source code from the tag step and
produce a Python wheel [24], as well as its updated
Python metadata. Each wheel is a ZIP file and its
metadata is an HTML file that points to all the available
versions of an integration.

3. In the third wheels-signer step, the pipeline must
receive, as materials, the same products as the
wheels-builder step. This steps signs for all wheels
using the system described in the next subsection. It can
be dangerous packaging Python source code, because
arbitrary code can be executed during the packaging
process, which can be inserted by compromising the
GitHub repository. Therefore, this step is separate from
the wheels-builder step, so that a compromise of the
former does not yield the signing keys of this step.

Finally, there is one inspection, which first ensures that a
given wheel matches the materials of the wheels-signer

step. It then extracts files from the wheel and checks that
they correspond to exactly the same Python source code and
YAML configuration files as the products of the tag step.
Thus, this layout provides end-to-end verification: it prevents a
compromised pipeline from causing users to trust wheels with
source code that was never released by Datadog developers.

Transport with The Update Framework (TUF). Whereas
in-toto provides end-to-end verification of the Datadog
pipeline, it does not solve a crucial problem that arises in prac-
tice: How to securely distribute, revoke, and replace the public
keys used to verify the in-toto layout. This mechanism must
be compromise-resilient [100–102, 121], and resistant to a
compromise of the software repository or server used to serve
files. While SSL / TLS protects users from man-in-the-middle
(MitM) attacks, it is not compromise-resilient, because
attackers who compromise the repository can simply switch
the public keys used to verify in-toto layout undetected,
and thus defeat end-to-end verification. Likewise, other
solutions, such as X509 certificates do not support necessary
features such as in-band key revocation and key rotation.

The Update Framework (TUF) [100–102, 121] provides
precisely this type of compromise-resilient mechanism, as
well as in-band key revocation and key rotation. To do so,
TUF adds a higher layer of signed metadata to the repository
following two design principles that inspired the in-toto
design. The first is the use of roles in a similar fashion to
in-toto, so that a key compromise does not necessarily
affect all targets (i.e., any Python wheels, or even in-toto
metadata). The second principle is minimizing the risk of
a key compromise using offline keys, or signing keys that
are kept off the repository and pipeline in a cold storage
mechanism, such as safe deposit boxes, so that attackers who
compromise the infrastructure are unable to find these keys.

TUF is used within the Datadog integrations downloader
to distribute, in a compromise-resilient manner, the: (1)
root of trust for all wheels, TUF and in-toto metadata, (2)
in-toto layout, and (3) public keys used to verify this layout.
TUF also guarantees that MitM attackers cannot tamper
with the consistency, authenticity, and integrity of these
files, nor rollback or indefinitely replay in-toto metadata.
This security model is simplified because it ignores some
considerations that are out of the scope of this paper.

In summary, the Datadog pipeline uses TUF to appropri-
ately bootstrap the root of the trust for the entire system, and
in-toto to guarantee that the pipeline packaged exactly the
source code signed by one of the Datadog developers inside
universal Python wheels. By tightly integrating TUF and
in-toto, Datadog’s users obtain the compromise resilience
of both systems combined.

Deployment insight. Through the Datadog deployment,
we learned how to use other last-mile systems like TUF
to provide not only compromise-resilience, but also
replay-protection, freshness guarantees, and mix-and-match
protection for in-toto metadata.

USENIX Association 28th USENIX Security Symposium 1403

7 Evaluation
We evaluated in-toto’s ability to guarantee software supply
chain integrity on two fronts: efficiency and security. We set
off to answer the following questions:

Does in-toto incur reasonable overheads in terms of
bandwidth, storage overhead and verification time?
Can in-toto be used to protect systems against real-life
supply chain compromises?

In order to answer the first question, we explored in-toto
as used in the context of Datadog for two reasons: Datadog
offers more than 111 integration packages to verify with
in-toto, and its data and source code is publicly available.
Furthermore, it is a production-ready integration that can be
used by Datadog’s more than 8,000 clients today [31]. Their
clients include major companies like Twitter, NASDAQ and
The Washington Post [4].

Then, we surveyed historical supply chain compromises
and catalogued them. We evaluated these compromises
against the in-toto deployments described in Section 6,
accounting for their supply chain configuration, and including
the actors involved and their possible key assignments. By
studying the nature of each compromise, we were able to
estimate what degree of key compromise could hypothetically
happen and, with it, the consequences of such a compromise
on these supply chains when in-toto is in place.

7.1 in-toto’s overhead in the Datadog deployment
In the three major costs that in-toto presents are the storage,
transfer and verification cost. In order to explore these costs,
we set out to use the publicly available Datadog agent integra-
tion client and software repository. From this data, we can de-
rive the cost of storing in-toto metadata in the repository, the
cost of transferring the in-toto metadata for any given pack-
age and the verification times when installing any package.

Storage overhead. In order to understand the storage
overhead, we mirrored the existing agent integrations Python
package repository. Then, we inspected the package payloads
and the repository metadata to show the cost breakdown of
the repository as a whole. Table 2 depicts the cost breakdown
of the Datadog repository, as mirrored on February 8 of 2019.

Type total Python TUF in-toto in-toto
package metadata links Layout

RSA 4096 74.02% 0.83% 5.51% 16.75% 2.89%
DSA 1024 & 74.48% 0.84% 5.54% 16.35% 2.79%

ed25519
optimized 79.56% 0.90% 5.92% 10.65% 2.97%

Table 2: Storage overhead breakdown for a in-toto enabled package
repository. All metadata is compressed using zlib.

Table 2 shows that in-toto takes up about 19% of the
total repository size, and thus makes it a feasible solution
in terms of storage overhead. In addition, compared to its
co-located security system TUF, the cost of using in-toto
is higher, with almost four times the metadata storage cost.
Further, the breakdown also indicates that the governing
factor for this storage overhead are the in-toto links, rather

than the layout file, with a layout being approximately 6 to
3 times smaller than the links (42 KB in comparison of the
148KB for all the link metadata).

There are two main reasons that drive this cost. First and
foremost, is the engineering decision to track all the files
within the pipeline (including Python metadata). Although
these are not required to be tracked with in-toto, for the
sake of security (as this type of metadata is being protected
by TUF), it eases the implementation at a manageable cost.
The second is that of signatures: the signatures used within
the Datadog deployment come from either 4096-bit openpgp
keys on a Yubikey, or 4096-bit PEM keys. These alone
account for almost half of the in-toto metadata size.

For this reason, it is possible to further reduce the size of
the metadata to 13% of the total repository size. Rows two
and three of Table 2 represent the repository overhead when
limiting the amount of files tracked to only Python sources
and packages and using a DSA1024 as the signing algorithm.
Network overhead. Similar to storage overhead, the network
overhead incurred by clients when installing any integration
is of utmost importance. To explore this cost, we investigate
the raw package sizes and contrast it with the size of the
package-specific metadata size. It is of note though, that
the size of in-toto metadata does not scale with the size
of the package, but rather the number of files inside of it.
This is because most of the metadata cost is taken by pieces
of link metadata, of which the biggest three fields are the
signature, expected_materials and expected_products.
Figure 5 shows both the distribution of package sizes and the
distribution of metadata sizes in increasing order.

Figure 5: Package and metadata size distribution. Error bars show packages
with the same number of files but different sizes.

In Figure 5 we can see that, for most packages, the
metadata size cost is below 44% of the package size. In fact
for the 90th percentile, the metadata cost approaches a costly
64%, to a worst case of 103%. However, upon inspecting
these cases, we found that the issue is that these are cases
in which link metadata is tracking files not contained in the
delivered product. Indeed, in-toto is tracking files, such as
test suites, fixtures and even iconography that does not get
packaged on the integrations Python wheel. The worst case
scenario is in fact cisco_aci, which only packages 12 files
out of 316 contained in the tag step metadata.

1404 28th USENIX Security Symposium USENIX Association

Verification overhead. Finally, to draw insight from the
computation time required to verify each package, we ran
a series of micro-benchmarks on a laptop with an Intel
i7-6500U processor and 8GB of RAM. In this case, we ran an
iterated verification routine with the packages already fetched
and instrumented the Datadog agent installer to measure the
installation time with and without in-toto verification.

From this experiment, we conclude that in-toto verifi-
cation adds less than 0.6 seconds on all cases. This is mostly
dominated by the signature verification, and is thus bounded
by the number of links to verify (i.e., the number of steps
times the threshold).

7.2 Supply chain data breaches

We surveyed 30 major different supply chain breaches and
incidents occurring from January 2010 to January 2019 (this
list of historical attacks is included in Appendix B). These
historical incidents cover a variety of software products and
platforms, such as Apple’s Xcode [113], Android GTK [8],
MeDoc financial software [35], Adobe updater [95], PHP
PEAR repository [33], and South Korean organizations [138].

Studying these historical attacks identified the type of
access that the attacker had (or was speculated to have)
and identified three categories: the attacker had control
of infrastructure (but not functionary keys), the attacker
had control over part of the infrastructure or keys of a
specific functionary, and the attacker was able to control
the entire supply chain by compromising a project owner’s
infrastructure (including their signing key).

For the historical attacks in Appendix B, we determined
whether an attack used a compromised key, and then labeled
those attacks with “Key Compromise”. We also determined
the degree of access in the attack (all the way to the possible
step) and labeled each attack with an “Access Level” that
indicates the step in the chain where the attack took place.

We now analyze how these compromises could affect
the three supply chains where in-toto was deployed (as
described in Section 6). Our analysis indicates that the
majority of attacks (23 out of 30) took place without any
key compromise. In those cases, none of the three in-toto
deployments would have been affected since the client
inspection (as described in Sec. 4.3) could detect extraneous
artifacts or malicious delivered products.

Out of the 30 studied incidents, 7 involved a key compro-
mise. We summarize our analysis of these attacks in Table 3.
One attack, Keydnap [71], used a stolen Apple developer
certificate to sign the malicious software package. Therefore,
this attack would not have affected any in-toto deploy-
ments, because in-toto would detect that an unauthorized
functionary signed the link metadata. Another attack used the
developer’s ssh key to upload a malicious Python package
on PyPI [52]. All in-toto deployments could have detected
this attack since files extracted from the malicious package
would not exactly match the source code as the products of
the first step in the supply chain.

The remaining five attacks involving a key compromise
were recent sophisticated incidents that affected many clients

Attack Name DD RB CN
Keydnap [71] X X X
backdoored-pypi [52] X X X
CCleaner Atatck [126] X X 7

RedHat breach [125] X X 7

*NotPetya [35] X 7 7

Operation Red [138] X 7 7

KingSlayer [118] X 7 7

Table 3: The impact of the historical attacks on the three in-toto
deployments: Datadog (DD), Reproducible Builds (RB), Cloud Native (CN).
Out of the 30 historical attacks, 23 did not involve a key compromise, so none
of the deployments would have been affected. This table shows the remaining
attacks which involved a key compromise. In one attack, marked with a star
(*), it is unknown if a key compromise took place. We assumed that was the
case. A Xindicates that the deployment could have detected the attack.

and companies. The CCleaner [126] and RedHat [125]
attacks are not effective against the Reproducible Builds
deployment (RB) and Datadog (DD), as the former imple-
ments a threshold mechanism in the build step and the latter
does not build binaries in their infrastructure. In a similar
flavor, three attacks (Operation Red [138], NotPetya [35], and
KingSlayer [118]) would not affect the Datadog deployment,
as it implements a threshold mechanism in the packaging
step. The Cloud Native deployment, on the other hand,
would detect none of these five attacks, as it does not employ
thresholds. To conclude, the in-toto deployments would
detect most of the historical attacks based on the general
in-toto design principles. For those attacks that involve
key compromises, our analysis shows that in-toto’s use of
thresholds is an effective mechanism.

Key Takeaway. Cloud Native (83%) and reproducible
builds (90%) integrations of in-toto would prevent most
historical supply chain attacks. However, integration into a se-
cure update system as was done by Datadog (100%) provides
further protection.

8 Related Work

To the best of our knowledge, work that attempts to use an
automated tool to secure the supply chain is scarce. However,
there has been a general push to increase the security of
different aspects within the supply chain, as well as to tighten
the binding between neighboring processes within that chain.
In this section, we mention work relevant to supply chain
security, as some of it is crucial for the success of in-toto
as a framework. We also list work that can further increase
the security guarantees offered by in-toto.

Automated supply chain administration systems. Config-
uring and automating processes of the supply chain has been
widely studied. Works by Bégin et al. [45], Banzai et al., [43]
and Andreetto et al. [36] focus on designing supply chains
that automatically assign resources and designate parties
to take part in different processes to create a product. This
work is similar to in-toto in that it requires a supply chain
topology to carry out the work. However, none of these
projects were focused on security. Instead, they deal with
adaptability of resources and supply chain automation.

USENIX Association 28th USENIX Security Symposium 1405

Perhaps most closely related to in-toto is the Grafeas
API [9] released by Google. However, Grafeas’s focus is
on tracking and storing supply chain metadata rather than
security. Grafeas provides a centralized store for supply chain
metadata, which can be later queried by verification tools such
as Google’s Binary Authorization [84]. Grafeas does not pro-
vide a mechanism to describe what steps should be performed,
validate performed steps, or even support cryptographic sig-
natures [1]. Finally, in-toto is architecture agnostic, while
Grafeas is mostly cloud-native; in-toto was geared to repre-
sent supply chains whether they are cloud-native, off-cloud or
hybrid-cloud. We are collaborating with the Grafeas team to
natively support in-toto link metadata within Grafeas [10].

Software supply chain security. In addition, many soft-
ware engineering practices have been introduced to
increase the security of the software development lifecycle
[42, 104, 105, 111, 116]. Additional work by Devanbu et
al. [67] has explored different techniques to “construct safe
software that inspires trust in hosts.” These techniques are
similar to in-toto in that they suggest releasing supply
chain information to the end users for verification.

Though none of these proposals suggest an automated tool
to ensure the integrity of the supply chain, they do serve as
a helpful first step in designing in-toto. As such, their prac-
tices could be used as templates for safe supply chain layouts.

Finally, there have been hints by the industry to support
features that could be provided by in-toto [90, 114, 145].
This includes providing certificates noting the presence of a
process within the supply chain and providing software trans-
parency through mechanisms such as reproducible builds.

Source control security. The source code repository is
usually the first link in the supply chain. Early work in
this field has explored the different security properties that
must be included in software configuration management
tools [63]. Version control systems, such as Git, incorporate
protection mechanisms to ensure the integrity of the source
code repository, which include commit hash chaining and
signed commits [77, 78].

Buildsystem and verification security. The field of auto-
mated testing and continuous integration has also received
attention from researchers. Recently, self-hosted and public
automated testing and continuous integration systems have
become popular [54, 72, 137]. Work by Gruhn et al. [85] has
explored the security implications of malicious code running
on CI systems, showing that it is possible for attackers to
affect other projects being tested in the same server, or the
server itself. This work, and others [69] serve as a motivation
for in-toto’s threat model.

Further work by Hanawa et al. [87] explores different
techniques for automated testing in distributed systems. The
work is similar to in-toto in that it allocates hosts in the
cloud to automatically run tests for different environments
and platforms. However, in-toto requires such systems to
provide certification (in the form of link metadata) that the
tests were run and the system was successful.

Subverting the development environment, including
subverting the compiler, can have a serious impact on the
software supply chain [135]. Techniques such as Wheeler’s
diverse double-compiling (DDC) [144] can be used to
mitigate such “trusting trust” attacks. In the context of
reproducible builds project, DDC can also be used for
multi-party verification of compiler executables.

Verifying compilers, applications and kernels. Ongoing
work on verifying compilers, applications and kernels will
provide a robust framework for applications that fully comply
with their specification [88, 98]. Such work is similar to
in-toto in that a specification is provided for the compiler to
ensure that their products meet stated requirements. However,
in contrast to our work, most of this work is not intended
to secure the origin of such specification, or to provide any
proof of the compilation’s results to steps further down the
supply chain. Needless to say, verifying compilers could be
part of a supply chain protected with in-toto.

Furthermore, work by Necula et al. introduces proof-
carrying code [109,110], a concept that relies on the compiler
to accompany machine code with proof for verification at
runtime. Adding to this, industry standards have included
machine code signing [40] to be verified at runtime. This
work is similar to in-toto in that compilers generate
information that will be verified by the end user upon runtime.
Although these techniques are more granular than in-toto’s
(runtime verification vs verification upon installation), they
do not aim to secure the totality of the supply chain.

Package management and software distribution security.
Work by Cappos et al. has been foundational to the design
of in-toto’s security mechanisms [46, 102, 121]. The
mechanisms used to secure package managers are similar to
in-toto in that they rely on key distribution and role sepa-
ration to provide security guarantees that degrade with partial
key compromise. However, unlike in-toto, these systems
are restricted to software updates, which limit their scope.
Concepts from this line of work could be overlaid on in-toto
to provide additional “last mile” guarantees for the resulting
product, such as package freshness or protection against de-
pendencies that are not packaged with the delivered product.

9 Conclusions and future work

In this paper, we have described many aspects of in-toto,
including its security properties, workflow and metadata.
We also explored and described several extensions and
implications of using in-toto in a number of real-world
applications. With this we have shown that protecting the
entirety of the supply chain is possible, and that it can be
done automatically by in-toto. Further, we showed that,
in a number of practical applications, in-toto is a practical
solution to many contemporary supply chain compromises.

Although plenty of work needs to be done in the context
of the in-toto framework (e.g., decreasing its storage cost),
tackling the first major limitations of supply chain security
will increase the quality of software products. We expect
that, through continued interaction with the industry and

1406 28th USENIX Security Symposium USENIX Association

elaborating on the framework, we can provide strong security
guarantees for future software users.

Acknowledgments
We would like to thank the USENIX reviewers and Luke
Valenta for reviewing this paper. We would also like to thank
Lukas Pühringer and Lois DeLong from the in-toto team;
Holger Levsen, Chris Lamb, kpcyrd, and Morten Linderud
from Reproducible Builds; the Datadog Agent Integrations
(especially Ofek Lev) and Product Security teams; as well
as Andrew Martin and Luke Bond from Control Plane for
their valuable work towards integrating in-toto in all these
communities. This research was supported by the NSF under
Grants No. CNS 1801430 and DGE 1565478.

References
[1] Add Signature message to v1beta common.proto. #253. https:

//github.com/grafeas/grafeas/pull/253.
[2] Apt. https://wiki.debian.org/Apt.
[3] Cloud native computing foundation. https://www.cncf.io/.
[4] Customers | Datadog. https://www.datadoghq.com/

customers/.
[5] Datadog: Modern monitoring & analytics. https:

//www.datadoghq.com/.
[6] Docker Swarm overview. https://docs.docker.com/

swarm/overview/.
[7] Dynamic admission control. https://kubernetes.io/

docs/reference/access-authn-authz/extensible-
admission-controllers/.

[8] ExpensiveWall: A Dangerous Packed Malware On Google
Play. https://blog.checkpoint.com/2017/09/14/
expensivewall-dangerous-packed-malware-google-
play-will-hit-wallet/.

[9] Grafeas. https://grafeas.io/.
[10] Grafeas + in-toto. https://github.com/in-toto/

totoify-grafeas.
[11] in-toto Jenkins plugin. https://plugins.jenkins.io/in-

toto.
[12] in-toto layout creation tool. https://in-

toto.engineering.nyu.edu.
[13] in-toto Metadata Examples. https://in-toto.github.io/

metadata-examples.html.
[14] in-toto Specification: Version 0.9. https://github.com/in-

toto/docs/blob/v0.9/in-toto-spec.md.
[15] in-toto Specifications. https://in-toto.github.io/

specs.html.
[16] in-toto transport for apt. https://github.com/in-toto/

apt-transport-in-toto.
[17] in-toto-webhook. https://github.com/SantiagoTorres/

in-toto-webhook.
[18] Jenkins: Build great things at any scale. https:

//jenkins.io/.
[19] Kubesec.io: Quantify risk for kubernetes resources.

https://kubesec.io/.
[20] Notary. https://docs.docker.com/samples/library/

notary/.
[21] Oci image format specification. https://github.com/

opencontainers/image-spec.
[22] Operation Aurora. https://en.wikipedia.org/wiki/

Operation_Aurora.
[23] Production-Grade Container Orchestration. https:

//kubernetes.io/.
[24] Python Wheels. https://pythonwheels.com/.

[25] Reproducible builds. https://reproducible-
builds.org/.

[26] Reproducible builds: Who is involved? https:
//reproducible-builds.org/who/.

[27] Some Debian Project machines compromised.
https://www.debian.org/News/2003/20031121.

[28] The Update Framework (TUF). https://
theupdateframework.github.io/.

[29] The YubiKey. https://www.yubico.com/products/
yubikey-hardware/.

[30] Twistlock: Cloud Native Security for Docker, Kubernetes and
Beyond. https://www.twistlock.com/.

[31] Forbes Cloud 100: #19 Datadog, 2018. https:
//www.forbes.com/companies/datadog/?list=
cloud100#3cad45279e03.

[32] in-toto at the reproducible builds summit-paris 2018, 2019.
https://ssl.engineering.nyu.edu/blog/2019-01-18-
in-toto-paris.

[33] PHP PEAR Software Supply Chain Attack, 2019.
https://blog.dcso.de/php-pear-software-supply-
chain-attack/.

[34] Reproducible builds: Weekly report #196, 2019.
https://reproducible-builds.org/blog/posts/196/.

[35] A. Cherepanov. Analysis of TeleBots’ cunning back-
door. https://www.welivesecurity.com/2017/07/04/
analysis-of-telebots-cunning-backdoor.

[36] P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, A. Cavallini,
M. Cecchi, V. Ciaschini, A. Dorise, F. Giacomini, A. Gianelle,
et al. The glite workload management system. In J. of Physics:
Conf. Series, volume 119, page 062007. IOP Publishing, 2008.

[37] Andy Greenberg. MacOS Update Accidentally Undoes Apple’s
“Root” Bug Patch. https://www.wired.com/story/macos-
update-undoes-apple-root-bug-patch/.

[38] Apache Infrastructure Team. apache.org incident report for
8/28/2009. https://blogs.apache.org/infra/entry/
apache_org_downtime_report, 2009.

[39] Apache Infrastructure Team. apache.org incident report for
04/09/2010. https://blogs.apache.org/infra/entry/
apache_org_04_09_2010, 2010.

[40] Apple Computers. iOS Security Guide, 2016.
https://www.apple.com/business/docs/iOS_
Security_Guide.pdf.

[41] B. Arkin. Adobe to Revoke Code Signing Certificate. https:
//blogs.adobe.com/conversations/2012/09/adobe-
to-revoke-code-signing-certificate.html, 2012.

[42] R. Bachmann and A. D. Brucker. Developing secure software.
Datenschutz und Datensicherheit, 38(4):257–261, 2014.

[43] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa,
and M. Sato. D-cloud: Design of a software testing environ-
ment for reliable distributed systems using cloud computing
technology. In Proc. of the 10th IEEE/ACM CCGrid, 2010.

[44] Barb Darrow. Adobe source code breach; it’s bad, real bad.
https://gigaom.com/2013/10/04/adobe-source-code-
breech-its-bad-real-bad.

[45] M.-E. Bégin, G. D.-A. Sancho, A. Di Meglio, E. Ferro,
E. Ronchieri, M. Selmi, and M. Żurek. Build, configuration,
integration and testing tools for large software projects: Etics.
In Rapid Integration of Software Engineering Techniques,
pages 81–97. Springer, 2006.

[46] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman. A look in
the mirror: Attacks on package managers. In Proc. of the 15th
ACM CCS, pages 565–574, 2008.

[47] S. Checkoway, S. Cohney, C. Garman, M. Green, N. Heninger,
J. Maskiewicz, E. Rescorla, H. Shacham, and R.-P. Wein-
mann. A systematic analysis of the juniper dual ec
incident. Cryptology ePrint Archive, Report 2016/376, 2016.
http://eprint.iacr.org/.

USENIX Association 28th USENIX Security Symposium 1407

[48] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney,
M. Green, N. Heninger, R. P. Weinmann, E. Rescorla, and
H. Shacham. A Systematic Analysis of the Juniper Dual EC
Incident. In Proc. of ACM CCS ’16, 2016.

[49] R. Chirgwin. Microsoft deletes deleterious file deletion bug
from Windows 10. https://www.theregister.co.uk/2018/
10/10/microsoft_windows_deletion_bug/.

[50] A. Chitu. The Android Bug 8219321. https:
//googlesystem.blogspot.com/2013/07/the-8219321-
android-bug.html#gsc.tab=0, 2013.

[51] Christian Nutt. Cloud source host Code Spaces hacked, devel-
opers lose code. http://www.gamasutra.com/view/news/
219462/Cloud_source_host_Code_Spaces_hacked_
developers_lose_code.php.

[52] C. Cimpanu. Backdoored Python Library Caught Stealing SSH
Credentials, 2018. https://www.bleepingcomputer.com/
news/security/backdoored-python-library-caught-
stealing-ssh-credentials/.

[53] C. Cimpanu. Microsoft Discovers Supply Chain At-
tack at Unnamed Maker of PDF Software, 2018.
https://www.bleepingcomputer.com/news/security/
microsoft-discovers-supply-chain-attack-at-
unnamed-maker-of-pdf-software/.

[54] Codeship. Continuous Delivery with Codeship: Fast, Secure,
and fully customizable. https://codeship.com/.

[55] Context Threat Intelligence. Threat Advisory: The Monju
Incident, 2014. https://paper.seebug.org/papers/
APT/APT_CyberCriminal_Campagin/2014/The_Monju_
Incident.pdf.

[56] M. Coppock. Windows Update not working af-
ter October 2018 patch? Here’s how to fix it .
https://www.digitaltrends.com/computing/windows-
update-not-working/.

[57] J. Corbet. An attempt to backdoor the kernel.
http://lwn.net/Articles/57135/, 2003.

[58] J. Corbet. The cracking of kernel.org. http:
//www.linuxfoundation.org/news-media/blogs/
browse/2011/08/cracking-kernelorg, 2011.

[59] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-
scale analysis of the security of embedded firmwares. In Proc.
of the 23rd USENIX Security Symposium, pages 95–110, 2014.

[60] CrowdStrike. Securing the supply chain. https:
//www.crowdstrike.com/resources/wp-content/
brochures/pr/CrowdStrike-Security-Supply-
Chain.pdf.

[61] A. Cui, M. Costello, and S. J. Stolfo. When firmware
modifications attack: A case study of embedded exploitation.
In NDSS, 2013.

[62] Dan Goodin. Kernel.org Linux repository rooted in hack
attack. http://www.theregister.co.uk/2011/08/31/
linux_kernel_security_breach/.

[63] David A. Wheeler. Software Configuration Manage-
ment Security. http://www.dwheeler.com/essays/scm-
security.html.

[64] Debian. Debian Investigation Report after Server Compro-
mises. https://www.debian.org/News/2003/20031202.

[65] Debian. Security breach on the Debian wiki 2012-
07-25. https://wiki.debian.org/DebianWiki/
SecurityIncident2012, 2012.

[66] Dennis Fisher. Researcher Finds Tor Exit Node Adding Mal-
ware to Binaries. https://threatpost.com/researcher-
finds-tor-exit-node-adding-malware-to-binaries/
109008/.

[67] P. T. Devanbu, P. W. Fong, and S. G. Stubblebine. Techniques
for trusted software engineering. In Proceedings of the 20th
international conference on Software engineering, pages
126–135. IEEE Computer Society, 1998.

[68] Dona Sarkar. A note about the unintentional release of builds to-
day. https://blogs.windows.com/windowsexperience/
2017/06/01/note-unintentional-release-builds-
today/.

[69] P. M. Duvall, S. Matyas, and A. Glover. Continuous integra-
tion: improving software quality and reducing risk. Pearson
Education, 2007.

[70] Edward Iskra. Vulnerable Wallets and the Suspicious File, 2017.
https://bitcoingold.org/vulnerable-wallets/.

[71] ESET Research. OSX/Keydnap spreads via signed Transmis-
sion application. https://www.welivesecurity.com/
2016/08/30/osxkeydnap-spreads-via-signed-
transmission-application/.

[72] B. Fitzgerald and K.-J. Stol. Continuous software engineering
and beyond: trends and challenges. In Proceedings of the
1st International Workshop on Rapid Continuous Software
Engineering, pages 1–9. ACM, 2014.

[73] A. Forums. Numix gnome 3.20. https://
bbs.archlinux.org/viewtopic.php?id=211164.

[74] J. Freeman. Yet Another Android Master Key Bug.
http://www.saurik.com/id/19, 2014.

[75] P. W. Frields. Infrastructure report, 2008-08-22 UTC 1200.
https://www.redhat.com/archives/fedora-announce-
list/2008-August/msg00012.html, 2008.

[76] Gentoo Linux. Incident Reports/2018-06-28 Github. https:
//wiki.gentoo.org/wiki/Project:Infrastructure/
Incident_Reports/2018-06-28_Github.

[77] M. Gerwitz. A Git Horror Story: Repository Integrity With
Signed Commits. http://mikegerwitz.com/papers/git-
horror-story.

[78] Git SCM. Signing your work. https://git-scm.com/book/
en/v2/Git-Tools-Signing-Your-Work.

[79] GitHub, Inc. Public Key Security Vulnerability and Miti-
gation. https://github.com/blog/1068-public-key-
security-vulnerability-and-mitigation, 2012.

[80] GNU Savannah. Compromise2010. https:
//savannah.gnu.org/maintenance/Compromise2010/.

[81] D. Goodin. Fedora servers breached after external compromise.
http://www.theregister.co.uk/2011/01/25/fedora_
server_compromised/.

[82] D. Goodin. Meet “Great Cannon”, the man-in-the-middle
weapon China used on GitHub. https://arstechnica.com/
security/2015/04/meet-great-cannon-the-man-in-
the-middle-weapon-china-used-on-github/.

[83] D. Goodin. Attackers sign malware using crypto certificate
stolen from Opera Software. http://arstechnica.com/
security/2013/06/attackers-sign-malware-using-
crypto-certificate-stolen-from-opera-software/,
2013.

[84] Google. Binary Authorization. https://cloud.google.com/
binary-authorization/.

[85] V. Gruhn, C. Hannebauer, and C. John. Security of public
continuous integration services. In Proc. of the 9th ACM Inter-
national Symposium on Open Collaboration, page 15, 2013.

[86] Hackread. Proton malware. https://www.hackread.com/
hackers-infect-mac-users-proton-malware-using-
elmedia-player.

[87] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada,
and M. Sato. Large-scale software testing environment using
cloud computing technology for dependable parallel and
distributed systems. In Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International
Conference on, pages 428–433. IEEE, 2010.

[88] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad apps: End-to-end security
via automated full-system verification. In Proc. of the 11th
USENIX OSDI, pages 165–181, 2014.

1408 28th USENIX Security Symposium USENIX Association

[89] Idrees Patel. Janus Vulnerability. https://www.xda-
developers.com/janus-vulnerability-android-apps.

[90] ISO/IEC JTC 1/SC 27 IT Security techniques.
ISO/IEC 27034:2011 Information technology – Se-
curity techniques – Application security. https:
//www.iso.org/standard/44378.html?browse=tc.

[91] Jane Silber. Notice of Ubuntu Forums breach.
https://blog.ubuntu.com/2016/07/15/notice-of-
security-breach-on-ubuntu-forums.

[92] Jared Newman. Gauss Malware: What You Need to Know.
https://www.pcworld.com/article/260735/gauss_
malware_what_you_need_to_know.html.

[93] Jeff Erickson. Inside OilRig – Tracking Iran’s
Busiest Hacker Crew On Its Global Rampage.
https://www.forbes.com/sites/thomasbrewster/
2017/02/15/oilrig-iran-hackers-cyberespionage-
us-turkey-saudi-arabia/#5415a493468a.

[94] Jensen Beeler. Millions of Motorcyclists Hacked in Verti-
calScope Breach. https://www.asphaltandrubber.com/
news/verticalscope-hack/.

[95] Jeremy Kirk. New malware overwrites software updaters,
2010. https://www.itworld.com/article/2755831/
security/new-malware-overwrites-software-
updaters.html.

[96] Juniper. 2015-12 Out of Cycle Security Bulletin: ScreenOS:
Multiple Security issues with ScreenOS (CVE-2015-7755,
CVE-2015-7756). https://kb.juniper.net/InfoCenter/
index?page=content&id=JSA10713, Dec. 15.

[97] G. Kelly. Apple iOS 12.1.4 Fails To Fix Cellular, WiFi Problems.
https://www.forbes.com/sites/gordonkelly/2019/
02/10/apple-ios-12-1-4-problem-iphone-cellular-
data-wifi-upgrade-ipad/.

[98] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
et al. sel4: Formal verification of an os kernel. In Proc. of the
22nd ACM SOSP, pages 207–220, 2009.

[99] B. Kuhn. News: IMPORTANT: Information Regarding Savan-
nah Restoration for All Users. https://savannah.gnu.org/
forum/forum.php?forum_id=2752, 2003.

[100] T. K. Kuppusamy, A. Brown, S. Awwad, D. McCoy,
R. Bielawski, C. Mott, S. Lauzon, A. Weimerskirch, and
J. Cappos. Uptane: Securing software updates for automobiles.
14th ESCAR Europe, 2016.

[101] T. K. Kuppusamy, V. Diaz, and J. Cappos. Mercury:
Bandwidth-effective prevention of rollback attacks against
community repositories. In Proc. of the 2017 USENIX Annual
Technical Conference, 2017.

[102] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos.
Diplomat: using delegations to protect community repositories.
In proc. of the 13th USENIX NSDI, pages 567–581, 2016.

[103] Martin Brinkmann. Attention: Some Fosshub downloads
compromised. https://www.ghacks.net/2016/08/03/
attention-fosshub-downloads-compromised/.

[104] M. S. Merkow and L. Raghavan. Secure and resilient software:
Requirements, test cases, and testing methods. 2011.

[105] Microsoft. Microsoft secure development lifecycle.
https://www.microsoft.com/en-us/sdl/default.aspx.

[106] Microsoft. Microsoft Trusted Publishers Certificate
Store. https://msdn.microsoft.com/en-us/library/
windows/hardware/ff553504(v=vs.85).aspx.

[107] M. Mullenweg. Passwords Reset. https://wordpress.org/
news/2011/06/passwords-reset/, 2011.

[108] Naked Security. Flame malware used man-in-the-
middle attack against Windows Update. https:
//nakedsecurity.sophos.com/2012/06/04/flame-
malware-used-man-in-the-middle-attack-against-
windows-update/.

[109] G. C. Necula. Proof-carrying code. In Proceedings of the
ACM SIGPLAN, 1997.

[110] G. C. Necula. Proof-carrying code. design and implementa-
tion. Springer, 2002.

[111] I. S. Organization. Information technology – security
techniques – application security – part 1: Overview
and concepts. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=44378.

[112] Patrick Gray. Gentoo Linux server compromised.
https://www.zdnet.com/article/gentoo-linux-
server-compromised/, 2003.

[113] D. Pauli. icloud phishing attack hooks 39 ios apps and wechat.
theregister, 2015. https://www.theregister.co.uk/2015/
09/21/icloud_phishing_attack_hooks_39_ios_apps_
most_popular_message_client/.

[114] S. Quirolgico, J. Voas, T. Karygiannis, C. Michael,
and K. Scarfone. Vetting the Security of Mobile Ap-
plications. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-163.pdf.

[115] Red Hat, Inc. Infrastructure report, 2008-08-22 UTC
1200. https://rhn.redhat.com/errata/RHSA-2008-
0855.html, 2008.

[116] J. Robbins. Adopting open source software engineering
(OSSE) practices by adopting OSSE tools. Perspectives on
free and open source software, pages 245–264, 2005.

[117] RODRIGO ARANGUA. The security flaws at the heart of
the Panama Papers. https://www.wired.co.uk/article/
panama-papers-mossack-fonseca-website-security-
problems.

[118] RSA Research. Kingslayer-A Supply Chain Attack. https:
//www.rsa.com/content/dam/premium/en/white-
paper/kingslayer-a-supply-chain-attack.pdf.

[119] RubyGems.org. Data Verification. http:
//blog.rubygems.org/2013/01/31/data-
verification.html, 2013.

[120] Ryan Naraine. Open-source ProFTPD hacked, backdoor
planted in source code. http://www.zdnet.com/article/
open-source-proftpd-hacked-backdoor-planted-in-
source-code.

[121] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine.
Survivable key compromise in software update systems. In
Proc. of the 17th ACM CCS, pages 61–72. ACM, 2010.

[122] Slashdot Media. phpMyAdmin corrupted copy on Korean mir-
ror server. https://sourceforge.net/blog/phpmyadmin-
back-door/, 2012.

[123] J. K. Smith. Security incident on Fedora infrastructure
on 23 Jan 2011. https://lists.fedoraproject.org/
pipermail/announce/2011-January/002911.html,
2011.

[124] Steve Klabnik. Security advisory for crates.io, 2017-09-19.
https://users.rust-lang.org/t/security-advisory-
for-crates-io-2017-09-19/12960.

[125] Steven J. Vaughan-Nichols. Red Hat’s Ceph and
Inktank code repositories were cracked. http:
//www.zdnet.com/article/red-hats-ceph-and-
inktank-code-repositories-were-cracked.

[126] Swati Khandelwal. CCleaner Attack Timeline–
Here’s How Hackers Infected 2.3 Million PCs.
https://thehackernews.com/2018/04/ccleaner-
malware-attack.html, 2018.

[127] Symantec. W32.Duqu: The precursor to the next
Stuxnet. http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
w32_duqu_the_precursor_to_the_next_stuxnet.pdf.

[128] Symantec. W32.Stuxnet Dossier. https://
www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_

USENIX Association 28th USENIX Security Symposium 1409

dossier.pdf.
[129] Symantec Corporation. Internet threat security report, 2018.

https://www.symantec.com/content/dam/symantec/
docs/reports/istr-23-2018-en.pdf.

[130] The FreeBSD Project. FreeBSD.org intrusion announced
November 17th 2012. http://www.freebsd.org/news/
2012-compromise.html, 2012.

[131] The PHP Group. php.net security notice. http://
www.php.net/archive/2011.php#id2011-03-19-1, 2011.

[132] The PHP Group. A further update on php.net. http:
//php.net/archive/2013.php#id2013-10-24-2, 2013.

[133] The YAML Project. The Official YAML Web Site.
https://yaml.org/, 2019.

[134] Thomas Reed. HandBrake hacked to drop new variant of Pro-
ton malware. https://blog.malwarebytes.com/threat-
analysis/mac-threat-analysis/2017/05/handbrake-
hacked-to-drop-new-variant-of-proton-malware/.

[135] Thomas Reed. XcodeGhost malware infiltrates App Store.
https://blog.malwarebytes.com/cybercrime/2015/
09/xcodeghost-malware-infiltrates-app-store/.

[136] K. Thompson. Reflections on Trusting Trust.
http://cm.bell-labs.com/who/ken/trust.html.

[137] Travis CI. Travis CI – test and deploy your code with
confidence. https://travis-ci.org/.

[138] Trend Micro Cyber Safety Solutions Team. Supply Chain
Attack Operation Red Signature Targets South Korean
Organizations, 2018. https://blog.trendmicro.com/
trendlabs-security-intelligence/supply-chain-
attack-operation-red-signature-targets-south-
korean-organizations/.

[139] Trend Micro Cyber Safety Solutions Team. New Magecart
Attack Delivered Through Compromised Advertising Supply
Chain, 2019. https://blog.trendmicro.com/trendlabs-
security-intelligence/new-magecart-attack-
delivered-through-compromised-advertising-
supply-chain/.

[140] W. Verduzu. Xposed Patch for Master Key and Bug 9695860
Vulnerabilities. https://www.xda-developers.com/
xposed-patch-for-master-key-and-bug-9695860-
vulnerabilities/, 2013.

[141] L. Voss. Newly Paranoid Maintainers. http:
//blog.npmjs.org/post/80277229932/newly-
paranoid-maintainers, 2014.

[142] T. Warren. Major new iOS bug can crash iPhones.
https://www.theverge.com/2018/2/15/17015654/
apple-iphone-crash-ios-11-bug-imessage.

[143] F. Weimer. CVE-2013-6435. https://access.redhat.com/
security/cve/CVE-2013-6435, 2013.

[144] D. A. Wheeler. Fully countering trusting trust through diverse
double-compiling. arXiv preprint arXiv:1004.5534, 2010.

[145] Yan/Bcrypt. Software transparency: Part 1. https://
zyan.scripts.mit.edu/blog/software-transparency/.

[146] Zack Whittaker. Hacker explains how he put ‘back-
door’ in hundreds of linux mint downloads. http:
//www.zdnet.com/article/hacker-hundreds-were-
tricked-into-installing-linux-mint-backdoor.

[147] K. Zetter. ’Google’ Hackers had ability to alter source code’.
https://www.wired.com/2010/03/source-code-hacks.

A in-toto artifact rule definition
The following artifact rule definition is taken from the
in-toto specification v0.9 [14].

ALLOW: indicates that artifacts matched by the pattern are
allowed as materials or products of this step.

DISALLOW: indicates that artifacts matched by the pattern
are not allowed as materials or products of this step.

REQUIRE: indicates that a pattern must appear as a
material or product of this step.

CREATE: indicates that products matched by the pattern
must not appear as materials of this step.

DELETE: indicates that materials matched by the pattern
must not appear as products of this step.

MODIFY: indicates that products matched by the pattern
must appear as materials of this step, and their hashes
must not by the same.

MATCH: indicates that the artifacts filtered in using
source-path-prefix/pattern must be matched to a
"MATERIAL" or "PRODUCT" from a destination step
with the "destination-path-prefix/pattern".

B Surveyed Attacks

Attack Name Key Access
Compromise Level

*NotPetya [35] X PI
CCleaner Attack [126] X BS, PI
Operation Red [138] X PI
KingSlayer [118] X PI
RedHat breach [125] X BS
keydnap [71] X PI
backdoored-pypi [52] X PI
PEAR breach [33] 7 PI
Monju Incident [55] 7 PI
Janus Vulnerability [89] 7 PI
Rust flaw [124] 7 PI
XcodeGhost [113] 7 BS
Expensive Wall [8] 7 BS
WordPress breach [107] 7 CR
HandBrake breach [134] 7 PI
Proton malware [86] 7 PI
FOSSHub breach [103] 7 PI
BadExit Tor [66] 7 PI
Fake updater [95] 7 PI
Bitcoin Gold breach [70] 7 PI
Adobe breach [44] 7 CR
Google Breach [147] 7 CR
ProFTPD breach [120] 7 CR
Kernel.org breach [62] 7 CR
Hacked Linux Mint [146] 7 PI
Code Spaces breach [51] 7 CR
Unnamed Maker [53] 7 PI
Gentoo backdoor [76] 7 CR
Buggy Windows [68] 7 PI
Buggy Mac [37] 7 PI

Table 4: Summary of surveyed supply chain attacks. CR,
BS and PI stand for Code Repository, Build System and
Publishing Infrastructure, respectively. A Xindicates that
the attack involved a key compromise. In one attack, marked
with a star (*), it was unknown if a compromised key was
involved. We assumed that was the case.

1410 28th USENIX Security Symposium USENIX Association

IODINE: Verifying Constant-Time Execution of Hardware

Klaus v. Gleissenthall
University of California, San Diego

Rami Gökhan Kıcı
University of California, San Diego

Deian Stefan
University of California, San Diego

Ranjit Jhala
University of California, San Diego

Abstract. To be secure, cryptographic algorithms cru-
cially rely on the underlying hardware to avoid inad-
vertent leakage of secrets through timing side channels.
Unfortunately, such timing channels are ubiquitous in
modern hardware, due to its labyrinthine fast-paths and
optimizations. A promising way to avoid timing vulnera-
bilities is to devise—and verify—conditions under which
a hardware design is free of timing variability, i.e., exe-
cutes in constant-time. In this paper, we present IODINE:
a clock-precise, constant-time approach to eliminating
timing side channels in hardware. IODINE succeeds in
verifying various open source hardware designs in sec-
onds and with little developer effort. IODINE also discov-
ered two constant-time violations: one in a floating-point
unit and another one in an RSA encryption module.

1 Introduction
Trust in software systems is always rooted in the underly-
ing hardware. This trust is apparent when using hardware
security features like enclaves (e.g., SGX and TrustZone),
crypto units (e.g., AES-NI and the TPM), or MMUs. But
our trust goes deeper. Even for simple ADD or MUL instruc-
tions, we expect the processor to avoid leaking any of
the operands via timing side channels, e.g., by varying
the execution time of the operation according to the data.
Indeed, even algorithms specifically designed to be re-
silient to such timing side-channel attacks crucially rely
on these assumptions [23–25]. Alas, recently discovered
vulnerabilities have shown that the labyrinthine fast-paths
and optimizations ubiquitous in modern hardware expose
a plethora of side channels that undermine many of our
deeply held beliefs [34, 36, 42].

A promising way to ensure that trust in hardware is
properly earned is to formally specify our expectations,
and then, to verify—through mathematical proof—that
the units used in security critical contexts do not exhibit

any timing variability, i.e., are constant-time. For instance,
by verifying that certain parts of an arithmetic logic unit
(ALU) are constant-time, we can provide a foundation for
implementing secure crypto algorithms in software [16,
20, 22]. Dually, if timing variability is unavoidable, e.g.,
in SIMD or floating-point units, making this variability
explicit can better inform mechanisms that attempt to
mitigate timing channels at the software level [18, 46,
54] in order to avoid vulnerabilities due to gaps in the
hardware-software contract [17, 18].

In this paper, we introduce IODINE: a clock-precise,
constant-time approach to eliminating timing side chan-
nels in hardware. Given a hardware circuit described
in Verilog, a specification comprising a set of sources
and sinks (e.g., an FPU pipeline start and end) and a set
of usage assumptions (e.g., no division is performed),
IODINE allows developers to automatically synthesize
proofs which ensure that the hardware runs in constant-
time, i.e., under the given usage assumptions, the time
taken to flow from source to sink, is independent of
operands, processor flags and interference by concurrent
computations.

Using IODINE, a crypto hardware designer can be cer-
tain that their encryption core does not leak secret keys or
messages by taking a different number of cycles depend-
ing on the secret values. Similarly, a CPU designer can
guarantee that programs (e.g., cryptographic algorithms,
SVG filters) will run in constant-time when properly
structured (e.g., when they do not branch or access mem-
ory depending on secrets [20]).

IODINE is clock-precise in that it enforces constant-
time execution directly as a semantic property of the cir-
cuit rather than through indirect means like information
flow control [55]. As a result, IODINE neither requires
the constant-time property to hold unconditionally nor

USENIX Association 28th USENIX Security Symposium 1411

demands the circuit be partitioned between different se-
curity levels (e.g., as in SecVerilog [55]). This makes
IODINE particularly suited for verifying existing hard-
ware designs. For example, we envision IODINE to be
useful in verifying ARM’s recent set of data indepen-
dent timing (DIT) instructions which should execute in
constant-time, if the PSTATE.DIT processor state flag is
set [2, 41].

While there have been significant strides in verifying
the constant-time execution of software [14–16, 18, 20–
22,53], IODINE unfortunately cannot directly reuse these
efforts. Constant time methods for software focus on
straight-line, sequential—often cryptographic—code.

Hardware designs, however, are inherently concurrent
and long-lived: circuits can be viewed as collections of
processes that run forever, performing parallel compu-
tations that update registers and memory in every clock
cycle. As a result, in hardware, even the definition of
constant-time execution becomes problematic: how can
we measure the timing of a hardware design that never
stops and performs multiple concurrent computations
that mutually influence each other?

In IODINE, we address these challenges through the
following contributions.

1. Definition. First, we define a notion of constant-time
execution for concurrent, long-lived computations. In or-
der to reason about the timing of values flowing between
sources and sinks, we introduce the notion of influence
set. The influence set of a value contains all cycles t,
such that an input (i.e., a source value) at t was used in
its computation. We say that a hardware design is con-
stant time, if all its computation paths (that satisfy usage
assumptions) produce the same sequence of influence
sets for sinks.

2. Verification. To enable its efficient verification, we
show how to reduce the problem of checking constant-
time execution—as defined through influence sets—to
the standard problem of checking assertion validity. For
this, we first eschew the complexity of reasoning about
several concurrent computations at once, by focusing on
a single computation starting (i.e., inputs issued) at some
cycle t. We say that a value is live for cycle t (t-live), if
it was influenced by the computation started at t, i.e., t is
in the value’s influence set. This allows us to reduce the
problem of checking equality of influence sets, to check-
ing the equivalence of membership, for their elements.
We say that a hardware design is liveness equivalent, if,
for any two executions (that satisfy usage assumptions),
and any t, t-live values are assigned to sinks in the same

way, i.e., whenever a t-live value is assigned to a sink in
one execution, a t-live value must also be assigned to a
sink in the other.

To check a hardware design for liveness equivalence,
we mark source data as live in some arbitrarily chosen
start cycle t, and track the flow of t-live values through
the circuit using a simple standard taint tracking moni-
tor [44]; the problem of checking liveness equivalence
then reduces to checking a simple assertion stating that
sinks are always tainted in the same way. Reducing
constant-time execution to the standard problem of check-
ing assertion validity allows us to rely on off-the-shelf,
mature verification technology, which explains IODINE’s
effectiveness.

3. Evaluation. Our final contribution is an implemen-
tation and evaluation of IODINE on seven open source
VERILOG projects—CPU cores, an ALU, crypto-cores,
and floating-point units (FPUs). We find that IODINE

succeeds in verifying different kinds of hardware de-
signs in a matter of seconds, with modest developer ef-
fort (§ 6). Many of our benchmarks are constant-time for
intricate reasons (§ 6.3), e.g., whether or not a circuit is
constant-time depends on its execution history, circuits
are constant-time despite triggering different control flow
paths depending on secrets, and require a carefully cho-
sen set of assumptions to be shown constant-time. In our
experience, these characteristics—combined with the cir-
cuit size—make determining whether a hardware design
is constant-time by code inspection near impossible.

IODINE also revealed two constant-time violations:
one in the division unit of an FPU designs, another in the
modular exponentiation module of an RSA encryption
module. The second violation—a classical timing side
channel—can be abused to leak secret keys [27, 35].

In summary, this paper makes the following contribu-
tions.

I First, we give a definition for constant-time execution
of hardware, based on the notion of influence sets (§ 2).
We formalize the semantics of VERILOG programs
with influence sets (§ 3), and use this formalization to
define constant-time execution with respect to usage
assumptions (§ 4).

I Our second contribution is a reduction of constant-time
execution to the easy-to-verify problem of liveness
equivalence. We formalize this property (§ 4), prove
its equivalence to our original notion of constant-time
execution (§ 4.3), and show how to verify it using
standard methods (§ 5).

1412 28th USENIX Security Symposium USENIX Association

1 // source(x); source(y); sink(out);

2 // assume(ct = 1);

3

4 reg flp_res , x, y, ct, out , out_ready , ...;

5 wire iszero , isNaN , ...;

6

7 assign iszero = (x == 0) || (y == 0);

8

9 always @(posedge clk) begin

10 ...

11 flp_res <= ... // (2) compute x * y

12 end

13

14 always @(posedge clk) begin

15 if (ct)

16 ...; out <= flp_res; // (4)

17 else

18 if (iszero)

19 out <= 0; // (1)

20 else if (isNaN)

21 ...

22 else out <= flp_res; // (3)

23 end

24 end

25 end

Figure 1: Floating point multiplier (EX1).

I Our final contribution is an implementation and eval-
uation of IODINE on several challenging open source
hardware designs (§ 6). Our evaluation shows that IO-
DINE can be used to verify constant-time execution of
existing hardware designs, rapidly, and with modest
user effort.

2 Overview
In this section, we give an overview of IODINE and show
how our tool can be used to verify that a piece of VER-
ILOG code executes in constant-time. As a running exam-
ple, we consider a simple implementation of a floating-
point multiplication unit.

Floating Point Multiplier. Our running example, like
most FPUs, is generally not constant-time—common
operations (e.g., multiplication by zero) are dramatically
faster than rare ones (e.g., multiplication by denormal
numbers [17,36]). But, like the ARM’s recent support for
data independent timing instructions, our FPU contains a
processor flag that can be set to ensure that all multiplica-
tions are constant-time, at the cost of performance. Fig. 1
gives a simplified fragment of VERILOG code that imple-
ments this FPU multiplier. While our benchmarks consist
of hundreds of threads with shared variables, pipelining,
and contain a myriad of branches and flags which cause
dependencies on the execution history (see § 6.3), we

have kept our running example as simple as possible: our
multiplier takes two floating-point values—input regis-
ters x and y—and stores the computation result in output
register out. Recall that VERILOG programs operate on
two kinds of data-structures: registers which are assigned
in always-blocks and store values across clock cycles
and wires which are assigned in assign-blocks and hold
values only within a cycle. Control register ct is used to
configure the FPU to run in constant-time (or not). For
simplicity, we omit most other control logic (e.g., reset
or output-ready bits and processing of inputs). Internally,
the multiplier consists of several fast paths and a single
slow path. For example, to implement multiplication by
zero, one, NAN, and other special values we, inspect the
input registers for these values and produce a result in a
single cycle (see (1)). Multiplication by other numbers is
more complex, however, and generally takes more than a
single cycle. As shown in Fig. 1, this slow path consists
of multiple intermediate steps, the final result of which is
assigned to a temporary register flp_res (see (2)) before
out (see (3)).1 Importantly, when the constant-time con-
figuration register ct is set, only this slow path is taken
(see (4)).

Outline. In the rest of this section, we show how IODINE

verifies that this hardware design runs in constant-time
when the ct flag is set and violates the constant-time prop-
erty otherwise. We present our definition of constant-time
based on of influence sets in § 2.1, liveness equivalence
in § 2.2, and finally show how IODINE formally verifies
liveness equivalence by reducing it to a simple safety
property that can be handled by standard verification
methods § 2.3.

2.1 Constant-Time For Hardware
We start by defining constant-time execution for hard-
ware.

Assumptions and Attacker Model. Like SecVerilog [55],
we scope our work to synchronous circuits with a single,
fixed-rate clock. We further assume an external attacker
that can measure the execution time of a piece of hard-
ware (given as influence sets) using a cycle-precise timer.
In particular, an attacker can observe the timing of all
inputs that influenced a given output. These assumptions
afford us many benefits. (Though, as we describe in § 7,
they are not for free.) For example, assuming a single

1 For simplicity, we omit the intermediate steps and assume that they
implement floating-point multiplication in constant-time. In practice,
FPUs may also take different amounts of time depending on such
values.

USENIX Association 28th USENIX Security Symposium 1413

P ::= Program

| [s]id process
| P ‖ P parallel composition
| repeat P sync. iteration
| › empty process

s ::= Command
| skip no-op
| v = e blocking
| v⇐ e non-blocking
| v := e continuous
| ite(e,s,s) conditional
| s1 ; . . . ; sk sequence
| a annotation

e ::= Expression

| v variables
| n constants
| f (e1, . . . ,ek) function literal

Figure 2: Syntax for intermediate language VINTER.

repeat [iszero := (x == 0 || y == 0)]

‖ repeat [. . . ; flp_res⇐ . . .]

‖ repeat

ite(ct,

out⇐ flp_res,
ite(iszero,

out⇐ 0,
out⇐ flp_res))

Figure 3: EX1 written in VINTER

fixed-rate clock, allows us to translate VERILOG pro-
grams, such as our FPU multiplier to a more concise
representation shown in Figure 3.

Intermediate Language. In this language—called VIN-
TER—VERILOG always- and assign-blocks are repre-
sented as concurrent processes, wrapped inside an infinite
repeat-loop. As Fig. 2 shows, each process sequentially
executes a series of VERILOG-like statements. (Each pro-
cess also has a unique identifier id ∈ PIDs, which we
sometimes omit, for brevity.) Most of these are standard;
we only note that VINTER—like VERILOG—supports
three types of assignment statements: blocking (v = e),
non-blocking (v⇐ e) and continuous (v := e). Blocking
assignments take effect immediately, within the current
cycle; non-blocking assignments are deferred until the
next cycle. Finally, continuous assignments enforce di-
rected equalities between registers or wires: whenever
the right-hand side of an equality is changed, the left-
hand side is updated by re-running the assignment. Note
that VINTER focuses only on the synthesizable fragment
of VERILOG, i.e., does not model delays, etc., which are
only relevant for simulation.

VINTER processes are composed in parallel using the
(‖) operator. Unlike concurrent software processes, they
are, however, synchronized using a single (implicit) fixed-
rate clock: each process waits for all other (parallel) pro-
cesses to finish executing before moving on to the next
iteration, i.e., next clock cycle. Moreover, unlike soft-
ware, these programs are usually data-race free, in order
to be synthesizable to hardware.

VINTER processes run forever; they perform computa-
tions and update registers (e.g., out in our multiplier) on
every clock cycle. For example, pipelined hardware units
execute multiple, different computations simultaneously.

From Software to Hardware. This execution model, to-
gether with the fact that software operates at a higher
level of abstraction than hardware, makes it difficult for
us to use existing verification tools for constant-time
software (e.g., [16, 20]).

First, constant-time verification for software only con-
siders straight-line, sequential code. This makes it ill-
suited for the concurrent, long-lived execution model of
hardware.

Second, software constant-time models are necessarily
conservative. They deliberately abstract over hardware
details—i.e., they don’t rely on a precise hardware mod-
els (e.g., of caches or branch predictors)—and instead
use leakage models that make control flow and memory
access patterns observable to the attacker. This makes
constant-time software portable across hardware. But,
it also makes the programming model restrictive: the
model disallows any branching to protect against hidden
microarchitectural state (e.g., the branch predictor).

Since we operate on VERILOG, where all state is ex-
plicit and visible, we can instead directly track the influ-
ence of secret values on the timing of attacker-observable
outputs. This allows us to be more permissive than soft-
ware constant-time models. For instance, if we can show
that the execution of two branches of a hardware design
takes the same amount of time, independent of secret
inputs, we can safely allow branches on secrets. How-
ever, this still leaves the problem of pipelining: hardware
ingests inputs and produce outputs at every clock cy-
cle: how then do we know (if and) which secret inputs
influenced a particular output?

Influence Sets. This motivates our definition for influ-
ence sets. In order to define a notion of constant-time
execution that is suitable for hardware, we first add an-
notations marking inputs (i.e., x and y in our example)
as sources and outputs (i.e., out) as sinks. For a given
cycle, we then associate with each register x its influence-

1414 28th USENIX Security Symposium USENIX Association

Cycle # x y ct fr out θ(x) θ(y) θ(ct) θ(fr) θ(out)
0 0 1 F X X {0} {0} ∅ ∅ ∅
1 0 1 F X 0 {1} {1} ∅ ∅ {0}

...
k-1 0 1 F 0 0 {k−1} {k−1} ∅ {0} {k−2}
k 0 1 F 0 0 {k} {k} ∅ {1} {k−1}

Figure 4: Execution of EX1, where x = 0 and y = 1, and ct is unset. For each variable and cycle, we show its current value and
influence set. We assume that it takes k cycles to compute the output along the slow path, and abbreviate flp_res as fr. X denotes an
unknown/irrelevant value. Register out is only influenced by values from the last cycle. Highlighted cells are the difference with
Figure 5. Values that stayed the same in the next cycle are shaded.

Cycle # x y ct fr out θ(x) θ(y) θ(ct) θ(fr) θ(out)
0 1 1 F X X {0} {0} ∅ ∅ ∅
1 1 1 F X X {1} {1} ∅ ∅ {0}

...
k-1 1 1 F 1 X {k−1} {k−1} ∅ {0} {k−2}
k 1 1 F 1 1 {k} {k} ∅ {1} {0,k−1}

Figure 5: Execution of EX1, where both x = 1 and y = 1, and ct is unset. The execution produces the same influence sets as the
execution in Fig. 4, except for cycle k, where out’s influence set contains the additional value 0, thereby violating our definition of
constant-time execution.

set θ(x). The influence set of a register x contains all
cycles t, such that an input at t was used in the com-
putation of x’s current value. This allows us to define
constant-time execution for hardware: we say that a hard-
ware design is constant-time, if any two executions (that
satisfy usage assumptions) produce the same sequence
of influence sets for their sinks.

Example. We now illustrate this definition using our run-
ning example EX1 by showing that EX1 violates our
definition of constant-time, if the ct flag is unset. For
this, consider Fig. 4 and Fig. 5, which show the state of
registers and wires as well as their respective influence
sets, for two executions. In both executions, we let y = 1,
but vary the value of the x register: in Fig. 4, we set x to
0 to trigger the fast path in Fig. 5 we set it to 1. In both
executions, sources x and y are only influenced by the
current cycle, constant-time flag ct is set independently
of inputs, and temporary register flp_res is influenced by
the inputs that were issued k−1 cycles ago, as it takes
k−1 cycles to compute flp_res along the slow path.

The two executions differ in the influence sets of out.
In Fig. 4, out is only influenced by the input issued in
the last cycle, through a control dependency on iszero. In
the execution in Fig. 5, its value at cycle k is however
also influenced by the input at 0. This reflects the propa-
gation of the computation result through the slow path.
Crucially, it also shows that the multiplier is not constant-

time—the sets θ(out) differing between two runs reflects
the influence of data on the duration of the computation.

2.2 Liveness Equivalence
We now show how to reduce verifying whether a given
hardware is constant-time to an easy-to-check, yet equiv-
alent problem called liveness equivalence. Intuitively,
liveness equivalence reduces the problem of checking
equality of influence sets, to checking the equivalence of
membership, for arbitrary elements.

Liveness Equivalence. Our reduction focuses on a sin-
gle computation started at some cycle t. We say that
register x is live for cycle t (t-live), if its current value is
influenced by an input issued in cycle t, i.e., if t ∈ θ(x).
Two executions are t-liveness equivalent, if whenever a
t-live value is assigned to a sink in one execution, a t-live
value must also be assigned in the other. Finally, a hard-
ware design is liveness equivalent, if any two executions
that satisfy usage assumptions are t-liveness equivalent,
for any t.

Live Value Propagation. To track t-liveness for a fixed t,
IODINE internally transforms VINTER programs as fol-
lows. For each register or wire (e.g., x in our multiplier),
we introduce a new shadow variable (e.g., x•) that rep-
resents its liveness; a shadow variable x• is set to L if x
is live and D (dead) otherwise.2 We then propagate live-

2 For liveness-bits x• and y•, we define a join operator ∨, such that

USENIX Association 28th USENIX Security Symposium 1415

repeat

[
iszero := (x == 0 || y == 0) ;
iszero• := (x•∨ y•)

]

‖ repeat

[
. . . ; flp_res⇐ . . . ;
. . . ; flp_res•⇐ . . . //(x•∨ y•)

]

‖ repeat

ite(ct,
out⇐ flp_res ;
out•⇐ (flp_res•∨ ct•) ,
ite(iszero,out⇐ 0 ;

out•⇐ (ct•∨ iszero•) ,
out⇐ flp_res ;

out•⇐
(

flp_res•∨
ct•∨ iszero•

)
))

Figure 6: EX1, after we propagate liveness using a standard
taint-tracking inline monitor.

x y ct fr out x• y• ct• fr• out•

0 0 1 F X X L L D D D
1 0 1 F X 0 D D D D L

...
k-1 0 1 F 0 0 D D D L D
k 0 1 F 0 0 D D D D D

Figure 7: Execution of EX1•, where x = 0 and y = 1. We
show current value and liveness bit for each register and cycle.
Register out is live in cycle one, due to the fast path and dead,
otherwise. Highlights are the differences with Figure 8. Values
that stayed the same in the next cycle are shaded.

ness using a standard taint-tracking inline monitor [44]
shown in Figure 6. Intuitively, our monitor ensures that
registers and wires that depend on a live value—directly
or indirectly, via control flow—are marked live.

Example. By tracking liveness, we can again see that our
floating-point multiplier is not constant-time when the
ct flag is unset. To this end, we “inject” live values at
sources (x and y) at time t= 0 for two runs; as before, we
set y = 1, and vary the value of x: in one execution, we
set x to 0 to trigger the fast path, in the other execution,
we set it to 1. Fig. 7 and 8 show the state of the different
registers and wires for these runs. In both runs, out is
live at cycle 1—due to a control dependency in Fig. 7,
due a direct assignment in Fig. 8. But, in the latter, out
is also live at the kth cycle. This reflects the fact that the
influence sets of out at cycle k differ in the membership
of 0, and therefore witnesses the constant-time violation.

2.3 Verifying Liveness Equivalence
Using our reduction to liveness equivalence, we can ver-
ify that a VERILOG program executes in constant-time
using standard methods. For this, we mark source data as

x•∨ y• is L, if x• or y• is L andD, otherwise.

x y ct fr out x• y• ct• fr• out•

0 1 1 F X X L L D D D
1 1 1 F X X D D D D L

...
k-1 1 1 F 1 X D D D L D
k 1 1 F 1 1 D D D D L

Figure 8: Execution of EX1•, where both x = 1 and y = 1. The
liveness bits are the same as in 7, except for cycle k, where out
is now live. This reflects the propagation of the output value
through the slow path and shows the constant-time violation.

live in some arbitrarily chosen start cycle t. We then ver-
ify that any two executions that satisfy usage assumptions
assign t-live values to sinks, in the same way.

Product Programs. Like previous work on verifying
constant-time software [16], IODINE reduced the prob-
lem of verifying properties of two executions of some
program P by proving a property about a single execu-
tion of a new program Q. This program—the so-called
product program [22] – consists of two disjoint copies of
the original program.

Race-Freedom. Our product construction exploits the
fact thatVERILOG programs are race-free, i.e., the order
in which always-blocks are scheduled within a cycle does
not matter. While races in software often serve a purpose
(e.g., a task distribution service may allow races between
equivalent worker threads to increase throughput), races
in VERILOG are always artifacts of poorly designed code:
any synthesized circuit is, by its nature, race-free, i.e., the
scheduling of processes within a cycle does not affect
the computation outcome. Indeed, races in VERILOG

represent an under-specification of the intended design.

Per-Process Product. We leverage this insight to com-
pose the two copies of a program in lock-step. Specifi-
cally, we merge each process of the two program copies
and execute the “left” (L) and “right” (R) copies together.
For example, IODINE transforms the VINTER multiplier
code from Figure 6 into the per-process product program
shown in Figure 9.

Merging two copies of a program as such is sound:
since the program is race-free—any ordering of process
transitions within a cycle yields the same results—we are
free to pick an arbitrary schedule.3 Hence, IODINE takes
a simple ordering approach and schedules the left and
right copy of same process at the same time.

Constant-Time Assertion. Given such a product pro-
gram, we can now frame the constant-time verification

3To ensure that hardware designs are indeed race-free, our imple-
mentation performs a light-weight static analysis to check for races.

1416 28th USENIX Security Symposium USENIX Association

repeat

iszeroL := (xL == 0 || yL == 0) ;
iszeroR := (xR == 0 || yR == 0) ;

iszero•L :=
(
x•L∨ y•L

)
;

iszero•R :=
(
x•R∨ y•R

)

‖ repeat

. . . ; flp_resL⇐ . . . ;
. . . ; flp_resR⇐ . . . ;

flp_res•L⇐ . . . //
(
x•L∨ y•L

)
;

flp_res•R⇐ . . . //
(
x•R∨ y•R

)

‖ repeat . . .

Figure 9: Per-process product form of EX1.

challenge as a simple assertion: the liveness of the left
and right program sink-variables must be the same (re-
gardless of when the computation started). In our exam-
ple, this assertion is simply out•L = out•R. This asser-
tion can be verified using standard methods. In particular,
IODINE synthesize process-modular invariants [45] that
imply the constant-time assertion (§ 5).

The following two sections formalize the material pre-
sented in this overview.

3 Syntax and Semantics
Since VERILOG’s execution model can be subtle [12], we
formally define syntax and semantics of the VERILOG

fragment considered in this paper.

3.1 Preliminaries
For a function f, we write dom f to denote f’s domain and
ran f for its co-domain. For a set S⊆ dom f, we let f[S←
b] denote the function that behaves the same as f except
S, where it returns b, i.e., f[S← b](x) evaluates to b if
x ∈ S and f(x), otherwise. We use f[a← b] as a short
hand for f[{a}← b]. Sometimes, we want to update a
function by setting the function values of some subset S
of its domain to a non-deterministically chosen value. For
S⊆ dom f, we write f[S←∗](x) to denote the function
that evaluates to some y with y ∈ ran f, if x ∈ S and f(x)
otherwise.

3.2 Syntax
We restrict ourselves to the synthesizable fragment of
VERILOG, i.e., we do not include commands like initial
blocks that only affect simulation and implement a nor-
malization step [32] in which the program is “flattened”
by removing module instantiation through in-lining. We
provide VERILOG syntax and a translation to VINTER in
Appendix A.2, but define semantics in VINTER (Fig. 2).

Annotations. We define annotations in Figure 10. Let
Regs denote the set of registers and Wires the set of
wires and let VARS denote their disjoint union, i.e.,

a ::= In/Out Assump.
| source(v) source | init(ϕ) initiallyϕ
| sink(v) sink | �(ϕ) alwaysϕ

Figure 10: Annotation syntax.

Config Meaning Trace Meaning

σ store Σ configuration
τ liveness map l label
θ influence map b liveness bit
µ assign. buffer π trace
ev event set store(π,i) σi
P current program live(π,i) τi
I initial program inf (π,i) θi
c clock cycle clk(π,i) ci

reset(π,i) bi

Figure 11: Configuration and trace syntax.

VARS , Regs]Wires. For a register v ∈ Regs, annota-
tions source(v) and sink(v) designate v as source or sink,
respectively.4 We let IO , (Src,Sink) denote the set of
input/output assumptions, where Src denotes the set of
all sources and Sink denote the set of all sinks. Let ϕ
be a first-order formula over some background theory
that refers to two disjoint sets of variables VarsL and
VARSR. Then, annotations init(ϕ) and�(ϕ) indicate that
formula ϕ holds initially or throughout the execution.
The assumptions are collected in A , (INIT, ALL), such
that INIT contains all formulas under init and ALL all
formulas under �.

3.3 Semantics

Values. The set of values VALS,Z] {X} consists of the
disjoint union of the integers and special value X which
represents an irrelevant value. A function application that
contains X as an argument evaluates to X.

Configurations. The program state is represented
by a configuration Σ ∈ Configs. Figure 11 shows
the components of a configuration. A store σ ∈
STORES , (VARS 7→ VALS) is a map from registers
and wires to values. A liveness map τ ∈ LIVEMAP ,
(VARS 7→ {L,D}) is a map from registers and wires
to liveness bits. A influence map θ ∈ INFMAPS ,
(VARS 7→ P(Z)) is a map from registers and wires
to influence sets. Assignment buffers serve to model
non-blocking assignments. Let PIDs denote a set of
process identifiers. An assignment buffer µ ∈ PIDs 7→
(VARS×VALS× {L,D}×P(Z))∗ is a map from pro-

4To use wires as source/sink, one has to define an auxiliary register.

USENIX Association 28th USENIX Security Symposium 1417

[VAR]

v,σ,τ,θ 99Kσ(v),τ(v),θ(v)

[CONST]

n,σ,τ,θ 99Kn,D,∅

[FUN]
e1,σ,τ,θ 99K v1,t1,i1 . . . ek,σ,τ,θ 99K vk,tk,ik

t= (t1 ∨ · · ·∨tk) i= (i1∪···∪ik)
f (e1, . . . ,ek),σ,τ,θ 99K f (v1, . . . ,vk),t,i

Figure 12: Expression evaluation.

cess identifier to a sequence of variable/value/liveness-
bit/influence set tuples. An event set ev ∈ P(VARS) is
a set of variables, where we use v ∈ ev to indicate that
variable v has been changed in the current cycle. Finally,
I ∈ Progs contains the initial program. Intuitively, the
initial program is used to activate all processes when a
new clock cycle begins.

Evaluating Expressions. We define an evaluation
relation 99K∈ (EXPR × STORES × LIVEMAP ×
INFMAPS) 7→ (VALS× {L,D}× P(Z)) that computes
value, liveness-bit, and influence map for an expression.
We define the relation through the inference rules shown
in Fig. 12. An evaluation step (below the line) can be
taken, if the preconditions (above the line) are met. Rule
[VAR] evaluates a variable to its current value under
the store, its current liveness-bit and influence set. A
numerical constant evaluates to itself, is dead and not
influenced by any cycle. To evaluate a function literal,
we evaluate its arguments and apply the function on the
resulting values. A function value is live if any of its
arguments are, and its influence set is the union of its
influences.

Transition Relations. We define our semantics in
terms of four separate transition relations of type
(Configs×Labels×Configs). We now discuss the indi-
vidual relations and then describe how to combine them
into an overall transition relation .

Per-process transition P. The per-process transition
relation P describes how to step along individual pro-
cesses. It is defined in Fig. 13. Rules [SEQ-STEP] and
[PAR-STEP] are standard and describe sequential and
parallel composition. Rule [B-ASN] reduces a block-
ing update x = e to skip, by first evaluating e to yield
a value v, liveness bit t and influence set i, updating
store σ, liveness map τ and influence map θ, and finally
adding x to the set of modified variables. Rule [NB-ASN]

defers a non-blocking assignment. In order to reduce an
assignment (x⇐ e)id for process id to skip, the rule eval-
uates expression e to value v, liveness bit t and influence

set i, and defers the assignment by appending the tu-
ple (x,v,t, i) to the back of id’s buffer. We omit rules
for conditionals and structural equivalence. Structural
equivalence allows transitions between trivially equiva-
lent programs such as P ‖Q and Q ‖ P.

Non-blocking Transition N. Transition relation N

applies deferred non-blocking assignments. It is defined
by a single rule [NB-APP] shown in Fig. 13. The rule
first picks a tuple (x,v,t, i) from the front of the buffer
of some process id, and, like [B-ASN], updates store σ,
liveness map τ and influence map θ, and finally adds x
to the set of updated variables.

Continuous Transition C. Relation C specifies how
to execute continuous assignments. It is described by
rule [C-ASN] in Fig. 13, which reduces a continuous
assignment x := e to skip under the condition that some
variable y occurring in e has changed, i.e., y ∈ ev. To
apply the assignment, it evaluates e to value, liveness bit
and influence set, and updates store and liveness map and
influence map. Importantly, variable y is not removed
from the set of events, i.e., a single assignment can enable
several continuous assignments.

Global Transition G. Finally, global transition re-
lation G is defined by rules [NEWCYCLE] and
[NEWCYCLE-ISSUE] shown in Fig. 13. [NEWCYCLE]
starts a new clock cycle by discarding the current pro-
gram and event set, emptying the assignment buffer,
resetting the wires to some non-deterministically cho-
sen state (as wires only hold their value within a cy-
cle), and rescheduling and activating a new set of pro-
cesses, extracted from initial program I. For a program P,
let REPEAT(P) ∈ P(Progs) denote the set of processes
that occur under repeat. For a set of programs S, we let
u S denote their parallel composition. [NEWCYCLE]
uses these constructs to reschedule all processes that ap-
pear under repeat in I. Both sources and wires are set
toD. The influence map is updated by mapping all wires
to the empty set, and each source to the set containing
only the current cycle.

[NEWCYCLE-ISSUE] performs the same step, but
additionally updates the liveness map by issuing new
live bits for the source variables. Both rules increment
the cycle counter c. The rules issue a label l ∈ Labels,
((STORES×LIVEMAP× INFMAPS×N× {L,D})]ε)
which is written above the arrow (all previous rules
issue the empty label ε). The label contains the current
store, liveness map, influence map, clock cycle, and a
bit indicating whether new live-bits have been issued.
Labels are used to construct the trace of an execution, as

1418 28th USENIX Security Symposium USENIX Association

we will discuss later.

Overall Transition . We define the overall transition
relation ∈ Configs× Labels×Configs by fixing an
order in which to apply the relations. Whenever a con-
tinuous assignment step (relation C) can be applied,
that step is taken. Whenever no continuous assignment
step can be applied, however, a per-process step (relation
 P) can be applied, a P step is taken. If no continu-
ous assignment and process local steps can be applied,
however, an non-blocking assignment step (relation N)
is applicable, a N step is taken. Finally, if neither con-
tinuous assignment, per-process, or non-blocking steps
can be applied, the program moves to a new clock cy-
cle by applying a global step (relation G). Our overall
transition relation closely follows the Verilog simulation
reference model from Section 11.4 of the standard [12].

Executions and Traces. An execution is a finite se-
quence of configurations and transition labels r ,

Σ0l0Σ1 . . .Σm−1lm−1Σm such that Σi
li Σi+1 for i ∈

{1, . . . ,m−1}. We call Σ0 initial state and require that all
taint bits are set to D, the influence map maps each vari-
able to the empty set, the assignment buffer is empty,
the current program is the empty program ›, and the
clock is set to 0. The trace of an execution is the
sequence of its (non-empty) labels. For a trace π ,
(σ0,τ0,θ0,c0,b0) . . .(σn−1,τn−1,θn−1cn−1,bn−1) ∈
Labels∗ and for i ∈ {0, . . . ,n− 1} we let store(π, i) ,
σi, live(π, i) , τi, inf (π, i) , θi, clk(π, i) , ci and
reset(π, i) = bi, and say the trace has length n. For a
program P we use TRACES(P) ∈ P(Labels∗) to denote
the set of its traces, i.e., all traces with initial program P.

4 Constant-Time Execution
We now first define constant-time execution with respect
to a set of assumptions. We then define liveness equiva-
lence and show that the two notions are equivalent.

4.1 Constant-Time Execution

Assumptions. For a formula ϕ that ranges over two dis-
joint sets of variables VARSL and VARSR and stores
σL and σR such that dom σL = VARSL and dom σR =

VARSR, we write σL,σR |=ϕ to denote that formula ϕ
holds when evaluated on σL and σR. For some pro-
gram P and a set of assumptions A , (INIT, ALL), we
say that two traces πL,πR ∈ TRACES(P) of length n
satisfy A if i) for each formula ϕI ∈ INIT, ϕI holds
initially, and ii) for each formula ϕA ∈ ALL, ϕA
hold throughout, i.e., store(πL, 0),store(πR, 0) |=ϕI and

store(πL, i),store(πR, i) |=ϕA, for 06 i6 n−1. Intu-
itively, pairs of traces that satisfy the assumptions are
“low” or “input” equivalent.

Constant Time Execution. For a program P, assump-
tions A and traces πL,πR ∈ TRACES(P) of length n that
satisfy A, πL and πR are constant time with respect to A,
if they produce the same influence sets for all sinks, i.e.,
inf (πL, i)(v) = inf (πR, i)(v), for 0 6 i 6 n− 1 and all
v ∈ Sink, and where two sets are equal if they contain the
same elements. A program is constant time with respect
to A, if all pairs of its traces that satisfy A are constant
time.

4.2 Liveness Equivalence

t-Trace. For a trace π, we say that π is a t-trace, if
reset(π,t) = L and reset(π, i) =D, for i 6= t.
Liveness Equivalence. For a program P, let πL,πR ∈
TRACES(P), such that both πL and πR are of length n.
We say that πL and πR are t-liveness equivalent, if both
are t-traces, and live(πL, i)(v) = live(πR, i)(v), for 06
i6 n−1 and all v ∈ Sink. A program is t-liveness equiv-
alent, with respect to a set of assumptions A, if all pairs
of t-traces that satisfy A are t−liveness equivalent. Fi-
nally, a program is liveness equivalent with respect to A,
if it is t-liveness equivalent with respect to A, for all t.

4.3 Equivalence
We can now state our equivalence theorem.

Theorem 1. For all programs P and assumptions A, P
executes in constant-time with respect to A if and only if
it is liveness equivalent with respect to A.

We first give a lemma which states that, if a register is
t-live, then t is in its influence set.

Lemma 1. For any t-trace π of length n, index 06 i6
n−1, and variable v, if v is t−live, i.e., live(π, i)(v) = L,
then t is in v’s influence map, i.e., t ∈ inf (π, i)(v).

We can now state our proof for Theorem 1.

Proof Theorem 1. The interesting direction is “right-to-
left”, i.e., we want to show that a liveness equivalent
program is also constant-time. We prove the contrapos-
itive, i.e., if a program violates constant-time, it must
also violate liveness equivalence. For a proof by con-
tradiction, we assume that P violates constant time ex-
ecution, but satisfies liveness equivalence. If P violates
constant-time execution, then there must be a sink v∗,
two trace π∗L,π∗R ∈ TRACES(P) that satisfy A, and some

USENIX Association 28th USENIX Security Symposium 1419

[SEQ-STEP]
〈σ,µ,θ,ev,τ,s1, I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′,s ′1, I,c〉

〈σ,µ,θ,ev,τ, [s1;s2], I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′, [s ′1;s2], I,c〉

[PAR-STEP]
〈σ,µ,θ,ev,τ,P, I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′,P ′, I,c〉

〈σ,µ,θ,ev,τ,P ‖Q, I,c〉 P 〈σ ′,µ ′,θ ′,ev ′,τ ′,P ′ ‖Q, I,c〉

[B-ASN]
e,σ,τ,θ 99K v,t,i σ ′ =σ[x← v] τ ′ = τ[x← t] θ ′ = θ[x← i]

〈σ,µ,θ,ev,τ,x = e, I,c〉 P 〈σ ′,µ,θ ′,ev∪ {x},τ ′,skip, I,c〉

[NB-ASN]
e,σ,τ,θ 99K v,t,i µ ′ =µ[id← (x,v,t,i) ·q]

〈σ,µ[id←q],θ,ev,τ,(x⇐ e)id , I,c〉 P 〈σ,µ ′,θ,ev,τ,skip, I,c〉

[NB-APP]
σ ′ =σ[x← v] µ ′ =µ[id←q] θ ′ = θ[x← i] τ ′ = τ[x← t] ev ′ = ev∪ {x}

〈σ,µ[id←q ·(x,v,t,i)],θ,ev,τ,P, I,c〉 N 〈σ ′,µ ′,θ ′,ev ′,τ ′,P, I,c〉

[C-ASN]
e,σ,τ,i 99K v,t,i y∈ VARS(e) σ ′ =σ[x← v] τ ′ = τ[x← t] θ ′ = θ[x← i]

〈σ,µ,θ,ev∪ {y},τ,x := e, I,c〉 C 〈σ ′,µ,θ ′,ev∪ {x,y},τ ′,skip, I,c〉

[NEWCYCLE]
σ ′ ,σ[Wires←∗] τ ′ , τ[Src←D][Wires←D] θ ′ , θ[Wires←∅][Src← {c+1}] µ ′ ,µ[PIDs← ε]

〈σ,µ,θ,ev,τ,P, I,c〉 (σ,τ,θ,c,D)
 G 〈σ ′,µ ′,θ ′,∅,τ,u REPEAT(I), I,c+1〉

[NEWCYCLE-ISSUE]
σ ′ ,σ[Wires←∗] τ ′ , τ[Src← L][(VARS−Src)←D] θ ′ , θ[Wires←∅][Src← {c+1}] µ ′ ,µ[PIDs← ε]

〈σ,µ,θ,ev,τ,P, I,c〉 (σ,τ,θ,c,L)
 G 〈σ ′,µ ′,θ ′,∅,τ ′,u REPEAT(I), I,c+1〉

Figure 13: Per-thread transition relation P, non-blocking transition relation N, continuous transition relation C, and global
restart relation G .

index i∗ such that inf (π∗L, i∗)(v∗) 6= inf (π∗R, i∗)(v∗), and
therefore without loss of generality, there is a cycle t∗,
such that t∗ ∈ inf (π∗L, i∗)(v∗) and t∗ 6∈ inf (π∗R, i∗)(v∗).
We can find two traces t∗-traces π̂L and π̂R that only
differ from π∗L and π∗R in their liveness maps. But
then, since the traces are t∗-liveness equivalent, by def-
inition, at index i∗ both π̂L and π̂R are t∗−live, i.e.,
live(π̂L, i∗)(v∗) = live(π̂R, i∗)(v∗) = L and, by lemma 1,
t∗ ∈ inf (π̂R, i∗)(v∗). Since π̂R and π∗R only differ in their
liveness map, this implies t∗ ∈ inf (π∗R, i∗)(v∗), from
which the contradiction follows.

5 Verifying Constant Time Execution
In this section, we describe how IODINE verifies liveness
equivalence by using standard techniques.

Algorithm IODINE. Given a VINTER program P, a set
of input/output specifications IO and a set of assump-
tions A, IODINE checks that P executes in constant time
with respect to A. For this, IODINE first checks for race-
freedom. If a race is detected, IODINE returns a witness
describing the violation. If no race is detected, IODINE

takes the following four steps: (1) It builds a set of Horn

clause constraints hs [26, 33] whose solution character-
izes the set of all configurations that are reachable by
the per-process product and satisfy A. (2) Next, it builds
a set of constraints cs whose solutions characterize the
set of liveness equivalent states. (3) It then computes a
solution Sol to hs and checks whether the solution sat-
isfies cs. To find a more precise solution, the user can
supply additional hints in the form of a set of predicates
which we describe later. (4) If the check succeeds, P ex-
ecutes in constant time with respect to A, otherwise, P
can potentially exhibit timing variations.

Constraint Solving. IODINE solves the reachability con-
straints by using Liquid Fixpoint [10], which computes
the strongest solution that can be expressed as a con-
junction of elements of a set of logical formulas. These
formulas are composed of a set of base predicates. We
use base predicates that track equalities between the live-
ness bits and values of each variable between the two
runs. In addition to these base predicates, we use hints
that are defined by the user. We discuss in § 6 which
predicates were used in our benchmarks.

1420 28th USENIX Security Symposium USENIX Association

6 Implementation and Evaluation
In this section, we describe our implementation and eval-
uate IODINE on several open source VERILOG projects,
spanning from RISC processors, to floating-point units
and crypto cores. We find that IODINE is able to show
that a piece of code is not constant-time and otherwise
verify that the hardware is constant-time in a matter of
seconds. Except our processor use cases, we found the
annotation burden to be light weight—often less than 10
lines of code. All the source code and data are available
on GitHub, under an open source license.5

6.1 Implementation
IODINE consists of a front-end pass, which takes anno-
tated hardware descriptions and compiles them to VIN-
TER, and a back-end that verifies the constant-time execu-
tion of these VINTER programs. We think this modular
designs will make it easy for IODINE to be extended to
support different hardware description languages beyond
VERILOG (e.g., VHDL or Chisel [19]).

Our front-end extends the Icarus Verilog parser [9]
and consists of 2000 lines of C++. Since VINTER shares
many similarities with VERILOG, this pass is relatively
straightforward, however, IODINE does not distinguish
between clock edges (positive or negative) and, thus, re-
moves them during compilation. Moreover, our prototype
does not support the whole VERILOG language (e.g., we
do not support assignments to multiple variables).

IODINE’s back-end takes a VINTER program and, fol-
lowing § 5, generates and checks a set of verification
conditions. We implement the back-end in 4000 lines of
Haskell. Internally, this Haskell back-end generates Horn
clauses and solves them using the liquid-fixpoint library
that wraps the Z3 [29] SMT solver. Our back-end outputs
the generated invariants, which (1) serve as the proof of
correctness when the verification succeeds, or (2) helps
pinpoint why verification fails.

Tool Correctness. The IODINE implementation and Z3
SMT solver [29] are part of our trusted computing base.
This is similar to other constant-time and information
flow tools (e.g., SecVerilog [55] and ct-verif [16]). As
such, the formal guarantees of IODINE can be under-
mined by implementation bugs. We perform several tests
to catch such bugs early—in particular, we validate: (1)
our translation into VINTER against the original VER-
ILOG code; (2) our translation from VINTER into Horn
clauses against our semantics; and, (3) the generated in-

5https://iodine.programming.systems

variants against both the VINTER and VERILOG code.

6.2 Evaluation
Our evaluation seeks to answer three questions: (Q1)
Can IODINE be easily applied to existing hardware de-
signs? (Q2) How efficient is IODINE? (Q3) What is the
annotation burden on developers?

(Q1) Applicability. To evaluate its applicability, we run
IODINE on several open source hardware modules from
GitHub and OpenCores. We chose VERILOG programs
that fit into three categories—processors, crypto-cores,
and floating-point units (FPUs)—these have previously
been shown to expose timing side channels. In particular,
our benchmarks consist of:

I MIPS- and RISCV-32I-based pipe-lined CPU cores
with a single level memory hierarchy.

I Crypto cores implementing the SHA 256 hash function
and RSA 4096-bit encryption.

I Two FPUs that implement core operations (+,−,×,÷)
according to the IEEE-754 standard.

I An ALU [1] that implements (+,−,×,�, . . .).

In our benchmarks, following our attacker model from
§ 2.1, we annotated all the inputs to the computation. For
example, this includes the sequence of instructions for
the benchmarks with a pipeline (i.e., MIPS, RISC-V, FPU
and FPU2) in addition to other control inputs, and all the
top level VERILOG inputs for the rest (i.e., SHA-256,
ALU and RSA). Similarly, we annotated as sinks, all the
outputs of the computation. In the case of benchmarks
with a pipeline, this includes the output from the last stage
and other results (e.g., whether the result is NaN in FPU),
and all the top level VERILOG outputs for the rest. The
modifications we had to perform to run IODINE on these
benchmarks were minimal and due to parser restrictions
(e.g., desugaring assignments to multiple variables into
individual assignments, unrolling the code generated by
the loop inside the generate blocks).

(Q2) Efficiency. To evaluate its efficiency, we run IO-
DINE on the annotated programs. As highlighted in Ta-
ble 1, IODINE can successfully verify different VERILOG

programs of modest size (up to 1.1K lines of code) rel-
atively quickly (<20s). All but the constant-time FPU
finished in under 3 seconds. Verifying the constant-time
FPU took 12 seconds, despite the complexity of IEEE-
754 standard which manifests as a series of case splits
in VERILOG. We find these measurements encouraging,
especially relative to the time it takes to synthesize VER-
ILOG—verification is orders of magnitude smaller.

USENIX Association 28th USENIX Security Symposium 1421

https://iodine.programming.systems

Name #LOC
#Assum

CT Check (s)
#flush #always

MIPS [5] 434 31 2 X 1.329
RISC-V [7] 745 50 19 X 1.787
SHA-256 [8] 651 5 3 X 2.739
FPU [6] 1182 0 0 X 12.013
ALU [1] 913 1 5 X 1.595
FPU2 [3] 272 3 4 7 0.705
RSA [4] 870 4 0 7 1.061

Total 5067 94 33 - 21.163

Table 1: #LOC is the number of lines of Verilog code, #Assum
is the number of assumptions (excluding source and sink); flush
and always are annotations of the form init and � respectively,
CT shows if the program is constant-time, and Check is the
time IODINE took to check the program. All experiments were
run on a Intel Core i7 processor with 16 GB RAM.

Discovered Timing Variability. Running IODINE re-
vealed that two of our use cases are not constant-time:
one of the FPU implementations and the RSA crypto-
core. The division module of the FPU exhibits timing
variability depending on the value of the operands. In
particular, similar to the example from § 2, the module
triggers a fast path if the operands are special values.

The RSA encryption core similarly exhibited time vari-
ability. In particular, the internal modular exponentiation
algorithm performs a Montgomery multiplication de-
pending on the value of a source bit ei: if ei = 1 then c :=
ModPro(c,m). Since e is a secret, this timing variability
can be exploited to reveal the secret key [27, 35].

(Q3) Annotation burden. While IODINE automatically
discovers proofs, the user has to provide a set of assump-
tions A under which the hardware design executes in
constant time. To evaluate the burden this places on de-
velopers, we count the number and kinds of assumptions
we had to add to each of our use cases. Table 1 sum-
marizes our results: except for the CPU cores, most of
our other benchmarks required only a handful of assump-
tions. Beyond declaring sinks and sources, we rely on
two other kinds of annotations. First, we find it useful
to specify that the initial state of an input variable x is
equal in any pair of runs, i.e., init(xL = xR). This assump-
tion essentially specifies that register x is flushed, i.e., is
set to a constant value, to remove any effects of a pre-
vious execution from our initial state. Second, we find
it useful to specify that the state of an input variable x
is equal, throughout any pair of runs, i.e., �(xL = xR).
This assumption is important when certain behavior is
expected to be the same in both runs. We now describe
these assumptions for our benchmarks.

I MIPS: We specify that the values of the fetched in-
structions, and the reset bit are the same.

I RISC-V: In addition to the assumptions required by
the MIPS core, we also specify that both runs take the
same conditional branch, and that the type of mem-
ory access (read or write) is the same in both runs
(however, the actual values remain unrestricted). This
corresponds to the assumption that programs running
on the CPU do not branch or access memory based
on secret values. Finally, CSR registers must not be
accessed illegally (see § 6.3).

I ALU: Both runs execute the same type of operations
(e.g., bitwise, arithmetic), operands have the same bit
width, instructions are valid, reset pins are the same.

I SHA-256 and FPU (division): We specify that the
reset and input-ready bits are the same.

In all cases, we start with no assumptions and add the
assumptions incrementally by manually investigating the
constant-time “violation” flagged by IODINE.

Identifying Assumptions. From our experience, the as-
sumptions that a user needs to specify fall into three
categories. The first are straightforward assumptions—
e.g., that any two runs execute the same code. The sec-
ond class of assumptions specify that certain registers
need to be flushed, i.e., they need to initially be the same
(flushed) for any two runs. To identify these, we first
flush large parts of circuits, and then, in a minimization
step, we remove all unnecessary assumptions. The last,
and most challenging, are implicit invariants on data and
control—e.g., the constraints on CSR registers. IODINE

performs delta debugging to help pinpoint violations but,
ultimately, these assumptions require user intervention
to be resolved. Indeed, specifying these assumptions re-
quire a deep understanding of the circuit and its intended
usage. In our experience, though, only a small fraction
of assumptions fall into this third category.

User Hints. For one of our benchmarks (FPU), we
needed to supply a small number of user hints (<5) to the
solver. These hints come in the form of predicates that
track additional equalities between liveness bits of the
same run. This is required, when the two executions can
take different control paths, yet execute in constant time.
We hope to remove those hints in the future.

6.3 Case Studies
We now illustrate how IODINE verifies benchmarks with
challenging features and helps explicate conditions under
which a hardware design is constant-time, using exam-

1422 28th USENIX Security Symposium USENIX Association

1 always @(*) begin

2 if (...)

3 Stall = 1; else Stall = 0;

4 end

5 always @(posedge clk) begin

6 if (Stall)

7 ID_instr <= ID_instr;

8 else

9 ID_instr <= IF_instr;

10 end

Figure 14: Stalling in MIPS [5].

ples from our benchmarks.

History Dependencies. In hardware, the result of a com-
putation often depends on inputs from previous cycles,
i.e., the computation depends on execution history. For
example, when a hardware unit is in use by a previous
instruction, the CPU stalls until the unit becomes free.

The code snippet in Fig. 14 contains a simplified ver-
sion of the stalling logic from our MIPS processor bench-
mark. On line 3, register Stall is set to 1 if instructions
in the execute and instruction decode stages conflict. Its
value is then used to update the state of each pipeline
stage. In this example, if the pipeline is stalled, the value
of the register ID_instr, which corresponds to the instruc-
tion currently executing in the instruction decode stage,
stays the same. Otherwise, it is updated with IF_instr—
the value coming from the instruction fetch stage.

Without further assumptions, IODINE flags this be-
havior as non-constant time, as an instruction can take
different times to process, depending on which other
instructions are before it in the pipeline. However, after
adding the assumption that any two runs execute the same
sequence of instructions, IODINE is able to prove that
Stall has the same value in any pair of traces, from which
the constant time behavior follows. Importantly, however,
we have no assumption on the state of the registers and
memory elements that the instructions use.

Diverging Control Flow. Methods for enforcing constant
time execution of software often require that any two exe-
cutions take the same control flow path [16]. In hard-
ware, this assumption is too restrictive. Consider the
code snippet in Fig. 15 taken from our constant time
FPU benchmark (the full logic is shown in Fig. 20 of
the Appendix). The first always block calculates the
sign bit of the multiplication result (sign_mul_r), us-
ing inputs opa and opb. The FPU uses this bit in line
17 (through sign_mul_final), to calculate output out
in line 12. Even though we cannot assume that all exe-

1 always @(*)

2 case({opa[31], opb[31]})

3 2’b0_0: sign_mul_r <= 0;

4 2’b0_1: sign_mul_r <= 1;

5 ...

6 endcase

7 ...

8 assign sign_mul_final = (sign_exe_r & ...) ?

9 !sign_mul_r : sign_mul_r;

10 ...

11 always @(posedge clk)

12 out <= { (... ?

13 (f2i_out_sign &

14 !(qnan_d | snan_d)) :

15 (((fpu_op_r3 == 3’b010)

16 & ... ?

17 sign_mul_final : ...))) };

Figure 15: Diverging control flow in FPU [6].

cutions select the same branches, IODINE can infer that
every branch produces the same influence sets for the
variables assigned under them. Using this information,
IODINE can prove that the FPU operates in constant-time,
despite diverging control flow paths.

Assumptions. IODINE can be used to inform software
mechanisms for mitigating timing side-channels by
explicating—and verifying—conditions under which a
circuit executes in constant time. Consider Figure 16,
which shows the logic for updating Control and Status
Registers (CSR) in our RISC-V benchmark. The wire
de_illegal_csr_access, defined on line 1 is set by
checking whether a CSR instruction is executed in non-
privileged mode. For this, the circuit compares the ma-
chine status register csr_mstatus to the instructions
status bit. When de_illegal_csr_access is set, the
branch instruction on line 8 traps the error and jumps
to a predefined handler code. In order to prove that the
cycle executes in constant-time, we add an assumption
stating that CSR registers are not accessed illegally. This
assumption translates into an obligation for software miti-
gation mechanisms to ensure proper use of CSR registers.

7 Limitations and Future Work
We discuss some of IODINE’s limitations.

Clocks and Assumptions. For example, IODINE presup-
poses a single fixed-cycle clock and thus does not allow
for checking arbitrary VERILOG programs. We leave
an extension to multiple clocks as future work. Simi-
larly, IODINE requires users to add assumptions by hand
in somewhat ad-hoc trial-and-error fashion. For large
circuits this could prove extremely difficult and poten-

USENIX Association 28th USENIX Security Symposium 1423

1 wire de_illegal_csr_access =

2 de_valid &&

3 de_inst‘opcode == ‘SYSTEM &&

4 de_inst‘funct3 != ‘PRIV &&

5 (csr_mstatus‘PRV < de_inst[29:28] ||

6 ...);

7 always @(posedge clk) begin

8 if (de_illegal_csr_access) begin

9 ex_restart <= 1;

10 ex_next_pc <= ...;

11 end

12 end

Figure 16: Update of CSRs in RISC-V [7].

tially lead to errors where erroneous assumptions may
lead IODINE to falsely mark a variable time circuit as
constant-time. We leave the inference and validation of
assumptions to future work.

Scale. We evaluate IODINE on relatively small sized (500-
1000 lines) hardware designs. We did not (yet) evaluate
the tool on larger circuits, such as modern processors
with advanced features like a memory hierarchy, and
out-of-order and transient-execution. In principle, these
features boil down to the same primitives (always blocks
and assignments) that IODINE already handles. But, we
anticipate that scaling will require further changes to IO-
DINE, for instance, finding per-module invariants rather
than the naive in-lining currently performed by IODINE.
We leave the evaluation to larger systems to future work.

8 Related Work

Constant-Time Software. Almeida et al. [16] verify
constant-time execution of cryptographic libraries for
LLVM. Their notion of constant-time execution is based
on a leakage model. This choice allows them to be flex-
ible enough to capture various properties like (timing)
variability in memory access patterns and improper use
of timing sensitive instructions like DIV. Unfortunately,
their notion of constant-time is too restrictive for our
setting, as it requires the control flow path of any two
runs to be the same. This would, for example, incorrectly
flag our FPU multiplier as variable-time. Like IODINE,
their tool ct-verif employs a product construction that use
the fact that loops can often be completely unrolled in
cryptographic code, whereas we rely on race freedom.

Barthe et al. [20] build on the CompCert compiler [39]
to enforce constant time execution through an informa-
tion flow type system.

Reparaz et al. [47] present a method for discovering
timing variability in existing systems through a black-box

approach, based on statistical measurements.
All of these approaches address constant-time execu-

tion in software and do not translate to the hardware
setting (see § 2).

Self-Composition and Product Programs. Barthe et
al. [22] introduce the notion of self composition to ver-
ify information flow. Terauchi and Aiken generalize this
construction to arbitrary 2-safety properties [50], i.e.,
properties that relate two runs, and Clarkson and Schnei-
der [28] generalize to multiple runs. Barthe et al. [21]
introduce product programs that, instead of conjoining
copies sequentially, compose copies in lock-step; this
was later used in other tools like ct-verif. This technique
is further developed in [49], which presents an exten-
sion of Hoare logic to hyper-properties that computes
lock-step compositions on demand, per Hoare-triple.

Information Flow Safety and Side Channels. There are
many techniques for proving information flow safety
(e.g., non-interference) in both hardware and software.
Kwon et al. [37] prove information flow safety of hard-
ware for policies that allow explicit declassification and
are expressed over streams of input data. They construct
relational invariants by using propositional interpolation
and implicitly build a full self-composition; by contrast,
we leverage race-freedom to create a per-thread product
which contains only a subset of behaviors.

SecVerilog [55] proves timing-sensitive non-
interference for circuits implemented in an extension of
VERILOG that uses value-dependent information flow
types. Caisson [40] is a hardware description language
that uses information flow types to ensure that generated
circuits are secure. GLIF [51, 52] tracks the flow of
information at the gate level to eliminate explicit and
covert channels. All these approaches have been used to
implement information flow secure hardware that do not
suffer from (timing) side-channels.

IODINE focuses on clock-precise constant-time execu-
tion, not information flow. The two properties are related,
but information flow safety does not imply constant-time
execution nor the converse (see Appendix A.1 for de-
tails). Moreover, SecVerilog, Caisson, and GLIF take a
language-design approach whereas we take an analysis-
centric view that is more suitable for verifying existing
hardware designs. Thus, we see our work as largely com-
plementary. Indeed, it may be useful to use IODINE along-
side these HDLs to verify constant-time execution for
parts of the hardware that handle secret data only, and are
thus not checked for timing variability, thereby extending
their attacker model.

1424 28th USENIX Security Symposium USENIX Association

Combining Hardware & Software Mitigations. Hyper-
Flow [31] and GhostRider [43], take hardware/soft-
ware co-design approach to eliminating timing channels.
Zhang et al. [54] present a method for mitigating timing
side-channels in software and give conditions on hard-
ware that ensure the validity of mitigations is preserved.
Instead of eliminating timing flows all together, they spec-
ify quantitative bounds on leakage and offers primitives
to mitigate timing leaks through padding. Many other
tools [11, 13, 30, 38, 48] automatically quantify leakage
through timing and cache side-channels. Our approach
is complementary and focuses on clock-precise analysis
of existing hardware. However, the explicit assumptions
that IODINE needs to verify constant-time behavior can
be used to inform software mitigation techniques.

References
[1] https://github.com/scarv/xcrypto-ref.

[2] ARM A64 instruction set architecture.
https://static.docs.arm.com.

[3] https://github.com/dawsonjon/fpu.

[4] https://github.com/fatestudio/RSA4096.

[5] https://github.com/gokhankici/iodine.

[6] https://github.com/monajalal/fpga_-
mc/tree/master/fpu.

[7] https://github.com/tommythorn/yarvi.

[8] https://opencores.org/project/sha_core.

[9] Icarus verilog. http://iverilog.icarus.com/.

[10] Liquid fixpoint. https://github.com/ucsd-progsys.

[11] TIS-CT. http://trust-in-soft.com/tis-ct/.

[12] IEEE Standard for Verilog Hardware Description
Language. IEEE Std 1364-2005, 2005.

[13] J Bacelar Almeida, Manuel Barbosa, Jorge S Pinto,
and Bárbara Vieira. Formal verification of side-
channel countermeasures using self-composition.
In Science of Computer Programming, 2013.

[14] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt
Schmidt, and Pierre-Yves Strub. Jasmin: High-
assurance and high-speed cryptography. In CCS,
2017.

[15] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, and François Dupressoir. Verifiable side-
channel security of cryptographic implementations:
Constant-time mee-cbc. In FSE, 2016.

[16] José Bacelar Almeida, Manuel Barbosa, Gilles
Barthe, François Dupressoir, and Michael Emmi.
Verifying constant-time implementations. In
USENIX Security, 2016.

[17] Marc Andrysco, David Kohlbrenner, Keaton Mow-
ery, Ranjit Jhala, Sorin Lerner, and Hovav Shacham.
On subnormal floating point and abnormal timing.
In S&P, 2015.

[18] Marc Andrysco, Andres Noetzli, Fraser Brown,
Ranjit Jhala, and Deian Stefan. Towards verified,
constant-time floating point operations. In CCS,
2018.

[19] Jonathan Bachrach, Huy Vo, Brian C. Richards,
Yunsup Lee, Andrew Waterman, Rimas Avizienis,
John Wawrzynek, and Krste Asanovic. Chisel: con-
structing hardware in a scala embedded language.
In DAC, 2012.

[20] Gilles Barthe, Gustavo Betarte, Juan Diego Campo,
Carlos Daniel Luna, and David Pichardie. System-
level non-interference for constant-time cryptogra-
phy. In CCS, 2014.

[21] Gilles Barthe, Juan Manuel Crespo, and Cesar Kunz.
Relational verification using product programs. In
FM, 2011.

[22] Gilles Barthe, Pedro R. D’Argenio, and Tamara
Rezk. Secure information flow by self-composition.
In CSF, 2004.

[23] Daniel J. Bernstein. The poly1305-aes message-
authentication code. In Fast Software Encryption,
2005.

[24] Daniel J. Bernstein. Curve25519: New diffie-
hellman speed records. In Public Key Cryptography,
2006.

[25] Daniel J Bernstein. The salsa20 family of stream
ciphers. In New stream cipher designs. Springer,
2008.

[26] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and
Andrey Rybalchenko. Horn clause solvers for pro-
gram verification. In Fields of Logic and Computa-
tion. 2015.

USENIX Association 28th USENIX Security Symposium 1425

https://github.com/scarv/xcrypto-ref
https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf
https://github.com/dawsonjon/fpu
https://github.com/fatestudio/RSA4096
https://github.com/gokhankici/iodine/tree/master/benchmarks/472-mips-pipelined
https://github.com/monajalal/fpga_mc/tree/master/fpu
https://github.com/monajalal/fpga_mc/tree/master/fpu
https://github.com/tommythorn/yarvi
https://opencores.org/project/sha_core
http://iverilog.icarus.com/
https://github.com/ucsd-progsys/liquid-fixpoint
http://trust-in-soft.com/tis-ct/

[27] David Brumley and Dan Boneh. Remote timing
attacks are practical. Computer Networks, 2005.

[28] Michael R. Clarkson and Fred B. Schneider. Hy-
perproperties. Journal of Computer Security, 2010.

[29] Leonardo de Moura and Nikolaj Bjørner. Z3: An
efficient SMT solver. In TACAS, 2008.

[30] Goran Doychev, Dominik Feld, Boris Köpf, Laurent
Mauborgne, and Jan Reineke. Cacheaudit: A tool
for the static analysis of cache side channels. In
USENIX Security, 2013.

[31] Andrew Ferraiuolo, Mark Zhao, Andrew C Myers,
and G Edward Suh. Hyperflow: A processor archi-
tecture for nonmalleable, timing-safe information
flow security. In SIGSAC, 2018.

[32] Michael J. C. Gordon. The semantic challenge of
verilog hdl. In LICS, 1995.

[33] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu
Popeea, and Andrey Rybalchenko. Synthesizing
software verifiers from proof rules. In PLDI, 2012.

[34] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: Exploiting speculative
execution. CoRR, 2018.

[35] Paul C Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems.
In CRYPTO, 1996.

[36] David Kohlbrenner and Hovav Shacham. On the
effectiveness of mitigations against floating-point
timing channels. In USENIX Security, 2017.

[37] Hyoukjun Kwon, William Harris, and Hadi
Esameilzadeh. Proving flow security of sequen-
tial logic via automatically-synthesized relational
invariants. In CSF, 2017.

[38] Adam Langley. ctgrind: Checking that
functions are constant time with valgrind.
https://github.com/agl/ctgrind/.

[39] Xavier Leroy. Formal certification of a compiler
back-end, or: programming a compiler with a proof
assistant. In POPL, 2006.

[40] Xun Li, Mohit Tiwari, Jason K Oberg, Vineeth
Kashyap, Frederic T Chong, Timothy Sherwood,
and Ben Hardekopf. Caisson: a hardware descrip-
tion language for secure information flow. In PLDI,
2011.

[41] Linux on ARM. ARM64 prepping ARM v8.4 fea-
tures, KPTI improvements for Linux 4.17. https:
//www.linux-arm.info/.

[42] Moritz Lipp, Michael Schwarz, Daniel Gruss,
Thomas Prescher, Werner Haas, Anders Fogh, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin,
Yuval Yarom, and Mike Hamburg. Meltdown: Read-
ing kernel memory from user space. In USENIX
Security, 2018.

[43] Chang Liu, Austin Harris, Martin Maas, Michael
Hicks, Mohit Tiwari, and Elaine Shi. Ghostrider: A
hardware-software system for memory trace oblivi-
ous computation. SIGPLAN Notices, 2015.

[44] Jonas Magazinius, Alejandro Russo, and Andrei
Sabelfeld. On-the-fly inlining of dynamic security
monitors. In IFIP, 2010.

[45] Susan Owicki and David Gries. Verifying proper-
ties of parallel programs: an axiomatic approach.
Communicationsof the ACM, 1976.

[46] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure,
precise, and fast floating-point operations on x86
processors. In USENIX Security, 2016.

[47] Oscar Reparaz, Joseph Balasch, and Ingrid Ver-
bauwhede. Dude, is my code constant time? In
DATE, 2017.

[48] Bruno Rodrigues, Fernando Magno Quin-
tão Pereira, and Diego F Aranha. Sparse
representation of implicit flows with applications
to side-channel detection. In CCC, 2016.

[49] Marcelo Sousa and Isil Dillig. Cartesian hoare logic
for verifying k-safety properties. In PLDI, 2016.

[50] Tachio Terauchi and Alex Aiken. Secure informa-
tion flow as a safety problem. In SAS, 2005.

[51] Mohit Tiwari, Jason K Oberg, Xun Li, Jonathan
Valamehr, Timothy Levin, Ben Hardekopf, Ryan
Kastner, Frederic T. Chong, and Timothy Sherwood.
Crafting a usable microkernel, processor, and i/o
system with strict and provable information flow
security. In ISCA, 2011.

1426 28th USENIX Security Symposium USENIX Association

https://github.com/agl/ctgrind/
https://www.linux-arm.info/
https://www.linux-arm.info/

[52] Mohit Tiwari, Hassan MG Wassel, Bita Mazloom,
Shashidhar Mysore, Frederic T Chong, and Timothy
Sherwood. Complete information flow tracking
from the gates up. In Sigplan Notices, 2009.

[53] Conrad Watt, John Renner, Natalie Popescu, Sunjay
Cauligi, and Deian Stefan. Ct-wasm: Type-driven
secure cryptography for the web ecosystem. 2019.

[54] Danfeng Zhang, Aslan Askarov, and Andrew C.
Myers. Language-based control and mitigation of
timing channels. In PLDI, 2012.

[55] Danfeng Zhang, Yao Wang, G. Edward Suh, and
Andrew C. Myers. A hardware design language
for timing-sensitive information-flow security. In
ASPLOS, 2015.

A Appendix

A.1 Comparison to Information Flow
In this section, we discuss the relationship between con-
stant time execution and information flow checking. In-
formation flow safety (IFS) and constant time execution
(CTE) are incomparable, i.e., IFS does not imply CTE,
and vice versa. We illustrate this using two examples:
one is information flow safe but does not execute in con-
stant time and one executes in constant time but is not
information flow safe.

Figure 17 contains example program EX2 which is
information flow safe but not constant time. The example
contains three registers that are typed high as indicated
by the annotation H, and one register that is typed low
as indicated by the annotation L. The program is infor-
mation flow safe, as there are no flows from high to low.
Indeed, SecVerilog [55] type checks this program.

This program, however, is not constant time when
slowL 6= slowR. This does not mean that the program
leaks high data to low sinks—indeed it does not. Instead,
what this means is that the high computation takes a vari-
able amount of time dependent on the secret input values.
In cases like crypto cores where the attacker has a stop
watch and can measure the duration of the sensitive com-
putation, it’s not enough to be information flow safe: we
must ensure the core is constant-time.

Next, consider Figure 18 that contains program EX3
which executes in constant time but is not information
flow safe. EX3 violates information flow safety by assign-
ing high input sec to low output out. The example how-
ever executes constant time with source in and sink out un-

1 // source(in_low); source(in_high);

2 // sink(out_low); sink(out_high);

3 module test(input {L} clk ,

4 input {L} in_low ,

5 input {H} in_high ,

6 output {L} out_low ,

7 output {H} out_high);

8 reg {H} flp_res;

9 reg {H} slow;

10 reg {L} out_low;

11 reg {H} out_high;

12 always @(posedge clk) begin

13 out_low <= in_low;

14 flp_res <= in_hi;

15 if (slow)

16 out_hi <= flp_res;

17 else

18 out_hi <= in_hi;

19 end

20 endmodule

Figure 17: EX2: Non-constant time but info-flow safe.

1 // source(in); sink(out);

2 // � (slowL = slowR);

3 reg {L} in;

4 reg {L} out;

5 reg {H} sec;

6 always @(posedge clk) begin

7 out <= in + sec;

8 end

Figure 18: EX3: Constant time but not info-flow safe.

der the assumption that + does not contain asynchronous
assignments.

A.2 Translation
In Figure 19, we define a relation⇒ that translates VER-
ILOG programs into VINTER programs. The relation is
given in terms of inference rules where a transition step
in the rule’s conclusion (below the line) is applicable
only if all its preconditions (above the line) are met. Both
always- and assign-blocks are translated into threads that
are executed at every clock tick using withclock. Each
process is given a unique id. Our translation does not dis-
tinguish between posedge and negedge events thereby
relaxing the semantics by allowing them to occur in any
order. assign blocks are transformed into threads execut-
ing a continuous assignment. Blocking and non-blocking
assignments remain unchanged.

USENIX Association 28th USENIX Security Symposium 1427

P⇒ P ′ Q⇒Q ′

P ·Q⇒ P ′ ‖Q ′
s1⇒ s ′1 . . . sn⇒ s ′n

begin s1; . . . ;sn; end⇒ s ′1; . . . ;s ′n

s⇒ s ′ id fresh

always @(_) s⇒ repeat [s ′]id

id fresh

assign v = e⇒ repeat [v := e]id

s1⇒ s ′1 s2⇒ s ′2
if (e) s1 else s2 end ⇒ ite(e,s ′1,s ′2)

Figure 19: Translation from VERILOG to VINTER.

1 always @(*)

2 case({opa[31], opb[31]})

3 2’b0_0: sign_mul_r <= 0;

4 2’b0_1: sign_mul_r <= 1;

5 ...

6 endcase

7 assign sign_mul_final =

8 (sign_exe_r &

9 ((opa_00 & opb_inf) |

10 (opb_00 & opa_inf))) ?

11 !sign_mul_r : sign_mul_r;

12 always @(posedge clk)

13 out <= {

14 (((fpu_op_r3 == 3’b101) & out_d_00) ?

15 (f2i_out_sign & !(qnan_d | snan_d)) :

16 (((fpu_op_r3 == 3’b010) &

17 !(snan_d | qnan_d)) ?

18 sign_mul_final :

19 (((fpu_op_r3 == 3’b011) &

20 !(snan_d | qnan_d)) ? sign_div_final :

21 ((snan_d | qnan_d | ind_d) ?

22 nan_sign_d :

23 (output_zero_fasu ?

24 result_zero_sign_d :

25 sign_fasu_r))))) ,

26 ((mul_inf | div_inf |

27 (inf_d & (fpu_op_r3 != 3’b011) &

28 (fpu_op_r3 != 3’b101)) |

29 snan_d | qnan_d) &

30 fpu_op_r3 != 3’b100 ? out_fixed :

out_d) };

Figure 20: Example diverging computation in [6]

1428 28th USENIX Security Symposium USENIX Association

VRASED: A Verified Hardware/Software Co-Design for Remote Attestation

Ivan De Oliveira Nunes
University of California, Irvine

ivanoliv@uci.edu

Karim Eldefrawy
SRI International

karim.eldefrawy@sri.com

Norrathep Rattanavipanon
University of California, Irvine

nrattana@uci.edu

Michael Steiner
Intel

michael.steiner@intel.com

Gene Tsudik
University of California, Irvine

gene.tsudik@uci.edu

Abstract

Remote Attestation (RA) is a distinct security service that al-
lows a trusted verifier (V rf) to measure the software state of
an untrusted remote prover (P rv). If correctly implemented,
RA allows V rf to remotely detect if P rv is in an illegal or com-
promised state. Although several RA approaches have been
explored (including hardware-based, software-based, and hy-
brid) and many concrete methods have been proposed, compar-
atively little attention has been devoted to formal verification.
In particular, thus far, no RA designs and no implementations
have been formally verified with respect to claimed security
properties.

In this work, we take the first step towards formal verifica-
tion of RA by designing and verifying an architecture called
VRASED: Verifiable Remote Attestation for Simple Embedded
Devices. VRASED instantiates a hybrid (HW/SW) RA co-
design aimed at low-end embedded systems, e.g., simple IoT
devices. VRASED provides a level of security comparable to
HW-based approaches, while relying on SW to minimize ad-
ditional HW costs. Since security properties must be jointly
guaranteed by HW and SW, verification is a challenging task,
which has never been attempted before in the context ofRA. We
believe that VRASED is the first formally verified RA scheme.
To the best of our knowledge, it is also the first formal verifi-
cation of a HW/SW co-design implementation of any security
service. To demonstrate VRASED’s practicality and low over-
head, we instantiate and evaluate it on a commodity platform
(TI MSP430). VRASED was deployed using the Basys3 Artix-7
FPGA and its implementation is publicly available.

1 Introduction

The number and variety of special-purpose computing devices
is increasing dramatically. This includes all kinds of embedded
devices, cyber-physical systems (CPS) and Internet-of-Things
(IoT) gadgets, that are utilized in various “smart” settings, such
as homes, offices, factories, automotive systems and public
venues. As society becomes increasingly accustomed to being
surrounded by, and dependent on, such devices, their security
becomes extremely important. For actuation-capable devices,
malware can impact both security and safety, e.g., as demon-
strated by Stuxnet [49]. Whereas, for sensing devices, malware
can undermine privacy by obtaining ambient information. Fur-

thermore, clever malware can turn vulnerable IoT devices into
zombies that can become sources for DDoS attacks. For exam-
ple, in 2016, a multitude of compromised “smart” cameras and
DVRs formed the Mirai Botnet [2] which was used to mount a
massive-scale DDoS attack (the largest in history).

Unfortunately, security is typically not a key priority for low-
end device manufacturers, due to cost, size or power constraints.
It is thus unrealistic to expect such devices to have the means to
prevent current and future malware attacks. The next best thing
is detection of malware presence. This typically requires some
form of Remote Attestation (RA) – a distinct security service
for detecting malware on CPS, embedded and IoT devices. RA
is especially applicable to low-end embedded devices that are
incapable of defending themselves against malware infection.
This is in contrast to more powerful devices (both embedded
and general-purpose) that can avail themselves of sophisticated
anti-malware protection. RA involves verification of current
internal state (i.e., RAM and/or flash) of an untrusted remote
hardware platform (prover or P rv) by a trusted entity (verifier
or V rf). If V rf detects malware presence, P rv’s software can
be re-set or rolled back and out-of-band measures can be taken
to prevent similar infections. In general, RA can help V rf es-
tablish a static or dynamic root of trust in P rv and can also be
used to construct other security services, such as software up-
dates [43] and secure deletion [40]. Hybrid RA (implemented
as a HW/SW co-design) is a particularly promising approach
for low-end embedded devices. It aims to provide the same
security guarantees as (more expensive) hardware-based ap-
proaches, while minimizing modifications to the underlying
hardware.

Even though numerous RA techniques with different as-
sumptions, security guarantees, and designs, have been pro-
posed [9, 10, 14–16, 20, 21, 25, 30, 35, 38, 38–40, 43], a major
missing aspect of RA is the high-assurance and rigor derivable
from utilizing computer-aided formal verification to guarantee
security of the design and implementation of RA techniques.
Because all aforementioned architectures and their implemen-
tations are not systematically designed from abstract models,
their soundness and security can not be formally argued. In
fact, our RA verification efforts revealed that a previous hybrid
RA design – SMART [21] – assumed that disabling interrupts
is an atomic operation and hence opened the door to compro-
mise of P rv’s secret key in the window between the time of

USENIX Association 28th USENIX Security Symposium 1429

the invocation of disable interrupts functionality and the time
when interrupts are actually disabled. Another low/medium-
end architecture – Trustlite [30] – does not achieve our formal
definition of RA soundness. As a consequence, this architecture
is vulnerable to self-relocating malware (See [13] for details).
Formal specification of RA properties and their verification
significantly increases our confidence that such subtle issues
are not overlooked.

In this paper we take a “verifiable-by-design” approach
and develop, from scratch, an architecture for Verifiable
Remote Attestation for Simple Embedded Devices (VRASED).
VRASED is the first formally specified and verified RA archi-
tecture accompanied by a formally verified implementation.
Verification is carried out for all trusted components, including
hardware, software, and the composition of both, all the way
up to end-to-end notions for RA soundness and security. The
resulting verified implementation – along with its computer
proofs – is publicly available [1]. Formally reasoning about,
and verifying, VRASED involves overcoming major challenges
that have not been attempted in the context of RA and, to the
best of our knowledge, not attempted for any security service
implemented as a HW/SW co-design. These challenges in-
clude:

1 – Formal definitions of: (i) end-to-end notions for RA

soundness and security; (ii) a realistic machine model for
low-end embedded systems; and (iii) VRASED’s guaran-
tees. These definitions must be made in single formal system
that is powerful enough to provide a common ground for rea-
soning about their interplay. In particular, our end goal is to
prove that the definitions for RA soundness and security are
implied by VRASED’s guarantees when applied to our machine
model. Our formal system of choice is Linear Temporal Logic
(LTL). A background on LTL and our reasons for choosing it
are discussed in Section 2.

2 – Automatic end-to-end verification of complex systems such
as VRASED is challenging from the computability perspective,
as the space of possible states is extremely large. To cope with
this challenge, we take a “divide-to-conquer” approach. We
start by dividing the end-to-end goal of RA soundness and
security into smaller sub-properties that are also defined in
LTL. Each HW sub-module, responsible for enforcing a given
sub-property, is specified as a Finite State Machine (FSM),
and verified using a Model Checker. VRASED’s SW relies on
an F* verified implementation (see Section 4.3) which is also
specified in LTL. This modular approach allows us to efficiently
prove sub-properties enforced by individual building blocks in
VRASED.

3 – All proven sub-properties must be composed together in
order to reason about RA security and soundness of VRASED

as one whole system. To this end, we use a theorem prover
to show (by using LTL equivalences) that the sub-properties
that were proved for each of VRASED’s sub-modules, when
composed, imply the end-to-end definitions of RA soundness

and security. This modular approach enables efficient system-
wide formal verification.

1.1 The Scope of Low-End Devices

This work focuses on low-end devices based on low-power
single core microcontrollers with a few KBytes of program
and data memory. A representative of this class of devices is
the Texas Instrument’s MSP430 microcontroller (MCU) fam-
ily [26]. It has a 16-bit word size, resulting in ≈ 64 KBytes of
addressable memory. SRAM is used as data memory and its
size ranges between 4 and 16KBytes (depending on the spe-
cific MSP430 model), while the rest of the address space can
be used for program memory, e.g., ROM and Flash. MSP430 is
a Von Neumann architecture processor with common data and
code address spaces. It can perform multiple memory accesses
within a single instruction; its instruction execution time varies
from 1 to 6 clock cycles, and instruction length varies from 16
to 48 bits. MSP430 was designed for low-power and low-cost.
It is widely used in many application domains, e.g., automotive
industry, utility meters, as well as consumer devices and com-
puter peripherals. Our choice is also motivated by availability
of a well-maintained open-source MSP430 hardware design
from Open Cores [22]. Nevertheless, our machine model is ap-
plicable to other low-end MCUs in the same class as MSP430
(e.g., Atmel AVR ATMega).

1.2 Organization

Section 2 provides relevant background on RA and formal ver-
ification. Section 3 contains the details of the VRASED archi-
tecture and an overview of the verification approach. Section 4
contains the formal definitions of end-to-endRA soundness and
security and the formalization of the necessary sub-properties
along with the implementation of verified components to re-
alize such sub-properties. Due to space limitation, the proofs
for end-to-end soundness and security derived from the sub-
properties are discussed in Appendix A. Section 5 discusses
alternative designs to guarantee the same required properties
and their trade-offs with the standard design. Section 6 presents
experimental results demonstrating the minimal overhead of
the formally verified and synthesized components. Section 7
discusses related work. Section 8 concludes with a summary
of our results. End-to-end proofs of soundness and security,
optional parts of the design, VRASED’s API, and discussion
on VRASED’s prototype can be found in Appendices A to C.

2 Background

This section overviews RA and provides some background on
computer-aided verification.

1430 28th USENIX Security Symposium USENIX Association

2.1 RA for Low-end Devices

As mentioned earlier, RA is a security service that facilitates
detection of malware presence on a remote device. Specifi-
cally, it allows a trusted verifier (V rf) to remotely measure the
software state of an untrusted remote device (P rv). As shown
in Figure 1, RA is typically obtained via a simple challenge-
response protocol:

1. V rf sends an attestation request containing a challenge
(Chal) to P rv. This request might also contain a token
derived from a secret that allows P rv to authenticate V rf.

2. P rv receives the attestation request and computes an au-

thenticated integrity check over its memory and Chal. The
memory region might be either pre-defined, or explicitly
specified in the request. In the latter case, authentication
of V rf in step (1) is paramount to the overall security/pri-
vacy of P rv, as the request can specify arbitrary memory
regions.

3. P rv returns the result to V rf.
4. V rf receives the result from P rv, and checks whether it

corresponds to a valid memory state.

ProverVerifier

(2) Authenticated
Integrity Check

(4) Verify
Report

(1) Request

(3) Report

Figure 1: Remote attestation (RA) protocol

The authenticated integrity check can be realized as a Mes-
sage Authentication Code (MAC) over P rv’s memory. How-
ever, computing a MAC requires P rv to have a unique secret
key (denoted by K) shared with V rf. This K must reside in
secure storage, where it is not accessible to any software run-
ning on P rv, except for attestation code. Since most RA threat
models assume a fully compromised software state on P rv,
secure storage implies some level of hardware support.

Prior RA approaches can be divided into three groups:
software-based, hardware-based, and hybrid. Software-based
(or timing-based) RA is the only viable approach for legacy
devices with no hardware security features. Without hardware
support, it is (currently) impossible to guarantee that K is not
accessible by malware. Therefore, security of software-based
approaches [35, 44] is attained by setting threshold communi-
cation delays between V rf and P rv. Thus, software-based RA

is unsuitable for multi-hop and jitter-prone communication, or
settings where a compromised P rv is aided (during attestation)
by a more powerful accomplice device. It also requires strong
constraints and assumptions on the hardware platform and at-
testation usage [31, 34]. On the other extreme, hardware-based
approaches require either i) P rv’s attestation functionality to
be housed entirely within dedicated hardware, e.g., Trusted

Platform Modules (TPMs) [47]; or ii) modifications to the
CPU semantics or instruction sets to support the execution
of trusted software, e.g., SGX [27] or TrustZone [3]. Such
hardware features are too expensive (in terms of physical area,
energy consumption, and actual cost) for low-end devices.

While neither hardware- nor software-based approaches are
well-suited for settings where low-end devices communicate
over the Internet (which is often the case in the IoT), hybrid
RA (based on HW/SW co-design) is a more promising ap-
proach. Hybrid RA aims at providing the same security guar-
antees as hardware-based techniques with minimal hardware
support. SMART [21] is the first hybrid RA architecture target-
ing low-end MCUs. In SMART, attestation’s integrity check is
implemented in software. SMART’s small hardware footprint
guarantees that the attestation code runs safely and that the
attestation key is not leaked. HYDRA [20] is a hybrid RA

scheme that relies on a secure boot hardware feature and on
a secure micro-kernel. Trustlite [30] modifies Memory Pro-
tection Unit (MPU) and CPU exception engine hardware to
implement RA. Tytan [9] is built on top of Trustlite, extending
its capabilities for applications with real-time requirements.

Despite much progress, a major missing aspect in RA re-
search is high-assurance and rigor obtained by using formal
methods to guarantee security of a concrete RA design and
its implementation We believe that verifiability and formal
security guarantees are particularly important for hybrid RA

designs aimed at low-end embedded and IoT devices, as their
proliferation keeps growing. This serves as the main motiva-
tion for our efforts to develop the first formally verified RA

architecture.

2.2 Formal Verification, Model Checking &

Linear Temporal Logic

Computer-aided formal verification typically involves three ba-
sic steps. First, the system of interest (e.g., hardware, software,
communication protocol) must be described using a formal
model, e.g., a Finite State Machine (FSM). Second, properties
that the model should satisfy must be formally specified. Third,
the system model must be checked against formally specified
properties to guarantee that the system retains such properties.
This checking can be achieved via either Theorem Proving or
Model Checking.

In Model Checking, properties are specified as formulae

using Temporal Logic and system models are represented as
FSMs. Hence, a system is represented by a triple (S,S0,T),
where S is a finite set of states, S0 ⊆ S is the set of possible
initial states, and T ⊆ S× S is the transition relation set, i.e.,
it describes the set of states that can be reached in a single
step from each state. The use of Temporal Logic to specify
properties allows representation of expected system behavior
over time.

We apply the model checker NuSMV [17], which can be

USENIX Association 28th USENIX Security Symposium 1431

used to verify generic HW or SW models. For digital hardware
described at Register Transfer Level (RTL) – which is the
case in this work – conversion from Hardware Description
Language (HDL) to NuSMV model specification is simple.
Furthermore, it can be automated [28]. This is because the
standard RTL design already relies on describing hardware as
an FSM.

In NuSMV, properties are specified in Linear Temporal
Logic (LTL), which is particularly useful for verifying se-
quential systems. This is because it extends common logic
statements with temporal clauses. In addition to propositional
connectives, such as conjunction (∧), disjunction (∨), negation
(¬), and implication (→), LTL includes temporal connectives,
thus enabling sequential reasoning. We are interested in the
following temporal connectives:

• Xφ – neXt φ: holds if φ is true at the next system state.
• Fφ – Future φ: holds if there exists a future state where φ

is true.
• Gφ – Globally φ: holds if for all future states φ is true.
• φ U ψ – φ Until ψ: holds if there is a future state where ψ

holds and φ holds for all states prior to that.
This set of temporal connectives combined with propositional
connectives (with their usual meanings) allows us to specify
powerful rules. NuSMV works by checking LTL specifications
against the system FSM for all reachable states in such FSM.
In particular, all VRASED’s desired security sub-properties
are specified using LTL and verified by NuSMV. Finally, a
theorem prover [19] is used to show (via LTL equivalences)
that the verified sub-properties imply end-to-end definitions of
RA soundness and security.

3 Overview of VRASED

VRASED is composed of a HW module (HW-Mod) and a SW
implementation (SW-Att) of P rv’s behavior according to the
RA protocol. HW-Mod enforces access control to K in addition
to secure and atomic execution of SW-Att (these properties
are discussed in detail below). HW-Mod is designed with min-
imality in mind. The verified FSMs contain a minimal state
space, which keeps hardware cost low. SW-Att is responsible
for computing an attestation report. As VRASED’s security
properties are jointly enforced by HW-Mod and SW-Att, both
must be verified to ensure that the overall design conforms to
the system specification.

3.1 Adversarial Capabilities & Verification Ax-

ioms

We consider an adversary, A , that can control the entire soft-
ware state, code, and data of P rv. A can modify any writable
memory and read any memory that is not explicitly protected
by access control rules, i.e., it can read anything (including
secrets) that is not explicitly protected by HW-Mod. It can also

re-locate malware from one memory segment to another, in
order to hide it from being detected. A may also have full con-
trol over all Direct Memory Access (DMA) controllers on P rv.
DMA allows a hardware controller to directly access main
memory (e.g., RAM, flash or ROM) without going through the
CPU.

We focus on attestation functionality of P rv; verification of
the entire MCU architecture is beyond the scope of this paper.
Therefore, we assume the MCU architecture strictly adheres to,
and correctly implements, its specifications. In particular, our
verification approach relies on the following simple axioms:

• A1 - Program Counter: The program counter (PC) al-
ways contains the address of the instruction being exe-
cuted in a given cycle.

• A2 - Memory Address: Whenever memory is read or
written, a data-address signal (Daddr) contains the address
of the corresponding memory location. For a read access,
a data read-enable bit (Ren) must be set, and for a write
access, a data write-enable bit (Wen) must be set.

• A3 - DMA: Whenever a DMA controller attempts to
access main system memory, a DMA-address signal
(DMAaddr) reflects the address of the memory location
being accessed and a DMA-enable bit (DMAen) must be
set. DMA can not access memory when DMAen is off
(logical zero).

• A4 - MCU reset: At the end of a successful reset routine,
all registers (including PC) are set to zero before resuming
normal software execution flow. Resets are handled by
the MCU in hardware; thus, reset handling routine can
not be modified.

• A5 - Interrupts: When interrupts happen, the correspond-
ing irq signal is set.

Remark: Note that Axioms A1 to A5 are satisfied by the Open-

MSP430 design.

SW-Att uses the HACL* [52] HMAC-SHA256 function
which is implemented and verified in F*1. F* can be auto-
matically translated to C and the proof of correctness for
the translation is provided in [41]. However, even though ef-
forts have been made to build formally verified C compilers
(CompCert [33] is the most prominent example), there are
currently no verified compilers targeting lower-end MCUs,
such as MSP430. Hence, we assume that the standard compiler
can be trusted to semantically preserve its expected behavior,
especially with respect to the following:

• A6 - Callee-Saves-Register: Any register touched in a
function is cleaned by default when the function returns.

• A7 - Semantic Preservation: Functional correctness of
the verified HMAC implementation in C, when converted
to assembly, is semantically preserved.

Remark: Axioms A6 and A7 reflect the corresponding compiler

specification (e.g., msp430-gcc).

Physical hardware attacks are out of scope in this paper.

1https://www.fstar-lang.org/

1432 28th USENIX Security Symposium USENIX Association

USENIX Association 28th USENIX Security Symposium 1433

1434 28th USENIX Security Symposium USENIX Association

generated SMV description for the conjunction is proved to
simultaneously hold for all specifications. We also define end-
to-end soundness and security goals which are derived from
the verified sub-properties (See Appendix A for the proof).

4.1 Notation

To facilitate generic LTL specifications that represent
VRASED’s architecture (see Figure 3) we use the following:

• ARmin and ARmax: first and last physical addresses of the
memory region to be attested;

• CRmin and CRmax: physical addresses of first and last in-
structions of SW-Att in ROM;

• Kmin and Kmax: first and last physical addresses of the ROM
region where K is stored;

• XSmin and XSmax: first and last physical addresses of the
RAM region reserved for SW-Att computation;

• MACaddr: fixed address that stores the result of SW-Att
computation (HMAC);

• MACsize: size of HMAC result;
Table 1 uses the above definitions and summarizes the notation
used in our LTL specifications throughout the rest of this paper.

To simplify specification of defined security properties, we
use [A,B] to denote a contiguous memory region between A

and B. Therefore, the following equivalence holds:

C ∈ [A,B]⇔ (C ≤ B∧C ≥ A) (1)

For example, expression PC ∈ CR holds when the current
value of PC signal is within CRmin and CRmax, meaning
that the MCU is currently executing an instruction in CR,
i.e, a SW-Att instruction. This is because in the notation
introduced above: PC ∈CR⇔ PC ∈ [CRmin,CRmax]⇔ (PC ≤

CRmax∧PC ≥CRmin).

FSM Representation. As discussed in Section 3, HW-Mod sub-
modules are represented as FSMs that are verified to hold for
LTL specifications. These FSMs correspond to the Verilog
hardware design of HW-Mod sub-modules. The FSMs are im-
plemented as Mealy machines, where output changes at any
time as a function of both the current state and current input val-
ues4. Each FSM has as inputs a subset of the following signals
and wires: {PC, irq, Ren,Wen, Daddr, DMAen, DMAaddr}.

Each FSM has only one output, reset, that indicates whether
any security property was violated. For the sake of presen-
tation, we do not explicitly represent the value of the reset

output for each state. Instead, we define the following implicit
representation:

1. reset output is 1 whenever an FSM transitions to the Reset

state;
2. reset output remains 1 until a transition leaving the Reset

state is triggered;

4This is in contrast with Moore machines where the output is defined solely
based on the current state.

Table 1: Notation summary
Notation Description

PC Current Program Counter value

Ren Signal that indicates if the MCU is reading from memory (1-bit)

Wen Signal that indicates if the MCU is writing to memory (1-bit)

Daddr Address for an MCU memory access

DMAen Signal that indicates if DMA is currently enabled (1-bit)

DMAaddr Memory address being accessed by DMA, if any

irq Signal that indicates if and interrupt is occurring (1-bit)

CR (Code ROM) Memory region where SW-Att is stored: CR = [CRmin,CRmax]

KR (K ROM) Memory region where K is stored: KR = [Kmin,Kmax]

XS (eXclusive Stack) secure RAM region reserved for SW-Att computations: XS =

[XSmin,XSmax]

MR (MAC RAM) RAM region in which SW-Att computation result is written: MR =

[MACaddr ,MACaddr +MACsize−1]. The same region is also used to pass the attestation chal-
lenge as input to SW-Att

AR (Attested Region) Memory region to be attested. Can be fixed/predefined or specified in an
authenticated request from V rf: AR = [ARmin,ARmax]

reset A 1-bit signal that reboots the MCU when set to logic 1

A1, A2, ..., A7 Verification axioms (outlined in section 3.1)

P1, P2, ..., P7 Properties required for secure RA (outlined in section 3.2)

3. reset output is 0 in all other states.

4.2 Formalizing RA Soundness and Security

We now define the notions of soundness and security. Intu-
itively, RA soundness corresponds to computing an integrity
ensuring function over memory at time t. Our integrity ensur-
ing function is an HMAC computed on memory AR with a
one-time key derived from K and Chal. Since SW-Att com-
putation is not instantaneous, RA soundness must ensure that
attested memory does not change during computation of the
HMAC. This is the notion of temporal consistency in remote
attestation [14]. In other words, the result of SW-Att call must
reflect the entire state of the attested memory at the time when
SW-Att is called. This notion is captured in LTL by Defini-
tion 1.

Definition 1. End-to-end definition for soundness of RA computation

G : { PC =CRmin ∧AR = M∧MR = Chal ∧ [(¬reset) U (PC =CRmax)]→

F : [PC =CRmax ∧MR = HMAC(KDF(K ,Chal),M)] }

where M is any AR value and KDF is a secure key derivation function.

In Definition 1, PC =CRmin captures the time when SW-Att
is called (execution of its first instruction). M and Chal are
the values of AR and MR. From this pre-condition, Defini-
tion 1 asserts that there is a time in the future when SW-Att

computation finishes and, at that time, MR stores the result of
HMAC(KDF(K ,Chal),M). Note that, to satisfy Definition 1,
Chal and M in the resulting HMAC must correspond to the
values in AR and MR, respectively, when SW-Att was called.

RA security is defined using the security game in Figure 6.

USENIX Association 28th USENIX Security Symposium 1435

It models an adversary A (that is a probabilistic polynomial
time, ppt, machine) that has full control of the software state
of P rv (as the one described in Section 3.1). It can modify
AR at will and call SW-Att a polynomial number of times in
the security parameter (K and Chal bit-lengths). However, A

can not modify SW-Att code, which is stored in immutable
memory. The game assumes that A does not have direct access
to K , and only learns Chal after it receives from V rf as part
of the attestation request.

Definition 2.

2.1 RA Security Game (RA-game):

Assumptions:
- SW-Att is immutable, and K is not known to A
- l is the security parameter and |K |= |Chal|= |MR|= l

- AR(t) denotes the content in AR at time t

- A can modify AR and MR at will; however, it loses its ability to modify them

while SW-Att is running

RA-game:
1. Setup: A is given oracle access to SW-Att.

2. Challenge: A random challenge Chal ← ${0,1}l is generated and

given to A . A continues to have oracle access to SW-Att.

3. Response: Eventually, A responds with a pair (M,σ), where σ is either

forged by A , or the result of calling SW-Att at some arbitrary time t.

4. A wins if and only if σ = HMAC(KDF(K ,Chal),M) and M 6= AR(t).

2.2 RA Security Definition:

An RA protocol is considered secure if there is no ppt A , polynomial in l, capable

of winning the game defined in 2.1 with Pr[A ,RA-game]> negl(l)

Figure 6: RA security definition for VRASED

In the following sections, we define SW-Att functional
correctness, LTL specifications 2-10 and formally verify that
VRASED’s design guarantees such LTL specifications. We de-
fine LTL specifications from the intuitive properties discussed
in Section 3.2 and depicted in Figure 2. In Appendix A we
prove that the conjunction of such properties achieves sound-
ness (Definition 1) and security (Definition 2). For the security
proof, we first show that VRASED guarantees that A can never
learn K with more than negligible probability, thus satisfying
the assumption in the security game. We then complete the
proof of security via reduction, i.e., show that existence of an
adversary that wins the game in Definition 2 implies the exis-
tence of an adversary that breaks the conjectured existential
unforgeability of HMAC.
Remark: The rest of this section focuses on conveying the intu-

ition behind the specification of LTL sub-properties. Therefore,

our references to the MCU machine model are via Axioms A1 -

A7 which were described in high level. The interested reader

can find an LTL machine model formalizing these notions in

Appendix A, where we describe how such machine model is

used construct computer proofs for Definitions 1 and 2.

4.3 VRASED SW-Att

To minimize required hardware features, hybrid RA approaches
implement integrity ensuring functions (e.g., HMAC) in soft-
ware. VRASED’s SW-Att implementation is built on top of

1 void Hacl_HMAC_SHA2_256_hmac_entry () {
2 u i n t 8 _ t key [6 4] = { 0 } ;
3 memcpy (key , (u i n t 8 _ t *) KEY_ADDR, 64) ;
4 hacl_hmac ((u i n t 8 _ t *) key , (u i n t 8 _ t *) key , (u i n t 3 2 _ t) 64 , (u i n t 8 _ t *)

CHALL_ADDR, (u i n t 3 2 _ t) 32) ;
5 hacl_hmac ((u i n t 8 _ t *) MAC_ADDR, (u i n t 8 _ t *) key , (u i n t 3 2 _ t) 32 , (u i n t 8 _ t *)

ATTEST_DATA_ADDR, (u i n t 3 2 _ t) ATTEST_SIZE) ;
6 return () ;
7 }

Figure 7: SW-Att C Implementation

HACL*’s HMAC implementation [52]. HACL* code is veri-
fied to be functionally correct, memory safe and secret indepen-
dent. In addition, all memory is allocated on the stack making
it predictable and deterministic.
SW-Att is simple, as depicted in Figure 7. It first derives

a new unique context-specific key (key) from the master key
(K) by computing an HMAC-based key derivation function,
HKDF [32], on Chal. This key derivation can be extended to
incorporate attested memory boundaries if V rf specifies the
range (see Appendix B). Finally, it calls HACL*’s HMAC,
using key as the HMAC key. AT T EST _DATA_ADDR and
AT T EST _SIZE specify the memory range to be attested (AR

in our notation). We emphasize that SW-Att resides in ROM,
which guarantees P5 under the assumption of no hardware
attacks. Moreover, as discussed below, HW-Mod enforces that
no other software running on P rv can access memory allocated
by SW-Att code, e.g., key[64] buffer allocated in line 2 of
Figure 7.

HACL*’s verified HMAC is the core for guaranteeing P4

(Functional Correctness) in VRASED’s design. SW-Att func-
tional correctness means that, as long as the memory regions
storing values used in SW-Att computation (CR, AR, and KR)
do not change during its computation, the result of such compu-
tation is the correct HMAC. This guarantee can be formally ex-
pressed in LTL as in Definition 3. We note that since HACL*’s
HMAC functional correctness is specified in F*, instead of
LTL, we manually convert its guarantees to the LTL expressed
by Definition 3. By this definition, the value in MR does not
need to remain the same, as it will eventually be overwritten
by the result of SW-Att computation.

Definition 3. SW-Att functional correctness

G : { PC =CRmin ∧MR = Chal ∧ [(¬reset ∧ ¬irq ∧ CR = SW-Att ∧ KR = K ∧ AR = M) U PC =CRmax]

→ F : [PC =CRmax ∧MR = HMAC(KDF(K ,Chal),M)] }

where M is any arbitrary value for AR.

In addition, some HACL* properties, such as stack-based
and deterministic memory allocation, are used in alternative
designs of VRASED to ensure P2 – see Section 5.

Functional correctness implies that the HMAC implemen-
tation conforms to its published standard specification on all
possible inputs, retaining the specification’s cryptographic se-
curity. It also implies that HMAC executes in finite time. Secret

1436 28th USENIX Security Symposium USENIX Association

independence ensures that there are no branches taken as a
function of secrets, i.e., K and key in Figure 7. This mitigates
K leakage via timing side-channel attacks. Memory safety
guarantees that implemented code is type safe, meaning that
it never reads from, or writes to: invalid memory locations,
out-of-bounds memory, or unallocated memory. This is par-
ticularly important for preventing ROP attacks, as long as P7

(controlled invocation) is also preserved5.
Having all memory allocated on the stack allows us to either:

(1) confine SW-Att execution to a fixed size protected memory
region inaccessible to regular software (including malware)
running on P rv; or (2) ensure that SW-Att stack is erased
before the end of execution. Note that HACL* does not provide
stack erasure, in order to improve performance. Therefore, P2

does not follow from HACL* implementation. This practice
is common because inter-process memory isolation is usually
provided by the Operating System (OS). However, erasure
before SW-Att terminates must be guaranteed. Recall that
VRASED targets low-end MCUs that might run applications
on bare-metal and thus can not rely on any OS features.

As discussed above, even though HACL* implementation
guarantees P4 and storage in ROM guarantees P5, these must
be combined with P6 and P7 to provide safe execution. P6 and
P7 – along with the key protection properties (P1, P2, and P3)
– are ensured by HW-Mod and are described next.

4.4 Key Access Control (HW-Mod)

If malware manages to read K from ROM, it can reply to V rf

with a forged result. HW-Mod access control (AC) sub-module
enforces that K can only be accessed by SW-Att (P1).

4.4.1 LTL Specification

The invariant for key access control (AC) is defined in LTL
Specification (2). It stipulates that system must transition to
the Reset state whenever code from outside CR tries to read
from Daddr within the key space.

G : {¬(PC ∈CR)∧Ren ∧ (Daddr ∈ KR)→ reset } (2)

4.4.2 Verified Model

Figure 8 shows the FSM implemented by the AC sub-module
which is verified to hold for LTL Specification 2. This FSM has
two states: Run and Reset. It outputs reset = 1 when the AC
sub-module transitions to state Reset. This implies a hard-reset
of the MCU. Once the reset process completes, the system
leaves the Reset state.

5Otherwise, even though the implementation is memory-safe and correct
as a whole, chunks of a memory-safe code could still be used in ROP attacks.

Run Reset

otherwise otherwise

¬(PC ∈CR) ∧Ren ∧ (Daddr ∈ KR)

PC = 0

Figure 8: Verified FSM for Key AC

4.5 Atomicity and Controlled Invocation

(HW-Mod)

In addition to functional correctness, safe execution of attes-
tation code requires immutability (P5), atomicity (P6), and
controlled invocation (P7). P5 is achieved directly by placing
SW-Att in ROM. Therefore, we only need to formalize invari-
ants for the other two properties: atomicity and controlled
execution.

4.5.1 LTL Specification

To guarantee atomic execution and controlled invocation, LTL
Specifications (3), (4) and (5) must hold:

G : {[¬reset ∧ (PC ∈CR)∧¬(X(PC) ∈CR)]→ [PC =CRmax ∨X(reset)] } (3)

G : {[¬reset ∧¬(PC ∈CR)∧ (X(PC) ∈CR)]→ [X(PC) =CRmin ∨X(reset)] } (4)

G : {irq ∧ (PC ∈CR) → reset } (5)

LTL Specification (3) enforces that the only way for SW-Att
execution to terminate is through its last instruction: PC =

CRmax. This is specified by checking current and next PC val-
ues using LTL neXt operator. In particular, if current PC value
is within SW-Att region, and next PC value is out of SW-Att
region, then either current PC value is the address of the last
instruction in SW-Att (CRmax), or reset is triggered in the next
cycle. Also, LTL Specification (4) enforces that the only way
for PC to enter SW-Att region is through the very first in-
struction: CRmin. Together, these two invariants imply P7: it
is impossible to jump into the middle of SW-Att, or to leave
SW-Att before reaching the last instruction.

P6 is satisfied through LTL Specification (5). Atomicity
could be violated by interrupts. However, LTL Specification
(5) prevents an interrupt to happen while SW-Att is executing.
Therefore, if interrupts are not disabled by software running
on P rv before calling SW-Att, any interrupt that could violate
SW-Att atomicity will necessarily cause an MCU reset.

4.5.2 Verified Model

Figure 9 presents a verified model for atomicity and controlled
invocation enforcement. The FSM has five states. Two basic
states notCR and midCR represent moments when PC points
to an address: (1) outside CR, and (2) within CR, respectively,
not including the first and last instructions of SW-Att. Another

USENIX Association 28th USENIX Security Symposium 1437

Reset

notCR

f stCR

midCR

lastCR

PC = 0

otherwise

PC <CRmin ∨ PC >CRmax

PC =CRmin∧¬ irq
otherwise

PC =CRmin

∧¬ irq

(PC >CRmin ∧ PC <CRmax)

∧¬ irq

otherwise

(PC >CRmin ∧ PC <CRmax)

∧¬ irq

PC =CRmax∧¬ irq
otherwise

PC =CRmax

∧¬ irq

(PC <CRmin ∨ PC >CRmax)

∧¬ irq

otherwise

Figure 9: Verified FSM for atomicity and controlled invocation.

two: f stCR and lstCR represent states when PC points to the
first and last instructions of SW-Att, respectively. Note that
the only possible path from notCR to midCR is through f stCR.
Similarly, the only path from midCR to notCR is through lstCR.
The FSM transitions to the Reset state whenever: (1) any se-
quence of values for PC does not obey the aforementioned
conditions; or (2) irq is logical 1 while executing SW-Att.

4.6 Key Confidentiality (HW-Mod)

To guarantee secrecy of K and thus satisfy P2, VRASED must
enforce the following:

1. No leaks after attestation: any registers and memory ac-
cessible to applications must be erased at the end of each
attestation instance, i.e., before application execution re-
sumes.

2. No leaks on reset: since a reset can be triggered during
attestation execution, any registers and memory accessible
to regular applications must be erased upon reset.

Per Axiom A4, all registers are zeroed out upon reset and at
boot time. Therefore, the only time when register clean-up is
necessary is at the end of SW-Att. Such clean-up is guaranteed
by the Callee-Saves-Register convention: Axiom A6.

Nonetheless, the leakage problem remains because of RAM
allocated by SW-Att. Thus, we must guarantee that K is not
leaked through "dead" memory, which could be accessed by
application (possibly, malware) after SW-Att terminates. A
simple and effective way of addressing this issue is by reserv-
ing a separate secure stack in RAM that is only accessible (i.e.,
readable and writable) by attestation code. All memory allo-
cations by SW-Att must be done on this stack, and access
control to the stack must be enforced by HW-Mod. As discussed
in Section 6, the size of this stack is constant – 2.3KBytes.
This corresponds to ≈ 3% of MSP430 16-bit address space.
We discuss VRASED variants that do not require a reserved
stack and trade-offs between them in Section 5.

Run Reset

otherwise otherwise

(¬(PC ∈CR)∧ (Ren∨Wen)∧ (Daddr ∈ XS))

∨

((PC ∈CR)∧ (Wen)∧¬(Daddr ∈ XS)∧¬(Daddr ∈MR))

PC = 0

Figure 10: Verified FSM for Key Confidentiality

4.6.1 LTL Specification

Recall that XS denote a contiguous secure memory region
reserved for exclusive access by SW-Att. LTL Specification
for the secure stack sub-module is as follows:

G : {¬(PC ∈CR)∧ (Ren ∨Wen)∧ (Daddr ∈ XS)→ reset } (6)

We also want to prevent attestation code from writing into
application memory. Therefore, it is only allowed to write to
the designated fixed region for the HMAC result (MR).

G : {(PC ∈CR)∧ (Wen)∧¬(Daddr ∈ XS)∧¬(Daddr ∈MR)→ reset } (7)

In summary, invariants (6) and (7) enforce that only attestation
code can read from/write to the secure reserved stack and that
attestation code can only write to regular memory within the
space reserved for the HMAC result. If any of these conditions
is violated, the system resets.

4.6.2 Verified Model

Figure 10 shows the FSM verified to comply with invariants (6)
and (7).

4.7 DMA Support

So far, we presented a formalization of HW-Mod sub-modules
under the assumption that DMA is either not present or disabled
on P rv. However, when present, a DMA controller can access
arbitrary memory regions. Such memory access is performed
concurrently in the memory backbone and without MCU inter-
vention, while the MCU executes regular instructions.

DMA data transfer is performed using dedicated memory
buses, e.g., DMAen and DMAaddr. Hence, regular memory ac-
cess control (based on monitoring Daddr) does not apply to
memory access by DMA controller. Thus, if DMA controller is
compromised, it may lead to violation of P1 and P2 by directly
reading K and values in the attestation stack, respectively. In
addition, it can assist P rv-resident malware to escape detection
by either copying it out of the measurement range or deleting
it, which results in a violation of P6.

4.7.1 LTL Specification

We introduce three additional LTL Specifications to protect
against aforementioned attacks. First, we enforce that DMA

1438 28th USENIX Security Symposium USENIX Association

USENIX Association 28th USENIX Security Symposium 1439

At the same time, we note that, even with verified erasure
as a part of SW-Att, P2 is still not guaranteed if the MCU
does not guarantee erasure of the entire RAM upon boot. This
is necessary in order to consider the case when P rv re-boots
in the middle of SW-Att execution. Without a reserved stack,
K might persist in RAM. Since the memory range for SW-Att
execution is not fixed, hardware support is required to bootstrap
secure RAM erasure before starting any software execution. In
fact, such support is necessary for all approaches without a
separate secure stack.

5.2 Compiler-Based Clean-Up

While stack erasure in HACL* would integrate nicely with
the overall proof of SW-Att, the assurance would be at the
language abstraction level, and not necessarily at the machine
level. The latter would require additional assumptions about
the compilation tool chain. We could also consider performing
stack erasure directly in the compiler. In fact, a recent proposal
to do exactly that was made in zerostack [45], an extension
to Clang/LLVM. In case of VRASED, this feature could be
used on unmodified HACL* (at compilation time), to add in-
structions to erase the stack before the return of each function
enabling P2, assuming the existence of a verified RAM erasure
routine upon boot. We emphasize that this approach may in-
crease the compiler’s trusted code base. Ideally, it should be
implemented and formally verified as part of a verified com-
piler suite, such as CompCert [33].

5.3 Double-HMAC Call

Finally, complete stack erasure could also be achieved directly
using currently verified HACL* properties, without any fur-
ther modifications. This approach involves invoking HACL*
HMAC function a second time, after the computation of the
actual HMAC. The second "dummy" call would use the same
input data, however, instead of using K , an independent con-
stant, such as {0}512, would be used as the HMAC key.

Recall that HACL* is verified to only allocate memory on
the stack in a deterministic manner. Also, due to HACL*’s
verified properties that mitigate side-channels, software flow
does not change based on the secret key. Therefore, this de-
terministic allocation implies that, for inputs of the same size,
any variable allocated by the first "real" HMAC call (tainted by
K), would be overwritten by the corresponding variable in the
second "dummy" call. Note that the same guarantee discussed
in Section 5.1 is provided here and secure RAM erasure at boot
would still be needed for the same reasons. Admittedly, this
double-HMAC approach would consume twice as many CPU
cycles. Still, it might be a worthwhile trade-off, especially, if
there is memory shortage and lack of previously discussed
HACL* or compiler extension.

6 Evaluation

We now discuss implementation details and evaluate
VRASED’s overhead and performance. Section 6.2 reports on
verification complexity. Section 6.3 discusses performance in
terms of time and space complexity as well as its hardware
overhead. We also provide a comparison between VRASED

and other RA architectures targeting low-end devices, namely
SANCUS [38] and SMART [21], in Section 6.4.

6.1 Implementation

As mentioned earlier, we use OpenMSP430 [22] as an open
core implementation of the MSP430 architecture. Open-
MSP430 is written in the Verilog hardware description lan-
guage (HDL) and can execute software generated by any
MSP430 toolchain with near cycle accuracy. We modified
the standard OpenMSP430 to implement the hardware archi-
tecture presented in Section 3.3, as shown in Figure 3. This
includes adding ROM to store K and SW-Att, adding HW-Mod,
and adapting the memory backbone accordingly. We use Xilinx
Vivado [50] – a popular logic synthesis tool – to synthesize
an RTL description of HW-Mod into hardware in FPGA. FPGA
synthesized hardware consists of a number of logic cells. Each
consists of Look-Up Tables (LUTs) and registers; LUTs are
used to implement combinatorial boolean logic while registers
are used for sequential logic elements, i.e., FSM states and
data storage. We compiled SW-Att using the native msp430-
gcc [46] and used Linker scripts to generate software images
compatible with the memory layout of Figure 3. Finally, we
evaluated VRASED on the FPGA platform targeting Artix-
7 [51] class of devices.

6.2 Verification Results

As discussed in Section 3.2, VRASED’s verification consists
of properties P1–P7. P5 is achieved directly by executing
SW-Att from ROM. Meanwhile, HACL* HMAC verification
implies P4. All other properties are automatically verified us-
ing NuSMV model checker. Table 2 shows the verification
results of VRASED’s HW-Mod composition as well as results
for individual sub-modules. It shows that VRASED success-
fully achieves all the required security properties. These results
also demonstrate feasibility of our verification approach, since
the verification process – running on a commodity desktop
computer – consumes only small amount of memory and time:
< 14MB and 0.3sec, respectively, for all properties.

1440 28th USENIX Security Symposium USENIX Association

Table 3: Evaluation of cost, overhead, and performance of RA
Method

RAM Erasure
Required Upon Boot?

FPGA Hardware Verilog
LoC

Memory (byte) Time to attest 4KB
LUT Reg Cell ROM Sec. RAM CPU cycles ms (at 8MHz)

Core (Baseline) N/A 1842 684 3044 4034 0 0 N/A N/A
Secure Stack (Section 4) No 1964 721 3237 4621 4500 2332 3601216 450.15
Erasure on SW-Att (Section 5.1) Yes 1954 717 3220 4516 4522 0 3613283 451.66
Compiler-based Clean-up (Section 5.2) 6 Yes 1954 717 3220 4516 4522 0 3613283 451.66
Double-HMAC Call (Section 5.3) Yes 1954 717 3220 4516 4570 0 7201605 900.20

Table 2: Verification results running on a desktop @ 3.40 GHz.
HW Submod. LTL Spec. Mem. (MB) Time (s) Verified

Key AC 2,11 7.5 .02 ✓

Atomicity 3,4,5,11 8.5 .05 ✓

Exclusive Stack 6,7,11 8.1 .03 ✓

DMA Support 8-11 8.2 .04 ✓

HW-Mod 2-11 13.6 .28 ✓

Table 4: Qualitative comparison between RA architectures
targeting low-end devices

VRASED SMART SANCUS

Design Type Hybrid (HW/SW) Hybrid (HW/SW) Pure HW
RA function HMAC-SHA256 HMAC-SHA1 SPONGENT-128/128/8
ROM for RA code Yes Yes No
DMA Support Yes No No
Formally Verified Yes No No

6.3 Performance and Hardware Cost

We now report on VRASED’s performance considering the stan-
dard design (described in Section 4) and alternatives discussed
in Section 5. We evaluate the hardware footprint, memory
(ROM and secure RAM), and run-time. Table 3 summarizes the
results.
Hardware Footprint. The secure stack approach adds around
587 lines of code in Verilog HDL. This corresponds to around
15% of the code in the original OpenMSP430 core. In terms of
synthesized hardware, it requires 122 (6.6%) and 37 (5.4%) ad-
ditional LUTs and registers respectively. Overall, VRASED con-
tains 193 logic cells more than the unmodified OpenMSP430
core, corresponding to a 6.3% increase.
Memory. VRASED requires ∼4.5KB of ROM; most of which
(96%) is for storing HACL* HMAC-SHA256 code. The se-
cure stack approach has the smallest ROM size, as it does not
need to perform a memory clean-up in software. However, this
advantage is attained at the price of requiring 2.3KBytes of
reserved RAM. This overhead corresponds to 3.5% of MSP430
16-bit address space.
Attestation Run-time. Attestation run-time is dominated by
the time it takes to compute the HMAC of P rv’s memory. The
secure stack, erasure on SW-Att and compiler-based clean-
up approaches take roughly .45s to attest 4KB of RAM on an
MSP430 device with a clock frequency at 8MHz. Whereas, the

6As mentioned in Section 5.2, there is no formally verified msp430 com-
piler capable of performing stack erasure. Thus, we estimate overhead of
this approach by manually inserting code required for erasing the stack in
SW-Att.

double MAC approach requires invoking the HMAC function
twice, leading its run-time to be roughly two times slower.
Discussion. We consider VRASED’s overhead to be affordable.
The additional hardware, including registers, logic gates and ex-
clusive memory, resulted in only a 3-6% increase. The number
of cycles required by SW-Att exhibits a linear increase with
the size of attested memory. As MSP430 typically runs at 8-
25MHz, attestation of the entire RAM on a typical MSP430 can
be computed in less than a second. VRASED’s RA is relatively
cheap to the P rv. As a point of comparison we can consider
a common cryptographic primitive such as the Curve25519
Elliptic-Curve Diffie-Hellman (ECDH) key exchange. A single
execution of an optimized version of such protocol on MSP430
has been reported to take ≈ 9 million cycles [24]. As Table 3
shows, attestation of 4KBytes (typical size of RAM in some
MSP430 models) can be computed three times faster.

6.4 Comparison with Other Low-End RA Ar-

chitectures

We here compare VRASED’s overhead with two widely
known RA architectures targeting low-end embedded systems:
SMART [21] and SANCUS [38]. We emphasize, however,
that both SMART and SANCUS were designed in an ad hoc
manner. Thus, they can not be formally verified and do not pro-
vide any guarantees offered by VRASED’s verified architecture.
Nevertheless, it is considered important to contrast VRASED’s
cost with such architectures to demonstrate its affordability.

Table 4 presents a comparison between features offered and
required by aforementioned architectures. SANCUS is, to the
best of our knowledge, the cheapest pure HW-based architec-
ture, while SMART is a minimal HW/SW RA co-design. Since
SANCUS’s RA routine is implemented entirely in HW, it does
not require ROM to store the SW implementation of the in-
tegrity ensuring function. VRASED implements a MAC with
digest sizes of 256-bits. SMART and SANCUS, on the other
hand, use SHA1-based MAC and SPONGENT-128/128/8 [7],
respectively. Such MACs do not offer strong collision resis-
tance due to the small digest sizes (and known collisions). Of
the three architectures, VRASED is the only one secure in the
presence of DMA and the only one to be rigorously specified
and formally verified.

Figure 13 presents a quantitative comparison between the
RA architectures. It considers additional overhead in relation to
the latest version of the unmodified OpenMSP430 (Available

USENIX Association 28th USENIX Security Symposium 1441

VRASED SMART SANCUS

0
2

0
4

0
6

0
8

0
1

0
0

(a) Additional HW overhead (%)
in Number of Look-Up Tables

VRASED SMART SANCUS

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

(b) Additional HW overhead (%)
in Number of Registers

VRASED SMART SANCUS

0
5

0
0

1
0

0
0

1
5

0
0

(c) Additional Verilog Lines of
Code

VRASED SMART SANCUS

0
2

4
6

8

(d) Time to attest 4KB (in millions
of CPU cycles)

Figure 13: Comparison between RA architectures targeting
low-end devices

at [22]). Compared to VRASED, SANCUS requires 12× more
Look-Up Tables, 22× more registers, and its (unverified) TCB
is 2.5 times larger in lines of Verilog code. This comparison
demonstrates the cost of relying on a HW-only approach even
when designed for minimality. SMART’s overhead is slightly
smaller than that of VRASED due to lack of DMA support. In
terms of attestation execution time, SMART is the slowest, re-
quiring 9.2M clock cycles to attest 4KB of memory. SANCUS
achieves the fastest attestation time (1.3M cycles) due to the
HW implementation of SPONGENT-128/128/8. VRASED sits
in between the two with a total attestation time of 3.6M cycles.

7 Related Work

We are unaware of any previous work that yielded a formally
verified RA design (RA architectures are overviewed in Sec-
tion 2.1). To the best of our knowledge, VRASED is the first
verification of a security service implemented as HW/SW co-
design. Nevertheless, formal verification has been widely used
as the de facto means to guarantee that a system is free of
implementation errors and bugs. In recent years, several efforts
focused on verifying security-critical systems.

In terms of cryptographic primitives, Hawblitzel et al. [23]
verified new implementations of SHA, HMAC, and RSA.
Beringer et al. [4] verified the Open-SSL SHA-256 implemen-
tation. Bond et al. [8] verified an assembly implementation of

SHA-256, Poly1305, AES and ECDSA. More recently, Zinzin-
dohoué, et al. [52] developed HACL*, a verified cryptographic
library containing the entire cryptographic API of NaCl [5].
As discussed earlier, HACL*’s verified HMAC forms the core
of VRASED’s software component.

Larger security-critical systems have also been successfully
verified. For example, Bhargavan [6] implemented the TLS
protocol with verified cryptographic security. CompCert [33]
is a C compiler that is formally verified to preserve C code se-
mantics in generated assembly code. Klein et al. [29] designed
and proved functional correctness of seL4 – the first veri-
fied general-purpose microkernel. More recently, Tuncay et al.
verified a design for Android OS App permissions model [48].

The importance of verifying RA has been recently acknowl-
edged by Lugou et al. [36], which discussed methodologies
for specifically verifying HW/SW RA co-designs. A follow-on
result proposed the SMASH-UP tool [37]. By modeling a hard-
ware abstraction, SMASH-UP allows automatic conversion of
assembly instructions to the effects on hardware representa-
tion. Similarly, Cabodi et al. [11, 12] discussed the first steps
towards formalizing hybrid RA properties. However, none of
these results yielded a fully verified (and publicly available)
RA architecture, such as VRASED.

8 Conclusion

This paper presents VRASED – the first formally verified RA

method that uses a verified cryptographic software implementa-
tion and combines it with a verified hardware design to guaran-
tee correct implementation of RA security properties. VRASED

is also the first verified security service implemented as a
HW/SW co-design. VRASED was designed with simplicity
and minimality in mind. It results in efficient computation
and low hardware cost, realistic even for low-end embedded
systems. VRASED’s practicality is demonstrated via publicly
available implementation using the low-end MSP430 platform.
The design and verification methodology presented in this pa-
per can be extended to other MCU architectures. We believe
that this work represents an important and timely advance in
embedded systems security, especially, with the rise of hetero-
geneous ecosystems of (inter-)connected IoT devices.

The most natural direction for future work is to adapt
VRASED to other MCU architectures. Such an effort could
follow the same verification methodology presented in this
paper. It would involve: (1) mapping MCUs specifications
to a set of axioms (as we did for MSP430 in Section 3), and
(2) adapting the proofs by modifying the LTL Specifications
and hardware design (as in Section 4) accordingly. A second
direction is to extend VRASED’s capabilities to include and
verify other trusted computing services such as secure updates,
secure deletion, and remote code execution. It would also be
interesting to verify and implement other RA designs with
different requirements and trade-offs, such as software- and
hardware-based techniques. In the same vein, one promising

1442 28th USENIX Security Symposium USENIX Association

direction would be to verify HYDRA RA architecture [20],
which builds on top of the formally verified seL4 [29]
microkernel. Finally, the optimization of VRASED’s HMAC,
with respect to computation and memory allocation, while
retaining its verified properties, is an interesting open problem.

Acknowledgments: UC Irvine authors’ work was supported
in part by DHS, under subcontract from HRL Laboratories,
and ARO under contract: W911NF-16-1-0536, as well as NSF
WiFiUS Program Award #: 1702911. The authors thank the
paper’s shepherd, Stephen McCamant, and the anonymous
reviewers for their valuable comments.

References

[1] VRASED source code. https://github.com/sprout-uci/
vrased, 2019.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallit-
sis, et al. Understanding the mirai botnet. In USENIX Security, 2017.

[3] Arm Ltd. Arm TrustZone. https://www.arm.com/products/
security-on-arm/trustzone, 2018.

[4] L. Beringer, A. Petcher, Q. Y. Katherine, and A. W. Appel. Verified
correctness and security of OpenSSL HMAC. In USENIX Security,
2015.

[5] D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a new
cryptographic library. In International Conference on Cryptology and

Information Security in Latin America, 2012.

[6] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub.
Implementing TLS with verified cryptographic security. In IEEE S&P,
2013.

[7] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Ver-
bauwhede. Spongent: The design space of lightweight cryptographic
hashing. IEEE Transactions on Computers, 62, 2013.

[8] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson. Vale: Verifying high-
performance cryptographic assembly code. In USENIX Security, 2017.

[9] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl.
TyTAN: tiny trust anchor for tiny devices. In DAC, 2015.

[10] F. Brasser, A.-R. Sadeghi, and G. Tsudik. Remote attestation for low-end
embedded devices: the prover’s perspective. In DAC, 2016.

[11] G. Cabodi, P. Camurati, S. F. Finocchiaro, C. Loiacono, F. Savarese,
and D. Vendraminetto. Secure embedded architectures: Taint properties
verification. In DAS, 2016.

[12] G. Cabodi, P. Camurati, C. Loiacono, G. Pipitone, F. Savarese, and
D. Vendraminetto. Formal verification of embedded systems for remote
attestation. WSEAS Transactions on Computers, 14, 2015.

[13] X. Carpent, K. Eldefrawy, N. Rattanavipanon, A.-R. Sadeghi, and
G. Tsudik. Reconciling remote attestation and safety-critical opera-
tion on simple iot devices. In DAC, 2018.

[14] X. Carpent, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. Tempo-
ral consistency of integrity-ensuring computations and applications to
embedded systems security. In ASIACCS, 2018.

[15] X. Carpent, N. Rattanavipanon, and G. Tsudik. ERASMUS: Efficient
remote attestation via self-measurement for unattended settings. In
DATE, 2018.

[16] X. Carpent, N. Rattanavipanon, and G. Tsudik. Remote attestation of iot
devices via SMARM: Shuffled measurements against roving malware.
In IEEE HOST, 2018.

[17] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource
tool for symbolic model checking. In CAV, 2002.

[18] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik. Formally verified hardware/software co-design for remote
attestation. arXiv preprint arXiv:1811.00175, 2018.

[19] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and
L. Xu. Spot 2.0—a framework for ltl and ω-automata manipulation. In
ATVA, 2016.

[20] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik. HYDRA: hybrid
design for remote attestation (using a formally verified microkernel). In
WiSec, 2017.

[21] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART: Secure
and minimal architecture for (establishing dynamic) root of trust. In
NDSS, 2012.

[22] O. Girard. openMSP430, 2009.

[23] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad apps: End-to-end security via automated full-system
verification. In USENIX OSDI, 2014.

[24] G. Hinterwälder, A. Moradi, M. Hutter, P. Schwabe, and C. Paar. Full-
size high-security ECC implementation on MSP430 microcontrollers.
In International Conference on Cryptology and Information Security in

Latin America, pages 31–47. Springer, 2014.

[25] A. Ibrahim, A.-R. Sadeghi, and S. Zeitouni. SeED: secure non-interactive
attestation for embedded devices. In ACM WiSec, 2017.

[26] T. Instruments. Msp430 ultra-low-power sensing & measure-
ment mcus. http://www.ti.com/microcontrollers/
msp430-ultra-low-power-mcus/overview.html.

[27] Intel. Intel Software Guard Extensions (Intel SGX). https://
software.intel.com/en-us/sgx.

[28] A. Irfan, A. Cimatti, A. Griggio, M. Roveri, and R. Sebastiani. Ver-
ilog2SMV: A tool for word-level verification. In DATE, 2016.

[29] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. seL4: Formal verification of an OS kernel. In SOSP,
2009.

[30] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite: A
security architecture for tiny embedded devices. In EuroSys, 2014.

[31] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and J. But-
terworth. New results for timing-based attestation. In IEEE S&P, 2012.

[32] H. Krawczyk and P. Eronen. HMAC-based extract-and-expand key
derivation function (HKDF). Internet Request for Comment RFC 5869,
Internet Engineering Task Force, May 2010.

[33] X. Leroy. Formal verification of a realistic compiler. Communications

of the ACM, 52(7):107–115, 2009.

[34] Y. Li, Y. Cheng, V. Gligor, and A. Perrig. Establishing software-only root
of trust on embedded systems: Facts and fiction. In Security Protocols—

22nd International Workshop, 2015.

[35] Y. Li, J. M. McCune, and A. Perrig. VIPER: verifying the integrity of
peripherals’ firmware. In CCS, 2011.

[36] F. Lugou, L. Apvrille, and A. Francillon. Toward a methodology for
unified verification of hardware/software co-designs. Journal of Crypto-

graphic Engineering, 2016.

[37] F. Lugou, L. Apvrille, and A. Francillon. Smashup: a toolchain for unified
verification of hardware/software co-designs. Journal of Cryptographic

Engineering, 7(1):63–74, 2017.

[38] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel,
I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling. Sancus 2.0: A
low-cost security architecture for iot devices. ACM Trans. Priv. Secur.,
20(3):7:1–7:33, July 2017.

USENIX Association 28th USENIX Security Symposium 1443

[39] I. D. O. Nunes, G. Dessouky, A. Ibrahim, N. Rattanavipanon, A.-R.
Sadeghi, and G. Tsudik. Towards systematic design of collective remote
attestation protocols. In ICDCS, 2019.

[40] D. Perito and G. Tsudik. Secure code update for embedded devices via
proofs of secure erasure. In ESORICS, 2010.

[41] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang,
S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhargavan,
C. Fournet, et al. Verified low-level programming embedded in F*.
Proceedings of the ACM on Programming Languages, 1, 2017.

[42] S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mecha-
nisms for secure embedded systems. In VLSI Design, 2004.

[43] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba:
Secure code update by attestation in sensor networks. In ACM workshop

on Wireless security, 2006.

[44] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pio-
neer: Verifying code integrity and enforcing untampered code execution
on legacy systems. ACM SIGOPS Operating Systems Review, December
2005.

[45] L. Simon, D. Chisnall, and R. Anderson. What you get is what you c:
Controlling side effects in mainstream c compilers. In IEEE EuroS&P,
2018.

[46] Texas Instruments. MSP430 GCC user’s guide, 2016.

[47] Trusted Computing Group. Trusted platform module (tpm), 2017.

[48] G. S. Tuncay, S. Demetriou, K. Ganju, and C. A. Gunter. Resolving the
predicament of Android custom permissions. In NDSS, 2018.

[49] J. Vijayan. Stuxnet renews power grid security concerns. http://www.
computerworld.com/article/2519574/security0/
stuxnet-renews-power-grid-security-concerns.
html, june 2010.

[50] Xilinx. Vivado design suite user guide, 2017.

[51] Xilinx Inc. Artix-7 FPGA family. https://www.xilinx.com/
products/silicon-devices/fpga/artix-7.html, 2018.

[52] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche.
HACL*: A verified modern cryptographic library. In CCS, 2017.

APPENDIX

A RA Soundness and Security Proofs

A.1 Proof Strategy

We present the proofs for RA soundness (Definition 1) and
RA security (Definition 2). Soundness is proved entirely via
LTL equivalences. In the proof of security we first show, via
LTL equivalences, that VRASED guarantees that adversary
A can never learn K with more than negligible probability.
We then prove security by showing a reduction of HMAC’s
existential unforgeability to VRASED’s security. In other words,
we show that existence of A that breaks VRASED implies
existence of HMAC-A able to break conjectured existential
unforgeability of HMAC. The full machine-checked proofs
for the LTL equivalences (using Spot 2.0 [19] proof assistant)
discussed in the remainder of this section are available in [1].

A.2 Machine Model

To prove that VRASED’s design satisfies end-to-end definitions
of soundness and security for RA, we start by formally defining
(in LTL) memory and execution models corresponding to the
architecture introduced in Section 3.

Definition 4 (Memory model).

1. K is stored in ROM↔ G : {KR = K }

2. SW-Att is stored in ROM↔ G : {CR = SW-Att}

3. MR, CR, AR, KR, and XS are non-overlapping memory regions

The memory model in Definition 4 captures that KR and CR

are ROM regions, and are thus immutable. Hence, the values
stored in those regions always correspond to K and SW-Att

code, respectively. Finally, the memory model states that MR,
CR, AR, KR, and XS are disjoint regions in the memory layout,
corresponding to the architecture in Figure 3.

Definition 5 (Execution model).

1. Modify_Mem(i)→ (Wen ∧Daddr = i)∨ (DMAen ∧DMAaddr = i)

2. Read_Mem(i)→ (Ren ∧Daddr = i)∨ (DMAen ∧DMAaddr = i)

3. Interrupt→ irq

Our execution model, in Definition 5, translates MSP430
behavior by capturing the effects on the processor signals when
reading and writing from/to memory. We do not model the
effects of instructions that only modify register values (e.g.,
ALU operations, such as add and mul) because they are not
necessary in our proofs.

The execution model defines that a given memory address
can be modified in two cases: by a CPU instruction or by
DMA. In the first case, the Wen signal must be on and Daddr

must contain the memory address being accessed. In the second
case, DMAen signal must be on and DMAaddr must contain the
address being modified by DMA. The requirements for reading
from a given address are similar, except that instead of Wen,
Ren must be on. Finally, the execution model also captures the
fact that an interrupt implies setting the irq signal to 1.

A.3 RA Soundness Proof

The proof follows from SW-Att functional correctness (ex-
pressed by Definition 3) and LTL specifications 3, 5, 7, and
10

Theorem 1. VRASED is sound according to Definition 1.

Proof.

De f inition 3 ∧ LT L3 ∧LT L5 ∧LT L7 ∧LT L10→ T heorem 1

1444 28th USENIX Security Symposium USENIX Association

The formal computer proof for Theorem 1 can be found
in [1]. Due to space limitations, we only provide some intu-
ition, by splitting the proof into two parts. First, SW-Att func-
tional correctness (Definition 3) would imply Theorem 1 if AR,
CR, KR never change and an interrupt does not happen during
SW-Att computation. However, memory model Definitions 4.1
and 4.2 already guarantee that CR and KR never change. Also,
LTL 5 states that an interrupt cannot happen during SW-Att

computation, otherwise the device resets. Therefore, it remains
for us to show that AR does not change during SW-Att com-
putation. This is stated in Lemma 1.

Lemma 1. Temporal Consistency – Attested memory does not change during

SW-Att computation

G : {

PC =CRmin ∧AR = M∧¬reset U (PC =CRmax)→

(AR = M) U (PC =CRmax) }

In turn, Lemma 1 can be proved by:

LT L3 ∧LT L7 ∧LT L10→ Lemma 1 (12)

The reasoning for Equation 12 is as follows:
• LT L3 prevents the CPU from stopping execution of
SW-Att before its last instruction.

• LT L7 guarantees that the only memory regions written by
the CPU during SW-Att execution are XS and MR, which
do not overlap with AR.

• LT L10 prevents DMA from writing to memory during
SW-Att execution.

Therefore, there are no means for modifying AR during
SW-Att execution, implying Lemma 1. As discussed above, it
is easy to see that:

Lemma 1∧LT L5 ∧De f inition 3→ T heorem 1 (13)

A.4 RA Security Proof

Recall the definition of RA security in the game in Figure 6.
The game makes two key assumptions:

1. SW-Att call results in a temporally consistent HMAC of
AR using a key derived from K and Chal. This is already
proved by VRASED’s soundness.

2. A never learns K with more than negligible probability.

By proving that VRASED’s design satisfies assumptions 1 and
2, we show that the capabilities of untrusted software (any
DMA or CPU software other than SW-Att) on P rv are equiv-
alent to the capabilities of A in RA-game. Therefore, we still
need to prove item 2 before we can use such game to prove
VRASED’s security. The proof of A’s inability to learn K with

Lemma 2. Key confidentiality – K can not be accessed directly by untrusted

software (¬(PC ∈CR)) and any memory written to by SW-Att can never be read

by untrusted software.

G : {

(¬(PC ∈CR)∧Read_Mem(i)∧ i ∈ KR→ reset)∧

(DMAen ∧DMAaddr = i∧ i ∈ KR→ reset)∧

[¬reset ∧PC ∈CR∧Modi f y_Mem(i)∧¬(i ∈MR)→

G : {(¬(PC ∈CR)∧Read_Mem(i)∨DMAen ∧DMAaddr = i)

→ reset}]

}

more than negligible probability is facilitated by A6 - Callee-

Saves-Register convention stated in Section 3. A6 directly
implies no leakage of information through registers on the re-
turn of SW-Att. This is because, before the return of a function,
registers must be restored to their state prior to the function call.
Thus, untrusted software can only learn K (or any function
of K) through memory. However, if untrusted software can
never read memory written by SW-Att, it never learns anything
about K (the secret-independence of SW-Att at the HACL*
level even implies a lack of timing side-channels, subject to
our assumption that this property is preserved by msp430-gcc
and the MCU implementation). Now, it suffices to prove that
untrusted software can not access K directly and that it can
never read memory written by SW-Att. These conditions are
stated in LTL in Lemma 2. We prove that VRASED satisfies
Lemma 2 by writing a computer proof (available in [1]) for
Equation 14. The reasoning for this proof is similar to that of
RA soundness and omitted due to space constraints.

LT L2 ∧LT L6 ∧LT L7 ∧LT L8 ∧LT L9 ∧LT L10→ Lemma 2 (14)

We emphasize that Lemma 2 does not restrict reads and writes
to MR, since this memory is used for inputting Chal and re-
ceiving SW-Att result. Nonetheless, the already proved RA

soundness and LTL 4 (which makes it impossible to execute
fractions of SW-Att) guarantee that MR will not leak anything,
because at the end of SW-Att computation it will always con-
tain an HMAC result, which does not leak information about K .
After proving Lemma 2, the capabilities of untrusted software
on P rv are equivalent to those of adversary A in RA-game of
Definition 2. Therefore, in order to prove VRASED’s security,
it remains to show a reduction from HMAC security according
to the game in Definition 2. VRASED’s security is stated and
proved in Theorem 2.

Theorem 2. VRASED is secure according to Definition 2 as

long as HMAC is a secure MAC.

Proof. A MAC is defined as tuple of algorithms

{Gen,Mac,Vrf}. For the reduction we construct a

slightly modified HMAC′, which has the same Mac and Vrf
algorithms as standard HMAC but Gen← KDF(K ,Chal)

where Chal← ${0,1}l . Since KDF function itself is imple-

mented as a Mac call, it is easy to see that the outputs of

USENIX Association 28th USENIX Security Symposium 1445

Gen are indistinguishable from random. In other words, the

security of this slightly modified construction follows from the

security of HMAC itself. Assuming that there exists A such

that Pr[A ,RAgame] > negl(l), we show that such adversary

can be used to construct HMAC-A that breaks existential

unforgeability of HMAC’ with probability Pr[HMAC-A ,MAC-

game] > negl(l). To that purpose HMAC-A behaves as

follows:

1. HMAC-A selects msg to be the same M 6= AR as in RA-

game and asks A to produce the same output used to win

RA-game.

2. HMAC-A outputs the pair (msg,σ) as a response for the

challenge in the standard existential unforgeability game,

where σ is the output produced by A in step 1.

By construction, (msg,σ) is a valid response to a challenge in

the existential unforgeability MAC game considering HMAC′

as defined above. Therefore, HMAC-A is able to win the exis-

tential unforgeability game with the same > negl(l) probability

that A has of winning RA-game in Definition 2.

B Optional Verifier Authentication

1 void Hacl_HMAC_SHA2_256_hmac_entry () {
2 u i n t 8 _ t key [6 4] = { 0 } ;
3 u i n t 8 _ t v e r i f i c a t i o n [3 2] = { 0 } ;
4 if (memcmp(CHALL_ADDR, CTR_ADDR, 32) > 0)
5 {
6 memcpy (key , KEY_ADDR, 64) ;
7
8 hacl_hmac ((u i n t 8 _ t *) v e r i f i c a t i o n , (u i n t 8 _ t *) key ,
9 (u i n t 3 2 _ t) 64 , * ((u i n t 8 _ t *)CHALL_ADDR) ,

10 (u i n t 3 2 _ t) 32) ;
11
12 if (! memcmp(VRF_AUTH, v e r i f i c a t i o n , 32)
13 {
14 hacl_hmac ((u i n t 8 _ t *) key , (u i n t 8 _ t *) key ,
15 (u i n t 3 2 _ t) 64 , (u i n t 8 _ t *) v e r i f i c a t i o n ,
16 (u i n t 3 2 _ t) 32) ;
17 hacl_hmac ((u i n t 8 _ t *) MAC_ADDR, (u i n t 8 _ t *) key ,
18 (u i n t 3 2 _ t) 32 , (u i n t 8 _ t *) ATTEST_DATA_ADDR,
19 (u i n t 3 2 _ t) ATTEST_SIZE) ;
20 memcpy (CTR_ADDR, CHALL_ADDR, 32) ;
21 }
22 }
23
24 return () ;
25 }

Figure 14: SW-Att Implementation with V rf authentication

Depending on the setting where P rv is deployed, authenti-
cating the attestation request before executing SW-Att may
be required. For example, if P rv is in a public network, the
adversary may try to communicate with it. In particular, the
adversary can impersonate V rf and send fake attestation re-
quests to P rv, attempting to cause denial-of-service. This is
particularly relevant if P rv is a safety-critical device. If P rv re-
ceives too many attestation requests, regular (and likely honest)
software running on P rv would not execute because SW-Att
would run all the time. Thus, we now discuss an optional part
of VRASED’s design suitable for such settings. It supports

authentication of V rf as part of SW-Att execution. Our imple-
mentation is based on the protocol in [10].

Figure 14 presents an implementation of SW-Att that in-
cludes V rf authentication. It also builds upon HACL* ver-
ified HMAC to authenticate V rf, in addition to computing
the authenticated integrity check. In this case, V rf’s request
additionally contains an HMAC of the challenge computed
using K . Before calling SW-Att, software running on P rv is
expected to store the received challenge on a fixed address
CHALL_ADDR and the corresponding received HMAC on
V RF_AUT H. SW-Att discards the attestation request if (1)
the received challenge is less than or equal to the latest chal-
lenge, or (2) HMAC of the received challenge is mismatched.
After that, it derives a new unique key using HKDF [32] from
K and the received HMAC and uses it as the attestation key.
HW-Mod must also be slightly modified to ensure security of

V rf’s authentication. In particular, regular software must not
be able modify the memory region that stores P rv’s counter.
Notably, the counter requires persistent and writable storage,
because SW-Att needs to modify it at the end of each attesta-
tion execution. Therefore, CT R region resides on FLASH. We
denote this region as:

• CT R = [CT Rmin,CT Rmax];

LTL Specifications (15) and (16) must hold (in addition to
the ones discussed in Section 4).

G : {¬(PC ∈CR)∧Wen ∧ (Daddr ∈CT R)→ reset } (15)

G : {DMAen ∧ (DMAaddr ∈CT R)→ reset} (16)

LTL Specification (15) ensures that regular software does not
modify P rv’s counter, while (16) ensures that the same is not
possible via the DMA controller. FSMs in Figures 8 and 11, cor-
responding to HW-Mod access control and DMA sub-modules,
must be modified to transition into Reset state according to
these new conditions. In addition, LTL Specification (7) must
be relaxed to allow SW-Att to write to CT R. Implementation
and verification of the modified version of these sub-modules
are publicly available at VRASED’s repository [1] as an op-
tional part of the design.

C API & Sample Application

VRASED ensures that any violation of secure RA properties is
detected and causes the system to reset. However, benign appli-
cations running on the MCU must also comply with VRASED

rules to execute successfully. To ease the process of setting up
the system for a call to SW-Att, VRASED provides an API that
takes care of necessary configuration on the application’s be-
half. This API and a sample application deployed using FPGAs
are described in the extended version of this paper, available
at [18].

1446 28th USENIX Security Symposium USENIX Association

Mobile Private Contact Discovery at Scale

Daniel Kales
Graz University of Technology

Christian Rechberger
Graz University of Technology

Thomas Schneider
TU Darmstadt

Matthias Senker
TU Darmstadt

Christian Weinert
TU Darmstadt

Abstract
Mobile messengers like WhatsApp perform contact discov-

ery by uploading the user’s entire address book to the service
provider. This allows the service provider to determine which
of the user’s contacts are registered to the messaging service.
However, such a procedure poses significant privacy risks and
legal challenges. As we find, even messengers with privacy in
mind currently do not deploy proper mechanisms to perform
contact discovery privately.

The most promising approaches addressing this problem
revolve around private set intersection (PSI) protocols. Un-
fortunately, even in a weak security model where clients are
assumed to follow the protocol honestly, previous protocols
and implementations turned out to be far from practical when
used at scale. This is due to their high computation and/or
communication complexity as well as lacking optimization
for mobile devices. In our work, we remove most obstacles
for large-scale global deployment by significantly improving
two promising protocols by Kiss et al. (PoPETS’17) while
also allowing for malicious clients.

Concretely, we present novel precomputation techniques
for correlated oblivious transfers (reducing the online commu-
nication by factor 2x), Cuckoo filter compression (with a com-
pression ratio of≈ 70%), as well as 4.3x smaller Cuckoo filter
updates. In a protocol performing oblivious PRF evaluations
via garbled circuits, we replace AES as the evaluated PRF
with a variant of LowMC (Albrecht et al., EUROCRYPT’15)
for which we determine optimal parameters, thereby reducing
the communication by factor 8.2x. Furthermore, we imple-
ment both protocols with security against malicious clients
in C/C++ and utilize the ARM Cryptography Extensions
available in most recent smartphones. Compared to previ-
ous smartphone implementations, this yields a performance
improvement of factor 1,000x for circuit evaluations. The on-
line phase of our fastest protocol takes only 2.92s measured
on a real WiFi connection (6.53s on LTE) to check 1,024
client contacts against a large-scale database with 228 entries.
As a proof-of-concept, we integrate our protocols in the client
application of the open-source messenger Signal.

1 Introduction

After installation, mobile messaging applications first per-
form a so-called contact discovery. This allows new users to
automatically connect with all other users of the messaging
service whose phone numbers are stored in their address book.
There exist various ways to perform contact discovery. For
example, WhatsApp simply uploads the user’s entire address
book on a regular basis to match contacts [1].

However, revealing all personal contacts to a service
provider poses significant privacy risks: from the social graph
of users a variety of personal information can be inferred
and journalists, for example, may need to cover the identity
of some of their informants to protect whistleblowers from
potential consequences. When installing a mobile messaging
application, users also jeopardize the privacy of people who
are not even connected to the particular service by transmit-
ting their contact information without consent. An illustrative
example of a severe breach of privacy can be seen in the case
of WhatsApp, which was acquired by Facebook in 2014 and
shared its database with the parent company: Facebook users
received friend recommendations of strangers who happened
to see the same psychiatrists [33].

Unfortunately, applying simple protection mechanisms like
hashing the phone numbers of contacts locally before the up-
load to the service provider is not helpful since these hashes
are vulnerable to brute-force and dictionary attacks due to the
relatively small range of possible pre-images. Furthermore,
the service provider can still tell whether two users share a
contact even a long time after running the discovery routine by
storing the received hash values. Custom wrappers1 for mes-
saging applications can somewhat circumvent these problems
by allowing users to manually select contacts to expose to the
messaging application. However, this approach only protects
the contacts of users actually using such custom wrappers.
Furthermore, manually selecting the contacts to match is a
usability problem.

1e.g., https://www.backes-srt.com/en/solutions-2/whatsbox

USENIX Association 28th USENIX Security Symposium 1447

https://www.backes-srt.com/en/solutions-2/whatsbox

One possible solution to this dilemma is to apply a particu-
lar form of secure two-party computation. In general, secure
two-party computation allows parties P1 and P2 to jointly
compute a publicly known function f on their respective in-
puts X1 and X2 s.t. the parties learn no information from the
protocol execution but the result. The research area of pri-
vate set intersection (PSI) focuses on optimized protocols for
the case where X1 and X2 are sets of elements, and f is the
intersection function. PSI has been studied in great depth in
the past years, yielding very efficient protocols (e.g., [41, 51])
based on oblivious transfer extensions (OTe, cf. [4, 36, 39]).
However, while these protocols are very efficient in many
scenarios, they turn out to be impractical for use-cases like
private contact discovery on mobile devices, where the input
set of the service provider is much larger (sometimes by a
factor of a few million) than the input set of the user. This is
because the online phase of these protocols (which depends
on the actual inputs) has a computation and communication
complexity that is linear in the size of the larger set.

Therefore, other PSI protocols for the case of unbalanced
set sizes were developed (e.g., [19, 21, 40, 59]). However,
only [40] actually provides an implementation on real mo-
bile smartphone clients. The experiments performed by the
authors of [40] show a rather large discrepancy between proto-
col execution on x86-based PC hardware and Android smart-
phones where performance-critical cryptographic operations
are implemented in Java. In fact, their performance results
do not encourage real-world deployment. For example, their
fastest protocol that can easily be made secure against mali-
cious clients requires more than 52s on a smartphone with
WiFi connection to check a single client contact against a
database with only 220 entries.

The developers of Signal, a mobile messaging service sim-
ilar to WhatsApp but with focus on privacy, considered the
use of PSI protocols for contact discovery. However, they
refrained from actually implementing PSI since the aca-
demic research in PSI and the related private information
retrieval (PIR) protocols “is quite a disappointment” [44].
Instead, they presented a technology preview that protects
the contact discovery task on the server side with Intel Soft-
ware Guard Extensions (SGX), a trusted execution environ-
ment that can be attested by remote users [45]. In theory, this
yields a secure contact discovery service with negligible per-
formance overhead compared to plain computation. However,
Intel SGX is a proprietary engineering-driven solution with
no cryptographic security guarantees and vulnerable to severe
attacks, e.g., the recent Foreshadow attack [16] managed to
reliably extract confidential data from enclaves. Moreover,
some fixes for hardware security designs such as Intel SGX
require hardware changes that can take years to enter the mar-
ket and result in repeated acquisition costs. In contrast, fixes
for flawed implementations of provably secure cryptographic
protocols can be deployed quickly via software updates.

Thus, we revisit state-of-the-art unbalanced PSI protocols
which provide cryptographic security and show that using new
optimizations and native implementations they turn out to be
practical on modern smartphones. Furthermore, we achieve
security against malicious clients: since every user could run a
manipulated version of the messaging application, deviations
from the protocol may lead to revealing information about
the server’s database. On the other hand, we assume that
the server behaves semi-honestly, i.e., it follows the protocol
but tries to learn as much information as possible. This is a
reasonable assumption since there are legal requirements and
financial incentives to behave correctly: once misconduct gets
known publicly, users will abandon the misbehaving service
and switch to a more trustworthy alternative.

1.1 Our Contributions

As a motivation, we investigate how contact discovery is
handled in widely used mobile messaging applications. For
this, we conduct a survey where we analyze privacy policies,
source code, and network traffic. Our results show that in
practice none of these applications protect the users’ privacy
during contact discovery.

We optimize two protocols for unbalanced PSI that can eas-
ily be made secure against malicious clients and are suitable
for private contact discovery: one that uses oblivious evalua-
tions of the Naor-Reingold PRF (NR-PSI, cf. [31,40,47]) and
one that uses Yao’s garbled circuits (GC-PSI, cf. [40, 52, 56])
to run oblivious AES evaluations. For both protocols we ap-
ply new forms of correlated random OT precomputation (re-
ducing the online communication by factor 2x, which is of
independent interest) and introduce a method for Cuckoo fil-
ter compression (with a compression ratio of ≈ 70% and
negligible computational overhead) as well as 4.3x smaller
Cuckoo filter updates to reduce the required network com-
munication. Moreover, we improve the GC-PSI protocol by
instantiating the PRF with LowMC [2], a cipher specifically
designed for efficient evaluation in secure protocols, instead
of the default choice AES. While this was already proposed
in [40], we find optimal parameter sets for LowMC and pro-
vide implementations. Compared to AES, we thereby reduce
the communication by factor 8.2x.

We provide C/C++ implementations for both protocols with
security against malicious clients that make use of the Cryp-
tography Extensions (CE) in the ARMv8 architecture avail-
able in most recent smartphones for hardware-accelerated
execution. Thereby, we improve the runtime of the online
phase of the GC-PSI protocol by more than a factor of 1,000x
compared to the previous work of [40] that only implements
security against semi-honest clients. We overcome further
shortcomings of previous works w.r.t security and scalability
by evaluating the implementations using recommended secu-
rity parameters, reasonable false positive probabilities, and
considering large-scale set sizes on the server side.

1448 28th USENIX Security Symposium USENIX Association

Our fastest protocol takes only 2.92s measured on a real
WiFi connection (6.53s on LTE) and 6.07MiB of communica-
tion in the online phase to check 1,024 client contacts against
a database with 228 entries (more than the number of monthly
active users for popular messengers like Telegram [61]). For
the setup phase it is required to transfer a compressed Cuckoo
filter once whose size is linear in the number of the database
entries (≈ 1GiB for 228 entries); since the filter is identical
for all clients, service providers can handle the resulting traf-
fic efficiently via CDNs. To remain practical for even larger
set sizes (the market leader WhatsApp currently has more
than 1.6 billion users [61]), we suggest multiple extensions,
e.g., combining our protocols with multi-server PIR s.t. the
overall client-server communication complexity becomes log-
arithmic in the size of the server database.

As a proof-of-concept, we integrate both of our protocols
in the Signal Android client, thereby positioning our secure
cryptographic approach as a practical alternative to vulnerable
trusted execution environments like Intel SGX.

1.2 Motivating Survey

To determine how contact discovery is currently being done
in practice, we conducted a survey on a comprehensive se-
lection of mobile messengers that are “secure” in the sense
that they offer end-to-end encryption. Each application was
analyzed by evaluating the mandatory privacy policy, which
is supposed to state exactly which data the application trans-
mits to its server and how the server processes and stores
that data. Unfortunately, these policies are not always pre-
cise enough to determine the employed contact discovery
method. In these cases, we inspected the source code (if pub-
licly available) or the network communication by means of the
man-in-the-middle proxy mitmproxy2. We circumvented cer-
tificate pinning by using the Xposed3 framework together with
the JustTrustMe4 plugin that can disable certificate checking
routines in several commonly used security libraries.

Our results are summarized in Tab. 1. All surveyed messen-
gers upload contact information (at least the contact’s phone
number) either in the clear or in hashed form. While this form
of contact discovery is very efficient (requiring only a few
bytes of communication per element), it threatens the privacy
of users directly or indirectly via brute-force or dictionary
attacks. Furthermore, even if the server cannot determine the
actual contact data, it can still tell whether two users share a
contact by comparing uploaded hash values.

This can be somewhat mitigated by using salted hashing
s.t. the hashes received by the server are different whenever
a client triggers contact discovery. However, only one of the
surveyed messengers employs this approach as it requires to

2https://mitmproxy.org
3https://repo.xposed.info
4https://github.com/Fuzion24/JustTrustMe

Messenger Hashed Salted Analysis Technique

Confide* 3 7 Privacy policy
Dust* 7 7 Network traffic
Eleet* 7 7 Privacy policy
G DATA Secure Chat 3 7 Network traffic
Signal (legacy) 3 7 Source code
SIMSme 3 3 Network traffic
Telegram 7 7 Privacy policy
Threema 3 7 Privacy policy
Viber 7 7 Privacy policy
WhatsApp 7 7 Privacy policy
Wickr Me 3 7 Privacy policy
Wire 3 7 Privacy policy

Table 1: Results of our contact discovery survey on secure mo-
bile messengers. All applications upload contact information
either in the clear or hashed (with salt). Messengers marked
with * denote that contact discovery is optional.

hash the entire server database for each fresh salt received by
a client. Furthermore, brute-force attacks are still feasible.

2 Related Work

In this section, we discuss existing unbalanced PSI protocols
and other works that focus on PSI in the smartphone setting.

Unbalanced PSI. Kiss et al. [40] discuss multiple unbal-
anced PSI protocols with precomputation (cf. §3.5) and se-
curity against semi-honest adversaries. Their NR-PSI and
GC-PSI protocols (based on [31] and [52], respectively) are
the foundation of our work. We augment these protocols
with new OT precomputation techniques, efficient Cuckoo fil-
ters [27, 59], a specialized cipher [2] for the GC-PSI protocol,
and security against malicious clients. The authors of [40] also
evaluate their protocols on smartphones, but based on less ef-
ficient Java implementations. In our work, we present C/C++
implementations that make use of the hardware-accelerated
cryptography available in most recent smartphones.

Resende and de Freitas Aranha [59] use techniques similar
to [40], but replace Bloom filters [12] with the more efficient
and versatile Cuckoo filters [27] to efficiently represent the
encrypted server database (cf. §3.4) in a Diffie-Hellman style
PSI protocol [7] with security against semi-honest adversaries.
In our work, we optimize communication by proposing meth-
ods for Cuckoo filter compression and updates, and perform
evaluations with reasonable parameters: while in [59] the au-
thors settle with an error probability of ≈ 2−13, which results,
on average, in one false positive when 10 clients match 210

contacts each, we propose realistic Cuckoo filter parameters
for error probabilities ≈ 2−29 and ≈ 2−39.

Demmler et al. [21] present a different approach assuming
multiple non-colluding servers. Their idea is to first perform
a variant of private information retrieval (PIR) to reduce the

USENIX Association 28th USENIX Security Symposium 1449

https://mitmproxy.org
https://repo.xposed.info
https://github.com/Fuzion24/JustTrustMe

server’s input set and then perform a traditional PSI protocol
on the reduced sets. While this approach is very performant,
the requirement of non-colluding servers presents challenges
for the data-owners: they not only need to guarantee that these
servers do not collude, but also need to ensure that their client
data is not leaked to other parties. This leads to the difficult
situation where the server party needs to trust a second server
but simultaneously is assumed to not collude with it. However,
even if servers are malicious and/or collude, they cannot learn
more about client inputs than in currently deployed naive
hashing-based contact discovery methods.

Chen et al. [19] give a PSI protocol based on fully homo-
morphic encryption. The authors present multiple optimiza-
tions that make the protocol practically viable. Their work
was improved and extended to the special use case of labeled
PSI [18], where for intersecting items an associated label is
transferred and security is not only guaranteed in case of mali-
cious clients but also malicious servers (with some controlled
leakage). The advantage of the protocols of [18, 19] is that
their communication complexity is sublinear instead of lin-
ear in the size of the server set. However, this comes at the
cost of repeated high computational overhead, whereas the
online phase of our protocols is very efficient and requires no
cryptographic operations on the server side.

Mobile PSI. Huang et al. [34] provided first performance
results for secure computation on smartphones with secu-
rity against semi-honest adversaries. They implemented a
circuit-based PSI protocol on Android. Their implementation
managed to evaluate ≈ 100 AND gates per second, taking
about 10min to intersect two sets of 256 items each.

Asokan et al. [6] implemented an RSA-based PSI protocol
with security against semi-honest adversaries on smartphones
for secure mobile resource sharing.

Carter et al. [17] presented a maliciously secure system
for secure outsourced garbled circuit evaluation on mobile
devices. Subsequently, Mood et al. [46] showed how to further
optimize outsourced evaluation. They also point out how their
framework can be used to implement a secure friend finder.

“PROUD” [49] is a decentralized approach for private con-
tact discovery based on the DNS system. It enables users to
privately discover the current network addresses of friends,
which differs from the scenario of a centralized messaging ser-
vice we consider. Moreover, friendship bootstrapping requires
an out-of-band communication channel between users.

Compared to these works, we optimize protocols for unbal-
anced PSI with a central service provider and provide native
implementations for maximum performance on smartphones.

3 Background

In the following, we introduce cryptographic building blocks
that are required for the remainder of this work.

3.1 Oblivious Transfer (Extensions)

Oblivious transfer (OT) [57] is a cryptographic protocol that in
its most basic form allows a sender P1 to obliviously transfer
one out of two messages (m0,m1) to a receiver P2 based on
a selection bit b chosen by P2 s.t. P1 learns nothing about b
and P2 learns only mb but nothing about m1−b.

It was shown in [35] that performing OTs always requires
some form of public key cryptography. However, with OT
extension (OTe) protocols [9, 36], a small number (e.g., 128)
of “base OTs” can be extended to a large number of OTs using
only efficient symmetric cryptographic operations.

There exist flavors of OTe with reduced communication
complexity [5]: In random OT (R-OT), neither party inputs
any values, but the inputs of sender and receiver are randomly
chosen by the protocol. In correlated OT (C-OT), m0 is chosen
at random, whereas m1 is computed as a function f of m0:
m1 = f (m0), where f is privately known to P1 only.

It is possible to precompute OTs s.t. all computationally
expensive operations are performed via R-OTs in advance [8].
Later, the random values obtained via R-OTs are used to mask
the actual inputs, requiring only cheap XOR operations in the
style of one-time-pad encryption.

3.2 Garbled Circuits

Yao’s garbled circuits (GC) [62] is one of the most promi-
nent techniques for secure two-party computation. (In the
following the two parties are called garbler and evaluator.)
The idea is to represent the function that is evaluated as a
Boolean circuit and to replace each logical two-input gate by
a garbled gate. Each wire of the garbled gate is given two
random wire labels, representing 0 and 1. To garble a gate, the
garbler uses all four combinations of the gate’s two input wire
labels to encrypt the corresponding output wire label, based
on the truth table of the original gate, and sends the resulting
ciphertexts, the so-called garbled table, to the evaluator. The
evaluator can then use the two input wire labels it possesses
to decrypt one of the four ciphertexts and receive the output
wire label, which is then used as input for subsequent gates.

We now describe how the evaluator obtains the wire la-
bels corresponding to the inputs of the two parties: Since the
garbler knows all wire labels, it can send the wire labels corre-
sponding to its input bits to the evaluator. However, to ensure
input privacy for the evaluator, the wire labels corresponding
to the evalutor’s input bits are retrieved via OTs. The garbler
also sends information that allows the evaluator to decode the
final output wire labels to 0 or 1.

Several optimizations for Yao’s original scheme have been
presented s.t. today it is most efficient to combine the fol-
lowing techniques: Point-and-Permute [10], Free-XOR [42],
fixed-key AES garbling [11], and Half-Gates [63].

1450 28th USENIX Security Symposium USENIX Association

3.3 OPRF Evaluation

An oblivious pseudorandom function (OPRF) is a protocol
between two parties: sender P1 holding key k and receiver P2
holding input x. After the invocation of the protocol, P2 learns
the output fk(x) of a keyed pseudorandom function (PRF) f .
Additionally, it is guaranteed that P1 does not learn anything
about x and P2 does not learn anything about k.

OPRF evaluations can be used to build PSI protocols as
proposed in [28, 30, 40, 52]: The server samples a key k uni-
formly at random, evaluates the PRF fk(xi) on each of its
items xi ∈ X , and sends the results to the client. Server and
client now engage in the OPRF protocol, where the server
inputs key k and the client inputs elements y j ∈ Y . After this
step, the client obtains fk(y j) for each item y j ∈Y and can per-
form a plain intersection between the items fk(xi) and fk(y j).
The client then outputs the elements y j corresponding to the
values in the intersection.

In this work, we instantiate the PRF either using the Naor-
Reingold PRF [47] (NR-PSI) or a garbled circuit-based evalu-
ation of a block cipher (GC-PSI). In [37], the authors describe
an alternative algebraic OPRF construction based on a PRF
by Dodis-Yampolskiy [25]. However, due to the use of Paillier
encryption, this construction is likely slower than the Naor-
Reingold PRF and their follow-up work [38], the basis for [59]
(cf. §6.2). Moreover, it requires a common reference string in
the form of an RSA modulus with unknown factorization.

3.4 Cuckoo Filters

Cuckoo filters [27] are an alternative to the more popular
Bloom filters [12]. Like Bloom filters, they are a data structure
for compact set representation that allows for fast member-
ship testing with controllable false positive probability (FPP).
Cuckoo filters employ a hashing technique similar to Cuckoo
hashing [48], which has been used in the past as a building
block in PSI protocols (e.g., [41, 51, 53–56]).

Resende and de Freitas Aranha [59] first used Cuckoo
filters in a PSI protocol. This is due to several advantages over
Bloom filters when representing the server’s database, namely
they (i) support inserting and deleting items subsequently,
whereas standard Bloom filters only support inserting items,
and variants that do support deletion such as counting Bloom
filters have much higher storage costs; (ii) have better lookup
performance; and (iii) use less space in many scenarios while
having the same false positive probability.

Cuckoo filters consist of a table of buckets with fixed bucket
size b. Inside the buckets, so-called tags are stored. Tags are
small bitstrings obtained by hashing items. More precisely,
to represent an item x in a Cuckoo filter, we first calculate
its tag tx = Ht(x), where Ht is a hash function with output
bitlength v. This tag is stored in one out of two possible
buckets. The position of the first possible bucket is calculated
as p1 = H(x), where H is another hash function that maps the

input to a position in the table of buckets. In case this bucket
is already full, the tag is stored in the second possible bucket
at position p2 = p1⊕H(tx). Note that it is always possible to
determine the other candidate bucket p j just from knowing
its tag tx and the current position pi: p j = pi⊕H(tx). If both
buckets are full, one tag in one of the buckets is chosen at
random, removed from that bucket, and moved to its other
possible bucket. This procedure is repeated recursively until
no more relocations are necessary.

To check whether an item is contained in the Cuckoo filter,
one computes its tag and both possible bucket locations and
compares the tags stored there for equality. For deleting the
item, the matching tag is removed from the filter.

Due to hash collisions, two items may produce equal tags.
As a consequence, lookups can lead to false positives. The
false positive probability εmax is mainly dependent on the
tagsize v and also slightly on the bucket size b since larger
buckets result in more possible collisions within each bucket.

3.5 Unbalanced PSI with Precomputation
For private contact discovery, the following properties are de-
sired: (i) the server performs the computationally expensive
tasks; (ii) all computationally expensive and communication
intensive tasks are performed only once; and (iii) the actual
intersection computation is very fast and also allows for ef-
ficient updates. Therefore, [40] suggest to use PSI protocols
with precomputation, where most time consuming tasks are
performed ahead of the actual intersection.

Our PSI protocols for unbalanced set sizes share a common
structure. Following the precomputation approach of [40],
they are divided into the following four phases: (i) The base
phase is completely independent of any input data and con-
sists, e.g., of OT precomputation. Its complexity is linear in
the maximum number of contacts a client expects to match
in future protocol executions before the base phase is re-run.
(ii) The complexity of the setup phase is linear in the size of
the large set held by the server. It involves encrypting all ele-
ments in the server database via PRF evaluations as described
in §3.3 and inserting them into a Cuckoo filter for compact
representation, which is transferred to the client. (iii) During
the online phase client and server jointly perform OPRF eval-
uations on all elements of the client. The client then looks up
all received encryptions in the Cuckoo filter to determine the
intersection. Thus, the complexity of the online phase is only
linear in the size of the small client set. (iv) Changes in the
server database trigger the update phase, where the Cuckoo
filter on the client side is updated by sending a small delta for
each inserted or deleted database entry.

4 Optimizing OPRF-based PSI Protocols

We propose more efficient database representations and PRFs,
give the full descriptions for our optimized NR- and GC-

USENIX Association 28th USENIX Security Symposium 1451

PSI protocols, enable security against malicious clients, and
suggest multiple extensions to further increase practicality.

4.1 More Efficient Database Representations

Realistic Cuckoo Filter Parameters. Resende and de Fre-
itas Aranha [59] propose using Cuckoo filters as an extension
to the DH-based PSI protocol of [7] and they perform ex-
periments to find optimal Cuckoo filter parameters based on
the number of server items and the desired error probability.
While their findings are directly applicable to our use case,
they set very aggressive Cuckoo filter parameters (tagsize
v = 16, bucket size b = 3) and settle for a maximum false
positive probability (FPP) of εmax ≈ 2−13. We find this FPP
not practical since it implies that about one in 10 clients per-
forming PSI for 210 elements receives a false positive.

Instead, we propose to use tagsize v = 32 to reach a FPP of
εmax ≈ 2−29 or tagsize v= 42 to reach a FPP of εmax ≈ 2−39

while still maintaining a bucket size of b = 3. For our experi-
ments, we choose the parameter set v = 32,b = 3, and choose
the size of the Cuckoo filter to have a load factor of ≈ 66%,
leading to a Cuckoo filter size of 6MiB per 220 items.

Novel Cuckoo Filter Compression. The size of Cuckoo
filters can be reduced by applying a simple but effective com-
pression technique that to the best of our knowledge was not
considered before: For each entry of a Cuckoo filter, an ad-
ditional bit is transmitted that indicates whether this entry is
empty or holds a tag. The entry itself is only transmitted if it
is not empty. This way, the filter is represented as a bit map
and a list of tags. For a Cuckoo filter storing n items with
tagsize v, bucket size b, and load factor l, this reduces the size
from n

l · v bits to n
l +n · v bits. In the example above, the size

of the Cuckoo filter is reduced from 6MiB to 4.19MiB, i.e.,
by ≈ 30%. An advanced version of the compression tech-
nique presented above encodes the number of tags (0 to b) in
each bucket with log2(b+1) bits instead of sending b bits per
bucket. This is possible since the actual position of each tag
within a bucket is not important.

This compression technique is especially useful for very
sparse Cuckoo filters, which appear in use cases where the set
of items is expected to grow fast (e.g., during the release phase
of a new messaging application). For example, if only 10% of
a Cuckoo filter storing a maximum of 220 items is occupied,
it can be compressed by a factor of 8.3x.

In concurrent and independent work, Breslow and
Jayasena [15] proposed Morton filters, which combine these
compression techniques with cache-optimized layouts and
further optimizations. Morton filters provide higher insertion,
lookup, and deletion throughput than traditional Cuckoo fil-
ters, while usually having equal or slightly lower storage costs.
We leave the evaluation and usage of Morton filters in our
protocols for future work.

Better Cuckoo Filter Updates. In [59], when performing
an update after new elements are inserted into or deleted from
the server’s set, each encrypted element to be updated is sent
to the client where it is inserted into the existing Cuckoo filter.
However, for Cuckoo filters, all information required to insert
a new item is its tag and the index of one of its candidate
buckets. From this information, it is possible to calculate the
second candidate bucket in case relocations are necessary.
The same information is also sufficient to delete an item. For
example, the bucket index in a Cuckoo filter storing n = 228

items with bucket size b = 3 and load factor ≈ 66% can be
represented with 27 bits. This results in sending 59 bits per
updated element for tagsize v = 32. In comparison, in [59] an
encrypted element is represented by one point on the GLS-254
binary elliptic curve, which results in 256 bits of communica-
tion when using point compression with two trace bits, which
needs 4.3x more communication than our approach.

4.2 More Efficient PRF for GC-PSI

During the online phase of the GC-PSI protocol, both parties
interactively evaluate an OPRF on the client’s items using
garbled circuits. For each of the client’s items, the server pre-
pares a garbled circuit P̃RFk that evaluates the chosen PRF
under the server’s key k. The choice of this PRF has a sig-
nificant impact on both the runtime and the communication
complexity of the overall protocol. Several improvements for
Yao’s GC protocol [62] have appeared in recent years that
changed the desired properties of the functions to be evalu-
ated. Most notably is the Free-XOR [42] optimization, which
allows XOR gates to be evaluated securely “for free”, mean-
ing all necessary operations can be performed locally without
any communication between the parties. This optimization
has lead to research in the area of ciphers with a low number
of AND and instead many free XOR gates.

In previous GC-PSI implementations, the choice of the PRF
was AES-128. Using the optimized S-Box implementation
of [13], an AES-128 circuit (without key schedule) has 5,120
AND gates [32], serving as a baseline for comparison.

In this section, we focus on variants of LowMC [2], a highly
parameterizable block cipher designed for use cases in multi-
party computation (MPC) and fully-homomorphic encryption
(FHE). [40] mentioned the possibility of using LowMC in-
stead of AES for GC-PSI. We look at several instantiations
of LowMC and present optimized parameter sets specifically
for the use case of GC-PSI and mobile contact discovery. In
the following, we give a short description of LowMC and
highlight the different parameter choices.

LowMC [2] is a block cipher where block size n, key size k,
number of S-Boxes per substitution layer m, and allowed
data complexity d can be chosen freely up to some sanity
constraints. The required number of rounds r to reach the
security claims is then derived from these parameters.

1452 28th USENIX Security Symposium USENIX Association

Data Complexity. The data complexity of a cipher is the
number of plaintext-ciphertext pairs allowed to be released
before the security claims no longer hold. In the GC-PSI
protocol, we can exactly control the maximum number of
published plaintext-ciphertext pairs by limiting the number
of client queries, and therefore can reduce the number of
LowMC rounds required for security. We set the allowed data
complexity to be d = 264, allowing for 220 contact discoveries
of 210 items for each of the 228 clients, while still being below
the security margin by a factor of over 100x. For smaller-scale
applications, we also give a parameter set for 232 total data
complexity, which suffices to run 220 queries of 210 items
each. While we could also use this parameter set for larger-
scale applications, the system needs to be re-keyed after the
data complexity has been reached.

Key Schedule. In many MPC applications using OPRF
evaluations, one party knows the entire secret key and can,
therefore, perform any key-scheduling algorithm (e.g., for
AES or LowMC) offline. The circuit is then modified to take
the expanded key as an input. In many cases, this can be a per-
formance improvement since the key-schedule algorithm does
not have to be computed using the MPC protocol. However,
when performing OPRF evaluations using garbled circuits,
the party holding the secret key needs to send wire labels
for each input bit, increasing the communication. While for
AES-128, only 11x more wire labels need to be transferred for
the expanded key, some instantiations of LowMC require sev-
eral hundreds of rounds. Sending labels for the expanded key
essentially removes the advantage of the lower AND count
that comes with such a large number of rounds. However, we
observe that in the GC-PSI protocol the OPRF evaluation is
always performed with the same key. Thus, we can bundle all
of the client’s circuits together into one large circuit and evalu-
ate the key-schedule only once. This means that we only need
to send the wire labels corresponding to the non-expanded
key once, and therefore save ≈ 2KiB for each subsequent
client item when using a 128-bit key. It is also possible to
only evaluate parts of the garbled circuit if the number of
client items is lower than the number of precomputed circuits.

LowMC Instances. For use in our GC-PSI protocol, we
highlight several LowMC instances, exploring different pa-
rameter choices. In Tab. 2, we give the parameters and com-
pare the number of AND gates to AES-128. The number
of rounds is calculated according to the LowMCv3 round
formula5, which was updated by the LowMC team to take
new cryptanalysis of LowMC (cf. [23, 24, 58]) into consider-
ation. We can observe some interesting properties: LowMC
instances (1) and (2) require the same number of rounds to be
secure, but instance (1) has the maximum number of possi-

5https://github.com/LowMC/lowmc/blob/master/determine_r
ounds.py

PRF n k m d r #ANDs

(1) LowMC 128 128 42 264 13 1,638
(2) LowMC 128 128 31 264 13 1,209
(3) LowMC 128 128 1 264 208 624
(4) LowMC 128 128 1 232 192 576
(5) LowMC 128 128 1 2128 287 861

(6) AES-128 128 128 16 2128 10 5,120

Table 2: Comparison of PRF instances for use in the GC-PSI
protocol. The recommended instance is highlighted in bold.

ble S-Boxes, while (2) does not. Since instance (2) provides
the same security as (1) while requiring fewer S-Boxes, and
therefore a lower amount of AND gates, it should always
be preferred. LowMC instance (3) has the smallest possi-
ble S-Box layer with only one S-Box per round and also the
lowest number of AND gates. While its 208 rounds can be
a drawback in some protocols, Yao’s GC protocol [62] has
a constant number of communication rounds and therefore
the large number of LowMC rounds does not decrease per-
formance in high-latency networks. Additionally, using the
optimizations presented by [22], the large number of linear
layer computations can be reduced, bringing the evaluation
time of (3) close to (1) and (2). For these reasons, we recom-
mend the use of instance (3) for GC-PSI, which requires 8.2x
fewer AND gates than standard AES-128 (6). Thus, we per-
form all performance evaluations using instance (3). For use
cases with small data complexity requirements, we recom-
mend LowMC instance (4), which is a small improvement
of 8.3 % in runtime and communication compared to (3). For
completeness and direct comparison to AES-128, we also
give a variant of LowMC with data complexity of 2128 in (5).

4.3 Optimized GC-PSI Protocol
The idea of using Yao’s GC protocol for OPRF evaluations
was first proposed in [52] and used to construct a PSI protocol
in the precomputation setting in [40].

The full protocol description is given in Fig. 1.We propose
an optimization that halves the online communication for the
OTs (which is the only communication in the online phase).
This optimization is of independent interest as it improves
the practicality of Yao’s GC protocol in arbitrary use cases
with precomputation. It is based on the observation that with
the Free-XOR technique [42] for Yao’s GC protocol [62],
the client receives one of the two labels l0 and l1 = l0 ⊕
∆ via OT depending on its input bit, where l0 is chosen at
random and ∆ is a random global constant only known by the
garbler. A natural consideration would be to replace the real
OTs, as used in [40], with correlated OTs (C-OTs) (cf. §3.1).
Unfortunately, since the client input is unknown in the base
phase, this prevents either the precomputation of the garbled
circuits or the OTs. This is because in the online phase when
using OT precomputation [8], the random messages r0 and r1

obtained by the sender in the base phase need to be swapped

USENIX Association 28th USENIX Security Symposium 1453

https://github.com/LowMC/lowmc/blob/master/determine_rounds.py
https://github.com/LowMC/lowmc/blob/master/determine_rounds.py

Server Client
Input: X = {x1, . . . ,xNs} of bitlength α Input: Y = {y1, . . . ,yNc}
Output: ⊥ Output: X ∩Y
Generate random PRF key k and Free-XOR offset ∆ Base Phase S := {}
For i = 1 to Npre

C : Agree on ε,v,b For i = 1 to Npre
C :

For j = 1 to α: For j = 1 to α:

∆

r0
i, j,r

1
i, j = r0

i, j⊕∆

Run αNpre
C random C-OTs

via OT Extension

random ci, j

rci, j
i, j

for i = 1 to Npre
C :

(P̃RF i
k, l

0
i,1, . . . , l

0
i,α) = GC.Build(PRF,k,r0

i,1, . . . ,r
0
i,α,∆)

P̃RF i
k

Initialize Cuckoo filter CF with parameters Ns,ε,v,b Setup Phase

for i = 1 to NS:

CF.Insert(PRFk(xi)) CF

for i = 1 to NC: Online Phase for i = 1 to NC:

for j = 1 to α: for j = 1 to α:

bi, j = ci, j⊕yi[j]

Bi, j = rbi, j
i, j ⊕ l0

i, j li, j = rci, j
i, j ⊕Bi, j

PRFk(yi) = GC.Eval(P̃RF i
k, li,1, . . . , li,α)

If CF.Contains(PRFk(yi)):

put yi into S

Output S
Update Phase

Insert / Delete NU items

U := {}
For i = 1 to NU :

compute tag ti and CF position pi for PRFk(ui)

Put (ti, pi) into U

U,op ∈ {Insert,Delete} for i = 1 to NU :

Insert / Delete ti in CF at position pi or pi⊕H(ti)

Figure 1: Our optimized GC-PSI protocol (based on [40, 52, 59]). Wire labels are computed as l0
i, j = r0

i, j⊕δi, j and l1
i, j = l0

i, j⊕∆,
where the values δi, j are chosen at random while building the garbled circuit. Npre

C ≥ NC denotes the number of precomputed
OTs and garbled circuits; the base phase must be repeated before further online phase executions once Npre

C queries are exceeded.

in case the random choice made by the receiver differs from
its actual input. Thus, it would be necessary to swap input
wire labels in the garbled circuits, which requires recomputing
and resending at least the first layer of those circuits.

Our novel precomputation method circumvents this
dilemma: In the base phase we run C-OTs via OT extension
s.t. the garbler on input ∆ learns the random but correlated
values r0 and r1 = r0⊕∆, whereas the evaluator upon random
choice c learns rc. For garbling we choose the labels for the in-
put wires of the circuit as l0 = r0⊕δ and l1 = l0⊕∆. Here, δ

is a newly introduced random value that in contrast to ∆ is
not global but chosen individually for each label pair. In the
online phase of the protocol, the evaluator sends a correction

bit b = c⊕ y stating whether its random choice c differs from
the actual input y. The garbler responds with B = rb⊕ l0. This
way, the evaluator learns either δ or δ⊕∆. It then sets the label
for its input to l = rc⊕B. As one can easily verify for the four
possible combinations of random choices c and correction
bits b, the evaluator always retrieves the correct label.

The security of the C-OT precomputation is based on the
same arguments as standard OT precomputation [8] and since
we use a fresh uniformly random δ for each wire label, the
resulting wire label is also uniformly random. In other words,
we resolve the problem by fixing the wire labels but if neces-
sary swapping the masks required to retrieve the correct label
from the initial C-OT result.

1454 28th USENIX Security Symposium USENIX Association

Server Client
Input: X = {x1, . . . ,xNs} of bitlength α Input: Y = {y1, . . . ,yNc}
Output: ⊥ Output: X ∩Y

Base Phase S := {}
Generate p,q,g,a = (a0,a1, . . . ,aα) Agree on ε,v,b, p,q

For i = 1 to Npre
C : For i = 1 to Npre

C :

For j = 1 to α: For j = 1 to α:

r0
i, j,r

1
i, j

Run αNpre
C R-OTs

via OT Extension

random ci, j

rci, j
i, j

Initialize Cuckoo filter CF with parameters NS,ε,v,b Setup Phase

For i = 1 to NS:

Ci = a0

α

∏
j=1

axi[j]
j mod q

CF.Insert(gCi mod p) CF

For i = 1 to NC: Online Phase For i = 1 to Nc:

For j = 1 to α: For j = 1 to α:

bi, j = ci, j⊕yi[j]

ri, j = rbi, j
i, j

r1−bi, j
i, j ⊕ (rbi, j

i, j ·a j)

rinv
i = (

n

∏
j=1

ri, j)
−1 mod q Ri, j = rci, j

i, j ⊕yi[j] · (r
1−bi, j
i, j ⊕ (rbi, j

i, j ·a j))

g̃i = ga0·rinv
i mod p C′i =

α

∏
j=1

Ri, j mod q

g̃i

If CF.Contains(g̃C′i
i mod p) then

put yi into S
Output S

Figure 2: Our optimized NR-PSI protocol (based on [31, 40, 59]). When using a plain finite field, the modulus p is prime, q is a
prime divisor of p−1, g ∈ Z∗p is of order q, and a0,a1, . . . ,aα as well as r0

i, j,r
1
i, j are random numbers in Z∗q. The update phase is

omitted since it is similar to the GC-PSI protocol (cf. Fig. 1), except using the NR-PRF to compute tag ti and CF position pi.

4.4 Optimized NR-PSI Protocol
The usage of the Naor-Reingold PRF (NR-PRF) [47] for
PSI was first proposed in [31] and the resulting PSI protocol
transformed into the precomputation setting in [40]. The NR-
PRF for key k and element xi is defined as

fk(xi) = ga0·∏α
j=1 a

xi, j
i mod p, (1)

where, when using a plain finite field, p is a prime, q is
a prime divisor of p− 1, g ∈ Z∗p is a generator of order q,
a0,a1, . . . ,aα are random numbers in Z∗q forming key k, and α

is the bitlength of element xi.
Among all protocols for mobile contact discovery evaluated

in [40], NR-PSI is the only protocol besides GC-PSI that can
easily be made secure against malicious clients by employing
malicious secure OT extensions (cf. §4.5). Furthermore, ac-
cording to the empirical performance comparison in [40], the

NR-PSI protocol causes ≈ 30x less communication overhead
than GC-PSI without our optimizations. This is why we also
consider the NR-PSI protocol in this work and compare it to
our optimized GC-PSI implementation in §6.

The full protocol description is given in Fig. 2. We propose
an optimization that improves the online communication for
OTs by factor 2x. The optimization is based on the observa-
tion that in the definitions of [31] the client chooses between
a random r and r ·a depending on the current bit of its input
element. This implies that C-OTs (cf. §3.1) can be used in-
stead of real OTs, thereby sending only one message in the
size of the symmetric security parameter instead of the two
messages when using the OTe protocols of [3].

Since we use the precomputation form of [40], we propose
a novel combination of OT precomputation [8] and C-OT [3].
As in OT precomputation, the client sends a correction bit b
stating whether its random choice c in the precomputation

USENIX Association 28th USENIX Security Symposium 1455

phase equals its real input. Depending on b, the server then
decides which of the two random messages obtained during
OT precomputation is chosen as r and which is used to mask
the correlated message r ·a that is sent to the client. Likewise,
the client either proceeds with the message obtained during
OT precomputation as r or uses this message to unmask the
received correlated message.

4.5 Malicious Security

As observed already in [40], the only messages sent by the
client in the GC-PSI and NR-PSI protocols are those in the
base OT and OT extension protocols as well as the correction
bits during the online phase when applying OT precomputa-
tion [8]. Therefore, both protocols can easily be made secure
against a malicious client by using a maliciously secure OTe
protocol such as [4] or [39], together with maliciously secure
base OTs such as [50]. As the OT extension contributes only a
small percentage to the total runtime of the PSI protocols and
today’s maliciously secure OTe protocols are only slightly
less efficient than the passively secure OT extension of [3],
the total runtime of the PSI protocols does not increase by a
noticeable amount when replacing the OTe protocols. Please
note that enumeration attacks (i.e., querying the server re-
peatedly with different inputs) are still possible when using
our protocols. However, even an ideal functionality for PSI
(e.g., a trusted third party) and currently deployed non-private
contact discovery methods cannot prevent this. We recom-
mend to employ well-established measures like rate limiting
to mitigate such attacks.

The case of a malicious server is different: it could, for
example, send wrong wire labels, use wrong circuit descrip-
tions, or send a wrong server set. In general, the client does
not reveal the intersection result to the server, so a malicious
server can only influence the correctness of the client’s com-
putation, but cannot learn any information about the client’s
items when using maliciously secure OTs. Unfortunately, in
most mobile messaging applications, the client sends infor-
mation about the intersection (most likely even the entire
intersection) to the server. This allows a malicious server to
learn information about the client’s items that are not part
of the intersection of the two actual input sets. Therefore,
we need to assume a semi-honest server in such scenarios.
Preventing malicious behavior on the server side could be
done by combining our protocols with a trusted execution en-
vironment for hardware-enforced code and remote attestation
capabilities s.t. the server’s protocol deviation possibilities
are restricted to wrong inputs for the Cuckoo filter construc-
tion. However, assuming a semi-honest server is reasonable
since there are legal requirements and financial incentives for
a service provider to behave correctly: once misconduct gets
known publicly, users will abandon the malicious service and
switch to a more trustworthy alternative.

4.6 Further Extensions

The bottleneck for very large server sets is the communication
required to send the Cuckoo filter to the client. For example, a
compressed Cuckoo filter for 228 server items with false posi-
tive probability εmax ≈ 2−29 has a size of ≈ 1GiB, which is
prohibitively large for transmission on mobile network speeds
and data plans. For even larger server databases, the proto-
cols eventually become impractical. For example, for a server
database with 231 entries, it would be necessary to download
a Cuckoo filter of size ≈ 8GiB. Therefore, we describe how
to reduce the overall client-server communication to be loga-
rithmic in the size of the server database. We propose further
extensions to increase practicality in App. A.

Combination with Private Information Retrieval (PIR).
In their PIR-PSI protocol, Demmler et al. [21] propose the use
of multiple non-colluding servers together with a multi-server
PIR protocol. Applied to our PSI protocols, the extension
works as follows: After the server prepared the Cuckoo filter,
it is not transmitted to the client, but to a second non-colluding
server instead. Since the Cuckoo filter only contains the re-
sults of PRF evaluations, the second server does not learn
anything about the items in the main server’s set. The client
then performs the OPRF evaluation for each of its items with
the first server and then runs a multi-server PIR protocol to
retrieve the fingerprints stored in the Cuckoo filter.

The communication complexity for the multi-server PIR
lookup is O(κ logn), where κ is the symmetric security param-
eter and n the size of the server database [14, 21]. Since the
overall client-server communication therefore is logarithmic
and not linear in the size of the server database, our protocols
are expected to remain practical even for server databases
with more than a billion items. In practice, the remaining
challenge for messaging services is to find a trustworthy part-
ner operating the second PIR server while at the same time
making it credible to users that no collusion is happening.

5 Android Implementation

To demonstrate the feasibility of our optimized PSI protocols
for performing private contact discovery on mobile devices,
we provide implementations for smartphones running on An-
droid.6 Previous works [34, 40] presented experiments on
dedicated mobile devices, but the performance of these im-
plementations was not sufficient for real-world usage. For
example, the Java implementation of [40], which is based on
the ObliVM framework [43], takes more than a second to
evaluate a single garbled AES-128 circuit. In our implemen-
tation, we make use of native C/C++ code support in Android
and also use hardware acceleration for cryptographic opera-
tions available in modern smartphones. More precisely, native

6https://contact-discovery.github.io

1456 28th USENIX Security Symposium USENIX Association

https://contact-discovery.github.io

AES-128 instructions are used both as a PRNG and during the
creation and evaluation of the garbled circuit. These features
allow our implementation to reach truly practical performance.
Compared to the Java-based implementation of [40], we eval-
uate a garbled AES-128 circuit more than 1,000x faster.

5.1 Base OTs and OT Extension
For performing base OTs, we use the OT protocol of Chou and
Orlandi [20] with the additional verification step proposed
by Doerner et al. [26]. Together with the (C-)OT extension
protocol of Keller, Orsini, and Scholl [39], this results in a
maliciously secure protocol (cf. [26]).

Our OT implementation is based on libOTe by Rindal [60],
which is heavily optimized for the x86 architecture. Thus, we
ported large parts of the library to the ARMv8 architecture
to achieve high performance on mobile devices. At the same
time, we kept the library compatible with its x86 counterpart
to facilitate natural development of client-server applications.

5.2 GC-PSI Implementation
For the GC-PSI protocol, we implement Yao’s GC protocol
(cf. §3.2) with Free-XOR [42] and Half-Gates [63], resulting
in no communication for XOR-gates and two wire labels
of κ bits each per AND gate, where κ = 128 is the symmetric
security parameter.

For creating and evaluating the garbled tables, the most ef-
ficient choice today is fixed-key AES [11], mainly due to the
hardware support for AES that is widespread in modern x86
CPUs. The ARM Cryptography Extensions (CE) introduced
in the ARMv8 architecture similarly provide hardware in-
structions for AES, SHA-1, and SHA-2 variants, resulting in
AES speedups of factor 35x compared to a standard AES
software implementation. This allows us to also use fixed-key
AES [11] for garbling in our implementation.7 Additionally,
the ARMv8 architecture provides instructions for vector oper-
ations on 128-bit registers (the so-called NEON instruction
set), which we use to efficiently work with 128-bit wire labels.
In Tab. 7 in App. B, we demonstrate the wide availability of
ARM CE in most recent smartphone processors.

5.3 NR-PSI Implementation
For implementing the NR-PSI protocol, we use the modified
libOTe version described in §5.1 for C-OT precomputation
as well as the GNU GMP8 library for modular arithmetic oper-
ations and the MIRACL9 library for instantiating the protocol

7As recently reported by [29], many secure computation implementations
use fixed-key AES incorrectly. However, according to [29], our instantiation
for garbling following the definitions of [63] is not affected. In contrast,
libOTe [60] is currently vulnerable. The suggested fixes however are not
expected to result in a significant negative performance impact [29].

8https://gmplib.org
9https://github.com/miracl/MIRACL

with elliptic curve P-256. The advantage of instantiating the
NR-PSI protocol with ECC instead of using a plain finite field
with comparable security parameters is that the size of the
values g̃i transferred during the online phase (cf. Fig. 2) is re-
duced by factor 8x. Also, computationally expensive modular
exponentiations are replaced with point multiplications. We
refer to this variant as ECC-NR-PSI in the following. All li-
braries are compiled specifically for the ARMv8 architecture.

6 Performance Evaluation

We empirically evaluate the performance of our optimized
GC-PSI and NR-PSI protocols and compare them to other
unbalanced PSI protocols from the literature.

Benchmark Settings. For easy comparison to related work,
we choose similar sizes for the server’s and the client’s set:
Ns ∈ {220,224,226,228} and Nc ∈ {1,28,210}. Here, Nc = 1
represents the case where a client wants to check a new con-
tact. All items have a bitlength of α = 128. We instantiate all
primitives and protocols with 128-bit security.

In all of our experiments, the sever is equipped with an
Intel CoreTM i7-4600U CPU @ 2.6GHz and 16GiB of RAM.
The client is a Google Pixel XL 2 smartphone with a Snap-
dragon 835 CPU @ 2.45GHz and 4GiB of RAM. We con-
sider two network settings: (i) an IEEE 802.11ac WiFi con-
nection with ≈ 230Mbit/s down-/upload and 70ms RTT
and (ii) a mobile LTE connection with 42Mbit/s down-
load (S→C), 4Mbit/s upload (S←C), and 80ms RTT.

Note that the LTE network speeds are real-world param-
eters and exhibit a significant difference in the down- and
upload rates. This is common in commercially available data
plans and often not taken into account in previous evaluations.

6.1 GC-PSI and NR-PSI Protocol

The runtime and communication costs for the base, setup, and
online phase of our protocols are shown in Tab. 3, Tab. 4,
and Tab. 5, respectively, and are averaged over 100 execu-
tions (except for the setup phase, where we chose 10 or less
executions due to the larger runtime). We use LowMC in-
stance (3) from Tab. 2 for the evaluation. In all tests, only a
single thread was used for both the server and the client. Since
all phases of our protocols can be parallelized trivially, we
expect a near-linear speedup when using multiple threads, ex-
cept in situations where the bottleneck is network bandwidth.
Furthermore, note that in the base and online phases of the
GC-PSI protocol, only one party actually performs the compu-
tationally expensive task of garbling or evaluating the circuit.
Therefore, if both parties are ready, the base and online phases
of the GC-PSI protocol can be interleaved in a pipelined fash-
ion, where the server sends the garbled circuits and the client
evaluates them as soon as parts of them are available. This

USENIX Association 28th USENIX Security Symposium 1457

https://gmplib.org
https://github.com/miracl/MIRACL

Parameters Time [s] Comm. [MiB]
Npre

c Protocol WiFi LTE S→C S←C

210
AES-GC-PSI 7.14 38.98 162.52 2.02
LowMC-GC-PSI 1.85 6.57 22.01 2.02
ECC-NR-PSI 0.61 4.21 0.01 1.99

Table 3: Base phase of our PSI protocols. Precomputation for
checking Npre

c client contacts. Best results marked in bold.

Parameters Server Setup [s] Transmission [s] Comm. [MiB]
Ns Protocol WiFi LTE S→C

228
AES-GC-PSI 23.94

32.66 211.30 1072LowMC-GC-PSI 1,869.13
ECC-NR-PSI 52,332.38

226
AES-GC-PSI 4.87

8.13 52.55 268LowMC-GC-PSI 467.29
ECC-NR-PSI 12,787.79

224
AES-GC-PSI 1.12

2.13 13.05 67LowMC-GC-PSI 116.66
ECC-NR-PSI 3,297.96

220
AES-GC-PSI 0.06

0.25 0.63 4.19LowMC-GC-PSI 7.27
ECC-NR-PSI 241.54

Table 4: Setup phase of our PSI protocols. Server setup run
once for all clients. The Cuckoo filter parameters are set as
described in §4.1 (εmax = 2−29.4,v = 32,b = 3). Best results
marked in bold. Note that the size of the client set does not
influence the runtime of the setup phase and the client does
not send any data during the setup phase in any protocol.

method can reduce the runtime of the combined base and
online phase to the runtime of the slower phase.

We observe that using LowMC instead of AES in the GC-
PSI protocol leads to 7.4x less communication and thus to
a much smaller runtime in the base phase, while the on-
line phase of both protocol versions is very comparable.
Only during the one-time setup phase, the AES version is
more efficient due to AES-NI instructions. Using a hardware-
accelerated implementation of LowMC could reduce this run-
time close to the one of AES, but we again stress that the
setup phase is a one-time cost. This confirms our choice of
LowMC over AES as the PRF in GC-PSI.

ECC-NR-PSI is the most efficient protocol during the base
phase since it does not send garbled circuits to the client: com-
pared to the LowMC version of GC-PSI, it requires 12x less
communication. The ECC-NR-PSI online phase is slightly
slower than both GC-PSI protocols, while being the fastest for
a single item. The one-time setup phase of the ECC-NR-PSI
protocol is much slower than both GC-PSI protocol versions
due to elliptic curve operations.

6.2 Comparison with Related Work
We now highlight differences to other works in the literature
and compare our optimized GC- and NR-PSI protocols and
implementations to other unbalanced PSI implementations
available for Android in Tab. 6. Comparisons with implemen-
tations for the x86 architecture are given in App. D.

Parameters Time [s] Comm. [KiB]
Nc Protocol WiFi LTE S→C S←C

210
AES-GC-PSI 1.43 1.86 2,048 16.00
LowMC-GC-PSI 1.71 2.02 2,048 16.00
ECC-NR-PSI 2.31 2.32 4,147 16.00

28
AES-GC-PSI 0.34 0.47 512 4.00
LowMC-GC-PSI 0.37 0.48 512 4.00
ECC-NR-PSI 0.61 0.61 1,037 4.00

1
AES-GC-PSI 0.03 0.03 2.00 0.02
LowMC-GC-PSI 0.04 0.05 2.00 0.02
ECC-NR-PSI 0.01 0.02 4.06 0.04

Table 5: Online phase of our PSI protocols. Best results
marked in bold. The influence of the server set size on runtime
and communication is negligible and therefore not listed.

Chen et al. [18, 19]. The protocols of [18, 19] for unbal-
anced PSI are based on leveled fully homomorphic encryp-
tion (FHE). They both work as follows: the client encrypts all
its items and sends them to the server, which then computes
the intersection under encryption with all of its own items
and returns the result in encrypted form. The client can then
decrypt the received ciphertexts to find the intersection.

The protocol in [19] is only defined for 32bit strings, a
limitation that stems from the parameter choice of the FHE
scheme. Since the universe of possible items is larger than 232

in the use case of contact discovery, we exclude this protocol
from further comparisons. However, this limitation was lifted
in the subsequent work [18] where arbitrary length items are
supported. The benefits of [18] compared to our protocols
are that the client is not required to store any data and that
the total communication is sublinear in the size of the server
database. For example, for Ns = 228, the total communication
in the protocol of [18] is only 18.4MB.

However, there is a huge computational overhead during
the online phase of the protocol: even on a high-end server it
takes more than 12s on 32 threads to compute the intersection
with Nc = 1024 client elements. Unfortunately, the online
phase needs to be repeated whenever there are updates on
client or server side. Also, due to the employed FHE batching
optimizations, the runtime for a single item is almost equal
to the runtime for thousands of items. Assuming that each of
the Ns = 228 registered clients runs one update per day, this
would require the service provider to pay for 228 ·12.1 ·32≈
28.9 million core hours every day. In contrast, the online
phases of our protocols run in ≈ 2s for Nc = 1024 in the
WiFi setting on a single-threaded smartphone and require
no cryptographic operations on server side. The evaluation
of [18] was performed on two servers with Intel Xeon CPUs
in a 10Gbit/s local network. Therefore, it is also unclear how
the FHE encryption and decryption routines perform in a
mobile setting on real smartphones.

Resende and de Freitas Aranha [59]. In [59], the authors
present implementation improvements for the PSI protocol
of [7]. For each element in the client’s set, they perform 3

1458 28th USENIX Security Symposium USENIX Association

Parameters PSI Protocol Base + Online Time [s] Communication [MiB] Setup Communication / Setup Transfer [s] Server Setup [s]
Ns Nc WiFi LTE S→C S←C Client Storage [MiB] WiFi LTE

228

1,024

AES-GC-PSI [40] 1,507.73 2,742.66 177.23 4.00 1,380.25 42.05 272.06 26.70
NR-PSI [40] 171.23 221.20 64.25 2.02 1,380.25 42.05 272.06 194,130.21
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 1,072.00 32.66 211.30 1,869.13
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 1,072.00 32.66 211.30 52,332.38

1

AES-GC-PSI [40] 1.53 2.95 0.18 0.02 1,380.25 42.05 272.06 26.70
NR-PSI [40] 0.17 0.21 0.06 0.01 1,380.25 42.05 272.06 194,130.21
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 1,072.00 32.66 211.30 1,869.13
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 1,072.00 32.66 211.30 52,332.38

224

1,024

AES-GC-PSI [40] 1,507.73 2,742.66 177.23 4.00 86.26 2.74 16.80 1.18
NR-PSI [40] 171.23 221.20 64.25 2.02 86.26 2.74 16.80 12,174.40
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 67.00 2.13 13.05 116.66
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 67.00 2.13 13.05 3,297.96

1

AES-GC-PSI [40] 1.53 2.95 0.18 0.02 86.26 2.74 16.80 1.18
NR-PSI [40] 0.17 0.21 0.06 0.01 86.26 2.74 16.80 12,174.40
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 67.00 2.13 13.05 116.66
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 67.00 2.13 13.05 3,297.96

220

1,024

AES-GC-PSI [40] 1,507.73 2,742.66 177.23 4.00 5.39 0.32 0.81 0.05
NR-PSI [40] 171.23 221.20 64.25 2.02 5.39 0.32 0.81 758.40
LowMC-GC-PSI (Ours) 3.54 8.59 22.01 2.02 4.19 0.25 0.63 7.27
ECC-NR-PSI (Ours) 2.92 6.53 4.07 2.00 4.19 0.25 0.63 241.54

1

AES-GC-PSI [40] 1.53 2.95 0.18 0.02 5.39 0.32 0.81 0.05
NR-PSI [40] 0.17 0.21 0.06 0.01 5.39 0.32 0.81 758.40
LowMC-GC-PSI (Ours) 0.17 0.18 0.04 0.02 4.19 0.25 0.63 7.27
ECC-NR-PSI (Ours) 0.13 0.13 0.01 0.01 4.19 0.25 0.63 241.54

Table 6: Comparison of PSI protocols with smartphone implementations. Numbers for protocols of [40] are obtained by running
their implementations in our benchmarking environment. In all tests Npre

c = Nc. Best in class marked in bold.

point multiplications and transmit 2 group elements. This
results in a lower communication than our approaches (64B
for 2 group elements vs. 22KiB per garbled circuit vs. 6KiB
per item in NR-PSI). However, one major contribution of [59]
is a significant optimization of the GLS-254 curve for x86
CPUs. It is therefore unclear how their protocol performs on
smartphones with ARMv8-A hardware. Furthermore, their
Cuckoo filters parameters allow for a false positive probability
that is too high for real-world deployment (cf. §4.1). Finally,
their protocol assumes semi-honest adversaries, and while a
maliciously secure variant [38] of their basic protocol exists,
its performance has not yet been evaluated.

Kiss et al. [40]. In [40], the authors consider various semi-
honest PSI protocols, from which their GC-PSI and NR-PSI
protocols are the foundation of our work. Their Android im-
plementation (in pure Java) takes about 1.5s for a single obliv-
ious AES evaluation in their GC-PSI protocol. The authors
therefore conclude that instead their ECC-DH-PSI protocol is
most suited for the mobile use case since the evaluation time
for a single item is 23ms. However, both of our optimized
protocols with security against malicious clients are more
than competitive with an evaluation time of less than 2ms
for a single item. For Nc = 1024 client elements, the com-
bined base and online time of our optimized GC- and NR-PSI
protocols improves by more than a factor of 300x and 30x,
respectively, compared to the unoptimized semi-honest im-
plementations of [40] in both the WiFi and the LTE network
setting. Also, the total communication during the base and

online phase improves by factors 7.5x and 10.9x compared
to the respective GC- and NR-PSI protocols of [40].

7 Conclusion

Our native implementations of our optimized NR- and GC-
PSI protocols are two almost equivalently outstanding solu-
tions for large-scale mobile private contact discovery with se-
curity against malicious clients. The Signal developers stated
that to actually deploy PSI-based contact discovery, it would
need to be able to handle a server database with 1 billion users
while address books are assumed to contain up to 10,000 con-
tacts. In terms of latency, lookups are required to take less
than 2s, while in terms of throughput a single core should be
able to handle 1,600 contacts per second. Clearly, we cannot
meet these demanding requirements yet. Therefore, as part
of future work, we suggest to implement and evaluate our
proposed extensions (especially the combination with PIR) to
take the next important steps towards real-world deployment.

Acknowledgments

This work was co-funded by the DFG as part of project E4
within the CRC 1119 CROSSING and project A.1 within
the RTG 2050 “Privacy and Trust for Mobile Users”, by the
BMBF and the HMWK within CRISP, and by the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 644052 (HECTOR). Daniel Kales
has been supported by iov42 Ltd.

USENIX Association 28th USENIX Security Symposium 1459

References

[1] WhatsApp Legal Info. https://www.whatsapp.com
/legal, 2019.

[2] Martin R. Albrecht, Christian Rechberger, Thomas
Schneider, Tyge Tiessen, and Michael Zohner. Ciphers
for MPC and FHE. In EUROCRYPT, volume 9056 of
LNCS, pages 430–454. Springer, 2015.

[3] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More Efficient Oblivious Transfer and
Extensions for Faster Secure Computation. In CCS,
pages 535–548. ACM, 2013.

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More Efficient Oblivious Transfer
Extensions with Security for Malicious Adversaries. In
EUROCRYPT, volume 9056 of LNCS, pages 673–701.
Springer, 2015.

[5] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and
Michael Zohner. More Efficient Oblivious Transfer Ex-
tensions. Journal of Cryptology, 30(3):805–858, 2017.

[6] N. Asokan, Alexandra Dmitrienko, Marcin Nagy, Elena
Reshetova, Ahmad-Reza Sadeghi, Thomas Schneider,
and Stanislaus Stelle. CrowdShare: Secure Mobile Re-
source Sharing. In ACNS, volume 7954 of LNCS, pages
432–440. Springer, 2013.

[7] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro,
Paolo Gasti, and Gene Tsudik. Countering GATTACA:
Efficient and Secure Testing of Fully-Sequenced Human
Genomes. In CCS, pages 691–702. ACM, 2011.

[8] Donald Beaver. Precomputing Oblivious Transfer. In
CRYPTO, volume 963 of LNCS, pages 97–109. Springer,
1995.

[9] Donald Beaver. Correlated Pseudorandomness and the
Complexity of Private Computations. In STOC, pages
479–488. ACM, 1996.

[10] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
Round Complexity of Secure Protocols (Extended Ab-
stract). In STOC, pages 503–513. ACM, 1990.

[11] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi,
and Phillip Rogaway. Efficient Garbling from a Fixed-
Key Blockcipher. In IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society, 2013.

[12] Burton H. Bloom. Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors. Communications of the ACM,
13(7):422–426, 1970.

[13] Joan Boyar and René Peralta. A New Combinational
Logic Minimization Technique with Applications to
Cryptology. In Symposium on Experimental Algorithms,
volume 6049 of LNCS, pages 178–189. Springer, 2010.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function
Secret Sharing: Improvements and Extensions. In CCS,
pages 1292–1303. ACM, 2016.

[15] Alexander Breslow and Nuwan Jayasena. Morton Fil-
ters: Faster, Space-Efficient Cuckoo Filters via Biasing,
Compression, and Decoupled Logical Sparsity. Proceed-
ings of the VLDB Endowment (PVLDB), 11(9):1041–
1055, 2018.

[16] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In USENIX
Security, pages 991–1008. USENIX Association, 2018.

[17] Henry Carter, Benjamin Mood, Patrick Traynor, and
Kevin R. B. Butler. Secure Outsourced Garbled Circuit
Evaluation for Mobile Devices. In USENIX Security,
pages 289–304. USENIX Association, 2013.

[18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
Labeled PSI from Fully Homomorphic Encryption with
Malicious Security. In CCS, pages 1223–1237. ACM,
2018.

[19] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set
Intersection from Homomorphic Encryption. In CCS,
pages 1243–1255. ACM, 2017.

[20] Tung Chou and Claudio Orlandi. The Simplest Protocol
for Oblivious Transfer. In LATINCRYPT, volume 9230
of LNCS, pages 40–58. Springer, 2015.

[21] Daniel Demmler, Peter Rindal, Mike Rosulek, and
Ni Trieu. PIR-PSI: Scaling Private Contact Discovery.
PoPETs, 2018(4):159–178, 2018.

[22] Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian
Ramacher, and Christian Rechberger. Linear Equiva-
lence of Block Ciphers with Partial Non-Linear Lay-
ers: Application to LowMC. In EUROCRYPT, volume
11476 of LNCS, pages 343–372. Springer, 2019.

[23] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang.
Optimized Interpolation Attacks on LowMC. In
ASIACRYPT, volume 9453 of LNCS, pages 535–560.
Springer, 2015.

[24] Christoph Dobraunig, Maria Eichlseder, and Florian
Mendel. Higher-Order Cryptanalysis of LowMC. In
ICISC, volume 9558 of LNCS, pages 87–101. Springer,
2015.

1460 28th USENIX Security Symposium USENIX Association

https://www.whatsapp.com/legal
https://www.whatsapp.com/legal

[25] Yevgeniy Dodis and Aleksandr Yampolskiy. A Verifi-
able Random Function with Short Proofs and Keys. In
PKC, volume 3386 of LNCS, pages 416–431. Springer,
2005.

[26] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi she-
lat. Secure Two-party Threshold ECDSA from ECDSA
Assumptions. In IEEE Symposium on Security and Pri-
vacy, pages 980–997. IEEE Computer Society, 2018.

[27] Bin Fan, David G. Andersen, Michael Kaminsky, and
Michael Mitzenmacher. Cuckoo Filter: Practically Bet-
ter Than Bloom. In Conference on emerging Networking
EXperiments and Technologies (CoNEXT), pages 75–88.
ACM, 2014.

[28] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword Search and Oblivious Pseu-
dorandom Functions. In TCC, volume 3378 of LNCS,
pages 303–324. Springer, 2005.

[29] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Effi-
cient and Secure Multiparty Computation from Fixed-
Key Block Ciphers. IACR Cryptology ePrint Archive,
2019:074, 2019. https://ia.cr/2019/074.

[30] Carmit Hazay and Yehuda Lindell. Efficient Protocols
for Set Intersection and Pattern Matching with Security
Against Malicious and Covert Adversaries. In TCC,
volume 4948 of LNCS, pages 155–175. Springer, 2008.

[31] Carmit Hazay and Yehuda Lindell. Efficient Protocols
for Set Intersection and Pattern Matching with Security
Against Malicious and Covert Adversaries. Journal of
Cryptology, 23(3):422–456, 2010.

[32] Wilko Henecka and Thomas Schneider. Faster secure
two-party computation with less memory. In ASIACCS,
pages 437–446. ACM, 2013.

[33] Kashmir Hill. Facebook recommended that this
psychiatrist’s patients friend each other. https://spli
nternews.com/facebook-recommended-that-thi
s-psychiatrists-patients-f-1793861472, 2016.

[34] Yan Huang, Peter Chapman, and David Evans. Privacy-
Preserving Applications on Smartphones. In HotSec,
pages 4–4. USENIX Association, 2011.

[35] Russell Impagliazzo and Steven Rudich. Limits on the
Provable Consequences of One-way Permutations. In
STOC, pages 44–61. ACM, 1989.

[36] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending Oblivious Transfers Efficiently. In CRYPTO,
volume 2729 of LNCS, pages 145–161. Springer, 2003.

[37] Stanislaw Jarecki and Xiaomin Liu. Efficient Oblivious
Pseudorandom Function with Applications to Adaptive
OT and Secure Computation of Set Intersection. In TCC,
volume 5444 of LNCS, pages 577–594. Springer, 2009.

[38] Stanislaw Jarecki and Xiaomin Liu. Fast Secure Com-
putation of Set Intersection. In SCN, volume 6280 of
LNCS, pages 418–435. Springer, 2010.

[39] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Ac-
tively Secure OT Extension with Optimal Overhead.
In CRYPTO, volume 9215 of LNCS, pages 724–741.
Springer, 2015.

[40] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan,
and Benny Pinkas. Private Set Intersection for Un-
equal Set Sizes with Mobile Applications. PoPETs,
2017(4):177–197, 2017.

[41] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient Batched Oblivious PRF with
Applications to Private Set Intersection. In CCS, pages
818–829. ACM, 2016.

[42] Vladimir Kolesnikov and Thomas Schneider. Improved
Garbled Circuit: Free XOR Gates and Applications. In
ICALP, volume 5126 of LNCS, pages 486–498. Springer,
2008.

[43] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan
Huang, and Elaine Shi. ObliVM: A Programming
Framework for Secure Computation. In IEEE Sympo-
sium on Security and Privacy, pages 359–376. IEEE
Computer Society, 2015.

[44] Moxie Marlinspike. The Difficulty Of Private Contact
Discovery. https://signal.org/blog/contact-d
iscovery, 2014.

[45] Moxie Marlinspike. Technology Preview: Private Con-
tact Discovery for Signal. https://signal.org/blo
g/private-contact-discovery, 2017.

[46] Benjamin Mood, Debayan Gupta, Kevin R. B. Butler,
and Joan Feigenbaum. Reuse It Or Lose It: More Effi-
cient Secure Computation Through Reuse of Encrypted
Values. In CCS, pages 582–596. ACM, 2014.

[47] Moni Naor and Omer Reingold. Number-Theoretic
Constructions of Efficient Pseudo-Random Functions.
Journal of the ACM, 51(2):231–262, 2004.

[48] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
Hashing. In Annual European Symposium on Algo-
rithms, volume 2161 of LNCS, pages 121–133. Springer,
2001.

USENIX Association 28th USENIX Security Symposium 1461

https://ia.cr/2019/074
https://splinternews.com/facebook-recommended-that-this-psychiatrists-patients-f-1793861472
https://splinternews.com/facebook-recommended-that-this-psychiatrists-patients-f-1793861472
https://splinternews.com/facebook-recommended-that-this-psychiatrists-patients-f-1793861472
https://signal.org/blog/contact-discovery
https://signal.org/blog/contact-discovery
https://signal.org/blog/private-contact-discovery
https://signal.org/blog/private-contact-discovery

[49] Panagiotis Papadopoulos, Antonios A. Chariton, Elias
Athanasopoulos, and Evangelos P. Markatos. Where’s
Wally?: How to Privately Discover your Friends on the
Internet. In ASIACCS, pages 425–430. ACM, 2018.

[50] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.
A Framework for Efficient and Composable Oblivious
Transfer. In CRYPTO, volume 5157 of LNCS, pages
554–571. Springer, 2008.

[51] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private Set Intersection Using
Permutation-based Hashing. In USENIX Security, pages
515–530. USENIX Association, 2015.

[52] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and
Stephen C. Williams. Secure Two-Party Computation Is
Practical. In ASIACRYPT, volume 5912 of LNCS, pages
250–267. Springer, 2009.

[53] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient Circuit-based
PSI with Linear Communication. In EUROCRYPT,
volume 11476 of LNCS, pages 122–153. Springer,
2019.

[54] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient Circuit-Based PSI via Cuckoo
Hashing. In EUROCRYPT, volume 10822 of LNCS,
pages 125–157. Springer, 2018.

[55] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster Private Set Intersection Based on OT Extension.
In USENIX Security, pages 797–812. USENIX Associa-
tion, 2014.

[56] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable Private Set Intersection Based on OT Extension.
ACM Transactions on Privacy and Security, 21(2):7:1–
7:35, 2018.

[57] Michael Rabin. How to Exchange Secrets with Oblivi-
ous Transfer. In Technical Report TR-81. Aiken Com-
putation Laboratory: Harvard University, 1981.

[58] Christian Rechberger, Hadi Soleimany, and Tyge
Tiessen. Cryptanalysis of Low-Data Instances of Full
LowMCv2. IACR Transactions on Symmetric Cryptol-
ogy, 2018(3):163–181, 2018.

[59] Amanda Cristina Davi Resende and Diego de Fre-
itas Aranha. Faster Unbalanced Private Set Intersection.
In FC, LNCS. Springer, 2018.

[60] Peter Rindal. libOTe: A fast, portable, and easy to use
Oblivious Transfer Library. https://github.com/o
su-crypto/libOTe.

[61] Statista. Most Popular Global Mobile Messenger Apps.
https://www.statista.com/statistics/258749/
most-popular-global-mobile-messenger-apps,
2019.

[62] Andrew Chi-Chih Yao. How to Generate and Exchange
Secrets (Extended Abstract). In FOCS, pages 162–167.
IEEE, 1986.

[63] Samee Zahur, Mike Rosulek, and David Evans. Two
Halves Make a Whole - Reducing Data Transfer in Gar-
bled Circuits Using Half Gates. In EUROCRYPT, vol-
ume 9057 of LNCS, pages 220–250. Springer, 2015.

A Protocol Extensions

We propose further extensions for improving practicality.

Combination with FHE Protocols. Protocols for unbal-
anced PSI based on fully homomorphic encryption (FHE),
e.g., [18], are computationally expensive and thus much
slower during the online phase than our protocols (cf. §6.2).
However, their advantage is that the total amount of commu-
nication is sublinear in the size of the server database. When
clients install a new messaging application and are not con-
nected to a high-speed WiFi network, such FHE-based pro-
tocols likely produce faster contact discovery results, which
leads to higher user satisfaction. Thus, we recommend the
following hybrid use of contact discovery protocols: Directly
after installation of a mobile messaging application, a FHE-
based protocol (e.g., [18]) is used to perform the initial contact
discovery. Then, while the phone is charging overnight and
is connected to a WiFi network, the base and setup phase of
one of our protocols is performed. This leads to very efficient
online phases for future protocol runs, which are performed
regularly when updates on client or server side happen (poten-
tially over mobile data plans where communication matters).
See also §6.2 for a more detailed comparison between FHE-
based unbalanced PSI protocols and our work.

Dedicated Server for Cuckoo Filter Membership Tests.
In many scenarios, a large number of clients is part of a sin-
gle organization. For example, consider the mobile malware
detection scenario discussed in [40], where all applications in-
stalled on a client’s smartphone are checked against a database
of malicious applications. When employing such a malware
detection service in an enterprise context, a company usually
buys a volume license for all of its employees.

To reduce the overall data communication, the company
could host a dedicated server which would receive the large en-
crypted database of server items represented as a compressed
Cuckoo filter once. If a client then wants to compute the inter-
section between installed and malicious applications, it only
communicates with the malware detection service provider to

1462 28th USENIX Security Symposium USENIX Association

https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps

perform OPRF evaluations and then hands off the encrypted
items to the trusted company server, which performs the set
intersection on behalf of the clients and reports back the result.
Since this trusted server does not have knowledge of the PRF
key, it cannot directly deduce which items the client holds.

However, since the OPRF result is deterministic when using
the same secret key, the trusted server can learn when multiple
clients request the same item. Furthermore, it could interact
with the malware detection service provider itself to obtain
encryptions of known items, which it can compare to the
encrypted items of the clients. However, this kind of leakage
can be argued to be acceptable in many settings, such as the
company-internal setting mentioned above.

Partitioning the Database. A simple solution to reduce the
required communication during the setup phase is to partition
the server database s.t. clients only download Cuckoo filters
relevant for the contacts in their address book (for example
w.r.t. number prefixes, states, countries, or regions).

Assuming that the majority of users has contacts in only
very few such partitions, this approach leads to practical data
transmission sizes even for services with billions of users. In
the worst case (i.e., a user has contacts in all partitions or
prefers to leak no information at all), multiple runs of our
protocols can cover the worldwide user base.

However, this solution presents a significant performance /
privacy trade-off since clients leak information about their
social graph. For example, intelligence agencies might find it
suspicious if US citizens evidently have contacts in middle
eastern countries. How severe the privacy of users is threat-
ened also depends on how fine-grained the chosen partitions
are: if they are too small, it might even be possible to identify
an individual just by observing Cuckoo filter downloads.

B ARM Cryptography Extensions (CE)

The wide availability of the ARM Cryptography Exten-
sions (CE) in modern smartphone processors is highlighted
in Tab. 7.

System-on-a-Chip (SoC) Example Smartphones and Tablets CE

Apple A4, A5, A6 iPhone 4, iPad, iPad 2, iPhone 5 7
Apple A7, A8, A9 iPhone (5s,6), iPad Air, iPad mini 2 3
Apple A10, A11, A12 iPhone (7,8,X,Xs), iPad (2018), iPad Pro 3
Snapdragon 801 HTC One (E8), OnePlus One 7
Snapdragon 805 Galaxy S5+, Nexus 6 7
Snapdragon 808 Nexus 5X, LG G4, Moto X Style 3
Snapdragon 810 OnePlus 2, Nexus 6P, Sony Xperia Z5 3
Snapdragon 820 OnePlus 3, Galaxy S7, LG G5 3
Snapdragon 821 Google Pixel (XL), LG G6 3
Snapdragon 835 Google Pixel 2 (XL), Galaxy S8 3
Snapdragon 845 OnePlus 6, Galaxy S9, Sony Xperia Z2 3

Table 7: Availability of ARM Cryptography Extensions (CE)
in modern smartphone and tablet systems-on-a-chip (SoCs).

C Signal Integration Demonstrator

As a proof-of-concept, we modified the client application of
the open-source messenger Signal to perform contact discov-
ery using our PSI protocols. To be able to run the modified
client with the official servers, the integration works as fol-
lows: Whenever Signal triggers the contact discovery routine,
we run one of the PSI protocols with our own PSI server10.
The resulting matches are then used as input for the unmodi-
fied Signal contact discovery routine. This way, the official
Signal server only learns the hashes of phone numbers which
are already registered to the service. Our changes to the user
interface of the Android version of the Signal application are
depicted in Fig. 3.

(a) Signal registration. (b) Contact discovery result.

Figure 3: Screenshots of our prototype integration into the
open-source messenger Signal.

D Comparison of Unbalanced PSI Protocols
on the x86 Architecture

The goal of our paper is to provide efficient private contact
discovery for mobile messaging applications via improved
unbalanced PSI protocols with implementations optimized for
smartphones. Therefore, we focus our implementation and
evaluation efforts on the mobile use case and perform our
experiments on real smartphones with ARMv8 architecture.
However, to present the complete picture, we give a compari-
son to protocols for unbalanced PSI running on x86 hardware
and communicating in a local network in Tab. 8.

10In practice, this PSI server would be run by Signal and use the actual
database of Signal users.

USENIX Association 28th USENIX Security Symposium 1463

Parameters Protocol Online Time [s] Online Communi- Setup Communication / Server Setup [s]
Ns Nc cation [MiB] Client Storage [MiB]

228 1,024

[59] ∗0.16 0.07 806 ∗182
[18] ∗12.10 18.57 0 ∗4,628
LowMC-GC-PSI (Ours) 0.93 24.01 1,072 1,869
ECC-NR-PSI (Ours) 1.34 6.06 1,072 52,332

224

11,041

[59] 0.71 0.67 48 342
[19] 44.70 23.20 0 71
[18] 20.10 41.48 0 656
LowMC-GC-PSI (Ours) 12.51 258.79 67 117
ECC-NR-PSI (Ours) 11.94 65.24 67 3,298

5,535

[59] 0.35 0.34 48 342
[19] 40.10 20.10 0 64
[18] 22.01 16.39 0 806
LowMC-GC-PSI (Ours) 5.63 129.73 67 117
ECC-NR-PSI (Ours) 5.93 32.71 67 3,298

220

11,041

[59] 0.71 0.67 3 22
[19] 6.40 11.50 0 6.4
[18] 4.49 14.34 0 43
LowMC-GC-PSI (Ours) 12.51 258.79 4.2 7.3
ECC-NR-PSI (Ours) 11.94 65.24 4.2 242

5,535

[59] 0.35 0.34 3 22
[19] 4.30 5.60 0 4.3
[18] 4.23 11.50 0 43
LowMC-GC-PSI (Ours) 5.63 129.73 4.2 7.3
ECC-NR-PSI (Ours) 5.93 32.71 4.2 242

Table 8: Comparison of unbalanced PSI protocols in the LAN setting (10Gbit/s, 0.02ms RTT) on PC hardware (x86 architecture).
Numbers for other protocols are taken from [18]. All numbers are from single-core executions, except those marked with ∗,
which was an execution with 32 cores on the server side and 4 cores on the client side. The bit length α of all items is 128, except
for [19], where α = 32 due to limitations of the protocol.

1464 28th USENIX Security Symposium USENIX Association

EverParse: Verified Secure Zero-Copy Parsers
for Authenticated Message Formats

Tahina Ramananandro∗ Antoine Delignat-Lavaud∗ Cédric Fournet∗ Nikhil Swamy∗

Tej Chajed† Nadim Kobeissi‡ Jonathan Protzenko∗

∗Microsoft Research †Massachusetts Institute of Technology ‡Inria Paris

Abstract
We present EverParse, a framework for generating parsers
and serializers from tag-length-value binary message format
descriptions. The resulting code is verified to be safe (no
overflow, no use after free), correct (parsing is the inverse of
serialization) and non-malleable (each message has a unique
binary representation). These guarantees underpin the security
of cryptographic message authentication, and they enable
testing to focus on interoperability and performance issues.

EverParse consists of two parts: LowParse, a library of
parser combinators and their formal properties written in F?;
and QuackyDucky, a compiler from a domain-specific lan-
guage of RFC message formats down to low-level F? code
that calls LowParse. While LowParse is fully verified, we do
not formalize the semantics of the input language and keep
QuackyDucky outside our trusted computing base. Instead, it
also outputs a formal message specification, and F? automati-
cally verifies our implementation against this specification.

EverParse yields efficient zero-copy implementations, us-
able both in F? and in C. We evaluate it in practice by fully im-
plementing the message formats of the Transport Layer Secu-
rity standard and its extensions (TLS 1.0–1.3, 293 datatypes)
and by integrating them into MITLS, an F? implementation of
TLS. We illustrate its generality by implementing the Bitcoin
block and transaction formats, and the ASN.1 DER payload
of PKCS #1 RSA signatures. We integrate them into C ap-
plications and measure their runtime performance, showing
significant improvements over prior handwritten libraries.

1 Introduction

Because they are directly exposed to adversarial inputs,
parsers are often among the most vulnerable components
of security applications, and techniques to simplify their con-
struction while ensuring their safety and correctness are valu-
able. Hence, developers prefer self-describing formats like
JSON or XML (with universal implementations) or use auto-
mated tools and libraries to generate parsers from structured

DSL Spec

(TLS,

ASN.1)
QuackyDucky

F* Spec

Low* Impl

Memory-safe, zero-copy C code

F* Impl

LowParse

F* App

C App

Figure 1: EverParse architecture

format specifications, or even from type declarations in Java
or C++. However, when parsing is on the critical path of
an application’s performance, or because of requirements of
the message format (such as compliance with a standard),
developers may be forced to write and maintain their own
parsers and serializers in low-level unsafe languages like C,
increasing the risk of attacks triggered by malicious inputs.

More specifically, when the application authenticates mes-
sages in some way—using for instance cryptographic hashes,
MACs, encryptions, or signatures—it is critical for security to
ensure that the messages are verified, parsed, and interpreted
by the receiver exactly as intended by the sender before serial-
ization. This is often at odds with general-purpose formats and
tools that may not provide such non-malleability guarantees.

This paper presents EverParse, a new framework to auto-
matically generate efficient, low-level parsers and serializers
in C from declarative descriptions of tag-length-value (TLV)
binary message formats. The generated parsers and serial-
izers are formally verified to be safe (no use-after-free, no
buffer overruns, no integer overflows, ...), functionally correct
(parsers and serializers are inverse of one another), and non-
malleable (valid messages have unique representations). With
EverParse, developers of low-level protocols can enjoy the
ease of programming and maintenance expected from parser
generators, and stop worrying about details of the message
format and trade-offs between security and performance.

USENIX Association 28th USENIX Security Symposium 1465

Architecture Overview. Figure 1 depicts the overall archi-
tecture of EverParse and its two main components: a simple,
untrusted frontend (named QuackyDucky) for compiling mes-
sage format descriptions; and a library of verified parsers and
serializers (named LowParse).

Verification is based on F? [48], a programming language
and proof assistant. Whereas F? is a high-level functional lan-
guage, whose code extracts by default to OCaml or F#, it also
embeds a language named Low? for writing verified low-level
code that extracts to C using a tool named KReMLin [38].
EverParse uses Low? to program efficient, low-level parsers
and serializers, proving them safe, correct and non-malleable
in F?, and then extracting them to C. The resulting C code can
be compiled using several off-the-shelf C compilers, includ-
ing CompCert [28] for highest assurance, or more mainstream
compilers like Clang or GCC.

The input of EverParse is a message format description for
a collection of types, in the C-like language commonly used
in RFCs and similar specifications. QuackyDucky translates
this description into a collection of F? modules, one for each
input type, and F? typechecks each of these modules to verify
their safety and security. The modules produced by Quacky-
Ducky include a formal parser specification (using high-level
F? datatypes) and two correct implementations of this spec-
ification: one high-level and the other in Low?, suitable for
extraction to safe C code. This lower-level implementation en-
ables efficient message processing; it automatically performs
the same input validation as the high-level parser, but it oper-
ates in-place using interior pointers to binary representations
within messages. Its performance is similar to handwritten C
code—but its safety, correctness, and security are automati-
cally verified. Hence, rather than verifying existing, ad hoc C
code by hand, which would require much effort and expertise
even for small protocols, our toolchain automatically yields
C code verified by construction.

The code generated by QuackyDucky consists of applica-
tions of combinators in LowParse, which are higher-order
functions on parsers. For instance, given a integer parser, one
can build a parser for pairs of integers by applying the con-
catenation combinator to two copies of the integer parser.
While parser combinators are widely used in functional lan-
guages [22, 27], they are usually more difficult to apply in
languages that do not easily support higher-order program-
ming with closures, like C. However, by employing partial
evaluation within F?, we specialize higher-order code to effi-
cient, ad hoc, first-order C code.

We carry out all proofs on combinators once and for all
within LowParse. Only the conditions for composing them
must be checked (by typing) in the code produced by Quacky-
Ducky. LowParse is split into three layers: one for specifi-
cations, where we prove non-malleability, one for high-level
functional implementations, which are proved functionally
correct with respect to specifications, and one for low-level
implementations, which operate on positions within buffers

and are proved functionally correct and memory safe.
EverParse code can be used in two ways. A verified F?

application can use the formal specification for its security
proof, and either the high-level or low-level implementation—
this is the approach adopted for verifying protocols as part of
the Everest project [6], and notably the MITLS [7] implemen-
tation of the TLS secure channel protocol. Alternatively, a
native C/C++ application can use the interface extracted from
the Low? implementation by the KReMLin compiler—this is
the approach taken in this paper for performance evaluation.

Our contributions We present the following contributions:
• A definition of message-format security, motivated by a

discussion of several vulnerabilities whose root cause is
malleability (§2).
• QuackyDucky, a compiler from tag-length-value mes-

sage format descriptions to their high-level datatype spec-
ifications and low-level implementations. It provides the
first implemented zero-copy and secure message format
language that captures several existing protocols and
standards, including TLS, PKCS #1 signature payloads,
and Bitcoin (§4).
• LowParse, a library of verified parser and formatter com-

binators, with support for non-malleability proofs (§5).
• A qualitative evaluation of EverParse: we present a com-

plete case study of applying EverParse to the message
formats of all TLS versions, featuring many improve-
ments and corrections over the standard’s descriptions.
We integrate the generated high-level implementation
into MITLS, an implementation of the TLS protocol in
F?. For a few select types, we also replace the high-level
implementation with the Low? one (§3).
• A quantitative evaluation of EverParse: we compare

the performance of our extracted low-level parsers for
Bitcoin blocks and the ASN.1 payload of PKCS #1
signatures with their counterparts in Bitcoin Core and
mbedTLS. We find that our automatically generated code
meets, and in some cases significantly exceeds, the per-
formance of hand-written C/C++ reference code (§6).

All the components of EverParse and its dependencies
are open-source and publicly available at https://github.
com/project-everest/everparse

2 Parsing Security: Definitions & Attacks

In this paper, we focus on applications that authenticate the
contents of serialized messages in some way. Cryptographic
mechanisms provide (serialized) bytestring authentication,
whereas applications rely on (parsed) message authentication.
Hence, correctness and runtime safety are not sufficient to
preserve authentication: a correct parser may accept inputs
outside the range of the serializer, or multiple serializations of
the same message, which may lead to subtle, and sometimes

1466 28th USENIX Security Symposium USENIX Association

https://github.com/project-everest/everparse
https://github.com/project-everest/everparse

{0,1}*

s(V)

V

⊥

s

p

p⁻¹(V)

p·p⁻¹(V)

Figure 2: Parsing and serialization functions

devastating, vulnerabilities. We propose a security definition
for authenticated message formats to prevent such vulnerabil-
ities, and illustrate it using known high-impact attacks against
popular applications.

2.1 What is a Secure Message Format?
We first set up notations for parsers and serializers, illustrated
in Figure 2, and define their properties of interest. Given a set
V of valid messages,
• a parser is a function p : {0,1}∗→V]{⊥} that returns

either a message m ∈ V or a parsing error ⊥;
• a serializer, or formatter, is a function s : V →{0,1}∗.

Informally, parsers and formatters are inverse of one another.
A parser is correct with respect to a serializer when it yields
back any formatted message: ∀m∈V , p(s(m))=m, and exact
when it accepts only serialized messages: p−1(V) = s(V).

Parsers may also be considered on their own. A parser
is non-malleable (or injective) when it accepts at most one
binary representation of each message: ∀x,y∈ {0,1}∗, p(x) =
p(y)⇒ (x= y∨ p(x) =⊥), and complete (or surjective) when
it accepts at least one binary representation of each message:
p({0,1}∗)\{⊥}= V . If p is a non-malleable parser for V ,
then p−1 is a serializer over p({0,1}∗)\{⊥}.

We say that p is a secure parser for V if p is non-malleable
and complete. If p is secure, then it is also correct and exact
with respect to the (unique) serializer p−1. We say a serializer
s is secure if there exists a secure parser p such that s = p−1.
(§5 provides more general definitions that account for parsers
that do not consume their whole input.)

In the rest of the paper, we only consider parsers that oper-
ate on strings of bytes B = {0,1}8.

2.2 Attacks on Parsers
Heartbleed Unsurprisingly, the most common type of parser
vulnerability is simply memory safety bugs. Indeed, one of
the most impactful attacks in the past decade, Heartbleed
(which is estimated to have affected up to 55% of the top
internet websites [17]) is a simple buffer overrun caused by
improper validation of the length field in the TLS messages
defined in OpenSSL’s implementation of the heartbeat pro-
tocol extension (shown in Figure 3). Interestingly, the spec-

struct {
HeartbeatMessageType type;
uint16 payload_length;
opaque payload[payload_length];
opaque padding[padding_length];

} HeartbeatMessage;
The total length of a HeartbeatMessage MUST NOT exceed
2^14 or max_fragment_length when negotiated [RFC6066].
The padding is random content that MUST be ignored by
the receiver. The padding_length MUST be at least 16,
and equal to TLSPlaintext.length-payload_length-3 for
TLS and DTLSPlaintext.length-payload_length-3 for DTLS
The sender of a HeartbeatMessage MUST use a random
padding of at least 16 bytes. The padding of a
received HeartbeatMessage message MUST be ignored.

Figure 3: Specification of the Heartbeat message (fragment)

ification of HeartbeatMessage is very unusual among TLS
types (explained in detail in §3), because it contains a variable
length field (padding) that is not prefixed by an explicit length
(padding_length is not defined in the struct, but its value is
defined semantically). Indeed, as specified, this type is not
expressible in QuackyDucky because the padding length de-
pends on a field of the parent TLSPlaintext type, and we only
capture dependencies between fields that are concatenated.
This forces applications to verify the padding_length seman-
tically, increasing the risk of error. The Heartbleed disaster
would likely have been averted if the format was specified
using standard TLS constructors for variable length fields:

struct {
HeartbeatMessageType type;
opaque payload<0..2^14-21>;
opaque padding<16..2^14-3>;

} HeartbeatMessage;

This example illustrates the benefits of writing message for-
mat descriptions in a constrained language: it encourages
uniform patterns and enables automated analysis.

PKCS #1 signature forgery The PKCS #1 v1.5 signature
format illustrates the risks of applying message parsing after
a cryptographic operation (in this case, modular exponenti-
ation). Given a public key (N = pq,e) where p and q are
large secret primes, the raw RSA signature σ over a mes-
sage m is computed as σ = md modN where the secret expo-
nent d = e−1 mod(p−1)(q−1) is hard to compute without
knowing p and q. As written, this scheme is not usable be-
cause m must be smaller than N, and it has the undesirable
homomorphic property that the signature of the product of
2 messages is equal (modulo N) to the product of the sig-
nature of each message (thus, it is easy to forge new valid
signatures from existing ones). To fix these shortcomings,
PKCS #1 v1.5 defines a standard for hashing and padding
the message to sign: given an arbitrary message m, it is first

USENIX Association 28th USENIX Security Symposium 1467

hashed into a digest h, then stored together with the identifier
a of the hash algorithm into an ASN.1 DER [36] structure.
The distinguished encoding rules are supposed to ensure that
the serializer ρ for this structure is secure. The final signature
is obtained by applying raw RSA to ρ(a,h) left-padded to the
size of N with padding of the form \x00\x01(\xFF)*\x00.

The security of the scheme relies heavily on (the integer
interpretation of) the padding: it is computationally hard to
forge a valid signature σ because σe modN must be of the
form 2dlog2(N)e−15−2dlog2(ρ(a,h)e+1+ρ(a,h) for some digest h
and hash identifier a. It is hard to find such a value by brute
force because all but the dlog2(ρ(a,h)e last bits are fixed, and
inverting the modular exponentiation by e is hard without
knowing d. However, if the ASN.1 parser π used after expo-
nentiation is malleable (or non exact), there may exist a large
class of inputs x such that π(x) = (a,h). If this class contains
inputs that fill most of the dlog2(N)e bits of the message, the
padding may be reduced to \x00\x01\x00. When e is small
(e = 3 is commonly used by legacy public keys), it may be
easy to find a value σ such that σe modN = 2dlog2(N)e−15 + x
with π(x)= (a,h) for any h. For instance, in Bleichenbacher’s
original description of the attack (retold by Finney [18]), the
parser ignores the bytes that appear after the encoded ASN.1
structure, i.e. if π(x) 6=⊥, π(x||z) = π(x) for all z. To forge a
valid signature for h, one can simply compute the cubic root
of 2dlog2(N)e−dlog2(ρ(a,h)e−16(\x0100||ρ(a,h)).

Ever since its publication, this attack has reappeared in
dozens of implementations, including several recent examples
(e.g. [9, 13, 37, 49]). Interestingly, the parser malleability
bugs that cause the attack are diverse: unparsed extra bytes are
tolerated at the end of the message [18, 49]; the parser accepts
arbitrary parameters in the algorithm identifier [9]; and a
length overflow causes only its last 4 bytes to be counted [13].
This diversity illustrates how difficult it is to write secure
parsers and to detect malleability vulnerabilities—some of
the attacks above have existed for years in popular libraries.
All variants lead to universal signature forgery: an attacker
can freely impersonate any client or server, sign malicious
code updates, etc.

Bitcoin transaction malleability Another well-documented
case of parser security attacks occurred against Bitcoin [34]
transactions, which are signed by the sender, then hashed (af-
ter serialization) and stored in Merkle trees. Transactions are
identified by their hash, which covers more data than what
the sender signs (in particular, the hash includes the signa-
ture itself). The format of transactions is malleable in several
ways: one example is the encoding of this signature, which
originally did not mandate the ASN.1 DER rules for non-
malleability. Another source comes from the ECDSA signing
algorithm, which is a randomized scheme (hence, there are
many valid signatures for the same message) that always has
two valid representations: if (r,s) is a valid signature, then
(r,−s) also is, and can be trivially computed without knowl-

edge of the private key. Other sources of malleability are
related to the scriptSig construct of the Bitcoin Script lan-
guage,1 inasmuch as the signature is passed to a stack-based
script to authorize spending. In total, BIP62 [50] lists 9 differ-
ent sources of malleability. Each of them allows an attacker
to alter a valid transaction t into a semantically-equivalent
valid transaction t ′ such that h(t) 6= h(t ′). One way to exploit
this is to try to fool someone into believing that a transac-
tion they submitted was rejected by the network, although
in reality, it was accepted under a different transaction hash.
The Mt. Gox bitcoin exchange blamed this attack for the
loss of over 850,000 bitcoins (worth $473M at the time of
bankruptcy) and although this claim is heavily disputed, later
forensic examination of the blockchain by Decker et al. [12]
revealed that in total, 300,000 bitcoins were spent over 30,000
transactions confirmed under a different identifier than origi-
nally submitted between Feb 1, 2014 and Feb 28, 2014.

Ambiguous TLS message Sometimes, the message spec-
ifications themselves are ambiguous, and cannot be im-
plemented by a secure parser. This is the case of the
ServerKeyExchange message in TLS:

enum {dh_anon, dhe, ecdhe, rsa,(255)} KeyExchange;
struct {
select (KeyExchange) {
case dh_anon: DHAnonServerKeyExchange;
case dhe: SignedDHKeyExchange;
case ecdhe: SignedECDHKeyExchange;
case rsa: Fail; /* Force error: no SKE in RSA */

} key_exchange;
} ServerKeyExchange;

This message represents an untagged union: the struct is
missing a field of type KeyExchange that clarifies which case
to use in the union. A parser for an untagged union can
only be secure if the format of all cases share no com-
mon prefix. The specification of TLS assumes that the
key exchange algorithm is available from the context (in
this case, it is part of the negotiation process). However,
it turns out that the security of the TLS negotiation de-
pends itself on the ServerKeyExchange message. This leads
to a real practical attack reported by Mavrogiannopoulos et
al. [32], where a SignedDHKeyExchange is interpreted as a
bogus SignedECDHKeyExchange. Worryingly, two other TLS
types use untagged unions: ClientKeyExchange (in TLS 1.2)
and CertificateEntry (in TLS 1.3).

3 Case Study: the TLS Message Format

We choose the TLS message format as our main case study
for several reasons: the message format description of TLS is
reasonably specified; it is designed to be secure and extensi-
ble; it defines hundreds of types that exercise the full range

1https://en.bitcoin.it/wiki/Script

1468 28th USENIX Security Symposium USENIX Association

https://en.bitcoin.it/wiki/Script

uint32 word; /* Type declaration */
word digest[16]; /* Fixed-length array of 4 words */
word phrase<0..2^8-1>; /* List of 0 to 16 words */
struct {
opaque id[32]; /* Array of 32 bytes */
uint16 payload<2..8>; /* List of 1 to 4 uint16 */
digest payload_digest;

} body; /* Struct with 3 fields */
enum {
request (0x2300), /* Constant tag */
response (0x2301),
(65535) /* Indicates 16 bit representation */

} header; /* Enum with 2 defined cases */
struct {
header tag;
select(tag) { /* Tagged union */
case request: body;
case response: phrase;

} x; /* Enum-dependent field type */
} message;
struct {
uint24 len; /* Explicit length */
message data[len]; /* Ensures length(data)=len */

} batch; /* Length encapsulation */

Figure 4: Sample type descriptions in TLS message format.

of available combinators in LowParse; and there exists a ver-
ified F? implementation of TLS that we can use to test the
integration of the generated parsers (including the integration
of parser security lemmas into the protocol security proof).

Language Description IETF’s RFC 2246 [14] specification
of TLS 1.0, published in 1999, includes a section that de-
scribes the presentation language of its message format, in-
spired by C and XDR [46], and illustrated in Figure 4. A
description consists of a sequence of type declarations. The
base types are unsigned fixed-length integers uint8, uint16,
uint24, and uint32, with opaque being used instead of uint8
to indicate raw bytes. The type constructors are fixed-length
arrays, variable-length lists, structs, enums, and tagged unions.
The length boundaries of arrays and lists are all counted in
bytes rather than in elements: for instance, type digest in
Figure 4 is an array of elements of type word whose binary
representation takes 16 bytes in total; since each word takes
4 bytes, this array holds exactly 4 elements. Arrays can be
constructed only from fixed-length types, whereas lists can be
defined for any types: as illustrated by answer and payload,
their format declares the range of their length; and their binary
representation embeds their actual length within that range.

Following the convention of RFCs, we interpret types in
terms of the byte sequences that represent their elements. The
representation of a struct is the concatenation of the represen-
tations of each of its fields in sequence, without any padding.
Arrays are the concatenation of elements whose total length
in bytes is the array’s annotated size. Lists are represented by

a length field encoded in a fixed number of bytes (determined
by the maximum length of the list, encoded in big endian),
followed by a concatenation of the elements. A special case
of structs are length-dependent fields, e.g., the batch type in
Figure 4. In these types the first field describes the length
of a single (variable-length) element of the specified type of
the second field represented adjacently. The interpretation of
enumerations contains the big endian encodings of its ele-
ments in a constant number of bytes determined by the size
descriptor of the enum type. Tagged unions (like message in
the figure) are encoded as the concatenation of the tag’s enum
representation followed by the encoding of the correspond-
ing case’s type. TLS messages are more compact than many
TLV formats: explicit tags only appear for tagged unions, and
lengths only for lists (or when ascribed). All structural infor-
mation is erased, in contrast with BSON [33] (which encodes
field names) or Protocol Buffers [20] (which encodes field
numbers).

We automatically extracted the data format descriptions
from the RFCs for TLS 1.2 [15] (including descriptions also
for TLS 1.0 and TLS 1.1), for TLS 1.3 [40], for TLS ex-
tensions (RFC 6066), and from the TLS IANA parameter
assignments, which defines additional constants for enumer-
ations. We then merged them together by hand, and edited
some of them to fix minor mistakes, avoid name clashes in
the original descriptions, and gain precision (e.g. by adding
length dependencies documented in the RFC text).

Extensibility A difficult issue for any format description lan-
guages is extensibility: as new versions of the protocol are
defined, it is often necessary to extend messages with new
fields and cases while maintaining compatibility with older
implementations. To address this problem, TLS was designed
with extensibility through open enumerations. As a simple
example, TLS has an enum type that defines the possible ci-
pher suites to negotiate. Receiving a value that doesn’t match
any of the defined cases of the enum is not a parsing error—
instead, the value should be treated as unknown but valid, and
the receiver should ignore it in the rest of the negotiation. This
also applies to enums that act as a tag for unions. For instance,
the hello messages contain a list of extensions tagged with
an extension type. Although this is implicit in the standard,
it is possible to define a default type for unknown values in
a select. The protocol is extended by defining new values
for enums (such as new cipher suites or new group names),
and new defined cases for tagged unions (for instance, new
extensions). Interestingly, many TLS implementations fail
to understand this concept, and incorrectly reject unknown
values. To fight this problem, Google recently introduced
GREASE [4], which causes Chrome to randomly include un-
defined values in all extensible fields of the protocol, thereby
enforcing that implementations that interoperate with Chrome
be extensible.

Unfortunately, the TLS standard does not clearly say which

USENIX Association 28th USENIX Security Symposium 1469

/* All TLS versions*/
struct {
ExtensionType extension_type;
opaque extension_data<0..2^16-1>;
} Extension;

/* From RFC 5246, section 7.4.2 */
opaque ASN.1Cert<1..2^24-1>;
struct {
ASN.1Cert certificate_list<0..2^24-1>;

} Certificate;

/* From RFC 8446, section 4.4.2 */
enum { X509(0), RawPublicKey(2), (255)} CertType;
opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
struct {
select (certificate_type) {
case RawPublicKey: ASN1_subjectPublicKeyInfo;
case X509: ASN.1Cert; } cert;

Extension extensions<0..2^16-1>;
} CertificateEntry;
struct {
opaque certificate_request_context<0..2^8-1>;
CertificateEntry certificate_list<0..2^24-1>;

} Certificate;

Figure 5: The Certificate type for TLS 1.2 vs TLS 1.3.

enums and which tagged unions are extensible in the message
format, and instead explain their intended semantics in text. In
QuackyDucky, we add an explicit annotation to mark which
enums are extensible, and we extend the syntax of select

to support default cases. For instance, we mark the tag of
extensions ExtensionType with the /*@open*/ attribute, but
not the tag of messages HandshakeType, as the RFC states that
receiving any unknown message is an error.

Protocol versions Another complication stems from ver-
sion differences not captured by extensibility. Consider the
Certificate message in TLS 1.2 [15] and TLS 1.3 [40].
Its format, listed in Figure 5, illustrates several problems
with the TLS specification. First, the two definitions of the
Certificate type are mutually incompatible, even though the
Certificate message is defined in both versions using the
same handshakeType tag. Second, the CertificateEntry type
of TLS 1.3 uses an untagged union, where the value of the tag
depends on the context rather than on a value sent over the
network (as in ServerKeyExchange and ClientKeyExchange

where the key exchange algorithm is omitted). Third, the
Extension type is under-specified: there are complex rules
and tables about which extension may appear in which mes-
sage (see [40, §4.2]), and the type of each extension contents
depends on which message it appears in. None of these con-
straints are currently captured in type definitions.

To address the issue of conflicting definitions across ver-
sions, we split the definitions of incompatible types such as

TLS 1.2 TLS 1.3
struct {
HandshakeType type;
uint24 length;
select (type) {
case hello_request:
Empty;

case certificate:
Certificate12;

/* ... */
case finished:
Finished;

} m[length];
} Handshake12;

struct {
HandshakeType type;
uint24 length;
select (msg_type) {
case eoed:
Empty;

case certificate:
Certificate13;

/* ... */
case key_update:
KeyUpdate;

} m[length];
} Handshake13;

Figure 6: Specialized Handshake types for TLS 1.2 and 1.3

Certificate and we define version-specific variants of the
handshake message type, shown in Figure 6. Before version
negotiation, hello messages are parsed using a third, version-
agnostic Handshake type. We then switch to parsers for the
negotiated version, thus ensuring that the following messages
are parsed using precise, version-specific types.

To address the problem of untagged unions, we introduce
an /*@implicit*/ attribute for tags, which instructs Quacky-
Ducky to generate an interface where the value of the tag is
passed as an additional argument to the parser and formatter.
This approach is not compositional, and comes with a restric-
tion: if a type that contains an implicit tag appears in another
type, it must appear at a location that includes an explicit
length. The parsing will be staged: when it reaches the sur-
rounding length, it skips its contents, leaving it uninterpreted.
The application needs to manually call the parser for the un-
tagged union by providing the tag value. The presence of
untagged unions is a clear mistake in message formats, as the
application is responsible for providing the correct tag when
it calls the parser, and thus, we only provide a conditional
security guarantee in this case.

Similarly to what we did with message types, we split and
specialize the definition of extension types for each message
that may include them (hellos, hello retry, encrypted exten-
sions, certificate, certificate request, new session ticket). This
also reveals some interesting mistakes in RFCs. For instance,
in [41, Appendix A], the authors fail to understand the pur-
pose of the explicit length around extensions, and incorrectly
believe it is redundant with the length of the list in the exten-
sion contents. They claim merging the two lengths makes the
extension less ambiguous; in reality, their change makes the
format more ambiguous: it is no longer possible to distinguish
between receiving no ticket and receiving an empty ticket. To
handle such corner cases, we add support in QuackyDucky
to coerce opaque arrays with explicit lengths to opaque lists
after parsing.

1470 28th USENIX Security Symposium USENIX Association

4 Compiling Message Format Descriptions

We now present our compiler from the message formats of §3
to parsers and serializers for processing these messages in
Low? [38]. We briefly review F? and Low? (§4.1), then ex-
plain the code generated by QuackyDucky in three parts:
datatypes and parser specifications for verification purposes
(§4.2); high-level functional parsers and serializers (§4.3);
and lower-lever code for reading (§4.4) and writing (§4.5)
messages.

QuackyDucky recursively descends through the structure of
the format description, generating parsers and serializers for
compound types from those previously generated, while keep-
ing track of their properties (notably their length boundaries).
QuackyDucky mostly composes the combinators provided by
LowParse, described in §5. In contrast with this library, which
involves complex proofs for a few generic combinators, the
generated code is verbose but shallow, enabling us to auto-
matically verify its safety, correctness, and non-malleability
using the properties verified in LowParse.

4.1 Verified Programming in Low? (Review)

The F? language and proof assistant We carry out our
specification, implementation and proofs using F? [48], a
functional language and proof assistant based on dependent
types. A simple form of dependent types supported in F?

is refinement types, to represent types of values satisfying
additional properties: whereas int is the F? type of mathe-
matical integers, the type nat of non-negative mathematical
integers is defined as the refinement type (x: int { x ≥ 0 }). F?

supports types that depend on other types and values. It
also supports functions where argument types can depend
on the values of the previous arguments and the type of the
return value of a function can depend on the values of its
arguments. For instance, the integer division function, which
would have a simple type int→ int→ int in a functional lan-
guage such as OCaml, can be given a more precise type,
such as (a: int)→ (b: int {b > 0})→ (q: int { 0 ≤ a − b ∗ q < b }) mean-
ing that F? will reject, at typechecking time, any call to such a
function if it cannot prove the second argument is strictly pos-
itive (b > 0). Conversely, the caller can use the postcondition
on its return value 0 ≤ a − b ∗ q < b to prove further goals.

F? is not just a proof assistant: it is also a programming
language enjoying automatic translation (extraction) into ex-
ecutable languages such as OCaml or C; in this extraction
process, the user can mark some of their F? functions as ghost,
to have them erased at extraction time, such as lemmas and
proofs, but also auxiliary functions that need not, or cannot, be
executed at run time. To this end, F? equips its function types
with an effect system. By default, given two types t and u, all
functions from type t to u, in the type t→ u, will be extracted,
one says that they are in the Tot effect, so their type can be
written as t→ Tot u; to mark a function ghost, the user needs

to use the GTot effect, hence using the function type t→ GTot u

instead. Stateful functions that operate on mutable objects
(such as a mutable array of bytes, i.e. uint8_t* in C) live in
the ST effect and are extracted to stateful OCaml or C code.

All F? proofs rely on automatic encoding of proof obliga-
tions to first-order logic, which are then solved by automatic
theorem provers such as Z3, leading to reduced overall proof
effort. F? also has a tactic system [31] that can be used in
cooperation with, or in replacement of, Z3-based proofs.

The Low? subset of F? and its extraction to C code Users
who wish to use our parsers and serializers not only demand
performance, but also the ability to integrate our code into
their codebases. Therefore, OCaml is oftentimes not a viable
option; instead, we compile our F? code to C.

As shown in Figure 1, specifications are first implemented
in F?. This implementation can already be compiled to C
using a dedicated compiler, KReMLin. However, lacking fur-
ther restrictions, this F? implementation relies on lists and
bytes as values, meaning that compiling the F? implementa-
tion through KReMLin generates code that (i) is inefficient,
because it uses functional byte copies and linked lists; (ii) is
not idiomatic: no C programmer would write such code; and
(iii) requires a garbage collector, since lists and bytes are
persistent values with no lifetime (as in, say, OCaml).

To avoid these shortcomings, the Low? [38] subset of F?

defines a C-like memory model that talks about the stack and
the heap, along with corresponding abstractions and libraries,
e.g. for mutable arrays, machine integers and in-place loops.
Using Low? requires the programmer to rewrite their code
and reason about spatial and temporal safety; in exchange for
these added constraints, the F? code is compiled by KReM-
Lin to idiomatic, readable, efficient C code that does not re-
quire a garbage collector. The Low? restrictions only apply to
executable code; computationally-irrelevant portions of the
program, such as proofs and ghost code, retain the full power
of F?, since they are eliminated when compiled to C.

4.2 Datatypes and Parser Specifications
Continuing from §2.1, we use F? types to represent sets of
parsed values. Hence, QuackyDucky generates a parsed type t
for each named format description in its input.

Our F? types for parser and serializer specifications are
listed below.

type parser (t:Type) (k:meta) =
p: (input: seq uint8→ GTot (option (t ∗ l: nat{l ≤ length input})))
{ parser_prop k p }

type serializer (#t:Type) (#k:meta) (p: parser t k) =
s: (t → GTot (seq uint8))
{ ∀ (x:t) . p (s v) == Some (v, length (s v)) }

The parser type definition is parameterized by a parsed type t
and some metadata k (explained below) that records verified
properties of the parser. It states that a parser is a pure function

USENIX Association 28th USENIX Security Symposium 1471

that takes as input a sequence of bytes (of arbitrary length) and
returns an optional result that consists of some parsed value
of type t and the number of input bytes consumed. GTot states
that this parser is ghost, that is, used only for verification;
option indicates that it may return nothing in case parsing fails;
the refinement l ≤ length input ensures that it consumes at most
a prefix of its input; the refinement parser_prop k p states that
p is non-malleable (see formal definition in §5) and that it
satisfies the properties recorded in k.

The metadata k includes a verified range of lengths of input
that the parser may consume. This range provides useful
bounds for programming with this parser, for instance to wait
for a minimal number of input bytes before parsing, or to
allocate I/O buffers of adequate sizes. Internally, Quacky-
Ducky also relies on this information to select more efficient
implementations (for example when the input length is fixed)
and to require that some parsers consume at least one byte (for
example to compute the length of a list from its binary format).
The metadata may include additional properties, indicating for
instance that the parser always fails; or that it always succeeds
given enough input bytes; or that it is no-lookahead (see §5).

The serializer type definition is indexed by a parser for t,
not just by t (the # makes this parameter an implicit argument,
as it can be inferred from p). It states that a serializer specifi-
cation is a pure, total, ghost function from values of type t to
sequences of bytes, such that parsing its output for any value
v of type t succeeds and yields back v and its binary length.

Running Example Consider the following excerpt of the
TLS 1.3 wire format description [40] for the body of its first
ClientHello message.

struct {
ProtocolVersion version;
opaque random[32];
opaque session_id<0..32>;
CipherSuite cipher_suites<2..2^16-2>;
Compression compressions<1..2^8-1>;
ClientHelloExtension extensions<0..2^16-1>;

} ClientHello;

This message includes a 2-byte protocol version, a 32-byte
random nonce, a variable-length session identifier for resump-
tion, and variable-length list of proposed cipher suites, com-
pression methods, and extensions. QuackyDucky translates it
to a corresponding F? record type:

let in_range x min max = min ≤ x ∧ x ≤ max
type clientHello = {
version : protocolVersion;
random : (b:bytes {Bytes.length b == 32});
session_id : (b:bytes{in_range (Bytes.length b) 0 32});
cipher_suites : (l:list cipherSuite{in_range (List.length x) 1 32767});
compressions : (l: list compression{in_range (List.length l) 1 255});
extensions : (l: list extension{in_range (extensions_bytesize l) 0 65535});}

This high-level type includes precise length information,
coded as refinements. Since the elements of the first three

lists have constant binary lengths, QuackyDucky computes
precise bounds on their numbers of elements. Conversely, the
extensions in the last list are themselves of variable lengths,
hence QuackyDucky captures the bounds on its total binary
size using an auxiliary function extension_list_bytesize previously
defined from the extension serializer. The main benefit of cap-
turing these constraints is to ensure that all messages of type
clientHello can be serialized to a standard-compliant bytestring.

QuackyDucky also generates the corresponding metadata,
parser and serializer specifications.

let clientHello_meta = {low=43;high=131396; ...}
val clientHello_parser: parser clientHello_meta clientHello
val clientHello_serializer: serializer clientHello_parser

The parser metadata is exposed in the generated interface
(indicating, e.g., that the shortest TLS clientHello body message
takes 43 bytes) whereas the parser and serializer specs are kept
abstract—the interface gives their types, but hides the details
of their wire format. Thus, the three lines above state the
abstract, joint properties of our generated parser and serializer
specs (including non-malleability and round-trip properties)
and typechecking these specs ensures these properties hold.

Anticipating on the combinators defined in §5, we give
below an outline of the generated definition of clientHello_parser,
which parses our sample message by successively calling the
parsers corresponding to each of its fields:

let clientHello_parser =
((protocolVersion_parser × clientHello_random_parser) × ...)
synth (fun ((pv, r), ...)→ { protocolVersion = pv; random = r; ... })

These definitions are used only as reference implementa-
tions and are not extracted to C. In a second stage, Quacky-
Ducky generates actual parsers and serializers, and typecheck-
ing their code ensures they safely implement these specs.

4.3 Functional Parsers and Serializers
QuackyDucky generates high-level functional parsers and
serializers, with the following interface. (The “32” suffix in-
dicates that their code uses 32-bit machine integers instead of
the unbounded integers in their specs.)

val clientHello_parser32: parser32 clientHello_parser
val clientHello_serializer32: serializer32 clientHello_serializer

We systematically index our implementations by their specifi-
cations. Here, for instance, the type definition parser32 p used
above simply states that a high-level parser for the parser-
specification p is a pure function that takes a (bounded, im-
mutable) F? bytestring and returns the same result as p on the
corresponding sequence of bytes except that the consumed
length is an unsigned 32-bit integer.

We give below an F? code sample illustrating their use: a
‘reader’ function that counts the number of cipher suites in
a given ClientHello message in wire format, and a ‘writer’
function that builds a message given a configuration.

1472 28th USENIX Security Symposium USENIX Association

let count_ciphersuites (input: bytes): UInt32.t =
match clientHello_parser32 input with
| None→ 0ul
| Some ch→ List.length ch.ciphersuites

let compute_extensions config: (l: list extension {...}) = ...

let hello (cfg: config) : bytes =
clientHello_serializer32 {

version = TLS_1p3;
random = config.random;
...;
extensions = compute_extensions config; }

This code and its supporting parsers and formatters op-
erate on immutable bytestrings. Although it can be safely
extracted to C, it is inefficient, and the implicit allocations and
copies mandate the use of a garbage-collector. For example,
clientHello_parser32 allocates 4 lists and briefly uses only one.

4.4 Low-Level Accessors and Readers
To provide more efficient implementations, QuackyDucky
also generates code for a lower-level API that enables in-place
processing of messages in their binary formats.

We begin with a low-level alternative to parsing. For each
parser specification p, QuackyDucky provides functions that
operate on an input buffer. A validator reads the input buffer
and returns either the number of bytes that p would consume
by successfully parsing its contents, or an error code. Thus,
successful validation ensures the existence of a high-level
message in binary format, but does not construct it. Assuming
the input buffer is valid, then, for each field of the message,
an accessor computes the position of the first byte in its
binary representation. This guarantees in particular that this
representation of this element of the message is also valid.
Accessor computations are similar to pointer arithmetic in
C, or “get element pointer” computations in LLVM, but they
sometimes require reading the lengths of intermediate parts in
order to skip them. For each base type (e.g. 16-byte unsigned
integers), a reader takes an input buffer and position and
actually parses and returns a value of that type.

Continuing with our example, QuackyDucky produces a
validator for clientHello and an accessor for every field (shown
below only for its cipherSuites).

val clientHello_validator : validator clientHello_parser
val accessor_clientHello_cipherSuites :
accessor

clientHello_parser
clientHello_cipherSuites
clientHello_cipherSuites_parser

The type definitions validator and accessor are still parameter-
ized by parser specifications, but they are more complex, since
they describe functions that operate on pointers to mutable
buffers. We represent their input as a slice, that is, a Low?

buffer (§4.1) and its length, and a position within this slice.

(Experimentally, computations on integer positions based on
a single pointer are simpler to verify, and better optimized
by C compilers.) Accordingly, our validators return either the
final position in the slice after successful validation, or an
error coded as a large integer. We illustrate their use by re-
implementing the count_cipherSuites example of §4.3 in Low?.

let count_ciphersuites_inplace (input:slice) (pos:UInt32.t) =
let pos_final = clientHello_validator input pos in
if max_length < pos_final then 0ul (∗ invalid input ∗)
else
let pos_ciphersuites = accessor_clientHello_ciphersuites input pos in
clientHello_cipherSuites_count input pos_ciphersuites

The last line calls another QuackyDucky-generated function
that returns the length of a list of cipher suites in wire for-
mat. In this case, since each cipher suite takes exactly two
bytes, this length is computed without actually reading the
list content, by dividing its binary length by two.

Unsurprisingly, this function yields C code of the form:

// A slice is the pair of a byte array and its size
typedef struct {uint8_t ∗ base; uint32_t len; } slice;
uint32 count_ciphersuites_inplace(slice input, uint32 pos) {

uint32 pos_final = clientHello_validator(input,pos);
if (max_length < pos_final) return 0;
else {
uint32 pos_ciphersuites = accessor_clientHello_ciphersuites(input,pos);
return clientHello_cipherSuites_count(input,pos_ciphersuites);

}

Once compiled by Clang, we can check on the resulting ma-
chine code that the ‘else’ branch eventually boils down to (1)
adding 34 to pos to skip the first two fields; (2) reading and
adding the one-byte length of the third field; (3) reading the
two-byte length of the fourth field and shifting it by one.

Validators, accessors, jumpers and readers are specified
using a validity predicate, valid(p,m,b, i) stating that the
parser p succeeds when provided the bytes in buffer b start-
ing from offset i in memory state m. If this predicate holds,
then, thanks to the injectivity property of p, there is a unique
value contents(p,m,b, i) returned by the parser, and an offset
getpos(p,m,b, i) within b one past the end of the representa-
tion of that value. This validity predicate is the post-condition
of validators when they succeed, and is the precondition of
jumpers and readers; accessors for struct fields have the valid-
ity predicate for the struct (resp. field) parser as a precondition
(resp. postcondition). We give below the type definitions for
validators and readers:

type validator (#k: meta) (#t: Type) (p: parser k t) =
(input: slice)→ (pos: U32.t)→ ST U32.t
(requires (fun m→ live_slice input pos ∧ input.len ≤ max_length))
(ensures (fun m pos’ m’→ m ≡ m’ ∧
(valid(p, m, input, pos)⇔ pos’ ≤ max_length) ∧
(pos’ ≤ max_length⇒ pos’ == getpos(p, m, input, pos))))

type reader (#k: meta) (#t: Type) (p: parser k t) =
(input: slice)→ (pos: U32.t)→ ST t
(requires (fun m→ valid(p, m, input, pos)))
(ensures (fun m res m’→ m ≡ m’ ∧ res == contents(p, m, input, pos)))

USENIX Association 28th USENIX Security Symposium 1473

4.5 Low-Level Writers

We finally describe our low-level API for serializing a mes-
sage in an output buffer. Our goal is to avoid intermediate
allocations and copies; for example, our high-level hello func-
tion constructs the whole message before serializing. To this
end, QuackyDucky generates families of low-level writers
and auxiliary functions that take as parameter an output slice
(that is, a buffer and a length) and a write position, modify the
buffer between this position and the end of the buffer, and re-
turn a new write position. These functions either require that
the output buffer is large enough (based on parser metadata)
or may also return an error in case the buffer is too small.

In contrast to accessors, which enable random access to
validated input in binary format, it is not generally possible to
know in advance where to write data before writing any pre-
ceding variable-length data. Thus, our API assumes that data
will be written sequentially, with the flexibility for the pro-
grammer to use an intermediate buffer whenever they choose
to write data out of order. A notable exception is for encoding
the lengths of variable-length data, which is usually known
only after writing the raw data itself. To this end, Quacky-
Ducky provides a finalizer that takes two positions in the
output buffer, requires as a precondition that the buffer con-
tain a placeholder for the length followed by a valid binary
representation of the raw data, computes and writes its length,
and ensures as a post-condition that the buffer now contains a
valid variable-length representation of this data.

We illustrate these different cases on a low-level variant
of the hello function, whose Low? and extracted C code are
shown in Figure 7. The first field, version, is an enumeration
formatted in a fixed two-byte format: it is directly written
using the QuackyDucky writer for protocolVersions. The second
field, random, is a fixed-length, previously-allocated bytestring
that can be copied from the configuration. Omitting interme-
diate fields, which may be handled similarly, the last field
is a complex list of extensions. The list itself is written by
repeatedly calling the extension writer on each element, af-
ter skipping the 2 bytes required for their total length. The
computed length of the list is finally written by calling a
QuackyDucky finalizer.

As a cumulative post-condition of all these steps, we know
that the output buffer now contains the concatenation of a
valid binary format for each of its fields, and we can conclude
that it thus also contains a valid representation of a clientHello

message by calling the validity lemma clientHello_valid also gen-
erated by QuackyDucky and verified by F?. The call to this
lemma is erased before extraction to C code.

As an important simplification, our sample code requires
as static precondition that the output buffer be large enough
to hold any valid clientHello message. In more realistic code,
one would need to dynamically check this length. (Each of
these writer functions are fail-safe, but their errors still need
to be propagated.)

let write_extension_list cfg output pos = ...
(∗ write a list of extensions computed from the configuration ∗)

let write_hello cfg output pos =
(∗ write 2 bytes of protocol version ∗)
let pos_after_protocol_version =
write_protocolVersion output pos TLS_1p3 in

(∗ copy 32 bytes from the configuration ∗)
memcpy cfg.random 0ul out.base pos_after_protocol_version 32ul;
let pos_after_random = pos_after_protocol_version + 32ul in
(∗ similarly write or copy the other fields ∗)
let pos_after_session_id = ... in
let pos_after_ciphersuites = ... in
let pos_after_compressions = ... in
(∗ leave two bytes for the total length of the extension list ∗)
let pos_list = pos_after_compressions in
(∗ calls an auxiliary function to write the extension list in−place ∗)
let pos_after_extensions =
write_extension_list cfg output pos_list in

(∗ computes and writes the extensions length at pos_after_compressions ∗)
finalize_clientHelloExtensions
output pos_after_compressions pos_after_extensions;

(∗ call the validity lemma for the clientHello message ∗)
let m = get () in clientHello_valid m output pos;
(∗ return the final position ∗)
pos_after_extensions

uint32_t write_extension_list(config cfg, slice output, uint32_t pos);
uint32_t write_hello(config cfg, slice output, uint32_t pos)
{

uint32_t pos_after_protocol_version =
write_protocolVersion(output, pos0, TLS_1p3);

memcpy(cfg.random + 0, output.base + pos_after_protocol_version, 32);
uint32_t pos_after_random = pos_after_protocol_version + 32;
...
uint32_t pos_list = pos_after_compressions + 2;
uint32_t pos_after_extensions =
write_extension_list(cfg, output, pos_after_compressions);

finalize_clientHelloExtensions
(output, pos_after_compressions, pos_after_extensions);

return(pos_after_extensions);
}

Figure 7: Sample Low? code for writing a TLS client hello
(above) and its translation to C (below).

5 LowParse: Secure Parser Combinators

As we have seen in §4.2, QuackyDucky produces parser im-
plementations by composing basic parsers using combinators,
which are higher-order functions on parsers. For example, a
combinator for pairs may take parsers for types t and u and
yield a parser for type t×u. Its implementation may first parse
a message of type t, then parse a message of type u.

LowParse is our library of parser combinators, based on
the long tradition of monadic parser combinators [22] in the
functional programming community. However, LowParse is
unique in that it is tailored to support the verification of non-
malleable, correct parsers. We focus on combinators at the

1474 28th USENIX Security Symposium USENIX Association

QuackyDucky Syntax Data Type Parser Combinator
uintN, N ∈ {8,16,32,64} Unsigned integer within 0..2N −1 parse_uN
t[N], N ∈ N Fixed-size array of ts of length N plist[p] truncN
t<M..N> List of ts, of variable length M..N vldata(plist[p], M, N)
t{M..N} List of ts of variable element count M..N (parse_uk filter (n 7→M ≤ n≤ N)). (n 7→ pn)

where k = 8× log256 N
struct{t1 x1; . . .; tn xn;} Record with n fields named (xi) of type (ti) (p1×·· ·× pn) synth

((v1, . . . ,vn) 7→ {x1 = v1; . . . ;xn = vn})
struct {. . .; uintN x; t y[x]; . . .} Variable-length field y prefixed by its length x vldata(p,0,256N/8−1)
enum {E1(N1), . . ., En(Nn), (M)} Constant integer enumeration

(with maximal value M = 2N −1)
penum(parse_uN, [(E1,N1); . . . ;(En,Nn)])

struct {t x; select(x) {
case E1: t1; . . .; case En: tn } y}

Tagged union (t must be an enum type) p. f q where f (Ei,x) = Ei
and q(Ei) = pi synth (y 7→ (Ei,y))

Figure 8: The QuackyDucky input language and the corresponding LowParse combinators: everywhere in this table, pi is the
parser for type ti. All lengths are counted in bytes except otherwise mentioned.

specification level and their security properties, then discuss
more briefly their implementations. For each specification
combinator, we prove non-malleability and inverse properties;
for each implementation combinator, we prove both safety and
correctness. All properties are verified by typing the library.

Figure 8 summarizes the QuackyDucky input language
and the corresponding LowParse combinators. We designed
QuackyDucky and LowParse in a modular way, making it easy
to extend the surface syntax of QuackyDucky by providing
additional combinators. For instance, the t x{M..N} syntax for
variable-size lists prefixed with their number of elements is a
late addition to support the Bitcoin application in §6.2 but is
not required for TLS.

We first define the properties attached to the specifications
of §4.2. We prove a stronger version of non-malleability than
the one given in §2.1, extending the definition there to handle
parsers that may not consume all their input.

Definition 1 A parser p for type t is non-malleable if, when-
ever it succeeds and returns the same parsed value on two
inputs, it also returns the same number of consumed bytes,
and the two inputs coincide of these bytes.

We also rely on the following no-lookahead property:

Definition 2 A parser p has the strong prefix property when,
if it succeeds on an input and consumes ` bytes, then it returns
the same result on any inputs with the same first ` bytes.

For a serializer to exist for a format that requires concate-
nating two value representations valid with respect to two
parsers p1, p2 (such as pairs, lists, tagged unions, or variable-
length data), p1 is required to have the strong prefix prop-
erty. Consider for instance serializing a pair of two pieces
of data x1,x2 using serializers s1,s2 correct with respect
to parsers p1, p2. We would like to prove that the serial-
ization s(x1,x2) = s1(x1) · s2(x2) obtained by concatenating
the two serializations, is correct with respect to the parser
for pairs. By correctness of s1, p1(s1(x1)) succeeds and

returns (x1, |s1(x1)|), but this is not enough to know that
p1(s1(x1) · s2(x2)) succeeds and also returns (x1, |s1(x1)|) (so
that we can cut the input after |s1(x1)| and apply p2 on the
remainder, s2(x2)), unless p1 has the strong prefix property.

These properties are included in the definition of parser_prop

on the metadata generated by QuackyDucky, hence enforced
by typing for all its parser specifications.

5.1 Specification Combinators
LowParse is an extensible library of combinators. For each
parser specification combinator, we attach a corresponding
metadata combinator; then, we define, when possible, a seri-
alizer combinator.

Parser combinators We define primitive parser combina-
tors below. For each of them, we prove injectivity and any
relevant additional properties indicated in their metadata, such
as the strong prefix property. We also define derived combina-
tors; in contrast, all their properties are established automati-
cally as the result of their definitions (by type unification and
matching on their metadata). The code produced by Quacky-
Ducky only inserts annotations to prove their composability
conditions, for instance, by computing the length boundaries
of the derived metadata, which are then verified by F?.

We start by defining primitive parser combinators: fail,
which consumes no input and fails; ret[x], which consumes no
input and succeeds returning x; read_byte, which consumes
and returns a single byte of input; and and_then, which se-
quentially composes two parsers where the second parser
depends on the value parsed by the first parser (i.e., monadic
composition). For each of these basic combinators, we prove
non-malleability and/or the strong prefix property under suit-
able conditions. For instance, p and_then q has the strong
prefix property provided that p has it, q[x] has it for all x,
and, moreover, if q[x1] and q[x2] succeed on inputs b1 and b2,
respectively, and return the same value, then x1 = x2. (Other-
wise, consider for example p = read_byte and q = ret[0].)

USENIX Association 28th USENIX Security Symposium 1475

Using those primitive combinators, we define derived com-
binators, for which verification of non-malleability and meta-
data correctness automatically follows by typing. Given
parsers p0 and p1 for t0 and t1, respectively, we can derive a
parser for pairs of type t0× t1 using p×q; mapping functions
over parsed results using p synth f ; filtering parsed results by
some predicate using p filter f ; etc. proving non-malleability
and the strong prefix property for them under suitable condi-
tions.

More specifically, we derive parsers for fixed-length ma-
chine integers, and we prove their non-malleability for both
endiannesses. For instance, we define little-endian 16-bit pars-
ing as (read_byte× read_byte) synth ((x,y) 7→ x+256× y).

Our next combinators support variable-length data and lists:
• Given a parser p for type t, the parser plist[p] is defined

by repeatedly applying p to its input. It fails as soon
as p fails or consumes zero bytes. If succeeds when p
eventually consumes its whole input and then returns the
resulting list of values.
• Given a parser p for type t and n > 0, the parser ptruncn

succeeds when p succeeds on its input truncated to its
first n bytes and consumes exactly n bytes.

The parser plist[p] does not have the strong prefix property,
but it consumes all its input. The parser p trunc n always has
the strong prefix property, even if p does not. If s is a correct
serializer for p at type t, then p trunc n is a parser for type
x : t{|s(x)|= n} and s is its correct serializer at that type.

We finally present further derived combinators, whose prop-
erties are automatically verified by construction:

Tagged unions: if p is a parser for type t and f : u→ t and
q[x] is a parser for type (y : u{ f (y) = x}) for every x : t, then:

p. f q = p and_then (x 7→ q[x] synth (y 7→ y))

is a parser for type u. This combinator is a strengthening of
and_then that enforces non-malleability of q by making its
codomain dependent: u is the union type, and t is the tag type,
and f gives the tag of an element of the union type. From
there, we define a combinator for sum types, which can be
used for tagged unions.

Enum types: if l is a list of key-value pairs where each key
and each value only appear once, then it defines both a closed
enum type (whose elements are the keys that appear in l)
and an open enum type (whose elements are the known keys
that appear in l and the unknown values that do not appear
in l). We define parsers for both variants penum(p, l) (where
p is the value parser), using filter, synth and the dictionary
function on key-value pair lists.

Variable-sized data: formats such as TLS often specify
variable-length data as a payload prefixed by its size in bytes.
If p is a parser for the payload, and if s is a serializer correct
with respect to p, then we define

vldata(p, l,h) = parse_u` ◦filter(n 7→ l ≤ n≤ h)

. f (n 7→ p trunc n)

as a parser for the refined type (x : t{l ≤ |s(x)| ≤ h}), where
`= 8×| log256(h)|, is the bit size of the size integer prefix, and
f (x) = |s(x)|. Such parsers inherit the strong prefix property
from the parser for the prefix size, regardless of whether it
holds for p.

Correct Serializers Not all parser specifications have cor-
rect serializers. For instance, ret[x] and and_then do not have
a generic serializer. So, in LowParse, we provide serializer
combinators for read_byte, fail, plist, synth, and ., for each of
which we prove correctness with respect to its corresponding
parser combinator (i.e., that they are inverse of one another).
We also easily prove that a correct serializer for p is also cor-
rect for p trunc n and p filter f (once its domain is restricted
accordingly). From there, we derive correct serializers for
×,nlist, vldata, etc. for which the correctness proof automati-
cally follows by typing.

5.2 Implementation Combinators
For each parser-specification combinator, LowParse provides
combinators for its high-level parser and for its low-level
validators and jumpers (and similarly for serializers). For
primitive combinators, we implement their corresponding val-
idators jumpers and serializers; for each of them we prove
memory safety and functional correctness with respect to their
specification. We implement most derived combinators by
following the same construction as for their specs, by assem-
bling the corresponding implementation combinators. Thus,
their memory safety and functional correctness automatically
follow by typing. We also define accessor combinators for
synth and tagged unions, and accessors for pair elements,
from which QuackyDucky derives accessors for struct fields
and sum types.

By design, our combinators are inherently higher-order and
so they cannot directly be extracted to C. Instead, we rely
on meta-programming features of F? and KReMLin, based
on source code annotations, to ensure that all combinator
code is inlined and specialized before extraction. In most
cases, this is achieved by annotating our source code. In other
cases, we extend LowParse with F? tactics [31], pieces of
F? metaprograms written once and for all and evaluated at
typechecking time to automatically generate Low? valida-
tors from some type definitions. For example, our validators
for enum values and tagged unions are specified using con-
stant key-value lists. Instead of programming a loop on these
lists, we meta-program their unrolling at compile-time, which
yields a cascade of ifs automatically turned into a switch by
many C compilers. In rare cases, such as unions tagged with
an enum value, we write additional validator combinators to
more precisely control their inlining by F? and KReMLin.

In addition, metadata allow us to provide some generic
validator combinators that apply regardless of the actual parser
combinator. For example, if we know that a parser consumes
a constant n bytes and always succeeds, then we can use a

1476 28th USENIX Security Symposium USENIX Association

QD F? LoC Verify Extract C LoC Obj.
TLS 1601 69,534 46m 25m 192,229 717KB
Bitcoin 31 1,925 1m56s 1m14s 1,344 8KB
PKCS #1 117 4,452 2m14s 2m39s 3,368 26KB
LowParse N/A 32,210 3m5s 1m5s 185 739 B

Table 1: Overview of EverParse Applications

validator that just jumps n bytes. QuackyDucky selects these
combinators based on the metadata it computes.

6 Integration and Evaluation

We evaluate the integration of EverParse-generated parsers for
three applications: the TLS message format, integrated into
MITLS; the Bitcoin block and transaction format, integrated
into the Bitcoin Core benchmark; and the ASN.1 payload of
PKCS #1 signatures, integrated into mbedTLS.

Table 1 shows for each application the lines of Quacky-
Ducky input specification, the amount of F? code generated,
the time required for verification and KReMLin extraction,
and the size of the C code and compiled objects. The Bitcoin
evaluation was performed on a 28-core Xeon E5-2680 v4
CPU with 128GB of RAM, running with turbo boost and all
but one core disabled. The rest of the figures were collected on
a 10-core Xeon W-2155 CPU with 128GB of RAM, running
F? commit 7b6d77 with Z3 4.5.1 and GCC 7.4.

6.1 TLS Message Format
As described in §3, we have specified the TLS message format
for all versions of TLS from 1.0 to 1.3. However, integrat-
ing the generated parsers presents some major challenges:
implementations tend to define their own representations
of messages, with field and tag names that differ from the
RFC, and some of them like mbedTLS interleave the pars-
ing and processing of messages. MITLS [7] uses functional,
high-level parser implementations and types, operating on
values. Most of the basic data types (such as cipher suite
names) are defined in a module called TLSConstants, while
some specialized ones scattered in other modules (e.g. group
names in CommonDH). Extension types and parsers are in the
Extensions module, while message types and parsers are
in HandshakeMessage. We noticed that these files contain
many assumptions and incomplete proofs, many of which
have been completed for earlier drafts of TLS 1.3, but not
updated as the formats changed (with EverParse, such up-
dates and extensions only require a few changes to the format
description).

In total, in order to switch to the high-level implementation
produced by QuackyDucky, we update or rename over 200
types (and propagate these changes), which requires 2,865
additions and 3,266 deletions over 38 files (according to our
Github pull request). Unlike LowParse, MITLS individually
proves the non-malleability of each parser as a lemma separate
from parser definitions instead of a refinement; the MITLS

proofs for such lemmas are lengthy and intricate. So, we
define a LowParseWrappers module to replace such proofs
with a uniform call to LowParse parser property lemmas. Our
changes do not break other existing proofs, but several gener-
ated types are more precise than the handwritten ones (notably,
all lists are refined to ensure they can be serialized), which
leads to additional conditions to prove in many functions. The
generated parsers are also a lot stricter: for instance, we now
check at parsing which extensions can appear in a message,
and which messages can appear for the negotiated version.

To test the impact of EverParse parsers, we run the sim-
ple HTTP client and server tool distributed with MITLS to
compare how many requests can be served, using the default
algorithm choices. This tool is not optimized for production
and processes requests sequentially. We compare the time to
process 500 requests between the original MITLS parsers and
EverParse high-level parser implementations.

MITLS MITLS-EverParse
HTTP requests 49.8 req/s 53.3 req/s

Integrating the low-level Low? implementations into
MITLS requires a large effort, as many functions that are
currently pure (operating on values such as lists) become
stateful (the buffer that contains the valid positions matching
each value must be live). To anticipate the benefits of this
effort, we run a synthetic benchmark that validates all mes-
sages from a public dataset of TLS handshakes published by
Lumen [39]. This dataset contains handshake produced by a
wide range of clients and servers, and contains over 13GB
of data (including the BSON overhead). As a baseline, we
compare in-place validation time with the cost of checking
the message length, allocating a buffer of the message size,
and copying the contents of the message in the buffer.

Memcpy EverParse
1,864 MB/s 1.761 cy/B 2,684 MB/s 1.177 cy/B

6.2 Bitcoin Blocks and Transactions
To show that EverParse is extensible and evaluate the per-
formance of its low-level parsers, we implement the Bitcoin
block and transaction format, listed in Figure 9. We do not
implement Segregated Witness (“segwit”), an extension that
overloads the semantics of a length in the block format to
conditionally add a new field to the block structure, because it
requires a very ad-hoc combinator. Bitcoin requires two Low-
Parse extensions: one for the encoding of "compact integers"
(bitcoin_varint), and one for lists prefixed by their size in
elements rather than in bytes.

For compact integers, the representation may either use
1, 3, 5, or 9 bytes depending on whether the value of the
first byte is respectively less than 252, 253, 254, or 255. It
is not clear from the Bitcoin documentation and wiki that
the format of compact integer is not malleable (e.g. 4636

USENIX Association 28th USENIX Security Symposium 1477

opaque sha256[32];
struct {
sha256 prev_hash; uint32_le prev_idx;
opaque scriptSig<0..10000 : bitcoin_varint>;
uint32_le seq_no;

} txin;
struct {
uint64_le value;
opaque scriptPubKey<0..10000 : bitcoin_varint>;

} txout;
struct {
uint32_le version;
txin inputs{0..1000 : bitcoin_varint};
txout outputs{0..11110 : bitcoin_varint};
uint32_le lock_time;

} transaction;
struct {
uint32_le version;
sha256 prev_block; sha256 merkle_root;
uint32_le timestamp;
uint32_le bits; uint32_le nonce;
transaction tx{0..2^16 : bitcoin_varint};

} block;

Figure 9: QuackyDucky specification of Bitcoin blocks

could be represented as fd121c, or fe0000121c). However,
we checked that the Core implementation enforces the short-
est representation in the ReadCompactSize function. Ad-
ditionally, we allow list types to specify in their range the
type of integer used to encode the prefix length or size (e.g.
txin inputs{0..2^14 : bitcoin_varint}). A drawback of
prefixing lists by their number of elements is that the theoreti-
cal maximum length of the formatted list can get extremely
large. For instance, the maximal size of a well-formed Bitcoin
block is over 2320 bytes (in practice, it is well-known that
non-segwit blocks are at most 1MB). To avoid overflowing
OCaml’s 63-bit arithmetic in the parser metadata length com-
putations in QuackyDucky, we must write more conservative
boundaries. Scripts are known to be at most 10,000 bytes.
Historically, all non-segwit blocks in the main chain contain
less than 216 transactions (although the maximum is higher).
It is more difficult to bound the number of inputs and outputs
of a transaction. If we assume a transaction is standard (at
most 100,000 bytes) and all inputs are signed (their script is at
least 64 bytes), there are less than 1000 inputs. Since outputs
can be as short as 9 bytes, a transaction can have over 11000.
Our test data is blocks 100,000 to 110,000 of the Bitcoin
blockchain, totaling 21MB. To experimentally check those
assumptions, we parsed all of these blocks and confirmed they
are accepted by our validator.

For benchmarking, we measure: first, the performance of
our zero-copy block validator compared with the built-in de-
serialization function of the Bitcoin Core client (commit

Figure 10: Synthetic performance comparison for validating
10,001 Bitcoin blocks. Throughput in kiB/s, higher is better.

cbe7efe); second, the performance variations of our zero-
copy block validator across compilers and optimization levels;
third, the performance impact of fine-grained code-generation
options passed to KReMLin (Figure 10). For each one of those
benchmarks, we report numbers in kiB/s, i.e. the throughput;
we only occasionally report cycles per byte since most of our
validators run at less than 1 cy/B.

The first measurement compares the performance of our
code against a reference implementation, namely, Bitcoin
Core. Bitcoin uses a custom template for serializing C++ ob-
jects. This template is well-optimized and tries to rely on
casts and the in-memory representation of base types as much
as possible. However, it is not zero-copy: parsing relies on
the memory allocated for the C++ object, and serialization
requires a copy to the output buffer. The benefit is that the data
can be accessed using standard data structure libraries such
as std::vector for lists. Bitcoin provides a built-in bench-
marking tool for many of its features, including block deseri-
alization and validation in src/bench/checkblock.cpp.

We modify this benchmark to use our test data of 10,001
blocks and deserialize all of them in each run. The benchmark
deserializes 130 times, and reports the median over 5 runs.
We keep the default compiler options (gcc-8, O2 optimization
level). The measured throughput is 152,786 kiB/s, which
translates to 15 cy/B on the test machine used for the Bitcoin
measurements. We then validate the same 21MB of data using
our validators, with the same compiler and optimization levels.
We obtain a throughput of 4,568,632 kiB/s, which is less than
a cycle per byte, for the default KReMLin configuration.

While the validation performance of our code is excellent,
we do not claim that this benchmark is representative of real
application usage, as it doesn’t account for the overhead of
accessor functions to read the block and transaction contents.
Nevertheless, this shows that our verified low-level implemen-
tation is competitive with hand-optimized formatters.

1478 28th USENIX Security Symposium USENIX Association

Second, we measure performance variations across com-
piler versions. The performance is comparable between the
two most recent versions of Clang and GCC, for optimiza-
tion levels O2 and O3. Unsurprisingly, the default setting
without optimization yields much slower code, but even then,
we remain considerably faster than the original Bitcoin code.
We also measure the performance of our code compiled with
CompCert [28]. We find that CompCert is consistently 42%
slower than GCC and Clang with optimizations, but still more
than twice as fast as GCC or Clang without optimizations. We
conclude that our code lends itself well to optimizations by
modern compilers, and that users do not need to enable the
(risky) O3 performance level to get maximum performance
out of Clang or GCC.

Third, we experiment with various compilation
schemes of the KReMLin compiler for the core type
LowParse.slice.slice, a two-field C struct (representing a
byte buffer through its base pointer and length) which in the
default configuration is passed by value (§4.4). Two alternate
compilation schemes are considered. First, passing both the
base pointer and length as separate arguments to functions;
this is the “struct-explode” category, and yields no perfor-
mance improvement. Second, we pass those structures by
address, relying on an unverified transformation in the KReM-
Lin compiler, similar to CompCert’s -fstruct-passing

feature. This yields modest performance improvements for
GCC 7 and GCC 8 at the higher optimization levels (3% to
9%). We conclude that our generated C code is satisfactory
and that we don’t need to either rewrite our code to pass
slices by address (a substantial proof burden) or instruct
KReMLin to perform this transformation (which would
increase the trusted computing base).

Finally, we perform fuzz testing on the X64 machine code
of our generated bitcoin-block validator as compiled with
gcc-8 -O2. (Although our verification results ensure memory
safety for all inputs, fuzzing may still, in principle, detect bugs
in our toolchain and the C compilers we use.) We use SAGE
[19], a fuzzer specialized to parsers, which generates random
input, valid or not, and feeds them to the validator which
SAGE automatically instruments to check for buffer over-
flows. As expected, SAGE reported no bugs after 21,664,448
inputs tested at an average rate of 599 inputs per minute.

6.3 ASN.1 Payload of PKCS #1 Signatures
Our last example is the payload of PKCS #1 signatures intro-
duced in § 2.2. We extend LowParse with a combinator for
the encoding of ASN.1 DER lengths. This encoding is partic-
ularly convoluted: if a length is less than 127, it is represented
over a single byte. Otherwise, the 7 least significant bits of the
first byte encode the length in byte of the shortest big endian
representation of the length. This means the length can be at
most 221016−1. To avoid overflows, we only support values of
the first byte less than 132 (i.e. 32-bit lengths). An issue with

the specification is the lack of dependency between the object
identifier of the hash algorithm and the octet string of the
actual digest: the application is required to check the digest is
of the correct length if it tries to parse the signature contents.
We capture this dependency by only making the outermost
sequence variable length, and by parsing the object identifier
as a constant tag of an union of fixed-length arrays. (Note
that this is for illustration only, the recommended approach
is to serialize the computed hash, and use a constant time
comparison with the un-padded signature contents instead).

We integrate our code into pkcs1_v15_verify function
of mbedTLS, and modify the built-in benchmarking tool
to measure the PKCS #1 signature verification time in-
stead of the raw public key and private key operation time
measured by default. In addition, we also export the inter-
nal function to format the ASN.1 payload of the signature
(pkcs1_v15_encode), and compare it with our extracted for-
matter functions. The following table compares the amount
of operations per second and cycles per operation for com-
plete signature verification, and for the encoding of the ASN.1
payload:

Operation mbedTLS EverParse
Verify 79K op/s 5,700 cy/op 79K op/s 5,649 cy/op
Encode 31M op/s 14 cy/op 134M op/s 3 cy/op

As expected, the verification time is dominated by the cost
of the RSA exponentiation: even though our validator is over
4 times faster and avoids the allocation of a modulus-sized
intermediate buffer to compare the expected and computed
digests, the impact on overall validation performance is negli-
gible. For signing and encoding, the constant constant parts of
the signature payload must be written manually, and separate
finalizers must be called for to write the bytes we depend on
for the algorithm choice and the outermost ASN.1 length.

We tested our implementation against all variants of the
Bleichenbacher’s attack listed in §2.2 and confirmed they are
properly rejected.

7 Related work

Parsing combinators are widely used in functional program-
ming languages, and there exist several libraries for network
protocols [29], including TLS and X.509 [30].

For well-behaved language classes (e.g. regular, context-
free), there is a long history on verification of parser correct-
ness with respect to simple specifications (regular expressions,
grammars). Jourdan et al. [25] propose a certifying compiler
for LR(1) grammars, which translates the grammar into a
pushdown automaton and a certificate of language equiva-
lence between the grammar and the automaton. The certifi-
cate is checked by a validator verified in Coq [1], while the
automaton is interpreted by a verified interpreter. Barthwal
et al. [3] propose a verified grammar compiler and automa-
ton interpreter for the simpler class of SLR languages, ver-
ified in HOL [42]. For regular languages, Koprowski et al.

USENIX Association 28th USENIX Security Symposium 1479

introduced TRX [26], an interpreter for regular expressions
verified in Coq. All of these works require runtime interpre-
tation, which greatly degrades the performance compared to
compilation. Furthermore, they target garbage-collected func-
tional language runtimes like OCaml, which cannot easily be
integrated into high-performance, native C applications.

For TLV languages, there have been some attempts [2] to
create context-free or even regular specifications for X.509.
However, due to the context-sensitive nature of ASN.1, these
efforts rely on discretizations of some fields (such as variable-
length integers) and drastic simplifications of the format (such
as limiting the choice of extensions to a known subset). The
combinatorial explosion required to achieve interoperability
makes these approaches impractical for real implementations,
although some authors claim otherwise [21].

For runtime safety, fuzzing techniques [19, 43] are widely
deployed and often included into test suites for cryptographic
libraries. Although best practice, fuzzing is by nature incom-
plete, and may be difficult to apply to authenticated mes-
sages (as fuzzing invalidates hashes, signatures and MACs).
Dynamic analysis tools like Valgrind [35] or AddressSani-
tizer [44] are widely used but also incomplete, while static
analysis tools like Frama-C [11] require higher expertise, a
significant time investment, and tend to scale poorly with
large codebases. Because of past attacks, specific tools have
been created for TLS and cryptographic libraries, including
TLS-Attacker [45], FlexTLS [5], and Wycheproof [8], but
their focus is to uncover known vulnerability patterns in pro-
tocol implementations rather than prove formal guarantees on
their message formats.

Another related line of work [10, 16] applies abstract in-
terpretation and symbolic execution to study the properties
of parsers, such as whether two implementations of a format
accept the same message. These techniques can be applied to
existing implementations, but cannot generate new ones.

Narcissus [47] also constructs correct binary parsers from a
verified library of combinators written in Coq. There are two
major differences with EverParse: first, Narcissus only proves
the correctness of its parsers, while we also prove parser secu-
rity; second, Narcissus only generates higher-order, functional
implementations while our compiled approach means that our
parsers are entirely specialized at F? extraction, and can be
compiled in zero-copy mode. Building on Narcissus, Ye and
Delaware [51] build a verified compiler in Coq for parsers
and formatters described using Protocol Buffers [20]. Like
EverParse, their parsers and formatters are proven to be cor-
rect. Their library produces high-level functional code, which
is memory-safe by construction—in contrast, EverParse pro-
duces low-level C code, together with memory safety proofs.
Further, due to the inherent structure of the Protocol Buffers
format, their work does not consider non-malleability.

Jim and Mandelbaum [23, 24] have formalized and devel-
oped parser generators for a wide class of context-free gram-
mars extended with data dependency, including tag-length-

value encodings, tagged unions, and other forms of depen-
dence supported by QuackyDucky. They also provide tooling,
like QuackyDucky, to automatically extract message format
descriptions from RFCs and have applied their work to net-
work message formats like IMAP, the popular mail protocol.
While the input language of their framework is significantly
more expressive than ours, EverParse, in contrast, produces
provably safe, secure and functionally correct parsers. Jim
and Mandelbaum also do not address message formatting.

8 Limitations and Future Work

Trusted computing base: we statically guarantee at the F?

source level memory safety, functional correctness, and non-
malleability for all code generated by QuackyDucky. Pre-
serving non-malleability down to machine code requires only
preserving functional correctness, since non-malleability is
a specification-level guarantee. All our verification results,
including preservation of memory safety and functional cor-
rectness down to machine code, relies on a trusted computing
base (TCB) that includes:
• the F? proof assistant and the Z3 theorem prover, al-

though work by Swamy et al. [48] provides a model of a
subset of F? and proves its soundness;
• the KReMLin compiler from Low? to C, although work

by Protzenko et al. [38] provides a model of a sub-
set of Low?, its compilation to CompCert Clight, and
proofs (on paper) that compilation to C preserves mem-
ory safety and functional correctness;
• the C compiler, although one can use the CompCert [28]

verified C compiler, which ensures the preservation of
memory safety and functional correctness, at the expense
of some performance.

This trusted base is comparable to Coq-based verified imple-
mentations, which trust Coq, the Coq extraction to OCaml,
and the OCaml compiler and runtime. Ongoing research aims
to reduce this TCB by verifying Coq extraction; similar efforts
could, in principle, be applied to F? and KReMLin.

Conversely, neither LowParse nor QuackyDucky are in the
TCB. LowParse is fully verified. The input format specifi-
cation of QuackyDucky is trusted for liveness, but not for
security: if there is a mistake in the format specification, the
worse that can happen is that the generated messages are in-
compatible with implementations of the correct format. We
rely on interoperability testing to detect such mistakes. Con-
versely, EverParse can be used during the standardization of
a new message format, as it can prove that the specification is
secure regardless of the generated implementation.

Expressiveness QuackyDucky currently focuses on sup-
porting tag-length-value encodings of non-malleable data
formats. We show that the message formats of several im-
portant protocols and standards, including TLS, PKCS #1
signature payloads and Bitcoin, fall into this class. LowParse,

1480 28th USENIX Security Symposium USENIX Association

being the target language of QuackyDucky’s translation, is
also currently restricted to supporting non-malleable data
formats. However, it would be straightforward to make non-
malleability conditional on a flag set in the parser metadata
in order to define combinators for zero-copy malleable for-
mats, including MessagePack, CBOR, Apache Arrow, Cap’n
proto, and Protocol Buffers which are malleable at least by de-
fault (some have canonical representation rules). Generalized
to support malleable formats, LowParse, being a library of
verified monadic parser combinators, would support parsing
with arbitrary data dependence and lookahead, beyond the
class of context-free languages—however, coming up with
efficient verified implementations of parsers for such language
classes is an open question. In the future, we will also consider
generalizing QuackyDucky to target the class of languages
supported by LowParse.

Side-channel attacks: the implementation produced by
EverParse branches on values read from the input buffer,
which may leak (through timing side-channels) information
when used on confidential data. We may in principle verify
properties such as constant-time execution for the process-
ing of simple message formats, reusing F? and KReMLin
techniques and libraries for side-channel protection of crypto-
graphic algorithms. For example, we may provide constant-
time combinators for fixed-length secret bytestrings. We leave
such extensions for future work.

Fuzzing: since we expect our extracted C code to be com-
piled by unverified toolchains (such as GCC and LLVM, with
optimizations), fuzz testing can provide additional assurance
that the compilation from F? to binary does not break our
verified safety properties. We started using fuzzers optimized
for parsers, such as SAGE [19], to fuzz the generated bitcoin
block validator; we plan to extend their use to fuzz application
code that uses generated validators and accessors.

Integration: we have integrated the high-level implemen-
tation of EverParse TLS parsers into MITLS, but our goal
is to transition to the low-level implementation, thus avoid-
ing many unnecessary heap allocations and copies. This is a
major step towards making MITLS practical in performance-
sensitive deployments.

9 Conclusion

Developers should prefer the convenience and robustness of
writing high-level format specifications compiled by parser
generation tools to programming tedious and error-prone cus-
tom parsers, although the latter is sometimes required for
performance reasons. EverParse offers a unique combination
of high performance, zero-copy implementations and high-
assurance formal verification of the generated parsers.

Acknowledgments We thank the anonymous reviewers and
Prateek Saxena for their helpful comments, which improved
the writing of this paper. We thank Barry Bond, Christoph

Wintersteiger and the Everest team for their help in test-
ing EverParse. We thank Clément Pit-Claudel and Benjamin
Delaware for insightful discussions on the goals of verified
parsing. Tej Chajed and Nadim Kobeissi completed their work
during internships at Microsoft Research.

References

[1] The Coq proof assistant. http://coq.inria.fr, 1984–2019.
[2] A. Barenghi, N. Mainardi, and G. Pelosi. Systematic parsing

of X.509: eradicating security issues with a parse tree. CoRR,
abs/1812.04959, 2018.

[3] A. Barthwal and M. Norrish. Verified, executable parsing.
In European Symposium on Programming, pages 160–174.
Springer, 2009.

[4] D. Benjamin. Applying GREASE to TLS extensibility. IETF
Draft, 2016.

[5] B. Beurdouche, A. Delignat-Lavaud, N. Kobeissi, A. Pironti,
and K. Bhargavan. FLEXTLS: A tool for testing TLS imple-
mentations. In Usenix Workshop on Offensive Technologies
(WOOT15), 2015.

[6] K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet,
C. Hawblitzel, C. Hritcu, S. Ishtiaq, M. Kohlweiss, R. Leino,
J. R. Lorch, K. Maillard, J. Pan, B. Parno, J. Protzenko, T. Ra-
mananandro, A. Rane, A. Rastogi, N. Swamy, L. Thompson,
P. Wang, S. Z. Béguelin, and J. K. Zinzindohoue. Everest: To-
wards a verified, drop-in replacement of HTTPS. In 2nd Sum-
mit on Advances in Programming Languages, SNAPL 2017,
May 7-10, 2017, Asilomar, CA, USA, pages 1:1–1:12, 2017.
https://project-everest.github.io.

[7] K. Bhargavan, C. Fournet, and M. Kohlweiss. miTLS: Ver-
ifying protocol implementations against real-world attacks.
IEEE Security & Privacy, 14(6):18–25, Nov 2016. https:
//github.com/project-everest/mitls-fstar.

[8] D. Bleichenbacher, T. Duong, E. Kasper, and Q. Nguyen.
Project Wycheproof: Scaling crypto testing. In Real World
Crypto Symposium, New York, USA, 2017.

[9] S. Y. Chau. The OID parser in the ASN.1 code in GMP allows
any number of random bytes after a valid OID. Available from
MITRE CVE-2018-16151, 2018.

[10] P. Cousot and R. Cousot. Grammar Analysis and Parsing
by Abstract Interpretation, pages 175–200. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[11] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski. Frama-C. In International Conference
on Software Engineering and Formal Methods, pages 233–247.
Springer, 2012.

[12] C. Decker and R. Wattenhofer. Bitcoin transaction malleability
and MtGox. In European Symposium on Research in Computer
Security, pages 313–326. Springer, 2014.

[13] A. Delignat-Lavaud. RSA signature forgery attack in NSS due
to incorrect parsing of ASN.1 encoded DigestInfo. MITRE
CVE-2014-1569, 2014.

[14] T. Dierks and C. Allen. The TLS 1.0 protocol. IETF RFC
2246, 1999.

[15] T. Dierks and E. Rescorla. The transport layer security (TLS)
protocol version 1.2. IETF RFC 5246, 2008.

USENIX Association 28th USENIX Security Symposium 1481

http://coq.inria.fr
https://project-everest.github.io
https://github.com/project-everest/mitls-fstar
https://github.com/project-everest/mitls-fstar

[16] K.-G. Doh, H. Kim, and D. A. Schmidt. Abstract LR-Parsing,
pages 90–109. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[17] Z. Durumeric, F. Li, J. Kasten, J. Amann, et al. The Matter of
Heartbleed. In Proceedings of the 2014 Internet Measurement
Conference, pages 475–488. ACM, 2014.

[18] H. Finney. Bleichenbacher’s RSA signature forgery based on
implementation error, 2006.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: whitebox
fuzzing for security testing. Queue, 10(1):20, 2012.

[20] Google. Protocol buffers. github.com/protocolbuffers.
[21] R. D. Graham and P. C. Johnson. Finite state machine parsing

for internet protocols: Faster than you think. In Security and
Privacy Workshops (SPW), 2014 IEEE, pages 185–190. IEEE,
2014.

[22] G. Hutton. Higher-order functions for parsing. Journal of
functional programming, 2(3):323–343, 1992.

[23] T. Jim and Y. Mandelbaum. Efficient earley parsing with
regular right-hand sides. Electr. Notes Theor. Comput. Sci.,
253(7):135–148, 2010.

[24] T. Jim and Y. Mandelbaum. A new method for dependent pars-
ing. In Programming Languages and Systems - 20th European
Symposium on Programming (ESOP), pages 378–397, 2011.

[25] J.-H. Jourdan, F. Pottier, and X. Leroy. Validating LR(1)
parsers. In Proceedings of the 21st European Conference
on Programming Languages and Systems, ESOP’12, pages
397–416, Berlin, Heidelberg, 2012. Springer-Verlag.

[26] A. Koprowski and H. Binsztok. TRX: A formally verified
parser interpreter. In European Symposium on Programming,
pages 345–365. Springer, 2010.

[27] D. Leijen and E. Meijer. Parsec: Direct style monadic parser
combinators for the real world. 2001.

[28] X. Leroy. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. In 33rd ACM
symposium on Principles of Programming Languages, pages
42–54. ACM Press, 2006.

[29] O. Levillain. Parsifal: A pragmatic solution to the binary pars-
ing problems. In 2014 IEEE Security and Privacy Workshops,
pages 191–197, May 2014.

[30] A. Madhavapeddy and D. J. Scott. Unikernels: the rise of the
virtual library operating system. Communications of the ACM,
57(1):61–69, 2014.

[31] G. Martínez, D. Ahman, V. Dumitrescu, N. Gian-
narakis, C. Hawblitzel, C. Hritcu, M. Narasimhamurthy,
Z. Paraskevopoulou, C. Pit-Claudel, J. Protzenko, T. Ra-
mananandro, A. Rastogi, and N. Swamy. Meta-F*: Proof
automation with SMT, tactics, and metaprograms. In 28th
European Symposium on Programming, 2019.

[32] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and
B. Preneel. A cross-protocol attack on the TLS protocol. In
Proceedings of the ACM Conference on Computer and Com-
munications Security, pages 62–72, 10 2012.

[33] MongoDB. BSON. http://bsonspec.org/.
[34] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

2008.

[35] N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In ACM Sigplan no-
tices, volume 42, pages 89–100. ACM, 2007.

[36] G. Neufeld and S. Vuong. An overview of ASN.1. Computer
Networks and ISDN Systems, 23(5):393–415, 1992.

[37] Y. Oiwa, K. Kobara, and H. Watanabe. A new variant for
an attack against RSA signature verification using parameter
field. In J. Lopez, P. Samarati, and J. L. Ferrer, editors, Public
Key Infrastructure, pages 143–153, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[38] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananan-
dro, P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud,
C. Hriţcu, K. Bhargavan, C. Fournet, and N. Swamy. Ver-
ified low-level programming embedded in F*. PACMPL,
1(ICFP):17:1–17:29, Sept. 2017.

[39] A. Razaghpanah, A. Akhavan Niaki, N. Vallina-Rodriguez,
S. Sundaresan, J. Amann, and P. Gill. Tls handshake data col-
lected by Lumen, Sept. 2017. https://haystack.mobi/datasets.

[40] E. Rescorla. The transport layer security (TLS) protocol ver-
sion 1.3. IETF RFC 8446, 2018.

[41] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. Transport
layer security (TLS) session resumption without server-side
state. IETF RFC 5077, 2008.

[42] N. Schirmer. Verification of sequential imperative programs in
Isabelle/HOL. PhD thesis, Technische Universität München,
2006.

[43] K. Serebryany. OSS-Fuzz: Google’s continuous fuzzing ser-
vice for open source software. 2017.

[44] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
Addresssanitizer: A fast address sanity checker. In Usenix
Annual Technical Conference (ATC12), pages 309–318, 2012.

[45] J. Somorovsky. Systematic fuzzing and testing of TLS libraries.
In Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1492–1504. ACM,
2016.

[46] R. Srinivasan. XDR: External data representation. IETF RFC
1832, 1995.

[47] S. Suriyakarn, B. Delaware, A. Chlipala, et al. Narcissus:
Deriving correct-by-construction decoders and encoders from
binary formats. arXiv preprint arXiv:1803.04870, 2018.

[48] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-
Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,
M. Kohlweiss, J.-K. Zinzindohoue, and S. Zanella-Béguelin.
Dependent types and multi-monadic effects in F*. In ACM
Symposium on Principles of Programming Languages, pages
256–270, 2016. https://www.fstar-lang.org.

[49] F. Valsorda. Bleichenbacher’06 signature forgery in Python-
RSA, 2016.

[50] P. Wuille et al. BIP62: Dealing with malleability, 2014.
[51] Q. Ye and B. Delaware. A verified protocol buffer compiler.

In Proceedings of the 8th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2019, pages
222–233, 2019.

1482 28th USENIX Security Symposium USENIX Association

https://www.fstar-lang.org

Blind Bernoulli Trials:
A Noninteractive Protocol For Hidden-Weight Coin Flips

Emma Connor and Max Schuchard

University of Tennessee

Abstract

We introduce the concept of a “Blind Bernoulli Trial,” a
noninteractive protocol that allows a set of remote, discon-
nected users to individually compute one random bit each
with probability p defined by the sender, such that no re-
ceiver learns any more information about p than strictly nec-
essary. We motivate the problem by discussing several pos-
sible applications in secure distributed systems. We then for-
mally define the problem in terms of correctness and secu-
rity definitions and explore possible solutions using existing
cryptographic primitives. We prove the security of an effi-
cient solution in the standard model. Finally, we implement
the solution and give performance results that show it is prac-
tical with current hardware.

1 Introduction

Distributed systems sometimes require users to make ran-
dom choices to drive network behavior. For example, peer-
to-peer anonymous systems such as Freenet [12], AP3 [26],
and DiscountANODR [36] employs a random “coin flip” in
routing decisions to help obscure information about the path
of a request from an observer. Opportunistic routing proto-
cols may use a random decision on whether to forward or
cache certain content or not. Systems that do rely on users
making coin flips usually model the coin flip as a random
trial that produces a single bit with a fixed probability. They
distribute the probability of the trial’s two possible outcomes
either as a static, pre-defined parameter known to the whole
network, or as a dynamic parameter distributed to users as
cleartext.

However, in some instances the trial probability itself may
be sensitive information. For example, if we use dynamic
trial probabilities to prioritize certain content in a network
(i.e., have some content forwarded with higher probabil-
ity than others), then observers can distinguish and target
higher-priority content. If an anonymous communication
system varied the probability of forwarding to fine-tune the

trade-off between performance and anonymity for individual
messages, then a malicious node could selectively attempt to
deanonymize easier traffic.

For such applications we can envision a cryptographic so-
lution that allows each user to carry out only a single trial and
obtain a random bit with some weighted probability, while
learning as little as possible about the overall probability of
each outcome. The user should not be able to repeat the trial
for a different result, since users can easily approximate the
probability using multiple results. Nor should they be able
to use the trial parameters to learn anything more about the
actual probability of the outcomes. Users should be able to
perform a trial noninteractively, as they would if the proba-
bility were distributed in cleartext. In other words, we want
a way to distribute a weighted coin that each user can flip
once, while revealing as little information as possible about
the weight of the coin. We call this construction a “Blind
Bernoulli Trial, or BBT.”

Specifically, we propose a definition where an authority
generates and distributes unique keys to individual users. For
each trial, the authority generates an encrypted tag that cor-
responds to the desired probability for that trial. Given a user
key and a tag, one can noninteractively compute the outcome
of exactly one trial without learning the overall probability.

We formalize the security of this system with a simulation-
based definition inspired by the usual definition of semantic
security for a cipher. Informally, the definition states that
any function that can efficiently be computed by some num-
ber of identities and trial parameters could also be computed
only knowing the trial results. The definition also includes a
“leakage function” to allow schemes that leak some informa-
tion but still have near-ideal security. The leakage function
formally quantifies and places an upper bound on the amount
of information an attacker can gain.

This paper evaluates three BBT schemes. First we de-
velop a very simple protocol that meets our definitions and
is based on a semantically secure cipher. This scheme essen-
tially encrypts one trial result per user. We discuss why this
trivial solution is unsatisfactory and then show an alterna-

USENIX Association 28th USENIX Security Symposium 1483

tive construction from a general functional encryption primi-
tive. Finally, since no practical functional encryption scheme
for general functions is known, we examine more specific
functional encryption schemes that support only a limited
class of functions. We show how to construct a near-ideal
BBT scheme from functional encryption supporting only in-
ner product predicate functions, for which practical schemes
currently exist.

In section 6, we compare the security of the ideal BBT
schemes with the inner product construction using a quanti-
tative attack analysis, discussing what an attacker can learn
about the trial probability given a certain number of trial re-
sults. We design and evaluate a simulation of an attacker’s
perspective on both possible schemes, using the different in-
formation available to the adversary in each case. The attack
simulations show that the information gained by an attacker
for the inner product scheme, on average, is very similar to
the information gained in the ideal case.

Since efficiency is a major concern, we discuss both the
running time and storage requirements for the inner product
scheme. To evaluate the feasibility of current inner product
functional encryption schemes, we implement a recently pro-
posed scheme in software (to our knowledge, the first imple-
mentation of this scheme) and provide benchmarks for each
algorithm involved in a Blind Bernoulli trial scheme. The
benchmarks show that a Blind Bernoulli Trial scheme based
on inner product encryption can run in a reasonable amount
of time on current hardware.

Finally, we explore in more detail some potential appli-
cations of this new cryptographic concept. We discuss two
possible distributed-systems scenarios where random behav-
ior is used and the probability of that random behavior is
sensitive information. In these cases, Blind Bernoulli trials
can enhance privacy in the distributed system by hiding the
weighted probabilities from users.

1.1 Related Work

Protocols for remote parties to agree on a random bit in a
way that is fair and verifiable go back decades in cryptogra-
phy [6]. These protocols differ from BBT in that their goal
is to prevent either party from biasing the result. BBT is al-
most the opposite: here we explicitly want one party to be
able to bias the result and for the other party to be unable to
determine the bias.

More generally, secure multi-party computation (MPC)
encompasses a wide body of related work that deals with al-
lowing remote parties to interactively perform arbitrary com-
putations together. MPC focuses on protocols that enable
distrusting parties to jointly compute a function on private in-
puts, without revealing the inputs to each other. It allows for
private inputs from both parties, and protocols are interac-
tive, proceeding in multiple rounds. Existing MPC schemes
can be practical [31]. Our formulation of BBT does not allow

interactive protocols, and the only private input is the prob-
ability of the trial. Therefore BBT is not compatible with
MPC solutions.

While BBT does not fall under the area of MPC, it does
fit squarely within the functional encryption model. Section
4 gives additional background on functional encryption and
shows how BBT can be instantiated using general functional
encryption.

In contrast with MPC, no practical general functional en-
cryption is known. Recent works have proposed general
functional encryption schemes, although these are not yet
practical [15]. Other works have focused on implementing
efficient functional encryption for specific classes of func-
tions such as inner products and polynomials [18]. This pa-
per primarily focuses on building an efficient construction
specifically for BBTs.

2 Blind Bernoulli Trials

A Bernoulli trial models a random process with two possi-
ble results, where each result occurs with a fixed probability.
This has applications in some distributed systems. For ex-
ample, it provides a very simple means for one user to direct
the behavior of a certain percentage of others without know-
ing exactly how many there are and without needing direct
communication. An authority can distribute the parameters
for a trial, and users can run a Bernoulli trial with the given
parameters to self-organize into groups of approximately the
desired proportions.

However, in some cases it may be important to the secu-
rity goals of the system that individual users do not learn the
overall probability of success. In these cases it is not accept-
able for an authority to distribute the parameters for a trial,
since this directly reveals the overall probability of success
to all users. In response to this need, we formulate the con-
cept of a Blind Bernoulli Trial, or BBT, which allows each
user to obtain a single pseudo-random trial result without re-
vealing additional information about the overall probability
of success.

At first glance, it might appear that trivial solution would
be for the authority to run the trials on a trusted computer and
individually send a different trial result to each user. Since
a user sees only their result, this scheme is secure. How-
ever, this scheme does not meet the requirement that a BBT
be noninteractive. This leaves it with an important draw-
back compared to an unencrypted Bernoulli trial (publishing
the probability parameter in plaintext). For an unencrypted
Bernoulli trial, the authority can publish the probability pa-
rameter once, and any number of users can run a trial or for-
ward the trial parameters to other users. Instead, the trivial
interactive solution forces the authority to open an individ-
ual communication channel for each user. As a result, this
interactive solution presents scalability concerns for systems

1484 28th USENIX Security Symposium USENIX Association

where communication between the authority and users may
be intermittent or costly.

Ideally, a BBT scheme should more closely mirror
the properties we get with a noninteractive unencrypted
Bernoulli trial. The authority should be able to publish an
encrypted object that represents the trial parameters and any
number of users should be able to use this object to ob-
tain a trial result without further interaction with the author-
ity. Therefore, a Blind Bernoulli Trial scheme will try to
construct “tags” that represent encrypted trial parameters of
varying probabilities. Users will be able to use these tags to
conduct trials without interaction with the authority.

In order to hide the overall probability of success for a
trial, users must be able to obtain only one trial result per
tag. If users could run multiple pseudo-random trials with
the same tag they could quickly approximate the probability
of success. To avoid this, we require that trial results are
deterministic on a per user basis. In other words, the same
user will always compute the same result for a given tag.
Since Blind Bernoulli Trials must be deterministic, they are
not true Bernoulli trials and do not have a “probability” of
success in the same sense. Instead, when using a BBT, we are
more interested in the overall probability of a trial’s success
across a distribution of users. Accordingly, when we speak
of the “probability” of an outcome of a Blind Bernoulli Trial,
we are referring to the probability of that outcome when a
trial is performed with a user key that is selected at random
from the set of users. For schemes that require the authority
to store key material for each user, the “set of users” refers to
the set of user keys kept by the authority. Otherwise, it refers
to the set of all possible user keys.

Just as a single user must always get the same result for
the same tag, it is also necessary to prevent one entity from
controlling many user identities and utilizing them to per-
form multiple trials on a tag. For this reason, it must be
impractical for an adversary to create multiple working user
identities. We avoid this by introducing a master key that
is required to generate new user identities. These identities
take the form of a user key, which is combined with the tag to
conduct a single trial. In general, an adversary should not be
able to create a user key without the master key. The impact
of collusion is discussed at length in Section 6.

Taking into account these properties, we can arrive at a
clearer picture for what our scheme must look like: in a cryp-
tographic Blind Bernoulli Trial scheme, an authority uses a
private master key to generate and distribute user keys rep-
resenting individual user identities and tags, each represent-
ing a Bernoulli trial with a fixed probability of success pre-
scribed by the authority. Given a user key and a tag, there
exists a public, deterministic procedure to compute the re-
sult of a single Bernoulli trial (either “success” or “failure”)
without revealing to the user the probability of success asso-
ciated with the trial.

Formally, a Blind Bernoulli Trial encryption scheme con-

sists of the following algorithms:

• Setup(1λ): Accepts a security parameter λ and returns
a master key sk and public parameters pk.

• KeyGen(sk): returns a user key uk.

• TagGen(x): takes a probability parameter x and returns
a tag t; the exact form of the probability parameter can
vary depending on the construction. In order to be use-
ful, there must be at least two possible probability pa-
rameters that create tags with different probabilities of
success.

• Trial(uk, t): returns a single bit b indicating success or
failure.

This definition does not allow the trivial interactive solu-
tion mentioned earlier, where the authority carries out trials
and directly communicates results to each user individually.
This reflects a key design goal: that users must be able to ob-
tain trial results without online communication with a cen-
tralized infrastructure. Users must be able to transfer tags to
each other and each tag must be usable by all users. This al-
lows individuals in a disconnected distributed system to ob-
tain trial results without needing a direct intermediary.

2.1 Security Definition
Inherently, a BBT must reveal some information about the
underlying priority. For example, an adversary that seeks to
distinguish high-probability trials from low-probability ones
could, after generating a trial result for a tag with their user
key, guess “high-probability” for successful trials and “low-
probability” for unsuccessful ones. Such a trivial adversary
could already achieve non-negligible advantage in distin-
guishing between two types of tags.

Since each trial result unavoidably reveals some informa-
tion about the underlying probability of success (a single
successful trial means that the trial is more likely to have
a higher probability of success), our security definition must
take into account this inherent information leakage. Also,
our definition must take into account collusion, so that the
scheme remains as secure as possible even when a single ad-
versary controls multiple user identities. Therefore, we com-
pare the information an adversary learns from some number
of user keys to that learned by an adversary that learns only
the trial results corresponding to those keys.

Informally, a Blind Bernoulli Trial scheme is secure if an
adversary with access to x user keys and y tags learns no
more about the probabilities of success of any tags than he
would by being given only the results of x trials for each tag.
Since a BBT scheme intends to reveal the outcome of 1 trial
per key, clearly this is the best any scheme could hope to
do. In Section 6 we discuss some possible attacks when an

USENIX Association 28th USENIX Security Symposium 1485

adversary controls multiple keys and quantify the amount of
information gained by such an adversary.

Formally, we use a simulation-based definition to capture
the idea that any function which is efficiently computable
from a trial tag and a set of user keys must also be efficiently
computable using only the trial results. We also include
some allowance for additional information leaked, as this
will be useful later in constructing a scheme that achieves
near-ideal security with much greater efficiency compared to
other schemes.

Definition 2.1 (Security with leakage). A Blind Bernoulli
trial scheme is secure with respect to a leakage function
L if for all probabilistic polynomial time (PPT) algo-
rithms A , there exists a PPT algorithm B such that for all
polynomially-bounded functions f ,h, the advantage of A ,
defined as:

Pr[A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,x))) = f (1λ ,x)]−

Pr[B(1λ ,uk1,uk2, . . . ,ukn,Trial(uk1, t),Trial(uk2, t), . . . ,

Trial(ukn, t),L (t),h(1λ ,x)) = f (1λ ,x)] (1)

is negligible in the security parameter, where x is the prob-
ability parameter and t= TagGen(x).

This definition is closely-related to the usual definition of
semantic security for private-key encryption and formalizes
the idea that an adversary should learn as little as possible
about a tag beyond the results of the trials of all keys known
to the adversary. The leakage function places an upper bound
on the amount of information that an adversary can learn
from a tag because the definition states that any function that
can be efficiently computed with the tag t can also be effi-
ciently computed with only the trial results (which are inten-
tionally revealed) and L (t).

Implicit in this security definition is the design require-
ment that an adversary can not forge additional user keys.
If a BBT system allowed an adversary to forge a non-zero
number of additional keys, that adversary would gain access
to an extra set of trial results beyond those generated from
their originally controled keys. Such a system fails to meet
our security definition.

2.2 Other Design Goals
Security is a necessary property, but it is not the only design
goal. To be usable, a BBT scheme must be efficient, both in
terms of the running times of the algorithms and the space
complexity of keys and tags. As stated previously, we also
require that the protocol is noninteractive; that is, that tags
can be freely transmitted from user to user and that users can
obtain trial results from a tag without direct communication
with the authority.

Each algorithm must be efficient enough to run in a rea-
sonable amount of time. The running time of the Trial algo-
rithm is particularly important, as we expect this algorithm
to be run most frequently. Each user must run a trial for each
tag received. Also, several applications of BBT feature users
with lower computing resources compared to the authority.
The other algorithms that comprise a BBT scheme are likely
to be run less often: Setup is run only once, or only when the
system needs to be re-keyed. And if n tags are created and
m users then we expect the number of trials run to be on the
order of nm if most users receive most tags.

The size of objects in the scheme must also be efficient.
“Efficient” tags and user keys should require space logarith-
mic or at least sublinear in the number of users. In order to
minimize storage requirements for the authority, we would
also prefer that the tag generation algorithm does not depend
on the current state of users. This eliminates the need for the
authority to keep a database of users, and also allows user
keys to be used even with tags that were generated before
the key. This is particularly important in distributed systems
applications that are disconnected or high churn, where new
users may regularly encounter tags that were generated be-
fore the user key.

Another potentially desirable property would be the abil-
ity for users to generate tags. We consider this property de-
sirable because if it is not wanted it can easily be removed
by composing tags with any cryptographic signature scheme.
Users can then simply reject tags that do not have a valid sig-
nature from the authority. On the other hand, it is not clear
how to add this property to a scheme that does not support it,
so we consider a scheme that does allow user tag generation
to be more flexible.

A less-obvious but important property of a BBT scheme
is the possible probability values for a tag. There is no re-
quirement that a scheme support an arbitrary probability, but
only that TagGen accepts some parameter that increases or
decreases the probability of success for trials resulting from
the generated tag. A scheme that allows more fine-grained
control of the probability level is preferable over one that
supports more limited probability levels.

3 Construction from Semantically-Secure En-
cryption

A simple BBT scheme can be trivially constructed from any
symmetric or asymmetric encryption scheme that is semanti-
cally secure. In short, the authority can simply generate and
store a random key for each user and send a tag consisting
of a different ciphertext for each user, which that user can
decrypt to obtain a trial result with the corresponding user
key. To run a trial, users simply decrypt the ciphertext cor-
responding to their key. The security of this scheme follows
immediately from the semantic security of the underlying en-

1486 28th USENIX Security Symposium USENIX Association

cryption system.
Either a public-key or symmetric system can be used

here, as it long it meets the definition for semantic security.
A symmetric-key system will be especially efficient, but a
public-key system has the advantage that users can gener-
ate tags themselves. On the other hand, if a symmetric-key
system is used, then the same keys that create tags can also
decrypt them, which means that only the authority can hold
the keys needed to create tags.

The individual algorithms are described as follows:

Setup

The authority initializes sk as an empty list of encryption
keys.

Generating User Keys

The authority generates a decryption key uk for the under-
lying cryptosystem, gives it to the user, and appends its cor-
responding encryption key to sk (in the case of a symmetric
system, the encryption key may be the same as the decryp-
tion key).

Generating Tags

A single tag consists of a set of ciphertexts, with one cipher-
text per user. The authority generates it as follows:

1. The authority randomly selects a subset S containing x
of |sk | users.

2. For each uki in sk, the authority computes cti ←
Encryptuki

(msuccess) if uki ∈ S, otherwise cti ←
Encryptuki

(mfail)

3. The tag is a tuple of all cti: t← (ct1,ct2, . . . ,ct|sk |)

4. The probability of success for the tag is x/|sk |.

Trials

To perform a trial, a user selects the ciphertext corresponding
to that user’s key from the set of ciphertexts that forms the
tag. The user then decrypts that ciphertext to obtain the trial
result:

1. m← Decryptuki
(cti).

2. Return 1 if m = msuccess.

3. Otherwise, return 0.

3.1 Discussion

Since a trial consists only of a single decryption, trials are
very efficient. User key generation is likewise extremely
efficient as it requires only choosing a random key. Trials
and user key generation are both O(1). However, generating
a tag is linear in the number of users, requiring l encryp-
tions for l users. The space complexity of tags is also O(l).
When the number of users is known to be small, this may
be acceptable. However, especially because BBT schemes
are designed for applications where network resources are
extremely limited, the linear space complexity of tags may
quickly become a concern as the number of users increases.

This type of BBT scheme also allows for the most fine-
grained possible control of probability. The tag generator
can select any subset of users of any size for a successful
trial. This is contrast to the schemes proposed in Sections 4
and 5, which are both limited in the possible subsets of users
that observe a successful trial.

This scheme does not meet the design goal that tag gen-
eration does not depend on user state. The authority must
maintain a central database of all user keys. If an asymmet-
ric key system is used to allow tag generation by users, this
key storage burden is also placed on each user. Each tag will
be valid only for the user keys that existed in the authority’s
database at the time the tag was generated, so it will not be
possible for newly-created users to run older tags.

4 Construction From Functional Encryption

A BBT scheme with ideal security can be constructed from
any functional encryption scheme that supports arbitrary
functions. In functional encryption, given a key k and cipher-
text ct, one can learn the output of a function of the plain-
text fk(m) without learning anything else about the plaintext
[8, 30, 2]. To construct a BBT scheme from a functional en-
cryption primitive, we define the user key functions using a
pseudorandom function family (PRF) and a comparison. The
tag plaintext consists of a random seed and a threshold value
which determines the tag’s likelihood of success. The au-
thority encrypts tags under the functional encryption scheme
and distributes the ciphertexts to users. Each user key corre-
sponds to a function f that is defined as:

f (s, t) = 1 if h(s)< t (2)
= 0 otherwise

where h is a function selected at random from a PRF for
each user key. Although the domain and range of functions
in PRFs are typically viewed as bit strings, for our purposes
it is more convenient to view them as integers in binary rep-
resentation.

USENIX Association 28th USENIX Security Symposium 1487

Setup

The authority initializes the functional encryption scheme
and retains the master key sk which allows the creation of
function keys.

Generating User Keys

The authority selects h at random from a PRF and generates
the user key uk as the function key for f , as described above.

Generating Tags

The authority selects a seed s at random from the domain of
each function in the PRF. The threshold t controls the prob-
ability p of the tag and is computed as p ∗max(range(h)).
The authority then encrypts the tuple (s, t) under the func-
tional encryption scheme to obtain the ct.

Trials

To perform a trial, a user computes f (s, t) using the tag ct
and the user key uk. The trial result is the function output.

4.1 Discussion
Although this construction achieves best-case security and
allows fine-grained choice of success probabilities, its de-
scription relies on functional encryption for arbitrary func-
tions. While such schemes do exist, they in turn rely
on other heavy-handed approaches such as fully homomor-
phic encryption for which practical implementations are not
yet available [15]. Therefore, a more practical solution is
needed.

5 Construction from Inner Product Encryp-
tion

In this section we show how to use any fully attribute-hiding
inner product encryption (IPE) scheme to construct a BBT
scheme that is secure with respect to the leakage function
L (t) = pk, where pk is the public key of the IPE scheme
used.

5.1 Background
The term “inner product encryption” has been applied to
multiple related but distinct cryptographic concepts [21, 5,
28, 29, 27, 19, 3], In this context, we use it to refer to a spe-
cific form of predicate encryption where ciphertexts and keys
are each associated with vectors, and the associated predicate
is the inner product function. Predicate encryption is a gen-
eralized form of public key encryption where each key k is
associated with a predicate function fk, and each ciphertext

is associated with an attribute y [18]. A ciphertext with at-
tribute y can be decrypted with key k if and only if fk(y) is
true.

In general, an IPE scheme operates on n-dimensional vec-
tors of integers modulo a prime p. In an IPE scheme, each
key sk~k is associated with a vector~k ∈ Zn

p, and each cipher-
text ct~y is associated with an attribute vector ~y ∈ Zn

p. The

associated predicate is f~k(ct~y) =
~k ·~y ?

= 0. In other words,
given sk~k and a ciphertext ct~y, one can compute the plaintext
m if and only if ~k ·~y = 0. An IPE scheme consists of the
following functions:

• Setup(1λ) outputs public key pk and secret key sk.

• KeyGen(~k,sk) accepts the secret key sk and a vector~k ∈
Zn

p and outputs sk~k.

• Encrypt(m,~y,pk) outputs ct~y.

• Decrypt(ct~y,sk~k,pk) outputs m if ~k ·~y = 0, otherwise
outputs ⊥.

Attribute-hiding IPE additionally requires that the vector~y
associated with each ciphertext is hidden. Partially attribute
hiding schemes hide~y from users who are not authorized to
decrypt the associated ciphertext, while fully attribute-hiding
schemes hide~y even in the case where~k ·~y = 0.

IPE security is defined by a game between a challenger
and an adversary [28].

Definition 5.1 (Attribute-hiding IPE Security). The security
of a fully attribute-hiding IPE scheme is defined by the fol-
lowing game between the challenger and an admissible ad-
versary A

1. The challenger runs SetupIPE and gives pk to A , re-
taining sk.

2. A adaptively makes any polynomial number of key
queries for key vectors ~ki. The challenger gives A
sk~ki
← KeyGen(~ki,sk)

3. A chooses challenge attribute vectors (~y0,~y1) and
challenge plaintexts (m0,m1),.

4. The challenger randomly selects a bit b = 0 or b = 1.

5. The challenger gives A Encrypt(mb,~yb,pk)

6. A can again adaptively make a polynomial of key
queries for additional key vectors~ki.

7. A outputs a guess b′ and wins the game if b′ = b.

Here, an admissible adversary is defined as one whose
queries adhere to at least one of the following conditions:

1. ~ki ·~y0 6= 0 and~ki ·~y1 6= 0 for all~ki

1488 28th USENIX Security Symposium USENIX Association

2. m0 =m1 and either (~ki ·~y1 6= 0 and~ki ·~y0 6= 0) or (~ki ·~y0 =

0 and~ki ·~y1 = 0) for all~ki.

Without these restrictions an adversary can trivially infer b
by submitting a challenge attribute pair that will be possible
to decrypt for one value of b and not possible to decrypt for
another, or a challenge message pair that can be decrypted to
a different value depending on b.

5.2 Construction
With attribute-hiding IPE and its security now defined, we
can show how to construct a BBT scheme using it. Intu-
itively, we will construct user keys and tags from randomly
sampled vectors. Tags will correspond to IPE ciphertexts,
user keys correspond to IPE user keys, and trials correspond
to IPE decryptions. A successful decryption means a suc-
cessful trial, while a failed decryption indicates a failed trial.
We will vary the number of nonzero components in a tag’s
associated vector to control the probability that a randomly-
selected user key will be able to decrypt it. Because the IPE
scheme is fully attribute-hiding, the vector associated with
tags is hidden from users, regardless of trial result.

Setup

The Setup function for IPE-based BBT additionally accepts
a paramter a that determines the number of nonzero com-
ponents in each user key. The authority runs the following
procedure:

1. Run SetupIPE(1λ ,n) to obtain the private key sk and
public key pk.

2. Store a as a public parameter.

3. Select msuccess randomly from the message space of the
underlying IPE scheme, and store it as a public param-
eter.

Generating User Keys

Every user key has the same number of nonzero components,
which is parameterized as a.

1. ~k is randomly selected from the set of all vectors with a
nonzero entries.

2. uk is computed as KeyGenIPE(~k,sk)

Generating Tags

In this scheme, TagGen accepts the integer probability pa-
rameter 0 < x < n, which represents the number of nonzero
components in the tag vector:

1. ~t is randomly selected from the set of all vectors with x
nonzero entries.

2. t is computed as EncIPE(msuccess,~t,pk).

Trials

1. m← DecIPE(t,uk,pk).

2. Return 1 if m = msuccess.

3. Otherwise, return 0.

5.3 Security
Theorem 1. The IPE-based BBT scheme is secure with re-
spect to the leakage function L (t) = pk.

Proof. The proof is simulation-based. For all PPT adver-
saries A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,~t))) = f (1λ ,~t) there
exists a PPT simulator that achieves the same advantage us-
ing only the trial results and the public key:

B(1λ ,uk1,uk2, . . . ,ukn,Trial(uk1, t),Trial(uk2, t), . . . ,

Trial(ukn, t),pk,h(1λ ,~t)) = f (1λ ,~t)

The simulator B produces an output that is computation-
ally indistinguishable from that of A . The algorithm for B
proceeds as follows:

~s← 〈1,1, . . . ,1,1〉
for 1≤ j ≤ n do
~v j← 〈0,0, . . . ,1, . . . ,0,0〉 where only the jth element is
1.
t j← Encrypt(~v j,pk)

end for
for all uki do

if Trial(uki, t) is success then
for 1≤ j ≤ n do

if Trial(uki, t j) is not success then
~s j← 0

end if
end for

end if
end for
s← Encrypt(~s,pk)
Run A (1λ ,uk1,uk2, . . . ,ukn,s,h(1λ ,~t))) and output the
result.

The output of algorithm B described above must be com-
putationally indistinguishable from the output of A ; other-
wise, an adversary could leverage the difference in the two to
break the security of the underlying IPE scheme as follows:

1. Choose~t as an arbitrary vector.

USENIX Association 28th USENIX Security Symposium 1489

2. Submit arbitrary key vectors~k1,~k2, . . . ,~kn.

3. Choose~s as it would be computed by B (i.e., the vector
with the maximal number of non-zero entries that is still
orthogonal to all~ki orthogonal to~t).

4. Choose plaintext m = msuccess.

5. Submit challenge attribute vector (~t,~s) and challenge
plaintext (m,m) and receive x, which is t if b = 0 or
s if b = 1. Note that these submissions are admissible
under the security definition of IPE because~s and~t are
specifically constructed such that~s ·~ki =~t ·~ki for all~ki,
as is required when m0 = m1.

6. Compute outA ←A (1λ ,uk1,uk2, . . . ,ukn,x,h(1λ ,~t))).

7. If outA is as A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,~t))), out-
put 0.

8. Otherwise, if the output outA is as
A (1λ ,uk1,uk2, . . . ,ukn,s,h(1λ ,~t))), output 1.

Clearly, if the adversary has non-negligible
advantage in distinguishing the outputs of
A (1λ ,uk1,uk2, . . . ,ukn, t,h(1λ ,~t))) (which is
exactly the output of the adversary A) and
A (1λ ,uk1,uk2, . . . ,ukn,s,h(1λ ,~t))) (which is exactly
the output of the simulator B), then the adversary also wins
the IPE security game with non-negligible advantage. But,
for a secure IPE scheme no such adversary can exist. Thus
no PPT algorithm exists that can distinguish the output of
the simulator B from the output of the A .

5.4 Choice of Parameters
Besides the choice of underlying IPE scheme, the IPE-based
BBT scheme also allows the choice of parameters for the
dimension of the vector space n and the number of nonzero
components a in each user key. Choices of these parameters
will affect the number users that the system can support as
well as the available choices for tag probabilities.

The IPE construction uses the number of nonzero compo-
nents in a tag vector to control the probability of a success-
ful trial. Therefore, for a system of dimension n there are
n discrete probability “tiers” where tags in the ith tier have
i nonzero components. Given an IPE scheme of dimension
n, a nonzero components in each user key, and x nonzero
components in a tag, the odds of a successful trial are:

Pr[success] =
(

n− x
a

)
/

(
n
a

)
Here, the numerator counts the number of ways to choose

a user key that is orthogonal to the tag, and the denominator
represents the total number of user keys possible.

This means that the probability tiers are not distributed
uniformly. There are more tiers with lower probabilities of
success than there are tiers with higher probabilities of suc-
cess. For applications that require higher probabilities, we
can simply invert the result of all trials to get a more favor-
able distribution. The remainder of this section follows this
convention of inverting trial results. As a concrete example,
figure 1 visualizes the case where n = 64 components are
used.

Figure 1: The distribution of probability tiers is biased to-
ward the upper end of [0, 1] (using inverted trial results with
n = 64, a = 8).

Two user keys uk1 and uk2 are called functionally unique
if there exists a tag t such that Trial(uk1, t) 6=Trial(uk2, t). In
other words, at least one of the associated key vectors has at
least one non-zero component that is zero in the other vector,
so that it is possible to construct a vector that is orthogonal
to one but not the other. The number of functionally unique
user keys depends on the number of components n and the
choice of number of non-zero components in each user key
a and is given simply as:(

n
a

)
=

n!
a!(n−a)!

Table 5.4 compares the tag size in bits for IPE-BBT and
the alternative scheme described in section 3. For the un-
derlying IPE scheme, we used the state-of-the-art attribute-
hiding IPE scheme due to Chen et al. [10] (our implementa-
tion using this scheme is discussed further in section 7). We
assume a 1024-bit prime is used, for security equivalent to a
symmetric key of 112 bits [16]. Chen’s IPE scheme requires
4n+ 4 group elements for a ciphertext in an n-dimensional
IPE scheme. We assume that group elements can be repre-
sented compactly by specifying only the x coordinate plus
one bit indicating the y coordinate [25]. Thus the total size

1490 28th USENIX Security Symposium USENIX Association

Dimension Users IPE Size ElGamal Size
9 9 5.1 KB 0.5 KB

10 45 5.6 KB 2.5 KB
11 165 6.2 KB 9.3 KB
12 495 6.7 KB 27.8 KB
16 12870 8.7 KB 723.9 KB
32 1.1×107 16.9 KB 591.7 MB
64 4.4×109 33.3 KB 249.0 GB

Table 1: Sizes of tags in a system supporting a given num-
ber of users in IPE-based BBT using Chen’s IPE scheme,
compared with semantically secure cipher construction us-
ing ECC ElGamal variant.

of a tag using Chen’s IPE scheme is (1024+ 1)(4n+ 4) for
IPE dimension n.

For comparison, we selected a public-key cryptosystem
that represents minimal realistic storage requirements for a
public key scheme at a comparable security level. We in-
stantiated the semantically-secure encryption with an ECC
variant of the ElGamal cryptosystem, which has been proven
secure under elliptic curve discrete log assumptions [20].
This cryptosystem requires 2 group elements per ciphertext.
We assume a 224-bit curve for a comparable level of secu-
rity with the IPE scheme, again equivalent to a symmetric
key strength of 112 [4]. This requires a total of 450 bits
per ciphertext. The IPE scheme that supports 165 users (11
components with 8 non-zero user key components) uses less
space than the corresponding public key scheme.

The number of possible tags is defined in the same way
as it is for user keys. Two tags t1 and t2 are functionally
unique if there exists a user key uk such that Trial(uk, t1) 6=
Trial(uk, t2). The number of functionally unique tags is dif-
ferent at each probability tier and depends on the total num-
ber of components in the vector space n and the number of
nonzero components x used for that probability tier:(

n
x

)
Therefore, it may be desirable to restrict the minimum and

maximum probability tiers used so that the number of func-
tionally unique tags at any probability tier does not fall below
a chosen minimum. This means that the number of practi-
cally usable probability tiers may be less than n. For exam-
ple, if one uses n = 64 components then one may only use
tags with at least 8 components and no more than 56, which
ensures that the number of functionally unique tags in any
probability tier is at least

(64
8

)
≈ 232.

The number of nonzero components a in each user key
also affects the range and number of probability tiers: lower
values of a allow a wider range of probability tiers, but fewer
functionally unique user keys. Individual applications will
need to determine a suitable trade-off. Figure 5.4 visualizes

Nonzero Components Users (to nearest power of 2)
4 219

8 232

12 241

Figure 2: Comparison of available probability tiers with IPE
dimension n = 64 with various values of a (nonzero user key
components). Lower values of a give greater flexibility in
probability choice but support fewer users.

the available probability tiers and number of user keys by the
number of nonzero user key components.

6 Practical Security

In practice, the security of any BBT scheme will require that
an adversary does not have access to too many keys. With
enough keys, it is possible for an adversary to approximate
the trial probability. As with any distributed system, the se-
curity of BBT in a system will break down if an adversary
compromises enough nodes. In this section we first consider
ways an adversary might attempt to compromise a system
and then develop a model that quantifies the amount of infor-
mation an attacker learns about trials based on the number of
compromised nodes.

One of the most obvious way an adversary may attempt
to compromise a system is a Sybil attack. In a Sybil at-
tack, a single adversary creates multiple fake identities and
appears to the network as many users instead of one [14].
Fortunately, there are wide range of known defenses against
Sybil attacks for different domains. The authority can at-
tempt to manually attempt to verify node identities before
issuing user keys. In cases where this is impractical, auto-
mated defenses exist. Social network-based defenses such as
SybilGuard [38], SybilLimit [37], and SybilInfer [13] are ca-
pable of detecting Sybil nodes using the social relationships
between nodes in the network, under the assumption that at-
tackers are unable to create many trust relationships with le-
gitimate users. Behavior-based schemes seek to distinguish

USENIX Association 28th USENIX Security Symposium 1491

between real and Sybil nodes via behaviors such as network
activity and movement. For example, both work by Abbas
et al. [1] and Jan et al. [17] utilize the heterogeneity of radio
signals to detect Sybil attackers in MANETs and Wireless
Sensor Networks respectively. Puzzle-based defenses such
as SybilControl [22] utilize a proof of work based approach
to mitigating Sybil attacks. Lastly, new approaches which
leverage smart contracts, such as that proposed by Bochem
et al. [7] put an economic price on Sybil identities.

Another simple attack is possible if a protocol misuses
BBTs. For example, if a protocol requires multiple trials at
the same probability protocol, then even a single user may
be able to gain significant information about the probability
of the associated tags. If a user observes several tags and
knows (either from protocol specification or otherwise) that
the tags all use the same probability parameter, then the user
may use the differing results from the tags to approximate
their shared probability.

In the event that an attacker does obtain multiple trial
results, it is critical that we understand how much can be
learned. The following subsections analyze the amount of
knowledge that an attacker gains from multiple trial results,
in both the ideal and the practical IPE schemes. Whether or
not this amount of information leakage is considered accept-
able is ultimately application-dependent.

Attacks on the Ideal Scheme

In an ideal BBT construction, the adversary learns only the
trial results corresponding to the keys that it holds. If the ad-
versary with n keys has no auxiliary information about the
underlying distribution of success probabilities, then its best
estimate for the success probability of a tag is x

n where x
is the number of observed successes. A confidence interval
can also be computed to measure the uncertainty in this es-
timate. As an example, Figure 3 shows the upper and lower
bounds of a 95% confidence interval on a tag with p = 0.5
as the number of the adversary’s keys increases. The con-
fidence interval is computed assuming that the adversary’s
trial results approximate the true tag probability as closely as
possible, which is the best possible case for an attacker. We
use a normal approximation to compute the confidence inter-
val. Figure 3 shows that the attacker’s knowledge increases
with more trials. The attacker gains information rapidly at
first, but trials beyond the first 10-15 bring diminishing re-
turns. After 100 trials, the adversary is 95% confident that
0.4 < p < 0.6.

However, if the adversary has a priori information on the
underlying distribution of success probabilities, then the cal-
culation is different. For example, if an adversary knows
that all tags are drawn from discrete probability tiers (as in
the case of the IPE-based scheme), then the adversary can
use Bayesian inference to compute the likelihood that a tag
comes from any tier given the a priori knowledge and the

Figure 3: The upper and lower bounds of a 95% confidence
interval for the probability of a tag with p= 0.5, as computed
by an attacker whose trial results approximate a 50% success
rate as closely as possible.

trial outcomes. Bayes’ theorem gives the likelihood that a
tag is from tier T given trial results R as:

P(T |R) = P(T)P(R|T)
P(R)

(3)

where P(T) is the prior likelihood of a probability tier
T , P(R|T) can be modeled as a binomial distribution, and
P(R) can be computed as ∑P(R|Ti)P(Ti) for each probability
tier Ti. This represents, from the adversary’s point of view,
the likelihood that a tag comes from a given probability tier
given the observed trial results. This serves as an effective
measure of what the adversary knows about the probability
of a trial associated with the tag.

Figure 4 shows the expected view of an attacker in the
ideal discrete case for two different tags in a simplified model
that includes only 4 probability tiers. The tiers used are se-
lected at roughly equal intervals from the tiers available in
the IPE scheme with n = 64, and are listed in table 2. The
attacker’s confidence in each probability tier was computed
using the Bayesian model outlined above and taken as an av-
erage over all possible attacker trial results (weighted using
the binomial distribution for the likelihood of each result).
We assume that each probability tier is equally likely to an
attacker as a prior likelihood. As the number of trial results
available to the attacker increases, the confidence in the true
probability tier increases while the confidence in other tiers
decreases.

Attacks on the IPE Scheme

We know that with ideal security, only the trial results are
learned. In the IPE scheme, additional information is leaked
(constrained by leakage function in the security proof). We

1492 28th USENIX Security Symposium USENIX Association

Figure 4: An attacker’s view of two tags in the ideal discrete case, using a simplified model with 4 probability tiers. Each graph
shows the attacker’s expected confidence in each probability tier as a function of the number of trial results available to the
attacker. The left graph shows the case where the true probability of the tag is p = 0.725, while the right graph shows a tag with
p = 0.8.

Nonzero Components p Prior Likelihood

9 0.725 0.25
11 0.800 0.25
16 0.898 0.25
56 1.000 0.25

Table 2: Distribution of tags used in analysis.

wish to quantify how much an attacker can learn from the
trial results, and how much more can be learned from the
leaked information in the IPE scheme.

Essentially, the attacker can use information about the lo-
cation of nonzero components in user keys to narrow down
the set of possible tags. Knowing the components in each
user key, together with their trial results for a tag, allows the
attacker to quickly rule out any tag configurations that are
inconsistent with the observed trial results.

The leakage function of the security proof takes this into
account by allowing the public key of the underlying IPE
scheme to leak. Since the public key is intentionally public
in an IPE scheme, clearly this does not break the security
guarantees of the underlying IPE; however, it does allow an
adversary to potentially learn more about tags than the ideal
case. Recall that the IPE public key allows one to encrypt
a message under an arbitrary vector and obtain the cipher-
text. In a BBT scheme, the IPE ciphertexts corresponds to
BBT tags. Therefore, an adversary with the IPE public key
can generate arbitrary tags, which allows the adversary to
test user keys (but not tags) for the presence of any non-zero
components. By repeated testing an adversary can determine
exactly which components are zero and nonzero in each user
key. In the rest of this analysis we assume the worst-case;

that is, that the adversary already has access to the upper
bound of information allowed by our security proof.

If an adversary knows which components in each user key
are nonzero, then it can narrow the set of possible tags to
those that give the same trial results for the same keys. Now,
the adversary can estimate P(R|T) as the proportion of possi-
ble tags from a tier that produce the same results when com-
bined with same set of keys. For example, if trial result of
testing a tag with one user key indicates that the two vectors
are orthogonal, then any tags that share a nonzero component
with the key are eliminated as possibilities. The attacker can
count the number of consistent tags at each probability tier,
and divide by the total number of possible tags in that tier
to obtain a better estimate of P(R|T). Again, P(R) can be
computed as ∑P(R|Ti)P(Ti). The adversary can then again
compute the overall likelihood that a tag comes from a given
probability tier using the Bayesian inference described by
equation 3.

Comparison

In order to determine the true impact of this attack, we com-
pare the security of the IPE scheme to the ideal case by mod-
elling two adversaries that each calculate the likelihood of
tags differently. The component-aware adversary uses the
full knowledge of the user keys components to compute the
exact number of tags in each probability tier that could have
produced the observed trial results, and then combines this
with the prior likelihood of each probability tier to produce a
confidence that a given tag comes from a given tier. Remem-
ber that no PPT adversary could hope to further distinguish
between possible tags that would have produced the same
trial results, since this directly contradicts the IPE security

USENIX Association 28th USENIX Security Symposium 1493

definition.
On the other hand, the naive adversary uses only the num-

ber of success and number of failures to compute the like-
lihood of probability tiers. The likelihood of an observed
result given a probability tier is modeled only as a binomial
distribution. This is the best that an adversary could hope to
do under the ideal security definition, where only trial results
are revealed.

Figures 5 and 6 show a comparison of the two attacks in
one case. For simulating the two attacks we chose parame-
ters that provide a reasonable balance of performance, secu-
rity, and number of users supported: n = 64 as the dimension
of the IPE scheme and a = 8 for the number of nonzero com-
ponents per user key. For simplicity, we limited tags to only
a set of a few that provided roughly evenly-spaced probabil-
ity tiers from about 0.72 to 1.0, in 0.10 intervals. Table 2 lists
the exact tags used. For the prior distribution of tags, each
probability tier was assumed to be equally likely.

For each attack, we sampled a given number of random
keys, ran the attack with the keys on a randomly sampled tag
at each probability tier, and then reported the resulting com-
puted distribution of tag likelihood for each tag. We repeated
this process many times to obtain an average over uniformly
random sampled n keys and tags sampled randomly from our
distribution of probability tiers. Shannon entropy, defined as
−∑ pi log(pi) can be used as a measure of the uncertainty
over a distribution [33]. After each sampled attack, we com-
puted the entropy of the computed probability tier distribu-
tion. We then computed the average expected entropy over
the sampled sets of user keys and tags and graphed it as a
function of number of user keys held by an attacker. Fig-
ure 5 shows that the difference in the attacker uncertainty is
minimal between the ideal and IPE schemes. The expected
entropy in a tag distribution from an attacker’s point of view
diminishes with each additional key known, and it dimin-
ishes slightly faster for the IPE-based scheme than it does in
an ideal scenario.

We also computed the expected Kullback-Leibler diver-
gence between the component-aware model and the naive
model, using the same tag distribution and random sampling
method. The Kullback-Leibler divergence between two dis-
tributions P and Q is defined as −∑ pi log(pi

qi
). This diver-

gence measures the amount of information that an attacker
gains about a tag probability by exploiting the information
leakage in an IPE-based BBT scheme. Figure 6 shows that
the additional information leaked to an attacker is minimal
and quickly levels off around 0.02 bits.

7 Evaluation

We implemented IPE-based BBT using the adaptively
attribute-hiding IPE scheme by Chen, Gong, and Wee, which
is the current state of the art [10]. Chen et al. propose
multiple variations with different performance characteris-

Figure 5: Expected entropy of computed tag likelihood as a
function of attacker’s number of keys.

Figure 6: Expected Kullback-Leibler divergence between the
component-aware model and the naive model as a function
of attacker’s number of keys.

1494 28th USENIX Security Symposium USENIX Association

Object Size (in elements)
Public key 8n+16
User key 7
Tag 4n+4

Table 3: Size of objects in IPE-BBT implemented with IPE
scheme from Chen et al., in number of group elements.

tics using different standard assumptions. We implemented
the variant described in Section 4.4 of their paper, which is
proved secure under the external decisional linear assump-
tion.

Under this scheme, tags and the public key both require
space that is O(n) in the number of dimensions, or O(log(l))
in the number of functionally unique user keys. User keys
have a constant space requirement of 7 group elements. Ta-
ble 3 details the exact space requirements for each object.

Setup, trials, user key generation, and tag generation all
run in O(n) time. For a typical number of dimensions, the
trial run time is dominated by the pairing operations. Cru-
cially, trials in this scheme require only 7 pairing operations,
regardless of the number of dimensions.

We tested the speed of this implementation on a single
core of an Intel Xeon E5-2680 v4 CPU clocked at 2.40GHz.
For pairing operations, we used the Stanford Pairing-Based
Cryptography (PBC) library [23, 24]. The curve used was of
PBC’s “Type A,” which are curves of the form y2 = x3 + x
over the field Fq, where q is a prime such that q = 3 mod 4.
q was chosen as a random 1024-bit prime, and the parameter
r was chosen as a 224-bit number. Since the curve has em-
bedding degree k = 2, these parameters are equivalent to the
strength of an 112-bit symmetric key, according to the IEEE
Standards for pairing-based cryptography [16].

Although the performance of all BBT steps must be rea-
sonable, the Trial step is of the most concern. Trials are ex-
pected to be carried out by clients who may have limited re-
sources, such as mobile devices. In contrast, Setup, TagGen,
and KeyGen are all expected to be carried out by the sin-
gle authority which would likely have access to significantly
more resources.

Figure 7 shows the runtime of each BBT algorithm in our
implementation using Chen, Gong, and Wee’s IPE scheme.
As expected, each algorithm shows a clear linear trend as
the dimension is increased. As previously mentioned, the
performance of the trial algorithm is the most critical, since
disconnected clients with limited computing resources will
be running it. Our results show that the trial algorithm is
quite practical with parameters that can support a large num-
ber of users. For example, with n = 64 dimensions and a = 8
nonzero components per user key, there are approximately
232 functionally unique user keys and a trial takes about 29
ms.

8 Applications

Any system that requires participants to take actions prob-
abilistically can use BBTs to enhance privacy. Specifically,
we envision several possible applications for BBTS in secure
distributed systems. We provide two example scenarios that
could benefit from deployment of blinded Bernoulli trials.

Probabilistic Forwarding of Content in a Network

Some networks (especially peer-to-peer networks) employ
random walks based on probabilistic forwarding of con-
tent for privacy reasons. For example, in the anonymous
communication systems such as AP3 [26] and DiscountAN-
ODR [36], when presented with a message, nodes randomly
decide to either forward messages to another node in the mix
or to send the message directly to its destination. The ran-
dom process of forwarding obscures the origin of a message:
when a node receives a message, it does not know if the
message originated from the immediate preceding node or
if it comes from 1, 2, or more hops away from that node.
The use of the random coin rather than full circuit specifica-
tion relieves the sending node from having to maintain state
about the network topology outside of its immediate neigh-
bors. The network uses a parameter p to specify the proba-
bility that nodes forward messages on to another node.

This approach introduces a trade-off between anonymity
and network overhead: for lower values of p, messages take
shorter paths (on average) through the network, but an ob-
server can narrow down the set of likely originators to a
smaller set based on the overlay distance to mix nodes and
the distribution of random walk lengths. Higher values of p
increase the number of possible nodes that might be the orig-
inator, but reduce network performance due to longer ran-
dom walks. The authors of AP3 propose p between 0.5 and
0.9.

Using BBTs we can construct a network that allows for
differential service, providing some users faster traffic, while
still retaining the anonymity of longer paths. For example,
consider a system with two classes of traffic. The Priority
Class wants higher performance, and therefore shorter ran-
dom walks, achievable with a low value of p. On the other
hand, the Slow Class has no performance demands, so it
can tolerate a higher value of p, increasing the size of its
anonymity set. Without BBTs the traffic classes are trivial to
distinguish, and as a result Priority traffic can be analyzed in
a vacuum, leading to small anonymity sets. Marking a mes-
sage’s p with a BBT means that the two classes can not be
distinguished based on this value, and in turn the faster class
can benefit from the adversary’s uncertainty about which
peers should be included in the set of possible originators.
This approach works especially well when the majority of
the traffic falls into the Slow Class.

To evaluate the utility of BBT in this system, we simulated

USENIX Association 28th USENIX Security Symposium 1495

Figure 7: Runtimes for individual steps of IPE-based BBT implementation, by the dimension of the IPE.

a network that uses probabilistic forwarding with two traffic
classes. Priority traffic uses p = 0.5, while Slow traffic in
our test network uses p = 0.9. We simulated the operation of
a network containing 1,000 nodes, with each node maintain-
ing at least 4 connections to other nodes. The resulting graph
had an average mixing time of slightly more than 7. In this
network, Priority traffic represents 10% of total messages,
and it is assumed that the adversary knows both the overall
proportion of Priority traffic in the network and the full net-
work topology. As expected, Figure 8 shows that Slow traf-
fic takes drastically longer paths through the network, while
Priority traffic reaches its destination much quicker. If an ob-
server can distinguish Priority traffic, then this creates a pri-
vacy concern: because Priority traffic originates from nearby
nodes with high probability, a node that receives it and rec-
ognizes it as Priority traffic has a high degree of confidence
that the sender is in the small set of nodes that are nearby
in the topology. However, if a BBT scheme is used to blind
the priority class of traffic in the network, then Priority traf-
fic can benefit from the reduced latency without resorting to
unacceptably small anonymity sets. As Figure 9 illustrates,
using BBT in the network increases the anonymity set sizes
to levels that are near those of the Slow class. On average,
anonymity sets for the merged class of traffic resulting from
BBT blinding of priority is slightly lower than if only slow

traffic is considered. This is because the adversary knows
the relative frequency of fast and slow traffic, and can adjust
computation of likely nodes based on this information.

Beyond the example systems of AP3 and DiscountAN-
ODR, many anonymous communication protocols feature a
system parameter taking the form of a probability. Exam-
ples include Freenet [12], Crowds [35], and Imprecise Rout-
ing [11]. In each of these protocols, BBT can be used in
a similar manner to adjust network behavior, allowing for
different security properties while blending in with standard
traffic.

Intrusion Detection in Wireless Sensor Networks

Another application for BBTs is masking how many nodes
are conducting a specific behavior. As an example, con-
sider a wireless sensor networks comprised of a large num-
ber of low-cost embedded devices conducting measurements
in an environment [32]. They rely on short-range wireless
communication between low-power devices (often battery-
powered), which makes power consumption a top concern.
Because of the communication range constraints and large
number of devices over a wide area, direct connectivity is
limited; instead sensors distribute messages from device to
device over multiple hops in the wireless network.

1496 28th USENIX Security Symposium USENIX Association

Figure 8: The distribution of path lengths for different traffic
classes in the simulated network. Priority traffic takes signif-
icantly fewer hops to reach its destination, which translate to
improved reliability and decreased latency.

Figure 9: The distribution of anonymity set sizes for traffic
classes. Without BBT, the anonymity set for nodes sending
Priority traffic is less than 10% of the network. If the classes
are indistinguishable, the anonymity set size is more than
50% of the network.

Sensor networks deployed in a hostile environment face
the additional complication that certain compromised sen-
sors may not be trustworthy. Adversaries may attempt to fal-
sify sensor readings from compromised nodes. Recent work
has examined methods for detecting compromised nodes in
sensor networks [9, 34, 39]. In general, prior work has dealt
with detecting falsified results by comparing them to a con-
sensus of trustworthy results, under the assumption that an
adversary is unable to compromise enough nodes to form a
false consensus.

Of course, building a consensus requires a large number
of measurements. Again, this leads to a trade-off between
security and efficiency: employing many nodes in redundant
measurements to build a consensus raises the bar for an at-
tacker, but each sensor measurement uses energy (which is
an extremely limited resource in wireless sensor networks).
An obvious compromise would be to perform some fraction
of measurements using only a small number of sensors, and
sometimes use large-scale “audit” measurements to provide
the necessary data for intrusion detection. If the metadata
associated with a measurement reveals the number of nodes
involved in the measurement, then this solution is vulnerable
to an obvious attack: an adversary can simply refrain from
lying during the audit measurements.

BBTs mitigate the aforementioned attack by limiting the
adversary’s ability to distinguish typical measurements from
audit measurements. The authority can control the scope of
the measurement using the probability of a tag, and nodes
can decide their involvement in the measurement with a trial.
This prevents the attacker from selectively influencing mea-
surements without detection. In addition, the authority can
easily verify that nodes are not returning results for spurious
measurements by duplicating the deterministic trial results
and verifying that the node originating the measurement was
in fact one of the nodes directed to take the measurement.

We evaluated the effect of applying this technique on a
small network of sensor nodes. We modeled the network
as 100 independent sensor nodes, each capable of a fixed
finite number of measurements before it is considered ex-
pired. The adversary controls one node. We assume that
the malicious node is detected if it lies on a measurement
that is performed by at least half of the nodes. For normal
measurements, the network uses a tag with p = 0.05. For
audit measurements, the network sets p = 0.6 (this ensures
with high probability that at least half of the network does
actually perform the measurement). We also assume that the
authority verifies that each returned result is tied to an ac-
tual successful trial. This can be accomplished in general by
requiring that nodes attach their user key to each result, en-
crypted so that only the authority can read it. Note that this is
consistent with the threat model which already assumes that
the authority has unlimited access to user keys.

By varying the “audit rate” (the fraction of measurements
that are audit measurements), the authority can select an arbi-

USENIX Association 28th USENIX Security Symposium 1497

Audit Rate Probability of
Detection

Relative Lifetime

0.0 0.00 12.0
0.2 0.71 3.7
0.4 0.86 2.2
0.6 0.93 1.6
0.8 0.97 1.2
1.0 0.99 1.0

Table 4: The trade-off between sensor lifetime and detection
probability. Here, the audit rate is the proportion of measure-
ments that are audit measurements; the detection probability
is the probability that a single lie is detected; and the relative
lifetime is the lifetime of the entire network relative to the
base case where all measurements are audit measurements.
Allowing a small probability of an undetected attack can sig-
nificantly increase the lifetime of the network.

trary trade-off between efficiency (conserving resources for
more useful measurements) and security (performing redun-
dant measurements to detect attacks). As the audit rate in-
creases, so does the probability of detecting a malicious mea-
surement; on the other hand, as the audit rate decreases, the
lifetime of the network increases. Table 4 shows this trade-
off. We sampled audit rates and computed both the resulting
sensor lifetime and the probability that the adversary is de-
tected each time it lies. The expected sensor lifetime is re-
ported relative to the lifetime in the “safe” network (that is,
one with an audit rate of 1). Even at a relatively low audit
rate of 0.2, the probability of detection is high (71%) from
the perspective of the sensor. This is because the number of
sensors employed for normal measurements is much smaller
than the number of sensors involved in an audit measure-
ment. As a result, a given sensor is more likely to be selected
via a large audit measurement than it is to be selected for a
normal measurement.

Because the adversary cannot distinguish normal and audit
measurements, it cannot selectively lie. This effectively lim-
its the number of times an adversary can lie without detec-
tion (with overwhelming probability). Without using BBT,
the adversary is only prevented from lying during audit mea-
surements; otherwise, it can forge measurements without de-
tection indefinitely. With BBT, if the adversary has a 50%
chance of detection per measurement (for example) then it
can expect to lie only about twice before detection, on aver-
age.

Discussion

In practice, the bandwidth and computation overhead of a
BBT scheme will determine its usefulness for any particu-
lar application. In the first application, we assume that the
overhead of computing a trial is low relative to the work re-
quired for a message forward. This assumption is reason-

able, for example, in AP3, where a single forward requires a
distributed hash table lookup and therefore multiple round-
trip messages with peers. In this scenario the combined la-
tency of one forward can be significantly slower than a trial
in the IPE-based BBT construction.

For the sensor network application, the energy savings of
skipping measurements will have to be weighed against the
cost of performing the trials at each sensor. Depending on
resource availability, different BBT constructions might be
more appropriate. For example, if bandwidth is cheap but
computational resources are constrained, then the IND-CPA
construction presented 3 might actually be more suitable.

9 Conclusion

Although many distributed systems make use of probabilis-
tic actions, systems so far either specify the probability as
a fixed parameter or reveal the varying probabilities to each
user. Blind Bernoulli trials are a privacy-enhancing measure
that preserves the semantics of Bernoulli trials across a set of
nodes, while hiding the exact parameters from individuals.

Fundamentally, Blind Bernoulli trials reveal the trial out-
come without revealing the trial parameters. We create a def-
inition that formalizes the idea that users should learn “no
more” about the trial parameters than they would by receiv-
ing only the trial results corresponding to the keys held, and
explore some possible solutions that meet our proposed def-
inition.

Since BBTs are a special case of functional encryption
(FE), they can easily be implemented with any FE primi-
tive that allows arbitrary functions. However, since practical
general functional encryption is not currently available, there
is a need for a specific scheme that achieves the same results
with a more efficient algorithm. Existing forms of functional
encryption for specific classes of functions can be used to
instantiate much more practical Blind Bernoulli trials, al-
beit with some security loss. Specifically, we can construct
a near-ideal BBT scheme from inner product encryption by
varying the number of nonzero components in tags to control
the probability of their trials.

We prove the near-ideal security of the IPE-based scheme
under our definition by showing a reduction to the security
of the underlying IPE scheme. This definition takes into ac-
count the security loss and places an upper bound on exactly
how much information is revealed to an adversary, even one
who controls multiple keys. By simulating the attacker’s
point of view on a large number of trials and keys, we can
measure the average uncertainty towards the distribution of
possible tags for an adversary with multiple keys: the ex-
pected entropy of a tag distribution decreases steadily with
the number of trial results known. We compare the entropy
loss in the ideal case to the IPE-based BBT scheme and show
that the additional entropy loss in the IPE case is small.

1498 28th USENIX Security Symposium USENIX Association

Finally, we implement the IPE-based scheme in software
and analyze its efficiency. We show that, in a system with
realistic parameters, trials can be executed in a reasonable
amount of time. Also, tags and keys in the IPE scheme are
small (logarithmic in the number of users). Even with a rela-
tively small number of users (on the order of 100), this is less
storage than our simple semantically-secure cipher solution
with linear keys.

We conclude that Blind Bernoulli trials can be efficiently
implemented using IPE, and that they are an effective way
obscure probability parameter metadata. This paper pro-
poses two potential applications where this can prevent at-
tacks that would otherwise exploit knowledge of the prob-
ability parameter. We hope that others in the security and
distributed systems communities will explore additional uses
for the primitive.

References

[1] ABBAS, S., MERABTI, M., LLEWELLYN-JONES, D.,
AND KIFAYAT, K. Lightweight sybil attack detection
in manets. IEEE systems journal 7, 2 (2013), 236–248.

[2] AGRAWAL, S., AGRAWAL, S., BADRINARAYANAN,
S., KUMARASUBRAMANIAN, A., PRABHAKARAN,
M., AND SAHAI, A. Function Private Functional En-
cryption and Property Preserving Encryption - New
Definitions and Positive Results. IACR Cryptology
ePrint Archive (2013).

[3] AGRAWAL, S., FREEMAN, D. M., AND VAIKUN-
TANATHAN, V. Functional Encryption for Inner Prod-
uct Predicates from Learning with Errors. In Advances
in Cryptology – EUROCRYPT 2010. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 21–40.

[4] BARKER, E. SP 800-57 Part 1 Rev. 4: Recommenda-
tion for Key Management Part 1: General, Jan. 2016.

[5] BISHOP, A., JAIN, A., AND KOWALCZYK, L.
Function-Hiding Inner Product Encryption. In Ad-
vances in Cryptology – ASIACRYPT 2015. Springer,
Berlin, Heidelberg, Berlin, Heidelberg, Nov. 2015,
pp. 470–491.

[6] BLUM, M. Coin flipping by telephone a protocol for
solving impossible problems. ACM SIGACT News 15,
1 (1983), 23–27.

[7] BOCHEM, A., LEIDING, B., AND HOGREFE, D. Un-
chained identities: Putting a price on sybil nodes in
mobile ad hoc networks. Security and Privacy in Com-
munication Networks (SecureComm 2018). Singapore
(August 2018) (2018).

[8] BONEH, D., SAHAI, A., AND WATERS, B. Functional
Encryption - Definitions and Challenges. TCC 6597,
Chapter 16 (2011), 253–273.

[9] CHATZIGIANNAKIS, V., PAPAVASSILIOU, S., GRAM-
MATIKOU, M., AND MAGLARIS, B. Hierarchi-
cal anomaly detection in distributed large-scale sen-
sor networks. In Computers and Communications,
2006. ISCC’06. Proceedings. 11th IEEE Symposium on
(2006), IEEE, pp. 761–767.

[10] CHEN, J., GONG, J., AND WEE, H. Improved
inner-product encryption with adaptive security and
full attribute-hiding. In International Conference on the
Theory and Application of Cryptology and Information
Security (2018), Springer, pp. 673–702.

[11] CIACCIO, G. Improving sender anonymity in a struc-
tured overlay with imprecise routing. In International
Workshop on Privacy Enhancing Technologies (2006),
Springer, pp. 190–207.

[12] CLARKE, I., SANDBERG, O., WILEY, B., AND
HONG, T. W. Freenet - A Distributed Anonymous
Information Storage and Retrieval System. Workshop
on Design Issues in Anonymity and Unobservability
(2000).

[13] DANEZIS, G., AND MITTAL, P. Sybilinfer: Detecting
sybil nodes using social networks. In NDSS (2009),
San Diego, CA, pp. 1–15.

[14] DOUCEUR, J. R. The Sybil Attack. IPTPS (2002).

[15] GOLDWASSER, S., KALAI, Y., POPA, R. A.,
VAIKUNTANATHAN, V., AND ZELDOVICH, N.
Reusable garbled circuits and succinct functional en-
cryption. In the 45th annual ACM symposium (New
York, New York, USA, 2013), ACM Press, pp. 555–
564.

[16] 1363.3-2013 - IEEE Standard for Identity-Based Cryp-
tographic Techniques using Pairings. IEEE, 2013.

[17] JAN, M. A., NANDA, P., HE, X., AND LIU,
R. P. A sybil attack detection scheme for a central-
ized clustering-based hierarchical network. In Trust-
com/BigDataSE/ISPA, 2015 IEEE (2015), vol. 1, IEEE,
pp. 318–325.

[18] KATZ, J., SAHAI, A., AND WATERS, B. Predicate En-
cryption Supporting Disjunctions, Polynomial Equa-
tions, and Inner Products. EUROCRYPT 4965, Chapter
9 (2008), 146–162.

[19] KAWAI, Y., AND TAKASHIMA, K. Predicate- and
Attribute-Hiding Inner Product Encryption in a Public
Key Setting. Pairing 8365, Chapter 7 (2013), 113–130.

USENIX Association 28th USENIX Security Symposium 1499

[20] KOBLITZ, N. Elliptic Curve Cryptosystems. Mathe-
matics of Computation 48, 177 (Jan. 1987), 203–209.

[21] LEWKO, A., OKAMOTO, T., SAHAI, A.,
TAKASHIMA, K., AND WATERS, B. Fully Secure
Functional Encryption: Attribute-Based Encryp-
tion and (Hierarchical) Inner Product Encryption.
In Advances in Cryptology – EUROCRYPT 2010.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 62–91.

[22] LI, F., MITTAL, P., CAESAR, M., AND BORISOV,
N. Sybilcontrol: Practical sybil defense with compu-
tational puzzles. In Proceedings of the seventh ACM
workshop on Scalable trusted computing (2012), ACM,
pp. 67–78.

[23] LYNN, B. Stanford Pairing-Based Cryptography
Library. https://crypto.stanford.edu/pbc/,
2006–2013.

[24] LYNN, B. On the implementation of pairing-based
cryptosystems. Dissertation, 2007. https://crypto.
stanford.edu/pbc/thesis.pdf.

[25] MENEZES, A., AND VANSTONE, S. A. Elliptic Curve
Cryptosystems and Their Implementations. Journal of
Cryptology (1993).

[26] MISLOVE, A., OBEROI, G., POST, A., REIS, C., DR-
USCHEL, P., AND WALLACH, D. S. Ap3: Coopera-
tive, decentralized anonymous communication. In Pro-
ceedings of the 11th workshop on ACM SIGOPS Euro-
pean workshop (2004), ACM, p. 30.

[27] OKAMOTO, T., AND TAKASHIMA, K. Achieving
Short Ciphertexts or Short Secret-Keys for Adaptively
Secure General Inner-Product Encryption. In Advances
in Cryptology – EUROCRYPT 2010. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 138–159.

[28] OKAMOTO, T., AND TAKASHIMA, K. Adaptively
attribute-hiding (hierarchical) inner product encryp-
tion. EUROCRYPT 2012, 2012. https://eprint.

iacr.org/2011/543.

[29] OKAMOTO, T., AND TAKASHIMA, K. Fully Se-
cure Unbounded Inner-Product and Attribute-Based
Encryption. ASIACRYPT 7658, Chapter 22 (2012),
349–366.

[30] O’NEILL, A. Definitional Issues in Functional Encryp-
tion. IACR Cryptology ePrint Archive (2010).

[31] PINKAS, B., SCHNEIDER, T., SMART, N. P., AND
WILLIAMS, S. C. Secure two-party computation is
practical. In International Conference on the Theory
and Application of Cryptology and Information Secu-
rity (2009), Springer, pp. 250–267.

[32] POTTIE, G. J., AND KAISER, W. J. Wireless inte-
grated network sensors. Communications of the ACM
43, 5 (2000), 51–58.

[33] RÈNYI, A. On measures of entropy and informa-
tion. In Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics (Berkeley,
Calif., 1961), University of California Press, pp. 547–
561.

[34] SHENG, B., LI, Q., MAO, W., AND JIN, W. Outlier
detection in sensor networks. In Proceedings of the
8th ACM international symposium on Mobile ad hoc
networking and computing (2007), ACM, pp. 219–228.

[35] SHIELDS, C., AND LEVINE, B. N. A protocol for
anonymous communication over the internet. In Pro-
ceedings of the 7th ACM conference on Computer and
communications security (2000), ACM, pp. 33–42.

[36] YANG, L., JAKOBSSON, M., AND WETZEL, S. Dis-
count anonymous on demand routing for mobile ad
hoc networks. In Securecomm and Workshops, 2006
(2006), IEEE, pp. 1–10.

[37] YU, H., GIBBONS, P. B., KAMINSKY, M., AND
XIAO, F. Sybillimit: A near-optimal social network
defense against sybil attacks. In 2008 IEEE Sympo-
sium on Security and Privacy (sp 2008) (2008), IEEE,
pp. 3–17.

[38] YU, H., KAMINSKY, M., GIBBONS, P. B., AND
FLAXMAN, A. D. SybilGuard - defending against
sybil attacks via social networks. IEEE/ACM Trans.
Netw. (2008).

[39] ZHANG, K., SHI, S., GAO, H., AND LI, J. Un-
supervised outlier detection in sensor networks us-
ing aggregation tree. In International Conference
on Advanced Data Mining and Applications (2007),
Springer, pp. 158–169.

1500 28th USENIX Security Symposium USENIX Association

XONN: XNOR-based Oblivious Deep Neural Network Inference

M. Sadegh Riazi
UC San Diego

Mohammad Samragh
UC San Diego

Hao Chen
Microsoft Research

Kim Laine
Microsoft Research

Kristin Lauter
Microsoft Research

Farinaz Koushanfar
UC San Diego

Abstract

Advancements in deep learning enable cloud servers to pro-
vide inference-as-a-service for clients. In this scenario,
clients send their raw data to the server to run the deep learn-
ing model and send back the results. One standing chal-
lenge in this setting is to ensure the privacy of the clients’
sensitive data. Oblivious inference is the task of running
the neural network on the client’s input without disclosing
the input or the result to the server. This paper introduces
XONN (pronounced /z2n/), a novel end-to-end framework
based on Yao’s Garbled Circuits (GC) protocol, that pro-
vides a paradigm shift in the conceptual and practical real-
ization of oblivious inference. In XONN, the costly matrix-
multiplication operations of the deep learning model are re-
placed with XNOR operations that are essentially free in GC.
We further provide a novel algorithm that customizes the
neural network such that the runtime of the GC protocol is
minimized without sacrificing the inference accuracy.

We design a user-friendly high-level API for XONN, al-
lowing expression of the deep learning model architecture
in an unprecedented level of abstraction. We further pro-
vide a compiler to translate the model description from high-
level Python (i.e., Keras) to that of XONN. Extensive proof-
of-concept evaluation on various neural network architec-
tures demonstrates that XONN outperforms prior art such
as Gazelle (USENIX Security’18) by up to 7×, MiniONN
(ACM CCS’17) by 93×, and SecureML (IEEE S&P’17) by
37×. State-of-the-art frameworks require one round of in-
teraction between the client and the server for each layer
of the neural network, whereas, XONN requires a constant

round of interactions for any number of layers in the model.
XONN is first to perform oblivious inference on Fitnet archi-
tectures with up to 21 layers, suggesting a new level of scala-
bility compared with state-of-the-art. Moreover, we evaluate
XONN on four datasets to perform privacy-preserving med-
ical diagnosis. The datasets include breast cancer, diabetes,
liver disease, and Malaria.

1 Introduction

The advent of big data and striking recent progress in ar-
tificial intelligence are fueling the impending industrial au-
tomation revolution. In particular, Deep Learning (DL) —a
method based on learning Deep Neural Networks (DNNs)
—is demonstrating a breakthrough in accuracy. DL mod-
els outperform human cognition in a number of critical tasks
such as speech and visual recognition, natural language pro-
cessing, and medical data analysis. Given DL’s superior per-
formance, several technology companies are now developing
or already providing DL as a service. They train their DL
models on a large amount of (often) proprietary data on their
own servers; then, an inference API is provided to the users
who can send their data to the server and receive the analy-
sis results on their queries. The notable shortcoming of this
remote inference service is that the inputs are revealed to the
cloud server, breaching the privacy of sensitive user data.

Consider a DL model used in a medical task in which
a health service provider withholds the prediction model.
Patients submit their plaintext medical information to the
server, which then uses the sensitive data to provide a med-
ical diagnosis based on inference obtained from its propri-
etary model. A naive solution to ensure patient privacy is
to allow the patients to receive the DL model and run it
on their own trusted platform. However, this solution is
not practical in real-world scenarios because: (i) The DL
model is considered an essential component of the service
provider’s intellectual property (IP). Companies invest a sig-
nificant amount of resources and funding to gather the mas-
sive datasets and train the DL models; hence, it is important
to service providers not to reveal the DL model to ensure
their profitability and competitive advantage. (ii) The DL
model is known to reveal information about the underlying
data used for training [1]. In the case of medical data, this
reveals sensitive information about other patients, violating
HIPAA and similar patient health privacy regulations.

Oblivious inference is the task of running the DL model
on the client’s input without disclosing the input or the re-

USENIX Association 28th USENIX Security Symposium 1501

sult to the server itself. Several solutions for oblivious in-
ference have been proposed that utilize one or more cryp-
tographic tools such as Homomorphic Encryption (HE) [2,
3], Garbled Circuits (GC) [4], Goldreich-Micali-Wigderson
(GMW) protocol [5], and Secret Sharing (SS). Each of these
cryptographic tools offer their own characteristics and trade-
offs. For example, one major drawback of HE is its compu-

tational complexity. HE has two main variants: Fully Ho-
momorphic Encryption (FHE) [2] and Partially Homomor-
phic Encryption (PHE) [3, 6]. FHE allows computation on
encrypted data but is computationally very expensive. PHE
has less overhead but only supports a subset of functions or
depth-bounded arithmetic circuits. The computational com-
plexity drastically increases with the circuit’s depth. More-
over, non-linear functionalities such as the ReLU activation
function in DL cannot be supported.

GC, on the other hand, can support an arbitrary function-
ality while requiring only a constant round of interactions
regardless of the depth of the computation. However, it has
a high communication cost and a significant overhead for
multiplication. More precisely, performing multiplication
in GC has quadratic computation and communication com-
plexity with respect to the bit-length of the input operands.
It is well-known that the complexity of the contemporary
DL methodologies is dominated by matrix-vector multiplica-
tions. GMW needs less communication than GC but requires
many rounds of interactions between the two parties.

A standalone SS-based scheme provides a computation-
ally inexpensive multiplication yet requires three or more
independent (non-colluding) computing servers, which is a
strong assumption. Mixed-protocol solutions have been pro-
posed with the aim of utilizing the best characteristics of
each of these protocols [7, 8, 9, 10]. They require secure
conversion of secrets from one protocol to another in the
middle of execution. Nevertheless, it has been shown that
the cost of secret conversion is paid off in these hybrid solu-
tions. Roughly speaking, the number of interactions between
server and client (i.e., round complexity) in existing hybrid
solutions is linear with respect to the depth of the DL model.
Since depth is a major contributor to the deep learning ac-
curacy [11], scalability of the mixed-protocol solutions with
respect to the number of layers remains an unsolved issue for
more complex, many-layer networks.

This paper introduces XONN, a novel end-to-end frame-
work which provides a paradigm shift in the conceptual
and practical realization of privacy-preserving interference
on deep neural networks. The existing work has largely
focused on the development of customized security proto-
cols while using conventional fixed-point deep learning al-
gorithms. XONN, for the first time, suggests leveraging the
concept of the Binary Neural Networks (BNNs) in conjunc-
tion with the GC protocol. In BNNs, the weights and acti-
vations are restricted to binary (i.e, ±1) values, substituting
the costly multiplications with simple XNOR operations dur-

ing the inference phase. The XNOR operation is known to be
free in the GC protocol [12]; therefore, performing oblivious
inference on BNNs using GC results in the removal of costly
multiplications. Using our approach, we show that oblivious
inference on the standard DL benchmarks can be performed
with minimal, if any, decrease in the prediction accuracy.

We emphasize that an effective solution for oblivious in-
ference should take into account the deep learning algo-
rithms and optimization methods that can tailor the DL
model for the security protocol. Current DL models are
designed to run on CPU/GPU platforms where many multi-
plications can be performed with high throughput, whereas,
bit-level operations are very inefficient. In the GC protocol,
however, bit-level operations are inexpensive, but multipli-
cations are rather costly. As such, we propose to train deep
neural networks that involve many bit-level operations but
no multiplications in the inference phase; using the idea of
learning binary networks, we achieve an average of 21× re-
duction in the number of gates for the GC protocol.

We perform extensive evaluations on different datasets.
Compared to the Gazelle [10] (the prior best solution) and
MiniONN [9] frameworks, we achieve 7× and 93× lower
inference latency, respectively. XONN outperforms DeepSe-
cure [13] (prior best GC-based framework) by 60× and
CryptoNets [14], an HE-based framework, by 1859×. More-
over, our solution renders a constant round of interactions
between the client and the server, which has a significant ef-
fect on the performance on oblivious inference in Internet
settings. We highlight our contributions as follows:

• Introduction of XONN, the first framework for privacy pre-
serving DNN inference with a constant round complexity
that does not need expensive matrix multiplications. Our
solution is the first that can be scalably adapted to ensure
security against malicious adversaries.

• Proposing a novel conditional addition protocol based on
Oblivious Transfer (OT) [15], which optimizes the costly
computations for the network’s input layer. Our protocol
is 6× faster than GC and can be of independent interest.
We also devise a novel network trimming algorithm to re-
move neurons from DNNs that minimally contribute to the
inference accuracy, further reducing the GC complexity.

• Designing a high-level API to readily automate fast adap-
tation of XONN, such that users only input a high-level
description of the neural network. We further facilitate the
usage of our framework by designing a compiler that trans-
lates the network description from Keras to XONN.

• Proof-of-concept implementation of XONN and evaluation
on various standard deep learning benchmarks. To demon-
strate the scalability of XONN, we perform oblivious infer-
ence on neural networks with as many as 21 layers for the
first time in the oblivious inference literature.

1502 28th USENIX Security Symposium USENIX Association

2 Preliminaries

Throughout this paper, scalars are represented as lower-
case letters (x ∈ R), vectors are represented as bold lower-
case letters (x ∈ Rn), matrices are denoted as capital letters
(X ∈ Rm×n), and tensors of more than 2 ways are shown us-
ing bold capital letters (X ∈ Rm×n×k). Brackets denote ele-
ment selection and the colon symbol stands for all elements
—W [i, :] represents all values in the i-th row of W .

2.1 Deep Neural Networks

The computational flow of a deep neural network is com-
posed of multiple computational layers. The input to each
layer is either a vector (i.e., x ∈ Rn) or a tensor (i.e., X ∈
Rm×n×k). The output of each layer serves as the input of the
next layer. The input of the first layer is the raw data and the
output of the last layer represents the network’s prediction
on the given data (i.e., inference result). In an image classi-
fication task, for instance, the raw image serves as the input
to the first layer and the output of the last layer is a vector
whose elements represent the probability that the image be-
longs to each category. Below we describe the functionality
of neural network layers.

Linear Layers:Linear operations in neural networks are per-
formed in Fully-Connected (FC) and Convolution (CONV)
layers. The vector dot product (VDP) between two vectors
x ∈ Rn and w ∈ Rn is defined as follows:

VDP (x,w) =
n

∑
i=1

w[i] ·x[i]. (1)

Both CONV and FC layers repeat VDP computation to gen-
erate outputs as we describe next. A fully connected layer
takes a vector x ∈ Rn and generates the output y ∈ Rm using
a linear transformation:

y =W ·x+b, (2)

where W ∈ Rm×n is the weight matrix and b ∈ Rm is a bias
vector. More precisely, the i-th output element is computed
as y[i] = VDP (W [i, :],x)+b[i].

A convolution layer is another form of linear transforma-
tion that operates on images. The input of a CONV layer
is represented as multiple rectangular channels (2D images)
of the same size: X ∈ Rh1×h2×c, where h1 and h2 are the
dimensions of the image and c is the number of channels.
The CONV layer maps the input image into an output image
Y ∈ Rh1′×h2′× f . A CONV layer consists of a weight tensor
W ∈ Rk×k×c× f and a bias vector b ∈ R f . The i-th output
channel in a CONV layer is computed by sliding the kernel
W[:, :, :, i] ∈ Rk×k×c over the input, computing the dot prod-
uct between the kernel and the windowed input, and adding
the bias term b[i] to the result.

Non-linear Activations: The output of linear transforma-
tions (i.e., CONV and FC) is usually fed to an activation
layer, which applies an element-wise non-linear transforma-
tion to the vector/tensor and generates an output with the

same dimensionality. In this paper, we particularly utilize
the Binary Activation (BA) function for hidden layers. BA

maps the input operand to its sign value (i.e., +1 or −1).

Batch Normalization: A batch normalization (BN) layer
is typically applied to the output of linear layers to normal-
ize the results. If a BN layer is applied to the output of a
CONV layer, it multiplies all of the i-th channel’s elements
by a scalar γγγ[i] and adds a bias term βββ [i] to the resulting
channel. If BN is applied to the output of an FC layer, it
multiplies the i-th element of the vector by a scalar γγγ[i] and
adds a bias term βββ [i] to the result.

Pooling: Pooling layers operate on image channels out-
putted by the CONV layers. A pooling layer slides a window
on the image channels and aggregates the elements within
the window into a single output element. Max-pooling and
Average-pooling are two of the most common pooling oper-
ations in neural networks. Typically, pooling layers reduce
the image size but do not affect the number of channels.

2.2 Secret Sharing

A secret can be securely shared among two or multiple par-
ties using Secret Sharing (SS) schemes. An SS scheme
guarantees that each share does not reveal any information
about the secret. The secret can be reconstructed using
all (or subset) of shares. In XONN, we use additive se-
cret sharing in which a secret S is shared among two par-
ties by sampling a random number Ŝ1 ∈R Z2b (integers mod-
ulo 2b) as the first share and creating the second share as
Ŝ2 = S− Ŝ1 mod 2b where b is the number of bits to describe
the secret. While none of the shares reveal any information
about the secret S, they can be used to reconstruct the se-
cret as S = Ŝ1 + Ŝ2 mod 2b. Suppose that two secrets S(1)

and S(2) are shared among two parties where party-1 has Ŝ
(1)
1

and Ŝ
(2)
1 and party-2 has Ŝ

(1)
2 and Ŝ

(2)
2 . Party-i can create a

share of the sum of two secrets as Ŝ
(1)
i + Ŝ

(2)
i mod 2b without

communicating to the other party. This can be generalized
for arbitrary (more than two) number of secrets as well. We
utilize additive secret sharing in our Oblivious Conditional
Addition (OCA) protocol (Section 3.3).

2.3 Oblivious Transfer

One of the most crucial building blocks of secure computa-
tion protocols, e.g., GC, is the Oblivious Transfer (OT) pro-
tocol [15]. In OT, two parties are involved: a sender and a re-
ceiver. The sender holds n different messages m j, j = 1...n,
with a specific bit-length and the receiver holds an index
(ind) of a message that she wants to receive. At the end of
the protocol, the receiver gets mind with no additional knowl-
edge about the other messages and the sender learns noth-
ing about the selection index. In GC, 1-out-of-2 OT is used
where n = 2 in which case the selection index is only one
bit. The initial realizations of OT required costly public key

USENIX Association 28th USENIX Security Symposium 1503

encryptions for each run of the protocol. However, the OT
Extension [16, 17, 18] technique enables performing OT us-
ing more efficient symmetric-key encryption in conjunction
with a fixed number of base OTs that need public-key en-
cryption. OT is used both in the OCA protocol as well as the
Garbled Circuits protocol which we discuss next.

2.4 Garbled Circuits

Yao’s Garbled Circuits [4], or GC in short, is one of the
generic two-party secure computation protocols. In GC, the
result of an arbitrary function f (.) on inputs from two parties
can be computed without revealing each party’s input to the
other. Before executing the protocol, function f (.) has to be
described as a Boolean circuit with two-input gates.

GC has three main phases: garbling, transferring data, and
evaluation. In the first phase, only one party, the Garbler, is
involved. The Garbler starts by assigning two randomly gen-
erated l-bit binary strings to each wire in the circuit. These
binary strings are called labels and they represent semantic
values 0 and 1. Let us denote the label of wire w correspond-
ing to the semantic value x as Lw

x . For each gate in the circuit,
the Garbler creates a four-row garbled table as follows. Each
label of the output wire is encrypted using the input labels
according to the truth table of the gate. For example, con-
sider an AND gate with input wires a and b and output wire
c. The last row of the garbled table is the encryption of Lc

1

using labels La
1 and Lb

1.

Once the garbling process is finished, the Garbler sends
all of the garbled tables to the Evaluator. Moreover, he sends
the correct labels that correspond to input wires that repre-
sent his inputs to the circuit. For example, if wire w∗ is the
first input bit of the Garbler and his input is 0, he sends L∗0.
The Evaluator acquires the labels corresponding to her in-
put through 1-out-of-2 OT where Garbler is the sender with
two labels as his messages and the Evaluator’s selection bit
is her input for that wire. Having all of the garbled tables
and labels of input wires, the Evaluator can start decrypting
the garbled tables one by one until reaching the final output
bits. She then learns the plaintext result at the end of the GC
protocol based on the output labels and their relationships to
the semantic values that are received from the Garbler.

3 The XONN Framework

In this section, we explain how neural networks can be
trained such that they incur a minimal cost during the oblivi-
ous inference. The most computationally intensive operation
in a neural network is matrix multiplication. In GC, each
multiplication has a quadratic computation and communi-
cation cost with respect to the input bit-length. This is the
major source of inefficiency in prior work [13]. We over-
come this limitation by changing the learning process such
that the trained neural network’s weights become binary. As

a result, costly multiplication operations are replaced with
XNOR gates which are essentially free in GC. We describe
the training process in Section 3.1. In Section 3.2, we ex-
plain the operations and their corresponding Boolean circuit
designs that enable a very fast oblivious inference. In Sec-
tion 4, we elaborate on XONN implementation.

3.1 Customized Network Binarization

Numerical optimization algorithms minimize a specific cost
function associated with neural networks. It is well-known
that neural network training is a non-convex optimization,
meaning that there exist many locally-optimum parameter
configurations that result in similar inference accuracies.
Among these parameter settings, there exist solutions where
both neural network parameters and activation units are re-
stricted to take binary values (i.e., either +1 or−1); these so-
lutions are known as Binary Neural Netowrks (BNNs) [19].

One major shortcoming of BNNs is their (often) low infer-
ence accuracy. In the machine learning community, several
methods have been proposed to modify BNN functionality
for accuracy enhancement [20, 21, 22]. These methods are
devised for plaintext execution of BNNs and are not efficient
for oblivious inference with GC. We emphasize that, when
modifying BNNs for accuracy enhancement, one should also
take into account the implications in the corresponding GC
circuit. With this in mind, we propose to modify the num-
ber of channels and neurons in CONV and FC layers, re-
spectively. Increasing the number of channels/neurons leads
to a higher accuracy but it also increases the complexity
of the corresponding GC circuit. As a result, XONN pro-
vides a trade-off between the accuracy and the communica-
tion/runtime of the oblivious inference. This tradeoff enables
cloud servers to customize the complexity of the GC proto-
col to optimally match the computation and communication
requirements of the clients. To customize the BNN, XONN

configures the per-layer number of neurons in two steps:

• Linear Scaling: Prior to training, we scale the number of
channels/neurons in all BNN layers with the same factor
(s), e.g., s= 2. Then, we train the scaled BNN architecture.

• Network Trimming: Once the (uniformly) scaled network
is trained, a post-processing algorithm removes redundant
channels/neurons from each hidden layer to reduce the GC
cost while maintaining the inference accuracy.

Figure 1 illustrates the BNN customization method for an
example baseline network with four hidden layers. Network
trimming (pruning) consists of two steps, namely, Feature
Ranking and Iterative Pruning which we describe next.

Feature Ranking: In order to perform network trimming,
one needs to sort the channels/neurons of each layer based on
their contribution to the inference accuracy. In conventional
neural networks, simple ranking methods sort features based

1504 28th USENIX Security Symposium USENIX Association

3 2 4 6

 6 4 8 1
2

 9 6 1
2

 1
8

 5 4 6 9

 7 6 1
0

 1
2

Layer 1 Layer 2 Layer 3 Layer 4 Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4Layer 1 Layer 2 Layer 3 Layer 4

Layer 1 Layer 2 Layer 3 Layer 4

Scale (s=2)

Scale (s=3)

P
ru

n
e

P
ru

n
e

Per-layer Neurons

Figure 1: Illustration of BNN customization. The bars rep-
resent the number of neurons in each hidden layer.

on absolute value of the neurons/channels [23]. In BNNs,
however, the weights/features are either +1 or −1 and the
absolute value is not informative. To overcome this issue, we
utilize first order Taylor approximation of neural networks
and sort the features based on the magnitude of the gradient
values [24]. Intuitively, the gradient with respect to a certain
feature determines its importance; a high (absolute) gradient
indicates that removing the neuron has a destructive effect on
the inference accuracy. Inspired by this notion, we develop a
feature ranking method described in Algorithm 1.

Iterative Pruning: We devise a step-by-step algorithm for
model pruning which is summarized in Algorithm 2. At
each step, the algorithm selects one of the BNN layers l∗

and removes the first p∗ features with the lowest importance
(line 17). The selected layer l∗ and the number of pruned
neurons p∗ maximize the following reward (line 15):

reward(l, p) =
ccurr− cnext

eacurr−anext
, (3)

where ccurr and cnext are the GC complexity of the BNN be-
fore and after pruning, whereas, acurr and anext denote the
corresponding validation accuracies. The numerator of this
reward encourages higher reduction in the GC cost while
the denominator penalizes accuracy loss. Once the layer
is pruned, the BNN is fine-tuned to recover the accuracy
(line 18). The pruning process stops once the accuracy drops
below a pre-defined threshold.

3.2 Oblivious Inference

BNNs are trained such that the weights and activations are
binarized, i.e., they can only have two possible values: +1
or−1. This property allows BNN layers to be rendered using
a simplified arithmetic. In this section, we describe the func-
tionality of different layer types in BNNs and their Boolean
circuit translations. Below, we explain each layer type.

Binary Linear Layer: Most of the computational com-
plexity of neural networks is due to the linear operations in
CONV and FC layers. As we discuss in Section 2.1, linear
operations are realized using vector dot product (VDP). In
BNNs, VDP operations can be implemented using simplified
circuits. We categorize the VDP operations of this work into

Algorithm 1 XONN Channel Sorting for CONV Layers

Inputs: Trained BNN with loss function L , CONV layer l

with output shape of h1×h2× f , subsampled validation
data and labels {(X1,z1), . . . ,(Xk,zk)}
Output: Indices of the sorted channels: {i0, . . . , i f }

1: G← zeros(k×h1×h2× f) ◃ define gradient tensor
2: for i = 1, . . . ,k do
3: L = L (Xi,zi) ◃ evaluate loss function
4: ∇Y = ∂L

∂Y l ◃ compute gradient w.r.t. layer output

5: G[i, :, :, :]← ∇Y ◃ store gradient
6: end for
7: Gabs← |G| ◃ take elementwise absolute values
8: gs← zeros(f) ◃ define sum of absolute values
9: for i = 1, . . . , f do

10: gs[i]← sum(Gabs[:, :, :, i])
11: end for
12: {i0, . . . , i f }← sort(gs)
13: return {i0, . . . , i f }

two classes: (i) Integer-VDP where only one of the vectors is
binarized and the other has integer elements and (ii) Binary-
VDP where both vectors have binary (±1) values.

Integer-VDP: For the first layer of the neural network, the
server has no control over the input data which is not nec-
essarily binarized. The server can only train binary weights
and use them for oblivious inference. Consider an input vec-
tor x ∈ Rn with integer (possibly fixed-point) elements and
a weight vector w ∈ {−1,1}n with binary values. Since the
elements of the binary vector can only take +1 or −1, the
Integer-VDP can be rendered using additions and subtrac-
tions. In particular, the binary weights can be used in a se-
lection circuit that decides whether the pertinent integer in-
put should be added to or subtracted from the VDP result.

XNOR

+1 +1 -1 -1

-1 +1 -1 -1

-1 +1 +1 +1 +2

1 1 0 0

0 1 0 0

0 1 1 1 +2

MULT SUM

PopCount

Figure 2: Equivalence of Binary-VDP and XnorPopcount.

Binary-VDP: Consider a dot product between two binary
vectors x ∈ {−1,+1}n and w ∈ {−1,+1}n. If we encode
each element with one bit (i.e., −1 → 0 and +1 → 1),
we obtain binary vectors xb ∈ {0,1}n and wb ∈ {0,1}n.
It has been shown that the dot product of x and w can
be efficiently computed using an XnorPopcount opera-
tion [19]. Figure 2 depicts the equivalence of VDP(x,w) and

USENIX Association 28th USENIX Security Symposium 1505

Algorithm 2 XONN Iterative BNN Pruning

Inputs: Trained BNN with n overall CONV and FC layers, minimum accuracy threshold θ , number of pruning trials per layer
t, subsampled validation data and labels dataV , training data and labels dataT

Output: BNN with pruned layers

1: p← zeros(n−1) ◃ current number of pruned neurons/channels per layer
2: acurr← Accuracy(BNN,dataV |p) ◃ current BNN validation accuracy
3: ccurr←Cost(BNN|p) ◃ current GC cost
4: while acurr > θ do ◃ repeat until accuracy drops below θ
5: for l = 1, . . . ,n−1 do ◃ search over all layers
6: inds← Rank(BNN, l,dataV) ◃ rank features via Algorithm 1
7: f ← Number of neurons/channels ◃ number of output neurons/channels
8: for p = p[l],p[l]+ f

t , . . . , f do ◃ search over possible pruning rates
9: BNNnext← Prune(BNN, l, p, inds) ◃ prune p features with lowest ranks from the l-th layer

10: anext ← Accuracy(BNNnext,dataV |p[1], . . . ,p[l] = p, . . . ,p[n−1]) ◃ validation accuracy if pruned
11: cnext ←Cost(BNNnext|p[1], . . . ,p[l] = p, . . . ,p[n−1]) ◃ GC cost if pruned
12: reward(l, p) = ccurr−cnext

e(acurr−anext)
◃ compute reward given that p features are pruned from layer l

13: end for
14: end for
15: {l∗, p∗}← argmaxl,p reward(l,p) ◃ select layer l∗ and pruning rate p∗ that maximize the reward
16: p[l∗]← p∗ ◃ update the number of pruned features in vector p
17: BNN← Prune(BNN, l∗, p∗, inds) ◃ prune p∗ features with lowest ranks from the l∗-th layer
18: BNN← Fine-tune(BNN,dataT) ◃ fine-tune the pruned model using training data to recover accuracy
19: acurr← Accuracy(BNN,dataV |p) ◃ update current BNN validation accuracy
20: ccurr←Cost(BNN|p) ◃ update current GC cost
21: end while
22: return BNN

XnorPopcount(xb,wb) for a VDP between 4-dimensional
vectors. First, element-wise XNOR operations are performed
between the two binary encodings. Next, the number of set
bits p is counted, and the output is computed as 2p−n.

Binary Activation Function: A Binary Activation (BA)
function takes input x and maps it to y = Sign(x) where
Sign(·) outputs either +1 or−1 based on the sign of its input.
This functionality can simply be implemented by extracting
the most significant bit of x.

Binary Batch Normalization: in BNNs, it is often useful to
normalize feature x using a Batch Normalization (BN) layer
before applying the binary activation function. More specif-
ically, a BN layer followed by a BA is equivalent to:

y = Sign(γ · x+β) = Sign(x+
β

γ
),

since γ is a positive value. The combination of the two layers

(BN+BA) is realized by a comparison between x and −β
γ .

Binary Max-Pooling: Assuming the inputs to the max-
pooling layers are binarized, taking the maximum in a win-
dow is equivalent to performing logical OR over the binary
encodings as depicted in Figure 3. Note that average-pooling
layers are usually not used in BNNs since the average of mul-
tiple binary elements is no longer a binary value.

11

1 0

0

1

0

0 0

1 0

0

0 0

10

00

1

1MAX OR

Figure 3: The equivalence between Max-Pooling and
Boolean-OR operations in BNNs.

Figure 4 demonstrates the Boolean circuit for Binary-VDP
followed by BN and BA. The number of non-XOR gates for
binary-VDP is equal to the number of gates required to ren-
der the tree-adder structure in Figure 4. Similarly, Figure 5
shows the Integer-VDP counterpart. In the first level of the
tree-adder of Integer-VDP (Figure 5), the binary weights de-
termine whether the integer input should be added to or sub-
tracted from the final result within the “Select” circuit. The
next levels of the tree-adder compute the result of the integer-
VDP using “Adder” blocks. The combination of BN and
BA is implemented using a single comparator. Compared
to Binary-VDP, Integer-VDP has a high garbling cost which
is linear with respect to the number of bits. To mitigate this
problem, we propose an alternative solution based on Obliv-
ious Transfer (OT) in Section 3.3.

1506 28th USENIX Security Symposium USENIX Association

0

0

1

0

0

1

1

0

1

0

1

1

1
-b

it
A

d
d
e
r

lo
g

2 n
 -b

it
A

d
d
e
r

2
-b

it
A

d
d
e
r1

-b
it

A
d
d
e
r

1

1

1

0

1

1

0

0

1

1

0

1

1
-b

it
A

d
d
e
r

2
-b

it
A

d
d
e
r1

-b
it

A
d
d
e
r

BN+BABinary-VDP

p

 co
m

p
a
re

 w
ith

..
...
.

..
.

..
.

...

...

..
.n

Figure 4: Circuit for binary-VDP followed by comparison
for batch normalization (BN) and binary activation (BA).

3.3 Oblivious Conditional Addition Protocol

In XONN, all of the activation values as well as neural net-
work weights are binary. However, the input to the neural
network is provided by the user and is not necessarily bi-
nary. The first layer of a typical neural network comprises
either an FC or a CONV layer, both of which are evaluated
using oblivious Integer-VDP. On the one side, the user pro-
vides her input as non-binary (integer) values. On the other
side, the network parameters are binary values representing
−1 and 1. We now demonstrate how Integer-VDP can be
described as an OT problem. Let us denote the user’s input
as a vector v1 of n (b-bit) integers. The server holds a vector
of n binary values denoted by v2. The result of Integer-VDP
is a number “y” that can be described with

b′ =
⌈

log2(n · (2
b−1))

⌉

bits. Figure 6 summarizes the steps in the OCA protocol.
The first step is to bit-extend v1 from b-bit to b′-bit. In other
words, if v1 is a vector of signed integer/fixed-point num-
bers, the most significant bit should be repeated (b′ − b)-
many times, otherwise, it has to be zero-padded for most
significant bits. We denote the bit-extended vector by v∗1.
The second step is to create the two’s complement vector
of v∗1, called v∗1. The client also creates a vector of n (b′-
bit) randomly generated numbers, denoted as r. She com-
putes element-wise vector subtractions v∗1− r mod 2b′ and

v∗1− r mod 2b′ . These two vectors are n-many pair of mes-
sages that will be used as input to n-many 1-out-of-two OTs.
More precisely, v∗1− r mod 2b′ is a list of first messages and

v∗1− r mod 2b′ is a list of second messages. The server’s list
of selection bits is v2. After n-many OTs are finished, the
server has a list of n transferred numbers called vt where

vt[i] =

{
v∗1[i]− r[i] mod 2b′ i f v2[i] = 0

v∗1[i]− r[i] mod 2b′ i f v2[i] = 1
i = 1, ... , n.

BN+BA

x

W

1
-b

it | b
-b

it
A

d
d
e
r

Select Circuit

Integer-VDP

w[1]

w[2]

w[3]

w[4]

x[1]

x[2]

x[3]

x[4]

w[n-3]

w[n-2]

w[n-1]

w[n]

x[n-3]

x[n-2]

x[n-1]

x[n]

Select

Select

Select

Select

Select

Select

Select

Select

b-bit
input

binary
weights

n

b
-b

it
A

d
d
e
r

(b
+

lo
g

2
 n

) -b
it

A
d
d
e
r

(b
+

1
)-b

it
A

d
d
e
rb

-b
it

A
d
d
e
r

b
-b

it
A

d
d
e
r (b
+

1
)-b

it
A

d
d
e
rb

-b
it

A
d
d
e
r

p

 co
m

p
a
re

 w
ith

..
.

...

...

..
.

..
.

..
.

..
.

1

b

b

b

1

Figure 5: Circuit for Integer-VDP followed by comparison
for batch normalization (BN) and binary activation (BN).

Finally, the client computes y1 = ∑n
i=1 r[i] mod 2b′ and

the server computes y2 = ∑n
i=1 vt[i] mod 2b′ . By OT’s def-

inition, the receiver (server) gets only one of the two mes-
sages from the sender. That is, based on each selection bit (a
binary weight), the receiver gets an additive share of either
the sender’s number or its two’s complement. Upon adding
all of the received numbers, the receiver computes an addi-
tive share of the Integer-VDP result. Now, even though the
sender does not know which messages were selected by the
receiver, she can add all of the randomly generated numbers
r[i]s which is equal to the other additive share of the Integer-
VDP result. Since all numbers are described in the two’s
complement format, subtractions are equivalent to the addi-
tion of the two’s complement values, which are created by
the sender at the beginning of OCA. Moreover, it is possible
that as we accumulate the values, the bit-length of the final
Integer-VDP result grows accordingly. This is supported due
to the bit-extension process at the beginning of the protocol.
In other words, all additions are performed in a larger ring
such that the result does not overflow.

Note that all numbers belong to the ring Z
2b′ and by def-

inition, a ring is closed under addition, therefore, y1 and y2

are true additive shares of y = y1+y2 mod 2b′ . We described
the OCA protocol for one Integer-VDP computation. As we
outlined in Section 3.2, all linear operations in the first layer
of the DL model (either FC or CONV) can be formulated as
a series of Integer-VDPs.

USENIX Association 28th USENIX Security Symposium 1507

Sender:
(1) Bit-extends all elements of v1 and creates v∗1
(2) Creates two’s complement of v∗1 : v∗1
(3) Creates random vector r : same size as v∗1
(4) Creates list of first messages as m2 = v∗1− r mod 2b′

(5) Creates list of second messages as m1 = v∗1− r mod 2b′

Sender & Receiver:
(6) Parties engage in Oblivious Transfer (OT)

Sender puts m1 and m2 as message vectors
Receiver puts v2 vector as selection bits

Receiver:
(7) Gets vector vt where:

vt[i] =

{
v∗1[i]− r[i] mod 2b′ (if v2[i] = 0)

v∗1[i]− r[i] mod 2b′ (if v2[i] = 1)

Sender:
(8) Computes her additive share of VDP result as:

y1 = ∑n
i=1 r[i] mod 2b′

Receiver:
(9) Computes his additive share of VDP result as:

y2 = ∑n
i=1 vt[i] mod 2b′

Figure 6: Oblivious Conditional Addition (OCA) protocol.

In traditional OT, public-key encryption is needed for
each OT invocation which can be computationally expensive.
Thanks to the Oblivious Transfer Extension technique [16,
17, 18], one can perform many OTs using symmetric-key en-
cryption and only a fixed number of public-key operations.

Required Modification to the Next Layer. So far, we have
shown how to perform Integer-VDP using OT. However, we
need to add an “addition” layer to reconstruct the true value
of y from its additive shares before further processing it. The
overhead of this layer, as well as OT computations, are dis-
cussed next. Note that OCA is used only for the first layer
and it does not change the overall constant round complexity
of XONN since it is performed only once regardless of the
number of layers in the DL model.

Comparison to Integer-VDP in GC. Table 1 shows the
computation and communication costs for two approaches:
(i) computing the first layer in GC and (ii) utilizing OCA.
OCA removes the GC cost of the first layer in XONN. How-
ever, it adds the overhead of a set of OTs and the GC costs
associated with the new ADD layer.

Table 1: Computation and communication cost of OCA.

Costs
{Sender, Receiver}

GC
OCA

OT ADD Layer

Comp. (AES ops) (n+1) ·b · {2, 4} n · {1, 2} b′· {2, 4}
Comm. (bit) (n+1) ·b ·2 ·128 n ·b b′ ·2 ·128

3.4 Security of XONN

We consider the Honest-but-Curious (HbC) adversary model
consistent with all of the state-of-the-art solutions for obliv-
ious inference [7, 8, 9, 10, 13, 25]. In this model, neither of
the involved parties is trusted but they are assumed to follow
the protocol. Both server and client cannot infer any infor-
mation about the other party’s input from the entire protocol
transcript. XONN relies solely on the GC and OT protocols,
both of which are proven to be secure in the HbC adversary
model in [26] and [15], respectively. Utilizing binary neu-
ral networks does not affect GC and OT protocols in any
way. More precisely, we have changed the function f (.) that
is evaluated in GC such that it is more efficient for the GC
protocol: drastically reducing the number of AND gates and
using XOR gates instead. Our novel Oblivious Conditional
Addition (OCA) protocol (Section 3.3) is also based on the
OT protocol. The sender creates a list of message pairs and
puts them as input to the OT protocol. Each message is an
additive share of the sender’s private data from which the se-
cret data cannot be reconstructed. The receiver puts a list of
selection bits as input to the OT. By OT’s definition, the re-
ceiver learns nothing about the unselected messages and the
sender does not learn the selection bits.

During the past few years, several attacks have been pro-
posed that extract some information about the DL model by
querying the server many times [1, 27, 28]. It has been
shown that some of these attacks can be effective in the
black-box setting where the client only receives the predic-
tion results and does not have access to the model. Therefore,
considering the definition of an oblivious inference, these
type of attacks are out of the scope of oblivious inference
frameworks. However, in Appendix B, we show how these
attacks can be thwarted by adding a simple layer at the end
of the neural network which adds a negligible overhead.

Security Against Malicious Adversaries. The HbC ad-
versary model is the standard security model in the liter-
ature. However, there are more powerful security models
such as security against covert and malicious adversaries.
In the malicious security model, the adversary (either the
client or server) can deviate from the protocol at any time
with the goal of learning more about the input from the
other party. One of the main distinctions between XONN

and the state-of-the-art solutions is that XONN can be au-
tomatically adapted to the malicious security using cut-and-
choose techniques [29, 30, 31]. These methods take a GC
protocol in HbC and readily extend it to the malicious se-
curity model. This modification increases the overhead but
enables a higher security level. To the best of our knowledge,
there is no practical solution to extend the customized mixed-
protocol frameworks [7, 9, 10, 25] to the malicious security
model. Our GC-based solution is more efficient compared
to the mixed-protocol solutions and can be upgraded to the
malicious security at the same time.

1508 28th USENIX Security Symposium USENIX Association

4 The XONN Implementation

In this section, we elaborate on the garbling/evaluation im-
plementation of XONN. All of the optimizations and tech-
niques proposed in this section do not change the security
or correctness in anyway and only enable the framework’s
scalability for large network architectures.

We design a new GC framework with the following design
principles in mind: (i) Efficiency: XONN is designed to have
a minimal data movement and low cache-miss rate. (ii) Scal-

ability: oblivious inference inevitably requires significantly
higher memory usage compared to plaintext evaluation of
neural networks. High memory usage is one critical short-
coming of state-of-the-art secure computation frameworks.
As we show in our experimental results, XONN is designed
to scale for very deep neural networks that have higher accu-
racy compared to networks considered in prior art. (iii) Mod-

ularity: our framework enables users to create Boolean de-
scription of different layers separately. This allows the hard-
ware synthesis tool to generate more optimized circuits as we
discuss in Section 4.1. (iv) Ease-to-use: XONN provides a
very simple API that requires few lines of neural network de-
scription. Moreover, we have created a compiler that takes a
Keras description and automatically creates the network de-
scription for XONN API.

XONN is written in C++ and supports all major GC op-
timizations proposed previously. Since the introduction of
GC, many optimizations have been proposed to reduce the
computation and communication complexity of this proto-
col. Bellare et al. [32] have provided a way to perform
garbling using efficient fixed-key AES encryption. Our im-
plementation benefits from this optimization by using Intel
AES-NI instructions. Row-reduction technique [33] reduces
the number of garbled tables from four to three. Half-Gates
technique [34] further reduces the number of rows in the
garbled tables from three to two. One of the most influen-
tial optimizations for the GC protocol is the free-XOR tech-
nique [12] which makes XOR, XNOR, and NOT almost free
of cost. Our implementation for Oblivious Transfer (OT) is
based on libOTe [35].

4.1 Modular Circuit Synthesis and Garbling

In XONN, each layer is described as multiple invocations of
a base circuit. For instance, linear layers (CONV and FC) are
described by a VDP circuit. MaxPool is described by an OR
circuit where the number of inputs is the window size of the
MaxPool layer. BA/BN layers are described using a com-
parison (CMP) circuit. The memory footprint is significantly
reduced in this approach: we only create and store the base
circuits. As a result, the connection between two invocations
of two different base circuits is handled at the software level.

We create the Boolean circuits using TinyGarble [36]
hardware synthesis approach. TinyGarble’s technology li-
braries are optimized for GC and produce circuits that have

G
a
rb

le
r

V
D

P
V

D
P

..
.

V
D

P

garbled
tables

..
.

V
D

P
V

D
P

..
.

V
D

P

..
.

C
M

P
C

M
P

..
.

C
M

P

garbled
tables

o
u
tp

u
t la

b
e
ls o

f la
ye

r L
+

1

..
.

C
M

P
C

M
P

..
.

C
M

P

..
.

4

5

3

4

E
v
a
lu

a
to

r

c labelsf labels

o
u
tp

u
t la

b
e
ls o

f la
ye

r L
-1

o
u
tp

u
t la

b
e
ls o

f la
ye

r L

label
selection

c labelsf labels

o
u
tp

u
t la

b
e
ls o

f la
ye

r L
-1

o
u
tp

u
t la

b
e
ls o

f la
ye

r L

o
u
tp

u
t la

b
e
ls o

f la
ye

r L
+

1

5

1

3

21

label
selection

2

Figure 7: XONN modular and pipelined garbling engine.

low number of non-XOR gates. Note that the Boolean circuit
description of the contemporary neural networks comprises
between millions to billions of Boolean gates, whereas, syn-
thesis tools cannot support circuits of this size. However,
due to XONN modular design, one can synthesize each base
circuit separately. Thus, the bottleneck transfers from the
synthesis tool’s maximum number of gates to the system’s
memory. As such, XONN effectively scales for any neural
network complexity regardless of the limitations of the syn-
thesis tool as long as enough memory (i.e., RAM) is avail-
able. Later in this section, we discuss how to increase the
scalability by dynamically managing the allocated memory.

Pipelined GC Engine. In XONN, computation and commu-
nication are pipelined. For instance, consider a CONV layer
followed by an activation layer. We garble/evaluate these
layers by multiple invocations of the VDP and CMP circuits
(one invocation per output neuron) as illustrated in Figure 7.
Upon finishing the garbling process of layer L− 1, the Gar-
bler starts garbling the Lth layer and creates the random la-
bels for output wires of layer L. He also needs to create
the random labels associated with his input (i.e., the weight

USENIX Association 28th USENIX Security Symposium 1509

parameters) to layer L. Given a set of input and output la-
bels, Garbler generates the garbled tables, and sends them
to the Evaluator as soon as one is ready. He also sends one
of the two input labels for his input bits. At the same time,
the Evaluator has computed the output labels of the (L−1)th

layer. She receives the garbled tables as well as the Garbler’s
selected input labels and decrypts the tables and stores the
output labels of layer L.

Dynamic Memory Management. We design the framework
such that the allocated memory for the labels is released as
soon as it is no longer needed, reducing the memory usage
significantly. For example, without our dynamic memory
management, the Garbler had to allocate 10.41GB for the
labels and garbled tables for the entire garbling of BC1 net-
work (see Section 7 for network description). In contrast, in
our framework, the size of memory allocation never exceeds
2GB and is less than 0.5GB for most of the layers.

4.2 Application Programming Interface (API)

XONN provides a simplified and easy-to-use API for oblivi-
ous inference. The framework accepts a high-level descrip-
tion of the network, parameters of each layer, and input struc-
ture. It automatically computes the number of invocations
and the interconnection between all of the base circuits. Fig-
ure 8 shows the complete network description that a user
needs to write for a sample network architecture (the BM3
architecture, see Section 7). All of the required circuits are
automatically generated using TinyGarble [36] synthesis li-
braries. It is worth mentioning that for the task of oblivious
inference, our API is much simpler compared to the recent
high-level EzPC framework [25]. For example, the required
lines of code to describe BM1, BM2, and BM3 network ar-
chitectures (see Section 7) in EzPC are 78, 88, and 154, re-
spectively. In contrast, they can be described with only 6, 6,
and 10 lines of code in our framework.

I NPUT 28 1 8
CONV 5 16 1 0 OCA
ACT
MAXPOOL 2
CONV 5 16 1 0
ACT
MAXPOOL 2
FC 100
ACT
FC 10

1

2

3

4

5

6

7

8

9

10

Descr i pt i on:

I NPUT #i nput _f eat ur e #channel s #bi t - l engt h

CONV #f i l t er _si ze #f i l t er s #st r i de
 #Pad #OCA (opt i onal)

MAXPOOl #wi ndow_si ze

FC #out put _neur ons

Figure 8: Sample snippet code in XONN.

Keras to XONN Translation. To further facilitate the adap-
tation of XONN, a compiler is created to translate the de-
scription of the neural network in Keras [37] to the XONN

format. The compiler creates the .xonn file and puts the
network parameters into the required format (HEX string) to
be read by the framework during the execution of the GC
protocol. All of the parameter adjustments are also automat-
ically performed by the compiler.

5 Related Work

CryptoNets [14] is one of the early solutions that suggested
the adaptation of Leveled Homomorphic Encryption (LHE)
to perform oblivious inference. LHE is a variant of Partially
HE that enables evaluation of depth-bounded arithmetic cir-
cuits. DeepSecure [13] is a privacy-preserving DL frame-
work that relies on the GC protocol. CryptoDL [38] im-
proves upon CryptoNets [14] and proposes more efficient
approximation of the non-linear functions using low-degree
polynomials. Their solution is based on LHE and uses mean-
pooling in replacement of the max-pooling layer. Chou et al.
propose to utilize the sparsity within the DL model to accel-
erate the inference [39].

SecureML [8] is a privacy-preserving machine learning
framework based on homomorphic encryption, GC, and se-
cret sharing. SecureML also uses customized activation
functions and supports privacy-preserving training in addi-
tion to inference. Two non-colluding servers are used to train
the DL model where each client XOR-shares her input and
sends the shares to both servers. MiniONN [9] is a mixed-
protocol framework for oblivious inference. The underlying
cryptographic protocols are HE, GC, and secret sharing.

Chameleon [7] is a more recent mixed-protocol frame-
work for machine learning, i.e., Support Vector Machines
(SVMs) as well as DNNs. Authors propose to perform
low-depth non-linear functions using the Goldreich-Micali-
Wigderson (GMW) protocol [5], high-depth functions by the
GC protocol, and linear operations using additive secret shar-
ing. Moreover, they propose to use correlated randomness
to more efficiently compute linear operations. EzPC [25] is
a secure computation framework that enables users to write
high-level programs and translates it to a protocol-based de-
scription of both Boolean and Arithmetic circuits. The back-
end cryptographic engine is based on the ABY framework.

Shokri and Shmatikov [40] proposed a solution for
privacy-preserving collaborative deep learning where the
training data is distributed among many parties. Their
approach, which is based on differential privacy, enables
clients to train their local model on their own training data
and update the central model’s parameters held by a central
server. However, it has been shown that a malicious client
can learn significant information about the other client’s pri-
vate data [41]. Google [42] has recently introduced a new ap-
proach for securely aggregating the parameter updates from
multiple users. However, none of these approaches [40, 42]
study the oblivious inference problem. An overview of re-
lated frameworks is provided in [43, 44].

Frameworks such as ABY3 [45] and SecureNN [46] have
different computation models and they rely on three (or four)
parties during the oblivious inference. In contrast, XONN

does not require an additional server for the computation. In
E2DM framework [47], the model owner can encrypt and
outsource the model to an untrusted server to perform obliv-

1510 28th USENIX Security Symposium USENIX Association

ious inference. Concurrently and independently of ours, in
TAPAS [48], Sanyal et al. study the binarization of neural
networks in the context of oblivious inference. They report
inference latency of 147 seconds on MNIST dataset with
98.6% prediction accuracy using custom CNN architecture.
However, as we show in Section 7 (BM3 benchmark), XONN

outperforms TAPAS by close to three orders of magnitude.

Gazelle [10] is the previously most efficient oblivious in-
ference framework. It is a mixed-protocol approach based
on additive HE and GC. In Gazelle, convolution operations
are performed using the packing property of HE. In this ap-
proach, many numbers are packed inside a single ciphertext
for faster convolutions. In Section 6, we briefly discuss one
of the essential requirements that the Gazelle protocol has to
satisfy in order to be secure, namely, circuit privacy.

High-Level Comparison. In contrast to prior work, we pro-
pose a DL-secure computation co-design approach. To the
best of our knowledge, DeepSecure [13] is the only solu-
tion that preprocesses the data and network before the secure
computation protocol. However, this preprocessing step is
unrelated to the underlying cryptographic protocol and com-
pacts the network and data. Moreover, in this mode, some
information about the network parameters and structure of
data is revealed. Compared to mixed-protocol solutions,
not only XONN provides a more efficient solution but also
maintains the constant round complexity regardless of the
number of layers in the neural network model. It has been
shown that round complexity is one of the important crite-
ria in designing secure computation protocols [49] since the
performance can significantly be reduced in Internet settings
where the network latency is high. Another important ad-
vantage of our solution is the ability to upgrade to the secu-
rity against malicious adversaries using cut-and-choose tech-
niques [29, 30, 31]. As we show in Section 7, XONN outper-
forms all previous solutions in inference latency. Table 2
summarizes a high-level comparison between state-of-the-
art oblivious inference frameworks.

Table 2: High-Level Comparison of oblivious inference
frameworks. “C”onstant round complexity. “D”eep learn-
ing/secure computation co-design. “I”ndependence of sec-
ondary server. “U”pgradeable to malicious security using
standard solutions. “S”upporting any non-linear layer.

Framework Crypto. Protocol C D I U S

CryptoNets [14] HE ✓ ✗ ✓ ✗ ✗

DeepSecure [13] GC ✓ ✓ ✓ ✓ ✓

SecureML [8] HE, GC, SS ✗ ✗ ✗ ✗ ✗

MiniONN [9] HE, GC, SS ✗ ✗ ✓ ✗ ✓

Chameleon [7] GC, GMW, SS ✗ ✗ ✗ ✗ ✓

EzPC [25] GC, SS ✗ ✗ ✓ ✗ ✓

Gazelle [10] HE, GC, SS ✗ ✗ ✓ ✗ ✓

XONN (This work) GC, SS ✓ ✓ ✓ ✓ ✓

6 Circuit Privacy

In Gazelle [10], for each linear layer, the protocol starts with
a vector m that is secret-shared between client m1 and server
m2 (m=m1+m2). The protocol outputs the secret shares of
the vector m′ = A ·m where A is a matrix known to the server
but not to the client. The protocol has the following proce-
dure: (i) Client generates a pair (pk,sk) of public and secret
keys of an additive homomorphic encryption scheme HE. (ii)
Client sends HE.Encpk(m1) to the server. Server adds its
share (m2) to the ciphertext and recovers encryption of m:
HE.Encpk(m). (iii) Server homomorphically evaluates the
multiplication with A and obtains the encryption of m′. (iv)
Server secret shares m′ by sampling a random vector r and
returns ciphertext c =HE.Encpk(m′ − r) to the client. The
client can decrypt c using private key sk and obtain m′ − r.

Gazelle uses the Brakerski-Fan-Vercauteren (BFV)
scheme [50, 51]. However, the vanilla BFV scheme does
not provide circuit privacy. At high-level, the circuit privacy
requirement states that the ciphertext c should not reveal any
information about the private inputs to the client (i.e., A and
r) other than the underlying plaintext A ·m− r. Otherwise,
some information is leaked. Gazelle proposes two methods
to provide circuit privacy that are not incorporated in
their implementation. Hence, we need to scale up their
performance numbers for a fair comparison.

The first method is to let the client and server engage in
a two-party secure decryption protocol, where the input of
client is sk and input of server is c. However, this method
adds communication and needs extra rounds of interaction.
A more widely used approach is noise flooding. Roughly
speaking, the server adds a large noise term to c before re-
turning it to the client. The noise is big enough to drown any
extra information contained in the ciphertext, and still small
enough to so that it still decrypts to the same plaintext.

For the concrete instantiation of Gazelle, one needs to
triple the size of ciphertext modulus q from 60 bits to 180
bits, and increase the ring dimension n from 2048 to 8192.
The (amortized) complexity of homomorphic operations in
the BFV scheme is approximately O(logn logq), with the
exception that some operations run in O(logq) amortized
time. Therefore, adding noise flooding would result in a
3-3.6 times slow down for the HE component of Gazelle.
To give some concrete examples, we consider two networks
used for benchmarking in Gazelle: MNIST-D and CIFAR-10
networks. For the MNIST-D network, homomorphic encryp-
tion takes 55% and 22% in online and total time, respec-
tively. For CIFAR-10, the corresponding figures are 35%,
and 10%1. Therefore, we estimate that the total time for
MNIST-D will grow from 0.81s to 1.16-1.27s (network BM3
in this paper). In the case of CIFAR-10 network, the total
time will grow from 12.9s to 15.48-16.25s.

1these percentage numbers are obtained through private communica-
tion with the authors.

USENIX Association 28th USENIX Security Symposium 1511

7 Experimental Results

We evaluate XONN on MNIST and CIFAR10 datasets, which
are two popular classification benchmarks used in prior
work. In addition, we provide four healthcare datasets to
illustrate the applicability of XONN in real-world scenarios.
For training XONN, we use Keras [37] with Tensorflow back-
end [52]. The source code of XONN is compiled with GCC
5.5.0 using O3 optimization. All Boolean circuits are synthe-
sized using Synopsys Design Compiler 2015. Evaluations
are performed on (Ubuntu 16.04 LTS) machines with Intel-
Core i7-7700k and 32GB of RAM. The experimental setup
is comparable (but has less computational power) compared
to the prior art [10]. Consistent with prior frameworks, we
evaluate the benchmarks in the LAN setting.

7.1 Evaluation on MNIST

There are mainly three network architectures that prior
works have implemented for the MNIST dataset. We convert
these reference networks into their binary counterparts and
train them using the standard BNN training algorithm [19].
Table 3 summarizes the architectures for the MNIST dataset.

Table 3: Summary of the trained binary network architec-
tures evaluated on the MNIST dataset. Detailed descriptions
are available in Appendix A.2, Table 13.

Arch. Previous Papers Description

BM1 SecureML [8], MiniONN [9] 3 FC

BM2
CryptoNets [14], MiniONN [9],
DeepSecure [13], Chameleon [7]

1 CONV, 2 FC

BM3 MiniONN [9], EzPC [25] 2 CONV, 2MP, 2FC

Analysis of Network Scaling: Recall that the classification
accuracy of XONN is controlled by scaling the number of
neurons in all layers (Section 3.1). Figure 9a depicts the in-
ference accuracy with different scaling factors (more details
in Table 11 in Appendix A.2). As we increase the scaling
factor, the accuracy of the network increases. This accuracy
improvement comes at the cost of a higher computational
complexity of the (scaled) network. As a result, increasing
the scaling factor leads to a higher runtime. Figure 9b depicts
the runtime of different BNN architectures as a function of
the scaling factor s. Note that the runtime grows (almost)
quadratically with the scaling factor due to the quadratic in-
crease in the number of Popcount operations in the neural
network (see BM3). However, for the BM1 and BM2 net-
works, the overall runtime is dominated by the constant ini-
tialization cost of the OT protocol (∼ 70 millisecond).

GC Cost and the Effect of OCA: The communication cost
of GC is the key contributor to the overall runtime of XONN.
Here, we analyze the effect of the scaling factor on the total
message size. Figure 10 shows the communication cost of

(a) (b)

Figure 9: Effect of scaling factor on (a) accuracy and (b) in-
ference runtime of MNIST networks. No pruning was ap-
plied in this evaluation.

GC for the BM1 and BM2 network architectures. As can
be seen, the message size increases with the scaling factor.
We also observe that the OCA protocol drastically reduces
the message size. This is due to the fact that the first layer
of BM1 and BM2 models account for a large portion of the
overall computation; hence, improving the first layer with
OCA has a drastic effect on the overall communication.

Figure 10: Effect of OCA on the communication of the BM1
(left) and BM2 (right) networks for different scaling factors.
No pruning was applied in this evaluation.

Comparison to Prior Art: We emphasize that, unlike pre-
vious work, the accuracy of XONN can be customized by
tuning the scaling factor (s). Furthermore, our channel/neu-
ron pruning step (Algorithm 2) can reduce the GC cost in
a post-processing phase. To provide a fair comparison be-
tween XONN and prior art, we choose a proper scaling factor
and trim the pertinent scaled BNN such that the correspond-
ing BNN achieves the same accuracy as the previous work.
Table 4 compares XONN with the previous work in terms of
accuracy, latency, and communication cost (a.k.a., message
size). The last column shows the scaling factor (s) used to in-
crease the width of the hidden layers of the BNN. Note that
the scaled network is further trimmed using Algorithm 2.

In XONN, the runtime for oblivious transfer is at least
∼ 0.07 second for initiating the protocol and then it grows
linearly with the size of the garbled tables; As a result, in
very small architectures such as BM1, our solution is slightly
slower than previous works since the constant runtime dom-
inates the total runtime. However, for the BM3 network
which has higher complexity than BM1 and BM2, XONN

1512 28th USENIX Security Symposium USENIX Association

achieves a more prominent advantage over prior art. In sum-
mary, our solution achieves up to 7.7× faster inference (av-
erage of 3.4×) compared to Gazelle [10]. Compared to Min-
iONN [9], XONN has up to 62× lower latency (average of
26×) Table 4. Compared to EzPC [25], our framework is
34× faster. XONN achieves 37.5×, 1859×, 60.4×, and 14×
better latency compared to SecureML [8], CryptoNets [14],
DeepSecure [13], and Chameleon [7], respectively.

Table 4: Comparison of XONN with the state-of-the-art for
the MNIST network architectures.

Arch. Framework Runtime (s) Comm. (MB) Acc. (%) s

BM1

SecureML 4.88 - 93.1 -
MiniONN 1.04 15.8 97.6 -

EzPC 0.7 76 97.6 -
Gazelle 0.09 0.5 97.6 -
XONN 0.13 4.29 97.6 1.75

BM2

CryptoNets 297.5 372.2 98.95 -
DeepSecure 9.67 791 98.95 -
MiniONN 1.28 47.6 98.95 -
Chameleon 2.24 10.5 99.0 -

EzPC 0.6 70 99.0 -
Gazelle 0.29 8.0 99.0 -
XONN 0.16 38.28 98.64 4.00

BM3

MiniONN 9.32 657.5 99.0 -
EzPC 5.1 501 99.0 -

Gazelle 1.16 70 99.0 -
XONN 0.15 32.13 99.0 2.00

7.2 Evaluation on CIFAR-10

In Table 5, we summarize the network architectures that we
use for the CIFAR-10 dataset. In this table, BC1 is the bina-
rized version of the architecture proposed by MiniONN. To
evaluate the scalability of our framework to larger networks,
we also binarize the Fitnet [53] architectures, which are de-
noted as BC2-BC5. We also evaluate XONN on the popular
VGG16 network architecture (BC6). Detailed architecture
descriptions are available in Appendix A.2, Table 13.

Table 5: Summary of the trained binary network architec-
tures evaluated on the CIFAR-10 dataset.

Arch. Previous Papers Description

BC1
MiniONN[9], Chameleon [7],

EzPC [25], Gazelle [10]
7 CONV, 2 MP, 1 FC

BC2 Fitnet [53] 9 CONV, 3 MP, 1 FC

BC3 Fitnet [53] 9 CONV, 3 MP, 1 FC

BC4 Fitnet [53] 11 CONV, 3 MP, 1 FC

BC5 Fitnet [53] 17 CONV, 3 MP, 1 FC

BC6 VGG16 [54] 13 CONV, 5 MP, 3 FC

Analysis of Network Scaling: Similar to the analysis on
the MNIST dataset, we show that the accuracy of our binary
models for CIFAR-10 can be tuned based on the scaling fac-
tor that determines the number of neurons in each layer. Fig-
ure 11a depicts the accuracy of the BNNs with different scal-

ing factors. As can be seen, increasing the scaling factor en-
hances the classification accuracy of the BNN. The runtime
also increases with the scaling factor as shown in Figure 11b
(more details in Table 12, Appendix A.2).

(a) (b)

Figure 11: (a) Effect of scaling factor on accuracy for
CIFAR-10 networks. (b) Effect of scaling factor on runtime.
No pruning was applied in this evaluation.

Comparison to Prior Art: We scale the BC2 network with
a factor of s = 3, then prune it using Algorithm 2. Details
of pruning steps are available in Table 10 in Appendix A.1.
The resulting network is compared against prior art in Ta-
ble 6. As can be seen, our solution achieves 2.7×, 45.8×,
9.1×, and 93.1× lower latency compared to Gazelle, EzPC,
Chameleon, and MiniONN, respectively.

Table 6: Comparison of XONN with prior art on CIFAR-10.

Framework Runtime (s) Comm. (MB) Acc. (%) s

MiniONN 544 9272 81.61 -
Chameleon 52.67 2650 81.61 -

EzPC 265.6 40683 81.61 -
Gazelle 15.48 1236 81.61 -
XONN 5.79 2599 81.85 3.00

7.3 Evaluation on Medical Datasets

One of the most important applications of oblivious infer-
ence is medical data analysis. Recent advances in deep learn-
ing greatly benefit many complex diagnosis tasks that require
exhaustive manual inspection by human experts [55, 56, 57,
58]. To showcase the applicability of oblivious inference in
real-world medical applications, we provide several bench-
marks for publicly available healthcare datasets summarized
in Table 7. We split the datasets into validation and training
portions as indicated in the last two columns of Table 7. All
datasets except Malaria Infection are normalized to have 0
mean and standard deviation of 1 per feature. The images of
Malaria Infection dataset are resized to 32×32 pictures. The
normalized datasets are quantized up to 3 decimal digits. De-
tailed architectures are available in Appendix A.2, Table 13
We report the validation accuracy along with inference time
and message size in Table 8.

USENIX Association 28th USENIX Security Symposium 1513

Table 7: Summary of medical application benchmarks.

Task Arch. Description
of Samples

Tr. Val.

Breast Cancer [59] BH1 3 FC 453 113
Diabetes [60] BH2 3 FC 615 153

Liver Disease [61] BH3 3 FC 467 116

Malaria Infection [62] BH4
2 CONV,

2 MP, 2 FC
24804 2756

Table 8: Runtime, communication cost (Comm.), and accu-
racy (Acc.) for medical benchmarks.

Arch. Runtime (ms) Comm. (MB) Acc. (%)

BH1 82 0.35 97.35
BH2 75 0.16 80.39
BH3 81 0.3 80.17
BH4 482 120.75 95.03

8 Conclusion

We introduce XONN, a novel framework to automatically
train and use deep neural networks for the task of oblivi-
ous inference. XONN utilizes Yao’s Garbled Circuits (GC)
protocol and relies on binarizing the DL models in order to
translate costly matrix multiplications to XNOR operations
that are free in the GC protocol. Compared to Gazelle [10],
prior best solution, XONN achieves 7× lower latency. More-
over, in contrast to Gazelle that requires one round of inter-
action for each layer, our solution needs a constant round of
interactions regardless of the number of layers. Maintaining
constant round complexity is an important requirement in In-
ternet settings as a typical network latency can significantly
degrade the performance of oblivious inference. Moreover,
since our solution relies on the GC protocol, it can provide
much stronger security guarantees such as security against
malicious adversaries using standard cut-and-choose proto-
cols. XONN high-level API enables clients to utilize the
framework with a minimal number of lines of code. To fur-
ther facilitate the adaptation of our framework, we design a
compiler to translate the neural network description in Keras
format to that of XONN.

Acknowledgements We would like to thank the anony-
mous reviewers for their insightful comments.

References

[1] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and

Thomas Ristenpart. Stealing machine learning models via

prediction APIs. In USENIX Security, 2016.

[2] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully

homomorphic encryption from (standard) lwe. SIAM Journal

on Computing, 43(2):831–871, 2014.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(leveled) fully homomorphic encryption without bootstrap-

ping. ACM Transactions on Computation Theory (TOCT),

6(3):13, 2014.

[4] Andrew Yao. How to generate and exchange secrets. In

FOCS, 1986.

[5] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to

play any mental game. In Proceedings of the nineteenth an-

nual ACM symposium on Theory of computing, pages 218–

229. ACM, 1987.

[6] Pascal Paillier. Public-key cryptosystems based on composite

degree residuosity classes. In International Conference on the

Theory and Applications of Cryptographic Techniques, pages

223–238. Springer, 1999.

[7] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,

Ebrahim M Songhori, Thomas Schneider, and Farinaz

Koushanfar. Chameleon: A hybrid secure computation

framework for machine learning applications. In ASI-

ACCS’18, 2018.

[8] Payman Mohassel and Yupeng Zhang. SecureML: A system

for scalable privacy-preserving machine learning. In IEEE

S&P, 2017.

[9] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious

neural network predictions via MiniONN transformations. In

ACM CCS, 2017.

[10] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-

drakasan. GAZELLE: A low latency framework for secure

neural network inference. USENIX Security, 2018.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, Andrew Rabinovich, et al. Going deeper with

convolutions. CVPR, 2015.

[12] Vladimir Kolesnikov and Thomas Schneider. Improved gar-

bled circuit: Free XOR gates and applications. In ICALP,

2008.

[13] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz

Koushanfar. DeepSecure: Scalable provably-secure deep

learning. DAC, 2018.

[14] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin

Lauter, Michael Naehrig, and John Wernsing. CryptoNets:

Applying neural networks to encrypted data with high

throughput and accuracy. In ICML, 2016.

[15] Michael O Rabin. How to exchange secrets with oblivious

transfer. IACR Cryptology ePrint Archive, 2005:187, 2005.

[16] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.

Extending oblivious transfers efficiently. In Annual Inter-

national Cryptology Conference, pages 145–161. Springer,

2003.

[17] Donald Beaver. Correlated pseudorandomness and the com-

plexity of private computations. In STOC, 1996.

[18] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and

Michael Zohner. More efficient oblivious transfer and ex-

tensions for faster secure computation. In ACM CCS, 2013.

[19] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks: Train-

ing deep neural networks with weights and activations con-

strained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[20] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. XNOR-net: Imagenet classification using

binary convolutional neural networks. In European Confer-

ence on Computer Vision, pages 525–542. Springer, 2016.

1514 28th USENIX Security Symposium USENIX Association

[21] Mohammad Ghasemzadeh, Mohammad Samragh, and Fari-

naz Koushanfar. ReBNet: Residual binarized neural net-

work. In 2018 IEEE 26th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM),

pages 57–64. IEEE, 2018.

[22] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate

binary convolutional neural network. In Advances in Neural

Information Processing Systems, pages 345–353, 2017.

[23] Song Han, Jeff Pool, John Tran, and William Dally. Learn-

ing both weights and connections for efficient neural network.

In Advances in neural information processing systems, pages

1135–1143, 2015.

[24] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for re-

source efficient inference. arXiv preprint arXiv:1611.06440,

2016.

[25] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul

Sharma, and Shardul Tripathi. EzPC: Programmable, ef-

ficient, and scalable secure two-party computation. IACR

Cryptology ePrint Archive, 2017/1109, 2017.

[26] Yehuda Lindell and Benny Pinkas. A proof of security of

Yao’s protocol for two-party computation. Journal of Cryp-

tology, 22(2):161–188, 2009.

[27] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model

inversion attacks that exploit confidence information and ba-

sic countermeasures. In ACM CCS. ACM, 2015.

[28] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly

Shmatikov. Membership inference attacks against machine

learning models. In S&P. IEEE, 2017.

[29] Yehuda Lindell and Benny Pinkas. Secure two-party compu-

tation via cut-and-choose oblivious transfer. Journal of Cryp-

tology, 25(4):680–722, 2012.

[30] Yan Huang, Jonathan Katz, and David Evans. Efficient se-

cure two-party computation using symmetric cut-and-choose.

In Advances in Cryptology–CRYPTO 2013, pages 18–35.

Springer, 2013.

[31] Yehuda Lindell. Fast cut-and-choose-based protocols for

malicious and covert adversaries. Journal of Cryptology,

29(2):456–490, 2016.

[32] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and

Phillip Rogaway. Efficient garbling from a fixed-key block-

cipher. In IEEE S&P, 2013.

[33] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy pre-

serving auctions and mechanism design. In ACM Conference

on Electronic Commerce, 1999.

[34] Samee Zahur, Mike Rosulek, and David Evans. Two halves

make a whole. In EUROCRYPT, 2015.

[35] Peter Rindal. libOTe: an efficient, portable, and easy to

use Oblivious Transfer Library. https://github.com/

osu-crypto/libOTe.

[36] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza

Sadeghi, Thomas Schneider, and Farinaz Koushanfar. Tiny-

Garble: Highly compressed and scalable sequential garbled

circuits. In IEEE S&P, 2015.

[37] François Chollet et al. Keras. https://keras.io, 2015.

[38] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Re-

becca N Wright. Privacy-preserving machine learning as a

service. Proceedings on Privacy Enhancing Technologies,

2018(3):123–142, 2018.

[39] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Al-

bert Haque, and Li Fei-Fei. Faster CryptoNets: Leveraging

sparsity for real-world encrypted inference. arXiv preprint

arXiv:1811.09953, 2018.

[40] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep

learning. In ACM CCS, 2015.

[41] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz.

Deep models under the GAN: information leakage from col-

laborative deep learning. In ACM CCS, 2017.

[42] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio

Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-

mage, Aaron Segal, and Karn Seth. Practical secure aggrega-

tion for privacy-preserving machine learning. In ACM CCS,

2017.

[43] M Sadegh Riazi, Bita Darvish Rouhani, and Farinaz

Koushanfar. Deep learning on private data. IEEE Security

and Privacy (S&P) Magazine., 2019.

[44] M Sadegh Riazi and Farinaz Koushanfar. Privacy-preserving

deep learning and inference. In Proceedings of the Inter-

national Conference on Computer-Aided Design, page 18.

ACM, 2018.

[45] Payman Mohassel and Peter Rindal. ABY3: a mixed protocol

framework for machine learning. In ACM CCS, 2018.

[46] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-

cureNN: Efficient and private neural network training, 2018.

[47] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo

Song. Secure outsourced matrix computation and application

to neural networks. In ACM CCS, 2018.

[48] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun

Kanade. TAPAS: Tricks to accelerate (encrypted) prediction

as a service. In International Conference on Machine Learn-

ing, pages 4497–4506, 2018.

[49] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimiz-

ing semi-honest secure multiparty computation for the inter-

net. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages 578–590.

ACM, 2016.

[50] Zvika Brakerski. Fully homomorphic encryption without

modulus switching from classical gapsvp. In Advances in

cryptology–crypto 2012, pages 868–886. Springer, 2012.

[51] Junfeng Fan and Frederik Vercauteren. Somewhat practi-

cal fully homomorphic encryption. IACR Cryptology ePrint

Archive, 2012:144, 2012.

[52] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-

don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasude-

van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. Tensorflow: A system for large-scale machine

learning. In Operating Systems Design and Implementation

(OSDI), 2016.

[53] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. arXiv preprint arXiv:1412.6550,

2014.

[54] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

USENIX Association 28th USENIX Security Symposium 1515

[55] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,

Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire

Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A guide

to deep learning in healthcare. Nature medicine, 25(1):24,

2019.

[56] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko,

Susan M Swetter, Helen M Blau, and Sebastian Thrun.

Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 542(7639):115, 2017.

[57] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and

Brendan J Frey. Predicting the sequence specificities of dna-

and rna-binding proteins by deep learning. Nature biotech-

nology, 33(8):831, 2015.

[58] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nis-

san Hajaj, Michaela Hardt, Peter J Liu, Xiaobing Liu, Jake

Marcus, Mimi Sun, et al. Scalable and accurate deep learning

with electronic health records. npj Digital Medicine, 1(1):18,

2018.

[59] Breast Cancer Wisconsin, accessed on 01/20/2019.

https://www.kaggle.com/uciml/

breast-cancer-wisconsin-data.

[60] Pima Indians Diabetes, accessed on 01/20/2019.

https://www.kaggle.com/uciml/

pima-indians-diabetes-database.

[61] Indian Liver Patient Records, accessed on

01/20/2019. https://www.kaggle.com/uciml/

indian-liver-patient-records.

[62] Malaria Cell Images, accessed on 01/20/2019.

https://www.kaggle.com/iarunava/

cell-images-for-detecting-malaria.

A Experimental Details

A.1 Network Trimming Examples

Table 9 and 10 summarize the trimming steps for the MNIST
and CIFAR-10 benchmarks, respectively.

Table 9: Trimming MNIST architectures.

Network Property
Trimming Step

Change
initial step 1 step 2 step 3

BM1
(s=1.75)

Acc. (%) 97.63 97.59 97.28 97.02 -0.61%
Comm. (MB) 4.95 4.29 3.81 3.32 1.49× less

Lat. (ms) 158 131 114 102 1.54× faster

BM2
(s=4)

Acc. (%) 98.64 98.44 98.37 98.13 -0.51%
Comm. (MB) 38.28 28.63 24.33 15.76 2.42× less

Lat. (ms) 158 144 134 104 1.51× faster

BM3
(s=2)

Acc. (%) 99.22 99.11 98.96 99.00 -0.22%
Comm. (MB) 56.08 42.51 37.34 32.13 1.75× less

Lat. (ms) 190 165 157 146 1.3× faster

Table 10: Trimming the BC2 network for CIFAR-10.

Property
Trimming Step

Change
initial step 1 step 2 step 3

Acc. (%) 82.40 82.39 82.41 81.85 -0.55%
Com. (GB) 3.38 3.05 2.76 2.60 1.30× less

Lat. (s) 7.59 6.87 6.23 5.79 1.31× faster

A.2 Accuracy, Runtime, and Communication

Runtime and communication reports are available in Ta-
ble 11 and Table 12 for MNIST and CIFAR-10 benchmarks,
respectively. The corresponding neural network architec-
tures are provided in Table 13. Entries corresponding to a
communication of more than 40GB are estimated using nu-
merical runtime models.

Table 11: Accuracy (Acc.), communication (Comm.), and
latency (Lat.) for MNIST dataset. Channel/neuron trimming
is not applied.

Arch. s Acc. (%) Comm. (MB) Lat. (s)

BM1

1 97.10 2.57 0.12
1.5 97.56 4.09 0.13
2 97.82 5.87 0.13
3 98.10 10.22 0.14
4 98.34 15.62 0.15

BM2

1 97.25 2.90 0.10
1.50 97.93 5.55 0.12

2 98.28 10.09 0.14
3 98.56 21.90 0.18
4 98.64 38.30 0.23

BM3

1 98.54 17.59 0.17
1.5 98.93 36.72 0.22
2 99.13 62.77 0.3
3 99.26 135.88 0.52
4 99.35 236.78 0.81

Table 12: Accuracy (Acc.), communication (Comm.), and
latency (Lat.) for CIFAR-10 dataset. Channel/neuron trim-
ming is not applied.

Arch. s Acc. (%) Comm. (MB) Lat. (s)

BC1

1 0.72 1.26 3.96
1.5 0.77 2.82 8.59
2 0.80 4.98 15.07
3 0.83 11.15 33.49

BC2

1 0.67 0.39 1.37
1.5 0.73 0.86 2.78
2 0.78 1.53 4.75
3 0.82 3.40 10.35

BC3

1 0.77 1.35 4.23
1.5 0.81 3.00 9.17
2 0.83 5.32 16.09
3 0.86 11.89 35.77

BC4

1 0.82 4.66 14.12
1.5 0.85 10.41 31.33
2 0.87 18.45 55.38
3 0.88 41.37 123.94

BC5

1 0.81 5.54 16.78
1.5 0.85 12.40 37.29
2 0.86 21.98 65.94
3 0.88 49.30 147.66

BC6

1 0.67 0.65 2.15
1.5 0.74 1.46 4.55
2 0.78 2.58 7.91
3 0.80 5.77 17.44

1516 28th USENIX Security Symposium USENIX Association

Table 13: Evaluated network architectures.
BM1

1 FC [input: 784, output: 128s] + BN + BA
2 FC [input: 128s, output: 128s] + BN + BA
3 FC [input: 128s, output: 10] + BN + Softmax

BM2
1 CONV [input: 28×28×1, window: 5×5, stride: 2, kernels: 5s,

output: 12×12×5s] + BN + BA
2 FC [input: 720s, output: 100s] + BN + BA
3 FC [input: 100s, output: 10] + BN + Softmax

BM3
1 CONV [input: 28×28×1, window: 5×5, stride: 1, kernels: 16s,

output: 24×24×16s] + BN + BA
2 MP [input: 24×24×16s, window: 2×2, output: 12×12×16s]
3 CONV [input: 12×12×16s, window: 5×5, stride: 1, kernels: 16s,

output: 8×8×16s] + BN + BA
4 MP [input: 8×8×16s, window: 2×2, output: 4×4×16s]
5 FC [input: 256s, output: 100s] + BN + BA
6 FC [input: 100s, output: 10] + BN + Softmax

BC1
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 64s,

output: 30×30×64s] + BN + BA
2 CONV [input: 30×30×64s, window: 3×3, stride: 1, kernels: 64s,

output: 28×28×64s] + BN + BA
3 MP [input: 28×28×64s, window: 2×2, output: 14×14×64s]
4 CONV [input: 14×14×64s, window: 3×3, stride: 1, kernels: 64s,

output: 12×12×64s] + BN + BA
5 CONV [input: 12×12×64s, window: 3×3, stride: 1, kernels: 64s,

output: 10×10×64s] + BN + BA
6 MP [input: 10×10×64s, window: 2×2, output: 5×5×64s]
7 CONV [input: 5×5×64s, window: 3×3, stride: 1, kernels: 64s,

output: 3×3×64s] + BN + BA
8 CONV [input: 3×3×64s, window: 1×1, stride: 1, kernels: 64s,

output: 3×3×64s] + BN + BA
9 CONV [input: 3×3×64s, window: 1×1, stride: 1, kernels: 16s,

output: 3×3×16s] + BN + BA
10 FC [input: 144s, output: 10] + BN + Softmax

BC2
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
3 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
4 MP [input: 32×32×16s, window: 2×2, output: 16×16×16s]
5 CONV [input: 16×16×16s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
6 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
7 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
8 MP [input: 16×16×32s, window: 2×2, output: 8×8×32s]
9 CONV [input: 8×8×32s, window: 3×3, stride: 1, kernels: 48s,

output: 6×6×48s] + BN + BA
10 CONV [input: 6×6×48s, window: 3×3, stride: 1, kernels: 48s,

output: 4×4×48s] + BN + BA
11 CONV [input: 4×4×48s, window: 3×3, stride: 1, kernels: 64s,

output: 2×2×64s] + BN + BA
12 MP [input: 2×2×64s, window: 2×2, output: 1×1×64s]
13 FC [input: 64s, output: 10] + BN + Softmax

BC3
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
3 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
4 MP [input: 32×32×32s, window: 2×2, output: 16×16×32s]
5 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 48s,

output: 16×16×48s] + BN + BA
6 CONV [input: 16×16×48s, window: 3×3, stride: 1, kernels: 64s,

output: 16×16×64s] + BN + BA
7 CONV [input: 16×16×64s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
9 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 96s,

output: 6×6×96s] + BN + BA
10 CONV [input: 6×6×96s, window: 3×3, stride: 1, kernels: 96s,

output: 4×4×96s] + BN + BA
11 CONV [input: 4×4×96s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
12 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
13 FC [input: 128s, output: 10] + BN + Softmax

BC4
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
2 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 48s,

output: 32×32×48s] + BN + BA
3 CONV [input: 32×32×48s, window: 3×3, stride: 1, kernels: 64s,

output: 32×32×64s] + BN + BA
4 CONV [input: 32×32×64s, window: 3×3, stride: 1, kernels: 64s,

output: 32×32×64s] + BN + BA
5 MP [input: 32×32×64s, window: 2×2, output: 16×16×64s]
6 CONV [input: 16×16×64s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
7 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
9 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA

10 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
11 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 128s,

output: 6×6×128s] + BN + BA
12 CONV [input: 6×6×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
13 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
14 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
15 FC [input: 128s, output: 10] + BN + Softmax

BC5
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
2 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
3 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 32s,

output: 32×32×32s] + BN + BA
4 CONV [input: 32×32×32s, window: 3×3, stride: 1, kernels: 48s,

output: 32×32×48s] + BN + BA
5 CONV [input: 32×32×48s, window: 3×3, stride: 1, kernels: 48s,

output: 32×32×48s] + BN + BA
6 MP [input: 32×32×48s, window: 2×2, output: 16×16×48s]
7 CONV [input: 16×16×48s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
8 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
9 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
10 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
11 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
12 CONV [input: 16×16×80s, window: 3×3, stride: 1, kernels: 80s,

output: 16×16×80s] + BN + BA
13 MP [input: 16×16×80s, window: 2×2, output: 8×8×80s]
14 CONV [input: 8×8×80s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
15 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
16 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 8×8×128s] + BN + BA
17 CONV [input: 8×8×128s, window: 3×3, stride: 1, kernels: 128s,

output: 6×6×128s] + BN + BA
18 CONV [input: 6×6×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
19 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
20 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
21 FC [input: 128s, output: 10] + BN + Softmax

BC6
1 CONV [input: 32×32×3, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
2 CONV [input: 32×32×16s, window: 3×3, stride: 1, kernels: 16s,

output: 32×32×16s] + BN + BA
3 MP [input: 32×32×16s, window: 2×2, output: 16×16×16s]
4 CONV [input: 16×16×16s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
5 CONV [input: 16×16×32s, window: 3×3, stride: 1, kernels: 32s,

output: 16×16×32s] + BN + BA
6 MP [input: 16×16×32s, window: 2×2, output: 8×8×32s]
7 CONV [input: 8×8×32s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
8 CONV [input: 8×8×64s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
9 CONV [input: 8×8×64s, window: 3×3, stride: 1, kernels: 64s,

output: 8×8×64s] + BN + BA
10 MP [input: 8×8×64s, window: 2×2, output: 4×4×64s]
11 CONV [input: 4×4×64s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
12 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
13 CONV [input: 4×4×128s, window: 3×3, stride: 1, kernels: 128s,

output: 4×4×128s] + BN + BA
14 MP [input: 4×4×128s, window: 2×2, output: 2×2×128s]
15 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
16 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
17 CONV [input: 2×2×128s, window: 3×3, stride: 1, kernels: 128s,

output: 2×2×128s] + BN + BA
18 MP [input: 2×2×128s, window: 2×2, output: 1×1×128s]
19 FC [input: 128s, output: 512s] + BN + BA
20 FC [input: 512s, output: 512s] + BN + BA
21 FC [input: 512s, output: 10] + BN + Softmax

BH1
1 FC [input: 30, output: 16] + BN + BA
2 FC [input: 16, output: 16] + BN + BA
3 FC [input: 16, output: 2] + BN + Softmax

BH2
1 FC [input: 8, output: 20] + BN + BA
2 FC [input: 20, output: 20] + BN + BA
3 FC [input: 20, output: 2] + BN + Softmax

BH3
1 FC [input: 10, output: 32] + BN + BA
2 FC [input: 32, output: 32] + BN + BA
3 FC [input: 32, output: 2] + BN + Softmax

BH4
1 CONV [input: 32×32×3, window: 5×5, stride: 1, kernels: 36,

output: 28×28×36] + BN + BA
2 MP [input: 28×28×36, window: 2×2, output: 14×14×36]
3 CONV [input: 14×14×36, window: 5×5, stride: 1, kernels: 36,

output: 10×10×36] + BN + BA
4 MP [input: 10×10×36, window: 2×2, output: 5×5×36]
5 FC [input: 900, output: 72] + BN + BA
6 FC [input: 72, output: 2] + BN + Softmax

USENIX Association 28th USENIX Security Symposium 1517

B Attacks on Deep Neural Networks

In this section, we review three of the most important attacks
against deep neural networks that are relevant to the context
of oblivious inference [1, 27, 28]. In all three, a client-server
model is considered where the client is the adversary and at-
tempts to learn more about the model held by the server. The
client sends many inputs and receives the inference results .
He then analyzes the results to infer more information about
either the network parameters or the training data that has
been used in the training phase of the model. We briefly re-
view each attack and illustrate a simple defense mechanism
with negligible overhead based on the suggestions provided
in these works.

Model Inversion Attack [27]. In the black-box access
model of this attack (which fits the computational model of
this work), an adversarial client attempts to learn about a pro-
totypical sample of one of the classes. The client iteratively
creates an input that maximizes the confidence score corre-
sponding to the target class. Regardless of the specific train-
ing process, the attacker can learn significant information by
querying the model many times.

Model Extraction Attack [1]. In this type of attack, an ad-
versary’s goal is to estimate the parameters of the machine
learning model held by the server. For example, in a logis-
tic regression model with n parameters, the model can be
extracted by querying the server n times and upon receiv-
ing the confidence values, solving a system of n equations.
Model extraction can diminish the pay-per-prediction busi-
ness model of technology companies. Moreover, it can be
used as a pre-step towards the model inversion attack.

Membership Inference Attack [28]. The objective of this
attack is to identify whether a given input has been used in
the training phase of the model or not. This attack raises cer-
tain privacy concerns. The idea behind this attack is that the
neural networks usually perform better on the data that they
were trained on. Therefore, two inputs that belong to the
same class, one used in the training phase and one not, will
have noticeable differences in the confidence values. This
behavior is called overfitting. The attack can be mitigated
using regularization techniques that reduce the dependency
of the DL model on a single training sample. However, over-
fitting is not the only contributor to this information leakage.

Defense Mechanisms. In the prior state-of-the-art oblivi-
ous inference solution [9], it has been suggested to limit the
number of queries from a specific client to limit the informa-
tion leakage. However, in practice, an attacker can imper-
sonate himself as many different clients and circumvent this
defense mechanism. Note that all three attacks rely on the
fact that along with the inference result, the server provides
the confidence vector that specifies how likely the client’s in-
put belongs to each class. Therefore, as suggested by prior
work [1, 27, 28], it is recommended to augment a filter layer
that (i) rounds the confidence scores or (ii) selects the index

of a class that has the highest confidence score.

1. Rounding the confidence values: Rounding the values
simply means omitting one (or more) of the Least Sig-
nificant Bit (LSB) of all of the numbers in the last layer.
This operation is in fact free in GC since it means Garbler
has to avoid providing the mapping for those LSBs.

2. Reporting the class label: This operation is equivalent to
computing argmax on the last layer. For a vector of size
c where each number is represented with b bits, argmax
is translated to c · (2b+ 1) many non-XOR (AND) gates.
For example, in a typical architecture for MNIST (e.g.,
BM3) or CIFAR-10 dataset (e.g., BC1), the overhead is
1.68E-2% and 1.36E-4%, respectively.

Note that the two aforementioned defense mechanisms can
be augmented to any framework that supports non-linear
functionalities [7, 9, 13]. However, we want to emphasize
that compared to mixed-protocol solutions, this means that
another round of communication is usually needed to sup-
port the filter layer. Whereas, in XONN the filter layer does
not increase the number of rounds and has negligible over-
head compared to the overall protocol.

1518 28th USENIX Security Symposium USENIX Association

JEDI: Many-to-Many End-to-End Encryption and Key Delegation for IoT

Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler
University of California, Berkeley

Abstract
As the Internet of Things (IoT) emerges over the next decade,
developing secure communication for IoT devices is of
paramount importance. Achieving end-to-end encryption for
large-scale IoT systems, like smart buildings or smart cities,
is challenging because multiple principals typically interact
indirectly via intermediaries, meaning that the recipient of a
message is not known in advance. This paper proposes JEDI
(Joining Encryption and Delegation for IoT), a many-to-many
end-to-end encryption protocol for IoT. JEDI encrypts and
signs messages end-to-end, while conforming to the decou-
pled communication model typical of IoT systems. JEDI’s
keys support expiry and fine-grained access to data, common
in IoT. Furthermore, JEDI allows principals to delegate their
keys, restricted in expiry or scope, to other principals, thereby
granting access to data and managing access control in a scal-
able, distributed way. Through careful protocol design and
implementation, JEDI can run across the spectrum of IoT
devices, including ultra low-power deeply embedded sensors
severely constrained in CPU, memory, and energy consump-
tion. We apply JEDI to an existing IoT messaging system and
demonstrate that its overhead is modest.

1 Introduction
As the Internet of Things (IoT) has emerged over the past
decade, smart devices have become increasingly common.
This trend is only expected to continue, with tens of billions
of new IoT devices deployed over the next few years [30].
The IoT vision requires these devices to communicate to dis-
cover and use the resources and data provided by one another.
Yet, these devices collect privacy-sensitive information about
users. A natural step to secure privacy-sensitive data is to use
end-to-end encryption to protect it during transit.

Existing protocols for end-to-end encryption, such as
SSL/TLS and TextSecure [44], focus on one-to-one commu-
nication between two principals: for example, Alice sends
a message to Bob over an insecure channel. Such protocols,
however, appear not to be a good fit for large-scale indus-
trial IoT systems. Such IoT systems demand many-to-many
communication among decoupled senders and receivers, and
require decentralized delegation of access to enforce which
devices can communicate with which others.

We investigate existing IoT systems, which currently do not
encrypt data end-to-end, to understand the requirements on an
end-to-end encryption protocol like JEDI. We use smart cities
as an example application area, and data-collecting sensors in
a large organization as a concrete use case. We identify three
central requirements, which we treat in turn below:

Laptop, Server,
Workstation

Intel Core i7
100,000 DMIPS

10 GiB RAM

Smartphone,
Raspberry Pi

ARM Cortex-A53
10,000 DMIPS

1 GiB RAM

Smart Home
Appliance

ARM Cortex-A8
1,000 DMIPS
100 MiB RAM

Wearable Device,
Embedded Appliance

ARM Cortex-M3/M4
100 DMIPS

100 KiB - 1 MiB RAM

Ultra Low-Power Deeply
Embedded Sensor

ARM Cortex-M0/M0+
50 DMIPS

32 KiB RAM
More
Powerful

Less
PowerfulJEDI is capable of running on all of these IoT devices

Figure 1: IoT comprises a diverse set of devices, which span
more than four orders of magnitude of computing power (es-
timated in Dhrystone MIPS).1

. Decoupled senders and receivers. IoT-scale systems could
consist of thousands of principals, making it infeasible for
consumers of data (e.g., applications) to maintain a separate
session with each producer of data (e.g., sensors). Instead,
senders are typically decoupled from receivers. Such decou-
pling is common in publish-subscribe systems for IoT, such as
MQTT, AMQP, XMPP, and Solace [76]. In particular, many-
to-many communication based on publish-subscribe is the
de-facto standard in smart buildings, used in systems like
BOSS [36], VOLTTRON [82], Brume [66] and bw2 [5], and
adopted commercially in AllJoyn and IoTivity. Senders pub-
lish messages by addressing them to resources and sending
them to a router. Recipients subscribe to a resource by asking
the router to send them messages addressed to that resource.

Many systems for smart buildings/cities, like sMAP [35],
SensorAct [7], bw2 [5], VOLTTRON [82], and BAS [56],
organize resources as a hierarchy. A resource hierarchy
matches the organization of IoT devices: for instance, smart
cities contain buildings, which contain floors, which con-
tain rooms, which contain sensors, which produce streams
of readings. We represent each resource—a leaf in the
hierarchy—as a Uniform Resource Indicator (URI), which
is like a file path. For example, a sensor that measures
temperature and humidity might send its readings to the
two URIs buildingA/floor2/roomLHall/sensor0/temp
and buildingA/floor2/roomLHall/sensor0/hum. A user
can subscribe to a URI prefix, such as buildingA/floor2/
roomLHall/*, which represents a subtree of the hierarchy.
He would then receive all sensor readings in room “LHall.”
. Decentralized delegation. Access control in IoT needs to
be fine-grained. For example, if Bob has an app that needs

1Image credits: https://tweakers.net/pricewatch/1275475/asus-
f540la-dm1201t.html, https://www.lg.com/uk/mobile-phones/lg-
H791, https://www.bestbuy.com/site/nest-learning-thermostat-
3rd-generation-stainless-steel/4346501.p?skuId=4346501,
https://www.macys.com/shop/product/fitbit-charge-2-heart-
rate-fitness-wristband?ID=2999458

USENIX Association 28th USENIX Security Symposium 1519

https://tweakers.net/pricewatch/1275475/asus-f540la-dm1201t.html
https://tweakers.net/pricewatch/1275475/asus-f540la-dm1201t.html
https://www.lg.com/uk/mobile-phones/lg-H791
https://www.lg.com/uk/mobile-phones/lg-H791
https://www.bestbuy.com/site/nest-learning-thermostat-3rd-generation-stainless-steel/4346501.p?skuId=4346501
https://www.bestbuy.com/site/nest-learning-thermostat-3rd-generation-stainless-steel/4346501.p?skuId=4346501
https://www.macys.com/shop/product/fitbit-charge-2-heart-rate-fitness-wristband?ID=2999458
https://www.macys.com/shop/product/fitbit-charge-2-heart-rate-fitness-wristband?ID=2999458

access to temperature readings from a single sensor, that app
should receive the decryption key for only that one URI, even
if Bob has keys for the entire room. In an IoT-scale system, it
is not scalable for a central authority to individually give fine-
grained decryption keys to each person’s devices. Moreover,
as we discuss in §2, such an approach would pose increased
security and privacy risks. Instead, Bob, who himself has ac-
cess to readings for the entire room, should be able to delegate
temperature-readings access to the app. Generally, a principal
with access to a set of resources can give another principal
access to a subset of those resources.

Vanadium [77] and bw2 [5] introduced decentralized del-
egation (SPKI/SDSI [31] and Macaroons [13]) in the smart
buildings space. Since then, decentralized delegation has be-
come the state-of-the-art for access control in smart buildings,
especially those geared toward large-scale commercial build-
ings or organizations [42,52]. In these systems, a principal can
access a resource if there exists a chain of delegations, from
the owner of the resource to that principal, granting access. At
each link in the chain, the extent of access may be qualified
by caveats, which add restrictions to which resources can be
accessed and when. While these systems provide delegation
of permissions, they do not provide protocols for encrypting
and decrypting messages end-to-end.
. Resource constraints. IoT devices vary greatly in their
capabilities, as shown in Fig. 1. This includes devices con-
strained in CPU, memory, and energy, such as wearable de-
vices and low-cost environmental sensors.

In smart buildings/cities, one application of interest is in-
door environmental sensing. Sensors that measure tempera-
ture, humidity, or occupancy may be deployed in a building;
such sensors are battery-powered and transmit readings using
a low-power wireless network. To see ubiquitous deployment,
they must cost only tens of dollars per unit and have several
years of battery life. To achieve this price/power point, sensor
platforms are heavily resource-constrained, with mere kilo-
bytes of memory (farthest right in Fig. 1) [3,4,26,41,49,59,69].
The power consumption of encryption is a serious challenge,
even more so than its latency on a slower CPU; the CPU and
radio must be used sparingly to avoid consuming energy too
quickly [55, 89]. For example, on the sensor platform used
in our evaluation, an average CPU utilization of merely 5%
would result in less than a year of battery life, even if the
power cost of using the transducers and network were zero.

1.1 Overview of JEDI
This paper presents JEDI, a many-to-many end-to-end en-
cryption protocol compatible with the above three require-
ments of IoT systems. JEDI encrypts messages end-to-end
for confidentiality, signs them for integrity while preserving
anonymity, and supports delegation with caveats, all while
allowing senders and receivers to be decoupled via a resource
hierarchy. JEDI differs from existing encryption protocols like
SSL/TLS, requiring us to overcome a number of challenges:

Building
Manager

Campus
Manager

Lab
Director

Alice

(Root)

buildingB

floor1

lecture_hall

buildingA

floor1

lobby

floor2

roomLHall alice_office

Never
Expires

Expires
Jun 2020

Expires
Jun 2020

Expires
Aug 2019

Figure 2: JEDI keys can be qualified and delegated, supporting
decentralized, cryptographically-enforced access control via
key delegation. Each person has a decryption key for the
indicated resource subtree that is valid until the indicated
expiry time. Black arrows denote delegation.

1. Formulating a new system model for end-to-end encryp-
tion to support decoupled senders and receivers and de-
centralized delegation typical of IoT systems (§1.1.1)

2. Realizing this expressive model while working within the
resource constraints of IoT devices (§1.1.2)

3. Allowing receivers to verify the integrity of messages,
while preserving the anonymity of senders (§1.1.3)

4. Extending JEDI’s model to support revocation (§1.1.4)
Below, we explain how we address each of these challenges.
1.1.1 JEDI’s System Model (§2)
Participants in JEDI are called principals. Any principal can
create a resource hierarchy to represent some resources that
it owns. Because that principal owns all of the resources in
the hierarchy, it is called the authority of that hierarchy.

Due to the setting of decoupled senders and receivers,
the sender can no longer encrypt messages with the receiver’s
public key, as in traditional end-to-end encryption. Instead,
JEDI models principals as interacting with resources, rather
than with other principals. Herein lies the key difference be-
tween JEDI’s model and other end-to-end encryption proto-
cols: the publisher of a message encrypts it according to the
URI to which it is published, not the recipients subscribed to
that URI. Only principals permitted to subscribe to a URI are
given keys that can decrypt messages published to that URI.

IoT systems that support decentralized delegation (Vana-
dium, bw2), as well as related non-IoT authorization systems
(e.g., SPKI/SDSI [31] and Macaroons [13]) provide principals
with tokens (e.g., certificate chains) that they can present to
prove they have access to a certain resource. Providing to-
kens, however, is not enough for end-to-end encryption; unlike
these systems, JEDI allows decryption keys to be distributed
via chains of delegations. Furthermore, the URI prefix and
expiry time associated with each JEDI key can be restricted
at each delegation. For example, as shown in Fig. 2, suppose
Alice, who works in a research lab, needs access to sensor
readings in her office. In the past, the campus facilities man-
ager, who is the authority for the hierarchy, granted a key for
buildingA/* to the building manager, who granted a key

1520 28th USENIX Security Symposium USENIX Association

for buildingA/floor2/* to the lab director. Now, Alice can
obtain the key for buildingA/floor2/alice_office/* di-
rectly from her local authority (the lab director).
1.1.2 Encryption with URIs and Expiry (§3)
JEDI supports decoupled communication. The resource to
which a message is published acts as a rendezvous point be-
tween the senders and receivers, used by the underlying sys-
tem to route messages. Central to JEDI is the challenge of
finding an analogous cryptographic rendezvous point that
senders can use to encrypt messages without knowledge of
receivers. A number of IoT systems [70, 74] use only simple
cryptography like AES, SHA2, and ECDSA, but these primi-
tives are not expressive enough to encode JEDI’s rendezvous
point, which must support hierarchically-structured resources,
non-interactive expiry, and decentralized delegation.

Existing systems [83–85] with similar expressivity to JEDI
use Attribute-Based Encryption (ABE) [12, 48]. Unfortu-
nately, ABE is not suitable for JEDI because it is too ex-
pensive, especially in the context of resource constraints
of IoT devices. Some IoT systems rule it out due to its la-
tency alone [74]. In the context of low-power devices, encryp-
tion with ABE would also consume too much power. JEDI
circumvents the problem of using ABE or basic cryptogra-
phy with two insights: (1) Even though ABE is too heavy
for low-power devices, this does not mean that we must re-
sort to only symmetric-key techniques. We show that certain
IBE schemes [1] can be made practical for such devices. (2)
Time is another resource hierarchy: a timestamp can be ex-
pressed as year/month/day/hour, and in this hierarchical
representation, any time range can be represented efficiently
as a logarithmic number of subtrees. With this insight, we
can simultaneously support URIs and expiry via a nonstan-
dard use of a certain type of IBE scheme: WKD-IBE [1].
Like ABE, WKD-IBE is based on bilinear groups (pairings),
but it is an order-of-magnitude less expensive than ABE as
used in JEDI. To make JEDI practical on low-power devices,
we design it to invoke WKD-IBE rarely, while relying on
AES most of the time, much like session keys. Thus, JEDI
achieves expressivity commensurate to IoT systems that do
not encrypt data—significantly more expressive than AES-
only solutions—while allowing several years of battery life
for low-power low-cost IoT devices.
1.1.3 Integrity and Anonymity (§4)
In addition to being encrypted, messages should be signed
so that the recipient of a message can be sure it was not sent
by an attacker. This can be achieved via a certificate chain,
as in SPKI/SDSI or bw2. Certificates can be distributed in a
decentralized manner, just like encryption keys in Fig. 2.

Certificate chains, however, are insufficient if anonymity
is required. For example, consider an office space with an
occupancy sensor in each office, each publishing to the same
URI buildingA/occupancy. In aggregate, the occupancy
sensors could be useful to inform, e.g., heating/cooling in the
building, but individually, the readings for each room could be

considered privacy-sensitive. The occupancy sensors in differ-
ent rooms could use different certificate chains, if they were
authorized/installed by different people. This could be used to
deanonymize occupancy readings. To address this challenge,
we adapt the WKD-IBE scheme that we use for end-to-end
encryption to achieve an anonymous signature scheme that
can encode the URI and expiry and support decentralized
delegation. Using this technique, anonymous signatures are
practical even on low-power embedded IoT devices.

1.1.4 Revocation (§5)
As stated above, JEDI keys support expiry. Therefore, it is
possible to achieve a lightweight revocation scheme by dele-
gating each key with short expiry and periodically renewing
it to extend the expiry. To revoke a key, one simply does not
renew it. We expect this expiry-based revocation to be suf-
ficient for most use cases, especially for low-power devices,
which typically just “sense and send.”

Enforcing revocation cryptographically, without relying
on expiration, is challenging. As we discuss in §5, any
cryptographically-enforced scheme that provides immediate
revocation (i.e., keys can be revoked without waiting for them
to expire) is subject to the fundamental limitation that the
sender of a message must know which recipients are revoked
when it encrypts the message. JEDI provides a form of imme-
diate revocation, subject to this constraint. We use techniques
from tree-based broadcast encryption [37, 67] to encrypt in
such a way that all decryption keys for that URI, except for
ones on a revocation list, can be used to decrypt. Achiev-
ing this is nontrivial because we have to combine broadcast
encryption with JEDI’s semantics of hierarchical resources,
expiry, and delegation. First, we modify broadcast encryption
to support delegation, in such a way that if a key is revoked,
all delegations made with that key are also implicitly revoked.
Then, we integrate broadcast revocation, in a non-black-box
way, with JEDI’s encryption and delegation, as a third re-
source hierarchy alongside URIs and expiry.

1.2 Summary of Evaluation
For our evaluation, we use JEDI to encrypt messages transmit-
ted over bw2 [5, 27], a deployed open-source messaging sys-
tem for smart buildings, and demonstrate that JEDI’s overhead
is small in the critical path. We also evaluate JEDI for a com-
mercially available sensor platform called “Hamilton” [49],
and show that a Hamilton-based sensor sending one sensor
reading every 30 seconds would see several years of battery
lifetime when sending sensor readings encrypted with JEDI.
As Hamilton is among the least powerful platforms that will
participate in IoT (farthest to the right in Fig. 1), this validates
that JEDI is practical across the IoT spectrum.

2 JEDI’s Model and Threat Model
A principal can post a message to a resource in a hierarchy
by encrypting it according to the resource’s URI, hierarchy’s
public parameters, and current time, and passing it to the un-

USENIX Association 28th USENIX Security Symposium 1521

Existing IoT System

Data

JEDI

Data(e.g., bldg/flo
or/room/sens
or/reading)

(e.g., Publish/Subscribe
on URI-based Resources)

Encrypt

URI

URI Data

JEDI

Data

Decrypt

URI

Message Message

SubscriberPublisher

(e.g., indoor
sensor)

(e.g., user's
app)

Figure 3: Applying JEDI to a smart buildings IoT system.
Components introduced by JEDI are shaded. The subscriber’s
key is obtained via JEDI’s decentralized delegation (Fig. 2).

derlying system that delivers it to the relevant subscribers.
Given the secret key for a resource subtree and time range,
a principal can generate a secret key for a subset of those
resources and subrange of that time range, and give it to an-
other principal, as in Fig. 2. The receiving principal can use
the delegated key to decrypt messages that are posted to a
resource in that subset at a time during that subrange.

JEDI does not require the structure of the resource hier-
archy to be fixed in advance. In Fig. 2, the campus facilities
manager, when granting access to buildingA/* to the build-
ing manager, need not be concerned with the structure of
the subtree rooted at buildingA. This allows the building
manager to organize buildingA/* independently.

2.1 Trust Assumptions
A principal is trusted for the resources it owns or was given
access to (for the time ranges for which it was given access).
In other words, an adversary who compromises a principal
can read all resources that principal can read and forge new
messages as if it were that principal. In particular, an adversary
who compromises the authority for a resource hierarchy gains
control over that resource hierarchy.

JEDI allows each principal to act as an authority for its own
resource hierarchy in its own trust domain, without a single
authority spanning all hierarchies. In particular, principals
are not organized hierarchically; a principal may be delegated
multiple keys, each belonging to a different resource hierar-
chy. In the example in Fig. 2, Alice might also receive JEDI
keys from her landlord granting access to resources in her
apartment building, in a separate hierarchy where her landlord
is the authority. If Alice owns resources she would like to
delegate to others, she can set up her own hierarchy to repre-
sent those resources. Existing IoT systems with decentralized
delegation, like bw2 and Vanadium, use a similar model.

2.2 Applying JEDI to an Existing System
As shown in Fig. 3, JEDI can be applied as a wrapper around
existing many-to-many communication systems, including
publish-subscribe systems for smart cities. The transfer of
messages from producers to consumers is handled by the
existing system. A common design used by such systems is
to have a central broker (or router) forward messages; how-

ever, an adversary who compromises the broker can read all
messages. In this context, JEDI’s end-to-end encryption pro-
tects data from such an adversary. Publishers encrypt their
messages with JEDI before passing them to the underlying
communication system (without knowledge of who the sub-
scribers are), and subscribers decrypt them with JEDI after
receiving them from the underlying communication system
(without knowledge of who the publishers are).

2.3 Comparison to a Naïve Key Server Model
To better understand the benefits of JEDI’s model, consider
the natural strawman of a trusted key server. This key server
generates a key for every URI and time. A publisher encrypts
each message for that URI with the same key. A subscriber
requests this key from the trusted key server, which must
first check if the subscriber is authorized to receive it. The
subscriber can decrypt messages for a URI using this key, and
contact the key server for a new key when the key expires.
JEDI’s model is better than this key server model as follows:
• Improved security. Unlike the trusted key server, which

must always be online, the authority in JEDI can delegate
qualified keys to some principals and then go offline, leaving
these principals to qualify and delegate keys further. While
the authority is offline, it is more difficult for an attacker
to compromise it and easier for the authority to protect
its secrets because it need only access them rarely. This
reasoning is the basis of root Certificate Authorities (CAs),
which access their master keys infrequently. In contrast, the
trusted key server model requires a central trusted party (key
server) to be online to grant/revoke access to any resource.

• Improved privacy. No single participant sees all delegations
in JEDI. An adversary in JEDI who steals an authority’s se-
cret key can decrypt all messages for that hierarchy, but still
does not learn who has access to which resource, and can-
not access separate hierarchies to which the first authority
has no access. In contrast, an adversary who compromises
the key server learns who has access to which resource and
can decrypt messages for all hierarchies.

• Improved scalability. In the campus IoT example above, if
a building admin receives access to all sensors and all their
different readings for a building, the admin must obtain a
potentially very large number of keys, instead of one key for
the entire building. Moreover, the campus-wide key server
needs to grant decryption keys to each application owned
by each employee or student at the university. Finally, the
campus-wide key server must understand which delegations
are allowed at lower levels in the hierarchy, requiring the
entire hierarchy to be centrally administered.

2.4 IoT Gateways
Low-power wireless embedded sensors, due to power con-
straints, often do not use network protocols like Wi-Fi, and
instead use specialized low-power protocols such as Blue-
tooth or IEEE 802.15.4. It is common for these devices to rely
on an application-layer gateway to send data to computers

1522 28th USENIX Security Symposium USENIX Association

outside of the low-power network [91]. This gateway could
be in the form of a phone app (e.g., Fitbit), or in the form
of a specialized border router [25, 92]. In some traditional
setups, the gateway is responsible for performing encryp-
tion/authentication [70]. JEDI accepts that gateways may be
necessary for Internet connectivity, but does not rely on them
for security—JEDI’s cryptography is lightweight enough to
run directly on the low-power sensor nodes. This approach
prevents the gateway from becoming a single point of attack;
an attacker who compromises the gateway cannot see or forge
data for any device using that gateway.

2.5 Generalizability of JEDI’s Model
Since JEDI decouples senders from receivers, it has no re-
quirements on what happens at any intermediaries (e.g., does
not require messages to be forwarded from publishers to sub-
scribers in any particular way). Thus, JEDI works even when
messages are exchanged in a broadcast medium, e.g., multi-
cast. This also means that JEDI is more broadly applicable to
systems with hierarchically organized resources. For example,
URIs could correspond to filepaths in a file system, or URLs
in a RESTful web service.

2.6 Security Goals
JEDI’s goal is to ensure that principals can only read messages
from or send messages to resources they have been granted
access to receive from or send to. In the context of publish-
subscribe, JEDI also hides the content of messages from an
adversary who controls the router.

JEDI does not attempt to hide metadata relating to the
actual transfer of messages (e.g., the URIs on which messages
are published, which principals are publishing or subscribing
to which resources, and timing). Hiding this metadata is a
complementary task to achieving delegation and end-to-end
encryption in JEDI, and techniques from the secure messaging
literature [29, 32, 81] will likely be applicable.

3 End-to-End Encryption in JEDI
A central question answered in this section is: How should
publishers encrypt messages before passing them to the un-
derlying system for delivery (§3.4)? As explained in §1.1.2,
although ABE, the obvious choice, is too heavy for low-power
devices, we identify WKD-IBE, a more lightweight identity-
based encryption scheme, as sufficient to achieve JEDI’s prop-
erties. The primary challenge is to encode a sufficiently ex-
pressive rendezvous point in the WKD-IBE ID (called a pat-
tern) that publishers use to encrypt messages (§3.4).

3.1 Building Block: WKD-IBE
We first explain WKD-IBE [1], the encryption scheme that
JEDI uses as a building block. Throughout this paper, we
denote the security parameter as κ.

In WKD-IBE, messages are encrypted with patterns, and
keys also correspond to patterns. A pattern is a list of values:
P = (Z∗p ∪{⊥})`. The notation P(i) denotes the ith compo-

nent of P, 1-indexed. A pattern P1 matches a pattern P2 if, for
all i ∈ [1, `], either P1(i) =⊥ or P1(i) = P2(i). In other words,
if P1 specifies a value for an index i, P2 must match it at i.
Note that the “matches” operation is not commutative; “P1
matches P2” does not imply “P2 matches P1”.

We refer to a component of a pattern containing an element
of Z∗p as fixed, and to a component that contains ⊥ as free. To
aid our presentation, we define the following sets:

Definition 1. For a pattern S, we define:

fixed(S) = {(i,S(i)) | S(i) 6=⊥}
free(S) = {i | S(i) =⊥}

A key for pattern P1 can decrypt a message encrypted with
pattern P2 if P1 = P2. Furthermore, a key for pattern P1 can
be used to derive a key for pattern P2, as long as P1 matches
P2. In summary, the following is the syntax for WKD-IBE.
• Setup(1κ,1`)→ Params,MasterKey;

• KeyDer(Params,KeyPatternA ,PatternB) → KeyPatternB ,
derives a key for PatternB, where either KeyPatternA is the
MasterKey, or PatternA matches PatternB;

• Encrypt(Params,Pattern,m)→ CiphertextPattern,m;

• Decrypt(KeyPattern,CiphertextPattern,m)→ m.
We use the WKD-IBE construction in §3.2 of [1], based on

BBG HIBE [17]. Like the BBG construction, it has constant-
size ciphertexts, but requires the maximum pattern length `
to be known at Setup time. In this WKD-IBE construction,
patterns containing ⊥ can only be used in KeyDer, not in
Encrypt; we extend it to support encryption with patterns
containing ⊥. We include the WKD-IBE construction with
our optimizations in the appendix of our extended paper [57].

3.2 Concurrent Hierarchies in JEDI
WKD-IBE was originally designed to allow delegation in
a single hierarchy. For example, the original suggested
use case of WKD-IBE was to generate secret keys for
a user’s email addresses in all valid subdomains, such as
sysadmin@*.univ.edu [1].

JEDI, however, uses WKD-IBE in a nonstandard way to
simultaneously support multiple hierarchies, one for URIs
and one for expiry (and later in §5, one for revocation), each
in the vein of HIBE. We think of the ` components of a
WKD-IBE pattern as “slots” that are initially empty, and are
progressively filled in with calls to KeyDer. To combine a
hierarchy of maximum depth `1 (e.g., the URI hierarchy) and
a hierarchy of maximum depth `2 (e.g., the expiry hierarchy),
one can Setup WKD-IBE with the number of slots equal to
`= `1 + `2. The first `1 slots are filled in left-to-right for the
first hierarchy and the remaining `2 slots are filled in left-to-
right for the second hierarchy (Fig. 4).

3.3 Overview of Encryption in JEDI
Each principal maintains a key store containing WKD-IBE
decryption keys. To create a resource hierarchy, any principal

USENIX Association 28th USENIX Security Symposium 1523

can call the WKD-IBE Setup function to create a resource
hierarchy. It releases the public parameters and stores the
master secret key in its key store, making it the authority of
that hierarchy. To delegate access to a URI prefix for a time
range, a principal (possibly the authority) searches its key
store for a set of keys for a superset of those permissions. It
then qualifies those keys using KeyDer to restrict them to
the specific URI prefix and time range (§3.5), and sends the
resulting keys to the recipient of the delegation.2 The recipient
accepts the delegation by adding the keys to its key store.

Before sending a message to a URI, a principal encrypts
the message using WKD-IBE. The pattern used to encrypt it
is derived from the URI and the current time (§3.4), which are
included along with the ciphertext. When a principal receives
a message, it searches its key store, using the URI and time
included with the ciphertext, for a key to decrypt it.

In summary, JEDI provides the following API:
Encrypt(Message,URI,Time)→ Ciphertext
Decrypt(Ciphertext,URI,Time,KeyStore)→Message
Delegate(KeyStore,URIPrefix,TimeRange)→ KeySet
AcceptDelegation(KeyStore,KeySet)→ KeyStore′

Note that the WKD-IBE public parameters are an implicit
argument to each of these functions. Finally, although the
above API lists the arguments to Delegate as URIPrefix and
TimeRange, JEDI actually supports succinct delegation over
more complex sets of URIs and timestamps (see §3.7).

3.4 Expressing URI/Time as a Pattern
A message is encrypted using a pattern derived from (1) the
URI to which the message is addressed, and (2) the current
time. Let H : {0,1}∗→ Z∗p be a collision-resistant hash func-
tion. Let `= `1 + `2 be the pattern length in the hierarchy’s
WKD-IBE system. We use the first `1 slots to encode the URI,
and the last `2 slots to encode the time.

Given a URI of length d, such as a/b/c (d = 3 in this
example), we split it up into individual components, and ap-
pend a special terminator symbol $: ("a", "b", "c", $).
Using H, we map each component to Z∗p, and then put these
values into the first d +1 slots. If S is our pattern, we would
have S(1) = H("a"), S(2) = H("b"), S(3) = H("c"), and
S(4) =H($) for this example. Now, we encode the time range
into the remaining `2 slots. Any timestamp, with the granu-
larity of an hour, can be represented hierarchically as (year,
month, day, hour). We encode this into the pattern like
the URI: we hash each component, and assign them to con-
secutive slots. The final `2 slots encode the time, so the depth
of the time hierarchy is `2. The terminator symbol $ is not
needed to encode the time, because timestamps always have
exactly `2 components. For example, suppose that a princi-
pal sends a message to a/b on June 8, 2017 at 6 AM. The

2JEDI does not govern how the key set is transferred to the recipient, as
there are existing solutions for this. One can use an existing protocol for
one-to-one communication (e.g., TLS) to securely transfer the key set. Or,
one can encrypt the key set with the recipient’s (normal, non-WKD-IBE)
public key, and place it in a common storage area.

H("𝚊") H("𝚋") H($) ⊥ H("𝟷𝟽") H("𝙹𝚞𝚗") H("𝟶𝟾") H("𝟶𝟼")
1 2 3 4 5 6 7 8i

S(i)

= 4 slots for URI Hierarchyℓ1 = 4 slots for Time Hierarchyℓ2

Figure 4: Pattern S used to encrypt message sent to a/b on
June 08, 2017 at 6 AM. The figure uses 8 slots for space
reasons; JEDI is meant to be used with more slots (e.g., 20).

message is encrypted with the pattern in Fig. 4.

3.5 Producing a Key Set for Delegation
Now, we explain how to produce a key set corresponding to
a URI prefix and time range. To express a URI prefix as a
pattern, we do the same thing as we did for URIs, without the
terminator symbol $. For example, a/b/* is encoded in a pat-
tern S as S(1) = H("a"), S(2) = H("b"), and all other slots
free. Given the private key for S, one can use WKD-IBE’s
KeyDer to fill in slots 3 . . . `1. This allows one to generate the
private key for a/b, a/b/c, etc.—any URI for which a/b is a
prefix. To grant access to only a specific resource (a full URI,
not a prefix), the $ is included as before.

In encoding a time range into a pattern, single timestamps
(e.g., granting access for an hour) are done as before. The
hierarchical structure for time makes it possible to succinctly
grant permission for an entire day, month, or year. For exam-
ple, one may grant access for all of 2017 by filling in slot
`2 with H("2017") and leaving the final `2−1 slots, which
correspond to month, day, and year, free. Therefore, to grant
permission over a time range, the number of keys granted is
logarithmic in the length of the time range. For example, to
delegate access to a URI from October 29, 2014 at 10 PM
until December 2, 2014 at 1 AM, the following keys need
to be generated: 2014/Oct/29/23, 2014/Oct/29/24, 2014/
Oct/30/*, 2014/Oct/31/*, 2014/Nov/*, 2014/Dec/01/*,
and 2014/Dec/02/01. The tree can be chosen differently to
support longer time ranges (e.g., additional level representing
decades), change the granularity of expiry (e.g., minutes in-
stead of hours), trade off encryption time for key size (e.g.,
deeper/shallower tree), or use a more regular structure (e.g.,
binary encoding with logarithmic split). For example, our im-
plementation uses a depth-6 tree (instead of depth-4), to be
able to delegate time ranges with fewer keys.

In summary, to produce a key set for delegation, first de-
termine which subtrees in the time hierarchy represent the
time range. For each one, produce a separate pattern, and
encode the time into the last `2 slots. Encode the URI prefix
in the first `1 slots of each pattern. Finally, generate the keys
corresponding to those patterns, using keys in the key store.

3.6 Optimizations for Low-Power Devices
On low-power embedded devices, performing a single WKD-
IBE encryption consumes a significant amount of energy.
Therefore, we design JEDI with optimizations to WKD-IBE.

1524 28th USENIX Security Symposium USENIX Association

3.6.1 Hybrid Encryption and Key Reuse
JEDI uses WKD-IBE in a hybrid encryption scheme. To
encrypt a message m in JEDI, one samples a symmetric key
k, and encrypts k with JEDI to produce ciphertext c1. The
pattern used for WKD-IBE encryption is chosen as in §3.4 to
encode the rendezvous point. Then, one encrypts m using k to
produce ciphertext c2. The JEDI ciphertext is (c1,c2).

For subsequent messages, one reuses k and c1; the new
message is encrypted with k to produce a new c2. One can
keep reusing k and c1 until the WKD-IBE pattern for encryp-
tion changes, which happens at the end of each hour (or other
interval used for expiry). At this time, JEDI performs key rota-
tion by choosing a new k, encrypting it with WKD-IBE using
the new pattern, and then proceeding as before. Therefore,
most messages only incur cheap symmetric-key encryption.

This also reduces the load on subscribers. The JEDI cipher-
texts sent by a publisher during a single hour will all share
the same c1. Therefore, the subscriber can decrypt c1 once
for the first message to obtain k, and cache the mapping from
c1 to k to avoid expensive WKD-IBE decryptions for future
messages sent during that hour.

Thus, expensive WKD-IBE operations are only performed
upon key rotation, which happens rarely—once an hour (or
other granularity chosen for expiry) for each resource.
3.6.2 Precomputation with Adjustment
Even with hybrid encryption and key reuse to perform WKD-
IBE encryption rarely, WKD-IBE contributes significantly to
the overall power consumption on low-power devices. There-
fore, this section explores how to perform individual WKD-
IBE encryptions more efficiently.

Most of the work to encrypt under a pattern S is in com-
puting the quantity QS = g3 ·∏(i,ai)∈fixed(S) hai

i , where g3 and
the hi are part of the WKD-IBE public parameters. One may
consider computing QS once, and then reusing its value when
computing future encryptions under the same pattern S. Un-
fortunately, this alone does not improve efficiency because
the pattern S used in one WKD-IBE encryption is different
from the pattern T used for the next encryption.

JEDI, however, observes that S and T are similar; they
match in the `1 slots corresponding to the URI, and the re-
maining `2 slots will correspond to adjacent leaves in the time
tree. JEDI takes advantage of this by efficiently adjusting the
precomputed value QS to compute QT as follows:

QT =QS · ∏
(i,bi)∈fixed(T)

i∈free(S)

hbi
i · ∏

(i,ai)∈fixed(S)
i∈free(T)

h−ai
i · ∏

(i,ai)∈fixed(S)
(i,bi)∈fixed(T)

ai 6=bi

hbi−ai
i

This requires one G1 exponentiation per differing slot be-
tween S and T (i.e., the Hamming distance). Because S and
T usually differ in only the final slot of the time hierarchy,
this will usually require one G1 exponentiation total, sub-
stantially faster than computing QT from scratch. Additional
exponentiations are needed at the end of each day, month, and
year, but they can be eliminated by maintaining additional

precomputed values corresponding to the start of the current
day, current month, and current year.

The protocol remains secure because a ciphertext is dis-
tributed identically whether it was computed from a precom-
puted value QS or via regular encryption.

3.7 Extensions
Via simple extensions, JEDI can support (1) wildcards in the
middle of a URI or time, and (2) forward secrecy. We describe
these extensions in the appendix of our extended paper.

3.8 Security Guarantee
We formalize the security of JEDI’s encryption below.

Theorem 1. Suppose JEDI is instantiated with a Selective-ID
CPA-secure [1, 16], history-independent (defined in our ex-
tended paper [57]) WKD-IBE scheme. Then, no probabilistic
polynomial-time adversary A can win the following security
game against a challenger C with non-negligible advantage:
Initialization. A selects a (URI, time) pair to attack.
Setup. C gives A the public parameters of the JEDI instance.
Phase 1. A can make three types of queries to C:
1. A asks C to create a principal; C returns a name in {0,1}∗,
which A can use to refer to that principal in future queries. A
special name exists for the authority.
2. A asks C for the key set of any principal; C gives A the
keys that the principal has. At the time this query is made, the
requested key may not contain a key whose URI and time are
both prefixes of the challenge (URI, time) pair.
3. A asks C to make any principal delegate a key set of A’s
choice to another principal (specified by names in {0,1}∗).
Challenge. When A chooses to end Phase 1, it sends C two
messages, m0 and m1, of the same length. Then C chooses a
random bit b ∈ {0,1}, encrypts mb under the challenge (URI,
time) pair, and gives A the ciphertext.
Phase 2. A can make additional queries as in Phase 1.
Guess. A outputs b′ ∈ {0,1}, and wins the game if b = b′.
The advantage of an adversary A is

∣∣Pr[A wins]− 1
2

∣∣.
We prove this theorem in our extended paper [57]. Al-

though we only achieve selective security in the standard
model (like much prior work [1, 17]), one can achieve adap-
tive security if the hash function H in §3.5 is modeled as
a random oracle [1]. It is sufficient for JEDI to use a CPA-
secure (rather than CCA-secure) encryption scheme because
JEDI messages are signed, as detailed below in §4.

4 Integrity in JEDI
To prevent an attacker from flooding the system with mes-
sages, spoofing fake data, or actuating devices without per-
mission, JEDI must ensure that a principal can only send
a message on a URI if it has permission. For example, an
application subscribed to buildingA/floor2/roomLHall/
sensor0/temp should be able to verify that the readings it is
receiving are produced by sensor0, not an attacker. In addi-
tion to subscribers, an intermediate party (e.g., the router in a

USENIX Association 28th USENIX Security Symposium 1525

publish-subscribe system) may use this mechanism to filter
out malicious traffic, without being trusted to read messages.

4.1 Starting Solution: Signature Chains
A standard solution in the existing literature, used by
SPKI/SDSI [31], Vanadium [77], and bw2 [5], is to include
a certificate chain with each message. Just as permission to
subscribe to a resource is granted via a chain of delegations
in §3, permission to publish to a resource is also granted via a
chain of delegations. Whereas §3 includes WKD-IBE keys in
each delegation, these integrity solutions delegate signed cer-
tificates. To send a message, a principal encrypts it (§3), signs
the ciphertext, and includes a certificate chain that proves that
the signing keypair is authorized for that URI and time.

4.2 Anonymous Signatures
The above solution reveals the sender’s identity (via its pub-
lic key) and the particular chain of delegations that gives the
sender access. For some applications this is acceptable, and its
auditability may even be seen as a benefit. For other applica-
tions, the sender must be able to send a message anonymously.
See §1.1.3 for an example. How can we reconcile access
control (ensuring the sender has permission) and anonymity
(hiding who the sender is)?
4.2.1 Starting Point: WKD-IBE Signatures
Our solution is to use a signature scheme based on WKD-IBE.
Abdalla et al. [1] observe that WKD-IBE can be extended
to a signature scheme in the same vein as has been done for
IBE [18] and HIBE [46]. To sign a message m ∈ Z∗p with a
key for pattern S, one uses KeyDer to fill in a slot with m, and
presents the decryption key as a signature.

This is our starting point for designing anonymous signa-
tures in JEDI. A message can be signed by first hashing it to
Z∗p and signing the hash as above. Just as consumers receive
decryption keys via a chain of delegations (§3), publishers of
data receive these signing keys via chains of delegations.
4.2.2 Anonymous Signatures in JEDI
The construction in §4.2.1 has two shortcomings. First, sig-
natures are large, linear in the number of fixed slots of the
pattern. Second, it is unclear if they are truly anonymous.
Signature size. As explained in §3, we use a construction of
WKD-IBE based on BBG HIBE [17]. BBG HIBE supports
a property called limited delegation in which a secret key
can be reduced in size, in exchange for limiting the depth
in the hierarchy at which subkeys can be generated from it.
We observe that the WKD-IBE construction also supports
this feature. Because we need not support KeyDer for the
decryption key acting as a signature, we use limited delegation
to compress the signature to just two group elements.
Anonymity. The technique in §4.2.1 transforms an encryp-
tion scheme into a signature scheme, but the resulting signa-
ture scheme is not necessarily anonymous. For the particular
construction of WKD-IBE that we use, however, we prove
that the resulting signature scheme is indeed anonymous. Our

insight is that, for this construction of WKD-IBE, keys are
history-independent in the following sense: KeyDer, for a
fixed Params and PatternB, returns a private key KeyPatternB
with the exact same distribution regardless of KeyPatternA
(see §3.1 for notation). Because signatures, as described in
§4.2.1, are private keys generated with KeyDer, they are also
history-independent; a signature for a pattern has the same
distribution regardless of the key used to generate it. This is
precisely the anonymity property we desire.

4.3 Optimizations for Low-Power Devices
As in §3.6.1, we must avoid computing a WKD-IBE signature
for every message. A simple way to do this is to sample a
digital signature keypair each hour, sign the verifying key with
WKD-IBE at the beginning of the hour, and sign messages
during the hour with the corresponding signing key.

Unfortunately, this may still be too expensive for low-
power embedded devices because it requires a digital signa-
ture, which requires asymmetric-key cryptography, for every
message. We can circumvent this by instead (1) choosing a
symmetric key k every hour, (2) signing k at the start of each
hour (using WKD-IBE for anonymity), and (3) using k in an
authenticated broadcast protocol to authenticate messages
sent during the hour. An authenticated broadcast protocol,
like µTESLA [70], generates a MAC for each message using
a key whose hash is the previous key; thus, the single signed
key k allows the recipient to verify later messages, whose
MACs are generated with hash preimages of k. In general,
this design requires stricter time synchronization than the one
based on digital signatures, as the key used to generate the
MAC depends on the time at which it is sent. However, for
the sense-and-send use case typical of smart buildings, sen-
sors anyway publish messages on a fixed schedule (e.g., one
sample every x seconds), allowing the key to depend only on
the message index. Thus, timely message delivery is the only
requirement. Our scheme differs from µTESLA because the
first key (end of the hash chain) is signed using WKD-IBE.

Additionally, we use a technique similar to precomputation
with adjustment (§3.6.2) for anonymous signatures. Concep-
tually, KeyDer, which is used to produce signatures, can be
understood as a two-step procedure: (1) produce a key of the
correct form and structure (called NonDelegableKeyDer),
and (2) re-randomize the key so that it can be safely delegated
(called ResampleKey). Re-randomization can be accelerated
using the same precomputed value QS that JEDI uses for en-
cryption (§3.6.2), which can be efficiently adjusted from one
pattern to the next. The result of NonDelegableKeyDer can
also be adjusted to obtain the corresponding result for a simi-
lar pattern more efficiently. We fully explain our adjustment
technique for signatures in our extended paper [57].

Finally, WKD-IBE signatures as originally proposed
(§4.2.1) are verified by encrypting a random message un-
der the pattern corresponding to the signature, and then at-
tempting to decrypt it using the key acting as a signature. We

1526 28th USENIX Security Symposium USENIX Association

provide a more efficient signature verification algorithm for
this construction of WKD-IBE in our extended paper [57].

4.4 Security Guarantee
The integrity guarantees of the method in this section can be
formalized using a game very similar to the one in Theorem
1, so we do not present it here for brevity. We do, however,
formalize the anonymous aspect of WKD-IBE signatures:
Theorem 2. For any well-formed keys k1, k2 corresponding
to the same (URI, time) pair in the same resource hierarchy,
and any message m∈Z∗p, the distribution of signatures over m
produced using k1 is information-theoretically indistinguish-
able from (i.e., equal to) the distribution of signatures over m
produced using k2.

This implies that even a powerful adversary who observes
the private keys held by all principals cannot distinguish sig-
natures produced by different principals, for a fixed message
and pattern. No computational assumptions are required. We
prove Theorem 2 in the appendix of our extended paper [57].

5 Revocation in JEDI
This section explains how JEDI keys may be revoked.

5.1 Simple Solution: Revocation via Expiry
A simple solution for revocation is to rely on expiration. In
this solution, all keys are time-limited, and delegations are
periodically refreshed, according to a higher layer protocol,
by granting a new key with a later expiry time. In this setup,
the principal who granted a key can easily revoke it by not
refreshing that delegation when the key expires. We expect
this solution to be sufficient for many applications of JEDI.

5.2 Immediate Revocation
Some disadvantages of the solution in §5.1 are that (1) princi-
pals must periodically come online to refresh delegations, and
(2) revocation only takes effect when the delegated key ex-
pires. We would like a solution without these disadvantages.

However, any revocation scheme that does not wait for
keys to expire is subject to set of inherent limitations. The
recipient of the revoked delegation still has the revoked de-
cryption key, so it can still decrypt messages encrypted in the
same way. This means that we must either (1) rely on inter-
mediate parties to modify ciphertexts so that revoked keys
cannot decrypt them, or (2) require senders to be aware of the
revocation, and encrypt messages in a different way so that
revoked keys cannot decrypt them. Neither solution is ideal:
(1) makes assumptions about how messages are delivered,
which we have avoided thus far (§2), and requires trust in an
intermediary to modify ciphertexts, and (2) weakens the de-
coupling of senders and receivers (§1.1). We adopt the second
compromise: while senders will not need to know who are
the receivers, they will need to know who has been revoked.

5.3 Immediate Revocation in JEDI
We extend tree-based broadcast encryption [37,67] to support
decentralized delegation of decryption keys, and incorporate

it into JEDI. We use tree-based broadcast encryption because
it only requires senders to know about revoked users when
encrypting messages, as opposed to all users in the system
(as is required by other broadcast encryption schemes).

5.3.1 Tree-based Broadcast Encryption
Existing work [37, 67] proposes two methods of tree-based
broadcast encryption: Complete Subtree (CS) and Subset
Difference (SD). We focus on the CS method here.

The CS method is based on a binary tree (Fig. 5) where each
node corresponds to a separate keypair. Each user corresponds
to a leaf of the tree and has the secret keys for all nodes on
the root-to-leaf path. To encrypt a message that is decryptable
by a subset of users, one finds a collection of subtrees that
include all leaves except those corresponding to revoked users
and encrypts the message multiple times using the public keys
corresponding to the root of each subtree. By associating each
node with an ID and encrypting with IBE, one can avoid
generating a separate keypair for each node.

5.3.2 Modifying Broadcast Encryption for Delegation
Users in broadcast encryption do not map one-to-one to users
in JEDI. To avoid confusion, we refer to “users” in broadcast
encryption as “leaves” (abbreviated lf).

We modify the CS method to support delegation, as fol-
lows. Each key corresponds to a range of consecutive leaves.
When a user qualifies a key to delegate to another principal,
she produces a new key corresponding to a subrange of the
leaves of the original key. When a key is revoked, publishers
are informed of the range of leaves corresponding to the re-
voked key. Then, they encrypt new messages using the CS
method, choosing subtrees that cover all leaves except those
corresponding to revoked leaves. If a key is revoked, that key
and all keys derived from it can no longer decrypt messages,
which is a property that we want. Thus, if Alice has k leaves,
she must store secret keys for O(k+ logn) nodes, where n is
the total number of leaves (so the depth of the tree is logn).

In JEDI, we reduce this to O(logn) secret keys by using
HIBE. We give each node vi an identifier id(vi) ∈ {0,1}∗ that
describes the path from the root of the tree to that node. In
particular, if v j is an ancestor of vi, then id(v j) is a prefix of
id(vi). Note that if we use HIBE with these IDs directly, a
user with the secret key for the root can generate keys for
all nodes in the tree. To fix this, we use a property called
limited delegation, introduced by prior work [17], to generate
a HIBE key that is unqualifiable (i.e., cannot be extended).
For example, if Alice has leaves lf3 to lf4 in Fig. 5, she stores
an unqualifiable key for node v1 and a qualifiable key for node
v3. In general, each user must store O(logk) qualifiable keys
and O(logn) unqualifiable keys, thus O(logk+ logn) total.

5.3.3 Using Delegable Broadcast Encryption in JEDI
Secret keys in our modified broadcast encryption scheme
consist of HIBE keys, so incorporating it into JEDI is simple.
As discussed in §3.2, JEDI uses WKD-IBE in a way that
provides multiple concurrent hierarchies, each in the vein of

USENIX Association 28th USENIX Security Symposium 1527

v1 : sk1

v2 : sk2

v4 : sk4

lf1

v5 : sk5

lf2

v3 : sk3

v6 : sk6

lf3

v7 : sk7

lf4

Figure 5: Key management of the CS method. Red nodes
indicate nodes associated with revoked leaves. The green
node is the root of the subtree covering unrevoked leaves.

HIBE. Therefore, we can instantiate a third hierarchy of depth
`3 = logn and use it for revocation.

Let r be the number of revoked keys. The CS method has
O(r log n

r)-size ciphertexts, so JEDI ciphertexts grow to this
size when revocation is used. When encrypting a message,
senders use the same encryption protocol from §3 for the first
`1+`2 slots, and repeat the process, filling in the remaining `3
slots with the ID of each node used for broadcast encryption.
The size of secret keys is O(logk+ logn) after our modifica-
tions to the CS method, so JEDI keys grow by this factor, to a
total of O((logk+ logn) · logT) WKD-IBE keys, where T is
the length of the time range for expiry.

The construction in this section works to revoke decryption
keys, but cannot be used with anonymous signatures (§4.2).
Extensions of tree-based broadcast encryption to signatures
exist [60, 61], and we expect them to be useful to develop a
construction for anonymous signatures.

How can JEDI inform publishers which leaves are revoked?
One simple option is to have a global revocation list, which
principals can append to. However, storing this information in
a single list becomes a central point of attack, which we have
avoided in our system thus far (§2). To avoid this, one can
store the revocation list in a global-scale blockchain, such as
Bitcoin or Ethereum, which would require an adversary to be
exceptionally powerful to mount a successful attack. When
revoking a set of leaves, a principal uses those keys to sign a
predetermined object (as in §4.2), proving it owns an ancestor
of that key in the hierarchy. To keep the revocation list private,
one can use JEDI’s encryption to ensure that only principals
with permission to publish to a particular resource can see
which keys are revoked for that resource (since publishers too
have signing keys, as described in §4).

5.4 Security Guarantee
The security guarantee for immediate revocation can be stated
as a modification to the game in Theorem 1. In the Initial-
ization Phase, when A gives C the challenge (URI, time), A
additionally submits a list of revoked leaves. Furthermore, A
may compromise principals in possession of private keys that
can decrypt the challenge (URI, time) pair during Phases 1
and 2, as long as all leaves corresponding to those keys are in
the revocation list submitted in the Initialization Phase. We
provide a proof in the appendix of the extended paper [57].

5.5 Optimizing JEDI’s Immediate Revocation
A single JEDI ciphertext, with revocation enabled, consists
of O(r log n

r) WKD-IBE ciphertexts. To compute them effi-
ciently, we observe that there is a large overlap in the patterns
used in individual WKD-IBE encryptions, allowing us to use
the “precomputation with adjustment” strategy from §3.6.2.

Even with the above optimization, immediate revocation
substantially increases the cost of JEDI’s cryptography. To
reduce this cost, we make three observations. First, to extend
JEDI’s hybrid encryption to work with revocation, it is suffi-
cient to additionally rotate keys whenever the revocation list
changes, in addition to the end of each hour (as in §3.6.1). This
means that, in the common case where the revocation list does
not change in between two messages, efficient symmetric-key
encryption can be used. Second, the revocation list used to
encrypt a message need only contain revoked leaves for the
particular URI to which the message is sent. This not only
makes the broadcast encryption more efficient (smaller r), but
also causes the effective revocation list for a stream of data to
change even more rarely, allowing JEDI to benefit more from
hybrid encryption. Third, we can do the same thing as above
using the expiry time rather than the URI, allowing us to cull
the revocation list by removing keys from it once they expire.

The efficiency of hybrid encryption depends on the revo-
cation list changing rarely. We believe this is a reasonable
assumption; most revocation will be handled by expiry, so
immediate revocation is only needed if a principal must lose
access unexpectedly. In the smart buildings use case (§1),
for example, a key would need to be revoked if a principal
unexpectedly transfers to another job.

The SD method for tree-based broadcast encryption can
also be extended to support delegation and incorporated into
JEDI (described in the appendix of our extended paper [57]),
The SD method has smaller ciphertexts but larger keys.

6 Implementation
We implemented JEDI as a library in the Go programming
language. We expect JEDI’s key delegation to be computed
on relatively powerful devices, like laptops, smartphones, or
Raspberry Pis; less powerful devices (e.g., right half of Fig. 1)
will primarily send and receive messages, rather than gener-
ate keys for delegation. Therefore, our focus for low-power
platforms was on the “sense-and-send” use case [26, 38, 41]
typical of indoor environmental sensing, where a device pe-
riodically publishes sensor readings to a URI. Whereas our
Go library provides higher-level abstractions, we expect low-
power devices to use JEDI’s crypto library directly.

6.1 C/C++ Library for JEDI’s Cryptography
As part of JEDI, we implemented a cryptography library opti-
mized in assembly for three different architectures typical of
IoT platforms (Fig. 1). It implements WKD-IBE and JEDI’s
optimizations and modifications (in §3.6, §4.3, and our full
paper). The construction of WKD-IBE is based on a bilinear

1528 28th USENIX Security Symposium USENIX Association

group in which the Bilinear Diffie-Hellman Exponent assump-
tion holds. We use the recent BLS12-381 elliptic curve [24].

State-of-the-art cryptography libraries implement BLS12-
381, but none of them, to our knowledge, optimize for mi-
croarchitectures typical of low-power embedded platforms.
To improve energy consumption, we implemented BLS12-
381 in C/C++, profiled our implementation, and re-wrote
performance-critical routines in assembly. We focus on ARM
Cortex-M, an IoT-focused family of 32-bit microprocessors
typical of contemporary low-power embedded sensor plat-
forms [28, 49, 53]. Cortex-M processors have been used in
billions of devices, including commercial IoT offerings such
as Fitbit and Nest Protect. Our assembly targets Cortex-M0+,
which is among the least powerful of processors in the Cortex-
M series, and of those used in IoT devices (farthest to the
right in Fig. 1). By demonstrating the practicality of JEDI
on Cortex-M0+, we establish that JEDI is viable across the
spectrum of IoT devices (Fig. 1).

The main challenge in targeting Cortex-M0+ is that the 32-
bit multiply instruction provides only the lower 32 bits of the
product. Even on more powerful microarchitectures without
this limitation (e.g., Intel Core i7), most CPU time (≥ 80%)
is spent on multiply-intensive operations (e.g., BigInt multi-
plication and Montgomery reduction), so the lack of such an
instruction was a performance bottleneck. As a workaround,
our assembly code emulates multiply-accumulate with carry
in 23 instructions. Cortex-M3 and Cortex-M4, which are more
commonly used than Cortex-M0+, have instructions for 32-bit
multiply-accumulate which produce the entire 64-bit result;
we expect JEDI to be more efficient on those processors.

We also wrote assembly to optimize BLS12-381 for x86-
64 and ARM64, representative of server/laptop and smart-
phone/Raspberry Pi, respectively (first two tiers in Fig. 1).
Thus, our Go library, which runs on these non-low-power plat-
forms, also benefits from low-level assembly optimizations.

6.2 Application of JEDI to bw2
We used our JEDI library to implement end-to-end encryption
in bw2, a syndication and authorization system for IoT. bw2’s
syndication model is based on publish-subscribe, explained
in §1. Here we discuss bw2’s authorization model. Access to
resources is granted via certificate chains from the authority of
a resource hierarchy to a principal. Individual certificates are
called Declarations of Trust (DOTs). bw2 maintains a publicly
accessible registry of DOTs, implemented using blockchain
smart contracts, so that principals can find the DOTs they need
to form DOT chains. A trusted router enforces permissions
granted by DOTs. Principals must present DOT chains when
publishing/subscribing to resources, and the router verifies
them. Note that a compromised router can read messages.

We use JEDI to enforce bw2’s authorization semantics
with end-to-end encryption. DOTs granting permission to
subscribe now contain WKD-IBE keys to decrypt messages.
By default, DOTs granting permission to publish to a URI

Table 1: Latency of JEDI’s implementation of BLS12-381
Operation Laptop Rasp. Pi Sensor
G1 Mul. (Chosen Scalar) 109 µs 1.33 ms 509 ms
G2 Mul. (Chosen Scalar) 343 µs 3.86 ms 1.44 s
GT Mul. (Rand. Scalar) 504 µs 5.47 ms 1.90 s
GT Mul. (Chosen Scalar) 507 µs 5.48 ms 2.81 s
Pairing 1.29 ms 14.0 ms 3.83 s

remain unchanged, and are used as in §4.1. WKD-IBE keys
may also be included in DOTs granting publish permission,
for anonymous signatures (§4.2). Using our library for JEDI,
we implemented a wrapper around the bw2 client library. It
transparently encrypts and decrypts messages using WKD-
IBE, and includes WKD-IBE parameters and keys in DOTs
and principals, as needed for JEDI. bw2 signs each message
with a digital signature (first alternative in §4.3).

The bw2-specific wrapper is less than 900 lines of Go code.
Our implementation required no changes to bw2’s client li-
brary, router, blockchain, or core—it is a separate module.
Importantly, it provides the same API as the standard bw2
client library. Thus, it can be used as a drop-in replacement for
the standard bw2 client library, to easily add end-to-end en-
cryption to existing bw2 applications with minimal changes.

7 Evaluation
We evaluate JEDI via microbenchmarks, determine its power
consumption on a low-power sensor, measure the overhead
of applying it to bw2, and compare it to other systems.

7.1 Microbenchmarks
Benchmarks labeled “Laptop” were produced on a Lenovo
T470p laptop with an Intel Core i7-7820HQ CPU @ 2.90
GHz. Benchmarks labeled “Raspberry Pi” were produced on
a Raspberry Pi 3 Model B+ with an ARM Cortex-A53 @
1.4 GHz. Benchmarks labeled “Sensor” were produced on a
commercially available ultra low-power environmental sensor
platform called “Hamilton” with an ARM Cortex-M0+ @ 48
MHz. We describe Hamilton in more detail in §7.3.
7.1.1 Performance of BLS12-381 in JEDI
Table 1 compares the performance of JEDI’s BLS12-381
implementation on the three platforms, with our assembly
optimizations. As expected from Fig. 1, the Raspberry Pi
performance is an order of magnitude slower than Laptop
performance, and performance on the Hamilton sensor is an
additional two-to-three orders of magnitude slower.
7.1.2 Performance of WKD-IBE in JEDI
Fig. 6 depicts the performance of JEDI’s cryptography primi-
tives. Fig. 6 does not include the sensor platform; §7.3 thor-
oughly treats performance of JEDI on low-power sensors.

In Figure 6a, we used a pattern of length 20 for all opera-
tions, which would correspond to, e.g., a URI of length 14 and
an Expiry hierarchy of depth 6. To measure decryption and
signing time, we measure the time to decrypt the ciphertext or
sign the message, plus the time to generate a decryption key
for that pattern or ID. For example, if one receives a message

USENIX Association 28th USENIX Security Symposium 1529

Laptop Rasp. Pi
Enc. 3.08 ms 37.3 ms
Dec. 3.61 ms 43.9 ms
KeyD. 4.77 ms 58.5 ms
Sign 4.80 ms 61.2 ms
Verify 4.78 ms 56.3 ms

(a) Latency of Encrypt,
Decrypt, KeyDer, Sign, and
Verify with 20 attributes

0 50 100
No. Revoked Users (out of 2048)

0
1000
2000
3000
4000
5000
6000

En
cr

yp
t w

ith
 R

ev
oc

. (
m

s) Laptop
Rasp. Pi

(b) Encryption with Revocation

Figure 6: Performance of JEDI’s cryptography

on a/b/c/d/e/f, but has the key for a/*, he must generate
the key for a/b/c/d/e/f to decrypt it.

Figure 6a demonstrates that the JEDI encrypts and signs
messages and generates qualified keys for delegation at prac-
tical speeds. On a laptop, all WKD-IBE operations take less
than 10 ms with up to 20 attributes. On a Raspberry Pi, they
are 10x slower (as expected), but still run at interactive speeds.
7.1.3 Performance of Immediate Revocation in JEDI
Figure 6b shows the cost of JEDI’s immediate revocation
protocol (§5). A private key containing k leaves consists of
O(logk+ logn) WKD-IBE secret keys where n is the total
number of leaves. Therefore, the performance of immediate
revocation depends primarily on the number of leaves.

To encrypt a message, one WKD-IBE encryption is per-
formed for each subtree needed to cover all unrevoked leaves.
In general, encryption is O(r log n

r), where r is the number of
revoked leaves. Each key contains a set of consecutive leaves,
so encryption is also O(R log n

R), where R is the number of
revoked JEDI keys. Decryption time remains almost the same,
since only one WKD-IBE decryption is needed.

To benchmark revocation, we use a complete binary tree
of depth 16 (n = 65536). The time to generate a new key for
delegation is essentially independent of the number of leaves
conveyed in that key, because logk� logn. We empirically
confirmed this; the time to generate a key for delegation was
constant at 2.4 ms on a laptop and 31 ms on a Raspberry Pi as
the number of leaves in the key was varied from 5 to 1,000.

To benchmark encryption with revocation, we assume that
there exist 2,048 users in the system each with 32 leaves. We
measure encryption time with a pattern with 20 fixed slots
(for URI and time) as we vary the number of revoked users.
Figure 6b shows that encryption becomes expensive when the
revocation list is large (500 milliseconds on laptop and ≈ 5
seconds on Raspberry Pi). However, such an encryption only
needs to be performed by a publisher when the URI, time, or
revocation list changes; subsequent messages can reuse the
underlying symmetric key (§5.5). Furthermore, the revocation
list includes only revoked keys that match the (URI, time) pair
being used, so it is not expected to grow very large.

7.2 Performance of JEDI in bw2
In bw2, the two critical-path operations are publishing a mes-
sage to a URI, and receiving a message as part of a subscrip-

Unmodified bw2
JEDI (usual)
JEDI anon. sig. (usual)
JEDI (1st msg)
JEDI anon. sig. (1st msg)
Trusted Key Server

1 KiB 32 KiB 1 MiB
Size of Message

0

50

100

150

200

Ti
m

e
to

 E
nc

. &
 P

ub
lis

h
(m

s)

(a) Encrypt/publish message

1 KiB 32 KiB 1 MiB
Size of Message

0

5

10

15

20

Ti
m

e
to

 R
ec

ei
ve

 &
 D

ec
. (

m
s)

(b) Receive/decrypt message

Figure 7: Critical-path operations in bw2, with/without JEDI

tion. We measure the overhead of JEDI for these operations
because they are core to bw2’s functionality and would be
used by any messaging application built on bw2. Our method-
ology is to perform each operation repeatedly in a loop, to
measure the sustained performance (operations/second), and
report the average time per operation (inverse). To minimize
the effect of the network, the router was on the same link as
the client, and the link capacity was 1 Gbit/s. In our experi-
ments, we used a URI of length 6 and an Expiry tree of depth
6. We also include measurements from a strawman system
with pre-shared AES keys—this represents the critical-path
overhead of an approach based on the Trusted Key Server
discussed in §2. Our results are in Fig. 7.

We implement the optimizations in §3.6.1, so only sym-
metric key encryption/decryption must be performed in the
common case (labeled “usual” in the diagram). However, the
symmetric keys will not be cached for the first message sent
every hour, when the WKD-IBE pattern changes. A WKD-
IBE operation must be performed in this case (labeled “1st
message” in the diagram). For large messages, the cost of
symmetric key encryption dominates. JEDI has a particularly
small overhead for 1 MiB messages in Fig. 7b, perhaps be-
cause 1 MiB messages take several milliseconds to transmit
over the network, allowing the client to decrypt a message
while the router is sending the next message.

We also consider creating DOTs and initiating subscrip-
tions, which are not in the critical path of bw2. These results
are in Fig. 8 (note the log scale in Fig. 8a). Creating DOTs is
slower with JEDI, because WKD-IBE keys are generated and
included in the DOT. Initiating a subscription in bw2 requires
forming a DOT chain; in JEDI, one must also derive a private
key from the DOT chain. Fig. 8a shows the time to form a
short one-hop DOT chain, and in the case of JEDI, includes
the time to derive the private key. For JEDI’s encryption (§3),
these additional costs are incurred only by DOTs that grant
permission to subscribe. With anonymous signatures, DOTs
granting permission to publish incur this overhead as well, as
WKD-IBE keys must be included. Fig. 8b puts this in con-
text by measuring the end-to-end latency from initiating a
subscription to receiving the first message (measured using
bw2’s “query” functionality).

For a DOT to be usable, it must be inserted into bw2’s

1530 28th USENIX Security Symposium USENIX Association

Create DOT Build DOT
Chain

10−2

100

102

104

Ru
nn

in
g

Ti
m

e
(m

s) Unmodified bw2
JEDI

(a) Create DOT, Build Chain

1 KiB 32 KiB 1 MiB
Size of Message

0

20

40

60

80

100

Ti
m

e
to

 1
st

 M
es

sa
ge

 (m
s) Unmodified bw2

JEDI
JEDI anon. sig.
Trusted Key Server

(b) Time to Query/Subscribe

Figure 8: Occasional bw2 operations, with and without JEDI

registry. This requires a blockchain transaction (not included
in Fig. 8). An important consideration in this regard is size.
In the unmodified bw2 system, a DOT that grants permission
on a/b/c/d/e/f is 198 bytes. With JEDI, each DOT also
contains multiple WKD-IBE keys, according to the time range.
In the “worst case,” where the start time of a DOT is Jan 01 at
01:00, and the end time is Dec 31 at 22:59, a total of 45 keys
are needed. Each key is approximately 1 KiB, so the size of
this DOT is approximately 45 KiB.

Because bw2’s registry of DOTs is implemented using
blockchain smart contracts, the bandwidth for inserting DOTs
is limited. Using JEDI would increase the size of DOTs as
above, resulting in an approximately 100-400x decrease in
aggregate bandwidth for creating DOTs. However, this can
be mitigated by changing bw2 to not store DOTs directly in
the blockchain. DOTs can be stored in untrusted storage, with
only their hashes stored in the blockchain-based registry. Such
a solution could be based on Swarm [79] or Filecoin [43].

7.3 Feasibility on Ultra Low-Power Devices
We use a commercially available sensor platform called
“Hamilton” [4, 49] built around the Atmel SAMR21 system-
on-chip (SoC). The SAMR21 costs approximately $2.25 per
unit [40] and integrates a low-power microcontroller and ra-
dio. The sensor platform we used in this study costs $18 to
manufacture [55]. For battery lifetime calculations, we as-
sume that the platform is powered using a CR123A Lithium
battery that provides 1400 mAh at 3.0 V (252 J of energy).
Such a battery costs $1. The SAMR21 is heavily constrained:
it has only a 48 MHz CPU frequency based on the ARM
Cortex-M0+ microarchitecture, and a total of only 32 KiB of
data memory (RAM). Our goal is to validate that JEDI is prac-
tical for an ultra low-power sensor platform like Hamilton, in
the context of a “sense-and-send” application in a smart build-
ing. Since most of the platform’s cost ($18) comes from the
on-board transducers and assembly, rather than the SAMR21
SoC, using an even more resource-constrained SoC would
not significantly decrease the platform’s cost. An analogous
argument applies to energy consumption, as the transducers
account for more than half of Hamilton’s idle current [55].

Hamilton/SAMR21 is on the lower end of platforms typi-
cally used for sense-and-send applications in buildings. Some
older studies [41,59] use even more constrained hardware like

Table 2: CPU and power costs on the Hamilton platform
Operation Time Average Current
Sleep (Idle) N/A 0.0063 mA
WKD-IBE Encrypt 6.50 s 10.2 mA
WKD-IBE Encrypt and Sign 9.89 s 10.2 mA

Table 3: Average current and expected battery life (for 1400
mAh battery) for sense-and-send, with varying sample interval

AES Only JEDI (enc) JEDI (enc & sign)
10 s 32 µA / 5.1 y 50 µA / 3.2 y 60 µA / 2.6 y
20 s 20 µA / 8.1 y 38 µA / 4.2 y 48 µA / 3.3 y
30 s 15 µA / 10 y 34 µA / 4.7 y 44 µA / 3.6 y

the TelosB; this is because those studies were constrained by
hardware available at the time. Modern 32-bit SoCs, like the
SAMR21, offer substantially better performance at a similar
price/power point to those older platforms [55].
7.3.1 CPU Usage
Table 2 shows the time for encryption and anonymous sign-
ing in JEDI on Hamilton. The results use the optimizations
discussed in §3.6 and §4.3, and include the time to “adjust”
precomputed state. They indicate that symmetric keys can be
encrypted and anonymously signed in less than 10 seconds.
This is feasible given that encryption and anonymous sign-
ing occur rarely, once an hour, and need not be produced at
interactive speeds in the normal “sense-and-send” use case.
7.3.2 Power Consumption
To calculate the impact on battery lifetime, we consider a
“sense-and-send” application, in which the Hamilton device
obtains readings from its sensors at regular intervals, and
immediately sends the readings encrypted over the wireless
network. We measured the average current consumed for
varying sample intervals, when each message is encrypted
with AES-CCM, without using JEDI (“AES Only” in Table
3). We estimate JEDI’s average current based on the current,
duration, and frequency (once per hour, for these estimates) of
JEDI operations, and add it to the average current of the “AES
Only” setup. Our estimates assume that the µTESLA-based
technique in §4.3 is used to avoid attaching a digital signature
to each message. We divide the battery’s energy capacity by
the result to compute lifetime. As shown in Table 3, JEDI
decreases battery life by about 40-60%. Battery life is several
years even with JEDI, acceptable for IoT sensor platforms.

JEDI’s overhead depends primarily on the granularity of
expiry times (one hour, for these estimates), not the sample
interval. To improve power consumption, one could use a
time tree with larger leaves, allowing principals to perform
WKD-IBE encryptions and anonymous signatures less often.
This would, of course, make expiry times coarser.
7.3.3 Memory Budget
Performing WKD-IBE operations requires only 6.5 KiB of
data memory, which fits comfortably within the 32 KiB of data
memory (RAM) available on the SAMR21. The code space
required for our implementation of WKD-IBE and BLS12-

USENIX Association 28th USENIX Security Symposium 1531

381 is about 74 KiB, which fits comfortably in the 256 KiB
of code memory (ROM) provided by the SAMR21.

A related question is whether storing a hash chain in mem-
ory (as required for authenticated broadcast, §4.3) is practical.
If we use a granularity of 1 minute for authenticated broad-
cast, the length of the hash chain is 60. At the start of an
hour, one computes the entire chain, storing 10 hashes equally
spaced along the chain, each separated by 5 hashes. As one
progresses along the hash chain, one re-computes each set of
5 hashes one additional time. This requires storage for only
15 hashes (< 4 KiB memory) and computation of only 105
hashes per hour, which is practical. One could possibly opti-
mize performance further using hierarchical hash chains [50].
7.3.4 Impact of JEDI’s Optimizations
JEDI’s cryptographic optimizations (§3.6.2, §4.2.2, §4.3),
which use WKD-IBE in a non-black-box manner, provide a
2-3x performance improvement. Our assembly optimizations
(§6) provide an additional 4-5x improvement. Without both of
these techniques, JEDI would not be practical on low-power
sensors. Hybrid encryption and key reuse (§3.6.1), which let
JEDI use WKD-IBE rarely, are also crucial.

7.4 Comparison to Other Systems
Table 4 compares JEDI to other systems and cryptographic
approaches, particularly those geared toward IoT, in regard
to security, expressivity and performance. We treat these ex-
isting systems as they would be used in a messaging system
for smart buildings (§1). Table 4 contains quantitative com-
parisons to the cryptography used by these systems; for those
schemes based on bilinear groups, we re-implemented them
using our JEDI crypto library (§6.1) for a fair comparison.
Security. The owner of a resource is considered trusted for
that resource, in the sense that an adversary who compromises
a principal can read all of that principal’s resources. In Table
4, we focus on whether a single component is trusted for
all resources in the system. Note that, although Trusted Key
Server (§2) and PICADOR [23] encrypt data in flight, granting
or revoking access to a principal requires participation of an
online trusted party to generate new keys.
Expressivity. PRE-based approaches, which associate pub-
lic keys with users and support delegation via proxy
re-encryption, are fundamentally coarse-grained—a re-
encryption key allows all of a user’s data to be re-encrypted.
PICADOR [23] allows more fine-grained semantics, but does
not enforce them cryptographically. ABE-based approaches
typically do not support delegation beyond a single hop,
whereas JEDI achieves multi-hop delegation. In ABE-based
schemes, however, attributes/policies attached to keys can de-
scribe more complex sets of resources than JEDI. That said,
a hierarchical resource representation is sufficient for JEDI’s
intended use case, namely smart cities; existing syndication
systems for smart cities, which do not encrypt data and are un-
constrained by the expressiveness of crypto schemes, choose
a hierarchical rather than attribute-based representation (§1).

Performance. The Trusted Key Server (§2) is the most naïve
approach, requiring an online trusted party to enforce all pol-
icy. Even so, JEDI’s performance in the common case is the
same as the Trusted Key Server (Fig. 7), because of JEDI’s hy-
brid encryption—JEDI invokes WKD-IBE rarely. Even when
JEDI invokes WKD-IBE, its performance is not significantly
worse than PRE-based approaches. An alternative design for
JEDI uses the GPSW KP-ABE construction instead of WKD-
IBE, but it is significantly more expensive. Based Table 3, the
power cost of a WKD-IBE operation even when only invoked
once per hour contributes significantly to the overall energy
consumption on the low-power IoT device; using KP-ABE
instead of WKD-IBE would increase this power consumption
by an order of magnitude, reducing battery life significantly.
In summary, existing systems fall into one of three cate-
gories. (1) The Trusted Key Server allows access to resources
to be managed by arbitrary policies, but relies on a central
trusted party who must be online whenever a user is granted
access or is revoked. (2) PRE-based approaches, which per-
mit sharing via re-encryption, cannot cryptographically en-
force fine-grained policies or support multi-hop delegation.
(3) ABE-based approaches, if carefully designed, can achieve
the same expressivity as JEDI, but are substantially less perfor-
mant and are not suitable for low-power embedded devices.

8 Related Work
We organize related work into the following categories.
Traditional Public-Key Encryption. SiRiUS [47] and Plu-
tus [54] are encrypted filesystems based on traditional public-
key cryptography, but they do not support delegable and qual-
ifiable keys like JEDI. Akl et al. [2] and further work [33, 34]
propose using key assignment schemes for access control in
a hierarchy. A line of work [8, 9, 51, 80] builds on this idea to
support both hierarchical structure and temporal access. Key
assignment approaches, however, require the full hierarchy to
be known at setup time, which is not flexible in the IoT setting.
JEDI does not require this, allowing different subtrees of the
hierarchy to be managed separately (§1.1, “Delegation”).
Identity-Based Encryption. Tariq et al. [78] use Identity-
Based Encryption (IBE) [18] to achieve end-to-end encryp-
tion in publish-subscribe systems, without the router’s par-
ticipation in the protocol. However, their approach does not
support hierarchical resources. Further, encryption and private
keys are on a credential-basis, so each message is encrypted
multiple times according to the credentials of the recipients.

Wu et al. [87] use a prefix encryption scheme based on
IBE for mutual authentication in IoT. Their prefix encryption
scheme is different from JEDI, in that users with keys for
identity a/b/c can decrypt messages encrypted with prefix
identity a, a/b and a/b/c, but not identities like a/b/c/d.
Hierarchical Identity-Based Encryption. Since the orig-
inal proposal of Hierarchical Identity-Based Encryption
(HIBE) [46], there have been multiple HIBE construc-
tions [16, 17, 45, 46] and variants of HIBE [1, 88]. Although

1532 28th USENIX Security Symposium USENIX Association

Table 4: Comparison of JEDI with other crypto-based IoT/cloud systems
Crypto Scheme /
System

Avoids Cen-
tral Trust?

Expressivity Performance

Trusted Key Server
(§2)

– No + Supports arbitrary policies (beyond
hierarchies)

– No delegation

+ ≈ 10 µs to encrypt 1 KiB message (same as
JEDI in common case, faster for first message
after key rotation)

– Trusted party generates one key per resource
PRE (Lattice-
Based), as used in
PICADOR [23]

– No + Supports arbitrary policies (beyond
hierarchies)

– No delegation

+ ≈ 5 ms encrypt, ≈ 3 ms decrypt (similar to
JEDI: 3-4 ms)

– Trusted party must generate one key per
sender-receiver pair

PRE (Pairing-
Based), as used in
Pilatus [75]

+ Yes – Delegation is single-hop
– Delegation is coarse (all-or-nothing)
+ Can compute aggregates on en-

crypted data

+ 0.6 ms encrypt, 1.3 ms re-encrypt, 0.5 ms
decrypt (faster than JEDI: 3-4 ms)

+ Practical on constrained IoT device with
crypto accelerator

CP-ABE [12] + Yes + Good fit for RBAC policies
– Cannot support JEDI’s hierarchy ab-

straction with delegation

+ Only symmetric crypto in common case
– 14 ms encrypt for first time after key rotation

(4-5x slower than JEDI: 3 ms)
KP-ABE, as used in
Sieve [83]

+ Yes + Succinct delegation based on at-
tributes

– Delegation is single-hop

+ Only symmetric crypto in common case
– 25 ms encrypt for first time after key rotation

(8-9x slower than JEDI: 3 ms)
Delegable Large
Univ. KP-ABE [48]
(used in Alternative
JEDI Design)

+ Yes + Generalizes beyond hierarchies and
supports multi-hop delegation (sub-
sumes JEDI)

+ Only symmetric crypto in common case
– 60 ms encrypt for first time after key rotation

(20x slower than JEDI: 3 ms)
– Impractical for low-power sense-and-send

This paper: WKD-
IBE [1] with Op-
timizations, as used
in JEDI

+ Yes + Delegation is multi-hop
+ Succinct delegation of subtrees of re-

sources (or more complex sets, §3.7)
+ Non-interactive expiry

+ After key rotation (e.g., once per hour), 3 ms
encrypt, 4 ms decrypt (Fig. 6a)

+ Only symmetric crypto in common case
+ Practical for ultra low-power “sense-and-

send” without crypto accelerator

seemingly a good match for resource hierarchies, HIBE can-
not be used as a black box to efficiently instantiate JEDI.
We considered alternative designs of JEDI based on exist-
ing variants of HIBE, but as we elaborate in the appendix of
our extended paper [57], each resulting design is either less
expressive or significantly more expensive than JEDI.
Attribute-Based Encryption. A line of work [83, 90] uses
Attribute-Based Encryption (ABE) [12,48] to delegate permis-
sion. Our work additionally supports hierarchically-organized
resources and decentralized delegation of keys, which [90]
and [83] do not address. As discussed in §7.4, WKD-IBE
is substantially more efficient than KP-ABE and provides
enough functionality for JEDI.

Other approaches prefer Ciphertext-Policy ABE (CP-
ABE) [12]. Existing work [84, 85] combines HIBE with CP-
ABE to produce Hierarchical ABE (HABE), a solution for
sharing data on untrusted cloud servers. The “hierarchical”
nature of HABE, however, corresponds to the hierarchical
organization of domain managers in an enterprise, not a hier-
archical organization of resources as in our work.
Proxy Re-Encryption. NuCypher KMS [39] allows a user
to store data in the cloud encrypted under her public key,

and share it with another user using Proxy Re-Encryption
(PRE) [14]. While NuCypher assumes limited collusion
among cloud servers and recipients (e.g., m of n secret shar-
ing) to achieve properties such as expiry, JEDI enforces expiry
via cryptography, and therefore remains secure against any
amount of collusion. Furthermore, NuCypher’s solution for
resource hierarchies requires a keypair for each node in the hi-
erarchy, meaning that the creation of resources is centralized.
Finally, keys in NuCypher are not qualifiable.

PICADOR [23], a publish-subscribe system with end-to-
end encryption, uses a lattice-based PRE scheme. However,
PICADOR requires a central Policy Authority to specify ac-
cess control, by creating a re-encryption key for every per-
mitted pair of publisher and subscriber. In contrast, JEDI’s
access control is decentralized.

Revocation Schemes. Broadcast encryption (BE) [19–22,37,
58, 67] is a mechanism to achieve revocation, by encrypting
messages such that they are only decryptable by a specific set
of users. However, these existing schemes do not support key
qualification and delegation, and therefore, cannot be used
in JEDI directly. Another line of work builds revocation di-
rectly into the underlying cryptography primitive, achieving

USENIX Association 28th USENIX Security Symposium 1533

Revocable IBE [15, 62, 72, 86], Revocable HIBE [63, 71, 73]
and Revocable KP-ABE [10]. These papers use a notion of
revocation in which URIs are revoked. In contrast, JEDI sup-
ports revocation at the level of keys. If multiple principals
have access to a URI, and one of their keys is revoked, then
the other principal can still use its key to access the resource.
Some systems [11, 39] rely on the participation of servers or
routers to achieve revocation.
Secure Reliable Multicast Protocol. Secure Reliable Multi-
cast [64,65] also uses a many-to-many communication model,
and ensures correct data transfer in the presence of malicious
routers. JEDI, as a protocol to encrypt messages, is comple-
mentary to those systems.
Authorization Services. JEDI is complementary to autho-
rization services for IoT, such as bw2 [5], Vanadium [77],
WAVE [6], and AoT [68], which focus on expressing autho-
rization policies and enabling principals to prove they are au-
thorized, rather than on encrypting data. Droplet [74] provides
encryption for IoT, but does not support delegation beyond
one hop and does not provide hierarchical resources.

An authorization service that provides secure in-band per-
mission exchange, like WAVE [6], can be used for key distri-
bution in JEDI. JEDI can craft keys with various permissions,
while WAVE can distribute them without a centralized party
by including them in its attestations.

9 Conclusion
In this paper, we presented JEDI, a protocol for end-to-end
encryption for IoT. JEDI provides many-to-many encrypted
communication on complex resource hierarchies, supports
decentralized key delegation, and decouples senders from
receivers. It provides expiry for access to resources, reconciles
anonymity and authorization via anonymous signatures, and
allows revocation via tree-based broadcast encryption. Its
encryption and integrity solutions are capable of running on
embedded devices with strict energy and resource constraints,
making it suitable for the Internet of Things.

Availability
The JEDI cryptography library is available at https://
github.com/ucbrise/jedi-pairing and our implementa-
tion of the JEDI protocol for bw2 is available at https:
//github.com/ucbrise/jedi-protocol.

Acknowledgments
We thank our anonymous reviewers and our shepherd William
Enck for their invaluable feedback. We would also like to
thank students from the RISE Security Group and BETS Re-
search Group for giving us feedback on early drafts of this pa-
per. This research was supported by Intel/NSF CPS-Security
#1505773 and #20153754, DoE #DE-EE000768, California
Energy Commission #EPC-15-057, NSF CISE Expeditions
#CCF-1730628, NSF GRFP #DGE-1752814, and gifts from
the Sloan Foundation, Hellman Fellows Fund, Alibaba, Ama-
zon, Ant Financial, Arm, Capital One, Ericsson, Facebook,

Google, Intel, Microsoft, Scotiabank, Splunk and VMware.

References
[1] M. Abdalla, E. Kiltz, and G. Neven. Generalized key

delegation for hierarchical identity-based encryption.
Cryptology ePrint Archive, Report 2007/221.

[2] S. G. Akl and P. D. Taylor. Cryptographic solution to a
problem of access control in a hierarchy. TOCS, 1983.

[3] M. P Andersen, G. Fierro, and D. E. Culler. System
design for a synergistic, low power mote/BLE embedded
platform. In IPSN, 2016.

[4] M. P. Andersen, H.-S. Kim, and D. E. Culler. Hamilton -
a cost-effective, low power networked sensor for indoor
environment monitoring. In BuildSys, 2017.

[5] M. P. Andersen, J. Kolb, K. Chen, D. E. Culler, and
R. Katz. Democratizing authority in the built environ-
ment. In BuildSys, 2017.

[6] M. P Andersen, S. Kumar, M. AbdelBaky, G. Fierro,
J. Kolb, H.-S. Kim, D. E. Culler, and R. A. Popa. WAVE:
A decentralized authorization framework with transitive
delegation. In USENIX Security, 2019.

[7] P. Arjunan, N. Batra, H. Choi, A. Singh, P. Singh, and
M. B. Srivastava. SensorAct: A privacy and security
aware federated middleware for building management.
In BuildSys, 2012.

[8] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken.
Dynamic and efficient key management for access hier-
archies. In TISSEC, 2009.

[9] M. J. Atallah, M. Blanton, and K. B. Frikken. Incorpo-
rating temporal capabilities in existing key management
schemes. In ESORICS, 2007.

[10] N. Attrapadung and H. Imai. Conjunctive broadcast and
attribute-based encryption. In ICPBC, 2009.

[11] S. Belguith, S. Cui, M. R. Asghar, and G. Russello. Se-
cure publish and subscribe systems with efficient revo-
cation. In SAC, 2018.

[12] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-
policy attribute-based encryption. In S&P, 2007.

[13] A. Birgisson, J. G. Politz, Ú. Erlingsson, A. Taly,
M. Vrable, and M. Lentczner. Macaroons: Cookies
with contextual caveats for decentralized authorization
in the cloud. In NDSS, 2014.

[14] M. Blaze, G. Bleumer, and M. Strauss. Divertible pro-
tocols and atomic proxy cryptography. EUROCRYPT,
1998.

[15] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based
encryption with efficient revocation. In CCS, 2008.

[16] D. Boneh and X. Boyen. Efficient selective-ID secure
identity-based encryption without random oracles. In
EUROCRYPT, 2004.

[17] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical iden-
tity based encryption with constant size ciphertext. In

1534 28th USENIX Security Symposium USENIX Association

https://github.com/ucbrise/jedi-pairing
https://github.com/ucbrise/jedi-pairing
https://github.com/ucbrise/jedi-protocol
https://github.com/ucbrise/jedi-protocol

EUROCRYPT and Cryptology ePrint Archive, 2005.
[18] D. Boneh and M. Franklin. Identity-based encryption

from the Weil pairing. In CRYPTO, 2001.
[19] D. Boneh, C. Gentry, and B. Waters. Collusion resistant

broadcast encryption with short ciphertexts and private
keys. In CRYPTO, 2005.

[20] D. Boneh and B. Waters. A fully collusion resistant
broadcast, trace, and revoke system. In CCS, 2006.

[21] D. Boneh, B. Waters, and M. Zhandry. Low over-
head broadcast encryption from multilinear maps. In
CRYPTO, 2014.

[22] D. Boneh and M. Zhandry. Multiparty key exchange, ef-
ficient traitor tracing, and more from indistinguishability
obfuscation. Algorithmica, 2017.

[23] C. Borcea, A. B. D. Gupta, Y. Polyakov, K. Rohloff,
and G. Ryan. PICADOR: End-to-end encrypted
publish-subscribe information distribution with proxy
re-encryption. FGCS, 2017.

[24] S. Bowe. BLS12-381: New zk-SNARK elliptic
curve construction, 2018. https://z.cash/blog/new-
snark-curve/.

[25] A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. P. Vasseur, and R. Alexander. RPL: IPv6 routing
protocol for low-power and lossy networks. RFC, RFC
Editor, 2012.

[26] D. Brunelli, I. Minakov, R. Passerone, and M. Rossi.
POVOMON: An ad-hoc wireless sensor network for
indoor environmental monitoring. In EESMS, 2014.

[27] bw2. https://github.com/immesys/bw2.
[28] B. Campbell. Introducing Hail, 2017. https://

www.tockos.org/blog/2017/introducing-hail/.
[29] R. Cheng, W. Scott, B. Parno, I. Zhang, A. Krishna-

murthy, and T. Anderson. Talek: A private publish-
subscribe protocol. Technical report, University of
Washington CSE, 2016.

[30] Cisco. The Internet of things reference model. Technical
report, Cisco, 2014.

[31] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Mor-
cos, and R. L. Rivest. Certificate chain discovery in
SPKI/SDSI. Journal of Computer Security, 2001.

[32] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:
An anonymous messaging system handling millions of
users. In S&P, 2015.

[33] J. Crampton, N. Farley, G. Gutin, M. Jones, and B. Poet-
tering. Cryptographic enforcement of information flow
policies without public information. In ACNS, 2015.

[34] J. Crampton, K. Martin, and P. Wild. On key assignment
for hierarchical access control. In CSFW, 2006.

[35] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. E. Culler. sMAP: A simple measurement and actua-
tion profile for physical information. In SenSys, 2010.

[36] S. Dawson-Haggerty, A. Krioukov, J. Taneja,
S. Karandikar, G. Fierro, N. Kitaev, and D. E.
Culler. BOSS: Building operating system services. In
NSDI, 2013.

[37] Y. Dodis and N. Fazio. Public key broadcast encryption
for stateless receivers. In DRM, 2002.

[38] P. Dutta, D. E. Culler, and S. Shenker. Procrastination
might lead to a longer and more useful life. In HotNets,
2007.

[39] M. Egorov and M. Wilkison. NuCypher KMS: decen-
tralized key management system. CoRR, 2017.

[40] DigiKey Electronics. Atsamr21e18a-mu microchip tech-
nology. Feb. 8, 2019.

[41] M. C. Feldmeier. Personalized Building Comfort Con-
trol. PhD thesis, MIT, 2009.

[42] G. Fierro and D. E. Culler. XBOS: An extensible build-
ing operating system. Technical report, EECS Depart-
ment, University of California, Berkeley, 2015.

[43] Filecoin. https://filecoin.io. Jan. 19, 2018.
[44] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk,

and T. Holz. How secure is TextSecure? In EuroS&P,
2016.

[45] C. Gentry and S. Halevi. Hierarchical identity based
encryption with polynomially many levels. In TCC,
2009.

[46] C. Gentry and A. Silverberg. Hierarchical ID-based
cryptography. In ASIACRYPT, 2002.

[47] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh.
SiRiUS: Securing remote untrusted storage. In NDSS,
2003.

[48] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-
based encryption for fine-grained access control of en-
crypted data. In CCS, 2006.

[49] Hamilton IoT. https://hamiltoniot.com/.
[50] Y.-C. Hu, M. Jakobsson, and A. Perrig. Efficient con-

structions for one-way hash chains. In ACNS, 2005.
[51] H.-F. Huang and C.-C. Chang. A new cryptographic key

assignment scheme with time-constraint access control
in a hierarchy. Computer Standards & Interfaces, 2004.

[52] J. Hviid and M. B. Kjaergaard. Activity-tracking service
for building operating systems. In PerCom, 2018.

[53] imix: Low-power IoT research platform, 2017. https:
//github.com/helena-project/imix.

[54] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. In FAST, 2003.

[55] H.-S. Kim, M. P. Andersen, K. Chen, S. Kumar, W. J.
Zhao, K. Ma, and D. E. Culler. System architecture
directions for post-SoC/32-bit networked sensors. In
SenSys, 2018.

[56] A. Krioukov, G. Fierro, N. Kitaev, and D. E. Culler.

USENIX Association 28th USENIX Security Symposium 1535

https://z.cash/blog/new-snark-curve/
https://z.cash/blog/new-snark-curve/
https://github.com/immesys/bw2
https://www.tockos.org/blog/2017/introducing-hail/
https://www.tockos.org/blog/2017/introducing-hail/
https://filecoin.io
https://hamiltoniot.com/
https://github.com/helena-project/imix
https://github.com/helena-project/imix

Building application stack (BAS). In BuildSys, 2012.
[57] S. Kumar, Y. Hu, M. P Andersen, R. A. Popa, and D. E.

Culler. JEDI: Many-to-many end-to-end encryption and
key delegation for IoT. CoRR, 2019.

[58] A. Lewko, A. Sahai, and B. Waters. Revocation systems
with very small private keys. In S&P, 2010.

[59] C. Li, Z. Li, M. Li, F. Meggers, A. Schlueter, and H. B.
Lim. Energy efficient HVAC system with distributed
sensing and control. In ICDCS, 2014.

[60] B. Libert, T. Peters, and M. Yung. Group signatures
with almost-for-free revocation. In CRYPTO, 2012.

[61] B. Libert, T. Peters, and M. Yung. Scalable group signa-
tures with revocation. In EUROCRYPT, 2012.

[62] B. Libert and D. Vergnaud. Adaptive-ID secure revoca-
ble identity-based encryption. In CT-RSA, 2009.

[63] W. Liu, J. Liu, Q. Wu, B. Qin, D. Naccache, and H. Fer-
radi. Compact CCA2-secure hierarchical identity-based
broadcast encryption for fuzzy-entity data sharing. Cryp-
tology ePrint Archive, Report 2016/634.

[64] D. Malkhi, M. Merritt, and O. Rodeh. Secure reliable
multicast protocols in a WAN. Dist. Computing, 2000.

[65] D. Malkhi and M. Reiter. A high-throughput secure
reliable multicast protocol. Computer Security, 1997.

[66] A. Mehanovic, T. H. Rasmussen, and M. B. Kjærgaard.
Brume - a horizontally scalable and fault tolerant build-
ing operating system. In IoTDI, 2018.

[67] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In CRYPTO,
2001.

[68] A. L. M. Neto, A. L. F. Souza, I. Cunha, M. Nogueira,
I. O. Nunes, L. Cotta, N. Gentille, A. A. F. Loureiro,
D. F. Aranha, H. K. Patil, and L. B. Oliveira. AoT: Au-
thentication and access control for the entire IoT device
life-cycle. In SenSys, 2016.

[69] Particle Mesh. https://www.particle.io/mesh. Feb.
2, 2019.

[70] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D.
Tygar. SPINS: Security protocols for sensor networks.
In MobiCom, 2001.

[71] J. H. Seo and K. Emura. Efficient delegation of key
generation and revocation functionalities in identity-
based encryption. In CT-RSA, 2013.

[72] J. H Seo and K. Emura. Revocable identity-based en-
cryption revisited: Security model and construction. In
PKC, 2013.

[73] J. H. Seo and K. Emura. Revocable hierarchical identity-
based encryption: History-free update, security against
insiders, and short ciphertexts. In CT-RSA, 2015.

[74] H. Shafagh, L. Burkhalter, S. Duquennoy, A. Hithnawi,
and S. Ratnasamy. Droplet: Decentralized authorization
for IoT data streams. CoRR, 2018.

[75] H. Shafagh, A. Hithnawi, L. Burkhalter, P. Fischli, and
S. Duquennoy. Secure sharing of partially homomorphic
encrypted IoT data. In SenSys, 2017.

[76] Solace cloud. https://solace.com. Jan. 17, 2018.
[77] A. Taly and A. Shankar. Distributed authorization in

Vanadium. In FOSAD VIII, 2016.
[78] M. A. Tariq, B. Koldehofe, and K. Rothermel. Securing

broker-less publish/subscribe systems using identity-
based encryption. TPDS, 2014.

[79] V. Tron, A. Fischer, and N. Johnson. Smash-proof: Au-
ditable storage for Swarm secured by masked audit se-
cret hash. Technical report, Ethersphere, 2016.

[80] W.-G. Tzeng. A time-bound cryptographic key assign-
ment scheme for access control in a hierarchy. TKDE,
2002.

[81] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic
analysis. In SOSP, 2015.

[82] VOLTTRON. https://volttron.org/. Jan. 23, 2019.
[83] F. Wang, J. Mickens, N. Zeldovich, and V. Vaikun-

tanathan. Sieve: Cryptographically enforced access
control for user data in untrusted clouds. NSDI, 2016.

[84] G. Wang, Q. Liu, and J. Wu. Hierarchical attribute-
based encryption for fine-grained access control in cloud
storage services. In CCS, 2010.

[85] G. Wang, Q. Liu, J. Wu, and M. Guo. Hierarchical
attribute-based encryption and scalable user revocation
for sharing data in cloud servers. Computers & Security,
2011.

[86] Y. Watanabe, K. Emura, and J. H. Seo. New revoca-
ble IBE in prime-order groups: Adaptively secure, de-
cryption key exposure resistant, and with short public
parameters. In CT-RSA, 2017.

[87] D. J. Wu, A. Taly, A. Shankar, and D. Boneh. Privacy,
discovery, and authentication for the Internet of things.
In ESORICS, 2016.

[88] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya. ID-
based encryption for complex hierarchies with applica-
tions to forward security and broadcast encryption. In
CCS, 2004.

[89] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In INFO-
COM, 2002.

[90] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure,
scalable, and fine-grained data access control in cloud
computing. In INFOCOM, 2010.

[91] T. Zachariah, N. Klugman, B. Campbell, J. Adkins,
N. Jackson, and P. Dutta. The Internet of things has
a gateway problem. In HotMobile, 2015.

[92] Zigbee gateway. https://www.zigbee.org/zigbee-
for-developers/zigbee-gateway/. Feb. 13, 2019.

1536 28th USENIX Security Symposium USENIX Association

https://www.particle.io/mesh
https://solace.com
https://volttron.org/
https://www.zigbee.org/zigbee-for-developers/zigbee-gateway/
https://www.zigbee.org/zigbee-for-developers/zigbee-gateway/

Birthday, Name and Bifacial-security:
Understanding Passwords of Chinese Web Users

Ding Wang†∗, Ping Wang†∗, Debiao He§, Yuan Tian‡

† Peking University, Beijing 100871, China; {wangdingg, pwang}@pku.edu.cn
∗Key Lab of High-Condence Software Technology (PKU), Ministry of Education, China

§School of Cyber Science and Engineering, Wuhan University, China; hedebiao@whu.edu.cn
‡School of Engineering and Applied Science, University of Virginia; yuant@virginia.edu

Abstract
Much attention has been paid to passwords chosen by

English speaking users, yet only a few studies have

examined how non-English speaking users select pass-

words. In this paper, we perform an extensive, empirical
analysis of 73.1 million real-world Chinese web pass-

words in comparison with 33.2 million English coun-

terparts. We highlight a number of interesting struc-

tural and semantic characteristics in Chinese password-

s. We further evaluate the security of these passwords

by employing two state-of-the-art cracking techniques.

In particular, our cracking results reveal the bifacial-
security nature of Chinese passwords. They are weaker

against online guessing attacks (i.e., when the allowed

guess number is small, 1∼104) than English passwords.

But out of the remaining Chinese passwords, they are

stronger against offline guessing attacks (i.e., when the

guess number is large, >105) than their English coun-

terparts. This reconciles two conflicting claims about

the strength of Chinese passwords made by Bonneau

(IEEE S&P’12) and Li et al. (Usenix Security’14 and

IEEE TIFS’16). At 107 guesses, the success rate of

our improved PCFG-based attack against the Chinese

datasets is 33.2%∼49.8%, indicating that our attack can

crack 92% to 188% more passwords than the state of the

art. We also discuss the implications of our findings for

password policies, strength meters and cracking.

1 Introduction
Textual passwords are the dominant form of access con-

trol in almost every web service today. Although their

security pitfalls were revealed as early as four decades

ago [39] and various alternative authentication methods

(e.g., graphical passwords and multi-factor authentica-

tion) have been proposed since then, passwords are still

widely used. For one reason, passwords offer many

advantages, such as low deployment cost, easy recovery,

and remarkable simplicity, which cannot always be of-

fered by other authentication methods [6]. For another

reason, there is a lack of effective tools to quantify the

less obvious costs of replacing passwords [8] because

the marginal gains are often insufficient to make up for

the significant transition costs. Furthermore, users also

favor passwords. A recent survey on 1,119 US users [49]

showed that 58% of the participants prefer passwords

as their online login credentials, while only 16% prefer

biometrics, and 10% prefer other ways. Thus, passwords

are likely to persist in the foreseeable future.

Despite its ubiquity, password authentication is con-

fronted with a challenge [62]: truly random password-

s are difficult for users to memorize, while easy-to-

remember passwords tend to be highly predictable. To

eliminate this notorious “security-usability” dilemma,

researchers have put a lot of effort [12,17,36,46,47] into

the following two types of studies.

Type-1 research aims at evaluating the strength of a

password dataset (distribution) by measuring its statisti-

cal properties (e.g., Shannon entropy [10], α-guesswork

[7], λ -success-rate [53]) or by gauging its “guessability”

[24, 59]. Guessability characterizes the fraction of pass-

words that, at a given number of guesses, can be cracked

by cracking algorithms such as Markov-Chains [36] and

probabilistic context-free grammars (PCFG) [58]. As

with most of these previous studies, we mainly consider

trawling guessing [55], while other attacking vectors

(e.g., phishing, shoulder-surfing and targeted guessing

[56]) are outside of our focus. Hereafter, whenever the

term “guessing” is used, it means trawling guessing.

Type-2 research attempts to reduce the use of weak

passwords. Two approaches have been mainly utilized:

proactive password checking [25, 32] and password

strength meter [13, 59]. The former checks the user-

selected passwords and only accepts those that comply

with the system policy (e.g., at least 8 characters long).

The latter is typically a visual feedback of password

strength, often presented as a colored bar to help users

create stronger passwords [17]. Most of today’s leading

USENIX Association 28th USENIX Security Symposium 1537

sites employ a combination of these two approaches to

prevent users from choosing weak passwords. In this

work, though we mainly focus on type-1 research, our

findings are also helpful for type-2 research.

Existing work (e.g., [14,17,27,37,42]) mainly focuses

on passwords chosen by English speaking users. Rela-

tively little attention has been paid to the characteristics

and strength of passwords chosen by those who speak

other native languages. For instance, “woaini1314” is

currently deemed “Strong” by password strength meters

(PSMs) of many leading services like AOL, Google,

IEEE, and Sina weibo. However, this password is highly

popular and prone to guessing [56]: “woaini” is a Chi-

nese Pinyin phrase that means “I love you”, and “1314”

has a similar pronunciation of “for ever” in Chinese.

Failing to catch this would overlook the weaknesses

of Chinese passwords, thus posing high risks to the

corresponding web accounts.

1.1 Motivations
There have been 802 million Chinese netizens by June,

2018 [1], which account for over 20% (and also the

largest fraction) of the world’s Internet population. How-

ever, to the best of our knowledge, there has been no

satisfactory answer to the key questions: (1) Are there
structural or semantic characteristics that differentiate
Chinese passwords from English ones? (2) How will
Chinese passwords perform against the foremost attack-
s? (3) Are they weaker or stronger than English ones?
It is imperative to address these questions to provide

both security engineers and Chinese users with necessary

security guidance. For instance, if the answer to the first

question is affirmative, then it indicates that the password
policies (e.g., length-8+ [25] and 2Class12 [44]) and
strength meters (e.g., RNN-PSM [38] and Zxcvbn [59])
originally designed for English speaking users cannot be
readily applied to Chinese speaking users.

A few password studies (e.g., [30,36,52,53,56]) have

employed some Chinese datasets, yet they mainly deal

with the effectiveness of various probabilistic cracking

models. Relatively little attention has been given to

the above three questions. As far as we know, Li et

al.’s work [26, 34] may be the closest to this paper,

but our work differs from it in several aspects. First,

we explore a number of fundamental characteristics not

covered in [26, 34], such as the extent of language de-

pendence, length distribution, frequency distribution and

various semantics. Second, our improved PCFG-based

algorithm can achieve success rates from 29.41% to

39.47% at just 107 guesses, while the best success rate of

their improved PCFG-based algorithm is only 17.3% at

1010 guesses (i.e., significantly underestimate attackers).

Third, based on more comprehensive experiments, we

outline the need for pairing passwords in terms of site

service type when comparing password strength, which

is overlooked by Li et al.’s [26, 34] and Bonneau’s [7]

work. Fourth, as shown in Sec. 3.2, two of Li et al.’s

five Chinese datasets are improperly pre-processed when

they perform data cleaning,1 which impairs their results.

1.2 Contributions
We perform a large-scale empirical analysis by lever-

aging 73.1 million passwords from six popular Chinese

sites and 33.2 million passwords from three English sites.

Particularly, we seek for fundamental properties of user-

generated passwords and systematically measure their

structural patterns, semantic characteristics and strength.

In summary, we make the following key contributions:

• An empirical analysis. By leveraging 73.1 million

real-life Chinese passwords, for the first time, we:

(1) provide a quantitative measurement of to what

extent user passwords are influenced by their native

language; (2) systematically explore the common

semantics (e.g., date, name, place and phone #) in

passwords; and (3) show that passwords of these

two distinct user groups follow quite similar Zipf

frequency distributions, despite being created under

diversified password policies.

• A reversal principle. We employ two state-of-the-

art password-cracking algorithms (i.e., PCFG-based

and Markov-based [36]) to measure the strength

of Chinese web passwords. We also improve the

PCFG-based algorithm to more accurately capture

passwords that are of a monotonically long structure

(e.g., “1qa2ws3ed”). At 107 guesses, our algorith-

m can crack 92% to 188% more passwords than

the best results in [34]. Particularly, we reveal

a “reversal principle”, i.e. the bifacial-security
nature of Chinese passwords: when the guess num-

ber allowed is small, they are much weaker than

their English counterparts, yet this relationship is

reversed when the guess number is large, thereby

reconciling the contradictory claims made in [7,34].

• Some insights. We highlight some insights for

password policies, strength meters and cracking.

We provide a large-scale empirical evidence that

supports the hypothesis raised in the HCI com-

munity [17, 46]: users self-reported to rationally

choose stronger passwords for accounts associated

with a higher value, and knowingly select weaker

passwords for a lower-value service even if the

latter imposes a stricter policy. Our methodologi-

cal approaches would also be useful for analyzing

passwords of other non-English speaking users.

1 We reported this issue to the authors of [26, 34], they have

acknowledged it. As their journal paper [26] is technically a verbatim

of their conference version [34], we mainly use [34] for discussion.

1538 28th USENIX Security Symposium USENIX Association

2 Related work

In this section, we briefly review prior research on pass-

word characteristics and security.

2.1 Password characteristics
Basic statistics. In 1979, Morris and Thompson [39]

analyzed a corpus of 3,000 passwords. They reported

that 71% of the passwords are no more than 6 characters

long and 14% of the passwords are non-alphanumeric

characters. In 1990, Klein [32] collected 13,797 comput-

er accounts from his friends and acquaintances around

US and UK. They observed that users tend to choose

passwords that can be easily derived from dictionary

words: a dictionary of 62,727 words is able to crack 24%

of the collected accounts and 52% of the cracked pass-

words are shorter than 6 characters long. In 2004, Yan et

al. [62] found that passwords are likely to be dictionary

words since users have difficulty in memorizing random

strings. On average, the password length in their user

study (288 participants) is 7∼8.

In 2012, Bonneau [7] conducted a systematic analysis

of 70 million Yahoo private passwords. This work

examined dozens of subpopulations based on demo-

graphic factors (e.g., age, gender, and language) and

site usage characteristics (e.g., email and retail). They

found that even seemingly distant language communities

choose the same weak passwords. This research was

recently reproduced in [3] by using differential privacy

techniques. Particularly, Chinese passwords are found

among the most difficult ones to crack [7]. In 2014, how-

ever, Li et al. [34] argued that Bonneau’s dataset is not

representative of general Chinese users, because Yahoo

users are familiar with English. Accordingly, Li et al.

leveraged a corpus of five datasets from Chinese sites and

observed that Chinese users like to use digits when cre-

ating passwords, as compared to English speaking users

who like to use letters to create passwords. However, as

an elementary defect, two of their Chinese datasets have

not been cleaned properly (see Section 3.2), which might

lead to inaccurate measures and biased comparisons.

More importantly, several critical password properties

(such as length distributions, frequency distributions and

semantics) remain to be explored.

In 2014, Ma et al. [36] investigated password charac-

teristics about the length and the structure of six datasets,

three of which are from Chinese websites. Nonethe-

less, this work mainly focuses on the effectiveness of

probabilistic password cracking models and pays little

attention to the deeper semantics (e.g., no information is

provided about the role of Pinyins, names or dates). In

2017, Pearman et al. [42] reported on an in situ examina-

tion of 4057 passwords from 154 English-speaking users

over an average of 147 days. They found that the average

password is composed of 2.77 character classes and is of

length 9.92 characters, including 5.91 lowercase letters,

2.70 digits, 0.84 uppercase letters, and 0.46 symbols.

Semantic patterns. In 1989, Riddle et al. [43] found

that birth dates, personal names, nicknames and celebrity

names are popular in user-generated passwords. In

2004, Brown et al. [9] confirmed this by conducting a

thorough survey that involved 218 participants and 1,783

passwords. They reported that the most frequent entity

in passwords is the self (67%), followed by relatives

(7%), lovers and friends; Also, names (32%) were found

to be the most common information used, followed

by dates (7%). Veras et al. [51] examined the 32M

RockYou dataset by employing visualization techniques

and observed that 15% of passwords contain sequences

of 5∼8 consecutive digits, 38% of which could be fur-

ther classified as dates. They also found that repeated

days/months and holidays are popular, and when non-

digits are paired with dates, they are most commonly

single-characters or names of months.

In 2014, Li et al. [34] showed that Chinese users

tend to insert Pinyins and dates into their passwords.

However, many other important semantic patterns (e.g.,

Pinyin name and mobile number) are left unexplored. In

addition, we improve upon the processes of data cleaning

(see Sec. 3.2) and tuning of cracking algorithms (see

Sec. 4.1) to advance beyond Li et al.’s measurement

of the strength of Chinese passwords. In 2015, Ji et al.

[30] noted that user-IDs and emails have a great impact

on password security. For instance, 53% of Dodonew

passwords can be guessed by using user-IDs within an

average of 706 guesses. This motivates us to investigate

to what extent the Pinyin names and Chinese-style dates

impact the security of Chinese passwords. In 2018,

AlSabah et al. [2] studied 79,760 passwords leaked from

the Qatar National Bank, customers of which are mainly

Middle Easterners. They observed that over 30% of

passwords contain names, over 5% use a 2-digit birth

year, and 4% include their own phone number in whole

as part of their password.

2.2 Password security
A crucial password research subject is password

strength. Instead of using brute-force attacks, earlier

works (e.g., [32, 43]) use a combination of ad hoc

dictionaries and mangling rules, in order to model the

common password generation practice and see whether

user passwords can be successfully rebuilt in a period of

time. This technique has given rise to automated tools

like John the Ripper (JTR), hashcat and L0phtCrack.
Borrowing the idea of Shannon entropy, the NIST-

800-63-2 guide [10] attempts to use the concept of pass-
word entropy for estimating the strength of password

creation policy underlying a password system. Password

USENIX Association 28th USENIX Security Symposium 1539

entropy is calculated mainly according to the length

of passwords and augmented with a bonus for special

checks. Florencio and Herley [19], and Egelman et al.

[17] improved this approach by adding the size of the al-

phabet into the calculation and called the resulting value

log2((alpha.size)pass.len) the bit length of a password.

However, previous ad hoc metrics (e.g., password

entropy and bit length) have recently been shown far

from accurate by Weir et al. [57]. They suggested that

the approach based on simulating password cracking

sessions is more promising. They also developed a novel

method that first automatically derives word-mangling

rules from password datasets by using PCFG, and then

instantiates the derived grammars by using string seg-

ments from external input dictionaries to generate guess-

es in decreasing probability order [58]. This PCFG-

based cracking approach is able to crack 28% to 129%

more passwords than JTR when allowed the same guess

number. It is considered as a leading password cracking

technique and used in a number of recent works [36,56].

Differing from the PCFG-based approach, Narayanan

and Shmatikov [40] introduced the Markov-Chain theo-

ry for assigning probabilities to letter segments, which

substantially reduces the password search space. This

approach was tested in an experiment against 142 re-

al user passwords and could break 68% of them. In

2014, by utilizing various normalization and smoothing

techniques from the natural language processing domain,

Ma et al. [36] systematically evaluated the Markov-based

model. They found it performs significantly better than

the PCFG-based model at large guesses (e.g., 230) in

some cases when parameterized appropriately. In this

work, we perform extensive experiments by using both

models to evaluate the strength of Chinese passwords.

When these password models are coupled with tools

(e.g., AUTOFORGE [63]) that can automatically forge

valid online login requests from the client side, server-

side mechanisms like rate-limiting (see Sec. 5.2.2 of

[25]) and password leakage detection [31] become nec-

essary. However, in reality, few sites have implemented

proper countermeasures to thwart online guessing. A-

mong the 182 sites in the Alexa Top 500 sites in the

US that Lu et al. [35] were able to examine, 131 sites

(72%) allow frequent unsuccessful login attempts, and

another 28 sites (15%) can be easily locked out, leading

to denial of service attacks. This further suggests the

necessity of our work—understanding the strength of

Chinese passwords against online guessing.

3 Characteristics of Chinese passwords

We now investigate Chinese password characteristics,

most of which are underexplored. In addition, we discuss

weaknesses in previous major studies [26, 34].

3.1 Dataset and ethics consideration
Our empirical analysis employs six password datasets

from Chinese websites and three password datasets from

English websites. In total, these nine datasets consist of

106.3 million real-life passwords. As summarized in Ta-

ble 1, these nine datasets are different in terms of service,

language, culture, and size. The role of each dataset

will be specified in Sec. 4 when performing strength

comparison. They were hacked and made public on the

Internet between 2009 and 2012, and may be a bit old.

However, they can represent current passwords due to

two reasons. First, Bonneau has shown that “passwords

have changed only marginally since then (1990)” [7].

Second, the password ecosystem evolves very slowly.

A number of recent researches (see [21, 24, 55]) reveal

that password guidance and practices implemented on

leading sites have seldom changed over time.
We realize that though publicly available and widely

used in the literature [36, 52, 56], these datasets are pri-

vate data. Thus, we only report the aggregated statistical

information, and treat each individual account as confi-

dential so that using it in our research will not increase

risk to the corresponding victim, i.e., no personally

identifiable information can be learned. Furthermore,

these datasets may be exploited by attackers as cracking

dictionaries, while our use is both beneficial for the

academic community to understand password choices

of Chinese netizens and for security administrators to

secure user accounts. As our datasets are all publicly

available, the results in this work are reproducible.

3.2 Data cleaning
We note that some original datasets (e.g., Rockyou and

Tianya) include un-necessary headers, descriptions, foot-

notes, password strings with len>100, etc. Thus, before

any exploration, we first launch data cleaning. We

remove email addresses and user names from the original

data. As with [36], we also remove strings that in-

clude symbols beyond the 95 printable ASCII characters.

We further remove strings with len>30, because after

manually scrutinizing the original datasets, we find that

these long strings do not seem to be generated by users,

but more likely by password managers or simply junk

information. Moreover, such unusually long passwords

are often beyond the scope of attackers who care about

cracking efficiency [4]. In all, the fraction of excluded

passwords is negligible (see the last column but two in

Table 1), yet this cleaning step unifies the input of crack-

ing algorithms and simplifies the later data processing.

We find that either Tianya or 7k7k has been contam-

inated: there is a non-negligible overlap between the

Tianya dataset and 7k7k dataset (i.e., 40.85% of 7k7k

and 24.62% of Tianya). More specifically, we were first

puzzled by the fact that the password “111222tianya”

1540 28th USENIX Security Symposium USENIX Association

Table 1: Data cleaning of the password datasets leaked from nine web services (“PWs” stands for passwords).
Dataset Web service Language Leaked Time Original PWs Miscellany Length>30 Removed % After cleaning Unique PWs
Tianya Social forum Chinese Dec. 2011 31,761,424 860,178 5 2.71% 30,901,241 12,898,437
7k7k Gaming Chinese Dec. 2011 19,138,452 13,705,087 10,078 71.66%∗ 5,423,287 2,865,573
Dodonew E-commerce&Gaming Chinese Dec. 2011 16,283,140 10,774 13,475 0.15% 16,258,891 10,135,260
178 Gaming Chinese Dec. 2011 9,072,966 0 1 0.00% 9,072,965 3,462,283
CSDN Programmer forum Chinese Dec. 2011 6,428,632 355 0 0.01% 6,428,277 4,037,605
Duowan Gaming Chinese Dec. 2011 5,024,764 42,024 10 0.83% 4,982,730 3,119,060
Rockyou Social forum English Dec. 2009 32,603,387 18,377 3140 0.07% 32,581,870 14,326,970
Yahoo Portal(e.g., E-commerce) English July 2012 453,491 10,657 0 2.35% 442,834 342,510
Phpbb Programmer forum English Jan. 2009 255,421 45 3 0.02% 255,373 184,341

∗We remove 13M duplicate accounts from 7k7k, because we identify that they are copied from Tianya as we will detail in Section 3.2.

was originally in the top-10 most popular list of both

datasets. We manually scrutinize the original datasets

(before removing the email addresses and user names)

and are surprised to find that there are around 3.91 mil-

lion (actually 3.91*2 million due to a split representation

of 7k7k accounts, as we will discuss later) joint accounts

in both datasets. In Appendix A, we provide strong

evidence that someone has copied these joint accounts

from Tianya to 7k7k, but not from 7k7k to Tianya as

concluded in previous major studies [26, 34].

3.3 Password characteristics
Language dependence. There is a folklore that user-

generated passwords are greatly influenced by their na-

tive languages, yet so far no large-scale quantitative

measurement has ever been given. To fill this gap,

we first illustrate the character distributions of the nine

datasets, and then measure the closeness of passwords

with their native languages in terms of inversion number

of the character distributions (in descending order).
As expected, passwords from different language

groups have significantly varied letter distributions (see

Fig. 1). What’s unexpected is that, even though

generated and used in vastly diversified web services,

passwords from the same language group have quite

similar letter distributions. This suggests that, when

given a password dataset, one can largely determine

what the native language of its users is by investigating

its letter distribution. Arranged in descending order, the

letter distribution of all Chinese passwords is aineo

hglwuyszxqcdjmbtfrkpv, while this distribution for

all English passwords is aeionrlstmcdyhubkgpjvfw

zxq. While some letters (e.g., ‘a’, ‘e’ and ‘i’) occur

frequently in both groups, some letters (e.g., ‘q’ and ‘r’)

only occur frequently in one group. Such information

can be exploited by attackers to reduce the search space

and optimize their cracking strategies. Note that, here

all the percentages are handled case-insensitively.
While users’ passwords are greatly affected by their

native languages, the letter frequency of general

language may be somewhat different from the letter

frequency of passwords. To what extent do they differ?
According to Huang et al.’s work [28], the letter

distribution of Chinese language (i.e., written Chinese

texts like literary work, newspapers and academic

papers), when converted into Chinese Pinyin, is

inauhegoyszdjmxwqbctlpfrkv. This shows that

some letters (e.g., ‘l’ and ‘w’), which are popular in

Chinese passwords, appear much less frequently in

written Chinese texts. A plausible reason may be that

‘l’ and ‘w’ is the first letter of the family names li and

wang (which are the top-2 family names in China),

respectively, while Chinese users, as we will show, love

to use names to create their passwords.
A similar observation holds for passwords of English

speaking users. The letter distribution of English lan-

guage (i.e., etaoinshrdlcumwfgypbvkjxqz) is from

www.cryptograms.org/letter-frequencies.php. For exam-

ple, ‘t’ is common in English texts, but not so common

in English passwords. A plausible reason may be that ‘t’

is used in popular words like the, it, this, that, at,

to, while such words are rare in passwords.
To further explore the closeness of passwords with

their native languages and with the passwords from other

datasets, we measure the inversion number of the letter

distribution sequences (in descending order) between

two password datasets (as well as languages). The results

are summarized in Table 2. “Pinyin fullname” is a

dictionary consisting of 2,426,841 unique Chinese full

names (e.g., wanglei and zhangwei), “Pinyin word” is

a dictionary consisting of 127,878 unique Chinese words

(e.g., chang and cheng), and these two dictionaries are

detailed in Appendix B. Note that the inversion number

of sequence A to sequence B is equal to that of B to A.

For instance, the inversion number of inauh to aniuh is

3, which is equal to that of aniuh to inauh.
As shown in Table 2, the inversion number of letter

distributions between passwords from the same language

group is generally much smaller than that of passwords

from different language groups. This value is also

distinctly smaller than that of the letter distributions

between passwords and their native language (see the

bold values in Table 2). The latter is less expected. All

this indicates that passwords from different languages are

intrinsically different from each other in letter distribu-

tions, and that passwords are close to their native lan-

guage yet the distinction is still significant (measurable).

USENIX Association 28th USENIX Security Symposium 1541

Figure 1: Letter distributions of passwords. Figure 2: Length distributions of passwords. Figure 3: Freq. distributions of passwords.

Table 2: Inversion number of the letter distributions (in descending order) between two datasets.

Tianya 7k7k 178 CSDN Dodonew Duowan
All Chin- Chinese Pinyin Pinyin

Rockyou Yahoo Phpbb
All Eng- English

ese PWs language fullname word lish PWs language
Tianya 0 15 22 42 15 17 14 40 32 37 100 100 113 100 99

7k7k 15 0 23 31 14 10 13 41 39 38 105 101 112 105 96
Dodonew 22 23 0 42 21 15 12 52 40 49 94 92 105 94 99

178 42 31 42 0 41 35 32 56 48 47 134 130 141 134 125
CSDN 15 14 21 41 0 12 15 45 39 42 95 95 106 95 96

Duowan 17 10 15 35 12 0 9 49 39 44 99 97 110 99 98
All Chinese PWs 14 13 12 32 15 9 0 44 34 43 104 102 115 104 101
Chinese language 40 41 52 56 45 49 44 0 38 27 118 114 123 118 113

Pinyin fullname 32 39 40 48 39 39 34 38 0 31 124 122 135 124 123
Pinyin word 37 38 49 47 42 44 43 27 31 0 115 113 124 115 112

Rockyou 100 105 94 134 95 99 104 118 124 115 0 12 23 0 47
Yahoo 100 101 92 130 95 97 102 114 122 113 12 0 15 12 39
Phpbb 113 112 105 141 106 110 115 123 135 124 23 15 0 23 44

All English PWs 100 105 94 134 95 99 104 118 124 115 0 12 23 0 47
English language 99 96 99 125 96 98 101 113 123 112 47 39 44 47 0

Note that, among all Chinese datasets, Duowan has

the least inversion number (i.e., 9 in dark gray) with the

dataset “All Chinese PWs”. This indicates that Duowan
passwords are likely to best represent general Chinese
web passwords, and thus Duowan will be selected as the
training set for attacking other Chinese datasets (see Sec
5). For a similar reason, Rockyou will be selected as the

training set when attacking English passwords.

Length distribution. Fig. 2 depicts the length distri-

butions of passwords. Irrespective of the web service,

language and culture differences, the most common pass-

word lengths of every dataset are between 6 and 10,

among which length-6 and 8 take the lead. Merely

passwords with lengths of 6 to 10 can account for more

than 75% of every entire dataset, and this value will rise

to 90% if we consider passwords with lengths of 5 to

12. Very few users prefer passwords longer than 15

characters. Notably, people seem to prefer even lengths

over odd ones. Another interesting observation is that,

CSDN exhibits only one peak in its length distribution

curve and has many fewer passwords (i.e., only 2.16%)

with length<8. This might be due to the password policy

that requires the length to be no shorter than 8 on this site.

Frequency distribution. Fig. 3 portrays the frequency

vs. the rank of passwords from different datasets in a

log-log scale. We first sort each dataset according to

the password frequency in descending order. Then, each

individual password will be associated with a frequency

fr, and its rank in the frequency table is denoted by

r. Interestingly, the curve for each dataset closely ap-

proximates a straight line, and this trend will be more

pronounced if we take all the nine curves as a whole.

This well accords with the Zipf’s law [53]: fr and r
follow a relationship of the type fr = C · rs −C · (r−
1)s ≈ C · s · rs−1, where C ∈[0.01, 0.06] and s ∈[0.15,

0.40] are constants. Particularly, 1− s is the absolute

value of the Zipf linear regression line’s slope. The

Zipf theory indicates that the popularity of passwords
decreases polynomially with the increase of their rank.

This further implies that a few passwords are overly

popular (explaining why online guessing [56] can be

effective, even if security mechanisms like rate-limiting

and suspicious login detection [16] are implemented

at the server), while the least frequent passwords are

very sparsely scattered in the password space (explaining

why offline guessing attackers need to consider cost-

effectiveness [4] and weigh when to stop).

Top popular passwords. Table 3 shows the top-10

most frequent passwords from different services. The

most frequent password among all datasets is “123456”,

with CSDN being the only exception due to its password

policy that requires passwords to be of length 8+ (see

Fig. 2). “111111” follows on the heel. Other popular

Chinese passwords include “123123”, “123321” and

“123456789”, all composed of digits and in simple

patterns such as repetition and palindrome. Love also

shows its magic power: “5201314”, which has a sim-

ilar pronunciation of “I love you forever and ever” in

Chinese,2 appears in the top-10 lists of four Chinese

2https://ninchanese.com/blog/2016/05/20/520-chinese-love-word-number/

1542 28th USENIX Security Symposium USENIX Association

Table 3: Top-10 most popular passwords of each dataset.
Rank Tianya 7k7k Dodonew 178 CSDN Duowan Rockyou Yahoo Phpbb

1 123456 123456 123456 123456 123456789 123456 123456 123456 123456
2 111111 0 a123456 111111 12345678 111111 12345 password password
3 000000 111111 123456789 zz12369 11111111 123456789 123456789 welcome phpbb
4 123456789 123456789 111111 qiulaobai dearbook 123123 password ninja qwerty
5 123123 123123 5201314 123456aa 00000000 000000 iloveyou abc123 12345
6 123321 5201314 123123 wmsxie123 123123123 5201314 princess 123456789 12345678
7 5201314 123 a321654 1231231234567890 123321 123321 12345678 letmein
8 12345678 12345678 12345 000000 88888888 a123456 rockyou sunshine 111111
9 666666 12345678 000000 qq66666 111111111 suibian 12345678 princess 1234

10 111222tianya wangyut2 123456a w2w2w2 147258369 12345678 abc123 qwerty123456789
Sum of top-10 2,297,505 440,300 533,285 793,132 670,881 338,012 669,126 4,476 7,135
Total accounts 30,901,241 5,423,287 16,258,891 9,072,965 6,428,277 4,982,730 32,581,870 442,834 255,373

% of top-10 7.43% 8.12% 3.28% 8.74% 10.44% 6.78% 2.05% 1.01% 2.79%

Table 4: Top-3 structural patterns in two user groups (each % is taken by dividing the corresponding total accounts).

Top-3 patterns Chinese password datasets Average of Top-3 patterns English password datasets Average of

in Chinese PWs Tianya 7k7k Dodonew 178 CSDN Duowan Chinese PWs in English PWs Rockyou Yahoo Phpbb English PWs

D(e.g., 123456) 63.77% 59.62% 30.76% 48.07% 45.01% 52.84% 52.93% L(e.g., abcdef) 41.69% 33.03% 50.07% 41.59%
LD(e.g., a12345) 14.71% 17.98% 43.50% 31.12% 26.14% 23.97% 23.72% LD(e.g., abc123) 27.70% 38.27% 19.14% 28.37%

DL(e.g., 12345a) 4.12% 3.91% 7.55% 6.25% 5.88% 5.83% 5.25% D(e.g., 123456) 15.94% 5.89% 12.06% 11.30%

Sum of top-3 82.61% 81.51% 81.80% 85.45% 77.03% 82.64% 81.90% Sum of top-3 85.33% 77.19% 81.25% 81.26%

datasets. In contrast, popular ones in English datasets

tend to be meaningful letter strings (e.g., “sunshine”

and “letmein”). The eternal theme of love—frankly,

“iloveyou” or perhaps euphemistically, “princess”—

also show up in top-10 lists of English datasets. Our

results confirm the folklore [50] that “back at the dawn of

the Web, the most popular password was 12345. Today,

it is one digit longer but hardly safer: 123456.”

It is interesting to see that only the top-10 most popular

ones account for as high as 6.78%∼10.44% of each

entire dataset, with Dodonew being the only exception.

However, this figure for Dodonew even achieves 3.24%,

while the English datasets are all below 2.80%. This

indicates that top-popular Chinese passwords are more

concentrated than their English counterparts, which is

likely to make Chinese passwords more vulnerable to

online guessing. This will be confirmed in Sec. 4.1.

Top popular structures. We have seen that digits are

popular in top-10 passwords of Chinese datasets. Are

they also popular in the whole datasets? We investigate

the frequencies of password patterns that involve digits,

and show the results of the top 3 most frequent ones

in the left hand of Table 4. The first column of the

table denotes the pattern of a password as in [58] (i.e.,

L denotes a lower-case sequence, D for digit sequence,

U for upper-case sequence, S for symbol sequence, and

the structure pattern of the password “Wanglei123” is

ULD). Over 50% of the average Chinese web passwords

are only composed of digits, while this value for English

datasets is only 11.30%. In contrast to first D then DL,

English speaking users prefer the patterns L and LD.

It is somewhat surprising to see that the sum of merely

the top-3 digit-based patterns (i.e., D, LD, and DL)

accounts for an average of 81.90% for Chinese dataset-

s. In contrast, English speaking users favor letter- re-

lated patterns, and on average, their top-3 structures

(i.e., L, LD and D) also account for slightly over 80%.

This indicates that, unlike English speaking users, Chi-

nese speaking users are inclined to employ digits to build

their passwords — digits in Chinese passwords serve

the role of letters that play in English passwords, while

letters in Chinese passwords mainly come from Pinyin

words/ names. This is probably due to that most Chinese

users are unfamiliar with English language (and Roman

letters on the keyboard). If this is the case, is there any

meaningful information in these digit sequences?

Semantics in passwords. As there is little existing

work, to gain an insight into the underlying seman-

tic patterns, we have to construct semantic dictionaries

from scratch by ourselves. Finally, we construct 22

dictionaries of different semantic categories (see the first

column in Table 5). The detailed information about

how we construct them is referred to Appendix B. To

eliminate ambiguities, we use the “left-most longest

match” when matching a password with each item in

our dictionaries. Table 5 shows the prevalence of various

semantic patterns in passwords. Lots of English speaking

users tend to use raw English words as their password

building blocks: 25.88% insert a 5+-letter word into their

passwords. Passwords with a 5+-letter word account

for over a third of the total passwords with a 5+-letter

substring. In comparison, fewer Chinese users (2.41%)

choose English words to build passwords, yet they prefer

Pinyin names (11.50%), especially full names.

Particularly, of all the Chinese passwords (22.42%)

that include a 5+-letter substring, more than half

USENIX Association 28th USENIX Security Symposium 1543

Table 5: Popularity of 22 kinds of semantics in passwords (by matching our 22 semantic dictionaries).∗
Semantic dictionary Tianya 7k7k Dodonew 178 CSDN Duowan Avg Chinese Rockyou Yahoo Phpbb Avg English

English word lower(len ≥ 5) 2.08% 2.05% 3.69% 0.83% 3.41% 2.37% 2.41% 23.54% 29.49% 24.60% 25.88%
English firstname(len ≥ 5) 1.11% 0.93% 2.23% 0.53% 1.47% 1.19% 1.24% 18.80% 15.21% 9.20% 14.40%
English lastname(len ≥ 5) 2.16% 2.34% 4.48% 1.93% 3.65% 2.77% 2.89% 20.16% 20.82% 15.22% 18.73%
English fullname(len ≥ 5) 4.03% 4.30% 6.14% 4.99% 6.58% 5.07% 5.18% 13.05% 11.35% 8.25% 10.88%

English name any(len ≥ 5) 4.60% 4.65% 6.32% 5.20% 6.87% 5.18% 5.35% 27.67% 26.51% 18.71% 24.30%
Pinyin word lower(len ≥ 5) 7.34% 8.56% 10.82% 10.24% 11.51% 9.92% 9.73% 3.33% 2.99% 2.50% 2.94%
Pinyin familyname(len ≥ 5) 1.35% 1.64% 2.34% 2.24% 2.47% 1.88% 1.99% 0.05% 0.07% 0.07% 0.06%

Pinyin fullname(len ≥ 5) 8.39% 9.87% 12.91% 11.81% 13.14% 11.29% 11.24% 4.79% 4.17% 3.35% 4.10%
Pinyin name any(len ≥ 5) 8.56% 10.05% 13.31% 12.11% 13.46% 11.53% 11.50% 4.80% 4.18% 3.36% 4.11%

Pinyin place(len ≥ 5) 1.24% 1.27% 1.64% 1.58% 2.12% 1.48% 1.55% 0.20% 0.18% 0.16% 0.18%
PW with a 5+-letter substring 18.51% 19.99% 26.95% 19.38% 28.03% 21.70% 22.42% 71.69% 75.93% 68.66% 72.09%

Date YYYY 14.38% 12.82% 12.45% 10.06% 16.91% 14.33% 13.49% 4.34% 4.30% 2.77% 3.80%
Date YYYYMMDD 6.06% 5.42% 3.93% 3.94% 8.78% 6.17% 5.72% 0.10% 0.05% 0.09% 0.08%

Date MMDD 24.99% 19.97% 17.08% 16.46% 24.45% 22.59% 20.92% 7.53% 4.46% 3.59% 5.20%
Date YYMMDD 21.29% 15.89% 12.70% 13.09% 20.67% 18.28% 16.99% 3.24% 1.23% 1.55% 2.01%

Date any above 36.61% 30.39% 26.66% 27.07% 35.30% 33.58% 31.60% 11.33% 8.77% 6.45% 8.85%
PW with a digit 89.49% 88.42% 88.52% 90.76% 87.10% 89.26% 88.93% 54.04% 64.74% 46.14% 54.97%

PW with a 4+-digit substring 81.64% 76.98% 71.90% 78.76% 78.38% 80.60% 78.04% 24.72% 21.85% 19.33% 21.97%
PW with a 6+-digit substring 75.59% 68.32% 61.16% 70.02% 69.87% 73.10% 69.68% 17.77% 8.48% 11.28% 12.51%
PW with a 8+-digit substring 28.04% 27.56% 26.53% 26.37% 49.73% 31.03% 31.54% 6.88% 2.50% 3.73% 4.37%

Mobile Phone Number(11-digit) 2.90% 1.76% 2.63% 3.97% 3.75% 2.44% 2.91% 0.07% 0.01% 0.02% 0.03%
PW with a 11+-digit substring 4.71% 2.09% 3.39% 5.08% 7.57% 3.35% 4.36% 0.75% 0.17% 0.18% 0.37%

∗Each percentage (%) is counted by the rule of “left-most longest” match and taken by dividing the corresponding password dataset size.

(11.24%) include a 5+-letter Pinyin full name. There is

also 4.10% of English passwords that contain a 5+-letter

full Pinyin name. A reasonable explanation is that many

Chinese users have created accounts in these English

sites. For instance, the popular Chinese Pinyin name

“zhangwei” appears in both Rockyou and Yahoo. We

also note that English names are also widely used in

English passwords, yet full names are less popular than

last names and first names.
Equally interestingly, we find that, on average, 16.99%

of Chinese users insert a six-digit date into their pass-

words. Further considering that users love to include self

information into passwords [9, 56], such dates are likely

to be users’ birthdays. Besides, about 30.89% of Chinese

speaking users use a 4+-digit date to create passwords,

which is 3.59 times higher than that of English speaking

users (i.e. 8.61%). Also, there are 13.49% of Chinese

users inserting a four-digit year into their passwords,

which is 3.55 times higher than that of English speaking

users (3.80%, which is comparable to the results in [14]).

We note that there might be some overestimates, for

there is no way to definitely tell apart whether some digit

sequences are dates or not, e.g., 010101 and 520520.

These two sequences may be dates, yet they are also

likely to be of other semantic meanings (e.g., 520520

sounds like “I love you I love you”). As discussed later,

we have devised reasonable ways to address this issue. In

all, dates play a vital role in passwords of Chinese users.
We mainly pay attention to length-4, 6 and 8 digits

in passwords, because: 1) Length-4 and 6 are the most

widely used lengths of PINs in the West and Asia; and 2)

6&8 are the two most frequent password lengths (see Fig.

2). It is interesting to see that 2.91% of Chinese users are

likely to use their 11-digit mobile numbers as passwords,

making up 39.59% of all passwords with an 11+-digit

substring. On average, 12.39% of Chinese passwords

are longer than 11. Thus, if an attacker can determine

(e.g., by shoulder-surfing) that the victim uses a long

password, she is likely to succeed with a high chance

of 23.48%(= 2.91%
12.39%) by just trying the victim’s 11-

digit mobile number. This reveals a practical attacking
strategy against long Chinese passwords.

Note that there are some unavoidable ambiguities

when determining whether a text/digit sequence belongs

to a specific dictionary, and an improper resolution of

these ambiguities would lead to an overestimation or

underestimation. Here we take “YYMMDD” for

illustration. For example, both 111111 and 520521 fall

into “YYMMDD” and are highly popular. However, it is

more likely that users choose them simply because they

are easily memorable repetition numbers or meaningful

strings, and counting them as dates would lead to an

overestimation. Yet they can really be dates (e.g.,

111111 stands for “Nov. 11th, 2011” and 520131 for

“Jan 31th, 1952”) and completely excluding them from

“YYMMDD” would lead to underestimation of dates.
Thus, we assume that user birthdays are randomly

distributed and assign the expectation of the frequency of

dates (denoted by E), instead of zero, to the frequency of

these abnormal dates. We manually identify 17 abnormal

dates in the dictionary “YYMMDD”, each of which

originally has a frequency> 10E and appears in every

top-1000 list of the six Chinese datasets. In this way, the

ambiguities can be largely resolved. We similarly tackle

16 abnormal items in “MMDD”. The detailed info about

these abnormal dates can be found in Appendix B. As for

the other 19 dictionaries in Table 5, few abnormal items

can be identified, and they are processed as usual.

Summary. We have measured nine password datasets in

terms of letter distribution, length distribution, frequency

1544 28th USENIX Security Symposium USENIX Association

distribution and semantic patterns. To our knowledge,

most of these fundamental characteristics have at most

been mentioned/exampled in the literature (see [26, 30,

34, 36, 53]) but never systematically examined. We have

identified a number of similarities (e.g., frequency distri-

bution and the theme of love) and differences (e.g., letter

distribution, structural patterns, and semantic patterns)

between passwords of these two user groups.

4 Strength of Chinese web passwords

Now we employ two state-of-the-art password attacking

algorithms (i.e., PCFG-based [58] and Markov-based

[36]) to evaluate the strength of Chinese web passwords.

We further investigate whether the characteristics iden-

tified in Sec. 3.3 (e.g., dates and Pinyin names) can be

practically exploited to facilitate password guessing.

Necessity of pairing passwords by service type. There

are a number of confounding factors that impact pass-

word security, among which language, service type,

and password policy are the three most important ones

[29, 53, 56]. As shown in [36, 53], except for CSDN

that imposes a length 8+ policy, all our datasets (Table

1) reflect no explicit policy requirements. It has recently

been revealed that users often rationally choose robust

passwords for accounts perceived to be important [46],

while knowingly choose weak passwords for unimpor-

tant accounts [17]. Since accounts of the same service

would generally have the same level of value for users,

we divide datasets into three pairs according to their

types of services (i.e., Tianya vs. Rockyou, Dodonew

vs. Yahoo, and CSDN vs. Phpbb) for fairer strength

comparison, as opposed to existing works [7, 26, 34]

that do not take into account the site service type. We

emphasize that it is less reasonable if one compares

Dodonew passwords (from an e-commerce site) with

Phpbb passwords (from a low-value programmer forum):

Even if Dodonew passwords are stronger than Phpbb

passwords, one can not conclude that Chinese passwords

are more secure than English ones, because there is a

potential that Dodonew passwords will be weaker than

Yahoo e-commerce passwords.

4.1 PCFG-based attacks
The PCFG-based model [58] is one of the state-of-the-art

cracking models. Firstly, it divides all the passwords in a

training set into segments of similar character sequences

and obtains the corresponding base structures and their

associated probabilities of occurrence. For example,

“wanglei@123” is divided into the L segment “wanglei”,

S segment “@” and D segment “123”, resulting in a

base structure L7S1D3. The probability of L7S1D3 is
#of L7S1D3

#of base structures . Such information is used to generate the

probabilistic context-free grammar.

Then, one can derive password guesses in decreasing

order of probability. The probability of each guess is the

product of the probabilities of the productions used in its

derivation. For instance, the probability of “liwei@123”

is computed as P(“liwei@123”)= P(L5S1D3)· P(L5 →
liwei)· P(S1 → @)· P(D3→ 123). In Weir et al.’s original

proposal [58], the probabilities for D and S segments

are learned from the training set by counting, yet L
segments are handled either by learning from the training

set or by using an external input dictionary. Ma et al.

[36] revealed that PCFG-based attacks with L segments

directly learned from the training set generally perform

better than using an external input dictionary. Thus, we

prefer to instantiate the PCFG L segments of password

guesses by directly learning from the training set.

We divide the nine datasets into two groups by lan-

guage. For the Chinese group of test sets, we randomly

select 1M passwords from the Duowan dataset as the

training set (denoted by “Duowan 1M”). The reason is

that: Duowan has the least inversion number with the

dataset “All Chinese PWs” (see Sec. 3.3) and is likely to

best represent general Chinese web passwords. Similar-

ly, for the English test sets, we select 1M passwords from

Rockyou as the training set. Since we have only used

part of Duowan and Rockyou, their remaining passwords

and the other 7 datasets are used as the test sets. The

attacking results on the Chinese group and English group

are depicted in Fig. 4(a) and Fig. 4(b), respectively.

Bifacial-security. When the guess number (i.e., search

space size) allowed is below about 3,000, Chinese pass-

words are generally much weaker than English pass-

words from the same service (i.e., Tianya vs. Rock-

you, Dodonew vs. Yahoo, and CSDN vs. Phpbb).

For example, at 100 guesses, the success rate against

Tianya, Dodonew and CSDN is 10.2%, 4.3% and 9.7%,

respectively, while their English counterparts are 4.6%,

1.9% and 3.7%, respectively. However, when the search

space size is above 10,000, Chinese web passwords are

generally much stronger than their English counterparts.

For example, at 10 million guesses, the success rate

against Tianya, Dodonew and CSDN is 37.5%, 28.8%

and 29.9%, respectively, while their English counterparts

are 49.7%, 39.0% and 41.4%, respectively. The strength

gap will be even wider when the guess number further

increases. This reveals a reversal principle, i.e., the

bifacial-security nature of Chinese passwords: they are

more vulnerable to online guessing attacks (i.e., when the

guess number allowed is small) than English passwords;

But out of the remaining Chinese passwords, they are

more secure against offline guessing. This reconciles

two drastically conflicting claims (see Sec. 1.1) made

about the strength of Chinese passwords. This bifacial-

security is highly due to the bifacial-density nature of

digit-based passwords: Top digit-based passwords are

USENIX Association 28th USENIX Security Symposium 1545

�
� �
��
�����
���������
����������
�������������
��������������
�������������������
�������������������
������������������
������������������
�������������������
�������������������
�������������������
�������������������
�������������������
������������������
�������������������
�������������������
������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
����������

� � ���
���������������

������������������
���������������������

�������������������
����������������������
�����������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
�����������������������
�������������������������
������������������������
�������������������������
��������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
��������������

�
� �
���
���������

��������
��������������
���������������
���������
�������������
�����������
����������������
��������������
��������
�����������������
������������������
�����������������
�����������������
������������������
�������������
�������������
������������������
�������������
����������������
��������������
����������������
�����������������
����������������
������������������
�����������������
������������������
������������������

���������������
�����������������
��������������
���������������
�����������
���������������
������������������
�����������
������������������
������������������
��
������������������
�����������������
������������������
������������������
������������������
�����������

�

�

�
� �� �

��������
�����������������

��������������������
������������������������

��������������������
�����������������������
������������������������
�����������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
�����������������������
������������������������
�����������������������
������������������������

�������������������� ����
������������������������
������������������������
�����������������������
������������������������
������������������������
������������������������
������������������������
�����������������������

�
� �
� ���

��������
������������
����������������
�������������������
������������������
������������������
��������������
������������������
������������������
�������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
����������������
������������������
�������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������

�
� �
��
�������

����������
��������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�����������������

� Tianya
� Dodonew
� 178
� CSDN
� 7k7k
� Duowan_rest

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(a) PCFG-based attacks on six Chinese datasets

(training set: 1M Rockyou passwords)

� � ����
���������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
������������

� � � �������������
������������������

�������������������
������������������
����������������
�������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
�����������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
�����������������

� � ��
�����������

���������������
����������������
����������������
����������������
�����������������
�����������������
���������������
�����������������
�����������������
����������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
���������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
����

� Rockyou_rest
� Yahoo
� Phpbb

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(b) PCFG-based attacks on three English datasets

(training set: 1M Rockyou passwords)

�
� �
��
�����
����������
����������
��������������
�����������������
�������������������
�������������������
������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
�������������������
��������������������
�������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
�������������������
�������������������
��������������������
��������������������
�������������������
��������������������
��������������������
����������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
�������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������

� � ���
����������������

��������������������
�����������������������

�������������������
�����������������������
������������������������
������������������������
�������������������������
������������������������
������������������������
�������������������������
�������������������������
�����������������������
������������������������
�������������������������
�������������������������
��������������������
������������������
�������������������������

�������������������������
�������������������������
������������������������
�������������������������
�������������������������
�������������������������
������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
������������������������
�������������������������
������������������������
�������������������������
��������������

�
� �
���
����������

������
�������������
��������������
��������
��������������
������������������
������������
���������������
���������
������������������
�����������������
�����������������
������������������
������������������
�������������
������������������
������������
����������������
���������������
�����������������
����������������
������������������
����������������
�����������������
�����������������
����������������
���������������
������������������
����������������

�������������������
������������������
�������������
��������������
����������������
�����������������
���������������
�������������������
���������
�����������������
������������������
�����
�����������������
������������������
������������������
������������������
������������������
������������

�

� �

�
����

��������
���������������

���������������������
������������������

��������������������
����������������������
���������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
���������������������
����������������������
����������������������
����������������������
����������������������
����������������������
�������������������
����������������
��������������������
������������������� ���

����������������������
����������������������
����������������������
����������������������
��������������������
���������������������
����������������������
����������������������
����������������������
��������

�
� �
� ���

��������
������������
������������������
�������������������
�������������������
�������������������
��������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
������������������
�������������������
��������������������
�������������������
�������������������
�������������������
�������������������
�����������
��������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
��������������

�
� �
��
��������

����������
���������������
����������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
����������������

� Tianya
� Dodonew
� 178
� CSDN
� 7k7k
� Duowan_rest

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(c) Improved PCFG-based attacks on Chinese

datasets (training set: 1M Rockyou passwords)

Figure 4: General and our improved PCFG attacks on different groups of datasets. Our algorithm gains tangible advantages.

more converging (see Table 3), while digits in general
are more random (and diverging) than letters.

A weakness in PCFG. We observe that, the original

PCFG algorithm [36, 58] inherently gives extremely low

probabilities to password guesses (e.g., “1q2w3e4r”

and “1a2b3c4d”) that are of a monotonically long base

structure (e.g., D1L1D1L1D1 L1D1L1, or (D1L1)4 for

short). For example, P(“1q2w3e4r”) = P((D1L1)4)
·P(D1→1)· P(L1 → q)· P(D1 → 2)· P(L1 →w)·
P(D1→3)· P(L1→e)· P(D1 →4) ·P(L1 → r) can hardly

be larger than 10−9, for it is a multiplication of nine
probabilities. Thus, some guesses (e.g., “1q2w3e4r”

and “a12b34c56”) will never appear in the top-107

guess list generated by the original PCFG algorithm,

even if they are popular (e.g, “1q2w3e4r” appears in the

top-200 list of every dataset). The essential reason is

that the PCFG algorithm simply assumes that each

segment in a structure is independent. Yet, in many

situations this is not true. For instance, the four D1

segments and L1 segments in the structure (D1L1)4 of

password “1q2w3e4r” are evidently interrelated with

each other (i.e., D4: 1234 and L4: qwer).

Our solution. To address this problem, we specially

tackle a few password structures that are long but simple

alternations of short segments by treating them as short

structures. For instance, (D1L1)4 is converted to D4L4,

and (D1L2)3 to D3L6. In this way, the probability of

“1q2w3e4r” now is computed as P(“1q2w3e4r”)=
P((D1L1)4) · P((D1L1)4 → D4L4)·P(D4 →1234)·
P(L4 → qwer). Our approach is language-agnostic and
constitutes a general amendment to the state-of-the -art
PCFG-based algorithm in [36].

To further exploit the characteristics of Chinese pass-

words, we insert the “Pinyin name any” dictionary and

the six-digit date dictionary (see Sec. 3.3) into the o-

riginal PCFG L-segment and D-segment dictionaries,

respectively. Details about this insertion process and

our improved algorithm for password-guess generation

are shown in Algorithm 1. The resulting changes to the

original PCFG grammars are given in Table 6.
Fig. 4(c) illustrates that, when the guess number al-

lowed is small (e.g., 103), our improved attack exhibits

little improvement; As the guess number grows, the

Algorithm 1: Our improved PCFG-based attack

Input: A training set S; A name list nameList; A date list
dateList; A parameter k indicating the desired size of

the PW guess list that will be generated (e.g., k = 107)
Output: A PW guess list L with the top-k items

1 Training (lastly tackle monotonically long PWs:)
2 for password ∈ S do
3 for segment ∈ splitToSegments(password) do
4 segmentSet.insert(segment)
5 baseStructure← getBaseStructure(password)
6 if monotonicallyLong(baseStructure) then
7 trans f ormStructureSet.insert(baseStructure)
8 baseStructure←

convertToshort(baseStructure)
9 baseStructureSet.insert(baseStructure)

10 trainingSet.insert(password)
11 Append name and date lists to the learned segment list:
12 for name ∈ nameList do
13 correctedCount =

totalOverlapNameInSegmentSet ∗
nameList.getCount(name)/totalOverlapNameInNameList

14 if name /∈ segmentSet and correctedCount ≥ 1 then
15 segmentSet.insert(name,correctedCount)

16 for date ∈ dateList do
17 if date /∈ segementSet then
18 segementSet.insert(date)

19 Produce k guesses: As with [36] and the details are omitted.

Table 6: Changes caused to the original PCFG grammars

Training set Base structures L segments D segments S segments

Duowan 1M 8905+0 155693+24416 465157+20341 865+0

Duowan All 20961+0 559017+98654 1824404+9744 2417+0

improvement increases. For example, at 105 guesses,

there is 0.09%∼0.85% improvement in success rate; at

106 guesses, this figure is 1.32∼4.32%; at 107 guesses,

this figure reaches 1.70%∼4.29%. This indicates that

the vulnerable behaviors of using monotonically long

passwords, Pinyin names and birthdays help an attacker

reduce her search space, and this issue is more serious

when large guesses are allowed.

Comparison. Li et al. [34] reported that using 2M

Dodonew passwords as the training set and at 1010 guess-

es, their best success rates (= # of successfully cracked PWs
the size of test set)

is about 17.30%. However, against the same Chinese

test sets, our improved attack can achieve much higher

success rates (29.41%∼39.47%) at only 107 guesses.

1546 28th USENIX Security Symposium USENIX Association

(a) Coverage of L-segments (b) Impact of Pinyin-name-segments on security

Figure 5: Coverage and security impacts of Pinyin-

name-segments in the test set Tianya with L-segments

involved (Duowan is the training set, Pinyin name is an

extra input dictionary in our improved PCFG attack).

This means that we can crack 70% to 128% more pass-

words than Li et al.’s best record. Our attacks are better

because: 1) Our training-set (i.e., Duowan) is more ef-

fective than [34], for we find Duowan represents Chinese

password distributions better (see Table 2) than Dodonew

as used in [34]; 2) We optimize PCFG not only through

adding semantic dictionaries as [34] but also through

transforming monotonically long base structures.

The role of Names. In our improved PCFG-based

attacks, external name segments are added into the PCFG

L-segment dictionary during training, and we get glad-

some increases in success rates (see Fig. 4(c)). However,

such improvements are still not so prominent as com-

pared to the prevalence of names in Chinese passwords.

To explicate this paradox, we scrutinize the internal
process of PCFG-based guess generation and manage
to identify its crux. Here we take the improved PCFG at-

tack against Tianya (trained on Duowan) as an example.

During training, we have added 98K name segments (see

Table 6) into the L-segment dictionary.

Fig. 5(a) demonstrates that these 98K name segments

only cover 2.88% of the total L segments of the test set

Tianya. However, the original L segments trained from

Duowan can cover 13.75% of the name segments and

60.59% of the non-name L segments in Tianya. This

suggests that Duowan can well cover the name segments

in the test set Tianya, and thus the addition of some extra

names would have limited impacts. This observation

also holds for the other eight test sets. The detailed

results are summarized in Table 7, where “Duowan1M”

is Duowan 1M for short and “PY name” is Pinyin name

for short. The fraction of L-segments in the test set y that

can be covered by the set x is denoted by CoL(x).

Table 7 shows that no matter x=Duowan 1M or

Duowan: 1) CoL(x) is at least 11.12 times (= 65.64%/

5.90%) larger than CoL(Pinyin name)-CoL(x); 2) CoL(

Pinyin name)∩CoL(x) is at least 1.92 times (=11.35%/

5.90%) larger than CoL(Pinyin name)-CoL(x). This

suggests that adding extra names into the PCFG

L-segments when training is of limited yields. Note that,

this does not contradict our observation that Pinyin

names are prevalent in Chinese web passwords and pose

Table 8: Five Markov-based attacking scenarios
Attacking scenario Smoothing Normalization Markov order

#1 Laplace End-symbol 3/4/5

#2 Laplace Distribution 3/4/5

#3 Good-Turing End-symbol 3/4/5

#4 Good-Turing Distribution 3/4/5

#5 Backoff End-symbol Backoff

a serious vulnerability. Actually, this does suggest that

when the training set is selected properly, the name

segments in passwords can be well guessed. Still, when

there is no proper training set available, our improved

attack would demonstrate its advantages (see Fig. 5(b)).

Though our improved PCFG algorithm might not be

optimal, its cracking results represent a new benchmark

that any future algorithm should aim to decisively clear.

Limitations. We mainly investigate the impacts of

names on password cracking, and similar observations

and implications are likely to hold for dates (but with no

confirmation). We leave it as future work. In addition,

as our focus is the overall security of Chinese passwords

(and its comparison with English counterparts), we only

show the overall effectiveness of our improved PCFG

attack. It is also interesting to see to what extent the im-

proved PCFG structure and the usage of Duowan would

respectively have impacts on the cracking effectiveness,

but it is independent of the presented work.

4.2 Markov-based attacks
To show the robustness of our findings about password

security, we further conduct Markov-based attacks.

4.2.1 Markov-based experimental setups
To make our experiments as reproducible as possible,

we now detail the setups. As recommended in [36],

we consider two smoothing techniques (i.e., Laplace

Smoothing and Good-Turing Smoothing) to deal with

the data sparsity problem and two normalization tech-

niques (i.e., distribution-based and end-symbol-based)

to deal with the unbalanced length distribution problem

of passwords. This brings four attacking scenarios in

Table 8. In each scenario we consider three types of

Markov order (i.e., order-5, 4 and 3) to investigate which

order performs best. It is reported that another scenario

(i.e., backoff with end-symbol normalization) performs

“slightly better” than the above 4 scenarios, yet it is “ap-

proximately 11 times slower, both for guess generation

and for probability estimation” [36]. We also investigate

this scenario and observe similar results. Thus, attackers,

who particularly care about the cost-effectiveness [4], are

highly unlikely to exploit this scenario.

Particularly, there is a challenge to be addressed when

implementing the Good-Turing (GT) smoothing tech-

nique. To our knowledge, we for the first time explicate

how to combine GT and simple GT in Markov-based

USENIX Association 28th USENIX Security Symposium 1547

Table 7: Coverage of letter (CoL) segments in corresponding test sets (“PY” stands for Pinyin).

Test set
CoL CoL CoL(PY name)∩ CoL(PY name)− CoL(Duowan1M) CoL CoL(PY name) CoL(PY name) CoL(Duowan)−

(PY name) (Duowan1M) CoL(Duowan1M) CoL(Duowan1M) −CoL(PY name) (Duowan) ∩CoL(Duowan) −CoL(Duowan) CoL(PY name)
Tianya 16.63% 67.53% 11.82% 4.81% 55.71% 74.34% 13.75% 2.88% 60.59%

7k7k 16.70% 71.60% 12.35% 4.35% 59.25% 79.84% 14.49% 2.20% 65.35%
Dodonew 15.76% 75.79% 11.79% 3.97% 63.99% 81.19% 13.47% 2.29% 67.72%

178 20.30% 79.15% 15.42% 4.88% 63.73% 83.98% 17.49% 2.81% 66.49%
CSDN 17.26% 65.64% 11.35% 5.90% 54.28% 72.70% 13.43% 3.83% 59.27%

Duowan 18.06% 80.05% 14.38% 3.68% 65.67% 100.00% 18.06% 0.00% 81.94%
Duowan rest 18.07% 75.03% 13.46% 4.61% 61.57% 100.00% 18.07% 0.00% 81.93%

attacks (see details in Appendix C). As with PCFG-

based attacks, in our implementation we use a max-heap

to store the interim results to maintain efficiency. To

produce k=107 guesses, we employ the strategy of first

setting a lower bound (i.e., 10−10) for the probability

of guesses generated, then sorting all the guesses, and

finally selecting the top k ones. In this way, we can

reduce the time overheads by 170% at the cost of about

110% increase in storage overheads, as compared to the

strategy of producing exactly k guesses. In Laplace

Smoothing, it is required to add δ to the count of each

substring and we set δ=0.01 as suggested in [36].

4.2.2 Markov-based experimental results
The experiment results for these five scenarios are quite

similar. Here we mainly show the cracking results of

Scenario #1 in Fig. 6, while the experiment results for

Scenarios #2∼#5 are omitted due to space constraints.

We can see that, for both Chinese and English test

sets: (1) At large guesses (i.e., >2*106), order-4 markov-

chain evidently performs better than the other two or-

ders, while at small guesses (i.e., <106) the larger the

order, the better the performance will be; (2) There is

little difference in performance between Laplace and

GT Smoothing at small guesses, while the advantage of

Laplace Smoothing gets greater as the guess number in-

creases; (3) End-symbol normalization always performs

better than the distribution-based approach, while at

small guesses its advantages will be more obvious. Such

observations have not been reported in previous major

studies [15, 36]. This suggests that: 1) At large guesses,

the attacks with order-4, Laplace Smoothing and end-

symbol normalization (see Figs. 6(b) and 6(e)) perform

best; and 2) At small guesses, the attacks preferring

order-5, Laplace Smoothing and end-symbol normaliza-

tion (see Figs. 6(a) and 6(d)) perform best.

Results show that the bifacial-security nature found in
our PCFG attacks (see Sec. 5.1) also applies in all the
Markov attacks. For example, in order-4 markov-chain-

based experiments (see Fig.6(b) and Fig.6(e)), we can

see that, when the guess number is below about 7000,

Chinese web passwords are generally much weaker than

their English counterparts. For example, at 1000 guesses,

the success rate against Tianya, Dodonew and CSDN

is 11.8%, 6.3% and 11.6%, respectively, while their

English counterparts (i.e., Rockyou, Yahoo and Phpbb)

is merely 8.1%, 4.3% and 7.1%, respectively. However,

Table 9: Bifacial-security nature of Chinese passwords.†

Attacking scenario Online guessing Offline guessing

Algorithm∗ Test set 101 102 103 104 105 106 107

PCFG

Dodonew 0.027 0.044 0.068 0.103 0.150 0.225 0.288
Yahoo 0.008 0.022 0.063 0.136 0.212 0.316 0.390
Tianya 0.073 0.105 0.138 0.213 0.295 0.355 0.376
Rockyou rest 0.020 0.044 0.110 0.214 0.320 0.438 0.497
CSDN 0.070 0.105 0.136 0.189 0.229 0.272 0.300
Phpbb 0.021 0.038 0.087 0.183 0.274 0.369 0.415

Markov

Dodonew 0.024 0.040 0.060 0.085 0.145 0.212 0.305
Yahoo 0.007 0.016 0.043 0.097 0.165 0.261 0.361
Tianya 0.062 0.087 0.118 0.154 0.269 0.386 0.516
Rockyou rest 0.018 0.035 0.081 0.159 0.259 0.392 0.503
CSDN 0.037 0.098 0.116 0.144 0.211 0.260 0.316
Phpbb 0.019 0.034 0.071 0.146 0.230 0.333 0.436

†A value in bold green (e.g., the leftmost 0.027) means that: it is

a success-rate under a given guess number (resp. 101) against a
Chinese dataset (resp. Dodonew) and is greater than that of its
English counterpart (resp. Yahoo). A value in bold blue is on the
contrary: it is a guessing success-rate against a English dataset and
greater than that of its Chinese counterpart.∗For both PCFG- and Markov-based attacks, the training set is
Duowan 1M for each Chinese test set and Rockyou 1M for English
test sets. Here the Markov setups are from Scenario#1 in Table 8.
Other Markov scenarios show the same trends.

when the guess number allowed is over 104, Chinese

web passwords are generally stronger than their English

counterparts. For example, at 106 guesses, the success

rate against Tianya, Dodonew and CSDN is 38.2%,

20.4% and 25.4%, respectively, while their English coun-

terparts is 38.6%, 24.8% and 32.3%, respectively.

As summarized in Table 9, for both PCFG and Markov

attacks, the cracking success-rates against Chinese pass-

words are always higher than those of English passwords

when the guess number is below 104, while this trend

is reversed when the guess number is above 104. Here

we mainly use order-4 Markov attacks (see Figs. 6(b)

and 6(e)) as an example, and the other Markov setup

scenarios all show the same trends.

Summary. Both PCFG- and Markov-based cracking re-

sults reveal the bifacial-security nature of Chinese pass-

words: They are more prone to online guessing as

compared to English passwords; But out of the re-

maining Chinese passwords, they are more secure a-

gainst offline guessing. This reconciles the conflicting

claims made in [7, 26, 34]. Alarmingly high crack-

ing rates (40%∼50%) highlight the urgency of devel-

oping defense-in-depth countermeasures (e.g., cracking-

resistant honeywords [31] and password-hardening ser-

vices [33]) to alleviate the situation. We provide a large-

scale empirical evidence for the hypothesis raised by

the HCI community [17, 46]: users rationally choose

stronger passwords for accounts with higher value.

1548 28th USENIX Security Symposium USENIX Association

� � ��
����
�������
������������
�����������
����������
��������������
���������������
��������������
��������������
���������������
���������������
����������������
���������������
���������������
��������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
�����������

� � �����
����������

����������������������
�������������������

������������������������
������������������������

�������������������������
�������������������������
�������������������������
�����������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
��������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
���

� � ��
����
��������
�������������
�������
���������
������������
�����������
�������
��������������
���������������
������������������
�������������
��������������
�������������
�����������������
��������������
���������������
���������������
��������������
����������������
�����������������
�������������
��������������
�����������������
��������������
���������������
�����������������
������������
�����������������
����������������
�������������
����������������
����������������
��������������
����������������
�������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
����������������
�����������������
����������������
����������������
�����������������
����������������
�����������������
����

�

� �

�
� ��
����
������������

�������������
�������������������
���������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
��������������

� � ��
������

����������
�������������
����������������
��������������
�������������
����������������
���������������
����������������
����������������
����������������
���������������
���������������
���������������
����������������
���������������
���������������
���������������
���������������
���������������
����������������
���������������
���������������
���������������
���������������
���������������
���������������
����������������
���������������
���������������
���������������
���������������
���������������
���������������
����������������
���������������
���������������
���������������
���������������
���������������
����������������
���������������
���������������
���������������
���������������
���������������
���������������
����������������
����������������
���������������
���������������
���������������
���������������
���������������
����������������

� � ��
�
����
�������
������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������

� Tianya
� Dodonew
� 178
� CSDN
� 7k7k
� Duowan_rest

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(a) Order-5 Markov attack on Chinese datasets

� � � ��
�������
���
��� ��������

�����������
�����������
�������������
�������������
��������������

�������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
�������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
���������

� � � ����
������
�������������������

��������������������
��������������������

������������������������
�����������������������

�����������������������
���������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
������������������

� � � �
������

������� ���
���������
�������
������
��������
��������������
�����������
������������
����������
����������������

���������������
��������������
���������������
���������������
�������������
���������������
�������������
���������������
����������������
���������������
���������������
��������
����������������
��������������
���������������
����������
�������������
��������������
������������
�������������
����������������
���������������
�������������
��������������
���������������
��������������
����������������
�������������
�������
��������������
���������������
���������������
���������������
���������������
����������������
��������������
���������������
���������������
����������������
���������������
���������������
��������������
������������

�

� �

�
� ��

���������
����������������

���������������
�������������������

���������������������
��������������������
����������������������
����������������������
����������������������
���������������������
����������������������
����������������������
���������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
��

� � ���
��
��������
����� �����

�������������
�������������
������������
���������������
���������������
���������������
���������������
���������������
�����������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
��������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������

� � �� ��
�������
����
��� ���������

��������������
���������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
�����������������
����������������
����������������
����������������
����������������
����������������
�����������������
����������������
����������������
����������������
����������������
����������������
�����������������
����������������
����������������
����������������
����������������
����������������
����������������
�����������������
����������������
����������������
����������������
����������������
����������������
�����������������
����������������
����������������
����������������
����������������
����������������
�����������������
����������������
������������

� Tianya
� Dodonew
� 178
� CSDN
� 7k7k
� Duowan_rest

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(b) Order-4 Markov attack on Chinese datasets

� � � ��
�
����� ��
��� ���

�����������
����������
������������
������������
��������������
�������������
������������
��������������
�������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
�������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
������

� � �� �����
������� ��

���������������������
���������������������

�������������������������
������������������������
�����������������������
�������������������������
������������������������
�������������������������
�������������������������
������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
������������������������
�������������������������
��������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
��������

� �
�����
��
� ������� �

��������
�������
������������
������������
�������������
��������������
�������������
����������������
��������������
�����������
����������������
����������������
����������������
��������������
��������������
�����������
���������������
���������������
������������
���������������
�����������
���������������
���������������
���������������
����������������
���������������
����������
���������������
�����������������
��������������
����
��������������
���������������
��������������
���������������
����������������
����������������
��������������
����������������
�����������������
����������������
���������������
��������������
����������������
���������������
���������������
������������
���������������
����������������
�����������

�

�

�
� ��

�� �������������� �
����������������

��������������
�����������������������

�������������������������
������������������������
������������������������
�����������������������
������������������������
�����������������������
������������������������
�����������������������
������������������������
������������������������
������������������������
������������������������
������������������������
��������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������

� � � ��
� ��

������ ��
��������

������������
������������

����������������
���������������
��������������
�����
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
���������������

� ��� �
����� ��
�� ��

��������������
����������������

��������������
�����������������
�����������������
������������������
������������������
����������������
�����������������
�����������������
������������������
�����������������
�����������������
�����������������
�����������������
�����������������
������������������
�����������������
�����������������
�����������������
������������������
�����������������
�����������������
�����������������
������������������
�����������������
�����������������
������������������
�����������������
������������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
������������������

� Tianya
� Dodonew
� 178
� CSDN
� 7k7k
� Duowan_rest

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(c) Order-3 Markov attack on Chinese datasets

� � ����
�������������

���������������
��������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
�����

� � �������������
��������������������

��������������������
��������������������
��������������������
������������������
��������������������
��������������������
��������������������
��������������������
��������������������
���������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
���������

� � ����
��������

��������������
���������������
����������������
����������������
�����������������
�����������������
��������������
�����������������
����������������
���������������
�����������������
�����������������
����������������
�����������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
������������

� Rockyou_rest
� Yahoo
� Phpbb

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(d) Order-5 Markov attack on English datasets

� � �� �� �
�������������

���������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
�����������

� �� � �������������
��������������������

��������������������
�������������������
��������������������
��������������������
��������������������
������������������
�������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
�����������

� � ��
� �������

�����������������
���������������
����������������
���������������
�����������������
����������������
��������������
�����������������
����������������
����������������
����������������
��������������
�����������������
����������������
����������������
����������������
����������������
�����������������
����������������
�����������������
����������������
����������������
�����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
�������

� Rockyou_rest
� Yahoo
� Phpbb

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(e) Order-4 Markov attack on English datasets

�
� � � ����������

��������������
���������������

����������������
����������������
����������������
����������������
����������������
����������������
���������������
����������������
����������������
����������������
���������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
�������������

� � � � �� �� �� ����� ����������������
����������������������

�����������������������
�����������������������
�����������������������
�����������������������
����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
���������������������
������������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�������

�
� ����

�������� ������
�������������������

�������������
����������������
�������������������
����������������
������������������
������������������
�����������������
�������������������
�����������������
�������������������
������������������
������������������
������������������
������������������
�������������������
������������������
������������������
������������������
������������������
������������������
������������������
�������������������
�����������������
�������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
�������������������
������������������
������������������
�������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
��

� Rockyou_rest
� Yahoo
� Phpbb

100 101 102 103 104 105 106 107
0�

10�

20�

30�

40�

50�

60�

Search space size

Fr
ac
tio
n
of
cr
ac
ke
d
pa
ss
w
or
ds

(f) Order-3 Markov attack on English datasets

Figure 6: Markov-chain-based attacks on different groups of datasets (scenario #1: Laplace Smoothing and End-Symbol
Normalization). Attacks (a)∼(c) use 1 million Duowan passwords as the training set, while attacks (d)∼(f) use 1 million Rockyou

passwords as the training set. The reversal principle also holds. The other four scenarios #2∼#5 show similar cracking results.

5 Some implications
We now elaborate on lessons learned and key takeaways.

5.1 For password creation policies
Interestingly, 2.18% of the passwords in CSDN are of

length len ≤7, 97.82% are of length 8-20, no password

is of length len ≥21. This means that short passwords

(i.e., len ≤7) in the other eight sites are 14∼25 times

higher than CSDN. This also suggests that CSDN has

changed its password policy at least once before the data

breach (i.e., Dec. 2011), but whether the strict policy

(i.e., 8≤ len ≤20) is enforced before or later than the

weaker policy (i.e., no length requirement) is unknown.3

Still, what’s certain is that most CSDN passwords are

generated under the strict policy 8≤ len≤20. In contrast,

no apparent policy can be inferred from the Dodonew

data, i.e., neither minimum length (see Fig. 2) nor charset

requirement (see Table 3 and Table 2 of [53]).4 However,

Figs. 4 and 6 indicate that, given any guess number below

107, passwords from CSDN are significantly weaker

than passwords from Dodonew. A plausible reason is

that Dodonew provides e-commerce services and users

perceive it as more important. As a result, users “ratio-

nally” [17, 46] choose more complex passwords for it.

As for CSDN, since it is only a technology forum, users

knowingly choose weaker passwords for it.

3We note that CSDN enforced the policy 6≤ len ≤20 (and no

charset requirement) at Jan. 2015 [55], and currently it requires

passwords to be 11≤ len≤20 and consist at least a letter and a digit.
4This situation even held at Aug. 2017 (and April 2019): the

length-7 letter string “dodonew” is allowed as the default password,

see https://www.5636.com/netbar/money/15886.html.

In 2012, Bonneau [7] cast doubt on the hypothesis

that users rationally select more secure passwords to

protect their more important accounts. In 2013, Egelman

et al. [17] initiated a field study involving 51 students

and confirmed this hypothesis. In 2018, Stobert and

Biddle [46] surveyed three groups of English speaking

users (i.e., 27 non-experts, 15 experts and 345 MTurk

participants), and their results also corroborated this

hypothesis. Fortunately, our work provides a large-

scale empirical evidence (i.e., on the basis of 6.43M

CSDN passwords and 16.26M Dodonew passwords) that

confirms this hypothesis.

We also note that though the overall security of

Dodonew passwords is higher than that of passwords

from the five other Chinese sites, many seemingly

complex yet popular passwords (e.g., 5201314,

321654a and love4ever) dwelling in Dodonew also

appear in other less sensitive sites. This can be under-

stood: 1) “Users never see other users’ passwords” [47]

(and are unaware of how similar their passwords are

with other users, and thus they may inadvertently

choose popular passwords; 2) Users tend to reuse the

same password across multiple sites [27, 42, 56]. What’s

more, users generally “show a lack of situation

awareness” [46] and fail to recognize different

categories of accounts [41], and most of them reuse

(84% [27]) or simply modify a password from an

important site for a non-important site.

Further considering the great password burden already

placed on users [8] and the “bounded rationality” [27]

and “finite-effort” [20] of users, we outline the need for

USENIX Association 28th USENIX Security Symposium 1549

HCI research to explore nudges that appropriately frame

the importance of accounts and study their impacts on

password creation. When designing password creation

policies, instead of merely insisting on stringent rules,

administrators can employ such nudges to help users

gain more accurate perceptions of the importance of the

accounts to be protected and improve their ability to
recognize different categories of accounts. Both would

help enhance user internal impetus and facilitate users to

responsibly allocate passwords (i.e., selecting one can-

didate from their limited pool of passwords memorized

[41, 46]).
In addition, the finding of “bifacial-security nature”

suggests that Chinese passwords are more vulnerable to

online guessing attacks. This is because top popular

Chinese passwords are more concentrated (see Table 3).

Thus, a special blacklist that includes a moderate number

of most common Chinese passwords (e.g., 10K∼20K as

suggested in [61]) would be very helpful for Chinese

sites to resist against online guessing. Such a blacklist

can be learned from various leaked Chinese datasets

(see a concrete list at http://t.cn/RG88tvF as built

according to [56]). Any password falling into this list

would be deemed weak. However, it is well known that if

some popular passwords (e.g., woaini1314) are banned,

new popular ones (e.g., w0aini1314) will arise. These

new popular passwords may be out of static blacklists

and subtle to detect. Hence, password creation policies

alone (e.g., length and blacklist rules [25, 55]) are in-

adequate for preventing such weak passwords. An in-

depth defense approach is needed: whenever possible, in

addition to password creation policies, password strength

meters (e.g., fuzzyPSM [54] and Zxcvbn [59]) can be

further employed by security-critical services to detect

and prevent weak passwords.

5.2 For password strength meters
Leading password strength meters (PSMs) employ the

guess number needed for a password-cracking algorithm

(e.g. PCFG) to break that password as an indicator of

password strength [24]. In Sec. 1, we have exemplified

that the PSMs of four popular services are highly incon-

sistent in assessing the security of (weak) Chinese pass-

words. Failing to provide accurate/coherent feedback on

user password choices would have negative effects such

as user confusion, frustration and distrust [48, 60]. Thus,

Carnavalet and Mannan [12] suggested that PSMs “can

simplify challenges by limiting their primary goal only to

detect weak passwords, instead of trying to distinguish a

good, very good, or great password.”
It follows that an essential step of a PSM would be

to identify the characteristics of weak passwords. From

our findings in Section 3.3 and Section 4.1, it is evident

that for passwords of Chinese users, the incorporation of

long Pinyin words or full/family names is an important

evidence/weight for a “weak” decision. Other signs of

weak Chinese passwords are the incorporation of birth-

dates and simple patterns like repetition, palindrome and

keyboard. As a caveat, even if signs of weak passwords

are found, one cannot simply deem such passwords as

weak and reject them as is done in many high-profile

sites (e.g., Microsoft Azure [18]) and by the “substring

blacklist” approach recommended in [44]. Instead, such

undesirable/insecure signs should be weighted (see some

promising attempts in [54, 59]).

The superiority of our improved PCFG-based attacks

over Li et al.’s [34] (see Sec. 4.1) is partly attributed to

the proper selection of Duowan (instead of Dodonew as

in [34]) as the training set. This indicates that, for a PSM

to be accurate, its training set should be representative

of the password base of the target site. The distance of

letter distributions (see Table 2) would be an effective

metric. In addition, the universal “bifacial-security na-

ture” revealed in Sec. 4 implies that, the language factor

is more impactful than service type. We also find that

CSDN passwords are weaker than Dodonew passwords

(see Figs. 4 and 6), but CSDN imposes a stricter policy

than Dodonew, and this suggests that the service-type

factor might be more impactful than password policy.

Thus, when measuring the letter distributions is infea-

sible, these con-founding factors underlying a password

distribution can be considered for training-set selection:

1) In the order of language, service, and password policy;

and 2) The closer the training set to the target password,

the better. This suggests that there is no single training

set that can fit all PSMs. Thus, PSMs that are originally

designed for English speaking users and also do not
employ a training set (e.g., NIST entropy [10], RNN-

PSM [38] and Zxcvbn [59]) cannot be readily applied

to Chinese users. This also explains why such PSMs

are generally less accurate than those using a training set

(e.g., fuzzyPSM [54]) as observed in [24].

5.3 For password cracking
Password cracking algorithms are not only necessary

tools for security administrators to measure password

strength, but also they can be used to facilitate infor-

mation forensics (e.g., for law enforcement agencies to

recover encrypted data of criminal suspects). Three main

lessons for password cracking can be learned from our

above results. Firstly, our findings in Sec. 3.3 show

that Chinese passwords have a vastly different letter

distribution, structure and semantic patterns as compared

to English passwords, and thus when targeting a Chinese

password, it is crucial for cracking algorithms to be

trained on datasets from Chinese sites. Such sites should

also have the same password creation policy and the

same (or a similar) service type as the target site.

1550 28th USENIX Security Symposium USENIX Association

Secondly, for PCFG-based attacks, when the training

set is sufficiently large (e.g., over 1M as ours), besides

the D and S-segments, it is better to also directly learn

the L-segments of guesses from the training set. This

can be well established by the fact that, given the same

guess numbers and against the same test sets, our PCFG-

based attacks can obtain much higher success rates (see

Sec. 4.1) than those of the PCFG-based attacks in [34,58]

where external dictionaries are used to instantiate the L-

segments. This practice has been recommended by Ma

et al. [36], but they did not specify when to apply it.

Further, one may include some external semantic dict-

ionaries to instantiate the L and D-segments as we do.
Thirdly, as compared to Markov-based attacks, PCFG-

based ones are simpler to implement (31% less com-

putation and 70% less memory cost), and they perform

equally well, or even better, when the guess number is

small (e.g. 103, see Figs. 4 and 6). For large guess

numbers, order-4 Markov attacks are the best choices.

As far as we know, these observations have not been

elucidated in previous major studies [15, 36]. Note that,

we have only shown the Markov-based cracking results

when the guess number is below 107. There is potential

that order-3 Markov-based attacks will outperform order-

4 and 5 ones at larger guess numbers (e.g., 1014).

6 Conclusion
In this paper, we performed a large-scale empirical anal-

ysis of 73.1 million real-world Chinese web passwords.

In our empirical analysis, we systematically explored

several fundamental password properties (e.g., the dis-

tance between passwords and languages, and various

semantic patterns) and uncovered the bifacial-security

nature of Chinese passwords: They are more prone

to online guessing than English passwords; But out

of the remaining Chinese passwords, they are stronger

against offline guessing. This reconciles two conflicting

claims in [7, 26, 34]. We hope this work will help both

security administrators and individual Chinese users to

more informedly secure their password accounts.

Acknowledgment
The authors are grateful to Mary Ellen Zurko for shep-

herding our paper. We thank Haibo Cheng, Qianchen

Gu, and anonymous referees for invaluable help and

comments. Ping Wang is the corresponding author. This

research was supported by the National Natural Science

Foundation of China under Grants No. 61802006 and

No. 61572379, and by the National Key Research and

Development Plan under Grant No.2017YFB1200700.

References
[1] China now has 802 million internet users, July 2018,

http://n0.sinaimg.cn/tech/c0a99b19/20180820/CNNIC42.pdf.

[2] M. AlSabah, G. Oligeri, and R. Riley, “Your culture is in your

password: An analysis of a demographically-diverse password

dataset,” Comput. Secur., vol. 77, pp. 427–441, 2018.

[3] J. Blocki, A. Datta, and J. Bonneau, “Differentially private

password frequency lists,” in Proc. NDSS 2016, pp. 1–15.

[4] J. Blocki, B. Harsha, and S. Zhou, “On the economics of offline

password cracking,” in Proc. IEEE S&P 2018, pp. 35–53.

[5] J. Bonneau, “Guessing human-chosen secrets,” Ph.D. disserta-

tion, University of Cambridge, 2012.

[6] J. Bonneau, C. Herley, P. Oorschot, and F. Stajano, “The quest

to replace passwords: A framework for comparative evaluation

of web authentication schemes,” in Proc. IEEE S&P 2012, pp.

553–567.

[7] J. Bonneau, “The science of guessing: Analyzing an anonymized

corpus of 70 million passwords,” in Proc. IEEE S&P 2012, pp.

538–552.

[8] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano, “Pass-

words and the evolution of imperfect authentication,” Comm.
ACM, vol. 58, no. 7, pp. 78–87, 2015.

[9] A. S. Brown, E. Bracken, and S. Zoccoli, “Generating and

remembering passwords,” Applied Cogn. Psych., vol. 18, no. 6,

pp. 641–651, 2004.

[10] W. Burr, D. Dodson, R. Perlner, S. Gupta, and E. Nabbus, “NIST

SP800-63-2: Electronic authentication guideline,” National Insti-

tute of Standards and Technology, Reston, VA, Tech. Rep., 2013.

[11] R. A. Butler, List of the Most Common Names in the
U.S., Jan. 2018, http://names.mongabay.com/most common

surnames.htm.

[12] X. Carnavalet and M. Mannan, “From very weak to very strong:

Analyzing password-strength meters,” in Proc. NDSS 2014.

[13] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-

strength meters from markov models,” in Proc. NDSS 2012.

[14] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The

tangled web of password reuse,” in Proc. NDSS 2014, pp. 1–15.

[15] M. Dell’Amico and M. Filippone, “Monte carlo strength evalu-

ation: Fast and reliable password checking,” in Proc. ACM CCS
2015, pp. 158–169.

[16] M. Dürmuth, D. Freeman, and B. Biggio, “Who are you? A

statistical approach to measuring user authenticity,” in Proc.
NDSS 2016, pp. 1–15.

[17] S. Egelman, A. Sotirakopoulos, K. Beznosov, and C. Herley,

“Does my password go up to eleven?: the impact of password

meters on password selection,” in Proc. ACM CHI 2013, pp.

2379–2388.

[18] Eliminate bad passwords in your organization, July 2018,

https://docs.microsoft.com/bs-latn-ba/azure/active-directory/

authentication/concept-password-ban-bad.

[19] D. Florêncio and C. Herley, “A large-scale study of web password

habits,” in Proc. WWW 2007, pp. 657–666.

[20] D. Florêncio, C. Herley, and P. C. Van Oorschot, “Password

portfolios and the finite-effort user: Sustainably managing large

numbers of accounts,” in Proc. USENIX SEC 2014, pp. 575–590.

[21] S. Furnell and R. Esmael, “Evaluating the effect of guidance

and feedback upon password compliance,” Comput. Fraud Secur.,
vol. 2017, no. 1, pp. 5–10, 2017.

[22] W. Gale and G. Sampson, “Good-turing smoothing without

tears,” J. Quanti. Linguistics, vol. 2, no. 3, pp. 217–237, 1995.

[23] J. Goldman, Chinese Hackers Publish 20 Million Hotel Reser-
vations, Dec. 2013, http://www.esecurityplanet.com/hackers/

chinese-hackers-publish-20-million-hotel-reservations.html.

USENIX Association 28th USENIX Security Symposium 1551

[24] M. Golla and M. Dürmuth, “On the accuracy of password

strength meters,” in Proc. ACM CCS 2018, pp. 1567–1582.

[25] P. A. Grassi, E. M. Newton, R. A. Perlner, and et al., “NIST

800-63B digital identity guidelines: Authentication and lifecycle

management,” McLean, VA, Tech. Rep., June 2017.

[26] W. Han, Z. Li, L. Yuan, and W. Xu, “Regional patterns and

vulnerability analysis of chinese web passwords,” IEEE Trans.
Inform. Foren. Secur., vol. 11, no. 2, pp. 258–272, 2016.

[27] A. Hanamsagar, S. S. Woo, C. Kanich, and J. Mirkovic, “Lever-

aging semantic transformation to investigate password habits and

their causes,” in Proc. ACM CHI 2018, pp. 1–10.

[28] J. Huang, H. Jin, F. Wang, and B. Chen, “Research on keyboard

layout for chinese pinyin ime,” J. Chin. Inf. Process., vol. 24,

no. 6, pp. 108–113, 2010.

[29] M. Jakobsson and M. Dhiman, “The benefits of understanding

passwords,” in Proc. HotSec 2012, pp. 1–6.

[30] S. Ji, S. Yang, X. Hu, and et al., “Zero-sum password cracking

game,” IEEE Trans. Depend. Secur. Comput., vol. 14, no. 5, pp.

550–564, 2017.

[31] A. Juels and R. L. Rivest, “Honeywords: Making password-

cracking detectable,” in Proc. ACM CCS 2013, pp. 145–160.

[32] D. V. Klein, “Foiling the cracker: A survey of, and improvements

to, password security,” in Proc. of USENIX SEC 1990, pp. 5–14.

[33] R. W. Lai, C. Egger, M. Reinert, S. S. Chow, M. Maffei, and

D. Schröder, “Simple password-hardened encryption services,”

in Proc. Usenix SEC 2018, pp. 1405–1421.

[34] Z. Li, W. Han, and W. Xu, “A large-scale empirical analysis on

chinese web passwords,” in Proc. USENIX SEC 2014.

[35] B. Lu, X. Zhang, Z. Ling, Y. Zhang, and Z. Lin, “A measurement

study of authentication rate-limiting mechanisms of modern web-

sites,” in Proc. ACSAC 2018, pp. 89–100.

[36] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic

password models,” in IEEE S&P 2014, 2014, pp. 689–704.

[37] M. L. Mazurek, S. Komanduri, T. Vidas, L. F. Cranor, P. G.

Kelley, R. Shay, and B. Ur, “Measuring password guessability

for an entire university,” in Proc. ACM CCS 2013, pp. 173–186.

[38] W. Melicher, B. Ur, S. Segreti, and et al., “Fast, lean and accurate:

Modeling password guessability using neural networks,” in Proc.
USENIX SEC 2016, pp. 1–17.

[39] R. Morris and K. Thompson, “Password security: A case history,”

Comm. ACM, vol. 22, no. 11, pp. 594–597, 1979.

[40] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on

passwords using time-space tradeoff,” in Proc. ACM CCS 2005,

pp. 364–372.

[41] R. Nithyanand and R. Johnson, “The password allocation prob-

lem: strategies for reusing passwords effectively,” in Proc. ACM
WPES 2013, pp. 255–260.

[42] S. Pearman, J. Thomas, P. E. Naeini, and et al., “Let’s go in for

a closer look: Observing passwords in their natural habitat,” in

Proc. ACM CCS 2017, pp. 295–310.

[43] B. L. Riddle, M. S. Miron, and J. A. Semo, “Passwords in use

in a university timesharing environment,” Comput. Secur., vol. 8,

no. 7, pp. 569–579, 1989.

[44] R. Shay, S. Komanduri, A. L. Durity, and et al., “Designing

password policies for strength and usability,” ACM Trans. Inform.
Syst. Secur., vol. 18, no. 4, pp. 1–34, 2016.

[45] Sogou Internet thesaurus, Sogou Labs, April 17 2018, http:

//www.sogou.com/labs/dl/w.html.

[46] E. Stobert and R. Biddle, “The password life cycle,” ACM Trans.
Priv. Secur., vol. 21, no. 3, pp. 1–32, 2018.

[47] B. Ur, J. Bees, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor,

and A. Deepak, “Do users’ perceptions of password security

match reality?” in Proc. ACM CHI 2016, pp. 1–10.

[48] B. Ur, P. G. Kelley, S. Komanduri, and et al., “How does your

password measure up? the effect of strength meters on password

creation,” in Proc. USENIX SEC 2012, pp. 65–80.

[49] L. Vaas, https://nakedsecurity.sophos.com/2016/08/16/people-

like-using-passwords-way-more-than-biometrics/.

[50] A. Vance, If Your Password Is 123456, Just Make It HackMe,

Jan. 2010, https://www.nytimes.com/2010/01/21/technology/

21password.html.

[51] R. Veras, J. Thorpe, and C. Collins, “Visualizing semantics in

passwords: The role of dates,” in Proc. ACM VizSec 2012, pp.

88–95.

[52] C. Wang, S. T. Jan, H. Hu, D. Bossart, and G. Wang, “The

next domino to fall: Empirical analysis of user passwords across

online services,” in Proc. CODASPY 2018, pp. 196–203.

[53] D. Wang, H. Cheng, P. Wang, X. Huang, and G. Jian, “Zipf’s law

in passwords,” IEEE Trans. Inform. Foren. Secur., vol. 12, no. 11,

pp. 2776–2791, 2017.

[54] D. Wang, D. He, H. Cheng, and P. Wang, “fuzzyPSM: A new

password strength meter using fuzzy probabilistic context-free

grammars,” in Proc. IEEE/IFIP DSN 2016, pp. 595–606.

[55] D. Wang and P. Wang, “The emperor’s new password creation

policies,” in Proc. ESORICS 2015, pp. 456–477.

[56] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted

online password guessing: An underestimated threat,” in Proc.
ACM CCS 2016, pp. 1242–1254.

[57] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics

for password creation policies by attacking large sets of revealed

passwords,” in Proc. ACM CCS 2010, pp. 162–175.

[58] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password

cracking using probabilistic context-free grammars,” in Proc.
IEEE S&P 2009, pp. 391–405.

[59] D. Wheeler, “zxcvbn: Low-budget password strength estima-

tion,” in Proc. USENIX SEC 2016, pp. 157–173.

[60] Why is Gbt3fC79ZmMEFUFJ a weak password?, Jan.

2019, https://security.stackexchange.com/questions/201210/

why-is-gbt3fc79zmmefufj-a-weak-password.

[61] R. Williams, The UX of a blacklist, Mar. 2018, https://news.

ycombinator.com/item?id=16434266.

[62] J. Yan, A. F. Blackwell, R. J. Anderson, and A. Grant, “Password

memorability and security: Empirical results.” IEEE Secur. Priv.,
vol. 2, no. 5, pp. 25–31, 2004.

[63] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery

of cryptographically consistent messages to identify security

vulnerabilities in mobile services,” in Proc. NDSS 2016.

APPENDIX
A Justification for our cleaning approach
Contaminated datasets. Interestingly, we observe that

there is a non-negligible overlap between the Tianya

dataset and 7k7k dataset. We were first puzzled by the

fact that the password “111222tianya” was originally

in the top-10 most popular list of both datasets. We

manually scrutinized the original datasets (i.e., before

removing the email addresses and user names) and are

1552 28th USENIX Security Symposium USENIX Association

surprised to find that there are around 3.91 million (actu-

ally 3.91*2 million due to a split representation of 7k7k

accounts, as we will discuss later) joint accounts in both

datasets. We posit that someone probably has copied

these joint accounts from one dataset to the other.

Our cleaning approach. Now, a natural question aris-

es: From which dataset have these joint accounts been
copied? We conclude that these joint accounts were

copied from Tianya to 7k7k, mainly for two reasons.

Firstly, it is unreasonable for 0.34% users in 7k7k to in-

sert the string “tianya” into their 7k7k passwords, while

users from tianya.cn naturally include the site name

“tianya” into their passwords for convenience. The

following second reason is quite subtle yet convincing.

In the original Tianya dataset, the joint accounts are of

the form {user name, email address, password}, while in

the original 7k7k dataset such joint accounts are divid-

ed into two parts: {user name, password} and {email

address, password}. The password “111222tianya”

occurs 64822 times in 7k7k and 48871 times in Tianya,

and one gets that 64822/2 < 48871. Thus, it is more

plausible for users to copy some (i.e., 64822/2 of a

total of 48871) accounts using “111222tianya” as the

password from Tianya to 7k7k, rather than to first copy

all the accounts (i.e., 64822/2) using “111222tianya”

as the password from 7k7k to Tianya and then reproduces

16460(= 48871−64822/2) such accounts.

After removing 7.82 million joint accounts from 7k7k,

we found that all of the passwords in the remaining

7k7k dataset occur even times (e.g., 2, 4 and 6). This

is expected, for we observe that in 7k7k half of the

accounts are of the form {user name, password}, while

the rest are of the form {email address, password}. It is

likely that both forms are directly derived from the form

{user name, email address, password}. For instance,

both {wanglei, wanglei123} and {wanglei@gmail.com,

wanglei123} are actually derived from the single account

{wanglei, wanglei@gmail.com, wanglei123}. Conse-

quently, we further divide 7k7k into two equal parts

and discard one part. The detailed information on data

cleaning is summarized in Table 1.

Previous studies. In 2014, Li et al. [34] has also exploit-

ed the datasets Tianya and 7k7k. However, contrary to

us, they think that the 3.91M joint accounts are copied

from 7k7k to Tianya. Their main reason is that, when

dividing these two datasets into the reused passwords

group (i.e., the joint accounts) and the not-reused pass-

words group, they find that “the proportions of various

compositions are similar between the reused passwords

and the 7k7k’s not-reused passwords, but different from

Tianya’s not-reused passwords”. However, they did not

explain what the “various compositions” are. Their ex-

planation also does not answer the critical question: why

are there so many 7k7k users using “111222tianya”

as their passwords? We posit they had removed 3.91*2

million joint accounts from 7k7k but the not 3.91 million

ones from Tianya In addition, they did not observe the

extremely abnormal fact that all the passwords in 7k7k

occur even times. Such contaminated data would lead to

inaccurate results. For example, Li et al. [34] reported

that there are 32.41% of passwords in 7k7k containing

dates in “YYYMMDD”, yet the actual value is 6 times

lower: 5.42%.
We have reported this issue to the authors of [34],

they responded to us and acknowledged this flaw in their

journal version [26]. Unfortunately, Han et al. [26] do

not clean the datasets in the journal version in the manner

that we outlined.

B Detailed information about our 22 se-
mantic dictionaries

In order to make our work as reproducible as possible

and to facilitate the community, we now detail how

to construct our 22 semantic-based dictionaries. All

dictionaries are built with natural lengths. The length≥5

requirement in the upper-part of Table 5 is set conser-
vatively for ensuring accuracy only when we perform

matching. Actually, we also performed measurements

for length≥3 and length≥4, and got higher figures (per-

centages) but less accuracy. Thus, we omit them.

The first dictionary “English word lower” is from

http://www.mieliestronk.com/wordlist.html

and it contains about 58,000 popular lower-case English

words. “English lastname” is a dictionary consisting of

18,839 last names with over 0.001% frequency in the

US population during the 1990 census, according to the

US Census Bureau [11]. “English firstname” contains

5,494 most common first names (including 1,219 male

and 4,275 female names) in US [11]. The dictionary

“English fullname” is a cartesian product of “English

firstname” and “English lastname”, consisting of 1.04

million most common English full names.

To get a Chinese full name dictionary, we employ

the 20 million hotel reservations dataset [23] leaked

in Dec. 2013. The Chinese family name dictionary

includes 504 family names which are officially recog-

nized in China. Since the first names of Chinese users

are widely distributed and can be almost any combi-

nations of Chinese words, we do not consider them

in this work. As the names are originally in Chi-

nese, we transfer them into Pinyin without tones by

using a Python procedure from https://pypinyin.

readthedocs.org/en/latest/ and remove the dupli-

cates. We call these two dictionaries “Pinyin fullname”

and “Pinyin familyname”, respectively.

“Pinyin word lower” is a Chinese word dictionary

known as “SogouLabDic.dic”, and “Pinyin place” is a

Chinese place dictionary. Both of them are from [45]

USENIX Association 28th USENIX Security Symposium 1553

and also originally in Chinese. We translate them into

Pinyin in the same way as we tackle the name dictionar-

ies. “Mobile number” consists of all potential Chinese

mobile numbers, which are 11-digit strings with the

first seven digits conforming to pre-defined values and

the last four digits being random. Since it is almost

impossible to build such a dictionary on ourselves, we

instead write a Python script and automatically test each

11-digit string against the mobile-number search engine

https://shouji.supfree.net/.

As for the birthday dictionaries, we use date patterns

to match digit strings that might be birthdays. For

example, “YYYYMMDD” stands for a birthday pattern

that the first four digits indicate years (from 1900 to

2014), the middle two represent months (from 01 to 12)

and the last two denote dates (from 01 to 31). Similarly,

we build the date dictionaries “YYYY”, “MMDD” and

“YYMMDD”. Note that, “PW with a l+-letter substring”

means a subset of the corresponding dataset and consists

of all passwords that include a letter substring no shorter
than l, and similarly for “PW with a l+-digit substring”.

Though we use the “left-most longest” rule to min-

imize ambiguities when matching, there are some un-

avoidable ambiguities when determining whether a tex-

t/digit sequence belongs to a semantic dictionary. An

improper resolution would lead to an overestimation

or underestimation. For instance, 111111 falls into

“YYMMDD” and is highly popular, yet it is more likely

that users choose it simply because it is easily memorable

repetition numbers. To tackle this issue, we manually

identify 17 abnormal dates in “YYMMDD”, each of

which originally has a frequency> 10E and appears in

every top-1000 list of the six Chinese datasets: 111111,

520131, 111222, 121212, 520520, 110110, 231231,

101010, 110119, 321123, 010203, 110120, 010101,

520530, 000111, 000123, 080808. Similarly, we iden-

tify 16 abnormal items in “MMDD”: 1111, 1122, 1231,

1212, 1112, 1222, 1010, 0101, 1223, 1123, 0123,

1020, 1230, 0102, 0520, 1110. Few abnormal items

can be identified in the other 19 dictionaries (Table 5),

and they are processed as usual.

C A subtlety about Good-Turing smooth-
ing in Markov-based cracking

In 2014, Ma et al. [36] introduced the Good-Turing (GT)

smoothing into password cracking, yet little attention

has been paid to the unsoundness of GT for popular

password segments. We illustrate the following subtlety.

We denote f to be the frequency of an event and Nf
to be the frequency of frequency f . According to the

basic GT smoothing formula, the probability of a string

“c1c2 · · ·cl” in a Markov model of order n is denoted by

P(“c1 · · ·cl−1cl”) =

l∏

i=1

P(“ci|ci−nci−(n−1) · · ·ci−1”), (1)

where the individual probabilities in the product are

computed empirically by using the training sets. More

specifically, each empirical probability is given by

P(“ci|ci−n · · ·ci−1”) =
S(count(ci−n · · ·ci−1ci))∑
c∈Σ S(count(ci−n · · ·ci−1c))

,(2)

where the alphabet Σ includes 95 printable ASCII char-

acters on the keyboard (plus one special end-symbol cE
denoting the end of a password), and S(·) is defined as:

S(f) = (f +1)
Nf+1

Nf
. (3)

This kind of smoothing works well when f is small,

but it fails for passwords with a high frequency because

the estimates for S(f) are not smooth. For instance,

12345 is the most common 5-character string in Rock-

you and occurs f = 490,044 times. Since there is no

5-character string that occurs 490,045 times, N490045

will be zero, implying the basic GT estimator will set

P(“12345”)=0. A similar problem regarding the smooth-

ing of password frequencies is identified in [5].

There have been various improvements suggested in

linguistics to tackle this problem, among which is the

“simple Good-Turing smoothing” [22]. This improve-

ment (denoted by SGT) is famous for its simplicity and

accuracy. SGT takes two steps of smoothing. Firstly,

SGT performs a smoothing operation for Nf :

SN(f) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N(1) if f = 1

2N(f)
f+− f−

if 1 < f < max(f)

2N(f)
f − f−

if f = max(f)

(4)

where f+ and f− stand for the next-largest and next-

smallest values of f for which Nf > 0. Then, SGT

performs a linear regression for all values SNf and ob-

tains a Zipf distribution: Z(f) = C · (f)s, where C and

s are constants resulting from regression. Finally, SGT

conducts a second smoothing by replacing the raw count

Nf from Eq.3 with Z(f):

S(f) =

⎧⎪⎪⎨
⎪⎪⎩

(f +1)
Nf+1

Nf
if 0≤ f < f0

(f +1)
Z(f +1)

Z(f)
if f0 ≤ f

(5)

where t(f) = |(f +1) · Nf+1

Nf
− (f +1) · Z(f+1)

Z(f) | and f0 =

min

{
f ∈ Z

∣∣∣∣Nf > 0, t(f)> 1.65

√
(f +1)2 Nf+1

N2
f
(1+

Nf+1

Nf
)

}
.

To the best of our knowledge, we for the first time well

explicate how to combine the two smoothing techniques

(i.e., GT and SGT) in Markov-based password cracking.

1554 28th USENIX Security Symposium USENIX Association

Protecting accounts from credential stuffing with password breach alerting

Kurt Thomas∗ Jennifer Pullman∗ Kevin Yeo∗ Ananth Raghunathan∗

Patrick Gage Kelley∗ Luca Invernizzi∗ Borbala Benko∗ Tadek Pietraszek∗

Sarvar Patel∗ Dan Boneh� Elie Bursztein∗

Google∗ Stanford�

Abstract
Protecting accounts from credential stuffing attacks remains
burdensome due to an asymmetry of knowledge: attackers
have wide-scale access to billions of stolen usernames and
passwords, while users and identity providers remain in the
dark as to which accounts require remediation. In this paper,
we propose a privacy-preserving protocol whereby a client can
query a centralized breach repository to determine whether
a specific username and password combination is publicly
exposed, but without revealing the information queried. Here,
a client can be an end user, a password manager, or an identity
provider. To demonstrate the feasibility of our protocol, we
implement a cloud service that mediates access to over 4
billion credentials found in breaches and a Chrome extension
serving as an initial client. Based on anonymous telemetry
from nearly 670,000 users and 21 million logins, we find that
1.5% of logins on the web involve breached credentials. By
alerting users to this breach status, 26% of our warnings result
in users migrating to a new password, at least as strong as
the original. Our study illustrates how secure, democratized
access to password breach alerting can help mitigate one
dimension of account hijacking.

1 Introduction

The wide-spread availability of usernames and passwords
exposed by data breaches has trivialized criminal access to
billions of accounts. In the last two years alone, breach com-
pilations like Antipublic (450 million credentials), Exploit.in
(600 million credentials), and Collection 1-5 (2.2 billion cre-
dentials) have steadily grown as their creators aggregated
material shared on underground forums [21, 25]. Despite the
public nature of this data, it remains no less potent. Previ-
ous studies have shown that 6.9% of breached credentials
remain valid due to reuse, even multiple years after their ini-
tial exposure [51]. Absent defense in depth techniques that
expand authentication to include a user’s location and de-
vice details [12, 17], hijackers need only conduct a credential

stuffing attack—attempting to log in with every breached
credential—to isolate vulnerable accounts.

While users (or identity providers) can mitigate this hi-
jacking risk by resetting an account’s password, in practice,
discovering which accounts require attention remains a crit-
ical barrier. This has given rise to breach alerting services
like HaveIBeenPwned and PasswordPing that actively source
breached credentials to notify affected users [26, 43]. At
present, these services make a variety of tradeoffs spanning
user privacy, accuracy, and the risks involved with sharing
ostensibly private account details through unauthenticated
public channels. One consequence of these tradeoffs is that
users may receive inaccurate remediation advice due to false
positives. For example, both Firefox and LastPass check the
breach status of usernames to encourage password reset-
ting [13,42], but they lack context for whether the user’s pass-
word was actually exposed for a specific site or whether it was
previously reset. Equally problematic, other schemes implic-
itly trust breach alerting services to properly handle plaintext
usernames and passwords provided as part of a lookup. This
makes breach alerting services a liability in the event they
become compromised (or turn out to be adversarial).

In this paper, we present the design, implementation, and
deployment of a new privacy-preserving protocol that allows
a client to learn whether their username and password ap-
pears in a breach without revealing the information queried.
Our protocol offers two main advantages compared to exist-
ing schemes. First, our design takes into account the threat
of both an adversarial client (e.g., an attacker attempting to
steal usernames and passwords from our service) and an ad-
versarial server (e.g., an attacker harvesting usernames and
passwords sent to the service). We address these risks us-
ing a combination of computationally expensive hashing, k-
anonymity, and private set intersection. Second, these privacy
requirements allow us to check a client’s exact username and
password against a database of breached credentials (versus
only usernames, or only passwords currently), thus reducing
false positives that lead to warning fatigue.

To demonstrate the feasibility of our protocol, we publicly

USENIX Association 28th USENIX Security Symposium 1555

released a Chrome extension that warns users when they log
in to a website using one of over 4 billion breached usernames
and passwords. While in theory any identity provider or pass-
word manager can integrate with our protocol, we opted for
in-browser alerting first as it scales to the long tail of domains.
Nearly 670,000 users from around the world installed our
extension over a period of February 5–March 4, 2019. During
this measurement window, we detected that 1.5% of over 21
million logins were vulnerable due to relying on a breached
credential—or one warning for every two users. By alerting
users to this breach status, 26% of our warnings resulted in
users migrating to a new password. Of these new passwords,
94% were at least as strong as the original.

Anonymous telemetry reported by our extension reveals
that users reused breached credentials on over 746,000 dis-
tinct domains. The risk of hijacking was highest for video
streaming and adult sites, where 3.6–6.3% of logins relied
on breached credentials. Conversely, users appeared to inter-
nalize password security advice (or were forced to do so via
password composition policies) specifically for financial and
government sites, where only 0.2–0.3% of logins involved
breached credentials. Despite variations across industries, our
analysis reveals that the threat of credential stuffing extends
well into the long tail of the Internet. Absent new forms of au-
thentication, we believe that it is critical to democratize access
to breach alerting so that both users and identity providers
can proactively resecure their accounts.

In summary, we frame our key contributions as follows:

• We develop and publicly release a new protocol for
detecting whether a username and password pair ap-
pears in a data breach without revealing the informa-
tion queried. Our protocol improves on the privacy of
existing schemes while also reducing the risk of false
positives.

• We outline the technical challenges of deploying this
scheme in practice, including the computational over-
head, latency, and cost required to mediate access to over
4 billion breached usernames and passwords.

• Based on a real-world deployment, we find that 1.5% of
logins across the web involve breached credentials. We
caution this is a lower bound as logins are not unique.
Roughly one in two of our 670,000 users received a
warning.

• Users responded to 26% of our warnings by resetting
their password; 94% of new passwords were as strong
or stronger than the original passwords.

2 Background and requirements

To start, we establish the design principles and threat model
that underpin our breach alerting protocol. We compare these

Client Server

CreateRequest(u,p)

LS

CreateResponse(S, Req)

Verdict(Resp, LS)
{true, false}

Req

Resp

Figure 1: Abstract protocol for a breach alerting service. At a
high level, a client generates a request based on some compu-
tation over a username and password. The server then returns
a response that allows the client to arrive at a verdict for
whether their credential is in a breach.

requirements against existing solutions from HaveIBeen-
Pwned and PasswordPing—as well as related cryptographic
protocols like private information retrieval and oblivious
transfer—to highlight the tradeoffs that all of these approaches
make in terms of privacy, overhead, accuracy, and trust.

2.1 Abstract protocol
We provide an abstract protocol for our breach alerting ser-
vice in Figure 1. We reuse these function names and termi-
nology throughout our work. Here, a client with access to
a username and password tuple (u,p) executes some com-
putation via CreateRequest(u,p) that produces a local state
LS and request Req that it sends to the breach alerting ser-
vice. This service stores and regularly updates a database of
unsafe credentials S= {(u1,p1), . . . ,(un,pn)}. Upon receiv-
ing a request, the server accesses its credential store S, runs
CreateResponse(S,Req), and sends the resulting response
Resp to the client. Finally, the client arrives at a verdict
whether the credential queried was exposed through a breach
by calculating Verdict(Resp,LS). Because new breaches
emerge over time, a client should regularly repeat this process
as prior verdicts may no longer be valid.

2.2 Design principles

Democratized access: At present, identity providers indi-
vidually collect breached password data to reset their af-
fected user accounts [4, 58]. This fails to scale to all identity
providers, resulting in patchy protection across services and
incidents. Any breach alerting service should be accessible to
all end users and identity providers, and as such, not require
trust between the parties involved. This means we cannot
rely on authenticated accounts as a form of rate limiting. We
define trust more formally in our threat model in Section 2.3.

Actionable, not informational: Any breach alerting service
should provide users with accurate and actionable security ad-

1556 28th USENIX Security Symposium USENIX Association

vice such as re-securing an account via a password reset. An
alert that warns a client about the mere presence of exposed
data such as a client’s email address, phone number, or physi-
cal address lacks a straightforward recovery step and is thus
out of scope for our design. Similarly, an alert merely warning
a client that password material was exposed (rather than the
specific password involved) may lead to false positives.

Breached, not weak: Alerting should only trigger when all
the information necessary to access an account (e.g., a user-
name and password) is exposed. While cracking dictionar-
ies (often composed from breached passwords) may include
a client’s weak, guessable password, any subsequent attack
potentially requires multiple guesses and thus represents a
smaller threat than full credential exposure. We assume that
most online services employ sufficient throttling to make such
bruteforcing impractical. Conversely, attacks against exact
username and password pairs are actively deployed in the
wild. Indeed, Thomas et al. showed that users with non-stale
credentials exposed by third-party breaches were ten times
more likely to become hijacked than a random user [51]. Our
emphasis on breached credentials helps us prioritize scarce
user attention [5] and avoid potential warning fatigue sim-
ilar to other warning models [2]. While migrating users to
stronger passwords in general remains an important task, it is
out of scope for our design.

Near real-time: The time that elapses between a client query-
ing a credential and learning its breach status should be near
real-time in order to facilitate integration directly with ac-
count security flows, password managers, or upon password
entry. This potentially constrains the level of privacy protec-
tions provided by any protocol due to computational overhead
and network latency of any cryptographic primitives involved.

2.3 Threat model

Democratized access hinges on mutual distrust between a
client and the server involved in our breach alerting proto-
col. We develop our threat model with both an adversar-
ial client and adversarial server in mind. In the case of an
adversarial client with access to their own breach dataset
D= {(u1,p1), . . . ,(un,pn)}, the attacker seeks to learn u ∈
S−D (e.g., a new email to spam), p ∈ S−D (e.g., a new
password to add to a cracking dictionary), or a new credential
(u,p) ∈ S−D. In the case of an adversarial server where a
client has access to (u,p), the threat landscape is larger. An
adversarial server may learn the client’s identity u (even if
u ∈ S, this enables tracking), a client’s password p (even if
p ∈ S, this identifies active usage), or the credential (u,p)
(even if (u,p) ∈ S).

To address these threats, we outline the minimum security
and privacy requirements any implementation of the abstract
protocol previously outlined in Figure 1 must satisfy. In the
security notions discussed below, we work with anonymity

sets (denoted K) that describe a set of values (in our case,
user credentials) that are large enough to give clients plausi-
ble deniability about their data even if their membership in
K is revealed. These sets must be carefully defined to avoid
trivial constructions that are insecure. At a high-level, they
must have a sufficiently large support jointly over usernames
and passwords (to aid in plausible deniability regarding both),
should “partition” the space of credentials in a somewhat
uniform manner independent of any actual usernames or pass-
words, and roughly all values in an anonymity set should be
equally likely to be the client’s credentials. (A full discussion
is deferred to Appendix A.)

Requester credential anonymity: A protocol provides re-
quester credential anonymity if for every credential (u1,p1),
there exists a sufficiently large anonymity set K containing
(u1,p1) such that ∀(u2,p2) ∈ K:

CreateRequest(u1,p1)≈ CreateRequest(u2,p2). (1)

For two distributions A and B, we let A≈ B denote the com-
putational indistinguishablity of the two distributions—that
no efficient adversary given samples from A and B can distin-
guish them apart much better than randomly guessing. Thus,
clients with credentials from the same anonymity set cre-
ate requests that are indistinguishable to the server. While a
minimum |K| likely depends on the sensitivities of the client
involved, we set an initial threshold at |K|> 50,000. While
the IP address tied to a client’s request reduces |K|, a client
can rely on a mix network such as Tor to prevent this leakage.
IP address anonymity is out of scope of our threat model.

Responses with bounded leakage: Given a request for
(u,p), the response from a breach alerting service should
bound the information leaked, denoted L, about the mem-
bership of other credentials in S. To do this, we require an
efficient simulator Sim that given only L can act as the server
without being noticed by the client:

CreateResponse(S,Req)≈ Sim(L,Req). (2)

The presence of a successful simulator shows that the client
may learn at most L by looking at responses from the server.
Ideally, we want leakage to consist of only the membership
of the queried credential and the anonymity set:

L= ([(u,p) ∈ S],K) . (3)

We can rephrase this security notion as follows. For any
(u1,p1),(u2,p2) ∈ K such that their membership in S is iden-
tical, i.e., [(u1,p1) ∈ S] = [(u2,p2) ∈ S]:

CreateResponse(S,CreateRequest(u1,p1))

≈ CreateResponse(S,CreateRequest(u2,p2)).
(4)

In other words, our security notion implies that the responses
to credentials with identical leakage will be computationally
indistinguishable.

USENIX Association 28th USENIX Security Symposium 1557

Inefficient oracle: Learning u, p, or (u,p) ∈ S via the breach
alerting service should be equally or less efficient compared
to guessing attempts performed on the login portal where the
account originates from. Alternatively, a pragmatic attacker
should be better off finding a plaintext copy of the breach. Let
t(f) denote the running time of the function f. We capture this
for a remote attacker as there being a time period T such that:

t(CreateRequest(ui,pi))> T, (5)

for every (ui,pi). This requirement extends to an attacker with
direct access to S due to an insider risk, a court order, or a
breach of the alerting service’s database. We frame this as
merely checking the membership of a credential:

t([(u,p) ∈ S])> T ′. (6)

Ideally, T = T ′, such that local access to S provides no ad-
vantage compared to the access mediated by the protocol.
We consider a protocol where T > 1 second to satisfy this
requirement.

Resistance to Denial of Service: A response from the server
should not require significantly more computation than a
request by a client (including bogus requests). As such,
it should be difficult for an attacker to find a sequence
(u1,p1), . . . ,(un,pn) such that:

∑
i
t(CreateRequest(ui,pi))�∑

i
t(CreateResponse(Reqi))

(7)
Where t(f(·)) denotes the running time of the function f.

Non-threats: Some threats are explicitly outside our threat
model. These include an attacker attempting to confirm
whether a breach they have access to is known to the alerting
service (e.g., D⊆ S), as well as an attacker learning |S|. Such
information may instead be beneficial to have public, allow-
ing the service to publicly communicate which breaches it
covers.

2.4 Tradeoffs of existing schemes
Existing breach alerting services include HaveIBeenPwned
and PasswordPing, both of which have publicly documented
APIs [26, 43]. Clients for each service include the 1Pass-
word [48] and LastPass [42] password managers. GitHub
relies on a local mirror of HaveIBeenPwned’s password dic-
tionary for detection [36]. Firefox uses HaveIBeenPwned to
warn users when they browse to a site that previously suffered
a data breach, or if users supply their email address to Fire-
fox [13]. We examine the tradeoffs these protocols make in
terms of our design principles and threat model, with Table 1
serving as summary.

Query by username: HaveIBeenPwned and PasswordPing
both support querying a specific plaintext username u. Pass-
wordPing also supports querying H(u), the SHA256 hash of a

Query by Setup A
ct

io
na

bl
e,

no
ti

nf
or

m
at

io
na

l

B
re

ac
he

d,
no

tw
ea

k

N
ea

rr
ea

l-
tim

e
R

eq
ue

st
er

cr
ed

en
tia

la
no

ny
m

ity

In
ef

fic
ie

nt
or

ac
le

B
ou

nd
ed

le
ak

ag
e

re
sp

on
se

R
es

is
ta

nt
to

D
en

ia
lo

fS
er

vi
ce

Username Plaintext
Hash

Password
Plaintext
Hash
Hash prefix

Domain Plaintext

Username,
then password

Plaintext, hash
Hash, hash

Table 1: Summary of protocols supported by HaveIBeen-
Pwned and PasswordPing and their tradeoffs according to our
design principles and threat model.

username. In response, both services provide a list of breaches
that the specified user was affected by and the class of data
exposed (e.g., password, physical address). Lastpass currently
relies on the username-only protocol from PasswordPing for
breach alerting (after user consent).

In terms of our threat model (see Table 1), H(u) creates a
unique, stable identifier of the user that is possibly reversible
via a dictionary attack. This fails our requirement of requester
credential anonymity. Likewise, querying u directly leaks the
user’s identity. Neither H(u) or u provides a computational
hurdle, thus providing an efficient oracle for performing recon-
naissance on victims. Knowledge of which breaches a victim
is involved in can expose the victim to extortion, similar to
recent scams that include breached data to coerce victims into
paying the attacker by misrepresenting wider access [31].

Revisiting our design principles, we find that username-
only protocols fail to satisfy our requirement of actionable
rather than informational breach warnings. Users may have
changed their password, or no longer use the account involved.
Likewise, isolating responses solely to the types of data ex-
posed fails to alert users to breached passwords that they re-
use across multiple sites, where just one of the sites involved
might be breached.

Query by password: PasswordPing allows clients to send a
plaintext password p, or H(p) using SHA1, SHA256, or MD5.
Both PasswordPing and HaveIBeenPwned provide a more
secure alternative, whereby clients supply an N-bit prefix

1558 28th USENIX Security Symposium USENIX Association

H(p)[0:N]. The server then returns all known breached pass-
words with that prefix, with the client performing the final ex-
actness check locally. PasswordPing uses a 10-hex character
prefix of a SHA1, SHA256, or MD5 hash; HaveIBeenPwned
uses a 5-hex character prefix of a SHA1 hash. 1Password
currently relies on HaveIBeenPwned and the password-prefix
approach for breach alerting.

As detailed in Table 1, while supplying p explicitly exposes
a client’s non-breached password, revealing even H(p) leads
to a potential pre-computed dictionary attack by an adversarial
server. This threat is simplified by the lack of salt. As such,
both schemes fail to provide requester credential anonymity.
In the prefix-based variant, the same attack reduces the search
space necessary by 2N , with the attacker prioritizing guesses
based on a password’s popularity. With a sufficiently small
N, this meets our criteria for anonymity—though weakly. We
provide a deeper treatment of our rationale in Appendix A.
However, as the response contains multiple passwords per
lookup, this does not satisfy our requirement for bounded
leakage. An adversarial client can enumerate each bucket
to acquire a local copy of all H(p) for offline cracking to
rebuild the underlying password dictionary.1 While there is a
legitimate argument that an attacker could more easily acquire
a plaintext copy of the data breach, ideally any such protocol
should also work for more sensitive breach data that is not
widely accessible.

From a design perspective, we find that password-only pro-
tocols run the risk of alerting users to merely weak passwords.
If u1 in a breach shares the same password as u2 who was not
in any breach, there is no way to curate the security advice to
both users’ circumstances.

Query by domain: Both HaveIBeenPwned and Password-
Ping provide a protocol for determining whether a domain
was part of a breach. Firefox currently uses HaveIBeenPwned
to warn users when they visit a domain that’s previously suf-
fered a breach [9]. This alert specifies that if they had an
account, their data may no longer be secure. While these
domain-only protocols satisfy every requirement laid out in
our threat model (assuming the list of insecure domains is
locally cached rather than queried), they provide neither ac-
tionable advice nor specific insights into breached rather than
weak passwords. For example, a site visitor may have regis-
tered an account after the breach date. Likewise, domain-only
protocols cannot capture the risk of password re-use across
breached and non-breached sites.

Query by username, then password: PasswordPing pro-
vides a protocol whereby a client first queries u or H(u) using
SHA-256, in turn receiving a salt s associated with that ac-
count. The client uses this to calculate H(u,p,s) via Argon2,
sending only the N-bit prefix H(u,p,s)[0:N]. PasswordPing

1HaveIBeenPwned provides a direct download to every password in its
corpus (hashed via SHA1), so this enumeration step is unnecessary and
something the service argues is outside their threat model.

relies on a 10-hex character prefix. The server responds with
all known matching credentials, allowing a client to perform
the confirmation locally. This approach satisfies all of our
design principles. Additionally, due to the use of Argon2, the
hash complexity involved compared to SHA or MD5 satisfies
our requirement of an inefficient oracle. While we can bound
the leakage of this protocol, it leaks information about both a
requester’s identity as well as multiple H(u,p,s) per response
enabling offline attacks. (The s prevents pre-computed dic-
tionary attacks.) This protocol bears a close resemblance to
ours, but we satisfy all the criteria laid out in Table 1 and
show in Section 3.2 how to further protect users’ password
information when querying by username.

2.5 Alternative cryptographic protocols
Our threat model is closely related to several well-studied
cryptographic primitives. These protocols offer stricter pri-
vacy guarantees, but are computationally burdensome for a
network setting in practice. As such, our threat model uses a
relaxed requirement of anonymity. Secure hardware enclaves
would also enable stricter privacy guarantees, but current en-
claves have been shown to be vulnerable to side-channel and
speculative execution attacks [53, 54].

Private Information Retrieval (PIR): PIR protocols, in-
troduced by Chor et al. [6], require that a user be able to
query an item from a server without revealing which item
was queried. While PIR protocols which are secure against
computationally-bounded adversaries [32] exceed our re-
quester anonymity and password secrecy requirements, their
security guarantees are one-sided—they allow the server to
leak arbitrary information about the database to the clients.
Additionally, single-server PIR protocols require commu-
nication that is effectively comparable to the size of the
database [22]. Multi-server PIR protocols reduce this over-
head, and even offer security guarantees against adversarial
clients [19], but require that users trust that there is no risk of
collusion amongst servers.

Oblivious Transfer (OT): 1-out-of-N OT protocols [8, 46]
extend the PIR threat model to also require that a client learns
no information about unaccessed elements of the server’s
database during the query. (Here N refers to the number of
database entries.) While OT appears to capture the ideal re-
quirements for a breach alerting protocol, we note that with-
out weakening its security requirements, OT turns out to be a
powerful crypto primitive [29] and requires communication
overhead proportional to N.

Private Set Intersection (PSI): PSI protocols allow two par-
ties with sets S1 and S2 respectively to compute some func-
tions each of S1∩S2 and learn nothing more about each other’s
sets. We can model our use case as PSI where the client has
a singleton set and the server learns nothing (an additional
requirement needed in our work not typically seen in PSI).

USENIX Association 28th USENIX Security Symposium 1559

Early works leading to PSI [24,38] are based off of the Diffie-
Hellman assumption which we also leverage in our protocol.
While PSI protocols based on OT have been shown to be the
fastest in practice, they require significant communication
overhead that is unsuitable for a network setting [45]. Ad-
ditionally, they are designed for settings where both parties
have large, balanced sets which does not map to our scenario.

2.6 Ethics
Providing a breach alerting service necessitates access to cre-
dentials that were illicitly obtained and then released. For our
work, we exclusively rely on credential breaches that are now
publicly accessible, which any sophisticated attacker is likely
to already have access to. As such, we argue that making this
information accessible to users and identity providers does
not materially increase the potential for harm—but that any
protocol should have measures in place to protect against
abuse. Passwords exposed by breaches have a history of re-
search applications including improving password strength
meters [11,39,57] and studying password use in the wild [10].
Surveyed users have also expressed a positive attitude to-
wards breach alerting services, particularly in the context of
password resetting [28]. We believe the potential to reduce ac-
count hijacking outweighs any risk of collating already public
credential data.

3 Breach alerting protocol

Our design for a data breach alerting protocol relies on a com-
bination of k-anonymity, private set intersection, and computa-
tionally expensive hashing to address all the risks outlined in
our threat model. Here, we detail the cryptographic primitives
we use to implement our protocol and the data exchanged be-
tween a client and server. We consider two variants: one that
leaks some bits of password material that is secure against
a resource-constrained attacker (e.g., the attacker is unable
to circumvent k-anonymity and expensive hashing); and one
that leaks zero bits of password material, but where clients
must spend twice as much time hashing and receive weaker
bounds on requester anonymity.

3.1 Resource-constrained attacker variant

CreateDatabase: Prior to any client lookup, the server must
construct a secure database containing all known breached cre-
dentials. We outline this process in Algorithm 1. The server
first canonicalizes the username associated with a creden-
tial by removing any capitalization and stripping information
related to email providers (e.g., user@gmail.com becomes
user). This step aids in de-duplication while also enabling
us to detect reuse across sites that exclusively use usernames
rather than email addresses. Post-canonicalization, the server

calculates a computationally expensive hash of both the canon-
ical username and credential password. We rely on Argon2
with a configuration that uses a single thread, 256 MB of
memory, and a time cost of three.2

The server then blinds the 16-byte hash output with a 224-
bit secret key b by mapping the hash to the elliptic curve
NID_secp224r1 and raising the resulting point to the power
b.3 The server saves only a 2-byte prefix of hash unblinded
which it uses for partitioning the entire database, where we de-
note a partition as S′. Here, hashing satisfies our requirement
for an inefficient oracle even in the event that an attacker gains
direct access to the underlying database. Blinding serves as an
additional layer of defense in the event of a breach, but also to
prevent information leakage and ensure requester anonymity
and password secrecy via private set intersection (detailed
shortly). As the key b has no external dependencies, the server
can rotate it regularly by first decrypting old records and then
re-blinding with a new key b′.

CreateRequest: When generating a request, a client repeats
the same hashing and blinding strategy as the server. We
outline this process in Algorithm 2. In contrast to the server,
the client adopts its own secret key a which it initializes per
request. The resulting request includes the 2-byte hash prefix
and the blinded full hash. This 2-byte prefix—while leaking
some bits of password material—provides the client with k-
anonymity over the universe of all username and password
pairs (not just those in breaches). Previous investigations of
password usage estimate that users have roughly 6–8 unique
passwords [16, 44, 56]. With an estimated 3.9 billion Internet
users in the world [52], if we assume each user has just one
unique username, this amounts to an estimated 23.4–31.2
billion unique credential pairs. As a rough approximation then,
a user will share their credential prefix with 357,000–476,000
other credentials. Even if an adversarial server were to pre-
compute a dictionary of the most popular passwords, they
would have to repeat this process for each individual username.
As such, our protocol satisfies our computational requirement
for requester anonymity and password secrecy. In the case
of an adversarial client, any request for a guessed credential
is gated on the successful computation of an expensive hash,
thus satisfying our requirement for an inefficient oracle.

CreateResponse: A server responds to a request according to
Algorithm 3. Given a hash prefix, the server returns all known
unsafe credentials S′ tied to the prefix. While ideally we could
provide the entire blinded contents of S to a client, in practice
this is too computationally expensive as |S| scales to billions
of records. By partitioning S, we can limit the data down-
loaded to a client while ensuring membership correctness, at
the cost of working with anonymity sets rather than perfect se-

2According to libsodium, this amounts to roughly 0.7 seconds on a 2.8
Ghz Core i7 CPU [34].

3We use multiplicative notation to refer to elliptic-curve group operations
in the paper.

1560 28th USENIX Security Symposium USENIX Association

Algorithm 1 CreateDatabase: Store a blinded and strongly
hashed copy of all known breached credentials.

Require: S = {(u1, p1), . . . ,(un, pn)}, b= rand(), and n= 2,
a prefix length

1: function CREATEDATABASE(S,b,n)
2: for (ui, pi) ∈ S do
3: u′i ← CANONCIALIZE(ui)
4: H ← HASH(u′i, pi)
5: Hb ← BLIND(H,b)
6: H[0:n]← BYTESUBSTRING(H,n)
7: PARTITIONSTORE(H[0:n],Hb)
8: end for
9: end function

crecy. As noted in Section 2.5, the best current constructions
dictate that without partitioning S, we cannot hope to deploy a
scheme with reasonable limits on data downloaded by clients
and computation performed by the server. By avoiding any
client nonce or salt for hashing, retrieval is entirely static for
the server apart from inexpensive blinding (at least compared
to hashing). This satisfies our requirement for resistance to
denial of service.

Providing S′ absent blinding would leak information about
other exposed credentials. Instead, we rely on Diffie-Hellman
private set intersection [24] which is relatively efficient for
a network setting on non-mobile devices [45]. The server re-
turns all known breached credentials blinded with b while pro-
viding a client with an index into the doubly-blinded list Hab.
This requires the commutative properties of elliptic curve
Diffie–Hellman (ECDH) such that the client can decrypt this
result to recover Hb during verification, while the remaining
contents of S′ remain hidden.

More formally, under the random oracle model [3], with
Argon2 modeled as a perfect hash function, our hash-and-
blind scheme implements an oblivious pseudorandom func-
tion (OPRF) against honest-but-curious adversaries under the
decisional Diffie-Hellman assumption. When b is kept se-
cret, outputs of the hash-and-blind scheme on any user inputs
(ui,pi) reveal no information about the hashed and blinded
output on any other (u′,p′). A more technical and detailed
note is laid out in Appendix B. This achieves bounded leakage
and given only the leakage L as defined in Section 2.3, we
can construct a Simulator to simulate the entire response of
the server.

Verdict: Finally, a client determines whether their credential
was exposed in a breach by finishing the private set inter-
section protocol as detailed in Algorithm 4. This process is
entirely local and, absent independent telemetry, never reveals
the verdict of a match to the server.

Algorithm 2 CreateRequest: Client query to determine
whether a blinded username and password with a cleartext
hash prefix was exposed in a breach.

Require: n, a prefix length
1: function CREATEREQUEST(u, p,n)
2: a← RAND()
3: u′i ← CANONCIALIZE(u)
4: H ← HASH(u′, p)
5: Ha ← BLIND(H,a)
6: H[0:n]← BYTESUBSTRING(H,n)
7: LOCALSTORE(a)
8: return HSTSREQUEST(H[0:n],Ha)
9: end function

Algorithm 3 CreateResponse: Server response for all infor-
mation known about the cleartext hash prefix.

Require: b = rand()
1: function CREATERESPONSE(H[0:n],Ha)
2: Hab ← BLIND(Ha,b)
3: S′← PARTITIONLOOKUP(H[0:n])
4: return HSTSRESPONSE(Hab,S′)
5: end function

3.2 Zero-password leakage variant
Our previous approach makes a practical tradeoff between
client hashing overhead and revealing some bits of a client’s
password. (While still protected by a computationally ex-
pensive hash and anonymity sets spanning both usernames
and passwords, this information can be leaked if an attacker
has auxiliary information about the username.) As an alter-
native, we outline a zero-password leakage variant. In Al-
gorithm 2, a client now calculates a hash prefix of only the
username H(u′)[0:n] along with a blinded hash of the entire cre-
dential. Algorithm 1 is modified to create a mapping between
H(u′i)[0:n] to H(u′i,p

′
i) and to use it to partition the database by

H(u′i)[0:n]. This variant still provides the same protection with
bounded leakage, denial of service resistance, and an ineffi-
cient oracle, and modifies (and reduces) the anonymity set of
credentials to only usernames. For an estimated 3.9 billion
unique usernames, this amounts to |K|= 60,000.4 However,
this variant ensures that all password material from the client
is protected by blinding. In practice, given near real-time con-
straints, this requires that a client spend twice as much time
hashing which is non-negligible.5 For the purposes of our
initial deployment (detailed in Section 5), we opted for the
first variant to understand the computational bounds of clients.
We now plan to migrate to the zero-password leakage variant.

4With no password guessing required, it also enables an attacker to rea-
sonably pre-compute the Argon2 hash of all possible usernames.

5This expense can be amortized if the client reuses their username for
multiple sites with distinct passwords, or if the client regularly polls the
server for the same username to obtain the most recent breach status.

USENIX Association 28th USENIX Security Symposium 1561

Algorithm 4 Verdict: Final client-side verdict for whether a
username or password was exposed in a breach.

Require: a, secret key for original request
1: function VERDICT(Hab,S′,a)
2: Hb ← UNBLIND(Hab,a)
3: return Hb ∈ S′

4: end function

3.3 Expansion to metadata

Our protocol currently does not include information on the
origin of an exposed credential as metadata (e.g., which ser-
vice was compromised). In practice, we believe this is the best
strategy as origin information is both untrustworthy and often
unavailable. For example, large composite breaches such as
Collection 1-5 and Antipublic include hundreds of millions of
credentials, all of which are unattributed [21, 25]. Moreover,
metadata expands the size of data downloaded as part of S′.

For completeness, our protocol can be extended to include
origin information, or any metadata, by encrypting it with the
output of a cryptographically secure key-derivation function
such as HKDF [30] applied to H(u,p). This approach limits
access strictly to clients that prove knowledge of the associ-
ated, strongly hashed username and password. This is easy to
observe; as outlined in Appendix B, the hashed-and-blinded
outputs still hide information about other usernames and pass-
words and hence the derived keys are cryptographically strong
and hide the contents of encrypted metadata. This is only done
once when creating the database and adds very little overhead
to the system. We note that it is crucially important that this
metadata not include sensitive personally identifying informa-
tion as it is not hidden from a compromised service.

3.4 Limitations

Our protocol requires that clients are capable of computing an
expensive hash with 256MB of memory. This is a necessary re-
quirement to hamper attackers, but it may also prove untenable
for resource-constrained devices. Additionally, our approach
requires that clients download a non-negligible amount of data.
For context, with 1 billion credentials uniformly split into 216

prefixes, this equates to roughly 15,000 blinded hashes per
request. At 29-bytes per item, that amounts to roughly 435KB
on average. This grows linearly with the volume of newly
discovered credentials.

4 Implementation

We implemented our protocol as a publicly accessible API
hosted on Google Cloud. The API mediates access to over
4 billion unique usernames and passwords collected using
an approach previously documented by Thomas et al. [51].

Canonicalization further reduces this set to 3.36 billion cre-
dentials. We also developed a Chrome extension as a proof
of concept client that we could share among early testers to
gather telemetry on the frequency and impact of breach notifi-
cations in the wild. In practice, other applications that handles
credentials can integrate with our service by implementing
the client half of our protocol.

4.1 Client

Our Chrome extension monitors when users submit their user-
name and password on a login page and generates a browser
warning for breached credentials detected by our API. We rely
on a JavaScript implementation of Argon2 from libsodium
for all hashing and a web assembly compilation of OpenSSL
for the elliptic curve computation required for private set in-
tersection. Both libraries are open source with multiple years
of vetting. Here, we discuss the details behind our extension,
the design of our warning dialogues, and the telemetry the
extension collects.

Detecting login events: At present, Chrome does not export
an API for detecting login events. Instead, our extension reg-
isters a callback function to interpose on all webRequests
that contain form data. When triggered, the extension re-
lies on heuristics to detect whether the form contains a user-
name or password field, such as matching on field names like
password and passwd. If the heuristic fails to detect both
a username and password, nothing is sent to our API. We
manually tested our detection on the Alexa US Top 50: we
successfully captured login events for 40 pages and failed for
4, while the remaining 6 did not have login forms. For the
failures, login information was either obfuscated (e.g., a byte
blob of all field data), or part of the payload body rather than
form data. We are thus cautious when discussing data from
our real world deployment in Section 6 that not every domain
will be covered by our technique.

Warning design: Our extension modifies the DOM of the
page where a user entered their breached credential to show
a warning similar to Figure 2. In the browser tray, users can
reach an extension popup that displays a stateful warning
–similar to Figure 3. This gives users a way to see past warn-
ings, in the event that they closed their browser tab before re-
viewing the warning (or due to a DOM refresh that overwrites
our modifications). Additionally, this serves as a secure UI
element that runs in isolation of other extensions and pages.
Both styles of warning never reveal information about the
username or password found in a breach. This design deci-
sion limits the context we can provide users, but allows us to
avoid storing sensitive credential material that might make
persistent local storage a target for attacks.

In designing our warning, we followed emerging advice
about data breach notifications [20], proven terminology
around data breaches [1,28], and historical studies of browser

1562 28th USENIX Security Symposium USENIX Association

Ignore for this site Close

Learn more

You should change your password now.

Password Checkup detected that your password
for github.com is no longer safe due to a data
breach.

Change your password

Figure 2: In-page warning generated by our extension when
we detect that a credential is no longer secure due to a breach.

warnings related to phishing and unsafe network connec-
tions [2, 15]. In particular, we provided a clear action—
"Change your password"—along with context for the danger
behind the event. At the same time, we minimized unnec-
essary or overly technical information. We also provided a
“Learn More” link that explained in greater detail the root
cause of the warning and security best practices. In particular,
users should (1) reset their password for the affected page;
(2) reset their password wherever it was reused; (3) consider
a password manager; and (4) consider adopting two-factor
authentication. We collected feedback from 550 early testers
from our organization before settling on the final design and
language of our dialogue.

Compared to other browser warnings where the safest ac-
tion is to close the tab, breached passwords require users to
follow a series of unguided, proactive next steps. We empha-
size unguided as there is no canonical account security page
for every site to simplify password resetting. While there are
industry initiatives to create common reset paths [41], these
have yet to materialize. As such, we consider a more formal
usability study of the warning experience—and automating
the password change process—as future work. We provide a
deeper treatment of the effectiveness of our warnings in terms
of successful password resets later in Section 6 (in short, a
quarter of warnings result in a reset during our observation
period).

Identifying user actions: By default, our extension contin-
uously triggers a warning each time the user authenticates
with a breached credential. Given the computation and net-
work overhead involved for each API query, if the extension
detects a breached credential, it caches a 12-byte prefix of
the Argon2 credential hash to avoid generating a new API
query for the same credential. This also reduces the latency
between a user entering a credential and observing a warning
on all subsequent logins to the same domain. Conversely, if a
credential was previously not present in a breach, we avoid
caching any verdict and perform a new API query on each
login. In the future, caching here is also possible if the cache
were invalidated upon the server announcing the arrival of a
new breach.

Password Checkup

Password Checkup Extension detected that the
following 1 account has a password that is no
longer safe due to a data breach.

You should change your password now.
Learn more

Ignoregithub.com

Advanced settings

Figure 3: Stateful icon tray warning message to remind users
which accounts need their attention. This avoids the transient
nature of in-page warnings, which we use to provide better
context to users.

For low-value accounts that a user might deem unnecessary
to secure, we provide an option to ignore our warning on a
per-domain basis as shown in Figure 2 and Figure 3. The
extension manages this state by caching a local copy of the
domain involved and a 12-byte prefix of the Argon2 hash of
the credential that the user ignored (which is necessary in the
event the user has multiple accounts on the domain).

We detect when a user resets their exposed password in
order to provide a positive feedback signal to the user that
their account is no longer at risk. We also purge all cached in-
formation about the now stale credential. To do this, we cache
a 12-byte Argon2 prefix of an account’s username (with only
an 8MB memory requirement)—used only locally— along
with a 12-byte prefix of the Argon2 credential hash. If the
credential hash changes for the same username, this indicates
the user signed in with a new password and that all local state
for the credential should be reset. In the event a user merely
mistyped their breached password, correct password entry
will trigger a new warning and refresh the cache.

Telemetry: We instrument our extension to report anony-
mous telemetry pertaining to the volume of lookups against
our API that result in a breach warning, along with whether
users ignore our warnings or reset their passwords. All of
these events lack any form of user identifier, precluding the
possibility of correlating events or understanding per-user
experiences. Each event also includes the domain of the login
page involved, which we use to estimate our compatibility
with popular sites and to estimate the prevalence of breached
passwords across the Internet. For password changes related
to breached credentials, we also report the strength of the old
and new password to understand whether users as a whole mi-
grate to stronger passwords. We use zxcvbn [57] for strength

USENIX Association 28th USENIX Security Symposium 1563

estimation as it is entirely client-side and open source. This
telemetry forms the basis of our analysis of the impact of pass-
word breach warnings in the wild, discussed in Section 6. We
disclose the data we collect upfront to users in the description
of our Chrome Webstore listing.6 We had all of our teleme-
try reviewed by a group of internal experts and followed our
organization’s ethics review process.

4.2 Storage

We partitioned our pre-computed, blinded and hashed cre-
dential corpus (totaling roughly 110GB) into 216 slices. We
stored each slice as a static file in Google Cloud Storage. We
restricted access to these files so that only the server handling
requests could fetch content from storage. We also stored the
key material necessary to re-blind client-blinded hashes in the
same storage system.

4.3 Server

The stateless nature of our credential breach protocol allowed
us to implement our serving using Google Cloud Functions.
The primary benefit of this approach is that we could scale
arbitrarily to the volume of incoming requests while also
avoiding dormant compute cycles on pre-requisitioned cloud
instances. This design also allowed us to avoid having to
reason about the side-effects across requests. We implemented
our Cloud Function using the same JavaScript elliptic curve
library as our Chrome extension (recall that hashing is not
part of the server protocol). We avoid application-layer denial
of service attacks—such as sending an arbitrary length string
for the server to blind—by blocking malformed requests that
do not adhere to the fixed-length blinded hash we expect from
a client.

5 Deployment

We made our extension publicly available via the Chrome
Web Store and announced it through major media channels.
In total, 667,716 users installed our extension over a measure-
ment period of February 5, 2019–March 4, 2019 (UTC).

User demographics: Based on aggregate statistics provided
by the Chrome Web Store, 48% of the users who installed our
extension were from North America, 29% from Europe, 17%
from Asia, and the remaining 6% from around the world. In
terms of operating systems, 71% of users who installed the
extension used Windows, 14% used MacOS, 13% ChromeOS,
and 2% Linux. We note that extensions are unavailable on
mobile devices and thus are not present in our device break-
down.

6 https://chrome.google.com/webstore/detail/password-
checkup/pncabnpcffmalkkjpajodfhijclecjno

Figure 4: Volume of logins scanned by our extension every
100 seconds. Requests to our API scaled from 0.11 queries
per 100 seconds in early testing, to a peak of 2,192 queries
per 100 seconds at the end of our measurement window. The
dips in the graph reflect lower activity during weekends.

Scaling to requests: Over the course of our measurement
window, the lookup volume to our API scaled gracefully from
0.11 lookups per 100 seconds during early testing to a peak
of 2,043 lookups per 100 seconds as shown in Figure 4. The
diurnal pattern present reflects the geographic concentration
of users in North America and Europe. The periodic dips
reflect lower login activity over the weekend. By compar-
ing query volume with active user metrics provided by the
Chrome Web store, we estimate that an average user generates
3 API requests (e.g., logins) per weekday, and 1.5 requests per
weekend. Critically, the diurnal cadence and lack of bursty
behavior indicates a lack of large-scale abuse during our mea-
surement window which might otherwise pollute our analysis
later in Section 6.

Client overhead: We present a breakdown of the computa-
tional overhead and network latency incurred by clients that
query our API in Table 2. Overall, a median query took 8.5
seconds to return a verdict, during which a user would con-
tinue browsing uninterrupted. Roughly half of this time was
spent strongly hashing the user’s credential, while the remain-
ing time was spent downloading potential credential matches.
Our username hash (used for locally caching state) took a
median of 100ms and was a negligible part of this delay. For
10% of users, the overall query time exceeded 18 seconds,
half of which was spent in network latency. While part of
this lookup overhead can be optimized—credential hashing in
native code takes an average of 0.7 seconds—the only way to
reduce network latency would be to download fewer breached
records, thus reducing the k-anonymity set of our protocol.
As such, our current privacy constraints likely remain out of
reach for resource-constrained devices, at least for near real
time detection.

1564 28th USENIX Security Symposium USENIX Association

Duration Median 90% 95%

Argon2 username hash 0.1s 0.3s 0.3s
Argon2 credential hash 4.4s 9.8s 12.7s
End-to-end API query 8.5s 18.8s 26.9s

Table 2: Time spent performing API operations including
hashing and downloading potentially matching breached cre-
dentials.

Cost modeling: A practical reality of running a breach de-
tection service is cost. In our case, cost is intrinsically tied
to the k-anonymity privacy that we provide. Every 1,000
invocations of our API costs approximately $0.19 at the cur-
rent volume of credentials in our storage and for a 2-byte
k-anonymity prefix. Data serving makes up 94% of this cost,
while the CPU and memory necessary to field requests and
to re-encrypt client credentials makes up only 5%. Based on
our query volume per user, operating our service for an esti-
mated 500,000 users would cost $85,500 a year. Caching the
status of negative breach verdicts would substantially reduce
expenses. Our goal in documenting these details is to provide
other members of the community a benchmark for the costs
of any improved privacy scheme. For our protocol, adding a
single bit of privacy nearly doubles our operating expenses
while also doubling the network latency for clients.

6 Analysis

We analyzed the anonymous telemetry reported during our
measurement window to understand the state of breached
passwords across the Internet. Facets we consider include
the frequency that users log in with a breached password, the
types of sites where reuse is most common, and ultimately
whether displaying warnings helps users to address the risk
of credential stuffing. We provide a high-level statistical sum-
mary of our telemetry in Table 3 . We note that our telemetry
is biased towards the users who installed our extension, which
is a non-random sample of the Internet population.

6.1 Credential stuffing risk and remediation

Frequency of breached credential reuse: Overall, our API
fielded 21,177,237 lookup requests, where a lookup maps to
a single login attempt performed by an anonymous user. We
detected that 316,531 logins involved breached credentials—
roughly 1.5% of all logins. We caution this is a lower bound
as we only generate telemetry for breached credentials once
before caching the result locally, whereas lookups to non-
breached credentials generate telemetry upon each new login.
Our detection rate is lower than the 6.9% reported by Thomas
et al. [51] for 751 million Google accounts and 1.9 billion
breached credentials. Possible reasons include the user popu-

Metric Value

Extension users 667,716

Logins analyzed 21,177,237
Domains covered 746,853

Breached credentials found 316,531
Warnings ignored 81,368 (26%)
Passwords reset 82,761 (26%)

Table 3: Summary of the anonymous telemetry data reported
over the course of our analysis window from February 5–
March 4, 2019.

lation that adopted our extension is more security conscious—
thus avoiding reuse as a behavior—or that dormant accounts
have a higher reuse rate, which by nature our extension can-
not observe as we perform checks at login time. During our
28 day measurement window, if we assume that logins and
warnings are uniformly distributed across users, 47.3% of our
users received a warning. Our anonymous reporting precludes
more detailed per-user statistics. Taken as a whole, our results
reveal that global Internet users regularly access accounts that
are vulnerable to credential stuffing.

Ignoring breached credentials: Users opted to ignore
81,368—or 25.7%—of the breach warnings we surfaced. We
consider three possible explanations. Users may be making an
explicit risk assessment that the value of their account is not
worth the effort of adopting a new password. Alternatively,
users may not be in full control of the account (e.g., a shared
household account) [37]. Finally, as our extension does not
automate the process of password resetting, users may ig-
nore our warning out of frustration due to a lack of guidance.
Regardless of the underlying cause, ignored warnings leave
accounts vulnerable to credential stuffing. That said, there is
an opportunity here for identity providers to take action and
guide users through the password resetting process.

Remediation of breached passwords: Our warnings re-
sulted in users resetting 82,761—or 26.1%—of their breached
passwords. Critically, we find that users used this opportunity
to migrate to stronger passwords. On average, the passwords
we detected as breached had a zxcvbn strength of 1.6. After
remediation, this score increased to an average of 2.9. We
present a more detailed summary of strength before and after
resetting in Figure 5. For context, a score of one indicates
a “weak password” that an attacker can guess in under 106

attempts. A score of two reflects a password that an attacker
can guess in under 108 attempts, and a score of three 1010

attempts and is considered “strong”.
Overall, 94% of password changes led to a stronger or

equal zxcvbn score, while just 6% of changes resulted in a
regression to a weaker password. Our results indicate that
users of our extension understand stronger password compo-

USENIX Association 28th USENIX Security Symposium 1565

Figure 5: Histogram of zxcvbn password strength for pass-
words detected as breached and the password adopted by users
after remediation. Users migrated towards stronger passwords
overall as a result of our warnings.

sition strategies. Equally important, 39% of new passwords
achieved the highest possible strength score (up from 3%
for the original passwords), a potential sign of the growing
prevalence of password managers that automatically compose
strong passwords. Our results highlight how surfacing action-
able security information can help mitigate the risk of account
hijacking.

6.2 Influence of domains on account security

Category: We examine whether the perceived value of an
account influences the rate that users rely on reused, breached
credentials. To do this, we manually labeled the top 332 do-
mains that received more than 5,000 logins during our mea-
surement period into one of thirteen categories (e.g., finance,
email and messaging, and social networking). We used a catch
all “Other” category for domains that fell outside this cate-
gorization. Combined, logins to these domains accounted for
41% of lookups against our API.

We present a breakdown of the aggregate warning rates
and ignore rates across all domains per category in Table 4.
Domains that we categorized as related to finance or govern-
ments exhibited the lowest rate of reused, breached credentials
(0.2–0.3%). Possible explanations include the password com-
position policies of these domains, the fact that users adhere
to popular security advice to have one strong password for
their bank, or that the sites actively identify breaches and
previously forced password resets. In contrast, entertainment
sites like streaming video platforms and adult websites had
the highest warning rate for breached credentials (3.6–6.3%).
Users may adopt disposable passwords due to perceived lack

Figure 6: CCDF of the percentage of logins per domain that
result in a warning across. We group domains by the volume
of logins we observed, including 100-1,000, 1,000–10,000,
and 10,000+. Popular sites tend to face less of a threat from
credential stuffing, while the long tail of domains remain at
risk.

of risk, or in the case of streaming sites, they may use shared
accounts. Surprisingly, users ignored our breach warnings
nearly uniformly across categories, with the exception of adult
websites. For the latter, users ignored nearly twice as many
of our warnings—potentially to hide the domain from our
persistent warning tray (see Figure 3 earlier).

Popularity: We also consider whether more popular sites are
less vulnerable to credential stuffing. We present a CCDF of
the frequency of warnings per domain versus the volume of
logins to the domain during our analysis window in Figure 6.
We find that just 6% of domains with 10,000+ logins have a
warning rate higher than 3%, compared to 15% of domains
with fewer than 10,000+ logins. We believe this gap in se-
curity results from larger security investments on the part of
popular domains towards proactively resetting passwords and
helping users avoid “weak” passwords. While large identity
providers can equally take advantage of our API, addressing
the long tail of domains affected by credential stuffing likely
requires relying on in-browser warnings.

7 Related Work

Account hijacking threats: Credential stuffing represents
just one dimension of account hijacking threats. Other risks
include large-scale phishing [7, 51], credential or token theft
from local machines [50], and even targeted attacks [35, 40].
Users have internalized these risks and adopted a security
model of joint responsibility between themselves and identity
providers [47]. The most prominent solutions to these threats
include users adopting two-factor authentication, or identity
providers expanding authentication to include other passive

1566 28th USENIX Security Symposium USENIX Association

Category Domains Total visits Breakdown Warning rate Ignore rate

Finance 90 1,684,851 8.0% 0.3% 18.6%
Email, messaging 47 1,519,795 7.2% 0.5% 14.0%
Social networking 15 1,191,546 5.6% 0.8% 17.8%
Shopping 29 1,007,103 4.8% 1.2% 16.4%
Technology 34 624,702 2.9% 0.7% 16.9%
Business 12 585,797 2.8% 0.7% 20.3%
Education 16 261,563 1.2% 0.9% 26.5%
Gaming 11 201,646 1.0% 0.5% 18.6%
Entertainment 9 168,565 0.8% 6.3% 27.1%
Travel 14 138,968 0.7% 1.8% 19.6%
Government 5 60,967 0.3% 0.2% 16.9%
News 5 54,864 0.3% 1.9% 20.7%
Adult 3 50,408 0.2% 3.6% 38.5%
Other 42 429,786 2.0% 1.0% 17.8%

Table 4: Breakdown of reused, breached passwords for domains receiving more than 5,000 logins, aggregated by business sector.
Finance and govt. domains had the lowest usage of breached passwords, compared to entertainment and adult-related domains.

factors such as a user’s device and location [12, 17]. The
protections we propose in this work are complementary to a
defense in depth authentication model, where breach detection
represents one additional factor in risk modeling.

Password reuse behaviors: Text passwords continue to be
the prevailing mechanism for online authentication. Given
the human constraints of memorizing a large number of
unique text strings, people have adopted various strategies—
including reuse and weak patterns—for managing their grow-
ing number of online identities [18, 23, 49, 55]. Florencio and
Herley published the first large-scale study of password be-
havior, where they found both weak and reused passwords
were a frequent flaw [16]. More recently, Wash et al. [56] and
Pearman et al. [44] observed the password usage behaviors of
hundreds of participants over multiple weeks. They estimated
that 32% of all entered passwords involved exact reuse. Wash
et al. found that users reused their most popular password on
an average of 9 sites. Examining breach data directly, Das
et al. found that 43–51% of users reused the same password
on multiple sites [10]. While automated password filling has
become more commonplace—participants used these means
57% of the time [44]—both Pearman et al. and Wash et al.
found password managers have yet to be adopted as a tool
for password generation. All of these factors compound the
threat of credential stuffing, where inverting a single weak
password hash can grant an attacker access to multiple sites.

Improving breach alerting protocols: In a contemporane-
ous work, Li et al. presented a framework for reasoning about
leakages resulting from the password-based prefixes used by
our protocol and HaveIBeenPwned [33]. The authors show
how a password-only prefix (or an attacker with access to the
plaintext username in a username-password prefix) can lever-
age a partition’s underlying password distribution to reduce
the number of guesses necessary to potentially learn a user’s

password. To address this, the authors outline a zero-password
leakage variant that relies on private set membership in con-
junction with a username hash prefix for partitioning, akin to
our own model from Section 3.2. Their work provides further
motivation for a zero-password leakage protocol, despite its
additional computational complexity as we outlined.

8 Conclusion

In this paper, we demonstrated the feasibility of a privacy-
preserving protocol that allows a client to query whether their
login credentials were exposed in a breach, without revealing
the information queried. Our protocol relies on a combina-
tion of computationally expensive hashing, k-anonymity, and
private set intersection. Our approach improves on existing
protocols by taking into account both an adversarial client and
server, while also minimizing the chance of false positives. We
envision this service being used by end users, password man-
agers, and by identity providers. As a proof-of-concept, we
created a cloud service that mediates access to 4 billion user-
names and passwords publicly exposed by breaches. We then
released a Chrome extension that would query credentials
entered at login time against our service. Based on telemetry
produced by nearly 670,000 users, we estimated that 1.5% of
credentials used across the web are vulnerable to credential
stuffing (based on a sample of 21 million logins).

Addressing this problem requires action from both users
and identity providers. In the context of our study, 26% of the
warnings we generated for breached passwords resulted in
users adopting a new password—94% of which were stronger
or as strong as the original. Both the volume of user inter-
est and response rate surfaced during our study demonstrate
that there is an appetite on the part of users to secure their
accounts from credential stuffing. We hope that by making

USENIX Association 28th USENIX Security Symposium 1567

our protocol public, other researchers can improve on the
privacy protections, computational bounds, and cost models
that we establish. Our protocol is a first step in democratizing
access to breach alerting in order to mitigate one dimension
of account hijacking.

9 Acknowledgements

We would like to thank Oxana Comanescu, Sunny Consolvo,
Ali Zand, and our anonymous reviewers for their feedback
and support in designing our breach alerting protocol. This
work was partially supported by funding from the NSF.

References

[1] Lillian Ablon, Paul Heaton, Diana Catherine Lavery,
and Sasha Romanosky. Consumer attitudes toward data
breach notifications and loss of personal information.
In Proceedings of the Workshop on the Economics of
Information Security, 2016.

[2] Devdatta Akhawe and Adrienne Porter Felt. Alice in
warningland: A large-scale field study of browser se-
curity warning effectiveness. In Proceedings of the
USENIX Security Symposium, 2013.

[3] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In Proceedings of the ACM Conference on Computer
and Communications Security, 1993.

[4] Borbala Benko, Elie Bursztein, Tadek Pietraszek, and
Mark Risher. Cleaning up after password dumps. https:
// security.googleblog.com/2014/09/cleaning-up-after-
password-dumps.html, 2014.

[5] Rainer Böhme and Jens Grossklags. The security cost
of cheap user interaction. In Proceedings of the New
Security Paradigms Workshop, 2011.

[6] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and
Madhu Sudan. Private information retrieval. In Pro-
ceedings of the Annual Symposium on Foundations of
Computer Science, 1995.

[7] Marco Cova, Christopher Kruegel, and Giovanni Vigna.
There is no free phish: an analysis of "free" and live
phishing kits. In Proceedings of the Workshop on Offen-
sive Technologies, 2008.

[8] Claude Crépeau. Equivalence between two flavours of
oblivious transfers. In Conference on the Theory and
Application of Cryptographic Techniques, 1987.

[9] Luke Crouch. When does firefox alert for breached
sites? https:// blog.mozilla.org/ security/2018/11/14/
when-does-firefox-alert-for-breached-sites/ , 2018.

[10] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of pass-
word reuse. In Proceedings of the Network and Dis-
tributed System Security Symposium, 2014.

[11] Xavier De Carné De Carnavalet, Mohammad Mannan,
et al. From very weak to very strong: Analyzing
password-strength meters. In Proceedings of the Net-
work and Distributed System Security Symposium, 2014.

[12] Periwinkle Doerfler, Maija Marincenko, Juri Ranieri,
Angelika Moscicki Yu Jiang, Damon McCoy, and Kurt
Thomas. Evaluating login challenges as a defense
against account takeover. In Proceedings of the Web
Conference, 2019.

[13] Peter Dolanjski. Testing firefox monitor, a new security
tool. https://blog.mozilla.org/ futurereleases/2018/06/
25/ testing-firefox-monitor-a-new-security-tool/ , 2018.

[14] Adam Everspaugh, Rahul Chaterjee, Samuel Scott, Ari
Juels, and Thomas Ristenpart. The pythia PRF service.
In Proceedings of the USENIX Security Symposium,
2015.

[15] Adrienne Porter Felt, Alex Ainslie, Robert W Reeder,
Sunny Consolvo, Somas Thyagaraja, Alan Bettes, He-
len Harris, and Jeff Grimes. Improving ssl warnings:
Comprehension and adherence. In Proceedings of the
Conference on Human Factors in Computing Systems,
2015.

[16] Dinei Florencio and Cormac Herley. A large scale study
of web password habits. In Proceedings of the Interna-
tional World Wide Web Conference, 2006.

[17] David Mandell Freeman, Sakshi Jain, Markus Dürmuth,
Battista Biggio, and Giorgio Giacinto. Who are you? a
statistical approach to measuring user authenticity. In
Proceedings of the Symposium on Network and Dis-
tributed System Security, 2016.

[18] Shirley Gaw and Edward W. Felten. Password manage-
ment strategies for online accounts. In Proceedings of
the Symposium on Usable Privacy and Security, 2006.

[19] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal
Malkin. Protecting data privacy in private information
retrieval schemes. Journal of Computer and System
Sciences, 2000.

[20] Maximilian Golla, Miranda Wei, Juliette Hainline, Lydia
Filipe, Markus Dürmuth, Elissa Redmiles, and Blase Ur.
What was that site doing with my facebook password?:
Designing password-reuse notifications. In Proceedings
of the ACM Conference on Computer and Communica-
tions Security, 2018.

1568 28th USENIX Security Symposium USENIX Association

[21] Andy Greenberg. Hackers are passing around a
megaleak of 2.2 billion records. https://www.wired.com/
story/collection-leak-usernames-passwords-billions/ ,
2019.

[22] Iftach Haitner, Jonathan J Hoch, and Gil Segev. A linear
lower bound on the communication complexity of single-
server private information retrieval. In Proceedings of
the Theory of Cryptography Conference, 2008.

[23] Eiji Hayashi and Jason Hong. A diary study of password
usage in daily life. In Proceedings of the Conference on
Human Factors in Computing Systems, 2011.

[24] Bernardo A Huberman, Matt Franklin, and Tad Hogg.
Enhancing privacy and trust in electronic communities.
In Proceedings of the ACM Conference on Electronic
Commerce, 1999.

[25] Troy Hunt. Password reuse, credential stuffing and an-
other billion records in Have I been pwned. https://www.
troyhunt.com/password-reuse-credential-stuffing-and-
another- 1- billion- records- in- have- i- been- pwned/ ,
2017.

[26] Troy Hunt. Have i been pwned? https : / /
haveibeenpwned.com/ , 2019.

[27] Stanisław Jarecki and Xiaomin Liu. Fast secure com-
putation of set intersection. In Proceedings of the Inter-
national Conference on Security and Cryptography for
Networks, 2010.

[28] Sowmya Karunakaran, Kurt Thomas, Elie Bursztein, and
Oxana Comanescu. Data breaches: user comprehension,
expectations, and concerns with handling exposed data.
In Proceedings of the Symposium on Usable Privacy
and Security, 2018.

[29] Joe Kilian. Founding crytpography on oblivious trans-
fer. In Proceedings of the Symposium on Theory of
Computing, 1988.

[30] Hugo Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In Proceedings of the
Annual Cryptology Conference, 2010.

[31] Brian Krebs. Sextortion scam uses recipient’s hacked
passwords. https:// krebsonsecurity.com/ 2018/ 07/
sextortion-scam-uses-recipients-hacked-passwords/ ,
2018.

[32] Eyal Kushilevitz and Rafail Ostrovsky. Replication is
not needed: Single database, computationally-private
information retrieval. In Foundations of Computer Sci-
ence, 1997. Proceedings., 38th Annual Symposium on,
pages 364–373. IEEE, 1997.

[33] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul
Chatterjee, and Thomas Ristenpart. Protocols for check-
ing compromised credentials. https:// rist.tech.cornell.
edu/papers/c3.pdf , 2019.

[34] libsodium. The Argon2 function. https:// libsodium.
gitbook . io / doc / password _ hashing / the _ argon2i _
function, 2019.

[35] William R Marczak, John Scott-Railton, Morgan
Marquis-Boire, and Vern Paxson. When governments
hack opponents: a look at actors and technology. In
Proceedings of the USENIX Security Symposium, 2014.

[36] Neil Matatall. New improvements and best practices for
account security and recoverability. https://github.blog/
2018-07-31-new-improvements-and-best-practices-
for-account-security-and-recoverability/ , 2018.

[37] Tara Matthews, Kerwell Liao, Anna Turner, Marianne
Berkovich, Robert Reeder, and Sunny Consolvo. She’ll
just grab any device that’s closer: A study of everyday
device & account sharing in households. In Proceed-
ings of the Conference on Human Factors in Computing
Systems, 2016.

[38] Catherine Meadows. A more efficient cryptographic
matchmaking protocol for use in the absence of a con-
tinuously available third party. In Proceedings of the
IEEE Symposium on Security and Privacy, 1986.

[39] William Melicher, Blase Ur, Sean M Segreti, Saranga
Komanduri, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In Pro-
ceedings of the USENIX Security Symposium, 2016.

[40] Ariana Mirian, Joe DeBlasio, Stefan Savage, Geof-
frey M. Voelker, , and Kurt Thomas. Hack for hire:
Exploring the emerging market for account hijacking.
In Proceedings of The Web Conf, 2019.

[41] Theresa O’Connor. A well-known url for changing
passwords. https:// wicg.github.io/ change-password-
url/ index.html, 2018.

[42] Password Ping. LastPass selects PasswordPing for
compromised credential screening. https : / / www.
passwordping.com/ lastpass-selects-passwordping-for-
compromised-credential-screening/ , 2017.

[43] Password Ping. Block attacks from compromised cre-
dentials. https://www.passwordping.com/ , 2019.

[44] Sarah Pearman, Jeremy Thomas, Pardis Emani Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. Let’s go in
for a closer look: Observing passwords in their natural

USENIX Association 28th USENIX Security Symposium 1569

habitat. In Proceedings of the 2017 ACM Conference
on Computer and Communications Security, 2017.

[45] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on ot extension. In
Proceedings of the USENIX Security Symposium, 2014.

[46] Michael O. Rabin. How to exchange secrets by oblivious
transfer. Technical report, Tech. rep. TR-81, AikenCom-
putation Laboratory, Harvard University, Cambridge,
MA, 1981.

[47] Richard Shay, Iulia Ion, Robert W Reeder, and Sunny
Consolvo. "My religious aunt asked why I was trying
to sell her viagra": experiences with account hijacking.
In Proceedings of ACM Conference on Human Factors
in Computing Systems, 2014.

[48] Jeff Shiner. Finding pwned passwords with 1pass-
word. https:// blog.1password.com/ finding-pwned-
passwords-with-1password/ , 2019.

[49] Elizabeth Stobert and Robert Biddle. The password
life cycle: User behaviour in managing passwords. In
Proceedings of the Symposium on Usable Privacy and
Security, 2014.

[50] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob
Gilbert, Martin Szydlowski, Richard Kemmerer, Christo-
pher Kruegel, and Giovanni Vigna. Your botnet is my
botnet: Analysis of a botnet takeover. In Proceedings of
the ACM Conference on Computer and Communications
Security, 2009.

[51] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri
Ranieri, Luca Invernizzi, Yarik Markov, Oxana Co-
manescu, Vijay Eranti, Angelika Moscicki, et al. Data
breaches, phishing, or malware?: Understanding the
risks of stolen credentials. In Proceedings of the ACM
Conference on Computer and Communications Security,
2017.

[52] International Telecommunications Union. Statistics.
https:// www.itu.int/ en/ ITU-D/ Statistics/ Pages/ stat/
default.aspx, 2019.

[53] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In Proceed-
ings of the USENIX Security Symposium, 2018.

[54] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In Proceedings of the USENIX
Security Symposium, 2017.

[55] Emanuel von Zezschwitz, Alexander De Luca, and Hein-
rich Hussmann. Survival of the shortest: A retrospective
analysis of influencing factors on password composi-
tion. In Proceedings of the International Conference on
Human-Computer Interaction, 2013.

[56] Rick Wash, Emilee Rader, Ruthie Berman, and Zac
Wellmer. Understanding password choices: How fre-
quently entered passwords are re-used across websites.
In Proceedings of the Symposium on Usable Privacy
and Security, 2016.

[57] Daniel Lowe Wheeler. zxcvbn: Low-budget password
strength estimation. In Proceedings of the USENIX
Security Symposium, 2016.

[58] Victoria Woollaston. Facebook and netflix reset pass-
words after data breaches. http:// www.wired.co.uk/
article/ facebook-netflix-password-reset, 2016.

A Anonymity Sets

In this section, we describe properties of anonymity sets (from
Section 2.3) in more detail. Recall that anonymity sets are
large sets of user credentials that provide plausible deniability
about client data even if information about their membership
in this set is revealed. Defining and arguing with anonymity
sets is challenging and must be done carefully so as to avoid
some trivialities. To avoid constructions with vacuous security,
we require anonymity sets to have the following properties.

Large marginal supports: Our anonymity sets containing
tuples (u,p) must additionally have sufficiently large marginal
supports over both usernames and passwords. This ensures
that despite there being several possible tuples (u,p), there
is sufficiently large ambiguity about whether membership
implies a specific username or password. A trivial anonymity
set, for example, might have several possible credentials with
different passwords all tied to the same username.

More mathematically, given an anonymity set K of size |K|,
we require that the size of the following sets:

SuppUser(K) := {u : (u,p) ∈ K} ,
SuppPwd(K) := {p : (u,p) ∈ K} ,

both have large cardinalities comparable to that of |K|. Ob-
serve that |SuppUser(K)| indicates how many bits of infor-
mation about the username is leaked (smaller sets narrow the
set of possible users and leak a lot of information). This is
similarly true for |SuppPwd(K)| for passwords.

Hashing both usernames and passwords with cryptograph-
ically strong hash functions satisfies these requirements. In
fact, it is possible that both sets have cardinalities as large
|K| itself which would imply that for every possible common
password there might be a username such that (u,p)∈K. This
is true in our scheme modeling Argon2 as a random oracle.

1570 28th USENIX Security Symposium USENIX Association

Schemes that only hash passwords, as noted previously in
Section 2.4, might still satisfy a weaker anonymity property.
They hide usernames, but depending on how they truncate
hashes, password-only schemes might allow for small or large
SuppPwd sets. Thus, they might satisfy these requirements,
but only weakly at least with respect to passwords. Further-
more, it is not true that for every password there is a username
which might be part of the client’s credentials, unlike our
scheme. We also note that our trivial example, of having sev-
eral passwords all tied to the same username, violates our
requirement by having |SuppUser(K)|= 1.

Uniformity requirement: This is a more challenging require-
ment to model mathematically. Intuitively, however, it states
that anonymity sets should partition the space of usernames
and passwords in a somewhat uniform manner. In other words,
over random choices of the system parameters, it should be
equally likely for any (u,p) to end up in any anonymity set.
A trivial anonymity set violating this requirement would, as
an example, only truncate usernames, thereby trivially leak-
ing some information about the username. Truncation does
not make it equally likely that any (u,p) can end up in any
anonymity set.

Under the reasonable assumption that our hash function
is independent of the domain of typical usernames and
passwords and does not have any “weak inputs”—domains
of inputs where it does not behave like an ideal hash
function—this condition is easily satisfied. It is highly improb-
able that related credentials such as username, username0,
username123, will all end up in the same anonymity set.

B Security of the Hash-and-Blind operation

In this section, we outline the security properties satisfied
by the hash-and-blind operation, which is an important part
of our protocol. Consider a keyed function F(k,x) := H(x)k

where H : {0,1}∗→G is a hash function mapping strings to
a group element. In our construction, H is Argon2, and G is
the elliptic curve NID_secp224r1.

The work of Jarecki et al. [27] shows that F(k, ·) imple-
ments an oblivious pseudorandom function in the random
oracle model assuming the hardness of the decision Diffie-
Hellman assumption in G. In this section, we do not elabo-
rate on the details of the proof, but we state what is meant
by a pseudorandom function and how F(k, ·) can be evalu-
ated obliviously—without the secret key k holder knowing
which input they’re evaluating on. Pseudorandomness helps
us achieve bounded leakage and protects the credentials not
queried by the user; obliviousness enables us to implement the
Diffie-Hellman blinding based private set intersection within
our protocol.

Pseudorandomness: Informally, a function F(k, ·) with out-
puts in Y is said to be pseudorandom if the function be-
haves like a random function when evaluated on new in-
puts. More formally, given outputs F(k,x1), . . . ,F(k,xQ) for

Q queries x1, . . . ,xQ of an adversary’s choice, for any other
x′ 6∈ {x1, . . . ,xQ}, we require that F(k,x′) be computationally
indistinguishable from a random element in Y as long as k is
chosen uniformly at random and remains hidden.

When applied to our construction, it implies that a client
that sees several possible H(ui,pi)

b still cannot distinguish
H(u′,p′)b from a random element in G if b is hidden.
Hash-and-blind therefore protects the contents of the server
database when interacting with clients. For the sake of com-
pleteness, we add that this protocol is only secure against
honest-but-curious adversaries which assumes that a client
might be curious to learn more than it is allowed to, but
chooses to honestly follow the protocol.

Obliviousness: A function is said to be evaluated in an obliv-
ious manner if there is a protocol between a client holding
an input x and a server holding a function f such that at
the end of the protocol, the client learns f (x) and the server
learns nothing. In our construction, f (x) = H(x)b for some
value b. The protocol between the client and server is fairly
straightforward (and somewhat implicit in our construction):
the client chooses a uniform random value a, sends H(x)a,
receives H(x)ab, and reconstructs

f (x) =
(
H(x)ab

)1/a
= H(x)b.

Correctness is fairly straightforward. To see why this is
oblivious, observe that for any two inputs x1 and x2, the distri-
butions H(x1)

r and H(x2)
s for uniformly drawn values r and s

are identical. This implies that the server learns nothing about
the client’s input x.

When applied to our construction, it states that the compo-
nent H(u,p)a computed in Algorithm 2 allows the client to
obliviously evaluate the PRF without revealing to the server
information about the credential (u,p).

We end this section with a couple of notes. First, a caveat
noting that some information about (u,p) does end up being
leaked via the anonymity set, which we capture through our
notion of leakage. A direct composition of proofs of security
involving anonymity sets and obliviousness might be tricky
and will require careful work. Deriving keys from these PRF
outputs will additionally require careful applications of KDFs
with the right domain separators to avoid re-use of crypto
components.

Second, Everspaugh et al. [14] propose an OPRF service
that is closely related to our construction here. Our require-
ments out of an OPRF differs on a couple of key points which
does not enable us to use such a service directly: 1) we do not
require the notion of partial obliviousness in their construc-
tion which adds significant computational overheads to their
service, and 2) our clients use of an OPRF does not require an
immediate evaluation of the PRF, but rather its application to a
database to obliviously evaluate its inputs and return potential
matches.

USENIX Association 28th USENIX Security Symposium 1571

Probability Model Transforming Encoders
Against Encoding Attacks

Haibo Cheng†,‡, Zhixiong Zheng†,‡, Wenting Li†,‡, Ping Wang†,‡,?, Chao-Hsien Chu§

†Peking University, {hbcheng,zxzheng,wentingli,pwang}@pku.edu.cn
‡ Key Laboratory of High Confidence Software Technologies (PKU), Ministry of Education, China

§Pennsylvania State University, chu@ist.psu.edu
?Corresponding author

Abstract
Honey encryption (HE) is a novel encryption scheme for
resisting brute-force attacks even using low-entropy keys
(e.g., passwords). HE introduces a distribution transforming
encoder (DTE) to yield plausible-looking decoy messages for
incorrect keys. Several HE applications were proposed for
specific messages with specially designed probability model
transforming encoders (PMTEs), DTEs transformed from
probability models which are used to characterize the intricate
message distributions.

We propose attacks against three typical PMTE schemes.
Using a simple machine learning algorithm, we propose a
distribution difference attack against genomic data PMTEs,
achieving 76.54%–100.00% accuracy in distinguishing real
data from decoy one. We then propose a new type of attack—
encoding attacks—against two password vault PMTEs,
achieving 98.56%–99.52% accuracy. Different from distribu-
tion difference attacks, encoding attacks do not require any
knowledge (statistics) about the real message distribution.

We also introduce a generic conceptual probability model—
generative probability model (GPM)—to formalize probabil-
ity models and design a generic method for transforming an
arbitrary GPM to a PMTE. We prove that our PMTEs are
information-theoretically indistinguishable from the corre-
sponding GPMs. Accordingly, they can resist encoding at-
tacks. For our PMTEs transformed from existing password
vault models, encoding attacks cannot achieve more than
52.56% accuracy, which is slightly better than the randomly
guessing attack (50% accuracy).

1 Introduction

Password-based encryption (PBE) is a fundamental scheme
in many real-world systems for file encryption or authentica-
tion. However, due to the limitations of human memory, users
often use weak passwords [26, 43] and reuse them [11, 30].
This leads to the vulnerability of traditional PBEs (e.g., PKCS
#5 [22]) against brute-force attacks (so-called password guess-

ing attacks), including trawling guessing attacks [25, 42] and
targeted guessing attacks [29, 41].

Several methods were proposed to address this threat. We
summarize these countermeasures into three types. The first
type is to increase the complexity of decryption for attack-
ers, including: 1) salting, which pressurizes attackers into
enumerating passwords for every user (salt); 2) using spe-
cial password-hashing functions (e.g., iterated hash func-
tions [22, 33] and memory-hard functions [6, 31]) as the key
derivation function (KDF) in PBE, which increases attack-
ers’ cost of computing and memory by a constant factor but
also consumes legitimate users’ extra cost by the same factor.
For example, LastPass, a password vault software, utilizes
these methods, including salting, 5,000 rounds of PBKDF2-
SHA256 on clients and 100,000 rounds on servers [38].

The second type of countermeasures is to harden passwords
with other factors (e.g., servers [12, 23], devices [19, 35, 37],
biometrics [9,28]) to generate high-entropy keys. These meth-
ods are widely used in authentication protocols, for example,
two-factor authentication [20, 36]. Note that LastPass also
supports YubiKey devices to secure password vaults [2]. How-
ever, these methods need additional devices (servers, biomet-
ric readers) and do worse than single password methods on
deployability [8]. Besides, if the additional factor gets stolen
or lost (without a backup), the message encrypted cannot be
recovered (e.g., [23]).

The last type of countermeasures is to generate plausible-
looking decoy messages for wrong keys to confuse attackers.
Several specific encryption schemes for specific data used this
method [5, 17], and Juels and Ristenpart proposed a generic
method called Honey Encryption (HE) [21]. HE introduces a
distribution-transforming encoder (DTE) and encodes a mes-
sage following a known distribution to a uniform seed before
encrypting. Therefore, plausible-looking decoy messages are
generated by DTE decoding incorrect seeds when decrypting
a ciphertext under wrong keys. If the DTE is perfectly secure,
i.e., decoy messages are indistinguishable from real ones, then
attackers enumerating all passwords only get many messages
and cannot distinguish the right one. This countermeasure

USENIX Association 28th USENIX Security Symposium 1573

achieves information-theoretic security without declining on
deployability and bringing legitimate users’ extra cost.

Owing to the security of HE, several applications of HE
[10,14,18] were proposed. In this paper, we focus on three typ-
ical ones, including two password vault schemes [10, 14] and
one genomic data protection scheme [18]. A password vault
contains an individual user’s multiple passwords on websites
or services and is usually encrypted under a user-chosen pass-
word, called master password. Passwords stored in password
vaults are of great value (e.g., PINs of credit cards, passwords
of virtual currency accounts) and hence greatly attract attack-
ers’ attention. Similar to password vaults, genomic data is
sensitive and needs long-term protection, as it is unchange-
able during one’s lifetime and correlated with his relatives.

The key of a HE scheme is to design a secure DTE. It is
easy for messages following a simple distribution, for exam-
ple, a uniform distribution, a normal distribution. Juels and
Ristenpart [21] designed a generic purpose DTE IS-DTE and
several specific DTEs for RSA secret keys. Notwithstanding,
it is still a great challenge to design a secure DTE for messages
following intricate distributions, e.g., natural language texts,
passwords, password vaults, and genomic data. Probability
models are usually needed to characterize the message distri-
butions. We call these DTEs probability model transforming
encoders (PMTEs), which are transformed from probability
models instead of distributions. Note that Chatterjee et al. [10]
named DTEs for natural language texts as natural language
encoders (NLEs), which are a subset of PMTEs. Though all
the existing PMTE schemes [10, 14, 18] are designed for spe-
cific messages, it is still of necessity to propose a generic
PMTE designing method.

In addition, the security evaluations of PMTEs are not com-
prehensive. The designers of password vault PMTEs [10, 14]
tried to use machine learning algorithms and Kullback-Leibler
divergence to distinguish real and decoy vaults, without con-
sidering the difference between the real and decoy seeds. For
the PMTEs in [18], it evaluated the goodness of probability
models with chi-square goodness-of-fit tests, but did not study
the influence of their goodness on the security of PMTEs.
These issues on PMTE study hinder the widespread use of
HE.

1.1 Our Contribution

In order to evaluate the security of PMTEs, we propose a
framework with encoding attacks and distribution difference
attacks. We show that password vault PMTEs [10, 14] suffer
from encoding attacks while genomic data PMTEs [18] can-
not resist distribution difference attacks. Encoding attacks,
which are a new type of attack we propose, do not require any
knowledge of real message distributions. The strong encoding
attack achieves 98.56%–99.52% accuracy (in distinguishing
a real vault from a decoy one) against password vault PMTEs.
Meanwhile, using a principal component analysis (PCA) and

a support vector machine (SVM) with a radial basis func-
tion (RBF) kernel, a distribution difference attack achieves
76.54%–100.00% accuracy against genomic data PMTEs.

We also propose a generic PMTE designing method for
arbitrary probability models, by introducing a generic con-
ceptual probability model—generative probability model
(GPM)—to formalize probability models. We prove that our
PMTEs are information-theoretically indistinguishable from
corresponding GPMs, which means that they can resist en-
coding attacks. For our proposed PMTEs of existing pass-
word vault models, encoding attacks cannot capture more
than 52.56% accuracy, compared with the randomly guessing
attack (50% accuracy).

2 Background and Related Works

We introduce the basic concepts of HE as well as three typical
HE applications with their specific PMTEs.

2.1 Honey Encryption
Honey Encryption (HE) [21], proposed by Juels and Risten-
part, is a novel encryption scheme using low-entropy keys
(e.g., passwords) which resists brute-force attack through gen-
erating a plausible decoy message for every incorrect key.
To produce decoy messages, HE introduces a randomized
encoder, called distribution transforming encoder (DTE).

M DTE PBE C

K

S

Figure 1: Honey Encryption

Figure 1 shows the encryption progress for a message M.
The encryption first encodes M into a seed S by DTE, then
encrypts S using PBE with the key K and finally outputs the
ciphertext C. The PBE used in HE is a traditional PBE but
must satisfy that decrypting any ciphertext under any key
yields a valid seed (e.g., AES in CTR-mode with PBKDF).
Therefore, decrypting C under an incorrect key K′ will yield
a wrong seed S′ and a decoy message M′ by decoding S′.
The key of HE is designing a secure DTE which generates
indistinguishable decoy messages. Juels and Ristenpart [21]
proposed a general purpose DTE IS-DTE, for the messages
following a simple distribution, such as a uniform distribution.

2.2 Password Vault Schemes
Two HE-based password vault schemes [10, 14] were pro-
posed to resist brute-force attack in the literature. A password
vault contains several passwords encrypted under a master

1574 28th USENIX Security Symposium USENIX Association

password and hence is a rich target for attackers due to the
value of passwords. Using HE, attackers who have stolen an
encrypted password vault will get many vaults by enumerating
master passwords offline and need to verify the correctness
of these vaults online. In contrast to offline guessing, online
guessing is more resource-consuming, because it is easily
blocked by remote servers with diversities of methods (e.g.,
login rate limiting [16,32] and malicious login detection [13]).
Hence, HE-based password vault schemes have great improve-
ments in security. Moreover, user surveys [11, 24, 30] and
empirical experiments on real data [7, 11, 41, 42] showed that
users often use weak passwords and reuse passwords on dif-
ferent services and websites. Therefore, designing a PMTE
for password vaults needs to characterize the single-password
distribution and the similarity between passwords in a vault.

Chatterjee et al. [10] proposed the first HE-based password
vault scheme NoCrack. They improved a kind of password
model—PCFG model [42]—and put forward a sub-grammar
approach for the password similarity based on PCFG models.
We denote this improved PCFG model as Chatterjee-PCFG
in this paper. By designing PMTEs for PCFG models and
sub-grammars respectively, they presented a PMTE for pass-
word vaults. Also, Chatterjee et al. [10] designed PMTEs for
another kind of password models—Markov models.

Golla et al. [14] put forward a new PMTE for password
vaults. In contrast to Chatterjee et al. [10], Golla et al. used a
Markov model [25] for the single-password distribution and a
reuse-rate approach for the password similarity. Their PMTE
for password vaults combines Chatterjee et al.’s PMTEs for
Markov models and IS-DTEs for normal distributions (as-
suming reuse-rates follow normal distributions). In addition,
Golla et al. [14] brought in the concept of adaptive PMTEs
(Golla et al. used the word adaptive NLEs). By adjusting the
Markov model according to the real vault, an adaptive PMTE
can generate decoy vaults which are more similar to the real
vault. Therefore, these decoy vaults are more difficult to be
distinguished from the real one. In this paper, we call adjusted
probability models according to the real message adaptive
probability models, in contrast to static probability models.

Chatterjee et al.’s [10] and Golla et al.’s [14] PMTEs for
password vaults have the same form named encode-then-
concatenate. Taking the Chatterjee et al.’s PMTE for a PCFG
model as an example, when encoding a password, this PMTE:
1) parses the derivation of the password; 2) encodes each
production rule in the derivation to a seed respectively; 3)
concatenates these seeds of production rules in order and
pads the concatenation to a fix length. Other PMTEs are
similar, which encode each character or reuse-rate and then
concatenate these seeds.

2.3 Genomic Data Protection Scheme

Genomic data is more sensitive than password vault and needs
long-term protection. Once a person’s genomic data is com-

promised, it will affect him during his lifetime and even his
relatives, because of the correlation between relatives’ ge-
nomic data. Huang et al. [18] proposed a genomic data pro-
tection scheme called GenoGuard based on HE. The genomic
data protected by GenoGuard is represented by a sequence of
single nucleotide variants (SNVs), which can be viewed as a
string of the alphabet {0,1,2}.

To fit genomic data, Huang et al. [18] evaluated four types
of models with chi-square goodness-of-fit tests, including a
uniform distribution model, a public LD (linkage disequi-
librium) model, three Markov models, and a recombination
model. Since the recombination model delivers the best per-
formance, they chose it for GenoGuard. Furthermore, Huang
et al. [18] proposed a novel PMTE for these sequences with
a different form named shrink-then-encode. When encoding,
this PMTE shrinks the seed interval for each character in
the string according to the probability of the character and
randomly picks a seed in the final seed interval.

3 Attacks Against Typical PMTEs

A PMTE is secure (i.e., decoy messages generated by a PMTE
are indistinguishable from real ones), if and only if the proba-
bility model is accurate for the real message distribution and
the PMTE is secure for the probability model. Based on that,
we propose a framework to evaluate the security of PMTEs
with two types of attacks: 1) distribution difference attacks ex-
ploiting the difference between the real message distribution
and the message probability model (i.e., the decoy message
distribution); 2) encoding attacks exploiting the difference
between the probability model and the PMTE.

3.1 Attacker Model
Attackers that we study in this paper have stolen ciphertext
of a message and further want to recover it. Based on the
Kerckhoffs’s principle, we assume that attackers know the
HE algorithm, including DTEs, but do not know the key or
any information of the message. It is reasonable because the
program shipped to users usually contains the encryption/
decryption module. Moreover, this is an essential assumption
for an attacker to carry out decrypting. More advanced at-
tackers (e.g., attackers in [10]) may equip themselves with
some knowledge about the real message distribution (e.g.,
the character distribution of messages). However, encoding
attackers we employed do not need any information about the
real message distribution. Merely relying on the DTEs, such
attackers can distinguish real and decoy messages with high
accuracy.

To recover the message, attackers: 1) decrypt the ciphertext
under N keys {ki}N

i=1 and get N messages {Mi}N
i=1; 2) choose

the most likely message. For some special types of messages
which can be verified online, for example, authentication cer-
tificates (passwords, password vaults or authentication keys),

USENIX Association 28th USENIX Security Symposium 1575

Algorithm 1: The attack process to recover a stolen
ciphertext.

Input: a stolen ciphertext c, N keys/passwords {ki}N
i=1 for

decryption, and a weight function p.
Output: a guessing list for messages (in decreasing order of p).

1 for i← 1 to N do
2 Si← decryptki

(c)
3 Mi← decode(Si)

4 end
5 Sort {Mi}N

i=1 in decreasing order of p(Mi) (or p(Si)), then output
the list. /* Different attacks are equipped with
different weight functions p, where p(Mi) usually
reflects the probability that Mi is real. */

attackers need to sort these N messages to minimize the num-
ber of online verifications. To characterize attackers in a uni-
fied form, we consider an attacker only picking one message
also as a sorting attacker who picks the first one in his order.
Assuming an attacker sorts the messages in decreasing order
of a weight function p, the attack process can be represented
as Algorithm 1.

The efficiency of an attacker depends on 1) the guessing
order of keys and 2) the sorted order of messages. These
two orders correspond to two factors—keys and DTEs, af-
fecting the security of HE schemes. The stronger the keys
are, the harder they are to be cracked. Keys used by HE are
usually human-memorable passwords. Password researches
have attracted great attention recently, such as password guess-
ing [25,41,42], password strength meter [15,39,40], password
generation policy [3, 34]. However, same as previous litera-
ture [10, 14], we ignore the influence of keys on the security
of HE schemes and only focus on the security of DTEs, i.e.,
the indistinguishability of decoy messages.

3.2 Analyses of Password Vault PMTEs
Chatterjee et al.’s PMTE [10] for password vaults uses a sub-
grammar approach to model the similarity of passwords in
one vault. Specifically, the sub-grammar (based on Chatterjee-
PCFG) of vault V = (password,password1) is {S→ W, S→
WD, W→ password, D→ 1}, where W represents an English
word and D represents a digit string. In fact, Chatterjee-PCFG
is more comprehensive. We simplify it for ease of explana-
tion. To encode a vault, this PMTE 1) first parses the sub-
grammar of the vault, 2) then encodes the sub-grammar, and
3) finally encodes the passwords in the vault according to the
sub-grammar. Decoding is in the opposite direction.

Because sub-grammars are parsed from the real vaults
when encoding, all production rules in sub-grammars are
used by passwords in the real vaults. Unfortunately, it may
not hold when decoding a random seed. For example, de-
coding a random seed, the sub-grammar may be SG = {S→
W, S→ WD, W→ password, D→ 1}, and the vault may be
V = (password,password). As passwords are generated inde-

pendently based on sub-grammars when decoding, production
rules (e.g., S→ WD) in the sub-grammar may not be used by
any password in the vault. In addition, decoded sub-grammars
may contain identical rules, but encoded ones do not, because
the rules are also independently generated when decoding a
random seed.

Similar phenomena also appear in Golla et al.’s PMTEs
[14]. They used a reuse-rate approach to model password
similarity. Given V = (password1,password1,password@),
Golla et al.’s PMTEs take “password1” as the base password
of V and “password@” as a password modified from the base
password. When encoding, they 1) encode the base pass-
word (“password1”) and the reuse-rate of the base password
(2

3), 2) encode reuse-rates of modified passwords (1
3) and the

modified characters (“@”). More specifically, Golla et al.’s
PMTEs divide the vault into six subsets {Vi}5

i=0: passwords
with an edit distance of i to the base passwords Vi (0≤ i≤ 4)
and the remaining passwords V5. Assuming the proportion
(reuse-rate) of Vi in V follow a normal distribution with a
small variance, |Vi| (the cardinality of Vi) is encoded by the
DTE of the normal distribution, for 0 ≤ i ≤ 4. In addition,
the base password, modified characters (of passwords in Vi
for 1≤ i≤ 4) and remaining passwords in V5 are encoded by
PMTEs of Markov models.

The sum of |Vi| for 0 ≤ i ≤ 4 (without |V5|) is less than
or equal to |V | when encoding. However, it may not hold
when decoding a random seed, because proportions of Vi are
generated independently. Further, the modified character of
password pw in Vi may be the same as the original character
of the base password when decoding a random seed, which
means pw actually belongs to Vj with j < i. But this is not
possible when encoding a real vault.

3.3 Attacks Against Password Vault PMTEs
In the above analyses of password vault PMTEs, we dig out
some features that real seeds (encoding from real vaults) must
have but decoy seeds (random seeds) may not have. Therefore,
an attacker is able to exclude some decoy seeds if they do not
have these features. Let pF denote the weight function based
on the feature F :

pF(S) =

{
1, if the seed S has feature F ,
0, otherwise.

We now present four features for exploration, the first two
features for the Chatterjee et al.’s PMTE [10] and the last two
features for Golla et al.’s PMTEs [14]:

1. Feature UR (unused rule): there is no unused rule in the
sub-grammar decoded from the seed.

2. Feature DR (duplicate rule): there is no duplicate rule in
the sub-grammar decoded from the seed.

3. Feature ED (edit distance): every password in the vault
has the same value of i as the one decoded from the seed.

1576 28th USENIX Security Symposium USENIX Association

Algorithm 2: The weight function pPCA+SVM of the
PCA+SVM attack

1 training:
Input: a dataset snvsList containing the same number of real

and decoy SNV sequences with the label (0 for decoy
and 1 for real) list labelList.

Output: a PCA model pca and a SVM model svm.
2 /* The classes SVC and PCA we use are svm.SVC and

decomposition.PCA in Scikit-learn, a machine
learning library for Python. */

3 pca← PCA(n_components = 10) /* We use the default
parameters except n_components as 10. */

4 pca. f it(snvsList)
5 reducedSNV sList← pca.trans f orm(snvsList)
6 svm← SVC(probability = True)
7 svm. f it(reducedSNV sList, labelList)
8 end
9 function pPCA+SVM(s)

Input: an SNV sequence s.
Output: the SVM-estimated probability that s is real.

10 reducedSNV s← pca.trans f orm([s])[0]
11 p← svm.predict_proba([reducedSNV s])[0,1]
12 return p
13 end

4. Feature PN (password number): the sum of |Vi| (0≤i≤4)
is no larger than V .

To evaluate the security of PMTEs, Chatterjee et al. [10]
used a Support Vector Machine (SVM) to distinguish the real
and decoy vaults, and Golla et al. [14] used Kullback-Leibler
(KL) divergence. These attacks only exploit the difference
between the real and decoy vault distributions but neglect the
seeds. We call this type of attack distribution difference attack.
These attacks cannot exploit the features discussed above. In
contrast, our proposed feature attacks only exploit seeds with
PMTEs and do not require any knowledge of the real vault
distribution. We call this new type of attack encoding attack.

3.4 Attacks Against Genomic Data PMTEs
Huang et al. [18] provided a formal proof for the security
of their PMTEs. They proved that their PMTEs are indistin-
guishable from probability models, but did not consider the
difference between the real message distribution and probabil-
ity models. This means their PMTEs resist encoding attacks
but have not been evaluated by distribution difference attacks.
Although Huang et al. evaluated six probability models with
chi-square goodness-of-fit tests, they did not study the influ-
ence of their goodness on the security of PMTEs.

In order to evaluate the security, we propose a simple ma-
chine learning algorithm to distinguish the real and decoy
data (i.e., SNV sequences). As shown in Algorithm 2, we use
a training set to train a principal component analysis (PCA)
model and a support vector machine (SVM) with a radial
basis function (RBF) kernel, where the training set contains
the same number of real and decoy SNV sequences, the real

sequences are randomly picked from the real dataset, and the
decoy sequences are generated by decoding random seeds
with the corresponding PMTEs. Specifically, the PCA model
is trained and used to reduce the 1000-dimensional sequences
in training set to 10 dimensions, and the SVM is trained with
the 10-dimensional sequences and the “real/decoy” labels. To
estimate the probability that a test sequence s is real, we first
use the trained PCA model to reduce s to 10 dimensions, then
resort to the trained SVM to classify the reduced sequence
and output the probability of it being real. All parameters of
the PCA and the SVM are default except “n_components” as
10. Since the default parameters deliver good performance,
we do not adjust them. We denote the SVM-estimated proba-
bility of s as pPCA+SVM(s) and propose a PCA+SVM attack
with the weight function pPCA+SVM.

4 Generative Probability Models and Generic
Encoding Attacks

In this section, we propose a generic conceptual probability
model—Generative Probability Model (GPM)—to formalize
all the existing probability models. This formalization uncov-
ers the principle of encoding attacks. Based on this principle,
we propose two generic encoding attacks—a weak encoding
attack and a strong encoding attack.

4.1 Definition

Simple models (e.g., uniform distribution models) assign ev-
ery message a probability directly, but other complex mod-
els cannot. Most complex models (e.g., PCFG models [42])
design a generative method for messages and assign every
message a probability with the generated probability of the
message. By assigning probabilities to the generating rules,
one can get a probability model for the messages. From this
point of view, we give a formal definition of Generative Prob-
ability Model.

Definition 1. A Generative Probability Model (GPM) is a
5-tuple (M ,R ,R S ,G,P), where M is the message space, R
is the set of generating rules, R S ⊂ R ∗ is the set of valid
generating sequences, G is the generating function mapping
a generating sequence RS in R S to a message M in M , and
P is the probability density function on R S . Here M ,R ,R S
are finite sets and G is surjective. Then the GPM gives M a
probability distribution by

P(M) = ∑
RS∈G−1(M)

P(RS). (1)

In addition, if G is bijective (i.e., for every message in M ,
there is only one generating sequence which can generate it),
the GPM is unambiguous, and otherwise, it is ambiguous.

USENIX Association 28th USENIX Security Symposium 1577

Usually, the probability density function P on R S is given
by the conditional probability distribution as follows:

P(RS) =
n

∏
i=1

P(ri|r1r2 . . .ri−1), (2)

where RS = (r1,r2, . . . ,rn). The conditional probability
P(ri|r1r2 . . .ri−1) is usually given in a simple form. Note that
the generating sequences in R S have variable lengths, there-
fore, the above equation requires that R S is prefix-free, i.e.,
no sequence in R S is a prefix of another sequence. Other-
wise, the function P defined by Equation 2 is not a probability
density function on R S , because ∑RS∈R S P(RS)> 1. Fortu-
nately, if R S is not prefix-free, it can easily be converted to
a prefix-free sequence space R S ′ by two simple methods: 1)
add a special rule at the beginning of the sequence to represent
the length of the sequence; 2) add a special rule at the end of
the sequence to represent the end of the sequence. Therefore,
without loss of generality, we assume generating sequence
spaces of GPMs are all prefix-free.

4.2 Formalization of Existing Models
For a Markov model of order n, a generating rule is a character,
and a valid generating sequence is a string. The conditional
probability of a rule only depends on last n rules, formally

P(ai|a1a2 . . .ai−1) = P(ai|ai−nai−n+1 . . .ai−1),

where i > n and P(ai|ai−nai−n+1 . . .ai−1) is trained on a
training set (RockYou for password vault schemes). The
Markov model with distribution-based normalization adds
some extra rules {L = l}lmax

l=1 to R , L = l represents that
the password length is equal to l, where 1 ≤ l ≤ lmax and
lmax is the max password length (e.g., 30). A valid gen-
erating sequence has the form (L = l,a1,a2, . . . ,al) which
means generating the length first and then generating the char-
acters. P(L = l,a1,a2, . . . ,al) = P(L = l)P(a1,a2, . . . ,al),
where P(a1,a2, . . . ,al) can be calculated as the ordinary
Markov model and P(L = l) represents the probability that
the length of a password is l. Note that lmax < ∞, because the
message space M is finite (the seed space S is finite).

For a PCFG model, a generating rule is a production rule of
the PCFG, a valid generating sequence is a leftmost derivation
of a string. The conditional probability of a rule does not
depend on any previous rule, formally

P(ri|r1r2 . . .ri−1) = P(ri),

where P(ri) is also trained on a training set.
For the Golla et al.’s model [14] of password vaults, a gen-

erating rule is a character or a value of |Vi| for 0 ≤ i ≤ 4. A
valid generating sequence of a vault consists of the following
rules: 1) characters of the base password, 2) |Vi|, 3) modified
characters of passwords in Vi and 4) characters of passwords

in V5. In this case, the conditional probabilities of characters
are calculated as the Markov model and |Vi| is calculated by
normal distributions.

For the Chatterjee et al.’s model [10] of password vaults, a
generating rule is a production rule of the PCFG or a number
of production rules with a certain lefthand-side in a vault, a
valid generating sequence contains a generating sequence of
a sub-grammar and leftmost derivations of passwords based
on the sub-grammar. More specifically, a valid generating se-
quence of the sub-grammar {S→ D, S→ W, D→ 123456, W→
password} is (#S = 2, S→ D, S→ W, #D = 1, D→ 123456,
#W= 1, W→ password). The rule #X= i represents that there
are i rules with the lefthand-side X in sub-grammar, it is for
the sake of the prefix-free property of R S . The conditional
probability of the rule #X= i only depends on the rule itself,
denoted as P(#X = i), which is trained on a password vault
dataset (Pastebin). The conditional probability of the rule
X→ str is the same as that in PCFG models.

For Huang et al.’s models [18] for genomic data, a gener-
ating rule is a character of {0,1,2} (representing an SNV), a
valid generating sequence is a string. The conditional prob-
ability of a rule relies on the genomic data model: for the
uniform distribution model, it is equal to 1

3 for each rule; for
the public LD model (as discussed above), it depends on the
last rule; for Markov model of order n, it depends on the last
n rules; for the recombination model, it is calculated by the
forward-backward algorithm with a hidden Markov model.

Up to this point, the existing models are all formalized
with our proposed GPMs and the distributions of generating
sequences are defined by the conditional distributions of gen-
erating rules. Beyond that, more probability models can be
formalized. For example, neural networks for passwords [27]
can be formalized as the same as Markov models except that
condition probabilities are calculated by neural networks.

4.3 Generating Graphs

To represent a GPM visually, we propose a generating graph,
which is a connected directed acyclic graph with a single
source and with edges labeled by generating rules. In a gen-
erating graph, a generating sequence is illustrated by a path
whose edges denote the corresponding generating rules in
order. Moreover, a message is figured by a sink (because the
generating sequence space is prefix-free) and a path from
the source to the sink illustrates one generating sequence of
the message. Hence, the path is called a generating path of
the message. Note that the generating graph of a model is an
arborescence, if and only if the model is unambiguous. (Note
an arborescence is a directed graph in which there is only one
single source and each other vertex has only one directed path
from the source.)

As shown in Figure 2, in Chatterjee-PCFG model, there are
two generating paths for “password”. These two generating
paths correspond to two generating sequences: {S→ W, W→

1578 28th USENIX Security Symposium USENIX Association

S

D W WW.

.

a
0.002

(0.2×0.01)

. password

0.02002
(0.2×0.1+0.1×0.02×0.01)

passW

.

S → D

0.1
S → W

0.2
S → WW

0.1

W → a
0.01

W → password
0.1

W → pass
0.02

W → word
0.01

Figure 2: Generating graph of Chatterjee-PCFG

password} and {S→ WW, W→ pass, W→ word}. Further, the
probability of the first sequence is 0.2×0.1 = 0.02 and that
of the second one is 0.1×0.02×0.01 = 0.00002. This makes
the probability of “password” be 0.02+0.00002 = 0.02002.
Since “password” has two generating sequences, Chatterjee-
PCFG model is ambiguous.

4.4 The Principle of Encoding Attacks
The features used by encoding attacks in Section 3 are all
based on heuristic analyses of specific PMTEs. Some other
features are still neglected due to the lack of a systematic
analysis. For example, on Chatterjee et al.’s password vault
PMTE [10], the order of rules in the sub-grammar is determin-
istic for real vaults, but not for decoy seeds. When encoding
the vault V = (123456,password), the first two rules in the
sub-grammar are S→ D, S→ W in order. But if the vault V is
decoded by a decoy seed, the first two rules may be S→ W,
S→ D in a different order from the real vault.

Fortunately, with the formalizations by GPMs and the vi-
sual representations by generating graphs, the principle of
encoding attacks is uncovered: existing PMTEs neglect the
ambiguity of GPMs. More specifically, in an ambiguous GPM,
there may exist multiple generating paths for a message, but
the existing PMTEs only select one deterministic path when
encoding. We name these paths encoding paths which can
be selected when encoding and meanwhile name these cor-
responding generating sequences encoding sequences. The
generating sequence of a seed can be obtained by decoding
the seed. Due to the determinacy of encoding paths, encod-
ing attacks can exclude some decoy seeds by checking if the
generating path of a seed is an encoding path, without any
information of the real message distribution.

We then take Chatterjee et al.’s PMTE [10] for Chatterjee-
PCFG as an example. As shown in Figure 2, this PMTE only
uses the blue dotted path when encoding “password”, but
the generating path of a decoy seed may be the red dashed
one. In fact, Chatterjee et al. [10] noticed the ambiguity
of Chatterjee-PCFG and briefly mentioned that the PMTE
needs to choose one parse tree randomly in all parse trees

Algorithm 3: The weight function pWEA (= pEC) of
the weak encoding attack

1 function pWEA(S)
Input: a seed S.
Output: the weight of S (for sorting in Algorithm 1).

2 Obtain the generating sequence RS and the message M of S by
decoding S

3 S′← encode(M) /* Since encode is a randomized
algorithm, S′ is probably not equal to S. */

4 Obtain the generating sequence RS′ of S′ by decoding S′

5 if RS = RS′ then return 1 /* S may be a real seed. */
6 else return 0 /* S is definitely a decoy seed. */

7 end

when encoding. However, in Chatterjee et al.’s code [10],
they have not implemented the random selection method un-
til now (June 1, 2019) and only one parse tree is selected
when encoding. Moreover, Chatterjee et al. [10] completely
neglected the ambiguity of the sub-grammar approach. For
example, a vault V = (123456,password) is encoded only
with the sub-grammar SG = {S→ D, S→ W, D→ 123456,
W → password}, but V can be generated by multiple sub-
grammars as long as they contain SG. Therefore, the encoding
paths definitely have feature UR while other generating paths
may not.

Similarly, Golla et al. [14] also did not consider the ambigu-
ity of the reuse-rate approach. For example, V = (password1,
password1,password@) can be generated by “password1” as
the base password with reuse-rates |V0|= 2

3 and |V1|= 1
3 . It

also can be generated by “password1” as the base password
with reuse-rates |V0|= 1

3 and |V1|= 2
3 . In addition, Golla et

al.’s GPMs [14] allow modifying the character of the base
password to the same character. Therefore, “password@” may
be in V2 (with “@” modified from “1” and “d” modified from
itself). This brings ambiguity to the GPM, i.e., a huge num-
ber of generating paths for a vault. Only one deterministic
path (the first one for V) is chosen when encoding. Therefore,
the encoding paths definitely have feature ED while other
generating paths may not.

Any feature utilized by any encoding attack, including fea-
tures proposed in Section 3.3, the rule-order feature or the
base-password feature discussed above, can be seen as a fea-
ture of encoding paths.

4.5 Generic Encoding Attacks

Due to the determinacy of encoding paths, we further propose
two generic encoding attacks—a weak encoding attack and a
strong encoding attack.

The weak encoding attack is accordance with feature EC
(encoding consistency) that the generating path is an encoding
path, i.e., the weight function pWEA = pEC. We use the ab-
breviation of the attack as the subscript of p for convenience.
More specifically, pWEA (i.e., whether a seed S has feature

USENIX Association 28th USENIX Security Symposium 1579

EC) can be calculated as Algorithm 3.
In contrast to the feature attacks (proposed in Section 3.3)

based on some features of encoding path, the weak encoding
attack is based on feature EC. Therefore, the seeds having
feature EC certainly have other features proposed in Section
3.3. In other words, the weak encoding attack excludes all
decoy vaults which are excluded by any feature attack.

As the seeds with feature EC are sorted randomly by the
weak encoding attack, we propose a strong encoding attack
to sort them. Let RS denote the generating sequence of the
seed S, then the weight function pSEA is defined as

pSEA(S) =
1

P(RS)
× pWEA(S).

4.6 Efficiency of Encoding Attacks
These two generic encoding attacks are efficient for PMTEs
with significantly ambiguous GPMs and deterministic encod-
ing paths, such as all existing PMTEs for password vaults. In
other words, these attacks recover the encrypted real vaults
with a high probability but a small number of online verifica-
tions. To make it clear, the weak encoding attack excludes the
seeds whose generating paths are not encoding paths, e.g., the
red dashed path in Figure 2. Namely, the excluded proportion
of the weak encoding attack is equal to the total probability of
all generating paths except encoding paths. This means that
the more ambiguous the GPM is, the more efficiency the weak
encoding attack can achieve. As discussed in Section 4.4, in
the existing GPMs for password vaults [10,14], every vault
has countless generating paths. Due to the great ambiguity
of these GPMs, the weak encoding attack is efficient for the
corresponding existing PMTEs with deterministic encoding
paths. On the other hand, if a GPM is unambiguous (e.g.,
the models of genomic data [18]), the PMTE for it can re-
sist encoding attacks naturally. Besides, the strong encoding
attack excludes all decoy seeds which are excluded by the
weak encoding attacks. Therefore, the strong encoding attack
is always more efficient than the weak encoding attack.

5 Probability Model Transforming Encoders

We propose a generic transforming method which transforms
an arbitrary GPM to a secure PMTE. Further, we give a formal
proof that the PMTE transformed by our method is indistin-
guishable from the GPM.

5.1 Conditional DTEs
Inspired by the way Chatterjee et al.’s PMTEs [10] encoding
password character by character or rule by rule, we propose
a fundamental concept of PMTE—conditional distribution
transforming encoder (CDTE)—to encode message rule by
rule. A DTE is an encoder transformed from a probability

distribution, while a CDTE is an encoder transformed from a
conditional probability distribution. Unlike a DTE, a CDTE
needs not only the message M but also the condition X to
encode M (denoted as encode(M|X)) by the conditional prob-
ability distribution P(·|X). It also needs the condition X to
decode the seed S (denoted as decode(S|X)). In this aspect,
for every condition X , the CDTE (encode(·|X),decode(·|X))
is a DTE. Interestingly, if the condition X and the message M
are mutually independent (i.e., the conditional probability dis-
tribution P(·|X) is the same for every condition X), a CDTE
degenerates into a DTE. Therefore, we state that DTEs can
be seen as a special case of CDTEs. Juels and Ristenpart [21]
proposed a generic method to transform a distribution to a
DTE and named the DTE IS-DTE. For the general conditional
distribution, we get a DTE IS-DTEX for each condition X by
means of Juels-Ristenpart method and thus we give a general
CDTE scheme IS-CDTE by the combination {IS-DTEX}X .

In the following, we give the details of our IS-CDTE. Let
X denote the condition, X denote the condition space, and
MX = {Mi}i denote the message space under the condition X .
The corresponding conditional probability is P(Mi|X), and
the cumulative distribution function is Fi = ∑

i
i′=1 P(Mi′ |X).

When encoding the message M under the condition X , the
IS-CDTE randomly generates a real number S in the interval
[Fi−1,Fi) as a seed of M. When decoding the seed S under
condition X , the IS-CDTE searches the interval [Fi−1,Fi) con-
taining S and then outputs the corresponding message Mi.
Encoding or decoding only requires a binary search of the
corresponding CDF (cumulative distribution function) table
{(Mi,Fi)}i under the condition. Therefore, the space complex-
ity and the time complexity of the IS-CDTE are O(|X | · |M |)
and O(log(|M |)), respectively.

For implementing with encryption, real-number seeds are
usually represented as bit strings of length l, i.e., integers
in [0,2l), where l is a storage overhead parameter. IS-DTEs
use the function roundl(x) converting a real-number seed
to an integer seed, where roundl(x) = round(2lx) and round
represents rounding function. We use the same method for
IS-CDTEs. In such case, the integer seed interval of Mi is
[round(2lFi−1), round(2lFi)). Hence, to ensure that each mes-
sage has at least one integer seed, l must be greater than
or equal to − log2(mini P(Mi|X)). The loss of precision by
the discretization with roundl causes a slight difference be-
tween these two conditional distributions PrIS-CDTE(M|X) =
Pr[M = M′ : S←$ S ;M′← decode(S|X)] and P(M|X), where
IS-CDTE = (encode(·|·),decode(·|·)). Fortunately, the dif-
ference is negligible in l (see Theorem 4). For convenience,
we let P(d) denote the discretization PrIS-CDTE of P.

5.2 Probability Model Transforming Encoder

Combining IS-CDTEs for the conditional distributions of gen-
erating rules, we present a PMTE for the messages, which we
call an IS-PMTE. Let l denote the storage overhead parameter,

1580 28th USENIX Security Symposium USENIX Association

then the IS-PMTE encodes the message M as follows:

1. Parse M and get all generating sequences G−1(M).
2. Calculate the probability P(d)(RS) for each generat-

ing sequence RS in G−1(M), where P(d)(r1r2 . . .rn) =

∏
n
i=1 P(d)(ri|r1r2 . . .ri−1) and P(d)(ri|r1r2 . . .ri−1) is the

discretization of P(ri|r1r2 . . .ri−1).
3. Choose a generating sequence RS in G−1(M) with

the probability P(d)(RS|M), where P(d)(RS|M) =
P(d)(RS)

∑RS′∈G−1(M)
P(d)(RS′)

.

4. Encode each rule ri in RS = (ri)i by the IS-CDTE
encode(·|r1r2 . . .ri−1) to a l-bit string Si.

5. Concatenate (Si)i, pad the concatenation to a string S of
length lnmax with random bits and then output S as a seed
for M, where nmax is the maximum length of generating
sequences in R S (i.e., the depth of the generating graph).

In opposite, the IS-PMTE decodes the seed S as follows:

1. Split S into nmax l-bit strings (Si)
nmax
i=1 .

2. Decode Si to the rule ri by decode(·|r1r2 . . .ri−1) in turn
and ignore the padding bits.

3. Generate the message M from the generating sequence
RS = (ri)

n
i=1 by M = G(RS), then output M as the mes-

sage of S.

Note that generating sequences vary in length. Because
seeds in S are of fixed length, padding is necessary for some
sequences when encoding. Furthermore, as the sequence
space R S is prefix-free, padding bits can be ignored unam-
biguously when decoding. In addition, note that in Step 2) of
encoding the probabilities of sequences are calculated as the
discretization P(d) of P, which is necessary to guarantee the
uniformity of seeds (see Theorem 3).

Due to the generality of GPMs, IS-PMTEs not only apply
to probability models discussed in this paper, but also apply
to general probability models, such as neural networks for
passwords [27].

Figure 3 depicts how “password” is encoded by our IS-
PMTE for the Chatterjee-PCFG model. First, parse all gen-
erating sequences of “password”. Corresponding to Fig-
ure 2, “password” has two generating sequences {S→ W,
W→ password} and {S→ WW, W→ pass, W→ word}. Sec-
ond, choose a sequence with the probability (0.02/0.02002≈
0.999 for the first one and 0.001 for the second one). Here we
take the second one as an example. Third, encode each gen-
erating rule in the sequence by searching the CDF table and
translate real-number seeds to bit-string seeds with roundl .
Note that in the PCFG models, the conditional probabilities
of generating rules do not depend on the previous rules and
the rules with the same lefthand-side have the same CDF ta-
ble. Therefore, the same CDF table is searched for generating
rules W→ pass and W→ word. Finally, concatenate seeds of
rules, pad the concatenation to a fixed length with random
bits and get a seed for “password”.

password

Parse and obtain all generating sequences with probabilities:
(S → W, W → password) 0.02

(S → WW, W → pass, W → word) 0.00002

Choose a generating sequence with normalized probability
(take the second sequence as an example)

Encode
W → a 0.01

an 0.001
...

...
pass 0.02

...
...

word 0.01
...

...

0

0.01

0.011

0.6

0.62

0.78

0.79

1

0.615

S → D 0.1
DW 0.05
...

...
W 0.2
...

...
WW 0.1
...

...

0

0.1

0.15

0.4

0.6

0.74

0.84

1

0.77

W → a 0.01
an 0.001
...

...
pass 0.02

...
...

word 0.01
...

...

0

0.01

0.011

0.6

0.62

0.78

0.79

1

0.787

Translate to bit string

Concatenate and pad

11000 . . . ∥10011 . . . ∥11001 . . . ∥ . . . ∥ . . .

W → pass W → wordS → WW

0.615 0.7870.77

10011. . . 11001. . .11000. . .

Figure 3: Encode “password” by our IS-PMTE for the
Chatterjee-PCFG model

5.3 Difference Between IS-PMTEs and Exist-
ing PMTEs

It is easy to get IS-PMTEs from existing GPMs of password
vaults and genomic data by our proposed generic transforming
method. The following are the differences between the IS-
PMTEs and the existing PMTEs [10, 14] for password vaults:

1. IS-PMTEs randomly choose a generating sequence,
while the existing PMTEs only choose a deterministic
generating sequence. This is the key to resist encoding
attacks. Note that the random selection may have high
time complexity, fortunately there is a method to reduce
it. We leave the details in Appendix C.

2. IS-PMTEs use roundl(x) to convert a real-number seed
to an integer seed, while Chatterjee et al. [10] designed
another method to convert a rational-number seed to an
integer seed. Unfortunately, Chatterjee et al.’s method
cannot be applied to some distributions, e.g., normal dis-
tribution. This is because probabilities may be irrational
numbers. The method we use (proposed by Juels and
Ristenpart [21]) is applicable to arbitrary distributions.

In addition, IS-PMTEs have the same form as the ex-
isting PMTEs for password vaults, which is encode-then-
concatenate. At the same time, the existing PMTEs [18] for
genomic data use another shrink-then-encode form. When

USENIX Association 28th USENIX Security Symposium 1581

encoding a string, these genomic data PMTEs shrink the seed
interval for each character in the string and further pick a
random seed in the final seed interval as the seed for the
string. Unfortunately, each interval-shrinking needs to com-
plete large integer arithmetic of length ln to calculate the
interval boundary, where l is the storage overhead parameter,
and n is the length of the string. This arithmetic costs Ω(ln)
time for each character and Ω(ln2) time for the string. In
contrast, our IS-PMTEs only need to do integer arithmetic of
length l for each character with lower time complexity Θ(ln)
for a string.

5.4 Security of IS-PMTEs
The weak and strong encoding attacks have more generic
forms for the PMTEs such as IS-PMTEs who may ran-
domly choose a generating path when encoding. If the PMTE
chooses a deterministic generating path when encoding, these
generic forms will degenerate to the given forms in Section
4.5. For the weak encoding attack, the more generic form of
feature EC is

S ∈ encode(decode(S)),

where encode(M) represents all encoded seeds from M. If
the seed S does not have feature EC, then S can be de-
coded to the message M = decode(S) but cannot be encoded
from the message M. Therefore, S is a decoy seed. In or-
der to resist weak encoding attack, it is necessary to ensure
that encode(M) = decode−1(M) for every message M ∈M ,
where decode−1(M) represents all seeds which can be de-
coded into M. In PMTEs with deterministic encoding paths,
the generating paths for all seeds in encode(M) are the same
one. In this case, the weak encoding attack degenerates to the
given form in Section 4.5.

For the strong encoding attack, the more generic form of
the weight function is

Prencode(S|decode(S)),

where Prencode(S|M) represents the probability that M is en-
coded as S under the condition of message M. We denote
it as pGSEA(S). In order to resist strong encoding attack,
it is necessary to ensure that Prencode(S|M) are equal for
every S ∈ decode−1(S), i.e., all valid seeds are uniformly
chosen when encoding. We call this property seed unifor-
mity. Further, if a DTE has this property, attackers cannot
get any useful information except the message from a seed
(see Theorem 2). This well explains why our IS-PMTEs
choose a generating sequence RS in G−1(M) with the proba-
bility P(d)(RS|M) when encoding—it precisely guarantees
that seeds are uniform (see Theorem 3). In addition, for
PMTEs with deterministic encoding path, the strong en-
coding attack degenerates to the form in Section 4.5, be-
cause pGSEA ∝ pSEA. Let M denote the message, RS = (ri)i

denote the deterministic generating sequence of M, S de-
note the seed of M, then we have: 1) if S ∈ encode(M),
pGSEA(S)= 1

|encode(M)| =
1

|encode(RS)| =
1

|S |P(RS) =
1
|S | pSEA(S);

2) otherwise, pGSEA(S) = 0 = pSEA(S).
In the following, we prove the security of IS-PMTEs, i.e.,

decoy seeds/messages are indistinguishable from real ones
by any adversary. Let M denote the message space, Prreal
denote the probability density function of real messages, S
denote the seed space, and DTE = (encode,decode) denote
the DTE. Juels and Ristenpart [21] used the advantage of
an attacker A who distinguishes between the real and de-
coy message-seed pairs to evaluate the security of a DTE,
where the advantage is Advdte

DTE,real(A) = |Pr[A(S,M) = 1 :
M←Prreal M ; S←$encode(M)]−Pr[A(S,M) = 1 : S←$ S ;
M← decode(S)]|. This advantage can be simplified, if DTE
has some properties. Correctness is the most basic prop-
erty of a DTE, which means seeds encoded from the mes-
sage M can be decoded to M correctly for every message M,
i.e., encode(M) ⊆ decode−1(M) for every M ∈M . If DTE
is correct, attackers can get the message M from the seed
S. Therefore, Advdte

DTE,real(A) can be simplified to the ad-
vantage of attacker B , who distinguishes between the real
and decoy seeds, where the advantage is Advdte,S

DTE,real(B) =

|Pr[B(S) = 1 : M←Prreal M ; S←$encode(M)]−Pr[B(S) =
1 : S←$ S]| (see Theorem 1). Moreover, if DTE is correct
and seed-uniform, Advdte

DTE,real(A) can be further simplified
to the advantage of an attacker B , who distinguishes be-
tween the real and decoy messages, where the advantage is
Advdte,M

DTE,real(B)= |Pr[B(M)= 1 : M←Prreal M]−Pr[B(M)=

1 : S←$ S ; M← decode(S)]| (see Theorem 2). The proof de-
tails are given in Appendix A.

Theorem 1. If DTE is correct, then for any attacker A , who
distinguishes between the real and decoy message-seed pairs,
there exists an attacker B (as follows), who distinguishes
between the real and decoy seeds with Advdte,S

DTE,real(B) =

Advdte
DTE,real(A).

B(S)

M← decode(S)

return A(S,M)

Theorem 2. If DTE is correct and seed-uniform, for any at-
tacker A , who distinguishes between the real and decoy seeds,
there exists an attacker B (as follows), who distinguishes be-
tween the real and decoy messages with Advdte,M

DTE,real(B) =

Advdte,S
DTE,real(A).

B(M)

S←$encode(M)

return A(S)

1582 28th USENIX Security Symposium USENIX Association

Our proposed IS-PMTEs have the above two properties,
thus we neglect the difference between these three types
of attackers. Let GPM denote the GPM and IS-PMTE de-
note the IS-PMTE of GPM. The message generated by IS-
PMTE (decoding random seed) is indistinguishable from
the message generated by GPM. Formally, the advantage
maxA Adv

gpm
IS-PMTE,GPM(A) is negligible in l (Theorem 5),

where Adv
gpm
IS-PMTE,GPM(A) = |Pr[A(M) = 1 : M←PrIS-PMTE

M]− Pr[A(M) = 1 : M ←PrGPM M]|, PrGPM is the prob-
ability density function P of GPM and PrIS-PMTE(M) =
P(d)(M) = Pr[M = M′ : S←$ S ;M′ ← decode(S)]. This
means that we design a secure PMTE for a GPM.
In addition, Advdte

IS-PMTE,real(A) ≤ Adv
gpm
IS-PMTE,GPM(A) +

Adv
gpm
GPM,real(A). If GPM is an accurate probability model

for real messages, i.e., Advgpm
GPM,real(A) is negligible, then

Advdte
IS-PMTE,real is negligible, i.e., IS-PMTE is secure for the

real message distribution.

Theorem 3. IS-PMTE is correct and seed-uniform.

Theorem 4. IS-CDTE is transformed from the condi-
tional probability Prreal(M|X), the seed length is l and m =
|M |. Then for any condition X and any distinguishing at-
tacker A ,Advdte

IS-CDTEX ,realX (A)≤ m
2l , where PrIS-CDTEX (M)=

PrIS-CDTE(M|X) and PrrealX (M) = Prreal(M|X).

Theorem 5. Assume the maximum length of generating paths
is n and each vertex has at most m children in the generat-
ing graph of GPM, then Adv

gpm
IS-PMTE,GPM(A) ≤ nm

2l for any
attacker A . Further, Advdte

IS-PMTE,real(A)≤ Adv
gpm
GPM,real(A)+

Adv
gpm
IS-PMTE,GPM(A)≤ Adv

gpm
GPM,real(A)+ nm

2l .

In summary, we propose a generic method for transforming
a GPM to a PMTE. The PMTE is secure for the GPM, which
means the PMTE is able to resist encoding attacks. To resist
distribution difference attacks, an appropriate GPM is needed,
for example, statistical language models for natural language
texts. Designing such a GPM, however, needs professional
knowledge of the real messages, we leave it to experts in
related fields.

6 Experimental Results

In this section, we evaluate the security of the existing PMTEs
on real datasets under the attacks we propose. In the literature,
none of the PMTEs for password vaults can resist encoding
attacks as well as none of the PMTEs for genomic data can
resist the PCA+SVM attack. But here, we show that our pro-
posed IS-PMTEs for existing password vault models [10, 14]
achieve the expected security against encoding attacks as
stated in Section 5.4.

6.1 Security Metrics
The ranks of real messages in the order sorted by attackers
reflect the security of DTEs. If a DTE is perfectly secure, the
real message ranks are evenly distributed under any attack.
Accordingly, we use the real message rank distribution as a
security metric like [10, 14].

More specifically, we calculate the rank of the message
M as follows: 1) generate N decoy messages {Mi}N

i=1 (by
decoding random seeds); 2) calculate the proportion r̂−(M)
(resp. r̂+(M)) of decoy messages with greater (resp. greater
or equal) weight than M in {Mi}N

i=1; 3) pick a random real
number in [r̂−(M), r̂+(M)] as the rank r̂(M). Same as [10,14],
we set N = 999. But different from [10,14] using average rank
r (of real messages) and accuracy α (of distinguishing a real
message from a decoy one), we use rank cumulative distribu-
tion functions (RCDFs) F(x) of real messages to represent
attack results. This presentation is more comprehensive than
r and α. For example, F−1(1) indicates the max rank of real
messages, and F(0) indicates the proportion of real messages
of rank 0 (i.e., ranking the first). In other words, the attacker
excludes 1−F−1(1) proportion decoy messages for all real
messages and excludes all decoy messages for F(0) propor-
tion of real messages. In addition, r and α can be calculated
from F(x) as:

r = 1−
∫ 1

0
F(x)dx, (3)

α = 1− r. (4)

6.2 Datasets
For a fair comparison, we use the same datasets as the pre-
vious literature [10, 14, 18]: a password dataset RockYou
and a password vault dataset Pastebin for password vault
schemes [10, 14], real genomic datasets from HapMap [1] for
the genomic data protection scheme [18]. RockYou is a pass-
word dataset widely used in password security research, some
notable ones like [4, 25, 27, 41], which includes 32.6 million
passwords. To the best of our knowledge, Pastebin is the only
publicly available dataset for real password vaults so far, and
it contains 276 real vaults. Because RockYou and Pastebin
are already public and no further harm will be caused, we
believe it is ethical to use them for experiments. Multiple
types of genomic datasets from HapMap are used, including
a diploid genotype dataset, a haploid genotype dataset, allele
frequency (AF) and linkage disequilibrium (LD) datasets, and
recombination rates. The diploid genotype dataset contains
165 persons’ SNV sequences. For other details of the above
datasets, please refer to [10, 18].

6.3 Evaluating Password Vault PMTEs
As shown in Figure 4a and Table 1, in Chatterjee et al.’s
PMTE [10], the average ranks r of real vaults under the feature

USENIX Association 28th USENIX Security Symposium 1583

KL divergence attack

Feature UR attack

Feature DR attack

Weak encoding attack

Strong encoding attack

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Chatterjee et al.’s PMTE [10]

KL divergence attack

Feature ED attack

Feature PN attack

Weak encoding attack

Strong encoding attack

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Golla et al.’s static PMTE [14]

KL divergence attack

Feature ED attack

Feature PN attack

Weak encoding attack

Strong encoding attack

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Golla et al.’s adaptive PMTE [14]

Uniform distribution model
Public LD model
0-th order Markov model
1-st order Markov model
2-nd order Markov model
Recombination model
Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Huang et al.’s PMTEs [18] under the PCA+SVM attack

Figure 4: Rank cumulative distribution functions (RCDFs) F(x) of the existing PMTEs

Table 1: The existing PMTEs under encoding attacks or distribution difference attacks

Application PMTE/Probability model Attack r α F(0) F−1(1)

Password vault

Chatterjee et al.’s PMTE [10]

KL divergence attack 11.83% 88.17% 1.82% 98.80%
Feature UR attack 15.14% 84.86% 0.36% 42.24%
Feature DR attack 26.96% 73.04% 0.00% 54.95%
Weak encoding attack 8.74% 91.26% 0.36% 19.42%
Strong encoding attack 1.44% 98.56% 70.55% 15.02%

Golla et al.’s static PMTE [14]

KL divergence attack 48.26% 51.74% 0.00% 98.70%
Feature ED attack 6.04% 93.96% 26.23% 41.14%
Feature PN attack 10.03% 89.97% 53.28% 99.20%
Weak encoding attack 2.25% 97.75% 58.20% 26.03%
Strong encoding attack 0.48% 99.52% 80.74% 16.12%

Golla et al.’s adaptive PMTE [14]

KL divergence attack 53.58% 46.42% 0.00% 100.00%
Feature ED attack 5.18% 94.82% 28.69% 35.44%
Feature PN attack 8.60% 91.40% 55.74% 91.79%
Weak encoding attack 2.01% 97.99% 59.02% 21.22%
Strong encoding attack 0.58% 99.42% 77.87% 17.22%

Genomic data
protection [18]

Uniform distribution model

PCA+SVM attack

0.00% 100.00% 100.00% 0.00%
Public LD model 0.00% 100.00% 99.39% 0.20%
0-th order Markov model 0.00% 100.00% 100.00% 0.00%
1-st order Markov model 0.01% 99.99% 99.39% 1.30%
2-nd order Markov model 0.53% 99.47% 55.76% 23.92%
Recombination model 23.46% 76.54% 47.88% 99.90%

1584 28th USENIX Security Symposium USENIX Association

UR attack and the feature DR attack are 15.14% and 26.96%
respectively, the accuracies α are 84.86% and 73.04%. More-
over, under the feature UR attack, the max rank (i.e., F−1(1))
is 42.24%; under the feature DR attack, this number is 54.95%.
This means the feature UR attack can exclude at least 57.76%
(i.e., 1−F−1(1)) decoy vaults for every real vault and the
feature DR attack can exclude at least 45.05%. Figures 4b,
4c and Table 1 show the performance of Golla et al.’s static
PMTE and adaptive PMTE [14], the average ranks under the
feature ED attack are 6.04% and 5.18%, while under the fea-
ture PN attack are 10.03% and 8.60%. Further, in Golla et al.’s
static PMTE, the feature ED attack excludes all decoy vaults
for 26.23% (i.e., F(0)) real vaults and meanwhile, it excludes
at least 58.86% decoy vaults for each real vault. F(0) and
1−F−1(1) under the feature PN attack are 53.28% and 0.8%
respectively. In Golla et al.’s adaptive PMTE, these numbers
are 28.69%, 64.56% under the feature ED attack, and 55.74%,
8.21% under the feature PN attack.

Compared to the above feature attacks, the weak encoding
attack has a significant improvement, where the average ranks
r of Chatterjee et al.’s PMTE [10] and Golla et al.’s (static
and adaptive) PMTEs [14] are 8.74%, 2.25%, and 2.01% re-
spectively. The excluded proportions 1−F−1(1) are 80.58%,
78.78%, and 73.97%. The strong encoding attack has a fur-
ther significant improvement compared to the weak encoding
attack. The average ranks r of these three PMTEs are 1.44%,
0.48%, and 0.57% respectively, which decrease by 84.99%,
83.88%, and 82.78% . Excluded proportions 1−F−1(1) are
84.99%, 83.88%, and 82.78% respectively, which also slightly
increase by 5.47%, 13.40%, and 5.08%.

Because the KL divergence attack performs better than
SVM attacks on all existing PMTEs for password vaults [14],
we use it for comparison. As shown in Figures 4a, 4b, 4c
and Table 1, the KL divergence attack performs well on the
Chatterjee et al.’s PMTE [10], achieving 88.17% accuracy, but
it performs almost the same as the randomly guessing attack
on Golla et al.’s PMTEs [14], only achieving 46.42%–51.74%
accuracy. Further, the RCDFs on Golla et al.’s PMTEs under
the KL divergence attack are close to the baseline (the RCDFs
under the randomly guessing attack).

For all the existing PMTEs, the curves of RCDFs under
the strong encoding attack are all above those under the KL
divergence attack. This means that every metric in Table 1
under the strong encoding attack is better than that of the
KL divergence attack. More specifically, the average ranks
of these three PMTEs under the KL divergence attack are
11.83%, 48.26%, and 53.58%, the accuracies α are 88.17%,
51.74%, and 46.42%. In contrast, the accuracies of the strong
encoding attack are 98.56%, 99.52%, and 99.43%, which are
11.78%, 92.35%, and 114.20% higher than those of the KL
divergence attack.

In addition, metric values in Table 1 under the KL diver-
gence attack are different from those given in [14], owing to
a couple of reasons: 1) for Chatterjee et al.’s PMTE [10], the

version of NoCrack used by Golla et al. [14] cannot decode
some seeds correctly, therefore have to remedy and reimple-
ment it in the experiments; 2) for Golla et al.’s PMTEs [14],
we set the pseudocount of Markov for Laplace smoothing
as 1, because under this setting the PMTEs achieve the best
security (see Appendix B).

To conclude, the Chatterjee et al.’s PMTE [10] and Golla
et al.’s PMTEs [14] are all vulnerable to encoding attacks;
meanwhile, Golla et al.’s PMTEs [14] are perfectly secure
against the best-reported distribution difference attack.

6.4 Evaluating Genomic Data PMTEs
Different from encoding attacks, the PCA+SVM attack is
a distribution difference attack which needs a training set
consisting of real and decoy data. We randomly pick 83 indi-
vidual’s SNV sequences in the real dataset1, generate a decoy
sequence for each real sequence, and use them to train our
PCA and SVM in the PCA+SVM attack. Then we use remain-
ing 82 individual’s sequences in the real dataset and generate
N (= 999) decoy sequences for each of them as the test set to
compute the RCDF F(x) with the weight function pPCA+SVM.
To avoid the impact of randomness on results, we repeat the
attack 10 times with different random divisions of the real
SNV sequences and newly generated decoy sequences for
training/testing, and calculate the average of F(x).

As shown in Figure 4d and Table 1, the PCA+SVM at-
tack achieves more than 99.47% accuracy for all probability
models except the recombination model. Even for the recom-
bination model, this attack achieves 76.54% accuracy. This
is consistent with Huang et al.’s result [18] that the recom-
bination model performs best. However, it still falls short of
the desired security, as our attack excludes all decoy data for
47.88% persons.

To summarize, Huang et al.’s PMTEs for all six models [18]
resist encoding attacks but none of them can resist distribution
difference attacks. Even the recombination model cannot be
rejected at the significance level of 0.2. This means the chi-
square goodness-of-fit test is unable to correctly evaluate the
security of probability models for generating decoy data.

6.5 Evaluating IS-PMTEs
As stated in Section 5.4, IS-PMTEs resist any encoding at-
tack in theory, we confirm that in practice with IS-PMTEs
transformed from existing password vault models. Formally,
Theorem 5 demonstrates that the IS-PMTE of an accurate
GPM resists arbitrary attacks including encoding attacks. In
fact, the IS-PMTE for an arbitrary GPM resists the weak en-
coding attack. The weight function of the weak encoding
attack is constant because every generating path has a chance
to be chosen when encoding. This means the weak encoding

1We use the small dataset published with the code of GenoGuard on
GitHub, which includes 165 persons’ SNV sequences of length 1000.

USENIX Association 28th USENIX Security Symposium 1585

Chatterjee et al.'s GPM

Golla et al.'s static GPM

Golla et al.'s adaptive GPM

Baseline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: RCDFs of our proposed IS-PMTEs under the strong
encoding attack. Note that RCDFs of IS-PMTEs under the
weak encoding attack are all equal to the baseline and these
under the KL divergence attack are the same as those of the
corresponding existing PMTEs in Figure 4.

Table 2: Our IS-PMTEs under the strong encoding attack

Probability model r α F(0) F−1(1)
Chatterjee et al.’s GPM 47.44% 52.56% 0.00% 97.60%
Golla et al.’s static GPM 53.62% 46.38% 0.41% 100.00%
Golla et al.’s adaptive GPM 54.25% 45.75% 0.00% 100.00%

Note: RCDFs of IS-PMTEs under the KL divergence attack are
the same as those of existing PMTEs, therefore these metrics
under this attack are the same as those in Table 1. RCDFs of
IS-PMTEs under the weak encoding attack are the same as those
under the randomly guessing attack, therefore these metrics are
trivial (50% for r, 50% for α, 0% for F(0) and 100% for F−1(1)).

attack degenerates to the randomly guessing attack (with a
constant weight function). In contrast, the weight function
pGSEA of the strong encoding attack is inconstant, therefore,
RCDFs under the strong encoding attack depend on GPMs.

To evaluate the security of IS-PMTEs for existing vault
models under the strong encoding attack, it is necessary to
implement the random selection method for generating paths
with the parsing function G−1. However, in existing GPMs for
password vaults, there are numerous generating paths for mes-
sages (as discussed in Section 4.4), therefore, it has high time
complexity to parse all generating paths (see the discussion
in Appendix C). For example, in Chatterjee et al.’s GPM [10],
a vault V = (123456,password) can be generated by any sub-
grammar containing SG = {S → D, S → W, D → 123456,
W→ password}. It has high time complexity to enumerate all
these sub-grammars and calculate the probabilities of generat-
ing V by them. Instead, we carry out simulation experiments
under the degenerated form of the strong encoding attack
with the weight function pSEA. Because all generating paths
are encoding paths, there is no seed S with pSEA(S) = 0, i.e.,
pSEA(S) = 1

P(RS) for every seed S. Accordingly, we use this
weight function to sort the seeds in simulation experiments.

Compared to the existing PMTEs, IS-PMTEs transformed

from the existing GPMs have a significant improvement on
security. As shown in Figure 5 and Table 2, all RCDFs of the
IS-PMTEs under the strong encoding attack are approaching
to the baseline, i.e., the RCDF under the randomly guessing
attack. Average ranks r are all near to the expected value of
50%, which are 47.44%, 53.62%, and 54.25%, respectively.
Meanwhile, the accuracies are 52.56%, 46.38%, and 45.75%,
respectively. Recall that accuracies of existing PMTEs under
the strong encoding attacks are 98.56%, 99.52%, and 99.42%,
respectively.

Note that our IS-PMTEs have the same decoy message
distributions with the corresponding GPMs. This means our
IS-PMTEs achieve the same security as the existing PMTEs
for the same GPMs under distribution difference attacks. Due
to the good performance of Golla et al.’s PMTEs [14] against
the best-reported distribution difference attack, our IS-PMTEs
for Golla et al.’s GPMs achieve the expected security under
both encoding attacks and distribution difference attacks.

7 Conclusion

With encoding attacks and distribution difference attacks, we
evaluate three typical existing PMTEs, including two for pass-
word vaults and one for genomic data. Using a PCA and an
SVM, a distribution difference attack can distinguish real and
decoy genomic data with high accuracy. Different from dis-
tribution difference attacks exploiting the difference between
real and decoy message distributions, encoding attacks are a
new type of attack we propose, which exploit the difference
between probability models and PMTEs. Encoding attacks
can exclude most decoy password vaults/seeds, without any
knowledge of real vault distributions.

Further, we introduce a generic conceptual probability
model—generative probability model (GPM)—to formalize
probability models. With the formalization by GPMs, the prin-
ciple of encoding attacks is uncovered. Based on this principle,
we propose two generic and more efficient encoding attacks.
In addition, we propose a generic method for transforming an
arbitrary GPM to a PMTE. We prove that PMTEs transformed
by this method are information-theoretically indistinguishable
from the corresponding GPMs, thus can resist encoding at-
tacks. Using this transforming method, we simplify the task of
designing a secure PMTE to the task of designing an accurate
GPM. Designing such a GPM needs professional knowledge
of real messages, we leave it to experts in related fields for
future work.

Acknowledgment

The authors are grateful to the anonymous reviewers and the
shepherd, Prof. Vincent Bindschaedler, for their invaluable
comments that highly improve the completeness of the paper.
We also give our special thanks to Prof. Kaitai Liang and

1586 28th USENIX Security Symposium USENIX Association

Qianchen Gu for their insightful suggestions and invaluable
help. This research was supported by the National Key R&D
Program of China under Grant No.2017YFB1200700, and by
the National Natural Science Foundation of China (NSFC)
under Grant No.61672059.

References

[1] Hapmap. http://hapmap.ncbi.nlm.nih.gov/
downloads/index.html.en.

[2] LastPass and YubiKey. https://lastpass.com/
yubico/.

[3] Ingolf Becker, Simon Parkin, and M Angela Sasse. The
rewards and costs of stronger passwords in a university:
linking password lifetime to strength. In Proc. USENIX
Security 2018, pages 239–253, 2018.

[4] Jeremiah Blocki, Ben Harsha, and Samson Zhou. On
the economics of offline password cracking. In Proc.
IEEE S&P 2018, pages 35–53.

[5] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan
Boneh. Kamouflage: Loss-resistant password man-
agement. In Proc. ESORICS 2010, pages 286–302.
Springer.

[6] Dan Boneh, Henry Corrigan-Gibbs, and Stuart
Schechter. Balloon hashing: A memory-hard function
providing provable protection against sequential attacks.
In Proc. ASIACRYPT 2016, pages 220–248. Springer.

[7] Joseph Bonneau. The science of guessing: Analyzing
an anonymized corpus of 70 million passwords. In Proc.
IEEE S&P 2012, pages 538–552, 2012.

[8] Joseph Bonneau, Cormac Herley, Paul C Oorschot, and
Frank Stajano. The quest to replace passwords: A frame-
work for comparative evaluation of web authentication
schemes. In Proc. IEEE S&P 2012, pages 553–567.

[9] Daniel Buschek, Alexander De Luca, and Florian Alt.
Improving accuracy, applicability and usability of
keystroke biometrics on mobile touchscreen devices.
In Proc. ACM CHI 2015, pages 1393–1402.

[10] Rahul Chatterjee, Joseph Bonneau, Ari Juels, and
Thomas Ristenpart. Cracking-resistant password vaults
using natural language encoders. In Proc. IEEE S&P
2015, pages 481–498.

[11] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita
Borisov, and XiaoFeng Wang. The tangled web of pass-
word reuse. In Proc. NDSS 2014.

[12] Warwick Ford and Burton S Kaliski. Server-assisted
generation of a strong secret from a password. In Proc.
WETICE 2000, pages 176–180.

[13] David Freeman, Sakshi Jain, Markus Dürmuth, Battista
Biggio, and Giorgio Giacinto. Who are you? a statistical

approach to measuring user authenticity. In Proc. NDSS
2016, pages 1–15.

[14] Maximilian Golla, Benedict Beuscher, and Markus Dür-
muth. On the security of cracking-resistant password
vaults. In Proc. ACM CCS 2016, pages 1230–1241.

[15] Maximilian Golla and Markus Dürmuth. On the accu-
racy of password strength meters. In Proc. ACM CCS
2018, pages 1567–1582.

[16] Paul A Grassi, James L Fenton, Elaine M Newton, Ray A
Perlner, Andrew R Regenscheid, William E Burr, and
Justin P Richer. Nist special publication 800-63b. Digi-
tal identity guidelines: Authentication and lifecycle man-
agement. Bericht, NIST, 2017.

[17] Douglas N Hoover and BN Kausik. Software smart
cards via cryptographic camouflage. In Proc. IEEE
S&P 1999, pages 208–215.

[18] Zhicong Huang, Erman Ayday, Jacques Fellay, Jean-
Pierre Hubaux, and Ari Juels. Genoguard: Protecting
genomic data against brute-force attacks. In Proc. IEEE
S&P 2015, pages 447–462.

[19] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian,
and Nitesh Saxena. Device-enhanced password proto-
cols with optimal online-offline protection. In Proc.
ACM CCS 2016, pages 177–188.

[20] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian,
and Nitesh Saxena. Two-factor authentication with end-
to-end password security. In Proc. PKC 2018, pages
431–461. Springer.

[21] Ari Juels and Thomas Ristenpart. Honey encryption:
Security beyond the brute-force bound. In Proc. EURO-
CRYPT 2014, pages 293–310. Springer.

[22] Burt Kaliski. PKCS #5: Password-based cryptography
specification version 2.0. 2000.

[23] Russell WF Lai, Christoph Egger, Manuel Reinert, Sher-
man SM Chow, Matteo Maffei, and Dominique Schröder.
Simple password-hardened encryption services. In Proc.
USENIX Security 2018, pages 1405–1421.

[24] Sanam Ghorbani Lyastani, Michael Schilling, Sascha
Fahl, Sven Bugiel, and Michael Backes. Better managed
than memorized? studying the impact of managers on
password strength and reuse. In Proc. USENIX Security
2018, pages 203–220.

[25] Jerry Ma, Weining Yang, Min Luo, and Ninghui Li. A
study of probabilistic password models. In Proc. IEEE
S&P 2014, pages 538–552.

[26] Michelle L Mazurek, Saranga Komanduri, Timothy Vi-
das, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor,
Patrick Gage Kelley, Richard Shay, and Blase Ur. Mea-
suring password guessability for an entire university. In
Proc. ACM CCS 2013, pages 173–186.

[27] William Melicher, Blase Ur, Sean M Segreti, Saranga

USENIX Association 28th USENIX Security Symposium 1587

http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en
http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en
https://lastpass.com/yubico/
https://lastpass.com/yubico/

Komanduri, Lujo Bauer, Nicolas Christin, and Lor-
rie Faith Cranor. Fast, lean, and accurate: Modeling
password guessability using neural networks. In Proc.
USENIX Security 2016, pages 175–191.

[28] Fabian Monrose, Michael K Reiter, and Susanne Wetzel.
Password hardening based on keystroke dynamics. Int.
J. Netw. Secur., 1(2):69–83, 2002.

[29] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas
Ristenpart. Beyond credential stuffing: Password sim-
ilarity models using neural networks. In Proc. IEEE
S&P 2019, pages 814–831.

[30] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini,
Hana Habib, Lujo Bauer, Nicolas Christin, Lorrie Faith
Cranor, Serge Egelman, and Alain Forget. Let’s go in
for a closer look: Observing passwords in their natural
habitat. In Proc. ACM CCS 2017, pages 295–310.

[31] Colin Percival. Stronger key derivation via sequential
memory-hard functions. Self-published, pages 1–16,
2009.

[32] Benny Pinkas and Tomas Sander. Securing passwords
against dictionary attacks. In Proc. ACM CCS 2002,
pages 161–170.

[33] Niels Provos and David Mazieres. A future-adaptable
password scheme. In Proc. USENIX ATC 1999, pages
81–91.

[34] Richard Shay, Saranga Komanduri, Adam L Durity,
Phillip Seyoung Huh, Michelle L Mazurek, Sean M
Segreti, Blase Ur, Lujo Bauer, Nicolas Christin, and
Lorrie Faith Cranor. Designing password policies for
strength and usability. ACM Trans. Inform. Syst. Secur.,
18(4):13, 2016.

[35] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena,
and Naveen Nathan. Two-factor authentication resilient
to server compromise using mix-bandwidth devices. In
Proc. NDSS 2014.

[36] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena,
and Naveen Nathan. Two-factor authentication resilient
to server compromise using mix-bandwidth devices. In
Proc. NDSS 2014, pages 1–16. The Internet Society.

[37] Maliheh Shirvanian, Stanislaw Jareckiy, Hugo
Krawczykz, and Nitesh Saxena. Sphinx: A password
store that perfectly hides passwords from itself. In Proc.
ICDCS 2017, pages 1094–1104.

[38] Joe Siegrist. LastPass security notification, July
2015. https://blog.lastpass.com/2015/06/
lastpass-security-notice.html/.

[39] Blase Ur, Felicia Alfieri, Maung Aung, Lujo Bauer,
Nicolas Christin, Jessica Colnago, Lorrie Faith Cranor,
Henry Dixon, Pardis Emami Naeini, Hana Habib, et al.
Design and evaluation of a data-driven password meter.
In Proc. ACM CHI 2017, pages 3775–3786.

[40] Ding Wang, Debiao He, Haibo Cheng, and Ping Wang.
fuzzypsm: A new password strength meter using fuzzy
probabilistic context-free grammars. In Proc. IEEE
DSN 2016, pages 595–606.

[41] Ding Wang, Zijian Zhang, Ping Wang, Jeff Yan, and
Xinyi Huang. Targeted online password guessing: An
underestimated threat. In Proc. ACM CCS 2016, pages
1242–1254.

[42] Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and
Bill Glodek. Password cracking using probabilistic
context-free grammars. In Proc. IEEE S&P 2009, pages
391–405.

[43] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair
Grant. Password memorability and security: Empirical
results. IEEE Secur. & Priv., 2(5):25–31, 2004.

A Proofs in Section 5

Proof of Theorem 1.

Advdte,S
DTE,real(B)

=|Pr[B(S)=1:M←Prreal M ;S←$encode(M)]

−Pr[B(S)=1:S←$ S]|
=|Pr[A(S,M′)=1:M←Prreal M ;S←$encode(M);

M′← decode(S)]

−Pr[A(S,M′)=1:S←$ S ;M′← decode(S)]|
=|Pr[A(S,M)=1:M←Prreal M ;S←$encode(M)]

−Pr[A(S,M)=1:S←$ S ;M← decode(S)]|
=Advdte

DTE,real(A).

Proof of Theorem 2.

Advdte,M
DTE,real(B)

=|Pr[B(M)=1:M←Prreal M]

−Pr[B(M)=1:S←$ S ;M← decode(S)]|
=|Pr[A(S′)=1:M←Prreal M ;S′←$encode(M)]

−Pr[A(S′)=1:S←$ S ;M← decode(S);
S′←$encode(M)]|

=|Pr[A(S)=1:M←Prreal M ;S←$encode(M)]

−Pr[A(S)=1:S←$ S]|
=Advdte,S

DTE,real(A).

Proof of Theorem 3. IS-DTE is correct, therefore, the com-
bination IS-CDTE = {IS-DTEX}X∈X is correct. In addition,
because R S is prefix-free, the padding bits can be ignored
unambiguously when decoding. Thus, IS-PMTE is correct.

Let S be a seed of the message M, RS = (ri)
n
i=1 be the

generating sequence of S, then the length of padding bits is
lnmax− ln and

Prencode(S|M)

1588 28th USENIX Security Symposium USENIX Association

https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/

=
P(d)(RS)
P(d)(M)

· 1
2lnmax−ln

n

∏
i=1

1
|encode(ri|r1r2 . . .ri−1)|

=
P(d)(RS)
P(d)(M)

· 1
2lnmax−ln

n

∏
i=1

1
2lP(d)(ri|r1r2 . . .ri−1)

=
P(d)(RS)
P(d)(M)

· 1
2lnmax

n

∏
i=1

1
P(d)(ri|r1r2 . . .ri−1)

=
P(d)(RS)
P(d)(M)

· 1
2lnmax P(d)(RS)

=
1

2lnmaxP(d)(M)
.

Therefore, IS-PMTE is seed-uniform.

Proof of Theorem 4. According to the definition
of IS-CDTEX , PrIS-CDTEX (Mi) = Pr(d)realX (Mi) =
roundl(Fi) − roundl(Fi−1) and PrrealX (Mi) = Fi − Fi−1,
so that |PrIS-CDTEX (Mi) − PrrealX (Mi)| ≤ 1

2l . To summa-
rize, Advdte

IS-CDTEX ,realX (A) ≤ ∑M∈M |PrIS-CDTEX (M) −
PrrealX (M)| ≤ m

2l .

Proof of Theorem 5. PrIS-PMTE is the discretization of
PrGPM. Similarly, discretizing the first i levels of the generat-
ing graph (and keeping the rest levels unchanged) gets a GPM,
denoted as GPMi. Therefore, PrGPMi(r j|r1r2 . . .r j−1) =
PrGPMi−1(r j|r1r2 . . .r j−1) for j 6= i and by Theorem 4
|PrGPMi(ri|r1r2 . . .ri−1) − PrGPMi−1(ri|r1r2 . . .ri−1)| ≤ 1

2l ,
then

Adv
gpm
GPMi,GPMi−1

(A)

≤ ∑
M∈M

|PrGPMi(M)−PrGPMi−1(M)|

≤ ∑
RS∈R S

|PrGPMi(RS)−PrGPMi−1(RS)|

= ∑
(r j) j∈R S

∣∣∏
j

PrGPMi(r j|r1r2 . . .r j−1)

−∏
j

PrGPMi−1(r j|r1r2 . . .r j−1)
∣∣

= ∑
(r j) j∈R S

∏
j 6=i

PrGPMi(r j|r1r2 . . .r j−1)×

|PrGPMi(ri|r1r2 . . .ri−1)−PrGPMi−1(ri|r1r2 . . .ri−1)|

≤ ∑
(r j) j∈R S

∏
j 6=i

PrGPMi(r j|r1r2 . . .r j−1)
1
2l

=
m
2l .

Because PrGPM0 = PrGPM and PrGPMn = PrIS-PMTE,
Adv

gpm
IS-PMTE,GPM(A) ≤ ∑

n
i=1Adv

gpm
GPMi,GPMi−1

(A) ≤ nm
2l .

Moreover, Advdte
IS-PMTE,real(A) ≤ Adv

gpm
IS-PMTE,GPM(A) +

Adv
gpm
GPM,real(A)≤ Adv

gpm
GPM,real(A)+ nm

2l .

KL divergence attack (static)

KL divergence attack (adaptive)

Strong encoding attack (static)

Strong encoding attack (adaptive)

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1
0.0

0.1

0.2

0.3

0.4

0.5

Pseudocount

A
ve
ra
ge
ra
nk

Figure 6: Average rank vs. pseudocount for Golla et al.’s
PMTEs [14]

B The Security of Golla et al.’s PMTEs [14]
with Different Pseudocounts

We find out that pseudocounts (smoothing parameter) of
Markov models with Laplace smoothing in Golla et al.’s
PMTEs [14] have a significant influence on the security of
PMTEs. As shown in Figure 6 and Table 3, the average rank
r increases as pseudocount increases under both the KL di-
vergence attack and the strong encoding attacks, and mean-
while, the accuracy α decreases. This means that Golla et al.’s
PMTEs [14] achieve the best security when pseudocount is 1.
Other metrics in Table 3 also support this conclusion.

Further, when pseudocount is 1, α of the KL divergence at-
tacks are 51.74% and 46.42% on Golla et al.’s static and adap-
tive PMTEs, respectively. This means Golla et al.’s PMTEs/
GPMs almost achieve the expected security (α = 50%) under
the best-reported distribution difference attacks.

C The Complexity of IS-PMTEs and Opti-
mization for Encoding

The complexity of an IS-PMTE is of the same order as that
of the corresponding GPM. The IS-PMTE stores the CDF
table as well as the GPM stores the PDF (probability density
function) table. These two tables are of the same size, which
means the PMTE and the GPM have the same order of space
complexity. When encoding a message, the IS-PMTE needs
to obtain all generating sequences for the message and calcu-
late the probability of each sequence, which also needs to be
done when the GPM calculates the (total) probability of the
message. Moreover, encoding/decoding a sequence needs to
do binary search on CDF tables, and meanwhile, calculating
the probability of the sequence needs to do binary search on
PDF tables. Therefore, the IS-PMTE and the GPM have the
same order of time complexity (for encoding messages and
calculating message probabilities, respectively).

However, it suffers from high time complexity to obtain all
generating paths for some GPMs with great ambiguity. As

USENIX Association 28th USENIX Security Symposium 1589

Table 3: Golla et al.’s PMTEs [14] with different pseudocounts

Pseudo-
count

Attack
Golla et al.’s static PMTE [14] Golla et al.’s adaptive PMTE [14]

r α F(0) F−1(1) r α F(0) F−1(1)
1

KL diver-
gence
attack

48.26% 51.74% 0.00% 98.70% 53.58% 46.42% 0.00% 100.00%
10−1 37.13% 62.87% 0.00% 99.50% 43.42% 56.58% 0.00% 100.00%
10−2 33.59% 66.41% 2.46% 99.40% 39.55% 60.45% 2.87% 100.00%
10−4 31.11% 68.89% 11.89% 99.20% 36.71% 63.29% 11.89% 100.00%
10−6 30.11% 69.89% 14.75% 99.00% 35.91% 64.09% 14.75% 100.00%
10−8 29.42% 70.58% 17.21% 99.50% 34.62% 65.38% 16.80% 100.00%
1

Strong
encoding
attack

0.48% 99.52% 80.74% 16.12% 0.58% 99.42% 77.87% 17.22%
10−1 0.22% 99.78% 87.30% 10.11% 0.23% 99.77% 82.38% 9.81%
10−2 0.12% 99.88% 90.57% 9.51% 0.14% 99.86% 90.16% 7.81%
10−4 0.12% 99.88% 92.21% 10.51% 0.10% 99.90% 92.21% 6.41%
10−6 0.11% 99.89% 91.80% 7.91% 0.11% 99.89% 90.98% 8.41%
10−8 0.11% 99.89% 91.80% 8.61% 0.13% 99.87% 92.62% 9.51%

discussed in Section 4.4, in Chatterjee et al.’s GPM [10], a
vault can be generated by numerous sub-grammars in Chat-
terjee et al.’s GPMs. In Golla et al.’s [14] GPMs, a vault can
be generated by different base passwords, different cardinali-
ties of subsets and different modified characters. Fortunately,
some generating paths can be pruned to reduce the time com-
plexity of encoding. In some models, the dependency of some
rules is ignored (by assuming the rules are independent). This
triggers some unnecessary paths which can be pruned. For
example, in Golla et al.’s GPMs [14], the modified character
bi of passwords in Vi (1≤ i≤ 4) and the corresponding char-
acter ai of the base password are assumed to be independent.
In other words, the character of the base password can be
modified to itself, i.e., ai = bi. This yields significant ambi-
guity. By prohibiting this, we can prune the branch of the
original character ai when generating the modified character
bi. More specifically, the steps of the pruned encoding are as
follows: 1) copy a CDF table and delete ai in the new table;
2) renormalize remaining characters; 3) encode bi through
the renormalized CDF table; 4) abandon the copied CDF
table (use the original table for encoding other characters).
From the view of the generating graph, the branch of ai on
the node of generating bi are pruned, resulting in a decrease
of time complexity. Besides, the following branches can also
be pruned: 1) the character of passwords in V5 which is the
same as the corresponding character of the base password; 2)
the cardinality of Vi which is larger than the number of rest
passwords. By pruning unnecessary branches on some nodes
in the generating graph, we greatly reduce the ambiguity of
Golla et al.’s GPMs [14]. For the vaults V , there are only n′

generating paths left, where n′ is the number of unique pass-
words in V . Each path corresponds to a different password
for generating the vault as the base password.

In Chatterjee et al.’s GPM [10], some unnecessary branches
can also be pruned efficiently, e.g., the branches of duplicate
rules. However, the branches of unused rules are difficult
to be pruned. For example, a vault V of size 2 is generated

by the sub-grammar SG = {S→ D, S→ W, D→ 123456,
W→ password}. If the first password in V is “123456”, then
the second one must be “password” to avoid unused rules, i.e.,
the branch of the rule S→ D should be pruned when gener-
ating the second password. In addition, some sub-grammars
cannot generate a vault of size 2 without unused rules, for
example, the sub-grammars consist of three rules with the
lefthand-side S. It also needs to be pruned the branches of
all these sub-grammars and renormalize the rest branches.
Therefore, in order to prune the branches of unused rules, it
is necessary to prune and renormalize branches on almost all
nodes in the generating graph. This pruning is difficult be-
cause of the high time complexity, especially for the vaults of
large sizes. Another simple and straightforward method is to
add extra rules in the sub-grammar randomly when encoding.
It seems to address this problem. However, the Chatterjee et
al.’s GPM [10] with this rule-adding method resists the weak
encoding attack but still suffers from the strong encoding at-
tack unless the probability of adding extra rules is equal to the
probability of the generating path. This is because the DTE
must be seed-uniform in order to resist the strong encoding
attack. Moreover, calculating the probability of adding extra
rules has the same order of time complexity as calculating
the probability of the generating path. Therefore, if this rule-
adding method guarantees the property of seed-uniformity, it
is equivalent to our method which randomly chooses a gener-
ating path with its probability. In other words, the rule-adding
method does not perform efficiently in resisting the strong
encoding attack. To conclude, we state that a secure DTE of
the sub-grammar approach does have high time complexity.

To get rid of the high time complexity of encoding
sub-grammars, we propose a design principle for GPMs—
minimizing the ambiguity of the GPM—to reduce the time
complexity of encoding in the corresponding PMTEs. Instead
of optimizing the encoding algorithm after designing a GPM
with great ambiguity, it may be better to minimize the ambi-
guity when designing the GPM.

1590 28th USENIX Security Symposium USENIX Association

The Art of The Scam:
Demystifying Honeypots in Ethereum Smart Contracts

Christof Ferreira Torres
SnT, University of Luxembourg

Mathis Steichen
SnT, University of Luxembourg

Radu State
SnT, University of Luxembourg

Abstract

Modern blockchains, such as Ethereum, enable the execu-
tion of so-called smart contracts – programs that are exe-
cuted across a decentralised network of nodes. As smart
contracts become more popular and carry more value, they
become more of an interesting target for attackers. In the
past few years, several smart contracts have been exploited
by attackers. However, a new trend towards a more proac-
tive approach seems to be on the rise, where attackers do not
search for vulnerable contracts anymore. Instead, they try
to lure their victims into traps by deploying seemingly vul-
nerable contracts that contain hidden traps. This new type
of contracts is commonly referred to as honeypots. In this
paper, we present the first systematic analysis of honeypot
smart contracts, by investigating their prevalence, behaviour
and impact on the Ethereum blockchain. We develop a tax-
onomy of honeypot techniques and use this to build HON-
EYBADGER – a tool that employs symbolic execution and
well defined heuristics to expose honeypots. We perform a
large-scale analysis on more than 2 million smart contracts
and show that our tool not only achieves high precision, but
is also highly efficient. We identify 690 honeypot smart con-
tracts as well as 240 victims in the wild, with an accumulated
profit of more than $90,000 for the honeypot creators. Our
manual validation shows that 87% of the reported contracts
are indeed honeypots.

1 Introduction

The concept of blockchain has been introduced in 2009
with the release of Satoshi Nakamoto’s Bitcoin [26] and
has greatly evolved since then. It is regarded as one of the
most disruptive technologies since the invention of the In-
ternet itself. In recent years, companies across the globe
have poured value into blockchain research, examining how
it can make their existing business more efficient and secure.
A blockchain is essentially a verifiable, append-only list of
records in which all transactions are recorded in so-called

blocks. Every block is linked to its previous block via a cryp-
tographic hash, thus forming a chain of blocks or a so-called
“blockchain”. This list is maintained by a distributed peer-
to-peer network of untrusted nodes, which follow a consen-
sus protocol that dictates the appending of new blocks. Trust
is obtained via the assumption that the majority acts faith-
fully and going against the protocol is too costly.

A broad range of different blockchain implementations
have emerged since the inception of Bitcoin. However, all of
these implementations pursue a common goal, namely, the
decentralisation of control over a particular asset. Bitcoin’s
asset is its cryptocurrency and the trusted centralised enti-
ties it attempts to decentralise are traditional banks. Mod-
ern blockchains such as Ethereum [46] aim to decentralise
the computer as a whole through so-called smart contracts.
Smart contracts are programs that are stored and executed
across the Ethereum blockchain via the Ethereum Virtual
Machine (EVM). The EVM is a purely stack-based virtual
machine that supports a Turing-complete instruction set of
opcodes. Smart contracts are deployed, invoked and re-
moved from the blockchain via transactions. Each operation
on the EVM costs a specified amount of gas. When the total
amount of gas assigned to a transaction is exceeded, program
execution is terminated and its effects are reversed. In con-
trast to traditional programs, smart contracts are immutable.
Thus, programming mistakes that were never intended by
the developer, become now irreversible. Developers usu-
ally write smart contract code in a high-level language which
compiles into EVM bytecode. At the time of writing, Solid-
ity [47] is the most prevalent high-level language for devel-
oping smart contracts in Ethereum.

In 2018, Ethereum reached a market capitalisation of over
$133 billion [9]. As it becomes more and more valuable, at-
tackers become more and more incentivised to find and ex-
ploit vulnerable contracts. In fact, Ethereum already faced
several devastating attacks on vulnerable smart contracts.
The most prominent ones being the DAO hack in 2016 [34]
and the Parity Wallet hack in 2017 [29], together causing
a loss of over $400 million. In response to these attacks,

USENIX Association 28th USENIX Security Symposium 1591

academia proposed a plethora of different tools that allow
to scan contracts for vulnerabilities, prior to deploying them
on the blockchain (see e.g. [21, 25, 38]). Unfortunately, these
tools may also be used by attackers in order to easily find vul-
nerable contracts and exploit them. This potentially enables
attackers to follow a reactive approach by actively scanning
the blockchain for vulnerable contracts.

Alternatively, attackers could follow a more proactive ap-
proach by luring their victims into traps. In other words: Why
should I spend time on looking for victims, if I can just let the
victims come to me? This new type of fraud has been intro-
duced by the community as “honeypots” (see e.g. [32, 33]).
Honeypots are smart contracts that appear to have an obvious
flaw in their design, which allows an arbitrary user to drain
ether (Ethereum’s cryptocurrency) from the contract, given
that the user transfers a priori a certain amount of ether to the
contract. However, once the user tries to exploit this appar-
ent vulnerability, a second, yet unknown, trapdoor unfolds
which prevents the draining of ether to succeed. The idea
is that the user solely focuses on the apparent vulnerability
and does not consider the possibility that a second vulnera-
bility might be hidden in the contract. Similar to other types
of fraud, honeypots work because human beings are often
easily manipulated. People are not always capable of quan-
tifying risk against their own greed and presumptions.

In this paper, we investigate the prevalence of such honey-
pot smart contracts in Ethereum. To the best of our knowl-
edge this is the first work to provide an in depth analysis on
the inner workings of this new type of fraud. Moreover, we
introduce HONEYBADGER – a tool that uses a combination
of symbolic execution and precise heuristics to automatically
detect various types of honeypots. Using HONEYBADGER,
we are able to provide interesting insights on the plethora,
anatomy and popularity of honeypots that are currently de-
ployed on the Ethereum blockchain. Finally, we investigate
whether this new type of scam is profitable and we discuss
the effectiveness of such honeypots. In summary, we present
the following main contributions:

• We conduct the first systematic analysis of an emerging
new type of fraud in Ethereum: honeypots.

• We identify common techniques used by honeypots and
organise them in a taxonomy.

• We present HONEYBADGER, a tool that automatically
detects honeypots in Ethereum smart contracts.

• We run HONEYBADGER on 151,935 unique smart con-
tracts and confirm the prevalence of at least 282 unique
honeypots.

2 Background

In this section, we provide the required background for un-
derstanding the setting of our work, including a description

of smart contracts, the Ethereum virtual machine, and the
Etherscan blockchain explorer.

2.1 Smart Contracts
The notion of smart contracts has been introduced by Nick
Szabo in 1997 [35]. He described the concept of a trustless
system consisting of self-executing computer programs that
would facilitate the digital verification and enforcement of
contract clauses contained in legal contracts. However, this
concept only became a reality with the release of Ethereum
in 2015. Ethereum smart contracts are different from tra-
ditional programs in several aspects. For example, as the
code is stored on the blockchain, it becomes immutable and
its execution is guaranteed by the blockchain. Nevertheless,
smart contracts may be destroyed, if they contain the nec-
essary code to handle their destruction. Once destroyed, a
contract can no longer be invoked and its funds are trans-
ferred to another address. Smart contracts are usually de-
veloped using a dedicated high-level programming language
that compiles into low-level bytecode. The bytecode of a
smart contract is then deployed to the blockchain through a
transaction. Once successfully deployed, a smart contract is
identified by a 160-bit address. Despite a large variety of pro-
gramming languages (e.g. Vyper [44], LLL [19] and Bam-
boo [6]), Solidity [47] remains the most prominent program-
ming language for developing smart contracts in Ethereum.
Solidity’s syntax resembles a mixture of C and JavaScript. It
comes with a multitude of unique concepts that are specific
to smart contracts, such as the transfer of funds or the capa-
bility to call other contracts.

2.2 Ethereum Virtual Machine
The Ethereum blockchain consists of a network of mutually
distrusting nodes that together form a decentralised public
ledger. This ledger allows users to create and invoke smart
contracts by submitting transactions to the network. These
transactions are processed by so-called miners. Miners exe-
cute smart contracts during the verification of blocks, using
a dedicated virtual machine denoted as the Ethereum Virtual
Machine [46]. The EVM is a stack-based, register-less vir-
tual machine, running low-level bytecode, that is represented
by an instruction set of opcodes. To guarantee termination
of a contract and thus prevent miners to be stuck in endless
loops of execution, the concept of gas has been introduced.
It associates costs to the execution of every single instruc-
tion. When issuing a transaction, the sender has to specify
the amount of gas that he or she is willing to pay to the miner
for the execution of the smart contract. The execution of a
smart contract results in a modification of the world state σ ,
a data structure stored on the blockchain mapping an address
a to an account state σ [a]. The account state of a smart con-
tract consists of two main parts: a balance σ [a]b, that holds

1592 28th USENIX Security Symposium USENIX Association

Attacker Honeypot

1) Deployment

3) Withdrawal
2) Exploitation

Victim

Figure 1: Actors and phases of a honeypot.

the amount of ether owned by the contract, and storage σ [a]s,
which holds the persistent data of the contract. Storage is or-
ganised as a key-value store and is the only way for a smart
contract to retain state across executions. Besides the world
state σ , the EVM also holds a transaction execution environ-
ment I, which contains the address of the smart contract that
is being executed Ia, the transaction input data Id , the trans-
action sender Is and the transaction value Iv. The EVM can
essentially be seen as a transaction-based state machine, that
takes as input σ and I, and outputs a modified world state σ ′.

2.3 Etherscan Blockchain Explorer
Etherscan1 is an online platform that collects and displays
blockchain specific information. It acts as a blockchain nav-
igator allowing users to easily lookup the contents of indi-
vidual blocks, transactions and smart contracts on Ethereum.
It offers multiple services on top of its exploring capabili-
ties. One of these services is the possibility for smart con-
tract creators to publish their source code and confirm that
the bytecode stored under a specific address is the result of
compilation of the specified source code. It also offers users
the possibility to leave comments on smart contracts.

3 Ethereum Honeypots

In this section, we provide a general definition of a honeypot
and introduce our taxonomy of honeypots.

3.1 Honeypots
Definition 1 (Honeypot) A honeypot is a smart contract
that pretends to leak its funds to an arbitrary user (victim),
provided that the user sends additional funds to it. However,
the funds provided by the user will be trapped and at most
the honeypot creator (attacker) will be able to retrieve them.

Figure 1 depicts the different actors and phases of a honey-
pot. A honeypot generally operates in three phases:

1. The attacker deploys a seemingly vulnerable contract
and places a bait in the form of funds;

2. The victim attempts to exploit the contract by transfer-
ring at least the required amount of funds and fails;

1https://etherscan.io/

3. The attacker withdraws the bait together with the funds
that the victim lost in the attempt of exploitation.

An attacker does not require special capabilities to set up
a honeypot. In fact, an attacker has the same capabilities
as a regular Ethereum user. He or she solely requires the
necessary funds to deploy the smart contract and place a bait.

3.2 Taxonomy of Honeypots

We grasped public sources available on the Internet, in or-
der to have a first glimpse at the inner workings of honey-
pots [45, 22, 32, 31, 33]. We were able to collect a total of 24
honeypots (see Table 5 in Appendix A) and distill 8 different
honeypot techniques. We organise the different techniques
in a taxonomy (see Table 1), whose purpose is twofold: (i)
as a reference for users in order to avoid common honeypots
in Ethereum; (ii) as a guide for researchers to foster the de-
velopment of methods for the detection of fraudulent smart
contracts. We group the different techniques into three dif-
ferent classes, according to the level on which they operate:

1. Ethereum Virtual Machine

2. Solidity Compiler

3. Etherscan Blockchain Explorer

The first class tricks users by making use of the unusual
behaviour of the EVM. Although the EVM follows a strict
and publicly known set of rules, users can still be misled
or confused by devious smart contract implementations that
suggest a non-conforming behaviour. The second class re-
lates to honeypots that benefit from issues that are intro-
duced by the Solidity compiler. While some compiler is-
sues are well known, others still remain undocumented and
might go unnoticed if a user does not analyse the smart con-
tract carefully or does not test it under real-world conditions.
The final and third class takes advantage of issues that are
related to the limited information displayed on Etherscan’s
website. Etherscan is perhaps the most prominent Ethereum

Level Technique
Ethereum Virtual Machine Balance Disorder

Solidity Compiler

Inheritance Disorder
Skip Empty String Literal
Type Deduction Overflow

Uninitialised Struct

Etherscan
Blockchain Explorer

Hidden State Update
Hidden Transfer

Straw Man Contract

Table 1: A taxonomy of honeypot techniques in Ethereum
smart contracts.

USENIX Association 28th USENIX Security Symposium 1593

1 contract MultiplicatorX3 {

2 ...

3 function multiplicate(address adr) payable {

4 if (msg.value >= this.balance)

5 adr.transfer(this.balance+msg.value);

6 }

7 }

Figure 2: An example of a balance disorder honeypot.

blockchain explorer and many users fully trust the data dis-
played therein. In the following, we explain each honey-
pot technique through a simplified example. We also assume
that: 1) the attacker has placed a bait in form of ether into the
smart contract, as an incentive for users to try to exploit the
contract; 2) the attacker has a way of retrieving the amount
of ether contained in the honeypot.

3.2.1 Ethereum Virtual Machine

Balance Disorder. Every smart contract in Ethereum pos-
sesses a balance. The contract in Figure 2 depicts an ex-
ample of a honeypot that makes use of a technique that we
denote as balance disorder. The function multiplicate

suggests that the balance of the contract (this.balance)
and the value included in the transaction to this function call
(msg.value) are transferred to an arbitrary address, if the
caller of this function includes a value that is higher than or
equal to the current balance of the smart contract. Hence, a
naive user will believe that all that he or she needs to do, is
to call this function with a value that is higher or equal to
the current balance, and that in return he or she will obtain
the “invested” value plus the balance contained in the con-
tract. However, if a user tries to do so, he or she will quickly
realise that line 5 is not executed because the condition at
line 4 does not hold. The reason for this is that the balance
is already incremented with the transaction value, before the
actual execution of the smart contract takes place. It is worth
noting that: 1) the condition at line 4 can be satisfied if the
current balance of the contract is zero, but then the user does
not have an incentive to exploit the contract; 2) the addition
this.balance+msg.value at line 5, solely serves the pur-
pose of making the user further believe that the balance is
updated only after the execution.

3.2.2 Solidity Compiler

Inheritance Disorder. Solidity supports inheritance via
the is keyword. When a contract inherits from multiple con-
tracts, only a single contract is created on the blockchain,
and the code from all the base contracts is copied into the
created contract. Figure 3 shows an example of a honeypot
that makes use of a technique that we denote as inheritance
disorder. At first glance, there seems to be nothing special

1 contract Ownable {

2 address owner = msg.sender;

3 modifier onlyOwner {

4 require(msg.sender == owner);

5 _;

6 }

7 }

8 contract KingOfTheHill is Ownable {

9 address public owner;

10 ...

11 function () public payable {

12 if(msg.value >jackpot)owner=msg.sender;

13 jackpot += msg.value;

14 }

15 function takeAll () public onlyOwner {

16 msg.sender.transfer(this.balance);

17 jackpot = 0;

18 }

19 }

Figure 3: An example of an inheritance disorder honeypot.

about this code, we have a contract KingOfTheHill that
inherits from the contract Ownable. We notice two things
though: 1) the function takeAll solely allows the address
stored in variable owner to withdraw the contract’s balance;
2) the owner variable can be modified by calling the fallback
function with a message value that is greater than the current
jackpot (line 12). Now, if a user tries to call the function
in order to set themself as the owner, the transaction suc-
ceeds. However, if he or she afterwards tries to withdraw
the balance, the transaction fails. The reason for this is that
the variable owner, declared at line 9, is not the same as the
variable that is declared at line 2. We would assume that the
owner at line 9 would be overwritten by the one at line 2,
but this is not the case. The Solidity compiler will treat the
two variables as distinct variables and thus writing to owner

at line 9 will not result in modifying the owner defined in the
contract Ownable.

Skip Empty String Literal. The contract illustrated in
Figure 4 allows a user to place an investment by sending a
minimum amount of ether to the contract’s function invest.
Investors may withdraw their investment by calling the func-
tion divest. Now, if we have a closer look at the code,
we realise that there is nothing that prohibits the investor
from divesting an amount that is greater than the originally
invested amount. Thus a naive user is led to believe that
the function divest can be exploited. However, this con-
tract contains a bug known as skip empty string literal2. The
empty string literal that is given as an argument to the func-
tion loggedTransfer (line 14), is skipped by the encoder
of the Solidity compiler. This has the effect that the en-
coding of all arguments following this argument are shifted
to the left by 32 bytes and thus the function call argument

2https://github.com/ethereum/solidity/blob/develop/docs/bugs.json

1594 28th USENIX Security Symposium USENIX Association

1 contract DividendDistributorv3 {

2 ...

3 function loggedTransfer(uint amount ,bytes32

msg ,address target ,address currentOwner){

4 if (! target.call.value(amount)()) throw;

5 Transfer(amount ,msg ,target ,currentOwner);

6 }

7 function invest () public payable {

8 if (msg.value >= minInvestment)

9 investors[msg.sender]. investment +=msg.

value;

10 }

11 function divest(uint amount) public {

12 if (investors[msg.sender]. investment == 0

|| amount == 0) throw;

13 investors[msg.sender]. investment -= amount;

14 this.loggedTransfer(amount ,"",msg.sender ,

owner);

15 }

16 }

Figure 4: An example of a skip empty string literal honeypot.

1 contract For_Test {

2 ...

3 function Test() payable public {

4 if (msg.value > 0.1 ether) {

5 uint256 multi = 0;

6 uint256 amountToTransfer = 0;

7 for (var i = 0; i < 2*msg.value; i++) {

8 multi = i*2;

9 if (multi < amountToTransfer) {

10 break;

11 amountToTransfer = multi;

12 }

13 msg.sender.transfer(amountToTransfer);

14 }

15 }

16 }

Figure 5: An example of a type deduction overflow honey-
pot.

msg receives the value of target, whereas target is given
the value of currentOwner, and finally currentOwner re-
ceives the default value zero. Thus, in the end the function
loggedTransfer performs a transfer to currentOwner in-
stead of target, essentially diverting all attempts to divest
from the contract to transfers to the owner. A user trying
to use the smart contract’s apparent vulnerability thereby ef-
fectively just transfers the investment to the contract owner.

Type Deduction Overflow. In Solidity, when declaring a
variable as type var, the compiler uses type deduction to au-
tomatically infer the smallest possible type from the first ex-
pression that is assigned to the variable. The contract in Fig-
ure 5 depicts an example of a honeypot that makes use of a
technique that we denote as type deduction overflow. At first,
the contract suggests that a user will be able to double the in-

1 contract GuessNumber {

2 uint private randomNumber=uint256(keccak256(

now))%10+1;

3 uint public lastPlayed;

4 uint public minBet =0.1 ether;

5 struct GuessHistory {

6 address player;

7 uint256 number;

8 }

9 function guessNumber(uint256 _number)payable{

10 require(msg.value >= minBet &&_number <=10);

11 GuessHistory guessHistory;

12 guessHistory.player = msg.sender;

13 guessHistory.number = _number;

14 if (_number == randomNumber)

15 msg.sender.transfer(this.balance);

16 lastPlayed = now;

17 }

18 }

Figure 6: An example of an uninitialised struct honeypot.

vestment. However, since the type is only deduced from the
first assignment, the loop at line 7 will be infinite. Variable
i will have the type uint8 and the highest value of this type
is 255, which is smaller than 2 * msg.value3. Therefore,
the loop’s halting condition will never be reached. Never-
theless, the loop can still be stopped, if the variable multi

is smaller than amountToTransfer. This is possible, since
amountToTransfer is assigned the value of multi, which
eventually will be smaller than amountToTransfer due to
an integer overflow happening at line 8, where i is multiplied
by 2. Once the loop exits, the contract performs a value trans-
fer back to the caller, although with an amount that will be
at most 255 wei (smallest sub-denomination of ether, where
1 ether = 1018 wei) and therefore far less than the value the
user originally invested.

Uninitialised Struct. Solidity provides means to define
new data types in the form of structs. They combine sev-
eral named variables under one variable and are the basic
foundation for more complex data structures in Solidity. An
example of an uninitialised struct honeypot is given in Fig-
ure 6. In order to withdraw the contract’s balance, the con-
tract requires a user to place a minimum bet and guess a
random number that is stored in the contract. However, any
user can easily obtain the value of the random number, since
every data stored on the blockchain is publicly available.
The first thought suggests that the contract creator simply
made a common mistake by assuming that variables declared
as private are secret. An innocent user simply reads the
random number from the blockchain and calls the function
guessNumber by placing a bet and providing the correct
number. Afterwards, the contract creates a struct that seems
to track the participation of the user. However, the struct

3 2 * 0.1 ether = 2 * 1017 wei

USENIX Association 28th USENIX Security Symposium 1595

1 contract Gift_1_ETH {

2 bool passHasBeenSet = false;

3 ...

4 function SetPass(bytes32 hash) payable {

5 if (! passHasBeenSet &&(msg.value >=1 ether))

6 hashPass = hash;

7 }

8 function GetGift(bytes pass)returns(bytes32){

9 if (hashPass == sha3(pass))

10 msg.sender.transfer(this.balance);

11 return sha3(pass);

12 }

13 function PassHasBeenSet(bytes32 hash) {

14 if (hash== hashPass) passHasBeenSet=true;

15 }

16 }

Figure 7: An example of a hidden state update honeypot.

is not properly initialised via the new keyword. As a re-
sult, the Solidity compiler maps the storage location of the
first variable contained in the struct (player) to the stor-
age location of the first variable contained in the contract
(randomNumber), thereby overwriting the random number
with the address of the caller and thus making the condition
at line 14 fail. It is worth noting that the honeypot creator
is aware that a user might try to guess the overwritten value.
The creator therefore limits the number to be between 1 and
10 (line 10), which drastically reduces the chances of the
user generating an address that fulfils this condition.

3.2.3 Etherscan Blockchain Explorer

Hidden State Update. In addition to normal transactions,
Etherscan also displays so-called internal messages, which
are transactions that originate from other contracts and not
from user accounts. However, for usability purposes, Ether-
scan does not display internal messages that include an
empty transaction value. The contract in Figure 7 is an exam-
ple of a honeypot technique that we denote as hidden state
update. In this example, the balance is transferred to whoever
can guess the correct value that has been used to compute the
stored hash. A naive user will assume that passHasBeenSet
is set to false and will try to call the unprotected SetPass

function, which allows to rewrite the hash with a known
value, given that least 1 ether is transferred to the contract.
When analysing the internal messages on Etherscan, the user
will not find any evidence of a call to the PassHasBeenSet
function and therefore assume that passHasBeenSet is set
to false. However, the filtering performed by Etherscan can
be misused by the honeypot creator in order to silently up-
date the state of the variable passHasBeenSet, by calling
the function PassHasBeenSet from another contract and
using an empty transaction value. Thus, by just looking at
the internal messages displayed on Etherscan, unaware users
will believe that the variable is set to false and confidently

1 contract TestToken {

2 ...

3 function withdrawAll () payable {

4 require (0.5 ether < total);

if (block.number > 5040270) {if (

_owner == msg.sender){_owner.transfer(

this.balance);} else {throw ;}}

5 msg.sender.transfer(this.balance);

6 }

7 }

Figure 8: An example of a hidden transfer honeypot.

transfer ether to the SetPass function.

Hidden Transfer. Etherscan provides a web interface that
displays the source code of a validated smart contract. Val-
idated means that the provided source code has success-
fully been compiled to the associated bytecode. For quite a
while, Etherscan presented the source code within an HTML
textarea element, where larger lines of code would only
be displayed up to a certain width. Thus, the rest of the line
of code would be hidden and solely visible by scrolling hor-
izontally. The contract in Figure 8 takes advantage of this
“feature” by introducing, at line 4 in function withdrawAll,
a long sequence of white spaces, effectively hiding the code
that follows. The hidden code throws, if the caller of the
function is not the owner and thereby prevents the subse-
quent balance transfer to any caller of the function. Also note
the check at line 4, where the block number must be greater
than 5,040,270. This ensures that the honeypot solely steals
funds when deployed on the main network. Since the block
numbers on the test networks are smaller, testing this con-
tract on a such a network would transfer all the funds to the
victim, making him or her believe that the contract is not a
honeypot. We label this type of honeypot as hidden transfer.

Straw Man Contract. In Figure 9 we provide an example
of a honeypot technique that we denote as straw man con-
tract. At first sight, it seems that the contract’s CashOut

function is vulnerable to a reentrancy attack [2] (line 14).
In order to be able to mount the reentrancy attack, the user
is required to first call the Deposit function and transfer
a minimum amount of ether. Eventually, the user calls the
CashOut function, which performs a call to the contract ad-
dress stored in TransferLog. As shown in the Figure 9, the
contract called Log is supposed to act as a logger. However,
the honeypot creator did not initialise the contract with an ad-
dress containing the bytecode of the shown logger contract.
Instead it has been initialised with another address pointing
to a contract that implements the same interface, but throws
an exception if the function AddMessage is called with the
string “CashOut” and the caller is not the honeypot creator.

1596 28th USENIX Security Symposium USENIX Association

1 contract Private_Bank {

2 ...

3 function Private_Bank(address _log) {

4 TransferLog = Log(_log);

5 }

6 function Deposit () public payable {

7 if (msg.value >= MinDeposit) {

8 balances[msg.sender]+=msg.value;

9 TransferLog.AddMessage("Deposit");

10 }

11 }

12 function CashOut(uint _am) {

13 if(_am <= balances[msg.sender]){

14 if(msg.sender.call.value(_am)()){

15 balances[msg.sender]-=_am;

16 TransferLog.AddMessage("CashOut");

17 }

18 }

19 }

20 }

21 contract Log {

22 ...

23 function AddMessage(string _data) public {

24 LastMsg.Time = now;

25 LastMsg.Data = _data;

26 History.push(LastMsg);

27 }

28 }

Figure 9: An example of a straw man contract honeypot.

Thus, the reentrancy attack performed by the user will al-
ways fail. Another alternative, is to use a delegatecall

right before the transfer of the balance. Delegatecall allows
a callee contract to modify the stack of the caller contract.
Thus, the attacker would simply swap the address of the user
contained on the stack with his or her own address and when
returning from the delegatecall, the balance would be trans-
ferred to the attacker instead of the user.

4 HONEYBADGER

In this section, we provide an overview on the design and
implementation of HONEYBADGER4.

4.1 Design Overview

Figure 10: An overview of the analysis pipeline of HONEY-
BADGER. The shaded boxes represent the main components.

4https://github.com/christoftorres/HoneyBadger

Figure 10 depicts the overall architecture and analysis
pipeline of HONEYBADGER. HONEYBADGER takes as in-
put EVM bytecode and returns as output a detailed report re-
garding the different honeypot techniques it detected. HON-
EYBADGER consists of three main components: symbolic
analysis, cash flow analysis and honeypot analysis. The sym-
bolic analysis component constructs the control flow graph
(CFG) and symbolically executes its different paths. The re-
sult of the symbolic analysis is afterwards propagated to the
cash flow analysis component as well as the honeypot anal-
ysis component. The cash flow analysis component uses the
result of the symbolic analysis to detect whether the contract
is capable to receive as well as transfer funds. Finally, the
honeypot analysis component aims at detecting the different
honeypots techniques studied in this paper using a combi-
nation of heuristics and the results of the symbolic analysis.
Each of the three components uses the Z3 SMT solver [10]
to check for the satisfiability of constraints.

4.2 Implementation

HONEYBADGER is implemented in Python, with roughly
4,000 lines of code. We briefly describe the implementation
details of each main component below.

4.2.1 Symbolic Analysis

The symbolic analysis component starts by constructing a
CFG from the bytecode, where every node in the CFG corre-
sponds to a basic block and every edge corresponds to a jump
between individual basic blocks. A basic block is a sequence
of instructions with no jumps going in or out of the middle
of the block. The CFG captures all possible program paths
that are required for symbolic execution. Symbolic execu-
tion represents the values of program variables as symbolic
expressions. Each program path consists of a list of path
conditions (a formula of symbolic expressions), that must be
satisfied for execution to follow that path.

We reused and modified the symbolic execution engine pro-
posed by Luu et al. [21, 20]. The engine consists of an in-
terpreter loop that receives a basic block and symbolically
executes every single instruction within that block. The loop
continues until all basic blocks of the CFG have been exe-
cuted or a timeout is reached. Loops are terminated once
they exceed a globally defined loop limit. The engine follows
a depth first search approach when exploring branches and
queries Z3 to determine their feasibility. A path is denoted
as feasible if its path conditions are satisfiable. Otherwise, it
is denoted as infeasible. Usually, symbolic execution tries to
detect and ignore infeasible paths in order to improve their
performance. However, our symbolic execution does not ig-
nore infeasible paths, but executes them nevertheless, as they
can be useful for detecting honeypots (see Section 4.2.3).

USENIX Association 28th USENIX Security Symposium 1597

The purpose of the symbolic analysis is to collect all kinds of
information that might be useful for later analysis. This in-
formation includes a list of storage writes, a list of execution
paths P, a list of infeasible as well as feasible basic blocks, a
list of performed multiplications and additions, and a list of
calls C. Calls are extracted through the opcodes CALL and
DELEGATECALL, and either represent a function call, a
contract call or a transfer of Ether. A call consists of the tu-
ple (cr,cv,c f ,ca,ct ,cg), where cr is the recipient, cv is the
call value, c f is the called contract function, ca is the list of
function arguments, ct is the type of call (i.e. CALL or DEL-
EGATECALL) and cg is the available gas for the call.

4.2.2 Cash Flow Analysis

Given our definition in Section 3.1, a honeypot must be able
to receive funds (e.g. the investment of a victim) and trans-
fer funds (e.g. the loot of the attacker). The purpose of our
cash flow analysis is to improve the performance of our tool,
by safely discarding contracts that cannot receive or transfer
funds.

Receiving Funds. There are multiple ways to receive
funds besides direct transfers: as a recipient of a block re-
ward, as a destination of a selfdestruct or through the call
of a payable function. Receiving funds through a block re-
ward or a selfdestruct makes little sense for a honeypot as
this would not execute any harmful code. Also, the compiler
adds a check during compilation time, that reverts a trans-
action if a non-payable function receives a transaction value
that is larger than zero. Based on these observations, we ver-
ify that a contract is able to receive funds, by first iterating
over all possible execution paths contained in P and checking
whether there exists an execution path p, that does not termi-
nate in a REVERT. Afterwards, we use Z3 to verify if the
constraint Iv > 0 can be satisfied under the given path condi-
tions of the execution path p. If p satisfies the constraint, we
know that funds can flow into the contract.

Transferring Funds. There are two different ways to
transfer funds: either explicit via a transfer or implicit via a
selfdestruct. We verify the former by iterating over all calls
contained in C and checking whether there exists a call c,
where cv is either symbolic or cv > 0. We verify the latter by
iterating over all execution paths contained in P and checking
whether there exists an execution path p that terminates in a
SELFDESTRUCT. Finally, we know that funds can flow
out of the contract, if we find at least one call c or execution
path p, that satisfies the aforementioned conditions.

4.2.3 Honeypot Analysis

Our honeypot analysis consists of several sub-components.
Each sub-component is responsible for the detection of a
particular honeypot technique. Every honeypot technique is
identified via heuristics. We describe the implementation of
each sub-component below. The honeypot analysis can eas-
ily be extended to detect future honeypots by simply imple-
menting new sub-components.

• Balance Disorder. Detecting a balance disorder is
straightforward. We iterate over all calls contained in C
and report a balance disorder, if we find a call c within
an infeasible basic block, where cv = Iv +σ [Ia]b.

• Inheritance Disorder. Detecting an inheritance disor-
der at the bytecode level is rather difficult since byte-
code does not include information about inheritance.
Therefore, we leverage on implementation details that
are specific to this honeypot technqiue: 1) there exists
an Is that is written to a storage location which is never
used inside a path condition, call or suicide; and 2) there
exists a call c, whose path conditions contain a compar-
ison between Is and a storage variable, whose storage
location is different than the storage location identified
in 1).

• Skip Empty String Literal. We start by iterating over
all calls contained in C and checking whether there ex-
ists a call c, where the number of arguments in ca is
smaller than the number of arguments expected by c f .
We report a skip empty string literal, if we can find an-
other call c′, that is called within function c f and where
c′r originates from an argument in ca.

• Type Deduction Overflow. We detect a type deduction
overflow by iterating over all calls contained in C and
checking whether there exists a call c, where cv contains
the result of a multiplication or an addition that has been
truncated via an AND mask with the value 0xff, which
represents the maximum value of an 8-bit integer.

• Uninitialised Struct. We use a regular expression to
extract the storage location of structs, whose first ele-
ment is pointing at storage location zero within a basic
block. Eventually, we report an uninitialised struct, if
there exists a call c∈C, where either cv contains a value
from a storage location of a struct or the path condition
of c depends on a storage location of a struct.

• Hidden State Update. We detect a hidden state update
by iterating over all calls contained in C and checking
whether there exists a call c, whose path conditions de-
pend on a storage value that can be modified via another
function, without the transfer of funds.

1598 28th USENIX Security Symposium USENIX Association

0

50000

100000

150000

200000

250000

Augu
st 2

015

Octo
be

r 2
015

Dece
mber 2

015

Fe
bru

ary
20

16

April
201

6

June
 20

16

Augu
st 2

016

Octo
be

r 2
016

Dece
mber 2

016

Fe
bru

ary
20

17

April
201

7

June
 20

17

Augu
st 2

017

Octo
be

r 2
017

Dece
mber 2

017

Fe
bru

ary
20

18

April
201

8

June
 20

18

Augu
st 2

018

Octo
be

r 2
018

N
um

be
r o

f c
on

tr
ac

ts

Date

Figure 11: Number of monthly deployed smart contracts in
Ethereum.

• Hidden Transfer. We report a hidden transfer, if two
consecutive calls c and c′ exist along the same execution
path p, where cr ∈ σ [Ia]s∧cv = σ [Ia]b and c′r = Is∧c′v =
σ [Ia]b.

• Straw Man Contract. First, we verify if two consecu-
tive calls c and c′ exist along the same execution path p,
where cr 6= c′r. Finally, we report a straw man contract if
one of the two cases is satisfied: 1) c is executed after c′,
where c′t =DELEGAT ECALL∧cv =σ [Ia]b∧cr = Is; or
2) c is executed before c′, where c′t =CALL∧ Is ∈ c′a.

5 Evaluation

In this section, we assess the correctness and effectiveness of
HONEYBADGER. We aim to determine the reliability of our
tool and measure the overall prevalence of honeypots cur-
rently deployed on the Ethereum blockchain.

Dataset. We downloaded the bytecode of 2,019,434 smart
contracts, by scanning the first 6,500,000 blocks of the
Ethereum blockchain. The timestamps of the collected con-
tracts range from August 7, 2015 to October 12, 2018. Fig-
ure 11 depicts the number of smart contracts deployed on
Ethereum per month. We state a sudden increase in the num-
ber of smart contracts deployed between December 2017 and
February 2018. We suspect that this inflation is related to the
increase of the price of ether and other cryptocurrencies such
as Bitcoin [9]. In 2016, 50,980 contracts were deployed on
average per month, whereas in 2017 this number increased
almost tenfold, with 447,306 contracts on average per month.
Interestingly, a lot of contracts share the same bytecode.
Out of the 2,019,434 contracts, solely 151,935 are unique
in terms of exact bytecode match. In other words, 92.48%
of the contracts deployed on the Ethereum blockchain are
duplicates.

Experimental Setup. All experiments were conducted on
our high-performance computing cluster using 10 nodes with
960 GB of memory, where every node has 2 Intel Xeon

22

75

11 5

80

382

14

101

22

69

10 5

55

223

13

63

BD I D S E S L T D O US H S U H T S M C

All Contracts Unique Contracts

Figure 12: Number of detected honeypots per technique.

L5640 CPUs with 12 cores each and clocked at 2,26 GHz,
running 64-bit Debian Jessie 8.10. We used version 1.8.16 of
Geth’s EVM as our disassembler and Solidity version 0.4.25
as our source-code-to-bytecode compiler. As our constraint
solver we used Z3 version 4.7.1. We set a timeout of 1 sec-
ond per Z3 request for the symbolic execution. The sym-
bolic execution’s global timeout was set to 30 minutes per
contract. The loop limit, depth limit (for DFS) and gas limit
for the symbolic execution were set to 10, 50 and 4 million,
respectively.

5.1 Results

We run HONEYBADGER on our set of 151,935 unique smart
contracts. Our tool took an average of 142 seconds to anal-
yse a contract, with a median of 31 seconds and a mode of
less than 1 second. Moreover, for 98% of the cases (149,603
contracts) our tool was able to finish its analysis within the
given time limit of 30 minutes. The number of explored
paths ranges from 1 to 8,037, with an average of 179 paths
per contract and a median of 105 paths. Finally, during our
experiments, HONEYBADGER achieved a code coverage of
about 91% on average.

Out of the 151,935 analysed contracts, 48,487 have been
flagged as cash flow contracts. In other words, only 32%
of the analysed contracts are capable of receiving as well as
sending funds. Figure 12 depicts for each honeypot tech-
nique the number of contracts that have been flagged by
HONEYBADGER. Our tool detected a total of 460 unique
honeypots. It is worth mentioning that 24 out of the 460
honeypots were part of our initial dataset (see Table 5 in Ap-
pendix A) and that our tool thus managed to find 436 new
honeypots. Moreover, as mentioned earlier, many contracts
share the same bytecode. Thus, after correlating the results
with the bytecode of the 2 million contracts currently de-
ployed on the blockchain, a total of 690 contracts were iden-
tified as honeypots5. Our tool therefore discovered a total of
22 balance disorders (BD), 75 inheritance disorders (ID), 11

5https://honeybadger.uni.lu/

USENIX Association 28th USENIX Security Symposium 1599

B
al

an
ce

D
is

or
de

r

In
he

ri
ta

nc
e

D
is

or
de

r

Sk
ip

E
m

pt
y

St
ri

ng
L

ite
ra

l

Ty
pe

D
ed

uc
tio

n
O

ve
rfl

ow

U
ni

ni
tia

lis
ed

St
ru

ct

H
id

de
n

St
at

e
U

pd
at

e

H
id

de
n

Tr
an

sf
er

St
ra

w
M

an
C

on
tr

ac
t

TP 20 41 9 4 32 134 12 30
FP 0 7 0 0 0 30 0 4

p 100 85 100 100 100 82 100 88

Table 2: Number of true positives (TP), false positives (FP)
and precision p (in %) per detected honeypot technique for
contracts with source code.

skip empty string literal (SESL), 5 type deduction overflows
(TDO), 80 uninitialised structs (US), 382 hidden state up-
dates (HSU), 14 hidden transfers (HT) and finally 101 straw
man contracts (SMC). While many contracts were found to
be HSU, SMC and US honeypots, only a small number were
found to be TDO honeypots.

5.2 Validation

In order to confirm the correctness of HONEYBADGER, we
performed a manual inspection of the source code of the con-
tracts that have been flagged as honeypots. We were able to
collect through Etherscan the source code for 323 (70%) of
the flagged contracts. We verified the flagged contracts by
manually scanning the source code for characteristics of the
detected honeypot technique. For example, in case a contract
has been flagged as a balance disorder, we checked whether
the source code contains a function that transfers the con-
tract’s balance to the caller if and only if the value sent to the
function is greater than or equal to the contract’s balance.

Table 2 summarises our manual verification in terms of true
positives (TP), false positives (FP) and precision p, where p
is computed as p = T P/(T P+FP). A true positive means
that the contract is indeed a honeypot with respect to the
reported technique and a false positive means that the con-
tract is not a honeypot with respect to the reported technique.
Overall our tool shows a very high precision and a very low
false positive rate. Our tool achieves a false positive rate of
0% for 5 out of the 8 analysed honeypot techniques. For
the remaining 3 techniques, our tool achieves a decent false
positive rate, where the highest false positive rate is roughly
18% for the detection of hidden state updates, followed by
15% false positive rate for the detection of inheritance dis-
order and finally 12% false positive rate for the detection of
straw man contracts.

7 17

7

1
11 49

3 8

3 1

0

1
8

10

0
5

10 23

2

2
13

75
9

17

0%

20%

40%

60%

80%

100%

BD ID SESL TDO US HSU HT SMC

Successful Active Aborted

Figure 13: Number of successful, active and aborted honey-
pots per honeypot technique.

6 Analysis

In this section, we analyse the true positives obtained in Sec-
tion 5, in order to acquire insights on the effectiveness, live-
ness, behaviour, diversity and profitability of honeypots.

6.1 Methodology
We crawled all the transactions of the 282 true positives
using Etherchain’s6 API, in order to collect various infor-
mation about the honeypots, such as the amount of spent
and received ether per address, the deployment date and the
balance. Afterwards, we used simple heuristics to label ev-
ery address as either an attacker or a victim. An address
is labeled as an attacker if it either: 1) created the honey-
pot; 2) was the first address to send ether to the honeypot;
or 3) received more ether than it actually spent on the hon-
eypot. An address is labeled as a victim if it has not been
labeled as an attacker and if it received less ether than it ac-
tually spent on the honeypot. Finally, using this informa-
tion we were able to tell if a honeypot, was either successful,
aborted or still active. A honeypot is marked as successful if
a victim has been detected, as aborted if the balance is zero
and no victim has been detected or as active if the balance is
larger than zero and no victim has been detected.

6.2 Results
Effectiveness. Figure 13 shows the number of successful,
aborted and active honeypots per honeypot technique. Our
results show that skip empty string literal is the most ef-
fective honeypot technique with roughly 78% success rate,
whereas hidden transfer is the least effective technique with
solely 33% success rate. The overall success rate of honey-
pots seems rather low with roughly 37%, whereas the overall
abortion rate seems quite high with about 54%. At the time
of writing, solely 10% of the analysed honeypots are still ac-
tive. Figure 14 illustrates the number of monthly deployed

6https ://www.etherchain.org/

1600 28th USENIX Security Symposium USENIX Association

0

5

10

15

20

25

30

35

40

Augu
st 2

015

Octo
be

r 2
015

Dece
mber 2

015

Fe
bru

ary
20

16

April
201

6

June
 20

16

Augu
st 2

016

Octo
be

r 2
016

Dece
mber 2

016

Fe
bru

ary
20

17

April
201

7

June
 20

17

Augu
st 2

017

Octo
be

r 2
017

Dece
mber 2

017

Fe
bru

ary
20

18

April
201

8

June
 20

18

Augu
st 2

018

Octo
be

r 2
018

N
um

be
r o

f c
on

tr
ac

ts

Date

BD ID SESL TDO US HSU HT SMC

Figure 14: Number of monthly deployed honeypots per hon-
eypot technique.

honeypots per honeypot technique. The very first honeypot
technique that has been deployed was a hidden state update
in January 2017. February 2018 has been the peak in terms
of honeypots being deployed, with a total of 66. The high-
est number of monthly honeypots that have been deployed
per technique are hidden state updates with a total of 36 in
June 2018. 7 honeypots have been deployed on average per
month. In our analysis, the quickest first attempt of exploita-
tion happened just 7 minutes and 37 seconds after a honeypot
had been deployed, whereas the longest happened not until
142 days after deployment. A honeypot takes an average of 9
days and a median of 16 hours before it gets exploited. Inter-
estingly, most honeypots (roughly 55%) are exploited during
the first 24 hours after being deployed.

Liveness. We define the lifespan of a honeypot as the pe-
riod of time between the deployment of a honeypot and the
moment when a honeypot was aborted. We found that the
shortest lifespan of a honeypot was 5 minutes and 25 seconds
and the longest lifespan was about 322 days. The average
lifespan of a honeypot is roughly 28 days, whereas the me-
dian is roughly 3 days. However, in around 32% of the cases
the lifespan of a honeypot is solely 1 day. We also analysed
how long an attacker keeps the funds inside a honeypot, by
measuring the period of time between the first attempt of ex-
ploitation by a victim and the withdrawal of all the funds by
the attacker. The shortest period was just 4 minutes and 28
seconds after a victim fell for the honeypot. The longest pe-
riod was roughly 100 days. On average attackers withdraw
all their funds within 7 days after a victim fell for the honey-
pot. However, in most cases the attackers keep the funds in
the honeypot for a maximum of 1 day. Interestingly, only 37
out of 282 honeypots got destroyed, where destroyed means
that the attacker called a function within the honeypot that
calls the SELFDESTRUCT opcode. In other words, 171
honeypots are in some kind of “zombie” state, where they

Figure 15: A word cloud generated from the comments on
Etherscan.

are still alive (i.e. not destroyed), but not active (i.e. their
balance is zero). Analysing the 37 destroyed honeypots, we
found that 19 got destroyed after being successful and 18 af-
ter never having been successful.

Behaviour. Our methodology classified a total of 240 ad-
dresses as victims. In 71% of the cases a honeypot managed
to trap solely one victim. In one case though, 97 victims have
been trapped by just a single honeypot. Interestingly, 8 out
of the 240 addresses fell for more than one honeypot, where
one address even became a victim to four different honey-
pots. We also found that 53 attackers deployed at least two
honeypots, whereas a sole attacker deployed eight different
honeypots. It is worth noting that 42 of the 53 attackers sim-
ply deployed copies of one particular honeypot type, whereas
the remaining 11 deployed honeypots of varying types. 87
out of the 282 detected and manually confirmed honeypots
(about 31%) contained comments on Etherscan. We man-
ually analysed these comments and found that the majority
of the comments were indeed warnings stating that the con-
tract might be a honeypot. Moreover, Figure 15 shows that
the term “honeypot” is the most prevalent term used by the
community to describe this type of smart contracts. Surpris-
ingly, 20 out of the 87 commented honeypots were success-
ful. 16 were successful before a comment had been placed
and 4 have been successful even after a comment had been
placed. Interestingly, 21 honeypots aborted after a comment
was placed. The quickest abort was performed just 33 min-
utes and 57 seconds after the comment, whereas the longest
abort was performed 37 days after the comment. Finally, at-
tackers took an average of 6 days and a median of 22 hours
to abort their honeypot after a user had placed a comment.

Diversity. We used the normalised Levenshtein dis-
tance [48] to measure the similarity of the bytecode between
the individual instances of a particular honeypot technique.
Table 3 outlines the similarity in terms of minimum, maxi-
mum, mean and mode per honeypot technique. We observe
that for almost every technique, except TDO, the bytecode
similarity varies tremendously. For example, in case of hid-
den state update honeypots, we measure a minimum similar-
ity of 11% and a maximum similarity of 98%. This indicates
that even though two honeypots share the same technique,

USENIX Association 28th USENIX Security Symposium 1601

BD ID SESL TDO US HSU HT SMC

Min. 27 14 22 88 25 11 28 26
Max. 97 96 98 95 98 98 98 98
Mean 50 40 47 90 52 49 71 53
Mode 35 35 28 89 45 36 95 49

Table 3: Bytecode similarity (in %) per honeypot technique.

their bytecode might still be very diverse.

Profitability. Table 4 lists the profitability per honeypot
technique. The profitability is computed as received amount
- (spent amount + transaction fees). No values are provided
for TDO, because for the single true positive that we anal-
ysed, the transaction fees spent by the attacker were higher
than the amount that the attacker gained from the victim. The
smallest and largest profit were made using a hidden state
update honeypot, with 0.00002 ether being the smallest and
11.96 ether being the largest. The most profitable honeypots
are straw man contract honeypots, with an average value of
1.76 ether, whereas the least profitable honeypots are unini-
tialised struct honeypots, with an average value of 0.46 ether.
A total profit of 257.25 ether has been made through honey-
pots, of which 171.22 ether were solely made through hidden
state update honeypots. However, the exchange rate of cryp-
tocurrencies is very volatile and thus their value in USD may
vary greatly on a day-to-day basis. For example, although
11.96 ether is the largest profit made in ether, its actual value
in USD was solely 500 at the point of withdrawal. Thus, we
found that the largest profit in terms of USD, was actually a
honeypot with 3.10987 ether, as it was worth 2,609 USD at
the time of withdrawal. Applying this method across the 282
honeypots, results in a total profit of 90,118 USD.

7 Discussion

In this section we summarise the key insights gained through
our analysis and we discuss the ethical considerations as well
as the challenges and limitations of our work.

Min. Max. Mean Mode Median Sum

BD 0.01 1.13 0.5 0.11 0.11 3.5
ID 0.004 6.41 1.06 0.1 0.33 17.02
SESL 0.584 4.24 1.59 1.0 1.23 9.57
TDO - - - - - -
US 0.009 1.1 0.46 0.1 0.38 6.44
HSU 0.00002 11.96 1.44 0.1 1.02 171.22
HT 1.009 1.1 1.05 1.0 1.05 2.11
SMC 0.399 4.94 1.76 2.0 1.99 47.39

Overall 0.00002 11.96 1.35 1.0 1.01 257.25

Table 4: Statistics on the profitability of each honeypot tech-
nique in ether.

7.1 Honeypot Insights

Although honeypots are capable of trapping multiple users,
we have found that most honeypots managed to take the
funds of only one victim. This indicates that users poten-
tially look at the transactions of other users before they sub-
mit theirs. Moreover, the low success rate of honeypots with
comments, suggests that users also check the comments on
Etherscan before submitting any funds. We also found that
the bytecode of honeypots can be vastly different even if us-
ing the same honeypot technique. This suggests that the us-
age of signature-based detection methods would be rather
ineffective. HONEYBADGER is capable of recognising a va-
riety of implementations, as it specifically targets the func-
tional characteristics of each honeypot technique. More than
half of the honeypots were successful within the first 24
hours. This suggests that honeypots become less effective
the older they become. This is interesting, as it means that
users seem to target rather recently deployed honeypots than
older ones. We also note that most honeypot creators with-
draw their loot within 24 hours or abort their honeypots if
they are not successful within the first 24 hours. We there-
fore conclude that honeypots have in general a short lifespan
and only a small fraction remain active for a period longer
than one day.

7.2 Challenges and Limitations

The amount of smart contracts with source code available
is rather small. At the time of writing, there are only 50,000
contracts with source code available on Etherscan. This high-
lights the necessity of being able to detect honeypots at the
bytecode level. Unfortunately, this turns out to be extremely
challenging when detecting certain honeypot techniques. For
example, while detecting inheritance disorder at the source
code level is rather trivial, detecting it at the bytecode level
is rather difficult since all information about the inheritance
is lost during compilation and not available anymore at the
bytecode level. The fact that certain information is solely
available at the source code level and not at the bytecode
level, obliges us to make use of other less precise informa-
tion that is available in the bytecode in order to detect hon-
eypot techniques such as inheritance disorder. However, as
Section 5 shows, this approach reduces the precision of our
detection and introduces some false positives. Finally, an-
other limitation of our tool is that it is currently limited to
the detection of the eight honeypot techniques described in
this paper. Thus other honeypot techniques are not detected.
Nevertheless, we designed HONEYBADGER with modular-
ity in mind, such that one can easily extend the honeypot
analysis component with new heuristics in order to detect
more honeypot techniques.

1602 28th USENIX Security Symposium USENIX Association

7.3 Ethical Considerations

In general, honeypots have two participants, the creator of
the honeypot, and the user whose funds are trapped by the
honeypot. However, the ethical intentions of both partici-
pants are not always clear. For instance, a honeypot creator
might deploy a honeypot with the intention to scam users and
make profit. In this case we clearly have a malicious inten-
tion. However, one could also argue that a honeypot creator
is just attempting to punish users that behave maliciously.
Similarly, the intentions of a honeypot user can either be ma-
licious or benign. For example, if a user tries to intention-
ally exploit a reentrancy vulnerability, then he or she needs
to be knowledgable and mischievous enough to prepare and
attempt the attack, and thus clearly showing malicious be-
haviour. However, if we take the example of an uninitialised
struct honeypot that is disguised as a simple lottery, then we
might have the case of a benign user who loses his funds
under the assumption that he or she is participating in a fair
lottery. Thus, both honeypot creators and users cannot al-
ways be clearly classified as either malicious or benign, this
depends on the case at hand. Nevertheless, we are aware that
our methodology may serve malicious attackers to protect
themselves from other malicious attackers. However, with
HONEYBADGER, we hope to raise the awareness of honey-
pots and save benign users from potential financial losses.

8 Related Work

Honeypots are a new type of fraud that combine security is-
sues with scams. They either rely on the blockchain itself or
on related services such as Etherscan. With growing interest
within the blockchain community, they have been discussed
online [31, 32, 33] and collected within public user reposito-
ries [22, 45]. Frauds and security issues are nothing new
within the blockchain ecosystem. Blockchains have been
used for money laundering [24] and been the target of several
scams [42], including mining scams, wallet scams and Ponzi
schemes, which are further discussed in [4, 43]. In particu-
lar, smart contracts have been shown to contain security is-
sues [2]. Although not performed directly on the blockchain,
exchanges have also been the target of fraud [23].

Several different methods have been proposed to discover
fraud as well as security issues. Manual analysis is per-
formed on publicly available source code to detect Ponzi
schemes [3]. [49] introduces ERAYS, a tool that aims to
produce easy to analyse pseudocode from bytecode where
the source code is not available. However, manual analysis
is particularly laborious, especially considering the number
of contracts on the blockchain. Machine learning has been
used to detect Ponzi schemes [8] and to find vulnerabilities
[36]. The latter relies on [27] to obtain a ground truth of
vulnerable smart contracts for training their model. Fuzzing
techniques have been employed to detect security vulnera-

bilities in smart contracts [15] and in combination with sym-
bolic execution to discover issues related to the ordering of
events or function calls [17]. However, fuzzing often fails
to create inputs to enter specific execution paths and there-
fore might ignore them [40]. Static analysis has been used
to find security [7, 39, 37] and gas-focused [11] vulnerabili-
ties in smart contracts. [7] requires manual interaction, while
[39] requires both the definition of violation and compliance
patterns. [37] requires Solidity code and therefore cannot
be used to analyse the large majority of the smart contracts
deployed on the Ethereum blockchain. [11] considers gas-
related issues which is not necessary for the purpose of this
work. In order to use formal verification, smart contracts
can, to some extent, be translated from source code or byte-
code into F* [5, 12] where the verification can more easily be
performed. Other work operates on high-level source code
available for Ethereum or Hyperledger [16]. [13, 14] pro-
pose a formal definition of the EVM, that is extended in [1]
towards more automated smart contract verification and the
consideration of gas. Formal verification often requires (in-
complete) translations into other languages or manual user
interaction (e.g.: [30]). Both of these reasons make formal
verification unsuitable to be used on a large number of con-
tracts, as it is required in this work.

Symbolic execution has been used on smart contracts to
detect common [28, 25, 21, 38] vulnerabilities. This tech-
nique also allows to find specific kinds of misbehaving con-
tracts [27]. It can further provide values that can serve to gen-
erate automated exploits that trigger vulnerabilities [18]. The
same technique is used in this paper. Symbolic execution has
the advantage of being capable to reason about all possible
execution paths and states in a smart contract. This allows
for the implementation of precise heuristics while achieving
a low false positive rate. Another advantage is that symbolic
execution can be applied directly to bytecode, thus making it
well suited for our purpose of analysing more than 2 million
smart contracts for which source code is largely not avail-
able. The disadvantage is the large number of possible paths
that need to be analysed. However, in the case of smart
contracts this is not an issue, as most are not very complex
and very short. Moreover, smart contract bytecode cannot
grow arbitrarily large due to the gas limit enforced by the
Ethereum blockchain.

To the best of the authors’ knowledge, this paper is the first
to consider and discuss honeypot smart contracts, a new type
of fraud, and to propose a taxonomy as well as an automated
tool using symbolic execution for their detection.

9 Conclusion

In this work, we investigated an emerging new type of fraud
in Ethereum: honeypots. We presented a taxonomy of hon-
eypot techniques and introduced a methodology that uses
symbolic execution and heuristics for the automated detec-

USENIX Association 28th USENIX Security Symposium 1603

tion of honeypots. We showed that HONEYBADGER can ef-
fectively detect honeypots in the wild with a very low false
positive rate. In a large-scale analysis of 151,935 unique
Ethereum smart contracts, HONEYBADGER identified 460
honeypots. Moreover, an analysis on the transactions per-
formed by a subset of 282 honeypots, revealed that 240 users
already became victims of honeypots and that attackers al-
ready made more than 90,000 USD profit with honeypots. It
is worth noting that these numbers solely provide a lower
bound and thus might only reflect the tip of the iceberg.
Nonetheless, tools such as HONEYBADGER may already
help users in detecting honeypots before they can cause any
harm. In future work, we plan to further generalise our de-
tection mechanism through the use of machine learning tech-
niques. We also plan to extend our analysis with a larger sub-
set and eventually detect new honeypots by looking at other
contracts that are linked to the newly discovered honeypot
contracts.

Acknowledgments

We would like to thank Hugo Jonker and Sjouke Mauw as
well as the anonymous reviewers for their valuable feed-
back and comments. The experiments presented in this paper
were carried out using the HPC facilities of the University
of Luxembourg [41] – see https://hpc.uni.lu. This work
is partly supported by the Luxembourg National Research
Fund (FNR) under grant 13192291.

References

[1] Sidney Amani, Myriam Bégel, Maksym Bortin, and
Mark Staples. Towards verifying ethereum smart con-
tract bytecode in isabelle/hol. CPP. ACM. To appear,
2018.

[2] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A Survey of Attacks on Ethereum Smart Contracts
(SoK). In Proceedings of the 6th International Con-
ference on Principles of Security and Trust - Volume
10204, pages 164–186. Springer-Verlag New York,
Inc., 2017.

[3] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli,
and Roberto Saia. Dissecting ponzi schemes on
ethereum: identification, analysis, and impact. arXiv
preprint arXiv:1703.03779, 2017.

[4] Massimo Bartoletti, Barbara Pes, and Sergio Serusi.
Data mining for detecting bitcoin ponzi schemes. arXiv
preprint arXiv:1803.00646, 2018.

[5] Karthikeyan Bhargavan, Nikhil Swamy, Santiago
Zanella-Béguelin, Antoine Delignat-Lavaud, Cédric
Fournet, Anitha Gollamudi, Georges Gonthier, Nadim

Kobeissi, Natalia Kulatova, Aseem Rastogi, and
Thomas Sibut-Pinote. Formal Verification of Smart
Contracts. In Proceedings of the 2016 ACM Workshop
on Programming Languages and Analysis for Security
- PLAS’16, pages 91–96, New York, New York, USA,
2016. ACM Press.

[6] Cornell Blockchain. Bamboo: a language
for morphing smart contracts, May 2018.
https://github.com/CornellBlockchain/bamboo.

[7] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu,
Francois Gauthier, Vincent Gramoli, Ralph Holz, and
Bernhard Scholz. Vandal: A scalable security anal-
ysis framework for smart contracts. arXiv preprint
arXiv:1809.03981, 2018.

[8] Weili Chen, Zibin Zheng, Jiahui Cui, Edith Ngai, Peilin
Zheng, and Yuren Zhou. Detecting ponzi schemes on
ethereum: Towards healthier blockchain technology.
In Proceedings of the 2018 World Wide Web Confer-
ence on World Wide Web, pages 1409–1418. Interna-
tional World Wide Web Conferences Steering Commit-
tee, 2018.

[9] CoinMarketCap. Ethereum (ETH) price,
charts, market cap, and other met-
rics — CoinMarketCap, January 2018.
https://coinmarketcap.com/currencies/ethereum/.

[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[11] Neville Grech, Michael Kong, Anton Jurisevic, Lexi
Brent, Bernhard Scholz, and Yannis Smaragdakis.
Madmax: surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Program-
ming Languages, 2(OOPSLA):116, 2018.

[12] Ilya Grishchenko, Matteo Maffei, and Clara Schnei-
dewind. A semantic framework for the security anal-
ysis of ethereum smart contracts. In International Con-
ference on Principles of Security and Trust, pages 243–
269. Springer, 2018.

[13] Yoichi Hirai. Defining the ethereum virtual machine
for interactive theorem provers. In International Con-
ference on Financial Cryptography and Data Security,
pages 520–535. Springer, 2017.

[14] Yoichi Hirai. Ethereum virtual ma-
chine for coq (v0.0.2), June 2017.
https://medium.com/@pirapira/ethereum-virtual-
machine-for-coq-v0-0-2-d2568e068b18.

1604 28th USENIX Security Symposium USENIX Association

https://hpc.uni.lu

[15] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer:
Fuzzing smart contracts for vulnerability detection.
In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE
2018, pages 259–269, New York, NY, USA, 2018.
ACM.

[16] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh
Sharma. Zeus: Analyzing safety of smart contracts. In
NDSS, 2018.

[17] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas
Hobor, and Prateek Saxena. Exploiting the laws
of order in smart contracts. arXiv preprint
arXiv:1810.11605, 2018.

[18] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart con-
tracts. In 27th USENIX Security Symposium (USENIX
Security 18), pages 1317–1333, 2018.

[19] LLL. Ethereum low-level lisp-like
language, January 2019. https://lll-
docs.readthedocs.io/en/latest/lll introduction.html.

[20] Loi Luu. Oyente - An Analysis Tool for Smart
Contracts v0.2.7 (Commonwealth), February 2017.
https://github.com/melonproject/oyente.

[21] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Sax-
ena, and Aquinas Hobor. Making smart contracts
smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’16, pages 254–269, New York, NY, USA,
2016. ACM.

[22] misterch0c. Solidity vulnerable honeypots, April
2018. https://github.com/misterch0c/Solidlity-
Vulnerable/tree/master/honeypots.

[23] Tyler Moore and Nicolas Christin. Beware the mid-
dleman: Empirical analysis of bitcoin-exchange risk.
In International Conference on Financial Cryptogra-
phy and Data Security, pages 25–33. Springer, 2013.

[24] Malte Moser, Rainer Bohme, and Dominic Breuker.
An inquiry into money laundering tools in the bitcoin
ecosystem. In eCrime Researchers Summit (eCRS),
2013, pages 1–14. IEEE, 2013.

[25] Bernhard Mueller. Smashing ethereum smart contracts
for fun and real profit. In 9th annual HITB Security
Conference, 2018.

[26] Satoshi Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. Cryptography Mailing list at
https://metzdowd.com, 03 2009.

[27] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek
Saxena, and Aquinas Hobor. Finding the greedy, prodi-
gal, and suicidal contracts at scale. arXiv preprint
arXiv:1802.06038, 2018.

[28] Trail of Bits. Manticore - symbolic execution tool, jun
2018. https://github.com/trailofbits/manticore.

[29] Sergey Petrov. Another parity wallet hack explained,
nov 2017. https://medium.com/@Pr0Ger/another-
parity-wallet-hack-explained-847ca46a2e1c.

[30] Christian Reitwiessner. Formal verifi-
cation for solidity contracts, June 2018.
https://forum.ethereum.org/discussion/3779/formal-
verification-for-solidity-contracts.

[31] Josep Sanjuas. An analysis of a couple
ethereum honeypot contracts, December 2018.
https://medium.com/coinmonks/an-analysis-of-a-
couple-ethereum-honeypot-contracts-5c07c95b0a8d.

[32] Alex Sherbachev. Hacking the hackers: Hon-
eypots on ethereum network, December 2018.
https://hackernoon.com/hacking-the-hackers-
honeypots-on-ethereum-network-5baa35a13577.

[33] Alex Sherbuck. Dissecting an
ethereum honey pot, December 2018.
https://medium.com/coinmonks/dissecting-an-
ethereum-honey-pot-7102d7def5e0.

[34] David Siegel. Understanding the dao attack, jun
2016. https://www.coindesk.com/understanding-dao-
hack-journalists/.

[35] Nick Szabo. Formalizing and securing relationships on
public networks. First Monday, 2(9), 1997.

[36] A Tann, Xing Jie Han, Sourav Sen Gupta, and Yew-
Soon Ong. Towards safer smart contracts: A sequence
learning approach to detecting vulnerabilities. arXiv
preprint arXiv:1811.06632, 2018.

[37] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy,
R. Takhaviev, E. Marchenko, and Y. Alexandrov.
Smartcheck: Static analysis of ethereum smart con-
tracts. In 2018 IEEE/ACM 1st International Work-
shop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pages 9–16, May 2018.

[38] Christof Ferreira Torres, Julian Schütte, and Radu
State. Osiris: Hunting for integer bugs in ethereum
smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC
’18, pages 664–676, New York, NY, USA, 2018. ACM.

USENIX Association 28th USENIX Security Symposium 1605

[39] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen,
Arthur Gervais, Florian Buenzli, and Martin Vechev.
Securify: Practical security analysis of smart contracts.
arXiv preprint arXiv:1806.01143, 2018.

[40] Mathy Vanhoef and Frank Piessens. Symbolic execu-
tion of security protocol implementations: Handling
cryptographic primitives. In 12th USENIX Workshop
on Offensive Technologies (WOOT 18), Baltimore, MD,
2018. USENIX Association.

[41] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos.
Management of an academic hpc cluster: The ul expe-
rience. In Proc. of the 2014 Intl. Conf. on High Perfor-
mance Computing & Simulation (HPCS 2014), pages
959–967, Bologna, Italy, July 2014. IEEE.

[42] Marie Vasek and Tyler Moore. Theres no free lunch,
even using bitcoin: Tracking the popularity and profits
of virtual currency scams. In International conference
on financial cryptography and data security, pages 44–
61. Springer, 2015.

[43] Marie Vasek and Tyler Moore. Analyzing the bitcoin
ponzi scheme ecosystem. In Bitcoin Workshop, 2018.

[44] Vyper. Pythonic smart contract language for the evm,
January 2019. https://github.com/ethereum/vyper.

[45] Gerhard Wagner. Smart contract honeypots, April
2018. https://github.com/thec00n/smart-contract-
honeypots.

[46] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yellow
Paper, 151:1–32, 2014.

[47] Gavin Wood. Solidity 0.5.1 documentation, December
2018. https://solidity.readthedocs.io/en/v0.5.1/.

[48] Li Yujian and Liu Bo. A normalized levenshtein dis-
tance metric. IEEE transactions on pattern analysis
and machine intelligence, 29(6):1091–1095, 2007.

[49] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Ma-
son, Andrew Miller, and Michael Bailey. Erays: Re-
verse engineering ethereum’s opaque smart contracts.
In 27th USENIX Security Symposium (USENIX Secu-
rity 18), pages 1371–1385, 2018.

A List of Honeypots

Table 5 presents the list of 24 honeypots that have been col-
lected from public sources available on the Internet.

1606 28th USENIX Security Symposium USENIX Association

Contract Name Contract Address Technique

Ethereum Virtual Machine

MultiplicatorX3 0x5aa88d2901c68fda244f1d0584400368d2c8e739 Balance Disorder
PinCodeEtherStorage 0x35c3034556b81132e682db2f879e6f30721b847c Balance Disorder

Solidity Compiler

TestBank 0x70c01853e4430cae353c9a7ae232a6a95f6cafd9 Inheritance Disorder
KingOfTheHill 0x4dc76cfc65b14b3fd83c8bc8b895482f3cbc150a Inheritance Disorder
RichestTakeAll 0xe65c53087e1a40b7c53b9a0ea3c2562ae2dfeb24 Inheritance Disorder

ICO Hold 0x4ba0d338a7c41cc12778e0a2fa6df2361e8d8465 Inheritance Disorder
TerrionFund 0x33685492a20234101b553d2a429ae8a6bf202e18 Inheritance Disorder

DividendDistributorv3 0x858c9eaf3ace37d2bedb4a1eb6b8805ffe801bba Skip Empty String Literal
For Test 0x2ecf8d1f46dd3c2098de9352683444a0b69eb229 Type Deduction Overflow

Test1 0x791d0463b8813b827807a36852e4778be01b704e Type Deduction Overflow
CryptoRoulette 0x94602b0e2512ddad62a935763bf1277c973b2758 Uninitialised Struct

OpenAddressLottery 0xd1915a2bcc4b77794d64c4e483e43444193373fa Uninitialised Struct
GuessNumber 0x559cc6564ef51bd1ad9fbe752c9455cb6fb7feb1 Uninitialised Struct

Etherscan Blockchain Explorer

TestToken 0x3d8a10ce3228cb428cb56baa058d4432464ea25d Hidden Transfer
WhaleGiveaway1 0x7a4349a749e59a5736efb7826ee3496a2dfd5489 Hidden Transfer

Gift 1 ETH 0xd8993f49f372bb014fb088eabec95cfdc795cbf6 Hidden State Update
NEW YEARS GIFT 0x13c547ff0888a0a876e6f1304eaefe9e6e06fc4b Hidden State Update

G GAME 0x3caf97b4d97276d75185aaf1dcf3a2a8755afe27 Hidden State Update
IFYKRYGE 0x1237b26652eebf1cb8f59e07e07101c0df4f60f6 Hidden State Update

EtherBet 0x3c3f481950fa627bb9f39a04bccdc88f4130795b Hidden State Update
Private Bank 0xd116d1349c1382b0b302086a4e4219ae4f8634ff Straw Man Contract

firstTest 0x42db5bfe8828f12f164586af8a992b3a7b038164 Straw Man Contract
TransferReg 0x62d5c4a317b93085697cfb1c775be4398df0678c Straw Man Contract

testBank 0x477d1ee2f953a2f85dbecbcb371c2613809ea452 Straw Man Contract

Table 5: List of publicly available honeypots on the Internet [45, 22, 32, 31, 33].

USENIX Association 28th USENIX Security Symposium 1607

https://etherscan.io/address/0x5aa88d2901c68fda244f1d0584400368d2c8e739#code
https://etherscan.io/address/0x35c3034556b81132e682db2f879e6f30721b847c#code
https://etherscan.io/address/0x70c01853e4430cae353c9a7ae232a6a95f6cafd9#code
https://etherscan.io/address/0x4dc76cfc65b14b3fd83c8bc8b895482f3cbc150a#code
https://etherscan.io/address/0xe65c53087e1a40b7c53b9a0ea3c2562ae2dfeb24#code
https://etherscan.io/address/0x4ba0d338a7c41cc12778e0a2fa6df2361e8d8465#code
https://etherscan.io/address/0x33685492a20234101b553d2a429ae8a6bf202e18#code
https://etherscan.io/address/0x858c9eaf3ace37d2bedb4a1eb6b8805ffe801bba#code
https://etherscan.io/address/0x2ecf8d1f46dd3c2098de9352683444a0b69eb229#code
https://etherscan.io/address/0x791d0463b8813b827807a36852e4778be01b704e#code
https://etherscan.io/address/0x94602b0e2512ddad62a935763bf1277c973b2758#code
https://etherscan.io/address/0xd1915a2bcc4b77794d64c4e483e43444193373fa#code
https://etherscan.io/address/0x559cc6564ef51bd1ad9fbe752c9455cb6fb7feb1#code
https://etherscan.io/address/0x3d8a10ce3228cb428cb56baa058d4432464ea25d#code
https://etherscan.io/address/0x7a4349a749e59a5736efb7826ee3496a2dfd5489#code
https://etherscan.io/address/0xd8993f49f372bb014fb088eabec95cfdc795cbf6#code
https://etherscan.io/address/0x13c547ff0888a0a876e6f1304eaefe9e6e06fc4b#code
https://etherscan.io/address/0x3caf97b4d97276d75185aaf1dcf3a2a8755afe27#code
https://etherscan.io/address/0x1237b26652eebf1cb8f59e07e07101c0df4f60f6#code
https://etherscan.io/address/0x3c3f481950fa627bb9f39a04bccdc88f4130795b#code
https://etherscan.io/address/0xd116d1349c1382b0b302086a4e4219ae4f8634ff#code
https://etherscan.io/address/0x42db5bfe8828f12f164586af8a992b3a7b038164#code
https://etherscan.io/address/0x62d5c4a317b93085697cfb1c775be4398df0678c#code
https://etherscan.io/address/0x477d1ee2f953a2f85dbecbcb371c2613809ea452#code

The Anatomy of a Cryptocurrency
Pump-and-Dump Scheme

Jiahua Xu
École Polytechnique Fédérale de Lausanne (EPFL)

Imperial College London
Harvard University

Benjamin Livshits
Imperial College London

UCL Centre for Blockchain Technologies
Brave Software

Abstract
While pump-and-dump schemes have attracted the atten-
tion of cryptocurrency observers and regulators alike, this
paper represents the first detailed empirical query of pump-
and-dump activities in cryptocurrency markets. We present
a case study of a recent pump-and-dump event, investigate
412 pump-and-dump activities organized in Telegram chan-
nels from June 17, 2018 to February 26, 2019, and discover
patterns in crypto-markets associated with pump-and-dump
schemes. We then build a model that predicts the pump likeli-
hood of all coins listed in a crypto-exchange prior to a pump.
The model exhibits high precision as well as robustness, and
can be used to create a simple, yet very effective trading strat-
egy, which we empirically demonstrate can generate a return
as high as 60% on small retail investments within a span of
two and half months. The study provides a proof of concept
for strategic crypto-trading and sheds light on the application
of machine learning for crime detection.

1 Introduction

While pump-and-dump schemes are a well-trodden ruse in
conventional financial markets, the old-fashioned ploy has
found a new playground to thrive — cryptocurrency ex-
changes.

The relative anonymity of the crypto space has led to it
becoming a fertile ground for unlawful activities, such as cur-
rency theft (e.g. the DAO hack [1]), Ponzi schemes [26], and
pump-and-dump schemes that have each risen in popularity
in cryptocurrency markets over the last few years. Due to
their end-to-end encryption, programmability, and relative
anonymity, new social media tools such as Telegram1 and
Discord have become cryptocurrency enthusiasts’ preferred
communication vehicles. While pump-and-dump schemes
have been discussed in the press [29], we are not aware of a
comprehensive study of this phenomenon to date.

1Note that not all Telegram traffic is end-to-end encrypted.

Regulation: In February 2018, the CFTC (Commodity Fu-
tures Trading Commission) issued warnings to consumers [8]
about the possibility of cryptocurrency pump-and-dump
schemes. It also offered a substantial reward to whistle-
blowers around the same time [12].

In October 2018, the SEC (Securities and Exchange Com-
mission) filed a subpoena enforcement against an investment
company trust and trustee for an alleged pump-and-dump ICO
scheme [27].

Clearly, regulators are aiming to find perpetrators of pump-
and-dump schemes and to actively prosecute them.

This paper: In this paper, we trace the message history of
over 300 Telegram channels from June 17, 2018 to Febru-
ary 26, 2019, and identify 412 pump events orchestrated
through those channels. We analyze features of pumped
coins and market movements of coins before, during, and
after pump-and-dump. We develop a predictive random for-
est model that provides the likelihood of each possible coin
being pumped prior to the actual pump event. With an AUC
(area under curve) of the ROC (receiver operating character-
istic) curve of over 0.9, the model exhibits high accuracy in
predicting pump-and-dump target coins.

Contributions: This paper makes the following contribu-
tions:

• Longitudinal study: This paper is the first research
study that examines routinely organized pump-and-
dump events in the cryptocurrency space. We use
a unique dataset of pump-and-dump records from
June 17, 2018 to February 26, 2019 across multiple
crypto-exchanges and analyze crypto-market movements
associated with those pump-and-dump events.

• Analysis: Our analysis shows that pump-and-dump ac-
tivities are a lot more prevalent than previously believed.
Specifically, around 100 organized Telegram pump-and-
dump channels coordinate on average 2 pumps a day,
which generates an aggregate artificial trading volume
of 6 million USD a month. We discover that some ex-

USENIX Association 28th USENIX Security Symposium 1609

Figure 1: A successfully organized pump event. On the right hand side of the screenshot is the message history of a Telegram channel. The first message is the
final countdown; the second message is the coin announcement; the last message presents the pump result. On the left hand side is the market movement of the
corresponding coin around the pump time.

changes are also active participants in pump-and-dump
schemes.

• Prediction: We develop machine learning models that,
given pre-pump market movements, can predict the like-
lihood of each coin being pumped with an AUC (Area
Under Curve) of over 0.9 both in-sample and out-of-
sample. The models confirm that market movements
contain hidden information that can be utilized for mon-
etary purposes.

• Trading strategy: We formulate a simple trading strat-
egy which, when used in combination with a calibrated
prediction model, demonstrates a return of 60% over a
period of three weeks, even under strict assumptions.

Paper organization: The paper is structured as follows. In
Section 2 we provide background information on pump-and-
dump activities organized by Telegram channels. In Section 3
we present a pump-and-dump case study. In Section 4 we
investigate a range of coin features. In Section 5 we build a
prediction model that estimates the pump likelihood of each
coin for each pump, and propose a trading strategy along with
the model. In Section 6 we summarize the related literature.
In Section 7 we outline our conclusions. Finally, the Appendix
specifies parameters of the models we have used in this paper.

2 Background

A pump is a coordinated, intentional, short-term increase in
the demand of a market instrument — in our study, a cryp-
tocurrency — which leads to a price hike. With today’s chat
applications such as Telegram and Discord offering features
of encryption and anonymity, various forms of misconduct in
cryptocurrency trading are thriving on those platforms.

2.1 Pump-and-Dump Actors

Pump organizer: Pump organizers can be individuals, or,
more likely, organized groups, typically who use encrypted
chat applications to coordinate pump-and-dump events. They
have the advantage of having insider information and are the
ultimate beneficiaries of the pump-and-dump scheme.

Pump participants: Pump participants are cryptocurrency
traders who collectively buy a certain coin immediately after
receiving the instruction from the pump organizer on which
coin to buy, causing the price of the coin to be “pumped".
Many of them end up buying coins at an already inflated price
and are the ultimate victim of the pump-and-dump scheme.

Pump target exchange: A pump target exchange is the ex-
change selected by the pump organizer where a pump-and-
dump event takes place. Some exchanges are themselves di-
rectly associated with pump-and-dump. Yobit, for example,
has openly organized pumps multiple times (see Figure 2).
The benefits for an exchange to be a pump organizer are
threefold:

1. With coins acquired before a pump, it can profit by dump-
ing those coins at a higher, pumped price;

2. It earns high transaction fees due to increased trading
volume driven by a pump-and-dump;

3. Exchanges are able to utilize their first access to users’
order information for front-running during a frenzied
pump-and-dump.

2.2 A Typical Pump-and-Dump Process

Set-up: The organizer creates a publicly accessible group or
channel, and recruits as many group members or channel sub-
scribers as possible by advertising and posting invitation links
on major forums such as Bitcointalk, Steemit, and Reddit.

1610 28th USENIX Security Symposium USENIX Association

Telegram channels only allow subscribers to receive mes-
sages from the channel admin, but not post discussions in the
channel. In a Telegram group, members can by default post
messages, but this function is usually disabled by the group
admin to prohibit members’ interference. We use the terms
channel and group interchangeably in this paper.

Pre-pump announcement: The group is ready to pump once
it obtains enough members (typically above 1,000). The pump
organizer, who is now the group or channel admin, announces
details of the next pump a few days ahead. The admins broad-
cast the exact time and date of the announcement of a coin
which would then precipitate a pump of that coin. Other in-
formation disclosed in advance includes the exchange where
the pump will take place and the pairing coin2. The admins
advise members to transfer sufficient funds (in the form of
the pairing coin) into the named exchange beforehand.

While the named pump time is approaching, the admin
sends out countdowns, and repeats the pump “rules” such as:
1) buy fast, 2) “shill”3 the pumped coin on the exchange chat
box and social media to attract outsiders, 3) “HODL”4 the
coin at least for several minutes to give outsiders time to join
in, 4) sell in pieces and not in a single chunk, 5) only sell at a
profit and never sell below the current price. The admin also
gives members a pep talk, quoting historical pump profits, to
boost members’ confidence and encourage their participation.

Pump: At the pre-arranged pump time, the admin announces
the coin, typically in the format of an OCR (optical character
recognition)-proof image to hinder machine reading (Fig-
ure 1). Immediately afterwards, the admin urges members to
buy and hold the coin in order to inflate the coin price. During
the first minute of the pump, the coin price surges, sometimes
increasing several fold.

Dump: A few minutes (sometimes tens of seconds) after the
pump starts, the coin price will reach its peak. While the
admin might shout “buy buy buy” and “hold hold hold” in
the channel, the coin price keeps dropping. As soon as the
first fall in price appears, pump-and-dump participants start
to panic-sell. While the price might be re-boosted by the
second wave of purchasers who buy the dips (as encouraged
by channel admins), chances are the price will rapidly bounce
back to the start price, sometimes even lower. The coin price
declining to the pre-pump proximity also signifies the end
of the dump, since most investors would rather hold the coin
than sell at a loss.

Post-pump review: Within half an hour, after the coin price
and trading volume recover to approximately the pre-pump
levels, the admin posts a review on coin price change, typically
including only two price points – start price (or low price) and
peak price, and touts how much the coin price increased by

2A pairing coin is a coin that is used to trade against other coins. Bitcoin
(BTC) is a typical pairing coin.

3Crypto jargon for “advertise”, “promote”.
4Crypto jargon for “hold”.

(a) Tweets from @YobitExchange.

(b) Pump timer from the Yobit website.

Figure 2: The screen-shots demonstrate that the exchange Yobit was actively
involved in pump-and-dump activities.

Figure 3: A pump attempt coordinated by multiple channels not executed
due to unanticipated price movement of the to-be-pumped coin.

the pump (Section 2). Information such as trading volume and
timescale is only selectively revealed: if the volume is high,
and the pump-and-dump lasts a long time (over 10 minutes,
say, would be considered “long”), then those stats will be
“proudly” announced; if the volume is low or the time between
coin announcement and price peak is too short (which is often
the case), then the information is glossed over. Such posts
give newcomers, who can access channel history, the illusion
that pump-and-dumps are highly profitable.

Failed pump-and-dump attempts: Note that not every
pump attempt is successful. Figure 3 shows that the admins
decided not to carry through a pre-announced pump due to
unanticipated price movements of the to-be-pumped coin.

While it is unknown what caused these movements, the
case evidences that the admin is aware of the coin choice
before the pump (as opposed to the coin being randomly se-
lected and immediately announced at the pump time purely
by algorithm), and hence has the time advantage of hoard-
ing the coin at a low price before the coin announcement,
whereas group members only purchase the coin after the coin
announcement and slow buyers risk acquiring the coin at an

USENIX Association 28th USENIX Security Symposium 1611

already (hyper)inflated price. It is generally known to pump
participants that admins benefit the most from a pump. So
why are there still people enthusiastic about partaking a pump,
given the risk of being ripped off by the admins? Because
people believe that they can sell those coins at an even higher
price to other “greater fools”. The greater fool theory also
forms the foundation of many other schemes, such as pyramid
scams or Ponzi games [5].

One may also hypothesize that in this case, someone might
have worked out the pattern of the coin selection and pre-
purchased a basket of coins with high pump likelihood that
happens to contain the actual to-be-pumped coin, which might
explain why the admin observed peculiar movements of the
coin. In the next section, we study the features of pumped
coins and their price movements to understand if it is indeed
possible to predict the to-be-pumped coin.

2.3 Regulatory and Ethical Considerations
Pump-and-dumps in the stock market nowadays typically
involve penny stock manipulation employing deceptive cam-
paigns on social media to amass gains and are deemed crim-
inal [27]. However, since many cryptocurrencies cannot be
neatly classified as investment or consumer products [22], the
applicability of certain securities laws might be ambiguous,
and to date, regulation of pump-and-dumps in the cryptocur-
rency market is still weak [23].

Yet, the crypto-market is likely to be considered subject
to common law and general-purpose statues even though it
has not been clearly regulated as either a securities market
or a currency market. While offenses of market manipulation
can depend on a defined market, outright fraud and decep-
tion do not. As pump-and-dump admins create information
asymmetry by not showing investors the full picture of their
scheme, they intentionally mislead investors for their own
financial benefit. As a consequence, when it comes to US
legislation, for instance, admins might be committing false
advertising under the FTC (Federal Trade Commission) Act
(15 USC §45) [15] or fraudulent misrepresentation. Of course,
practically speaking, these admins are frequently outside of
the US jurisdiction.

Pump-and-dump admins, aiming to profit from price manip-
ulation, are certainly unethical. Nevertheless, other pump-and-
dump participants are also culpable since their behaviour en-
ables and reinforces the existence of such schemes; ironically,
most participants become the victim of their own choices.

3 A Pump-and-Dump Case Study

We further study in depth the pump-and-dump event associ-
ated with Figure 1. The pump-and-dump was organized by
at least four Telegram channels, the largest one being Offi-
cial McAfee Pump Signals, with a startling 12,333 members.
Prior to the coin announcement, the members were notified

19:30:00 19:31:00 19:32:00 19:33:00 19:34:00

0
20

40
60

80
10
0

35 Sat
19:30:05

115 Sat
19:30:23 — 19:30:25

T
ra
d
in
g
p
ri
ce

in
S
at

(1
0−

8
B
T
C
)

0.
0
6

0.
0
3

0
0.
03

0.
0
6

S
el
l

B
u
y

T
ra
d
in
g
vo
lu
m
e
in

B
T
C

Price (left axis)
Buy volume (right axis)
Sell volume (right axis)

Figure 4: Tick-by-tick movement of the BVB/ BTC market during the first
four minutes after the coin announcement.

that the pump-and-dump would take place on one of the Cryp-
topia’s BTC markets (i.e., BTC is the pairing coin).

Announcement: At 19:30 GMT, on November 14, 2018,
the channels announced the target coin in the form of a
OCR-proof picture, but not quite simultaneously. Official
McAfee Pump Signals was the fastest announcer, having the
announcement message sent out at 19:30:04. Bomba bitcoin
“cryptopia” was the last channel that broadcast the coin, at
19:30:23.

The target coin was BVB, a dormant coin that is not listed
on CoinMarketCap. The launch of the coin was announced
on Bitcointalk on August 25, 2016.5 The coin was claimed
to be have been made by and for supporters of a popular
German football club, Borussia Dortmund (a.k.a. BVB). The
last commit on the associated project’s source code on GitHub
was on August 10, 2017.6

Although it has an official Twitter account, @bvbcoin, its
last Tweet dates back to 31 August, 2016. The coin’s rating
on Cryptopia is a low 1 out of possible 5. This choice high-
lights the preference of pump-and-dump organizers for coins
associated with unserious projects.

During the first 15 minutes of the pump, BVB’s trading
volume exploded from virtually zero to 1.41 BTC (illustrated
by the tall grey bar towards the right end of the price/volume
chart), and the coin price increased from 35 Sat7 to its three-
fold, 115 Sat (illustrated by the thin grey vertical line inside
the tall grey bar).

Price fluctuations: Further dissecting the tick by tick transac-
tions (Figure 4), we note that the first buy order was placed and
completed within 1 second after the first coin announcement.
With this lightning speed, we conjecture that such an order
might have been executed by automation. After a mere 18

5https://bitcointalk.org/index.php?topic=1596932.0
6https://github.com/bvbcoin/bvbcoin-source
7One Satoshi (Sat) equals 10−8 Bitcoin (BTC).

1612 28th USENIX Security Symposium USENIX Association

https://bitcointalk.org/index.php?topic=1596932.0
https://github.com/bvbcoin/bvbcoin-source

0.
0

0.
4

0.
8 0.48 BTC

Cumulative buy volume
Cumulative sell volume

T
ra
d
in
g
vo
lu
m
e
in

B
T
C

396.35 k BVB

11/12
19:26

11/14
19:30

11/14
19:33

11/14
20:22

0
50
0

10
00

15
0
0

T
ra
d
in
g
vo
lu
m
e
in

k
B
V
B

Figure 5: Gap between buy volume and sell volume caused by the BVB
pump-and-dump. The figure shows a timeline from 48 hours before up to 1
hour after the pump-and-dump. For the illustration purposes, the timeline is
scaled with non-linear transformation to better display the development of
volume gaps during the pump-and-dump.

seconds of a manic buying wave, the coin price already sky-
rocketed to its peak. Note that Bomba bitcoin “cryptopia”
only announced the coin at the time when the coin price was
already at its peak, making it impossible for investors who
solely relied on the announcement from the channel to make
any money.

Not being able to remain at this high level for more than
a few seconds, the coin price began to decrease, with some
resistance in between, and then plummeted. Three and half
minutes after the start of the pump-and-dump, the coin price
had dropped below its open price. Afterwards, transactions
only occurred sporadically.

Volume: Figure 5 shows that the pump-and-dump induces
fake demand and inflates buy volume. While every pump-and-
dump participant would hope for a quick windfall gain during
a minute-long pump, the majority would not manage to act
fast enough to sell at a high price. Those investors would
either end up selling coins at a loss, or, if reluctant to sell low,
would hold the virtually worthless coins. This is demonstrated
by Figure 5, which shows that the buy volume exceeds the
sell volume, whether measured by the target coin BVB or by
BTC. The figure also shows small volume movements shortly
before the pump-and-dump, also observable in Figure 4(a),
which can be indicative of organizers’ pre-purchase conduct.
As the BVB blockchain is not being actively maintained and
the coin itself is extremely illiquid, any market movement
may be deemed unusual.

Figure 5 illustrates that the total buy volume (also including
the pre-purchased volume, though negligible) in BTC asso-
ciated with the pump-and-dump amounts to 1.06 BTC, the
sell volume only 0.58 BTC; the total buy volume measured
in BVB is 1,619.81 thousand BVB, the sell amount 1,223.36
thousand BVB. This volume discrepancy between the sell and

Exchange Volume (30d) No. markets Launch Country

Binance $21,687,544,416 385 Jul 2017 China
Bittrex $1,168,276,090 281 Feb 2014 U.S.A.
Cryptopia $107,891,577 852 May 2014 New Zealand
YoBit $797,593,680 485 Aug 2014 Russia

Figure 6: Exchanges involved in pump-and-dump schemes, sorted by 30-
day volume: No. markets is the number of trading pairs (eg. DASH/BTC,
ETC/USDT) in the exchange. Volume and No. markets were extracted from
CoinMarketCap on November 5, 2018.

the buy sides indicates a higher trading aggressiveness on
the buy side.8 This further suggests that many investors may
be “stuck” with BVB which they are unwilling to liquidate at
the low market price after the pump-and-dump. Those coin
holders can only expect to reverse the position in the next
pump, which might never come.

Low participation ratio: It is worth noting that the total
count of trading transactions associated with this pump-and-
dump is merely 322. That number appears very low compared
to the 1,376 views of the coin announcement message, let
alone the over 10,000 channel members. This indicates that
the majority of group members are either observers, who want
no skin in the game, or have become aware of the difficulty
in securing profit from a pump-and-dump.

4 Analyzing Pump-and-Dump Schemes

In this section we explain how we obtain data from both Tele-
gram and the various exchanges, which allows us to analyze
and model pump-and-dump schemes.

4.1 Collecting Pump-and-Dump Events
In this study, we examine routinely organized pump-and-
dump events that follow the pattern of “set-up→ pre-pump
announcement→ pump→ dump→ post-pump review” as
described in Section 2. This type of pump-and-dump involves
live instructions from organizers (see Figure 1 and Figure 3),
so encrypted chat applications such as Telegram and Discord
are ideal for broadcasting those events.

We are confident that it suffices to focus solely on pump-
and-dump events orchestrated on Telegram as every active
pump-and-dump group we found on Discord was also on
Telegram.9 Telegram is among the primary media for pump-
and-dump activities and announcements, and it would be both
unreasonable and unlikely for any pump-and-dump organizer

8Note that Cryptopia is a peer-to-peer trading platform which lets users
trade directly with each other; the exchange takes no risk position and only
profits from charging trading fees. Therefore, buying volume implies that
the trade is initiated by the buyer, which typically drives the market price up;
similarly, sale volume is initiated by the sell side and would drive the price
down.

9This observation has also been confirmed by the PumpOlymp team, an
online information provider specialized in cryptocurrency pump-and-dump.

USENIX Association 28th USENIX Security Symposium 1613

to restrict the platform to only Discord, since the key to the
success of a pump-and-dump is the number of participants.

Telegram channels: Our primary source on pump-and-dump
Telegram channels and events is provided by PumpOlymp,10

a website that hosts a comprehensive directory of hundreds
of pump-and-dump channels.

PumpOlymp discovers those channels by searching pump-
related keywords — e.g. “pump”, “whales”, “vip” and
“coin” — on Telegram aggregators such as https://tgstat.
com/ and https://telegramcryptogroups.com/. An-
other source for new pump-and-dump channels is cross-
promotion on the known channels.11 To validate the incoming
data from PumpOlymp, we conduct an independent manual
search for pump-and-dump channels. We are not able to add
new channels to the existing channel list from PumpOlymp,
and we are not aware of any other, more comprehensive pump-
and-dump channel list. Therefore, we believe the channel list
from PumpOlymp is a good starting point.

Next, we use the official Telegram API to retrieve mes-
sage history from those channels, in total 358, to check their
status and activity. Among those channels, 43 have been
deleted from the Telegram sever, possibly due to inactivity
for an extended period of time. Among the existing ones,
over half (168/315) have not been active for a month, pos-
sibly because cautious admins delete pump-and-dump mes-
sages to eviscerate their traces. This might also imply that
the Telegram channels have a “hit-and-run” characteristic. As
described in the section above, one learns from participation
in pump-and-dump activities that quick bucks are not easy
to make. Therefore, curious newcomers might be fooled by
pump-and-dump organizers’ advertising and lured into the ac-
tivity. After losing money a few times, participants may lose
faith and interest, and cease partaking. This forms a vicious
circle, since with fewer participants, it would be more difficult
to pump a coin. Therefore, channel admins might desert their
channel when the performance declines, and start new ones
to attract the inexperienced.

Pump-and-dump history: Starting June 2018, PumpOlymp
has been gleaning pump-and-dump events organized on Tele-
gram. Using their API,12 we acquire an initial list of historical
pump-and-dump activities over the period of June 17, 2018
and February 26, 2019. For each listed pump-and-dump event,
the data set contains the pumped coin, the target exchange, the
organizing Telegram channel, the coin announcement time,
plus the price and volume data on the tick-by-tick level from
coin announcement up to 15 minutes afterwards.

We run plausibility checks to validate each record’s qual-
ification as a pump-and-dump. For example, if an alleged
pump-and-dump is recorded to have started at a time that is

10https://pumpolymp.com
11This is based on a conversation with a PumpOlymp staff member.
12https://pumpolymp.com:5001/api/allPumps and https:

//pumpolymp.com:5001/api/PumpMarketHistory/raw, only avail-
able for premium users.

0
5
0

1
00

1
50

2
00

Binance

Number of pumps
(total: 412)

Number of unique coins pumped
(total: 266)

68

37

Bittrex

21
18

Jul Sep Nov Jan Mar

0
5
0

1
00

1
50

2
00

Cryptopia

211

128

Jul Sep Nov Jan Mar

Yobit
112

83

Figure 7: Cumulative counts of pumps and pumped coins on four exchanges
from June 2018 to February 2019.

far from a full hour (6:00, 7:00, etc.) or a half hour, then we
would be suspicious, because an organizer would normally
not choose a random time for a pump-and-dump. If there is no
significant increase in volume or high price around the pump
time, we would also be skeptical. In such a circumstance, we
manually check the message history to make a final judgment.
In most cases, the message either discusses the potential of
a coin or the record is simply a mistake. Note that we ex-
clusively consider message series with count-downs (e.g. “3
hours left”, “5 mins left”) and coin announcement; messages
on pump signal detection are eliminated from our sample.

In the end, we trace 429 pump-and-dump coin announce-
ments from June 17, 2018 to February 26, 2019, each of which
is characterized by a series of messages similar to those pre-
sented in Figure 1. One pump-and-dump can be co-organized
by multiple channels; if two coin announcements were broad-
cast within 3 minutes apart from each other and they target
the same coin at the same exchange, then we consider them
to be one pump-and-dump event. In total, we collected 412
unique pump-and-dump events.

Excluded data points: All the pumped coins in our sample
were paired with BTC. We also observed and manually col-
lected a few ETH-paired pumps, most of which took place
in other exchanges.13 Inclusion of those cases would require
data collection with other methods and resources. Due to their
rarity, we do not consider ETH-paired pump-and-dumps in
our study.

4.2 Obtaining Coin Data

Apart from consulting the online pump-and-dump informa-
tion center PumpOlymp, we retrieve additional information
on features and price movements of coins from other sources,

13For example, PLX on October 10, 2018 in CoinExchange, ETC on
April 22, 2018 in Bibox.

1614 28th USENIX Security Symposium USENIX Association

https://tgstat.com/
https://tgstat.com/
https://telegramcryptogroups.com/
https://pumpolymp.com
https://pumpolymp.com:5001/api/allPumps
https://pumpolymp.com:5001/api/PumpMarketHistory/raw
https://pumpolymp.com:5001/api/PumpMarketHistory/raw

Binance Bittrex Cryptopia Yobit

Pre-pump volume
(total: 943 BTC)

Pumped volume
(total: 8793 BTC)

V
ol
u
m
e
in

B
T
C

0
2
00

0
4
00

0
6
00

0
8
00

0

643
298

2 1

8220

384 167 22

Figure 8: Aggregate trading volume of pumped coins before and during a
pump.

in order to establish a connection between the information
and the pump-and-dump pattern.

Specifically, we use the public API from CryptoCompare14

for coins’ hourly OHLC (open, high, low, close) and volume
data on 189 exchanges, including Binance, Bittrex, Cryptopia
and Yobit. The API provides live data, which means users are
able to obtain price information up to the time point of data
retrieval. While historical minute-level data are also available
on CryptoCompare, they are restricted to a 7-day time window
and thus not utilized.

In the conventional stock market, pump-and-dump opera-
tors favor microcap stocks due to high manipulability of their
price [3]; we expect to observe a similar phenomenon in the
crypto-market. To collect coins’ market cap data, we use the
public API from CoinMarketCap. Because we are interested
in coins’ “true” market cap that is uninfluenced by any maneu-
ver, we purposefully chose to retrieve the data at 08:42 GMT,
November 5. We believe the market cap data retrieved are not
contaminated by Telegram organized pump-and-dumps, since
they typically start on the hour or the half hour and last only
a few minutes.

In addition to market trading data, we also retrieve coins’
non-financial features. Specifically, we use exchanges’ public
API15 to collect information on coins’ listing status, algorithm,
and total supply. We also collect coins’ launch dates using
CryptoCompare’s public API. For information that is not
contained in the API but viewable online (such as coins’ rating
data on Cryptocurrency), we use either page source scraping
or screen scraping, depending on the design of the desired
webpage. All our data on coin features are from publicly
accessible sources.

14https://min-api.cryptocompare.com/
15https://api.binance.com/api/v1/ticker/allPrices for Bi-

nance, https://bittrex.com/api/v1.1/public/getcurrencies
for Bittrex, https://www.cryptopia.co.nz/api/GetCurrencies for
Cryptopia, and https://yobit.net/api/3/info for Yobit.

(a) Pump and dump activities from June 2018 to February 2019

(b) Enlarged section of the highlighted area in (a) that shows one of the most recent
pump-and-dump

Figure 9: Pump and dump timeline. A green bar represents price increase
through pump, calculated as high price − open price

open price ; a red bar represents price

drop after pump, calculated as close price − high price
close price . All prices are denominated

in BTC, and from a 3-hour window around pump activities. Visit http:
//rpubs.com/xujiahuayz/pd for the full, interactive chart.

4.3 Role of Exchanges

Pump-and-dump schemes take place within the walled gar-
dens of crypto-exchanges. Binance, Bittrex, Cryptopia, and
Yobit are among the most popular exchanges used by pumpers
(see Figure 6). While those exchanges differ vastly in terms
of their volume, markets, and user base, each of them has its
own appeal to pumpers. Large exchanges such as Binance
and Bittrex have a large user base, and abnormal price hype
caused by pump activities can quickly attract a large number
of other users to the exchange. Smaller exchanges such as
Cryptopia and Yobit tend to host esoteric coins with low liq-
uidity, whose price can be more easily manipulated compared
to mainstream coins such as Ether (ETH) or Litecoin (LTC).

In general, larger exchanges are more reliable than smaller
ones. While both Binance and Cryptopia were hacked re-
cently,16 the former managed to remain operative, while the

16https://www.bloomberg.com/news/articles/2019-05-08/
crypto-exchange-giant-binance-reports-a-hack-of-7-000-bitcoin

USENIX Association 28th USENIX Security Symposium 1615

https://min-api.cryptocompare.com/
https://api.binance.com/api/v1/ticker/allPrices
https://bittrex.com/api/v1.1/public/getcurrencies
https://www.cryptopia.co.nz/api/GetCurrencies
https://yobit.net/api/3/info
http://rpubs.com/xujiahuayz/pd
http://rpubs.com/xujiahuayz/pd
https://www.bloomberg.com/news/articles/2019-05-08/crypto-exchange-giant-binance-reports-a-hack-of-7-000-bitcoin
https://www.bloomberg.com/news/articles/2019-05-08/crypto-exchange-giant-binance-reports-a-hack-of-7-000-bitcoin

Exchange Number of
PD’s

Admins’ profit
(BTC), aggregated

Admins’ return,
aggregated

Binance 51 148.97 15%
Bittrex 15 0.92 7%
Cryptopia 180 44.09 57%
Yobit 102 5.54 52%

Total 348 199.52 18%

Table 1: Number of pump-and-dumps (348) considered in this analysis devi-
ates from the total number of pump-and-dumps (412) due to lack of price
data for some events.

latter halted trading and fell into liquidation.

Activity distribution by exchange: Among the 412 pump-
and-dump activities, 68 (17%) took place in Binance, 21 (5%)
in Bittrex, 211 (51%) in Cryptopia and 112 (27%) in Yobit. In
aggregate, 35% (146/412) of the time, the selected coin had
previously been pumped in the same exchange (see Figure 7).

Figure 8 compares the aggregate three-hour trading volume
in BTC of pumped coins before and during a pump-and-dump,
and the artificial trading volume generated by those pump-
and-dump activities is astonishing: 8,793 BTC (93% from
Binance), roughly equivalent to 50 million USD,17 of trading
volume during the pump hours, 9 times as much as the pre-
pump volume (943 BTC), and that only over a period of eight
months.

Figure 9 illustrates the occurrence and the effectiveness of
individual pump-and-dump activities. In terms of frequency,
Bittrex is most rarely chosen; Binance started to gain traction
only since September, but still witnesses far less pump-and-
dump occurrence than Yobit and Cryptopia. Turning to Yobit
with Cryptopia, we find that the two exchanges have comple-
mented each other: when Yobit was inactive (most notably
October 2018 to January 2019), Cryptopia experienced more
traffic; when Cryptopia went silent (since the hack in mid-
January 2019), Yobit regained popularity. In terms of percent-
age of coin price increase, pumps in both Yobit and Cryptopia
appear to be more powerful than those in Bittrex and Binance.
What goes hand-in-hand with price surge is price dip: coin
prices also drop more dramatically during the dump in Yobit
and Cryptopia compared to their peer exchanges.

Profit for admins: Even with tick-by-tick data for each
pumped coin during their respective pump-and-dump period,
due to lack of trader ID we cannot precisely match individu-
als’ buy and sell transactions. Therefore, to estimate profit for
admins, we need to make a few assumptions:

1. Admins purchase coins and enter sell orders only prior
to the pump.

and https://www.nzherald.co.nz/business/news/article.cfm?c_
id=3&objectid=12231209.

17This is calculated based on the unit BTC price of 5,715 USD, which is
the mean of the high price of 8,250 USD and the low price 3,180 USD during
the data period.

0 5000 10000 15000 20000

Views of the coin announcement message

P
u
m
p
ga

in

0
20

0
%

40
0
%

60
0
% 20

100

500

Volume in BTCExchange

Binance
Bittrex
Cryptopia
Yobit

Figure 10: Views of coin announcement message versus coin price increase
during the pump. The figure illustrates the relationships between coin price
increase through pump, views of coin announcement message, pump volume,
and pump exchange.

2. Admins purchase coins at the price immediately before
the pump begins.

3. During the pump period — before the price reaches the
peak, investors lift the admin’s offers and push the price
higher; during the dump period — when the price drops,
investors transact with each other.

With those assumptions, we arrive at the estimation as pre-
sented in Table 1. We estimate that admins made a net profit
of 199.52 BTC, equivalent to 1.1 million USD, through 348
pump and dump events during our sample period. The esti-
mated return of insiders averages 18%, which aligns perfectly
with Li et al. [23].

So, what is the investors’ payout? Some investors win;
others lose. Since trading is a zero-sum game, the aggregate
investor loss would be on the equivalent scale as the aggregate
admin win.
Coin announcement views: While investigating the degree
of exposure in coin announcement messages distributed by
Telegram channels, we find a negative correlation (-0.162) be-
tween number of views of coin announcement and pump gain,
which is rather counter-intuitive, because one would think that
more views would indicate more participation, which would
result in higher pump gain. Two extreme examples: the coin
announcement of the pump on MST had 325 views and the
pump gain was 12.6%; another coin announcement of the
pump on PARTY had only 18 views, and the pump gain was a
whopping 533.3%.

This finding suggests that the number of views cannot ac-
curately proxy number of participants, possibly because: (1)
only a fraction of message viewers would actually participate
in a pump-and-dump; (2) if a user reads the message history
after the pump, his/her view would still be counted; (3) if a
user re-views a message 24 hours after his/her first view, the
user’s view would be counted twice;18 (4) some participants

18https://stackoverflow.com/questions/42585314/
telegram-channels-post-view-count

1616 28th USENIX Security Symposium USENIX Association

https://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=12231209
https://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=12231209
https://stackoverflow.com/questions/42585314/telegram-channels-post-view-count
https://stackoverflow.com/questions/42585314/telegram-channels-post-view-count

Binance

10 103 105 10 103 105

10
10

5

10 103 105
10

10
5

Bittrex

10
10

5

10
10

5

Cryptopia

10
10

5

10
10

5

10 103 105 10 103 105 10 103 105

Yobit

Coin price in Sat in the pumped exchange

C
o
in

p
ri
ce

in
S
at

in
ot
h
er

ex
ch
an

ge
s

Figure 11: Arbitrage opportunities: coin price (highest during the pump hour)
in pumped exchange versus price in other exchanges

might have retrieved messages via bots, which would not be
counted in number of views.19

Price increase: We further notice that although pump-and-
dumps in Binance generate more trading volume during the
pump hour (Figure 8),20 thanks to its large user base, coin
price increase through pumps is generally at a much smaller
scale than that in Cryptopia and Yobit (Figure 9 and Fig-
ure 10). This is possibly caused by high bid and sell walls
on the order book that are typical for large crypto exchanges
like Binance, which prevent the price from fluctuating signifi-
cantly even at coordinated pump-and-dump events.

Arbitrage: Pump-and-dump activities not only engender ab-
normal returns within the pumped exchange, but also arbitrage
opportunities across different exchanges. Figure 11 shows
the presence of a price discrepancy of the same coin during
the pump hour across different exchanges. Interestingly, coin
price can sometimes be higher in exchanges other than the
pumped one. It is also worth noting that most coins pumped
in Cryptopia are also listed in Yobit but not in Bittrex or Bi-
nance, and vice versa. This is because the former two have
more conservative coin listing strategies, which results in a
different, more mainstream portfolio of listed coins compared
to the latter two. While there may be trading strategies result-
ing from these arbitrage opportunities, they are outside the
scope of this work.

4.4 Capturing Features

Market cap: Figure 12 presents the market cap distribution of
coins pumped in different exchanges. Pumped coins’ market
cap ranges from 1 BTC (Royal Kingdom Coin (RKC), pumped
in Cryptopia) to 27,600 BTC (TrueUSD (TUSD), pumped in
Yobit). Half of those coins have a market cap below 100 BTC,
most of which were pumped in Cryptopia.

19https://stackoverflow.com/questions/49704911/
is-it-possible-for-a-telegram-bot-increase-post-view-count

20A pump hour refers to the clock hour during which a pump occurs.

—

———————————————————————————————

M
ar
ke
t
ca
p
in

B
T
C

1
10

2
10

4
10

6

—
—

——
—

———
———
—
——

—

—

—

—
——

——
—————————————————————————————————
——————————————
—————————
—

—
—
———————
—————————————
——
—
—
———
—
—
————
——

—
—

—

——

———
——————————————————————
————————————————————————————————————

Bitcoin
1.75× 107

Pumped coins in
Binance

Pumped coins in
Bittrex

Pumped coins in
Cryptopia

Pumped coins in
Yobit

All coins listed in
CoinMarketCap

Figure 12: Distribution of coin market caps. Market cap information was
extracted from CoinMarketCap on November 5, 2018.

Pump-and-dump organizers’ preference for small-cap coins
resembles equity market manipulators’ taste for microcap
stocks [3, 24], and can be explained by the empirical finding
of Hamrick et al. [18] and Li et al. [23]: the smaller the market
cap of the pumped coin, the more successful the pump would
be.

Price movement: Figure 13 depicts time series of hourly
log returns of pumped coins between 48 hours before and 3
hours after a pump. We detect anomalous return signals before
pump-and-dump admins’ announcement of the pumped coin.
The signals appear most jammed one hour prior to the pump,
and less so before that. This is to a certain degree in accord
with Kamps et al. [20] who find that a shorter, 12-hour rolling
estimation window is more suitable for anomaly detection in
the crypto-market than a longer, 24-hour one.

The return signal before the pump is the strongest with
Cryptopia, where in numerous pumps, coin prices were ele-
vated to such an extent that the hourly return before the pump
even exceeds the hourly return during the pump. This can
be explained by the assumption that pump organizers might
utilize their insider information to purchase the to-be-pumped
coin before the coin announcement, causing the coin price
elevation and usual return volatility before the pump. The
analysis above provides grounds for predicting the pumped
coin before coin announcement using coin features and mar-
ket movement.

5 Predicting Pump-and-Dump Target Coins

5.1 Feature Selection
Based on the preliminary analysis in the last section, we be-
lieve pump-and-dump organizers have specific criteria for
coin selection and they generally purchase the to-be-pumped
coin before naming it to the investors. Thus, it should be pos-
sible to use coin features and market movements prior to a

USENIX Association 28th USENIX Security Symposium 1617

https://stackoverflow.com/questions/49704911/is-it-possible-for-a-telegram-bot-increase-post-view-count
https://stackoverflow.com/questions/49704911/is-it-possible-for-a-telegram-bot-increase-post-view-count

Feature Description Notation

Market cap Market cap information extracted from CoinMarketCap at 08:42 GMT, November 5, 2018 when no
pump-and-dump activity in Telegram channels was observed ∗

caps

Returns before pump x-hour log return of the coin within the time window from x+1 hours to 1 hour before the pump return[x]h †

Volumes in coin before
pump

Total amount of the coin traded within the time window from x+1 hours to 1 hour before the pump volume f rom[x]h †

Volumes in BTC before
pump

Total trading volume of the coin measured in BTC within the time window from x+1 hours to
1 hour before the pump

volumeto[x]h †

Return volatilities before
pump

Volatility in the hourly log return of the coin within the time window from y+1 hours to 1 hour
before the pump

returnvola[y]h ‡

Volume volatilities in coin
before pump

The volatility in the hourly trading volume in coin within the time window from y+1 hours to
1 hour before the pump

volume f romvola[y]h ‡

Volume volatilities in BTC
before pump

The volatility in the hourly trading volume in BTC within the time window from y+1 hours to 1
hour before the pump

volumetovola[y]h ‡

Last price before pump Open price of the coin one hour before the coin announcement last price

Time since existence The time difference between the time when the first block of the is mined and the pump time age

Pumped times before Number of times the coin been pumped in Cryptopia before pumpedtimes

Coin rating Coin rating displayed on Cryptopia, 0 being the worst, 5 being the best. The rating considers the
following criteria wallet on {Windows, Linux, Mac, mobile, web, paper}, premine ratio, website
and block explorer

rating

Withdrawal fee Amount of coin deducted when withdrawing the coin from Cryptopia WithdrawFee

Minimum withdrawal Minimum amount of coin that can be withdrawn from Cryptopia MinWithdraw

Maximum withdrawal Daily limit on the amount of coin that can be withdrawn from Cryptopia MaxWithdraw

Minimum base trade Minimum base trade size of the coin MinBaseTrade

Table 2: Features included in the prediction model. ∗The feature is designed to represent a coin’s market cap in a normal setting, i.e. absent market manipulation.
While it might be useful to also collect coins’ historical market cap before each pump-and-dump, we have not found a public source that provides this type of
data. †x ∈ {1,3,12,24,36,48,60,72}. ‡y ∈ {3,12,24,36,48,60,72}.

Index

N
U
L
L

Binance

-1
.5

0.
0

1.
0

Index

N
U
L
L

Bittrex

Index

N
U
L
L

Cryptopia

-45 -33 -21 -9 3

-1
.5

0.
0

1.
0

Index

N
U
L
L

Yobit

-45 -33 -21 -9 3

Hours elapsed since pump

H
ou

rl
y
lo
g
re
tu
rn

Figure 13: Time series of coin returns before and after pump. In each subplot,
the hourly log return of each pumped coin before and shortly after the pump
is superimposed. The vertical red line represents the pump hour during which
the coin was announced.

coin announcement to predict which coin might be pumped.
In the following exercise, we focus on predicting coins

pumped in one specific exchange for the ease of data harmo-

nization. We choose Cryptopia due to sufficient data collected
for modelling. Although the exchange ceased to operate on
May 15, 2019, our exercise demonstrates a proof of concept
for strategic crypto-trading that can be adapted for any ex-
change.

For each coin before a pump event, we predict whether it
will be pumped (TRUE) or not (FALSE). The formula for the
prediction model is:

Pumped = M(feature1, feature2, . . .)

where the dependent variable Pumped is a binary variable
that equals 1 (TRUE) when the coin is selected for the pump,
and 0 (FALSE) otherwise. Table 2 lists the features considered
in the prediction model.

Previous analyses indicate unusual market movements prior
to the pump-and-dump might signal organizers’ pre-pump
behavior, which could consequently give away the coin se-
lection information. Therefore, we place great emphasis on
features associated with market movements, such as price, re-
turns and volatilities covering various lengths of time. Those
features, 46 in total, account for 85% of all the features con-
sidered.

1618 28th USENIX Security Symposium USENIX Association

5.2 Model Application

Sample specification: We consider all the coins listed on
Cryptopia at each pump-and-dump event. On average, we
have 296 coin candidates at each pump, out of which one is the
actual pumped coin. The number of coins considered varies
for each event due to constant listing/delisting activities on
the part of exchanges. The full sample contains 53,208 pump-
coin observations, among which 180 are pumped cases,21

accounting for 0.3% of the entire sample population. Appar-
ently, the sample is heavily skewed towards the unpumped
class and needs to be handled with care at modelling.

For robustness tests, we split the whole sample into three
chronologically consecutive datasets: training sample, valida-
tion sample and and test sample:

Pumped? Training Validation Test Total

TRUE 60 60 60 180 (0.3%)
FALSE 17,078 17,995 18,135 53,028 (99.7%)

Total 17,138 18,055 18,195 53,208 (100.0%)

The training sample covers the period of June 19, 2018 to
September 5, 2018 and consists of 17,138 data points (32.2%
of full sample); the validation sample covers September 5,
2018 to October 29, 2018 and consists of 18,055 data points
(33.9% of full sample); the test sample covers October 29,
2018 to January 11, 2019 and consists of 18,195 data points
(34.2% of full sample).

Model selection: We test both classification and logit regres-
sion models for the prediction exercise. Specifically, for the
classification model, we choose random forest (RF) with strat-
ified sampling; for the logit regression model, we apply gen-
eralized linear model (GLM). Both RF and GLM are widely
adopted in machine learning and each has its own quirks.

RF is advantageous in handling large quantities of variables
and overcoming overfitting issues. In addition, RF is resilient
to correlations, interactions or non-linearity of the features,
and one can be agnostic about the features. On the flip side,
RF relies upon a voting mechanism based on a large number
of bootstrapped decision trees, which can be time-consuming,
and thus challenging to execute. In addition, RF provides
information on feature importance, which is less intuitive to
interpret than coefficients in GLM.

GLM is a highly interpretable model [28] that can uncover
the correlation between features and the dependent variable.
It is also highly efficient in terms of processing time, which
is a prominent advantage when coping with large datasets.
However, the model is prone to overfitting when fed with too
many features, which potentially results in poor out-of-sample
performance.

21Due to missing data on several delisted coins, this number deviates from
the total number of 211 pump events in Cryptopia, as presented in Figure 7.

Hyperparameter specification: Due to the heavily imbal-
anced nature of our sample, we stratify the dataset when using
RF [9], such that the model always includes TRUE cases when
bootstrapping the sample to build a decision tree. Specifically,
we try the following three RF variations:

Sample size per tree Number
Model TRUE FALSE Total of trees

RF1 60 20,000 20,060 5,000
RF2 60 5,000 5,060 10,000
RF3 60 1,000 1,060 20,000

We fix the number TRUEs at 60 for each RF variation, so that
the model may use the majority of TRUEs to learn their pattern
when building each tree. Model RF1 stays loyal to our sam-
ple’s original TRUE/FALSE ratio, with 0.3% of TRUEs contained
in each tree-sample. RF2 and RF3 raise the TRUE/FALSE ratio
to 1.2% and 6%, respectively. Note that while the sample size
per tree decreases from RF1 to RF2 to RF3, we are mindful
to increase the number of trees accordingly to ensure that
whichever model we use, every input case is predicted a suffi-
cient number of times. We use the R package randomForest
to model our data with RF1, RF2 and RF3.

With conventional binomial GLM, problems can arise not
only when the dependent variable has a skewed distribution,
but also when features are skewed. With heavy-tailed coin
price distribution and market cap distribution, conventional bi-
nomial GLM can be insufficient to handle our sample. There-
fore, we apply LASSO (least absolute shrinkage and selec-
tion operator) regularization to the GLM models. After pre-
liminary testing, we choose to focus on three representative
LASSO-GLM models with various shrinkage parameter val-
ues (λ):

Model Shrinkage parameter (λ)

GLM1 10−8

GLM2 10−3

GLM3 5×10−3

Higher values of λ causes elimination of more variables.
We use the R package glmnet to model our data with GLM1,
GLM2, and GLM3.
Variable assessment: By applying the specified models on
the training sample, we are able to assess the features’ rel-
evance to coin prediction. Figure 17 presents features’ im-
portance based on mean decrease in Gini coefficient with RF
models. We find that:

• Coin market cap caps and last hour return before the
pump return1h appear to be the two most important fea-
tures in predicting pumped coin using RF models.

• Features describing market movements shortly before
the pump, e.g. return1h, volumeto1h and volumefrom1h,
appear to be more important than features describing
longer-term movements.

USENIX Association 28th USENIX Security Symposium 1619

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

Model

RF1
RF2
RF3

Measure

Precision
F1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru
e
p
o
si
ti
ve

ra
te

RF1 (AUC = 0.948)
RF2 (AUC = 0.9535)
RF3 (AUC = 0.9433)

(a) Performance of RF Models.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

Model

GLM1
GLM2
GLM3

Measure

Precision
F1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru
e
p
o
si
ti
ve

ra
te

GLM1 (AUC = 0.8794)
GLM2 (AUC = 0.7082)
GLM3 (AUC = 0.6337)

(b) Performance of GLM Models.

Figure 14: Model performance on the training sample measured by Precision,
F1 (left) and ROC AUC (right) at different threshold levels.

• Among all the features related to market movements,
return features are generally more important than volume
or volatility features.

• Exchange-specific features including MinBaseTrade,
MinWithdraw, MaxWithdraw, and WithdrawFee are
least important.

Figure 18 presents the estimated coefficients of variables with
GLM models, from which we obtain several findings in line
with what is indicated by RF models above. Specifically, we
notice that:

• When only one variable is included, return1h appears
to have the highest explanatory power on coins’ pump
likelihood;

• The positive coefficients of return features imply that
the higher the return a coin shows before the pump, the
more likely the coin is to be pumped;

• The positive coefficient of pumpedtimes implies that
pumped coins are more likely to get pumped again.

The variable assessment performed by RF and GLM is
coherent in that both find features representing market move-
ment shortly before the pump to be more important than
longer-term features. This echoes our exploratory analysis
illustrated in Figure 13 and aligns with Kamps et al. [20]. The
finding suggests the spontaneity of admins’ coin selection,
and the importance for strategic traders to obtain real-time
market data.

5.3 Assessing Prediction Accuracy
Both the random forest model and GML predict whether a
given coin will be pumped as a likelihood ranging between 0

and 1. We apply thresholding to get a binary TRUE/FALSE
answer.

Figure 14 depicts the in-sample fitting of model candidates
with the training sample as the threshold value changes. The
fitting measurements include precision, the F1 measure and
area under ROC (Receiver operating characteristic) curve.
Figure 14(a) describes the performance of RF models and
Figure 14(b) GLM models.

Precision represents the number of true positive divided
by number of predicted positive, and the precision line ends
when the denominator equals zero, i.e. when no TRUE pre-
diction is produced. Figure 14 shows that, among the three
RF models, the threshold value at which the line ends is the
lowest with RF1, and highest with RF3. This indicates that
absent balanced bootstrapping, an RF model tends to sys-
tematically underestimate pump likelihood, leading to zero
predicted TRUE cases even when the threshold value is small.

Compared to RF models, none of the GLM models is able
to produce high precision.

In terms of F1 measure, RF models again appear superior to
GLM models. Among the three RF models, the RF1 performs
best at a low threshold range (< 0.2), while RF3 performs best
at a high threshold range (> 0.4). RF2 resides in between.

The RF models’ superiority to GLM models is further
demonstrated by the ROC (Receiver operating characteris-
tic) curve in Figure 14. Among the three RF models, no
discernible difference can be found in terms of ROC AUC:
all exhibit high performance with AUC > 0.94. The GLM
models, in contrast, render an AUC between 0.63 and 0.88.

Due to their obvious inferiority, we eliminate GLM models
from further analysis. Figure 15 illustrates the out-of-sample
performance of RF models. The model performance with
the validation sample resembles that of the training sample,
remaining strong with regard to all three indicators (precision,
F1 and AUC). This suggests that the classification model
trained and calibrated on one period of data can accurately
predict a later period.

Both Figure 14(a) and Figure 15 suggest that balancing the
sample with various TRUE/FALSE ratios only changes the ab-
solute value of the pump likelihood output, but not the relative
one. This means the three RF models can perform similarly
in terms of Precision and F1 measure, when the appropriate
threshold value is chosen in correspondence with the model
(specifically, TresholdRF1 < TresholdRF2 < TresholdRF3).

5.4 Testing an Investment Strategy
To explore the model’s practical utility, we devise a simple
investment strategy. At each pump, we check which coin’s
predicted pump likelihood surpasses a predetermined thresh-
old, and we purchase all those coins before the actual coin
announcement (if no coin’s vote exceeds the threshold, we
will not pre-purchase any coin). Note that if we had the abil-
ity to short or use margin trading on the exchanges we use,

1620 28th USENIX Security Symposium USENIX Association

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Threshold

Model

RF1
RF2
RF3

Measure

Precision
F1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru
e
p
o
si
ti
ve

ra
te

RF1 (AUC = 0.9152)
RF2 (AUC = 0.9115)
RF3 (AUC = 0.9109)

Figure 15: Performance of RF models on the validation sample measured by
Precision, F1 (left) and ROC AUC (right) at different threshold levels.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0
%

4
0%

8
0%

1
20

%

RF1
RF2
RF3

(a) Training sample.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0
%

4
0%

8
0%

1
20

%

RF1
RF2
RF3

(b) Validation sample.

Figure 16: Investment return using different models at different threshold
levels.

potentially more options would open up for us.

Strategy: Specifically, for each coin that we pre-purchase,
we buy the coin at the open price one hour before the coin
announcement with the amount of BTC equivalent to k times
the vote where k is a constant. That is to say, with all the
coins we purchase, the investment, measured in BTC, on each
coin is proportionate to its vote supplied by the random for-
est model. This is logical because a higher vote implies a
higher likelihood of being pumped, and thus worth a higher
investment.

We further assume that among all the coins we purchased,
those coins that do not get pumped (false positive, “false
alarms”) will generate a return of zero, i.e. their price will
remain at the same level as the purchase price; those coins that
get pumped (true positive, “hits”) will be sold at an elevated
price during the pump. To be conservative, we assume that
with each purchased coin that gets pumped we only obtain
half of the pump gain, expressed as:
pump gain = high price−open price

open price .

Returns: Figure 16 presents the relationship between the
aggregate return and the threshold choice.

Figure 16(a) illustrates the performance of the trading strat-
egy with the training sample. The figure shows that, in gen-
eral, the higher the threshold, which means we buy coins with
higher pump likelihoods and disregard others, the higher the
return.

Figure 16(b) illustrates the performance of the trading strat-
egy with the validation sample. As the threshold increases,
the return first increases and then decreases. This is because
the coins with the highest predicted pump likelihood in the
validation sample happen to have very low pump gain. When
the threshold is high, only those coins with high likelihood but

Predicted

TRUE FALSE Total

Actual
TRUE 9 51 60

FALSE 0 18,135 18,135

Total 9 18,186 18,195

Table 3: Confusion matrix of RF1 with threshold value 0.3 applied to test
sample.

low gain are included in the investment portfolio, resulting in
a low overall return.

As already mentioned at the end of Section 5.3, every model
has its own optimal threshold value. In terms of the magnitude
of the profit, with the right combination of threshold and
model, investors would theoretically enjoy a return of 140%
with the training sample cases (RF1 with threshold of 0.7),
and a return of 80% with the validation sample cases (RF1
with threshold of 0.3).

One should be mindful that if the threshold is set too high
(e.g., greater than 0.8), then the investor might end up not buy-
ing any coins, and consequently gaining no profit. In addition,
although high threshold comes with high precision, it also
leads to a low number of coins being purchased, increasing
the risk associated with an undiversified investment portfolio,
as demonstrated in Figure 16(b).

5.5 Final Test

Based on the training and validation results of specified mod-
els, we need to select one model and an accompanying thresh-
old value to apply to the test sample. Our ultimate goal to
maximize the trading profit using the selected model in com-
bination with the proposed trading strategy on a set of out-
of-sample data. Therefore, we base our decision primarily on
Figure 16(b). We apply RF1 and a threshold of 0.3 — the
combination that delivers the highest return in Figure 16(b) —
on our test sample.

To determine the investment amount in BTC for our trading
strategy, we need to examine the market depth. This is partic-
ularly important for exchanges with low trading volume such
as Cryptopia and Yobit. When trading in those exchanges, it
has to be ensured that during the pump-and-dump, the market
would provide sufficient depth for us to liquidate the coins
purchased prior to the pump. For example, if the total trading
volume in one event is 0.4 BTC, it would make no sense to
spend 0.8 BTC on the coin.

To this end, we calculate the average trading volume per
pump-and-dump at Cryptopia. We only consider “uptick”
transactions, i.e. where the buyer is the aggressor. This yields
a ballpark estimation of the market depth on the buy side.
We use this number, 0.37 BTC, as the baseline investment
quantity. This baseline amount, discounted by the predicted
pump likelihood, would be the investment value in BTC.

USENIX Association 28th USENIX Security Symposium 1621

BTC Pump Assumed BTC
Coin Date Pumped? weight invested gain gain gained

wt q = Q×wt pg ag = pg/2 q×ag

BVB Nov 14 TRUE 0.30 0.11 283% 142% 0.16
CON Nov 16 TRUE 0.44 0.16 33% 17% 0.03
FLAX Nov 10 TRUE 0.58 0.21 135% 67% 0.14
MAGN Nov 13 TRUE 0.37 0.14 70% 35% 0.05
MAGN Dec 16 TRUE 0.39 0.14 85% 43% 0.06
OSC Nov 13 TRUE 0.65 0.24 297% 148% 0.36
OSC Nov 25 TRUE 0.52 0.19 100% 50% 0.10
SOON Nov 01 TRUE 0.58 0.21 10% 5% 0.01
UMO Nov 15 TRUE 0.55 0.20 60% 30% 0.06

1.61 0.96

Table 4: Purchased coins based on pump likelihood predicted by RF1. Only
coins with predicted pump likelihood of greater than 0.3 are purchased.
Investment weight equals pump likelihood. Q = 0.37, the average of total
transaction volume in a pump-and-dump event in Cryptopia. Only transaction
volume where the buyer is the aggressor is considered.

Table 3 displays the confusion matrix of the model pre-
diction with the test sample. The model suggests us to pur-
chase 9 coins in total, all of which are ultimately pumped.
Table 4 lists those 9 coins, their respective investment weight
and assumed profit. The return on the investment amounts
to 60% (2.61/4.38) over the test sample period of two and
a half months. Note that the effect of transaction fees (0.2%
on Cryptopia) on the investment profitability is negligible.
The result of the final test is very similar to that with both
the training sample and the validation sample when the same
combination of model (RF1) and threshold (0.3) is applied
(Figure 16), confirming the model’s robustness.

5.6 Caveats and Improvement Potential

Data: Upon availability, order book data, tick-by-tick data
before a pump and traders’ account information can also be
included as features.
Modelling method: Random forest with unsupervised
anomaly detection has the potential to improve the model
performance. In addition, other classification (e.g. k-NN) and
regression (e.g. ridge) models are worth considering.
Additional considerations: Regarding investment weights,
one may consider coin price increase potential (based on e.g.
historical returns) in combination with coin pump likelihood.
One must beware that in liquid exchanges, the trading strategy
only applies to small retail investment, since big purchase
orders prior to a pump can move the market, such that pump
organizers may cancel the pump or switch the coin last-minute.
Also worth factoring in is the market risk (e.g. security risk,
legal risk) associated with the nascent crypto-market.

6 Related Work

Over the past year, a handful of studies researching cryptocur-
rency pump-and-dump activities have been conducted, no-
tably Kamps et al. [20] , Li et al. [23] and Hamrick et al. [18].

Our work differs from the aforementioned studies in terms of
motivation, methodology, data, and contribution. We aim for
prospective prediction as opposed to retrospective investiga-
tion of pump-and-dump activities. We use a homogeneous set
of data that only includes clearly announced pump-and-dump
events on Telegram.22 Regarding the sample period, our data
cover a recent time span of June 17, 2018 to February 26, 2019
(Table 5).

Our paper is also closely linked to literature on market ma-
nipulation in non-cryptocurrency contexts. Lin [24] explains
potential damage of various manipulation methods including
pump-and-dump, front running, cornering and mass misinfor-
mation, and argues for swift regulatory action against those
threats. Austin [3] calls for authorities’ demonstration of their
ability to effectively deter market manipulation such as pump-
and-dump in exchanges for small-capped companies, in order
to recover investors’ confidence in trading in those markets,
which would consequently foster economic growth.

Our paper is further related to research on crypto trading.
Gandal et al. [17] demonstrate that the unprecedented spike in
the USD-BTC exchange rate in late 2013 was possibly caused
by price manipulation. Makarov et al. [25] probe arbitrage
opportunities in crypto markets. Aune et al. [2] highlight po-
tential manipulation in the blockchain market resulting from
the exposure of the footprint of a transaction after its broad-
cast and before its validation in a blockchain, and proposes a
cryptographic approach for solving the information leakage
problems in distributed ledgers.

Our paper is also akin to existing literature on cryptocur-
rencies’ market movements. The majority of related literature
still orients its focus on Bitcoin. Many scholars use GARCH
models to fit the time series of Bitcoin price. Among them,
Dyhrberg et al. [13] explore the financial asset capabilities
of Bitcoin and suggests categorizing Bitcoin as something
between gold and US Dollar on a spectrum from pure medium
of exchange to pure store of value; Bouoiyour et al. [7] argue
that Bitcoin is still immature and remains reactive to nega-
tive rather than positive news at the time of their writing; 2
years later, Conrad et al. [10] present the opposite finding
that negative press does not explain the volatility of Bitcoin;
Dyhrberg [14] demonstrates that bitcoin can be used to hedge
against stocks; Katsiampa [21] emphasizes modelling accu-
racy and recommends the AR-CGARCH model for price
retro-fitting. Bariviera et al. [4] compute the Hurst exponent
by means of the Detrended Fluctuation Analysis method and
conclude that the market liquidity does not affect the level of
long-range dependence. Corbet et al. [11] demonstrate that
Bitcoin shows characteristics of an speculative asset rather
than a currency also with the presence of futures trading in
Bitcoin.

Among the few research studies that also look into the finan-
cial characteristics of other cryptocurrencies, Fry et al. [16]

22As suggested earlier, all the coin announcements we found on Discord
overlap with our Telegram data

1622 28th USENIX Security Symposium USENIX Association

Kamps et al. [20] Hamrick et al. [18] Li et al. [23] This paper

Motivation Locating suspicious transactions
patterns through automated
anomaly detection

Identifying success factors for
historical pumps

Examining how pump-and-
dumps are correlated with
cryptocurrency price

Predicting the coin to be pumped
with input of Telegram signals

Methodology Breakout indicators & rein-
forcers

Ordinary least squares (OLS) OLS, difference in difference RF, GLM

Data Market data of cryptocurrencies
from April 2018 to May 2018 on
Binance, Bittrex, Kraken, Kucoin
and Lbank

Explicit (with coin announce-
ment) and suspected (no coin an-
nouncement) pump-and-dumps
from January 2018 to July 2018

Pump-and-dump events from
May 2017 to August 2018 on Bi-
nance, Bittrex, and Yobit, with a
focus on Bittrex

Pump-and-dump events from
June 2018 to February 2019 on
Binance, Bittrex, Cryptopia and
Yobit, with a focus on Cryptopia

Main finding
/
contribution

The authors develop a defin-
ing criteria set for detecting sus-
picious activity like pump-and-
dumps.

Pumping obscure, small-market-
cap coins is more likely to be suc-
cessful.

Pump-and-dumps are detrimen-
tal to the liquidity and price of
cryptocurrencies.

Pump-and-dumps schemes can
be found and foiled by machine
learning.

Table 5: Comparison of studies on cryptocurrency pump-and-dump.

examine bubbles in the Ripple and Bicoin markets;
Baur et al. [6] investigate asymmetric volatility effects of
large cryptocurrencies and discover that in the crypto market
positive shocks increase the volatility more than negative ones.
Jahani et al. [19] assess whether and when the discussions
of cryptocurrencies are truth-seeking or hype-based, and dis-
cover a negative correlation between the quality of discussion
and price volatility of the coin.

7 Conclusions

This paper presents a detailed study of pump-and-dump
schemes in the cryptocurrency space. We start by present-
ing the anatomy of a typical attack and then investigate a
variety of aspects of real attacks on crypto-coins over the last
eight months on four crypo-exchanges. The study demon-
strates the persisting nature of pump-and-dump activities in
the crypto-market that are the driving force behind tens of
millions of dollars of phony trading volumes each month. The
study reveals that pump-and-dump organizers can easily use
their insider information to profit from a pump-and-dump
event at the sacrifice of fellow pumpers.

Through market investigation, we further discover that mar-
ket movements prior to a pump-and-dump event frequently
contain information on witch coin will be pumped. Using
LASSO regularized GML and balanced random forests, we
build various models that are predicated on the time and venue
(exchange) of a pump-and-dump broadcast in a Telegram
group. Multiple models display high performance across all
subsamples, implying that pumped coins can be predicted
based on market information. We further propose a simple
but effective trading strategy that can be used in combination
with the prediction models. Out-of-sample tests show that a
return of as high as 60% over two and half months can be
consistently exploited even under conservative assumptions.

In sum, we wish to raise the awareness of pump-and-dump
schemes permeating the crypto-market through our study. We

show that with fairly rudimentary machine learning models,
one can accurately predict pump-and-dump target coins in
the crypto-market. As such, we hope our research could, on
one hand, lead to fewer people falling victim to market ma-
nipulation and more people trading strategically, and on the
other hand, urge the adoption of new technology for regu-
lators to detect market abuse and criminal behavior. If such
advice would be heeded, admins’ schemes would crumble,
which would in turn lead to a healthier trading environment,
accelerating the market towards a fairer and more efficient
equilibrium.

USENIX Association 28th USENIX Security Symposium 1623

References

[1] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli.
A Survey of Attacks on Ethereum Smart Contracts. Pro-
ceedings of the 6th International Conference on Princi-
ples of Security and Trust, 10204:164–186, 2017.

[2] Rune Tevasvold Aune, Adam Krellenstein, Maureen
O’hara, and Ouziel Slama. Leakage in Distributed
Ledgers Trading and Information Footprints on a
Blockchain. Journal of Trading, 12(3):5–13, 2017.

[3] Janet Austin. How Do I Sell My Crowdfunded Shares?
Developing Exchanges and Markets to Trade Securities
Issued by Start-Ups and Small Companies. Harvard
Business Law Review, 8:21–35, 2018.

[4] Aurelio F. Bariviera, María José Basgall, Waldo Haspe-
rué, and Marcelo Naiouf. Some stylized facts of the
Bitcoin market. Physica A: Statistical Mechanics and
its Applications, 484:82–90, 2017.

[5] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and
Roberto Saia. Dissecting Ponzi schemes on Ethereum:
identification, analysis, and impact. 2017.

[6] Dirk G. Baur and Thomas Dimpfl. Asymmetric volatil-
ity in cryptocurrencies. Economics Letters, 173:148–
151, 2018.

[7] Jamal Bouoiyour and Refk Selmi. Bitcoin: A beginning
of a new phase? Economics Bulletin, 36(3):1430–1440,
2016.

[8] CFTC. Customer Advisory: Beware Virtual Currency
Pump-and-Dump Schemes. 2018.

[9] Chao Chen and Andy Liaw. Using Random Forest to
Learn Imbalanced Data. Technical report, 2004.

[10] Christian Conrad, Anessa Custovic, and Eric Ghysels.
Long- and Short-Term Cryptocurrency Volatility Com-
ponents: A GARCH-MIDAS Analysis. Journal of Risk
and Financial Management, 11(2):23, 5 2018.

[11] Shaen Corbet, Brian Lucey, Maurice Peat, and Samuel
Vigne. Bitcoin Futures – What use are they? Economics
Letters, 172:23–27, 2018.

[12] Crypto Insider. CFTC offers $100,000+ bounty for
crypto pump and dump whistleblowers.

[13] Anne Haubo Dyhrberg. Bitcoin, gold and the dollar - A
GARCH volatility analysis. Finance Research Letters,
16:85–92, 2015.

[14] Anne Haubo Dyhrberg. Hedging capabilities of bitcoin.
Is it the virtual gold? Finance Research Letters, 16:139–
144, 2016.

[15] Federal Reserve. Federal Trade Commission Act Sec-
tion 5: Unfair or Deceptive Acts or Practices, 2016.

[16] John Fry and Eng-Tuck Cheah. Negative bubbles and
shocks in cryptocurrency markets. International Review
of Financial Analysis, 47:343–352, 2016.

[17] Neil Gandal, JT Hamrick, Tyler Moore, and Tali Ober-
man. Price manipulation in the Bitcoin ecosystem. Jour-

nal of Monetary Economics, 95(4):86–96, 2018.
[18] JT Hamrick, Farhang Rouhi, Arghya Mukherjee, Amir

Feder, Neil Gandal, Tyler Moore, and Marie Vasek.
The Economics of Cryptocurrency Pump and Dump
Schemes. In Workshop on the Economics of Informa-
tion Security, 2019.

[19] Eaman Jahani, Peter M. Krafft, Yoshihiko Suhara, Este-
ban Moro, and Alex Pentland. ScamCoins, S*** Posters,
and the Search for the Next Bitcoin™: Collective Sense-
making in Cryptocurrency Discussions. Proceedings of
the ACM on Human-Computer Interaction, 2:79, 2018.

[20] Josh Kamps and Bennett Kleinberg. To the moon:
defining and detecting cryptocurrency pump-and-dumps.
Crime Science, 7(1):18, 2018.

[21] Paraskevi Katsiampa. Volatility estimation for Bitcoin:
A comparison of GARCH models. Economics Letters,
158:3–6, 2017.

[22] Jiasun Li and William Mann. Initial Coin Offering and
Platform Building. 2018.

[23] Tao Li, Donghwa Shin, and Baolian Wang. Cryptocur-
rency Pump-and-Dump Schemes. 2019.

[24] Tom C.W. Lin. The New Market Manipulation. Emory
Law Journal, 66:1253–1314, 2016.

[25] Igor Makarov and Antoinette Schoar. Trading and Arbi-
trage in Cryptocurrency Markets. 2018.

[26] SEC. Ponzi schemes Using virtual Currencies Ponzi
Schemes Generally. Investor Alert, (153), 2017.

[27] SEC. SEC Files Subpoena Enforcement Against Invest-
ment Company Trust and Trustee for Failure to Produce
Documents. 2018.

[28] Lin Song, Peter Langfelder, and Steve Horvath. Ran-
dom generalized linear model: a highly accurate and
interpretable ensemble predictor. BMC bioinformatics,
14:5, 2013.

[29] Oscar Williams-Grut. ’Market manipulation 101’: ’Wolf
of Wall Street’-style ’pump and dump’ scams plague
cryptocurrency markets. Business Insider, 2017.

1624 28th USENIX Security Symposium USENIX Association

Appendix

RF1 RF2 RF3

caps 8.52 8.53 7.67
return1h 4.60 6.65 7.30
return3h 2.88 3.83 4.62
return12h 2.89 3.22 3.88
return24h 2.53 2.59 2.63
return36h 2.45 2.84 3.68
return48h 3.84 3.95 4.17
return60h 2.65 2.71 3.10
return72h 2.55 2.95 3.60
volumefrom1h 2.22 2.45 2.84
volumefrom3h 1.53 1.34 1.21
volumefrom12h 1.58 1.41 1.14
volumefrom24h 1.70 1.60 1.38
volumefrom36h 1.85 1.68 1.37
volumefrom48h 1.84 1.69 1.41
volumefrom60h 1.93 1.81 1.53
volumefrom72h 1.95 1.87 1.66
volumeto1h 2.64 3.27 3.19
volumeto3h 1.85 1.87 1.60
volumeto12h 1.86 1.70 1.45
volumeto24h 2.23 2.07 1.79
volumeto36h 2.42 2.18 1.87
volumeto48h 2.31 2.19 1.86
volumeto60h 2.40 2.30 2.01
volumeto72h 2.81 2.51 2.16
returnvola3h 2.02 2.30 3.07
returnvola12h 2.08 1.94 1.87
returnvola24h 2.17 1.96 1.73
returnvola36h 2.22 1.99 1.78
returnvola48h 2.44 2.10 1.69
returnvola60h 2.39 2.17 1.80
returnvola72h 2.30 2.09 1.67
volumefromvola3h 1.39 1.34 1.31
volumefromvola12h 1.57 1.42 1.16
volumefromvola24h 1.65 1.51 1.25
volumefromvola36h 1.75 1.55 1.21
volumefromvola48h 1.81 1.56 1.22
volumefromvola60h 1.79 1.56 1.25
volumefromvola72h 1.81 1.66 1.33
volumetovola3h 1.86 2.06 1.96
volumetovola12h 1.77 1.74 1.52
volumetovola24h 2.10 1.94 1.70
volumetovola36h 2.16 1.94 1.65
volumetovola48h 2.12 1.96 1.64
volumetovola60h 2.15 1.99 1.67
volumetovola72h 2.26 2.04 1.70
lastprice 2.14 2.02 1.66
age 2.20 1.88 1.69
pumpedtimes 1.31 1.65 2.52
rating 1.77 1.64 1.37
WithdrawFee 0.73 0.71 0.63
MinWithdraw 1.02 1.03 0.98
MaxWithdraw 0.43 0.36 0.28
MinBaseTrade 0.00 0.00 0.00

Figure 17: Features’ importance indicated by mean decrease in Gini coeffi-
cient. Higher importance is marked by darker cell color.

GLM1 GLM2 GLM3

caps 0.00 - -
return1h 2.76 4.75 5.02
return3h -0.04 - -
return12h 1.08 - -
return24h -4.81 - -
return36h 1.41 0.11 -
return48h 3.64 2.33 -
return60h 0.07 - -
return72h 1.21 - -
volumefrom1h 0.00 - -
volumefrom3h -0.00 - -
volumefrom12h - - -
volumefrom24h - - -
volumefrom36h - - -
volumefrom48h 0.00 - -
volumefrom60h - - -
volumefrom72h - - -
volumeto1h 1.61 - -
volumeto3h 5.99 - -
volumeto12h - - -
volumeto24h - - -
volumeto36h - - -
volumeto48h - - -
volumeto60h -2.88 - -
volumeto72h -0.49 - -
returnvola3h 3.94 - -
returnvola12h 4.41 - -
returnvola24h -9.39 - -
returnvola36h 10.40 - -
returnvola48h 9.10 - -
returnvola60h -12.57 - -
returnvola72h -3.93 - -
volumefromvola3h -0.00 - -
volumefromvola12h 0.00 - -
volumefromvola24h - - -
volumefromvola36h - - -
volumefromvola48h - - -
volumefromvola60h - - -
volumefromvola72h -0.00 - -
volumetovola3h -7.46 - -
volumetovola12h 1.32 - -
volumetovola24h -9.96 - -
volumetovola36h -2.13 - -
volumetovola48h 18.83 - -
volumetovola60h - - -
volumetovola72h 8.65 - -
lastprice -91.74 - -
age 0.00 - -
pumpedtimes 0.69 0.66 -
rating -0.16 - -
WithdrawFee -0.00 - -
MinWithdraw -0.00 - -
MaxWithdraw 0.00 - -
MinBaseTrade - - -
(Intercept) -5.43 -6.15 -5.95

Figure 18: Variable coefficients (unstandardized) using GLM. Coefficients
of variables not selected by the model are shown as “-".

USENIX Association 28th USENIX Security Symposium 1625

Inadvertently Making Cyber Criminals Rich:
A Comprehensive Study of Cryptojacking Campaigns at Internet Scale

Hugo L.J. Bijmans
Delft University of Technology

Tim M. Booij
Delft University of Technology

Christian Doerr
Delft University of Technology

Abstract
Since the release of a browser-based cryptominer by Coinhive
in 2017, the easy use of these miners has skyrocketed illicit
cryptomining in 2017 and continued in 2018. This method
of monetizing websites attracted website owners, as well as
criminals seeking new ways to earn a profit. In this paper,
we perform two large studies into the world of cryptojacking,
focused on organized cryptomining and the spread of crypto-
jacking on the Internet. We have identified 204 cryptojacking
campaigns, an order of magnitude more than previous work,
which indicates that these campaigns are heavily underesti-
mated by previous studies. We discovered that criminals have
chosen third-party software – such as WordPress – as their
new method for spreading cryptojacking infections efficiently.
With a novel method of using NetFlow data we estimated the
popularity of mining applications, which showed that while
Coinhive has a larger installation base, CoinImp WebSocket
proxies were digesting significantly more traffic in the second
half of 2018. After crawling a random sample of 49M do-
mains, ~20% of the Internet, we conclude that cryptojacking
is present on 0.011% of all domains and that adult content is
the most prevalent category of websites affected.

1 Introduction

Unlike traditional currencies, such as the Euro or Dollar, cryp-
tocurrencies are digital assets created as a medium of ex-
change based on cryptography and a blockchain, which are
used to secure both the creation and transactions of units. In
2009, Satoshi Nakamoto released the Bitcoin [33], the first
ever decentralized cryptocurrency, which made it possible
to transfer monetary value to another person by creating a
transaction and committing this to the blockchain, a list of
blocks secured by cryptographic operations maintained by
a peer-to-peer network of miners. These miners secure the
blockchain by constantly collecting transaction data from the
network and validating it by solving cryptographic challenges
based on the previous block, the transaction and the receiver

of the transaction. After validation, the confirmed transaction
is inserted into the blockchain again in the form of a validated
block. As a reward, the miner gets a (part of a) cryptocur-
rency. This network guarantees that only the rightful owner of
a Bitcoin wallet can make transactions and prevents malicious
actors from inserting false information into the blockchain.

Solving these cryptographic challenges as a miner has how-
ever become so difficult that Bitcoin cannot efficiently be
mined anymore on regular PCs. Over the past years, over
4,000 other cryptocurrencies have been created, so-called alt-
coins. One of them is Monero (XMR), launched in 2014 and
nowadays the most popular cryptocurrency in browser-based
mining [34]. In contrast to Bitcoin, Monero uses a private
blockchain, meaning that while anybody can use it to make
transactions, nobody is allowed to view them [47]. It also
builds upon a different proof-of-work algorithm to validate its
transactions, called CryptoNight, a fork of CryptoNote [43].
This algorithm is designed to be memory-hard and there-
fore requires a large set of bytes in memory to perform fre-
quent read and write operations on. Simple consumer-grade
CPUs have exactly that memory available at their processor
caches, making this kind of mining the most efficient on regu-
lar consumer-grade hardware. To speed up the mining process,
mining jobs can be distributed among individual miners in a
mining pool. In such a pool, miners work together to mine
new blocks and share the rewards. Work is distributed among
miners in the pool based on the difficulty of the cryptographic
challenge. As a consequence, powerful machines solve the
more difficult puzzles, while low-end machines receive the
easier ones. Rewards are shared according to the same princi-
ple. Mining pools closely monitor the submissions from their
miners and state that they will block any wallet address after
receiving evidence that a wallet is used for malware or botnet
activities [28].

The introduction of alt-coins that by design can be effec-
tively mined on regular PCs also made them an attractive
target for cybercriminals. Both the private blockchain and the
ASIC-resistant mining algorithm of Monero quickly made
Monero one of the preferred choices. In addition to being

USENIX Association 28th USENIX Security Symposium 1627

included in malware [37], there also exist implementations to
perform drive-by mining or cryptojacking, where cryptocur-
rency is mined in the user’s web browser while visiting a web
site. While originally developed as an alternative mechanism
to donate to the upkeep of a website in presence of now ubiq-
uitous ad-blockers, many methods exist to maliciously apply
browser-based mining: for example, criminals hack vulnera-
ble websites to install mining scripts [3] or create malicious
advertisements with cryptojacking code that are displayed
on benign websites [30], but actors have also compromised
routers [35] or setup malicious Wi-Fi networks [38] to inject
cryptominers into their users’ traffic.

Previous studies have performed surveys on the use of
cryptominers across the most commonly visited websites and
have identified groups of criminals installing cryptominers
on a large number of domains for their own profit [22, 39].
It makes sense for a cyber criminal to lure as many users
as possible into such mining, which could be accomplished
not only by deploying the cryptojacking code into popular
websites, but hacking a large number of websites or injecting
a resource such as a common library that is used by a large
number of unsuspecting websites. These individual installa-
tions are working together in a coordinated campaign, thus
significantly increasing the profits of the criminal, but at the
same time also indicating an elevated level of knowledge and
sophistication of the adversary. The presence and extent of
such coordination is however largely unknown.

In this paper, we address this gap and systematically inves-
tigate the coordination and collaboration of cryptojackers on
the Internet and make the following four contributions:

• We are the first to systematically analyze the relation-
ships between websites that perform cryptomining and
the actors behind them. By this campaign analysis, we
find the existence of massive installations. In fact, we
have identified 3 times as much cryptojacking activity
as [39] and the five largest campaigns we detected ex-
ceed the total size of cryptomining reported in [22].

• We show that the bulk of organized mining activity is the
result of compromised (parts of) third-party software and
that comparatively little organized activity is the result
of hacked websites or an explicit choice to mine by the
website owner.

• Through a survey of 1,136 top level domains and by
comparing the installation base with actual mining traffic
on the Internet using NetFlow data, we find that the most
prominently installed miner is actually not the one that
generates the most mining activity in practice. We also
see that applications and attack vectors come and go,
and that different TLD zones exhibit clear differences in
mining application popularity.

• Estimating cryptojacking by solely crawling the Alexa
Top 1M results is an overestimation of the size, as we

see that cryptojacking activity is almost 6 times higher
in that subset compared to the rest of the Internet.

To enable follow up research, we make our data and soft-
ware publicly available at https://www.cyber-threat-
intelligence.com/cryptojacking-campaigns.

2 Background

WebAssembly & asm.js To enable faster execution of code
inside the browser, Mozilla developed asm.js, a technique for
translating high-level languages, such as C and C++, into
JavaScript to be used by the browser [29]. Multiple validation
methods enable the JavaScript engine to compile this code
ahead-of-time and improve execution speed. This technique
made it possible to execute code faster inside the browser
after its release in 2013.

WebAssembly (Wasm) is a more recently released script-
ing language developed by the World Wide Web consortium
in 2017 and is able to compile high-level languages like C,
C++ and Rust inside the browser to be used in web applica-
tions [50]. It runs in a sandbox within the browser and it aims
to execute as fast as native machine code. Wasm is comple-
mentary to JavaScript, as it is being controlled by JavaScript
code after its compilation.

The difference between asm.js and Wasm is the fact that
the latter is compiled only once and is started directly at native
speed, whereas code in asm.js is compiled and optimized at
run time, therefore decreasing execution speed. Both tech-
niques are supported by all four major browsers (Chrome,
Firefox, Edge and Safari) and have drastically improved the
execution speed of applications inside the browser, which
made them very attractive for browser-based mining.

WebSockets & Stratum WebSockets is a HTML5 proto-
col providing two-way communication between the client
and a server over a single TCP connection [52]. The protocol
enables easy real-time data transfer without refreshing (a part
of) the web page. Communication is done over the same TCP
ports as the web browser, making it robust to strict firewall
rules or other blocking.

Developers are free to define the format of messages sent
over WebSocket connections. However, there is a protocol
specifically designed for cryptomining communications: the
Stratum Mining Protocol, a line-based protocol with mes-
sages encoded in plain-text JSON-RPC format [46]. Servers
communicate with their clients using Stratum to authorize
new miners in the pool, distribute jobs based on difficulty
and retrieve found hashes from the miners. An example of a
WebSocket connection using the Stratum protocol is given in
Table 1.

Browser-based mining Triggered by the rise of CPU-
mineable cryptocurrencies (such as Monero) and the rapid

1628 28th USENIX Security Symposium USENIX Association

WebSocket traffic frames

⇑ {"type":"auth",
"params":{"site_key":"<site_key_of_website>",
"type":"anonymous","user":null,"goal":0,
"version":3000,"coin":"xmr"}}

⇓ {"type":"authed",
"params":{"token":"<random_36_characters>",
"hashes":0}}

⇓ {"type":"job",
"params":{"blob":"<random_152_characters>",
"job_id":"<random_28_characters>",
"target":"ffffff01", "id":"<random_36_characters>",
"algo":"cn","variant":"4","height":1808537}}

⇑ {"type":"submit",
"params":{"job_id":"<random_28_characters>",
"nonce":"377c32b8",
"result":"<found_64_characters_hash>"}}

⇓ {"type":"hash_accepted",
"params":{"hashes":128}}

⇓ {"type":"job",
"params":{"blob":"<random_152_characters>",
"job_id":"<random_28_characters>",
"target":"ffffff01", "id":"<random_36_characters>",
"algo":"cn","variant":"4","height":1808537}}

Table 1: Example of a WebSocket connection using the Stra-
tum Mining Protocol to communicate with a mining pool

development of useful web standards (e.g.WebAssembly and
the Stratum protocol), browser-based cryptomining gained an
enormous momentum in the autumn of 2017. Coinhive, a Ger-
man company, created an easy to use browser-based mining
application as an alternative to advertisements [9, 23]. They
provide a JavaScript library, an API and a WebSocket proxy in-
frastructure to developers to easily integrate a browser-based
miner into their website and let their visitors mine for Mon-
ero. 70% of the mined Monero is transferred to the owner
of the account, the remaining 30% is kept by Coinhive [10].
Soon after Coinhive released their miner application, similar
ones appeared, such as Cryptoloot [11] and Coin-Have [6].
Nowadays, miner applications come and go, with various ca-
pabilities and usage fees, but Coinhive still has a prominent
place in the cryptojacking landscape.

Overview of a cryptojacking attack Although different
mining applications exist, all browser-based miners show
great similarities. As depicted in Figure 1, the user visits
the cryptomining website (1) and receives a valid HTTP re-
sponse (2). The cryptomining website requests a JavaScript
file (3), which controls the mining operation. This script first
explores the host system, searches for the number of CPU
threads available, downloads the WebAssembly mining script

WWW

Proxy

Miner

Pool

1 2
3

4

56

7

A

HTTP Request/
Response

External HTTP

Webserver

Webserver
External

Resources

Websocket
Proxy

Client

B

C
D

WebSocket
Mining

Web Workers

Figure 1: Browser-based cryptomining attack

for the actual mining operation (4) and distributes it over a
number of WebWorkers (a JavaScript instance running in the
background, without affecting the page performance). It also
sets up a WebSocket connection with the mining pool through
a proxy (5). The script authenticates itself to the mining pool
server (in Stratum format) and, if successful, receives the first
job to work on (6). The WebWorkers start working on that
job and found hashes are submitted to the mining pool by the
controller script (7).

Campaign analysis Campaign analysis is the field of re-
search focused on discovering clusters of malicious online
entities. The term originates from analysis of large volumes
of SPAM or phishing emails, but can also be used in other
areas, such as browser-based cryptomining. In this particular
case, campaign analysis is focused on finding clusters of the
same cryptominers on different domains. Since those miners
always include a form of identification to which funds need to
be transferred, clustering cryptojacking websites can be done
relatively easily. Most mining applications define a siteKey,
a unique (random) string used to identify the user to which
earnings have to be transferred, which can be found in either
the source code or the WebSocket traffic. A similar siteKey
guarantees that the same account is rewarded for the mining
that takes place. Identifying campaigns can also be done by
searching for similar WebSocket proxy servers, if the website
is not using a popular one, but instead hosting its own server.
We have used these, and other techniques to discover cam-
paigns as discussed in Section 6.1. We have chosen to define
a cluster of websites as a campaign once they share identi-
cal features more than 5 times. E.g. a cluster of 6 websites
with the same siteKey or private WebSocket proxy server is
considered a campaign.

USENIX Association 28th USENIX Security Symposium 1629

3 Attack vectors

Mining cryptocurrencies with the computing power of web-
site visitors is not illegal, as long as users are asked permission
to mine. When a user cannot consent to the mining activities
their computer is involved in, it is called cryptojacking. Al-
though browser-based cryptomining is a recent phenomenon,
jurisdiction on cryptomining without consent already exists.
In 2015, a US court settled a case with a developer of Bitcoin-
mining software, in which the Attorney General stated that
no website should tap into a person’s computer processing
power and that the user has to be informed about the crypto-
mining activities which take place on the visited website [18].
However, this is often not the case. In this section, we summa-
rize the attack surface for cryptojacking on the Internet. All
attack vectors are marked in Figure 1 by their corresponding
characters.

Website owner (A) The owner of a website can add a cryp-
tomining script to his web page without informing its users.
This can be done as a replacement for advertisements, which
was the case for The Pirate Bay, one of the most popular
torrent websites [48]. Only a few days after the Coinhive ser-
vice was launched, they added a miner to their website which
started mining without user consent, as a replacement for the
intrusive advertisements they would normally show. Nowa-
days, the website shows a disclaimer on the bottom of the
homepage, notifying their visitors that their CPU will be used
for cryptomining. Another major source of website owner
initiated cryptojacking is parked domains [13].

Compromised websites (A) A cryptomining script can
also be present on a web page without knowledge of the
website owner. When a website gets hacked, an attacker is
able to inject cryptomining scripts. Now, the attacker receives
the rewards for the visitors mining on that website. There
are numerous examples of this kind of attack. There have
been cryptojacking scripts found on web pages of the Indian
government [3], CBS Showtime [26] and many others.

Third-party software (B) Gaining unsolicited access to
large number of domains is a time-consuming operation. As
a consequence, attackers have tried different tactics to infect
multiple websites at once by infecting third-party software.
In the last year, we have seen attacks in which cryptojacking
code is injected into popular third-party software, such as
JQuery or Google Tag Manager [5]. Drupal, a widely used
open-source CMS, was the victim of a large attack involving
more than 100,000 websites [32] and WordPress, a similar
CMS, suffered from a weather plugin [53] secretly injecting
a cryptojacking script into the website it was installed on.

Malicious advertisements (C) Advertisement-supported
websites let their advertisements be sold by advertisement
networks, such as Google. The downside of this system is that
attackers can attach cryptomining scripts to advertisements
and distribute them through an advertisement network over
a large number of websites. In January 2018, Youtube was a
victim of this kind of attack, in which cryptomining scripts
were injected in the ads shown on the website [30].

Man in the middle (D) The most effective method of gain-
ing large groups of miners for an attacker is by being the man-
in-the-middle. In August 2018, 200,000 MikroTik routers
were infected by malware, which inserted a Coinhive script
into every website the user visits [35]. The bug was patched
within a day, but many MikroTik routers are not, leaving them
still vulnerable. In our research, we are not able to detect these
attacks, since they are not originating from a website.

4 Related Work

Academic research on browser-based cryptomining has only
started in 2017 and is, due to the recent developments of
the used web standards, very topically. The first explorations
into this research field have been performed by Eskandari et
al. [13]. In their analysis, the authors queried two large source
code datasets for strings known to be part of cryptomining
scripts (such as coinhive.min.js or load.jsecoin.com)
and found a large number of domains. This method is only
able to detect known mining applications, not the obfuscated
or new ones. While calculating the profitability, the authors
stumbled upon a Coinhive campaign which ran a miner on
over 11,000 parked websites. This study kicked-off a num-
ber of subsequent investigations, which were all aimed at de-
tecting browser-based cryptomining. Rauchberger et al. [39]
created their MiningHunter, a crawler able to detect mining
scripts even when their malicious activities are obfuscated.
The detection method relied on analyzing executed JavaScript
code and WebSocket traffic frames. After a successful crawl
of the Alexa Top 1M in the beginning of December 2017,
they were able to detect 3,178 websites running a cryptominer.
1,210 unique keys were retrieved and one large campaign in-
volving 1,116 websites infected by a malicious advertisement
network was identified. At the same time Parra Rodriguez et
al. [40] worked on RAPID, a resource and API-based detec-
tion method, which is able to detect browser-based crypto-
mining and is resistant to JavaScript obfuscation. Their classi-
fication was able to classify mining samples with a precision
of 96%. Eventually 656 actively mining websites were found
in the Alexa Top 330,550. A similar classification study was
performed by Carlin et al. [2], in which they demonstrated
that dynamic opcode tracing is extremely effective at detect-
ing cryptomining behavior. Liu et al. [24] proposed a novel
approach for detecting browser-based mining applications by

1630 28th USENIX Security Symposium USENIX Association

creating BMDetector, a detection system based on a modi-
fied Chrome kernel. Using this modified kernel, the authors
were able to perform JavaScript code block analysis on the
compiled JavaScript code, which allowed them to detect heav-
ily obfuscated miner applications as well. Hong et al. [19]
built CMTracker, a behavior-based detector with two runtime
profilers for tracking browser-based cryptomining. The first
profiler monitors incoming JavaScript files for known finger-
prints, the second profiler observes the call stack and searches
for periodic executions. Their approach was able to detect 868
actively mining websites among the Alexa Top 100K in April
2018. More than half of the found keys were used only once
and they noticed that domains hosting mining scripts were mi-
grating faster than the mining pool domains. The authors also
mentioned evasion techniques, such as code obfuscation and
payload hiding inside third-party libraries. Periodic execution
in mining scripts was also noticed by Wang et al. [49], who
created SEISMIC, a monitoring service to interrupt browser-
based mining scripts based on this finding.

A different view on the subject was given by Papadopoulos
et al. [36], who tried to answer the question whether browser-
based cryptomining could be a suitable alternative to adver-
tisements. After crawling a dataset of 200K websites running
advertisements or cryptominers, they concluded that adver-
tisements are still more than 5 times more profitable than
cryptominers. This will only change once a visitor stays on
the same website for more than 5.3 minutes or when Monero
becomes more valuable [36]. A broader view of the browser-
based cryptomining ecosystem is given by Saad et al. [42],
who researched both cryptomining code and user impact. Be-
sides various JavaScript static code analysis clustering meth-
ods and battery drainage studies when cryptomining, they
did not perform any crawling of the web. This is in great
contrast to the work of Rüth et al. [41], who digged deep
into browser-based cryptomining by conducting two large
web crawls. A first crawl using zgrab, which downloaded the
first 256 kB of 137M .com, .net, and .org domains, as well as
from the Alexa Top 1M websites. Consequently, the resulting
HTML file was checked against the NoCoin [14] block list.
A second crawl was performed on a subset of 10M websites,
with a customized Chrome browser, instructed to dump Web-
Assembly modules for further inspection. They conclude their
work by stating that 0.08% of the probed websites is actively
mining [41].

Another large web crawl study is conducted by Konoth et
al. [22] as a study for the creation of MineSweeper. Again,
the Alexa Top 1M (including three internal pages) was
crawled, with a crawler extracting information from all loaded
JavaScript and HTML files, WebSocket traffic, and requests
made while visiting the website. A total of 1,735 websites was
found to be actively mining, the majority of them using Coin-
hive. 20 mining campaigns were discovered in their analysis,
of which the largest involved 139 websites. Based on these
findings, a novel detection technique was developed, which

focused on the aspects all mining scripts have in common:
high CPU cache usage and WebAssembly. They developed
MineSweeper, able to successfully identify mining scripts
based on the CPU’s L1 and L3 cache usage and cryptomin-
ing characteristics in WebAssembly, thus hardening it against
miner obfuscation.

As shown by this summary of related work, most atten-
tion of academic investigation has been on detecting these
browser-based cryptominers. Multiple studies have shown to
be able to detect them with high precision [19, 22, 24, 39–41].
Academic research is less focused on finding campaigns of
cryptomining websites, while the online research commu-
nity (such as Badpackets [31] or Krebs on Security [23]) is
particularly interested in finding those relations. The first ex-
plorations into this area have been taken by [22], [13] and [39],
but campaigns have not been systematically explored in their
research. This paper aims to resolve this gap, by focusing
on identifying campaigns, methods used in these campaigns
and their evolution. We are also interested in the spread of
cryptojacking on the Web, but as previous work is mostly
crawling (subsets of) the Alexa Top 1M, we will analyze a
broader set of websites online. In this paper we will not try to
create a new detection method, but we build upon the work
of [22] to perform our crawls.

5 Methodology

In a measurement study like this, suitable datasets and meth-
ods are essential for conducting proper research. In this sec-
tion we first discuss the datasets used or created, followed by
a summary of our crawler implementation.

5.1 Dataset creation
In our first crawl, we focus on finding campaigns of crypto-
jacking websites. Previous work of [19, 22, 39, 41] mainly
investigated the popular parts of the Internet by crawling the
Alexa Top 1M, or subsets of it. But, as pointed out by Scheitle
et al., the Alexa Top 1M is not the only list measuring the
popular Internet and the method Alexa uses to create this list
raises questions whether it is the most reliable list to use for
research on cryptojacking [44]. To overcome this issue, we
have decided to use the union of three top lists on the Internet;
the Alexa Top 1M [1], the Cisco Umbrella 1M [4] and the
Majestic 1M [25], all using different measurement strategies,
to include the popular part of the Internet in our dataset. These
last two also include subdomains and domains not serving
a web page. Therefore, we have only added the domains to
the list of URLs to be crawled and omitted the subdomains
from the latter two. Since we are interested in finding as many
cryptojacking domains as possible for our campaign analysis,
we have decided to extend our list even further with a list
of websites gathered from querying PublicWWW – a source
code search engine – with the keywords listed in Appendix A.

USENIX Association 28th USENIX Security Symposium 1631

Table 2: Dataset creation for the campaign focused crawl
List No. of websites Date (2018)

Alexa Top 1M 1,000,000 Dec 24
Cisco Umbrella 1M 233,145 Dec 24
Majestic 1M 897,767 Dec 24
Custom PublicWWW set 87,051 Nov 23 – Dec 24

Total 1,896,503

The union of these sets formed the dataset to be crawled and
consisted out of 1,896,503 websites (unique effective TLDs +
1), as listed in Table 2. To estimate the prevalence of crypto-
jacking on the Internet in general, we will not use a top list
as the Alexa Top 1M, because it is not a random sample of
the Internet. We therefor also download a random sample of
~20% of the websites in 1,136 TLDs. We discuss this crawl
in more detail in Section 7.

Operator NetFlows While the aforementioned datasets
provide insights into the landscape of cryptomining installa-
tions at a given moment, these data sources do not reveal much
about the actual usage of such services. In order to bridge this
gap, we analyzed NetFlow traces from the network of a Tier
1 operator from September 2017 until December 2018, which
were collected at a 1:8192 sampling ratio. For our analysis,
we obtained NetFlow records for all traffic from and to the
various WebSocket proxy servers belonging the mining ser-
vices. Although NetFlows do not reveal the actual contents
of a connection, the used ports and packet sizes can indicate
connection types. The identity of the source connecting to the
WebSocket proxy is however irrelevant, and was anonymized
to a pseudo-random value by the operator using the CryptoPan
algorithm [54].

5.2 Crawler implementation

As mentioned in Section 4, this research builds upon the
work of Konoth et al. [22]. Therefore, we have used their
crawler implementation as a starting point for our crawler.
The following paragraphs will highlight the major changes
and additions made to their work for our research.

Addition of new miner applications The publicly avail-
able Minesweeper crawler supports 22 different mining appli-
cations. Based on previous work and online research, we have
added another 9 miner applications to the crawler, in order to
also identify the newest miner applications. The added appli-
cations and their keywords are listed in Appendix B. For some
of the already supported miner applications we have extended
the fingerprints and improved the regular expressions to find
siteKeys.

Active mining detection We have instructed the crawler
to never explicitly consent to any mining operation. There-
fore, we define that website to be actively mining without
consent when: a mining code signature is found, together
with a siteKey, more than two WebWorkers and a WebSocket
connection, or, when the Stratum protocol communication or
login credentials for a mining pool are found in WebSocket
traffic. If one of these conditions holds, we mark the domain
as actively cryptojacking.

WebSocket stack trace The miner application communi-
cates with the mining pool using WebSocket connections.
WebSocket traffic was already logged in the crawler, but the
initiator of the WebSocket connection was not. By inspecting
the stack trace of the WebSocket initiation, we can determine
which script was responsible for opening the WebSocket con-
nection and therefore the mining initiator. Using this method,
we can easily distinguish between miners started from the
main HTML page or the ones hidden inside other resources.
Moreover, similar stack traces are a powerful indicator for
campaign analysis, since it shows what component started the
mining application. We have used this method successfully in
our campaign analysis to identify attack vectors. Miners hid-
den inside third-party software such as WordPress are easily
noticed in the stack trace, as we will show in Section 6.1.

Changed logic and exhaustive key finding Our crawler
visits every website twice. First, by using a custom Chrome
build, with the -dump-wasm-module flag enabled to dump
any WebAssembly on the page. If present, these Wasm mod-
ules are analyzed for cryptojacking code by the MineSweeper
application. Second, by using another Chrome build, which
visits the website and saves every file it encounters. Instead of
visiting 3 internal pages (as Konoth et al. did), we instructed
the crawler to visit just one internal page. Besides that, we
have implemented a more exhaustive siteKey search. The
crawler first searches for fingerprints of known miner appli-
cations and afterwards for the siteKey in the following order:
WebSocket traffic, the HTML page and finally in all other
HTML and JavaScript resources. A minor addition has been
made to automatically decode a base64 encoded siteKey of the
Mineralt miner [27]. This addition allowed us to retrieve more
siteKeys, which improves the campaign analysis afterwards.

5.3 Infrastructure

We deployed the crawler in Docker containers on 60 servers
within the university network, each running 8 Docker in-
stances in parallel. The crawl started on the December 24,
2018 and completed on January 9, 2019. In total, 1,769,183
websites have been successfully visited in this initial crawl.
Afterwards, we have performed a second crawl using the same
infrastructure, which we discuss in Section 7.

1632 28th USENIX Security Symposium USENIX Association

Table 3: Summary of the results of the first crawl
Crawling period 24/12/2018 – 9/1/2019
websites crawled 1,769,183 (93%)
potential cryptojacking websites 21,022
active cryptojacking websites 10,100
active miner applications 22
websites with unknown miners 323
cryptojacking campaigns identified 204
websites in largest campaign 987
websites in Alexa Top 1M 648 (0.065%)
websites in Cisco Umbrella 1M 109 (0.047%)
websites in Majestic 1M 506 (0.056%)

6 Current state of cryptojacking campaigns

We have identified 21,022 websites with traces of cryptomin-
ing activities of which 10,100 websites are actively mining
without the visitor’s explicit consent. Only 648 of these web-
sites are listed in the Alexa Top 1M. 22 different miner ap-
plications have been identified among the crawled websites,
most of them running at least the Coinhive miner application
(71%). Also, 509 websites are deploying multiple miners. For
323 websites, the used miner application could not be de-
tected, which indicates heavily obfuscated or unknown miner
applications. The results are summarized in Table 3.

Among the identified websites, 204 campaigns have been
detected, of which the largest one covers 987 websites. This
number of campaigns is a magnitude larger compared to pre-
vious work [22, 39]. We have identified the use of third-party
software, such as Drupal and WordPress, to be the driving
factor behind the largest cryptojacking campaigns.

Mining with consent There are two mining applications
focused on mining solely with visitor consent. JSEcoin, a
mining service presenting itself as “The future blockchain
& ecosystem for ecommerce and digital advertising”, allows
website owners to let their users mine JSE tokens, after ex-
plicit opt-in consent [20]. Another consent-focused mining
application is AuthedMine, the opt-in version of Coinhive,
introduced after adblockers started blocking Coinhive [8]. In
our crawl, we have identified 2,477 websites using the JSE-
coin miner and 227 websites using AuthedMine. None of
the websites using AuthedMine opened a WebSocket con-
nection, which indicates that no mining activity took place.
143 websites using JSEcoin did however open a WebSocket
connection, but never actually started mining. By analyzing
the WebSocket traffic, we observed that in most cases the
WebSocket connection initiation was followed by two probes
sent back and forth, waiting for the user to opt-in. Since these
mining applications did not started mining without consent
of the visitor, we have omitted them from our results.

501
2746

397

73

828

Alexa Top 1M

Cisco Umbrella 1M

Majestic 1M

Figure 2: Venn-diagram showing the distribution of identified
cryptojacking domains over the used top lists

Identified domains in top lists Of the 10,100 domains
identified as actively cryptojacking, only 925 were found
in one of the three top lists. The Alexa Top 1M contains the
most cryptojacking domains (648), meaning that 0.065% of
the websites in the Alexa Top 1M are cryptojacking, slightly
less than previous work [22,41]. For both other lists this num-
ber is lower. The addition of the Cisco Umbrella 1M resulted
in only 27 additional findings, whereas the addition of the
Majestic 1M led to the discovery of 397 new cryptojacking
domains. In Figure 2, a Venn diagram depicts these differ-
ences in subsets. Only a small number of websites is shared
among the Alexa Top 1M and the Majestic 1M. Also note that
9,175 (86%) of the identified websites are not listed in any of
these top lists. This finding stresses the necessity of looking
further than top lists while performing campaign analysis and
to study the current state of cryptojacking on the Internet.

Categorization of websites We have discovered various
sorts of cryptojacking websites on the Internet. By comple-
menting the list of identified domains with website catego-
rization data of Webshrinker [51], we categorized each cryp-
tojacking website. We confirm previous work by identifying
adult content (such as pornography) as the most prevailing
category within our dataset, with over 2,000 websites in this
category. Illegal content, a category known being home to abu-
sive web resources, contains a lower number of cryptojacking
websites compared to what we expected.

Installation base Coinhive is still the most popular crypto-
mining application installed on the identified cryptojacking
websites (75%), followed by Cryptoloot (5.3%) and CoinImp
(3.2%). But, there are noticeable differences between the com-
plete crawl and the subset of domains in the Alexa Top 1M.
Coinhive’s share is halved, whereas CoinImp and Cryptoloot
installations are doubled in size. Nerohut and Webminerpool
miners are relatively more present in the Alexa Top 1M subset,
while Mineralt has a similar share in that subset. The bottom

USENIX Association 28th USENIX Security Symposium 1633

0.0 0.2 0.4 0.6 0.8 1.0

Total crawl

Alexa Top 1M

Netflows

coinhive
cryptoloot
coinimp
generic
mineralt

webminerpool
wp_monero_miner
nerohut
cryptonoter
monero-mining

nebula
coincube
webmine
cryptominer
coinhave

Figure 3: Distribution of cryptomining applications based on
the total crawl, the Alexa Top 1M and NetFlows analysis.

two stacked bars in Figure 3 show the distribution of miners
according to our analysis.

We have also discovered services which combine multiple
cryptomining applications. The most popular mining com-
bination is the set of Coinhive, Cryptoloot and Cryptonoter,
which are bundled in the implementation of the WordPress
Monero Miner plugin [21]. A combination of a Nerohut miner
with a Cryptoloot or Webminerpool miner is also regularly
encountered. Usually, only one miner starts (due to another
script deciding which one to use), but we also encountered
domains on which multiple miners were started concurrently.

Actual mining activity The distribution of mining appli-
cations installed on domains gives an insight into their po-
pularity by actors pursuing cryptomining, but not into their
actual usage. The amount of actual mining that takes place
can however be estimated by tracing the connections website
visitors make to the mining application’s WebSocket proxy,
as explained in Figure 1. We obtained a trace of connections
transported by a Tier 1 network operator in 1:8192 sampling
for a period of 14 months, and followed the WebSocket proxy
server IPs from these mining applications to estimate the traf-
fic to these servers. This gives an insight into how much traffic
these WebSocket proxies digest, and is therefore a more reli-
able source for popularity measures. The upper stacked bar
chart in Figure 3 shows the distribution of NetFlows to the
WebSocket proxy servers of known mining applications for
the month of December. The results show a drastic difference
between installation base and mining traffic: while Coinhive
is found on most websites, CoinImp proxy servers handle
more than twice as much traffic than the dominant applica-
tion. WebSocket traffic to servers of Cryptoloot is similar in
size compared to its installation base.

Table 4: Mining pools the identified domains are mining in
Mining pool Occurrence

supportxmr.com 93
xmrpool.eu 15
greenpool.site 13
minexmr.com 6
xmr.omine.org 4
moneroocean.stream 2
seollar.me 1
xmr.nanopool.org 1

Mining pool participation Most mining applications do
not disclose the actual mining pool they are mining for in
WebSocket traffic. However, on 135 identified domains, the
WebSocket traffic did reveal that, as listed in Table 4. Most
of these websites are participating in the supportxmr.com
mining pool, which is commonly orchestrated by a Webminer-
pool or Nerohut mining script. Other pools are less commonly
used or were not revealed in WebSocket traffic.

Throttling of applications Most cryptomining applica-
tions allow for a throttle value to be set, which limits the
percentage of the CPU the miner can use. It is not necessary
to set a throttle value, in this case the miner uses 100% of the
available processing power. We have discovered that when a
throttle value is set, this is often set to 0.3, meaning that 70%
of the processing power can be used by the miner. Setting a
throttle to use 70% of the resources seems to be balancing bet-
ween gaining enough profit and not disturbing the browsing
experience too much. In the identified campaigns, the throt-
tle value is mostly set to the same value on all domains. An
exception is listed in Table 5, in which a campaign involving
180 websites uses two different throttle values.

Attack vectors encountered We were able to retrieve the
siteKey of actively cryptomining websites in 92% of the cases.
Most of the gathered siteKeys are only used once (78%) and
only a small portion (5%) is used on more than 5 different
websites. However, the siteKeys in this last category are found
on 4,663 different websites (46% of the total). The high num-
ber of siteKeys used only once suggests a large amount of
website owner initiated cryptojacking, since every domain
uses its own key. The fact that almost half of the websites is
part of a campaign involving at least 5 websites also indicates
different attack vectors. We have manually analyzed the used
siteKeys in the latter category, and we can conclude that, be-
sides website owner initiated cryptojacking, the use of third
party software is a prevailing attack vector. Third-party appli-
cations like WordPress, Drupal or Magento are often abused
to spread cryptojacking injections. These applications play a
major part in campaign analysis, as discussed in Section 6.1.

1634 28th USENIX Security Symposium USENIX Association

Hiding techniques With the rise of cryptomining blocking
applications such as NoCoin [17] or Minerblock [16], mining
scripts are more often hidden to prevent detection. We have
encountered a number of hiding techniques in our crawl and
distinguish the following levels of obfuscation:

1. No obfuscation. The script is loaded in clear text, key
and other options are visible to the user.

var miner = new CoinHive.Anonymous(’key’);
miner.start();

2. Limiting CPU usage. Script is loaded in clear text, key
and other options are visible to the user, but CPU usage
is throttled, so detection by the user is less likely.

3. Renamed variables. The script is loaded in clear text,
but (some) variable names have been changed. These
variable names are either replaced by random strings, or
by completely different words, such as on http://www.
2001.com.ve/:

startHarryPotter("boddington", "2001");

4. Renamed mining script. The loaded script is still in clear
text, but hosted on the web server itself instead of fetched
from a mining service. The file name is changed to pre-
vent blacklist blocking, frequently to general names, such
as jquery.js or stat.js.

5. Hidden inside other scripts. The miner is appended or
inserted into another script. The benign script still func-
tions as normal, but also starts up the mining process.

6. Obfuscated code. The loaded scripts are masked by a
code obfuscator and contain packed or CharCode code.
All application-specific strings are encoded, stored in an
array and variable names are replaced by random strings.

var _0x5d02=["\x75\x73\x65\x20\x73\x74", ..]

7. Obfuscated code and WebSocket traffic. The loaded
script is obfuscated by a code obfuscator and WebSocket
traffic is sent encrypted to the proxy server.

8. Obfuscated and hidden. Scripts are hidden inside other
files and/or via multiple redirects. Every script is ran-
domly named and obfuscated, and so is the WebSocket
traffic. WebAssembly is not retrieved from the server,
but included inside the script.

In our crawl, most website owner initiated cryptojacking is
not obfuscated, often not even throttling CPU usage. Attacks
using third-party software are usually hiding cryptomining
code inside other scripts and apply some obfuscation. We have
encountered multiple WordPress themes and Drupal plugins
with such a hidden miner. Only 391 websites with encrypted
WebSocket have been identified, whereas most websites are
using plain text Stratum communication. The highest level of
obfuscation is rarely encountered.

Figure 4: Relationships between the identified cryptojacking
domains depicted in a force-directed graph

6.1 Cryptojacking campaigns
We have identified 204 cryptojacking campaigns, covering
5,733 websites, meaning that 57% of all cryptojacking web-
sites encountered are part of a campaign. We define a cluster
of more than 5 websites to be a campaign, as stated in Sec-
tion 2. Figure 4 shows all the identified cryptojacking domains
in a force-directed graph, where domains with similar features
attract each other, colored according to the used application.
Clear clusters can be distinguished, such as a Monero-Mining
campaign shown in pink and a large Mineralt campaign shown
in green right above it. Coinhive, the application used the
most, is shown in dark blue with multiple large clusters all
over the graph. The circle represents the cryptojacking do-
mains not part of a campaign. In the following paragraphs,
we highlight our findings based on different possibilities for
identifying campaigns as introduced in Section 2.

Found on shared siteKey We were able to successfully
retrieve the siteKey of 92% of the actively cryptojacking do-
mains, which enabled us to cluster domains sharing the same
siteKey. A shared siteKey guarantees that the rewards for min-
ing will be transferred to the same account. We have identified
192 cryptojacking campaigns based on the same siteKey be-
ing installed on more than 5 different websites. As shown in
Table 5, the largest campaign covers 987 websites, all using
WordPress. A variety of plugins and themes include a mali-
cious file named jquory.js, which is responsible for starting

USENIX Association 28th USENIX Security Symposium 1635

a Coinhive miner. A similar attack vector is observed in a
campaign involving 317 Drupal websites. This campaign is
part of the Drupalgeddon 2 and 3 attacks, which took advan-
tage of major remote code execution vulnerabilities in Drupal
to inject their malicious scripts [45]. The only large cam-
paign using the Mineralt miner, also focused on WordPress,
has base64 encoded its siteKey inside the script tags. This
makes them seem different, but match once decoded, since
only the throttle value is changed. Not just vulnerabilities
in CMS systems are used to spread cryptojacking code, also
Magento, an e-commerce system, is involved in a Coinhive
mining campaign targeting 175 websites in our crawl. The
largest campaign using the compromised websites attack vec-
tor involved 376 Chinese websites, which share a miner script
injected on the bottom of the page. A provider of The Pirate
Bay proxies orchestrates the largest website owner initiated
campaign on our list, with 70 proxy domains using the same
Cryptoloot miner. These findings indicate that the most suc-
cessful and largest cryptojacking campaigns are created by
abusing third-party software.

Found on shared WebSocket proxy server Most crypto-
jacking campaigns are using the infrastructure of popular
applications, such as Coinhive, to connect to a mining pool.
Thus, clustering domains on these WebSocket proxy servers
will not create meaningful clusters. However, when we discard
these popular proxy servers, we are able to identify another 12
campaigns, which have not already been identified by shared
siteKeys. Those are listed in Table 6. A Coincube miner cam-
paign involving 27 websites uses coin-services.info as a
WebSocket proxy server on a variety of ports. This campaign
hosts its miner scripts on code repositories such as GitHub
and BitBucket, where a number of accounts is created to host
the miner files, which are all named main.js. On one of the
GitHub accounts, even a picture of stacked Ukrainian money
can be found [15]. 28 very similar websites, all offering illegal
video streams, were found to be using a WebSocket proxy
server on wss://ws**.1q2w3.life/proxy with, after man-
ual inspection, seriesf.lv as the accompanied siteKey. This
proxy server was also discovered by [22] on 5 websites in
their crawl. They estimated that this campaign made a profit
of $2,012.90 per month, which is likely to be a lot more, since
we have found almost 6 times as many domains involved in
this campaign. We have discovered that websites using a pri-
vate WebSocket proxy are more likely to hide their activities
by using higher levels of obfuscation.

Additionally, we have discovered 14 WebSocket proxy
servers with very similar addresses on 75 domains (e.g.
nflying.bid, flightzy.bid and flightsy.bid). These
servers are contacted by the most obfuscated miner encoun-
tered in this crawl. The miner code is hidden inside a ran-
domly named file, the miner code is heavily obfuscated and
the WebSocket traffic is sometimes encrypted. Our efforts
to reverse engineer the obfuscated miner code are so far un-

successful. Therefore, we can not cluster them as being a
campaign based on the shared proxy servers, but we have
added the signature to our crawler as a separate mining appli-
cation for the next crawls.

Found on shared initiator file In our crawling pro-
cess, the stack trace of an initialized WebSocket connec-
tion is saved for every website. While examining these
stack traces, some file names emerged and lead to the
identification of another 4 cryptojacking campaigns. The
oddly named file gninimorenomv2.js, responsible for ope-
ning WebSocket connections on 24 websites seemed to
be part of a malicious advertisement campaign, which
injects cryptojacking scripts into served advertisements.
As shown in Table 6, this file opens a connection to
wss://heist.thefashiontip.com:8182/ to earn the pro-
fits from the displayed mining advertisements. Another cam-
paign was identified by grouping the websites in which
adsmine.js was responsible for opening a WebSocket con-
nection. These websites turned out to be 17 very similar
pornography websites, which indicates that this campaign is
website owner initiated. The newly discovered mining appli-
cation, as described in the previous section, served obfuscated
mining scripts to its miners. Although obfuscated, inspec-
tion of the random file names revealed clusters of websites
injected with the same randomly named miner, which lead
to the discovery of another 3 campaigns, all targeting solely
WordPress websites.

Found on shared mining pool login Most miner applica-
tions submit their solved hashes to a WebSocket proxy server,
which combines the hashes of multiple miners before forward-
ing it to the actual mining pool. However, we have discovered
238 websites directly submitting their hashes to a mining pool.
These websites are using only six unique cryptocurrency wal-
let addresses. The shared wallet addresses guarantee that prof-
its made by cryptojacking are transferred to the exact same
wallet. These findings did not lead to the discovery of any
new campaigns, but did confirm previous findings. E.g., proxy
wss://delagrossemerde.com:8181/ (used by 15 sites) is
solely receiving traffic from domains using the same wallet.
The different methods used in this section enabled us to
find 204 cryptojacking campaigns. We can conclude that the
largest campaigns are using third-party services like Word-
Press, Drupal or Magento as their method of spreading. Only
one campaign using advertisements with injected cryptojack-
ing scripts has been identified, this in contrast to previous
work by [22, 39], who reported malicious advertisements as a
significant attack vector. Compromised websites or website
owner initiated campaigns are generally smaller in size. The
obfuscation level used in most campaigns is rather low, hea-
vily obfuscated code is encountered rarely and in more than
half of the identified campaigns a miner added in plain text.

1636 28th USENIX Security Symposium USENIX Association

Table 5: Identified campaigns based on a shared siteKey (HT = hiding technique encountered)
SiteKey # Type Attack vector HT

I2OG8vG[..]coQL & hn6hNEm[..]w1hE 987 Coinhive Third-party software (WordPress) 5
I8rYivhV3ph1iNrKfUjvdqNGfc7iXOEw 376 Coinhive Compromised websites 2
oHaQn8u[..]EvOS, XoWXAWvi[..]JfGx, no2z8X4[..]w2yK 317 Coinhive Third-party software (Drupal) 2
TnKJQivLdI92CHM5VDumySeVWinv2yfL 213 Coinhive Third-party software (WordPress) 1
GcxML3FZ;60;1 & GcxML3FZ;-70;1 180 Mineralt Third-party software (WordPress) 6
ZjAbjZv[..]9FiZ, PQbIwg9H[..]gfVW 175 Coinhive Third-party software (Magento & WordPress) 4
w9WpfXZJ9POkztDmNpey3zA1eq3I3Y2p 103 Coinhive Compromised websites 2
j7Bn4I56Mj7xPR2JrUNQ9Bjt6CeHS3X1 79 Coinhive Third-party software (WordPress) 2
cb8605f33e66d9d[..]6af74f86e6882899a8 70 Cryptoloot Website owner initiated (The Pirate Bay) 2
49dVbbCFDuhg9nX[..]K2fkq5Nd55mLNnB4WK 70 Coinhive Compromised websites 1

Table 6: Identified campaigns based on shared WebSocket proxy servers (HT = hiding technique encountered)
WebSocket proxy server # Type Attack vector HT

wss://ws**.1q2w3.life/proxy 28 Nebula Website owner initiated 6
wss://coin-services.info:****/proxy 27 Coincube Compromised websites 6
wss://heist.thefashiontip.com:8182/ 24 Webminerpool Malicious advertisements 5
wss://delagrossemerde.com:8181// 15 Webminerpool Website owner initiated 8
wss://wss.rand.com.ru:8843/ 13 Coinhive Third-party software (WordPress) 8
ws://185.165.169.108:8181/ 8 Webminerpool Website owner initiated 2
ws://68.183.47.98:8181/ 7 Webminerpool Website owner initiated 2
wss://gtg02.bestsecurepractice.com/proxy2/ 6 Unknown Third-party software (WordPress) 3

6.2 A in-depth campaign search

The sizes of the campaigns identified in Section 6.1 depend
on the dataset we crawled, so they could have been incom-
plete. To find more websites belonging to the identified cam-
paigns, we have taken the indicators of compromise for a large
number of campaigns and queried PublicWWW for domains
matching these IoCs. This resulted in a dataset of 7,892 web-
sites. Combined with the 21,022 potentially cryptojacking
websites from the initial crawl, a total of 25,121 URLs was
crawled on February 12, 2019, more than a month after the
initial crawl. We successfully obtained 24,187 (96%) of them.

Most of the campaigns remained of similar size in
this crawl, except for a campaign involving three keys,
ef937f99557277ff62a6fc0e5b3da90ea9550ebcdfac,
06d93b846706f4dca9996baa15d4d207e82d1e86676c and
dd27d0676efdecb12703623d6864bbe9f4e7b3f69f2e.
This advanced campaign is targeting domains using Bitrix24,
a CRM platform used by a variety of organizations. The most
remarkable website it has been found on is the website of the
Ministry of Education of Belarus (https://edu.gov.by/).
The malicious code is hidden as the core loader of Bitrix24
and uses both Nerohut and Cryptoloot to mine with. It
has a built-in anti-detection method, since it stops mining
once a developer tools window is opened. In our initial
crawl, we have identified only 68 domains belonging to
this campaign, which turned out to be 855 in our in-depth
search, making this campaign the second largest campaign

we have identified so far. Another campaign, involving key
vPfPDHk89TxmH1arysiJDrutpYGntofP, is displaying fake
loading screens on 86 websites, whereas only 47 of these
have been identified in our initial crawl.

All other campaigns remained similar or slightly smaller
in size. Except for the two aforementioned campaigns, we
conclude that our initial crawl likely identified the correct
size of campaigns, given the database of PublicWWW. Their
database contains source code snapshots of over 544M web-
sites, which should provide a proper approximation.

6.3 Evolution of cryptojacking

To study the evolution of cryptojacking on the Internet, data is
needed from different moments in time. Fortunately, Konoth
et al. [22] shared their crawling results and Hong et al. [19]
shared their list of identified cryptojacking domains, which
made it possible for us to crawl these exact same sets of
URLs and to analyze whether these domains were still mining.
Additionally, we have followed the domains identified in our
crawls over a period of 3 months, and analyzed WebSocket
proxy traffic over time using operator NetFlows.

Comparison with previous crawls Konoth et al. [22]
crawled from March 12 until 19, 2018 and identified 1,735
potential cryptojacking domains. We crawled their list on
January 21, 2019 and obtained 1,725 of them. 85% of the

USENIX Association 28th USENIX Security Symposium 1637

mineralt

generic

kuku

coinhave

cryptonoter

coinhive

coincube

monerise

nfwebminer

cpufun

cryptoloot

dryptonight

ricewithchicken

connection
jsecoin

cryptominer

minr

grindcash
deepminer

coinimp

not mining

papoto

coinhive

nerohut

monerise

jsecoin

grindcash

blakcrypto

wp_monero_miner

coinimp

mineralt

generic

coinhave

cryptonoter

minr

webminerpool

unknown-advanced-miner

nebula

smmch

monero-mining

cryptoloot

cryptominer
ricewithchicken

webmine

deepminer

browsermine

Figure 5: Usage evolution between March 2018 and January
2019 in the list of identified domains by [22]

websites are not cryptomining anymore, and only 10% is
still using the same application. On 136 websites (7%), the
same key was found in both crawls. As Figure 5 shows, a
large number of websites using a Coinhive miner removed
the miner application. Some continued using Coinhive, but
also a small shift into less popular mining applications can be
observed. Websites already using these miners tend to stick
to their choice and are still using the same miner almost a
year later. We have also seen a number of mining applications
become extinct, such as Deepminer and NF Webminer. Hong
et al. [19] also published the list of identified cryptojacking
domains from their crawl in February 2018. A year later, on
February 12, 2019, we have crawled this list of 2,770 domains.
We obtained 2,435 (88%) of them and only 340 (14%) do-
mains are still actively cryptojacking. Both crawls show that
a large number of websites stopped cryptojacking themselves
or removed the miner infection. After one year, approximately
85% of the domains are not actively cryptojacking anymore.
We have also observed a small portion of domains switching
to less popular applications. The low number of 7% of web-
sites that are still mining with the same siteKey indicates the
fast changes in the cryptojacking threat landscape.

Evolution of identified domains We have followed all pre-
viously identified cryptojacking domains for a period of 3
months (until May 5, 2019) and crawled them initially oc-
casionally, but afterwards every other day. Within this time
period, Coinhive announced to end its mining application, due
to decreased Monero prices and hash rate [7]. The announce-
ment was made on February 26, 2019 and stated that mining
would not be operating anymore after March 8, 2019, and that
the service would be discontinued by the end of April 2019.
This lead to a drastic change in the cryptojacking landscape,
as Coinhive’s dominance in actively mining installations col-

2019-02-12 2019-03-15 2019-03-25 2019-04-03 2019-04-13 2019-05-05
Date

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f i
ns

ta
lla

tio
ns

Coinhive mining not operable
Coinhive service offline

browsermine
coinhive
coinimp
cryptoloot
cryptominer
cryptonoter

generic
mineralt
minero
monero-mining
nebula
nerohut

omine
smmch
unknown-advanced-miner
webminepool
webminerpool
wp_monero_miner

Figure 6: Evolution of the cryptojacking domains per type

lapsed when their mining service was set non-operationally.
Mining applications were however not massively replaced,
which confirms our finding that a large portion of browser-
based cryptomining is not initiated by the website owner. Only
when the Coinhive mining service was actually discontinued
and errors were shown while requesting the offline Coinhive
mining resources, we observe a small increase in Cryptoloot
and CoinImp installations.

WebSocket proxy traffic over time As discussed in Sec-
tion 2, most miner applications use a WebSocket proxy server
to forward traffic from their miners to the mining pool. Using
NetFlow data mentioned earlier, we have analyzed traffic to-
wards popular WebSocket proxies from September 2017 till
December 2018, which gives an insight into the evolution of
cryptomining applications usage, as shown in Figure 7. We
have taken the set of WebSocket proxy IPs the miners connect
to as a basis, which we extended by using passive DNS data
to discover other WebSocket proxy server IPs used by these
applications, but hosted on different servers, not encountered
during our crawls. The same passive DNS data was used to
verify whether these IP addresses were solely used as Web-
Socket proxy servers. To prevent other traffic to these servers
from being in our dataset, we have both set the maximum
packet size to 550 kB and verified that only WebSocket traffic
was counted towards these servers. For most proxies, this is
traffic towards port 80 or 443, and for a few servers using
specific ports, this could be different. An example is the Web-
Socket proxy server of the WP-monero-miner which uses port
8020.

The blue line from September 2017 on shows how the web-
mining ecosystem is monopolized by innovator Coinhive at
the start, where after copycats like Cryptoloot and Webmine
start to emerge in October. We see that CoinImp essentially
starts to eclipse all other miner applications from mid April
2018 onwards in terms of mining traffic to the proxies, which
is unexpected given the distribution of installations on web-
sites and previous studies. Some mining proxies only have
transient success: a remarkable example is the WP-monero-
miner, released shortly after Coinhive in 2017. The applica-

1638 28th USENIX Security Symposium USENIX Association

Oct Jan
2018

Apr Jul Oct

Date

0

2000

4000

6000

8000

10000

Co
un

t

Coinhive
Cryptoloot
Webmine
Nerohut
Monero-mining
Webminerpool
WP-monero-miner
Mineralt
CoinImp
Coincube

Figure 7: Number of NetFlows involving WebSocket proxy
servers for popular miners between Sep 2017 and Dec 2018

tion hosts its own mining pool and digested a lot of traffic
in January 2018, only to almost disappear again weeks later.
Coinhive, the application used by most websites, is a constant
factor in the miner landscape with over 4,000 NetFlows a day
in mid 2018 (given our 1:8192 sampling, thus 32M connec-
tions per day), but not as large as one would expect from its
installation base. Additionally, a clear declining trend can be
observed in the NetFlow counts to all mining services after
the summer of 2018. The last months of NetFlow data show
a diverse set of mining applications actively used.

7 An Internet scale study on cryptojacking

In order to estimate the prevalence of browser-based crypto-
jacking on the Internet and to indicate any differences between
Top Level Domains (TLDs), we have performed another crawl,
in which we have crawled ~20% of the websites belonging to
each of the 1,136 existing TLDs. We obtained a daily zone
transfer for all generic top level domains (gTLDs) – such
as .top, .loan – from the Internet Corporation for Assigned
Names and Numbers (ICANN), as well as a feed of registered
country code top-level domains (ccTLDs) – such as .uk, .jp,
or .ru – from a security intelligence provider. From these
lists, we randomly picked a sample of ~20% of the size of
each TLD [12]. Based on the results of the previous crawl,
we have added another 5 mining applications to the crawler
implementation, as listed in Appendix C. From January 11
until April 3, 2019, we crawled the random sample including
48.9M domains. This yielded a total of 125 TB of network
traffic.

7.1 General findings
After crawling a random sample of 48.9M websites in a large
number of different top level domains, we are able to draw con-
clusions about the prevalence of browser-based cryptojacking
on the Internet. We estimate that 0.011% of all domains are
actively cryptomining without their visitors’ explicit consent,

Table 7: Distribution of cryptomining applications instal-
lations in the Internet scale crawl (sum of percentages is
>100%, because of websites using multiple applications)

Type # of websites Percentage

Coinhive 2,531 48.767%
Unknown 689 13.276%
CoinImp 513 9.884%
Cryptoloot 504 9.711%
Mineralt 276 5.318%
Nerohut 247 4.760%
Webminerpool 233 4.489%
Unknown-advanced-miner 92 1.773%
SMMCH 80 1.541%
Browsermine 73 1.407%
Webminepool 62 1.195%
WP-Monero-Miner 60 1.156%
Omine 56 1.079%
Monero-mining 55 1.060%
Cryptonoter 50 0.963%
Cryptominer 26 0.501%
Minero 24 0.462%
Nebula 23 0.443%
Webmine 19 0.366%
Coincube 19 0.366%
Project-poi 4 0.077%
Adless 1 0.019%

meaning that one in every 9,090 websites is cryptojacking.
Comparing this number to the statistics of the top lists used
in our initial crawl, we conclude that cryptojacking activity
is mainly focused on the popular parts of the Internet. In the
Alexa Top 1M, 0.065% of the websites was actively crypto-
jacking, in this random sample only 0.011% of the websites,
which is almost 6 times lower. This can be explained by the
lucrativeness of cryptojacking, in which a higher popularity
means more visitors, yielding more potential miners and thus
higher potential profits. Additionally, it shows that research-
ing the prevalence of cryptojacking by crawling the Alexa Top
1M overestimates the problem size. However, the distribution
of used applications in our random sample is fairly similar
to the distribution in the Alexa Top 1M. The distribution of
mining applications in this crawl is listed in Table 7.

The categories of domains identified in this crawl are very
similar to the initial crawl. As depicted in Figure 8, Adult
content remains the most prevailing category, while other
large categories are Technology and Under Construction, the
category involving parked, expired or yet-to-be developed
domains. Based on these two very different crawls we can
conclude that cryptojacking is indeed more prevailing on
domains hosting adult content.

USENIX Association 28th USENIX Security Symposium 1639

Ad
ul

t C
on

te
nt

Te
ch

no
lo

gy
Ho

bb
ie

s &
 In

te
re

st
s

Bu
sin

es
s

Un
de

r C
on

st
ru

ct
io

n
Un

ca
te

go
riz

ed
He

al
th

 &
 F

itn
es

s
Ne

ws
En

te
rta

in
m

en
t

Sh
op

pi
ng

Sp
or

ts
Ho

m
e

&
Ga

rd
en

Tr
av

el
Pe

rs
on

al
 F

in
an

ce
Fo

od
 &

 D
rin

k
Ed

uc
at

io
n

Au
to

m
ot

iv
e

Ille
ga

l C
on

te
nt

Re
al

 E
st

at
e

So
cie

ty
St

yl
e

&
Fa

sh
io

n
St

re
am

in
g

M
ed

ia
Re

lig
io

n
M

es
sa

ge
 B

oa
rd

s
Ca

re
er

s
Pe

ts
Go

ve
rn

m
en

t
Fa

m
ily

 &
 P

ar
en

tin
g

Sc
ie

nc
e

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
rc

en
ta

ge

Figure 8: Categories of mining domains in the second crawl

7.2 Cryptojacking on different TLDs

We have crawled domains of roughly ~20% of 1,136 different
TLDs in order to analyze the prevalence of cryptojacking.
As Table 8 shows, cryptojacking activity varies enormously
within different TLD zones. The four largest TLDs, .com,
.de, .net and .org have a similar percentage of cryptojacking
websites, but we have discovered almost 6 times as much
cryptojacking activity in the Russian TLD. Also, domains
in the Brazilian and Spanish zones are more susceptible to
cryptojacking, having respectively 4 and 3 times more cryp-
tojacking activity than average. On the contrary, the .top, .us
and .loan zones host only a few cryptojacking websites.

Our website category analysis showed that adult content
is the most prevailing category for cryptojacking activities.
This triggered our attention for the .xxx domain, which is spe-
cially created for adult content, which we therefore crawled
completely instead of ~20%. Surprisingly, the .xxx domain
contains only one website actively cryptomining.

When comparing used mining applications on the different
TLDs, large differences can be distinguished, as shown in
Figure 9. Coinhive is the most popular miner in most zones,
whereas Cryptoloot is preferred in the Russian zone, and
French and Czech websites contain more Nerohut miners.
The Russian zone is also the only TLD where browsermine
is used regularly. The high number of generic miner applica-
tions in the Dutch and Belgian zone is remarkable. A large
number of these domains in the .nl and .be zone are part of a
campaign using expired domain names of a Dutch registrar
(Totaaldomein B.V.) to host porn and unknown cryptominers.

Our results show a different popularity of used mining ap-
plications compared to previous work of [41]. They detected
Coinhive on 85% to 90% of the .com, .net and .org TLDs,
whereas we determine that this market share is significantly
lower (~50%). This result proves that a simple solution like
the NoCoin block list is unable to detect all miners and analy-
ses with such techniques result in different outcomes.

Table 8: Results of the TLD crawl. Listed are the top 10
largest domains, followed by remarkable TLDs
TLD Size Crawled Cryptojacking

.com 149,937,597 27,555,546 (18.4%) 2,353 (0.009%)

.net 15,008,406 2,741,550 (18.3%) 238 (0.009%)

.de 15,089,860 2,244,139 (14.9%) 254 (0.011%)

.org 11,330,764 2,021,630 (17.8%) 145 (0.007%)

.info 6,524,248 1,309,323 (20.6%) 77 (0.005%)

.ru 5,480,467 998,422 (20.0%) 593 (0.059%)

.nl 5,360,173 880,122 (16.4%) 191 (0.022%)

.top 4,024,497 788,748 (19.6%) 19 (0.002%)

.br 3,813,745 383,910 (10.1%) 185 (0.048%)

.fr 3,449,775 567,887 (16.5%) 133 (0.023%)

.pl 2,621,515 523,497 (20.0%) 81 (0.015%)

.us 2,409,802 472,323 (19.6%) 2 (0.000%)

.loan 2,228,165 445,749 (20.0%) 0 (0.000%)

.es 2,010,710 327,810 (16.3%) 110 (0.036%)

.online 1,105,999 219,447 (19.8%) 67 (0.031%)

.pro 295,201 58,999 (14.2%) 32 (0.054%)

.space 268,846 53,363 (20.0%) 19 (0.036%)

.website 276,063 54,704 (19.8%) 21 (0.038%)

.xxx 93,101 91,877 (98.7%) 1 (0.001%)

Total 48,948,669 5,190 (0.011)%

8 Discussion

Crawling the Internet inevitably comes with its shortcomings.
Limitations in the crawler implementation, network used and
analysis can produce both false positives and negatives. The
latter category can occur for example when extreme obfus-
cation is used, as we have seen in Section 6. However, we
believe that due to our double crawling strategy, based on
both WebAssembly and code signatures, this could not have
happened very often. Finally, the use of worldwide NetFlow
traffic from a Tier 1 network operator allowed us to analyze
the popularity of cryptojacking services in a revolutionary
way, although BGP policies, and a specific PoP and IXP foot-
print could lead to a bias of certain autonomous systems just
as some discrepancies might arise due to 1:8192 random sam-
pling. Additionally, since the NetFlows do not reveal the ac-
tual contents of the connection, we can never be sure about the
contents. However, during our crawls we could confirm the
mining applications to contact the WebSocket proxy servers
in question, and passive DNS lookups did not show any other
domains pointed to that IP. Furthermore, the NetFlows both
revealed no traffic to other ports than those seen from our
crawlers and packet sizes resembling those observed in our
crawls, thus the methodology should provide valid results.

Future work The additional angle provided by the NetFlow
data allowed us to study the evolution of cryptojacking over a
longer period of time, something which has not been done be-

1640 28th USENIX Security Symposium USENIX Association

com de net org info ru nl be br fr cz es it pl club pro
Top Level Domain

0

20

40

60

80

100
Pe

rc
en

ta
ge

browsermine
coincube
coinhive
coinimp
cryptoloot
cryptominer
cryptonoter
generic
mineralt
minero

monero-mining
nebula
nerohut
omine
smmch
unknown-advanced-miner
webmine
webminepool
webminerpool
wp_monero_miner

Figure 9: The distribution of used mining applications in various TLDs

fore. Regular crawls of the Internet, especially of the already
identified cryptojacking domains gives more insight in this
practice, as will it increase the innovation of defense mecha-
nisms. The most influential defense against cryptojacking will
nonetheless be frequent patching, as most cryptominers are
installed exploiting known vulnerabilities. CMS providers,
such as Drupal or WordPress, have shown agility in patch-
ing vulnerabilities, but the responsibility of installing these
patches remains with the website owner. Finally, as we have
seen a decline in the price of Monero (-85% in 2018), we
believe that cryptojacking infections on individual websites
will decrease, but that cyber criminals will search for other
possibilities to exploit cryptojacking at an even larger scale.
As we have mentioned in Section 3, the most effective method
of collecting large groups of miners is by launching a MITM
attack. Investigating the prevalence of this attack vector for
cryptomining is something we preserve for future work.

9 Conclusions

In this paper, we have studied the prevalence of cryptojacking
as well as of cryptojacking campaigns on the Internet. We
have performed multiple large crawls, each with a different
focus. In our first crawl, we have analyzed the 1.7M most
popular domains to identify organized campaigns. We found
204 campaigns, from which we conclude that the size of
cryptojacking campaigns is heavily underestimated by current
academic research. Additionally, using solely the Alexa Top
1M shows significantly different results in terms of the size
of organized activity and infection rate, which we found to
be almost 6 times lower in a random sample compared to the
Alexa Top 1M, hence overestimating the problem. Third-party
software is often used by attackers to spread cryptojacking
scripts over a large number of domains. The share of domains
serving advertisements injected with cryptojacking scripts
is lower compared to previous work, most likely because

of stricter monitoring by advertisement networks. We have
seen that obfuscation of cryptojacking scripts is definitely
present, but only occasionally used. Comparing our results
with data from previous studies (in both February and March
2018) shows that after a year, only 15% of the websites is
still actively mining. This, and our novel way of estimating
miner application popularity by analyzing NetFlows, led to
the conclusion that the cryptojacking landscape is constantly
changing and involves a variety of actors.

A second, Internet-scale crawl involving ~20% of 1,136
TLDs (48.9M websites), which represents a truly random
sample of the Internet, allows us to conclude that cryptojack-
ing is present on 0.011% of all domains. Not unexpectedly,
this percentage increases in the more popular parts of the
Internet, because cryptojacking on popular domains is much
more lucrative. Both of our crawls have shown that crypto-
jacking mostly takes place on websites hosting adult content,
although the .xxx TLD is home to only one cryptojacking
website. Based on the applications used within the time span
of our analysis, we can conclude that Coinhive was the largest
mining application in terms of installation base, but that Coin-
Imp’s WebSocket proxy servers were digesting much more
traffic in 2018. Looking at the different TLDs, we conclude
that Russian, Brazilian and Spanish zones are home to a dis-
proportionate number of cryptojacking domains.

With the discontinuation of Coinhive in March 2019, the
landscape of cryptojacking has changed enormously, but
based on our results, we are only expecting a further decline
in individual cryptojacking activities given that the Monero
value keeps diminishing. However, this only stresses the im-
portance of organized cryptojacking campaigns, as cyber crim-
inals will find new ways to spread their cryptojacking infec-
tions to still be profitable. Here, campaign analysis will be
an important asset: as adversaries are unlikely to develop a
unique approach for each infected website, the reuse of re-
sources and methods will provide an effective angle to detect
and mitigate these activities.

USENIX Association 28th USENIX Security Symposium 1641

References

[1] ALEXA. Top 1M sites. http://s3.amazonaws.com/
alexa-static/top-1m.csv.zip (December 2018).

[2] CARLIN, D., O’KANE, P., SEZER, S., AND BURGESS,
J. Detecting cryptomining using dynamic analysis. In
16th Annual Conference on Privacy, Security and Trust,
PST 2018, Belfast, Northern Ireland, Uk, August 28-30,
2018 (2018), pp. 1–6.

[3] CHRISTOPHER, N. Hackers mined a fortune from
indian websites, Sep 2018. https://economictimes.
indiatimes.com/small-biz/startups/newsbuzz/
hackers-mined-a-fortune-from-indian-
websites/articleshow/65836088.cms (December
2018).

[4] CISCO. Cisco Umbrella 1 Million. http://s3-us-
west-1.amazonaws.com/umbrella-static/top-
1m.csv.zip (December 2018).

[5] CLABURN, T. Crypto-jackers enlist google tag
manager to smuggle alt-coin miners, Jan 2018.
https://www.theregister.co.uk/2017/11/22/
cryptojackers_google_tag_manager_coin_hive/
(December 2018).

[6] COIN-HAVE. Coinhave – monero javascript mining.
https://coin-have.com/ (December 2018).

[7] COINHIVE. Blog: Discontinuation of coinhive. https:
//coinhive.com/blog/en/discontinuation-of-
coinhive (April 2019).

[8] COINHIVE. Coinhive blog: Authedmine – non-
adblocked. https://coinhive.com/blog/en/
authedmine (April 2019).

[9] COINHIVE. First week status report, Sep 2017. https:
//coinhive.com/blog/en/status-report (Decem-
ber 2018).

[10] COINHIVE. Coinhive - monero mining club, Jan 2018.
https://coinhive.com/ (December 2018).

[11] CRYPTOLOOT.COM. Cryptoloot - earn more from
your traffic. https://crypto-loot.com/ (December
2018).

[12] DOMAINTOOLS.COM. Domain Count Statistics
for TLDs. http://research.domaintools.com/
statistics/tld-counts/ (January 2019).

[13] ESKANDARI, S., LEOUTSARAKOS, A., MURSCH, T.,
AND CLARK, J. A first look at browser-based cryp-
tojacking. 2018 IEEE European Symposium on Secu-
rity and Privacy Workshops, EuroS&P Workshops 2018,
London, United Kingdom, April 23-27, 2018 (2018), 58–
66.

[14] GITHUB.COM. hoshsadiq/adblock-nocoin-list. https:
//github.com/hoshsadiq/adblock-nocoin-list
(December 2018).

[15] GITHUB.COM. leonidackov901/leonidackov901.github.io.
https://github.com/leonidackov901/
leonidackov901.github.io (January 2019).

[16] GOOGLE.COM. minerblock. https://chrome.
google.com/webstore/detail/minerblock/
emikbbbebcdfohonlaifafnoanocnebl?hl=en
(January 2019).

[17] GOOGLE.COM. No coin - block miners on
the web! https://chrome.google.com/
webstore/detail/no-coin-block-miners-on-
t/gojamcfopckidlocpkbelmpjcgmbgjcl (January
2019).

[18] HOFFMAN, J. J., LEE, S. C., AND JACOBSON, J. S.
New jersey division of consumer affairs obtains set-
tlement with developer of bitcoin-mining software
found to have accessed new jersey computers without
users’ knowledge or consent, May 2015. https://nj.
gov/oag/newsreleases15/pr20150526b.html (De-
cember 2018).

[19] HONG, G., YANG, Z., YANG, S., ZHANG, L., NAN, Y.,
ZHANG, Z., YANG, M., ZHANG, Y., QIAN, Z., AND
DUAN, H. How you get shot in the back: A systematical
study about cryptojacking in the real world. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018 (2018), pp. 1701–1713.

[20] JSECOIN. Jsecoin: Digital currency - designed for the
web. https://jsecoin.com/ (April 2019).

[21] KEIL, D. Wp monero miner - home. https://www.wp-
monero-miner.com/ (December 2018).

[22] KONOTH, R. K., VINETI, E., MOONSAMY, V., LIN-
DORFER, M., KRUEGEL, C., BOS, H., AND VIGNA,
G. Minesweeper: An in-depth look into drive-by cryp-
tocurrency mining and its defense. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018 (2018), pp. 1714–1730.

[23] KREBS, B. Krebs on security - who and what is
coinhive. https://krebsonsecurity.com/2018/
03/who-and-what-is-coinhive/ (December 2018).

[24] LIU, J., ZHAO, Z., CUI, X., WANG, Z., AND LIU, Q. A
novel approach for detecting browser-based silent miner.
Third IEEE International Conference on Data Science in
Cyberspace, DSC 2018, Guangzhou, China, June 18-21,
2018 (2018), 490–497.

[25] MAJESTIC. Majestic Million CSV now free
for all, daily. http://downloads.majestic.com/
majestic_million.csv (December 2018).

[26] MCCARTHY, K. Cbs’s showtime caught min-
ing crypto-coins in viewers’ web browsers, Jan
2018. https://www.theregister.co.uk/2017/09/
25/showtime_hit_with_coinmining_script/ (De-
cember 2018).

[27] MINERALT. Developer api documentation and ref-
erence. https://support.mineralt.io/support/
solutions/articles/36000047274-js-miner-
usage-and-api-reference (December 2018).

1642 28th USENIX Security Symposium USENIX Association

[28] MONERO OCEAN. Monero ocean – faq. https://
moneroocean.stream/#/help/faq (May 2019).

[29] MOZILLA FOUNDATION. asm.js - working draft —
18 august 2014. http://asmjs.org/spec/latest/
(November 2018).

[30] MURPHY, M. Youtube shuts down hidden crypto-
jacking adverts, Jan 2018. https://www.telegraph.
co.uk/technology/2018/01/29/youtube-shuts-
hidden-crypto-jacking-adverts/ (November
2018).

[31] MURSCH, T. Cryptojacking malware coin-
hive found on 30,000 websites, Feb 2018.
https://badpackets.net/cryptojacking-
malware-coinhive-found-on-30000-websites/
(December 2018).

[32] MURSCH, T. Over 100,000 drupal websites vulner-
able to drupalgeddon 2 (cve-2018-7600), Jun 2018.
https://badpackets.net/over-100000-drupal-
websites-vulnerable-to-drupalgeddon-2-cve-
2018-7600/ (January 2019).

[33] NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash
system, 2009.

[34] OGONO, U. Monero cryptojacking: Monero cryptocur-
rency mining malware disrupts government site, Sep
2018. https://smartereum.com/35507/monero-
cryptojacking-monero-cryptocurrency-mining-
malware-disrupts-government-site-monero-
news-today/ (December 2018).

[35] OSBORNE, C. Mikrotik routers enslaved in mas-
sive coinhive cryptojacking campaign, Aug 2018.
https://www.zdnet.com/article/mikrotik-
routers-enslaved-in-massive-coinhive-
cryptojacking-campaign/ (December 2018).

[36] PAPADOPOULOS, P., ILIA, P., AND MARKATOS, E. P.
Truth in web mining: Measuring the profitability and
cost of cryptominers as a web monetization model.
CoRR abs/1806.01994 (2018).

[37] PASTRANA, S., AND SUAREZ-TANGIL, G. A first look
at the crypto-mining malware ecosystem: A decade of
unrestricted wealth. CoRR abs/1901.00846 (2019).

[38] PEARSON, J. Starbucks Wi-Fi Hijacked
People’s Laptops to Mine Cryptocurrency.
https://motherboard.vice.com/en_us/article/
gyd5xq/starbucks-wi-fi-hijacked-peoples-
laptops-to-mine-cryptocurrency-coinhive
(February 2019).

[39] RAUCHBERGER, J., SCHRITTWIESER, S., DAM, T.,
LUH, R., BUHOV, D., PÖTZELSBERGER, G., AND KIM,
H. The other side of the coin: A framework for detecting
and analyzing web-based cryptocurrency mining cam-
paigns. In Proceedings of the 13th International Con-
ference on Availability, Reliability and Security, ARES
2018, Hamburg, Germany, August 27-30, 2018 (2018),
pp. 18:1–18:10.

[40] RODRIGUEZ, J. D. P., AND POSEGGA, J. RAPID: re-
source and api-based detection against in-browser min-
ers. Proceedings of the 34th Annual Computer Security
Applications Conference, ACSAC 2018, San Juan, PR,
USA, December 03-07, 2018 (2018), 313–326.

[41] RÜTH, J., ZIMMERMANN, T., WOLSING, K., AND
HOHLFELD, O. Digging into browser-based crypto
mining. In Proceedings of the Internet Measurement
Conference 2018, IMC 2018, Boston, MA, USA, October
31 - November 02, 2018 (2018), pp. 70–76.

[42] SAAD, M., KHORMALI, A., AND MOHAISEN, A. End-
to-end analysis of in-browser cryptojacking. CoRR
abs/1809.02152 (2018).

[43] SABERHAGEN, N. V. Cryptonote v 2.0, Oct 2013.
https://cryptonote.org/whitepaper.pdf.

[44] SCHEITLE, Q., HOHLFELD, O., GAMBA, J., JEL-
TEN, J., ZIMMERMANN, T., STROWES, S. D., AND
VALLINA-RODRIGUEZ, N. A long way to the top: Sig-
nificance, structure, and stability of internet top lists.
CoRR abs/1805.11506 (2018).

[45] SEGURA, J. A look into drupalgeddon’s client-side at-
tacks, Jun 2018. https://blog.malwarebytes.com/
threat-analysis/2018/05/look-drupalgeddon-
client-side-attacks/ (January 2019).

[46] SLUSHPOOL. Stratum mining protocol.
https://slushpool.com/help/topic/stratum-
protocol/ (November 2018).

[47] THE MONERO PROJECT. Monero: What is mon-
ero (xmr)? https://www.getmonero.org/get-
started/what-is-monero/ (December 2018).

[48] THE PIRATE BAY. The pirate bay - miner, Sep
2017. https://thepiratebay.org/blog/242 (De-
cember 2018).

[49] WANG, W., FERRELL, B., XU, X., HAMLEN, K. W.,
AND HAO, S. SEISMIC: secure in-lined script monitors
for interrupting cryptojacks. In Computer Security -
23rd European Symposium on Research in Computer
Security, ESORICS 2018, Barcelona, Spain, September
3-7, 2018, Proceedings, Part II (2018), pp. 122–142.

[50] WEBASSEMBLY.ORG. Webassembly. https://
webassembly.org/ (November 2018).

[51] WEBSHRINKER. Webshrinker apis. https://www.
webshrinker.com/apis/ (January 2019).

[52] WEBSOCKET.ORG. Html5 websocket - a quantum leap
in scalability for the web. http://www.websocket.
org/aboutwebsocket.html (November 2018).

[53] WORDFENCE.COM. Wordpress plugin
banned for crypto mining, Nov 2017. https:
//www.wordfence.com/blog/2017/11/wordpress-
plugin-banned-crypto-mining/ (January 2019).

[54] XU, J., FAN, J., AMMAR, M., AND MOON, S. B. On
the design and performance of prefix-preserving ip traf-
fic trace anonymization. In ACM SIGCOMM Workshop
on Internet Measurement (2001).

USENIX Association 28th USENIX Security Symposium 1643

A Search queries for PublicWWW

Table 9: All search queries for the PublicWWW database
Miner Search term(s)

Coinhive coinhive.min.js,
CoinHive.Anonymous(

JSECoin load.jsecoin.com
Webmine webmine.cz
Cryptoloot /crypta.js, /crlt.js, crlt.anonymous,

CryptoLoot.Anonymous
CoinImp CoinImp.Anonymous,

www.hashing.win,
hostingcloud.racing

Cryptonoter minercry.pt/processor.js, cryptonoter
NFWebminer nfwebminer.com/lib/, NFMiner(
Deepminer deepMiner
Monerise monerise_builder,

monerise_payment_address(
Coinhave minescripts.info
Nebula CoinNebula.Instance
Mineralt play.gramombird.com/app.js
Munero munero.me
Minr cdn.jquery-uim.download,

cnt.statistic.date, ad.g-content.bid
Webminerpool webmr.js
WPMoneroMiner wp-monero-miner.js
Nerohut nhm.min.js, nerohut.com/srv
Adless adless.js
Monero-mining Perfektstart(
Miscellaneous function echostat(){var,

function printju,
pocketgolf.host/start.php async,
startMining(, jquory.js

B Added miner applications and their key-
words for the campaign crawl

Table 10: The added miner applications and their keywords
Miner Keywords

Nebula CoinNebula.Instance
WP Monero miner wp_js_options | wp-monero-miner
Nerohut nhm.min.js | NHpwd |

nhsrv.cf/srv/serve.php?key=
Webminerpool webmr.js | startMining(
Minero minero.cc
Adless adless.js | adless.io
Monero-mining PerfektStart | perfekt.js
ProjectPoi ProjectPoi\b | projectpoi.min.js
Papoto papoto

C Added miner applications in the Internet
scale crawl

Table 11: The added miner applications and their keywords
in the latest version of the crawler

Miner Keywords

SMMCH simple-monero-miner-coin-hive
smmch-public | smmch-mine.js

Webminepool webminepool.com/lib/base.js
Unknown miner proofly.date | flightsy.date | gettate.trade

alflying.date | flightzy.date | joytate.date
zymerget.faith | nflying.win | flightzy.bid
flightsy.win | zymerget.bid | nflying.bid
baseballnow.press | flightsy.bid

Omine omine.org
Browsermine browsermine.com.cc | bmcm.pw | bmnr.pw

lm-sdfhfad.ml | new BMCM | asdvhsrtsb.ml

D Human Subjects and Ethical Considera-
tions

For the analysis of cryptojacking usage in the wild, this paper
uses NetFlow statistics from a Tier 1 network operator. This
data access was cleared by the institutional review board. The
research team did not obtain direct access to the NetFlow data
containing source and destination IP addresses as personally
identifiable information, but instead provided a list of IP ad-
dresses of cryptomining proxies and mining pools to the data
owner, based on which the corresponding flow records were
provided with the connection’s source IP protected by a salted
hash.

1644 28th USENIX Security Symposium USENIX Association

Rendered Private: Making GLSL Execution Uniform to Prevent WebGL-based
Browser Fingerprinting

Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang†∗

Johns Hopkins University, †Lehigh University
{swu68, lsong18, yinzhi.cao}@jhu.edu, wangningfei7@gmail.com

Abstract

Browser fingerprinting, a substitute of cookies-based track-
ing, extracts a list of client-side features and combines them
as a unique identifier for the target browser. Among all these
features, one that has the highest entropy and the ability for
an even sneakier purpose, i.e., cross-browser fingerprinting,
is the rendering of WebGL tasks, which produce different
results across different installations of the same browser on
different computers, thus being considered as fingerprintable.

Such WebGL-based fingerprinting is hard to defend against,
because the client browser executes a program written in
OpenGL Shading Language (GLSL). To date, it remains un-
clear, in either the industry or the research community, about
how and why the rendering of GLSL programs could lead
to result discrepancies. Therefore, all the existing defenses,
such as these adopted by Tor Browser, can only disable We-
bGL, i.e., a sacrifice of functionality over privacy, to prevent
WebGL-based fingerprinting.

In this paper, we propose a novel system, called UNIGL, to
rewrite GLSL programs and make uniform WebGL rendering
procedure with the support of existing WebGL functionalities.
Particularly, we, being the first in the community, point out
that such rendering discrepancies in state-of-the-art WebGL-
based fingerprinting are caused by floating-point operations.
After realizing the cause, we design UNIGL so that it rede-
fines all the floating-point operations, either explicitly written
in GLSL programs or implicitly invoked by WebGL, to miti-
gate the fingerprinting factors.

We implemented a prototype of UNIGL as an open-source
browser add-on (https://www.github.com/unigl/). We
also created a demo website (http://test.unigl.org/),
i.e., a modified version of an existing fingerprinting web-
site, which directly integrates our add-on at the server-side
to demonstrate the effectiveness of UNIGL. Our evaluation
using crowdsourcing workers shows that UNIGL can prevent
state-of-the-art WebGL-based fingerprinting with reasonable
FPSes.

∗The last author, Ningfei Wang, contributed to the paper when he was a
master student financially supported and mentored by Dr. Yinzhi Cao.

1 Introduction

Browser fingerprinting [12, 13, 20, 23, 34, 45, 63], a substitute
of traditional cookie-based approaches, is recently widely
adopted by many real-world websites to track users’ browsing
behaviors potentially without their knowledge, leading to a
violation of user privacy. In particular, a website performing
browser fingerprinting collects a vector of browser-specific
information called browser fingerprint, such as user agent, a
list of browser plugins, and installed browser fonts, to uniquely
identify the target browser.

Among all the possible fingerprintable vectors, the render-
ing behavior of WebGL, i.e., a Web-level standard that follows
OpenGL ES 2.0 to introduce complex graphics functionali-
ties to the browser, is an important factor that contributes the
most, in terms of entropy, to the overall distinguishability of
browser fingerprints [19]. Specifically, WebGL-based finger-
printing is first discovered by Mowery et al. [41], and then
further explored by Cao et al. [19], who not only show that
WebGL-based fingerprinting has the highest entropy among
all fingerprinting factors, but also demonstrate the ability of
WebGL-based fingerprinting for an even sneakier purpose,
i.e., cross-browser fingerprinting, compared to traditional fin-
gerprinting vectors like user agents.

In order to prevent WebGL from being used as a vector
of browser fingerprinting, Tor Browser, the pioneer private
browser for the Web makes WebGL click-to-play, i.e., dis-
abling it by default, so that a website cannot use it for the
tracking purpose. However, there exists a tradeoff between
privacy and functionality: Tor Browser sacrifices an important
functionality—i.e., all the computer graphics features brought
by WebGL, which are particularly useful for modern web
applications like games [10] and virtual reality [50]—for pri-
vacy. Specifically, according to a 2016 study [55], about 10%
of Top 10K Alexa websites, including famous ones visited
by billions of users such as Google Map and Earth [2], adopt
WebGL to augment user experience—and the number keeps
increasing as the WebGL community grows. Therefore, the
research question that we want to ask in the paper is whether

USENIX Association 28th USENIX Security Symposium 1645

https://www.github.com/unigl/
http://test.unigl.org/

a browser can allow Web applications to use WebGL and its
abundant functionalities without violating users’ privacy.

Before answering this question, we first take a look at how
existing works prevent browser fingerprinting that does not
use WebGL. There are two categories of approaches in defend-
ing against browser fingerprinting in general (e.g., these based
on fonts, plugins, and user agent), which are randomization
and uniformity. The former, adopted by PriVaricator [44] and
some browser add-ons [1, 9], adds noise to the fingerprinting
results so that an adversary cannot obtain an accurate finger-
print each time. However, according to prior work [18, 49],
such randomization-based defense can be defeated if the ad-
versary fingerprints the browser multiple times and averages
the results. In addition, according to a recent work [59], incon-
sistencies in browser fingerprints may cause further privacy
violations. Because of these concerns, Tor Browser also ex-
plicitly prefers the latter, i.e., uniformity, over randomization
in its design document [49].

Therefore, our detailed research question becomes how to
make uniform WebGL rendering results and prevent WebGL-
based browser fingerprinting. The answer to this question is
unknown in the community as indicated in Tor Browser’s
practice of disabling WebGL. The reason is that unlike other
forms of fingerprinting (e.g., user agent and fonts), which rely
on the outputs of a browser API, WebGL-based fingerprinting
runs a program, i.e., a rendering task, in OpenGL Shading
Language (GLSL). One possible solution, i.e., an idea floated
in the design document [49] of Tor Browser without any
implementation, is to adopt software rendering and make
uniform WebGL rendering. However, Cao et al. [19] show
that even if software rendering is enabled, WebGL rendering
results are still fingerprintable.

Now, to answer the specific question of making WebGL
uniform in the paper, we need to understand why a single
WebGL rendering task differs much from one browser to an-
other. From a high level, the reason is that computer graphic
tasks pursue visual rather than computational uniformity. One
single WebGL task on different browsers is rendered by a
different combination of a variety of computer graphics ren-
dering layers, such as browsers, graphics libraries (e.g., Di-
rectX and OpenGL) including conversion interfaces (e.g.,
Almost Native Graphics Layer Engine, i.e., ANGLE), render-
ing mechanisms, device drivers and graphics cards. Therefore,
different implementations and even versions of these various
layers will lead to a computationally different rendering result.
This high-level answer also partially explains the reason that
software rendering cannot prevent fingerprinting: Software
rendering, belonging to rendering mechanisms, is just one of
the many layers that could lead to the rendering discrepancies,
and it may also have different versions and implementations.

While this problem appears hard to solve unless we make
uniform all the graphics layers, the root reason, after our in-
tensive manual study and experiment, can be summarized
as one surprisingly concise and abstract sentence—i.e., the

results of floating-point operations on different machines are
different inside and across various graphics layers, leading
to rendering differences. This one-sentence, intuitive reason
can be further broken down into many sub-reasons when the
WebGL rendering performs various operations in different
graphics layers. Let us illustrate two examples.

First, we consider the color value, i.e., RGB, in WebGL,
which semantically ranges from 0 to 255 but is represented
as a floating-point from 0 to 1. Therefore, a conversion is re-
quired when WebGL renders a 0–1 color value on the screen
to be a 0–255 RGB value—and most importantly the con-
version, i.e., a floating-point operation, will lead to rendering
difference. Say one WebGL implementation, i.e., a combi-
nation of different graphics layer, multiplies the color value
with 255 and applies f loor to convert it to the RGB value,
and the other applies round. Then, a color value of <0.5, 0.5,
0.5> will be rendered as <127, 127, 127> in the former, but
as <128, 128, 128> in the latter. This float-to-int conversion
issue can be generalized in many other representation, such as
alpha value, texture size, and canvas size—and also other con-
version algorithms beyond f loor and round, such as linear
interpolation in texture mapping.

Second, let us consider another common graphics operation
involving several float multiplications and then a subtraction,
i.e., we need to decide whether a given point, very close to one
triangle edge, is inside the given triangle. Say, there are two
WebGL implementations, one adopting 10-bit float numbers
and the other a higher precision, i.e., 16-bit. The multiplication
results on these two implementations differ slightly, because
the former has fewer decimals than the latter. Because the
given point is very close to the triangle, such slight difference
will propagate to the float subtraction, leading to a positive in
the former implementation but a negative the latter. Therefore,
the point will be judged as either inside or outside the triangle
in these two implementations, causing a rendering difference.

That said, the key insight of the paper is that we need to
make uniform all the floating-point operations across various
computer graphics layers. Specifically, we adopt two integers,
one as the numerator and the other as the denominator, to
simulate floating-point operations in GLSL programs so that
the underlying layers, regardless of their implementation or
approximation for floating-point operations, always produce
the same results. When we need to feed simulated values
into WebGL, we convert the value to a float based on its
semantics. In the aforementioned color value example, we
can use 127/255 to represent 127 and 128/255 for 128, leading
to no confusions under different implementations.

While the idea is intuitively simple, the major challenge
is that WebGL rendering process involves implicit floating-
point operations. In order to understand this challenge, let us
briefly describe the three-stage WebGL rendering process—
i.e., (i) vertex rendering, (ii) rasterization and interpolation,
and (iii) fragment rendering—and corresponding floating-
point operations in each stage. The first stage, controlled by a

1646 28th USENIX Security Symposium USENIX Association

GLSL program, i.e., vertex shader, generates vertices infor-
mation using graphics operations, e.g., transformation and
rotation, and also associates attribute values with each ver-
tex. These aforementioned graphics operations are all related
to floating-point operations. Then, the second stage, an im-
plicit one implemented by WebGL and not controlled by any
GLSL program, generates fragments, called rasterization, and
then interpolates values based on fragments using floating-
point operations. Lastly, the third stage, controlled by another
GLSL program, called fragment shader, colors each fragment,
which also involves floating-point operations, such as texture
mapping.

In this paper, we propose UNIGL, a novel system that
rewrites GLSL programs and redefines all the floating-point
operations in the aforementioned three stages of WebGL ren-
dering. Specifically, UNIGL hooks JavaScript APIs—which
accept GLSL programs and the corresponding parameters
such as vertex and index arrays—and then rewrites both ver-
tex and fragment shaders via three phases mapping to the
three stages of WebGL rendering. First, UNIGL converts the
vertex shader to a JavaScript program and executes it. Dur-
ing the execution, floating-point operations in vertex shader,
e.g., matrix multiplication, are executed as JavaScript, thus
kept with uniformity. Second, UNIGL takes the execution
results of JavaScript vertex shader and feeds them into a cus-
tomized rasterization and interpolation engine written as a
fragment shader. In this phase, UNIGL preserves uniformity
for floating-point operation implemented natively in WebGL’s
rasterization and interpolation module via integer simulation.
Lastly, UNIGL rewrites the original fragment shader and re-
defines floating-point operations, such as texture mapping, in
the fragment shader via integer simulation.

In designing UNIGL, we realize the following additional
challenges from the viewpoint of system building.

• Backward Compatibility. We want UNIGL to be back-
ward compatible with existing commercial Web Browsers.
Specifically, we deploy UNIGL as a browser add-on, easily
installable, to protect Web users’ privacy.

• Performance. We want to keep the high-performance ben-
efits brought by WebGL, especially when it runs on GPU.
Therefore, we design UNIGL so that the rendering bottle-
neck, i.e., rasterization, interpolation and coloring, runs as
a GLSL program on fragment shader possibly via GPU (de-
pending on whether the underlying rendering mechanism
is software or hardware rendering). Note that the vertex
shader has to run as a JavaScript program because other-
wise we do not have access to intermediate results between
two shaders without modifying the browser. Because of
this, we adopt multiple optimization techniques, such as
caching, typed array, and code-data separation, to speed up
UNIGL’s vertex shader.

• Variable Number Limits. Since we choose backward com-
patibility, we are constrained by the limit that is enforced
by the current version of WebGL. Particularly, all current

1: Vertex
Rendering

Rendering

Procedure:

WebGL:

Floating-point

Operations:

2: Rasterization
& Interpolation

3: Fragment
Rendering

Vertex shader
(GLSL)

Native WebGL
implementation (C/C++)

Fragment shader
(GLSL)

Matrix and other
Math operations

Triangle judgement, Z-buffer
calculation, interpolation of

varying variables, and so on.

Matrix and Math
operations, and
texture mapping

UniGL:
JavaScript (parallel

and speed-up)
Fragment Shader

(GLSL)
Fragment Shader

(GLSL)

Floating-point

Uniformization:

JavaScript operation Integer simulation Integer simulation

Figure 1: A High-level Overview of Rendering Procedure (i.e., the
execution of GLSL programs) in both WebGL and UNIGL as well
as a Description of Corresponding Floating-point Operations

implementations of WebGL have enforced a limit [26] for
“uniform” variables, sometimes 256 or 1024 depending on
the graphics card and operating system. Therefore, in de-
signing UNIGL, we have to divide one rendering task itera-
tively until each small one can fit into and run as a fragment
shader.
We implemented a prototype of UNIGL as an open-source

Google Chrome add-on, which is available at the repositories
of this GitHub user (https://www.github.com/unigl/).
We also created a demo website, i.e., http://test.unigl.
org/, which works on modern web browsers including
Chrome, Firefox, and Safari. Specifically, the demo is a mod-
ified version of Cao et al.’s fingerprinting website [19], which
directly integrates our add-on at the server-side, to show that
UNIGL can prevent WebGL-based browser fingerprinting.

We make the following contributions in the paper:
• We are the first to point out that WebGL-based browser

fingerprinting is caused by floating-point operations.
• We design UNIGL to rewrite GLSL programs and rede-

fine all, i.e., explicit and implicit, floating-point operations
embedded deeply inside WebGL.

• We show that our prototype of UNIGL can defend against
WebGL-based browser fingerprinting with reasonable FPS.

2 Overview
We give an overview of WebGL and UNIGL rendering proce-
dure, and then present a running example.

2.1 WebGL’s Rendering and Floating-point Operations

WebGL’s rendering procedure can be roughly divided into
three stages as shown in Figure 1. First, the vertex shader
in WebGL performs operations, e.g., rotation via a matrix
multiplication, related to the vertices of a computer graphics
model. Specifically, the shader accepts two types of variables,
i.e., attributes and uniforms, binds attributes, such as texture
coordinates, to vertices, and then outputs transformed vertices,
i.e., gl_Position, and varyings. Many operations in the vertex
shader, such as matrix multiplication and Math functions like
sqrt, have floating-point values involved.

Second, the outputs of the vertex shader are fed into the
rasterization and varying interpolation module implemented

USENIX Association 28th USENIX Security Symposium 1647

https://www.github.com/unigl/
http://test.unigl.org/
http://test.unigl.org/

natively by WebGL. The module maps a computer graphics
model to each pixel on the canvas and interpolates each vary-
ing variable based on the attribute values on each vertex. Let
us illustrate three major floating-point related operations in
this module. (i) The module decides whether a given pixel is
inside a triangle. (ii) The module calculates the z-buffer of
each point, i.e., determining whether a point is in front of or
behind another on the canvas. (iii) The module interpolates a
varying variable based on attributes.

Lastly, the outputs of the rasterization and varying inter-
polation module are fed into the fragment shader in WebGL,
which paints all pixels on the canvas by assigning a value to
gl_FragColor. All the floating-point related operations in the
vertex shader, such as matrix operations, also exist in the frag-
ment shader. Additionally, color lookup operations, such as
texture mapping, need to fetch a color from a texture, which
involve floating-point operations as well.

2.1.1 An Explanation of Floating-point Operation and
Rendering Discrepancies

We now explain that floating-point operations will cause ren-
dering discrepancies. Figure 2 shows a classic computer
graphics model, i.e., a 3D monkey head, covered with a ran-
dom texture. We render this WebGL task in Google Chrome
browser on two different machines, one iMac and the other
Dell with Windows system—the rendering results, though
being visually the same (Left and Middle of Figure 2), are
quite different if we compare them pixel by pixel (Right of
Figure 2).

This model is complex with many floating-point operations
and thus hard to explain the discrepancies. We now decom-
pose the complex model into several small experiments with
only one or a few types of floating-point operations for expla-
nation.

• A Varying Experiment. We setup a thin 3×100 rectangle
and then specify a varying variable spanning along the long
edge from 0 to 100. The variable starts from a color <0,
0, 0> at position 0 and ends to a color <0, 0, 255> at
position 100. That is, we are rendering a simple spectrum
on a canvas with only one type of floating-point operation,
i.e., the interpolation of a varying variable between 0 and
100.
When we perform this varying experiment on different
machines and compare the rendering results, we find that
the result differences are several single-pixel lines orthog-
onal to the long edge. This explains that floating-point
operations for interpolating varying variable will lead to
rendering discrepancies.

• A Triangle Experiment. We setup a triangle on a 255×255
canvas: two vertices at <127, 0> and <0, 128>, and the
third movable along the line from <255, 0> to <255, 255>.
We then color the triangle with only a single color, such as
black. By doing so, we create a rendering task with another

Figure 2: An Illustration of Rendering Task Difference for Browser
Fingerprinting Purpose (Left: A classic monkey head model rendered
in Google Chrome on an iMac, Middle: the same model rendered in
Google Chrome on a Windows machine, Right: The pixel difference
between these two rendering results.)

type of floating-point operation, i.e., determining whether
a pixel is inside a triangle.
When we perform this triangle experiment on different
machines and move the point along the edge, we find that
the result difference is a single pixel close to the triangle
edge for a special third vertex position. This explains that
floating-point operations for triangle judgement will lead
to rendering discrepancies.

• A Texture Experiment. We setup a triangle and then map
a random texture onto the triangle. That is, we create a
rendering task with a texture mapping operation, which has
floating-point operations in color interpolation.
When we perform this texture experiment on different ma-
chines, we find that the result differences are several pixels
within the triangle. This explains that floating-point opera-
tions for texture mapping will lead to rendering discrepan-
cies.

2.2 UNIGL’s Rendering and Floating-point Operations

Now let us go over the three-stage rendering procedure
(Figure 1) again in UNIGL and show how to make uni-
form floating-point operations in aforementioned steps.
First, UNIGL moves the vertex shader from GLSL to
JavaScript, i.e., all the floating-point operations are executed
on JavaScript interpreter and thus handled by CPU without
any discrepancies. Note that we need to adopt parallel work-
ers and many other speed-up techniques to run the JavaScript
version of vertex shader fast.

Second, UNIGL implements a customized rasterization
and varying interpolation module via GLSL in which all the
floating-point values are represented via integer simulation,
and therefore, all the aforementioned floating-point operations
in this module are made uniform. It is worth noting that
theoretically we can also implement the module via JavaScript
for uniformization, but the performance is unacceptable.

Lastly, UNIGL executes the fragment shader in GLSL, but
rewrites all the floating-point operations via integer simula-
tion. Additionally, UNIGL also implements a customized
texture mapping algorithm using integers so that the color
lookup operation in texture mapping is also made uniform.

2.3 A Running Example

After a high-level overview of UNIGL rendering, we now
present a detailed running example to illustrate our target
problem and how UNIGL solves the problem via uniformity.

1648 28th USENIX Security Symposium USENIX Association

JavaScript:
1 vers=[...]; // vertices information
2 inds=[...]; // indices information
3 ...
4 var versBufferObject = gl.createBuffer();
5 gl.bindBuffer(gl.ARRAY_BUFFER , versBufferObject);
6 gl.bufferData(gl.ARRAY_BUFFER , new Float32Array(vers),

gl.STATIC_DRAW);
7 var indexBufferObject = gl.createBuffer();
8 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER , indexBufferObject

);
9 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER , new Uint16Array(

inds), gl.STATIC_DRAW);
10 ...
11 gl.bindBuffer(gl.ARRAY_BUFFER , versBufferObject);
12 var posAttr=gl.getAttribLocation(program , ’aVersPos’);
13 ...
14 var uMVLoc=gl.getUniformLocation(program , "uMVMatrix");
15 gl.unifomMatrix4fv(uMVLoc , [...]);
16 ...
17 // bind other attributes and uniforms
18 gl.drawElements(gl.TRIANGLES , length , gl.UNSIGNED_SHORT

,0);

Vertex Shader:
1 attribute vec3 aVersPos , aVersNormal;
2 attribute vec2 aTextureCoord;
3 uniform mat4 uMVMatrix , uPMatrix;
4 uniform mat3 uNMatrix;
5 uniform vec3 uAmbColor ,uLtDir ,uDirColor;
6 varying vec2 vTextureCoord;
7 varying vec3 vLightWeighting;
8 void main(void) {
9 gl_Position=uPMatrix * uMVMatrix * vec4(aVersPos.xyz,

1.0);
10 vTextureCoord=aTextureCoord;
11 vLightWeighting=uAmbColor + uDirColor * max(dot(

uNMatrix * aVersNormal , uLtDir), 0.0);
12 }

Fragment Shader:
1 varying vec2 vTextureCoord;
2 varying vec3 vLightWeighting;
3 uniform sampler2D uSampler;
4 void main(void) {
5 vec4 texColor=texture2D(uSampler , vTextureCoord);
6 gl_FragColor=vec4(texColor.rgb * vLightWeighting ,

texColor.a);
7 }

JavaScript:
1 vers = [...]; // vertices information
2 inds = [...]; // indices information
3 ... // hook JS APIs to obtain arguments
4 var UniGL_aVersPos=UniGLAttr(’aVersPos’);
5 var UniGL_uMVMatrix=UniGLUniform(’uMVMatrix’);
6 ...
7 for(UniGL_I=0;UniGL_I <AttrLen;UniGL_I++) {
8 // Transformed JS vertex shader
9 aVersPos=UniGL_aVersPos[UniGL_I];

10 uMVMatrix=UniGL_uMVMatrix;
11 ...
12 UniGL_Position=UniGLMultiply(UniGLMultiply(uPMatrix ,

uMVMatrix), UniGLVec4(UniGLExtract(aVersPos ,
[1,1,1]), 1.0));

13 vTextureCoord=aTextureCoord;
14 vLightWeighting=UniGLAdd(uAmbColor , UniGLMultiply(

uDirColor , UniGLMax(UniGLDot(UniGLMultiply(uNMatrix ,
aVersNormal), uLtDir), 0.0)));

15 // end of transformation
16 UniGL_vTextureCoord.push(vTextureCoord);
17 UniGL_vLightWeighting.push(vLightWeighting);
18 }
19 UniGL_CallFragmentShader(UniGL_Position ,

UniGL_vTextureCoord , UniGL_vLightWeighting);

Fragment Shader:
1 #define N AttributeNumber
2 uniform ivec3 UniGL_Position[N];
3 uniform ivec2 UniGL_vTextureCoord[N];
4 uniform ivec3 UniGL_vLightWeighting[N];
5 uniform sampler2D uSampler;
6 void main(void) {
7 for (UniGL_I=0;UniGL_I <N;UniGL_I+=3) {
8 if (UniGL_InTriangleZBuffer(gl_FragCoord , UniGL_I)) {
9 vTextureCoord = UniGL_Interpolate(gl_FragCoord ,

UniGL_I , UniGL_vTextureCoord[UniGL_I],
UniGL_vTextureCoord[UniGL_I+1], UniGL_vTextureCoord[
UniGL_I+2]);

10 vLightWeighting = ...;
11 // Transformed fragment shader
12 ivec4 texColor=UniGL_texture2D(uSampler ,

vTextureCoord);
13 gl_FragColor=UniGL_i2f(ivec4(UniGL_Multiply(texColor

.rgb, vLightWeighting), texColor.a));
14 // end of transformation
15 }
16 }
17 }

Figure 3: A Running Example (Left: The original code, Right: The code rewritten by UNIGL—JavaScript WebGL APIs are hooked, the vertex
shader is rewritten as JavaScript code, and the fragment shader is still as fragment shader with floating-point operations redefined.)

We now show the source code of this rendering task of Fig-
ure 2 in Figure 3 (Left). The source code contains three parts:
JavaScript, Vertex Shader and Fragment Shader. First, the
JavaScript code prepares data, such as attributes, uniforms,
and texture, for both vertex and fragment shaders. Lines 4–13
(Left, JavaScript) show an example of passing attributes to
the vertex shader. Next, Lines 14–16 (Left, JavaScript) show
another example of passing uniforms to the vertex shader.
Second, the vertex shader code accepts attribute and uniform
values from the JavaScript and then performs operations, i.e.,
Lines 9–11 (Left, Vertex Shader), on each attribute in a paral-
lel manner. The outputs of the vertex shader to the fragment
shader are a special variable, gl_position, which indicates
the transformed vertices, and multiple varyings. Third, the
fragment shader accepts outputs, i.e., vertices and varying,
from the vertex shader, performs rasterization and interpola-
tion, and then runs the code (i.e., Line 5–6, Left, Fragment
Shader).

Now, let us describe the floating-point related operations
that cause the rendering result difference. First, the vertices,
i.e., gl_position, and the varyings, i.e., vTextureCoord and
vLightWeighting, are passed and interpolated between the
vertex and the fragment shader. Such interpolation and ac-
companied rasterization involve floating-point operations and
may cause difference. Second, WebGL functions, such as dot
at Line 11 (Left, Vertex Shader) and texture2D at Line 5 (Left,
Fragment Shader), include floating-point operations and may
cause difference. Lastly, floating-point operations, such as
Lines 9–10 (Left, Vertex Shader) and Line 6 (Left, Fragment
Shader), may cause difference.

Next, we use Figure 3 (Right) to illustrate how UNIGL
rewrites the original code and prevents such differences
caused by floating-point operations. First, UNIGL will hook
all the JavaScript APIs, such as bindBu f f er and bu f f erData,
to obtain vertices and indices information and associate them
with attributes and uniforms in the vertex shader. Then,
UNIGL rewrites the original vertex shader by replacing

USENIX Association 28th USENIX Security Symposium 1649

Vertex
Shader

(1)
Hooking
JS APIs

Attributes, indices,
and uniforms

(2.i) Rewriting
JS version of
vertex shader

(3) Execution

(2.ii) Selection

Vertices and varyings

(5) Interpolation
& Rasterization

Texture and
uniforms (2.iii)

Processing

Fragment
Shader

(2.iv) Rewriting

(7) Execution as fragment shader

Interpolated
varyings and

fragmentsRewritten
fragment
shader

(6) Fetching
previous
drawing

Input as
texture

Visual rendering results

(4) Preparation

Figure 4: Overall Architecture of UNIGL (Steps 1–4 are executed as
JavaScript, and Steps 5–7 as a fragment shader in a GLSL program).
floating-point operations like dot with JavaScript functions
like UniGLDot, and executes it as JavaScript at Line 9–15
(Right, JavaScript). Second, UNIGL collects the execution
results from JavaScript-based vertex shader (Lines 16–17,
Right, JavaScript) and then feeds them into a rewritten frag-
ment shader as uniforms (Line 2–4, Right, Fragment Shader).
Third, UNIGL rewrites the original fragment shader and exe-
cute it with customized rasterization and interpolation. The
rasterization process at Lines 7–8 (Right, Fragment Shader)
goes through all the triangles for each pixel on the canvas
and determines whether a given pixel lies inside a triangle.
If yes, UNIGL calculates the z-buffer of the given pixel for
the triangle, decides whether the triangle is in the front and
needs to be rendered, and also calculates pixel values based
on alpha. Then, the interpolation process (Lines 9–10, Right,
Fragment Shader) interpolates varyings based on vertices and
attributes passed from JavaScript as uniforms. Lastly, UNIGL
executes a rewritten fragment shader at Lines 12–13.

3 Design
We present the design of UNIGL in this section.

3.1 System Architecture

In this subsection, we show and describe the overall architec-
ture of UNIGL. The main function of UNIGL is encapsulated
as JavaScript files executed directly in the website runtime
context. The add-on part is a thin layer used to inject UNIGL
into the runtime context of the target website with WebGL
tasks. That is, the purpose of the add-on is to ensure the in-
jected UNIGL JavaScript code is executed before any website
code. Once the injected scripts are running, the add-on code
is disposable. We make this design choice so that UNIGL can
be easily transferred between browsers.

Once the main part of UNIGL is injected into the target
website, UNIGL performs seven detailed steps to render a
WebGL task on a canvas as shown in Figure 4. First, UNIGL
needs to perform some preparation tasks outside the three
stages in Figure 1. In Step (1), UNIGL hooks WebGL re-
lated JavaScript APIs to obtain four types of information: (i)
vertex shader (via shaderSource API), (ii) inputs to vertex

shader, such as attributes, indices and uniforms (via APIs,
such as bu f f erData and bindBu f f er), (iii) fragment shader
(via shaderSource API), and (iv) inputs to fragment shader,
such as texture and uniforms (via APIs, such as texImage2D
and texParameteri). Then, in Step (2), UNIGL processes all
the information obtained in Step (1). Particularly, UNIGL
rewrites both vertex and fragment shaders in Step (2.i) and
(2.iv), and extracts and prepares inputs in Step (2.ii) and
(2.iii). For example, UNIGL reads indices and attributes, as-
sociates each attribute buffer with corresponding attribute
variable in the vertex shader, and then prepares data based
on the drawing mode (e.g., drawElements vs. drawArray,
and gl.POINT S vs. gl.LINES vs. gl.T RIANGLES). Simi-
larly, UNIGL also extracts texture information, such as im-
age width and height, and texture mapping algorithm (e.g.,
GL_LINEAR vs. GL_NEAREST).

After that, in Step (3), UNIGL executes the rewritten ver-
tex shader and generates outputs, i.e., vertices and varyings,
which also belongs to Stage 1 in Figure 1. Next, in Step (4),
UNIGL prepares inputs to the fragment shader by processing
the outputs in Step (3), i.e., Stage 2 in Figure 1. Specifically,
UNIGL performs backface culling on the triangles and it-
eratively divides the visible triangles by half so that each
rendering task only contains uniforms within the limit en-
forced by WebGL. Then, in Step (5), UNIGL loops through
all the pixels on canvas and determines whether each pixel
falls inside the triangles or on the lines depending on the
drawing mode. If yes, UNIGL interpolates all the varyings
based on the given pixel and vertices. If no, UNIGL fetches
previous drawing results from a special texture and uses the
pixel color in Step (6). Lastly, UNIGL executes the rewritten
fragment shader to calculates the pixel color in Step (7), i.e.,
performing Stage 3 in Figure 1.

3.2 Floating-point Operation Simulation

In this subsection, we present how to simulate floating-point
operations using integers, i.e., the integer simulation method
in Figure 1 for fragment shader. Such method is used in both
Stage 2: Rasterization&Interpolation and Stage 3: Fragment
Rendering, i.e., Step (5) and (7) in Figure 4.

3.2.1 Floating-point Representation and Operation

UNIGL adopts two integers, i.e., one numerator (p) and the
other denominator (q), to represent an arbitrary floating-point
value in the fragment shader. In this paper, we also refer the
denominator as a base, because UNIGL can easily perform
operations, such as addition and subtraction, on two values
with the same base. Note that such representation also aligns
well with the physical meaning of WebGL floating-point val-
ues. Take coordinates for example. The original vertices or
texture coordinates are specified as an integer in terms of
the canvas or texture size, which can serve as the numerator,
and then the canvas or texture size can serve as the base. For

1650 28th USENIX Security Symposium USENIX Association

another example, 255 will be the base for all the color values,
because all RGB colors are within the range of 255.

One important operation for UNIGL’s floating-point num-
bers is to change base for a given number. Such operation
will be used when UNIGL converts simulated floating-point
values to real ones represented by WebGL, such as the spec-
ification of texture coordinates at Line 12 and color values
at Line 13 of Figure 3 (Right, Fragment Shader). The choice
of a base depends on the underlying physical meaning of the
WebGL functions, e.g., UNIGL adopts 255 as the base for
gl_FragColor.

We now explain why the base representation can make
uniform rendering results across browsers. Specifically, al-
though a color value is represented as a float value internally
in WebGL, WebGL has to convert it back to an integer when
rendering the color on canvas. That is, if WebGL accepts a
value p in between 1/255 and 2/255, it may render p as 1
or 2 depending on the underlying conversion algorithm. At
contrast, if WebGL accepts a value as either 1/255 or 2/255,
the ambiguity disappears and the results are uniform across
browsers. In sum, UNIGL adopts different bases according to
the physical meaning when UNIGL passes the floating-point
value back to WebGL.

Next, we describe how to change base for a given num-
ber especially when it does not have the required base. In-
tuitively, we can multiply the value with the new base and
divide the product with the old base. However, such intuitive
approach does not work, because the division of one inte-
ger over another involves floating-point operations in some
WebGL implementations. That is, the division result differs
from one browser to another. Therefore, after obtaining the
quotient, UNIGL needs to search within a range (i.e., ±1) of
the quotient for the real quotient. Other than the base change
operation, UNIGL also supports basic arithmetic operations,
which follow fraction operations. Due to simplicity, we skip
details here. One thing worth noting is that UNIGL needs to
avoid result overflows—if so, UNIGL needs to increase the
base to accommodate a larger value.

In the next two subsections, we show how to use such base
representation of floating-point values and replace existing
ones in two important types of WebGL functions.

3.2.2 Floating-point Operations in Rasterization and
Interpolation

Rasterization and interpolation are automatically performed
in between the vertex and fragment shaders. Specifically, for
all pixels on the canvas and all triangles, rasterization needs
to decide whether the given pixel is inside the triangle and, if
so, calculate the z-buffer. Note that both procedures involve
floating-point values and operation, which need to adopt the
base representation during calculation. Then, the interpolation
calculates weights for three vertices at a given triangle and
then outputs the interpolated varying, i.e., a weighted sum

of the attribute values at three vertices. All the weights and
calculations are in the aforementioned base representation.

Another thing here, being different from normal rasteriza-
tion and interpolation, is that UNIGL divides the entire, rect-
angle canvas into two triangles with four vertices as shown in
Figure 5a instead of using the original vertices. The usage of
such vertices is necessary to design a GLSL-version of raster-
ization, because the fragment shader will only expose a pixel
to the GLSL program when the pixel is inside one triangle.
Therefore, if we adopt the original vertices as the inputs to the
fragment shader, some pixels, especially when they are on the
edge, may be considered as inside a triangle by one browser
but outside by another. The division shown in Figure 5a will
consider all pixels on the canvas as being within either of
these two triangles on any browser. This will give UNIGL the
capability to go through all the pixelsand decide whether a
pixel, such as (x,y) in Figure 5a, is inside triangles consisted
of the original vertices, i.e., (x1,y1)...(x4,y4).

3.2.3 Floating-point Operations in Fragment Shader

The fragment shader uses many float-point related functions,
such as “texture2D”, “normalize” and “sqrt”. In this subsec-
tion, we use texture mapping, i.e., “texture2D”, as an example
to show the procedure of adopting integer simulation and
replacing floating-point operations.

Texture mapping, in its normal definition, is a method of
applying a two-dimensional surface upon a three-dimensional
graphics model. There are many variations of texture mapping
algorithms, such as linear interpolation (i.e., GL_LINEAR)
and nearest neighbor (GL_NEAREST). Sometimes, mipmaps
are also generated to process the texture before mapping. In
this paper, we use linear interpolation as a proof of concept al-
gorithm to show how to redefine texture mapping in UNIGL.

One of the major tasks in redefining texture mapping is to
pass texture data from JavaScript to the fragment shader. The
naïve method is to utilize “uniforms” just as vertices. How-
ever, because there exists a limit for the number of “uniform”
variables and texture cannot be divided in multiple draws, we
have to rely on existing texture information stored in WebGL.

Here is how UNIGL redefines a linear interpolation algo-
rithm for texture mapping. UNIGL stores texture information
using the default WebGL method with a nearest neighbor
algorithm—therefore, WebGL will just directly fetch color
values from the texture instead of performing any computa-
tion. When UNIGL has a texture coordinate, say, for example,
1/base in Figure 5c, UNIGL will first change the base to the
size of the texture. Note that we use a square-shape texture as
an example and a rectangle-shape will be similar.

Then, UNIGL fetches the colors, i.e., c1...c4, of four texture
points in Figure 5c, which locate around the target texture
coordinate. Because UNIGL uses the texture size as the new
base, the ambiguity among browsers will disappear. Next,
UNIGL calculates two weights, i.e., w1 and w2, based on the
distance between the target texture coordinate and four texture

USENIX Association 28th USENIX Security Symposium 1651

Canvas

(x1, y1)

(x2, y2)

(x3, y3)
(x4, y4)

(x, y)

(a) Rasterization

Canvas

(1)

(2)

(3)

(b) Canvas Division

1/size 2/size0

1/size

2/size

1/base

size/size

size/size

w1

w2

c1 c2

c3 c4

(1) Change

base to “size”

(2) Calc weights

(3) Calc color

(c) Texture Mapping

Figure 5: Explanation of Different UNIGL Operations. In subfigure (a), during rasterization, UNIGL needs to determine the triangle that each
point belongs to. Specifically, Point (x, y) is inside the triangle consisting of vertices (x1, y1), (x2, y2), and (x3, y3), but outside the other triangle
consisting of vertices (x2, y2), (x3, y3), and (x4, y4). Therefore, UNIGL will interpolate the values of all the varyings at (x, y) based on (x1, y1),
(x2, y2), and (x3, y3). In subfigure (b), UNIGL first divides the entire canvas into two parts, i.e, left and right, and then top and bottom. After
that, because the number of vertices in some divided parts is small enough to be handled by WebGL, UNIGL will not further divide such parts,
like top right and top left. If the number of vertices in a part is still larger than the minimum number of allowed uniform variables, UNIGL will
further divide the canvas, like cut (3). Subfigure (c) adopts a square texture as an example to show how the linear interpolation algorithm of
texture mapping works in UNIGL. UNIGL calculates an interpolated color value for a given point based on four color values around this point.

Table 1: WebGL Data and Corresponding JavaScript APIs that Ac-
cept such Data

Intercepted WebGL Data JavaScript APIs

GLSL Program createProgram, attachShader
Shader attachShader, getShaderSource
Buffer bufferData
Attribute vertexAttribPointer
Attribute Location getAttribLocation
Uniform uniform*** (e.g., uniform1f)
Uniform Location getUniformLocation

fetched points—these two weights can be in any base. Lastly,
UNIGL calculates the color for the target texture coordinate
using these two weights, i.e., color = w2w2c1 + w1w2c2 +
w2w1c3 +w1w1c4.

3.3 Rendering Preparation

In this subsection, we introduce how to prepare inputs to
both rewritten vertex and fragment shaders, i.e., Steps (1),
(4), and (6). These steps do not have direct involvement with
floating-point values, but are essential in preparing the vertex
and fragment shaders in UNIGL.
JavaScript Hooking and Data Extraction. UNIGL hooks
WebGL-related JavaScript APIs in Step (1) of Figure 4.
Specifically, UNIGL utilizes the dynamic feature of
JavaScript to redefine such JavaScript APIs, intercepts all
arguments, i.e., parameters to WebGL, processes the argu-
ments, and stores them in an internal data structure of UNIGL.
Table 1 shows a list of WebGL data and corresponding
JavaScript APIs. Such data can be roughly divided into two
major categories: programs and inputs. “GLSL program” and
“shader data” in Table 1 are intercepted by UNIGL for rewrit-
ing purpose. All others, such as “attribute” and “uniform”,
are inputs to the program—UNIGL intercepts them and then
feeds them to the rewritten programs. Both “attribute” and
“uniform” refer to the data, e.g., colors and vertices, and “at-

tribute location” and “uniform location” are the corresponding
variables defined in the shaders.

Backface Culling. UNIGL adopts backface culling [11] in
Step (4) of Figure 4 to determine whether a polygon, such as a
triangle, of a graphical object is visible. Specifically, UNIGL
calculates the normal vector of all the triangles and filters
these triangles of which the normal vector does not face the
camera.

Rendering Task Division. Rendering task division, part of
Step (4), is designed specifically in UNIGL to overcome the
limit of the uniform variable numbers in fragment shader.
Figure 5b shows an illustration of such division. UNIGL
first divides the canvas vertically by half, e.g., division (1)
in Figure 5b, and then horizontally, e.g., division (2). Such
vertical or horizontal division will be performed alternatively
in each iteration on a small region until the number of vertices
in that region is smaller than the limit enforced by WebGL
implemented in a specific browser. Note that if a triangle
is partially inside a region, e.g., the right corner region in
Figure 5b, UNIGL will count all three vertices towards the
limit. The reason is that all three vertices are required to
determine whether a given pixel lies inside a triangle.

Reading Previous Draw Results. In this part, we describe
how UNIGL handles multiple draws in Step (6). For example,
a WebGL program may first draw a triangle by calling one
GLSL program and then a rectangle by calling another. In
such multiple draws, the rendering results are treated as a
background in the latest draw. Because UNIGL goes through
all the pixels in the fragment shader each time, UNIGL needs
to read previous draw results. Specifically, UNIGL relies on
the readPixels API to obtain the canvas contents, constructs a
texture based on the contents and then passes the texture to the
fragment shader. Then, in the fragment shader, UNIGL first
reads the color value from the texture, and assigns the color
to gl_FragColor. Later on, if the current drawing renders a

1652 28th USENIX Security Symposium USENIX Association

1 attribute vec2 vertPosition;
2 void main() {
3 gl_Position = vec4(vertPosition , 0.0, 1.0);
4 gl_PointSize = 1.0;
5 }

Figure 6: Dummy Vertex Shader (The vertex shader performs a self-
mapping with a z-value as 0.0 and a w-value as 1.0. The point size
is also set to be 1.0.)

color on this pixel, the assigned color will be overwritten;
otherwise, the assigned color is treated as the background.

3.4 Rewriting and Rendering

In this subsection, we describe UNIGL’s rewriting and ren-
dering process, i.e., Step (2). In both Steps (2.i) and (2.iv),
UNIGL preprocesses the GLSL program, i.e., replacing pre-
processor directives with a hash symbol at the beginning, and
then parses the processed program into Abstract Syntax Tree
(AST). We then discuss how to rewrite vertex and fragment
shaders separately.

• Vertex Shader. UNIGL traverses through the AST, redefines
corresponding node, e.g., replacing the operator plus with
a function UniGL_Plus, and then converts the AST back to
either JavaScript or GLSL code. All the type information is
kept the same because UNIGL has redefined all the types
in JavaScript to be the same as in GLSL. Note that one
additional step is that UNIGL needs to divide the w value
of gl_Position from the x, y and z values so that UNIGL
can switch the rendering results from an orthographic view
to a perspective view. This step was performed implicitly
in the original WebGL, and UNIGL needs to do so as well.

• Fragment Shader. UNIGL traverses through the AST and
redefines the following three types of nodes: (i) operators,
(ii) constant float number, and (iii) type information related
to floating point values. First, UNIGL redefines all the ex-
isting operations, such as multiply, with the corresponding
GLSL function, such as UniGL_Multiply. Second, UNIGL
converts all the constant floating point values, e.g., 0.32 as
an alpha value, to our base representation, e.g., 32 as the
value and 100 as the base for all alphas. Lastly, UNIGL
need to convert all the types related to floating point values,
such as float and vec3, to the corresponding integer type,
such as int and ivec3.

Note that WebGL requires that all GLSL programs have
both vertex and fragment shaders. Therefore, UNIGL exe-
cutes a dummy vertex shader as shown in Figure 6. The
dummy vertex shader needs to set gl_PointSize, because the
default value also differs on different OSes, e.g., Mac vs. Win-
dows.

3.5 Execution of JavaScript Vertex Shader and Corre-
sponding Floating-point Operations

In this subsection, we describe the execution of JavaScript
vertex shader in Step (3). All the floating-point operations in

the vertex shader are thus executed on CPUs. We adopt five
runtime optimizations to speed up the execution as shown
below.

• Multiple Web Workers. Once one frame comes in, UNIGL
puts the vertex rendering tasks of the frame into a queue.
Then, multiple workers keep fetching the tasks from the
queue, and run them in parallel.

• Caching. UNIGL adopts a caching mechanism for matrix
operations, e.g., UniGLAdd and UniGLMultiply at Lines
12 and 14 of Figure 3 (Right, JavaScript), in Step (3). That
is, UNIGL will cache the calculation results of a matrix
operation, e.g., the multiplication of two matrices. If the
rewritten vertex shader asks for the results of an operation
upon the same matrices, UNIGL will directly return the
result directly instead of calculating it again.

• Typed, fixed-size Array. UNIGL adopts typed arrays, such
as Float32Array, instead of the normal JavaScript array
to store data. The reason is that typed array are stored
in a contiguous memory region can fast accessed by the
browser. In addition, UNIGL needs to specify the length to
avoid array resizing. The reason is that array resizing may
involve additional memory allocation and data copy. Note
that we also need to avoid using some heavy JavaScript
array operations, such as Array.map().

• Code and Data Separation. UNIGL separates the code and
the data for the rewritten shader. That is, the code will be
prepared in the hooked useProgram API, which does not
have an influence on the runtime performance, and JIT-ed
for performance speed-up. Note that UNIGL triggers the
JIT engine by executing the code once with initial data.
Then, further data will be prepared in the draw stage.

• WebAssembly. UNIGL executes some heavyweight opera-
tions, such as matrix multiplication, using native code like
WebAssembly.

4 Implementation
We implemented a prototype of the core function of UNIGL
with around 8,500 lines of JavaScript code, around 650 lines
of GLSL code, and around 3,000 lines of code for auxil-
iary components such as WebAssembly and add-on. The
rewriting component of UNIGL is modified from one open-
source GitHub repository (namely, https://github.com/
stackgl/glsl-transpiler). Other than this repository, we
also use several other libraries, such as glMatrix.

UNIGL is open-source, available at repositories under this
GitHub user (https://www.github.com/unigl/). We also
provide a demo at this url (http://test.unigl.org/), a
modified version of Cao et al. [19]’s fingerprinting web-
sites, to demonstrate that UNIGL can prevent state-of-the-art
WebGL-based browser fingerprinting. All rendering results
are the same in this new, UNIGL rewritten version.

USENIX Association 28th USENIX Security Symposium 1653

https://github.com/stackgl/glsl-transpiler
https://github.com/stackgl/glsl-transpiler
https://www.github.com/unigl/
http://test.unigl.org/

5 Evaluation

We evaluate UNIGL prototype on three metrics: anti-
fingerprinting capability, performance, compatibility, and
CPU energy consumption.

5.1 Anti-fingerprinting Capability

We adopt a state-of-the-art WebGL-based browser finger-
printing work [19] as our benchmark to evaluate the anti-
fingerprinting capability and performance of UNIGL. Specif-
ically, the benchmark contains 17 different WebGL render-
ing tasks including plain WebGL tasks and these relying on
three.js, a WebGL library, to explore various WebGL features,
such as varyings, light and texture. The first column of Table 2
shows the names of all the rendering tasks and the second
column a rendering result example on a dell desktop installed
with Windows 10.

We evaluate UNIGL by asking Amazon Mechanical Turks
to visit our website—including a demo site of UNIGL to-
gether with the original fingerprinting site from Cao et al.—
using Firefox, Chrome and Safari. In total, we have collected
656 fingerprints from these three types of browsers. Among
all the 656 fingerprints, UNIGL only renders one unique fin-
gerprint for each rendering task across different browsers.
This unique fingerprint, being visually the same to the origi-
nal rendering result, is shown in the “Example” column under
UNIGL of Table 2. As a comparison, we also show the num-
ber of unique fingerprints of Cao et al. in the “# Unique
Results” column under “Original” of Table 2—this confirms
Cao et al.’s findings that WebGL is a high-entropy vector for
browser fingerprinting. We also list some more statistics in
Appendix A.

In addition to the Amazon Mechanical Turk experiment,
we also perform a local experiment that enumerates a large
varieties of factors across the graphics layers. Specifically,
we test UNIGL with the following different settings: OS
(Windows 7, 8, 10, iOS 10.14.1, and Ubuntu 18.04), graph-
ics card (Nvidia Geforce GTX 1070, Intel Iris plus Graph-
ics 640, AMD Radeon R9 M390, and AMD Radeon HD
6770m), drivers (Nvidia, Intel, and AMD drivers), screen res-
olution (all these provided by the OS, such as 2560x1440 and
1920x1080), and DPI scaling (100%, 125%, 150%, 175%,
200%, and 225%). UNIGL only produces one unique result,
which is the same as the Amazon Mechanical Turk experi-
ment.

5.2 Performance

We test the performance of UNIGL by using both micro-
and macro-benchmarks. All the experiments, except for the
crowdsourced results in Table 2, are performed on an iMac –
the machine has an Intel Core i5, 3.2 Hz, 4-core CPU, 24 GB
memory, and an AMD Radeon R9 M390 GPU with 2048 MB
VRAM.

Figure 7: Micro-benchmark of Vertex Shader.

Figure 8: Micro-benchmark of Fragment Shader (all the operations
in WebGL are using floating-point values; these in UNIGL adopts
integer simulation).

5.2.1 Micro-benchmark

In the micro-benchmark, we test several atomic WebGL op-
erations and compare the original version with the one de-
fined in UNIGL. Specifically, we run each operation in either
fragment or vertex shader for 2,000 times and calculate the
interval between two draws. Each experiment is performed
20 times to obtain a standard deviation. Note that we adopt
a simple model, i.e., a cube, in the micro-benchmark experi-
ment. When we are testing one shader, the other shader will
contain a one-line, dummy statement, i.e., the assignment of
either gl_Position or gl_FragColor.

Figure 7 shows the micro-benchmark performance of the
vertex shader. The vertex shader of UNIGL outperforms the
one written in GLSL in some aspects, such as these operations
that have integers involved. The reason is that CPU is well
designed for integer operation when compared with GPU. On
the contrary, the original shader written in GLSL is better at
matrix operations, because such operations can be performed
in parallel using shading languages.

1654 28th USENIX Security Symposium USENIX Association

Table 2: Macro-benchmark WebGL Tasks [19] and Corresponding Rendering Results with UNIGL (“# Vertices” means the number of vertices
in the model, which are two per line segment in a 2D model and three per triangle in a 3D model. “Example” is one rendering example collected
from users. In “# Unique Results” columns, X/Y means the number of unique fingerprints collected from all the users out of the total number
of fingerprints. “FPS” means frames per second—which is around 60 Hz due to the screen refresh rate.)

WebGL Task # Vertices
Original UNIGL

Example # Unique Results FPS Example # Unique Results FPS
Chrome Firefox Safari

Curve and Line 262 74/496 23/108 18/52 60.32±0.38 1/656 61.77±0.54

Curve and Line (AA) 262 83/496 32/108 21/52 60.78±0.54 1/656 61.83±0.97

Cube 36 4/496 2/108 5/52 60.67±0.49 1/656 62.50±0.80

Cube (AA) 36 55/496 20/108 23/52 60.46±0.15 1/656 62.39±1.36

Cube (Camera) 36 56/496 18/108 7/52 60.02±0.22 1/656 61.75±1.32

Monkey head (Texture) 2,904 5/496 18/108 2/52 60.14±1.17 1/656 61.88±1.61

Monkey head (Light) 2,904 36/496 11/108 15/52 59.95±0.60 1/656 61.07±1.02

Two models (Light) 2,988 44/496 18/108 14/52 60.02±1.19 1/656 61.90±0.97

Two models (Complex light) 2,988 52/496 6/108 20/52 60.18±0.40 1/656 60.02±1.13

Two models (Texture) 2,988 79/496 31/108 21/52 60.31±0.54 1/656 62.33±1.22

Two models (Transparency) 2,988 87/496 25/108 22/52 59.97±1.13 1/656 60.13±1.76

Two models (Tex&Light) 2,988 38/496 14/108 11/52 60.04±0.31 1/656 59.74±0.75

Thousands of rings (three.js) 5,376 53/496 25/108 15/52 60.52±0.53 1/656 57.47±1.87

Clipping plane (three.js) 36 44/496 14/108 19/52 59.98±0.44 1/656 59.67±1.29

Bubble (three.js) 974 49/496 17/108 22/52 60.20±1.52 1/656 60.07±1.43

Compressed Texture (three.js) 98 72/496 21/108 19/52 60.04±0.56 1/656 59.59±0.73

Shadow (three.js) 156 53/496 17/108 19/52 59.84±0.35 1/656 60.12±1.02

Combined fingerprint 123/496 41/108 26/52 1/656

Figure 8 shows the micro-benchmark performance of the
fragment shader. Similar to the vertex shader, while UNIGL
is slower than the original WebGL in some cases, such as
“texture2D” as UNIGL redefines the function, it is worth not-
ing that UNIGL is faster than the original WebGL in many
other cases, such as “pow” and “multiplication”. The reason is
that an integer operation is indeed sometimes cheaper than a
floating-point one. For example, it takes less time to multiply
two integers than two floating-point values. Note that we are
referring to integer operations that exist in the original vertex
shader during this discussion. Floating-point values are still
represented as floats in the vertex shader of UNIGL.

5.2.2 Macro-benchmark

In this subsection, we use the WebGL tasks provided by Cao
et al. [19] as our macro-benchmark to measure the FPS of

these rendered by UNIGL. The column “FPS” under UNIGL
of Table 2 shows the FPS of each rendering task and we also
show the FPS without UNIGL, i.e., these rendered directly
by WebGL in the same table. The performance of UNIGL
can satisfy the required screen refresh rate, i.e., 60 Hz. The
FPS of UNIGL for all the tasks are similar to the original one
rendered by WebGL alone.

There are two things worth noting. First, the FPS of UNIGL
is even sometimes a little bit higher than the one of We-
bGL. The reason is that when the model is simple, our
highly optimized vertex shader with the help of WebAssem-
bly is faster than the original one. Second, the FPSes of both
UNIGL and WebGL are a little bit higher than 60 Hz in
some tasks, because modern browsers reduce the precision of
per f ormance.now to prevent timing attacks [7], which may

USENIX Association 28th USENIX Security Symposium 1655

Table 3: Overhead Breakdown for the “Two models (Complex light)”
Task

Procedure Overhead

Data Preparation 0.08±0.07ms
Backface Culling 2.16±0.06ms
Vertex Shader 2.26±0.18ms
Rendering Task Division 5.34±0.73ms
Fragment Shader 6.51±0.85ms

Total 16.35±0.74ms

Table 4: Vertex Shader Optimization (all numbers are averaged from
10 experiments and rounded to ms)

Unoptimized Vertex Shader 110 ms

Result Caching of Matrix Operation -24 ms
Typed, Fixed-size Array for Data -22 ms
Code and Data Separation -39 ms
Parallelization -19 ms
WebAssembly -4 ms

Optimized Vertex Shader 2 ms

lead to a small measurement error. Such measurement errors
are consistent across UNIGL and WebGL.

We further look at one specific task, i.e., “Two mod-
els (Complex light)”, and analyze the overhead brought by
UNIGL. Table 3 shows the overhead breakdown by differ-
ent procedures of UNIGL. The rendering task division and
fragment shader are the most time-consuming procedures,
i.e., each taking one third of the entire overhead. Both data
preparation and backface culling are lightweight, taking up a
small portion of the overhead.

We then look at how our optimization reduces overhead
of UNIGL, especially the vertex shader, using the same task.
Specifically, we evaluate five optimizations and their impact
on the performance in Table 4. The unoptimized vertex shader
in JavaScript takes 110ms and each optimization reduces the
overhead to some degree. Code and data separation is the most
effective one, i.e., about 40ms reduction, because JIT engine
will execute code natively rather than on an interpreter. Then,
both caching and typed, fixed-size array speed up the shader
by reducing around 20ms, and parallelization also reduces the
overhead by around 19ms. Lastly, if we apply WebAssembly
optimization, the overhead can also be reduced by 4 ms.

5.3 Compatibility

In this section, we evaluate the compatibility of UNIGL with
existing WebGL applications. Specifically, in addition to the
WebGL tasks from Cao et al. [19], we run UNIGL using two
other real-world WebGL applications shown below:
• Zygote Body. Zygote Body (https://www.zygotebody.

com/), formerly known as Google Body, is created by Zy-
gote Media Group to renders a manipulable 3D model of
human body from outside, such as skins, muscle tissues
and hairs, to inside, such as blood vessels and skeletons.

(a) Zygote Body (b) Google I/O Application

Figure 9: Two Screenshots of Zygote (Google) Body and Google
I/O Application Rendered by UNIGL

• Google I/O 2011 Applications. Google has presented
WebGL applications (https://webglsamples.org/google-
io/2011/index.html) at its I/O event in 2011 to show the
new technique and performance.
Our evaluation result shows that UNIGL is compatible

with both applications. First, we run UNIGL with Zygote
Body—the human body is rendered correctly with no visual
difference. We can also manipulate it by looking at different
layers, such as skeleton and muscle. Second, we run UNIGL
with Google I/O applications—all the objects are shown and
displayed correctly with the right texture, moving on the can-
vas the same as ones with WebGL directly. Two screenshots
of both applications are also shown in Figure 9: Figure 9a
shows the front page of Zygote Body, a default rendering
of a human, and Figure 9b a screenshot of one Google I/O
application after it runs for two seconds.

5.4 CPU Energy Consumption

In this section, we evaluate the CPU package power of our
macro-benchmark. Specifically, we use CPUID’s HWMon-
itor [3], a program that monitors PC systems’ main health
sensors, to calculate the CPU package power consumption
for each macro-benchmark task. Note that our experiment is
performed on a Dell Desktop because HWMonitor is only
available on PC systems.

Figure 10 shows our evaluation results, i.e., CPU package
power consumption when each macro-benchmark task is ren-
dered by WebGL (hardware rendering), WebGL (software
rendering), and UNIGL. The power consumption for WebGL
(hardware rendering) is the smallest for all the tasks because
hardware rendering relies on GPU to perform computation.
UNIGL is the second, because UNIGL relies on CPU for ren-
dering vertex shader, but GPU for fragment shader. WebGL
(software rendering) is the highest as all the rendering tasks
are performed on CPU.

It is also worth noting that CPU package powers for “thou-
sands of rings” and “clipping plane” are the highest compared
with other tasks. The reason is that the vertex shader for both
tasks are computationally heavy. Take “thousands of rings”
for example. The position and shapes for all the rings are
calculated in the vertex shader.

1656 28th USENIX Security Symposium USENIX Association

https://www.zygotebody.com/
https://www.zygotebody.com/

Figure 10: CPU Package Power Comparison among WebGL (hardware rendering), WebGL (software rendering), and UNIGL. (Note that all
other WebGLs mentioned in the paper except for this figure and corresponding texts refer to the default hardware rendering.)

6 Discussion
We discuss several issues regarding UNIGL in this section.
• Timing side-channel attacks. Timing information, such

as the rendering speed of WebGL tasks, may also be used
for fingerprinting. For example, Naghibijouybari et al. [43]
shows that timing side channels exist in GPU, e.g., WebGL
rendering tasks. Similarly, the execution time of floating-
point operations can also be used as a timing side chan-
nels [29, 51]. Many existing works, such as Deterministic
Browser [18], JavaScript Zero [54], and CTFP [14], are pro-
posed to defend against such timing channels, and therefore
we would consider such timing-based fingerprinting out of
scope of the paper.

• Self-modifying code (i.e., an strong adversary aware of
UNIGL). There are three techniques used to prevent self-
modifying code that is aware of the existence of UNIGL
from tampering the UNIGL code and logics. First, UNIGL
adopts anonymous closure to encapsulate all the core code
of UNIGL from access by any potentially malicious web-
site JavaScript. Specifically, anonymous closure makes sure
that all the private variables and original WebGL func-
tions, such as drawElements, are securely protected. Sec-
ond, UNIGL obtains all the system object, such as “unde-
fined”, to avoid tampering from an adversary. Lastly, the
add-on code injects the main function of UNIGL as the first
script to execute before any other website JavaScript. It is
worth noting that we are aware that there exists an active
Chrome bug [4] at the time when we write the paper, which
is about “document_start” hook on child frames. We be-
lieve that this bug should be fixed to follow the specification
of Chrome extension.

• WebGL Vulnerability. WebGL may expose some low-level
vulnerabilities in device drivers to web applications [62].
As discussed in Milkomeda [62], WebGL has already im-
ported security checks to prevent an attacker exploiting
such vulnerabilities.

• Fingerprinting via WebGL meta-information. We realize
that not only the rendering behaviors of WebGL tasks but
also the meta-information of WebGL engine and implemen-
tation can be used for fingerprinting. For example, as shown

by this website (https://browserleaks.com/webgl),
different WebGL meta-information, such as vendor, ren-
derer, and shader parameters, can all be used as part of
browser fingerprinting.
We would like to point out that such fingerprinting relying
on WebGL meta-information is relatively easy to prevent as
shown by Tor Browser’s in uniformization of the reported
values of such meta-information. Specifically, Tor Browser
changes and makes uniform the return values of WebGL
meta-information functions, such as getParameter(), get-
SupportedExtensions(), and getExtension(). Therefore, we
encourage one to rely on Tor Browser for prevention of
such fingerprinting.

• Floating-point Value Precision. We now discuss the pre-
cision of floating-point values used in UNIGL. Our inte-
ger simulation of floating-point values can meet the needs
of graphics tasks, because WebGL does not need a high-
precision definition of floating-point variables. Specifically,
the semantic meaning of many WebGL variables only re-
quires a relatively low-precision value. Take color values
for example: Each color value only ranges from 0 to 255
and thus a high-precision, 16-bit floating-point value will
not represent more colors. In fact, many WebGL implemen-
tation only support a mediump (10 bits) or lowp (8 bits) for
float variables.

• Future WebGL-based fingerprinting. State-of-the-art We-
bGL fingerprinting is based on differences in floating-
point operations. We empirically verify this via carefully-
designed experiments following WebGL specifications in
Section 2.1.1 and our evaluation of UNIGL against Cao
et al.’s WebGL fingerprinting [19]. Future WebGL finger-
printing techniques and those that do not rely on WebGL
are out of scope of the paper.

• Ethic concerns. We discussed with our Institutional Re-
view Board (IRB) about the ethics of the proposed research
and experiment, because we require a human to run our
experiment on their machines. The conclusion is that the
proposed research does not require IRB approval. The rea-
son is that although browser fingerprinting may be used to
collect private information, the fingerprint itself, just like

USENIX Association 28th USENIX Security Symposium 1657

https://browserleaks.com/webgl

cookies, is just an identifier, which does not contain any
private information. Our experiment only collects finger-
prints but not any private information associated with the
fingerprint.

7 Related Work
We discuss related work in this section.
Browser Fingerprinting. Browser fingerprinting is a second-
generation web tracking that goes beyond cookies or super
cookies [30–33, 35, 53] to utilize inherent features inside web
browsers. For example, there are many works [12, 13, 20,
23, 45, 63] performing measurement works on browser fin-
gerprinting. Browser fingerprinting can rely on many fea-
tures. Laperdrix et al. [34], i.e., AmIUnique, is a comprehen-
sive study on 17 features of browser fingerprinting. Then,
Vastel et al. studied the dynamics of fingerprints [59], i.e.,
how browser fingerprints change over time, and the privacy
implication of browser fingerprint inconsistencies [60]. Re-
searchers also study specific features of browser fingerprint-
ing, such as fonts [23], AudioContext [20], and JavaScript
engine [40, 42]. The defense target of the paper is WebGL-
based fingerprinting, which was first proposed by Mowery et
al. [41] and then thoroughly examined by Cao et al. [19].
Floating-point Timing Channel. A floating-point timing
channel [29, 51] of web browser refers to that the duration of
a floating-point operation can be used to break same-origin
policy. Other than floating-point timing channel, many other
timing channels [16, 22, 24, 25, 28, 39, 46, 57, 58, 64, 65] have
also been studied. As a comparison, the side channel studied
in the paper is caused by the different results of floating-point
operations, such as conversion from low resolution to high
resolution, but not the different duration of floating-point op-
erations. Therefore, we consider that floating-point timing
channels are out of scope of the paper, and one should refer
to existing works [18] for solutions.
Defense against Fingerprinting. To the best of knowledge,
none of existing works can defend against WebGL-based
browser fingerprinting while still preserving its functionality.
The reason is that we believe we are the first to point out
floating-point operations are the root cause for WebGL-based
browser fingerprinting. UNIGL is also the first system to
find out and then redefines such floating-point operations that
cause rendering discrepancies.

In the related work, Tor Browser [48], as discussed, is the
pioneer work in defending against browser fingerprinting,
but it disables WebGL for privacy. PriVaricator [44] adds
noises to browser fingerprinting, which can be defeated if the
adversary runs the fingerprinting multiple times. Similarly,
Multilogin Browser [5] also creates a virtual browser profile
with a random fingerprint. TrackingFree [47] only defends
against the first-generation web tracking, i.e., these based on
cookies or super cookies, but not browser fingerprinting.
Rewriting Technique. In the past, both academia [21,27,38]
and industry [6, 8] have adopted rewriting techniques in dif-

ferent scenarios. In academia, WebShield [38] and Browser-
Shield [52] rewrite webpages in a proxy to enable web defense
techniques. Erlingsson et al. [21] enforce cyber security poli-
cies by rewriting binaries. In industry, ShapeSecurity [8], a
commercial company, provide products to rewrite websites
and prevent bots and malware. Google’s PageSpeed Mod-
ule [6] also rewrites webpages to improve their performance.

As a comparison, there are unique challenges in rewriting
GLSL languages in UNIGL, because it contains two shaders
and many internal variables, such as varyings and uniforms.
Specifically, UNIGL not only redefines floating-point opera-
tions, but also implements rasterization and interpolation in
fragment shader so that corresponding floating-point opera-
tions in these two procedures can be made uniform.

Determinism. Determinism is a technique used to defend
against side-channel attacks. For example, StopWatch [36,37],
Deterministic Browser [18], and DeterLand [61] adopt deter-
minism to defend against timing channels. Burias et al. [17]
design a deterministic information-flow control system to de-
fend against cache attacks and then Stefan et al. [56] prove
that such cache attacks are still possible given a reference
clock. Aviram et al. [15] use provider-enforced deterministic
execution to prevent timing channels within a shared cloud do-
main. As a comparison, UNIGL makes the execution results
the same but not the execution time across different browsers.

8 Conclusion

In this paper, we propose UNIGL, a novel system that rewrites
GLSL programs and renders them uniformly across different
browsers, thus preventing WebGL-based browser fingerprint-
ing. UNIGL redefines all the floating-point operations, either
explicitly written in the shader, or implicitly invoked by the
WebGL system.

We implemented an open-source prototype of UNIGL as a
browser add-on. Our evaluation shows that UNIGL can de-
fend against state-of-the-art WebGL-based fingerprinting, i.e.,
there exists only one rendering result when Amazon Mechan-
ical Turks visit our demo website from different browsers on
different machines. Our evaluation also shows that the perfor-
mance of UNIGL can satisfy the needs for the screen refresh
rate, i.e., the FPSes of graphics tasks rendered by UNIGL are
around 60 Hz.

In the future, we believe that browser vendors should inte-
grate UNIGL natively into browsers. If they choose to do so,
they can directly use integer simulation for all the components
including vertex shader, rasterization & interpolation engine,
and fragment shader, because the outputs from vertex shader,
though unavailable in the JavaScript-level, are accessible and
can be made uniform directly in native browser. Addition-
ally, a native implementation does not need the rendering task
division step in UNIGL because there will be no “uniform”
variable limit in the low-level.

1658 28th USENIX Security Symposium USENIX Association

Acknowledgment
We would like to thank our shepherd, Ben Stock, and anony-
mous reviewers for their helpful comments and feedback. This
work was supported in part by National Science Foundation
(NSF) grant CNS-18-12870 and an Amazon Research Award.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of NSF or Amazon.

References
[1] Canvas defender. https://multiloginapp.com/

canvasdefender-browser-extension/.

[2] Google maps meets webgl. https://www.youtube.com/watch?v=X3EO_
zehMkM.

[3] Hwmonitor—voltages, temperatures and fans speed monitoring. https://www.
cpuid.com/softwares/hwmonitor.html.

[4] Issue 793217: “document_start" hook on child frames should fire before control
is returned to the parent frame. https://bugs.chromium.org/p/chromium/
issues/detail?id=793217.

[5] Multilogin. https://multilogin.com/.

[6] Pagespeed module: open-source server modules that optimize your site automat-
ically. https://developers.google.com/speed/pagespeed/module/.

[7] Reduce resolution of performance.now to prevent timing attacks. https://bugs.
chromium.org/p/chromium/issues/detail?id=506723.

[8] Shape security. https://www.shapesecurity.com/.

[9] Trackoff privacy software. https://www.trackoff.com/en.

[10] Webgl games. https://www.crazygames.com/t/webgl.

[11] [wikipedia] back-face culling. https://en.wikipedia.org/wiki/
Back-face_culling.

[12] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent tracking mech-
anisms in the wild. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 674–689, New York,
NY, USA, 2014. ACM.

[13] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. FPDetective: Dusting the web for fingerprinters. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’13, pages 1129–1140, 2013.

[14] Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and Deian Stefan.
Towards verified, constant-time floating point operations. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, pages 1369–1382, New York, NY, USA, 2018. ACM.

[15] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determi-
nating timing channels in compute clouds. In Proceedings of the 2010 ACM
Workshop on Cloud Computing Security Workshop, CCSW ’10, pages 103–108,
New York, NY, USA, 2010. ACM.

[16] Andrew Bortz and Dan Boneh. Exposing private information by timing web
applications. In Proceedings of the 16th International Conference on World Wide
Web, WWW ’07, pages 621–628, New York, NY, USA, 2007. ACM.

[17] Pablo Buiras, Amit Levy, Deian Stefan, Alejandro Russo, and David Mazieres. A
library for removing cache-based attacks in concurrent information flow systems.
In International Symposium on Trustworthy Global Computing, pages 199–216.
Springer, 2013.

[18] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. Deterministic browser.
In Proceedings of the 23rd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’17, 2017.

[19] Yinzhi Cao, Song Li, and Erik Wijmans. (cross-)browser fingerprinting via os
and hardware level features. In Annual Network and Distributed System Security
Symposium, NDSS, 2017.

[20] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site mea-
surement and analysis. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, 2016.

[21] Ulfar Erlingsson and Fred B Schneider. Irm enforcement of java stack inspection.
In IEEE S&P, 2000.

[22] Edward W. Felten and Michael A. Schneider. Timing attacks on web privacy.
In Proceedings of the 7th ACM Conference on Computer and Communications
Security, CCS ’00, pages 25–32, New York, NY, USA, 2000. ACM.

[23] David Fifield and Serge Egelman. Fingerprinting web users through font metrics.
In Financial Cryptography and Data Security, pages 107–124. Springer, 2015.

[24] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
Aslr on the line: Practical cache attacks on the mmu. In Annual Network and
Distributed System Security Symposium, NDSS, 2017.

[25] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel
attacks against kernel space aslr. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, SP ’13, pages 191–205, Washington, DC, USA, 2013.
IEEE Computer Society.

[26] Darius Kazemi. Counting uniforms in webgl. https://bocoup.com/blog/
counting-uniforms-in-webgl.

[27] Emre Kiciman and Benjamin Livshits. Ajaxscope: a platform for remotely mon-
itoring the client-side behavior of web 2.0 applications. In SIGOPS, 2007.

[28] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London,
UK, UK, 1996. Springer-Verlag.

[29] David Kohlbrenner and Hovav Shacham. On the effectiveness of mitigations
against floating-point timing channels. In 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017., pages 69–
81, 2017.

[30] Balachander Krishnamurthy, Konstantin Naryshkin, and Craig Wills. Privacy
leakage vs. protection measures: the growing disconnect. In Web 2.0 Security
and Privacy Workshop, 2011.

[31] Balachander Krishnamurthy and Craig Wills. Privacy diffusion on the web: a
longitudinal perspective. In Proceedings of the 18th international conference on
World wide web, pages 541–550. ACM, 2009.

[32] Balachander Krishnamurthy and Craig E Wills. Generating a privacy footprint on
the internet. In Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pages 65–70. ACM, 2006.

[33] Balachander Krishnamurthy and Craig E Wills. Characterizing privacy in online
social networks. In Proceedings of the first workshop on Online social networks,
pages 37–42. ACM, 2008.

[34] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints. In 37th
IEEE Symposium on Security and Privacy (S&P 2016), 2016.

[35] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roes-
ner. Internet jones and the raiders of the lost trackers: An archaeological study of
web tracking from 1996 to 2016. In 25th USENIX Security Symposium (USENIX
Security 16), Austin, TX, 2016.

[36] Peng Li, Debin Gao, and Michael K. Reiter. Mitigating access-driven timing
channels in clouds using stopwatch. In 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), Budapest, Hun-
gary, June 24-27, 2013, pages 1–12, 2013.

[37] Peng Li, Debin Gao, and Michael K. Reiter. Stopwatch: A cloud architecture for
timing channel mitigation. ACM Trans. Inf. Syst. Secur., 17(2):8:1–8:28, Novem-
ber 2014.

[38] Zhichun Li, Yi Tang, Yinzhi Cao, Vaibhav Rastogi, Yan Chen, Bin Liu, and Clint
Sbisa. Webshield: Enabling various web defense techniques without client side
modifications. In NDSS, 2011.

USENIX Association 28th USENIX Security Symposium 1659

https://multiloginapp.com/canvasdefender-browser-extension/
https://multiloginapp.com/canvasdefender-browser-extension/
https://www.youtube.com/watch?v=X3EO_zehMkM
https://www.youtube.com/watch?v=X3EO_zehMkM
https://www.cpuid.com/softwares/hwmonitor.html
https://www.cpuid.com/softwares/hwmonitor.html
https://bugs.chromium.org/p/chromium/issues/detail?id=793217
https://bugs.chromium.org/p/chromium/issues/detail?id=793217
https://developers.google.com/speed/pagespeed/module/
https://bugs.chromium.org/p/chromium/issues/detail?id=506723
https://bugs.chromium.org/p/chromium/issues/detail?id=506723
https://www.shapesecurity.com/
https://www.trackoff.com/en
https://www.crazygames.com/t/webgl
https://en.wikipedia.org/wiki/Back-face_culling
https://en.wikipedia.org/wiki/Back-face_culling
https://bocoup.com/blog/counting-uniforms-in-webgl
https://bocoup.com/blog/counting-uniforms-in-webgl

[39] Yali Liu, Dipak Ghosal, Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen
Schulz, and Stefan Katzenbeisser. Hide and seek in time - robust covert timing
channels. In Michael Backes and Peng Ning, editors, ESORICS, volume 5789 of
Lecture Notes in Computer Science, pages 120–135. Springer, 2009.

[40] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Finger-
printing information in javascript implementations. In WEB 2.0 SECURITY &
PRIVACY (W2SP), 2011.

[41] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting canvas in
html5. In W2SP, 2012.

[42] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FC Wien. Fast and reliable browser identifica-
tion with javascript engine fingerprinting. In WEB 2.0 SECURITY & PRIVACY
(W2SP), 2013.

[43] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael Abu-Ghazaleh.
Rendered insecure: Gpu side channel attacks are practical. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, pages 2139–2153, New York, NY, USA, 2018. ACM.

[44] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiving
fingerprinters with little white lies. In Proceedings of the 24th International
Conference on World Wide Web, WWW ’15, pages 820–830, New York, NY,
USA, 2015. ACM.

[45] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosys-
tem of web-based device fingerprinting. In IEEE Symposium on Security and
Privacy, 2013.

[46] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.
Keromytis. The spy in the sandbox: Practical cache attacks in javascript and
their implications. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages 1406–1418, New York,
NY, USA, 2015. ACM.

[47] Xiang Pan, Yinzhi Cao, and Yan Chen. I do not know what you visited last sum-
mer - protecting users from third-party web tracking with trackingfree browser.
In NDSS, 2015.

[48] M Perry, E Clark, and S Murdoch. The design and implementation of the tor
browser [draft][online], united states, 2015.

[49] Mike Perry, Erinn Clark, Steven Murdoch, and Georg Kop-
pen. The design and implementation of the tor browser.
https://www.torproject.org/projects/torbrowser/design/.

[50] Jason Peterson. How to start building your own webgl-based vr
app. https://medium.com/adventures-in-consumer-technology/
how-to-start-building-your-own-webgl-based-vr-app-cdaf47b8132a.

[51] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure, precise, and fast floating-
point operations on x86 processors. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 71–86, 2016.

[52] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Es-
meir. Browsershield: vulnerability-driven filtering of dynamic html. In OSDI:
USENIX Symposium on Operating Systems Design and Implementation, 2006.

[53] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting and
defending against third-party tracking on the web. In Proceedings of the
9th USENIX Conference on Networked Systems Design and Implementation,
NSDI’12, pages 12–12, Berkeley, CA, USA, 2012. USENIX Association.

[54] Michael Schwarz, Moritz Lipp, and Daniel Gruss. Javascript zero: Real
javascript and zero side-channel attacks. In NDSS, 2018.

[55] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. Browser feature
usage on the modern web. In Proceedings of the 2016 Internet Measurement
Conference, IMC ’16, pages 97–110, New York, NY, USA, 2016. ACM.

[56] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy, David Terei, Alejan-
dro Russo, and David Mazières. Eliminating cache-based timing attacks with
instruction-based scheduling. In European Symposium on Research in Computer
Security, pages 718–735. Springer, 2013.

[57] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is still tick-
ing: Timing attacks in the modern web. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages 1382–
1393, New York, NY, USA, 2015. ACM.

[58] Tom Van Goethem, Mathy Vanhoef, Frank Piessens, and Wouter Joosen. Request
and conquer: Exposing cross-origin resource size. In Proceedings of the 21st
USENIX Conference on Security Symposium, Security, 2016.

[59] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. Fp-
stalker: Tracking browser fingerprint evolutions.

[60] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. FP-
Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies. In
Proceedings of the 27th USENIX Security Symposium, Baltimore, United States,
August 2018.

[61] Weiyi Wu and Bryan Ford. Deterministically deterring timing attacks in deter-
land. In Conference on Timely Results in Operating Systems (TRIOS), 2015.

[62] Zhihao Yao, Saeed Mirzamohammadi, Ardalan Amiri Sani, and Mathias Payer.
Milkomeda: Safeguarding the mobile gpu interface using webgl security checks.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’18, pages 1455–1469, New York, NY, USA, 2018.
ACM.

[63] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martın Abadi. Host
fingerprinting and tracking on the web: Privacy and security implications. In
Proceedings of NDSS, 2012.

[64] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Homealone: Co-
residency detection in the cloud via side-channel analysis. In Proceedings of
the 2011 IEEE Symposium on Security and Privacy, SP ’11, pages 313–328,
Washington, DC, USA, 2011. IEEE Computer Society.

[65] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm
side channels and their use to extract private keys. In Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS ’12, pages
305–316, New York, NY, USA, 2012. ACM.

Appendix

A Statistics of Collected Fingerprints

In the appendix, we show some statistics about collected
fingerprints using the WebGL tasks provided by the original
Cao et al.’s website. Figure 11 shows the anonymous set for
the collected data, which is broken down into three different
browsers. The size of anonymous set is relatively small—if
we limit it to be three, we include 77% of all the collected
fingerprints. The largest anonymous set is just with about
10 fingerprints. Among all the browsers, Safari is the most
fingerprintable as compared with others: It is probably also
because the number of Safari users is relatively small.

=1 2~3 >3

Overall

Chrome

Firefox

Safari

 0 0.2 0.4 0.6 0.8 1

Figure 11: Anonymous Set for Collected Fingerprints

1660 28th USENIX Security Symposium USENIX Association

https://medium.com/adventures-in-consumer-technology/how-to-start-building-your-own-webgl-based-vr-app-cdaf47b8132a
https://medium.com/adventures-in-consumer-technology/how-to-start-building-your-own-webgl-based-vr-app-cdaf47b8132a

Site Isolation: Process Separation for Web Sites within the Browser

Charles Reis
Google

creis@google.com

Alexander Moshchuk
Google

alexmos@google.com

Nasko Oskov
Google

nasko@google.com

Abstract
Current production web browsers are multi-process but place
different web sites in the same renderer process, which is
not sufficient to mitigate threats present on the web today.
With the prevalence of private user data stored on web sites,
the risk posed by compromised renderer processes, and the
advent of transient execution attacks like Spectre and Melt-
down that can leak data via microarchitectural state, it is no
longer safe to render documents from different web sites in
the same process. In this paper, we describe our successful
deployment of the Site Isolation architecture to all desktop
users of Google Chrome as a mitigation for process-wide
attacks. Site Isolation locks each renderer process to doc-
uments from a single site and filters certain cross-site data
from each process. We overcame performance and compat-
ibility challenges to adapt a production browser to this new
architecture. We find that this architecture offers the best
path to protection against compromised renderer processes
and same-process transient execution attacks, despite current
limitations. Our performance results indicate it is practical
to deploy this level of isolation while sufficiently preserving
compatibility with existing web content. Finally, we discuss
future directions and how the current limitations of Site Iso-
lation might be addressed.

1 Introduction
Ten years ago, web browsers went through a major architec-
ture shift to adapt to changes in their workload. Web con-
tent had become much more active and complex, and mono-
lithic browser implementations were not effective against the
security threats of the time. Many browsers shifted to a
multi-process architecture that renders untrusted web con-
tent within one or more low-privilege sandboxed processes,
mitigating attacks that aimed to install malware by exploiting
a rendering engine vulnerability [43, 51, 70, 76].

Given recent changes in the security landscape, that multi-
process architecture no longer provides sufficient safety for
visiting untrustworthy web content, because it does not pro-
vide similar mitigation for attacks between different web
sites. Browsers load documents from multiple sites within
the same renderer process, so many new types of attacks
target rendering engines to access cross-site data [5, 10, 11,
33, 53]. This is increasingly common now that the most ex-

ploitable targets of older browsers are disappearing from the
web (e.g., Java Applets [64], Flash [1], NPAPI plugins [55]).

As others have argued, it is clear that we need stronger iso-
lation between security principals in the browser [23, 33, 53,
62, 63, 68], just as operating systems offer stronger isolation
between their own principals. We achieve this in a produc-
tion setting using Site Isolation in Google Chrome, introduc-
ing OS process boundaries between web site principals.

While Site Isolation was originally envisioned to mitigate
exploits of bugs in the renderer process, the recent discov-
ery of transient execution attacks [8] like Spectre [34] and
Meltdown [36] raised its urgency. These attacks challenge
a fundamental assumption made by prior web browser ar-
chitectures: that software-based isolation can keep sensi-
tive data protected within an operating system process, de-
spite running untrustworthy code within that process. Tran-
sient execution attacks have been demonstrated to work from
JavaScript code [25, 34, 37], violating the web security
model without requiring any bugs in the browser. We show
that our long-term investment in Site Isolation also provides
a necessary mitigation for these unforeseen attacks, though
it is not sufficient: complementary OS and hardware miti-
gations for such attacks are also required to prevent leaks of
information from other processes or the OS kernel.

To deploy Site Isolation to users, we needed to over-
come numerous performance and compatibility challenges
not addressed by prior research prototypes [23, 62, 63, 68].
Locking each sandboxed renderer process to a single site
greatly increases the number of processes; we present pro-
cess consolidation optimizations that keep memory overhead
low while preserving responsiveness. We reduce overhead
and latency by consolidating painting and input surfaces of
contiguous same-site frames, along with parallelizing pro-
cess creation with network requests and carefully managing
a spare process. Supporting the entirety of the web pre-
sented additional compatibility challenges. Full support for
out-of-process iframes requires proxy objects and replicated
state in frame trees, as well as updates to a vast number of
browser features. Finally, a privileged process must filter
sensitive cross-site data without breaking existing cross-site
JavaScript files and other subresources. We show that such
filtering requires a new type of confirmation sniffing and can
protect not just HTML but also JSON and XML, beyond
prior discussions of content filtering [23, 63, 68].

USENIX Association 28th USENIX Security Symposium 1661

mailto:creis@google.com
mailto:alexmos@google.com
mailto:nasko@google.com

With these changes, the privileged browser process can
keep most cross-site sensitive data out of a malicious docu-
ment’s renderer process, making it inconsequential for a web
attacker to access and exfiltrate data from its address space.
While there are a set of limitations with its current imple-
mentation, we argue that Site Isolation offers the best path to
mitigating the threats posed by compromised renderer pro-
cesses and transient execution attacks.

In this paper, Section 2 introduces a new browser threat
model covering renderer exploit attackers and memory dis-
closure attackers, and it discusses the current limitations
of Site Isolation’s protection. Section 3 presents the chal-
lenges we overcame in fundamentally re-architecting a pro-
duction browser to adopt Site Isolation, beyond prior re-
search browsers. Section 4 describes our implementation,
consisting of almost 450k lines of code, along with critical
optimizations that made it feasible to deploy to all desktop
and laptop users of Chrome. Section 5 evaluates its effective-
ness against compromised renderers as well as Spectre and
Meltdown attacks. We also evaluate its practicality, finding
that it incurs a total memory overhead of 9-13% in practice
and increases page load latency by less than 2.25%, while
sufficiently preserving compatibility with actual web con-
tent. Given the severity of the new threats, Google Chrome
has enabled Site Isolation by default. Section 6 looks at the
implications for the web’s future and potential ways to ad-
dress Site Isolation’s current limitations. We compare to re-
lated work in Section 7 and conclude in Section 8.

Overall, we answer several new research questions:

• Which parts of a web browser’s security model can be
aligned with OS-level isolation mechanisms, while pre-
serving compatibility with the web?

• What optimizations are needed to make process-level
isolation of web sites feasible to deploy, and what is the
resulting performance overhead for real users?

• How well does process-level isolation of web sites up-
grade existing security practices to protect against com-
promised renderer processes?

• How effectively does process-level isolation of web
sites mitigate Spectre and Meltdown attacks, and where
are additional mitigations needed?

2 Threat Model
We assume that a web attacker can lure a user into visit-
ing a web site under the attacker’s control. Multi-process
browsers have traditionally focused on stopping web attack-
ers from compromising a user’s computer, by rendering un-
trusted web content in sandboxed renderer processes, coor-
dinated by a higher-privilege browser process [51]. How-
ever, current browsers allow attackers to load victim sites
into the same renderer process using iframes or popups, so
the browser must trust security checks in the renderer process
to keep sites isolated from each other.

In this paper, we move to a stronger threat model empha-
sizing two different types of web attackers that each aim to
steal data across web site boundaries. First, we consider a
renderer exploit attacker who can discover and exploit vul-
nerabilities to bypass security checks or even achieve ar-
bitrary code execution in the renderer process. This at-
tacker can disclose any data in the renderer process’s ad-
dress space, as well as lie to the privileged browser process.
For example, they might forge an IPC message to retrieve
sensitive data associated with another web site (e.g., cook-
ies, stored passwords). These attacks imply that the privi-
leged browser process must validate access to all sensitive re-
sources without trusting the renderer process. Prior work has
shown that such attacks can be achieved by exploiting bugs
in the browser’s implementation of the Same-Origin Policy
(SOP) [54] (known as universal cross-site scripting bugs, or
UXSS), with memory corruption, or with techniques such as
data-only attacks [5, 10, 11, 33, 53, 63, 68].

Second, we consider a memory disclosure attacker who
cannot run arbitrary code or lie to the browser process, but
who can disclose arbitrary data within a renderer process’s
address space, even when the SOP would disallow it. This
can be achieved using transient execution attacks [8] like
Spectre [34] and Meltdown [36]. Researchers have shown
specifically that JavaScript code can manipulate microar-
chitectural state to leak data from within the renderer pro-
cess [25, 34, 37].1 While less powerful than renderer exploit
attackers, memory disclosure attackers are not dependent on
any bugs in web browser code. Indeed, some transient exe-
cution attacks rely on properties of the hardware that are un-
likely to change, because speculation and other transient mi-
croarchitectural behaviors offer significant performance ben-
efits. Because browser vendors cannot simply fix bugs to
mitigate cases of these attacks, memory disclosure attackers
pose a more persistent threat to the web security model. It
is thus important to reason about their capabilities separately
and mitigate these attacks architecturally.

2.1 Scope
We are concerned with isolating sensitive web site data from
execution contexts for other web sites within the browser.
Execution contexts include both documents (in any frame)
and workers, each of which is associated with a site princi-
pal [52] and runs in a renderer process. We aim to protect
many types of content and state from the attackers described
above, including the HTML contents of documents, JSON
or XML data files they retrieve, state they keep within the
browser (e.g., cookies, storage, saved passwords), and per-
missions they have been granted (e.g., geolocation, camera).

Site Isolation is also able to strengthen some existing se-
curity practices for web application code, such as upgrad-
ing clickjacking [30] protections to be robust against com-

1In some cases, transient execution attacks may access information
across process or user/kernel boundaries. This is outside our threat model.

1662 28th USENIX Security Symposium USENIX Association

promised renderers, as discussed in Section 5.1. Not all
web security defenses are in scope, such as mitigations for
XSS [46].

2.2 Limitations
For both types of attackers we consider, Site Isolation aims
to protect as much site data as possible, while preserving
compatibility. Because we isolate sites (i.e., scheme plus
registry-controlled domain name [52]) rather than origins
(i.e., scheme-host-port tuples [54]) per Section 3.1, cross-
origin attacks within a site are not mitigated. We hope to
allow some origins to opt into origin-level isolation, as dis-
cussed in Section 6.3.

Cross-site subresources (e.g., JavaScript, CSS, images,
media) are not protected, since the web allows documents
to include them within an execution context. JavaScript and
CSS files were already somewhat exposed to web attackers
(e.g., via XSSI attacks that could infer their contents [26]);
the new threat model re-emphasizes not to store secrets in
such files. In contrast, cross-site images and media were suf-
ficiently opaque to documents before, suggesting a need to
better protect at least some such files in the future.

The content filtering we describe in Section 3.5 is also
a best-effort approach to protect HTML, XML, and JSON
files, applying only when it can confirm the responses match
the reported content type. This confirmation is necessary to
preserve compatibility (e.g., with JavaScript files mislabeled
as HTML). Across all content types, we expect this filtering
will protect most sensitive data today, but there are opportu-
nities to greatly improve this protection with headers or web
platform changes [21, 71, 73], as discussed in Section 6.1.

Finally, we rely on protection domains provided by the
operating system. In particular, we assume that the OS’s
process isolation boundary can be trusted and consider cross-
process and kernel attacks out of scope for this paper, though
we discuss them further in Sections 5.2 and 6.2.

3 Site Isolation Browser Architecture
The Site Isolation browser architecture treats each web site
as a separate security principal requiring a dedicated renderer
process. Prior production browsers used rendering engines
that predated the security threats in Section 2 and were ar-
chitecturally incompatible with putting cross-site iframes in
a different process. Prior research browsers proposed similar
isolation but did not preserve enough compatibility to han-
dle the full web. In this section, we present the challenges
we overcame to make the Site Isolation architecture compat-
ible with the web in its entirety.

3.1 Site Principals
Most prior multi-process browsers, including Chrome, Edge,
Safari, and Firefox, did not assign site-specific security
principals to web renderer processes, and hence they did
not enforce isolation boundaries between different sites at

the process level. We advance this model in Chrome
by partitioning web content into finer-grained principals
that correspond to web sites. We adopt the site defi-
nition from [52] rather than origins as proposed in re-
search browsers [23, 62, 63, 68]. For example, an origin
https://bar.foo.example.com:8000 corresponds to a site
https://example.com. This preserves compatibility with up
to 13.4% of page loads that change their origin at runtime by
assigning to document.domain [12]. Site principals ensure
that a document’s security principal remains constant after
document.domain modifications.

For each navigation in any frame, the browser process
computes the site from the document’s URL, determining
its security principal. This is straightforward for HTTP(S)
URLs, though some web platform features require special
treatment, as we discuss in Appendix A (e.g., about:blank
can inherit its origin and site).

3.2 Dedicated Processes
Site Isolation requires that renderer processes can be dedi-
cated to documents, workers, and sensitive data from only
a single site principal. In this paper, we consider only the
case where all web renderer processes are locked to a single
site. It would also be possible for the browser to isolate only
some sites and leave other sites in shared renderer processes.
In such a model, it is still important to limit a dedicated ren-
derer process to documents and data from its own site, but it
is also necessary to prevent a shared process from retrieving
data from one of the isolated sites. When isolating all sites,
requests for site data can be evaluated solely on the process’s
site principal and not also a list of which sites are isolated.

The browser’s own components and features must be also
partitioned in a way that does not leak cross-site data. For
example, the network stack cannot run within the renderer
process, to protect HttpOnly cookies and so that filtering de-
cisions on cross-site data can be made before the bytes from
the network enter the renderer process. Similarly, browser
features must not proactively leak sensitive data (e.g., the
user’s stored credit card numbers with autofill) to untrust-
worthy renderer processes, at least until the user indicates
such data should be provided to a site [49]. These additional
constraints on browser architecture may increase the amount
of logic and state in more privileged processes. This does not
necessarily increase the attack surface of the trusted browser
process if these components (e.g., network stack) can move
to separate sandboxed processes, as in prior microkernel-like
browser architectures [23, 62].

3.3 Cross-Process Navigations
When a document in a frame navigates from site A to site
B, the browser process must replace the renderer process for
site A with one for site B. This requires maintaining state in
the browser process, such as session history for the tab, re-
lated window references such as openers or parent frames,

USENIX Association 28th USENIX Security Symposium 1663

and tab-level session storage [74]. Due to web-visible events
such as beforeunload and unload and the fact that a nav-
igation request might complete without creating a new doc-
ument (e.g., a download or an HTTP “204 No Content” re-
sponse), the browser process must coordinate with both old
and new renderer processes to switch at the appropriate mo-
ment: after beforeunload, after the network response has
proven to be a new document, and at the point that the new
process has started rendering the new page. Note that cross-
site server redirects may even require selecting a different
renderer process before the switch occurs.

Session history is particularly challenging. Each stop in
the back/forward history can contain information about mul-
tiple cross-site documents in various frames in the page, and
it can include sensitive data for each document, such as the
contents of partially-filled forms. To meet the security goals
of Site Isolation, this site-specific session history state can
only be sent to renderer processes locked to the correspond-
ing site. Thus, the browser process must coordinate session
history loads at a frame granularity, tracking which data to
send to each process as cross-site frames are encountered in
the page being loaded.

3.4 Out-of-process iframes
The largest and most disruptive change for Site Isolation is
the requirement to load cross-site iframes in a different ren-
derer process than their embedding page. Most widely-used
browser rendering engines were designed and built before
browsers became multi-process. The shift to multi-process
browsers typically required some changes to these existing
engines in order to support multiple instances of them. How-
ever, many core assumptions remained intact, such as the
ability to traverse all frames in a page for tasks like paint-
ing, messaging, and various browser features (e.g., find-in-
page). Supporting out-of-process iframes is a far more intru-
sive change that requires revisiting such assumptions across
the entire browser. Meanwhile, prior research prototypes
that proposed this separation [23, 63, 68] did not address
many of the challenges in practice, such as how to ensure the
iframe’s document knows its position in the frame tree. This
section describes the challenges we overcame to make out-
of-process iframes functional and compatible with the web
platform.

Frame Tree. To support out-of-process iframes, multi-
process browser architectures must change their general ab-
straction level from page (containing a tree of frames) to doc-
ument (in a single frame). The browser process must track
which document, and thus principal, is present in each frame
of a page, so that it can create an appropriate renderer process
and restrict its access accordingly. The cross-process naviga-
tions described in Section 3.3 must be supported at each level
of the frame tree to allow iframes to navigate between sites.

Each process must also keep a local representation of doc-
uments that are currently rendered in a different process,

a.com/1

a.com/2 b.com/3

a.com/4

a.com/1

DocumentA

(b) Browser Process

ProxyB

a.com/2 b.com/3

DocumentB ProxyA

a.com/4

WidgetA

WidgetB

Document

Document Proxy

Document

widget

widget

(c) Renderer Process A

Document

widget

(d) Renderer Process B

Proxy

Proxy

Proxy

(a) Web Page

DocumentA

ProxyB

DocumentA ProxyB WidgetA

Figure 1: An example of out-of-process iframes. To render the
web page shown in (a), the browser process (b) coordinates two
renderer processes, shown in (c) and (d).

which we call proxies. Proxies offer cross-process support
for the small set of cross-origin APIs that are permitted by
the web platform, as described in [52]. These APIs may
be accessed on a frame’s window object and are used for
traversing the frame hierarchy, messaging, focusing or nav-
igating other frames, and closing previously opened win-
dows. Traversing the frame hierarchy must be done syn-
chronously within the process using proxies, but interactions
between documents can be handled asynchronously by rout-
ing messages. Note that all same-site frames within a frame
tree (or other reachable pages) must share a process, allow-
ing them to synchronously script each other.

An example of a page including out-of-process iframes
is shown in Figure 1 (a), containing three documents from
a.com and one from b.com, and thus requiring two separate
renderer processes. Figure 1 (b) shows the browser process’s
frame tree, with representations of each document annotated
by which site’s process they belong to, along with a set of
proxy objects for each frame (one for each process which
might reference the frame). Figure 1 (c-d) shows the corre-
sponding frame trees within the two renderer processes, with
proxy objects for any documents rendered in a different pro-
cess. Note that the actual document and proxy objects live in
renderer processes; the corresponding browser-side objects
are stubs that track state and route IPC messages between
the browser and renderer processes.

For example, suppose the document in a.com/2 in-
vokes window.parent.frames["b"].postMessage("msg",

"b.com"). Renderer Process A can traverse its local frame
tree to find the parent frame and then its child frame named
“b”, which is a proxy. The renderer process will send the
message to the corresponding ProxyA object for b.com/3 in

1664 28th USENIX Security Symposium USENIX Association

the browser process. The browser process passes it to the
current DocumentB object in this frame, which sends the
message to the corresponding Document object in Renderer
Process B. Similar message routing can support other
cross-origin APIs, such as focus, navigation, or closing
windows.

State Replication. The renderer process may need syn-
chronous access to some types of state about a frame in an-
other process, such as the frame’s current name (to find a
frame by name, as in the example above) or iframe sandbox
flags. As this state changes, the browser process broadcasts
it to all proxies for a frame across affected processes. Note
that this state should never include sensitive site-specific data
(e.g., full URLs, which may have sensitive URL parameters),
only what is necessary for the web platform implementation.

Painting and Input. To preserve the Site Isolation security
model, the rendered appearance of each document cannot
leak to other cross-site renderer processes. Otherwise, an
attacker may be able to scrape sensitive information from
the visible appearance of frames in other processes. Instead,
each renderer process is responsible for the layout and paint
operations within each of its frames. These must be sent to
a separate process for compositing at the granularity of sur-
faces, to form the combined appearance of the page. The
compositing process must support many types of transforms
that are possible via CSS, without leaking surface data to a
cross-site renderer process.

Often, many frames on a page come from the same site,
and separate surfaces for each frame may be unnecessary.
To reduce compositing overhead, we use a widget abstrac-
tion to combine contiguous same-site frames into the same
surface. Figure 1 shows how a.com/1 and a.com/2 can be
rendered in the same widget and surface without requiring
compositing. b.com/3 requires its own widget in Renderer
Process B. Since a.com/4 is not contiguous with the other
two a.com frames and its layout may depend on properties
assigned to it by b.com/3 (e.g., CSS filters), it has a separate
widget within Renderer Process A, and its surface must be
composited within b.com/3’s surface.

Widgets are also used for input event routing, such as
mouse clicks and touch interactions. In most cases, the
compositing metadata makes it possible for the browser pro-
cess to perform sufficient hit testing to route input events
to the correct renderer process. In some cases, though,
web platform features such as CSS transforms or CSS
pointer-events and opacity properties may make this
difficult. Currently, the browser process uses slow path
hit testing over out-of-process iframes, i.e., asking a parent
frame’s process to hit-test a specific point to determine which
frame should receive the event, without revealing any further
details about the event itself. This is only used for mouse
and touch events; keyboard events are reliably delivered to
the renderer process that currently has focus.

Note that images and media from other sites can be in-
cluded in a document. The Site Isolation architecture does
not try to exclude these from the renderer process, for mul-
tiple reasons. First, moving cross-origin image handling out
of the renderer process and preventing renderers from read-
ing these surfaces would require a great deal of complex-
ity in practice. Second, this would substantially increase the
number of surfaces needed for compositing. This decision is
consistent with other research browsers [23, 62, 63], includ-
ing Gazelle’s implementation [68]. Thus, we leave cross-site
images and media in the renderer process and rely on servers
to prevent unwanted inclusion, as discussed in Section 6.1.

Affected Features. In a broad sense, almost all browser fea-
tures that interact with the frame tree must be updated to
support out-of-process iframes. These features could tradi-
tionally assume that all frames of a page were in one process,
so a feature like find-in-page could traverse each frame in the
tree in the renderer process, looking for a string match. With
out-of-process iframes, the browser process must coordinate
the find-in-page feature, collecting partial results from each
frame across multiple renderer processes. Additionally, the
feature must be careful to avoid leaking information to ren-
derer processes (e.g., whether there was a match in a cross-
site sibling frame), and it must be robust to renderer pro-
cesses that crash or become unresponsive.

These updates are required for many features that com-
bine data across frames or that perform tasks that span multi-
ple frames: supporting screen readers for accessibility, com-
positing PDFs for printing, traversing elements across frame
boundaries for focus tracking, representations of the full
page in developer tools, and many others.2

3.5 Cross-Origin Read Blocking
Loading each site’s documents in dedicated renderer pro-
cesses is not sufficient to protect site data: there are many le-
gitimate ways for web documents to request cross-site URLs
within their own execution context, such as JavaScript li-
braries, CSS files, images, and media. However, it is im-
portant not to give a renderer process access to cross-site
URLs containing sensitive data, such as HTML documents
or JSON files. Otherwise, a document could access cross-
site data by requesting such a URL from a <script>,
<style>, or tag. The response may nominally fail
within the requested context (e.g., an HTML file would pro-
duce syntax errors in a <script> tag), but the data would
be present in the renderer process, where a compromised ren-
derer or a transient execution attack could leak it.

Unfortunately, it is non-trivial to perfectly distinguish
which cross-site URLs must be allowed into a renderer pro-
cess and which must be blocked. It is possible to categorize
content types into those needed for subresources and those
that are not (as in Gazelle [68]), but content types of re-

2A list of these features is included in Appendix B.

USENIX Association 28th USENIX Security Symposium 1665

sponses are often inaccurate in practice. For example, many
actual JavaScript libraries have content types of text/html
rather than application/javascript in practice. Chang-
ing the browser to block these libraries from cross-site doc-
uments would break compatibility with many existing sites.

It may be desirable to require sites to correct their content
types or proactively label any resources that need protec-
tion (e.g., with a new Cross-Origin-Resource-Policy

header [21]), but such approaches would leave many exist-
ing resources unprotected until developers update their sites.

Until such shifts in web site behavior occur, browsers with
Site Isolation can use a best effort approach to protect as
many sensitive resources as possible, while preserving com-
patibility with existing cross-site subresources. We intro-
duce and standardize an approach called Cross-Origin Read
Blocking (CORB) [17, 20], which prevents a renderer process
from receiving a cross-site response when it has a confirmed
content type likely to contain sensitive information. CORB
focuses on content types that, when used properly, cannot
be used in a subresource context. Subresource contexts in-
clude scripts, CSS, media, fetches, and other ways to include
or retrieve data within a document, but exclude iframes and
plugins (which can be loaded in separate processes). CORB
filters the following content types:

• HTML, which is used for creating new documents with
data that should be inaccessible to other sites.

• JSON, which is used for conveying data to a document.

• XML, which is also often used for conveying data to a
document. An exception is made for SVG, which is an
XML data type permitted within tags.

Since many responses have incorrect content types, CORB
requires additional confirmation before blocking the re-
sponse from the renderer process. In other contexts, web
browsers perform MIME-type sniffing when a content type
is missing, looking at a prefix of the response to guess its
type [4]. OP2 and IBOS use such sniffing to confirm a re-
sponse is HTML [23, 63], but this will block many legiti-
mate JavaScript files, such as those that begin with HTML
comments (i.e., “<!--”). In contrast, CORB relies on a new
type of confirmation sniffing that looks at a prefix of the re-
sponse to confirm that it matches the claimed content type
and not a subresource [17]. For example, a response la-
beled as text/html starting with “<!doctype” would be
blocked, but one starting with JavaScript code would not.
(CORB attempts to scan past HTML comments when sniff-
ing.) This is a default-allow policy that attempts to protect
resources where possible but prioritizes compatibility with
existing sites. For example, CORB allows responses through
when they are polyglots which could be either HTML or
JavaScript, such as:

<!--/*--><html><body><script type="text/javascript"><!--//*/
var x = "This is both valid HTML and valid JavaScript.";
//--></script></body></html>

CORB skips confirmation sniffing in the presence of
the existing X-Content-Type-Options: nosniff response
header, which disables the browser’s existing MIME sniff-
ing logic. When this header is present, responses with incor-
rect content types are already not allowed within subresource
contexts, making it safe for CORB to block them. Thus, we
recommend that web developers use this header for CORB-
eligible URLs that contain sensitive data, to ensure protec-
tion without relying on confirmation sniffing.

If a cross-site response with one of the above confirmed
content types arrives, and if it is not allowed via CORS head-
ers [18], then CORB’s logic in the network component pre-
vents the response data from reaching the renderer process.

3.6 Enforcements
The above architecture changes are sufficient to mitigate
memory disclosure attackers as described in Section 2. For
example, transient execution attacks might leak data from
any cross-site documents present in the same process, but
such attacks cannot send forged messages to the browser pro-
cess to gain access to additional data. However, a renderer
exploit attacker that compromises the renderer process or
otherwise exploits a logic bug may indeed lie to the browser
process, claiming to be a different site to access its data.

The browser process must be robust to such attacks by
tracking which renderer processes are locked to which sites,
and thus restricting which data the process may access. Re-
quests for site data, actions that require permissions, access
to saved passwords, and attempts to fetch data can all be re-
stricted based on the site lock of the renderer process. In nor-
mal execution, a renderer process has its own checks to avoid
making requests for such data, so illegal requests can be in-
terpreted by the browser process as a sign that the renderer
process is compromised or malfunctioning and can thus be
terminated before additional harm is caused. The browser
process can record such events in the system log, to facilitate
audits and forensics within enterprises.

These enforcements may take various forms. If the ren-
derer process sends a message labeled with an origin, the
browser process must enforce that the origin is part of the
process’s site. Alternatively, communication channels can be
scoped to a site, such that a renderer process has no means to
express a request for data from another site.

The CORB filtering policy in Section 3.5 also requires en-
forcements against compromised renderers, so that a ren-
derer exploit attacker cannot forge a request’s initiator to
bypass CORB. One challenge is that extensions had been
allowed to request data from extension-specified sites us-
ing scripts injected into web documents. Because these re-
quests come from a potentially compromised renderer pro-
cess, CORB cannot distinguish them from an attacker’s re-
quests. This weakens CORB by allowing responses from any
site that an active extension can access, which in many cases
is all sites. To avoid having extensions weaken the security

1666 28th USENIX Security Symposium USENIX Association

of Site Isolation, we are changing the extension system to
require these requests to be issued by an extension process
instead of by extension scripts in a web renderer process,
and we are helping extension developers migrate to the new
approach [9].

4 Implementation
With the Chrome team, we implemented the Site Isolation
architecture in Chrome’s C++ codebase. This was a signifi-
cant 5-year effort that spanned approximately 4,000 commits
from around 350 contributors (with the top 20 contributors
responsible for 72% of the commits), changing or adding ap-
proximately 450,000 lines of code in 9,000 files.

We needed to re-architect a widely deployed browser
without adversely affecting users, both during development
and when deploying the new architecture. This section de-
scribes the steps we took to minimize the impact on perfor-
mance and functionality, while Section 5 evaluates that im-
pact in practice.

4.1 Optimizations
Fundamentally, Site Isolation requires the browser to use a
larger number of OS processes. For example, a web page
with four cross-site iframes, all on different sites, will re-
quire five renderer processes versus one in the old architec-
ture. The overhead of additional processes presents a fea-
sibility risk, due to extra memory cost and process creation
latency during navigation. To address these challenges, we
have implemented several optimizations that help make Site
Isolation practical.

4.1.1 Process Consolidation

Our security model dictates that a renderer process may
never contain documents hosted at different sites, but a pro-
cess may still be shared across separate instances of doc-
uments from the same site. Fortunately, many users keep
several tabs open, which presents an opportunity for process
sharing across those tabs.

To reduce the process count, we have implemented a pro-
cess consolidation policy that looks for an existing same-site
process when creating an out-of-process iframe. For exam-
ple, when a document embeds an example.com iframe and
another browser tab already contains another example.com

frame (either an iframe or a main frame), we consolidate
them in the same process. This policy is a trade-off that
avoids process overhead by reducing performance isolation
and failure containment: a slow frame could slow down or
crash other same-site frames in the process. We found that
this trade-off is worthwhile for iframes, which tend to require
fewer resources than main frames.

The same policy could also be applied to main frames, but
doing this unconditionally is not desirable: when resource-
heavy documents from a site are loaded in several tabs, using
a single process for all of them leads to bloated processes

that perform poorly. Instead, we use process consolidation
for same-site main frames only after crossing a soft process
limit that approximates memory pressure. When the number
of processes is below this limit, main frames in independent
tabs don’t share processes; when above the limit, all new
frames start reusing same-site processes when possible. Our
threshold is calculated based on performance characteristics
of a given machine. Note that Site Isolation cannot support
a hard process limit, because the number of sites present in
the browser may always exceed it.

4.1.2 Avoiding Non-essential Isolation

Some web content is assigned to an opaque origin [29] with-
out crossing a site boundary, such as iframes with data:

URLs or sandboxed same-site iframes. These could utilize
separate processes, but we choose to keep these cases in-
process as an optimization, focusing our attention on true
cross-site content.

Other design decisions that help reduce process count in-
clude isolating at a site granularity rather than origin, keep-
ing cross-site images in-process, and allowing extensions to
share processes with each other. Section 6.3 discusses im-
proving isolation in these cases in the future.

4.1.3 Reducing the Cost of Process Swaps

Section 3.3 implies that many more navigations must create
a new process. We mask some of this latency by (1) starting
the process in parallel with the network request, and (2) run-
ning the old document’s unload handler in the background
after the new document is created in the new process.

However, in some cases (e.g., back/forward navigations)
documents may load very quickly from the cache. These
cases can be significantly slowed by adding process creation
latency. To address this, we maintain a warmed-up spare
renderer process, which may be used immediately by a new
navigation to any site. When a spare process is locked to a
site and used, a new one is created in the background, similar
to process pre-creation optimizations in OP2 [23]. To control
memory overhead, we avoid spare processes on low memory
devices, when the system experiences memory pressure, or
when the browser goes over the soft process limit.

4.2 Deployment
Shipping Site Isolation in a production browser is challeng-
ing. It is a highly disruptive architecture change affecting
significant portions of the browser, so enabling it all at once
would pose a high risk of functional regressions. Hence, we
deployed incrementally along two axes: isolation targets and
users. Before launching full Site Isolation, we shipped two
milestones to enable process isolation for selective targets:

1. Extensions. As the first use of out-of-process iframes
from Section 3.4, we isolated web iframes embedded
inside extension pages, and vice versa [50]. This pro-
vided a meaningful security improvement, keeping ma-

USENIX Association 28th USENIX Security Symposium 1667

licious web content out of higher-privileged extension
processes. It also affected only about 1% of all page
loads, reducing the risk of widespread functional re-
gressions.

2. Selective isolation. We created an enterprise policy al-
lowing administrators to optionally isolate a set of man-
ually selected high-value web sites [6].

Deploying these preliminary isolation modes provided a
valuable source of bug reports and performance data (e.g., at
least 24 early issues reported from enterprise policy users).
These modes also show how some form of isolation may be
deployed in environments where full Site Isolation may still
be prohibitively expensive, such as on mobile devices.

We also deployed each of these milestones incrementally
to users. All feature work was developed behind an opt-
in flag, and we recruited early adopters who provided bug
reports. For each milestone (including full Site Isolation),
we also took advantage of Chrome’s A/B testing mecha-
nism [13], initially deploying to only a certain percentage
of users to monitor performance and stability data.

5 Evaluation
To evaluate the effectiveness and practicality of deploying
Site Isolation, we answer the following questions: (1) How
well does Site Isolation upgrade existing security practices to
mitigate renderer exploit attacks? (2) How effectively does
Site Isolation mitigate transient execution attacks, compared
to other web browser mitigation strategies? (3) What is the
performance impact of Site Isolation in practice? (4) How
well does Site Isolation preserve compatibility with exist-
ing web content? Our findings have allowed us to success-
fully deploy Site Isolation to all desktop and laptop users of
Google Chrome.

5.1 Mitigating Renderer Vulnerabilities
We have added numerous enforcements to Chrome (version
76) to prevent a compromised renderer from accessing cross-
site data.3 This section evaluates these enforcements from
the perspective of web developers. Specifically, we ask
which existing web security practices have been transpar-
ently upgraded to defend against renderer exploit attackers,
who have complete control over the renderer process.

New Protections. The following web developer practices
were vulnerable to renderer exploit attackers before Site Iso-
lation but are now robust.

• Authentication. HttpOnly cookies are not delivered to
renderer processes, and document.cookie is restricted
based on a process’s site. Similarly, the password man-
ager only reveals passwords based on a process’s site.

• Cross-origin messaging. Both postMessage and
BroadcastChannel messages are only delivered to

3A list of these enforcements is included in Appendix C.

processes if their sites match the target origin, ensur-
ing that confidential data in the message does not leak
to other compromised renderers. Source origins are also
verified so that incoming messages are trustworthy.

• Anti-clickjacking. X-Frame-Options is enforced in
the browser process, and CSP frame-ancestors is en-
forced in the embedded frame’s renderer process. In
both cases, a compromised renderer process cannot by-
pass these policies to embed a cross-site document.

• Keeping data confidential. Many sites use HTML,
XML, and JSON to transfer sensitive data. This data
is now protected from cross-site renderer processes if it
is filtered by CORB (e.g., has a nosniff header or can
be sniffed), per Section 3.5.

• Storage and permissions. Data stored on the client
(e.g., in localStorage) and permissions granted to a
site (e.g., microphone access) are not available to pro-
cesses for other sites.

Potential Protections. The Site Isolation architecture
should be capable of upgrading the following practices to
mitigate compromised renderers as well, but our current im-
plementation does not yet fully cover them.

• Anti-CSRF. CSRF [3] tokens remain protected from
other renderers if they are only present in responses pro-
tected by CORB. Origin headers and SameSite cook-
ies can also be used for CSRF defenses, but our enforce-
ment implementation is still in progress.

• Embedding untrusted documents. The behavioral
restrictions of iframe sandbox (e.g., creating new
windows or dialogs, navigating other frames) and
Feature-Policy are currently enforced in the ren-
derer process, allowing compromised renderers to by-
pass them. If sandboxed iframes are given separate pro-
cesses, many of these restrictions could happen in the
browser process.

Renderer Vulnerability Analysis. We also analyzed secu-
rity bugs reported for Chrome for 2014-2018 (extending the
analysis by Moroz et al [41]) and found 94 UXSS-like bugs
that allow an attacker to bypass the SOP and access contents
of cross-origin documents. Site Isolation mitigates such bugs
by construction, subject to the limitations discussed in Sec-
tion 2.2. Similar analyses in prior studies have also shown
that isolating web principals in different processes prevents
a significant number of cross-origin bypasses [19, 63, 68].

In the six months after Site Isolation was deployed in mid-
2018, Chrome has received only 2 SOP bypass bug reports,
also mitigated by Site Isolation (compared to 9 reports in
the prior six months). The team continues to welcome and
fix such reports, since they still have value on mobile devices
where Site Isolation is not yet deployed. We also believe that
going forward, attention will shift to other classes of bugs
seen during this post-launch period, including:

1668 28th USENIX Security Symposium USENIX Association

• Bypassing Site Isolation. These bugs exploit flaws in
the process assignment or other browser process logic
to force cross-site documents to share a process, or to
bypass the enforcement logic. For example, we fixed
a reported bug where incorrect handling of blob URLs
created in opaque origins allowed an attacker to share a
victim site’s renderer process.

• Targeting non-isolated data. For example, 14 bugs al-
lowed an attacker to steal cross-site images or media,
which are not isolated in our architecture, e.g., by ex-
ploiting memory corruption bugs or via timing attacks.

• Cross-process attacks. For example, 5 bugs are side
channel attacks that rely on timing events that work
even across processes, such as a frame’s onload event,
to reveal information about the frame.

In general, we find that Site Isolation significantly im-
proves robustness to renderer exploit attackers, protecting
users’ web accounts and lowering the severity of renderer
vulnerabilities.

5.2 Mitigating Transient Execution Attacks
Transient execution attacks represent memory disclosure at-
tackers from Section 2, where lying to the browser process
is not possible. Thus, Site Isolation mitigations here depend
on process isolation and CORB, but not the enforcements in
Section 3.6. This section compares the various web browser
mitigation strategies for such attacks, evaluating their effec-
tiveness against known variants.

Strategy Comparison. Web browser vendors have pursued
three types of strategies to mitigate transient execution at-
tacks on the web, with varying strengths and weaknesses.

First, most browsers attempted to reduce the availabil-
ity of precise timers that could be used for attacks [14,
39, 48, 67]. This focuses on the most commonly under-
stood exploitation approach for Spectre and Meltdown at-
tacks: a Flush+Reload cache timing attack [75]. This strat-
egy assumes the timing attack will be difficult to perform
without precise timers. Most major browsers reduced the
granularity of APIs like performance.now to 20 microsec-
onds or even 1 millisecond, introduced jitter to timer results,
and even removed implicit sources of precise time, such as
SharedArrayBuffers [59]. This strategy applies whether
the attack targets data inside the process or outside of it, but
it has a number of weaknesses that limit its effectiveness:

• It is likely incomplete: there are a wide variety of ways
to build a precise timer [35, 58], making it difficult to
enumerate and adjust all sources of time in the platform.

• It is possible to amplify the cache timing result to
the point of being effective even with coarse-grained
timers [25, 37, 58].

• Coarsening timers hurts web developers who have a le-
gitimate need for precise time to build powerful web

applications. Disabling SharedArrayBuffers was a
particularly unfortunate consequence of this strategy,
since it disrupted web applications that relied on them
(e.g., AutoCAD).

• Cache timing attacks are only one of several ways to
leak information from transient execution, so this ap-
proach may be insufficient for preventing data leaks [8].

As a result, we do not view coarsening timers or disabling
SharedArrayBuffers as an effective strategy for mitigat-
ing transient execution attacks.

Second, browser vendors pursued modifications to the
JavaScript compiler and runtime to prevent JavaScript code
from accessing victim data speculatively [37, 48, 65]. This
involved array index masking and pointer poisoning to limit
out of bounds access, lfence instructions as barriers to
speculation, and similar approaches. The motivation for
this strategy is to disrupt all “speculation gadgets” to avoid
leaking data within and across process boundaries. Un-
fortunately, there are an increasingly large number of vari-
ants of transient execution attacks [8], and it is difficult for
a compiler to prevent all the ways an attack might be ex-
pressed [37]. This is especially true for variants like Spectre-
STL (also known as Variant 4), where store-to-load forward-
ing can be used to leak data [28], or Meltdown-RW which
targets in-process data accessed after a CPU exception [8].
Additionally, some of these mitigations have large perfor-
mance overheads on certain workloads (up to 15%) [37, 65],
which risk slowing down legitimate applications. The dif-
ficulty to maintain a complete defense combined with the
performance cost led Chrome’s JavaScript team to conclude
that this approach was ultimately impractical [37, 49].

Site Isolation offers a third strategy. Rather than targeting
the cache timing attack or disrupting speculation, Site Isola-
tion assumes that transient execution attacks may be possible
within a given OS process and instead attempts to move data
worth stealing outside of the attacker’s address space, much
like kernel defenses against Meltdown-US [15, 24].

Variant Mitigation. Canella et al [8] present a systematic
evaluation of transient execution attacks and defenses, which
we use to evaluate Site Isolation. Spectre attacks rely on
branch mispredictions or data dependencies, while Melt-
down attacks rely on transient execution after a CPU excep-
tion [8]. Table 1 shows how both types of attacks are able to
target data inside or outside the attacker’s process, and thus
both Spectre and Meltdown are relevant to consider when
mitigating memory disclosure attacks.

Site Isolation mitigates same-address-space attacks by
avoiding putting vulnerable data in the same renderer pro-
cess as a malicious principal. This targets the most practical
variants of transient execution attacks, for which an attacker
has a large degree of control over the behavior of the process
(relative to attacks that target another process). Site Isola-
tion does not depend on the absence of precise timers for

USENIX Association 28th USENIX Security Symposium 1669

Inside Process Outside Process

Attack Si
te

Is
ol

at
io

n

Ti
m

er
s

C
om

pi
le

r

Si
te

Is
ol

at
io

n

Ti
m

er
s

C
om

pi
le

r

Spectre-PHT G# # G#
Spectre-BTB G# # G#
Spectre-RSB G# G# # G# G#
Spectre-STL G# # - - -

Meltdown-US - - - # G# #
Meltdown-P - - - # G# #
Meltdown-GP - - - # G# #
Meltdown-NM - - - # G# #
Meltdown-RW* G# # - - -
Meltdown-PK* G# # - - -
Meltdown-BR* G# # - - -

Table 1: Web browser mitigations for Spectre and Meltdown
attacks, for targets inside and outside the attacker’s process.
Symbols show if an attack is mitigated (), partially mitigated (G#),
not mitigated (#), or not applicable (-). Site Isolation mitigates all
applicable same-process attacks, and it depends on other mitiga-
tions for cross-process attacks.
* Only affects browsers that use these hardware features.

mitigating same-process attacks, and it can mitigate attacks
like Spectre-STL that are difficult or costly for compilers to
prevent [37]. For Meltdown attacks that target same-process
data (e.g., Meltdown-RW, which can transiently overwrite
read-only data), Site Isolation applies as well. It is less clear
whether Meltdown-PK and Meltdown-BR [8] are relevant
in the context of the browser, but Site Isolation would miti-
gate them if browsers used protection keys [38] or hardware-
based array bounds checks, respectively.

Site Isolation does not attempt to mitigate attacks target-
ing data in other processes or the kernel, such as the “Out-
side Process” variants in Table 1 and Microarchitectural Data
Sampling (MDS) attacks [40, 57, 66]. Site Isolation can
and must be combined with hardware and OS mitigations
for such attacks to prevent web attackers from leaking data
across process boundaries or from the kernel. For example,
PTI is a widely used mitigation for Meltdown-US, eliminat-
ing kernel memory from the address space of each user pro-
cess [15, 24]. Similarly, microcode updates and avoiding
sibling Hyper-Threads for untrustworthy code may be useful
for mitigating MDS attacks [40, 57, 66].

Ultimately, cross-process and user/kernel boundaries must
fundamentally be preserved by the OS and hardware and
cannot be left to applications to enforce. Within a process,
however, the OS and hardware have much less visibility into
where isolation is needed. Thus, applications that run code
from untrustworthy principals (e.g., browsers) must align
their architectures with OS-enforced abstractions to isolate

these principals. As a result, we have chosen Site Isolation
as the most effective mitigation strategy for Chrome. When
it is enabled, Chrome re-enables SharedArrayBuffer and
other precise timers and removes JavaScript compiler mitiga-
tions, to restore powerful functionality to the web and regain
lost performance.

5.3 Performance
Enabling Site Isolation can affect the browser’s performance,
so we evaluate its effect on memory overhead, latency, and
CPU usage in the wild and in microbenchmarks. We find that
the new architecture has low enough overhead to be practical
to deploy.

5.3.1 Observed Workload

We first focus on measuring performance in the field, be-
cause this more accurately reflects real user workloads (e.g.,
many tabs, long-tail sites) than microbenchmarks do. The
data in this section was collected using pseudonymous met-
ric reporting over a two-week period starting October 1,
2018, from desktop and laptop users of Chrome (version 69)
on Windows who have this reporting enabled. We compare
results from equal-sized test and control groups within the
general user population. (These metrics are enabled by de-
fault, but users can opt out during installation or later in set-
tings. Our experimental design and data collection were re-
viewed under Google’s processes.)

Process Count. With Site Isolation, the browser process
must create more renderer processes to keep sites isolated
from each other: at least as many as unique sites open at a
time. Using periodic samples, we found that users had 6.0
unique sites open across the entire browser at the 50th per-
centile of the distribution, and 41.9 unique sites at the 99th
percentile. This only provides a lower bound for the num-
ber of renderer processes; each instance of a site might live
in a separate process. If this were the case, our metrics give
an upper bound estimate of 79.7 processes at the 99th per-
centile. However, thanks to the process sharing heuristics
described in Section 4.1.1, far fewer processes were used in
practice, as shown in Figure 2. At the 50th percentile, the
number of processes increased 43.5% from 4.4 without Site
Isolation to 6.2 with Site Isolation. At the 99th percentile, the
process count increased 50.6% from 35.0 to 52.7 processes.
This indicates that many more processes are needed for Site
Isolation, but also that the process consolidation heuristics
greatly reduce the count at the upper percentiles.

Memory Overhead. On its own, the 50% increase in ren-
derer process count is significant, but this does not necessar-
ily translate to an equivalent increase in memory overhead or
performance slowdowns. Site Isolation is effectively divid-
ing an existing workload across more processes, so each ren-
derer process is correspondingly smaller and shorter lived.
In reported metrics, we found that private memory use per
renderer process decreased 51.5% (87.2 MB to 42.3 MB) at

1670 28th USENIX Security Symposium USENIX Association

25th 50th
75th

95th

99th

Percentile

Re
nd

er
er

 p
ro

ce
ss

 c
ou

nt

0

20

40

60

80

25 50 75 100

No Site Isolation Lower bound (# unique sites) Site Isolation
Upper bound (no process sharing)

Figure 2: Renderer process count. This graph shows the number
of renderer processes before and after Site Isolation, as well as an
estimated lower and upper bound on process count, controlled by
the amount of process sharing for instances of the same site. Site
Isolation finds a middle ground between no process sharing and
having at most one process per site.

353 610
1118

2857

5777

398 685
1241

3131

6274

Percentile

To
ta

l m
em

or
y

 (M
B)

0

2000

4000

6000

8000

25th 50th 75th 95th 99th

No Site Isolation With Site Isolation

Figure 3: Total browser memory usage across all processes.
Overall, Site Isolation has a 9-13% overhead.

the 50th percentile and 28.6% (from 714.2 MB to 509.7 MB)
at the 99th percentile. Renderer process lifetime decreased
4.3% at the 50th percentile and 55.5% at the 99th percentile.

This leaves an open question about the overhead of each
process relative to the workload of the process, which de-
termines the total memory use. Figure 3 compares the total
private memory use across all processes (including browser
process, renderer processes, and other types of utility pro-
cesses) with and without Site Isolation. In practice, we see
that total memory use increased only 12.6% at the 25th per-
centile, and only 8.6% at the 99th percentile. This is signif-
icantly lower than the 50% increase in process count might
suggest, indicating that the large number of extra processes
has a relatively small impact on the total memory use of the
browser. We confirmed that this is not due to a change in
workload size: there were no statistically significant differ-
ences in page load count, and we saw at most a 1.5% de-
crease in the number of open tabs (at the 99th percentile).

Due to the severity of transient execution attacks and the
drawbacks of other mitigation strategies in Section 5.2, the
Chrome team was willing to accept 9-13% memory overhead
for the security benefits of enabling Site Isolation.

Latency. Site Isolation also impacts latency in multiple
ways, from the time it takes to load a page to the responsive-
ness of input events. On one hand, more navigations need
to create new processes, which can incur latency due to pro-
cess startup time. There may also be greater contention for
IPC messages and input event routing, leading to some de-
lays. On the other hand, there is a significant amount of new
parallelism possible now that the workload for a given page
can be split across multiple independent threads of execu-
tion. We use observed metrics from the field to study the
combined impact of these changes in practice.

Site Isolation significantly increased the percentage of
navigations that cross a process boundary, from 5.73% to
56.0%. However, we mask some of the latency of process
creation in Chrome by starting the renderer process in par-
allel with making the network request. Combined with the
increased parallelism of loading cross-site iframes in differ-
ent processes, we see very little change to a key metric for
page load time: the time from navigation start to the first
paint of page content (e.g., text, images, etc) [22]. Across
all navigations, we observe this to increase at most 2.25%
at the 25th percentile (457 ms to 467 ms) and 1.58% (14.6
s to 14.8 s) at the 99th percentile. This metric also bene-
fits from the spare process optimization described in Sec-
tion 4.1.3, which avoids the process startup latency on many
navigations. Without the spare process, this “First Contentful
Paint” time increases 5.1% at the 25th percentile and 2.4%
at the 99th percentile.

If we look closer at various types of navigations, the most
significantly affected category is back/forward navigations,
which frequently load pages from the cache without waiting
for the network. This eliminates most of the benefit of paral-
lelizing process startup with the network request. Here, we
see time to First Contentful Paint increase 28.3% (177 ms to
227 ms) at the 25th percentile and 6.8% (4637 ms to 4952
ms) at the 99th percentile. Again, this is better than with-
out using a spare process, in which case we see increases of
40.7% and 12.5% at these percentiles, respectively.

We also looked at the latency impact on input events. The
current implementation uses slow path hit testing for mouse
and touch events over out-of-process iframes, which results
in small increases to input event latency. For key presses,
there are no statistically significant differences at the 50th or
99th percentiles, and only a 1.0% latency increase at the 75th
percentile (43.6 ms to 44.0 ms). For mouse scroll update
events, latency increased 1.3% (21.8 ms to 22.1 ms) at the
50th percentile and 8.6% (228.8 ms to 248.6 ms) at the 99th
percentile. For touch scroll update events, latency increased
2.6% (18.4 ms to 18.9 ms) and 10.7% (134.0 ms to 148.3 ms)
at these percentiles. We expect to improve these by updating
hit testing to avoid the slow path in most cases.

CPU Usage. Finally, we study the impact of Site Isolation
on CPU usage. Average CPU usage in the browser pro-
cess increased 8.2% (32.0% to 34.6%) at the 99th percentile,

USENIX Association 28th USENIX Security Symposium 1671

Figure 4: (a) Total browser memory usage and (b) Time to
First Contentful Paint for individual sites. Parentheses denote
the number of renderer processes required to load each site with
Site Isolation. Without Site Isolation, each site requires one ren-
derer process.

due to additional IPC messages and coordination across pro-
cesses. While there were more renderer processes, each ren-
derer’s average CPU usage dropped 33.5% (47.7% to 31.8%)
at the 99th percentile, since the workload was distributed
across more processes.

Overall, we found that enabling Site Isolation had a much
smaller performance impact than expected due to the prop-
erties of the workload. Given the importance of mitigating
the attacks in the threat model described in Section 2, the
Chrome team has chosen to keep Site Isolation enabled for
all users on desktop and laptop devices.

5.3.2 Microbenchmarks

We also report microbenchmark results showing the over-
head of Site Isolation on individual web pages when loaded
in a single tab, with nothing else running in the browser.
This setup does not benefit from process consolidation across
multiple tabs as discussed in Section 4.1.1, and hence it is
not representative of the real-world workloads used in the
previous section. However, these measurements establish a
baseline and provide a reproducible reference point for fu-
ture research.

To study a mix of the most popular (likely highly opti-
mized) and slightly less popular sites, we selected the top site
as well as the 50th-ranked site in Alexa categories for news,

sports, games, shopping, and home, as well as google.com as
the top overall URL.4 This set provides pages with a range
of cross-site iframe counts, showing how the browser scales
with more processes per page.

Next, we started Chrome version 69.0.3497.100 with a
clean profile, and we loaded each site in a single tab, both
with and without Site Isolation. We report the median of
five trials for each data point to reduce variability, and we re-
played recorded network data for all runs using WprGo [69].
Our experiments were performed on a Windows 10 desktop
with an Intel Core i7-8700K 3.7 GHz 6-core CPU and 16 GB
RAM. Our data collection script is available online [45].

Figure 4 (a) shows the total browser memory use for each
site, sorted by the number of renderer processes (shown in
parentheses) that each site utilizes when loaded with Site
Isolation. As expected, the relative memory overhead gen-
erally increases with the number of processes, peaking at
89% for wowprogress.com with 10 processes. Sites that use
more memory tend to have smaller relative overhead, as their
memory usage outweighs the cost of extra processes. For
example, a heavier amazon.com site has a 5% overhead com-
pared to seatguru.com’s 31%, even though both require five
processes. google.com does not have any cross-site iframes
and requires no extra processes, but it shows a 4% increase in
memory use due to the spare process that we maintain with
Site Isolation, as explained in Section 4.1.3.

The overhead seen in these results is significantly higher
than the 9-13% overhead we reported from real-world user
workloads in the previous section. This underscores the limi-
tations of microbenchmarks: users tend to have multiple tabs
(four at 50th percentile) and a variety of open URLs. In prac-
tice, this helps reduce memory overhead via process consol-
idation, while iframe-heavy sites like wowprogress.com may
represent only a small part of users’ browsing sessions.

Figure 4 (b) shows time to First Contentful Paint [22] for
each site, to gauge impact on page load time. Most paint
times improve with Site Isolation because the spare process
helps mask process startup costs, which play a larger role
than network latency due to the benchmark’s use of recorded
network traffic. The speedups are not correlated with process
counts; Site Isolation offloads some of the work from the
main frame into iframe renderers, which may make the main
frame more responsive regardless of process count.

5.4 Compatibility
Site Isolation strives to avoid web-visible changes. For ex-
ample, we found that CORB blocks less than 1% of re-
sponses, most of which are not observable; if it only relied
on content type and not confirmation sniffing, it would block
20% of responses [17]. Also, since cross-origin frame in-
teractions had been mostly asynchronous prior to our work,
making these interactions cross-process is largely transpar-

4If a site’s main content required logging in, we picked the next highest-
ranked site.

1672 28th USENIX Security Symposium USENIX Association

ent to web pages. During deployment, we closely monitored
bug reports for several months to judge the impact on actual
users and content. We have received around 20 implemen-
tation bugs, most of which are now fixed. We did uncover
some behavior changes, described below. Overall, however,
none of the bug reports warranted turning Site Isolation off,
indicating that our design does not result in major compati-
bility problems when deployed widely.

Asynchronous Full-page Layout. With Site Isolation, full-
page layout is no longer synchronous, since the frames of a
page may be spread across multiple processes. For exam-
ple, if a page changes the size of a frame and then sends
it a postMessage, the receiving frame may not yet know
its new size when receiving the message. We found that this
disrupted behavior for some pages, but since the HTML spec
does not guarantee this behavior and relatively few sites were
affected, we chose not to preserve the old ordering. Instead,
we provided guidance for web developers to fix the few af-
fected pages [7] and are pursuing specification changes to
explicitly note that full-page layout is asynchronous [27].

Partial Failures. Site Isolation can expose new failure
modes to web pages, because out-of-process iframes may
crash or become unresponsive independently from their em-
bedder, after having been loaded. Although this may lead to
unexpected behavior in the page, it happens rarely enough to
avoid being a problem in practice, and for users, losing an
iframe is usually preferable to losing the entire page.

Detecting Site Isolation. A web page should not know
if it is rendered with or without Site Isolation, and we
have avoided introducing APIs for doing so: a browser’s
process model is an implementation detail that developers
should not depend on. We did encounter and fix some
bugs that allowed detection of Site Isolation, such as dif-
fering JavaScript exception behavior for in-process and out-
of-process frames. Fundamentally, though, it is possible to
detect Site Isolation via timing attacks. For example, a cross-
process postMessage will take longer than a same-process
postMessage, due to an extra IPC hop through the browser
process; a web page could perform a timing analysis to de-
tect whether a frame is in a different process. However, such
timing differences are unlikely to affect compatibility, and
we have not received any such reports.

6 Future Directions
Site Isolation protects a great deal of site data against ren-
derer exploit attackers and memory disclosure attackers, but
there is a strong incentive to address the limitations outlined
in Section 2.2.

It is worth noting that web browsers are not alone in fac-
ing a new security landscape. Other software systems that
isolate untrustworthy code may require architecture changes
to avoid leaking data via microarchitectural state. For exam-
ple, SQL queries in databases might pose similar risks [47].

Applications that download and render untrustworthy con-
tent from the web, such as document editors, should likewise
leverage OS abstractions to isolate their own principals [42].

6.1 Protecting More Data
CORB currently only protects HTML, XML, and JSON re-
sponses, and only when the browser can confirm them using
sniffing or headers. There are several options for protect-
ing additional content, from using headers to protect partic-
ular responses, to expanding CORB to cover more types, to
changing how browsers request subresources.

First, web developers can explicitly protect sen-
sitive resources without relying on CORB, using a
Cross-Origin-Resource-Policy response header [21]
or refusing to serve cross-site requests based on the
Sec-Fetch-Site request header [71].

Second, the Chrome team is working to isolate cross-site
PDFs and other types [2, 60]. Developer outreach may also
cut down on mislabeled subresources, eliminating the need
for CORB confirmation sniffing.

Third, recent proposals call for browsers to make cross-
origin subresource requests without credentials by de-
fault [73]. This would prevent almost all sensitive cross-site
data from entering a renderer process, apart from cases of
ambient authority (e.g., intranet URLs which require no cre-
dentials).

These options may close the gaps to ensure essentially all
sensitive web data is protected by Site Isolation.

6.2 Additional Layers of Mitigation
Because Site Isolation uses OS process boundaries as an iso-
lation mechanism, it is straightforward to combine it with
additional OS-level mitigations for attacks. This may in-
clude other sandboxing mechanisms (e.g., treating different
sites as different user accounts) or mitigations for additional
types of transient execution attacks. For example, microcode
updates and OS mitigations (e.g., PTI or disabling Hyper-
Threading) may be needed for cross-process or user/kernel
attacks [15, 24, 40, 57, 66]. These are complementary to
the mitigations Site Isolation offers for same-process attacks,
where the OS and hardware have less visibility.

6.3 Practical Next Steps
Mobile Devices. This paper has described deploying Site
Isolation to users on desktop and laptop devices, but the new
web attackers are important to consider for mobile phone
browsers as well. Site Isolation faces greater challenges on
mobile devices due to fewer device resources (e.g., mem-
ory, CPU cores) and a different workload: there are fewer
renderer processes in the working set due to proactive dis-
carding by the mobile OS, and thus fewer opportunities for
process sharing. We are investigating options for deploying
similar mitigations on mobile browsers, such as isolating a
subset of sites that need the protection the most.

USENIX Association 28th USENIX Security Symposium 1673

Isolation in Other Browsers. There are opportunities for
other browsers to provide a limited form of process isola-
tion without the significant implementation requirements of
out-of-process iframes. For example, sites might adopt head-
ers like Cross-Origin-Opener-Policy to opt into a mode
that can place a top-level document in a new process by dis-
rupting some cross-window scripting [44].

Origin Isolation. Within browsers with Site Isolation, fur-
ther isolation may be practical by selectively moving from a
site granularity to a finer origin granularity. Too many web
sites rely on modifying document.domain to deploy ori-
gin isolation by default, but browsers may allow sites to opt
out of this feature and thus become eligible for origin isola-
tion [72]. Making this optional may reduce the impact on the
process count. Similarly, we plan to evaluate the overhead
impact of isolating opaque origins, especially to improve se-
curity for sandboxed same-site iframes.

Performance. Finally, there are performance opportunities
to explore to reduce overhead and take advantage of the new
architecture. More aggressive renderer discarding may be
possible with less cross-site sharing of renderer processes.
Isolating cross-origin iframes from some web applications
may also provide performance benefits by parallelizing the
workload, moving slower frames to a different process than
the primary user interface to keep the latter more responsive.

7 Related Work
Prior to this work, all major production browsers, including
IE/Edge [76], Chrome [52], Safari [70], and Firefox [43],
had multi-process architectures that rendered untrustworthy
web content in sandboxed renderer processes, but they did
not enforce process isolation between web security princi-
pals, and they lacked architectural support for rendering em-
bedded content such as iframes out-of-process. Site Isolation
makes Chrome the first widely-adopted browser to add such
support. Other research demonstrated a need for an archi-
tecture like Site Isolation by showing how existing browsers
are vulnerable to cross-site data leaks, local file system ac-
cess via sync from cloud services, and transient execution
attacks [25, 33, 53].

Several research browsers have proposed isolating web
principals in different OS processes, including Gazelle [68],
OP and its successor OP2 [23, 62], and IBOS [63]. Com-
pared to these proposals, Site Isolation is the first to sup-
port the web platform in its entirety, with practical per-
formance and compatibility. First, these proposals all de-
fine principals as origins, but this cannot support pages that
change document.domain [12]. Other research browsers
isolate web applications with principals that are similarly
incompatible: Tahoma [16] uses custom manifests, while
SubOS [31, 32] uses full URLs that include path in addi-
tion to origin. To preserve compatibility, we adopt the site
principal proposed in [52]; this also helps reduce process

count compared to origins. Second, we describe new opti-
mizations that make Site Isolation practical, and we evaluate
our architecture on a real workload of Chrome users. This
shows that Site Isolation introduces almost no additional
page load latency and only 9-13% memory overhead, lower
than expected from microbenchmark evaluations. Third,
we comprehensively evaluate the implications of new tran-
sient execution attacks [8] for browser security. Fourth, we
show that protecting cross-origin network responses requires
new forms of confirmation sniffing to preserve compatibility;
content types and even traditional MIME sniffing are insuf-
ficient. Finally, while Gazelle, OP2, and IBOS have out-
of-process iframes, our work overcomes many challenges to
support these in a production browser, such as supporting the
full set of cross-process JavaScript interactions, challenges
with painting and input event routing, and updating affected
features (e.g., find-in-page, printing).

The OP and OP2 browsers [23, 62] also use OS processes
to isolate other browser components, including the network
stack, storage, and display. Such additional process separa-
tion is orthogonal to Site Isolation and offers complementary
benefits, such as making the browser more modular, reduc-
ing the size of the browser process, and keeping crashes in
one component isolated from the rest of the browser.

Dong et al [19] argued that practical browser designs will
require a trade-off between finer-grained isolation and per-
formance. Our experience echoes this finding, and we in-
deed make trade-offs to reduce memory overhead, such as
isolating sites rather than origins. Dong et al’s evaluation
relied on sequentially browsing top Alexa sites; we addition-
ally collect measurements from browsing workloads in the
wild, providing a more realistic performance evaluation. For
example, this factors in process sharing across multiple tabs,
which significantly reduces overhead in practice.

Other researchers propose disabling risky JavaScript fea-
tures unless user-defined policies indicate they are safe for a
desired site [56, 61]. These approaches aim to disrupt a wide
variety of attacks (including microarchitectural), but they im-
pose barriers to adoption of powerful web features, and they
rely on users or third parties to know when features are safe
to enable. Site Isolation’s scope is more limited by compati-
bility, but it does not require actions from users or disabling
powerful features.

8 Conclusion
The web browser threat model has changed significantly.
Web sites face greater threats of data leaks within the
browser due to compromised renderer processes and tran-
sient execution attacks. Site Isolation offers the best path to
mitigating these attacks in the browser, protecting a signif-
icant amount of site data today with future opportunities to
expand the coverage. We have shown that Site Isolation is
practical to deploy in a production desktop web browser, in-
curring a 9-13% total memory overhead on real-world work-

1674 28th USENIX Security Symposium USENIX Association

loads. We recommend that web developers and browser ven-
dors continue down this path, protecting additional sensi-
tive resources, adding more mitigations, and pursuing sim-
ilar isolation in environments like mobile browsers.

9 Acknowledgements
We would like to thank Łukasz Anforowicz, Jann Horn, Ken
Buchanan, Chris Palmer, Adrienne Porter Felt, Franziska
Roesner, Tadayoshi Kohno, Antoine Labour, Artur Janc, our
shepherd Adam Doupé, and the anonymous reviewers for
their input on this paper. We also thank the many Chrome
team members who made this work possible.

References
[1] Adobe. Flash & The Future of Interactive Content. https:

//theblog.adobe.com/adobe-flash-update/, 2017.

[2] L. Anforowicz. More CORB-protected MIME types -
adding protected types one-by-one. https://github.com/
whatwg/fetch/issues/860, Jan. 2019.

[3] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for
Cross-Site Request Forgery. In CCS, 2008.

[4] A. Barth, D. Song, and J. Caballero. Secure Content Sniffing
for Web Browsers, or How to Stop Papers from Reviewing
Themselves. In IEEE Symposium on Security and Privacy,
2009.

[5] A. Barth, J. Weinberger, and D. Song. Cross-origin JavaScript
Capability Leaks: Detection, Exploitation, and Defense. In
USENIX Security, 2009.

[6] M. Blumberg. Security enhancements and more for enter-
prise Chrome browser customers. https://www.blog.

google/products/chrome-enterprise/security-

enhancements-and-more-enterprise-chrome-

browser-customers/, Dec. 2017.

[7] M. Bynens. Site Isolation for web developers.
https://developers.google.com/web/updates/

2018/07/site-isolation, July 2018.

[8] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss. A Sys-
tematic Evaluation of Transient Execution Attacks and De-
fenses. In USENIX Security, 2019.

[9] Changes to Cross-Origin Requests in Chrome Extension
Content Scripts. https://www.chromium.org/Home/

chromium-security/extension-content-script-

fetches, Jan. 2019.

[10] S. Chen, H. Chen, and M. Caballero. Residue Objects: A
Challenge to Web Browser Security. In EuroSys, 2010.

[11] S. Chen, D. Ross, and Y.-M. Wang. An Analysis of Browser
Domain-Isolation Bugs and A Light-Weight Transparent De-
fense Mechanism. In CCS, 2007.

[12] Chrome Platform Status: DocumentSetDomain.
https://www.chromestatus.com/metrics/feature/

popularity#DocumentSetDomain, Dec. 2018.

[13] Chromium Blog: Changes to the Field Trials infrastruc-
ture. https://blog.chromium.org/2012/05/changes-

to-field-trials-infrastructure.html, May 2012.

[14] Chromium Security: Mitigating Side-Channel At-
tacks. https://www.chromium.org/Home/chromium-

security/ssca, Jan. 2018.

[15] J. Corbet. The current state of kernel page-table isolation.
https://lwn.net/Articles/741878/, Dec. 2017.

[16] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy.
A Safety-Oriented Platform for Web Applications. In IEEE
Symposium on Security and Privacy, 2006.

[17] Cross-Origin Read Blocking (CORB). https:

//chromium.googlesource.com/chromium/src/+/

master/services/network/cross_origin_read_

blocking_explainer.md, Mar. 2018.

[18] Cross-Origin Resource Sharing (CORS). https://

developer.mozilla.org/en-US/docs/Web/HTTP/CORS,
2019.

[19] X. Dong, H. Hu, P. Saxena, and Z. Liang. A Quantitative
Evaluation of Privilege Separation in Web Browser Designs.
In ESORICS, 2013.

[20] Fetch Standard: CORB. https://fetch.spec.whatwg.

org/#corb, May 2018.

[21] Fetch Standard: Cross-Origin-Resource-Policy header.
https://fetch.spec.whatwg.org/#cross-origin-

resource-policy-header, Jan. 2019.

[22] First Contentful Paint. https://developers.

google.com/web/tools/lighthouse/audits/first-

contentful-paint, 2019.

[23] C. Grier, S. Tang, and S. T. King. Designing and Implement-
ing the OP and OP2 Web Browsers. TWEB, 5:11, May 2011.

[24] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard. KASLR is Dead: Long Live KASLR. In ESSoS,
2017.

[25] N. Hadad and J. Afek. Overcoming (some) Spectre browser
mitigations. https://alephsecurity.com/2018/06/26/
spectre-browser-query-cache/, June 2018.

[26] V. Hailperin. Cross-Site Script Inclusion. https://www.

scip.ch/en/?labs.20160414, Apr. 2016.

[27] C. Harrelson. Adjust event loop processing model to al-
low asynchronous layout of frames. https://github.com/
whatwg/html/issues/3727, May 2018.

[28] J. Horn. Speculative Execution, Variant 4: Specula-
tive Store Bypass. https://bugs.chromium.org/p/

project-zero/issues/detail?id=1528, 2018.

[29] HTML Living Standard: opaque origin. https://html.

spec.whatwg.org/multipage/origin.html#concept-

origin-opaque, Jan. 2019.

[30] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and
C. Jackson. Clickjacking: Attacks and Defenses. In USENIX
Security, 2012.

[31] S. Ioannidis and S. M. Bellovin. Building a secure web
browser. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, 2001.

[32] S. Ioannidis, S. M. Bellovin, and J. M. Smith. Sub-operating
systems: a new approach to application security. In Proceed-

USENIX Association 28th USENIX Security Symposium 1675

https://theblog.adobe.com/adobe-flash-update/
https://theblog.adobe.com/adobe-flash-update/
https://github.com/whatwg/fetch/issues/860
https://github.com/whatwg/fetch/issues/860
https://www.blog.google/products/chrome-enterprise/security-enhancements-and-more-enterprise-chrome-browser-customers/
https://www.blog.google/products/chrome-enterprise/security-enhancements-and-more-enterprise-chrome-browser-customers/
https://www.blog.google/products/chrome-enterprise/security-enhancements-and-more-enterprise-chrome-browser-customers/
https://www.blog.google/products/chrome-enterprise/security-enhancements-and-more-enterprise-chrome-browser-customers/
https://developers.google.com/web/updates/2018/07/site-isolation
https://developers.google.com/web/updates/2018/07/site-isolation
https://www.chromium.org/Home/chromium-security/extension-content-script-fetches
https://www.chromium.org/Home/chromium-security/extension-content-script-fetches
https://www.chromium.org/Home/chromium-security/extension-content-script-fetches
https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://www.chromestatus.com/metrics/feature/popularity#DocumentSetDomain
https://blog.chromium.org/2012/05/changes-to-field-trials-infrastructure.html
https://blog.chromium.org/2012/05/changes-to-field-trials-infrastructure.html
https://www.chromium.org/Home/chromium-security/ssca
https://www.chromium.org/Home/chromium-security/ssca
https://lwn.net/Articles/741878/
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://fetch.spec.whatwg.org/#corb
https://fetch.spec.whatwg.org/#corb
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint
https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint
https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://www.scip.ch/en/?labs.20160414
https://www.scip.ch/en/?labs.20160414
https://github.com/whatwg/html/issues/3727
https://github.com/whatwg/html/issues/3727
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-opaque
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-opaque
https://html.spec.whatwg.org/multipage/origin.html#concept-origin-opaque

ings of the 10th SIGOPS European workshop, 2002.

[33] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang.
”The Web/Local” Boundary Is Fuzzy: A Security Study of
Chrome’s Process-based Sandboxing. In CCS, 2016.

[34] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre Attacks: Exploiting Speculative Exe-
cution. In IEEE Symposium on Security and Privacy, 2019.

[35] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice, and
S. Mangard. Practical Keystroke Timing Attacks in Sand-
boxed JavaScript. In ESORICS, 2017.

[36] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading Kernel
Memory from User Space. In USENIX Security, 2018.

[37] R. McIlroy, J. Sevcı́k, T. Tebbi, B. L. Titzer, and T. Verwaest.
Spectre is here to stay: An analysis of side-channels and spec-
ulative execution. CoRR, abs/1902.05178, 2019.

[38] Memory Protection Keys for Userspace. https://www.

kernel.org/doc/Documentation/x86/protection-

keys.txt, Jan. 2019.

[39] Microsoft Edge Team. Mitigating speculative execution
side-channel attacks in Microsoft Edge and Internet Ex-
plorer. https://blogs.windows.com/msedgedev/

2018/01/03/speculative-execution-mitigations-

microsoft-edge-internet-explorer/, Jan. 2018.

[40] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. V. Bulck,
D. Genkin, D. Gruss, B. Sunar, F. Piessens, and Y. Yarom.
Fallout: Reading Kernel Writes From User Space. https:

//mdsattacks.com, 2019.

[41] M. Moroz and S. Glazunov. Analysis of UXSS exploits and
mitigations in Chromium. Technical report, Google, 2019.
https://ai.google/research/pubs/pub48028.

[42] A. Moshchuk, H. J. Wang, and Y. Liu. Content-based Isola-
tion: Rethinking Isolation Policy Design on Client Systems.
In CCS, 2013.

[43] N. Nguyen. The Best Firefox Ever. https:

//blog.mozilla.org/blog/2017/06/13/faster-

better-firefox/, 2017.

[44] R. Niwa. Restricting cross-origin WindowProxy ac-
cess (Cross-Origin-Opener-Policy). https://github.com/
whatwg/html/issues/3740, June 2018.

[45] N. Oskov. Site Isolation Benchmark Script. https://

github.com/naskooskov/site-isolation-benchmark,
May 2019.

[46] OWASP. XSS (Cross Site Scripting) Prevention Cheat Sheet.
https://github.com/OWASP/CheatSheetSeries/

blob/master/cheatsheets/Cross_Site_Scripting_

Prevention_Cheat_Sheet.md, Feb. 2019.

[47] C. Palmer. Isolating Application-Defined Principals. https:
//noncombatant.org/application-principals/, July
2018.

[48] F. Pizlo. What Spectre and Meltdown Mean For We-
bKit. https://webkit.org/blog/8048/what-spectre-
and-meltdown-mean-for-webkit/, Jan. 2018.

[49] Post-Spectre Threat Model Re-Think. https://chromium.
googlesource.com/chromium/src/+/master/docs/

security/side-channel-threat-model.md, May 2018.

[50] C. Reis. Improving extension security with out-of-
process iframes. https://blog.chromium.org/2017/05/
improving-extension-security-with-out.html, May
2017.

[51] C. Reis, A. Barth, and C. Pizano. Browser Security: Lessons
from Google Chrome. Commun. ACM, 52(8):45–49, Aug.
2009.

[52] C. Reis and S. D. Gribble. Isolating Web Programs in Modern
Browser Architectures. In EuroSys, 2009.

[53] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow, and
M. Polychronakis. Revisiting Browser Security in the Mod-
ern Era: New Data-Only Attacks and Defenses. In IEEE Eu-
ropean Symposium on Security and Privacy, 2017.

[54] J. Ruderman. The Same Origin Policy. https:

//developer.mozilla.org/en-US/docs/Web/

Security/Same-origin_policy, 2019.

[55] J. Schuh. The Final Countdown for NPAPI.
https://blog.chromium.org/2014/11/the-final-

countdown-for-npapi.html, 2014.

[56] M. Schwarz, M. Lipp, and D. Gruss. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks. In NDSS, 2018.

[57] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. https://zombieloadattack.

com, 2019.

[58] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard. Fantastic
Timers and Where to Find Them: High-Resolution Microar-
chitectural Attacks in JavaScript. In Financial Cryptography
and Data Security, Jan 2017.

[59] SharedArrayBuffer. https://developer.mozilla.org/

en-US/docs/Web/JavaScript/Reference/Global_

Objects/SharedArrayBuffer, 2019.

[60] Site Isolate PDFium. https://crbug.com/809614, Jan.
2019.

[61] P. Snyder, C. Taylor, and C. Kanich. Most Websites Don’t
Need to Vibrate: A Cost-Benefit Approach to Improving
Browser Security. In CCS, 2017.

[62] S. Tang, S. T. King, and C. Grier. Secure Web Browsing with
the OP Web Browser. In IEEE Symposium on Security and
Privacy, 2008.

[63] S. Tang, H. Mai, and S. T. King. Trust and Protection in the
Illinois Browser Operating System. In OSDI, 2010.

[64] D. Topic. Moving to a Plugin-Free Web. https:

//blogs.oracle.com/java-platform-group/moving-

to-a-plugin-free-web, Jan. 2016.

[65] Untrusted code mitigations. https://v8.dev/docs/

untrusted-code-mitigations, Jan. 2018.

[66] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida. RIDL:
Rogue In-flight Data Load. In IEEE Symposium on Security
and Privacy, 2019.

1676 28th USENIX Security Symposium USENIX Association

https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://www.kernel.org/doc/Documentation/x86/protection-keys.txt
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://blogs.windows.com/msedgedev/2018/01/03/speculative-execution-mitigations-microsoft-edge-internet-explorer/
https://mdsattacks.com
https://mdsattacks.com
https://ai.google/research/pubs/pub48028
https://blog.mozilla.org/blog/2017/06/13/faster-better-firefox/
https://blog.mozilla.org/blog/2017/06/13/faster-better-firefox/
https://blog.mozilla.org/blog/2017/06/13/faster-better-firefox/
https://github.com/whatwg/html/issues/3740
https://github.com/whatwg/html/issues/3740
https://github.com/naskooskov/site-isolation-benchmark
https://github.com/naskooskov/site-isolation-benchmark
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://noncombatant.org/application-principals/
https://noncombatant.org/application-principals/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md
https://chromium.googlesource.com/chromium/src/+/master/docs/security/side-channel-threat-model.md
https://blog.chromium.org/2017/05/improving-extension-security-with-out.html
https://blog.chromium.org/2017/05/improving-extension-security-with-out.html
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html
https://blog.chromium.org/2014/11/the-final-countdown-for-npapi.html
https://zombieloadattack.com
https://zombieloadattack.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://crbug.com/809614
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
https://blogs.oracle.com/java-platform-group/moving-to-a-plugin-free-web
https://v8.dev/docs/untrusted-code-mitigations
https://v8.dev/docs/untrusted-code-mitigations

[67] L. Wagner. Mitigations landing for new class of timing attack.
https://blog.mozilla.org/security/2018/01/03/

mitigations-landing-new-class-timing-attack/,
Jan. 2018.

[68] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury,
and H. Venter. The Multi-Principal OS Construction of the
Gazelle Web Browser. In USENIX Security, 2009.

[69] Web Page Replay. https://github.com/catapult-

project/catapult/blob/master/web_page_replay_

go/README.md, Sept. 2017.

[70] WebKit2. https://trac.webkit.org/wiki/WebKit2,
July 2011.

[71] M. West. Fetch Metadata Request Headers. https://

mikewest.github.io/sec-metadata, 2018.

[72] M. West. Proposal: Control over ‘document.domain‘.
https://github.com/w3c/webappsec-feature-

policy/issues/241, Nov. 2018.

[73] M. West. Incrementally Better Cookies. https:

//mikewest.github.io/cookie-incrementalism/

draft-west-cookie-incrementalism.html, May 2019.

[74] Window.sessionStorage. https://developer.mozilla.

org/en-US/docs/Web/API/Window/sessionStorage,
2019.

[75] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Res-
olution, Low Noise, L3 Cache Side-Channel Attack. In
USENIX Security, 2014.

[76] A. Zeigler. IE8 and Loosely-Coupled IE (LCIE). https:

//blogs.msdn.microsoft.com/ie/2008/03/11/ie8-

and-loosely-coupled-ie-lcie/, 2008.

A Determining Site Principals
This appendix provides additional details on how we define
principals used in Site Isolation. Figure 5 compares principal
definitions in monolithic browsers, multi-process browsers
that isolate coarser-grained groups of principals, Site Isola-
tion, and Origin Isolation. Origin Isolation, where principals
are defined as origins, offers stronger security guarantees at
the cost of breaking document.domain compatibility and
performance challenges due to a larger number of principals.

As noted in Section 3.1, computing site URL for most
HTTP(S) URLs is straightforward, but some web platform
features require special treatment. For example, frames may
be navigated to about:blank, a special URL which must in-
herit the security origin, and hence the site, from the frame
initiating the navigation. The web also supports nested
URLs such as blob: URLs. These URLs embed an ori-
gin; e.g., blob:http://example.com/UUID addresses an in-
memory blob of data controlled by the http://example.com

origin. In these cases, we extract the inner origin from the
URL and then convert it to a site.

A document may also embed a frame and specify
its HTML content inline rather than from the net-
work, either using the srcdoc attribute (e.g., <iframe

srcdoc="<html>content</html>">) or a data: URL

(e.g., data:text/html,<html>content</html>).
Srcdoc frames inherit their creator’s origin and must stay
in the principal of their embedding document. In contrast,
data: URLs load in an opaque origin [29], which cannot
be accessed from any other origin. Browsers may choose
to load each data: URL in its own separate principal and
process, but our current implementation uses the creator’s
principal (which typically controls the content) to reduce
the number of processes required. Similarly, our current
implementation keeps same-site iframes with the sandbox

attribute, which typically load in an opaque origin, in the
principal of their URL’s site. In practice, sites often use
sandboxed iframes for untrustworthy content that they wish
to isolate from the rest of the site; we discuss opportunities
for finer-grained isolation within a site in Section 6.3.

Non-web Principals. Many browsers can load documents
that do not originate from the web, including content from
local files, extensions, browser UI pages, and error pages.
These forms of content utilize the web platform for render-
ing, so the browser must define principals for them. Each
local URL (e.g., file:///homes/foo/a.html) is typically
treated as its own origin by the browser, so each path could
use a separate principal and process. Our current implemen-
tation treats all local files as part of the same file principal
to reduce the process count, since they ultimately belong to
a local user. We may revise this to isolate each file in the
future, since this group of local files may contain less trust-
worthy pages saved from the web.

We assign content from extensions to a separate shared
principal, and we isolate all browser UI pages, such as set-
tings or download manager, from one another. These pages
require vastly different permissions and privileges, and a
compromise of one page (e.g., a buggy extension) should not
be able to take advantage of permissions granted to a more
powerful page (e.g., a download management page that can
download and open files). We do allow extensions to share
processes with each other to reduce the process count; thus,
Figure 5 (c) shows extensions in a shared principal. How-
ever, extensions never share processes with other types of
pages.

B Features Updated to Support Out-of-
process iframes

This appendix lists a subset of Chrome features that needed
to be updated to support out-of-process iframes, beyond
those discussed in Section 3.4.

• Accessibility (e.g., screen readers).

• Developer tools.

• Drag and drop.

• Extensions (e.g., injecting scripts into frames of a page).

• Find-in-page.

USENIX Association 28th USENIX Security Symposium 1677

https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://github.com/catapult-project/catapult/blob/master/web_page_replay_go/README.md
https://github.com/catapult-project/catapult/blob/master/web_page_replay_go/README.md
https://github.com/catapult-project/catapult/blob/master/web_page_replay_go/README.md
https://trac.webkit.org/wiki/WebKit2
https://mikewest.github.io/sec-metadata
https://mikewest.github.io/sec-metadata
https://github.com/w3c/webappsec-feature-policy/issues/241
https://github.com/w3c/webappsec-feature-policy/issues/241
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.html
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.html
https://mikewest.github.io/cookie-incrementalism/draft-west-cookie-incrementalism.html
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
https://blogs.msdn.microsoft.com/ie/2008/03/11/ie8-and-loosely-coupled-ie-lcie/
https://blogs.msdn.microsoft.com/ie/2008/03/11/ie8-and-loosely-coupled-ie-lcie/
https://blogs.msdn.microsoft.com/ie/2008/03/11/ie8-and-loosely-coupled-ie-lcie/

All content

Web sites,
Internal pages,
Extensions, ...

Web content
http://example.com,
http://foo.blog.com,
http://bar.blog.com,
https://bank.com, ...

User principal
Settings, downloads, ...

http://example.com

https://blog.com
https://foo.blog.com,
https://bar.blog.com

https://bank.com

Settings page

Downloads page

Extensions*
ad blocker,

pw manager, ...
Extensions*

Ad blocker, pw manager

http://example.com

https://foo.blog.com

https://bank.com

https://bar.blog.com

Label = Security Principal

(a) Monolithic (b) Multi-process (c) Site Isolation (d) Origin Isolation

Extension
ad blocker

Extension
pw manager

Settings page

Downloads page

Figure 5: Evolution of security principals in browser architectures. Compared to prior browser architectures, Site Isolation defines
finer-grained principals that correspond to sites. Origin Isolation (d) further refines sites to origins and is the most desirable principal model
in the long term, but backward compatibility and performance challenges currently limit its practicality.
* In pre-Site-Isolation browsers (b), extensions were isolated in higher-privileged processes, but with a caveat: extensions could embed web
URL iframes which would stay in the extension’s process. With Site Isolation (c), process sharing across the web/extension boundary is no
longer possible, though extensions may still share a process with one another.

• Focus (e.g., tracking focused page and frame, focus
traversal when pressing Tab).

• Form autofill.

• Fullscreen.

• IME (Input Method Editor).

• Input gestures.

• JavaScript dialogs.

• Mixed content handling.

• Multiple monitor and device scale factor support.

• Password manager.

• Pointer Lock API.

• Printing.

• Task manager.

• Resource optimizations (e.g., deprioritizing offscreen
content).

• Malware and phishing detection.

• Save page to disk.

• Screen Orientation API.

• Scroll bubbling.

• Session restore.

• Spellcheck.

• Tooltips.

• Unresponsive renderer detector and dialog.

• User gesture tracking.

• View source.

• Visibility APIs.

• Webdriver automation.

• Zoom.

C Compromised Renderer Enforcements
This appendix lists the current places that privileged browser
components in Chrome (version 76) limit the behavior of
a renderer process based on its associated site, to mitigate
compromised renderers.

• Cookie reads and writes (document.cookie,
HttpOnly cookies).

• Cross-Origin Read Blocking implementation [20].

• Cross-Origin-Resource-Policy blocking [21].

• Frame embedding (X-Frame-Options).

• JavaScript code cache.

• Messaging (postMessage, BroadcastChannel).

• Password manager, Credential Management API.

• Storage (localStorage, sessionStorage,
indexedDB, blob storage, Cache API, WebSQL).

• Preventing web page access to file:// URLs.

• Web permissions (e.g., geolocation, camera).

We expect the following enforcements to be possible as
well, with additional implementation effort.

• Address bar origin.

• Custom HTTP headers requiring CORS.

• Feature Policy.

• iframe sandbox behaviors.

• Origin Header and CORS implementation.

• SameSite cookies.

• Sec-Fetch-Site [71].

• User gestures.

1678 28th USENIX Security Symposium USENIX Association

Everyone is Different: Client-side Diversification for Defending Against Extension
Fingerprinting

Erik Trickel?, Oleksii Starov†, Alexandros Kapravelos‡, Nick Nikiforakis†, and Adam Doupé?

?Arizona State University
{etrickel, doupe}@asu.edu

†Stony Brook University
{ostarov, nick}@cs.stonybrook.edu

‡North Carolina State University
akaprav@ncsu.edu

Abstract
Browser fingerprinting refers to the extraction of attributes
from a user’s browser which can be combined into a near-
unique fingerprint. These fingerprints can be used to re-
identify users without requiring the use of cookies or other
stateful identifiers. Browser extensions enhance the client-
side browser experience; however, prior work has shown that
their website modifications are fingerprintable and can be
used to infer sensitive information about users.

In this paper we present CloakX, the first client-side anti-
fingerprinting countermeasure that works without requiring
browser modification or requiring extension developers to
modify their code. CloakX uses client-side diversification to
prevent extension detection using anchorprints (fingerprints
comprised of artifacts directly accessible to any webpage)
and to reduce the accuracy of extension detection using struc-
tureprints (fingerprints built from an extension’s behavior).
Despite the complexity of browser extensions, CloakX au-
tomatically incorporates client-side diversification into the
extensions and maintains equivalent functionality through the
use of static and dynamic program analysis. We evaluate the
efficacy of CloakX on 18,937 extensions using large-scale
automated analysis and in-depth manual testing. We con-
ducted experiments to test the functionality equivalence, the
detectability, and the performance of CloakX-enabled ex-
tensions. Beyond extension detection, we demonstrate that
client-side modification of extensions is a viable method for
the late-stage customization of browser extensions.

1 Introduction

As the web expands and continues being the platform of
choice for delivering applications to users, the browser be-
comes a core component of a user’s interactions with the web.
Modern browsers advertise a wide range of features, from
cloud-syncing and notifications to password management and
peer-to-peer video and audio communications. An important
feature of modern browsers is their ability to be extended

by users, as they see fit, by installing browser extensions.
Namely, Google Chrome and Mozilla Firefox, the browsers
with the largest market share, offer dedicated browser exten-
sion stores that house tens of thousands of extensions. In turn,
these extensions advertise a wide range of additional features,
such as enabling the browser to store passwords with online
password managers, blocking ads, and saving articles for later
reading.

From a security perspective, the ability to load third-party
code into the browser comes at a cost, even though extensions
rely on web technologies such as HTML, JavaScript, and
CSS. Browsers afford extensions significantly more privileges
than they do to a webpage. For example, the same origin
policy restricts webpages from accessing content, such as a
cookie, that does not originate from the same domain. For a
webpage to bypass this restriction, it must implement cross-
origin resource sharing, whereas extensions may not only
access resources of any domain but may also alter the content.
Historically, malicious extensions abuse these privileges to
perform advertising fraud and to steal private and financial
user data [22, 28, 44, 47].

Next to security issues, using browser extensions can also
lead to the loss of privacy. Given that users choose the ex-
tensions to install, it is possible to make inferences about a
user’s thoughts and beliefs based solely on the extensions she
keeps. For example, the detection of a coupon-finding ex-
tension [1] reveals information about the user’s income-level.
Additionally, an extension that hides articles about certain
political figures [20, 21] reveals the user’s political leanings.
Lastly, the use of browser extensions may provide a means
for websites to persistently identify a user over the course of
distinct browser sessions.

Although browser vendors do not offer any programmatic
methods for a webpage’s JavaScript to detect the extensions
currently installed in a user’s browser, researchers recently
discovered side-channel techniques for fingerprinting many
extensions. Sjösten et al. were the first to demonstrate a new
method for detecting browser extensions that exploited the
public nature of web-accessible resources (WARs) [38]. A

USENIX Association 28th USENIX Security Symposium 1679

WAR is any resource (e.g., JavaScript or image) within an
extension that the extension identifies as externally accessi-
ble. As a result, a webpage can determine whether a visitor
uses an extension by requesting one of the exposed WARs.
Sjösten et al. showed that more than 50% of the top 1,000
browser extensions use WARs, which any webpage might use
to detect extensions. Later, Starov and Nikiforakis demon-
strated another technique for fingerprinting extensions that
uses an extension’s modifications to the document-object-
model (DOM) to detect their presence [42]. The authors de-
veloped XHOUND, a system that automatically discovers the
DOM side-effects of extensions. Through their experiments,
they showed that more than 10% of the top 50K extensions
were fingerprintable.

One approach to reducing fingerprintable extensions is
through education and developer training. However, his-
torically, developers — and web developers in particular —
ignore even well-known security concerns. Even after nearly
20 years, the most common website vulnerabilities are still
SQL injection vulnerabilities [43]. Therefore, it is unlikely
that asking extension developers to make their extensions less
fingerprintable will have the desired effect on the ecosystem.

To empower users to protect their own privacy, in this pa-
per we propose CloakX, a client-side countermeasure against
extension detection using fingerprints. Instead of trying to
remove the fingerprintable attributes of extensions, our ap-
proach is to automatically alter, randomize, and add to these
attributes without requiring web browser modifications or
any involvement from the extension’s developer. Through
these modifications, CloakX diversifies the extension’s an-
chorprints, which are fingerprints consisting of items that
can be accessed directly from a webpage, and structureprints,
which are fingerprints that embody the structural changes
an extension makes to a webpage (for more details refer
to Section 2.2). On the surface, client-side diversification
of the fingerprintable attributes seems straightforward; how-
ever, the dynamic nature of JavaScript and the complexity
of the browser extension’s architecture necessitated a com-
plex approach that relies on both static and dynamic program
analysis.

CloakX uses static and dynamic analysis techniques to
automatically diversify the extension’s fingerprint without
modifying the browser, without requiring any changes by the
extension’s author, and without altering the extension’s func-
tionality. To diversify the extension’s anchorprint, CloakX
automatically renames WARs, IDs, and class names and cor-
rects any references to them in the extension’s code, which
severs the link between the published extension and the cur-
rently installed version. In addition to static changes, the
diversification is also performed by our dynamic DOM proxy
(Droxy), which intercepts DOM modifications from the ex-
tension’s code and makes the changes on-the-fly. To diversify
the extension’s structureprint, Droxy also injects random tags,
attributes, and custom attributes into each webpage, which

obfuscates the extension’s structureprint. As a result, an ex-
tension cloaked by CloakX is undetectable by a webpage
using anchorprints and is obfuscated from a webpage using
structureprints; however, from the user’s point of view, the
extension operates the same.

In summary, we make the following contributions:

• We present the design of a novel system that automati-
cally identifies and randomizes browser extension finger-
prints to defend against existing extension fingerprinting
techniques without requiring any browser changes or
any involvement from the extension’s developer.

• We describe the implementation of our design into a
prototype, CloakX, that uses a combination of: (1) static
rewriting of extension JavaScript code and (2) a dynamic
DOM proxy, Droxy, that intercepts and rewrites exten-
sion requests on-the-fly.

• We use a combination of high-fidelity testing (exten-
sive manual testing) and low-fidelity testing (broad auto-
mated testing) on the extensions rewritten by CloakX to
quantify the breakage caused by our system, demonstrat-
ing that client-side modification of extensions introduces
minimal defects.

• We also evaluate the detectability of cloaked extensions
and show that some cloaked extensions are undetectable
while others are more difficult to detect.

2 Background

In this section, we provide insights into the complexity of
modern browser extension frameworks that must be taken into
account when designing a client-side countermeasure against
extension fingerprinting. We start by describing the architec-
ture of browser extensions, focusing on the details that pertain
to their fingerprintability. Next, we discuss fingerprinting and
detecting extensions using anchorprints (fingerprints that are
comprised of items directly accessible from a tracking web-
page’s JavaScript) and structureprints (fingerprints built from
the extension’s behavior). Last, we finish this section by
presenting the threat model that CloakX can defend against.

2.1 Browser Extensions Explained
While modern web browsers provide an ever-increasing range
of functionality to users and webpages, an off-the-shelf
browser cannot possibly provide a sufficiently large set of fea-
tures to satisfy every user’s browsing needs. To improve the
user’s browsing experience, browsers enable users to enhance
their functionality through extensions. Users add extensions
to their browsers to change the browser’s look, to add helpful
toolbars, to block ads, and to enhance popular webpages [5].

Although extensions utilize web technologies such as
HTML, CSS, and JavaScript, they also have access to pow-
erful extension-only APIs that enable them to, among oth-
ers, access and modify cross-origin content and a browser’s

1680 28th USENIX Security Symposium USENIX Association

Figure 1: Extension architecture. A high-level overview of Chrome’s extension architecture with the static content of the extension on
the left side and the multiple execution environments on the right. Background pages can 1) inject content scripts dynamically using the
executeScript() method in Chrome’s extension API and 2) send and receive messages from the content scripts.

client-side storage. However, before an extension can ac-
cess broader privileges or interact with a webpage, it must
request this access from the browser. As Figure 1 depicts, the
modern extension architecture implements a layered security
approach within the browser that creates multiple execution
environments with varying levels of persistence and privileges
for each extension and webpage.

The left-hand side of Figure 1 depicts the static parts of an
extension, including items such as the manifest, JavaScript,
HTML, and image files. For the browser to parse and in-
stall an extension, it must have a manifest file which defines
the extension’s properties. Similar to the manifest shown
in Figure 1, extensions commonly rely on three properties,
which describe background pages, content scripts, and web
accessible resources [5].

When the background property is included in the exten-
sion’s manifest, the browser automatically constructs a hidden
background page for the extension. The background page
contains HTML, a DOM, and a separate JavaScript execu-
tion environment (labeled as “Background Page” in Figure 1).
The JavaScript executed in the background page often con-
tains the main logic of the extension, maintains long-term
state, and operates independently from the life-cycle of the
webpages [28].

Content scripts bridge the gap between the background
page and the current webpage. An extension uses content
scripts to modify the current webpage and communicate with
the background page. These content scripts are either stati-
cally declared by an extension in the manifest file or program-
matically injected into the current webpage. For example, on
the left-hand side of Figure 1, the manifest declares the two
content scripts content_a.js and content_b.js. To program-

matically inject a content script, an extension must call exe-
cuteScript() from a background page (see 1 in Figure 1).

To modify a webpage, a content script uses the webpage’s
DOM [10]. DOM APIs provide a systematic way for interact-
ing with a webpage. In this paper, we call the content script’s
interaction with the DOM APIs DOM requests.

Notice in Figure 1 that the background page, content scripts,
and webpage each run their own JavaScript execution envi-
ronment. The separate execution environments prevent the
JavaScript variables and functions from directly interacting.
Google Chrome’s documentation states that content scripts
“live in an isolated world, allowing a content script to make
changes to its JavaScript environment without conflicting with
the page or additional content scripts” [3] (emphasis added).
This statement, however, is misleading because we experi-
mentally discovered that content scripts loaded from the same
extension share variables and can call functions from other
content scripts. Thus, an extension’s content scripts share a
single execution environment; however, they do not share an
environment with the background page, webpage, or other
extensions (depicted in Figure 1).

Using DOM requests, a content script has significant con-
trol over the rendered webpage. Content scripts can inject
HTML into the webpage (using DOM element properties such
as innerHTML or DOM methods such as appendChild()).
We call this injected HTML droplets (the extension drops
them onto the webpage). Among other elements, droplets
may contain <script> tags where the extension includes ei-
ther inline or remote JavaScript. By injecting JavaScript, the
content script purposefully bypasses the isolation between the
content scripts and the webpage’s execution environments.

The Chrome Extension API provides privileged function-
ality available only to extensions. Chrome grants back-

USENIX Association 28th USENIX Security Symposium 1681

ground scripts broad access to the API’s capabilities. How-
ever, Chrome grants content scripts limited access to the
API while making the API inaccessible to webpages. For
example, only an extension’s background page can access
network resources, view platform information, and com-
municate with native applications. However, both content
scripts and background scripts may use the API to initiate
and listen for communications from one another via the ap-
propriate Chrome APIs (as shown by the double lines to-
wards the bottom of Figure 1). Background scripts cannot
directly interact with a webpage, however they can indirectly
send messages to it via the extension API using the method
chrome.runtime.sendMessage() [2]. Part of the reason for
this layered security model, including the separate execution
environments, is to isolate the components and prevent web-
pages from unauthorized access to the extension API’s more
sensitive functions.

Another important property in the manifest is the web-
accessible-resources property [7]. Prior to January 2014,
Chrome permitted external access to all of an extension’s re-
sources, i.e., a webpage could reference resources belonging
to installed extensions. In more modern versions of Google
Chrome, an extension must explicitly whitelist a resource
before a webpage may retrieve it [8]. An extension whitelists
its resources by adding them to the web-accessible-resources
property in the manifest. Once added, a resource becomes
accessible to any webpage or any installed extension.

To access a web accessible resource (WAR) from the con-
text of a web page, a webpage developer uses a URL of the for-
mat: chrome-extension://[extId]/[path-to-resource]. The
extId in the URL is a unique identifier generated by the
Google Web Store upon publication of an extension which
does not change when extensions are updated.

2.2 Extension Fingerprinting and Detection

In 2017, Sjösten et al. demonstrated that, with WAR finger-
printing, any extension using WARs is trivially detectable
by a webpage [38] by creating a database of which WARs
are utilized by each extension available in the Google Store.
Given that an extension’s ID is globally unique and perma-
nent, a tracker can detect an extension by requesting any one
of its previously identified WARs. If the request is successful,
then the corresponding extension is installed on the user’s
browser. Next to its simplicity and the 16,479 (28%) of exten-
sions that utilize WARs (and are thus fingerprintable), WAR
fingerprinting works in the browser’s private mode.

Orthogonally to WAR fingerprinting, Starov et al.’s Ex-
tension Hound (XHOUND) [42] creates a DOM fingerprint
based on the extension’s DOM modifications. XHOUND uses
dynamic analysis to exercise extensions and detect changes
introduced to the DOM through the extension’s operation. By
loading a set of webpages with and without a given extension,
XHOUND can compare the two resulting DOMs and isolate

the DOM changes that were performed by the given exten-
sion. These changes can straightforwardly be converted into
fingerprints which trackers can use to detect the presence of
any DOM-modifying extension.

When using WAR and DOM fingerprints for detection of
extensions, we reclassify all such fingerprints into anchor-
prints and structureprints to describe the method and accuracy
of the detection techniques. Anchorprints rely on an anchor
between the webpage’s JavaScript and the extension. An
anchor is a unique identifier formed to facilitate access and
communication between webpages and extensions. An an-
chor provides a way to directly access elements and resources
available to the webpage. Some examples of anchors include
WARs, IDs, class names, and custom attributes. For example,
the Chrome extension Grammarly adds a unique class to the
root <html> element on each webpage. Thus, if a webpage
uses document.getElementsByClassName() and receives
the <html> element, it is likely the user has Grammarly
installed.

An anchorprint is comprised of all the WARs, IDs, class
names, and custom attributes made available by an extension.
With the items in an anchorprint, a webpage need only to
query the DOM or send an XMLHttpRequest to detect an
extension. WARs are the most powerful of the anchorprint
elements because, due to the unique extension identifier, an
anchorprint with even one WAR is always 100% accurate.
Although IDs, class names, and custom attributes might be
100% accurate, they often have a much lower per element
accuracy than WARs because webpages and extensions alike
often use some of the same names. Despite this limitation,
the accuracy of the anchorprint improves dramatically with
each additional element included in it.

Structureprints are less precise (in terms of fingerprinting)
but are formed based on the structure of the changes the ex-
tension makes to the underlying webpage. Structureprints
effectively create a DOM fingerprint that uses the extension’s
unique and intended behavior to identify the extension. The
idea of a structureprint is that it can be used to detect a spe-
cific extension because the extension always behaves in a
predictable manner and alters a webpage consistently, thus
creating a structure that is unique among extensions. For
instance, consider a popular Google Calendar extension that
is the only extension with a structureprint that contains the
tags a and img with the following attribute names href, lo-
cation, target, blank, width, height, src, alt and style
Surprisingly, we found during our experiments that a tracking
webpage can reliably detect 28.93% (1,511) of extensions us-
ing only the tagName of the DOM elements added or deleted
from a webpage by an extension. Adding attribute names,
attribute values, and the text of the DOM elements to the
structureprint increases the number of detectable extensions
to 73.65% (3,847).

An important subset of structureprints that target an ex-
tension’s behavior are called behaviorprints. For example,

1682 28th USENIX Security Symposium USENIX Association

Grammarly creates a green button inside a text area. With
manual analysis, it is possible to identify whether the green
button has been added to the webpage without relying on the
IDs or class names injected by Grammarly. Another example
of using behaviorprints are in the detection of ad-blocking
extensions, such as Detect AdBlock [4]. However, no recent
research has shown how to create a behaviorprint in an auto-
mated way at scale. As a result, current behaviorprints are
limited to targeted attacks against specific extensions or nar-
rowly constrained categories of extensions (e.g., ad-blocking
extensions).

Beyond the obvious implementation differences between
anchorprints and structureprints, the fingerprint classes dif-
fer in their accuracy and their destructibility. For most an-
chorprints, matching the WAR, ID, class name, and custom
attributes of a published extension often provides a (unique)
one-to-one match. However, for structureprints, finding a
match is often less certain because many extensions have
similar behavior, which results in the same structureprint. An-
other key difference between anchorprints and structureprints
is the permanence of their link between the published exten-
sion and the user’s installed version. For anchorprints using
WARs, IDs, and class names, CloakX completely renames
the values. By renaming the values, CloakX completely de-
stroys the link between the published extension and the user’s
installed version. Without that link, it is impossible for a
tracking webpage to use the anchorprint to identify the in-
stalled extension because the anchorprint no longer matches
the published extension. Whereas with structureprints, the
destruction of the link between the published extension and
the user’s installed version is difficult. This difficulty occurs
because of the requirement that a cloaked extension retain
the same behavior (i.e., user experience). By maintaining the
same behavior, the structureprint of a cloaked extension is
only being obfuscated, which means that with enough effort a
tracker can eventually deobfuscate the cloaked structureprint
and, thus, detect the cloaked extension.

2.3 Threat Model

In our threat model, attackers use a database of fingerprints
to detect the extensions installed by a visitor to the site. How-
ever, we limit the attackers to the information and privileges
afforded to the webpage’s JavaScript execution environment.
In essence, we assume that there are no zero-day vulnerabili-
ties that would allow webpages to bypass the layered-security
architecture depicted in Figure 1. Therefore, the attackers can-
not access the content of an extension installed on a visitor’s
device.

In this paper, we explore two different types of attackers.
The automated attacker uses automated extension detection
techniques. Specifically, we limit the automated attacker to
anchorprints and structureprints. To detect an extension, the
automated attacker must find either an exact or fuzzy match

to an entry in their fingerprint database. The targeted attacker
is permitted to manually generate targeted structureprints
using portions of the structureprint (i.e., behaviorprints) for
extension detection. While we focus on defending against the
automated attacker because automated large-scale detection
is a feasible attack, we also include the targeted attacker to
explore how CloakX can defend against the targeted attacks.

3 CloakX

The core idea behind CloakX is to diversify each extension’s
fingerprint from the client-side while maintaining equivalent
functionality without making any changes to the browser and
without requiring the developers to alter their extensions.
Client-side diversification of the anchorprints (fingerprints
comprised of items directly accessible from a tracking web-
page’s JavaScript) and structureprints (fingerprints built from
the extension’s behavior) reduces the extension’s detectability
by breaking a webpage’s ability to link together a published
extension and the one installed on the user’s machine. CloakX
defeats detection using an anchorprint by randomizing the
names of the WARs, IDs, and classes. However, CloakX does
not completely defeat anchorprint detection using custom
attributes. CloakX’s approaches combat custom attribute-
based detection by randomly injecting more unique custom
attributes into each webpage. CloakX reduces the efficacy
of structureprints by introducing random attributes and tags
into the webpage. Although CloakX does not completely
prevent detection using custom attributes or structureprints, it
is a step beyond current solutions and CloakX achieves these
protections without any changes to the browser and without
requiring the intervention of extension developers.

Figure 2 shows the overall process of CloakX, a multiphase
tool that leverages static- and dynamic-analysis techniques
to achieve extension diversification while maintaining func-
tional equivalence. In the first phase, CloakX analyzes the
extension for the DOM fingerprints and CloakX identifies the
droplets that must be statically analyzed. In the second phase,
CloakX renames each WAR within the extension to a unique
random value, finds all the references to the original name,
and replaces them with their randomized counterpart. In the
third phase, CloakX adds a dynamic proxy (Droxy) to the
extension’s content and background scripts. Droxy dynami-
cally intercepts DOM and WAR requests and substitutes the
original ID, class names, and WAR names with their random
counterparts. In the last phase, CloakX statically analyzes
and rewrites the DOM IDs and class names inside droplets
that cannot be dynamically intercepted by Droxy.

3.1 XHOUND Analysis
CloakX uses XHOUND (we obtained a copy of the XHOUND
prototype by contacting the paper’s authors [42]) to generate a
DOM fingerprint for the extension and to identify the droplets

USENIX Association 28th USENIX Security Symposium 1683

Figure 2: Overview of the CloakX process.

injected into the webpage. Each DOM fingerprint consists of
four types of artifacts: (1) adding a new DOM element, (2)
deleting a DOM element, (3) setting or altering an element’s
attribute, and (4) changing text on the page.

Of the four types, DOM additions are the most common
type of detectable artifacts according to XHOUND [42]. This
is because DOM additions are generic operations that often
rely on loose coupling with a webpage for them to be trig-
gered. Whereas most DOM modifications or deletions require
a tighter coupling between the extension and the webpage,
which limits their applicability to the problems often solved
by developers. For instance, consider a password manager
extension that injects a stylized element into every password
form field (so that the user can invoke the password manager
interface). The extension adds the element to the webpage
and gives it a unique ID and a custom class name. It requires
the ID to communicate with the element once it’s placed on
the webpage. Using the added ID and class name (i.e., the
extension’s anchorprint), a webpage can detect the extension
by checking for the presence of either the unique ID or class
name on the webpage.

Next, CloakX uses XHOUND to identify any droplets
the extension injects into the webpage’s execution environ-
ment so that CloakX can preprocess the droplets to iden-
tify the ID and class names within them. As discussed in
Section 2.1, droplets (purple-colored boxes in Figure 1) are
JavaScript strings that an extension injects directly into a ren-
dered webpage. Droplets can include any text literal such
as HTML, JavaScript, or base64-encoded images; however,
the preprocessing is only performed on droplets containing
inline JavaScript and those <script> elements that reference
WARs.

Finally, during this phase, CloakX creates a map from the
original ID and class names used to fingerprint the extension
to the new randomized values.

3.2 Diversification of Web-Accessible Re-
sources (WARs)

The principle behind the diversification of Web-Accessible
Resources (WARs) is straightforward: if each installation of
an extension has different filenames for the same WARs, then
a tracker can no longer create a global database of WARs and,
therefore, can no longer detect the presence or absence of any
given extension based on its WAR anchorprint.

In the first stage of the WAR diversification process,
CloakX identifies all the resources declared as WARs in the
manifest file of each extension. Although many extensions
explicitly list the resources they wish to make accessible, it is
also possible to use a * wildcard [34]. With wildcards, an en-
tire folder, its contents, and all its subfolders can be designated
as web-accessible — this includes using a single *, which des-
ignates every file in the extension as web-accessible. Even
though making every file in the extension web-accessible is
likely an implementation error, we discovered 419 extensions
that made all of their resources web-accessible, out of 59K an-
alyzed extensions. In the second stage, CloakX computes the
shortest unique file path to facilitate the search-and-replace in
the final stage. Specifically, CloakX reduces the full path of
each WAR to the minimum length necessary to uniquely iden-
tify the resource (compared to all the other resources in the
extension). This operation reduces the number of resource ref-
erences missed (i.e., false negatives) associated with dynamic
string concatenation (often a directory path).

In the final stage of the WAR diversification process,
CloakX uses the shortest unique path to find every use of
the WAR within the extension’s files and to replace that with
the appropriate random value, maintaining the correctness of
WAR references for each extension.

In addition to the static alterations described above, CloakX
relies on Droxy, discussed in the Section 3.3, to dynamically
translates any WAR requests missed by the static replacement
method.

3.3 Droxy
The next step in the CloakX process adds Droxy to the exten-
sion. Droxy is a content script that injects random attributes
and tags into the DOM to further obfuscate the extension’s
DOM fingerprint while also translating any uncloaked WAR
requests and the IDs and class names used in DOM requests
into their cloaked versions. CloakX patches Droxy into the
extension and configures Droxy to execute before any of the
extension’s content scripts.

Droxy adds random attributes and tags to the DOM to re-
duce the accuracy of detection using structureprints. As each
webpage is loaded, Droxy adds a random number of randomly
generated tags to the DOM to make extension detection less
accurate. To further frustrate detection using structureprint
matching, Droxy adds random attributes to the DOM elements
added by each extension.

1684 28th USENIX Security Symposium USENIX Association

Droxy also uses cross injection of custom attributes to
frustrate anchorprint detection. For trackers using custom
attributes to detect extensions, cross injection allows the user
to impersonate other extensions, which increases a tracker’s
false positives when using anchorprint detection. This is
done by adding custom attributes that are randomly selected
from a list of the 244 unique custom attributes used by other
extensions with a DOM fingerprint.

Droxy also dynamically catches any WAR requests made
using the resource’s original filename, which serves as a
backup for the static replacement method described in Sec-
tion 3.2. Droxy achieves this by watching for changes to
the DOM using a MutationObserver() that checks for un-
cloaked WAR requests inside the DOM elements altered by
the extension. In addition, Droxy overrides the XMLHttpRe-
quest.open() method and adds functionality to translate any
WAR requests for the original filename to the new, random-
ized filename.

Droxy translates the ID and class names used to create a
DOM anchorprint. As the first content script to load, Droxy
overrides DOM accessor and mutator methods before the ex-
tension uses them to interact with the DOM, which effectively
wraps all DOM requests in a translation layer (blue area in
Figure 3). Each of the overridden methods are augmented
to intercept and translate ID and class names used to create
the DOM fingerprint. Droxy determines which ID and class
names to translate by checking the ID and class names against
the cloaking map, created in Section 3.1. The cloaking map
contains name–value pairs where each XHOUND-discovered
ID and class name is paired with a randomized version. If it
finds a match in the cloaking map, it translates the original
value on-the-fly into the randomized version. By intercept-
ing and translating the fingerprintable ID and class names to
randomized values, Droxy alters the extension’s DOM fin-
gerprint from the perspective of a tracker’s execution context
breaking the link between the user’s installed extension and
the publicly available version.

To prevent the use of anchorprint detection, Droxy trans-
lates IDs and class names into random values according to
the map created in Section 3.1. For ID and class name trans-
lation, Droxy also tracks DOM queries and DOM mutations.
Droxy intercepts and inspects the extension’s queries that use
IDs, element names, class names, and query selectors, which
include the methods getElementById(), getElements-
ByName(), getElementsByTagName(), getElementsBy-
ClassName(), querySelector(), and querySelectorAll().
To handle more complex query selectors, Droxy parses the
selectors using the open-source Sizzle engine to accurately
identify the ID and class names [9].

For DOM mutations performed via JavaScript, Droxy in-
tercepts all the ways in which an ID or class name can be
introduced to the DOM. This dynamic interception of ID
and class names is done by overriding setAttribute() and
getAttribute() methods and redefining id and className

properties to use the overridden setAttribute() and getAt-
tribute(). In addition, Droxy overrides the classList property.
Because classList is an object, Droxy overrides the add(),
contains(), and remove() methods of the classList. As a
result, Droxy translates the extension’s use of IDs and class
names whether it is done when a DOM element is created or
modified.

For DOM mutations performed via the injection of raw
HTML, Droxy uses static and dynamic analysis to make the
translation of ID and class names straight-forward and precise.
Droxy overrides the methods used to inject raw HTML, such
as the innerHTML property and insertAdjacentHTML()
method. Droxy uses the browser to parse the HTML by
creating a mock container and adding the HTML to it without
attaching the mocked container to the DOM. Droxy queries
the mock container to identify and transform the ID and class
names into their randomized versions. Droxy then exports
the string representation from the mock container’s DOM and
then calls the original method to apply the modified string to
the webpage’s DOM.

In addition to DOM queries and mutations, Droxy
intercepts styles and translates on-the-fly. An exten-
sion can include styles via text content inside <style>
or CSSStyleSheet’s methods such as addRule() or in-
sertRule(). Once intercepted, Droxy uses CSS parsing to
locate the IDs and class names. If found, Droxy replaces the
ID or class name with its randomized counterpart.

Droxy replaces an extension’s droplets with the statically
rewritten version (content_a.js and Dynamic JS in Fig-
ure 3). As a part of the droplet rewriting process described
in Section 3.4, Droxy receives a hash value of the original
droplet and modified version of the code for each droplet
used by the extension. Droxy then matches the current
droplet’s hash to the ones provided and replaces it with its
cloaked counterpart. Droxy performs the matching and re-
placement by customizing the properties textContent, in-
nerText, and HTMLScriptElement’s and the methods ap-
pend() and appendChild() This process is depicted by the
dashed arrow near 1 in Figure 3. Droxy relies on the prepro-
cessed JavaScript because rewriting the code on-the-fly in the
browser efficiently is currently infeasible.

3.4 Static Droplet Rewriting

As discussed previously and shown in Figure 1, Droxy can-
not intercept a droplet with dynamically inserted JavaScript
because when the inserted code is executed in the webpage’s
JavaScript execution environment. Unfortunately, Droxy is
also unable to cloak the droplet before inserting it because the
heavy-weight static analysis necessary would significantly
degrade the extension’s performance. Therefore, CloakX
statically analyzes the droplets offline, identifies where the
extension adds the fingerprintable ID and class names to the

USENIX Association 28th USENIX Security Symposium 1685

Figure 3: Diversified CloakX rewritten extension. CloakX hides fingerprints by rewriting the droplets, content styles, and renaming of
web-accessible resources (WARs) and through Droxy’s on-the-fly substitution. As a result, a tracking webpage cannot access the original
identifiers; however, the internal logic of the extension still can because Droxy translates those requests.

DOM, rewrites the JavaScript code, and Droxy dynamically
substitutes the original code with its rewritten counterpart.

Extensions commonly use generic values for IDs and class
names, which often overlap with JavaScript keywords or
JavaScript code constructs that refer to the class names and
IDs dynamically. In addition, the expressiveness of JavaScript
means that the ID and class names usage are context-sensitive.
For example, if the fingerprintable class name is content,
CloakX should only replace the instance of #content and
ignore element.content, content.maximizer, and content-
shaper, as each have a different semantic meaning. Devel-
opers often construct ID and class names dynamically in
the code, which necessitates a more sophisticated form of
static analysis. For example, an extension might attempt to
access an element with the ID content by using getElement-
ById("con" + "tent"), which would be missed by a regular
expression searching for the full word.

CloakX statically rewrites droplets offline (i.e., before an
extension is installed) using static analysis to identify the
appropriate locations in the JavaScript. CloakX limits its
rewrites to the ID and class names that occur in the JavaScript
and are added to the webpage via the DOM. By identifying
and only altering these DOM altering instances, CloakX limits
the possibility of breaking the extension with the alterations.
In essence, the static rewriting requires a tool that performs
taint analysis where it labels DOM interactions as sinks and
then analyzes the backward slices of the control flow graph
(CFG) until it finds the fingerprintable IDs and class names
as sources.

We decided to use TAJS — a state-of-the-art and feature
rich JavaScript analyzer — as the program analysis core of
the CloakX static rewriting. We chose TAJS because it (1)
performs type analysis on JavaScript, (2) supports most of
the ECMAScript 5 standard and DOM functionality, (3) is
under active development, (4) is open source [6], and (5) is
the product of recent research [13, 14, 15, 23, 24, 25, 27].

TAJS performs dataflow analysis by using techniques that
examine the flow of data along program execution paths. As
TAJS iterates over the CFG, it creates a semilattice of program
states that are unique for each basic block in the CFG [26].
For each variable represented in the lattice at a given basic
block, TAJS assigns a set of possible values. The dataflow
analysis completes when the values inside the lattice reach a
fixed point and no longer change with each iteration. Using
these values, it is possible to follow data both forwards and
backwards through the CFG [26].

3.4.1 TAJS for Extensions

We enhanced TAJS to support static rewriting of the droplets
by adding support for Chrome extensions, adding DOM taint
analysis, and maximizing its exploration of the CFG. In addi-
tion, we plan to make our changes to TAJS publicly available
because there are currently no other program analysis tools
for browser extensions.

We added extension support to TAJS by creating stubs
for Chrome’s extension API and implementing support for
necessary methods such as sendMessage(), getURL(), exe-
cuteScript(), onMessage.addListener() .

We implemented taint analysis within TAJS that tracks
data through an application until it reaches a sink, where a
sink is a location of interest within the CFG [16]. For the
purposes of this analysis, TAJS tracks string literals matching
the fingerprintable IDs and class names through the CFG
until they are used to interact with the DOM. As a part of the
taint tracking, we added functionality that maintains an audit
trail of the changes to each variable while traversing the CFG
so that upon reaching a sink CloakX can trace the values of
interest to their origins.

We increased TAJS’s code coverage by adding edges to
the end of the CFG that force a call to every named and
anonymous function defined within the code. For the purposes

1686 28th USENIX Security Symposium USENIX Association

of extension rewriting, it is necessary that TAJS analyzes
all the JavaScript within a droplet because some functions
appear unreachable without complete semantic understanding
of Chrome’s extension execution environment. However,
the dynamic aspects used by TAJS itself to strike a balance
between soundness and precision came at the cost of code
coverage [15]. For example, TAJS does not analyze functions
unless they are called by the JavaScript and the call is also
reachable from the beginning of the CFG. Because extension
rewriting requires TAJS to analyze all of the JavaScript within
a droplet, we added edges to the end of the CFG that simulates
a call to every named and anonymous function in the droplet.
The potential downside to adding the edges is the decreased
precision of our analysis (i.e., we are adding behavior to the
application that does not exist at run-time), however for the
purposes of identifying DOM fingerprints the trade-off is
acceptable.

3.4.2 Static Analysis Results

Automated analysis of real-world JavaScript code is a dif-
ficult problem and despite all the advances made by TAJS,
it, as well as similar tools, cannot analyze some JavaScript
programs. As a JavaScript program increases in complexity
and size, it becomes increasingly less likely TAJS will com-
plete the analysis due to the explosion of dataflows (i.e., the
classic state space explosion problem). As acknowledged by
the authors, TAJS initially targeted hand-written JavaScript
applications of a “few thousand lines of code” [26]. Plus, the
addition of the fake edges dramatically increased the com-
plexity of the CFG and the number of states, which decreased
the code TAJS could successfully analyze to about 1,000 lines
of code.

Fortunately, CloakX only needs TAJS analysis for the 197
extensions using droplets, which is only 3.2% of the exten-
sions identifiable by XHOUND, because Droxy handles the
rest of the extensions. Out of those 197 extensions, TAJS
analyzed 212 total scripts of which 94 were JavaScript files
that were designated as a WAR (and thus accessed via a
src attribute, see Figure 3) and 118 were inline JavaScript.
TAJS successfully completed analysis of 134 scripts (63.2%)
finding 19,380 basic blocks and analyzing 18,497 (95.44%).
However, TAJS was unable to analyze 78 (36.8%) of the in-
line JavaScript and WARs because the analysis for 34 scripts
timed out, 6 scripts failed with an analysis exception, 6 scripts
failed due to syntax errors in the JavaScript, and 32 scripts
failed when TAJS crashed.

After manually analyzing the results we found the follow-
ing reasons for why TAJS failed.
Exceeded timeout threshold. Most of the JavaScript code
that caused TAJS to timeout were large JavaScript files that
varied in size from 75 kilobytes to over a megabyte. In other
cases, TAJS failed to finish analyzing smaller JavaScript code
because of a bug in the forced path exploration code.

Analysis exceptions. TAJS failed to complete the analysis
because it was missing support for the ECMAScript standard.
Syntax errors. TAJS was unable to analyze scripts with error
in the JavaScript syntax.
Crashed. Some of the scripts triggered a bug in TAJS, caus-
ing it to crash with null pointer, stack overflow, or other
miscellaneous exceptions.

3.5 Cloaked Extension

Once CloakX completes its modifications to the extension,
the extension is cloaked and it appears to a webpage using
anchorprint or structureprint detection techniques as though
the user no longer has that particular extension installed. Ar-
chitecturally, the resulting extension is similar to Figure 3
with Droxy surrounding the content scripts and translating
the extension’s DOM requests and droplet injections. To a
webpage, the results look similar to the HTML source shown
in Figure 4.

The permanence of the cloaked anchorprint and struc-
tureprint depends on whether the extension is subject to static
rewriting. For cloaked extensions that rely on purely dy-
namic mutations, the structureprint changes each time the
cloaked extension is loaded. Droxy alters the structureprint
by injecting new randomly generated noise into the DOM
and re-randomizing the cloaked ID and class names. How-
ever, CloakX must statically alter extensions with WARs or
droplets. As a result, the cloaked fingerprint of extensions
requiring static rewriting remains the same until a new ver-
sion of the extension is reprocessed by CloakX. Although
guessing the name of a cloaked WAR is unlikely because
CloakX generates a random alphanumeric value that is at
least ten characters in length for each WAR; even if an ad-
versary guesses the name of a WAR, the detectability would
cease when a new version of the extension was released.

3.6 Deployment

Although we describe CloakX as a client-side mechanism
(as this is where the fingerprint rewriting is done), to reduce
end-user friction, we envision CloakX as the final step in
an extension’s release and update process, all of which can
be performed by the extension store and would require no
intervention by the users. Prior to releasing the extension to
users, the store sends the extension to CloakX for preprocess-
ing. During CloakX’s preprocessing, CloakX installs Droxy
and generates a cloaking-template for the extension. The
cloaking-template contains a configuration file that identifies
the static variable replacements necessary for WARs, IDs, and
class names. When a user requests a preprocessed extension,
CloakX uses the cloaking-template to quickly generate and
implement random WAR, IDs, and class names for the current
user.

USENIX Association 28th USENIX Security Symposium 1687

Figure 4: Original code of SEOquake extension (left) and SEOQuake extension when patched by CloakX (right).

4 Evaluation

Altering extensions without modifying the browser or rely-
ing on extension developers to make changes is a complex
process, and while CloakX is a prototype and does not cover
every possible scenario, we wanted to evaluate its current
effectiveness. Thus, in this section we evaluate the efficacy
of CloakX by (1) testing the breakage introduced by its use
(2) the detectability of the cloaked extensions and (3) the
performance of the cloaked extensions.

In November 2017, we extracted 59,255 extensions from
the Chrome Store. Of those, we identified 13,693 extensions
with only WAR fingerprints; however, 67 of the extensions
had errors that prevented them from loading. Next, we iden-
tified 2,537 extensions having only DOM fingerprints, but
Chrome could not load nine of the extensions. The last set of
2,786 extensions had both WAR and DOM fingerprints, one
of which would not load in Chrome.

4.1 Functionality Experiments

Testing the functionality of a large set of applications is sub-
ject to two problems. First, the tests must explore all the
relevant execution paths in the application. Second, the tests
should test the entire set of applications. Furthermore, any
testing approach will leave code unexplored and applications
uncovered, and thus the results form an estimation of func-
tionality breakage. In this work, we perform two different
experiments to address both of these challenges: a low-fidelity
and a high-fidelity experiment.

The low-fidelity experiment tested the entire population
and the high-fidelity experiment randomly sampled from the
population. The low-fidelity experiment automatically exer-
cised the original and cloaked extensions and compared the
error messages generated by each. The low-fidelity experi-
ment provides a lower bound on the breakage across the entire
population. The high-fidelity experiment involved manually —
and extensively — exercising the extension, which provided
deeper coverage of the extension’s functionality. Due to the
time-consuming nature of each high-fidelity run, we used a
random sample of the extensions from each population.

4.1.1 Low-fidelity Functionality Experiments

To measure functionality breakage introduced by CloakX
broadly across all extensions, we performed automated exper-
iments that measured the change in errors from the original
extension to the cloaked extension. To execute the experi-
ment, we created a headless browser session using Selenium’s
ChromeDriver with full logging enabled, which includes er-
rors from the extension’s content scripts. Next, we visited a
triggering web page, which is similar to the webpage used by
XHOUND to activate the extension’s functionality. In addi-
tion, for those extensions with DOM fingerprints identified by
XHOUND, the triggering webpage also included dynamically
generated triggers. After the page loaded, the browser waited
30 seconds for any delayed actions to execute. Other than the
static and dynamic triggers, the automated experiments do
not simulate additional user actions, which might be neces-
sary to execute all the extension’s functionality. These steps
comprise a run, which is completed once for the original
extension and once for the cloaked extension.

After both runs finish, we compared the severe JavaScript
error messages between the two runs. If the cloaked extension
generated the same errors, then the extension passed. Other-
wise, if the cloaked extension generated any new or different
errors, then the extension failed. Because the automated tests
exercise limited functionality and only compare errors, this
experiment represents the best case scenario (i.e., the lower
bound) on the errors introduced by CloakX. However, the
automation allowed us to run the experiment across the entire
population.

Table 1 shows the results for WAR and DOM cloaking
separately. Note that at the time we ran the experiments,
which took place several months after collecting the exten-
sions, some of the original versions stopped working because
of Chrome browser updates, obsolete back-end servers, etc.
As a result, we only tested working extensions and, therefore,
the results only contain errors introduced by CloakX.

In the low-fidelity experiments, CloakX retained equivalent
functionality for 99.02% (13,493) of the WAR fingerprintable
extensions, 98.69% (2,493) of DOM fingerprintable exten-
sions, and 97.92% (2,727) of WAR and DOM fingerprintable

1688 28th USENIX Security Symposium USENIX Association

Table 1: Automated Test Results

Extension set Total Tested Passed Results
Pass Fail

WAR Fingerprintable 13,693 13,626 13,493 99.02% .98%
DOM Fingerprintable 2,537 2,526 2,493 98.69% 1.31%

WAR & DOM Fingerprintable 2,786 2,785 2,727 97.92% 2.08%
Totals 19,016 18,937 18,713 98.82% 1.18%

extensions. For the WAR fingerprintable extensions, we found
that the most frequent cause of the failures was the loading of
WARs from remote websites. For the DOM fingerprintable
extensions, most of the new error messages generated by the
cloaked extensions were severe JavaScript errors caused by
(1) extensions loading remote content or (2) missing func-
tionality in Droxy. For the WAR and DOM fingerprintable
extensions, we found the same errors as seen in the WAR and
DOM only tests. To verify the WAR and DOM cloaking did
not interfere with one another, we also ran this group using
only one of the modifications at a time. The total number
of errors was the same for the joint run as it was for the two
additional runs with the single modifications, which indicates
the modifications did not interfere with one another.

4.1.2 High-fidelity Functionality Experiments

The high-fidelity experiments consisted of manually exercis-
ing and evaluating the operation of the cloaked extensions.
The high-fidelity evaluation was inspired by the methodology
used by Snyder et al. [39]. This methodology focuses on the
extension’s operation from the perspective of the user. If the
cloaking process introduces an error, but the user does not per-
ceive a difference in the extension’s operations, then we deem
the extension passes. This method of evaluation exercises
much more of the extension’s code than the automated tests
and it provides an additional metric that evaluates the actual
operation of each extension. The high-fidelity experiments
were performed by the authors using the testing framework
detailed next.

We built a custom framework to methodically follow a four-
phase evaluation of each extension and advise the tester on
the current step in the process. In phase one, the framework
loads the original extension and gives the user five minutes to
understand its basic operation (including the time necessary
to read the extension’s description in the Chrome Store). In
phase two, the framework reloads the original extension and
the user exercises its functionality for five minutes. In phase
three, the framework loads the modified extension and the
user spends five minutes completing operations similar to the
ones completed in phase two to verify it is still operational.
In the last phase, the user records any notes on the evaluation
and chooses whether the extension passed or failed.

Similar to the automated tests, we divided the extensions
into three groups based on the type of fingerprints they emit-
ted. As a result, the populations for each of the high-fidelity
tests were as follows: 13,626 WAR fingerprintable extensions,

Table 2: Manual Test Results

Extension set Random Top 25 Overall
Pass/Fail Pass/Fail Pass/Fail

WAR Fingerprintable 25 / 0 25 / 0 50 / 0
DOM Fingerprintable 24 / 1 24 / 1 48 / 2

WAR & DOM Fingerprintable 24 / 1 24 / 2 47 / 3

2,526 DOM fingerprintable extensions, and 2,727 WAR and
DOM fingerprintable extensions.

To create samples for these groups, we created both ran-
dom and systematic samples containing 25 extensions each.
We created the first sample by randomly selecting 25 exten-
sions from the population. We formed the systematic sample
by selecting the top 25 most popular extensions based on
the number of downloads listed on the Chrome Web Store.
Throughout the manual tests, if we could not test an exten-
sion because the original version was broken or it was only
available in a foreign language, then it was discarded and
another one was selected according to the associated sam-
pling method. The resulting samples contained quite a bit of
diversity between the extensions. Although we found a few
instances of overlapping functionality, we kept these exten-
sions in the samples. However, when we found a duplicate
extension, we discarded the duplicate and tested a different
extension. Some example extensions included in the test sam-
ples included a utility for those who are color blind, a search
bar tool, a product search by image, a data extraction tool,
and a gesture utility for navigation.

Out of all 150 experiments, 145 of the cloaked extensions
retained equivalent functionality (see Table 2). All of the
WAR fingerprintable extensions retained their functionality.
96% (48 out of 50 extensions) of the DOM fingerprintable
extensions and 94% (47 out of 50 extensions) of the WAR and
DOM fingerprintable extensions retained their functionality.

After analyzing the broken extensions, we found three
different causes for the broken extensions.
Remote source code using original resource name. The
extension loads remote Facebook SDK, which looks for ob-
fuscated ID and class values.
Extension relies on hardcoded values that Droxy alters.
An extension relies on hardcoded logic that expects its content
scripts to appear in a specific order. However, Droxy must
be the first content script, which changes the position of all
of the extension’s original content scripts, and in one case, it
broke the extension.
Droxy implementation limitation. Droxy does not currently
support recursive iframe sourcing, cloneNode, and some ad-
vanced CSS rules that the cssutils Python library fails to
properly parse.

With engineering improvements to Droxy, we can remedi-
ate each of the errors listed above and increase the success rate.
For the remote source code, Droxy could intercept the remote
source code request and parse it before it is executed. This,
of course, would add additional performance overhead. The

USENIX Association 28th USENIX Security Symposium 1689

hardcoded logic could be rectified by overriding the methods
that accesses the content scripts. The implementation limita-
tions can be addressed by adding logic to support them into
Droxy.

4.2 Detectability Experiments

The detectability experiments evaluated the efficacy of the
cloaking against an extension tracking webpage. In the first
experiment, the tracker used anchorprints to detect extensions
with either WAR or DOM fingerprints. In the second experi-
ment, the tracker used structureprints to detect the extensions
with DOM fingerprints. In the third experiment, we investi-
gated the use of behaviorprints to detect cloaked extensions.
Last, we explored different methods for detecting the use of
CloakX on an extension.

For the first three experiments, we set the fingerprint match-
ing threshold to three. To meet the matching threshold, the
tracker must be able to match the extension’s fingerprint to
three or fewer extensions in its repository. When the tracker
meets the matching threshold, it has successfully detected the
extension.

We chose a threshold of three because thresholds higher
than three showed a sharp decrease in the tracking benefit
gained from an extension detection. The matching thresh-
old represents the number of extensions that match a struc-
tureprint. The best threshold depends on the requirements
of the web tracker and the resources available. The main
purpose of the threshold for our experiments was to balance
the search time complexity of the fuzzy searches with the
increase in the matching of cloaked extensions. For example,
by raising the threshold to 20, the web tracker matches three
additional cloaked structureprints (one of which matches 18
extensions).

4.2.1 Detectability Experiment Using Anchorprints

The anchorprint detectability experiments focused on detec-
tion using WARs, IDs, and class names. In the first phase of
the experiment, we harvested the anchorprints of the exten-
sions. Next, we loaded each of the original extensions and
used a tracking webpage to verify that the extensions were
detectable using the anchorprint. Finally, we loaded each
of the cloaked extensions and used a tracking webpage to
evaluate the detectability of the cloaked extensions using its
anchorprint. For a successful detection, the tracker must meet
the matching threshold.

In our experiment, we found that none of the cloaked ex-
tensions were detectable using their WARs, IDs, and class
names after cloaking. In the first phase, we harvested 17,833
anchorprints, which includes 16,411 extensions with WAR
fingerprints and 1,422 that have DOM fingerprints with IDs
and classes. However, we chose to limit the testing to the
17,678 extensions that could be executed after being cloaked

and assumed that the 155 broken extensions were detectable
(thus providing a lower bound on detectability).

In the second phase, we matched 17,534 of the 17,678
original extensions. The ID and class name functionality of
the tracker failed to match 144 extensions because it either
failed to trigger the extension’s anchorprint or it found too
many matching extensions. The ID and class name tracker did
not find matches for 26 extensions because those extensions
required dynamic triggering and the tracker could not use
dynamic triggering and still extract the anchorprint; thus, the
extensions did not inject their anchorprint into the webpage.
The remaining 118 extensions did not count as a detection be-
cause the IDs and class names matched more than three other
extensions, which exceeded our threshold for a detection.

Initially, the WAR functionality of the tracker failed to find
956 of the WAR fingerprinted extensions using XMLHttpRe-
quest because none of the WAR declarations in the manifest
file existed in the extension. However, we discovered we
could reliably match these extensions by timing how long
it took for three WAR requests to return. The first request
is for the declared but missing resources of the extension.
The second request was for the extension’s manifest.json,
which was not declared as a WAR. The third request was
for a randomly generated resource that does not exist in the
extension and is not a WAR. If the missing request (i.e., the
first) takes the longest to return, then the extension has the
resource defined as a WAR but the resource does not exist in
the extension. Thus, we improved the tracker such that if the
tracker failed to match an extension using any of the WARs,
then it performs these three requests for each of the WARs in
the 956 extensions and if the first request takes the longest it
has detected the extension.

In the third phase, we were able to detect 96 of the cloaked
extensions using their anchorprints. After investigating sev-
eral extensions that were detected, we found that matches
occurred because CloakX was not translating the ID and
classes for the extensions due to errors introduced through the
cloaking process. In other words, the experiment found 96 ad-
ditional cloaked extensions that did not maintain functionality
equivalent to their original versions. Thus, with the additional
errors but no actual matches, we found that 98.55% (17,582)
of the extensions were undetectable using anchorprints.

4.2.2 Detectability Experiment Using Structureprints

The structureprint experiment tested the detectability of
cloaked extensions using exact and fuzzy matching to de-
tect the extensions. In the first phase, we ran each of the 5,311
DOM fingerprintable and WAR and DOM fingerprintable
extensions through XHOUND to gather the structureprints.
In the next phase, we ran each of the 5,223 cloaked exten-
sions through XHOUND to gather cloaked fingerprints. We
considered the extensions that failed the automated tests as
detectable. Similar to the WAR detection experiments, we

1690 28th USENIX Security Symposium USENIX Association

Table 3: Structureprint Detection Test Results

Structureprint Key Type Exact Matching Fuzzy Matching
Original Cloaked Cloaked

Tags, Attributes, Text 3,756 (71.91%) 91 (1.74%) 217 (4.15%)
Tags and Attribute Values 2,092 (40.05%) 91 (1.74%) 95 (1.82%)

Tags 1,420 (27.19%) 91 (1.74%) 91 (1.74%)

did not test the broken extensions, but we assume that they
were detectable. In the last phase, we used the structureprints
generated in phase one to match the cloaked fingerprints.

The accuracy and precision of detecting structureprints
varies depending on both (1) the DOM elements used to build
the structureprint and (2) the matching technique used to iden-
tify the extension. Therefore, to explore how CloakX can
prevent the detection of various types of structureprints, we
ran the last phase several times using three different struc-
tureprints (each one representing less information used in the
structureprint) and two different matching techniques (one on
exact matching and one on fuzzy matching) to ensure CloakX
reduced detection for each of them.

The structureprints varied based on the contents used to
build the fingerprint. The first type used all the XHOUND data,
in other words, each fingerprint included added and changed
tags, attribute names, attribute values, and text data. While
these are the most accurate, they are also the most brittle; as a
result, it is likely that the accuracy will degrade considerably
in a real-world environment with dynamic HTML content
and visitors that have several extensions installed. The second
type of structureprint used only the tags and attribute names,
which means the fingerprint did not use the attributes values
or text. The third type of structureprint used only the tags.

For detection, the experiment extracted an extension’s struc-
tureprint and then used exact and fuzzy matching against the
structureprint database to identify the extension. Exact match-
ing worked well for detecting uncloaked extensions; however,
due to the preciseness required for an exact match, cloaked
extensions evaded exact matching. Thus, we also tested using
fuzzy matching with a 90% level of confidence. Fuzzy match-
ing was successful when the match was made with a 90%
level of confidence. Using either matching technique, if the
tracker met the matching threshold (three or fewer matches)
using the extension’s structureprint then we counted the ex-
tension as detected.

Overall, we found that cloaking significantly limited the
number of extensions detectable using structureprints. With
the full structureprints (tags, attribute names, attribute values,
and text) and exact matching, we were able to detect 3,756
of the 5,311 original extensions. The reason that 1,555 ex-
tensions were undetectable is because the number of matches
made using the extension’s structureprint exceeded the match-
ing threshold for a detection (a structureprint must match
three or fewer extensions for a successful detection). Us-
ing the full structureprints on cloaked extensions, none of
the cloaked extensions were detected using exact matching

and only 126 extensions were detected using fuzzy matching.
Using partial structureprints (attributes and tags), we were
able to detect 2,092 of the original extensions; however, the
cloaked extensions were undetectable using exact matching
and only four were detectable using fuzzy matching. Using
the tag only structureprints, we detected 1,420 of the original
extensions; however, we were unable to detect any of the
cloaked extensions using either matching technique.

4.2.3 Detectability Experiment Using Behaviorprints

To understand the limitations of CloakX, we performed an ex-
periment to test the detectability of cloaked extensions using
behaviorprints. We chose ten of the most popular extensions
with structureprints and to avoid duplication we excluded all
ad-blocking extensions except AdBlock. In addition, we ex-
amined ten extensions that we randomly selected from those
with structureprints. By analyzing their structureprints, we
manually created their behaviorprints from portions of the
structureprint that remain constant after cloaking.

For the popular extension sample, six of the extensions
added elements to the DOM that made them uniquely identi-
fiable. The extensions LastPass, Pinterest Save Button, and
Grammarly all add a base64 encoded image to the DOM that
makes them uniquely identifiable. The extensions Ghostery,
Evernote, and Skype add a style tag to the head element with
features that made them uniquely identifiable. The extension
Turn Off the Lights adds a data-video attribute. Although
the data-video attribute is detectable when the extension is
cloaked, CloakX randomly includes this attribute even when
the extension is not installed, which increases the attacker’s
false positive rate and makes it more difficult to correctly
detect when the extension is truly installed. Even though the
cloaked version of AdBlock was detectable, its behaviorprint
was not distinguishable from other popular ad-blocking ex-
tensions (e.g., AdBlock Plus, uBlock Origin, and AdGuard
AdBlocker) because they all perform the same behavior by
deleting ads from the DOM and not injecting any other el-
ements into the DOM. Thus, the detection of ad-blocking
extensions exceeds the matching threshold for the identifica-
tion of a user. Ace Script and Honey added div tags with an
ID, which means CloakX obfuscated the behaviorprint, and
the extensions were not detectable.

For the random sample of ten extensions, five extensions
were detectable using behaviorprints and five were unde-
tectable. Similar to popular extensions, five of the ten exten-
sions added elements to the DOM that made them uniquely
identifiable. For example, two of them added custom text to
the web page. Two of the undetectable extensions performed
actions on the DOM, which were duplicated by a number
of other extensions. Thus, those extensions exceeded the
matching threshold and were undetectable. Finally, the three
remaining undetectable extensions only added class names,
IDs, and common tags to the DOM, which are obfuscated by
CloakX.

USENIX Association 28th USENIX Security Symposium 1691

4.3 Detectability of CloakX

For our last set of experiments, we evaluated three differ-
ent techniques meant to determine whether an extension was
cloaked by CloakX, thus detecting CloakX. These detection
experiments were limited to the 2,447 extensions with struc-
tureprints that contained at least one ID or class name.

In the first experiment, we created a method for detect-
ing CloakX after analyzing the lengths of the IDs and class
names in cloaked and uncloaked extensions. The IDs and
class names generated by CloakX were initially six characters
in length and comprised of random alphanumeric characters.
However, the IDs and class names in uncloaked extensions
averaged 15.1 characters for IDs and 15.9 characters for class
names. In addition, we discovered that only 62 uncloaked
extensions met the criteria of having all their IDs and class
names with a length of six (most of which had only one ID or
class name). As a result, we created a method for detecting
CloakX that marked an extension as CloakX-enabled if all
the IDs and class names injected by the extension were six
characters in length. Next, we ran the CloakX detector on
2,447 uncloaked extensions and cloaked extensions, thus eval-
uating 4,894 extensions. The CloakX detector reported 2,509
cloaked extensions, which means we had 62 false positives,
2,447 true positives, and 2,385 true negatives with an accu-
racy of 98.7%. As a result, we modified CloakX to randomize
the length of the IDs and class names it renames. After mak-
ing this change, we were no longer able to accurately detect
the existence of CloakX based on the length of IDs and class
names.

As a follow up, the second experiment attempted to identify
cloaked extensions by measuring the entropy of the injected
ID and class names. Our hypothesis was that the entropy of
randomly generated IDs and class names would be measur-
ably different from those chosen by extension developers. We
found that the uncloaked ID and class names exhibited nearly
the same amount of entropy as their randomized counterparts.
As a result, we could not accurately identify the existence of
CloakX using the entropy of ID and class names even though
the cloaked values contained randomly generated characters.

In the last CloakX detection experiment, we identified the
use of CloakX by exploiting popular extensions that both
exhibited a behaviorprint and injected an ID or class name
into the webpage. In particular, we found Evernote and Gram-
marly offered a strong behaviorprint and a related ID. Once
we identified the existence of the extension’s behaviorprint
we looked for the ID or class name, if it did not exist then
we determined CloakX was likely installed. For instance,
Evernote injects a style tag with unique elements and it uses
an ID for the same style tag. When a style tag is found that
contains Evernote’s elements and the style’s ID is not style-
1-cropbar-clipper, then the tracker records that it found a
cloaked version of Evernote. Similarly, when Grammarly’s
green icon is detected and the top level html tag does not

contain a class starting with gr, the tracker records that it
found a cloaked version of Grammarly. We tested this by
running the tracker against all 2,447 uncloaked extensions
and the two cloaked versions of Evernote and Grammarly.
The tracker accurately identified the cloaked versions of both
extensions with zero false positives.

4.4 Performance Experiments
CloakX minimally impacts the performance of Chrome in
our automated tests. We tested CloakX’s performance by ran-
domly selecting 500 extensions that contain structureprints
because their cloaking requires more resources. Each indi-
vidual test loaded Chrome, loaded the extension, and ran a
triggering webpage from the local machine, which either trig-
gered a page load event or timed out. We executed the tests
ten times on both the original and modified extensions. The
tests were performed across 16 cores with each core running
at 2.2 Ghz. On average, the original extensions took 12.3128
seconds and used 66,790 KB of memory whereas the mod-
ified extensions took 12.3221 seconds and used 67,123 KB
of memory. Thus, the average increase in overhead for the
cloaked extensions was a .07% increase in execution time
(0.0093 seconds per extension) and a .49% increase in mem-
ory use (333 KB per extension).

5 Discussion

Using the highest failure rate for each of the fingerprint types
and using fuzzy matching, CloakX retained the functional-
ity and hid from detection 96.23% (18,222) of the tested
extensions. For anchorprint detectable extensions, CloakX
rendered 98.55% (17,574) of the extensions undetectable and
with equivalent functionality. For structureprint detectable
extensions, the tracker was unable to detect 95.91% (5,094)
of the cloaked extensions.

CloakX rendered the detection of extensions using anchor-
prints significantly less accurate. CloakX increases user’s
anonymity by diversifying WARs, IDs, class names, and cus-
tom attributes used for anchorprints. In our experiments,
cloaking the WARs, IDs, and class names destroyed the link
between the published extension and the currently installed
version. As a result, none of the successfully cloaked exten-
sions could be detected based solely on their WAR, ID, or
class name. Although it is possible to cloak custom attributes
in a similar fashion, CloakX uses cross extension injection
of custom attributes to cloak extensions. For trackers using
custom attributes to perform anchorprint detection, CloakX
increases the number of matches the tracker makes when eval-
uating an extension’s anchorprint, which causes it to exceed
the matching threshold and, thus, not detect the extension.

For detection using structureprints, CloakX obfuscated
95.91% (5,094) of the previously detectable extensions even
when fuzzy matching with 90% level of confidence was used.

1692 28th USENIX Security Symposium USENIX Association

To prevent structureprint matching, CloakX diversifies the
tags and attributes added to the DOM by the extension. While
these changes were effective against exact and fuzzy match-
ing, the changes only obfuscate the structureprint. Therefore,
it is possible that a tracker could create a more sophisticated
matching process (as has been the case in fingerprinting at-
tacks and countermeasures) that limits the search to those
DOM modifications that are constant.

For example, cloaked extensions are still sometimes iden-
tifiable with behaviorprints. In our experiments with twenty
extensions, we were able to manually create unique behavior-
prints for eleven of the twenty cloaked extensions.

However, behaviorprinting does not currently scale. First,
the creation of behaviorprints requires human intelligence and
no recent research has shown how to automatically generate
a behaviorprint. Second, consistent human intervention is
required to prevent the behaviorprints from going stale and
no longer being able to identify the extension. For example,
LastPass could update their icon, which would no longer
match the saved behaviorprint. Third, due to the dynamic
nature of the web ecosystem many of the behaviorprints will
likely be difficult to use in practice. Lastly, the more popular
an extension is the less value the detection of that extension
offers towards the goal of identifying users. As a result, for
a tracking website to effectively utilize behaviorprints they
need to obtain a large number of behaviorprints from both
popular and less popular extensions, which exacerbates the
scaling problems.

Protection from behaviorprints is a fundamentally difficult
problem because the extensions and the browser share the
same view of the DOM. CloakX provides some protection
from behaviorprints through its injection of noise into the
DOM and with additional features could provide even more
protection against behaviorprinting. For example, CloakX
can make user identification via behaviorprints even more
difficult by adding a feature that randomly injects the behav-
iorprints of the popular extensions, which increases the false
positive detections and further dilutes the user’s fingerprint.
In addition, it is important to point out that only 3,756 exten-
sions (of the 59,255 extensions we used in our study) have
unique enough changes to the DOM to form behaviorprints
and many of those are not unique enough to provide a robust
means of detecting extensions. Nevertheless, the more com-
plete privacy solution for extension fingerprinting is to modify
the browser so that the extension and the website JavaScript
see their own views of the DOM.

Although we were able to detect the use of CloakX, de-
tecting the presence of a defense mechanism, like CloakX,
is different than defending what the mechanism is explicitly
trying to protect against (i.e., the presence of specific browser
extensions). The fingerprinting value realized by detecting
an extension cloaked with CloakX diminishes with each user
that uses cloaked extensions. However, it is unlikely any
attackers will try to detect cloaked extensions until CloakX

becomes popular enough to warrant the attention. As a result,
the fingerprint value of detecting CloakX is limited. How-
ever, as CloakX becomes more popular it is possible that
malicious or shady websites could deny service to users with
CloakX-enabled extensions, but this issue exists with any
defensive mechanism (similar to what users experience with
ad-blocking extension detection).

Thus, despite the limitations described above, CloakX
takes a large step forward towards protecting users from
wide-spread automated fingerprinting using anchorprints and
structureprints.

5.1 Case Study of Failures
Despite their large size and complexity, CloakX cloaks and
retains equivalent functionality of 97.88% of the extensions
detectable through their anchorprints and structureprints.

Functional breakage caused by the remote loading of
scripts was common in broken extensions. One approach
to address this issue is to find droplets that load remote scripts
which CloakX could download, cloak, and save inside the
extension. While an improvement over our current CloakX
prototype, the downside of this approach is that the remote
scripts might be dynamically generated and copying them
inside the extension would not solve the problem. At a high
level, we consider the loading of remote code in browser ex-
tensions an open problem because remote code can drastically
alter the extension’s logic after that extension has been vetted
by the extension store.

Droxy relies on hash values calculated from a static version
of the JavaScript code; however, some extensions dynamically
change their inline JavaScript code each time it is produced.
As a result, Droxy was unable to find the inline code because
the current script would not match the one stored in CloakX’s
metadata. In most cases, we observed that the differences be-
tween the original and live scripts were minor which suggests
that alternative search routines that allow for fuzzy-matching
would be able to handle most of the observed code-matching
issues, such as the one used by Soni et al. [40].

5.2 A New Avenue of Security Exploration
Due to the often-misaligned incentives between extension
developers and end users, it is desirable to be able to perform
late-stage customizations of browser extensions not only to
make extensions less fingerprintable, but to also improve their
overall security and privacy. In this work, we showed that
despite the complexity of the rewriting process, we were
able to automatically modify extensions, without requiring
browser changes or changes to the development process of
browser extensions. Therefore, our approach could be used
in additional contexts, such as removing unnecessary third-
party trackers and PII leaks [41, 46] or automatically patching
vulnerabilities discovered in browser extensions [17].

USENIX Association 28th USENIX Security Symposium 1693

6 Related Work

To the best of our knowledge this paper proposes the
first client-side countermeasure against the fingerprinting of
browser extensions. In this section, we briefly describe prior
work on generic browser fingerprinting and the related coun-
termeasures.

Eckersley conducted the first large-scale study that showed
browser fingerprinting was sufficient to uniquely identify
users without cookies or other stateful identifiers [18]. Since
then, researchers studied several related topics including
tracking the adoption of fingerprinting in the wild [11, 12,
19, 31, 36], proposing new vectors for browser fingerprint-
ing [32, 33, 37, 38, 42, 45], and describing potential defenses
against it [29, 30, 35].

Of all the new vectors proposed for browser fingerprint-
ing, in 2017, researchers discovered three different types of
side-channels for detecting the presence of specific browser
extensions. Sjösten et al. used WARs to determine whether a
browser extension is installed [38]. Using this method, they
found unique fingerprints for 12,154 extensions and more
than 50% of the 1,000 most popular extensions. With the
fingerprint, extension detection is straightforward for an at-
tacker to execute (one check per extension) and works even
if the user utilizes incognito mode. To defend against this
attack, CloakX dynamically renames all of an extension’s
WARs and rewrites all references to these WARs from the
extension’s code. As such, every different installation of the
same cloaked extension will now have different WARs.

Starov and Nikiforakis utilized the changes in a webpage’s
DOM to detect extensions. Similar to the WAR detection
technique, the attacker pre-processes all the extensions of
interest to extract the DOM fingerprints that can be later
used to detect the extension’s presence [42]. As with WARs,
CloakX dynamically rewrites the IDs and class names of
all injected DOM elements, which changes the extension’s
fingerprint and makes it undetectable.

The last browser extension fingerprinting technique, pro-
posed by Iskander-Rola et al. [37] relies on timing channels
to detect the presence of files associated with a browser ex-
tension. Their method works regardless of whether the ex-
tensions declares the files as web accessible. Similarly, Van
Goethem and Joosen propose a variation of the same tech-
nique using different timing side channels [45]. Because these
attacks abuse the access-control mechanisms of a browser, no
amount of extension rewriting can counter them. As such, we
consider these attacks as out-of-scope for CloakX because
our goal is to counteract the detection techniques without
modifying the browser.

7 Conclusion

In this paper, we presented the first client-side countermea-
sure for defending against the detection of browser extensions.

Our system, CloakX, uses the principle of diversification so
that two installations of the same extension expose different
fingerprintable attributes. CloakX operates in an extension-
agnostic fashion by rewriting extensions on the client-side,
without requiring any modifications to the web browser. Over-
all, through a combination of large-scale experiments and
manual testing, we showed that our CloakX prototype can
successfully handle the majority of browser extensions while
causing minimal breakage.
Acknowledgements: We thank the anonymous reviewers for
their helpful feedback. This work was supported by the Office
of Naval Research (ONR) under grant N00014-17-1-2541,
as well as by the National Science Foundation (NSF) under
grants CNS-1527086, CNS-1617593 and CNS-1703375.

References

[1] Automatically find and apply coupons. https:
//chrome.google.com/webstore/detail/honey/
bmnlcjabgnpnenekpadlanbbkooimhnj.

[2] Chrome.runtime - getbackgroundpage(). https:
//developer.chrome.com/extensions/runtime#
method-getBackgroundPage.

[3] Content scripts. https://developer.chrome.com/
extensions/content_scripts.

[4] Detect adblock – most effective way to detect ad blockers.
https://www.detectadblock.com/.

[5] Extension overview. https://developer.chrome.com/
extensions/overview.

[6] Github - tajs. http://nicolas.golubovic.net/thesis/master.
pdf .

[7] Manifest - web accessible resources. https://developer.
chrome.com/extensions/manifest/web_accessible_
resources.

[8] Manifest version. https://developer.chrome.com/
extensions/manifestVersion.

[9] Sizzle javascript selector. https://sizzlejs.com/.

[10] W3 dom overview. https://www.w3.org/TR/
DOM-Level-2-Core/introduction.html.

[11] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan,
and C. Diaz. The Web Never Forgets: Persistent Tracking
Mechanisms in the Wild. In Proceedings of the 21st ACM
Conference on Computer and Communications Security (CCS),
2014.

[12] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: Dusting the Web for
fingerprinters. In Proceedings of the 20th ACM Conference on
Computer and Communications Security (CCS), 2013.

1694 28th USENIX Security Symposium USENIX Association

https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://www.detectadblock.com/
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
http://nicolas.golubovic.net/thesis/master.pdf
http://nicolas.golubovic.net/thesis/master.pdf
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifestVersion
https://developer.chrome.com/extensions/manifestVersion
https://sizzlejs.com/
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html

[13] E. Andreasen, A. Feldthaus, S. H. Jensen, C. S. Jensen, P. A.
Jonsson, M. Madsen, and A. Møller. Improving tools for
javascript programmers. In Proc. of International Workshop
on Scripts to Programs. Beijing, China:[sn], pages 67–82,
2012.

[14] E. Andreasen and A. Møller. Determinacy in static analysis
for jQuery. ACM SIGPLAN Notices, 49(10):17–31, 2014.

[15] E. S. Andreasen, A. Møller, and B. B. Nielsen. Systematic
Approaches for Increasing Soundness and Precision of Static
Analyzers. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, (June), 2017.

[16] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices, 49(6):259–
269, 2014.

[17] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting
browsers from extension vulnerabilities. In Network and Dis-
tributed System Security Symposium (NDSS). Citeseer, 2010.

[18] P. Eckersley. How Unique Is Your Browser? In Proceedings of
the 10th Privacy Enhancing Technologies Symposium (PETS),
pages 1–18, 2010.

[19] S. Englehardt and A. Narayanan. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, pages 1388–1401. ACM, 2016.

[20] Google Chrome Extension. Trump Filter. https:
//chrome.google.com/webstore/detail/trump-filter/
lhondapiaknegjpellpodegmeonigjic.

[21] Google Chrome Extensioon. Hillary Blocker. https:
//chrome.google.com/webstore/detail/hillary-blocker/
kiblhkcoiojbdhhnjaekompfecgelfja.

[22] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos,
M. A. Rajab, and K. Thomas. Trends and lessons from three
years fighting malicious extensions. In 24th USENIX Security
Symposium, 2015.

[23] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the
eval that men do. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 34–44.
ACM, 2012.

[24] S. H. Jensen, P. a. Jonsson, and A. Møller. Remedying the
Eval That Men Do. Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 34–44,
2012.

[25] S. H. Jensen, M. Madsen, and A. Møller. Modeling the html
dom and browser api in static analysis of javascript web appli-
cations. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software
engineering, pages 59–69. ACM, 2011.

[26] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
javascript. In International Static Analysis Symposium, pages
238–255. Springer, 2009.

[27] S. H. Jensen, A. Møller, and P. Thiemann. Interprocedural
analysis with lazy propagation. In International Static Analysis
Symposium, pages 320–339. Springer, 2010.

[28] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson. Hulk: Eliciting malicious behavior in browser exten-
sions. In 23rd USENIX Security Symposium (USENIX Security
14), pages 641–654, San Diego, CA, Aug. 2014. USENIX
Association.

[29] P. Laperdrix, B. Baudry, and V. Mishra. Fprandom: Randomiz-
ing core browser objects to break advanced device fingerprint-
ing techniques. In International Symposium on Engineering
Secure Software and Systems, pages 97–114. Springer, 2017.

[30] P. Laperdrix, W. Rudametkin, and B. Baudry. Mitigating
browser fingerprint tracking: multi-level reconfiguration and
diversification. In Proceedings of the 10th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing
Systems, pages 98–108. IEEE Press, 2015.

[31] P. Laperdrix, W. Rudametkin, and B. Baudry. Beauty and
the Beast: Diverting modern web browsers to build unique
browser fingerprints. In 37th IEEE Symposium on Security
and Privacy (S&P 2016), San Jose, United States, May 2016.

[32] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Finger-
printing information in javascript implementations. In Pro-
ceedings of W2SP, volume 2, 2011.

[33] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in html5. Proceedings of W2SP, pages 1–12, 2012.

[34] Nicolas Golubovic. Attacking Browser Extensions, MS Thesis,
Ruhr-University Bochum. http://nicolas.golubovic.net/
thesis/master.pdf , 2016.

[35] N. Nikiforakis, W. Joosen, and B. Livshits. Privaricator: De-
ceiving fingerprinters with little white lies. In Proceedings of
the 24th International Conference on World Wide Web, pages
820–830. International World Wide Web Conferences Steering
Committee, 2015.

[36] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In Security
and privacy (SP), 2013 IEEE symposium on. IEEE, 2013.

[37] I. Sanchez-Rola, I. Santos, and D. Balzarotti. Extension break-
down: Security analysis of browsers extension resources con-
trol policies. In 26th USENIX Security Symposium, 2017.

[38] A. Sjösten, S. Van Acker, and A. Sabelfeld. Discovering
browser extensions via web accessible resources. In Proceed-
ings of the Seventh ACM on Conference on Data and Applica-
tion Security and Privacy, pages 329–336. ACM, 2017.

USENIX Association 28th USENIX Security Symposium 1695

https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
http://nicolas.golubovic.net/thesis/master.pdf
http://nicolas.golubovic.net/thesis/master.pdf

[39] P. Snyder, C. Taylor, and C. Kanich. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser
security. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 179–194.
ACM, 2017.

[40] P. Soni, E. Budianto, and P. Saxena. The sicilian defense:
Signature-based whitelisting of web javascript. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1542–1557. ACM, 2015.

[41] O. Starov and N. Nikiforakis. Extended tracking powers: Mea-
suring the privacy diffusion enabled by browser extensions. In
Proceedings of the 26th International Conference on World
Wide Web, pages 1481–1490. International World Wide Web
Conferences Steering Committee, 2017.

[42] O. Starov and N. Nikiforakis. XHOUND: Quantifying the fin-
gerprintability of browser extensions. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 941–956. IEEE, 2017.

[43] M. Stockley. The web attacks that refuse to die.
https://nakedsecurity.sophos.com/2016/06/15/
the-web-attacks-that-refuse-to-die/.

[44] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal,
A. Kapravelos, D. McCoy, A. Nappa, V. Paxson, P. Pearce,
et al. Ad injection at scale: Assessing deceptive advertisement
modifications. In IEEE Symposium on Security and Privacy
(SP), 2015.

[45] T. Van Goethem and W. Joosen. One side-channel to bring
them all and in the darkness bind them: Associating isolated
browsing sessions.

[46] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini,
W. Robertson, and E. Kirda. Ex-ray: Detection of history-
leaking browser extensions. In Proceedings of the 33rd Annual
Computer Security Applications Conference, pages 590–602.
ACM, 2017.

[47] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci,
and W. Lee. Understanding malvertising through ad-injecting
browser extensions. In Proceedings of the 24th International
Conference on World Wide Web, WWW ’15, pages 1286–1295,
2015.

1696 28th USENIX Security Symposium USENIX Association

https://nakedsecurity.sophos.com/2016/06/15/the-web-attacks-that-refuse-to-die/
https://nakedsecurity.sophos.com/2016/06/15/the-web-attacks-that-refuse-to-die/

Less is More: Quantifying the Security Benefits of Debloating Web Applications

Babak Amin Azad
Stony Brook University

baminazad@cs.stonybrook.edu

Pierre Laperdrix
Stony Brook University

plaperdrix@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University
nick@cs.stonybrook.edu

Abstract

As software becomes increasingly complex, its attack surface
expands enabling the exploitation of a wide range of vulnerabil-
ities. Web applications are no exception since modern HTML5
standards and the ever-increasing capabilities of JavaScript are
utilized to build rich web applications, often subsuming the
need for traditional desktop applications. One possible way of
handling this increased complexity is through the process of
software debloating, i.e., the removal not only of dead code but
also of code corresponding to features that a specific set of users
do not require. Even though debloating has been successfully
applied on operating systems, libraries, and compiled programs,
its applicability on web applications has not yet been investigated.

In this paper, we present the first analysis of the security
benefits of debloating web applications. We focus on four
popular PHP applications and we dynamically exercise them
to obtain information about the server-side code that executes
as a result of client-side requests. We evaluate two different
debloating strategies (file-level debloating and function-level
debloating) and we show that we can produce functional web
applications that are 46% smaller than their original versions
and exhibit half their original cyclomatic complexity. Moreover,
our results show that the process of debloating removes
code associated with tens of historical vulnerabilities and
further shrinks a web application’s attack surface by removing
unnecessary external packages and abusable PHP gadgets.

1 Introduction

Despite its humble beginnings, the web has evolved into a
full-fledged software delivery platform where users increasingly
rely on web applications to replace software that traditionally
used to be downloaded and installed on their devices. Modern
HTML5 standards and the constant evolution of JavaScript en-
able the development and delivery of office suites, photo-editing
software, collaboration tools, and a wide range of other complex
applications, all using HTML, CSS, and JavaScript and all
delivered and rendered through the user’s browser.

This increase in capabilities requires more and more complex
server-side and client-side code to be able to deliver the features
that users have come to expect. However, as the code and
code complexity of an application expands, so does its attack
surface. Web applications are vulnerable to a wide range
of client-side and server-side attacks including Cross-Site
Scripting [4, 47, 72], Cross-Site Request Forgery [3, 33, 46],
Remote Code Execution [18], SQL injection [19,41], and timing
attacks [35,40]. All of these attacks have been abused numerous
times to compromise web servers, steal user data, move laterally
behind a company’s firewall, and infect users with malware and
cryptojacking scripts [43,49,74].

One possible strategy of dealing with ever-increasing software
complexity is to customize software according to the environment
where it is used. This idea, known as attack-surface reduction and
software debloating, is based on the assumption that not all users
require the same features from the same piece of software. By
removing the features of different deployments of the same soft-
ware according to what the users of each deployment require, one
can reduce the attack surface of the program by maintaining only
the features that users utilize and deem necessary. The principle
of software debloating has been successfully tried on operating
systems (both to build unikernel OSs [53] and to remove unnec-
essary code from the Linux kernel [51,52]) and more recently on
shared libraries [56,61] and compiled binary applications [42].

In this paper, we present the first evaluation of the applicability
of software debloating for web applications. We focus on
four popular open-source PHP applications (phpMyAdmin,
MediaWiki, Magento, and WordPress) and we map the CVEs
of 69 reported vulnerabilities to the source code of each web
application. We utilize a combination of tutorials (encoded as Se-
lenium scripts), monkey testing, web crawling, and vulnerability
scanning to get an objective and unbiased usage profile for each
application. By using these methods to stimulate the evaluated
web applications in combination with dynamically profiling the
execution of server-side code, we can precisely identify the code
that was executed during this stimulation and therefore the code
that should be retained during the process of debloating.

USENIX Association 28th USENIX Security Symposium 1697

Equipped with these server-side execution traces, we evaluate
two different debloating strategies (file-level debloating and
function-level debloating) which we use to remove unnecessary
code from the web applications and quantify the security benefits
of this procedure. Among others, we discover an average
reduction of the codebase of the evaluated web application of
33.1% for file-level debloating and 46.8% for function-level de-
bloating, with comparable levels of reduction in the applications’
cyclomatic complexity. In terms of known vulnerabilities, we
remove up to 60% of known CVEs and the vast majority of PHP
gadgets that could be used in Property Oriented Programming
attacks (the equivalent of Return-Oriented Programming attacks
for PHP applications).
Overall, our contributions are the following:

• We encode a large number of application tutorials as
Selenium scripts which, in combination with monkey
testing, crawling, and vulnerability scanning, can be used
to objectively exercise a web application. Similarly, we
map 69 CVEs to their precise location in the applications’
source code to be able to quantify whether the vulnerable
code could be removed during the process of debloating.

• We design and develop an end-to-end analysis pipeline
using Docker containers which can execute client-side,
application stimulation, while dynamically profiling the
executing server-side code.

• We use this pipeline to precisely quantify the security
benefits of debloating web applications, finding that
debloating pays large dividends in terms of security, by
reducing a web application’s source code, cyclomatic
complexity, and vulnerability to known attacks.

To motivate further research into debloating web applications
and to ensure the reproducibility of our findings, we are releasing
all data and software artifacts.

2 Background

In this section, we briefly describe the effect of package
managers on software bloat and provide a motivating example
for debloating web applications.

2.1 Package managers and software bloat
To ease the development of software, developers reuse third-
party libraries, external packages, and frameworks for their
applications. This approach enables developers to focus on their
applications while relying on proven and tested components.
Statistics from popular package managers show that reliance
on external packages is a widely adopted practice across many
different languages. NPM, the registry hosting NodeJS packages,
reports more than 10 billion package downloads a month [73].
Similarly, PyPI, the package manager for Python, reports more

than a billion a month [30], while Packagist, the main repository
for Composer package manager for PHP, reports the download
of 500 million packages each month [29].

At the same time, it is doubtful that all the code and features
obtained through these packages and frameworks are actually
used by the applications that rely on them. For the most part,
when developers rely on external dependencies, they include
entire packages with no effective way of disabling and/or
removing the parts of these packages and frameworks that their
applications do not require.

2.2 Motivating web-application debloating

In this study, we look at the bloat of web applications and
quantify how debloating can provide concrete security benefits.
Even though debloating has been successfully applied in other
contexts, we argue that the idiosyncrasies of the web platform
(e.g. the ambient authority of cookies and the client/server
model which is standard for the web but atypical for operating
systems and compiled software) require a dedicated analysis of
the applicability of debloating for web applications.

To understand how the bloat of a web application can lead to
a critical vulnerability, we use a recent vulnerability of the Sym-
fony web framework (CVE-2018-14773 [28]) as a motivating
example. Specifically, the Symfony web framework supported
a legacy IIS header that could be abused to have Symfony return
a different URL than the one in the request header, allowing
the bypassing of web application firewalls and server-side
access-control mechanisms. If this type of header was never used
by the server, debloating the application would have removed
support for it, which ultimately would have prevented anyone
from exploiting the vulnerability. Drupal, a popular PHP Content
Management System (CMS), was also affected by the same vul-
nerability since it uses libraries from the Symfony framework to
handle parts of its internal logic [26]. Even if Drupal developers
were not responsible for the code that leads to the vulnerability,
their application could still be exploited since Symfony was an
external dependency. Even more interestingly, an analysis of the
official Symfony patch on GitHub [27] reveals that the vulnerable
lines were derived from yet another framework called Zend [31].
This shows that the structure of web applications can be very
complex with code reuse originating from many different sources.
Even if developers take all possible precautions to minimize vul-
nerabilities in their own code, flaws from external dependencies
can cascade and lead to a critical entry point for an attacker.

Overall, there are clear benefits that debloating could have on
web applications. Assuming that we are able to pinpoint all the
code that is required by the users of a given software deployment,
all other code (including the code containing vulnerabilities) can
be removed from that deployment.

1698 28th USENIX Security Symposium USENIX Association

4. Analyze Unused Files / Functions

Debloated Applications

5. Debloating Logic3. Record Code Coverage

Line
Coverage
Information

1. Vulnerability to Code Mapping

2. Application Profiling By Usage
Simulation

CVE
Database

7. Test Against Known Expoits

6. Rerun Tests to Verify Correctness

8. Analyze The Results

Figure 1: Overview of the architecture of our pipeline for debloating web applications and assessing the effects of different debloating strategies.

3 Setup

In this section, we describe the process of gathering information
regarding known vulnerabilities (in the form of CVEs) for
web applications, designing and executing tests against web
applications of interest, and identifying the server-side code that
was executed as a result of client-side actions.

3.1 Overview

The setup for our framework is depicted in Figure 1. To
debloat target applications, we first collect information about the
vulnerabilities of the applications that we analyze in our study.
This information includes the files, functions, and line numbers
where each vulnerability resides (Step 1, Section 3.3). Then,
we simulate usage of the application through a combination of
different techniques (Step 2, Section 3.4). Using a PHP profiler
tool (XDebug), we record the lines, functions, and files, that are
triggered during the simulation (Step 3, Section 3.5).

In the middle part of our pipeline, the debloating engine takes
both the target applications and coverage information to perform
debloating at different levels of granularity, and rewrite parts of
the application to remove unused pieces of code based on the
debloating strategy being evaluated (Steps 4 and 5, Section 4).
Our framework also provides a complete reporting panel to assist
human analysts in understanding which vulnerabilities can be
removed by the present debloating strategies.

Last, we verify the correctness of our debloating process by
running a set of tests against the debloated web applications,
and verifying that no removed piece of code is triggered (Step
5). To this end, we utilize assertions in place of the removed
code blocks. An absence of error messages from these assertions
means that all tests were successfully completed without
triggering any missing server-side code. As an final step of
verification, we also test the debloated applications against a
series of exploits and verify that exploits which abuse any of

the vulnerabilities that were removed as part of the debloating
process, do not succeed (Step 6, Section 5.6).

To ease integration and facilitate the analysis of new web ap-
plications, we adopted a modular architecture that relies on three
Docker containers. The Application container hosts our web
applications. The profiler enabled on its web server is respon-
sible for collecting code coverage information. The Database
container runs a MySQL server that stores the code coverage
information along with the databases of the tested applications.
Lastly, the Debloating container which includes our debloating
logic, analyzes the coverage information and generates debloated
versions of applications. It also provides a reporting panel that
indicates which vulnerabilities are removed in each application
after debloating. To add a new vulnerability, a user simply has
to provide the details of the vulnerable file(s) and line(s).

3.2 Analyzed web applications
To understand how the process of debloating increases the
security of web applications, we decided against using toy-like
web applications. Instead, we focused on established open-
source applications with millions of users, and the presence of
a sufficient number of known historical vulnerabilities (in the
form of CVEs) to allow us to generalize from them. To this end,
we selected phpMyAdmin [60], MediaWiki [59], Magento [58],
and WordPress [75], which are representative samples of four
different types of web applications namely web-administration
tools, wikis, online shops, and blogging software. Table 1 shows
the versions of these web applications that we utilized, in order
to map CVEs to the location of the vulnerability in the source
code of each application.

3.3 Vulnerability to source-code mapping
To determine whether debloating web applications can actually
remove vulnerabilities, we performed a mapping of known CVEs

USENIX Association 28th USENIX Security Symposium 1699

Table 1: Analyzed open-source web applications.

Web Application Version Known CVEs
(≥2013)

Magento 1.9.0, 2.0.5 10
MediaWiki 1.19.1, 1.21.1, 1.24.0, 1.28.0 111
phpMyAdmin 4.0.0, 4.4.0, 4.6.0, 4.7.0 130
WordPress 3.9.0, 4.0, 4.2.3, 4.6, 4.7, 4.7.1 131

to the vulnerable lines, functions, and files, that they exploit
in each application. This way, by looking at an application
after debloating, we can determine if the files, functions, or
lines responsible for the vulnerability, are still present or were
removed during the debloating process.

Even though there exist multiple databases listing the current
and historical CVEs of popular software (including the web
applications in question) [36,37], locating the actual source code
containing the vulnerability described in a CVE, is a non-trivial
process which requires careful investigation. In some cases, the
right patch can be discovered because of a direct reference to
a CVE in a commit message, or in a bug report on official public
repositories of web applications. For others, the fix is included
within numerous commits that have to be carefully analyzed to
locate the appropriate lines of code. Since a vulnerability can
span over multiple lines, functions, and even multiple files, we
record all affected locations in a database so that this information
can be later correlated with each evaluated application.

Given the time-consuming nature of mapping CVEs to
existing code, for this study, we limited ourselves to, at most, 20
CVEs per application of interest. The complete list of CVEs we
mapped for this study can be found in Table 9 in the Appendix.
To select these CVEs, we ordered existing vulnerabilities by their
CVSS score (thereby selecting the ones that are the most critical)
and we did not consider vulnerabilities that were reported before
2013. This focus on fairly recent vulnerabilities (i.e. in the last
five years) makes our results more generalizable to the current
state of web applications, as opposed to quantifying vulnerabil-
ities in source-code which has since dramatically evolved. Note
that, because not all versions of a web application are vulnerable
to all evaluated CVEs, we had to map vulnerabilities across a
number of different versions, as shown in Table 1.

3.4 Application usage profiling

Modern web applications provide an incredibly wide range
of features and options to their users. Even though, from a
functional perspective, more features are desirable, from a
security perspective, the code that implements new features
may contain new vulnerabilities thereby further expanding a
program’s attack surface. In order for a system to be able to
remove code related to unnecessary features, one must first
identify which features are necessary for a target set of users.

Given a usage profile, the goal of our framework is to produce
debloated versions of web applications which maintain the code

and features that are part of that profile but remove the rest. To be
as objective as possible with what features are considered “nec-
essary,” we utilize four independent sources of web application
usage: i) online tutorials describing how to use the applications
of interest, ii) web crawlers that autonomously navigate the
application, iii) vulnerability scanners that feed malicious content
to the application, and iv) monkey testing tools that click on
random parts of webpages and type random keystrokes. The
combination of all four gives our profiles both breadth (through
the crawler and monkey testing) as well as depth (through the
user following complicated paths while providing expected in-
puts and the vulnerability scanner which provides large amounts
of malicious inputs trying to exploit the web application).

3.4.1 Tutorials

To simulate common interactions with an application, we use
a popular search engine to search for the application’s name
followed by the word “tutorials” (e.g. “phpMyAdmin tutorials”)
and follow the tutorials from the first two pages of search results.

Specifically, we map each tutorial to a Selenium script that
allows us to both execute the same tutorial multiple times and
also assess the correctness of the results (e.g. encode that when
we delete a database using phpMyAdmin, the deleted database is
no-longer shown in the list of databases). Note that this mapping
of tutorials to Selenium scripts is yet another time-consuming
process which, occasionally, has to be repeated for different ver-
sions of the same web application. One change in a form field or
in a selector can break the complete flow of a test suite and we ob-
served a significant number of cases with slight interface changes
between two consecutive versions of the same application.

Overall, after fine-tuning the scripts for all our tested versions,
we obtained 46 tutorials which translated into 302 use cases
scripted as Selenium tests requiring 16,025 lines of code. Given
our desire for complete reproducibility of our results, we include
the complete list of tutorials in the Appendix (Table 8) along with
WebArchive links that will remain available despite potential
future domain expirations and linkrot of the original URLs [48].

Below, we provide a non-exhaustive list of actions that were
part of the followed tutorials of each web application. Full
details are available in the actual tutorials and in the Selenium
scripts which we will release together with this paper.

Actions covered by phpMyAdmin tutorials: As a web
administration tool, all phpMyAdmin functionality is protected
by an authentication mechanism. We followed the actions
described by tutorials when logged in as a root user account
with full application access. The Selenium-encoded tutorials
cover database operations including creating and dropping
databases, filling tables with data, querying, table indexes, and
importing/exporting data. They also include administration tasks
such as adding new user accounts, optimizing databases, check-
ing database server status, obtaining performance metrics, and
accessing server settings such as variables, charsets, and engines.

1700 28th USENIX Security Symposium USENIX Association

Actions covered by MediaWiki tutorials: MediaWiki provides
different features depending on the privileges of the user. Unau-
thenticated users can only visit and search pages. Registered ones
can post and edit content while administrators can perform moder-
ation and management operations. The tutorials that we followed
cover all these different use cases. More specifically, actions
coded in our tutorials include authentication, creating and renam-
ing pages, importing and exporting content from the wiki, as well
as changing settings such as skins, styles, and formatting options.
Actions covered by WordPress tutorials: As a blogging
software, WordPress has two distinct entry points, one for
normal unauthenticated users to read blogs and post comments,
and a separate administration panel accessible to privileged
and authenticated users. WordPress tutorials mostly focus on
administrative tasks since normal users have limited abilities.
The Selenium-encoded tutorials include actions such as creating
a new post using HTML for the content, modifying most post
options (ranging from visibility and tags to setting featured
images), as well as downloading and changing WordPress
themes. For the administration panel, the tutorials include
exporting content, setting up user accounts, and uploading media.
Finally, the tutorials include the visiting of posts and the posting
of comments as well as the management of comments, such as
approving them, marking them as spam, and deleting them.
Actions covered by Magento tutorials: Magento is the largest
evaluated web application in terms of source code and has
the most features compared to the other applications. Similar
to WordPress, the tutorials mostly target administration tasks
which include store settings, advanced product search options,
order notification via RSS, product pricing, currencies and tax
rules, delivery and payment methods, emails and notifications,
reviews and ratings and cache control. Some tutorials go in
even more details by covering product and stock management,
managing customers and groups configurations, modifying the
UI, creating pages, and using widgets. On the customer side, we
followed tutorials that included registration of a new account,
authentication actions, and purchasing products until checkout.

3.4.2 Monkey testing

Monkey testing is a method for testing software where the
simulated user sends random clicks and keystrokes to the target
application. This unpredictable behavior can uncover bugs in
an application as it can trigger paths and actions that were not
anticipated by developers. In our case, we use such a technique
to trigger additional code, not covered by tutorials. We observe
that this approach adds breadth to the code coverage by reaching
easy to access features. In addition, by feeding random key
strokes into forms, monkey testing can bring the application in
an error state thus exercising error-handling pieces of code.

We rely on the stress-testing library called gremlins.js [7]
in conjunction with the GreaseMonkey browser extension [6]
to inject the library into web application pages. Since this kind
of testing can occasionally trigger unwanted actions, we have

to take necessary steps to stop them, e.g., prevent the test from
leaving the web application and visiting external websites. We
also want to prevent gremlins.js from getting trapped on
a single page as an unexpected JavaScript dialogue box or a
dead end page can pause our test execution. An additional
issue is that of accidentally logging out a web application by
clicking on a logout link. Given that we run monkey-testing
under three different usage profiles (public user, logged-in user,
and administrator) we took steps to avoid accidental logouts.
Overall, we perform the following modifications: i) we remove
all links that lead to external pages, ii) we remove logout buttons
for applications that require authentication, iii) we override the
aforementioned JavaScript functions and iv) we set a timeout
to detect when the monkey is stuck and reset it to a known good
state. All these actions are done using injected JavaScript on
target pages prior to starting the gremlins.js library.

To cover a large set of pages from a web application, we
run gremlins.js for 12 hours for each of the test profiles. To
guarantee the reproducibility of our experiment, we choose a
fixed seed for each run that will generate the same sequence of
pseudo-random actions.

3.4.3 Crawling

Web spiders (also known as crawlers) are a type of bot that
follows the links of a web application and optionally submits
forms with predefined content. Each newly crawled page is
added to a database of the application that the crawler uses to
prevent repeated visits to the same pages. For our study, we use
BurpSuite Spider v2.0.14beta [2] to crawl our web applications.
As a result, we augment the application coverage with code paths
that were not triggered, either through the followed tutorials or
through monkey testing.

3.4.4 Running vulnerability scanners

Vulnerability scanners are tools that try to detect security flaws
in web applications. We use BurpSuite Scanner v2.0.14beta [2]
based on the URLs extracted by the spider to look for vulner-
abilities in headers, URLs and forms. Notably, the scanner tries
different injection mechanisms like SQL injection, XSS, PHP file
injection, and path traversal, to trigger errors and reach unwanted
states in the application. The vulnerability scanner goes beyond
what the crawler and the monkey cover by modifying headers
and URL parameters. By inspecting the resulting coverage,
we observe that each of these four methods result in exercising
server-side code that would not have been exercised through the
other methods. We quantify this relationship in Section 5.

3.5 Recording server-side code coverage

Regardless of the method that is used to interact with a web
application, in order to be able to successfully remove unused
code (i.e. debloat the web application), we must be able to

USENIX Association 28th USENIX Security Symposium 1701

associate client-side requests with server-side code. To record
the files and lines of code that are triggered by user requests, we
make use of PHP profilers.

PHP profilers are available as PHP extensions that modify
the PHP engine to collect code-coverage information. There
exist a number of different profilers, such as, XDebug [23],
phpdbg [16], and xhprof [24] all of which require a similar
setup to record code coverage. For our framework, we decided
to use XDebug as it is the most mature profiler and is actively
maintained.

3.5.1 Adding coverage support in a web application

Connecting a web application to XDebug. To be able to
perform dynamic analysis and record lines of code that are
triggered by user requests, our framework must add calls to
specific XDebug functions in every PHP file of a web appli-
cation. Specifically, both xdebug start code coverage()
and xdebug get code coverage() functions are called to,
respectively, start and receive coverage information. If the “get”
function is never called, the coverage information is lost. In the
following paragraphs, we describe challenges related to obtaining
the code coverage from XDebug and how we overcame them.

The case of unrecorded lines. Boomsma and Gross reported
on the possibility of removing unused code in a custom
PHP application [34]. By performing dynamic analysis, they
observed which files were not used and removed them from
their application. The authors utilized their own profiler and took
advantage of the auto append built-in function of PHP to add
the necessary log functions at the very end of all PHP files [1].

For our study, we initially attempted to use the same approach
and ran preliminary tests by appending XDebug function calls
at the end of our tested files. However, we discovered that the
coverage was incomplete and that some lines were not properly
recorded. Given that any PHP file can call the exit() or die()
function at any time to terminate the current script, our XDebug
calls which were located at the end of each file, were not always
executed thus leading to under-reported code coverage.

3.5.2 Main challenges for getting full coverage

Avoiding early exits. To overcome the coverage problems due
to calls to exit functions, we utilized a specific type of PHP
callback functions, called shutdown functions. When registered,
these functions are triggered after all the code on the page has
finished running or after either exit() or die() functions are called.
This way, we are able to obtain the desired coverage information
even if a PHP script used one of the aforementioned functions.
Interestingly, we also discovered that calls to exit() inside a
shutdown function prevent the execution of other shutdown
functions including the call to collect our own code-coverage
information. To correct this issue, we statically analyzed the

evaluated applications and automatically added calls to collect
code coverage before these exit calls (e.g. Line 7 in Listing 1).

Getting correct coverage information of shutdown functions.
Another challenge, in terms of recording correct code-coverage
information, is to properly record the executed lines of
code inside shutdown functions. As mentioned by the PHP
manual [12], shutdown functions are called in the order they
were registered. This means that if our own shutdown function
is registered first, it will also be triggered first, thereby missing
any calls to subsequent shutdown functions present in the same
PHP file. To get full coverage, we use the following approach:
our own shutdown function will perform a late registration of
a final shutdown function that will be added at the very end of
the execution queue. This way, we can be certain that the very
last shutdown function that will be executed in a script will be
our own, providing us with the desired coverage information.

Getting correct coverage information of destructors. The
final challenge that we faced was to properly record covered
lines for all class destructors. PHP uses garbage collection and
reference counting to remove objects from memory, whenever
they are no longer necessary. However, there is no real way to
anticipate when the garbage collector will effectively remove
objects during program execution. If objects are destroyed before
the shutdown functions are executed, our framework has no
issue recording them. However, if they are destroyed after, our
shutdown functions are incapable of registering the execution
of these destructors.

To handle this special case, we rewrote class destructors so
that they register themselves while they are executing. Every
time a destructor is called, we query the XDebug engine to check
whether code-coverage recording is currently in progress. This
way, we can determine whether the destructor is called before
or after shutdown functions. If the destructor is called after
shutdown functions, we dynamically decide to start recording
all executed lines within the destructor and save the coverage
information when it finishes executing.

Summary. As witnessed through the above use cases, collecting
the correct code coverage information for a web application is
significantly more complicated than one would initially expect.
Through the preprocessing of code, and the use of destructors
and shutdown functions, we solve the issues that were not even
mentioned in prior work and get a precise view of the code that
executes at the server side, as a result of user requests. Listing 1
provides an example of concrete modifications in a PHP file. On
line 7, we added a code-coverage call before an exit which
happens inside a shutdown functions to prevent information loss
due to early exits. On lines 14 and 17, we wrapped the destructor
with code-coverage calls.

1702 28th USENIX Security Symposium USENIX Association

1 <?php
2 register_shutdown_function (" PMA_Response :: resp");
3 class PMA_Response {
4 public static function resp () {
5 $buffer ->flush ();
6 // Prepend original call to exit:
7 collect_code_coverage ();
8 exit;
9 }

10 }
11
12 class TCPDF {
13 public function __destruct () {
14 // If called after shutdown_functions
15 // start recording code coverage
16 ...
17 // If called after shutdown_functions
18 // stop coverage
19 }
20 }
21 ?>

Listing 1: Code rewritten by the debloating framework to ensure
correct code coverage of corner cases.

4 Debloating web applications

In this section, we briefly describe the evaluated debloating
strategies and the steps we took to ensure that the debloated
applications remain functional.

4.1 Debloating strategies

By combining the simulated usage of a web application (achieved
through tutorials encoded in Selenium scripts, web crawlers,
monkey testing, and vulnerability scanning) with server-side
code profiling, we can identify the code that was executed as part
of handling web requests. Consequently, code whose execution
was not triggered by any client-side request can presumably be
removed since it is not necessary for any of the functionality that
is desired by users (as quantified by the utilized usage profiles).
In this work, we evaluate the following debloating strategies:

• File-level debloating: Given that the source code of web
applications spans tens or hundreds of different files, we can
completely remove a file, when none of the lines of code in that
file were executed during the stimulation of the web application.

• Function-level debloating: In function-level debloating,
not only can we remove entire files but we can also selectively
remove some of the functions contained in other files. This is
a more fine-grained approach which allows us to remove more
code, than the more conservative, file-level debloating strategy.

More fine-grained approaches are possible, such as, the re-
moval of specific code statements from retained functions which
were not exercised during stimulation. However, such changes
essentially modify the logic of a function (e.g. removing condi-
tional code blocks) thereby increasing the probability of breaking
the resulting program when a minute change of a client-side
request would lead the execution into these blocks of code.

4.2 Detecting the execution of removed code

We replace all removed functions and files with placeholders
which, if executed, have the following tasks:

• Exit the application: If a placeholder happens to be
triggered, the PHP application will start its shutdown procedures.
This way, the application does not enter an unexpected state that
was not planned by the debloating process.

• Record information about the missing function: In order
to better understand which missing placeholders were triggered
and how, our framework logs several pieces of information, such
as, the URL that triggered the execution of the removed code,
the name of the class and function of the removed code, and the
corresponding line numbers.

To ensure that the debloating process has preserved the
functionality of the debloated web application, we rerun all
the Selenium-mapped tutorials and monkey scripts after the
debloating stage. If our placeholder code for removed files and
functions executes during this stage, this means that this code
should not have been removed.

This feedback mechanism proved invaluable during the
development of our framework since it helped us identify
problems with our coverage logic which in turn revealed the
challenges that we described in Section 3.5.2.

5 Results

To assess the impact of debloating web applications, we analyze
our results from a number of different perspectives. First,
we show the contributions of different application-profiling
methods and then compute different metrics to understand the
effectiveness of debloating in terms of reducing the attack surface
of our tested applications. Next, we focus on CVEs to determine
whether debloating can actually remove critical vulnerabilities.
Then, we take a closer look at the bloat introduced by external
packages along with the security implications that come with
using this specific development practice. Finally, we look at
what has effectively been removed in debloated applications
and test a number of exploits against the original and debloated
versions of the evaluated web applications.

5.1 Tutorials vs. Monkey Testing vs.
Crawling vs. Vulnerability Scanning

As described in Section 3.4, to ensure that we exercise web
applications in an objective and repeatable way, we utilized
tutorials, monkey testing, crawlers, and vulnerability scanners.
Figure 2 shows the coverage, in terms of server-side files,
that each method obtained on the latest version of each web
application in our testbed. We can clearly see that all four
methods are required, with each method contributing differently
for different web applications. For example, tutorials trigger

USENIX Association 28th USENIX Security Symposium 1703

Tutorials Monkey Spider Vulnerability Scanner

0

17

37

17

0

39

16
14

0

3
0

15

1

140
173

T

M S

V

(a) phpMyAdmin 4.7.0

8

2

27

0

0

3

141
52

11

0
32

54

0

1
398

T

M S

V

(b) MediaWiki 1.28.0

7

279

212

95

13

33

233
1248

6

376
182

237

51

237
3193

T

M S

V

(c) Magento 2.0.5

21

110

55

0

0

16

7
1

2

5
28

7

4

4
288

T

M S

V

(d) WordPress 4.7.1

Figure 2: Venn Diagrams showing covered files during the execution of Tutorials, Crawler, Monkey testing and Vulnerability scanner

more files in Magento compared to other applications, while
Spider covers most unique files in WordPress.

5.2 Debloating by the numbers
To evaluate the effectiveness of our two debloating strategies,
we computed different metrics that provide insights into what
has actually been removed during the debloating process.

5.2.1 Logical lines of code

The size of a program positively correlates with the number of
programming errors (i.e. bugs). According to McConnel [55],
the industry average, at least in 2004, was to have between 1
and 25 bugs for every one thousands lines of code. Given the
importance of the size of an application to its overall security, we
start by estimating the reduction of the attack surface by looking
at the Logical Lines Of Code (LLOC, sometimes also called
Effective Lines Of Code). LLOC is intended to measure lines
of code without comments, empty lines and syntactic structure
required by the programming language. LLOC reduction is a
robust and precise indicator of how much the volume of the code
was reduced. Figure 3 reports on the LLOC for all versions of
the applications we debloated.

Number of logical lines over time. Looking at the number of
LLOC of the original applications, we can observe two different
evolution behaviors. For WordPress, the amount of code is stable
and there is even a small decrease of 2% of LLOC between
versions 4.7 and 4.7.1. For the other applications, we observe
the opposite where the source code in the latest versions spikes,
compared to the ones released just before them: 82% LLOC
increase for phpMyAdmin, 99% for MediaWiki, and 171% for
Magento. By analyzing the code of these newer versions in
an attempt to understand their sudden expansion in size, we
discovered that these spikes can be attributed to a change in
development practices, namely the reliance on external packages.
As WordPress does not rely on external packages, it does not

4.
0.

0

4.
4.

0

4.
6.

0

4.
7.

0

1.
19

.1

1.
21

.1

1.
23

.0

1.
24

.0

1.
28

.0 3.
9

4.
0

4.
2.

3

4.
6

4.
7

4.
7.

1

1.
9.

0

2.
0.

5

100K

30K

40K

50K
60K
70K
80K
90K

200K

300K

400K

500K
600K
700K

Lo
gi

ca
l L

in
es

 o
f C

od
e

phpMyAdmin MediaWiki WordPress Magento

Original File Debloating Function Debloating

Figure 3: Logical Lines of Code before and after debloating

exhibit this kind of behavior. We discuss the issue of relying on
external packages in more detail in Section 5.4.

File-level debloating. Overall, file-level debloating, the most
conservative of the two evaluated debloating strategies, is already
effective in reducing the number of LLOC with an average of
33.1% reduction. The minimum observed in our experiment is
9.2% for WordPress v.4.0 and a maximum of 64.5% for Magento
v.2.0.5. For Magento, this reduction represents a removal of 393K
lines of code. This number is a clear sign that large web applica-
tions encompass many different features that may not be used by
all users and therefore result in bloated applications with an unnec-
essarily large attack surface. At the same time, it is worthwhile
repeating that all debloating results presented in this section are
conditional to how web applications are used. Therefore, these
large levels of debloating cannot be guaranteed for all possible de-
ployments of web applications. We discuss this issue in Section 7.

1704 28th USENIX Security Symposium USENIX Association

4.
0.

0

4.
4.

0

4.
6.

0

4.
7.

0

1.
19

.1

1.
21

.1

1.
23

.0

1.
24

.0

1.
28

.0 3.
9

4.
0

4.
2.

3

4.
6

4.
7

4.
7.

1

1.
9.

0

2.
0.

50%

20%

40%

60%

80%

100%

Cy
clo

m
at

ic
Co

m
pl

ex
ity

phpMyAdmin MediaWiki WordPress Magento

Original File Debloating Function Debloating

Figure 4: Evolution of cyclomatic complexity before and after
debloating

Function-level debloating. On average, function-level
debloating is able to remove 46.8% of lines of code. For both
Magento and MediaWiki, it can remove up to 7% more code
over file-level debloating. For phpMyAdmin and WordPress,
we observe an increase of debloating capability of up to 24%.
This larger reduction (compared to MediaWiki and Magento) is
mainly due to the differences in software development practices.

Compared to the other tested applications, phpMyAdmin
and WordPress are more monolithic with a smaller number
of large source-code files. Since file-level debloating only
removes files when none of their functions were executed, the
monolithic nature of these two applications resists this kind of
coarse-level debloating. Contrastingly, Magento and MediaWiki
are developed in a much more modular fashion (many small
files each responsible for a small number of well-defined tasks)
and therefore lend themselves better to file-level debloating. The
more fine-grained, function-level debloating bypasses this issue
and can therefore reduce the attack surface of a web application,
even for more monolithic web applications.

5.2.2 Cyclomatic complexity

Next, we look at the evolution of cyclomatic complexity (CC).
CC is defined as the number of linearly independent paths
through the code of an application [54]. A high CC for a single
class implies complicated code that is difficult to debug and
maintain [39] and therefore more prone to contain vulnerabilities
when compared to code with low CC [52,69].

Figure 4 reports on the evolution of the overall CC for each
tested version in our experiment. File-level debloating decreases
CC between 5.9% to 74.3% with an average of 32.5%. Function-
level debloating decreases the program complexity between
23.8% and 80.2% with an average of 50.3%. These statistics
demonstrate that debloating can remove complex instructions
and execution paths in addition to simple ones. Moreover, the
difference between file-level and function-level debloating shows
that code removal through function-level debloating is much
more suited to all kinds of web applications as shown earlier
through LLOC reduction achieved via function-level debloating.

Table 2: Number of CVEs removed after application debloating

Application Strategy Total
Removed CVEs

Removed
Exploitable CVEs

phpMyAdmin File Debloating 4/20 20 % 3/19 15.7 %
Function Debloating 12/20 60 % 11/19 57.8 %

MediaWiki File Debloating 8/21 38 % 3/16 18.7 %
Function Debloating 10/21 47.6 % 5/16 31.2 %

WordPress File Debloating 0/20 0 % 0/20 0 %
Function Debloating 2/20 10 % 2/20 10 %

Magento File Debloating 1/8 12.5 % 1/8 12.5 %
Function Debloating 3/8 37.5 % 3/8 37.5 %

5.3 Analysis of CVEs
In this section, we investigate the number of removed CVEs
after debloating along with the effects of debloating on different
vulnerability categories.

5.3.1 CVE reduction after debloating

One practical way to measure the security benefits of debloating
web applications is to study the effects of debloating on known
historical vulnerabilities. If vulnerabilities were part of the
core functionality of the program, the evaluated debloating
strategies will not be able to remove the code associated with
them. However, if some vulnerabilities reside in parts of a
web application that are not commonly used, the process of
debloating can effectively remove them.

Table 2 compares the effectiveness of debloating strategies by
listing the fractions of removed CVEs. We consider a vulnerabil-
ity to have been successfully removed if all the lines of code and
functions associated with that vulnerability were removed during
the stage of debloating. This is a conservative approach as one
modification performed on a single line could thwart a complete
attack. As such, the numbers we report in this section can be inter-
preted as lower bounds of the actual number of removed CVEs.

In terms of configuration, we selected the default one for
each application. However, certain vulnerabilities may not
be exploitable under this configuration. For example, there
exists 5 CVEs in our dataset for MediaWiki which require
file upload functionality to be enabled. Since this option is
disabled by default, we make an explicit distinction in the table.
“Total Removed CVEs” is the total number of CVEs removed
by debloating regardless of whether the vulnerable code is
enabled or disabled through a configuration option. “Removed
Exploitable CVEs” reports on the CVEs that are reachable under
default configurations of target web applications.

On average, we discovered that up to 38 % of vulnerabilities
are removed by file debloating whereas 10-60 % are removed
by function debloating. As shown in Table 2, function-level
debloating can triple (in the case of phpMyAdmin and Magento)
the number of removed CVEs, compared to file-level debloating.
This behavior can be generalized to web applications that do
not have CVE information and demonstrates that the reduction
of a web application’s LLOC (Section 5.2.1) and its cyclomatic
complexity (Section 5.2.2) translates to a reduction of concrete

USENIX Association 28th USENIX Security Symposium 1705

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of vulnerabilities

SSRF
Cross Site Scripting

File Inclusion
Crypto

Directory traversal
Obtain Information

CSRF
Denial Of Service

SQL Injection
Bypass a restriction or similar

Execute Code

Removed after debloating
True
False

Figure 5: Vulnerability Categories

vulnerabilities. Wordpress is a clear negative outlier with
only 10% CVE reduction, even through the more flexible
function-debloating strategy. As mentioned earlier, WordPress
is a relatively monolithic application and most of our mapped
CVEs are located in core WordPress code (e.g., Authentication,
CSRF tokens, and post/comment-related actions) which cannot
be removed by our debloating framework.

5.3.2 Types of CVEs in analyzed web applications

Even though our results demonstrate the ability to remove vul-
nerabilities from web applications through the use of debloating,
one may wonder whether debloating is better suited for some
types of vulnerabilities over others. Figure 5 provides details
on the categories of the CVEs we removed through debloating.

One can observe that for certain classes of vulnerabilities,
such as, Denial-of-Service attacks and Information-Revealing
vulnerabilities, debloating can almost completely remove them.
For others, such as, restriction bypassing, command execution,
and SQL injection, debloating can substantially reduce them.
Our interpretation of these findings has to do with the maturity of
the evaluated web applications. Specifically, all four web applica-
tions have been available for a long period of time, allowing many
shallow vulnerabilities to have already been discovered and cor-
rected. The remaining vulnerabilities are likely to be situated in
parts of a web application that are less commonly exercised. For
example, the code-execution vulnerabilities that can be removed
for phpMyAdmin are inside very specific features, such as, the
ability to export PHP arrays (CVE-2016-6609), the support of the
ZIP extension while importing data (CVE-2016-6633), and the
abilities to copy table definitions (CVE-2013-3238) and perform
Regex search and replace over table columns (CVE-2016-5734).

Contrastingly, the three cryptography-related vulnerabilities
we analyzed are still present in the debloated versions of web
applications. One of the CVEs related to this category is about
a flaw in the cookie encryption algorithm in phpMyAdmin
(CVE-2016-6606). Since every page interacts with user cookies
to, at the very least, verify them, vulnerable code cannot be
removed. Another vulnerability in this category relates to
an insecure random number generator used in cryptographic

operations by Magento (CVE-2016-6485). This vulnerability
exists in a constructor of the main encryption classes which
is widely used throughout the application. When considered
together, these findings suggest that cryptography-related
vulnerabilities are a core part of web applications and thus
unlikely to be removed through the process of debloating.

5.4 External packages
5.4.1 Quantifying the bloat from external packages

In our testbed, phpMyAdmin v.4.7.0, MediaWiki v.1.28.0 and
Magento v.2.0.5 rely on external dependencies that can be down-
loaded via Composer (WordPress does not rely on external pack-
ages). As described in Section 2, Composer is a package manager
for PHP (similar to the NPM manager for NodeJS applications)
which allows web applications to specify which external pack-
ages they rely on and have these packages be tracked and updated.

As we briefly discussed in Section 5.2.1, the number of
LLOC of these three specific versions dramatically increases
(compared to prior versions) because of this dependency on
external packages. Table 3 provides statistics on the number of
packages pulled by these applications and how much bloat they
provide against our usage profiles.

First, one can observe that external packages introduce a large
amount of unused code. For all three debloated applications,
more than 84% of their code was removed from them. This
means that the attack surface is unnecessarily large through the
dependency on external packages. The number of removed lines
from external packages for Magento is particularly noteworthy
with more than 178,000 lines of code removed. Moreover, the
number of packages that can be completely removed is also quite
large: 84% for phpMyAdmin, 60% for MediaWiki and 81% for
Magento. This confirms that most packages are unnecessary for
the usage profiles that we recorded. Finally, focusing exclusively
on the lines of code, phpMyAdmin is the only application where
external packages have more lines than the main application.
However, after debloating, this relationship is reversed with the
codebase of phpMyAdmin being three times the size of the
introduced external packages.

Despite the advantages of using package managers (e.g. the
ability to track dependencies and update vulnerable libraries
without the need to update the main application), our findings
show that these advantages come at a considerable cost in
terms of unnecessarily expanding the attack surface of a web
application with code that is seldomly executed. As such,
developers must take special care to include the bare minimum
of external packages, knowing the unwanted side-effects that
each external package brings.

5.4.2 Removing POI gadgets

What are POI gadgets? Property Oriented Programing (POP)
is an exploitation technique in PHP which works similarly to
Return Oriented Programming (ROP) [67] and is used to exploit

1706 28th USENIX Security Symposium USENIX Association

Table 3: Statistics on the external packages included in web applications and the effects of debloating in terms of reducing their LLOC.

Before debloating After function-level debloating

Application # lines in main
application

lines in
packages

packages
lines in main

application
lines in
packages

packages
completely
removed

packages where a given %
lines were removed

>70%
<70% and
>30% <30%

phpMyAdmin 4.7.0 35,739 82,604 45 26,377 (-26.2%) 9,653 (-88.3%) 38 (84.4%) 2 1 4
MediaWiki 1.28.0 133,019 50,898 40 54,827 (-58.8%) 6,285 (-87.7%) 24 (60.0%) 2 2 12

Magento 2.0.5 396,448 212,906 71 181,696 (-54.2%) 34,038 (-84.0%) 58 (81.7%) 6 5 2

PHP Object Injection (POI) vulnerabilities [11]. In this technique,
the attacker creates exploit gadgets from available code in the
applications. By chaining multiple gadgets within the application,
an attacker can usually run arbitrary code, write to arbitrary files,
or interact with a database. Dahse et al. have studied the auto-
matic generation of such gadget chains for PHP applications [38].

PHP unsafe deserialization. The PHP language gives devel-
opers the ability to serialize arbitrary objects in order to store
them as text, or transfer them over the network. Deserialization
reverses this process, generating PHP objects from serialized
data. This mechanism can be abused by an attacker to load
specific classes in the application and build a gadget chain.
Practical examples of this vulnerability are when unserialize
is called on a database field or value of a field within a cookie
that can be manipulated by the users.

Historically, this attack was very difficult to successfully ex-
ecute. Attackers could only build gadgets with the classes that
were present in the context of the vulnerable file. They needed
insights into how the application was built in order to know which
classes could be abused for gadgets. However, starting from PHP
5, the autoload() magic function [10] was introduced and un-
intentionally made exploitation of deserialization vulnerabilities
easier. This new loading feature was beneficial for PHP develop-
ers who did not have to manually include all the files they wanted
to use at the very top of each of their PHP files. It also helped the
adoption of package managers like Composer, as any external
dependency could be easily called from anywhere in the applica-
tion. The downside of this new function was that it also allowed
attackers to instantiate any PHP class across the entire application
thereby enabling the easier construction of gadget chains.

In order to build a chain, attackers use these so-called “magic”
functions [13] that form the basis of their gadget chain. One of
the functions that is widely used in POI exploits is the destruct
function. In Section 3.5, we detailed the challenges in getting
complete coverage of destructors in our tested applications.
Accurate coverage of destructors also allows us to precisely
analyze the impact of debloating on gadget creation.

Can debloating remove gadgets from external packages?
Given the increased footprint of web applications due to their
reliance on package managers and external dependencies, one
may wonder about the possibility of abuse of these packages for

Table 4: List of packages with known POP gadget chains

Application Package
Removed by
Debloating

File Function

phpMyAdmin 4.7.0 Doctrine Ë Ë
Guzzle Ë Ë

MediaWiki 1.28.0 Monolog Ë Ë

Magento 2.0.5
Doctrine Ë Ë
Monolog é Ë
Zendframework é Ë

the creation of gadgets. To measure the effect of debloating on
Property-Oriented-Programming (POP) gadgets, we utilized the
PHPGGC [17] library. PHPGGC (which stands for PHP Generic
Gadget Chains) contains a list of known gadgets in popular PHP
packages such as Doctrine, Symfony, Laravel, Yii and Zend-
Framework. When a vulnerable PHP application includes any of
the packages listed in PHPGGC, the attackers can generate gadget
chains to achieve RCE, arbitrary file writes, and SQL injections.

We analyzed the available gadget chains in PHPGGC and
checked whether any of our tested PHP applications included
these chains. Table 4 summarizes the presence of each gadget
and whether debloating removes them or not. WordPress is
not included in this table because it does not rely on external
packages. This does not make WordPress immune to POI
attacks, but universally known gadget chains in popular external
packages can not be used to exploit WordPress. For the affected
applications, file-level debloating removes 4/6 gadgets while
function debloating removes 6/6 available gadget chains. This
again demonstrates the power of debloating which can not
only remove some fraction of vulnerabilities but also make
the exploitation of the remaining ones harder by removing the
gadgets that attackers could abuse during a POI attack.

5.4.3 Utilizing development packages in production

During our analysis of external packages, we identified yet
another source of bloat in new versions of web applications.
When declaring external dependencies through Composer, two
options are available: “require” and “require-dev”. The first
option indicates packages that are mandatory for the application
to run properly. The second lists packages that should only be
used in development environments, such as, packages providing

USENIX Association 28th USENIX Security Symposium 1707

support for unit testing, performance analysis, and profiling. We
discovered that applications downloaded from official websites
often include these development packages. As such, when these
packages are used to deploy web applications in production
mode, they will contain unnecessary development libraries. This
does not only increase the attack surface by having unnecessary
code bloating the application, but can also lead to exploitation
for misconfigured applications.

CVE-2017-9841 presents one example of such a vulnera-
bility [25]. Specifically, this CVE refers to an RCE attack in
specific versions of the PHPUnit library, which is a popular unit
testing library for PHP. By default, Composer places all external
packages under “vendor” directory. If this specific directory
happens to be accessible through a misconfiguration of the
server, PHPUnit files are then accessible and can be exploited
to conduct an RCE attack.

The four web applications that we evaluated for this study,
present different behaviors with respect to development packages.
WordPress does not rely on external packages downloaded
through Composer. MediaWiki never included development
packages in its releases. phpMyAdmin had them in version 4.7.0
but stopped including them in version 4.8.3 (the latest at the time
of writing). Magento started including them from version 2.0
and still includes them today. We have reached out to Magento
and informed them about this issue.

5.5 Qualitative analysis of the removed code

In the previous sections, we analyzed the effects of debloating
on the source code of applications from a software-engineering
perspective (i.e. LLOC and Cyclomatic Complexity reduction)
as well as from a security standpoint (i.e. number of CVEs and
gadgets removed). At the same time, one may wonder what
exactly was removed from each application during the process
of debloating.

Given that thousands of files were removed, manually analyz-
ing each file does not scale. As such, we turn to NLP techniques
that allow us to cluster the removed files together and provide
us with hints about the nature of each cluster. Specifically, we
use the k-means clustering algorithm based on text vectors
extracted from removed file names and file paths. Each file path
includes directories that indicate which library or package, the
file belongs to. For most modern web applications, this allows
for a reasonable separation of files across different application
plugins and modules. To end up with meaningful clusters, we
tuned TFIDF vectorizer parameters along with the number of
k-means clusters. We used the TFIDF maximum frequency limit
to ignore common terms appearing in more than 50% of the files.
Depending on the size and modularity of the application, 10 to
20 clusters yielded the most instructive grouping of files.

Table 5 shows the categories of the three largest removed clus-
ters from each web application. Across all four applications, we
observe the removal of source code related to external packages
(e.g. Symfony for phpMyAdmin, Elastica for MediaWiki, and

Table 5: Features and external packages with the most removed
files after file debloating (removed features are marked in italic).
Entries marked with ∗ are packages that are indirectly pulled by other

“require-dev” packages (not used by core application) for the purpose
of test coverage reporting and coding standard enforcement.

Applications Features/Packages with most files removed
1) Guzzle [8]: “Generating API HTTP response” *

phpMyAdmin 4.7.0 2) Symfony [20]: “Parsing configuration files” *
3) PHP CodeSniffer [15]: “Enforcing coding standards” *
1) Messages & Languages

MediaWiki 1.28.0 2) Less.php [9]: “Generating CSS code”
3) Elastica [5]: “Elastic search interface used by
extensions”
1) Twentyfourteen theme [21]

WordPress 4.7.1 2) Twentytwelve theme [22]
3-4) Also theme related
5) Multi-site administration
1) Zendframework1 [14]: “Generating web pages and

Magento 2.0.5 database operations”
2) Sales, Orders & Credit Memo
3) Internal framework filters & Views

Zendframework1 for Magento), followed by localization/theme
files (e.g. twentyfourteen theme for WordPress), and unused
database drivers. We provide more application-specific details
of removed features in the next paragraphs.

phpMyAdmin’s removed features include the uploading of
plugins, GIS visualizations, and unused file formats used in
import/export (such as, Dia, EPS, PDF, SVG, and ZIP). In
addition, debloating removed unused plugins and external
packages which make up the top 3 features removed from this
web application as shown in Table 5. phpMyAdmin version
4.6.0 and 4.7.0 include unit tests which are also removed by our
system. The LLOC for the removed test files is less than 2%
of the whole code base of the application.

MediaWiki provides an API to interact with the wiki which is
separate from the regular web interface that users interact with.
Most actions within this API, including queries, file upload, and
non-default output formats for this API were removed. Top cat-
egories of removed files consist of localization of messages and
language files in addition to external dependencies (Lines 2 and
3) as listed in Table 5. The debloating process also removes file-
upload modules which are disabled, by default, in MediaWiki. It
is important to note that even if a module is “disabled,” the code
still resides on the server and could be abused by specific types
of attacks. For example, in a recent attack against a WordPress
plugin, the vulnerability could be exploited even if that plugin
was disabled [32]. Debloating removes the source code of
disabled and unused features and therefore does not suffer from
this type of attack. Finally, the process of debloating, removed
unused extensions of Mediawiki (e.g. citation, input box, pdf
handler, poem and syntax highlighting). Mediawiki 1.19.1 and
1.28.0 include unit tests, and they measure less than 1.5% of
LLOC in the whole code base of their respective versions.

WordPress takes a slightly different approach where the core
functionality is concentrated in a relatively small number

1708 28th USENIX Security Symposium USENIX Association

Table 6: Verifying exploitability of vulnerabilities by testing exploits
against original & debloated web applications

CVE Target Software Exploit Successful?
Original Debloated

CVE-2013-3238 phpMyAdmin 4.0.0 Ë Ë
CVE-2016-5734 phpMyAdmin 4.4.0 Ë é
CVE-2014-1610 MediaWiki 1.21.1 Ë Ë
CVE-2017-0362 MediaWiki 1.28.0 Ë é
CVE-2018-20714 WordPress 3.9 Ë Ë
CVE-2015-5731 WordPress 4.2.3 Ë Ë
CVE-2016-4010 Magento 2.0.5 Ë é
CVE-2018-5301 Magento 2.0.5 Ë é

of large PHP files. The removed features of WordPress
include installation files, unused modules (FTP, multi-site, user
registration), disabled themes and update files (note that we
could not exercise update files during our tests because this
would change the version of the evaluated web application and
create inconsistencies in our analysis of removed CVEs). In
terms of testing, the installation files that we obtained from the
WordPress website do not contain any unit tests.

Magento consists of both external packages and internal
modules. We observed that various internal modules were
removed, including an XML API for mobile, wishlists, ratings,
and specific payment modules (such as, Paypal). Since many
packages and internal modules include the terms “sales,” “orders,”
and “tax,” these individual files across multiple modules were
clustered into the same category by k-means. Finally, Magento
1.9.0 does not include unit tests while the test files included in
Magento 2.0.5 and its external packages measure up to 15% of
its code base. For Magento 2.0.5, Zendframework1 which is an
external dependency has most of its files removed by debloating.

5.6 Testing debloated web applications against
real exploits

To ensure the correct mapping of CVEs to source code and the
ability of debloating to stop real attacks, we collected 4 exploits
available in the Metasploit framework and augmented them with
4 POCs that we developed based on public bug-tracker records
and vulnerability details. After verifying that we can successfully
exploit the original versions of the evaluated web applications,
we tested the same exploits on the debloated versions. Half of
the previously successful exploits failed because the vulnerable
code was removed during the process of debloating. Table 6 lists
the tested exploits against original and debloated applications.

As before, this demonstrates that while debloating is not
a panacea against all possible issues, it can substantially
improve the security of web applications. Finally, we present
a demonstration of CVE-2016-4010 on Magento 2.0.5 in the
following video: https://vimeo.com/328225679.

Table 7: Measurements of the execution time, the CPU and memory
consumption for the tested web applications with XDebug and Code
Coverage (CC) and without XDebug. The reported values for the CPU
and memory correspond to the average for each application.

Application Execution (s) CPU (%) Memory (%)
Magento Without XDebug 317 21.7 10.7

2.0.5 With CC 584 (x1.85) 56.9 (x2.62) 11.82 (x1.10)
MediaWiki Without XDebug 36 30.7 5.2

1.2.8 With CC 121 (x3.38) 79.3 (x2.58) 6.9 (x1.31)
phpMyAdmin Without XDebug 102 3.7 5.7

4.7.0 With CC 116 (x1.14) 31.5 (x8.47) 5.6 (x0.97)
WordPress Without XDebug 68 8.2 8.2

4.7.1 With CC 170 (x2.50) 42.6 (x5.22) 12.5 (x1.53)

Magento MediaWiki phpMyAdmin WordPress
0

25
50
75

100
125
150
175

CP
U

co
ns

um
pt

io
n

(%
)

Without XDebug With CC

Figure 6: Measurement of the CPU consumption for the tested web
applications. 100% corresponds to the use of a single CPU core.

6 Performance analysis

It is known that code-coverage tools impose a non-negligible
overhead on web applications [65]. In this section, we report
on the results of conducting all the Selenium tests with and
without XDebug (our chosen PHP profiler) while measuring
execution time, and recording server-side CPU usage and
memory consumption. Table 7 presents the overall results and
Figure 6 focuses on CPU consumption.

First, looking at the execution time, we can see that code
coverage has a varying impact on the tested web applications. On
one hand, phpMyAdmin is lightly affected with a 14% increase.
On the other hand, the time it takes to run all tests for MediaWiki
has tripled. For CPU consumption, the overhead is noticeable
and all applications at least double their use of resources when
code coverage is active. phpMyAdmin is exhibiting the biggest
performance hit with a reported average almost 9 times higher
than the one from the base application. Figure 6 shows that all
median values are higher for applications with XDebug and
most applications, at some point, require a second core with
values above 100%. Finally, in terms of memory consumption,
the server-side code profiler incurs a relatively modest increase
for most applications. The worst overhead is observed when
evaluating WordPress with an increase of 4.3% of the total
device memory (16GB), i.e., an additional 700MB of RAM.

Even though our results show that the overall overhead is
substantial, it is important to note that this overhead is not the
overhead of the debloated web applications. Debloated web appli-
cations do not require code-coverage statistics and will therefore
execute in the exact same environment as the original application
(i.e. without XDebug). Depending on how code-coverage infor-

USENIX Association 28th USENIX Security Symposium 1709

https://vimeo.com/328225679

mation is obtained, this overhead may or may not be an issue. For
example, if the coverage is calculated in an offline fashion where
traces of application usage are replayed against a testing system,
this overhead will have no impact on the real production systems.
To allow for the online computation of code coverage (using
real-time user traffic), we need more optimized code profilers.
For example, XDebug currently overloads 43 opcodes to obtain
line-level code-coverage information that is more fine-grained
than required by our debloating techniques and incurs an unnec-
essary performance overhead [64]. We leave the development
and evaluation of faster code profilers for future work.

7 Limitations and future work

In this study, we set out to precisely quantify the security benefits
of debloating, when applied to web applications. Through a
series of experiments, we demonstrated that debloating web
applications has a number of very concrete advantages. We
showed that debloating can, on average, decrease an application’s
code base by removing hundreds of thousands of lines of code,
reduce its cyclomatic complexity by 30-50% and remove code
associated with up to half of historical CVEs. Moreover, even
for vulnerabilities that could not be removed, debloating can
remove gadgets that makes their exploitation significantly harder.
Next, we discuss some of the inherent and technical limitations
of our approach and future direction.

Lack of available exploits: The number of exploits publicly
available compared to the total number of registered CVEs is low.
At the same time, the effort to study vulnerability reports, find
the relevant patch or bug report, and track the actual vulnerability
down to source code level takes a non-negligible amount of man-
ual labor. This lack of available exploits limits our ability to test
the exploitability of vulnerabilities before debloating since certain
vulnerabilities might only be exploitable under specific configura-
tions. For example the set of five file-upload-related vulnerabili-
ties in our MediaWiki dataset (marked as gray in Table 9) require
access to file upload functionality which is disabled by default. A
maintained set of automated, replayable exploits against popular
web applications similar to “BugBox” introduced by Nilson et
al. in 2013, could substantially help researchers at this step [57].

To address this issue, we mapped the CVEs to features within
those applications. This is done by studying the architecture of
target applications based on documentation within the code and
available on their websites. We marked a CVE as unexploitable if
the underlying feature is disabled by default, and online tutorials
in our dataset do not require users to enable that functionality.
This limitation only applies to reported numbers on removed
CVEs and does not affect our results on POI gadgets since their
mere existence is enough for them to be used in gadget chains.

Our approach results in lower bounds for CVE removal since
disabling modules through application configuration does not
guarantee removal of all code paths that trigger those modules.
Taking CVE-2019-6703 as an example, a vulnerability was

discovered in the WordPress “Total Donations” plugin [32] and
disabling this plugin did not prevent attackers from invoking the
vulnerable end point and running their exploits.

Dynamic code coverage: Given our reliance on dynamic
code-coverage techniques, it is clear that the success of
debloating a web application is tightly related to its usage
profile. Even though we constructed profiles in a way that is
reproducible and unbiased (i.e. by relying on external popular
tutorials, monkey testing, crawlers, and vulnerability scanners),
we cannot claim that real web users would not trigger code
that was removed during the stage of debloating, while they are
interacting with a debloated web application.

More specifically, our modeled usage profiles do not cover
all possible benign states of target web applications as we
assume that users do not use all available features. Our intuition
behind debloating proves to be successful to a large degree
since removing unnecessary features brings clear security
improvements. At the same time, our current usage model may
not cover deep error states (e.g. logical errors in multi-stage
form submissions, or the invalid structure of uploaded files). As
such, we intend to follow-up this work with crowd sourcing and
user studies to understand how administrators, developers, and
regular users utilize the evaluated web applications and whether
their usage profiles would allow for similar levels of debloating.

Due to nature of our approach, we can not take advantage
of standard static-analysis techniques, since we aim to remove
the features that are not useful for a given set of users, not those
that are not reachable by other code. Using static analysis would
greatly overestimate the code that needs to be maintained through
the process of debloating and the resulting web application
would contain code (and therefore vulnerabilities) that is not
useful to all users. Going forward, we envision a hybrid approach
where dynamic analysis is used as a first step to identify the
core features that are useful for a specific set of users. These
features can then be used as a starting point for a follow-up static
analysis phase to ensure that all code related to these features
is maintained when debloating a web application.

Handling requests to removed code: A separate issue is that
of handling requests to removed code. Our current prototype
utilizes assertions to log these requests so that we can investigate
why the corresponding server-side code was not captured by
our coverage profiler. When real users utilize debloated web
applications, one must decide how these failures (i.e. client-side
requests requiring server-side code that was removed) will be
handled. Assuming that cleanly exiting the application and
showing an error to the user is not sufficient, we need methods
to authenticate the user’s request, determine whether the request
is a benign one (and not a malicious request that aims to exploit
the debloated web application) and potentially re-introduce the
removed code. The client/server architecture of web applications
lends itself well to this model since the web server can decide
to re-introduce debloated code and handle the user’s request,
without any knowledge of this happening from the side of

1710 28th USENIX Security Symposium USENIX Association

the user. All of this, however, requires server-side systems to
introduce the code at the right time and for the appropriate users.
We leave the design of such systems for future work.

Metrics to measure debloating effectiveness: In this paper,
we use Cyclomatic Complexity (CC), Logical Lines of Code
(LLOC), reduction in historical CVEs, and POP gadget reduction
as four metrics to measure the effects of debloating on different
web applications. However, not every line of code contributes
equally to a program’s attack surface. For example, 15% of
removed files from Magento 2.0.5 are test files for external
packages and the core of the application. Such code may not
be directly exploitable or used in a POP chain unless there is
a misconfiguration (e.g., autoloading including these files, or the
directories being publicly accessible). As such, the resulted reduc-
tion in source code metrics (CC and LLOC) may also reflect the
code that does not contribute to the attack surface. Contrastingly,
the reduction of exploitable CVEs draws a more realistic picture
of real world attacks. The drawback of this metric is its unavail-
ability for proprietary software and the manual effort required
to map CVEs to source code and verify their exploitability.

Debloating effectiveness: Through our debloating experiments
we discovered that, in terms of debloating, not all applications
are “equal.” Modular web applications debloat significantly
better than monolithic ones (such as Wordpress). We hope that
our findings will inspire different debloating strategies that lend
themselves better to monolithic web applications which resist
our current function-level and file-level debloating strategies.

8 Related work

Over the years, different approaches that target very different
parts of the software stack have been studied in the context of
software debloating.

8.1 Debloating for the web
Despite the importance of the web platform, there has been very
little work that attempts to apply debloating to it. Snyder et
al. investigated the costs and benefits of giving websites access
to all available browser features through JavaScript [70]. The
authors evaluated the use of different JavaScript APIs in the wild
and proposed the use of a client-side extension which controls
which APIs any given website would get access to, depending
on that website’s level of trust. Schwarz et al. similarly utilize
a browser extension to limit the attack surface of Chrome and
show that they are able to protect users against microarchitectural
and side-channel attacks [66]. These studies are orthogonal to
our work since they both focus on the client-side of the web
platform, whereas we focus on the server-side web applications.

Boomsma et al. performed dynamic profiling of a custom web
application (a PHP application from an industry partner) [34].
The authors measured the time it takes for their dynamic profile
system to get complete coverage and the percentage of files that

they could remove. Since the application was a custom one, the
authors were not able to report specifics in terms of the reduction
of the programs attack surface, as that relates to CVEs. Con-
trastingly, by focusing on popular web applications, and utilizing
function-level as well as file-level debloating, we were able to pre-
cisely quantify the reduction of vulnerabilities, both in terms of
known CVEs as well as gadgets for PHP object-injection attacks.

8.2 Debloating in other platforms
Regehr et al. developed C-Reduce which is a tool that works
at the source code level [63]. It performs reduction of C/C++
files by applying very specific program transformation rules.
Sun et al. designed a framework called Perses that utilizes the
grammar of any programming language to guide reduction [71].
Its advantage is that it does not generate syntactically invalid
variants during reduction so that the whole process is made faster.

Heo et al. worked on Chisel whose distinguishing feature is
that it performs fine-grained debloating by removing code even
on the functions that are executed, using reinforcement learning
to identify the best reduced program [42].

All three aforementioned approaches are founded on Delta
debugging [76]. They reduce the size of an application
progressively and verify at each step if the created variant still
satisfies the desired properties.

Sharif et al. proposed Trimmer, a system that goes further
than simple static analysis [68]. It propagates the constants that
are defined in program arguments and configuration files so that
it can remove code that is not used in that particular execution
context. However, their system is not particularly well suited
for web applications where we remove complete features. Our
framework goes beyond this contextual analysis by mapping
what is actually executed by the application.

Other works include research that revolves mainly around
static analysis to remove dead code. Jiang et al. looked at
reducing the bloat of Java applications with a tool called
JRed [45]. Jiang et al. also designed RedDroid to reduce the
size of Android applications with program transformations [44].
Quach et al. adopted a different approach by bringing dead-code
elimination benefits of static linking to dynamic linking [61].

Rastogi et al. looked at debloating a container by partitioning
it into smaller and more secure ones [62]. They perform dynamic
analysis on system-call logs to determine which components and
executables are used in a container, in order to keep them. Koo et
al. proposed configuration-driven debloating [50]. Their system
removes unused libraries loaded by applications under a specific
configuration. They test their system on Nginx, VSFTPD, and
OpenSSH and show a reduction of 78% of code from Nginx
libraries is possible based on specific configurations.

9 Conclusion

In this paper, we analyzed the impact of removing unnecessary
code in modern web applications through a process called

USENIX Association 28th USENIX Security Symposium 1711

software debloating. We presented the pipeline details of the
end-to-end, modular debloating framework that we designed
and implemented, allowing us to record how a PHP application
is used and what server-side code is triggered as a result of
client-side requests. After retrieving code-coverage information,
our debloating framework removes unused parts of an application
using file-level and function-level debloating.

By evaluating our framework on four popular PHP applica-
tions (phpMyAdmin, MediaWiki, Magento, and WordPress) we
witnessed the clear security benefits of debloating web applica-
tions. We observed a significant LLOC decrease ranging between
9% to 64% for file-level debloating and up to an additional 24%
with function-level debloating. Next, we showed that external
packages are one of the primary source of bloat as our debloating
framework was able to remove more than 84% of unused code in
versions that used Composer, PHP’s most popular package man-
ager. By quantifying the removal of code associated with critical
CVEs, we observed a reduction of up to 60% of high-impact, his-
torical vulnerabilities. Finally, we showed that the process of de-
bloating also removes instructions and classes that are the primary
sources for attackers to build gadgets and perform POI attacks.

Our results demonstrate that debloating web applications
provides tangible security benefits and therefore should be
seriously considered as a practical way of reducing the attack
surface of web-applications deployments.
Acknowledgements: We thank our shepherd Giancarlo Pelle-
grino and the anonymous reviewers for their helpful feedback.
This work was supported by the Office of Naval Research
(ONR) under grants N00014-16-1-2264 and N00014-17-1-2541,
as well as by the National Science Foundation (NSF) under
grants CNS-1813974 and CMMI-1842020.

10 Availability

The main purpose of our work is to quantify the security benefits
of debloating web applications, allowing the community to
have informed discussions about the advantages of debloating,
without the need of vague references to attack-surface reduction.
To ensure the repeatability of our findings and to motivate more
research in this area, all developed code and data artifacts are
publicly available at: https://debloating.com.

References
[1] Automatically append or prepend files in a PHP script. https://www.php.

net/manual/en/ini.core.php#ini.auto-append-file.

[2] Burp Suite web vulnerability scanner. https://portswigger.net/burp.

[3] Cross-Site Request Forgery (CSRF) - OWASP. https://www.owasp.org/
index.php/Cross-Site Request Forgery (CSRF).

[4] Cross-site Scripting (XSS) - OWASP. https://www.owasp.org/index.
php/Cross-site Scripting (XSS).

[5] Elastica: Elasticsearch client. https://github.com/ruflin/Elastica.

[6] Greasemonkey. https://www.greasespot.net/.

[7] gremlins.js. https://github.com/marmelab/gremlins.js.

[8] Guzzle: PHP HTTP client. https://github.com/guzzle/guzzle.

[9] less.js ported to PHP. https://github.com/oyejorge/less.php.

[10] PHP autoload built-in function. http://php.net/manual/en/language.
oop5.autoload.php.

[11] PHP Object Injection Vulnerability. https://www.owasp.org/index.
php/PHP Object Injection.

[12] PHP: register shutdown function - Manual. https://secure.php.net/
manual/function.register-shutdown-function.php.

[13] PHP wakeup built-in function. http://php.net/manual/en/language.
oop5.magic.php#object.wakeup.

[14] PHP Zend Framework 1. https://github.com/zendframework/zf1.

[15] PHP CodeSniffer is a PHP package that tokenizes PHP, JavaScript and
CSS files and detects violations of a defined set of coding standards. https:
//github.com/squizlabs/PHP CodeSniffer.

[16] phpdbg PHP Debugger. https://github.com/krakjoe/phpdbg.

[17] PHPGGC: PHP Generic Gadget Chains. https://github.com/
ambionics/phpggc.

[18] Remote Code Execution Vulnerability — Netsparker. https:
//www.netsparker.com/blog/web-security/remote-code-
evaluation-execution/.

[19] SQL Injection: OWASP. https://www.owasp.org/index.php/SQL
Injection.

[20] Symfony PHP framework. https://github.com/symfony/symfony.

[21] WordPress Twenty Fourteen theme. https://wordpress.org/themes/
twentyfourteen/.

[22] WordPress Twenty Twelve theme. https://wordpress.org/themes/
twentytwelve/.

[23] XDebug Debugger and Profiler Tool for PHP. https://xdebug.org/.

[24] xhprof function-level hierarchical profiler for PHP. https://github.com/
phacility/xhprof.

[25] NVD - CVE-2017-9841 (PHPUnit vulnerability). https://nvd.nist.
gov/vuln/detail/CVE-2017-9841, 2017.

[26] Drupal Core - 3rd-party libraries -SA-CORE-2018-005 — Drupal.org.
https://www.drupal.org/SA-CORE-2018-005, 2018.

[27] [HttpFoundation] Remove support for legacy and risky HTTP headers
- Symfony framework on GitHub. https://github.com/symfony/
symfony/commit/e447e8b92148ddb3d1956b96638600ec95e08f6b#
diff-9d63a61ac1b3720a090df6b1015822f2R1694, 2018.

[28] NVD - CVE-2018-14773 (Symfony vulnerability). https://nvd.nist.
gov/vuln/detail/CVE-2018-14773, 2018.

[29] Packagist statistics. https://packagist.org/statistics, 2018.

[30] PyPI Stats. https://pypistats.org/packages/ all , 2018.

[31] Security Advisory: URL Rewrite vulnerability (Zend Framework). https:
//framework.zend.com/security/advisory/ZF2018-01, 2018.

[32] WordPress sites under attack via zero-day in abandoned plugin —
ZDNet. https://www.zdnet.com/article/wordpress-sites-under-
attack-via-zero-day-in-abandoned-plugin/, 2019.

[33] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust Defenses for
Cross-site Request Forgery. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (NY, USA, 2008), CCS, ACM.

[34] BOOMSMA, H., HOSTNET, B. V., AND GROSS, H. Dead code elimination
for web systems written in PHP: Lessons learned from an industry case.
In 2012 28th IEEE International Conference on Software Maintenance
(ICSM) (Sept 2012).

[35] BRUMLEY, D., AND BONEH, D. Remote Timing Attacks Are Practical.
In Proceedings of the 12th Conference on USENIX Security Symposium -
Volume 12 (Berkeley, CA, USA, 2003), SSYM’03, USENIX Association.

1712 28th USENIX Security Symposium USENIX Association

https://debloating.com
https://www.php.net/manual/en/ini.core.php#ini.auto-append-file
https://www.php.net/manual/en/ini.core.php#ini.auto-append-file
https://portswigger.net/burp
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://github.com/ruflin/Elastica
https://www.greasespot.net/
https://github.com/marmelab/gremlins.js
https://github.com/guzzle/guzzle
https://github.com/oyejorge/less.php
http://php.net/manual/en/language.oop5.autoload.php
http://php.net/manual/en/language.oop5.autoload.php
https://www.owasp.org/index.php/PHP_Object_Injection
https://www.owasp.org/index.php/PHP_Object_Injection
https://secure.php.net/manual/function.register-shutdown-function.php
https://secure.php.net/manual/function.register-shutdown-function.php
http://php.net/manual/en/language.oop5.magic.php#object.wakeup
http://php.net/manual/en/language.oop5.magic.php#object.wakeup
https://github.com/zendframework/zf1
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/krakjoe/phpdbg
https://github.com/ambionics/phpggc
https://github.com/ambionics/phpggc
https://www.netsparker.com/blog/web-security/remote-code-evaluation-execution/
https://www.netsparker.com/blog/web-security/remote-code-evaluation-execution/
https://www.netsparker.com/blog/web-security/remote-code-evaluation-execution/
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/SQL_Injection
https://github.com/symfony/symfony
https://wordpress.org/themes/twentyfourteen/
https://wordpress.org/themes/twentyfourteen/
https://wordpress.org/themes/twentytwelve/
https://wordpress.org/themes/twentytwelve/
https://xdebug.org/
https://github.com/phacility/xhprof
https://github.com/phacility/xhprof
https://nvd.nist.gov/vuln/detail/CVE-2017-9841
https://nvd.nist.gov/vuln/detail/CVE-2017-9841
https://www.drupal.org/SA-CORE-2018-005
https://github.com/symfony/symfony/commit/e447e8b92148ddb3d1956b96638600ec95e08f6b#diff-9d63a61ac1b3720a090df6b1015822f2R1694
https://github.com/symfony/symfony/commit/e447e8b92148ddb3d1956b96638600ec95e08f6b#diff-9d63a61ac1b3720a090df6b1015822f2R1694
https://github.com/symfony/symfony/commit/e447e8b92148ddb3d1956b96638600ec95e08f6b#diff-9d63a61ac1b3720a090df6b1015822f2R1694
https://nvd.nist.gov/vuln/detail/CVE-2018-14773
https://nvd.nist.gov/vuln/detail/CVE-2018-14773
https://packagist.org/statistics
https://pypistats.org/packages/__all__
https://framework.zend.com/security/advisory/ZF2018-01
https://framework.zend.com/security/advisory/ZF2018-01
https://www.zdnet.com/article/wordpress-sites-under-attack-via-zero-day-in-abandoned-plugin/
https://www.zdnet.com/article/wordpress-sites-under-attack-via-zero-day-in-abandoned-plugin/

[36] CVE Details: The ultimate security vulnerability datasource. https://
www.cvedetails.com/.

[37] NIST: National Vulnerability Database. https://nvd.nist.gov/.

[38] DAHSE, J., KREIN, N., AND HOLZ, T. Code Reuse Attacks in PHP:
Automated POP Chain Generation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (New
York, NY, USA, 2014), CCS ’14, ACM.

[39] GILL, G. K., AND KEMERER, C. F. Cyclomatic complexity density
and software maintenance productivity. IEEE transactions on software
engineering 17, 12 (1991).

[40] GOETHEM, T. V., JOOSEN, W., AND NIKIFORAKIS, N. The Clock is
Still Ticking: Timing Attacks in the Modern Web. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS)
(2015).

[41] HALFOND, W. G., VIEGAS, J., ORSO, A., ET AL. A classification of
SQL-injection attacks and countermeasures. In Proceedings of the IEEE
International Symposium on Secure Software Engineering (2006), IEEE.

[42] HEO, K., LEE, W., PASHAKHANLOO, P., AND NAIK, M. Effective Pro-
gram Debloating via Reinforcement Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security
(2018), ACM.

[43] HONG, G., YANG, Z., YANG, S., ZHANG, L., NAN, Y., ZHANG, Z.,
YANG, M., ZHANG, Y., QIAN, Z., AND DUAN, H. How You Get Shot in
the Back: A Systematical Study About Cryptojacking in the Real World.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018), CCS ’18.

[44] JIANG, Y., BAO, Q., WANG, S., LIU, X., AND WU, D. RedDroid:
Android Application Redundancy Customization Based on Static Analysis.
In Proceedings of the 29th IEEE International Symposium on Software
Reliability Engineering (ISSRE18) (2018).

[45] JIANG, Y., WU, D., AND LIU, P. JRed: Program Customization and
Bloatware Mitigation Based on Static Analysis. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), vol. 1.

[46] JOVANOVIC, N., KIRDA, E., AND KRUEGEL, C. Preventing cross site
request forgery attacks. In Securecomm and Workshops (2006), IEEE.

[47] KIRDA, E., KRUEGEL, C., VIGNA, G., AND JOVANOVIC, N. Noxes:
A Client-side Solution for Mitigating Cross-site Scripting Attacks. In
Proceedings of the 2006 ACM Symposium on Applied Computing (New
York, NY, USA, 2006), SAC ’06, ACM.

[48] KOEHLER, W. A longitudinal study of Web pages continued: a considera-
tion of document persistence. Information Research 9, 2 (2004).

[49] KONOTH, R. K., VINETI, E., MOONSAMY, V., LINDORFER, M.,
KRUEGEL, C., BOS, H., AND VIGNA, G. MineSweeper: An In-depth
Look into Drive-by Cryptocurrency Mining and Its Defense. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (2018), CCS ’18.

[50] KOO, H., GHAVAMNIA, S., AND POLYCHRONAKIS, M. Configuration-
driven software debloating. In Proceedings of the 12th European Workshop
on Systems Security (New York, NY, USA, 2019), EuroSec ’19, ACM.

[51] KURMUS, A., SORNIOTTI, A., AND KAPITZA, R. Attack surface reduc-
tion for commodity os kernels: Trimmed garden plants may attract less
bugs. In Proceedings of the Fourth European Workshop on System Security
(2011), EUROSEC ’11.

[52] KURMUS, A., TARTLER, R., DORNEANU, D., HEINLOTH, B., ROTH-
BERG, V., RUPRECHT, A., SCHRÖDER-PREIKSCHAT, W., LOHMANN,
D., AND KAPITZA, R. Attack Surface Metrics and Automated Compile-
Time OS Kernel Tailoring. In Proceedings of Network and Distributed
Systems Security (NDSS) (2013).

[53] MADHAVAPEDDY, A., AND SCOTT, D. J. Unikernels: Rise of the virtual
library operating system. Queue 11, 11 (2013).

[54] MCCABE, T. J. A complexity measure. IEEE Transactions on software
Engineering, 4 (1976).

[55] MCCONNELL, S. Code complete. Pearson Education, 2004.

[56] MISHRA, S., AND POLYCHRONAKIS, M. Shredder: Breaking Exploits
through API Specialization. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC) (2018).

[57] NILSON, G., WILLS, K., STUCKMAN, J., AND PURTILO, J. Bugbox: A
vulnerability corpus for PHP web applications. In Presented as part of the
6th Workshop on Cyber Security Experimentation and Test (Washington,
D.C., 2013), USENIX.

[58] Magento: eCommerce Platform. https://magento.com/.

[59] MediaWiki: Free and Open Source Software Wiki . https://www.
mediawiki.org/wiki/MediaWiki.

[60] phpMyAdmin: MySQL web administration. https://phpmyadmin.net/.

[61] QUACH, A., PRAKASH, A., AND YAN, L. K. Debloating Software
through Piece-Wise Compilation and Loading. Proceedings of USENIX
Security (2018).

[62] RASTOGI, V., DAVIDSON, D., DE CARLI, L., JHA, S., AND MCDANIEL,
P. Cimplifier: Automatically Debloating Containers. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering (New
York, NY, USA, 2017), ESEC/FSE 2017, ACM.

[63] REGEHR, J., CHEN, Y., CUOQ, P., EIDE, E., ELLISON, C., AND YANG,
X. Test-case Reduction for C Compiler Bugs. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2012), PLDI ’12, ACM.

[64] RETHANS, D. Code Coverage: The Present. https://derickrethans.
nl/code-coverage.html.

[65] RETHANS, D. Xdebug’s Code Coverage speedup. https://
derickrethans.nl/xdebug-codecoverage-speedup.html.

[66] SCHWARZ, M., LIPP, M., AND GRUSS, D. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks. Ndss, February (2018).

[67] SHACHAM, H. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (2007), ACM.

[68] SHARIF, H., ABUBAKAR, M., GEHANI, A., AND ZAFFAR, F. TRIM-
MER: Application Specialization for Code Debloating. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (NY, USA, 2018), ASE 2018, ACM.

[69] SHIN, Y., AND WILLIAMS, L. An empirical model to predict security
vulnerabilities using code complexity metrics. In Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering
and measurement (2008), ACM.

[70] SNYDER, P., TAYLOR, C., AND KANICH, C. Most Websites Don’T
Need to Vibrate: A Cost-Benefit Approach to Improving Browser Security.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (New York, NY, USA, 2017), CCS ’17, ACM.

[71] SUN, C., LI, Y., ZHANG, Q., GU, T., AND SU, Z. Perses: Syntax-guided
Program Reduction. In Proceedings of the 40th International Conference
on Software Engineering (New York, NY, USA, 2018), ICSE ’18, ACM.

[72] VOGT, P., NENTWICH, F., JOVANOVIC, N., KIRDA, E., KRUEGEL, C.,
AND VIGNA, G. Cross Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis. In NDSS (2007), vol. 2007.

[73] VOSS, L. The State of JavaScript Frameworks. https:
//www.npmjs.com/npm/the-state-of-javascript-frameworks-
2017-part-2-the-react-ecosystem, 2018.

[74] WANG, W., FERRELL, B., XU, X., HAMLEN, K. W., AND HAO, S.
SEISMIC: SEcure In-lined Script Monitors for Interrupting Cryptojacks. In
European Symposium on Research in Computer Security (2018), Springer.

[75] WordPress: OpenSource Content Management System. https://
wordpress.com/.

[76] ZELLER, A., AND HILDEBRANDT, R. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002).

USENIX Association 28th USENIX Security Symposium 1713

https://www.cvedetails.com/
https://www.cvedetails.com/
https://nvd.nist.gov/
https://magento.com/
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/MediaWiki
https://phpmyadmin.net/
https://derickrethans.nl/code-coverage.html
https://derickrethans.nl/code-coverage.html
https://derickrethans.nl/xdebug-codecoverage-speedup.html
https://derickrethans.nl/xdebug-codecoverage-speedup.html
https://www.npmjs.com/npm/the-state-of-javascript-frameworks-2017-part-2-the-react-ecosystem
https://www.npmjs.com/npm/the-state-of-javascript-frameworks-2017-part-2-the-react-ecosystem
https://www.npmjs.com/npm/the-state-of-javascript-frameworks-2017-part-2-the-react-ecosystem
https://wordpress.com/
https://wordpress.com/

Table 8: Comprehensive list of tutorials collected from the first two
pages of Google search results

phpMyAdmin
A https://www.siteground.com/tutorials/phpmyadmin/
A https://www.reg.ca/faq/PhpMyAdminTutorial.html
A https://www.w3resource.com/mysql/administration-

tools/phpmyadmin-tutorial.php
A https://code.tutsplus.com/tutorials/installing-and-using-phpmyadmin-

for-web-development–cms-21947
A https://www.homeandlearn.co.uk/php/php12p2.html
A https://www.wpbeginner.com/beginners-guide/beginners-guide-to-

wordpress-database-management-with-phpmyadmin/
A http://members.ipage.com/knowledgebase/read article.bml?kbid=5923
A https://www.digitalocean.com/community/tutorials/how-to-install-

and-secure-phpmyadmin-on-ubuntu-16-04
A https://www.fastwebhost.com/tutorials/knowledge-

base/phpmyadmin-tutorial-administration-2/
A https://www.tutorialspoint.com/cpanel/cpanel phpmyadmin.htm
A https://www.w3schools.com/php/php mysql intro.asp
A https://pimylifeup.com/raspberry-pi-mysql-phpmyadmin/
A https://www.webhostface.com/kb/knowledgebase/mysql-search-

replace/
A https://www.eukhost.com/web-hosting/phpmyadmin.php

MediaWiki
A https://www.siteground.com/tutorials/mediawiki/
A http://helpwiki.evergreen.edu/wiki/index.php/Mediawiki Tutorial
A https://lifehacker.com/5396832/customize-mediawiki-into-your-

ultimate-collaborative-web-site
A https://hepmdb.soton.ac.uk/wiki/images/0/0b/Open4a-Getting-

Started-with-mediawiki.pdf
A https://www.fastwebhost.com/tutorials/cat/mediawiki-tutorial/
A https://www.semantic-mediawiki.org/wiki/Help:Getting started
A https://www.inmotionhosting.com/support/edu/mediawiki/getting-

started-mediawiki
A https://www.hostknox.com/tutorials/mediawiki/installation
A https://www.digitalocean.com/community/tutorials/how-to-install-

mediawiki-on-ubuntu-14-04
A https://computers.tutsplus.com/tutorials/how-to-build-your-own-

wiki–cms-19772
A https://www.tmdhosting.com/tutorials/mediawiki/how-to-backup-

mediawiki.html
Magento

A https://www.tutorialspoint.com/magento/
A https://www.siteground.com/tutorials/magento/
A https://blog.magestore.com/magento-tutorial/
A https://www.cminds.com/the-ultimate-beginners-guide-to-magento/
A https://code.tutsplus.com/articles/from-beginner-to-advanced-in-

magento-introduction-installation–cms-21969
A https://www.simicart.com/blog/best-magento-tutorial-resources-

beginner/
A https://www.cloudways.com/blog/magento/
A https://magenticians.com/
A https://www.mageplaza.com/kb/magento-2-tutorial/
A https://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-

1.html
A https://u.magento.com/
A https://stuntcoders.com/magento-tutorials/magento-tutorial-for-

beginners/
WordPress

A https://codex.wordpress.org/WordPress Lessons
A https://www.000webhost.com/wordpress-tutorial
A https://wpapprentice.com/wordpress-tutorial/
A https://premium.wpmudev.org/blog/a-wordpress-tutorial-for-

beginners-create-your-first-site-in-10-steps/
A https://ithemes.com/tutorial/category/wordpress-101/
A https://easywpguide.com/wordpress-manual/
A https://www.siteground.com/tutorials/wordpress/
A https://www.tutorialspoint.com/wordpress/
A https://www.hostinger.com/tutorials/wordpress/

Table 9: Comprehensive list of mapped CVEs and whether vulnerable
files, functions or lines were triggered based on our usage profiles. Grey
rows indicate CVEs located in modules that are, by default, disabled.

phpMyAdmin

CVE Ver. Vulnerability Triggered Affected FunctionalityFiles Functions Lines
1 CVE-2013-3238 4.0.0 Ë NA é Rename table using Regex
2 CVE-2013-3240 4.0.0 Ë Ë Ë Plugins
3 CVE-2014-8959 4.0.0 é é é GIS Editor
4 CVE-2016-6609 4.0.0 Ë é é Export as phparray
5 CVE-2016-6619 4.0.0 Ë é é Recent tables
6 CVE-2016-6620 4.0.0 é é é Table tracking
7 CVE-2016-6628 4.0.0 é é é Create charts
8 CVE-2016-6629 4.0.0 é é é Configuration option
9 CVE-2016-6631 4.0.0 é é é Create transform plugins
10 CVE-2016-6633 4.0.0 Ë é é Import ESRI shape file
11 CVE-2016-9866 4.0.0 Ë NA é User preferences
12 CVE-2016-5703 4.4.0 Ë é é Central columns
13 CVE-2016-5734 4.4.0 Ë é é Table search using Regex
14 CVE-2016-6616 4.4.0 é é é User groups
15 CVE-2017-1000017 4.4.0 Ë Ë é Replication
16 CVE-2016-6606 4.6.0 Ë Ë Ë Authentication cookies
17 CVE-2016-6617 4.6.0 Ë é é Export templates
18 CVE-2016-9849 4.6.0 Ë Ë Ë Authentication
19 CVE-2016-9865 4.6.0 Ë NA é Core deserialization
20 CVE-2017-1000499 4.7.0 Ë Ë Ë Navigation tree

MediaWiki
21 CVE-2013-2114 1.19.1 Ë é é File upload from chunks
22 CVE-2013-6453 1.21.1 Ë é é Verify uploaded file
23 CVE-2014-1610 1.21.1 Ë é é PDF Upload
24 CVE-2014-2243 1.21.1 Ë Ë é User settings
25 CVE-2014-5241 1.21.1 Ë é é JSON Output formatter
26 CVE-2014-9277 1.21.1 Ë é é Flash policy output
27 CVE-2014-9276 1.23.0 Ë Ë Ë Expand templates
28 CVE-2015-2936 1.24.0 Ë Ë Ë Authentication
29 CVE-2015-2937 1.24.0 é é é XMP data reader
30 CVE-2015-6728 1.24.0 Ë é é Get watchlists through API
31 CVE-2015-8002 1.24.0 Ë é é File upload from chunks
32 CVE-2015-8003 1.24.0 Ë é é File upload API
33 CVE-2015-8623 1.24.0 é é é User object
34 CVE-2015-8624 1.24.0 é é é User object
35 CVE-2017-0370 1.24.0 Ë Ë Ë Markup parser (blacklist)
36 CVE-2017-0362 1.28.0 Ë Ë Ë Track pages
37 CVE-2017-0363 1.28.0 Ë Ë Ë Search
38 CVE-2017-0364 1.28.0 Ë Ë Ë Search
39 CVE-2017-0367 1.28.0 Ë Ë Ë Localization cache
40 CVE-2017-0368 1.28.0 Ë Ë Ë System messages
41 CVE-2017-8809 1.28.0 Ë Ë Ë APIs and RSS

Magento
42 CVE-2015-1397 1.9.0 Ë Ë Ë Prepare SQL condition
43 CVE-2015-1398 1.9.0 Ë Ë é OAuth & XML modules
44 CVE-2015-1399 1.9.0 Ë Ë Ë Actions predispatch
45 CVE-2015-8707 1.9.0 Ë é é Password reset
46 CVE-2016-2212 1.9.0 Ë é é Order status RSS
47 CVE-2016-4010 2.0.5 Ë Ë Ë Shopping cart
48 CVE-2016-6485 2.0.5 Ë Ë Ë Cryptography functions
49 CVE-2018-5301 2.0.5 é é é Delete customer address

WordPress
50 CVE-2014-5203 3.9 Ë Ë é Widget customization
51 CVE-2014-5204 3.9 Ë Ë Ë CSRF token verification
52 CVE-2014-5205 3.9 Ë Ë Ë CSRF token verification
53 CVE-2018-12895 3.9 Ë Ë Ë Delete post thumbnail
54 CVE-2015-2213 4.0 Ë Ë Ë Untrash comment
55 CVE-2017-14723 4.0 Ë Ë Ë Prepared queries
56 CVE-2014-9033 4.0 Ë Ë é Password reset
57 CVE-2014-9037 4.0 Ë Ë Ë Password hashing library
58 CVE-2016-6635 4.0 Ë é é Ajax compression test
59 CVE-2014-9038 4.0 Ë Ë Ë HTTP request API
60 CVE-2015-5731 4.2.3 Ë Ë é Admin panel
61 CVE-2016-7169 4.6 Ë Ë é Sanitize uploaded file name
62 CVE-2017-17091 4.6 Ë NA é Create new user
63 CVE-2017-5492 4.7 Ë Ë Ë Admin screen API, widgets
64 CVE-2017-9064 4.7 Ë Ë Ë Admin file system operations
65 CVE-2018-10101 4.7 Ë Ë Ë HTTP request API
66 CVE-2018-10100 4.7 Ë NA é Login
67 CVE-2017-6815 4.7 Ë Ë Ë Redirect URL validation
68 CVE-2017-5611 4.7.1 Ë Ë Ë Query helper
69 CVE-2017-16510 4.7.1 Ë é é Prepared queries

1714 28th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20181112232555/https://www.siteground.com/tutorials/phpmyadmin/
https://www.siteground.com/tutorials/phpmyadmin/
https://web.archive.org/web/20181112233149/https://www.reg.ca/faq/PhpMyAdminTutorial.html
https://www.reg.ca/faq/PhpMyAdminTutorial.html
https://web.archive.org/web/20181114201249/https://www.w3resource.com/mysql/administration-tools/phpmyadmin-tutorial.php
https://www.w3resource.com/mysql/administration-tools/phpmyadmin-tutorial.php
https://www.w3resource.com/mysql/administration-tools/phpmyadmin-tutorial.php
https://web.archive.org/web/20181112233311/https://code.tutsplus.com/tutorials/installing-and-using-phpmyadmin-for-web-development--cms-21947
https://code.tutsplus.com/tutorials/installing-and-using-phpmyadmin-for-web-development--cms-21947
https://code.tutsplus.com/tutorials/installing-and-using-phpmyadmin-for-web-development--cms-21947
https://web.archive.org/web/20181112233410/https://www.homeandlearn.co.uk/php/php12p2.html
https://www.homeandlearn.co.uk/php/php12p2.html
https://web.archive.org/web/20181112233639/https://www.wpbeginner.com/beginners-guide/beginners-guide-to-wordpress-database-management-with-phpmyadmin/
https://www.wpbeginner.com/beginners-guide/beginners-guide-to-wordpress-database-management-with-phpmyadmin/
https://www.wpbeginner.com/beginners-guide/beginners-guide-to-wordpress-database-management-with-phpmyadmin/
https://web.archive.org/web/20181112233730/http://members.ipage.com/knowledgebase/read_article.bml?kbid=5923
http://members.ipage.com/knowledgebase/read_article.bml?kbid=5923
https://web.archive.org/web/20181112233831/https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-16-04
https://web.archive.org/web/20181112233904/https://www.fastwebhost.com/tutorials/knowledge-base/phpmyadmin-tutorial-administration-2/
https://www.fastwebhost.com/tutorials/knowledge-base/phpmyadmin-tutorial-administration-2/
https://www.fastwebhost.com/tutorials/knowledge-base/phpmyadmin-tutorial-administration-2/
https://web.archive.org/web/20181112234156/https://www.tutorialspoint.com/cpanel/cpanel_phpmyadmin.htm
https://www.tutorialspoint.com/cpanel/cpanel_phpmyadmin.htm
https://web.archive.org/web/20181112234218/https://www.w3schools.com/php/php_mysql_intro.asp
https://www.w3schools.com/php/php_mysql_intro.asp
https://web.archive.org/web/20181112234543/https://pimylifeup.com/raspberry-pi-mysql-phpmyadmin/
https://pimylifeup.com/raspberry-pi-mysql-phpmyadmin/
https://web.archive.org/web/20181112234617/https://www.webhostface.com/kb/knowledgebase/mysql-search-replace/
https://www.webhostface.com/kb/knowledgebase/mysql-search-replace/
https://www.webhostface.com/kb/knowledgebase/mysql-search-replace/
https://web.archive.org/web/20181112234658/https://www.eukhost.com/web-hosting/phpmyadmin.php
https://www.eukhost.com/web-hosting/phpmyadmin.php
https://web.archive.org/web/20181112234835/https://www.siteground.com/tutorials/mediawiki/
https://www.siteground.com/tutorials/mediawiki/
https://web.archive.org/web/20181112234857/http://helpwiki.evergreen.edu/wiki/index.php/Mediawiki_Tutorial
http://helpwiki.evergreen.edu/wiki/index.php/Mediawiki_Tutorial
https://web.archive.org/web/20181112234914/https://lifehacker.com/5396832/customize-mediawiki-into-your-ultimate-collaborative-web-site
https://lifehacker.com/5396832/customize-mediawiki-into-your-ultimate-collaborative-web-site
https://lifehacker.com/5396832/customize-mediawiki-into-your-ultimate-collaborative-web-site
https://web.archive.org/web/20181112234947/https://hepmdb.soton.ac.uk/wiki/images/0/0b/Open4a-Getting-Started-with-mediawiki.pdf
https://hepmdb.soton.ac.uk/wiki/images/0/0b/Open4a-Getting-Started-with-mediawiki.pdf
https://hepmdb.soton.ac.uk/wiki/images/0/0b/Open4a-Getting-Started-with-mediawiki.pdf
https://web.archive.org/web/20181112235106/https://www.fastwebhost.com/tutorials/cat/mediawiki-tutorial/
https://www.fastwebhost.com/tutorials/cat/mediawiki-tutorial/
https://web.archive.org/web/20181112235233/https://www.semantic-mediawiki.org/wiki/Help:Getting_started
https://www.semantic-mediawiki.org/wiki/Help:Getting_started
https://web.archive.org/web/20181112235352/https://www.inmotionhosting.com/support/edu/mediawiki/getting-started-mediawiki
https://www.inmotionhosting.com/support/edu/mediawiki/getting-started-mediawiki
https://www.inmotionhosting.com/support/edu/mediawiki/getting-started-mediawiki
https://web.archive.org/web/20181112235422/https://www.hostknox.com/tutorials/mediawiki/installation
https://www.hostknox.com/tutorials/mediawiki/installation
https://web.archive.org/web/20181112235447/https://www.digitalocean.com/community/tutorials/how-to-install-mediawiki-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-mediawiki-on-ubuntu-14-04
https://www.digitalocean.com/community/tutorials/how-to-install-mediawiki-on-ubuntu-14-04
https://web.archive.org/web/20181112235514/https://computers.tutsplus.com/tutorials/how-to-build-your-own-wiki--cms-19772
https://computers.tutsplus.com/tutorials/how-to-build-your-own-wiki--cms-19772
https://computers.tutsplus.com/tutorials/how-to-build-your-own-wiki--cms-19772
https://web.archive.org/web/20181112235536/https://www.tmdhosting.com/tutorials/mediawiki/how-to-backup-mediawiki.html
https://www.tmdhosting.com/tutorials/mediawiki/how-to-backup-mediawiki.html
https://www.tmdhosting.com/tutorials/mediawiki/how-to-backup-mediawiki.html
https://web.archive.org/web/20181113025812/https://www.tutorialspoint.com/magento/
https://www.tutorialspoint.com/magento/
https://web.archive.org/web/20181113025840/https://www.siteground.com/tutorials/magento/
https://www.siteground.com/tutorials/magento/
https://web.archive.org/web/20181120140129/https://blog.magestore.com/magento-tutorial/
https://blog.magestore.com/magento-tutorial/
https://web.archive.org/web/20181114201450/https://www.cminds.com/the-ultimate-beginners-guide-to-magento/
https://www.cminds.com/the-ultimate-beginners-guide-to-magento/
https://web.archive.org/web/20181113030038/https://code.tutsplus.com/articles/from-beginner-to-advanced-in-magento-introduction-installation--cms-21969
https://code.tutsplus.com/articles/from-beginner-to-advanced-in-magento-introduction-installation--cms-21969
https://code.tutsplus.com/articles/from-beginner-to-advanced-in-magento-introduction-installation--cms-21969
https://web.archive.org/web/20181113030108/https://www.simicart.com/blog/best-magento-tutorial-resources-beginner/
https://www.simicart.com/blog/best-magento-tutorial-resources-beginner/
https://www.simicart.com/blog/best-magento-tutorial-resources-beginner/
https://web.archive.org/web/20181113030148/https://www.cloudways.com/blog/magento/
https://www.cloudways.com/blog/magento/
https://web.archive.org/web/20181113030232/https://magenticians.com/
https://magenticians.com/
https://web.archive.org/web/20181113030303/https://www.mageplaza.com/kb/magento-2-tutorial/
https://www.mageplaza.com/kb/magento-2-tutorial/
https://web.archive.org/web/20181113030342/https://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-1.html
https://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-1.html
https://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-1.html
https://web.archive.org/web/20181113030401/https://u.magento.com/
https://u.magento.com/
https://web.archive.org/web/20181113030453/https://stuntcoders.com/magento-tutorials/magento-tutorial-for-beginners/
https://stuntcoders.com/magento-tutorials/magento-tutorial-for-beginners/
https://stuntcoders.com/magento-tutorials/magento-tutorial-for-beginners/
https://web.archive.org/web/20190213173303/https://codex.wordpress.org/WordPress_Lessons
https://codex.wordpress.org/WordPress_Lessons
https://web.archive.org/web/20190213173339/https://www.000webhost.com/wordpress-tutorial
https://www.000webhost.com/wordpress-tutorial
https://web.archive.org/web/20190213173500/https://wpapprentice.com/wordpress-tutorial/
https://wpapprentice.com/wordpress-tutorial/
https://web.archive.org/web/20190213173528/https://premium.wpmudev.org/blog/a-wordpress-tutorial-for-beginners-create-your-first-site-in-10-steps/
https://premium.wpmudev.org/blog/a-wordpress-tutorial-for-beginners-create-your-first-site-in-10-steps/
https://premium.wpmudev.org/blog/a-wordpress-tutorial-for-beginners-create-your-first-site-in-10-steps/
https://web.archive.org/web/20190213173600/https://ithemes.com/tutorial/category/wordpress-101/
https://ithemes.com/tutorial/category/wordpress-101/
https://web.archive.org/web/20190213173628/https://easywpguide.com/wordpress-manual/
https://easywpguide.com/wordpress-manual/
https://web.archive.org/web/20190213173658/https://www.siteground.com/tutorials/wordpress/
https://www.siteground.com/tutorials/wordpress/
https://web.archive.org/web/20190213173717/https://www.tutorialspoint.com/wordpress/
https://www.tutorialspoint.com/wordpress/
https://web.archive.org/web/20190213173749/https://www.hostinger.com/tutorials/wordpress/
https://www.hostinger.com/tutorials/wordpress/

The Web’s Identity Crisis:
Understanding the Effectiveness of Website Identity Indicators

Christopher Thompson, Martin Shelton, Emily Stark,
Maximilian Walker, Emily Schechter, Adrienne Porter Felt

Google

Abstract
Users must understand the identity of the website that they
are visiting in order to make trust decisions. Web browsers
indicate website identity via URLs and HTTPS certificates,
but users must understand and act on these indicators for
them to be effective. In this paper, we explore how browser
identity indicators affect user behavior and understanding.
First, we present a large-scale field experiment measuring
the effects of the HTTPS Extended Validation (EV) certifi-
cate UI on user behavior. Our experiment is many orders of
magnitude larger than any prior study of EV indicators, and
it is the first to examine the EV indicator in a naturalistic sce-
nario. We find that most metrics of user behavior are unaf-
fected by its removal, providing evidence that the EV indica-
tor adds little value in its current form. Second, we conduct
three experimental design surveys to understand how users
perceive UI variations in identity indicators for login pages,
looking at EV UI in Chrome and Safari and URL formatting
designs in Chrome. In 14 iterations on browsers’ EV and
URL formats, no intervention significantly impacted users’
understanding of the security or identity of login pages. In-
formed by our experimental results, we provide recommen-
dations to build more effective website identity mechanisms.

1 Introduction
To use the web safely, users must be able to understand the
identity of the website that they are visiting. Without under-
standing a website’s identity, users cannot make an informed
decision about whether to provide it with their personal in-
formation or trust its content. Such misunderstandings result
in common attacks like phishing and social engineering [36].

Web browsers use two mechanisms to communicate web-
site identity to users. The first is the URL displayed in the
browser address bar, along with a padlock icon to indicate an
authenticated connection. For example, before a user types
their Google password into a webpage, the user should verify
that the domain in the browser address bar is “google.com”
and that the padlock icon is present. Second, some HTTPS
connections are authenticated with an Extended Validation

Figure 1: Examples of EV certificate UI in different web
browsers (from top to bottom: Firefox, Safari, and Chrome).

(EV) certificate. An EV certificate associates a website with
a legal entity, whose name and jurisdiction is typically dis-
played alongside the URL in the address bar (Figure 1).
Users can check the EV indicator to verify that a website
is associated with an established legal entity that they trust.

Prior work suggests that neither URLs nor EV indicators
work very well as indicators of website identity. Many users
do not look at the URL even when primed to try to identify
fraudulent sites [12]. EV indicators also do not help users
identify fraudulent sites [24]. Even if users did notice the EV
indicator, EV certificates can contain misleading information
that limits their usefulness [10, 11].

However, much of the work that studies the effectiveness
of website identity indicators is dated, testing browser UIs
that are no longer in common use. For example, most EV in-
dicator research is ten years old and studied the first browser
EV UI from Internet Explorer 7. Browser security indica-
tors and the web security landscape have changed dramat-
ically since these studies were conducted, with widespread
adoption of HTTPS [15] and constant evolution of browser
UI [16]. Further, prior work does not examine how users
react to website identity indicators in the wild.

In this paper, we examine the effectiveness of browser
identity indicators – URLs and EV UI – from several angles.
We focus primarily on how users react to the EV indicator,
since it is designed to provide human-meaningful identity in-
formation, and we also investigate whether browser UIs can
be tweaked to make the URL more human-meaningful. Our

USENIX Association 28th USENIX Security Symposium 1715

goal is to study the effectiveness of modern browser identity
indicators at a much larger scale than previous work.

First, we analyzed a large-scale field experiment (Sec-
tion 3) from the Google Chrome web browser. We examined
a suite of user behavior measurements with and without the
EV indicator present on websites that serve EV certificates.
This experiment simulates a situation in which a user visits
an attack website that mimics a victim website exactly but
does not possess an EV certificate for the victim site. We
find little evidence that the absence of the EV indicator af-
fects how users interact with the site. We do find, however,
that the EV indicator itself draws clicks.

Second, we conducted a series of survey experiments
(Section 4) to investigate follow-up questions about EV UI
that we could not answer with field data. Our surveys,
with over 1,800 total participants from the U.S. and U.K.,
sought to answer two questions: (1) Would a recent proof-
of-concept attack on EV certificates [11] be effective on real
users? (2) How do users react to other browsers’ EV UIs? In
these surveys, we find no evidence that the EV UI in either
Chrome or Safari impact how comfortable users feel when
logging into a webpage.

Finally, having found little evidence that EV indicators
influence user behavior, we consider whether URLs can be
more effective identity indicators (Section 5). We surveyed
over 1,000 users to assess reactions to different variations
on Chrome’s URL display. Each variation was designed to
draw users’ attention to the domain name, in hopes that they
would notice that the webpage was a phishing site. We found
no significant differences among any of the variations, lead-
ing us to believe that a more radical redesign is necessary for
URLs to effectively communicate website identity to users.

Our results, along with the body of existing work, sug-
gest that modern browser identity indicators are not effective.
We use these results to provide recommendations for build-
ing better website identity mechanisms. Based on promising
results from prior research [7, 14], we argue that negative,
active indicators (such as full-page warnings) are a more
promising avenue than passive, positive indicators (such as
the padlock icon or EV indicator in the address bar). We fur-
ther recommend that user research should be incorporated
into the design phase for future browser identity indicators.

2 Background
2.1 URLs and website identity
The fundamental identity indicator of the web is the URL.
All major web browsers display the URL of the page in or-
der to convey the website’s identity. Figure 2 shows how
different web browsers display URLs to users.

2.1.1 HTTPS and certificates

In the URL bar, the presence of the “https://” scheme and/or
a padlock icon indicate that the identity of the site has been
verified through a cryptographic certificate. Most websites

Figure 2: Examples of different browser URL displays (from
top to bottom: Firefox 64, Safari 12.0.3, and Chrome 72).

use domain-validated (DV) certificates. A website owner can
obtain a DV certificate by proving control over a domain to
a certificate authority (CA) [1]. DV certificates can be ob-
tained easily and inexpensively from a number of CAs.

2.1.2 Registrable domain

In most situations, a user who is making a security decision
should pay attention to the registrable domain [6] rather than
the full URL. The registrable domain is composed of the
high-level domain name suffix under which internet users
can register names [5], plus the DNS label immediately
preceding it. For example, “google.com” is the registra-
ble domain in the URL “https://accounts.google.com/”, and
“google.co.uk” in “https://accounts.google.co.uk/”.

The registrable domain is typically the identity indicator
of interest because when an organization controls a registra-
ble domain, the same organization can typically control all
the subdomains and paths within that domain.

2.2 Extended Validation (EV) certificates
EV certificates are a type of HTTPS certificate in which a
domain owner undergoes additional validation with a CA to
tie their domain to a legal entity. Most major web browsers
display the legal entity name and jurisdiction in the URL bar
alongside the URL, as shown in Figure 1. Notably, Safari
recently stopped displaying the legal entity name and simply
colors the domain green when an EV certificate is present.1

Section 2 of the CA/Browser Forum guidelines for EV
certificates [3] specifically states that one primary purpose
of EV certificates is to enable a browser to inform the user
about the specific legal identity of the business with which
they are interacting when using a website. A secondary pur-
pose given by the guidelines is that EV certificates can be
considered to combat phishing and other malicious web ac-
tivity.2 If an attack website is impersonating a victim busi-
ness, the attack site is not supposed to be able to obtain an
EV certificate for the victim business. A user visiting the at-
tack website might notice that there is no EV indicator for
the victim business and thereby conclude that the website is
not the legitimate website for the victim business.

EV certificates are typically more cumbersome to obtain
than DV certificates. Domain owners pay a premium for

1Apple did not mention this change in their release notes, however it was
discussed on Twitter [13, 30] and technical blogs [23].

2Microsoft [18] and Mozilla [21] gave similar motivations for their in-
troduction of browser EV UI.

1716 28th USENIX Security Symposium USENIX Association

EV certificates and undergo a days- or weeks-long valida-
tion process.

2.2.1 Weaknesses of EV certificates

EV certificates suffer from a number of security and usability
weaknesses. These weaknesses have led to a vigorous debate
in the security community about whether browsers should
continue to display EV certificate UI [22, 23, 32]. Our work
seeks to inform this debate with up-to-date, large-scale, in
situ data about how users react to EV indicators.

Malicious EV certificates. EV is not intended to verify
that the holder of the certificate is law-abiding, trustworthy,
or safe [3]. Researchers have shown that EV certificates can
be obtained for misleading names that could be useful in an
attack. We describe these attacks in Section 7.1.2.

Usability issues. A body of work from the mid-2000s in-
dicates that EV certificates are not an effective phishing de-
fense because users do not pay attention to the EV UI in web
browsers. We survey this work in Section 7.1.1.

Further, the legal entity names in EV certificates are not
always intuitive or understandable, because the legal entity
does not always match the company’s user-visible brand. For
example, the personal finance management site mint.com

has a legal entity name of “Intuit Inc.”

3 EV field experiment
To understand whether browser EV UI has an effect on user
behavior in the wild, we analyze data from a large-scale field
experiment. In this experiment, the EV UI was disabled for
a subset of Google Chrome users. We compare a variety of
metrics representing users’ interactions with EV websites in
the experimental and control groups. We do not find evi-
dence that the EV UI impacts user behavior significantly for
most metrics. The exception is that users who see the EV
UI are more likely to open and interact with the Page Info
bubble, which is anchored to the connection security indica-
tor chip (Figure 3). Additionally, we examined the effects of
removing the EV UI on a set of 20 top EV sites. We found a
small negative impact on navigations to one of these sites.

3.1 Methodology
3.1.1 Dataset

We analyze data from Chrome’s user metrics program.
Chrome collects metrics in the form of enums, booleans,
counts, and times. Our dataset comes from the Stable chan-
nel, which has the largest set of users and is the default in-
stallation release channel. Stable channel is considered the
most representative for measurement and experimentation
purposes.

Chrome metrics reports are pseudonymous, containing
client information such as the operating system and country,
but no personal information (e.g., age or gender). The user

metrics program is enabled by default for consumer installs.
Users may opt out during installation or in browser settings.

A subset of metrics are keyed by the URL on which the
metric is recorded. URLs are only provided for users who
have also opted to sync their browsing data with Google
servers [20]. We use these URL-keyed metrics to check for
changes in user behavior on specific well-known sites with
EV certificates. We analyze a subset of our metrics on each
of the top 20 EV sites, as visited by Chrome users during
our experimental period. We report these results with the
domains blinded.

Our dataset includes metrics collected from January 15,
2019 to January 28, 2019. Chrome 71 was fully rolled out to
the Stable channel during this time period.3

3.1.2 Experimentation framework

Chrome contains an experiment framework in which users
can be randomly assigned to experiment groups. Metrics re-
ports are then tagged with the user’s group. In our dataset,
1% of Stable channel users were assigned to an experimen-
tal group in which the EV certificate UI was disabled, and
1% to a control group. In the experimental group, users who
visited EV sites saw a padlock but no additional HTTPS UI.

3.1.3 Metrics

In our study, we analyzed a set of user behaviors that we
hypothesized might be affected by a user’s perception of the
security and identity of a site.

Our selection of metrics is informed by a review of re-
lated work (Section 7). We sought to measure behaviors in
situ that previous work measured via lab studies or surveys.
Below we describe each metric and why we included it.

• Navigations. Do users navigate to different sites, or
navigate away from EV sites more in the experimental
group? We measure:

– The number of navigations to EV pages, normal-
ized by the total number of navigations.

– The median time spent on each page visit (not in-
cluding time spent in the background).4

– The number of times that users left EV pages, by
closing the tab, using Back/Forward functionality,
or reloading. We normalize by the total number of
navigations to EV pages.

We are interested in navigations because prior work on
browser security indicators surveyed users on whether
they would leave the page if a particular security indi-
cator appeared in their browser [16].

• Form submissions. A metric is recorded when a user
submits an HTML form. We consider the number of

3During this period, our dataset included millions of clients in each
group for our main analysis. For our per-origin analysis, we had tens of
thousands of clients on average in each group for each origin.

4Due to a bug in our initial data collection for this metric, we instead
use data from May 15–28 (after a fixed version reached Chrome’s Stable
channel) for this metric.

USENIX Association 28th USENIX Security Symposium 1717

form submissions that occur on pages with EV certifi-
cates, normalized by the total number of navigations to
EV pages. Previous studies have surveyed users on their
willingness to enter login [31] or credit card [16] de-
tails, both of which typically involve submitting a form.

• Autofill interactions. Chrome’s autofill feature saves
credit card details that the user enters and provides sug-
gestions when users fill out payment forms. We analyze
the number of times a suggestion was selected normal-
ized by the number of times a suggestion was shown.
As with form submissions, these metrics provide insight
into whether users in the experimental group are less
comfortable providing credit card details to the page.

• Page Info interactions. Chrome’s Page Info bubble
is the dialog that appears when a user clicks on the
main connection security indicator in the address bar
(Figure 3). A metric is recorded every time a user
opens the Page Info bubble and every time they use
its functionality (e.g., opening the certificate details di-
alog or inspecting cookies). We analyze Page Info
behavior because previous lab studies have examined
users’ interactions with the equivalent dialog in other
browsers [33]. We normalize the number of times the
Page Info bubble was opened by the total number of
navigations to EV pages. We normalize the number of
different actions within the Page Info bubble by the total
number of times the Page Info bubble was opened.

• Downloads. Downloading a file, particularly an exe-
cutable, may represent a trust decision for users. We
record the number of downloads initiated from EV
pages, normalized by the total number of EV naviga-
tions.

• Site Engagement. Chrome records an aggregate metric
called Site Engagement (SE) that approximately mea-
sures how much active time a user spends on a site.5

Each web origin receives a SE score between 0 and 100.
It goes up as a user clicks, scrolls, performs keypresses,
or plays media on a site, and decays over time as a user
does not interact with the site. We compare SE scores
with and without the EV UI to see if there might be ef-
fects related to user engagement that are not captured
by our other metrics. We analyze this metric on a per-
site basis. For each user on each origin, we compute the
average SE score per visit as well as the average change
in SE score over each visit.

3.1.4 Analysis

To see if there are statistically significant effects on any of
our metrics of user behavior between our control group and
our experimental group, we perform a Welch’s t-test for un-
equal sample variances (as our sample sizes and variances

5https://www.chromium.org/developers/design-documents/

site-engagement

Figure 3: The Page Info bubble in Chrome.

are not guaranteed to be equal between our treatment and
control groups) for each metric of interest.

For each metric, we report the difference between the ex-
perimental group and the control group, the 95% confidence
interval for the difference, and the p-value of the t-test.

3.1.5 Limitations

Incompletely capturing user reactions. It is possible that
users in the experimental group reacted differently than the
control group in ways that we did not measure. For example,
perhaps when the EV UI is disabled, users use a throwaway
password or deny all permission prompts. Though we can-
not feasibly measure all such user reactions, we feel that our
study still provides value by (a) measuring a wide variety of
user behaviors that one could reasonably expect to be influ-
enced by a security or identity indicator, and (b) studying
user behaviors in a naturalistic scenario that have previously
been studied only in labs or surveys.

Limited insight into per-site effects. Some, but not all, of
our metrics are keyed by URL (Section 3.1.1). For metrics
which are not URL-keyed, we can draw conclusions only
about user behavior in aggregate over all sites. It is possible
that the absence of the EV indicator influenced these metrics
on particular sites but did not have a significant effect when
aggregated over all EV sites.

Incomplete simulation of attack scenarios. Our study
analyzes whether users react to a missing EV indicator on
a website that does not otherwise look suspicious. This sim-
ulates an attack scenario in which an attack website mimics
a victim website exactly except for the EV certificate. This
attack scenario could arise if an attacker obtains a homo-
graph domain (one that looks nearly or exactly identical to a
victim domain)6 or an ordinary domain-validated certificate
for the victim site. However, EV certificates might signifi-
cantly influence user behavior in other attack scenarios that
we did not study. For example, consider a website that spoofs
paypal.com but is hosted at an obviously incorrect URL. In
this scenario, a missing EV indicator might prompt a user to
inspect the URL and thereby detect the attack. While our ex-
periment does not cover such attack scenarios, we feel that
our experiment’s attack scenario is of particular interest: the
purpose of EV indicators are to provide human-meaningful
identity information on the premise that other signals, such

6https://en.wikipedia.org/wiki/IDN_homograph_attack

1718 28th USENIX Security Symposium USENIX Association

as the URL, are not sufficient tools for identifying websites.
We explore an additional attack scenario of practical interest
via a survey experiment, as described in Section 4.

Dataset selection. Our dataset does not come from a truly
random sample of Chrome’s user population: users can opt
out of the user metrics program, and users must specifi-
cally opt in to browsing data syncing to report URLs (Sec-
tion 3.1.1). However, we still believe this data is valuable in
light of its scale and naturalistic observation.

3.1.6 Ethical considerations

Although our institution is not subject to IRB approval,
the EV experiment went through an internal review process
before launching, including security and privacy reviews.
As discussed in Section 3.1.1, Chrome metrics reports are
pseudonymous [20].

The experiment rolled out in several release channels be-
fore Stable, per Chrome’s usual release process. The exper-
iment was monitored as it rolled out, and had any problems
been detected, it could have been disabled at any time.

For users in the experimental group, the Chrome devel-
oper console contained a message explaining the experiment.
This message was intended to inform site owners why their
EV certificate UI might not be showing.7

Changes to browser security and identity indicators come
with the risk that users feel safer on malicious sites and take
actions that they wouldn’t otherwise take (for example, a
user might enter credit card details on a scam site because
the UI change made them believe it was safe). Our approach
is similar to other field studies on browser security UI, such
as exploring new security indicator icons [16], and more con-
servative than default feature rollouts in Chrome, as the ex-
periment targeted only a small percentage of users and could
have been disabled at any time had there been unexpected ef-
fects indicating that the experiment put users at risk. In this
case, we expected the experiment to, at most, make users
act more cautiously on legitimate sites, since we were only
modifying positive security UI (compared to, for example,
prior work experimenting with full page connection security
warnings [14]).

We note that Brave Browser, which is based on the
Chromium project, has opted in to not showing the EV UI
using our experimental feature [2]. Brave’s previous imple-
mentation (based on Muon) also intentionally did not show
any EV UI [4]. Our dataset only includes data from official
Chrome clients.

7The developer console is a default-hidden UI intended for web devel-
opers, where many technical warnings about the page are printed (e.g., iden-
tifying specific mixed content subresources, or the use of deprecated APIs).
In the Stable channel, the console was opened by 2% of clients over the
14-day period of our study. We believe that this indicates that the console
warning would not be a potential source of priming for a vast majority of
participants. We did not see a significant difference in how often the con-
sole was opened (normalized by page loads) between our experimental and
control groups (p=0.57, 95% CI: [-0.000052,+0.000028]).

3.2 Results
3.2.1 Summary

We did not see any significant differences in user behavior in
our navigation or on-page metrics between our experimental
group and our control group. Table 1 summarizes the results
of our statistical analysis for each of our metrics.

3.2.2 Page Info interactions

Users in the control group, who saw EV UI, were signifi-
cantly more likely to open the Page Info bubble. However,
users in the experimental group, who did not see EV UI, were
more likely to take an action in the Page Info bubble after
opening it.

The experimental group opened the Page Info bubble on
0.02% of EV page loads, compared to 0.25% in the control
group. Additionally, participants in our experimental group
were much more likely to take an action in the Page Info
bubble after opening it, across all Page Info action types.

To investigate further, we performed an additional analysis
where we normalized the number of Page Info actions by the
total number of EV page loads, to see if the overall number
of Page Info actions taken went down in the experimental
group. Table 2 shows the results of this analysis. While
some Page Info actions were more common per page load
in the control group, the effect sizes were very small. That
is, hiding the EV UI did not make users substantially less
likely to perform actions in the Page Info bubble.

Applying a Bonferroni correction for multiple testing with
m = 19 (for each of the tests in Tables 1 and 2), the corrected
significance level would instead be α = 0.05/m = 0.002. This
implies that the significant results in Table 2 may be due to
chance only.8

One possible explanation for this finding is that the large
size of the EV indicator draws accidental clicks, leading
users to open the Page Info bubble but not actually use it.
Another hypothesis is that users notice and are curious about
the EV indicator, even if it does not influence their secu-
rity decisions (consistent with prior work that found that
users noticed identity indicators but did not use them in their
decision-making processes [28, 33, 40]). We cannot conclu-
sively differentiate between these two hypotheses.

3.2.3 Per-site metrics

We analyzed three URL-keyed metrics (navigations, Site En-
gagement score, and change in Site Engagement score) on
each of the top 20 EV sites. For 14 of the 20 most-visited
EV origins, there were no differences with p < 0.05. The re-
maining 6 origins are shown in Table 3, each with one metric
with p < 0.05. Five of these are very small to small negative
effects on the number of navigations to the site, while one

8Using a Bonferroni correction allows us to control for Type I errors. We
show results significant at both the p < 0.05 level and the multiple testing-
corrected level, as the Bonferroni correction can be too conservative in cases
of correlated tests.

USENIX Association 28th USENIX Security Symposium 1719

Control (σ) Experiment (σ) ∆ 95% CI p-value Cohen’s d

EV Navigations 6.18% (0.13%) 6.18% (0.13%) -0.00 (-0.03, +0.03) 0.80 0.00
Time on EV pages (s) 2609.58 (47724.51) 2621.61 (47816.15) +12.03 (–156.06, +180.12) 0.89 0.00

Page Ended With Tab Closed 31.64% (0.27%) 31.58% (0.27%) -0.05 (-0.15, +0.03) 0.20 0.00
Page Ended With Back/Forward 3.61% (0.08%) 3.61% (0.08%) +0.00 (-0.02, +0.01) 0.51 0.00
Page Reloaded 0.96% (0.05%) 0.96% (0.05%) +0.00 (-0.02, +0.01) 0.51 0.00

Download started 3.77% (2.61%) 3.44% (1.30%) -0.33 (-1.05, +0.38) 0.36 0.00
Form submitted 43.45% (0.97%) 43.49% (0.98%) +0.04 (-0.30, +0.37) 0.83 0.00
CC filled 55.52% (0.79%) 55.91% (0.79%) +0.39 (-1.21, +1.99) 0.63 0.00

Page Info opened 0.25% (0.04%) 0.02% (0.009%) -0.23 (-0.24, -0.22) 0.00 0.09
Cookies dialog opened 0.54% (0.66%) 3.48% (0.17%) +2.94 (+2.31, +3.57) 0.00 0.36
Changed permissions 1.26% (0.12%) 10.78% (0.34%) +9.52 (+8.25, +10.78) 0.00 0.63
Certificate dialog opened 0.74% (0.11%) 5.52% (0.22%) +4.78 (+3.97, +5.58) 0.00 0.39
Connection help opened 0.21% (0.04%) 1.51% (0.11%) +1.29 (+0.89, +1.69) 0.00 0.26
Site settings opened 0.83% (0.08%) 5.80% (0.22%) +4.97 (+4.17, +5.76) 0.00 0.49

Table 1: Summary of statistical tests for our EV field experiment metrics. The only differences that were significant at the
p < 0.05 level were for Page Info behavior (highlighted).

Control (σ) Experiment (σ) ∆ 95% CI p-value Cohen’s d

Cookies dialog opened 0.0019% (0.0026%) 0.0010% (0.0017%) -0.001 (-0.0017, -0.00002) 0.01 0.004
Changed permissions 0.0031% (0.0028%) 0.0025% (0.0024%) -0.0006 (-0.0015, +0.0003) 0.18 0.002
Certificate dialog opened 0.0022% (0.0026%) 0.0017% (0.0026%) -0.0005 (-0.0014, +0.0004) 0.28 0.002
Connection help opened 0.0009% (0.0017%) 0.0005% (0.0014%) -0.0004 (-0.0009, +0.0002) 0.17 0.002
Site settings opened 0.0028% (0.0028%) 0.0014% (0.0014%) -0.0014 (-0.0023, -0.0006) 0.007 0.006

Table 2: Summary of our followup analysis of Page Info behavior, with counts of actions normalized by the number of EV page
navigations instead. The highlighted rows were significant at the p < 0.05 level, but the effect sizes are negligible.

is a very small positive effect on the per-visit change in the
Site Engagement score. However, if we apply a Bonferroni
correction with m = 60 (three metrics checked across 20 ori-
gins), then we should instead consider a significance level of
α = 0.05/m = 0.0008. With the correction, only one origin
had a significant difference in user behavior: Origin 15 had
4.26 (95% CI: 2.20 to 6.32, d = 0.24) fewer navigations on
average per user in the experimental condition.

We note that our navigation metric used here is not nor-
malized due to limitations of the URL-keyed metrics dataset,
so these results may be affected by natural variations in
browsing volume between users.

4 EV survey experiments
In our EV field study, we failed to find evidence that the ab-
sence of the EV indicator influences most user behaviors. In
this section, we examine two follow-up questions that were
infeasible to answer via field experiment:

1. Does the EV UI help users detect cross-jurisdiction
collision attacks? We were particularly interested in
cross-jurisdiction collisions due to a recent high-profile
proof of concept [11]. In this attack, two EV certifi-
cates are registered with the same legal entity name in
different jurisdictions. We studied this question via sur-
vey because a field experiment would have required the
browser to display incorrect information.

2. How do users react to EV UI in modern browsers
other than Chrome? We focused on the Apple Safari
browser because it recently made a significant change
to its EV UI, removing the legal entity name and sim-
ply showing the domain in green (Figure 5). Because
we did not have access to Safari field data, we instead
conducted a survey experiment.

4.1 Methodology
We ran two online survey experiments, corresponding to the
two research questions described above.

4.1.1 Questions

The surveys showed participants a login screen for a well-
known financial webpage in their respective countries: Pay-
Pal in the U.S. and HSBC in the U.K. We asked participants
three questions, displayed underneath the screenshot.

First, in a five-point Likert scale, we asked participants
to rate their comfort level logging into the webpage: Would
you feel comfortable logging in on this website? Very com-
fortable / Somewhat comfortable / Neither comfortable nor
uncomfortable / Somewhat uncomfortable / Very uncomfort-
able

To avoid leading participants’ responses, we intentionally
left this question up to their interpretation and allowed them
to elaborate. We next asked participants for open-ended de-

1720 28th USENIX Security Symposium USENIX Association

Control Experiment ∆ 95% CI p-value Cohen’s d

Origin Metric
3 Navigations 18.55 14.78 -3.77 (-6.78, -0.76) 0.014 0.17
4 Navigations 25.80 23.08 -2.72 (-4.73, -0.72) 0.0078 0.10

10 Navigations 13.37 11.10 -2.27 (-4.33, -0.21) 0.031 0.14
14 Navigations 20.40 15.65 -4.74 (-8.48, -1.01) 0.013 0.21
15 Navigations 18.57 14.31 -4.26 (-6.32, -2.20) 0.00005 0.24
18 ∆ Site Engagement 0.88 1.40 +0.52 (+0.09, +0.95) 0.017 0.13

Table 3: Summary of our (blinded) per-origin analysis from our UKM dataset. The included rows are the origin/metric pairs that
were significant at the α = 0.05 level. The highlighted row is the only significant result after applying a Bonferroni correction
(α = 0.0008). All the differences have at most a small effect size (Cohen’s d).

tails about their reasoning: Can you tell us why you feel that
way? (If there’s nothing to add, leave blank.)

The final question appeared with the same login page
screenshot, allowing users to click on it up to three times
to mark the relevant sections: Click the item(s) on the screen
that make you feel that way.

4.1.2 Participants

We recruited U.S. participants through Mechanical Turk and
U.K. participants through Clickworker. We selected the U.S.
and U.K. because EV usage was common in these countries
(based on our dataset from Section 3), and we were unable
to recruit enough participants in other countries where EV
usage is common. Participants received a $.40 or e .35 in-
centive for participation. Our cross-jurisdiction collision sur-
vey ran from January 29 to February 3, 2019, with 592 U.S.
participants and 650 U.K. participants. Our Safari EV sur-
vey ran from January 29 to February 1, 2019, with 290 U.S.
participants and 305 U.K. participants.

Demographics. In both surveys, U.S. participants skewed
slightly older than U.K. participants, who were overrepre-
sented in the 18-24 age range. In the cross-jurisdiction at-
tack survey, U.S. participants skewed slightly male (55%)
and U.K. participants skewed slightly female (55%). Full
demographic details can be found in the Appendix.

4.1.3 Experimental conditions

Cross-jurisdiction collision survey. In this survey, we
randomly assigned participants to see one of five conditions
with a screenshot of the login page, each manipulating the
country code displayed in the EV indicator, as shown in
Figure 4. One condition omitted the country code entirely,
one showed the correct country code (US or GB), and three
showed incorrect country codes (MX, RU, and BR).

Safari EV UI survey. Safari changed its EV display in ma-
cOS 10.14 to no longer display the legal entity name. In this
survey, we randomly assigned participants to one of two con-
ditions. In the first, users saw the login webpage with the EV
display used in macOS 10.13, and in the second condition,
users saw the EV display from macOS 10.14 (Figure 5).

Figure 4: Five conditions shown to U.S. participants, manip-
ulating only country code.

Figure 5: Two conditions shown to U.K. participants, manip-
ulating display of EV to include the site’s registrable domain
(macOS 10.14) or EV legal entity name (as in macOS 10.13).

4.1.4 Data coding

Two researchers coded the qualitative responses on users’
comfort level, with one team member (the codemaster) open
coding the initial coding rounds, and the other iteratively pro-
viding feedback to the codemaster. In the final round of iter-
ation, both researchers coded all responses for both surveys.
Cohen’s κ , a measure of inter-rater reliability, was 0.974 in
the cross-jurisdiction survey (with 95.3% agreement), and
0.949 (with 97.6% agreement) in the Safari EV formatting
survey, both indicating strong consistency between coders.
The codemaster resolved the remaining conflicts.

4.1.5 Limitations

Artificial scenario. As with previous lab and survey stud-
ies about browser identity indicators, our surveys are an arti-
ficial scenario. This approach has limited ecological validity,
as participants are not tasked with signing into a real web-
site, nor with their real credentials, and thus they may feel
less concerned than usual. However, in a more naturalis-
tic scenario, we would expect that users would also pay less

USENIX Association 28th USENIX Security Symposium 1721

Cnd 1 Cnd 2 Cnd 3 Cnd 4 Cnd 5

U.S.
Very comfortable 63% 63% 61% 56% 68%
Somewhat comfortable 30% 24% 25% 28% 21%
Neither comfortable 2% 4% 5% 3% 3%

nor uncomfortable
Somewhat uncomfortable 3% 7% 6% 6% 7%
Very uncomfortable 2% 3% 3% 8% 2%
n 121 120 115 117 119

U.K.
Very comfortable 48% 56% 46% 44% 56%
Somewhat comfortable 31% 33% 36% 39% 35%
Neither comfortable 10% 5% 3% 8% 5%

nor uncomfortable
Somewhat uncomfortable 6% 4% 12% 7% 3%
Very uncomfortable 5% 2% 3% 3% 2%
n 125 132 128 132 133

Table 4: Users’ comfort levels logging into a webpage with
different EV country codes. Cnd 1 is the topmost variation
shown in Figure 4 and Cnd 5 is the bottommost.

overall attention to security concerns because no one would
ask them about their comfort level before they logged in. We
therefore consider our results to describe upper bounds on
how EV indicators influence user behavior.

Demographics. Since we only surveyed U.S. and U.K.
participants, our results may not generalize to other contexts
and cultures.

4.2 Results
Across surveys and conditions, we found that most users felt
comfortable logging into each webpage, regardless of the EV
UI. In nearly all cases, we found no differences among users’
self-reported comfort levels with each login page.

4.2.1 Cross-jurisdiction collision survey

We found no evidence that the country code displayed in the
EV indicator helps users detect a cross-jurisdiction attack.

Quantitative results. In both the U.S. and U.K., partici-
pants were most likely to say they felt “Very comfortable”
logging into the webpage, regardless of the country code
presented. We conducted a Kruskal-Wallis test, and in both
the U.S. (χ2 = 1.1783,df = 4, p = 0.8817) and U.K. (χ2 =
2.4994,df = 4, p = 0.6447), we found no significant differ-
ences among users’ comfort levels in each condition. Table 4
shows the full results.

Reasons for comfort or discomfort. When asked to iden-
tify why they felt “somewhat” or “very comfortable”, partic-
ipants were more likely to refer to cues in the content area,
rather than Chrome UI.

Responses varied somewhat in each region. U.S. partici-
pants were most likely to describe feeling familiar with the
webpage (e.g., “PayPal is well known so it makes me feel
somewhat comfortable.”), while U.K. participants most com-

monly pointed to an HTTPS indicator (e.g., “the https along
with the padlock in the address bar”) but not EV-specific UI.

Participants referred to cues in the content area such as:
• familiarity with the webpage
• the page’s simplicity or ease of use (e.g., “I feel very

comfortable because it is easy to understand...”)
• the page’s general design (e.g., “A comfortable amount

of white space without the page feeling empty”)
• the page looking normal or expected (e.g., “The sign in

system here has followed a standard sign in page and
gives all necessary help”)

When referring to cues in the browser itself, participants
most commonly referred to the HTTPS indicator, specifi-
cally identifying the padlock icon (e.g., “Mainly because of
the padlock on the top search bar makes me think it’s secure
enough to use safely”). Participants also noted that the URL
looked normal or expected (e.g., “. . . the link web address
doesn’t look abnormal”). They were far less likely to refer
to EV UI specifically (e.g., “The site displays that it is secure
with a registered identity, PayPal Inc.. . . ”).

As many as 3% of U.S. participants and 14% of U.K. par-
ticipants in each condition referred to the site as safe or se-
cure, without describing their reasoning (e.g., “It’s a secure
bank login page”).

Few noticed oddities in the page’s country code (no more
than 8% in any U.S. condition and 5% in the U.K). Even
when participants did notice, it did not necessarily make
them uncomfortable (e.g., “I never noticed the MX on a Pay-
Pal page, but it seems legit.”).

Table 5 shows a subset of results of our open-ended ques-
tion about why users felt comfortable or uncomfortable.

Items on the page. When asked to “click item(s) on the
page that make you feel that way”, participants were most
likely to click the HTTPS indicator (but not EV UI specifi-
cally), parts of the URL, or page logos. Figure 6 displays an
example heatmap for these clicks. The other heatmaps can
be found in the Appendix.

These results suggest that many users do use HTTPS se-
curity indicators and site URLs to determine the legitimacy
of a website. However, in both qualitative and quantitative
responses, almost no participants appear to notice EV UI.
Additionally, these results suggest a cross-jurisdiction attack
could be viable in part because users infer the legitimacy of
a website from the presence of HTTPS indicators.

4.2.2 Safari EV UI survey

We found no evidence that the change in Safari’s EV format
affected users’ comfort logging in to a webpage.

Quantitative results. In both the U.S. and U.K., in both
conditions, participants were most likely to say they felt
“Somewhat comfortable” or “Very comfortable” logging
into the webpage. We conducted a Kruskal-Wallis test, and
in both the U.S. (χ2 = 0.0808,df = 1, p = 0.7762) and U.K.

1722 28th USENIX Security Symposium USENIX Association

U.S. U.K.
Cnd 1 Cnd 2 Cnd 3 Cnd 4 Cnd 5 Cnd 1 Cnd 2 Cnd 3 Cnd 4 Cnd 5

n 92 120 93 93 115 83 91 81 83 74

Comfortable reasons
I’m familiar with this website 33% 26% 31% 40% 33% 10% 7% 6% 7% 14%
I see an HTTPS indicator 32% 16% 23% 19% 17% 27% 25% 21% 23% 35%
URL looks normal 8% 8% 15% 9% 10% 1% 4% 2% 4% 4%
Page looks simple / easy to use 9% 7% 9% 10% 7% 18% 16% 9% 16% 15%
Page looks well-designed 2% 2% 0% 3% 0% 4% 8% 14% 12% 3%
I see an EV certificate 1% 1% 2% 1% 1% 1% 0% 1% 1% 1%

Uncomfortable reasons
Country code looks strange 0% 6% 5% 8% 0% 0% 1% 5% 0% 0%
Page does not look normal 1% 1% 2% 4% 3% 1% 1% 0% 7% 3%
Page looks bland 1% 1% 4% 1% 3% 10% 2% 1% 5% 1%
URL looks odd 0% 1% 0% 1% 1% 1% 2% 2% 2% 3%
Page looks poorly-designed 0% 0% 0% 0% 0% 6% 7% 9% 7% 4%

Table 5: Sample results of the open-ended question “Can you tell us why you feel that way?” when participants were asked
how comfortable they were logging in to a site. Cdn 1 is the topmost condition shown in Figure 4 and Cdn 5 is the bottommost.
Full results are shown in the Appendix.

Figure 6: Example click heatmap, displaying what U.K. par-
ticipants say made them feel comfortable or uncomfortable
on a webpage with an RU country code in the EV indicator.

(χ2 = 0.50313,df = 1, p = 0.4781), we found no significant
differences in users’ comfort levels across conditions. Ta-
ble 6 shows the full results.

Reasons for comfort or discomfort. Similar to the results
from our cross-jurisdiction attack survey, U.S. participants
were most likely to say they felt comfortable logging in be-
cause they are familiar with the webpage, while U.K. respon-
dents were more likely to say they felt comfortable because
they saw an HTTPS indicator. However, most participants
in both conditions also referred to content area cues, such as
the page looking as expected, or the page being simple or
well-designed. Table 7 shows the full results.

Once again, as much as 6% in the U.S. and 9% in the
U.K. said the website they saw is “safe” or “secure” without
mentioning whether the browser or content area made them
feel that way.

Cnd 1 Cnd 2

U.S.
Very comfortable 50% 47%
Somewhat comfortable 32% 30%
Neither comfortable nor uncomfortable 4% 2%
Somewhat uncomfortable 8% 16%
Very uncomfortable 6% 5%
n 142 148

U.K.
Very comfortable 43% 42%
Somewhat comfortable 46% 39%
Neither comfortable nor uncomfortable 3% 7%
Somewhat uncomfortable 3% 11%
Very uncomfortable 4% 1%
n 152 153

Table 6: Users’ comfort levels logging into a webpage with
different Safari EV UIs. Cnd 1 is the variation with the site’s
registrable domain and Cnd 2 is the EV legal entity name.

Participants said they felt uncomfortable logging in for
several reasons, varying by region. In the U.S., participants
were most likely to say they felt uncomfortable logging in
because they could not see the URL (e.g., “There’s no web
address present, so it could be a spoofed page”). In the U.K.
participants were most likely to say they felt uncomfortable
because something in the content area was poorly-designed
(e.g., “The page looks very cold and sterile”). Overall, how-
ever, participants were uncomfortable for very similar rea-
sons in each region. When referring to the browser UI, they
cited issues with the appearance or (in)visibility of the URL.
When referring to issues with the content area, participants
said the page looks bland or poorly designed.

Participants were split as to whether the EV indicator
made them feel comfortable or uncomfortable, with many
stating they wanted to be able to see the full URL (e.g.,

USENIX Association 28th USENIX Security Symposium 1723

U.S. U.K.
Cnd 1 Cnd 2 Cnd 1 Cnd 2

n 115 118 95 98

Comfortable reasons
I’m familiar with this website 40% 28% 7% 10%
I see an HTTPS indicator 25% 23% 27% 33%
Page looks simple / easy to use 8% 11% 5% 6%
Page looks normal (unclear) 7% 8% 17% 14%
It’s safe / secure (unclear) 6% 2% 9% 8%
I see an EV certificate 2% 4% 2% 1%
URL looks normal 4% 0% 2% 0%
Page looks well-designed 0% 1% 12% 11%

Uncomfortable reasons
I can’t see the URL 4% 13% 3% 6%
I’m not sure if it’s safe / secure 7% 5% 3% 5%
(unclear)
Page looks bland 3% 7% 5% 5%
The URL looks odd 2% 1% 3% 2%
I do not see an HTTPS indicator 2% 0% 1% 0%
Page looks poorly-designed 0% 1% 9% 5%

Unclear or other 5% 12% 8% 9%

Table 7: Results of the open-ended question “Can you tell us
why you feel that way?” when participants were asked how
comfortable they were logging in to a site. Cdn 1 is the top
condition shown in Figure 5 and Cdn 2 appears below.

“Looks like the genuine page but I’d like more reassurance
of this, like being able to see the URL”).

As many as 7% of U.S. participants and 5% of U.K. par-
ticipants said they weren’t sure if the site was safe or secure,
but were unclear how (e.g., “It doesn’t look secure”).

Items on the page. When asked to “click item(s) on the
page that make you feel that way”, participants were most
likely to click the HTTPS indicator, as well as the page logo.
Figure 7 displays a heatmap for these clicks in one condition.
The other heatmaps can be found in the Appendix.

Figure 7: An example of a click heatmap from U.K. partic-
ipants. This condition displayed the EV legal entity rather
than a registrable domain.

5 URL highlighting survey experiment
As with the EV indicator, prior research has found that users
often do not notice URLs or do not use them to make security
decisions [12, 28, 40]. We conducted a survey experiment to
learn whether more pronounced URL formatting changes in
the browser address bar would draw attention to the URL and
help users understand its security properties, but we found
that these URL formatting changes were not effective.

5.1 Methodology
In this survey, we showed users a screenshot of a Google
login page with a suspicious URL in the browser ad-
dress bar (accounts.google.com.amp.tinyurl.com in-
stead of accounts.google.com). We asked users to iden-
tify the website and then asked them if they would be com-
fortable entering their login credentials on the site.

5.1.1 Questions

The first question in the survey asked participants to iden-
tify the website in an open-ended response: Before we move
ahead, please identify the above website. The subsequent
questions asked users how comfortable they were logging
in to the website and why. These questions were identical to
Section 4.1.1 except that we did not ask participants to “click
the item(s) on the page that make you feel that way.”

5.1.2 Participants

Our survey ran from November 20 to November 21, 2018.
We recruited 1,180 U.S. participants from Mechanical Turk
who were paid a $.40 incentive.

Demographics. Similar to our previous U.S. surveys, the
sample skewed slightly male (53%), with adults 55 and older
underrepresented. Full demographic details can be found in
the Appendix.

5.1.3 Experimental conditions

This survey showed participants a Google sign-in page
with an incorrect URL (accounts.google.com.amp.
tinyurl.com), simulating a phishing attack. We randomly
assigned participants to one of seven conditions (Figure 8).
Condition 1 (the control) used the Chrome 69 address bar
UI, while other conditions attempted to draw attention to the
registrable domain (tinyurl.com) in various ways.9

5.1.4 Data coding

Because there was almost no ambiguity in participant re-
sponses to our first question about the website’s identity, only
one researcher coded these responses. For all other ques-
tions, we coded the data as in Section 4.1.4. Based on a sub-
sample of 100 responses coded by two security researchers,

9We chose these particular URL highlighting formats as we wanted to
examine variants that we believed would (1) give emphasis to the regis-
trable domain by manipulating color and spatial layout, (2) be noticeably
distinguishable from the existing format but (3) not overtly distracting from
browsing, so each variant could viably be deployed in the real world.

1724 28th USENIX Security Symposium USENIX Association

Figure 8: Conditions shown to U.S. participants, manipulat-
ing the URL display to emphasize the registrable domain.

Cohen’s κ was 0.946, indicating strong agreement, with the
two coders in agreement 95.4% of the time. The codemaster
resolved the remaining conflicts.

5.1.5 Limitations

This survey suffers the same limitations as in Section 3.1.5:
namely, an artificial scenario and limited generalizability be-
yond the U.S. Additionally, in this survey, participants may
have responded to the novelty of the URL format, and not
just the URL content, making it difficult for us to isolate the
impact of the URL format alone. However, this did not ap-
pear to significantly impact our results because we did not
detect any significant differences across variations.

5.2 Results
5.2.1 Website identification

Few participants noticed anything strange about the web-
site when asked to identify it. 85% of all participants
said the website was Google, when in fact, the address
said tinyurl.com. 13% of participants correctly identi-
fied the website by its URL. 1% described both Google and
TinyURL, and 1% provided a different response.

5.2.2 Comfort logging in

In all conditions, participants were most likely to say they
felt comfortable logging into the webpage, despite the suspi-
cious URL. Across the seven conditions, we found no signif-
icant differences (χ2 = 2.847,df = 6, p = 0.8278). Table 8
shows the coded results of our question about why users felt
comfortable or uncomfortable logging in.

When asked why users reported feeling “somewhat” or
“very comfortable”, the majority of responses described
looking at cues in the content area, citing that the website
looked familiar (e.g., “Because it’s familiar. I’ve seen it
plenty of times.”), or that they trust the website that appeared
in the content area (e.g., “Google is a secure company”).

When describing discomfort, participants most commonly
cited oddities with the URL (e.g., “It seems to be an at-
tempt to spoof Google on tinyurl”). Relatively few par-
ticipants mentioned concerns with feeling unsure how they
would have navigated to this site (e.g., “Because I have no
idea how or why I’m here”), while some described feeling
unsure about the general security or safety of the site, but did
not specify why (e.g., “It’s an imposter”).

Notably, even in open-ended responses where participants
appear to have been looking at the URL, they did not nec-
essarily notice any oddities. For example, one participant
reported feeling “Very comfortable” with the tinyurl.com
URL: “Because the URL looks like a Google page should.”

Condition 6, which showed only the registrable domain on
the left of the address bar, stood out as the most distinct, with
users citing oddities in the URL and generalized safety con-
cerns at a disproportionate rate. However, the differences in
comfort level between the control and this condition were not
statistically significant (χ2 = 0.4541,df = 1, p = 0.5004).

6 Discussion

6.1 Summary of results

In this paper, we used large-scale field data and surveys to
corroborate past results on browser identity indicators and to
contribute new findings.

Our EV field experiment (Section 3) found that removing
the EV UI has no effect on most user behavior metrics. How-
ever, removing EV UI did cause users to open the Page Info
bubble (Figure 3) less often, and it caused a small decrease
in navigations for one of the top 20 EV sites. Our experiment
corroborates prior work suggesting that EV UI does not help
users detect attacks [24], but at a much larger scale, with nat-
uralistic data, and with up-to-date browser UIs. The effect on
Page Info is also consistent with prior findings that users may
notice EV UI but not use it in their security decisions [33].

Our EV surveys (Section 4) are the first to study cross-
jurisdiction collisions and Safari’s recent EV UI change. In
all conditions across both surveys, EV UI did not appear to
affect users’ comfort levels when logging into a webpage.
Our qualitative data corroborates past results that users use
the content area rather than browser UI to make trust de-
cisions [12] and that connection security indicators can be
mistaken to mean that the site is safe [16]. We contribute
new findings that EV indicators are likely ineffective against
cross-jurisdiction collision attacks and that Safari’s old and
new EV UIs have similar impacts on users’ comfort levels.

USENIX Association 28th USENIX Security Symposium 1725

Cnd 1 Cnd 2 Cnd 3 Cnd 4 Cnd 5 Cnd 6 Cnd 7
n 132 127 130 124 128 132 137

Comfortable reasons
Looks familiar 36% 33% 35% 35% 38% 23% 32%
I trust Google 20% 17% 12% 15% 16% 16% 15%
Page looks simple / easy to use 8% 3% 8% 4% 5% 4% 4%
Site is secured or safe 5% 6% 6% 5% 6% 5% 4%
Page looks normal (unspecified) 2% 1% 0% 2% 2% 2% 1%
URL looks normal 2% 2% 0% 1% 2% 0% 0%

Uncomfortable reasons
The URL looks funny 23% 27% 33% 27% 30% 32% 33%
I’m not sure the site is safe (unspecified) 2% 7% 2% 7% 2% 13% 4%
I’m unsure where I came from / where I am 3% 3% 2% 0% 2% 3% 1%

Unclear or other 3% 6% 3% 6% 2% 5% 9%

Table 8: Coding results of the open-ended question “Can you tell us why you feel that way?” when participants were asked
how comfortable they were logging in to a site. Cdn 1 is the topmost condition shown in Figure 8 and Cdn 7 is the bottommost.

Finally, we surveyed users to determine if variations on
Chrome’s URL display can make it a more effective iden-
tity indicator (Section 5). None of our variations appeared to
make users uncomfortable to log in to a phishing webpage.
This survey corroborated prior studies showing that URLs
are ineffective identity indicators [12, 28, 40], and extended
them to show that several variations on browser URL display
are ineffective as well. There were small but statistically in-
significant differences among our variations; while a larger
sample size might yield statistically significant differences,
we think they are unlikely to be large effects.

6.2 Ineffectiveness of identity indicators
Removing the EV indicator did not affect most user behav-
iors, suggesting that an EV certificate does not provide a
good defense against phishing or social engineering. While
the EV UI did cause users to open Page Info more often,
users did not use its functionality substantially more often.
We therefore believe that users may notice the EV indica-
tor, but do not appear to use it in making security decisions.
Moreover, our survey results suggest that recent proof-of-
concept attacks against EV [11] would likely be effective,
and that simple UI tweaks do not make URLs an effective
identity indicator either. We conclude that browser vendors
should pursue more radical redesigns of their current website
identity indicators if they want them to be more effective.

6.3 Guidance for designing identity indicators
Based on our experimental results and our review of prior
work (Section 7), we provide the following recommenda-
tions for the design of identity indicators:

• Prefer active, negative indicators to passive indica-
tors. Our UI changes failed to make the URL an effec-
tive identity indicator. Prior work has seen some suc-
cess in redesigning EV indicators to make them more
noticeable [33] or more understandable [8], but not bet-
ter able to help users detect attacks. In contrast, ac-

tive warnings like SSL errors have been successfully
redesigned to reduce clickthrough rates [14]. We there-
fore recommend that the security community focus on
triggering active warnings when a website’s identity is
suspicious (for example, when a domain is suspiciously
similar to a popular domain), rather than relying on
users to notice and act on passive identity indicators.

• Prominent UI is an opportunity for user education.
Removing the EV indicator caused users to open the
Page Info bubble less (Section 3.2.2). This effect sug-
gests that prominent browser UI can be an opportunity
to draw users’ attention and educate them about the
browser’s identity indicators. For example, the Page
Info bubble could explain the site’s identity and how
users should take action on it. However, we saw that
in both our control and experimental groups the typ-
ical user never opened the Page Info bubble (4.65%
of users in the control group opened Page Info, while
0.45% of users in the experimental group did). It is
unclear if this is due to a lack of user understanding
or a mismatch between users’ goals and the controls
provided by Page Info. Additionally, prior attempts at
user education about identity indicators have been only
marginally effective (e.g., [24, 28, 40]). Combined, we
believe this indicates that more work is needed to un-
derstand if this approach is viable.

• Incorporate user research in identity indicator de-
sign. We recommend that browser vendors undergo ex-
tensive user research before launching new identity in-
dicators, via both browser telemetry and user studies.
As our work shows, both types of user research pro-
vide value: telemetry from field experiments can mea-
sure aggregate or per-site effects over large numbers of
users in naturalistic settings, whereas user studies can
provide insight into users’ thought processes.

1726 28th USENIX Security Symposium USENIX Association

7 Related work
In this section, we survey related work on browser identity
indicators and EV certificates.

7.1 EV effectiveness
7.1.1 User studies

Detecting fraudulent sites. In the 2000s, a number of
studies analyzed how users react to EV indicators, finding
that they were not effective in helping users detect phishing.

Jackson et al. [24] surveyed 27 participants about Inter-
net Explorer 7’s new EV UI. They concluded that it did not
help users detect two types of phishing attacks (picture-in-
picture and homograph attacks), even after receiving educa-
tion about the UI.

Sobey et al. [33] analyzed Firefox 3’s EV indicator as well
as their own new EV design. In a lab study of 28 participants,
they found that users did not notice Firefox 3’s new EV in-
dicator, but half did notice their new design. However, only
a small number of participants seemed to use the newly de-
signed indicator for decision-making.

These studies provide evidence that browser EV indica-
tors are not effective, but they study only a small number
of participants in an artificial lab scenario. Moreover, they
study the very earliest EV indicators; little work has been
done recently to study EV in modern browser UIs. Our work
updates and expands these studies by providing large-scale
in situ browser telemetry data, as well as survey data from
over 1,000 participants, using modern browser UIs.

Designing EV for reassurance and understanding. Bid-
dle et al. [8] studied Internet Explorer 7’s EV indicator, com-
paring it to a new EV indicator of the researchers’ design.
Surveying 40 participants, the researchers found that their
new design improved users’ confidence, ease of finding in-
formation, and ease of understanding. However, they did not
evaluate whether the new design helped users identify the at-
tacks we considered. It remains an open question whether
a redesigned EV indicator can effectively prevent phishing
and social engineering attacks.

7.1.2 Attack proofs of concept

Researchers have recently demonstrated flaws in the EV vali-
dation procedures. The researchers obtained misleading cer-
tificates that can undermine the effectiveness of EV.

One researcher obtained a certificate for a company named
“Identity Verified” [10]. This demonstrated that a malicious
website could abuse the EV indicator’s privileged position in
browser UI to make the attack website seem more legitimate.

Another researcher obtained an EV certificate for a com-
pany named “Stripe, Inc.”, mimicking the payments com-
pany but incorporated in a different state [11]. This demon-
strated that EV certificates are subject to cross-jurisdiction
collisions in which a user may not be able to distinguish two

identical company names (one legitimate and one malicious)
incorporated in different jurisdictions.

Our work is complementary to these attacks. We are pri-
marily concerned with whether users notice and understand
the EV indicator, rather than with how it can be attacked
and abused. However, we do lend credence to the cross-
jurisdiction collision demonstration by evaluating whether
users notice cross-jurisdiction collisions (Section 4).

7.2 URL comprehension
Our work analyzes whether simple tweaks to browser URL
display can help users identify fraudulent sites. Several prior
studies have examined whether users understand URLs and
can use them to detect attacks.

Lin et al. [28] asked 22 participants to identify fraudu-
lent sites with and without explicit instruction to look at the
browser address bar. While their user education effort was
successful to an extent, it was not effective for many users
and cannot be relied upon as a sole defense. Similarly, Wu et
al. [39] and Dhamija et al. [12] found that neither browser ad-
dress bars nor various supplemental security toolbars helped
users detect phishing. In a lab study with a think-aloud proto-
col, Jakobsson et al. [25] concluded that users look at URLs
in the process of determining whether a website is authentic,
but they can be easily fooled by tricky URLs.

Xiong et al. [40] expanded Lin et al.’s work to include a
control condition that did not highlight the domain in the UI,
as well as a larger, more representative participant group and
eye-tracking data. They found that instructing participants to
look at the address bar led to a modest improvement in their
ability to detect fraudulent sites, but the domain highlight-
ing in the browser UI had no detectable effect. Their eye-
tracking data suggested that explicit instructions about the
browser address bar can draw users’ attention to the URL,
but does not give them the information or understanding that
they need to draw accurate security conclusions from it.

Our work extends Xiong et al.’s study by testing multiple
UI variations. Our URL formatting survey (Section 5) cor-
roborates the existing findings that drawing users’ attention
to the URL bar does not help them make accurate security
decisions. We contribute new findings that various UI modi-
fications do not succeed in the goal of making the URL more
noticeable and comprehensible.

7.3 Other web security UIs
Other security UIs on the web have been examined through
user studies, browser telemetry, surveys, and eye-tracking.

7.3.1 Connection security indicators

Research results on browser connection security indicators
have been mixed. While some studies have found that many
users look at and understand them [19,37], others have found
that they do not affect user behavior [12, 31]. Felt et al. [16]
surveyed thousands of users to redesign connection secu-

USENIX Association 28th USENIX Security Symposium 1727

rity indicators that met modern design constraints and better
communicated the intended semantics.

Multiple studies have investigated user understanding of
connection security and HTTPS, finding that users, espe-
cially those without technical backgrounds, do not have well
articulated mental models for how the Internet works [26],
and often conflate HTTPS and the lock icon with site se-
curity rather than connection security [38]. Krombholz et
al. [27] expanded this prior work by exploring end user and
administrator mental models of HTTPS, finding many mis-
conceptions about the benefits and threat models of HTTPS
among both groups. Particularly relevant for our work here,
they found general distrust in HTTPS as a protocol and that
security indicators are rarely part of users’ mental models.

Our work contributes to this body of evidence that browser
identity indicators, like connection security indicators, do
not help users make security decisions. While we do not
attempt to redesign identity indicators in this paper, the tech-
niques used by Felt et al. to redesign connection security
indicators could be useful for redesigning identity indicators.

7.3.2 Browser warnings and prompts

A large body of work has examined users’ reactions to
browser security warnings and prompts. Malkin et al. [29]
and Bravo-Lillo et al. [9] conducted Mechanical Turk stud-
ies to evaluate UI changes for HTTPS warnings and plugin
installation prompts, respectively. Browser security warn-
ings have been found to have high clickthrough rates in lab
studies (e.g., [12, 34, 35]), but lower in the wild [7, 14].

7.3.3 Website credibility and authenticity

Websites themselves contain security UI, including security
and identity indicators. Fogg et al. [17] performed an online
study to understand what makes users perceive a website as
credible, and Jakobsson et al. [25] conducted a lab study to
examine how users determine whether a website is authentic.
These studies found that various aspects of a webpage, such
as its language and spelling, can contribute to whether users
perceive it as credible and/or authentic. Our survey experi-
ments also find that users pay more attention to the website
content than to browser UI when making trust decisions.

8 Conclusion
Browser identity indicators, including URLs and EV certifi-
cates, are supposed to help users identify phishing, social
engineering, and other attacks, but prior lab studies and sur-
veys suggested that older browser identity UIs are not effec-
tive security tools. In this paper, we sought to understand
whether users would act on modern browser identity indi-
cators. We provide naturalistic large-scale data about how
users react to the EV indicator. We then survey thousands
of users to understand the effects of recent developments in
the EV ecosystem, and whether simple tweaks to browsers’
URL displays can help users understand URLs better as iden-
tity indicators. We conclude that modern browser identity

indicators are not effective. To design better identity indi-
cators, we recommend that browsers consider focusing on
active negative indicators, explore using prominent UI as an
opportunity for user education, and incorporate user research
into the design phase.

9 Acknowledgments
Thanks to Devon O’Brien, Jim Bankoski, Parisa Tabriz,
Ryan Sleevi, Andrew Whalley, and Chelsea Tanaka for their
support and feedback on this work.

References
[1] Domain-validated certificate. https://en.

wikipedia.org/wiki/Domain-validated_

certificate.

[2] Extended validation SSL certificate is not indicated in
browser URL field. https://github.com/brave/

brave-browser/issues/3860.

[3] Guidelines for the issuance and management
of extended validation certificates. https:

//cabforum.org/wp-content/uploads/CA-

Browser-Forum-EV-Guidelines-v1.6.8.pdf.

[4] Prominently show validated legal identity jurisdiction
to users. https://github.com/brave/browser-

laptop/issues/791.

[5] Public suffix list. https://publicsuffix.org/.

[6] URL living standard. https://url.spec.whatwg.

org/#host-registrable-domain.

[7] AKHAWE, D., AND FELT, A. P. Alice in Warningland:
A large-scale field study of browser security warning
effectiveness. In Proceedings of the 22nd USENIX Se-
curity Symposium (2013).

[8] BIDDLE, R., VAN OORSCHOT, P. C., PATRICK, A. S.,
SOBEY, J., AND WHALEN, T. Browser interfaces
and extended validation SSL certificates: An empirical
study. In Proceedings of the ACM Workshop on Cloud
Computing Security (2009).

[9] BRAVO-LILLO, C., KOMANDURI, S., CRANOR,
L. F., REEDER, R. W., SLEEPER, M., DOWNS, J.,
AND SCHECHTER, S. Your attention please: Design-
ing security-decision UIs to make genuine risks harder
to ignore. In Proceedings of the 9th Symposium on Us-
able Privacy and Security (2013).

[10] BURTON, J. First part of phishing with EV. https:

//www.typewritten.net/writer/ev-phishing/.

[11] CARROLL, I. G. Extended validation is broken.
https://stripe.ian.sh/.

1728 28th USENIX Security Symposium USENIX Association

[12] DHAMIJA, R., TYGAR, J. D., AND HEARST, M. Why
phishing works. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (2006).

[13] ESCOBAR, A. Safari Technology Preview now hides
the company name (or legal entity) when showing an
Extended Validation (EV) certificate, but still displays a
green padlock. Progress, both in security and usability.
Tweet. https://twitter.com/andrewe/status/

1037737841558728706, September 2018.

[14] FELT, A. P., AINSLIE, A., REEDER, R. W., CON-
SOLVO, S., THYAGARAJA, S., BETTES, A., HARRIS,
H., AND GRIMES, J. Improving SSL warnings: Com-
prehension and adherence. In Proceedings of the 33rd
Conference on Human Factors in Computing Systems
(2015).

[15] FELT, A. P., BARNES, R., KING, A., PALMER, C.,
BENTZEL, C., AND TABRIZ, P. Measuring HTTPS
adoption on the web. In Proceedings of the 26th
USENIX Security Symposium (2017).

[16] FELT, A. P., REEDER, R. W., AINSLIE, A., HARRIS,
H., WALKER, M., THOMPSON, C., ACER, M. E.,
MORANT, E., AND CONSOLVO, S. Rethinking con-
nection security indicators. In Proceedings of the 12th
Symposium on Usable Privacy and Security (2016).

[17] FOGG, B. J., MARSHALL, J., LARAKI, O., OS-
IPOVICH, A., VARMA, C., FANG, N., PAUL, J.,
RANGNEKAR, A., SHON, J., SWANI, P., AND
TREINEN, M. What makes web sites credible?: A re-
port on a large quantitative study. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (2001).

[18] FRANCO, R. IE7 and High Assurance at RSA Eu-
rope. https://blogs.msdn.microsoft.com/ie/

2006/10/20/ie7-and-high-assurance-at-rsa-

europe/, October 2006.

[19] FRIEDMAN, B., HURLEY, D., HOWE, D. C., FEL-
TEN, E., AND NISSENBAUM, H. Users’ conceptions
of web security: A comparative study. In SIGCHI Ex-
tended Abstracts on Human Factors in Computing Sys-
tems (2002).

[20] GOOGLE LLC. Google Chrome privacy whitepa-
per. https://www.google.com/chrome/privacy/

whitepaper.html.

[21] HECKER, F. CAs, certificates, and the SSL/TLS UI.
http://hecker.org/mozilla/ssl-ui, November
2005.

[22] HELME, S. Are EV certificates worth the paper they’re
written on? https://scotthelme.co.uk/are-

ev-certificates-worth-the-paper-theyre-

written-on/.

[23] HUNT, T. Extended Validation Certificates are
Dead. https://www.troyhunt.com/extended-

validation-certificates-are-dead/, Septem-
ber 2018.

[24] JACKSON, C., SIMON, D. R., TAN, D. S., AND
BARTH, A. An evaluation of extended validation and
picture-in-picture phishing attacks. In Proceedings of
the International Conference on Financial Cryptogra-
phy and Data Security (2007).

[25] JAKOBSSON, M., TSOW, A., SHAH, A., BLEVIS, E.,
AND LIM, Y.-K. What instills trust? A qualitative
study of phishing. In Financial Cryptography and Data
Security (2007).

[26] KANG, R., DABBISH, L., FRUCHTER, N., AND
KIESLER, S. ”My Data Just Goes Everywhere”: User
mental models of the Internet and implications for pri-
vacy and security. In Proceedings of the 11th Sympo-
sium on Usable Privacy and Security.

[27] KROMBHOLZ, K., BUSSE, K., PFEFFER, K., SMITH,
M., AND VON ZEZSCHWITZ, E. ”If HTTPS were se-
cure, I wouldn’t need 2FA”: End user and administrator
mental models of HTTPS. In Proceedings of the 40th
IEEE Symposium on Security & Privacy (May 2019).

[28] LIN, E., GREENBERG, S., TROTTER, E., MA, D.,
AND AYCOCK, J. Does domain highlighting help peo-
ple identify phishing sites? In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (2011).

[29] MALKIN, N., MATHUR, A., HARBACH, M., AND
EGELMAN, S. Personalized security messaging:
Nudges for compliance with browser warnings. In Pro-
ceedings of the 2nd European Workshop on Usable Se-
curity (2017).

[30] PERKINS, N. Testing out #Safari in both #iOS12 and
#macOSMojave and it appears that they removed the
company name in the EV trust indicator and replaced
it with just the URL. @iangcarroll wonder if they
saw your website? Tweet. https://twitter.com/

HelferNick/status/1003842702553899009, June
2018.

[31] SCHECHTER, S. E., DHAMIJA, R., OZMENT, A.,
AND FISCHER, I. The emperor’s new security indi-
cators. In Proceedings of the IEEE Symposium on Se-
curity and Privacy (2007).

USENIX Association 28th USENIX Security Symposium 1729

[32] SIMKO, C. Why EV SSL is here to stay.
https://www.globalsign.com/en/blog/why-

ev-ssl-is-here-to-stay/.

[33] SOBEY, J., BIDDLE, R., VAN OORSCHOT, P. C.,
AND PATRICK, A. S. Exploring user reactions to new
browser cues for extended validation certificates. In
Proceedings of the European Symposium on Research
in Computer Security (2008).

[34] SOTIRAKOPOULOS, A., HAWKEY, K., AND
BEZNOSOV, K. On the challenges in usable se-
curity lab studies: Lessons learned from replicating
a study on SSL warnings. In Proceedings of the 7th
Symposium on Usable Privacy and Security (2011).

[35] SUNSHINE, J., EGELMAN, S., ALMUHIMEDI, H.,
ATRI, N., AND CRANOR, L. F. Crying wolf: An em-
pirical study of SSL warning effectiveness. In Proceed-
ings of the 18th USENIX Security Symposium (2009).

[36] VERIZON. 2018 data breach investigations report.
https://enterprise.verizon.com/resources/

reports/dbir/.

[37] WHALEN, T., AND M. INKPEN, K. Gathering evi-
dence: Use of visual security cues in web browsers. In
Proceedings of Graphics Interface (2005).

[38] WU, J., AND ZAPPALA, D. When is a tree really a
truck? Exploring mental models of encryption. In Pro-
ceedings of the 14th Symposium on Usable Privacy and
Security.

[39] WU, M., MILLER, R. C., AND GARFINKEL, S. L.
Do security toolbars actually prevent phishing attacks?
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2006).

[40] XIONG, A., PROCTOR, R. W., YANG, W., AND LI, N.
Is domain highlighting actually helpful in identifying
phishing web pages? Human Factors 59, 4 (2017),
640–660.

Appendix
A Survey demographics
At the end of each survey we asked participants for infor-
mation about their age and gender. Table 9, Table 10, and
Table 11 show the demographic information for each of the
three surveys.

B Full EV survey results
Figure 9 shows the full set of heatmaps for the cross-
jurisdiction EV survey. Figure 10 shows the full set of
heatmaps for the Safari EV survey.

Table 12 shows the full results of our open-ended coding
for the cross-jurisdiction EV survey.

Gender U.S. U.K.
Male 55% 44%
Female 44% 55%
Other 0% 0%
Decline to answer 1% 1%

Age
18-24 15% 31%
25-34 41% 32%
35-44 25% 20%
45-54 12% 11%
55-64 7% 4%
65+ 1% 1%
Decline to answer 0% 0%

n 592 650

Table 9: Participant makeup for Chrome cross-jurisdiction
EV formatting survey.

Gender U.S. U.K.
Male 50% 47%
Female 50% 52%
Other 0% 1%
Decline to answer 0% 0%

Age
18-24 14% 23%
25-34 39% 32%
35-44 24% 24%
45-54 14% 11%
55-64 7% 8%
65+ 2% 2%
Decline to answer 0% 0%

n 290 305

Table 10: Participant makeup for Safari EV formatting study.

Gender
Male 53%
Female 46%
Other 1%
Decline to answer 1%

Age
18-24 13%
25-34 42%
35-44 24%
45-54 12%
55-64 7%
65+ 2%
Decline to answer 1%

n 1180

Table 11: Participant makeup for URL formatting study.

1730 28th USENIX Security Symposium USENIX Association

(a) US Cnd1: [US] (b) US Cnd2: [MX] (c) US Cnd3: [RU]

(d) US Cnd4: [BR] (e) US Cnd5: No CC

(f) UK Cnd1: [GB] (g) UK Cnd2: [MX] (h) UK Cnd3: [RUBR]

(i) UK Cnd4: [BR] (j) UK Cnd5: No CC

Figure 9: Heatmaps for Chrome cross-jurisdictional EV surveys.

USENIX Association 28th USENIX Security Symposium 1731

(a) US Cnd1: macOS 10.13 (b) US Cnd2: macOS 10.14

(c) UK Cnd1: macOS 10.13 (d) UK Cnd2: macOS 10.14

Figure 10: Heatmaps for Safari EV UI survey.

U.S. U.K.
Cnd 1 Cnd 2 Cnd 3 Cnd 4 Cnd 5 Cnd 1 Cnd 2 Cnd 3 Cnd 4 Cnd 5

n 92 120 93 93 115 83 91 81 83 74

Comfortable reasons
I’m familiar with this website 33% 26% 31% 40% 33% 10% 7% 6% 7% 14%
I see an HTTPS indicator 32% 16% 23% 19% 17% 27% 25% 21% 23% 35%
Page looks normal (unclear) 12% 10% 10% 6% 11% 8% 10% 11% 7% 24%
URL looks normal 8% 8% 15% 9% 10% 1% 4% 2% 4% 4%
Page looks simple / easy to use 9% 7% 9% 10% 7% 18% 16% 9% 16% 15%
“It’s safe / secure” (unclear) 5% 4% 8% 9% 3% 11% 16% 9% 11% 7%
Page looks well-designed 2% 2% 0% 3% 0% 4% 8% 14% 12% 3%
I see an EV certificate 1% 1% 2% 1% 1% 1% 0% 1% 1% 1%
Not asking for sensitive information 2% 3% 0% 0% 0% 5% 2% 0% 1% 0%

Uncomfortable reasons
Country code looks strange 0% 6% 5% 8% 0% 0% 1% 5% 0% 0%
Page does not look normal 1% 1% 2% 4% 3% 1% 1% 0% 7% 3%
Page looks bland 1% 1% 4% 1% 3% 10% 2% 1% 5% 1%
Not sure if it’s safe / secure (unclear) 3% 1% 1% 1% 3% 5% 1% 6% 4% 5%
Page asks for sensitive information 2% 1% 0% 3% 2% 0% 0% 0% 0% 0%
I do not see an HTTPS indicator 0% 0% 0% 3% 0% 1% 1% 0% 0% 0%
URL looks odd 0% 1% 0% 1% 1% 1% 2% 2% 2% 3%
Page looks poorly-designed 0% 0% 0% 0% 0% 6% 7% 9% 7% 4%
Lack of green security indicator 0% 0% 0% 0% 0% 0% 0% 1% 5% 0%

Unclear 3% 0% 0% 5% 0% 1% 0% 0% 4% 0%
Other 5% 1% 4% 1% 1% 2% 5% 5% 2% 1%

Table 12: Results of the open-ended question “Can you tell us why you feel that way?” when participants were asked how
comfortable they were logging in to a site with different EV country code. Cdn 1 is the topmost condition shown in Figure 4
and Cdn 5 is the bottommost.

1732 28th USENIX Security Symposium USENIX Association

RAZOR: A Framework for Post-deployment Software Debloating

Chenxiong Qian∗, Hong Hu∗, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, Wenke Lee

Georgia Institute of Technology

Abstract
Commodity software typically includes a large number of

functionalities for a broad user population. However, each
individual user usually only needs a small subset of all sup-
ported functionalities. The bloated code not only hinders
optimal execution, but also leads to a larger attack surface. Re-
cent works have explored program debloating as an emerging
solution to this problem. Unfortunately, these works require
program source code, limiting their real-world deployability.

In this paper, we propose a practical debloating framework,
RAZOR, that performs code reduction for deployed binaries.
Based on users’ specifications, our tool customizes the binary
to generate a functional program with minimal code size.
Instead of only supporting given test cases, RAZOR takes
several control-flow heuristics to infer complementary code
that is necessary to support user-expected functionalities. We
evaluated RAZOR on commonly used benchmarks and real-
world applications, including the web browser FireFox and
the close-sourced PDF reader FoxitReader. The result shows
that RAZOR is able to reduce over 70% of the code from the
bloated binary. It produces functional programs and does
not introduce any security issues. RAZOR is thus a practical
framework for debloating real-world programs.

1 Introduction
“Entities are not to be multiplied without necessity.”

— Occam’s Razor
As commodity software is designed to support more features
and platforms to meet various users’ needs, its size tends to
increase in an uncontrolled manner [16, 39]. However, each
end-user usually just requires a small subset of these features,
rendering the software bloated. The bloated code not only
leads to a waste of memory, but also opens up unnecessary at-
tack vectors. Indeed, many serious vulnerabilities are rooted
in the features that most users never use [31, 35]. There-
fore, security researchers are beginning to explore software
debloating as an emerging solution to this problem.

∗The two lead authors contributed equally to this work.

Unfortunately, most initial works on software debloating
rely on the availability of program source code [40, 15, 44],
which is problematic in real-world use. First, most users do
not have access to the source code, and even if they do, it
is challenging for them to rebuild the software, diminishing
the intended benefits of software bloating. Moreover, users
may use the same software in drastically different ways, and
thus the unnecessary features to be removed will accordingly
vary from user to user. Therefore, to obtain the most bene-
fits, the debloating process should take place after software
deployment and should be tailored for each individual user.

Making such a post-deployment approach beneficial and
usable to end-users creates two challenges: 1) how to allow
end-users, who have little knowledge of software internals,
to express which features are needed and which should be
removed and 2) how to modify the software binary to remove
the unnecessary features while keeping the needed ones.

To address the first challenge, we can ask end-users to
provide a set of sample inputs to demonstrate how they will
use the software, as in the CHISEL work [15]. Unfortunately,
programs debloated by this approach only support given in-
puts, presenting a rather unusable notion of debloating: if the
debloated software only needs to support an apriori, fixed set
of inputs, the debloating process is as simple as synthesizing
a map from the input to the observed output. However, from
our experiments, we find that even processing the same input
multiple times will result in different execution paths (due to
some randomization factors). Therefore, the naive approach
will not work even under simplistic scenarios.

In order to practically debloat programs based on user-
supplied inputs, we must identify the code that is necessary
to completely support required functionalities but is not exe-
cuted when processing the sample inputs, called related-code.
Unfortunately, related-code identification is difficult. In par-
ticular, it is challenging for end-users (even developers) to
provide an input corpus that exercises all necessary code that
implements a feature. Furthermore, if the user provides some
description of all possible inputs (e.g., patterns), it is still hard
to identify all reachable code for those inputs. Thus, we be-

USENIX Association 28th USENIX Security Symposium 1733

lieve that any debloating mechanism in the post-deployment
setting will be based on best-effort heuristics. The heuristics
should help identify the related-code as much as possible,
and meanwhile include minimal functionally unrelated code.
Note that techniques like dead code elimination [23, 22] and
delta debugging [49, 42] do not apply to this problem be-
cause they only focus on either removing static dead code or
preserving the program’s behavior on a few specific inputs.

We design four heuristics that infer related-code based
on the assumption that code paths with more significant di-
vergence represent less related functionalities. Specifically,
given one executed path p, we aim to find a different path q
such that 1) q has no different instructions, or 2) q does not
invoke new functions, or 3) q does not require extra library
functions, or 4) q does not rely on library functions with dif-
ferent functionalities. Then, we believe q has functionalities
similar to p and treat all code in q as related-code. From 1) to
4), the heuristic includes more and more code in the debloated
binary. For a given program, we will gradually increase the
heuristic level until the generated program is stable. In fact,
our evaluation shows that even the most aggressive heuristic
introduces only a small increase of the final code size.

Once all the related-code is identified, we develop a binary-
rewriting platform to remove unnecessary code and gener-
ate a debloated program. Thanks to the nature of program
debloating, our platform does not face the symbolization
problem from general binary-rewriting tools [51, 53, 52, 5].
Specifically, a general binary-rewriting tool has to preserve all
program functionalities, which is difficult without a reliable
disassembling technique and a complete control-flow graph
(CFG) [2]. For debloating, we preserve only the functionali-
ties related to the sample inputs, where the disassembling and
CFG are available by observing the program execution.

We designed the RAZOR framework to realize the post-
deployment debloating. The framework contains three com-
ponents: Tracer monitors the program execution with the
given sample inputs to record all executed code; PathFinder
utilizes our heuristics to infer more related-code from the ex-
ecuted ones; Generator generates a new binary based on the
output of Tracer and PathFinder. In the RAZOR framework,
we implemented three tracers (two based on dynamic binary
instrumentation and one based on a hardware tracing feature),
four path finding heuristics, and one binary generator.

To understand the efficacy of RAZOR on post-deployment
debloating, we evaluated it on three sets of benchmarks: all
SPEC CPU2006 benchmarks, 10 coreutils programs used
in previous work, and two real-world large programs, the
web browser Firefox and the closed-sourced PDF parser
FoxitReader. In our evaluation, we performed tracing and
debloating based on one set of training inputs and tested the
debloated program using a different set of functionally similar
inputs. Our results show that RAZOR can effectively reduce
70-80% of the original code. At the same time, it introduces
only 1.7% overhead to the new binary. We compared RA-

ZOR with CHISEL on debloating 10 coreutils programs and
found that CHISEL achieves a slightly better debloating result
(smaller code size), but it fails several programs on given test
cases. Further, CHISEL introduces exploitable vulnerabilities
to the debloated program, such as buffer overflows resulting
from the removed boundary checks. RAZOR does not intro-
duce any security issues. We also analyzed the related-code
identified by our path finder and found that different heuristics
effectively improve the program robustness.

In summary, we make the following contributions:

• New approach. We proposed a practical post-
deployment debloating framework that works on pro-
gram binaries. Besides given test inputs, our system
supports more inputs of the required functionalities.

• Open source. We designed RAZOR as an end-to-end
system to produce a minimal functional executable. We
implemented our system on an x86-64 Linux system and
will open source RAZOR at https://github.com/
cxreet/razor.

• Practical and ready-to-use. We evaluated RAZOR on
real-world programs such as Firefox and FoxitReader
and showed that these programs can be significantly
debloated, resulting in better security.

2 Problem

2.1 Motivating Example
Figure 1a shows a bloated program, which is designed to
parse image files in different formats. Based on the user-
provided options (line 4 and 6), the program invokes func-
tion parsePNG to parse PNG images (line 5) or invokes func-
tion parseJPEG to handle JPEG images (line 7). In function
parsePNG, the code first allocates memory to hold the image
content and saves the memory address in img (line 10). Then
it makes sure img is aligned to 16-bytes with the macro ALIGN
(line 11 and 12). Finally, it invokes function readToMem to
load the image content from file into memory for further
processing. Function parseJPEG has a structure similar to
parsePNG, so we skip its details.

Although the program in Figure 1a merely supports two im-
age formats, it is still bloated if the user only uses it to process
PNG files. For example, screenshots on iPhone devices are
always in PNG format [27]. In this case, the code is bloated
with the unnecessary JPEG parser, which may contain security
bugs [18]. Attackers can force it to process malformed JPEG
images to trigger the bug and launch remote code execution.
In real-world software ecosystem, we can easily find docu-
ment readers (e.g., Preview on MacOS) that support obsolete
formats (e.g., PCX, Sun Raster, TGA). We can debloat these
programs to reduce their code sizes and attack surfaces.

1734 28th USENIX Security Symposium USENIX Association

https://github.com/cxreet/razor
https://github.com/cxreet/razor

1 #define MAX_SIZE 0xffff
2 #define ALIGN(v,a) (((v+a-1)/a)*a)
3 void imageParser(char *options, char *file_name) {
4 if (!strcpy(options, "PNG"))
5 parsePNG(file_name);
6 else if (!strcpy(options, "JPEG"))
7 parseJPEG(file_name);
8 }
9 void parsePNG(char *file_name) {

10 char * img = (char *)malloc(MAX_SIZE + 16);
11 if ((img % 16) != 0)
12 img = ALIGN(img, 16);
13 readToMem(img, file_name);
14 }
15 void parseJPEG(char *file_name) { ... }

(a) A bloated image parser.

imageParser

return

6

F

T

4

F

T

parsePNG

10

F

T

11

12

13

7

parseJPEG

5

return

(b) Original control-flow graph.

imageParser

return

5

T

4

parsePNG

10

F

T

11

12

13

return

(c) Debloated control-flow graph

Figure 1: Debloating an image parser. (a) shows the code of the bloated image parser, where the program invokes different functions to handle
PNG or JPEG files based on the options. The control-flow graphs before and after debloating are shown in (b) and (c).

2.2 Program Debloating

In this paper, we develop techniques to remove user-
specified unnecessary functionalities from bloated pro-
grams. Given a program P that has a set of functionali-
ties F = {F0,F1,F2, ...} and a user specification of necessary
functionalities Fu = {Fi,Fj,Fk, ...}, our goal is to generate a
new program P′ that only retains functionalities in Fu and
gracefully refuses requests of other functionalities in F −Fu.

The program in Figure 1a has two high-level functionalities:
parsing PNG images and parsing JPEG images, while the user
specification only requires the first functionality. In this case,
the goal of debloating is to generate minimal code that only
supports parsing PNG files while exiting gracefully if the given
images are in other formats. From the simple code we can
easily tell that code in the yellow background (i.e., line 6, 7
and 15) is not necessary, so we remove such code in a safe
manner: function parseJPEG will be simply removed; for line
6 and 7, we should replace the code with fault-handling code
to prompt warnings and exit gracefully.

In this paper, we focus on reducing functionalities from
software binaries. Specifically, the program P is given as
a binary, while the source code like Figure 1a is not avail-
able. Instead, we construct the control-flow graph (CFG)
from the executable and use it to guide the binary debloat-
ing. Figure 1b and Figure 1c show CFGs of the bloated
binary and the debloated one, respectively. Black arrows
represent intra-procedural jumps, while dotted arrows stand
for inter-procedural calls and returns. Originally, function
imageParser can execute lines 6 and 7 and invoke function
parseJPEG. In the debloated binary, these lines and functions
are not reachable, and the CFG is simplified to Figure 1c.
For the vulnerability in the removed code, the new binary
prevents attackers from triggering them in the first place.

2.3 Challenges and Solutions

From the previous example, we can find the gap between
the user specification and the code removed: users specify

that the functionality of parsing PNG files is necessary (i.e.,
others are unnecessary), while we finally remove line 6, line
7, and function parseJPEG. However, mapping high-level
functionalities to low-level code manually is challenging,
especially for large programs. Specifically, this leads to two
general challenges of program debloating:

C1. How to express unnecessary functionalities;

C2. How to map functionalities to program code.

One possible solution is to rely on end-users to provide a set of
test cases for each necessary/unnecessary functionality so we
can inspect the program execution to learn the related program
code. Our problem can be rephrased as follows: given the
program binary Pb and a set of test cases T = {ti, t j, tk, ...},
where each test case ti triggers some functionalities of Pb,
we will create a minimal program P′b that supports and only
supports functionalities triggered by the test cases in T .

Test cases help us address challenges C1 and C2. However,
it is impossible to provide test cases that cover all related-code
of the required functionalities. In this case, some related-code
will not be triggered. If we simply remove all never-executed
code, the program functionality will be broken. For example,
the code at lines 11 and 12 of Figure 1a will make sure the
pointer img is aligned to 16. Based on the concrete execution
context, the return value of malloc (at line 10) may or may not
satisfy the alignment requirement. If the execution just passes
the check at line 11, the simple method will delete line 12 for
the minimal code size. However, if the later execution expects
an aligned img, the program will show unexpected behavior
or even crash. Our evaluation in §5.2 shows that simply
removing all non-executed code introduces many bugs, even
exploitable ones, to the debloated program. Therefore, a test-
case-based debloating system faces the following challenge.

C3. How to find more related-code from limited test cases.

To address challenge C3, we propose control-flow-based
heuristics to infer more related-code that is necessary to sup-
port the required functionalities but was missed during our

USENIX Association 28th USENIX Security Symposium 1735

bloated
binary

Tracer

test
cases execution

traces

Dynamorio

Intel PIN

Intel PT

Path Finder Generator

debloated
binary

CFG

decode

CFG'

Heuristic A

Heuristic B

... fault handler

instrumenter

assembler

Figure 2: Overview of RAZOR. It takes in the bloated program binary and a set of test cases and produces a minimal, functional binary.
Tracer collects the program execution traces with given test cases and converts them into a control-flow graph (CFG). PathFinder utilizes
control-flow-based heuristics to expand the CFG to include more related-code. Based on the new CFG, Generator generates the debloated
binary.

inspection. Suppose the test cases in T only trigger the exe-
cution of instructions in I = {i0, i1, i2, ...}, our heuristic will
automatically infer more code that is related to the function-
alities covered by T . Specifically, we identify a super set
I ′ = I ∪{ix, iy, iz, ...} and keep all instructions in I ′ while
removing others to minimize the code size. When debloat-
ing the code in Figure 1a, the execution of given test cases
does not cover line 12. However, with our heuristics, we
will include this line in the debloated program. The evalu-
ation in §5.3 shows that our heuristic is effective in finding
related-code paths and introduces only a small increase in
code size.

3 System Design

Figure 2 shows an overview of our post-deployment debloat-
ing system, RAZOR. Given a bloated binary and a set of test
cases that trigger required functionalities, RAZOR removes
unnecessary code and generates a debloated binary that sup-
ports all required features with minimal code size. To achieve
this goal, RAZOR first runs the binary with the given test cases
and uses Tracer to collect execution traces (§3.1). Then, it
decodes the traces to construct the program’s CFG, which
contains only the executed instructions. In order to support
more inputs of the same functionalities, PathFinder expands
the CFG based on our control-flow heuristics (§3.2). The
expanded CFG contains non-executed instructions that are
necessary for completing the required functionalities. In the
end, with the expanded CFG, Generator rewrites the origi-
nal binary to produce a minimal version that only supports
required functionalities (§3.3).

3.1 Execution Trace Collection

Tracer executes the bloated program with given test cases
and records the control-flow information in three categories:
(1) executed instructions, including their memory addresses
and raw bytes; (2) the taken or non-taken of conditional
branches, like je that jumps if equal; (3) concrete targets
of indirect jumps and calls, like jmpq *%rax that jumps to the
address indicated by register %rax. Our Tracer records the
raw bytes of executed instructions to handle dynamically gen-

[0x4004e3: true]
[0x4004ee: false]
[0x400614: true & false]

[0x400677: 0x4005e6#18,0x4005f6#6]

...

...

Executed Blocks

[0x4005c0,0x4005f2]

[0x400596,0x4005ae]

...

Conditional Branches

Indirect Calls/Jumps

Figure 3: A snippet of the collected trace. It includes the range of
each executed basic block, the taken/non-taken of each condition
branch, and the concrete target of indirect jumps/calls. We also
record the frequency of each indirect jump/call target (after #).

erated/modified code. However, instruction-level recording
is inefficient and meanwhile most real-world programs only
contain static code. Therefore, Tracer starts with basic block-
level recording that only logs the address of each executed
basic block. During the execution, it detects any dynamic
code behavior, like both writable and executable memory re-
gion (e.g., just-in-time compilation [13]), or overlapped basic
blocks (e.g., legitimate code reuse [26]), and switches to the
instruction-level recording to avoid missing instructions. A
conditional branch may get executed multiple times and fi-
nally covers one or both targets (i.e., the fall-through target
and the jump target). For indirect jump/call instructions, we
log all executed targets and count their frequencies.

Figure 3 shows a piece of collected trace. It contains two
executed basic blocks, one at address 0x4005c0 and another
at 0x400596. The trace also contains three conditional branch
instructions: the one at 0x4004e3 only takes the true target;
the one at 0x4004ee only takes the false target; the one at
0x400614 takes both targets. One indirect call instruction at
0x400677 jumps to target 0x4005e6 for 18 times and jumps to
target 0x4005f6 for six times. As the program only has static
code, Tracer does not include the instruction raw bytes.

We find that it is worthwhile to use multiple tools to collect
the execution trace. First, no mechanism can record the trace
completely and efficiently. Software-based instrumentation
can faithfully log all information but introduces significant
overhead [7, 25, 6]. Hardware-based logging can record ef-
ficiently [20] but requires particular hardware and may not
guarantee the completeness (e.g., data loss in Intel PT [17]).
Second, program executions under different tracing environ-

1736 28th USENIX Security Symposium USENIX Association

ments will show divergent paths. For example, Dynamorio
always expands the file name to its absolute path, leading to
different executed code in some programs (e.g., vim). There-
fore, we provide three different implementations (details in
§4.1) with different software and hardware mechanisms. End-
users can choose the best one for their requirement or even
merge traces from multiple tools for better code coverage.
CFG construction. With the collected execution traces,
RAZOR disassembles the bloated binary and constructs the
partial control-flow graph (CFG) in a reliable way. Different
from previous works that identify function boundaries with
heuristics [52, 51, 3, 4, 45], RAZOR obtains the accurate
information of instruction address and function boundary
from the execution trace. For example, we can find some of
all possible targets of indirect jumps and calls.

Starting from such reliable information, we are able to
identify more code instructions [47]. For conditional branch
instructions, both targets are known to us. Even if one target is
not executed, we can still reliably disassemble it. For indirect
jumps, we can identify potential jump tables with specific
code patterns [53]. For example, jmpq *0x4e65a0(,%rdx,8)
indicates a jump table starting from address 0x4e65a0. By
identifying more instructions, we are able to include them in
the binary if our heuristic treats them as related-code.

3.2 Heuristic-based Path Inference
Considering the challenge of generating test cases to cover all
code, we believe no perfect method can completely identify
all missed related-code. As the first work trying to mitigate
the problem, we adopt the best-effort heuristic approach to
include more related-code. Next, we present these heuristics
one by one, from the conservative one (including less code)
to the aggressive one (including more code):

(1) Zero-code heuristic (zCode). This heuristic adds new
edges (i.e., jumps between basic blocks) into the CFG. For
conditional branch instructions that only have one target
taken (the fall-through target or the jump target), PathFinder
checks whether the non-taken target is already in the CFG
(i.e., reached through other blocks). If so, PathFinder per-
mits the jump from this instruction to the non-taken target.
This heuristic does not add any new instructions and thus will
not affect the code reduction.

Figure 4 shows an example of related-code identifica-
tion with heuristics, with the original CFG on the left
and the expanded CFG on the right. The code is de-
signed to calculate log(sqrt(absl(max(rax,rbx,rcx)))).
Dashed branches and blocks are not executed during trac-
ing, while others are executed. The original execution path is
L1→L2→L3→L5→L7→L9. Blocks L4, L6, L8, and the branch
L1→L3 are missed in the original CFG. With the zCode heuris-
tic, PathFinder adds branch L1→L3 into the new CFG, as L3
is the non-taken branch of the conditional jump jge L3 in L1
and it is already reached from L2 in the current CFG.

L2:
 mov %rbx,%rax
 jmp L3

F

T

L1:
 cmp %rbx,%rax
 jge L3

L3:
 cmp %rcx,%rax
 jge L5

L4:
 mov %rcx,%rax
 jmp L5

L6:
 mov %rax,%rdi
 call L_absl
 jmp L7

F

T

L5:
 test %rax,%rax
 jns L7

F

T

L7:
 test %rax,%rax
 jle L9

L8:
 mov %rax,%rdi
 call sqrt@plt
 jmp L9

F

T

L9:
 mov %rax,%rdi
 call log@plt

L9:
 mov %rax,%rdi
 call log@plt

L2:
 mov %rbx,%rax
 jmp L3

F

T

L1:
 cmp %rbx,%rax
 jge L3

L3:
 cmp %rcx,%rax
 jge L5

L4:
 mov %rcx,%rax
 jmp L5

L6:
 mov %rax,%rdi
 call L_absl
 jmp L7

F

T

L5:
 test %rax,%rax
 jns L7

F

T

L7:
 test %rax,%rax
 jle L9

L8:
 mov %rax,%rdi
 call sqrt@plt
 jmp L9

F

T

zCode
zCall
zLib
zFunc

Figure 4: Identifying related-code with different heuristics. Dashed
branches and blocks are not executed and thus are excluded from
the left CFG, while others are executed.

(2) Zero-call heuristic (zCall). This heuristic includes
alternative execution paths that do not trigger any function
call. With this heuristic, PathFinder starts from the non-
taken target of some conditional branches and follows the
control-flow information to find new paths that finally merge
with the executed ones. If such a new path does not include
any call instructions, PathFinder includes all its instructions
to the CFG. When PathFinder walks through non-executed
instructions, we do not have the accurate information for
stable disassembling or CFG construction. Instead, we rely
on existing mechanisms [53, 3] to perform binary analysis.
When applying the zCall heuristic on the example in Figure 4,
PathFinder further includes block L4, and path L3→L4→L5,
as this new path merges with the original one at L5 and does
not contain any call instruction.

(3) Zero-libcall heuristic (zLib). This heuristic is similar
to zCall, except that PathFinder includes the alternative paths
more aggressively. The new path may have call instructions
that invoke functions within the same binary or external func-
tions that have been executed. However, zLib does not allow
calls to non-executed external functions. In Figure 4, with this
heuristic, PathFinder adds block L6 and path L5→L6→L7 to
the CFG, as that path does not have any call to non-executed
external functions.

(4) Zero-functionality heuristic (zFunc). This heuristic
further allows including non-executed external functions as
long as they do not trigger new high-level functionalities. To
correlate library functions with functionalities, we check their

USENIX Association 28th USENIX Security Symposium 1737

Algorithm 1: Path-finding algorithm.
Input: CFG - the input CFG; libcall_groups - the library call groups.
Output: CFG′ - the expanded CFG
CFG′ ← CFG
/* iterate over each conditional branch */

1 for cnd_br ∈ CFG:
2 nbb = get_non_taken_branch(cnd_br)
3 if nbb == NULL: continue
4 if heuristic >= zCode and nbb ∈ CFG:
5 CFG′ = CFG′ ∪ {cnd_br→nbb}
6 paths = get_alternative_paths(CFG′, nbb)
7 for p ∈ paths:
8 include = false
9 if heuristic == zCall: include = !has_call(p)

10 elif heuristic == zLib: include = !has_new_libcall(p)
11 elif heuristic == zFunc:
12 include = !has_new_func(CFG′, p, libcall_groups)
13 if include:
14 CFG′ = CFG′ ∪ p

descriptions and group them manually. For libc functions,
we classify the ones that fall into the same subsection in [32]
to the same group. For example, log and sqrt are in the
subsection Exponentiation and Logarithms, and thus we
believe they have similar functionalities. With this heuristic,
PathFinder includes block L8 and path L7→L8→L9, as sqrt
has a functionality similar to the executed function log.

Algorithm 1 shows the steps that PathFinder uses to find
related-code that completes functionalities. For each con-
ditional branch in the input CFG (line 1), the algorithm in-
vokes the function get_non_taken_branch to get the non-
taken branch (line 2). If both branches have been taken,
the algorithm proceeds to the next conditional branch (line
3). Otherwise, PathFinder starts to add code depending on
the given heuristic (line 4 to 14). If the non-taken branch
is reachable in the current CFG (line 4), zCode enables the
new branch in the output CFG (line 5). If the heuristic is
more aggressive than zCode, PathFinder first gets all alter-
native paths that start from the non-taken branch and finally
merges with some executed code (line 6). Then, it iterates
over all paths (line 7) and calls corresponding checking func-
tions (i.e., has_call, has_new_libcall, and has_new_func)
to check whether or not the path should be included (line 9 to
12). In the end, PathFinder adds the path to the output CFG
if it satisfies the condition (line 14).

3.3 Debloated Binary Synthesization
With the original bloated binary and the expanded CFG,
Generator synthesizes the debloated binary that exclusively
supports required functionalities. First, it disassembles the
original binary following the expanded CFG and generates a
pseudo-assembly file that contains all necessary instructions.
Second, Generator modifies the pseudo-assembly to create
a valid assembly file. These modifications symbolize basic
blocks, concretize indirect calls/jumps, and insert fault han-

0x0:
 jne 0x4 ;true
0x2:
 jne 0x6 ;false
0x4:
 jz 0xb ;both
0x6:
 call 0x40
0xb:
 call *%rax ;0x70,0x80

L_0x0:
 jne L_0x4
 jmp cond_fail
L_0x2:
 jne cond_fail
L_0x4:
 jz L_0xb
L_0x6:
 call L_0x40
L_0xb:
 cmp %rax, 0x70
 jne L_i1
 call L_0x70
L_i1:
 cmp %rax, 0x80
 jne ic_fail
 call L_0x80

Figure 5: Synthesize debloated assembly file. Each basic block is
assigned a unique label; indirect calls are expanded with compar-
isons and direct calls; fault handling code is inserted.

dling code. Third, it compiles the assembly file into an object
file that contains machine code of the necessary instructions.
Fourth, Generator copies the machine code from the object
file into a new code section of the original binary. Fifth,
Generator modifies the new code section to fix all references
to the original code and data. Finally, Generator sets the
original code section non-executable to reduce the code size.
We leave the original code section inside the debloated pro-
gram to support the potential read from it (e.g., jump tables
in code section for implementing switch [11]). We discuss
this design choice in §6.

3.3.1 Basic Block Symbolization

We assign a unique label to each basic block and replace all
its references with the label. Specifically, we create the label
L_addr for the basic block at address addr. Then, we scan all
direct jump and call instructions and replace their concrete
target addresses with corresponding labels. In this way, the
assembler will generate correct machine code regardless of
how we manipulate the assembly file. Figure 5 shows an
assembly file before and after the update, illustrating the
effect of basic block symbolization. Before the update, all call
and jump instructions use absolute addresses, like jne 0x6 in
basic block 0x0. After the symbolization, the basic block at
0x6 is assigned the label L_0x6, while instruction jne 0x6 is
replaced with jne L_0x6. Similarly, instruction call 0x40 in
block 0x06 is replaced with call L_0x40. One special case
is the conditional branch jne 0x6 in basic block 0x2. In the
extended CFG, it only takes the fall-through branch, which
means that jumping to block 0x6 should not be allowed in the
debloated binary. Therefore, instead of replacing 0x6 with
symbol L_0x6, we redirect the execution to the fault handling
code cond_fail (will discuss in §3.3.3). Note that basic
block symbolization only updates explicit use of basic block
addresses, i.e., as direct call/jump targets. We handle the
implicit address use, like saving function address into memory
for indirect call, with the indirect call/jump concretization.

1738 28th USENIX Security Symposium USENIX Association

3.3.2 Indirect Call/Jump Concretization

Indirect call/jump instructions use implicit targets that are
loaded from memory or calculated at runtime. We have to
make sure all possible targets point to the new code section.
For the sake of simplicity, we use the term indirect call to
cover both indirect calls and indirect jumps.

With the execution traces, Generator is able to handle
indirect calls in two ways. The first method is to locate con-
stants from the original binary that are used as code addresses
and replace them with the corresponding new addresses, as
in [52, 51]. However, this method requires a heavy trac-
ing process that records all execution context and a time-
consuming data-flow analysis. Therefore, it is impractical
for large programs. The second method is to perform the
address translation before each indirect call, as in [53]. In
particular, we create a map from the original code addresses
to the new ones. Before each indirect call, we map the old
code address to the new one and transfer the control-flow to
the new address.

Our Generator takes a method similar to the second one,
but with different translations for targets within the same
module (named local targets) and targets outside the module
(named global targets). For local targets, we define a con-
crete policy for each indirect call instruction. Specifically,
we replace the original call with a set of compare-and-call
instructions, one for each local target that is executed by
this instruction at tracing. Then, we call the new address
of the matched old addresses. Global targets have different
addresses in multiple runs because of the address space lay-
out randomization (ASLR). We use a per-module translation
table to solve this problem. Different from previous work
that creates a translation table for all potential targets in the
module [53], our translation table contains only targets that
are ever invoked by other modules. At runtime, if the tar-
get address is outside the current module, we use a global
translation function to find the correct module and look up its
translation table to get the correct new address to invoke.

Figure 5 gives an example of indirect call concretization.
In the execution trace, instruction call *%rax in block 0xb
transfers control to function at 0x70 and 0x80. Our concretiza-
tion inserts two cmp instructions, one to compare with the
address 0x70 and another to compare with 0x80. For any suc-
cessful comparison, Generator inserts a direct call to transfer
the control-flow to the corresponding new address.

Security benefit. Our design achieves a stronger security
benefit on control-flow protection over previous methods. For
example, the previous work binCFI [53] uses a map to con-
tain all valid code addresses, regardless of which instruction
calls them. Thus, any indirect call instruction can reach all
possible targets, making the protection vulnerable to existing
bypasses [12, 43, 9]. Our design is functionally equivalent to
creating one map for each indirect call, which contains both
the targets obtained from the trace and the targets inferred by

our PathFinder. For inter-module indirect calls, we limit the
targets to a small set that is ever invoked by external modules.
In this way, attackers who try to change the control flow will
have fewer choices, and the debloated binary will be immune
to even advanced attacks.
Frequency-based optimization. Depending on the number
of executed targets, we may insert many compare-and-call
instructions that will slow the program execution. For ex-
ample, one indirect call instruction in perlbench benchmark
of SPEC CPU2006 has at least 132 targets, and each target
is invoked millions of times. To reduce the overhead, we
rank all targets with their execution frequencies and compare
the address with high-frequent targets first. The targets in-
ferred from heuristics have a frequency of zero. With this
optimization, we can reduce the overhead significantly.

3.3.3 Fault Handling

Running a debloated binary may reach removed code or dis-
abled branches for various reasons, such as a user’s temporal
requirement for extra functionalities or malicious attempts
to run unnecessary code. We redirect any such attempt to a
fault handler that exits the execution and dumps the call stack.
Specifically, for conditional jump instructions with only one
target taken, we intercept the branch to the non-taken target to
hook any attempt of the invalid jump. Similarly, for indirect
call instructions, if no allowed target matches the runtime
target, we redirect the execution to the fault handler.

Figure 5 includes examples of hooking failed conditional
jumps and indirect calls. For instruction jne 0x4 in block
0x0, we insert jmp cond_fail to redirect the branch to the
fall-through target to the fault handler cond_fail. Similarly,
we update instruction jne 0x6 with jne cond_fail to pre-
vent jumping to the non-executed target. For conditional
branch jz 0xb which has both targets taken, we do not in-
sert any code. For instruction call *%rax, we insert code
jne ic_fail in the case that all allowed targets are different
from the real-time one.

4 Implementation

We implement a prototype of RAZOR with 1,085 lines of C
code, 514 lines of C++ code, and 4,034 lines of python code,
as shown in Table 1. The prototype currently supports x86-64
ELF binaries. Our design is platform-agnostic and we plan
to support other binary formats from different architectures.
We tried our system on system libraries (e.g., libc.so, libm.so)
and report our findings in §6.

4.1 Tracer Implementations
As we discussed in §3.1, each tracing method has different
benefits and limitations, such as the tracing efficiency and
completeness. We provide three different implementations of

USENIX Association 28th USENIX Security Symposium 1739

0%
20%
40%
60%
80%

100%
pe

rlb
en

ch
bz

ip
2

gc
c

bw
av

es
ga

m
es

s
m

cf
m

ilc
ze

us
m

p
gr

om
ac

s
ca

ct
us

A
D

M
le

sli
e3

d
na

m
d

go
bm

k
de

al
II

so
pl

ex
po

vr
ay

ca
lc

ul
ix

hm
m

er
sje

ng
G

em
sF

D
TD

lib
qu

an
tu

m
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
w

rf
sp

hi
nx

3
xa

la
nc

bm
k

AV
ER

AG
E

Razor

(a) SPEC CPU2006

0%
20%
40%
60%
80%

100%

bz
ip

2
ch

ow
n

da
te

gr
ep

gz
ip

m
kd

ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(b) CHISEL benchmarks

Figure 6: Code size reduction on two benchmarks. We use RAZOR to debloat both SPEC CPU2006 benchmarks and CHISEL benchmarks
without any path finding and achieve 68.19% and 78.8% code reduction. CHISEL removes 83.4% code from CHISEL benchmarks.

Component Tracer PathFinder Generator Total

C 1,085 0 0 1,085
C++ 514 0 0 514
Python 218 743 3,073 4,034

Table 1: Implementation of different RAZOR components.

Tracer in RAZOR so that users can choose the best one for
their purpose. In our evaluation, we use software-based in-
strumentation to collect complete traces for simple programs,
and use a hardware-based method to efficiently get trace from
large programs.

Tracing with software instrumentation. We use the dy-
namic instrumentation tools Dynamorio [7] and Pin [25] to
monitor the execution of the bloated program. Both tools
provide instrumentation interfaces at function level, basic
block level, and instruction level. We implement three instru-
mentation passes to collect control-flow information. First, at
the beginning of each basic block we record its start address;
second, for each conditional jump instruction, we insert two
pieces of code between the instruction and its two targets
to log the taken information; third, before each indirect call
and jump instruction, we record the concrete target for each
invocation. At runtime, we remove the basic block instruction
immediately after its first execution to avoid unnecessary over-
head. Similarly, we remove the instrumentation of conditional
branches once that branch has been taken. However, we keep
the instrumentation of indirect call and jump instructions, as
we do not know the complete set of targets.

Tracing with hardware feature. Considering the overhead
of software instrumentation, we provide an efficient Tracer
built on Intel Processor Trace (Intel PT) [20]. Intel PT
records the change of flow information in a highly compressed
manner: the TNT packet describes whether one conditional
branch is taken or non-taken; the TIP packet records the tar-
get of indirect branches, like indirect call and return. As
Intel PT directly writes the trace to physical memory with-
out touching the page table or memory cache, it achieves the
most efficient tracing. Our Tracer decodes the traces from
Intel PT to get necessary control-flow information. We can
use other hardware features available on different platforms
to implement efficient Tracer, like branch trace store (BTS)

on Intel CPUs or program flow trace (PTM) on ARM CPUs.

4.2 Update ELF Exception Handler

ELF binaries generated by gcc and clang adopt the table-
based exception handling [46] to provide stack unwind and
exception handler information. Specifically, ELF keeps a
table in the .eh_frame_hdr section, one entry per function.
Each entry indicates the location of a frame description en-
try (FDE) in the .eh_frame section, which further specifies
the location of the language-specific data area (LSDA). The
LSDA region in the .gcc_except_table section contains the
concrete address of exception handlers, called landingpad.

We have to replace the old value of all landingpads in
.gcc_except_table with the new ones. However, the chal-
lenge is that the value in .gcc_except_table is encoded in
the LEB128 format – a variable-length encoding that may
have different lengths for different values. Since we update
the old address with a different one, the encoding of the
new address may take more bytes and thus cannot be put
into the original location. To solve this problem, we update
the section layout of the binary to create more space for the
new address. Specifically, we shrink the table inside the
.eh_frame_hdr section to exclude entries of non-executed
functions. Recall that the given test cases only trigger part of
the functionalities, and the non-executed functions will not
be included in the debloated binary. Then we shift .eh_frame
and .gcc_except_table sections to get more space for our
update of landingpad values.

5 Evaluation

In this section, we perform extensive evaluation in order to
understand RAZOR regarding the following aspects:
• Code reduction. How much code can RAZOR reduce

from the original bloated binary? (§5.1)
• Functionality. Does the debloated binary support the

functionalities in given test cases? (§5.2) How effective
is PathFinder in finding complementary code? (§5.3)
• Security. Does RAZOR reduce the attack surface of the

debloated binaries? (§5.4)

1740 28th USENIX Security Symposium USENIX Association

0%
20%
40%
60%
80%

100%
bz

ip
2

ch
ow

n
da

te
gr

ep
gz

ip
m

kd
ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(a) basic blocks

0%
20%
40%
60%
80%

100%

bz
ip

2
ch

ow
n

da
te

gr
ep

gz
ip

m
kd

ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(b) instructions

0%
20%
40%
60%
80%

100%

bz
ip

2
ch

ow
n

da
te

gr
ep

gz
ip

m
kd

ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(c) ROP gadgets

Figure 7: Reduction of basic blocks, instructions, and ROP gadgets, debloated by RAZOR and CHISEL from CHISEL benchmarks.

• Performance. How much overhead does RAZOR intro-
duce into the debloated binary? (§5.5)
• Practicality. Does RAZOR work on commonly used

software in the real world? (§5.6)
Experiment setup. We set up three sets of benchmarks to
evaluate RAZOR: 29 SPEC CPU2006 benchmarks, including
12 C programs, seven C++ programs, and 10 Fortran pro-
grams; 10 coreutils programs used in the CHISEL paper1 [15];
the web browser Firefox and the close-source PDF reader
FoxitReader. We use the software-based tracing tools that
rely on Dynamorio and Pin to collect the execution traces
of SPEC and CHISEL benchmarks, to get accurate results;
for the complicated programs Firefox and FoxitReader, we
use the hardware-based tracing tool (relying on Intel PT) to
guarantee the execution speed to avoid abnormal behaviors.
We ran all the experiments on a 64-bit Ubuntu 16.04 system
equipped with Intel Core i7-6700K CPU (with eight 4.0GHz
cores) and 32 GB RAM.

5.1 Code Reduction

We applied RAZOR on SPEC CPU2006 benchmarks and
CHISEL benchmarks to measure the code size reduction. For
SPEC benchmarks, we treated the train dataset as the user-
given test cases. For CHISEL benchmarks we obtained test
cases from the paper’s authors. We did not apply any heuris-
tics of path finding for this evaluation. As RAZOR works
on binaries, we cannot measure the reduction of source code
lines. Instead, we compare the size of the executable mem-
ory region before and after the debloating, specifically, the
program segments with the executable permission. Figure 6a
shows the code reduction of SPEC benchmarks debloated
by RAZOR. Figure 6b shows the code reduction of CHISEL
benchmarks, debloated by CHISEL and RAZOR.

On average, RAZOR achieves 68.19% code reduction for
SPEC benchmarks and 78.8% code reduction for CHISEL
benchmarks. Especially for dealII, hmmer, gamess, and tar,
RAZOR removes more than 90% of the original code. For
bwaves, zeusmp, and GemsFDTD, RAZOR achieves less than
30% code reduction. We investigated these exceptions and
found that these programs are relatively small and the train

1We appreciate the help of CHISEL authors for sharing the source code
and their benchmarks.

datasets already trigger most of the code.
Meanwhile, CHISEL achieves 83.4% code reduction on

CHISEL benchmarks. For seven programs, CHISEL reduces
more code than RAZOR, while RAZOR achieves higher code
reduction than CHISEL for the other three programs. CHISEL
tends to remove more code as long as the execution result
remains the same. For example, variable initialization code
always gets executed at the function beginning. CHISEL will
remove it if the variable is not used in the execution, while
RAZOR will keep it in the debloated binary. Although CHISEL
performs slightly better than RAZOR on code reduction, we
find that the debloated binaries from CHISEL suffer from
robustness issues (§5.2) and security issues (§5.4).
Other reduction metrics. We also measured RAZOR’s ef-
fectiveness on reducing basic blocks (Figure 7a) and instruc-
tions (Figure 7b) from CHISEL benchmarks and compared
these results with those achieved by CHISEL. On average,
RAZOR removes 53.1% of basic blocks and 63.3% of in-
structions from the original programs, while CHISEL reduces
66.0% of basic blocks and 88.5% of instructions from the
same set of programs. This result is consistent with the code
size reduction, where RAZOR reduces less code, as it can
neither remove any executed-but-unnecessary blocks or in-
structions, nor utilize compiler to aggressively optimize the
debloated code.

5.2 Functionality Validation

We ran the debloated binaries in CHISEL benchmarks against
given test cases to understand their robustness. For each
benchmark, we compiled the original source code to get the
original binary and compiled the debloated source code from
CHISEL to get the CHISEL binary. Then, we used RAZOR to
debloat the original binary with given test cases, generating
the RAZOR binary. Next, we ran the original binary, the
CHISEL binary, and the RAZOR binary again with the test
cases. We examine the execution results to see whether the
required functionalities are retained in the debloated binaries.

Table 2 shows the validation result. RAZOR binaries pro-
duce the same results as those from the original binaries for
all test cases of all programs (the last column), showing the
robustness of the debloated binaries. Surprisingly, CHISEL
binaries only pass the tests of three programs (i.e., chown,

USENIX Association 28th USENIX Security Symposium 1741

Program Version # of Failed by Chisel Failed
Tests W I C M by Razor

bzip2 1.0.5 6 2 – 2 – – (zLib)
chown 8.2 14 – – – – – (zFunc)
date 8.21 50 5 – 3 – – (zLib)
grep 2.19 26 – – – 6 – (zLib)
gzip 1.2.4 5 – 1 – – – (zLib)
mkdir 5.2.1 13 – – – 1 – (zLib)
rm 8.4 4 2 – – – – (zFunc)
sort 8.16 112 – – – – – (zCall)
tar 1.14 26 3 – – 4 – (zCall)
uniq 8.16 16 – – – – – (zCall)

Table 2: Failed test cases by RAZOR binaries and CHISEL binaries.
CHISEL failed some tests with different reasons: Wrong operations,
Infinite loop, Crashes, and Missing output. For RAZOR binaries, we
show the heuristic that makes the program pass all tests.

sort, and uniq) and trigger some unexpected behaviors for
the other seven programs. Considering that CHISEL verifies
the functionality of the debloating binary, such a low pass-
ing rate is confusing. We checked these failed cases and
the verification process of CHISEL and found four common
issues.

Wrong operation. The debloated program performs unex-
pected operations. For examples, bzip2 should decompress
the given file when the test case specifies the -d option. How-
ever, the binary debloated by CHISEL always decompresses
the file regardless of what option is used. We suspect that
CHISEL only uses one test case of decompression to debloat
the program and thus removes the code that parses command
line options.

Infinite loop. CHISEL may remove loop condition checks,
leading to infinite loops. For example, gzip fails one test case
because it falls into a loop in which CHISEL drops the condi-
tion check. We believe the reason is that the test case used by
CHISEL only iterates the loop one time. The verification step
of CHISEL should identify this problem. However, we found
that the verification script adopts a small timeout (e.g., 0.1s)
and treats any timeout as a successful verification. Therefore,
it cannot detect any infinite loops.

Crashes. The debloated binary crashes during execution.
For example, date crashes three test cases because CHISEL
removes the check on whether the parameters of strcmp are
NULL. bzip2 crashes three test cases for the same reason.

Missed output. CHISEL removes code for printing out on
stdout and stderr, leading to missed results. For example,
grep fails six test cases, as the binary does not print out any
result even through it successfully finds matched strings. We
find that in the verification script of CHISEL, all output of
the debloated binaries is redirected to the /dev/null device.
Therefore, it cannot detect any missing or inconsistent output.

40
30
20
10

0%
20%
40%
60%
80%

100%

bzip
2

ch
ow

n
date grep gzip

mkdir rm sort tar uniq
AVG

cr
as

h
#

<—
>

re
du

ct
io

n
ra

te

none
zCode

zCall
zLib

zFunc

Figure 8: Path finding on CHISEL benchmarks with different heuris-
tics. The top part is the code reduction, while the bottom part is the
number of crashes. ‘none’ means no heuristic is used.

5.3 Effectiveness of Path Finding

We use two sets of experiments to evaluate the effectiveness
of PathFinder on finding the related-code of required func-
tionalities. First, we use RAZOR to debloat programs with
different heuristics, from the empty heuristic to the most ag-
gressive zFunc heuristic, aiming to find the least aggressive
heuristic for each program. Second, we perform N-fold cross
validation to understand the robustness of our heuristic. In
this subsection, we focus on the first experiment and leave
the N-fold cross validation in §5.6.1.

We tested RAZOR on CHISEL benchmarks as follows: (1)
design training inputs and testing inputs that cover the same
set of functionalities; (2) trace programs with the training
inputs and debloat them with none, zCode, zCall, zLib, and
zFunc heuristics; (3) run debloated binaries on testing in-
puts and record the failed cases. The setting of evaluating
PathFinder is given in Table 7 of Appendix A. We use the
same options for training inputs and testing inputs to make
sure that the debloated binaries are tested for the same func-
tionalities as those triggered by the training inputs. The dif-
ference is the concrete value for each option or the file to
process. For example, when creating folders with mkdir, we
use various parameters of the option -m for different file mode
sets. For program bzip2 and gzip, we use different files for
training and testing.

Figure 8 presents our evaluation result, including the code
reduction (the top half) and the number of failed test cases
(the bottom half) under different heuristics. We can see that
debloating with a more aggressive heuristic leads to more
successful executions. All binaries generated without any
heuristic fail on some testing inputs. grep fails on all 38 test-
ing inputs, while chown and rm fail more than half of all tests.
The zCode heuristic helps mitigate the crash problem, like
making grep work on 19 test cases. However, all generated
binaries still fail some inputs. The zCall heuristic further
improves the debloating quality. For program sort, tar, and
uniq, it avoids all previous crashes. With the zLib heuristic,
only two programs (i.e., chown and rm) still have a small num-
ber of failures. In the end, debloating with the zFunc heuristic

1742 28th USENIX Security Symposium USENIX Association

1 int fillbuf(...) { ...
2 if (minsize <= maxsize_off)
3 if (...) ...
4 newalloc = newsize+ ...;
5 }

Figure 9: A crash case reduced
by applying zCode heuristic.

1 int fts_safe_changedir(..,){
2 if (dir) {
3 tmp=strcmp(dir,".."); ...
4 } ...
5 }

Figure 10: A crash case reduced
by applying zFunc heuristic.

1 int compare(line *a,line *b) {
2 alen = a->length - 1UL;
3 blen = b->length - 1UL;
4 if (alen == 0UL) {
5 diff = -(blen != 0UL);
6 } else {
7 if (blen == 0UL) {
8 diff = 1;
9 } else { ... }

10 }}

Figure 11: A crash case reduced
by applying zCall heuristic.

1 int main(...) { ...
2 fail = make_dir(..);
3 if (!fail) {
4 if (!create_parents) {
5 if (!dir_created) {
6 tmp_7=gettext("error");
7 error(0,17,tmp_7,tmp_6);
8 fail = 1;
9 ...

10 }}}}

Figure 12: A crash case reduced
by applying zLib heuristic.

reduces all crashes in all programs.
Interestingly, although aggressive heuristics introduce more

code to the debloated binary (shown in the top of Figure 8),
they do not significantly decrease the code reduction. Without
any heuristic, the average code reduction rate of 10 programs
is 78.7%. The number is reduced by −0,4%, 3.8%, 8.8%,
and 12.6% when applying zCode, zCall, zLib, and zFunc
heuristics, respectively. Therefore, even with the most aggres-
sive zFunc heuristic, the code reduction does not decrease
heavily. At the same time, all crashes are resolved, showing
the benefits of applying heuristics. Note that the zCode heuris-
tic slightly increases the code reduction over the no heuristic
case, as it enables more branches of conditional jumps, which
in turn reduces the instrumentation of failed branches.

We investigated the failed cases mitigated by different
heuristics and show some case studies as follows:
(1) The zCode heuristic enables the non-taken branch for
executed conditional jumps. Figure 9 shows part of the func-
tion fillbuf of program grep that fails if we do not use the
zCode heuristic. The training inputs always trigger the true
branch of the condition at line 2 and jump to line 3, which
in turn reach line 4. However, in the execution of testing
inputs, the conditional at line 2 takes the false branch (i.e.,
minsize > maxsize_off) and triggers the jump from line 2
to line 4. This branch is not allowed from execution traces.
The zCode heuristic enables this branch, as line 4 has been
reached in the previous execution.
(2) The zCall heuristic includes alternative paths that do not
trigger any call instructions. Figure 11 shows an example
where the zCall heuristic helps include necessary code in the
debloated binary. Function compare in program sort uses
a sequence of comparisons to find whether two text lines
are different. Since the training inputs have no empty lines,
the condition at line 4 and line 7 always fails. However, the
testing inputs contain empty lines, which makes these two
conditional jumps take the true branches. The zCode heuris-

Program CVE Orig Chisel Razor

bzip2-1.0.5

CVE-2010-0405 ✓
CVE-2011-4089* ✗
CVE-2008-1372 ✗ ✔
CVE-2005-1260 ✗ ✔

chown-8.2 CVE-2017-18018* ✓ ✘ ✘
date-8.21 CVE-2014-9471* ✓ ✘

grep-2.19 CVE-2015-1345* ✓ ✘ ✘
CVE-2012-5667 ✗ ✔

gzip-1.2.4
CVE-2005-1228* ✓ ✘ ✘
CVE-2009-2624 ✓
CVE-2010-0001 ✓ ✘ ✘

mkdir-5.2.1 CVE-2005-1039* ✓
rm-8.4 CVE-2015-1865* ✓
sort-8.16 CVE-2013-0221* ✗
tar-1.14 CVE-2016-6321* ✓ ✘
uniq-8.16 CVE-2013-0222* ✗

Table 3: Vulnerabilities before and after debloating by RAZOR and
CHISEL. ✓ means the binary is vulnerable to the CVE, while ✗

mean it is not vulnerable. CVEs with ∗ are evaluated in [15].

tic adds lines 5 and 8 and related branches to the debloated
program, which effectively avoids this crash.
(3) The zLib heuristic allows extra calls to native functions
or library functions if they have been used in traces. It helps
avoid a crash in program mkdir when we use the debloated
binary to change the file mode of an existing directory. Fig-
ure 12 shows the related code, which crashes because of the
missing code from line 6 to line 9. Since mkdir does not
allow changing the file mode of an existing directory, the
code first invokes function gettext to get the error message
and then calls library function error to report the error. The
zLib heuristic includes this path in the binary because both
gettext and error are invoked by some training inputs.
(4) The zFunc heuristic includes alternative paths that invoke
similar library functions. Figure 10 shows the code that causes
rm to fail without this heuristic. When rm deletes a folder that
contains both files and folders, it triggers the code at line 3 to
check whether it is traversing to the parent directory. Since the
training inputs never call strcmp, the debloated binary fails
even with the zLib heuristic. However, the training inputs
ever invoke function strncmp, which has the functionality
similar to strcmp (i.e., string comparison). Therefore, the
zFunc heuristic adds this code in the debloated binary.

The results show that PathFinder effectively identifies
related-code that completes the functionalities triggered by
training inputs. It enhances the robustness of the debloated
binaries while retaining the effectiveness of code reduction.

5.4 Security Benefits

We count the number of reduced bugs to evaluate the se-
curity benefit of our debloating. For each program in the
CHISEL benchmark, we collected all its historical vulnera-

USENIX Association 28th USENIX Security Symposium 1743

bilities, including the ones shown in the current version and
the ones only in earlier versions. For the former bugs, we
check whether the buggy code has been removed by the de-
bloating process. If so, the debloating process helps avoid
related attacks. For the latter bugs, we figure out whether
their patches are retained in the debloated binary. If not, the
debloated process makes the program vulnerable again. Ta-
ble 3 shows our evaluation result, including 16 CVEs related
to CHISEL benchmarks. 13 bugs are shown in the current
version, and 10 of them are evaluated in [15] (followed by *).
Three bugs only exist in older versions (i.e., CVE-2010-0405,
CVE-2009-2624, and CVE-2010-0001).

RAZOR successfully removes four CVEs from the original
binaries and does not introduce any new bugs. Specifically,
CVE-2017-18018 in chown, CVE-2015-1345 in grep, CVE-
2005-1228 and CVE-2010-0001 in gzip are removed in the
debloated binaries. Six vulnerabilities from bzip, date, gzip,
mkdir, rm, and tar remain, as the test cases execute related
vulnerable code. Another six vulnerabilities are not caused by
the binary itself. For example, CVE-2011-4089 is caused by
the race condition of the bash script bzexe, not by the bzip2
binary. Therefore, RAZOR will not disable such bugs.

With a more aggressive code removal policy, CHISEL dis-
ables two more CVEs than RAZOR, but unfortunately brings
three old bugs to the debloated binaries. Specifically, CHISEL
removes the vulnerable code of CVE-2014-9471 from date
and the code of CVE-2016-6321 from tar. Meanwhile, it re-
moves the patches of CVE-2008-1372 and CVE-2005-1260 in
bzip2, and CVE-2012-5667 in grep, rendering the debloated
binaries vulnerable to these already-fixed bugs.

Compared to CHISEL, RAZOR removes the bloated code
in a conservative way. Although such strategy may hinder
removing more bugs, but it also helps avoid new bugs in the
debloated binary. This result is consistent with our findings
in §5.2, where CHISEL achieves higher code reduction but
fails some expected functionalities.

Reduction of ROP gadgets. We also measured the reduc-
tion of ROP gadgets. Once the attacker is able to divert the
control-flow, the number of reusable ROP gadgets indicate
the vulnerability of the program to control-flow hijacking
attacks. Figure 7c show that RAZOR reduces 61.9% ROP gad-
gets, while CHISEL reduces 85.1% ROP gadgets. Although
RAZOR achieves less ROP gadget reduction, this result is
expected. In the design of RAZOR, we intentionally pay more
attention on preventing forward-edge control-flow attacks,
where attackers corrupt function pointers, instead of return
addresses, to diver the control-flow. As shadow stack tech-
nique are getting deployed in compilers [24] and even hard-
ware [19], our technique of indirect call/jump concretization
(§3.3.2) complements existing practical return-protections to
achieve complete control-flow integrity.

-2%

0%

2%

4%

6%

8%

pe
rlb

en
ch

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
hm

m
er

sj
en

g
G

em
sF

D
TD

lib
qu

an
tu

m
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
w

rf
sp

hi
nx

3
xa

la
nc

bm
k

AV
ER

A
G

E

16% Razor

Figure 13: Performance overhead by RAZOR on SPEC CPU R⃝2006
benchmarks. The average overhead is 1.7%.

5.5 Performance Overhead

Efficient Debloating. On average, RAZOR takes 1.78
seconds to debloat CHISEL benchmarks, 8.51 seconds for de-
bloating Firefox, and 50.42 seconds to debloat FoxitReader
As a comparison, CHISEL has to spend one to 11 hours to
debloat the relatively small CHISEL benchmarks. Therefore,
RAZOR is a practical debloating tool.
Runtime Overhead. We measured the performance over-
head introduced by RAZOR to SPEC benchmarks and show
the result in Figure 13. On average, RAZOR introduces 1.70%
overhead to debloated programs, indicating its efficiency for
real-world deployment. The highest overhead occurs on the
debloated perlbench binary, which slows the execution by
16%. We inspected the debloated programs and confirmed
that the indirect call concretization is the main source of the
performance overhead. With the indirect call concretization,
one indirect call instruction is replaced by several comparison
and direct calls. For perlbench, some indirect call instruc-
tions have more than 100 targets. Correspondingly, RAZOR
introduces a large number of if-else there, leading to a high
performance overhead. We deployed the frequency-based
optimization and reduced the overhead from over 100% to the
current 16%. We plan to use binary search to replace current
one-by-one matching in order to further reduce the overhead.

5.6 Debloating Real-world Programs
To evaluate the practicality, we used RAZOR to debloat
two widely used software programs – the web browser
Firefox and the closed-sourced PDF reader FoxitReader.
For Firefox, we ran RAZOR to load the top 50 Alexa web-
sites [28]. We randomly picked 25 websites as the training
inputs and used the other 25 websites as the testing inputs.
For FoxitReader, we ran RAZOR to open and scroll 55 dif-
ferent PDF files that contain tables, figures, and JavaScript
code. We randomly picked 15 of them as the training inputs
and used the other 40 files as the testing inputs.
Code reduction and functionality. Table 4 shows the code
reduction rate and the number of failed cases of debloated
binaries with different path-finding heuristics. Both Firefox

1744 28th USENIX Security Symposium USENIX Association

Heuristic FireFox FoxitReader
crash-sites reduction crash-PDFs reduction

none 13 67.6% 39 89.8%
zCode 13 68.0% 10 89.9%
zCall 2 63.1% 5 89.4%
zLib 0 60.1% 0 87.0%
zFunc 0 60.0% 0 87.0%

Table 4: Debloating Firefox and FoxitReader with RAZOR, to-
gether with diffferent path-finding heuristics.

and FoxitReader require at least the zLib heuristic to obtain
crash-free binaries, with 60.1% and 87.0% code reduction,
respectively. Without heuristics, Firefox fails on 13 out of
25 websites and FoxitReader fails on 39 out of 40 PDF files.
The zCode heuristic helps reduce FoxitReader crashes to 10
PDF files and increases the code reduction by avoiding fault-
handling instrumentation. The zLib and the zFunc heuristic
eliminate all crashes. Compared with the non-heuristic de-
bloating, the zLib heuristic only decreases the code reduc-
tion rate by 7.5% for Firefox and by 2.8% for FoxitReader.
Therefore, it is worth using this heuristic to generate robust
binaries.

Performance overhead. We ran the debloated Firefox
(with zLib) on several benchmarks and found that RAZOR
introduces −2.1%, 1.6%, 0%, and 2.1% overhead to Octane
[33], SunSpider [34], Dromaeo-JS [30], and Dromaeo-DOM
[29] benchmarks. For FoxitReader, we did not find any
standard benchmark to test the performance. Instead, we used
the debloated binaries to open and scroll the testing PDF files
and did not find any noticeable slowdown.

Application – per-site browser isolation. As one applica-
tion of browser debloating, we can create minimal versions
that support particular websites, effectively achieving per-site
isolation [38, 21, 48] . For example, the bank can provide its
clients a minimal browser that only supports functionalities
required by its website while exposing the least attack surface.
To measure the benefit of the per-site browser, we applied RA-
ZOR on three sets of popular and security-sensitive websites:
banking websites, websites for electronic commerce, and so-
cial media websites. Table 6 shows the debloating result, the
used path-finding heuristic and the security benefits over the
general debloating in Table 4. As we can see, the banking
websites can benefit with at least 5.0% code reduction for
the per-site minimal browser. The E-commerce websites will
have around 3.0% extra code reduction, a little less because of
its high requirement on user interactions. Surprisingly, social
media websites can benefit by up to 8.5% extra code reduc-
tion and at least 4.2% when supporting all three websites. We
believe the minimal web browser through binary debloating
is a practical solution for improving web security.

Train/Test ID #Failed Reduction failed websites

20/30

T10 1 59.3% wordpress.com
T11 0 59.3%
T12 1 59.3% wordpress.com
T13 1 59.3% twitch.tv
T14 1 59.3% wordpress.com
T15 1 59.5% wordpress.com
T16 2 59.5% twitch.tv, wordpress.com
T17 1 59.3% twitch.tv
T18 1 59.3% twitch.tv
T19 2 59.6% wordpress.com, twitch.tv

25/25

T00 0 59.3%
T01 2 59.1% wordpress.com, twitch.tv
T02 2 59.3% wordpress.com, twitch.tv
T03 2 59.1% wordpress.com, twitch.tv
T04 0 59.2%
T05 1 59.1% aliexpress.com
T06 0 59.2%
T07 0 59.1%
T08 2 59.3% wordpress.com, twitch.tv
T09 0 59.1%

Table 5: N-fold validation of zLib heuristic on Firefox. First, we
randomly split Alexa’s Top 50 websites into five groups, and select
two groups (20 websites) as the training set and others (30 websites)
as the test set for 10 times. Second, we randomly split the 50 website
into 10 groups, and select five groups (25 websites) as the training
set, and others (25 websites) as the test set for 10 times.

5.6.1 N-fold Cross Validation of Heuristics

To further evaluate the effectiveness of our heuristics, we
conducted N-fold cross validation on Firefox with the zLib
heuristic, as it is the least aggressive heuristic that renders
Firefox crash-free.We performed two sets of evaluations and
show the result in Table 5. First, we randomly split Alexa’s
Top 50 websites into five groups, 10 websites per group.
We picked two groups (20 websites) for training and used
the remaining 30 websites for testing. We performed this
evaluation 10 times. The result in the table shows that during
one test with ID T11, the debloated Firefox successfully
loads and renders 30 testing websites. The debloated Firefox
fails two websites (6.7%) seven times and fails one website
(3.3%) two times. Second, we randomly split Alexa’s Top
50 websites into 10 groups, five websites per group. We
randomly picked five groups (25 websites) for training and
used the others (25 websites) for testing. We performed this
evaluation 10 times. The result shows that, in five times, the
debloated Firefox loads and successfully renders the tested
25 websites. The debloated Firefox fails one (4%) website
one time and fails two websites (8%) four times. The code
size reduction is consistently round 60%. These results show
that our heuristics are effective for inferring non-executed
code with similar functionalities of training inputs. Among all
the tests, only three websites trigger additional code and the
program gracefully exits with warning information. We plan
to check these websites to understand the failure reasons.

We also manually checked what code of Firefox

USENIX Association 28th USENIX Security Symposium 1745

Type Site Reduction Heuristic Benefits

Banking

bankofamerica.com 69.4% zCall +6.3%
chase.com 69.6% zCall +6.5%
wellsfargo.com 68.8% zCall +5.7%
all-3 68.1% zCall +5.0%

E-commerce

amazon.com 71.4% none +3.8%
ebay.com 70.7% none +3.1%
ikea.com 70.6% none +3.0%
all-3 70.4% none +2.8%

Social Media

facebook.com 70.8% zCall +7.7%
instagram.com 71.6% zCall +8.5%
twitter.com 74.0% none +6.4%
all-3 71.8% none +4.2%

Table 6: Per-site browser debloating

was removed. We find that code related to features
such as record/replay, integer/string conversion, compres-
sion/decompression are removed.

6 Discussions

Best-effort path inference. Mapping high-level functionali-
ties to low-level code is known to be challenging, especially
when source code is unavailable. RAZOR empirically adopts
control-flow-based heuristics to infer more related-code with
its best effort. We understand that such a heuristic cannot
guarantee the completeness or soundness of the path infer-
ence, and the debloated binary may miss necessary code (i.e.,
code for handling different environment variables) or include
unnecessary ones (like some initialization code). However,
we noticed that the heuristic-based method has been widely
used in binary analysis and rewriting [53, 52]. With the exe-
cution trace, RAZOR is able to mitigate some limitations of
these works, such as finding indirect call targets. Further, the
evaluation result demonstrates that our control-flow-based
heuristics are practically effective.
CFI and debloating. Control-flow integrity (CFI) enforces
that each indirect control-flow transfer (i.e., indirect call/jump
and return) goes to legitimate targets [1]. It prevents malicious
behaviors that are unexpected by program developers. In con-
trast, software debloating removes benign-but-unnecessary
code based on users’ requirements. For example, if function
A is designed to be a legitimate target of an indirect call i,
CFI will allow the transfer from i to A. However, if the user
does not need the functionality in A, software debloating will
disable the transfer and completely remove the function code.
In fact, CFI and debloating are complementary to each other.
On the one hand, debloating achieves a coarse-grained CFI
where an attacker can only divert the control-flow to remain-
ing code. It also simplifies the analysis required by some CFI
works [50, 37] because of a smaller code base. On the other
hand, existing CFI works provide fundamental platforms for
enforcing debloating. For example, RAZOR makes use of
several binary analysis techniques developed in binCFI [53]

for optimization.

Library debloating. We tried to use RAZOR to debloat sys-
tem libraries for each program. Our tool works well on some
libraries (e.g., libm.so and libgcc.so), but fails on others.
For example, the debloated libc.so triggers a different exe-
cution path even if we aggressively include more related-code
with the zFunc heuristic. After inspecting the failure cases on
libc.so, we found that its execution path is very sensitive to
the change of the execution environment. One reason is that
libc.so contains a lot of highly optimized code for memory
or string operations (e.g., memcmp), which, based on the argu-
ment value, choose the most efficient implementation. For
example, function strncmp implements 16 different subrou-
tines to process strings with different alignments. Another
reason is that it performs different executions according to
the process status. For example, for each memory allocation,
malloc searches a set of cached chunks and picks up the first
available one. Inputs with different sizes may cause malloc
to walk through a complete non-executed path. From such a
preliminary result, we plan to develop library-specific heuris-
tics to handle environment-sensitive executions. For example,
we can perform debloating on the function level instead of
the current basic block level. We also plan to explore existing
library debloating solutions that work on source code [40]
and port them into binaries if necessary.

Removing original code. The current design of RAZOR
keeps the original code section inside the debloated program
and changes its permission to read-only to reduce the attack
surface. This design simplifies the handling of potential data
inside the code section, which the program may read for
special purposes. For example, LLVM will emit jump tables
in the code section to support efficient switch statements [11],
and the indirect jump instruction will obtain its targets by
reading the table. To further reduce the program size and
memory usage, we can completely remove the original code
section as follows: 1) during the execution tracing, we set
the original code section to execute-only [11] so that any
read from the code section will trigger the exception and
can be logged by Tracer; 2) we perform backward data-flow
analysis to identify the source of the data pointer used for each
logged memory access; 3) during the binary synthesization,
we relocate the data from the original code section to a new
data section and update the new code to visit the new location.
In this way, we are able to handle the challenging problem of
data relocation during binary rewriting. In fact, we performed
a study to understand the prevalence of these problems and
found that for all the programs tested in the paper, none of
them ever reads any data from the code section, given the
test cases we used. In these cases, we can simply remove the
original code section to minimize the file size and memory
footprint.

Future work. We will release the source code of RAZOR.
We plan to extend the platform to support binaries in more

1746 28th USENIX Security Symposium USENIX Association

formats and architectures, including shared libraries, 32-bit
binaries, Windows PE programs, MacOS March-O programs,
and ARM binaries. At the same time, we will design more
security-related heuristics to make RAZOR support various
real-world situations.

7 Related Work

Library debloating. Program libraries are designed to
support a large number of functionalities for different users.
Library debloating customizes the general code base for each
program and leads to significant code reduction. Mulliner
et al. propose CodeFreeze to remove the unnecessary func-
tionalities from Windows shared libraries [36]. They start
from per-library control-flow analysis to identify the code
dependency of each exported function. Then they check the
program binary to find all required library functions. By
stitching program required functions and per-library CFG,
they rewrite the library to remove unreachable code region.
Similarly, Quach et al. [40] present library debloating through
piece-wise compilation and loading. Instead of customizing
the library for each program, they split the large library into
small groups based on the control-flow dependency. At run-
time, they use a customized loader to rewrite the library code
to remove unnecessary functions. Jiang et al. [23, 22] pro-
pose to remove dead code from Android Apps, Java Runtime
Environment, and SDKs. Our system is different from library
debloating in two ways. First, previous work performs the
binary rewriting at the beginning of each process, leading
to performance overhead for each execution, while RAZOR
generates the debloated binary through static binary rewrit-
ing, which is only performed once and used forever. Second,
library debloating utilizes static analysis to find the unused
code and has to conservatively keep all potentially useful
code. In contrast, our system relies on a dynamic execution
trace to locate the code that is executed during tracing or
inferred with our heuristic and removes all others.
Delta debugging. Delta debugging is proposed to minimize
bug-triggering inputs. For example, Regehr et al. [42] pro-
pose C-Reduce to generate a smaller test cases efficiently. Sun
et al. [49] present Perses, which exploits formal syntax to
generate smaller and functionally equivalent program in a
timely manner. Recently, Heo et al. [15] proposed CHISEL
to use reinforcement learning for further speeding up the
delta debugging process. However, the programs generated
by delta debugging only support given test cases, while real-
world software usually has an infinite number of test cases for
certain functionalities. Instead, RAZOR takes control-flow-
based heuristics to infer more related-code that is necessary
to complete the required functionalities.
Source code debloating. Several recent works use pro-
gram analysis to debloat programs. Bu et al. [8] propose a
bloat-ware design paradigm that analyzes Java source code to
optimize object allocations to avoid memory usage bloating

at runtime. Sharif et al. [44] propose Trimmer, which prop-
agates a user-provided configuration to program code and
utilizes the compiler optimization to reduce code size. These
systems, as well as [42, 49, 15], rely on the complicated anal-
ysis of program source code, which is not always available
for deployed programs. In contrast, RAZOR only requires
program binaries, making it more practical for deployment.
Container Debloating. Containers are becoming more pop-
ular, and their code base is bloated. Guo et al. [14] proposed
a method to monitor the program execution to identify neces-
sary resources and create a minimal container for the traced
program. Rastogi et al. [41] developed Cimplifier, which
uses dynamic analysis to collect resource usages for different
programs and partitions the original container into a set of
smaller ones based on user-defined policies. The resulting
containers only have resources to run one or more executable
programs. The design of RAZOR is also applicable for de-
bloating containers or other systems. For example, Intel PT
supports tracing operating systems.
Hardware Debloating. Nowadays, hardware devices are
also bloated. For example, general-purpose processors are
overly designed for specific applications, such as implanta-
bles, wearables, and IoT devices. Cherupalli et al. propose an
approach that automatically removes unused gates from the
design of a general-purpose processor to generate a bespoke
processor for a specific application [10]. On average, the
approach can reduce the area by 62% and the power by 50%
from the general processor. Currently, software debloating
and hardware debloating are performed separately. An in-
teresting direction is to consider both hardware devices and
software programs to find more debloating space.

8 Conclusion

In this paper, we presented RAZOR, a framework for prac-
tical software debloating on program binaries. It utilizes a
set of test cases and control-flow-based heuristics to collect
necessary code to support user-expected functionalities. The
debloated binary has a reduced attack surface, improved se-
curity guarantee, robust functionality, and efficient execution.
Our evaluation shows that RAZOR is a practical framework
for debloating real-world programs.

Acknowledgment

We thank the anonymous reviewers, and our shepherd,
Michael Bailey, for their helpful feedback. This research
was supported in part by the DARPA Transparent Computing
program under contract DARPA-15-15-TC-FP006, by the
ONR under grants N00014-17-1-2895, N00014-15-1-2162
and N00014-18-1-2662. Any opinions, findings, conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of DARPA
and ONR.

USENIX Association 28th USENIX Security Symposium 1747

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity. In Proceedings of the
12th ACM Conference on Computer and Communica-
tions Security, 2005.

[2] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia
Slowinska, and Herbert Bos. An In-Depth Analysis
of Disassembly on Full-Scale x86/x64 Binaries. In
Proceedings of the 25th USENIX Security Symposium
(USENIX), 2016.

[3] Dennis Andriesse, Asia Slowinska, and Herbert Bos.
Compiler-Agnostic Function Detection in Binaries. In
Proceedings of the 2nd IEEE European Symposium on
Security and Privacy, 2017.

[4] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael
Turner, and David Brumley. BYTEWEIGHT: Learning
to Recognize Functions in Binary Code. In Proceedings
of the 23rd USENIX Conference on Security Symposium,
2014.

[5] Erick Bauman, Zhiqiang Lin, and Kevin Hamlen. Su-
perset Disassembly: Statically Rewriting x86 Binaries
Without Heuristics. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium,
2018.

[6] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the 2005 USENIX Annual
Technical Conference, 2005.

[7] Derek Bruening and Saman Amarasinghe. Efficient,
Transparent, and Comprehensive Runtime Code Manip-
ulation. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Com-
puter Science, 2004.

[8] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J.
Carey. A Bloat-aware Design for Big Data Applications.
In Proceedings of the 2013 International Symposium on
Memory Management, 2013.

[9] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen,
Michael Franz, Stefan Brunthaler, and Mathias Payer.
Control-Flow Integrity: Precision, Security, and Perfor-
mance. ACM Comput. Surv., 2017.

[10] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh
Kumar, and John Sartori. Bespoke Processors for Ap-
plications with Ultra-low Area and Power Constraints.
In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, 2017.

[11] Stephen Crane, Christopher Liebchen, Andrei Homescu,
Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan
Brunthaler, and Michael Franz. Readactor: Practical
Code Randomization Resilient to Memory Disclosure.
In Proceedings of the 36th IEEE Symposium on Security
and Privacy, 2015.

[12] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and
Georgios Portokalidis. Out of Control: Overcoming
Control-Flow Integrity. In Proceedings of the 35th IEEE
Symposium on Security and Privacy, 2014.

[13] Google. V8 JavaScript Engine. https://chromium.
googlesource.com/v8/v8.git.

[14] Philip J. Guo and Dawson Engler. CDE: Using System
Call Interposition to Automatically Create Portable Soft-
ware Packages. In Proceedings of the 2011 USENIX
Annual Technical Conference, 2011.

[15] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and
Mayur Naik. Effective Program Debloating via Rein-
forcement Learning. In Proceedings of the 25th ACM
SIGSAC Conference on Computer and Communications
Security, 2018.

[16] Gerard J. Holzmann. Code Inflation. IEEE Software,
32(2), Mar 2015.

[17] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon
Pak Ho Chung, William R. Harris, Taesoo Kim, and
Wenke Lee. Enforcing Unique Code Target Property for
Control-Flow Integrity. In Proceedings of the 25th ACM
Conference on Computer and Communications Security,
2018.

[18] ImageTragick. ImageMagick Is On Fire: CVE-2016-
3714. https://imagetragick.com/.

[19] Intel. Control-Flow Enforcement Technology Pre-
view. https://software.intel.com/sites/
default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf.

[20] Intel Corporation. Intel R⃝ 64 and IA-32 Architectures
Software Developer’s Manual, volume 3 (3A, 3B, 3C &
3D): System Programming Guide. November 2018.

[21] Yaoqi Jia, Zheng Leong Chua, Hong Hu, Shuo Chen,
Prateek Saxena, and Zhenkai Liang. The Web/Local
Boundary Is Fuzzy: A Security Study of Chrome’s
Process-based Sandboxing. In Proceedings of the 23rd
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2016.

[22] Y. Jiang, D. Wu, and P. Liu. JRed: Program Customiza-
tion and Bloatware Mitigation Based on Static Analysis.
In 2016 IEEE 40th Annual Computer Software and Ap-
plications Conference, 2016.

1748 28th USENIX Security Symposium USENIX Association

https://chromium.googlesource.com/v8/v8.git
https://chromium.googlesource.com/v8/v8.git
https://imagetragick.com/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

[23] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and
Dinghao Wu. RedDroid: Android Application Redun-
dancy Customization Based on Static Analysis. In Pro-
ceedings of the 29th IEEE International Symposium on
Software Reliability Engineering, 2018.

[24] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-
Pointer Integrity. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Imple-
mentation, 2014.

[25] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-
ing Customized Program Analysis Tools with Dynamic
Instrumentation. In Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, 2005.

[26] Haoyu Ma, Kangjie Lu, Xinjie Ma, Haining Zhang,
Chunfu Jia, and Debin Gao. Software Watermarking
Using Return-Oriented Programming. In Proceedings
of the 10th ACM Symposium on Information, Computer
and Communications Security, 2015.

[27] John Martellaro. Why Your iPhone Uses PNG
for Screen Shots and JPG for Photos. https:
//www.macobserver.com/tmo/article/why-
your-iphone-uses-png-for-screen-shots-
and-jpg-for-photos.

[28] The Top 500 Sites on the Web. https://www.alexa.
com/topsites.

[29] Dromaeo-DOM. http://dromaeo.com/?dom.

[30] Dromaeo-JS. http://dromaeo.com/?dromaeo.

[31] The Heartbleed Bug. http://heartbleed.com/.

[32] Function and Macro Index. https://www.gnu.org/
software/libc/manual/html_node/Function-
Index.html.

[33] Octane. https://chromium.github.io/octane.

[34] SunSpider. https://webkit.org/perf/
sunspider-1.0.2/sunspider-1.0.2/driver.
html.

[35] CVE-2014-0038: Privilege Escalation in
X32 ABI. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0038, 2014.

[36] Collin Mulliner and Matthias Neugschwandtner. Break-
ing Payloads with Runtime Code Stripping and Image
Freezing. In Black Hat USA Briefings (Black Hat USA),
Las Vegas, NV, August 2015.

[37] Ben Niu and Gang Tan. Per-Input Control-Flow In-
tegrity. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security,
2015.

[38] The Chromium Projects. Site Isolation.
https://www.chromium.org/Home/chromium-
security/site-isolation.

[39] Anh Quach, Rukayat Erinfolami, David Demicco, and
Aravind Prakash. A Multi-OS Cross-Layer Study of
Bloating in User Programs, Kernel and Managed Exe-
cution Environments. In Proceedings of the 2017 Work-
shop on Forming an Ecosystem Around Software Trans-
formation, 2017.

[40] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
Software through Piece-Wise Compilation and Loading.
In Proceedings of the 27th USENIX Security Symposium,
2018.

[41] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli,
Somesh Jha, and Patrick McDaniel. Cimplifier: Auto-
matically Debloating Containers. In Proceedings of the
11th Joint Meeting on Foundations of Software Engi-
neering, 2017.

[42] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide,
Chucky Ellison, and Xuejun Yang. Test-case Reduc-
tion for C Compiler Bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2012.

[43] Felix Schuster, Thomas Tendyck, Christopher Liebchen,
Lucas Davi, Ahmad-Reza Sadeghi, and Thorsten Holz.
Counterfeit Object-oriented Programming: On the Diffi-
culty of Preventing Code Reuse Attacks in C++ Appli-
cations. In Proceedings of the 36th IEEE Symposium on
Security and Privacy, 2015.

[44] Hashim Sharif, Muhammad Abubakar, Ashish Gehani,
and Fareed Zaffar. TRIMMER: Application Specializa-
tion for Code Debloating. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering, 2018.

[45] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing Functions in Binaries with Neural Net-
works. In Proceedings of the 24th USENIX Conference
on Security Symposium, 2015.

[46] Igor Skochinsky. Compiler Internals: Excep-
tions and RTTI. http://www.hexblog.com/wp-
content/uploads/2012/06/Recon-2012-
Skochinsky-Compiler-Internals.pdf, 2012.

USENIX Association 28th USENIX Security Symposium 1749

https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.alexa.com/topsites
https://www.alexa.com/topsites
http://dromaeo.com/?dom
http://dromaeo.com/?dromaeo
http://heartbleed.com/
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://chromium.github.io/octane
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://www.hexblog.com/wp-content/uploads/2012/06/Recon-2012-Skochinsky-Compiler-Internals.pdf

[47] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-In-Time Code Reuse: On the Effective-
ness of Fine-Grained Address Space Layout Random-
ization. In Proceedings of the 34th IEEE Symposium on
Security and Privacy, 2013.

[48] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most
Websites Don’t Need to Vibrate: A Cost-Benefit Ap-
proach to Improving Browser Security. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[49] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu,
and Zhendong Su. Perses: Syntax-guided Program
Reduction. In Proceedings of the 40th International
Conference on Software Engineering, 2018.

[50] Caroline Tice, Tom Roeder, Peter Collingbourne,
Stephen Checkoway, Úlfar Erlingsson, Luis Lozano,
and Geoff Pike. Enforcing Forward-edge Control-Flow
Integrity in GCC & LLVM. In Proceedings of the 23rd
USENIX Security Symposium, 2014.

[51] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi,
Aravind Machiry, John Grosen, Paul Grosen, Christo-
pher Kruegel, and Giovanni Vigna. Ramblr: Making
Reassembly Great Again. In Proceedings of the 24th
Annual Network and Distributed System Security Sym-
posium, 2017.

[52] Shuai Wang, Pei Wang, and Dinghao Wu. Reassem-
bleable Disassembling. In Proceedings of the 24th
USENIX Conference on Security Symposium, 2015.

[53] Mingwei Zhang and R. Sekar. Control Flow Integrity
for COTS Binaries. In Proceedings of the 22nd USENIX
Security Symposium, 2013.

Appendix

A Settings for Evaluating PathFinder

Program Training
Set Size

Testing
Set Size Options

bzip2 10 30 -c
chown 6 17 -h, -R
date 22 33 –date, -d, –rfc-3339, -utc
grep 19 38 -a, -n, -o, -v, -i, -w, -x
gzip 10 30 -c
mkdir 12 24 -m, -p
rm 10 20 -f, -r
sort 12 28 -r, -s, -u, -z
tar 10 30 -c, -f
uniq 24 40 -c, -d, -f, -i, -s, -u, -w

Table 7: Settings for evaluating PathFinder on the CHISEL bench-
marks. We use the training set to debloat the binary, and run the
generated code with the testing set. The last column is the options
we pass to the binaries during training and testing.

1750 28th USENIX Security Symposium USENIX Association

Back to the Whiteboard: a Principled Approach
for the Assessment and Design of Memory Forensic Techniques

Fabio Pagani
EURECOM

Davide Balzarotti
EURECOM

Abstract
Today memory analysis plays a fundamental role in

computer forensics and is a very active area of research.
However, the field is still largely driven by custom rules and
heuristics handpicked by human experts. These rules describe
how to overcome the semantic gap to associate high level
structures to individual bytes contained in a physical memory
dump. Structures are then traversed by following pointers to
other objects, and the process is repeated until the required
information is located and extracted from the memory image.

A fundamental problem with this approach is that we have
no way to measure these heuristics to know precisely how well
they work, under which circumstances, how prone they are
to evasions or to errors, and how stable they are over different
versions of the OS kernel. In addition, without a method to
measure the quality and effectiveness of a given heuristic, it
is impossible to compare one approach against the others. If
a tool adopts a certain heuristic to list the sockets associated to
a program, how do we know if that is the only possible way to
extract this information? Maybe other, even better, solutions
exist, just waiting to be “discovered” by human analysts.

For this reason, we believe we need to go back to the drawing
board and rethink memory forensics from its foundations. In
this paper we propose a framework and a set of metrics we can
use as a basis to assess existing methodologies,understand their
characteristics and limitations, and propose new techniques in
a principled way. The memory of a modern operating system
is a very large and very complex network of interconnected
objects. Because of this, we argue that automated algorithms,
rather than human intuition, should play a fundamental role in
evaluating and designing future memory forensics techniques.

1 Introduction

Computer forensics is often considered an art, as the analyst
proceeds by formulating hypothesis about the cause of an inci-
dent and uses inductive reasoning to reinforce or discard them
based on clues and artifacts collected from the target system.

The way these artifacts are extracted and analyzed is largely
based on the experience and on the set of heuristics encoded
into the available tools. Memory forensics, i.e. the field focus-
ing on the analysis of snapshots of the physical memory of a ma-
chine, is no exception to this rule. Memory forensic tools needs
to recover the high-level semantic associated with sequences
of raw bytes – thus reconstructing the internal state of the oper-
ating system (OS) and its applications at the time the memory
was acquired. Unfortunately, modern OSs are very complex
software whose memory often contains millions or tens of
millions of individual objects at any moment in time. Even
worse, both the fields and the layout of these objects can change
when the kernel is updated or recompiled, and the connections
among them evolves very rapidly – with a considerable amount
of links and pointers that change every few milliseconds.

Currently memory forensics techniques rely on a large num-
ber of rules and heuristics that describe how to navigate through
this giant graph of kernel data structures to locate and extract
information relevant to an investigation. For example an ana-
lyst can use rules — commonly known as plugins in the field
terminology — to retrieve the list of processes running at acqui-
sition time (including their name, starting time, process ID, and
other related information) or the list of open sockets. The result
of the analysis depends on the number and accuracy of these
rules. However, the field today is still in its infancy and each
individual technique is manually written by researchers and
practitioners. As a result, it is often unclear why a particular ex-
ploration strategy has been chosen, except for the fact that some
developers found it reasonable based on their experience. Even
worse, how accurate a given heuristic is and how we can com-
pare it with other candidates to decide which strategy is more
suitable for a given investigation remains an open question.

In fact, we still do not even know how to properly charac-
terize the accuracy of a technique, as its quality depends on the
metric we use to evaluate it, which in turn depends on the goal
of the analyst. For instance, in an adversarial environment in
which the analyst is investigating a sophisticated attack, a good
heuristic would be one that is difficult to evade for an attacker.
In a different investigation in which there is no risk of tampered

USENIX Association 28th USENIX Security Symposium 1751

kernel data, a heuristic that only traverses closely-related
(in physical memory) data structures may be preferable as
pages acquired far apart may otherwise contain inconsistent
information if the dump was not acquired atomically.

Contribution: The goal of this paper is to introduce a more
principled way to approach the problem of memory analysis
and forensics. Our plan is articulated around three main points.
The first intuition is that heuristics used to extract information
from memory dumps should be automatically generated by
computers and not handpicked by humans. As we will show
in our experiments, the graph of kernel objects is tightly con-
nected and there are tens of millions of different ways to reach
a given structure by starting from a global symbol. The second
point is the fact that it is very important to be able to quantita-
tively measure the properties of each heuristic, so that different
options can be compared against one another and an analyst can
decide which technique is more appropriate for her investiga-
tion. Finally, the analyst should be able to obtain some form of
guarantee about the results, to ensure that once a given quality
metric has been chosen, a certain technique is the optimal so-
lution to navigate the intricacies of runtime OS data structures.

As a step towards these goals, we constructed a complete
graph of the internal data structures used at runtime by the
Linux kernel. In our graph, nodes represent kernel objects and
edges a pointer from one object to another. We chose Linux
as the availability of its source code simplifies the creation
of our model. However, a similar graph was also extracted in
the past by Microsoft for the Windows kernel [4] and could
therefore be reused for our purpose. The resulting map of the
memory is a giant network (containing over a million nodes)
with a very dynamic topology that is constantly reshaped as
new data structures get allocated and deallocated.

Memory forensics tools adopts rules to navigate through the
data structures present in a memory dump, and these rules can
therefore be represented as paths in our kernel graph. Nodes
and edges can then be decorated with additional pieces of
information that capture different properties an analyst can
find important in an analysis routine. In our study we model
this phase by introducing and discussing five different metrics:
Atomicity, Stability, Generality, Reliability, and Consistency.
We used these metrics to compute a score associated to each
path, and therefore to existing memory analysis techniques,
as well as to compute the optimal solution according to a
chosen set of criteria. We then discuss the intricacies of
identifying such optimal paths by performing experiments
with 85 different kernel versions and 25 individual memory
snapshots acquired at regular time intervals.

Building a map of the kernel memory is a very tedious and
time-consuming process. However, we believe this map can
have many interesting uses in computer security beyond mem-
ory forensics – including virtual machine introspection (VMI),
kernel hardening,and rootkit detection. Since both the code and
the results of the previous attempts to build this graph [4,17,19]

are not publicly available, we decided to release all our data
– hoping it will help other researchers to considerably reduce
the time required to investigate and validate techniques that
require information about the content of a running kernel.

2 Motivation

Being quite in its infancy, memory forensics has still many
open problems, which have been recently summarized by Case
and Richard [6]. The authors divided them in two categories,
depending on whether they are related to the acquisition or the
analysis of a memory dump. More precisely, the first category
contains all the practical issues of acquiring memory from a
device under investigation while the second one deals with the
capabilities of memory forensics, such as malware detection
and evidence extraction.

One of the main issues belonging the first category is page
smearing, which is a consequence of the fact that while the
acquisition is performed the underlying system is not frozen
and thus the dump may contain inconsistent information [12].
While the term was coined in 2004 [5], its actual implications
are still unclear to the community. For instance, a recent study
from Le Berre [18] pointed out that in real investigations more
than the 10% of memory dumps suffer from this problem
and thus can not be properly analyzed with existing tools.
Our work can help mitigating this issue by assessing how
existing techniques are affected by non-atomic acquisitions,
and help design new heuristics which are more robust against
the presence of inconsistent information.

The second category focuses instead on challenges related
to memory analysis. For example, as of today, forensics
practitioners lack the necessary tooling for extracting a number
of interesting information such as Powershell activity and
evidences related to Office applications and private browsing
sessions, or to analyze sophisticated userland malware. Finally,
a vast range of technologies did not receive any forensics
coverage: Apple iOS, Chromebooks, and IoT devices are still
out of scope when it comes to memory forensics analysis.

While these issues are very different from one another, most
of them share the same underlying assumption: kernel objects
must be located, traversed and interpreted by a set of rules. Our
approach enables forensics practitioners and researchers to
evaluate, under different constraints, the quality of these rules
and provide them with a framework to compare and discover
new sets of rules.

3 Approach

In this section we describe the four-step approach we propose
to precisely measure and improve the quality of existing mem-
ory forensics techniques. The first step consists of building
a precise representation of all data structures that exists in a
running kernel and of the way these structures are connected

1752 28th USENIX Security Symposium USENIX Association

1 [init_task].tasks.prev 	 → task_struct.mm → mm_struct.mmap → vm_area_struct.vm_next
	 → vm_area_struct

2 [root_cpuacct].css.cgroup → cgroup_root.cgrp.e_csets[2].next → css_set.tasks.next →
task_struct.mm → mm_struct.mmap → vm_area_struct.vm_next 	 → vm_area_struct

Figure 1: Two different paths that reach the same vm_area_struct object.

to one another. The challenges and the process we followed to
build this kernel graph are described in details in Section 4. In
the second phase we map existing forensic analysis techniques
into our model, by representing their algorithms as paths
through the kernel graph. We then color the graph according
to different properties that are relevant for a forensic investi-
gation, and we employ graph-based algorithms to assess the
characteristics of the previously-identified paths and find new
ones that may exhibit better properties. Finally, in the fourth
and final phase of our methodology we translate our findings
back to the memory forensic space by generating improved
analysis plugins, thus increasing the number and quality of
the rules that are used today to analyze memory dumps.

3.1 Memory Forensics as a Graph Exploration
Problem

The goal of memory forensics is to bridge the semantic gap
between the raw bytes that constitute a physical memory’s
snapshot and the high-level abstractions provided by modern
operating systems. This task requires the forensic tool to be
able to correctly translate virtual to physical memory addresses,
as well as to identify the data structures that contain the re-
quired information (e.g., the name of the files opened by a given
process). The latter is typically achieved in two phases. First,
the system locates a known object – either because it resides
at a fixed or predictable location, by using symbols informa-
tion generated by the compiler when the kernel was built, or by
carving a particular data structure based on a set of known prop-
erties and invariants. Starting from this entry point, the analysis
then traverses different memory regions, moving from one data
structure to the next by following pointers, until it reaches the
required piece of information. For example, we assume the
analyst found a suspicious process and she wants to extract its
executable code for further analysis. On Linux, this analysis
starts from extracting the position of the global kernel variable
init_task of type task_struct. This is one of the most im-
portant kernel object in terms of Linux memory forensics since
every kernel thread and user space process has its own and it
serves as a hub to reach several other relevant pieces of infor-
mation. After locating init_task, the processes list is walked
until the task_struct belonging to the suspicious process is
found. From here, the mm_struct is reached by dereferenc-
ing the mm field. Finally, the list of vm_area_struct, each of

which defines a virtual memory area, is retrieved — first by fol-
lowing themmap pointer, then by using thevm_nextfield. With
this information, the analyst can find the executable regions of
the process and can proceed to save their content to disk.

This procedure can be naturally represented as a path on
a graph in which every node is a kernel object, and every link
a pointer. While the final node is dictated by a given forensic
task, both the first and the intermediate nodes are often the
result of handcrafted routines based on the experience and
expert judgment of the developers of the forensic tool.

In our graph, the previously presented analysis would corre-
spond to the path 1 in Figure 1. The path contains the names
of the structures and fields that need to be traversed (in square
brackets when they refer to global symbols in the kernel) as
well as the type of transition (→: follow a pointer reference, 	:
visit multiple structures of the same type linked together). For
simplicity, we report inner structures in our paths as names in
the edge and not explicitly as standalone nodes. Also, note that
in the example 1 , since the suspicious process was freshly
spawned, the shortest path in our graph traverses the process list
backwards — contrarily to the more common forward walking.

On top of the previous solution, our approach shows that
a stunning 2.5 million different sequences of vertices exist in
the kernel graph to reach the very same target object starting
from a global variable, only counting the paths with no more
than 10 edges. For example, path 2 in Figure 1 begins
from the little-known global symbol root_cpuacct, passes
through a number of cgroup-related objects, before finding
the task_struct of the suspicious process.

The previous two “rules” are both capable of locating a given
process structure in a memory dump. The first is certainly more
intuitive and it may also traverse a lower number of data struc-
tures. However, this is purely a qualitative assessment, and it
is unclear if the first solution actually has any clear advantage
or whether it provides any better guarantee then the second.

3.2 Path Comparison

As we saw in the previous example, if we want to assess
the quality of a given solution, we first need to define what
“quality” means in our context. In other words, when two paths
exist to reach the same target data structure, we need to define
a metric that can tell us which one is better to follow from a
forensic perspective.

USENIX Association 28th USENIX Security Symposium 1753

task_struct task_struct task_struct

next

prev

list_head
next

prev

list_head
next

prev

list_head

.

Figure 2: task_structs organized in a doubly linked list.

A developer may favor the shortest path, as it is simpler
to implement and may appear to be more robust according to
the intuition that the fewer the data structures that need to be
parsed, the less likely it is that something can go wrong while
doing that. However, this approach raises another important
issue about today’s approach for memory analysis: its ad hoc
nature and lack of a scientific foundation. In fact, it is not clear
today how different exploration techniques can be compared
and how they can be evaluated against one another in a precise
and measurable way.

A first important observation is that there is not a single, abso-
lute metric that defines the quality of a memory exploration rule.
It all depends on the goal of the analyst, the conditions under
which the memory snapshot was acquired,and the type of threat
that is investigated. For example, in the common case in which
a memory snapshot is acquired non-atomically, the analyst may
prefer to adopt an approach that only traverses structure closely
located in memory, thus minimizing the chances of inconsisten-
cies. On the opposite case in which the memory was acquired
atomically in a lab from a virtual machine used to investigate
a possible rootkit, the analyst would certainly favor a different
approach that traverses structures whose values cannot be tam-
pered with by the attacker. In yet another scenario, an investiga-
tor may try to analyze a dump for which she was not able to re-
trieve a correct OS profile, and therefore she might be interested
in paths that traverse structures that have changed very rarely
across different kernels, to maximize her probability of success.

Therefore, it is the analyst who needs to select the more
appropriate fitness function to compare paths according to any
combination of desired properties. And once this function has
been chosen, it is possible to use it to compute the optimal path
(and therefore the optimal exploration strategy) to traverse
the kernel graph. In this paper we explore different possible
scenarios by proposing several metrics to enrich the graph
(more details about this process are presented in Section 5)
and then use this information to evaluate existing approaches
and discuss other, non-conventional solutions that can provide
better guarantees for the analyst.

4 Graph Creation

The first step of our methodology consists in building a
model of the operating system kernel, that we can later use

to compare different memory forensic approaches. The model
we chose for our analysis is a graph of kernel objects, in which
nodes represent kernel data structures and edges represent
relationships between objects (for example a pointer from one
structure to another).

The core idea is simple and relies on two crucial pieces of
information extracted from the kernel debugging symbols.
The first one is the layout, in terms of the exact type and offset
of each field, of all the struct defined and used by the kernel
code. The second information is instead related to the address,
name, and type of global kernel variables that play the role
of entry points for our graph exploration. Starting from these
global pointers, our algorithm can recursively traverse other
structures, each time following a pointer and casting the target
memory to the appropriate type. While this process may seem
straightforward at first, there are many special cases that make
the construction of a kernel graph a complex procedure that
requires multiple phases and several dedicated components.

In the rest of the section we discuss in more details some
of these problems and the way we handled them in our study:
abstract data types (and the issue with non-homogeneous cir-
cular lists), opaque pointers, and the presence of uninitialized
or invalid data.

4.1 Abstract Data Types
Over the years, to maintain a reasonable quality over its code
base, the Linux kernel developers have adopted several design
patterns [20]. In particular, the kernel exports a rich set of
APIs to manipulate and create complex data structures, such
as double-linked lists and trees of various types, thus relieving
kernel developers from the burden of reinventing the wheel
every time they need to store and organize multiple objects.
For this reason, the existing APIs are not tied to a specific type
of kernel object but rely instead on predefined data types that
can be included in more complex struct objects, and in a
number of macros to manipulate them.

Figure 2 shows one of the most common example of this pat-
tern, in which several task_struct are organized in a doubly
linked list using the list_head type. While this provides a
simple and efficient way to organize data structures, it unfortu-
nately poses a serious challenge to the automated exploration
of kernel objects. In fact, if the leftmost task_struct in the
figure was already identified by other means (for example
because it was pointed to from a global variable), simply
following the next pointer would result in the discovery of the
inner list_head structure, but not of the outer task_struct.

In fact, this operation is performed in the source code by
using dedicated macros. In the case of the previous example,
a developer would invoke:
container_of(var, struct task_struct, task)

that the compiler pre-processor translates to a snippet of
code required to cast the target list_head variable var to the
requested type based on the current offset inside it (as specified

1754 28th USENIX Security Symposium USENIX Association

by the field task). However, in our analysis we cannot simply
mimic the same behavior by subtracting the offset of the list
field from next pointer and to cast the result to the correct
type to obtain a reference to the outer object. In fact, there are
many cases in which this approach would lead to wrong results
and it is not sufficient to look at the field type or at its value
to distinguish these problematic cases. One example is the list
rooted in the field children of a task_struct. While the
field points to another task_struct, it does so by reaching it
at a different offset (in the sibling field). Because of this and
other similar problems (explained in more details later in the
paper) it is not possible to systematically apply the “subtract
and cast” strategy.

For each pointer in a data structure we need to know where
— in terms of object type and offset in the target structure —
it points to. Other works that built a map of the Linux ker-
nel [1, 24, 35] solved the problem by manually annotating the
source code. While this was doable for old kernel versions (e.g.,
2.4), it would take many weeks of tedious work to annotate a
recent kernel – which today uses more than 6000 different data
structures and more than a thousand instances of list_heads.
Moreover, manual annotations are error prone and are tailored
to one specific code base, thus requiring to be verified and
modified whenever a new kernel version is released. The
compiler community has also already extensively studied the
points-to problem [9, 14, 15, 22, 30, 34]. Unfortunately, the
techniques they proposed are not suitable to our work as they
tend to favor speed (an important factor at compile-time) over
precision [4] (a more important factor for our analysis). Only
four previous studies automatically extracted a type graph
of a kernel [4, 17, 19, 29]. However, none of their systems is
available: in one case because the authors relied on the internal
source code of the Microsoft Windows operating system [4],
and in the other because the entire work was lost [17].

For this reason, we decided to implement our own points-to
analysis – which consists of a clang plugin that reasons on the
Abstract Syntax Tree (AST) of each kernel compilation unit.
Contrary to standard points-to analysis, our approach focuses
only on the type information. More precisely, traditional
solutions are designed to identify where each pointer points to,
while in our case we only need to extract the target structure,
and the offset inside that structure. The result is a type graph
of the kernel under analysis. To extract this information we
take advantage of the fact that the information we need can
be inferred by analyzing the source code of the kernel that
is in charge of manipulating the data structure in question.
Our plugin explores the AST until it finds a call to a kernel
API related to data structure management. At this point it
analyzes the parameters and resolves their structure type and
field name. An example of API call and respective AST is
given in Figure 3. In the example, a call to the API list_add
is used to append the new task at the beginning of the list
rooted at head->tasks. This give us the information that the

field tasks of task_struct indeed points to the very same
type. Our plugin current supports list_heads, hlist_heads
(used in the implementation of hash tables), and rb_root
(used in the implementation of red-black trees).

Except for those, the most common type that is still not
supported by our prototype is radix_tree, which however
is only used 8 times in the entire kernel code base.

As we will show in Section 4.6, our approach is very
effective and was able to resolve the type pointed by 250
global lists and by more than 1110 unique object fields in
the Linux kernel 4.8, compiled with the Ubuntu 16.04 kernel
configuration. Moreover, while our approach is tailored to the
Linux kernel, it can be adapted to work on any other operating
system, given the availability of its source code. Finally, since
the parameter resolution routine does not perform complex
analyses, our analysis does not introduce any significant
overhead at compilation time.

Circular Lists of Non Homogeneous Elements
As we already discussed in the previous section, certain

linked list can chain together object of different types. Since
the code must have a way to determine to which type the target
element belongs to, this pattern is only present in the form of
a “root” object which is the first element of a circular list of
otherwise homogeneous objects.

As a consequence, these lists can only be traversed
starting from their root node, as traversing the loop from an
intermediary objects can result into unexpectedly reaching
the root node (of a different type) when dereferencing one of
the next pointers. For example, other than the already cited
children field of task_struct, also the thread_node field
of the same structure points inside a signal_struct object.

To avoid this problem, our analysis classifies every
list_head field in one of the following three cate-
gories: root pointer, intermediate pointer or homogeneous
pointer. The first two are used to mark list_head
fields that belong to lists that contain mixed types, while
the latter describes the more common case of homo-
geneous list. For instance, task_struct.children is a
root pointer, task_struct.sibling an intermediate and
task_struct.tasks a homogeneous one. This classification
can be automatically derived from the type graph: whenever
two objects of different types are involved we label the first as
root and the second as intermediate, while all the other objects
are labeled as homogeneous. During the exploration phase, de-
pending on the type of the pointer, we adopt a different strategy:

• homogeneous pointers can be explored by our algorithm
in any order.

• root pointers require instead our algorithm to immediately
walk and retrieve the objects of the entire circular list.

• intermediate pointers are ignored since we do not know
if they point to another intermediate element or to a

USENIX Association 28th USENIX Security Symposium 1755

int foo(..){
struct task_struct *head;
struct task_struct *new;
...
list_add(new−>tasks, head−>tasks);

}

CallExpr 'void'
|−ImplicitCastExpr 'void (*)(struct list_head *, struct list_head *)'
| `−DeclRefExpr 'void (struct list_head *, struct list_head *)'

Function 'list_add'
|−UnaryOperator 'struct list_head *' prefix '&'
| `−MemberExpr 'struct list_head':'struct list_head' lvalue −>tasks
| `−ImplicitCastExpr 'struct task_struct *' <LValueToRValue>

| `−DeclRefExpr 'struct task_struct *' lvalue ParmVar 'new
`−UnaryOperator 'struct list_head *' prefix '&'
`−MemberExpr 'struct list_head':'struct list_head' lvalue −>tasks
`−ImplicitCastExpr 'struct task_struct *' <LValueToRValue>

`−DeclRefExpr 'struct task_struct *' lvalue Var 'head'

[POINTS_TO]
struct task_struct.tasks points to
struct task_struct.tasks

Figure 3: On the left a call to list_add, in the center its simplified AST representation, and on the right the plugin output.

root head. This case happens when we enter a circular
list from one of its middle elements. This pointer will
eventually be explored when the corresponding root node
will be visited.

This classification works for every list encountered during
the exploration phase, except for global list_head variables
which are always marked as root node. In this case, during the
very first part of the exploration, these lists are walked entirely
and their elements appended to the worklist.

4.2 Uninitialized and Invalid Data

During our data structure exploration, there are cases that could
potentially introduce false nodes to our graph. This is due to
pointers that contain valid memory addresses but are not yet
initialized or that were not valid at the time the snapshot was
acquired. One common cause for these errors is the fact that
most of the memory management kernel APIs do not initialize
to zero the allocated memory. As a result, if an object contains
an array of pointers there is not way to tell if one element points
to an initialized object (except if the pointer has an invalid
value). Another source of false-positives comes from the non
quiescent state in which the kernel might be when the snapshot
is taken [16]. In other words, this means that the kernel could
have been in the middle of updating a data structure, leaving
dangling pointers in the snapshot. Finally, even if very rare,
kernel bugs can contribute to the generation of similar errors.

For these reasons we implemented two sets of heuristics
to check if an object is valid or not. The first soft rule checks
that the number of valid pointers in a kernel object is greater
or equal than the number of invalid ones (after removing null
pointers and the pointers which normally point to userspace
memory, such as the ones contained in struct sigaction).
The second, more precise, heuristic immediately flags an
object as invalid if certain conditions are not verified (such as
kernel objects that contain a negative spinlock, or those with
function pointers that do not point in the executable sections
of the kernel). Finally, we require that, whenever present, a
list_head has to be valid, i.e. its next and prev pointer

must point to addressable memory. If these rules are not met,
we consider the object invalid and discard it from our analysis.

4.3 Opaque Pointers

Opaque pointers, as represented by void* fields or by long
long integers that contain at runtime the address of other
objects, are traditionally one of the hardest obstacle to build
a complete map of kernel objects. Luckily, this is not the case
in our particular scenario. Since we are interested in using
our graph to analyze and improve existing memory forensic
techniques, opaque pointers play a very marginal role (if any at
all) in this space. As they can point to potentially any structure,
and the actual target type can change over time, traversing these
pointers can be unpredictable during a post-mortem analysis.
Even if none of the heuristics we encountered in our experience
make use of them, we decided to include them in our graph.
After the exploration ends, in case the target of an opaque
pointer was discovered by other means, we create the resulting
edge, clearly marking it. In this way, we are able to detect if any
of these edges are traversed during our experiments. Finally, it
is important to understand that these limitations cannot lead to
“wrong” results (since they cannot create erroneous paths in the
graph), but nonetheless restrict the guarantees of optimality
we discuss in the next sections to the constructed graph.

4.4 Limitations and Manual Fixes

Like all previous attempts to build a map of the kernel memory,
two particular limitations also affect our solution: unions, and
dynamically allocated arrays. Handling the latter case would
require more sophisticated code analysis techniques to identify
the variable number of elements contained in the arrays, which
are beyond the scope of this paper. Nevertheless, we identified
few cases of dynamically allocated arrays that contain
information that can be relevant for memory forensics and we
decided to handle them by hardcoding a custom logic. The first
cases are global hash tables where often the size is not inferable
from the hash table itself. For example, the pid_hash hash
table, used by the kernel to quickly locate a process given its

1756 28th USENIX Security Symposium USENIX Association

Kernel
Source Plugin

Type
Graph

Debug
Symbols

Exploration Script Graph

QEMU Snapshot

Clang/LLVM GDB-Python Python

Figure 4: System Overview.

process id, is implemented by using a dynamically allocated
array where the size is specified in another global variable
(pidhash_shift). The second cases are instead dynamically
allocated arrays pointed by a kernel object. For example,
the file descriptor table associated with each process, which
contains the files opened by a process (field fd of struct
fdtable). Once again, this is a dynamically allocated array
of struct file pointers, and the size can be retrieved from
the field max_fds of the same structure.

Finally, the handling of per_cpu pointers was also hard-
coded in our implementation. These are special pointers that,
thanks to a double indirection mechanism when dereferenced,
give to each processor a different copy of the same variable.

However, we want to stress that this limitation does not
invalidate our findings since the graph extracted by our
approach is not incorrect, but only potentially incomplete.

4.5 Implementation

Our final system is illustrated in Figure 4. It consists of an
LLVM compiler plugin to perform the points-to analysis on the
kernel code at compile-time and a set of python gdb extensions
that combine the information extracted in the previous step
with the information provided by kernel debug symbols to
identify all kernel objects contained in a memory snapshot
acquired using the QEMU emulator. The kernel exploration
routine starts by loading a QEMU snapshot, parsing the type
graph, and appending the global object symbols to an internal
worklist. At this point the real exploration begins: an object
is fetched from the worklist and analyzed using the heuristics
we adopted to identify invalid or uninitialized memory. If
it is well-formed, each of its field are processed to identify
structures, pointers to other structures, or arrays of either type.
All them are retrieved and appended to the worklist – paying
attention to implement the techniques described above to
handle abstract data types. These objects are then processed
by a separate component responsible to build the final kernel
graph that we will later use to carry out our experiments.

4.6 Final Kernel Graph

We built our kernel graph using graph-tool [23], a python
library designed to handle large networks. To reduce the
size of the graph, we chose to represent with one vertex each
outer structure identified during the exploration. In other
terms we decided to group together, in a single vertex, all the
nested structures (but we keep the nesting information as it
is needed when we need to move from the graph space back
to the memory analysis heuristics). This transformation also
makes the graph directed, and result in only one type of edges
that represent pointers from a structure to another. As we
will thoroughly discuss in Section 5 we assign a number of
different weights to each node and edge to allow for several
comparisons among different paths.

Figure 5 shows a kernel graph counting 109,000 nodes and
846,000 edges, plotted using Gephi [2]. This graph contains
more than 41,000 strongly connected components with the vast
majority (95%) containing only one node. On the other hand,
the largest one contains 53% of the vertices and has a diameter
of 272 nodes. As we will discuss in Section 6, this has important
consequences for memory analysis, as it results in a multitude
of available paths to move from one node to almost anything
else in the kernel memory. The vertex with the highest in-
degree is of type super_block, pointed by more than 11,000
inodes and 11,000 dentrys. If we exclude the file system, the
node with the highest degree is a vm_operations_struct,
pointed by more than 4200 vm_area_structs.

In the picture, the size of labels and node is adjusted ac-
cording to the betwenees centrality of a node. This type of
centrality counts how many shortest path between every pair
of nodes pass through a node. In other terms, the larger the size
the more often a node is present inside every shortest path. The
node color depends instead on the kernel subsystem the object
belongs to. By using the name of the file where the object is de-
fined we were able to classify them in roughly 7 classes, from
file system to object related to memory or process management.

5 Metrics

In the previous section we described how we extracted a
global map of a running kernel that can serve as basis for our
analysis. However, without any further information, the only
way we can compare two paths on the graph is by looking at
their length, computed by counting either the total number of
nodes or the total number of unique structures that need to be
traversed. In fact, this simple approach may resemble the one
adopted today by most of the memory forensic tools, where the
most straightforward path is often chosen by the developers.
However, this solution does not tell anything about the quality
of a given path, nor about the presence of better options to
solve the same problem. To get a solid foundation on which we
can compare different techniques we need therefore to define
a metric. And since the idea of having an absolute metric is

USENIX Association 28th USENIX Security Symposium 1757

Figure 5: Kernel Graph

unrealistic, multiple different metrics can be plugged on our
graph to study the characteristics of each path.

For our experiments we decided to investigate and add to
our graph three numerical and two boolean weights, related to
the atomicity, stability, generality, reliability, and consistency
of a path. As described below, all of them capture different
but important aspects of what an analyst may expect from a
memory analysis routine.

Atomicity (numerical)

This weight express the distance in physical memory between
two interconnected kernel objects. While this metric is ex-

pressed in terms of distance among physical pages, for an easier
interpretation we often express it in seconds (as distance in time
between the acquisition of the two pages). The atomicity is a
very important aspect in most of today’s investigation that rely
on non-atomic dumps. In fact, moving across objects located
far apart in memory - and thus acquired far apart on the time
scale - can introduce inconsistencies. Intuitively, by using this
metric the best path between a pair of nodes is the one which
minimize the time-delta among all visited structures, thus pass-
ing only thorough objects acquired very close in time. More pre-
cisely, we can adopt three distinct ways to measure Atomicity:

• Acquisition Window (AW) – this is the total window

1758 28th USENIX Security Symposium USENIX Association

A B C

X Y

t0 t0+3 t0+6 t0+10 t0+13

Figure 6: Time acquisition of nodes belonging to two paths.

that covers all data structures traversed in the path. E.g.,
one path may walk fifteen objects, all of which were
acquired in a period of 23 seconds.

• Cumulative Time Gap (CTG) – this is the sum of the
time difference of each edge traversed in the path. For
instance, if a path visits three consecutive nodes (A, B,
and C) and the difference between the acquisition time of
the pointer in A and the content of B was 7 seconds and
the difference between B and C was 3, the CTG would
be 10 seconds.

• Maximum Time Gap (MTG) – this just takes into account
the longest “jump” in a path. In the previous example,
this would be 7 seconds.

All three measures are related to the Atomicity, but they
capture different aspects. If it is important than none of the
visited structures have changed during the acquisition, AW
is the best metric. CTG gives instead a cumulative probability
that things can go wrong by following links. The more edges
are traversed, and the more far apart are the objects on the end
of those edges, the more likely it is than a link can be corrupted
due to the non-atomicity of the dump. Finally, MTG provides
an estimation of the single most fragile edge in a path. This
can be an important information, as traversing 10 edges each
one a second apart can be a better option than traversing a
single link with a nine seconds delay in the acquisition.

This can lead to some counter-intuitive results. For example,
let suppose our graph analysis identifies two paths to reach
a certain target structure C namely {A → B → C} and {A
→ X → Y → B → C} (for simplicity we ignore the name of
the pointers). Both paths start from a structure A but the first
traverses a single node B before reaching the destination while
the second takes a detour through two other intermediate data
structures Y and Z before re-joining the first path. Figure 6
shows the two paths on a time scale, that represent at which
time the memory containing each data structure was collected.

While the second path is obviously a longer variation of the
first, and therefore seems logical to believe that has nothing
better to offer, it is very well possible that the detour reduces
the probability of incurring in broken links. The pointer A →
Bwas in fact collected 10 seconds before the object B, while
the longest path decreases these time gaps to a maximum of
four seconds. Whether this is an advantage or not depends

on how often those pointers are modified in a running kernel,
which we capture with our next metric.

Stability (numerical)

This weight expresses the stability over time of a given node
or edge on the graph. Some structures are allocated at boot
time and are never modified afterwards, while other parts
of the graph are very ephemeral and contain structures that
get allocated and de-allocated multiple times per second. By
computing a heat-map of the stability of each edge (extracted
by processing a number of consecutive snapshots), this weight
can provide a valuable information on how the kernel map
evolves over time, on which paths are more stable, and on
which are instead more ephemeral and may only exists for
short periods of time.

We measure Stability by computing the Minimum
Constant Time (MCT) of all links in a path. The MCT can
tell, for instance, that over a certain number of memory images
all edges traversed by a certain heuristic remain constant
for a minimum time of 30 seconds. In our experiments, we
computed this metric by taking a snapshot of the same system
at seconds 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 100,
200, 350, 700, 1000, 3000, 5000, 8000 and 12000.

Surprisingly we found that the 81% of edge are stable,
i.e., they never change across our experiments. The majority
of them are objects related to the file system (inode and
dentry), which the kernel caches for performance reasons.
But this does not mean the graph does not evolve, actually
quite the opposite. For example, we saw an increase of more
than 60% of both nodes and edges between the graph built at
t=0 and the one built at t=700.

Moreover, if we exclude the filesystem subsystem and the
paths that remained stable over all our experiments, 11% of
the edges changed in less than 10 seconds, 12.5% in less than
a minute, and 97% in the first hour.

Generality (numerical)

This weight captures another important problem of memory
forensics: the constant change in the layout of kernel objects.
This is due to several factors. First of all the kernel is always
under active development which means that fields are contin-
uously added to and removed from kernel objects definitions.
Moreover, the layout is also influenced by the configuration
options chosen at compile time. Existing tools mitigate this
problem by requiring additional compile-time information
(part of what it is normally called an OS Profile). Unfortunately,
there are cases in which this information is not available,
which today greatly complicate (if not completely preclude)
the ability of analyzing a particular memory dump. Therefore,
it would be interesting to compute analysis paths that
traverse structures which change very rarely across different
distributions, kernel versions, and enabled kernel options.

USENIX Association 28th USENIX Security Symposium 1759

For this reason we downloaded 85 kernels from the Ubuntu
repository, spanning from version 4.4.0-21 to 4.15.0-20.
For every object defined in each of these kernels we extracted
the offset of the fields required for navigation – such as
structure pointers or array of structures. We aggregated this
information in a single Kernels Counter (KC) weight com-
puted by counting over how many of the 85 kernels an entire
path would remain constant (i.e., all its traversed link were
present at the same offsets in their corresponding structures).

Reliability (boolean)

This is a very important aspect in memory forensics and
captures how tamper-resistant is a given path on the graph,
assuming an attacker is capable of reading and writing arbitrary
kernel memory. Some paths are very easy for an attacker to
modify, and therefore cannot be trusted by an analyst whenever
she suspects the attacker might have gained admin privileges
on the machine. On the other hand, other paths are more robust,
as breaking them would make the system unstable. This can
potentially result in programs malfunction or termination and,
in the worst case, in a crash of the entire operating system.
The robustness of individual data structures has already been
studied in the past by several works [1, 10, 25]. But here we
are instead interested in the reliability of a path, i.e., not in
the fact that individual fields (such as a file name) can be
modified, but whether an attacker can tamper with the edges
that need to be traversed to prevent a certain heuristic to reach
its destination (to the best of our knowledge, this problem has
never been addressed in the literature). Being able to compute
a path on the graph that only traverses tamper-resistant edges
may have a great impact on memory forensics. While today
we still do not have enough information to color the entire
graph according to this metric, we can still compute the
reliability on demand. This means that we cannot compute the
optimal solution according to its reliability, but once we have
a candidate solution we can perform experiments to verify it.

Consistency (boolean)

As a final property in this list we want to show how metrics
can also be aggregated to capture more complex properties
of a path. For this example we chose to combine the stability
and atomicity of a path in a single measure that captures how
likely it is for a given path to traverse consistent information.
Intuitively, traversing a path whose nodes were acquired over
a period of 20 seconds may be acceptable if those structures
change very rarely, but completely unacceptable if its links
are modified every few milliseconds. We capture this aspect
by consider a path consistent if and only if the acquisition gap
of each edge is lower than the minimum change time of the
edge as computed in all our snapshots.

6 Experiments

We now discuss how our graph-based framework can be
used in different scenarios, in which we investigate existing
techniques used by Volatility [33], we discuss the intricacies
of computing optimal paths, and we discover new solutions
to reach all processes running in a system. In any case, these
are only examples of what can be achieved by adopting a more
systematic approach to memory forensics, and many more
applications can benefit from our framework.

All experiments were conducted on a QEMU machine
equipped with 2GB of RAM and 4 virtual CPUs, running
wordpress on top of a LAMP stack. Before and between the
acquisitions, we generated some activity by visiting the CMS
pages and performing basic system administration task, such
as logging in via ssh and updating the list of packages.

6.1 Scenario 1

In the first scenario we want to apply our methodology to study
the quality of current memory forensics techniques. For our
example we selected seventeen Volatility plugins that explore
different subsystems (process, network, and filesystem) and
mapped them as paths in our kernel graph. To achieve this we
manually analyzed each plugin and extracted which global
variables and kernel objects are traversed. With this informa-
tion we were able to write a python script which automatically
extracts these paths from our graph. Note that many plugins
traverse similar kernel structures (e.g linux_pslist and
linux_pstree) so, to avoid duplicates, we only report results
for a subset that rely on different information. The final list
of the plugins we analyzed is reported in Table 1.

Before looking at the individual metrics, we wanted to
investigate to which degree the structures traversed by these
heuristics are interconnected. The total number of unique
objects used by this heuristics depends on the size of the graph.
In our experiments they vary from 20 to hundreds of thousands.
As we already introduced in Section 4.6, by averaging over
the 25 graphs we created, more than 96% of the nodes used
by the heuristics belong to a single giant strongly connected
component that contains on average 53% of all the nodes
in the graph. By combining this information with the nodes
visited by Volatility, we found that this component contains
all the information related to running processes, such as their
mapped memory and open files, but also the information
related to the arp table and the ttys. The remaining 4% of the
nodes used by the Volatility rules are instead scattered among
several other components. The biggest one, which contains
only 0.5% of the heuristics nodes, contains the information
related to the installed modules and, more in general, to the
kobjects subsystem. Finally, the rest of the nodes belong
to components containing only a single node. These are the
nodes representing, for example, the global pid_hashtable
and its associate hlist_heads.

1760 28th USENIX Security Symposium USENIX Association

Table 1: Comparison of Volatility plugins implemented as paths in our graph

Name Description #
Nodes

Atomicity Stability Generality Consistency
AW CTG MTG MCT KC Fast S low

linux_arp Prints the ARP table 13 16.24 53.25 16.24 12,000 50/85 3 3
linux_check_afinfo Verifies the function pointers of network protocols 24 16.27 44.55 16.05 700 85/85 3 3
linux_check_creds Checks processes that share credential structures 248 16.34 453.92 16.24 2 29/85 3 3
linux_check_fop Check file operation structures for rootkit modifications 16099 16.38 142,856.15 16.38 0 29/85 7 7
linux_check_modules Compares module list to sysfs info, if available 151 16.27 54.06 16.23 700 85/85 3 3
linux_check_tty Checks tty devices for hooks 13 16.26 17.52 15.69 30 85/85 3 3
linux_find_file Lists and recovers files from memory 14955 16.33 35,627.45 16.32 0 85/85 7 7
linux_ifconfig Gathers active interfaces 12 16.25 44.19 16.25 12,000 50/85 3 3
linux_iomem Provides output similar to /proc/iomem 7 16.70 50.09 16.70 12,000 50/85 3 3
linux_lsmod Lists loaded kernel modules 12 16.23 44.27 16.05 700 85/85 3 3
linux_lsof Lists file descriptors and their path 821 16.33 19,885.52 16.26 0 29/85 7 7
linux_mount Lists mounted fs/devices 495 16.33 8488.13 16.32 10 85/85 3 7
linux_pidhashtable Enumerates processes through the PID hash table 469 16.67 451.87 16.67 30 31/85 3 7
linux_proc_maps Gathers process memory maps 4722 16.27 2629.19 16.24 0 31/85 7 7
linux_proc_maps_rb Gathers process maps through the mappings rb-tree 4722 16.27 3310.69 16.24 0 31/85 7 7
linux_pslist Lists active tasks by walking task_struct→task list 124 16.27 189.41 16.24 30 31/85 3 3
linux_threads Prints threads of processes 157 16.27 280.68 16.24 30 31/85 3 3

This is an important finding, as it means that the vast
majority of the information needed for forensic purposes is
interconnected and reachable from one another. Translated
in practical terms, the presence of this giant connected com-
ponent means that is enough to locate a single kernel object
to reach all the other interesting ones only by dereferencing
pointers. This might be beneficial in scenarios where the
position of global kernel objects is not available to the analyst.
In such cases, one entry point can often be located by memory
carving and then used as starting point for every other analysis.

By looking at the atomicity metrics (columns four-to-six in
Table 1) the first thing that stands out is that the values for the
Acquisition Window (AW) and the Maximum Time Gap (MTG)
are very similar and relatively constant across all commands.
After further investigation we discovered that this is due to the
fact that, when compiled with normal configurations, Linux
kernel global variables are located in the low part of the phys-
ical memory while kernel objects are allocated in the higher
end. Since all heuristics start from global symbols, the very
first edge already accounts for the maximum gap between two
consecutive kernel objects. This also influences the acquisition
window, since one of the two farthest objects is always the
global variable from where the heuristic starts from. On the
other hand, the Cumulative Time Gap (CTG) shows more varia-
tions as it is also influenced by the number of traversed objects.

To better understand this phenomenon, in Figure 7 we
plotted the content of the physical memory as a Hilbert curve.
In the graph, each pixel represents a physical page and its
color shows if the page is traversed by the Volatility heuristics
(red in the graph) or if it contains at least one node of our
connected component of the kernel graph (green). It is clear
that the relevant data structures are not spread equally on
the entire physical memory. Instead, they clearly aggregated
around three main clusters, which we marked respectively as
C1, C2, and C3. In our experiments the kernel global variables
are all located in C1 while other information are often stored
in C2 and C3. Therefore, most heuristics start from C1 and

Figure 7: View as Hilbert curve of physical memory.

then eventually traverse an edge towards one of the other
regions - which alone is responsible for the entire AW and MTG
metrics. This physical distribution is also very important for
the third scenario presented in Section 6.3, where we will
encounter heuristics that need to hop back and forth from the
three clusters, significantly impacting the atomicity metrics.

The second surprising result of this first scenario is the fact
that the Kernel Counters (KC) of six plugins never changed
across all the different kernel versions we used in our analysis.
This means that, even when fields were added or removed
from these object, the offsets of the fields used by the plugins
remained constant. This has important implications for current
memory forensics tools where a profile of the kernel is needed
to analyze a memory dump. Our experiment suggests that,
at least for locating certain information, a generic structure
layout can be used across almost 100 kernel versions, released

USENIX Association 28th USENIX Security Symposium 1761

as far as 2 years apart.
Another important propriety we evaluated in this first

scenario is the consistency of the selected techniques. This
is especially useful to better understand how the continuous
modifications of kernel objects might impact memory dumps
taken in a non-atomic fashion. This was recently listed
by Case et al. [6] as “one of the most pressing issues” of
memory forensics. While Case focused on page smearing
(an inconsistency between the page tables and the referred
physical memory), with this experiment we show that this
problem does not affect only page tables but also references
among kernel objects. The most important variable that
influence the consistency of the memory is the duration of the
acquisition process. To align with real world scenarios we run
two different tests, by setting the acquisition ratio respectively
to the fastest and to the slowest tool as reported by McDown
et al. [21]. In that study, the authors compared seven different
memory acquisition tools, chosen from a survey conducted
over 41 companies specialized in memory forensics.

Interestingly, out of the 17 plugins we tested, three have
a stability of 12,000 seconds, which means that none of the
links they traversed ever changed over a period of more than
three hours. At the other end of the spectrum, eleven plugins
walked links that remained stable for less than a minute (and
in five cases even less than one second). In this case, this
may result in wrong pointers depending on how far in the
physical memory were the page containing the link and the
page containing the linked object. In fact, the last column of
Table 1 shows that our analysis found inconsistencies in five
(when the fastest tool to acquire the memory was used) or
seven (in the case of the slowest solution was used) plugins.
The affected plugins interest different parts of the kernel,
but they can be divided to three distinct categories: Memory
(linux_proc_maps, linux_proc_maps_rb), File system
(linux_check_fop, linux_find_file, linux_lsof,
linux_mount) and Process (linux_pidhashtable)

In the Memory category we found respectively 33 inconsis-
tencies that affected the connections amongvm_area_struct
of a process, which are kept both in a linked list and in a
red-black tree. These errors affected five instances of apache,
one of systemd-login and one of agetty. The filesystem
category included 40 unique inconsistencies in the hierarchy of
dentries (fields d_subdirs and d_child) 53 in the mapping
from a dentry to an inode (field d_inode). The latter object
was also involved in 43 cases of inconsistency towards its
file_operations object (field i_fop), while 23 file
object had inconsistent edges pointing to their dentry and
its mount objects. (field f_path.dentry and f_path.mnt).
The most interesting cases of inconsistencies in this category
– 10 in total – involved the array containing the pointers to
the files opened by a process. This array belonged to three
distinct instances of apache, one of systemd and one of the
mysql database. In the process category, we only detected
one case of inconsistent edge between a struct pid and the

pointed task_struct.
To systematically understand if these inconsistent paths can

be avoided, we used once again our kernel graph – this time by
filtering out all the 5,000 inconsistent edges, and searching for
alternative paths to reach the same objects used by the affected
plugins. Our graph exploration was able to discover alternative
paths for 107 out of 213 inconsistent edges. For example, in
the case of inconsistent array of opened files for the systemd
process the alternative path — which traversed 11 additional
nodes — was able to reach the target file by first locating
the task_struct of the same process, then accessing its cor-
responding files_struct and from here reaching the file
via the fd_array field (an array only used when the process
opens less than 64 files). While these detours were sufficient
in our experiments to retrieve the missing information, more
experiments are required to understand if those alternative
paths can be generalized to other scenarios. In any case, they
show once more that the giant connected component that
hosts most of the relevant data structures may allow analyst
to find alternatives solution to mitigate the presence of wrong
pointers and inconsistent information. Sadly, almost 50% of
the affected pointers did not allow for an alternative path, thus
emphasizing again the severe consequences that the lack of
atomicity can have on memory analysis.

6.2 Scenario 2
In our second case study we want to understand if we can
employ the kernel graph to find new heuristics for common
forensics tasks. In particular, we focus on the starting point
of many forensics investigation: listing the processes running
at the acquisition time. Currently Volatility implements
three different plugins1 to list the processes, respectively by
walking the process list, by using the pidhash hashtable,
and by parsing the kernel memory allocator. However, the
latter is only applicable if the kernel uses the SLAB allocator.
Unfortunately, many distributions, such as Ubuntu and
Debian, ships by default with the SLUB allocator, which is not
supported by Volatility and which does not keep track of full
slabs – thus making this technique not applicable anymore.

The main reason for looking for alternative solutions is that
previous research already pointed out that rootkits are already
capable of removing a process from the process list, but also to
unlink a process from the pid hashtable [19,26,27] thus leaving
the forensic analyst without a reliable method to list processes.
Moreover, as we already discussed in the previous scenario, the
lack of atomicity of a memory dump can introduce inconsis-
tencies and result in broken pointers also in the list of running
processes. For these reason, it is important to find new ways
to locate processes, so that their output can be compared with
other techniques to spot inconsistencies or hidden processes.

1Volatility also includes a plugin to carve task_struct objects by using
a signature, but this is a parallel approach that does not require exploring
memory but relies instead on pattern-matching.

1762 28th USENIX Security Symposium USENIX Association

Table 2: Comparison between different heuristics used to find processes

Category Root Node New #
Nodes

#
task_struct

Atomicity Stability Generality Reliability Consistency
AW CTG MTG MCT KC

scheduling runqueues 3 9 4 16.71 20.08 16.70 0.00 34/85 — 7
root_task_group 3 10 4 16.65 21.14 16.27 0.00 18/85 — 7

cgroup css_set_table 3 172 156 16.27 433.32 16.24 10.00 29/85 7 7
cgrp_dfl_root 3 186 156 16.30 369.10 16.30 10.00 29/85 7 3

memory/fs dentry_hashtable 3 58383 23 16.31 58120.38 16.30 0.00 36/85 7 7
inode_hashtable 3 14999 23 16.32 31594.48 16.31 1.00 36/85 7 7

workers wq_workqueues 3 427 69 16.68 1727.89 16.24 200.00 39/85 7 3

process
init_task (linux_pslist) 7 124 124 16.27 189.41 16.24 30.00 31/85 7 3
init_task (linux_threads) 7 156 156 16.27 280.68 16.24 30.00 31/85 7 3

pid_hash (linux_pidhashtable) 7 469 156 16.67 451.87 16.67 30.00 30/85 7 3

This scenario is also interesting as it is harder to translate
into a graph exploration problem. In fact, since we are looking
for techniques to list all (or a part of) the running processes,
this is equivalent to a collection of, possibly not homogeneous,
paths. As a result, listing all processes is not simply equivalent
to a path, but more to an algorithm to explore the graph.

Our approach to find new heuristics is the following. First,
we discarded all the global roots that do not have a path to
reach all the task_structs in every graph we created. As a
result, we were left with 621 global roots (out of more than
8000 we started with). Second, we modified the graph to
remove the edges already used by known techniques, such
as the tasks field. This helps removing all those paths that
would just find a different way to reach a single process, and
then walk the list like the existing plugins already do. While
not useless per se, our goal is to find new solutions and not
variations of the existing ones.

By only considering the shortest paths from every root node
to every task structure, our system found more than 100 million
distinct paths, generated from a set of more than 966,000
sequences of vertices. This is possible because, as we later dis-
covered, the graph contained many parallel edges connecting
the same nodes. In fact, by putting things in perspective, on
average every sequence of vertices from a root node to a target
object generates more than 100 unique paths. The good news
is that this makes extremely difficult for attackers to modify
all edges required to completely hide a process. On the other
hand though, this also makes very hard the task of identifying
interesting patterns in this multitude of options. For simplicity,
we first decided to filter out all similar edges – i.e., parallel
edges that shares the same metrics (and that therefore are
equivalent for our purpose). This operation removed more
than 300,000 edges, some of which played an important role
in the path explosion. For example, many entries of the array
e_cset_node of the css_set object pointed multiple times
to the same vertex. After this operation the number of different
paths decreased to about 7.5 millions paths.

We then merged similar paths into templates, constructed
by keeping only the type of the objects present in the path,
and by also removing adjacent nodes with the same type

(which capture the 	 link discussed in Section 3). Finally,
we removed templates that were subset of other templates,
resulting in a final set of 4067 path templates.

By manually exploring these options, we soon realized
that they belong to only four main families, depending on
the kernel subsystem they live in. The first one is related to
the cgroup subsystem, the second to the memory subsystem
through the mm_struct structure, the third passes through the
work queues to reach kernel workers, and the last traverses the
struct rq and follows the curr field, a per-cpu runqueue.
The results are summarized in Table 2.

Unfortunately, there are no alternative paths that can
improve the atomicity. In fact, the bulk of the time gap (16.24
seconds) is due to the difference in the acquisition time of the
global entry points (located in C1 in Figure 7) and the first task
structure (located in C2 and C3). However, all these edges are
very stable and in only one case (for the css_set_table) the
value of this first connection ever changed during our memory
acquisition.

The memory-based heuristics walked a red-black tree
(i_mmap) that is very ephemeral and, while exploring it, we
found more than 30 edges that could be inconsistent if the mem-
ory dump is not taken atomically. A similar problem affects
the scheduler, whose structures also contain links that change
very rapidly. We observed an interesting phenomenon in the
cgroup-related heuristics. The first is inconsistent as it traverses
a pointer with a very large time gap. However, the second avoid
this problem by reaching the same css_set structures by tak-
ing a detour through several intermediate objects which act as a
bridge to lower the time gap. This is an example of the counter-
intuitive behavior we introduced in Section 5 (Figure 6), where
we predicted that the most direct path might not always be
the best in term of consistency. The worker-related approach
was the best in terms of stability, consistency, and general-
ity. However, its goal is to list all active kernel workers and
therefore this heuristic is unable to capture normal userspace
processes. Finally, the two heuristics in the process category,
which represent the Volatility plugins linux_pslist and
linux_threads, had both a stability of 30 seconds. This is
strange, as several processes should have started during this

USENIX Association 28th USENIX Security Symposium 1763

time frame. However, new processes were all appended to the
tail of the process list without altering the intermediate nodes.

To test the Reliability of the heuristics we wrote a kernel
module that tries to hide an userspace process by unlinking
it from the path required by each heuristic. As a result, each
case required a custom hiding technique. For the cgroup
heuristics we deleted the processes from the cg_list linked
list. For the memory we first found every non-anonymous,
i.e. backed by a file, vm_area_structs. We then delete all
this structures from the red black tree rooted in the inode,
which keeps track of all the vm_area_struct which are
currently mapping this file. For the first two process heuristics,
we removed the process from the process list (by unlinking
task_struct.tasks), while for the pid_hashwe removed
the struct pid from the hashtable. For the workqueue we
instead created a custom workqueue and queued a simple work
function that mimicked the behavior of the userspace process
we used in our test. We then proceeded by unlinking the
worker from the linked list rooted at worker_pool.workers.

In all the cases our program continued to run without
observable side-effects – showing that each path we listed so
far can be tampered with by a properly written rootkit. As we
also discussed in Section 5, we believe that more experiments
are needed to improve the assessment of a path’s reliability.
While it is true that our program continued to run, there can be
a multitude of events (e.g. the kernel starting to swap memory)
that might compromise the stability of the altered system.

6.3 Scenario 3

In the third scenario we show how we can compute optimal
paths, with respect to the different metrics we proposed in this
work. As running example, we picked this time the problem
of finding the files opened by a given process (identified by
its task_struct).

To run our experiments we collected all the task_struct
and all the associated file objects and analyzed the paths
Volatility would take to move from the first to the second.
However, we immediately run into a strange behavior, as the
metrics were returning very different results for different files.
To understand the reason we had to look closer at how the
physical pages were assigned to the different kernel objects.

Figure 7 explains very well the three classes of behavior we
identified in our experiments. Since the clusters (C1, C2 and
C3) are located far apart in memory (and therefore they can be
acquired far apart in time), whenever a heuristic moves from
one structure contained in one cluster to another contained in a
different one, it needs to take a “jump” with associated a consid-
erable time gap. If a task_struct and all the intermediate ob-
jects needed to reach the open files are located inside the same
cluster, then time gaps are extremely small and path are always
consistent. In this case paths are already optimal and there is no
much room for improvement. If they are instead located in two
different clusters, then the atomicity increase by almost nine

seconds. However, the picture shows that also in this case it is
not possible to find better alternatives, as all paths would need
to cross the gap between the clusters– incurring in the same
penalty. Finally, there are examples in which thetask_struct
and thefile objects were located in the same cluster, but the in-
termediate structures traversed by Volatility resided in the other
one. In this case the Volatility heuristic needs to jump across
clusters twice, incurring twice in the risk of inconsistent links.
But in this third case it might be possible to use our graph to find
an alternative path that is fully contained in the same cluster.

An example of each of these three cases is shown in Table 3,
along with the metrics computed on the Volatility heuristic and
those computed on the optimal paths extracted from our graph.
Regarding the cumulative time gap (CTG), our insight was
correct and only paths belonging to the third category could be
considerably improved. In fact, the table shows that from more
than 17 seconds in the Volatility case, the optimal path had
a CTG of less than 0.01 seconds. Accordingly, also the MTG
decreased with the same magnitude. As we discussed in the
previous scenario, finding a consistent path for this particular
problem is sometimes possible. Indeed, when this is the case,
we were able to find a path that remained stable for all our
experiments. Interestingly, for the second case, one of the
paths with maximum stability has also higher generality than
the one used by Volatility but, since it passes through more
nodes, it has an higher CTG. On the other hand, maximizing
the generality of a path has a serious impact to its consistency
and stability. In fact, while we were able to find paths which
are constant over 50 kernels, none of them was consistent,
independently to the speed of acquisition.

7 Discussion and Future Directions

The goal of our work is to provide a principled way to think
about memory forensics as a graph-related optimization
task. This way of modeling the problem opens the door to a
multitude of different possibilities to evaluate and compare
existing techniques, design algorithms to compute new
alternative solutions, validate the consistency of kernel
structures, or propose heuristics customized to different
experiments setup and acquired dump.

We tried to discuss some of these opportunities through
our experiments, but we are aware that many questions are
still open and new research is needed to shed light to each
individual use case. For this reason, we decided to release
our code and data to other researchers, hoping that this will
facilitate new experiments in this field and accelerate new
findings based on our methodology.

In this paper we focused on the analysis of traditional
computers. This choice was simply dictated by the fact that
this is the area where memory forensics is more mature and
for which most of the heuristics have been designed so far.
Nevertheless, we believe that our system could be used to help
researchers to better design and implement future forensic

1764 28th USENIX Security Symposium USENIX Association

Table 3: Optimal paths compared with Volatility paths

Name #
Nodes

Atomicity Stability Generality Consistency
AW CTG MTG MCT KC Fast S low

File A – all structures in one cluster

Volatility 4 0.01 0.01 0.01 700 29/85 3 3
Opt-MTG 4 0.01 0.01 0.01 700 29/85 3 3
Opt-CTG 4 0.01 0.01 0.01 700 29/85 3 3
Opt-MCT 4 0.54 0.54 0.54 12000 29/85 3 3
Opt-KC 4 0.01 0.01 0.01 700 29/85 3 3

File B – structures located in two clusters

Volatility 4 8.72 8.72 8.72 12000 29/85 3 3
Opt-MTG 4 8.72 8.72 8.72 12000 29/85 3 3
Opt-CTG 4 8.72 8.72 8.72 12000 29/85 3 3
Opt-MCT 11 16.23 72.84 16.21 12000 36/85 3 3
Opt-KC 8 9.71 46.15 9.71 0 50/85 7 7

File C – structures located in one cluster, with intermediate steps in the other

Volatility 4 8.73 17.45 8.73 12000 29/85 3 3
Opt-MTG 3 0.003 0.003 0.003 12000 29/85 3 3
Opt-CTG 3 0.003 0.003 0.003 12000 29/85 3 3
Opt-MCT 3 16.23 82 16.20 12000 36/85 3 3
Opt-KC 10 9.71 55.56 9.71 0 50/85 7 7

frameworks tailored to emerging technologies such as mobile
devices and the Internet of Things (IoT).

Main findings: our experiments show that a large part of the
kernel graph belongs to a giant connected component. This
means there are thousands, or even millions of possible paths
that allow an analyst to move from one node to another. It also
means that it is very difficult for an attacker to completely hide
some piece of information from all possible paths.

Another consequence of the interconnected topology of
the graph is that it is hard for an analyst to simply inspect
all possible paths, looking for new techniques to implement
in memory forensic tools. We tried to do this in our second
scenario, and run into a path explosion problem even by
considering only all shortest paths. However, this effort
allowed us to discover two new promising techniques (one
based on cgroups and one on workrqueues) that can
complement those used today by Volatility 2.

Sadly, the problem of finding an optimal path turned out
to be very delicate and dependent on multiple factors. In fact,
the exact memory layout when the snapshot is acquired may
affect the metrics associated to different links (e.g., one path
may be optimal for one dump but poor in another). This may
suggest that maybe, instead of relaying on a single solution,
new techniques should try to explore the graph by following
many parallel paths.

Moreover, we are aware that some of the metrics we
proposed in this paper turned out to be ineffective in the
evaluation. However, we decided to include them anyway in
the paper for two reasons. First, because we did not know in
advance that (for example the Maximum Time Gap) would be

2We implemented both as Volatility plugins

irrelevant in the analysis of common Linux kernels. This has
nothing to do with the heuristic itself, but with the fact that the
kernel allocates global variables (entry points) very far from
other objects. We believe this fact to be an interesting finding
which came as a consequence of applying our framework.
Second, while this is true in our experiments, it is probably
not the case on other operating systems or OS kernels. So, we
believe it is still interesting to implement and discuss those
ineffective metrics in our framework.

Finally, we want to stress the fact that our main contribution
is not the discovery of new technique, but the introduction of
a model that can be used to reason about memory analysis, ex-
plore its complexity, and perform quantitative measurements.

Future Work: In this paper we discuss a number of metrics an
analyst can use to compare different solutions. However, the
list is certainly not exhaustive and we expect more to be defined
in the future. More work is also needed to understand which
metric is better at capturing certain aspects of an investigation.

Reliability is certainly one of the most important character-
istic of an analysis technique. Unfortunately, it is also the only
one we discussed that cannot be extracted with automated
experiments. More research is needed to fill this gap and
enable to compute the reliability of a large amount of links
among kernel objects.

Finally, to be useful in practice, our prototype should be
applied to a larger number of memory dumps taken from
different systems. This could help generalize the results and
customize the analysis to an environment that resemble the
one under investigation.

USENIX Association 28th USENIX Security Symposium 1765

8 Related Work

The analysis of kernel objects and their inter-dependencies
has attracted the interest of both the security and the forensics
community. While the common goal, namely ensuring the
integrity of the kernel against malware attacks using the
inter-dependencies between kernel object, is shared by the
majority of works on this topic, the methods and the tools
used to achieve it are often different. Several research papers
have also been published on reconstructing and analyzing
data structure graphs of user-space applications [3, 7, 28, 31].
However, most of these techniques are not directly applicable
to kernel-level data structures, because they do not take in
account the intricacies present in the kernel, such as resolution
of ambiguous pointers to handle custom data structures. For
this reason they will not be discussed in this Section.

To better highlight the different approaches, we decided
to divide them in two distinct categories. The first one covers
approaches which presented the analysis of a running kernel.
The second category is focusing instead on static approaches,
which require only a memory snapshot or the OS binary.

Dynamic Analysis
One of the first example of dynamic kernel memory analysis

was presented by Rhee et al. in 2010 [26]. The tool, named
LiveDM, places hooks at the beginning and at the end of every
memory-related kernel functions, to keep track of every allo-
cation and deallocation event. When these hooks are triggered,
the hypervisor notes the address and the size of the allocated
kernel object and the call site. The latter information is used,
along with the result of an offline static analysis of the kernel
source code, to determine the type of the allocated object. A
work built on top of LiveDM isSigGraph [19]. In this paper the
authors generate a signature for each kernel object, based on the
pointers contained in the data structure. These signatures are
then further refined during a profiling phase,where problematic
pointers - such as null pointers - are pruned. The result can then
be used by the final user to search for a kernel object in a mem-
ory dump. The major concern about signature-based scheme is
their uniqueness, that avoids problems related to isomorphism
of signatures. The authors found that nearly the 40% of kernel
object contains pointers and - among this objects - nearly 88%
have unique SigGraph signatures. Unfortunately the unique-
ness was reported prior the dynamic refinement, so it is unclear
the percentage of non-isomorphic signatures. For this reasons
a kernel graph built using the approach adopted by SigGraph
would only retrieve a partial view of the entire memory graph.

Another work focused on signatures to match kernel objects
in memory was done by Dolan-Gavitt et al in 2009 [10]. The
main insight of this work is that while kernel rootkits can
modify certain fields of a structure - i.e. to unlink the malicious
process from the process list - other fields (called invariants)
can not be tampered without stopping the malicious behavior
or causing a kernel crash. The invariant are determined in a
two steps approach. During the first one every access to a data

structure is logged, using the stealth breakpoint hypervisor
technique [32]. Then, the most accessed field identified in the
previous step are fuzzed and the kernel behavior is observed.
If the kernel crashes then there are high chances that this field
can not be modified by a rootkit. On the other hand, if no crash
is observed, than the field is susceptible to malicious alteration.
The direct results of these two phases is that highly accessed
field which result in a crash when fuzzed are good candidates
to be used as strong signatures. While this approach looks very
promising is not easily adaptable to our context since, as also
noted by the authors, creating a signature for small structures
can be difficult. Furthermore, generating a signature requires
to locate at least one instance of a structure in memory, which
might not be straightforward.

Xuan et al. [35] proposed Rkprofiler. This tool combine a
trace of read and write operations of malicious kernel code with
a pre-processed kernel type graph, to identify the tampered
data. The problem of ambiguous pointers is overcome by
annotating the type graph with the real target of a list pointer.
While it is not clearly stated in the paper, it seems the anno-
tation was manually done. As we discussed in Section 4 the
Linux kernel uses a large amount of ambiguous pointers, thus
making the manual annotation approach not feasible anymore.

While more focused on kernel integrity checks, OSck [16]
uses information from the kernel memory allocator (slab) to
correctly label kernel address with their type. The integrity
check are run in a kernel thread, separated by the hypervisor.
This two components allow OSck to write custom checkers
that are periodically run. While this approach seems promising,
only a small subset of frequently-used structures are allocated
using slab (such as task_struct or vm_area_struct), and
thus is unsuitable for our needs.

Another approach to create a Windows kernel object graph
is MACE [11]. Using a pointer-constrain model generated
from dynamic analysis on the memory allocation functions
and unsupervised learning on kernel pointers, MACE is able to
correctly label kernel objects found in a memory dump. Once
again, while the output of the work is a kernel object graph for
Windows, the application only focuses on rootkit detection.

Static Analysis
One of the most prominent work in this field is KOP [4],

and its subsequent refinement MAS [8]. Very similarly to our
approach, the authors use a combination of static and memory
analysis techniques respectively on the kernel code and on a
memory snapshot. In the first step they build a precise field-
sensitive points-to graph,which is then used during the memory
analysis phase to explore and build the kernel objects graph.
Contrary to this solution, ours does not make any assumption
about the kernel memory allocator. While the Windows kernel
has only one allocator, the Linux kernel has three different
ones (slab, slub, and slob). Moreover, only a predefined
subset of kernel objects are allocated in custom slabs, while
the vast majority is sorted in generic slabs based on their size.

Gu et al. [13] presented OS-Sommelier+, a series of tech-

1766 28th USENIX Security Symposium USENIX Association

niques to fingerprint an operating system from a memory snap-
shot. In particular, one of these techniques is based on the no-
tion of loop-invariants: a chain of pointers rooted at a given ker-
nel object that, when dereferenced, points back to the initial ob-
ject. Once a ground truth is generated from a set of known ker-
nels, this loop invariant signatures can be used to fingerprint un-
known kernels. Unfortunately the paper does not mention the
problem of ambiguous pointers, and we believe our graph gen-
eration approach could improve OS-Sommelier+ detection.

Finally, as we already discussed, none of the tools to auto-
matically build a graph of kernel objects was publicly available.

9 Conclusion

Memory forensics focuses on locating and extracting artifacts
from a memory snapshots, using a broad set of custom rules.
However, the quality of the existing heuristics is difficult to
measure and it is largely based on the experience of the re-
searchers who wrote them. As a result, analysts are left without
any clear guidelines on how to compare and evaluate different
approaches and how to assess the results they produce.

For these reasons, in this paper we proposed a method to
study memory forensics techniques in a principled way. Our
solution is based on a graph representation that captures the
relationships between all kernel objects, enriched with a set of
metrics that covers different aspects of memory forensics. We
believe that our framework can help researchers to measure
the quality of existing memory forensics techniques, but also
to extract qualitatively better heuristics.

Acknowledgments

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
771844 – BitCrumbs).

References

[1] Baliga, A., Ganapathy, V.,and Iftode, L. Automatic infer-
ence and enforcement of kernel data structure invariants.
In Computer Security Applications Conference, 2008.
ACSAC 2008. Annual (2008), IEEE, pp. 77–86.

[2] Bastian, M., Heymann, S., Jacomy, M., et al. Gephi: an
open source software for exploring and manipulating
networks. Icwsm 8 (2009), 361–362.

[3] Bursztein, E., Hamburg, M., Lagarenne, J., and Boneh,
D. Openconflict: Preventing real time map hacks in
online games. In Security and Privacy (SP), 2011 IEEE
Symposium on (2011), IEEE, pp. 506–520.

[4] Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., and
Jiang, X. Mapping kernel objects to enable systematic
integrity checking. In Proceedings of the 16th ACM
conference on Computer and communications security
(2009), ACM, pp. 555–565.

[5] Carvey, H. Digital forensics of the physical memory.

[6] Case, A., and Richard III, G. G. Memory forensics: The
path forward. Digital Investigation 20 (2017), 23–33.

[7] Cozzie, A., Stratton, F., Xue, H., andKing, S. T. Digging
for data structures. In OSDI (2008), vol. 8, pp. 255–266.

[8] Cui, W., Peinado, M., Xu, Z., and Chan, E. Tracking
rootkit footprints with a practical memory analysis sys-
tem. In USENIX Security Symposium (2012), pp. 601–
615.

[9] Das, M. Unification-based pointer analysis with direc-
tional assignments. Acm Sigplan Notices 35, 5 (2000),
35–46.

[10] Dolan-Gavitt, B., Srivastava, A., Traynor, P.,andGiffin,
J. Robust signatures for kernel data structures. In Pro-
ceedings of the 16th ACM conference on Computer and
communications security (2009), ACM, pp. 566–577.

[11] Feng, Q., Prakash, A., Yin, H., and Lin, Z. Mace: High-
coverage and robust memory analysis for commodity
operating systems. In Proceedings of the 30th annual
computer security applications conference (2014), ACM,
pp. 196–205.

[12] Gruhn, M., and Freiling, F. C. Evaluating atomicity, and
integrity of correct memory acquisition methods. Digital
Investigation 16 (2016), S1–S10.

[13] Gu, Y., Fu, Y., Prakash, A., Lin, Z., andYin, H. Multi-
aspect, robust, and memory exclusive guest os fingerprint-
ing. IEEE Transactions on Cloud Computing 2, 4 (2014),
380–394.

[14] Hardekopf, B., and Lin, C. The ant and the grasshopper:
fast and accurate pointer analysis for millions of lines of
code. In ACM SIGPLAN Notices (2007), vol. 42, ACM,
pp. 290–299.

[15] Heintze, N., and Tardieu, O. Ultra-fast aliasing analysis
using cla: A million lines of c code in a second. In ACM
SIGPLAN Notices (2001), vol. 36, ACM, pp. 254–263.

[16] Hofmann, O. S., Dunn, A. M., Kim, S., Roy, I., and
Witchel, E. Ensuring operating system kernel integrity
with osck. In ACM SIGARCH Computer Architecture
News (2011), vol. 39, ACM, pp. 279–290.

USENIX Association 28th USENIX Security Symposium 1767

[17] Ibrahim, A. S., Hamlyn-Harris, J., Grundy, J., and Al-
morsy, M. Digger: Identifying os kernel objects for run-
time security analysis. International Journal on Internet
and Distributed Computing Systems 3, 1 (2013), 184–
194.

[18] Le Berre, S. From corrupted memory dump to
rootkit detection. https://exatrack.com/public/
Memdump_NDH_2018.pdf, 2018.

[19] Lin, Z., Rhee, J., Zhang, X., Xu, D., and Jiang, X. Sig-
graph: Brute force scanning of kernel data structure in-
stances using graph-based signatures. In NDSS (2011).

[20] LWN. Linux kernel design patterns - part 2. https:
//lwn.net/Articles/336255/, 2009.

[21] McDown, R. J., Varol, C., Carvajal, L., and Chen, L. In-
depth analysis of computer memory acquisition software
for forensic purposes. Journal of forensic sciences 61
(2016), S110–S116.

[22] Pearce, D. J., Kelly, P. H., andHankin, C. Efficient field-
sensitive pointer analysis of c. ACM Transactions on
Programming Languages and Systems (TOPLAS) 30, 1
(2007), 4.

[23] Peixoto, T. P. The graph-tool python library. figshare
(2014).

[24] Petroni Jr, N. L., andHicks, M. Automated detection of
persistent kernel control-flow attacks. In Proceedings of
the 14th ACM conference on Computer and communica-
tions security (2007), ACM, pp. 103–115.

[25] Prakash, A., Venkataramani, E., Yin, H., andLin, Z. Ma-
nipulating semantic values in kernel data structures: At-
tack assessments and implications. In Dependable Sys-
tems and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on (2013), IEEE, pp. 1–12.

[26] Rhee, J., Riley, R., Xu, D., and Jiang, X. Kernel mal-
ware analysis with un-tampered and temporal views of

dynamic kernel memory. In International Workshop on
Recent Advances in Intrusion Detection (2010), Springer,
pp. 178–197.

[27] Riley, R., Jiang, X., and Xu, D. Multi-aspect profiling
of kernel rootkit behavior. In Proceedings of the 4th
ACM European conference on Computer systems (2009),
ACM, pp. 47–60.

[28] Saltaformaggio, B., Gu, Z., Zhang, X., and Xu, D.
Dscrete: Automatic rendering of forensic information
from memory images via application logic reuse. In
USENIX Security Symposium (2014), pp. 255–269.

[29] Schneider, C., Pfoh, J., and Eckert, C. Bridging the
semantic gap through static code analysis. Proceedings
of EuroSec 12 (2012).

[30] Steensgaard, B. Points-to analysis in almost linear time.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages (1996),
ACM, pp. 32–41.

[31] Urbina, D., Gu, Y., Caballero, J., and Lin, Z. Sigpath:
A memory graph based approach for program data intro-
spection and modification. In European Symposium on
Research in Computer Security (2014), Springer, pp. 237–
256.

[32] Vasudevan, A., andYerraballi, R. Stealth breakpoints.
In Computer security applications conference, 21st An-
nual (2005), IEEE, pp. 10–pp.

[33] Walters, A. The volatility framework: Volatile memory
artifact extraction utility framework, 2007.

[34] Wilson, R. P., and Lam, M. S. Efficient context-sensitive
pointer analysis for C programs, vol. 30. ACM, 1995.

[35] Xuan, C., Copeland, J. A., and Beyah, R. A. Toward
revealing kernel malware behavior in virtual execution
environments. In RAID (2009), vol. 9, Springer, pp. 304–

325.

1768 28th USENIX Security Symposium USENIX Association

https://exatrack.com/public/Memdump_NDH_2018.pdf
https://exatrack.com/public/Memdump_NDH_2018.pdf
https://lwn.net/Articles/336255/
https://lwn.net/Articles/336255/

Detecting Missing-Check Bugs via Semantic- and Context-Aware
Criticalness and Constraints Inferences

Kangjie Lu, Aditya Pakki, and Qiushi Wu
University of Minnesota

Abstract
Missing a security check is a class of semantic bugs in

software programs where erroneous execution states are not
validated. Missing-check bugs are particularly common in
OS kernels because they frequently interact with external un-
trusted user space and hardware, and carry out error-prone
computation. Missing-check bugs may cause a variety of crit-
ical security consequences, including permission bypasses,
out-of-bound accesses, and system crashes. While missing-
check bugs are common and critical, only a few research
works have attempted to detect them, which is arguably be-
cause of the inherent challenges in the detection—whether a
variable requires a security check depends on its semantics,
contexts and developer logic, and understanding them is a
hard problem.

In this paper, we present CRIX, a system for detecting
missing-check bugs in OS kernels. CRIX can scalably and
precisely evaluate whether any security checks are missing
for critical variables, using an inter-procedural, semantic- and
context-aware analysis. In particular, CRIX’s modeling and
cross-checking of the semantics of conditional statements
in the peer slices of critical variables infer their criticalness,
which allows CRIX to effectively detect missing-check bugs.
Evaluation results show that CRIX finds missing-check bugs
with reasonably low false-report rates. Using CRIX, we have
found 278 new missing-check bugs in the Linux kernel that
can cause security issues. We submitted patches for all these
bugs; Linux maintainers have accepted 151 of them. The
promising results show that missing-check bugs are a com-
mon occurrence, and CRIX is effective and scalable in detect-
ing missing-check bugs in OS kernels.

1 Introduction

Security checks are a class of conditional statements that
validate program execution states. Security checks play an
important role in ensuring the security of OS kernels. Not
only do OS kernels accept arbitrary untrusted inputs, but they

also perform complicated tasks such as concurrent resource
management and multi-user/capability access control. There-
fore, OS kernels often enter into erroneous states and require
security checks to capture them.

A missing-check bug exists when an intended security
check is not enforced for a critical variable. Examples of
such critical variables include the ones used to indicate po-
tential erroneous execution states, e.g., the return value of
kmalloc(), and the ones used in critical operations, e.g., the
size variable in memcpy(). Figure 1 shows a concrete exam-
ple of missing-check bugs. ib_get_client_data() may fail
and return NULL. Since smcibdev is not checked, the following
uses of it may cause multiple problems—NULL-pointer deref-
erences, failures in removing and unregistering devices, and
memory leaks. To fix the problem, a security check should be
enforced between lines 6 and 8 to ensure that smcibdev is not
NULL.

1 /* Linux: net/smc/smc_ib.c */
2 static void smc_ib_remove_dev(struct ib_device *ibdev...)
3 {
4 struct smc_ib_device *smcibdev;
5 /* ib_get_client_data may fail and return NULL */
6 smcibdev = ib_get_client_data(ibdev, &smc_ib_client);
7 // ERROR1: NULL-pointer deference
8 list_del_init(&smcibdev->list);
9 /* ERROR2: device cannot be removed or unregistered */

10 smc_pnet_remove_by_ibdev(smcibdev);
11 ib_unregister_event_handler(&smcibdev->event_handler);
12 /* ERROR3: memory leak */
13 kfree(smcibdev);
14 /* No return value: caller cannot know the errors */
15 }

Figure 1: Example: A new missing-check bug found by CRIX. The
missed check against variable smcibdev will cause multiple prob-
lems, as annotated in the code.

Missing-check bugs may cause critical security impacts
because security checks are a main means for OS kernels to
ensure their security and reliability. To understand the impor-
tance of security checks, we first studied recently reported se-
curity vulnerabilities in the National Vulnerabilities Database
(NVD). We found that 59.5% security vulnerabilities stem

USENIX Association 28th USENIX Security Symposium 1769

from missing-check bugs, which were all fixed by inserting se-
curity checks. We then investigated these vulnerabilities and
found that at least 52% (excluding denial-of-service cases) of
them will cause severe security impacts such as permission
bypass, memory corruption, system crashes/hangs.

Although missing-check bugs are critical and prevalent,
only a few research works have attempted to detect them in
OS kernels and have several limitations. In particular, Van-
guard [32] assumes that some critical operations should al-
ways be checked. It however detects missing-check bugs for
only four specified critical operations such as arithmetical
division and array indexing. Some other approaches (e.g.,
Chucky [46], Juxta [23], Kremenek et al. [19], and Dillig
et al. [7]) employ cross-checking, inconsistency analysis, or
machine learning to reduce false positives in detecting bugs.
These approaches have non-trivial limitations. First, the man-
ual specification for critical variables covers only a small
set of critical variables. This leads to significant false neg-
atives. Second, most of these approaches are not semantic-
or context-aware. For example, they tend to treat any con-
ditional statement (i.e., an if or a switch statement) as a
security check. In fact, whether a variable requires a security
check highly depends on its semantics and contexts, with-
out considering which, the detection would suffer from high
false-negative and false-positive rates.

The lack of effective research in detecting missing-check
bugs is arguably because of several inherent challenges. (1)
Critical variables that require security checks take diverse
forms. For example, a critical variable can be a parameter of a
critical function (e.g., the size variable in memcpy()), a global
variable, or a return value of a function call that is used in only
security checks but not others such as arithmetic operations
(this case is missed by Vanguard [32]). Therefore, generally
checking for different kinds of critical variables is hard.

(2) Identifying security checks requires semantic under-
standing. Treating any conditional statement as a security
check will cause both significant false positives and false neg-
atives. In fact, according to our study §6, the majority (about
70%) of conditional statements are not security checks but
some normal selectors in which both branches of the condi-
tional statements lead to normal execution. (3) Missing-check
bugs are context dependent, and the detection should be con-
text aware. For example, an error code may not require a
security check at all if it is used in a debugging function. As
such, missing-check detection should be context aware. (4)
Last but not least, OS kernels are extremely large and complex.
Checking every variable will not scale, and corner cases such
as hand-written assembly will make the analysis error-prone.

In this paper, we present CRIX (Criticalness and constraints
Inferences for detecting missing checks), a system that over-
comes the aforementioned challenges to effectively detect
missing-check bugs in OS kernels. At a high level, CRIX first
employs an automated approach to identify critical variables
as the analysis targets. For each critical variable, CRIX con-

structs peer slices that share similar semantics and contexts.
After that, CRIX models constraints of conditional statements
in each slice. By cross-checking the modeled constraints of
the peer slices of a critical variable, CRIX finally identifies
deviations as potential missing-check bugs and reports them
for further confirmation.

While the high-level idea of CRIX is intuitive, it entails
overcoming multiple technical challenges. We thus have de-
veloped multiple new techniques to tackles these challenges.
(1) We first propose a two-layer type analysis to identify
indirect-call targets, which serves as a foundation of our data-
flow analysis engine. In addition to the function-type analysis
(the first layer) employed by traditional control-flow integrity
(CFI) techniques [4, 25, 40], the two-layer type analysis fur-
ther uses struct-type analysis, which is also employed by Ge
et al. [10], to refine indirect-call targets. (2) We then develop
an automated analysis that identifies security-checked vari-
ables as potential critical variables, which not only narrows
down the analysis scope and thus scales the detection to OS
kernels, but also significantly reduces false reports by filtering
out non-critical variables. (3) We further propose peer-slice
construction to collect slices of a critical variable that share
similar semantics and contexts. The set of peers enables ef-
fective cross-checking for potential missing check cases of
the critical variable. (4) At last, to precisely detect missing-
check cases, we construct constraints from the conditional
statements in the peer slices and model them based on their
semantics (e.g., the condition type in conditional statements).
The modeled constraints allow CRIX to cross-check slices for
detecting missing-check bugs, in a semantic-aware manner.

With the new techniques, CRIX’s analysis is scalable,
semantic- and context-aware, and the data-flow analysis en-
gine in CRIX is inter-procedural, flow-, context-, and field-
sensitive. By focusing on the small set of automatically iden-
tified critical variables, CRIX can scale to large programs like
the Linux kernel. The peer-slice construction allows CRIX
to reason about potential missing-check cases in a semantic-
and context-aware manner, and the constraint modeling and
cross-checking enable CRIX to infer the criticalness of crit-
ical variables. As a result, CRIX is able to effectively and
precisely detect missing-check bugs in complex and large
system software such as the Linux kernel.

We have implemented CRIX on top of LLVM as multiple
static-analysis passes. We chose the Linux kernel as the ex-
perimental target given its prevalence and complexity (more
than 25 million SLOC). CRIX finished the analysis for the
whole Linux kernel in about one hour and reported many
missing-check cases. By manually investigating the top 804
missing-check cases reported by CRIX, we confirmed 278
new missing-check bugs. We also submitted patches for all
of them to the Linux maintainers. Out of these patches, 151
have been accepted, with 134 applied to the mainline Linux
kernel and 17 confirmed. The results show that CRIX is highly
scalable and effective in finding missing-check bugs. We also

1770 28th USENIX Security Symposium USENIX Association

discuss CRIX’s portability in §6 and believe that CRIX can be
easily extended to detect missing-check bugs in other system
software.

We make the following contributions in this paper.

• A new system for missing-check bug detection. Missing-
check bugs constitute the root cause of the majority (59.5%)
of recent security vulnerabilities. We propose a semantic-
and context-aware approach to scalably and effectively
detect missing-check bugs in OS kernels. The resulting
system, CRIX, is open sourced 1 .

• Multiple new general techniques. We propose multiple
new general techniques in CRIX, which would benefit other
research. In particular, the peer-slice construction identi-
fies code paths that share similar semantics and contexts,
which is useful for general differential analysis. The auto-
mated critical-variable inference finds a small set of targets
that deserve precise analysis and protection, which narrows
down target scope and could improve the performance for
techniques such as fuzzing and data-flow integrity. The
two-layer type analysis refines indirect-call targets, with-
out introducing false negatives, which is also useful for
inter-procedural static analysis, control-flow integrity, and
program debloating.

• Numerous new bugs in the Linux kernel. With CRIX,
we found a large number of new missing-check bugs in
the Linux kernel, which may cause critical security and
reliability issues to the Linux kernel used by billions of
devices. We reported these new bugs and have worked with
Linux maintainers to fix many of them.

The rest of this paper is organized as follows. We present
the study on missing check bugs in §2, the design of CRIX in
§4, implementation of CRIX in §5, evaluation of CRIX in §6.
We further discuss the extension and limitations of CRIX in
§7. We present related work in §8, and conclude in §9.

2 Missing Checks in OS Kernels

To propose an effective approach to finding missing-check
bugs, we first study the characteristics of previously reported
missing-check bugs.

Bug-set collection. We collect previously reported missing-
check bugs from NVD [26]. We first selected the recent 200
vulnerabilities that were reported during 2017 and 2018. Out
of them, we then selected the ones fixed by enforcing security
checks, which returned us 119 (59.5%) vulnerabilities. We
finally took the missing-check bugs leading to these vulnera-
bilities as the bug set for our study.

1https://github.com/umnsec/crix/

2.1 Impact of Missing-Check Bugs

To assess the impact of missing-check bugs, we investigated
(1) what percent of security vulnerabilities are caused by
missing-check bugs, (2) common classes of security vulnera-
bilities caused by missing-check bugs, and (3) severe security
impact of missing check–related vulnerabilities.
Percent of missing check–related vulnerabilities. As we
mentioned in the bug-set collection, a majority (59.5%) of
recent security vulnerabilities were caused by missing-check
bugs. This is expected because common vulnerabilities such
as out-of-bound access and access-control errors are typically
fixed with security checks.
Common classes of missing-check impact. We then classi-
fied the security impact of the 119 missing-check bugs based
on the classification provided by CVEDetails [48]. We found
that missing-check bugs can introduce at least ten classes of
vulnerabilities. Table 1 shows the six most common classes.
In particular, more than half of the missing-check bugs may
result in denial-of-services, and more the 52% of them may
result in other severe impacts. Some missing-check bugs may
have multiple impacts, so the total number is > 100%.

DoS Over Bypass Info Memory Code
flow privi. leak corrupt exec.

51.2% 16.0% 14.3% 11.7% 6.7% 3.4%

Table 1: Common security impacts of missing-check bugs.

Severe security impact. We also looked into the most severe
vulnerabilities from 2017 to 2018 that have a CVSS (Common
Vulnerability Scoring System) score 10 (the highest severity
level) from the Linux kernel. We in total found 15 such vulner-
abilities. Specifically, we found that 11 of these vulnerabilities
are caused by missing-check bugs. The targets of the missing
checks in these vulnerabilities include buffer length, function
return value, pointer value, and permissions. Correspondingly,
the missing-check bugs will cause severe impacts, including
buffer overflow, use-after-free, memory corruption, permis-
sion pass, which will finally result in data losses, information
leaks, and even attackers control of the whole system. Figure 2
shows an example of a severe missing-check bug (CVE-2017-
18017) with a CVSS 10. The attacker-controllable len and
tcp_hdrlen are used as a loop-termination condition for mem-
ory access. Missing the security checks for these variables
will result in denial of service, information leak, and memory
corruption.

2.2 Targets of Security Checks

According to our analysis of the missing-check bugs, gener-
ally, security checks have two classes of targets: state variables
and critical-use variables.

USENIX Association 28th USENIX Security Symposium 1771

https://github.com/umnsec/crix/

1 /* Linux: net/netfilter/xt_TCPMSS.c (CVE-2017-18017) */
2 static int tcpmss_mangle_packet(struct sk_buff *skb,
3 unsigned int tcphoff, ...) {
4 tcph = (struct tcphdr *)(skb_network_header(skb) + tcphoff);
5 tcp_hdrlen = tcph->doff * 4;
6 /* Security checks for both "len" and "tcp_hdrlen" */
7 if (len < tcp_hdrlen || tcp_hdrlen < sizeof(struct tcphdr))
8 return -1;
9 }

Figure 2: A missing-check bug causing multiple severe security
impacts: denial of service, information leak, and memory corruption.
The bug is assigned with ID CVE-2017-18017.

State variables. State variables indicate if the current execu-
tion is in an erroneous state, e.g., if an operation is successful
or not. According to the C programming convention, a return
value of a function often serves as an indicator of execution
states. State variables are prevalent in OS kernels because ker-
nel operations are error-prone. OS kernels have to frequently
use and check state variables to ensure that an operation is
successful. A special feature of state variables is that they are
often used in only security checks but not any other function-
related operations such as arithmetic operations. Line 4 in
Figure 3 is an example of checking the state variable ret,
which is used only in the security check at line 4. In function
btrfs_search_slot(), different error codes are returned for
indicating various erroneous states, which should be checked
in callers.
Critical-use variables. Variables used in critical operations
are another common class of check targets. Intuitively, vari-
ables should be checked before being used in a critical op-
eration. Common critical-use variables include pointers in
dereferencing, offsets in array indexing, operands of binary
operations such as arithmetic division, and parameters in crit-
ical functions (e.g., memcpy()) that may cause security is-
sues. Line 9 in Figure 3 is an example of checking the vari-
able tx_out before it is being used in the critical function
dmaengine_submit() which internally dereferences tx_out.

1 /* Linux: fs/btrfs/inode-map.c */
2 ret = btrfs_search_slot(NULL, root, &key, path,0,0);
3 /* "ret" is a state variable for the search operation */
4 if(ret < 0)
5 goto out;
6

7 /* Linux: drivers/crypto/omap-des.c */
8 /* "tx_out" is checked before "dmaengine_submit" uses it */
9 if(!tx_out)

10 return-EINVAL;
11 dmaengine_submit(tx_out);

Figure 3: Examples of check targets. ret is a state variable checked
in line 4, and tx_out is checked at line 9 because it is used by the
critical function dmaengine_submit().

3 Overview of CRIX

The goal of CRIX is to detect missing-check bugs in OS ker-
nels. To this end, CRIX automatically infers whether a vari-

able in the target OS kernel requires a security check. The
detection of missing-check bugs, in general, is to answer the
following questions: (1) does a variable require a security
check, (2) if possible, what security check should be enforced
for the variable, and (3) is such a security check present. An-
swering these questions requires the understanding of the con-
texts and semantics of the code, which is challenging. Prior
research [41] has shown the promise of statistical inferences
in finding bugs. Such inferences identify inconsistent cases as
potential bugs, which avoids the hard problem of understand-
ing contexts and semantics. It makes sense that a deviation
from common patterns is often problematic and thus is likely
a potential bug, given that a majority of the code is correct.
In CRIX, we also employ the general idea of statistical infer-
ence to find missing-check bugs. However, compared to the
previous detection, CRIX is context and semantic aware.

Figure 4 shows the overview of CRIX. CRIX consists of
three phases: (1) preprocessing phase which prepares a global
call graph, control-flow graph, and alias results; (2) analysis
phase which performs the key analyses to identify critical
variables, construct peer slices for them, and construct con-
straints for peer slices, and (3) postprocessing phase which
cross-checks constraints of peer slices and reports missing-
check bugs.

In the first phase, given the LLVM IR (intermediate repre-
sentation), CRIX constructs a precise global call graph, which
is not only foundational to all the following data-flow anal-
ysis, but also enables the peer-slice construction, as will be
presented in §4.3. Since LLVM does not provide targets of
indirect calls, CRIX employs a technique, namely two-layer
type analysis, to precisely find indirect-call targets.

In the second phase, CRIX first identifies critical vari-
ables. Because a large number of variables are non-critical
in OS kernels, conservatively checking all variables would
cause significant scalability and false-positive issues. CRIX
therefore first identifies critical variables (see §2.2). The
intuition behind the critical-variable identification is that
security-checked variables are typically critical. Therefore,
CRIX identifies the security-checked variables as critical vari-
ables, which however requires CRIX to first identify security
checks. Since the majority of conditional statements are not
security checks [43], CRIX employs an approach to identify
security checks, as presented in §4.2.1.

Since the critical variables identified through security
checks have already been checked in the current code paths,
CRIX instead tries to identify missing-check bugs in the peer
code paths. To this end, CRIX constructs peer slices that share
similar semantics and contexts with the current code path
checking the critical variable. To find substantial peer slices,
given a critical variable, CRIX identifies the sources and uses
of the critical variable, and employs data-flow analysis to find
slices for each source and each use (see §4.3).

A slice of a source or a use of a critical variable may or
may not contain a security check. A naive approach is to iden-

1772 28th USENIX Security Symposium USENIX Association

Construct global call-graph
 - Two-layer type analysis
 - Type-escaping analysis
Loop unrolling
Pointer/alias analysis

.c files

source code LLVM IR

Preprocessing Phase

Postprocessing PhaseAnalysis Phase
.bc files

Missing
check
bugs

- Global call graph
- Control-flow graph
- Alias results

Identify critical variables
 - Find sources
 - Find uses

Construct peer slices for
each source/use
 - Categorize slice sets

Construct and model
constraints for each slice

Cross-check constraints in
peer slices
 - Infer criticalness
 - Detect deviations as bugs

Suggest bug fixes
and report bugs

Figure 4: The overview of CRIX. CRIX has three phases. It takes as input LLVM IR and produces missing-check bug reports.

tify any slices that do not have a security check as potential
missing-check bugs. This will however introduce significant
false positives because (1) the source or the use may not be
very “critical”; (2) even if security checks are present in some
slices, they may not be semantically equivalent. To address
this problem, CRIX first extracts the constraints from the con-
ditional statements in the peer slices and models them in a
special way (see §4.4) that can both preserve the semantics
and facilitate the following bug detection.

With the modeled constraints extracted from conditional
statements, in the last phase, CRIX cross-checks (statistical
analysis) them to infer the “criticalness” of the source or the
use based on how common the constraints are, i.e., how fre-
quently the source or use is checked in its peer slices. If the
criticalness is significant, not having a constraint would be
identified as a deviation, and a slice that does not have the
constraint would be identified as a potential missing-check
bug. In the end, CRIX suggests bug fixes based on the con-
straints in the peer slices and reports the details for further
manual confirmation.

4 Design of CRIX

In this section, we present the design of the key techniques
in CRIX, including the identification of indirect-call targets,
construction of peer slices, construction and modeling of con-
straints, and statistical analysis of constraints for reporting
missing-check cases. Other techniques such as alias analysis
and loop unrolling will be presented in the implementation
section (§5).

4.1 Identifying Targets of Indirect Calls

A precise call graph serves as a foundation for a variety of pro-
gram analyses and security defense mechanisms. In particular,
any inter-procedural data- and control-flow analysis requires a
precise call graph. Control-flow integrity (CFI) [1, 9, 10, 25]
and software debloating [28] techniques also require a precise
call graph. Unfortunately, in large programs, constructing a
precise call graph is an open problem in general because of
the challenge of finding the targets of indirect calls. At compi-
lation time, it is hard to know which address-taken functions
would be valid targets of an indirect call.

Existing approaches for finding the targets of indirect
calls can be classified into two categories: pointer analy-
sis [2, 3, 8, 22, 36, 37] and type analysis [4, 9, 25, 40, 42].
Pointer analysis–based approaches aim to find the point-to
relationships between dereferenced function pointers and
address-taken functions. Such approaches have fundamen-
tal limitations. While unsound pointer analysis will miss valid
function targets, sound pointer analysis often introduces a
large number of false positives—many unrelated functions
are included as potential targets of an indirect call. Further, the
pointer analysis itself requires a precise call graph. Whenever
the pointer analysis encounters an indirect call, an expensive
recursive analysis must be employed to find the targets.

Due to the limitations with pointer analysis–based ap-
proaches, recent CFI research opted for type analysis. Type
analysis–based approaches try to match the number and types
of arguments of an address-taken function with the ones of
an indirect call. Matched functions are considered potential
targets of the indirect call. Such approaches have been used
in practice. For example, LLVM-CFI [4] employs such a type
analysis. Type analysis–based approaches are conservative in

USENIX Association 28th USENIX Security Symposium 1773

that all possible targets are included as long as function-type
casting, which is rare, is handled properly [25]. However, they
tend to suffer from false positives—many unrelated functions
are included as valid targets. This will cause significant in-
accuracy in the following data-flow analysis. The problem
becomes even more critical in CRIX because the construction
of peer slices heavily relies on a precise call graph.

To the best of our knowledge, the hybrid approach pro-
posed by Ge et al. [10] for finding indirect-call targets in OS
kernels is the most precise one. It employs both taint analy-
sis and type analysis to find the targets. Specifically, it first
taint-tracks the propagations of function pointers to identify
indirect-call targets. Moreover, for function pointers stored in
struct-type objects, because the function pointers should typ-
ically be loaded from the objects of the same struct type, the
approach uses the struct type to further restrict the indirect-
call targets. To avoid false negatives, the approach has two
assumptions: (1) the only allowed operation on a function
pointer is assignment, and (2) there exists no data pointer to
a function pointer. The approach uses static taint analysis to
detect and report violations which will be fixed manually. In
addition to the hybrid analysis, the approach also analyzes
assembly code, which further restricts the indirect-call targets.

4.1.1 Two-Layer Type Analysis

To improve the existing type analysis–based approaches in
finding indirect-call targets, we propose two-layer type anal-
ysis, which aims to dramatically refine the targets produced
by previous type analyses. The first-layer type analysis uses
function types to restrict indirect-call targets. The second-
layer type analysis instead uses struct type to further restrict
the targets, which is based on a similar observation as in the
approach proposed by Ge et al. [10]. Specifically, in large
systems such as OS kernels, the majority of taken addresses
(e.g., 88% for the Linux kernel, according to our study in
§6) of functions are first stored to a function-pointer field of
a struct, and later, to dereference the addresses in indirect
calls, they must be loaded from the struct. In LLVM IR, the
type information of the struct in both store and load opera-
tions is present. Intuitively, in these cases, function addresses
that are never stored in the specific struct will not be valid
targets of the indirect calls that load the function addresses
from the struct. This way, by further matching the struct
types in the store and load operations, we can further refine
the indirect-call targets. 12% of function addresses in the
Linux kernel are not stored to struct. A common example
in the Linux kernel is that a function address is stored to a
function-pointer variable which is further used as an argument
of another function. Indirect calls dereferencing these func-
tion pointers will not benefit from the second-layer struct-type
matching.

Figure 5 shows an example, in which the addresses of
functions adp5589_reg and adp5585_reg are stored in the

reg field of a struct with type adp_constants, in line 10 and
16, respectively. Later on, the addresses are loaded from the
field of the struct of the same type and dereferenced at line
4. Our two-layer type analysis finds exactly only two targets
for the indirect call because there are no any other functions
whose addresses are ever stored to the field of the struct type.
In comparison, since the indirect call has only one argument
of a basic type, traditional one-layer type analysis matches 20
functions as targets for the indirect call, 18 of which are false
positives.

A struct may have multiple fields that hold function point-
ers. To further improve the analysis accuracy, our type anal-
ysis is field-sensitive. That is, it recognizes which field is
holding the particular function pointer, by analyzing the off-
set of the field in the data struct. In some rare cases, when
the offset is undecidable because the indices are non-constant,
we roll back the analysis to be field-insensitive.

1 /* drivers/input/keyboard/adp5589-keys.c */
2 static int adp5589_gpio_add(...) {
3 /* Indirect call: "kpad->var" is of type "adp_constants" */
4 kpad->var->reg(ADP5589_GPIO_DIRECTION_A);
5 }
6

7 unsigned char adp5589_reg(unsigned char reg)
8 static const struct adp_constants const_adp5589 = {
9 // address of "adp5589_reg" assigned to the field "reg"

10 .reg = adp5589_reg,
11 };
12

13 unsigned char adp5585_reg(unsigned char reg)
14 static const struct adp_constants const_adp5585 = {
15 // address of "adp5585_reg" assigned to the field "reg"
16 .reg = adp5585_reg,
17 };

Figure 5: An example of how a function pointer is stored to and
later loaded from a field of a struct.

4.1.2 Type-Escaping Analysis for False Negatives

Our two-layer type analysis is sound as long as the struct
types holding function addresses do not escape—we cannot
decide what function addresses a struct can hold. When a
struct, say structA, has escaped, a function address stored
to a different struct, say structB, can be loaded from the
memory with structA; however, in this case, the function ad-
dress will be missed by the type analysis because we cannot
find that the function address is ever stored to structA but
only structB. Such escaping cases exist when (1) the struct
holding the function addresses is cast to or from a differ-
ent type; (2) the function-pointer field of struct is stored to
with a value of a different type (e.g., unsigned long). These
cases may make the function addresses a struct can hold
undecidable.

To handle this problem, we use conservative type analysis
to find all store and casting operations and analyze the types
in the sources and destinations based on the aforementioned
criteria for deciding escaping cases. When an escaped type

1774 28th USENIX Security Symposium USENIX Association

is found, we conservatively discard the type in our two-layer
type analysis. That is, if the function pointer of an indirect
call is loaded from an escaped type, we use only one-layer
type analysis for this indirect call. This way, we ensure that
our two-layer type analysis does not introduce extra false
negatives to existing one-layer type analysis.

Although CRIX shares the similar insight into further re-
stricting indirect-call targets with the approach proposed by
Ge et al. [10], CRIX differentiates itself from the approach.
CRIX employs a two-layer design that allows the type anal-
ysis to be elastic. Whenever the second-layer type analysis
fails, CRIX falls back to the first-layer type analysis. Second,
the escaping analysis conservatively finds and discards invalid
types to ensure the soundness.

4.2 Identifying Critical Variables

System software has a large number of variables. Conserva-
tively checking all of them is not only unscalable but also
generates an overwhelming number of false reports. Intu-
itively, important variables are often protected with security
checks. We say that a variable is a (potential) critical variable
if it is validated in a security check. By identifying security
checks and their targets, we can identify critical variables.
Note that a critical variable has different levels of criticalness.
As will be shown §4.4, the criticalness is inferred based on
check ratio of the occurrences of the critical variable. In this
section, we first focus on identifying critical variables.

4.2.1 Identifying Security Checks for Critical Variables

Since we define validated variables in security checks as crit-
ical variables, CRIX first identifies security checks using a
similar approach proposed in LRSan [43]. Specifically, check-
ing failures typically require failure handling which has clear
patterns: returning an error code or calling an error-handling
function. We say that an if statement is a security check if
its two branches satisfy the following two conditions: (1) one
branch handles a checking failure, and (2) the other branch
continues the normal execution. Note that an if statement
whose two branches both handle checking failures is not a
security check. Therefore, the key step to identify security
checks is to determine whether the branches have the failure-
handling patterns. Two typical failure-handling primitives are
returning an error code and calling an error-handling function.
Since LRSan supports only error-returning cases, we extend
the idea by supporting error-handling functions.

System software such as the Linux kernel has a small num-
ber of basic error-handling functions. Such functions are often
critical and implemented in assembly. For example, BUG(),
panic(), and dump_stack() in Unix-like OS kernels are func-
tions for handling unrecoverable errors. Moreover, functions
such as pr_err() and dev_err() are used for reporting error
messages, which have clear patterns. Specifically, such func-

tions typically have a name or an argument with a severity
level (e.g., KERN_ERR, KERN_CRIT, and KERN_EMERG). Moreover,
such functions take a variable number of parameters. Detect-
ing these patterns is straightforward for a static analysis tool.
To ensure that our heuristic-based approach reports correct
error-handling functions, we manually investigated the re-
sults and filter out false-positive cases. In total, we found 531
error-handling functions (available in the code repository). In
comparison, while LRSan reports only 131K security checks,
CRIX reports 308K security checks. Once we identify security
checks, we extract the checked targets as critical variables.

4.2.2 Identifying Sources and Uses of Critical Variables

In the next step, CRIX collects the sources and uses of the
critical variables (i.e., checked variables). It is important to
identify sources (where a critical variable propagates from)
and uses (where a critical variable is used) of critical variables
for two reasons. First, criticalness of a variable can propagate.
When a critical variable is moved to another variable, the
destination variable also becomes critical. By identifying the
sources and uses, we can identify families of critical variables
that propagate from the same sources or propagate to the
same uses. Second, by identifying a family of critical vari-
ables, we can analyze how frequently they are checked, which
is used to infer the criticalness of a source or a use. We real-
ize the identification of sources and uses through a standard
inter-procedural data-flow analysis—backward analysis for
identifying sources and forward analysis for identifying uses.
The inter-procedural data-flow analysis uses the following
definitions to identify sources and uses.
Definition of sources. If a value is never critical, we do
not need to include it for further analysis. Therefore, we in-
clude only potentially-critical values as sources. The inter-
procedural backward data-flow analysis collects the following
variables as sources.

• Constants. Constants such as error codes are critical.
• Return values and parameters of certain functions. Input

functions (e.g., copy_from_user and get_user) obtain in-
puts from the external entities, which are untrusted. In addi-
tion, functions implemented as handwritten assembly often
perform critical operations. We include the corresponding
parameters or return values of such functions as sources.

• Global variables. Global variables may contain critical val-
ues that may propagate to the whole program.

• Others. When CRIX cannot find a predecessor instruction,
the current values are marked as sources.

Note that we do not include allocations as a source because
they become critical only when critical values are written to
the allocated memory.
Definition of uses. Further, the following operations are
defined as potentially critical uses of critical variables.

USENIX Association 28th USENIX Security Symposium 1775

• Pointer dereference. Any pointer dereferencing operation
is a critical use of the pointer variable.

• Indexing in memory accesses. Using the offset variable in
memory access is also a critical use.

• Binary operations. We conservatively treat binary opera-
tions such as arithmetic division as critical uses.

• Functions calls. When none of the above is found, we take
the closest function call that takes the critical variable as a
parameter as a critical use.

• None. If none of the above is found, we deem that this
critical variable does not have any use. This is common for
critical variables that are error codes.

Algorithm 1: Collect sources and uses of critical vari-
ables

1 collect_src_use_interprocedural(CVSet, FuncSet);
Input: CV Set: Critical variables, i.e., identified checked variables;

FuncSet: Input and assembly functions, collected in the
pre-processing phase

Output: SrcSet: Potentially critical sources of critical variables;
UseSet: Potentially critical uses of critical variables

2 SrcSet←UseSet←∅;
3 BackupSet←CV Set;
// Collect sources

4 while Is_Not_Empty(CVSet) do
5 CV ← pop top element from CVSet;
6 if CV is Constant and CV is ErrorCode then
7 SrcSet←{CV}

⋃
SrcSet;

8 else if CV is Global variable then
9 SrcSet←{CV}

⋃
SrcSet;

10 else if CV is return value or param. of a function in FuncSet
then

11 SrcSet←{CV}
⋃

SrcSet;
12 else if CV has no parents (predecessors) then
13 SrcSet←{CV}

⋃
SrcSet;

14 else
15 Parent← Predecessor of CV, via Backward Analysis;
16 CV Set←CV Set

⋃
Parent;

17 end
18 end
// Collect uses

19 CV Set← BackupSet;
20 while Is_Not_Empty(CVSet) do
21 CV ← pop top element from CVSet;
22 CVUseSet← Forwardly collect immediate uses of CV ;
23 for Use ∈CVUseSet do
24 if Use is a pointer dereference or memory access then
25 UseSet←{Use}

⋃
UseSet;

26 else if Use is a binary operation then
27 UseSet←{Use}

⋃
UseSet;

28 else if Use is a parameter of function then
29 UseSet←{Use}

⋃
UseSet;

30 else
31 CV Set←CV Set

⋃
{Use} ;

32 end
33 end
34 end
35 return SrcSet, UseSet;

Algorithm for identifying sources and uses. Based on the
definition of sources and uses, the algorithm presented in Al-

gorithm 1 collects all potentially critical sources and uses. The
algorithm takes as input the set of critical variables (CVSet),
and set of functions (FuncSet). CVSet are the checked vari-
able extracted from a security check, and FuncSet is the set of
pre-collected input functions (e.g., copy_from_user) and as-
sembly functions. FuncSet is collected in the pre-processing
phase of the CRIX, concurrently with security-check identifi-
cation, as will be shown in §5. The algorithm then produces
two sets as the output: SrcSet and UseSet, the source and
use sets, respectively. CVUseSet contains the immediate and
forward uses of the current CV, which are returned by LLVM’s
value.users() function. As shown in Algorithm 1, the anal-
ysis is recursive and inter-procedural. Note that the algorithm
is used to collect potentially critical sources and uses, but not
to infer criticalness. Criticalness is instead inferred by mea-
suring how frequently a critical variable is checked before
being used, as will be shown in §4.4.

4.3 Constructing Peer Slices

At this step, we have the sources and uses of critical variables.
Seemingly, we can construct slices for the critical variables
forwardly from their sources and backwardly from their uses,
and cross-check the slices to find check deviations as potential
missing-check cases. Such a naive approach will suffer from
at least two problems. First, the slicing will easily lead to path
explosion [15] given the complexity of OS kernels. Second,
if slices do not share similar semantics and contexts, we can-
not effectively detect missing-check bugs because missing
a check in an unrelated slice does not necessarily indicate a
potential bug. Consequently, such an approach will lead to
significant false positives.

To solve these problems, for a source or a use, we must
construct its peer slices. Such peer-slice construction should
satisfy two requirements: (1) the construction should yield
sufficient peer slices to enable cross-checking; (2) the peer
slices should share similar semantics and contexts. Given a
control-flow graph, we observed that call (both direct and
indirect) and return instructions often generate peer paths.
In particular, for sources, indirect calls and return instructions
often have substantial targets. As the example shown in Fig-
ure 5, indirect call pad->var->reg() serves as a dispatcher
that may target multiple semantically similar callee functions
(e.g., adp5589_reg and adp5585_reg). Since the arguments
in the callee functions all come from the same caller, they
also share the similar contexts. For uses, when the used criti-
cal variable comes from an argument of the current function,
direct calls to the function also generate substantial edges
from the callers to the function (callee). Since the arguments
passed from various callers to the same callee function, they
are used as similar semantics in similar contexts.

Figure 6 illustrates how we find different classes of peer
paths for sources and uses. For each critical-variable source,
we perform forward data-flow analysis for it. When encoun-

1776 28th USENIX Security Symposium USENIX Association

indirect call with
sources as arguments

peer callees taking

same source

the same callee using
the critical variables

return with sources as
return value or param.

... ...

...

peer callers taking
same source

peer callers passing
param. for uses

icall ret

func

Case A Case B

Case C

Figure 6: Different cases generating peer paths. icall is indirect
call; func is the callee taking critical variables from peer callers.

tering an indirect call that takes the source as a parameter,
we collect all the indirect-call callees as a set of peer paths.
Similarly, when encountering a return instruction, we analyze
whether the critical variable is returned or written into the
memory pointed to by an argument (in this case, the critical
variable may be further used in the callers through a pointer
parameter). If so, we collect callers (starting from the next
instruction following the call) as a set of peer paths. Our
analysis is recursive. That is, the forward data-flow analysis
continues to find more sets of peer paths until the end of the
propagation of the critical variable or a critical use of the
variable is found. For uses, we instead perform backward
data-flow analysis from a use of a critical variable. If the criti-
cal variable comes from an argument of the current function,
all callers of the function are collected as peer paths. The
backward analysis is also recursive and ends until the source
of the critical variable is found. Since a peer path may further
contain multiple sub-paths, we use a simple BFS algorithm to
flatten all sub-paths. Therefore, each peer path can be viewed
as a single path. Finally, we construct peer slices by slicing
the peer paths. The slicing ends at a conditional statement or
the end of the path. Therefore, each slice has at most one con-
ditional statement. Note that ending at the closest conditional
statement would not cause false negatives because the slices
sets are collected in a recursive manner, and our detection in
§4.4.2 will cross-check each peer set.

For each critical-variable source and use, the peer-slice con-
struction produces multiple sets of peer slices and categorizes
them into four classes, each corresponds to a case in Figure 6.

• Source-Ret corresponds to case B. A critical variable is
returned as the return value to multiple peer callers.

• Source-Param also corresponds to case B. However, in this
case, a critical variable is “returned” an output parameter
to multiple peer callers.

• Source-Arg corresponds to case A. A critical variable is
passed to peer callees through an indirect call.

• Use-Param corresponds to case C. A critical variable used
in a function is passed in from multiple peer callers.

4.4 Constructing and Cross-Checking Check
Constraints

Until now, CRIX has produced multiple sets of peer slices
of different classes for each critical-variable source and use.
Each slice may or may not contain a conditional statement.
The next step of CRIX is to cross-check the slices to detect de-
viations in the absence of security checks as potential missing-
check cases. We choose to cross-check conditional statements
instead of security checks (a subset of conditional statements)
in this step for two reasons. First, the security-check identifi-
cation part in CRIX have false negatives and may not identify
all security checks; cross-checking security checks only may
have significant false negatives because deviations can be
normalized. Second, although cross-checking all conditional
statements may introduce false positives, our fine-grained
modeling for conditional statements can mitigate this issue.

A simple approach to cross-check slices for deviations is
to treat conditional statements equally and quickly find devi-
ating slices that do not have any conditional statement. Such
coarse-grained analysis may have false negatives because con-
ditional statements may have completely different semantics,
and having a conditional statement does not mean the slice
has checked the source or use. On the other hand, exactly
comparing concrete values in conditional statements would
be too restrictive, leading to false positives. For example,
when two slices have if (len < 8) and if (len < 16), re-
spectively, treating them as different checks is too aggressive
because both of them indeed enforce length checks. To avoid
these problems, we must “qualitatively” understand the se-
mantics of conditional statements in the slices. To this end, we
propose to construct and model constraints from conditional
statements. Note that the modeling focuses on the seman-
tics of conditional statements, which does not consider their
positions in the slices.

4.4.1 Modeling Conditional Statements as Constraints

As described in §4.3, a slice is flattened as a single code path
using BFS, and a slice has at most one conditional statement.
The goal of this step is to answer what classes of semantics a
conditional statement has, with a proper granularity. We thus
use two empirical rules to model the conditional statements
based on the semantics of typical conditions and comparison
operators. The modeled conditional statements will be cross-
checked for missing-check bugs, as shown in §4.4.2.

1. If the conditional statement checks the return value of a
function call, we identify the function’s signature as the
constraint. For example, if a variable is checked in a con-
ditional statement, if (IS_ERR(ret)), we model the con-
straint as “IS_ERR(int)”. This is, the slice uses IS_ERR()
to check the source or use.

2. Otherwise, we model the conditional statement as
“<opcode_type, operand_type>”, where opcode_type

USENIX Association 28th USENIX Security Symposium 1777

represents the type of the comparison, such as eq, ne, and
lt; and operand_type represents the type of the condition
operand. The type can be var (a variable), zero, positive
constant, and negative constant. For example, if a con-
dition statement is if (len < 8), the constraint will be
modeled as “lt positive”.

4.4.2 Detecting Deviations as Potential Bugs

With the modeled constraints for all slices in a set, we cross-
check them to find deviations. The idea of the detection is to
calculate the relative frequency (RF) [18] for each con-
straint in the set. Since different constraints have different fre-
quency distributions, we calculate the RF for each constraint
in the set separately. More specifically, given a constraint, we
define Nnc as the number of slices that do not have the con-
straint, and define Nt as the total number of slices in the set.
With these two numbers, the RF is defined as in Equation 1.

RF =
Nnc

Nt
(1)

The detection works as follows. Given a constraint in a
peer-slice set, the detection counts how many slices do not
have this particular constraint. Note that a slice that has a
different constraint will also be counted. The count serves as
Nnc. Since Nt is the total number of slices in the set, we can
quickly obtain it and calculate the RF for the given constraint.
If the RF is very small, i.e., most slices have the constraint,
the detection reports slices that do not have the constraint as
potential missing-check cases. A slice set may have multiple
constraints, and the detection will go through the steps for
each constraint in the slice set.

5 Implementation

We have implemented CRIX as multiple passes on top of
LLVM, including a pass for constructing call graph and un-
rolling loops, a pass for finding security checks and critical
variables, and a pass for detecting and reporting missing-check
cases. CRIX’s source code contains 4.5K lines of C++ code.
The rest of the section describes some interesting implemen-
tation details in each phase.

5.1 Preprocessing Phase

Disabling inlining and IR pruning. To facilitate peer-slice
construction, we aim to preserve callsites as much as possible.
To this end, we chose to disable inlining by modifying Clang.
A side effect of disabling inlining is that inline functions
defined in header files will be copied to each module that
uses them, leading to significant redundancy in LLVM IR.
To prune the IR, we leverage debugging information to map
the functions to its source code. This way, we can figure out
multiple functions in IR share the same source code, and if

so, we keep only one copy in the IR and discard all other
copies. The pruning strategy reduces the original size of IR
by approximately 30%.

Identifying indirect-call targets. To realize the two-layer
type analysis, we first identify all store operations (either a
store instruction in LLVM or a struct initializer) that assign
a function address to a variable. We then analyze the type of
the memory holding the variable. At this step, our analysis is
conservative: the variable must be loaded from a pointer, and
the pointer must be pointing to a field of a data structure. That
is, the pointer must be a GetElementPtrInst in LLVM. With
the type information in LLVM IR, we can then extract the base
struct type from the pointer. Note that, we do not recursively
find the struct type; if the pointer is not GetElementPtrInst,
or the base type of the GetElementPtrInst is not a struct or
is an aggregated type (e.g., union), we stop the analysis for the
particular function address and roll back to the traditional one-
layer type analysis. The filed-sensitive analysis is realized
by analyzing the indices in the GetElementPtrInst which
includes the index of the accessed field into the base type. The
process of this step goes through all address-taken functions
in all modules. The output of this step is a map from the hash
of the type to the function addresses.

A challenge in implementing the two-layer type analysis to
conservatively capture escaping types. As described in §4.1.2,
we have a conservative policy to identify escaping types. To
implement the type-escaping analysis, we analyze the operand
types in cast and store operations (both instructions and global
static initializers). If the operand types satisfy the policy, we
identify them as escaping types.

After that, we match the second layer type for indirect calls.
Similarly, we analyze the type of the memory holding the
function pointer (address) in the same way—analyzing the
corresponding GetElementPtrInst. By querying the map, we
can find the matched functions for the indirect call. If we
cannot find a match, we again roll back to the one-layer type
analysis for the indirect call.

Unrolling loops. To avoid path explosion, we chose to unroll
loops by treating for and while statements as if statements,
which is a common strategy used in practice [45]. A loop has
two special basic components: header block, latch block. A
header block is the entrance node for a loop; a latch block
contains an edge back to the header block. In order to unroll
loops, we delete the back edge and add a new edge from the
latch block and the successor block of the loop.

Pointer analysis. We perform points-to analysis for each
pointer to a memory location within a function, relying on
LLVM’s AliasAnalysis infrastructure. The MayAlias results
conservatively include pointers that may refer to the same
object; two pointers referring to different fields of an object
may also be included as aliases. To refine the results, we
perform field-sensitive data-flow analysis for each pointer
that is ever used in memory load/store or function calls as

1778 28th USENIX Security Symposium USENIX Association

parameters. Pointers that are validated to refer to different
fields are excluded from the MayAlias results. A second issue
with the points-to analysis is its significant runtime overhead,
and we observed that this is mainly caused by a small number
of objects that have a large number of pointers. We mitigate
the problem by limiting the maximum number of pointers
an object can alias simultaneously. By setting the number to
1000, our results showed that only 23 functions in the Linux
kernel have aliased memory pointers with size greater than
this limit. After applying the two improvements, the running
time for points-to analysis is reduced from 103 minutes to
only 24 minutes, and the average number of alias pointers of
a object is reduced by 65%.

5.2 Analysis Phase

Modeling input functions and collecting assembly func-
tions. In CRIX, specific return values and parameters of in-
put functions and assembly functions are defined as sources
(§4.2.2). As such, we need to collect a set of such functions.
We define a function as input function if it may fetch data from
outside. For example, copy_from_user(dst, src, size)
copies the content from user-space memory src into the
kernel-space memory dst. In total, we empirically collected
36 input functions (Table 3). We also specified which pa-
rameter or if the return value of these functions holds the
inputs. Similarly, the kernel contains lots of assembly code
as optimizations for performance reasons. Such functions are
typically critical. Since LLVM does not support analysis of as-
sembly code, we also model the assembly functions and treat
them as sources. Identification of assembly functions is real-
ized by scanning through LLVM IR files for isa<InlineAsm>
instructions.

5.3 Postprocessing Phase

Selecting threshold for relative frequency. Missing checks
within the Linux kernel are identified using various strategies
described in §4. A case in a peer-slice set that has low rela-
tive frequency will be reported as a potential missing-check
bug. The relative frequency is the ratio of occurrences of a
constraint or “non-constraint” to the size of the peer-slice
set. A uniform threshold for different categories might skew
the results in favor of a particular type of bugs. To solve this
challenge, we provided the relative frequency field as a tuning
parameter and tested the results on various runs for various
categories. We observed that the relative frequency works
best between [0.1, 0.15] to detect sufficient missing-check
bugs with reasonably low false reports, for all the categories.
Generating bug-fixing suggestions. Peer slices of the same
critical variable can reveal many interesting details about the
implementation. For each peer, we are able to reason about
the constraints of the critical variable. Since we have con-
straints for each of the peer slices, one can suggest a possible

security check in a possible location for missing-check cases.
Statistically analyzing the “suggestions” returns us a reason-
able bug fix. As such, CRIX always reports the most common
suggestion to facilitate bug fixing. The report includes the
most common constraint and which function the constraint
should be applied to.
Bug Reporting. After collecting the constraints from the
peer slices and using a user-defined relative frequency, we
rank the missing-check output based on the relative frequency.
we format the report to output the line contains the relative
frequency, the Linux source code, the module containing the
code, the number of times security check was checked, times
missed among the peers, and most importantly, the bug-fixing
suggestion. As expected, reported cases in the top of the
ranking are more likely to be true bugs.

6 Evaluation

We extensively evaluate the scalability and effectiveness of
CRIX using the Linux kernel. We also evaluate the effec-
tiveness of our two-layer type analysis. The experiments
were performed on Ubuntu 16.04 LTS with LLVM version
8.0 installed. The machine has a 64GB RAM and an Intel
CPU (Xeon R CPU E5-1660 v4, 3.20GHz) with 8 cores. We
tested the bug detection efficiency of CRIX, on the Linux
kernel version 4.20.0-rc5 with the top git commit number
b72f711a4efa, the latest patch as on Dec 6, 2018. Using the
allyessconfig, we generated 17,343 LLVM IR bitcode files
to cover as many modules as possible.

6.1 Precision in Finding Indirect-Call Targets

Results. In total, out of 57,299 indirect calls, 45,840 (80%)
enjoyed our two-layer type analysis. 5,019 (8.8%) indirect
calls suffer from type escaping thus disqualify the two-layer
type analysis. Others indirect calls do not load function point-
ers from a struct thus do not trigger the two-layer type
analysis. The high percentage confirms our observation that
most function pointers are stored to and loaded from memory
through data struct. We then calculate the average number
of targets for an indirect call before and after applying our
two-layer type analysis. The results show that the average
number over all indirect calls for traditional type analysis is
134 while it is only 33 for our two-layer type analysis. We fur-
ther calculate the average numbers over indirect calls that can
benefit the two-layer type analysis. The results show that the
average target number is 129 and 9 (i.e., 7%) before and after
using our two-layer type analysis, respectively, which con-
firms that the analysis can dramatically refine the indirect-call
targets.

Measuring the false positives of indirect-call targets is a
challenging problem because of the complexity of pointer
propagation and point-to relationships. Existing CFI tech-

USENIX Association 28th USENIX Security Symposium 1779

niques use the average number of targets to represent the
accuracy of target refinement. Given that CRIX reports only
an average number of 9 for indirect calls that benefited from
the two-layer type analysis, we expect the false-positive rate
of our analysis to be low. In comparison, the hybrid approach
proposed by Ge et al. [10] reports an average number of 6.64
for indirect calls in FreeBSD, and, the number is calculated
over all indirect calls. We believe that the accuracy of the
approach benefits from the combination of taint analysis and
type analysis.

6.2 Analysis Performance and Numbers

CRIX completed the analyses of the kernel for missing-check
cases in 64 minutes, of which pointer analysis required 24
minutes and the remaining analysis to identify and report
missing-check cases required 28 minutes. By running CRIX
over the whole kernel, with a threshold of 0.15, the output
contained 308K security checks from 1,028K conditional
statements, and reported 804 cases.

6.3 Bug Findings

Table 2 presents the bug detection statistics of CRIX, running
on the entire Linux kernel with a constant relative frequency
of 0.15, across categories. We used a fixed number for relative
frequency to avoid inconsistencies while comparing similar
bugs across the various categories. CRIX reported 804 poten-
tial bugs and manual analysis confirmed 278 new bugs. To
manually analyze all the bugs, it took three researchers, a total
of 36 man-hours. We found that the cross-checking results
over peer slices can significantly relieve the manual analysis
by suggesting how and why peers enforce the security checks.
The manual effort was mainly spent in checking if the criti-
cal variable is actually checked because the check may have
been missed by CRIX due to issues such as aliasing. In most
cases, the “suggested” source-check or check-use chains are
across one or two functions, so the manual analysis overall is
straightforward.

We submitted patches for all the bugs. Linux maintainers
accepted 151 of the submitted patches to be applied to the
latest Linux version or future releases. Maintainers confirmed
99 patches within a week of submission confirming the crit-
icalness of fixing missing-check bugs. Figure 1 shows an
example of the new bugs found by CRIX, which can cause
multiple security issues such as NULL-pointer dereferenc-
ing. A detailed list of all the bugs is available in Table 4 and
in Table 5, in the Appendix section. During our interaction
with the maintainers, we not only fixed missing-check bugs
determined by CRIX, but also fixed some other relevant bugs
present in the error paths of security checks including but not
limited to missing/incorrect error handling, missing resource
releases, use-after-free, and dead code.

Further 76 bugs are included in more than one bug category.
That is, these 76 bugs were detected twice, once each while
generating the source and use constraints. However, these
duplicates are within the chosen 804 cases, used to evaluate
CRIX. Accounting for the duplicate bug reporting, the false-
positive rate of CRIX is 65%. We believe this is an acceptable
number for critical software such as OS kernels.

The distribution of bugs is heavily skewed towards driver
code. The report showed 195 bugs in the driver modules and
at least 27 driver modules had more than one missing-check.
These bugs reinforce previous research studies that the driver
code is indeed buggy as well as confirm the effectiveness
of CRIX in detecting new missing checks. Second, we also
computed the latent period of the detected bugs and the av-
erage time between the initial patch and detection is 1,675
days or approximately 4 years and 7 months. A significant
observation is 27 out of these 278 bugs have a latent period
of greater than 10 years and 6 patches’ latent period is greater
than 13 years.

The third interesting finding of our bugs involves the type
of bugs. A total of 79 bugs involve memory allocation on the
heap. Linux developers strictly maintain that every pointer
returned by an alloc-like function be checked for empti-
ness. Interestingly, CRIX identified 11, 5, 11, and 12 calls
of (kzalloc, kmalloc, kcalloc and kmemdup) respectively;
all missing a check on the pointer to the allocated memory for
emptiness. All these bugs can crash a system while derefer-
encing the NULL pointer, as well as provide an attack vector
to launch a denial of service attack by unauthorized users.
The numerous missing-check bugs confirm the effectiveness
of CRIX in identifying security vulnerabilities.

One reason of concern in the output report is the duplica-
tion of bugs across various categories. CRIX performs back-
ward data-flow analysis from use, and a forward data-flow
analysis from source to identify missing-check bugs in var-
ious categories. With a constant relative frequency, a true
missing-check bug will often be reported in both directions.
To simplify our analysis, we ran CRIX performing both analy-
ses at the same time and then eliminated the duplicate records.
While this action does not impact the accuracy of the system,
we observed a non-trivial difference in ranking order of the
bug, when evaluating each category individually.

6.4 False Positives
As presented in §6.3, CRIX has false positives. We have in-
vestigated the causes of false positives. In this section, we
present the main classes of causes.
Inaccurate points-to analysis. Pointer analysis [14] is a
hard problem. CRIX’s data-flow analysis engine generally re-
lies on the Alias Analysis. However, the alias results provided
by LLVM are often inaccurate. Al through we have refined
the MayAlias results, there are still over 48% of false positives
that are caused by the inaccuracy of pointer analysis. We will

1780 28th USENIX Security Symposium USENIX Association

Category Example bug (related function) Latent Period R A C

Source-Ret drivers/net/hyperv/netvsc_drv.c +1377 (kvmalloc_array) 4y 10m 449 300 156
Use-Param net/ncsi/ncsi-netlink.c +253 (nla_nest_cancel) 2y 10m 247 150 115
Source-Param drivers/gpu/drm/i810/i810_dma.c +307 (drm_legacy_ioremap) 4y 1m 83 42 4
Source-Arg drivers/dma/ti/omap-dma.c +1056 (omap_dma_prep_dma_cyclic) 10y 25 8 3

Table 2: Bug detection statistics of CRIX on Linux kernel with relative frequency = 0.15. Columns R= bugs reported, A = Analyzed bugs, C =
Confirmed bugs. The Latent Period is the average time differential for all confirmed bugs(C), within the category.

discuss potential improvements of pointer analysis in §7.
Inconsequential checks. While checks are necessary to
guarantee the state of the kernel, programmers often ignore
security checks in cases such as debugging code, failure-
handling paths, driver-shutdown functions, resource cleanup
functions, unlikely failures (e.g., kmallocwith __GFP_NOFAIL)
or code that is already protected by synchronization primi-
tives. Checks are redundant in these cases as an erroneous
state has already existed or a valid state is guaranteed by the
kernel. Such cases account for 25% of false positives.
Implicit checks. Programmers can reason about the state
of the variable in an implicit way. For example, to test if an
allocation of an object is successful, developers may use the
object, without a security check, in a function, and use the
return values of the function to test if the object was allocated
successfully. In this case, although the object itself is never
explicitly checked, the function call checks the object implic-
itly. Such cases contribute about 8% of the false positives. A
potential solution to mitigating this problem is to maintain a
list of “checker” functions.
Other causes. Besides these above-mentioned causes, false
positives can also be caused by complex programmer logic,
imprecise static analysis techniques, etc. All these account
for the remaining 19% of the false positives.

6.5 False Negatives

CRIX provides a tuning parameter, the threshold of RF, while
detecting missing-check cases. In other words, the threshold
can influence the false-negative rate. In this section, we evalu-
ate (1) the absolute false negatives that are missed when the
RF threshold is set to 1; and (2) the relationship between the
false-negative rate and the RF threshold.

In §2, we collected 119 missing-check bugs that have a
clear security impact. To make the false-negative evaluation
more robust, we collect 231 recently reported missing-check
bugs in the Linux kernel based on its Git patch history. The
patches containing the fixes of these 350 missing-check bugs
are evaluated in our false-negative study. To reproduce these
bugs, we revert the patches in the Linux kernel to the version
used in our experiments.

By setting the RF threshold to 1, we determined 14 (4%)
patches as absolute false negatives. Absolute false negatives
are caused by two factors. First, the checked critical variables

are not captured by CRIX because the error code or error-
handling functions are not identified as part of a security
check. Second, inaccurate pointer analysis identifies incorrect
aliases for the critical variables. These aliases are mistakenly
identified as valid security checks, bypassing the identification
of actual missing-check bugs.

Second, we also evaluate the relationship between the
threshold and false-negative rate, presented in Figure 7. We
find that, as RF threshold increases, the false-negative rate
decreases as prior false negatives are identified as missing-
check bugs. We found that when the threshold is set to 0.13,
the false-negative rate is 5% and reaches its elbow point. Fur-
ther tuning the threshold has no impact on the false negative
rate.

Figure 7: Relationship between the relative frequency (RF) thresh-
old and the false-negative rate.

6.6 Portability
A program-specific component of CRIX is identifying security
checks. Determining if a conditional statement is a security
check, while scanning the kernel relies on the identification of
error handling functions, and error codes. Identifying the error
handling functions requires a limited amount of experience
with the target code base. In Unix-like kernels, these functions
share similar patterns, called "Single Unix Specification" [35],
as presented in §4.2.1. All these kernels, also have a single
global header file that defines the standard error codes.

Similarly, other kernels and programs like browsers also
have corresponding header files containing the error codes.

USENIX Association 28th USENIX Security Symposium 1781

Besides this step, the idea to generate an error control flow
graph is generic to adapt to other systems. Once security
checks, described in §4, are identified, the algorithm for iden-
tifying missing checks is easily adaptable to other software
systems such as BSD kernels and C++ code base such as web
browsers.

7 Discussion

Two-layer type analysis for more types. The current imple-
mentation of two-layer type analysis supports only struct
type because it is the most commonly used type for memory
holding function pointers. To further exploit the two-layer
type analysis, we could extend it to support more types such
as array, global variable, and vector. The type-escaping
analysis in CRIX will ensure to eliminate false negatives when
any type casting occurs or function pointers are moved across
different types.
RF threshold. We discussed the false positives and false
negatives of CRIX in §6. To balance false positives and false
negatives, we suggest setting the RF threshold to a value
between 0.1 and 0.15 for the Linux kernel. CRIX cross-checks
peer slices to detect deviations. CRIX may have higher false-
report rates in smaller target programs because they have
small sets of peer slices.
Pointer analysis. Another major cause of false reports is
the inaccuracy of alias analysis. To mitigate this problem, we
intend to use Andersen pointer analysis [13] and Steensgaard
pointer analysis [34] in the future. Given that, pointer analysis
is used extensively in CRIX, we believe that this addition can
significantly improve the overall accuracy.
Inconsequential checks. Besides alias analysis, the next
major portion of false positives are due to programmer in-
tended missing checks. Based on our interaction with Linux
maintainers, we found that they are reluctant to fix missing-
check cases in resource-release paths such as driver shutdown
or state reset. Previous work by Saha et.al [31] proposed a
pattern-based approach to find resource-release paths. As a
potential solution, we may leverage the approach to filter
out cases in resource-release paths and thus reduce the false
positives in CRIX.
Determining exploitability and security impact of
missing-check bugs. To automatically determine the ex-
ploitability of missing-check bugs, one can employ symbolic
execution [29] and a theorem prover like Z3 [6] to generate
inputs to trigger a missing-check bug. In addition, fuzzers
can complement the limitations with symbolic execution. To
automatically determine the security impact, one can analyze
the uses of the checked variable to understand the potential
security impact. For example, if a checked variable is used
as the size variable in memcpy(), the potential impact can be
memory corruption or information leak. For the identified new
bugs, we found that more than half of them will cause Denial-

of-Service, and quite a few of them will cause out-of-bound
access, as shown in Table 4 and Table 5.

In general, automatically determining exploitability and
security impact of a bug is a challenging research problem.
A number of recent works [47] have investigated into this
problem. If we can automatically decide the exploitability
and security impact of a potential miss-check case, we can
automatically confirm a missing-check bug/vulnerability and
thus automatically eliminate false positives. We will leave
such an analysis for future work.

8 Related Work
Missing-check detection. The most closely related works
to CRIX are about missing-check detection. LRSan [43] de-
tects lacking-recheck bugs, a subclass of missing-check bugs.
CRIX detects general missing-check bugs that include lacking-
recheck bugs. Juxta [23] detects semantic bugs using cross-
checking between semantically equivalent implementations
of file systems. Most bugs found by Juxta are missing-check
bugs. CRIX can detect missing-check bugs in all subsystems
in the OS kernels and do not require multiple implementa-
tions of a subsystem. Other works utilizing complementary
implementation techniques to detect missing-check include
Vanguard [32], Chucky [46], AutoISES [38], Rolecast [33],
and MACE [24]. To the best of our knowledge, none of the
tools are scalable to a system as large as the OS kernel nor
have an equivalent technique to reason about the semantics
and contexts of a critical variable.
Error-code propagation and handling. To detect missing-
check bugs, CRIX relies on error-handling primitives to
find critical variables. Techniques in error-code propagation
and handling, within the Linux kernel, include EIO [12],
Hector [31], and by Rubio-González et al.[30]. Similarly,
APEx [17], ErrDoc [39], and EPEx [16] reason about the
error-code propagation in open source SSL implementations,
either automatically or via user definitions. Unlike CRIX, all
the above systems target a limited range of error returning
code specifications and thus have significant false negatives.
Further, these techniques do not consider error-handling cases
that do not return any error code. According to our study, such
error-handling cases are common.
OS-kernel analysis. Given the complexity, analysis targeting
the entire OS kernels is challenging. Recent advances on ker-
nel analysis can be mainly categorized into kernel source-code
analysis and static IR analysis. Smatch [5] and Coccinelle [27]
find bugs in the Linux kernel. While Smatch [5] relies on
syntax tree–based intra-procedural analysis to find simple
bugs such as NULL-pointer dereferences. Coccinelle [27]
performs code-pattern matching to find specified bugs. In
comparison, CRIX leverages flow-sensitive, context-sensitive,
and field-sensitive inter-procedural analyses to identify miss-
ing check bugs.

To benefit from rich analysis passes in LLVM, recently,

1782 28th USENIX Security Symposium USENIX Association

many tools analyze OS kernels on LLVM IR. K-Miner [11]
improves the efficiency of data-flow analysis by partitioning
the kernel code along separate execution paths stating from
system-call entry points. Dr. Checker [21] is also a static data-
flow analysis tool that identifies bugs in the drivers. While
K-Miner and Dr. Checker serve as general bug detection tools,
there are also some detection tools specialized for detecting
a specific class of bugs in OS kernels. KINT [44] detects
integer overflows using taint analysis; UniSan [20] detects
information leaks caused by uninitialized data reads, also
using taint analysis.

9 Conclusion

Missing-check bugs are a common cause of critical security
vulnerabilities. In this paper, we have presented CRIX, a scal-
able and effective system for detecting missing-check bugs
in OS kernels. CRIX’s detection is semantic- and context-
aware with an inter-procedural and context-, flow- and field-
sensitive data-flow analysis engine. We realized the detection
by proposing multiple new and general techniques. In par-
ticular, the two-layer type analysis can dramatically improve
the precision in finding direct-call targets. The automated
critical-variable inference narrows down the analysis to a
very small scope, thus scaling expensive analyses to OS ker-
nels. The peer-slice construction and constraint modeling for
conditional statements enable semantic- and context-aware
analysis. With these techniques, CRIX has reasonably low
false-report rates and outstanding analysis performance. By
applying CRIX to the Linux kernel, we found 278 new bugs
and maintainers accepted 151 of our submitted patches. The
evaluation results show that CRIX is scalable and effective in
finding missing-check bugs in OS kernels.

10 Acknowledgment

We would like to thank our shepherd, Trent Jaeger, and the
anonymous reviewers for their helpful suggestions and com-
ments. We are also grateful to Stephen McCamant for provid-
ing valuable comments and to Linux maintainers for providing
prompt feedback on patching bugs. This research was sup-
ported in part by the NSF award CNS-1815621. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of NSF.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow In-
tegrity. In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS), Alexandria, VA, Nov. 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing
memory error exploits with wit. In Proceedings of the 29th IEEE

Symposium on Security and Privacy (Oakland), Oakland, CA, May
2008.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2011.

[4] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer. Control-flow integrity: Precision, security, and performance.
ACM Computing Surveys (CSUR), 50(1):16, 2017.

[5] D. Carpenter. Smatch - the source matcher, 2009. http://smatch.
sourceforge.

[6] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, 2008.

[7] I. Dillig, T. Dillig, and A. Aiken. Static error detection using semantic
inconsistency inference. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), San Diego, CA, June 2007.

[8] X. Fan, Y. Sui, X. Liao, and J. Xue. Boosting the precision of vir-
tual call integrity protection with partial pointer analysis for c++. In
Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 329–340. ACM, 2017.

[9] R. M. Farkhani, S. Jafari, S. Arshad, W. Robertson, E. Kirda, and
H. Okhravi. On the effectiveness of type-based control flow integrity.
In Proceedings of the 34th Annual Computer Security Applications
Conference, pages 28–39. ACM, 2018.

[10] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-flow
integrity for kernel software. In 2016 IEEE European Symposium on
Security and Privacy (EuroS P), pages 179–194, 2016.

[11] D. Gens, S. Schmitt, L. Davi, and A.-R. Sadeghi. K-miner: Uncovering
memory corruption in linux. In Proceedings of the 2018 Annual Net-
work and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2018.

[12] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and B. Liblit. Eio: Error handling is occasionally correct. In
FAST, volume 8, pages 1–16, 2008.

[13] B. Hardekopf and C. Lin. The ant and the grasshopper: Fast and
accurate pointer analysis for millions of lines of code. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), San Diego, CA, June 2007.

[14] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, PASTE ’01, pages
54–61, New York, NY, USA, 2001. ACM. ISBN 1-58113-413-4.

[15] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. Path-sensitive
backward slicing. In International Static Analysis Symposium, pages
231–247. Springer, 2012.

[16] S. Jana, Y. J. Kang, S. Roth, and B. Ray. Automatically detecting
error handling bugs using error specifications. In USENIX Security
Symposium, pages 345–362, 2016.

[17] Y. Kang, B. Ray, and S. Jana. Apex: Automated inference of error
specifications for c apis. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 472–482.
ACM, 2016.

[18] J. F. Kenney and E. S. Keeping. Mathematics of statistics-part one.
1954.

[19] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From uncer-
tainty to belief: Inferring the specification within. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, 2006.

[20] K. Lu, C. Song, T. Kim, and W. Lee. UniSan: Proactive Kernel Memory
Initialization to Eliminate Data Leakages. In Proceedings of the 23rd

USENIX Association 28th USENIX Security Symposium 1783

http://smatch.sourceforge
http://smatch.sourceforge

ACM Conference on Computer and Communications Security (CCS),
Vienna, Austria, Oct. 2016.

[21] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and G. Vi-
gna. DR. CHECKER: A soundy analysis for linux kernel drivers.
In Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, BC, Canada, Aug. 2017.

[22] A. Milanova, A. Rountev, and B. G. Ryder. Precise call graphs for c
programs with function pointers. Automated Software Engg., 11(1):
7–26, Jan. 2004. ISSN 0928-8910.

[23] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim. Cross-checking
semantic correctness: The case of finding file system bugs. In Pro-
ceedings of the 25th ACM Symposium on Operating Systems Principles
(SOSP), Monterey, CA, Oct. 2015.

[24] M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan. Mace: Detecting
privilege escalation vulnerabilities in web applications. In Proceed-
ings of the 21st ACM Conference on Computer and Communications
Security (CCS), Scottsdale, Arizona, Nov. 2014.

[25] B. Niu and G. Tan. Modular control-flow integrity. In Proceedings
of the 2014 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Edinburgh, UK, June 2014.

[26] NVD. National vulnerability database, 2019. https://nvd.nist.
gov.

[27] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller. Documenting
and automating collateral evolutions in linux device drivers. In EuroSys,
2008.

[28] A. Quach, A. Prakash, and L. K. Yan. Debloating software through
piece-wise compilation and loading. In 27th USENIX Security Sympo-
sium (USENIX Security 18). USENIX Association, 2018.

[29] D. A. Ramos and D. Engler. Under-Constrained Symbolic Execution:
Correctness Checking for Real Code. In Proceedings of the 24th
USENIX Security Symposium (Security), Washington, DC, Aug. 2015.

[30] C. Rubio-González, H. S. Gunawi, B. Liblit, R. H. Arpaci-Dusseau,
and A. C. Arpaci-Dusseau. Error propagation analysis for file systems.
In ACM Sigplan Notices, volume 44, pages 270–280. ACM, 2009.

[31] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller. Hec-
tor: Detecting resource-release omission faults in error-handling code
for systems software. In 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 1–12.
IEEE, 2013.

[32] L. Situ, L. Wang, Y. Liu, B. Mao, and X. Li. Vanguard: Detecting
missing checks for prognosing potential vulnerabilities. In Proceedings
of the Tenth Asia-Pacific Symposium on Internetware, page 5. ACM,
2018.

[33] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding missing
security checks when you do not know what checks are. In ACM
SIGPLAN Notices, volume 46, pages 1069–1084. ACM, 2011.

[34] B. Steensgaard. Points-to analysis in almost linear time. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’96, New York, NY, USA, 1996.
ACM. ISBN 0-89791-769-3.

[35] W. R. Stevens and S. A. Rago. Advanced programming in the UNIX
environment. Addison-Wesley, 2008.

[36] Y. Sui and J. Xue. Svf: interprocedural static value-flow analysis in
llvm. In Proceedings of the 25th International Conference on Compiler
Construction, pages 265–266. ACM, 2016.

[37] Y. Sui and J. Xue. Value-flow-based demand-driven pointer analysis
for c and c++. IEEE Transactions on Software Engineering, 2018.

[38] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. Autoises: Auto-
matically inferring security specification and detecting violations. In
USENIX Security Symposium, pages 379–394, 2008.

[39] Y. Tian and B. Ray. Automatically diagnosing and repairing error
handling bugs in c. In Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, pages 752–762. ACM, 2017.

[40] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in gcc & llvm. In USENIX Security Symposium, pages 941–955, 2014.

[41] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin. Aletheia: Improving
the usability of static security analysis. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
pages 762–774. ACM, 2014.

[42] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A
tough call: Mitigating advanced code-reuse attacks at the binary level.
In Security and Privacy (SP), 2016 IEEE Symposium on, pages 934–
953. IEEE, 2016.

[43] W. Wang, K. Lu, and P. Yew. Check It Again: Detecting Lacking-
Recheck Bugs in OS Kernels. In Proceedings of the 25th ACM Confer-
ence on Computer and Communications Security (CCS), Toronto, ON,
Canada, Oct. 2018.

[44] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek. Improving
Integer Security for Systems with KINT. In Proceedings of the 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Hollywood, CA, Oct. 2012.

[45] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks, pages
359–368. IEEE, 2009.

[46] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck. Chucky:
Exposing missing checks in source code for vulnerability discovery.
In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 499–510. ACM, 2013.

[47] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang.
Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2139–2154. ACM,
2017.

[48] S. Özkan. Common vulnerabilities and exposures details, 2019. https:
//www.cvedetails.com.

A Appendix

Data fetch functions

copy_from_user _copy_from_user
__copy_from_user raw_copy_from_user
strncpy_from_user _strncpy_from_user
__strncpy_from_user strndup_user
__copy_from_user_inatomic memdup_user
__copy_from_user_inatomic_nocache copyin
__constant_copy_from_user memdup_user_nul
rds_message_copy_from_user __get_user
snd_trident_synth_copy_from_user vmemdup_user
ivtv_buf_copy_from_user copyin_str
iov_iter_copy_from_user_atomic fusword
__generic_copy_from_user copyin_nofault
__copy_from_user_eva fuword
__arch_copy_from_user fubyte
__copy_from_user_flushcache fuswintr
__asm_copy_from_user get_user
copy_from_user_toio copy_from_user_page
copy_from_user_nmi copy_from_user_proc

Table 3: List of input functions collected based on heuristics.

1784 28th USENIX Security Symposium USENIX Association

https://nvd.nist.gov
https://nvd.nist.gov
https://www.cvedetails.com
https://www.cvedetails.com

Subsystem Filename Line# Impact CategoryStatusLP

net gvf.c 511 reliability P C 2
x86 ghv_init.c 107 DoS S A 1
x86 gtlb_uv.c 2013 DoS S S 8
char hpet.c 978 reliability S S 4
firmware gdriver.c 711 DoS S C 1
gpio gpio-exar.c 150 reliability U A 2
gpu gkfd_crat.c 404 DoS U S 1
gpu gi915_gpu_error.c 230 reliability S S 2
gpu gradeon_display.c 679 reliability S C 2
gpu gvkms_crtc.c 227 reliability U A <1
hid hid-logitech-hidpp.c 1954 reliability S A 3
iio gmax9611.c 531 DoS U S 2
iio gmxs-lradc-adc.c 466 DoS U A 2
iio ghmc5843_i2c.c 62 reliability S A 4
iio ghmc5843_spi.c 62 reliability S A 4
infiniband gcm.c 1921 DoS S C 6
infiniband gi40iw_cm.c 3257 DoS S A 2
infiniband gi40iw_cm.c 3260 DoS S A 2
input gpm8xxx-vibrator.c 198 DoS P S 2
isdn ghfcpci.c 2034 reliability S A 10
isdn ghfcsusb.c 265 DoS S A 10
isdn gmISDNinfineon.c 716 DoS S A 9
leds leds-pca9532.c 531 crash /DoS S A 2
media gstv090x.c 1449 reliability S S 10
media gstv090x.c 1452 reliability S S 10
media gstv090x.c 1456 reliability S S 10
media gstv090x.c 2229 reliability S S 5
media gstv090x.c 2607 reliability S S 10
media gstv090x.c 2913 reliability S S 10
media gstv090x.c 2957 reliability S S 10
media gstv090x.c 2975 reliability S S 10
media gvpss.c 520 DoS S A 6
media grcar-core.c 267 DoS S S 1
media grenesas-ceu.c 1684 DoS S S 1
media grga.c 894 memory leak S A 1
media grga.c 896 memory leak S A 1
media grga.c 910 reliability S A 1
media grga.c 875 reliability S A 2
media grga.c 915 use-after-free S A 1
media gvideo-mux.c 400 DoS U A 1
media gvideo-mux.c 402 DoS S A 1
media gusbvision-core.c 2301 reliability S S 9
memstick gms_block.c 2141 DoS U C 5
mfd sm501.c 1145 DoS S A 1
mmc gmmc_spi.c 821 concurrency U A 9
net gmcp251x.c 963 reliability S S 3
net glan9303-core.c 1081 system crash S S 1
net glan9303-core.c 1074 system crash S S <1
net gpcnet_cs.c 1424 DoS S A 8
net gpcnet_cs.c 290 DoS S A 8
net glio_main.c 1194 DoS S A 2
net glio_vf_main.c 1961 DoS S S 2
net glio_vf_main.c 612 DoS S S 2
net glio_core.c 1213 DoS S A 1
net glio_core.c 1685 DoS S A 3
net gnicvf_main.c 2264 DoS S A 1
net gfmvj18x_cs.c 549 DoS S A 8
net gfm10k_main.c 42 reliability A A 2
net gen_rx.c 721 DoS U S <1
net gocelot_board.c 256 DoS U C 1
net gqla3xxx.c 3888 system crash U A 12
net gqlge_main.c 4682 system crash S A 2
net gsh_eth.c 3133 reliability U A 5
net gravb_main.c 1996 reliability U A 3
net grocker_main.c 2799 DoS S A 1
net gdwmac-dwc-qos-eth.c 487 DoS S A 2
net gdwmac-sun8i.c 1150 system crash S A 2
net gfjes_main.c 1254 concurrency U S 3
net gfjes_main.c 1255 concurrency S S 3
net gnetvsc_drv.c 1377 DoS S A <1
net gadf7242.c 1269 DoS S A <1

Subsystem Filename Line# Impact CategoryStatusLP

net gcore.c 645 reliability S A 2
net gcore.c 646 reliability S A 2
net gcore.c 653 reliability S A 2
net gcore.c 662 reliability S A 1
net gcore.c 689 reliability S A 2
net gcore.c 714 reliability S A 2
net gcfg80211.c 5368 DoS S A 6
net gcfg80211.c 5384 DoS S A 6
net g3945-mac.c 3405 reliability U S 7
net g4965-mac.c 6241 reliability U S 7
net gcmdevt.c 342 DoS U A 7
net gray_cs.c 395 system crash U S 8
net gray_cs.c 409 system crash S S 8
net gray_cs.c 423 system crash S S 8
net gbase.c 471 system crash S S 4
net gfw_common.c 648 DoS S A 8
net gfw.c 600 DoS U A 8
net gfw_common.c 623 DoS U A 8
net gfw.c 744 DoS U A 8
net gfw.c 448 DoS U A 8
net gfw.c 562 DoS S A 8
net gfw.c 1623 DoS U A 8
net gfw.c 1759 DoS U A 8
staging gfw.c 745 DoS U A 8
net gcmdevt.c 342 DoS U A 8
net gqlcnic_ethtool.c 1050 DoS U A 8
net grsi_91x_mac80211.c 199 DoS S A 5
net grsi_91x_mac80211.c 208 DoS S A 5
net gmain.c 347 DoS S A 6
nfc gse.c 345 DoS S S 4
nvdimm btt_devs.c 200 DoS S C 3
nvdimm btt_devs.c 217 system crash S C 3
nvdimm namespace_devs.c 2250 DoS S A 2
pci gpci-tegra.c 1552 buffer overflow S S 1
pci gpcie-rcar.c 931 buffer overflow S A 5
pci gpcie-xilinx.c 343 buffer overflow S C 4
pci gpci-epf-test.c 571 DoS U A 2
pinctrl gpinctrl-baytrail.c 1711 DoS U A 3
pinctrl pinctrl-axp209.c 366 DoS S A <1
power gcharger-manager.c 2006 DoS U A 7
rapidio rio_cm.c 2147 DoS S A 2
scsi gcxgb4i.c 619 DoS S S 8
scsi gql4_os.c 3206 DoS S A 7
scsi gufs-hisi.c 546 DoS U A <1
spi spi-s3c64xx.c 294 DoS U S 5
spi spi-topcliff-pch.c 1304 DoS S A 8
spi spi-topcliff-pch.c 1307 DoS S A 8
staging gaudio_manager.c 47 system crash P A 3
staging grtw_xmit.c 1514 DoS S A 4
staging grtl_phydm.c 182 system crash S A 1
thunderbolt property.c 177 DoS S A 1
thunderbolt property.c 550 DoS S A 1
tty gmain.c 115 DoS S A 8
tty gmain.c 135 DoS U A 8
tty g8250_lpss.c 175 DoS U C 2
tty gatmel_serial.c 1285 DoS U A 5
tty gmxs-auart.c 1688 DoS S S 8
usb gu132-hcd.c 3203 DoS U C 11
usb galauda.c 438 DoS U S 13
usb galauda.c 439 DoS U S 13
video ghgafb.c 287 DoS S A 14
video gimsttfb.c 1517 DoS S A 13
video gomapdss-boot-init.c 113 DoS U A 3
affs file.c 940 DoS S C 14
btrfs extent-tree.c 7042 reliability S A 2
ipv6 gip6t_srh.c 212 DoS S A 1
ipv6 gip6t_srh.c 225 DoS S A 1
ipv6 gip6t_srh.c 235 DoS S A 1
openvswitch datapath.c 449 DoS U A 7
smc smc_ism.c 290 system crash S S <1
strparser strparser.c 552 DoS S A 2

Table 4: List of new bugs (1-142) detected with CRIX. LP = Latent Period of bugs in years. Column Category specifies the category of
peer-slice set used to identify the bugs. A, P, S, and U indicate categories Source-Arg, Source-Param, Source-Ret, and Use-Param respectively.
The S,C,A in the Status field represent patch status, Submitted, Confirmed, Applied, respectively.

USENIX Association 28th USENIX Security Symposium 1785

Subsystem Filename Line# Impact CategoryStatusLP

security inode.c 339 reliability S A 5
ceph osdmap.c 1900 DoS S S 7
isa gsb8.c 113 reliability U A 14
pci gechoaudio.c 1956 DoS U A 12
soc gcs43130.c 2324 DoS S A 1
soc grt5645.c 3452 system crash U A <1
soc soc-pcm.c 1236 system crash S S 4
md raid10.c 3958 system crash S A 7
md raid5.c 7399 system crash S A 7
usb gusb_stream.c 106 DoS S A 10
usb gusb_stream.c 107 DoS S A 10
ata sata_dwc_460ex.c 1055 DoS U S 4
block nbd.c 2117 DoS U S 2
net gbcmmii.c 217 DoS U S <1
slimbus qcom-ngd-ctrl.c 1351 reliability U A <1
ncsi ncsi-netlink.c 253 reliability U A 1
ncsi ncsi-netlink.c 257 DoS U A 1
openvswitch conntrack.c 2146 DoS U S 1
openvswitch datapath.c 466 DoS U A 4
openvswitch datapath.c 475 DoS U A 4
openvswitch datapath.c 477 reliability U A 4
tipc group.c 942 DoS U A <1
tipc group.c 946 system crash U A <1
tipc socket.c 3226 DoS U A 4
tipc socket.c 3231 reliability U A 4
extcon extcon-axp288.c 145 reliability S A 4
thunderbolt switch.c 1325 DoS S S 2
thunderbolt xdomain.c 540 DoS S A 1
usb gusb251xb.c 600 DoS U A 2
tty gmax310x.c 1421 DoS U A 5
tty gmvebu-uart.c 791 DoS S S 1
mtd gvf610_nfc.c 856 DoS S A 3
mfd mc13xxx-i2c.c 82 DoS U S 6
pinctrl gberlin-bg4ct.c 453 DoS U S 3
pinctrl gpinctrl-as370.c 334 DoS U S <1
mfd mc13xxx-spi.c 160 DoS S S 6
firmware gdriver.c 801 DoS S A 2
net gtls.c 227 DoS U A <1
mmc gdw_mmc-exynos.c 556 DoS U S 6
mmc gdw_mmc-k3.c 461 DoS S S 5
mmc gdw_mmc-pltfm.c 84 DoS S S 5
pci gpci-host-generic.c 85 DoS U S 3
scsi gtc-dwc-g210-pltfrm.c 63 DoS U S 3
soc gsirf-audio-codec.c 466 system crash S A 5
slimbus qcom-ngd-ctrl.c 1333 DoS S S <1
x86 ghpet.c 79 DoS U A 11
udf super.c 575 system crash S S 1
nfc llcp_sock.c 726 DoS S A 7
scsi gufshcd.c 1759 DoS S S <1
thunderbolt xdomain.c 771 DoS S A 1
scsi gufshcd.c 1786 DoS S S 1
thunderbolt icm.c 475 DoS U A 1
fmc fmc-fakedev.c 283 DoS S S 5
usb gsierra_ms.c 197 system crash S A 2
staging gvchiq_2835_arm.c 212 DoS S C 4
thunderbolt property.c 581 DoS S A 3
thunderbolt property.c 582 buffer overflow U A 1
x86 gtlb_uv.c 2144 DoS S A 2
x86 gtlb_uv.c 2147 DoS S A 4
nfc gse.c 329 DoS U S 1
gpio gpio-aspeed.c 1227 DoS S A 2
soc grt5663.c 3472 buffer overflow S C 2
soc grt5663.c 3513 DoS U C 1
gpu gv3d_drv.c 103 system crash S A 3
net gmcr20a.c 534 system crash S A 5
net gmcr20a.c 541 reliability S S 3
net gmcr20a.c 546 reliability S S 3
media gtda18250.c 705 reliability S C 2

Subsystem Filename Line# Impact CategoryStatusLP

soc gcs35l34.c 263 reliability S S 7
dma gomap-dma.c 1056 system crash A S 6
firmware edd.c 279 system crash A S 4
net gcfg80211.c 2302 system crash A S 4
rtc rtc-ds1374.c 449 reliability S S 2
rtc rtc-rx8010.c 193 system crash S S 2
mfd tps65010.c 431 DoS U S 2
net grx.c 732 DoS U C <1
net grx.c 733 DoS U S 3
usb grealtek_cr.c 815 reliability S S 5
net glag_conf.c 307 DoS U S 6
net gmesh.c 799 system crash S S 2
net gmesh.c 800 system crash S S 2
net lag_conf.c 307 DoS U S <1
net p2p.c 1527 concurrency S S 6
message mptctl.c 406 concurrency S S 10
message mptscsih.c 1617 concurrency S S 10
message mptsas.c 4803 concurrency S S 10
misc tifm_7xx1.c 280 concurrency S S 4
pci pcie-designware-host.c 309 DoS U S 1
gpu virtgpu_kms.c 62 DoS U S 4
gpu virtgpu_vq.c 48 DoS U S 6
input usbtouchscreen.c 1076 DoS U S 8
usb iuu_phoenix.c 369 DoS U S 12
usb iuu_phoenix.c 177 DoS U S 12
usb iuu_phoenix.c 729 DoS U S 12
usb iuu_phoenix.c 389 DoS U S 12
usb iuu_phoenix.c 253 DoS U S 12
usb kobil_sct.c 248 DoS U S 4
usb kobil_sct.c 339 DoS U S 4
usb kobil_sct.c 354 DoS U S 4
usb kobil_sct.c 284 DoS U S 3
ncsi ncsi-netlink.c 250 DoS U S 3
openvswitch conntrack.c 2131 reliability S S <1
media cx231xx-input.c 91 DoS U S 4
net testmode.c 242 DoS U S 8
dma fsl-edma-common.c 540 reliability S S <1
dma coh901318_lli.c 41 reliability S S 10
mtd generic.c 69 reliability S S 3
net e1000_hw.c 1046 buffer overflow S S 5
mfd vx855.c 104 reliability S S 8
mfd ab3100-core.c 926 reliability S S 8
crypto cryptd.c 745 reliability S S 1
hwmon ad7418.c 90 buffer overflow S S 3
hwmon lm92.c 135 buffer overflow S S 3
scsi gdth.c 5203 buffer overflow S S 4
staging mmal-vchiq.c 1847 DoS U S 1
fsi fsi-core.c 1250 DoS U S 2
net cxgb3_offload.c 1268 DoS U S 7
iio mxs-lradc-adc.c 470 DoS U S 1
net myri10ge.c 2287 reliability S S 11
gpu si.c 3614 reliability S S 6
slimbus qcom-ngd-ctrl.c 1343 DoS U S <1
net e1000_hw.c 141 reliability S S 10
net e1000_hw.c 1043 reliability S S 10
mtd bcm63xxpart.c 65 buffer overflow S S 3
gpu vc4_plane.c 1011 reliability S S 1
ext4 super.c 5866 reliability S S 8
net event.c 105 buffer overflow S S 3
net pch_gbe_main.c 1476 DoS U S 8
net isl_ioctl.c 190 reliability S S 13
gpu ast_mode.c 1201 reliability S S 7
hid wacom_sys.c 2351 reliability S S 5
media ov9650.c 609 buffer overflow S S <1
soc sti_uniperif.c 292 reliability S S 2
media em28xx-cards.c 3987 reliability S S 2
usb xhci-pci.c 269 reliability S S 1
net nic_main.c 1229 crash S S 3

Table 5: Continued list of new bugs (143-278) detected with CRIX. LP = Latent Period of bugs in years. Column Category specifies the
category of peer-slice set used to identify the bugs. A, P, S, and U indicate categories Source-Arg, Source-Param, Source-Ret, and Use-Param
respectively. The S,C,A in the Status field represent patch status, Submitted, Confirmed, Applied, respectively.

1786 28th USENIX Security Symposium USENIX Association

DEEPVSA: Facilitating Value-set Analysis with Deep Learning
for Postmortem Program Analysis

†Wenbo Guo∗, †Dongliang Mu∗, †Xinyu Xing, ‡Min Du, ‡Dawn Song
†College of IST, Pennsylvania State University

‡Department of EECS, University of California, Berkeley

Abstract

Value set analysis (VSA) is one of the most powerful binary
analysis tools, which has been broadly adopted in many use
cases, ranging from verifying software properties (e.g., vari-
able range analysis) to identifying software vulnerabilities
(e.g., buffer overflow detection). Using it to facilitate data
flow analysis in the context of postmortem program analy-
sis, it however exhibits an insufficient capability in handling
memory alias identification. Technically speaking, this is due
to the fact that VSA needs to infer memory reference based
on the context of a control flow, but accidental termination
of a running program left behind incomplete control flow
information, making memory alias analysis clueless.

To address this issue, we propose a new technical approach.
At the high level, this approach first employs a layer of in-
struction embedding along with a bi-directional sequence-to-
sequence neural network to learn the machine code pattern
pertaining to memory region accesses. Then, it utilizes the
network to infer the memory region that VSA fails to rec-
ognize. Since the memory references to different regions
naturally indicate the non-alias relationship, the proposed
neural architecture can facilitate the ability of VSA to per-
form better alias analysis. Different from previous research
that utilizes deep learning for other binary analysis tasks,
the neural network proposed in this work is fundamentally
novel. Instead of simply using off-the-shelf neural networks,
we introduce a new neural network architecture which could
capture the data dependency between and within instructions.

In this work, we implement our deep neural architecture
as DEEPVSA, a neural network assisted alias analysis tool.
To demonstrate the utility of this tool, we use it to analyze
software crashes corresponding to 40 memory corruption vul-
nerabilities archived in Offensive Security Exploit Database.
We show that, DEEPVSA can significantly improve VSA with
respect to its capability in analyzing memory alias and thus
escalate the ability of security analysts to pinpoint the root
cause of software crashes. In addition, we demonstrate that

∗Equal Contribution.

our proposed neural network outperforms state-of-the-art neu-
ral architectures broadly adopted in other binary analysis
tasks. Last but not least, we show that DEEPVSA exhibits
nearly no false positives when performing alias analysis.

1 Introduction

Despite the best efforts of developers, software inevitably
contains flaws that may be leveraged as security vulnera-
bilities. Modern operating systems integrate various secu-
rity mechanisms to prevent software faults from being ex-
ploited [18, 36, 51, 53]. To bypass these defenses and hijack
program execution, an attacker therefore needs to constantly
mutate an exploit and make many attempts. While in their at-
tempts, the exploit triggers a security vulnerability and makes
the running process terminate abnormally.

To analyze the unexpected termination (i.e., program crash)
and thus pinpoint the root cause, software developers or
security analysts need to perform backward taint analy-
sis [17, 20, 39], track down how a bad value is passed to
the crashing site and thus pinpoint the statements that led
to the crash. Technically speaking, this process can be sig-
nificantly facilitated – and even automated – if the control
and data flows pertaining to the crash are available upon its
termination.

Recently, a large amount of research has demonstrated
that program execution can be recorded through hardware
tracing (e.g., [30, 55]) in a least intrusive manner. As a
result, a software developer can easily restore the control
flow pertaining to a program crash. However, the recovery of
data flow from the execution trace alone is still challenging,
especially when source code is not available. As it has been
discussed in recent research [55], this is primarily because
data flow construction is highly dependent upon the capability
of memory alias analysis [4, 5].

Of all the memory alias analysis techniques proposed in
past research, value-set analysis (VSA) is the most effective
and efficient technique and has been broadly adopted to fa-
cilitate the ability of identifying memory alias at the binary

USENIX Association 28th USENIX Security Symposium 1787

level [6]. Applied in the context of postmortem program
analysis, it however exhibits an insufficient capability in han-
dling memory alias identification. Technically speaking, this
is mainly because VSA needs to infer memory references
based on the context of a control flow. However, accidental
termination of a running program only leaves behind incom-
plete control flow information, making memory alias analysis
clueless.

To address this technical issue, we introduce a deep neural
network to enhance the capability of VSA in memory alias
analysis, especially in the context of software failure diagno-
sis. More specifically, we use this neural network to learn
the memory regions that each memory access refers to. The
rationale behind this approach is as follows. VSA divides
the address space of a process into several non-overlapping
regions (i.e., stack, heap, and global) and deem pairs of mem-
ory references to different regions as non-alias. With incom-
plete control flow information pertaining to a software crash,
VSA loses the execution context of a crashing program and
typically exhibits bad performance in assigning memory ref-
erences to different memory regions. Using deep learning, we
can learn complex execution patterns pertaining to memory
region accesses, restore the memory regions that VSA fails to
infer through incomplete control flow, and finally enhance the
capability of alias analysis for postmortem program analysis.

Different from previous research that utilizes deep learning
to tackle other binary analysis problems (e.g., [15, 48, 49,
56]), the deep neural network used in this work is novel. In-
stead of simply applying an off-the-shelf neural architecture
to our problem domain, we propose a new neural network ar-
chitecture. To be specific, our proposed solution first utilizes
an instruction embedding network to capture the semantic of
each instruction. Then, it employs a bi-directional sequence-
to-sequence neural architecture to learn the dependency be-
tween the instructions and predict the memory access for
each individual instruction. With this new design practice,
we could capture the dependency relationship within and be-
tween instructions and thus accurately predict the memory
regions that each instruction attempts to access. As we will
discuss and demonstrate in Section 3 and 4, this perfectly
reflects the characteristic of binary code analysis and signifi-
cantly benefits alias analysis in the context of software failure
diagnosis.

We implemented our proposed technique as DEEPVSA 1, a
neural network-assisted alias analysis tool for postmortem
program analysis. To the best of our knowledge, DEEPVSA is
the first tool that takes advantage of deep learning to improve
alias analysis in the context of postmortem program analysis.
We manually analyzed program crashes corresponding to 40
memory corruption vulnerabilities gathered from the Offen-
sive Security Exploit Database Archive [47] and compared
our manual analysis with the analysis conducted by DEEPVSA.

1The code, data and models of DEEPVSA are available at
https://github.com/Henrygwb/deepvsa/.

1 sub esp, 0x14
2 call malloc

......
3 ret
4 mov [eax], test
5 mov [esp+0x8], eax

6 push eax
7 call child
8 push ebp
9 mov ebp, esp
10 mov [0xC8], 0x0
11 mov eax, [ebp+0x8]
12 mov [eax], 0x1
13 mov [eax+0x4], 0x2
14 mov eax, 0
15 pop ebp
16 ret
17 mov eax, [esp+0xC]
18 call [eax] <--- crash site

Figure 1: An example instruction trace prior to a program
crash.

We observed that DEEPVSA can accurately resolve approxi-
mately 35% of unknown memory relationships that VSA fails
to identify when performing analysis on a crashing execution.
In addition, we discovered that the escalation in alias analysis
significantly improves the capability in tracking down the
root cause of software crashes. For about 75% failure cases,
DEEPVSA is capable of assisting backward taint analysis in
identifying the root causes of their crashes. Compared with
the broadly adopted neural networks in other binary analy-
sis tasks, we also demonstrate that our new neural network
architecture introduces no false positives in memory alias
identification.

In summary, this paper makes the following contributions:

• We discover that deep neural networks are a viable ap-
proach towards addressing alias analysis issues in the
context of software failure diagnosis.

• We propose a new neural network architecture which
could be used to improve alias analysis for VSA and
thus escalate the ability to diagnose the root cause of
software crashes.

• We implement our deep learning technique as DEEPVSA–
a tool for alias analysis facilitation – and demonstrate
its effectiveness by using 40 distinct software crashes
covering approximately 1.6 million lines of execution
trace in total.

The rest of the paper is organized as follows. Section 2
provides an overview of value-set analysis and its limita-
tions in postmortem program analysis. Section 3 presents
the deep neural network we propose to improve alias analy-
sis. Section 4 describes our implementation and evaluation,
demonstrating the utility of DEEPVSA. Section 5 surveys re-
lated work. Finally, we conclude this work in Section 6.

1788 28th USENIX Security Symposium USENIX Association

[eax]@4 ... [0xC8]@10 [ebp+0x8]@11 [eax]@12 [eax+4]@13 [esp+0xC]@17 [eax]@18
[eax]@4 - ... 0 0 1 0 0 1
...

[0xC8]@10 NA ... - ... 0 0 0 0
[ebp+0x8]@11 NA ... 0 - 0 0 0 0

[eax]@12 NA ... ? ? - 0 0 1
[eax+0x4]@13 NA ... ? ? ? - 0 0
[esp+0xC]@17 NA ... 0 0 ? ? - 0

[eax]@18 NA ... ? ? ? ? ? -

(a) Alias matrix identified by VSA. ‘0’, ‘1’ and ‘?’ represent non-alias, alias and may-alias relationships respectively.

Line # Complete Trace Incomplete Trace without DL Incomplete Trace with DL
A-loc Value-set A-loc Value-set A-loc Value-set

1 esp (⊥, [-0x14, -0x14], ⊥) NA NA NA NA

4 [eax]
(⊥, ⊥, [0, 0]) (test, ⊥, ⊥) NA NA NA NA

5 [esp+0x8]
(⊥, [-0xC, -0xC], ⊥) (⊥, ⊥, [0, 0]) NA NA NA NA

6 esp (⊥, [-0x18, -0x18], ⊥) esp (⊥, [-0x4, -0x4], ⊥) esp (⊥, [-0x4, -0x4], ⊥)
[esp]

(⊥, [-0x18, -0x18], ⊥) (⊥, ⊥, [0, 0]) [esp]
(⊥, [-0x4, -0x4], ⊥) (>, >, >) [esp]

(⊥, [-0x4, -0x4], ⊥) (⊥, ⊥, [X, X])

7 esp (⊥, [-0x1C, -0x1C], ⊥) esp (⊥, [-0x8, -0x8], ⊥) esp (⊥, [-0x8, -0x8], ⊥)
[esp]

(⊥, [-0x1C, -0x1C], ⊥) ([L17, L17], ⊥, ⊥) [esp]
(⊥, [-0x8, -0x8], ⊥) ([L17, L17], ⊥, ⊥) [esp]

(⊥, [-0x8, -0x8], ⊥) ([L17, L17], ⊥, ⊥)

8 esp (⊥, [-0x20, -0x20], ⊥) esp (⊥, [-0xC, -0xC], ⊥) esp (⊥, [-0xC, -0xC], ⊥)
[esp]

(⊥, [-0x20, -0x20], ⊥) (>, >, >) [esp]
(⊥, [-0xC, -0xC], ⊥) (>, >, >) [esp]

(⊥, [-0xC, -0xC], ⊥) (>, >, >)

9 ebp (⊥, [-0x20, -0x20], ⊥) ebp (⊥, [-0xC, -0xC], ⊥) ebp (⊥, [-0xC, -0xC], ⊥)

10 [0xC8]
([0xC8, 0xC8], ⊥, ⊥) ([0x0, 0x0], ⊥, ⊥) [0xC8]

([0xC8, 0xC8], ⊥, ⊥) ([0x0, 0x0], ⊥, ⊥) [0xC8]
([0xC8, 0xC8], ⊥, ⊥) ([0x0, 0x0], ⊥, ⊥)

11
[ebp+0x8]

(⊥, [-0x18, -0x18], ⊥) (⊥, ⊥, [0, 0]) [ebp+0x8]
(⊥, [-0x4, -0x4], ⊥) (>, >, >) [ebp+0x8]

(⊥, [-0x4, -0x4], ⊥) (⊥, ⊥, [X, X])

eax (⊥, ⊥, [0, 0]) eax (>, >, >) eax (⊥, ⊥, [X, X])

12 [eax]
(⊥, ⊥, [0, 0]) ([0x1, 0x1], ⊥, ⊥) [eax]

(>, >, >) ([0x1, 0x1], ⊥, ⊥) [eax]
(⊥, ⊥, [X, X]) ([0x1, 0x1], ⊥, ⊥)

13 [eax+4]
(⊥, ⊥, [4, 4]) ([0x2, 0x2], ⊥, ⊥) [eax+4]

(>, >, >) ([0x2, 0x2], ⊥, ⊥) [eax+4]
(⊥, ⊥, [X+0x4, X+0x4]) ([0x2, 0x2], ⊥, ⊥)

14 eax ([0x0, 0x0], ⊥, ⊥) eax ([0x0, 0x0], ⊥, ⊥) eax ([0x0, 0x0], ⊥, ⊥)

15 ebp (>, >, >) ebp (>, >, >) ebp (>, >, >)
esp (⊥, [-0x1C, -0x1C],⊥) esp (⊥,[-0x8,-0x8],⊥) esp (⊥,[-0x8,-0x8],⊥)

16 esp (⊥, [-0x18, -0x18], ⊥) esp (⊥, [-0x4, -0x4], ⊥) esp (⊥, [-0x4, -0x4], ⊥)

17
[esp+0xC]

(⊥, [-0xC, -0xC], ⊥) (⊥, ⊥, [0, 0]) [esp+0xC]
(⊥, [0x8, 0x8], ⊥) (>, >, >) [esp+0xC]

(⊥, [0x8, 0x8], ⊥) (⊥, ⊥, [X, X])

eax (⊥, ⊥, [0, 0]) eax (>, >, >) eax (⊥, ⊥, [X, X])

18 [eax]
(⊥, ⊥, [0, 0]) ([0x1, 0x1], ⊥, ⊥) [eax]

(>, >, >) (>, >, >) [eax]
(⊥, ⊥, [X, X]) ([0x1, 0x1], ⊥, ⊥)

(b) A-locs and value-sets corresponding to complete and incomplete traces with and without the facilitation of deep learning (DL).

Table 1: The results of value-set analysis against the instruction trace shown in Figure 1.

2 Background and Problem Scope

As is described and discussed in many recent research works
(e.g. [19, 55]), new hardware components could trace program
execution in a least intrusive fashion. With this capability, se-
curity analysts could easily obtain the control flow pertaining
to a software crash. Using the execution trace, it is however
still challenging to pinpoint the root cause of the crash (i.e.,
the instructions truly attributive to the crash). On the one hand,
this is because a security analyst barely has the access to the
source code of the crashing program. On the other hand, this
is because a security analyst needs to analyze the data flow
of the crashing trace which involves memory alias analysis at
the binary level. To tackle this challenge, value-set analysis
(VSA) can be adopted. In this section, we first introduce how
software instrumentation and hardware tracing are used to
record program execution. Second, we briefly describe how

to perform value-set analysis on a recorded execution trace.
Third, we specify how to use the derived value set to perform
alias analysis and thus diagnose the root cause of a software
crash. Finally, we provide a more in-depth discussion about
why VSA behaves poorly in many real-world applications.

2.1 Program Tracing for Software Debugging
Software instrumentation techniques have long been used to
fully record program execution and thus facilitate the root
cause diagnosis for a crashing program (e.g., [38, 37]). How-
ever, such an approach imposes significant overhead to a
software normal operation. In order to minimize additional
overhead, some lightweight instrumentation techniques have
been proposed (e.g., [41, 40]). While they are less intru-
sive and informative for assisting software debugging, such
a lightweight approach cannot be used to fully restore the

USENIX Association 28th USENIX Security Symposium 1789

control flow pertaining to a software crash.
Recently, the advance in hardware-assisted processor trac-

ing significantly ameliorates this situation. With the emer-
gence of brand new hardware components, such as Intel
PT [27] and ARM ETM [2], software developers and se-
curity analysts can trace instructions executed with nearly no
overhead and save them in a circular buffer. At the time of a
program crash, an operating system includes the trace into a
crash dump. Since this post-crash artifact contains both the
state of crashing memory and the execution history (i.e., the
last N instructions executed prior to the crash), software de-
velopers not only can inspect the program state at the time of
the crash, but also fully reconstruct the control flow that led
to the crash.

In this work, we focus on using an enhanced value-set
analysis technique to analyze such an aforementioned post-
crash artifact and thus facilitate the root cause diagnosis of a
crashing program. It should be noted that the aforementioned
lightweight software instrumentation approach is out of the
scope of this research because they cannot provide a complete
instruction trace for value-set analysis to identify memory
alias and thus pinpoint the root cause of the crash.

2.2 Value-set Analysis

Value-set analysis is an algorithm designed for analyzing
assembly code or an instruction trace in a static fashion.
Based on the observation that memory layout generally fol-
lows, VSA partitions memory into 3 disjoint memory re-
gions – global2, stack and heap – and assigns instructions
to the regions, accordingly. For some instructions, VSA
achieves region assignment by examining the semantics of
the instructions. For example, from a binary code per-
spective, accesses to global and stack variables appear as
[absolute-address] and [esp-offset]. Thus, VSA
can easily link the global and stack regions to the instruc-
tions mov edx,[0x8050684] and lea eax,[esp+4], re-
spectively. For other instructions, VSA performs a simple
forward data flow analysis to determine the regions tied to
instructions in a conservative fashion3. Take for example the
instruction trace shown in Figure 1. The instruction at line
4 indicates a write to the target memory [eax]. Through a
forward data flow analysis, VSA could easily pinpoint that
the value of eax was passed through line 3 because the
library function malloc places its return value in the regis-
ter eax. Given that the semantics of malloc is to allocate a
memory region on the heap and then return its reference to
the caller function, VSA could easily assign the heap region
to the instruction at line 4.

2Note that the global region consists of initialized and uninitialized data
segments.

3By ‘conservative fashion’, we refer to the fact that VSA does not actively
infer the value held in a memory cell if the data flow propagation is blocked
by an unknown memory reference.

In addition to assigning instructions to memory regions in
the ways above, VSA tracks down variable-like entities re-
ferred to as a-locs. By convention, an a-loc could be a register,
a memory cell on the stack, on the heap, or in the global re-
gion. Take the instruction trace shown in Figure 1 as an exam-
ple. The register a-locs contain all the registers esp, eax and
ebp. The global a-locs contain [0xC8]. The stack a-locs in-
clude [esp], [esp+0x8], [esp+0xC] and [ebp+0x8]. The
heap a-locs consist of [eax] and [eax+0x4]. It should be no-
ticed that, as is illustrated in Table 1b, VSA represents a non-
register a-loc as a combination of the value held by a memory
cell and the value set indicating the address of that mem-
ory cell. For example, the instruction mov [esp+0x8],eax

accesses the stack memory, and VSA specifies its correspond-
ing stack a-loc as [esp+0x8] (⊥, [-0xC, -0xC], ⊥).
Here, [esp+0x8] indicates the name of the stack memory
cell, and (⊥, [-0xC, -0xC], ⊥) is the value set of the
memory address or, in other words, the values that esp+0x8
could potentially equal to at the site of that instruction.

For each a-loc identified, VSA computes a value set, in-
dicating the set of values that each a-loc could potentially
equal to. By convention, VSA represents such a value set as
a 3-tuple pertaining to the three memory regions partitioned.
For each element in the tuple, VSA specifies a range of offsets
which indicates the values that the a-loc could equal to with
respect to the corresponding memory region.

To illustrate this, we take the register a-loc esp as an exam-
ple. As depicted in the first row of Table 1b, VSA specifies its
value set as a 3-tuple (global 7→ ⊥, stack 7→ [-0x14,

-0x14], heap 7→ ⊥), for brevity (⊥, [-0x14, -0x14],

⊥). In this set, ⊥ is a symbol denoting the empty set of
offsets (i.e., ∅). It reflects the fact that the register esp is the
stack pointer in x86 architecture and cannot refer to any mem-
ory cells on the heap or global region. Since the semantics of
the first instruction is to offset esp by 0x14 from the starting
point of the stack, VSA assigns the value set {-0x14} to the
register a-loc esp, and attaches this set to the stack. It should
be noticed that for specification consistency we write the
value sets {-0x14} tied to the stack as [-0x14, -0x14].

2.3 Alias Analysis and Root Cause Diagnosis

Alias Analysis. Given a control flow specified as a sequence
of instructions executed prior to a program crash, VSA can
track down a-locs, derive value sets, and perform memory
alias analysis by examining the value set tied to each of the
a-locs. To illustrate this, we again take the instruction trace
depicted in Figure 1 as an example and assume they represent
the entire execution trace prior to a program crash. Sup-
posing that Table 1b indicates the value set tied to each of
the a-locs identified from the instruction trace, we can eas-
ily observe that [esp] at line 6 and [ebp+0x8] at line
11 refer to the same memory region or in other words they
are alias of each other. In addition, we can observe [eax]

1790 28th USENIX Security Symposium USENIX Association

at line 4, 12 and 18 are also alias between each other.
This is simply because the a-locs tied to these memory re-
gions carry the overlapping value set corresponding to their
addresses, i.e., (⊥, [-0x18, -0x18], ⊥) for [esp] and
[ebp+0x8]; (⊥, ⊥, [0,0]) for [eax]. To better under-
stand the effect of VSA on alias analysis, we derive all the
alias and non-alias relationships from the value sets specified
in Table 1b, and depict them in the upper triangular portion
of the matrix shown in Table 1a.
Root Cause Diagnosis. With the alias analysis results and
the value sets in hand, it is relatively easy to perform a back-
ward taint analysis and thus track down the root cause of a
program crash. To illustrate this process, we continue the
example shown in Figure 1. Given that the program crashes
at line 18 when the program performs an indirect call, we
can easily discover that the bad destination [eax] was passed
through the instruction at line 12 in which memory [eax]

is assigned with a constant 0x1. As is described above, [eax]
at line 12 and 18 are the alias of each other. Therefore,
we can safely conclude the bad destination originally comes
from the instruction mov [eax],0x1 in line 12. Through
this backward analysis, we could deem the instruction mov

[eax],0x1 as the root cause of the crash.

2.4 Problem Scope

As is described in the aforementioned example, VSA exhibits
perfect performance in alias analysis and we could identify
the root cause of the crash successfully. However, this does
not imply that VSA could significantly resolve the memory
alias issue and thus perfectly facilitate postmortem program
analysis. To demonstrate this, we again take for example the
instruction trace shown in Figure 1. However, different from
the setup specified above, we assume the trace is available
only starting from line 6. As is described in Section 2.1,
hardware tracing components store a instruction trace in a cir-
cular buffer with limited size. As a result, it is commonplace
that a security analyst cannot obtain a complete crashing trace
but only a partial execution chronology prior to a program
crash. By truncating the trace in our example, we emulate the
scenario where there are only last N instructions recorded in
a post-crash artifact.

In Table 1b, we also show the a-locs identified from this
truncated trace. Compared with the value set derived from the
full execution trace shown in the same figure, we can easily
observe that nearly all the value sets tied to the a-locs are var-
ied. This is because VSA performs an over-approximation in
value-set construction and the missing context limits the capa-
bility of VSA with respect to reasoning memory regions or off-
sets within a region. Take the a-loc indicated by [eax+0x4]

(>, >, >) as an example. Without the complete execution
context of the crashing program, VSA conservatively assumes
eax could equal to any value. Thus, memory [eax+0x4]

could refer to any memory regions with an arbitrary offset

0x8b

push eax

0x8b

A Learning Model (Deep Neural Network)

S

… mov eax, [esp+0xc] call [eax]

0x44 0x24 0x0c 0xff 0x10

S H

S: Stack H: Heap G: Global

0x67…

…

A sequence of
instructions

Memory
regions tied to

instructions

(a) A neural network taking machine code as its input.

0x8b

push eax

0x8b

A Learning Model (Deep Neural Network)

S

… mov eax, [esp+0xc] call [eax]

0x44 0x24 0x0c 0xff 0x10

S H

S: Stack H: Heap G: Global

0x67…

…

A sequence of
instructions

Memory
regions tied to

instructions

EIEI: encoded
instruction EI EI…

(b) A neural network taking as input encoded instructions.

Figure 2: Two neural networks that identify memory region
accesses pertaining to each instruction by taking as input a
sequence of machine code and a sequence of encoded instruc-
tions respectively.

indicated by the symbol >. As is shown in the instruction
in line 13, the value of [eax+0x4] is assigned by a value
from a global region. Therefore, the value set tied to this
a-loc can be represented as ([0x2, 0x2], ⊥, ⊥). From
the a-locs identified from the truncated trace along with their
value set, we follow the aforementioned approach to examine
value set intersection, and illustrate the alias and non-alias
relationships in the lower triangular portion of the matrix
shown in Table 1a. As we can easily observe, without the full
execution trace, VSA over-approximates value sets tied to
a-locs, and conservatively deems many memory pairs as may-
alias relationships. Since may-alias represents uncertainty
relationship, Table 1a illustrates them as the question symbol

‘?’. Using such results to derive the data flow for software
crash diagnosis, it is not difficult to observe that a security
analyst can barely yield any useful results or in other words
pinpoint the root cause of the program crash for the simple
reason that VSA has the limited capability in tracking down
the memory alias.

3 Technical Approach

To address the problem above, we propose a technical ap-
proach driven by a deep neural network. In this section, we
first discuss why deep learning could potentially facilitate
VSA and thus improve software crash analysis. Second, we
briefly describe neural network architectures commonly used
in other binary analysis tasks. Third, we discuss the limita-

USENIX Association 28th USENIX Security Symposium 1791

tion of these existing neural networks and then specify how to
design a new neural architecture to better tackle our problem.
Finally, we present the detail of our new neural architecture
and specify how to integrate it into conventional VSA.

3.1 Overview

Recall that, when a crashing trace is incomplete, VSA exhibits
an insufficient capability in alias analysis and thus fails root
cause diagnosis. As is demonstrated above, this is because
the missing context restricts the ability of VSA to determine
the region of memory accesses for some instructions. To
address this pitfall, we leverage a deep neural network to
enhance VSA with the ability to infer memory region(s) for
instructions. In the following, we describe the rationale be-
hind this idea and illustrate why it could benefit the diagnosis
of software crashes.
Rationale behind our idea. In many previous applications
(e.g., speech recognition [24] and API generation [25]), it has
been demonstrated that some sequence-to-sequence neural
network architectures can be used to learn patterns from a se-
quence of inputs, thus facilitating the determination of a label
for each individual input. As a result, in order to augment con-
ventional VSA with the ability to infer the memory region(s)
that each instruction refers to, intuition suggests that we can
view an execution trace as a sequence of machine code or in-
structions, partition memory into disjoint regions (e.g., stack,
heap and global), treat each region as an individual label tied
to each instruction and eventually use a sequence-to-sequence
deep neural network to predict that label for each instruc-
tion. For example, given the instruction push 0x68732f2f

represented by machine code [0x68, 0x2f, 0x2f, 0x73,

0x68], we could determine the stack region is tied to this in-
struction by using either of the two designs shown in Figure 2.
As is depicted in the figure, the two designs take the input dif-
ferently, one with machine code as the input directly to a deep
learning model and the other with the encoded instructions as
the input to a model. In Section 3.3, we compare these two
designs and describe why we choose one over the other. In
Section 4, we show their performance difference.
Effect upon root cause diagnosis. With the augmentation
above, VSA could typically perform better alias analysis and
thus benefit the diagnosis of a software crash. We illustrate
this by again taking for example the instruction trace shown
in Figure 1. Recall that, without the complete execution
context, conventional VSA cannot determine the memory
region that eax refers to. Therefore, it assumes [eax] and
[eax+0x4] could represent any memory regions, assigns eax
and eax+0x4 with value-set (>, >, >) and eventually
fails the root cause diagnosis of that crash.

Given the sequence of the instructions tied to the crashing
trace, assume a deep neural network could correctly infer
that, the register eax at line 6 refers to a memory region at
the heap. Then, VSA could assign eax with value-set (⊥,

⊥, [X, X]) where [X, X] denotes an unknown address on
the heap. With this, VSA could further update the value sets
for corresponding a-locs. We show the updated value sets
in Table 1b under the column “Incomplete Trace with DL”.
As we can observe, the memory reference [eax] at line 12

and 18 are aliased to each other because they both refer to
the same memory address [X, X] on the heap. With this
alias analysis result, VSA could quickly assist backward taint
in tracking down the instruction at line 12 – the root cause
of the crash – even though this crashing trace is partial and
incomplete.

3.2 Existing Neural Architectures

To perform binary analysis with deep learning, previous re-
search typically utilized three types of recurrent neural net-
works (RNNs) – vanilla RNN [33], long short-term memory
(LSTM) [22] and gated recurrent units (GRU) [13]. Here, we
briefly describe them in turn.

3.2.1 Vanilla Recurrent Neural Network

A vanilla RNN (RNN for brevity) is specialized for processing
a sequence of values x(1), . . . ,x(t). When trained to perform a
prediction from the past sequence of inputs, it typically maps
the sequence to a fixed length vector h(t) through a function
g(t):

h(t) = g(t)(x(t),x(t−1),x(t−2), . . . ,x(2),x(1)),

= f (h(t−1),x(t);θ) .

As we can observe from this equation, the function g(t) takes
the whole past sequence as input and produces a summary h(t)

for that sequence. In an RNN, h(t) refers to a hidden state. As
is illustrated in Figure 3a, an RNN can be unfolded as a chain
structure where each hidden state is connected to the previous
one [23]. As such, g(t) can be factorized into the repeated
application of a function f , which controls the transition from
the previous hidden state to the next one (i.e., the recurrent
neuron). For example, assuming the length of the chain to be
3 – indicating a finite number of hidden states – we can then
obtain

h(3) = f (h(2);θ) ,

= f (f (h(1);θ);θ) .

To make predictions using the chain structure depicted in
Figure 3a, an RNN follows a forward propagation in which
it begins with an initial state h(0) and then utilizes the update
equations below to compute the prediction ŷ(t) accordingly.

a(t) = Wh(t−1)+Ux(t)+b ,

h(t) = tanh(a(t)) ,

o(t) = Vh(t)+ c ,

ŷ(t) = softmax(o(t)) .

1792 28th USENIX Security Symposium USENIX Association

Unfold

mov ebp, esp

0x89 0xe5 0x89

mov ebp, esp

……

……

WE WE

0xe5

WE

x

h

ŷ

L

y

U U U

W W W W
V V V

x(t−1) x(t)

h(t)h(t−1)

ŷ(t−1) ŷ(t)

y(t)y(t−1)

L(t−1) L(t)

…

…

…

…

…

…

……

…

…

……

…

…

…

…

…

…

……

… …

……

… …

(a) The Vanilla RNN.

…………

…

…

0x67 0xff 0x10… …

WE WE WE

0x89 0xe5…

WE WE

… …

…

LC LCLC

call [eax] mov ebp, esp
IE IE

x
(t−1)
i−1 x

(t)
i−1 x

(t+1)
i−1 x

(t+1)
i+1x

(t)
i+1

h
(t)
i+1 h

(t+1)
i+1h

(t+1)
i−1

h
(t)
i−1h

(t−1)
i−1

Ei−1 Ei+1Ei

ŷi−1 ŷi+1ŷi

yiyi−1 yi+1

Li+1LiLi−1

…

…

…

…

…

…

… …

…
… …

… …

… …

……

(b) The hierarchical LSTM.

…

…

…

…

…… …

…

…

…

0x67 0xff 0x10… …

WE WE WE

0x89 0xe5…

WE WE

… …

…

call [eax] mov ebp, esp

… …

x
(t−1)
i−1 x

(t)
i−1 x

(t+1)
i−1 x

(t+1)
i+1x

(t)
i+1

Ei−1 Ei+1Ei

ŷi−1 ŷi+1ŷi

−−−→
h

(t−1)
i−1

−−→
h

(t)
i−1

−−−→
h

(t+1)
i−1

−−−→
h

(t+1)
i+1

−−→
h

(t)
i+1

←−−
h

(t)
i+1

←−−−
h

(t+1)
i+1

←−−−
h

(t+1)
i−1

←−−−
h

(t−1)
i−1

←−−
h

(t)
i−1

……

… …

… … …

……

… …

……

IE IE

(c) The bi-directional hierarchical LSTM.

Figure 3: Recurrent neural networks with various architectures serving for different purposes. Note that “LC” indicates LSTM
cell, “IE” stands for the embedding for each instruction and “WE” refers to the word embedding.

Here, bias vectors b and c are parameters. tanh(Wh(t−1)+
Ux(t)+ b) is the detailed form of the recurrent neuron f in
which tanh is an activation function [54]. Softmax refers to
the softmax classifier [10]. Along with the weight matrices U ,
V and W , pertaining to input-to-hidden, hidden-to-output, and
hidden-to-hidden connections respectively, the bias vectors
can be learned by minimizing the loss function described
below

L(t) = L(x(1),x(2), ...,x(t),y(1),y(2), ...,y(t))

= ∑
t

L(t)

=−∑
t

logpmodel(y
(t)|x(1),x(2), ...,x(t)) ,

where pmodel(y(t)|x(1), . . . ,x(t)) is the probability from the pre-
diction vector ŷ(t) corresponding to the entry for the true label
vector y(t). Similar to other neural networks commonly used
(e.g., multi-layer perceptron [44] and convolution neural net-
works [32]), the minimization of the aforementioned loss
function can be achieved by using different kinds of opti-
mization algorithms (e.g., stochastic gradient descent [11],
ADAM [31], RMSprop [52]) with respect to the bias parame-
ters and weight matrices. The details of these optimization
algorithms can be found in [45].

3.2.2 Long Short-Term Memory

In the cybersecurity community, recent works have demon-
strated that a vanilla RNN has already demonstrated great
performance when performing binary analysis (e.g., [15, 48]).
However, it has been noted that, as is used in other applica-
tions such as speech recognition and machine translation,
such an ordinary recurrent architecture is not sufficient in pro-
cessing a long sequence of inputs. This is because a vanilla

RNN naturally struggles to remember information for long
periods of time or, in other words, suffers from derivative
vanishing and explosion problems [26]. To address this issue,
other works have used a long short-term memory (LSTM)
model to carry out binary analysis.

Similar to a vanilla RNN depicted in Figure 3a, LSTM also
has a chain structure. However, it replaces the aforementioned
hidden states with LSTM cells, and each cell carries a set of
parameters and a system of gating units that controls the
flow of information. In an LSTM network, each cell has a
state unit s(t) as well as three gating units – a forget gate unit
f (t), an external input gate unit g(t), and an output gate q(t) –
which together control the output h(t) of the LSTM cell via
the following equation

s(t) = f (t)� s(t−1)+g(t)�σ(Wh(t−1)+Ux(t)+b) ,

h(t) = q(t)� tanh(s(t)) .

Here, σ(·) denotes a sigmoid function [29] which sets a value
between 0 and 1, and � represents the element-wise multi-
plication. b, U and W respectively indicate the biases, input
weights, and recurrent weights into an LSTM cell. To com-
pute the gate units, one could follow the equations below

g(t) = σ(Wgh(t−1)+Ugx(t)+bg) ,

f (t) = σ(W f h(t−1)+U f x(t)+b f) ,

q(t) = σ(Wqh(t−1)+Uqx(t)+bq) ,

where {b f ,bg,bq}, {U f ,Ug,Uq} and {W f ,Wg,Wq} are re-
spectively: biases, input weights, and recurrent weights for
the forget, external input, and output gates. Similar to b, U
and W, they are also the parameters that can be learned via
the optimization algorithms mentioned above. Again, more
details of parameter computation can be found at [23].

USENIX Association 28th USENIX Security Symposium 1793

3.2.3 Gated Recurrent Units

As is described in previous research [15], gated recurrent
units (GRU) can also be used for some of binary analysis
tasks. GRU is an alternative LSTM which can also capture
long term dependency. The main difference between GRU
and LSTM is that GRU replaces the forget gate f and output
gate q in LSTM with one update gate. More specifically, it
integrates both forget and output gates into a single gating
unit u(t). As a result, it reduces the parameters that a network
has to learn and thus poses a lower computational cost. The
following equations indicate how to compute the output h(t)

of a GRU cell:

r(t) = σ(Wrh(t−1)+Urx(t)+br) ,

u(t) = σ(Wuh(t−1)+Uux(t)+bu) ,

h(t) = u(t)�h(t−1)+(1−u(t))� tanh(W(r(t)�h(t−1))+Ux(t)+b) .

Here, r(t) stands for a reset gate which controls the influ-
ence of the past sequences of inputs upon the current one.
{br,Ur,Wr} and {bu,Uu,Wu} are gate weights. Along with
the bias b and weights U, W, they need to be learned through
the aforementioned optimization algorithms.

3.3 Our Neural Network Architecture

As we described in Section 3.1, we could utilize two different
design mechanisms to predict the memory region that each
instruction refers to. For the design shown in Figure 2a, we
could simply leverage any of the aforementioned recurrent
neural networks to take as input the sequence of machine
code, learn the pattern hidden behind the machine code se-
quence and predict the memory region for each instruction.
As they have already demonstrated in other binary analy-
sis tasks (e.g., [48, 15]), we could expect this design could
perform reasonably well in memory region identification.
However, following the intuition described below, we do not
utilize this design. Rather, we develop our technique by using
the alternative design shown in Figure 2b.

Take for example the instruction sequence push ebp;

mov ebp, esp indicated by the byte sequence [0x55,

0x89, 0xe5]. An existing neural network model could take
this machine code sequence as input and make predictions
for their corresponding memory accesses based on the de-
pendency between the bytes. It is not too difficult to observe
that this simple approach neglects the semantics and contexts
of these instructions. As is described in Section 2, in binary
analysis, the semantics and contexts of instructions could
be used as indicators to infer the memory accesses tied to
instructions. Therefore, intuition suggests that it could be
potentially beneficial for memory region identification if we
could build a neural network with the ability to capture not
only the dependency between the bytes but also that between
instructions.

Inspired by this, we choose the design depicted in Figure 2b
and build a hierarchical LSTM architecture. We depict the
structure of this learning model in Figure 3b. As we can
observe, similar to existing neural networks used for other
binary analysis tasks, it first maps each byte into a vector by
using a word embedding mechanism [9]. Then, it groups the
bytes per each instruction and utilizes an embedding network
to convert each group of bytes into an instruction embedding
(i.e., an encoded vector). Taking the instruction embedding as
the input, our neural architecture further employs a sequence-
to-sequence network [50] to predict the memory region tied
to each instruction.

In comparison with the aforementioned off-the-shelf recur-
rent architectures largely adopted by other binary analysis
tasks, the proposed hierarchical LSTM architecture is com-
posed of two networks. The embedding network models
the correlation of bytes in one instruction and the sequence-
to-sequence network captures the dependency between in-
structions. By designing the model structure in this fashion,
our neural network model is able to perform memory access
predictions at the instruction level and learn the dependency
between and within instructions at the same time.

However, it is not difficult to note that this new recurrent
architecture cannot represent a backward analysis procedure,
where the memory region(s) tied to an instruction is deter-
mined by the consecutive instructions. Yet we note that this
backward analysis is feasible. To illustrate this, we take the
following execution trace as an example.
00015670 <malloc>:

53 push ebx

...

89 44 24 04 mov DWORD PTR [esp+0x4],eax

e8 6d b1 fe ff call 800 <_libc_memalign@plt>

83 c4 18 add esp,0x18

5b pop ebx

c3 ret

As is illustrated above, the trace indicates the instructions
and corresponding machine code executed while invoking
the malloc function. Here, the highlighted instruction and
machine code indicate the last definition of [eax] prior to
the return of the function call. Given that the call to malloc

places the return value in the register eax, indicating an ad-
dress on the heap, we can reversely perform inference and
conclude that the memory access tied to the highlighted in-
struction is within a heap region.

To enable our design with the capability of inferring mem-
ory regions in both forward and backward ways, we further up-
grade our hierarchical LSTM model to a bi-directional chain
structure [46]. As is shown in Figure 3c, our bi-directional
chain structure is applied to both the embedding network and
the sequence-to-sequence network. With respect to the em-
bedding network, our neural architecture combines a network
that moves forward, beginning from the start of the corre-
sponding byte sequence, with another network that moves
backward, starting from the end of the corresponding byte

1794 28th USENIX Security Symposium USENIX Association

sequence. Regarding the sequence-to-sequence network, our
architecture concatenates the output of a forward embedding
network with the output of a backward embedding network.
Then, it takes the concatenation as input and performs mem-
ory access prediction for each individual instruction based on
the sequence of instructions executed before and after that
instruction.

3.4 Detail of Our Neural Architecture
Here, we describe more details of our proposed neural net-
work architecture. More specifically, we specify how we
process a crashing trace, perform corresponding computation,
train the neural network and eventually utilize it to facilitate
VSA.
Padding and word embedding. As is described above, our
neural network utilizes a bi-directional embedding to encode
each instruction prior to making predictions for their memory
accesses. Before passing machine code to that embedding
network, we process them as follows.

Assume we have a crashing trace containing n instructions
I1:n. For each instruction Ii, it could be represented as m bytes
of machine code b(1:m)

i . For an x86 machine, instructions
do not share the same length. To design the same structure
of embedding networks for instructions, we therefore pad
instructions to a fixed length. To do this, we first convert
each individual byte into an integer based on its value (e.g.,
encoding machine code 55 to its integer form 85). Then,
we pad that instruction with integer 256. In this way, we
could ensure our padding does not introduce ambiguity to a
target instruction. After the padding, we also utilize a word
embedding to further process the padded crashing trace. In
our work, our word embedding converts each byte into a one-
hot vector with a dimensionality of 257. Then, the vector is
multiplied with a matrix projecting the byte into a new vector
(i.e., x(1:m)

i) typically with lower dimensionality.
Instruction embedding. For each instruction, we use a bi-
directional LSTM model to further encode its word embed-
ding and then generate an individual instruction embedding.
Technically speaking, we achieve this by integrating the out-
puts of the forward and backward networks. More specifically,
we utilize the following equations to compute the output of
the forward network.

−→
h(t)i = LSTM(

−−−→
h(t−1)

i ,x(t)i) ,

−→
Ei =

−−→
h(m)

i .

Similarly, we compute the output for the backward network
as follows. ←−

h(t)i = LSTM(
←−−−
h(t+1)

i ,x(t)i) ,

←−
Ei =

←−
h(1)i .

Here,
−→
Ei and

←−
Ei are the forward and backward embeddings of

the instruction Ii, respectively. LSTM denotes an LSTM cell

introduced above. As we can observe from the two sets of
equations above, the hidden representation of the first and last
bytes of the instruction, h(m)

i and h(1)i , contain the information
that flows from the previous and consecutive bytes.

To combine the outputs of both forward and backward
networks, we concatenate both representations in the form
of Ei = [

−→
Ei ,
←−
Ei]). Technically, it should be noted that we

can use one single embedding network for all instructions, or
employ different embedding networks for instructions. With
the consideration of lowering computational overhead, our
neural network architecture follows the first approach.
Sequence-to-sequence network. Given a sequence of in-
struction embeddings pertaining to the instructions in a crash-
ing trace, we then use a sequence-to-sequence model men-
tioned above to predict the label (i.e., , memory access re-
gion(s)) for each instruction. To be specific, the model takes
as input the instruction embeddings E1:n and utilizes a bi-
directional LSTM as the hidden layer of our neural architec-
ture 4. At the output layer of our neural network, it uses a
softmax classifier to assign a corresponding label for each
hidden state (i.e., the hidden representation of each instruc-
tion). Different from previous deep neural network used in
other binary analysis technique, which assigns a label to each
byte, our new architecture gives us the ability to attach an
individual prediction to each instruction.
Training strategy. Similar to the recurrent neural networks
summarized in Section 3.2, we also need to leverage afore-
mentioned optimization algorithms to estimate the parameters
for our neural network. In binary analysis tasks, the training
dataset is often significantly large, e.g., one execution trace
carries millions of lines of instructions. Using conventional
gradient descent algorithms – like stochastic gradient descent
– against a large data set, parameter estimation would experi-
ence significant computation overhead. To address this issue,
we take advantage of mini-batch gradient descent, a variation
of the gradient descent algorithm [28]. Technically speaking,
this approach splits the training dataset into small batches,
uses them to calculate model error through loss function
and updates model parameters accordingly. Compared with
other approaches, particularly stochastic gradient descent,
mini-batch provides a computationally efficient process and
enables parallel computations.

In addition to mini-batch gradient descent, we adopt
RMSprop [34] to accelerate the optimization process needed
for gradient descent computation. To be specific, we adjust
the learning rate by dividing it by an exponentially decaying
average of squared gradients. For more details, the reader
could refer to an unpublished article available at Geoff Hin-
ton’s class [34]. Last but not least, we also pad the remaining
sequences in the last batch with vectors where each element
equals 256. In this way, we can represent each batch as a

4Note that we can also use GRU as an alternative to LSTM for the
encoding network and the sequence to sequence network.

USENIX Association 28th USENIX Security Symposium 1795

matrix with fixed size, making it capable of being efficiently
processed at the same time.
Integration into VSA. Without the facilitation of a deep
learning model and the clue of which memory region an in-
struction accesses, VSA initializes a-locs and value-set with
(>, >, >), indicating the memory access in that instruc-
tion could refer to any memory regions. Using our deep
neural architecture introduced above, we could have the neu-
ral network output the memory region that instruction ac-
cesses (i.e., global, stack or heap). As is illustrated in Sec-
tion 3.1, with this capability, we could initialize a-locs and
value-set with ([X,Y], ⊥, ⊥), (⊥, [X,Y], ⊥) or (⊥,
⊥, [X,Y]), denoting a memory access in that instruction
could refer to a particular memory area ranging from X to
Y at a global, stack or heap region. Then, starting from the
first instruction in the crashing trace, VSA could regularly
perform forward analysis and update the value for X and Y.
For example, as we have shown in Table 1b, when analyzing
the instruction at line 6, our deep learning model initializes
eax with value-set (⊥, ⊥, [X,Y]) and VSA updates X and
Y with X=Y indicating the register eax refers to the memory
address X at the heap region.

4 Evaluation

In this section, we describe our implementation, the dataset
we utilized, set up our experiment, and summarize our ex-
perimental results. Through this evaluation, we seek to an-
swer the following questions. ¶ Does our problem require
a deep learning model or could it be resolved with conven-
tional machine learning techniques? · Can our proposed
technique correctly link memory regions to instructions or,
more precisely, identify the memory regions that instructions
dereference? ¸ Compared with commonly adopted recur-
rent neural architectures that take as input the raw machine
code, does the proposed neural network architecture (taking
encoded instructions as the input to a neural network) exhibit
better performance in terms of memory region identification?
¹ Can the memory regions identified improve the ability of
VSA with respect to memory alias analysis and thus bring the
positive impact upon the capability in software crash diagno-
sis?

4.1 Implementation
To answer the questions above, we must first train many deep
neural network architectures. This requires a large training
data set containing various instruction traces as well as the
memory reference tied to each instruction. To facilitate the
collection of the instruction traces as well as the correspond-
ing memory accesses, we first implemented a tracing system
which provides us with the ability to not only record the in-
structions that a target program executes but also the memory
region each instruction refers to. While both Intel PT and

ARM ETM could trace program execution, in this work, we
utilize Intel Pin [35] to complete the implementation of our
tracing system. This is because, in order to train a neural
network, we have to obtain the ground truth of which memory
regions instructions access but both hardware components do
not provide us with such a capability (i.e., recording memory
regions referred by instructions).

In addition to the tracing system, we customized a VSA
system which implemented an instruction parser using
libdisasm and 84 distinct instruction handlers to perform
value-set calculation. Going beyond alias analysis, the im-
plementation of our customized VSA system also contains
a backward taint component which takes the results of alias
analysis and performs the root cause diagnosis for a crashing
program. In total, our VSA implementation contains about
9,500 lines of C code. It should be noticed that the value-set
calculation for instructions with similar semantics (e.g., ja,
jb, jc) were taken care of by a unique handler.

Recall that our ultimate goal is to use a deep neural network
to facilitate VSA with respect to alias analysis and thus im-
prove the effectiveness of software crash diagnosis. Last but
not least, we therefore prototyped a neural network assisted
VSA system and named it after DEEPVSA. In our implementa-
tion, DEEPVSA first utilizes a pre-trained deep neural network
to predict memory accesses for each instruction. Then, it de-
termines non-aliasing relationships based on the prediction by
following the approach introduced in Section 3. Combining
the results of the conventional value-set analysis with this
non-aliasing analysis, our DEEPVSA finally performs back-
ward taint analysis and thus pinpoints the root cause of a
program crash. In this work, we ran all the aforementioned
systems on a 32-bit Linux system with Linux kernel 4.4.0
running on an Intel i7-6600 quad-core processor with 16 GB
RAM. We trained all the deep neural networks in this work on
2 Nvidia Tesla K40 GPUs and 4 Nvidia GTX 1080Ti GPUs
using the Keras package [14] and with Tensorflow [1] as
backend, amounting to about 2,000 lines of Python code.
Upon the acceptance of this submission, we will release all
of our systems along with our data set described below.

4.2 Data Set

As is mentioned above, we need to train many deep neural
networks with various execution traces along with their corre-
sponding memory accesses. In this work, we construct our
training data set by using 78 unique programs in a package
of GNU software – coreutils, ineutils and binutils.
More specifically, we ran these programs by following their
documentation and running examples. Using the aforemen-
tioned tracing system, we then gathered their execution traces
along with their memory accesses. In total, these 78 programs
generate a training data set with 96 distinct execution traces
covering 49,193,919 lines of instructions.

To test our neural network and demonstrate the effective-

1796 28th USENIX Security Symposium USENIX Association

Index Program Non-alias (400) Non-alias (800) Non-alias (3200) Non-alias (6400) Non-alias (12800) Root Cause
VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA

1 coreutils-8.4 66.58% 88.28% 66.58% 88.28% 66.58% 88.28% 66.58% 88.28% 66.58% 88.28% 3 3
2 coreutils-8.4 1.25% 33.09% 1.25% 33.09% 1.25% 33.09% 1.25% 33.09% 1.25% 33.09% 3 3
3 coreutils-8.4 62.77% 93.84% 62.77% 93.84% 62.77% 93.84% 62.77% 93.84% 62.77% 93.84% 3 3
4 nginx-1.4.0 68% 99% 68% 99% 68% 99% 68% 99% 68% 99% 3 3
5 nullhttpd-0.5.0 67.47% 72.30% 67.47% 72.30% 67.47% 72.30% 67.47% 72.30% 67.47% 72.30% 3 3
6 DXFScope-0.2 6.17% 42.39% 6.17% 42.39% 6.17% 42.39% 6.17% 42.39% 6.17% 42.39% 3 3
7 tiff-3.8.2 0.58% 30.50% 0.58% 30.51% 0.58% 30.51% 0.58% 30.51% 0.58% 30.51% 3 3
8 unrtf-0.19.3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 3 3
9 gdb-6.6 23.03% 84.64% 23.34% 84.70% 41.13% 91.83% 41.13% 91.83% 41.13% 91.83% 3 3

10 openjpeg-2.1.1 11.93% 14.38% 11.93% 14.38% 11.93% 14.38% 92.67% 95.13% 92.67% 95.13% 3 3
11 python-2.7 65.00% 91.26% 71.14% 97.49% 71.14% 97.49% 71.14% 97.49% 71.14% 97.49% 3 3
12 poppler-0.8.4 0.00% 39.43% 0.00% 39.43% 0.00% 39.43% 60.60% 98.56% 60.60% 98.56% 3 3
13 htmldoc-1.8.27 0.077% 30.48% 0.077% 30.48% 0.077% 30.48% 0.077% 30.48% 0.077% 30.48% 3 3
14 unalz-0.52 0.05% 39.31% 0.05% 39.31% 0.05% 39.31% 0.05% 39.31% 0.05% 39.31% 3 3
15 psutils-p17 0.17% 45.20% 0.17% 45.20% 48.84% 90.44% 48.84% 90.44% 48.84% 90.44% 7 3
16 libpng-1.2.5 29.72% 80.76% 29.72% 80.76% 29.72% 80.76% 29.72% 80.76% 29.72% 80.76% 3 3
17 gas-2.12 0.02% 49.41% 0.02% 49.41% 0.02% 49.41% 0.02% 49.41% 0.02% 49.41% 3 3
18 SQLite-3.8.6 48.83% 96.82% 48.83% 96.82% 48.83% 96.82% 48.83% 96.82% 48.83% 96.82% 7 3
19 pcal-4.7.1 22.74% 85.42% 22.74% 85.42% 22.75% 85.43% 22.75% 85.43% 22.75% 85.43% 7 3
20 LaTeX2rtf-1.9 9.93% 10.55% 9.93% 10.55% 19.68% 30.16% 19.68% 30.16% 19.68% 30.16% 7 3
21 gif2png-2.5.2 43.56% 95.64% 43.56% 95.64% 43.56% 95.64% 43.56% 95.64% 43.56% 95.64% 7 3
22 abc2mtex-1.6.1 22.38% 71.54% 22.38% 71.54% 22.38% 71.54% 22.38% 71.54% 22.38% 71.54% 3 3
23 O3read-0.0.3 28.13% 75.47% 28.13% 75.47% 28.13% 75.47% 28.13% 75.47% 28.13% 75.47% 7 3
24 gdb-7.5.1 0.02% 55.30% 0.02% 55.30% 42.09% 93.56% 42.09% 93.56% 42.09% 93.56% 7 3
25 podofo-0.9.4 2.00% 22.15% 2.00% 22.15% 2.00% 22.15% 2.00% 22.15% 2.00% 22.15% 3 3
26 nasm-0.98.38 0.35% 44.78% 0.35% 44.78% 0.35% 44.78% 57.34% 99.24% 57.34% 99.24% 3 3
27 corehttp-0.5.3a 0.00% 40.98% 0.00% 40.98% 0.00% 40.98% 58.48% 94.40% 58.48% 94.40% 3 3
28 corehttp-0.5.3.1 0.00% 41.21% 0.00% 41.21% 0.00% 41.21% 58.08% 95.22% 58.08% 95.22% 3 3
29 unrar-3.9.3 21.29% 82.41% 21.29% 82.41% 21.29% 82.41% 21.29% 82.41% 21.29% 82.41% 7 3
30 prozilla-1.3.6 4.98% 56.53% 4.98% 56.53% 4.98% 56.53% 32.06% 77.97% 32.06% 77.97% 7 3
31 python-2.7.5 1.00% 3.01% 1.00% 3.01% 1.00% 3.01% 1.00% 3.01% 1.00% 3.01% 3 3
32 html2hdml-1.0.3 1.92% 34.55% 1.92% 34.55% 1.92% 34.55% 1.92% 34.55% 1.92% 34.55% 3 3
33 mcrypt-2.5.8 14.95% 53.02% 22.83% 59.84% 63.36% 100% 63.36% 100% 63.36% 100% 7 3
34 putty-0.66 5.06% 24.67% 5.06% 24.67% 5.06% 24.67% 18.58% 54.09% 18.58% 54.09% 3 3
35 mp3info-0.8.5a 1.9% 55.58% 1.9% 55.58% 3.82% 55.92% 3.82% 55.92% 3.82% 55.92% 3 3
36 LibSMI-0.4.8 70.44% 94.53% 70.44% 94.53% 70.44% 94.53% 70.44% 94.53% 70.44% 94.53% 3 3
37 JPegToAvi-1.5 0.00% 55.20% 0.00% 55.20% 0.00% 55.20% 0.00% 55.20% 13.81% 67.81% 3 3
38 aireplay-ng-1.2 4.46% 50.80% 4.96% 51.30% 49.17% 88.57% 49.17% 88.57% 49.17% 88.57% 7 7
39 ClamAV-0.93.3 NA NA NA NA NA NA NA NA NA NA 7 7
40 0verkill-0.16 NA NA NA NA NA NA NA NA NA NA 7 7

Total - - - - - - - - - - - 27(3) 37(3)
Average - 21.23% 57.49% 21.62% 57.84% 27.01% 62.79% 36.37% 72.07% 36.73% 72.40% - -

Table 2: The list of program crashes corresponding to memory corruption vulnerabilities. “Root cause” specifies whether the
result of alias analysis successfully facilitate the root cause identification of software crashes. The percentages under VSA and
DEEPVSA represent the amount of non-alias memory pairs identified. The number shown along with “non-alias” indicates the
length of the trace prior to the site of the root cause instruction.

ness of DEEPVSA in alias analysis and root cause diagnosis,
we exhaustively searched the Exploit Database Archive [47]
and randomly selected 40 distinct vulnerability reports corre-
sponding to 38 unique versions of software running on Linux.
Following the description of each report, we compiled vul-
nerable programs5, configured the underlying systems and
ran the PoC programs tied to corresponding vulnerabilities.
In this way, we triggered software failures, recorded their
crashing traces and treated these traces as our testing data set.
Using these crashing traces, we benchmarked DEEPVSA and
examined the effectiveness of our proposed technique. Recall
that the execution trace is stored in a circular buffer with a

5In other binary analysis research works using deep learning, the binary
is typically compiled with various optimization options. In this work, we
compiled programs mostly with O2 option because many vulnerabilities
cannot be reproduced if compiled with other options. Note that this does
not influence the generalization of our approach because O2 is the default
compilation options for most software.

limited size (4KB) and that buffer is shared by multiple run-
ning processes. Since different lengths of an instruction trace
stored in that shared buffer might influence memory alias
identification, we retained different lengths of instructions for
each of our test cases. This gives us the ability to identify the
optimal memory size needed for a running process.

In Table 2, we present all the crashing programs selected6.
From the table, we have the following observations. First
of all, we can observe that the programs listed in the table
has less overlaps with the programs in our training data set.
This implies the dissimilarity between our training and testing
data sets and thus avoids the possibility of using the same or
similar data for model training and testing. Considering pro-
grams could invoke functions in the same shared library (e.g.,
glibc), and too many of such invocations could potentially

6Note that we present the corresponding CVE/EDB-IDs as well as the
length of each crashing trace in Appendix.

USENIX Association 28th USENIX Security Symposium 1797

Global Heap Stack Other

Precision

HMM 67.99% 53.99% 74.47% 86.56%
CRF 15.93% 12.31% 62.10% 71.82%

Bi-RNN 98.63% 72.74% 95.30% 97.39%
Bi-GRU 90.71% 78.44% 95.11% 98.40%

Bi-LSTM 89.75% 78.47% 94.98% 97.92%
Our Model 96.98% 94.62% 98.92% 99.32%

Recall

HMM 77.52% 39.31% 81.40% 85.28%
CRF 10.23% 17.85% 51.95% 88.71%

Bi-RNN 84.17% 83.72% 95.96% 95.43%
Bi-GRU 88.04% 87.46% 97.59% 95.84%

Bi-LSTM 91.71% 86.53% 97.16% 95.37%
Our Model 86.67% 95.99% 98.59% 99.45%

F1 Score

HMM 72.44% 45.50% 77.78% 85.92%
CRF 12.46% 14.57% 56.57% 79.38%

Bi-RNN 90.83% 77.85% 95.63% 96.40%
Bi-GRU 89.35% 82.71% 96.33% 97.10%

Bi-LSTM 90.72% 82.30% 96.06% 96.63%
Our Model 91.54% 95.30% 98.75% 99.39%

Table 3: The overall performance of different machine learn-
ing models.

introduce the risk of using the same data for training and test-
ing, we further examine the instruction traces in the testing
data set with those in the training. We discover that there are
14.02% of overlapping functions, appearing both in our test
cases and the cases in our training set. In order to ensure our
training and testing data sets do not share instructions, we
eliminate the commonly shared instruction sequences from
the training data set. This further avoids the situation where
we perform alias analysis against a target crashing trace by
using the model trained with itself.

Second, we can observe, the programs in the table cover
a wide spectrum, ranging from sophisticated software like
gdb-7.5.1 with over 1.6M lines of code to lightweight soft-
ware such as o3read-0.0.3 and corehttp-0.5.3.1 with
less than 1K lines of code. To some extent, this diversity
of our test cases imposes different levels of difficulty upon
alias analysis and root cause diagnosis. Last but not least,
we manually examine the memory access behaviors and ob-
serve that our test corpus encloses a variety of memory access
behaviors, manifested as different amounts of memory deref-
erences across four disjoint memory regions (see Table 4
in Appendix). It should be noted that apart from the three
memory regions that conventional VSA typically separates,
we introduce ‘other’ which represents the memory region
pertaining to the text and global sections tied to dynamic li-
braries. This is an useful addition because the involvement
of this region could allow us to extend conventional VSA to
consider the following two memory access practices. ¶ An
instruction dereferences a memory cell which held a piece of
read-only data in the text section. · A running process and
dynamic library do not share the same global section and an
instruction of the process accesses a memory cell indicating
the global section of the dynamic library.

4.3 Experimental Setup
Using the systems mentioned in Section 4.1 as well as the data
sets described in Section 4.2, we set up a series of experiments
to evaluate our proposed technique and thus answer the four
questions presented above.

To answer the first three questions (¶, · and ¸) men-
tioned at the beginning of this section, we first trained 6
different machine learning models by using the training data
set mentioned above. As is specified in Table 3, two of them
are conventional machine learning models – Hidden Markov
Model (HMM) as well as Conditional Random Field (CRF).
While there are other machine learning approaches, such as
decision tree or logistic regression, which might also work for
our task, we select HMM and CRF as our baseline approaches
and compare them with our proposed deep learning technique.
This is because, by design, the approaches of our choice could
take a sequence of input and yield a sequence of predictions,
whereas other traditional machine learning approaches need
to involve sophisticated feature engineering efforts in order to
process a sequence of data input. In addition to conventional
learning models, Table 3 depicts our proposed neural network
architecture that takes instruction embedding as the input to
a neural network as well as three aforementioned neural ar-
chitectures that take as input the raw machine code. In this
work, we compare the performance of these different neural
architectures and examine whether the design of feeding in-
structions to a neural network outperforms that of taking raw
machine code7.

To obtain the performance measure of each machine learn-
ing models mentioned above, we applied the learning models
to the aforementioned testing data set, used them to predict
the memory region each instruction refers to and compare
their prediction with the true labels (i.e., the memory regions
a corresponding instruction truly refers to). For each memory
access in the execution traces of the testing data set, we define
a prediction as a correct identification if and only if the pre-
dicted memory regions aligns the true memory regions that
the corresponding instruction refers to. With this definition,
we further computed the precision, recall and F1 score for
each machine learning model. To be more specific, we use
the equations PM

⋂
TM

PM
, PM

⋂
TM

TM
and 2 · precision·recall

precision+recall to com-
pute precision, recall and F1 score, respectively. Here, PM
represents the set of memory accesses predicted to refer to
memory region M where M ∈ {stack,heap,global,other}.
TM denotes the set of memory accesses truly referencing
memory region M.

To explore the answer to our last question (¹), we further
set up our experiment as follows. For each trace in our test-
ing data set, we first applied our proposed neural network
model to predict the memory regions tied to corresponding

7It should be noted that all the neural networks shown in the table are bi-
directional. This is because previous research [48] indicates the bi-directional
structure outperforms those designed with a single-directional chain particu-
larly when using deep learning to performing binary analysis.

1798 28th USENIX Security Symposium USENIX Association

instructions. With these prediction results, we then utilized
DEEPVSA. As is mentioned above, DEEPVSA is an extension
of VSA. It is built with the additional ability to take the re-
gion prediction and determine non-alias relationships that the
conventional VSA originally fails to identify. In addition, it
leverages the results of alias analysis to perform backward
taint analysis and thus pinpoint the root cause of the cor-
responding crash. Using these capabilities, our experiment
compares the non-alias pairs that DEEPVSA and conventional
VSA identified. Then, using the alias analysis results that
DEEPVSA and conventional VSA derive, our experiment fur-
ther examines their corresponding capability in facilitating
the root cause diagnosis. When conducting our experiments,
we also investigate the impact of the instruction trace length
upon the non-alias identification. To be specific, we preserve
different lengths of instructions prior to the root cause site
(i.e., 200, 400, 800, 1600, 3200, 6400, 12800 and 19600) and
measure how different lengths impact alias identification. It
should be noted we utilize 4KB of execution trace for our
study if hardware cannot enclose the root cause site in its
circular buffer.

4.4 Experimental Results

Performance of machine learning models. Table 3 shows
the precision, recall and F1 score of various machine learn-
ing models, which demonstrate their capability of assigning
correct memory regions to instructions. As we can easily
observe, all deep neural network models significantly outper-
form traditional machine learning models. This is because a
crashing trace is relatively long and deep learning approaches
naturally have stronger capability than HMM and CRF in
learning the patterns hidden in a long sequence. Of all the
neural network models, we can also observe that our proposed
neural network model (specified as ‘our model’) exhibits the
highest classification performance (i.e., with the highest F1
score). This indicates that, in comparison with the model tak-
ing as input the raw machine code, a learning model that takes
instruction embedding as the input to a neural network could
better capture the dependency hidden between instructions.

From Table 3, we also find that, in comparison with other
deep learning models, our model typically demonstrates the
performance improvement with only about 1%∼ 12%. How-
ever, this does not imply that the utility of our model is only
slightly better than those of other neural network models. In
our binary analysis task, the crashing traces are relatively long.
Using a neural network with even only 0.1% of improvement
in precision, for example, we could reduce the amount of false
positives or negatives by thousands. Given a long crashing
trace containing hundreds of thousands of instructions, our
performance improvement indicates a significant reduction in
the memory regions mistakenly assigned by neural networks.
Performance of memory alias analysis. In addition to show-
ing the superior performance of our model when conducting

200 400 800 1600 3200 6400 12800 19600

Trace length prior to the site of the root cause instruction

15

25

35

45

55

65

75

A
ve

ra
ge

am
ou

nt
of

no
n-

al
ia

s
pa

ir
s

(%
)

VSA

DEEPVSA

Figure 4: The average amount of non-alias memory pairs vs. the
length of instructions retained.

memory region identification, we demonstrate the perfor-
mance of our model in terms of its ability to facilitate VSA
with respect to memory alias analysis. In Table 2, we spec-
ify the percentage of non-alias pairs that VSA and DEEPVSA

track down when given different lengths of crashing traces
(400, 800, 3200, 6400, 12800). As we can observe, on aver-
age, conventional VSA tracks down about 21.23%∼ 36.73%
non-alias pairs compared with 57.49%∼ 72.40% of non-alias
pairs identified by DEEPVSA. This is more than a 35% increase
in non-alias memory reference determination. These results
perfectly reflect how conventional VSA generally fails to ac-
curately identify memory regions when execution traces are
incomplete. With the assistance of a deep neural network,
VSA’s ability to perform memory region identification can be
enhanced resulting in a significant benefit for memory alias
analysis.

In Table 2 and Figure 4, we further specify the impact
of the execution trace length upon the ability to perform
alias analysis. We observe that, for some crashing programs
(e.g., poppler-0.8.4 and JPegToAvi-1.5), the length of
the execution trace stored in the circular buffer influences the
capability of VSA and DEEPVSA upon determining memory
alias relationships. With the increase in the length of an execu-
tion trace, we discover that both VSA and DEEPVSA demon-
strate the improvement in their ability to analyze memory
alias. This is because both techniques rely upon an execution
context to perform alias analysis and a longer execution trace
provides them with more abundant contexts. In addition, we
observe that the capability of performing alias analysis con-
verges when the length of the instructions (prior to the root
cause instruction site) exceeds 12,800. This indicates that,
even though DEEPVSA significantly improves VSA’s capabil-
ities for alias analysis, it does not completely address alias
identification issues for a crashing trace. We believe there is
still a room for future exploration in this space, particularly
because VSA utilizes both memory regions and offsets to
perform alias analysis while DEEPVSA only simply extends
VSA with the consideration of coarse-grained memory region
differences.

USENIX Association 28th USENIX Security Symposium 1799

Recall that our DEEPVSA performs alias analysis by using
a deep learning approach which cannot predict a memory
region access with 100% of accuracy. As a result, along with
the influence of a trace length upon alias analysis, we also
investigate if inaccurate prediction actually causes DEEPVSA
to incorrectly – or mistakenly – track down a non-memory
alias pair and thus fail root cause diagnosis. We discover that,
similar to conventional VSA, DEEPVSA exhibits zero error
rate across all test cases shown in the table. This implies that
DEEPVSA does not introduce unsoundness to alias analysis
while our proposed deep neural network might mistakenly
assign an incorrect region to an instruction. We believe the
reason behind this surprising observation is as follows. Given
a crashing trace, there is only a tiny portion of memory ref-
erences that are truly aliased to each other. Even though
our deep learning model mistakenly predicts regions for in-
structions, and DEEPVSA takes that inaccurate prediction as a
strong indicator for determining non-alias relationships, the
possibility of propagating that error to alias analysis is still
extremely low.
Performance of root cause diagnosis. Going beyond speci-
fying the facilitation of alias analysis, Table 2 also illustrates
how the analysis of memory alias benefits backward taint anal-
ysis and thus the root cause identification. As we can observe
from the table, compared with VSA – with which backward
taint could successfully pinpoint the root cause of the crash
for 27 test cases – DEEPVSA demonstrates superior perfor-
mance in facilitating root cause diagnosis. We can observe
that, with only 3 test cases, DEEPVSA fails to help backward
taint to track down the root cause of a software crash. To
understand the reasons behind the failure, we look closely
into the instructions tainted. With respect to 0verkill-0.16
and ClamAV-0.93.3, we note that the failure results from
the nature of the hardware which has only 4KB memory stor-
age to record all execution traces. Even if we allocate this
entire storage to the crashing process, the hardware is still not
able to enclose the instructions pertaining to the root cause of
the crash. Regarding the test case aireplay-ng-1.2beta3,
we discover the crashing program invoked the system call
sys read which writes a data chunk to a certain memory
region. Since both the size of the data chunk and the address
of the memory are specified in registers, which value-set anal-
ysis fails to restore, sys read intervenes the propagation of
data flow, making the output of DEEPVSA less informative to
failure diagnosis.

5 Related Work

This research work mainly focuses on analyzing memory alias
in the binary level. Regarding the techniques we employed
and the problems we addressed, the lines of works most
closely related to our own include machine learning in binary
analysis and memory alias analysis for assembly. In this
section, we summarize previous studies and discuss their

limitation in turn.
Memory alias analysis for assembly. There is a long his-
tory of research about analyzing memory alias in binary code.
As pioneering research works, Debray et al. [21] and Ci-
fuentes et al. [16] both propose the same type of technical
approaches that compute the values a set of registers can hold
at each program point and then use the values held in the
registers to determine alias. Considering such techniques
determine only the possible values held in each register, but
not reason about values across memory operations, Brum-
ley et al. propose a logic-based approach which derives all
possible alias relationships by finding an over-approximation
of the set of values that each memory location and register
can hold at each program point [12]. At the high level, this
logic-based approach is similar to value set analysis [7, 6, 42]
because they both perform value reasoning across memory op-
erations. However, different from the work proposed in [12],
value set analysis neither assumes that all memory cells and
register locations must be of a single fixed width, nor assumes
reads and writes have to be no overlapping. As such, value set
analysis is more practical for real-world applications, whereas
the logic-based approach [12] has been tested only against
simple toy examples.

In a recent research work [19], Cui et al. propose a prac-
tical debugging system REPT. Technically, it first ignores
memory alias in data flow analysis and then utilizes an er-
ror correction mechanism to rectify the mistakes caused by
memory alias. This approach has demonstrated its effective-
ness and efficiency in dealing with some real world crashes.
However, as is stated in [19], it inevitably introduces inaccu-
rate analysis results. This is because the proposed correction
mechanism does not always catch the occurrence of memory
alias, which could sometimes result in incorrectness in root
cause diagnosis for a crashing program. In addition, similar
to value set analysis, incomplete execution trace imposes the
difficulty for REPT in performing alias analysis. In this work,
we proposed new deep-learning-based approach which not
only inherits the capability of VSA in providing high-fidelity
analysis results but more importantly enhances its ability to
analyze memory alias.
Machine learning in binary analysis. There is an extensive
body of work leveraging machine learning to perform binary
analysis. Technically speaking, they can be categorized into
two types – conventional machine learning based approaches
as well as deep learning based ones.

With respect to the works using conventional machine
learning techniques, their research focus is mainly on iden-
tifying the function boundary in the binary level. For ex-
ample, Rosenblum et al. utilize conditional random fields to
formulate function boundary identification [43] and demon-
strate decent performance in terms of pinpointing function
entry points. In a recent research work, Bao et al. propose
ByteWeight [8] which significantly improves the perfor-
mance for function boundary identification by using weighted

1800 28th USENIX Security Symposium USENIX Association

prefix trees.
Regarding the research works adopting deep learning tech-

niques, their research focus includes identifying function
boundary [48], pinpointing function type signature [15], track-
ing down similar binary code [56] and performing memory
forensics [49]. Using a bi-directional recurrent neural net-
work, Shin et al. improve function boundary identification
and achieve a nearly perfect performance with respect to
function boundary recognition [48]. Going beyond simply
identifying function boundary, Chua et al. explore recurrent
neural networks with respect to its ability to track down the
arguments and types of functions in binary [15]. In recent
work, deep learning techniques have also been utilized for
binary code similarity detection, in which Xu et al. employ
Multi-Layer Perception (MLP) to encode a control flow graph
and then use the encoding to pinpoint vulnerable code frag-
ments [56]. Last but not least, Song et al. use a graph based
deep learning approach to derive abstract representations for
kernel objects so that one could recognize those objects from
raw memory dumps efficiently [49].

In this work, we also use machine learning for binary anal-
ysis. Different from the aforementioned research, we however
focus on leveraging deep learning to improve memory alias
identification. Technically speaking, our work is also unique.
Unlike the works above, which mostly use an off-the-shelf
deep neural architecture, our work introduces a new recurrent
neural architecture, which takes the consideration of the data
dependency residing in binary code. As is shown in Section 4,
our proposed neural network significantly outperforms neural
networks largely adopted in other binary analysis tasks.

6 Conclusion

In this paper, we introduce a new deep neural network ar-
chitecture to facilitate value-set analysis for alias analysis
and thus improve the capability in software crash analysis.
We show that this new neural architecture can significantly
improve value-set analysis with respect to its capability in
handling memory alias analysis and benefit data flow analysis
in the context of postmortem program analysis. Since the
design of our proposed neural network architecture takes into
consideration not only the semantics of instructions but also
their contexts, it can better capture the dependency within
and between the instructions in a sequence of machine codes,
making alias identification more effective.

We implemented our proposed technique as DEEPVSA– a
deep neural network assisted tool for alias analysis and crash
diagnosis – and demonstrated its utility using real-world soft-
ware crashes covering about 1.6 million lines of instructions.
We showed that DEEPVSA can facilitate the determination of
non-alias relationships with no false positives and benefit the
diagnosis of program crashes. In addition, we demonstrated
that our newly designed neural network outperforms off-the-
shelf neural architectures. Following these findings, we safely

conclude deep learning can be used for the facilitation of
memory alias analysis and root cause diagnosis at the binary
level. We expect this work can inspire further advancements
in alias analysis and postmortem program analysis through
deep neural networks.

Acknowledgement

We would like to thank our shepherd Konrad Rieck and the
anonymous reviewers for their helpful feedback. This project
was supported in part by NSF grants CNS-1718459, TWC-
1409915. In addition, this work was partially supported by the
CLTC (Center for Long-Term Cybersecurity), and FORCES
(Foundations of Resilient CybErPhysical Systems) which
is supported by NSF under the grants CNS-1238959, CNS-
1238962, CSN-1239054 and CSN-1239166.

References

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z.,
DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT, S.,
IRVING, G., ISARD, M., ET AL. Tensorflow: a system
for large-scale machine learning. In Proceedings of the
11st USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2016).

[2] ARM. Embedded trace macrocell architecture specifica-
tion. http://www2.lauterbach.com/pdf/trace_

arm_etm.pdf, 2018.

[3] AUTHORS, A. The deepvsa project website. Anony-
mous link, 2019.

[4] BALAKRISHNAN, G., GRUIAN, R., REPS, T., AND
TEITELBAUM, T. Codesurfer/x86a platform for ana-
lyzing x86 executables. In Proceedings of the 14th In-
ternational Conference on Compiler Construction (CC)
(2005).

[5] BALAKRISHNAN, G., AND REPS, T. Analyzing mem-
ory accesses in x86 executables. In Proceedings of the
13rd International Conference on Compiler Construc-
tion (CC) (2004).

[6] BALAKRISHNAN, G., AND REPS, T. Wysinwyx: What
you see is not what you execute. ACM Transactions on
Programming Languages and Systems (2010).

[7] BALAKRISHNAN, G., AND REPS, T. W. Analyzing
memory accesses in x86 executables. In Proceedings
of the 13th International Conference on Compiler Con-
struction (CC) (2004).

[8] BAO, T., BURKET, J., WOO, M., TURNER, R., AND
BRUMLEY, D. Byteweight: Learning to recognize func-
tions in binary code. In Proceedings of the 23rd USENIX
Security Symposium (USENIX Security) (2014).

USENIX Association 28th USENIX Security Symposium 1801

http://www2.lauterbach.com/pdf/trace_arm_etm.pdf
http://www2.lauterbach.com/pdf/trace_arm_etm.pdf

[9] BENGIO, S., AND HEIGOLD, G. Word embeddings for
speech recognition. In Proceedings of the 15th Annual
Conference of the International Speech Communication
Association (ISCA) (2014).

[10] BISHOP, C. M. Pattern Recognition and Machine
Learning. Springer, 2006.

[11] BOTTOU, L. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of the 15th Interna-
tional Conference on Computational Statistics (COMP-
STAT) (2010).

[12] BRUMLEY, D., AND NEWSOME, J. Alias analysis for
assembly. In CMU-CS-06-180 (2006).

[13] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C.,
BAHDANAU, D., BOUGARES, F., SCHWENK, H., AND
BENGIO, Y. Learning phrase representations using
rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[14] CHOLLET, F., ET AL. Keras. https://keras.io/,
2015.

[15] CHUA, Z. L., SHEN, S., SAXENA, P., AND LIANG,
Z. Neural nets can learn function type signatures from
binaries. In Proceedings of the 26th USENIX Security
Symposium (USENIX Security) (2017).

[16] CIFUENTES, C., AND FRABOULET, A. Intraprocedural
static slicing of binary executables. In Proceedings of
13rd the International Conference on Software Mainte-
nance (ICSM) (1997).

[17] CLAUSE, J., LI, W., AND ORSO, A. Dytan: a generic
dynamic taint analysis framework. In Proceedings of
the 2007 International Symposium on Software Testing
and Analysis (ISSTA) (2007).

[18] COWAN, C., PU, C., MAIER, D., WALPOLE, J.,
BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P.,
ZHANG, Q., AND HINTON, H. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security
Symposium (USENIX Security) (1998).

[19] CUI, W., GE, X., KASIKCI, B., NIU, B., SHARMA, U.,
WANG, R., AND YUN, I. REPT: Reverse debugging
of failures in deployed software. In Proceedings of the
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2018).

[20] CUI, W., PEINADO, M., CHA, S. K., FRATANTONIO,
Y., AND KEMERLIS, V. P. Retracer: Triaging crashes
by reverse execution from partial memory dumps. In
Proceedings of the 38th International Conference on
Software Engineering (ICSE) (2016).

[21] DEBRAY, S., MUTH, R., AND WEIPPERT, M. Alias
analysis of executable code. In Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL) (1998).

[22] GERS, F. A., SCHRAUDOLPH, N. N., AND SCHMID-
HUBER, J. Learning precise timing with lstm recurrent
networks. Journal of machine learning research (2002).

[23] GOODFELLOW, I., BENGIO, Y., COURVILLE, A., AND
BENGIO, Y. Deep learning. MIT press Cambridge,
2016.

[24] GRAVES, A., MOHAMED, A.-R., AND HINTON, G.
Speech recognition with deep recurrent neural networks.
In Proceedings of the 38th IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP) (2013).

[25] GU, X., ZHANG, H., ZHANG, D., AND KIM, S. Deep
api learning. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE) (2016).

[26] HOCHREITER, S. The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems (1998).

[27] INTEL. Intel processor trace tools. https://

software.intel.com/en-us/node/721535, 2013.

[28] IOFFE, S., AND SZEGEDY, C. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the International
conference on machine learning (ICML) (2015).

[29] ITO, Y. Representation of functions by superpositions
of a step or sigmoid function and their applications to
neural network theory. Neural Networks (1991).

[30] KASIKCI, B., CUI, W., GE, X., AND NIU, B. Lazy
diagnosis of in-production concurrency bugs. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP) (2017).

[31] KINGMA, D. P., AND BA, J. Adam: A method for
stochastic optimization. In Proceedings of the 3rd Inter-
national Conference on Learning Representation (ICLR)
(2015).

[32] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON,
G. E. Imagenet classification with deep convolutional
neural networks. In Proceedings of the 36th Annual
Conference on Neural Information Processing Systems
(NeurIPS) (2012).

[33] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep
learning. nature (2015).

1802 28th USENIX Security Symposium USENIX Association

https://keras.io/
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/node/721535

[34] LI, M., ZHANG, T., CHEN, Y., AND SMOLA, A. J.
Efficient mini-batch training for stochastic optimization.
In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD) (2014).

[35] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S., ET AL.
Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 26th
ACM SIGPLAN Conference on Programming language
design and implementation (PLDI) (2005).

[36] MICROSOFT. /safeseh (safe exception handlers).
http://msdn2.microsoft.com/en-us/library/

9a89h429.aspx, 2003.

[37] MICROSOFT. Time travel debugging - record
a trace. https://docs.microsoft.com/

en-us/windows-hardware/drivers/debugger/

time-travel-debugging-record, 2017.

[38] MOZILLA. rr: lightweight recording & deterministic
debugging. https://rr-project.org/, 2019.

[39] NEWSOME, J., AND SONG, D. X. Dynamic taint
analysis for automatic detection, analysis, and signa-
turegeneration of exploits on commodity software. In
Proceedings of the 11st Network and Distributed System
Security Symposium (NDSS) (2005).

[40] OHMANN, P., BROOKS, A., D’ANTONI, L., AND LI-
BLIT, B. Control-flow recovery from partial failure
reports. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI) (2017).

[41] OHMANN, P., AND LIBLIT, B. Lightweight control-
flow instrumentation and postmortem analysis in sup-
port of debugging. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) (2013).

[42] REPS, T. W., AND BALAKRISHNAN, G. Improved
memory-access analysis for x86 executables. In Pro-
ceedings of the 17th International Conference on Com-
piler Construction (CC) (2008).

[43] ROSENBLUM, N. E., ZHU, X., MILLER, B. P., AND
HUNT, K. Learning to analyze binary computer code. In
Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI) (2008).

[44] RUCK, D. W., ROGERS, S. K., KABRISKY, M., OX-
LEY, M. E., AND SUTER, B. W. The multilayer per-
ceptron as an approximation to a bayes optimal discrim-
inant function. IEEE Transactions on Neural Networks
(1990).

[45] RUDER, S. An overview of gradient descent opti-
mization algorithms. arXiv preprint arXiv:1609.04747
(2016).

[46] SCHUSTER, M., AND PALIWAL, K. K. Bidirectional
recurrent neural networks. IEEE Transactions on Signal
Processing (1997).

[47] SECURITY, O. Offensive security exploit database
archive. https://www.exploit-db.com/, 2009.

[48] SHIN, E. C. R., SONG, D., AND MOAZZEZI, R. Rec-
ognizing functions in binaries with neural networks. In
Proceedings of the 24th USENIX Security Symposium
(USENIX Security) (2015).

[49] SONG, W., YIN, H., LIU, C., AND SONG, D. Deep-
mem: Learning graph neural network models for fast
and robust memory forensic analysis. In Proceedings
of the 25th ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2018).

[50] SUTSKEVER, I., VINYALS, O., AND LE, Q. V. Se-
quence to sequence learning with neural networks. In
Proceedings of the 38th Annual Conference on Neural
Information Processing Systems (NeurIPS) (2014).

[51] TEAM, P. Address space layout randomization
(aslr). http://pax.grsecurity.net/docs/aslr.

txt, 2003.

[52] TIELEMAN, T., AND HINTON, G. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine
learning (2012).

[53] VAN DE VEN, A., AND MOLNAR, I. Exec
shield. http://www.redhat.com/f/pdf/rhel/

WHP0006US_Execshield.pdf, 2004.

[54] WIKIPEDIA CONTRIBUTORS. Hyperbolic
function — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?

title=Hyperbolic_function&oldid=866654186,
2018.

[55] XU, J., MU, D., XING, X., LIU, P., CHEN, P., AND
MAO, B. Postmortem program analysis with hardware-
enhanced post-crash artifacts. In Proceedings of the
26th USENIX Security Symposium (USENIX Security)
(2017).

[56] XU, X., LIU, C., FENG, Q., YIN, H., SONG, L., AND
SONG, D. Neural network-based graph embedding
for cross-platform binary code similarity detection. In
Proceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security (CCS) (2017).

USENIX Association 28th USENIX Security Symposium 1803

http://msdn2.microsoft.com/en-us/library/9a89h429.aspx
http://msdn2.microsoft.com/en-us/library/9a89h429.aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-record
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-record
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-record
https://rr-project.org/
https://www.exploit-db.com/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http:// www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http:// www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://en.wikipedia.org/w/index.php?title=Hyperbolic_function&oldid=866654186
https://en.wikipedia.org/w/index.php?title=Hyperbolic_function&oldid=866654186

Index CVE/EDB Trace Statistics
Len. Global Heap Stack Other

1 2013-0221 228 6 14 106 4613
2 2013-0222 285 155 468 10895 844
3 2013-0223 341 27 74 5103 4301
4 2013-2028 348 24 2318 5268 715
5 2002-1496 136 141 3071 0 8723
6 2004-1271 3391 64 0 7031 3884
7 2009-2285 28387 77 23596 4287 1786
8 2004-1297 110 341 1641 6086 2326
9 NA-30142 419 357 2379 6523 1584
10 2016-7445 236 20 195 5544 3829
11 NA-38616 680 62 11332 639 11535
12 2008-2950 672 5 1632 7196 2195
13 2009-3050 704 151 1114 6572 1924
14 2005-3862 54203 15 4612 15543 7372
15 NA-890 2966 32 88 6369 4184
16 2004-0597 4107 18 365 8368 3818
17 2005-4807 15953 180 8584 4973 2514
18 2015-5895 1446 27 1642 6776 1840
19 2004-1289 13264 807 6503 7736 3233
20 2004-2167 1720 150 1492 1729 311
21 2009-5018 76603 75 175 26354 18975
22 2004-1257 56018 862 10192 31420 3333
23 2004-1288 69184 1189 0 24430 25256
24 NA-23523 1544 95 2833 7107 343
25 2017-5854 571 90 1382 10698 753
26 2004-1287 1212 660 5593 5948 332
27 2007-4060 4124 55 596 7438 2072
28 2009-3586 8612 80 1317 9854 2375
29 NA-17611 3384 2724 0 3407 367
30 2004-1120 2011 23 5060 7345 1655
31 NA-33251 16672 1 33168 474 25
32 2004-1275 41275 25 12039 10383 683
33 2012-4409 321 29 216 4769 2116
34 2016-2563 3586 1035 2349 8450 869
35 2006-2465 31806 10 4564 16304 5227
36 2010-2891 7611 0 715 14626 1764
37 2004-1279 29371 9 266 11924 10989
38 2014-8322 329 84 138 6908 2738
39 2008-5314 200000 0 0 118271 85077
40 2006-2971 200000 37208 0 4652 158140

Total - 883830 - - - -

Table 4: The detail of crashing programs. The CVE/EDB
column specifies the vulnerability identifiers. In this column,
NA indicates those vulnerabilities with an EDB identifier but
not a CVE Identifier). “Trace Len” describes the number of
instructions from the root cause site to the crashing site. The
numbers under “statistics” indicate the amount of memory
dereferences across 4 disjoint memory regions.

Appendix

Detail of crashing programs and their crashing trace. As
is described in Section 4, for our evaluation, we select 40
crashing traces corresponding to 38 distinct versions of vul-
nerable software. Table 4 describes the detail of these selected
programs, including the CVE/EDB identifiers tied to these
programs as well as the length of their crashing traces. In ad-
dition, the table shows the memory access behaviors of each
program. They are retrieved from the execution trace which

Global Heap Stack Other

Precision

HMM 65.69% 47.26% 71.38% 86.28%
CRF 15.87% 33.57% 63.30% 73.09%

Bi-RNN 95.53% 72.88% 94.18% 97.67%
Bi-GRU 91.97% 74.21% 94.62% 97.44%

Bi-LSTM 94.23% 77.12% 94.84% 98.57%
Our Model 98.30% 94.91% 98.83% 99.40%

Recall

HMM 63.25% 29.82% 83.08% 83.72%
CRF 8.17% 13.02% 55.56% 88.20%

Bi-RNN 79.75% 83.56% 96.39% 95.07%
Bi-GRU 89.89% 81.28% 96.93% 95.22%

Bi-LSTM 88.79% 88.20% 97.56% 95.58%
Our Model 88.64% 95.71% 98.65% 99.53%

F1 Score

HMM 64.49% 36.57% 76.79% 84.98%
CRF 10.79% 18.76% 59.18% 79.94%

Bi-RNN 86.93% 77.86% 95.27% 96.35%
Bi-GRU 90.92% 77.59% 95.76% 96.31%

Bi-LSTM 91.43% 82.29% 96.18% 97.06%
Our Model 93.22% 95.31% 98.74% 99.46%

Table 5: The overall performance of different machine learn-
ing models trained with the execution traces without the elim-
ination of common instruction sequences.

combines the trace from the root cause site to the crashing
site and its 19,200 prefix instructions. We have already made
all of the selected programs publicly available. They can be
downloaded from our project website [3]. It should be noted
that Table 2 and 4 share the same index.
Learning model performance without the elimination of
commonly-shared data. As is specified in Section 4, in
order to avoid the risk of using the same data to train and
test a learning model, we eliminate – from the training data
set – the instruction sequences commonly shared by both our
training and testing sets, and show the performance of the
learning models trained on non-overlapping data set. As a
comparison, we also conduct an experiment in which we do
not eliminate the 14.02% of shared data from the training
set, and train all the learning models over the overlapping
data set. In Table 5, we depict the model performance under
this setting. As we can observe from the table, the model
performance is actually comparable regardless whether we
trim off the commonly shared instruction sequences. This
implies that the shared data has nearly no impact upon model
classification and thus memory alias analysis.

1804 28th USENIX Security Symposium USENIX Association

CONFIRM: Evaluating Compatibility and Relevance of
Control-flow Integrity Protections for Modern Software

Xiaoyang Xu
University of Texas at Dallas

Masoud Ghaffarinia∗

University of Texas at Dallas
Wenhao Wang∗

University of Texas at Dallas

Kevin W. Hamlen
University of Texas at Dallas

Zhiqiang Lin
Ohio State University

Abstract
CONFIRM (CONtrol-Flow Integrity Relevance Metrics) is a
new evaluation methodology and microbenchmarking suite
for assessing compatibility, applicability, and relevance of
control-flow integrity (CFI) protections for preserving the in-
tended semantics of software while protecting it from abuse.
Although CFI has become a mainstay of protecting certain
classes of software from code-reuse attacks, and continues
to be improved by ongoing research, its ability to preserve
intended program functionalities (semantic transparency) of
diverse, mainstream software products has been under-studied
in the literature. This is in part because although CFI solu-
tions are evaluated in terms of performance and security, there
remains no standard regimen for assessing compatibility. Re-
searchers must often therefore resort to anecdotal assessments,
consisting of tests on homogeneous software collections with
limited variety (e.g., GNU Coreutils), or on CPU benchmarks
(e.g., SPEC) whose limited code features are not representa-
tive of large, mainstream software products.

Reevaluation of CFI solutions using CONFIRM reveals
that there remain significant unsolved challenges in securing
many large classes of software products with CFI, includ-
ing software for market-dominant OSes (e.g., Windows) and
code employing certain ubiquitous coding idioms (e.g., event-
driven callbacks and exceptions). An estimated 47% of CFI-
relevant code features with high compatibility impact remain
incompletely supported by existing CFI algorithms, or receive
weakened controls that leave prevalent threats unaddressed
(e.g., return-oriented programming attacks). Discussion of
these open problems highlights issues that future research
must address to bridge these important gaps between CFI
theory and practice.

1 Introduction

Control-flow integrity (CFI) [1] (supported by vtable protec-
tion [29] and/or software fault isolation [73]), has emerged as

∗These authors contributed equally to this work.

one of the strongest known defenses against modern control-
flow hijacking attacks, including return-oriented program-
ming (ROP) [60] and other code-reuse attacks. These attacks
trigger dataflow vulnerabilities (e.g., buffer overflows) to ma-
nipulate control data (e.g., return addresses) to hijack victim
software. By restricting program execution to a set of legiti-
mate control-flow targets at runtime, CFI can mitigate many
of these threats.

Inspired by the initial CFI work [1], there has been prolific
new research on CFI in recent years, mainly aimed at improv-
ing performance, enforcing richer policies, obtaining higher
assurance of policy-compliance, and protecting against more
subtle and sophisticated attacks. For example, between 2015–
2018 over 25 new CFI algorithms appeared in the top four
applied security conferences alone. These new frameworks
are generally evaluated and compared in terms of performance
and security. Performance overhead is commonly evaluated
in terms of the CPU benchmark suites (e.g., SPEC), and se-
curity is often assessed using the RIPE test suite [80] or with
manually crafted proof-of-concept attacks (e.g., COOP [62]).
For example, a recent survey systematically compared various
CFI mechanisms against these metrics for precision, security,
and performance [13].

While this attention to performance and security has stimu-
lated rapid gains in the ability of CFI solutions to efficiently
enforce powerful, precise security policies, less attention
has been devoted to systematically examining which gen-
eral classes of software can receive CFI protection without
suffering compatibility problems. Historically, CFI research
has struggled to bridge the gap between theory and practice
(cf., [84]) because code hardening transformations inevitably
run at least some risk of corrupting desired, policy-permitted
program functionalities. For example, introspective programs
that read their own code bytes at runtime (e.g., many VMs,
JIT compilers, hot-patchers, and dynamic linkers) can break
after their code bytes have been modified or relocated by CFI.

Compatibility issues of this sort have dangerous security
ramifications if they prevent protection of software needed in
mission-critical contexts, or if the protections must be weak-

USENIX Association 28th USENIX Security Symposium 1805

ened in order to achieve compatibility. For example, due in
part to potential incompatibilities related to return address
introspection (wherein some callees read return addresses as
arguments) the three most widely deployed compiler-based
CFI solutions (LLVM-CFI [69], GCC-VTV [69], and Mi-
crosoft Visual Studio MCFG [66]) all presently leave return
addresses unprotected, potentially leaving code vulnerable to
ROP attacks—the most prevalent form of code-reuse.

Understanding these compatibility limitations, including
their impacts on real-world software performance and secu-
rity, requires a new suite of CFI functional tests with substan-
tially different characteristics than benchmarks typically used
to assess compiler or hardware performance. In particular,
CFI relevance and effectiveness is typically constrained by
the nature and complexity of the target program’s control-
flow paths and control data dependencies. Such complexities
are not well represented by SPEC benchmarks, which are de-
signed to exercise CPU computational units using only simple
control-flow graphs, or by utility suites (e.g., GNU Coreutils)
that were all written in a fairly homogeneous programming
style for a limited set of compilers, and that use a very lim-
ited set of standard libraries chosen for exceptionally high
cross-compatibility.

To better understand the compatibility and applicability
limitations of modern CFI solutions on diverse, modern soft-
ware products, and to identify the coding idioms and features
that constitute the greatest barriers to more widespread CFI
adoption, we present CONFIRM (CONtrol-Flow Integrity
Relevance Metrics), a new suite of CFI tests designed to ex-
hibit code features most relevant to CFI evaluation.1 Each test
is designed to exhibit one or more control-flow features that
CFI solutions must guard in order to enforce integrity, that
are found in a large number of commodity software products,
but that pose potential problems for CFI implementations.

It is infeasible to capture in a single test set the full diversity
of modern software, which embodies myriad coding styles,
build processes (e.g., languages, compilers, optimizers, ob-
fuscators, etc.), and quality levels. We therefore submit CON-
FIRM as an extensible baseline for testing CFI compatibility,
consisting of code features drawn from experiences building
and evaluating CFI and randomization systems for several
architectures, including Linux, Windows, Intel x86/x64, and
ARM32 in academia and industry [7, 33, 45, 47, 75, 77–79].

Our work is envisioned as having the following qualitative
impacts: (1) CFI designers (e.g., compiler developers) can
use CONFIRM to detect compatibility flaws in their designs
that are currently hard to anticipate prior to full scale produc-
tization. This can lower the currently steep barrier between
prototype and distributable product. (2) Defenders (e.g., de-
velopers of secure software) can use CONFIRM to better
evaluate code-reuse defenses, in order to avoid false senses of
security. (3) The research community can use CONFIRM to

1https://github.com/SoftwareLanguagesSecurityLab/ConFIRM

identify and prioritize missing protections as important open
problems worthy of future investigation.

We used CONFIRM to reevaluate 12 publicly available CFI
implementations published in the open literature. The results
show that about 47% of solution-test pairs exhibit incompat-
ible or insecure operation for code features needed to sup-
port mainstream software products, and a cross-thread stack-
smashing attack defeats all tested CFI defenses. Microbench-
marking additionally reveals some performance/compatibility
trade-offs not revealed by purely CPU-based benchmarking.

In summary, our contributions include the following:

• We present CONFIRM, the first testing suite designed
specifically to test compatibility characteristics relevant
to control-flow security hardening evaluation.

• A set of 20 code features and coding idioms are iden-
tified, that are widely found in deployed, commodity
software products, and that pose compatibility, perfor-
mance, or security challenges for modern CFI solutions.

• Evaluation of 12 CFI implementations using CONFIRM
reveals that existing CFI implementations are compat-
ible with only about half of code features and coding
idioms needed for broad compatibility, and that micro-
benchmarking using CONFIRM reveals performance
trade-offs not exhibited by SPEC benchmarks.

• Discussion and analysis of these results highlights sig-
nificant unsolved obstacles to realizing CFI protections
for widely deployed, mainstream, commodity products.

Section 2 begins with a summary of technical CFI attack
and defense details important for understanding the evaluation
approach. Section 3 next presents CONFIRM’s evaluation
metrics in detail, including a rationale behind why each metric
was chosen, and how it impacts potential defense solutions;
and Section 4 describes implementation of the resulting tests.
Section 5 reports our evaluation of CFI solutions using CON-
FIRM and discusses significant findings. Finally, Section 6
describes related work and Section 7 concludes.

2 Background

CFI defenses first emerged from an arms race against early
code-injection attacks, which exploit memory corruptions
to inject and execute malicious code. To thwart these ma-
licious code-injections, hardware and OS developers intro-
duced Data Execution Prevention (DEP), which blocks ex-
ecution of injected code. Adversaries proceeded to bypass
DEP with “return-to-libc” attacks, which redirect control to
existing, abusable code fragments (often in the C standard
libraries) without introducing attacker-supplied code. In re-
sponse, defenders introduced Address Space Layout Random-
ization (ASLR), which randomizes code layout to frustrate
its abuse. DEP and ASLR motivated adversaries to craft even

1806 28th USENIX Security Symposium USENIX Association

https://github.com/SoftwareLanguagesSecurityLab/ConFIRM

more elaborate attacks, including ROP and Jump-Oriented
Programming (JOP) [11], which locate, chain, and execute
short instruction sequences (gadgets) of benign code to im-
plement malicious payloads.

CFI emerged as a more comprehensive and principled de-
fense against this malicious code-reuse. Most realizations con-
sist of two main phases: (1) A program-specific control-flow
policy is first formalized as a (possibly dynamic) control-flow
graph (CFG) that whitelists the code’s permissible control-
flow transfers. (2) To constrain all control flows to the CFG,
the program code is instrumented with guard code at all com-
puted (e.g., indirect) control-flow transfer sites. The guard
code decides at runtime whether each impending transfer
satisfies the policy, and blocks it if not. The guards are de-
signed to be uncircumventable by confronting attackers with
a chicken-and-egg problem: To circumvent a guard, an attack
must first hijack a control transfer; but since all control trans-
fers are guarded, hijacking a control transfer requires first
circumventing a guard.

Both CFI phases can be source-aware (implemented as a
source-to-source transformation, or introduced during com-
pilation), or source-free (implemented as a binary-to-binary
transformation). Source-aware solutions typically benefit
from source-level information to derive more precise poli-
cies, and can often perform more optimization to achieve
better performance. Examples include WIT [5], NaCl [81],
CFL [11], MIP [48], MCFI [49], RockJIT [50], Forward
CFI [69], CCFI [42], πCFI [51], MCFG [66] CFIXX [14]
and µCFI [35]. In contrast, source-free solutions are po-
tentially applicable to a wider domain of software products
(e.g., closed-source), and have a more flexible deployment
model (e.g., consumer-side enforcement without developer
assistance). These include XFI [26], Reins [78], STIR [77],
CCFIR [84], bin-CFI [87], BinCC [74], Lockdown [54], Ty-
peArmor [72], OCFI [45], OFI [75] and τCFI [47].

The advent of CFI is a significant step forward for defend-
ers, but was not the end of the arms race. In particular, each
CFI phase introduces potential loopholes for attackers to ex-
ploit. First, it is not always clear which policy should be
enforced to fully protect the code. Production software often
includes complex control-flow structures, such as those intro-
duced by object-oriented programming (OOP) idioms, from
which it is difficult (even undecidable) to derive a CFG that
precisely captures the policy desired by human developers
and users. Second, the instrumentation phase must take care
not to introduce guard code whose decision procedures con-
stitute unacceptably slow runtime computations [34]. This
often results in an enforcement that imprecisely approximates
the policy. Attackers have taken advantage of these loop-
holes with ever more sophisticated attacks, including Coun-
terfeit Object Oriented Programming (COOP) [62], Control
Jujutsu [28], and Control-Flow Bending [15].

These weaknesses and threats have inspired an array of new
and improved CFI algorithms and supporting technologies in

recent years. For example, to address loopholes associated
with OOP, vtable protections prevent or detect virtual method
table corruption at or before control-flow transfers that depend
on method pointers. Source-aware vtable protections include
GNU VTV [68], CPI [40], SAFEDISPATCH [37], Readac-
tor++ [19], and VTrust [82]; whereas source-free instantia-
tions include T-VIP [29], VTint [83], and VfGuard [58].

However, while the security and performance trade-offs
of various CFI solutions have remained actively tracked and
studied by defenders throughout the arms race, attackers are
increasingly taking advantage of CFI compatibility limita-
tions to exploit unprotected software, thereby avoiding CFI
defenses entirely. For example, 88% of CFI defenses cited
herein have only been realized for Linux software, but over
95% of desktops worldwide are non-Linux.2 These include
many mission-critical systems, including over 75% of con-
trol systems in the U.S. [39], and storage repositories for top
secret military data [53]. None of the top 10 vulnerabilities ex-
ploited by cybercriminals in 2017 target Linux software [25].

While there is a hope that small-scale prototyping will
result in principles and approaches that eventually scale to
more architectures and larger software products, follow-on
works that attempt to bridge this gap routinely face significant
unforeseen roadblocks. We believe many of these obstacles
remain unforeseen because of the difficulty of isolating and
studying many of the problematic software features lurking
within large, commodity products, which are not well repre-
sented in open-source codes commonly available for study by
researchers during prototyping.

The goal of this research is therefore to describe and ana-
lyze a significant collection of code features that are routinely
found in large software products, but that pose challenges
to effective CFI enforcement; and to make available a suite
of CFI test programs that exhibit each of these features on
a small scale amenable to prototype development. The next
section discusses this feature set in detail.

3 Compatibility Metrics

To measure compatibility of CFI mechanisms, we propose a
set of metrics that each includes one or more code features
from either C/C++ source code or compiled assembly code.
We derived this feature set by attempting to apply many CFI
solutions to large software products, then manually testing
the functionalities of the resulting hardened software for cor-
rectness, and finally debugging each broken functionality
step-wise at the assembly level to determine what caused the
hardened code to fail. Since many failures manifest as subtle
forms of register or memory corruption that only cause the
program to crash or malfunction long after the failed oper-
ation completes, this debugging constitutes many hundreds

2http://gs.statcounter.com/os-market-share/desktop/worldwide

USENIX Association 28th USENIX Security Symposium 1807

http://gs.statcounter.com/os-market-share/desktop/worldwide

Table 1: CONFIRM compatibility metrics
Compatibility metric Real-world software examples

Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,
PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,
PowerShell, PuTTY, TeXstudio, Visual Studio, Windows Defender, WinSCP

Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,
PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP

Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS PowerPoint, PotPlayer, Visual Studio, WinSCP
Exporting/Importing Data 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS PowerPoint, PowerShell, TeXstudio, UPX, Visual

Studio
Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, TeXstudio, Visual Studio, Windows Defender, WinSCP
CODE-COOP Attack Programs built on GTK+ or Microsoft COM can pass objects to trusted modules as arguments.
Tail Calls Mainstream compilers provide options for tail call optimization. e.g. /O2 in MSVC, -O2 in GCC, and -O2 in LLVM.
Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, MS Paint, MS PowerPoint, PotPlayer, PuTTY,

TeXstudio, Visual Studio, WinSCP
Returns Every benign program has returns.
Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio
Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, Skype, TeXstudio, Visual Studio, Windows Defender, WinSCP
Calling Conventions Every program adopts one or more calling convention.
Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX
Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, MS Paint, MS PowerPoint, PotPlayer,

PowerShell, PuTTY, Skype, TeXstudio, UPX, Visual Studio, Windows Defender, WinSCP
Memory Protection 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint, PotPlayer, TeXstudio, Visual Studio, Windows

Defender, WinSCP

JIT Compiler Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer, PowerShell, Skype, Visual Studio, WinSCP
Self-Unpacking Programs decompressed by self-extractors (e.g., UPX, NSIS).
Windows API Hooking Microsoft Office family software, including MS Excel, MS PowerPoint, MS PowerPoint, etc.

Table 2: Source code compiled to indirect call
Source code Assembly code

1 void foo() { return; }
2 void bar() { return; }
3 void main() {
4 void (*fptr)(); 1 ...
5 int n = input(); 2 call _input
6 if (n) 3 test eax, eax
7 fptr = foo; 4 mov edx, offset_foo
8 else 5 mov ecx, offset_bar
9 fptr = bar; 6 cmovnz ecx, edx

10 fptr(); 7 call ecx
11 } 8 ...

of person-hours amassed over several years of development
experience involving CFI-protected software.

Table 1 presents the resulting list of code features organized
into one row for each root cause of failure. Column two
additionally lists some widely available, commodity software
products where each of these features can be observed in non-
malicious software in the wild. This demonstrates that each
feature is representative of real-world software functionalities
that must be preserved by CFI implementations in order for
their protections to be usable and relevant in contexts that
deploy these and similar products.

3.1 Indirect Branches

We first discuss compatibility metrics related to the code
feature of greatest relevance to most CFI works: indirect
branches. Indirect branches are control-flow transfers whose
destination addresses are computed at runtime—via pointer
arithmetic and/or memory-reads. Such transfers tend to be
of high interest to attackers, since computed destinations are
more prone to manipulation. CFI defenses therefore guard
indirect branches to ensure that they target permissible destina-
tions at runtime. Indirect branches are commonly categorized
into three classes: indirect calls, indirect jumps, and returns.

Table 2 shows a simple example of source code being
compiled to an indirect call. The function called at source
line 5 depends on user input. This prevents the compiler from
generating a direct branch that targets a fixed memory address
at compile time. Instead, the compiler generates a register-
indirect call (assembly line 7) whose target is computed at
runtime. While this is one common example of how indirect
branches arise, in practice they are a result of many different
programming idioms, discussed below.

Function Pointers. Calls through function pointers typi-
cally compile to indirect calls. For example, using gcc with
the -O2 option generates register-indirect calls for function
pointers, and MSVC does so by default.

1808 28th USENIX Security Symposium USENIX Association

Callbacks. Event-driven programs frequently pass function
pointers to external modules or the OS, which the receiv-
ing code later dereferences and calls in response to an event.
These callback pointers are generally implemented by using
function pointers in C, or as method references in C++. Call-
backs can pose special problems for CFI, since the call site is
not within the module that generated the pointer. If the call
site is within a module that cannot easily be modified (e.g.,
the OS kernel), it must be protected in some other way, such
as by sanitizing and securing the pointer before it is passed.

Dynamic Linking. Dynamically linked shared libraries re-
duce program size and improve locality. But dynamic linking
has been a challenge for CFI compatibility because CFG
edges that span modules may be unavailable statically.

In Windows, dynamically linked libraries (DLLs) can be
loaded into memory at load time or runtime. In load-time
dynamic linking, a function call from a module to an ex-
ported DLL function is usually compiled to a memory-indirect
call targeting an address stored in the module’s import ad-
dress table (IAT). But if this function is called more than
once, the compiler first moves the target address to a reg-
ister, and then generates register-indirect calls to improve
execution performance. In run-time dynamic linking, a mod-
ule calls APIs, such as LoadLibrary(), to load the DLL at
runtime. When loaded into memory, the module calls the
GetProcAddress() API to retrieve the address of the ex-
ported function, and then calls the exported function using
the function pointer returned by GetProcAddress().

Additionally, MSVC (since version 6.0) provides linker
support for delay-loaded DLLs using the /DELAYLOAD linker
option. These DLLs are not loaded into memory until one of
their exported functions is invoked.

In Linux, a module calls functions exported by a shared
library by calling a stub in its procedure linkage table (PLT).
Each stub contains a memory-indirect jump whose target
depends on the writable, lazy-bound global offset table (GOT).
As in Windows, an application can also load a module at
runtime using function dlopen(), and retrieve an exported
symbol using function dlsym().

Supporting dynamic and delay-load linkage is further com-
plicated by the fact that shared libraries can also export data
pointers within their export tables in both Linux and Win-
dows. CFI solutions that modify export tables must usually
treat code and data pointers differently, and must therefore
somehow distinguish the two types to avoid data corruptions.

Virtual Functions. Polymorphism is a key feature of OOP
languages, such as C++. Virtual functions are used to sup-
port runtime polymorphism, and are implemented by C++
compilers using a form of late binding embodied as virtual
tables (vtables). The tables are populated by code pointers
to virtual function bodies. When an object calls a virtual
function, it indexes its vtable by a function-specific constant,
and flows control to the memory address read from the table.

At the assembly level, this manifests as a memory-indirect
call. The ubiquity and complexity of this process has made
vtable hijacking a favorite exploit strategy of attackers.

Some CFI and vtable protections address vtable hijack-
ing threats by guarding call sites that read vtables, thereby
detecting potential vtable corruption at time-of-use. Others
seek to protect vtable integrity directly by guarding writes to
them. However, both strategies are potentially susceptible to
COOP [62] and CODE-COOP [75] attacks, which replace
one vtable with another that is legal but is not the one the
original code intended to call. The defense problem is further
complicated by the fact that many large classes of software
(e.g., GTK+ and Microsoft COM) rely upon dynamically gen-
erated vtables. CFI solutions that write-protect vtables or
whose guards check against a static list of permitted vtables
are incompatible with such software.

Tail Calls. Modern C/C++ compilers can optimize tail-calls
by replacing them with jumps. Row 8 of Table 1 lists rele-
vant compiler options. With these options, callees can return
directly to ancestors of their callers in the call graph, rather
than to their callers. These mismatched call/return pairs affect
precision of some CFG recovery algorithms.

Switch-case Statements. Many C/C++ compilers optimize
switch-case statements via a static dispatch table populated
with pointers to case-blocks. When the switch is executed,
it calculates a dispatch table index, fetches the indexed code
pointer, and jumps to the correct case-block. This introduces
memory-indirect jumps that refer to code pointers not con-
tained in any vtable, and that do not point to function bound-
aries. CFI solutions that compare code pointers to a whitelist
of function boundaries can therefore cause the switch-case
code to malfunction. Solutions that permit unrestricted in-
direct jumps within each local function risk unsafety, since
large functions can contain abusable gadgets.

Returns. Nearly every benign program has returns. Unlike
indirect branches whose target addresses are stored in reg-
isters or non-writable data sections, return instructions read
their destination addresses from the stack. Since stacks are
typically writable, this makes return addresses prime targets
for malicious corruption.

On Intel-based CISC architectures, return instructions have
one of the shortest encodings (1 byte), complicating the ef-
forts of source-free solutions to replace them in-line with
secured equivalent instruction sequences. Additionally, many
hardware architectures heavily optimize the behavior of re-
turns (e.g., via speculative execution powered by shadow
stacks for call/return matching). Source-aware CFI solutions
that replace returns with some other instruction sequence can
therefore face stiff performance penalties by losing these op-
timization advantages.

Unmatched call/return Pairs. Control-flow transfer mech-
anisms, including exceptions and setjmp/longjmp, can yield
flows in which the relation between executed call instructions

USENIX Association 28th USENIX Security Symposium 1809

and executed return instructions is not one-to-one. For ex-
ample, exception-handling implementations often pop stack
frames from multiple calls, followed by a single return to the
parent of the popped call chain. Shadow stack defenses that
are implemented based on traditional call/return matching
may be incompatible with such mechanisms.

3.2 Other Metrics

While indirect branches tend to be the primary code feature of
interest to CFI attacks and defenses, there are many other code
features that can also pose control-flow security problems, or
that can become inadvertently corrupted by CFI code trans-
formation algorithms, and that therefore pose compatibility
limitations. Some important examples are discussed below.

Multithreading. With the rise of multicore hardware, mul-
tithreading has become a centerpiece of software efficiency.
Unfortunately, concurrent code execution poses some serious
safety problems for many CFI algorithms.

For example, in order to take advantage of hardware call-
return optimization (see §3.1), most CFI algorithms produce
code containing guarded return instructions. The guards
check the return address before executing the return. How-
ever, on parallelized architectures with flat memory spaces,
this is unsafe because any thread can potentially write to any
other (concurrently executing) thread’s return address at any
time. This introduces a TOCTOU vulnerability in which
an attacker-manipulated thread corrupts a victim thread’s re-
turn address after the victim thread’s guard code has checked
it but before the guarded return executes. We term this a
cross-thread stack-smashing attack. Since nearly all modern
architectures combine concurrency, flat memory spaces, and
returns, this leaves almost all CFI solutions either inapplica-
ble, unsafe, or unacceptably inefficient for a large percentage
of modern production software.

Position-Independent Code. Position-independent code
(PIC) is designed to be relocatable after it is statically gen-
erated, and is a standard practice in the creation of shared
libraries. Unfortunately, the mechanisms that implement PIC
often prove brittle to code transformations commonly em-
ployed for source-free CFI enforcement. For example, PIC
often achieves its position independence by dynamically com-
puting its own virtual memory address (e.g., by performing a
call to itself and reading the pushed return address from the
stack), and then performing pointer arithmetic to locate other
code or data at fixed offsets relative to itself. This procedure
assumes that the relative positions of PIC code and data are
invariant even if the base address of the PIC block changes.

However, CFI transforms typically violate this assumption
by introducing guard code that changes the sizes of code
blocks, and therefore their relative positions. To solve this,
PIC-compatible CFI solutions must detect the introspection
and pointer arithmetic operations that implement PIC and

adjust them to compute corrected pointer values. Since there
are typically an unlimited number of ways to perform these
computations at both the source and native code levels, CFI
detection of these computations is inevitably heuristic, allow-
ing some PIC instantiations to malfunction.

Exceptions. Exception raising and handling is a main-
stay of modern software design, but introduces control-flow
patterns that can be problematic for CFI policy inference
and enforcement. Object-oriented languages, such as C++,
boast first-class exception machinery, whereas standard C pro-
grams typically realize exceptional control-flows with gotos,
longjumps, and signals. In Linux, compilers (e.g., gcc) im-
plement C++ exception handling in a table-driven approach.
The compiler statically generates read-only tables that hold
exception-handling information. For instance, gcc produces a
gcc_except_table comprised of language-specific data ar-
eas (LSDAs). Each LSDA contains various exception-related
information, including pointers to exception handlers.

In Windows, structured exception handling (SEH) extends
the standard C language with first-class support for both hard-
ware and software exceptions. SEH uses stack-based excep-
tion nodes, wherein exception handlers form a linked list on
the stack, and the list head is stored in the thread information
block (TIB). Whenever an exception occurs, the OS fetches
the list head and walks through the SEH list to find a suitable
handler for the thrown exception. Without proper protec-
tion, these exception handlers on the stack can potentially be
overwritten by an attacker. By triggering an exception, the
attacker can then redirect the control-flow to arbitrary code.
CFI protection against these SEH attacks is complicated by
the fact that code outside the vulnerable module (e.g., in the
OS and/or system libraries) uses pointer arithmetic to fetch,
decode, and call these pointers during exception handling.
Thus, suitable protections must typically span multiple mod-
ules, and perhaps the OS kernel.

From Windows XP onward, applications have additionally
leveraged vectored exception handling (VEH). Unlike SEH,
VEH is not stack-based; applications register a global handler
chain for VEH exceptions with the OS, and these handlers are
invoked by the OS by interrupting the application’s current ex-
ecution, no matter where the exception occurs within a frame.

There are at least two features of VEH that are potentially
exploitable by attackers. First, to register a vectored exception
handler, the application calls an API AddVecoredException-
Handler() that accepts a callback function pointer parameter
that points to the handler code. Securing this pointer requires
some form of inter-module callback protection.

Second, the VEH handler-chain data structure is stored
in the application’s writable heap memory, making the han-
dler chain data directly susceptible to data corruption at-
tacks. Windows protects the handlers somewhat by obfus-
cating them using the EncodePointer() API. However,
EncodePointer() does not implement a cryptographically
secure function (since doing so would impose high overhead);

1810 28th USENIX Security Symposium USENIX Association

it typically returns the XOR of the input pointer with a process-
specific secret. This secret is not protected against memory
disclosure attacks; it is potentially derivable from disclosure
of any encoded pointer with value known to the attacker (since
XOR is invertible), and it is stored in the process environment
block (PEB), which is readable by the process and therefore
by an attacker armed with an information disclosure exploit.
With this secret, the attacker can overwrite the heap with
a properly obfuscated malicious pointer, and thereby take
control of the application.

From a compatibility perspective, CFI protections that do
not include first-class support for these various exception-
handling mechanisms often conservatively block unusual
control-flows associated with exceptions. This can break
important application functionalities, making the protections
unusable for large classes of software that use exceptions.

Calling Conventions. CFI guard code typically instruments
call and return sites in the target program. In order to pre-
serve the original program’s functionality, this guard code
must therefore respect the various calling conventions that
might be implemented by calls and returns. Unfortunately,
many solutions to this problem make simplifying assumptions
about the potential diversity of calling conventions in order
to achieve acceptable performance. For example, a CFI so-
lution whose guard code uses EDX as a scratch register might
suddenly fail when applied to code whose calling convention
passes arguments in EDX. Adapting the solution to save and
restore EDX to support the new calling convention can lead to
tens of additional instructions per call, including additional
memory accesses, and therefore much higher overhead.

The C standard calling convention (cdecl) is caller-pop,
pushes arguments right-to-left onto the stack, and returns
primitive values in an architecture-specific register (EAX on
Intel). Each architecture also specifies a set of caller-save and
callee-save registers. Caller-popped calling conventions are
important for implementing variadic functions, since callees
can remain unaware of argument list lengths.

Callee-popped conventions include stdcall, which is the
standard convention of the Win32 API, and fastcall, which
passes the first two arguments via registers rather than the
stack to improve execution speed. In OOP languages, every
nonstatic member function has a hidden this pointer argument
that points to the current object. The thiscall convention
passes the this pointer in a register (ECX on Intel).

Calling conventions on 64-bit architectures implement sev-
eral refinements of the 32-bit conventions. Linux and Win-
dows pass up to 14 and 4 parameters, respectively, in registers
rather than on the stack. To allow callees to optionally spill
these parameters, the caller additionally reserves a red zone
(Linux) or 32-byte shadow space (Windows) for callee tem-
porary storage.

Highly optimized programs also occasionally adopt non-
standard, undocumented calling conventions, or even blur
function boundaries entirely (e.g., by performing various

forms of function in-lining). For example, some C compilers
support language extensions (e.g., MSVC’s naked declara-
tion) that yield binary functions with no prologue or epilogue
code, and therefore no standard calling convention. Such
code can have subtle dependencies on non-register processor
elements, such as requiring that certain Intel status flags be
preserved across calls. Many CFI solutions break such code
by in-lining call site guards that violate these undocumented
conventions.

TLS Callbacks. Multithreaded programs require efficient
means to manipulate thread-local data without expensive lock-
ing. Using thread local storage (TLS), applications export
one or more TLS callback functions that are invoked by the
OS for thread initialization or termination. These functions
form a null-terminated table whose base is stored in the PE
header. For compiler-based CFI solutions, the TLS callback
functions do not usually need extra protection, since both the
PE header and the TLS callback table are in unwritable mem-
ory. But source-free solutions must ensure that TLS callbacks
constitute policy-permitted control-flows at runtime.

Memory Protection. Modern OSes provide APIs for mem-
ory page allocation (e.g., VirtualAlloc and mmap) and
permission changes (e.g., VirtualProtect and mprotect).
However, memory pages changed from writable to executable,
or to simultaneously writable and executable, can potentially
be abused by attackers to bypass DEP defenses and execute
attacker-injected code. Many software applications neverthe-
less rely upon these APIs for legitimate purposes (see Table 1),
so conservatively disallowing access to them introduces many
compatibility problems. Relevant CFI mechanisms must
therefore carefully enforce memory access policies that per-
mit virtual memory management but block code-injection
attacks.

Runtime Code Generation. Most CFI algorithms achieve
acceptable overheads by performing code generation strictly
statically. The statically generated code includes fixed run-
time guards that perform small, optimized computations to
validate dynamic control-flows. However, this strategy breaks
down when target programs generate new code dynamically
and attempt to execute it, since the generated code might
not include CFI guards. Runtime code generation (RCG) is
therefore conservatively disallowed by most CFI solutions,
with the expectation that RCG is only common in a few, spe-
cialized application domains, which can receive specialized
protections.

Unfortunately, our analysis of commodity software prod-
ucts indicates that RCG is becoming more prevalent than
is commonly recognized. In general, we encountered RCG
compatibility limitations in at least three main forms across a
variety of COTS products:

1. Although typically associated with web browsers, just-
in-time (JIT) compilation has become increasingly rel-
evant as an optimization strategy for many languages,

USENIX Association 28th USENIX Security Symposium 1811

including Python, Java, the Microsoft .NET family of
languages (e.g., C#), and Ruby. Software containing
any component or module written in any JIT-compiled
language frequently cannot be protected with CFI.

2. Mobile code is increasingly space-optimized for quick
transport across networks. Self-unpacking executables
are therefore a widespread source of RCG. At runtime,
self-unpacking executables first decompress archived
data sections to code, and then map the code into
writable and executable memory. This entails a dynamic
creation of fresh code bytes. Large, component-driven
programs sometimes store rarely used components as
self-unpacking code that decompresses into memory
whenever needed, and is deallocated after use. For ex-
ample, NSIS installers pack separate modules support-
ing different install configurations, and unpack them at
runtime as-needed for reduced size. Antivirus defenses
hence struggle to distinguish benign NSIS installers from
malicious ones [21].

3. Component-driven software also often performs a vari-
ety of obscure API hooking initializations during compo-
nent loading and clean-up, which are implemented using
RCG. As an example, Microsoft Office software dynam-
ically redirects all calls to certain system API functions
within its address space to dynamically generated wrap-
per functions. This allows it to modify the behaviors
of late-loaded components without having to recompile
them all each time the main application is updated.

To hook a function f within an imported system DLL
(e.g., ntdll.dll), it first allocates a fresh memory page
f ′ and sets it both writable and executable. It next copies
the first five code bytes from f to f ′, and writes an in-
struction at f ′+5 that jumps to f +5. Finally, it changes
f to be writable and executable, and overwrites the first
five code bytes of f with an instruction that jumps to
f ′. All subsequent calls to f are thereby redirected to f ′,
where new functionality can later be added dynamically
before f ′ jumps to the preserved portion of f .

Such hooking introduces many dangers that are difficult
for CFI protections to secure without breaking the appli-
cation or its components. Memory pages that are simulta-
neously writable and executable are susceptible to code-
injection attacks, as described previously. The RCG
that implements the hooks includes unprotected jumps,
which must be secured by CFI guard code. However, the
guard code itself must be designed to be rewritable by
more hooking, including placing instruction boundaries
at addresses expected by the hooking code (f +5 in the
above example). No known CFI algorithm can presently
handle these complexities.

3.3 Compositional Defense Evaluation
Some CFI solutions compose CFI controls with other defense
layers, such as randomization-based defenses (e.g., [8, 9, 18,
45, 52, 77]). Randomization defenses can be susceptible to
other forms of attack, such as memory disclosure attacks (e.g.,
[27, 63–65]). CONFIRM does not test such attacks, since
their implementations are usually specific to each defense and
not easy to generalize.

Evaluation of composed defenses should therefore be con-
ducted by composing other attacks with CONFIRM tests. For
example, to test a CFI defense composed with stack canaries,
one should first simulate attacks that attempt to steal the ca-
nary secret, and then modify any stack-smashing CONFIRM
tests to use the stolen secret. Incompatibilities of the evaluated
defense generally consist of the union of the incompatibilities
of the composed defenses.

4 Implementation

To facilitate easier evaluation of the compatibility considera-
tions outlined in Section 3 along with their impact on security
and performance, we developed the CONFIRM suite of CFI
tests. CONFIRM consists of 24 programs written in C++
totalling about 2,300 lines of code. Each test isolates one
of the compatibility metrics of Section 3 (or in some cases a
few closely related metrics) by emulating behaviors of COTS
software products. Source-aware solutions can be evaluated
by applying CFI code transforms to the source codes, whereas
source-free solutions can be applied to native code after com-
pilation with a compatible compiler (e.g., gcc, LLVM, or
MSVC). Loop iteration counts are configurable, allowing
some tests to be used as microbenchmarks. The tests are
described as follows:

fptr. This tests whether function calls through function
pointers are suitably guarded or can be hijacked. Overhead is
measured by calling a function through a function pointer in
an intensive loop.

callback. As discussed in Section 3, call sites of callback
functions can be either guarded by a CFI mechanism directly,
or located in immutable kernel modules that require some
form of indirect control-flow protections. We therefore test
whether a CFI mechanism can secure callback function calls
in both cases. Overhead is measured by calling a function
that takes a callback pointer parameter in an intensive loop.

load_time_dynlnk. Load-time dynamic linking tests deter-
mine whether function calls to symbols that are exported by
a dynamically linked library are suitably protected. Over-
head is measured by calling a function that is exported by a
dynamically linked library in an intensive loop.

run_time_dynlnk. This tests whether a CFI mechanism
supports runtime dynamic linking, whether it supports retriev-
ing symbols from the dynamically linked library at runtime,

1812 28th USENIX Security Symposium USENIX Association

and whether it guards function calls to the retrieved symbol.
Overhead is measured by loading a dynamically linked li-
brary at runtime, calling a function exported by the library,
and unloading the library in an intensive loop.

delay_load (Windows only). CFI compatibility with delay-
loaded DLLs is tested, including whether function calls to
symbols that are exported by the delay-loaded DLLs are pro-
tected. Overhead is measured by calling a function that is
exported by a delay-loaded DLL in an intensive loop.

data_symbl. Data and function symbol imports and exports
are tested, to determine whether any controls preserve their
accessibility and operation.

vtbl_call. Virtual function calls are exercised, whose call
sites can be directly instrumented. Overhead is measured by
calling virtual functions in an intensive loop.

code_coop. This tests whether a CFI mechanism is robust
against CODE-COOP attacks. For the object-oriented inter-
faces required to launch a CODE-COOP attack, we choose
Microsoft COM API functions in Windows, and gtkmm API
calls that are part of the C++ interface for GTK+ in Linux.

tail_call. Tail call optimizations of indirect jumps are tested.
Overhead is measured by tail-calling a function in a loop.

switch. Indirect jumps associated with switch-case control-
flow structures are tested, including their supporting data
structures. Overhead is measured by executing a switch-case
statement in an intensive loop.

ret. Validation of return addresses (e.g., dynamically via
shadow stack implementation, or statically by labeling call
sites and callees with equivalence classes) is tested. Overhead
is measured by calling a function that does nothing but return
in an intensive loop.

unmatched_pair. Unmatched call/return pairs resulting
from exceptions and setjmp/longjmp are tested.

signal. This test uses signal-handling in C to implement
error-handling and exceptional control-flows.

cppeh. C++ exception handling structures and control-flows
are exercised.

seh (Windows only). SEH-style exception handling is tested
for both hardware and software exceptions. This test also
checks whether the CFI mechanism protects the exception
handlers stored on the stack.

veh (Windows only). VEH-style exception handling is tested
for both hardware and software exceptions. This test also
checks whether the CFI mechanism protects callback function
pointers passed to AddVecoredExceptionHandler().

convention. Several different calling conventions are tested,
including conventions widely used in C/C++ languages on
32-bit and 64-bit x86 processors.

multithreading. Safety of concurrent thread executions is
tested. Specifically, one thread simulates a memory corrup-

tion exploit that attempts to smash another thread’s stack and
break out of the CFI-enforced sandbox.

tls_callback (Windows source-free only). This tests whether
static TLS callback table corruption is detected and blocked
by the protection mechanism.

pic. Semantic preservation of position-independent code is
tested.

mem. This test performs memory management API calls for
legitimate and malicious purposes, and tests whether security
controls permit the former but block the latter.

jit. This test generates JIT code by first allocating writable
memory pages, writing JIT code into those pages, making the
pages executable, and then running the JIT code. To emulate
behaviors of real-world JIT compilers, the JIT code performs
different types of control-flow transfers, including calling
back to the code of JIT compiler and calling functions located
in other modules.

api_hook (Windows only). Dynamic API hooking is per-
formed in the style described in Section 3.

unpacking (source-free only). Self-unpacking executable
code is implemented using RCG.

5 Evaluation

5.1 Evaluation of CFI Solutions

To examine CONFIRM’s effect on real CFI defenses, we used
it to reevaluate 12 major CFI implementations for Linux and
Windows that are either publicly available or were obtainable
in a self-contained, operational form from their authors at the
time of writing. Our purpose in performing this evaluation
is not to judge which compatibility features solutions should
be expected to support, but merely to accurately document
which features are currently supported and to what degree,
and to demonstrate that CONFIRM can be used to conduct
such evaluations.

Table 3 reports the evaluation results. Columns 2–6 report
results for Windows CFI approaches, and columns 7–14 re-
port those for Linux CFI. All Windows experiments were
performed on an Intel Xeon E5645 workstation with 24 GB of
RAM running 64-bit Windows 10. Linux experiments were
conducted on different versions of Ubuntu VM machines cor-
responding to the version tested by each CFI framework’s
original developers. All the VM machines had 16GB of RAM
with 6 Intel Xeon CPU cores. The overheads for source-free
approaches were evaluated using test binaries compiled with
most recent version of gcc available for each test platform.
All source-aware approaches were applied before or during
compilation with the most recent version of LLVM for each
test platform (since LLVM provides greatest compatibility
between the tested source-aware solutions).

USENIX Association 28th USENIX Security Symposium 1813

Ta
bl

e
3:

Te
st

ed
re

su
lts

fo
rC

FI
so

lu
tio

ns
on

C
O

N
F

IR
M

L
LV

M
(W

in
do

w
s)

L
LV

M
(L

in
ux

)

Te
st

C
FI

Sh
ad

ow
St

ac
k

M
C

FG
O

FI
R

ei
ns

G
C

C
-V

T
V

C
FI

Sh
ad

ow
St

ac
k

M
C

FI
π

C
FI

π
C

FI
(n

to
)

Pa
th

A
rm

or
L

oc
kd

ow
n

fp
tr

6.
35

%
B

20
.1

3%
4.

35
%

4.
08

%
B

6.
97

%
B

7
−

14
.0

0%
−

13
.7

9%
B

17
4.

92
%

ca
llb

ac
k

B
B

B
12

8.
39

%
11

4.
84

%
B

B
B

7
7

7
B

7

lo
ad

_t
im

e_
dy

nl
nk

2.
74

%
B

8.
83

%
3.

36
%

2.
66

%
B

1.
33

%
B

30
.8

3%
31
.5

2%
34

.0
5%

74
.5

4%
1.

45
%

ru
n_

tim
e_

dy
nl

nk
B

B
17

.6
3%

12
.5

7%
11

.4
8%

B
4.

44
%

B
7

7
7

1,
22

1.
48

%
7

de
la

y_
lo

ad
�

N
/A

N
/A

8.
16

%
3.

61
%

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
da

ta
_s

ym
bl

3
B

3
3

7
3

3
B

3
3

3
3

3

vt
bl

_c
al

l
5.

62
%

B
27

.7
1%

35
.9

4%
31

.1
7%

33
.5

6%
5.

94
%

B
7

−
8.

19
%

−
9.

31
%

B
22

7.
82

%
co

de
_c

oo
p

B
B

B
3

7
B

B
B

B
B

B
B

B

ta
il_

ca
ll

6.
17

%
B

9.
51

%
0.

05
%

0.
05

%
B

6.
82

%
B

7
−

17
.6

9%
−

17
.3

7%
B

17
8.

06
%

sw
itc

h
−

5.
80

%
B

3.
51

%
22

.8
2%

17
.6

9%
B

−
6.

93
%

B
−

29
.0

1%
−

27
.1

9%
−

28
.4

6%
B

85
.8

5%
re

t
B

18
.0

4%
B

49
.3

4%
48

.4
9%

B
B

20
.8

8%
70
.7

2%
72
.4

0%
71

.5
2%

B
10

6.
71

%
un

m
at

ch
ed

_p
ai

r
B

B
B

3
3

B
B

B
3

3
3

B
B

si
gn

al
3

B
3

7
7

3
3

B
3

3
3

7
3

cp
pe

h
3

B
3

3
7

3
3

B
3

3
3

7
3

se
h�

3
B

3
3

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
ve

h�
B

B
B

3
7

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

co
nv

en
tio

n
3

3
3

3
7

3
3

3
3

3
3

3
3

m
ul

tit
hr

ea
di

ng
B

B
B

B
B

B
B

B
B

B
B

B
B

tls
_c

al
lb

ac
k�

,$
N

/A
N

/A
N

/A
3

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
pi

c
3

3
3

B
B

3
3

3
3

3
3

3
3

m
em

B
B

B
B

B
B

B
B

7
7

7
3

7

jit
B

B
B

7
7

B
B

B
7

7
7

B
7

un
pa

ck
in

g$
N

/A
N

/A
N

/A
7

7
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
7

7

ap
i_

ho
ok

�
B

B
B

7
7

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

(n
to

)s
ta

nd
s

fo
rn

o
ta

il-
ca

ll
op

tim
iz

at
io

n
%

:C
FI

de
fe

ns
e

pa
ss

es
co

m
pa

tib
ili

ty
an

d
se

cu
ri

ty
te

st
,a

nd
m

ic
ro

be
nc

hm
ar

k
yi

el
ds

in
di

ca
te

d
pe

rf
or

m
an

ce
ov

er
he

ad
3

:s
am

e
as

%
,b

ut
th

is
te

st
pr

ov
id

es
no

pe
rf

or
m

an
ce

nu
m

be
r

B
:C

FI
de

fe
ns

e
pa

ss
es

co
m

pa
tib

ili
ty

bu
tn

ot
se

cu
ri

ty
ch

ec
k

7
:t

es
td

oe
s

no
tc

om
pi

le
(c

om
pi

la
tio

n
er

ro
r)

,o
rc

ra
sh

es
at

ru
nt

im
e

N
/A

:t
es

ti
s

no
ta

pp
lic

ab
le

to
th

e
C

FI
m

ec
ha

ni
sm

be
in

g
te

st
ed

�
:t

es
ti

s
W

in
do

w
s-

on
ly

$:
te

st
is

on
ly

fo
rs

ou
rc

e-
fr

ee
de

fe
ns

es

1814 28th USENIX Security Symposium USENIX Association

Two forms of compatibility are assessed in the evaluation:
A CFI solution is categorized as permissively compatible with
a test if it produces an output program that does not crash and
exhibits the original test program’s non-malicious functional-
ity. It is effectively compatible if it is permissively compatible
and any malicious functionalities are blocked. Effective com-
patibility therefore indicates secure and transparent support
for the code features exhibited by the test.

In Table 3, Columns 2–3 begin with an evaluation of LLVM
CFI and LLVM ShadowCallStack on Windows. With both
CFI and ShadowCallStack enabled, LLVM on Windows en-
forces policies that constrain impending control-flow transfers
at every call site, except calls to functions that are exported
by runtime-loaded DLLs. Additionally, LLVM on Windows
does not secure callback pointers passed to external modules
not compiled with LLVM, leaving it vulnerable CODE-COOP
attacks. Although ShadowCallStack protects against return
address overwrites, its shadow stack is incompatible with
unmatched call/return pairs.

Column 4 of Table 3 reports evaluation of Microsoft’s
MCFG, which is integrated into the MSVC compiler. MCFG
provides security checks for function pointer calls, vtable
calls, tail calls, and switch-case statements. It also passes all
tests related to dynamic linking, including load_time_dynlnk,
run_time_dynlnk, delay_load, and data_symbl. As a part of
MSVC, MCFG provides transparency for generating position-
independent code and handling various calling conventions.
With respect to exception handling, MCFG is permissively
compatible with all relevant features, but does not protect
vectored exception handlers. MCFG’s most significant short-
coming is its weak protection of return addresses. In addition,
it generates call site guard code at compile-time only. There-
fore, code that links to immutable modules or modules com-
piled with a different protection scheme remains potentially
insecure. This results in failures against callback corruption
and CODE-COOP attacks.

Columns 5–6 of Table 3 report compatibility testing re-
sults for Reins and OFI, which are source-free solutions for
Windows. Reins validates control-flow transfer targets for
function pointer calls, vtable calls, tail calls, switch-case state-
ments, and returns. It supports dynamic linking at load time
and runtime, and is one of the only solutions we tested that
secures callback functions whose call sites cannot be directly
instrumented (with a high overhead of 114.84%). Like MCFG,
Reins fails against CODE-COOP attacks. However, OFI ex-
tends Reins with additional protections that succeed against
CODE-COOP. OFI also exhibits improved compatibility with
delay-loaded DLLs, data exports, all three styles of exception
handling, all tested calling conventions, and TLS callbacks.
Both Reins and OFI nevertheless proved vulnerable against
attacks that abuse position-independent code and memory
management API functions.

The GNU C-compiler does not yet have built-in CFI sup-
port, but includes virtual table verification (VTV). VTV is

first introduced in gcc 4.9.0. It checks at virtual call sites
whether the vtable pointer is valid based on the object type.
This blocks many important OOP vtable corruption attacks, al-
though type-aware COOP attacks can still succeed by calling
a different virtual function of the same type (e.g., supertype).
As shown in column 7 of Table 3, VTV does not protect other
types of control-flow transfers, including function pointers,
callbacks, dynamic linking for both load-time and run-time,
tail calls, switch-case jumps, return addresses, error handling
control-flows, or JIT code. However, it is permissively com-
patible with all the applicable tests, and can compile any
feature functionality we considered.

As reported in Columns 8–9, LLVM on Linux shows sim-
ilar evaluation results as LLVM on Windows. It has better
effective compatibility by providing proper security checks
for calls to functions that are exported by runtime loaded
DLLs. LLVM on Linux overheads range from -6.93% (for
switch control structures) to 20.88% (for protecting returns).

MCFI and πCFI are source-aware control-flow techniques.
We tested them on x64 Ubuntu 14.04.5 with LLVM 3.5. The
results are shown in columns 10–12 of Table 3. ΠCFI comes
with an option to turn off tail call optimization, which in-
creases the precision at the price of a small overhead increase.
We therefore tested both configurations, observing no com-
patibility differences between πCFI with and without tail call
optimizations. Incompatibilities were observed in both MCFI
and πCFI related to callbacks and runtime dynamic linking.
MCFI additionally suffered incompatibilities with the func-
tion pointer and virtual table call tests. For callbacks, both
solutions incorrectly terminate the process reporting a CFI
violation. In terms of effective compatibility, MCFI and πCFI
both securely support dynamic linking, switch jumps, return
addresses, and unmatched call/return pairs, but are suscep-
tible to CODE-COOP attacks. In our performance analysis,
we did not measure any considerable overheads for πCFI’s
tail call option (only 0.3%). This option decreases the per-
formance for dynamic linking but increases the performance
of vtable calls, switch-case, and return tests. Overall, πCFI
scores more compatible and more secure relative to MCFI,
but with slightly higher performance overhead.

PathArmor offers improved power and precision over the
other tested solutions in the form of contextual CFI policy sup-
port. Contextual CFI protects dangerous system API calls by
tracking and consulting the control-flow history that precedes
each call. Efficient context-checking is implemented as an
OS kernel module that consults the last branch record (LBR)
CPU registers (which are only readable at ring 0) to check
the last 16 branches before the impending protected branch.
As reported in column 13, our evaluation demonstrated high
permissive compatibility, only observing crashes on tests for
C++ exception handling and signal handlers. However, our
tests were able to violate CFI policies using function point-
ers, callbacks, virtual table pointers, tail-calls, switch-cases,
return addresses, and unmatched call/return pairs, resulting

USENIX Association 28th USENIX Security Symposium 1815

Table 4: Overall compatibility of CFI solutions
LLVM GCC- LLVM πCFI Path- Lock-

Tests (Windows)* MCFG OFI Reins VTV (Linux)* MCFI πCFI (nto) Armor down

applicable 21 22 24 24 18 18 18 18 18 19 19
permissively compatible 21 22 20 12 18 18 11 14 14 16 14
effectively compatible 12 13 17 9 6 12 9 12 12 6 11

Permissive compatibility 100.00% 100.00% 83.33% 50.00% 100.00% 100.00% 61.11% 77.78% 77.78% 84.21% 73.68%
Effective compatibility 57.14% 59.09% 70.83% 37.50% 33.33% 66.67% 50.00% 66.67% 66.67% 31.58% 57.89%
*Compatibility of LLVM is measured with both CFI and ShadowCallStack enabled.

in a lower effective compatibility score. Its careful guard-
ing of system calls also comes with high overhead for those
calls (1221.48%). This affects feasibility of dynamic loading,
whose associated system calls all receive a high performance
penalty per call. Similarly, load-time dynamic linking exhibits
a relatively high 74.54% overhead.

Lockdown enforces a dynamic control-flow integrity policy
for binaries with the help of symbol tables of shared libraries
and executables. Although Lockdown is a binary approach,
it requires symbol tables not available for stripped binaries
without sources, so we evaluated it using test programs spe-
cially compiled with symbol information added. Its loader
leverages the additional symbol information to more precisely
sandbox interactions between interoperating binary modules.
Lockdown is permissively compatible with most tests except
callbacks and runtime dynamic linking, for which it crashes.
In terms of security, it robustly secures function pointers, vir-
tual calls, switch tables, and return addresses. These security
advantages incur somewhat higher performance overheads
of 85.85–227.82% (but with only 1.45% load-time dynamic
loading overhead). Like most of the other tested solutions,
Lockdown remains vulnerable to CODE-COOP and multi-
threading attacks. Additionally, Lockdown implements a
shadow stack to protect return addresses, and thus is incom-
patible with unmatched call/return pairs.

5.2 Evaluation Trends

CONFIRM evaluation of these CFI solutions reveals some
notable gaps in the current state-of-the-art. For example, all
tested solutions fail to protect software from our cross-thread
stack-smashing attack, in which one thread corrupts another
thread’s return address. We hypothesize that no CFI solution
yet evaluated in the literature can block this attack except by
eliminating all return instructions from hardened programs,
which probably incurs prohibitive overheads. By repeatedly
exploiting a data corruption vulnerability in a loop, our test
program can reliably break all tested CFI defenses within
seconds using this approach.

Since concurrency, flat memory spaces, returns, and
writable stacks are all ubiquitous in almost all mainstream
architectures, such attacks should be considered a significant
open problem. Intel Control-flow Enforcement Technology

(CET) [36] has been proposed as a potential hardware-based
solution to this; but since it is not yet available for testing, it is
unclear whether its hardware shadow stack will be compatible
with software idioms that exhibit unmatched call-return pairs.

Memory management abuse is another major root of CFI
incompatibilities and insecurities uncovered by our experi-
ments. Real-world programs need access to the system mem-
ory management API in order to function properly, making
CFI approaches that prohibit it impractical. However, memory
API arguments are high value targets for attackers, since they
potentially unlock a plethora of follow-on attack stages, in-
cluding code injections. CFI solutions that fail to guard these
APIs are therefore insecure. Of the tested solutions, only
PathArmor manages to strike an acceptable balance between
these two extremes, but only at the cost of high overheads.

A third outstanding open challenge concerns RCG in the
form of JIT-compiled code, dynamic code unpacking, and run-
time API hooking. RockJIT [50] is the only language-based
CFI algorithm proposed in the literature that yet supports
any form of RCG, and its approach entails compiler-specific
modifications to source code, making it difficult to apply on
large scales to the many diverse forms of RCG that appear
in the wild. New, more general approaches are needed to
lend CFI support to the increasing array of software products
built atop JIT-compiled languages or linked using RCG-based
mechanisms—including many of the top applications targeted
by cybercriminals (e.g., Microsoft Office).

Table 4 measures the overall compatibility of all the tested
CFI solutions. Permissive and effective compatibility are
measured as the ratio of applicable tests to permissively and
effectively compatible ones, respectively. All CFI techniques
embedded in compilers (viz. LLVM on Linux and Windows,
MCFG, and GCC-VTV), are 100% permissively compatible,
avoiding all crashes. LLVM on Linux, LLVM on Windows,
and MCFG secure at least 57% of applicable tests, while
GCC-VTV only secures 33%.

OFI scores high overall compatibility, achieving 83% per-
missive compatibility and 71% effective compatibility on 24
applicable tests. Reins has the lowest permissive compat-
ibility score of only 50%. PathArmor and Lockdown are
permissively compatible with 84% and 74% of 19 applicable
tests. However PathArmor can only secure 32% of the tests,
giving it the lowest effective compatibility score.

1816 28th USENIX Security Symposium USENIX Association

Table 5: Correlation between SPEC CPU and CONFIRM performance
CFI Solution

SPEC CPU
Benchmark MCFG Reins GCC-VTV LLVM-CFI MCFI πCFI πCFI (nto) PathArmor Lockdown

Benchmark
Correlation

perlbench 2.4 5.0 5.0 5.3 15.0 150.0 0...09
bzip2 −0.3 9.2 −0.7 1.0 1.0 0.8 0.0 8.0 −−−0...12
gcc 4.5 4.5 10.5 9.0 50.0 0...02
mcf 0.5 9.1 3.6 4.5 4.5 1.8 1.0 2.0 −−−0...39
gobmk −0.2 0.2 7.0 7.5 11.8 0.0 43.0 −−−0...09
hmmer 0.7 0.1 0.0 0.0 −0.1 1.0 3.0 0...33
sjeng 3.4 1.6 5.0 5.0 11.9 0.0 80.0 −−−0...03
h264ref 5.4 5.3 6.0 6.0 8.3 1.0 43.0 −−−0...09
libquantum −6.9 0.0 −0.3 −1.0 3.0 5.0 0...51
omnetpp 3.8 5.8 5.0 5.0 18.8 −−−0...52
astar 0.1 3.6 0.9 3.5 4.0 2.9 17.0 0...92
xalancbmk 5.5 24.0 7.2 7.0 7.0 17.6 118.0 0...94

milc 2.0 0.2 2.0 2.0 1.4 4.0 8.0 0...40
namd 0.1 −0.1 0.1 −0.5 −0.5 −0.5 3.0 0...98
dealII −0.1 0.7 7.9 4.5 4.5 4.4 −−−0...36
soplex 2.3 0.5 −0.3 −4.0 −4.0 0.9 12.0 0...89
povray 10.8 −0.6 8.9 10.0 10.5 17.4 90.0 0...88
lbm 4.2 −0.2 1.0 1.0 −0.5 0.0 2.0 −−−0...22
sphinx3 −0.1 −0.8 1.5 1.5 2.4 3.0 8.0 0...31

CONFIRM median 9.51 4.59 33.56 5.19 30.83 −11.10 −11.60 648.01 140.82 0...36

5.3 Performance Evaluation Correlation

Prior performance evaluations of CFI solutions primarily rely
upon SPEC CPU benchmarks as a standard of comparison.
This is based on a widely held expectation that CFI overheads
on SPEC benchmarks are indicative of their overheads on
real-world, security-sensitive software to which they might
be applied in practical deployments. However no prior work
has attempted to quantify a correlation between SPEC bench-
mark scores and overheads observed for the addition of CFI
controls to large, production software products. If, for ex-
ample, CFI introduces high overheads for code features not
well represented in SPEC benchmarks (e.g., because they are
not performance bottlenecks for CFI-free software and were
therefore not prioritized by SPEC), but that become real-world
bottlenecks once their overheads are inflated by CFI controls,
then SPEC benchmarks might not be good predictors of real-
world CFI overheads. Recent work has argued that prior CFI
research has unjustifiably drawn conclusions about real-world
software overheads from microbenchmarking results [70],
making this an important open question.

To better understand the relationship between CFI-specific
operation overheads and SPEC benchmark scores, we there-
fore computed the correlation between median performance
of CFI solutions on CONFIRM benchmarks with their per-
formances reported on SPEC benchmarks (as reported in the
prior literature). Although CONFIRM benchmarks are not
real-world software, they can serve as microbenchmarks of
features particularly relevant to CFI. High correlations there-
fore indicate to what degree SPEC benchmarks exercise code
features whose performance are affected by CFI controls.

Table 5 reports the results, in which correlations between
each SPEC CPU benchmark and CONFIRM median values
are computed as Pearson correlation coefficients:

ρx,y =
(∑n

i=1 xi× yi)− (n× x̄× ȳ)
(n−1)×σx×σy

(1)

where xi and yi are the CPU SPEC overhead and CONFIRM
median overhead scores for solution i, x̄ and ȳ are the means,
and σx and σy are the sample standard deviations of x and y,
respectively. High linear correlations are indicated by |ρ| val-
ues near to 1, and direct and inverse relationships are indicated
by positive and negative ρ, respectively.

The results show that although a few SPEC benchmarks
have strong correlations (namd, xalancbmk, astar, soplex, and
povray being the highest), in general SPEC CPU benchmarks
exhibit a poor correlation of only 0.36 on average with tests
that exercise CFI-relevant code features. Almost half the
SPEC benchmarks even have negative correlations. This indi-
cates that SPEC benchmarks consist largely of code features
unrelated to CFI overheads. While this does not resolve the
question of whether SPEC overheads are predictive of real-
world overheads for CFI, it reinforces the need for additional
research connecting CFI overheads on SPEC benchmarks to
those on large, production software.

6 Related Work

6.1 Prior CFI Evaluations
We surveyed 54 CFI algorithms and implementations pub-
lished between 2005–2019 to prepare CONFIRM, over half

USENIX Association 28th USENIX Security Symposium 1817

of which were published within 2015–2019. Of these, 66%
evaluate performance overheads by applying SPEC CPU
benchmarking programs. Examples of such performance
evaluations include those of PittSFIeld [43], NaCl [81],
CPI [40], REINS [78], bin-CFI [87], control flow lock-
ing [10], MIP [48], CCFIR [84], ROPecker [16], T-VIP [29],
GCC-VTV [69], MCFI [49], VTint [83], Lockdown [54],
O-CFI [45], CCFI [42], PathArmor [71], BinCC [74],
πCFI [51], VTI [12], VTrust [82], VTPin [61], TypeAr-
mor [72], PITTYPAT [24], RAGuard [85], GRIFFIN [30],
OFI [75], PT-CFI [33], HCIC [86], µCFI [35], CFIXX [14],
and τCFI [47].

The remaining 34% of CFI technologies that are not eval-
uated on SPEC benchmarks primarily concern specialized
application scenarios, including JIT compiler hardening [50],
hypervisor security [41,76], iOS mobile code security [22,55],
embedded systems security [2–4], and operating system ker-
nel security [20, 31, 38]. These therefore adopt analogous test
suites and tools specific to those domains [17, 23, 56, 57, 67].

Several of the more recently published works addition-
ally evaluate their solutions on one or more large, real-world
applications, including browsers, web servers, FTP servers,
and email servers. For example, VTable protections pri-
marily choose browsers as their enforcement targets, and
therefore leverage browser benchmarks to evaluate perfor-
mance. The main browser benchmarks used for this pur-
pose are Microsoft’s Lite-Brite [44] Google’s Octane [32],
Mozilla’s Kraken [46], Apple’s Sunspider [6], and Right-
Ware’s BrowserMark [59].

Since compatibility problems frequently raise difficult chal-
lenges for evaluations of larger software products, these larger-
scale evaluations tend to have smaller sample sizes. Over-
all, 88% of surveyed works report evaluations on 3 or fewer
large, independent applications, with TypeArmor [72] having
the most comprehensive evaluation we studied, consisting
of three FTP servers, two web servers, an SSH server, an
email server, two SQL servers, a JavaScript runtime, and a
general-purpose distributed memory caching system.

To demonstrate security, prior CFI mechanisms are typi-
cally tested against proof-of-concept attacks or CVE exploits.
The most widely tested attack class in recent years is COOP.
Examples of security evaluations against COOP attacks in-
clude those reported for µCFI [35], τCFI [47], CFIXX [14],
OFI [75], PITTYPAT [24], VTrust [82], PathArmor [71], and
πCFI [51].

The RIPE test suite [80] is also widely used by many re-
searchers to measure CFI security and precision. RIPE con-
sists of 850 buffer overflow attack forms. It aims to provide
a standard way to quantify the security coverage of general
defense mechanisms. In contrast, CONFIRM focuses on a
larger variety of code features that are needed by many appli-
cations to implement non-malicious functionalities, but that
pose particular problems for CFI defenses. These include a
combination of benign behaviors and attacks.

6.2 CFI Surveys
There has been one prior survey of CFI performance, pre-
cision, and security, published in 2016 [13]. It surveys 30
previously published CFI frameworks, with qualitative and
quantitative comparisons of their technical approaches and
overheads as reported in each original publication. Five of
the approaches are additionally reevaluated on SPEC CPU
benchmarks.

In contrast, CONFIRM establishes a foundation for evalu-
ating compatibility and relevance of various CFI algorithms
to modern software products, and highlights important secu-
rity and performance impacts that arise from incompatibility
limitations facing the state-of-the-art solutions.

7 Conclusion

CONFIRM is the first evaluation methodology and micro-
benchmarking suite that is designed to measure applicabil-
ity, compatibility, and performance characteristics relevant to
control-flow security hardening evaluation. The CONFIRM
suite provides 24 tests of various CFI-relevant code features
and coding idioms, which are widely found in deployed COTS
software products.

Twelve publicly available CFI mechanisms are reevaluated
using CONFIRM. The evaluation results reveal that state-of-
the-art CFI solutions are compatible with only about 53% of
the CFI-relevant code features and coding idioms needed to
protect large, production software systems that are frequently
targeted by cybercriminals. Compatibility and security limita-
tions related to multithreading, custom memory management,
and various forms of runtime code generation are identified
as presenting some of the greatest barriers to adoption.

In addition, using CONFIRM for microbenchmarking re-
veals performance characteristics not captured by metrics
widely used to evaluate CFI overheads. In particular, SPEC
CPU benchmarks designed to assess CPU computational over-
head exhibit an only 0.36 correlation with benchmarks that
exercise code features relevant to CFI. This suggests a need
for more CFI-specific benchmarking to identify important
sources of performance bottlenecks, and their ramifications
for CFI security and practicality.

Acknowledgments

The authors thank Tyler Bletsch, Dimitar Bounov, Mihai
Budiu, Yueqiang Cheng, Xuhua Ding, Hong Hu, Jay Ligatti,
Ben Niu, Mathias Payer, Michalis Polychronakis, R. Sekar,
Zhi Wang, and Qingchuan Zhao for their provision of CFI
solution implementations and installation assistance for eval-
uations. The research reported herein was supported in part
by ONR award N00014-17-2995, DARPA award FA8750-19-
C-0006, NSF awards #1513704 and #1834215, and an NSF
IUCRC award from Lockheed Martin.

1818 28th USENIX Security Symposium USENIX Association

References

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-
flow integrity. In Proc. 12th ACM Conf. Computer and Com-
munications Security (CCS), pages 340–353, 2005.

[2] A. Abbasi, T. Holz, E. Zambon, and S. Etalle. ECFI: Asyn-
chronous control flow integrity for programmable logic con-
trollers. In Proc. 33rd Annual Computer Security Applications
Conf. (ACSAC), pages 437–448, 2017.

[3] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman,
A. Paverd, A.-R. Sadeghi, and G. Tsudik. C-FLAT: Control-
flow attestation for embedded systems software. In Proc. 23rd
ACM Conf. Computer and Communications Security (CCS),
pages 743–754, 2016.

[4] S. Adepu, F. Brasser, L. Garcia, M. Rodler, L. Davi, A.-R.
Sadeghi, and S. Zonouz. Control behavior integrity for dis-
tributed cyber-physical systems. CoRR, abs/1812.08310, 2018.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing memory error exploits with WIT. In Proc. 29th
IEEE Sym. Security and Privacy (S&P), pages 263–277, 2008.

[6] Apple. Sunspider 1.0 JavaScript benchmark suite. https:
//webkit.org/perf/sunspider/sunspider.html, 2013.

[7] E. Bauman, Z. Lin, and K. W. Hamlen. Superset disassembly:
Statically rewriting x86 binaries without heuristics. In Proc.
25th Network and Distributed Systems Security Sym. (NDSS),
2018.

[8] E. D. Berger and B. G. Zorn. DieHard: Probabilistic memory
safety for unsafe languages. In Proc. 27th ACM SIGPLAN
Conf. Programming Language Design and Implementation
(PLDI), pages 158–168, 2006.

[9] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfusca-
tion: An efficient approach to combat a broad range of memory
error exploits. In Proc. 12th USENIX Security Sym., 2003.

[10] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse
attacks with control-flow locking. In Proc. 27th Annual Com-
puter Security Applications Conf. (ACSAC), pages 353–362,
2011.

[11] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: A new class of code-reuse attacks. In Proc.
6th ACM Sym. Information, Computer and Communications
Security (AsiaCCS), pages 30–40, 2011.

[12] D. Bounov, R. G. Kici, and S. Lerner. Protecting C++ dynamic
dispatch through vtable interleaving. In Proc. 23rd Network
and Distributed System Security Sym. (NDSS), 2016.

[13] N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash,
P. Larsen, and M. Franz. Control-flow integrity: Precision, se-
curity, and performance. ACM Computing Surveys, 50(1):16:1–
16:33, 2017.

[14] N. Burow, D. McKee, S. A. Carr, and M. Payer. CFIXX:
Object type integrity for C++. In Proc. 25th Network and
Distributed System Security Symposium (NDSS), 2018.

[15] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-Flow Bending: On the effectiveness of control-flow
integrity. In Proc. 24th USENIX Conf. Security (USENIX),
pages 161–176, 2015.

[16] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and H. R. Deng.
ROPecker: A generic and practical approach for defending
against ROP attacks. In Proc. 21st Network and Distributed
System Security Sym. (NDSS), 2014.

[17] R. Coker. Disk performance benchmark tool – Bonnie. https:
//www.coker.com.au/bonnie++, 2016.

[18] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks.
In Proc. 7th USENIX Security Conf., pages 63–77, 1998.

[19] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz.
It’s a TRaP: Table randomization and protection against
function-reuse attacks. In Proc. 22nd ACM Conf. Computer
and Communications and Security (CCS), pages 243–255,
2015.

[20] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
control-flow integrity for commodity operating system kernels.
In Proc. 35th IEEE Sym. Security and Privacy (S&P), pages
292–307, 2014.

[21] C. Crofford and D. McKee. Ransomeware families use NSIS
installers to avoid detection, analysis. McAfee Labs, March
2017.

[22] L. Davi, R. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi. MoCFI: A framework to
mitigate control-flow attacks on smartphones. In Proc. 19th
Network and Distributed System Security Sym. (NDSS), 2012.

[23] A. C. de Melo. Performance counters on Linux. In Linux
Plumbers Conf., 2009.

[24] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee.
Efficient protection of path-sensitive control security. In Proc.
26th USENIX Security Sym., pages 131–148, 2017.

[25] S. Donnelly. Soft target: The top 10 vulnerabilities used by
cybercriminals. Technical Report CTA-2018-0327, Recorded
Future, 2018.

[26] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: Software guards for system address spaces.
In Proc. 7th USENIX Sym. Operating Systems Design and
Implementation (OSDI), pages 75–88, 2006.

[27] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang,
H. Shrobe, S. Sidiroglu-Douskos, M. Rinard, and H. Okhravi.
Missing the point(er): On the effectiveness of code pointer
integrity. In Proc. 36th IEEE Sym. Security & Privacy (S&P),
pages 781–796, 2015.

[28] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos. Control Jujutsu:
On the weaknesses of fine-grained control flow integrity. In
Proc. 22nd ACM Conf. Computer and Communications Secu-
rity (CCS), pages 901–913, 2015.

[29] R. Gawlik and T. Holz. Towards automated integrity protection
of C++ virtual function tables in binary programs. In Proc.
30th Annual Computer Security Applications Conf. (ACSAC),
pages 396–405, 2014.

USENIX Association 28th USENIX Security Symposium 1819

https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://www.coker.com.au/bonnie++
https://www.coker.com.au/bonnie++

[30] X. Ge, W. Cui, and T. Jaeger. GRIFFIN: Guarding control
flows using Intel processor trace. In Proc. 22nd ACM Int.
Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 585–598, 2017.

[31] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-grained control-
flow integrity for kernel software. In Proc. 1st IEEE European
Sym. Security and Privacy (EuroS&P), pages 179–194, 2016.

[32] Google. Octane JavaScript benchmark suite. https://
developers.google.com/octane, 2013.

[33] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. PT-CFI: Transparent
backward-edge control flow violation detection using Intel
processor trace. In Proc. 7th ACM Conf. Data and Application
Security and Privacy (CODASPY), pages 173–184, 2017.

[34] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Com-
putability classes for enforcement mechanisms. ACM Trans.
Programming Languages and Systems (TOPLAS), 28(1):175–
205, 2006.

[35] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris,
T. Kim, and W. Lee. Enforcing unique code target property
for control-flow integrity. In Proc. 25th ACM Conf. Computer
and Communications Security (CCS), pages 1470–1486, 2018.

[36] Intel. Control-flow enforcement technology preview, revision
2.0. Technical Report 334525-002, Intel Corporation, June
2017.

[37] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing
C++ virtual calls from memory corruption attacks. In Proc.
21st Network and Distributed System Security Sym. (NDSS),
2014.

[38] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis. kGuard:
Lightweight kernel protection against return-to-user attacks.
In Proc. 21st USENIX Security Sym., pages 459–474, 2012.

[39] F. Konkel. The Pentagon’s bug bounty program should be
expanded to bases, DOD official says. Defense One, 2017.

[40] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar,
and D. Song. Code-pointer integrity. In Proc. USENIX Sym.
Operating Systems Design and Implementation (OSDI), pages
147–163, 2014.

[41] D. Kwon, J. Seo, S. Baek, G. Kim, S. Ahn, and Y. Paek. VM-
CFI: Control-flow integrity for virtual machine kernel using
Intel PT. In Proc. 18th Int. Conf. Computational Science and
Its Applications (ICCSA), pages 127–137, 2018.

[42] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières.
CCFI: Cryptographically enforced control flow integrity. In
Proc. 22nd ACM Conf. Computer and Communications Secu-
rity (CCS), pages 941–951, 2015.

[43] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In Proc. 15st USENIX Security Sym., 2006.

[44] Microsoft. Lite-Brite Benchmark. https://testdrive-archive.
azurewebsites.net/Performance/LiteBrite, 2013.

[45] V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and
M. Franz. Opaque control-flow integrity. In Proc. 22nd
Network and Distributed System Security Symposium (NDSS),
2015.

[46] Mozilla. Kraken 1.1 JavaScript benchmark suite. http://
krakenbenchmark.mozilla.org, 2013.

[47] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and
C. Eckert. τCFI: Type-assisted control flow integrity for
x86-64 binaries. In Proc. 21st Int. Sym. Research in Attacks,
Intrusions, and Defenses (RAID), pages 423–444, 2018.

[48] B. Niu and G. Tan. Monitor integrity protection with space
efficiency and separate compilation. In Proc. 21st ACM Conf.
Computer and Communications Security (CCS), pages 199–
210, 2013.

[49] B. Niu and G. Tan. Modular control-flow integrity. In Proc.
35th ACM SIGPLAN Conf. Programming Language Design
and Implementation (PLDI), pages 577–587, 2014.

[50] B. Niu and G. Tan. RockJIT: Securing just-in-time compilation
using modular control-flow integrity. In Proc. 23rd ACM Conf.
Computer and Communications Security (CCS), pages 1317–
1328, 2014.

[51] B. Niu and G. Tan. Per-input control-flow integrity. In
Proc. 22nd ACM Conf. Computer and Communications Secu-
rity (CCS), pages 914–926, 2015.

[52] G. Novark and E. D. Berger. DieHarder: Securing the heap.
In Proc. 17th ACM Conf. Computing and Communications
Security (CCS), 2010.

[53] Office of Inspector General. Evaluation of DHS’ information
security program for FY 2017. Technical Report OIG-18-56,
Department of Homeland Security (DHS), 2018.

[54] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-
flow integrity through binary hardening. In Proc. 12th Int.
Conf. Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), pages 144–164, 2015.

[55] J. Pewny and T. Holz. Control-flow restrictor: Compiler-
based CFI for iOS. In Proc. 29th Annual Computer Security
Applications Conf. (ACSAC), pages 309–318, 2013.

[56] Postmark. Email delivery for web apps. https://postmarkapp.
com, 2013.

[57] R. Pozo and B. Miller. SciMark 2. http://math.nist.gov/
scimark2, 2016.

[58] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict protection for
virtual function calls in COTS C++ binaries. In Proc. 22nd
Network and Distributed System Security Sym. (NDSS), 2015.

[59] RightWare. Basemark web 3.0. https://web.basemark.com,
2019.

[60] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-
oriented programming: Systems, languages, and applications.
ACM Trans. Information and System Security (TISSEC), 15(1),
2012.

[61] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athana-
sopoulos. VTPin: Practical vtable hijacking protection for
binaries. In Proc. 32nd Annual Computer Security Applica-
tions Conf. (ACSAC), pages 448–459, 2016.

[62] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz. Counterfeit object-oriented programming. In
Proc. 36th IEEE Sym. Security and Privacy (S&P), pages 745–
762, 2015.

1820 28th USENIX Security Symposium USENIX Association

https://developers.google.com/octane
https://developers.google.com/octane
https://testdrive-archive.azurewebsites.net/Performance/LiteBrite
https://testdrive-archive.azurewebsites.net/Performance/LiteBrite
http://krakenbenchmark.mozilla.org
http://krakenbenchmark.mozilla.org
https://postmarkapp.com
https://postmarkapp.com
http://math.nist.gov/scimark2
http://math.nist.gov/scimark2
https://web.basemark.com

[63] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space randomiza-
tion. In Proc. 11th ACM Conf. Computer and Communications
Security (CCS), pages 298–307, 2004.

[64] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A.-R. Sadeghi. Just-in-time code reuse: On the effec-
tiveness of fine-grained address space layout randomization.
In Proc. 34th IEEE Sym. Security & Privacy (S&P), pages
574–588, 2013.

[65] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lach-
mund, and T. Walter. Breaking the memory secrecy assump-
tion. In Proc. 2nd European Work. System Security (EURO-
SEC), pages 1–8, 2009.

[66] J. Tang. Exploring Control Flow Guard in Windows 10. Tech-
nical report, Trend Micro Threat Solution Team, 2015.

[67] The Wine Committee. Wine. http://www.winehq.org.

[68] C. Tice. Improving function pointer security for virtual method
dispatches. In GNU Cauldron Work., 2012.

[69] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Er-
lingsson, L. Lozano, and G. Pike. Enforcing forward-edge
control-flow integrity in GCC & LLVM. In Proc. 23rd USENIX
Security Sym., pages 941–955, 2014.

[70] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and
C. Giuffrida. SoK: Benchmarking flaws in systems secu-
rity. In Proc. 4th IEEE Eurpean Sym. Security and Privacy
(EuroS&P), 2019.

[71] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida. Practical context-
sensitive CFI. In Proc. 22nd ACM Conf. Computer and Com-
munications Security (CCS), pages 927–940, 2015.

[72] V. van der Veen, E. Göktas, M. Contag, A. Pawlowski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida.
A tough call: Mitigating advanced code-reuse attacks at the
binary level. In Proc. 37th IEEE Sym. Security and Privacy
(S&P), pages 934–953, 2016.

[73] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proc. 14th ACM
Sym. Operating Systems Principles (SOSP), pages 203–216,
1993.

[74] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng. Binary
code continent: Finer-grained control flow integrity for stripped
binaries. In Proc. 31st Annual Computer Security Applications
Conf. (ACSAC), pages 331–340, 2015.

[75] W. Wang, X. Xu, and K. W. Hamlen. Object flow integrity. In
Proc. 24th ACM Conf. Computer and Communications Security
(CCS), pages 1909–1924, 2017.

[76] Z. Wang and X. Jiang. HyperSafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. In Proc.
31st IEEE Sym. Security and Privacy (S&P), pages 380–395,
2010.

[77] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86
binary code. In Proc. 19th ACM Conf. Computer and Commu-
nications Security (CCS), pages 157–168, 2012.

[78] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Securing
untrusted code via compiler-agnostic binary rewriting. In Proc.
28th Annual Computer Security Applications Conf. (ACSAC),
pages 299–308, 2012.

[79] R. Wartell, Y. Zhou, K. W. Hamlen, and M. Kantarcioglu.
Shingled graph disassembly: Finding the undecidable path. In
Proc. 18th Pacific-Asia Conf. Knowledge Discovery and Data
Mining (PAKDD), pages 273–285, 2014.

[80] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and
W. Joosen. RIPE: Runtime intrusion prevention evaluator.
In Proc. 27th Annual Computer Security Applications Conf.
(ACSAC), pages 41–50, 2011.

[81] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native Client: A
sandbox for portable, untrusted x86 native code. In Proc. 30th
IEEE Sym. Security and Privacy (S&P), pages 79–93, 2009.

[82] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and
D. Song. VTrust: Regaining trust on virtual calls. In Proc.
23rd Network and Distributed System Security Sym. (NDSS),
2016.

[83] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. VTint:
Protecting virtual function tables’ integrity. In Proc. 22nd
Network and Distributed System Security Sym. (NDSS), 2015.

[84] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCa-
mant, D. Song, and W. Zo. Practical control flow integrity and
randomization for binary executables. In Proc. 34th IEEE Sym.
Security and Privacy (S&P), pages 559–573, 2013.

[85] J. Zhang, R. Hou, J. Fan, K. Liu, L. Zhang, and S. A. McKee.
RAGuard: A hardware based mechanism for backward-edge
control-flow integrity. In Proc. ACM Int. Conf. Computing
Frontiers (CF), pages 27–34, 2017.

[86] J. Zhang, B. Qi, Z. Qin, and G. Qu. HCIC: Hardware-assisted
control-flow integrity checking. IEEE Internet of Things J.,
6(1):458–471, 2019.

[87] M. Zhang and R. Sekar. Control flow integrity for COTS
binaries. In Proc. 22nd USENIX Conf. Security (USENIX),
pages 337–352, 2013.

USENIX Association 28th USENIX Security Symposium 1821

http://www.winehq.org

Point Break: A Study of Bandwidth Denial-of-Service Attacks against Tor

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Tavish Vaidya
Georgetown University

tavish@cs.georgetown.edu

Micah Sherr
Georgetown University

msherr@cs.georgetown.edu

Abstract
As the Tor network has grown in popularity and importance
as a tool for privacy-preserving online communication, it has
increasingly become a target for disruption, censorship, and
attack. A large body of existing work examines Tor’s sus-
ceptibility to attacks that attempt to block Tor users’ access
to information (e.g., via traffic filtering), identify Tor users’
communication content (e.g., via traffic fingerprinting), and
de-anonymize Tor users (e.g., via traffic correlation). This
paper focuses on the relatively understudied threat of denial-
of-service (DoS) attacks against Tor, and specifically, DoS
attacks that intelligently utilize bandwidth as a means to sig-
nificantly degrade Tor network performance and reliability.

We demonstrate the feasibility of several bandwidth DoS
attacks through live-network experimentation and high-
fidelity simulation while quantifying the cost of each attack
and its effect on Tor performance. First, we explore an at-
tack against Tor’s most commonly used default bridges (for
censorship circumvention) and estimate that flooding those
that are operational would cost $17K/mo. and could reduce
client throughput by 44% while more than doubling bridge
maintenance costs. Second, we explore attacks against the
TorFlow bandwidth measurement system and estimate that
a constant attack against all TorFlow scanners would cost
$2.8K/mo. and reduce the median client download rate by
80%. Third, we explore how an adversary could use Tor
to congest itself and estimate that such a congestion attack
against all Tor relays would cost $1.6K/mo. and increase the
median client download time by 47%. Finally, we analyze
the effects of Sybil DoS and deanonymization attacks that
have costs comparable to those of our attacks.

1 Introduction
Tor [28] is the most popular anonymous communication sys-
tem ever deployed, with an estimated eight million daily ac-
tive users [59]. These users depend on Tor to anonymize
their connections to Internet services and distributed peers,
and also to circumvent censorship by local authorities that
control network infrastructure. Tor is used by ordinary citi-

zens and businesses to protect their privacy online, by jour-
nalists and activists to more freely access and contribute dig-
ital content [7], and by criminals to perform illegal activities
while avoiding identification [67].

As a result of its popularity, open-source codebase [9], and
transparent development processes [10], Tor has gained sig-
nificant attention from researchers who explore attacks that
aim to deanonymize its users by gaining an advantageous
view of network traffic [13]. Research directions for Tor at-
tacks include website fingerprinting [18, 41, 42, 56, 69, 70,
77, 84, 85], routing [15, 16, 79, 81, 83], end-to-end cor-
relation [54, 57, 58, 65, 66], congestion [31, 34, 51, 64],
and side channels [43, 63]. Many of these attacks repre-
sent realistic threats for Tor users: some attacks are reported
to have been launched by state sponsors against Tor in the
wild [21, 22, 73, 76]. However, relatively understudied but
arguably more viable is the threat of denial-of-service (DoS).
The Threat of Denial-of-Service: Bandwidth-based DoS
against Tor is a relatively understudied but relevant threat.
Previous work has explored the exhaustion of Tor relays’
memory [51], CPU [14, 71], and socket descriptor re-
sources [35], as well as selective service refusal [16]. While
bandwidth-based DoS attacks against a single target have
been considered [31], we are the first to study the feasibil-
ity, cost, and effects of launching such attacks against the
entire Tor network of relays and other particularly vulnera-
ble Tor components. Given Tor’s limited resources and slow
performance relative to the open web, further reducing per-
formance through bandwidth DoS attacks also has the po-
tential to reduce security by driving away users who may be
unwilling to endure even slower load times [16, 25].

We argue that DoS attacks in general, and bandwidth DoS
attacks in particular, are less complex and therefore more vi-
able than many previous deanonymization attacks. Our DoS
attacks either can be outsourced to third party “stresser” ser-
vices that will flood a target with packets for an amortized
cost of $0.74/hr. per Gbit/s of attack traffic (see §3.1), or
utilize lightweight Tor clients running on dedicated servers
at an amortized cost of $0.70/hr. per Gbit/s of attack traf-

USENIX Association 28th USENIX Security Symposium 1823

fic (see §3.2). Nation-states are known to sponsor DoS at-
tacks [60], and the ease of deployment and low cost of our
attacks suggest that state actors could reasonably run them to
disrupt Tor over both short and long timescales. We specu-
late that nation-states may, e.g., choose DoS as an alternative
to traffic filtering as Tor continues to improve its ability to
circumvent blocking and censorship [32]. Non-state actors
could also reasonably deploy the attacks since they require
only a few servers or can be completely outsourced.

Tor DoS attacks are not a hypothetical threat: existing evi-
dence indicates that DoS attacks against the network have al-
ready been successfully deployed [23, 38, 40], requiring Tor
to develop a subsystem to mitigate its effects [24, 39] (the
subsystem does not mitigate our attacks). Although it may
be challenging to detect and counter bandwidth-based DoS
attacks, especially those that are designed to mimic realistic
and plausible usage patterns, we believe that it is imperative
to better understand such a threat as we develop defenses.
Our Contributions: This paper focuses on the costs and ef-
fects of DoS attacks that intelligently utilize bandwidth as a
means to significantly degrade Tor performance and reliabil-
ity. Following a discussion of the current pricing models for
“stresser” (i.e., DoS-for-hire) services (§3.1) and dedicated
servers (§3.2), we first explore the threat of a naı̈ve flood-
ing attack in which an adversary uses multiple “stresser” ac-
counts to consume Tor relays’ bandwidth by flooding them
with packets (§4). We estimate that the cost to carry out such
an attack against the entire Tor network is $7.2M/mo.

We then demonstrate the feasibility and effects of 3 ma-
jor bandwidth DoS attacks against Tor in order of decreasing
cost. First, we explore in §5 an attack that attempts to disrupt
Tor’s censorship circumvention system by flooding Tor’s de-
fault bridges with packets, thereby causing bridge users to
migrate to non-default bridges or lose access to Tor. We esti-
mate that flooding Tor’s 12 operational default bridges would
cost $17K/mo. and would reduce bridge user throughput by
44% (if 25% of the users migrated to other bridges) while
more than doubling meek bridge maintenance costs.

Second, we explore in §6 an attack that attempts to dis-
rupt Tor’s load balancing system by flooding TorFlow band-
width scanners with packets, thereby causing inaccurate and
inconsistent relay capacity measurement results. Through
high-fidelity network simulation using Shadow [47], we find
that such an attack reduces the median client download rate
by 80%. We estimate that a constant flooding attack against
Tor’s 5 TorFlow scanners would cost $2.8K/mo.

Third, we explore in §7 an attack that uses the Tor pro-
tocol to consume relay bandwidth resources. In the attack,
a Tor client builds thousands of 8-hop circuits and congests
relays by downloading large files through the network. Us-
ing Shadow, we find that such an attack using 20k circuits
increases the median client download time by 120% at an
estimated cost of $6.3K/mo. and achieves a bandwidth am-
plification factor of 6.7. We also find that a stop reading strat-

egy [51] reduces the estimated cost of a 20k circuit attack to
$1.6K/mo., increases the median client download time by
47%, and achieves a bandwidth amplification factor of 26.

Finally, we analyze in §8 the effects of relay Sybil attacks
that have costs comparable to those of our attacks.
Ethics and Responsible Disclosure: We emphasize that we
do not carry out attacks against the live Tor network. We con-
duct some measurement experiments on Tor to better under-
stand its composition and performance characteristics. How-
ever, we neither observe nor store any information about any
Tor users (other than ourselves). We evaluate our attacks us-
ing high-fidelity Shadow simulations that are constructed to
resemble the live Tor network. Additionally, we discussed
our project with Tor developers, shared some of our results
before submission of this paper, and sent a pre-print of our
paper prior to its acceptance. We anticipate providing sup-
port as they develop any mitigations to our attacks.

2 Related Work
In this paper we focus specifically on attacks that target the
Tor network, noting that attacks that target Internet protocols
(e.g., TCP) or resources (e.g., web servers) have been rigor-
ously studied in previous work.
Anonymity Attacks against Tor: There is a large body
of work that examines attacks against Tor. The majority
of these attacks aim to compromise anonymity—that is, to
de-anonymize either targeted users or Tor users en masse.
We highlight that research directions for anonymity attacks
include website fingerprinting [18, 41, 42, 56, 69, 70, 77,
84, 85], routing [15, 16, 79, 81, 83], end-to-end correla-
tion [54, 57, 58, 65, 66], congestion [31, 34, 51, 64], and side
channels [43, 63]. (The reader may refer to previous work
for a more complete taxonomy [13].) Although anonymity
attacks are certainly problematic for Tor, the primary focus
of this paper is on bandwidth-based DoS attacks that sig-
nificantly degrade Tor network performance and reliability.
Note that we compare our attacks to Sybil attacks that can be
used for deanonymizing Tor users in §8.
Denial-of-Service Attacks against Tor: We are not the first
to explore the network’s susceptibility to DoS. In their semi-
nal work, Evans et al. [31] exploit the lack of an upper bound
on the length of Tor circuits in older Tor versions. They
show that an attacker can perform a bandwidth amplifica-
tion DoS attack by creating cyclic, arbitrary length circuits
through high bandwidth Tor relays. The congestion created
by the DoS attack affects the latency of legitimate circuits
which can be used to determine the guard relay on a circuit.
To mitigate this attack, Tor has since imposed a cap of eight
relays in circuit creation [27, §5.6].

Similarly, Pappas et al. [71] propose an asymmetric, am-
plification packet-spinning DoS attack against legitimate Tor
relays. The goal of the attack is to increase the chances of le-
gitimate clients choosing the attacker’s relays by keeping the
legitimate relays busy with expensive cryptographic opera-

1824 28th USENIX Security Symposium USENIX Association

tions. The attacker uses a malicious relay to create a circular
Tor circuit that starts and ends at the malicious relay. Their
focus is on de-anonymization and they do not consider DoS
attacks against the entire Tor network.

Borisov et al. [16] show that an attacker can de-anonymize
a large fraction of Tor circuits by performing selective DoS
on honest Tor relays to increase the probability that the at-
tacker’s relays will be chosen as guard and exit relays (and
thus capable of performing traffic correlation [80]). Tor has
since deployed a route manipulation (path bias) detection
system to mitigate the effects of such an attack [26, §7].

Barbera et al. [14] propose an asymmetric DoS attack
against Tor relays. The attack floods a targeted relay with
CREATE cells that require public key operations to decrypt
the cell. They show that by strategically targeting important
relays, the attacker can slow down the entire Tor network
due to overload on the remaining relays that are not under
DoS attack. This is similar in aim to our work. However, our
focus is less on protocol vulnerabilities and more on enumer-
ating hotspots in Tor that, when attacked, could disrupt the
network at large. We explore multiple avenues for causing
network-wide performance and disruption.

Geddes et al. [35] demonstrate socket exhaustion attacks
against various proposed replacements [12, 37] of Tor’s
transport protocol. They show that an attacker can disable ar-
bitrary relays by exhausting their socket file descriptors and
prevent legitimate connections from succeeding. However,
the attack does not apply to the deployed Tor network, which
does not employ the vulnerable transport protocols.

Jansen et al. [51] propose the Sniper Attack, a memory-
based DoS attack that exploits Tor’s end-to-end reliable data
transport to consume memory by filling up the application
level packet queues. Using simulation on Shadow [47], they
show that an attacker can sequentially disable 20 exit relays
in 29 minutes and make the Tor network unusable, while re-
maining undetected. The Tor Project has since rolled out
defenses against the sniper attack [45]. We use some of the
techniques from the sniper attack in our congestion attacks.

3 Threat Model and Attacker Costs
We consider an attacker who is determined to deny service
to the Tor network. We make few assumptions about the
capabilities or makeup of our adversary. In particular, our
adversary need not control large regions of the Internet or be
able to observe a large fraction of Tor traffic.

Instead, we model an adversary who has some bandwidth
and computing capacity at its disposal. Certainly, a nation-
state has such resources, but we imagine that such an adver-
sary would likely prefer to avoid attribution and not conduct
attacks from its own networks. More generally, our adver-
sary can acquire (or rent) a distributed network of machines
capable of sending traffic into the Tor network. We high-
light two potential avenues for obtaining the resources neces-
sary to carry out network-wide attacks against Tor: dedicated

DoS “stresser” services (§3.1) and the use of more traditional
(and legal) dedicated hosting services (§3.2).

We do not require that the adversary be able to position
itself in arbitrary locations on the Internet, although we do
assume that some portion of its traffic will reach its intended
targets. For some attacks, we additionally require the ad-
versary to operate a Tor relay, but as we describe below, it
is advantageous for such attacks to run a relay that provides
negligible bandwidth to the Tor network; that is, the relay
could be cheaply instantiated on a shared cloud provider or
other low-cost hosting service.
Attacker Goals: The goal of the attacker is to disrupt either
(i) the Tor network in its entirety or (ii) a portion of it that af-
fects an entire subpopulation of Tor users. The latter includes
attacks against Tor’s bridge infrastructure, the set of unpub-
lished relays that permit the participation of users who are
otherwise prevented from accessing the Tor network directly
(e.g., due to censorship).

In general, we consider an attack successful if it entirely
prevents users from accessing Tor or if it degrades perfor-
mance to such an extent that the anonymity service becomes
too burdensome to use. The latter is of course subjective,
but informally, we set a high threshold for what we con-
sider unusable performance. We also note that even in the
current (non-attacked) Tor network, its slow performance is
already perceived as an impediment to its more widespread
use [13]. Degrading performance much beyond Tor’s current
levels may cause many users to abandon the network.
Attacker Costs: One of our goals is to estimate the mon-
etary cost of performing various bandwidth DoS attacks
against different elements of Tor infrastructure. To esti-
mate such costs to the attacker, we build a cost model from
publicly available information on pricing of various online
stresser services and dedicated hosting services.

3.1 Stresser Services

There is an active online market for stresser (also called DoS-
for-hire or booter) services. These provide the capability to
launch DoS attacks against any target, using a web-based
interface, at a relatively low monthly cost. Most commonly,
the attacks use a distributed botnet of compromised hosts to
target a single victim, flooding it with requests.

We summarize the stresser service landscape in Table 1,
although this table does not likely capture all available
stresser sites. (Since such services are illegal in most ju-
risdictions, they are not widely advertised and there is sig-
nificant churn in the industry, making it difficult to obtain
a comprehensive list.) We emphasize that Table 1 reports
advertised attack strengths. Although others have empir-
ically evaluated the achieved attack strengths of these ser-
vices [74, 75], we elected not to repeat their experiments due
to ethical concerns (specifically, the strong possibility of in-
curring collateral damage). Previous work has found them

USENIX Association 28th USENIX Security Symposium 1825

Table 1: The estimated mean hourly cost to flood a single target with 1 Gbit/s
using various online stresser services. The amortized cost is the hourly price per
Gbit/s of traffic per target.

Stresser
Service

Time
(hrs)

Num
Attks

Strength
(Gbit/s)

$/mo.
(USD)

$/target/hr.
(USD)

Amort.
(USD)

bootyou.net 3 3 45-50 $ 40 $ 4.44 $ 0.10
booter.xyz 1.67 1 150-200 $ 50 $ 30 $ 0.20
str3ssed.me 1 1 250 $ 55 $ 55 $ 0.22
cloudstress.com 1 1 750 $ 55 $ 55 $ 0.07
ragebooter.net 2 3 10+ $ 60 $ 10 $ 1.00
critical-boot.com 1 1 8-12 $ 40 $ 40 $ 5.00
fiberstresser.com 1 1 750 $ 55 $ 55 $ 0.07
netstress.org 0.67 1 320 $ 45 $ 68.25 $ 0.21
quantumbooter.net 1 2 50 $ 60 $ 30 $ 0.60
vbooter.org 1 3 48-64 $ 40 $ 13.33 $ 0.28
iddos.net 2 1 50 $ 50 $ 25 $ 0.50
downthem.org 0.22 2 200 $ 60 $ 135 $ 0.68

Mean amortized cost ($/target/hour/Gbit/s): $ 0.74

Table 2: The estimated mean hourly cost to flood a sin-
gle target with 1 Gbit/s using various dedicated server
providers. The amortized cost is the hourly price per
Gbit/s of traffic. Prices include 4 CPU cores with mini-
mum 16 GB RAM and 500 GB storage.

Service Speed
(Gbit/s)

Quota
(TB)

$/mo.
(USD)

Amort.
(USD)

Liquid Web 1.00 5 $ 249.00 $ 0.35
InMotion 1.00 10 $ 166.59 $ 0.23
DreamHost Unkn. Unmet. $ 249.00 –
GoDaddy 1.00 Unmet. $ 239.99 $ 0.33
BlueHost 0.10 15 $ 249.99 $ 3.47
1&1 1.00 Unmet. $ 130.00 $ 0.18
FatCow Unkn. 15 $ 239.99 –
OVH 0.50 Unmet. $ 119.99 $ 0.33
SiteGround 1.00 10 $ 269.00 $ 0.37
YesUpHost 1.00 100 $ 249.00 $ 0.35

Mean amortized cost ($/hour/Gbit/s): $ 0.70

capable of launching bandwidth DoS attacks with measured
attack rates in hundreds of Gigabits per second [74, 75] .

In our analysis in subsequent sections, we consider the av-
erage amortized cost of the attacker to flood a single target
(i.e., IP address) with 1 Gbit/s of attack traffic for an hour;
we found this to be $0.74. Although at first blush, this may
appear unrealistically inexpensive, we note that this is more
costly than obtaining the equivalent bandwidth from legiti-
mate dedicated hosting providers; see §3.2. In §4, we eval-
uate the cost of using stresser services to overwhelm the ca-
pacity of the Tor network en masse, and consider more effi-
cient and targeted stresser attacks in §5 and §6.

3.2 Dedicated Server Costs
Online dedicated hosting services provide customers with re-
motely located and managed physical machines. Users have
full access to the provisioned resources such as CPU, RAM,
and disk storage, at a fixed cost. Typically, providers impose
some limits on the amount of monthly traffic, and charge
different rates for the provisioned network bandwidth. Ta-
ble 2 reports the pricing schemes for several popular dedi-
cated hosting services. The average amortized hourly cost
for transferring data at 1 Gbit/s is $0.70.

Unlike stresser services, dedicated hosting services do not
cater to network attackers. They are much more likely to po-
lice their traffic and terminate service for customers who are
obviously attempting to perform flooding attacks. We thus
do not consider their use for naı̈ve flooding of Tor compo-
nents (e.g., to overwhelm their capacity).

Dedicated servers are well-suited for an attacker who is
looking to disrupt the Tor network by leveraging some as-
pects of Tor’s design or protocols. The attacker can use the
resources provided by dedicated hosting services to launch
such application layer bandwidth DoS attacks on Tor. We
explore how dedicated hosting services could serve as a plat-
form for causing severe congestion of Tor relays in §7.

4 Naı̈ve Flooding Attacks against Tor Relays
A straightforward method of attacking Tor is to flood relays
with spurious traffic. In this section, we analyze the cost of
using stresser services to disrupt the entire Tor network.
Saturating Links: To simplify our analysis, we assume a
model of the Internet in which every node i has a finite band-
width capacity Ci, measured in bits per second (bit/s). We
do not consider asymmetric bandwidth since Tor relays re-
ceive and send traffic in roughly equal proportions; if node
i has asymmetric connectivity, we can consider Ci to be the
minimum of its upstream and downstream capacities.

We assume that an adversary can effectively deny service
to a targeted node v if (i) it can cause traffic to arrive at the
target at a rate greater than Cv and (ii) such traffic cannot be
filtered upstream. Importantly, the second criterion requires
the attacker to initiate a distributed DoS attack from multiple
sources (i.e., IP addresses) that cannot easily be enumerated
or blocked. Additionally, the communication should resem-
ble legitimate traffic (e.g., be directed at a relevant TCP port).
Stresser services generally meet these requirements.

Our first assumption—i.e., a node v effectively becomes
unusable if it receives attack traffic at a rate greater than Cv—
is admittedly an oversimplification. However, we speculate
that saturating v’s link would induce a high packet loss rate of
50% or more for legitimate clients, since such clients would
have to compete for v’s connectivity. TCP performs poorly
at such high packet loss rates [61, 68].1 Stresser services
offer attack rates that vastly exceed the estimated bandwidth
capacities of Tor relays.
Estimating Tor Relay Link Capacity: For a successful
flooding attack, the rate at which the attack traffic arrives at

1Computing TCP’s performance for a given packet loss rate is complex
since there are a variety of TCP congestion control algorithms (e.g., Tahoe,
Reno, etc.). However, we can derive the theoretical network limit based on
the Mathis et al. [61] formula: assuming an average RTT of 40ms, an MSS
of 1460B, and a 50% loss rate, the maximum possible throughput achievable
by TCP is just (MSS/RTT) · (1/

√
loss) = 0.41 MiB/s.

1826 28th USENIX Security Symposium USENIX Association

the target should be equal to or greater than the target’s net-
work link capacity. Importantly, we distinguish between the
link capacity Cv of a victim relay and its effective through-
put, the latter of which depends on rate limiting, its selec-
tion probability, etc. The flooding attack instead depends on
overwhelming the victim’s actual connectivity, i.e., Cv.

Unfortunately, Tor relays do not publish their link capac-
ities. To estimate a given relay’s link capacity, we consider
its bandwidth history as recorded in the previous year (from
2017-11-01 to 2018-11-01) by the Tor Metrics Portal [11].
For each day, we find the maximum observed bandwidth for
the relay and map this bandwidth to the next highest value in
a fixed set of bandwidth offerings that are commonly avail-
able: 1, 10, 100, 200, 500, 1,000 and 10,000 Mbit/s. For
example, a relay with a maximum observed bandwidth of
1,200 Mbit/s will be considered to have 10 Gbit/s network
link. We thus assume that an attacker must direct 10 Gbit/s
of attack traffic to overwhelm the relay’s capacity. We again
emphasize that this is an estimate; the actual capacity at any
given time may vary significantly if relay operators configure
Tor bandwidth limitation options (operators can set instanta-
neous bandwidth rate limits and total monthly usage limits).
Attack Cost: We estimate that the total link capacity across
the Tor network ranged from 429 to 575 Gbit/s over the year;
for our analysis, we use the average of 512.73 Gbit/s. We
require that at least one stresser account be used for each
Tor relay (since stresser services usually restrict the number
of targets to one). Additional stresser accounts are needed
to saturate relays with high bandwidth capacities. Applying
our cost model, an attacker can use stresser services to flood
all relays in the Tor network at a cost of about $10K/hr. (or
$7.2M/mo.). An adversary can roughly halve its costs by tar-
geting only exit relays, which are required for traffic exiting
the network. Overall, however, we find that disrupting Tor
by renting stresser services is an expensive proposition, only
potentially viable for a nation-state adversary.
Limitations: A limitation of our analysis is that it is not
based on empirical evidence (since we were not willing to
use such services) and relies on advertised attack rates. Al-
though Santanna et al. have found such services to reason-
ably deliver high-bandwidth [74, 75], it is possible that they
provide a much lower attack strength than advertised. We
also rely on the assumption that packets are not filtered up-
stream, which may not always be valid (as discussed below).
Mitigation: It is possible that ISPs could render such attacks
ineffective by filtering traffic. For example, ISPs could dis-
cover hosts belonging to the stresser services and filter traffic
originating at those hosts. However, such rules may be diffi-
cult to maintain given the dynamic nature of the Internet.

Filtering all incoming requests to Tor relays that do not
originate at other relays would be an ineffective strategy. In
particular, entry relays must allow for clients anywhere on
the Internet to initiate a circuit, and any relay may be chosen
as an entry by clients implementing non-default path selec-

tion algorithms. Filtering attempts may also be complicated
by the churn rate of Tor relays and would interfere with the
process of bootstrapping new relays to the network. Finally,
dropping packets on the relay is an ineffective defense since
the dropped packets have already consumed bandwidth.

Traditional DoS defenses such as the use of CDNs are not
compatible with Tor since aggregating relays onto a small
number of CDN providers would diminish anonymity; it is
also unclear how a relay could operate within a CDN. Relay
operators may consider migrating to popular cloud services
that offer DoS protection services [1, 2]. However, the secu-
rity and privacy implications of migrating to such services is
unknown and may risk exposure to traffic correlation attacks.

Perhaps the most tractable mitigation strategy is to in-
crease the total relay bandwidth capacity of the network.

5 Congesting Tor Bridges
Tor provides anonymous communication to clients, but does
not conceal the network locations of its relays, subjecting
them to trivial blocking. To counter censors that block access
to Tor relays, Tor logically separates anonymity (accessing
the Internet without revealing network location) from un-
blockability (gaining access to the Tor network). The lat-
ter is achieved through the use of bridge relays that are not
published in the Tor directories. Bridges serve as alterna-
tive ingress points into the Tor network for users who cannot
directly connect to Tor entry guards.

In this section, we explore the effects of using stresser ser-
vices (§3.1) to flood Tor bridge relays. We differentiate be-
tween three classes of bridges:
Default Bridges: The Tor Browser Bundle (TBB) includes
a set of 38 hard-coded default bridges (as of version 8.0.3).
Users who cannot directly access Tor relays can configure
TBB to connect via one of these default bridges.

A special case of default bridges is meek bridges [4, 6] that
reside on popular cloud providers and communicate with Tor
clients via HTTPS. Censors cannot easily distinguish meek
traffic from more typical HTTPS traffic entering the cloud.
Disrupting meek thus entails entirely blocking access to the
cloud provider, which is presumed to impose too high a col-
lateral cost to the censor. Meek bridges, however, are ex-
pensive to operate (since cloud services are not free) and are
susceptible to cloud providers disallowing their use [17, 33].
Unlisted Bridges: Users can also request an unlisted bridge
either directly from TBB, via bridges.torproject.org, or
through email. To prevent a censor from trivially enumerat-
ing the bridges, Tor limits the amount of bridges it dissemi-
nates to a single requesting IP or email address. However,
such protections are obviously brittle and numerous tech-
niques exist for discovering unlisted bridges [20, 30].
Private Bridges: Finally, private bridges are not dissemi-
nated by the Tor Project, either because their operators did
not notify the Tor Project that they exist or because the Tor
Project opted not to disseminate them.

USENIX Association 28th USENIX Security Symposium 1827

https://bridges.torproject.org/

5.1 The State of Tor’s Bridges
We first examine the performance of the network’s bridges.
We focus on the 25 default bridges that use the obfs4 ob-
fuscation protocol2 since 90% of all bridge users use default
bridges [62] and obfs4 is the bridge type recommended by
Tor. To test their performance, we use a modified version
of Tor to download a 6 MiB file through each bridge. Sur-
prisingly, we find that only 48% (12/25) of the obfs4 default
bridges included in TBB are operational.

Figure 1 plots the cumulative distribution (y-axis) of the
throughput of the functioning obfs4 default bridges (blue
line) when downloading a 6 MiB file on 2018-04-10. Each
default obfs4 bridge downloaded the 6 MiB file three times;
the CDF plots the average of these downloads. For consis-
tency, we fixed the middle and exit relays, choosing relays
with high selection probabilities (and thus high bandwidths).
The median throughput of the default bridges is 368 KiB/s;
there is a large variation over the default bridges however,
ranging from 67 KiB/s to 1,190 KiB/s.

To compare against the performance of unlisted bridges,
we requested 135 unlisted obfs4 bridges from the Tor
Project’s bridge authority via its web and email interfaces.
Roughly 70% (95/135) of the acquired unlisted bridges were
found to be functional. As shown in Figure 1 (orange
line), the unlisted bridges generally outperformed the de-
fault bridges, which is expected given Matic et al.’s find-
ing [62] that suggests approximately 90% of bridge traffic is
conducted through default bridges. We suspect that the high
demand on the few operational default bridges leads to worse
performance than the less frequently used unlisted bridges.

As a point of comparison, historical data from the Tor
Metrics Portal reveals that non-bridge circuits on Tor dur-
ing the same time period yielded an average throughput of
786 KiB/s and experienced negligible failure rates [11].

In summary, Tor’s bridges are generally far more brittle
compared to the network’s advertised relays, offering much
greater failure rates for default (52%) and unlisted (30%)
bridges (compared to 0% for Tor relays) and lower average
throughput (545 KiB/s and 681 KiB/s for default and unlisted
bridges, respectively, versus 786 KiB/s without bridges).

5.2 Attacking Default Bridges
Ninety percent of bridge users use default bridges [62], and
only 12 working default obfs4 bridges are included in the
TBB. We first estimate how costly it would be for an at-
tacker to disrupt all of the default bridges. Then, for vari-
ous migration models in which some percentage of affected
bridge users switch to unlisted bridges, we estimate the per-
formance and pricing effects of the migration.
Denying Access to the Default Bridges: Since bridge re-
lays do not publish their bandwidth capacities, our analysis
assumes that the distribution of link capacities for n default

2obfs4 obfuscates Tor traffic to appear as a random sequence of bytes,
making it hard for DPI systems to classify.

bridge relays is the same as the distribution of link capaci-
ties for the fastest n non-bridge Tor relays. Thus, saturating
one default bridge’s Internet connectivity requires an amount
of bandwidth equal to the link capacity of the fastest Tor re-
lay, and saturating 10 default bridges’ requires bandwidth
equal to the combined link capacity of the fastest 10 Tor re-
lays. Following the link capacity estimates based on band-
width offerings as described in §4, we estimate that the set
of 12 operational default bridges consists of two 10 Gbit/s
links and ten 1 Gbit/s links (a total of 30 Gbit/s) and that
the full set of 38 default bridges consists of two 10 Gbit/s
links and thirty-six 1 Gbit/s links (a total of 56 Gbit/s). Re-
call from the pricing model in §3.1 that a 1 Gbit/s stresser
account costs $0.74/hr. Attacking the 12 operational obfs4
bridges thus requires 30 of such stresser accounts at a cost
of $0.74·30=$22.20 for each hour of downtime (or roughly
$22.20·24·31≈$17K per month). Repairing the remaining
default bridges offers only a small improvement: denying
service to 38 bridges requires 56 stresser accounts at a cost of
$0.74·56=$41.44/hr. ($41.44·24·31≈$31K/mo.) which we
posit is well within the budget of a nation-state adversary.
We emphasize that these are estimates since bridges’ true
link capacities are unknown.

If the default bridges are successfully attacked, there are
several potential consequences. In the worst case, the set of
default bridges will not be updated and the users who had de-
pended on them will abandon Tor altogether. The Tor Project
could also update its list of default bridges (e.g., by pushing
an update to TBB), but such a solution is only temporary
since an attacker could simply retarget its DoS efforts.

Users who are dependent on bridges may switch to us-
ing either unlisted bridges (since they are more plentiful and
more difficult to enumerate) or to meek bridges.
The Cost of Migrating to Unlisted Bridges: We base our
analysis on (i) the distribution of throughput we measure
from unlisted bridges (Figure 1), (ii) the simplifying assump-
tion that how Tor is used by bridge users is independent
of the particular type of bridge used to gain entry to the
network, and (iii) Matic et al.’s observation that suggests
approximately 90% of bridge traffic traverses through de-
fault bridges [62]. If all default bridge users switched to
unlisted bridges, applying our simplifying assumption, we
would therefore expect the load on the unlisted bridges to in-
crease by a factor of nine (since they previously carried just
10% of bridge traffic). More generally, when a fraction f of
default bridge users shift to using unlisted bridges, the un-
listed bridges should expect to see a corresponding increase
in traffic of a factor of 9 · f . This trend is plotted in Figure 2.

Given that most (90%) of bridge traffic that is handled by
the default bridges, even a small migration of default bridge
traffic to unlisted bridges has performance consequences.
Even if a quarter of previously default bridge users switch
to unlisted bridges, their performance will significantly suf-
fer, decreasing from 762 KiB/s to 338 KiB/s in the median.

1828 28th USENIX Security Symposium USENIX Association

0 200 400 600 800 1000 1200 1400

Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

Default (12 online bridges)
Unlisted (95 online bridges)
Tor Metrics Reported Average

Figure 1: Cumulative distribution of bridge
throughput when downloading 6 MiB files.
The vertical line at 786 KiB/s shows the
throughput for clients that directly connect to
Tor to download a 5 MiB file.

0 250 500 750 1000 1250 1500 1750

Throughput (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

Percentage of migrating
default bridge users

0
25
50
75
100

Figure 2: Throughput of Tor users who use
unlisted bridges, as a function of the percent-
age of default bridge users who switch to us-
ing unlisted bridges.

0 20 40 60 80 100

Percentage of migrating non-meek bridge users

0

2,000

4,000

6,000

8,000

M
on

th
ly

C
os

t
(U

S
D

)

Cloudfront + Azure Max Cost
Cloudfront + Azure Average Cost
Cloudfront + Azure Min Cost

Figure 3: The minimum, maximum, and av-
erage cost of maintaining meek when some
fraction of users switch to meek, based on
meek usage data and CloudFront and Azure
pricing models.

The Cost of Switching to Meek Bridges: If the non-meek
default bridges become unavailable, we expect some frac-
tion of users to switch to meek bridges. Censors cannot eas-
ily disrupt meek bridges without inflicting significant col-
lateral damage since it cannot easily distinguish meek traf-
fic from more typical HTTPS traffic that accesses the cloud
provider. However, the increased use of meek incurs a cost
(since cloud services are not free).

To estimate the resulting monthly cost of maintaining
meek bridges as non-meek users switch over, we estimate the
bandwidth consumption of migrating users by constructing a
regression model. The bandwidth consumption estimate is
required to calculate the cost of operating the meek frontend
as cloud providers charge their users based on the bandwidth
consumption. To construct the regression model, we first use
the statistics from the Tor Metrics Portal to estimate (i) the
number of meek users and (ii) the traffic transferred by the
meek frontend as reported by meek frontend operators [5]
over this same timespan. We use this regression model to
estimate the consumed bandwidth as a function of increased
traffic from users migrating to meek bridges. We then use
the estimated bandwidth usage to derive the expected meek
operational cost by applying the current pricing model of
the cloud service providers. Unfortunately, the Tor Project
stopped providing usage statistics for meek bridges, so we
restrict our analysis to usage that occurred between March
2016 and March 2017 (where such data is available [5]).
We also note that Amazon and Google stopped supporting
the use of domain fronting on their respective cloud ser-
vices [17, 33]3. Given these limitations, our analysis rep-
resents a rough approximation.

Figure 3 shows the monthly cost of operating meek
bridges as a function of the fraction of non-meek bridge users
who switch to using meek bridges. We plot the ranges of es-
timated monthly costs, since cloud providers charge differ-
ent amounts based on the locations of clients. We note that

3This highlights a particular brittle aspect of meek bridges—they are
completely dependent upon the cloud service on which they reside.

if half of non-meek users begin using meek bridges, then
in the best case, the operational cost of maintaining meek
bridges will double. If clients are disproportionately in loca-
tions in which providers charge higher rates, then the opera-
tional costs could be as high as six times the current amount.
Mitigation: Meek bridges offer the best protection against
DoS. Unfortunately, supporting a large user base is expen-
sive. One potential strategy for reducing costs is to require
bridge users to watch ads or perform small tasks (akin to Me-
chanical Turk) to finance the cost of their bridge use. Addi-
tionally, the recent proliferation of encrypted Server Name
Identification (SNI) parameters [36, 44] may enable new
methods of domain fronting [32] that are compatible with
lower-cost hosting providers.

6 Unbalancing Load
In this section, we seek to better understand the extent to
which an adversary can disrupt Tor by using stresser services
(§3.1) to launch bandwidth DoS attacks on TorFlow [72], a
critical component in Tor’s load balancing process.

6.1 Relay Performance and Path Selection
As of 2018-11-01, the Tor network contains 6,436 volun-
tarily operated relays, the status of which is maintained by
9 Tor directory authorities in a signed network consensus
document. When using Tor, clients download and verify a
recent consensus, and use it to select paths of relays through
which they build circuits and tunnel Internet connections.

Tor uses a load-balancing system in order to provide low-
latency anonymous communication (i.e., suitable for brows-
ing websites) due to high client resource demand and a large
variance in the bandwidth capacities offered by relays (see
§4). The load balancing system is composed of two primary
components: a relay performance estimation mechanism and
a performance-aware path selection algorithm.
Relay Performance Estimation: Although Tor initially es-
timated relay performance according to self-reported adver-
tised bandwidth capacities, Bauer et al. showed how a low-
resource adversary could attract significant traffic to mali-

USENIX Association 28th USENIX Security Symposium 1829

cious relays (to improve end-to-end correlation attacks) by
lying about their available bandwidth [15]. Perry subse-
quently designed and published the TorFlow relay measure-
ment system to reduce the extent to which Tor trusts relays
to honestly report their bandwidth capacity [72], and Tor has
been using it to measure relays for nearly a decade (despite
alternative designs [19, 55, 78]).

TorFlow is a measurement tool that scans Tor relays to
measure their relative performance. To measure Tor re-
lays, TorFlow (i) sorts the consensus list of relays by their
previously-expected performance, (ii) partitions the sorted
list into slices of 50 relays each, (iii) distributes the slices
among 9 subprocesses that run in parallel, (iv) creates 2-hop
circuits using pairs of relays that belong to the same slice
(and so can provide similar performance), and (v) downloads
one of a set of 13 fixed-sized files (2i for i∈ [4,16] KiB) from
a known destination through each circuit. TorFlow repeats
this process until it has attempted to download through each
relay at least 5 times, after which it uses the mean of the
measured download completion times to compute a weight
for each relay that represents its performance relative to the
other measured relays.

The output of the TorFlow measurement process is a ver-
sion 3 bandwidth (V3BW) file specifying the weights and
other information about each scanned relay. Currently, 5
of the 9 directory authorities also act as bandwidth authori-
ties [3]: they obtain a V3BW file and participate in a voting
protocol to determine an authoritative set of relay weights
that will appear in the next network consensus. Note that
a bandwidth authority operator may obtain a V3BW file by
running TorFlow (potentially on a distinct machine from that
which runs their directory authority) or by obtaining one
from another trusted source that is running TorFlow.
Performance-Aware Path Selection: Tor’s path selection
algorithm biases relay selection to favor those providing
more resources and better performance. Clients using the
default selection algorithm will choose relays roughly pro-
portional to the weights assigned to them (via the bandwidth
authority voting procedure) and listed in the consensus. As
a result, client traffic will be driven to the better performing
relays. Previous work has shown that Tor’s relay selection
strategy does a reasonable job of balancing load [82].

6.2 Detecting TorFlow Scanners
The TorFlow relay scanners constitute attractive targets for
DoS attacks: disrupting the scanners may result in signifi-
cant variation in relays’ weights which could degrade load-
balancing and security. If the bandwidth authorities were
taken offline, Tor would eventually fall back to an equal
weighting (uniformly at random) strategy, which would have
a detrimental effect on client performance [82]. Previous
work observed the ability to detect TorFlow scanners due to
their connection patterns and fixed-size file downloads [55],
which we further explore.

TorFlow scanners stand out from normal Tor clients be-
cause: (i) they download one of a set of 13 fixed-size files,
(ii) they choose new entry relays for each circuit (disabling
the guard feature), and (iii) they use two-hop circuits.

To discover the network addresses of the TorFlow scan-
ners, we first determined the range in the number of Tor cells
required to download each of the fixed-size files. We then op-
erated a low-bandwidth relay and patched it with a small pro-
gram that looked for connecting clients (potential candidates
for TorFlow scanners) that exhibited similar telltale fetches.
To provide some ground truth, we also operated our own Tor-
Flow scanner. Within 48 hours, we were able to identify six
IP addresses that fetched files through our relay and fit the
pattern of a TorFlow scanner. We operated our TorFlow scan-
ner detection software for 5.5 days, during which it did not
identify any additional potential scanners. Although we tem-
porarily stored candidate scanner IP addresses in memory (in
order to determine uniqueness), we did not write them to std-
out or the filesystem (in order to avoid accidentally recording
the IP of a human Tor user). We did, however, record that one
of the six identified candidate TorFlow scanners was indeed
our own; we posit that the other five correspond to the five
scanners operated by the Tor Project.

6.3 Attacking TorFlow Scanners
Given that an adversary can identify TorFlow scanners by
their IP address, they can use bandwidth DoS attacks to dis-
rupt the relay scanning process and therefore degrade the ac-
curacy of the relay weights produced by TorFlow. A band-
width DoS attack will clog the TorFlow scanners’ links, in-
creasing latency and packet loss on those links and extend-
ing the time it takes the scanners to successfully complete
file downloads through Tor relays. Therefore, the adversary
may effectively manipulate the scanner into believing that re-
lays provide worse performance than they can actually pro-
vide. Since TorFlow weights relays by their performance,
the adversary can effectively reduce the accuracy of the re-
lay weights which may disrupt the load balancing process.

6.3.1 Attack Strategies
We explore several strategies that an adversary may use to
conduct bandwidth DoS attacks on TorFlow scanners with
a goal of increasing the file download times measured by
TorFlow and disrupting the load balancing process. Each
strategy will come at a different cost due to the bandwidth
required to conduct the attack and the length at which the
attack must be sustained.
Constant: The most straightforward strategy is to simply
flood each TorFlow scanner with bandwidth at a constant rate
over time. This brute-force strategy is the easiest to set up
and should require minimal monitoring and maintenance by
the adversary throughout the duration of attack.
Periodic: Since TorFlow produces weights that represent re-
lay performance relative to other relays, and because a con-
stant attack strategy may similarly affect all relay measure-

1830 28th USENIX Security Symposium USENIX Association

ments, a constant strategy may be suboptimal. Therefore, we
also consider a periodic strategy where the adversary floods
the victim with bandwidth for a duration of time λ while pe-
riodically pausing the attack for a duration of time π . The
reasoning behind this strategy is that the scanner will mea-
sure normal download times for some relays but significantly
reduced download times for others, and the large difference
will have a greater impact on the final set of relay weights.
Targeted: We also consider a targeted strategy where the ad-
versary carefully selects periods of time during which to run
the DoS attack and otherwise does not alter the victim scan-
ner’s network conditions. In particular, we observe that the
greatest impact in performance will likely result from signifi-
cantly depressing the relative weights of the best performing
relays. Therefore, the adversary targets the scanner with a
bandwidth DoS attack while it is measuring the fastest re-
lays. We discuss below how to determine when the fastest
relays are being measured.

6.3.2 Attack Strength and Other Assumptions

For any strategy used by the adversary, we assume that it can
utilize a stresser service (see §3.1) to limit the victim’s ef-
fective bandwidth to rate γ while increasing packet loss on
the victim’s link by ρ . We assume that the adversary can
increase or decrease the attack strength to achieve these ef-
fects. (See §6.5 for a discussion of cost.) We also assume that
the adversary can receive feedback on the attack by closely
monitoring the consensus weights and checking how relays’
weights are changing over time. It can monitor the Tor met-
rics website and data to observe changes in Tor performance.
It can iteratively adjust the attack strength and strategy over
time in an attempt to produce a greater effect. We also as-
sume that the adversary is capable of setting up and running
its own TorFlow scanner instance (the code is open-source),
and use it to directly observe how an ongoing attack is af-
fecting the TorFlow measurements and outputs.

The Targeted attack strategy depends on being able to tar-
get the slice containing the fastest relays. We speculate that
the adversary would be able to detect when the fastest slice is
being measured by running a fast relay itself and observing
when its relay is first measured by a TorFlow scanner. Once
detected, the adversary could enable the attack for the time
required to measure the slice, which it could estimate empir-
ically by running a TorFlow scanner itself and observing the
times to measure the fastest slice over several scan periods.
(We ran a TorFlow instance, analyzed its output, and com-
puted the time to measure the fastest slice over 20 scans. We
found that the median time to scan the fastest slice was 249
minutes, with an interquartile range of 73 minutes.) Note
that these techniques would require additional time, band-
width, and skill compared to a brute-force attack, and that
scan times may be inconsistent over time and network loca-
tion. See §6.6 for further discussion.

6.4 Evaluation
We evaluated the DoS attack strategies and effects in
Shadow [47], a high-fidelity network simulation framework
that directly executes Tor. We used Shadow to create a pri-
vate Tor network that is completely contained inside of our
lab environment in order to guarantee that our attacks do not
harm the safety or privacy of real Tor users or the network.
All of the experiments that we present in this section use
Shadow v1.13.0 and Tor v0.3.0.10.
Network Setup: We used standard Shadow and Tor network
generation tools and methods [48] to generate a private Tor
network with 100 Tor relays, 3,000 Tor clients, and 1,000
server, and to generate background traffic [53]. 2,619 of the
clients are web clients that download a 320 KiB file, “think”
by pausing for a time selected uniformly at random in the
range [1,60] seconds, and then repeat. 81 of the clients are
bulk clients that repeatedly download a 5 MiB file without
pausing between successive downloads. We also run 300
benchmark clients that reproduce Tor’s performance bench-
marks by occasionally downloading 50 KiB, 1 MiB, and
5 MiB files using fresh circuits throughout each experiment.
We use the most recently published Shadow network topol-
ogy graph [53] to model inter-host latency.

We implemented a TorFlow plugin for Shadow by signif-
icantly refactoring and extending previous work [55]. We
used the plugin to scan the relays in our network and pro-
duce V3BW files which were then added to the consensus
and used by the clients to build paths. We first ran one longer
experiment allowing TorFlow time to scan through all relays
several times, and then we used the final V3BW file that Tor-
Flow produced as the starting point for all other experiments.
Parameter Settings: We simulated a bandwidth attack by
adjusting TorFlow’s available bandwidth γ and added packet
loss ρ . During each phase where the attack is active, we limit
TorFlow’s bandwidth to γ = 500 Kbit/s (62.5 KiB/s) and we
add a ρ = 2% chance of packet loss occurring independently
on all incoming and outgoing packets. We set our TorFlow
instance to conduct 4 parallel probes (2-hop relay measure-
ments), to partition the relays into 10 slices of 10 relays each,
and to probe each relay at least 3 times per round before pro-
ducing a new V3BW file.

We ran a baseline No Attack experiment and experiments
with each attack strategy. When running the Constant attack
strategy, the attack is active (the γ and ρ rates applied) for
the duration of the experiment. In the Periodic attack strat-
egy, the attack cycles through an active period lasting λ = 60
seconds and an inactive period lasting π = 20 seconds. In the
Targeted attack strategy, the attack is active while relays in
the slice containing the fastest guard relay in the network are
being measured, and inactive otherwise.
TorFlow Scanner Performance: The performance of the
TorFlow measurement probe downloads across our experi-
ments is shown in Table 3. As shown in the table, our results
indicate that the Constant attack is the most effective at caus-

USENIX Association 28th USENIX Security Symposium 1831

Table 3: The failure rate of TorFlow probe downloads, and the
mean (± standard deviation) download rate for each TorFlow probe
download and time to complete a full network scan.

Strategy Fail Rate Download Rate Scan Time

No Attack 6.0% 390±381 KiB/s 47±21 min.

Periodic 8.6% 256±292 KiB/s 59±20 min.
Targeted 14% 275±293 KiB/s 80±19 min.
Constant 22% 8.7±5.1 KiB/s 173∗ min.

∗Only a single scan completed in our 300 minute simulation.

ing TorFlow download errors (which increased to 22% from
6% with No Attack). The Constant attack is also the most
effective at limiting the probe download rate, achieving a re-
duction in mean download rate of about 381 KiB/s, and in-
tuitively increasing the time to scan all relays in the network
by about 126 minutes. We find that the Periodic and Tar-
geted strategies are less effective than the Constant strategy,
but still do have a measurable effect on the scanner.
Relay Performance: Figure 4(a) shows the relay perfor-
mance in terms of the distribution of total relay goodput
(summed across all relays in the network) over every sec-
ond during the simulation. We notice a similar trend as with
TorFlow performance: in the medians, total relay goodput
drops by 86 MiB/s (56%) from 153 MiB/s with No Attack to
67 MiB/s with the Constant strategy, and relay utilization
gets progressively lower with the Periodic, Targeted, and
Constant strategies, respectively. Such significant drops in
throughput indicates that the new weights produced by Tor-
Flow during the attacks no longer do a good job of balancing
client load across relays, and the network is less capable of
utilizing its available bandwidth resources.
Client Performance: The effects of our attacks on the
mean download rate (during active downloads) per client are
shown in Figure 4(b). Every attack has a significant effect,
with the mean download rate of the median client being re-
duced by 45 KiB/s from 56 KiB/s with No Attack to 11 KiB/s
with the Constant attack. Client performance also suffers in
terms of the download failure rate per client as shown in Fig-
ure 4(c): the failure rate for the median client increases by
about 23% from about 3% with No Attack to about 26% with
the Constant attack.

Overall, our results show the extent to which an adversary
may disrupt Tor performance using straightforward DoS at-
tacks on easy-to-detect TorFlow scanners, and that the sim-
plest constant attack strategy was the most effective.

6.5 Attack Cost
We assume that our TorFlow DoS attacks could be launched
using a stresser service. In §3.1 we describe that the amor-
tized cost of a stresser service to provide 1 Gbit/s of at-
tack traffic is $0.74/hr. The Constant attack strategy requires
that we constantly run the DoS attack on each scanner. Tor
runs 5 TorFlow scanners of unknown capacity. If we as-
sume that they all run on 1 Gbit/s links, then the cost to run

the DoS attack on all 5 scanners for one month would be
$0.74·5·24·31≈$2.8K.

6.6 Discussion
Limitations: A limitation of our study of the effects of
bandwidth DoS on the TorFlow scanners is that we used a
smaller-scale Tor network than that which is publicly acces-
sible (100 relays compared to 6,436). We used a smaller
network primarily due to resource limitations and because
TorFlow takes a significant amount of time to scan all relays.
Using a smaller network allowed us to (i) run longer exper-
iments, (ii) scan the network faster because there are fewer
relays to measure, and (iii) complete more scanning rounds.

Due to scale we configured a single TorFlow instance in
our experiments measuring 10 relays per slice, using 4 par-
allel probe subprocesses, and collecting at least 3 probe mea-
surements per relay; Tor runs 5 TorFlow instances measuring
50 relays per slice while using 9 parallel probe subprocesses
and collecting at least 5 probe measurements per relay. The
process of partitioning a larger set of relays among more
slices and more parallel subprocesses could lead to different
inconsistencies than those captured by our simulations. We
believe that running additional parallel subprocesses would
increase the average bandwidth rate of the TorFlow scanner,
which may increase the effectiveness of a constant attack
strategy. However, the adversary would require additional
bandwidth to attack all or a majority of scanners in parallel.

The Targeted attack requires the ability to estimate when
the fastest slice is being measured and the amount of time re-
quired to measure that slice. These estimates may be compli-
cated by TorFlow’s inconsistent relay partitioning and sub-
process assignment functions and its parallel measurement
processes. In the worst case, the Targeted attack would de-
grade to a Constant attack, which performed best in our ex-
periments anyway and for which we estimated cost in §6.5.

The attacks depend on stresser services delivering a high
rate of traffic to the target, which is not a stealthy operation.
This could potentially trigger automated or manual DoS mit-
igation techniques, and we did not consider how such de-
fenses would affect the attacks. We rely on the assumption
that packets are not filtered upstream from the target scanner,
which may not always be valid (as we will discuss below).
Attack Extension: Our focus in this paper is on relatively
simple and straightforward bandwidth-based DoS attacks.
However, it is possible to extend the attack if we consider a
more powerful adversary. For example, a network-level ad-
versary that can observe connections from a TorFlow scan-
ner can selectively disrupt TorFlow as it is scanning a target
set of relay IP addresses. This would allow an adversary
to selectively increase the time to scan the target set of re-
lays, causing the scanner to detect that those relays are “over-
loaded” and reduce their weights (and therefore the probabil-
ity that those relays are used by clients) accordingly. Such an
attack could be used to drive additional traffic to other mali-

1832 28th USENIX Security Symposium USENIX Association

60 80 100 120 140 160 180

Aggregate Tor Relay Goodput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

No Attack

Periodic

Targeted

Constant

(a) Relay Utilization

100 101 102

Mean Download Rate Per Client (KiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

No Attack

Periodic

Targeted

Constant

(b) Client Performance

0 20 40 60 80 100

Download Failure Rate Per Client (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

No Attack

Periodic

Targeted

Constant

(c) Client Error Rate

Figure 4: Performance metrics as measured when the network is not under attack (No Attack) and when the bandwidth authorities are attacked
using different strategies (Periodic, Targeted, and Constant): (a) the distribution of aggregate Tor relay goodput per second (summed across
all relays for every second); (b) the distribution of mean download rates per client; and (c) the distribution of download failure rates per client.

cious relays, improving the ability of an adversary to conduct
attacks on anonymity, e.g., traffic correlation attacks [66].
Mitigation: Since the attacks rely on stresser services, the
mitigation strategies discussed in §4 also apply here. Specif-
ically, it is possible that ISPs could render attacks against
the bandwidth authorities ineffective by filtering traffic en
route. For example, ISPs could discover hosts belonging
to the stresser services and filter traffic originating at those
hosts, or ISPs could install custom rules to filter incoming
traffic to the bandwidth authorities since they need only make
outgoing connections (in case they are not run alongside Tor
relays). However, filtering attempts may be complicated by
packet spoofing. (Note that dropping packets on the band-
width authority is an ineffective defense since the dropped
packets already consumed bandwidth.)

Perhaps the best mitigation is to migrate to a decentral-
ized bandwidth measurement system that does not share Tor-
Flow’s security problems. For example, TorFlow’s central-
ized scanning approach can be easily detected because it uses
fingerprintable traffic signatures from a small set of static IP
addresses. While it may be difficult to obfuscate the source,
destination, and traffic signature while still providing accu-
rate results [55], a system that utilizes distributed trust may
help thwart malicious behavior. For example, a peer-based
measurement system run by existing relays would preclude
the need for centralized measurement infrastructure that is
vulnerable to DoS and could complicate scanner and mea-
surement detection [55, 78].

7 Congesting Tor Relays
In §4, §5, and §6 we evaluated the effects of using stresser
services (§3.1) to flood Tor relays, Tor bridges, and Tor band-
width authorities, respectively. In this section, we move
away from stresser services and explore the extent to which
an adversary might degrade Tor network performance by us-
ing the Tor protocol itself to congest Tor relays. The attack
strategies that we discuss in this section utilize dedicated
servers (§3.2) and modified Tor clients.

7.1 Relay Usage
All non-bridge Tor relays are publicly known and distributed
to Tor clients in network consensus documents in order to fa-
cilitate the Tor client path selection and circuit building pro-
cesses. By default, clients select 3-hop Tor paths and use
them to build circuits that are usable for 10 minutes. Clients
must use an exit relay that allows exiting the Tor network
on the desired TCP port as the last relay in their Tor cir-
cuits in order to communicate with Internet peers that are
not Tor-aware. Additionally, by default, clients use guard re-
lays as their entry into the Tor network, and guard or middle
relays (i.e., non-guard, non-exit relays) in the middle posi-
tion of their circuits. As discussed in §6, each relay is as-
signed a weight by the directory authorities corresponding
to its performance relative to all other relays as measured
by TorFlow [72]. Clients use these weights during path se-
lection to bias their choice of relays toward those providing
better performance.

7.2 Abusing Relay Bandwidth
The Tor protocol contains features that offer protocol flexi-
bility, but also allow for abuse. Although exits are required to
be used in the last position of circuits exiting Tor, the Tor pro-
tocol technically allows any relay to be used in any non-exit
position. Additionally, the Tor protocol technically allows
circuits containing up to 8 relays. To utilize these features, a
client may select its own custom path of relays and build cir-
cuits through them either by modifying their Tor client code
directly, or by interacting with Tor using the Tor control in-
terface and protocol. Note that building custom circuits is al-
ready supported by existing Tor control clients like stem [8].

7.2.1 Attack Strategies
Given the above features, an adversary may conduct a con-
certed bandwidth consumption DoS attack by building cus-
tom circuits and downloading large files through them.
Long Paths: The most basic form of our Tor bandwidth DoS
attack makes use of the ability to create 8-hop Tor circuits.

USENIX Association 28th USENIX Security Symposium 1833

For every byte of data downloaded by a client through such
a long path, relays in the Tor network will download and
upload that byte 8 times in total. This amplification works
significantly in favor of the adversary.
Tunneling: Tor previously allowed infinite-length circuits
until it was shown that long paths (e.g., 24 hops) could be
used to congest Tor relays and deanonymize clients [31]. Al-
though the Tor protocol now restricts circuits to 8 relays in
length [27, §5.6], paths of unrestricted length are still tech-
nically possible by using multiple Tor clients and tunneling
each client’s TCP onion connection to its entry relay through
another client’s circuit4 [51].
Stop Reading: In order to decrease the cost of downloading
large files, the adversary may use a Stop Reading strategy.
Using this strategy, the adversary first creates a new TCP
onion connection to the first-hop relay in its chosen long
path, even if a connection to that relay already exists. The
adversary then builds an attack circuit using its chosen path
and waits for it to complete successfully, making sure to as-
sign the circuit to the new TCP connection. Once the circuit
is built, the adversary sends a request for a large data blob
from some public server (e.g., the Internet Archive), mea-
sures the time to download the first 25 KiB, and then instructs
Tor to stop reading from the circuit’s TCP connection to the
entry relay (immediately after receiving 25 KiB). Although
the client stopped reading, it can still write: the adversary
uses the measured time to download the first 25 KiB to esti-
mate the frequency with which it should send Tor circuit and
stream SENDME flow control cells5 which instruct the exit re-
lay to continue to send data toward the client. (Estimating the
circuit throughput rate is important, because sending more
SENDME cells than is expected by the exit will cause the exit
to abort the circuit.)

A stop reading strategy was first described and used as part
of the Sniper Attack [51], but we are the first to observe that
each attack circuit should use a new and unique TCP connec-
tion in order to limit interference with other circuits built in
parallel. This requires minor modifications to the Tor client
code since Tor by default multiplexes circuits over existing
TCP connections. We show in §7.3 that our bandwidth DoS
attack scales to thousands of circuits using this approach.

7.2.2 Attack Targets

Single Relay: An adversary may use an 8-hop long path
to conduct a congestion attack on a target victim relay by
including the victim in the same circuit multiple times. Since
an honest relay will not extend a circuit to the same relay
that extended to it, the victim v must be placed in circuit
positions such that two distinct honest relays h1 and h2 are
placed in subsequent positions before repeating the victim

4Tor will tunnel TCP onion connections through a proxy (e.g., another
Tor client) when using the Socks4Proxy or Socks5Proxy torrc options.

5A stream SENDME cell is sent for every 50 received cells (25 KiB) and
a circuit SENDME for every 100 received cells (50 KiB).

(i.e., v!h1!h2!v, etc.). Therefore, a victim may appear
in the same circuit a maximum of 3 times (either in positions
1, 4, and 7, or 2, 5, and 8).
Relay Subgroups: An adversary may also target specific
subgroups of relays that represent particularly attractive tar-
gets. Such subgroups may include the group of all exit relays
(since their resources are the most scarce), the group of all
publicly known bridges (we explored the impact of such an
attack in §5), hidden service directories, and the group of 9
directory authorities (which also serve as relays).
All Relays: An adversary may also attempt to congest the
entire Tor network with the goal of degrading performance
to the extent that Tor becomes unusable to a majority of its
user base, which would significantly reduce Tor’s security
in addition to its performance [25]. In order to congest all
relays, the adversary makes a weighted selection of relays
following the weights published in the network consensus.
In other words, the adversary uses the same path selection
policy as honest clients do by default. This will ensure that
the adversary will choose and congest relays with the same
distribution that clients attempt to use them: the DoS attack
will cause more congestion on relays that are chosen more
often by clients, and should therefore impact more users.

7.2.3 Attack Strength
The strength of our attack can be described in terms of the
number of long path circuits φ that the adversary builds in
parallel. Each circuit should use at least 2 parallel streams
(i.e., downloads) in order to fully utilize the circuit flow con-
trol mechanism (the circuit window is 1,000 cells, twice that
of the stream window). Whenever circuits close or down-
loads finish (complete or time out), circuits are replaced with
new ones in order to maintain the attack strength over time.

7.3 Evaluation
As in §6.4, we use Shadow [47] to safely measure the effects
of our DoS attacks in a private Tor network. All experiments
in this section use Shadow v1.13.0 and Tor v0.3.1.10.
Network Setup: We use the same tools and methods as de-
scribed in §6.4 to generate a Tor network containing 634 re-
lays (10% of the size and capacity of the public network),
15,000 clients (14,259 web clients, 441 bulk clients, and 300
benchmark clients), and 2,000 servers. Node behaviors are
also as described in §6.4.

We implemented our DoS attacks in a C program con-
taining 3,265 lines of code (LoC) which we compiled as a
Shadow plugin. Our attacks utilize a Tor v0.3.1.10 client
that we modified (409 LoC) to support creating new TCP
connections for attack circuits as well as commands to stop
reading and for sending SENDME cells.
Parameter Settings: Throughout our experiments, we ex-
plore the effects of the Long Path strategy across attack
strengths (number of circuits φ) on performance. We par-
allelize our attack by running φ/1,000 identical processes
on new attack hosts (i.e., 1,000 circuits per host), each of

1834 28th USENIX Security Symposium USENIX Association

0 50 100 150 200

Attacker Throughput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

1k Circ.

5k Circ.

10k Circ.

20k Circ.

(a) Attacker Throughput

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Aggregate Tor Relay Goodput (GiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n No Attack

1k Circ.

5k Circ.

10k Circ.

20k Circ.

(b) Relay Goodput

N
o

A
tt

ac
k

1k
C

ir
c.

5k
C

ir
c.

10
k

C
ir

c.
20

k
C

ir
c.

TTFB All

0

2

4

6

8

10

D
ow

n
lo

ad
T

im
e

(s
)

N
o

A
tt

ac
k

1k
C

ir
c.

5k
C

ir
c.

10
k

C
ir

c.
20

k
C

ir
c.

TTLB 50KiB

0

5

10

15

N
o

A
tt

ac
k

1k
C

ir
c.

5k
C

ir
c.

10
k

C
ir

c.
20

k
C

ir
c.

TTLB 1MiB

0

10

20

30

40

50

N
o

A
tt

ac
k

1k
C

ir
c.

5k
C

ir
c.

10
k

C
ir

c.
20

k
C

ir
c.

TTLB 5MiB

0

20

40

60

(c) Client Performance

Figure 5: Performance metrics as measured throughout our network-wide DoS attack on Tor relays: (a) the distribution of attacker throughput
rates; (b) the distribution of aggregate Tor relay goodput rates (summed over all relays for each second); and (c) the distribution of benchmark
client download times to first byte (TTFB) and last byte (TTFB) for files of sizes 50 KiB, 1 MiB, and 5 MiB (the box shows the interquartile
range, the N shows the mean, and the lower and upper whiskers extend to the minimum and the 99th percentile values, respectively).

which is configured with a 1 Gbit/s network link to ensure
that we could measure the full bandwidth cost of the attack.
We attach 2 streams that each request 10 MiB of data to each
8-hop attack circuit whose path is chosen depending on the
target (we explore a single relay and all relays as targets). We
set each attack circuit to time out if any of its streams either
have not completed within 5 minutes, or have not received a
byte in the most recent 60 seconds. Finally, we run experi-
ments with and without the Stop Reading strategy in order to
understand the cost and impact of DoS with and without it.
(We did not evaluate the Tunneling strategy or a strategy that
targets Relay Subgroups.)
Single Relay Attack: We evaluated the Long Path strategy
in a Single Relay attack against the most highly weighted
middle relay in our network. We evaluated attack strengths
of 100, 500, and 1,000 circuits. In all cases, the attacker
required less than 2.6 MiB/s of throughput to conduct the
attack. The victim relay’s throughput increased from 978
KiB/s with no attack to 3.8 MiB/s with 100 attack circuits
and 5 MiB/s with both 500 and 1,000 attack circuits (in the
medians). Interestingly, 500 circuits was enough to consume
all of the victim’s 5 MiB/s capacity. In the medians, the time
to download 1 MiB through the victim increased from 3.3
seconds with no attack to 28 seconds with 1,000 circuits,
while the download failure rate increased from 0% with no
attack to 63% with 1,000 attack circuits. Our results indicate
that the attack has a clear effect on both relay throughput and
client performance on a small scale.
All Relays Attack: We evaluated the Long Path strategy in
an All Relays attack using φ = 1k, 5k, 10k, and 20k attack
circuits. The performance measured during the attacks and
compared to a no attack baseline experiment is shown in Fig-
ure 5. Figure 5(a) shows the cumulative distribution of the
total attacker throughput used during each attack. Intuitively,
the throughput used by the adversary increases with the num-
ber of attack circuits: from a median of 61 MiB/s in a φ=1k

circuit attack to a median of 197 MiB/s in a φ=20k circuit
attack. Note that the increase in attacker throughput is not
linear in φ , indicating that we may be reaching relay band-
width resource limits. Figure 5(b) supports this claim, show-
ing the distribution over each second of Tor network goodput
(summed over all relays). In the medians, aggregate relay
goodput increases from 802 MiB/s with no attack to 1,297
MiB/s for φ=1k (an increase of 495 MiB/s) and 2,120 MiB/s
for φ=20k (an increase of 1,318 MiB/s). Interestingly, we
can see from these results that the effect of φ=10k circuits is
much greater than the effect of doubling the attack strength to
φ=20k circuits, suggesting diminishing returns. Finally, the
effect of our attack on client performance is shown in Fig-
ure 5(c) across a range of download time metrics. Generally,
the time to complete downloads of various sizes increases
significantly with the attack strength (e.g., TTFB increases
by 138% and TTLB increases by 120% in the medians across
all downloads for φ=20k), and the variance in performance
also increases as attack circuits are added to the network.

Figure 6 shows the effect of the Stop Reading strategy on
performance. Compared to the regular Long Path strategy
in the φ=20k attack, Figure 6(a) shows that the Stop Read-
ing strategy consumed only 36 MiB/s of attacker bandwidth
in the median while Figure 6(b) shows that the attack was
still able to consume 1,755 MiB/s of total relay bandwidth
in the median (an increase of 953 MiB/s over no attack).
Figure 6(c) shows that the effect on client performance is
also slightly less pronounced (TTFB increases by 48% and
TTLB increases by 47% in the medians across all down-
loads), which is to be expected given that relays are less
congested. We expect that we could further increase conges-
tion by scaling up the Stop Reading attack at relatively little
bandwidth cost to the attacker. A summary of our results in
Table 4 shows that the Stop Reading strategy achieved the
highest bandwidth amplification factor of 26 primarily due
to the reduction in attacker bandwidth usage.

USENIX Association 28th USENIX Security Symposium 1835

0 50 100 150 200

Attacker Throughput (MiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

20k Circ.

Stop Reading

(a) Attacker Throughput

0.8 1.0 1.2 1.4 1.6 1.8 2.0

Aggregate Tor Relay Goodput (GiB/s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
F

ra
ct

io
n

No Attack

20k Circ.

Stop Reading

(b) Relay Goodput

N
o

A
tt

ac
k

20
k

C
irc

.
St

op
R

ea
di

ng

TTFB All

0.0

2.5

5.0

7.5

10.0

D
ow

n
lo

ad
T

im
e

(s
)

N
o

A
tt

ac
k

20
k

C
irc

.
St

op
R

ea
di

ng

TTLB 50KiB

0

5

10

15

N
o

A
tt

ac
k

20
k

C
irc

.
St

op
R

ea
di

ng

TTLB 1MiB

0

20

40

N
o

A
tt

ac
k

20
k

C
irc

.
St

op
R

ea
di

ng

TTLB 5MiB

0

20

40

60

(c) Client Performance

Figure 6: The effects of the Stop Reading attack on the performance metrics as measured throughout our network-wide 20,000 circuit DoS
attacks on Tor relays: (a) the distribution of attacker throughput rates; (b) the distribution of aggregate Tor relay goodput rates (summed over
all relays for each second); and (c) the distribution of benchmark client download times to first byte (TTFB) and last byte (TTFB) for files of
sizes 50 KiB, 1 MiB, and 5 MiB (the box shows the interquartile range, the N shows the mean, and the lower and upper whiskers extend to
the minimum and the 99th percentile values, respectively).

Table 4: Summary of the total increase in relay bandwidth usage
our attack achieved with the given attacker bandwidth usage (all in
MiB/s) and the resulting bandwidth amplification factors.

φ=1k φ=5k φ=10k φ=20k Stop∗

Relay Bandwidth 495 1,035 1,221 1,318 953
Attacker Bandwidth 61 143 177 197 36

Amplification Factor 8.1 7.2 6.9 6.7 26
∗ Stop is a φ=20k attack using the Stop Reading strategy.

7.4 Attack Cost
We assume that our DoS attacks could be launched on a ded-
icated server. In §3.2 we describe that the amortized cost in
the dedicated server model for 1 Gbit/s of traffic is $0.70/hr.
(which includes the monthly hardware rental and any band-
width costs). Our φ=20k attack with the Stop Reading strat-
egy requires only 288 Mbit/s (36 MiB/s) in our scaled down
private Tor network which contains about 10% of both the
number of relays in and the bandwidth capacity of the public
Tor network (due to the relay sampling approach of Jansen
et al. [48]). If we assume that the attack scales linearly
with Tor’s bandwidth capacity, then our attack would require
10·288 Mbit/s≈3 Gbit/s. The cost to rent three dedicated
servers supporting 1 Gbit/s of traffic for one month would
then be $0.70·3·24·31≈$1.6K. (The regular version of the
attack consumes ≈4 times as much bandwidth, requiring 12
dedicated servers and costing $0.70·12·24·31≈$6.3K/mo.)

Our attack additionally utilizes multiple client IP ad-
dresses, each of which is used to maintain an average
of 1,000/634≈1.6 circuits per relay. If (i) the public
Tor network contains 10·634=6,340 relays, (ii) we create
10·20,000=200,000 circuits, and (iii) we maintain the av-
erage 1.6 circuits per relay per client IP address rate, then we
would require 200,000/6,340/1.6≈20 client IP addresses. If
we assume that one IP address is provided for each of our
three dedicated servers, and the cost is $5 per additional IP

address, then the additional monthly cost for purchasing 17
more IP addresses is 17·$5=$85.

Thus, we estimate that the total cost to run a φ=200k cir-
cuit attack using the Stop Reading strategy against the public
Tor network is still $1.6K/mo. due to rounding. (We esti-
mate that the cost of the regular version of the attack is still
$6.3K/mo. due to rounding.)

7.5 Discussion
Limitations: We used Shadow in order to ethically con-
duct full-network Tor simulations, and simulation inherently
incurs some inaccuracy. However, while no simulator is
perfect, Shadow has been shown to exhibit network behav-
ior and performance that is very similar to Linux [50, 52].
Additionally, Shadow has been used to measure perfor-
mance when Tor is generally overloaded (as in our evalua-
tion) [47, 49, 52], and it has been used to measure the effects
of specific DoS attacks against Tor [51].

Our experiments are limited in scale. We simulated a pri-
vate Tor network with about 10% of both the number of re-
lays in and the bandwidth capacity of the public Tor network.
The cost to the adversary to conduct our attack may not scale
linearly with the amount of Tor capacity as we assumed in
§7.4, or there may be other issues that arise when scaling up
our attack. We note that we are limited by the capabilities of
our tools and resources and highlight that it would be uneth-
ical to conduct this work at scale on the public Tor network.
Attack Extensions: We did not evaluate the effects of onion
connection tunneling on DoS (i) because Tor could prevent
the attack by updating the default exit policy to prevent ex-
iting to a Tor relay, and (ii) in order to provide a more con-
servative estimate of the bandwidth and monetary costs of
performing our bandwidth DoS attack. However, we believe
that the technique would be simple to deploy. Additionally,
it would be interesting to explore the effects of our attacks
on performance when targeting subgroups of relays.

1836 28th USENIX Security Symposium USENIX Association

Mitigations: It is extremely challenging to mitigate band-
width DoS attacks on Tor because the circuits that we build
in our attack download an amount of traffic that a reasonable
client could realistically download. The Long Path part of
the attack could be mitigated if Tor changes its protocol to
further restrict the length of circuits, however, in this case
an adversary could switch to using hidden service circuits
which are 6 hops by default.

The Stop Reading part of our attack uses a separate TCP
connection to the entry relay for each attack circuit, and
builds many such connections and circuits in parallel. Tor
implemented mitigations to this kind of DoS attack and
merged them in early 2018 [24, 39] in response to reports
of DoS against relays [23, 38, 40]. In the new subsystem,
relays will refuse new TCP connections from any IP address
that creates more than 3 concurrent connections, and they
will refuse new circuits from the IP address if it also creates
more than 3 circuits per second with an allowable burst of
90 circuits (these were the default settings on 2018-11-01).
Our Tor experiments were configured to run with these DoS
mitigations in place, and our attacks did not trigger the DoS
defense on any relay. Our attacks were able to stay under
the connection threshold because we utilize every relay in
the network as an entry relay and we maintain only 1,000
circuits per client IP address (1.6 circuits per relay per client
IP address on average). While we do believe that the im-
plemented mitigations are effective against some attacks, we
note that the proliferation of IPv6 addressing may further re-
duce their effectiveness.

A defense against the Sniper Attack [45, 51] was merged
in Tor v0.2.4.14-alpha (released on 2013-06-13). The
defense detects and kills the circuit with the longest waiting
cell at the head of the queue if the relay is under memory
(RAM) pressure. The defense was active but was not trig-
gered in our experiments since we only download 20 MiB of
data through each circuit before abandoning it (our goal is
to consume bandwidth rather than a victim’s RAM as in the
Sniper Attack, so we do not require long queues).

In order to further limit the impact of the Stop Read-
ing strategy, we recommend the implementation and deploy-
ment of the authenticated SENDME design as previously de-
scribed [51] and specified [46]. With authenticated SENDMEs,
a client would need to continue reading data in order to con-
tinue producing authentic SENDME cells, and the exit would
destroy circuits on which it received invalid SENDMEs. This
defense would limit a stop reading DoS strategy to 1,000
cells (500 KiB) per circuit, effectively mitigating it.

8 Sybil Attacks
We previously explored several bandwidth-based DoS at-
tacks against Tor while estimating the cost to conduct each
attack and their effects on Tor performance; we summarize
our cost estimates in Table 5. In this section, we compare
our DoS attacks with a Sybil attack in which an adversary

Table 5: A summary of the costs of our main attacks.

Attack (Section) Service Bandwidth Cost

Bridge Congestion (§5) stresser 30 Gbit/s $17K/mo.
Load Unbalancing (§6) stresser 5 Gbit/s $2.8K/mo.
Relay Congestion (§7) ded. server 3 Gbit/s $1.6K/mo.

Table 6: The effective mean aggregate bandwidth resources of Tor
relays from 2017-11-01 to 2018-11-01 (in Gbit/s), computed us-
ing positional bandwidth weights from 2018-11-01.

Bandwidth Entry Middle Exit Total

Usage 42.4 (36.0%) 42.9 (36.4%) 32.5 (27.6%) 118
Capacity 86.7 (35.0%) 96.7 (39.1%) 64.0 (25.9%) 247

instead uses its budget to run several high-bandwidth Tor re-
lays in order to affect as much Tor user traffic as possible.
Relay Resources: To determine which type of relays would
be most advantageous, we computed the effective positional
bandwidth usage by and capacity of Tor relays over the year
preceding 2018-11-01. The effective bandwidth accounts
for relay flags and position weights, both of which are used
to determine in which position a relay will be selected. From
the results shown in Table 6, we can see that exit bandwidth
is the scarcest, with only 27.6% of the total bandwidth used
and 25.9% of the total bandwidth capacity.
Sybil DoS Attack: An adversary could run Sybil relays and
then arbitrarily degrade the performance of all traffic for-
warded through its Sybils, or deny service by dropping cir-
cuits. Note that for such an attack to work, the adversary
must (i) maintain a high selection probability by providing
high performance during periods in which it is measured by
Tor’s bandwidth measurement system, and (ii) not trigger
Tor’s abusive relay detection systems (e.g., exit scanners) to
avoid getting ejected from the network. We assume that these
requirements can be met for the purposes of this analysis.

Due to exit bandwidth scarcity, an adversary can maxi-
mize its probability of appearing at least once in a circuit by
running all exit relays. We assume that the aggregate band-
width usage (i.e., network load) will remain constant as the
adversary adds additional bandwidth capacity (i.e., Sybil re-
lays), and that the probability that the adversary serves as the
exit in a circuit is approximately equal to its fractional exit
capacity (Table 6). Then, Sybil DoS attacks with bandwidth
budgets of 30, 5, and 3 Gbit/s (Table 5) could arbitrarily de-
grade performance for 30/(30+64)≈32%, 5/(5+64)≈7.2%,
and 3/(3+64)≈4.5% of exit circuits, respectively. Compara-
tively, our attack in §5 affects all non-private bridge circuits,
and our attacks in §6 and §7 affect all circuits.
Sybil Deanonymization Attack: If an adversary is able
to observe both the entry and exit points in a circuit (its
relays are chosen in the first and last circuit positions),
then it is generally assumed that the circuit is vulnerable to
compromise because traffic correlation can be performed to
deanonymize the user with high probability [65, 66]. Note

USENIX Association 28th USENIX Security Symposium 1837

Table 7: The fraction of circuits affected by Sybil attacks.

Bandwidth Sybil DoS Sybil Deanonymization

30 Gbit/s 32% degraded 21% entry · 5.3% exit ≈ 1.1% total
5 Gbit/s 7.2% degraded 4.5% entry · 1.2% exit ≈ 0.06% total
3 Gbit/s 4.5% degraded 2.8% entry · 0.8% exit ≈ 0.02% total

that a selective service refusal attack, where an adversary re-
fuses to forward traffic on any circuit it is not in a position to
compromise [16], could be mitigated by Tor’s route manipu-
lation (path bias) detection system [26, §7].

In order to observe both ends, an adversary must operate
at least one entry guard and at least one exit relay. The entry
position is more difficult to obtain since Tor clients use the
same guard relay for months at a time [29]. Therefore, previ-
ous work has found that a 5:1 guard-to-exit relay bandwidth
allocation maximizes the probability of observing both sides
of a circuit at least once [54].

A Sybil deanonymization attack with a bandwidth bud-
get of 3 Gbit/s (Table 5) and a 5:1 guard-to-exit relay band-
width allocation would allow the adversary to observe the
entry for 5

6 ·3/(5
6 ·3+86.7)≈2.8% of Tor clients and observe

the exit for 1
6 ·3/(1

6 ·3+64.0)≈0.8% of circuits built by those
clients. Thus, approximately 0.02% of circuits would be vul-
nerable. Table 7 shows results for other bandwidth budgets
and summarizes our Sybil attack analysis.
Discussion: Note that Sybil attacks require fixed costs, be-
cause relays must generally be fast and reliable in order to be
properly utilized by the network. Additionally, attacks that
require guard relays can take months to observe a full set of
some clients (due to guard rotation times), and much longer
to observe a set containing specific clients. Conversely, our
attacks are more flexible because they do not require fixed
costs, can be run with clients rather than service providers
(relays), and can be repeatedly started and stopped as nec-
essary. Further, our attacks immediately affect all clients
(rather than some sample), and our relay congestion attack
(§7) benefits from the anonymity that Tor provides.

9 Conclusion

This paper performs a multifaceted examination of Tor’s vul-
nerability to DoS, considering both the efficacy of DoS at-
tacks as well as the adversary’s cost of performing them. On
the positive side, we find that Tor’s growth has made it more
resilient at least to simple attacks: disrupting the service by
naı̈vely flooding Tor relays using stresser services is an ex-
pensive proposition and requires $7.2M/month.

Unfortunately, however, several aspects of Tor’s design
and rollout make it susceptible to more advanced attacks. We
find that Tor’s bridge infrastructure is heavily dependent on
a small set of fixed default bridges, the operational of which
can be disrupted at a cost of $17K/month. Additionally, Tor’s
mechanism for measuring load is too centralized and brittle,

and even inexpensive techniques (e.g., costing $2.8K/month)
can significantly perturb these processes and cause dramatic
performance degradation across the network. Finally, attack-
ers can saturate Tor’s capacity by constructing long paths in
the network, and exploit protocol vulnerabilities to decrease
the costs of such attacks; for example, we find that an at-
tacker can significantly degrade the performance of the net-
work for as little as $1.6K/month. We also compare our at-
tacks to Sybil attacks and highlight that our load balancing
and relay congestion attacks are more effective and flexible
than Sybil attacks with the same budget.

For each attack, we describe mitigation strategies that
Tor could adopt to improve its resiliency. In particular, we
recommend additional financing for meek bridges, moving
away from load balancing approaches that rely on central-
ized scanning, and Tor protocol improvements (in particular,
the use of authenticated SENDME cells).

Acknowledgments
We thank the anonymous reviewers for their valuable feed-
back that helped to improve this paper. We thank Nikita
Borisov for shepherding our paper and David Goulet for
discussions about DoS mitigation in Tor. This work has
been partially supported by the Office of Naval Research,
the National Science Foundation under grant number CNS-
1527401, and the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-16-C-0056.
The opinions, findings, and conclusions or recommendations
expressed in this work are strictly those of the authors and do
not necessarily reflect the official policy or position of any
employer or funding agency.

References
[1] AWS Shield Managed DDoS protection. https://aws.amazon.

com/shield/, November 2018.

[2] Azure DDoS Protection Standard overview. https:

//docs.microsoft.com/en-us/azure/virtual-network/

ddos-protection-overview, November 2018.

[3] Consensus Health: Bandwidth Scanner Status. https://

consensus-health.torproject.org/#bwauthstatus, Novem-
ber 2018.

[4] meek. https://trac.torproject.org/projects/tor/wiki/

doc/meek, November 2018.

[5] meek Costs. https://trac.torproject.org/projects/tor/

wiki/doc/meek#Costs, November 2018. Meek Pluggable Trans-
port Frontend Costs.

[6] meek Overview. https://trac.torproject.org/projects/

tor/wiki/doc/meek#Overview, November 2018. Meek Pluggable
Transport Overview.

[7] Online Survival Kit. https://rsf.org/en/online-survival-

kit, November 2018.

[8] Stem: a Python Controller Library for Tor. https://stem.

torproject.org, November 2018.

[9] Tor Git Repository Browser. https://gitweb.torproject.org,
November 2018.

1838 28th USENIX Security Symposium USENIX Association

https://aws.amazon.com/shield/
https://aws.amazon.com/shield/
https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview
https://docs.microsoft.com/en-us/azure/virtual-network/ddos-protection-overview
https://consensus-health.torproject.org/#bwauthstatus
https://consensus-health.torproject.org/#bwauthstatus
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek#Costs
https://trac.torproject.org/projects/tor/wiki/doc/meek#Costs
https://trac.torproject.org/projects/tor/wiki/doc/meek#Overview
https://trac.torproject.org/projects/tor/wiki/doc/meek#Overview
https://rsf.org/en/online-survival-kit
https://rsf.org/en/online-survival-kit
https://stem.torproject.org
https://stem.torproject.org
https://gitweb.torproject.org

[10] Tor Bug Tracker and Wiki. https://trac.torproject.org,
November 2018.

[11] Tor Metrics Portal. https://metrics.torproject.org/, Novem-
ber 2018.

[12] M. AlSabah and I. Goldberg. PCTCP: Per-circuit TCP-over-IPsec
Transport for Anonymous Communication Overlay Networks. In
Conference on Computer and Communications Security (CCS), 2013.

[13] M. Alsabah and I. Goldberg. Performance and Security Improvements
for Tor: A Survey. ACM Comput. Surv., 49(2):32:1–32:36, September
2016.

[14] M. V. Barbera, V. P. Kemerlis, V. Pappas, and A. D. Keromytis.
CellFlood: Attacking Tor Onion Routers on the Cheap. In European
Symposium on Research in Computer Security (ESORICS), 2013.

[15] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker. Low-
resource Routing Attacks Against Tor. In Workshop on Privacy in the
Electronic Society (WPES), 2007.

[16] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. Denial of Service or
Denial of Security? In Conference on Computer and Communications
Security (CCS), 2007.

[17] R. Brandom. Amazon Web Services Starts Blocking Domain-
fronting, Following Google’s Lead. https://www.theverge.com/
2018/4/30/17304782/amazon-domain-fronting-google-

discontinued, April 2018. The Verge Online News Article.

[18] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a Dis-
tance: Website Fingerprinting Attacks and Defenses. In Conference
on Computer and Communications Security (CCS), 2012.

[19] H. Darir, H. Sibai, N. Borisov, G. Dullerud, and S. Mitra. TightRope:
Towards Optimal Load-balancing of Paths in Anonymous Networks.
In Workshop on Privacy in the Electronic Society (WPES), 2018.

[20] R. Dingledine. Research Problems: Ten Ways to Dis-
cover Tor Bridges. https://blog.torproject.org/research-

problems-ten-ways-discover-tor-bridges, October 2011.
Blog Post.

[21] R. Dingledine. Tor security advisory: “relay early” traffic confirma-
tion attack. https://blog.torproject.org/tor-security-

advisory-relay-early-traffic-confirmation-attack,
July 2014. Blog Post.

[22] R. Dingledine. Did the FBI Pay a University to Attack
Tor Users? https://blog.torproject.org/did-fbi-pay-

university-attack-tor-users, November 2015. Blog Post.

[23] R. Dingledine. could Tor devs provide an update on
DOS attacks? Tor-Relays Email 014175, December 2017.
https://lists.torproject.org/pipermail/tor-relays/

2018-January/014175.html.

[24] R. Dingledine. Experimental DoS mitigation is in tor mas-
ter. Tor-Relays Email 014357, January 2018. https:

//lists.torproject.org/pipermail/tor-relays/2018-

January/014357.html.

[25] R. Dingledine and N. Mathewson. Anonymity Loves Company: Us-
ability and the Network Effect. In Workshop on the Economics of
Information Security (WEIS), 2006.

[26] R. Dingledine and N. Mathewson. Tor Path Specification.
https://gitweb.torproject.org/torspec.git/tree/

path-spec.txt, November 2018. Section 7.

[27] R. Dingledine and N. Mathewson. Tor Protocol Specifica-
tion. https://gitweb.torproject.org/torspec.git/tree/

tor-spec.txt, November 2018. Section 5.6.

[28] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium, 2004.

[29] R. Dingledine, N. Hopper, G. Kadianakis, and N. Mathewson. One
Fast Guard for Life (or 9 Months). In Privacy Enhancing Technologies
Symposium (PETS), 2014.

[30] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide Scanning and its Security Applications. In USENIX Security
Symposium, 2013.

[31] N. S. Evans, R. Dingledine, and C. Grothoff. A Practical Congestion
Attack on Tor using Long Paths. In USENIX Security Symposium,
2009.

[32] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson. Blocking-
resistant Communication through Domain Fronting. In Privacy En-
hancing Technologies Symposium (PETS), 2015.

[33] S. Gallagher. Google Disables “Domain Fronting” Capability Used
to Evade Censors. https://arstechnica.com/information-

technology/2018/04/google-disables-domain-fronting-

capability-used-to-evade-censors, April 2018. Ars Technica
Online News Article.

[34] J. Geddes, R. Jansen, and N. Hopper. How Low Can You Go: Bal-
ancing Performance with Anonymity in Tor. In Privacy Enhancing
Technologies Symposium (PETS), 2013.

[35] J. Geddes, R. Jansen, and N. Hopper. IMUX: Managing Tor Connec-
tions from Two to Infinity, and Beyond. In Workshop on Privacy in
the Electronic Society (WPES), 2014.

[36] A. Ghedini. Encrypt it or Lose it: How Encrypted SNI Works.
https://blog.cloudflare.com/encrypted-sni/, September
2018. Blog Post.

[37] D. Gopal and N. Heninger. Torchestra: Reducing Interactive Traffic
Delays over Tor. In Workshop on Privacy in the Electronic Society
(WPES), 2012.

[38] D. Goulet. Ongoing DDoS on the Network. Tor-Project Email
001604, December 2017. https://lists.torproject.org/

pipermail/tor-project/2017-December/001604.html.

[39] D. Goulet. Denial of Service mitigation subsystem. Tor Trac Ticket
24902, 2018. https://trac.torproject.org/projects/tor/

ticket/24902.

[40] D. Goulet. Circuit cell queue can fill up memory. Tor Trac Ticket
25226, 2018. https://trac.torproject.org/projects/tor/

ticket/25226.

[41] J. Hayes and G. Danezis. k-fingerprinting: a Robust Scalable Website
Fingerprinting Technique. In USENIX Security Symposium, 2016.

[42] D. Herrmann, R. Wendolsky, and H. Federrath. Website Finger-
printing: Attacking Popular Privacy Enhancing Technologies with the
Multinomial Naı̈ve-Bayes Classifier. In Workshop on Cloud Comput-
ing Security, 2009.

[43] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How Much Anonymity
Does Network Latency Leak? ACM Transactions on Information and
System Security (TISSEC), 13(2):13, 2010.

[44] C. Huitema and E. Rescorla. SNI Encryption in TLS Through Tunnel-
ing. Internet-Draft draft-ietf-tls-sni-encryption-02, Internet Engineer-
ing Task Force, 2018.

[45] R. Jansen. New Tor Denial of Service Attacks and De-
fenses. https://blog.torproject.org/new-tor-denial-

service-attacks-and-defenses, January 2014. Blog Post.

[46] R. Jansen and R. Dingledine. Authenticating sendme cells to mitigate
bandwidth attacks. Tor Proposal 289, 2016.

[47] R. Jansen and N. Hopper. Shadow: Running Tor in a Box for Accurate
and Efficient Experimentation. In Network and Distributed System
Security Symposium (NDSS), 2012.

USENIX Association 28th USENIX Security Symposium 1839

https://trac.torproject.org
https://metrics.torproject.org/
https://www.theverge.com/2018/4/30/17304782/amazon-domain-fronting-google-discontinued
https://www.theverge.com/2018/4/30/17304782/amazon-domain-fronting-google-discontinued
https://www.theverge.com/2018/4/30/17304782/amazon-domain-fronting-google-discontinued
https://blog.torproject.org/research-problems-ten-ways-discover-tor-bridges
https://blog.torproject.org/research-problems-ten-ways-discover-tor-bridges
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack
https://blog.torproject.org/did-fbi-pay-university-attack-tor-users
https://blog.torproject.org/did-fbi-pay-university-attack-tor-users
https://lists.torproject.org/pipermail/tor-relays/2018-January/014175.html
https://lists.torproject.org/pipermail/tor-relays/2018-January/014175.html
https://lists.torproject.org/pipermail/tor-relays/2018-January/014357.html
https://lists.torproject.org/pipermail/tor-relays/2018-January/014357.html
https://lists.torproject.org/pipermail/tor-relays/2018-January/014357.html
https://gitweb.torproject.org/torspec.git/tree/path-spec.txt
https://gitweb.torproject.org/torspec.git/tree/path-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors
https://arstechnica.com/information-technology/2018/04/google-disables-domain-fronting-capability-used-to-evade-censors
https://blog.cloudflare.com/encrypted-sni/
https://lists.torproject.org/pipermail/tor-project/2017-December/001604.html
https://lists.torproject.org/pipermail/tor-project/2017-December/001604.html
https://trac.torproject.org/projects/tor/ticket/24902
https://trac.torproject.org/projects/tor/ticket/24902
https://trac.torproject.org/projects/tor/ticket/25226
https://trac.torproject.org/projects/tor/ticket/25226
https://blog.torproject.org/new-tor-denial-service-attacks-and-defenses
https://blog.torproject.org/new-tor-denial-service-attacks-and-defenses

[48] R. Jansen, K. S. Bauer, N. Hopper, and R. Dingledine. Methodically
Modeling the Tor Network. In Workshop on Cyber Security Experi-
mentation and Test (CSET), 2012.

[49] R. Jansen, P. Syverson, and N. Hopper. Throttling Tor Bandwidth
Parasites. In USENIX Security Symposium, 2012.

[50] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syverson. Never
Been KIST: Tor’s Congestion Management Blossoms with Kernel-
Informed Socket Transport. In USENIX Security Symposium, 2014.

[51] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann. The
Sniper Attack: Anonymously Deanonymizing and Disabling the Tor
Network. In Network and Distributed System Security Symposium
(NDSS), 2014.

[52] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and P. Syverson.
KIST: Kernel-Informed Socket Transport for Tor. ACM Transactions
on Privacy and Security (TOPS), 22(1):3:1–3:37, December 2018.

[53] R. Jansen, M. Traudt, and N. Hopper. Privacy-Preserving Dynamic
Learning of Tor Network Traffic. In Conference on Computer and
Communications Security (CCS), 2018. See also https://tmodel-

ccs2018.github.io.

[54] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson. Users
Get Routed: Traffic Correlation on Tor By Realistic Adversaries. In
Conference on Computer and Communications Security (CCS), 2013.

[55] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syverson. Peer-
Flow: Secure Load Balancing in Tor. Proceedings on Privacy En-
hancing Technologies (PoPETs), 2017(2), April 2017.

[56] S. Li, H. Guo, and N. Hopper. Measuring Information Leakage in
Website Fingerprinting Attacks and Defenses. In Conference on Com-
puter and Communications Security (CCS), 2018.

[57] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia. A New Cell
Counter Based Attack Against Tor. In Conference on Computer and
Communications Security (CCS), 2009.

[58] Z. Ling, J. Luo, W. Yu, X. Fu, W. Jia, and W. Zhao. Protocol-Level
Attacks against Tor. Computer Networks, 57(4):869–886, 2013.

[59] A. Mani, T. W. Brown, R. Jansen, A. Johnson, and M. Sherr. Under-
standing Tor Usage with Privacy-Preserving Measurement. In Internet
Measurement Conference (IMC), 2018.

[60] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McK-
une, A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson. An anal-
ysis of China’s “Great Cannon”. In Workshop of Free and Open
Communication on the Internet (FOCI), 2015. See also https:

//citizenlab.ca/2015/04/chinas-great-cannon.

[61] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Be-
havior of the TCP Congestion Avoidance Algorithm. ACM Computer
Communication Review, 27(3):67–82, 1997.

[62] S. Matic, C. Troncoso, and J. Caballero. Dissecting Tor Bridges: a
Security Evaluation of Their Private and Public Infrastructures. In
Network and Distributed System Security Symposium (NDSS), 2017.

[63] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov. Stealthy
Traffic Analysis of Low-Latency Anonymous Communication using
Throughput Fingerprinting. In Conference on Computer and Commu-
nications Security (CCS), 2011.

[64] S. J. Murdoch and G. Danezis. Low-Cost Traffic Analysis of Tor. In
Symposium on Security and Privacy (S&P), 2005.

[65] S. J. Murdoch and P. Zieliński. Sampled Traffic Analysis by Internet-
Exchange-Level Adversaries. In Workshop on Privacy Enhancing
Technologies (PET), June 2007.

[66] M. Nasr, A. Bahramali, and A. Houmansadr. DeepCorr: Strong Flow
Correlation Attacks on Tor Using Deep Learning. In Conference on
Computer and Communications Security (CCS), 2018.

[67] P. H. O’Neill. Tor’s Ex-director: ‘The Criminal Use of Tor has
Become Overwhelming’. https://www.cyberscoop.com/tor-

dark-web-andrew-lewman-securedrop, May 2017. Cyberscoop
Online News Article.

[68] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. ACM
Computer Communication Review, 28(4):303–314, 1998.

[69] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website Finger-
printing in Onion Routing Based Anonymization Networks. In Work-
shop on Privacy in the Electronic Society (WPES), 2011.

[70] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp,
K. Wehrle, and T. Engel. Website Fingerprinting at Internet Scale. In
Network and Distributed System Security Symposium (NDSS), 2016.

[71] V. Pappas, E. Athanasopoulos, S. Ioannidis, and E. P. Markatos. Com-
promising Anonymity using Packet Spinning. In International Con-
ference on Information Security, 2008.

[72] M. Perry. TorFlow: Tor Network Analysis. In Workshop on Hot Topics
in Privacy Enhancing Technologies (HotPETs), 2009.

[73] K. Poulsen. Feds Are Suspects in New Malware That Attacks
Tor Anonymity. https://www.wired.com/2013/08/freedom-

hosting, August 2013. Wired Online News Article.

[74] J. J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto,
M. Wierbosch, L. Z. Granville, and A. Pras. Booters—An analysis of
DDoS-as-a-service attacks. In Integrated Network Management (IM),
2015.

[75] J. J. Santanna, R. d. O. Schmidt, D. Tuncer, A. Sperotto, L. Z.
Granville, and A. Pras. Quiet Dogs Can Bite: Which Booters Should
We Go After, and What Are Our Mitigation Options? IEEE Commu-
nications Magazine, 55(7):50–56, 2017.

[76] B. Schneier. Attacking Tor: how the NSA targets users’ online
anonymity. https://www.theguardian.com/world/2013/oct/

04/tor-attacks-nsa-users-online-anonymity, October
2013. The Guardian Online News Article.

[77] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep Fingerprint-
ing: Undermining Website Fingerprinting Defenses with Deep Learn-
ing. In Conference on Computer and Communications Security (CCS),
2018.

[78] R. Snader and N. Borisov. EigenSpeed: Secure Peer-to-Peer Band-
width Evaluation. In International Workshop on Peer-to-Peer Systems
(IPTPS), 2009.

[79] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and
P. Mittal. RAPTOR: Routing Attacks on Privacy in Tor. In USENIX
Security Symposium, 2015.

[80] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an
Analysis of Onion Routing Security. In Designing Privacy Enhancing
Technologies, 2001.

[81] H. Tan, M. Sherr, and W. Zhou. Data-plane Defenses against Rout-
ing Attacks on Tor. Proceedings on Privacy Enhancing Technologies
(PoPETS), 2016(4), 2016.

[82] C. Wacek, H. Tan, K. Bauer, and M. Sherr. An Empirical Evaluation
of Relay Selection in Tor. In Network and Distributed System Security
Symposium (NDSS), 2013.

[83] R. Wails, Y. Sun, A. Johnson, M. Chiang, and P. Mittal. Tempest:
Temporal Dynamics in Anonymity Systems. Proceedings on Privacy
Enhancing Technologies (PoPETS), 2018(3), 2018.

[84] T. Wang and I. Goldberg. Improved Website Fingerprinting on Tor. In
Workshop on Privacy in the Electronic Society (WPES), 2013.

[85] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Ef-
fective Attacks and Provable Defenses for Website Fingerprinting. In
USENIX Security Symposium, 2014.

1840 28th USENIX Security Symposium USENIX Association

https://tmodel-ccs2018.github.io
https://tmodel-ccs2018.github.io
https://citizenlab.ca/2015/04/chinas-great-cannon
https://citizenlab.ca/2015/04/chinas-great-cannon
https://www.cyberscoop.com/tor-dark-web-andrew-lewman-securedrop
https://www.cyberscoop.com/tor-dark-web-andrew-lewman-securedrop
https://www.wired.com/2013/08/freedom-hosting
https://www.wired.com/2013/08/freedom-hosting
https://www.theguardian.com/world/2013/oct/04/tor-attacks-nsa-users-online-anonymity
https://www.theguardian.com/world/2013/oct/04/tor-attacks-nsa-users-online-anonymity

No Right to Remain Silent: Isolating Malicious Mixes

Hemi Leibowitz
Bar-Ilan University, Israel

Ania M. Piotrowska
University College London, UK

George Danezis
University College London, UK

Amir Herzberg
University of Connecticut, US

Abstract

Mix networks are a key technology to achieve network
anonymity and private messaging, voting and database
lookups. However, simple mix network designs are vulner-
able to malicious mixes, which may drop or delay packets
to facilitate traffic analysis attacks. Mix networks with prov-
able robustness address this drawback through complex and
expensive proofs of correct shuffling but come at a great cost
and make limiting or unrealistic systems assumptions. We
present Miranda, an efficient mix-net design, which miti-
gates active attacks by malicious mixes. Miranda uses both
the detection of corrupt mixes, as well as detection of faults
related to a pair of mixes, without detection of the faulty
one among the two. Each active attack – including dropping
packets – leads to reduced connectivity for corrupt mixes and
reduces their ability to attack, and, eventually, to detection of
corrupt mixes. We show, through experiments, the effective-
ness of Miranda, by demonstrating how malicious mixes are
detected and that attacks are neutralized early.

1 Introduction

The increasing number of bombshell stories [27, 19, 10] re-
grading mass electronic surveillance and illicit harvesting of
personal data against both ordinary citizens and high-ranking
officials, resulted in a surge of anonymous and private com-
munication tools. The increasing awareness of the fact that
our daily online activities lack privacy, persuades many In-
ternet users to turn to encryption and anonymity systems
which protect the confidentiality and privacy of their com-
munication. For example, services like WhatsApp and Sig-
nal, which offer protection of messages through end-to-end
encryption, gained popularity over the past years. However,
such encryption hides only the content but not the meta-
data of the message, which carries a great deal of privacy-
sensitive information. Such information can be exploited to
infer who is communicating with whom, how often and at
what times. In contrast, the circuit-based onion routing Tor

network is an example of anonymity systems that protect the
meta-data. Tor is currently the most popular system offering
anonymity, attracting almost 2 million users daily. However,
as research has shown [47, 40, 42, 41], Tor offers limited
security guarantees against traffic analysis.

The need for strong anonymity systems resulted in re-
newed interest in onion mixnets [12]. In an onion mixnet,
sender encrypts a message multiple times, using the public
keys of the destination and of multiple mixes. Onion mixnets
are an established method for providing provable protec-
tion against meta-data leakage in the presence of a powerful
eavesdropper, with low computational overhead. Early mix-
nets suffered from poor scalability, prohibitive latency and/or
low reliability, making them unsuitable for many practical
applications. However, recently, researchers have made sig-
nificant progress in designing mixnets for high and low la-
tency communication with improved scalability and perfor-
mance overhead [44, 48, 13]. This progress is also visible in
the industrial sector, with the founding of companies whose
goal is to commercialise such systems [1, 2].

Onion mixnets offer strong anonymity against passive ad-
versaries: a single honest mix in a cascade is enough to en-
sure anonymity. However, known mixnet designs are not ro-
bust against active long-term traffic analysis attacks, involv-
ing dropping or delaying packets by malicious mixes. Such
attacks have severe repercussions for privacy and efficiency
of mix networks. For example, a disclosure attack in which a
rogue mix strategically drops packets from a specific sender
allows the attacker to infer with whom the sender is commu-
nicating, by observing which recipient received fewer pack-
ets than expected [4]. Similarly, Denial-of-Service (DoS)
attacks can be used to enhance de-anonymization [9], and
(n−1) attacks allow to track packets over honest mixes [45].

It is challenging to identify and penalize malicious mixes
while retaining strong anonymity and high efficiency. Trivial
strategies for detecting malicious mixes are fragile and may
become vectors for attacks. Rogue mixes can either hide
their involvement or worse, make it seem like honest mixes
are unreliable, which leads to their exclusion from the net-

USENIX Association 28th USENIX Security Symposium 1841

work. Several approaches to the problem of active attacks
and reliability were studied, however, they have significant
shortcomings, which we discuss in Section 8.

In this work, we revisit the problem of making decryption
mix networks robust to malicious mixes performing active
attacks. We propose Miranda1, an efficient reputation-based
design, that detects and isolates active malicious mixes. We
present security arguments that demonstrate the effective-
ness of Miranda against active attacks. The architectural
building blocks behind Miranda have been studied by pre-
vious research, but we combine them with a novel approach
which takes advantage of detecting failure of inter-mix links,
used to isolate and disconnect corrupt mixes, in addition to
direct detection of corrupt mixes. This allows Miranda to
mitigate corrupt mixes, without requiring expensive compu-
tations.

Miranda disconnects corrupt mixes by carefully gathering
evidence of their misbehavior, resulting in the removal of
links which are misused by the adversary. The design in-
cludes a set of secure and decentralized mix directory au-
thorities that select and distribute mix cascades once every
epoch, based on the gathered evidence of the faulty links
between mixes. Repeated misbehaviors result in the com-
plete exclusion of the misbehaving mixes from the system
(see Figure 1).

We believe that Miranda is an important step toward a de-
ployable, practical strong-anonymity system. However, Mi-
randa design makes several significant simplifying assump-
tions. These include (1) a fixed set of mixes (no churn), (2)
a majority of benign mixes (no Sybil), (3) reliable commu-
nication and efficient processing (even during DoS), and (4)
synchronized clocks. Future work should investigate, and
hopefully overcome, these challenges; see Section 9.

Contributions. Our paper makes the following contribu-
tions:
• We present Miranda, an efficient, low-cost and scalable

novel design that detects and mitigates active attacks. To
protect against such attacks, we leverage reputation and
local reports of faults. The Miranda design can be inte-
grated with other mix networks and anonymous commu-
nication designs.

• We propose an encoding for secure loop messages, that
may be used to securely test the network for dropping at-
tacks – extending traditional mix packet formats for veri-
fiability.

• We show how Miranda can take advantage of techniques
like community detection in a novel way, which further
improves its effectiveness.

• We analyze the security properties of Miranda against a
wide range of attacks.

1“Miranda warning” is the warning used by the US police, in order to
notify people about their rights before questioning them. Since Miranda
prevents adversaries from silently (but actively) attacking the mix network,
we refer to it as no right to remain silent.

Overview. The rest of this paper is organized as follows. In
Section 2, we discuss the motivation behind our work, and
define the threat model and security goals. In Section 3, we
present important concepts of Miranda. In Sections 4 and 5,
we detail the core protocols of Miranda, which detect and
penalize active attacks. In Section 6, we present improved,
community-based detection of malicious mixes. In Section 7,
we evaluate the security properties of Miranda against active
attacks. In Section 8, we contrast our design to related work.
Finally, we discuss future work in Section 9 and conclude in
Section 10.

2 The Big Picture

In this section, we outline the general model of the Miranda
design, define the threat model, and motivate our work by
quantifying how active attacks threaten anonymity in mix
networks. Then, we summarize the security goals of Mi-
randa.

2.1 General System Model

We consider an anonymous communication system consist-
ing of a set of users communicating over the decryption mix
network [12] operating in synchronous batches, denoted as
rounds. Depending on the path constraints, the topology may
be arranged in separate cascades or a Stratified network [21].
We denote byM the set of all mixes building the anonymous
network. For simplicity, in this work we assume that the set
of mixesM is fixed (no churn). See discussion in Section 9
of this and other practical challenges.

Messages are end-to-end layer encrypted into a crypto-
graphic packet format by the sender, and the recipient per-
forms the last stage of decryption. Mixes receive packets
within a particular round, denoted by r. Each mix decodes
a successive layer of encoding and shuffles all packets ran-
domly. At the end of the round, each mix forwards all pack-
ets to their next hops. Changing the binary pattern of packets
by removing a single layer of encryption prevents bit-wise
correlation between incoming and outgoing packets. More-
over, mixing protects against an external observer, by obfus-
cating the link between incoming and outgoing packets.

Message packet format. In this paper, we use the Sphinx
cryptographic packet format [15]. However, other packet
formats can be used, as long as they fulfill certain proper-
ties. The messages encoded should be of constant length
and indistinguishable from each other at any stage in the
network. Moreover, the encryption should guarantee du-
plicates detection, and eliminate tampered messages (tag-
ging attacks). The packet format should also allow senders
to encode arbitrary routing information for mixes or re-
cipients. We denote the result of encoding a message as
Pack(path, routingInfo, rnd, recipient,message), where rnd

1842 28th USENIX Security Symposium USENIX Association

(a) Connectivity graph in the beginning. All
mixes are willing to communicate with each other.

(b) Miranda detects active attacks and removes the links
between the honest and dishonest nodes (Section 4.3).

(c) Miranda applies community detection (Section 6)
to further detect dishonest nodes and disconnect them
from the honest nodes.

Figure 1: High-level overview of the process of isolating malicious mixes in Miranda.

denotes a random string of bits used by the packet format.

2.2 Threat Model
We consider an adversary whose goal is to de-anonymize
packets traveling through the mix network. Our adversary
acts as a global observer, who can eavesdrop on all traffic ex-
changed among the entities in the network, and also, knows
the rate of messages that Alice sends/receives 2. Moreover,
all malicious entities in the system collude with the adver-
sary, giving access to their internal states and keys. The ad-
versary may control many participating entities, but we as-
sume a majority of honest mixes and directory servers (used
for management, see Section 3). We allow arbitrary number
of malicious clients but assume that there are (also) many
honest clients - enough to ensure that any first-mix in a cas-
cade, will receive a ‘sufficient’ number of messages in most
rounds - say, 2ω , where ω is sufficient to ensure reasonable
anonymity, for one or few rounds.

In addition, Miranda assumes reliable communication be-
tween any pair of honest participants, and ignores the time
required for computations - hence, also any potential for
Miranda-related DoS. In particular, we assume that the
adversary cannot arbitrarily drop packets between honest
parties nor delay them for longer than a maximal period.
This restricted network adversary is weaker than the stan-
dard Dolev-Yao model, and in line with more contempo-
rary works such as XFT [35] that assumes honest nodes can
eventually communicate synchronously. It allows more effi-
cient Byzantine fault tolerance schemes, such as the one we
present. In practice, communication failures will occur; see
discussion in Section 9 of this and other practical challenges.

We denote by n the total number of mixes in the network
(|M| = n), nm of which are malicious and nh are honest
(n = nm +nh). We refer to cascades where all mixes are ma-
licious as fully malicious. Similarly, as fully honest we refer
to cascades where all nodes are honest, and semi-honest to

2We emphasize that this is a non-trivial adversarial advantage. In reality,
the adversary might not know Alice’s rate, and therefore might be more
limited regarding de-anonymization attacks.

the ones where only some of the mixes are honest. A link
between an honest mix and a malicious mix is referred to as
a semi-honest link.

2.3 What is the Impact of Active Attacks on
Anonymity?

Active attacks, like dropping messages, can result in a catas-
trophic advantage gained by the adversary in linking the
communicating parties. To quantify the advantage, we de-
fined a security game, followed by a qualitative and compos-
able measure of security against dropping attacks. To our
knowledge, this is the first analysis of such attacks and we
provide full details in [34]. Our results support the find-
ings of previous works on statistical disclosure attacks [4]
and DoS-based attacks [9], arguing that the traffic analy-
sis advantage gained from dropping messages is significant.
We found that the information leakage for realistic volumes
of traffic (10–100 messages per round) is quite significant:
the adversary can improve de-anonymization by about 20%.
For larger traffic rates (more than 1000 messages per round)
the leakage drops but expecting each client to receive over
1000 messages per round on average seems unrealistic, un-
less large volumes of synthetic cover traffic is used. The
lesson drawn from our analysis and previous studies is clear:
it is crucial to design a mechanism to detect malicious nodes
and remove them from the system after no more than a few
active attacks. The Miranda design achieves this goal.

2.4 Security Goals of Miranda

The main goal of a mix network is to hide the correspon-
dence between senders and recipients of the messages in the
network. More precisely, although the communication is
over cascades that might contain malicious mixes, the Mi-
randa design aims to provide protection which is indistin-
guishable from the protection provided by an ‘ideal mix’, i.e.,
a single mix node which is known to be honest.

USENIX Association 28th USENIX Security Symposium 1843

The key goals of Miranda relate to alleviating and discour-
aging active attacks on mix networks, as they have a signifi-
cant impact on the anonymity through traffic analysis. This is
achieved through the detection and exclusion of misbehaving
mixes. The Miranda design offers the following protections
against active attacks:
Detection of malicious nodes. Every active attack by a cor-
rupt mix is detected with non-negligible probability, by at
least one entity.
Separation of malicious nodes. Every active attack by a
rogue mix results, with a non-negligible probability, in the
removal of at least one link connected to the rogue mix - or
even removal of the rogue mix itself.
Reducing attacks impact over multiple epochs. Repeated
application of Miranda lowers the overall prevalence and im-
pact of active attacks by corrupt mixes across epochs, limit-
ing the ability of the adversary to drop or delay packets.

3 Rounds, Epochs and Directories

In Miranda, as in other synchronous mixnet designs, time is
broken into rounds, and in each round, a mix ‘handles’ all
messages received in the previous round. However, a more
unique element of Miranda is that rounds are collected into
epochs. Epochs are used to manage Miranda; the beginning
of each epoch includes announcement of the set of cascades
to be used in this epoch, after a selection process that in-
volves avoidance of mixes detected as corrupt - and of links
between two mixes, where one or both of the mixes reported
a problem.

The process of selecting the set of cascades for each
epoch, is called the inter-epoch process, and is performed
by a set of d servers refered to as directory authorities, fol-
lowing [14], which maintain a list of available mixes and
links between them. We assume that a number dm of au-
thorities can be malicious and collude with the adversary or
deviate from the protocol, in order to break the security prop-
erties. By dh we denote the number of honest authorities
(d = dm +dh), which follow the protocol truthfully.

During each epoch, there are multiple rounds where users
communicate over the mix network. Both users and mixes
report any misbehavior they encounter to the directory au-
thorities. The directory authorities process these reports,
and, before the beginning of a new epoch, they select a set
of cascades available in that epoch. The newly generated
cascades will reflect all reported misbehaviors. Namely, cas-
cades exclude links that were reported, or mixes involved
in too many reports, or detected via Miranda’s community-
based attacker detection mechanisms, described in Section 6.

We denote the number of reports which marks a mix as
dishonest and causes its exclusion from the network as thresh
and emphasize that thresh is cumulative over rounds and
even epochs. In this paper, we simply use thresh = nm + 1,
which suffices to ensure that malicious mixes cannot cause

Miranda to exclude honest mixes. However, we find it use-
ful to maintain thresh as a separate value, to allow the use of
larger value for thresh to account for a number of failures of
honest mixes or links between honest mixes, when the Mi-
randa design is adopted by a practical system.

Significant, although not prohibitive, processing and com-
munication is involved in the inter-epoch process; this mo-
tivates the use of longer epochs. On the other hand, during
an entire epoch, we use a fixed set of cascades, which may
reduce due to failures; and clients may not be fully aware of
links and mixes detected as faulty. This motivates the use
of shorter epochs. These considerations would be balanced
by the designers of an anonymous communication system,
as they incorporate the Miranda design.

4 Intra-Epoch Process

In this section, we present the mechanisms that operate dur-
ing an epoch to deter active attacks, including dropping at-
tacks. We start by describing how active attacks are detected
and how this deters malicious behavior. Next, we discuss
nodes who refuse to cooperate.

Note that in this section, as in the entire Miranda design,
we assume reliable communication between any pair of hon-
est participants. As we explain in Subsection 2.2, a practical
system deploying Miranda should use a lower-layer protocol
to deal with (even severe) packet losses, and we developed
such efficient protocol - see [5].

4.1 Message Sending
At the beginning of each epoch, clients acquire the list of all
currently available cascades from the directory authorities.
When Alice wants to send a message, her client filters out
all cascades containing mixes through which she does not
wish to relay messages. We denote the set of cascades se-
lected by Alice as CA. Next, Alice picks a random cascade
from CA, which she uses throughout the whole epoch, and
encapsulates the message into the packet format. For each
mix in the cascade, we include in the routing information
the exact round number during which the mix should receive
the packet and during which it should forward it. Next, the
client sends the encoded packet to the first mix on the cas-
cade. In return, the mix sends back a receipt, acknowledging
the received packet.

4.2 Processing of Received Packets
After receiving a packet, the mix decodes a successive layer
of encoding and verifies the validity of the expected round r
and well-formedness of the packet. At the end of the round,
the mix forwards all valid packets to their next hops. Mi-
randa requires mixes to acknowledge received packets by
sending back receipts. A receipt is a digitally signed [31]

1844 28th USENIX Security Symposium USENIX Association

i

i+1

i+2

i+3

Client M1 M2 M3

pK

pK
R1

pK
R2

pK
R3

(a) Successful loop packet pk sent during round
i and received during round i+3. Each mix Mi
sends back receipt Ri.

i

i+1

i+2

i+3

i+4

i+5

Client M1 M2 M3 Directory

pK

pK
R1

R2

×××

pK?
pK?

pK?

A1 : R2

⊥ or A2 :not received

A3 :not received

Report: see A1,A2/A3

(b) Example of naive dropping of loop message pk by M2,
which drops pk yet sends back a receipt. Since pk did not
come back the client queries all mixes during round i+5 for
the proof of forwarding. M2 either claims that it did not
receive pk (A2), thus providing the client a proof that
conflicts with the receipt R2, or M2 does not cooperate (⊥).
In both cases the directory authority verifies received Ai’s
and excludes malicious M2.

i

i+1

i+2

i+3

i+4

i+5

Client M1 M2 M3 Directory

pK

pK
R1

Report: M1 disconnecting M2

σ : proof of report

pK?
pK?

pK?

A1 : σ

A2 :not received

A3 :not received

(c) Loop packet fails to complete the loop due to
non-responding mix. M1 did not receive receipt from M2 on
round i+2 and issues a disconnection in round i+3. The
client performs the query phase on round i+5 and receives the
proof of disconnection. The result: M2 failed to send a receipt
to M1, and thus lost the link to it.

Figure 2: A diagram illustrating loop packets and isolation process. We denote receipt from mix Mi as Ri, and the response as
Ai. Note that both in (b) and (c) the entire query and report phases occur during round i+5, but it could also be spanned across
several rounds, as long as it has a bounded time-frame. For example, if desired, answering the query for pk could be done in
round i+6 instead of limiting it to the same round.

statement confirming that a packet p was received by mix
Mi. Receipts must be sent and received by the preceding mix
within the same round in which packet p was sent.

Generating receipts. For simplicity, we denote a receipt for
a single packet p as receipt← Sign(p || receivedFlag = 1),
where Sign(·) is a secure digital signature algorithm, and
Verify(·) is its matching verification function3. However,
generating receipts for each packet individually incurs a high
computational overhead due to costly public key signature
and verification operations.

To reduce this overhead, mixes gather all the packets they
received during round r in Merkle trees [37] and sign the
root of the tree once. Clients’ packets are grouped in a single
Merkle tree TC and packets from mix Mi are grouped in a
Merkle tree TMi . Mixes then generate two types of receipts:
(1) receipts for clients and (2) aggregated receipts for mixes.
Each client receives a receipt for each message she sends.
Client receipts are of the form: receipt= (σC,Γp, r), where:
σC is the signed root of TC, Γp is the appropriate informa-
tion needed to verify that packet p appears in TC, and r is
the round number. Similarly, each mix, except the last one,
receives a receipt in response to all the packets it forwarded

3Although Sign and Verify use the relevant cryptographic keys, we
abuse notations and for simplicity write them without the keys.

in the last round. However, unlike client receipts, mixes ex-
pect back a single aggregated receipt for all the packets they
sent to a specific mix. An aggregated receipt is in the form
of: receipt = (σi, r), where: σi denotes the signed root of
TMi and r is the round number. Since mixes know which
packets they forwarded to a particular mix, they can recreate
the Merkle tree and verify the correctness of the signed tree
root using a single receipt. Once a mix sent an aggregated
receipt, it expects back a signed confirmation on that aggre-
gated receipt, attesting that it was delivered correctly. Mixes
record the receipts and confirmations to prove later that they
behaved honestly in the mixing operation.

Lack of a receipt. If a mix does not receive an aggregated
receipt or does not receive a signed confirmation on an ag-
gregated receipt it sent within the expected time slot4, the
mix disconnects from the misbehaving mix. The honest mix
detaches from the faulty mix by informing the directory au-
thorities about the disconnection through a signed link dis-
connection receipt. Note, that the directories cannot identify
which of the disconnecting mixes is the faulty one merely
based on this message, because the mix who sent the com-
plaint might be the faulty one trying to discredit the hon-

4Recall that we operate in a synchronous setting, where we can bound
the delay of an acknowledgement.

USENIX Association 28th USENIX Security Symposium 1845

est one. Therefore, the directory authorities only disconnect
the link between the two mixes. The idea of disconnecting
links was earlier investigated in various Byzantine agreement
works [23], however, to our knowledge this approach was not
yet applied to the problem of mix network reliability.
Anonymity loves company. Note, however, that this design
may fail even against an attacker who does not control any
mix, if a cascade receives less than the minimal anonymity
set size ω . We could ignore this as a very unlikely event,
however, Miranda ensures anonymity also in this case - when
the first mix is honest. Namely, if the first mix receives less
than ω messages in a round, it would not forward any of
them and respond with a special ‘under-ω receipt’ explaining
this failure. To prevent potential abuse of this mechanism
by a corrupt first mix, which receives over ω messages yet
responds with under-ω receipt, these receipts are shared with
the directories, allowing them to detect such attacks.

4.3 Loop Messages: Detect Stealthy Attacks
In a stealthy active attack, a mix drops a message - yet sends
a receipt as if it forwarded the message. To deter such at-
tacks, clients periodically, yet randomly, send loop messages
to themselves. In order to construct a loop message, the
sender S, chooses a unique random bit-string KS. Loop mes-
sages are encoded in the same manner as regular messages
and sent through the same cascade C selected for the epoch,
making them indistinguishable from other messages at any
stage of their routing. The loop message is encapsulated into
the packet format as follows:

pK← Pack(path= C, routingInfo= routing, rnd= H(KS)

recipient= S,message= “loop”)

The tuple (S,KS,C, routing) acts as the opening value, which
allows recomputing pK as well as all its intermediate states
piK that mix Mi should receive and emit. Therefore, reveal-
ing the opening value convinces everyone that a particular
packet was indeed a loop message and that its integrity was
preserved throughout its processing by all mixes. Moreover,
the construction of the opening value ensures that only the
creator of the loop packet can provide a valid opening value,
and no third party can forge one. Similarly, nobody can re-
produce an opening value that is valid for a non-loop packet
created by an honest sender.

If a loop message fails to complete the loop back, this
means that one of the cascade’s mixes misbehaved. The
sender S queries all the mixes in the cascade for evidence
whether they have received, processed and forwarded the
loop packet. This allows S to isolate the cascade’s problem-
atic link or misbehaving mix which caused the packet to be
dropped. S then reports the isolated link or mix to the di-
rectory authorities and receives a signed confirmation on her
report. This confirmation states that the link will no longer
be used to construct future cascades. We detail the querying

and isolation process in Section 4.3.2.

4.3.1 When to send loop messages?

The sending of loop messages is determined according to α ,
which is the required expected probability of detection - a
parameter to be decided by the system designers. Namely,
for every message, there is a fraction α chance of it being a
loop message. To achieve that, if Alice sends β messages in
round r, then d α·β

1−α
e additional loop messages are sent along-

side the genuine messages.
This may seem to only ensure α in the context of the mes-

sages that Alice sends but not against an attack on messages
sent to Alice. However, notice that if a corrupt mix Mi drops
messages sent to Alice by an honest sender Bob, then Mi
faces the same risk of detection - by Bob.

If Alice can sample and estimate an upper bound γ on
the number of messages that she will receive in a particu-
lar round, then she can apply additional defense. Let x be the
number of rounds that it takes for a loop message to come
back, and let r denote the current round. Let’s assume that
Alice knows bound γ on the maximal number of messages
from honest senders, that she will receive in round r+ x.
Then, to detect a mix dropping messages sent to her with
probability α , it suffices for Alice to send d α·γ

1−α
e loop mes-

sages in round r. More precisely, given that Alice sends β

messages in round r, in order for the loop messages to pro-
tect both messages sent in that round and messages received
in round r+x she should send dα·max(β ,γ)

1−α
e loop messages in

round r.

Within-round timing. If the Miranda senders would send
each message immediately after receiving the message from
the application, this may allow a corrupt first mix to dis-
tinguish between a loop message and a ‘regular’ message.
Namely, this would occur if the attacker knows the exact time
at which the application calls the ‘send’ function of Miranda
to send the message. To foil this threat, in Miranda, mes-
sages are always sent only during the round following their
receipt from the application, and after being shuffled with all
the other messages to be sent during this round.

4.3.2 Isolating corrupt mixes with loop messages

Since clients are both the generators and recipients of the
attack-detecting loop messages, they know exactly during
which round r the loop should arrive back. Therefore, if a
loop message fails to complete the loop back to the sender
as expected, the client initiates an isolation process, during
which it detects and isolates the specific problematic node
or link in the cascade. The isolation process starts with the
client querying each of the mixes on the cascade to estab-
lish whether they received and correctly forwarded the loop
packet. During the querying phase, the client first reveals
to the respective mixes the packet’s opening value, in order

1846 28th USENIX Security Symposium USENIX Association

to prove that it was indeed a loop packet. Next, the client
queries the mixes for the receipts they received after they de-
livered that packet. When clients detect a problematic link or
the misbehaving mix, they report it to the directory author-
ities, along with the necessary proofs that support its claim.
This is in fact a broadcasting task in the context of the well-
known reliable broadcast problem and can be solved accord-
ingly [36]. Each directory authority that receives the report
verifies its validity, and if it is correct, stores the informa-
tion to be used in future cascade generation processes. Then,
the client chooses another cascade from the set of available
cascades and sends future packets and loop messages using
the new route. For an illustration of loop packets and the
isolation process, see Figure 2.

When a client asks an honest mix to prove that it received
and correctly forwarded a packet, the mix presents the rele-
vant receipt. However, if a mix did not receive this packet,
it attests to that by returning an appropriate signed response
to the client. If a loop message did not complete the loop
because a malicious mix dropped it and did not send a re-
ceipt back, the honest preceding mix would have already dis-
connected from the misbehaving mix. Thus, the honest mix
can present the appropriate disconnection receipt it received
from the directory authorities as an explanation for why the
message was not forwarded (see Figure 2c).

The malicious mix can attempt the following actions, in
order to perform an active attack.

Naive dropping. A mix which simply drops a loop packet
after sending a receipt to the previous mix can be detected as
malicious beyond doubt. When the client that originated the
dropped loop packet queries the preceding mix, it presents
the receipt received from the malicious mix, proving that the
packet was delivered correctly to the malicious node. How-
ever, the malicious mix is unable to produce a similar receipt,
showing that the packet was received by the subsequent mix,
or a receipt from the directories proving that it reported dis-
connection from the subsequent mix. The malicious mix
may simply not respond at all to the query. However, the
client will still report to the directories, along with the proofs
from the previous and following mixes, allowing the direc-
tories to resolve the incident (contacting the suspected mix
themselves to avoid any possible ‘framing’) (see Figure 2b).

Blaming the neighbors. Malicious mixes performing active
dropping attacks would prefer to avoid complete exclusion.
One option is to drop the packet, and not send a receipt to
the previous mix. However, this causes the preceding mix to
disconnect from the malicious one at the end.

Alternatively, the corrupt mix may drop the packet after
it generates an appropriate receipt. To avoid the risk of its
detection as a corrupt mix, which would happen if it was
a loop message, the corrupt mix may disconnect from the
subsequent mix - again losing a link. Therefore, a corrupt
mix that drops a packet either loses a link, or risks being

exposed (by loop message) and removed from the network.

Delaying packets. A malicious mix can also delay a packet
instead of dropping it, so that the honest subsequent mix will
drop that packet. However, the honest subsequent mix still
sends a receipt back for that packet, which the malicious mix
should acknowledge. If the malicious mix acknowledges the
receipt, the malicious mix is exposed when the client per-
forms the isolation process. The client can obtain a signed
receipt proving that the malicious mix received the packet
on time, and also the acknowledged receipt from the honest
mix that dropped the delayed packet. The latter contains the
round number when the packet was dropped, which proves
the malicious mix delayed the packet and therefore should be
excluded. Otherwise, if the malicious mix refuses to sign the
receipt, the honest mix disconnects from the malicious one.
Therefore, the delaying attack also causes the mix to either
lose a link or to be expelled from the system.

The combination of packet receipts, link disconnection
notices, the isolation process and loop messages, forces ma-
licious mixes to immediately lose links when they perform
active attacks. Failure to respond to the preceding mix or to
record a disconnection notice about the subsequent mix in
a timely manner creates potentially incriminating evidence,
that would lead to a complete exclusion of the mix from
the system. This prevents malicious mixes from silently at-
tacking the system and blaming honest mixes when they are
queried in the isolation mechanism. The mere threat of loop
messages forces malicious mixes to drop a link with an hon-
est mix for each message they wish to suppress, or risk ex-
posure.

4.4 Handling missing receipts

Malicious mixes might attempt to circumvent the protocol
by refusing to cooperate in the isolation procedure. Poten-
tially, this could prevent clients from obtaining the necessary
proofs about problematic links, thus preventing them from
convincing directory authorities about problematic links. If
malicious mixes refuse to cooperate, clients contact a direc-
tory authority and ask it to perform the isolation process on
their behalf. Clients can prove to the directory authorities
that the loop packet was indeed sent to the cascade using the
receipt from the first mix. If all mixes cooperate with the
directory authority, it is able to isolate and disconnect the
problematic link. Otherwise, if malicious mixes do not co-
operate with the directory authority, it excludes those mixes
from the system.

We note that a malicious client may trick the directory au-
thorities into performing the isolation process on its behalf
repeatedly, against honest mixes. In that case, directory au-
thorities conclude that the mix is honest, since the mix can
provide either a receipt for the message forwarded or a dis-
connection notice. However, this is wasteful for both direc-

USENIX Association 28th USENIX Security Symposium 1847

tory authorities and mixes. Since clients do not have to be
anonymous vis-a-vis directory authorities, they may record
false reports and eventually exclude abusive clients. Further-
more, the clients have to send proofs from the following mix
of not having received the packet, which cannot be done if
there was no mix failure.

Malicious entry mix. If a first mix does not send a receipt,
the client could have simply chosen another cascade; how-
ever, this allows malicious mixes to divert traffic from cas-
cades which are not fully malicious, without being penal-
ized, increasing the probability that clients would select other
fully malicious cascades instead. To avoid that, in Miranda,
clients force the first mix to provide a receipt, by relaying the
packet via a trusted witness. A witness is just another mix
that relays the packet to the misbehaving first mix. Now, the
misbehaving node can no longer refuse to produce a receipt,
because the packet arrives from a mix, which allows the iso-
lation process to take place. Note that since a witness sends
messages on behalf of clients, the witness relays messages
without the ω constraint (as if it was a client).

If the witness itself is malicious, it may also refuse to pro-
duce a receipt (otherwise, it loses a link). In that case, the
client can simply choose another witness; in fact, if desired,
clients can even send via multiple witnesses concurrently to
reduce this risk - the entry mix can easily detect the ‘dupli-
cate’ and handle only one message. This prevents malicious
mixes from excluding semi-honest cascades without losing
a link. Moreover, although the refused clients cannot prove
to others that they were rejected, they can learn about ma-
licious mixes and can avoid all future cascades that contain
them, including fully malicious cascades, which makes such
attacks imprudent.

5 Inter-Epoch Process

In this section, we discuss the inter-epoch operations, tak-
ing place toward the end of an epoch; upon its termination,
we move to a new epoch. The inter-epoch process selects a
new random set of cascades to be used in the coming epoch,
avoiding the links reported by the mixes, as well as any mixes
detected as corrupt.

Until the inter-epoch terminates and the mixes move to the
new epoch, the mixes continue with the intra-epoch process
as before; the only difference is that newly detected failures,
would be ‘buffered’ and handled only in the following run of
the inter-epoch process, to avoid changing the inputs to the
inter-epoch process after it has begun.

The inter-epoch process consists of the following steps.

5.1 Filtering Faulty Mixes
Directory authorities share amongst themselves the evi-
dences they received and use them to agree on the set of

faulty links and mixes. The evidences consist of the reports
of faulty links from mixes, clients or authorities perform-
ing the isolation process. The directory authorities exchange
all new evidences of faulty links and mixes, i.e., not yet
considered in the previous inter-epoch computation process.
Every directory can validate each evidence it received and
broadcast it to all other directories. Since we assume major-
ity of honest directories and synchronous operation, we can
use known broadcast/consensus protocols, and after a small
number of rounds, all honest directory authorities have ex-
actly the same set of faulty links.

Note, that only links connected to (one or two) faulty
mixes are ever disconnected. Hence, any mix which has
more than thresh links disconnected must be faulty (due to
the assumption that thresh > nm), and hence the directories
exclude that mix completely and immediately. Since the di-
rectory authorities share exactly the same set of faulty links,
it follows that they also agree on exactly the same set of
faulty mixes. We call this exclusion process a simple ma-
licious mix filtering step. In Section 6, we discuss more ad-
vanced filtering techniques, based on community detection.
Simple malicious mix filtering technique. To perform the
simple malicious mix filtering, each directory authority can
build a graph that represents the connectivity between mixes.
Namely, consider an undirected graph G = (V,E) where the
vertices map to the mixes in the system (V =M), and an
edge (Mi,M j) ∈ E means that the link between mixes Mi
and M j was not dropped by either mix. Let G = (V,E) be
the complement graph of G and let DegG(Mi) denote the de-
gree of the vertex Mi in graph G. In the beginning, before
any reports of faults have arrived at the directory authorities,
G is a complete graph and G is an empty graph. As time
goes by, G becomes sparser as a result of the links being
dropped, and proportionally, G becomes more dense. The
filtering mechanism removes all mixes that lost thresh links
or more, i.e., {Mi | ∀Mi ∈ G : DegG(Mi) ≥ thresh}, where
thresh = nm +1. The filtering mechanism checks the degree
DegG(Mi) in graph G, since the degree in G represents how
many links Mi lost. We emphasize that when such malicious
mix is detected and removed, the number of malicious mixes
in the system is decreased by one (nm = nm−1) and propor-
tionally so does thresh (thresh = thresh− 1). As a result,
whenever the mechanism removes a malicious mix it repeats
the mechanism once again, to see whether new malicious
mixes can be detected according to the new thresh value. An
illustration of this process is depicted in Figure 3.

5.2 Cascades Selection Protocol
After all directory authorities have the same view of the
mixes and their links, they select and publish a (single) set of
cascades, to be used by all clients during the coming epoch.
To allow clients to easily confirm that they use the correct set
of cascades, the directory authorities collectively sign the set

1848 28th USENIX Security Symposium USENIX Association

Graph G Graph G (thresh = nm +1) Graph G

M1

M2

Detected

M1

M2

M1

DetectedRemove M2

Deg(M1)< thresh(= 3)

Deg(M2)≥ thresh(= 3)

Remove M1

Deg(M1)≥ thresh(= 2)

Figure 3: An illustration of the simple malicious mix filtering (without community detection).

that they determined for each epoch, using a threshold signa-
ture scheme [46, 25]. Hence, each client can simply retrieve
the set from any directory authority and validate that it is the
correct set (using a single signature-validation operation).

The cascades selection protocol allows all directory au-
thorities to agree on a random set of cascades for the up-
coming epoch. The input to this protocol, for each directory
authority, includes the set of mixesM, the desired number
of cascades to be generated nc, the length of cascades ` and
the set of faulty links FL ⊂M×M. For simplicity,M, nc
and ` are fixed throughout the execution.

The goal of all directory authorities is to select the same
set of cascades C ⊆M`, where C is uniformly chosen from
all sets of cascades of length `, limited to those which satisfy
the selected legitimate cascade predicates, which define a
set of constraints for building a cascade. In [34], we describe
several possible legitimate cascade predicates, and discuss
their differences.

Given a specific legitimate cascade predicate, the proto-
col selects the same set of cascades for all directory author-
ities, chosen uniformly at random among all cascades sat-
isfying this predicate. This is somewhat challenging, since
sampling is normally a random process, which is unlikely
to result in exactly the same results in all directory author-
ities. One way of ensuring correct sampling and the same
output, is for the set of directories to compute the sampling
process jointly, using a multi-party secure function evalua-
tion process, e.g., [26]. However, this is a computationally-
expensive process, and therefore, we present a much more
efficient alternative. Specifically, all directories run exactly
the same sampling algorithm and for each sampled cascade
validate it using exactly the same legitimate cascade predi-
cate. To ensure that the results obtained by all honest direc-
tory authorities are identical, it remains to ensure that they
use the same random bits as the seed of the algorithm. To
achieve this, while preventing the faulty directory authorities
from biasing the choice of the seed bits, we can use a coin-
tossing protocol, e.g., [7], among the directory authorities5.

5Note, that we only need to generate a small number of bits (security
parameter), from which we can generate as many bits as necessary using a
pseudo-random generator.

6 Community-based Attacker Detection

So far, the discussion focused on the core behaviour of Mi-
randa and presented what Miranda can do and how it is
done. Interestingly, Miranda’s mechanisms open a doorway
for advanced techniques, which can significantly improve the
detection of malicious mixes. In this section, we discuss
several techniques that can leverage Miranda’s faulty links
identification into a powerful tool against malicious adver-
saries. Among others, we use community detection tech-
niques. Community detection has been used in previous
works to achieve Sybil detection based on social or intro-
duction graphs [16, 17]. However, we assume that the prob-
lem of Sybil attacks is solved through other means, such as
admission control or resource constraints. Encouragingly,
many other techniques can be employed; yet, we hope that
the following algorithms will be also useful in other applica-
tions where applicable, e.g., where community detection is
needed.

We begin with the following observation.

Observation 1. For every two mixes Mi,M j that have an
edge in (Mi,M j) ∈ E , at least one of them is a malicious mix.

Observation 1 stems directly from our assumption that
honest mixes never fail. Therefore, a dropped link must
be between either an honest mix and a malicious mix or
between two malicious mixes. Following this observation,
one possible strategy is aggressive pair removal, i.e., remove
both mixes, if one or both of them report failure of the link
connecting them. This strategy seems to provide some bene-
fits - the adversary seems to ‘lose more’, however it comes at
an excess cost of possible exclusion of honest nodes. There-
fore, we focus on less aggressive techniques that exclude ma-
licious mixes without excluding also honest ones.

Threshold Detection Algorithm. Since the aggressive re-
moval of both mixes connected by the failed link from G is
not efficient, we adopt the idea of virtual removal of the con-
flicting pair. By virtually we mean that virtually removed
mixes are not classified as malicious and they are only re-
moved from G for the duration of the algorithm’s execution,
and not from G nor M. We present the Threshold Detec-

USENIX Association 28th USENIX Security Symposium 1849

M1

M2
M3

M4

M5

(a) Graph G, the simple malicious
mix filtering technique cannot
detect M2 because
DegG(M2) = 2 < 3 = thresh.

M1

M2
M3

M4

M5

Detected

(b) An execution of the
T hresholdDetection on the same G graph
virtually removes M1 and M5 which
decreases thresh, resulting in
DegG(M2) = 2≥ 2 = thresh and detection
of M2 as a malicious mix.

Figure 4: An illustration of how virtually removing mixes
from G can expose malicious mixes. Algorithm 2 refers to
the graph in 4b as G1, since it is the same graph G as in 4a
but without M1 and without M1’s neighbors.

tion technique in Algorithm 1. The algorithm takes as input
graph G = (V,E), where an edge (Mi,M j) ∈ E represents the
disconnected link between Mi and M j. The algorithm starts
by invoking the SIMPLEMALICIOUSFILTERING procedure
(described in Section 5.1) on the graph G (line 12). Next,
the algorithm invokes the VIRTUALPAIRREMOVAL proce-
dure on G to virtually remove a pair of mixes from G (line
14). Following observation 1, at least one malicious mix was
virtually removed, thus the virtual threshold thresh′ value
is decreased by 1 (line 15). We use the thresh′ variable to
keep track of the virtually removed malicious mixes and the
global thresh value is decreased only when a malicious mix
was actually detected (line 4), and the rest only change the
virtual threshold thresh′. After that, the algorithm invokes
the procedure SIMPLEMALICIOUSFILTERING again on the
updated G graph, i.e., without the pair of mixes that were vir-
tually removed by the VIRTUALPAIRREMOVAL procedure.
The algorithm repeats lines 14-16 as long as there are edges
in G. For an illustration why the T hresholdDetection algo-
rithm is better than the original simple malicious mix filtering
see Figure 4.

We next improve upon the detection of malicious mixes
by the T hresholdDetection algorithm, while still never re-
moving honest mixes. Our improvement is based on Ob-
servation 2 below; but before presenting it, we need some
preliminaries.

We first define a simple notion which can be applied to any
undirected graph. Specifically, let G0 = (V 0,E0) be an arbi-
trary undirected graph. A sequence {G j}µ

j=0 of subgraphs of
G0 is a removal sequence of length µ ≥ 1 of G0, if for every
j : µ ≥ j ≥ 1, G j = G j−1− v j. Namely, G j is the same as
G j−1, except for removal of some node v j ∈G j−1, and of all
edges connected to v j. A removal sequence is legitimate if
every removed node v j has at least one edge.

Let us define the graph Gi to be the resulting graph after
removing from G the node Mi together with all its neighbors,
denoted as N(Mi).

Algorithm 1 T hresholdDetection(G = (V,E))

1: procedure SIMPLEMALICIOUSFILTERING(G, thresh′)
2: for every Mi ∈ G s.t. DegG(Mi)≥ thresh′ do
3: Mi is malicious (remove from G,G,M).
4: thresh← thresh−1
5: thresh′← thresh′−1
6:
7: procedure VIRTUALPAIRREMOVAL(G)
8: Pick an edge (Mi,M j) ∈ E .
9: Remove mixes Mi,M j from G.

10:
11: thresh′← thresh.
12: Invoke SIMPLEMALICIOUSFILTERING(G).
13: while E 6=∅ do
14: Invoke VIRTUALPAIRREMOVAL(G).
15: thresh′← thresh′−1.
16: Invoke SIMPLEMALICIOUSFILTERING(G).

Observation 2. If Gi has a legitimate removal sequence of
length µi, then there are at least µi malicious nodes in Gi.

We use Observation 2 to identify malicious mixes, using
the following claim.

Claim 1. Every node Mi that satisfies DegG(Mi) > nm− µi
is a malicious node.

Proof. Assume to the contrary, that there exists a mix Mi
such that DegG(Mi) > nm − µi but Mi is an honest mix.
Since there are nm malicious mixes in M, and µi of them
are not neighbors of Mi, then the maximum number of ma-
licious mixes that can be also neighbors of Mi is nm − µi,
since Mi is honest. But if DegG(Mi)> nm−µi, then at least
one of the neighbors of Mi is also honest, which contradicts
the assumption that honest links never fail. Therefore, if
DegG(Mi)> nm−µi then Mi must be a malicious mix.

For example, see Figure 4b which depicts the graph G1.
By observing G1, we know that at least one of the mixes
M2,M3 are malicious (since they share an edge), therefore,
µi ≥ 1 since we successfully identified a malicious mix
which is not in {M1 ∪N(M1)}. Alternatively, the same ar-
gument can be made regarding M2 and M4 instead of the
pair M2 and M3. Since after removing M2,M4 from G1 there
are no edges left in G1, then µ1 = 1.

Algorithm 2 presents the Community Detection algorithm,
which leverages Claim 1 to detect malicious mixes. An il-
lustration of the operation of this algorithm is demonstrated
in Figure 5.

Notice that the algorithm only examines nodes with a de-
gree larger than 1 (line 3). The reason is that if DegG(Mi)= 0
then Mi did not perform an active attack yet, thus it cannot
be detected, and if DegG(Mi) = 1 then Mi cannot be classi-
fied based on its neighbors. Therefore, an execution of the

1850 28th USENIX Security Symposium USENIX Association

M1

M2

M3

M4M5

M6

M7

M8

M9

(a)
∀Mi : DegG(Mi)< thresh,
simple malicious mix filtering
does not detect malicious
mixes.

M1

M2

M3

M4M5

M6

M7

M8

M9

Focusing on M2

(b) When we observe G2, i.e., G
after the removal of M2 and
N(M2), two scenarios are
possible. In the first scenario,
µ2 = 3 (e.g., if M1 and M9 are
removed first), thus
DegG(M2) = 2 > 1 = nm−µ2,
and therefore M2 is detected as
malicious. In the second scenario,
µ2 = 2 (e.g., if M1 and M6 are
removed first), thus
DegG(M2) = 2≤ 2 = nm−µ2,
and therefore M2 is not detected
as malicious (yet). A similar
situation occurs with M3 when
observing G3.

M1

M2

M3

M4M5

M6

M7

M8

M9

Focusing on M6

(c) When we observe G6, two
malicious mixes can be identified,
thus µ6 = 2. As a result, since
DegG(M6) = 2≤ 2 = nm−µ6,
M6 is not classified as malicious
(nor should it be). Note that even
if M3 was removed in (b), then
DegG(M6) = 1 and therefore the
algorithm cannot classify it based
on its neighbors. The same
explanations apply to the rest of
the honest mixes.

M1

M2

M3

M4M5

M6

M7

M8

M9

Focusing on M1

Detected

(d) When we observe G1, only
one malicious mix can be
identified, thus µ1 = 1. As a
result, since DegG(M1) = 4 is
larger than nm−µ1 = 3, M1 is
detected as malicious.

M2

M3

M4M5

M6

M7

M8

M9

Detected

Detected

(e) If M2 and M3 were not detected as
malicious as explained in (b), then after
the removal of M1 in (c) they will be
detected, because the removal of M1
causes nm = 4→ nm = 3. Since the
algorithm runs in a loop, when the
algorithm will re-check G2, it will
discover that µ2 = 2 and thus
DegG(M2) = 2 > 1 = nm−µ1, which
results in removal of M2. The same
goes for M3. After the removal of
M1,M2 and M3, the algorithm cannot
classify M4 as malicious based on its
neighbors, since M4 only dropped one
link. However, the algorithm has the
option to aggressively remove both
M4,M5.

Figure 5: A demonstration how Miranda’s community detection can significantly improve the detection of malicious mixes
using an example graph G and thresh = nm +1.

Algorithm 2 CommunityDetection(G = (V,E))
1: n′m← nm
2: while E 6=∅ do
3: for each Mi ∈ V s.t. DegG(Mi)> 1 do
4: Construct Gi = (Vi,Ei) from G.
5: µi← 0
6: while Ei 6=∅ do
7: Invoke VIRTUALPAIRREMOVAL(Gi).
8: µi← µi +1
9: if DegG(Mi)> n′m−µi then

10: Mi is malicious (remove from G,G,M).
11: nm← nm−1, n′m← n′m−1
12: if E 6=∅ then
13: Invoke VIRTUALPAIRREMOVAL(G).
14: n′m← n′m−1

CommunityDetection might not be able to detect all mali-
cious mixes that exposed themselves, e.g., mixes with a de-
gree that equals to 1. If desired, there is always the oppor-
tunity to execute the aggressive pair removal technique af-
ter the CommunityDetection algorithm to potentially remove
more malicious mixes (with price of possible removal of an
honest mix). Also, randomly picking a pair of mixes that
share an edge in G might not always be the optimal strat-
egy. In small graphs, the algorithm can exhaust all possible

removal variations, but this is a time-consuming option in
large graphs. A more sophisticated picking strategy might
yield better results; however, when we experimented with
some possible strategies, we did not notice a significant im-
provement over the random picking strategy.

The techniques discussed in this section provide Miranda
a significant advantage, since malicious mixes can be de-
tected even if they do not pass thresh. Merely the threat
of such techniques is significant in deterring active attacks.
In Section 7.4 we analyze the security of the mechanisms
discussed here and evaluate them empirically. In [34] we
present alternative scheme for community detection based
on random walks.

7 Analysis of Active Attacks

In this section, we analyze the impact of active attacks in
the presence of Miranda. We first analyze Miranda against
traditional and non-traditional active attacks, including at-
tacks designed to abuse the protocol to increase the chances
of clients choosing fully malicious cascades. We continue by
examining the security of loop messages and conclude this
section by evaluating how community detection strengthens
Miranda.

USENIX Association 28th USENIX Security Symposium 1851

7.1 Resisting Active Attacks

As discussed in Section 4, a malicious mix that drops a
packet sent from a preceding mix or destined to a subse-
quent mix, loses at least one link; in some cases, the ma-
licious mix gets completely excluded. Hence, the adversary
quickly loses its attacking capabilities, before any significant
impact is introduced. However, the adversary might try other
approaches in order to link the communicating users or gain
advantage in the network, as we now discuss.

A malicious first mix can refuse clients’ packets; however,
such attack is imprudent, since clients can migrate to other
cascades. Furthermore, clients can force the malicious mix
to relay their packets, using a witness. Similarly, it is inef-
fective for the last mix of a cascade to drop all packets it re-
ceives, since clients learn through isolation that the dropped
loop packets successfully arrived at the last mix. Although
clients cannot prove the mix maliciousness, they avoid fu-
ture cascades containing the malicious mix, including fully
malicious cascades.

Instead of directly dropping packets, adversaries can cause
a packet to be dropped by delaying the packet. However,
such attack is also detected.

Claim 2. A malicious mix that delays a packet, is either ex-
pelled from the system or loses a link.

Argument. When an honest mix receives a delayed packet,
it drops it. However, the honest mix still sends a receipt
back for that packet. If the malicious mix acknowledges the
receipt, the malicious mix is exposed when the client per-
forms the isolation process: the client can obtain a signed
receipt proving that the malicious mix received the packet
on time, and also the acknowledged receipt from the honest
mix that dropped the delayed packet. The latter contains the
round number when the packet was dropped, which proves
the malicious mix delayed the packet and therefore should
be excluded. Otherwise, if the malicious mix refuses to sign
the receipt, the honest mix disconnects from the malicious
mix.

Injecting malformed packets. Notice how the honest mix
that dropped the delayed message still sends back a receipt
for it. The reason is that the dropping mix cannot be sure that
the previous mix did delay the message. Instead, this can be
the result of an adversary that crafts a packet with the same
round number in two successive layers.

Claim 3. An adversary cannot craft a loop message that
causes a link loss between two honest mixes.

Argument. Any loop message has to be well-formed in or-
der for directory authorities to accept it. An adversary can
craft a message with invalid round numbers in the packet’s
routing information, which would cause the honest mix to
drop the packet. However, although the honest mix drops

the packet, it still sends back a receipt for that packet. Other-
wise, the preceding mix, which has no way of knowing that
the next layer is intentionally malformed, would disconnect
from the subsequent mix. While the adversary can obtain a
proof showing that a loop message was dropped, it cannot
prove that the loop message was well-formed.

Aggressive active attacks. In order to de-anonymize the
network users, the adversary can choose a more aggressive
approach and drop a significant number of packets. For ex-
ample, in the (n−1) attack [45] applied to the full network,
the adversary tracks a target packet from Alice by blocking
other packets from arriving to an honest mix, and instead
injecting their own packets. Another example is the intersec-
tion attack [8], where the adversary tries disconnecting target
clients. If the adversary cannot directly disconnect a client
with a targeted attack, it can disconnect a client by drop-
ping an entire batch of packets where one of them belongs
to the client (the adversary simply does not know which).
However, it is important to note, that if an adversary can
engineer a scenario where a single target packet is injected
and mixed with only messages that the adversary controls,
any mix-based system is vulnerable. Nevertheless, we argue
that Miranda inflicts serious penalty on the adversary who
attempts to perform an aggressive dropping of packets.

Claim 4. Miranda deters aggressive active attacks.

Argument. Aggressive active attacks require the ability to
drop many packets. In Miranda, a malicious mix that drops
any packet from another mix without sending back a receipt,
loses a link (see Section 4 and Figure 2c). Alternatively,
if the malicious mix drops packets but does send receipts
for these dropped packets, clients can prove that the mali-
cious mix received their (loop) packets and did not forward
them, which results in the exclusion of the malicious mix
(see Figure 2b). A malicious entry mix may drop packets
from clients, since losing a link to a client is not a serious
‘penalty’; but in Miranda, clients then use a witness mix (see
Section 4.4) – forcing the mix to either relay their packets, or
- lose a link to a mix or risk discovery, as discussed above.

Miranda enforces a minimum number of ω packets for
mixing by the entry mix. This is designed to protect the
rare cases where a client sends via an entry mix which is
used only by few (or no) other clients, which could allow
an eavesdropper attack; we now explain why this cannot be
abused to facilitate an active attack (by the first mix).

Recall, that in this case, as in our entire analysis of
corrupt-mix attacks, we assume that at least 2ω honest
clients send packets to the (possibly corrupt) entry mix; and,
as mentioned above, the mix cannot simply ‘drop’ these
(since clients will use witness and then the corrupt mix will
lose - at least - a link).

Instead, the corrupt mix could send to these clients, or
most of them, the special ‘under-ω receipt’, claiming (incor-
rectly) that it didn’t receive ω messages during this round.

1852 28th USENIX Security Symposium USENIX Association

10 15 20 25 30 35 40
Percent of malicious mixes (%)

0

5

10

15

20

25

30

M
ax

im
um

 p
ro

ba
bi

lit
y

to
 p

ick

 a
 fu

lly
-m

al
ici

ou
s c

as
ca

de
 (%

)

 Tight bound
cascade length

3
4
5
6

 Loose bound
cascade length

3
4
5
6

Figure 6: The maximum probability of picking a fully
malicious cascade as a function of the cascade length and
the power of the adversary.

However, senders report these (rare) under-ω receipts to the
directories, who would quickly detect that this mix is cor-
rupt.

7.2 Fully Malicious Cascades Attacks

If the packets are relayed via a fully malicious cascade, an
adversary can trivially track them. Consequently, adversaries
would like to divert as much traffic as possible to the fully
malicious cascades. Attackers can try to maximize their
chances by: (1) increasing the probability that fully mali-
cious cascades are included in the set C produced by the di-
rectory authorities during the inter-epoch process, and/or (2)
increasing the probability that clients pick a fully malicious
cascade from C during an epoch.

Because cascades are chosen uniformly over all valid cas-
cades, the only way the adversary can influence the cascades
generation process is by excluding semi-honest cascades.
However, they can only exclude cascades by dropping links
they are a part of, therefore, the adversary cannot exclude any
honest links or honest mixes6, meaning they cannot exclude
any fully honest cascades. However, adversaries are able
to disconnect semi-honest cascades by disconnecting semi-
honest links and thereby increase the probability of picking
a fully malicious cascade. Interestingly, we found that such
an attack only slightly increases the chance of selecting a
fully malicious cascade – while significantly increasing the
chance of selecting a fully honest cascade (see Claim 5). Fur-
ther, this strategy makes it easier to detect and eliminate sets
of connected adversarial domains (see section 6).

Claim 5. Let CAdv denote a set of fully malicious cascades.
The maximum probability to pick a fully malicious cascade
during cascades generation process, after the semi-honest

6Even if all adversarial mixes disconnect from an honest mix, it is still
not enough for exclusion, since thresh > nm.

0 20 40 60 80 100
Percent of link losses (%)

0

20

40

60

80

100

Pe
rc

en
t o

f c
as

ca
de

s (
%

)

Fully-honest
Semi-honest
Fully-malicious

Figure 7: The probability of picking particular classes of
cascades after each link loss. The parameters of the
simulated mix network are l = 3, n = 100 and nm = 30.

cascades were excluded by the adversary is

Pr(c ∈CAdv)≤

(
nm

nh− l +1

)l

.

Argument. See [34].
Figure 6 and Figure 7 present the probability of picking

a fully malicious cascade depending on the number of mixes
colluding with the adversary and the percentage of lost links.

Once nc cascades are generated, the adversary could try
to bias the probability of clients choosing a fully malicious
cascade. To do so, the adversary can sabotage semi-honest
cascades [9] through dropping messages, and in an extreme
case, exclude them all. We illustrate in Figure 8 the attack
cost, expressed as the number of links the adversary must
affect in order to achieve a certain probability of success in
shifting clients to a fully malicious cascade. Note, that the
larger the number of cascades nc, the more expensive the
attack, and the lower the probability of success.

7.3 Security of Loop Messages
Since loop messages are generated and processed in the same
way as genuine messages, the binary pattern does not leak
any information. However, adversaries can still seek ways
to predict when loop messages are sent; for example, by ob-
serving the timing pattern and the rate of sent messages.
Detecting loop messages. Adversaries can try to guess
whether a particular message is a loop message or not. A
successful guess allows the adversary to drop non-loop mes-
sages without being detected, while still sending receipts for
them to the previous mix. We formulate the following claim:

Claim 6. Assume that an adversary that does not control the
last mix in the cascade, drops a packet. The probability of
this message being a loop message sent by a non-malicious
client is at least α .

Argument. It suffices to consider packets sent by non-
malicious clients. When a non-last mix receives such pack-

USENIX Association 28th USENIX Security Symposium 1853

0.01 0.05 0.1 0.2 0.3 0.4 0.5 1.0 2.0 3.0 5.0 10.0
Fraction ξ of cascades in an epoch, as percent from total possible cascades

20

40

60

80

100

Pr
ob

ab
ilit

y
of

 c
ho

os
in

g
a

fu
lly

-m
al

ici
ou

s c
as

ca
de

af
te

r t
he

 a
tta

ck
 (%

)
probability

0

100

200

300

400

500

Nu
m

be
r o

f l
in

ks
 to

 d
ro

p
to

 a
ch

ie
ve

 a
tta

ck

cost

Figure 8: The costs (red, right axis) and success probability
(blue, left axis) of performing DoS [9] attacks based on the
fraction of cascades active in every epoch. Cost is measured
in links the adversary must sacrifice; as Figure 9 shows,
even the minimal ‘cost’ essentially implies detection of all
active corrupt mixes. Furthermore, using just 1% of the
possible cascades suffices to reduce success probability to
about 10% or less.

ets, it does not know the destination. Furthermore, as de-
scribed in section 4.3, loop packets are sent by non-malicious
clients according to the rate defined by α of genuine traf-
fic and are bitwise indistinguishable from genuine packets.
Hence, even if the mix would know the identity of the sender,
e.g., by being the first mix, the packet can still be a loop mes-
sage with probability at least α .

Note that a malicious non-last mix that drops a loop mes-
sage, yet sends a receipt for it and remains connected to the
next mix, would be proven malicious and excluded from the
network. On the other hand, if such mix does not send a
receipt, then it loses a link.

Malicious last mix. Claim 6 does not address the last mix.
There are two reasons for that: first, in contrast to mixes,
clients do not send receipts back to mixes. Therefore, a last
mix cannot prove it actually delivered the packets. Secondly,
the last mix may, in fact, identify non-loop messages in some
situations. For example, if a client did not send packets in
round r, then all the packets it is about to receive in round
r+ x (where x is the number of rounds it takes to complete
a loop) are genuine traffic sent by other clients. Therefore,
these messages can be dropped without detection.

However, dropping of messages by the last mix can also
be done against the ideal mix (see Section 2.4), e.g., by a
man-in-the-middle attacker. In fact, similar correlation at-
tacks can be performed even without dropping packets, if
clients have specific sending patterns. Therefore, mitigating
this attack is beyond Miranda goals, and should be handled
by the applications adopting Miranda 7.

7For example, [24, 44] use fixed sending rate (thus, foiling the attack).
A concerned client can simply make sure to send additional loop packets in
every round where no genuine traffic is relayed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Percent of ranodmly dropped semi-honest links out of the

 total number of semi-honest links (%)

0

20

40

60

80

100

Pe
rc

en
t o

f m
al

ici
ou

s m
ix

es
 d

et
ec

te
d

(%
)

Threshold detection Community detection

Figure 9: The effect of using community detection against
malicious mixes.

7.4 Evaluation of Community Detection
The discussion in Section 6 presented several community de-
tection techniques to leverage Miranda’s reported links in-
formation into a detection tool that removes malicious mixes
from the system. We now argue that the contribution of these
mechanisms is both important and secure.

7.4.1 Empirical Results

We implemented the Threshold Detection and Community
Detection algorithms described in Section 6, and evaluated
them as follows. We generated a complete graph of n = 100
mixes where nm = 33 of them are malicious. We modeled
a random adversary by randomly dropping a fraction of the
semi-honest links, making sure that any mix does not drop
more than or equal to thresh = nm +1 links.

Figure 9 demonstrates the effectiveness of the algorithms.
The Threshold Detection algorithm starts to become effec-
tive when roughly 10% of the semi-honest links are reported
and improves as the number of reports increases. In com-
parison, the Community Detection algorithm presents signif-
icantly better results, starting when 4% of the semi-honest
links are dropped and after 8% the algorithm is able to ex-
pose all possible malicious mixes. Considering that the Com-
munity Detection algorithm can only operate on malicious
mixes that dropped more than one link, these results show
that the algorithm effectively mitigates the non-strategic ad-
versary. In [34], we discuss and compare another possi-
ble community detection algorithm, which potentially yields
even better results.

7.4.2 Security Analysis

In essence, both the Threshold Detection algorithm and the
Community Detection algorithm do the same thing: they
both remove malicious mixes from the system. Therefore,

1854 28th USENIX Security Symposium USENIX Association

the only way for a strategic adversary to abuse these al-
gorithms is to strategically drop links in a way that causes
these algorithms to wrongfully remove honest mixes from
the system, due to misclassification of honest mixes as ma-
licious. We now argue that the T hresholdDetection and
CommunityDetection algorithms are secured against such at-
tack.

Claim 7. An honest mix Mi ∈ G never satisfies DegG(Mi)≥
thresh.

Proof. Assume to the contrary that there exists an honest
mix Mi ∈ G that satisfies Deg(Mi) ≥ thresh. However, if
this is the case, then DegG(Mi) ≥ thresh, which implies
DegG(Mi) ≤ n− thresh ≤ nh− 1, which means that at least
one honest mix disconnected from Mi, contradicting the as-
sumption that honest links never fail.

Claim 8. The T hresholdDetection algorithm never removes
honest mixes.

Proof. According to the implementation of Threshold De-
tection, the algorithm only removes mix Mi ∈ G that satisfies
Deg(Mi)≥ thresh. However, following Claim 7, this cannot
happen for honest mixes.

Claim 9. The CommunityDetection algorithm never re-
moves honest mixes.

Proof. According to the implementation of Community De-
tection, the algorithm only removes mix Mi ∈ G that satisfies
Deg(Mi) > nm− µi, which according to Claim 1 never hap-
pens for honest mixes.

8 Related Work

In this section, we place our system in the context of existing
approaches and compare Miranda with related works. First,
we focus on works that present a similar design to Miranda.
Next, we discuss how Miranda improves upon previous mix
network designs. Finally, we briefly outline other techniques
used to support reliable mixing.

Receipts. The idea of using digitally signed receipts to im-
prove the reliability of the mix network was already used in
many designs. In Chaum’s original mix network design [12]
each participant obtains a signed receipt for packets they
submit to the entry mix. Each mix signs the output batch
as a whole, therefore the absence of a single packet can be
detected. The detection that a particular mix failed to cor-
rectly process a packet relies on the fact that the neighbour-
ing mixes can compare their signed inputs and outputs. Ad-
ditionally, [12] uses the untraceable return addresses to pro-
vide end-to-end receipts for the sender.

Receipts were also used in reputation-based proposals.
In [20], receipts are used to verify a mix failure and rank

their reputation in order to identify the reliable mixes and
use them for building cascades. The proposed design uses a
set of trusted global witnesses to prove the misbehavior of a
mix. If a mix fails to provide a receipt for any packet, the pre-
vious mix enlists the witnesses, which try to send the packet
and obtain a receipt. Witnesses are the key part of the de-
sign and have to be engaged in every verification of a failure
claim, which leads to a trust and performance bottleneck. In
comparison, Miranda does not depend on the witnesses, and
a single one is just used to enhance the design. Moreover,
in [20] a failure is attributed to a single mix in a cascade,
which allows the adversary to easily obtain high reputation
and misuse it to de-anonymize clients. Miranda rather than
focusing on a single mix, looks at the link between the mixes.

In the extended reputation system proposed in [22] the
reputation score is quantified by decrementing the reputa-
tion of all nodes in the failed cascade and incrementing of
all nodes in the successful one. In order to detect misbehav-
iors of malicious nodes, the nodes send test messages and
verify later via a snapshot from the last mix, whether it was
successfully delivered. Since the test messages are indistin-
guishable, dishonest mixes risk being caught if they drop any
message. However, the penalty for dropping is very strong
– if a single mix drops any message, the whole cascade is
failed. Therefore, because a single mix’s behavior affects the
reputation of all mixes in the cascade, the malicious nodes
can intentionally fail a cascade to incriminate honest mixes.
This design also proposed the delivery receipts, which the re-
cipient returns to the last mix in the cascade in order to prove
that the message exited the network correctly. If the last mix
is not able to present the receipt, then the sender contacts a
random node from the cascade, which then asks the last mix
to pass the message and attempts to deliver the message.

Trap messages and detecting active attacks. The idea of
using trap messages to test the reliability of the network
was discussed in many works. The original DC-network
paper [11] suggested using trap messages, which include a
safety contestable bit, to detect message disruption. In con-
trast, the flash mixing [28] technique, which was later proved
to be broken [38], introduces two dummy messages that are
included in the input, and are later de-anonymized after all
mixes have committed to their outputs. This allows the par-
ticipants to verify whether the mix operation was performed
correctly and detect tampering. However, both of those types
of trap messages are limited to these particular designs.

The RGB-mix [18] mechanism uses heartbeat loop mes-
sages to detect the (n-1) attacks [45]. Each mix sends heart-
beat messages back to itself, and if the (n-1) attack is de-
tected the mix injects cover traffic to confuse the adversary.
However, the key assumption of the proposed mechanism is
limited only for anonymity among mix peers.

Mixmaster [39] and Mixminion [14] employed an infras-
tructure of pingers [43], special clients sending probe traffic

USENIX Association 28th USENIX Security Symposium 1855

through the different paths in the mix network and recording
publicly the observed reliability of delivery. The users of the
network can use the obtained reliability statistics to choose
which nodes to use.

Recent proposals for anonymous communication have
also employed built-in reliability mechanisms. For example,
the new Loopix [44] mix-network system uses loop cover
traffic to detect (n-1) attacks, both for clients and mixes.
However, this idea is limited to detecting only aggressive
(n-1) attacks, but mix nodes systematically dropping single
packets can operate undetected. Moreover, the authors do not
also specify any after-steps or how to penalize misbehaving
mixes.

The Atom [33] messaging system is an alternative design
to a traditional mix networks and uses trap messages to de-
tect misbehaving servers. The sender submits trap ciphertext
with the ciphertext of a message, and later uses it to check
whether the relaying server modified the message. However,
the trap message does not detect which mix failed. More-
over, Atom does not describe any technique to exclude mali-
cious servers, and a failed trap only protects against releasing
the secret keys.
Other approaches. The literature on secure electronic elec-
tions has been preoccupied with reliable mixing to ensure
the integrity of election results by using zero-knowledge
proofs [3, 6, 29] of correct shuffling to verify that the mix-
ing operation was performed correctly. However, those
rely on computationally heavy primitives and require re-
encryption mix networks, which significantly increase their
performance cost and limits their applicability. On the other
hand, the more ‘efficient’ proofs restrict the size of messages
to a single group element that is too small for email or even
instant messaging.

An alternative approach for verifying the correctness of
the mixing operation were mix-nets with randomized par-
tial checking (RPC) [30]. This cut-and-choose technique de-
tects packet drops in both Chaumian and re-encryption mix-
nets, however, it requires interactivity and considerable net-
work bandwidth. Moreover, the mix nodes have to routinely
disclose information about their input/output relations in or-
der to provide evidence of correct operation, what was later
proven to be flawed [32].

9 Limitations and Future Work

Challenges for making Miranda practical. The Miranda
design includes several significant simplifying assumptions,
mainly: (1) fixed set of mixes, (2) majority of benign mixes,
(3) reliable communication and processing, and (4) synchro-
nized clocks. Such assumptions are very limiting in terms
of practical deployment; practical systems, e.g., Tor, cannot
‘assume away’ such issues. Future work should try to avoid
these assumptions, while maintaining tight security analysis

and properties as done in Miranda, or identify any inherent
trade-offs.

Avoiding the clock synchronization assumption seems
easy - simply adopt a secure clock synchronization proto-
col. However, avoiding the other three assumptions ((1) to
(3)) seems much more challenging.

First, consider assumptions (1) and (2), i.e., assuming a
fixed set of mixes with majority of benign mixes. These as-
sumptions are central to Miranda design; since the goal of
Miranda is to provide a way to penalize active attackers. If
the adversary can simply retire penalized malicious nodes
and replace them with new nodes that have an untarnished
reputation, then there is no real gain in even trying to pe-
nalize or expose the adversary, and it becomes hard to argue
why we can even assume most mixes are benign. However, a
practical mixnet must allow a dynamic set of mixes, for both
scalability and churn - mixes joining and leaving over time.

Next, consider the third assumption: reliable communica-
tion and processing. In practice, communication and pro-
cessing failures will definitely happen - in particular, as a re-
sult of intentional DoS attacks. We believe that future work
may deal with this significant challenge by both minimizing
failures, by designing robust underlying mechanisms such as
highly-resilient transport layer; and refined assumptions and
analysis, e.g., considering incentives and game-theory anal-
ysis, to ensure that the system is robust to ‘reasonable’ levels
of failures.

These issues are significant challenges for future research,
essential towards the implementation of Miranda in practical
systems. For example, such research must develop a reason-
able model to allow nodes to join (or re-join), without allow-
ing the adversary to gain majority by adding many mixes, as
in Sybil attacks, and to retain the impact of removing corrupt
mixes.
Extension to Continuous Mixnet. Miranda is designed for
a synchronous mixnet. Recent research in mix networks
showed that continuous-time mixes, especially pool mixes,
may allow anonymity for low latency communication [44].
Future work may investigate how to integrate Miranda with
continuous mixnets such as Loopix [44]. Such integration
would raise challenges, such as, how would a mix know
when it should receive the response from the next mix, esp.
without leaking information to an attacker.

10 Conclusion

In this work, we revisited the problem of protecting mix net-
works against active attacks. The analysis performed showed
that active attacks can significantly increase the adversary’s
chances to correctly de-anonymize users. Miranda achieves
much better efficiency than previous designs, but at the same
time quickly detects and mitigates active adversaries. Mi-
randa employs previously studied techniques such as packet

1856 28th USENIX Security Symposium USENIX Association

receipts and loop traffic alongside novel techniques to en-
sure that each dropped packet penalizes the adversary. We
take a new approach of focusing on problematic links be-
tween mixes, instead of mixes themselves. We also investi-
gate how community detection enhances our mechanism ef-
fectively. The overall contribution of our work is an efficient
and scalable detection and mitigation of active attacks. For
additional details, including implementation details and effi-
ciency, see [34].

Acknowledgments

We are grateful to our shepherd, Roger Dingledine, and to
the anonymous reviewers, for their helpful and constructive
feedback. This work was partially supported by the IRIS
Grant Ref: EP/R006865/1 and by an endowment from the
Comcast corporation. The opinions expressed in the paper
are those of the researchers themselves and not of the uni-
versities or sources of support.

References

[1] Nym technologies, 2019. https://nymtech.net/.
[2] Panoramix project, 2019. https://panoramix.me/.
[3] Masayuki Abe. Mix-networks on permutation net-

works. In International Conference on the Theory and
Application of Cryptology and Information Security,
1999.

[4] Dakshi Agrawal and Dogan Kesdogan. Measuring
anonymity: The disclosure attack. IEEE Security &
Privacy, 2003.

[5] Anonymous. QuicR: extending Quic for resiliency to
extreme packet losses, 2019. Available from the au-
thors.

[6] Stephanie Bayer and Jens Groth. Efficient zero-
knowledge argument for correctness of a shuffle. In Ad-
vances in Cryptology - EUROCRYPT 2012 - 31st An-
nual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, 2012.

[7] Mihir Bellare, Juan A. Garay, and Tal Rabin. Dis-
tributed pseudo-random bit generators : A new way to
speed-up shared coin tossing. In Proceedings of the
15th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), 1996.

[8] Oliver Berthold, Andreas Pfitzmann, and Ronny
Standtke. The disadvantages of free mix routes and
how to overcome them. In Designing Privacy Enhanc-
ing Technologies. Springer, 2001.

[9] Nikita Borisov, George Danezis, Prateek Mittal, and
Parisa Tabriz. Denial of service or denial of security?
In Proceedings of the 14th ACM conference on Com-
puter and communications security, 2007.

[10] Carole Cadwalladr and Emma Graham-Harrison. Re-
vealed: 50 million facebook profiles harvested for cam-
bridge analytica in major data breach. The Guardian,
2018.

[11] David Chaum. The dining cryptographers prob-
lem: Unconditional sender and recipient untraceability.
Journal of cryptology, Springer, 1988.

[12] David L Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 1981.

[13] Henry Corrigan-Gibbs, Dan Boneh, and David Maz-
ières. Riposte: An anonymous messaging system han-
dling millions of users. 2015.

[14] George Danezis, Roger Dingledine, and Nick Mathew-
son. Mixminion: Design of a type iii anonymous re-
mailer protocol. In IEEE Symposium on Security and
Privacy, 2003.

[15] George Danezis and Ian Goldberg. Sphinx: A compact
and provably secure mix format. In 30th IEEE Sympo-
sium on Security and Privacy (S&P), 2009.

[16] George Danezis, Chris Lesniewski-Laas, M. Frans
Kaashoek, and Ross J. Anderson. Sybil-resistant DHT
routing. In 10th European Symposium on Research in
Computer Security ESORICS, 2005.

[17] George Danezis and Prateek Mittal. Sybilinfer: Detect-
ing sybil nodes using social networks. In Proceedings
of the Network and Distributed System Security Sym-
posium, NDSS, 2009.

[18] George Danezis and Len Sassaman. Heartbeat traffic to
counter (n-1) attacks: red-green-black mixes. In Pro-
ceedings of the 2003 ACM workshop on Privacy in the
electronic society, 2003.

[19] Harry Davies. Ted Cruz using firm that harvested data
on millions of unwitting Facebook users. 2015.

[20] Roger Dingledine, Michael J Freedman, David Hop-
wood, and David Molnar. A reputation system to in-
crease mix-net reliability. In International Workshop
on Information Hiding, 2001.

[21] Roger Dingledine, Vitaly Shmatikov, and Paul Syver-
son. Synchronous batching: From cascades to free
routes. In International Workshop on Privacy Enhanc-
ing Technologies, 2004.

[22] Roger Dingledine and Paul Syverson. Reliable MIX
cascade networks through reputation. In International
Conference on Financial Cryptography, 2002.

[23] Danny Dolev and H. Raymond Strong. Authenticated
algorithms for byzantine agreement. SIAM Journal on
Computing, 1983.

[24] Nethanel Gelernter, Amir Herzberg, and Hemi Lei-
bowitz. Two cents for strong anonymity: the anony-
mous post-office protocol. 2018.

[25] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk,
and Tal Rabin. Robust threshold DSS signatures. In
Advances in Cryptology—EUROCRYPT, 1996.

USENIX Association 28th USENIX Security Symposium 1857

https://nymtech.net/
https://panoramix.me/

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson.
How to play any mental game or A completeness theo-
rem for protocols with honest majority. In Proceedings
of the 19th Annual ACM Symposium on Theory of Com-
puting, 1987.

[27] Glenn Greenwald and Ewen MacAskill. NSA Prism
program taps in to user data of Apple, Google and oth-
ers. 2013.

[28] Markus Jakobsson. Flash mixing. In Proceedings of
the 18th ACM symposium on Principles of distributed
computing, 1999.

[29] Markus Jakobsson and Ari Juels. Millimix: Mixing in
small batches. Technical report, DIMACS Technical
report, 1999.

[30] Markus Jakobsson, Ari Juels, and Ronald L Rivest.
Making mix nets robust for electronic voting by ran-
domized partial checking. In USENIX Security Sympo-
sium, 2002.

[31] Don Johnson, Alfred Menezes, and Scott Vanstone.
The elliptic curve digital signature algorithm (ecdsa).
International journal of information security, 2001.

[32] Shahram Khazaei and Douglas Wikström. Random-
ized partial checking revisited. In RSA Conference.
Springer, 2013.

[33] Albert Kwon, Henry Corrigan-Gibbs, Srinivas De-
vadas, and Bryan Ford. Atom: Horizontally scaling
strong anonymity. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, 2017.

[34] Hemi Leibowitz, Ania Piotrowska, George Danezis,
and Amir Herzberg. No right to remain silent: Isolat-
ing malicious mixes - full version. https://eprint.
iacr.org/2017/1000.

[35] Shengyun Liu, Christian Cachin, Vivien Quéma, and
Marko Vukolic. Xft: practical fault tolerance beyond
crashes. 2015.

[36] Nancy A Lynch. Distributed algorithms. Elsevier,
1996.

[37] Ralph Merkle. A digital signature based on a conven-
tional encryption function. In Advances in Cryptol-
ogy—CRYPTO, 1987.

[38] Masashi Mitomo and Kaoru Kurosawa. Attack for flash
mix. In International Conference on the Theory and
Application of Cryptology and Information Security,
2000.

[39] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len
Sassaman. Mixmaster protocol – version 2. IETF
Draft, 2004.

[40] Steven J Murdoch. Hot or not: Revealing hidden ser-
vices by their clock skew. In Proceedings of the 13th
ACM conference on Computer and communications se-
curity, 2006.

[41] Steven J Murdoch and George Danezis. Low-cost traf-
fic analysis of Tor. In IEEE Symposium on Security and
Privacy, 2005.

[42] Lasse Overlier and Paul Syverson. Locating hidden
servers. In IEEE Symposium on Security and Privacy,
2006.

[43] Peter Palfrader. Echolot: a pinger for anonymous re-
mailers, 2002.

[44] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Se-
bastian Meiser, and George Danezis. The Loopix
anonymity system. In 26th USENIX Security Sympo-
sium, 2017.

[45] Andrei Serjantov, Roger Dingledine, and Paul Syver-
son. From a trickle to a flood: Active attacks on several
mix types. In International Workshop on Information
Hiding, 2002.

[46] Victor Shoup. Practical threshold signatures. In Inter-
national Conference on the Theory and Application of
Cryptographic Techniques, 2000.

[47] Paul Syverson, Gene Tsudik, Michael Reed, and Carl
Landwehr. Towards an analysis of onion routing se-
curity. In Designing Privacy Enhancing Technologies.
Springer, 2001.

[48] Jelle van den Hooff, David Lazar, Matei Zaharia, and
Nickolai Zeldovich. Vuvuzela: scalable private mes-
saging resistant to traffic analysis. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP. ACM, 2015.

1858 28th USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2017/1000
https://eprint.iacr.org/2017/1000

On (The Lack Of) Location Privacy in Crowdsourcing Applications

Spyros Boukoros1, Mathias Humbert2, Stefan Katzenbeisser1,3, and Carmela Troncoso4

1Department of Computer Science, TU-Darmstadt, Germany
2Swiss Data Science Center, ETH Zurich and EPFL, Switzerland

3Department of Computer Science and Mathematics, University of Passau, Germany
4SPRING Lab, EPFL, Switzerland

Abstract
Crowdsourcing enables application developers to benefit from
large and diverse datasets at a low cost. Specifically, mobile
crowdsourcing (MCS) leverages users’ devices as sensors to
perform geo-located data collection. The collection of geo-
located data raises serious privacy concerns for users. Yet,
despite the large research body on location privacy-preserving
mechanisms (LPPMs), MCS developers implement little to
no protection for data collection or publication. To understand
this mismatch, we study the performance of existing LPPMs
on publicly available data from two mobile crowdsourcing
projects. Our results show that well-established defenses are
either not applicable or offer little protection in the MCS
setting. Additionally, they have a much stronger impact on
applications’ utility than foreseen in the literature. This is be-
cause existing LPPMs, designed with location-based services
(LBSs) in mind, are optimized for utility functions based on
users’ locations, while MCS utility functions depend on the
values (e.g., measurements) associated with those locations.
We finally outline possible research avenues to facilitate the
development of new location privacy solutions that fit the
needs of MCS so that the increasing number of such applica-
tions do not jeopardize their users’ privacy.

1 Introduction

Crowdsourcing is a participative online activity in which the
undertaking of a task is outsourced to a group of individ-
uals [29]. This new paradigm of distributing a fragmented
task, is an efficient, scalable business model that allows the
cheap (or often free) massive collection of data. Indicative
of the growth of this data collection methods is the appear-
ance of over 2,000 crowdsourcing platforms [1, 56] in the
last years [83]. Furthermore, according to recent industrial
reports [40], in the last decade, 85% of top global brands
have already adopted crowdsourcing, and in 2018, 75% of the
world’s highest performing enterprises would use crowdsourc-
ing. For instance, Google [2], Microsoft [3] and Mozilla [4]
use crowdsourcing to build WiFi location databases.

A driving force of the crowdsourcing ecosystem growth
is the widespread adoption of smart mobile devices, which
enable users to collect geo-located data on their devices and
share it with central servers to attain a particular objective. Mo-
bile crowdsourcing applications (MCS) have millions of users
around the world. For instance, OpenStreetMaps [5], a map
generation project from contributed GPS points, reports 4.3
million users in 2018,1 with 1 million active map editors con-
tributing over 4 billion GPS points. Similarly, OpenSignal [6],
a popular network-measuring application, reports over 20 mil-
lion users.2 Safecast [7], a citizen science project collecting
environmental data, currently reports over 75 million mea-
surements from approximately three thousand users. Many
other applications are available [4, 6, 8–18].

MCS can bring great benefits for organizations and society.
However, the collection and sharing of geo-located data raises
serious privacy concerns, as demonstrated by scandals related
to the publication of data by fitness applications [19, 20] or
irresponsible data analysis by transportation companies [21].
Location data can be used to identify points of interest (POIs)
[49, 52, 64], infer users preferences, or de-anonymize anony-
mous traces [89]. This risk increases when considering auxil-
iary publicly available information [30, 63, 70], and persists
even when protections are put in place [77, 78].

Over the last decade, the research community has proposed
a vast number of LPPMs to address these issues [76], some
of which can provide strong differentially private guaran-
tees [28, 34, 48] and even offer optimal utility [33, 73]. Even
though it seems like the location privacy question is techni-
cally solved, the reality is that these LPPMs solely focus on
one use case. They are generally geared towards LBSs in
which users sporadically reveal their location in return for a
service (e.g., to find nearby restaurants). In this context, utility
is user-centric and hinges on the precision of the reported loca-
tions. In MCS applications, on the contrary, geo-located data
is often shared continuously and over long periods and, while

1https://wiki.openstreetmap.org/wiki/Stats
2https://opensignal.com/methodology#over-20-million-

users-of-our-app

USENIX Association 28th USENIX Security Symposium 1859

https://wiki.openstreetmap.org/wiki/Stats
https://opensignal.com/methodology#over-20-million-users-of-our-app
https://opensignal.com/methodology#over-20-million-users-of-our-app

the data utility is still correlated with the location precision, it
is foremost tied to the values of the measurements reported at
these locations (e.g., WiFi signal strength, or radiation level).
Moreover, MCS utility cannot be captured with a user-centric
approach as, by definition, MCS benefits from aggregating
data collected by a large amount of users.

In this paper, we conduct the first in-depth evaluation of the
effectiveness of LPPMs in the context of MCS. We use two
representative applications, Safecast [7] and Radiocells [9],
which make their contributors’ data publicly available on their
websites and which have very different utility functions. We
propose two new privacy metrics based on statistical measures
developed for binary classification and information retrieval
to capture the privacy gain provided by the LPPMs with re-
spect to the identification of areas and points of interest. We
also consider new utility measures that, instead of relying on
distance-based errors, quantify the accuracy of the aggregate
values of data collectively generated.

The results of our experimental evaluation on real data con-
tradict common beliefs regarding the privacy-utility trade-off
offered by different LPPMs. First, location hiding method-
ologies, which in LBSs help concealing trajectories [60], do
not bring any privacy benefits to MCS users. This is mainly
because, in MCS, the volume of geo-located data is larger and
contains points reported over long periods of time (more than
a day). Second, differentially private mechanisms [28] offer
good protection only for very strong parameters, and even
when they are optimized for utility [33], they dramatically
perturb the radiation measurements. For instance, in Safecast,
we observed that it tremendously changed some areas’ radia-
tion levels, urging people to evacuate a place, and completely
hindered the ability to localize radiation hotspots (location
with elevated radiation). Finally, generalization techniques,
usually dismissed in LBSs because of their poor utility, offer
one of the best privacy-utility balance in MCS.

In summary, existing LPPMs are not well aligned with
the needs of MCS applications. Therefore, new research is
needed to approach the design of optimal LPPMs based on
collective, value-based, utility metrics instead of user-centric,
location-based utility.

Our contributions can be summarized as follows:

X We propose novel privacy and utility metrics suitable to
evaluate the performance of LPPMs for MCS data publishing
patterns.

X Using real data collected from two representative MCS
applications, we show that existing LPPMs impose too high
utility price and that many of them do not even provide good
privacy guarantees in the context of MCS.

X We discuss technical and non-technical countermeasures
to improve the privacy protection of MCS users.

2 Mobile Crowdsourcing Applications

In this section, we introduce the two crowdsourcing applica-
tions studied in detail in this paper.

2.1 Safecast
Safecast [7] is a volunteer-centered organization whose goal is
to monitor the global radiation levels and detect abnormalities
in near real time. Safecast crowdsources the collection of
radiation data by providing users with devices that collect
radiation measurements every five seconds.
Safecast dataset. This dataset contains 64.2 million measure-
ments from 608 users, collected from 2011 to 2017. Radiation
measurements contain the user’s name, a unique user ID, the
device’s ID, latitude and longitude, a UTC timestamp, and the
radiation value and units. No registration is required to access
these data and Safecast’s privacy policy3 states that to enable
flexibility “Anyone is free to use with no licensing restric-
tions”. For our experiments we removed IDs corresponding
to organizations, malformed entries, and converted all UTC
times to local. After this process, the dataset has almost 56.7
million measurements from 540 users.
Safecast utility. The Safecast project uses the collected data
to study different phenomena related to radiation. In this
paper, we consider two of the main uses of the data.

First, we consider the interactive map to visualize radiation
published on Safecast website. Safecast computes the visu-
alized radiation levels from the crowdsourced measurements
as follows. For a given region of interest, Safecast filters the
measurements within the region and computes the average
radiation at each location over the last 270 days. Second,
they discretize the area to 2.25 million grid points (1500 dis-
crete locations per axis). They create the displayed map using
nearest-neighbor interpolation on the averaged radiation mea-
surements associated to the points of the grid. The reported
radiation is measured in counts per minute (cpm), expressing
how many ionized particles are detected per minute by a mon-
itoring instrument. This use case, which relies on averaging
and interpolation, represents a setting in principle amenable
to noise in the data.

Second, we consider the detection of hotspots – specific
areas where radiation is above a pre-defined threshold. These
hotspots indicate locations where radiation could be harmful
for public safety. Once identified, Safecast might send experts
to perform on-site examination to better understand the causes
and consequences of such dangerous zones. Therefore, it is
crucial that the localization of hotspots is accurate.

2.2 Radiocells
Radiocells [9] is a community project whose goal is to provide
an open-source alternative to commercial, closed source, geo-

3https://blog.safecast.org/faq/licenses/

1860 28th USENIX Security Symposium USENIX Association

https://blog.safecast.org/faq/licenses/

location databases for cell towers and wifi base stations. They
also aim to provide raw telecommunication infrastructure data
for use in diverse scientific studies. Radiocells crowdsources
the collection of measurements via a mobile application called
‘Radiobeacon’.4 With this application, users continuously col-
lect measurements as they perform daily activities. Users
choose when to start and stop measuring, and when to up-
load the measurements to the Radiocells server. Furthermore,
they can select a specific area where measurements will not
be recorded, e.g., to protect their home locations. We do not
study the impact of this defense in this paper, but previous
work shows that it is rather fragile [57].
Radiocells dataset. The raw data uploaded to the server is
publicly available for download. It is licensed under Creative
Commons Attribution-ShareAlike 3.0 Unported and ODbL
licences aimed at not restricting the use of the data.5 Amongst
other information, the measurements include: signal strength,
cell (antenna) ID, location, timestamp, and smartphone model,
software, OS version, and manufacturer. In an effort to pre-
serve users’ privacy, this dataset does not contain usernames.
However, the combination of the smartphone characteristics,
the location, and the network provider is likely to represent
a quasi-identifier. We downloaded data for 2013 to 2017,
obtaining 25 million measurements. To separate users’ mea-
surements, we grouped the measurements according to phone
manufacturer, phone model, country and network operator.
We obtained 998 potential unique users, of which we only
kept those that had more than 100 measurements. We also
removed users with spatial inconsistencies, i.e., we removed
all users whose speed between two contiguous measurements
was greater than 200 km/h. The dataset finally contains 568
users and about 4 million measurements.
Radiocells utility. Amongst other purposes, the Radiocells
data can be used to geolocate antennas. Such information is
useful to enable scientific studies about antennas distribution
and signal quality in specific places. Contrary to Safecast,
Radiocells does not provide documentation, nor provide code
indicating how they produce their map of antennas. Thus,
we use the location function described by OpenCellID [8],
another crowdsourcing project with the same goal, which de-
fines the location of an antenna as the average of the latitudes
and longitudes of the measurements referring to this antenna.

3 Protecting Location Privacy in MCS

In this section, we describe the existing LPPMs we evaluate
in our study. These LPPMs are designed for LBSs settings,
which are different than MCS in two aspects. First, LBSs aim
at fulfilling an individual need related to one user’s location
(e.g., find nearby restaurants), while MCS aims at fulfilling a
common objective through collaborative measurements. Sec-

4https://f-droid.org/packages/org.openbmap/
5https://radiocells.org/license

ond, LBSs can often work with sparser geo-located data (just
few points per geo-located query) than MCS, which requires
continuous data collection and in a larger volume.

3.1 Defenses
We consider three type of LPPMs [65,81]: (i) spatial obfusca-
tion, (ii) hiding, and (iii) generalization. We do not consider
the use of dummy locations or synthetic data [32,35]. Both ap-
proaches focus on producing plausible artificial locations, but
to the best of our knowledge there is no proposal that provides
the means to generate measurements (or other values) to be
associated to these locations. In fact, we argue that generating
fake measurements, even using prior information, is bound
to pollute the real-time measurements that these applications
aim at collecting.

Spatial obfuscation. The state of the art in spatial obfusca-
tion, which perturbs reported locations with noise, is geo-
indistinguishability (GeoInd) [28]. This mechanism adapts
differential privacy to location data, providing privacy guaran-
tees independent from the adversary’s prior information. This
approach is widely used in the literature [22,48,62,68,75,88].
Following the original definition in [28], we obfuscate loca-
tions by adding planar Laplacian noise. The magnitude of this
noise is controlled by the parameter ε = l/r which guarantees
that the ratio between the probabilities of two points being
the real location in an area of radius r is at most l.
Release-GeoInd. As with any differentially private mecha-
nisms, in GeoInd the level of privacy decreases linearly with
the number of reported locations. To address this limitation
we implement a mechanism inspired by the predictive ap-
proach proposed in [34]. This defense reports a new noisy
location if, and only if, the user has moved at least z meters
away from his previous location. Otherwise, it repeats the last
reported location. We call this approach “Release-GeoInd”.
GeoInd-OR. Remapping6 obfuscated locations to popular
places according to prior knowledge on users’ movements
can offer optimal utility without reducing privacy [33, 73].
We complement GeoInd with the remapping approach in [33].
We refer to this approach as “GeoInd-OR”.

Hiding. This defense achieves privacy by suppressing some
of the users’ locations [60, 61]. The released locations are not
perturbed. We consider two hiding strategies: (i) a “Random”
strategy in which users release a random subset of their points,
and (ii) a “Release” strategy in which users only reveal a new
point when they have traveled at least x meters away from the
previously reported location.

Generalization. This defense reduces the precision with
which locations are reported [31, 55]. We implement this
approach by reducing the precision of the reported GPS coor-
dinates [65]. We denote this defense as “Rounding”.

6A remapping g is a function g : R2→ R2 that maps an output z ∈ R2 to
another output z′ ∈ R2 according to the probability density function g(z′|z).

USENIX Association 28th USENIX Security Symposium 1861

https://f-droid.org/packages/org.openbmap/
https://radiocells.org/license

3.2 Measuring Privacy
Location privacy metrics in the literature are mostly based on
a function of the distance between the real location of the user
and the one inferred by the adversary [80, 81]. This function
could measure the correctness of the adversary’s inference
(e.g. using, Hamming or Euclidean distances [81]), or the
uncertainty of the adversary regarding the user’s location
(e.g., using entropy [73]). These metrics are very well suited
for the case of LBSs, where users release one location per
query, and the adversary tries to infer that location. However,
they are hard to use in the MCS setting, where the adversary
has access to locations released continuously over several
days. In this case it is hard to establish between which points
to compute a distance, or across which points to compute
probability distributions for entropy-based metrics.

We also argue that the metrics above do not capture pri-
vacy in a manner understandable by users and developers of
crowdsourcing applications. How much privacy is an error
of 10 meters or 500 meters? It is clear that one is larger than
the other, but not how much privacy they provide regarding
the potential inference of sensitive information. Even more
complicated is the case of entropy, whose units of measure-
ment – bits, nats, or hartleys – are rarely known, let alone
interpretable, by layman people.

Privacy gain. We propose to quantify privacy as the loss
of adversarial inference power regarding two privacy dimen-
sions understandable by users: geographical area and POIs.
To quantify this loss, we use two well-established statisti-
cal measures: precision and recall. The former captures the
increase in privacy when, after a defense, the adversary identi-
fies many false candidate locations along with the user’s real
whereabouts. Here, the adversary has low precision (T P

T P+FP ,
where T P and FP refer to true positives and false positives,
respectively). The latter captures the increase when, after the
defense, the adversary cannot correctly identify the original
locations visited by the user. Here, the adversary has low
recall (T P

T P+FN , where FN refers to false negatives).

Spatial privacy gain. Spatial privacy considers the geograph-
ical area in which the adversary infers the user can be. We
define the true positives (T P) as the intersection of the areas
where the user can be before and after applying the defense
(i.e., the area inferred by the adversary that corresponds to the
user’s real location). Similarly, we define the false positives
(FP) to be the set difference of the area after the defense
and the area before the defense (i.e., the area inferred by the
adversary where the user was not present), and false negatives
(FN) as the set difference of the area before the defense and
the area inferred after the defense (i.e., the area where the
user has been but that is missed by the adversary).

POI privacy gain. In reality though, the geographic area itself
may not reflect users’ privacy [80]: if there is only one point
of interest in a large area, privacy should be low; and in small
areas with many POIs (e.g., a block in a city), privacy should

Table 1: Safecast (top) and Radiocells (bottom) measurements
per region. Vulnerable users are those with at least one cluster.

Region Users Measurements Average Standard Vulnerable
per user deviation users

Tokyo 30 2,701,367 90,046 203,576 24 (80%)
Fukushima 104 7,765,773 74,671 260,671 65 (62%)
World 540 56,655,768 105,504 70,954 349 (65%)

World 568 3,710,547 6,532 17,312 91 (16%)

be large. We propose a complementary metric based on POIs.
In this case, true positives (T P) are the POIs in the intersection
of areas before and after the defense is applied. Similarly, false
positives (FP) are POIs identified after the defense that were
not present before, and false negatives (FN) are the POIs
inferred initially that are missed after the defense.

3.3 Measuring Utility

Similarly to privacy, in LBSs, utility is measured as a func-
tion of distance between real and obfuscated locations of one
user. This is unsuitable for MCS where location depends on
the precision of the aggregate of multiple users’ geolocated
measurements. We now introduce the utility metrics used in
our evaluation.

Distance-based. We call distance-based metrics those asso-
ciated to LPPMs in the context of LBSs. In our experiments,
we use the per-location haversine distance7 between original
and obfuscated locations.

Aggregate statistics. Most MCS providers are interested in
aggregate statistics computed over individuals’ contributions.
This is the case for Safecast and Radiocells, where the radi-
ation map, respectively the coordinates of the antennas, are
derived from average measurements of MCS users. In our
evaluation, we consider as MCS utility metrics the actual
utility functions of the projects as described in Section 2.

4 Existing LPPMs Performance in MCS

4.1 Experimental setup

We experiment on all data available from Safecast and Ra-
diocells. For Safecast, we additionally consider two regions
in Japan with very different radiation profiles: Tokyo, where
the radiation profile is quite uniform, and Fukushima, where
the nuclear incident at the Daiichi power plant [23] in 2011
created areas with elevated radiation. Table 1 summarizes the
statistics (number of users, total amount of measurements,
and measurements per user) of the regions under study.

We evaluate the privacy gain and the utility loss of an
LPPM as follows:

7Distance between two points on a sphere given their longitudes and
latitudes.

1862 28th USENIX Security Symposium USENIX Association

Step 1. Adversary’s inference. Inspired by previous works, we
use clustering to implement inference on the regions and the
points of interest for all users. [36, 42, 46, 49, 59, 64, 69, 86].
Concretely, we use the density-based clustering algorithm
(DBSCAN) [46]. Contrary to other clustering algorithms
(such as K-Means), DBSCAN is robust to noise and outliers
and does not require to specify the number of clusters a priori
(see Appendix A.1). We keep the five clusters with the highest
number of points, and we consider their total area as the geo-
graphical area input to the Spatial Gain metric. Once clusters
are identified, we use the OSM API8 to find the POIs in the
clusters of the targeted user. We consider all points in the top
five clusters as input for the POI Gain metric. Table 1 reports
the percentage of users vulnerable to our attacks before the
defenses are applied, i.e., the percentage of users for which we
find at least one cluster. For Safecast-Tokyo, we only report
statistics for the 30 users considered when using GeoInd-OR
(see Section 4.3).
Step 2. LPPM Application. We apply the LPPM to all users’
data and repeat the actions in Step 1 to infer their regions and
points of interest. Note that when Rounding to 2 or 3 decimals,
obfuscated locations are separated by approximately 1,100
meters and 110 meters, respectively. Thus, our parametriza-
tion of DBSCAN is bound to not find any clusters. However,
an adversary would know that given an obfuscated point, the
actual location of the user is within a square of size 110,
resp. 1,100 meters, centered in the reported location. Thus,
for this case, instead of using DBSCAN clusters, we pick the
squares of the respective sizes around the five most frequently
reported obfuscated locations.
Step 3. Privacy gain. We compare the area (in square kilome-
ters) of the clusters before and after the LPPM to compute the
Spatial privacy gain, and the POIs inside the clusters for the
POI privacy gain.
Step 4. Utility loss. In the case of aggregate statistics, the
utility loss is application dependent. For Safecast, we consider
the absolute difference in cpm per grid point between the
radiation values on the application’s interactive map (see
Section 2.1), before and after the LPPM. In Radiocells, we
consider as utility loss the distance between the location of
the antennas before and after the LPPM.

4.2 Validating the Inference Strategy
We now validate the suitability of DBSCAN as strategy for
inferring areas and points of interest in the context of MCS.
Specifically, we test its suitability to identify workplaces on
data from Safecast and OpenStreetMaps. As both projects’
public data contain identifiable information about their users,
we can validate the inferences against information available
on other online platforms. We choose workplaces for ease of
validation, but we note that it is just one of many inferences
that could be done using location data [42]. Our results below

8https://wiki.openstreetmap.org/wiki/Overpass_API

Table 2: Safecast dataset statistics.
Measurements Users Avg measurements Avg days

<10k 213 3,331 5
10k-100k 230 38,341 20
100k-1M 87 270,387 105
>1M 10 1,958,760 632

confirm that DBSCAN is a suitable choice as basis to compute
areas and POIs to input in our privacy metrics.

Ethical considerations. For these experiments we do not col-
lect any personal data other than that made publicly available
by the MCS projects. We have limited our inferences to the
minimum to validate the suitability of DBSCAN. We only re-
port aggregated or anonymized data such that no individual’s
data is exposed. We have notified the service providers about
our findings, and we have shared our code with them so that
they can make informed decisions regarding improvements
of the privacy situation. Our code is open-source so that it
can also be used by other crowdsourcing applications and im-
proved by the research community [24]. This procedure has
been approved by EPFL’s Human Research Ethics Committee
(HREC).

Safecast. To evaluate the effectiveness of DBSCAN in dif-
ferent situations, we split the users in the dataset into four
groups according to their amount of measurements they re-
port. For each group, Table 2 shows the number of users, their
average amount of measurements, and the average number of
days in which they took at least one measurement. From each
group we select as targets for inference the 10 users with the
most measurements that provide their real names. Since in
the group with >1M there are only 4 users with real names,
we end up with 34 target users in total. This allows us to
manually validate our inferences in reasonable time.

Identifying workplaces. We run DBSCAN on every users’
measurements during working hours (Monday to Friday from
9AM to 5PM). We configure DBSCAN to find clusters with
at least 80 points separated by 60 meters and, if no clusters are
found, we increase the distance by 30 meters (up to 120 meters
maximum) and decrease the number of points by 15 (down to
35 points). These parameters have been chosen empirically
to optimize the adversary’s success, see Appendix A.5. To
keep the manual analysis feasible, we only consider the five
clusters with the highest number of points.

We expect that the users’ workplace is one of the POIs
within the inferred geographic area. In many cases, however,
this area is large and contains many POIs. To ease manual
validation, we use X-means clustering [74] to split these large
clusters, and consider as POIs the centroids of the two largest
subclusters. We end up with at most 10 POIs per user. We
use the MapQuest API [25] to obtain these locations’ ad-
dresses and, if existing, the names of the businesses at those
coordinates. We recall that in our LPPM evaluation below,

USENIX Association 28th USENIX Security Symposium 1863

https://wiki.openstreetmap.org/wiki/Overpass_API

we consider all points in the clusters as input for the POI
Gain metric. This represents a resourceful adversary that can
afford checking manually all the points and filter out those
corresponding to businesses. We note that considering more
points could cause more false positives, but the semantics of
locations often makes it easy to filter these out, e.g., lakes or
parks can be usually discarded as workplaces.

Once we have candidate workplaces, we validate them us-
ing social networks such as Twitter or LinkedIn, or the users’
personal webpages. We note that 9 of our target users did not
have a publicly available profile or had too common names
to find their correct information, thus we could not validate
their inferred workplaces. Overall, we recover the workplace
of 35% of the target users. This result is consistent across
the groups: 40% of the users with less than 10k measure-
ments, 20% of the users with 10k-100k measurements, 50%
of the users with 100k-1M measurements, and 25% of the
users with more than 1M measurements. We conclude that
DBSCAN performs well for POI identification irrespectively
of the amount of data shared by the users. Surprisingly, this
means that privacy seems not correlated to the volume of data
made available to the adversary. On the contrary, it seems to
be highly dependent on the collection patterns of the users.
We observe that people fall in one of two categories: (i) Those
who travel to different places with the goal of obtaining mea-
surements, whose work addresses cannot be inferred; and
(ii) those who measure radiation during their daily activities,
whose work place we can find. The Safecast co-founders, who
are the top contributors in terms of data points, fall in the first
category, explaining the lower inference power for users with
more than 1M measurements.

Our results confirm recent findings in the literature re-
garding personal information inferences from location data
[42, 45]. Yet, we want to stress that the threat may be worse
for MCS, due to the volume of data exposed by participants.
For reference, Safecast’s lowest contributing group has on
average 3k measurements per user (see Table 2) while in the
Twitter analysis performed by Drakonakis et al. [42] only the
top contributing users (less than 0.06%) have more than 3k
geolocated tweets. Thus, even if the number of MCS users is
not as large as social networks’ users, we expect a significant
fraction of them to be vulnerable to privacy attacks.

Other POIs. A deeper analysis of the times and semantics
of the POIs identified by DBSCAN revealed further infor-
mation about Safecast users. Among others, we could infer
two users’ membership to specific organizations: one member
of the Scientology church who reported many points from
the Church of Scientology Celebrity Centre in a major city;
and a Masonic lodge member who regularly visited the lodge
headquarters. We could verify this information online for both
users. We also identified two work-related activities: a US-
based scientist working on a project about radiation around a
lake in the Southern part of the US, and a photographer work-
ing in a Japanese city. We validated these inferences using

Research Gate and the webpage of the artist, respectively. Fi-
nally, we could follow the education steps of a European PhD
student. Her points of interest over time reveal the university
where she obtained her master’s degree, an exchange with
another European university, and the university where she is
completing her doctoral studies. We verified these facts on
her CV available online.

OpenStreetMaps. Contrary to Safecast, OSM does not have
an open API for accessing users’ data. Yet, traces from users
who have chosen to make their data available can be easily
obtained from OSM’s website.9 To minimize the impact on
OSM servers, and comply with their non-crawling policy, we
manually downloaded data for 30 users with a large amount
of contributions,10 of which 17 used their actual names (or
indicative nicknames). Although the majority of the points in
the dataset were rather old (most of them at least 7-8 years
old), we were able to verify previous workplaces for 3 of the
17 users (17%). We note that, for some users, we found out
that they did not have a standard place of employment during
data collection period (e.g., students). However, for all users,
their POIs were within the area where they worked or lived.
We used this fact to infer two of the users’ short vacation
trips which we manually verified with information publicly
accessible from their social media accounts.

4.3 Privacy Gain

Defenses implementation. For the GeoInd defense, we
set the privacy parameter l = ln(1.6), and use radius r ∈
{50,150,300} meters which yields ε ∈ {0.01,0.003,0.001}.
Remapping the locations for the LPPM GeoInd-OR requires
computing the posterior probability for every candidate lo-
cation. This operation is rather costly when the number of
locations being considered grows. To keep a reasonable ex-
perimentation time, we only test GeoInd-OR for the Tokyo
region in the Safecast dataset. We use 80% of the users to
construct the prior probability distribution describing users’
movements, and the remaining 20% to evaluate the effec-
tiveness of the approach. We chose this 20% manually to
keep a balanced testing set. It is composed of the top 10
users with many (more than 50k), moderate (between 10k
and 50k), and few (less than 10k) measurements. Finally, for
the Release-GeoInd mechanism, we use l = ln(1.6), r = 50
meters, and we select the distance between released locations
to be z ∈ {30,60,90} meters. We provide details about the
implementation of these LPPMs in Appendices A.2 and A.3.

We implement the Random mechanism tossing a biased
coin every time a location is about to be reported. The bias
is set so that users release on average 40%, 60% or 80% of
their measurements. For the Release mechanism, we sort all
the locations reported by a user in chronogical order, and

9https://www.openstreetmap.org/traces
10http://resultmaps.neis-one.org/oooc

1864 28th USENIX Security Symposium USENIX Association

https://www.openstreetmap.org/traces
http://resultmaps.neis-one.org/oooc

Figure 1: Safecast privacy gain: Spatial (top) and POIs (bottom). Amount of measurements per user + : <10k, : [10k,50k], N :
>50k. Each point on the graphs represents one user.

release a new location only if it is separated by (at least)
x ∈ {30,60,90} meters from the previously reported one. If
two locations are less than x meters apart but in different days,
we release them both.

Last, we implement Rounding by rounding to 2, 3, or 4
decimals the latitude and longitude of the users’ locations. Ef-
fectively, this reduces the location accuracy to roughly 1,100
meters, 110 meters and 11 meters, respectively.

4.3.1 Safecast

We first evaluate the privacy gain of the LPPMs in the Safecast
dataset. Figure 1 shows the Spatial (top) and POI (bottom)
gain for Tokyo, Fukushima, and the whole world. (Figure 12
in the appendix shows the results for each of the defenses sep-
arately for the whole world.) The x-axis represents precision,
and the y-axis recall. Each point in the graph represents a user,
and the markers’ shape indicate the amount of measurements
she contributes. The colors represent the LPPMs. To compute
these graphs, we configure DBSCAN to find clusters with at
least 75 points separated by at most 30 meters (roughly the
size of a small building). As in [42], we also require that, for
each cluster, users either stay more than 30 minutes, or visit it
for at least two days. A first reason to fix these parameters is
to evaluate the gain for all users under the same conditions. A
second reason is that the loose parameters used in Section 4.2

can yield very sparse clusters with few points that are hard
to break by removing or perturbing locations. Thus, the de-
fenses would perform equally bad and we would gain little
information about their properties. Tightening the parameters
reduces the work inference success to 21% (some clusters are
not found), which still represents a significant risk.

Defenses that provide large gains result in points close to
the figure axes. Points near the y-axis indicate low precision,
i.e., cases in which the adversary correctly identifies some (or
even all) of the true locations but also inferred many other
wrong locations. Points near the x-axis indicate low recall,
i.e., cases in which the adversary correctly identifies some
real locations, but misses many others. Unsurprisingly, we
observe a high variance in the defenses’ performance since
it is highly dependent on the user behavior. However, it is
possible to identify some trends.

We first discuss the Spatial privacy gain (Figure 1, top).
For the least privacy-preserving parameter (r = 50m), GeoInd
significantly decreases the number of vulnerable users (grey
points in the figure) from the values reported in Table 1. The
reduction is 50% for Tokyo (from 24 vulnerable users to 12),
45% for Fukushima, and 45% for the whole world. When
the mechanism is strengthened (r = 300m), GeoInd adds so
much noise (see Figure 10 in Appendix A.4 for reference)
that no users are vulnerable after the defense. In summary,
GeoInd seems to provide fairly good privacy gain in Tokyo

USENIX Association 28th USENIX Security Symposium 1865

and Fukushima. Yet, when we look at the whole dataset, it be-
comes clear that the protection provided by GeoInd is highly
dependent on the users’ movement patterns.

The Release-GeoInd (yellow) mechanism works generally
better than GeoInd. Even though more users are vulnera-
ble (only between 4% and 13% of the users become not-
vulnerable) and the adversary obtains reasonable precision, it
yields very low recall. This is because in this method users
keep reporting the same obfuscated location until they move.
This repetition results in clusters being found on fake loca-
tions that often do not overlap with the original ones. This
reduction becomes more significant as the defense is config-
ured to provide more privacy (larger z).

GeoInd-OR performs slightly better than vanilla GeoInd.
This is because the remapping results in points being repeat-
edly mapped to popular places causing the generation of clus-
ters around those not-real locations.

Similar to vanilla GeoInd, the Release mechanism (blue)
significantly reduces the number of vulnerable users – by
more than 50% even for the least conservative parameter.
However, when precision is very high, i.e., when a cluster is
found, it corresponds to a real location. The reason is that
even though the user hides many points, if a location is visited
regularly, the user will eventually report enough points around
this location to make the cluster identifiable by the adversary.

The Random hiding mechanism (green) does not perform
well. First, it reduces the number of vulnerable users less than
other defenses (10% decrease in Tokyo, 27% in Fukushima,
and only 5% when considering the whole world). From the
vulnerable users only a handful obtain good protection. We
could not find a clear pattern to predict which movement
profiles would best benefit from this defense. For many users,
especially those with a few points, removing points at random
still yields high precision as the few measurements are very
localized. Overall, we do not notice much influence of the
fraction of hidden points on the privacy of the users.

Finally, the protection provided by Rounding (pink) de-
pends on the rounding parameter. Keeping 4 decimals re-
duces accuracy by just 11 meters. Therefore, the adversary
finds roughly the same clusters, i.e., for many users we ob-
serve high recall and precision after the defense (especially
in Tokyo and Fukushima). On the contrary, rounding to 2 or
3 decimals significantly increases the size of inferred spatial
areas, which leads to variable recall (depending on the users’
movement patterns) and low precision.

Regarding the POI privacy gain (Figure 1, bottom), a first
observation is that the amount of users vulnerable to the attack,
i.e., points in the graph, is lower. This is because for many
users the identified clusters do not contain any POI (according
to the OSM API). Second, for the users who have POIs in
their clusters, both recall and precision are higher than in the
Spatial gain. This is because many of the large clusters that
contribute to the low Spatial precision do not have POIs and
thus do not contribute to the confusion of the adversary when

identifying particular POIs. Furthermore, the clusters that the
adversary finds after the LPPMs may cover a smaller area
than the original clusters, but still contain most of the users’
initial POIs. This provides a higher POI recall than Spatial
recall. Third, in this case we observe a significant difference
between Tokyo and Fukushima. The reason is twofold. First,
the Fukushima prefecture is much larger than the area of
Tokyo we consider. Second, Fukushima is a rural area and thus
contains fewer POIs than Tokyo where even small clusters
have many places of interest.

These observations reinforce previous insights that solely
considering the spatial dimension may provide a false per-
ception of privacy [80]. Considering a POI-privacy measure
is necessary for providing a comprehensive picture of the
privacy threat users face in MCS applications. We note that
this perception also depends on DBSCAN parameters, which
define the size of the regions found, and consequently the
number of POIs, increasing the manual effort of the adversary.
We discuss this effect in Appendix A.5.

Impact of the amount of measurements on privacy. We
present in Figure 2 the Spatial gain for the three best LPPMs
(all parameters combined) split by the amount of measure-
ments users contributed. We discard Rounding 4 as it does
not provide any privacy. We see that all LPPMs provide low
precision and recall regardless of the users’ contribution vol-
ume. The exception is Rounding which, as explained above,
by definition provides variable recall and low precision.

Counterintuitively, the LPPMs perform worse for users
who contribute fewer points. This is because the attack con-
structs more, and larger (on average 10 times bigger), clusters
for people who share many points than for those sharing
fewer points. These clusters are split after the LPPMs are put
in place, as some reported locations are moved away from
their original clusters while other measurements, perturbed
with noise, concentrate to new places forming wrong clusters.
For Rounding, where every cluster created after the LPPM
has roughly the same size, users with a few measurements
have higher recall because their initial small clusters are often
covered by the large regions resulting from the LPPM.

Thwarting workplace inference. Finally, we evaluate the ef-
fectiveness of the different LPPMs at hiding workplaces. Re-
call that, without protection, we can identify the workplace
of 21% (7 out of 34) of the users. Five defenses, GeoInd,
Release-GeoInd, Release, and Rounding 2, protect all users
from inferences. Random hiding requires heavy sampling to
be effective (hiding only 20% permits the identification of 6
workplaces, and hiding 40% still reveals 1). Finally, unsur-
prisingly, Rounding to 4 decimals does not protect against
work inference, and Rounding with 3 decimals only hides one
workplace out of 7.

1866 28th USENIX Security Symposium USENIX Association

Figure 2: Precision (green) and recall (red), depending on the
amount of measurements x per user for three selected defenses
(all parameters combined).

Figure 3: Spatial privacy gain (left part) and POI privacy gain
(right part) in Radiocells. Amount of measurements per user
+ : <10k, : [10k,50k], N : >50k. Each point on the graphs
represents one user.

4.3.2 Radiocells

Users in Radiocells have on average fewer measurements than
those in Safecast, and clustering requiring 75 points yields
very few clusters. Hence, for this dataset we loosened the
DBSCAN requirement to 25 points per cluster.

We see in Figure 3 that GeoInd-based mechanisms be-
have similarly to the Safecast case in terms of Spatial gain:
GeoInd provides highly variable protection, and Release-
GeoInd yields low recall while precision depends on the user
behavior. Vanilla GeoInd decreases the number of vulnera-
ble users by 14%, and Release-GeoInd by 2%. Given that
only 16% of the users were initially vulnerable, this reduc-
tion is significant. For the hiding mechanisms, the Random
and the Release mechanisms decrease the number of vulner-
able users by 7% and 14%, respectively. For the vulnerable
users, contrary to Safecast, these mechanisms consistently
yield high precision, i.e., they offer poor privacy protection
for Radiocell’s users movement profiles. Finally, the Round-
ing mechanisms with parameters 2 and 3 offer reasonable
privacy. Regarding POIs, we observe similar behavior to the

Figure 4: Measurement error in Tokyo using a distance-based
metric. This can be interpreted either as privacy gain or utility
loss.

Safecast dataset.
Overall, the results in Radiocells are consistent with our

findings in the Safecast dataset, confirming the trends regard-
ing the LPPMs behavior in the MCS setting.

4.4 Privacy-Utility Trade-Off
4.4.1 Safecast

Distance-based metric vs Aggregate statistics for MCS. We
first evaluate the utility loss incurred by the LPPMs measured
using the LBS-oriented distance-based metric described in
Section 3.3. This utility metric is based on the distance be-
tween reported and real locations, but disregards the (radia-
tion) values that Safecast cares about. Figure 4 displays the
results for users in the Safecast-Tokyo dataset. The y-axis
indicates the distance in meters, and the x-axis the LPPM
and the percentage of points that are released. Random and
Release LPPMs, which add no noise, are the best in terms
of error; and GeoInd LPPMs offer the worst performance
as they tend to spread locations — sometimes more than a
kilometer away from the initial measurements (see Figure 10
in Appendix A.4).

Next we consider the utility loss for aggregated statistics,
i.e., utility measured as the difference between radiation val-
ues to be plotted on the generated map. We plot per grid-point
utility loss for Tokyo and Fukushima in Figures 5 and 6, re-
spectively. We observe that the loss is similar in both regions,
though in Fukushima the median loss is slightly higher and
there are more, and larger (up to 104 radiation offset with
respect to the original value), outliers than Tokyo. Because
of the interpolation step, in this case all GeoInd variants of-
fer roughly the same utility loss on average. Still, Hiding
and Rounding strategies offer better performance, with small

USENIX Association 28th USENIX Security Symposium 1867

Figure 5: Absolute difference in Tokyo’s radiation values with
Safecast dataset.

median error for the least protective parameters.
If we compare the distance-based results (Figure 4) to the

aggregated statistics utility loss (Figure 5), we observe signifi-
cant differences. First, the interpolation step results in LPPMs
based on GeoInd to fare much better in terms of aggregates
than in terms of distance. Second, distance-based metrics un-
derestimate the utility loss of hiding LPPMs (Random and
Release). While it is true that the released points have no error
in distance, hiding points comes at a cost not reflected in the
metric. This is made evident by the aggregated metrics, which
show that the more points are hidden, the larger is the utility
loss. We note that relying on Markov mobility models such
as in [51, 81] could help interpolate the hidden locations. Yet,
this would not help recover the (radiation) values attached to
them and the utility loss would remain. For the generalization
mechanisms, distance-based metrics consistently report larger
median loss, but have less variance and less outliers.

In summary, distance-based metrics provide a very different
perception of the LPPM performance than considering utility
functions computed on the geo-located values, overestimating
the performance of some methods (e.g., hiding strategies)
and underestimating others (e.g., GeoInd-based LPPMs). We
conclude that traditional LBS-oriented metrics are inadequate
for measuring utility in MCS scenarios.

Semantic interpretation. The absolute difference in cpm of
measurements before and after the defense gives a rough idea
about the utility loss, but it is difficult to interpret. Is it sig-
nificant? What is the effect of outliers? Does reporting the
values after the defense have any implication on the danger
for human health? To answer these questions, we study how
the variance introduced by the defenses can change the in-
terpretation of the risk at a given location. To this end, we
rely on the cpm safety scale [26] provided with one of the
top-seller Geiger counters (radiation measurement devices)
on the market. This scale contains five categories:
• Category 1: 0-50 cpm. Normal radiation background.
• Category 2: 51-99 cpm. Medium level.

Figure 6: Absolute difference in Fukushima’s radiation values
with the Safecast dataset.

Table 3: Danger category changes after applying Geo-Ind
(r = 300 meters) in Fukushima.

Geo-Ind: 300m 1 2 3 4 5 Number

Original of points

1 79.7% 19.3% 1% 0.003% 0.001% 1,354,110
2 41.5% 49.5% 9% 0.023% 0.01% 650,486
3 8.7% 35.9% 52.2% 2.3% 0.9% 229,848
4 2.5% 3.3% 49.3% 29.8% 15.1% 10,489
5 3.9% 1.7% 34.7% 29.3% 30.4% 5,067

• Category 3: >100 cpm. High level.
• Category 4: >1000 cpm. Very high level, leave area.
• Category 5: >2000 cpm. Extremely high level, immedi-

ate evacuation.
We select the prefecture of Fukushima and two defenses that
produce a good level of privacy: GeoInd 300m and Rounding
2. For each of the 2.25 million grid-points on Safecast’s radia-
tion map for Fukushima, we compute their radiation category
according to the safety scale before and after each defense.
For GeoInd 300m, which is of probabilistic nature, we repeat
the procedure 10 times and report the average. We present
the results in Tables 3 and 4. We observe that the majority of
the points either stay in their original category or move to a
nearby. However, we observe some extreme category jumps
from the first category (safe radiation levels) to the fourth and
fifth (high danger). For instance, GeoInd causes 53 places to
be marked as dangerous instead of safe. Even more alarming,
283 locations that should be marked as extremely dangerous
are marked as safe or slightly elevated (categories 1 and 2).
On the contrary, the Rounding mechanism limits the number
of extreme changes. For instance, there is a category jump
from 5 to 1 and 2 only for 45 grid-points.

Why optimal remapping does not work for MCS. Even
though GeoInd-OR was designed to increase utility while
preserving privacy, we observe that, in the MCS case, util-
ity roughly stays the same (Figure 5), and privacy slightly
increases, both in decreasing the number of vulnerable users
and in increasing the spatial gain. The reason for this mis-
match is that this mechanism was designed in the context of

1868 28th USENIX Security Symposium USENIX Association

Table 4: Danger category changes after applying the Rounding
mechanism (2 decimals) in Fukushima.

Rounding: 2 1 2 3 4 5 Number

Original of points

1 89.3% 10.3% 0.3% - 0.001% 1,354,110
2 30.2% 64% 5.8% 0.003% - 650,486
3 0.7% 22.6% 74.8% 1.6% 0.3% 229,847
4 0.2% 0.01% 43.3% 39.6% 16.9% 10,490
5 0.9% - 9.3% 42.1% 47.6% 5,067

Figure 7: Prior probability of visiting locations in Tokyo
(white - low probability, black - high probability).

LBSs, where remapping locations to places where the user is
likely to be is bound to provide good utility on average. How-
ever, in Safecast, the utility does not depend on the locations
themselves, but on the associated measurements. Remapping
the location, however, concentrates measurements in these
popular locations, effectively polluting the measurements. We
illustrate this effect in Figure 7, which represents the prior
probability of users’ locations over all locations in Tokyo (low
in white, high in black). In the low probability areas, most
locations have the same probability, thus remapping has a
randomizing effect. However, when there is a location with
high probability, all locations are remapped to this popular
location. We note that, while significantly hurting utility, this
effect creates artificial clusters that reduce the adversary’s
precision and recall, thus increasing privacy.

The case of high precision measurements. Safecast also uses
the crowdsourced measurements to monitor radiation hotspots
that could be dangerous for public health. For this case, lo-
cation precision is highly important, both to understand the
dangers it can cause and to keep low costs if experts have to
be sent to study the origin of the abnormality.

We study the impact of LPPMs on hotspot localization by
looking for locations with more than 100 cpm radiation after
averaging the measurements over the last 270 days but before
interpolating the data. This is to avoid that interpolation mod-
ifies the position of the hotspots, or even eliminates them. We
show the results of detection when using the raw measure-

Figure 8: Safecast: Hotspot detection for areas with at least
100 cpm. Comparison of various defenses vs the original
hotspots.

ments (top left), and after the application of Release-GeoInd
30m (bottom left), GeoInd 300m (top right), and Rounding
2 (bottom right) in Figure 8. We see that noise-based mecha-
nisms spread the measurements and, as the noise increases,
create additional hotspots. Thus, these mechanisms are use-
less for hotspot detection: the results cannot be properly in-
terpreted. Imagine a hotspot in a place known to present high
radiation, thus being already closely monitored by the author-
ities. Finding such hotspot is not alarming. However, after
spreading, the finding of hotspots conveys a much different
message, especially when they appear in zones that had low
radiation in the past.

Generalization such as Rounding 2, which provides a good
privacy-utility tradeoff for aggregated statistics, also performs
poorly. In this case, the defense causes hotspots to disappear,
potentially causing a dangerous situation if a high radiation
zone is marked as safe. We also carry out experiments with
hiding mechanisms and find that, similarly to Rounding, they
miss some of the original hotspots.

Safecast takeaways. Considering only the privacy loss,
GeoInd variants (except GeoInd 50m) and Rounding to 2
decimals seem to offer the best performance, while Random
sampling and Release’s protection is generally bad in terms
of precision, and also too dependent on users’ movement pro-
files. However, an analysis of the utility impact indicates that
none of the existent LPPMs is well suited for the Safecast
setting. The semantic interpretation results indicate that even
if two defenses produce similar average results, the outliers
they create can convey opposite messages. Furthermore, even
a slight addition of noise or generalization can hinder the
project’s ability to correctly locate abnormal events. These
limitations effectively prevent Safecast from deploying them
to protect their users’ privacy.11

11This statement was verified in communication with Safecast.

USENIX Association 28th USENIX Security Symposium 1869

Figure 9: Radiocells: Utility loss (distance to tower location).

4.4.2 Radiocells

Radiocells’ utility function is rather different than the one
for Safecast. Instead of averaging measurements associated
to a location, Radiocells averages all reported coordinates
associated to an antenna to derive its position. We show the
related utility loss for different LPPMs in Figure 9.

All GeoInd variants induce high utility loss, with medi-
ans between 80 and 400 meters, and with outliers beyond 2
kilometers. Surprisingly, in this use case hiding mechanisms
(Release and Random) have many outliers. After manual in-
spection, we found out that several users had inconsistent
measurements. For instance, a user was swapping her mea-
surements’ longitudes and latitudes in a random pattern. Other
outliers are caused by providers moving their antennas IDs
creating mixed measurements for a given ID. Furthermore,
hiding defenses also influence the number of antennas located.
In our dataset, we detect from 10.2% up to 18.6% fewer an-
tennas when the Release defense is used, and the Random
mechanism eliminates from 2.6% up to 13.7% of them.

The best mechanism in the Radiocells dataset is Release
GeoInd which offers on average lower utility loss than other
LPPMs and provides acceptable privacy. However, some an-
tennas might be moved over a kilometer away. The next best
alternative is Rounding 2 that has a higher median utility loss
but no outliers. However, as the goal of the project is to accu-
rately detect antennas in order to give individuals the ability
to geolocate themselves offline or to enable scientific studies,
a median error of 100 meters (Release GeoInd) or 200 meters
(Rounding 2) is considered too large and precludes Radiocells
from deploying them.

5 What’s Next?

In this section, we elaborate on technical and non-technical
steps to enhance privacy at smaller utility cost in the context
of MCS applications.

5.1 Towards Effective Defenses

We first discuss possible strategies to improve the trade-off
between users’ privacy and MCS utility.

An unexplored approach is the use of advanced crypto-
graphic protocols to compute the values of interest for MCS
without revealing the users’ individual values to the providers
[41]. For instance, users could use multi-party computation to
collaboratively compute aggregates and only report the result
to the provider. However, cryptographic approaches require
high computational power on the users’ side and increase the
bandwidth needs to perform the joint computation. Further-
more, this would limit the availability of raw measurements
for analysis other than those predefined by the cryptographic
protocols, which is at odds with the principles of open data
and open science defended by most of the MCS platforms.

In our evaluation, we only considered spatial generaliza-
tion. Another avenue to explore would be to also generalize
the time dimension. On its own time obfuscation cannot hide
patterns revealed by repeated visits. However, combined with
full de-identification and hiding of users could reduce the in-
ference power of the adversary. For instance, the MCS service
provider could release a batch of measurements once a day or
once a week without linking these to any user identifier. These
techniques would be cheaper than the use of cryptography,
but require trust on the service provider to properly apply
sanitization and protect the raw data.

A third research path is the co-design of defenses and ag-
gregation algorithms. In this paper, we have considered that
the output of the LPPMs is directly input to the utility func-
tions currently used by MCS providers. However, it would
be possible that the providers adapt their data processing to
account for noise, using statistical methods or machine learn-
ing, as done in fields that rely on noisy sensors [79] or train in
different settings from which they are deployed [43, 72, 85].

Finally, MCS could provide users with dedicated local soft-
ware (e.g., building on our evaluation method) to alert them
regarding the privacy dangers of publishing raw location data.
Such a system would allow them to selectively hide some
of their measurements, reducing the confidence of inference
attacks. We note that, when building such a tool, one would
like to consider attacks beyond the POI-based inferences con-
sidered in this paper. For instance, it has been shown that
co-locations can unveil social links [38, 44]. We run a pre-
liminary evaluation to learn whether our MCS setting is also
prone to such an attack. We identified 50 unique pairs of users
with real names and at least one co-location (similar latitude,
longitude, and time) in the Safecast dataset. We could validate
16 of these pairs as real friendships using information avail-
able on online social networks, i.e., yielding a 32% correct
inference rate. Note that many of the other pairs could not be
verified because either users were not part of any social net-
work or they did not publicly reveal their social links. More
advanced methods, such as measuring the amount of time

1870 28th USENIX Security Symposium USENIX Association

two users are co-located or the number of different locations
where two users jointly report their locations [30,38,87] could
further improve these results. Therefore, new defenses need
to also obfuscate co-locations [71].

5.2 Privacy Considerations for Developers
In our study, we identified a number of issues related to the
collection and sharing of data that, even though cannot fully
prevent inference, could make inference attacks detectable
and could render potential attackers accountable.

A first consideration to make is the type of policy un-
der which MCS publish the collected data. While making
large datasets available to everyone for unrestricted use is
admirable, and certainly of high value for the academic com-
munity, it can have serious implications for the altruistic con-
tributors. To reduce this risk, developers could add clauses
to the policies that not only mandate that use of the data is
properly acknowledged, but also that it is well documented,
implying that researchers or other individuals have to disclose
how they have processed the data, and for which purpose.

Second, both Safecast and Radiocells datasets are available
for download without the need for authentication. This hinders
traceability of who has the data, and thus enables stealthy
attacks where nor the users neither the applications are aware
of the danger. Like in other projects that make data available
for research and other purposes (e.g., the Drebin project12),
these sites could require simple registration to maintain a
log of who has had access to the datasets. Together with the
previous requirement, which would include documentation
of sharing, it should help mitigate the risks.

Third, these applications typically do not perform any con-
trol on who are the contributors. This poses a particular prob-
lem when it comes to children. In many jurisdictions, chil-
dren’s data are subject to particular legislation [37, 47], and
in particular require the parents’ consent to be collected and
processed. The lack of control upon collection implies that the
datasets could contain children’s geo-located data collected
illegally. Adding control would solve this problem and also
support the previous two points.

Finally, the datasets we studied contain data from users
from all over the world. These users, therefore, are subject
to different legislations that regulate how their data can be
processed. While this may not be a problem for corporations
or criminals that want to exploit the datasets, it creates a
hurdle for researchers who have to obtain approval from their
institution for data processing. This problem arised during our
discussions with our institution’s Ethical Review Committee,
and almost caused us to stop the project. In other words, lack
of proper documentation may limit the free use of the data for
science, effectively hindering one of the main goals of these
applications. Better documentation as to the origin of data
and its use possibilities would greatly facilitate the process.

12https://www.sec.cs.tu-bs.de/~danarp/drebin/

6 Related Work

We have covered the related work on LPPMs in Section 3.1
and the previous work on privacy quantification in Section
3.2. We complete this review of the literature with previous
research on human mobility and its privacy implications.

Similar to [36, 49, 58, 59, 64, 66, 67, 69, 86], our POIs ex-
traction attack is based on machine learning. Gambs and
Killijian [52] also rely on POIs inference to build mobility
Markov chains and de-anonymize traces. Gonzalez et al. [54]
and Song et al. [82] study anonymized mobile phone data.
Their results indicate that human trajectories have a high
degree of temporal and spatial regularity, and that an individ-
ual’s location data history is a unique identifier. De Montjoye
et al. [39] investigate how the uniqueness of mobility traces
decays depending on their resolution. They show that unique-
ness cannot be avoided by lowering the resolution of a dataset.
While these works aim at understanding the uniqueness of
individuals or de-anonymize them, we focused on inferences
that rely on labeled traces.

Similar to us, Gambs et al. [50] develop a platform for
evaluating various sanitization methods and attacks on geo-
located data. They focused on evaluating LBSs, while we
evaluate the effectiveness of defenses on MCS applications.
We also use different privacy metrics, and utility functions,
tailored to the MCS scenario. Finally, Drakonakis et al. [42]
explore the privacy loss stemming from by public location
metadata. They propose a tool to infer users’ regions of in-
terest and, by experimenting with data gathered from Twitter,
they illustrate the accuracy of their tool in pinpointing users’
sensitive locations. Furthermore, they highlight how the spa-
tial data provide additional context on the information shared
by the user. We use similar techniques to prove that these
inferences are also possible in MCS. For further information
about the security and privacy landscape of location data we
refer the reader to the surveys in [53, 65, 76, 84].

7 Conclusion

Mobile crowdsourcing is an increasingly popular way to
collect geo-located data from millions of contributors. We
present the first study on privacy implications of MCS applica-
tions. We study the applicability of well-established location
privacy defenses created for LBSs. We show that neither the
location privacy and utility metrics typically found in the lit-
erature nor the existing privacy-preserving mechanisms are
well-suited for the MCS case. On the one hand, given the per-
sistent patterns stemming from continuous collection, these
solutions provide less privacy than in the case of LBSs where
locations are revealed once. Second, the existing mechanisms
are optimized to provide utility regarding the location of the
users, but MCS applications rely on measurements associated
to these locations, or on some function of the locations. There-
fore, state-of-the-art defenses have a detrimental impact on

USENIX Association 28th USENIX Security Symposium 1871

https://www.sec.cs.tu-bs.de/~danarp/drebin/

the MCS utility.
In conclusion, we identify an underexplored space in the

location privacy literature, that is of practical relevance for
many new applications. We have outlined promising lines
to improve the situation. We hope that our findings spawn
new research that soon enables the deployment of privacy-
preserving crowdsourcing applications.

Acknowledgments
This work has been funded by the German Science Founda-
tion (DFG) as part of the project A1 within the RTG 2050
“Privacy and Trust for Mobile Users”.

References

[1] URL: https://www.spotteron.net/apps.

[2] URL: https://support.google.com/wifi/answer/
6246642.

[3] URL: https://privacy.microsoft.com/en-us/
windows-10-location-and-privacy.

[4] URL: https://location.services.mozilla.com.

[5] URL: https://www.openstreetmap.org.

[6] URL: https://opensignal.com/.

[7] URL: https://blog.safecast.org.

[8] URL: https://www.opencellid.org.

[9] URL: https://radiocells.org.

[10] URL: https://www.skyhookwireless.com.

[11] URL: https://www.sensorly.com.

[12] URL: http://www.cellumap.com.

[13] URL: https://www.mapillary.com.

[14] URL: https://play.google.com/store/apps/
details?id=com.opensignal.weathersignal.

[15] URL: https://www.waze.com.

[16] URL: https://www.qualcomm.com/solutions/
automotive/drive-data-platform.

[17] URL: https://www.gokamino.com.

[18] URL: http://www.app-store.es/stereopublic.

[19] URL: https://www.wired.com/story/strava-
heat-map-military-bases-fitness-trackers-
privacy/.

[20] URL: https://www.bellingcat.com/resources/
articles/2018/07/08/strava-polar-revealing-
homes-soldiers-spies/.

[21] URL: http://www.whosdrivingyou.org/blog/
ubers-deleted-rides-of-glory-blog-post.

[22] URL: https://github.com/SpatialVision/
differential_privacy.

[23] URL: https://en.wikipedia.org/wiki/
Fukushima_Daiichi_nuclear_disaster.

[24] URL: https://github.com/spring-epfl/
MCSAuditing.

[25] URL: https://developer.mapquest.com/
documentation.

[26] URL: http://www.gqelectronicsllc.com/
GMC_Safty_Guide.jpg.

[27] URL: http://earthpy.org/
interpolation_between_grids_with_ckdtree.html.

[28] Miguel E Andrés, Nicolás E Bordenabe, Konstanti-
nos Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential privacy for location-
based systems. In CCS, 2013.

[29] Enrique Estellés Arolas and Fernando González-Ladrón-
de-Guevara. Towards an integrated crowdsourcing defi-
nition. J INF SCI, 2012.

[30] Michael Backes, Mathias Humbert, Jun Pang, and Yang
Zhang. walk2friends: Inferring social links from mobil-
ity profiles. In CCS, 2017.

[31] Bhuvan Bamba, Ling Liu, Péter Pesti, and Ting Wang.
Supporting anonymous location queries in mobile envi-
ronments with privacygrid. In WWW, 2008.

[32] Vincent Bindschaedler and Reza Shokri. Synthesizing
plausible privacy-preserving location traces. In IEEE
S&P, 2016.

[33] Konstantinos Chatzikokolakis, Ehab Elsalamouny, and
Catuscia Palamidessi. Efficient utility improvement for
location privacy. PETS, 2017.

[34] Konstantinos Chatzikokolakis, Catuscia Palamidessi,
and Marco Stronati. A predictive differentially-private
mechanism for mobility traces. In PETS, 2014.

[35] Rui Chen, Gergely Ács, and Claude Castelluccia. Differ-
entially private sequential data publication via variable-
length n-grams. In CCS, 2012.

1872 28th USENIX Security Symposium USENIX Association

https://www.spotteron.net/apps
https://support.google.com/wifi/answer/6246642
https://support.google.com/wifi/answer/6246642
https://privacy.microsoft.com/en-us/windows-10-location-and-privacy
https://privacy.microsoft.com/en-us/windows-10-location-and-privacy
https://location.services.mozilla.com
https://www.openstreetmap.org
https://opensignal.com/
https://blog.safecast.org
https://www.opencellid.org
https://radiocells.org
https://www.skyhookwireless.com
https://www.sensorly.com
http://www.cellumap.com
https://www.mapillary.com
https://play.google.com/store/apps/details?id=com.opensignal.weathersignal
https://play.google.com/store/apps/details?id=com.opensignal.weathersignal
https://www.waze.com
https://www.qualcomm.com/solutions/automotive/drive-data-platform
https://www.qualcomm.com/solutions/automotive/drive-data-platform
https://www.gokamino.com
http://www.app-store.es/stereopublic
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/
https://www.wired.com/story/strava-heat-map-military-bases-fitness-trackers-privacy/
https://www.bellingcat.com/resources/articles/2018/07/08/strava-polar-revealing-homes-soldiers-spies/
https://www.bellingcat.com/resources/articles/2018/07/08/strava-polar-revealing-homes-soldiers-spies/
https://www.bellingcat.com/resources/articles/2018/07/08/strava-polar-revealing-homes-soldiers-spies/
http://www.whosdrivingyou.org/blog/ubers-deleted-rides-of-glory-blog-post
http://www.whosdrivingyou.org/blog/ubers-deleted-rides-of-glory-blog-post
https://github.com/SpatialVision/differential_privacy
https://github.com/SpatialVision/differential_privacy
https://en.wikipedia.org/wiki/Fukushima_Daiichi _nuclear_disaster
https://en.wikipedia.org/wiki/Fukushima_Daiichi _nuclear_disaster
https://github.com/spring-epfl/MCSAuditing
https://github.com/spring-epfl/MCSAuditing
https://developer.mapquest.com/documentation
https://developer.mapquest.com/documentation
http://www.gqelectronicsllc.com/GMC_Safty_Guide.jpg
http://www.gqelectronicsllc.com/GMC_Safty_Guide.jpg
http://earthpy.org/interpolation_between_grids_with_ckdtree.html
http://earthpy.org/interpolation_between_grids_with_ckdtree.html

[36] Sung-Bae Cho. Exploiting machine learning techniques
for location recognition and prediction with smartphone
logs. NEUROCOMPUTING, 2016.

[37] U.S. federal trade commission. complying with coppa:
Frequently asked questions, 2015.

[38] David J Crandall, Lars Backstrom, Dan Cosley, Sid-
dharth Suri, Daniel Huttenlocher, and Jon Kleinberg.
Inferring social ties from geographic coincidences. P
NATL ACAD SCI USA, 2010.

[39] Yves-Alexandre De Montjoye, César A Hidalgo, Michel
Verleysen, and Vincent D Blondel. Unique in the crowd:
The privacy bounds of human mobility. SCIENTIFIC
REPORTS, 2013.

[40] Deloitte. The three billion, enterprice crowd-
sourcing and the growing fragmentation of work.
URL: https://www2.deloitte.com/content/
dam/Deloitte/de/Documents/Innovation/us-
cons-enterprise-crowdsourcing-and-growing-
fragmentation-of-work%20(3).pdf.

[41] Daniel Demmler, Thomas Schneider, and Michael
Zohner. Aby-a framework for efficient mixed-protocol
secure two-party computation. In NDSS, 2015.

[42] Kostas Drakonakis, Panagiotis Ilia, Sotiris Ioannidis, and
Jason Polakis. Please forget where i was last summer:
The privacy risks of public location (meta) data. In
NDSS, 2019.

[43] Greg Durrett, Jonathan K. Kummerfeld, Taylor Berg-
Kirkpatrick, Rebecca S. Portnoff, Sadia Afroz, Damon
McCoy, Kirill Levchenko, and Vern Paxson. Identifying
products in online cybercrime marketplaces: A dataset
for fine-grained domain adaptation. In Conference on
Empirical Methods in Natural Language Processing,
EMNLP, pages 2598–2607, 2017.

[44] Nathan Eagle, Alex Sandy Pentland, and David Lazer.
Inferring friendship network structure by using mobile
phone data. P NATL ACAD SCI USA, 2009.

[45] Hariton Efstathiades, Demetris Antoniades, George Pal-
lis, and Marios D. Dikaiakos. Identification of key
locations based on online social network activity. In
ASONAM, pages 218–225. ACM, 2015.

[46] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD,
1996.

[47] Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection

of natural persons with regard to the processing of per-
sonal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union,
2016.

[48] Kassem Fawaz and Kang G Shin. Location privacy
protection for smartphone users. In CCS, 2014.

[49] Julien Freudiger, Reza Shokri, and Jean-Pierre Hubaux.
Evaluating the privacy risk of location-based services.
In FC, 2011.

[50] Sébastien Gambs, Marc-Olivier Killijian, and
Miguel Núñez del Prado Cortez. Show me how you
move and i will tell you who you are. In SPRINGL,
2010.

[51] Sébastien Gambs, Marc-Olivier Killijian, and
Miguel Núñez del Prado Cortez. Next place prediction
using mobility markov chains. In MPM, 2012.

[52] Sébastien Gambs, Marc-Olivier Killijian, and
Miguel Núñez del Prado Cortez. De-anonymization
attack on geolocated data. TRUSTCOM, 2013.

[53] Gabriel Ghinita. Privacy for location-based services.
Synthesis Lectures on Information Security, Privacy, &
Trust, 2013.

[54] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo
Barabasi. Understanding individual human mobility
patterns. Nature, 2008.

[55] Marco Gruteser and Dirk Grunwald. Anonymous usage
of location-based services through spatial and temporal
cloaking. In MobiSys, 2003.

[56] Nicolas Haderer, Romain Rouvoy, Christophe Ribeiro,
and Lionel Seinturier. Apisense: Crowd-sensing made
easy. ERCIM News, 2013.

[57] Wajih Ul Hassan, Saad Hussain, and Adam Bates. Anal-
ysis of privacy protections in fitness tracking social
networks-or-you can run, but can you hide? In USENIX,
2018.

[58] Min-Oh Heo, Myung-Gu Kang, Byoung-Kwon Lim,
Kyu-Baek Hwang, Young-Tack Park, and Byoung-Tak
Zhang. Real-time route inference and learning for smart-
phone users using probabilistic graphical models. Jour-
nal of KIISE, 2012.

[59] Baik Hoh, Marco Gruteser, Hui Xiong, and Ansaf
Alrabady. Enhancing security and privacy in traffic-
monitoring systems. IEEE PERVAS COMPUT, 2006.

USENIX Association 28th USENIX Security Symposium 1873

https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/us-cons-enterprise-crowdsourcing-and-growing-fragmentation-of-work%20(3).pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/us-cons-enterprise-crowdsourcing-and-growing-fragmentation-of-work%20(3).pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/us-cons-enterprise-crowdsourcing-and-growing-fragmentation-of-work%20(3).pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/Innovation/us-cons-enterprise-crowdsourcing-and-growing-fragmentation-of-work%20(3).pdf

[60] Baik Hoh, Marco Gruteser, Hui Xiong, and Ansaf
Alrabady. Preserving privacy in gps traces via
uncertainty-aware path cloaking. In CCS, 2007.

[61] Leping Huang, Hiroshi Yamane, Kanta Matsuura, and
Kaoru Sezaki. Silent cascade: Enhancing location pri-
vacy without communication qos degradation. In SPC.

[62] Huan Feng Kassem Fawaz and Kang G Shin. Anato-
mization and protection of mobile apps’ location privacy
threats. In USENIX, 2015.

[63] Youssef Khazbak and Guohong Cao. Deanonymizing
mobility traces with co-location information. In CNS,
2017.

[64] John Krumm. Inference attacks on location tracks. In
PERVASIVE, 2007.

[65] John Krumm. A survey of computational location pri-
vacy. PERS UBIQUIT COMPUT, 2009.

[66] L. Liao, D. Fox and H. Kautz. Learning and inferring
transportation routines. AAAI, 2004.

[67] Lin Liao, Dieter Fox, and Henry Kautz. Location-based
activity recognition. In NIPS, 2006.

[68] Changsha Ma and Chang Wen Chen. Nearby friend
discovery with geo-indistinguishability to stalkers.
FNC/MobiSPC, 2014.

[69] Wesley Mathew, Ruben Raposo, and Bruno Martins.
Predicting future locations with hidden markov models.
In UbiComp, 2012.

[70] Alexandra-Mihaela Olteanu, Kévin Huguenin, Reza
Shokri, Mathias Humbert, and Jean-Pierre Hubaux.
Quantifying interdependent privacy risks with location
data. TMC, 2017.

[71] Alexandra-Mihaela Olteanu, Mathias Humbert, Kévin
Huguenin, and Jean-Pierre Hubaux. The (co-)location
sharing game. In PoPETs, 2019.

[72] Rebekah Overdorf and Rachel Greenstadt. Blogs, twitter
feeds, and reddit comments: Cross-domain authorship
attribution. PoPETs, 2016(3):155–171, 2016.

[73] Simon Oya, Carmela Troncoso, and Fernando Pérez-
González. Back to the drawing board: Revisiting the
design of optimal location privacy-preserving mecha-
nisms. In CCS, 2017.

[74] Dau Pelleg and Andrew Moore. X-means: Extending k-
means with efficient estimation of the number of clusters.
In ICML, 2000.

[75] Layla Pournajaf, Li Xiong, Vaidy Sunderam, and Xi-
aofeng Xu. Stac: Spatial task assignment for crowd
sensing with cloaked participant locations. In SIGSPA-
TIAL/GIS, 2015.

[76] Vincent Primault, Antoine Boutet, Sonia Ben Mokhtar,
and Lionel Brunie. The long road to computational
location privacy: A survey. IEEE Commun. Surv. Tutor.,
2018.

[77] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano De
Cristofaro. Knock knock, who’s there? membership
inference on aggregate location data. NDSS, 2018.

[78] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano
De Cristofaro. What does the crowd say about you?
evaluating aggregation-based location privacy. PETS,
2017.

[79] Jing Shi, Rui Zhang, Yunzhong Liu, and Yanchao Zhang.
Prisense: privacy-preserving data aggregation in people-
centric urban sensing systems. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. IEEE, 2010.

[80] Reza Shokri, Julien Freudiger, Murtuza Jadliwala, and
Jean-Pierre Hubaux. A distortion-based metric for loca-
tion privacy. In WPES, 2009.

[81] Reza Shokri, George Theodorakopoulos, Jean-Yves
Le Boudec, and Jean-Pierre Hubaux. Quantifying loca-
tion privacy. In IEEE S&P, 2011.

[82] Chaoming Song, Zehui Qu, Nicholas Blumm, and
Albert-László Barabási. Limits of predictability in hu-
man mobility. SCIENCE, 2010.

[83] Fung Global Retail & Technology. Crowd-
sourcing:seeking the wisdom of crowds. URL:
http://www.deborahweinswig.com/wp-content/
uploads/2016/07/Crowdsourcing-Report-by-
Fung-Global-Retail-Tech-July-12-2016.pdf.

[84] Manolis Terrovitis. Privacy preservation in the dissemi-
nation of location data. SIGKDD Explorations, 2011.

[85] Devis Tuia, Claudio Persello, and Lorenzo Bruzzone.
Domain adaptation for the classification of remote sens-
ing data: An overview of recent advances. IEEE
Geoscience and Remote sensing magazine, 4(2):41–57,
2016.

[86] Jorim Urner, Dominik Bucher, Jing Yang, and David
Jonietz. Assessing the influence of spatio-temporal con-
text for next place prediction using different machine
learning approaches. ISPRS INT GEO-INF, 2018.

[87] Hongjian Wang, Zhenhui Li, and Wang-Chien Lee. Pgt:
Measuring mobility relationship using personal, global
and temporal factors. In ICDM, 2014.

1874 28th USENIX Security Symposium USENIX Association

http://www.deborahweinswig.com/wp-content/uploads/2016/07/Crowdsourcing-Report-by-Fung-Global-Retail-Tech-July-12-2016.pdf
http://www.deborahweinswig.com/wp-content/uploads/2016/07/Crowdsourcing-Report-by-Fung-Global-Retail-Tech-July-12-2016.pdf
http://www.deborahweinswig.com/wp-content/uploads/2016/07/Crowdsourcing-Report-by-Fung-Global-Retail-Tech-July-12-2016.pdf

[88] Yonghui Xiao and Li Xiong. Protecting locations with
differential privacy under temporal correlations. In CCS,
2015.

[89] Hui Zang and Jean Bolot. Anonymization of location
data does not work: A large-scale measurement study.
In MobiCom, 2011.

A Appendix

A.1 Density Based Clustering (DBSCAN)
The algorithm receives as input all locations (also referred to
as points) reported by a user, the minimum required amount
of points per cluster, and the maximum allowed distance be-
tween the cluster’s points. It outputs a label for every point,
indicating to which cluster it belongs, or if it has been labeled
as noise.

DBSCAN starts by randomly selecting a point c. Then, it
finds all points p that are in distance ε from this point. Then,
from the points p reachable from the first point, it tries to find
more points q where q are reachable directly from p but not
from c. If at the end of this procedure the minimum points
have not been reached, it moves to another random point and
starts all over again. In order to use our locations which are in
latitudes and longitude, we converted the distance ε to radians
first. Moreover, we used a ball tree data structure to speed up
the neighbors queries.

A.2 Geo-Indistinguishability
The noise is drawn by first transforming the location to polar
coordinates. Then, the angle is drawn randomly between 0
and 2π while the distance is drawn from

C−1(ρ) =−1
ε
(W−1(

ρ−1
e

)+1)

with W−1 denoting the −1 branch of the Lambert W function.
Finally, the generated distance and angle are added to the
original location.

A.3 Optimal Remapping
For the optimal remapping technique we follow these steps;
For performance reasons, we first round each location to 3
digits, in order to merge nearby locations together. Then, we
calculate the probability of each coordinate. Afterwards, we
convert all coordinates to a Cartesian system using their dis-
tance from the center of the Earth. A useful tutorial on this
can be found in [27]. Using the Cartesian coordinates we
build a KD-Tree for efficient nearest neighbor calculations.
Then, for every location where GeoInd has been applied, we
query all nearest neighbors in a region r′. This r′ is set to be
as the 99% percentile of the distribution that generated the

Figure 10: GeoInd noise magnitude for different radius (l =
ln(1.6)).

Figure 11: Safecast: Hotspot detection for areas with at least
100 cpm. The presented defense is GeoInd with 50m parame-
ter.

parameter r used in GeoInd. In other words, the user has 99%
chance of being remapped somewhere within this distance.
For all neighboring points, we compute the posterior and then,
we calculate the geometric median of those coordinates using
the iterative Weiszfeld’s algorithm. The geometric median
minimizes the average Euclidean distance and hence, return-
ing us the new, optimal (in terms of utility as privacy should
remain the same) location.

A.4 Defenses evaluation

We include three more figures to complement the defense
evaluation:
• Figure 10 portrays the CDF of the noise added by

GeoInd. This noise is added on all GeoInd variants (Opti-
mal Remapping and Release-GeoInd) and it is controlled
by either the radius (r) or the privacy parameter (l).
• Figure 11 illustrates the hotspot detection results when

GeoInd 50m is used. Even a slight addition of noise
spreads the locations, not allowing Safecast to accurately
detect elevated radiation regions.
• In Figure 12 we present the privacy gain results for

each of the defense mechanisms for the whole Safecast
dataset.

USENIX Association 28th USENIX Security Symposium 1875

Figure 12: Safecast: Privacy gain for each of the defense mechanism (whole dataset).

Figure 13: Precision and recall vs. clustering parameters for
GeoInd (r = 50m) in Tokyo.

A.5 Experimental results

Adjusting the clustering parameters. We now study the in-
fluence of the DBSCAN clustering parameters on our results.
We show the difference in precision and recall for GeoInd
(r=50 meters) when we vary both the maximum distance and
the minimum number of point per cluster in Figure 13. As we
increase the maximum distance between points and decrease
the minimum required points per cluster, the results concen-

Figure 14: Clusters’ size and amount of POIs per cluster vs.
clustering parameters with GeoInd (r = 50m) in Tokyo.

trate on the upper left corner of the diagram. This is because
as the parameters become ‘looser’, the resulting clusters grow
in size increasing recall (more likelihood of covering all users’
original clusters) but reducing precision due to many false
positives. Furthermore, increasing the cluster size increases
the adversary’s cost, as the clusters contain a larger number of
POIs (Figure 14) which requires more filtering and increases
the probability of having false positives.

1876 28th USENIX Security Symposium USENIX Association

Utility-Optimized Local Differential Privacy Mechanisms for
Distribution Estimation ∗

Takao Murakami
AIST

Yusuke Kawamoto
AIST

Abstract
LDP (Local Differential Privacy) has been widely studied to
estimate statistics of personal data (e.g., distribution underly-
ing the data) while protecting users’ privacy. Although LDP
does not require a trusted third party, it regards all personal
data equally sensitive, which causes excessive obfuscation
hence the loss of utility. In this paper, we introduce the notion
of ULDP (Utility-optimized LDP), which provides a privacy
guarantee equivalent to LDP only for sensitive data. We first
consider the setting where all users use the same obfuscation
mechanism, and propose two mechanisms providing ULDP:
utility-optimized randomized response and utility-optimized
RAPPOR. We then consider the setting where the distinction
between sensitive and non-sensitive data can be different from
user to user. For this setting, we propose a personalized ULDP
mechanism with semantic tags to estimate the distribution of
personal data with high utility while keeping secret what is
sensitive for each user. We show theoretically and experimen-
tally that our mechanisms provide much higher utility than
the existing LDP mechanisms when there are a lot of non-
sensitive data. We also show that when most of the data are
non-sensitive, our mechanisms even provide almost the same
utility as non-private mechanisms in the low privacy regime.

1 Introduction

DP (Differential Privacy) [21,22] is becoming a gold standard
for data privacy; it enables big data analysis while protecting
users’ privacy against adversaries with arbitrary background
knowledge. According to the underlying architecture, DP
can be categorized into the one in the centralized model and
the one in the local model [22]. In the centralized model, a
“trusted” database administrator, who can access to all users’
personal data, obfuscates the data (e.g., by adding noise, gen-
eralization) before providing them to a (possibly malicious)
data analyst. Although DP was extensively studied for the

∗This study was supported by JSPS KAKENHI JP19H04113,
JP17K12667, and by Inria under the project LOGIS.

centralized model at the beginning, the original personal data
in this model can be leaked from the database by illegal access
or internal fraud. This issue is critical in recent years, because
the number of data breach incidents is increasing [15].

The local model does not require a “trusted” administra-
tor, and therefore does not suffer from the data leakage is-
sue explained above. In this model, each user obfuscates her
personal data by herself, and sends the obfuscated data to
a data collector (or data analyst). Based on the obfuscated
data, the data collector can estimate some statistics (e.g., his-
togram, heavy hitters [45]) of the personal data. DP in the
local model, which is called LDP (Local Differential Pri-
vacy) [19], has recently attracted much attention in the aca-
demic field [5, 12, 24, 29, 30, 39, 43, 45, 46, 50, 56], and has
also been adopted by industry [16, 23, 49].

However, LDP mechanisms regard all personal data as
equally sensitive, and leave a lot of room for increasing data
utility. For example, consider questionnaires such as: “Have
you ever cheated in an exam?” and “Were you with a prostitute
in the last month?” [11]. Obviously, “Yes” is a sensitive re-
sponse to these questionnaires, whereas “No” is not sensitive.
A RR (Randomized Response) method proposed by Man-
gat [37] utilizes this fact. Specifically, it reports “Yes” or “No”
as follows: if the true answer is “Yes”, always report “Yes”;
otherwise, report “Yes” and “No” with probability p and 1− p,
respectively. Since the reported answer “Yes” may come from
both the true answers “Yes” and “No”, the confidentiality of
the user reporting “Yes” is not violated. Moreover, since the
reported answer “No” is always come from the true answer
“No”, the data collector can estimate a distribution of true
answers with higher accuracy than Warner’s RR [52], which
simply flips “Yes” and ”No” with probability p. However,
Mangat’s RR does not provide LDP, since LDP regards both
“Yes” and “No” as equally sensitive.

There are a lot of “non-sensitive” data for other types of
data. For example, locations such as hospitals and home can
be sensitive, whereas visited sightseeing places, restaurants,
and coffee shops are non-sensitive for many users. Divorced
people may want to keep their divorce secret, while the oth-

USENIX Association 28th USENIX Security Symposium 1877

ers may not care about their marital status. The distinction
between sensitive and non-sensitive data can also be different
from user to user (e.g., home address is different from user to
user; some people might want to keep secret even the sight-
seeing places). To explain more about this issue, we briefly
review related work on LDP and variants of DP.

Related work. Since Dwork [21] introduced DP, a number
of its variants have been studied to provide different types of
privacy guarantees; e.g., LDP [19], d-privacy [8], Pufferfish
privacy [32], dependent DP [36], Bayesian DP [53], mutual-
information DP [14], Rényi DP [38], and distribution privacy
[31]. In particular, LDP [19] has been widely studied in the
literature. For example, Erlingsson et al. [23] proposed the
RAPPOR as an obfuscation mechanism providing LDP, and
implemented it in Google Chrome browser. Kairouz et al.
[29] showed that under the l1 and l2 losses, the randomized
response (generalized to multiple alphabets) and RAPPOR are
order optimal among all LDP mechanisms in the low and high
privacy regimes, respectively. Wang et al. [51] generalized
the RAPPOR and a random projection-based method [6], and
found parameters that minimize the variance of the estimate.

Some studies also attempted to address the non-uniformity
of privacy requirements among records (rows) or among items
(columns) in the centralized DP: Personalized DP [28], Het-
erogeneous DP [3], and One-sided DP [17]. However, obfus-
cation mechanisms that address the non-uniformity among
input values in the “local” DP have not been studied, to our
knowledge. In this paper, we show that data utility can be
significantly increased by designing such local mechanisms.

Our contributions. The goal of this paper is to design obfus-
cation mechanisms in the local model that achieve high data
utility while providing DP for sensitive data. To achieve this,
we introduce the notion of ULDP (Utility-optimized LDP),
which provides a privacy guarantee equivalent to LDP only for
sensitive data, and obfuscation mechanisms providing ULDP.
As a task for the data collector, we consider discrete distribu-
tion estimation [2, 23, 24, 27, 29, 39, 46, 56], where personal
data take discrete values. Our contributions are as follows:

• We first consider the setting in which all users use the
same obfuscation mechanism, and propose two ULDP
mechanisms: utility-optimized RR and utility-optimized
RAPPOR. We prove that when there are a lot of non-
sensitive data, our mechanisms provide much higher util-
ity than two state-of-the-art LDP mechanisms: the RR
(for multiple alphabets) [29, 30] and RAPPOR [23]. We
also prove that when most of the data are non-sensitive,
our mechanisms even provide almost the same utility as
a non-private mechanism that does not obfuscate the per-
sonal data in the low privacy regime where the privacy
budget is ε = ln |X | for a set X of personal data.

• We then consider the setting in which the distinction
between sensitive and non-sensitive data can be different

from user to user, and propose a PUM (Personalized
ULDP Mechanism) with semantic tags. The PUM keeps
secret what is sensitive for each user, while enabling the
data collector to estimate a distribution using some back-
ground knowledge about the distribution conditioned on
each tag (e.g., geographic distributions of homes). We
also theoretically analyze the data utility of the PUM.

• We finally show that our mechanisms are very promising
in terms of utility using two large-scale datasets.

The proofs of all statements in the paper are given in the
extended version of the paper [40].
Cautions and limitations. Although ULDP is meant to pro-
tect sensitive data, there are some cautions and limitations.

First, we assume that each user sends a single datum and
that each user’s personal data is independent (see Section 2.1).
This is reasonable for a variety of personal data (e.g., locations,
age, sex, marital status), where each user’s data is irrelevant
to most others’ one. However, for some types of personal
data (e.g., flu status [48]), each user can be highly influenced
by others. There might also be a correlation between sensi-
tive data and non-sensitive data when a user sends multiple
data (on a related note, non-sensitive attributes may lead to
re-identification of a record [41]). A possible solution to these
problems would be to incorporate ULDP with Pufferfish pri-
vacy [32, 48], which is used to protect correlated data. We
leave this as future work (see Section 7 for discussions on the
case of multiple data per user and the correlation issue).

We focus on a scenario in which it is easy for users to
decide what is sensitive (e.g., cheating experience, location
of home). However, there is also a scenario in which users do
not know what is sensitive. For the latter scenario, we cannot
use ULDP but can simply apply LDP.

Apart from the sensitive/non-sensitive data issue, there are
scenarios in which ULDP does not cover. For example, ULDP
does not protect users who have a sensitivity about “informa-
tion disclosure” itself (i.e., those who will not disclose any
information). We assume that users have consented to infor-
mation disclosure. To collect as much data as possible, we can
provide an incentive for the information disclosure; e.g., pro-
vide a reward or point-of-interest (POI) information nearby
a reported location. We also assume that the data collector
obtains a consensus from users before providing reported data
to third parties. Note that these cautions are common to LDP.

There might also be a risk of discrimination; e.g., the data
collector might discriminate against all users that provide a
yes-answer, and have no qualms about small false positives.
False positives decrease with increase in ε. We note that LDP
also suffer from this attack; the false positive probability is
the same for both ULDP and LDP with the same ε.

In summary, ULDP provides a privacy guarantee equivalent
to LDP for sensitive data under the assumption of the data
independence. We consider our work as a building-block of
broader DP approaches or the basis for further development.

1878 28th USENIX Security Symposium USENIX Association

2 Preliminaries

2.1 Notations

Let R≥0 be the set of non-negative real numbers. Let n be the
number of users, [n] = {1,2, . . . ,n}, X (resp. Y) be a finite
set of personal (resp. obfuscated) data. We assume continuous
data are discretized into bins in advance (e.g., a location map
is divided into some regions). We use the superscript “(i)”
to represent the i-th user. Let X (i) (resp. Y (i)) be a random
variable representing personal (resp. obfuscated) data of the i-
th user. The i-th user obfuscates her personal data X (i) via her
obfuscation mechanism Q(i), which maps x∈X to y∈Y with
probability Q(i)(y|x), and sends the obfuscated data Y (i) to a
data collector. Here we assume that each user sends a single
datum. We discuss the case of multiple data in Section 7.

We divide personal data into two types: sensitive data and
non-sensitive data. Let XS ⊆ X be a set of sensitive data com-
mon to all users, and XN = X \XS be the remaining personal
data. Examples of such “common” sensitive data x ∈ XS are
the regions including public sensitive locations (e.g., hos-
pitals) and obviously sensitive responses to questionnaires
described in Section 11.

Furthermore, let X (i)
S ⊆ XN (i ∈ [n]) be a set of sensitive

data specific to the i-th user (here we do not include XS into
X (i)

S because XS is protected for all users in our mechanisms).

X (i)
S is a set of personal data that is possibly non-sensitive

for many users but sensitive for the i-th user. Examples of
such “user-specific” sensitive data x ∈ X (i)

S are the regions
including private locations such as their home and workplace.
(Note that the majority of working population can be uniquely
identified from their home/workplace location pairs [25].)

In Sections 3 and 4, we consider the case where all users
divide X into the same sets of sensitive data and of non-
sensitive data, i.e., X (1)

S = · · ·= X (n)
S = /0, and use the same

obfuscation mechanism Q (i.e., Q = Q(1) = · · · = Q(n)). In
Section 5, we consider a general setting that can deal with the
user-specific sensitive data X (i)

S and user-specific mechanisms
Q(i). We call the former case a common-mechanism scenario
and the latter a personalized-mechanism scenario.

We assume that each user’s personal data X (i) is inde-
pendently and identically distributed (i.i.d.) with a proba-
bility distribution p, which generates x ∈ X with probability
p(x). Let X = (X (1), · · · ,X (n)) and Y = (Y (1), · · · ,Y (n)) be
tuples of all personal data and all obfuscated data, respec-
tively. The data collector estimates p from Y by a method
described in Section 2.5. We denote by p̂ the estimate of
p. We further denote by C the probability simplex; i.e.,
C = {p|∑x∈X p(x) = 1,p(x)≥ 0 for any x ∈ X }.

1Note that these data might be sensitive for many/most users but not for all
in practice (e.g., some people might not care about their cheating experience).
However, we can regard these data as sensitive for all users (i.e., be on the
safe side) by allowing a small loss of data utility.

2.2 Privacy Measures
LDP (Local Differential Privacy) [19] is defined as follows:

Definition 1 (ε-LDP). Let ε ∈ R≥0. An obfuscation mecha-
nism Q from X to Y provides ε-LDP if for any x,x′ ∈ X and
any y ∈ Y ,

Q(y|x)≤ eεQ(y|x′). (1)

LDP guarantees that an adversary who has observed y can-
not determine, for any pair of x and x′, whether it is come from
x or x′ with a certain degree of confidence. As the privacy
budget ε approaches to 0, all of the data in X become almost
equally likely. Thus, a user’s privacy is strongly protected
when ε is small.

2.3 Utility Measures
In this paper, we use the l1 loss (i.e., absolute error) and
the l2 loss (i.e., squared error) as utility measures. Let l1
(resp. l2

2) be the l1 (resp. l2) loss function, which maps
the estimate p̂ and the true distribution p to the loss; i.e.,
l1(p̂,p) = ∑x∈X |p̂(x)−p(x)|, l2

2(p̂,p) = ∑x∈X (p̂(x)−p(x))2.
It should be noted that X is generated from p and Y is gener-
ated from X using Q(1), · · · ,Q(n). Since p̂ is computed from
Y, both the l1 and l2 losses depend on Y.

In our theoretical analysis in Sections 4 and 5, we take the
expectation of the l1 loss over all possible realizations of Y.
In our experiments in Section 6, we replace the expectation of
the l1 loss with the sample mean over multiple realizations of
Y and divide it by 2 to evaluate the TV (Total Variation). In
Appendix C, we also show that the l2 loss has similar results to
the ones in Sections 4 and 6 by evaluating the expectation of
the l2 loss and the MSE (Mean Squared Error), respectively.

2.4 Obfuscation Mechanisms
We describe the RR (Randomized Response) [29, 30] and a
generalized version of the RAPPOR [51] as follows.
Randomized response. The RR for |X |-ary alphabets was
studied in [29, 30]. Its output range is identical to the input
domain; i.e., X = Y .

Formally, given ε ∈ R≥0, the ε-RR is an obfuscation mech-
anism that maps x to y with the probability:

QRR(y|x) =

{
eε

|X |+eε−1 (if y = x)
1

|X |+eε−1 (otherwise).
(2)

It is easy to check by (1) and (2) that QRR provides ε-LDP.
Generalized RAPPOR. The RAPPOR (Randomized Ag-
gregatable Privacy-Preserving Ordinal Response) [23] is an
obfuscation mechanism implemented in Google Chrome
browser. Wang et al. [51] extended its simplest configura-
tion called the basic one-time RAPPOR by generalizing two

USENIX Association 28th USENIX Security Symposium 1879

probabilities in perturbation. Here we call it the generalized
RAPPOR and describe its algorithm in detail.

The generalized RAPPOR is an obfuscation mechanism
with the input alphabet X = {x1,x2, · · · ,x|X |} and the output
alphabet Y = {0,1}|X |. It first deterministically maps xi ∈ X
to ei ∈ {0,1}|X |, where ei is the i-th standard basis vector. It
then probabilistically flips each bit of ei to obtain obfuscated
data y = (y1,y2, · · · ,y|X |) ∈ {0,1}|X |, where yi ∈ {0,1} is the
i-th element of y. Wang et al. [51] compute ε from two pa-
rameters θ ∈ [0,1] (representing the probability of keeping
1 unchanged) and ψ ∈ [0,1] (representing the probability of
flipping 0 into 1). In this paper, we compute ψ from two
parameters θ and ε.

Specifically, given θ ∈ [0,1] and ε ∈ R≥0, the (θ,ε)-
generalized RAPPOR maps xi to y with the probability:

QRAP(y|xi) = ∏1≤ j≤|X |Pr(y j|xi),

where Pr(y j|xi) = θ if i = j and y j = 1, and Pr(y j|xi) = 1−θ

if i = j and y j = 0, and Pr(y j|xi) = ψ = θ

(1−θ)eε+θ
if i 6= j and

y j = 1, and Pr(y j|xi) = 1−ψ otherwise. The basic one-time
RAPPOR [23] is a special case of the generalized RAPPOR
where θ = eε/2

eε/2+1
. QRAP also provides ε-LDP.

2.5 Distribution Estimation Methods
Here we explain the empirical estimation method [2, 27, 29]
and the EM reconstruction method [1,2]. Both of them assume
that the data collector knows the obfuscation mechanism Q
used to generate Y from X.
Empirical estimation method. The empirical estimation
method [2,27,29] computes an empirical estimate p̂ of p using
an empirical distribution m̂ of the obfuscated data Y. Note that
p̂, m̂, and Q can be represented as an |X |-dimensional vector,
|Y |-dimensional vector, and |X | × |Y | matrix, respectively.
They have the following equation:

p̂Q = m̂. (3)

The empirical estimation method computes p̂ by solving (3).
Let m be the true distribution of obfuscated data; i.e.,

m = pQ. As the number of users n increases, the empiri-
cal distribution m̂ converges to m. Therefore, the empirical
estimate p̂ also converges to p. However, when the number
of users n is small, many elements in p̂ can be negative. To
address this issue, the studies in [23, 51] kept only estimates
above a significance threshold determined via Bonferroni
correction, and discarded the remaining estimates.
EM reconstruction method. The EM (Expectation-
Maximization) reconstruction method [1, 2] (also called the
iterative Bayesian technique [2]) regards X as a hidden vari-
able and estimates p from Y using the EM algorithm [26] (for
details of the algorithm, see [1, 2]). Let p̂EM be an estimate
of p by the EM reconstruction method. The feature of this

��

�

��

��

�

��

�����

Figure 1: Overview of ULDP. It has no transitions from XS to
YI , and every output in YI reveals the corresponding input in
XN . It also provides ε-LDP for YP.

algorithm is that p̂EM is equal to the maximum likelihood
estimate in the probability simplex C (see [1] for the proof).
Since this property holds irrespective of the number of users
n, the elements in p̂EM are always non-negative.

In this paper, our theoretical analysis uses the empirical
estimation method for simplicity, while our experiments use
the empirical estimation method, the one with the significance
threshold, and the EM reconstruction method.

3 Utility-Optimized LDP (ULDP)

In this section, we focus on the common-mechanism sce-
nario (outlined in Section 2.1) and introduce ULDP (Utility-
optimized Local Differential Privacy), which provides a pri-
vacy guarantee equivalent to ε-LDP only for sensitive data.
Section 3.1 provides the definition of ULDP. Section 3.2
shows some theoretical properties of ULDP.

3.1 Definition
Figure 1 shows an overview of ULDP. An obfuscation mech-
anism providing ULDP, which we call the utility-optimized
mechanism, divides obfuscated data into protected data and
invertible data. Let YP be a set of protected data, and YI =
Y \YP be a set of invertible data.

The feature of the utility-optimized mechanism is that it
maps sensitive data x ∈ XS to only protected data y ∈ YP.
In other words, it restricts the output set, given the input
x ∈ XS, to YP. Then it provides ε-LDP for YP; i.e., Q(y|x)≤
eεQ(y|x′) for any x,x′ ∈ X and any y ∈ YP. By this property,
a privacy guarantee equivalent to ε-LDP is provided for any
sensitive data x ∈ XS, since the output set corresponding to
XS is restricted to YP. In addition, every output in YI reveals
the corresponding input in XN (as in Mangat’s randomized
response [37]) to optimize the estimation accuracy.

We now formally define ULDP and the utility-optimized
mechanism:

Definition 2 ((XS,YP,ε)-ULDP). Given XS ⊆ X , YP ⊆ Y ,
and ε ∈ R≥0, an obfuscation mechanism Q from X to Y pro-
vides (XS,YP,ε)-ULDP if it satisfies the following properties:

1880 28th USENIX Security Symposium USENIX Association

1. For any y ∈ YI , there exists an x ∈ XN such that

Q(y|x)> 0 and Q(y|x′) = 0 for any x′ 6= x. (4)

2. For any x,x′ ∈ X and any y ∈ YP,

Q(y|x)≤ eεQ(y|x′). (5)

We refer to an obfuscation mechanism Q providing (XS,YP,
ε)-ULDP as the (XS,YP,ε)-utility-optimized mechanism.

Example. For an intuitive understanding of Definition 2,
we show that Mangat’s randomized response [37] provides
(XS,YP,ε)-ULDP. As described in Section 1, this mechanism
considers binary alphabets (i.e., X = Y = {0,1}), and regards
the value 1 as sensitive (i.e., XS = YP = {1}). If the input
value is 1, it always reports 1 as output. Otherwise, it reports
1 and 0 with probability p and 1− p, respectively. Obviously,
this mechanism does not provide ε-LDP for any ε ∈ [0,∞).
However, it provides (XS,YP, ln 1

p)-ULDP.

(XS,YP,ε)-ULDP provides a privacy guarantee equivalent
to ε-LDP for any sensitive data x ∈ XS, as explained above.
On the other hand, no privacy guarantees are provided for
non-sensitive data x ∈ XN because every output in YI reveals
the corresponding input in XN . However, it does not matter
since non-sensitive data need not be protected. Protecting
only minimum necessary data is the key to achieving locally
private distribution estimation with high data utility.

We can apply any ε-LDP mechanism to the sensitive data
in XS to provide (XS,YP,ε)-ULDP as a whole. In Sections 4.1
and 4.2, we propose a utility-optimized RR (Randomized
Response) and utility-optimized RAPPOR, which apply the
ε-RR and ε-RAPPOR, respectively, to the sensitive data XS.

In Appendix B, we also consider OSLDP (One-sided LDP),
a local model version of OSDP introduced in a preprint [17],
and explain the reason for using ULDP in this paper.

It might be better to generalize ULDP so that different
levels of ε can be assigned to different sensitive data. We
leave introducing such granularity as future work.
Remark. It should also be noted that the data collector needs
to know Q to estimate p from Y (as described in Section 2.5),
and that the (XS,YP,ε)-utility-optimized mechanism Q itself
includes the information on what is sensitive for users (i.e.,
the data collector learns whether each x ∈ X belongs to XS or
not by checking the values of Q(y|x) for all y ∈ Y). This does
not matter in the common-mechanism scenario, since the set
XS of sensitive data is common to all users (e.g., public hospi-
tals). However, in the personalized-mechanism scenario, the
(XS∪X (i)

S ,YP,ε)-utility-optimized mechanism Q(i), which ex-

pands the set XS of personal data to XS ∪X (i)
S , includes the

information on what is sensitive for the i-th user. Therefore,
the data collector learns whether each x ∈ XN belongs to X (i)

S
or not by checking the values of Q(i)(y|x) for all y ∈ Y , de-
spite the fact that the i-th user wants to hide her user-specific

sensitive data X (i)
S (e.g., home, workplace). We address this

issue in Section 5.

3.2 Basic Properties of ULDP
Previous work showed some basic properties of differential
privacy (or its variant), such as compositionality [22] and im-
munity to post-processing [22]. We briefly explain theoretical
properties of ULDP including the ones above.

Sequential composition. ULDP is preserved under adap-
tive sequential composition when the composed obfuscation
mechanism maps sensitive data to pairs of protected data.
Specifically, consider two mechanisms Q0 from X to Y0 and
Q1 from X to Y1 such that Q0 (resp. Q1) maps sensitive data
x ∈ XS to protected data y0 ∈ Y0P (resp. y1 ∈ Y1P). Then the
sequential composition of Q0 and Q1 maps sensitive data
x ∈ XS to pairs (y0,y1) of protected data ranging over:

(Y0×Y1)P = {(y0,y1) ∈ Y0×Y1 | y0 ∈ Y0P and y1 ∈ Y1P} .

Then we obtain the following compositionality.

Proposition 1 (Sequential composition). Let ε0,ε1 ≥ 0. If
Q0 provides (XS,Y0P,ε0)-ULDP and Q1(y0) provides (XS,
Y1P,ε1)-ULDP for each y0 ∈ Y0, then the sequential composi-
tion of Q0 and Q1 provides (XS,(Y0×Y1)P,ε0 + ε1)-ULDP.

For example, if we apply an obfuscation mechanism
providing (XS,YP,ε)-ULDP for t times, then we obtain
(XS,(YP)

t ,εt)-ULDP in total (this is derived by repeatedly
using Proposition 1).

Post-processing. ULDP is immune to the post-processing by
a randomized algorithm that preserves data types: protected
data or invertible data. Specifically, if a mechanism Q0 pro-
vides (XS,YP,ε)-ULDP and a randomized algorithm Q1 maps
protected data over YP (resp. invertible data) to protected data
over ZP (resp. invertible data), then the composite function
Q1 ◦Q0 provides (XS,ZP,ε)-ULDP.

Note that Q1 needs to preserve data types for utility; i.e.,
to make all y ∈ YI invertible (as in Definition 2) after post-
processing. The DP guarantee for y ∈ YP is preserved by any
post-processing algorithm. See Appendix A.1 for details.

Compatibility with LDP. Assume that data collectors A
and B adopt a mechanism providing ULDP and a mechanism
providing LDP, respectively. In this case, all protected data
in the data collector A can be combined with all obfuscated
data in the data collector B (i.e., data integration) to perform
data analysis under LDP. See Appendix A.2 for details.

Lower bounds on the l1 and l2 losses. We present lower
bounds on the l1 and l2 losses of any ULDP mechanism by
using the fact that ULDP provides (5) for any x,x′ ∈ XS and
any y ∈ YP. Specifically, Duchi et al. [20] showed that for
ε ∈ [0,1], the lower bounds on the l1 and l2 losses (minimax
rates) of any ε-LDP mechanism can be expressed as Θ(|X |√

nε2)

USENIX Association 28th USENIX Security Symposium 1881

x
1

x
1

x
2

x
2

x
3

x
3

x
4

x
4

x
5

x
5

x
6

x
6

� �

��

��

��

��

�� �
��

|��| � �� � 1

�� �
1

|��| � �� � 1

�� �
�� � 1

|��| � �� � 1

Figure 2: Utility-optimized RR in the case where XS = YP =
{x1,x2,x3} and XN = YI = {x4,x5,x6}.

and Θ(|X |nε2), respectively. By directly applying these bounds
to XS and YP, the lower bounds on the l1 and l2 losses of
any (XS,YP,ε)-ULDP mechanisms for ε ∈ [0,1] can be ex-
pressed as Θ(|XS|√

nε2) and Θ(|XS|
nε2), respectively. In Section 4.3,

we show that our utility-optimized RAPPOR achieves these
lower bounds when ε is close to 0 (i.e., high privacy regime).

4 Utility-Optimized Mechanisms

In this section, we focus on the common-mechanism scenario
and propose the utility-optimized RR (Randomized Response)
and utility-optimized RAPPOR (Sections 4.1 and 4.2). We then
analyze the data utility of these mechanisms (Section 4.3).

4.1 Utility-Optimized Randomized Response
We propose the utility-optimized RR, which is a generaliza-
tion of Mangat’s randomized response [37] to |X |-ary alpha-
bets with |XS| sensitive symbols. As with the RR, the output
range of the utility-optimized RR is identical to the input do-
main; i.e., X = Y . In addition, we divide the output set in the
same way as the input set; i.e., XS = YP, XN = YI .

Figure 2 shows the utility-optimized RR with XS = YP =
{x1,x2,x3} and XN = YI = {x4,x5,x6}. The utility-optimized
RR applies the ε-RR to XS. It maps x ∈ XN to y ∈ YP (= XS)
with the probability Q(y|x) so that (5) is satisfied, and maps
x ∈ XN to itself with the remaining probability. Formally, we
define the utility-optimized RR (uRR) as follows:

Definition 3 ((XS,ε)-utility-optimized RR). Let XS ⊆ X
and ε ∈ R≥0. Let c1 = eε

|XS|+eε−1 , c2 = 1
|XS|+eε−1 , and c3 =

1−|XS|c2 =
eε−1

|XS|+eε−1 . Then the (XS,ε)-utility-optimized RR
(uRR) is an obfuscation mechanism that maps x ∈ X to y ∈ Y
(= X) with the probability QuRR(y|x) defined as follows:

QuRR(y|x) =

c1 (if x ∈ XS, y = x)
c2 (if x ∈ XS, y ∈ XS \{x})
c2 (if x ∈ XN , y ∈ XS)
c3 (if x ∈ XN , y = x)
0 (otherwise).

(6)

Proposition 2. The (XS,ε)-uRR provides (XS,XS, ε)-ULDP.

�� �� � �0, 0, 1, 0, 0, 0, 0, 0, 0, 0�

	 � �1, 0, 1, 1, 0, 0, 0, 0, 0, 0�

�� �� � �0, 0, 0, 0, 0, 1, 0, 0, 0, 0�

	 � �0, 1, 0, 1, 0, 0, 0, 0, 0, 0�

�

�� �
�

1 � � �� � �

�� �
1 � � �

�
� �

��

Figure 3: Utility-optimized RAPPOR in the case where XS =
{x1, · · · ,x4} and XN = {x5, · · · ,x10}.

4.2 Utility-Optimized RAPPOR
Next, we propose the utility-optimized RAPPOR with the
input alphabet X = {x1,x2, · · · ,x|X |} and the output alpha-
bet Y = {0,1}|X |. Without loss of generality, we assume
that x1, · · · ,x|XS| are sensitive and x|XS|+1, · · · ,x|X | are non-
sensitive; i.e., XS = {x1, · · · ,x|XS|}, XN = {x|XS|+1, · · · ,x|X |}.

Figure 3 shows the utility-optimized RAPPOR with XS =
{x1, · · · ,x4} and XN = {x5, · · · ,x10}. The utility-optimized
RAPPOR first deterministically maps xi ∈ X to the i-th stan-
dard basis vector ei. It should be noted that if xi is sensitive
data (i.e., xi ∈ XS), then the last |XN | elements in ei are al-
ways zero (as shown in the upper-left panel of Figure 3).
Based on this fact, the utility-optimized RAPPOR regards
obfuscated data y = (y1,y2, . . . ,y|X |) ∈ {0,1}|X | such that
y|XS|+1 = · · ·= y|X | = 0 as protected data; i.e.,

YP = {(y1, . . . ,y|XS|,0, · · · ,0)|y1, . . . ,y|XS| ∈ {0,1}}. (7)

Then it applies the (θ,ε)-generalized RAPPOR to XS, and
maps x ∈ XN to y ∈ YP (as shown in the lower-left panel of
Figure 3) with the probability Q(y|x) so that (5) is satisfied.
We formally define the utility-optimized RAPPOR (uRAP):

Definition 4 ((XS,θ,ε)-utility-optimized RAPPOR). Let
XS ⊆ X , θ ∈ [0,1], and ε ∈ R≥0. Let d1 = θ

(1−θ)eε+θ
, d2 =

(1−θ)eε+θ

eε . Then the (XS,θ,ε)-utility-optimized RAPPOR
(uRAP) is an obfuscation mechanism that maps xi ∈ X to
y ∈ Y = {0,1}|X | with the probability QuRAP(y|x) given by:

QuRAP(y|xi) = ∏1≤ j≤|X |Pr(y j|xi), (8)

where Pr(y j|xi) is written as follows:

(i) if 1≤ j ≤ |XS|:

Pr(y j|xi) =

1−θ (if i = j, y j = 0)
θ (if i = j, y j = 1)
1−d1 (if i 6= j, y j = 0)
d1 (if i 6= j, y j = 1).

(9)

(ii) if |XS|+1≤ j ≤ |X |:

Pr(y j|xi) =

d2 (if i = j, y j = 0)
1−d2 (if i = j, y j = 1)
1 (if i 6= j, y j = 0)
0 (if i 6= j, y j = 1).

(10)

1882 28th USENIX Security Symposium USENIX Association

Proposition 3. The (XS,θ,ε)-uRAP provides (XS,YP,ε)-
ULDP, where YP is given by (7).

Although we used the generalized RAPPOR in XS and YP

in Definition 4, hereinafter we set θ = eε/2

eε/2+1
in the same

way as the original RAPPOR [23]. There are two reasons for
this. First, it achieves “order” optimal data utility among all
(XS,YP,ε)-ULDP mechanisms in the high privacy regime, as
shown in Section 4.3. Second, it maps xi ∈ XN to y ∈ YI with
probability 1−d2 = 1− e−ε/2, which is close to 1 when ε is
large (i.e., low privacy regime). Wang et al. [51] showed that
the generalized RAPPOR with parameter θ= 1

2 minimizes the
variance of the estimate. However, our uRAP with parameter
θ = 1

2 maps xi ∈ XN to y ∈ YI with probability 1−d2 =
eε−1
2eε

which is less than 1− e−ε/2 for any ε > 0 and is less than 1
2

even when ε goes to infinity. Thus, our uRAP with θ = eε/2

eε/2+1
maps xi ∈ XN to y ∈ YI with higher probability, and therefore
achieves a smaller estimation error over all non-sensitive data.
We also consider that an optimal θ for our uRAP is different
from the optimal θ (= 1

2) for the generalized RAPPOR. We
leave finding the optimal θ for our uRAP (with respect to the
estimation error over all personal data) as future work.

We refer to the (XS,θ,ε)-uRAP with θ = eε/2

eε/2+1
in short-

hand as the (XS,ε)-uRAP.

4.3 Utility Analysis

We evaluate the l1 loss of the uRR and uRAP when the em-
pirical estimation method is used for distribution estimation2.
In particular, we evaluate the l1 loss when ε is close to 0 (i.e.,
high privacy regime) and ε = ln |X | (i.e., low privacy regime).
Note that ULDP provides a natural interpretation of the latter
value of ε. Specifically, it follows from (5) that if ε = ln |X |,
then for any x ∈ X , the likelihood that the input data is x is
almost equal to the sum of the likelihood that the input data
is x′ 6= x. This is consistent with the fact that the ε-RR with
parameter ε = ln |X | sends true data (i.e., y = x in (2)) with
probability about 0.5 and false data (i.e., y 6= x) with probabil-
ity about 0.5, and hence provides plausible deniability [29].

uRR in the general case. We begin with the uRR:

Proposition 4 (l1 loss of the uRR). Let ε ∈ R≥0, u = |XS|+
eε− 1, u′ = eε− 1, and v = u

u′ . Then the expected l1 loss of

2We note that we use the empirical estimation method in the same way
as [29], and that it might be possible that other mechanisms have better utility
with a different estimation method. However, we emphasize that even with
the empirical estimation method, the uRAP achieves the lower bounds on
the l1 and l2 losses of any ULDP mechanisms when ε≈ 0, and the uRR and
uRAP achieve almost the same utility as a non-private mechanism when
ε = ln |X | and most of the data are non-sensitive.

the (XS,ε)-uRR mechanism is given by:

E [l1(p̂,p)]≈
√

2
nπ

(
∑

x∈XS

√(
p(x)+1/u′

)(
v−p(x)−1/u′

)
+ ∑

x∈XN

√
p(x)

(
v−p(x)

))
, (11)

where f (n)≈ g(n) represents limn→∞ f (n)/g(n) = 1.

Let pUN be the uniform distribution over XN ; i.e., for any
x ∈ XS, pUN (x) = 0, and for any x ∈ XN , pUN (x) =

1
|XN | . Sym-

metrically, let pUS be the uniform distribution over XS.
For 0 < ε < ln(|XN |+1), the l1 loss is maximized by pUN :

Proposition 5. For any 0 < ε < ln(|XN |+1) and |XS| ≤ |XN |,
(11) is maximized by pUN :

E [l1(p̂,p)]. E [l1(p̂,pUN)]

=
√

2
nπ

(
|XS|
√
|XS|+eε−2
eε−1 +

√
|XS||XN |

eε−1 + |XN |−1
)
, (12)

where f (n). g(n) represents limn→∞ f (n)/g(n)≤ 1.

For ε≥ ln(|XN |+1), the l1 loss is maximized by a mixture
distribution of pUN and pUS :

Proposition 6. Let p∗ be a distribution over X defined by:

p∗(x) =

1−|XN |/(eε−1)
|XS|+|XN | (if x ∈ XS)

1+|XS|/(eε−1)
|XS|+|XN | (otherwise)

(13)

Then for any ε≥ ln(|XN |+1), (11) is maximized by p∗:

E [l1(p̂,p)]. E [l1(p̂,p∗)] =
√

2(|X |−1)
nπ

· |XS|+eε−1
eε−1 , (14)

where f (n). g(n) represents limn→∞ f (n)/g(n)≤ 1.

Next, we instantiate the l1 loss in the high and low privacy
regimes based on these propositions.
uRR in the high privacy regime. When ε is close to 0, we
have eε−1≈ ε. Thus, the right-hand side of (12) in Proposi-
tion 5 can be simplified as follows:

E [l1(p̂,pUN)]≈
√

2
nπ
· |XS|
√
|XS|−1
ε

. (15)

It was shown in [29] that the expected l1 loss of the ε-RR is

at most
√

2
nπ

|X |
√
|X |−1
ε

when ε ≈ 0. The right-hand side of
(15) is much smaller than this when |XS| � |X |. Although
both of them are “upper-bounds” of the expected l1 losses, we
show that the total variation of the (XS,ε)-uRR is also much
smaller than that of the ε-RR when |XS| � |X | in Section 6.
uRR in the low privacy regime. When ε = ln |X | and
|XS| � |X |, the right-hand side of (14) in Proposition 6 can
be simplified by using |XS|/|X | ≈ 0:

E [l1(p̂,p∗)]≈
√

2(|X |−1)
nπ

.

USENIX Association 28th USENIX Security Symposium 1883

It should be noted that the expected l1 loss of the non-private
mechanism, which does not obfuscate the personal data at

all, is at most
√

2(|X |−1)
nπ

[29]. Thus, when ε = ln |X | and
|XS| � |X |, the (XS,ε)-uRR achieves almost the same data
utility as the non-private mechanism, whereas the expected l1
loss of the ε-RR is twice larger than that of the non-private
mechanism [29].
uRAP in the general case. We then analyze the uRAP:

Proposition 7 (l1 loss of the uRAP). Let ε∈R≥0, u′ = eε/2−
1, and vN = eε/2

eε/2−1
. The expected l1-loss of the (XS,ε)-uRAP

mechanism is:

E [l1(p̂,p)]≈
√

2
nπ

(|XS|

∑
j=1

√(
p(x j)+1/u′

)(
vN−p(x j)

)
+
|X |

∑
j=|XS|+1

√
p(x j)

(
vN−p(x j)

))
, (16)

where f (n)≈ g(n) represents limn→∞ f (n)/g(n) = 1.

When 0 < ε < 2ln(|XN |
2 +1), the l1 loss is maximized by

the uniform distribution pUN over XN :

Proposition 8. For any 0 < ε < 2ln(|XN |
2 + 1) and |XS| ≤

|XN |, (16) is maximized when p = pUN :

E [l1(p̂,p)]. E [l1(p̂,pUN)]

=
√

2
nπ

(
eε/4|XS|
eε/2−1

+

√
eε/2|XN |
eε/2−1

−1
)
, (17)

where f (n). g(n) represents limn→∞ f (n)/g(n)≤ 1.

Note that this proposition covers a wide range of ε. For
example, when |XS| ≤ |XN |, it covers both the high privacy
regime (ε ≈ 0) and low privacy regime (ε = ln |X |), since
ln |X |< 2ln(|XN |

2 +1). Below we instantiate the l1 loss in the
high and low privacy regimes based on this proposition.
uRAP in the high privacy regime. If ε is close to 0, we have
eε/2−1≈ ε/2. Thus, the right-hand side of (17) in Proposi-
tion 8 can be simplified as follows:

E [l1(p̂,pUN)]≈
√

2
nπ
· 2|XS|

ε
. (18)

It is shown in [29] that the expected l1 loss of the ε-RAPPOR

is at most
√

2
nπ
· 2|X |

ε
when ε≈ 0. Thus, by (18), the expected

l1 loss of the (XS,ε)-uRAP is much smaller than that of the
ε-RAPPOR when |XS| � |X |.

Moreover, by (18), the expected l1 loss of the (XS,ε)-uRAP
in the worst case is expressed as Θ(|XS|√

nε2) in the high privacy
regime. As described in Section 3.2, this is “order” optimal
among all (XS,YP,ε)-ULDP mechanisms (in Appendix C.1,
we also show that the expected l2 of the (XS,ε)-uRAP is
expressed as Θ(|XS|

nε2)).

uRAP in the low privacy regime. If ε = ln |X | and |XS| �
|X | 34 , the right-hand side of (17) can be simplified, using
|XS|/|X |

3
4 ≈ 0, as follows:

E [l1(p̂,pUN)]≈
√

2(|X |−1)
nπ

.

Thus, when ε = ln |X | and |XS| � |X |
3
4 , the (XS,ε)-uRAP

also achieves almost the same data utility as the non-private
mechanism, whereas the expected l1 loss of the ε-RAPPOR
is
√
|X | times larger than that of the non-private mechanism

[29].
Summary. In summary, the uRR and uRAP provide much
higher utility than the RR and RAPPOR when |XS| � |X |.
Moreover, when ε = ln |X | and |XS| � |X | (resp. |XS| �
|X | 34), the uRR (resp. uRAP) achieves almost the same utility
as a non-private mechanism.

5 Personalized ULDP Mechanisms

We now consider the personalized-mechanism scenario (out-
lined in Section 2.1), and propose a PUM (Personalized ULDP
Mechanism) to keep secret what is sensitive for each user
while enabling the data collector to estimate a distribution.

Sections 5.1 describes the PUM. Section 5.2 explains its
privacy properties. Section 5.3 proposes a method to esti-
mate the distribution p from Y obfuscated using the PUM.
Section 5.4 analyzes the data utility of the PUM.

5.1 PUM with κ Semantic Tags
Figure 4 shows the overview of the PUM Q(i) for the i-th
user (i = 1,2, . . . ,n). It first deterministically maps personal
data x ∈ X to intermediate data using a pre-processor f (i)pre,
and then maps the intermediate data to obfuscated data y ∈ Y
using a utility-optimized mechanism Qcmn common to all
users. The pre-processor f (i)pre maps user-specific sensitive
data x ∈ X (i)

S to one of κ bots: ⊥1,⊥2, · · · , or ⊥κ. The κ

bots represent user-specific sensitive data, and each of them is
associated with a semantic tag such as “home” or “workplace”.
The κ semantic tags are the same for all users, and are useful
when the data collector has some background knowledge
about p conditioned on each tag. For example, a distribution of
POIs tagged as “home” or “workplace” can be easily obtained
via the Fousquare venue API [54]. Although this is not a user
distribution but a “POI distribution”, it can be used to roughly
approximate the distribution of users tagged as “home” or
“workplace”, as shown in Section 6. We define a set Z of
intermediate data by Z = X ∪{⊥1, · · · ,⊥κ}, and a set ZS of
sensitive intermediate data by ZS = XS∪{⊥1, · · · ,⊥κ}.

Formally, the PUM Q(i) first maps personal data x ∈ X to
intermediate data z ∈ Z using a pre-processor f (i)pre : X → Z
specific to each user. The pre-processor f (i)pre maps sensitive

1884 28th USENIX Security Symposium USENIX Association

��

�

��

��

�

��

��

��

��

����
�	

���

��
�	

�

1

�

Figure 4: Overview of the PUM Q(i) (= Qcmn ◦ f (i)pre).

data x ∈ X (i)
S associated with the k-th tag (1≤ k ≤ κ) to the

corresponding bot⊥k, and maps other data to themselves. Let
X (i)

S,k be a set of the i-th user’s sensitive data associated with the
k-th tag (e.g., set of regions including her primary home and
second home). Then, X (i)

S is expressed as X (i)
S =

⋃
1≤k≤κ X (i)

S,k ,

and f (i)pre is given by:

f (i)pre(x) =

{
⊥k (if x ∈ X (i)

S,k)
x (otherwise).

(19)

After mapping personal data x ∈ X to intermediate data z ∈
Z, the (ZS,YP,ε)-utility-optimized mechanism Qcmn maps
z to obfuscated data y ∈ Y . Examples of Qcmn include the
(ZS,ε)-uRR (in Definition 3) and (ZS,ε)-uRAP (in Defini-
tion 4). As a whole, the PUM Q(i) can be expressed as:
Q(i) = Qcmn ◦ f (i)pre. The i-th user stores f (i)pre and Qcmn in a
device that obfuscates her personal data (e.g., mobile phone,
personal computer). Note that if f (i)pre is leaked, x ∈ XN corre-
sponding to each bot (e.g., home, workplace) is leaked. Thus,
the user keeps f (i)pre secret. To strongly prevent the leakage
of f (i)pre, the user may deal with f (i)pre using a tamper-resistant
hardware/software. On the other hand, the utility-optimized
mechanism Qcmn, which is common to all users, is available
to the data collector.

The feature of the proposed PUM Q(i) is two-fold: (i) the
secrecy of the pre-processor f (i)pre and (ii) the κ semantic tags.
By the first feature, the i-th user can keep X (i)

S (i.e., what is
sensitive for her) secret, as shown in Section 5.2. The second
feature enables the data collector to estimate a distribution p
with high accuracy. Specifically, she estimates p from obfus-
cated data Y using Qcmn and some background knowledge
about p conditioned on each tag, as shown in Section 5.3.

In practice, it may happen that a user has her specific sen-
sitive data x ∈ X (i)

S that is not associated with any semantic
tags. For example, if we prepare only tags named “home”
and “workplace”, then sightseeing places, restaurants, and
any other places are not associated with these tags. One way
to deal with such data is to create another bot associated with
a tag named “others” (e.g., if ⊥1 and ⊥2 are associated with

“home” and “workplace”, respectively, we create ⊥3 associ-
ated with “others”), and map x to this bot. It would be difficult
for the data collector to obtain background knowledge about
p conditioned on such a tag. In Section 5.3, we will explain
how to estimate p in this case.

5.2 Privacy Properties
We analyze the privacy properties of the PUM Q(i). First, we
show that it provides ULDP.

Proposition 9. The PUM Q(i) (= Qcmn ◦ f (i)pre) provides (XS∪
X (i)

S , YP,ε)-ULDP.

We also show that our PUM provides DP in that an ad-
versary who has observed y ∈ YP cannot determine, for any
i, j ∈ [n], whether it is obfuscated using Q(i) or Q(j), which
means that y ∈ YP reveals almost no information about X (i)

S :

Proposition 10. For any i, j ∈ [n], any x∈ X , and any y∈ YP,

Q(i)(y|x)≤ eεQ(j)(y|x).

We then analyze the secrecy of X (i)
S . The data collector,

who knows the common-mechanism Qcmn, cannot obtain any
information about X (i)

S from Qcmn and y ∈ YP. Specifically,
the data collector knows, for each z ∈ Z, whether z ∈ ZS or
not by viewing Qcmn. However, she cannot obtain any infor-
mation about X (i)

S from ZS, because she does not know the

mapping between X (i)
S and {⊥1, · · · ,⊥κ} (i.e., f (i)pre). In ad-

dition, Propositions 9 and 10 guarantee that y ∈ YP reveals
almost no information about both input data and X (i)

S .
For example, assume that the i-th user obfuscates her home

x∈XS∪X (i)
S using the PUM Q(i), and sends y∈YP to the data

collector. The data collector cannot infer either x ∈ XS∪X (i)
S

or z ∈ ZS from y ∈ YP, since both Qcmn and Q(i) provide
ULDP. This means that the data collector cannot infer the fact
that she was at home from y. Furthermore, the data collector
cannot infer where her home is, since X (i)

S cannot be inferred
from Qcmn and y ∈ YP as explained above.

We need to take a little care when the i-th user obfuscates
non-sensitive data x∈XN \X (i)

S using Q(i) and sends y∈YI to
the data collector. In this case, the data collector learns x from
y, and therefore learns that x is not sensitive (i.e., x /∈ X (i)

S).
Thus, the data collector, who knows that the user wants to hide
her home, would reduce the number of possible candidates
for her home from X to X \{x}. However, if |X | is large (e.g.,
|X | = 625 in our experiments using location data), the number
|X | − 1 of candidates is still large. Since the data collector
cannot further reduce the number of candidates using Qcmn,
her home is still kept strongly secret. In Section 7, we also
explain that the secrecy of X (i)

S is achieved under reasonable
assumptions even when she sends multiple data.

USENIX Association 28th USENIX Security Symposium 1885

5.3 Distribution Estimation
We now explain how to estimate a distribution p from data
Y obfuscated using the PUM. Let r(i) be a distribution of
intermediate data for the i-th user:

r(i)(z) =

∑x∈X (i)

S,k
p(x) (if z =⊥k for some k = 1, . . . ,κ)

0 (if z ∈ X (i)
S)

p(z) (otherwise).

and r be the average of r(i) over n users; i.e., r(z) =
1
n ∑

n
i=1 r(i)(z) for any z ∈ Z. Note that ∑x∈X p(x) = 1 and

∑z∈Z r(z) = 1. Furthermore, let πk be a distribution of per-
sonal data x ∈ X conditioned on ⊥k defined by:

πk(x) =
∑

n
i=1 p(i)

k (x)

∑x′∈X ∑
n
i=1 p(i)

k (x′)
, (20)

p(i)
k (x) =

{
p(x) (if f (i)pre(x) =⊥k)
0 (otherwise).

πk(x) in (20) is a normalized sum of the probability p(x) of
personal data x whose corresponding intermediate data is ⊥k.
Note that although x∈ X is deterministically mapped to z∈Z
for each user, we can consider the probability distribution πk
for n users. For example, if ⊥k is tagged as “home”, then πk
is a distribution of users at home.

We propose a method to estimate a distribution p from
obfuscated data Y using some background knowledge about
πk as an estimate π̂k of πk (we explain the case where we have
no background knowledge later). Our estimation method first
estimates a distribution r of intermediate data from obfuscated
data Y using Qcmn. This can be performed in the same way as
the common-mechanism scenario. Let r̂ be the estimate of r.

After computing r̂, our method estimates p using the esti-
mate π̂k (i.e., background knowledge about πk) as follows:

p̂(x) = r̂(x)+
κ

∑
k=1

r̂(⊥k)π̂k(x), ∀x ∈ X . (21)

Note that p̂ in (21) can be regarded as an empirical estimate
of p. Moreover, if both r̂ and π̂k are in the probability simplex
C , then p̂ in (21) is always in C .

If we do not have estimates π̂k for some bots (like the
one tagged as “others” in Section 5.1), then we set π̂k(x) in
proportion to r̂(x) over x ∈ XN (i.e., π̂k(x) =

r̂(x)
∑x′∈XN

r̂(x′)) for

such bots. When we do not have any background knowledge
π̂1, · · · , π̂κ for all bots, it amounts to simply discarding the
estimates r̂(⊥1), · · · , r̂(⊥κ) for κ bots and normalizing r̂(x)
over x ∈ XN so that the sum is one.

5.4 Utility Analysis
We now theoretically analyze the data utility of our PUM.
Recall that p̂, r̂, and π̂k are the estimate of the distribution

of personal data, intermediate data, and personal data condi-
tioned on ⊥k, respectively. In the following, we show that the
l1 loss of p̂ can be upper-bounded as follows:

Theorem 1 (l1 loss of the PUM).

l1(p̂,p)≤ l1(r̂,r)+
κ

∑
k=1

r̂(⊥k)l1(π̂k,πk). (22)

This means the upper-bound on the l1 loss of p̂ can be
decomposed into the l1 loss of r̂ and of π̂k weighted by r̂(⊥k).

The first term in (22) is the l1 loss of r̂, which depends
on Qcmn. For example, if we use the uRR or uRAP as Qcmn,
the expectation of l1(r̂,r) is given by Propositions 4 and 7,
respectively. In Section 6, we show they are very small.

The second term in (22) is the summation of the l1 loss
of π̂k weighted by r̂(⊥k). If we accurately estimate πk, the
second term is very small. In other words, if we have enough
background knowledge about πk, we can accurately estimate
p in the personalized-mechanism scenario.

It should be noted that when the probability r̂(⊥k) is small,
the second term in (22) is small even if we have no background
knowledge about πk. For example, when only a small number
of users map x ∈ X (i)

S to a tag named “others”, they hardly
affect the accuracy of p̂. Moreover, the second term in (22) is
upper-bounded by 2∑

κ
k=1 r̂(⊥k), since the l1 loss is at most 2.

Thus, after computing r̂, the data collector can easily compute
the worst-case value of the second term in (22) to know the
effect of the estimation error of π̂k on the accuracy of p̂.

Last but not least, the second term in (22) does not depend
on ε (while the first term depends on ε). Thus, the effect of
the second term is relatively small when ε is small (i.e., high
privacy regime), as shown in Section 6.
Remark. Note that different privacy preferences might skew
the distribution πk. For example, doctors might not consider
hospitals as sensitive as compared to patients. Consequently,
the distribution πk conditioned on “hospital” might be a dis-
tribution of patients (not doctors) in hospitals. This kind of
systematic bias can increase the estimation error of π̂k. Theo-
rem 1 and the above discussions are also valid in this case.

6 Experimental Evaluation

6.1 Experimental Set-up
We conducted experiments using two large-scale datasets:
Foursquare dataset. The Foursquare dataset (global-scale
check-in dataset) [54] is one of the largest location datasets
among publicly available datasets (e.g., see [10], [44], [55],
[57]); it contains 33278683 check-ins all over the world, each
of which is associated with a POI ID and venue category (e.g.,
restaurant, shop, hotel, hospital, home, workplace).

We used 359054 check-ins in Manhattan, assuming that
each check-in is from a different user. Then we divided Man-
hattan into 25×25 regions at regular intervals and used them

1886 28th USENIX Security Symposium USENIX Association

as input alphabets; i.e., |X |= 625. The size of each region is
about 400m (horizontal) × 450m (vertical). We assumed a
region that includes a hospital visited by at least ten users as a
sensitive region common to all users. The number of such re-
gions was |XS|= 15. In addition, we assumed a region in XN
that includes a user’s home or workplace as her user-specific
sensitive region. The number of users at home and workplace
was 5040 and 19532, respectively.
US Census dataset. The US Census (1990) dataset [35] was
collected as part of the 1990 U.S. census. It contains responses
from 2458285 people (each person provides one response),
each of which contains 68 attributes.

We used the responses from all people, and used age, in-
come, marital status, and sex as attributes. Each attribute has
8, 5, 5, and 2 categories, respectively. (See [35] for details
about the value of each category ID.) We regarded a tuple
of the category IDs as a total category ID, and used it as an
input alphabet; i.e., |X |= 400 (= 8×5×5×2). We consid-
ered the fact that “divorce” and “unemployment” might be
sensitive for many users [34], and regarded such categories
as sensitive for all users (to be on the safe side, as described
in Section 2.1). Note that people might be students until their
twenties and might retire in their fifties or sixties. Children
of age twelve and under cannot get married. We excluded
such categories from sensitive ones. The number of sensitive
categories was |XS|= 76.

We used a frequency distribution of all people as a true
distribution p, and randomly chose a half of all people as
users who provide their obfuscated data; i.e., n = 179527 and
1229143 in the Foursquare and US Census datasets, respec-
tively. Here we did not use all people, because we would like
to evaluate the non-private mechanism that does not obfuscate
the personal data; i.e., the non-private mechanism has an esti-
mation error in our experiments due to the random sampling
from the population.

As utility, we evaluated the TV (Total Variation) by com-
puting the sample mean over a hundred realizations of Y.

6.2 Experimental Results
Common-mechanism scenario. We first focused on the
common-mechanism scenario, and evaluated the RR, RAP-
POR, uRR, and uRAP. As distribution estimation methods,
we used empirical estimation, empirical estimation with the
significance threshold, and EM reconstruction (denoted by
“emp”, “emp+thr”, and “EM”, respectively). In “emp+thr”,
we set the significance level α to be α = 0.05, and uniformly
assigned the remaining probability to each of the estimates
below the significance threshold in the same way as [51].

Figure 5 shows the results in the case where ε is changed
from 0.1 to 10. “no privacy” represents the non-private mech-
anism. It can be seen that our mechanisms outperform the
existing mechanisms by one or two orders of magnitude.
Our mechanisms are effective especially in the Foursquare

103

102

101

100

10-1

10-2

T
V

0.1 1 10
epsilon

RR RAP uRR uRAP no privacy

100

10-1

10-2

0.1 1 10
epsilon

100

10-1

10-2

0.1 1 10
epsilon

(a) Foursquare (left: emp, middle: emp+thr, right: EM)

102

101

100

10-1

10-2

10-3

T
V

0.1 1 10
epsilon

100

10-1

10-2

0.1 1 10
epsilon

0.1 1 10
epsilon

10-3

100

10-1

10-2

10-3

(b) US Census (left: emp, middle: emp+thr, right: EM)

Figure 5: ε vs. TV (common-mechanism). A bold line parallel
to the y-axis represents ε = ln |X |.

dataset, since the proportion of sensitive regions is very
small (15/625 = 0.024). Moreover, the uRR provides almost
the same performance as the non-private mechanism when
ε = ln |X |, as described in Section 4.3. It can also be seen that
“emp+thr” and “EM” significantly outperform “emp”, since
the estimates in “emp+thr” and “EM” are always non-negative.
Although “EM” outperforms “emp+thr” for the RAPPOR and
uRAP when ε was large, the two estimation methods provide
very close performance as a whole.

We then evaluated the relationship between the number
of sensitive regions/categories and the TV. To this end, we
randomly chose XS from X , and increased |XS| from 1 to |X |
(only in this experiment). We attempted one hundred cases
for randomly choosing XS from X , and evaluated the TV by
computing the sample mean over one hundred cases.

Figure 6 shows the results for ε = 0.1 (high privacy regime)
or ln |X | (low privacy regime). Here we omit the performance
of “emp+thr”, since it is very close to that of “EM” in the
same way as in Figure 5. The uRAP and uRR provide the
best performance when ε = 0.1 and ln |X |, respectively. In
addition, the uRR provides the performance close to the non-
private mechanism when ε = ln |X | and the number |XS| of
sensitive regions/categories is less than 100. The performance
of the uRAP is also close to that of the non-private mechanism
when |XS| is less than 20 (note that |X | 34 = 125 and 89 in the
Foursquare and US Census datasets, respectively). However, it
rapidly increases with increase in |XS|. Overall, our theoretical
results in Section 4.3 hold for the two real datasets.

We also evaluated the performance when the number of
attributes was increased from 4 to 9 in the US Census dataset.
We added, one by one, five attributes as to whether or not a
user has served in the military during five periods (“Sept80”,
“May75880”, “Vietnam”, “Feb55”, and “Korean” in [18]; we
added them in this order). We assumed that these attributes

USENIX Association 28th USENIX Security Symposium 1887

RR (emp) RAP (emp)

RR (EM) RAP (EM)

uRR (emp) uRAP (emp)

uRR (EM) uRAP (EM)

no privacy

(a) Foursquare (left: � = 0.1, right: � = ln|��)

T
V

101

100

10-1

10-2

4
0

0
3

5
0

3
0

0
2

5
0

2
0

0
1

5
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

10-3

|��|

4
0

0
3

5
0

3
0

0
2

5
0

2
0

0
1

5
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

|��|

T
V 10-2

10-3

102 10-1

(b) US Census (left: � = 0.1, right: � = ln|��)

103

102

T
V

101

100

10-1

10-2

6
2

5
6

0
0

5
0

0
4

0
0

3
0

0
2

0
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

|��|

100

10-1

6
2

5
6

0
0

5
0

0
4

0
0

3
0

0
2

0
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

|��|

10-2

T
V

Figure 6: |XS| vs. TV when ε = 0.1 or ln |X |.

105

T
V

103 101

104

103

102

101

100

10-1

10-2

10-3

#Attributes
4 5 6 7 8 9

102

101

100

10-1

10-2

10-3

#Attributes
4 5 6 7 8 9

#Attributes
4 5 6 7 8 9

100

10-1

10-2

10-3

RR (emp) RAP (emp) uRR (emp) uRAP (emp)

RR (EM) RAP (EM) uRR (EM) uRAP (EM)

no privacy

Figure 7: Number of attributes vs. TV (US Census dataset;
left: ε = 0.1, middle: ε = 1.0, right: ε = 6.0).

are non-sensitive. Since each of the five attributes had two
categories (1: yes, 0: no), |X | (resp. |XS|) was changed from
400 to 12800 (resp. from 76 to 2432). We randomly chose
n = 240000 people as users who provide obfuscated data, and
evaluated the TV by computing the sample mean over ten
realizations of Y (only in this experiment).

Figure 7 shows the results in the case where ε = 0.1, 1.0,
or 6.0 (=ln400). Here we omit the performance of “emp+thr”
in the same way as Figure 6. Although the TV increases with
an increase in the number of attributes, overall our utility-
optimized mechanisms remain effective, compared to the ex-
isting mechanisms. One exception is the case where ε = 0.1
and the number of attributes is 9; the TV of the RR (EM),
RAPPOR (EM), and uRR (EM) is almost 1. Note that when
we use the EM reconstruction method, the worst value of
the TV is 1. Thus, as with the RR and RAPPOR, the uRR
fails to estimate a distribution in this case. On the other hand,
the TV of the uRAP (EM) is much smaller than 1 even in
this case, which is consistent with the fact that the uRAP is
order optimal in the high privacy regime. Overall, the uRAP
is robust to the increase of the attributes at the same value of
ε (note that for large |X |, ε = 1.0 or 6.0 is a medium privacy
regime where 0� ε� ln |X |).

We also measured the running time (i.e., time to estimate p
from Y) of “EM” (which sets the estimate by “emp+thr” as

100

10-1

10-2

T
V

0.1 1 10
epsilon

uRR (I) uRR (II) uRR (III)

uRAP (I) uRAP (II) uRAP (III)

no privacy

(a) emp
100

10-1

10-2

0.1 1 10
epsilon

100

10-1

10-2

0.1 1 10
epsilon

(b) emp+thr (c) EM

Figure 8: ε vs. TV (personalized-mechanism) ((I): w/o knowl-
edge, (II): POI distribution, (III): true distribution).

����

����

����

����

����

����

��������� ����������
�����

�����

�����

�����

�����

�����

�����

	�
����������	�
�����������

Figure 9: Visualization of the distributions ((II): POI distribu-
tion, (III): true distribution).

an initial value of p̂) on an Intel Xeon CPU E5-2620 v3 (2.40
GHz, 6 cores, 12 logical processors) with 32 GB RAM. We
found that the running time increases roughly linearly with the
number of attributes. For example, when ε = 6.0 and the num-
ber of attributes is 9, the running time of “EM” required 3121,
1258, 5225, and 1073 seconds for “RR”, “uRR”, “RAP”, and
“uRAP”, respectively. We also measured the running time of
‘emp” and “emp+thr”, and found that they required less than
one second even when the number of attributes is 9. Thus, if
“EM” requires too much time for a large number of attributes,
“emp+thr” would be a good alternative to “EM”.

Personalized-mechanism scenario. We then focused on the
personalized-mechanism scenario, and evaluated our utility-
optimized mechanisms using the Foursquare dataset. We used
the PUM with κ = 2 semantic tags (described in Section 5.1),
which maps “home” and ‘workplace” to bots ⊥1 and ⊥2,
respectively. As the background knowledge about the bot
distribution πk (1 ≤ k ≤ 2), we considered three cases: (I)
we do not have any background knowledge; (II) we use a
distribution of POIs tagged as “home” (resp. “workplace”),
which is computed from the POI data in [54], as an estimate
of the bot probability π̂1 (resp. π̂2); (III) we use the true
distributions (i.e., π̂k = πk). Regarding (II), we emphasize
again that it is not a user distribution but a “POI distribution”,
and can be easily obtained via the Foursquare venue API [54].

Figure 8 shows the results. We also show the POI and true
distributions in Figure 9. It can be seen that the performance
of (II) lies in between that of (I) and (III), which shows that
the estimate π̂k of the bot distribution affects utility. However,
when ε is smaller than 1, all of (I), (II), and (III) provide almost
the same performance, since the effect of the estimation error
of π̂k does not depend on ε, as described in Section 5.4.

We also computed the l1 loss l1(p̂,p) and the first and
second terms in the right-hand side of (22) to investigate

1888 28th USENIX Security Symposium USENIX Association

Table 1: l1 loss l1(p̂,p) and the first and second terms in the
right-hand side of (22) in the case where ε = ln |X | and the
EM reconstruction method is used.

Method l1(p̂,p) first term second term
uRR (I) 6.73×10−2 2.70×10−2 7.34×10−2

uRR (II) 4.24×10−2 2.70×10−2 2.96×10−2

uRR (III) 2.62×10−2 2.70×10−2 0
uRAP (I) 6.77×10−2 2.76×10−2 7.35×10−2

uRAP (II) 4.28×10−2 2.76×10−2 2.96×10−2

uRAP (III) 2.67×10−2 2.76×10−2 0

whether Theorem 1 holds. Table 1 shows the results (we
averaged the values over one hundred realizations of Y). It
can be seen that l1(p̂,p) is smaller than the summation of the
first and second terms in all of the methods, which shows that
Theorem 1 holds in our experiments.

From these experimental results, we conclude that our
proposed methods are very effective in both the common-
mechanism and personalized-mechanism scenarios. In Ap-
pendix C.2, we show the MSE has similar results to the TV.

7 Discussions

On the case of multiple data per user. We have so far
assumed that each user sends only a single datum. Now
we discuss the case where each user sends multiple data
based on the compositionality of ULDP described in Sec-
tion 3.2. Specifically, when a user sends t (> 1) data, we
obtain (XS,(YP)

t ,ε)-ULDP in total by obfuscating each data
using the (XS,YP,ε/t)-utility-optimized mechanism. Note,
however, that the amount of noise added to each data increases
with increase in t. Consequently, for ε∈ [0, t], the lower bound
on the l1 (resp. l2) loss (described in Section 3.2) can be ex-
pressed as Θ(

√
t|XS|√
nε2) (resp. Θ(t|XS|

nε2)), which increases with
increase in t. Thus, t cannot be large for distribution estima-
tion in practice. This is also common to all LDP mechanisms.

Next we discuss the secrecy of X (i)
S . Assume that the i-

th user obfuscates t data using different seeds, and sends
tP protected data in YP and tI invertible data in YI , where
t = tP + tI > 1 (she can also use the same seed for the same
data to reduce tI as in [23]). If all the tI data in YI are different
from each other, the data collector learns tI original data in
XN . However, tI (≤ t) cannot be large in practice, as explained
above. In addition, in many applications, a user’s personal
data is highly non-uniform and sparse. In locations data, for
example, a user often visits only a small number of regions
in the whole map X . Let T (i) ⊆ XN be a set of possible input
values for the i-th user in XN . Then, even if tI is large, the data
collector cannot learn more than |T (i)| data in XN .

Moreover, the tP data in YP reveal almost no information
about X (i)

S , since Q(i) provides (XS,(YP)
t ,ε)-ULDP. Qcmn

provides no information about X (i)
S , since f (i)pre is kept secret.

Thus, the data collector, who knows that the user wants to
hide her home, cannot reduce the number of candidates for
her home from max{|X |− tI , |X |− |T (i)|} using the tP data
and Qcmn. If either tI or |T (i)| is much smaller than |X |, her
home is kept strongly secret.

Note that p can be estimated even if X (i)
S changes over time.

X (i)
S is also kept strongly secret if tI or |T (i)| is small.

On the correlation between XS and XN . It should also be
noted that there might be a correlation between sensitive data
XS and non-sensitive data XN . For example, if a user discloses
a non-sensitive region close to a sensitive region including
her home, the adversary might infer approximate information
about the original location (e.g., the fact that the user lives
in Paris). However, we emphasize that if the size of each
region is large, the adversary cannot infer the exact location
such as the exact home address. Similar approaches can be
seen in a state-of-the-art location privacy measure called geo-
indistinguishability [4, 7, 42, 47]. Andrés et al. [4] considered
privacy protection within a radius of 200m from the original
location, whereas the size of each region in our experiments
was about 400m × 450m (as described in Section 6.1). We
can protect the exact location by setting the size of each
region to be large enough, or setting all regions close to a
user’s sensitive location to be sensitive.

There might also be a correlation between two attributes
(e.g., income and marital status) in the US Census dataset.
However, we combined the four category IDs into a total
category ID for each user as described in Section 6.1. Thus,
there is only “one” category ID for each user. Assuming
that each user’s data is independent, there is no correlation
between data. Therefore, we conclude that the sensitive data
are strongly protected in both the Foursquare and US Census
datasets in our experiments.

It should be noted, however, that the number of total cate-
gory IDs increases exponentially with the number of attributes.
Thus, when there are many attributes as in Figure 7, the es-
timation accuracy might be increased by obfuscating each
attribute independently (rather than obfuscating a total ID)
while considering the correlation among attributes. We also
need to consider a correlation among “users” for some types
of personal data (e.g., flu status). For rigorously protecting
such correlated data, we should incorporate Pufferfish pri-
vacy [32, 48] into ULDP, as described in Section 1.

8 Conclusion

In this paper, we introduced the notion of ULDP that guar-
antees privacy equivalent to LDP for only sensitive data. We
proposed ULDP mechanisms in both the common and person-
alized mechanism scenarios. We evaluated the utility of our
mechanisms theoretically and demonstrated the effectiveness
of our mechanisms through experiments.

USENIX Association 28th USENIX Security Symposium 1889

References

[1] D. Agrawal and C. C. Aggarwal. On the design and
quantification of privacy preserving data mining algo-
rithms. In Proc. PODS, pages 247–255, 2001.

[2] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserv-
ing OLAP. In Proc. SIGMOD, pages 251–262, 2005.

[3] M. Alaggan, S. Gambs, and A.-M. Kermarrec. Hetero-
geneous differential privacy. Journal of Privacy and
Confidentiality, 7(2):127–158, 2017.

[4] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi. Geo-indistinguishability: Differential
privacy for location-based systems. In Proc. CCS, pages
901–914, 2013.

[5] B. Avent, A. Korolova, D. Zeber, T. Hovden, and
B. Livshits. BLENDER: Enabling local search with
a hybrid differential privacy model. In Proc. USENIX
Security, pages 747–764, 2017.

[6] R. Bassily and A. Smith. Local, private, efficient pro-
tocols for succinct histograms. In Proc. STOC, pages
127–135, 2015.

[7] N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi. Optimal geo-indistinguishable
mechanisms for location privacy. In Proc. CCS, pages
251–262, 2014.

[8] K. Chatzikokolakis, M. E. André, N. E. Bordenabe, and
C. Palamidessi. Broadening the scope of differential
privacy using metrics. In Proc. PETS, pages 82–102,
2013.

[9] X. Chen, A. Guntuboyina, and Y. Zhang. On Bayes
risk lower bounds. J. Mach. Learn. Res., 17(219):1–58,
2016.

[10] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
mobility: User movement in location-based social net-
works. In Proc. KDD, pages 1082–1090, 2011.

[11] J. E. Cohen. Statistical concepts relevant to AIDS. In
Proc. Symposium on Statistics in Science, Industry, and
Public Policy, pages 43–51, 1989.

[12] G. Cormode, T. Kulkarni, and D. Srivastava. Marginal
release under local differential privacy. In Proc. SIG-
MOD, pages 131–146, 2018.

[13] T. M. Cover and J. A. Thomas. Elements of Information
Theory, Second Edition. Wiley-Interscience, 2006.

[14] P. Cuff and L. Yu. Differential privacy as a mutual
information constraint. In Proc. CCS, pages 43–54,
2016.

[15] Data Breaches Increase 40 Percent in
2016, Finds New Report from Identity
Theft Resource Center and CyberScout.
http://www.idtheftcenter.org/2016databreaches.html,
2017.

[16] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting
telemetry data privately. In Proc. NIPS, pages 3574–
3583, 2017.

[17] S. Doudalis, I. Kotsoginannis, S. Haney, A. Machanava-
jjhala, and S. Mehrotra. One-sided differential privacy.
CoRR, abs/1712.05888, 2017.

[18] D. Dua and E. K. Taniskidou. UCI machine learning
repository. http://archive.ics.uci.edu/ml, 2017.

[19] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local
privacy and statistical minimax rates. In Proc. FOCS,
pages 429–438, 2013.

[20] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local
privacy, data processing inequalities, and minimax rates.
CoRR, abs/1302.3203, 2013.

[21] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith. Cali-
brating noise to sensitivity in private data analysis. In
Proc. TCC, pages 265–284, 2006.

[22] C. Dwork and A. Roth. The Algorithmic Foundations of
Differential Privacy. Now Publishers, 2014.

[23] U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR:
Randomized aggregatable privacy-preserving ordinal
response. In Proc. CCS, pages 1054–1067, 2014.

[24] G. Fanti, V. Pihur, and U. Erlingsson. Building a RAP-
POR with the unknown: Privacy-preserving learning of
associations and data dictionaries. PoPETs, 2016(3):1–
21, 2016.

[25] P. Golle and K. Partridge. On the anonymity of
home/work location pairs. In Proc. Pervasive, pages
390–397, 2009.

[26] T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Spinger, 2nd edition, 2009.

[27] Z. Huang and W. Du. OptRR: Optimizing randomized
response schemes for privacy-preserving data mining.
In Proc. ICDE, pages 705–714, 2008.

[28] Z. Jorgensen, T. Yu, and G. Cormode. Conservative
or liberal? Personalized differential privacy. In Proc.
ICDE, pages 1023–1034, 2015.

[29] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete
distribution estimation under local privacy. In Proc.
ICML, pages 2436–2444, 2016.

1890 28th USENIX Security Symposium USENIX Association

[30] P. Kairouz, S. Oh, and P. Viswanath. Extremal mech-
anisms for local differential privacy. J. Mach. Learn.
Res., 17(1):492–542, 2016.

[31] Y. Kawamoto and T. Murakami. Differentially private
obfuscation mechanisms for hiding probability distribu-
tions. CoRR, abs/1812.00939, 2018.

[32] D. Kifer and A. Machanavajjhala. Pufferfish: A frame-
work for mathematical privacy definitions. ACM Trans.
Database Syst., 39(1):1–36, 2014.

[33] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and
T. Kraska. PrivateClean: Data cleaning and differential
privacy. In Proc. SIGMOD, pages 937–951, 2016.

[34] R. L. Leahy. Feeling ashamed of being unemployed
- am I afraid of telling people that I am out of work?
https://www.psychologytoday.com/us/blog/anxiety-
files/201310/feeling-ashamed-being-unemployed,
2013.

[35] M. Lichman. UCI machine learning repository, 2013.

[36] C. Liu, S. Chakraborty, and P. Mittal. Dependence
makes you vulnerable: Differential privacy under de-
pendent tuples. In Proc. NDSS, 2016.

[37] N. S. Mangat. An improved ranomized response strat-
egy. J. Royal Stat. Soc. Series B (Methodological),
56(1):93–95, 1994.

[38] I. Mironov. Rényi differential privacy. In Proc. CSF,
pages 263–275, 2017.

[39] T. Murakami, H. Hino, and J. Sakuma. Toward distri-
bution estimation under local differential privacy with
small samples. PoPETs, 3:84–104, 2017.

[40] T. Murakami and Y. Kawamoto. Utility-optimized local
differential privacy mechanisms for distribution estima-
tion. CoRR, abs/1807.11317, 2019.

[41] A. Narayanan and V. Shmatikov. Myths and fallacies of
“personally identifiable information”. Commun. ACM,
53(6):24–26, 2010.

[42] S. Oya, C. Troncoso, and F. Pérez-González. Back to the
drawing board: Revisiting the design of optimal location
privacy-preserving mechanisms. In Proc. CCS, pages
1959–1972, 2017.

[43] A. Pastore and M. Gastpar. Locally differentially-private
distribution estimation. In Proc. ISIT, pages 2694–2698,
2016.

[44] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Gross-
glauser. CRAWDAD dataset epfl/mobility (v. 2009-02-
24). http://crawdad.org/epfl/mobility/20090224, 2009.

[45] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren.
Heavy hitter estimation over set-valued data with local
differential privacy. In Proc. CCS, pages 192–203, 2016.

[46] Y. Sei and A. Ohusuga. Differential private data collec-
tion and analysis based on randomized multiple dum-
mies for untrusted mobile crowdsensing. IEEE Trans.
Inf. Forensics Secur., 12(4):926–939, 2017.

[47] R. Shokri. Privacy games: Optimal user-centric data
obfuscation. PoPETs, 2015(2):299–315, 2015.

[48] S. Song, Y. Wang, and K. Chaudhuri. Pufferfish privacy
mechanisms for correlated data. In Proc. SIGMOD,
pages 1291–1306, 2017.

[49] A. G. Thakurta, A. H. Vyrros, U. S. Vaishampayan,
G. Kapoor, J. Freudiger, V. R. Sridhar, and D. Davidson.
Learning New Words, US Patent 9,594,741, Mar. 14
2017.

[50] N. Wang, X. Xiao, T. D. Hoang, H. Shin, J. Shin, and
G. Yu. PrivTrie: Effective frequent term discovery under
local differential privacy. In Proc. ICDE, 2018.

[51] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differ-
entially private protocols for frequency estimation. In
Proc. USENIX Security, pages 729–745, 2017.

[52] S. L. Warner. Randomized response: A survey technique
for eliminating evasive answer bias. J. Am. Stat. Assoc.,
60(309):63–69, 1965.

[53] B. Yang, I. Sato, and H. Nakagawa. Bayesian differential
privacy on correlated data. In Proc. SIGMOD, pages
747–762, 2015.

[54] D. Yang, D. Zhang, and B. Qu. Participatory cultural
mapping based on collective behavior data in location
based social network. ACM Trans. Intell. Syst. Technol.,
7(3):30:1–30:23, 2016.

[55] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu. Modeling
user activity preference by leveraging user spatial tem-
poral characteristics in LBSNs. IEEE Trans. Syst., Man,
Cybern., Syst., 45(1):129–142, 2015.

[56] M. Ye and A. Barg. Optimal schemes for discrete dis-
tribution estimation under local differential privacy. In
Proc. ISIT, pages 759–763, 2017.

[57] Y. Zheng, X. Xie, and W.-Y. Ma. GeoLife: A collabora-
tive social networking service among user, location and
trajectory. IEEE Data Eng. Bull., 32(2):32–40, 2010.

A Properties of ULDP

In this section, we describe the properties of ULDP (the im-
munity to post-processing and the compatibility with LDP)
in more details.

USENIX Association 28th USENIX Security Symposium 1891

A.1 Post-processing
We first define a class of post-processing randomized algo-
rithms that preserve data types:

Definition 5 (Preservation of data types). Let YP and ZP be
sets of protected data, and YI and ZI be sets of invertible data.
Given a randomized algorithm Q1 from YP∪YI to ZP∪ZI ,
we say that Q1 preserves data types if it satisfies:

• for any z ∈ ZP and any y ∈ YI , Q1(z|y) = 0, and

• for any z∈ZI , there exists a y∈YI such that Q1(z|y)> 0
and Q1(z|y′) = 0 for any y′ 6= y.

Then we show that ULDP is immune to the post-processing
by this class of randomized algorithms.

Proposition 11 (Post-processing). Let ε ≥ 0. Let ZP and
ZI be sets of protected and invertible data respectively, and
Z = ZP∪ZI . Let Q1 be a randomized algorithm from Y to
Z that preserves data types. If an obfuscation mechanism Q0
from X to Y provides (XS,YP,ε)-ULDP then the composite
function Q1 ◦Q0 provides (XS,ZP,ε)-ULDP.

For example, ULDP is immune to data cleaning operations
(e.g., transforming values, merging disparate values) [33] as
long as they are represented as Q1 explained above.

Note that Q1 needs to preserve data types for utility (i.e.,
to make all y ∈ YI invertible, as in Definition 2, after post-
processing), and the DP guarantee for y ∈ YP is preserved by
any post-processing algorithm. Specifically, by (5), for any
randomized post-processing algorithm Q∗1, any obfuscated
data z ∈ Z obtained from y ∈ YP via Q∗1, and any x,x′ ∈ X ,
we have: Pr(z|x)≤ eε Pr(z|x′).

A.2 Compatibility with LDP
Assume that data collectors A and B adopt a mechanism QA
providing (XS,YP,εA)-ULDP and a mechanism QB providing
εB-LDP, respectively. In this case, all protected data in the
data collector A can be combined with all obfuscated data
in the data collector B (i.e., data integration) to perform data
analysis under LDP. More specifically, assume that Alice
transforms her sensitive personal data in XS into yA ∈ YP
(resp. yB ∈ Y) using QA (resp. QB), and sends yA (resp. yB) to
the data collector A (resp. B) to request two different services
(e.g., location check-in for A and point-of-interest search
for B). Then, the composition (QA,QB) in parallel has the
following property:

Proposition 12 (Compatibility with LDP). If QA and QB
respectively provide (XS,YP,εA)-ULDP and εB-LDP, then
for any x,x′ ∈ X , yA ∈ YP, and yB ∈ Y , we have:

(QA,QB)(yA,yB|x)≤ eεA+εB(QA,QB)(yA,yB|x′).

Proposition 12 implies that Alice’s sensitive personal data
in XS is protected by (εA + εB)-LDP after the data integration.

B Relationship between LDP, ULDP and
OSLDP

In this section, we introduce the notion of OSLDP (One-
sided LDP), a local model version of OSDP (One-sided DP)
proposed in a preprint [17]:

Definition 6 ((XS,ε)-OSLDP). Given XS ⊆ X and ε ∈ R≥0,
an obfuscation mechanism Q from X to Y provides (XS,ε)-
OSLDP if for any x ∈ XS, any x′ ∈ X and any y ∈ Y , we have

Q(y|x)≤ eεQ(y|x′). (23)

OSLDP is a special case of OSDP [17] that takes as input
personal data of a single user. Unlike ULDP, OSLDP allows
the transition probability Q(y|x′) from non-sensitive data x′ ∈
XN to be very large for any y∈ Y , and hence does not provide
ε-LDP for Y (whereas ULDP provides ε-LDP for YP). Thus,
OSLDP can be regarded as a “relaxation” of ULDP. In fact,
the following proposition holds:

Proposition 13. If an obfuscation mechanism Q provides
(XS,YP,ε)-ULDP, then it also provides (XS,ε)-OSLDP.

It should be noted that if an obfuscation mechanism pro-
vides ε-LDP, then it obviously provides (XS,YP,ε)-ULDP,
where YP =Y . Therefore, (XS,YP,ε)-ULDP is a privacy mea-
sure that lies between ε-LDP and (XS,ε)-OSLDP.

We use ULDP instead of OSLDP for the following two
reasons. The first reason is that ULDP is compatible with
LDP, and makes it possible to perform data integration and
data analysis under LDP (Proposition 12). OSLDP does not
have this property in general, since it allows the transition
probability Q(y|x′) from non-sensitive data x′ ∈ XN to be very
large for any y ∈ Y , as explained above.

The second reason, which is more important, is that the
utility of OSLDP is not better than that of ULDP. Intuitively,
it can be explained as follows. First, although YP is not ex-
plicitly defined in OSLDP, we can define YP in OSLDP as the
image of XS, and YI as YI = Y \YP, analogously to ULDP.
Then, OSLDP differs from ULDP in the following two points:
(i) it allows the transition probability Q(y|x′) from x′ ∈ XN
to y ∈ YP to be very large (i.e., (5) may not satisfied); (ii) it
allows y ∈ YI to be non-invertible. (i.e., (4) may not satis-
fied). Regarding (i), it is important to note that the transition
probability from x′ ∈ XN to YI decreases with increase in
the transition probability from x′ to YP. Thus, (i) and (ii)
only allow us to mix non-sensitive data with sensitive data
or other non-sensitive data, and reduce the amount of output
data y ∈ YI that can be inverted to x ∈ XN .

Then, each OSLDP mechanism can be decomposed into
a ULDP mechanism and a randomized post-processing that
mixes non-sensitive data with sensitive data or other non-
sensitive data. Note that this post-processing does not pre-
serve data types (in Definition 5), and hence OSLDP does
not have a compatibility with LDP as explained above. In

1892 28th USENIX Security Symposium USENIX Association

addition, although the post-processing might improve privacy
for non-sensitive data, we would like to protect sensitive data
in this paper and ULDP is sufficient for this purpose; i.e., it
guarantees ε-LDP for sensitive data.

Since the information is generally lost (never gained) by
mixing data via the randomized post-processing, the utility
of OSLDP is not better than that of ULDP (this holds for
the information-theoretic utility such as mutual information
and f -divergences [30] because of the data processing in-
equality [9, 13]; we also show this for the expected l1 and l2
losses at the end of Appendix B). Thus, it suffices to consider
ULDP for our goal of designing obfuscation mechanisms that
achieve high utility while providing LDP for sensitive data
(as tdescribed in Section 1).

We now formalize our claim as follows:

Proposition 14. Let MO be the class of all mechanisms from
X to Y providing (XS,ε)-OSLDP. For any QO ∈MO, there
exist two sets Z and ZP, a (XS,ZP,ε)-ULDP mechanism QU
from X to Z, and a randomized algorithm QR from Z to Y
such that:

QO = QR ◦QU . (24)

From Proposition 14, we show that the expected l1 and l2
losses of OSLDP are not better than those of ULDP as follows.
For any OSLDP mechanism QO ∈MO and any estimation
method λO from data in Y , we can construct a ULDP mecha-
nism QU in (24) and an estimation method λU that perturbs
data in Z via QR and then estimates a distribution from data
in Y via λO. QU and λU provide the same expected l1 and l2
losses as QO and λO, and there might also exist ULDP mech-
anisms and estimation methods from data in Z that provide
smaller expected l1 and l2 losses. Thus, the expected l1 and l2
losses of OSLDP are not better than those of ULDP.

C L2 loss of the utility-optimized Mechanisms

C.1 Utility Analysis

uRR in the general case. We first present the l2 loss of the
(XS,ε)-uRR.

Proposition 15 (l2 loss of the uRR). The expected l2 loss of
the (XS,ε)-uRR mechanism is given by:

E[l2
2(p̂,p)] =

2(eε−1)(|XS|−p(XS))+ |XS|(|XS|−1)
n(eε−1)2

+
1
n

(
1− ∑

x∈X
p(x)2). (25)

When 0 < ε < ln(|XN |+1), the l2 loss is maximized by the
uniform distribution pUN over XN .

Proposition 16. For any 0 < ε < ln(|XN |+1), (25) is maxi-
mized by pUN :

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN)

]
= |XS|(|XS|+2eε−3)

n(eε−1)2 + 1
n

(
1− 1

|XN |
)
. (26)

When ε≥ ln(|XN |+1), the l2 loss is maximized by a mix-
ture of the uniform distribution pUS over XS and the uniform
distribution pUN over XN .

Proposition 17. For any ε≥ ln(|XN |+1), (25) is maximized
by p∗ in (13):

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,p

∗)
]
=

(|XS|+ eε−1)2

n(eε−1)2

(
1− 1
|X |

)
.

uRR in the high privacy regime. Consider the high privacy
regime where ε ≈ 0. In this case, eε− 1 ≈ ε. By using this
approximation, the right-hand side of (26) in Proposition 16
can be simplified as follows:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN)

]
≈ |XS|(|XS|−1)

nε2 .

It is shown in [29] that the expected l2 loss of the ε-RR is
at most |X |(|X |−1)

nε2 when ε ≈ 0. Thus, the expected l2 loss of
the (XS,ε)-uRR is much smaller than that of the ε-RR when
|XS| � |X |.
uRR in the low privacy regime. Consider the low privacy
regime where ε = ln |X | and |XS| � |X |. By Proposition 17,
the expected l2

2 loss of the (XS,ε)-uRR is given by:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,p

∗)
]
≈ 1

n
.

It should be noted that the expected l2 loss of the non-private
mechanism is at most 1

n (1−
1
|X |) [29], and that 1

n (1−
1
|X |)≈

1
n

when |X | � 1. Thus, when ε = ln |X | and |XS| � |X |, the
(XS,ε)-uRR achieves almost the same data utility as the non-
private mechanism, whereas the expected l1 loss of the ε-RR is
four times larger than that of the non-private mechanism [29].

Utility-optimized RAPPOR in the general case. We then
present the l2 loss of the (XS,ε)-uRAP.

Proposition 18 (l2 loss of the uRAP). Then the expected
l2-loss of the (XS,ε)-uRAP mechanism is given by:

E
[
l2
2(p̂,p)

]
=

1
n

(
1+ (|XS|+1)eε/2−1

(eε/2−1)2 − 1
eε/2−1

p(XS)−
|X |

∑
j=1

p(x j)
2
)
. (27)

For any 0 < ε < 2ln(|XN |
2 +1), the l2 loss is maximized by

the uniform distribution pUN over XN .

USENIX Association 28th USENIX Security Symposium 1893

RR RAP uRR uRAP no privacy

M
S

E

104

102

100

10-2

10-4

10-6

10-1

10-2

10-3

10-4

10-5

10-6

100

10-1

10-2

10-3

10-4

10-5

10-6

100

M
S

E

103

101

10-1

10-3

10-5

10-7

10-2

10-3

10-4

10-5

10-6

10-7

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-1

(a) Foursquare (left: emp, middle: emp+thr, right: EM)

(b) US Census (left: emp, middle: emp+thr, right: EM)

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

Figure 10: ε vs. MSE (common-mechanism). A bold line
parallel to the y-axis represents ε = ln |X |.

104

102

M
S

E 100

10-2

10-4

10-6

6
2

5
6

0
0

5
0

0
4

0
0

3
0

0
2

0
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

|��|

10-3

10-4

6
2

5
6

0
0

5
0

0
4

0
0

3
0

0
2

0
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

|��|

10-6

M
S

E

(a) Foursquare (left: � = 0.1, right: � = ln|��)

103

M
S

E

101

10-1

10-3

10-5

4
0

0
3

5
0

3
0

0
2

5
0

2
0

0
1

5
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

10-7

(b) US Census (left: � = 0.1, right: � = ln|��)

|��|

4
0

0
3

5
0

3
0

0
2

5
0

2
0

0
1

5
0

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

01

|��|

M
S

E

10-4

10-5

10-7

10-6

10-5

RR (emp) RAP (emp)

RR (EM) RAP (EM)

uRR (emp) uRAP (emp)

uRR (EM) uRAP (EM)

no privacy

Figure 11: |XS| vs. MSE when ε = 0.1 or ln |X |.

Proposition 19. For any 0 < ε < 2ln(|XN |
2 + 1), the l2-loss

E
[
l2
2(p̂,p)

]
is maximized when p = pUN :

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN)

]
=

1
n

(
1+ (|XS|+1)eε/2−1

(eε/2−1)2 − 1
|XN |

)
. (28)

uRAP in the high privacy regime. Consider the high pri-
vacy regime where ε ≈ 0. In this case, eε/2− 1 ≈ ε/2. By
using this approximation, the right-hand side of (28) in Propo-
sition 19 can be simplified as:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN)

]
≈ 4|XS|

nε2 .

Thus, the expected l2 loss of the uRAP is at most 4|XS|
nε2 in

the high privacy regime. It is shown in [29] that the expected

106

M
S

E

104 101

104

102

100

10-2

10-4

10-6

#Attributes
4 5 6 7 8 9

102

100

10-2

10-4

10-6

#Attributes
4 5 6 7 8 9

#Attributes
4 5 6 7 8 9

100

10-1

10-2

10-3

RR (emp) RAP (emp) uRR (emp) uRAP (emp)

RR (EM) RAP (EM) uRR (EM) uRAP (EM)

no privacy

Figure 12: Number of attributes vs. MSE (US Census dataset;
left: ε = 0.1, middle: ε = 1.0, right: ε = 6.0).

M
S

E

uRR (I) uRR (II) uRR (III)

uRAP (I) uRAP (II) uRAP (III)

no privacy

(a) emp (b) emp+thr (c) EM
100

10-1

10-2

10-3

10-4

10-5

10-6

10-2

10-3

10-4

10-5

10-6

10-2

10-3

10-4

10-5

10-6

0.1 1 10
epsilon

0.1 1 10
epsilon

0.1 1 10
epsilon

Figure 13: ε vs. MSE (personalized-mechanism) ((I): w/o
knowledge, (II) POI distribution, (III) true distribution).

l2 loss of the ε-RAPPOR is at most 4|X |
nε2 (1− 1

|X |) when ε≈ 0.
Thus, the expected l2 loss of the (XS,ε)-uRAP is much smaller
than that of the ε-RAPPOR when |XS| � |X |.

Note that the expected l2 loss of the uRAP in the worst case
can also be expressed as Θ(|XS|

nε2) in this case. As described in
Section 3.2, this is “order” optimal among all ULDP mecha-
nisms.

uRAP in the low privacy regime. If ε = ln |X | and |XS| �√
|X |, the right-hand side of (28) in Proposition 19 can be

simplified as follows:

E
[
l2
2(p̂,p)

]
≤ E

[
l2
2(p̂,pUN)

]
≈ 1

n
. (29)

Note that the expected l2 loss of the non-private mechanism
is at most 1

n (1−
1
|X |) [29], and that 1

n (1−
1
|X |) ≈

1
n when

|X |� 1. Thus, when ε = ln |X | and |XS|�
√
|X |, the (XS,ε)-

uRAP achieves almost the same data utility as the non-private
mechanism, whereas the expected l2 loss of the ε-RAPPOR
is
√
|X | times larger than that of the non-private mechanism

[29].

C.2 Experimental Results of the MSE
Figures 10, 11, 12, and 13 show the results of the MSE corre-
sponding to Figures 5, 6, 7, and 8, respectively. It can be seen
that a tendency similar to the results of the TV is obtained for
the results of the MSE, meaning that our proposed methods
are effective in terms of both the l1 and l2 losses.

1894 28th USENIX Security Symposium USENIX Association

Evaluating Differentially Private Machine Learning in Practice

Bargav Jayaraman and David Evans
Department of Computer Science

University of Virginia

Abstract
Differential privacy is a strong notion for privacy that can be
used to prove formal guarantees, in terms of a privacy budget,
ε, about how much information is leaked by a mechanism.
When used in privacy-preserving machine learning, the goal
is typically to limit what can be inferred from the model about
individual training records. However, the calibration of the
privacy budget is not well understood. Implementations of
privacy-preserving machine learning often select large values
of ε in order to get acceptable utility of the model, with little
understanding of the impact of such choices on meaningful
privacy. Moreover, in scenarios where iterative learning pro-
cedures are used, relaxed definitions of differential privacy are
often used which appear to reduce the needed privacy budget
but present poorly understood trade-offs between privacy and
utility. In this paper, we quantify the impact of these choices
on privacy in experiments with logistic regression and neural
network models. Our main finding is that there is no way
to obtain privacy for free—relaxed definitions of differential
privacy that reduce the amount of noise needed to improve
utility also increase the measured privacy leakage. Current
mechanisms for differentially private machine learning rarely
offer acceptable utility-privacy trade-offs for complex learn-
ing tasks: settings that provide limited accuracy loss provide
little effective privacy, and settings that provide strong privacy
result in useless models.

1 Introduction

Differential privacy has become a de facto privacy standard,
and nearly all works on privacy-preserving machine learning
use some form of differential privacy. These works include
designs for differentially private versions of prominent ma-
chine learning algorithms including empirical risk minimiza-
tion [11, 12] and deep neural networks [1, 60].

While many methods for achieving differential privacy
have been proposed, it is not well understood how to use
these methods in practice. In particular, there is little concrete

guidance on how to choose an appropriate privacy budget
ε, and limited understanding of how variants of the differen-
tial privacy definition impact privacy in practice. As a result,
privacy-preserving machine learning implementations tend to
choose arbitrary values for ε as needed to achieve acceptable
model utility. For instance, the implementation of Shokri and
Shmatikov [60] requires ε proportional to the size of the tar-
get deep learning model, which could be in the order of few
millions. Setting ε to such arbitrarily large values severely
undermines privacy, although there is no consensus on a hard
threshold value for ε above which formal guarantees differen-
tial privacy provides become meaningless in practice.

One proposed way to improve utility for a given privacy
budget is to relax the definition of differential privacy. Several
relaxed definitions of differential privacy have been proposed
that are shown to provide better utility even for small ε val-
ues [9, 18, 49]. How much privacy leakage these relaxations
allow in adversarial scenarios, however, is not well under-
stood. We shed light on this question by evaluating the relaxed
differential privacy notions for different choices of ε values
and empirically measuring privacy leakage, including how
many individual training records are exposed by membership
inference attacks on different models.

Contributions. Our main contribution is the evaluation of
differential privacy mechanisms for machine learning to un-
derstand the impact of different choices of ε and different
relaxations of differential privacy on both utility and privacy.
We focus our evaluation on gradient perturbation mechanisms,
which are applicable to a wide class of machine learning al-
gorithms including empirical risk minimization (ERM) algo-
rithms such as logistic regression and deep learning (Section
2.2). Our experiments cover three popular differential privacy
relaxations: differential privacy with advanced composition,
zero-concentrated differential privacy [9], and Rényi differen-
tial privacy [49] (described in Section 2.1). These variations
allow for tighter analysis of cumulative privacy loss, thereby
reducing the noise that must be added in the training process.
We evaluate the concrete privacy loss of these variations using

USENIX Association 28th USENIX Security Symposium 1895

membership inference attacks [61, 74] and attribute inference
attacks [74] (Section 3). While the model utility increases
with the privacy budget, increasing the privacy budget also
increases the success rate of inference attacks. Hence, we
aim to find the range of values of ε which achieves a balance
between utility and privacy, and also to evaluate the concrete
privacy leakage in terms of the number of individual members
of the training data at risk of exposure. We study both logistic
regression and neural network models, on two multi-class
classification data sets. Our key findings (Section 4) quan-
tify the practical risks of using different differential privacy
notions across a range of privacy budgets.

Related work. Orthogonal to our work, Ding et al. [13] and
Hay et al. [26] evaluate the existing differential privacy imple-
mentations for the correctness of implementation. Whereas,
we assume correct implementations and aim to evaluate the
impact of the privacy budget and choice of differential privacy
variant. While Carlini et al. [10] also explore the effectiveness
of differential privacy against attacks, they do not explicitly
answer what values of ε should be used nor do they evaluate
the privacy leakage of the relaxed definitions. Li et al. [42]
raise concerns about relaxing the differential privacy notion
in order to achieve better overall utility, but do not evaluate
the leakage. We perform a thorough evaluation of the differen-
tial privacy variations and quantify their leakage for different
privacy budgets. The work of Rahman et al. [58] is most
closely related to our work. It evaluates differential privacy
implementations against membership inference attacks, but
does not evaluate the privacy leakage of relaxed variants of
differential privacy. Ours is the first work to experimentally
measure the excess privacy leakage due to the relaxed notions
of differential privacy.

2 Differential Privacy for Machine Learning

Next, we review the definition of differential privacy and its re-
laxed variants. Section 2.2 surveys mechanisms for achieving
differentially private machine learning. Section 2.3 summa-
rizes applications of differential privacy to machine learning
and surveys implementations’ choices about privacy budgets.

2.1 Background on Differential Privacy
Differential privacy is a probabilistic privacy mechanism
that provides an information-theoretic security guarantee.
Dwork [16] gives the following definition:

Definition 2.1 ((ε,δ)-Differential Privacy). Given two neigh-
boring data sets D and D′ differing by one record, a mecha-
nismM preserves (ε,δ)-differential privacy if

Pr[M(D) ∈ S] ≤ Pr[M(D′) ∈ S]× eε +δ

where ε is the privacy budget and δ is the failure probability.

When δ = 0 we achieve a strictly stronger notion of ε-
differential privacy.

The quantity

ln
Pr[M(D) ∈ S]
Pr[M(D′) ∈ S]

is called the privacy loss.
One way to achieve ε-DP and (ε,δ)-DP is to add noise sam-

pled from Laplace and Gaussian distributions respectively,
where the noise is proportional to the sensitivity of the mech-
anismM:

Definition 2.2 (Sensitivity). For two neighboring data sets
D and D′ differing by one record, the sensitivity ofM is the
maximum change in the output ofM over all possible inputs:

∆M = max
D,D′,‖D−D′‖1=1

‖M(D)−M(D′)‖

where ‖ · ‖ is a norm of the vector. Throughout this paper we
assume `2-sensitivity which considers the upper bound on the
`2-norm ofM(D)−M(D′).

Composition. Differential privacy satisfies a simple compo-
sition property: when two mechanisms with privacy budgets
ε1 and ε2 are performed on the same data, together they con-
sume a privacy budget of ε1 + ε2. Thus, composing multiple
differentially private mechanisms leads to a linear increase
in the privacy budget (or corresponding increases in noise to
maintain a fixed ε total privacy budget).

Relaxed Definitions. Dwork [17] showed that this linear com-
position bound on ε can be reduced at the cost of slightly
increasing the failure probability δ. In essence, this relaxation
considers the linear composition of expected privacy loss of
mechanisms which can be converted to a cumulative privacy
budget ε with high probability bound. Dwork defines this as
the advanced composition theorem, and proves that it applies
to any differentially private mechanism.

Three commonly-used subsequent relaxed versions of dif-
ferential privacy are Concentrated Differential Privacy [18],
Zero Concentrated Differential Privacy [9], and Rényi Differ-
ential Privacy [49]. All of these achieve tighter analysis of
cumulative privacy loss by taking advantage of the fact that
the privacy loss random variable is strictly centered around
an expected privacy loss. The cumulative privacy budget ob-
tained from these analyses bounds the worst case privacy loss
of the composition of mechanisms with all but δ failure prob-
ability. This reduces the noise required and hence improves
utility over multiple compositions. However, it is important
to consider the actual impact these relaxations have on the
privacy leakage, which is a main focus of this paper.

Dwork et al. [18] note that the privacy loss of a differen-
tially private mechanism follows a sub-Gaussian distribution.
In other words, the privacy loss is strictly distributed around
the expected privacy loss and the spread is controlled by the
variance of the sub-Gaussian distribution. Multiple composi-
tions of differentially private mechanisms thus result in the

1896 28th USENIX Security Symposium USENIX Association

Advanced Comp. Concentrated (CDP) Zero-Concentrated (zCDP) Rényi (RDP)

Expected Loss ε(eε −1) µ =
ε(eε−1)

2 ζ +ρ = ε2

2 2ε2

Variance of Loss ε2 τ2 = ε2 2ρ = ε2 ε2

Convert from ε-DP - (ε(e
ε−1)
2 , ε)-CDP (ε

2

2)-zCDP (α,ε)-RDP

Convert to DP - (µ+τ
√

2log(1/δ), δ)-DP† (ζ +ρ+ 2
√
ρ log(1/δ), δ)-DP (ε +

log(1/δ)
α−1 , δ)-DP

Composition of k
ε-DP Mechanisms

(ε
√

2k log(1/δ)
+ kε(eε −1), δ)-DP

(ε
√

2k log(1/δ)
+ kε(eε −1)/2, δ)-DP

(ε
√

2k log(1/δ)
+ kε2/2, δ)-DP

(4ε
√

2k log(1/δ), δ)-DP‡

Table 1: Comparison of Different Variations of Differential Privacy
Advanced composition is an implicit property of DP and hence there is no conversion to and from DP.

†. Derived indirectly via zCDP. ‡. When log(1/δ) ≥ ε2k.

aggregation of corresponding mean and variance values of the
individual sub-Gaussian distributions. This can be converted
to a cumulative privacy budget similar to the advanced com-
position theorem, which in turn reduces the noise that must
be added to the individual mechanisms. The authors call this
concentrated differential privacy [18]:

Definition 2.3 (Concentrated Differential Privacy (CDP)). A
randomized algorithmM is (µ,τ)-concentrated differentially
private if, for all pairs of adjacent data sets D and D′,

DsubG(M(D) || M(D′)) ≤ (µ,τ)

where the sub-Gaussian divergence, DsubG, is defined such
that the expected privacy loss is bounded by µ and after
subtracting µ, the resulting centered sub-Gaussian distribu-
tion has standard deviation τ. Any ε-DP algorithm satisfies
(ε · (eε −1)/2, ε)-CDP, however the converse is not true.

A variation on CDP, zero-concentrated differential privacy
(zCDP) [9] uses Rényi divergence as a different method to
show that the privacy loss random variable follows a sub-
Gaussian distribution.

Definition 2.4 (Zero-Concentrated Differential Privacy
(zCDP)). A randomized mechanism M is (ξ,ρ)-zero-
concentrated differentially private if, for all neighbouring data
sets D and D′ and all α ∈ (1,∞),

Dα(M(D) || M(D′)) ≤ ξ+ρα

where Dα(M(D) || M(D′)) is the α-Rényi divergence be-
tween the distribution ofM(D) and the distribution ofM(D′).

Dα also gives the α-th moment of the privacy loss random
variable. For example,D1 gives the first order moment which
is the mean or the expected privacy loss, and D2 gives the
second order moment or the variance of privacy loss. There is
a direct relation between DP and zCDP. IfM satisfies ε-DP,
then it also satisfies (1

2 ε
2)-zCDP. Furthermore, ifM provides

ρ-zCDP, it is (ρ+ 2
√
ρ log(1/δ), δ)-DP for any δ > 0.

The Rényi divergence allows zCDP to be mapped back
to DP, which is not the case for CDP. However, Bun and

Steinke [9] give a relationship between CDP and zCDP, which
allows an indirect mapping from CDP to DP (Table 1).

The use of Rényi divergence as a metric to bound the pri-
vacy loss leads to the formulation of a more generic notion of
Rényi differential privacy that is applicable to any individual
moment of privacy loss random variable:

Definition 2.5 (Rényi Differential Privacy (RDP) [49]). A
randomized mechanismM is said to have ε-Rényi differential
privacy of order α (which can be abbreviated as (α,ε)-RDP),
if for any adjacent data sets D, D′ it holds that

Dα(M(D) || M(D′)) ≤ ε.

The main difference is that CDP and zCDP linearly bound
all positive moments of privacy loss, whereas RDP bounds
one moment at a time, which allows for a more accurate
numerical analysis of privacy loss [49]. IfM is an (α,ε)-RDP
mechanism, it also satisfies (ε+

log1/δ
α−1 , δ)-DP for any 0< δ < 1.

Table 1 compares the relaxed variations of differential pri-
vacy. For all the variations, the privacy budget grows sub-
linearly with the number of compositions k.

Moments Accountant. Motivated by relaxations of differen-
tial privacy, Abadi et al. [1] propose the moments accountant
(MA) mechanism for bounding the cumulative privacy loss
of differentially private algorithms. The moments accountant
keeps track of a bound on the moments of the privacy loss
random variable during composition. Though the authors do
not formalize this as a relaxed definition, their definition of
the moments bound is analogous to the Rényi divergence [49].
Thus, the moments accountant can be considered as an instan-
tiation of Rényi differential privacy. The moments accountant
is widely used for differentially private deep learning due
to its practical implementation in the TensorFlow Privacy
library [2] (see Section 2.3 and Table 4).

2.2 Differential Privacy Methods for ML
This section summarizes methods for modifying machine
learning algorithms to satisfy differential privacy. First, we

USENIX Association 28th USENIX Security Symposium 1897

Data: Training data set (X,y)
Result: Model parameters θ
θ← Init(0)
#1. Add noise here: objective perturbation
J(θ) = 1

n
∑n

i=1 `(θ,Xi,yi) +λR(θ)+β
for epoch in epochs do

#2. Add noise here: gradient perturbation
θ = θ−η(∇J(θ)+β)

end
#3. Add noise here: output perturbation
return θ+β

Algorithm 1: Privacy noise mechanisms.

review convex optimization problems, such as empirical risk
minimization (ERM) algorithms, and show several methods
for achieving differential privacy during the learning process.
Next, we discuss methods that can be applied to non-convex
optimization problems, including deep learning.

ERM. Given a training data set (X,y), where X is a feature
matrix and y is the vector of class labels, an ERM algorithm
aims to reduce the convex objective function of the form,

J(θ) =
1
n

n∑
i=1

`(θ,Xi,yi) +λR(θ),

where `(·) is a convex loss function (such as mean square error
(MSE) or cross-entropy loss) that measures the training loss
for a given θ, and R(·) is a regularization function. Commonly
used regularization functions include `1 penalty, which makes
the vector θ sparse, and `2 penalty, which shrinks the values
of θ vector.

The goal of the algorithm is to find the optimal θ∗ that min-
imizes the objective function: θ∗ = argminθ J(θ). While many
first order [14, 37, 57, 76] and second order [40, 43] meth-
ods exist to solve this minimization problem, the most basic
procedure is gradient descent where we iteratively calculate
the gradient of J(θ) with respect to θ and update θ with the
gradient information. This process is repeated until J(θ) ≈ 0
or some other termination condition is met.

There are three obvious candidates for where to add privacy-
preserving noise during this training process, demarcated in
Algorithm 1. First, we could add noise to the objective func-
tion J(θ), which gives us the objective perturbation mech-
anism (#1 in Algorithm 1). Second, we could add noise to
the gradients at each iteration, which gives us the gradient
perturbation mechanism (#2). Finally, we can add noise to θ∗

obtained after the training, which gives us the output perturba-
tion mechanism (#3). While there are other methods of achiev-
ing differential privacy such as input perturbation [15], sample-
aggregate framework [51], exponential mechanism [48] and
teacher ensemble framework [52]. We focus our experimental
analysis on gradient perturbation since it is applicable to all

machine learning algorithms in general and is widely used for
deep learning with differential privacy.

The amount of noise that must be added depends on the
sensitivity of the machine learning algorithm. For instance,
consider logistic regression with `2 regularization penalty.
The objective function is of the form:

J(θ) =
1
n

n∑
i=1

log(1 + e−X>i θyi) +
λ

2
‖ θ ‖22

Assume that the training features are bounded, ‖Xi‖2 ≤ 1 and
yi ∈ {−1,1}. Chaudhuri et al. [12] prove that for this setting,
objective perturbation requires sampling noise in the scale
of 2

nε , and output perturbation requires sampling noise in the
scale of 2

nλε . The gradient of the objective function is:

∇J(θ) =
1
n

n∑
i=1

−Xiyi

1 + eX>i θyi
+λθ

which has a sensitivity of 2
n . Thus, gradient perturbation re-

quires sampling noise in the scale of 2
nε at each iteration.

Deep learning. Deep learning follows the same learning pro-
cedure as in Algorithm 1, but the objective function is non-
convex. As a result, the sensitivity analysis methods of Chaud-
huri et al. [12] do not hold as they require a strong convexity
assumption. Hence, their output and objective perturbation
methods are not applicable. An alternative approach is to
replace the non-convex function with a convex polynomial
function [55, 56], and then use the standard objective pertur-
bation. This approach requires carefully designing convex
polynomial functions that can approximate the non-convexity,
which can still limit the model’s learning capacity. Moreover,
it would require a considerable change in the existing machine
learning infrastructure.

A simpler and more popular approach is to add noise to
the gradients. Application of gradient perturbation requires
a bound on the gradient norm. Since the gradient norm can
be unbounded in deep learning, gradient perturbation can be
used after manually clipping the gradients at each iteration. As
noted by Abadi et al. [1], norm clipping provides a sensitivity
bound on the gradients which is required for generating noise
in gradient perturbation.

2.3 Implementing Differential Privacy
This section surveys how differential privacy has been used in
machine learning applications, with a particular focus on the
compromises implementers have made to obtain satisfactory
utility. While the effective privacy provided by differential
privacy mechanisms depends crucially on the choice of pri-
vacy budget ε, setting the ε value is discretionary and higher
privacy budgets provide better utility.

Some of the early data analytics works on frequent pattern
mining [7,41], decision trees [21], private record linkage [30]

1898 28th USENIX Security Symposium USENIX Association

Perturbation Data Set n d ε

Chaudhuri et al. [12] Output and Objective
Adult 45,220 105 0.2

KDDCup99 70,000 119 0.2
Pathak et al. [54] Output Adult 45,220 105 0.2

Hamm et al. [25] Output
KDDCup99 493,000 123 1.0

URL 200,000 50 1.0

Zhang et al. [78] Objective
US 370,000 14 0.8

Brazil 190,000 14 0.8

Jain and Thakurta [33] Objective
CoverType 500,000 54 0.5

KDDCup2010 20,000 2M 0.5

Jain and Thakurta [34] Output and Objective
URL 100,000 20M 0.1

COD-RNA 60,000 8 0.1

Song et al. [63] Gradient
KDDCup99 50,000 9 1.0

MNIST† 60,000 15 1.0

Wu et al. [70] Output
Protein 72,876 74 0.05

CoverType 498,010 54 0.05

Jayaraman et al. [35] Output
Adult 45,220 104 0.5

KDDCup99 70,000 122 0.5

Table 2: Simple ERM Methods which achieve High Utility with Low Privacy Budget.
†While MNIST is normally a 10-class task, Song et al. [63] use this for ‘1 vs rest’ binary classification.

and recommender systems [47] were able to achieve both high
utility and privacy with ε settings close to 1. These methods
rely on finding frequency counts as a sub-routine, and hence
provide ε-differential privacy by either perturbing the counts
using Laplace noise or by releasing the top frequency counts
using the exponential mechanism [48]. Machine learning, on
the other hand, performs much more complex data analysis,
and hence requires higher privacy budgets to maintain utility.

Next, we cover simple binary classification works that use
small privacy budgets (ε ≤ 1). Then we survey complex clas-
sification tasks which seem to require large privacy budgets.
Finally, we summarize recent works that aim to perform com-
plex tasks with low privacy budgets by using relaxed defini-
tions of differential privacy.

Binary classification. The first practical implementation of a
private machine learning algorithm was proposed by Chaud-
huri and Monteleoni [11]. They provide a novel sensitivity
analysis under strong convexity constraints, allowing them to
use output and objective perturbation for binary logistic re-
gression. Chaudhuri et al. [12] subsequently generalized this
method for ERM algorithms. This sensitivity analysis method
has since been used by many works for binary classifica-
tion tasks under different learning settings (listed in Table 2).
While these applications can be implemented with low pri-
vacy budgets (ε ≤ 1), they only perform learning in restricted
settings such as learning with low dimensional data, smooth
objective functions and strong convexity assumptions, and are
only applicable to simple binary classification tasks.

There has also been considerable progress in general-

izing privacy-preserving machine learning to more com-
plex scenarios such as learning in high-dimensional set-
tings [33, 34, 64], learning without strong convexity assump-
tions [65], or relaxing the assumptions on data and objective
functions [62, 68, 77]. However, these advances are mainly of
theoretical interest and only a few works provide implemen-
tations [33, 34].

Complex learning tasks. All of the above works are lim-
ited to convex learning problems with binary classification
tasks. Adopting their approaches to more complex learning
tasks requires higher privacy budgets (see Table 3). For in-
stance, the online version of ERM as considered by Jain et
al. [32] requires ε as high as 10 to achieve acceptable utility.
From the definition of differential privacy, we can see that
Pr[M(D) ∈ S] ≤ e10×Pr[M(D′) ∈ S]. In other words, even if
the model’s output probability is 0.0001 on a data set D′ that
doesn’t contain the target record, the model’s output proba-
bility can be as high as 0.9999 on a neighboring data set D
that contains the record. This allows an adversary to infer
the presence or absence of a target record from the training
data with high confidence. Adopting these binary classifica-
tion methods for multi-class classification tasks requires even
higher ε values. As noted by Wu et al. [70], it would require
training a separate binary classifier for each class. Finally,
high privacy budgets are required for non-convex learning
algorithms, such as deep learning [60, 79]. Since the output
and objective perturbation methods of Chaudhuri et al. [12]
are not applicable to non-convex settings, implementations
of differentially private deep learning rely on gradient pertur-

USENIX Association 28th USENIX Security Symposium 1899

Task Perturbation Data Set n d C ε

Jain et al. [32] Online ERM Objective
Year 500,000 90 2 10

CoverType 581,012 54 2 10

Iyengar et al. [31]

Binary ERM

Objective

Adult 45,220 104 2 10
Binary ERM KDDCup99 70,000 114 2 10

Multi-Class ERM CoverType 581,012 54 7 10
Multi-Class ERM MNIST 65,000 784 10 10

High Dimensional ERM Gisette 6,000 5,000 2 10

Phan et al. [55, 56] Deep Learning Objective
YesiWell 254 30 2 1
MNIST 60,000 784 10 1

Shokri and Shmatikov [60] Deep Learning Gradient
MNIST 60,000 1,024 10 369,200
SVHN 100,000 3,072 10 369,200

Zhao et al. [79] Deep Learning Gradient
US 500,000 20 2 100

MNIST 60,000 784 10 100

Table 3: Classification Methods for Complex Tasks

Task DP Relaxation Data Set n d C ε

Huang et al. [28] ERM MA Adult 21,000 14 2 0.5

Jayaraman et al. [35] ERM zCDP
Adult 45,220 104 2 0.5

KDDCup99 70,000 122 2 0.5

Park et al. [53] ERM zCDP and MA

Stroke 50,345 100 2 0.5
LifeScience 26,733 10 2 2.0

Gowalla 1,256,384 2 2 0.01
OlivettiFace 400 4,096 2 0.3

Lee [39] ERM zCDP
Adult 48,842 124 2 1.6

US 40,000 58 2 1.6
Brazil 38,000 53 2 1.6

Geumlek et al. [23] ERM RDP
Abalone 2,784 9 2 1.0

Adult 32,561 100 2 0.05
MNIST 7,988 784 2 0.14

Beaulieu et al. [6] Deep Learning MA
eICU 4,328 11 2 3.84

TCGA 994 500 2 6.11

Abadi et al. [1] Deep Learning MA
MNIST 60,000 784 10 2.0
CIFAR 60,000 3,072 10 8.0

Yu et al. [75] Deep Learning MA
MNIST 60,000 784 10 21.5
CIFAR 60,000 3,072 10 21.5

Papernot et al. [52] Deep Learning MA
MNIST 60,000 784 10 2.0
SVHN 60,000 3,072 10 8.0

Geyer et al. [24] Deep Learning MA MNIST 60,000 784 10 8.0

Bhowmick et al. [8] Deep Learning MA
MNIST 60,000 784 10 3.0
CIFAR 60,000 3,072 10 3.0

Hynes et al. [29] Deep Learning MA CIFAR 50,000 3,072 10 4.0

Table 4: Gradient Perturbation based Classification Methods using Relaxed Notion of Differential Privacy

1900 28th USENIX Security Symposium USENIX Association

bation in their iterative learning procedure. These methods
do not scale to large numbers of training iterations due to
the composition theorem of differential privacy which causes
the privacy budget to accumulate across iterations. The only
exceptions are the works of Phan et al. [55, 56] that replace
the non-linear functions in deep learning with polynomial
approximations and then apply objective perturbation. With
this transformation, they achieve high model utility for ε = 1,
as shown in Table 3. However, we note that this polynomial
approximation is a non-standard approach to deep learning
which can limit the model’s learning capacity, and thereby
diminish the model’s accuracy for complex tasks.

Machine learning with relaxed DP definitions. To avoid
the stringent composition property of differential privacy, sev-
eral proposed privacy-preserving deep learning methods adopt
the relaxed privacy definitions introduced in Section 2.1. Ta-
ble 4 lists works that use gradient perturbation with relaxed
notions of differential to reduce the overall privacy budget
during iterative learning. The utility benefit of using relax-
ation is evident from the fact that the privacy budget for deep
learning algorithms is significantly less than the prior works
of Shokri and Shmatikov [60] and Zhao et al. [79] which do
not use any relaxation.

While these relaxed definitions of differential privacy make
complex iterative learning feasible for reasonable ε values,
they might lead to more privacy leakage in practice. The main
goal of our study is to evaluate the impact of implementation
decisions regarding the privacy budget and relaxed definitions
of differential privacy on the concrete privacy leakage that
can be exploited by an attacker in practice. We do this by
experimenting with various inference attacks, described in
the next section.

3 Inference Attacks on Machine Learning

This section surveys the two types of inference attacks, mem-
bership inference (Section 3.1) and attribute inference (Sec-
tion 3.2), and explains why they are useful metrics for evalu-
ating privacy leakage. Section 3.3 briefly summarizes other
relevant privacy attacks on machine learning.

3.1 Membership Inference
The aim of a membership inference attack is to infer whether
or not a given record is present in the training set. Membership
inference attacks can uncover highly sensitive information
from training data. An early membership inference attack
showed that it is possible to identify individuals contributing
DNA to studies that analyze a mixture of DNA from many
individuals, using a statistical distance measure to determine
if a known individual is in the mixture [27].

Membership inference attacks can either be completely
black-box where an attacker only has query access to the

target model [61], or can assume that the attacker has full
white-box access to the target model, along with some auxil-
iary information [74]. The first membership inference attack
on machine learning was proposed by Shokri et al. [61]. They
consider an attacker who can query the target model in a
black-box way to obtain confidence scores for the queried
input. The attacker tries to exploit the confidence score to
determine whether the query input was present in the train-
ing data. Their attack method involves first training shadow
models on a labelled data set, which can be generated either
via black-box queries to the target model or through assump-
tions about the underlying distribution of training set. The
attacker then trains an attack model using the shadow models
to distinguish whether or not an input record is in the shadow
training set. Finally, the attacker makes API calls to the target
model to obtain confidence scores for each given input record
and infers whether or not the input was part of the target
model’s training set. The inference model distinguishes the
target model’s predictions for inputs that are in its training set
from those it did not train on. The key assumption is that the
confidence score of the target model is higher for the training
instances than it would be for arbitrary instances not present
in the training set. This can be due to the generalization gap,
which is prominent in models that overfit to training data.

A more targeted approach was proposed by Long et al. [44]
where the shadow models are trained with and without a tar-
geted input record t. At inference time, the attacker can check
if the input record t was present in the training set of tar-
get model. This approach tests the membership of a specific
record more accurately than Shokri et al.’s approach [61]. Re-
cently, Salem et al. [59] proposed more generic membership
inference attacks by relaxing the requirements of Shokri et
al. [61]. In particular, requirements on the number of shadow
models, knowledge of training data distribution and the tar-
get model architecture can be relaxed without substantially
degrading the effectiveness of the attack.

Yeom et al. [74] recently proposed a more computationally
efficient membership inference attack when the attacker has
access to the target model and knows the average training loss
of the model. To test the membership of an input record, the
attacker evaluates the loss of the model on the input record
and then classifies it as a member if the loss is smaller than
the average training loss.

Connection to Differential Privacy. Differential privacy, by
definition, aims to obfuscate the presence or absence of a
record in the data set. On the other hand, membership in-
ference attacks aim to identify the presence or absence of
a record in the data set. Thus, intuitively these two notions
counteract each other. Li et al. [42] point to this fact and
provide a direct relationship between differential privacy and
membership inference attacks. Backes et al. [4] studied mem-
bership inference attacks on microRNA studies and showed
that differential privacy can reduce the success of membership

USENIX Association 28th USENIX Security Symposium 1901

inference attacks, but at the cost of utility.
Yeom et al. [74] formally define a membership inference

attack as an adversarial game where a data element is selected
from the distribution, which is randomly either included in
the training set or not. Then, an adversary with access to
the trained model attempts to determine if that element was
used in training. The membership advantage is defined as the
difference between the adversary’s true and false positive rates
for this game. The authors prove that if the learning algorithm
satisfies ε-differential privacy, then the adversary’s advantage
is bounded by eε −1. Hence, it is natural to use membership
inference attacks as a metric to evaluate the privacy leakage
of differentially private algorithms.

3.2 Attribute Inference
The aim of an attribute inference attack (also called model
inversion) is to learn hidden sensitive attributes of a test in-
put given at least API access to the model and information
about the non-sensitive attributes. Fredrikson et al. [20] for-
malize this attack in terms of maximizing the posterior prob-
ability estimate of the sensitive attribute. More concretely,
for a test record x where the attacker knows the values of
its non-sensitive attributes x1, x2, · · · xd−1 and all the prior
probabilities of the attributes, the attacker obtains the out-
put of the model, f (x), and attempts to recover the value of
the sensitive attribute xd. The attacker essentially searches
for the value of xd that maximizes the posterior probability
P(xd | x1, x2, · · · xd−1, f (x)). The success of this attack is based
on the correlation between the sensitive attribute, xd, and the
model output, f (x).

Yeom et al. [74] also propose an attribute inference attack
using the same principle they use for their membership in-
ference attack. The attacker evaluates the model’s empirical
loss on the input instance for different values of the sensitive
attribute, and reports the value which has the maximum pos-
terior probability of achieving the empirical loss. The authors
define the attribute advantage similarly to their definition of
membership advantage for membership inference.

Fredrikson et al. [20] demonstrated attribute inference at-
tacks that could identify genetic markers based on warfarin
dosage output by a model with just black-box access to model
API.1 With additional access to confidence scores of the
model (noted as white-box information by Wu et al. [69]),
more complex tasks have been performed, such as recovering
faces from the training data [19].

Connection to Differential Privacy. Differential privacy is
mainly tailored to obfuscate the presence or absence of a
record in a data set, by limiting the effect of any single record
on the output of differential private model trained on the data

1This application has stirred some controversy based on the warfarin
dosage output by the model itself being sensitive information correlated
to the sensitive genetic markers, hence the assumption on attacker’s prior
knowledge of warfarin dosage is somewhat unrealistic [46].

set. Logically this definition also extends to attributes or fea-
tures of a record. In other words, by adding sufficient differ-
ential privacy noise, we should be able to limit the effect of a
sensitive attribute on the model’s output. This relationship be-
tween records and attributes is discussed by Yeom et al. [74].
Hence, we include these attacks in our experiments.

3.3 Other Attacks on Machine Learning

Apart from inference attacks, many other attacks have been
proposed in the literature which try to infer specific infor-
mation from the target model. The most relevant are mem-
orization attacks, which try to exploit the ability of high
capacity models to memorize certain sensitive patterns in
the training data [10]. These attacks have been found to be
thwarted by differential privacy mechanisms with very little
noise (ε = 109) [10].

Other privacy attacks include model stealing, hyperparame-
ter stealing, and property inference attacks. A model stealing
attack aims to recover the model parameters via black-box
access to the target model, either by adversarial learning [45]
or by equation solving attacks [66]. Hyperparameter steal-
ing attacks try to recover the underlying hyperparameters
used during the model training, such as regularization coeffi-
cient [67] or model architecture [72]. These hyperparameters
are intellectual property of commercial organizations that de-
ploy machine learning models as a service, and hence these
attacks are regarded as a threat to valuable intellectual prop-
erty. A property inference attack tries to infer whether the
training data set has a specific property, given a white-box
access to the trained model. For instance, given access to a
speech recognition model, an attacker can infer if the train-
ing data set contains speakers with a certain accent. Here
the attacker can use the shadow training method of Shokri
et al. [61] for distinguishing the presence and absence of a
target property. These attacks have been performed on HMM
and SVM models [3] and neural networks [22].

Though all these attacks may leak sensitive information
about the target model or training data, the information leaked
tends to be application-specific and is not clearly defined in a
general way. For example, a property inference attack leaks
some statistical property of the training data that is surprising
to the model developer. Of course, the overall purpose of the
model is to learn statistical properties from the training data.
So, there is no general definition of a property inference attack
without a prescriptive decision about which statistical proper-
ties of the training data should be captured by the model and
which are sensitive to leak. In addition, the attacks mentioned
in this section do not closely follow the threat model of differ-
ential privacy. Thus, we only consider inference attacks for
our experimental evaluation.

In addition to these attacks, several poisoning and adversar-
ial training attacks have been proposed [5, 50, 71, 73] which
require an adversary that can actively interfere with the model

1902 28th USENIX Security Symposium USENIX Association

training process. We consider these out of scope for this paper,
and assume a clean training process not under the control of
the adversary.

4 Empirical Evaluation

To quantify the privacy leakage of the differentially private im-
plementations for machine learning, we conduct experiments
to measure how much an adversary can infer from a model.
As motivated in Section 3, we measure privacy leakage using
membership and attribute inference in our experiments. Note,
however, that the conclusions we can draw from experiments
like this are limited to showing a lower bound on the informa-
tion leakage since they are measuring the effectiveness of a
particular attack. Such experimental results cannot be used
to make strong claims about what the best possible attack
would be able to infer, especially in cases where an adversary
has auxiliary information to help guide the attack. Evidence
from our experiments, however, does provide clear evidence
for when implemented privacy protections do not appear to
provide sufficient privacy.

4.1 Experimental Setup
We evaluate the privacy leakage of two differentially private
algorithms using gradient perturbation: logistic regression for
empirical risk minimization (Section 4.2) and neural networks
for non-convex learning (Section 4.3). For both, we consider
the different relaxed notions of differential privacy and com-
pare their privacy leakage. The variations that we implement
are naïve composition (NC), advanced composition (AC),
zero-concentrated differential privacy (zCDP) and Rényi dif-
ferential privacy (RDP) (see Section 2.1 for details). We do
not include CDP as it has the same composition property as
zCDP (Table 1). For RDP, we use the RDP accountant (previ-
ously moments accountant) of TF Privacy framework [2].

We evaluate the models on two main metrics: accuracy
loss, the model’s accuracy loss on test set with respect to the
non-private baseline, and privacy leakage, the attacker’s ad-
vantage as defined by Yeom et al. [74]. To evaluate out the
inference attack, we provide the attacker with a set of 20,000
records consisting of 10,000 records from training set and
10,000 records from the test set. We call records in the train-
ing set members, and the other records non-members. These
labels are not known to the attacker. The task of the attacker
is to predict whether or not a given input record belongs to the
training set (i.e., if it is a member). The privacy leakage metric
is calculated by taking the difference between the true positive
rate (TPR) and the false positive rate (FPR) of the inference
attack. Thus the privacy leakage metric is always between 0
and 1, where the value of 0 indicates that there is no leakage.
For example, if an attacker performs membership inference
on a model and obtains a privacy leakage of 0.7 then it implies
that for every 100 wrong membership predictions made by

the attacker, 170 ‘true’ members are revealed to the attacker.
In other words, 170 training records are revealed to the at-
tacker. To better understand the potential impact of leakage,
we also conduct experiments to estimate the actual number
of members who are at risk for disclosure in a membership
inference attack.

Data sets. We evaluate our models over two data sets for
multi-class classification tasks: CIFAR-100 [38] and Purchase-
100 [36]. CIFAR-100 consists of 28×28 images of 100 real
world objects, with 500 instances of each object class. We
use PCA to reduce the dimensionality of records to 50. The
Purchase-100 data set consists of 200,000 customer purchase
records of size 100 each (corresponding to the 100 frequently-
purchased items) where the records are grouped into 100
classes based on the customers’ purchase style. For both data
sets, we use 10,000 randomly-selected instances for training
and 10,000 randomly-selected non-training instances for the
test set. The remaining records are used for training shadow
models and inference model.

Attacks. For our experiments, we use the attack frameworks
of Shokri et al. [61] and Yeom et al. [74] for membership
inference and the method proposed by Yeom et al. [74] for
attribute inference. In Shokri et al.’s framework [61], multiple
shadow models are trained on data that is sampled from the
same distribution as the private data set. These shadow mod-
els are used to train an inference model to identify whether
an input record belongs to the private data set. The inference
model is trained using a set of records used to train the shadow
models, a set of records randomly selected from the distribu-
tion that are not part of the shadow model training, along with
the confidence scores output by the shadow models for all
of the input records. Using these inputs, the inference model
learns to distinguish the training records from the non-training
records. At the inference stage, the inference model takes an
input record along with the confidence score of the target
model on the input record, and outputs whether the input
record belongs to the target model’s private training data set.
The intuition is that if the target model overfits on its training
set, its confidence score for a training record will be higher
than its confidence score for an otherwise similar input that
was not used in training. The inference model tries to exploit
this property. In our instantiation of the attack framework,
we use five shadow models which all have the same model
architecture as the target model. Our inference model is a
neural network with two hidden layers of size 64. This setting
is consistent with the original work [61].

The attack framework of Yeom et al. [74] is simpler than
Shokri et al.’s design. It assumes a white-box attacker with
access to the target model’s expected training loss on the pri-
vate data set, in addition to having access to the target model.
For membership inference, the attacker simply observes the
target model’s loss on the input record. The attacker classifies
the record as a member if the loss is smaller than the target

USENIX Association 28th USENIX Security Symposium 1903

10 2 10 1 100 101 102 103

Privacy Budget ()

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 L

os
s

RDP
zCDP

AC
NC

(a) Batch gradient clipping

10 2 10 1 100 101 102 103

Privacy Budget ()

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 L
os

s

RDP zCDP
AC

NC

(b) Per-instance gradient clipping

Figure 1: Impact of clipping on accuracy loss of logistic regression (CIFAR-100).

model’s expected training loss, otherwise the record is classi-
fied as a non-member. The same principle is used for attribute
inference. Given an input record, the attacker brute-forces all
possible values for the unknown private attribute and observes
the target model’s loss, outputting the value for which the loss
is closest to the target’s expected training loss. Since there are
no attributes in our data sets that are explicitly annotated as
private, we randomly choose five attributes, and perform the
attribute inference attack on each attribute independently, and
report the averaged results.

Hyperparameters. For both data sets, we train logistic re-
gression and neural network models with `2 regularization.
First, we train a non-private model and perform a grid search
over the regularization coefficient λ to find the value that min-
imizes the classification error on the test set. For CIFAR-100,
we found optimal values to be λ = 10−5 for logistic regres-
sion and λ = 10−4 for neural network. For Purchase-100, we
found optimal values to be λ = 10−5 for logistic regression
and λ = 10−8 for neural network. Next, we fix this setting to
train differentially private models using gradient perturbation.
We vary ε between 0.01 and 1000 while keeping δ = 10−5,
and report the accuracy loss and privacy leakage. The choice
of δ = 10−5 satisfies the requirement that δ should be smaller
than the inverse of the training set size 10,000. We use the
ADAM optimizer for training and fix the learning rate to 0.01
with a batch size of 200. Due to the random noise addition,
all the experiments are repeated five times and the average
results and standard errors are reported. We do not assume
pre-trained model parameters, unlike the prior works of Abadi
et al. [1] and Yu et al. [75].

Clipping. For gradient perturbation, clipping is required to
bound the sensitivity of the gradients. We tried clipping at
both the batch and per-instance level. Batch clipping is more
computationally efficient and a standard practice in deep learn-
ing. On the other hand, per-instance clipping uses the privacy

budget more efficiently, resulting in more accurate models
for a given privacy budget. We use the TensorFlow Privacy
framework [2] which implements both batch and per-instance
clipping. We fix the clipping threshold at C = 1.

Figure 1 compares the accuracy loss of logistic regression
models trained over CIFAR-100 data set with both batch clip-
ping and per-instance clipping. Per-instance clipping allows
learning more accurate models for all values of ε and ampli-
fies the differences between the different mechanisms. For
example, the model trained with RDP achieves accuracy close
to the non-private model for ε = 100 when performing per-
instance clipping. Whereas, the models do not learn anything
useful when using batch clipping. Hence, for the rest of the
paper we only report the results for per-instance clipping.

4.2 Logistic Regression Results

We train `2-regularized logistic regression models on both the
CIFAR-100 and Purchase-100 data sets.

CIFAR-100. The baseline model for non-private logistic re-
gression achieves accuracy of 0.225 on training set and 0.155
on test set, which is competitive with the state-of-art neural
network model [61] that achieves test accuracy close to 0.20
on CIFAR-100 after training on larger data set. Thus, there is a
small generalization gap of 0.07, which the inference attacks
try to exploit.

Figure 1(b) compares the accuracy loss for logistic regres-
sion models trained with different relaxed notions of differen-
tial privacy as we varying the privacy budget ε. The accuracy
loss is normalized with respect to the accuracy of non-private
model to clearly depict the model utility. An accuracy loss
value of 1 means that the model has 100% loss and hence
has no utility, whereas the value of 0 means that the model
achieves same accuracy as the non-private baseline. As de-
picted in the figure, naïve composition achieves accuracy

1904 28th USENIX Security Symposium USENIX Association

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound

RDP zCDP
AC

NC

(a) Shokri et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound

RDP zCDP
AC

NC

(b) Yeom et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound

RDP zCDP
AC

NC

(c) Yeom et al. attribute inference

Figure 2: Inference attacks on logistic regression (CIFAR-100).

close to 0.01 for ε ≤ 10 which is random guessing for 100-
class classification. Naïve composition achieves accuracy loss
close to 0 for ε = 1000. Advanced composition adds more
noise than naïve composition when privacy budget is greater
than the number of training epochs (ε ≥ 100). The relaxations
zCDP and RDP achieve accuracy loss close to 0 at ε = 500
and ε = 50 respectively, which is order of magnitudes smaller
than the naïve composition. This is expected since the relaxed
definitions require less added noise.

Figures 2(a) and 2(b) show the privacy leakage due to
membership inference attacks on logistic regression mod-
els. Figure 2(a) shows results for the black-box attacker of
Shokri et al. [61], which has access to the target model’s
confidence scores on the input record. Naïve composition
achieves privacy leakage close to 0 for ε ≤ 10, and the leakage
reaches 0.065±0.004 for ε = 1000. The relaxed variants RDP
and zCDP have average leakage close to 0.080± 0.004 for
ε = 1000. As expected, the differential privacy variations have
leakage in accordance with the amount of noise they add for
a given ε. The plots also show the theoretical upper bound
on the privacy leakage for ε-differential privacy, where the
bound is eε −1 (see Section 3.1).

Figure 2(b) shows results for the white-box attacker of
Yeom et al. [61], which has access to the target model’s loss on
the input record. As expected, zCDP and RDP relaxations leak
the most. Naïve composition does not have any significant
leakage for ε ≤ 10, but the leakage reaches 0.077±0.003 for
ε = 1000. The observed leakage of all the variations is in
accordance with the noise magnitude required for different
differential privacy guarantees.

Figure 2(c) depicts the privacy leakage due to the attribute
inference attack. The privacy leakage of RDP is highest,
closely followed by zCDP. Naïve composition has low pri-
vacy leakage for ε ≤ 10 (attacker advantage of 0.005±0.007 at
ε = 10), but it quickly increases to 0.093±0.002 for ε = 1000.
But for meaningful privacy budgets, there is no significant
leakage (< 0.02) for any of the methods. As expected, across
all variations as privacy budgets increase both the attacker’s

10 2 10 1 100 101 102 103

Privacy Budget ()

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 L
os

s

RDP zCDP

AC

NC

Figure 3: Accuracy loss of logistic regression (Purchase-100).

advantage (privacy leakage) and the model utility (accuracy)
increase. For this example, there is no choice of ε available
that provides any effective privacy for a model that does better
than random guessing.

To gain more understanding of the impact of privacy leak-
age, Table 5 shows the actual number of training set members
exposed to the attacker for different differential privacy varia-
tions. We assume the attacker has some limited tolerance for
falsely exposing a member (that is, a bound on the acceptable
false positive rate), and sets the required threshold score for
the inference model output as the level needed to achieve that
false positive rate. Then, we count the number of members
in the private training data set for whom the inference model
output exceeds that confidence threshold. Table 5 reports the
number of members exposed to an adversary who tolerates
false positive rates of 1%, 2%, and 5%. As we increase the
tolerance threshold, there is a gradual increase in membership
leakage for all the methods, and the leakage of relaxed vari-
ants increases drastically. Naïve composition and advanced
composition are resistant to attack for ε ≤ 10, whereas zCDP
is resistant to attack for ε ≤ 1. RDP is resistant up to ε = 0.05.

USENIX Association 28th USENIX Security Symposium 1905

Naïve Composition Advanced Composition zCDP RDP
ε Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5%
0.01 .93 0 0 0 .94 0 0 0 .93 0 0 0 .92 0 0 0
0.05 .92 0 0 0 .93 0 0 0 .92 0 0 0 .94 0 0 0
0.1 .94 0 0 0 .92 0 0 0 .94 0 0 0 .91 0 0 1
0.5 .92 0 0 0 .94 0 0 0 .90 0 0 0 .68 0 3 27
1.0 .93 0 0 0 .93 0 0 0 .88 0 0 0 .51 4 21 122
5.0 .91 0 0 0 .89 0 0 0 .62 2 11 45 .16 39 95 304

10.0 .90 0 0 0 .87 0 0 0 .47 15 38 137 .09 55 109 329
50.0 .65 0 2 16 .64 19 31 73 .15 44 102 291 .02 70 142 445

100.0 .48 6 29 152 .53 18 47 138 .08 58 121 362 .00 76 158 456
500.0 .10 53 112 328 .29 42 88 256 .00 80 159 487 .00 86 166 516

1,000.0 .01 65 138 413 .20 57 111 301 .00 86 172 514 .00 93 185 530

Table 5: Number of individuals (out of 10,000) exposed by Yeom et al. membership inference attack on logistic regression
(CIFAR-100). The non-private (ε =∞) model leaks 129, 240 and 704 members for 1%, 2% and 5% FPR respectively.

Purchase-100. The baseline model for non-private logistic
regression achieves accuracy of 0.942 on the training set
and 0.695 on test set. In comparison, Google ML platform’s
black-box trained model achieves a test accuracy of 0.656 for
Purchase-100 (see Shokri et al. [61] for details).

Figure 3 shows the accuracy loss of all differential privacy
variants on Purchase-100 data set. Naïve composition and ad-
vanced composition have essentially no utility until ε exceeds
100. At ε = 1000, naïve composition achieves accuracy loss
of 0.116±0.003, the advanced composition achieves accuracy
loss of 0.513±0.003 and the other variants achieve accuracy
loss close to 0.02. RDP achieves the best utility across all ε
values. zCDP performs better than advanced composition and
naïve composition.

Figure 4 compares the privacy leakage of the variants
against the inference attacks. The leakage is in accordance
to the noise each variant adds and it increases proportionally
to the model utility. Hence, if a model has reasonable utility,
it is bound to leak membership information. The white-box
membership inference attack of Yeom et al. is relatively more
effective than the black-box membership inference attack of
Shokri et al. as shown in Figures 4(a) and 4(b). Table 6 shows
the number of individual members exposed, with similar re-
sults to the findings for CIFAR-100.

4.3 Neural Networks

We train a neural network model consisting of two hidden lay-
ers and an output layer. The hidden layers have 256 neurons
that use ReLU activation. The output layer is a softmax layer
with 100 neurons, each corresponding to a class label. This
architecture is similar to the one used by Shokri et al. [61].

CIFAR-100. The baseline non-private neural network model
achieves accuracy of 1.000 on the training set and 0.168 on
test set, which is competitive to the neural network model

of Shokri et al. [61]. Their model is trained on a training set
of size 29,540 and achieves test accuracy of 0.20, whereas
our model is trained on 10,000 training instances. There is a
huge generalization gap of 0.832, which the inference attacks
can exploit. Figure 5(a) compares the accuracy loss of neu-
ral network models trained with different relaxed notions of
differential privacy with varying privacy budget ε. The model
trained with naïve composition does not learn anything use-
ful until ε = 100 (accuracy loss of 0.907±0.004), at which
point the advanced composition also has accuracy loss close
to 0.935 and the other variants achieve accuracy loss close to
0.24. None of the variants approach zero accuracy loss, even
for ε = 1000. The relative performance is similar to that of
logistic regression model discussed in Section 4.2.

Figures 6(a) and 6(b) shows the privacy leakage due to
membership inference attacks on neural network models
trained with different relaxed notions for both attacks. The pri-
vacy leakage for each variation of differential privacy accords
with the amount of noise it adds to the model. The leakage
is significant for relaxed variants at higher ε values due to
model overfitting. For ε = 1000, with the Shokri et al. attack,
naïve composition has leakage of 0.034 compared to 0.002 for
advanced composition, 0.219 for zCDP, and 0.277 for RDP
(above the region shown in the plot). For the white-box at-
tacker of Yeom et al. [74], RDP leaks the most for ε = 1000
(membership advantage of 0.399) closely followed by zCDP.
This is because these relaxed variations add considerably less
noise in comparison to naïve composition. Naïve composi-
tion and advanced composition achieve strong privacy against
membership inference attackers, but fail to learning anything
useful. No option appears to provide both acceptable model
utility and meaningful privacy.

Like we did for logistic regression, we report the actual
number of training set members exposed to the attacker in Ta-
ble 7. The impact of privacy leakage is far more severe for the
non-private neural network model due to model overfitting—

1906 28th USENIX Security Symposium USENIX Association

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound

RDP zCDP
AC

NC

(a) Shokri et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e -DP Bound

RDP zCDP
AC

NC

(b) Yeom et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e -DP Bound

RDP
zCDP AC

NC

(c) Yeom et al. attribute inference

Figure 4: Inference attacks on logistic regression (Purchase-100).

10 2 10 1 100 101 102 103

Privacy Budget ()

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 L
os

s

RDP zCDP
AC

NC

(a) CIFAR-100

10 2 10 1 100 101 102 103

Privacy Budget ()

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 L

os
s

RDP zCDP
AC

NC

(b) Purchase-100

Figure 5: Accuracy loss of neural networks.

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound

RDP

zCDP

AC

NC

(a) Shokri et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound

RDP

zCDP

AC

NC

(b) Yeom et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound

RDP

zCDP
AC

NC

(c) Yeom et al. attribute inference

Figure 6: Inference attacks on neural network (CIFAR-100).

USENIX Association 28th USENIX Security Symposium 1907

Naïve Composition Advanced Composition zCDP RDP
ε Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5%
0.01 .98 0 0 0 .99 0 0 0 .99 0 0 0 .99 0 0 0
0.05 .99 0 0 0 .98 0 0 0 .99 0 0 0 .98 0 0 0
0.1 .99 0 0 0 .98 0 0 0 .98 0 0 0 .97 0 0 0
0.5 .98 0 0 0 .98 0 0 0 .97 0 0 0 .93 0 0 2
1.0 .98 0 0 0 .98 0 0 0 .97 0 0 0 .87 0 0 23
5.0 .98 0 0 0 .97 0 0 0 .92 0 0 4 .46 42 72 174

10.0 .97 0 0 0 .97 0 0 0 .83 1 7 35 .28 53 101 270
50.0 .91 0 0 1 .92 0 0 1 .43 38 65 187 .11 72 154 406

100.0 .83 0 0 28 .87 0 1 10 .26 55 113 289 .08 84 160 473
500.0 .32 45 95 227 .66 18 34 84 .05 77 183 487 .03 75 181 533

1,000.0 .12 81 164 427 .51 34 58 145 .02 87 184 530 .02 94 189 566

Table 6: Number of members (out of 10,000) exposed by Yeom et al. membership inference attack on logistic regression
(Purchase-100). The non-private (ε =∞) model leaks 102, 262 and 716 members for 1%, 2% and 5% FPR respectively.

Naïve Composition Advanced Composition zCDP RDP
ε Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5% Loss 1% 2% 5%
0.01 .94 0 0 0 .94 0 0 0 .93 0 0 0 .94 0 0 0
0.05 .94 0 0 0 .93 0 0 0 .94 0 0 0 .94 0 0 0
0.1 .94 0 0 0 .93 0 0 0 .94 0 0 0 .93 0 0 0
0.5 .95 0 0 0 .93 0 0 0 .94 0 0 0 .92 0 0 0
1.0 .94 0 0 0 .94 0 0 0 .92 0 0 0 .94 0 0 0
5.0 .94 0 0 0 .94 0 0 0 .94 0 0 0 .65 11 24 79

10.0 .94 0 0 0 .93 0 0 0 .91 0 0 2 .53 9 33 108
50.0 .94 0 0 0 .94 0 0 0 .64 2 12 65 .35 28 65 185

100.0 .91 0 0 0 .93 0 0 0 .52 13 31 98 .32 21 67 205
500.0 .54 3 21 58 .79 4 7 31 .28 8 41 210 .27 5 54 278

1,000.0 .36 20 48 131 .71 8 16 74 .22 12 42 211 .24 10 37 269

Table 7: Number of members (out of 10,000) exposed by Yeom et al. membership inference attack on neural network (CIFAR-100).
The non-private (ε =∞) model leaks 0, 556 and 7349 members for 1%, 2% and 5% FPR respectively.

exposing over 73% of training set members at 5% false pos-
itive rate, compared to only 7% for the logistic regression
model.2 The privacy mechanisms provide substantial reduc-
tion in exposure, even with high ε budgets, but the relaxed
variants expose more members compared to naïve composi-
tion and advanced composition.

Figure 6(c) depicts the privacy leakage due to attribute
inference attack on the neural network models. Naïve com-
position and advanced composition are both resistant to the
attack for ε ≤ 100, but the relaxed variants reveal some privacy
leakage for lower privacy budgets.

Purchase-100. The baseline non-private neural network mod-
el achieves accuracy of 0.982 on the training set and 0.605 on

2Curiously, this appears to be contradicted at 1% FPR where no mem-
bers are revealed by non-private NN model but some are revealed by the
privacy-preserving models. This is due to the number of extremely high-
confidence incorrect outputs of the non-private model, meaning that there is
no confidence threshold that does not include at least 1% false positives.

test set. In comparison, the neural network model of Shokri et
al. [61] trained on a similar data set (but with 600 attributes
instead of 100 as in our data set) achieves 0.670 test accuracy.
Figure 5(b) compares the accuracy loss, and Figure 7 the pri-
vacy leakage, of neural network models trained with different
variants of differential privacy. The trends for both accuracy
and privacy are similar to those for the logistic regression mod-
els (Figure 3). The relaxed variants achieve model utility close
to the non-private baseline for ε = 1000, while naïve compo-
sition continues to suffer from high accuracy loss (0.372).
Advanced composition has higher accuracy loss of 0.702 for
ε = 1000 as it requires addition of more noise than naïve com-
position when ε is greater than the number of training epochs.
Figure 7 shows the privacy leakage comparison of the variants
against the inference attacks. The results are consistent with
those observed for CIFAR-100.

1908 28th USENIX Security Symposium USENIX Association

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound
RDP

zCDP

AC

NC

(a) Shokri et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e

-DP Bound
RDP

zCDP

AC
NC

(b) Yeom et al. membership inference

10 2 10 1 100 101 102 103

Privacy Budget ()

0.00

0.05

0.10

0.15

0.20

0.25

Pr
iv

ac
y

Le
ak

ag
e -DP Bound

RDPzCDP
AC

NC

(c) Yeom et al. attribute inference

Figure 7: Inference attacks on neural network (Purchase-100).

4.4 Discussion
While the tighter cumulative noise bounds provided by re-
laxed variants of differential privacy improve model utility for
a given privacy budget, the reduction in noise increases vul-
nerability to inference attacks. Thus, privacy does not come
for free, and the relaxations of the differential privacy def-
inition that result in lower noise requirements come with
additional privacy risks. While these relaxed definitions still
satisfy the (ε,δ)-differential privacy guarantees, the concrete
value of these guarantees diminishes rapidly with high ε val-
ues and non-zero δ. Although the theoretical guarantees pro-
vided by differential privacy are very appealing, once ε values
exceed small values, the practical value of these guarantees
is insignificant—in most of our inference attack figures, the
theoretical bound given by ε-DP falls off the graph before
any measurable privacy leakage occurs (and at levels well
before models provide acceptable utility). The value of these
privacy mechanisms comes not from the theoretical guaran-
tees, but from the impact of the mechanism on what realistic
adversaries can infer.

We note that in our inference attack experiments, we use
equal numbers of member and non-member records which
provides 50-50 prior success probability to the attacker. Thus,
even an ε-DP implementation might leak even for small ε
values, though we did not observe any such leakage. Alterna-
tively, a skewed prior probability may lead to smaller leakage
even for large ε values. Our goal in this work is to evaluate
scenarios where risk of inference is high, so the use of 50-50
prior probability is justified. We also emphasis that our results
show the privacy leakage due to two particular membership
inference attacks. Attacks only get better, so future attacks
may be able to infer more than is shown in our experiments.

5 Conclusion

Differential privacy has earned a well-deserved reputation
providing principled and powerful mechanisms for ensuring

provable privacy. However, when it is implemented for chal-
lenging tasks such as machine learning, compromises must
be made to preserve utility. It is essential that the privacy
impact of those compromises is well understood when differ-
ential privacy is deployed to protect sensitive data. Our results
are a step towards improving that understanding, and reveal
that the commonly-used relaxations of differential privacy
may provide unacceptable utility-privacy trade-offs. We hope
our study will encourage more careful assessments of the
practical privacy value of formal claims based on differential
privacy, and lead to deeper understanding of the privacy im-
pact of design decisions when deploying differential privacy,
and eventually to solutions that provide desirable, and well
understood, utility-privacy trade-offs.

Availability

Open source code for reproducing all of our experiments is
available at https://github.com/bargavj/EvaluatingDPML.

Acknowledgments

The authors are deeply grateful to Úlfar Erlingsson for point-
ing out some key misunderstandings in an early version of
this work and for convincing us of the importance of per-
instance gradient clipping, and to Úlfar, Ilya Mironov, and
Shuang Song for help validating and improving the work.
We thank Vincent Bindschaedler for shepherding our paper.
We thank Youssef Errami and Jonah Weissman for contribu-
tions to the experiments, and Ben Livshits for feedback on the
work. Atallah Hezbor, Faysal Shezan, Tanmoy Sen, Max Nay-
lor, Joshua Holtzman and Nan Yang helped systematize the
related works. Finally, we thank Congzheng Song and Samuel
Yeom for providing their implementation of inference attacks.
This work was partially funded by grants from the National
Science Foundation SaTC program (#1717950, #1915813)
and support from Intel and Amazon.

USENIX Association 28th USENIX Security Symposium 1909

https://github.com/bargavj/EvaluatingDPML

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In ACM Confer-
ence on Computer and Communications Security, 2016.

[2] Galen Andrew, Steve Chien, and Nicolas Papernot. Ten-
sorFlow Privacy. https://github.com/tensorflow/privacy.

[3] Giuseppe Ateniese, Luigi Mancini, Angelo Spognardi,
Antonio Villani, Domenico Vitali, and Giovanni Felici.
Hacking smart machines with smarter ones: How to ex-
tract meaningful data from machine learning classifiers.
International Journal of Security and Networks, 2015.

[4] Michael Backes, Pascal Berrang, Mathias Humbert,
and Praveen Manoharan. Membership privacy in
MicroRNA-based studies. In ACM Conference on Com-
puter and Communications Security, 2016.

[5] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-
orah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. arXiv:1807.00459, 2018.

[6] Brett K Beaulieu-Jones, William Yuan, Samuel G
Finlayson, and Zhiwei Steven Wu. Privacy-pre-
serving distributed deep learning for clinical data.
arXiv:1812.01484, 2018.

[7] Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and
Abhradeep Thakurta. Discovering frequent patterns
in sensitive data. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2010.

[8] Abhishek Bhowmick, John Duchi, Julien Freudiger,
Gaurav Kapoor, and Ryan Rogers. Protection against
reconstruction and its applications in private federated
learning. arXiv:1812.00984, 2018.

[9] Mark Bun and Thomas Steinke. Concentrated differ-
ential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, 2016.

[10] Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlings-
son, and Dawn Song. The Secret Sharer: Evaluating and
testing unintended memorization in neural networks. In
USENIX Security Symposium, 2019.

[11] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In Advances in Neural
Information Processing Systems, 2009.

[12] Kamalika Chaudhuri, Claire Monteleoni, and Anand D.
Sarwate. Differentially private Empirical Risk Mini-
mization. Journal of Machine Learning Research, 2011.

[13] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng
Zhang, and Daniel Kifer. Detecting violations of differ-
ential privacy. In ACM Conference on Computer and
Communications Security, 2018.

[14] John Duchi, Elad Hazan, and Yoram Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
2011.

[15] John C Duchi, Michael I Jordan, and Martin J Wain-
wright. Local privacy and statistical minimax rates. In
Symposium on Foundations of Computer Science, 2013.

[16] Cynthia Dwork. Differential Privacy: A Survey of Re-
sults. In International Conference on Theory and Appli-
cations of Models of Computation, 2008.

[17] Cynthia Dwork and Aaron Roth. The Algorithmic Foun-
dations of Differential Privacy. Foundations and Trends
in Theoretical Computer Science, 2014.

[18] Cynthia Dwork and Guy N. Rothblum. Concentrated
differential privacy. arXiv:1603.01887, 2016.

[19] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.
Model inversion attacks that exploit confidence informa-
tion and basic countermeasures. In ACM Conference on
Computer and Communications Security, 2015.

[20] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon
Lin, David Page, and Thomas Ristenpart. Privacy in
pharmacogenetics: An end-to-end case study of person-
alized warfarin dosing. In USENIX Security Symposium.

[21] Arik Friedman and Assaf Schuster. Data mining with
differential privacy. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2010.

[22] Karan Ganju, Qi Wang, Wei Yang, Carl A Gunter, and
Nikita Borisov. Property inference attacks on fully con-
nected neural networks using permutation invariant rep-
resentations. In ACM Conference on Computer and
Communications Security, 2018.

[23] Joseph Geumlek, Shuang Song, and Kamalika Chaud-
huri. Rényi differential privacy mechanisms for pos-
terior sampling. In Advances in Neural Information
Processing Systems, 2017.

[24] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differen-
tially private federated learning: A client level perspec-
tive. arXiv:1712.07557, 2017.

[25] Jihun Hamm, Paul Cao, and Mikhail Belkin. Learning
privately from multiparty data. In International Confer-
ence on Machine Learning, 2016.

[26] Michael Hay, Ashwin Machanavajjhala, Gerome Mik-
lau, Yan Chen, and Dan Zhang. Principled evaluation
of differentially private algorithms using DPBench. In
ACM SIGMOD Conference on Management of Data,
2016.

[27] Nils Homer et al. Resolving individuals contributing
trace amounts of DNA to highly complex mixtures us-

1910 28th USENIX Security Symposium USENIX Association

https://github.com/tensorflow/privacy

ing high-density SNP genotyping microarrays. PLoS
Genetics, 2008.

[28] Zonghao Huang, Rui Hu, Yanmin Gong, and Eric Chan-
Tin. DP-ADMM: ADMM-based distributed learning
with differential privacy. arXiv:1808.10101, 2018.

[29] Nick Hynes, Raymond Cheng, and Dawn Song. Ef-
ficient deep learning on multi-source private data.
arXiv:1807.06689, 2018.

[30] Ali Inan, Murat Kantarcioglu, Gabriel Ghinita, and Elisa
Bertino. Private record matching using differential
privacy. In International Conference on Extending
Database Technology, 2010.

[31] Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar,
Abhradeep Thakurta, and Lun Wang. Towards practi-
cal differentially private convex optimization. In IEEE
Symposium on Security and Privacy, 2019.

[32] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta.
Differentially private online learning. In Annual Confer-
ence on Learning Theory, 2012.

[33] Prateek Jain and Abhradeep Thakurta. Differentially pri-
vate learning with kernels. In International Conference
on Machine Learning, 2013.

[34] Prateek Jain and Abhradeep Guha Thakurta. (Near)
Dimension independent risk bounds for differentially
private learning. In International Conference on Ma-
chine Learning, 2014.

[35] Bargav Jayaraman, Lingxiao Wang, David Evans, and
Quanquan Gu. Distributed learning without distress:
Privacy-preserving Empirical Risk Minimization. In
Advances in Neural Information Processing Systems,
2018.

[36] Kaggle, Inc. Acquire Valued Shoppers Challenge. https:
//kaggle.com/c/acquire-valued-shoppers-challenge/data,
2014.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference
on Learning Representations, 2015.

[38] Alex Krizhevsky. Learning multiple layers of fea-
tures from tiny images. Technical report, University
of Toronto, 2009.

[39] Jaewoo Lee. Differentially private variance reduced
stochastic gradient descent. In International Conference
on New Trends in Computing Sciences, 2017.

[40] Dong-Hui Li and Masao Fukushima. A modified BFGS
method and its global convergence in nonconvex mini-
mization. Journal of Computational and Applied Math-
ematics, 2001.

[41] Ninghui Li, Wahbeh Qardaji, Dong Su, and Jianneng
Cao. PrivBasis: Frequent itemset mining with differen-
tial privacy. The VLDB Journal, 2012.

[42] Ninghui Li, Wahbeh Qardaji, Dong Su, Yi Wu, and Wein-
ing Yang. Membership privacy: A unifying framework
for privacy definitions. In ACM Conference on Com-
puter and Communications Security, 2013.

[43] Dong C Liu and Jorge Nocedal. On the limited memory
BFGS method for large scale optimization. Mathemati-
cal programming, 1989.

[44] Yunhui Long, Vincent Bindschaedler, and Carl A.
Gunter. Towards measuring membership privacy.
arXiv:1712.09136, 2017.

[45] Daniel Lowd and Christopher Meek. Adversarial learn-
ing. In ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, 2005.

[46] Frank McSherry. Statistical inference considered harm-
ful. https://github.com/frankmcsherry/blog/blob/master/
posts/2016-06-14.md, 2016.

[47] Frank McSherry and Ilya Mironov. Differentially private
recommender systems: Building privacy into the Netflix
prize contenders. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2009.

[48] Frank McSherry and Kunal Talwar. Mechanism design
via differential privacy. In Symposium on Foundations
of Computer Science, 2007.

[49] Ilya Mironov. Rényi differential privacy. In IEEE Com-
puter Security Foundations Symposium, 2017.

[50] Luis Munoz-González, Battista Biggio, Ambra Demon-
tis, Andrea Paudice, Vasin Wongrassamee, Emil C.
Lupu, and Fabio Roli. Towards poisoning of deep learn-
ing algorithms with back-gradient optimization. In ACM
Workshop on Artificial Intelligence and Security, 2017.

[51] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analysis.
In ACM Symposium on Theory of Computing, 2007.

[52] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian
Goodfellow, and Kunal Talwar. Semi-supervised knowl-
edge transfer for deep learning from private training
data. In International Conference on Learning Repre-
sentations, 2017.

[53] Mijung Park, Jimmy Foulds, Kamalika Chaudhuri, and
Max Welling. DP-EM: Differentially private expectation
maximization. In Artificial Intelligence and Statistics,
2017.

[54] Manas Pathak, Shantanu Rane, and Bhiksha Raj. Mul-
tiparty Differential Privacy via Aggregation of Locally

USENIX Association 28th USENIX Security Symposium 1911

https://kaggle.com/c/acquire-valued-shoppers-challenge/data
https://kaggle.com/c/acquire-valued-shoppers-challenge/data
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-06-14.md

Trained Classifiers. In Advances in Neural Information
Processing Systems, 2010.

[55] NhatHai Phan, Yue Wang, Xintao Wu, and Dejing Dou.
Differential privacy preservation for deep auto-encoders:
An application of human behavior prediction. In AAAI
Conference on Artificial Intelligence, 2016.

[56] NhatHai Phan, Xintao Wu, and Dejing Dou. Preserv-
ing differential privacy in convolutional deep belief net-
works. Machine Learning, 2017.

[57] Boris T Polyak and Anatoli B Juditsky. Acceleration of
stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 1992.

[58] Md Atiqur Rahman, Tanzila Rahman, Robert Laganière,
Noman Mohammed, and Yang Wang. Membership in-
ference attack against differentially private deep learning
model. Transactions on Data Privacy, 2018.

[59] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal
Berrang, Mario Fritz, and Michael Backes. ML-Leaks:
Model and data independent membership inference at-
tacks and defenses on machine learning models. In
Network and Distributed Systems Security Symposium.

[60] Reza Shokri and Vitaly Shmatikov. Privacy-preserving
deep learning. In ACM Conference on Computer and
Communications Security, 2015.

[61] Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. Membership inference attacks against
machine learning models. In IEEE Symposium on Secu-
rity and Privacy, 2017.

[62] Adam Smith and Abhradeep Thakurta. Differentially
Private Feature Selection via Stability Arguments, and
the Robustness of the Lasso. In Proceedings of Confer-
ence on Learning Theory, 2013.

[63] Shuang Song, Kamalika Chaudhuri, and Anand D Sar-
wate. Stochastic gradient descent with differentially
private updates. In IEEE Global Conference on Signal
and Information Processing, 2013.

[64] Kunal Talwar, Abhradeep Thakurta, and Li Zhang.
Private Empirical Risk Minimization beyond the
worst case: The effect of the constraint set geometry.
arXiv:1411.5417, 2014.

[65] Kunal Talwar, Abhradeep Thakurta, and Li Zhang.
Nearly Optimal Private LASSO. In Advances in Neural
Information Processing Systems, 2015.

[66] Florian Tramèr, Fan Zhang, Ari Juels, Michael Reiter,
and Thomas Ristenpart. Stealing machine learning mod-
els via prediction APIs. In USENIX Security Symposium,
2016.

[67] Binghui Wang and Neil Zhenqiang Gong. Stealing hy-
perparameters in machine learning. In IEEE Symposium
on Security and Privacy, 2018.

[68] Di Wang, Minwei Ye, and Jinhui Xu. Differentially
private Empirical Risk Minimization revisited: Faster
and more general. In Advances in Neural Information
Processing Systems, 2017.

[69] Xi Wu, Matthew Fredrikson, Somesh Jha, and Jeffrey F
Naughton. A methodology for formalizing model-
inversion attacks. In IEEE Computer Security Foun-
dations Symposium, 2016.

[70] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri,
Somesh Jha, and Jeffrey Naughton. Bolt-on differential
privacy for scalable stochastic gradient descent-based
analytics. In ACM SIGMOD Conference on Manage-
ment of Data, 2017.

[71] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao,
Claudia Eckert, and Fabio Roli. Support vector ma-
chines under adversarial label contamination. Neuro-
computing, 2015.

[72] Mengjia Yan, Christopher Fletcher, and Josep Torrellas.
Cache telepathy: Leveraging shared resource attacks to
learn DNN architectures. arXiv:1808.04761, 2018.

[73] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Gener-
ative poisoning attack method against neural networks.
arXiv:1703.01340, 2017.

[74] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. Privacy risk in machine learning: Analyz-
ing the connection to overfitting. In IEEE Computer
Security Foundations Symposium, 2018.

[75] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and
Stacey Truex. Differentially private model publishing
for deep learning. In IEEE Symposium on Security and
Privacy, 2019.

[76] Matthew D Zeiler. ADADELTA: An adaptive learning
rate method. arXiv:1212.5701, 2012.

[77] Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang.
Efficient private ERM for smooth objectives. In Interna-
tional Joint Conference on Artificial Intelligence, 2017.

[78] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and
Marianne Winslett. Functional mechanism: Regression
analysis under differential privacy. The VLDB Journal,
2012.

[79] Lingchen Zhao, Yan Zhang, Qian Wang, Yanjiao Chen,
Cong Wang, and Qin Zou. Privacy-preserving col-
laborative deep learning with irregular participants.
arXiv:1812.10113, 2018.

1912 28th USENIX Security Symposium USENIX Association

FUZZIFICATION: Anti-Fuzzing Techniques

Jinho Jung, Hong Hu, David Solodukhin, Daniel Pagan, Kyu Hyung Lee†, Taesoo Kim

Georgia Institute of Technology
† University of Georgia

Abstract
Fuzzing is a software testing technique that quickly and

automatically explores the input space of a program without
knowing its internals. Therefore, developers commonly use
fuzzing as part of test integration throughout the software
development process. Unfortunately, it also means that such a
blackbox and the automatic natures of fuzzing are appealing
to adversaries who are looking for zero-day vulnerabilities.

To solve this problem, we propose a new mitigation ap-
proach, called FUZZIFICATION, that helps developers protect
the released, binary-only software from attackers who are ca-
pable of applying state-of-the-art fuzzing techniques. Given a
performance budget, this approach aims to hinder the fuzzing
process from adversaries as much as possible. We propose
three FUZZIFICATION techniques: 1) SpeedBump, which am-
plifies the slowdown in normal executions by hundreds of
times to the fuzzed execution, 2) BranchTrap, interfering with
feedback logic by hiding paths and polluting coverage maps,
and 3) AntiHybrid, hindering taint-analysis and symbolic exe-
cution. Each technique is designed with best-effort, defensive
measures that attempt to hinder adversaries from bypassing
FUZZIFICATION.

Our evaluation on popular fuzzers and real-world applica-
tions shows that FUZZIFICATION effectively reduces the num-
ber of discovered paths by 70.3% and decreases the number of
identified crashes by 93.0% from real-world binaries, and de-
creases the number of detected bugs by 67.5% from LAVA-M
dataset while under user-specified overheads for common
workloads. We discuss the robustness of FUZZIFICATION
techniques against adversarial analysis techniques. We open-
source our FUZZIFICATION system to foster future research.

1 Introduction

Fuzzing is a software testing technique that aims to find soft-
ware bugs automatically. It keeps running the program with
randomly generated inputs and waits for bug-exposing behav-
iors such as crashing or hanging. It has become a standard

practice to detect security problems in complex, modern soft-
ware [40, 72, 37, 25, 23, 18, 9]. Recent research has built
several efficient fuzzing tools [57, 52, 29, 34, 6, 64] and found
a large number of security vulnerabilities [51, 72, 59, 26, 10].

Unfortunately, advanced fuzzing techniques can also be
used by malicious attackers to find zero-day vulnerabilities.
Recent studies [61, 58] confirm that attackers predominantly
prefer fuzzing tools over others (e.g., reverse engineering) in
finding vulnerabilities. For example, a survey of information
security experts [28] shows that fuzzing techniques discover
4.83 times more bugs than static analysis or manual detec-
tion. Therefore, developers might want to apply anti-fuzzing
techniques on their products to hinder fuzzing attempts by
attackers, similar in concept to using obfuscation techniques
to cripple reverse engineering [12, 13].

In this paper, we propose a new direction of binary protec-
tion, called FUZZIFICATION, that hinders attackers from ef-
fectively finding bugs. Specifically, attackers may still be able
to find bugs from the binary protected by FUZZIFICATION,
but with significantly more effort (e.g., CPU, memory, and
time). Thus, developers or other trusted parties who get the
original binary are able to detect program bugs and synthe-
size patches before attackers widely abuse them. An effective
FUZZIFICATION technique should enable the following three
features. First, it should be effective for hindering existing
fuzzing tools, finding fewer bugs within a fixed time; second,
the protected program should still run efficiently in normal
usage; third, the protection code should not be easily identi-
fied or removed from the protected binary by straightforward
analysis techniques.

No existing technique can achieve all three goals simul-
taneously. First, software obfuscation techniques, which
impede static program analysis by randomizing binary rep-
resentations, seem to be effective in thwarting fuzzing at-
tempts [12, 13]. However, we find that it falls short of
FUZZIFICATION in two ways. Obfuscation introduces unac-
ceptable overhead to normal program executions. Figure 1(a)
shows that obfuscation slows the execution by at least 1.7
times when using UPX [60] and up to 25.0 times when using

USENIX Association 28th USENIX Security Symposium 1913

1×
2×
4×
8×

16×
32×
64×

LLVM-obf UPX-3.94 Themida-2.4 ASPack-2.43

50

100

150

200

0 10 20 30 40 50 60 70 80 0 10k 20k 30k 40k

Sl
ow

do
w

n

(a) Overheads of obfuscator/packer
” u 1:(2∗1.5) : (2)

25.0

1.7
4.2

1.9

B
ra

nc
he

s

Time (minutes)

(b) Unique branches over time

Original
Obfuscated

Fuzzed executions

(c) Unique branches over executions

Figure 1: Impact of obfuscation techniques on fuzzing. (a) Obfus-
cation techniques introduce 1.7×-25.0× execution slow down. (b)
and (c) fuzzing obfuscated binaries discovers fewer program paths
over time, but gets a similar number of paths over executions.

LLVM-obfuscator [33]. Also, obfuscation cannot effectively
hinder fuzzers in terms of path exploration. It can slow each
fuzzed execution, as shown in Figure 1(b), but the path discov-
ery per execution is almost identical to that of fuzzing the orig-
inal binary, as shown in Figure 1(c). Therefore, obfuscation is
not an ideal FUZZIFICATION technique. Second, software di-
versification changes the structure and interfaces of the target
application to distribute diversified versions [35, 3, 53, 50].
For example, the technique of N-version software [3] is able
to mitigate exploits because attackers often depend on clear
knowledge of the program states. However, software diver-
sification is powerless on hiding the original vulnerability
from the attacker’s analysis; thus it is not a good approach for
FUZZIFICATION.

In this paper, we propose three FUZZIFICATION techniques
for developers to protect their programs from malicious
fuzzing attempts: SpeedBump, BranchTrap, and AntiHybrid.
The SpeedBump technique aims to slow program execution
during fuzzing. It injects delays to cold paths, which normal
executions rarely reach but that fuzzed executions frequently
visit. The BranchTrap technique inserts a large number of
input-sensitive jumps into the program so that any input drift
will significantly change the execution path. This will induce
coverage-based fuzzing tools to spend their efforts on injected
bug-free paths instead of on the real ones. The AntiHybrid
technique aims to thwart hybrid fuzzing approaches that incor-
porate traditional fuzzing methods with dynamic taint analysis
and symbolic execution.

We develop defensive mechanisms to hinder attackers iden-
tifying or removing our techniques from protected binaries.
For SpeedBump, instead of calling the sleep function, we
inject randomly synthesized CPU-intensive operations to cold
paths and create control-flow and data-flow dependencies
between the injected code and the original code. We reuse
existing binary code to realize BranchTrap to prevent an ad-
versary from identifying the injected branches.

To evaluate our FUZZIFICATION techniques, we apply
them on the LAVA-M dataset and nine real-world applica-
tions, including libjpeg, libpng, libtiff, pcre2, readelf,
objdump, nm, objcopy, and MuPDF. These programs are
extensively used to evaluate the effectiveness of fuzzing
tools [19, 11, 48, 67]. Then, we use four popular fuzzers
—AFL, HonggFuzz, VUzzer, and QSym— to fuzz the origi-
nal programs and the protected ones for the same amount of
time. On average, fuzzers detect 14.2 times more bugs from
the original binaries and 3.0 times more bugs from the LAVA-
M dataset than those from “fuzzified” ones. At the same time,
our FUZZIFICATION techniques decrease the total number
of discovered paths by 70.3%, and maintain user-specified
overhead budget. This result shows that our FUZZIFICATION
techniques successfully decelerate fuzzing performance on
vulnerability discovery. We also perform an analysis to show
that data-flow and control-flow analysis techniques cannot
easily disarm our techniques.

In this paper, we make the following contributions:
• We first shed light on the new research direction of anti-

fuzzing schemes, so-called, FUZZIFICATION.
• We develop three FUZZIFICATION techniques to slow

each fuzzed execution, to hide path coverage, and to
thwart dynamic taint-analysis and symbolic execution.

• We evaluate our techniques on popular fuzzers and com-
mon benchmarks. Our results show that the proposed
techniques hinder these fuzzers, finding 93% fewer bugs
from the real-world binaries and 67.5% fewer bugs from
the LAVA-M dataset, and 70.3% less coverage while
maintaining the user-specified overhead budget.

We will release the source code of our work at https:
//github.com/sslab-gatech/fuzzification.

2 Background and Problem

2.1 Fuzzing Techniques
The goal of fuzzing is to automatically detect program bugs.
For a given program, a fuzzer first creates a large number
of inputs, either by random mutation or by format-based
generation. Then, it runs the program with these inputs to see
whether the execution exposes unexpected behaviors, such as
a crash or an incorrect result. Compared to manual analysis or
static analysis, fuzzing is able to execute the program orders
of magnitude more times and thus can explore more program
states to maximize the chance of finding bugs.

2.1.1 Fuzzing with Fast Execution

A straightforward way to improve fuzzing efficiency is to
make each execution faster. Current research highlights sev-
eral fast execution techniques, including (1) customized sys-
tem and hardware to accelerate fuzzed execution and (2)
parallel fuzzing to amortize the absolute execution time in

1914 28th USENIX Security Symposium USENIX Association

https://github.com/sslab-gatech/fuzzification
https://github.com/sslab-gatech/fuzzification

large-scale. Among these techniques, AFL uses the fork
server and persistent mode to avoid the heavy process cre-
ation and can accelerate fuzzing by a factor of two or
more [68, 69]. AFL-PT, kAFL, and HonggFuzz utilize hard-
ware features such as Intel Process Tracing (PT) and Branch
Trace Store (BTS) to collect code coverage efficiently to guide
fuzzing [65, 54, 23]. Recently, Xu et al. designed new oper-
ating system primitives, like efficient system calls, to speed
up fuzzing on multi-core machines [64].

2.1.2 Fuzzing with Coverage-guidance

Coverage-guided fuzzing collects the code coverage for each
fuzzed execution and prioritizes fuzzing the input that has
triggered new coverage. This fuzzing strategy is based on two
empirical observations: (1) a higher path coverage indicates a
higher chance of exposing bugs; and (2) mutating inputs that
ever trigger new paths is likely to trigger another new path.
Most popular fuzzers take code coverage as guidance, like
AFL, HonggFuzz, and LibFuzzer, but with different methods
for coverage representation and coverage collection.
Coverage representation. Most fuzzers take basic blocks
or branches to represent the code coverage. For example,
HonggFuzz and VUzzer use basic block coverage, while AFL
instead considers the branch coverage, which provides more
information about the program states. Angora [11] combines
branch coverage with the call stack to further improve cov-
erage accuracy. However, the choice of representation is a
trade-off between coverage accuracy and performance, as
more fine-grained coverage introduces higher overhead to
each execution and harms the fuzzing efficiency.
Coverage collection. If the source code is available, fuzzers
can instrument the target program during compilation or as-
sembly to record coverage at runtime, like in AFL-LLVM
mode and LibFuzzer. Otherwise, fuzzers have to utilize either
static or dynamic binary instrumentation to achieve a similar
purpose, like in AFL-QEMU mode [70]. Also, several fuzzers
leverage hardware features to collect the coverage [65, 54, 23].
Fuzzers usually maintain their own data structure to store cov-
erage information. For example, AFL and HonggFuzz use a
fixed-size array and VUzzer utilizes a Set data structure in
Python to store their coverage. However, the size of the struc-
ture is also a trade-off between accuracy and performance: an
overly small memory cannot capture every coverage change,
while an overly large memory introduces significant overhead.
For example, AFL’s performance drops 30% if the bitmap
size is changed from 64KB to 1MB [19].

2.1.3 Fuzzing with Hybrid Approaches

Hybrid approaches are proposed to help solve the limitations
of existing fuzzers. First, fuzzers do not distinguish input
bytes with different types (e.g., magic number, length speci-
fier) and thus may waste time mutating less important bytes

Source code

Fuzzification

Protected
binary

Normal
binary

Detected
bugs

Normal
compilation

Attackers

Normal users

Trusted parties

Compilation Distribution Fuzzing

Figure 2: Workflow of FUZZIFICATION protection. Developers cre-
ate a protected binary with FUZZIFICATION techniques and release
it to public. Meanwhile, they send the normally compiled binary to
trusted parties. Attackers cannot find many bugs from the protected
binary through fuzzing, while trusted parties can effectively find
significantly more bugs and developers can patch them in time.

that cannot affect any control flow. In this case, taint analysis
is used to help find which input bytes are used to determine
branch conditions, like VUzzer [52]. By focusing on the mu-
tation of these bytes, fuzzers can quickly find new execution
paths. Second, fuzzers cannot easily resolve complicated
conditions, such as comparison with magic value or check-
sum. Several works [57, 67] utilize symbolic execution to
address this problem, which is good at solving complicated
constraints but incurs high overhead.

2.2 FUZZIFICATION Problem

Program developers may want to completely control the bug-
finding process, as any bug leakage can bring attacks and
lead to financial loss [45]. They demand exposing bugs by
themselves or by trusted parties, but not by malicious end-
users. Anti-fuzzing techniques can help to achieve that by
decelerating unexpected fuzzing attempts, especially from
malicious attackers.

We show the workflow of FUZZIFICATION in Figure 2. De-
velopers compile their code in two versions. One is compiled
with FUZZIFICATION techniques to generate a protected bi-
nary, and the other is compiled normally to generate a normal
binary. Then, developers distribute the protected binary to
the public, including normal users and malicious attackers.
Attackers fuzz the protected binary to find bugs. However,
with the protection of FUZZIFICATION techniques, they can-
not find as many bugs quickly. At the same time, developers
distribute the normal binary to trusted parties. The trusted
parties can launch fuzzing on the normal binary with the na-
tive speed and thus can find more bugs in a timely manner.
Therefore, developers who receive bug reports from trusted
parties can fix the bug before attackers widely abuse it.

USENIX Association 28th USENIX Security Symposium 1915

Anti-fuzz candidates Effective Generic Efficient Robust

Pack & obfuscation ✔ ✔ ✗ ✔
Bug injection ✔ ✔ ✗ ✗
Fuzzer identification ✔ ✗ ✔ ✗
Emulator bugs ✔ ✗ ✔ ✔

FUZZIFICATION ✔ ✔ ✔ ✔

Table 1: Possible design choices and evaluation with our goals.

2.2.1 Threat Model

We consider motivated attackers who attempt to find software
vulnerabilities through state-of-the-art fuzzing techniques, but
with limited resources like computing power (at most similar
resources as trusted parties). Adversaries have the binary
protected by FUZZIFICATION and they have knowledge of
our FUZZIFICATION techniques. They can use off-the-shelf
binary analysis techniques to disarm FUZZIFICATION from
the protected binary. Adversaries who have access to the
unprotected binary or even to program source code (e.g.,
inside attackers, or through code leakage) are out of the scope
of this study.

2.2.2 Design Goals and Choices

A FUZZIFICATION technique should achieve the following
four goals simultaneously:

• Effective: It should effectively reduce the number of
bugs found in the protected binary, compared to that
found in the original binary.

• Generic: It tackles the fundamental principles of
fuzzing and is generally applicable to most fuzzers.

• Efficient: It introduces minor overhead to the normal
program execution.

• Robust: It is resistant to the adversarial analysis trying
to remove it from the protected binary.

With these goals in mind, we examine four design choices
for hindering malicious fuzzing, shown in Table 1. Unfortu-
nately, no method can satisfy all goals.
Packing/obfuscation. Software packing and obfuscation are
mature techniques against reverse engineering, both generic
and robust. However, they usually introduce higher perfor-
mance overhead to program executions, which not only hin-
ders fuzzing, but also affects the use of normal users.
Bug injection. Injecting arbitrary code snippets that trigger
non-exploitable crashes can cause additional bookkeeping
overhead and affect end users in unexpected ways [31].
Fuzzer identification. Detecting the fuzzer process and
changing the execution behavior accordingly can be bypassed
easily (e.g., by changing fuzzer name). Also, we cannot
enumerate all fuzzers or fuzzing techniques.
Emulator bugs. Triggering bugs in dynamic instrumenta-
tion tools [4, 14, 38] can interrupt fuzzing [42, 43]. However,
it requires strong knowledge of the fuzzer, so it is not generic.

❷ Fuzzification

❸ Measure

❶ Profiling

BB freq
profile

normal
binary

ovrhd
budget

source
code

test
cases

LLVM
IR

exec

SpeedBump

BranchTrap

AntiHybrid

exec

in
budget

?protected
binary

❹ Finish

Figure 3: Overview of FUZZIFICATION process. It first runs the
program with given test cases to get the execution frequency profile.
With the profile, it instruments the program with three techniques.
The protected binary is released if it satisfies the overhead budget.

2.3 Design Overview

We propose three FUZZIFICATION techniques – SpeedBump,
BranchTrap, and AntiHybrid– to target each fuzzing tech-
nique discussed in §2.1. First, SpeedBump injects fine-
grained delay primitives into cold paths that fuzzed execu-
tions frequently touch but normal executions rarely use (§3).
Second, BranchTrap fabricates a number of input-sensitive
branches to induce the coverage-based fuzzers to waste their
efforts on fruitless paths (§4). Also, it intentionally saturates
the code coverage storage with frequent path collisions so
that the fuzzer cannot identify interesting inputs that trigger
new paths. Third, AntiHybrid transforms explicit data-flows
into implicit ones to prevent data-flow tracking through taint
analysis, and inserts a large number of spurious symbols to
trigger path explosion during the symbolic execution (§5).

Figure 3 shows an overview of our FUZZIFICATION sys-
tem. It takes the program source code, a set of commonly
used test cases, and an overhead budget as input and produces
a binary protected by FUZZIFICATION techniques. Note that
FUZZIFICATION relies on developers to determine the appro-
priate overhead budget, whatever they believe will create a
balance between the functionality and security of their pro-
duction. 1 We compile the program to generate a normal
binary and run it with the given normal test cases to collect
basic block frequencies. The frequency information tells us
which basic blocks are rarely used by normal executions. 2
Based on the profile, we apply three FUZZIFICATION tech-
niques to the program and generate a temporary protected
binary. 3 We measure the overhead of the temporary binary
with the given normal test cases again. If the overhead is
over the budget, we go back to step 2 to reduce the slow
down to the program, such as using shorter delay and adding
less instrumentation. If the overhead is far below the bud-
get, we increase the overhead accordingly. Otherwise, 4 we
generate the protected binary.

1916 28th USENIX Security Symposium USENIX Association

3 SpeedBump: Amplifying Delay in Fuzzing

We propose a technique called SpeedBump to slow the fuzzed
execution while minimizing the effect to normal executions.
Our observation is that the fuzzed execution frequently falls
into paths such as error-handling (e.g., wrong MAGIC bytes)
that the normal executions rarely visit. We call them the cold
paths. Injecting delays in cold paths will significantly slow
fuzzed executions but will not affect regular executions that
much. We first identify cold paths from normal executions
with the given test cases and then inject crafted delays into
least-executed code paths. Our tool automatically determines
the number of code paths to inject delays and the length of
each delay so that the protected binary has overhead under
the user-defined budget during normal executions.
Basic block frequency profiling. FUZZIFICATION gener-
ates a basic block frequency profile to identify cold paths. The
profiling process follows three steps. First, we instrument
the target programs to count visited basic blocks during the
execution and generate a binary for profiling. Second, with
the user-provided test cases, we run this binary and collect the
basic blocks visited by each input. Third, FUZZIFICATION
analyzes the collected information to identify basic blocks
that are rarely executed or never executed by valid inputs.
These blocks are treated as cold paths in delay injection.

Our profiling does not require the given test cases to cover
100% of all legitimate paths, but just to trigger the commonly
used functionalities. We believe this is a practical assumption,
as experienced developers should have a set of test cases
covering most of the functionalities (e.g., regression test-
suites). Optionally, if developers can provide a set of test
cases that trigger uncommon features, our profiling results
will be more accurate. For example, for applications parsing
well-known file formats (e.g., readelf parses ELF binaries),
collecting valid/invalid dataset is straightforward.
Configurable delay injection. We perform the following
two steps repeatedly to determine the set of code blocks to
inject delays and the length of each delay:

• We start by injecting a 30ms delay to 3% of the least-
executed basic blocks in the test executions. We find that
this setting is close enough to the final evaluation result.

• We measure the overhead of the generated binary. If it
does not exceed the user-defined overhead budget, we
go to the previous step to inject more delay into more
basic blocks. Otherwise, we use the delay in the previous
round as the final result.

Our SpeedBump technique is especially useful for developers
who generally have a good understanding of their applica-
tions, as well as the requirements for FUZZIFICATION. We
provide five options that developers can use to finely tune
SpeedBump’s effect. Specifically, MAX_OVERHEAD defines the
overhead budget. Developers can specify any value as long
as they feel comfortable with the overhead. DELAY_LENGTH
specifies the range of delays. We use 10ms to 300ms in the

0
2
4
6
8

10
12

1 20 40 60 80 100
0
1
2
3
4
5

1 20 40 60 80 100

%
of

in
st

ru
.b

lo
ck

s

(a) Max instru. ratio per delays

10
0

ex
ec

/s
ec

Delays(ms)

(b) Fuzzer performance

overhead < 1%
overhead < 3%

Figure 4: Protecting readelf with different overhead budgets.
While satisfying the overhead budget, (a) demonstrates the maxi-
mum ratio of instrumentation for each delay length, and (b) displays
the execution speed of AFL-QEMU on protected binaries.

evaluation. INCLUDE_INCORRECT determines whether or not
to inject delays to error-handling basic blocks (i.e., locations
that are only executed by invalid inputs), which is enabled
by default. INCLUDE_NON_EXEC and NON_EXEC_RATIO specify
whether to inject delays into how ever many basic blocks are
never executed during test execution. This is useful when
developers do not have a large set of test cases.

Figure 4 demonstrates the impact of different options on
protecting the readelf binary with SpeedBump. We collect
1,948 ELF files on the Debian system as valid test cases and
use 600 text and image files as invalid inputs. Figure 4(a)
shows the maximum ratio of basic blocks that we can inject
delay into while introducing overhead less than 1% and 3%.
For a 1ms delay, we can instrument 11% of the least-executed
basic blocks for a 1% overhead budget and 12% for 3% over-
head. For a 120ms delay, we cannot inject any blocks for
1% overhead and can inject only 2% of the cold paths for
3% overhead. Figure 4(b) shows the actual performance of
AFL-QEMU when it fuzzes SpeedBump-protected binaries.
The ratio of injected blocks is determined as in Figure 4(a).
The result shows that SpeedBump with a 30ms delay slows
the fuzzer by more than 50×. Therefore, we use 30ms and
the corresponding 3% instrumentation as the starting point.

3.1 Analysis-resistant Delay Primitives

As attackers may use program analysis to identify and re-
move simple delay primitives (e.g., calling sleep), we design
robust primitives that involve arithmetic operations and are
connected with the original code base. Our primitives are
based on CSmith [66], which can generate random and bug-
free code snippets with refined options. For example, CSmith
can generate a function that takes parameters, performs arith-
metic operations, and returns a specific type of value. We
modified CSmith to generate code that has data dependencies
and code dependencies to the original code. Specifically, we
pass a variable from the original code to the generated code
as an argument, make a reference from the generated code to
the original one, and use the return value to modify a global
variable of the original code. Figure 5 shows an example of
our delay primitives. It declares a local variable PASS_VAR

USENIX Association 28th USENIX Security Symposium 1917

1 //Predefined global variables
2 int32_t GLOBAL_VAR1 = 1, GLOBAL_VAR2 = 2;
3 //Randomly generated code
4 int32_t * func(int32_t p6) {
5 int32_t *l0[1000];
6 GLOBAL_VAR1 = 0x4507L; // affect global var.
7 int32_t *l1 = &g8[1][0];
8 for (int i = 0; i < 1000; i++)
9 l0[i] = p6; // affect local var from argv.

10 (*g7) = func2(g6++);
11 (*g5) |= ~(!func3(**g4 = ~0UL));
12 return l1; // affect global var.
13 }
14 //Inject above function for delay
15 int32_t PASS_VAR = 20;
16 GLOBAL_VAR2 = func(PASS_VAR);

Figure 5: Example delay primitive. Function func updates global
variables to build data-flow dependency with original program.

and modifies global variables GLOBAL_VAR1 and GLOBAL_VAR2.
In this way, we introduce data-flow dependency between the
original code and the injected code (line 6, 9 and 12), and
change the program state without affecting the original pro-
gram. Although the code is randomly generated, it is tightly
coupled with the original code via data-flow and control-flow
dependencies. Therefore, it is non-trivial for common binary
analysis techniques, like dead-code elimination, to distinguish
it from the original code. We repeatedly run the modified
CSmith to find appropriate code snippets that take a specific
time (e.g., 10ms) for delay injection.

Safety of delay primitives. We utilize the safety checks
from CSmith and FUZZIFICATION to guarantee that the gen-
erated code is bug-free. First, we use CSmith’s default safety
checks, which embed a collection of tests in the code, in-
cluding integer, type, pointer, effect, array, initialization, and
global variable. For example, CSmith conducts pointer anal-
ysis to detect any access to an out-of-scope stack variable
or null pointer dereference, uses explicit initialization to pre-
vent uninitialized usage, applies math wrapper to prevent
unexpected integer overflow, and analyzes qualifiers to avoid
any mismatch. Second, FUZZIFICATION also has a separate
step to help detect bad side effects (e.g., crashes) in delay
primitives. Specifically, we run the code 10 times with fixed
arguments and discard it if the execution shows any error. Fi-
nally, FUZZIFICATION embeds the generated primitives with
the same fixed argument to avoid errors.

Fuzzers aware of error-handling blocks. Recent fuzzing
proposals, like VUzzer [52] and T-Fuzz [48], identify error-
handling basic blocks through profiling and exclude them
from the code coverage calculation to avoid repetitive execu-
tions. This may affect the effectiveness of our SpeedBump
technique, which uses a similar profiling step to identify cold
paths. Fortunately, the cold paths from SpeedBump include
not only error-handling basic blocks, but also rarely executed
functional blocks. Further, we use similar methods to identify
error-handling blocks from the cold paths and provide de-
velopers the option to choose not to instrument these blocks.
Thus, our FUZZIFICATION will focus on instrumenting rarely
executed functional blocks to maximize its effectiveness.

4 BranchTrap: Blocking Coverage Feedback

Code coverage information is widely used by fuzzers to find
and prioritize interesting inputs [72, 37, 23]. We can make
these fuzzers diligent fools if we insert a large number of con-
ditional branches whose conditions are sensitive to slight in-
put changes. When the fuzzing process falls into these branch
traps, coverage-based fuzzers will waste their resources to ex-
plore (a huge number of) worthless paths. Therefore, we pro-
pose the technique of BranchTrap to deceive coverage-based
fuzzers by misleading or blocking the coverage feedback.

4.1 Fabricating Fake Paths on User Input

The first method of BranchTrap is to fabricate a large number
of conditional branches and indirect jumps, and inject them
into the original program. Each fabricated conditional branch
relies on some input bytes to determine to take the branch
or not, while indirect jumps calculate their targets based on
user input. Thus, the program will take different execution
paths even when the input slightly changes. Once a fuzzed
execution triggers the fabricated branch, the fuzzer will set a
higher priority to mutate that input, resulting in the detection
of more fake paths. In this way, the fuzzer will keep wasting
its resources (i.e., CPU and memory) to inspect fruitless but
bug-free fake paths.

To effectively induce the fuzzers focusing on fake branches,
we consider the following four design aspects. First,
BranchTrap should fabricate a sufficient number of fake paths
to affect the fuzzing policy. Since the fuzzer generates various
variants from one interesting input, fake paths should provide
different coverage and be directly affected by the input so that
the fuzzer will keep unearthing the trap. Second, the injected
new paths introduce minimal overhead to regular executions.
Third, the paths in BranchTrap should be deterministic re-
garding user input, which means that the same input should
go through the same path. The reason is that some fuzzers
can detect and ignore non-deterministic paths (e.g., AFL ig-
nores one input if two executions with it take different paths).
Finally, BranchTrap cannot be easily identified or removed
by adversaries.

A trivial implementation of BranchTrap is to inject a jump
table and use some input bytes as the index to access the
table (i.e., different input values result in different jump tar-
gets). However, this approach can be easily nullified by sim-
ple adversarial analysis. We design and implement a robust
BranchTrap with code-reuse techniques, similar in concept
to the well-known return-oriented programming (ROP) [55].

4.1.1 BranchTrap with CFG Distortion

To harden BranchTrap, we diversify the return addresses of
each injected branch according to the user input. Our idea is
inspired by ROP, which reuses existing code for malicious at-

1918 28th USENIX Security Symposium USENIX Association

epilogue
 pop rbp
 pop r15
 ret

func1 (arg1, arg2)

gadget2
 pop rbp
 pop r15
 ret

 select jmp address❷ ❸

❶ calculate index

❹return

....
call func1
next inst
....

caller gadget1
 pop rbp
 pop r15
 ret

gadgetN

 ...

 = arg1^arg2index

 jmp table[index]

...

Figure 6: BranchTrap by reusing the existing ROP gadgets in the
original binary. Among functionally equivalent gadgets, BranchTrap
picks the one based on function arguments.

tacks by chaining various small code snippets. Our approach
can heavily distort the program control-flow and makes nulli-
fying BranchTrap more challenging for adversaries. The im-
plementation follows three steps. First, BranchTrap collects
function epilogues from the program assembly (generated
during program compilation). Second, function epilogues
with the same instruction sequence are grouped into one jump
table. Third, we rewrite the assembly so that the function will
retrieve one of several equivalent epilogues from the corre-
sponding jump table to realize the original function return,
using some input bytes as the jump table index. As we re-
place the function epilogue with a functional equivalent, it
guarantees the identical operations as the original program.

Figure 6 depicts the internal of the BranchTrap implemen-
tation at runtime. For one function, BranchTrap 1 calculates
the XORed value of all arguments. BranchTrap uses this value
for indexing the jump table (i.e., candidates for epilogue ad-
dress). 2 BranchTrap uses this value as the index to visit the
jump table and obtains the concrete address of the epilogue.
To avoid out-of-bounds array access, BranchTrap divides the
XORed value by the length of the jump table and takes the
remainder as the index. 3 After determining the target jump
address, the control-flow is transferred to the gadget (e.g.,
the same pop rbp; pop r15; ret gadget). 4 Finally, the
execution returns to the original return address.

The ROP-based BranchTrap has three benefits:
• Effective: Control-flow is constantly and sensitively

changed together with the user input mutation; thus
FUZZIFICATION can introduce a sufficient number of
unproductive paths and make coverage feedback less ef-
fective. Also, BranchTrap guarantees the same control-
flow on the same input (i.e., deterministic path) so that
the fuzzer will not ignore these fake paths.

• Low overhead: BranchTrap introduces low overhead
to normal user operations (e.g., less than 1% overhead)
due to its lightweight operations (Store argument; XOR;
Resolve jump address; Jump to gadget).

• Robust: The ROP-based design significantly increases
the complexity for an adversary to identify or patch
the binary. We evaluate the robustness of BranchTrap
against adversarial analysis in §6.4.

4.2 Saturating Fuzzing State

The second method of BranchTrap is to saturate the fuzzing
state, which blocks the fuzzers from learning the progress in
the code coverage. Different from the first method, which
induces fuzzers focusing on fruitless inputs, our goal here
is to prevent the fuzzers from finding real interesting ones.
To achieve this, BranchTrap inserts a massive number of
branches to the program, and exploits the coverage repre-
sentation mechanism of each fuzzer to mask new findings.
BranchTrap is able to introduce an extensive number (e.g.,
10K to 100K) of deterministic branches to some rarely visited
basic blocks. Once the fuzzer reaches these basic blocks, its
coverage table will quickly fill up. In this way, most of the
newly discovered paths in the following executions will be
treated as visited, and thus the fuzzer will discard the input
that in fact explores interesting paths. For example, AFL
maintains a fixed-size bitmap (i.e., 64KB) to track edge cov-
erage. By inserting a large number of distinct branches, we
significantly increase the probability of bitmap collision and
thus reduce the coverage inaccuracy.

Figure 7(a) demonstrates the impact of bitmap saturation on
fuzzing readelf. Apparently, a more saturated bitmap leads
to fewer path discoveries. Starting from an empty bitmap,
AFL identifies over 1200 paths after 10 hours of fuzzing. For
the 40% saturation rate, it only finds around 950 paths. If the
initial bitmap is highly filled, such as 80% saturation, AFL
detects only 700 paths with the same fuzzing effort.
Fuzzers with collision mitigation. Recent fuzzers, like Col-
lAFL [19], propose to mitigate the coverage collision issue
by assigning a unique identifier to each path coverage (i.e.,
branch in case of CollAFL). However, we argue that these
techniques will not effectively undermine the strength of our
BranchTrap technique on saturating coverage storage for two
reasons. First, current collision mitigation techniques require
program source code to assign unique identifiers during the
linking time optimization [19]. In our threat model, attackers
cannot obtain the program source code or the original binary –
they only have a copy of the protected binary, which makes it
significantly more challenging to apply similar ID-assignment
algorithms. Second, these fuzzers still have to adopt a fixed
size storage of coverage because of the overhead of large
storage. Therefore, if we can saturate 90% of the storage, Col-
lAFL can only utilize the remaining 10% for ID-assignment;
thus the fuzzing performance will be significantly affected.

4.3 Design Factors of BranchTrap

We provide developers an interface to configure ROP-based
BranchTrap and coverage saturation for optimal protection.
First, the number of generated fake paths of ROP-based
BranchTrap is configurable. BranchTrap depends on the num-
ber of functions to make a distorted control-flow. Therefore,
injected BranchTrap is effective when the original program

USENIX Association 28th USENIX Security Symposium 1919

0
200
400
600
800

1000
1200
1400

0 1 2 3 4 5 6 7 8 9 10
10
20
30
40
50
60
70
80
90

10 20 30 40 50 60 70 80 90

re
al

pa
th

s

time (hour)

(a) readelf with different bitmap

0%
40%
80%

sa
tu

ra
tio

n
(%

)

number of branches (k)

(b) Impact of different number of branches

Figure 7: (a) AFL performance with different initial bitmap satura-
tion. (b) Impact on bitmap with different number of branches.

contains plenty of functions. For binaries with fewer func-
tions, we provide an option for developers to split existing
basic blocks into multiple ones, each connected with condi-
tional branches. Second, the size of the injected branches
for saturating the coverage is also controllable. Figure 7(b)
shows how the bitmap can be saturated in AFL by increasing
the branch number. It clearly shows that more branches can
fill up more bitmap entries. For example, 100K branches can
fill up more than 90% of a bitmap entry. Injecting a massive
number of branches into the program increases the output
binary size. When we inject 100k branches, the size of the
protected binary is 4.6MB larger than the original binary. To
avoid high code size overhead, we inject a huge number of
branches into only one or two of the most rarely executed
basic blocks. As long as one fuzzed execution reaches such
branches, the coverage storage will be filled and the following
fuzzing will find fewer interesting inputs.

5 AntiHybrid: Thwarting Hybrid Fuzzers

A hybrid fuzzing method utilizes either symbolic execution
or dynamic taint analysis to improve fuzzing efficiency. Sym-
bolic (or concolic) execution is good at solving complicated
branch conditions (e.g., magic number and checksum), and
therefore can help fuzzers bypass these hard-to-mutate road-
blocks. DTA (Dynamic Taint Analysis) helps find input bytes
that are related to branch conditions. Recently, several hybrid
fuzzing methods have been proposed and successfully discov-
ered security-critical bugs. For example, Driller [57] adapted
selective symbolic execution and proved its efficacy during
the DARPA Cyber Grand Challenge (CGC). VUzzer [52]
utilized dynamic taint analysis to identify path-critical in-
put bytes for effective input mutation. QSym [67] suggested
a fast concolic execution technique that can be scalable on
real-world applications.

Nevertheless, hybrid approaches have well-known weak-
nesses. First, both symbolic execution and taint analysis
consume a large amount of resources such as CPU and mem-
ory, limiting them to analyzing simple programs. Second,
symbolic execution is limited by the path explosion problem.
If complex operation is required for processing symbols, the
symbolic execution engine has to exhaustively explore and
evaluate all execution states; then, most of the symbolic ex-

1 char input[] = ...; /* user input */
2 int value = ...; /* user input */
3

4 // 1. using implicit data-flow to copy input to antistr
5 // original code: if (!strcmp(input, "condition!")) { ... }
6 char antistr[strlen(input)];
7 for (int i = 0; i<strlen(input); i++){
8 int ch = 0, temp = 0, temp2 = 0;
9 for (int j = 0; j<8; j++){

10 temp = input[i];
11 temp2 = temp & (1<<j);
12 if (temp2 != 0) ch |= 1<<j;
13 }
14 antistr[i] = ch;
15 }
16 if (!strcmp(antistr, "condition!")) { ... }
17

18 // 2. exploding path constraints
19 // original code: if (value == 12345)
20 if (CRC_LOOP(value) == OUTPUT_CRC) { ... }

Figure 8: Example of AntiHybrid techniques. We use implicit data-
flow (line 6-15) to copy strings to hinder dynamic taint analysis. We
inject hash function around equal comparison (line 20) to cripple
symbolic execution engine.

ecution engines fail to run to the end of the execution path.
Third, DTA analysis has difficulty in tracking implicit data
dependencies, such as covert channels, control channels, or
timing-based channels. For example, to cover data depen-
dency through a control channel, the DTA engine has to
aggressively propagate the taint attribute to any variable after
a conditional branch, making the analysis more expensive and
the result less accurate.

Introducing implicit data-flow dependencies. We trans-
form the explicit data-flows in the original program into im-
plicit data-flows to hinder taint analysis. FUZZIFICATION first
identifies branch conditions and interesting information sinks
(e.g., strcmp) and then injects data-flow transformation code
according to the variable type. Figure 8 shows an example ap-
plication of AntiHybrid, where array input is used to decide
branch condition and strcmp is an interesting sink function.
Therefore, FUZZIFICATION uses implicit data-flows to copy
the array (line 6-15) and replaces the original variable to the
new one (line 16). Due to the transformed implicit data-flow,
the DTA technique cannot identify the correct input bytes that
affect the branch condition at line 16.

Implicit data-flow hinders data-flow analysis that tracks di-
rect data propagation. However, it cannot prevent data depen-
dency inference through differential analysis. For example,
recent work, RedQueen [2], infers the potential relationship
between input and branch conditions through pattern match-
ing, and thus can bypass the implicit data-flow transformation.
However, RedQueen requires the branch condition value to
be explicitly shown in the input, which can be easily fooled
through simple data modification (e.g., adding the same con-
stant value to both operands of the comparison).

Exploding path constraints. To hinder hybrid fuzzers
using symbolic execution, FUZZIFICATION injects multiple
code chunks to intentionally trigger path explosions. Specifi-

1920 28th USENIX Security Symposium USENIX Association

Project Version Program Arg. Seeds Overhead (Binary size) Overhead (CPU)
Speed BranchTrap AntiHybrid All Speed BranchTrap AntiHybrid All

libjpeg 2017.7 djpeg GIT 9.0% (0.1M) 101.5% (1.2M) 0.3% (0.0M) 103.2% (1.3M) 1.5% 0.9% 0.3% 2.4%
libpng 1.6.27 readpng GIT 6.2% (0.1M) 56.0% (1.3M) 0.9% (0.0M) 65.7% (1.5M) 1.8% 2.0% 0.3% 4.0%
libtiff 4.0.6 tiffinfo GIT 9.2% (0.2M) 72.5% (1.5M) 0.8% (0.0M) 77.3% (1.6M) 1.0% 2.1% 0.5% 4.8%
pcre2 10 pcre2test built-in 12.9% (0.2M) 85.3% (1.3M) 0.8% (0.0M) 108.6% (1.7M) 1.2% 1.2% 1.0% 3.1%

binutils 2.23

readelf -a
ELF
files

9.6% (0.2M) 77.3% (1.3M) 0.2% (0.0M) 81.0% (1.4M) 1.0% 0.9% 0.9% 3.1%
objdump -d 1.4% (0.1M) 17.0% (1.3M) 0.1% (0.0M) 17.5% (1.3M) 1.6% 2.0% 0.9% 4.6%
nm 1.9% (0.1M) 23.1% (1.2M) 0.1% (0.0M) 23.3% (1.2M) 1.8% 1.6% 1.1% 4.5%
objcopy -S 1.7% (0.1M) 20.2% (1.3M) 0.1% (0.0M) 20.6% (1.3M) 1.7% 0.8% 0.5% 2.9%

Average 6.5% 56.6% 0.4% 62.1% 1.4% 1.4% 0.7% 3.7%

Table 2: Code size overhead and performance overhead of fuzzified binaries. GIT means Google Image Test-suite. We set performance
overhead budget as 5%. For size overhead, we show the percentage and the increased size.

cally, we replace each comparison instruction by comparing
the hash values of the original comparison operands. We
adopt the hash function because symbolic execution can-
not easily determine the original operand with the given
hash value. As hash functions usually introduce non-
negligible overhead to program execution, we utilize the
lightweight cyclic redundancy checking (CRC) loop iter-
ation to transform the branch condition to reduce perfor-
mance overhead. Although theoretically CRC is not as
strong as hash functions for hindering symbolic execution,
it also introduces significant slow down. Figure 8 shows
an example of the path explosion instrumentation. To be
specific, FUZZIFICATION changes the original condition
(value == 12345) to (CRC_LOOP(value) == OUTPUT_CRC)
(at line 20). If symbolic execution decides to solve the con-
straint of the CRC, it will mostly return a timeout error due to
the complicated mathematics. For example, QSym, a state-of-
the-art fast symbolic execution engine, is armed with many
heuristics to scale on real-world applications. When QSym
first tries to solve the complicated constraint that we injected,
it will fail due to the timeout or path explosion. Once injected
codes are run by the fuzzer multiple times, QSym identifies
the repetitive basic blocks (i.e., injected hash function) and
performs basic block pruning, which decides not to generate
a further constraint from it to assign resources into a new
constraint. After that, QSym will not explore the condition
with the injected hash function; thus, the code in the branch
can be explored rarely.

6 Evaluation

We evaluate our FUZZIFICATION techniques to understand
their effectiveness on hindering fuzzers from exploring pro-
gram code paths (§6.1) and detecting bugs (§6.2), their practi-
cality of protecting real-world large programs (§6.3), and their
robustness against adversarial analysis techniques (§6.4).
Implementation. Our FUZZIFICATION framework is imple-
mented in a total of 6,559 lines of Python code and 758 lines
of C++ code. We implement the SpeedBump technique as an

Tasks Target AFL HonggFuzz QSym VUzzer

Coverage 8 binaries O,S,B,H,A O,S,B,H,A O,S,B,H,A –
MuPDF O,A O,A O,A –

Crash 4 binaries O,A O,A O,A –
LAVA-M O,A O,A O,A O,A

Table 3: Experiments summary. Protection options: Original,
SpeedBump, BranchTrap, AntiHybrid, All. We use 4 binutils bina-
ries, 4 binaries from Google OSS project and MuPDF to measure the
code coverage. We use binutils binaries and LAVA-M programs to
measure the number of unique crashes.

LLVM pass and use it to inject delays into cold blocks during
the compilation. For the BranchTrap, we analyze the assem-
bly code and modify it directly. For the AntiHybrid technique,
we use an LLVM pass to introduce the path explosion and uti-
lize a python script to automatically inject implicit data-flows.
Currently, our system supports all three FUZZIFICATION tech-
niques on 64bit applications, and is able to protect 32bit ap-
plications except for the ROP-based BranchTrap.
Experimental setup. We evaluate FUZZIFICATION against
four state-of-the-art fuzzers that work on binaries, specifi-
cally, AFL in QEMU mode, HonggFuzz in Intel-PT mode,
VUzzer 321, and QSym with AFL-QEMU. We set up the
evaluation on two machines, one with Intel Xeon CPU E7-
8890 v4@2.20GHz, 192 processors and 504 GB of RAM,
and another with Intel Xeon CPU E7-4820@2.00GHz, 32
processors and 128 GB of RAM.

To get reproducible results, we tried to eliminate the non-
deterministic factors from fuzzers: we disable the address
space layout randomization of the experiment machine and
force the deterministic mode for AFL. However, we have to
leave the randomness in HonggFuzz and VUzzer, as they do
not support deterministic fuzzing. Second, we used the same
set of test cases for basic block profiling in FUZZIFICATION,
and fed the same seed inputs for different fuzzers. Third,

1We also tried to use VUzzer64 to fuzz different programs, but it did not
find any crashes even for any original binary after three-day fuzzing. Since
VUzzer64 is still experimental, we will try the stable version in the future.

USENIX Association 28th USENIX Security Symposium 1921

0k

3k

6k

9k

12k

8 16 24 32 40 48 56 64 72
0k

2k

4k

6k

8k

10k

8 16 24 32 40 48 56 64 72
0k

3k

6k

9k

12k

15k

8 16 24 32 40 48 56 64 72
0k
5k

10k
15k
20k
25k
30k

8 16 24 32 40 48 56 64 72

0k

4k

8k

12k

16k

20k

8 16 24 32 40 48 56 64 72
0k
5k

10k
15k
20k
25k
30k
35k

8 16 24 32 40 48 56 64 72
0k

3k

6k

9k

12k

15k

8 16 24 32 40 48 56 64 72
0k
5k

10k
15k
20k
25k
30k

8 16 24 32 40 48 56 64 72

(a) libjpeg

Original AntiHybrid BranchTrap SpeedBump All

(b) libpng (c) libtiff (d) pcre2

#
re

al
pa

th
s

Time (hours)

(e) readelf

Time (hours)

(f) objdump

Time (hours)

(g) nm

Time (hours)

(h) objcopy

Figure 9: Paths discovered by AFL-QEMU from real-world programs. Each program is compiled with five settings: original (no protection),
SpeedBump, BranchTrap, AntiHybrid, and all protections. We fuzz them with AFL-QEMU for three days.

Category Option Design Choice

SpeedBump

max_overhead 2%
delay_length 10ms to 300ms
include_invalid True
include_non_exec True (5%)

BranchTrap max_overhead 2%
bitmap_saturation 40% of 64k bitmap

AntiHybrid max_overhead 1%
include_non_exec True (5%)

Overall max_overhead 5%

Table 4: Our configuration values for the evaluation.

we used identical FUZZIFICATION techniques and configura-
tions when we conducted code instrumentation and binary
rewriting for each target application. Last, we pre-generated
FUZZIFICATION primitives (e.g., SpeedBump codes for 10ms
to 300ms and BranchTrap codes with deterministic branches),
and used the primitives for all protections. Note that devel-
opers should use different primitives for the actual releasing
binary to avoid code pattern matching analysis.
Target applications. We select the LAVA-M data set [17]
and nine real-world applications as the fuzzing targets,
which are commonly used to evaluate the performance of
fuzzers [11, 19, 64, 52]. The nine real-world programs in-
clude four applications from the Google fuzzer test-suite [24],
four programs from the binutils [20] (shown in Table 2), and
the PDF reader MuPDF. We perform two sets of experiments on
these binaries, summarized in Table 3. First, we fuzz nine real-
world programs with three fuzzers (all except VUzzer2) to
measure the impact of FUZZIFICATION on finding code paths.
Specifically, we compile eight real-world programs (all except
MuPDF) with five different settings: original (no protection),

2Due to time limit, we only use VUzzer 32 to finding bugs from LAVA-M
programs. We plan to do other evaluations in the future.

SpeedBump, BranchTrap, AntiHybrid, and a combination of
three techniques (full protection). We compile MuPDF with
two settings for simplicity: no protection and full protection.
Second, we use three fuzzers to fuzz four binutils programs
and all four fuzzers to fuzz LAVA-M programs to evaluate the
impact of FUZZIFICATION on unique bug finding. All fuzzed
programs in this step are compiled in two versions: with no
protection and with full protection. We compiled the LAVA-
M program to a 32bit version in order to be comparable with
previous research. Table 4 shows the configuration of each
technique used in our compilation. We changed the fuzzer’s
timeout if the binaries cannot start with the default timeout
(e.g., 1000 ms for AFL-QEMU).
Evaluation metric. We use two metrics to measure the
effectiveness of FUZZIFICATION: code coverage in terms of
discovered real paths, and unique crashes. Real path is the
execution path shown in the original program, excluding the
fake ones introduced by BranchTrap. We further excluded
the real paths triggered by seed inputs so that we can focus
on the ones discovered by fuzzers. Unique crash is measured
as the input that can make the program crash with a distinct
real path. We filter out duplicate crashes that are defined in
AFL [71] and are widely used by other fuzzers [11, 36].

6.1 Reducing Code Coverage

6.1.1 Impact on Normal Fuzzers

We measure the impact of FUZZIFICATION on reducing the
number of real paths against AFL-QEMU and HonggFuzz-
Intel-PT. Figure 9 shows the 72-hour fuzzing result from AFL-
QEMU on different programs with five protection settings.
The result of HonggFuzz-Intel-PT is similar and we leave it
in Appendix A.

In summary, with all three techniques, FUZZIFICATION
can reduce discovered real paths by 76% to AFL, and by

1922 28th USENIX Security Symposium USENIX Association

0k
3k
6k
9k

12k
15k
18k

8 16 24 32 40 48 56 64 72
0k

3k

6k

9k

12k

8 16 24 32 40 48 56 64 72
0k

4k

8k

12k

16k

20k

8 16 24 32 40 48 56 64 72
0k

5k

10k

15k

20k

25k

8 16 24 32 40 48 56 64 72

0k
10k
20k
30k
40k
50k
60k

8 16 24 32 40 48 56 64 72
0k

10k

20k

30k

40k

8 16 24 32 40 48 56 64 72
0k

4k

8k

12k

16k

8 16 24 32 40 48 56 64 72
0k

10k

20k

30k

40k

50k

8 16 24 32 40 48 56 64 72

(a) libjpeg

Original AntiHybrid BranchTrap SpeedBump All

(b) libpng (c) libtiff (d) pcre2

#
re

al
pa

th
s

Time (hours)

(e) readelf

Time (hours)

(f) objdump

Time (hours)

(g) nm

Time (hours)

(h) objcopy

Figure 10: Paths discovered by QSym from real-world programs. Each program is compiled with the same five settings as in Figure 9. We
fuzz these programs for three days, using QSym as the symbolic execution engine and AFL-QEMU as the native fuzzer.

67% to HonggFuzz, on average. For AFL, the reduction
rate varies from 14% to 97% and FUZZIFICATION reduces
over 90% of path discovery for libtiff, pcre2 and readelf.
For HonggFuzz, the reduction rate is between 38% to 90%
and FUZZIFICATION only reduces more than 90% of paths
for pcre2. As FUZZIFICATION automatically determines the
details for each protection to satisfy the overhead budget, its
effect varies for different programs.

Table 5 shows the effect of each technique on hindering
path discovery. Among them, SpeedBump achieves the best
protection against normal fuzzers, followed by BranchTrap
and AntiHybrid. Interestingly, although AntiHybrid is devel-
oped to hinder hybrid approaches, it also helps reduce the
discovered paths in normal fuzzers. We believe this is mainly
caused by the slow down in fuzzed executions.

We measured the overhead by different FUZZIFICATION
techniques, on program size and execution speed. The re-
sult is given in Table 2. In summary, FUZZIFICATION sat-
isfies the user-specified overhead budget, but shows rela-
tively high space overhead. On average, binaries armed with
FUZZIFICATION are 62.1% larger than the original ones. The
extra code mainly comes from the BranchTrap technique,
which inserts massive branches to achieve bitmap saturation.
Note that the extra code size is almost the same across dif-
ferent programs. Therefore, the size overhead is high for
small programs, but is negligible for large applications. For
example, the size overhead is less than 1% for LibreOffice
applications, as we show in Table 7. Further, BranchTrap is
configurable, and developers may inject a smaller number of
fake branches to small programs to avoid large-size overhead.

Analysis on less effective results. FUZZIFICATION shows
less effectiveness on protecting the libjpeg application.
Specifically, it decreases the number of real paths on libjpeg
by 13% to AFL and by 37% to HonggFuzz, whereas the av-
erage reduction is 76% and 67%, respectively. We analyzed

SpeedBump BranchTrap AntiHybrid All

AFL-QEMU -66% -23% -18% -74%
HonggFuzz (PT) -44% -14% -7% -61%
QSym (AFL-QEMU) -59% -58% -67% -80%

Average -56% -31% -30% -71%

Table 5: Reduction of discovered paths by FUZZIFICATION tech-
niques. Each value is an average of the fuzzing result from eight
real-world programs, as shown in Figure 9 and Figure 10.

FUZZIFICATION on libjpeg and find that SpeedBump and
BranchTrap cannot effectively protect libjpeg. Specifically,
these two techniques only inject nine basic blocks within
the user-specified overhead budget (2% for SpeedBump and
2% for BranchTrap), which is less than 0.1% of all basic
blocks. To address this problem, developers may increase
the overhead budget so that FUZZIFICATION can insert more
roadblocks to protect the program.

6.1.2 Impact on Hybrid Fuzzers

We also evaluated FUZZIFICATION’s impact on code cov-
erage against QSym, a hybrid fuzzer that utilizes symbolic
execution to help fuzzing. Figure 10 shows the number of real
paths discovered by QSym from the original and protected
binaries. Overall, with all three techniques, FUZZIFICATION
can reduce the path coverage by 80% to QSym on average,
and shows consistent high effectiveness on all tested pro-
grams. Specifically, the reduction rate varies between 66%
(objdump) to 90% (readelf). The result of libjpeg shows an
interesting pattern: QSym finds a large number of real paths
from the original binary in the last 8 hours, but it did not get
the same result from any protected binary. Table 5 shows
that AntiHybrid achieves the best effect (67% path reduction)
against hybrid fuzzers, followed by SpeedBump (59%) and
BranchTrap (58%).

USENIX Association 28th USENIX Security Symposium 1923

0

50

100

150

200

readelf
objdump

nm objcopy
0

10

20

30

40

readelf
objdump

nm objcopy
0

100

200

300

400

readelf
objdump

nm objcopy

(a) AFL-QEMU (b) HonggFuzz (Intel-PT) (c) QSym (AFL-QEMU)

Original
Fuzzified

Figure 11: Crashes found by different fuzzers from binutils programs. Each
program is compiled as original (no protection) and fuzzified (three techniques)
and is fuzzed for three days.

0

10

20

30

40

50

60

who
uniq base64

md5sum
0

30

60

90

120

150

who
uniq base64

md5sum

(a) VUzzer (b) QSym (AFL-QEMU)

Original
Fuzzified

Figure 12: Bugs found by VUzzer and QSym from
LAVA-M dataset. HonggFuzz discovers three bugs from
the original uniq. AFL does not find any bug.

Comparison with normal fuzzing result. QSym uses effi-
cient symbolic execution to help find new paths in fuzzing,
and therefore it is able to discover 44% more real paths than
AFL from original binaries. As we expect, AntiHybrid shows
the most impact on QSym (67% reduction), and less effect on
AFL (18%) and HonggFuzz (7%). With our FUZZIFICATION
techniques, QSym shows less advantage over normal fuzzers,
reduced from 44% to 12%.

6.2 Hindering Bug Finding

We measure the number of unique crashes that fuzzers find
from the original and protected binaries. Our evaluation first
fuzzes four binutils programs and LAVA-M applications with
three fuzzers (all but VUzzer). Then we fuzz LAVA-M pro-
grams with VUzzer, where we compiled them into 32bit ver-
sions and excluded the protection of ROP-based BranchTrap,
which is not implemented yet for 32bit programs.

6.2.1 Impact on Real-World Applications

Figure 11 shows the total number of unique crashes discov-
ered by three fuzzers in 72 hours. Overall, FUZZIFICATION
reduces the number of discovered crashes by 93%, specifi-
cally, by 88% to AFL, by 98% to HonggFuzz, and by 94% to
QSym. If we assume a consistent crash-discovery rate along
the fuzzing process, fuzzers have to take 40 times more ef-
fort to detect the same number of crashes from the protected
binaries. As the crash-discovery rate usually reduces over
time in real-world fuzzing, fuzzers will have to take much
more effort. Therefore, FUZZIFICATION can effectively hin-
der fuzzers and makes them spend significantly more time
discovering the same number of crash-inducing inputs.

6.2.2 Impact on LAVA-M Dataset

Compared with other tested binaries, LAVA-M programs
are smaller in size and simpler in operation. If we inject a
1ms delay on 1% of rarely executed basic block on who bi-
nary, the program will suffer a slow down of more than 40
times. To apply FUZZIFICATION on the LAVA-M dataset, we

who uniq base64 md5sum Average

Overhead (Size) 17.1% 220.6% 220.0% 210.7% 167.1%
(0.3M) (0.3M) (0.3M) (0.3M)

Overhead (CPU) 22.7% 13.2% 21.1% 6.5% 15.9%

Table 6: Overhead of FUZZIFICATION on LAVA-M binaries (all
protections except ROP-based BranchTrap) . The overhead is higher
as LAVA-M binaries are relatively small (e.g., ≈ 200KB).

allow higher overhead budget and apply more fine-grained
FUZZIFICATION. Specifically, we used tiny delay primitives
(i.e., 10 µs to 100 µs), tuned the ratio of basic block instru-
mentation from 1% to 0.1%, reduced the number of applied
AntiHybrid components, and injected smaller deterministic
branches to reduce the code size overhead. Table 6 shows
the run-time and space overhead of the generated LAVA-M
programs with FUZZIFICATION techniques.

After fuzzing the protected binaries for 10 hours, AFL-
QEMU does not find any crash. HonggFuzz detects three
crashes from the original uniq binary and cannot find
any crash from any protected binary. Figure 12 illus-
trates the fuzzing result of VUzzer and QSym. Overall,
FUZZIFICATION can reduce 56% of discovered bugs to
VUzzer and 78% of discovered bugs to QSym. Note that
the fuzzing result on the original binaries is different from the
ones reported in the original papers [67, 52] for several rea-
sons: VUzzer and QSym cannot eliminate non-deterministic
steps during fuzzing; we run the AFL part of each tool in
QEMU mode; LAVA-M dataset is updated with several bug
fixes3.

6.3 Anti-fuzzing on Realistic Applications
To understand the practicality of FUZZIFICATION on large
and realistic applications, we choose six programs that have a
graphical user interface (GUI) and depend on tens of libraries.
As fuzzing large and GUI programs is a well-known challeng-
ing problem, our evaluation here focuses on measuring the
overhead of FUZZIFICATION techniques and the functionality

3https://github.com/panda-re/lava/search?q=bugfix&type=Commits

1924 28th USENIX Security Symposium USENIX Association

Category Program Version Overhead
Size CPU

LibreOffice
Writer < 1% (+1.3 MB) 0.4%
Calc 6.2 < 1% (+1.3 MB) 0.4%
Impress < 1% (+1.3 MB) 0.2%

Music Player Clementine 1.3 4.3% (+1.3 MB) 0.5%
PDF Reader MuPDF 1.13 4.1% (+1.3 MB) 2.2%
Image Viewer Nomacs 3.10 21% (+1.2 MB) 0.7%

Average 5.4% 0.73%

Table 7: FUZZIFICATION on GUI applications. The CPU over-
head is calculated on the application launching time. Due to the
fixed code injection, code size overhead is negligible for these large
applications.

of protected programs. When applying the SpeedBump tech-
nique, we have to skip the basic block profiling step due to the
lack of command-line interface (CLI) support (e.g., readelf
parses ELF file and displays results in command line); thus,
we only insert slow down primitives into error-handling rou-
tines. For the BranchTrap technique, we choose to inject
massive fake branches into basic blocks near the entry point.
In this way, the program execution will always pass the in-
jected component so that we can measure runtime overhead
correctly. We apply the AntiHybrid technique directly.

For each protected application, we first manually run it
with multiple inputs, including given test cases, and confirm
that FUZZIFICATION does not affect the program’s original
functionality. For example, MuPDF successfully displays, ed-
its, saves, and prints all tested PDF documents. Second, we
measure the code size and runtime overhead of the protected
binaries for given test cases. As shown in Table 7, on av-
erage, FUZZIFICATION introduces 5.4% code size overhead
and 0.73% runtime overhead. Note that the code size over-
head is much smaller than that of previous programs (i.e.,
62.1% for eight relatively small programs Table 2 and over
100% size overhead for simple LAVA-M programs Table 6).

Anti-fuzzing on MuPDF. We also evaluated the effective-
ness of FUZZIFICATION on protecting MuPDF against three
fuzzers – AFL, HonggFuzz, and QSym– as MuPDF supports
the CLI interface through the tool called “mutool.” We com-
piled the binary with the same parameter shown in Table 4
and performed basic block profiling using the CLI interface.
After 72-hours of fuzzing, no fuzzer finds any bug from MuPDF.
Therefore, we instead compare the number of real paths be-
tween the original binary and the protected one. As shown in
Figure 13, FUZZIFICATION reduces the total paths by 55% on
average, specifically, by 77% to AFL, by 36% to HonggFuzz,
and 52% to QSym. Therefore, we believe it is more chal-
lenging for real-world fuzzers to find bugs from protected
applications.

Pattern Control Data Manual
matching analysis analysis analysis

SpeedBump ✔ ✔ ✔ -
BranchTrap ✔ ✔ ✔ -
AntiHybrid - ✔ ✔ -

Table 8: Defense against adversarial analysis. ✔ indicates that the
FUZZIFICATION technique is resistant to that adversarial analysis.

0k

20k

40k

60k

80k

12 24 36 48 60 72 12 24 36 48 60 72 12 24 36 48 60 72

#
re

al
pa

th
s

Time (hours)

(a) AFL-QEMU

Original
Fuzzified (All)

Time (hours)

(b) HonggFuzz (PT)

Time (hours)

(c) QSym (AFL-QEMU)

Figure 13: Paths discovered by different fuzzers from the original
MuPDF and the one protected by three FUZZIFICATION techniques.

6.4 Evaluating Best-effort Countermeasures

We evaluate the robustness of FUZZIFICATION techniques
against off-the-shelf program analysis techniques that adver-
saries may use to reverse our protections. However, the experi-
ment results do not particularly indicate that FUZZIFICATION
is robust against strong adversaries with incomparable com-
putational resources.

Table 8 shows the analysis we covered and summarizes
the evaluation result. First, attackers may search particular
code patterns from the protected binary in order to identify
injected protection code. To test anti-fuzzing against pattern
matching, we examine a number of code snippets that are
repeatedly used throughout the protected binaries. We found
that the injected code by AntiHybrid crafts several observable
patterns, like hash algorithms or data-flow reconstruction
code, and thus could be detected by attackers. One possible
solution to this problem is to use existing diversity techniques
to eliminate the common patterns [35]. We confirm that no
specific patterns can be found in SpeedBump and BranchTrap
because we leverage CSmith [66] to randomly generate a new
code snippet for each FUZZIFICATION process.

Second, control-flow analysis can identify unused code in
a given binary automatically and thus automatically remove it
(i.e., dead code elimination). However, this technique cannot
remove our FUZZIFICATION techniques, as all injected code
is cross-referenced with the original code. Third, data-flow
analysis is able to identify the data dependency. We run pro-
tected binaries inside the debugging tool, GDB, to inspect
data dependencies between the injected code and the original
code. We confirm that data dependencies always exist via
global variables, arguments, and the return values of injected
functions. Finally, we consider an adversary who is capable
of conducting manual analysis for identifying the anti-fuzzing
code with the knowledge of our techniques. It is worth noting
that we do not consider strong adversaries who are capable

USENIX Association 28th USENIX Security Symposium 1925

of analyzing the application logic for vulnerability discovery.
Since FUZZIFICATION injected codes are supplemental to
the original functions, we conclude that the manual analysis
can eventually identify and nullify our techniques by evaluat-
ing the actual functionality of the code. However, since the
injected code is functionally similar to normal arithmetic oper-
ations and has control- and data-dependencies on the original
code, we believe that the manual analysis is time-consuming
and error-prone, and thus we can deter the time for revealing
real bugs.

7 Discussion and Future Work

In this section, we discuss the limitations of FUZZIFICATION
and suggest provisional countermeasures against them.
Complementing attack mitigation system. The goal of
anti-fuzzing is not to completely hide all vulnerabilities from
adversaries. Instead, it introduces an expensive cost on the
attackers’ side when they try to fuzz the program to find
bugs, and thus developers are able to detect bugs first and
fix them in a timely manner. Therefore, we believe our anti-
fuzzing technique is an important complement to the current
attack mitigation ecosystem. Existing mitigation efforts ei-
ther aim to avoid program bugs (e.g., through type-safe lan-
guage [32, 44]) or aim to prevent successful exploits, assum-
ing attackers will find bugs anyway (e.g., through control-flow
integrity [1, 16, 30]). As none of these defenses can achieve
100% protection, our FUZZIFICATION techniques provide an-
other level of defense that further enhances program security.
However, we emphasize that FUZZIFICATION alone cannot
provide the best security. Instead, we should keep working
on all aspects of system security toward a completely secure
computer system, including but not limited to secure devel-
opment process, effective bug finding, and efficient runtime
defense.
Best-effort protection against adversarial analysis. Al-
though we examined existing generic analyses and believe
they cannot completely disarm our FUZZIFICATION tech-
niques, the defensive methods only provide a best-effort pro-
tection. First, if attackers have almost unlimited resources,
such as when they launch APT (advanced persistent threat) at-
tacks, no defense mechanism can survive the powerful adver-
sarial analysis. For example, with extremely powerful binary-
level control-flow analysis and data-flow analysis, attackers
may finally identify the injected branches by BranchTrap and
thus reverse it for an unprotected binary. However, it is hard
to measure the amount of required resources to achieve this
goal, and meanwhile, developers can choose more compli-
cated branch logic to mitigate reversing. Second, we only
examined currently existing techniques and cannot cover all
possible analyses. It is possible that attackers who know
the details of our FUZZIFICATION techniques propose a spe-
cific method to effectively bypass the protection, such as by

utilizing our implementation bugs. But in this case, the anti-
fuzzing technique will also get updated quickly to block the
specific attack once we know the reversing technique. There-
fore, we believe the anti-fuzzing technique will get improved
continuously along the back-and-forth attack and defense
progress.
Trade-off performance for security. FUZZIFICATION im-
proves software security at the cost of a slight overhead, in-
cluding code size increase and execution slow down. A sim-
ilar trade-off has been shown in many defense mechanisms
and affects the deployment of defense mechanisms. For ex-
ample, address space layout randomization (ASLR) has been
widely adopted by modern operating systems due to small
overhead, while memory safety solutions still have a long
way to go to become practical. Fortunately, the protection by
FUZZIFICATION is quite flexible, where we provide various
configuration options for developers to decide the optimal
trade-off between security and performance, and our tool will
automatically determine the maximum protection under the
overhead budget.
Delay primitive on different H/W environments. We
adopt CSmith-generated code as our delay primitives using
measured delay on one machine (i.e., developer’s machine).
This configuration implies that those injected delays might
not be able to bring the expected slow down to the fuzzed
execution with more powerful hardware support. On the other
hand, the delay primitives can cause higher overhead than
expected for regular users with less powerful devices. To han-
dle this, we plan to develop an additional variation that can
dynamically adjust the delay primitives at runtime. Specif-
ically, we measure the CPU performance by monitoring a
few instructions and automatically adjusting a loop counter in
the delay primitives to realize the accurate delay in different
hardware environments. However, the code may expose static
pattern such as time measurement system call or a special
instruction like rdtsc; thus we note that this variation has
inevitable trade-off between adaptability and robustness.

8 Related Work

Fuzzing. Since the first proposal by Barton Miller in 1990
[40], fuzzing has evolved into a standard method for auto-
matic program testing and bug finding. Various fuzzing tech-
niques and tools have been proposed [57, 52, 29, 21, 34], de-
veloped [72, 37, 25, 23, 18, 9], and used to find a large number
of program bugs [51, 72, 59, 26, 10]. There are continuous ef-
forts to help improve fuzzing efficiency by developing a more
effective feedback loop [6], proposing new OS primitives [64],
and utilizing clusters for large-scale fuzzing [22, 24, 39].

Recently, researchers have been using fuzzing as a gen-
eral way to explore program paths with specialties, such
as maximizing CPU usage [49], reaching a particular code
location [5], and verifying the deep learning result empiri-

1926 28th USENIX Security Symposium USENIX Association

cally [47]. All these works result in a significant improve-
ment to software security and reliability. In this paper, we
focus on the opposite side of the double-edged sword, where
attackers abuse fuzzing techniques to find zero-day vulnera-
bilities and thus launch a sophisticated cyber attack. We build
effective methods to hinder attackers on bug finding using
FUZZIFICATION, which can provide developers and trusted
researchers time to defeat the adversarial fuzzing effort.

Anti-fuzzing techniques. A few studies briefly discuss
the concept of anti-fuzzing [63, 27, 41, 31]. Among them,
Göransson et al. evaluated two straightforward techniques,
i.e., crash masking to prevent fuzzers finding crashes and
fuzzer detection to hide functionality when being fuzzed [27].
However, attackers can easily detect these methods and by-
pass them for effective fuzzing. Our system provides a fine-
grained controllable method to slow the fuzzed execution and
introduces effective ways to manipulate the feedback loop
to fool fuzzers. We also consider defensive mechanisms to
prevent attackers from removing our anti-fuzzing techniques.

Hu et al. proposed to hinder attacks by injecting prov-
ably (but not obviously) non-exploitable bugs to the program,
called “Chaff Bugs” [31]. These bugs will confuse bug anal-
ysis tools and waste attackers’ effort on exploit generation.
Both chaff bugs and FUZZIFICATION techniques work on
close-source programs. Differently, our techniques hinder
bug finding in the first place, eliminating the chance for an
attacker to analyze bugs or construct exploits. Further, both
techniques may affect normal-but-rare usage of the program.
However, our methods, at most, introduce slow down to the
execution, while improper chaff bugs lead to crashes, thus
harming the usability.

Anti-analysis techniques. Anti-symbolic-execution and
anti-taint-analysis are well-known topics. Sharif et al. [56]
designed a conditional code obfuscation that encrypts a condi-
tional branch with cryptographic operations. Wang et al. [62]
proposed a method to harden the binary from symbolic ex-
ecution by using linear operations instead of cryptographic
functions. However, neither of them considered performance
overhead as an evaluation metric. SymPro [7] presented sym-
bolic profiling, a method to identify and diagnose bottlenecks
of the application under symbolic execution. Cavallaro et
al. [8] showed a comprehensive collection of evading tech-
niques on dynamic-taint-analysis.

Software obfuscation and diversity. Software obfuscation
transforms the program code into obscure formats that are
difficult to analyze so as to prevent unexpected reverse en-
gineering [12, 13]. Various tools have been developed to
obfuscate binaries [15, 60, 33, 46]. However, obfuscation
is not effective to impede unexpected fuzzing because it fo-
cuses on evading static analysis and the original program
logic is still revealed at runtime. Software diversity instead
provides different implementations of the same program for
different execution environments, aiming to either limit at-

tacks on a specific version (usually a small set of all distri-
butions), or significantly increase the effort to build generic
exploits [35, 3, 53, 50]. Fuzzing one of many diversified ver-
sions could be less effective if the identified bug is specific to
one version (which is likely caused by an implementation er-
ror of the diversity mechanism). However, for bugs stemming
from a programming mistake, diversity cannot help hinder
attackers finding them.

9 Conclusion

We propose a new attack mitigation system, called
FUZZIFICATION, for developers to prevent adversarial
fuzzing. We develop three principled ways to hinder fuzzing:
injecting delays to slow fuzzed executions; inserting fabri-
cated branches to confuse coverage feedback; transforming
data-flows to prevent taint analysis and utilizing complicated
constraints to cripple symbolic execution. We design robust
anti-fuzzing primitives to hinder attackers from bypassing
FUZZIFICATION. Our evaluation shows that FUZZIFICATION
can reduce paths exploration by 70.3% and reduce bug dis-
covery by 93.0% for real-world binaries, and reduce bug
discovery by 67.5% for LAVA-M dataset.

10 Acknowledgment

We thank the anonymous reviewers, and our shepherd,
Stephen McCamant, for their helpful feedback. This research
was supported, in part, by the NSF award CNS-1563848,
CNS-1704701, CRI-1629851 and CNS-1749711 ONR under
grant N00014-18-1-2662, N00014-15-1-2162, N00014-17-
1-2895, DARPA TC (No. DARPA FA8650-15-C-7556), and
ETRI IITP/KEIT[B0101-17-0644], and gifts from Facebook,
Mozilla and Intel.

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-

flow Integrity. In Proceedings of the 12th ACM Conference on Com-
puter and Communications Security, 2005.

[2] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gaw-
lik, and Thorsten Holz. REDQUEEN: Fuzzing with Input-to-State
Correspondence. In Proceedings of the 2019 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego, CA, February
2019.

[3] Algirdas Avizienis and Liming Chen. On the Implementation of N-
version Programming for Software Fault Tolerance during Execution.
Proceedings of the IEEE COMPSAC, pages 149–155, 1977.

[4] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In
Proceedings of the 2005 USENIX Annual Technical Conference (ATC),
Anaheim, CA, April 2005.

[5] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed Greybox Fuzzing. In Proceedings of the 24th
ACM Conference on Computer and Communications Security (CCS),
Dallas, TX, October–November 2017.

USENIX Association 28th USENIX Security Symposium 1927

[6] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based Greybox Fuzzing as Markov Chain. In Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS),
Vienna, Austria, October 2016.

[7] James Bornholt and Emina Torlak. Finding Code that Explodes un-
der Symbolic Evaluation. Proceedings of the ACM on Programming
Languages, 2(OOPSLA), 2018.

[8] Lorenzo Cavallaro, Prateek Saxena, and R Sekar. Anti-taint-analysis:
Practical Evasion Techniques against Information Flow based Malware
Defense. Technical report, Stony Brook University, 2007.

[9] CENSUS. Choronzon - An Evolutionary Knowledge-based Fuzzer,
2015. ZeroNights Conference.

[10] Oliver Chang, Abhishek Arya, and Josh Armour. OSS-
Fuzz: Five Months Later, and Rewarding Projects, 2018.
https://security.googleblog.com/2017/05/oss-fuzz-
five-months-later-and.html.

[11] Peng Chen and Hao Chen. Angora: Efficient Fuzzing by Principled
Search. In Proceedings of the 39th IEEE Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2018.

[12] Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy
of Obfuscating Transformations. Technical report, Department of
Computer Science, University of Auckland, New Zealand, 1997.

[13] Christian Collberg, Clark Thomborson, and Douglas Low. Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1998.

[14] Timothy Garnett Derek Bruening, Vladimir Kiriansky. Dynamic In-
strumentation Tool Platform. http://www.dynamorio.org/, 2009.

[15] Theo Detristan, Tyll Ulenspiegel, Mynheer Superbus Von Underduk,
and Yann Malcom. Polymorphic Shellcode Engine using Spectrum
Analysis, 2003. http://phrack.org/issues/61/9.html.

[16] Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim,
and Wenke Lee. Efficient Protection of Path-Sensitive Control Security.
In Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, BC, Canada, August 2017.

[17] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea
Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan. LAVA:
Large-scale Automated Vulnerability Addition. In Proceedings of the
37th IEEE Symposium on Security and Privacy (Oakland), San Jose,
CA, May 2016.

[18] Michael Eddington. Peach Fuzzing Platform. Peach Fuzzer, page 34,
2011.

[19] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. CollAFL: Path Sensitive Fuzzing. In Proceed-
ings of the 39th IEEE Symposium on Security and Privacy (Oakland),
San Jose, CA, May 2018.

[20] GNU Project. GNU Binutils Collection. https://www.gnu.org/
software/binutils, 1996.

[21] Patrice Godefroid, Michael Y. Levin, and David Molnar. Automated
Whitebox Fuzz Testing. In Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2008.

[22] Google. Fuzzing for Security, 2012. https://blog.chromium.org/
2012/04/fuzzing-for-security.html.

[23] Google. Honggfuzz, 2016. https://google.github.io/
honggfuzz/.

[24] Google. OSS-Fuzz - Continuous Fuzzing for Open Source Software,
2016. https://github.com/google/oss-fuzz.

[25] Google. Syzkaller - Linux Syscall Fuzzer, 2016. https://github.
com/google/syzkaller.

[26] Google. Honggfuzz Found Bugs, 2018. https://github.com/
google/honggfuzz#trophies.

[27] David Göransson and Emil Edholm. Escaping the Fuzz. Master’s thesis,
Chalmers University of Technology, Gothenburg, Sweden, 2016.

[28] Munawar Hafiz and Ming Fang. Game of Detections: How Are Se-
curity Vulnerabilities Discovered in the Wild? Empirical Software
Engineering, 21(5):1920–1959, October 2016.

[29] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with Code
Fragments. In Proceedings of the 21st USENIX Security Symposium
(Security), Bellevue, WA, August 2012.

[30] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung,
William R. Harris, Taesoo Kim, and Wenke Lee. Enforcing Unique
Code Target Property for Control-Flow Integrity. In Proceedings of
the 25th ACM Conference on Computer and Communications Security
(CCS), Toronto, Canada, October 2018.

[31] Zhenghao Hu, Yu Hu, and Brendan Dolan-Gavitt. Chaff Bugs: Deter-
ring Attackers by Making Software Buggier. CoRR, abs/1808.00659,
2018.

[32] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks,
James Cheney, and Yanling Wang. Cyclone: A Safe Dialect of C. In
Proceedings of the USENIX Annual Technical Conference, 2002.

[33] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin.
Obfuscator-LLVM – Software Protection for the Masses. In Brecht
Wyseur, editor, Proceedings of the IEEE/ACM 1st International Work-
shop on Software Protection. IEEE, 2015.

[34] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee,
Youngtae Yun, and Taesoo Kim. CAB-Fuzz: Practical Concolic Testing
Techniques for COTS Operating Systems. In Proceedings of the 2017
USENIX Annual Technical Conference (ATC), Santa Clara, CA, July
2017.

[35] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz.
SoK: Automated Software Diversity. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May
2014.

[36] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei
Lin, Yang Liu, and Alwen Tiu. Steelix: Program-state Based Binary
Fuzzing. In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering, 2017.

[37] LLVM. LibFuzzer - A Library for Coverage-guided Fuzz Testing, 2017.
http://llvm.org/docs/LibFuzzer.html.

[38] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), Chicago, IL, June 2005.

[39] Microsoft. Microsoft Previews Project Springfield, a Cloud-based Bug
Detector, 2016. https://blogs.microsoft.com/next/2016/
09/26/microsoft-previews-project-springfield-cloud-
based-bug-detector.

[40] Barton P. Miller, Louis Fredriksen, and Bryan So. An Empirical Study
of the Reliability of UNIX Utilities. Commun. ACM, 33(12):32–44,
December 1990.

[41] Charlie Miller. Anti-Fuzzing. https://www.scribd.com/
document/316851783/anti-fuzzing-pdf, 2010.

[42] WinAFL Crashes with Testing Code. https://github.com/
ivanfratric/winafl/issues/62, 2017.

[43] Unexplained Crashes in WinAFL. https://github.com/
DynamoRIO/dynamorio/issues/2904, 2018.

[44] George C. Necula, Scott McPeak, and Westley Weimer. CCured:
Type-safe Retrofitting of Legacy Code. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2002.

1928 28th USENIX Security Symposium USENIX Association

https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
http://www.dynamorio.org/
http://phrack.org/issues/61/9.html
https://www.gnu.org/software/binutils
https://www.gnu.org/software/binutils
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://google.github.io/honggfuzz/
https://google.github.io/honggfuzz/
https://github.com/google/oss-fuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/honggfuzz#trophies
https://github.com/google/honggfuzz#trophies
http://llvm.org/docs/LibFuzzer.html
https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-bug-detector
https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-bug-detector
https://blogs.microsoft.com/next/2016/09/26/microsoft-previews-project-springfield-cloud-based-bug-detector
https://www.scribd.com/document/316851783/anti-fuzzing-pdf
https://www.scribd.com/document/316851783/anti-fuzzing-pdf
https://github.com/ivanfratric/winafl/issues/62
https://github.com/ivanfratric/winafl/issues/62
https://github.com/DynamoRIO/dynamorio/issues/2904
https://github.com/DynamoRIO/dynamorio/issues/2904

[45] CSO online. Seven of the Biggest Recent Hacks on Crypto Ex-
changes, 2018. https://www.ccn.com/japans-16-licensed-
cryptocurrency-exchanges-launch-self-regulatory-
body/.

[46] Oreans Technologies. Themida, 2017. https://www.oreans.com/
themida.php.

[47] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. DeepXplore:
Automated Whitebox Testing of Deep Learning Systems. In Proceed-
ings of the 26th ACM Symposium on Operating Systems Principles
(SOSP), Shanghai, China, October 2017.

[48] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: Fuzzing by
Program Transformation. In Proceedings of the 39th IEEE Symposium
on Security and Privacy (Oakland), San Jose, CA, May 2018.

[49] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic
Complexity Vulnerabilities. In Proceedings of the 24th ACM Confer-
ence on Computer and Communications Security (CCS), Dallas, TX,
October–November 2017.

[50] Brian Randell. System Structure for Software Fault Tolerance. IEEE
Transactions on Software Engineering, (2):220–232, 1975.

[51] Michael Rash. A Collection of Vulnerabilities Discovered by the AFL
Fuzzer, 2017. https://github.com/mrash/afl-cve.

[52] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. VUzzer: Application-aware Evolutionary
Fuzzing. In Proceedings of the 2017 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, February–March
2017.

[53] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Be-
navides, Goetz Botterweck, Animesh Pathak, Salvador Trujillo, and
Karina Villela. Software Diversity: State of the Art and Perspec-
tives. International Journal on Software Tools for Technology Transfer
(STTT), 14(5):477–495, October 2012.

[54] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Canada, August 2017.

[55] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In Proceedings of the
14th ACM Conference on Computer and Communications Security
(CCS), Alexandria, VA, October–November 2007.

[56] Monirul I Sharif, Andrea Lanzi, Jonathon T Giffin, and Wenke Lee.
Impeding Malware Analysis Using Conditional Code Obfuscation.
In Proceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, February 2008.

[57] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting Fuzzing through
Selective Symbolic Execution. In Proceedings of the 2016 Annual Net-
work and Distributed System Security Symposium (NDSS), San Diego,
CA, February 2016.

[58] Synopsys. Where the Zero-days are, 2017. https://www.synopsys.
com/content/dam/synopsys/sig-assets/reports/state-of-
fuzzing-2017.pdf.

[59] Syzkaller. Syzkaller Found Bugs - Linux Kernel, 2018.
https://github.com/google/syzkaller/blob/master/
docs/linux/found_bugs.md.

[60] UPX Team. The Ultimate Packer for eXecutables, 2017. https:
//upx.github.io.

[61] Daniel Votipka, Rock Stevens, Elissa M. Redmiles, Jeremy Hu, and
Michelle L. Mazurek. Hackers vs. Testers A Comparison of Software
Vulnerability Discovery Processes. In Proceedings of the 39th IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May
2018.

[62] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. Linear Obfuscation
to Combat Symbolic Execution. In Proceedings of the 16th European
Symposium on Research in Computer Security (ESORICS), Leuven,
Belgium, September 2011.

[63] Ollie Whitehouse. Introduction to Anti-Fuzzing: A Defence in Depth
Aid. https://www.nccgroup.trust/uk/about-us/newsroom-
and-events/blogs/2014/january/introduction-to-anti-
fuzzing-a-defence-in-depth-aid/, 2014.

[64] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. De-
signing New Operating Primitives to Improve Fuzzing Performance.
In Proceedings of the 24th ACM Conference on Computer and Com-
munications Security (CCS), Dallas, TX, October–November 2017.

[65] Zhou Xu. PTfuzzer, 2018. https://github.com/hunter-ht-
2018/ptfuzzer.

[66] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
Understanding Bugs in C Compilers. In ACM SIGPLAN Notices,
volume 46, pages 283–294. ACM, 2011.

[67] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid
Fuzzing. In Proceedings of the 27th USENIX Security Symposium
(Security), Baltimore, MD, August 2018.

[68] Michal Zalewski. Fuzzing Random Programs without execve(),
2014. https://lcamtuf.blogspot.com/2014/10/fuzzing-
binaries-without-execve.html.

[69] Michal Zalewski. New in AFL: Persistent Mode, 2015.
https://lcamtuf.blogspot.com/2015/06/new-in-afl-
persistent-mode.html.

[70] Michal Zalewski. High-performance Binary-only Instrumentation
for AFL-fuzz, 2016. https://github.com/mirrorer/afl/tree/
master/qemu_mode.

[71] Michal Zalewski. Technical Whitepaper for AFL-fuzz, 2017.
https://github.com/mirrorer/afl/blob/master/docs/
technical_details.txt.

[72] Michal Zalewski. American Fuzzy Lop (2.52b), 2018. http:
//lcamtuf.coredump.cx/afl/.

USENIX Association 28th USENIX Security Symposium 1929

https://www.ccn.com/japans-16-licensed-cryptocurrency-exchanges-launch-self-regulatory-body/
https://www.ccn.com/japans-16-licensed-cryptocurrency-exchanges-launch-self-regulatory-body/
https://www.ccn.com/japans-16-licensed-cryptocurrency-exchanges-launch-self-regulatory-body/
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
https://github.com/mrash/afl-cve
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://upx.github.io
https://upx.github.io
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2014/january/introduction-to-anti-fuzzing-a-defence-in-depth-aid/
https://github.com/hunter-ht-2018/ptfuzzer
https://github.com/hunter-ht-2018/ptfuzzer
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://github.com/mirrorer/afl/tree/master/qemu_mode
https://github.com/mirrorer/afl/tree/master/qemu_mode
https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt
https://github.com/mirrorer/afl/blob/master/docs/technical_details.txt
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Appendix

A HonggFuzz Intel-PT-mode Result

0k

3k

6k

9k

12k

8 16 24 32 40 48 56 64 72
0k
2k
4k
6k
8k

10k

8 16 24 32 40 48 56 64 72

0k
2k
4k
6k
8k

10k

8 16 24 32 40 48 56 64 72
0k

5k

10k

15k

20k

8 16 24 32 40 48 56 64 72

0k
10k
20k
30k
40k
50k

8 16 24 32 40 48 56 64 72
0k
5k

10k
15k
20k
25k
30k
35k

8 16 24 32 40 48 56 64 72

0k
3k
6k
9k

12k
15k

8 16 24 32 40 48 56 64 72
0k

5k

10k

15k

20k

8 16 24 32 40 48 56 64 72

(a) libjpeg

Original
AntiHybrid

BranchTrap
SpeedBump

All

(b) libpng

(c) libtiff (d) pcre2

(e) readelf (f) objdump

Time (hours)

(g) nm

Time (hours)

(h) objcopy

Figure 14: Paths discovered by HonggFuzz Intel-PT mode from
real-world programs. Each program is compiled with five settings:
original (no protection), SpeedBump, BranchTrap, AntiHybrid and
all protections. We fuzz them for three days.

1930 28th USENIX Security Symposium USENIX Association

ANTIFUZZ: Impeding Fuzzing Audits of Binary Executables

Emre Güler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz
Ruhr-Universität Bochum

Abstract
A general defense strategy in computer security is to increase
the cost of successful attacks in both computational resources
as well as human time. In the area of binary security, this is
commonly done by using obfuscation methods to hinder re-
verse engineering and the search for software vulnerabilities.
However, recent trends in automated bug finding changed the
modus operandi. Nowadays it is very common for bugs to
be found by various fuzzing tools. Due to ever-increasing
amounts of automation and research on better fuzzing strate-
gies, large-scale, dragnet-style fuzzing of many hundreds of
targets becomes viable. As we show, current obfuscation tech-
niques are aimed at increasing the cost of human understand-
ing and do little to slow down fuzzing.

In this paper, we introduce several techniques to protect
a binary executable against an analysis with automated bug
finding approaches that are based on fuzzing, symbolic/con-
colic execution, and taint-assisted fuzzing (commonly known
as hybrid fuzzing). More specifically, we perform a system-
atic analysis of the fundamental assumptions of bug finding
tools and develop general countermeasures for each assump-
tion. Note that these techniques are not designed to target
specific implementations of fuzzing tools, but address gen-
eral assumptions that bug finding tools necessarily depend on.
Our evaluation demonstrates that these techniques effectively
impede fuzzing audits, while introducing a negligible per-
formance overhead. Just as obfuscation techniques increase
the amount of human labor needed to find a vulnerability,
our techniques render automated fuzzing-based approaches
futile.

1 Introduction

In recent years, fuzzing has proven a highly successful tech-
nique to uncover bugs in software in an automated way. In-
spired by the large number of bugs found by fuzzers such as
AFL [56], research recently focused heavily on improving
the state-of-the-art in fuzzing techniques [10, 11, 22, 44, 54].

Previously, it was paramount to manually remove checksums
and similar roadblocks from the fuzzing targets. Addition-
ally, fuzzers typically required large, exhaustive seed cor-
pora or a precise description of the input format in form of a
grammar. In a push towards a greater degree of automation,
research recently focused on avoiding these common road-
blocks [14, 39, 44, 45, 48, 54]. This push toward automation
greatly simplifies the usage of these tools. One can argue that,
for the attacker, using a fuzzer is as easy as it is for the de-
fender. In fact, recently the Fuzzing Ex Machina (FExM) [49]
project managed to reduce the overhead of running fuzzers to
a degree where they managed to fuzz the top 500 packages
from the Arch Linux User Repository with no manual effort
in seed selection or similar issues. This two day effort yielded
crashes in 29 of the most popular packages of Arch Linux. It
stands to reason that this kind of indiscriminate, dragnet-style
searching for software bugs will become more prevalent in
the future.

While the developers of a software system should typi-
cally thoroughly fuzz test every type of software, in practice
they may want to maintain an asymmetric cost advantage.
More specifically, it should be easier for the maintainers of
a software project to fuzz their own software than for at-
tackers. This can be achieved by adding mechanisms to the
software such that the final binary executable is protected
against fuzzing: the maintainers can then build an internal
version that can be tested thoroughly, while an attacker can
only access the protected binary which prohibits automated
tests. In the past, similar asymmetric advantages in analysis
and bug finding were introduced by obfuscation techniques.
As we demonstrate, even very high levels of obfuscation will
typically result only in a meager slowdown of current fuzzing
techniques. This is due to the fact that obfuscation typically
aims at protecting against program understanding and formal
reasoning. On the other hand, fuzzers typically do not perform
a significant amount of reasoning over the behaviour of the
program. On the downside, these heavy obfuscation mech-
anisms will often incur a significant runtime overhead [19].

USENIX Association 28th USENIX Security Symposium 1931

How software can be protected against fuzzing in an efficient
and effective way is an open problem.

In this paper, we tackle this challenge and present several
general methods to impede large scale, automated fuzzing au-
dit of binary executables. We present several techniques that
can be added during the compilation phase of a given software
project such that the resulting binary executable withstands
fuzzing and significantly hampers automated analysis. Our
methods are based on a systematic analysis of 19 current
bug finding tools with respect to their underlying assump-
tions. Note that we use the terms “fuzzer” and “bug finding
tool” interchangeably to describe all kinds of tools that are
analyzing programs to produce crashing inputs as opposed
to static analysis tools and linters. We find that all of them
rely on at least one of the following four basic assumptions:
(i) coverage yields relevant feedback, (ii) crashes can be de-
tected, (iii) many executions per second are achievable, and
(iv) constraints are solvable with symbolic execution. Based
on these insights, we develop fuzzing countermeasures and
implement a lightweight protection scheme in the form of a
configurable, auto-generated single C header file that devel-
opers can add to their application to impede fuzzers. For the
evaluated programs, we had to change on average 29 lines of
code, which took less than ten minutes. With these changes,
attackers now need to spend a significant amount of time
to manually remove these anti-fuzzing mechanisms from a
protected binary executable (typically magnified by common
obfuscation techniques on top), greatly increasing the cost
of finding bugs as an attacker. Defenders, on the other hand,
can still trivially fuzz the unmodified version of their software
with no additional cost. Thus, only unwanted and unknown
attackers are at a disadvantage.

We implemented a prototype of the proposed methods in
a tool called ANTIFUZZ. We demonstrate in several exper-
iments the effectiveness of our approach by showing that
state-of-the-art fuzzers cannot find bugs in binary executables
protected with ANTIFUZZ anymore. Moreover, we find that
our approach introduces no observable, statistically significant
performance overhead in the SPEC benchmark suite.

Contributions In summary, in this paper we make the fol-
lowing contributions:

• We present a survey of techniques employed by current
fuzzers and systematically analyze the basic assumptions
they make. We find that different fuzzing approaches rely
on at least one of the fundamental assumptions which
we identify.

• We demonstrate how small changes to a program nul-
lify the main advantages of fuzzing by systematically
violating the fundamental prerequisites. As a result, it
becomes significantly harder (if not impossible with cur-
rent approaches) to find bugs in a protected program
without manual removal of our anti-fuzzing methods.

• We implemented our anti-fuzzing techniques in a tool
called ANTIFUZZ that adds fuzzing countermeasures
during the compilation phase. Our evaluation with sev-
eral different programs shows that with a negligible per-
formance overhead, ANTIFUZZ hardens a target binary
executable such that none of the tested fuzzers are able
to find any bugs.

To foster research on this topic, we release our implemen-
tation and the data sets used as part of the evaluation at
https://github.com/RUB-SysSec/antifuzz.

2 Technical Background

Fuzzing (formerly known as random testing) has been around
since at least 1981 [20]. In the beginning, fuzzers would
simply try to execute programs with random inputs. While
executing, the fuzzer observes the behavior of the program
under test: if the program crashes, the fuzzer managed to
find a bug and the input is stored for further evaluation. Even
though this technique is surprisingly simple—particularly
when compared to static program analysis techniques—with a
sufficient number of executions per second it has been helpful
at finding bugs in complex, real-world software in the past.

In recent years, the computer security community paid
much more attention to improving the performance and scal-
ability of fuzzing. For example, the OSS-FUZZ project has
been fuzzing many highly-relevant pieces of software 24/7
since 2016 and exposed thousands of bugs [1]. FEXM autom-
atized large parts of the setup and the authors were able to
fuzz the top 500 packages from the Arch Linux User Repos-
itory [49]. To improve the usability of fuzzers in such sce-
narios, the biggest focus of the research community is to
automatically overcome hard-to-fuzz code constructs that pre-
vious methods could not successfully solve with the goal
of reaching deeper parts of the code. Particularly, common
program analysis techniques were applied to the problem
of fuzzing. For example, symbolic execution and its some-
what more scalable derivative concolic execution was used
to overcome hard branches and trigger bugs that are only
trigger-able by rare conditions [25–27, 31, 42, 48, 50, 54].
Other fuzzers use taint tracing to reduce the search space
to mutations that actually influence interesting parts of the
program [14,23,31,42,45]. A complementary line of work fo-
cused on improving the fuzzing process itself without falling
back to (often costly) program analysis techniques. Many
techniques propose improvements to the way AFL instru-
ments the target [2, 22, 29, 47], or how inputs are scheduled
and mutated [10, 11, 13, 46, 52]. Some methods go as far as
removing hard parts from the target [44, 50]. Lastly, the ef-
fectiveness of machine learning models for efficient input
generation was evaluated [9, 28, 32].

Generally speaking, existing methods for fuzzing can be
categorized into the following three different categories based

1932 28th USENIX Security Symposium USENIX Association

https://github.com/RUB-SysSec/antifuzz

on the techniques employed, which we explain in more detail
in the following.

2.1 Blind Fuzzers

The oldest class of fuzzers are so-called blind fuzzers. Such
fuzzers have to overcome the problem that random inputs
will not exercise any interesting code within a given software.
Two approaches were commonly applied: mutational fuzzing
and generational fuzzing.

Mutational fuzzers require a good corpus of inputs to mu-
tate. Generally, mutational fuzzers do not know which code re-
gions depend on the input file and which inputs are necessary
to reach more code regions. Instead, these fuzzers introduce
some random mutations to the file and can only detect if the
program has crashed or not. Mutational fuzzers need seed files
that cover large parts of interesting code as they are unable to
uncover new code effectively. In the past, these fuzzers were
quite successful at uncovering bugs [33]. However, they typi-
cally need to perform a large number of executions per second
to work properly. An example of mutational-only fuzzers are
ZZUF [5] and RADAMSA [33].

The second approach is generational fuzzing: fuzzers which
employ this technique need a formal specification to define
the input format. Based on this specification, the fuzzer is able
to produce many semi-valid inputs. This has the advantage
that the fuzzer does not need to learn how to generate well-
formed input files. However, manual human effort is necessary
to create these definitions (e.g., a grammar that describes
the input format). This task becomes hard for complex or
unknown formats and the specification could still end up
lacking certain features. The additional need for a formal
specification makes this approach much less useful for large-
scale bug hunting with little human interaction. An example
of a generational fuzzer is PEACH [3].

In summary, the only thing a blind fuzzer is able to observe
is whether its input led to a crash of the program or not. There-
fore, these techniques have no indicator of their progress in
exploring the programs state space and thus (especially in the
case of mutational fuzzers), they are mostly limited to simple
bugs even with non-empty and well-formed seed files.

2.2 Coverage-guided Fuzzers

To improve the performance of the mutational fuzzers, Za-
lewski introduced an efficient way to measure coverage-
feedback of an application [56]. This led to a significant
amount of research on coverage-guided fuzzers. These fuzzers
typically use a feedback mechanism to receive information on
how an input has affected the program under test. The key idea
here is that this mechanism gives means by which to judge an
input: Which (new) code regions were visited and how often?
In contrast, a blind fuzzer introduces random mutations to the

input without knowing how those mutations affect the pro-
gram. It effectively relies on pure chance for finding crashing
inputs, while a coverage-guided fuzzer could mutate the same
input file iteratively to increase the code coverage and thus get
closer to new regions where a crash could happen. Examples
of coverage-based fuzzers are AFL [56], HONGGFUZZ [4],
ANGORA [14], T-FUZZ [44], KAFL [47], REDQUEEN [8]
and VUZZER [45]. These fuzzers use multiple ways to obtain
coverage feedback:

Static Instrumentation: One of the fastest methods for
obtaining code coverage is static compile time coverage
(widely used by tools such as AFL, ANGORA, LIBFUZZER,
and HONGGFUZZ). In this case, the compiler adds special
code at the start of each basic block that stores the coverage
information. From a defender’s point of view, this kind of in-
strumentation is not relevant, as we assume that the attackers
do not have access to the source code.

Dynamic Binary Instrumentation (DBI): If only a bi-
nary executable is available, fuzzer typically use dynamic
binary instrumentation (DBI) to obtain coverage information.
This is done by adding the relevant code at runtime. Examples
of this approach are VUZZER and STEELIX [39], which both
use PIN-based [40] instrumentation, and AFL which has mul-
tiple forks using QEMU, PIN, DYNAMORIO, or DYNINST
for DBI. Fuzzers like DRILLER [48] and T-FUZZ use AFL
under the hood and typically rely on the QEMU-based instru-
mentation.

Hardware Supported Tracing: Modern CPUs support
various forms of hardware tracing. For Intel processors, two
technologies can be used: Last Branch Record and Intel-PT.
HONGGFUZZ is able to utilize both techniques, while fuzzers
like KAFL only support Intel-PT.

2.2.1 Using Coverage Information:

Different fuzzers tend to use the coverage feedback obtained
in different ways. To illustrate these differences, we select
two well-known coverage-guided fuzzers; namely AFL and
VUZZER. We then describe how these fuzzers are using cover-
age information internally. It is worth noting that by choosing
AFL, we are basically covering the way various other fuzzers
such as T-FUZZ, ANGORA, KAFL, STEELIX, DRILLER, LIB-
FUZZER, WINAFL, AFLFAST [11], and COLLAFL [22]
are using coverage information. All of these fuzzers (except
ANGORA) use the same underlying technique for leveraging
coverage information. In contrast to AFL, no other fuzzer
followed the path of VUZZER in coverage information usage.
However, due to the unique usage of coverage information in
VUZZER, we describe it as well.

AFL A key factor behind the success of AFL is an effi-
cient, approximate representation of the code coverage. To
reduce the memory footprint, AFL maps each basic block
transition (edge) to one index in a fixed size array referred
to as the “bitmap”. Upon encountering a basic block transi-

USENIX Association 28th USENIX Security Symposium 1933

1

1

2

4

1

1

1.33

1
0
0
1
1
2
0
1
0
0

(a) Final Bitmap (b) Control-Flow Graph (c) Final Fitness: 11.33

Figure 1: Using coverage information in AFL-like fuzzers versus Vuzzer in
the same path of a given Control-Flow Graph (b).

tion, it increments the corresponding value in the bitmap as
illustrated in Figure 1(a). The bitmap is typically limited to
64KiB, so it easily fits inside an L2 cache [55]. Although
limiting the size of the bitmap allows very efficient updates, it
also reduces its precision, since in some cases multiple edges
share the same index in the bitmap. It is possible to increase
the size of the bitmap, but at the cost of a significant decline
in performance [22].

As mentioned earlier, ANGORA uses a very similar scheme
with a slight difference: before updating the bitmap entry, AN-
GORA XORs the edge index with a hash of the call stack. This
way, ANGORA can distinguish the same coverage in different
contexts, while AFL can not. For example, in Listing 1, AFL
cannot distinguish the coverage produced by lines 2 and 3
when called from line 10 from the coverage produced by the
same lines (lines 2 and 3) in the second call. Therefore, AFL
can use feedback to learn that the input should start with “fo”,
however, it cannot use the same information to learn that the
input should continue with “ba”. In contrast, ANGORA can
identify the context (here “fo” and “ba”) of the code and thus
distinguish between these two calls. It is worth to mention
that this drastically increases the number of entries in the
bitmap, and therefore ANGORA might need a bigger bitmap.

Listing 1: A sample code which illustrates the differences between AFL and
ANGORA on distinguishing coverage information

1 boo l cmp (char *a , char *b) {
2 i f (a [0]== b [0]) {
3 i f (a [1]== b [1]) {
4 re turn t r u e ;
5 }
6 }
7 re turn f a l s e ;
8 }
9

10 i f (cmp (i n p u t , " fo ")) {
11 i f (cmp (i n p u t +2 , " ba ")) {
12
13 }
14 }

Vuzzer AFL does not discriminate among edges. There-
fore, an input that covers one previously unseen edge is just
as interesting as an input which covers hundreds of unseen
edges. This is the fundamental difference between VUZZER

and AFL. Unlike AFL, VUZZER extracts the exact basic
block coverage (instead of the bitmap) and enriches the feed-
back mechanism with additional data. For example, VUZZER
uses a static disassembly to weight basic blocks according to
how “deep” they are within a function (e.g., how many condi-
tions have to be satisfied to reach this block). Higher scores
are assigned to harder-to-reach blocks. To further improve the
feedback mechanism, VUZZER excludes basic blocks that
belong to error paths by measuring the coverage produced
by random inputs. In the example shown in Figure 1(c), each
basic block has a weight. As can be seen, basic block H has a
much higher weight than basic block G because H is much less
likely to be reached by a random walk across the control-flow
graph (with back-edges removed). Finally, all the weights of
all basic blocks in the path are added up to calculate a fitness
value. VUZZER then uses an evolutionary algorithm to pro-
duce new mutations: inputs with a high fitness value produce
more offspring. These newly created offspring are then used
as the next generation.

2.3 Hybrid Fuzzers

While using coverage-based fuzzing already leads to interest-
ing results on its own, there are code regions in a program
which are hard to reach. This typically happens if only a very
small percentage of the inputs satisfy some conditions. For
example, a specific four-byte magic value that is checked
by the program under the test makes it nearly impossible
for coverage-based fuzzers to pass the check and therefore
reach deeper code regions. To address this problem, various
research suggest using a combination of program analysis
techniques to assist the fuzzing process [44, 48, 54]. By using
symbolic execution or taint analysis, a fuzzer is able to reason
what inputs are necessary to cover new edges and basic blocks.
Instead of only relying on random mutations and selection
by information gathered through feedback mechanisms, these
tools try to calculate and extract the correct input necessary
for new code coverage. Examples of fuzzers which are using
symbolic or concolic execution to assist the coverage-based
fuzzer are DRILLER [48], QSYM [54], and T-FUZZ [44].

The archetypal hybrid fuzzer is DRILLER, which uses con-
colic execution to search for inputs that produce new coverage.
It tries to provide a comprehensive analysis of the program’s
behaviour. In contrast, QSYM [54] identified this behavior
as a weakness since the fuzzer can validate that the input
proposed by the symbolic or concolic execution generates
new coverage very cheaply. Therefore, an unsound symbolic
or concolic execution engine can produce a large number
of false positive proposals, without reducing the overall per-
formance of the fuzzer. Building upon this insight, QSYM
discards all but the last constraint in the concrete execution
trace as well as the symbolic values produced by basic blocks
that were executed frequently. Finally, it is worth mentioning
that in the case of T-FUZZ, symbolic execution is not used for

1934 28th USENIX Security Symposium USENIX Association

the fuzzing process itself. Instead, T-FUZZ patches hard con-
straints. Once T-FUZZ finds a crashing input for the patched
program, it uses symbolic execution to calculate an input that
actually crashes the unpatched target program.

3 Analysis of Fuzzing Assumptions

Based on the categories described in the previous section,
we now analyze and identify fundamental assumptions that
fuzzers use to find bugs. The first insight is that while many
aspects of fuzzing have changed since 1981, two basic as-
sumptions which were originally made still apply to most
modern fuzzers: these two basic original assumptions are
crash detection and high execution throughput. However, to
achieve better performance in modern fuzzers, additional as-
sumptions were made in the past years, as we discuss next.

To evade not only current but also future bug finding meth-
ods, we analyze under which core assumptions all (or at least
most) of the current tools operate. By systematically breaking
assumptions shared by most fuzzers, we can develop a more
universal defense against automated audits. Using this system-
atic approach, we avoid targeting specific implementations
and therefore will hamper all future fuzzing methods built
upon the same general assumptions. We divide the current
fuzzing assumptions into the following four groups:

(A) Coverage Yields Relevant Feedback Coverage-
guided fuzzers typically assume that novel code coverage
also strongly correlates with novel behavior. Therefore, ev-
ery time a modern coverage-guided fuzzer generates an input
which traverses through a new code region, it assumes that the
program behaves differently from previous inputs. Based on
the coverage, the fuzzer decides how much time to allocate for
generating further mutations of this input. For example, most
current fuzzers such as AFL, VUZZER, DRILLER, QSYM,
KAFL, ANGORA, T-FUZZ, and LIBFUZZER use this assump-
tion for coverage-guided fuzzing.

(B) Crashes Can Be Detected Triggering security-
relevant bugs will typically lead to a program crash. Thus,
most bug finding tools need the ability to tell a crashing input
apart from a non-crashing input in an efficient and scalable
way. As a result, they require some techniques to detect if an
application has crashed. Nearly all random testing tools share
this assumption since 1981 [20]. In addition to the coverage-
guided fuzzers, this assumption is also shared by blind fuzzers
such as PEACH, RADAMSA, and ZZUF.

(C) Many Executions per Second To efficiently generate
input files with great coverage, the number of executions per
second needs to be as high as possible. In our experience,
depending on the application and fuzzer, a range from few
hundreds up to a few thousands of executions per second are
typical. Slow executions will drastically degrade the perfor-
mance. All fuzzers mentioned in the previous assumptions

also fall into this class. Only pure symbolic execution tools
such as KLEE do not fall into this category.

(D) Constraints Are Solvable with Symbolic Execution
Hybrid fuzzers or tools based on symbolic execution such
as DRILLER, KLEE, QSYM, and T-FUZZ need to be able
to represent the program’s behavior symbolically and solve
the resulting formulas. Therefore, any symbolic or concolic
execution-based tools only operate well when the semantics of
the program under test are simple enough. This means that the
internal representation of the state of the symbolic/concolic
execution engine has to be small enough to store and the
resulting constraints set has to be solvable by current solvers
to avoid problems related to state explosion.

Summary We compiled a list of 19 different bug finding
tools and systematically check which assumptions they rely
on. An overview of the analyzed tools and their corresponding
assumptions is shown in Table 1. It is worth mentioning that
various tools in this table are based on AFL and thus share
the same assumptions.

4 Impeding Fuzzing Audits

Based on the analysis results of the previous section, we now
introduce techniques to break the identified assumptions of
bug finding tools in a systematic and generic way. Moreover,
we sketch how these techniques can be implemented; actual
implementation details are provided in the next section.

Attacker Model Throughout this paper, we use the fol-
lowing attacker model. First, we assume that an attacker can
only access the final protected binary executable and not the
original source code of the software. She wants to find bugs
in an automated way in the protected binary executable, while
requiring only a minimum human intervention. Commonly
there is the notion that source-based fuzzers significantly out-
perform binary-only fuzzers. Therefore, it is believed that
defenders already have a significant cost advantage over at-
tackers. However, recent advances in fuzzing have shown
that this advantage is in decline. For example, recent binary-
only fuzzing techniques paired with hardware acceleration
technologies such as Intel PT have drastically reduced the
performance gap between binary and source fuzzing. For ex-
ample, Cisco Talos states that the overhead is only 5% to
15% [36] and similar numbers are reported for published Intel
PT-based fuzzers such as KAFL [47]. Additionally, smart
fuzzing techniques outperform source-based fuzzing even in
binary-only targets [8, 54].

Although many relevant software projects are open source,
a large part of all commercial software used in practice is
not available in source code format (e.g., Windows, iOS and
the vast majority of the embedded space). Nonetheless, some
large software projects such as certain PDF viewer and hy-
pervisors are not only well-tested by their developers, but
also by whitehat attackers. This additional attention is an

USENIX Association 28th USENIX Security Symposium 1935

Table 1: Bug finding tools and the assumptions they rely on.

(A) Coverage Feedback (B) Detectable Crashes (C) Application Speed (D) Solvable Constraints

AFL 7

KAFL 7

AFLFAST 7

COLLAFL 7

AFLGO 7

WINAFL 7

STEELIX 7

REDQUEEN 7

HONGGFUZZ 7

VUZZER 7

DRILLER

KLEE 7 7 7

ZZUF 7 7

PEACH 7 7

QSYM

T-FUZZ

ANGORA 7

RADAMSA 7 7

LIBFUZZER 7

important factor in their security model. Similarly, projects
that have a history of helpful interactions with independent
researchers should consider not to use ANTIFUZZ, to avoid
scaring researchers away. As an alternative, projects with such
a successful history of community integration can choose to
release unprotected binaries to a set of trusted security re-
searchers. On the other hand, the vast majority of software
gets far less to no attention. These less well-known pieces of
software are still used by many users and they might profit sig-
nificantly from raising the bar against fuzzing (e.g., industrial
controllers such as PLCs [6, 37] or other types of proprietary
software).

Furthermore, in this paper, we consider the case that the
attacker can use any state-of-the-art bug finding tool. How-
ever, we assume that she spends no time on manually reverse
engineering the binary or building custom tooling. We are
aware that in a more realistic scenario, the target application
might be attacked by a human analyst. However, we assume
that ANTIFUZZ is combined with other techniques that were
developed to incur significant cost for human analyst during
reverse engineering [16, 17, 21, 24, 41, 43, 53]. Therefore, to
ensure that different concerns (defending against fuzzing and
defending against analysis by a human) are separated, we
explicitly exclude human analysts from our attacker model.

4.1 Attacking Coverage-guidance
As mentioned previously, the core assumption of coverage-
guided fuzzers is that new coverage indicates new behavior in
the program. To undermine this assumption, we modify the
program which we want to defend against fuzzing by adding
irrelevant code in such a way that its coverage information
drowns out the actual signal. More specifically, by adding
irrelevant code regions (which we call fake code), we deliber-

ately disturb the code coverage tracking mechanisms within
fuzzers. Thereby, we weaken the fuzzer’s ability to use the
feedback mechanism in any useful way and thus remove their
advantage over blind fuzzers.

To introduce noise into the coverage information, we use
two different techniques. The first technique aims at produc-
ing different “interesting” coverage for nearly all inputs. The
rationale behind this is that according to the coverage-guide
assumption, any new coverage means that the fuzzer found
an input that causes new behavior. Therefore, if the program
always displays new coverage (due to our fake code), the
fuzzer cannot distinguish between legitimate new coverage
and invalid fake coverage. As every single input seems to
trigger new behavior, the fuzzer assumes that every input is
interesting. Therefore, it spends a significant amount of time
on generating mutations based on invalid input.

To implement this technique, we calculate the hash of the
program input and based on this hash, we pick a small random
subset of fake functions to call. Each fake function recursively
calls the next fake function from a table of function pointers,
in such a way that we introduce a large number of new edges
in the protected program.

Since even a single bit flip in the input causes the hash to
be completely different, nearly any input that the fuzzer gener-
ates displays new behavior. Fuzzers that are objective-driven
and thus assign weights to more interesting code construct
might find it easy to distinguish between this simple fake
code and the actual application code. Since we cannot assume
that future fuzzers will treat new coverage information in
the same way as current fuzzers do, we introduce a second
technique that aims at providing plausible-looking, semi-hard
constraints. The second technique is designed to add fake
code that looks like it belongs to the legitimate input handling

1936 28th USENIX Security Symposium USENIX Association

code of the original application. At the same time, this code
should include a significant number of easy constraints as
well as some very hard constraints. These hard constraints
can draw the attention of different solving strategies, while
the easy constraints allow us to add noise to the true cover-
age information. We create this fake code by creating random
trees of nested conditions with conditions on the input ranging
from simple to complicated.

Evasion Overall, the attack on the code-coverage assump-
tion consists of a combination of these two techniques to fool
the fuzzer into believing that most inputs lead to new code
coverage and thus they are classified as “interesting”. This
fills up the attention mechanism of the fuzzer (e.g., AFL’s
bitmap or a queue) with random information which breaks
the assumption that the feedback mechanism is helpful in
determining which inputs will lead to interesting code.

4.2 Preventing Crash Detection

After applying our previous method, coverage-guided fuzzers
are “blinded” and have few advantages left in comparison to
blind fuzzers. To further reduce the ability of both coverage-
guided and blind fuzzers to find bugs, we introduced two
additional techniques that attack assumption B identified ear-
lier.

There are multiple ways for a fuzzer to detect if a crash has
happened. The three most common ways are (i) observing the
exit status, (ii) catching the crashing signal by overwriting the
signal handler, and (iii) using the operating system (OS) level
debugging interfaces such as ptrace. To harden our protected
program against fuzzers, we try to block these approaches
by common anti-debugging measures as well as a custom
signal handler that exits the application gracefully. After we
install our custom signal handler, we intentionally trigger a
segfault (fake crash) that our own signal handler recognizes
and ignores. This way, if an outside entity is observing crashes
that we try to mask, it will always observe a crash for each and
every input. It is worth mentioning that by design, the fake
crash is triggered at every program execution independent
from the user input. Thus we do not introduce crashes based
on user inputs.

Evasion We try to catch all crashes before they are re-
ported to an outside entity. If the current application is under
observation or analysis (i.e., where catching crashes is not
allowed), the application is terminated. Typically, if it was
deemed necessary to apply ANTIFUZZ to any application,
there is likely no scenario where it would also be necessary
to continue operating under the given conditions.

In all of these cases, no crashes will be detected even if
they still occur, which breaks the assumption that a crashing
input is detectable as such.

4.3 Delaying Execution

We found that fuzzing tools need many executions per second
to operate efficiently. Our third countermeasure attacks this
assumption, without reducing the overall performance of the
protected program, as follows: we check whether the input
is a well-formed input; if and only if we detect a malformed
input, we enforce an artificial slowdown of the application.
For most applications, this would not induce any slowdowns
in real-world scenarios, where input files are typically well-
formed. But at the same time, it would significantly reduce
the execution speed for fuzzers, where most of the inputs will
be incorrect. We believe that even if malformed input files
occasionally happen in real scenarios, a slowdown of e.g.,
250ms per invalid input is barely noticeable to the end user in
most cases. In contrast, even such a small delay has drastic
effects on fuzzing. Thus, only fuzzers are negatively affected
by this technique.

Delaying the execution can happen through different means,
the easiest way to cause a delay is using the sleep() function.
However, to harden this technique against automated code
analysis and patching tools, one can add a computationally-
heavy task (e.g., encryption, hash calculation, or even crypto-
currency mining) to the protected program such that the re-
sulting solution is necessary to continue the execution.

Evasion Most applications expect some kind of structure
for their input files and have the ability to tell if the input
adheres to this structure. Therefore, ANTIFUZZ does not need
to rely on any formal specification; instead, our responses
are triggered by existing error paths within the program. For
the prototype implementation, we do not propose to detect
error paths automatically, but instead insert them manually
as a developer. If the input is malformed, we artificially slow
down the execution speed of the program. This breaks the
assumption that the application can be executed hundreds
or thousands of times per second, thus severely limiting the
chances of efficiently finding new code coverage.

4.4 Overloading Symbolic Execution Engines

To prevent program analysis techniques from extracting infor-
mation to solve constraints and cover more code, we introduce
two techniques. Both techniques are based on the idea that
simple tasks can be rewritten in a way that it is a lot harder to
reason about their behavior [51]. For example, we can replace
an addition operation using an additive homomorphic encryp-
tion scheme. In the following, we introduce two practical
techniques to achieve this goal.

First, we use hash comparisons. The idea is to replace all
comparisons of input data to constants (e.g., magic bytes)
with a comparison of their respective strong cryptographic
hash values. While still practically equivalent (unless small
collisions for current hashes are found), the resulting compu-
tation is significantly more complex. The resulting symbolic

USENIX Association 28th USENIX Security Symposium 1937

expressions grow significantly, and the solvers fail to find a
satisfying assignment for these equations; they become use-
less for finding correct inputs. However this technique has
one weakness: If a seed file is provided that contains the cor-
rect value, a concolic execution engine might still be able to
continue solving other branches.

As a second technique, we can encrypt and then decrypted
the input with a block cipher. We later describe this technique
in detail in Section 5.4.

Evasion By sending the input data through a strong block
cipher and replacing direct comparisons of input data to magic
bytes by hash operations, symbolic, concolic, and taint-based
execution engines are significantly slowed down and ham-
pered in their abilities to construct valid inputs. This breaks
the assumption that constraints in the application are solv-
able. Even though the encryption/decryption combination
is an identity transformation, it is very hard to prove auto-
matically that the resulting output byte only depends on the
corresponding input byte. Therefore, symbolic/concolic ex-
ecution engines either carry very large expressions for each
input byte, or they concretize every input byte, completely
voiding the advantage they provide. Finally, common taint
tracking engines will not be able to infer taint on the input, as
the encryption thoroughly mixes the input bits.

5 Implementation Details

In this section, we provide an overview of the proof-of-
concept implementation of our techniques in a tool called
ANTIFUZZ. As explained above, the use case for ANTIFUZZ
is a developer who has access to source code and wants to
protect his application from attackers who use automatic bug
finding tools to find bugs cost-effectively. Hence, an impor-
tant objective was to keep the required modifications to the
project at a minimum, so that ANTIFUZZ is easy to apply. The
implementation consists of a Python script that automatically
generates a single C header file that needs to be included in
the target program. Furthermore, small changes need to be
performed to instrumt a given application. For our experi-
ments, we analyzed the time it took us to apply ANTIFUZZ
to LAVA-M (which consists of the four programs base64,
md5sum, uniq, and who). As we were already familiar with
the code base of these tools, we could more closely resemble
a developer who has a good understanding of the structure of
the code. It took us four to ten minutes to apply ANTIFUZZ to
each application. The number of lines that needed to be added
or changed depends on the number of constant comparisons
that need to be replaced by hash comparisons. base64 was
an outlier with 79 changed lines, 64 of which were necessary
due to a check against every possible character in the base64
alphabet. The three remaining applications required 6 (uniq),
7 (who), and 23 (md5sum) changed lines, respectively.

In the following, we describe technical details of how AN-
TIFUZZ is implemented.

5.1 Attacking Coverage-guidance
To prevent coverage-guided fuzzing, it is necessary to gen-
erate random constraints, edges, and constant comparisons,
as detailed in Section 4.1. The core idea here is to use every
byte of the input file in a way that could lead to a new basic
block, e.g., by making it depend on some constraints or by
comparing it to randomly generated constants. Depending
on the configurable number of constraints and the size of the
input file, every byte could be part of multiple constraints and
constant comparisons.

Implementation-wise, although it is possible to generate
code for ANTIFUZZ dynamically at runtime, this might cause
problems for fuzzers relying on static code instrumentation
(i.e., they might not be able to “see" code introduced by ANTI-
FUZZ). Thus, our template engine, implemented in 300 lines
of Python code, generates a C file containing all randomly
chosen constraints and constants, and further provides the
ability to set configuration values (e.g., number of fake basic
blocks).

The random edge generation is implemented through a
shuffled array (where the input file seeds the randomness)
consisting of functions that call each other based on their
position in the array (up to a certain configurable depth).

ANTIFUZZ provides a function called antifuzz_init()
that needs to be called with the input filename, ideally before
the file is being processed by the application. This change
needs to be done manually by the developer when he wants
to protect his software against fuzzing: the developer needs to
add one line that calls this function. The function implements
all the techniques against coverage-guided fuzzers mentioned
earlier and sets up signal handlers to prevent crash detection,
as detailed in the next section.

5.2 Preventing Crash Detection
When antifuzz_init() is called, ANTIFUZZ has to confirm
that no crashes can be observed. As detailed in Section 4.2, it
is necessary to overwrite the crash signal handlers, as well as
prevent it from being observed with ptrace.

In the former case, ANTIFUZZ first checks whether over-
writing signals is possible: we register a custom signal handler
and deliberately crash the application. If the custom signal
handler was called, it ignores the crash and resumes execution.
If the application does not survive the crash, it means that
overwriting signals is not possible and, for our purposes, the
resulting crash is a desirable side-effect. If the application
survives the crash, evidently, signal overwriting is possible.

ANTIFUZZ then installs custom signal handlers for all com-
mon crash signals and overwrites these with either a timeout
or a graceful exit (depending on the configuration). This will

1938 28th USENIX Security Symposium USENIX Association

keep some fuzzers from covering any code because they do
not survive the artificial crash at the beginning of the appli-
cation. This behavior could also be replaced by an exit or by
calling additional functions that lead to fake code coverage to
keep up a facade of a working fuzzer.

In the case of ptrace, we use a well-known anti-debugging
technique [34] to detect if we are being observed by ptrace:
we check whether we can ptrace our own process. If we can
ptrace our own process, it means that no other process is
ptraceing it. However, if we are unable to ptrace our own
process, it implies that another process is ptraceing it and
therefore ANTIFUZZ terminates the application.

5.3 Delaying Execution
As detailed in Section 4.3, ANTIFUZZ needs to know when an
input is malformed to slow down the application and hamper
the performance of fuzzers. The main idea, implementation-
wise, is to allow the developer to inform ANTIFUZZ whenever
an input is malformed. Most applications already have some
kind of error handling for malformed input, which either dis-
cards the input or terminates the application. Within this error
handling function of the to-be-protected program, the devel-
oper needs to add a single call to antifuzz_onerror().

Upon invocation of antifuzz_onerror(), ANTIFUZZ de-
lays the execution for a configurable amount of time using
either of the mechanisms mentioned in Section 4.3.

5.4 Overloading Symbolic Execution Engines
There are two main parts to our countermeasures against sym-
bolic/concolic execution and taint analysis engines: replacing
constant comparisons with comparisons of their respective
cryptographic hashes, and putting the input through a crypto-
graphic block cipher before usage.

The first part is implemented via the SHA-512 hash func-
tion. The developer needs to replace important (i.e., input-
based) comparisons with the hash functions provided by AN-
TIFUZZ. Due to the nature of cryptographic hashes, two hash
values can only be checked for equality, and not whether one
is larger or smaller than the other.

To encrypt and decrypt the input buffer, we use the AES-
256 encryption function in ECB mode. The key is gener-
ated from a hash of the input at runtime. We provide a func-
tion that provides the encryption-decryption routine. We can
use this function on any kind of input stream. We provide
antifuzz_fread() as a convenience to make it easier to in-
tegrate the common cases. Any call to fread() needs to be
replaced with its ANTIFUZZ-equivalent call.

Figure 2 illustrates the implementation of all described
techniques using ANTIFUZZ in a simple program. Figure 2.a
shows an unprotected application which is checking an input
value. If the input is valid, it might lead to a program crash
caused by a bug. Otherwise, the program will print some error

and exit. Figure 2.b illustrates the same program which is
now protected by ANTIFUZZ. Additional layers of fake edges
and constraints are specifically targeting coverage-guided
fuzzers. Further down the control-flow graph of the protected
application, ANTIFUZZ added its input encryption/decryption
routine. Next in the Figure 2.b, ANTIFUZZ installs its custom
signal handler and then causes an intentional segmentation
fault (fake crash). However, since ANTIFUZZ installed a cus-
tom signal handler, it receives the signal and checks whether
it is the fake crash or not. If it is legitimate, it delays the ex-
ecution and then exits gracefully. This step basically is the
anti-crash detection implementation of ANTIFUZZ, which
works together with an execution delay mechanism. Finally,
in Figure 2.b, we harden the comparison against 1337 with a
comparison of hashed values.

6 Evaluation

Our evaluation aims to answer the following five research
questions (RQs):

• RQ 1. Are current obfuscation techniques efficient
against automated bug-finding via fuzzing?

• RQ 2. Are the techniques we designed effective at dis-
rupting the targeted fuzzing assumptions?

• RQ 3. Are the techniques effective at preventing fuzzers
from finding bugs?

• RQ 4. Are the techniques effective at reducing the
amount of code that is being tested?

• RQ 5. Do our techniques introduce any significant per-
formance overhead?

To answer the first research question RQ 1., we demon-
strate that modifying a custom dummy application (which
is illustrated in Listing 2) using the state-of-the-art obfusca-
tion tool TIGRESS [15] does not yield a satisfying level of
protection against current fuzzers.

Following the answer to RQ 1., we test all our techniques
individually on multiple fuzzers to demonstrate that they are
effective if and only if the fuzzer employs the targeted as-
sumptions. From this experiment, we can answer RQ 2. and
conclude that our mitigations are working as intended. We use
the same dummy application used in RQ 1. to evaluate eight
fuzzers and bug-finding tools, namely: AFL 2.52b, VUZZER,
HONGGFUZZ 1.6, DRILLER commit 66a3428, ZZUF 0.15,
PEACH 3.1.124, and QSYM commit d4bf407. Besides the
aforementioned fuzzers, we consider one purely symbolic
execution based tool to complete the set of automatic bug
finding techniques: KLEE 1.4.0.0 [12].

To answer RQ 3., we test a subset of these fuzzers against
the LAVA-M dataset to demonstrate that ANTIFUZZ is able
to prevent bug finding in real-world applications.

USENIX Association 28th USENIX Security Symposium 1939

main

SIG handler

crash

if(in==1337)

Bug
print("bad")

exit()

if(h(in)==af32...)

SIG handler

if(fake)

enc(in)
dec(in)

install signal-
handler

anti-debug

fake SEGV

idle()
exit()

idle()
exit()

yesno

yesno

(b)

main

if(in==1337)

Bug
print("bad")

exit()

yesno

(a)

CRASHCRASH

...

...

N Layers of Fake Edges
fake_funcs[hash(in+3)]();

Random Fake Constraints
if(in[3]==in[4]) {... }

Anti-SE

Anti-Crash

Delay

Anti-SE

Figure 2: A simple program before (a) and after integration (b) with ANTIFUZZ.

To address RQ 4., we evaluate ANTIFUZZ on binary exe-
cutables from binutils to show the difference in test coverage
in a protected and unprotected application. This experiment
demonstrates that ANTIFUZZ does not simply hide bugs, but
also drastically reduces the attack surface. It is worth mention-
ing that in all experiments mentioned above, the bug finding
tools were able to find the bugs in a matter of minutes prior
to enforcing ANTIFUZZ protection. After applying our tech-
niques, there were zero bugs found by the tested tools within
a period of 24 hours.

In the last step, we measure the overhead introduced by
ANTIFUZZ using the SPEC CPU2006 benchmarking suite to
answer RQ 5..

Note that, due to the configurable nature of ANTIFUZZ, we
use the following configuration for all experiments:

• Attacking Coverage-guidance: Generates 10,000 fake
functions with constraints, and 10,000 basic blocks for
random edge generation.

• Delaying Execution: The signal handler introduces a
slowdown in case of a crash to timeout the application
(in addition to slowdowns due to malformed inputs). The
duration of the sleep is set to 750ms.

• Preventing Crash Detection: We enabled all tech-
niques mentioned in Section 5.2.

• Overloading Symbolic Execution Engines: Important
comparisons for equivalence were replaced with SHA-
512 hash comparisons and the input data was encrypted
and decrypted via AES-256 in ECB mode.

If the fuzzer supported both binary instrumentation and
compile-time instrumentation, we used the compile-time in-
strumentation. While in reality, a fuzzer would have to use

binary-only instrumentation mechanisms (given our attacker
model), we chose to use compile-time instrumentation as it
achieves better performance and is also more robust. There-
fore, we erred on the side of caution by assuming that an
attacker is more powerful than state-of-the-art tools.

6.1 ANTIFUZZ versus Software Obfuscation

One of the goals of software obfuscation is to prevent se-
curity researchers, who rely on traditional manual reverse
engineering techniques, from finding bugs. In this section,
we demonstrate that obfuscation on its own fails to thwart
automatic bug finding tools.

Intuitively, blind fuzzers without feedback mechanisms are
not hindered by obfuscation at all, because they neither have
nor need any knowledge about the code. Feedback-driven
fuzzers, however, do need access to edges and basic blocks to
obtain coverage information they can use to guide the fuzzing
process. Thus, obfuscating the control flow via common tech-
niques such as control flow flattening or virtual machine based
obfuscation [21] might impact coverage-guided fuzzers.

Experiment To demonstrate that obfuscation techniques
alone do not protect an application from automatic bug finding
tools, we obfuscated a dummy application (see Listing 2) with
TIGRESS 2.2 [15] and let different fuzzers find the correct
crashing input.

Listing 2: Dummy application that crashes if input is ’crsh’

i n t check (char * i n p u t , i n t s i z e) {
i f (s i z e == 4 && i n p u t [0] == ' c ' && i n p u t [1] == ' r ' &&

i n p u t [2] == ' s ' && i n p u t [3] == ' h ') {
c r a s h () ;

}
}

1940 28th USENIX Security Symposium USENIX Association

For this experiment, we use AFL, HONGGFUZZ, KLEE and
ZZUF which are representative of all three fuzzer categories.
Note that VUZZER was excluded because (1) VUZZER is
based on the IDA Pro disassembler, which is thwarted by
obfuscation before the fuzzing process even begins, and (2)
Tigress had trouble compiling non-64bit executables while
VUZZER (at the time of the experiment) was not working on
64-bit binaries. Additionally, any fuzzer which is based on the
aforementioned tools was excluded from the experiment. For
example, QSYM and DRILLER use AFL with an additional
symbolic execution engine. Therefore, if AFL is able to find
the bug, we conclude that other tools that use AFL under the
hood can also find the bug.

We configured TIGRESS by enabling as many of the obfus-
cation features as we could. The exact configuration is shown
in Table 1 of Appendix A.

Result This experiment revealed that all fuzzers could find
the crashing input despite all obfuscation techniques being
enabled. This answers research question RQ 1., current ob-
fuscation techniques are not efficient against automated bug
finding techniques. Even though changing the control-flow
graph might have an impact on the feedback mechanism, the
changes are static or random. In contrast, in ANTIFUZZ the ad-
ditional information for the feedback mechanism is dependant
on the input, which is a major difference between common
obfuscation methods and our approach.

6.2 Finding Crashes in a Simple Dummy Ap-
plication

To answer research question RQ 2., we use the same dummy
application from the previous experiment.

For this evaluation, we enable our anti-fuzzing techniques
one at a time, rather than enabling all of them at once. This
allows us to observe which fuzzer is vulnerable to each tech-
nique we introduced. We use this rather simple target for two
reasons. (1) If a fuzzer is unable to find this very shallow bug,
they will most likely also fail to find more complex crashes,
and (2) the code is simple enough to be adjusted to different
systems and fuzzers (e.g., DRILLER needs CGC binaries).

Any input that is not the crashing input is deemed to be
malformed, i.e., ANTIFUZZ decides to slow down the applica-
tion in that case. If countermeasures against program analysis
techniques are activated, the data from the input file is first
encrypted and then decrypted again. The comparisons against
the individual bytes of “crsh” are done via hash comparisons
(e.g., hash("c") == hash(input[0])). Signal tampering
and anti-coverage techniques are all applied before the input
file is opened. Since both PEACH and ZZUF are not able to
overcome the four-byte constraints on their own, we provided
ZZUF with the seed file where only the “c” character was
missing. Similarly, PEACH was evaluated on an ELF64 parser

Table 2: Evaluation against the dummy application. means ANTIFUZZ
was successful in preventing bug finding (no crash was found) and 7means
that at least one crashing input was found. None means ANTIFUZZ was
disabled, All means that all techniques against fuzzers (Coverage, Crash,
Speed and Symbolic Execution) were turned on.

None Coverage Crash Speed Symbolic Exec. All
AFL 7 7
Honggfuzz 7 7
Vuzzer 7
Driller 7 - - 7
Klee 7 a

zzuff 7 7 7 7
Peach 7 7 7
QSYM 7 7

a Klee ran at least 24h and then crashed due to memory constraints.

(readelf). We modified the elf parser to include an additional
one-byte check of a field in ELF64 that guards the crash.

Every possible combination of fuzzer and ANTIFUZZ con-
figuration ran for a period of 24 hours. Moreover, in this ex-
periment, the configuration with all fuzzing countermeasures
enabled (“All”) ran for a total of 100 hours.

Result The results of this experiment are shown in Table 2.
Without ANTIFUZZ, it only took a couple of seconds up to
a few minutes for all eight fuzzers to find the crashing input.
However, when ANTIFUZZ was fully activated, no fuzzer
was able to do so even after 100 hours. Comparing this ta-
ble to Table 1 shows that our techniques clearly address the
fundamental assumptions that fuzzers use to find bugs.

All coverage-guided fuzzers were impeded by our anti-
coverage feature. As expected, all fuzzers were unable to find
crashes when we used our anti-crash detection technique. It
is worth mentioning that DRILLER was not tested with this
configuration because the CGC environment does not allow
custom signal handlers. Surprisingly, KLEE was also unable
to find the crash because of its incomplete handling of custom
signals. Since delaying execution technique (speed) also relies
on custom signals, the experiment with DRILLER was omitted
and KLEE failed to find the bug. ZZUF was able to crash the
target because there were only 256 different inputs to try.

As expected, KLEE was not able to find the correct input
once countermeasures against symbolic execution were acti-
vated. Surprisingly, VUZZER is confused by this technique
as well. A closer inspection suggests that this behavior was
due to the fact that this technique is also highly effective at
obfuscating taint information.

6.3 Finding Crashes in LAVA-M

The dummy application demonstrated our ability to thwart
fuzzers for simple examples. To make sure that our tech-
niques also hold up on more complex applications (and an-
swer RQ 3.), we evaluate ANTIFUZZ with the LAVA-M
dataset [18], which consists of four applications (base64,
who, uniq and md5sum) where several bugs were artificially

USENIX Association 28th USENIX Security Symposium 1941

Table 3: Statistical analysis of the code coverage on eight binaries from binutils. The effect size is given in percentage of the branches that could be covered after
enabling ANTIFUZZ as compared to the coverage achieved on an unprotected program. Experiments where the two-tailed Mann-Whitney U test resulted in
p < 0.05 are displayed in bold.

addr2line ar nm-new objdump readelf size strings strip-new
vuzzer 12.12%, p: 0.04 - 1.81%, p: 0.04 2.65%, p: 0.03 1.10%, p: 0.04 13.41%, p: 0.33 6.25%, p: 0.04 0.84%, p: 0.19
afl 9.49%, p: 0.04 - 1.92%, p: 0.04 4.98%, p: 0.04 0.70%, p: 0.04 6.30%, p: 0.04 16.17%, p: 0.04 4.52%, p: 0.04
hongg 0.00%, p: 0.03 0.00%, p: 0.25 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03 0.00%, p: 0.03
qsym 7.12%, p: 0.04 11.69%, p: 0.03 5.30%, p: 0.04 5.47%, p: 0.04 1.75%, p: 0.04 9.79%, p: 0.04 8.55%, p: 0.04 4.89%, p: 0.04

Table 4: Evaluation against base64, uniq, who, md5sum from the LAVA-M
data set. means ANTIFUZZ was successful in preventing bug finding (no
crash was found) and 7 means that at least one crashing input was found, the
sign denotes the number of unique crashes found. None means ANTIFUZZ
was disabled, All means that all techniques against fuzzers (Coverage, Crash,
Speed and Symbolic Execution) are turned on.

None Coverage Crash Speed Symbolic Execution All
base64
AFL 7(#28) 7(#24)
Honggfuzz 7(#48) 7(#48)
QSYM 7(#48)
Vuzzer 7(#47) 7(#33)
zzuf 7(#1) 7(#1) 7(#1)
uniq
AFL 7(#14) 7(#13)
Honggfuzz 7(#29) 7(#29)
QSYM 7(#14)
Vuzzer 7(#26) 7(#15)
zzuf 7(#1) 7(#1) 7(#1)
who
AFL 7(#194) 7(#95)
Honggfuzz 7(#72) 7(#72)
QSYM 7(#1926)
Vuzzer 7(#266) 7(#260)
zzuf 7(#1) 7(#1) 7(#1)
md5sum
AFL - - - - - -
Honggfuzz 7(#57) 7(#55)
QSYM 7(#34)
Vuzzer 7(#25) 7(#22)
zzuf - - - - - -

inserted. All fuzzer configurations were allowed to run for 24
hours each. Due to DWORD comparisons that AFL has diffi-
culty to solve, the AFL modification LAF-INTEL was used,
which breaks comparisons (including string operations) down
to single byte comparisons to allow for more nuanced edge
generation during compilation. For blind fuzzers like ZZUF,
solving four bytes is too hard, thus one constraint was reduced
to a single bit-flip for this fuzzer alone.

Results Table 4 shows our result. The # sign denotes the
number of unique crashes found (according to distinct LAVA-
M fault IDs). Again we can see the same consistent result
for all binaries: once ANTIFUZZ is turned on, it effectively
prevents fuzzers from detecting bugs. The exceptional cases
are similar to the ones we discussed in the previous section.
In summary, these results demonstrate that our anti-fuzzing
features are applicable to real-world binaries to prevent bug
finding.

6.4 Reducing Code Coverage
As a next step, we want to answer RQ 4. by demonstrating that
applying ANTIFUZZ results in far less coverage in coverage-
based fuzzers. More specifically, we evaluated AFL, HONGG-
FUZZ, VUZZER, and QSYM against eight real-world binaries
from the binutils collection (namely addr2line, ar, size,
strings, objdump, readelf, nm-new, strip-new). Every
fuzzer and every application was executed three times for
24 hours in the setting “None” (ANTIFUZZ is disabled) and
then again in the setting “All” (all ANTIFUZZ features are
enabled).

Result The results of this experiment are shown in Figure 3.
For each of the eight binutils programs, we compare the per-
formance of the four tested fuzzers (measured in the number
of branches covered) without and with protection via ANTI-
FUZZ. It is apparent that ANTIFUZZ does indeed severely
hinder fuzzers from extending code coverage. Note that in all
cases, when ANTIFUZZ was activated, even after 24 hours
the fuzzers could only reach coverage that would have been
reached in the first few minutes without ANTIFUZZ.

We performed a statistical analysis on the resulting data, the
results are shown in Table 3. All but three out of thirty experi-
ments were statistically significant with p < 0.05 according
to a two-tailed Mann–Whitney U test. Two of the insignifi-
cant results are from VUZZER, which displayed rather low
coverage scores even without ANTIFUZZ enabled. The other
insignificant result is on ar, a target where most bug finding
tools fail due to a multi-byte comparison. Additionally, we
calculated the reduction of the amount of covered code that
resulted from enabling ANTIFUZZ. Typically (in half of the
experiments), less than 3% of the code that was tested on an
unprotected target could be covered when ANTIFUZZ was
enabled. The 95th percentile of coverage was less than 13% of
the code that the fuzzers found when targeting an unprotected
program. In the worst result, we achieved a reduction to 17%.
Therefore, we conclude that ANTIFUZZ will typically reduce
the test coverage achieved by 90% to 95%.

6.5 Performance Overhead
Lastly, to answer RQ 5. we measure the performance over-
head caused by using ANTIFUZZ on complex programs. For
this purpose, we use the SPEC CPU2006 version 1.1 INT
benchmark. This experiment consists of all benchmarks that

1942 28th USENIX Security Symposium USENIX Association

Figure 3: Evaluation of eight binutils binaries to show the branch coverage difference between unmodified binary ("Disabled") and binary with ANTIFUZZ
("Enabled"). The dashed line at the bottom is the baseline (i.e. the number of branches covered with the seed file).

take an input file (thus only 462.libquantum was excluded).
The remaining benchmarks ran for three iterations each and
were averaged over ten runs with the geometric mean.

Result The impact of ANTIFUZZ for each benchmark was
insignificant enough to bear little to no observable overhead
(see Table 5): most applications show small negative over-
heads (with the outlier being gcc with -3.80%), but the positive
overheads also never reach 1%. The total average overhead is
-0.42%. This is expected because antifuzz_init() is only
called once when the input file is opened. Reading the file to
memory and checking if the input data is well-formed usually
happens only once in the beginning, thus it does not impact
the computationally intensive main part of the benchmarks at
all.

7 Limitations

In the following, we discuss limitations of both our proposed
approach and implementation, and also consider threats to
validity. For our current prototype implementation, a human
analyst can likely remove the protection mechanisms added by
ANTIFUZZ rather easily. However, according to our attacker
model, we regard this threat out of scope in the context of this
paper. Moreover, many other works have detailed techniques
to prevent modification and human analysis using software
obfuscation techniques [16, 17, 21, 24, 41, 43, 53]. For a more
complete protection, we recommend to use a combination of

Table 5: SPEC CPU2006 INT benchmark.

Benchmark Overhead

400.perlbench 0.13%
401.bzip2 0.11%
403.gcc -3.80%
429.mcf -0.36%
445.gobmk 0.89%
456.hmmer 0.32%
458.sjeng 0.43%
464.h264ref -1.53%
471.omnetpp -0.8%
473.astar -1.06%
483.xalancbmk 0.17%

Total average -0.42%

both ANTIFUZZ as well as traditional anti-analysis/-patching
techniques.

The delay-inducing technique should not be applied to any
kind of public-facing server software, as this would drastically
weaken the server against Denial-of-Service attacks. Instead
of sleeping or busy waiting, one should implement a similar
approach based on rate limitation.

The number of functions added as fake code results in a
fixed file size increase of approximately 25MB. While this
is less relevant for large software binaries, it might pose sig-
nificant code size overhead for small binaries. However, for
modern machines we deem this to be a minor obstacle.

USENIX Association 28th USENIX Security Symposium 1943

Furthermore, it is worth mentioning that one can avoid
this increase in file size by using self-modifying code. We
explicitly decided not to use self-modifying code since such
techniques have the tendency of making exploitation easier
by using memory pages with read/write/execute privileges
and potentially raising alerts in anti-virus products.

Furthermore, ANTIFUZZ in its current form requires de-
veloper involvement which is not optimal from a usability
perspective. However, most of the manual work in ANTIFUZZ
can be automated. In particular, we require the developer to
perform the following tasks: (a) find error paths, (b) replace
constant comparisons, and (c) annotate functions which read
user input or data. It is relatively easy to automate items (b)
and (c) via a compiler pass. The reason that finding error paths
is more challenging is that there are many different ways for
handling errors. On the other hand, the responsible developer
is well aware of the error handling code. Adding a single
function call in the error handler is straightforward and does
not significantly increase the complexity of the code base.

Additionally, it is worth mentioning that the benchmarking
suite which we used was focused on CPU intensive tasks
rather than I/O bound tasks. We assume that using our pro-
totype AES implementation to encrypt and decrypt every
input significantly increases the overhead on I/O bound tasks.
Therefore, we recommend to replace AES by a much weaker
and faster encryption algorithm, as our goal is not to be cryp-
tographically secure, but to confuse SMT solvers.

Finally, it has to be considered that automatic program
transformations for obfuscation can always be thwarted [7].
Therefore, tools like ANTIFUZZ can never completely guar-
antee that they can defeat a motivated human analyst. Based
on this observation, the situation for anti-fuzzing mechanisms
like ANTIFUZZ is similar to obfuscation mechanisms: given
sufficient interest from the attackers and defenders, a pro-
longed arms race is to be expected. This also means that as
time passes, continuing this arms race will become more and
more expensive for both sides involved. However, similar
to obfuscation, we expect only the implementation of tools
like ANTIFUZZ to become more complicated. Similarly to
modern obfuscation tools, usage of anti-fuzzing defenses will
most likely remain cheap.

As we cannot evaluate against techniques not yet invented,
some of our techniques could be attacked by smarter fuzzers.
The junk code that was inserted could be detected based on
statistical patterns or the way it interacts with the rest of the
execution. To counter this, more complex and individualized
junk code fragments could be used. For example, junk code
can change global variables that are also used in the original
code (e.g., in opaque predicates).

8 Related Work

Obfuscating software against program understanding has been
exhaustively researched. Common techniques include inject-

ing junk code that is never executed [16, 53], often hidden
behind conditional expressions that always evaluate to some
fixed value [17]. The control flow can be further cloaked
by creating many seemingly dissimilar paths that are picked
randomly [43] to thwart dynamic analysis based approaches.
Other common techniques include self-modifying code [41],
which increases the difficulty of obtaining a useful disassem-
bly and changes to the control-flow [21, 24]. Similarly, there
has been some work that specifically target symbolic execu-
tion [51].

Recent research tried to address a very similar issue: To
increase the cost of the attacker, Hu et al. [35] insert a large
number of fake bugs into the target application. This approach
has the advantage that it works against many different kinds
of attack scenarios. However, they rely on the bugs being non-
exploitable as otherwise the actual security of the application
is reduced. For example, the authors state that they rely on
the exact stack layout behavior of the chosen compiler. Any
update to the compiler might render the previously "safe" bugs
exploitable. Additionally, fuzzers generally tend to find many
hundreds to thousands of crashes for each real bug uncovered.
Adding some more crashes does not prevent the fuzzer from
finding real bugs. The large number of crashes found might
draw attention and common analysis techniques for bug triage
(such as AFLs bug exploration mode) will greatly simplify
weeding out the fake bugs.

In contrast, our approach is much more low key. Addition-
ally, since in our approach no proper test coverage is achieved,
no analysis of the produced fuzzing data will be able to un-
cover any bugs. An idea similar to our fake code insertions
was also presented in a talk by Kang et al. [38]. However, they
explicitly tried to prevent AFL in QEMU mode from finding
a specific crashing path. In our scenario, the defenders do
not know the specific crashing path, as otherwise, they would
rather fix the bug. Additionally, as we demonstrated in our
evaluation, our approach is effective across different fuzzers
and does not attack a specific implementation.

Finally, a master thesis by Göransson and Edholm has in-
troduced the idea of masking crashes and actively detecting if
the program is being fuzzed, e.g., by detecting specific AFL
environment variables [30]. Similarly to the work by Kang et
al., the methods they devised are highly specific to the imple-
mentation of the only two fuzzers they considered: AFL and
HONGGFUZZ. Additionally, to reduce the execution speed
of fuzzers, they proposed to artificially decrease the overall
performance of the program under test, whereas ANTIFUZZ
only decreases the performance if the input is malformed.

9 Conclusion

In this paper, we categorized the general assumptions common
to all current bug-finding tools. Based on this analysis, we
developed techniques to systematically attack and break these
assumptions (and thus a representative sample of contempo-

1944 28th USENIX Security Symposium USENIX Association

rary fuzzers). The evaluation demonstrated that obfuscation
on its own fails to prevent fuzzing satisfyingly. In contrast,
our techniques effectively prevent fuzzers from finding crash-
ing inputs in simple programs, even if the crash was found
in seconds in an unprotected application. Furthermore, we
demonstrated that we get the same result for real-world ap-
plications, i.e., fuzzers are unable to detect any crashes or
even achieve a significant amount of new code coverage. Our
techniques also show no significant overhead when evaluated
with the SPEC benchmark suite and can, therefore, be easily
and efficiently integrated into projects with negligible impact
to the performance.

In summary, we conclude that the techniques presented in
this paper are well applicable to deter automated, dragnet-
style hunting for bugs. In combination with common program
obfuscation techniques, they will also hinder a targeted attack,
as manual work is needed to reverse engineer and remove the
anti-fuzzing measures before a more cost-efficient, automated
fuzzing campaign can be started.

Acknowledgments

We would like to thank our shepherd Mathias Payer and the
anonymous reviewers for their valuable comments and sugges-
tions. This work was supported by the German Federal Min-
istry of Education and Research (BMBF Grant 16KIS0592K
HWSec) and the German Research Foundation (DFG) within
the framework of the Excellence Strategy of the Federal Gov-
ernment and the States - EXC 2092 CASA. In addition, this
project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 786669 (ReAct). This paper reflects only the
authors’ view. The Research Executive Agency is not respon-
sible for any use that may be made of the information it
contains.

References

[1] Announcing oss-fuzz: Continuous fuzzing for open
source software. https://testing.googleblog.com/
2016/12/announcing-oss-fuzz-continuous-
fuzzing.html. Accessed: 2019-02-18.

[2] Circumventing fuzzing roadblocks with compiler trans-
formations. https://lafintel.wordpress.com/. Ac-
cessed: 2019-02-18.

[3] Peach. http://www.peachfuzzer.com/. Accessed:
2019-02-18.

[4] Security oriented fuzzer with powerful analysis op-
tions. https://github.com/google/honggfuzz. Ac-
cessed: 2019-02-18.

[5] zzuf. https://github.com/samhocevar/zzuf. Ac-
cessed: 2019-02-18.

[6] Ali Abbasi, Thorsten Holz, Emmanuele Zambon, and
Sandro Etalle. ECFI: Asynchronous Control Flow In-
tegrity for Programmable Logic Controllers. In Annual
Computer Security Applications Conference (ACSAC),
2017.

[7] Andrew W. Appel. Deobfuscation is in NP, 2002.

[8] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko,
Robert Gawlik, and Thorsten Holz. Redqueen: Fuzzing
with input-to-state correspondence. In Symposium on
Network and Distributed System Security (NDSS), 2019.

[9] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy
Liang. Synthesizing program input grammars. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2017.

[10] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In ACM Conference on Computer and Communications
Security (CCS), 2017.

[11] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoud-
hury. Coverage-based greybox fuzzing as markov chain.
In ACM Conference on Computer and Communications
Security (CCS), 2016.

[12] Cristian Cadar, Daniel Dunbar, and Dawson R Engler.
Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2008.

[13] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In IEEE Sym-
posium on Security and Privacy, 2015.

[14] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In IEEE Symposium on Security and
Privacy, 2018.

[15] Christian Collberg. The Tigress C Diversifier/Obfus-
cator. http://tigress.cs.arizona.edu/. Accessed:
2019-02-18.

[16] Christian Collberg, Clark Thomborson, and Douglas
Low. A taxonomy of obfuscating transformations. Tech-
nical Report 148, Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[17] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In ACM Symposium on Principles of
Programming Languages (POPL), 1998.

USENIX Association 28th USENIX Security Symposium 1945

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://lafintel.wordpress.com/
http://www.peachfuzzer.com/
https://github.com/google/honggfuzz
https://github.com/samhocevar/zzuf
http://tigress.cs.arizona.edu/

[18] Brendan Dolan, Patrick Hulin, Engin Kirda, Tim Leek,
Andrea Mambretti, William Robertson, Frederick Ul-
rich, and Ryan Whelan. LAVA: large-scale automated
vulnerability addition. In IEEE Symposium on Security
and Privacy, 2016.

[19] Christopher Domas. Movfuscator: Turning
’mov’ into a soul-crushing RE nightmare.
https://recon.cx/2015/slides/recon2015-
14-christopher-domas-The-movfuscator.pdf.
Accessed: 2019-02-18.

[20] Joe W. Duran and Simeon Ntafos. A report on ran-
dom testing. In International Conference on Software
Engineering (ICSE), 1981.

[21] Hui Fang, Yongdong Wu, Shuhong Wang, and Yin
Huang. Multi-stage binary code obfuscation using im-
proved virtual machine. In International Conference on
Information Security (ISC), 2011.

[22] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu,
Kang Li, Zhongyu Pei, and Zuoning Chen. Collafl:
Path sensitive fuzzing. In IEEE Symposium on Security
and Privacy, 2018.

[23] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-
based directed whitebox fuzzing. In International Con-
ference on Software Engineering (ICSE), 2009.

[24] Jun Ge, Soma Chaudhuri, and Akhilesh Tyagi. Control
flow based obfuscation. In ACM Workshop on Digital
Rights Management (DRM), 2005.

[25] Patrice Godefroid, Adam Kiezun, and Michael Y Levin.
Grammar-based whitebox fuzzing. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2008.

[26] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
DART: Directed Automated Random Testing. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2005.

[27] Patrice Godefroid, Michael Y Levin, David A Molnar,
et al. Automated whitebox fuzz testing. In Symposium
on Network and Distributed System Security (NDSS),
2008.

[28] Patrice Godefroid, Hila Peleg, and Rishabh Singh.
Learn&fuzz: Machine learning for input fuzzing. In
ACM International Conference on Automated Software
Engineering (ASE), 2017.

[29] Peter Goodman. Shin GRR: Make Fuzzing Fast
Again. https://blog.trailofbits.com/2016/11/
02/shin-grr-make-fuzzing-fast-again/. Ac-
cessed: 2019-02-18.

[30] David Göransson and Emil Edholm. Escaping the Fuzz.
Master’s thesis, Chalmers University of Technology,
Gothenburg, Sweden, 2016.

[31] Istvan Haller, Asia Slowinska, Matthias Neugschwandt-
ner, and Herbert Bos. Dowsing for overflows: A guided
fuzzer to find buffer boundary violations. In USENIX
Security Symposium, 2013.

[32] HyungSeok Han and Sang Kil Cha. Imf: Inferred model-
based fuzzer. In ACM Conference on Computer and
Communications Security (CCS), 2017.

[33] Aki Helin. A general-purpose fuzzer. https://
gitlab.com/akihe/radamsa. Accessed: 2019-02-18.

[34] Thorsten Holz and Frédéric Raynal. Detecting honey-
pots and other suspicious environments. IEEE Informa-
tion Assurance Workshop, 2005.

[35] Zhenghao Hu, Yu Hu, and Brendan Dolan-Gavitt. Chaff
bugs: Deterring attackers by making software buggier.

[36] Richard Johnson. Go speed tracer. https:
//talos-intelligence-site.s3.amazonaws.com/
production/document_files/files/000/000/
048/original/Go_Speed_Tracer.pdf. Accessed:
2019-02-18.

[37] Anastasis Keliris and Michail Maniatakos. Icsref: A
framework for automated reverse engineering of indus-
trial control systems binaries. In Symposium on Network
and Distributed System Security (NDSS), 2019.

[38] Kang Li, Yue Yin, and Guodong Zhu. Afl’s blindspot
and how to resist afl fuzzing for arbitrary elf binaries.
https://www.blackhat.com/us-18/briefings/
schedule/index.html#afls-blindspot-and-how-
to-resist-afl-fuzzing-for-arbitrary-elf-
binaries-11048. Accessed: 2019-02-18.

[39] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan,
Shang-Wei Lin, Yang Liu, and Alwen Tiu. Steelix:
Program-state Based Binary Fuzzing. In Joint Meet-
ing on Foundations of Software Engineering, 2017.

[40] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
2005.

[41] Matias Madou, Bertrand Anckaert, Patrick Moseley,
Saumya Debray, Bjorn De Sutter, and Koen De Boss-
chere. Software protection through dynamic code muta-
tion. In International Workshop on Information Security
Applications (WISA), 2005.

1946 28th USENIX Security Symposium USENIX Association

https://recon.cx/2015/slides/recon2015-14-christopher-domas-The-movfuscator.pdf
https://recon.cx/2015/slides/recon2015-14-christopher-domas-The-movfuscator.pdf
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://talos-intelligence-site.s3.amazonaws.com/production/document_files/files/000/000/048/original/Go_Speed_Tracer.pdf
https://talos-intelligence-site.s3.amazonaws.com/production/document_files/files/000/000/048/original/Go_Speed_Tracer.pdf
https://talos-intelligence-site.s3.amazonaws.com/production/document_files/files/000/000/048/original/Go_Speed_Tracer.pdf
https://talos-intelligence-site.s3.amazonaws.com/production/document_files/files/000/000/048/original/Go_Speed_Tracer.pdf
https://www.blackhat.com/us-18/briefings/schedule/index.html#afls-blindspot-and-how-to-resist-afl-fuzzing-for-arbitrary-elf-binaries-11048
https://www.blackhat.com/us-18/briefings/schedule/index.html#afls-blindspot-and-how-to-resist-afl-fuzzing-for-arbitrary-elf-binaries-11048
https://www.blackhat.com/us-18/briefings/schedule/index.html#afls-blindspot-and-how-to-resist-afl-fuzzing-for-arbitrary-elf-binaries-11048
https://www.blackhat.com/us-18/briefings/schedule/index.html#afls-blindspot-and-how-to-resist-afl-fuzzing-for-arbitrary-elf-binaries-11048

[42] David Molnar, Xue Cong Li, and David Wagner. Dy-
namic Test Generation to Find Integer Bugs in x86 Bi-
nary Linux Programs. In USENIX Security Symposium,
2009.

[43] Andre Pawlowski, Moritz Contag, and Thorsten Holz.
Probfuscation: an obfuscation approach using proba-
bilistic control flows. In Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA), 2016.

[44] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-
fuzz: fuzzing by program transformation. In IEEE Sym-
posium on Security and Privacy, 2018.

[45] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Co-
jocar, Cristiano Giuffrida, and Herbert Bos. VUzzer:
Application-aware Evolutionary Fuzzing. In Symposium
on Network and Distributed System Security (NDSS),
2017.

[46] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan M Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In USENIX Security Symposium, 2014.

[47] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-
lik, Sebastian Schinzel, and Thorsten Holz. kafl:
Hardware-assisted feedback fuzzing for os kernels. In
USENIX Security Symposium, 2017.

[48] Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.
Driller: Augmenting fuzzing through selective symbolic
execution. In Symposium on Network and Distributed
System Security (NDSS), 2016.

[49] Vincent Ulitzsch, Bhargava Shastry, and Dominik
Maier. Follow the white rabbit simplifying fuzz testing
using fuzzexmachina. https://i.blackhat.com/
us-18/Thu-August-9/us-18-Ulitzsch-Follow-
The-White-Rabbit-Simplifying-Fuzz-Testing-
Using-FuzzExMachina.pdf/. Accessed: 2019-02-18.

[50] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou.
TaintScope: A checksum-aware directed fuzzing tool
for automatic software vulnerability detection. In IEEE
Symposium on Security and Privacy, 2010.

[51] Zhi Wang, Jiang Ming, Chunfu Jia, and Debin Gao. Lin-
ear obfuscation to combat symbolic execution. In Eu-
ropean Symposium on Research in Computer Security
(ESORICS), 2011.

[52] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and
David Brumley. Scheduling black-box mutational
fuzzing. In ACM Conference on Computer and Commu-
nications Security (CCS), 2013.

[53] Gregory Wroblewski. General method of program code
obfuscation. PhD thesis, Wroclaw University of Tech-
nology, 2002.

[54] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and
Taesoo Kim. QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing. In USENIX Secu-
rity Symposium, 2018.

[55] Michael Zalewski. "technical whitepaper" for
afl-fuzz. http://lcamtuf.coredump.cx/afl/
technical_details.txt. Accessed: 2019-02-18.

[56] Michał Zalewski. american fuzzy lop. http://
lcamtuf.coredump.cx/afl/. Accessed: 2019-02-18.

A TIGRESS Configuration

Table 1: Tigress configuration for ANTIFUZZ evaluation. Asterisk means:
"apply to all functions".

Transform Functions
Virtualize check
Flatten *
Split check
InitOpaque main
EncodeLiterals *
EncodeArithmetic *
AddOpaque *
AntiTaintAnalysis *
UpdateOpaque *
Ident *
InitEntropy main
AntiAliasAnalysis *
InitBranchFuns check
RandomFuns *
InitImplicitFlow check

USENIX Association 28th USENIX Security Symposium 1947

https://i.blackhat.com/us-18/Thu-August-9/us-18-Ulitzsch-Follow-The-White-Rabbit-Simplifying-Fuzz-Testing-Using-FuzzExMachina.pdf/
https://i.blackhat.com/us-18/Thu-August-9/us-18-Ulitzsch-Follow-The-White-Rabbit-Simplifying-Fuzz-Testing-Using-FuzzExMachina.pdf/
https://i.blackhat.com/us-18/Thu-August-9/us-18-Ulitzsch-Follow-The-White-Rabbit-Simplifying-Fuzz-Testing-Using-FuzzExMachina.pdf/
https://i.blackhat.com/us-18/Thu-August-9/us-18-Ulitzsch-Follow-The-White-Rabbit-Simplifying-Fuzz-Testing-Using-FuzzExMachina.pdf/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

MOPT: Optimized Mutation Scheduling for Fuzzers

Chenyang Lyu†, Shouling Ji†,+,(�), Chao Zhang¶,(�), Yuwei Li†, Wei-Han Lee§, Yu Song†, and Raheem
Beyah‡

†Zhejiang University, +Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies,
¶BNRist & INSC, Tsinghua University, §IBM Research, ‡Georgia Institute of Technology

E-mails: puppet@zju.edu.cn, sji@zju.edu.cn, chaoz@tsinghua.edu.cn, liyuwei@zju.edu.cn,

wei-han.lee1@ibm.com, zjujakesong@gmail.com, rbeyah@ece.gatech.edu.

Abstract
Mutation-based fuzzing is one of the most popular vul-

nerability discovery solutions. Its performance of generat-
ing interesting test cases highly depends on the mutation
scheduling strategies. However, existing fuzzers usually
follow a specific distribution to select mutation operators,
which is inefficient in finding vulnerabilities on general pro-
grams. Thus, in this paper, we present a novel mutation
scheduling scheme MOPT, which enables mutation-based
fuzzers to discover vulnerabilities more efficiently. MOPT
utilizes a customized Particle Swarm Optimization (PSO)
algorithm to find the optimal selection probability distribu-
tion of operators with respect to fuzzing effectiveness, and
provides a pacemaker fuzzing mode to accelerate the con-
vergence speed of PSO. We applied MOPT to the state-
of-the-art fuzzers AFL, AFLFast and VUzzer, and imple-
mented MOPT-AFL, -AFLFast and -VUzzer respectively,
and then evaluated them on 13 real world open-source pro-
grams. The results showed that, MOPT-AFL could find
170% more security vulnerabilities and 350% more crashes
than AFL. MOPT-AFLFast and MOPT-VUzzer also outper-
form their counterparts. Furthermore, the extensive evalu-
ation also showed that MOPT provides a good rationality,
compatibility and steadiness, while introducing negligible
costs.

1 Introduction

Mutation-based fuzzing is one of the most prevalent vul-
nerability discovery solutions. In general, it takes seed test
cases and selects them in certain order, then mutates them in
various ways, and tests target programs with the newly gen-
erated test cases. Many new solutions have been proposed
in the past years, including the ones that improve the seed
generation solution [1, 2, 3], the ones that improve the seed

Chenyang Lyu and Shouling Ji are the co-first authors. Shouling Ji and
Chao Zhang are the co-corresponding authors.

selection strategy [4, 5, 6, 7, 8], the ones that improve the
testing speed and code coverage [9, 10, 11, 12], and the ones
that integrate other techniques with fuzzing [13, 14, 15].

However, less attention has been paid to how to mutate test
cases to generate new effective ones. A large number of well-
recognized fuzzers, e.g., AFL [16] and its descendants, lib-
Fuzzer [17], honggfuzz [18] and VUzzer [6], usually prede-
fine a set of mutation operators to characterize where to mu-
tate (e.g., which bytes) and how to mutate (e.g., add, delete
or replace bytes). During fuzzing, they use certain mutation
schedulers to select operators from this predefined set, in or-
der to mutate test cases and generate new ones for fuzzing.
Rather than directly yielding a mutation operator, the muta-
tion scheduler yields a probability distribution of predefined
operators, and the fuzzer will select operators following this
distribution. For example, AFL uniformly selects mutation
operators.

There are limited solutions focusing on improving the mu-
tation scheduler. Previous works [7, 8] utilize reinforcement
learning to dynamically select mutation operators in each
round. However, they do not show significant performance
improvements in vulnerability discovery [7, 8]. Thus, a bet-
ter mutation scheduler is demanded. We figure out that, most
previous works cannot achieve the optimal performance be-
cause they fail to take the following issues into consideration.

Different operators’ efficiency varies. Different mutation
operators have different efficiency in finding crashes and
paths (as shown in Fig. 3). Thus, fuzzers that select mu-
tation operators with the uniform distribution are likely to
spend unnecessary computing power on inefficient operators
and decrease the overall fuzzing efficiency.

One operator’s efficiency varies with target programs.
Each operator’s efficiency is program-dependent, and it is
unlikely or at least difficult to statically infer this depen-
dency. Thus the optimal mutation scheduler has to make
decisions per program, relying on each operator’s runtime
efficiency on the target program.

One operator’s efficiency varies over time. A mutation op-
erator that performs well on the current test cases may per-

USENIX Association 28th USENIX Security Symposium 1949

form poorly on the following test cases in extreme cases. As
aforementioned, the optimal mutation scheduler rely on op-
erators’ history efficiency to calculate the optimal probability
distribution to select operators. Due to the dynamic char-
acteristic of operator efficiency, this probability calculation
process should converge fast.

The scheduler incurs performance overhead. Mutation
schedulers have impacts on the execution speed of fuzzers.
Since the execution speed is one of the key factors affecting
fuzzers’ efficiency, a better mutation scheduler should have
fewer computations, to avoid slowing down fuzzers.

Unbalanced data for machine learning. During fuzzing,
the numbers of positive and negative samples are not bal-
anced, e.g., a mutation operator could only generate interest-
ing test cases with a small probability, which may affect the
effectiveness of gradient descent algorithms and other ma-
chine learning algorithms [7, 8].

In this paper, we consider mutation scheduling as an op-
timization problem and propose a novel mutation schedul-
ing scheme MOPT, aiming at solving the aforementioned is-
sues and improving the fuzzing performance. Inspired by
the well-known optimization algorithm Particle Swarm Op-
timization (PSO) [19], MOPT dynamically evaluates the ef-
ficiency of candidate mutation operators, and adjusts their
selection probability towards the optimum distribution.

MOPT models each mutation operator as a particle mov-
ing along the probability space [xmin,xmax], where xmin and
xmax are the pre-defined minimal and maximal probability,
respectively. Guided by the local best probability and global
best probability, each particle (i.e., operator) moves towards
its optimal selection probability, which could yield more
good-quality test cases. Accordingly, the target of MOPT
is to find an optimal selection probability distribution of op-
erators by aggregating the probabilities found by the parti-
cles, such that the aggregation yields more good-quality test
cases. Similar to PSO, MOPT iteratively updates each par-
ticle’s probability according to its local best probability and
the global best probability. Then, it integrates the updated
probabilities of all particles to obtain a new probability dis-
tribution. MOPT can quickly converge to the best solution of
the probability distribution for selecting mutation operators
and thus improves the fuzzing performance significantly.

MOPT is a generic scheme that can be applied to a wide
range of mutation-based fuzzers. We have applied it to sev-
eral state-of-the-art fuzzers, including AFL [16], AFLFast
[5] and VUzzer [6], and implement MOPT-AFL, -AFLFast
and -VUzzer, respectively. In AFL and its descendants, we
further design a special pacemaker fuzzing mode, which
could further accelerate the convergence speed of MOPT.

We evaluated these prototypes on 13 real world pro-
grams. In total, MOPT-AFL discovered 112 security vul-
nerabilities, including 97 previously unknown vulnerabili-
ties (among which 66 are confirmed by CVE) and 15 known
CVE vulnerabilities. Compared to AFL, MOPT-AFL found

170% more vulnerabilities, 350% more crashes and 100%
more program paths. MOPT-AFLFast and MOPT-VUzzer
also outperformed their counterparts on our dataset. We fur-
ther demonstrated the rationality, steadiness and low costs of
MOPT.

In summary, we have made the following contributions:
• We investigated the drawbacks of existing mutation

schedulers, from which we conclude that mutation operators
should be scheduled based on their history performance.
• We proposed a novel mutation scheduling scheme

MOPT, which is able to choose better mutation operators and
achieve better fuzzing efficiency. It can be generally applied
to a broad range of existing mutation-based fuzzers.
• We applied MOPT to several state-of-the-art fuzzers,

including AFL, AFLFast and VUzzer, and evaluated them
on 13 real world programs. The results showed that MOPT
could find much more vulnerabilities, crashes and program
paths, with good steadiness, compatibility and low cost.
• MOPT-AFL discovers 97 previously unknown security

vulnerabilities, and helps the vendors improve their prod-
ucts’ security. It also finds 15 previously known vulnerabili-
ties in these programs (of latest versions), indicating that se-
curity patching takes a long time in practice. We open source
MOPT-AFL along with the employed data, seed sets, and
results at https://github.com/puppet-meteor/MOpt-AFL to fa-
cilitate the research in this area. A technical report with more
details can also be found there [20].

2 Background

2.1 Mutation-based Fuzzing
Mutation-based fuzzing [5, 6, 13, 14, 15, 16, 17, 18] is

good at discovering vulnerabilities, without utilizing prior
knowledge (e.g., test case specification) of target programs.
Instead, it generates new test cases by mutating some well-
formed seed test cases in certain ways.

The general workflow of mutation-based fuzzing is as fol-
lows. The fuzzer (1) maintains a queue of seed test cases,
which can be updated at runtime; (2) selects some seeds from
the queue in certain order; (3) mutates the seeds in various
ways; (4) tests target programs with the newly generated test
cases, and reports vulnerabilities or updates the seed queue
if necessary; then (5) goes back to step (2).

In order to efficiently guide the mutation and fuzzing,
some fuzzers will also instrument target programs to collect
runtime information during testing, and use it to guide seeds
updating and decide which seeds to select and how to mutate
them. In this paper, we mainly focus on the mutation phase
(i.e., step (3)).

2.2 Mutation Operators
Mutation-based fuzzers could mutate seeds in infinite

number of ways. Considering the performance and usability,

1950 28th USENIX Security Symposium USENIX Association

if(the first time
to mutate this

test case)

Deterministic stage

Operator: bitflip,
byteflip, arithmetic inc/
dec, interesting values,
auto extras, user extras.

Havoc stage

Operator: bitflip, byteflip,
arithmetic inc/dec,

interesting values, random
byte, delete bytes, insert
bytes, overwrite bytes.

Splicing stage

Operator:
cross over.

if(AFL mutates all the test
cases in the queue but
discovers no crashes or
paths && this test case

has not entered splicing
stage for this time)

Yes

No

Yes

Read next test case from the
fuzzing queue, start from the
first case again when fuzzer

finishes all the cases in queue.

No

Figure 1: Three mutation scheduling schemes used in the three stages of AFL [16].

Table 1: Mutation operators defined by AFL [16].
Type Meaning Operators

bitflip Invert one or several consecutive bits in a test
case, where the stepover is 1 bit.

bitflip 1/1,
bitflip 2/1,
bitflip 4/1

byteflip Invert one or several consecutive bytes in a test
case, where the stepover is 8 bits.

bitflip 8/8,
bitflip 16/8,
bitflip 32/8

arithmetic
inc/dec

Perform addition and subtraction operations on
one byte or several consecutive bytes.

arith 8/8,
arith 16/8,
arith 32/8

interesting
values

Replace bytes in the test cases with hard-coded
interesting values.

interest 8/8,
interest 16/8,
interest 32/8

user
extras

Overwrite or insert bytes in the test cases with
user-provided tokens.

user (over),
user (insert)

auto
extras

Overwrite bytes in the test cases with tokens rec-
ognized by AFL during bitflip 1/1.

auto extras
(over)

random
bytes

Randomly select one byte of the test case and
set the byte to a random value. random byte

delete
bytes

Randomly select several consecutive bytes and
delete them. delete bytes

insert
bytes

Randomly copy some bytes from a test case and
insert them to another location in this test case. insert bytes

overwrite
bytes

Randomly overwrite several consecutive bytes
in a test case.

overwrite
bytes

cross over Splice two parts from two different test cases to
form a new test case. cross over

in practice these fuzzers, including AFL [16] and its descen-
dants, libFuzzer [17], honggfuzz [18] and VUzzer [6], usu-
ally predefine a set of mutation operators, and choose some
of them to mutate seeds at runtime. These mutation operators
characterize where to mutate (e.g., which bytes) and how to
mutate (e.g., add, delete or replace bytes).

For example, the well-recognized fuzzer AFL predefines
11 types of mutation operators, as shown in Table 1. In each
type, there could be several concrete mutation operators. For
instance, the bitflip 2/1 operator flips 2 consecutive bits,
where the stepover is 1 bit. Note that, different fuzzers could
define different mutation operators.

2.3 Mutation Scheduling Schemes

At runtime, mutation-based fuzzers continuously select
some predefined mutation operators to mutate seed test
cases. Different fuzzers have different schemes to select oper-
ators. For example, AFL employs three different scheduling
schemes used in three stages, as shown in Fig. 1.

1. Deterministic stage scheduler. AFL applies a deter-
ministic scheduling scheme for seed test cases that are picked
to mutate for the first time. This scheduler employs 6 de-
terministic types of mutation operators in order, and applies
them on the seed test cases one by one. For instance, it will
apply bitflip 8/8 to flip each byte of the seed test cases.

2. Havoc stage scheduler. The major mutation schedul-
ing scheme of AFL is used in the havoc stage. As shown in

seed

seed pool

mutate

select
operators

apply
operators

mutation operators
(with distribution)

Rt times

Ro operators

interesting test cases

Rt test
 cases

Figure 2: The general workflow of mutation-based fuzzing
and mutation scheduling.

Fig. 2, AFL first decides the number, denoted as Rt , of new
test cases to generate in this stage. Each time, AFL selects
a series of Ro mutation operators following the uniform dis-
tribution, and applies them on the seed to generate one test
case. The havoc stage ends after Rt new test cases have been
generated.

3. Splicing stage scheduler. In some rare cases, AFL
works through the aforementioned two stages for all seeds,
but fails to discover any unique crash or path in one round.
Then AFL will enter a special splicing stage. In this stage,
AFL only employs one operator cross over to generate
new test cases. These new test cases will be fed to the havoc
stage scheduler, rather than the program being tested, to gen-
erate new test cases.

The mutation scheduler in the first stage is determinis-
tic and slow, while the one in the last stage is rarely used.
The scheduler in the havoc stage, as shown in Fig. 2, is
more generic and has been widely adopted by many fuzzers.
Therefore, in this paper we mainly focus on improving the
scheduler used in the havoc stage, which thus can be imple-
mented in most mutation-based fuzzers. More specifically,
we aim at finding an optimal probability distribution, fol-
lowing which the scheduler could select better mutation op-
erators and improve the fuzzing efficiency.

2.4 Mutation Efficiency
Different mutation operators work quite differently. An

intuitive assumption is that, they have different efficiency on
different target programs. Some are better than others at gen-
erating the test cases, denoted as interesting test cases, that
can trigger new paths or crashes.

To verify our hypothesis, we conducted an experiment on
AFL to evaluate each operator’s efficiency. To make the eval-
uation result deterministic, we only measured the interesting
test cases produced by 12 mutation operators in the deter-
ministic stage. The result is demonstrated in Fig. 3.

In the deterministic stage, the order of mutation operators
and the times they are selected are fixed. Fig. 4 shows the

USENIX Association 28th USENIX Security Symposium 1951

49%

9%
7%

1%
< 1%
1%

12%

< 1%
< 1%
4%

7%
8%

27%

14%

7%
< 1%

< 1%
< 1%

28%

9%
< 1%
2%

4%8%

33%

12%
5%< 1%

< 1%
1%

23%

2%
< 1%
2%

9%
10%

bitflip 1/1
bitflip 2/1
bitflip 4/1
bitflip 8/8
bitflip 16/8
bitflip 32/8
arith 8/8
arith 16/8
arith 32/8
interest 8/8
interest 16/8
interest 32/8

 (a) avconv

(b) exiv2 (c) tiff2bw

Figure 3: Percentages of interesting test cases produced by
different operators in the deterministic stage of AFL.

order and the times that operators are selected by AFL during
fuzzing avconv, indicating the time the fuzzer spent on.
• Different mutation operators’ efficiencies on one target

program are different. For most programs, the operators
bitflip 1/1, bitflip 2/1 and arith 8/8 could yield
more interesting test cases than other operators. On the other
hand, several other mutation operators, such as bitflip

16/8, bitflip 32/8 and arith 32/8, could only produce
less than 2% of interesting test cases.
• Each operator’s efficiency varies with target programs.

An operator could yield good outputs on one program, but
fail on another one. For example, arith 8/8 performs well
on exiv2 and tiff2bw, but only finds 12% of the interesting
test cases on avconv.
• AFL spends most time on the deterministic stage. We

record the time each stage spends and the number of inter-
esting test cases found by each stage in 24 hours, as shown
in Fig. 5. We first analyze a special case. For tiff2bw,
since AFL cannot find more interesting test cases, it finishes
the deterministic stage of all the inputs in the fuzzing queue
and skips the deterministic stage for a long time. Then, AFL
spends most time on the havoc stage while finding nothing.
For the other three cases, AFL spends more than 70% of the
time on the deterministic stage. When fuzzing avconv, AFL
even does not finish the deterministic stage of the first in-
put in 24 hours. Another important observation is that the
havoc stage is more efficient in finding interesting test cases
compared to the deterministic stage. Moreover, since AFL
spends too much time on the deterministic stage of one in-
put, it cannot generate test cases from the later inputs in the
fuzzing queue when fuzzing avconv and pdfimages given
24 hours. Note that since the splicing stage only uses cross
over to mutate the test cases, it spends too little time to be
shown in Fig. 5 compared to the other stages that will test
the target program as mentioned in Section 2.3.
• AFL spends much time on the inefficient mutation oper-

ators. Fig. 3 shows that, the mutation operators bitflip

1/1 and bitflip 2/1 have found the most interesting test
cases. But according to Fig. 4, they are only selected for
a small number of times. On the other hand, inefficient op-
erators like the ones of interesting values are selected
too frequently but produce few interesting test cases, which

0

Exe
cut

ion
 tim

es
(e

ga)

Figure 4: The times that mutation operators are selected
when AFL fuzzes a target program avconv.

 time finding time finding time finding time finding
 avconv exiv2 tiff2bw pdfimages

0

0.2

0.4

0.6

0.8

1

deterministic stage
havoc stage
splicing stage

100% 100%

72.4%

27.6%

58.1%

41.9%

22.3%

77.7%

91.2%

8.8%

98.8%

1.2%

87.9%

12.1%

Figure 5: Percentages of time and interesting test cases used
and found by the three stages in AFL, respectively.

decreases the fuzzing efficiency.

Motivation. Based on the analysis above, we observe
that different mutation operators have different efficiencies.
Hence, the mutation schedulers in existing fuzzers, which
follow some pre-defined distributions, are not efficient. Ide-
ally, more time should be spent on mutation operators that
perform better at generating interesting test cases. Therefore,
a better mutation scheduler is demanded.

3 Overview of MOPT

3.1 Design Philosophy
The mutation scheduler aims at choosing the next opti-

mal mutation operator, which could find more interesting test
cases, for a given runtime context. We simplify this prob-
lem as finding an optimal probability distribution of muta-
tion operators, following which the scheduler chooses next
operators when testing a target program.

Finding an optimal probability distribution for all muta-
tion operators is challenging. Instead, we could first let each
operator explore its own optimal probability. Then, based on
those optimal probabilities, we could obtain a global optimal
probability distribution of mutation operators.

The Particle Swarm Optimization (PSO) algorithm can be
leveraged to find the optimal distribution of the operators and
we detail the modification of PSO in our setting as follows.

3.2 Particle Swarm Optimization (PSO)
The PSO [19] algorithm is proposed by Eberhart and

Kennedy, aiming at finding the optimal solution for a prob-
lem. It employs multiple particles to search the solution
space iteratively, in which a position is a candidate solution.

As shown in Fig. 6, in each iteration, each particle is
moved to a new position xnow, based on (1) its inertia (i.e.,

1952 28th USENIX Security Symposium USENIX Association

previous movement vnow), (2) displacement to its local best
position Lbest that this particle has found so far, and (3) dis-
placement to the global best position Gbest that all particles
have found so far. Specifically, the movement of a particle P
is calculated as follows:

vnow(P)← w× vnow(P)+r× (Lbest(P)− xnow(P))

+r× (Gbest − xnow(P)).
(1)

xnow(P)← xnow(P)+ vnow(P). (2)

where w is the inertia weight and r ∈ (0,1) is a random dis-
placement weight.

Hence, each particle moves towards Lbest and Gbest , and is
likely to keep moving to better positions. By moving towards
Gbest , multiple particles could work synchronously and avoid
plunging into the local optimum. As a result, the swarm will
be led to the optimal solution. Moreover, PSO is easy to
implement with low computational cost, making it a good fit
for optimizing mutation scheduling.

3.3 Design Details
MOPT aims to find an optimal probability distribution.

Rather than employing particles to explore candidate dis-
tributions directly, we propose a customized PSO algorithm
to explore each operator’s optimal probability first, and then
construct the optimal probability distribution.

3.3.1 Particles

MOPT employs a particle per operator, and tries to ex-
plore an optimal position for each operator in a predefined
probability space [xmin,xmax], where 0 < xmin < xmax ≤ 1.

The current position of a particle (i.e., operator) in the
probability space, i.e., xnow, represents the probability that
this operator will be selected by the scheduler. Due to the
nature of probabilities, the sum of all the particles’ probabil-
ities in one iteration should be normalized to 1.

3.3.2 Local Best Position Lbest

Similar to PSO, MOPT also appoints the best position that
a particle has ever found as its local best position.

For a given particle, a position x1 is better than x2, if and
only if, its corresponding operator yields more interesting
test cases (with a same amount of invocations) in the for-
mer position than the latter. Thus, Lbest is the position of the
particle where the corresponding operator yields the most in-
teresting test cases (given the same amount of invocations).

To enable this comparison, for each particle (i.e., opera-
tor), we measure its local efficiency e f fnow, i.e., the number
of interesting test cases contributed by this operator divided
by the number of invocations of this operator during one it-
eration. We denote the largest e f fnow as e f fbest . Thus, Lbest
is the position where the operator obtains e f fbest in history.

Solution space

1-st iteration

2-nd iteration

4-th iteration

5-th iteration

3-rd iteration

: Evolution
path

: Position of
particle

: Current local
best position

: Current global
best position

vnow
: xnow

Figure 6: An example of illustrating the evolution of one
particle at the 5-th iteration according to the PSO.

3.3.3 Global Best Position Gbest

PSO appoints the best position that all particles have ever
found as the global best position. Note that, unlike the orig-
inal PSO which moves particles in a unified solution space,
MOPT moves particles in different probability spaces (with
same shape and size). Hence, there is no sole global best
position fit for all particles. Instead, different particles have
different global best positions (in different spaces) here.

In PSO, global best positions depend on the relationship
between different particles. Hereby we also evaluate each
particle’s efficiency from a global perspective, denoted as
global efficiency globale f f , by evaluating multiple swarms
of particles at a time.

More specifically, we measure the number of interesting
test cases contributed by each operator till now in all swarms,
and use it as the particle’s global efficiency globale f f . Then
we compute the distribution of all particles’ global efficiency.
For each operator (i.e., particle), its global best position Gbest
is defined as the proportion of its globale f f in this distribu-
tion. With this distribution, particles (i.e., operators) with
higher efficiency can get higher probability to be selected.

3.3.4 Multiple Swarms

Given the definitions of particles, local best positions and
global best positions, we could follow the PSO algorithm to
approach to an optimal solution (i.e., a specific probability
distribution of mutation operators).

However, unlike the original PSO swarm that has multiple
particles exploring the solution space, the swarm defined by
MOPT actually only explores one candidate solution (i.e.,
probability distribution) in the solution space, and thus is
likely to fall into local optimum. Thus, MOPT employs mul-
tiple swarms and applies the customized PSO algorithm to
each swarm, as shown in Fig. 7, to avoid local optimum.

Synchronization is required between these swarms.
MOPT simply takes the most efficient swarm as the
best and uses its distribution to schedule mutation during
fuzzing. Here, we define the swarm’s efficiency (denoted as
swarme f f) as the number of interesting test cases contributed
by this swarm divided by the number of new test cases dur-
ing one iteration.

Overview: In summary, MOPT employs multiple swarms
and applies the customized PSO algorithm to each swarm.
During fuzzing, the following three extra tasks are performed

USENIX Association 28th USENIX Security Symposium 1953

: particle

: probability
 distribution

: selection
 probability

: range of
 probability

Swarm 2
Distributionxmax

xmin

xnow

Swarm 1
Distributionxmax

xmin

xnow

Operator 1 Operator 2 Operator 3 Operator 4 Operator 5 Operator 6

Figure 7: Illustration of the particle swarms of MOPT.

in each iteration of PSO.
• T1: Locate local best positions for all particles in each

swarm. Within each swarm, each particle’s local efficiency
e f fnow in one iteration is evaluated during fuzzing. For each
particle, the position with the highest efficiency e f fbest in
history is marked as its local best position Lbest .
• T2: Locate global best positions for all particles across

swarms. Each particle’s global efficiency globale f f is evalu-
ated across swarms. The distribution of the particles’ global
efficiency is then evaluated. The proportion of each parti-
cle’s globale f f in this distribution is used as its global best
position Gbest .
• T3: Select the best swarm to guide fuzzing. Each

swarm’s efficiency swarme f f in one iteration is evaluated.
The swarm with the highest swarme f f is chosen, and its
probability distribution in the current iteration is applied for
further fuzzing.

Then, at the end of each iteration, MOPT moves the par-
ticles in each swarm in a similar way as PSO. More specifi-
cally, for a particle Pj in a swarm Si, we update its position
as follows.

vnow[Si][Pj]←w× vnow[Si][Pj]

+r× (Lbest [Si][Pj]− xnow[Si][Pj])

+r× (Gbest [Pj] − xnow[Si][Pj]).

(3)

xnow[Si][Pj]← xnow[Si][Pj]+ vnow[Si][Pj]. (4)

where w is the inertia weight and r ∈ (0,1) is a random dis-
placement weight.

Further, we normalize these positions to meet some con-
straints. First, each particle’s position is adjusted to fit in
the probability space [xmin,xmax]. Then for each swarm, all
its particles’ positions (i.e., probabilities) will be normalized,
such that the sum of these probabilities equals to 1.

After updating the positions of all particles in all swarms,
the fuzzer could keep moving those particles into new posi-
tions, and enter a new iteration of PSO.

4 Implementation of MOPT

4.1 MOPT Main Framework
As shown in Fig. 8, MOPT consists of four core modules,

i.e., the PSO initialization and updating modules, as well as
the pilot fuzzing and core fuzzing modules.

The PSO initialization module is executed once and used
for setting the initial parameters of the PSO algorithm. The

PSO
Initialization

Module

Pilot Fuzzing Module Core Fuzzing Module

PSO
Updating
Module

multi-swarm
fuzzing

efficiency
measurement

single-swarm
fuzzing

efficiency
measurement

crashes/
vulnerabilities

swarm
efficiency

global
efficiency

local
efficiency

Figure 8: The workflow of MOPT.

other three modules form an iteration loop and work together
to continuously fuzz target programs.

In each iteration of the loop, the PSO particles are updated
once. In order to update particles’ positions with the PSO
algorithm, we need to find each particle’s local best position
and global best position in each iteration.
• The pilot fuzzing module employs multiple swarms, i.e.,

multiple probability distributions, to select mutation opera-
tors and fuzz. During fuzzing, the local efficiency of each
particle in each swarm is measured. Hence, we could find
the local best position of each particle in each swarm.
• Moreover, during the pilot fuzzing, each swarm’s effi-

ciency is also evaluated. Then, the most efficient swarm is
chosen, and the core fuzzing module will use the probability
distribution explored by it to schedule mutation operators.
• After the core fuzzing module finishes, the total number

of interesting test cases contributed by each operator till now
can be evaluated. Hence, each particle’s global efficiency
(i.e., global best position) could be evaluated.

With this iteration loop, the fuzzer could utilize the PSO
to find an optimal probability distribution to select mutation
operators, and gradually improve the fuzzing efficiency.

Note that, MOPT’s workflow is independent from the tar-
get fuzzer, as long as the fuzzer’s mutation scheduler uses a
probability distribution to select operators. We do not need
to change the behavior of the target fuzzer, except that eval-
uating the efficiency of the fuzzer in order to move PSO par-
ticles. The instrumentation to the target fuzzer is minimum
and costs few performance overhead.

Hence, MOPT is a generic and practical mutation schedul-
ing scheme, and can be applied to a variety of fuzzers.

4.1.1 PSO Initialization Module

This module initializes parameters for the PSO algorithm.
More specifically, MOPT (1) sets the initial location xnow of
each particle in each swarm with a random value, and nor-
malizes the sum of xnow of all the particles in one swarm
to 1; (2) sets the displacement of particle movement vnow of
each particle in each swarm to 0.1; (3) sets the initial lo-
cal efficiency e f fnow of each particle in each swarm to 0;
(4) sets the initial local best position Lbest of each particle in
each swarm to 0.5; and (5) sets the initial global best posi-
tion Gbest of each particle across swarms to 0.5. Note that,
the initialization module only executes once when the fuzzer
starts running.

1954 28th USENIX Security Symposium USENIX Association

4.1.2 Pilot Fuzzing Module

This module employs multiple swarms to perform
fuzzing, where each swarm explores a different probability
distribution. This module evaluates each swarm in order, and
stops testing a swarm after it has generated a configurable
number (denoted as periodpilot) of new test cases. The pro-
cess of fuzzing with a specific swarm is as follows.

For each swarm, its probability distribution is used to
schedule the selection of mutation operators and fuzz the tar-
get program. During fuzzing, the module will measure three
measurements: (1) the number of interesting test cases con-
tributed by a specific particle (i.e., operator), (2) the number
of invocations of a specific particle, (3) the number of in-
teresting test cases found by this swarm, by instrumenting
target programs.

The local efficiency of each particle (in current swarm) is
the first measurement divided by the second measurement.
Hence, we could locate the local best position of each par-
ticle. The current swarm’s efficiency is the third measure-
ment divided by the test case count periodpilot . Therefore,
we could find the most efficient swarm.

4.1.3 Core Fuzzing Module

This module will take the best swarm selected by the pilot
fuzzing module, and use its probability distribution to per-
form fuzzing. It will stop after generating a configurable
number (denoted as periodcore) of new test cases.

Once it stops, we could measure the number of interest-
ing test cases contributed by each particle, regardless which
swarm it belongs to, from the start of PSO initialization till
now. Then we could calculate the distribution between par-
ticles, and locate each particle’s global best position.

Note that, if we only use one swarm in the pilot module,
then the core module could be merged with the pilot module.

4.1.4 PSO Updating Module

With the information provided by the pilot and core
fuzzing modules, this module updates the particles in each
swarm, following Equations 3 and 4.

After updating each particle, we will enter the next itera-
tion of PSO updates. Hence, we could approach to an opti-
mal swarm (i.e., probability distribution for operators), use
it to guide the core fuzzing module, and help improve the
fuzzing efficiency.

4.2 Pacemaker Fuzzing Mode

Although applying MOPT to mutation-based fuzzers is
generic, we realize the performance of MOPT can be further
optimized when applied to specific fuzzers such as AFL.

Table 2: Objective programs evaluated in our experiments.
Target Source file Input format Test instruction

mp42aac Bento4-1-5-1 mp4 mp42aac @@ /dev/null
exiv2 exiv2-0.26-trunk jpg exiv2 @@ /dev/null

mp3gain mp3gain-1 5 2 mp3 mp3gain @@ /dev/null
tiff2bw libtiff-4.0.9 tiff tiff2bw @@ /dev/null

pdfimages xpdf-4.00 PDF pdfimages @@ /dev/null
sam2p sam2p-0.49.4 bmp sam2p @@ EPS: /dev/null
avconv libav-12.3 mp4 avconv -y -i @@ -f null -
w3m w3m-0.5.3 text w3m @@

objdump binutils-2.30 binary objdump –dwarf-check -C
-g -f -dwarf -x @@

jhead jhead-3.00 jpg jhead @@
mpg321 mpg321 0.3.2 mp3 mpg321 -t @@ /dev/null
infotocap ncurses-6.1 text infotocap @@

podofopdfinfo podofo-0.9.6 PDF podofopdfinfo @@

Based on extensive empirical analysis, we realize that
AFL and its descendants spend much more time on the de-
terministic stage, than on the havoc and splicing stages that
can discover many more unique crashes and paths. MOPT
therefore provides an optimization to AFL-based fuzzers, de-
noted as pacemaker fuzzing mode, which selectively avoids
the time-consuming deterministic stage.

Specifically, when MOPT finishes mutating one seed test
case, if it has not discovered any new unique crash or path
for a long time, i.e., T that is set by users, it will selectively
disable the deterministic stage for the following test cases.
The pacemaker fuzzing mode has the following advantages.
• The deterministic stage spends too much time and would

slow down the overall efficiency. On the other hand, MOPT
only updates the probability distribution in the havoc stage,
independent from the deterministic stage. Therefore, dis-
abling the deterministic stage with the pacemaker fuzzing
mode could accelerate the convergence speed of MOPT.
• In this mode, the fuzzer can skip the deterministic stage,

without spending too much time on a sole test case. Instead,
it will pick more seeds from the fuzzing queue for mutation,
and thus has a better chance to find vulnerabilities faster.
• The deterministic stage may have good performance

at the beginning of fuzzing, but becomes inefficient after a
while. This mode selectively disables this stage only after
the efficiency slows down, and thus benefits from this stage
while avoiding wasting much time on it.

More specifically, MOPT provides two types of pace-
maker fuzzing modes for AFL, based on whether the deter-
ministic stage will be re-enabled or not: (1) MOPT-AFL-tmp,
which will re-enable the deterministic stage again when the
number of new interesting test cases exceeds a predefined
threshold; (2) MOPT-AFL-ever, which will never re-enable
the deterministic stage in the following fuzzing process.

5 Evaluation

5.1 Real World Datasets
We have evaluated MOPT on 13 open-source linux pro-

grams as shown in Table 2, each of which comes from dif-

USENIX Association 28th USENIX Security Symposium 1955

Table 3: The unique crashes and paths found by AFL, MOPT-AFL-tmp and MOPT-AFL-ever on the 13 real world programs.

Program AFL MOPT-AFL-tmp MOPT-AFL-ever
Unique
crashes

Unique
paths

Unique
crashes Increase Unique

paths Increase Unique
crashes Increase Unique

paths Increase

mp42aac 135 815 209 +54.8% 1,660 +103.7% 199 +47.4% 1,730 +112.3%
exiv2 34 2,195 54 +58.8% 2,980 +35.8% 66 +94.1% 4,642 +111.5%

mp3gain 178 1,430 262 +47.2% 2,211 +54.6% 262 +47.2% 2,206 +54.3%
tiff2bw 4 4,738 85 +2,025.0% 7,354 +55.2% 43 +975.0% 7,295 +54.0%

pdfimages 23 12,915 357 +1,452.2% 22,661 +75.5% 471 +1,947.8% 26,669 +106.5%
sam2p 36 531 105 +191.7% 1,967 +270.4% 329 +813.9% 3,418 +543.7%
avconv 0 2,478 4 +4 17,359 +600.5% 1 +1 16,812 +578.5%
w3m 0 3,243 506 +506 5,313 +63.8% 182 +182 5,326 +64.2%

objdump 0 11,565 470 +470 19,309 +67.0% 287 +287 22,648 +95.8%
jhead 19 478 55 +189.5% 489 +2.3% 69 +263.2% 483 +1.0%

mpg321 10 123 236 +2,260.0% 1,054 +756.9% 229 +2,190.0% 1,162 +844.7%
infotocap 92 3,710 340 +269.6% 6,157 +66.0% 692 +652.2% 7,048 +90.0%

podofopdfinfo 79 3,397 122 +54.4% 4,704 +38.5% 114 +44.3% 4,694 +38.2%
total 610 47,618 2,805 +359.8% 93,218 +95.8% 2,944 +382.6% 104,133 +118.7%

ferent source files and has different functionality represent-
ing a broad range of programs. We choose these 13 pro-
grams mainly for the following reasons. First, many of the
employed programs are also widely used in state-of-the-art
fuzzing research [4, 5, 9, 10, 21]. Second, most programs
employed in our experiments are real world programs from
different vendors and have diverse functionalities and vari-
ous code logic. Therefore, our datasets are representative and
can all-sidedly measure the fuzzing performance of fuzzers
to make our analysis more comprehensive. Third, all the
employed programs are popular and useful open-source pro-
grams. Hence, evaluating the security of these programs are
meaningful for the vendors and users of them.

5.2 Experiment Settings

The version of AFL used in our paper is 2.52b. We apply
MOPT in the havoc stage of AFL and implement the pro-
totypes of MOPT-AFL-tmp and MOPT-AFL-ever, where -
tmp and -ever indicate the corresponding pacemaker fuzzing
modes discussed in the previous section. The core functions
of MOPT is implemented in C.

Platform. All the experiments run on a virtual machine
configured with 1 CPU core of 2.40GHz E5-2640 V4, 4.5GB
RAM and the OS of 64-bit Ubuntu 16.04 LTS.

Initial seed sets. Following the same seed collection and
selection procedure as in previous works [3, 22, 23], we use
randomly-selected files as the initial seed sets. In particu-
lar, for each objective program, we obtain 100 files with the
corresponding input format as the initial seed set, e.g., we
collect 100 mp3 files for mp3gain. The input format of each
program is shown in Table 2. In particular, we first download
the files with the corresponding input formats for each ob-
jective program from the music download websites, picture
download websites, and so on (except for text files, where we
obtain text files by randomly generating letters to fill them).
Then, for the large files such as mp3 and PDF, we split them
to make their sizes reasonable as seeds. Through this way,

we have a large corpus of files with the corresponding input
formats for each objective program. Finally, we randomly
select 100 files from the corpus. These 100 files will be the
initial seed set of all the fuzzers when fuzzing one objective
program.

Evaluation metrics. The main evaluation metric is the
number of the unique crashes discovered by each fuzzer.
Since coverage-based fuzzers such as AFLFast [5] and
VUzzer [6] consider that exploring more unique paths leads
to more unique crashes, the second evaluation metric is the
number of unique paths discovered by each fuzzer.

5.3 Unique Crashes and Paths Discovery

We evaluate AFL, MOPT-AFL-tmp and MOPT-AFL-ever
on the 13 programs in Table 2, with each experiment runs for
240 hours. The results are shown in Table 3, from which we
can deduce the following conclusions.
• For exploring unique crashes, MOPT-AFL-tmp and

MOPT-AFL-ever are significantly more efficient than AFL
on all the programs. In total, MOPT-AFL-tmp and MOPT-
AFL-ever discover 2,195 and 2,334 more unique crashes
than AFL on the 13 programs. Thus, MOPT-AFL has much
better performance than AFL in exploring unique crashes.
• For triggering unique paths, MOPT-AFL-tmp and

MOPT-AFL-ever also significantly outperform AFL. In to-
tal, MOPT-AFL-tmp and MOPT-AFL-ever found 45,600
and 56,515 more unique paths than AFL on the 13 programs.
As a result, the proposed MOPT can improve the coverage of
AFL remarkably.
•When considering the pacemaker fuzzing mode, MOPT-

AFL-tmp and MOPT-AFL-ever discover the most unique
crashes on 8 and 6 programs, respectively, while MOPT-
AFL-ever discovers more crashes in total. Since the main
difference between the two fuzzers is whether using the de-
terministic stage later, it may be an interesting future work
to figure out how to employ the deterministic stage properly.

1956 28th USENIX Security Symposium USENIX Association

Table 4: Vulnerabilities found by AFL, MOPT-AFL-tmp and MOPT-AFL-ever.

Program
AFL MOPT-AFL-tmp MOPT-AFL-ever

Unknown vulnerabilities Known vul-
nerabilities Sum Unknown vulnerabilities Known vul-

nerabilities Sum Unknown vulnerabilities Known vul-
nerabilities Sum

Not CVE CVE CVE Not CVE CVE CVE Not CVE CVE CVE

mp42aac / 1 1 2 / 2 1 3 / 5 1 6
exiv2 / 5 3 8 / 5 4 9 / 4 4 8

mp3gain / 4 2 6 / 9 3 12 / 5 2 7
pdfimages / 1 0 1 / 12 3 15 / 9 2 11

avconv / 0 0 0 / 2 0 2 / 1 0 1
w3m / 0 0 0 / 14 0 14 / 5 0 5

objdump / 0 0 0 / 1 2 3 / 0 2 2
jhead / 1 0 1 / 4 0 4 / 5 0 5

mpg321 / 0 1 1 / 0 1 1 / 0 1 1
infotocap / 3 0 3 / 3 0 3 / 3 0 3

podofopdfinfo / 5 0 5 / 6 0 6 / 6 0 6
tiff2bw 1 / / 1 2 / / 2 2 / / 2
sam2p 5 / / 5 14 / / 14 28 / / 28
Total 6 20 7 33 16 58 14 88 30 43 12 85

5.4 Vulnerability Discovery

To figure out the corresponding vulnerabilities of the
crashes found in Section 5.3, we recompile the evaluated
programs with AddressSanitizer [24] and reevaluate them
with the discovered crash inputs. If the top three source code
locations of the stack trace provided by AddressSanitizer are
unique, we consider the corresponding crash input triggers
a unique vulnerability of the objective program. This is a
common way to find unique vulnerabilities in practice and
has been used to calculate the stack hashing in [25]. Then,
we check the vulnerability reports of the target program on
the CVE website to see whether they correspond to some
already existed CVEs. If not, we submit the vulnerability re-
ports and the Proof of Concepts (PoCs) to the vendors and
the CVE assignment team. The vulnerabilities discovered
by AFL, MOPT-AFL-tmp and MOPT-AFL-ever are shown
in Table 4, from which we have the following conclusions.
• Both MOPT-AFL-tmp and MOPT-AFL-ever discover

more vulnerabilities than AFL by a wide margin. For in-
stance, MOPT-AFL-tmp finds 45 more security CVEs than
AFL; MOPT-AFL-ever finds 23 more unreported CVEs than
AFL; Our fuzzers find 81 security CVEs with 66 new CVE
IDs assigned on 11 programs. The results demonstrate that
MOPT-AFL is very effective on exploring CVEs.
• Our fuzzers discover 15 previously known vulnerabili-

ties published by CVE on the latest version of the objective
programs. For instance, when fuzzing pdfimages, MOPT-
AFL-tmp and MOPT-AFL-ever discover 3 and 2 existed vul-
nerabilities, respectively. The results demonstrate that secu-
rity patching takes a long time in practice.
• AFL, MOPT-AFL-tmp and MOPT-AFL-ever discover

1, 2 and 2 unique vulnerabilities on tiff2bw, respectively.
As for sam2p, MOPT-AFL-tmp and MOPT-AFL-ever dis-
cover 14 and 28 unique vulnerabilities, respectively. In com-
parison, AFL only finds 5 vulnerabilities. Since the vulner-
abilities happened in the tiff2bw command-line program
and the CVE assignment team thinks that sam2p is a UNIX
command line program rather than a library, they cannot as-

sign CVE IDs for the vulnerabilities on tiff2bw and sam2p.
On all the 13 programs, MOPT-AFL-tmp and MOPT-AFL-
ever discover 112 unique vulnerabilities in total, and AFL
discovers 33 vulnerabilities.

5.5 CVE Analysis

In this subsection, we analyze the CVEs discovered in
Section 5.4 in detail and discuss the performance of different
fuzzers. We also measure the severity of each CVE for each
program by leveraging the Common Vulnerability Scoring
System (CVSS) [26] and show the highest score in Table 5.
We can learn the following conclusions.
• Both MOPT-AFL-tmp and MOPT-AFL-ever find more

kinds of vulnerabilities than AFL, which means MOPT-AFL
does not limit on discovering specific kinds of vulnerabili-
ties. In other words, the MOPT scheme can guide the fuzzing
tools to discover various vulnerabilities.
• We realize that MOPT-AFL-tmp discovers signifi-

cantly more unique vulnerabilities than MOPT-AFL-ever on
pdfimages and w3m. We analyze the reasons as follows.
First of all, we would like to clarify the functionalities of
these two objective programs. pdfimages is used to save
images from the PDF files as the image files locally. w3m

is a pager and/or text-based browser, which can handle ta-
bles, cookies, authentication, and almost everything except
for JavaScript. We notice that PDF files have complex struc-
tures and so do the web data handled by w3m. Thus, there are
many magic byte checks in pdfimages and w3m to handle
the complex structures. Because it is hard to randomly gener-
ate a particular value, the operators in the deterministic stage,
such as flipping the bits one by one (bitflip) and replacing the
bytes with interesting values (interesting values), are better
than the ones in the havoc stage to pass the magic byte checks
and to test deeper execution paths. MOPT-AFL-tmp per-
forms better than MOPT-AFL-ever on pdfimages and w3m

since MOPT-AFL-tmp enables the deterministic stage later
while MOPT-AFL-ever does not. However, since the deter-
ministic stage performs multiple kinds of operators on each

USENIX Association 28th USENIX Security Symposium 1957

Table 5: The types and IDs of CVE discovered by AFL, MOPT-AFL-tmp and MOPT-AFL-ever.
Target Types AFL MOPT-AFL-tmp MOPT-AFL-ever Severity

mp42aac buffer overflow CVE-2018-10785 CVE-2018-10785; CVE-2018-18037 CVE-2018-10785; CVE-2018-18037; CVE-2018-17814 4.3
memory leaks CVE-2018-17813 CVE-2018-17813 CVE-2018-17813; CVE-2018-18050; CVE-2018-18051 4.3

exiv2

heap overflow CVE-2017-11339; CVE-2017-17723;
CVE-2018-18036 CVE-2017-11339; CVE-2017-17723; CVE-2018-10780 CVE-2017-11339; CVE-2017-17723; CVE-2018-18036 5.8

stack overflow CVE-2017-14861 CVE-2017-14861 CVE-2017-14861 4.3
buffer overflow CVE-2018-18047 CVE-2018-17808; CVE-2018-18047 CVE-2018-18047 4.3

segmentation violation CVE-2018-18046 CVE-2018-18046 CVE-2018-18046 4.3
memory access

violation CVE-2018-17809; CVE-2018-17807 CVE-2018-17809; CVE-2018-17823 CVE-2017-11337; CVE-2018-17809 4.3

mp3gain

stack buffer overflow CVE-2017-14407 CVE-2017-14407; CVE-2018-17801; CVE-2018-17799 CVE-2017-14407 4.3

global buffer overflow CVE-2018-17800; CVE-2018-17802;
CVE-2018-18045; CVE-2018-18043

CVE-2017-14409; CVE-2018-17800; CVE-2018-17803; CVE-2018-17802;
CVE-2018-18045; CVE-2018-18043; CVE-2018-18044

CVE-2018-17800; CVE-2018-17803; CVE-2018-17802;
CVE-2018-18045; CVE-2018-18043 6.8

segmentation violation CVE-2017-14406 CVE-2017-14412 CVE-2017-14412 6.8
memcpy param

overlap CVE-2018-17824 5.8

pdfimages

heap buffer overflow CVE-2018-8103; CVE-2018-18054 4.3

stack overflow CVE-2018-17114
CVE-2018-16369; CVE-2018-17114; CVE-2018-17115; CVE-2018-17116;
CVE-2018-17117; CVE-2018-17119; CVE-2018-17120; CVE-2018-17121;

CVE-2018-17122; CVE-2018-18053; CVE-2018-18055

CVE-2018-16369; CVE-2018-17115; CVE-2018-17116;
CVE-2018-17119; CVE-2018-17121; CVE-2018-17122;

CVE-2018-18053
6.1

global buffer overflow CVE-2018-8102 CVE-2018-8102 4.3
alloc dealloc

mismatch CVE-2018-17118 CVE-2018-17118 4.3

segmentation violation CVE-2018-17123; CVE-2018-17124 4.3

avconv segmentation violation CVE-2018-17804 CVE-2018-17804 4.3
memory leaks CVE-2018-17805 4.3

w3m segmentation violation

CVE-2018-17815; CVE-2018-17816; CVE-2018-17817; CVE-2018-17818;
CVE-2018-17819; CVE-2018-17821; CVE-2018-17822; CVE-2018-18038;
CVE-2018-18039; CVE-2018-18040; CVE-2018-18041; CVE-2018-18042;

CVE-2018-18052

CVE-2018-17816; CVE-2018-18040; CVE-2018-18041;
CVE-2018-18042 5.3

memory leaks CVE-2018-17820 CVE-2018-17820 4.3

objdump stack exhaustion CVE-2018-12700 CVE-2018-12641 5.0
stack overflow CVE-2018-9138; CVE-2018-16617 CVE-2018-9138 4.3

jhead heap buffer overflow CVE-2018-17810 CVE-2018-17810; CVE-2018-17811; CVE-2018-18048; CVE-2018-18049 CVE-2018-17810; CVE-2018-17811; CVE-2018-17812;
CVE-2018-18048; CVE-2018-18049 4.3

mpg321 heap buffer overflow CVE-2017-12063 CVE-2017-12063 CVE-2017-12063 4.3

infotocap memory leaks CVE-2018-16614 CVE-2018-16614 CVE-2018-16614 4.3
segmentation violation CVE-2018-16615; CVE-2018-16616 CVE-2018-16615; CVE-2018-16616 CVE-2018-16615; CVE-2018-16616 4.3

podofopdfinfo
stack overflow CVE-2018-18216; CVE-2018-18221;

CVE-2018-18222 CVE-2018-18216; CVE-2018-18217; CVE-2018-18221; CVE-2018-18222 CVE-2018-18216; CVE-2018-18217; CVE-2018-18218;
CVE-2018-18221 4.7

heap buffer overflow CVE-2018-18219 CVE-2018-18219 CVE-2018-18219 4.3
segmentation violation CVE-2018-18220 CVE-2018-18220 CVE-2018-18220 4.3

bit/byte of the test cases, it takes a lot of time to finish all the
operations on each test case in the fuzzing queue, leading to
the low efficiency. On the other hand, MOPT-AFL-tmp tem-
porarily uses the deterministic stage on different test cases in
the fuzzing queue to avoid this disadvantage.
• Interestingly, we can also see that although we fuzz the

objective programs with the latest version, MOPT-AFL still
discovers already existed CVEs. For instance, we reproduce
the Proof of Concepts (PoCs) of CVE-2017-17723 of exiv2,
which can cause the overflow and has 5.8 CVSS Score ac-
cording to CVE Details [27]. It may because the vendors do
not patch the vulnerabilities before the release or they patch
the vulnerabilities while MOPT-AFL still discovers other
PoCs. Therefore, the servers using these programs may be
attacked because of these vulnerabilities. In addition, most
of the discovered vulnerabilities can crash the programs and
allow remote attackers to launch denial of service attacks via
a crafted file. Thus, a powerful fuzzer is needed to improve
the security patching.

Case study: CVE-2018-18054 in pdfimages. An inter-
esting vulnerability we found is a heap buffer overflow in
pdfimages. Although the PDF files in the seed set do not
contain pictures that use the CCITTFax encoding, a test case
generated by MOPT-AFL-tmp still triggers the CCITTFax
decoding process of pdfimages. Furthermore, even the PDF
syntax of this test case is partially damaged, pdfimages con-
tinues to extract the pictures from it. Then, the test case trig-
gers the function GBool CCITTFaxStream::readRow() in
Stream.cc for multiple times and finally accesses the data
that exceed the index of the array refLine, which leads to a

heap buffer overflow. This vulnerability shows the powerful
mutation capability of MOPT-AFL-tmp, which not only gen-
erates a structure similar to an encoding algorithm but also
triggers an array out of bounds.

5.6 More Analysis on Discovered Crashes

In this subsection, we give a close look on the growth of
the number of unique crashes discovered by MOPT-AFL-
ever, MOPT-AFL-tmp and AFL. The results are shown in
Fig. 9, from which we have the following conclusions.

• Both MOPT-AFL-ever and MOPT-AFL-tmp are effec-
tive at finding unique crashes. On most programs, they take
fewer than 100 hours to find more unique crashes than AFL
does in 240 hours.

• We can learn from Fig. 9 (c) and (f) that within a
relatively short time, AFL may discover more crashes than
MOPT-AFL-ever and MOPT-AFL-tmp. The reasons are as
follows. First, mutation-based fuzzing has randomness, and
naturally such randomness may cause performance shaking
within a short time. However, relatively stable performance
will exhibit in a long time-scale as shown in the experiments.
Second, the selection probability distribution of mutation
operators in MOPT-AFL-ever and MOPT-AFL-tmp adopts
random initialization, which may cause fuzzing randomness
in the early fuzzing time. Thus, to reduce the performance
instability of fuzzing, a relatively long time experiment is
necessary, e.g., we run our experiments for 240 hours.

1958 28th USENIX Security Symposium USENIX Association

50 100 150 200 250
(a) mp42aac

0

50

100

150

200

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(b) exiv2

0

10

20

30

40

50

60

70

MOPT-AFL-ever

0

AFL
MOPT-AFL-tmp

50 100 150 200 250
(c) mp3gain

0

50

100

150

200

250

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(d) tiff2bw

0

20

40

60

80 MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0

50 100 150 200 250
(e) pdfimages

0

100

200

300

400

500

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(f) sam2p

0

50

100

150

200

250

300

350

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 0 50 100 150 200 250
(g) avconv

0

1

2

3

4

5
MOPT-AFL-ever
MOPT-AFL-tmp
AFL

50 100 150 200 250
(h) w3m

0

100

200

300

400

500

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0

50 100 150 200 250
(i) objdump

0

100

200

300

400

500

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(j) jhead

0

20

40

60

80

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(k) mpg321

0

50

100

150

200

250

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0 50 100 150 200 250
(l) infotocap

0

100

200

300

400

500

600

700

MOPT-AFL-ever

0

MOPT-AFL-tmp
AFL

50 100 150 200 250
(m) podofopdfinfo

0

20

40

60

80

100

120

MOPT-AFL-ever
MOPT-AFL-tmp
AFL

0

Figure 9: The number of unique crashes discovered by MOPT-AFL-ever, MOPT-AFL-tmp and AFL over 240 hours. X-axis:
time (over 240 hours). Y-axis: the number of unique crashes.

5.7 Compatibility Analysis
In addition to AFL, we also generalize our analysis to sev-

eral state-of-the-art mutation-based fuzzers, e.g., AFLFast
[5] and VUzzer [6], and study the compatibility of MOPT.

AFLFast [5] is one of the coverage-based fuzzers. By us-
ing a power schedule to guide the fuzzer towards low fre-
quency paths, AFLFast can detect more unique paths and ex-
plore the vulnerabilities much faster than AFL. To examine
the compatibility of MOPT, we implement MOPT-AFLFast-
tmp and MOPT-AFLFast-ever based on AFLFast.

VUzzer [6] is a fuzzer that focuses on exploring deeper
paths. VUzzer can evaluate a test case with the triggered path
and select the test cases with higher fitness scores to gener-
ate subsequent test cases. The mutation strategy of VUzzer is
different from AFL. In each period, VUzzer generates a fixed
number of mutated test cases, evaluates their fitness and only
keeps POPSIZE test cases with the highest fitness scores to
generate test cases in the next period, where POPSIZE is the
population number of the parent test cases set by users. We
regard the mutation operators as the high-efficiency opera-
tors that can generate the test cases with top-(POPSIZE/3)
fitness scores. Then, we combine MOPT with VUzzer and
implement MOPT-VUzzer. Since VUzzer does not have a
deterministic stage like AFL, we do not consider the pace-
maker fuzzing mode here.

Now, we evaluate MOPT-AFLFast-tmp, MOPT-AFLFast-
ever, and MOPT-VUzzer on mp42aac, exiv2, mp3gain,
tiff2bw, pdfimages, sam2p and mpg321. Each experi-
ment is lasted for 240 hours with the same settings as in
Section 5.2. Specifically, we change the OS as the 32-
bit Ubuntu 14.04 LTS for VUzzer and MOPT-VUzzer be-
cause of VUzzer’s implementation restriction. The results
are shown in Table 6. We have the following conclusions.
• MOPT-AFLFast-tmp and MOPT-AFLFast-ever have

much better performance than AFLFast in discovering
unique crashes on all the programs. For instance, MOPT-

AFLFast-ever finds 327 more crashes than AFLFast on
pdfimages. When combining MOPT with VUzzer, MOPT-
VUzzer discovers more unique crashes than VUzzer on
mp42aac, mp3gain, sam2p and mpg321. As a result, MOPT
cannot only be combined with state-of-the-art fuzzers like
AFLFast, but also be compatible with the different fuzzers
like VUzzer to improve the fuzzing performance.
• MOPT-based fuzzers can explore more unique paths

than their counterparts. For instance, MOPT-AFLFast-tmp
discovers 2,156 more paths than AFLFast on mp42aac;
MOPT-AFLFast-ever finds 14,777 more than AFLFast on
pdfimages. MOPT-VUzzer has a better coverage perfor-
mance than VUzzer on mp3gain. Overall, MOPT can help
the mutation-based fuzzers discover more unique paths.
• MOPT-AFL has an outstanding performance in com-

parison to state-of-the-art fuzzers. MOPT-AFL outperforms
AFLFast with a significant advantage on all the programs ex-
cept mp42aac. For instance, MOPT-AFL-tmp and MOPT-
AFL-tmp discover 85 and 43 more unique crashes than
AFLFast on tiff2bw. Furthermore, MOPT-AFL-tmp and
MOPT-AFL-ever find dozens of times more unique crashes
than VUzzer on most programs.

5.8 Evaluation on LAVA-M
Recently, the LAVA-M dataset is proposed as one of the

standard benchmarks to examine the performance of fuzzers
[28]. It has 4 target programs, each of which contains the
listed and unlisted bugs. The authors provide the test cases
that can trigger the listed bugs. However, no test cases were
provided for the unlisted bugs, making them more difficult
to be found. For completeness, we test AFL, MOPT-AFL-
ever, AFLFast, MOPT-AFLFast-ever, VUzzer and MOPT-
VUzzer on LAVA-M with the same initial seed set and the
same settings as in Section 5.7, for 5 hours. Furthermore,
we run MOPT-AFL-ever with Angora [9] and QSYM [29]
parallelly to construct MOPT-Angora and MOPT-QSYM,

USENIX Association 28th USENIX Security Symposium 1959

Table 6: The compatibility of the MOPT scheme.
mp42aac exiv2 mp3gain tiff2bw pdfimages sam2p mpg321

AFL Unique crashes 135 34 178 4 23 36 10
Unique paths 815 2,195 1,430 4,738 12,915 531 123

MOPT-AFL-tmp Unique crashes 209 54 262 85 357 105 236
Unique paths 1,660 2,980 2,211 7,354 22,661 1,967 1,054

MOPT-AFL-ever Unique crashes 199 66 262 43 471 329 229
Unique paths 1,730 4,642 2,206 7,295 26,669 3,418 1,162

AFLFast Unique crashes 210 0 171 0 18 37 8
Unique paths 1,233 159 1,383 5,114 12,022 603 122

MOPT-AFLFast-tmp Unique crashes 393 51 264 5 292 196 230
Unique paths 3,389 2,675 2,017 7,012 24,164 2,587 1,208

MOPT-AFLFast-ever Unique crashes 384 58 259 18 345 114 30
Unique paths 2,951 2,887 2,102 7,642 26,799 2,623 160

VUzzer Unique crashes 12 0 54,500 0 0 13 3,598
Unique paths 12% 9% 50% 13% 25% 18% 18%

MOPT-VUzzer Unique crashes 16 0 56,109 0 0 16 3,615
Unique paths 12% 9% 51% 13% 25% 18% 18%

Table 7: Evaluation on LAVA-M. The incremental number is the number of the discovered unlisted bugs.

Program Listed Unlisted AFL MOPT-
AFL-ever AFLFast MOPT-AFLFast-

ever VUzzer MOPT-
VUzzer

AFL-
Angora

MOPT-
Angora

AFL-
QSYM

MOPT-
QSYM

bugs bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs Bugs

base64 44 4 4 39 7 36 14 17 44(+2) 44(+3) 24 44(+4)
md5sum 57 4 2 23 1 18 38 41 57(+4) 57(+4) 57(+1) 57(+1)

uniq 28 1 5 27 7 15 22 24 26 28(+1) 1 18
who 2,136 381 1 5 2 6 15 23 1,622(+65) 2,069(+145) 312(+46) 774(+70)

run AFL with them parallelly to construct AFL-Angora and
AFL-QSYM, and evaluate them on the LAVA-M dataset un-
der the same experiment settings. The results are shown in
Table 7, from which we have the following conclusions.
• MOPT-based fuzzers significantly outperform their

counterparts on LAVA-M. For instance, MOPT-AFL-ever
finds 35 more listed bugs than AFL on base64. MOPT-
VUzzer finds more listed bugs than VUzzer on all the four
programs. Both MOPT-Angora and MOPT-QSYM find sig-
nificantly more unique bugs on who compared to their coun-
terparts. Thus, MOPT is effective in improving the perfor-
mance of mutation-based fuzzers.
• The fuzzers, which use symbolic execution or simi-

lar techniques, perform significantly better than others on
LAVA-M. MOPT again exhibits good compatibility and can
be integrated with general mutation-based fuzzers. For in-
stance, MOPT-Angora finds significantly more unique bugs
than AFL-Angora, and MOPT improves the performance of
AFL-QSYM in 3 cases. From Table 7, in addition to the
compatibility, MOPT can find the unique bugs and paths
which the symbolic execution fails to find.

6 Further Analysis

6.1 Steadiness Analysis

Following the guidance of [25] and to make our evalua-
tion more comprehensive, we conduct three extra groups of
evaluations in this subsection. In the following, we detail the
seed selection process, the evaluation methodology, and the
analysis of the results.

Evaluation methodology and setup. To provide statisti-

cal evidences of our improvements, we measure the perfor-
mance of MOPT-AFL-ever, AFL, Angora [9] and VUzzer
[6] on five programs including mp3gain, pdfimages,
objdump, jhead and infotocap (the detail of each program
is shown in Table 2). Each program is tested by each fuzzer
for 24 hours, on a virtual machine configured with one CPU
core of 2.40Ghz E5-2640 V4, 4.5GB RAM and the OS of
64-bit Ubuntu 16.04 LTS. To eliminate the effect of random-
ness, we run each testing for 30 times.

To investigate the influence of the initial seed set on the
performance of MOPT, we consider using various initial
seed sets in our experiments such as an empty seed, or the
seeds with different coverage, which are widely used in pre-
vious works [1, 5, 9, 21].

In the first group of experiments, each program is fed with
an empty seed, which is a text file containing a letter ‘a’. In
the second and third groups of experiments, each program is
fed with 20 and 200 well-formed seed inputs, respectively.
In the third group, Angora is skipped since it reports errors
to fuzz pdfimages when given 200 seed PDF files.

To obtain the seed inputs, we first download more than
necessary (e.g., 1,700) input files with correct formats from
the Internet. For example, we download mp3 files from the
music download websites. Then, we split the input files (of
format PDF and mp3) into a reasonable size if they are too
large. Further, we utilize AFL-cmin [16] to evaluate each
input file’s coverage, and remove the inputs that have redun-
dant coverage. In the remaining input files, we randomly
select 20 (i.e., for the second group) or 200 (i.e., for the third
group) seeds for the corresponding objective program.

Evaluation metrics. We measure the widely adopted met-
rics, i.e., number of unique crashes and number of unique

1960 28th USENIX Security Symposium USENIX Association

(a) mp3gain-empty seed
0

100

200

300

Cr
as

he
s f

ou
nd

p1<10-10 p2=7*10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(b) pdfimages-empty seed
-2

0

2

4

Cr
as

he
s f

ou
nd

p1 N.A. p2 N.A. p3 N.A.
MOPT-AFL-ever
AFL
Angora
VUzzer

(c) objdump-empty seed
0

100

200

300

Cr
as

he
s f

ou
nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(d) jhead-empty seed
0

20

40

60

Cr
as

he
s f

ou
nd

p1=2.3*10-6 p2=4.6*10-7 p3=6.5*10-8

MOPT-AFL-ever
AFL
Angora
VUzzer

(e) infotocap-empty seed
0

100

200

300

400

Cra
she

s f
ou

nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(f) mp3gain-20 files0

500

1,000

1,500

2,000

2,500

Cra
she

s f
ou

nd

p1<10-10 p2=4.1*10-3 p3=1.2*10-2

MOPT-AFL-ever
AFL
Angora
VUzzer

(g) pdfimages-20 files
0

100

200

300

400

Cra
she

s f
ou

nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(h) objdump-20 files
0

50

100

150

200

250

Cra
she

s fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(i) jhead-20 files
0

50

100

150

200

250

Cra
she

s fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(j) infotocap-20 files
0

200

400

600

Cra
she

s fo
un

d

p1=2.1*10-8 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(k) mp3gain-200 files
0

500

1,000

1,500

Cra
she

s fo
un

d

p1<10-10 p3=2.0*10-8

MOPT-AFL-ever
AFL
VUzzer

(l) pdfimages-200 files
0

100

200

300

400

Cra
she

s fo
un

d

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

(m) objdump-200 files
0

20

40

60

80

Cra
she

s fo
un

d

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

Figure 10: The boxplot generated by the number of unique crashes from 30 trials, which are found by AFL, MOPT-AFL-ever,
Angora and VUzzer on five programs when fed with an empty seed, with 20 well-formed seed inputs and with 200 well-formed
seed inputs. Y-axis: the number of unique crashes discovered in 24 hours.

bugs, to compare the performance of each fuzzer. To ob-
tain the unique bugs, we recompile objective programs with
the AddressSanitizer [24] instrumentation, and reevaluate the
programs with the discovered crash inputs. If the top three
source code locations of the stack trace provided by Address-
Sanitizer are unique, we consider the corresponding crash
input triggers a unique bug of the objective program. This is
a common way to find unique bugs in practice and has been
used to calculate the stack hashing in [25].

Note that we do the statistical tests and use the p value
[30] to measure the performance of the three fuzzers (sug-
gested by [25]). In particular, p1 is the p value yielded from
the difference between the performance of MOPT-AFL-ever
and AFL, p2 is the p value yielded from the difference be-
tween the performance of MOPT-AFL-ever and Angora, and
p3 is the p value generated from the difference between the
performance of MOPT-AFL-ever and VUzzer.

We further validate the reliability of our p value analy-
sis leveraging the Benjamini-Hochberg (BH) procedure [31].
For the details, please refer to the technical report [20].

Results and analysis. The number of unique crashes and
unique bugs are shown in Fig. 10 and Fig. 11, respectively.
From the results, we can learn the following facts.
• As shown in Fig. 10, among all the 13 evaluation set-

tings, MOPT-AFL-ever discovers more unique crashes than
the other fuzzers in 11 evaluations. In these 11 evalua-
tions, p1, p2 and p3 are smaller than 10−5, meaning that
the distribution of the number of unique crashes discovered
by MOPT-AFL-ever and the other fuzzers is widely differ-
ent, which demonstrates a significant statistical evidence for
MOPT’s improvement. Therefore, according to the statisti-
cal results of 30 trials, MOPT-AFL-ever performs better than
AFL, Angora and VUzzer in most cases.
• As for the number of discovered unique bugs, MOPT-

AFL-ever still performs significantly better than AFL, An-
gora and VUzzer in most cases. For instance, the mini-
mum number of unique bugs discovered by MOPT-AFL-

ever among the 30 runs is more than the maximum number of
that discovered by other fuzzers when fuzzing objdump and
jead with 20 files as the initial seed set. Further, we find
that both Angora and VUzzer discover more unique crashes
but fewer unique bugs than MOPT-AFL-ever when fuzzing
mp3gain with the 20 files. This indicates that their dedupli-
cation strategies do not work well in this evaluation.
• When using an empty seed as the initial seed set to

fuzz pdfimages, all the fuzzers cannot discover any unique
crash. The reason is that PDF files have complex structures.
The test cases mutated from an empty seed are hard to gener-
ate such complex structures, which leads to the poor fuzzing
performance. This reminds us the motivation of generation-
based fuzzers and shows that: although fuzzers like AFL
may perform better with an empty seed, they cannot discover
more crashes on the programs that require complex input for-
mats when using an empty seed.

6.2 Stepwise Analysis of MOPT Main Frame-
work and Pacemaker Fuzzing Mode

To validate the effectiveness of MOPT main framework
and the pacemaker fuzzing mode, we implement MOPT-
AFL-off (that is based on MOPT-AFL-ever while disabling
the pacemaker fuzzing mode) and AFL-ever (that is based on
AFL and only implements the pacemaker fuzzing mode). We
re-evaluate AFL, MOPT-AFL-off, AFL-ever and MOPT-
AFL-ever on pdfimages, w3m, objdump and infotocap for
240 hours. The results are shown in Table 8.

MOPT Main Framework (without Pacemaker Fuzzing
Mode). We can learn from Table 8 that MOPT-AFL-off dis-
covers more crashes than AFL. For instance, on w3m, AFL
cannot discover any crash in 240 hours, while MOPT-AFL-
off discovers 74 unique crashes. Note that if without the
pacemaker fuzzing mode, MOPT-AFL-off uses the havoc
stage less frequently and iterates the selection distribution

USENIX Association 28th USENIX Security Symposium 1961

(a) mp3gain-empty seed
0

5

10

15

20

Bu
gs

 fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(b) pdfimages-empty seed-2

0

2

4

Bu
gs

 fo
un

d

p1 N.A. p2 N.A. p3 N.A.

MOPT-AFL-ever
AFL
Angora
VUzzer

(c) objdump-empty seed
0

20

40

60

80

Bu
gs

 fo
un

d

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(d) jhead-empty seed
0

2

4

6

8

Bu
gs

 fo
un

d

p1=2.3*10-6 p2=4.9*10-7 p3=6.3*10-8

MOPT-AFL-ever
AFL
Angora
VUzzer

(e) infotocap-empty seed
0

2

4

6

Bu
gs

fou
nd

p1=4.2*10-8 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(f) mp3gain-20 files
0

5

10

15

20

Bu
gs

fou
nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(g) pdfimages-20 files
0

4

8

12

Bu
gs

fou
nd

p1=2.6*10-2 p2=1.3*10-4 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(h) objdump-20 files
0

20

40

60

80

Bu
gs

fou
nd

p1=3.3*10-5 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(i) jhead-20 files
0

10

20

30

Bu
gs

fou
nd

p1<10-10 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(j) infotocap-20 files
0

2

4

6

8

Bu
gs

fou
nd

p1=2.3*10-8 p2<10-10 p3<10-10

MOPT-AFL-ever
AFL
Angora
VUzzer

(k) mp3gain-200 files
0

5

10

15

20

Bu
gs

fou
nd

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

(l) pdfimages-200 files
0

2

4

6

8

Bug
s fo

und

p1=5.3*10-2 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

(m) objdump-200 files
0

5

10

15

20

Bu
gs

fou
nd

p1<10-10 p3<10-10

MOPT-AFL-ever
AFL
VUzzer

Figure 11: The boxplot generated by the number of unique bugs from 30 trials, which are found by AFL, MOPT-AFL-ever,
Angora and VUzzer on five programs when fed with an empty seed, with 20 well-formed seed inputs and with 200 well-formed
seed inputs. Y-axis: the number of unique bugs discovered in 24 hours.

Table 8: The results of AFL, MOPT-AFL-off, AFL-ever and MOPT-AFL-ever on 4 target programs.

Program AFL MOPT-AFL-off AFL-ever MOPT-AFL-ever
Unique crashes Unique paths Unique crashes Unique paths Unique crashes Unique paths Unique crashes Unique paths

pdfimages 16 10,027 18 12,129 43 9,906 322 24,306
w3m 0 3,250 74 3,835 44 5,007 138 5,227

objdump 5 11,163 77 15,032 170 23,392 239 24,918
infotocap 86 3,179 97 4,112 436 6,808 687 7,109

total 107 27,619 266 35,108 693 45,113 1,386 61,560

more slowly, which limits the performance of the MOPT
main framework. Comparing MOPT-AFL-ever with AFL-
ever, we can learn that MOPT-AFL-ever has a better capa-
bility to explore unique crashes than AFL-ever. As for the
coverage, MOPT-AFL-off discovers more unique paths than
AFL, and the same situation applies for MOPT-AFL-ever
and AFL-ever. As a conclusion, both two comparison groups
demonstrate that the MOPT scheme without the pacemaker
fuzzing mode can also improve the performance of AFL on
exploring unique crashes and paths, but a better performance
can be achieved if integrating the pacemaker fuzzing mode.

Pacemaker Fuzzing Mode. For discovering unique
crashes, AFL-ever discovers 165 more unique crashes than
AFL on objdump. Additionally, MOPT-AFL-ever finds
1,120 more unique crashes than MOPT-AFL-off on the 4
programs in total. As for the coverage, AFL-ever is better
than AFL on w3m, objdump and infotocap. MOPT-AFL-
ever finds nearly twice as many unique paths as MOPT-AFL-
off on all the programs except w3m. As a conclusion, the ex-
periments demonstrate that the pacemaker fuzzing mode can
help fuzzers find much more unique crashes and paths.

In summary, both the MOPT main framework and pace-
maker fuzzing mode can improve the fuzzing performance
significantly, while the combination of both parts would re-
sult in an even better performance (corresponding to MOPT-
AFL-ever). To further clarify this point, we use the num-
ber of unique crashes discovered by MOPT-AFL-ever as the
baseline and observe the approximate fuzzing performance

pdfimages w3m infotocap
0

0.2

0.4

0.6

0.8

1

AFL
MOPT-AFL-off
AFL-ever
MOPT-AFL-ever

objdump

Figure 12: The ratio of the unique crashes discovered by 4
fuzzers, with MOPT-AFL-ever as the baseline.

of each part. The results are shown in Fig. 12.
From the results, the improvement of the pacemaker

fuzzing mode is relatively limited for fuzzing; however,
without the pacemaker fuzzing mode, MOPT cannot con-
verge fast to the proper selection probability distribution,
which on the other hand limits the fuzzing performance ei-
ther. Nevertheless, the performance can be significantly im-
proved if we combine AFL with the complete MOPT scheme.

6.3 Iteration Analysis of Selection Probability
To demonstrate the effectiveness of MOPT in obtaining

the proper selection probability for the mutation operators,
we record the probability of bitflip 1/1, arith 8/8 and
interest 16/8 obtained by the particles in one swarm
when using MOPT-AFL-ever to fuzz w3m and pdfimages.
The results are shown in Fig. 13, from which we have the
following observations.
• Different mutation operators have different proper se-

lection probabilities on each program. Moreover, the proper

1962 28th USENIX Security Symposium USENIX Association

80 160 200 240120
0.05

0.055

0.06

0.065

0.07

0 40
bitflip 1/1 (w3m)

80 160 200 240120
0.03

0.04

0.05

0.06

0.07

0 40
arith 8/8 (w3m)

80 160 200 240120
0.03

0.04

0.05

0.06

0.07

0 40
interest 16/8 (w3m)

80 160 200 240120
0.045

0.055

0.065

0.075

0.085

0.095

0 40
bitflip 1/1 (pdfimages)

40 160 200 240120
0

0.02

0.04

0.06

0.08

0.09

0 80
arith 8/8 (pdfimages)

80 120 160 200 240
interest 16/8 (pdfimages)

0.035

0.055

0.075

0.095

0.115

0 40

Figure 13: The probability when using MOPT-AFL-ever to fuzz w3m and pdfimages. X-axis: time (over 240 hours). Y-axis:
the selection probability of the corresponding mutation operator. Green line: xnow. Red line: Gbest . Blue line: Lbest .

selection probability of one mutation operator varies with the
objective programs. The results are consistent with our mo-
tivation that it is desired to dynamically determine the selec-
tion probability of operators during the fuzzing process.
• Gbest and Lbest quickly converge to the proper values.

For instance, it only takes an hour for Gbest and Lbest to con-
verge to the proper values when fuzzing w3m. When the
proper values of Gbest and Lbest are the same, xnow will con-
verge to this value and oscillate around. Otherwise, xnow will
oscillate between Gbest and Lbest to explore whether there is
a better selection probability.
•We can learn from Fig. 13 that MOPT iterates slowly at

first and iterates fast later on pdfimages. The reasons are
that (1) the deterministic stage is effective at finding interest-
ing test cases in the early fuzzing time; (2) the fuzzer spends
a long time on the deterministic stage of one test case when
fuzzing pdfimages. When the efficiency of the determin-
istic stage decreases, i.e., it cannot discover any new crash
or path for a long time, MOPT-AFL-ever enters the pace-
maker fuzzing mode and will not use the deterministic stage
again. Then the selection probability converges quickly and
MOPT iterates fast. The results demonstrate that the design
of the pacemaker fuzzing mode is reasonable and meaning-
ful, which exploits the deterministic stage at first and avoids
repeating its high computation when it is inefficient.

6.4 Overhead Analysis

In order to compare the execution efficiency of each fuzzer
in Section 5.3, we collect the total execution times of each
fuzzer, which are the times a fuzzer uses the generated test
cases to test an objective program, within 240 hours. The
results are shown in Table 9, from which we learn the fol-
lowing conclusions.

Although MOPT fuzzers take partial computing power to
improve the mutation scheduler, the execution efficiency of
MOPT-AFL-tmp and MOPT-AFL-ever is still comparable
with AFL on most programs. In many cases, although the
MOPT-AFL fuzzers test the objective programs for fewer
times, they find much more crashes and paths than AFL.

Interestingly, MOPT-AFL can execute the tests faster than
AFL on several programs. Moreover, the MOPT-AFL yields
a better average execution efficiency on the 13 programs. We
analyze the reasons as follows. The execution speed of each

test case is different, and thus the test cases with slow ex-
ecution speed will take more time consumption. When the
fuzzing queue of AFL contains slow test cases, it will gener-
ate a number of test cases mutated from the slow test cases in
the deterministic stage, which may also be executed slowly
with a high probability and decrease AFL’s execution effi-
ciency. As for MOPT-AFL fuzzers, they will generate much
fewer mutated cases from the slow test cases since they tend
to disable the deterministic stage when it is not efficient.
Therefore, MOPT-AFL fuzzers will spend much less time
on the slow test cases, followed by yielding a high execution
efficiency.

6.5 Long Term Parallel Experiments

We run the long term parallel experiments in order to
verify the performance of MOPT-AFL in parallel for a
long time. In each experiment, AFL, MOPT-AFL-tmp and
MOPT-AFL-ever, are employed to fuzz pdfimages in paral-
lel. Each experiment has three instances denoted by Fuzzer1,
Fuzzer2 and Fuzzer3, with 20 carefully selected PDF files fil-
tered from AFL-cmin [16] as the initial seed set. According
to the parallel design of AFL and MOPT-AFL, the Fuzzer1
of AFL, MOPT-AFL-tmp and MOPT-AFL-ever will still
perform the deterministic stage, while their Fuzzer2 and
Fuzzer3 will disable it in the parallel experiments. Each
experiment runs on a virtual machine configured with four
CPU cores of 2.40Ghz E5-2640 V4, 4.5 GB RAM and the
OS of 64-bit Ubuntu 16.04 LTS. The total CPU time of each
experiment exceeds 70 days till the writing of this report
and AFL, MOPT-AFL-tmp and MOPT-AFL-ever discover
1,778, 2,907 and 2,702 unique crashes, respectively.

The results are shown in Table 10, from which we can
see that AFL’s performance of discovering unique crashes
is obviously inferior to MOPT-AFL’s. Fuzzer1 of AFL en-
ables the deterministic stage all the time and only discov-
ers 11 unique crashes in more than 23 days, demonstrating
the inefficiency of the deterministic stage. What’s more, the
performance of Fuzzer1 of MOPT-AFL-tmp is much better
than that of MOPT-AFL-ever and AFL. We conjecture the
reasons as follows. Since PDF files require the strict file for-
mat, there are many unique execution paths in pdfimages

that contain strict magic byte checks. The operators, e.g.,
bitflip 1/1, in the deterministic stage are better at gen-

USENIX Association 28th USENIX Security Symposium 1963

Table 9: The total execution times and executions per second of AFL, MOPT-AFL-tmp and MOPT-AFL-ever.

Program AFL MOPT-AFL-tmp MOPT-AFL-ever
Total execution

times
Executions
per second

Total execution
times

Executions
per second Increase Total execution

times
Executions
per second Increase

mp42aac 127.1M 147.12 126.8M 146.71 -0.28% 124.6M 144.26 -1.94%
exiv2 35.1M 40.58 27.6M 31.89 -21.41% 46.5M 53.83 +32.65%

mp3gain 182.2M 210.90 117.2M 135.60 -35.70% 121.4M 140.53 -33.38%
tiff2bw 906.7M 1,049.43 613.2M 709.74 -32.37% 623.4M 721.55 -31.24%

pdfimages 91.7M 106.17 88.8M 102.80 -3.17% 108.5M 125.59 +18.29%
sam2p 42.6M 49.34 52.3M 60.58 +22.78% 28.9M 33.47 -32.16%
avconv 48.6M 56.27 43.3M 50.08 -11.00% 42.0M 48.61 -13.61%
w3m 104.4M 120.78 123.2M 142.64 +18.10% 204.6M 236.75 +96.02%

objdump 383.7M 444.13 436.7M 505.42 +13.80% 843.8M 976.58 +119.89%
jhead 418.5M 484.41 1,372.6M 1,588.63 +227.95% 1,476.1M 1,708.40 +252.68%

mpg321 119.7M 138.52 158.1M 182.94 +32.07% 165.2M 191.17 +38.01%
infotocap 218.1M 252.41 157.1M 181.88 -27.94% 199.9M 231.36 -8.34%

podofopdfinfo 379.6M 439.37 411.3M 476.05 +8.35% 340.2M 393.80 -10.37%
average 254.8M 294.95 310.7M 359.59 +15.93% 360.43M 417.16 +35.54%

erating the correct magic bytes since fuzzers will flip ev-
ery bit in the current test case to generate new test cases.
In the later time, MOPT-AFL-tmp will enable the deter-
ministic stage again while MOPT-AFL-ever will not. Thus
MOPT-AFL-tmp is better at discovering unique paths con-
taining magic byte checks than MOPT-AFL-ever. As for
AFL, since it will go through the deterministic stage for all
the test cases, it spends most time on this stage and discovers
few unique crashes and paths. While MOPT-AFL-tmp will
disable the deterministic stage when it cannot discover any
interesting test case for a long time, after some time, it will
re-enable the deterministic stage again and will perform the
deterministic stage with the widely different test cases in the
fuzzing queue. Therefore, MOPT-AFL-tmp can keep effi-
cient fuzzing performance and can perform the deterministic
stage on widely different test cases.

We can also observe from Table 10 that AFL’s Fuzzer2
and Fuzzer3 find much more unique crashes than its Fuzzer1
without of the deterministic stage. The Fuzzer1 of MOPT-
AFL-tmp and MOPT-AFL-ever finds much more crashes
than AFL’s Fuzzer1 and suppresses the performance of
Fuzzer2 and Fuzzer3 in some way. Meantime, the Fuzzer2
and Fuzzer3 of both MOPT-AFL-tmp and MOPT-AFL-ever
perform better than those of AFL. All these results demon-
strate the improvement of the customized PSO algorithm.

7 Limitation and Discussion

In order to further analyze the compatibility of MOPT, we
are eager to combine it with state-of-the-art fuzzers such as
CollAFL [4] and Steelix [10] after they open-source their
system code. By leveraging MOPT as an optimal strategy
for selecting mutation operators, we believe the performance
of these systems can be further enhanced.

In our evaluation, we consider 13 real world programs
and several seed selection strategies, which are still a lim-
ited number of scenarios. In our evaluation, overall, MOPT-
AFL discovers 31 vulnerabilities on tiff2bw and sam2p

and 66 unreported CVEs on the other 11 programs. Further-

Table 10: The performance of three fuzzers in the long term
parallel experiments when fuzzing pdfimages.

Fuzzer1 Fuzzer2 Fuzzer3 Total

AFL Unique crashes 11 871 896 1,778
Unique paths 24,763 29,329 29,329 83,421

MOPT-AFL-tmp Unique crashes 834 1,031 1,042 2,907
Unique paths 30,098 31,600 31,520 93,218

MOPT-AFL-ever Unique crashes 723 974 1,005 2,702
Unique paths 28,047 30,910 30,966 89,923

more, both MOPT-Angora and MOPT-QSYM perform bet-
ter than previous methods on the benchmark dataset LAVA-
M. Therefore, the proposed MOPT is promising to explore
vulnerabilities for real world programs. Nevertheless, the
performance advantage exhibited in our evaluation may not
be applicable to all the possible programs and seeds. Our
evaluation can be enhanced by further conducting more in-
depth evaluation in large-scale. To make our evaluation more
comprehensive, we are planning to perform a large-scale
evaluation of MOPT using more real world programs and
benchmarks in the future.

As a future work, it is interesting to investigate better
mutation operators to further enhance the effectiveness of
MOPT. Constructing a more comprehensive and represen-
tative benchmark dataset to systematically evaluate the per-
formance of fuzzers is another interesting future work.

8 Related Work

In this section, we summarize the existing fuzzing mecha-
nisms and the related seed selection strategies.

Mutation-based fuzzing. AFL is one of the most well-
recognized fuzzers because of its high-efficiency and ease of
use [16]. Multiple efficient fuzzers were developed based
on AFL [4, 5]. To improve fuzzing performance, some
combined the mutation-based fuzzing with other bug de-
tection technologies [13, 14, 15, 32]. Another method to
improve mutation-based fuzzers is coverage-based fuzzing
[6, 10, 11]. Li et al. proposed a vulnerability-oriented fuzzer
named V-Fuzz that pays more attention to potentially vulner-
able components [33]. Yun et al. presented a fast concolic

1964 28th USENIX Security Symposium USENIX Association

execution engine named QSYM to help fuzzers explore more
bugs and paths [29]. By solving the path constraints without
symbolic execution, Angora presented by Chen et al. can
significantly increase the branch coverage of programs [9].

MOPT presented in our paper is a scheme of improving
the test case mutation process and generating high-quality
mutated test cases. Taking the advantage of its compatibility,
it can be combined with most of the aforementioned fuzzers.

Although in this paper we focus on using MOPT to im-
prove mutation-based fuzzers, it can also be implemented in
other kinds of fuzzers, such as generation-based fuzzers and
kernel fuzzers, if they have the issues to select proper opera-
tors to generate test cases. MOPT can also be combined with
most existing seed selection strategies since they can provide
better initial seed sets for fuzzers. We briefly introduce the
state-of-the-art related works in these area as follows.

Generation-based fuzzing. Generation-based fuzzers fo-
cus on the programs that require the test cases with specific
input formats [34, 35]. Recently, Wang et al. presented a
novel data-driven seed generation approach named Skyfire to
generate interesting test cases for XML and XSL [1]. Gode-
froid et al. presented a RNN-based machine learning tech-
nique to automatically generate a grammar for the test cases
with complex input formats [36].

Other fuzzing strategies. Several works presented effec-
tive kernel fuzzers [37, 38]. Xu et al. [12] implemented three
new operating primitives to benefit large-scale fuzzing and
cloud-based fuzzing services. You et al. presented SemFuzz
to learn from vulnerability-related texts and automatically
generate Proof-of-Concept (PoC) exploits [39]. Petsios et al.
proposed SlowFuzz to trigger algorithmic complexity vulner-
abilities [22]. Klees et al. performed extensive experiments
and proposed several guidelines to improve the experimental
evaluations for fuzzing [25]. Some works proposed state-of-
the-art directed greybox fuzzers to rapidly reach the target
program locations [21, 40]. Recently, several works [7], [8]
employ the reinforcement learning algorithms as the muta-
tion schedulers and propose their fuzzing frameworks, re-
spectively. However, the performance improvement of these
methods is limited based on their experimental results.

Seed selection strategies. Several works focused on how
to select a better seed set [2, 3]. Nichols et al. showed that
using the generated files of GAN to reinitialize AFL can find
more unique paths of ethkey [41]. Lyu et al. presented
SmartSeed to leverage machine learning algorithms to gen-
erate high-quality seed files for different input formats [42].

9 Conclusion

We first studied the issues of existing mutation-based
fuzzers which employ the uniform distribution for select-
ing mutation operators. To overcome these issues, we pre-
sented a mutation scheduling scheme, named MOPT, based
on Particle Swarm Optimization (PSO). By using MOPT to

search the optimal selection distribution for mutation oper-
ators and leveraging the pacemaker fuzzing mode to further
accelerate the convergence speed of searching, MOPT can
efficiently and effectively determine the proper distribution
for selecting mutation operators. Our evaluation on 13 real-
world applications demonstrated that MOPT-based fuzzers
can significantly outperform the state-of-the-art fuzzers such
as AFL, AFLFast and VUzzer in most cases. We also
conducted systematic analysis to demonstrate the rational-
ity, compatibility, low cost characteristic and steadiness of
MOPT. Our fuzzers found 81 security CVEs on 11 real
world programs, of which 66 are the newly reported CVEs.
Overall, MOPT can serve as a key enabler for mutation-
based fuzzers in discovering software vulnerabilities, crashes
and program paths.

Acknowledgments

We sincerely appreciate the shepherding from Adam
Doupé. We would also like to thank the anonymous re-
viewers for their valuable comments and input to improve
our paper. This work was partly supported by NSFC un-
der No. 61772466, the Zhejiang Provincial Natural Sci-
ence Foundation for Distinguished Young Scholars under
No. LR19F020003, the Provincial Key Research and Devel-
opment Program of Zhejiang, China under No. 2017C01055,
and the Alibaba-ZJU Joint Research Institute of Frontier
Technologies. Chao Zhang’s work was partly supported by
the NSFC under No. 61772308 and U1736209. Wei-Han
Lee’s work is partly sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001.

References

[1] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-
driven seed generation for fuzzing,” in S&P, 2017.

[2] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley,
“Scheduling black-box mutational fuzzing,” in CCS,
2013.

[3] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley, “Optimizing seed selection
for fuzzing.” in USENIX, 2014.

[4] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and
Z. Chen, “Collafl: Path sensitive fuzzing,” in S&P,
2018.

[5] M. Böhme, V.-T. Pham, and A. Roychoudhury,
“Coverage-based greybox fuzzing as markov chain,” in
CCS, 2016.

[6] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida,
and H. Bos, “Vuzzer: Application-aware evolutionary
fuzzing,” in NDSS, 2017.

USENIX Association 28th USENIX Security Symposium 1965

[7] K. Böttinger, P. Godefroid, and R. Singh, “Deep rein-
forcement fuzzing,” arXiv preprint arXiv:1801.04589,
2018.

[8] W. Drozd and M. D. Wagner, “Fuzzergym: A com-
petitive framework for fuzzing and learning,” arXiv
preprint arXiv:1807.07490, 2018.

[9] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in S&P, 2018.

[10] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu,
and A. Tiu, “Steelix: program-state based binary
fuzzing,” in FSE, 2017.

[11] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz:
fuzzing by program transformation,” in S&P, 2018.

[12] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing
new operating primitives to improve fuzzing perfor-
mance,” in CCS, 2017.

[13] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos, “Dowsing for overflows: a guided fuzzer to
find buffer boundary violations.” in USENIX, 2013.

[14] S. K. Cha, M. Woo, and D. Brumley, “Program-
adaptive mutational fuzzing,” in S&P, 2015.

[15] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Driller: Augmenting fuzzing through selective
symbolic execution.” in NDSS, 2016.

[16] “American Fuzzy Lop,” http://lcamtuf.coredump.cx/
afl/.

[17] K. Serebryany, “Continuous fuzzing with libfuzzer and
addresssanitizer,” in SecDev, 2016.

[18] R. Swiecki, “Honggfuzz,” Available online at:
http://code. google. com/p/honggfuzz, 2016.

[19] R. Eberhart and J. Kennedy, “A new optimizer using
particle swarm theory,” in MHS, 1995.

[20] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song
and R. Beyah, “MOPT: Optimized Mutation Schedul-
ing for Fuzzers, Technical Report,” https://github.com/
puppet-meteor/MOpt-AFL.

[21] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in CCS, 2017.

[22] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana,
“Slowfuzz: Automated domain-independent detection
of algorithmic complexity vulnerabilities,” in CCS,
2017.

[23] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and
S. Jana, “Nezha: Efficient domain-independent differ-
ential testing,” in S&P, 2017.

[24] “AddressSanitizer,” http://clang.llvm.org/docs/

AddressSanitizer.html.
[25] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,

“Evaluating fuzz testing,” in CCS, 2018.

[26] “Common Vulnerability Scoring System (CVSS),”
https://www.first.org/cvss.

[27] “Cve details,” https://www.cvedetails.com/.

[28] B. Dolangavitt, P. Hulin, E. Kirda, T. Leek, A. Mam-
bretti, W. Robertson, F. Ulrich, and R. Whelan, “Lava:
Large-scale automated vulnerability addition,” in S&P,
2016.

[29] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A
practical concolic execution engine tailored for hybrid
fuzzing,” in USENIX, 2018.

[30] “p value,” https://en.wikipedia.org/wiki/P-value.

[31] Y. Benjamini and Y. Hochberg, “Controlling the false
discovery rate: a practical and powerful approach to
multiple testing,” J R STAT SOC B, 1995.

[32] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope:
A checksum-aware directed fuzzing tool for automatic
software vulnerability detection,” in S&P, 2010.

[33] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, and C. Wu,
“V-fuzz: Vulnerability-oriented evolutionary fuzzing,”
arXiv preprint arXiv:1901.01142, 2019.

[34] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments.” in USENIX, 2012.

[35] K. Dewey, J. Roesch, and B. Hardekopf, “Language
fuzzing using constraint logic programming,” in ASE,
2014.

[36] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz:
Machine learning for input fuzzing,” in ASE, 2017.

[37] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili,
S. Hao, C. Kruegel, and G. Vigna, “Difuze: interface
aware fuzzing for kernel drivers,” in CCS, 2017.

[38] H. Han and S. K. Cha, “Imf: Inferred model-based
fuzzer,” in CCS, 2017.

[39] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian,
and B. Liang, “Semfuzz: Semantics-based automatic
generation of proof-of-concept exploits,” in CCS, 2017.

[40] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and
Y. Liu, “Hawkeye: Towards a desired directed grey-box
fuzzer,” in CCS, 2018.

[41] N. Nichols, M. Raugas, R. Jasper, and N. Hilliard,
“Faster fuzzing: Reinitialization with deep neural mod-
els,” arXiv preprint arXiv:1711.02807, 2017.

[42] C. Lyu, S. Ji, Y. Li, J. Zhou, J. Chen, P. Zhou, and
J. Chen, “Smartseed: Smart seed generation for effi-
cient fuzzing,” arXiv preprint arXiv:1807.02606, 2018.

1966 28th USENIX Security Symposium USENIX Association

http://lcamtuf.coredump.cx/afl/.
http://lcamtuf.coredump.cx/afl/.
https://github.com/puppet-meteor/MOpt-AFL.
https://github.com/puppet-meteor/MOpt-AFL.
http://clang.llvm.org/docs/AddressSanitizer.html.
http://clang.llvm.org/docs/AddressSanitizer.html.
https://www.first.org/cvss.
https://www.cvedetails.com/.
https://en.wikipedia.org/wiki/P-value.

EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers

Yuanliang Chen1, Yu Jiang1∗, Fuchen Ma1, Jie Liang1, Mingzhe Wang1, Chijin Zhou1, Xun Jiao2, Zhuo Su1

1School of Software, Tsinghua University, KLISS
2Department of Electrical and Computer Engineering, Villanova University

Abstract
Fuzzing is widely used for vulnerability detection. There are
various kinds of fuzzers with different fuzzing strategies, and
most of them perform well on their targets. However, in in-
dustrial practice, it is found that the performance of those
well-designed fuzzing strategies is challenged by the com-
plexity and diversity of real-world applications. In this paper,
we systematically study an ensemble fuzzing approach. First,
we define the diversity of base fuzzers in three heuristics: di-
versity of coverage information granularity, diversity of input
generation strategy and diversity of seed selection and muta-
tion strategy. Based on those heuristics, we choose several of
the most recent base fuzzers that are as diverse as possible,
and propose a globally asynchronous and locally synchronous
(GALS) based seed synchronization mechanism to seamlessly
ensemble those base fuzzers and obtain better performance.
For evaluation, we implement EnFuzz based on several widely
used fuzzers such as QSYM and FairFuzz, and then we test
them on LAVA-M and Google’s fuzzing-test-suite, which
consists of 24 widely used real-world applications. This ex-
periment indicates that, under the same constraints for re-
sources, these base fuzzers perform differently on different
applications, while EnFuzz always outperforms other fuzzers
in terms of path coverage, branch coverage and bug discovery.
Furthermore, EnFuzz found 60 new vulnerabilities in several
well-fuzzed projects such as libpng and libjpeg, and 44 new
CVEs were assigned.

1 Introduction

Fuzzing is one of the most popular software testing tech-
niques for bug and vulnerability detection. There are many
fuzzers for academic and industrial usage. The key idea of
fuzzing is to generate plenty of inputs to execute the tar-
get application and monitor for any anomalies. While each
fuzzer develops its own specific fuzzing strategy to gener-
ate inputs, there are in general two main types of strategies.
One is a generation-based strategy which uses the specifi-
cation of input format, e.g. grammar, to generate complex
inputs. For example, IFuzzer [33] takes a context-free gram-
mar as specification to generate parse trees for code fragments.
Radamsa [22] reads sample files of valid data and generates in-
teresting different outputs from them. The other main strategy

is a mutation-based strategy. This approach generates new in-
puts by mutating the existing seeds (good inputs contributing
to improving the coverage). Recently, mutation-based fuzzers
are proposed to use coverage information of target programs
to further improve effectiveness for bug detection. For exam-
ple, libFuzzer [10] mutates seeds by utilizing the Sanitizer-
Coverage [11] instrumentation to track block coverage, while
AFL [39] mutates seeds by using static instrumentation to
track edge coverage.

Based on the above mentioned two fuzzers, researchers
have performed many optimizations. For example, AFLFast
[16] improves the fuzzing strategy of AFL by selecting seeds
that exercise low-frequency paths for additional mutations,
and FairFuzz [26] optimizes AFL’s mutation algorithm to
prioritize seeds that hit rare branches. AFLGo [15] assigns
more mutation times to the seeds closer to target locations.
QSYM [38] uses a practical concolic execution engine to
solve complex branches of AFL. All of these optimized
fuzzers outperform AFL on their target applications and have
already detected a large number of software bugs and security
vulnerabilities.

However, when we apply these optimized fuzzers to some
real-world applications, these fuzzing strategies are incon-
sistent in their performance, their effectiveness on different
applications varies accordingly. For example, in our evalu-
ation on 24 real-world applications, AFLFast and FairFuzz
perform better than AFL on 19 applications, while AFL per-
forms better on the other 5 applications. Compared with AFL,
libFuzzer performs better on 17 applications but worse on the
other 7 applications. For the parallel mode of fuzzing which is
widely-used in industry, AFLFast and FairFuzz only detected
73.5% and 88.2% of the unique bugs of AFL. These results
show that the performance of existing fuzzers is challenged
by the complexity and diversity of real-world applications.
For a given real-world application, we cannot evaluate which
fuzzer is better unless we spend significant time analyzing
them or running each of these fuzzers one by one. This would
waste a lot of human and computing resources [25]. This
indicates that many of the current fuzzing strategies have a
lack of robustness — the property of being strong and stable
consistently in constitution. For industrial practice, more ro-
bust fuzzing strategies are desired when applied across a large
number of different applications.

USENIX Association 28th USENIX Security Symposium 1967

In this paper, we systematically study the performance of
an ensemble fuzzing approach. First, we define the diver-
sity of base fuzzers focusing on three heuristics: diversity of
coverage information granularity, diversity of input genera-
tion strategy, as well as diversity of seed mutation and selec-
tion strategy. Then, we implement an ensemble architecture
with a global asynchronous and local synchronous(GALS)
based seed synchronization mechanism to integrate these base
fuzzers effectively. To enhance cooperation among differ-
ent base fuzzers, the mechanism synchronizes interesting
seeds(i.e., test cases covering new paths or triggering new
crashes) periodically to all fuzzers running on the same target
application. At the same time, it maintains a global coverage
map to help collect those interesting seeds asynchronously
from each base fuzzer.

For evaluation, we implement a prototype of EnFuzz, based
on several high-performance base fuzzers, including AFL,
AFLFast, FairFuzz, QSYM, libFuzzer and Radamsa. All
fuzzers are repeatedly tested on two widely used bench-
marks — LAVA-M and Google’s fuzzer-test-suite, following
the kernel rules of evaluating fuzzing guideline [25]. The av-
erage number of paths executed, branches covered and unique
crashes discovered are used as metrics. The results demon-
strate that, with the same resource usage, the base fuzzers per-
form differently on different applications, while EnFuzz con-
sistently and effectively improves the fuzzing performance.
For example, there are many cases where the original AFL
performs better on some real-world applications than the two
optimized fuzzers FairFuzz and AFLFast. In all cases, the
ensemble fuzzing always outperforms all other base fuzzers.

Specifically, on Google’s fuzzer-test-suite consisting of
real-world applications with a code base of 80K-220K
LOCs, compared with AFL, AFLFast, FairFuzz, QSYM, lib-
Fuzzer and Radamsa, EnFuzz discovers 76.4%, 140%, 100%,
81.8%, 66.7% and 93.5% more unique bugs, executes 42.4%,
61.2%, 45.8%, 66.4%, 29.5% and 44.2% more paths and cov-
ers 15.5%, 17.8%, 12.9%, 26.1%, 19.9% and 14.8% more
branches respectively. For the result on LAVA-M consisting
of applications with a code base of 2K-4K LOCs, it outper-
forms each base fuzzer as well. For further evaluation on more
widely used and several well-fuzzed open-source projects
such as Libpng and jpeg, EnFuzz finds 60 new real vulnera-
bilities, 44 of which are security-critical vulnerabilities and
registered as new CVEs. However, other base fuzzers only
detect 35 new vulnerabilities at most.

This paper makes the following main contributions:

1. While many earlier works have mentioned the possibility
of using ensemble fuzzing, we are among the first to
systematically investigate the practical ensemble fuzzing
strategies and the effectiveness of ensemble fuzzing of
various fuzzers. We evaluate the performance of typical
fuzzers through a detailed empirical study. We define the
diversity of base fuzzers and study the effects of diversity
on their performance.

2. We implement a concrete ensemble approach with seed
synchronization to improve the performance of existing
fuzzers. EnFuzz shows a more robust fuzzing practice

across diverse real world applications. The prototype1

is also scalable and open-source so as to integrate other
fuzzers.

3. We apply EnFuzz to fuzz several well-fuzzed projects
such as libpng and libjpeg from GitHub, and several
commercial products such as libiec61850 from Cisco.
Within 24 hours, 60 new security vulnerabilities were
found and 44 new CVEs were assigned, while other base
fuzzers only detected 35 new vulnerabilities at most.
EnFuzz has already been deployed in industrial practice,
and more new CVEs are being reported1.

The rest of this paper is organized as follows: Section 2 in-
troduces related work. Section 3 illustrates ensemble fuzzing
by a simple example. Section 4 elaborates ensemble fuzzing,
including the base fuzzer selection and ensemble architecture
design. Section 5 presents the implementation and evalua-
tion of EnFuzz. Section 6 discusses the potential threats of
EnFuzz, and we conclude in section 7. The appendix shows
some empirical evaluations and observations.

2 Related Work

Here below, we introduce the work related to generation-
based fuzzing, mutation-based fuzzing, fuzzing in practice
and the main differences between these projects. After that
we summarize the inspirations and introduce our work.

2.1 Generation-based Fuzzing
Generation-based fuzzing generates a massive number of test
cases according to the specification of input format, e.g. a
grammar. To fuzz the target applications that require inputs
in complex format, the specifications used are crucial. There
are many types of specifications. Input model and context-
free grammar are the two most common types. Model-based
fuzzers [1,20,34] follow a model of protocol. Hence, they are
able to find more complex bugs by creating complex inter-
actions with the target applications. Peach [20] is one of the
most popular model-based fuzzers with both generation and
mutation abilities. It develops two key models: the data model
determines the format of complex inputs and the state model
describes the concrete method for cooperating with fuzzing
targets. By integrating fuzzing with models of data and state,
Peach works effectively. Skyfire [34] first learns a context-
sensitive grammar model, and then it generates massive inputs
based on this model.

Some other popular fuzzers [21, 24, 31, 33, 37] generate
inputs based on context free grammar. P Godefroid [21] en-
hances the whitebox fuzzing of complex structured-input
applications by using symbolic execution, which directly
generates grammar-based constraints whose satisfiability is
examined using a custom grammar-based constraint solver.
Csmith [37] is designed for fuzzing C-compilers. It gener-
ates plenty of random C programs in the C99 standard as
the inputs. This tool can be used to generate C programs ex-
ploring a typical combination of C-language features while

1https://github.com/enfuzz/enfuzz

1968 28th USENIX Security Symposium USENIX Association

https://github.com/enfuzz/enfuzz

being free of undefined and unspecified behaviors. LAVA [31]
generates effective test suites for the Java virtual machine by
specifying production grammars. IFuzzer [33] first constructs
parse trees based on a language’s context-free grammar, then
it generates new code fragments according to these parse
trees. Radamsa [22] is a widely used generation-based fuzzer.
It works by reading sample files of valid data and generat-
ing interestingly different outputs from them. Radamsa is an
extreme "black-box" fuzzer, it needs no information about
the program nor the format of the data. One can pair it with
coverage analysis during testing to improve the quality of the
sample set during a continuous fuzzing test.

2.2 Mutation-based Fuzzing
Mutation-based fuzzers [2, 17, 23] mutate existing test cases
to generate new test cases without any input grammar or in-
put model specification. Traditional mutation-based fuzzers
such as zzuf [23] mutate the test cases by flipping random
bits with a predefined ratio. In contrast, the mutation ratio
of SYMFUZZ [17] is assigned dynamically. To detect bit
dependencies of the input, it leverages white-box symbolic
analysis on an execution trace, then it dynamically computes
an optimal mutation ratio according to these dependencies.
Furthermore, BFF [2] integrates machine learning with evolu-
tionary computation techniques to reassign the mutation ratio
dynamically.

Other popular AFL family tools [15, 16, 26, 39] apply var-
ious strategies to boost the fuzzing process. AFLFast [16]
regards the process of target application as a Markov chain. A
path-frequency based power schedule is responsible for com-
puting the times of random mutation for each seed. As with
AFLFast, AFLGo [15] also proposes a simulated annealing-
based power schedule, which helps fuzz the target code. Fair-
Fuzz [26] mainly focuses on the mutation algorithm. It only
mutates seeds that hit rare branches and it strives to ensure
that the mutant seeds hit the rarest one. (Wen Xu et.al.) [36]
propose several new primitives , speeding up AFL by 6.1 to
28.9 times. Unlike AFL family tools which track the hit count
of each edge, libFuzzer [10] and honggfuzz [5] utilize the
SanitizerCoverage instrumentation method provided by the
Clang compiler. To track block coverage, they track the hit
count of each block as a guide to mutate the seeds during
fuzzing. SlowFuzz [30] prioritizes seeds that use more com-
puter resources (e.g., CPU, memory and energy), increasing
the probability of triggering algorithmic complexity vulnera-
bilities. Furthermore, some fuzzers use concolic executors for
hybrid fuzzing. Both Driller [32] and QSYM use mutation-
based fuzzers to avoid path exploration of symbolic execu-
tion, while concolic execution is selectively used to drive
execution across the paths that are guarded by narrow-ranged
constraints.

2.3 Cluster and Parallel Fuzzing in Industry
Fuzzing has become a popular vulnerability discovery solu-
tion in industry [28] and has already found a large number
of dangerous bugs and security vulnerabilities across a wide
range of systems so far. For example, Google’s OSS-Fuzz [4]
platform has found more than 1000 bugs in 5 months with

thousands of virtual machines [9]. ClusterFuzz is the dis-
tributed fuzzing infrastructure behind OSS-Fuzz, and auto-
matically executes libFuzzer powered fuzzer tests on scale
[12, 13]. Initially built for fuzzing Chrome at scale, Cluster-
Fuzz integrates multiple distributed libFuzzer processes, and
performs effectively with corpus synchronization. Cluster-
Fuzz mainly runs multiple identical instances of libFuzzer
on distributed system for one target application. There is no
diversity between these fuzzing instances.

In industrial practice, many existing fuzzers also provide a
parallel mode, and they work well with some synchronization
mechisms. For example, each instance of AFL in parallel
mode will periodically re-scan the top-level sync directory
for any test cases found by other fuzzers [3, 7]. libFuzzer in
parallel will also use multiple fuzzing engines to exchange
the corpora [6]. These parallel mode can effectively improve
the performance of fuzzer. In fact, the parallel mode can be
seen as a special example of ensemble fuzzing which uses
multiple same base fuzzers. However, all these base fuzzers
have a lack of diversity when using the same fuzzing strategy.

2.3.1 Main Differences

Unlike the previous works, we are not proposing a new con-
crete generation-based or mutation-based fuzzing strategy.
Nor do we run multiple identical fuzzers with multiple cores
or machines. Instead, inspired by the seed synchronization
of ClusterFuzz and AFL in parallel mode, we systemati-
cally study the possibility of the ensemble fuzzing of diverse
fuzzers mentioned in the earlier works. Referred to the kernel
descriptions of the evaluating fuzzing guidelines [25], we em-
pirically evaluate most state-of-the-art fuzzers, and identify
some valuable results, especially for their performance varia-
tion across different real applications. To generate a stronger
ensemble fuzzer, we choose multiple base fuzzers that are as
diverse as possible based on three heuristics. We then imple-
ment an ensemble approach with global asynchronous and
local synchronous based seed synchronization.

3 Motivating Example

To investigate the effectiveness of ensemble fuzzing, we use a
simple example in Figure 1 which takes two strings as input,
and crashes when one of the two strings is “Magic Str” and
the other string is “Magic Num”.

Many existing fuzzing strategies tend to be designed with
certain preferences. Suppose that we have two different
fuzzers f uzzer1 and f uzzer2: f uzzer1 is good at solving the
"Magic Str" problem, so it is better for reaching targets T1
and T3, but fails to reach targets T2 and T4. f uzzer2 is good
at solving the "Magic Num" problem so it is better for reach-
ing targets T2 and T6, but fails to reach targets T1 and T5.
If we use these two fuzzers separately, we can only cover
one path and two branches. At the same time, if we use them
simultaneously and ensemble their final fuzzing results with-
out seed synchronization, we can cover two paths and four
branches. However, if we ensemble these two fuzzers with
some synchronization mechanisms throughout the fuzzing
process, then, once f uzzer1 reaches T1, it synchronizes the

USENIX Association 28th USENIX Security Symposium 1969

void crash(char* A, char* B){
if (A == "Magic Str"){ => T1

if (B == "Magic Num") {
bug(); => T4

}else{
normal(); => T3

}
}else if (A == "Magic Num"){ => T2

if (B == "Magic Str"){
bug(); => T5

}else{
normal(); => T6

}
}

}

T1 T2

T3 T4 T5 T6

Figure 1: Motivating example of ensemble fuzzing with seed
synchronization.

seed that can cover T1 to f uzzer2. As a result, then, with the
help of this synchronized seed, f uzzer2 can also reach T1,
and because of its ability to solve the "Magic Num" prob-
lem, f uzzer2 can further reach T4. Similarly, with the help
of the seed input synchronized by f uzzer2, f uzzer1 can also
further reach T2 and T5. Accordingly, all four paths and all
six branches can be covered through this ensemble approach.

Table 1: covered paths of each fuzzing option

Tool T1-
T3

T1-
T4

T2-
T5

T2-
T6

fuzzer1 X

fuzzer2 X

ensemble fuzzer1 and fuzzer2
without seed synchronization

X X

ensemble fuzzer1 and fuzzer2
with seed synchronization

X X X X

The ensemble approach in this motivating example works
based on the following two hypotheses: (1) f uzzer1 and
f uzzer2 expert in different domains; (2) the interesting seeds
can be synchronized to all base fuzzers in a timely way. To
satisfy the above hypotheses as much as possible, success-

ful ensemble fuzzers rely on two key points: (1) the first
is to select base fuzzers with great diversity (as yet to be
well-defined); (2) the second is a concrete synchronization
mechanism to enhance effective cooperation among those
base fuzzers.

4 Ensemble Fuzzing

For an ensemble fuzzing, we need to construct a set of base
fuzzers and seamlessly combine them to test the same tar-
get application together. The overview of this approach is
presented in Figure 2. When a target application is prepared
for fuzzing, we first choose several existing fuzzers as base
fuzzers. The existing fuzzing strategies of any single fuzzer
are usually designed with preferences. In real practice, these
preferences vary greatly across different applications. They
can be helpful in some applications, but may be less effec-
tive on other applications. Therefore, choosing base fuzzers
with more diversity can lead to better ensemble performance.
After the base fuzzer selection, we integrate fuzzers with the
globally asynchronous and locally synchronous based seed
synchronization mechanism so as to monitor the fuzzing sta-
tus of these base fuzzers and share interesting seeds among
them. Finally, we collect crash and coverage information and
feed this information into the fuzzing report.

Base Fuzzers Selection

...

Seed Synchronization Mechanism

Base
Fuzzer

Base
Fuzzer

Base
Fuzzer

Base
Fuzzer

Result

generate

Result Result Result

generate generate generate

monitor

monitor monitor monitor monitor

seed is inter
esting?

N

Seed synchronization

Y

integrate together

...

Final Fuzzing Report

Global Coverage De-duplicate and triage Statistical Results

Target
Application

1 2 3 k

k321

Figure 2: The overview of ensemble fuzzing consists of base
fuzzer selection and ensemble architecture design. The base
fuzzer selection contains the diversity heuristic definition,
and the architecture design includes the seed synchronization
mechanism as well as final fuzzing report.

1970 28th USENIX Security Symposium USENIX Association

4.1 Base Fuzzer Selection
The first step in ensemble fuzzing is to select a set of base
fuzzers. These fuzzers can be generation-based fuzzers, e.g.
Peach and Radamsa, or mutation-based fuzzers, e.g. libFuzzer
and AFL. We can randomly choose some base fuzzers, but
selecting base fuzzers with well-defined diversity improves
the performance of an ensemble fuzzer.

We classify the diversity of base fuzzers according to three
heuristics: seed mutation and selection strategy diversity,
coverage information granularity diversity, inputs generation
strategy diversity. The diversity heuristics are as follows:

1. Seed mutation and selection strategy based heuristic:
the diversity of base fuzzers can be determined by the
variability of seed mutation strategies and seed selection
strategies. For example, AFLFast selects seeds that exer-
cise low-frequency paths and mutates them more times,
FairFuzz strives to ensure that the mutant seeds hit the
rarest branches.

2. Coverage information granularity based heuristic: many
base fuzzers determine interesting inputs by tracking
different coverage information. Hence, the coverage in-
formation is critical, and different kinds of coverage
granularity tracked by fuzzers enhances diversity. For ex-
ample, libFuzzer guides seed mutation by tracking block
coverage while AFL tracks edge coverage.

3. Input generation strategy based heuristic: fuzzers with
different input generation strategies are suitable for dif-
ferent tasks. For example, generation-based fuzzers use
the specification of input format to generate test cases,
while the mutation-based fuzzers mutate initial seeds by
tracking code coverage. So the generation-based fuzzers
such as Radamsa perform better on complex format in-
puts and the mutation-based fuzzers such as AFL prefer
complex logic processing.

Based on these three basic heuristics, we should be able to
select a diverse set of base fuzzers with large diversity. It is
our intuition that the diversity between the fuzzers following
in two different heuristics is usually larger than the fuzzers
that follows in the same heuristic. So, the diversity among
the AFL family tools should be the least, while the diversity
between Radamsa and AFL, between Libfuzzer and AFL, and
between QSYM and AFL is should be greater. In this paper,
we select base fuzzers manually based on the above heuristics.
the base fuzzers will be dynamically selected according to the
real-time coverage information.

4.2 Ensemble Architecture Design
After choosing base fuzzers, we need to implement a suit-
able architecture to integrate them together. As presented
in Figure 2, inspired by the seed synchronization of AFL in
parallel mode, one core mechanism is designed — the glob-
ally asynchronous and locally synchronous (GALS) based
seed synchronization mechanism. The main idea is to identify
the interesting seeds (seeds that can cover new paths or new
branches or can detect new unique crashes) from different

base fuzzers asynchronously and share those interesting seeds
synchronously among all fuzzing processes.

monitor

...

... Base FuzzerBase Fuzzer

local seed queue

global seed pool

local seed queue local seed queue

global coverage map global crashes

Base Fuzzer
1 2 k

Figure 3: The data structure of global asynchronous and local
synchronous based seed synchronization mechanism.

ALGORITHM 1: Action of local base fuzzer
Input :Local seed pool of base fuzzer queue

1 repeat
2 foreach seed s of the queue do
3 s′ = Mutate(s);
4 Cover = Run(s’);
5 // if seeds s′ causes new crash or have new

// coverage, then store it in own seed pool and
// push it to the global seed pool asynchronously;

6 if Cover.causeCrash() then
7 crashes.push(s’);
8 queue.push(s′);
9 GlobalSeedPool.push(s′);

10 else if Cover.haveNewCoverage() then
11 queue.push(s′);
12 GlobalSeedPool.push(s′);
13 end
14 end
15 until timeout or abort-signal;

Output :Global crashing seeds crashes

This seed synchronization mechanism employs a global-
local style data structure as shown in Figure 3. The local seed
queue is maintained by each base fuzzer, while the global pool
is maintained by the monitor for sharing interesting seeds
among all base fuzzers. In ensemble fuzzing, the union of
these base fuzzers’ results is needed to identify interesting
seeds during the whole fuzzing process. Accordingly, the
global coverage map is designed, and any new paths or new
branches covered by the interesting seeds will be added into
this global map. This global map can not only help decide
which seeds to be synchronized, but also help de-duplicate
and triage the results. Furthermore, to output the final fuzzing
report after completing all fuzzing jobs, any interesting seeds
which contribute to triggering unique crashes will be stored
in the global crashes list.

First, let us take a look at the seed synchronization solution
of the base fuzzer, which mainly describes how base fuzzers

USENIX Association 28th USENIX Security Symposium 1971

contribute the interesting seeds asynchronously to the global
pool. As presented in lines 2-4 of algorithm 1, for each sin-
gle base fuzzer, it works with a local input seed queue and
runs a traditional continuous fuzzing loop. It has three main
steps: (1) Select input seeds from the queue, (2) mutate the
selected input seeds to generate new candidate seeds, (3) run
the target program with the candidate seeds, track the cover-
age and report vulnerabilities. Once the candidate seeds have
new coverage or cause unique crashes, they will be regarded
as interesting seeds and be pushed asynchronously into the
global seed pool, as presented in lines 6-12.

ALGORITHM 2: Action of global monitor sync

Input :Base fuzzers list BaseFuzzers[]
Initial seeds S
Synchronization period period

1 // set up each base fuzzers ;
2 foreach base fuzzer f of the BaseFuzzers[] do
3 f uzzer.setup();
4 end
5 // set up thread monitor for monitoring ;
6 monintor.setup();
7 GlobalCover.initial();
8 GlobalSeedPool.initial();
9 GlobalSeedPool.push(S);

10 repeat
11 foreach seed s of the GlobalSeedPool do
12 // Skip synchronized seeds ;
13 if s.isSync() == False then
14 foreach base fuzzer f of the BaseFuzzers[] do
15 Cover = f .run(s) ;
16 // update the global coverage ;
17 newCover =

(Cover∪GlobalCover)−GlobalCover ;
18 GlobalCover =Cover∪GlobalCover;
19 // synchronize the seed s to base fuzzer f ;
20 if Cover.causeCrash() and

!newCover.isEmpty() then
21 crashes.push(s);
22 f .queue.push(s);
23 else if !newCover.isEmpty() then
24 f .queue.push(s);
25 else
26 continue;
27 end
28 end
29 else
30 continue;
31 end
32 s.setSync(True);
33 end
34 // waiting until next seed synchronization ;
35 sleep(period);
36 until timeout or abort-signal;

Output :Crashing seeds crashes

Second, let us see the seed synchronization solution of the
monitor process, which mainly describes how the monitor
process synchronously dispatches the interesting seeds in the
global pool to the local queue of each base fuzzer. When all
base fuzzers are established, a thread named monitor will be
created for monitoring the execution status of these fuzzing

jobs, as in lines 2-6 of algorithm 2. It initializes the global
coverage information to record the global fuzzing status of
target applications by all the base fuzzer instances and then
creates the global seed pool with the initial seeds, as in lines
7-9 of algorithm 2. It then runs a continuous periodically syn-
chronizing loop — each base fuzzer will be synchronously
dispatched with the interesting seeds from the global seed
pool. Each base fuzzer will incorporate the seeds into its own
local seed queue, once the seeds are deemed to be interest-
ing seeds (seeds contribute to the coverage or crash and has
not been generated by the local fuzzer), as in line 15-24 . To
lower the overhead of seed synchronization, a thread monitor
is designed to work periodically. Due to this globally asyn-
chronous and locally synchronous based seed synchronization
mechanism, base fuzzers cooperate effectively with each other
as in the motivating example in Figure 1.

5 Evaluation

To present the effectiveness of ensemble fuzzing, we first
implement several prototypes of ensemble fuzzer based on
the state-of-the-art fuzzers. Then, we refer to some kernel
descriptions of evaluating fuzzing guideline [25]. We conduct
thorough evaluations repeatedly on LAVA-M and Google’s
fuzzer-test-suite, several well-fuzzed open-source projects
from GitHub, and several commercial products from compa-
nies. Finally, according to the results, we answer the following
three questions: (1) Can ensemble fuzzer perform better? (2)
How do different base fuzzers affect Enfuzz? (3) How does
Enfuzz perform on real-world applications

5.1 Ensemble Fuzzer Implementation
We implement ensemble fuzzing based on six state-of-the-art
fuzzers, including three edge-coverage guided mutation-based
fuzzers – AFL, AFLFast and FairFuzz, one block-coverage
guided mutation-based fuzzer – libFuzzer, one generation-
based fuzzer – Radamsa and one most recently hybrid fuzzer –
QSYM. These are chosen as the base fuzzers for the following
reasons (Note that EnFuzz is not limited to these six and
other fuzzers can also be easily integrated, such as honggfuzz,
ClusterFuzzer etc.):

• Easy integration. All the fuzzers are open-source and
have their core algorithms implemented precisely. It is
easy to integrate those existing fuzzers into our ensem-
ble architecture. We do not have to implement them on
our own, which eliminates any implementation errors or
deviations that might be introduced by us.

• Fair comparison. All the fuzzers perform very well and
are the latest and widely used fuzzers, as is seen by
their comparisons with each other in prior literature, for
example, QSYM outperforms similar fuzzers such as
Angora [18] and VUzzer. We can evaluate their perfor-
mance on real-world applications without modification.

• Diversity demonstration. All these fuzzers have differ-
ent fuzzing strategies and reflect the diversity among
correspondence with the three base diversity heuristics

1972 28th USENIX Security Symposium USENIX Association

Table 2: Diversity among these base fuzzers
Tool diversity compared with AFL

AFLFast Seed mutation and selection strategy based
rule: the times of random mutation for each
seed is computed by a Markov chain model.
The seed selection strategy is different.

FairFuzz Seed mutation and selection strategy based
rule: only mutates seeds which hit rare
branches and strives to ensure the mutant
seeds hit the rarest one. The seed mutation
strategy is different.

libFuzzer Coverage information granularity based rule:
libFuzzer mutates seeds by utilizing the San-
itizerCoverage instrumentation, which sup-
ports tracking block coverage; while AFL
uses static instrumentation with a bitmap to
track edge coverage. The coverage informa-
tion granularity is different.

Radamsa Input generation strategy based rule: Radamsa
is a widely used generation-based fuzzer
which generates different inputs sample files
of valid data. The input generation strategy is
different.

QSYM QSYM is a practical fast concolic execution
engine tailored for hybrid fuzzing. It makes
hybrid fuzzing scalable enough to test com-
plex, real-world applications.

mentioned in section 4.1: coverage information granu-
larity diversity, input generation strategy diversity, seed
mutation and selection strategy diversity. The concrete
diversity among these base fuzzers is listed in Table 2.

To demonstrate the performance of ensemble fuzzing and
the influence of diversity among base fuzzers, five prototypes
are developed. (1) EnFuzz-A, an ensemble fuzzer only based
on AFL, AFLFast and FairFuzz. (2) EnFuzz-Q, an ensemble
fuzzer based on AFL, AFLFast, FairFuzz and QSYM, a prac-
tical concolic execution engine is included. (3) EnFuzz-L,
an ensemble fuzzer based on AFL, AFLFast, FairFuzz and
libFuzzer, a block-coverage guided fuzzer is included. (4)
EnFuzz, an ensemble fuzzer based on AFL, AFLFast, lib-
Fuzzer and Radamsa, a generation-based fuzzer is further
added .(5) EnFuzz−, with the ensemble of same base fuzzers
(AFL, AFLFast and FairFuzz), but without the seed synchro-
nization, to demonstrate the effectiveness of the global asyn-
chronous and local synchronous based seed synchronization
mechanism. During implementation of the proposed ensem-
ble mechanism, we address the following challenges:

1) Standard Interface Encapsulating The interfaces of
these fuzzers are different. For example, AFL family
tools use the function main, but libFuzzer use a function
LLVMFuzzerTestOneInput. Therefore, it is hard to ensemble
them together. We design a standard interface to encapsulate
the complexity of different fuzzing tools. This standard inter-
face takes seeds from the file system, and writes the results
back to the file system. All base fuzzers receive inputs and

produce results through this standard interface, through which
different base fuzzers can be ensembled easily.

2) libFuzzer Continuously Fuzzing The fuzzing engine of
libFuzzer will be shut down when it finds a crash, while other
tools continue fuzzing until manually closed. It is unfair to
compare libFuzzer with other tools when the fuzzing time
is different. The persistent mode of AFL is a good solution
to this problem. Once AFL sets up, the fuzzer parent will
fork and execve a new process to fuzz the target. When the
target process crashes, the parent will collect the crash and
resume the target, then the process simply loops back to the
start. Inspired by the AFL persistent mode, we set up a thread
named Parent to monitor the state of libFuzzer. Once it shuts
down, Parent will resume the libFuzzer.

3) Bugs De-duplicating and Triaging We develop a tool
for crash analysis. We compile all the target applications with
AddressSanitizer, and test them with the crash samples. When
the target applications crash, the coredump file, which consists
of the recorded state of the working memory will be saved.
Our tool first loads coredump files, then gathers the frames
of each crash; finally, it identifies two crashes as identical if
and only if the top frame is identical to the other frame. The
method above is prone to underestimating bugs. For example,
two occurrences of heap overflow may crash at the cleanup
function at exit. However, the target program is instrumented
with AddressSanitizer. As the program terminates immedi-
ately when memory safety problems occur, the top frame is
always relevant to the real bug. In practice, the original dupli-
cate unique crashes have been drastically de-duplicated to a
humanly check-able number of unique bugs, usually without
duplication. Even though there are some extreme cases that
different top frames for one bug, the result can be further
refined by manual crash analysis.

4) Seeds effectively Synchronizing The implementation of
the seed synchronization mechanism: all base fuzzers have
implemented the communication logic following the standard
interface. Each base fuzzer will put interesting seeds into its
own local seed pool, and the monitor thread sync will period-
ically make each single base fuzzer pull synchronized seeds
from the global seed pool through a communication channel.
This communication channel is implemented based on file
system. A shorter period consumes too many resources, which
leads to a decrease in fuzzing performance. A longer period
will make seed synchronizing untimely, which also affects the
performance. After multiple attempts with different values,
it is found that the synchronization interval affects the per-
formance at the beginning of fuzzing, while little impact was
observed in the long term. The interval of 120s is identified
with the fastest convergence.

5.2 Data and Environment Setup
Firstly, we evaluate ensemble fuzzing on LAVA-M [19],
which consistis of four buggy programs, file, base64, md5sum
and who. LAVA-M is a test suite that injects hard-to-find bugs
in Linux utilities to evaluate bug-finding techniques. Thus the
test is adequate for demonstrating the effectiveness of ensem-
ble fuzzing. Furthermore, to reveal the practical performance
of ensemble fuzzing, we also evaluate our work based on
fuzzer-test-suite [8], a widely used benchmark from Google.

USENIX Association 28th USENIX Security Symposium 1973

The test suite consists of popular open-source real-world ap-
plications. This benchmark is chosen to avoid the potential
bias of the cases presented in literature, and for its great di-
versity, which helps demonstrate the performance variation
of existing base fuzzers.

We refer to the kernel criteria and settings of evaluation
from the fuzzing guidelines [25], and integrate the three
widely used metrics from previous literature studies to com-
pare the results on these real-world applications more fairly,
including the number of paths, branches and unique bugs. To
get unique bugs, we use crash’s stack backtraces to dedupli-
cate unique crashes, as mentioned in the previous subsection.
The initial seeds for all experiments are the same. We use the
test cases originally included in their applications or empty
seed if such initial seeds do not exist.

The experiment on fuzzer-test-suite is conducted ten times
in a 64-bit machine with 36 cores (Intel(R) Xeon(R) CPU E5-
2630 v3 @ 2.40GHz), 128GB of main memory, and Ubuntu
16.04 as the host OS with SMT enabled. Each binary is hard-
ened by AddressSanitizer [11] to detect latent bugs. First, we
run each base fuzzer for 24 hours with one CPU core in single
mode. Next, since EnFuzz-L, EnFuzz and EnFuzz-Q need at
least four CPU cores to ensemble these four base fuzzers, we
also run each base fuzzer in parallel mode for 24 hours with
four CPU cores. In particular, EnFuzz-A and EnFuzz− only
ensembles three types of base fuzzers (AFL, AFLFast and
FairFuzz). To use the same resources, we set up two AFL
instances, one AFLFast instance and one FairFuzz instance.
This experimental setup ensures that the computing resources
usage of each ensemble fuzzer is the same as any base fuzzers
running in parallel mode. While most metrics converged to
similar values during multithreaded fuzzing. The variation of
those statistical test results is small (between -5% 5%), we
just use the averages in this paper.

5.3 Preliminary Evaluation on LAVA-M
We first evaluate ensemble fuzzing on LAVA-M, which has
been used for testing other systems such as Angora, T-Fuzz
and QSYM, and QSYM shows the best performance. We run
EnFuzz-Q (which ensembles AFL, AFLFast, FairFuzz and
QSYM) on the LAVA-M dataset. To demonstrate its effective-
ness, we also run each base fuzzer using the same resources
— four instances of AFL in parallel mode, four instances of
AFLFast in parallel mode, four instances of FairFuzz in paral-
lel mode, QSYM with four CPU cores used in parallel mode
(two instances of concolic execution engine and two instances
of AFL). To identify unique bugs, we used built-in bug identi-
fiers provided by the LAVA project. The results are presented
in Table 3, 4 and 5, which show the number of paths executed,
branches covered and unique bugs detected by AFL, AFLFast,
FairFuzz, QSYM, EnFuzz-Q.

From Tables 3, 4 and 5, we found that AFL, AFLFast
and FairFuzz perform worse due to the complexity of their
branches. The practical concolic execution engine helps
QSYM solve complex branches and find significantly more
bugs. The base code of the four applications in LAVA-M
are small (2K-4K LOCs) and concolic execution could work
well on them. However, real projects have code bases that
easily reach 10k LOCs. Concolic execution might perform

worse or even get hanged, as presented in the latter subsec-
tions. Furthermore, when we ensemble AFL, AFLFast, Fair-
Fuzz and QSYM together with the GALS based seed syn-
chronization mechanism – EnFuzz-Q always performs the
best in both coverage and bug detection. In total, compared
with AFL, AFLFast, FairFuzz and QYSM, EnFuzz-Q exe-
cutes 44%, 45%, 43% and 7.7% more paths, covers 195%,
215%, 194% and 5.8% more branches, and detectes 8314%,
19533%, 12989% and 0.68% more unique bugs respectively.
From these preliminary statistics, we can determine that the
performance of fuzzers can be improved by our ensemble
approach.

Table 3: Number of paths covered by AFL, AFLFast, FairFuzz,
QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 1078 1065 1080 1643 1794
md5sum 589 589 601 1062 1198
who 4599 4585 4593 5621 5986
uniq 476 453 471 693 731
total 6742 6692 6745 9019 9709

Table 4: Number of branches covered by AFL, AFLFast, Fair-
Fuzz, QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 388 358 389 960 993
md5sum 230 208 241 2591 2786
who 813 791 811 1776 1869
uniq 1085 992 1079 1673 1761
total 2516 2349 2520 7000 7409

Table 5: Number of bugs found by AFL, AFLFast, FairFuzz,
QSYM and EnFuzz-Q on LAVA-M.

Project AFL AFLFast FairFuzz QSYM EnFuzz-Q

base64 1 1 0 41 42
md5sum 0 0 1 57 57
who 2 0 1 1047 1053
uniq 11 5 7 25 26
total 14 6 9 1170 1178

5.4 Evaluation on Google’s fuzzer-test-suite
While LAVA-M is widely used, Google’s fuzzer-test-suite is
more practical with many more code lines and containing real-
world bugs. To reveal the effectiveness of ensemble fuzzing,
we run EnFuzz (which only ensembles AFL, AFLFast, Lib-
Fuzzer and Radamsa) on all of the 24 real-world applications
of Google’s fuzzer-test-suite for 24 hours 10 times. As a com-
parison, we also run each base fuzzer in parallel mode with
four CPU cores used. To identify unique bugs, we used stack
backtraces to deduplicate crashes. The results are presented

1974 28th USENIX Security Symposium USENIX Association

in Tables 6, 7 and 8, which shows the average number of
paths executed, branches covered and unique bugs detected
by AFL, AFLFast, FairFuzz, LibFuzzer, Radamsa, QSYM
and EnFuzz respectively.

Table 6: Average number of paths covered by each tool on
Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 3286 2816 3393 5525 3430 2973 7136
c-ares 146 116 146 191 146 132 253
guetzli 3248 2550 1818 3844 3342 2981 4508
lcms 1682 1393 1491 1121 1416 1552 2433
libarchive 12842 10111 12594 22597 12953 11984 31778
libssh 110 102 110 362 110 149 377
libxml2 14888 13804 14498 28797 17360 13172 35983
openssl-1.0.1 3992 3501 3914 2298 3719 3880 4552
openssl-1.0.2 4090 3425 3956 2304 3328 3243 4991
openssl-1.1.0 4051 3992 4052 2638 3593 4012 4801
pcre2 79581 66894 71671 59616 78347 60348 85386
proj4 342 302 322 509 341 323 709
re2 12093 10863 12085 15682 12182 10492 17155
woff2 23 16 20 447 22 24 1324
freetype2 19086 18401 20655 25621 18609 17707 27812
harfbuzz 12398 11141 14381 16771 11021 12557 16894
json 1096 963 721 1081 1206 1184 1298
libjpeg 1805 1579 2482 1486 1632 1636 2638
libpng 582 568 587 586 547 606 781
llvm 8302 8640 9509 10169 8019 7040 10935
openthread 268 213 230 1429 266 365 1506
sqlite 298 322 294 580 413 300 636
vorbis 1484 1548 1593 1039 1381 1496 1699
wpantund 4914 5112 5691 4881 4891 4941 5823
Total 190607 168372 186213 209574 188274 163097 271408

Improvement – 11% ↓ 2% ↓ 9% ↑ 1% ↓ 14%↓ 42% ↑

The first six columns of Table 6 reveal the issue of the per-
formance variation in those base fuzzers, as they perform var-
iously on different applications. Comparing AFL family tools,
AFL performs better than the other two optimized fuzzers on
14 applications. Compared with AFL, libFuzzer performs bet-
ter on 15 applications, but worse on 9 applications. Radamsa
performs better on 8 applications, but also worse on 16 ap-
plications. QSYM performs better on 9 applications, but also
worse on 15 applications. Table 7 and Table 8 show similar
results on branch coverage and bugs.

From Table 6, it is interesting to see that compared with
those optimized fuzzers based on AFL (AFLFast, FairFuzz,
Radamsa and QSYM), original AFL performs the best on
14 applications in parallel mode with 4 CPU cores. For the
total number of paths executed, AFL performs the best and
AFLFast performs the worst in parallel mode. While in single
mode with one CPU core used, the situation is exactly the
opposite, and the original AFL only performs the best on 5
applications, as presented in Table 14 of the appendix.

The reason for performance degradation of these optimiza-
tions in parallel mode is that their studies lack the consider-
ation for synchronizing the additional guiding information.
Take AFLFast for example, it models coverage-based fuzzing
as Markov Chain, and the times of random mutation for each
seed will be computed by a power scheduler. This strategy
works well in single mode, but it would fail in parallel mode
because the statistics of each fuzzer’s scheduler are limited
in current thread. Our evaluation demonstrates that many op-
timized fuzzing strategies could be useful in single mode,
but fail in the parallel mode even if this is the mode widely
used in industry practice. This experiment has been missing

by many prior literature studies. A potential solution for this
degradation is to synchronize the additional guiding informa-
tion in their implementation, similar to the work presented in
PAFL [27].
Table 7: Average number of branches covered by each tool on
n Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 3834 3635 3894 3863 3880 3680 4108
c-ares 285 276 285 202 285 285 285
guetzli 3022 2723 1514 4016 3177 3011 3644
lcms 3985 3681 3642 3015 2857 3731 4169
libarchive 10580 9267 8646 8635 11415 9416 13949
libssh 614 614 614 573 614 636 614
libxml2 15204 14845 14298 13346 19865 14747 21899
openssl-1.0.1 4011 3967 3996 3715 4117 4032 4673
openssl-1.0.2 4079 4004 4021 3923 4074 3892 4216
openssl-1.1.0 9125 9075 9123 8712 9017 9058 9827
pcre2 50558 48004 49430 36539 51881 36208 53912
proj4 267 267 267 798 267 261 907
re2 17918 17069 17360 16001 17312 16323 19688
woff2 120 120 120 2785 120 121 3945
freetype2 53339 52404 56653 57325 52715 48547 58192
harfbuzz 38163 36313 43077 39712 37959 38194 44708
json 7048 6622 5138 6583 7231 7169 7339
libjpeg 12345 11350 15688 10342 12009 11468 17071
libpng 4135 4393 4110 4003 3961 4085 4696
llvm 55003 56619 58306 57021 54312 48008 62918
openthread 3109 2959 2989 5421 3102 3634 5579
sqlite 2850 2847 2838 3123 3012 2853 3216
vorbis 12136 13524 13053 10032 11234 12849 14318
wpantund 40667 40867 41404 39816 40317 40556 43217
Total 352397 345445 360466 339501 354733 322764 407090
Improvement – 1% ↓ 2% ↓ 3% ↑ 0.6% ↓ 8%↓ 16% ↑

Table 8: Average number of unique bugs found by each tool
on n Google’s fuzzer-test-suite for ten times.

Project AFL AFLFast FairFuzz LibFuzzer Radamsa QSYM EnFuzz

boringssl 0 0 0 1 0 0 1
c-ares 3 2 3 1 2 2 3
guetzli 0 0 0 1 0 0 1
lcms 1 1 1 2 1 1 2
libarchive 0 0 0 1 0 0 1
libssh 0 0 0 1 0 1 2
libxml2 1 1 1 3 2 1 3
openssl-1.0.1 3 2 3 2 2 3 4
openssl-1.0.2 5 4 4 1 5 5 6
openssl-1.1.0 5 5 5 3 4 5 6
pcre2 6 4 5 2 5 4 8
proj4 2 0 1 1 1 1 3
re2 1 0 1 1 0 1 2
woff2 1 0 0 2 1 1 1
freetype2 0 0 0 0 0 0 0
harfbuzz 0 0 1 1 0 0 1
json 2 1 0 1 3 2 3
libjpeg 0 0 0 0 0 0 0
libpng 0 0 0 0 0 0 0
llvm 1 1 2 2 1 1 2
openthread 0 0 0 4 0 0 4
sqlite 0 0 0 3 1 1 3
vorbis 3 4 3 3 3 4 4
wpantund 0 0 0 0 0 0 0

Total 34 25 30 37 31 33 60
Improvement – 26% ↓ 12% ↑ 6% ↓ 9% ↑ 3%↓ 76% ↑

From the fifth columns of Table 6 and Table 14, we find that
compared with Radamsa in single mode, the improvement
achieved by Radamsa is limited in parallel mode. There are
two main reasons: (1) Too many useless inputs generated by
Radamsa slow down the seed-sharing efficiency among all

USENIX Association 28th USENIX Security Symposium 1975

instances of AFL. This seed-sharing mechanism does not exist
in single mode. (2) Some interesting seeds can be created in
parallel mode and shared among all instances of AFL. These
seeds overlap with the inputs generated by Radamsa. So this
improvement is limited in parallel mode.

For the EnFuzz which integrates AFL, AFLFast, libFuzzer
and Radamsa as base fuzzers and, compared with AFL,
AFLFast, FairFuzz, QSYM, LibFuzzer and Radamsa, it shows
the strongest robustness and always performs the best. In total,
it discovers 76.4%, 140%, 100%, 81.8%, 66.7% and 93.5%
more unique bugs, executes 42.4%, 61.2%, 45.8%, 66.4%,
29.5% and 44.2% more paths and covers 15.5%, 17.8%,
12.9%, 26.1%, 19.9% and 14.8% more branches respectively.
These statistics demonstrate that it helps mitigate performance
variation and improves robustness and performance by the
ensemble approach with globally asynchronous and locally
synchronous seed synchronization mechanism.

5.5 Effects of Different Fuzzing Integration
To study the effects of the globally asynchronous and locally
synchronous based seed synchronization mechanism, we con-
duct a comparative experiment on EnFuzz−and EnFuzz-A,
both ensemble the same base fuzzers (two AFL, one AFLFast,
one FairFuzz) in parallel mode with four CPU cores. To study
the effects of different base fuzzers on ensemble fuzzing,
we also run EnFuzz-Q, EnFuzz-L and EnFuzz on Google’s
fuzzer-test-suite for 24 hours 10 times. To identify unique
bugs, we used stack backtraces to deduplicate crashes. The re-
sults are presented in Tables 9, 10 and 11, which shows the av-
erage number of paths executed, branches covered and unique
bugs detected by EnFuzz−, EnFuzz-A, EnFuzz-Q, EnFuzz-L,
and EnFuzz, respectively.

Table 9: Average number of paths covered by each Enfuzz on
Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 2590 4058 3927 6782 7136
c-ares 149 167 159 251 253
guetzli 2066 3501 3472 4314 4508
lcms 1056 1846 1871 2253 2433
libarchive 4823 14563 14501 28531 31778
libssh 109 140 152 377 377
libxml2 11412 19928 18738 33940 35983
openssl-1.0.1 3496 4015 4095 4417 4552
openssl-1.0.2 3949 4976 5012 4983 4991
openssl-1.1.0 3850 4291 4383 4733 4801
pcre2 57721 81830 82642 84681 85386
proj4 362 393 399 708 709
re2 9053 13019 14453 17056 17155
woff2 19 25 24 1314 1324
freetype2 17692 22512 20134 26421 27812
harfbuzz 10438 14997 15019 16328 16894
json 648 1101 1183 1271 1298
libjpeg 1395 2501 2475 2588 2638
libpng 480 601 652 706 781
llvm 7953 9706 9668 10883 10935
openthread 197 281 743 1489 1506
sqlite 279 311 325 598 636
vorbis 928 1604 1639 1673 1699
wpantund 4521 5718 5731 5797 5823
Total 145186 212084 211397 262094 271408
Improvement – 46% ↑ 48% ↑ 80% ↑ 87% ↑

Compared with EnFuzz-A, EnFuzz− ensembles the same
base fuzzers (AFL, AFLFast and FairFuzz), but does not im-
plement the seed synchronization mechanism. EnFuzz− per-
forms much worse on all applications. In total, it only covers
68.5% paths, 78.3% branches and detects 32.4% unique bugs
of EnFuzz-A. These statistics demonstrate that the globally
asynchronous and locally synchronous based seed synchro-
nization mechanism is critical to the ensemble fuzzing.

Table 10: Average number of branches covered by each En-
fuzz on Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 3210 3996 4013 4016 4108
c-ares 285 285 285 285 285
guetzli 2074 3316 3246 3531 3644
lcms 2872 4054 4152 4098 4169
libarchive 6092 12689 11793 13267 13949
libssh 613 614 640 614 614
libxml2 14428 17657 16932 21664 21899
openssl-1.0.1 3612 4194 4204 4538 4673
openssl-1.0.2 4037 4176 4292 4202 4216
openssl-1.1.0 8642 9371 9401 9680 9827
pcre2 32471 51801 52751 52267 53912
proj4 267 267 267 907 907
re2 16300 18070 18376 19323 19688
woff2 120 120 121 3939 3945
freetype2 49927 55952 54193 58018 58192
harfbuzz 33915 43301 43379 44419 44708
json 4918 7109 7146 7268 7339
libjpeg 9826 15997 15387 16984 17071
libpng 3816 4487 4502 4589 4696
llvm 49186 58681 58329 60104 62918
openthread 2739 3221 4015 5503 5579
sqlite 2318 2898 2971 3189 3216
vorbis 10328 13872 13993 14210 14318
wpantund 33749 41537 41663 43104 43217
Total 295745 377665 376051 399719 407090
Improvement – 27% ↑ 28% ↑ 35% ↑ 38% ↑

Table 11: Average number of bugs found by each Enfuzz on
Google’s fuzzer-test-suite for ten times.

Project EnFuzz− EnFuzz-A EnFuzz-Q EnFuzz-L EnFuzz

boringssl 0 0 0 1 1
c-ares 1 3 2 3 3
guetzli 0 0 1 1 1
lcms 0 1 1 2 2
libarchive 0 0 1 1 1
libssh 0 0 2 2 2
libxml2 1 1 1 2 3
openssl-1.0.1 0 3 3 4 4
openssl-1.0.2 3 5 5 5 6
openssl-1.1.0 2 5 5 6 6
pcre2 3 6 6 7 8
proj4 0 2 2 2 3
re2 0 1 1 2 2
woff2 0 1 1 1 1
freetype2 0 0 0 0 0
harfbuzz 0 1 1 1 1
json 1 2 2 2 3
libjpeg 0 0 0 0 0
libpng 0 0 0 0 0
llvm 0 1 1 2 2
openthread 0 0 1 3 4
sqlite 0 1 1 2 3
vorbis 1 4 4 4 4
wpantund 0 0 0 0 0

Total 12 37 41 53 60
Improvement – 208% ↑ 242% ↑ 342% ↑ 400% ↑

1976 28th USENIX Security Symposium USENIX Association

For EnFuzz-A, which ensembles AFL, AFLFast and Fair-
Fuzz as base fuzzers and implements the seed synchronization
with global coverage map, compared with AFL, AFLFast and
FairFuzz running in parallel mode with four CPU cores used
(as shown in Table 6, Table 7 and Table 8), it always executes
more paths and covers more branches on all applications. In
total, it covers 11.3%, 25.9% and 13.9% more paths, achieves
7.2%, 9.3% and 4.8% more covered branches, and triggers
8.8%, 48% and 23% more unique bugs. It reveals that the
robustness and performance can be improved even when the
diversity of base fuzzers is small.

For the EnFuzz-Q which integrates AFL, AFLFast, Fair-
Fuzz and QYSM as base fuzzers, the results are shown
in the fourth columns of Tables 9, 10 and 11. Compared
with EnFuzz-A, EnFuzz-Q covers 1.1% more paths, executes
1.0% more branches and triggers 10.8% more unique bugs
than EnFuzz-A. The improvement is significantly smaller on
Google’s fuzzer-test-suite than on LAVA-M.

The reason for performance degradation between experi-
ments on LAVA-M and Google fuzzer-test-suite is that the
base codes of the four applications (who, uniq, base64 and
md5sum) in LAVA-M are small (2K-4K LOCs). The concolic
execution engine works well on them, but usually performs
the opposite or even hangs on real projects in fuzzer-test-suite
whose code base easily reaches 100k LOCs.

For the EnFuzz-L which integrates AFL, AFLFast, Fair-
Fuzz and libFuzzer as base fuzzers, the results are pre-
sented in the seventh columns of Tables 9, 10 and 11. As
mentioned in section A, the diversity among these base
fuzzers is much larger than with EnFuzz-A. Compared with
EnFuzz-A, EnFuzz-L always performs better on all target ap-
plications. In total, it covers 23.6% more paths, executes 5.8%
more branches and triggers 42.4% more unique bugs than
EnFuzz-A.

For the EnFuzz which integrates AFL, AFLFast, libFuzzer
and Radamsa as base fuzzers, the diversity is the largest be-
cause they cover all three diversity heuristics. Compared
with EnFuzz-L, it performs better and covers 3.6% more
paths, executes 1.8% more branches and triggers 13.2% more
unique bugs. Both EnFuzz and EnFuzz-L performs better
than EnFuzz-Q. These statistics demonstrate that the more di-
versity among these base fuzzers, the better the ensemble
fuzzer should perform. For real applications with a large
code base, compared with hybrid conclic fuzzing or ensem-
ble fuzzing with symbolic execution, the ensemble fuzzing
without symbolic execution may perform better.

5.6 Fuzzing Real-World Applications
We apply EnFuzz to fuzz more real-world applications from
GitHub and commercial products from Cisco, some of which
are well-fuzzed projects such as the image processing library
libpng and libjepg, the video processing library libwav, the
IoT device communication protocol libiec61850 used in hun-
dreds of thousands of cameras, etc. EnFuzz also performs
well. Within 24 hours, besides the coverage improvements,
EnFuzz finds 60 more unknown real bugs including 44 suc-
cessfully registered as CVEs, as shown in Table 13. All of
these new bugs and security vulnerabilities are detected in
a 64-bit machine with 36 cores (Intel(R) Xeon(R) CPU E5-

2630 v3@2.40GHz), 128GB of main memory, and Ubuntu
16.04 as the host OS.

Table 12: Unique previously unknown bugs detected by each
tool within 24 hours on some real-world applications.

Project AFL AFLFast FairFuzz LibFuzzer QSYM EnFuzz

Bento4_mp4com 5 4 5 5 4 6
Bento4_mp4tag 5 4 4 5 4 7
bitmap 1 1 1 0 1 2
cmft 1 1 0 1 0 2
ffjpeg 1 1 1 0 1 2
flif 1 1 1 2 1 3
imageworsener 1 0 0 0 1 1
libjpeg-05-2018 3 3 3 4 3 5
libiec61850 3 2 2 1 2 4
libpng-1.6.34 2 1 1 1 2 3
libwav_wavgain 3 2 3 0 2 5
libwav_wavinfo 2 1 2 4 2 5
LuPng 1 1 1 3 1 4
pbc 5 5 6 7 6 9
pngwriter 1 1 1 1 2 2
total 35 28 31 34 32 60

As a comparison, we also run each tool on those real-world
applications to detect unknown vulnerabilities. The results
are presented in table 12. EnFuzz found all 60 unique bugs,
while other tools only found a portion of these bugs. Com-
pared with AFL, AFLFast, FairFuzz, LibFuzzer and QSYM,
EnFuzz detected 71.4%, 114%, 93.5%, 76.4%, 87.5% more
unique bugs respectively. The results demonstrate the effec-
tiveness of EnFuzz in detecting real vulnerabilities in more
general projects. For example, in the well-fuzzed projects
libwav and libpng, we can still detect 13 more real bugs, 7
of which are assigned as CVEs. We give an analysis of the
project libpng for a more detailed illustration. libpng is a
widely used C library for reading and writing PNG image
files. It has been fuzzed many times and is one of the projects
in Google’s OSS-Fuzz, which means it has been continually
fuzzed by multiple fuzzers many times. But with EnFuzz, we
detect three vulnerabilities, including one segmentation fault,
one stack-buffer-overflow and one memory leak. The first two
vulnerabilities were assigned as CVEs (CVE-2018-14047,
CVE-2018-14550).

In particular, CVE-2018-14047 allows remote attackers
to cause a segmentation fault via a crafted input. We ana-
lyze the vulnerability with AddressSanitizer and find it is
a typical memory access violation. The problem is that in
function png_free_data in line 564 of png.c, the info_ptr
attempts to access an invalid area of memory. The error oc-
curs in png_free_data during the free of text-related data
with specifically crafted files, and causes reading of invalid
or unknown memory, as show in Listing 1. The new vulnera-
bilities and CVEs in the IoT device communication protocol
libiec6185 can also crash the service and have already been
confirmed and repaired.

We also apply each base fuzzer (AFL, AFLFast, FairFuzz,
libFuzzer and QSYM) to fuzz libpng separately, the above
vulnerability is not detected. To trigger this bug, 6 function
calls and 11 compares (2 for integer, 1 for boolean and 8 for

USENIX Association 28th USENIX Security Symposium 1977

#ifdef PNG_TEXT_SUPPORTED
/* Free text item num or (if num == -1)

all text items */
if (info_ptr ->text != NULL &&

((mask & PNG_FREE_TEXT) &
info_ptr ->free_me) != 0)

Listing 1: The error code of libpng for CVE-2018-14047

pointer) are required. It is difficult for other fuzzers to detect
bugs in such deep paths without the seeds synchronization
of EnFuzz. The performances of these fuzzers over time in
libpng are presented in Figure 4. The results demonstrate
that generalization and scalability limitations exist in these
base fuzzers – the two optimized fuzzers AFLFast and Fair-
Fuzz perform worse than the original AFL for libpng, while
EnFuzz performs the best. Furthermore, except for those eval-
uations on benchmarks and real projects, EnFuzz had already
been deployed in industry practice, and more new CVEs were
being continuously reported.

(a) Number of paths over time

(b) Number of branches over time

Figure 4: Performance of each fuzzer over time in libpng.
Each fuzzer runs in four CPU cores for 24 hours.

Table 13: The 44 CVEs detected by EnFuzz in 24 hours.
Project Count CVE-2018-Number

Bento4_mp4com 6 14584, 14585, 14586, 14587,
14588, 14589

Bento4_mp4tag 6 13846, 13847, 13848, 14590,
14531, 14532

bitmap 1 17073
cmft 1 13833
ffjpeg 1 16781
flif 1 12109
imageworsener 1 16782
libjpeg-05-2018 4 11212, 11213, 11214, 11813
libiec61850 3 18834, 18937, 19093
libpng-1.6.34 2 14048, 14550
libwav_wavgain 2 14052, 14549
libwav_wavinfo 3 14049, 14050, 14051
LuPng 3 18581, 18582, 18583
pbc 9 14736, 14737, 14738, 14739,

14740, 14741, 14742, 14743,
14744

pngwriter 1 14047

6 Discussion

Based on benchmarks such as LAVA-M and Google’s fuzzer-
test-suite, and several real projects, we demonstrate that this
ensemble fuzzing approach outperforms any base fuzzers.
However, some limitations still threaten the performance
of ensemble fuzzing. The representative limitations and the
workarounds are discussed below.

The first potential threat is the insufficient and imprecise di-
versity of base fuzzers. Section 4.1 describes our base fuzzer
selection, we propose three different heuristics to indicate
diversity of base fuzzers, including diversity of coverage in-
formation granularity, diversity of input genera-tion strategy,
and diversity of seed mutation selection strategy. According
to these three heuristics, we select AFL, AFLFast, FairFuzz,
libFuzzer, Radamsa and QSYM as the base fuzzers. Further-
more, we implement four prototypes of ensemble fuzzing and
demonstrate that the greater the diversity of base fuzzers, the
better the ensemble fuzzer performs. However, these three
different heuristics of diversity may be insufficient. More
diversity measures need to be proposed in future work. For
example, initial seeds determine the initial direction of fuzzing
and, thus, are significantly important for fuzzing, especially
for mutation-based fuzzers. Some fuzzers utilize initial seeds
generated by symbolic execution [29, 35] while some other
fuzzers utilize initial seeds constructed by domain experts
or grammar specifications. However, we select base fuzzers
manually according to the initial diversity heuristic, which is
also not accurate enough.

A possible solution to this threat is to quantify the initial
diversity value among different fuzzers for more accurate
selection. As defined in [14], the variance or diversity is a
measure of the distance of the data in relation to the average.
The average standard deviation of a data set is a percentage
that indicates how much, on average, each measurement dif-
fers from the other. To evaluate the diversity of different base
fuzzers, we can choose the most widely used AFL and its path

1978 28th USENIX Security Symposium USENIX Association

coverage as a baseline and then calculate standard deviation
of each tool from this baseline on the Google fuzzing-test-
suite. Then we can calculate the standard deviation of these
values as the initial measure of diversity for each base fuzzer,
as presented in formula (2) and (1), where n means the num-
ber of applications fuzzed by these base fuzzers, pi means the
number of paths covered by the current fuzzer of the target
application i and pAi means the number of paths covered by
AFL of the application i.

mean =
1
n

n

∑
i=1

pi− pAi

pAi

(1)

diversity =
1
n

n

∑
i=1

(
pi− pAi

pAi

−mean)
2

(2)

Take the diversity of AFLFast, FairFuzz, Radamsa, QSYM,
and libFuzzer for example, as shown in the statistics presented
in Table 14 of the appendix, compared with AFL on different
applications, the diversity of AFLFast is 0.040; the diversity
of FairFuzz is 0.062; the diversity of Radamsa is 0.197; the
diversity of QSYM is 0.271; the diversity of libFuzzer is
11.929. In the same way, the deviation on branches covered
and the bugs detected can be calculated. We can add these
three values together with different weight for the final di-
versity quantification. For example, the bug deviation should
be assigned with more weights, because from prior research,
coverage metrics (the number of paths or branches) are not
necessarily correlated well with bugs found. A more advanced
way to evaluate the amount of diversity would be to count
how many paths/branches/bugs were found by one fuzzer and
not by any of the others.

The second potential threat is the mechanism scalability
of the ensemble architecture. Section 4.2 describes the en-
semble architecture design, and proposes the globally asyn-
chronous and locally synchronous based seed synchronization
mechanism. The seed synchronization mechanism focuses
on enhancing cooperation among these base fuzzers during
their fuzzing processes. With the help of seeds sharing, the
performance of ensemble fuzzing is much improved and is
better than any of the constituent base fuzzers with the same
computing resources usage. However, this mechanism can
still be improved for better scalability on different applica-
tions and fuzzing tasks. EnFuzz only synchronizes the coarse-
grained information – interesting seeds, rather than the fine-
grained information. For example, we could synchronize the
execution trace and array index values of each base fuzzer
to improve their effectiveness in cooperation. Furthermore,
we currently select and mix base fuzzers manually accord-
ing to three heuristics. When scaled to arbitrary number of
cores, it should be carefully investigated with huge number
of empirical evaluations. A possible solution is that the base
fuzzers will be dynamically selected and initiated with dif-
ferent number of cores according to the real-time number of
paths/branches/bugs found individually by each fuzzer. In
the beginning, we have a set of different base fuzzers; then
Enfuzz selects n (this number can be configured) base fuzzers
randomly. If one fuzzer cannot contribute to coverage for a
long time, then it will be terminated, and one new base fuzzer

from the sets will be setup for fuzzing or the existing live base
fuzzer with better coverage will be allocated with more cores.

We can also apply some effective ensemble mechanisms in
ensemble learning such as Boosting to ensemble fuzzing to
improve the scalability. Boosting is a widely used ensemble
mechanism which will reweigh the base learner dynamically
to improve the performance of the ensemble learner: exam-
ples that are misclassified gain weight and examples that are
classified correctly lose weight. To implement this idea in
ensemble fuzzing, we could start up a master thread to moni-
tor the execution statuses of all base fuzzers and record more
precise information of each base fuzzer, then reassign each
base fuzzer some interesting seeds accordingly.

For the number of base fuzzers and parameters in ensemble
fuzzing implementation, it is scalable for integration of most
fuzzers. Theoretically, the more base fuzzers with diversity,
the better ensemble fuzzing performs. We only use four base
fuzzers in our evaluation with four CPU cores. The more
computing resources we get, higher performance the fuzzing
practice acquires. Furthermore, in our implementation, we
have tried different values of period time, and the results are
very sensitive to the specific setting of this value. It only
affects the performance in the beginning, but affects little in
the end. Furthermore, refering to the GALS system design,
we can also allocate a different synchronization frequency for
each local fuzzer dynamically.

7 Conclusion

In this paper, we systematically investigate the practical en-
semble fuzzing strategies and the effectiveness of ensemble
fuzzing of various fuzzers. Applying the idea of ensemble
fuzzing, we bridge two gaps. First, we come up with a method
for defining the diversity of base fuzzers and propose a way of
selecting a diverse set of base fuzzers. Then, inspired by AFL
in parallel mode, we implement a concrete ensemble archi-
tecture with one effective ensemble mechanism, a seed syn-
chronization mechanism. EnFuzz always outperforms other
popular base fuzzers in terms of unique bugs, path and branch
coverage with the same resource usage. EnFuzz has found 60
new bugs in several well-fuzzed projects and 44 new CVEs
were assigned. Our ensemble architecture can be easily uti-
lized to integrate other base fuzzers for industrial practice.

Our future work will focus on three directions: the first
is to try some other heuristics and more accurate accumu-
lated quantification of diversity in base fuzzers; the second
is to improve the ensemble architecture with more advanced
en- semble mechanism and synchronize more fine-grained
information; the last is to improve the ensemble architecture
with intelligent resource allocation such as dynamically ad-
justing the synchronization period for each base fuzzer, and
allocating more CPU cores to the base fuzzer that shares more
interesting seeds.

Acknowledgments

We thank the anonymous reviewers, and our shepherd
Thorsten Holz, for their helpful feedback and the support
from Huawei. Yu Jiang is the correspondence author.

USENIX Association 28th USENIX Security Symposium 1979

References

[1] Fuzzer automation with spike. http:
//resources.infosecinstitute.com/
fuzzer-automation-with-spike/. [Online;
accessed 12-February-2018].

[2] Cert bff - basic fuzzing framework. https:
//vuls.cert.org/confluence/display/tools/
CERT+BFF+-+Basic+Fuzzing+Framework, 2012.
[Online; accessed 10-April-2018].

[3] Afl in parallel mode. https://github.com/
mcarpenter/afl/blob/master/docs/parallel_
fuzzing.txt, 2016. [Online; accessed 10-April-2019].

[4] Continuous fuzzing for open source software.
https://opensource.googleblog.com/2016/
12/announcing-oss-fuzz-continuous-fuzzing.
html, 2016. [Online; accessed 10-April-2018].

[5] Google. honggfuzz. https://google.github.io/
honggfuzz/, 2016. [Online; accessed 10-April-2018].

[6] libfuzzer in parallel mode. https://github.
com/google/fuzzer-test-suite/blob/master/
tutorial/libFuzzerTutorial.md, 2016. [Online;
accessed 10-April-2019].

[7] Technical details for afl. http://lcamtuf.coredump.
cx/afl/technical_details.txt, 2016. [Online; ac-
cessed 10-April-2019].

[8] fuzzer-test-suite. https://github.com/google/
fuzzer-test-suite, 2017. [Online; accessed 10-
April-2018].

[9] Google security blog. https://
security.googleblog.com/2017/05/
oss-fuzz-five-months-later-and.html, 2017.
[Online; accessed 10-April-2018].

[10] libfuzzer. https://llvm.org/docs/LibFuzzer.
html, 2017. [Online; accessed 10-April-2018].

[11] Sanitizercoverage in llvm. https://clang.llvm.
org/docs/SanitizerCoverage.html, 2017. [Online;
accessed 10-April-2018].

[12] Clusterfuzz document. https://github.
com/google/oss-fuzz/blob/master/docs/
clusterfuzz.md, 2018. [Online; accessed 2-
November-2018].

[13] Clusterfuzz integration document. https:
//chromium.googlesource.com/chromium/src/
testing/libfuzzer/+/HEAD/clusterfuzz.md,
2018. [Online; accessed 2-November-2018].

[14] BENJAMIN, J. R., AND CORNELL, C. A. Probabil-
ity, statistics, and decision for civil engineers. Courier
Corporation, 2014.

[15] BÖHME, M., PHAM, V.-T., NGUYEN, M.-D., AND
ROYCHOUDHURY, A. Directed greybox fuzzing. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS17) (2017).

[16] BÖHME, M., PHAM, V.-T., AND ROYCHOUDHURY, A.
Coverage-based greybox fuzzing as markov chain. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016), ACM,
pp. 1032–1043.

[17] CHA, S. K., WOO, M., AND BRUMLEY, D. Program-
adaptive mutational fuzzing. In Security and Privacy
(SP), 2015 IEEE Symposium on (2015), IEEE, pp. 725–
741.

[18] CHEN, P., AND CHEN, H. Angora: Efficient fuzzing
by principled search. arXiv preprint arXiv:1803.01307
(2018).

[19] DOLAN-GAVITT, B., HULIN, P., KIRDA, E., LEEK, T.,
MAMBRETTI, A., ROBERTSON, W., ULRICH, F., AND
WHELAN, R. Lava: Large-scale automated vulnerability
addition. In Security and Privacy (SP), 2016 IEEE
Symposium on (2016), IEEE, pp. 110–121.

[20] EDDINGTON, M. Peach fuzzing platform. Peach Fuzzer
(2011), 34.

[21] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y.
Grammar-based whitebox fuzzing. In ACM Sigplan
Notices (2008), vol. 43, ACM, pp. 206–215.

[22] HELIN, A. Radamsa. https://gitlab.com/akihe/
radamsa, 2016.

[23] HOCEVAR, S. zzuf - multi-purpose fuzzer. http://
caca.zoy.org/wiki/zzuf, 2007. [Online; accessed
10-April-2018].

[24] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing
with code fragments. In USENIX Security Symposium
(2012), pp. 445–458.

[25] KLEES, G., RUEF, A., COOPER, B., WEI, S., AND
HICKS, M. Evaluating fuzz testing. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018), ACM, pp. 2123–2138.

[26] LEMIEUX, C., AND SEN, K. Fairfuzz: Targeting rare
branches to rapidly increase greybox fuzz testing cover-
age. arXiv preprint arXiv:1709.07101 (2017).

[27] LIANG, J., JIANG, Y., CHEN, Y., WANG, M., ZHOU,
C., AND SUN, J. Pafl: extend fuzzing optimizations
of single mode to industrial parallel mode. In Proceed-
ings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (2018), ACM,
pp. 809–814.

1980 28th USENIX Security Symposium USENIX Association

http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework
https://github.com/mcarpenter/afl/blob/master/docs/parallel_fuzzing.txt
https://github.com/mcarpenter/afl/blob/master/docs/parallel_fuzzing.txt
https://github.com/mcarpenter/afl/blob/master/docs/parallel_fuzzing.txt
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://google.github.io/honggfuzz/
https://google.github.io/honggfuzz/
 https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
 https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
 https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://security.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://chromium.googlesource.com/chromium/src/testing/libfuzzer/+/HEAD/clusterfuzz.md
https://chromium.googlesource.com/chromium/src/testing/libfuzzer/+/HEAD/clusterfuzz.md
https://chromium.googlesource.com/chromium/src/testing/libfuzzer/+/HEAD/clusterfuzz.md
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf

[28] LIANG, J., WANG, M., CHEN, Y., JIANG, Y., AND
ZHANG, R. Fuzz testing in practice: Obstacles and
solutions. In 2018 IEEE 25th International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER) (2018), IEEE, pp. 562–566.

[29] OGNAWALA, S., HUTZELMANN, T., PSALLIDA, E.,
AND PRETSCHNER, A. Improving function coverage
with munch: a hybrid fuzzing and directed symbolic
execution approach. In Proceedings of the 33rd Annual
ACM Symposium on Applied Computing (2018), ACM,
pp. 1475–1482.

[30] PETSIOS, T., ZHAO, J., KEROMYTIS, A. D., AND
JANA, S. Slowfuzz: Automated domain-independent
detection of algorithmic complexity vulnerabilities. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (2017), ACM,
pp. 2155–2168.

[31] SIRER, E. G., AND BERSHAD, B. N. Using produc-
tion grammars in software testing. In ACM SIGPLAN
Notices (1999), vol. 35, ACM, pp. 1–13.

[32] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER,
A., WANG, R., CORBETTA, J., SHOSHITAISHVILI, Y.,
KRUEGEL, C., AND VIGNA, G. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS
(2016), vol. 16, pp. 1–16.

[33] VEGGALAM, S., RAWAT, S., HALLER, I., AND BOS, H.
Ifuzzer: An evolutionary interpreter fuzzer using genetic
programming. In European Symposium on Research in
Computer Security (2016), Springer, pp. 581–601.

[34] WANG, J., CHEN, B., WEI, L., AND LIU, Y. Skyfire:
Data-driven seed generation for fuzzing, 2017.

[35] WANG, M., LIANG, J., CHEN, Y., JIANG, Y., JIAO, X.,
LIU, H., ZHAO, X., AND SUN, J. Safl: increasing and
accelerating testing coverage with symbolic execution
and guided fuzzing. In Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion
Proceeedings (2018), ACM, pp. 61–64.

[36] XU, W., KASHYAP, S., MIN, C., AND KIM, T. De-
signing new operating primitives to improve fuzzing
performance. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(2017), ACM, pp. 2313–2328.

[37] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Find-
ing and understanding bugs in c compilers. In ACM
SIGPLAN Notices (2011), vol. 46, ACM, pp. 283–294.

[38] YUN, I., LEE, S., XU, M., JANG, Y., AND KIM, T.
{QSYM}: A practical concolic execution engine tai-
lored for hybrid fuzzing. In 27th {USENIX} Security
Symposium ({USENIX} Security 18) (2018), pp. 745–
761.

[39] ZALEWSKI, M. American fuzzy lop. https://github.
com/mcarpenter/afl, 2015.

A Preliminary demonstration of diversity
among base fuzzers

To help select base fuzzers with larger diversity, we need to
estimate the diversity between each base fuzzer. In general,
the more differently they perform on different applications,
the more diversity among these base fuzzers. Accordingly,
we first run each base fuzzer in single mode, with one CPU
core on Google’s fuzzer-test-suite for 24 hours. Table 14 and
Table 15 show the number of paths and branches covered
by AFL, AFLFast, FairFuzz, libFuzzer, Radamsa and QSYM.
Table 16 shows the corresponding number of unique bugs. Be-
low we present the performance effects of the three diversity
heuristics proposed in Section 4.1 in detail.

1) Effects of seed mutation and seed selection strategy –
what kind of mutation and selection strategy you use, what
kind of path and branch you would cover The first three
columns of Table 14 show the performance of the AFL fam-
ily tools. Their differences are the seed mutation and seed
selection strategies. The original AFL performs the best on 5
applications, but performs the worst on other 10 applications.
AFLFast performs the best on 13 applications, and only per-
forms the worst on 4 applications. FairFuzz also performs the
best on 8 applications, but the worst on the other 9 applica-
tions. Although the total number of paths covered improves
slightly, the performance variation on each application is huge,
ranging from -57% to 38% in single cases.

From the first three columns in Table 15 and Table 16, we
get the same observation that the performance of these opti-
mized fuzzers varies significantly on different applications.
Although the total number of covered branches and unique
crashes improves slightly, the deviation of each application
is huge. AFLFast selects seeds that exercise low-frequency
paths to mutate more times. Take project lcms for exam-
ple, this seed selection strategy exercises more new paths by
avoiding covering “hot paths” too many times, but on project
libarchive, its “hot path” may be the key to further paths. Fair-
Fuzz mutates seeds to hit rare branches. Take project libxml2
for example, the rare branch fuzzing strategy guides FairFuzz
into deeper areas and covers more branches. However, on
libarchive, this strategy fails. FairFuzz spends much time in
deep paths and branches, ignoring breadth search. Unlike
libxml2, the breadth first search strategy of other fuzzers is
more effective on libarchive. In general, the mutation and
selection strategy decides the depth and breath of the covered
branch and path.

2) Effects of coverage information granularity–what kind of
guided information you use, what kind of coverage metric you
improve. The diversity between AFL and libFuzzer is their
coverage information granularity. According to the fourth col-
umn of Table 14, we find that compared with AFL, libFuzzer
performs better on 17 applications, and covers 30.3% more
paths in total. However, according to the fourth column of
the Table 15, compared with AFL, libFuzzer only performs
better on 11 applications, which means on 6 applications, lib-
Fuzzer covers more paths but less branches. For total branch
count, AFL covers 7.3% more than libFuzzer. The reason
is that AFL mutates seed by tracking edge hit counts while
libFuzzer utilizes the SanitizerCoverage instrumentation to
track block hit counts. AFL prefers to cover more branches

USENIX Association 28th USENIX Security Symposium 1981

https://github.com/mcarpenter/afl
https://github.com/mcarpenter/afl

while libFuzzer is better at executing more paths. In general,
edge-guided means more branches covered, and block-guided
means more paths covered.

Table 14: Average number of paths for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 1334 1674 1760 3528 1682 1207
c-ares 80 84 88 123 78 72
guetzli 1382 1090 1030 1773 1562 1268
lcms 656 864 434 338 550 605
libarchive 3756 2834 1630 10124 4570 3505
libssh 64 68 62 201 63 87
libxml2 5762 7956 8028 19663 9392 5098
openssl-1.0.1 2397 2103 2285 1709 2303 2330
openssl-1.0.2 2456 2482 2040 1881 2108 1947
openssl-1.1.0 2439 2380 2501 1897 2311 2416
pcre2 32310 35288 36176 20981 37850 24501
proj4 220 218 218 334 182 208
re2 5860 6014 5016 6327 5418 5084
woff2 14 10 12 224 10 15
freetype2 7748 10939 10714 16360 9825 7188
harfbuzz 6793 8068 8668 10800 5688 6881
json 466 412 408 499 564 504
libjpeg 704 979 722 448 634 638
libpng 170 159 76 263 493 577
llvm 4830 5760 5360 5646 4593 4096
openthread 104 123 127 976 144 141
sqlite 179 193 172 431 256 180
vorbis 891 1122 821 848 875 898
wpantund 2959 3048 3513 3510 3146 2975

Total 83575 93867 91862 108884 94296 72422

Table 15: Average number of branches for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 2645 3054 3115 3608 3641 2539
c-ares 126 122 126 100 126 126
guetzli 1913 1491 1428 2774 2118 1906
lcms 2216 2755 935 2661 1661 2075
libarchive 4906 3961 2387 3561 5263 4366
libssh 604 604 604 518 604 626
libxml2 10082 12407 12655 13037 14287 9779
openssl-1.0.1 3809 3879 3901 2591 2993 3829
openssl-1.0.2 3978 4015 3883 2308 4068 3796
openssl-1.1.0 8091 8132 8212 7810 8292 8032
pcre2 27308 29324 28404 13463 30615 19557
proj4 264 260 260 683 264 258
re2 15892 15970 15073 11369 16485 14477
woff2 114 112 114 1003 114 115
freetype2 36798 44028 45319 45541 49468 33492
harfbuzz 16872 16051 19045 18659 16782 16886
json 4462 3626 4846 4547 4821 4538
libjpeg 6865 8495 4028 8828 6982 6377
libpng 1917 1878 1135 1651 2126 2294
llvm 54107 55697 57356 51548 53427 47226
openthread 2062 2473 2646 5295 2231 2410
sqlite 2706 2784 2771 2178 2190 2709
vorbis 11836 13561 12605 5902 11217 12531
wpantund 36059 36620 37269 28694 37075 35960

Total 255631 271299 268116 238329 276850 235903

3) Effects of Input generation strategy–what kind of genera-
tion strategy you use, what kind of corresponding application
you fuzz better. The diversity between AFL and Radamsa is

the input generation strategy. From the fifth columns of Table
14 and Table 15, compared with AFL, the plenty of inputs
generated by Radamsa have some side effects on most target
applications (14 applications). Too many extra inputs will
slow down the execution speed of the fuzzer. However, for
some applications, the inputs generated by Radamsa will im-
prove the performance effectively. Take libxml2 for example,
Radamsa has some domain knowledge that prefers to generate
some structured data and specific complex format data. These
domain knowledge are not available in most mutation-based
fuzzers, and this is a critical disadvantage of AFL. But with
the help of generation-based fuzzers, the performance of AFL
can be improved greatly.

Table 16: Average number of bugs for single mode.
Project AFL AFLFast FairFuzz libFuzzer Radamsa QSYM

boringssl 0 0 0 1 0 0
c-ares 1 2 2 1 2 1
guetzli 0 0 0 0 0 0
lcms 0 0 0 0 0 0
libarchive 0 0 0 0 0 0
libssh 0 0 0 1 0 0
libxml2 0 1 0 1 1 0
openssl-1.0.1 0 0 0 0 0 0
openssl-1.0.2 2 1 0 1 1 2
openssl-1.1.0 0 0 0 0 0 0
pcre2 2 1 1 1 2 1
proj4 0 0 0 1 0 0
re2 0 0 0 1 0 0
woff2 0 0 0 1 0 0
freetype2 0 0 0 0 0 0
harfbuzz 0 0 0 1 0 0
json 1 1 0 0 1 0
libjpeg 0 0 0 0 0 0
libpng 0 1 1 1 1 1
llvm 0 0 1 1 0 1
openthread 0 0 0 1 0 0
sqlite 0 0 0 1 1 1
vorbis 1 1 2 1 1 2
wpantund 0 0 0 0 0 0

Total 7 8 7 15 10 9

In conclusion: Different base fuzzers perform variously on
distinct target applications, showing the diversity for the base
fuzzers. The more diversity of these base fuzzers, the more
differently they perform on different applications. Further-
more, the above three types of effects should be considered
and could be incorporated into the fuzzing evaluation guide-
line [25] to avoid biased test cases or metrics selection when
evaluating different types of fuzzing optimization.

B Does performance vary in different modes?

We choose AFL as the baseline, and compare other tools with
AFL on path coverage to demonstrate the performance varia-
tion. Figure 5 shows the average number of paths executed
on Google’s fuzzer-test-suite by each base fuzzer compared
with AFL in single mode. We also collect the result of each
base fuzzer running in parallel mode with four threads, and
the result is presented in Figure 6. Figure 7 shows the average

1982 28th USENIX Security Symposium USENIX Association

(a) performance of
AFLFast in single thread

(b) performance of
FairFuzz in single thread

(c) performance of
libFuzzer in single thread

(d) performance of
Radamsa in single thread

(d) performance of QSYM
in single thread

Figure 5: Paths covered by base fuzzers compared with AFL in single mode on a single core.

(a) performance of
AFLFast in four threads

(b) performance of
FairFuzz in four threads

(c) performance of
libFuzzer in four threads

(d) performance of
Radamsa in four threads

(d) performance of QSYM
in four threads

Figure 6: Paths covered by base fuzzers compared with AFL in parallel mode with four threads on four cores.

(a) performance of
EnFuzz− in four threads

(a) performance of
EnFuzz-A in four threads

(a) performance of
EnFuzz-Q in four threads

(b) performance of
EnFuzz-L in four threads

(c) performance of
EnFuzz in four threads

Figure 7: Paths covered by EnFuzz with four threads on four cores compared with AFL in parallel mode with four threads on
four cores. EnFuzz− without the proposed seed synchronization performs the worst, and EnFuzz performs the best.

number of paths executed by EnFuzz compared with AFL in
parallel mode with four CPU cores. From these results, we
get the following conclusions:

• From the results of Figure 5 and Figure 6, we find
that compared with AFL, the two optimized fuzzers
AFLFast and FairFuzz, block coverage guided fuzzer
libFuzzer, generation-based fuzzer Radamsa and hybrid
fuzzer QSYM perform variously on different applica-
tions both in single mode and in parallel mode. It demon-
strates that the performance of these base fuzzers is chal-
lenged by the diversity of the diverse real applications.
The performance of their fuzzing strategies cannot con-
stantly perform better than AFL. The performance varia-
tion exists in these state-of-the-art fuzzers.

• Comparing the result of Figure 5 and Figure 6, we find
that the performance of these base fuzzers in parallel
mode are quite different from those in single mode, es-
pecially for AFLFast and FairFuzz. In single mode, the
other two optimized base fuzzers perform better than
AFL in many applications. But in parallel mode, the
result is completely opposite that the original AFL per-
forms better on almost all applications.

• From the result of Figure 7, it reveals that EnFuzz-A,
EnFuzz-L and EnFuzz always perform better than AFL
on the target applications. For the same computing re-
sources usage where AFL running in parallel mode with
four CPU cores, EnFuzz-A covers 11.26% more paths
than AFL, ranging from 4% to 38% in single cases,

EnFuzz-Q covers 12.48% more paths than AFL, rang-
ing from 5% to 177% in single cases, EnFuzz-L cov-
ers 37.50% more paths than AFL, ranging from 13% to
455% in single cases. EnFuzz covers 42.39% more paths
than AFL, ranging from 14% to 462% in single cases.
Through ensemble fuzzing, the performance variation
can be reduced.

• From the result of Figure 7, it reveals that EnFuzz− with-
out seed synchronization performs worse than AFL paral-
lel mode under the same resource constraint. Compared
with EnFuzz-A, EnFuzz-Q covers 1.09% more paths,
EnFuzz-L covers 23.58% more paths. For EnFuzz, it
covers 27.97% more paths than EnFuzz-A, 26.59% more
paths than EnFuzz-Q, 3.6% more paths than EnFuzz-L,
and always performs the best on all applications. The
more diversity among those integrated base fuzzers, the
better performance of ensemble fuzzing, and the seed
synchronization contributes more to the improvements.

In conclusion: the performance of the state-of-the-art fuzzers
is greatly challenged by the diversity of those real-world appli-
cations, and it can be improved through the ensemble fuzzing
approach. Furthermore, those optimized strategies work in
single mode can not be directly scaled to parallel mode which
is widely used in industrial practice. The ensemble fuzzing
approach is a critical enhancement to the single and parallel
mode of those optimized strategies.

USENIX Association 28th USENIX Security Symposium 1983

GRIMOIRE: Synthesizing Structure while Fuzzing

Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi,
Sergej Schumilo, Simon Wörner and Thorsten Holz

Ruhr-Universität Bochum, Germany

Abstract
In the past few years, fuzzing has received significant at-

tention from the research community. However, most of this
attention was directed towards programs without a dedicated
parsing stage. In such cases, fuzzers which leverage the input
structure of a program can achieve a significantly higher code
coverage compared to traditional fuzzing approaches. This
advancement in coverage is achieved by applying large-scale
mutations in the application’s input space. However, this
improvement comes at the cost of requiring expert domain
knowledge, as these fuzzers depend on structure input speci-
fications (e. g., grammars). Grammar inference, a technique
which can automatically generate such grammars for a given
program, can be used to address this shortcoming. Such tech-
niques usually infer a program’s grammar in a pre-processing
step and can miss important structures that are uncovered only
later during normal fuzzing.

In this paper, we present the design and implementation
of GRIMOIRE, a fully automated coverage-guided fuzzer
which works without any form of human interaction or pre-
configuration; yet, it is still able to efficiently test programs
that expect highly structured inputs. We achieve this by per-
forming large-scale mutations in the program input space
using grammar-like combinations to synthesize new highly
structured inputs without any pre-processing step. Our eval-
uation shows that GRIMOIRE outperforms other coverage-
guided fuzzers when fuzzing programs with highly structured
inputs. Furthermore, it improves upon existing grammar-
based coverage-guided fuzzers. Using GRIMOIRE, we iden-
tified 19 distinct memory corruption bugs in real-world pro-
grams and obtained 11 new CVEs.

1 Introduction

As the amount of software impacting the (digital) life of
nearly every citizen grows, effective and efficient testing
mechanisms for software become increasingly important. The
publication of the fuzzing framework AFL [65] and its suc-
cess at uncovering a huge number of bugs in highly relevant

software has spawned a large body of research on effective
feedback-based fuzzing. AFL and its derivatives have largely
conquered automated, dynamic software testing and are used
to uncover new security issues and bugs every day. However,
while great progress has been achieved in the field of fuzzing,
many hard cases still require manual user interaction to gen-
erate satisfying test coverage. To make fuzzing available to
more programmers and thus scale it to more and more target
programs, the amount of expert knowledge that is required to
effectively fuzz should be reduced to a minimum. Therefore,
it is an important goal for fuzzing research to develop fuzzing
techniques that require less user interaction and, in particular,
less domain knowledge to enable more automated software
testing.

Structured Input Languages. One common challenge for
current fuzzing techniques are programs which process highly
structured input languages such as interpreters, compilers,
text-based network protocols or markup languages. Typically,
such inputs are consumed by the program in two stages: pars-
ing and semantic analysis. If parsing of the input fails, deeper
parts of the target program—containing the actual applica-
tion logic—fail to execute; hence, bugs hidden “deep” in the
code cannot be reached. Even advanced feedback fuzzers—
such as AFL—are typically unable to produce diverse sets
of syntactically valid inputs. This leads to an imbalance, as
these programs are part of the most relevant attack surface in
practice, yet are currently unable to be fuzzed effectively. A
prominent example are browsers, as they parse a multitude
of highly-structured inputs, ranging from XML or CSS to
JavaScript and SQL queries.

Previous approaches to address this problem are typi-
cally based on manually provided grammars or seed cor-
pora [2, 14, 45, 52]. On the downside, such methods require
human experts to (often manually) specify the grammar or
suitable seed corpora, which becomes next to impossible for
applications with undocumented or proprietary input specifi-
cations. An orthogonal line of work tries to utilize advanced
program analysis techniques to automatically infer grammars

USENIX Association 28th USENIX Security Symposium 1985

[4, 5, 25]. Typically performed as a pre-processing step, such
methods are used for generating a grammar that guides the
fuzzing process. However, since this grammar is treated as im-
mutable, no additional learning takes place during the actual
fuzzing run.

Our Approach. In this paper, we present a novel, fully au-
tomated method to fuzz programs with a highly structured
input language, without the need for any human expert or
domain knowledge. Our approach is based on two key obser-
vations: First, we can use code coverage feedback to automati-
cally infer structural properties of the input language. Second,
the precise and “correct” grammars generated by previous
approaches are actually unnecessary in practice: since fuzzers
have the virtue of high test case throughput, they can deal
with a significant amount of noise and imprecision. In fact, in
some programs (such as Boolector) with a rather diverse set
of input languages, the additional noise even benefits the fuzz
testing. In a similar vein, there are often program paths which
can only be accessed by inputs outside of the formal specifica-
tions, e. g., due to incomplete or imprecise implementations
or error handling code.

Instead of using a pre-processing step, our technique is
directly integrated in the fuzzing process itself. We propose a
set of generalizations and mutations that resemble the inner
workings of a grammar-based fuzzer, without the need for an
explicit grammar. Our generalization algorithm analyzes each
newly found input and tries to identify substrings of the input
which can be replaced or reused in other positions. Based on
this information, the mutation operators recombine fragments
from existing inputs. Overall, this results in synthesizing new,
structured inputs without prior knowledge of the underlying
specification.

We have implemented a prototype of the proposed ap-
proach in a tool called GRIMOIRE1. GRIMOIRE does not
need any specification of the input language and operates in
an automated manner without requiring human assistance;
in particular, without the need for a format specification or
seed corpus. Since our techniques make no assumption about
the program or its environment behavior, GRIMOIRE can be
easily applied to closed-source targets as well.

To demonstrate the practical feasibility of our approach,
we perform a series of experiments. In a first step, we select a
diverse set of programs for a comparative evaluation: we eval-
uate GRIMOIRE against other fuzzers on four scripting lan-
guage interpreters (mruby, PHP, Lua and JavaScriptCore),
a compiler (TCC), an assembler (NASM), a database (SQLite),
a parser (libxml) and an SMT solver (Boolector). Demon-
strating that our approach can be applied in many different
scenarios without requiring any kind of expert knowledge,
such as an input specification. The evaluation results show

1A grimoire is a magical book that recombines magical elements to
formulas. Furthermore, it has the same word stem as the Old French word
for grammar—namely, gramaire.

that our approach outperforms all existing coverage-guided
fuzzers; in the case of Boolector, GRIMOIRE finds up to
87% more coverage than the baseline (REDQUEEN). Sec-
ond, we evaluate GRIMOIRE against state-of-the-art grammar-
based fuzzers. We observe that in situations where an input
specification is available, it is advisable to use GRIMOIRE
in addition to a grammar fuzzer to further increase the test
coverage found by grammar fuzzers. Third, we evaluate GRI-
MOIRE against current state-of-the-art approaches that use
automatically inferred grammars for fuzzing and found that
we can significantly outperform such approaches. Overall,
GRIMOIRE found 19 distinct memory corruption bugs that
we manually verified. We responsibly disclosed all of them
to the vendors and obtained 11 CVEs. During our evalu-
ation, the next best fuzzer only found 5 of these bugs. In
fact, GRIMOIRE found more bugs than all five other fuzzers
combined.

Contributions. In summary, we make the following contri-
butions:

• We present the design, implementation and evaluation
of GRIMOIRE, an approach to fully automatically fuzz
highly structured formats with no human interaction.

• We show that even though GRIMOIRE is a binary-only
fuzzer that needs no seeds or grammar as input, it
still outperforms many fuzzers that make significantly
stronger assumptions (e. g., access to seeds, grammar
specifications and source code).

• We found and reported multiple bugs in various common
projects such as PHP, gnuplot and NASM.

2 Challenges in Fuzzing Structured Lan-
guages

In this section, we briefly summarize essential information
paramount to the understanding of our approach. To this
end, we provide an overview of different fuzzing approaches,
while focusing on their shortcomings and open challenges.
In particular, we describe those details of AFL (e. g., code
coverage) that are necessary to understand our approach. Ad-
ditionally, we explain how fuzzers explore the state space of
a program and how grammars aid the fuzzing process.

Generally speaking, fuzzing is a popular and efficient soft-
ware testing technique used to uncover bugs in applications.
Fuzzers typically operate by producing a large number of test
cases, some of which may trigger bugs. By closely moni-
toring the runtime execution of these test cases, fuzzers are
able to locate inputs causing faulty behavior. In an abstract
view, one can consider fuzzing as randomly exploring the
state space of the application. Typically, most totally ran-
dom inputs are rejected early by the target application and

1986 28th USENIX Security Symposium USENIX Association

do not visit interesting parts of the state space. Thus, in our
abstract view, the state space has interesting and uninteresting
regions. Efficient fuzzers somehow have to ensure that they
avoid uninteresting regions most of the time. Based on this
observation, we can divide fuzzers into three broad categories,
namely: (a) blind, (b) coverage-guided and (c) hybrid fuzzers,
as explained next.

2.1 Blind Fuzzing
The most simple form of a fuzzer is a program which gen-
erates a stream of random inputs and feeds it to the target
application. If the fuzzer generates inputs without considering
the internal behavior of the target application, it is typically
referred to as a blind fuzzer. Examples of blind fuzzers are
RADAMSA [29], PEACH [14], Sulley [45] and ZZUF [32].
To obtain new inputs, fuzzers traditionally can build on two
strategies: generation and mutation.

Fuzzers employing the former approach have to acquire
a specification, typically a grammar or model, of an appli-
cation’s expected input format. Then, a fuzzer can use the
format specification to be able to generate novel inputs in a
somewhat efficient way. Additionally, in some cases, a set of
valid inputs (a so-called corpus) might be required to aid the
generation process [46, 58].

On the other hand, fuzzers which employ a mutation-based
strategy require only an initial corpus of inputs, typically
referred to as seeds. Further test cases are generated by ran-
domly applying various mutations on initial seeds or novel
test cases found during fuzzing runs. Examples for common
mutators include bit flipping, splicing (i. e., recombining two
inputs) and repetitions [14, 29, 32]. We call these mutations
small-scale mutations, as they typically change small parts of
the program input.

Blind fuzzers suffer from one major drawback. They either
require an extensive corpus or a well-designed specification
of the input language to provide meaningful results. If a
program feature is not represented by either a seed or the
input language specification, a blind fuzzer is unlikely to
exercise it. In our abstract, state space-based view, this can be
understood as blindly searching the state space near the seed
inputs, while failing to explore interesting neighborhoods,
as illustrated in Figure 1(a). To address this limitation, the
concept of coverage-guided fuzzing was introduced.

2.2 Coverage-guided Fuzzing
Coverage-guided fuzzers employ lightweight program cover-
age measurements to trace how the execution path of the appli-
cation changes based on the provided input (e. g., by tracking
which basic blocks have been visited). These fuzzers use this
information to decide which input should be stored or dis-
carded to extend the corpus. Therefore, they are able to evolve
inputs that differ significantly from the original seed corpus

(a) Blind mutational fuzzers mostly
explore the state space near the seed
corpus. They often miss interesting
states (shaded area) unless the seeds
are good.

(b) Coverage guided fuzzers can
learn new inputs (arrows) close to ex-
isting seeds. However, they are often
unable to skip large gaps.

(c) Programs with highly structured
input formats typically have large
gaps in the state space. Current feed-
back and hybrid fuzzers have difficul-
ties finding other interesting islands
using local mutations.

(d) By introducing an input specifica-
tion, fuzzers can generate inputs in
interesting areas and perform large-
scale mutations that allow to jump
between islands of interesting states.

Figure 1: Different fuzzers exploring distinct areas in state space.

while at the same time exercising new program features. This
strategy allows to gradually explore the state of the program
as it uncovers new paths. This behavior is illustrated in Fig-
ure 1(b). The most prominent example of a coverage-guided
fuzzer is AFL [65]. Following the overwhelming success of
AFL, various more efficient coverage-guided fuzzers such as
ANGORA [12], QSYM [64], T-FUZZ [47] or REDQUEEN [3]
were proposed.

From a high-level point of view, all these AFL-style fuzzers
can be broken down into three different components: (i) the in-
put queue stores and schedules all inputs found so far, (ii) the
mutation operations produce new variants of scheduled inputs
and (iii) the global coverage map is used to determine whether
a new variant produced novel coverage (and thus should be
stored in the queue).

From a technical point of view, this maps to AFL as fol-
lows: Initially, AFL fills the input queue with the seed inputs.
Then, it runs in a continuous fuzzing loop, composed of the
following steps: (1) Pick an input from the input queue, then
(2) apply multiple mutation operations on it. After each muta-
tion, (3) execute the target application with the selected input.
If new coverage was triggered by the input, (4) save it back to
the queue. To determine whether new coverage was triggered,

USENIX Association 28th USENIX Security Symposium 1987

AFL compares the results of the execution with the values in
the global coverage map.

This global coverage map is filled as follows: AFL shares
a memory area of the same size as the global coverage map
with the fuzzing target. During execution, each transition
between two basic blocks is assigned a position inside this
shared memory. Every time the transition is triggered, the
corresponding entry (one byte) in the shared memory map is
incremented. To reduce overhead incurred by large program
traces, the shared coverage map has a fixed size (typically
216 bytes). While this might introduce collisions, empirical
evaluation has shown that the performance gains make up for
the loss in the precision [66].

After the target program terminates, AFL compares the
values in the shared map to all previous runs stored in the
global coverage map. To check if a new edge was executed,
AFL applies the so-called bucketing. During bucketing, each
entry in the shared map is rounded to a power of 2 (i. e., at
most a single bit is set in each entry). Then, a simple binary
operation is used to check if any new bits are present in the
shared map (but not the global map). If any new bit is present,
the input is stored in the queue. Furthermore, all new bits
are also set to 1 in the global coverage map. We distinguish
between new bits and new bytes. If a new bit is set to 1 in
a byte that was previously zero, we refer to it as a new byte.
Intuitively, a new byte corresponds to new coverage while a
new bit only illustrates that a known edge was triggered more
often (e. g., more loop iterations were observed).

Example 1. For example, consider some execution a while
after starting the fuzzer run for a program represented by
its Control-Flow Graph (CFG) in Figure 2 a©. Assume that
the fictive execution of an input causes a loop between B
and C to be executed 10 times. Hence, the shared map is
updated as shown in b©, reflecting the fact that edges A→
B and C → D were executed only once, while the edges B
→ C and C → B were encountered 10 (0b1010) times. In
c©, we illustrate the final bucketing step. Note how 0b1010

is put into the bucket 0b1000, while 0b0001 is moved into
the one identified by 0b0001. Finally, AFL checks whether
the values encountered in this run triggered unseen edges in
d©. To this end, we compare the shared map to the global

coverage map and update it accordingly (see e©), setting bits
set in the shared but not global coverage map. As visualized
in f©, a new bit was set for two entries, while a new byte
was found for one. This means that the edge between C→ D
was previously unseen, thus the input used for this example
triggered new coverage.

While coverage-guided fuzzers significantly improve upon
blind fuzzers, they can only learn from new coverage if they
are able to guess an input that triggers the new path in the
program. In certain cases, such as multi-byte magic values,
the probability of guessing an input necessary to trigger a
different path is highly unlikely. These kind of situations

occur if there is a significant gap between interesting areas in
the state space and existing mutations are unlikely to cross the
uninteresting gap. The program displayed in the Figure 1(b)
illustrates a case with only one large gap in the program
space. Thus, this program is well-suited for coverage-guided
fuzzing. However, current mutation-based coverage-guided
fuzzers struggle to explore the whole state space because
the island in the lower right is never reached. To overcome
this limitation, hybrid fuzzer were introduced; these combine
coverage-guided fuzzing with more in-depth program analysis
techniques.

2.3 Hybrid Fuzzing
Hybrid fuzzers typically combine coverage-guided fuzzing
with program analysis techniques such as symbolic execution,
concolic execution or taint tracking. As noted above, fast and
cheap fuzzing techniques can uncover the bulk of the easy-
to-reach code. However, they struggle to trigger program
paths that are highly unlikely. On the other hand, symbolic
or concolic execution does not move through the state space
randomly. Instead, these techniques use an SMT solver to
find inputs that trigger the desired behavior. Therefore, they
can cover hard-to-reach program locations. Still, as a con-
sequence of the precise search technique, they struggle to
explore large code regions due to significant overhead.

By combining fuzzing and reasoning-based techniques, one
can benefit from the strength of each individual technique,
while avoiding the drawbacks. Purely symbolic approaches
have proven difficult to scale. Therefore, most current tools
such as SAGE [21], DRILLER [54] or QSYM [64] use concolic
execution instead. This mostly avoids the state explosion
problem by limiting the symbolic execution to a single path.
To further reduce the computation cost, some fuzzers such
as VUZZER [50] and ANGORA [12] only use taint tracking.
Both approaches still allow to overcome the common multi-
byte magic value problem. However, they lose the ability to
explore behavior more globally.

While hybrid fuzzers can solve constraints over individual
values of the input, they are typically not efficient at solving
constraints on the overall structure of the input. Consider
target programs such as a script interpreter. To uncover a new
valid code path, the symbolic executor usually has to consider
a completely different path through the parsing stage. This
leads to a large number of very large gaps in the state space
as illustrated in Figure 1(c). Therefore, concolic execution or
taint tracking-based tools are unable to solve these constraints.
In purely symbolic execution-based approaches, this leads to
a massive state explosion.

2.4 Coverage-guided Grammar Fuzzing
Beside the problem of multi-byte magic values, there is an-
other issue which leads to large gaps between interesting

1988 28th USENIX Security Symposium USENIX Association

Figure 2: The process of tracing a path in a program and introducing new bits and bytes in the global coverage map.

parts of the state space: programs with structured input lan-
guages. Examples for such programs are interpreters, com-
pilers, databases and text-based Internet protocols. As men-
tioned earlier, current mutational blind and coverage-guided
as well as hybrid fuzzers cannot efficiently fuzz programs
with structured input languages. To overcome this issue, gen-
erational fuzzers (whether blind, coverage-guided or hybrid)
use a specification of the input language (often referred to as
a grammar) to generate valid inputs. Thereby, they reduce the
space of possible inputs to a subset that is much more likely
to trigger interesting states. Additionally, coverage-guided
grammar fuzzers can mutate inputs in this reduced subset by
using the provided grammar. We call these mutations large-
scale mutations since they modify large part of the input. This
behavior is illustrated in Figure 1(d).

Therefore, the performance of fuzzers can be increased
drastically by providing format specifications to the fuzzer, as
implemented in NAUTILUS [2] and AFLSMART [48]. These
specifications let the fuzzer spend more time exercising code
paths deep in the target application. Particularly, the fuzzer
is able to sensibly recombine inputs that trigger interesting
features in a way that has a good chance of triggering more
interesting behaviors.

Grammar fuzzers suffer from two major drawbacks. First,
they require human effort to provide precise format specifica-
tion. Second, if the specification is incomplete or inaccurate,
the fuzzer lacks the capability to address these shortcomings.
One can overcome these two drawbacks by automatically
inferring the specification (grammar).

2.5 Grammar Inference

Due to the impact of grammars on software testing, vari-
ous approaches have been developed that automatically can

generate input grammars for target programs. Bastani et
al. [5] introduced GLADE, which uses a modified version of
the target as a black-box oracle that tests if a given input is
syntactically valid. GLADE turns valid inputs into regular
expressions that generate (mostly) valid inputs. Then, these
regular expressions are turned into full grammars by trying
to introduce recursive replacement rules. In each step, the va-
lidity of the resulting grammar is tested using multiple oracle
queries. This approach has three significant drawbacks: First,
the inference process takes multiple hours for complex targets
such as scripting languages. Second, the user needs to provide
an automated testing oracle, which might not be trivial to pro-
duce. Third, in the context of fuzzing, the resulting grammars
are not well suited for fuzzing as our evaluation shows (see
Section 5.4 for details). Additionally, this approach requires
a pre-processing step before fuzzing starts in order to infer a
grammar from the input corpus.

Other approaches use the target application directly and
thus avoid the need to create an oracle. AUTOGRAM [34],
for instance, uses the original program and taint tracking to
infer grammars. It assumes that the functions that are called
during parsing reflect the non-terminals of the intended gram-
mar. Therefore, it does not work for recursive descent parsers.
PYGMALION [25] is based on simplified symbolic execution
of Python code to avoid the dependency on a set of good in-
puts. Similar to AUTOGRAM, PYGMALION assumes that the
function call stack contains relevant information to identify
recursive rules in the grammar. This approach works well for
hand-written, recursive descent parsers; however, it will have
severe difficulties with parsers generated by parser genera-
tors. These parsers are typically implemented as table-driven
automatons and do not use function calls at all. Addition-
ally, robust symbolic execution and taint tracking are still
challenging for binary-only targets.

USENIX Association 28th USENIX Security Symposium 1989

2.6 Shortcomings of Existing Approaches
To summarize, current automated software testing approaches
have the following disadvantages when used for fuzzing of
programs that accept structured input languages:

• Needs Human Assistance. Some techniques require
human assistance to function properly. Either in terms
of providing information or in terms of modifying the
target program.

• Requires Source Code. Some fuzzing techniques re-
quire access to source code. This puts them at a disad-
vantage as they cannot be applied to proprietary software
in binary format.

• Requires a Precise Environment Model. Techniques
based on formal reasoning such as symbolic/concolic
execution as well as taint tracking require precise seman-
tics of the underlying platform as well as semantics of
all used Operating System (OS) features (e. g., syscalls).

• Requires a Good Corpus. Many techniques only work
if the seed corpus already contains most features of the
input language.

• Requires a Format Specification. Similarly, many
techniques described in this section require precise for-
mat specifications for structured input languages.

• Limited To Certain Types of Parsers. Some ap-
proaches make strong assumptions about the underlying
implementation of the parser. Notably, some approaches
are unable to deal with parses generated by common
parser generators such as GNU Bison [15] or Yacc [37].

• Provides Only Small-scale Mutations. As discussed
in this section, various approaches cannot provide muta-
tions that cross large gaps in the program space.

Table 1: Requirements and limitations of different fuzzers and inference
tools when used for fuzzing structured input languages. If a shortcoming
applies to a tool, it is denoted with 7, otherwise with 3.

P
E

A
C

H

A
FL

R
E

D
Q

U
E

E
N

Q
SY

M

A
N

G
O

R
A

N
A

U
T

IL
U

S

A
F

L
SM

A
R

T

G
L

A
D

E

A
U

T
O

G
R

A
M

P
Y

G
M

A
L

IO
N

G
R

IM
O

IR
E

human assistance 7 3 3 3 3 7 7 7 7 3 3
source code 3 3 3 3 7 7 3 3 7 7 3
environment model 3 3 3 7 7 3 3 3 7 7 3
good corpus 3 3 3 3 3 3 7 7 7 3 3
format specifications 7 3 3 3 3 7 7 3 3 3 3

certain parsers 3 3 3 3 3 3 3 3 7 7 3
small-scale mutations 7 7 7 7 7 3 3 3 3 3 3

We analyzed existing fuzzing methods, the results of this
survey are shown in Table 1. We found that all current ap-
proaches have at least one shortcoming for fuzzing programs

with highly structured inputs. In the next section, we propose
a design that avoids all the mentioned drawbacks.

3 Design

Based on the challenges identified above, we now introduce
the design of GRIMOIRE, a fully automated approach that syn-
thesizes the target’s structured input language during fuzzing.
Furthermore, we present large-scale mutations that cross sig-
nificant gaps in the program space. Note that none of the
limitations listed in Table 1 applies to our approach. To
emphasize, our design does not require any previous infor-
mation about the input structure. Instead, we learn an ad-hoc
specification based on the program semantics and use it for
coverage-guided fuzzing.

We first provide a high-level overview of GRIMOIRE, fol-
lowed by a detailed description. GRIMOIRE is based on
identifying and recombining fragments in inputs that trig-
ger new code coverage during a normal fuzzing session. It
is implemented as an additional fuzzing stage on top of a
coverage-guided fuzzer. In this stage, we strip every new
input (that is found by the fuzzer and produced new coverage)
by replacing those parts of the input that can be modified or
replaced without affecting the input’s new coverage by the
symbol �. This can be understood as a generalization, in
which we reduce inputs to the fragments that trigger new cov-
erage, while maintaining information about gaps or candidate
positions (denoted by �). These gaps are later used to splice
in fragments from other inputs.

Example 2. Consider the input “if(x>1) then x=3 end”
and assume it was the first input to trigger the coverage for
a syntactically correct if-statement as well as for “x>1”. We
can delete the substring “x=3” without affecting the interest-
ing new coverage since the if-statement remains syntactically
correct. Additionally, the space between the condition and the

“then” is not mandatory. Therefore, we obtain the generalized
input “if(x>1)�then �end”.

After a set of inputs was successfully generalized, frag-
ments from the generalized inputs are recombined to produce
new candidate inputs. We incorporate various different strate-
gies to combine existing fragments, learned tokens (a special
form of substrings) and strings from the binary in an auto-
mated manner.

Example 3. Assume we obtained the following general-
ized inputs: “if(x>1)�then �end” and “�x=�y+�”.
We can use this information in many ways to generate
plausible recombinations. For example, starting with the
input “if(x>1)�then �end”, we can replace the sec-
ond gap with the second input, obtaining “if(x>1)�then
�x=�y+�end”. Afterwards, we choose the slice “�y+�”
from the second input and splice it into the fourth gap and
obtain “if(x>1)�then �x=�y+�y+�end”. In a last step,

1990 28th USENIX Security Symposium USENIX Association

we replace all remaining gaps by an empty string. Thus, the
final input is “if(x>1)then x=y+y+end”.

One could think of our approach as a context-free gram-
mar with a single non-terminal input � and all fragments of
generalized inputs as production rules. Using these loose,
grammar-like recombination methods in combination with
feedback-driven fuzzing, we are able to automatically learn
interesting structures.

3.1 Input Generalization
We try to generalize inputs that produced new coverage (e. g.,
inputs that introduced new bytes to the bitmap, cf. Sec-
tion 2.2). The generalization process (Algorithm 1) tries
to identify parts of the input that are irrelevant and fragments
that caused new coverage. In a first step, we use a set of rules
to obtain fragment boundaries (Line 3). Consecutively, we
remove individual fragments (Line 4). After each step, we
check if the reduced input still triggers the same new coverage
bytes as the original input (Line 5). If this is the case, we
replace the fragment that was removed by a � and keep the
reduced input (Line 6).

Algorithm 1: Generalizing an input through fragment
identification.

Data: input is the input to generalize, new_bytes are the new
bytes of the input, splitting_rule defines how to split an
input

Result: A generalized version of input
1 start← 0
2 while start < input.length() do
3 end← find_next_boundary(input, splitting_rule)
4 candidate← remove_substring(input, start, end)
5 if get_new_bytes(candidate) == new_bytes then
6 input← replace_by_gap(input, start, end)

7 start← end

8 input← merge_adjacent_gaps(input)

Example 4. Consider input “pprint ’aaaa’” triggers the
new bytes 20 and 33 because of the pprint statement. Fur-
thermore, assume that we use a rule that splits inputs into
non-overlapping chunks of length two. Then, we obtain the
chunks “pp”, “ri”, “nt”, “ ’”, “aa”, “aa” and “’”. If we
remove any of the first four chunks, the modified input will
not trigger the same new bytes since we corrupted the pprint
statement. However, if we remove the fifth or sixth chunk, we
still trigger the bytes 20 and 33 since the pprint statement
remains valid. Therefore, we reduce the input to “pprint
’��’”. As we have two adjacent �, we merge them into one.
The generalized input is “pprint ’�’”.

To generalize an input as much as possible, we use several
fragmentation strategies for which we apply Algorithm 1 re-
peatedly. First, we split the input into overlapping chunks of

size 256, 128, 64, 32, 2 and 1 to remove large uninteresting
parts as early as possible. Afterwards, we dissect at different
separators such as ‘.’, ‘;’, ‘,’, ‘\n’, ‘\r’, ‘\t’, ‘#’ and ‘ ’.
As a consequence, we can remove one or more statements
in code, comments and other parts that did not cause the in-
put’s new coverage. Finally, we split at different kinds of
brackets and quotation marks. These fragments can help to
generalize constructs such as function parameters or nested
expressions. In detail, we split in between of ‘()’, ‘[]’, ‘{}’,
‘<>’ as well as single and double quotes. To guess differ-
ent nesting levels in between these pairs of opening/closing
characters, we extend Algorithm 1 as follows: If the current
index start matches an opening character, we search the
furthermost matching closing character, create a candidate
by removing the substring in between and check if it triggers
the same new coverage. We iteratively do this by choosing
the next furthermost closing character—effectively shrinking
the fragment size—until we find a substring that can be re-
moved without changing the new_bytes or until we reach the
index start. In doing so, we are able to remove the largest
matching fragments from the input that are irrelevant for the
input’s new coverage.

Since we want to recombine (generalized) inputs to find
new coverage—as we describe in the following section—we
store the original input as well as its generalization. Further-
more, we split the generalized input at every � and store the
substrings (tokens) in a set; these tokens often are syntacti-
cally interesting fragments of the structured input language.

Example 5. We map the input “if(x>1) then x=3 end”
to its generalization “if(x>1)�then �end”. In addition,
we extract the tokens “if(x>1)”, “then ” and “end”. For
the generalized input “�x=�y+�”, we remember the tokens

“x=” and “y+”.

3.2 Input Mutation
GRIMOIRE builds upon knowledge obtained from the gener-
alization stage to generate inputs that have good chances of
finding new coverage. For this, it recombines (fragments of)
generalized inputs, tokens and strings (stored in a dictionary)
that are automatically obtained from the data section of the
target’s binary. On a high level, we can divide our mutations
into three standalone operations: input extension, recursive
replacement and string replacement.

Given the current input from the fuzzing queue, we add
these mutations to the so-called havoc phase [3] as described
in Algorithm 2. First, we use Redqueen’s havoc_amount to
determine—based on the input’s performance—how often
we should apply the following mutations (in general, be-
tween 512 and 1024 times). First, if the input triggered
new bytes in the bitmap, we take its generalized form
and apply the large-scale mutations input_extension and
recursive_replacement. Afterwards, we take the original
input string (accessed by input.content()) and apply the

USENIX Association 28th USENIX Security Symposium 1991

String ReplacementInput

10
1 10
01

101
1010
01

Recursive Replacement

Input ExtensionGeneralized
Input

Ex
ec

ut
io

n
En

gi
ne

Figure 3: A high-level overview of our mutations. Given an input, we apply
various mutations on its generalized and original form. Each mutation then
feeds mutated variants of the input to the fuzzer’s execution engine.

string_replacement mutation. This process is illustrated
in Figure 3.

Algorithm 2: High-level overview of the mutations
introduced in GRIMOIRE.

Data: input is the current input in the queue, generalized is the
set of all previously generalized inputs, tokens and strings
from the dictionary, strings is the provided dictionary
obtained from the binary

1 content← input.content()
2 n← havoc_amount(input.performance())
3 for i← 0 to n do
4 if input.is_generalized() then
5 input_extension(input, generalized)
6 recursive_replacement(input, generalized)

7 string_replacement(content, strings)

Before we describe our mutations in detail, we ex-
plain two functions that all mutations have in common—
random_generalized and send_to_fuzzer. The function
random_generalized takes as input a set of all previously
generalized inputs, tokens and strings from the dictionary and
returns—based on random coin flips—a random (slice of a)
generalized input, token or string. In case we pick an input
slice, we select a substring between two arbitrary � in a gen-
eralized input. This is illustrated in Algorithm 3. The other
function, send_to_fuzzer, implies that the fuzzer executes
the target application with the mutated input. It expects con-
crete inputs. Thus, mutations working on generalized inputs
first replace all remaining � by an empty string.

Algorithm 3: Random selection of a generalized in-
put, slice, token or string.

Data: generalized is the set of all previously generalized inputs,
tokens and strings from the dictionary

Result: rand is a random generalized input, slice token or string
1 if random_coin() then
2 if random_coin() then
3 rand← random_slice(generalized)

4 else
5 rand← random_token_or_string(generalized)

6 else
7 rand← random_generalized_input(generalized)

3.2.1 Input Extension

The input extension mutation is inspired by the observation
that—in highly structured input languages—often inputs are
chains of syntactically well-formed statements. Therefore,
we extend an generalized input by placing another randomly
chosen generalized input, slice, token or string before and
after the given one. This is described in Algorithm 4.

Algorithm 4: Overview of the input extension muta-
tion.

Data: input is the current generalized input, generalized is the
set of all previously generalized inputs, tokens and strings
from the dictionary

1 rand← random_generalized(generalized_inputs)
2 send_to_fuzzer(concat(input.content(),
rand.content()))

3 send_to_fuzzer(concat(rand.content(),
input.content()))

Example 6. Assume that the current input is “pprint
’aaaa’” and its generalization is “pprint ’�’”. Further-
more, assume that we randomly choose a previous generaliza-
tion “�x=�y+�”. Then, we concretize their generalizations
to “pprint ’$$’” and “x=y+” by replacing remaining gaps
with an empty string. Afterwards, we concatenate them and
obtain “pprint ’$$’x=y+” and “x=y+pprint ’$$’”.

3.2.2 Recursive Replacement

The recursive replacement mutation recombines knowledge
about the structured input language—that was obtained earlier
in the fuzzing run—in a grammar-like manner. As illustrated
in Algorithm 5, given a generalized input, we extend its begin-
ning and end by �—if not yet present—such that we always
can place other data before or behind the input. Afterwards,
we randomly select n ∈ {2,4,8,16,32,64} and perform the
following operations n times: First, we randomly select an-
other generalized input, input slice, token or string. Then, we
call replace_random_gap which replaces an arbitrary � in
the first generalized input by the chosen element. Further-
more, we enforce � before and after the replacement such
that these � can be subject to further replacements. Finally,
we concretize the mutated input and send it to the fuzzer. The
recursive replacement mutator has a (comparatively) high
likelihood of producing new structurally interesting inputs
compared to more small-scale mutations used by current
coverage-guided fuzzers.

Example 7. Assume that the current input is “pprint
’aaaa’”. We take its generalization “pprint ’�’” and
extend it to “�pprint ’�’�”. Furthermore, assume that
we already generalized the inputs “if(x>1)�then �end”
and “�x=�y+�”. In a first mutation, we choose to re-
place the first � with the slice “if(x>1)�”. We extend
the slice to “�if(x>1)�” and obtain “�if(x>1)�pprint

1992 28th USENIX Security Symposium USENIX Association

Algorithm 5: Overview of the recursive replacement
mutation.

Data: input is the current generalized input, generalized is the
set of all previously generalized inputs, tokens and strings
from the dictionary

1 input← pad_with_gaps(input)
2 for i← 0 to random_power_of_two() do
3 rand← random_generalized(generalized_inputs)
4 input← replace_random_gap(input, rand)

5 send_to_fuzzer(input.content())

’�’�”. Afterwards, we choose to replace the third
� with “�x=�y+�” and obtain “�if(x>1)�pprint
’�x=�y+�’�”. In a final step, we replace the remaining �
with an empty string and obtain “if(x>1)pprint ’x=y+’”.

3.2.3 String Replacement

Keywords are important elements of structured input lan-
guages; changing a single keyword in an input can lead to
completely different behavior. GRIMOIRE’s string replace-
ment mutation performs different forms of replacements, as
described in Algorithm 6. Given an input, it locates all sub-
strings in the input that match strings from the obtained dic-
tionary and chooses one randomly. GRIMOIRE first selects a
random occurrence of the matching substring and replaces it
with a random string. In a second step, it replaces all occur-
rences of the substring with the same random string. Finally,
the mutation sends both mutated inputs to the fuzzer. As an
example, this mutation can be helpful to discover different
methods of the same object by replacing a valid method call
with different alternatives. Also, changing all occurrences of
a substring allows us to perform more syntactically correct
mutations, such as renaming of variables in the input.

Example 8. Assume the “if(x>1)pprint ’x=y+’” and that
the strings “if”, “while”, “key”, “pprint”, “eval”, “+”, “=”
and “–” are in the dictionary. Thus, the string replacement
mutation can generate inputs such as “while(x>1)pprint
’x=y+’”, “if(x>1)eval ’x+y+’” or “if(x>1)pprint
’x=y-’”. Furthermore, assume that the string “x” is also in
the dictionary. Then, the string replacement mutation can re-
place all occurrences of the variable “x” in “if(x>1)pprint
’x=y+’” and obtain “if(key>1)pprint ’key=y+’”.

4 Implementation

To evaluate the algorithms introduced in this paper, we built a
prototype implementation of our design. Our implementation,
called GRIMOIRE, is based on REDQUEEN’s [3] source code.
This allows us to implement our techniques within a state-
of-the-art fuzzing framework. REDQUEEN is applicable to
both open and closed source targets running in user or kernel
space, thus enabling us to target a wide variety of programs.

Algorithm 6: Overview of the string replacement mu-
tation.

Data: input is the input string, strings is the provided dictionary
obtained from the binary

1 sub← find_random_substring(input, strings)
2 if sub then
3 rand← random_string(strings)
4 data← replace_random_instance(input, sub, rand)
5 send_to_fuzzer(data)
6 data← replace_all_instances(input, sub, and)
7 send_to_fuzzer(data)

While REDQUEEN is entirely focused on solving magic bytes
and similar constructs which are local in nature (i. e., require
only few bytes to change), GRIMOIRE assumes that this kind
of constraints can be solved by the underlying fuzzer. It
uses global mutations (that change large parts of the input)
based on the examples that the underlying fuzzer finds. Since
our technique is merely based on common techniques imple-
mented in coverage-guided fuzzers—for instance, access to
the execution bitmap—it would be a feasible engineering task
to adapt our approach to other current fuzzers, such as AFL.

More precisely, GRIMOIRE is implemented as a set of
patches to REDQUEEN. After finding new inputs, we apply
the generalization instead of the minimization algorithm that
was used by AFL and REDQUEEN. Additionally, we extended
the havoc stage by large-scale mutations as explained in Sec-
tion 3. To prevent GRIMOIRE from spending too much time
in the generalization phase, we set a user-configurable upper
bound; inputs whose length exceeds this bound are not be gen-
eralized. Per default, it is set to 16384 bytes. Overall, about
500 lines were written to implement the proposed algorithms.

To support reproducibility of our approach, we open
source the fuzzing logic, especially the implementation of
GRIMOIRE as well as its interaction with REDQUEEN at
https://github.com/RUB-SysSec/grimoire.

5 Evaluation

We evaluate our prototype implementation GRIMOIRE to an-
swer the following research questions.

RQ 1 How does GRIMOIRE compare to other state-of-the-
art bug finding tools?

RQ 2 Is our approach useful even when proper grammars
are available?

RQ 3 How does our approach improve the performance on
targets that require highly structured inputs?

RQ 4 How does our approach perform compared to other
grammar inference techniques for the purpose of
fuzzing?

RQ 5 How do our mutators impact fuzzing performance?

USENIX Association 28th USENIX Security Symposium 1993

https://github.com/RUB-SysSec/grimoire

RQ 6 Can GRIMOIRE identify new bugs in real-world ap-
plications?

To answer these questions, we perform three individual
experiments. First, we evaluate the coverage produced by
various fuzzers on a set of real-world target programs. In
the second experiment, we analyze how our techniques can
be combined with grammar-based fuzzers for mutual im-
provements. Finally, we use GRIMOIRE to uncover a set of
vulnerabilities in real-world target applications.

5.1 Measurement Setup
All experiments are performed on an Ubuntu Server 16.04.2
LTS with an Intel i7-6700 processor with 4 cores and 24 GiB
of RAM. Each tool is evaluated over 12 runs for 48 hours to
obtain statistically meaningful results. In addition to other
statistics, we also measure the effect size by calculating the
difference in the median of the number of basic blocks found
in each run. Additionally, we perform a Mann Whitney U
test (using scipy 1.0 [38]) and report the resulting p-values.
All experiments are performed with the tool being pinned to
a dedicated CPU in single-threaded mode. Tools other than
GRIMOIRE and REDQUEEN require source-code access; we
use the fast clang-based instrumentation in these cases. Addi-
tionally, to ensure a fair evaluation, we provide each fuzzer
with a dictionary containing the strings found inside of the
target binary. In all cases, except NAUTILUS (which crashed
on larger bitmaps), we increase the bitmap size from 216 to
219. This is necessary since we observe more collisions in the
global coverage map for large targets which causes the fuzzer
to discard new coverage. For example, in SQLite (1.9 MiB),
14% of the global coverage map entries collide [66]. Since
we deal with even larger binaries such as PHP which is nearly
19 MiB, the bitmap fills up quickly. Based on our empirical
evaluation, we observed that 219 is the smallest sufficient size
that works for all of our target binaries.

Furthermore, we disable the so-called deterministic
stage [66]. This is motivated by the observation that these
deterministic mutations are not suited to find new coverage
considering the nature of highly structured inputs. Finally—
if not stated otherwise—we use the same uninformed seed
that the authors of REDQUEEN used for their experiments:
"ABC. . .XYZabc. . .xyz012. . .789!"$. . .~+*".

As noted by Aschermann et al. [3], there are various def-
initions of a basic block. Fuzzers such as AFL change the
number of basic blocks in a program. Thus, to enable a fair
comparison in our experiments, we measure the coverage
produced by each fuzzer on the same uninstrumented binary.
Therefore, the numbers of basic blocks found and reported in
our paper might differ from other papers. However, they are
consistent within all of our experiments.

For our experiments, we select a diverse set of tar-
get programs. We use four scripting language inter-
preters (mruby-1.4.1 [41], php-7.3.0 [57], lua-5.3.5 [36]

and JavaScriptCore, commit “f1312” [1]) a compiler
(tcc-0.9.27 [6]), an assembler (nasm-2.14.02 [56]), a
database (sqlite-3.25 [31]), a parser (libxml-2.9.8 [59])
and an SMT solver (boolector-3.0.1 [44]). We select these
four scripting language interpreters so that we can directly
compare the results to NAUTILUS. Note that our choice of
targets is additionally governed by architectural limitations of
REDQUEEN which GRIMOIRE is based on. REDQUEEN uses
Virtual Machine Introspection (VMI) to transfer the target
binary—including all of its dependencies—into the Virtual
Machine (VM). The maximum transfer size using VMI in
REDQUEEN is set to 64 MiB. Programs such as Python [49],
GCC [18], Clang [40], V8 [24] and SpiderMonkey [43] ex-
ceed our VMI limitation; thus, we can not evaluate them.
We select an alternative set of target binaries that are large
enough but at the same time do not exceed our 64 MiB
transfer size limit. Hence, we choose JavaScriptCore over
V8 and SpiderMonkey, mruby over ruby and TCC over GCC
or Clang. Finally, we tried to evaluate GRIMOIRE with
ChakraCore [42]. However, ChakraCore fails to start in-
side of the REDQUEEN Virtual Machine for unknown rea-
sons. Still, GRIMOIRE performs well on large targets such as
JavaScriptCore and PHP.

5.2 State-of-the-Art Bug Finding Tools

To answer RQ 1, we perform 12 runs on eight targets using
GRIMOIRE and four state-of-the-art bug finding tools. We
choose AFL (version 2.52b) because it is a well-known fuzzer
and a good baseline for our evaluation. We select QSYM
(commit “6f00c3d”) and ANGORA (commit “6ff81c6”), two
state-of-the-art hybrid fuzzers which employ different pro-
gram analysis techniques, namely symbolic execution and
taint tracking. Finally, we choose REDQUEEN as a state-of-
the-art coverage-guided fuzzer, which is also the baseline of
GRIMOIRE. As a consequence, we are able to directly ob-
serve the improvements of our method. Note that we could
not compile libxml for ANGORA instrumentation. Therefore,
ANGORA is missing in the libxml plot.

The results of our coverage measurements are shown in Fig-
ure 4. As we can see, in all cases GRIMOIRE provides a signif-
icant advantage over the baseline (unmodified REDQUEEN).
Surprisingly, in most cases, neither ANGORA, REDQUEEN,
nor QSYM seem to have a significant edge over plain AFL.
This can be explained by the fact that REDQUEEN and AN-
GORA mostly aim to overcome certain “magic byte” fuzzing
roadblocks. Similarly, QSYM is also effective to solve these
roadblocks. Since we provide a dictionary with strings from
the target binary to each fuzzer, these roadblocks become
much less common. Thus, the techniques introduced in AN-
GORA, REDQUEEN and QSYM are less relevant given the
seeds provided to the fuzzers. However, in the case of TCC, we
can observe that providing the strings dictionary does not help
AFL. Therefore, we believe that ANGORA and REDQUEEN

1994 28th USENIX Security Symposium USENIX Association

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000
mruby

Grimoire

Redqueen

AFL

QSYM

Angora

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

tcc

00 05 10 15 20 25 30 35 40 45
0

10000

20000

30000

40000

php

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000
boolector

00 05 10 15 20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

lua

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

xml

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000

sqlite

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000
nasm

Time (hh:mm)

#
B

B
s

fo
u

n
d

Figure 4: The coverage (in basic blocks) produced by various tools over 12
runs for 48h on various targets. Displayed are the median and the 66.7%
intervals.

find strings that are not part of the dictionary and thus outper-
form AFL.

A complete statistical description of the results is given in
the appendix (Table 7). We perform a confirmatory statistical
analysis on the results, as shown in Table 2. The results show
that in all but two cases (Lua and NASM), GRIMOIRE offers
relevant and significant improvements over all state-of-the-art
alternatives. On average, it finds nearly 20% more coverage
than the second best alternative.

Table 2: Confirmatory data analysis of our experiments. We compare the
coverage produced by GRIMOIRE against the best alternative. The effect size
is the difference of the medians in basic blocks. In most experiments, the
effect size is relevant and the changes are highly significant: it is typically
multiple orders of magnitude smaller than the usual bound of p < 5.0E-02
(bold).

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-value

mruby ANGORA 3685 19.3% 1.8E-05
TCC REDQUEEN 1952 22.6% 7.8E-05
PHP REDQUEEN 11238 31.6% 1.8E-05
Boolector AFL 7671 43.9% 1.8E-05
Lua ANGORA -478 -8.2% 4.5E-04
libxml AFL 308 3.4% 1.8E-02
SQLite ANGORA 4846 26.8% 1.8E-05
NASM ANGORA 272 2.9% 9.7E-02

Lua accepts both source files (text) as well as byte code.
GRIMOIRE can only make effective mutations in the domain
of language features and not the bytecode. However, other
fuzzers can perform on both; this is why ANGORA outper-
forms GRIMOIRE on this target. It is worth mentioning that
GRIMOIRE outperforms REDQUEEN, the baseline on top of
which our approach is implemented.

To partially answer RQ 1, we showed that in terms of
code coverage, GRIMOIRE outperforms other state-of-the-art
bug finding tools (in most cases). Second, to answer RQ 3,
we demonstrated that GRIMOIRE significantly improves the
performance on targets with highly structured inputs when
compared to our baseline (REDQUEEN).

5.3 Grammar-based Fuzzers

Generally, we expect grammar-based fuzzers to have an edge
over grammar inference fuzzers like GRIMOIRE since they
have access to a manually crafted grammar. To quantify this
advantage, we evaluate GRIMOIRE against current grammar-
based fuzzers. To this end, we choose NAUTILUS (commit
“dd3554a”), a state-of-the-art coverage-guided fuzzer, since
it can fuzz a wide variety of targets if provided with a hand-
written grammar. We evaluate on the targets used in NAU-
TILUS’ experiments, mruby, PHP and Lua, as their grammars
are available. Unfortunately, GRIMOIRE is not capable of
running ChakraCore, the fourth target NAUTILUS was eval-
uated on; thus, we replace it by JavaScriptCore and use
NAUTILUS’ JavaScript grammar. We observed that the origi-
nal version of NAUTILUS had some timeout problems during
fuzzing where the timeout detection did not work properly.
We fixed this for our evaluation.

For each of the four targets, we perform an experiment
with the same setup as the first experiment (again, 12 runs for
48 hours). The results are shown in Figure 5. As expected,
our completely automated method is defeated in most cases
by NAUTILUS since it uses manually fine-tuned grammars.

USENIX Association 28th USENIX Security Symposium 1995

Surprisingly, in the case of mruby, we find that GRIMOIRE is
able to outperform even NAUTILUS.

To evaluate whether GRIMOIRE is still useful in scenarios
where a grammar is available, we perform another experiment.
We extract the corpus produced by NAUTILUS after half of
the time (i. e., 24 hours) and continue to use GRIMOIRE for
another 24 hours using this seed corpus. For these incre-
mental runs, we reduce GRIMOIRE’s upper bound for input
generalization to 2,048 bytes; otherwise, our fuzzer would
mainly spend time in the generalization phase since NAU-
TILUS produces very large inputs. The results are displayed
in Figure 5 (incremental). This experiment demonstrates that
even despite manual fine-tuning, the grammar often contains
blind spots, where an automated approach such as ours can
infer the implicit structure which the program expects. This
structure may be quite different from the specified grammar.
As Figure 5 shows, by using the corpus created by NAU-
TILUS, GRIMOIRE surpasses NAUTILUS individually in all
cases (RQ 2). A confirmatory statistical analysis of the results
is presented in Table 3. In three cases, GRIMOIRE is able to
improve upon hand written grammars by nearly 10%.

Table 3: Confirmatory data analysis of our experiment. We compare the
coverage produced by GRIMOIRE against NAUTILUS with hand written
grammars. The effect size is the difference of the medians in basic blocks in
the incremental experiment. In three experiments, the effect size is relevant
and the changes are highly significant (marked bold, p < 5.0E-02). Note that
we abbreviate JavaScriptCore with JSC.

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-value

mruby NAUTILUS 2025 10.0% 1.8E-05
Lua NAUTILUS 553 5.2% 5.0E-02
PHP NAUTILUS 5465 9.3% 3.6E-03
JSC NAUTILUS 15445 11.0% 1.8E-05

Additionally, we intended to compare GRIMOIRE against
CODEALCHEMIST and JSFUNFUZZ, two other state-of-the
art grammar-based fuzzers which specialize on JavaScript
engines. Although these two fuzzers are not coverage-
guided—making a fair evaluation challenging—we consider
the comparison of specialized JavaScript grammar-based
fuzzers to general-purpose grammar-based fuzzers as inter-
esting. Unfortunately, JSFUNFUZZ was not working with
JavaScriptCore out of the box as it is specifically tailored
to SpiderMonkey. Since it requires significant modifications
to run on JavaScriptCore, we considered the required engi-
neering effort to be out of scope for this paper. On the other
hand, CODEALCHEMIST requires an extensive seed corpus
of up to 60,000 valid JavaScript files—which were not re-
leased together with the source files. We tried to replicate the
seed corpus as described by the authors of CODEALCHEMIST.
However, despite the authors’ kind help, we were unable to
run CODEALCHEMIST with our corpus.

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000

mruby

Grimoire Nautilus

24 29 34 39 44
0

5000

10000

15000

20000

mruby incremental

00 05 10 15 20 25 30 35 40 45
0

10000

20000

30000

40000

50000

60000
php

24 29 34 39 44
0

10000

20000

30000

40000

50000

60000
php incremental

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000

12000
lua

24 29 34 39 44
0

2000

4000

6000

8000

10000

12000
lua incremental

00 05 10 15 20 25 30 35 40 45
0

25000

50000

75000

100000

125000

150000
jsc

24 29 34 39 44
0

25000

50000

75000

100000

125000

150000
jsc incremental

Time (hh:mm)

#
B

B
s

fo
u

n
d

Figure 5: The coverage (in basic blocks) produced by GRIMOIRE and NAU-
TILUS (using the hand written grammars of the authors of NAUTILUS) over
12 runs at 48 h on various targets. The incremental plots show how running
NAUTILUS for 48h compares to running NAUTILUS for the first 24h and then
continue fuzzing for 24h with GRIMOIRE. Displayed are the median and the
66.7% confidence interval.

Overall, these experiments confirm our assumption that
grammar-based fuzzers such as NAUTILUS have an edge
over grammar inference fuzzers like GRIMOIRE. However,
deploying our approach on top of a grammar-based fuzzer
(incremental runs) increases code coverage. Therefore, we
partially respond to RQ 1 and provide an answer to RQ 2
by stating that GRIMOIRE is a valuable addition to current
fuzzing techniques.

5.4 Grammar Inference Techniques

To answer RQ 4, we compare our approach to other gram-
mar inference techniques in the context of fuzzing. Existing
work in this field includes GLADE, AUTOGRAM and PYG-
MALION. However, since PYGMALION targets only Python
and AUTOGRAM only Java programs, we cannot evaluate

1996 28th USENIX Security Symposium USENIX Association

00 05 10 15 20 25 30 35 40 45
0

5000

10000

15000

20000

mruby

Grimoire Glade (+training) Glade

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000
lua

00 05 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000

xml

Time (hh:mm)

#
B

B
s

fo
u

n
d

Figure 6: Comparing GRIMOIRE against GLADE (median and 66.7% interval). In the plot for GLADE +Training, we include the training time that glade used.
For comparison, we also include plots where we omit the training time. The horizontal bar displays the coverage produced by the seed corpus that GLADE used
during training.

them as GRIMOIRE only supports targets that can be traced
with Intel-PT (since REDQUEEN heavily depends on it).

Therefore, for this evaluation, we use GLADE (commit
“b9ef32e”), a state-of-the-art grammar inference tool. It oper-
ates in two stages. Given a program as black-box oracle as
well as a corpus of valid input samples, it learns a grammar in
the first stage. In the second stage, GLADE uses this grammar
to produce inputs that can be used for fuzzing. GLADE does
not generate a continuous stream of inputs, hence we modi-
fied it to provide such capability. We then use these inputs to
measure the coverage achieved by GLADE in comparison to
GRIMOIRE. Note that due to the excessive amount of inputs
produced by GLADE, we use a corpus minimization tool—
afl-cmin—to identify and remove redundant inputs before
measuring the coverage [66].

Note, we have to extend GLADE for each target that is
not natively supported and must manually create a valid seed
corpus. For this reason, we restrict ourselves to the three
targets libxml, mruby and Lua. From these, libxml is the
only one that was also used in GLADE’s evaluation. Therefore,
we are able to re-use their provided corpus for this target. We
choose the other two since we want to achieve comparability
with regards to previous experiments.

To allow for a fair comparison, we provide the same corpus
to GRIMOIRE. Again, we repeat all experiments 12 times for
48 hours each. The results of this comparison are depicted in
Figure 6. Note that this figure includes two different experi-
ments of GLADE. In the first experiment, we include the time
GLADE spent on training into the measurement while for the
second measurement, GLADE is provided the advantage of
concluding the training stage before measurement is started
for the fuzzing process. As can be seen in Figure 6, GRI-
MOIRE significantly outperforms GLADE on all targets for
both experiments. Similar to earlier experiments, we perform
a confirmatory statistical analysis. The results are displayed
in Table 4; they are in all cases relevant and statistically sig-
nificant. If we consider only the new coverage found (beyond

what is already contained in the training set), we are able to
outperform GLADE by factors from two to five. We therefore
conclude in response to RQ 4 that we significantly exceed
comparative grammar inference approaches in the context of
fuzzing.

We designed another experiment to evaluate whether
GLADE’s automatically inferred grammar can be used for
NAUTILUS and how it performs compared to hand written
grammars. However, GLADE does not use the grammar di-
rectly but remembers how the grammar was produced from
the provided test cases and uses the grammar only to apply
local mutations to the input. Unfortunately, as a consequence,
their grammar contains multiple unproductive rules, thus pre-
venting their usage in NAUTILUS.

Table 4: Confirmatory data analysis of our experiments. We compare the
coverage produced by GRIMOIRE against GLADE. The effect size is the
difference of the medians in basic blocks. In all experiments, the effect size
is relevant and the changes are highly significant: it is multiple orders of
magnitude smaller than the usual bound of p < 5.0E-02 (bold).

Target Best
Alternative

Effect Size
(∆ = Ā− B̄)

Effect Size
in % of Best

p-value

mruby GLADE 8546 43.6% 9.1E-05
Lua GLADE 2775 38.1% 9.1E-05
libxml GLADE 5213 57.2% 9.1E-05

5.5 Mutations Statistic
During the aforementioned experiments, we also collected
various statistics on how effective different mutators are. We
measured how much time was spent using GRIMOIRE’s dif-
ferent mutation strategies as well as how many of the inputs
were found by each strategy. This allows us to rank mutation
strategies based on the number of new paths found per time
used. The strategies include a havoc stage, REDQUEEN’s
Input-to-State-based mutation stage and our structural muta-
tion stage. The times for our structural mutators include the

USENIX Association 28th USENIX Security Symposium 1997

generalization process (including the necessary minimization
that also benefits the other mutators).

As Table 5 shows, our structural mutators are competitive
with other mutators, which answers RQ 5. As the coverage
results in Figure 4 show, the mutators are also able to uncover
paths that would not have been found otherwise.

Table 5: Statistics for each of GRIMOIRE’s mutation strategies (i. e., our struc-
tured mutations, REDQUEEN’s Input-to-State-based mutations and havoc).
For every target evaluated we list the total number of inputs found by a
mutation, the time spent on this strategy and the ratio of inputs found per
minute.

Mutation Target #Inputs Time Spent (min) #Inputs/Min

Structured

mruby 9040 1531.18 5.90
PHP 27063 2467.17 10.97
Lua 2849 2064.49 1.38
SQLite 5933 1325.26 4.48
TCC 6618 2271.03 2.91
Boolector 3438 2399.85 1.43
libxml 4883 2001.38 2.44
NASM 12696 1955.42 6.49
JavaScriptCore 38465 2460.95 15.63

Input-to-State

mruby 814 268.23 3.03
PHP 902 111.46 8.09
Lua 530 307.12 1.73
SQLite 603 768.72 0.78
TCC 1020 118.23 8.63
Boolector 325 102.87 3.16
libxml 967 359.03 2.69
NASM 1329 213.84 6.22
JavaScriptCore 400 82.76 4.83

Havoc

mruby 2010 339.03 5.93
PHP 2546 278.21 9.15
Lua 1684 492.99 3.42
SQLite 1827 742.13 2.46
TCC 2514 484.73 5.19
Boolector 956 373.85 2.56
libxml 2173 504.86 4.30
NASM 2876 678.59 4.24
JavaScriptCore 3800 279.62 13.59

5.6 Real-World Bugs
We use GRIMOIRE on a set of different targets to observe
whether it is able to uncover previously unknown bugs (RQ 6).
To this end, we manually triaged bugs found during our eval-
uation. As illustrated in Table 6, GRIMOIRE found more bugs
than all other tools in the evaluation combined. We responsi-
bly disclosed all of them to the vendors. For these, 11 CVEs
were assigned. Note that we found a large number of bugs
that did not lead to assigned CVEs. This is partially because
projects such as PHP do not consider invalid inputs as secu-
rity relevant, even when custom scripts can trigger memory
corruption. We conclude RQ 6 by finding that GRIMOIRE is
indeed able to uncover novel bugs in real-world applications.

6 Discussion

The methods introduced in this paper produce significant
performance gains on targets that expect highly structured
inputs without requiring any expert knowledge or manual
work. As we have shown, GRIMOIRE can also be used to
support grammar-based fuzzers with well-tuned grammars but

Table 6: Overview of submitted bugs and CVEs. Fuzzers which did not find
the bug during our evaluation are denoted by 7, while those who did are
marked by 3. We indicate targets not evaluated by a specific fuzzer with
’-’. We abbreviate Use-After-Free (UAF), Out-of-Bounds (OOB) and Buffer
Overflow (BO).

Target CVE Type G
R

IM
O

IR
E

R
E

D
Q

U
E

E
N

A
FL

Q
SY

M

A
N

G
O

R
A

N
A

U
T

IL
U

S

PHP OOB-write 3 7 7 7 7 3
PHP OOB-read 3 7 7 3 3 7
PHP OOB-read 3 7 7 7 7 3
PHP OOB-read 3 7 7 7 7 7
TCC 2018-20374 OOB-write 3 7 7 7 7 -
TCC 2018-20375 OOB-write 3 3 7 7 7 -
TCC 2018-20376 OOB-write 3 3 7 7 7 -
TCC 2019-12495 OOB-write 3 7 7 7 7 -
TCC 2019-9754 OOB-write 3 3 7 7 7 -
TCC OOB-write 7 3 7 7 7 -
Boolector 2019-7559 OOB-write 3 7 7 7 7 -
Boolector 2019-7560 UAF-write 3 7 7 7 7 -
NASM 2019-8343 UAF-write 3 3 7 7 7 -
NASM OOB-write 3 7 3 7 7 -
NASM OOB-write 3 7 7 7 7 -
NASM OOB-write 3 7 7 7 7 -
NASM OOB-write 3 7 3 7 7 -
NASM OOB-write 7 7 3 7 7 -

gnuplot 2018-19490 BO 3 - - - - -
gnuplot 2018-19491 BO 3 - - - - -
gnuplot 2018-19492 BO 3 - - - - -

cannot outperform them on their own. In contrast to similar
methods, our approach does not rely on complex primitives
such as symbolic execution or taint tracking. Therefore, it
can easily be integrated into existing fuzzers. Additionally,
since GRIMOIRE is based on REDQUEEN, it can be used on
a wide variety of binary-only targets, ranging from userland
programs to operating system kernels.

Despite all advantages, our approach has significant dif-
ficulties with more syntactically complex constructs, such
as matching the ID of opening and closing tags in XML or
identifying variable constructs in scripting languages. For
instance, while GRIMOIRE is able to produce nested in-
puts such as “<a><a><a>FOO”, it struggles to
generalize “<a>�” to the more unified representation
“< A >�</ B >” with the constraint A = B. A solution for
such complex constructs could be the following generaliza-
tion heuristic: (i) First, we record the new coverage for
the current input. (ii) We then change only a single occur-
rence of a substring in our input and record its new coverage.
For instance, consider that we replace a single occurrence
of “a” by “b” in “<a><a><a>FOO” and obtain
“<a><a>FOO”. This change results in an
invalid XML tag which leads to different coverage compared
to the one observed in (i). (iii) Finally, we change multiple
instances of the same substring and compare the new cover-
age of the modified input with the one obtained in (i). If we

1998 28th USENIX Security Symposium USENIX Association

achieved the same new coverage in (iii) and (i), we can assume
that the modified instances of the same substring are related
to each other. For example, we replace multiple occurrences
of “a” with “b” and obtain “<a><a>FOO”.
In this example, the coverage is the same as for the original
input since the XML remains syntactically correct.

Similarly, our generalization approach might be too coarse
in many places. Obtaining more precise rules would help un-
covering deeper parts of the target application in cases where
multiple valid statements have to be produced. Consider, for
instance, a scripting language interpreter such as the ones
used in our evaluation. Certain operations might require a
number of constructors to be successfully called. For exam-
ple, it might be necessary to get a valid path object to obtain a
file object that can finally be used to perform a read operation.
A more precise representation would be highly useful in such
cases. One could try to infer whether a combination is “valid”
by checking if the combination of two inputs exercises the
combination of the new coverage introduced by both inputs.
For instance, assume that input “a�b” triggers the cover-
age bytes 7 and 10 and that input “�=�” triggers coverage
byte 20. Then, a combination of these two inputs such as
“�a�=�b” could trigger the coverage bytes 7, 10 and 20.
Using this information, it might be possible to infer more
precise grammar descriptions and thus generate inputs that
are closer to the target’s semantics than it is currently possible
in GRIMOIRE. While this approach would most likely further
reduce the gap between hand-written grammars and inferred
grammars, well-designed hand-written grammars will always
have an edge over fuzzers with no prior knowledge: any
kind of inference algorithm first needs to uncover structures
before the obtained knowledge can be used. A grammar-
based fuzzer has no such disadvantage. If available, human
input can improve the results of grammar inference or steer
its direction. An analyst can provide a partial grammar to
make the grammar-fuzzer focus on a specific interesting area
and avoid exploring paths that are unlikely to contain bugs.
Therefore, GRIMOIRE is useful if the grammar is unknown or
under-specified but cannot be considered a full replacement
for grammar-based fuzzers.

7 Related Work

A significant number of approaches to improve the perfor-
mance of different fuzzing strategies has been proposed over
time. Early on, fuzzers typically did not observe the inner
workings of the target application, yet different approaches
were proposed to improve various aspects of fuzzers: different
mutation strategies were evaluated [14, 29], the process of se-
lecting and scheduling of seed inputs was analyzed [11,51,61]
and, in some cases, even learned language models were used
to improve the effectiveness of fuzzing [22, 27]. After the
publication of AFL [65], the research focus shifted towards
coverage-guided fuzzing techniques. Similarly to the previ-

ous work on blind fuzzing, each individual component of
AFL was put under scrutiny. For example, AFLFAST [8]
and AFLGo [7] proposed scheduling mechanisms that are
better suited to some circumstances. Both, COLLAFL [16]
and InsTrim [35], enhanced the way in which coverage is
generated and stored to reduce the amount of memory needed.
Other publications improved the ways in which coverage
feedback is collected [23, 53, 55, 62]. To advance the ability
of fuzzers to overcome constraints that are hard to guess, a
wide array of techniques were proposed. Commonly, dif-
ferent forms of symbolic execution are used to solve these
challenging instances [9, 10]. In most of these cases, a re-
stricted version of symbolic execution (concolic execution)
is used [19–21, 26, 54, 60]. To further improve upon these
techniques, DigFuzz [67] provides a better scheduling for
inputs to the symbolic executor. Sometimes, instead of using
these heavy-weight primitives, more lightweight techniques
such as taint tracking [12, 17, 26, 50], patches [3, 13, 47, 60]
or instrumentation [3, 39] are used to overcome the same
hurdles.

While these improvements generally work very well for
binary file formats, many modern target programs work with
highly structured data. To target these programs, generational
fuzzing is typically used. In such scenarios, the user can
often provide a grammar. In most cases, fuzzers based on this
technique are blind fuzzers [14, 33, 45, 52, 63].

Recent projects such as AFLSMART [48], NAUTILUS [2]
and ZEST [46] combined the ideas of generational fuzzing
with coverage guidance. CODEALCHEMIST [28] even ven-
tures beyond syntactical correctness. To find novel bugs in
mature JavaScript interpreters, it tries to automatically craft
syntactically and semantically valid inputs by recombining
input fragments based on inferred types of variables. All of
these approaches require a good format specification and—in
some cases—good seed corpora. CODEALCHEMIST even
needs access to a specialized interpreter for the target lan-
guage to trace and infer type annotations. In contrast, our
approach has no such preconditions and is thus easily inte-
grable into most fuzzers.

Finally, to alleviate some of the disadvantages that the men-
tioned grammar-based strategies have, multiple approaches
were developed to automatically infer grammars for given
programs. GLADE [5] can systematically learn an approxima-
tion to the context-free grammars parsed by a program. To
learn the grammar, it needs an oracle that can answer whether
a given input is valid or not as well as a small set of valid
inputs. Similar techniques are used by PYGMALION [25] and
AUTOGRAM [34]. However, both techniques directly learn
from the target application without requiring a modified ver-
sion of the target. AUTOGRAM still needs a large set of inputs
to trace, while PYGMALION can infer grammars based solely
on the target application. Additionally, both approaches re-
quire complex analysis passes and even symbolic execution to
produce grammars. These techniques cannot easily be scaled

USENIX Association 28th USENIX Security Symposium 1999

to large binary applications. Finally, all three approaches are
computationally expensive.

8 Conclusion

We developed and demonstrated the first fully automatic algo-
rithm that integrates large-scale structural mutations into the
fuzzing process. In contrast to other approaches, we need no
additional modifications or assumptions about the target appli-
cation. We demonstrated the capabilities of our approach by
evaluating our implementation called GRIMOIRE against var-
ious state-of-the-art coverage-guided fuzzers. Our evaluation
shows that we outperform other coverage-guided fuzzers both
in terms of coverage and the number of bugs found. From this
observation, we conclude that it is possible to significantly
improve the fuzzing process in the absence of program input
specifications. Furthermore, we conclude that even when a
program input specification is available, our approach is still
useful when it is combined with a generational fuzzer.

Acknowledgements

We would like to thank our shepherd Deian Stefan and the
anonymous reviewers for their valuable comments and sug-
gestions. Furthermore, we would like to thank Moritz Contag,
Thorsten Eisenhofer, Joel Frank, Philipp Görz and Maxim-
ilian Golla for their valuable feedback. This work was sup-
ported by the German Research Foundation (DFG) within
the framework of the Excellence Strategy of the Federal Gov-
ernment and the States - EXC 2092 CASA. In addition, this
project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 786669 (ReAct). This paper reflects only the
authors’ view. The Research Executive Agency is not re-
sponsible for any use that may be made of the information it
contains.

References
[1] APPLE INC. JavaScriptCore. https://github.com/WebKit/webkit/

tree/master/Source/JavaScriptCore.

[2] ASCHERMANN, C., FRASSETTO, T., HOLZ, T., JAUERNIG, P.,
SADEGHI, A.-R., AND TEUCHERT, D. Nautilus: Fishing for deep
bugs with grammars. In Symposium on Network and Distributed System
Security (NDSS) (2019).

[3] ASCHERMANN, C., SCHUMILO, S., BLAZYTKO, T., GAWLIK, R.,
AND HOLZ, T. REDQUEEN: Fuzzing with input-to-state correspon-
dence. In Symposium on Network and Distributed System Security
(NDSS) (2019).

[4] BASTANI, O., SHARMA, R., AIKEN, A., AND LIANG, P. Synthe-
sizing program input grammars. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (2017).

[5] BASTANI, O., SHARMA, R., AIKEN, A., AND LIANG, P. Synthe-
sizing program input grammars. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (2017).

[6] BELLARD, F. TCC: Tiny C compiler. https://bellard.org/tcc/.

[7] BÖHME, M., PHAM, V.-T., NGUYEN, M.-D., AND ROYCHOUDHURY,
A. Directed greybox fuzzing. In ACM Conference on Computer and
Communications Security (CCS) (2017).

[8] BÖHME, M., PHAM, V.-T., AND ROYCHOUDHURY, A. Coverage-
based greybox fuzzing as Markov chain. In ACM Conference on
Computer and Communications Security (CCS) (2016).

[9] CADAR, C., DUNBAR, D., AND ENGLER, D. R. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Symposium on Operating Systems Design and Implemen-
tation (OSDI) (2008).

[10] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY, D. Un-
leashing Mayhem on binary code. In IEEE Symposium on Security and
Privacy (2012).

[11] CHA, S. K., WOO, M., AND BRUMLEY, D. Program-adaptive muta-
tional fuzzing. In IEEE Symposium on Security and Privacy (2015).

[12] CHEN, P., AND CHEN, H. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy (2018).

[13] DREWRY, W., AND ORMANDY, T. Flayer: Exposing application
internals. In Proceedings of the first USENIX workshop on Offensive
Technologies (2007), USENIX Association.

[14] EDDINGTON, M. Peach fuzzer: Discover unknown vulnerabilities.
https://www.peach.tech/.

[15] FREE SOFTWARE FOUNDATION. GNU Bison. https://
www.gnu.org/software/bison/.

[16] GAN, S., ZHANG, C., QIN, X., TU, X., LI, K., PEI, Z., AND CHEN,
Z. CollAFL: Path sensitive fuzzing. In IEEE Symposium on Security
and Privacy (2018).

[17] GANESH, V., LEEK, T., AND RINARD, M. Taint-based directed white-
box fuzzing. In International Conference on Software Engineering
(ICSE) (2009).

[18] GNU PROJECT. GCC, the GNU compiler collection. https:
//gcc.gnu.org/.

[19] GODEFROID, P., KIEZUN, A., AND LEVIN, M. Y. Grammar-based
whitebox fuzzing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2008).

[20] GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Directed auto-
mated random testing. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI) (2005).

[21] GODEFROID, P., LEVIN, M. Y., MOLNAR, D. A., ET AL. Automated
whitebox fuzz testing. In Symposium on Network and Distributed
System Security (NDSS) (2008).

[22] GODEFROID, P., PELEG, H., AND SINGH, R. Learn&fuzz: Machine
learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (2017),
pp. 50–59.

[23] GOODMAN, P. Shin GRR: Make fuzzing fast again.
https://blog.trailofbits.com/2016/11/02/shin-grr-make-
fuzzing-fast-again/.

[24] GOOGLE LLC. V8. https://v8.dev/.

[25] GOPINATH, R., MATHIS, B., HÖSCHELE, M., KAMPMANN, A., AND
ZELLER, A. Sample-free learning of input grammars for comprehen-
sive software fuzzing. arXiv preprint arXiv:1810.08289 (2018).

[26] HALLER, I., SLOWINSKA, A., NEUGSCHWANDTNER, M., AND BOS,
H. Dowsing for overflows: A guided fuzzer to find buffer boundary
violations. In USENIX Security Symposium (2013).

[27] HAN, H., AND CHA, S. K. IMF: Inferred model-based fuzzer. In
ACM Conference on Computer and Communications Security (CCS)
(2017).

2000 28th USENIX Security Symposium USENIX Association

https://github.com/WebKit/webkit/tree/master/Source/JavaScriptCore
https://github.com/WebKit/webkit/tree/master/Source/JavaScriptCore
https://bellard.org/tcc/
https://www.peach.tech/
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/
https://blog.trailofbits.com/2016/11/02/shin-grr-make-fuzzing-fast-again/

[28] HAN, H., OH, D., AND CHA, S. K. CodeAlchemist: Semantics-
aware code generation to find vulnerabilities in JavaScript engines.
In Symposium on Network and Distributed System Security (NDSS)
(2019).

[29] HELIN, A. A general-purpose fuzzer. https://github.com/aoh/
radamsa.

[30] HEX-RAYS. IDA pro. https://www.hex-rays.com/products/ida/.

[31] HIPP, D. R. SQLite. https://www.sqlite.org/index.html.

[32] HOCEVAR, S. zzuf. https://github.com/samhocevar/zzuf.

[33] HOLLER, C., HERZIG, K., AND ZELLER, A. Fuzzing with code
fragments. In USENIX Security Symposium (2012).

[34] HÖSCHELE, M., AND ZELLER, A. Mining input grammars from
dynamic taints. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (2016).

[35] HSU, C.-C., WU, C.-Y., HSIAO, H.-C., AND HUANG, S.-K. IN-
STRIM: Lightweight instrumentation for coverage-guided fuzzing. In
Symposium on Network and Distributed System Security (NDSS), Work-
shop on Binary Analysis Research (2018).

[36] IERUSALIMSCHY, R., CELES, W., AND DE FIGUEIREDO, L. H. Lua.
https://www.lua.org/.

[37] JOHNSON, S. Yacc: Yet another compiler-compiler. http://
dinosaur.compilertools.net/yacc/.

[38] JONES, E., OLIPHANT, T., AND PETERSON, P. Scipy: Open source
scientific tools for Python. http://www.scipy.org/, 2001–.

[39] LI, Y., CHEN, B., CHANDRAMOHAN, M., LIN, S.-W., LIU, Y., AND
TIU, A. Steelix: Program-state based binary fuzzing. In Joint Meeting
on Foundations of Software Engineering (2017).

[40] LLVM PROJECT. Clang: a C language family frontend for LLVM.
https://clang.llvm.org/.

[41] MATSUMOTO, Y. mruby. http://mruby.org/.

[42] MICROSOFT. ChakraCore. https://github.com/Microsoft/
ChakraCore.

[43] MOZILLA FOUNDATION / MOZILLA CORPORATION. Spider-
Monkey. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey.

[44] NIEMETZ, A., PREINER, M., AND BIERE, A. Boolector 2.0 system
description. Journal on Satisfiability, Boolean Modeling and Computa-
tion 9 (2015), 53–58.

[45] OPENRCE. Sulley: A pure-python fully automated and unattended
fuzzing framework. https://github.com/OpenRCE/sulley.

[46] PADHYE, R., LEMIEUX, C., SEN, K., PAPADAKIS, M., AND TRAON,
Y. L. Zest: Validity fuzzing and parametric generators for effective
random testing. arXiv preprint arXiv:1812.00078 (2018).

[47] PENG, H., SHOSHITAISHVILI, Y., AND PAYER, M. T-Fuzz: fuzzing
by program transformation. In IEEE Symposium on Security and
Privacy (2018).

[48] PHAM, V.-T., BÖHME, M., SANTOSA, A. E., CĂCIULESCU, A. R.,
AND ROYCHOUDHURY, A. Smart greybox fuzzing, 2018.

[49] PYTHON SOFTWARE FOUNDATION. Python. https://
www.python.org/.

[50] RAWAT, S., JAIN, V., KUMAR, A., COJOCAR, L., GIUFFRIDA, C.,
AND BOS, H. VUzzer: Application-aware evolutionary fuzzing. In
Symposium on Network and Distributed System Security (NDSS) (Feb.
2017).

[51] REBERT, A., CHA, S. K., AVGERINOS, T., FOOTE, J. M., WARREN,
D., GRIECO, G., AND BRUMLEY, D. Optimizing seed selection for
fuzzing. In USENIX Security Symposium (2014).

[52] RUDERMAN, J. Introducing jsfunfuzz. http://www.squarefree.com/
2007/08/02/introducing-jsfunfuzz (2007).

[53] SCHUMILO, S., ASCHERMANN, C., GAWLIK, R., SCHINZEL, S.,
AND HOLZ, T. kAFL: Hardware-assisted feedback fuzzing for OS
kernels. In USENIX Security Symposium (2017).

[54] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A., WANG, R.,
CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL, C., AND VIGNA,
G. Driller: Augmenting fuzzing through selective symbolic execution.
In Symposium on Network and Distributed System Security (NDSS)
(2016).

[55] SWIECKI, R. Security oriented fuzzer with powerful analysis options.
https://github.com/google/honggfuzz.

[56] THE NASM DEVELOPMENT TEAM. NASM. https://www.nasm.us/.

[57] THE PHP GROUP. PHP. http://php.net/.

[58] VEGGALAM, S., RAWAT, S., HALLER, I., AND BOS, H. IFuzzer:
An evolutionary interpreter fuzzer using genetic programming. In
European Symposium on Research in Computer Security (ESORICS)
(2016), pp. 581–601.

[59] VEILLARD, DANIEL. The XML C parser and toolkit of Gnome. http:
//xmlsoft.org/.

[60] WANG, T., WEI, T., GU, G., AND ZOU, W. TaintScope: A checksum-
aware directed fuzzing tool for automatic software vulnerability detec-
tion. In IEEE Symposium on Security and Privacy (2010).

[61] WOO, M., CHA, S. K., GOTTLIEB, S., AND BRUMLEY, D. Schedul-
ing black-box mutational fuzzing. In ACM Conference on Computer
and Communications Security (CCS) (2013).

[62] XU, W., KASHYAP, S., MIN, C., AND KIM, T. Designing new oper-
ating primitives to improve fuzzing performance. In ACM Conference
on Computer and Communications Security (CCS) (2017).

[63] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and
understanding bugs in C compilers. In ACM SIGPLAN Notices (6
2011), vol. 46, ACM, pp. 283–294.

[64] YUN, I., LEE, S., XU, M., JANG, Y., AND KIM, T. QSYM: A
practical concolic execution engine tailored for hybrid fuzzing. In
USENIX Security Symposium (2018), pp. 745–761.

[65] ZALEWSKI, M. american fuzzy lop. http://lcamtuf.coredump.cx/
afl/.

[66] ZALEWSKI, M. Technical “whitepaper” for afl-fuzz. http://
lcamtuf.coredump.cx/afl/technical_details.txt.

[67] ZHAO, L., DUAN, Y., YIN, H., AND XUAN, J. Send hardest problems
my way: Probabilistic path prioritization for hybrid fuzzing. In Sympo-
sium on Network and Distributed System Security (NDSS) (2019).

USENIX Association 28th USENIX Security Symposium 2001

https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://www.hex-rays.com/products/ida/
https://www.sqlite.org/index.html
https://github.com/samhocevar/zzuf
https://www.lua.org/
http://dinosaur.compilertools.net/yacc/
http://dinosaur.compilertools.net/yacc/
http://www.scipy.org/
https://clang.llvm.org/
http://mruby.org/
https://github.com/Microsoft/ChakraCore
https://github.com/Microsoft/ChakraCore
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://github.com/OpenRCE/sulley
https://www.python.org/
https://www.python.org/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz
https://github.com/google/honggfuzz
https://www.nasm.us/
http://php.net/
http://xmlsoft.org/
http://xmlsoft.org/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

A Statistics on Basic Block Coverage

Table 7: Statistics on basic block coverage for tested fuzzers. In the column “Best Coverage”, we provide the highest number of basic blocks a run found and the
percentage relative to the number of basic blocks obtained from IDA Pro [30].

Target Best Coverage (#BBS / %) Fuzzer Mean (%) Median (%) Median (#BBs) Std
Deviation

Skewness Kurtosis

mruby 20258 / 70.5%

GRIMOIRE 66.1% 66.6% 19137 4.55 −0.54 −0.76
AFL 53.7% 53.4% 15355 4.28 0.14 −0.27
ANGORA 53.3% 53.8% 15452 4.87 0.17 −0.96
QSYM 49.2% 49.0% 14084 2.20 0.33 0.95
REDQUEEN 45.9% 46.4% 13339 4.64 −0.98 0.05

TCC 9211 / 77.6%

GRIMOIRE 71.8% 72.9% 8647 5.71 −1.89 3.68
AFL 11.8% 11.8% 1397 3.80 1.27 1.14
ANGORA 31.0% 30.3% 3600 6.51 1.01 0.06
QSYM 11.9% 11.8% 1403 3.26 1.52 2.59
REDQUEEN 56.7% 56.4% 6695 8.13 0.03 −1.93

PHP 46805 / 27.9%

GRIMOIRE 20.8% 21.2% 35606 20.26 0.12 −1.38
AFL 13.2% 13.3% 22323 3.64 −0.09 −0.96
ANGORA 12.1% 12.2% 20501 6.39 −0.37 −0.58
QSYM 12.7% 12.7% 21276 2.60 0.22 −1.11
REDQUEEN 14.5% 14.5% 24367 1.87 0.37 −0.83

Boolector 23207 / 33.1%

GRIMOIRE 25.2% 24.9% 17461 16.77 0.51 −0.65
AFL 14.0% 14.0% 9790 7.46 0.30 −0.57
ANGORA 13.2% 12.8% 8986 9.20 0.79 −0.17
QSYM 13.7% 14.0% 9782 6.94 −0.39 −1.24
REDQUEEN 13.3% 13.3% 9305 9.63 0.21 −1.23

Lua 6205 / 64.1%

GRIMOIRE 54.4% 55.2% 5339 6.47 0.20 −0.73
AFL 51.9% 51.9% 5016 1.61 0.84 −0.15
ANGORA 59.9% 60.1% 5817 2.96 0.05 −1.39
QSYM 54.8% 52.6% 5091 9.52 1.07 −0.65
REDQUEEN 44.5% 44.4% 4299 2.30 −0.30 −1.19

libxml 10437 / 13.2%

GRIMOIRE 11.7% 11.6% 9190 5.52 0.98 0.02
AFL 11.1% 11.2% 8881 3.40 −0.39 −0.92
ANGORA 0.0% 0.0% 0 nan 0.00 −3.00
QSYM 10.8% 10.8% 8598 2.36 0.95 1.45
REDQUEEN 10.1% 10.1% 7979 3.72 0.72 −0.25

SQLite 22031 / 57.1%

GRIMOIRE 48.6% 46.8% 18064 9.25 0.80 −0.72
AFL 34.6% 33.9% 13072 10.02 0.60 −0.34
ANGORA 33.1% 34.2% 13218 12.12 −0.30 −1.05
QSYM 33.4% 33.6% 12988 10.91 −0.33 −0.18
REDQUEEN 32.3% 32.6% 12599 4.77 0.18 −0.21

NASM 10015 / 51.1%

GRIMOIRE 47.7% 48.4% 9483 7.58 −2.58 5.67
AFL 43.2% 43.0% 8442 1.68 1.07 1.09
ANGORA 46.9% 47.0% 9211 5.27 0.06 −1.19
QSYM 42.1% 42.6% 8357 4.72 −1.49 2.40
REDQUEEN 44.9% 45.5% 8928 4.21 −0.20 −0.89

2002 28th USENIX Security Symposium USENIX Association

	sec19_proceedings_part1
	sec19-sivakumaran
	Introduction
	Background
	Data Access on BLE Devices
	BLE Attribute Permissions

	BLE Co-located Application Attacks
	Attack Mechanisms
	Attack 1: System-wide Pairing Credentials
	Attack 2: Reuse of Connection

	Discussion
	Implications of Attack
	Comparison with Classic Bluetooth
	Attack Limitations

	Stakeholders, Mitigation Strategies and Awareness
	Bluetooth SIG
	Android
	BLE Device/Application Developers

	Marketplace Application Analysis
	APK Dataset
	Identification of BLE Methods and Crypto-Libraries
	BLECryptracer
	Evaluation
	Accuracy Measures
	Execution Times

	Results from Large-Scale APK Analysis
	Presence of App-Layer Security with BLE Data
	Libraries vs. App-Specific Implementations
	Cryptographic Correctness
	Trends over Time
	Application-Layer Security by Category
	Impact Analysis

	Case Study: Firmware Update over BLE
	Limitations
	Unhandled Data Transfer Mechanisms
	Conditional Statements with Backtracing

	Related Work
	Conclusions
	Availability
	Acknowledgements

	sec19-cao
	sec19-stute
	Introduction
	Background on Apple Wireless Direct Link
	Reverse Engineering AirDrop
	Discoverability User Setting
	Protocol and User Interaction
	(Un)authenticated Connections

	Activating AWDL on Devices in Proximity
	AirDrop BLE Advertisements
	Brute Force Analysis
	Jailbreaking BLE Advertisements
	Target Response Times Micro Benchmark

	Privacy: Tracking Apple Device Users
	Identifying Devices and Users via AWDL Protocol Fields
	A Survey on the Potential of Apple Device User Tracking
	Experimental Vulnerability Analysis
	Mitigation
	Related Work: User Tracking

	DoS: Impairing Communication with Desynchronization
	Desynchronizing Two Targets
	Evaluating Packet Loss
	Mitigating Desynchronization
	Related Work: Reactive Jamming

	MitM: Planting Malware via AirDrop
	Ambiguous Receiver Authentication State
	The Complete AirDrop MitM Attack
	Implementation
	Mitigation
	Related Work: Attacks on AirDrop

	Implementation Security
	Conclusion

	sec19-yang-hojoon
	sec19-singh
	Introduction
	Background and Motivation
	UWB
	Distance-Enlargement Attack

	Threat Model
	UWB-ED Design
	Modulation/Verification Code Structure
	Verification Code Identification
	Setting the Energy Thresholds.
	Attack Resilience
	Detecting Signal Replay
	Complicating Signal Annihilation
	Mitigating Evidence Contamination

	A Numerical Example

	Evaluation
	Probability of a Successful Attack
	Probability of successfully evading the Robust Code Verification check (Pb>b)
	Final Probability of Adversary's Success
	Symbol length (r)
	False positives: noise passing Robust Code Verification

	Validating the Probabilistic Model

	Discussion
	Related Work
	Conclusion

	sec19-chen-christine
	sec19-havron
	Introduction
	Towards Clinical Computer Security
	Methods, Client Safety, and Ethics
	A Consultation Protocol for IPV Victims
	Integration into Client Support Services
	Understand-Investigate-Advise Procedure
	Replicability

	The IPV Spyware Discovery (ISDi) Tool
	Field Study
	Results of the Field Study
	Discussion
	Conclusion
	More Details about ISDi

	sec19-apthorpe
	sec19-ruth
	Introduction
	Problem Formulation and Design Goals
	Case Study Applications
	Functionality Goals
	Security Goals
	Supporting Flexibility

	Threat Model and Non-Goals
	Design
	Module Design Overview
	Physical World Integration
	Private Content in Shared Physical World
	Respecting Ownership of Physical Spaces

	Implementation
	Evaluation
	Functionality Evaluation
	Security Evaluation
	Performance Evaluation

	Discussion
	Related Work
	Conclusion
	Prototype Application Descriptions
	Interaction with Existing Design Recommendations
	Detailed Performance Data

	sec19-zeng
	sec19-liljestrand
	Introduction
	Background
	Run-time attacks
	Control-flow attacks (on ARM)
	Data-oriented attacks

	ARM Pointer Authentication

	Attacks on Pointer Authentication
	Adversary Model and Requirements
	Pointer Integrity
	Attacker Capabilities
	Goal and Requirements

	Design
	Instrument program with PA instructions
	Create PACs in statically allocated data
	Pointer compartmentalization
	On-load data pointer authentication
	Handling pointer conversions

	Implementation
	LLVM Compiler Integration
	Run-time Bootstrap
	Instrumentation

	Evaluation
	ARMv8.3 Emulation and Software Stack
	Security Evaluation
	Return address signing
	Forward-edge code pointer signing
	Data pointer signing
	PAC entropy

	Performance Evaluation
	PA-analogue
	nbench-byte benchmarks

	Compatibility Evaluation

	Related Work
	Comparison with other integrity policies
	Fully precise pointer integrity
	Fully-precise static CFI

	Conclusion and Future Work
	nbench experimental setup
	SPEC CPU2017 experimental setup
	ARMv8-A PA Instructions

	sec19-khandaker
	Introduction
	Origin Sensitivity
	A Simple Definition
	A Hybrid Definition

	System Design
	Overview
	OS-CFI Policy
	CFG Generation
	Enforcement Mechanism
	Instrumentation at Origin Sites
	Instrumentation at ICT Sites
	Protection of Metadata
	CFG Address Mapping

	Evaluation
	Improvement in Security
	Case Studies

	Security Experiments
	Real-world Exploits
	Synthesized Exploit: a COOP Attack

	Performance Evaluation

	Related Work
	Summary
	Availability
	Acknowledgment

	sec19-dessouky
	Introduction
	SoC Verification Processes and Pitfalls
	The Security Development Lifecycle (SDL) for Hardware
	Challenges with SDL

	Assessing Hardware Security Verification
	Limitations of Automated Verification
	Constructing Real-World RTL Bugs
	Adversary Model

	HardFails: Hardware Security Bugs
	Crowdsourcing Detection
	Competition Preparation
	Competition Objectives
	Overview of Competition Bugs
	Competition Results

	Detection Using State-of-The-Art Tools
	Detection Methodology
	Detection Results
	State-Explosion Problem

	Discussion and Future Work
	Microcode Patching
	Additional Challenges in Practice
	Future Research Directions

	Related Work
	Current Detection Approaches
	Recent Attacks

	Conclusion
	Ariane Core and RTL Hierarchy
	Recent Microarchitectural Attacks
	Details on the Pulpissimo Bugs
	Exploiting Hardware Bugs From Software

	sec19-kwon
	Introduction
	Background
	ARMv7-M Address Map and the Private Peripheral Bus (PPB)
	Memory Protection Unit (MPU)
	Unprivileged Loads/Stores
	Exception Entry and Return

	Threat Model and Assumptions
	Approach and Challenges
	uXOM
	Basic Design
	Instruction Conversion
	Permission Control

	Solving the Challenges
	Finding Unconvertible Memory Instructions
	Atomic Verification Technique
	Handling Unintended Instructions

	Optimizations
	Security Analysis
	At Boot-up
	At Runtime

	Evaluation
	Runtime Overhead
	Code Size Overhead
	Energy Overhead
	Security and Usability
	Use Cases

	Discussion
	Related Work
	Conclusion

	sec19-canella
	Introduction
	Transient Execution
	Spectre-type Attacks
	Spectre-PHT (Input Validation Bypass)
	Spectre-BTB (Branch Target Injection)
	Spectre-RSB (Return Address Injection)
	Spectre-STL (Speculative Store Bypass)

	Meltdown-type Attacks
	Meltdown-US (Supervisor-only Bypass)
	Meltdown-P (Virtual Translation Bypass)
	Meltdown-GP (System Register Bypass)
	Meltdown-NM (FPU Register Bypass)
	Meltdown-RW (Read-only Bypass)
	Meltdown-PK (Protection Key Bypass)
	Meltdown-BR (Bounds Check Bypass)
	Residual Meltdown (Negative Results)

	Gadget Analysis and Classification
	Gadget Classification
	Real-World Software Gadget Prevalence

	Defenses
	Defenses for Spectre
	Defenses for Meltdown
	Evaluation of Defenses
	Performance Impact of Countermeasures

	Future Work and Conclusion

	sec19-carlini
	Introduction
	Background: Neural Networks
	Concepts, Notation, and Training
	Generative Sequence Models
	Overfitting in Machine Learning

	Do Neural Nets Unintentionally Memorize?
	Measuring Unintended Memorization
	Notation and Setup
	The Precise Exposure Metric
	Efficiently Approximating Exposure

	Exposure-Based Testing Methodology
	Experimental Evaluation
	Smart Compose: Generative Email Model
	Word-Level Language Model
	Character-Level Language Model
	Neural Machine Translation

	Characterizing Unintended Memorization
	Memorization Throughout Training
	Memorization versus Overtraining
	Additional Memorization Experiments

	Validating Exposure with Extraction
	Efficient Extraction Algorithm
	Efficiency of Shortest-Path Search
	High Exposure Implies Extraction
	Enron Emails: Memorization in Practice

	Preventing Unintended Memorization
	Regularization
	Weight Decay
	Dropout
	Quantization

	Sanitization
	Differential Privacy

	Related Work and Conclusions
	Limitations and Future Work
	Conclusions

	Additional Memorization Experiments
	Across Different Architectures
	Across Training Strategies
	Across Formats and Context

	sec19-tong
	Introduction
	Machine Learning in Security
	Learning and Prediction
	Evasion Attacks
	Evasion Defense

	Validating Models of ML Evasion Attacks
	Experimental Methodology
	PDF Document Structure
	Target Classifiers
	Structure-Based Classifiers
	PDFRate: A Content-Based Classifier

	Realizable Evasion Attacks
	EvadeML
	The Mimicry Attack
	MalGAN
	Reverse Mimicry
	The Custom Attack

	Feature-Space Evasion Model
	Datasets
	Implementation of Iterative Adversarial Retraining
	Evaluation Metrics

	Efficacy of Feature-Space Attack Models
	Structure-Based PDF Malware Classification
	SL2013
	Hidost

	Content-Based PDF Malware Classification
	PDFRate with Real-Valued Features
	PDFRate with Binarized Features

	Evasion-Robust Classification with Conserved Features
	Classifying Using Only Conserved Features
	Feature-Space Model with Conserved Features
	SL2013
	Hidost
	Binarized PDFRate

	Additional Realizable Evasion Attacks
	Mimicry and Mimicry+ Attacks
	MalGAN Attack
	Reverse Mimicry Attack
	The Custom Attack

	Related Work
	Discussion and Conclusion
	Identifying Conserved Features
	Structural Path Deletion
	Structural Path Replacement
	Obtaining a Uniform Conserved Feature Set
	Identifying Conserved Features for Other Classifiers
	Conserved Features
	Conserved vs. Regularized Features

	sec19-rudd
	Introduction
	ML-Sec Detection Pipelines: From Single Objective to Multi-Objective
	Implementation Details
	Malware Loss
	Vendor Count Loss
	Per-Vendor Malware Loss
	Malicious Tags Loss
	Sample Weights
	Dataset

	Experimental Evaluation
	Vendor Count Loss
	Modeling Individual Vendor Responses
	Incorporating Tags as Targets
	Combined Model

	Discussion
	Modes of Improvement
	Representation or Regularization?

	Related Work
	Conclusion
	Acknowledgments
	Dataset Statistics
	Vendor Counts Distribution
	Individual Vendor Responses
	Semantic Tags Distribution

	Gray Samples Evaluation
	Relative Improvements

	sec19-demontis
	Introduction
	Background and Threat Model
	Threat Model: Attacker's Goal
	Threat Model: Attacker's Knowledge
	Threat Model: Attacker's Capability

	Optimization Framework for Gradient-based Attacks
	Gradient-based Optimization Algorithm
	Evasion Attacks
	Poisoning Availability Attacks

	Transferability Definition and Metrics
	Experimental Analysis
	Transferability of Evasion Attacks
	Handwritten Digit Recognition
	Android Malware Detection

	Transferability of Poisoning Attacks
	Handwritten Digit Recognition
	Face Recognition

	Summary of Transferability Evaluation

	Related Work
	Conclusions

	sec19-fischer
	Introduction
	Related Work
	Getting Cryptography Right
	Security Nudges
	Deep Learning Code

	Overview
	Nudge-Based System Design
	Neural Network-Based Learning of Cryptographic Use Cases and Security
	Cryptographic Use Cases
	Learning API Usage Patterns
	Feature Engineering
	Pattern Embedding Network
	Training
	Learning Use Cases and Security
	Labeling
	End-to-end Architecture
	Training

	Security Nudges
	Security Warnings
	Security Recommendations
	Security Reminders and Defaults

	Model Evaluation
	Pattern Similarity
	Use Case Classification
	Security Classification
	Recommendations

	Evaluation of Security Nudges
	User Study Setup
	Tasks
	Preliminaries and Participants
	User Study Results

	Limitations
	Future Work
	Conclusion

	sec19-sathaye
	Introduction
	Background
	Instrument Landing System (ILS)
	ILS Signal Generation
	ILS Receiver

	Typical Approach Sequence

	Wireless Attacks on ILS
	Overshadow attack
	Single-tone attack

	Implementation and Evaluation of Attacks
	Experimental Setup
	Spoofing Zone Detection
	Offset correction algorithm
	Setup Validation

	Evaluation of Overshadow Attack
	Evaluation of Single-tone Attack
	Effect of Phase Synchronization
	Real-time Amplitude Scaling

	Comparison of Power Requirements

	Discussion
	Related Work
	Conclusion

	sec19-bhaskar
	1 Introduction
	2 Background
	2.1 Internal Bluetooth Skimmers
	2.2 Economics of Carding
	2.3 Skimmers Recovered in the Wild

	3 Data Collection Methodology
	3.1 Crowdsourcing Bluetooth Scanning
	3.2 Limitations

	4 Results
	4.1 What Do Skimmers Look Like in Scans?
	4.2 Are Skimmers Distinguishable in Scans?
	4.3 Accuracy of Bluetooth-based Detection

	5 Countermeasures and Responses
	5.1 Switching to Bluetooth Low Energy
	5.2 Non-Discoverable Skimmers
	5.3 Impersonating Common Benign Devices
	5.4 Using Non-Bluetooth Communications
	5.5 Attacker Bottlenecks

	6 Operational Lessons Learned
	6.1 Bluetooth Helps During Inspections
	6.2 MAC Addresses May Indicate the Source

	7 Related Work
	8 Future Work and Conclusion
	9 Acknowledgements
	A Court Cases
	A.1 Cashout Value
	A.2 Credit/Debit cards per skimmer per day

	sec19-kulandaivel
	Introduction
	Motivation
	Problem Overview
	CAN basics
	Mapping requirements
	Challenges in an automotive context

	System Overview
	High-level idea
	CANvas workflow

	ID Source Mapping
	Prior work and limitations
	Pairwise offset tracking

	ID Destination Mapping
	Problem formulation
	Limitations of prior work
	Forced ECU isolation

	Evaluation
	Discovering an unexpected ECU
	Identifying lenient filters
	Mapping our test vehicles
	Mapping additional vehicles

	Discussion
	Related Work
	Conclusions

	sec19-baker
	sec19-kim
	Introduction
	Background
	Attack Model
	RVFuzzer Design
	Overview
	Control Instability Detector
	Control-Guided Input Mutator
	Control Parameter Mutation Space
	Feedback-Driven Parameter Input Mutator
	Environmental Factors

	Implementation
	Evaluation
	Finding Input Validation Bugs
	Classification of Input Validation Bugs
	Detection of Input Validation Bugs
	Impact of Input Validation Bugs

	Effectiveness of Input Mutation
	Control Parameter Mutation
	Environmental Factor Mutation

	Case Studies
	Case Study I: Bug Causing ``Unrecoverable Vehicle Slowdown'' Discovered by One-Dimensional Mutation
	Case Study II: Bug Causing ``Oscillating Route and Crash'' Discovered by Multi-Dimensional Mutation
	Case Study III: Bug Causing ``Diverging Route'' Discovered by Wind Force Mutation

	Related Work
	Discussion
	Conclusion
	Acknowledgment
	Thresholds for Control State Deviation
	Physical Impacts Caused by Input Validation Bug Exploitation

	sec19-xiao
	sec19-mirsky
	Introduction
	The Vulnerability
	The Threat
	The Attack
	The Contribution

	Background: GANs
	Related Work
	Tampering with Medical Images
	GANs in Medical Imagery

	The Attack Model
	Network Topology
	Attack Scenario
	Target Assets
	Attack Vectors
	Attack Demonstration

	The CT-GAN Framework
	The Neural Architecture
	Training CT-GAN
	Execution: The Tampering Process

	Evaluation
	Experiment Setup
	Results: Blind Trial
	Results: Open Trial
	Baseline Analysis

	Countermeasures
	Prevention
	Detection

	Conclusion

	sec19-quiring
	sec19-hong
	Introduction
	Preliminaries
	Threat Model
	Single-Bit Corruptions on DNNs
	Experimental Setup and Methodology
	Quantifying the Vulnerability That Leads to Indiscriminate Damage
	Characterizing the Vulnerability: Bitwise Representation
	Characterizing the Vulnerability: DNN Properties
	Implications for the Adversaries
	Distinct Attack Scenarios

	Exploiting Using Rowhammer
	Surgical Attack Using Rowhammer
	Blind Attack Using Rowhammer
	Synopsis

	Discussion
	Restricting Activation Magnitudes
	Using Low-precision Numbers

	Related Work
	Conclusions
	Network Architectures
	The Vulnerability Using Different Criterion
	Hyper-parameters for Training

	sec19-batina
	Introduction
	Related Work
	Contribution and Organization

	Background
	Artificial Neural Networks
	Multilayer Perceptron
	Convolutional Neural Network
	Activation Functions

	Side-channel Analysis

	Side-channel Based Reverse Engineering of Neural Networks
	Threat Model
	Experimental Setup
	Reverse Engineering the Activation Function
	Reverse Engineering the Multiplication Operation
	Reverse Engineering the Number of Neurons and Layers
	Recovery of the Full Network Layout

	Experiments with ARM Cortex-M3
	Reverse Engineering MLP
	Reverse Engineering CNN

	Mitigation
	Further Discussions and Conclusions

	sec19-chakraborty
	Introduction
	Background
	ARM Trusted Firmware (ATF)
	Trusted Platform Module (TPM)
	Subscriber Identification Module (SIM)

	Requirement Analysis & Systematization of Existing Solutions
	Objectives
	Security of TPM
	Applicability
	Deploy-ability

	fTPM
	vTPM
	Intel SGX
	Java-card based MTM

	System Design and Security Analysis
	SIM TPM
	API Limitations of Smart Cards
	Smart Cards and TPM Command Parsing
	TPM Commands
	PCR and NV storage
	Trustworthy endorsement & Clock
	Movability & Stakeholders

	ATF boot-loader changes
	Bootstrapping trust for movable simTPM
	Security analysis

	Performance Evaluation
	Test cases and results
	Discussion of performance

	Use Cases
	Multiple stakeholder model
	Switching SIM card or device

	Discussion
	Conclusion
	Acknowledgment
	Binding RTM with distance bounding

	sec19-alrawi
	Introduction
	A Motivating Example
	Background
	Mobile App Backend Model
	Counting Vulnerabilities

	Methodology
	Binary Analysis
	Backend Labels
	Service Discovery and Fingerprinting
	Vulnerability Analysis
	Open Access for Developers

	Assessment Findings
	Experiment Setup
	Software Vulnerability Details
	Impact on Mobile Application Users
	Vulnerability Disclosure, Bug Bounties, And In The Wild Threats

	Case Studies
	Case Study 1: Vulnerable Web App
	Case Study 2: Vulnerable Platform

	Mitigation
	Remediation Strategies
	Recommendations

	Measurement Considerations
	Related Work
	Conclusion

	sec19-petracca
	sec19-andow
	Introduction
	PolicyLint
	Ontology Generation
	NER Domain Adaptation
	Subsumptive Relationship Extraction
	Ontology Construction

	Policy Statement Extraction
	DED Tree Construction
	SoC Sentence Identification
	Policy Extraction

	Policy Contradictions
	Policy Simplification
	Contradiction Types
	Contradiction Identification

	Privacy Study
	General Policy Characteristics
	Candidate Contradictions
	Deeper Findings
	Personal Information and Email Addresses
	Personal Information and Device Identifiers
	Personal Information
	Derived Data

	Notification to Vendors

	Limitations
	Related Work
	Conclusion
	Preprocessing Privacy Policies
	Training Sentence Generation
	Policy Statement Extraction
	Email Template

	sec19-reardon
	Introduction
	Background
	Android Permissions
	Circumvention
	App Analysis Methods

	Testing Environment and Analysis Pipeline
	App Collection
	Dynamic Analysis Environment
	Personal Information in Network Flows
	Finding Side and Covert Channels

	Results
	IMEI
	Network MAC Addresses
	Router MAC Address
	Geolocation

	Related Work
	Discussion
	Privacy Expectations
	Legal and Policy Issues

	Limitations and Future Work

	sec19-islam
	Introduction
	Our Contribution
	Related Work

	Background
	Memory Management
	Cache Hierarchy
	Prime+Probe Attack
	Rowhammer Attack
	Memory Order Buffer

	Speculative Load Hazards
	Dependency Resolution

	The Spoiler Attack
	Speculative Dependency Analysis
	Leakage of the Physical Address Mapping
	Evaluation
	Comparison of Address Aliasing Scenarios

	Discussion
	The Curious Case of Memory Disambiguation
	Hyperthreading Effect

	Spoiler from JavaScript
	Efficient Eviction Set Finding
	Evaluation

	Rowhammer Attack using Spoiler
	DRAM Bank Co-location
	Contiguous Memory
	Double-Sided Rowhammer with Spoiler

	Tracking Speculative Loads With Spoiler
	Spoiler Context Switch
	Negative Result: Spoiler SGX

	Mitigations
	Conclusion
	Appendix
	Tested Hardware Performance Counters
	Row conflict Side Channel
	Memory Utilization and Contiguity

	sec19-shusterman
	Introduction
	Background
	Tor
	Website Fingerprinting Attacks and Defences
	Cache Side-Channel Attacks
	Related Work

	The Website Fingerprinting Attack Model
	Data Collection
	Creating memorygrams
	Datasets

	Machine Learning
	Problem Formulation
	Deep Learning Models

	Results
	Closed World Results
	Open World Results

	Robustness Tests
	Evaluation Setup
	Baseline Scenario
	Enabling the Response Cache
	Net-only and Render-only Results
	Dealing with Temporal Drift

	Detecting Unknown Hardware Configurations
	Countermeasures
	Cache Activity Masking
	Other Countermeasures

	Limitations and Future Work
	Conclusions
	Selected Hyperparameters
	Websites Included in Closed-World Datasets

	sec19-wang-shuai
	sec19-werner
	Introduction
	Background
	Caches
	Cache Side-Channel Attacks
	Resilient Cache Architectures

	ScatterCache
	Targeted Properties
	Idea
	ScatterCache Design
	Suitable Index Derivation Functions
	Key Management and Re-Keying
	Integration into Existing Cache Architectures

	Processor Interaction and Software

	Security Evaluation
	Applicability of Cache Attacks
	Other Microarchitectural Attacks
	Complexity of Building Eviction Sets
	Full Cache-Set Collisions
	Partial Cache-Set Collisions

	Complexity of Prime+Probe
	Challenges with Real-World Attacks
	Noise Sampling
	Further Remarks

	Performance Evaluation
	gem5 Setup
	Hardware Overhead Discussion
	gem5 Results and Discussion
	Cache Simulation and SPEC Results

	Conclusion

	sec19_proceedings_part2
	sec19-pham
	Introduction
	Related Work
	Background on Android
	Fingerprintability of Android Apps
	Apps Inquiring about Other Apps
	Data Collection
	Static Analysis
	Dynamic Analysis
	Analysis of Privacy Policies

	Existing Protection Mechanisms
	Mechanisms by Google
	Mechanisms by Third Parties

	Our Solution: HideMyApp
	System Model
	Adversarial Model
	Design Goals
	HMA Overview

	HMA System Description
	HMA Manager App
	HMA App Store
	HMA Operations

	Privacy and Security Analysis
	Privacy
	Security

	Evaluation
	Dataset
	Implementation Details
	Performance Overhead
	App Installation
	App Launch

	HMA Robustness and Compatibility
	Inter-App Communication Support
	HMA Usability and Desirability

	Conclusion

	sec19-pendlebury
	Introduction
	Android Malware Classification
	Reference Algorithms
	Estimating in-the-wild Malware Ratio
	Dataset

	Sources of Experimental Bias
	Motivational Example
	Temporal Experimental Bias
	Spatial Experimental Bias

	Space-Time Aware Evaluation
	Evaluation Constraints
	Time-aware Performance Metrics
	Tuning Training Ratio
	Tesseract: Revealing Hidden Performance

	Delaying Time Decay
	Delay Strategies
	Analysis of Delay Methods

	Discussion
	Related Work
	Availability
	Conclusions
	Appendix
	Algorithm Hyperparameters
	Symbol table
	Cumulative Plots for Time Decay
	Delay Strategies
	Tesseract Implementation
	Summary of Datasets Evaluated by Prior Work

	sec19-chen-yi
	Introduction
	Background
	Dilution: Design
	Overview
	Preprocessing
	Syndication FSM Discovery
	SR Information Discovery
	Logic-flaw Prediction and Validation

	Implementation and Evaluation
	Implementation
	Experiment Settings
	Effectiveness
	Performance

	Discoveries in the Wild
	Finding from Documentations
	Attacks on Real-World Systems

	Discussion
	Related Work
	Conclusion
	Acknowledgment

	sec19-lee
	Introduction
	Background
	Methodology
	Overview
	Structure Miner
	Semantic Analyzer
	Challenges in Identification
	Comparison to Other Approaches

	Understanding iOS-based Crowdturfing
	Mobile-Crowdturfing Value Chain
	Landscape
	App Development and Promotion
	Mobile Crowdturfing Operations
	Case Study

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	Performance evaluation of Cruiser and NaiveCruiser
	UI element objects without semantic UI texts

	sec19-matetic
	Introduction
	Problem Statement
	Bitcoin Lightweight Clients
	Limitations of Known Solutions
	Requirements

	Our Approach
	System Model
	Adversary Model
	Challenges

	Bite System
	Scanning Window Variant
	Oblivious Database Variant

	Security Analysis
	External Leakage Protection
	Side-channel Protection
	Completeness
	Implications of a Full SGX break

	Performance Evaluation
	Implementation Details
	Performance Results and Comparison

	Discussion
	Related Work
	Conclusion
	Intel SGX
	Oblivious RAM

	sec19-das
	Introduction
	Related Work
	Design
	Design Challenges of FastKitten
	Architecture and Protocol

	Adversary Model
	The FastKitten Protocol
	Modeling the Blockchain
	Modeling the TEE
	Detailed Protocol Description

	Execution Facility
	The Enclave Program FastKitten
	Blockchain Verification
	Participant Communication
	Enclave Setup
	Denial of Service Protection

	Security
	Protocol Security
	Architecture Security

	FastKitten Contracts
	Complexity
	Performance Evaluation
	Applications

	Discussion and Extensions
	Fees for the Operator
	Fault Tolerance
	Privacy
	Multi-currency Contracts

	Conclusion
	Further Related Work
	Second-layer Scaling Solutions
	Incentive-driven Verification
	TEEs for privacy

	sec19-szalachowski
	sec19-yousaf
	Introduction
	Related Work
	Background
	Cryptocurrencies
	Digital asset trading platforms

	Data Collection and Statistics
	Changelly
	ShapeShift
	ShapeShift currencies

	Blockchain data

	Identifying Blockchain Transactions
	Accuracy of our heuristics
	Alternative Phase 2 identification

	Tracking Cross-Currency Activity
	Pass-through transactions
	U-turns
	Round-trip transactions

	Clustering Analysis
	Shared ownership heuristic
	Common relationship heuristic

	Patterns of ShapeShift Usage
	Starscape Capital
	Ethereum-based scams
	Trading bots
	Usage of anonymity tools
	Zcash
	Dash

	Conclusions

	sec19-li-vector_guo
	Introduction
	Overview
	Data Set and Collection
	Data Source Structure
	Threat Intelligence Metrics

	IP Threat Intelligence
	Feed Categorization
	Volume
	Differential Contribution and Intersection
	Exclusive Contribution
	Latency
	Accuracy
	Coverage

	File Hash Threat Intelligence
	Volume
	Intersection and Exclusive Contribution
	Accuracy
	VirusTotal
	Shadowserver

	Longitudinal Comparison
	Absolute Latency
	Discussion
	Metrics Usage
	Data Labeling
	Limitations

	Related Work
	Conclusion
	Acknowledgment

	sec19-dong
	sec19-feng
	Introduction
	Background
	Understanding Real-World Threats
	Honeypot
	Artifacts from Other Sources

	Automated Vulnerability-specific Signature Generation
	Overview and Data
	IoT Vulnerability Extraction
	Automatic Defense Rule Generation

	Implementation and Deployment
	Implementation
	Deployment

	Evaluation
	Effectiveness
	Performance

	Discussion
	Related Work
	Conclusion
	Keywords and Regular Expressions

	sec19-shen
	Introduction
	Motivation
	Dataset
	Methodology
	Context Window
	Temporal Security Event Embedding
	attack2vec Architecture

	Evaluation
	Evaluation Metric
	Change Detection
	Trend Identification
	Event Evolution
	System Performance
	End-to-end Evaluation of attack2vec

	Limitations and Discussion
	Related Work
	Embedding Applications in Security
	Other Related Work

	Conclusion

	sec19-staicu
	sec19-zhang-mingxue
	Introduction
	Related Work
	Overview of Observer
	Threat Model
	Recording Accesses to HTML Anchor Elements
	Tracking Dynamic Element Creation
	HTML Anchor Elements
	JavaScript

	Monitoring JavaScript Event Listeners
	Implementation

	Methodology
	Data Collection
	Third-party Content Detection
	Click Interception Detection
	Interception by Hyperlinks
	Interception by Event Handlers
	Interception by Visual Deception

	Click Interception in the Wild
	Dataset
	Click Interception Techniques
	Interception by Hyperlinks
	Interception by Event Handlers
	Interception by Visual Deception
	Evasion of Detection

	Click Interception Scripts
	Third-party Scripts Characterization
	Click Interception Script Inclusion

	Click Interception Reasons and Consequences
	Monetization
	Distributing Malicious Content

	Discussion and Future Work
	Conclusion
	Acknowledgments

	sec19-monaco
	Introduction
	Background
	Keylogging side channels
	Web search autocomplete

	Attack overview
	Threat model
	Workflow
	Performance metrics

	Keystroke detection and tokenization
	Autocomplete packet sizes
	Keystroke detection
	Tokenization

	Dictionary pruning
	Incremental compression side channel
	Pruning and information gain

	Word identification and beam search
	Word identification from timings
	Language model and beam search

	Results
	Data collection
	Attack performance
	Information sources
	Effects of network noise
	Effects of padding

	Discussion
	Related work
	Countermeasures
	Limitations and future work

	Conclusion

	sec19-yang-guangliang
	Introduction
	Background and Threat Model
	Iframes/Popups and Related Protections
	WebView and Related Protections
	Threat Model

	Differential Context Vulnerabilities
	Study Overview
	Origin Hiding Attacks
	Attacking Web Messaging
	Accessing Web-Mobile Bridges

	WebView UI Redressing Attacks
	WebView UI Overlap Attack
	WebView UI Closure Attack

	Main-Frame Navigation Attacks
	Traditional Navigation Attack
	Privileged Navigation Attack

	Advantages of DCV Attacks
	Root Causes of DCVs

	DCV-Hunter
	Complete Call Graph Construction
	WebView Context Reconstruction
	Untrusted Iframe/Popup Detection
	Untrusted URL Extraction
	URL Approval Analysis

	Vulnerability Analysis

	Security Impact Assessment
	Manual Verification
	Findings
	Case Studies
	Skype
	Kayak
	More Examples

	Security Impacts of Home-Brewed URL Address Bars

	Vulnerability Mitigation
	Mitigation Solution
	Mitigation Solution Implementation
	Enhanced Event Handlers
	URL Indicators
	Replacing the ``null'' Origin
	Popup Indicator
	Safe Navigation

	Mitigation Evaluation

	Related Work
	Discussion
	Conclusion

	sec19-zimmermann
	Introduction
	Security Risks in the npm Ecosystem
	Particularities of npm
	Threat Models

	Methodology
	Data Used for the Study
	Metrics

	Results
	Dependencies in the Ecosystem
	Direct and Transitive Dependencies
	Package Reach

	Analysis of Maintainers
	Packages per Maintainer
	Implicitly Trusted Maintainers
	Maintainers Reach

	Security Advisories Evolution

	Potential Mitigations
	Raising Developer Awareness
	Warning about Vulnerable Packages
	Code Vetting
	Training and Vetting Maintainers

	Related Work
	Conclusions

	sec19-muller
	Introduction
	Background
	End-to-End Email Authenticity
	Trust and Validity

	Attacker Model and Methodology
	Attacks
	CMS Attack Class
	GPG API Attack Class
	MIME Attack Class
	ID Attack Class
	UI Attack Class (U1)

	Evaluation
	CMS Attack Class
	GPG API Attack Class
	MIME Attack Class
	ID Class
	UI Attack Class

	Countermeasures
	CMS Attack Class
	GPG API Attack Class
	MIME Attack Class
	ID Attack Class
	UI Attack Class

	Additional Findings
	Crashes
	Airmail Accepts Invalid PGP Signatures
	OpenPGP Message Composition Attacks
	Short Key PGP IDs
	GPG API Attacks Beyond Email
	Unsuccessful Cryptograpic Attacks

	Related Work
	Future Work
	Conclusion

	sec19-merget
	sec19-antonioli
	sec19-klein
	Introduction
	Introduction to IP ID
	Introduction to KASLR
	Our Approach
	Advantages of our Technique

	The Setting
	Related Work
	IP ID Research
	PRNG seed/key extraction

	Tracking Windows 8 (and Later) Devices
	IP ID Generation
	Reconstructing the Key K
	Extracting Bits of K - Phase 1
	Extracting Bits of K - Phase 2
	Choosing Optimal G and J
	Practical Considerations
	Attack Improvements and Variants
	Environment Factors
	Possible Countermeasures

	Field Experiment – Attacking Windows Machines in the Wild
	Setup
	Results

	Linux and Android
	Attack Outline
	IP ID Generation in Linux
	Setting the Stage
	The Tracking Technique
	Attack Phase 1 – Collecting Collisions
	Attack Phase 2 – Exhaustive Key Search
	The Effective Key Space in Attacking Algorithm A3
	KASLR Bypass for Algorithm A3
	Optimal Selection of L
	A More Accurate Treatment for L=400
	Practical Considerations
	Possible Countermeasures

	Experiment – Attacking Linux and Android Devices in the Lab
	Setup
	Results

	Conclusions
	Acknowledgements
	Details of the Attack on Windows
	Practical Considerations
	Controlling Packets from the Browser
	Packet Transmission Order
	Handling False Positives
	Handling False Negatives and Interference

	Optimizing the IP Set for Minimum False Positives

	sec19-gadotti
	Introduction
	Summary of the Diffix framework
	Noise-exploitation attacks
	Differential noise-exploitation attack
	Cloning noise-exploitation attack

	Experiments
	Description of the datasets
	Differential noise-exploitation attack
	Cloning noise-exploitation attack

	Discussion
	Value-uniqueness and attribute predictability
	Producing and detecting dummy conditions
	Improving the attacks
	Defenses
	Disclosure

	Related work
	Other attacks on Diffix

	Conclusion
	Likelihood ratio test
	Reducing the number of queries

	sec19-zheng
	sec19-huang
	Introduction
	Power Systems Background
	Transmission vs. Distribution Outages
	Failure Analysis in the Bulk Power Grid
	Power System Simulations
	Power System Protections
	Industry Practices

	Contributions

	Cascading Outage Analyzer
	Protection of Generators
	Preventing the Tripping of Generators
	Overcurrent Protection
	Over/Under Voltage Protection

	Considerations for Modeling the Impact of IoT Attacks
	The Need for Combining Transient and Steady-State Simulations
	Under Frequency Load Shedding
	Frequency Response Model
	Line Overloads
	IoT Demand Attacks

	Simulation Results in a Large Power System
	Assumptions
	Parameters Used for Protection Equipment

	Demand Increase Attacks
	 1% Demand Increase Attack
	 10% Demand Increase Attack

	Increase and Decrease Attack
	Under Frequency Load Shedding in a Repeated IoT Attack

	Bifurcations, and Generator Tripping
	30% Load Increase Attack
	30% Load Decrease Attack

	Limitations
	Related Work
	Conclusions

	sec19-zhou
	Introduction
	Background
	Terminology
	Overview of Smart Home Platforms
	Overview of the Interactions on Smart Home Platforms
	State Transitions
	Scope of Empirical Vulnerability Analysis

	Threat Model and Feasibility Assessment
	Threat Model
	Prerequisites and Feasibility Assessment

	Analysis Methodology
	Deciphering Communication
	Understanding the Interacting Messages
	Phantom Devices

	Identified Design Flaws
	Flaw Exploitation
	Experimental Setup
	Remote Device Substitution
	Remote Device Hijacking
	Other Security Hazards
	Remote Device DoS
	Illegal Device Occupation
	Firmware Theft

	Discussion
	Impact on Hub-Connected Devices
	Implications to Cloud-Free Smart Home Platforms
	Root Cause Analysis
	Mitigation
	Strict Device Authentication
	Comprehensive Authorization Checking
	Enforcing the Validity of State Transitions

	Malignant Commercial Competitions

	Related Work
	Conclusions
	Legitimate 3-tuple State Combinations
	Tested Devices and Applicable Attacks
	Sequence Diagrams

	sec19-wang-xueqiang
	Introduction
	System Design
	Overview
	App Collection
	App Analysis Engine
	Device Interface Analysis
	Imprints Analysis
	Fuzzy Hash Analysis
	Modularity

	Cross-App Analysis Engine
	Device Firmware Collector

	Dataset and Results
	Dataset and Platform Statistics
	Results Validation
	Results Overview
	Vulnerable Software
	Device Rebranding
	Vulnerable Hardware
	Vulnerable Protocol
	Vulnerable Backend Service

	Accuracy of Results

	Discussion
	Miscellaneous Findings
	Limitations and Future Work

	Related Work
	Conclusion

	sec19-kumar-deepak
	Introduction
	Methodology and Dataset
	WiFi Inspector
	Device Identification Algorithm
	Avast Dataset
	Network Telescope
	Internet-Wide Scanning
	Ethical Considerations

	IoT in Homes
	North America
	Central and South America
	Europe
	Asia
	Africa and Middle East
	Oceania
	IoT Device Vendors

	Home Security
	Weak Device Credentials
	Home Routers
	Scanning Homes

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Data Sharing Policy
	Device Landscape

	sec19-wu-wei
	Introduction
	Background and Related Work
	Exploit Primitive Identification
	Exploit Primitive Evaluation
	Kernel Exploit Techniques/mitigations

	Assumptions and Threat Model
	Motivating Example
	Vulnerability and Exploit Primitive
	Challenges of Crafting Working Exploit
	Challenge 1: Exploit Mitigations
	Challenge 2: Exploit Path Pitfall
	Challenge 3: Ill-suited Exploit Primitive

	Overview
	Requirements for Design
	High Level Design

	Design
	Constructing Stack Overflow
	Looking into Stack-Smashing Gadget
	Choosing Short Return Path
	Triggering Page Fault during copyfromuser

	Bypassing Stack Canary
	Exposing Stack-disclosure Gadget and Auxiliary Function
	Disclosing Canary on Kernel Stack

	Putting them together: "Single-shot" Exploitation
	Augmenting CFHP with Blooming Gadget
	Spawning Multiple CFHPs with Bridging Gadget

	Implementation
	Case Study and Evaluation
	Setup
	Effectiveness of ``single-shot'' exploitation
	Effectiveness and Efficiency of Our Tool

	Discussion and Future Research
	Conclusion
	Availability
	Acknowledgements

	sec19-zhang-tong
	Introduction
	Background: Permission Checks in Linux
	Discretionary Access Control (DAC)
	Capabilities
	Linux Security Module (LSM)

	Examples of Permission Check Errors
	Capability Permission Check Errors
	LSM Permission Check Errors

	Challenges
	Indirect Call Analysis in Kernel
	The Lack of Full Permission Checks, Privileged Functions, and Their Mappings

	KIRIN Indirect Call Analysis
	Indirect Call Target Collection
	Indirect Callsite Resolution

	Design of PeX
	Call Graph Generation and Partition
	Permission Check Wrapper Detection
	Privileged Function Detection
	Non-privileged Function Filter
	Permission Check Error Detection

	Implementation and Evaluation
	Evaluation Methodology
	Evaluation of KIRIN
	Resolution Rate
	Resolved Average Targets
	Analysis Time

	PeX Result
	Manual Review of Warnings
	Discussion of Security Bug Findings
	Missing Check
	Inconsistent Check
	Redundant Check

	Related Work
	Hook Verification and Placement
	Kernel Static Analysis Tools
	Permission Check Analysis Tools

	Conclusion

	sec19-vahldiek-oberwagner
	Introduction
	Background and related work
	Design
	High-level design overview
	Threat model
	Call gates
	Binary inspection
	Lifecycle of an ERIM process
	Developing ERIM applications
	Extensions

	Rewriting program binaries
	Use Cases
	Evaluation
	Microbenchmarks
	Protecting session keys in NGINX
	Isolating managed runtimes
	Protecting sensitive data in CPI/CPS
	Comparison to existing techniques

	Conclusion

	sec19-wang-zhe
	sec19-li-mengyuan
	Introduction
	Overview of AMD SEV
	Overview
	Memory Encryption
	Virtualized I/O Operations

	Security Issues
	Threat Model
	I/O Security
	Case Study: Integrity Breaches of Disk I/O
	Estimating The Attack Surface

	Decryption Oracles
	SSH and Network Stacks
	Pattern Matching Using Fine-grained Page-fault Side Channels
	Replacing Ciphertext
	Packets Recovery

	Encryption Oracle

	Evaluation
	Pattern Matching
	Persistent Bp
	I/O Performance Degradation
	An End-to-End Attack

	A Path Towards I/O Security in SEV
	Authenticated Encryption
	A Temporary Software Solution

	Related Work
	Existing Security Studies on SEV
	Security Threats of Intel TEEs

	Conclusion

	sec19-ho
	Introduction
	Background
	Related Work
	Ethics

	Data
	Schema
	Dataset Size
	Ground truth

	Detecting Lateral Phishing
	Evaluation
	Methodology
	Detection Results

	Characterizing Lateral Phishing
	Scale and Success of Lateral Phishing
	Recipient Targeting
	Message Content: Tailoring and Themes
	Temporal Aspects of Lateral Phishing
	Attacker Sophistication

	Summary
	Detector Implementation and Evaluation Details
	Labeling Phishing Emails
	Model Tuning and Hyperparameters

	sec19-cidon
	Introduction
	Background
	Statistics
	Common Types of BEC

	Intuition: Exploiting the Unique Attributes of Each Attack
	Classifier and Feature Design
	Design Goals
	Dataset and Privacy
	Dividing the Classification into Two Parts
	Impersonation Classifier
	Classifier Algorithm
	Labeling

	System Design
	Evasion
	Stopping Other Attacks
	Evading detection

	Evaluation
	End-to-end Evaluation
	Classifier Algorithms
	Evaluating Missed Attacks

	Related Work
	Conclusions

	sec19-van_der_heijden
	sec19-tu
	sec19-noroozian
	Introduction
	Background
	Ethics
	Data
	Data Integrity
	Anatomy of darkgrayMaxiDed ’s business
	Hosting Business Components
	Side Business
	Examples of Bullet-Proof Behavior

	Supply and Demand for BPH
	Merchants
	BP Package Categories
	Merchant Upstream Providers
	Payment Instruments
	Package Pricing

	Customers
	Use and Abuse
	In Demand Abuse Categories
	Abusive Server Uptime
	Detected Abusive Resources

	Marketplace Finances
	Related Work
	Limitations and Future Work
	Discussion and Implications
	Appendices

	sec19_proceedings_part3
	sec19-li-shih-wei
	Introduction
	Assumptions and Threat Model
	Design
	Boot and Initialization
	CPU
	Memory
	Interrupts
	Input/Output

	Implementation
	Security Analysis
	Experimental Results
	Microbenchmark Results
	Application Workload Results
	TCB Implementation Complexity
	Evaluation of Practical Attacks

	Related Work
	Conclusions

	sec19-andersen
	sec19-torres-arias
	sec19-gleissenthall
	Introduction
	Overview
	Constant-Time For Hardware
	 Liveness Equivalence
	Verifying Liveness Equivalence

	Syntax and Semantics
	Preliminaries
	Syntax
	Semantics

	Constant-Time Execution
	Constant-Time Execution
	Liveness Equivalence
	Equivalence

	Verifying Constant Time Execution
	Implementation and Evaluation
	Implementation
	Evaluation
	Case Studies

	Limitations and Future Work
	Related Work
	Appendix
	Comparison to Information Flow
	Translation

	sec19-nunes
	sec19-kales
	Introduction
	Our Contributions
	Motivating Survey

	Related Work
	Background
	Oblivious Transfer (Extensions)
	Garbled Circuits
	OPRF Evaluation
	Cuckoo Filters
	Unbalanced PSI with Precomputation

	Optimizing OPRF-based PSI Protocols
	More Efficient Database Representations
	More Efficient PRF for GC-PSI
	Optimized GC-PSI Protocol
	Optimized NR-PSI Protocol
	Malicious Security
	Further Extensions

	Android Implementation
	Base OTs and OT Extension
	GC-PSI Implementation
	NR-PSI Implementation

	Performance Evaluation
	GC-PSI and NR-PSI Protocol
	Comparison with Related Work

	Conclusion
	Protocol Extensions
	ARM Cryptography Extensions (CE)
	Signal Integration Demonstrator
	Comparison of Unbalanced PSI Protocols on the x86 Architecture

	sec19-ramananandro
	Introduction
	Parsing Security: Definitions & Attacks
	What is a Secure Message Format?
	Attacks on Parsers

	Case Study: the TLS Message Format
	Compiling Message Format Descriptions
	Verified Programming in Low (Review)
	Datatypes and Parser Specifications
	Functional Parsers and Serializers
	Low-Level Accessors and Readers
	Low-Level Writers

	LowParse: Secure Parser Combinators
	Specification Combinators
	Implementation Combinators

	Integration and Evaluation
	TLS Message Format
	Bitcoin Blocks and Transactions
	ASN.1 Payload of PKCS #1 Signatures

	Related work
	Limitations and Future Work
	Conclusion

	sec19-connor
	sec19-riazi
	sec19-kumar-sam
	Introduction
	Overview of JEDI
	JEDI's System Model (§2)
	Encryption with URIs and Expiry (§3)
	Integrity and Anonymity (§4)
	Revocation (§5)

	Summary of Evaluation

	JEDI's Model and Threat Model
	Trust Assumptions
	Applying JEDI to an Existing System
	Comparison to a Naïve Key Server Model
	IoT Gateways
	Generalizability of JEDI's Model
	Security Goals

	End-to-End Encryption in JEDI
	Building Block: WKD-IBE
	Concurrent Hierarchies in JEDI
	Overview of Encryption in JEDI
	Expressing URI/Time as a Pattern
	Producing a Key Set for Delegation
	Optimizations for Low-Power Devices
	Hybrid Encryption and Key Reuse
	Precomputation with Adjustment

	Extensions
	Security Guarantee

	Integrity in JEDI
	Starting Solution: Signature Chains
	Anonymous Signatures
	Starting Point: WKD-IBE Signatures
	Anonymous Signatures in JEDI

	Optimizations for Low-Power Devices
	Security Guarantee

	Revocation in JEDI
	Simple Solution: Revocation via Expiry
	Immediate Revocation
	Immediate Revocation in JEDI
	Tree-based Broadcast Encryption
	Modifying Broadcast Encryption for Delegation
	Using Delegable Broadcast Encryption in JEDI

	Security Guarantee
	Optimizing JEDI's Immediate Revocation

	Implementation
	C/C++ Library for JEDI's Cryptography
	Application of JEDI to bw2

	Evaluation
	Microbenchmarks
	Performance of BLS12-381 in JEDI
	Performance of WKD-IBE in JEDI
	Performance of Immediate Revocation in JEDI

	Performance of JEDI in bw2
	Feasibility on Ultra Low-Power Devices
	CPU Usage
	Power Consumption
	Memory Budget
	Impact of JEDI's Optimizations

	Comparison to Other Systems

	Related Work
	Conclusion

	sec19-wang-ding
	sec19-thomas
	sec19-cheng
	Introduction
	Our Contribution

	Background and Related Works
	Honey Encryption
	Password Vault Schemes
	Genomic Data Protection Scheme

	Attacks Against Typical PMTEs
	Attacker Model
	Analyses of Password Vault PMTEs
	Attacks Against Password Vault PMTEs
	Attacks Against Genomic Data PMTEs

	Generative Probability Models and Generic Encoding Attacks
	Definition
	Formalization of Existing Models
	Generating Graphs
	The Principle of Encoding Attacks
	Generic Encoding Attacks
	Efficiency of Encoding Attacks

	Probability Model Transforming Encoders
	Conditional DTEs
	Probability Model Transforming Encoder
	Difference Between IS-PMTEs and Existing PMTEs
	Security of IS-PMTEs

	Experimental Results
	Security Metrics
	Datasets
	Evaluating Password Vault PMTEs
	Evaluating Genomic Data PMTEs
	Evaluating IS-PMTEs

	Conclusion
	Proofs in Section 5
	The Security of Golla et al.'s PMTEs Golla16ccs with Different Pseudocounts
	The Complexity of IS-PMTEs and Optimization for Encoding

	sec19-torres
	Introduction
	Background
	Smart Contracts
	Ethereum Virtual Machine
	Etherscan Blockchain Explorer

	Ethereum Honeypots
	Honeypots
	Taxonomy of Honeypots
	Ethereum Virtual Machine
	Solidity Compiler
	Etherscan Blockchain Explorer

	HoneyBadger
	Design Overview
	Implementation
	Symbolic Analysis
	Cash Flow Analysis
	Honeypot Analysis

	Evaluation
	Results
	Validation

	Analysis
	Methodology
	Results

	Discussion
	Honeypot Insights
	Challenges and Limitations
	Ethical Considerations

	Related Work
	Conclusion
	List of Honeypots

	sec19-xu-jiahua
	Introduction
	Background
	Pump-and-Dump Actors
	A Typical Pump-and-Dump Process
	Regulatory and Ethical Considerations

	A Pump-and-Dump Case Study
	Analyzing Pump-and-Dump Schemes
	Collecting Pump-and-Dump Events
	Obtaining Coin Data
	Role of Exchanges
	Capturing Features

	Predicting Pump-and-Dump Target Coins
	Feature Selection
	Model Application
	Assessing Prediction Accuracy
	Testing an Investment Strategy
	Final Test
	Caveats and Improvement Potential

	Related Work
	Conclusions

	sec19-bijmans
	sec19-wu-shujiang
	Introduction
	Overview
	WebGL's Rendering and Floating-point Operations
	An Explanation of Floating-point Operation and Rendering Discrepancies

	UniGL's Rendering and Floating-point Operations
	A Running Example

	Design
	System Architecture
	Floating-point Operation Simulation
	Floating-point Representation and Operation
	Floating-point Operations in Rasterization and Interpolation
	Floating-point Operations in Fragment Shader

	Rendering Preparation
	Rewriting and Rendering
	Execution of JavaScript Vertex Shader and Corresponding Floating-point Operations

	Implementation
	Evaluation
	Anti-fingerprinting Capability
	Performance
	Micro-benchmark
	Macro-benchmark

	Compatibility
	CPU Energy Consumption

	Discussion
	Related Work
	Conclusion
	Statistics of Collected Fingerprints

	sec19-reis
	Introduction
	Threat Model
	Scope
	Limitations

	Site Isolation Browser Architecture
	Site Principals
	Dedicated Processes
	Cross-Process Navigations
	Out-of-process iframes
	Cross-Origin Read Blocking
	Enforcements

	Implementation
	Optimizations
	Process Consolidation
	Avoiding Non-essential Isolation
	Reducing the Cost of Process Swaps

	Deployment

	Evaluation
	Mitigating Renderer Vulnerabilities
	Mitigating Transient Execution Attacks
	Performance
	Observed Workload
	Microbenchmarks

	Compatibility

	Future Directions
	Protecting More Data
	Additional Layers of Mitigation
	Practical Next Steps

	Related Work
	Conclusion
	Acknowledgements
	Determining Site Principals
	Features Updated to Support Out-of-process iframes
	Compromised Renderer Enforcements

	sec19-trickel
	Introduction
	Background
	Browser Extensions Explained
	Extension Fingerprinting and Detection
	Threat Model

	CloakX
	XHound Analysis
	Diversification of Web-Accessible Resources (WARs)
	Droxy
	Static Droplet Rewriting
	TAJS for Extensions
	Static Analysis Results

	Cloaked Extension
	Deployment

	Evaluation
	Functionality Experiments
	Low-fidelity Functionality Experiments
	High-fidelity Functionality Experiments

	Detectability Experiments
	Detectability Experiment Using Anchorprints
	Detectability Experiment Using Structureprints
	Detectability Experiment Using Behaviorprints

	Detectability of CloakX
	Performance Experiments

	Discussion
	Case Study of Failures
	A New Avenue of Security Exploration

	Related Work
	Conclusion

	sec19-azad
	Introduction
	Background
	Package managers and software bloat
	Motivating web-application debloating

	Setup
	Overview
	Analyzed web applications
	Vulnerability to source-code mapping
	Application usage profiling
	Tutorials
	Monkey testing
	Crawling
	Running vulnerability scanners

	Recording server-side code coverage
	Adding coverage support in a web application
	Main challenges for getting full coverage

	Debloating web applications
	Debloating strategies
	Detecting the execution of removed code

	Results
	Tutorials vs. Monkey Testing vs. Crawling vs. Vulnerability Scanning
	Debloating by the numbers
	Logical lines of code
	Cyclomatic complexity

	Analysis of CVEs
	CVE reduction after debloating
	Types of CVEs in analyzed web applications

	External packages
	Quantifying the bloat from external packages
	Removing POI gadgets
	Utilizing development packages in production

	Qualitative analysis of the removed code
	Testing debloated web applications against real exploits

	Performance analysis
	Limitations and future work
	Related work
	Debloating for the web
	Debloating in other platforms

	Conclusion
	Availability

	sec19-thompson
	sec19-qian
	Introduction
	Problem
	Motivating Example
	Program Debloating
	Challenges and Solutions

	System Design
	Execution Trace Collection
	Heuristic-based Path Inference
	Debloated Binary Synthesization
	Basic Block Symbolization
	Indirect Call/Jump Concretization
	Fault Handling

	Implementation
	[0.5]Tracer Implementations
	Update ELF Exception Handler

	Evaluation
	Code Reduction
	Functionality Validation
	Effectiveness of Path Finding
	Security Benefits
	Performance Overhead
	Debloating Real-world Programs
	N-fold Cross Validation of Heuristics

	Discussions
	Related Work
	Conclusion
	Settings for Evaluating PathFinder

	sec19-pagani
	Introduction
	Motivation
	Approach
	Memory Forensics as a Graph Exploration Problem
	Path Comparison

	Graph Creation
	Abstract Data Types
	Uninitialized and Invalid Data
	Opaque Pointers
	Limitations and Manual Fixes
	Implementation
	Final Kernel Graph

	Metrics
	Experiments
	Scenario 1
	Scenario 2
	Scenario 3

	Discussion and Future Directions
	Related Work
	Conclusion

	sec19-lu
	Introduction
	Missing Checks in OS Kernels
	Impact of Missing-Check Bugs
	Targets of Security Checks

	Overview of Crix
	Design of Crix
	Identifying Targets of Indirect Calls
	Two-Layer Type Analysis
	Type-Escaping Analysis for False Negatives

	Identifying Critical Variables
	Identifying Security Checks for Critical Variables
	Identifying Sources and Uses of Critical Variables

	Constructing Peer Slices
	Constructing and Cross-Checking Check Constraints
	Modeling Conditional Statements as Constraints
	Detecting Deviations as Potential Bugs

	Implementation
	Preprocessing Phase
	Analysis Phase
	Postprocessing Phase

	Evaluation
	Precision in Finding Indirect-Call Targets
	Analysis Performance and Numbers
	Bug Findings
	False Positives
	False Negatives
	Portability

	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Appendix

	sec19-guo
	Introduction
	Background and Problem Scope
	Program Tracing for Software Debugging
	Value-set Analysis
	Alias Analysis and Root Cause Diagnosis
	Problem Scope

	Technical Approach
	Overview
	Existing Neural Architectures
	Vanilla Recurrent Neural Network
	Long Short-Term Memory
	Gated Recurrent Units

	Our Neural Network Architecture
	Detail of Our Neural Architecture

	Evaluation
	Implementation
	Data Set
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion

	sec19-xu-xiaoyang
	Introduction
	Background
	Compatibility Metrics
	Indirect Branches
	Other Metrics
	Compositional Defense Evaluation

	Implementation
	Evaluation
	Evaluation of CFI Solutions
	Evaluation Trends
	Performance Evaluation Correlation

	Related Work
	Prior CFI Evaluations
	CFI Surveys

	Conclusion

	sec19-jansen
	Introduction
	Related Work
	Threat Model and Attacker Costs
	Stresser Services
	Dedicated Server Costs

	Naïve Flooding Attacks against Tor Relays
	Congesting Tor Bridges
	The State of Tor's Bridges
	Attacking Default Bridges

	Unbalancing Load
	Relay Performance and Path Selection
	Detecting TorFlow Scanners
	Attacking TorFlow Scanners
	Attack Strategies
	Attack Strength and Other Assumptions

	Evaluation
	Attack Cost
	Discussion

	Congesting Tor Relays
	Relay Usage
	Abusing Relay Bandwidth
	Attack Strategies
	Attack Targets
	Attack Strength

	Evaluation
	Attack Cost
	Discussion

	Sybil Attacks
	Conclusion

	sec19-leibowitz
	Introduction
	The Big Picture
	General System Model
	Threat Model
	What is the Impact of Active Attacks on Anonymity?
	Security Goals of Miranda

	Rounds, Epochs and Directories
	Intra-Epoch Process
	Message Sending
	Processing of Received Packets
	Loop Messages: Detect Stealthy Attacks
	When to send loop messages?
	Isolating corrupt mixes with loop messages

	Handling missing receipts

	Inter-Epoch Process
	Filtering Faulty Mixes
	Cascades Selection Protocol

	Community-based Attacker Detection
	Analysis of Active Attacks
	Resisting Active Attacks
	Fully Malicious Cascades Attacks
	Security of Loop Messages
	Evaluation of Community Detection
	Empirical Results
	Security Analysis

	Related Work
	Limitations and Future Work
	Conclusion

	sec19-boukoros
	Introduction
	Mobile Crowdsourcing Applications
	Safecast
	Radiocells

	Protecting Location Privacy in MCS
	Defenses
	Measuring Privacy
	Measuring Utility

	Existing LPPMs Performance in MCS
	Experimental setup
	Validating the Inference Strategy
	Privacy Gain
	Safecast
	Radiocells

	Privacy-Utility Trade-Off
	Safecast
	Radiocells

	What's Next?
	Towards Effective Defenses
	Privacy Considerations for Developers

	Related Work
	Conclusion
	Appendix
	Density Based Clustering (DBSCAN)
	Geo-Indistinguishability
	Optimal Remapping
	Defenses evaluation
	Experimental results

	sec19-murakami
	Introduction
	Preliminaries
	Notations
	Privacy Measures
	Utility Measures
	Obfuscation Mechanisms
	Distribution Estimation Methods

	Utility-Optimized LDP (ULDP)
	Definition
	Basic Properties of ULDP

	Utility-Optimized Mechanisms
	Utility-Optimized Randomized Response
	Utility-Optimized RAPPOR
	Utility Analysis

	Personalized ULDP Mechanisms
	PUM with Semantic Tags
	Privacy Properties
	Distribution Estimation
	Utility Analysis

	Experimental Evaluation
	Experimental Set-up
	Experimental Results

	Discussions
	Conclusion
	Properties of ULDP
	Post-processing
	Compatibility with LDP

	Relationship between LDP, ULDP and OSLDP
	L2 loss of the utility-optimized Mechanisms
	Utility Analysis
	Experimental Results of the MSE

	sec19-jayaraman
	Introduction
	Differential Privacy for Machine Learning
	Background on Differential Privacy
	Differential Privacy Methods for ML
	Implementing Differential Privacy

	Inference Attacks on Machine Learning
	Membership Inference
	Attribute Inference
	Other Attacks on Machine Learning

	Empirical Evaluation
	Experimental Setup
	Logistic Regression Results
	Neural Networks
	Discussion

	Conclusion

	sec19-jung
	Introduction
	Background and Problem
	Fuzzing Techniques
	Fuzzing with Fast Execution
	Fuzzing with Coverage-guidance
	Fuzzing with Hybrid Approaches

	Fuzzification Problem
	Threat Model
	Design Goals and Choices

	Design Overview

	SpeedBump: Amplifying Delay in Fuzzing
	Analysis-resistant Delay Primitives

	BranchTrap: Blocking Coverage Feedback
	Fabricating Fake Paths on User Input
	BranchTrap with CFG Distortion

	Saturating Fuzzing State
	Design Factors of BranchTrap

	AntiHybrid: Thwarting Hybrid Fuzzers
	Evaluation
	Reducing Code Coverage
	Impact on Normal Fuzzers
	Impact on Hybrid Fuzzers

	Hindering Bug Finding
	Impact on Real-World Applications
	Impact on LAVA-M Dataset

	Anti-fuzzing on Realistic Applications
	Evaluating Best-effort Countermeasures

	Discussion and Future Work
	Related Work
	Conclusion
	Acknowledgment
	HonggFuzz Intel-PT-mode Result

	sec19-guler
	Introduction
	Technical Background
	Blind Fuzzers
	Coverage-guided Fuzzers
	Using Coverage Information:

	Hybrid Fuzzers

	Analysis of Fuzzing Assumptions
	Impeding Fuzzing Audits
	Attacking Coverage-guidance
	Preventing Crash Detection
	Delaying Execution
	Overloading Symbolic Execution Engines

	Implementation Details
	Attacking Coverage-guidance
	Preventing Crash Detection
	Delaying Execution
	Overloading Symbolic Execution Engines

	Evaluation
	AntiFuzz versus Software Obfuscation
	Finding Crashes in a Simple Dummy Application
	Finding Crashes in LAVA-M
	Reducing Code Coverage
	Performance Overhead

	Limitations
	Related Work
	Conclusion
	Tigress Configuration

	sec19-lyu
	sec19-chen-yuanliang
	Introduction
	Related Work
	Generation-based Fuzzing
	Mutation-based Fuzzing
	Cluster and Parallel Fuzzing in Industry
	Main Differences

	Motivating Example
	Ensemble Fuzzing
	Base Fuzzer Selection
	Ensemble Architecture Design

	Evaluation
	Ensemble Fuzzer Implementation
	Data and Environment Setup
	Preliminary Evaluation on LAVA-M
	Evaluation on Google's fuzzer-test-suite
	Effects of Different Fuzzing Integration
	Fuzzing Real-World Applications

	Discussion
	Conclusion
	Preliminary demonstration of diversity among base fuzzers
	Does performance vary in different modes?

	sec19-blazytko
	Introduction
	Challenges in Fuzzing Structured Languages
	Blind Fuzzing
	Coverage-guided Fuzzing
	Hybrid Fuzzing
	Coverage-guided Grammar Fuzzing
	Grammar Inference
	Shortcomings of Existing Approaches

	Design
	Input Generalization
	Input Mutation
	Input Extension
	Recursive Replacement
	String Replacement

	Implementation
	Evaluation
	Measurement Setup
	State-of-the-Art Bug Finding Tools
	Grammar-based Fuzzers
	Grammar Inference Techniques
	Mutations Statistic
	Real-World Bugs

	Discussion
	Related Work
	Conclusion
	Statistics on Basic Block Coverage

	Blank Page

